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resumo 
 

 

O fígado gordo é simultaneamente uma causa e consequência da diabetes 
mellitus tipo 2. O metabolismo lipidico-hepático (MLH) encontra-se alterado em 
obesos, causando insulino-resistência. A diminuição da sinalização da via da 
insulina pode igualmente afetar o MLH, estimulando o desenvolvimento de 
esteatose hepática, comum nos doentes. Neste trabalho, pretende-se analisar o 
papel da glicação (induzida por metilglioxal) no MLH em ratos com dieta gorda, 
através de técnicas de lipidómica e ressonância magnética, para identificar as 
espécies lipídicas hepáticas, tais como fosfolípidos (FL), triglicéridos (TG), 
diacilgliceróis (DAG) e ácidos gordos (AG). O modelo animal usado foi o rato 
Wistar, mantido nos últimos 4 meses, antes de completar 1 ano de idade, com 
metilglioxal (100mg/Kg/dia) (grupo MG), com dieta gorda rica em TG (grupo 
HFD) ou com ambas (grupo HFDMG) e comparados com os controlos com dieta 
normal (n=12/grupo). As técnicas de lipidómica usadas foram cromatografia 
líquida com espetrometria de massa e cromatografia gasosa para determinar a 
composição hepática de PL, TG e AG. Usou-se também espectroscopia (9 
Tesla), não invasiva, de ressonância magnética nuclear 1H (NMR) nos ratos 
vivos para determinar os TG e DAG hepáticos. Os mediadores proteicos totais 
e fosforilados da via da insulina e da oxidação lipídica no fígado também foram 
analisados por western blot. Os ratos, com dieta gorda (HFD), aumentaram o 
peso corporal, mas o efeito foi parcialmente inibido pelo metilglioxal (HFDMG). 
Além disso, o grupo HFDMG apresenta um aumento dos ácidos gordos livres 
no plasma, hiperinsulinemia, insulino-resistência e intolerância à glicose. No 
fígado, as técnicas de lipidómica e NMR mostraram um aumento da massa 
gorda no fígado nos grupos HFD e HFDMG, mas apenas no grupo HFD se 
verifica o aumento do AG 18:1 (comum na dieta). Apesar de não haver diferença 
significativa no grupo HFD, o grupo HFDMG apresenta uma diminuição dos AG 
insaturados e aumento dos saturados; isto deve-se à diminuição dos 
monoinsaturados neste grupo. Quanto à esterificação dos glicerolípidos, o grupo 
HFDMG apresenta uma menor percentagem da total esterificação dos gliceróis, 
sugerindo o aumento dos DAG, em relação aos TG. Também, este grupo 
apresenta um ratio AG/glicerol aumentado, ou seja, com aumento de AG não 
esterificados. A análise por western blot mostrou uma diminuição da via do 
receptor da insulina especialmente no grupo HFDMG. Em suma, estes 
resultados sugerem que a glicação causa alterações do metabolismo lipidico-
hepático num contexto de hiperlipidemia, contribuindo possivelmente para a 
lipotoxicidade hepática, progressão acelerada de insulino-resistência e patologia 
do fígado gordo. 
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Abstract 

 
Fatty liver disease is simultaneously a cause and a consequence of type 2 
diabetes. Hepatic lipid metabolism is altered in obese patients, causing insulin 
resistance. More, inhibition of insulin signaling may also affect hepatic lipid 
metabolism, causing a feedback that may lead to hepatic steatosis, common in 
such patients. In this work, we intended to assess the role of glycation 
(methylglyoxal-induced) in the hepatic lipid metabolism of high-fat diet-fed rats, 
using lipidomic approaches and magnetic resonance imaging, which identify 
hepatic lipid species, including phospholipids (PL), triglycerids (TG), 
diacylglycerols (DAG) and fatty acids (FA). Wistar rats were maintained during 4 
months with methylglyoxal (MG) supplementation (100mg/Kg/day) (MG group), 
a high-fat diet rich in TG (HFD group) or both (HFDMG group) and compared 
with controls feeding a standard diet (n=6/ group). Lipidomic approaches, namely 
liquid chromatography - mass spectrometry (LC-MS) and gas chromatography 
(GC) were used to determine liver composition in PL, TG and FA. Non-invasive 
1H nuclear magnetic resonance (NMR) spectroscopy (9 Tesla) of liver tissues in 
vivo was used to determine lipid species, such as TG and DAG. The total and 
phosphorylated levels of the mediators of the insulin receptor pathway and lipid 
oxidation were determined by western blotting. High-fat diet-fed (HFD) rats 
showed increased body weight in relation to controls, but this effect was partially 
inhibited by MG supplementation (HFDMG group). Moreover, HFDMG group 
showed increased plasma free fatty acid levels, hyperinsulinemia, insulin 
resistance and glucose intolerance. In liver, lipidomic techniques and 1H NMR 
showed increased fat mass in the liver of HFD and HFDMG rats. HFD rats, but 
not HFDMG, showed increased total levels of the 18:1 fatty acid (common in 
high-fat diets). Despite no differences were observed for HFD group, HFDMG 
rats showed decreased fraction of unsaturated lipids and increased fraction of 
saturated lipids. This difference was obtained due to a decrease in 
monounsaturated FA. Regarding lipid esterification, HFDMG group showed 
lower percentage of esterified glycerol carbons, suggesting an increased 
concentration of DAG in relation to TG. In accordance, this group showed higher 
fatty acids/glycerol ratio, suggesting increased liver non-esterified fatty acid 
levels. Western Blotting analyses showed decreased activation of insulin 
pathway, especially HFDMG group, as well as decreased activation of the insulin 
receptor in HFDMG group. Data suggest that glycation changes lipid metabolism 
in a context of hyperlipidemia, possibly contributing to hepatic lipotoxicity and to 
accelerate progression of insulin resistance and fatty liver disease. 
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Introduction 

1. General Aspects 

Liver and functions 

The liver is one of the most metabolically active organs in the human body due to its functional 

capabilities, receiving 28% of the total blood flow and spending 20% of the oxygen used by the 

body. It is located in the middle of the peripheral blood circulation among the organs of the 

gastrointestinal system and the rest of the body, serving as a filter for portal blood with substances 

absorbed from the stomach, intestines and colon and released from the pancreas and spleen (see 

Figure 1). 

 

 

Figure 1: Hepatic Portal System. Arrows show the direction of blood flow(1). 

 

Hepatocyte is the liver functional unity, organized in cordons of hexagonal lobules with a triad 

in each corner, composed of branches of the hepatic artery, portal vein and bile duct; the vessels 

drain to the center of the lobule where the central vein is(2). Periportal zone is more oxygenated, 

consequently this is specialized for oxidative metabolism like gluconeogenesis, amino acid 

catabolism, glycogenolysis, β–oxidation of fatty acids, cholesterol synthesis and degradation, 
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ureagenesis, bile synthesis and metabolic detoxification. Inversely, pericentral zone with lowest 

oxygen is responsible for biotransformations like glycolysis, glycogenesis (glycogen synthesis), 

liponeogenesis, ketogenesis, glutamine synthesis and drugs and xenobiotics activation or 

detoxification. Innervation, blood flow, concentration of substrates, oxygen and hormones 

influence the differential gene expression for different functions of catabolism or anabolism(3).    

Thus, liver has a key role to metabolize, detoxify and produce compounds, serving as a 

biochemical factory, endocrine and exocrine gland and excretory system. It is capable to modify 

drugs, toxins or other compounds (activation or inactivation), to convert hormones and vitamins, 

to solubilize or conjugate substances and metabolites for excretion in the bile or urine. Liver can 

also synthesize carbohydrates, proteins and intermediate metabolites, and store carbohydrates, 

lipids, vitamins and minerals. Bile solute secretion is another important function of the liver to 

eliminate exogenous and endogenous products (cholesterol and bilirubin) and to digest and absorb 

lipids from the intestine(2). 

