
Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2014

Diogo
Santos Pimentel

SOLUÇÃO WEB PARA SUPORTE DE SISTEMAS
EM TEMPO REAL

WEB SOLUTION TO SUPPORT REAL TIME
SYSTEMS

“The greatest challenge to any thinker is stating the problem in a
way that will allow a solution”

— Bertrand Russell

Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2014

Diogo
Santos Pimentel

SOLUÇÃO WEB PARA SUPORTE DE SISTEMAS
EM TEMPO REAL

WEB SOLUTION TO SUPPORT REAL TIME
SYSTEMS

Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2014

Diogo
Santos Pimentel

SOLUÇÃO WEB PARA SUPORTE DE SISTEMAS
EM TEMPO REAL

WEB SOLUTION TO SUPPORT REAL TIME
SYSTEMS

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia de Com-
putadores e Telemática, realizada sob a orientação científica do Doutor Helder
Troca Zagalo, Professor Auxiliar do Departamento de Eletrónica, Telecomuni-
cações e Informática da Universidade de Aveiro, e do Doutor José Alberto
Fonseca, Professor Associado do Departamento de Eletrónica, Telecomuni-
cações e Informática da Universidade de Aveiro.

Dedico este trabalho aos meus pais e irmãos pelo apoio incondicional
e dedicação. Dedico também aos meus tios pelo suporte dado diaria-
mente.

o júri / the jury

presidente / president Prof. Doutor Joaquim Arnaldo Carvalho Martins
Professor Catedrático, Universidade de Aveiro

vogais / examiners committee Prof. Doutor Fernando Joaquim Lopes Moreira
Professor Associado, Departamento de Inovação, Ciência e Tecnologia da Universidade Portu-

calense

Prof. Doutor Helder Troca Zagalo
Professor Auxiliar, Universidade de Aveiro

agradecimentos /
acknowledgements

Agradeço a todos os meus colegas na Micro I/O em especial ao Paulo Rocha
e Carlos Franco pela orientação disponibilizada. Agradeço também aos meus
orientadores pela oportunidade e pela disponibilidade para ajudar.

Palavras Chave Comunicação em Tempo Real (RTC), Aplicação Web, Websockets, Inte-
gração Browser e Hardware.

Resumo Cada vez mais qualquer terminal se comporta como uma janela para a web,
seja computadores, smartphones, tablets, etc. Com o advento das tecnolo-
gias web e da globalização da mesma, cada vez mais os fornecedores de
serviços se têm de adaptar à nova realidade e acompanhar a tendência para
não perder clientes e mesmo a qualidade de serviço. Cada vez mais se tem
verificado nas ferramentas que se utilizam no dia-a-dia, essa evolução no
sentido de se tornarem aplicações web. Quando empresas líderes no seu
segmento de mercado se propõem a fazer esta evolução nos seus produtos
e serviços, vários fatores têm de ser estudados e tidos em conta. Tratando-
se de soluções com comunicações em tempo real integradas com hardware
próprio, várias soluções se propõem a resolver o problema, cada uma com
os seus prós e contras, dando prioridade às tecnologias de ponta, que, de
preferência sejam desenhadas de origem para responder às questões que se
levantam no contexto do produto. Daí ser prioritário um estudo que responda
às questões relevantes para o produto bem como os necessários testes que
validem a teoria proposta.

Keywords Real Time Communication (RTC), Web Application, WebSockets, Browser
and Hardware Integration.

Abstract More and more every terminal behaves as a window to the web, being com-
puters, smartphones, tablets, etc. With the advent of web technologies and
its globalization, more and more service providers have to adapt to the new
reality and follow the trend in order to not loose clients and even the quality
of service. This evolution towards web applications has been increasingly ob-
served in the tools used in day-to-day tasks. When leading companies in their
market segment propose to make this technological evolution in its products
and services, several factors must be studied and taken into account. In the
case of solutions using real time communications integrated with its own hard-
ware, several solutions propose to solve the problem, each with its pros and
cons, but giving priority to the cutting-edge technologies, which, preferably are
originally designed to answer the matters in the product context. Hence a pri-
ority to a study to answer the relevant matters for the product as well as the
necessary tests to validate the proposed theory.

Contents

Contents . i

List of Figures . iii

List of Tables . v

Acronyms . vii

1 Introduction . 1
1.1 Micro I/O . 1
1.2 Motivation . 2
1.3 Goals . 3

2 State of the art . 5
2.1 “Real Time” for Web Applications . 5

2.1.1 Polling versus Long Polling . 6
2.1.2 Forever Frames . 9
2.1.3 Server-Sent Events . 9
2.1.4 WebSockets . 10

2.2 WebSockets Frameworks . 11
2.2.1 PokeIn Framework . 12
2.2.2 SuperWebSockets Framework . 12
2.2.3 Alchemy WebSocket Framework . 12
2.2.4 ASP.NET SignalR Framework . 12
2.2.5 Framework Comparison . 15

2.3 Browser and Hardware Integration . 17
2.4 Real Time Logging . 20

3 Background Platform . 23
3.1 Architecture . 24

3.1.1 Server Components . 25
3.1.2 Client Applications . 27

3.2 System Updates . 28
3.3 System Logging and Debugging . 29

4 Solution and Case Study . 31
4.1 Case Study . 32

i

4.1.1 Hardware Integration . 33
4.1.2 Log Viewer . 36
4.1.3 User Interface . 36

5 Implementation . 39
5.1 SignalR Communications . 40
5.2 Hardware Service . 41
5.3 Log Viewer . 42

6 Tests . 45
6.1 Porteiro start with WebSockets support . 45
6.2 Porteiro start without WebSockets support 48
6.3 Connection and operational stress test. 49
6.4 Stress test with WebSockets . 51
6.5 Tests Conclusions . 51

7 Conclusion . 53
7.1 Future Work . 54

Appendices . 55

A Application Interface . 57
A.1 Porteiro . 57
A.2 LogViewer . 59

B Chat application code snippets . 61
B.1 SignalR Chat Application . 61
B.2 SuperWebSocket Chat Application . 62
B.3 Alchemy WebSockets Chat Application . 65
B.4 PokeIn Chat Application . 68

Glossary . 71

References . 73

ii

List of Figures

2.1 Basic Polling scheme[6] . 6
2.2 Traditional Polling versus Long Polling . 8
2.3 Forever Frame Example[9] . 9
2.4 SignalR Fallback Technologies[6] . 13
2.5 SignalR RPC Examples[19] . 14
2.6 SignalR scaleout representation[20] . 15
2.7 Using Java Applets for hardware communication 18
2.8 Interaction Scheme with LiveConnnect API[23] 19
2.9 Communication using the application server . 20

3.1 Platform main components . 24
3.2 Common installation general architecture . 25
3.3 Component diagram for components involved in client startup 26
3.4 Data server component diagram . 26
3.5 Hardware notification component diagram . 27

4.1 Use case diagram for Porteiro . 32
4.2 Hardware integration component . 33
4.3 Hardware service identification sequence . 34
4.4 Hardware notification example . 35
4.5 Model View Controller (MVC) components[33] 37

5.1 Deployment diagram (hypothetical scenario) . 39
5.2 NLog configuration for SignalR . 42

6.1 Negotiation request . 46
6.2 Response to negotiation . 46
6.3 Upgrade request using WebSockets. 47
6.4 Response to upgrade request. 47
6.5 Negotiation request without WebSockets support. 48
6.6 Negotiation response without WebSockets support. 48
6.7 Communication using Server-Sent Events. 49
6.8 Wireshark packets capture. 50
6.9 Communication packets payload. 50

A.1 Porteiro interface . 58
A.2 LogViewer interface . 60

iii

List of Tables

2.1 WebSocket frameworks feature comparison . 16
2.2 WebSocket frameworks supported platforms . 17

v

Acronyms

HTTP HyperText Transfer Protocol

TCP Transmition Control Protocol

SOAP Simple Object Access Protocol

CAN Controlled Area Network

HTML HyperText Markup Language

DOM Document Object Model

URL Uniform Resource Locator

NAT Network Address Translation

SSL Secure Socket Layer

TLS Transport Layer Security

JSON JavaScript Object Notation

XML Extensible Markup Language

SQL Structured Query Language

IIS Internet Information Services

JDK Java Development Kit

JRE Java Runtime Environment

SPA Single Page Application

API Application Programming Interface

RPC Remote Procedure Call

SMS Short Message Service

PoS Point of Sale

DB Database

IP Internet Protocol

UI User Interface

USB Universal Serial Bus

MVC Model View Controller

RFID Radio-Frequency Identification

CPU Central Processing Unit

COM Communication Port

RAM Random-Access Memory

UART Universal Asynchronous
Receiver/Transmitter

vii

chapter 1
Introduction
It has been a trend throughout the years, as the internet growth becomes a never ending phenomenon
that most applications are redesigned to be web applications and new applications are built as web
applications from the start. Some of this trend has been pushed by some big names in the technology
business (such as Google) when they announce operating systems that are built to be web client
operating systems, working almost like a web browser and connecting the user to its various web
applications [1] - later this approach was revised to allow the use of some native applications and
the possibility of some of the web applications to work offline seeing that constant internet access is
still an issue. This trend has some very logical advantages and foundations both to client and service
providers that are the root of its own existence.

1.1 micro i/o
From the company website[2]: “Micro I/O - Serviços de Electrónica, Lda. is an enterprise

that creates integrated software and hardware solutions for its own products or for specific custom
applications. With a strong R&D and innovation activity, in connection with Universities in Portugal
and Europe, Micro I/O uses cutting-edge technology in the development of products and services, fitting
the customer’s needs.”

One of the products developed by Micro I/O, is a desktop application for school management, that
has the largest client quota in its segment. When a product in the market is established as one of
the best in its segment and its usage is growing, it takes a lot of careful thought to decide the next
technological step to take. With the growing market in mobile applications and users of mobile devices
with online connection almost all the time, it is a possibility that the next step should be towards
the mobile segment. But mostly because of mobile operating systems constraints it was dropped and
the web application took its place with the advantage that it can be used in mobile devices as well
desktops and other equipment that was already running the current versions of the software.

For this step to be taken by Micro I/O, it took serious consideration to the market trend discussed
previously and other really critical aspects to this particular product and its clients.

1

1.2 motivation
In the client perspective one of the main advantages is data safe storage. The failure of a hard

drive, Universal Serial Bus (USB) drive or other means of physical storage has always been a problem
that a user encounters once in a while and has few options regarding its solution. If it can be recovered,
it is an expensive procedure that is only relevant in the case of highly sensitive or important data,
or if it can be reproduced the user will have to spend the time to redo the work that was lost, but
sometimes it is not possible to reproduce and the cost of recovering is not affordable. But if the user is
working on-line, their data has reduced risk of being lost due to hardware failure (or user lack of skills),
because now their data is being created, edited and stored in cloud services where safe mechanisms are
one of its main goals.

Another important advantage is hardware requirements and cost savings. The client does not have
to be running its applications on high performance hardware to have access to heavy duty software or
just a smooth user experience of some applications, which used to have great system requirements that
were set when the application would execute locally, and the meaning of all this is that with “less”
hardware (less money spent) and a good internet connectivity it is possible to have the benefits of
high performance hardware, or even better, now that the machines used to run the web applications
are usually clusters with a processing power several orders of magnitude higher than the best single
machine in the market. These cost savings are considerably higher if we take into account that in most
cases the operating system constraint is no longer an issue, and it is not required to run a certain
operating system with its added costs to have access to the same applications – and this is another
point of discussion: operating system independence.

Regarding the operating system independence to the service providers and the creators of these
applications, the advantages rely mostly on the interoperability that these methods provide. Because
now the user only needs a browser to run their software and browsers are available across operating
systems, the concern about what target operating system is used to build the software is no longer
an issue. This opens the door to a market of users that in the past had the constraint of using an
unsupported operating system by their software. The main concern now is if the application will run
on most of the web browsers available, or in what versions of them it will be possible to use their
software. The need for developers to specific operating systems and the possible division in developer’s
teams is not an issue, having the teams efforts focused to the same target.

Another point that is a controversial topic in some areas where web applications are widely used –
social networks for example – is that the service providers will know what the users are using their
software to, and in some cases this type of information has been used to make profit by selling it to
third parties. This type of knowledge is also important when the service provider uses it to provide a
better service, upgrading the software to make up for the lack of some features that come up as the
users interact with their software, and thus becoming a much competitive service always innovating.
When this information is available it can be used in recommender systems where the information is
compared throughout users to find similarities and patterns allowing the recommendation of some
product or feature to its users. And finally there is one great point in favour that is not always
recognized but took a great weight in the decision making for this platform to be developed: the
possibility that all clients are using the latest version of the software. It may seem a trivial point but
it will be discussed why it was such a big weight in the process.

One of the concerns about the clients is that the terminals used to operate are not up to date as
expected and that means that some are still using old operating systems that have no more support
and to upgrade them means that most of these terminals will most likely not be able to because of the

2

minimum requirements, and new equipment is not always a possibility. Another issue is the software
licensing, seen that the current versions run on Microsoft c© Windows c© and that every terminal has to
have licensed software takes the cost of the system up just to be able to use the software. With this
step, the clients can now use other operating systems namely free operating systems, reducing the cost
for every machine that is upgraded. This gives the possibility of offering a better service for a lower
cost to the customer who can now choose to use free software in old machines and with it “bring to
life” some terminals that can now run the new software.

1.3 goals
The possibility to have all clients running the same version of the software – referred above as one

great weight in this decision – is of great importance to Micro I/O in terms of customer support, staff
organization and resource savings. The current version of the product is installed in over 500 clients
(schools) and each one is responsible for the update of the software as it’s released in the client web
page. The process of updating the software is not a complex task but it is often neglected, because
either there is no person responsible for the task, or the person responsible does not have the skills to
perform it, or simply forgets it, and when there is a problem with the system (or seemingly in the
system) the client contacts the support line who has to check which version of the software is running
in that particular client, and perform an update remotely if possible or guide the user through the
operation. The resources needed to have this support available are great and it is time consuming
to the employees that would provide a better service in less time if they knew that the user calling
is using the latest version of the software. With this change in technology it would be possible to
have all servers update from the same location automatically, keeping schools up to date for as long as
the update contract is valid, saving time and resources to really work on customer support that now
mostly consists on updating clients’ software.