Finally, the reticuloendothelial system from liver is 80% to 90% constituted for macrophages, 

named Kupffer Cells that help to remove foreign particles like bacteria, toxins, parasites and old red 

blood cells(2) and they may have some role in developing metabolic pathologies(4).  

 

2. Glucose Metabolism 

Glucose Absorption 

Glucose is the principal substrate for energy metabolism and meals contain several 

macromolecules of carbohydrates (polysaccharides), which need to be digested and absorbed. 

Salivary and pancreatic α-amilase, when activated in the intestinal lumen, start the hydrolysis of 

polysaccharides; then, disaccharidase forms dissacharides in the membrane of the epithelium of 

duodenum and jejune and lastly maltase, sucrase and lactase transform dissacharides into 

molecules of glucose (80%), fructose (15%) and galactose (5%). Monossacharides absorption occurs 

mostly in duodenum and proximal jejune by active transport and consequently they are released 

to the portal blood(5). 

 

Liver Glucose Homeostasis 

The regulatory mechanism of glucose is mediated by negative feedback. Pancreas releases 

insulin, a hypoglycemic hormone, when glucose levels are elevated in the blood, but when the body 

is in hypoglycemia, pancreas releases a hyperglycemic hormone, glucagon. Consequently, liver 

responds to these hormones to maintain homeostasis of glucose levels, stimulating hepatocytes to 
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make gluconeogenesis and glycogenolysis to deliver glucose to the plasma by glucagon induction 

and stimulating glycogenesis and glycolysis to eliminate glucose from plasma by insulin signal.  

 

 

Figure 2: Liver Glucose Regulation by glucagon and insulin hormones. Blue pathway is influenced by glucagon and green 
pathway by insulin. Original Artwork). (GDP: Guanosine Diphosphate. GTP: Guanosine Triphosphate. ATP: Adenosine 
Triphosphate. cAMP: Cyclic Adenosine Monophosphate. PKA: Protein Kinase A. PFK2: Phosphofructokinase 2. FBPase2: 
Fructose-2,6-biphosphatase 2. P: Inorganic Phosphate Group (same as Pi). Ca2+: calcium ions. SIK2: Salt-inducible Kinase 
2. TORC2: Transducer of Regulated C2. CREB: Cyclic-AMP Response Element-binding Protein. CRE: cAMP Response 
Element. CBP: CREB Binding Protein. PGC1-α: Peroxisome-proliferator-activated Receptor γ Coactivator 1. PPAR- α: 
Peroxisome Proliferator-activated Receptor alpha. RXR: Retinoid X Receptor. PPRE: PPAR Response Element. IRS-1: Insulin 
Receptor Substrate 1. PI3K: Phosphoinositide 3-kinase. PIP2: Phosphatidylinositol 4,5-bisphosphate. PIP3: 
Phosphatidylinositol 3,4,5-triphosphate. Akt: Protein Kinase B. PDE3B: Phosphodiesterase 3B. AMP: Adenosine 
Monophosphate. AMPK: AMP-activated Protein Kinase. IP3R: Inositol-1,4,5-triphosphate Receptor. GSK-3: Glycogen 
Synthase Kinase-3. GLUT2: Glucose Transporter 2. GLUT7: Glucose Transporter 7.) 

 

Glucagon Regulation 

Gluconeogenesis is the process of de novo synthesis of glucose from amino acids and lactate in 

the endoplasmic reticulum, where exits by Glucose Transporter 7 (GLUT7) to the cytoplasm and it 

is released into the bloodstream by Glucose Transporter 2 (GLUT2)(2). Glycogenolysis is the 

cytosolic enzymatic process to breakdown glycogen stored into molecules of glucose.  

Glucagon binds to Glucagon Receptor (G protein-coupled membrane receptor) in the 

hepatocyte, activating Adenylyl Cyclase to synthesize Cyclic Adenosine Monophosphate (cAMP), 

from Adenosine Triphosphate (ATP)(6). cAMP activates Protein Kinase A (PKA) to phosphorylate 

Phosphorylase Kinase (active form) and then this enzyme inactivate Phosphorylase A, promoting 
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the degradation of glycogen. Furthermore, cAMP interacts in a transcriptional phosphorylation 

cascade that ultimately activates in Cyclic-AMP Response Element-binding Protein (CREB) in the 

nucleus and it activates too the Transducer of Regulated C2 (TORC2) allowing its entrance in the 

nucleus, resulting in the activation of transcriptional factor cAMP Response Element (CRE) that leads 

to the expression of Peroxisome-proliferator-activated Receptor γ Coactivator 1 (PGC1-α). PGC1-α 

binds to nuclear receptor Peroxisome Proliferator-activated Receptor alpha (PPAR-α) and forms a 

heterodimer with Retinoid X Receptor (RXR)  in PPAR Response Element (PPRE) resulting in higher 

expression of enzymes necessary for Gluconeogenesis(7). cAMP also leads to phosphorylation and 

inactivation of the Glycogen Synthase through the Glycogen Synthase Kinase 3 (GSK3), thus inhibit 

glycogen synthesis. PKA phosphorylates a complex Phosphofructokinase 2 (PFK-2), changing its 

conformational structure and exposing the active form of Fructose-2,6-biphosphatase 2 (FBPase-2) 

to inhibit glycolysis(8).  

 

Insulin Regulation 

Glycogenesis is the process that forms glycogen from glucose to stores and Glycolysis is the 

process to spend glucose to transform it into energy.  

To do this, it is necessary the dimerization of two molecules of insulin bounded in two insulin 

receptors (membrane tyrosine kinase receptor), to activate the signal cascade by 

autophosphorylation. Then, it is formed a local to bind the Insulin Receptor Substrate 1 (IRS-1), 

phosphorylating it and activating the Phosphoinositide 3-kinase (PI3K); PI3K converts 

Phosphatidylinositol 4,5-bisphosphate (PIP2) into Phosphatidylinositol 3,4,5-triphosphate (PIP3) and 

then it is possible to phosphorylate and activate serine/threonine kinase Protein Kinase B (PKB, or 

also known as Akt). Akt phosphorylates Phosphodiesterase 3B (PDE3B), Inositol-1,4,5-triphosphate 

Receptor (IP3R) in smooth endoplasmic reticulum, CREB Binding Protein (CBP) and Glycogen 

Synthase Kinase-3 (GSK-3). PDE3B hydrolyses cAMP to AMP, reducing its hyperglycemic effects and 

Adenosine Monophosphate (AMP) activates AMP-activated Protein Kinase (AMPK) inhibiting 

TORC2. CBP is also inactivated by Akt, reducing transcriptional cascade of CRE, important for 

gluconeogenesis. GSK-3 phosphorylations and inactivation allows the activation of Glycogen 

Synthase increasing the formation of glycogen(7).  

This regulatory mechanism is important because hypoglycemic levels could be mortal and 

chronic hyperglycemic levels lead to diabetes(7).  
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3. Lipid Metabolism 

Lipid Absorption 

Lipids are essential biomolecules to store energy in form of fatty acids or non-toxic form – 

triglycerides (TG). Thus, they are synthesized de novo or ingested and absorbed in the small 

intestine by enterocytes. Emulsified fat droplets contain phospholipids and bile salts with TG, 

cholesterol and vitamins and when arrive to small intestine, enterocytes break down TG into 

monoglycerides or fatty acids by pancreatic lipase. Then, these components are absorbed by 

diffusion; monoglycerides and fatty acids are re-esterified into triglycerides and along with other 

fats are enclosed in smooth endoplasmic reticulum and coated with proteins to form chylomicrons. 

Chylomicrons are exocytosed to the lymphatic vessels, then pass into the blood to deliver fats to 

the peripheral tissues and organs, including adipose tissue; cholesterol-rich remnant chylomicrons 

reach to the liver, where they are recycled, de novo synthesized, re-esterified and transported to 

the blood again in Very-low-density Lipoprotein (VLDL), containing apoprotein B-100 and C-II, 

triglycerides and cholesterol (see Figure 3). 

 

 

Figure 3: Lipid Metabolism(9). (VLDL: Very-low-density Lipoproteins. IDL: Intermediate-density Lipoproteins. LDL: Low-
density Lipoproteins. HDL: High-density Lipoproteins. LCAT: Lecithin-cholesterol Acyltransferase.) 
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VLDL secretion is the mechanism that liver has to reduce Free Fatty Acids (FFA) and remnant 

lipoproteins, producing TG and cholesterol to be used by the cells or stored by adipose tissue. 

Apoprotein C-II activates endothelial Lipoprotein Lipase (LPL) to take fatty acids and glycerol from 

the VLDL, increasing cholesterol content. Liver and enterocytes can synthesize High-density 

Lipoprotein (HDL) with apoprotein A capable to take oxidized cholesterol (oxysterols) excess from 

peripheral tissues, redirect to the endocrine glands for steroid synthesis or go back to the liver for 

bile salts synthesis. Chylomicrons, VLDL, IDL and LDL are lipoproteins with type B and C apoproteins 

and HDL has type A and C apoproteins(2).  

Liver can recycle absorbed fats or remnants of lipoproteins and it is capable to synthesize de 

novo – Lipogenesis. Fatty acids are synthesized de novo or founded in adipocytes-stored 

triglycerides, in the circulation in FFA form or in the lipoproteins in TG form(10). 

 

Liver fatty acids uptake 

Fatty acids are obtained through the hydrolysis of lipoproteins and chylomicrons by lipases and 

thioesterases, forming Non-Esterified Fatty Acid (NEFA) or Fatty Acid Coenzyme A (FA-CoA), 

respectively. Long-chain fatty acids (14 carbons or more) enter in hepatocytes from the blood in 

proportion to their concentration; they may be uptake as FFA, NEFA and FA-CoA by diffusion, Fatty 

Acid Translocase (FAT) and Fatty Acid Transport Protein (FATP), respectively (see Figure 4A).  

FFA are plasmatic non-esterified fatty acids, released by adipocytes during lipolysis into to 

peripheral blood, bounded to albumin. Glucagon stimulates adipose tissue lipolysis releasing FFA, 

for use as a fuel by tissues and in liver, they are oxidized, serve as substrates for ketogenesis, inhibits 

glucose oxidation and stimulates gluconeogenesis (7,11). 

NEFA is bound to Fatty Acid Binding Protein (FABP) and enter in the nucleus to regulate gene 

expression necessary for oxidation or synthesis of complex lipids (TG and phospholipids). Acyl-CoA 

Synthetase (ACS) is an outer-membrane mitochondrial enzyme that esterified NEFA to FA-CoA and 

then it is capable to bind to the Acyl-CoA Binding Protein (ACBP) which transport FA-CoA into the 

mitochondrion or deviate to peroxisomes (10).      

The most frequent exogenous fatty acids are saturated and monounsaturated; they are 

palmitic acid (16:0 – 16 carbons and zero double bonds), stearic acid (18:0 – 18 carbons and zero 

double bonds) and oleic acid (18:1 – 18 carbons and one double bond). Linoleic acid (18:2) and 

linolenic acid (18:3) are essential unsaturated fatty acids, because mammals cannot introduce 

double bonds beyond 9th position, so they become essentials in food due to metabolic pathways 

importance (12). 
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Lipogenesis  

Liver lipogenesis is the process that transforms acetyl-CoA into fatty acids, which are used to 

produce energy by β-oxidation or to synthesize phospholipids and glycerolipids in hepatocytes. 

Fatty acids synthesized could be released in triglycerides-VLDL form or in ketone bodies to the 

peripheral tissues, by insulin or glucagon mediation, respectively. Acetyl-CoA is formed from 

glucose or acetate and its reaction start by addition of “primers units” of other acetyl-CoA; this 

reaction is catabolized by a decarboxylation enzymatic cascade with Acetyl-CoA Carboxylase (ACC) 

desphosphorilated (active form). ACC is phosphorylated and inhibited by elevated levels of FA-CoA 

and AMPK (see Figure 5), reducing malonyl-CoA levels and promoting β-oxidation of fatty acids(13).  

 

 

Figure 4: A: Liver fatty acids uptake, intracellular activation and functional pathways. B: Principal steps of synthesis and 
oxidation of fatty acids(10). (NEFA: Non-Esterified Fatty Acid. FAT: Fatty Acid Translocase. FATP: Fatty Acid Transport 
Protein. FA-CoA: Fatty Acid Coenzyme A. ACS: Acyl-CoA Synthetase. ACBP: Acyl-CoA Binding Protein. FABP: Fatty Acid 
Binding Protein. FA: fatty acid. Cn: chain of fatty acyl, Cn+2: malonyl-CoA unit addition. CPT-I: Carnitine 
Palmitoyltransferase I. CPT-II: Carnitine Palmitoyltransferase II. mHMG-CoA: Mitochondrial Hydroxymethylglutaryl-
Coenzyme A. cHMG-CoA: Cytosolic Hydroxymethylglutaryl-Coenzyme A. TCA: Tricarboxylic Acid.) 
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Extension reaction occurs using a second enzyme called Fatty Acid Synthase (FAS) and forms 

fatty acyl-CoA chain, which could react to synthesize fatty acids/glycerolipids or goes to 

mitochondrion for β-oxidation, regulated by glucagon and insulin, respectively (see Figure 4B).  

 

 

Figure 5: ACC inactivation by AMPK. ACC phosphorylated prevents malonyl-CoA formation, stimulating β-
oxidation(14) (AMPK: AMP-activated Protein Kinase. ACC: Acetyl-CoA Carboxylase. Pi: Inorganic Phosphate Group. 
CPT1: Carnitine Palmitoyltransferase I.) 

 

If synthesis happens, fatty acyl-CoA chain reacts with FAS until the formation of palmitic acid 

(16:0) by elongation process, requiring Nicotinamide Adenine Dinucleotide Phosphate (NADPH), and 

then this fatty acid can elongate and/or desaturate by different enzymes. Desaturases are 

endoplasmic reticulum oxidases that convert saturated or unsaturated fatty acids into 

polyunsaturated fatty acids. Stearoyl-CoA desaturase 1 (SCD1) is the principal desaturase which 

catalyzes the D9-cis desaturation of palmitoleyl-CoA (16:0) and oleoyl-CoA (18:0), from de novo 

synthesis or diet (see Figure 6), reducing saturated fatty acids. Monounsaturated fatty acids (MUFA) 

are in turn used to synthesize glycerolipids or phospholipids.  SCD1 expression increases with high-

carbohydrate, high-saturated and high-monounsaturated diets, by the activation of Sterol 

Regulatory Element Binding Protein (SREBP-1) via insulin or oxysterols(15). SCD1 stimulates ACC 

and Akt and inhibits AMPK(16). 
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Figure 6: Reactions of oxidation, elongation and desaturation of principal exogenous fatty acids. 

Lipogenesis gene expression is regulated by insulin and oxysterols that activate transcription 

factors, namely the SREBP-1 and nuclear receptor Liver X Receptor (LXR) (see Figure 7). Oxysterols 

are oxidized cholesterol from lipoprotein that bind to LXR, activate transcription factor Liver X 

Receptor Element (LXRE), which promotes gene expression of SREBP-1 and inhibition of cholesterol 

synthesis. SREBP-1 is activated by Akt, enter in the nucleus and stimulates Sterol Regulatory 

Element (SRE) for gene expression of essential enzymes for fatty acids synthesis (ACC and FAS) and 

glycolysis (Glucokinase – GK)(17,18). 