Combining this possibility to redesign the technical support system of the company (providing a
better customer service) and saving costs on new products to sell by reducing on operating systems
licensing, the technological advance towards this direction became not only important but the logical
next step to take.

So the proposed goals for this thesis were to design and develop a modular application, independent
of the operating system on the client side that could support communications between application
and possible hardware connected to the terminal. This coupled with the design and development of a
web application – that makes use of a predetermined Single Page Application (SPA) architecture – to
support real time operations, working side by side with the application referred above to interact with
possible integrated hardware.

3

chapter 2
State of the art
In the current web scenario, real time communications is taken for granted by the users who chat
with each other, video-conference, watch live streaming, and so on and so forth. This seamless real
time communication is based on various techniques, evolving through time as new technologies unveil.
Tracking these evolving techniques is a challenging task and to this point, the conclusion is to point
out the most used and known to the developers.

2.1 “real time” for web applications
There wasn’t always the notion of “real time” for the web. As the use for the internet evolved to

what is known today, many applications and uses were brought up, and so was the need for new types
of communications aside from the usual client-server context, where the client asks for information
whenever it wants. There was then a demand for a way to send information to the client without him
having to ask for it, as in chat applications.

Because the protocol “for the web” and the base for all communications mentioned is HyperText
Transfer Protocol (HTTP) and it does not offer – from the beginning – a possibility to make the type
of interaction needed to address these issues – that had the first documented version in 1991[3] – so
there were developed methods and techniques to work with the protocol and with its capabilities to
make it work.

The first approach to this problem was in 1996[4] when it was possible to create and sustain
a persistent connection with the web browser with the help of a Java applet. This was made by
having Java applets embedded into the browser to give the ability of a real time communication
using Transmition Control Protocol (TCP) sockets which stays open as long as the client stays in the
document hosting the applet, and the server would use this socket to send notifications translated
later by the applet. This solution did not go on its full potential forward both by the need of a plugin
installed in the browser, as well as the lawsuit opposing Sun to Microsoft that created a division among
developers who then had their software built for Microsoft’s c© Internet Explorer R© 4.0, or built with
Sun’s Java Development Kit (JDK) 1.1 that would run on any other browser[5].

Of course that by using HTTP - which is inherently a request-response protocol - lead to the use
of its communication capabilities: by forcing the client application to send requests with a defined

5

time interval it would get the server to respond with updated data, i.e., the client application asks for
new data for as long as it was needed (Polling). This is the most simple and most common technique,
used to have “real time” in web applications. It had many evolutions with a few tweaks always trying
to get data to the user more frequently with less effort to the servers, network, and less complexity for
the developers.

2.1.1 polling versus long polling
One of the first techniques used to create the likeness of real time communication, and easy to

implement is Polling. It can be simply put as sending HTTP requests to the server in fixed intervals in
order to obtain a response.

Figure 2.1: Basic Polling scheme[6]

To create the effect of real time, the time interval must be decreased to be really small and thus
getting data as fast as possible. This has an important disadvantage: it creates large amounts of
requests to the server and network load (HTTP overhead).

f unc t i on doPol l () {
$. post (’ajax/newData.php’ , f unc t i on (data) {

a l e r t (data) ; //process new data here
setTimeout (doPoll , 1000) ;

}) ;
}

In the snippet above, it is shown how to make a simple poll to an Application Programming
Interface (API) on the server, requesting new data from ajax/newData.php, with an interval of 1 second
(1000 milliseconds). The code is embedded in the webpage HyperText Markup Language (HTML) as
a JavaScript script and processed on the client side.

6

One improvement to this approach is Long Polling which consists on sending the same HTTP
requests less frequently, but then the server will hold the request and only send the response when it
has new data available, completing the open HTTP request[7] – new requests will be sent if timeout is
reached before new data is available. After a response is returned, a new request must be sent in order
to keep the connection “alive”. This reduces the network load compared to the previous and data is
received by the client just as it is available[7] – reduced latency.

func t i on doLongPoll () {
$. a jax ({

type : ‘ ‘GET‘ ‘ ,
u r l : ‘ ‘ newData . php ‘ ‘ ,
async : true ,
t imeout : 5000
suc c e s s : f unc t i on (data) {

//process new data here
setTimeout (‘ ‘ doLongPoll () ‘ ‘ , 1000) ;

} ,
e r r o r : f unc t i on (XMLHttpRequest , t extStatus , errorThrown) {

setTimeout (‘ ‘ doLongPoll () ‘ ‘ , 1000) ;
}

}) ;
}

Much like the previous sample of simple polling, this code sample shows how it is possible to make
a HTTP GET request from the server, but with the small change that this time the request has a
timeout of 5 seconds (5000 milliseconds), meaning, it is alive for 5 seconds awaiting for new data to be
available. If the request timeout expires, the error function is invoked and it simply calls the polling
function again, and restart the cycle. This is once more on the client side and whit this small change
in approach, it is simple to understand the advantage of having few requests to the server and how the
networks load can decrease significantly just by extending the HTTP request timeout.

With the long polling technique, it’s more likely that new data will be sent to the client just when
it is available, by having unanswered requests on the server, waiting to be replied to. This clearly
improves the real-time perception of the communication, and allied with its implementation simplicity
makes it a strong choice of technique to use in most cases, and justifies why it was broadly used.

Of course this is just one more tweak to a technique that was originally flawed and has as base a
protocol that was not designed with this intent, and with the growth of the number of client connections
to a server this is unsustainable, because for each client there will be a thread running on the server
waiting for response.

7

Figure 2.2: Traditional Polling versus Long Polling

The Figure 2.2 allows for a visual perception of what has been explained before, it shows how the
two techniques would behave for an example of interactions (the labeled up arrows represent new data
available at the server side ready to be sent). Having that the start of communications begins with the
time arrow representation, data “1” and “A” have almost the same interval from availability to delivery
(green areas) because both techniques would send the same request in the beginning. Only after the
first data delivered to the client the differences start to show, on traditional Polling the client will
wait the time interval to send a new request and if no data is available the empty response will follow;
during the next time interval data “2” is available to send but there is no request for a while and when
data “2” is delivered to the client there is data “3” already waiting for a request that will not occur
in another time interval. For the events represented in “B” and “C” the time elapsed, starting when
data is ready and ending on its delivery, is almost the same compared to data “A” even for distinct
phases in the process: in data “B” the request arrived some time before and is still possible to send
the response, so data will be delivered immediately; when data “C” is ready, a time out has occurred
on the previous request but a new request will arrive soon after and the data will be delivered with a
small delay.

8

2.1.2 forever frames
Used in Internet Explorer R© for a long time, this technique works by creating a hidden Iframe

in the page that requests a “document” from the server but what the document is, is a collection
of scripts that the browser will execute as they arrive. This document is “never ending” (long lived
HTTP connection), the request is kept alive and the server will keep sending script tags creating a
seamless persistent connection[6].

This technique is possible because of a feature in the HTTP 1.1 specification, Chunked Encoding[8],
that allows a server to divide the response in a series of chunks each with its size associated, and the
total size of the response might be unknown during this process. It was made use of this specification
to have servers sending data without revealing its total size and thus keeping the connection alive
allowing the push of chunks of data to the client.

Figure 2.3: Forever Frame Example[9]

The Iframe element starts the connection with the server as soon as the browser finishes loading the
page. Then the chunks would begin to arrive – as new data is available at the server – and the script
contained would be executed with the use of a function call from a library in the parent document.

Data chunks received are rendered incrementally by the browser and added as nodes to the Iframe
by the Document Object Model (DOM) causing the document size to grow. There could be some
memory issues with the non-ending responses that would make the Iframe increment its size, but as
the chunks finish rendering they are typically removed. Not all versions of the browser react the same
way to this technique and some tweaks are required to have it working with the various targeted[10].

2.1.3 server-sent events
Supported by almost every modern browser – other than Internet Explorer R© – this standard

was designed to be efficient, and it stands out because the server can now send notifications to the
clients whenever it wants without the need of the initial request. The client now subscribes to an event
stream defined by the Event Source API which opens a HTTP connection to receive push notifications
from the web server[11]. These push notifications are received in the form of DOM events, and that’s
why it is said that the client subscribes to an event stream, because by using this API and connecting
to the server the client is actively a recipient of the series of events published by the server.

9

var sourceStream = new EventSource (‘ ‘ example_sse . php ‘ ‘) ;

sourceStream . onmessage = func t i on (event) {
//sample process of an envent
document . getElementById (‘ ‘ r e s u l t ‘ ‘) . innerHTML += event . data + ‘ ‘
 ‘ ‘ ;
} ;

This is the most basic example of how to make the subscription to an Event Source and handle
the events push by the server. The first line is how the subscription takes place, creating a source
stream from the target location. Then it’s needed to tell the browser how to deal with the new events
(onmessage signal), and that’s what’s been done in the definition of the handle function that takes the
event received in the stream and – as an example – adds it to the HTML element result as a new line.

2.1.4 websockets
The real “game changer” in terms of real time connections for the web is WebSockets: persistent

full-duplex channel over a TCP connection. It’s not just another tweak or workaround to HTTP, it’s
a protocol[12] designed specifically to allow asynchronous and bi-directional communications between
the server and client applications[13].

To supersede the mentioned technologies, WebSockets had to be designed to escape the HTTP
request-response premise. In order for that to be accomplished a simple solution would be to create
a TCP connection and use it to bidirectional traffic, which was the solution implemented in the
WebSockets protocol. HTTP is used for the handshake negotiation which is interpreted as an Upgrade
Request[14] by the server and the TCP communications are made over the ports 80 or 433 to make
use of existing HTTP infrastructures – this is in itself an advantage, having traffic over those ports
ensures that the traffic will be treated as HTTP[6].

The improvements are a big step towards the ultimate goal: sending data to the client whenever
there is new data, wherever the client is (independent of network, device or browser) and with as low
latency as possible. Because of the use of a TCP persistent connection, server and client can send data
at any point in time, and with the use of the ports 80 and 433 to communicate traffic will be having
the same reach of HTTP traffic passing through firewalls and proxies which block “non-web” traffic[6]
(traffic other than HTTP). By not being exclusively implemented in web browsers and servers, it can
be used in other applications and so this broadens the scope of uses for this protocol. Noteworthy is
the fact that the data sent back and forth is really just data, it’s not scripts or HTML elements, but
the raw data that meant to be delivered.

var connectionWS = new WebSocket (’ws://example.org/ping’) ;

connectionWS . onopen = func t i on () {
//send a string through the socket
connectionWS . send (’ping’) ;

} ;

10

connectionWS . onmessage = func t i on (e) {
//process received data
conso l e . l og (’Server: ‘‘ + e.data);

};

This sample code shows two important things about the protocol: the simplicity of creating and
use this connection and the direction of the data flow. On the first line the connection is established
by creating an instance of a WebSocket pointing to the server location – the Uniform Resource
Locator (URL) schema for WebSockets is “ws” as shown or in the case of a secure connection using
Secure Socket Layer (SSL), “wss”. Then in the second code block, it’s established that when the
connection opens the client will send a message represented by the string “ping” just as an example
of how upstream connections are processed. Then whenever a new message is received, the signal
onmessage is emitted and the data is processed – logged in this case.

Because this is a point to point connection, if the application has multiple pages (very common)
then each page represents a different stream of data, and it’s the server job to manage these transfers:
there must be a collection of connections (each one representing a client) and the knowledge of which
data to send to the client (what page is he connected to). And so the server must iterate through the
collection and send data to the respective clients[10].

Another scenario in which WebSockets scale-out becomes complex is when the application allows
the clients to interact with each other. In this case the same iteration through the collection of
connections has to be repeated, in order to send data each time a client “talks” to another.

Scaling this technology is the difficult part; the last two points show simple examples of how this
starts to get complex as the application grows or the number of client grows, but there is another
issue with a common situation these days: multiple servers, or web-farms. In these configurations
clients of the same application can be connected to multiple servers and at the time of distributing
data, the servers must keep an updated list of active connections to them and convey that information
to other servers so that their clients get the up to date data as is expected. To implement these
type of configurations, all the logic behind the data exchange and the clients connections is usually
implemented by an extra entity. That entity can be a server, a variety of services implemented in the
application servers, or both. It contains a list of all clients connected to the application servers and
their location, which the servers constantly update, meaning extra tasks to the application servers and
increased overall complexity.

2.2 websockets frameworks
As discussed WebSocket is the latest technology regarding real time communications for web

applications, and so it will be presented the best frameworks to aid the development, regarding browser
compatibility, operating systems supported, methods to solve the proposed goals, and documentation
with active development if possible. The presented frameworks are all implementations for the .NET
framework. To better understand each framework in the developer perspective, a simple chat was built
for each presented framework, and the important elements of its code can be seen in Appendix B.1

11

2.2.1 pokein framework
It’s a framework developed by Zondig[15] with support and documentation depending on contract

and an yearly fee. The free version of this framework cannot be used with commercial means. Has a
variety of features including message level encryption (even in an open HTTP connection it is possible
to cipher the message transmission), “clone message attack” protection mechanisms (detects and
discards cloned or repeated messages) and session cloning detection (prevents attackers from using
established sessions to be reused)[16]. The range of browsers and software support is great but at a
high cost (only available in paid versions). Because it also has Mono support, it was considered a
possibility, but some issues such as the need for PokeIn developers” team to intervene in some type of
implementation scenarios, it was ruled out in the end.