 

 

Figure 7: Liver lipid regulation pathways mediated by insulin and glucagon. Blue pathway is influenced by glucagon and 
green by insulin. Original Artwork. (GDP: Guanosine Diphosphate. GTP: Guanosine Triphosphate. ATP: Adenosine 
Triphosphate. cAMP: Cyclic Adenosine Monophosphate. P: Phosphate group. TORC2: Transducer of Regulated C. CREB: 
Cyclic-AMP Response Element-binding Protein. CRE: cAMP Response Element. CBP: CREB Binding Protein. PGC1-α: 
Peroxisome-proliferator-activated Receptor γ Coactivator 1. PPAR- α: Peroxisome Proliferator-activated Receptor alpha. 
RXR: Retinoid X Receptor. PPRE: PPAR Response Element. IRS-1: Insulin Receptor Substrate 1. PI3K: Phosphoinositide 3-
kinase. PIP2: Phosphatidylinositol 4,5-bisphosphate. PIP3: Phosphatidylinositol 3,4,5-triphosphate. Akt: Protein Kinase B. 
PDE3B: Phosphodiesterase 3B. AMP: Adenosine Monophosphate. AMPK: AMP-activated Protein Kinase. LXR: Liver X 
Receptor. LXRE: Liver X Receptor Element. SREBP-1: Sterol Regulatory Element Binding Protein 1. SRE: Sterol Regulatory 
Element. GK: Glucokinase, or also known as Hexokinase. ACC: Acetyl-CoA Carboxylase. FAS: Fatty Acid Synthase. GPAT: 
Glycerophosphate Acyltransferase. CPT-I: Carnitine Palmitoyltransferase I. G6Pase: Glucose-6-Phosphatase. FAT: Fatty 
Acid Translocase. FABP: Fatty Acid Binding Protein. AdipoR: Adiponectin receptor). 
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Glycerolipid Synthesis and VLDL Exportation 

Glycerol-3-phosphate from glycolysis is transferred to fatty acyl chain synthesized by 

Glycerophosphate Acyltransferase (GPAT); consecutively, Lysophosphatidate Acyltransferase and 

Diacylglycerol Acyltransferase lead to formation of Diacylglycerol (DAG) and TG (see Figure 15). This 

mechanism is activated when NEFA is elevated, when phospholipids in the membrane are 

overloaded or SREBP-1 are elevated, increasing ACC, FAS and GPAT (see Figure 7). 

Insulin promotes glycogenesis by glycogen synthase and glycolysis and fatty acid synthesis by 

SREBP-1. This reduce glucose from plasma, form glycogen and ATP by glycolysis, increasing cellular 

fuel supplies and form triglycerides(10). AMPK levels are essential to understand regulation of lipid 

metabolism, because AMPK is decreased when fuel supplies are elevated, but when fuel supplies 

and ATP are reduced, like after exercise, AMPK is increased due to PDE3B activation that reduces 

cAMP in AMP, activating AMPK(19); when the needs are satisfied, AMPK turn down again. AMPK 

phosphorylates ACC, inhibiting fatty acid synthesis and stimulating β-oxidation by reduction of 

malonyl-CoA; more, AMPK inactivates GPAT and inhibits cholesterol and glycogen synthesis(see 

Figure 5)(10).  

Synthesis of lipoproteins, namely VLDL, is important to export triglycerides and cholesterol to 

the bloodstream. There is only one apoprotein B100 per VLDL particle; it is synthesized in rough 

endoplasmic reticulum and assembled in the phospholipids, in smooth endoplasmic reticulum. 

Then, in the Golgi complex, apoprotein is glycosylated and it is released into blood in VLDL form. 

Carbohydrates-rich ingestion and FFA increase upregulate esterification and lipoprotein synthesis, 

without de novo synthesis(10). More than normal insulin levels inhibit lipoprotein synthesis, 

independently of FFA levels(3). TG are stored in Lipid droplets within the hepatocyte or processed 

to VLDL(20). FFA exacerbate hepatic esterification and VLDL production by the increase of 

expression of microsomal triacylglycerol transfer protein and stability of apoprotein B, such as occur 

with high-fat diets and when excess adipose tissue releases FFAs directly into the circulation (eg, in 

obesity, uncontrolled diabetes mellitus)(3,10).  VLDL is the way the liver exports excess TGs derived 

from plasma FFA and chylomicron remnants; VLDL synthesis increases with increase in intrahepatic 

FFA. It is known that in rats, stored hepatic triglycerides in lipid droplets do not participate directly 

in VLDL production, only after lipolysis of lipid droplet by microsomal lipase, generating NEFA and 

DAG (and eventually monoacylglycerols). After that, DAG could be re-esterified in microsomal 

membrane by DAG acyltransferase and translocated into the lumen to incorporation in VLDL(10). 

TG synthesis is under control by SREBP-1, Carbohydrate-Responsive Element Binding Protein 

(ChREBP), PPARα, LXR and ligands(10).  
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Phospholipid Synthesis  

Glycerophospholipids are constituted by two fatty acids, one glycerol, one phosphorous group 

and a head (choline, ethanolamine, serine, inositol or other glycerol), forming phosphatidylcholine 

(PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI) and 

phosphatidylglycerol (PG). Cardiolipins (CL) are phospholipids with the combination of PG and 

cytidine-diphosphate-acylglycerol, with four fatty acids. Lysophosphatidylcholine (LPC) has only 

one fatty acid, while sphingomyelin (SM) is a PC head group and a ceramide (see Figure 8)(12). 

 

 

Figure 8: Chemical structure of phospholipids 

 

Phospholipids (PL) are the principal component in cellular and organelle membranes; they 

have several functions, regulating the flexibility, selective permeability and fusion capacity of the 

cellular membrane and they interact in signal transduction and energetic process. PC are the major 

component in biological membranes, then followed by PE and PS. Minor PL components of 

biological membranes are SM, PG, PI and LPC - a class derived from PC, resulting from partial 

hydrolysis. CL are present in inner mitochondrial membrane. 1-10% of all PI are PIP2, an important 

signal molecule in insulin pathway (see Figure 2)(12). PC and PE plasmalogens contain a 

hydrocarbon chain, linked to glycerol Carbon1 by a vinyl ether linkage and they are associated to 

antioxidant effects(21). PL synthesis starts in smooth endoplasmic reticulum, like TG, and is 
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transported to the Golgi complex to finish its assembling and finally they are transported to the 

membranes. This process also allows to reduce the levels of fatty acids(12). 

 

Figure 9: Monounsaturated fatty acids pathway(16) (SFA: saturated fatty acid. SCD1: Stearoyl-CoA desaturase. MUFA: 
monounsaturated fatty acids. PL: phospholipids. TAG: triglycerides. CE: cholesterol esters.)    

 

Mitochondrial fatty acid oxidation 

Non-esterified acyl-CoA are oxidized in different organelles depending on the chain length; 

mitochondrion oxidizes fatty acyl chains with more than 14 carbons and peroxisomes oxidizes very 

long chain fatty acids (>24 carbons). β-oxidation transforms fatty acid chain into acetyl-CoA units 

by Carnitine Palmitoyltransferase I (CPT-I) (outer membrane of mitochondrion) and Carnitine 

Palmitoyltransferase II (CPT-II) (inner mitochondrion membrane)(10) (see Figure 10). 

Gluconeogenesis and elevated levels of malonyl-CoA inhibit CPT-I (see Figure 4).  

 

Figure 10: Fatty acid oxidation pathway (NEFA: Non-Esterified Fatty Acid. FAT: Fatty Acid Translocase. FATP: Fatty Acid 
Transport Protein. FA-CoA: Fatty Acid Coenzyme A. ACS: Acyl-CoA Synthetase. ACBP: Acyl-CoA Binding Protein. FABP: Fatty 
Acid Binding Protein. FA: fatty acid. Cn: chain of fatty acyl, Cn+2: malonyl-CoA unit addition. CPT-I: Carnitine 
Palmitoyltransferase I. CPT-II: Carnitine Palmitoyltransferase II. HMG-CoA: Hydroxymethylglutaryl-Coenzyme A.) 
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Acetyl-CoA formed is used to Krebs cycle to produce energy ATP or it is deviated to ketogenesis 

or cholesterol synthesis when energy supply is required. Ketogenesis is enhanced when NEFA 

uptake increase and when low levels of insulin action activate CPT-I; this process requires five times 

more acetyl-CoA than Krebs cycle to form energy, allowing the reduction of NEFA levels. When 

energy supply is full and glycerolipid synthesis is inhibited, cholesterol synthesis is the only way to 

reduce the amount of NEFA(10). 

Fatty acid regulation is controlled by PPARα, SREBP-1, RXR and LXR as signal proteins. PPARα is 

essential to oxidation fatty acids, increasing the cellular capacity to catabolize them (high 

expression of FABP, FAT, CPT-I).  More, Polyunsaturated Fatty Acid (PUFA) suppress SREBP-1 gene 

expression, reducing fatty acid synthesis; MUFA and Saturated Fatty Acid (SFA) are poor ligands. 

However, LXR downregulates PPARα and upregulates SREBP-1, inducing FAS and ACC expression 

and glycerolipid synthesis (PL and TG). Fatty acids synthesis is induced when carbohydrates, like 

glucose, are elevated in plasma, because insulin acts in upregulation of gene expression for 

synthesize lipids (10), acts in downregulation of gene expression for lipids oxidation(7) and activates 

glycolysis to form acetyl-CoA for Krebs Cycle(8). This insulin mechanism allows spending glucose for 

energy and keeps lipid reservoir for future needs. 

 

4. Type 2 of Diabetes Mellitus, Obesity and Metabolic Syndrome 

Type 2 of diabetes mellitus is a multifactorial disease, influenced by genetic and environmental 

factors and it is one of the major causes of mortality and morbidity, affecting 8% of the population. 

More, it is characterized by a chronic state of hyperglycemia, insulin resistance in tissues and 

compensatory hyperinsulinemia. Chronic hyperglycemia is toxic, leading to microvascular 

complications by the progressive accumulation of advanced glycated end-products (AGE) and 

reactive species of oxygen. Consequently, AGE lead to non-enzymatic modification of proteins and 

increase glycated hemoglobin (HbA1c) and expression of genes envolved in angiogenesis and 

fibrosis(22,23). 

Obesity is also a major cause of morbidity and mortality, associated with an increased risk of 

cardiovascular diseases, metabolic syndrome and cancer; it is clinically characterized by a body 

mass index >30kg/m2. Metabolic syndrome is defined by several metabolic abnormalities, including 

central obesity, dyslipidemia, hyperglycemia and hypertension. The prevalence of diabetes in obese 

patients is four times more high than normal body mass index patients(24).  
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4.1. Glycation and methylglyoxal 

Methylglyoxal (MG) is a highly reactive dicarbonyl aldehyde which is produced during glycolysis 

and lipid peroxidation, a secondary metabolic compound and AGE precursor(25). Maillard reaction 

is a process to form AGE, by Schiff bases and Amadori products, produced from the reaction of 

carbonyl groups of sugar with proteins, lipids or nucleic acids. AGE result from the modification of 

arginine and lysine amino acids, resulting in protein denaturation(22). Several studies have 

reported elevated MG levels in plasma from diabetic patients (22,23) and MG adducts implicated 

in the macro and microvascular complications. In addition, the food with high glycemic index have 

a greater impact on the body particularly by MG mediated, but its pathophysiology role is not yet 

fully defined(25). 

Furthermore, cells have enzyme systems to detoxify MG, when it is produced during 

metabolism of glycolysis. The glyoxalase System (GLO) is one of the most implicated glutathione-

dependent processes and GLO1 overexpression protects from glucose-induced reactive oxygen 

species (ROS) and reduces the development of complications in several diseases. In addition, cells 

have other systems capable of degrading formed compounds, such as proteasome and lysosome. 

Besides, AGE and MG adducts are eliminated by renal excretion. Interestingly, the normalization of 

blood glucose in diabetic patients is not completely prevent high levels of MG in plasma, suggesting 

that the persistence of levels of MG are due to errors in metabolism due to accumulation of AGE 

and ROS production (22,25). 

MG is a glycating agent, reacting with DNA, lipids and proteins, such as insulin, hemoglobin 

and growth factors, producing AGE. HbA1c glycated hemoglobin is a marker of glycemic control, 

but not by glycation MG-derived and AGE-DNA contribute to increased oxidative stress markers. 

Transcription factors are also strongly susceptible to be modified by the MG, influencing cellular 

metabolism. In the hepatocyte, as in so many other cells, oxidative stress is one of the other effects 

from high MG levels, increasing superoxide, hydrogen peroxide, peroxynitrite and proinflammatory 

cytokines and reducing the antioxidants such as glutathione, glutathione peroxidase, glutathione 

reductase and others (22,25). 

Moreover, the formed AGE can activate specific receptors (RAGE), founded in various cells, 

downregulating GLO1 and activating NF-KB by NADPH oxidase, protein kinase C (PKC) and JNK, 

leading to the translocation of NF-κB to the nucleus. Thus, NF-κB increases the expression of 

adhesion molecules, vascular endothelial growth factor (VEGF), TNF-α and RAGE itself. There are 

also soluble RAGE (sRAGE) in plasma, which function is to reduce AGE levels in the body by 

preventing the tissue RAGE binding(22,25).  
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Finally, the MG high levels are implicated in various pathological effects such as insulin 

resistance and macro and microvascular complications, present in conditions such as diabetes, 

obesity, hypertension and atherosclerosis, may be considering an angiopathy marker. The insulin 

resistance may be caused by glycation of insulin or insulin receptor inactivation, decreasing IRS1 

phosphorylation and PI3K/Akt pathway. MG in macrovascular complications have been associated 

with endothelial damage and vascular remodeling, involving oxidative stress, decreased nitric oxide 

bioavailability, increased glycation and inflammation; it also occurs glycation of LDL, retaining them 

more in arterial walls. Regarding to microvascular complications, the MG causes a decrease in the 

VEGF/Angiopoietin2 ratio, which is correlated with endothelial cell apoptosis, Increased vessel 

permeability and decreased irrigation and hypoxia in adipose tissue(25–28).  

 

5. Non-Alcoholic Fatty Liver Disease 

Non-alcoholic fatty liver disease (NAFLD) is a pathology characterized by increased intrahepatic 

FFA and triglycerides. SREBP-1 is activated and enhances lipogenesis, but short-FFA (with 14 

carbons), PC and plasmalogen are reduced. Tumor Necrosis Factor (TNF-alpha), Tumor Growth 

Factor (TGF-beta) and interleukin-6 are increased and adiponectin and leptin are decreased. More, 

hyperinsulinemia and reduction of apoprotein B synthesis result in hepatic lipid accumulation, with 

higher afflux of FFA to the liver. Several liver ligands are studied to analyze if normal functions are 

altered in NAFLD (see Table 1)(20). 