2.2.2 superwebsockets framework
It’s an open source framework, built over the SuperSocket framework by the same community –

which is a widely used framework within its type of implementations – and with Mono support as well
as SSL/Transport Layer Security (TLS). Has tools for scale out scenarios and support for Microsoft c©

Windows c© environment hosting. Although it seemed to work in the test application (chat application),
the lack of documentation and community support, added the fact that it never released a stable
version (the latest being 0.8 beta) caused it to be left out of the solution.

2.2.3 alchemy websocket framework
Another open source framework, with community and Olivine Labs[17] team support, with an

extensive and complete documentation. It has Mono support as well as all frameworks considered,
and can be downloaded directly from NuGet into the Microsoft c© Visual Studio c© project. There were
some problems when it came to disclosure on what features it had implemented and was not possible
to have a list of that features unless they were tested.

2.2.4 asp.net signalr framework
Started as a side project from its creators[10] – who are part of the ASP.NET developing team –

soon became popular and was added to the ASP.NET platform. It is a framework used for real time
communication on web applications. The concept goes beyond the last discussed frameworks that are
exclusively WebSockets frameworks, because it relies on several technologies to push data from the
server to the browser in real time. It has a more diverse set of features and capabilities.

Although it belongs to the ASP.NET platform and has the support behind the team, it is still
an open source project as it was created[18]; the community can still contribute to its development,
make suggestions to ASP.NET developers for changes or improvements; it has Mono support even
after the adoption by ASP.NET allowing its usage outside Microsoft operating systems. It is available
for download at NuGet, facilitating its integration in the Microsoft c© Visual Studio c© projects, along
with samples and documentation.

12

Like all the other frameworks it’s asynchronous and event driven. A signal is given when an event
takes place. It uses several technologies to transport data, being WebSockets the priority, and then
rolling back to other technologies until the client and network has support for that type of transport –
this feature is completely transparent – making sure that data is delivered in the best possible time
frame. Has capability for connection management: it is possible to know when a client connects to
the server, when it disconnects, or for how long it was disconnected, so the clients aren’t just sockets
connected to a server, it’s possible to identify and track their usage. Another great advantage is the
abstraction available to the developer from the complexity of iterating through connections to push
content to the browser. It is possible to broadcast to groups of clients, depending on their subscription,
rather than targeting one by one (which is possible).

Figure 2.4: SignalR Fallback Technologies[6]

SignalR establishes a persistent connection between the web application and the server, using one
of the following technologies:

• WebSockets - this is the preferred technology, if both client and server support the technology,
it will be used.

• Server-Sent Events - if the client or server have no support for WebSockets the framework
will try to use Server-Sent Events (if the browser is not Internet Explorer R©).

• Forever Frame - if the browser is Internet Explorer R© and there is no support for WebSockets,
this technique will be used to establish a persistent connection.

• Long Polling - the last resort is Long Polling, used if the browser is unknown or is from an
older version not supported by any of the preferred transport methods.

This transport negotiation is automatic and established at the web application startup, and from
the developer point of view the procedure always provides the same result – a persistent connection
over HTTP.

It’s also possible to use Remote Procedure Call (RPC) via SignalR. it has an API to create this
type of connections so the server can, for example, call JavaScript functions in the client application’s
browser, and the client can also perform function calls on the server.

13

Figure 2.5: SignalR RPC Examples[19]

The server can call the JavaScript function at C# code just as it can call a function from an object
– the clients are instantiated objects that can be accessed by id – as well as the opposite (bottom image)
seen when the client application makes a call for a server function. SignalR allows not only RPC but
sending objects through the connection as well, and the serialization is handled by the framework -
objects are sent as JavaScript Object Notation (JSON). The Figure 2.5 shows an example of RPC
from both server and client. “Hub” on the server and “Hub Proxy” on the client, are the names of the
framework components used for the communication. They refer to the Hubs API of the framework,
discussed bellow.

For applications where concurrency is an issue – collaborative tools with multiple users accessing
and editing the same data – this framework offers solutions. So if there is a web page or document with
many fields that multiple users are editing, is possible to let all users know what fields are being edited,
show the changes in real time and in the case of two users editing the same field there is concurrency
management.

When the server is in fact a cluster of servers and there is this scenario of a web farm where some
clients are connected to one server and another set of clients is connected to other servers, there is

14

the need for communication among them to keep the functionalities running. To solve this, SignalR
framework uses a component, named backplane, which connects multiple servers and replicates messages
so they are redirected to the target clients.

Figure 2.6: SignalR scaleout representation[20]

The way these scale out operations are handled is by enabling the backplane and every message
generated by a client to broadcast is sent directly to the backplane which replicates the message
distributing it to the application servers that will forward it to the target clients. Since every message
is sent using a message bus (IMessageBus) when the backplane is enabled it will replace the default
message bus with the appropriate bus for the backplane – there are three types of backplane and each
one has a different message bus implementation. The Figure 2.6 is a graphical example of how the
backplane works: the red lines represent the message uploaded by the client to broadcast, and the
green lines represent the message sent to all connected clients.

The framework is composed of a two level APIs being the low level the Connections API which is
a simple API to manage connections, send raw data in both directions, send to groups or individual
clients and has tools to know about the client status. Then there is the higher level Hubs API which
abstracts from Connections and give the developer access to all the other features such as RPC.

All these features are very simple to use, there is active support from ASP.NET and the community
at GitHub where the source is available, and there is a great focus from the ASP.NET team to always
improve on performance.

2.2.5 framework comparison
To put in perspective the features available in each framework this next table will show some of

the features that were considered important – being the highlighted ones more important – in the
selection of the framework to use.

15

feature comparison

Table 2.1: WebSocket frameworks feature comparison

The missing answers in Table 2.1 are due to the lack of information or documentation in the
framework official site. Some of the answers were found after small tests (a chat application was built
using each framework to determine its usability). The “*” represent features that are available on the
paid version of the framework (PokeIn framework only).

Server push is a feature brought by the use of WebSockets (which all of them implement); broadcast
levels is the ability to send a message to multiple clients or groups of clients without the iteration
through all client connections; reconnection loop represent the implementation of the logic necessary
for a client to try and reconnect to the server after the loss of a connection, keeping the context of
the lost connection after the reconnection; load balance is used in case of having multiple servers
distributing the clients for the available servers; message level encryption allows the messages to be
encrypted even if the connection is not.

It’s easy to highlight the two frameworks with the most features available at the moment, but in
the case of PokeIn some of the features were only available when purchased a license and in the case of
a scale-out operation there has to be an intervention of the PokeIn team so it can be accomplished.

16

supported platforms

Table 2.2: WebSocket frameworks supported platforms

To know the reach of each framework is necessary to know what versions of software they support
– which is almost the same for the server side platforms – and how many clients will that represent.
Table 2.2 contains the platforms supported by each framework, including browsers that ultimately
translate into users. PokeIn supported browsers depend on the subscription level, and to support older
versions for each browser will bring a higher price on the subscription (hence the “*”).

According to StatCounter Global Stats[21] these are the market shares for each browser and
versions: Internet Explorer R© 8+ (up to Internet Explorer R© 11) represented 26.84% of the clients
on-line worldwide(from January to December of 2013); Google Chrome 24 (up to version 31) represented
35.78% of browsers used during the same period; Safari 5.1 has a market share of 1.53% and versions
6 and above have 2.43%; Opera 12.1 has a market share of 0.7% and versions 14 and above 0.15%;
Mozilla Firefox R© has a market share of 18.96% for versions 5 and above not detailing per version status,
above the mentioned version. These number show that the supported browsers by the frameworks,
represent most of the browsers on-line, and older versions are almost irrelevant.

2.3 browser and hardware integration
For obvious security reasons, browsers have no capabilities to give web applications direct access

to hardware interfaces in the system they are running. This sandbox ensures that if the applications
are malicious or if they (both browser and web applications) are compromised, there are limitations

17

to what damage can result from it. This security measure makes it difficult to design in the simplest
manner web applications that interact with specific hardware and some solutions where designed to
address this issue[22].

java applets
Java applets are one solution to this: by adding a Java applet to the client application it is possible

to have it interact with a Java application running on the system, which serves as an interface to the
local hardware. When the user enters the client application on the browser, is asked for permission to
execute the applet, meaning that the user can give access to its system outside the browser’s sandbox ;
this way it’s possible for the applet to interact with a previous installed and running Java application
that handles the hardware communication.

Figure 2.7: Using Java Applets for hardware communication

The figure 2.7 is a simple representation of what the general process and communications would
look like. To this general principle described above there are two ways (the most common) of having
the applet communicate with the hardware interface Java application. The first would be by using
the technology LiveConnect which is an API that allows the Java applet to communicate with the
Javascript in the web application and with Java applications on the system – through the Java Runtime
Environment (JRE).

18

Figure 2.8: Interaction Scheme with LiveConnnect API[23]

As described above the Figure 2.8 shows the overview schematics of the interaction among
intervenient parts. This is not an “out-of-the-box” solution even using the LiveConnect API. It has
some great disadvantages: the fact that there’s a need to add complexity to the client application (by
adding the applet); the need to have a Java plugin installed for the respective browser; and that the
system user must have the right privileges to run the applet.

The Hardware Manager is a local server that handles connections between the Java applet and the
hardware device drivers. It serves as an interface with the needed functions for the web application
abstracting from the device driver functions.

Instead of using the LiveConnect API there is the possibility of using sockets. The Java applet used
would be designed to create a socket to a local server – running on the Hardware Manager application
– and send/receive commands through it. The advantage of doing this is that there is no constraint of
using function calls – to which the LiveConnect API restricts the applications to – and the socket can
be used to whatever ends necessary.

communication using the application server
Another possibility that uses the same hardware manager of the previous solution is to have it

connect directly to the web server (see Figure 2.9), this way the user interacts with client application
on the browser and the server will send or receive data directly from the Java application running on
the client system.

19

Figure 2.9: Communication using the application server

The Hardware Manager application would connect directly to the server using HTTP or Simple
Object Access Protocol (SOAP) and the server would then apply the logic that was defined in the
Java applet of the previous solution for the hardware. This is a more viable solution seeing that the
client application has no knowledge of the hardware, removing the complexity and there is no need for
a plugin on the browser. The problem relies on the delay between the time commands on the client
application in the browser are made and when the hardware receives that information. Another issue
might be the knowledge in the server side to what hardware connection matches the client application,
because of the use of Network Address Translation (NAT) this is an issue that too needs addressing
and more complexity in the end solution.

2.4 real time logging
For the standard desktop applications that were distributed and that clients had no contact later

with the manufacturer of the software, logging and debugging tools were mainly used in the development
or testing processes, but the software was rarely deployed with logger or debugger tools. With the
transition from desktop applications to web applications, clients are now in permanent contact with
the servers and it is possible for whoever who has access to server applications to consult and keep a
log of the interactions the users make on the web applications, if the right tools are implemented in
the software.

This has great benefits for the manufacturer in a variety of processes and software development
stages (even for other purposes aside from the software engineering perspective):

• the users are now part of the software testing team.

• the tests become real world usages of the software.

• the developer can access directly to information gathered by the loggers.

• statistics can be made about the real world interactions.

20

• it is possible to assert what are needs that the software doesn’t provide yet.

• software can now be redesigned to fit the users interactions patterns with the software.

Software testing is an important aspect of software development, assuring its quality before delivery
to the client, and to make sure it is fulfilling its purpose. This is usually a process conducted by a
team that is part of the manufacturer team in the software chain of development, or by an outsourced
team, or even by specialized software. Any of those responsible for the testing can have multiple
types of knowledge about the target software: can be a blind test (when not knowing the purpose and
testing its robustness); it can be a test to its capabilities as considering the tasks that it is supposed to
perform, etc. The testing processes are logged and then delivered to whom is responsible for revising it
and rectify the wrongs (usually the developers). Considering that the software users have their actions
logged, it’s as if they are part of the testing team (the user is the ultimate tester) and tests are not a
scripted task but a real usage of the software.

The information given by the loggers – depending on what is set to be logged – can have multiple
purposes outside the software development scope. There can be statistics applied to them in order
to transform logged data into knowledge about the system, usage, users” interactions or activities,
etc., which can then be used to redesign the product and offer a better service for the client, to create
other products based on that statistics – such as report tools – and sell them separately or add to the
solution package and upgrade the offer to the client.

Security is a possibility with real time logging, as there are tools to monitor the system’s usage,
it’s possible to know what type of operations are being made and if the users are performing typical
operations that the software was designed to perform or are exploiting it beyond their permissions. If
there are levels of privileges it is possible to identify possible malfunctions or software bugs if certain
users have actions logged that were not possible under normal conditions.

There are several tools/libraries available to make this type of logging (NLog[24], and log4net[25]
are two popular examples for .NET framework applications) but the premise of them all is to save the
log messages into files or databases for later access. After the logging files or databases are created
and the logging messages are programmed into the software, there are several applications that can be
used to access the log files and visualize them in real time – i.e. they are constantly accessing the log
file or database searching for new entries.

LogFusion[26] is one of the applications to facilitate the visualization of log files – as described
before. It works by monitoring text files, event logs (remote or local), event channels (remote or local)
and output debug strings (if the target application writes log to the console). It highlights message
rows, has text filtering capabilities and some other tweaks to help find information easier and with
less clutter. A similar popular application and freeware as well is Trace Log[27] with the same main
features.

There are other applications that have a free subscription but with limited capabilities, either by
limited time, of by limited number of log messages per day, or even limited number of hosts under
monitoring. Some applications store the information gathered from the log files in the cloud, which is
a plus when there are multiple hosts being logged but for the task in hands it’s not worth the price
and a custom built solution is the way to go.

21

chapter 3
Background Platform
SIGE c© (stands for Sistema Integrado de Gestão de Escolas, i.e., integrated management school system)
is a system developed by Micro I/O for school management, from the basic day to day operations
(such as selling meals, control attendance) to schedule or transport management.

The original system is being developed by Micro I/O since 2001, in order to provide support to
school boards for managing schools and to facilitate day to day operations, starting as an application
to control students access to school, and then gradually becoming a complex platform with new
functionalities being added to fill the needs of the clients (schools) – some features added were client
specific, such as “bus pass control” and “bus routes” which were developed per client suggestion but
then were offered as part of the main platform to all clients.

As the number of clients grew, and its requests were met, new applications began to take form
and by the third version of the software (SIGE c© 3) these are its main components:

23

Figure 3.1: Platform main components

The center container in Figure 3.1 represents the server side applications and the surrounding
images are the logos of each client application available in the platform.

3.1 architecture
The general architecture can be described as a traditional client-server architecture, operating

typically on a private and dedicated network within the school perimeter, but it’s not unusual that
sometimes it is part of the school network, and more recently in wide areas connecting many schools
through the web. All applications and services work exclusively on Microsoft c© Windows c© machines.

Part of this network is also the hardware created and manufactured by Micro I/O to perform
specific tasks – this hardware can be a card reader on a tourniquet with network connection that
communicates directly with the server validating a user entrance or exit from school unlocking the
tourniquet, or a vending machine that requests the user balance to allow some purchase.

In this platform, server has different meanings, i.e., for different installations and configurations
there can be one global server that performs all tasks needed by the system, or it can be several
machines each one responsible for a service to provide the required functionalities. In the case of
having multiple schools as one client (a school cluster) there is at least one server per school, being
that one of them is defined as the synchronization server and has one more task to perform, which is
to keep every school database up to date with the others at all times.

24

Figure 3.2: Common installation general architecture

The image (Figure 3.2) represents one of the simplest configurations the platform can have: a single
machine responsible for all server features. This configuration was most common when schools lacked
the resources to have additional hardware responsible for the services, something that as changed in
the course of the years and with the advance of technology. The importance of the purchase of new
hardware became evident any time the system would go down due to hardware fault in the server side.
With more school staff using the software and the software replacing other mechanisms for performing
some tasks, the load over the server increased and with it, the importance of having it running by
having more services depending on it.

3.1.1 server components
As in any server-client architecture, the server represents the center piece of the architecture,

providing the many services needed for the platform to perform the designed functionalities. In this
case the services provided, and therefore, corresponding servers are:

• Database Server - responsible for the database storage and Structured Query Language (SQL)
server capabilities, in which the application database has one instance dedicated to it.

• SIGE Server - the server to which every application on the system points to, and has to have
access to, at all times to be running. This service has the location to the database server, and
proxies every application to it. When a new installed application runs for the first time, it is
asked the Internet Protocol (IP) address for the SIGE server machine, and if the connection is
lost at any time, the application will not allow for any tasks to be performed.

• DATA Server - this service provides an interface to the database to be used by apache. Usually
the machine running this service is called the Web Server.

• Update Server - checks the update directory for a new version of the software, and sends the
files to the clients upon request.

25

• Hardware Server - communicates with specific devices/hardware providing information from
the database so they can perform their intended tasks. This service is not deployed in every
client because it’s for specific hardware, that is not used in most systems.

Figure 3.3: Component diagram for components involved in client startup

Whenever a client application initiates it performs two main tasks which are to check if there are
updates and ask for the database connection string from the SIGE Server. The location of the Update
Server and SIGE Server is configured on the first time an application starts so these tasks can be
performed. The SIGE Server and Update Server don’t interact with each other and can be installed in
different machines if that is required.

The web server is where the DATA server service is running – alongside apache – providing web
access to some operations for students or parents such as meal purchase, grades and schedules consult,
among others. These operations are made on the web application Portal.

Figure 3.4: Data server component diagram

The Data Server connects directly to the database to run the necessary queries and translate
the result to Extensible Markup Language (XML) to then be used by Apache to display in the web
application. There are no other interactions with other services on the platform.

26

Figure 3.5: Hardware notification component diagram

The platform allows some operations to be handled by hardware without a client application to
interact or supervise it. One example is access control using card readers connected to a Controlled
Area Network (CAN) network in which there is usually a light or sound alarm to warn about a denied
access. When a card is read the SIGE CAN service will pick up the information on the CAN network,
connect to the database and apply the logic necessary to validate the access and send a signal to the
alarm either to sound the alarm or give the green light. This can be accomplished without the client
application, which works just as explained, but it can also have the client application to monitor the
accesses just has it would with a card reader attached to the terminal. To allow this visualization
– this is the name of the process in which every client application (Porteiro) can be configured to
monitor multiple access points in the school perimeter – after the answer about the access validity
is known by the SIGE CAN server, it’s generated a notification sent to the SIGE Server which will
redirect it to the connected clients on the monitoring list.

3.1.2 client applications
The set of client applications provided with the platform is composed of four main applications that

represent the majority of functionalities of the system, and another four applications which aid/add
features and simplify the use of the overall system.

Three of the main applications are easy to identify and recognize its functionalities, they are:

• Porteiro - (as in doorman) is where the users have first contact with the system. They use it
when entering or leaving the school perimeter, and it’s where the access control first begins.
It’s usually composed by a single terminal with many card readers connected, and it allows the
supervisor – responsible for monitoring the students’ accesses – to consult the users schedule
and activities, allow a visitor in, and get alerted when a student tries to exit without permission.
The access log is shown in a timeline type interface with basic information regarding the user
and its picture[28].

• POS - with functionalities similar to other Point of Sale (PoS) applications, selling cafeteria
products, school books, meals, and any other items needed. It lets the staff member to choose
one of the users account (users can have multiple accounts) and purchase items allowed to that

27

account and user. Since there are many uses for a POS in a school environment – cafeteria,
library, charging accounts, etc. – it is possible to have a different set of product pages configured
to each terminal, allowing the same application to have multiple purposes. It has also a kiosk
mode, in which the users are the students themselves, and there is no staff supervision. It is
mostly used in this mode to work as a money accepting terminal where students charge their
accounts, and/or schedule meals[28].

• Refeitório - is the canteen manager application, it has a “gate” where students use their cards
to check in and validate the meal, purchased earlier, and can show the information on a screen
with a timeline such as Porteiro warning staff when there is some unauthorized entrance[28].

Finally the main application of the group and the platform itself is Gestor – meaning manager. It
is used by the school staff, and the school management to manage parameters, users, products, classes,
school activities, schedules etc; generate reports about many subjects such as account movements,
entries and exits from school perimeter, grades, products sales, etc. It is a really complex application,
and the number of features has never stop growing, both by client request or to respond to a missing
feature or new technology now used in the system. Because this application (and platform in general)
was not designed to have a plug-in system in which features can be added or removed by client request,
the further the development goes, the more complexity it has, as it is adding more and more features to
the original design, and so, it takes more resources to provide training to the school staff and resources
in customer support with its associated costs, to answer questions about how some operation is made
and clear doubts that would not exist if the level of complexity lowered[28].

There are other complementary applications:

• SMS - which is used to configure and manage all Short Message Service (SMS) related tasks.
Feature provided by the system that allows the platform to send informative SMS messages to
both students and parents: it can be a message alerting the parent for the fact that the student
did not entered the school perimeter in the schedule time; or an informative message to all users
about an event taking place in school.

• Facturação - handles all billing tasks, aiding school staff to deal with billing reports, regarding
the usage of the system. It is usually used to print reports and billing information to be checked
by accountants later.

• Database (DB) Manager - used to backup or restore databases, and run update scripts
when a new version is available. As anyone would guess this application is used exclusively
by the responsible for system maintenance at school or by a Micro I/O agent during a system
update. It’s generally located in the server containing the database.

• Portal - to give some more information to the students’ parents and allow for small operations
to students themselves, Portal was created and now students can consult their schedules at
home, purchase meals, among other operations. Parents can check the students’ grades, classes’
attendance, what products are being bought, etc.

3.2 system updates
To update the system there are two main steps required, the first is to get the update files and

the other to restart the system allowing the applications to update themselves. For this process there

28

is the service SIGE Update that is usually located at the server running SIGE Server – but it can
be changed and the proper configurations have to be made – that is responsible for answering the
question "is there a new version?" whenever an application starts.

The files needed to update a system are available to customers at the clients’ web page, and it can
be downloaded if the customer has a valid update contract. Then the client has to extract the file in
the predefined update folder on the SIGE Update server location. For the new files to be delivered to
all terminals they have to be restarted (all applications), starting with the SIGE Server that will auto
update and restart again, and then restarting the client applications one by one so that they ask the
Update Server if there are new versions and download the files needed[28].

If the update represents a major version, the database may need to be updated itself, and for that
there is another task to make: that is to run the application DB Manager and run the SQL script
given in the extracted update files.

It may not be a complex task, but for the average user – that is the usual user of the system – it
can be a tricky task to perform and it is sometimes neglected and some clients will go many versions
(in the course of months) without an update.

There are some recurrent issues with this process besides not being done at all, and one of them
is when the update files are not downloaded to the terminal where the client application is running,
either by network failure or more commonly because of the lack of privileges to write data in the
system folder, leading to applications not starting and some basic functions not being able to run
on school: one example of this is when a school has a parameter set that only users that logged into
the school perimeter using Porteiro to be able to use their cards, either to buy food or meals, and
the application Porteiro fails to start then these users won’t have access to the cafeteria. Other issue
that is less recurrent but critical is when the person responsible for the update does not update the
database or tries to update it using a wrong script version causing multiple malfunctions throughout
the services.

3.3 system logging and debugging
To give better response to customer support and to track some known problems to help identify

patterns that lead to a certain error and thus bringing to light new bugs or flaws in design, it was
developed and deployed only recently mechanisms to log using the Microsoft c© Windows’ c© event log
service. The type of information logged is mostly error messages, and service status updates – logging
the start and stop. When there is a support call in progress and the assistant cannot solve the problem
or it is identified as a critical problem, the support call goes to the next line of help and is made using
remote access to the school server (or the terminal where the problem resides) and the first action to
perform is to try to identify known error codes in the system log under the application tag.

This process of remote access and problem solving is heavy time consuming and sometimes the
system as to be stopped or the support has to be made when there are no users interacting with the
system. When the error does not clarify its origin, the process leading to it has to be repeated in order
to understand its origin, and in that case a more thorough debugging would be of great impact. There
are cases of bugs that were only found after the client’s database was cloned by the assistant to be
provided to the developers so that they could try to recreate the process and evaluate where the bug
occurs.

29

The remote access is the only way the assistant can understand the user’s interactions with the
application that lead to the error, or if it isn’t an error at all, and because sometimes connections
are so slow a member of the support team has to visit to the school in order to perform the required
assistance.

30

chapter 4
Solution and Case Study
To move forward into the design and development of a possible solution, it was necessary to establish
solid goals for the platform and determine the pre-requisites needed for each one of them to work.
And so, the main goal asked was to provide the clients of the current system an alternative to the
desktop applications, with the same features, that can be used by the same users intuitively, and
with as little effort as possible – hardware specifications and installations procedures – to both Micro
I/O and the clients. This was proposed to allow a smooth transition for the clients into the next
version of the software so that it would be welcome instead of being dropped and clients opt out of
adopting it. For the main goal to be reached the application must work in real time, in interaction with
existing hardware, support to the same operating systems they are already using, and keeping network
configurations as they exist, maintaining this way the same characteristics of the current version.

To improve on the current version other requisites were added so that the technological advance
would justify the change: the client applications should run independently of the operating system;
mobile devices are to be taken into account in this next version, with methods of accessing the
applications; it should be possible for the system to auto update; the system must be able to track
user interactions in order to boost client support service and bug report/solution; and it was proposed
to solve an existing problem with the current system which is concurrency – it is possible that two
users try to edit the same record at the same time and the solution has been that the last to save
overrides the information.

Given the facts the best way to go would be to implement a web application with client to server
and client to client real time connections and capabilities of communicating with local hardware. This
should be built using the SignalR framework for the real time communications, given all its fail safe
mechanisms and the fact that it has ASP.NET support assuring continuity in its development. For
the interface (SPA) it will be used the Kendo User Interface (UI)[29] from Telerik – this choice was
made by Micro I/O developers and so it was purchased a license for the software. This SPA framework
allows developers to build responsive interfaces[30] using HTML 5 and JavaScript that adapts to the
browser in use, screen size and more without much intervention from the developers giving the web
application the necessary tools to handle all types of devices and especially mobile devices.

31

4.1 case study
Because of the large amount of features and applications in the current platform, there was a need

to choose one of the main applications and implement the technologies discussed to it as a case study.
The application chosen was Porteiro because it has the elements needed to prove the concept of this
thesis: it has the least amount of features from the main applications; it has hardware integration; and
the main focus for its implementation is the real time aspect, making it a solid proof of concept.

Figure 4.1: Use case diagram for Porteiro

As expected the number of use cases for this application is very low, and very simple to understand,
as shown in Figure 4.1. If the user is not logged in there are no operations to do other than log into
the system. Each operation presented depends on the operator privileges so it is possible that an
authenticated operator may not be able to perform some of the use cases identified. These use cases
derive from the features presented in the SIGE c© 3 product presentation[31]:

• Login: the application can only be used by an operator with login credentials, and specific
permissions to login at that terminal.

• Replace Card: if any user needs card replacement, there are usually several replacement cards
to this purpose, so the user can still use other applications, such as POS, even if it lost its card.

• Register Manual Entry: if the user doesn’t have the card to access the school and there are no
replacement cards, the access can be registered manually.

• Register Visitor : process of registering visitors information and automatic register an entry
access to the school.

• Register Manual Exit: same process for the manual entry but the access direction is the opposite.
To register a visitor exit access, a list of visitors inside school perimeter is displayed during this
operation.

• Consult Access Log: the operator can consult the access log for a certain user, class, or specific
date.

32

• Consult Schedule: the operator can consult the schedule for a certain user, class or classroom.