 

Table 1: Liver receptors of lipid metabolism, their natural ligands, normal function and role in NAFLD (adapted from (20)) 

Nuclear 
receptor 

 

Natural 
ligands 

Function in lipid 
metabolism 

 

Function in glucose 
metabolism 

 
Role in NAFLD 

PPARα Fatty acids 

Regulates expression 
of FAS -> lipogenesis; 

CD36/FAT, 
FATPs -> FA-Uptake; 

Acetyl-CoA-
synthetase, 

CPT-1 -> β-oxidation 

Regulates PEPCK, 
GSK3, 

Glycogen synthase 
->glycogen 

metabolism; 
insulin sensitivity 

 

Fibrate treatment 
improves IR 

 

PPARγ Prostaglandins 

Regulates expression 
of 

CD36/FAT -> FA-
Uptake; 

SCD-1 -> FA-
metabolism 

Regulates GLUT-4 
Expression -> 

insulin sensitivity 

Activation; PPARγKO 
mice are protected 
from diet induced 

steatosis; 
Glitazones improve IR 
and TG accumulation 

and increase 
adiponectin levels 
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PPARδ Fatty acids 
Regulates SREBP-1c -

> 
Lipogenesis 

Induces glycolysis 
and pentose 
phosphate 

pathway shunt 

Agonist treatment 
improves hepatic 
steatosis in mice 

 
 

LXRα Oxysterols 

Regulates SREBP1c, 
SCD-1, FAS -> 
lipogenesis; 
cholesterol 
metabolism 

Regulates 
insulin receptor 

expression, 
GLUT-4 and 

IRS expression -> 
insulin sensitivity 

Induced, LXR 
promotes hepatic 

lipogenesis 

 

Non-alcoholic Steatohepatitis (NASH) is the second step in evolution of NAFLD, involving 

oxidative stress, lipid peroxidation, activation of the cytochrome P450 2E1, increasing inflammatory 

cytokine production, activation of stellate cells and apoptosis(3).  

Insulin resistance and hyperinsulinemia predispose to oxidative stress and reactive species of 

oxygen production by stimulating microsomal lipid peroxidases and decreasing fatty acid oxidation; 

peroxidases acts in PUFA, producing highly reactive aldehydic derivatives. Biopsy is necessary to 

differentiate NAFLD and NASH, but factors like type 2 of diabetes, increased aspartate 

aminotransferase (AST), TG and inflammatory cytokines and hyperinsulinemia are more associated 

to NASH(3). 

Low levels of adiponectin are a criteria to differentiate hepatic steatosis and non-alcoholic 

steatohepatitis(3).  

Most patients with NAFLD are asymptomatic or they have non-specific symptoms, but alanine 

aminotransferase (ALT) levels are often found elevated(29). Liver fat content reflects the 

equilibrium between FFA flux through lipolysis, fatty acid oxidation, de novo lipogenesis and VLDL 

production(30). This dysfunction in metabolism can increase the risk of diabetes and other diseases 

such as atherosclerosis and coronary artery disease (see Figure 11).  

 

6. Lipotoxicity – hepatic insulin resistance and inflammation 

The liver has an important role in lipid metabolism regulation. In fed state, the fats are stored 

in adipocytes and liver promotes the glycolysis for ATP formation, lipogenesis and glycogen 

synthesis. When energy supply is required during long non-food intake periods or exercise, 

stimulating lipolysis in adipocytes and gluconeogenesis and fatty acid oxidation in the hepatocyte. 

However, when fat intake is high and chronic, the adipocytes need the hepatocytes support to 

control lipidemia. Then, excess fatty acids enter in the liver, for β-oxidation, but chronicity fat diet 

increases insulin levels during fed phase and decrease adiponectin in obesity, inducing the lipid 
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synthesis in the liver and accumulating TG in lipid droplets(2). The accumulation of lipids in liver 

results from an imbalance among the uptake, synthesis, export and oxidation of fatty acids(31) 

SFA and linoleic acid (18:2) were reported to induce inflammation by the activation of NF-κB 

pathway through the interaction with toll-like receptor 4 (TLR4)(32). TG accumulation in lipid 

droplets induces DAG formation for incorporation in VLDL vesicle, increasing DAG and ceramides 

and activating PKC, which activates JNK and consequently the NF-κB pathway, developing hepatic 

inflammation(32). Due to lipid overload, overactive oxidation and DAG lead to mitochondrial 

dysfunction, increasing ROS, NEFA, lipid peroxidation and more lipid droplets, as a vicious cycle. 

Moreover, inflammation is associated with elevated white blood cells or proinflammatory cytokines 

in circulation and tissue and elevated macrophage infiltration; inflammation has both beneficial 

and bad effects in obesity. Liver inflammation maybe is a protective mechanism against excessive 

lipid and glucose uptake. However, as insulin signaling is inhibited by inflammation, such 

mechanisms may conduce to type 2 diabetes, when chronically established. 

On the other hand, lipotoxicity is another process caused by chronic and persisted elevation of 

FFA or NEFA, inducing obesity and insulin resistance and an increment risk for type 2 diabetes 

mellitus. Insulin resistance state goes along with increased adipocyte lipolysis, leading to abundant 

FFA in the plasma (see Figure 11). It is characterized by hyperinsulinemia, hyperglycemia in fasting 

condition, hyperlipidemia, impaired glucose tolerance, increased hepatic glucose production, 

hypoadiponectinemia and increased inflammatory markers in plasma and it occurs many years 

before open type 2 of diabetes mellitus(32). 

 

Adiponectin is a protein expressed in adipocytes due to the LPL activity, removing the NEFA and 

integrating them within the adipocytes. This increase allows the binding with nuclear receptor 

PPARγ and RXR, stimulating adiponectin expression and releasing into the blood. Adiponectin is 

inhibited in inflammatory process, increased cAMP and insulin signal(33). The liver has adiponectin 

receptor, adipoR, and its function is to activate AMPK and PPARα, increasing the uptake and 

oxidation of glucose and lipids(34). This molecule has the ability to inhibit directly lipogenesis 

enzymes of fatty acids and forward to mitochondrion to increase oxidation. Therefore, the 

adiponectin has an important role in the oxidation, preventing synthesis of fatty acids, hepatic TG 

accumulation and inhibiting oxidative stress and inflammation. In other hand, adiponectin is 

decreased in obese and type 2 diabetic patients, inducing lipotoxicity and insulin resistance. It has 

been associated with insulin sensitivity and has anti-inflammatory effects(3,24,33).  
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Figure 11: Interaction of insulin resistance and lipotoxicity(30) 

 

7. Overall mechanism of glycation and lipotoxicity 

Hepatic Steatosis result in an accumulation of lipid droplets and alterations of β-oxidation, and 

fatty acid and VLDL synthesis. Low levels of PPARα lead to hepatic steatosis(10) and insulin 

resistance(35) due to decreased oxidation. On the other hand, SREBP-1 and ACC are markedly 

elevated due to hyperinsulinemia, contributing to de novo fatty acids synthesis(10). In this 

situation, when adipocytes achieved triglycerides store threshold, they release fatty acids to the 

plasma which will further increased the lipid load to the liver. Glycerophosphate acyltransferase, 

lysophosphatidate acyltransferase and diacylglycerol acyltransferase are the enzymes responsible 

to triacylglycerol synthesis and accumulation in liver. The progression of insulin resistance starts in 

peripheral tissue such as alteration of lipolysis in adipose tissue and hyperinsulinemia. The 

consequent influx of fatty acids to the liver and increased hepatic TG finally hepatic insulin 

resistance(35).  

TG accumulates as lipid droplets in liver or are incorporated and exported in VLDL particles 

(Figure 11). When accumulated as NEFA or secondary metabolites such as ceramides and DAG they 

induce inflammation through activation of stress pathways. Moreover, SFA activates the TLR4 and 

excessive NEFA induce reticulum endoplasmic stress by phosphorylation of protein kinase R-like 

endoplasmic reticulum kinase (PERK). Regarding phospholipids, elevated LPC levels are also 

associated to lipotoxicity marker in NASH due to inflammation that remove one fatty acid in PC 

molecules, but its levels are proportional to disease severity(36). 
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Aims 

 

The majority of patients with type 2 diabetes is clinically characterized by insulin resistance 

and obesity, increasing the risk of developing fatty liver and non-alcoholic fatty liver disease; with 

this work, it was intended to use an animal model – Wistar Rats – with administration of 

methylglyoxal and high-fat diet for induction of glycation and obesity, respectively. 