4.1.1 hardware integration
After the study of the best approaches on how to deal with this issue, it was decided that the

integration would be made using the real time tools that were going to be used on the web application.
It would be created a service to run on the client side – on the clients that had hardware connected
named Hardware Interface – to interact directly with the server letting it decide what to do with the
information and when to deliver it to the client.

Figure 4.2: Hardware integration component

The application server provides an interface for the client’s web application (in this case Porteiro)
and Hardware Interface, for receiving and sending notifications about hardware interactions (see Figure
4.3). The Hardware Interface also needs to be identified so the server can know to which client it
belongs (terminal identification) and what hardware is connected to it. The server application will
query the database for the information regarding what hardware is configured in the terminal to which
the Hardware Interface belongs to.

33

Figure 4.3: Hardware service identification sequence

The HardwareInterfaceComponent (Figure 4.3) represents the Hardware Interface in the client
service. When the Hardware Interface service starts it will run the method RefreshHardware that
is responsible for the identification of the terminal where the service is running, and creating the
necessary configurations for the hardware interface to start. It will create a hardware configuration
(HardwareConfig) that will identify the host terminal on the first attempt to connect to the server that
will join the service connection in the same group as the web client of the identified host – the client
connections in the server are grouped so that when there is new information, the server will broadcast
it to a group of clients. After all configurations are made the HardwareInterfaceComponent will create
the Hardware Interface that will interact with the hardware (one instance per configuration).

34

Figure 4.4: Hardware notification example

As an example, in the scenario represented on Figure 4.4, the HardwareInterface service is connected
to the hardware via serial (either USB or RS232) and when there is a read on a card reader the service
will send the tag (CardNumber) that was read to the server using the SignalR connection established
earlier. It is the server responsibility to interpret the tag and identify the card and the user it belongs
to, as well as all operations needed to validate the access by the user – consult access points the user
has permissions to use; consult its schedule and other rules. Then the server sends the information
about the validity of the access to all clients that have a visualization of that access point: in this
example there are two clients with the application Porteiro running and if both have configured to
have a visualization of that access point, they will receive the same message.

Most of the implementation has the server resolving this type of logic and the clients act as a
visualization of the result. It was built as such so that the client side has less complexity and could
run smoothly, the alternative would have the clients make many connections to the database through
the SIGE Server thus increasing the number of connections drastically, and the implementation of
such logic in JavaScript was in many cases unfeasable. With this, the server will have more tasks “in
hands” to resolve, but having the database (in most cases) running in the same machine speeding the
operations by a large margin.

35

4.1.2 log viewer
After the experience developing the current version of the software, the importance of logging was

well recognized in the Micro I/O developers’ team. So this time building a new version was required
that it had logging from the beginning. It was asked that all operations in the system should be logged,
and it was asked to search for the best tool or library to deal with the issue. Two of the available tools
found – and mentioned in the chapter State Of The Art – are NLog and Log4net, being that the choice
in the end was NLog because of a simple feature it had over Log4net. Both frameworks presented the
same basic concepts and they were easy to work with but NLog has a feature that allows the user to
choose targets other than the typical database or file[32]. This difference allowed for the experience
of having it target a function from SignalR Hub on the project and the result is that now any log
message can be sent to a connected client allowing him to receive log messages in real time.

With this possibility the logging tool had now a different weight in the development process
and on the future of the web application in general. Combined with the fact that it is possible to
change the level of debugging and how deep it can be made in runtime it gave it a new meaning – by
having multiple logging levels it is possible to have log messages from every line of code to “high level”
messages such as information about when a Porteiro supervisor logs into its working station. It was
defined that there were four main types of log levels:

• Debug - “low level” messages to help developers in the development stage and in the future
to find possible malfunctions within the software, they are mostly messages reporting when a
routine has started or ended, what function is running, exception errors, etc.

• Info - these are “high level” messages to be viewed by a system supervisor or even school staff.
It gives information about users in the system, operators and what their interactions an example
would be “Alice charged her account with 1 euro” or “Bob consulted Alice’s schedule”.

• Warning - when a user tries to perform an action that is not allowed by the system it is logged
as a warning. Like in the info level these messages can be viewed by all operators with the right
permissions.

• Error - as it seems, it is used to log errors, possible errors that might occur and the system can
handle are logged under this tag.

The Log Viewer – name of the tool to implement – is simply a grid showing log messages with
filters for date, name of the application that generated it, log level, or even strings in the message, so
it’s possible to look for a specific username and find the logs associated with it.

Because of the amount of messages generated at any time, and to help the user to consult the
log, the messages are not sent when they are generated – as it was firstly designed – because the grid
would grow and it was not possible to read the messages. The implementation was changed so when
there is a new message to show, the SignalR Hub will send not the message but a simple notification
alerting the Log Viewer that a new message is available, giving the user the possibility of refreshing
the grid whenever he wants.

4.1.3 user interface
MVC was the architecture of choice for the user interface development. The web application

development is divided into three main components that give a more intuitive way of creating the web

36

application and its interface:

• Model - implements the logic of the application, has means of accessing and managing data
and responds to commands sent from the user (through the Controller).

• View - it’s the representation of the interface and the output to the user’s interactions with
the application. The updates to the View are sent from the Model.

• Controller - responsible for the interaction between user and Model which turns it into the
means for the user to interact with the application. The input is manipulated in this component
so it can be converted into commands that the Model can process.

Figure 4.5: MVC components[33]

The Figure 4.5 represents how the different components – and user – interact to provide the
end result. It’s a simple cycle, in which the user is provided with the interface formed by the views
components and the controllers for each view to interact with the application[34]. Because the
interactions with the interface do not correspond to the exact commands used in the business layer
of the application, the controllers transform those interactions into commands for the models. The
Kendo UI framework provides tools[35] to help developing the views and controllers for the interface
facilitating the implementation of the MVC architecture.

37

chapter 5
Implementation
Because every installation is a different scenario, and for each client there’s a different set of configu-
rations, an hypothetical scenario was thought to show how an implementation would be. It is only
considered the components needed to the case study.

Figure 5.1: Deployment diagram (hypothetical scenario)

The diagram - Figure 5.1 - exposes the main components that for the solution architecture. Of
course that even for our case study the database server and web server could share the same machine
but this is a more realistic approach – based on the trend on recent installations – and the client could

39

run on a Linux operating system and therefore the component for Mono would have to be shown
too. In a real case deployment, more devices are added with operating systems such as Mac OS X,
and Linux based systems, as well as the most used browsers supported by the SignalR framework –
displayed previously.

To better understand the work behind some of the key components, it will be shown some code
examples of how it was developed - it will only be shown the relevant code to the study. The Data
Layer and Business Layer will not be shown since they don’t represent the goals of this dissertation.

5.1 signalr communications

pub l i c c l a s s HardwareHub : Hub
{

pub l i c void NewCard(long hardwareID , s t r i n g card , bool s e r i a l)
{

car tao = s e r i a l ? DOCartao . GetBySeria l (card) : DOCartao .
GetByCardNumber (long . Parse (card)) ;

DOPostoHardware ph = App .DB. FindByKey<DOPostoHardware>(hardwareID) ;
AccessResu l t r e su l tAce s s o = new AccessResul t () ;
r e su l tAce s s o = GetAcessoResultByPontoAcesso (ph . AcessoPonto .

AcessoPontoID , card , cartao , (AcessoTipos)ph . InOut . Value) ;
C l i en t s . OthersInGroup (StartGroupNamePontoAcesso + ph . AcessoPonto .

AcessoPontoID) . NewAcess (r e su l tAce s s o) ;
}
pub l i c Task JoinGroupHardwareService (s t r i n g hardwareIdOrComputerName ,

Not i f i cacaoCartaoTipos not i f i cacaoCartaoTipo)
{

var groupName = StartGroupHardwareHub + hardwareIdOrComputerName ;
return Groups .Add(Context . ConnectionId , groupName) ;

}
}

The code above represents one method (JoinGroupHardwareService) used by the clients’ Hard-
wareInterface services to join a client group – thus allowing the server to send notifications to groups –
belonging to a Porteiro visualization. And in case of a new card read the HardwareInterface will invoke
the method NewCard on the server which validates the access and returns the result (AccessResult)
to the clients on the broadcast group. These methods are part of the HardwareHub (SignalR Hub)
responsible for connections between hardware and web application.

$ (document) . ready (func t i on ()
{

var microioHubProxy = $. connect ion . hardwareHub ;
microioHubProxy . c l i e n t . NewAcess = func t i on (ca rd In fo)
{

40

if (opt ions . newTimel ineAccessCal lback)
opt ions . newTimel ineAccessCal lback (ca rd In fo) ;

else
micro io . t ime l i n e . newTimelinePass (ca rd In fo) ;

} ;
}) ;

This is the JavaScript function used to connect to the HardwareHub on the client side and handle
the the NewAccess function calls from the server.

5.2 hardware service

pub l i c static c l a s s S igna lRCl i ent
{

static HubConnection hub ;
pub l i c static IHubProxy hardwareHub ;
pub l i c static Action<List<HardwareConfig >,IHubProxy> RefreshHardware ;

pub l i c static void Star t (s t r i n g u r l)
{

var querystr ingData = new Dict ionary<s t r i ng , s t r i ng >() ;
querystr ingData .Add("machineName" , Environment .MachineName) ;
hub = new HubConnection (ur l , querystr ingData) ;
hardwareHub = hub . CreateHubProxy ("HardwareHub") ;
hub . StateChanged += hub_StateChanged ;
hub . Sta r t () .Wait (1000) ;

}
static void hub_StateChanged (Microso f t . AspNet . SignalR . C l i en t .

StateChange obj)
{

if (! HardwareLoaded) RequestHardwareList () ;
}
pub l i c static void RequestHardwareList ()
{

hardwareHub . Invoke<List<HardwareConfig>>("RequestHardwareList" ,
Environment .MachineName) ;

RefreshHardware (j . Result , hardwareHub) ;
}

}

This is an extract of the code from SignalRClient implemented on the HardwareInterface service –
it is not complete and only shows key parts of the service. When it’s started, the client will connect
to the server using a SignalR Hub and use that connection to create a proxy on the local machine
(HardwareHub). That proxy will be used to communicate with the server to request the list of hardware

41

(RequestHardwareList) and for each configuration on the list it will use the function RefreshHardware
that will be shown next.

pub l i c c l a s s HardwareInterfaceComponent : IServiceComponent
{

pub l i c void Star t ()
{

S igna lRCl i ent . RefreshHardware = SignalRClient_RefreshHardware ;
S igna lRCl i ent . S ta r t (ConfigurationManager . AppSettings ["Server"]) ;

}
p r i va t e void SignalRClient_RefreshHardware (Lis t<HardwareConfig> val ,

IHubProxy hub)
{

va l . ForEach (c on f i g => {
IHardware hardware = AvailableHardware . F i r s tOrDefau l t (p => p .

Tipo == con f i g . Tipo) ;
hub . Invoke ("JoinGroupHardwareService" , c on f i g . ID . ToString () ,

Not i f i cacaoCartaoTipos . Acessos) ;
hardware . S ta r t () ;

}) ;
}

}

When the service starts it will invoke the Start function presented before from the SignalRClient
and set the function RefreshHardware – used on the code mentioned before – to a local function
(SignalRClient_RefreshHardware). The client will use the RefreshHardware as soon as it receives the
hardware list to configure it and start it. So for each hardware configuration a new interface will be
created and the SignalR Hub proxy (created on the SignalRClient) will be used to connect it to the
server. When all is finished the hardware interface service will start communications with the server.

5.3 log viewer

Figure 5.2: NLog configuration for SignalR

The Figure 5.2 shows the NLog feature that allowed for the use of SignalR in the logger: by adding
an extension to the project LogViewer it’s possible to set the target Signalr which is implemented in

42

LogViewer. The minimum level of log messages defined is Info meaning that debug messages will not
be sent to this target, but are stored in the database – in the database target the minimum level is Debug.

namespace LogViewer
{

[Target ("Signalr")]
pub l i c c l a s s S igna l rTarge t : TargetWithLayout
{

protec t ed ove r r i d e void Write (NLog . LogEventInfo logEvent)
{

IHubContext context = GetCl ients () ;
context . C l i en t s . A l l . newEntry () ;

}
p r i va t e dynamic GetCl i ents ()
{

return GlobalHost . ConnectionManager . GetHubContext<LogViewerHub
>() ;

}
}

}

This is the implementation of the target Signalr configured previously. NLogs’ targets will use the
Write method to create new log messages so the method is overridden to send a notification to all
clients connected to the LogViewerHub.

[HubName("loggerHub")]
pub l i c c l a s s LogViewerHub : Hub
{

pub l i c void LogEntry ()
{

C l i en t s . A l l . newEntry () ;
}

}

The LogViewerHub is a simple SignalR hub with nothing to add, just allow clients to connect
to it and implement all other hub characteristics. It has the method LogEntry to allow classes
other than NLog to send a notification to the clients - NLog will send it through the target shown above.

<s c r i p t >
$ (func t i on ()
{

var hub = $. connect ion . loggerHub ,
a l e r t s = 0 ;
$ (".top-menu-bar-alert -container") . on ("click" , f unc t i on () {

$ ("#Grid") . data ("kendoGrid") . dataSource . page (1) ;

43

}) ;

hub . c l i e n t . newEntry = func t i on ()
{

var $conta ine r = $ (".top-menu-bar-alert -container") ,
$ n o t i f = $conta ine r . f i nd ("span.alert -counter") ;

if (! $ n o t i f . l ength)
{

$conta ine r . f i nd (’ul > li > span.k-link’) . append (’<span class
="alert -counter badge"> ’) ;

a l e r t s = 0 ;
$ n o t i f = $conta ine r . f i nd ("span.alert -counter") ;

}
$conta ine r . f i nd ("span.alert -counter") . html(++a l e r t s) ;
$ n o t i f . c learQueue () . animate ({ f on tS i z e : ’20px’ , he ight : ’26px’

} , 300) . animate ({ f on tS i z e : ’10px’ , he ight : ’13px’ } , 300) ;
} ;
$. connect ion . hub . s t a r t () ;

}) ;
</s c r i p t >

In the view that creates the LogViewer interface, this is the script that connects to the loggerHub
(name of the LogViewerHub), resets the notification counter (alerts) and creates the logic for the
newEntry function invoked by the server. It simply increments the counter at every new log message
and shows a small animation to alert the user. At last the connection to the hub is started so
communications can begin.

us ing NLog ;

pub l i c static c l a s s ExampleClass
{

static Logger Log = LogManager . GetCurrentClassLogger ()

pub l i c static void doSomething ()
{

Log . Debug("Doing something now!") ;
Log . In f o ("Sample Info message.") ;
Log .Warn("Sample Warning message.") ;
Log . Error ("Sample Error message!") ;
Log . Fata l ("Fatal Error message!!!") ;

}
}

To use the logger it’s as simple as adding a reference to the NLog project and use its LogManager
to get the logger in the context that the class belongs to. The logging of messages is really intuitive as
shown in the function doSomething.

44

chapter 6
Tests
To prove the concept presented and the implementation architecture, a few tests were made to show
how some of the key components work and to stress the communication between server and client using
hardware even when the communication is not using WebSockets – considered the worst case scenario.

6.1 porteiro start with websockets support
When the web application starts it has to negotiate the communication parameters with the server.

In the first case the server supports WebSockets – Microsoft c© Windows c© 8 with Internet Information
Services (IIS) 8.5, .NET Framework 4.5 and Microsoft c© SQL Server c© 2012.

45

Figure 6.1: Negotiation request

The Figure 6.1 is the negotiation request that the client sends to the server, indicating the machine
name and the hub name that it wants to connect to. This is important because the server now knows
the client name and in what hub it should be connected so it receives notifications from hardware in
the same machine.

Figure 6.2: Response to negotiation

The server responds with a ConnectionId indicating the connection unique identification; a
ConnectionToken (secure token) to be used by the client to perform any operation; a set of other
parameters configured in the server application; and the flag which indicates if the server has support
for WebSockets (TryWebSockets) enabled to the client can upgrade the HTTP connection to use
WebSockets in future communications. The response is in Figure 6.2.

46

Figure 6.3: Upgrade request using WebSockets.

The request shown in Figure 6.3 made by the client after the negotiation, has the HTTP code
“101” meaning that the connection will be upgraded and the protocol will change[36]. This request is
made using WebSockets (on the URL the parameter is transport=webSockets) and the user will send
the token received before to be identified in the server.

Figure 6.4: Response to upgrade request.

The response to the Upgrade Request is a simple acknowledge with an accept token generated
in the server to assure the client of the message origin (Figure 6.4). From this point forward the
communication are made using WebSockets.

47

6.2 porteiro start without websockets support
To perform the tests that assured the minimum quality of the communications using hardware, it

was asked to deploy the web server on a machine without WebSockets support and test the fallback
methods making sure that client with software not up to date could run the system in what they
consider good conditions. It was explained that the server must run without perceivable delay even
at bursts of 5 card reads per second (multiple applications mean multiple interactions at the same
moment).

To test this, it was used a machine with the minimum requirements to the system (for the
server machine): Intel c© Pentium c© G2030 (dual core and dual thread), 4GB of Random-Access
Memory (RAM), Microsoft c© Windows c© Server 2008 Standard, IIS 7 with .NET framework version 4
and Microsoft c© SQL Server c© 2008 R2. It was deployed with a database filled with data identical to a
client’s database and the network bandwidth limited to 10 Mbps.

Figure 6.5: Negotiation request without WebSockets support.

The negotiation request in Figure 6.5 does not differ from the previous presented in Figure 6.1,
the information is the same and only when the server replies to this request the differences appear.

Figure 6.6: Negotiation response without WebSockets support.

The server responds (Figure 6.6) with the same parameters of the previous communication but
now the flag TryWebSockets is disabled meaning that the client will not send an upgrade request and
is the server responsibility to send notifications to the client using a different technology.

48

Figure 6.7: Communication using Server-Sent Events.

Because the browser used was Google Chrome the fallback technology is Server-Sent Events, and
in the transport parameter it’s shown exactly that (‘transport: serverSentEvents’ in Figure 6.7). The
server responds specifying format of the messages (event-stream the format type for messages sent by
servers using Server-Sent Events or any event stream technology).

6.3 connection and operational stress test.
To test the capacities of the connection in a case where WebSockets aren’t available, the last server

was used, and in the client was installed the HardwareInterface service to have card read operations
multiple times per second.

To perform this test in the client was configured a Radio-Frequency Identification (RFID) card
reader on Communication Port (COM)6 – this configuration was entered in the database so the server
would send it to the client when the HardwareInterface starts – and two additional applications were
used (Docklight[37] version 2 and Realterm[38] version 2) to send card serial numbers to port COM7.
It was used two USB to Universal Asynchronous Receiver/Transmitter (UART) bridges connected to
port COM6 and port COM7 so when information was sent to port COM7 it would be written into
port COM6 where the HardwareInterface service was listening.

The first test was made sending 10 card serial numbers per second (or one every 0,1 seconds):
in the HardwareInterface service log was noticed that it would send packets every 0,1092 seconds,

49

meaning that it induces a delay of 0,0092 seconds for every card read which, considering that every
card reader has a delay between reads in the order of the tens of milliseconds, is sufficient to process
every card read possible up to 100 per second (which the current card readers cannot reach).

In the server side the user access is registered in the database and sent back to the client, so the
software Wireshark[39] was used to measure the time between sending the card read packet to the
server and obtaining the response.

Figure 6.8: Wireshark packets capture.

The packet number 393 - shown in Figure 6.8 - corresponds to the client’s packet with the card
read information, and the 395 is the response with the information regarding the user access. It’s
highlighted as well the transport flag used by the client. The time between packets to the server is
about 0,1 seconds and the response to each takes about 0,011 seconds further indicating that the server
has capability of responding close to 100 card reads per second (approximately 90 card reads in the
server side).

Figure 6.9: Communication packets payload.

In the left of Figure 6.9 there is the payload corresponding to packet 393 (from client to server)
where is possible to read the SignalR hub that it’s destined to (HardwareHub), the function call being
made (NewCard) and the arguments of the function, in this case the card serial number (‘2E376CD701’).
On the right is the response, serialized in JSON to be read by the browser containing the JavaScript
method to invoke (NewAccess) and information about the access made, in this case the card did not
belong to any user so the answer is ‘Card doesn’t exist! ’.

The delay between card reads and presentation on the browser was imperceptible even at 10 per
second, and the resources used on the server were almost irrelevant even in a machine without high
performance. This was enough to understand that a minimum spec server can perform in smooth
conditions even in the worst case scenario presented.

To test the server and communications even further trying to reach the capacity limits, the same
test was made but with a frequency of 100 card reads per second (during 5 seconds) with 4 clients

50

connected to the server with the same visualization of Porteiro and LogViewer to receive notifications
regarding the user accesses (two clients on a Google Chrome browser and two other clients on Firefox R©).
This is the calculated limit at which the HardwareInterface service can operate and it is over the limit
at which the server was responding in the last test.

With this test case the log on the HardwareInterface service showed that the time elapsed between
the first card read and last card read was 8,84 seconds meaning that the limit at which the service can
operate was passed. In fact the log showed that the maximum sent per second was 57 and minimum
was 55 card reads. On the database the user access table indicates that the time between first and
last accesses was 22 seconds. So the operations made to assess the user access (read and write into
database and write into the log database), send to all clients (in this case 4 clients) took 22 seconds
for 500 card reads. The resources on the server side were not 100% in use: the IIS server had 34
threads using 37% of the Central Processing Unit (CPU) capabilities; the SQL server was using 41
threads and averaging 6% of the CPU usage. This means that the limit is not on the resources but on
the frameworks in use as well as some logic constraints regarding concurrent operations (limiting the
minimum requirement system to 23 operations per second).

6.4 stress test with websockets
It was not possible to perform the same test on the same machine, due to licensing costs for the

Microsoft c© Windows c© 2012 Server. But the same test was performed using a newer server: Intel c©

CoreTM i7 (4 cores and 8 threads), 16GB of RAM, IIS 8.5, Microsoft c© Windows c© 8, .NET 4.5 and
Microsoft c© SQL Server c© 2012. With this server the response to 100 card reads per second was almost
immediate. The struggle now was on the client side, that had its resources on maximum usage, running
the JavaScript necessary to show the accesses in the Porteiro application. Because the hardware specs
are much higher in this case, most of the performance improvement brought by the use of WebSockets
may be unnoticed, but, because the applications and database are optimized to work with IIS 8.5, .Net
4.5 and Microsoft c© SQL Server c© 2012 and above, such performance improvements are expected.

6.5 tests conclusions
The first tests shown were made to prove the fail safe mechanisms of the SignalR framework, and

to understand how they perform. It is clear that it works for older versions of operating systems and
browsers, as it was expected from the framework presentation.

Then a stress test was made with two different goals: to understand what are the minimum
requirements of the system; and how the minimum required specs perform under stress. The test shows
that a system with the minimum requirements will perform with no problems in a real implementation,
given the typical usage that Micro I/O staff as knowledge of. Because every school has different needs,
the requirements will be proposed accordingly, but it is safe to set the minimum requirements as they
are.

The last test was performed to confirm what was already suspected: that the communications,
using WebSockets on a high spec server, would run smoothly, even on situations that are known to be
extreme. On a conference where SignalR was presented by the creators[10], its was shown a service[40]

51

running on a similar server, that had over 250 clients connected to it and exchanging information at
a rate of 20 updates per second (20Hz)[10], during the conference. The application seemed to run
smoothly even with that amount of load, so it was expected that SignalR wouldn’t represent the
“bottleneck” performance, of our web application, if there is one.

52

chapter 7
Conclusion
Real time communications is a very broad subject that had in its early days multiple techniques and
workarounds to make it work for the expanding web, mostly because of the lack of support from
the existing technologies and protocols, but, not less important because the very term “Real Time”
has different interpretations for two different purposes. With the expansion of services provided and
crescent number of devices and clients some of them became obsolete and had to be replaced or
transformed to meet the needs of the service providers and users.

These emerging technologies and techniques have so many varieties and are used in such a big scale
that on one hand they are well documented and there are numerous sources of information regarding
them, but on the other hand they are so many and sometimes have so little differences that studying
them all would be very difficult, so the decision of the ones to study and present was not an easy
task itself. The choice was mainly based on the most used techniques that were relevant to show an
evolution in the field.

Because of the specific nature of this thesis and because of the deadlines proposed, the study of
the technologies and testing was very brief before the beginning of the development and that study
had to be repeated further into the development to better understand the technologies. The choice of
the WebSockets platform was made by the developer’s team leader based on this research, and because
its part of ASP.NET, using tools already familiar to the developers team.

It wasn’t a difficult conclusion about SignalR being the framework to use because it had so many
features already working and great support team behind it, whereas the other frameworks were in
some cases simple implementations of communications using WebSockets. The framework that stood
as a candidate was PokeIn but the fact that isn’t free and some development issues had to be solved
by their support team made the choice clear.

The testing of the frameworks gave a real look into what it would be like to use them, by building
a simple chat application. One of them was not possible to build successfully due to the lack of
documentation and samples provided, and even that the others were not a difficult task, SignalR stood
out by being extremely easy to use, and by having a really small learning curve.

In the approach to the hardware and browser integration issue, there were many limitations
regarding the technologies being used and how to compare them. During the research it was obvious
that some software manufacturers have their own implementations and maybe new techniques that
aren’t available to the public – which is understandable considering that if they have the same issue

53

and develop a solution they’re not obliged to provide it. Comparing these techniques was an extensive
task and the deadlines of the development of the web application didn’t allow for that, instead, it was
used a similar approach to an existing implementation in the current version of SIGE c©, and all it was
required was to test it, find possible problems and correct them – which was accomplished.

The LogViewer was a bonus solution, since the requirements were to simply log the system’s
operations, and the real time aspect of it was not on the table in the beginning then becoming a
crucial point. The possibilities to the LogViewer are extensive and not yet all discussed with the
possibility of it becoming a product and present it as a feature of the system or to be sold separately.
To complement the existing LogViewer there has to be made some changes and implement inside the
web applications methods to turn on and off levels of logging – this is thought to be implemented in
the first release of the product to help in the client support department.

The product is now on four pilot schools, with some training being given to school staff on how
are operations now performed. With the feedback expected from these schools there will be a clearer
image of what has to be improved and how does the new web application compares to the current
desktop application.

The general opinion about the usability and feel of the application – by people at Micro I/O and
in my experience – is that it’s somewhat less responsive than the current product. Being the start of
the deployment it’s understandable that it may not behave as a similar product that the users were
accustomed to and that has many years of updates and improvements. The probable cause of this less
responsive feel may be related to the browser engine, and JavaScript processing (that is the general
belief among the team). To help improve, a plugin feature is under development to add or remove
features, providing the clients with a custom system with the necessary features to each, removing
unnecessary parts that contribute to the overall performance.

7.1 future work
When the feedback from the pilot schools starts, it will be possible to fix some problems, change

some user interactions, to provide a better service.
To improve the web applications interface responsiveness, the plugin platform is underway. Because

the development had that consideration form the beginning, it is easier to adapt the components
developed for each client application to plugins. One feature that is being discussed to improve the
client applications, is to load only the components that the operator has permission to use. Because
all operations have permissions constraints that have to be specified for each operator, this can ease
the load in the browser, which is thought to be behind the lack of responsiveness.