The objectives of this work are to understand the role of glycation induced by methylglyoxal 

in the alteration of lipid metabolism in obesity and to know the implications of such mechanisms in 

local and systemic parameters of glucose metabolism. In this way, the lipid liver analysis was 

performed by different approaches: lipidomic techniques and magnetic resonance. More, it was 

necessary to correlate these results with the evaluation of liver pathways of the lipid metabolism 

and the insulin signaling. 

At the end of the project will be possible to understand better how glycation and high-fat 

diet can induce glucose and lipid dysmetabolism, insulin resistance and lipotoxicity and 

consequently non-alcoholic fatty liver disease. 
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Materials and Methods 

1. Materials 

1.1. Reagents 

Salts and organic solvents used in solution preparations were purchased to Sigma Chemicals 

(United States of America - USA) or Merck Darmstad (Germany), with the highest grade of purity 

commercially available. Perchloric acid from Panreac (Barcelona, Spain). Aceto-nitrile, chloroform, 

methanol and hexane from Fisher scientific (Leicestershire, UK). The water was of MilliQ purity 

filtered through a 0.22-mm filter (Milipore, USA). 

 

1.2. Other materials 

During the experiments, it was necessary to use common materials like horizontal shaker 

(model DSR 2800V, Digisystem Lab. Instruments Inc, Thailand), electronic and scale and precision 

scale (Precisa 80ª-200M and Libra EB-2800, Japan), centrifuge (Thermo Electron Corporation, USA), 

glucometer (Bayer SA, Portugal), homogenizer (model A TM, FLAC Instruments, Italy), microplate 

reader (Gen5 Software, Biotek Instruments Inc, USA), pH reader (MicropH, Crison, Spain), 

automatic micropipettes (Gilson medical Electronics, France), microplates (Immuno plate maxisorp 

C96, Nunc Roshild, Denmark), pipette tips (Gilson medical Electronics, France), potter and piston 

(F28D03, Thomas Scientific, USA), ELISA software (Gen5, Biotek Instruments Inc, USA), glucometer 

strips (Bayer SA, Portugal), blood collection tubes (BDVacutainer, United Kingdom - UK), vortex 

(UNIMAG, ZX, Germany), extraction and quantification tubes, cap and spares (11ml, 16x100 mm, 

PYREX, Scilabware, UK). 

 

2. Animals and Treatments 

Wistar rats were obtained from the breeding colony at the Faculty of Medicine, University of 

Coimbra and they were kept under controlled ventilation, temperature (22-24ºC), humidity (50-

60%) and light (12h light/ 12h darkness) with free access to water and food. Local Institutional 

Animal Care and Use Committee (ORBEA IBILI-FMUC) approved the experimental protocol and all 

the procedures were performed by licensed users (FELASA).  8 month old male Wistar rats were 

divided in four groups (n=12/group): Control (Ct) with standard diet AO3 (5% of triglycerides and 

45% of carbohydrates, SAFE, France); Methylglyoxal group (MG) with standard diet and MG 

administration; High-fat diet-fed group (HFD) with a high-triglyceride diet; High-fat diet with MG 

combination group (HFDMG).  
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High-fat (HF) diet has 40% of triglycerides and 10% of carbohydrates (231 HF, SAFE, France) and 

it was administered during 18 weeks from 8 to 12 months old. Methylglyoxal (Sigma, USA) was 

diluted in the daily water (100 mg/Kg/day) with weekly adjustments according to the body weight.  

This experimental protocol was described and optimized by Laboratory of Physiology, Institute 

of Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 

Portugal(26,37). 

Standard diet and high fat diet were analyzed by gas chromatography(38) to identify and 

quantify different species of esterified fatty acyl chains. 50mg of each diet was prepared with a 

methanolic solution of potassium hydroxide (2M) according to a referenced method. Only 10mg of 

standard diet and 10mg of high fat diet were diluted in 100μl and 650μl, respectively, of hexane 

solution containing methylated fatty acids and 3μl of each sample was injected in the gas 

chromatograph. Fatty acyl chain with 17 carbons (C17 – 7.5μg) was used as internal standard. The 

GC injection port was programmed at 523.15 K and the detector at 543.15 K. Oven temperature 

was programmed as follows: initially stayed 3 minutes at 323.15 K, raised to 453.15 K (25 K min-1), 

held isothermal for 6 minutes, with a subsequent in-crease to 533.15 K (40 K min-1) and maintained 

there for 3 minutes, performing 19 minutes totally. The carrier gas was hydrogen flowing at 1.7 

mL/min. The gas chromatograph (Clarus 400, PerkinElmer, Inc. USA) was equipped with DB-1 

column with 30 m length, 0.25 mm internal diameter and 0.15lm film thickness (J&W Scien-tific, 

Agilent Technologies, Folsom, CA, USA) and a flame ionization detector.    

 

3. In vivo Analysis 

3.1. Body Weight and Glycemic Levels 

Body weight was registered during the treatment at the beginning, at 4, 8 and 14 weeks and at 

the end of treatment. HbA1c level, fasting (fasting blood sugar test) and 1h and 2 hours glycemia 

after intraperitoneal glucose administration (1.8 g/Kg) were measured in the tail vein in overnight 

(18h) fasted rats. 

 

3.2. Lipid Levels Determination – Magnetic Resonance Spectroscopy 

A high-resolution magic-angle spinning 1H nuclear magnetic resonance (NMR) spectroscopy of 

liver tissues coupled with principal components analysis were performed using a BioSpec 9.4 T MRI 

scanner (Bruker Biospin, Ettlingen, Germany). Rats (n=6/group) were kept anesthetized by 

isoflurane (2-3%) with 100% O2 with body temperature (37ºC) and respiration monitoring (SA 

Intruments SA, Stony Brook, USA). Water-suppressed 1H NMR liver lipid spectrums were analyzed 
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using homemade software implemented in Matlab (v2013a, Mathworks) to obtain hepatic lipid 

signals. This experimental protocol was described and optimized by Institute of Nuclear Sciences 

Applied to Health, ICNAS, University of Coimbra, Portugal(39). 

 

4. Sample Collections 

4.1. Blood  

Blood samples were collected by cardiac puncture after 16-18 hours fasting in anesthetized rats 

with intraperitoneal injection of ketamine chloride (75 mg/kg, Parke-Davis, Ann Arbor, USA) and 

chlorpromazine chloride (2.65 mg/kg, Lab. Vitória, Portugal). Serum and plasma were collected in 

BD Vacutainer tube and BD Vacutainer K3E, respectively, with EDTA (5,4mg); then, they were 

centrifuged (2500 RPM, 4ºC, 10 minutes) and stored in aliquots at -20ºC.  

Systemic Parameters were determined in fasted rat blood samples. Serum triglyceride levels 

were determined using commercial kits (Olympus-Diagnóstica, Portugal, Produtos de Diagnóstico 

SA, Portugal). Plasma levels of free fatty acids were assessed spectrophotometrically using the FFA 

Assay Kit (ZenBio, NC, USA). Plasma insulin levels were determined using the Rat Insulin ELISA Kit 

(Mercodia, Sweden). Serum concentration of adiponectin was determined using the Rat 

Adiponectin Immunoassay Kit (Invitrogen, USA). Plasma levels of total cholesterol, HDL cholesterol, 

total protein, albumin, alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline 

phosphatase, gamma glutamyl transferase (GGT) and total bilirubin were measured at Clinical 

Pathology Service in Centro Hospitalar Universitário de Coimbra, Portugal. 

 

4.2. Liver  

After the sacrifice by cervical displacement, liver tissues were harvested, weighed and washed 

in isotonic solution (0,9% NaCl); before freezing at -80ºC, livers were photographed with a no filters 

camera (Exilim, Casio, Japan). 