It’s not decided yet the future for LogViewer. One certainty is that it’s being deployed to the
pilot schools to record their interactions. It is possible that it will have further development, to allow
changing the level of logging remotely; send critical errors directly to Micro I/O (as a new SignalR
target), to be analyzed and possibly corrected before the client calls for support.

54

Appendices

55

appendix A
Application Interface
a.1 porteiro

To have a glimpse into the Porteiro application’s interface, the Figure A.1 is a screen capture
taken during the tests. The interface may have some faults due to the styles of the page being under
update at the time. It represents the application horizontal “timeline” view, the main view of the
application where accesses by users are shown.

57

Figure A.1: Porteiro interface

58

a.2 logviewer
The LogViewer application interface is not yet designed, nor planed. It is for now a grid view

showing all the log entries in the database, with filter capabilities, and color scheme for easy identification
of the log level. It has a counter on the top right, showing how many new log entries were created
after opening the page, which is updated in real time as discussed. Because it is still used as a tool by
the developers there wasn’t much effort into its appearance, as show in Figure A.2.

59

Figure A.2: LogViewer interface

60

appendix B
Chat application code
snippets
To understand each WebSocket framework in more detail, it was implemented a simple chat application
using each framework. The code in this chapter was selected from the referred projects to show some
specifics of each framework.

b.1 signalr chat application

client side

//this script is created by the framework , it handles all connection
related tasks.

<s c r i p t s r c = ‘ ‘/ s i g n a l r /hubs’’></sc r i p t >

<sc r i p t >
$ (func t i on () {

//connect to the server
var conn = $. connect ion . chatHub ;

//define function for when a message is received
conn . c l i e n t . newMessage = func t i on (data) {

$ (‘ ‘#messages’’) . append (‘ ‘ < l i >’’ + data + ‘ ‘</ l i >’’) ;
} ;

//when the connection starts , functions can be defined here
$. connect ion . hub . s t a r t () . done (func t i on () {

//define function for Send button.
$ (‘ ‘# send’’) . c l i c k (func t i on () {

61

var msg = $(‘ ‘#msg’’) . va l () ;
//use connection to make RPC
conn . s e r v e r . send (msg) ;

}) ;
}) ;

}) ;
</s c r i p t >

server side

namespace SignalR_test . Chat
{

pub l i c c l a s s ChatHub : Hub
{

//function used by the clients through RPC
pub l i c void Send (s t r i n g message)
{

//sends the message to all connected clients
Cl i en t s . A l l . newMessage (message) ;

}
}

}

b.2 superwebsocket chat application

client side

//function to send messages
f unc t i on sendMessage () {

//Only supports websockets
if (ws) {

//find the messageBox value in the page
var messageBox = document . getElementById (’messageBox’) ;
//sends the value in the messageBox element
ws . send (messageBox . va lue) ;
//resets the messageBox
messageBox . va lue = "" ;

} else {
a l e r t (noSupportMessage) ;

}
}

62

//connect client to server
f unc t i on connectSocketServer () {

// create a new websocket and connect
ws = new window [support] (’ws://<%= Request.Url.Host %>:8080/sample’) ;

//when data is received from the server , this metod is called
ws . onmessage = func t i on (evt) {

//writes the message on the messageBoard
messageBoard . append ("# " + evt . data + "
") ;
scrol lToBottom (messageBoard) ;

} ;

// when the connection is established , this method is called
ws . onopen = func t i on () {

messageBoard . append (’* Connection open
’) ;
} ;

// when the connection is closed , this method is called
ws . onc l o s e = func t i on () {

messageBoard . append (’* Connection closed
’) ;
}

}

server side

pub l i c c l a s s Global : System .Web. HttpAppl icat ion
{

p r i va t e IBootstrap m_Bootstrap ;
p r i va t e WebSocketServer m_WebSocketServer ;

void Appl icat ion_Start (ob j e c t sender , EventArgs e) {
StartSuperWebSocketByConfig () ;

}

void StartSuperWebSocketByConfig () {
m_Bootstrap = BootstrapFactory . CreateBootstrap () ;
var socke tSe rve r = m_Bootstrap . AppServers . F i r s tOrDefau l t (s => s .

Name . Equals (‘ ‘ SuperWebSocket’’)) as WebSocketServer ;

//define functions to implement in the application
so cke tSe rve r . NewMessageReceived += new Sess ionHandler<

WebSocketSession , s t r i ng >(socketServer_NewMessageReceived) ;

63

so cke tSe rve r . NewSessionConnected +=
socketServer_NewSessionConnected ;

s o cke tSe rve r . Se s s i onClosed += socketServer_Sess ionClosed ;

m_WebSocketServer = socke tSe rve r ;
m_Bootstrap . Sta r t () ;

}

void socketServer_NewMessageReceived (WebSocketSession s e s s i on , s t r i n g
e) {
SendToAll (s e s s i o n . Cookies [‘ ‘ name’’] + ‘ ‘ : ’’ + e) ;

}

void SendToAll (s t r i n g message) {
//there has to be an iteration through sessions to send a message

to all clients
f o r each (var s in m_WebSocketServer . GetAl lSe s s i ons ())
{

s . Send (message) ;
}

}

/*Set of functions that have to be handled by the developer.*/

void socketServer_Sess ionClosed (WebSocketSession s e s s i on , CloseReason
reason) {
//When the socketServer closes the session it has to be handled

by the developer
}

void Application_End (ob j e c t sender , EventArgs e) {
if (m_Bootstrap != nu l l)

m_Bootstrap . Stop () ;
}

void Appl icat ion_Error (ob j e c t sender , EventArgs e) {
// Code that runs when an unhandled error occurs

}

void Sess ion_Start (ob j e c t sender , EventArgs e) {
// Code that runs when a new session is started

}

void Session_End (ob j e c t sender , EventArgs e) {
// Code that runs when a session ends.

64

}
}

b.3 alchemy websockets chat application

client side

//parse message sent from the server
f unc t i on ParseResponse (re sponse) {

var data = JSON. parse (re sponse) ;

if (data . Type == 3) {
var message = data . Data . Message ;
LogMessage (message) ;
}

}

//writes the message parsed on ’results’
f unc t i on LogMessage (message) {

var p = $ (’<p></p>’) . t ex t (message) ;
$ (’#results’) . prepend (p) ;

}

func t i on Connect () {
// Set up the Alchemy client object
AlchemyChatServer = new Alchemy ({

Server : $ (’#server’) . va l () ,
Port : $ (’#port’) . va l () ,
Action : ’chat’ ,
DebugMode : t rue

}) ;

$ (’#status’) . removeClass (’offline’) . addClass (’pending’) . t ex t (’
Connecting...’) ;

//when the server connects , this funtion is called
AlchemyChatServer . Connected = func t i on () {

$ (’#status’) . removeClass (’pending’) . addClass (’online’) . t ex t (’Online’)
;

$ (’#connectToServer’) . h ide (’fast’ , f unc t i on () { $ (’#registerName’) .
show (’fast’) ; }) ;

} ;

65

AlchemyChatServer . Disconnected = func t i on () {
LogMessage (’Connection closed.’) ;
$ (’#status’) . removeClass (’pending’) . removeClass (’online’) . addClass (’

offline’) . t ex t (’Offline’) ;
$ (’#registerName , #sendMessage’) . h ide (’fast’ , f unc t i on () { $ (’#

connectToServer’) . show (’fast’) ; }) ;
} ;

//when a message is received , it’s handled here
AlchemyChatServer . MessageReceived = func t i on (event) {

ParseResponse (event . data) ;
} ;

//after all functions are defined , it is time to start the app.
AlchemyChatServer . S ta r t () ;

} ;

server side

c l a s s Program {
//list of online users.
protec ted static ConcurrentDict ionary<User , s t r i ng> Onl ineUsers = new

ConcurrentDict ionary<User , s t r i ng >() ;

// Initialize the application and start the Alchemy Websockets server
static void Main(s t r i n g [] a rgs) {

// Initialize the server on port 81, accept any IPs, and bind
events.

var aServer = new WebSocketServer (81 , IPAddress .Any)
{

OnReceive = OnReceive ,
OnSend = OnSend ,
OnConnected = OnConnect ,
OnDisconnect = OnDisconnect ,
TimeOut = new TimeSpan (0 , 5 , 0)

} ;

aServer . S ta r t () ;
}

// Event fired when a client connects to the Alchemy Websockets server
instance.

pub l i c static void OnConnect (UserContext context) {

66

var me = new User {Context = context } ;
Onl ineUsers . TryAdd(me, S t r ing . Empty) ;

}

// Event fired when a data is received from the Alchemy Websockets
server instance.

pub l i c static void OnReceive (UserContext context) {
var j son = context . DataFrame . ToString () ;
dynamic obj = JsonConvert . De s e r i a l i z eOb j e c t (j son) ;

switch ((int) obj . Type) {
case (int)CommandType . Message :

ChatMessage (obj . Message . Value , context) ;
break ;

}
}

/// Event fired when a client disconnects from the Alchemy Websockets
server instance.

pub l i c static void OnDisconnect (UserContext context) {
var user = Onl ineUsers . Keys .Where (o => o . Context . Cl ientAddress ==

context . Cl ientAddress) . S i ng l e () ;
Onl ineUsers . TryRemove(user , out t ra sh) ;

}

// Broadcasts a chat message to all online users
pr i va t e static void ChatMessage (s t r i n g message , UserContext context) {

var u = Onl ineUsers . Keys .Where (o => o . Context . Cl ientAddress ==
context . Cl ientAddress) . S i ng l e () ;

var r = new Response {Type = ResponseType . Message , Data = new {u .
Name, Message = message }} ;

Broadcast (JsonConvert . S e r i a l i z eOb j e c t (r)) ;
}

// Broadcasts a message to all users
pr i va t e static void Broadcast (s t r i n g message , ICo l l e c t i on <User> use r s =

nu l l) {
if (u s e r s == nu l l) {

f o r each (var u in Onl ineUsers . Keys) {
u . Context . Send (message) ;

}
}else {

fo r each (var u in Onl ineUsers . Keys .Where (u s e r s . Contains)) {
u . Context . Send (message) ;

}

67

}
}

}

b.4 pokein chat application

client side

//when the send button is pressed
btnChat . on c l i c k = func t i on () {

//get te message to send
var mess = i n f o . va lue ;
var message = new ChatMessage () ;
message . Message = mess ;
//call Send method defined dynamically by PokeIn
Chat . Send (message) ;
i n f o . va lue = "" ;

}

//Define start and close functions
document . OnPokeInReady = func t i on () {

PokeIn . S ta r t (func t i on (s t a tu s) {

//PokeIn Connection Closed By Server
PokeIn . OnClose = func t i on () {

ChatMessageFrom ({ Username : ‘ ‘SERVER’’ , Message : ‘ ‘ Your
Connection Closed ! ’’ }) ;

} ;
} ;

//function created by the PokeIn framework
f unc t i on ChatMessageFrom (chatMessage) {

chatWind . innerHTML += ‘ ‘< strong>’’ + chatMessage . Username + ‘ ‘</ strong
>: : ’’ + chatMessage . Message + ‘ ‘
’’ ;

chatBase . s c ro l lTop = chatWind . c l i e n tHe i gh t ;
}

server side

pub l i c c l a s s ChatApp : ID i sposab l e
{

68

//collection of all connected users
pub l i c static Dict ionary<s t r i ng , s t r i ng> Users = new Dict ionary<

s t r i ng , s t r i ng >() ; //clientId , username

pub l i c ChatApp(s t r i n g c l i e n t I d)
{

_c l i en t Id = c l i e n t I d ;
_username = ‘ ‘ ’’ ;

}
//when a client disconnects it has to be handled by the developer.
pub l i c void Dispose ()
{

l ock (Names)
{

if (Names . ContainsKey (_username))
if (Names [_username]==_c l i en t Id)
{

Names . Remove(_username) ;
Users . Remove(_c l i en t Id) ;
Send (new ChatMessage (_username , ‘ ‘ Disconnected ’’)) ;

}
}

}

//When PokeIn sees ChatMessage custom class as a parameter , it
automaticly defines ChatMessage JS class on client side.

pub l i c void Send (ChatMessage message)
{

//Create JSON method from custom class
s t r i n g j son = JSON.Method (‘ ‘ ChatMessageFrom’’ , message) ; //

ChatMessageFrom({Username:’username’, Message:’message’ });
CometWorker . SendToAll (j son) ;

}
}

69

Glossary
DOM Events – Languages like JavaScript can register event handlers and listeners inside a
DOM document (mouse click, key pressed, etc.), and the trigger of one of those handlers/lis-
teners is called a DOM Event.
Event Source API – Interface used to help establish a connection to a server responsible
for sending events (DOM Events).
Hardware Interfaces – are usually system services that provide an interface to the device
driver.
HTTP Chunked Encoding – Specification of HTTP 1.1[8] allowing the modification of
data so that it can be sent in a series of messages (chunks), with the information of each
message size (chunk size) but with the option of not indicating the data total size.
HTTP Get – HTTP method used to request data from the server.
HTTP Handshake – Process of exchanging information (negotiation) of the parameters to
be used in a connection (communication channel), before the interaction between the peers
starts.
HTTP Long Lived Connection – (A.K.A) HTTP keep-alive is a concept where a single
connection is used for multiple requests/responses as opposed from using a single connection
for every interaction.
HTTP Overhead – Extra header information on HTTP packets that uses extra network
resources but doesn’t add useful content to the message itself.
HTTP Request – Message containing the request of data from the server, composed by the
method used, optional header fields and body message[44].
HTTP Request Time Out – Status message indicating when the request message had no
response from the server within its established lifetime.
HTTP Upgrade Request – Specification of HTTP 1.1[36] introducing the Upgrade header
field allowing two negotiating entities to upgrade the connection to a newer version of the
protocol or a different protocol.
IFrame – HTML tag (meaning inline frame) is used to embed a document in the current
HTML document.
IMessageBus – name of the message bus interface used by SignalR for the communications
between clients and server.

71

Java applet – Small Java application launched from the web browser that is executed on
the JVM in a separate process.
LiveConnect API – provides access to both JavaScript and Java methods using the available
JRE on the system, acting like a bridge between the two technologies.
Mono – “Open source implementation of Microsoft’s .NET Framework”[45] , enables .NET
software to run cross-platform.
NuGet – Packet manager integrated with Microsoft’s c© Visual Studio c©, allows installation
and creation of library packages to distribute and be reused by developers on the .NET
platform.
Sandbox – security mechanism to prevent potential dangerous software to interact with other
system components or software, by restricting the resources available to the software running
on it (in other words, encapsulating the program in a closed “box”).
Scale-out – In terms of servers’ hardware scale-up means upgrading the hardware to have
more memory more computing power in the same machine, but scale-out means adding more
servers to the system to run the same software in parallel, these servers are usually in clusters.
TCP Sockets – Point-to-point socket providing a connection oriented and sequential data
connection, implementing mechanisms for error detection and data recovery.
URL Schema – indicates the name of the scheme of the connection followed by the address
of the connection, example, in ‘http://www.ua.pt’ the URL Scheme is ‘http’.
Web-farm – It is a server cluster with the purpose to run web applications usually in scenarios
where load balancing is needed.

72

References
[1] Caesar Sengupta. Releasing the Chromium OS open source project. 2009. url: http : / /

googleblog.blogspot.pt/2009/11/releasing- chromium- os- open- source.html (vis-
ited on 2013).

[2] Micro I/O. Micro I/O. 2014. url: http://microio.pt.

[3] W3C and Tim Berners-Lee. The Original HTTP as defined in 1991. 1991. url: http://www.
w3.org/Protocols/HTTP/AsImplemented.html.

[4] Alessandro Alinone. Comet and Push Technology. 2007. url: http://cometdaily.com/2007/
10/19/comet-and-push-technology/.

[5] John Zukowski. What does Sun’s lawsuit against Microsoft mean for Java developers? Oct.
1997. url: http://www.javaworld.com/article/2077055/soa/what-does-sun-s-lawsuit-
against-microsoft-mean-for-java-developers-.html.

[6] Damian Edwards. “Jump Start - Building Web Apps with ASP.NET”. In: Real-time Commu-
nications with SignalR. 2013. url: http://www.microsoftvirtualacademy.com/training-
courses/create-web-apps-with-asp-net.

[7] Rob Gravelle. Comet Programming: Using Ajax to Simulate Server Push. 2010. url: http:
//www.webreference.com/programming/javascript/rg28/index.html.

[8] Internet Engineering Task Force (IETF). HTTP 1.1 Chunked Transfer Coding. 1999. url:
http://tools.ietf.org/html/rfc2616%5C#section-3.6.1.

[9] Praneeth Wickramasinghe. SignalR – Real-time application development. 2013. url: http:
//developereventlog.blogspot.pt/2013/06/aspnet-signalr-real-time-application%
5C_6.html.

[10] Damian Edwards. “MS Build”. In: Building Real-time Web Apps with ASP.NET SignalR.
Redmond, Washington, 2012. url: http://channel9.msdn.com/Events/Build/2012/3-034.

[11] Eric Bidelman. Server Sent Events - Basics. 2010. url: http://www.html5rocks.com/en/
tutorials/eventsource/basics/.

[12] Internet Engineering Task Force (IETF). RFC - 6455 - The WebSocket Protocol. 2013. url:
http://tools.ietf.org/html/rfc6455.

[13] Malte Ubl and Eiji Kitamura. Introducing WebSockets: Bringing Sockets to the Web. 2010. url:
http://www.html5rocks.com/en/tutorials/websockets/basics/.

[14] Internet Engineering Task Force (IETF). HTTP 1.1 - Header Field Definitions. 1999. url:
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html%5C#sec14.42.

[15] Zondig. PokeIn. 2013. url: http://pokein.com/.

73

http://googleblog.blogspot.pt/2009/11/releasing-chromium-os-open-source.html
http://googleblog.blogspot.pt/2009/11/releasing-chromium-os-open-source.html
http://microio.pt
http://www.w3.org/Protocols/HTTP/AsImplemented.html
http://www.w3.org/Protocols/HTTP/AsImplemented.html
http://cometdaily.com/2007/10/19/comet-and-push-technology/
http://cometdaily.com/2007/10/19/comet-and-push-technology/
http://www.javaworld.com/article/2077055/soa/what-does-sun-s-lawsuit-against-microsoft-mean-for-java-developers-.html
http://www.javaworld.com/article/2077055/soa/what-does-sun-s-lawsuit-against-microsoft-mean-for-java-developers-.html
http://www.microsoftvirtualacademy.com/training-courses/create-web-apps-with-asp-net
http://www.microsoftvirtualacademy.com/training-courses/create-web-apps-with-asp-net
http://www.webreference.com/programming/javascript/rg28/index.html
http://www.webreference.com/programming/javascript/rg28/index.html
http://tools.ietf.org/html/rfc2616%5C#section-3.6.1
http://developereventlog.blogspot.pt/2013/06/aspnet-signalr-real-time-application%5C_6.html
http://developereventlog.blogspot.pt/2013/06/aspnet-signalr-real-time-application%5C_6.html
http://developereventlog.blogspot.pt/2013/06/aspnet-signalr-real-time-application%5C_6.html
http://channel9.msdn.com/Events/Build/2012/3-034
http://www.html5rocks.com/en/tutorials/eventsource/basics/
http://www.html5rocks.com/en/tutorials/eventsource/basics/
http://tools.ietf.org/html/rfc6455
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html%5C#sec14.42
http://pokein.com/

[16] Zondig. PokeIn Feature List. 2013. url: http://pokein.com/Products/PokeInFeatureList.
aspx.

[17] Olivine Labs LLC. Alchemy WebSockets. 2013. url: http://alchemywebsockets.net/.

[18] Damian Edwards. SignalR GitHub. 2013. url: https://github.com/SignalR/SignalR.

[19] Patrick Fletcher. Introduction to SignalR. 2014. url: http : / / www . asp . net / signalr /
overview/getting-started/introduction-to-signalr.

[20] Patrick Fletcher and Mike Wasson. Introduction to Scaleout in SignalR. 2014. url: http:
//www.asp.net/signalr/overview/performance/scaleout-in-signalr.

[21] StatCounter. StatCounter Global Stats. 2013. url: http : / / gs . statcounter . com / %5C #
desktop+tablet-browser%5C_version%5C_partially%5C_combined-ww-monthly-201301-
201312-bar.

[22] Wade Alcorn, Christian Frichot, and Michele Orru. The Browser Hacker’s Handbook. Indianapo-
lis, Indiana, 2014. url: http://books.google.pt/books?id=mR%5C_yAgAAQBAJ.

[23] CodeJava. LiveConnect - The API for communication between Java applet and Javascript.
2013. url: http://www.codejava.net/java- se/applet/liveconnect- the- api- for-
communication-between-java-applet-and-javascript.

[24] Nlog. NLog. 2013. url: http://nlog-project.org/.

[25] Apache Software Foundation. Log4net. 2013. url: https://logging.apache.org/log4net/.

[26] Binary Fortress Software. Real-Time Log Monitoring Made Easy! 2014. url: http://www.
logfusion.ca/.

[27] Choon-Chern Lim. Trace Log (Real Time Log Viewer). 2013. url: http://sourceforge.net/
projects/tracelog/.

[28] Micro I/O. Manual SIGE 3. Tech. rep. Aveiro: Micro I/O, 2013. url: http://microio.pt/.

[29] Telerik. Kendo UI jQuery and HTML5 widgets. 2014. url: http://www.telerik.com/kendo-
ui1.

[30] Gil Fink. Getting Started with Responsive Web Design Development Techniques. 2013. url:
http://java.dzone.com/articles/getting-started-responsive-web.

[31] Micro I/O. Apresentação SIGE 3. Tech. rep. Aveiro: Micro I/O, 2013. url: http://microio.pt/.

[32] Kim Christensen. NLog MethodCall Target. 2013. url: https://github.com/nlog/nlog/
wiki/MethodCall-target.

[33] Wikipedia. Model-view-controller. 2014. url: https://en.wikipedia.org/wiki/Model-view-
controller.

[34] W3Schools. ASP.NET MVC Introduction. url: http://www.w3schools.com/aspnet/mvc%5C_
intro.asp.

[35] Telerik. Kendo UI - Documentation and API Reference. 2014. url: http://docs.telerik.
com/kendo-ui/api/javascript/class.

[36] Internet Engineering Task Force (IETF). HTTP 1.1 Upgrade Header. 1999. url: http://tools.
ietf.org/html/rfc2616%5C#section-14.42.

[37] Flachmann & Heggelbacher. RS232 Terminal / RS232 Monitor - Version 2.0. 2014. url:
http://www.docklight.de/.

[38] Realterm. Realterm: Serial Terminal. 2014. url: http://realterm.sourceforge.net/.

74

http://pokein.com/Products/PokeInFeatureList.aspx
http://pokein.com/Products/PokeInFeatureList.aspx
http://alchemywebsockets.net/
https://github.com/SignalR/SignalR
http://www.asp.net/signalr/overview/getting-started/introduction-to-signalr
http://www.asp.net/signalr/overview/getting-started/introduction-to-signalr
http://www.asp.net/signalr/overview/performance/scaleout-in-signalr
http://www.asp.net/signalr/overview/performance/scaleout-in-signalr
http://gs.statcounter.com/%5C#desktop+tablet-browser%5C_version%5C_partially%5C_combined-ww-monthly-201301-201312-bar
http://gs.statcounter.com/%5C#desktop+tablet-browser%5C_version%5C_partially%5C_combined-ww-monthly-201301-201312-bar
http://gs.statcounter.com/%5C#desktop+tablet-browser%5C_version%5C_partially%5C_combined-ww-monthly-201301-201312-bar
http://books.google.pt/books?id=mR%5C_yAgAAQBAJ
http://www.codejava.net/java-se/applet/liveconnect-the-api-for-communication-between-java-applet-and-javascript
http://www.codejava.net/java-se/applet/liveconnect-the-api-for-communication-between-java-applet-and-javascript
http://nlog-project.org/
https://logging.apache.org/log4net/
http://www.logfusion.ca/
http://www.logfusion.ca/
http://sourceforge.net/projects/tracelog/
http://sourceforge.net/projects/tracelog/
http://microio.pt/
http://www.telerik.com/kendo-ui1
http://www.telerik.com/kendo-ui1
http://java.dzone.com/articles/getting-started-responsive-web
http://microio.pt/
https://github.com/nlog/nlog/wiki/MethodCall-target
https://github.com/nlog/nlog/wiki/MethodCall-target
https://en.wikipedia.org/wiki/Model-view-controller
https://en.wikipedia.org/wiki/Model-view-controller
http://www.w3schools.com/aspnet/mvc%5C_intro.asp
http://www.w3schools.com/aspnet/mvc%5C_intro.asp
http://docs.telerik.com/kendo-ui/api/javascript/class
http://docs.telerik.com/kendo-ui/api/javascript/class
http://tools.ietf.org/html/rfc2616%5C#section-14.42
http://tools.ietf.org/html/rfc2616%5C#section-14.42
http://www.docklight.de/
http://realterm.sourceforge.net/

[39] Gerald Combs. Wireshark Home page. 2014. url: https://www.wireshark.org/.

[40] N. Taylor Mullen and ASP.NET. SignalR ShootR. 2013. url: http://shootr.signalr.net/.

[41] Kerry Jiang. SuperWebSocket, a .NET WebSocket Server. 2014. url: https://superwebsocket.
codeplex.com/SourceControl/latest.

[42] Olivine Labs LLC. Alchemy Websockets Example. 2012. url: https://github.com/Olivine-
Labs/Alchemy-Websockets-Example.

[43] Jose M. Aguilar. Incredibly simple real-time features for your web apps. 2013. isbn: 978-84-
939659-7-6. url: www.campusmvp.net.

[44] Internet Engineering Task Force (IETF). HTTP 1.1 Request. 1999. url: http://tools.ietf.
org/html/rfc2616%5C#section-5.

[45] Xamarin. Mono Home page. 2014. url: http://www.mono-project.com/.

75

https://www.wireshark.org/
http://shootr.signalr.net/
https://superwebsocket.codeplex.com/SourceControl/latest
https://superwebsocket.codeplex.com/SourceControl/latest
https://github.com/Olivine-Labs/Alchemy-Websockets-Example
https://github.com/Olivine-Labs/Alchemy-Websockets-Example
www.campusmvp.net
http://tools.ietf.org/html/rfc2616%5C#section-5
http://tools.ietf.org/html/rfc2616%5C#section-5
http://www.mono-project.com/

	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Micro I/O
	Motivation
	Goals

	State of the art
	``Real Time'' for Web Applications
	Polling versus Long Polling
	Forever Frames
	Server-Sent Events
	WebSockets

	WebSockets Frameworks
	PokeIn Framework
	SuperWebSockets Framework
	Alchemy WebSocket Framework
	ASP.NET SignalR Framework
	Framework Comparison

	Browser and Hardware Integration
	Real Time Logging

	Background Platform
	Architecture
	Server Components
	Client Applications

	System Updates
	System Logging and Debugging

	Solution and Case Study
	Case Study
	Hardware Integration
	Log Viewer
	User Interface

	Implementation
	SignalR Communications
	Hardware Service
	Log Viewer

	Tests
	Porteiro start with WebSockets support
	Porteiro start without WebSockets support
	Connection and operational stress test.
	Stress test with WebSockets
	Tests Conclusions

	Conclusion
	Future Work

	Appendices
	Application Interface
	Porteiro
	LogViewer

	Chat application code snippets
	SignalR Chat Application
	SuperWebSocket Chat Application
	Alchemy WebSockets Chat Application
	PokeIn Chat Application

	Glossary
	References