 

4.2.1 Western Blotting 

Hepatic protein determination was performed by homogenization of liver tissue (50mg) (n=6) 

in 2ml of buffer (25 mM Tris, 150 mM NaCl, 1% Triton X-100, 1 mM EDTA, 1 mM EGTA, 10 mM PMSF 

and 40 μl/g tissue of  proteases inhibitor cocktail (Sigma, USA), pH = 7.7) and centrifuged at 

14000xg, 20 minutes, 4ºC. Protein concentration was determined using the BCA method (Pierce, 

USA).  
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Liver samples were separated by SDS-PAGE and transferred to PVDF membranes. Membranes 

were blocked with TBST solution (25mM Tris-HCl, 150mM NaCl, 0.1% Tween, pH=7.6, 5% BSA) and 

incubated overnight at 4ºC with the respective primary antibody (see Table 2) and during 2 hours 

at room temperature with the secondary antibody (anti-mouse, GE Healthcare, UK; anti-rabbit and 

anti-goat, Bio-Rad, USA). Membranes were revealed using ECL substrate in a Versadoc system (Bio-

Rad, USA) and analyzed with Image Quant® (Molecular Dynamics, USA). 

 

Table 2: List of primary antibodies for lipid oxidation and insulin signaling 

Primary Antibodies 

Calnexin (AB0037, Sicgen, Portugal) 

AKT, p(Ser473)AKT, AMPK, p(Thr172)AMPK, ACC and p(Ser79)ACC (#9272, #4058, #2532, #2535, 

#3676 and #3661, Cell Signaling, USA) 

F4/80 and GLUT2 (ab74383 and ab54460, Abcam, UK)  

IRβ and p(Tyr1163)IRβ (sc-57342 and sc-25103, Santa Cruz Biotechnology, EUA)  

 

4.2.2 Lipidomic Approaches 

Hepatic lipid levels were determined by different lipidomic approaches (n=3). Liver tissue was 

homogenized in phosphate buffer saline (PBS), pH 7.4 and lipid extraction was performed by Folch 

Method(40), using a chloroform:methanol (2:1 v/v) solution.  

Total phospholipid (PL) quantification was measured by colorimetric phosphorous assay, after 

perchloric acid digestion at 180ºC, as described before(41). Phospholipid internal standards (see 

Table 3) were purchased to Avanti Polar Lipids, Inc. (Alabaster, AL, USA).  

Phosphorous assay was performed to calculate the amount of each PL class after thin layer 

chromatography (TLC) separation in 60μg of total PL. TLC uses a silica gel plates with a concentrating 

zone of 2.5 x 20 cm (Merck, Darmstadt, Germany) and it was developed with 

chloroform/ethanol/water/triethylamine solvent mixture (35:30:7:35, v/v/v/v)(42). Lipid spots 

were visualized with UV (λ= 254 nm) after detection with primuline (Sigma, St Louis, MO, USA) and 

PL classes were identified by internal standards (see Table 3).  

Phospholipids (PL) and triglycerides (TG) were detected by mass spectrometry (MS) after 

separation by high performance liquid chromatography (HPLC). HPLC system (Waters Alliance 2690) 

was used with an Ascentis Si column (15 cm x 1 mm, 3lm) and a pre-column split (Acurate, LC 

Packings, USA) in order to obtain a flow rate of 20μL min-1.  
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The solvent system consisted in two mobile phases as follows: mobile phase A 

(acetonitrile:methanol:water; 55:35:10 (v/v/v) with 1 mM ammonium acetate) and mobile phase B 

(acetonitrile:methanol 60:40 (v/v) with 1 mM ammonium acetate). Initially, 0% mobile phase A was 

held isocratically for 8 minutes followed by linear increase to 60% of A within 7 minutes and 

maintained for 40 minutes. Samples (20μg of total phospholipid) were separated by HPLC, which 

was coupled to a linear ion trap (LXQ; Thermo Finnigan, San Jose, CA, USA) mass spectrometer. The 

LXQ were operated in both positive (electrospray voltage +5 kV) and negative (electrospray voltage 

-4.7 kV) with 275ºC capillary temperature and the sheath gas flow of 8 U. Normalized collision 

energy™ (CE) varied between 20 and 27 (arbitrary units) for MS/MS.  

Data acquisition was carried out on an Xcalibur data system (V2.0). Relative quantitation of 

individual phospholipid species were determined by the ratio between the area of reconstructed 

ion chromatogram of a given m/z value against the area of the reconstructed ion chromatogram of 

the respective class and absolute by internal standards (see Table 3).  

 

Table 3: List of phospholipid internal standards 

CL 1’,3’-bis[1,2-dimyristoyl-sn-glycero-3-phospho]-sn-glycerol 
m/z 1239.4 

[M+H]- 
1.51μg CL 

dMPC 1,2-dimyristoyl-sn-glycero-3-phosphocholine 
m/z 736.2+58 

[M+CH3COO]- 
5 μg PC 

LPC 1-nonadecanoyl-2-hydroxy-sn-glycero-3-phosphocholine 
m/z 596.2+58 

[M+CH3COO]- 
1.49μg LPC 

dMPE 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine 
634.5 

[M+H]- 
2.5μg PE 

dMPA 1,2- dimyristoyl-sn-glycero-3-phosphate 
591.3 

[M+H]- 
1.5μg PA 

dMPG 1,2-dimyristoyl-sn-glycero-3-phospho-(1’-rac-glycerol) 
665.5 

[M+H]- 
1.5μg PG 

dMPS 1,2-dimyristoyl-sn-glycero-3-phospho-L-serine 
678.3 

[M+H]- 
1.5μg PS 

dPPI 1,2-dipalmitoyl-sn-glyce-ro-3-phospho-(1’-myo-inositol) No standard PI 

 

MS data presented by means of relative abundance per class and, depending on the 

phospholipid classes, the spectra were analyzed in positive or negative ion modes. Triglycerides 
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were analyzed in the positive ion mode and phospholipids: lysophosphatidylcholines (LPC), 

phosphatidylcholines (PC), sphingomyelins (SM), phosphatidylethanolamines (PE), cardiolipins (CL), 

phosphatidylserines (PS), phosphatidylinositols (PI), phosphatidylglycerol (PG) and phosphatidic 

acid (PA) were analyzed in negative ion modes. MS/MS was performed for each ion to identify and 

confirm their structure, according to the typical fragmentation pathways(43), LIPID MAPS(44) and 

LIPID Mass Spec. Prediction program(v1.5, LIPID MAPS, 2009)(44). 

Total of esterified fatty acyl were measured by gas chromatography (GC) after 

transesterification of lipid liver extracts (approximately 90μg of total PL), with controlled dilutions 

in highest fat liver lipid samples and 2μl was injected in gas chromatograph. C17 was used as 

internal standard as mentioned above. 

 

5. Statistical Analysis 

Results are presented as mean and standard error of the mean (SEM) for each experimental 

group and non-parametric Kruskal-Wallis test was applied to determine statistical differences 

between the groups, using SPSS software (IBM, NY, USA). p values <0.05 were considered to be 

statistically significant. 
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Results 

 

1. Body Weight, food, liver weight, macroscopy and hepatic function test  

 

The body weight after the four months of treatment shows an increase in rats with high fat diet 

administration (HFD group), but not in the HFDMG group, showing an inhibitory effect of 

methylglyoxal weight gain (HFDMG group) administration (Figure 12).   

 

 

Figure 12: Body weight in the end of the treatment. *different from Ct. # different from MG. 1 symbol p<0.05. 2 symbols 
p<0.01. 

 

Table 4: Food consumed during the treatment, liver weight and hepatic function test. *different from Ct. # different from 
MG. 1 symbol p<0.05. 
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Figure 13: Liver weight/body weight ratio. *different from Ct. 1 symbol p<0.05. 2 symbols p<0.01. 

 

In Figure 13 it can be also noted that the ratio between liver and body weight decreased in the 

groups with fat diet administration (HFD and HFDMG groups), with greater statistical significance 

in the HFD group. 

The HFD and HFDMG groups ate the same amount of fat diet during the treatment. The size of 

the liver was also not different to the control group, decreasing the ratio between the body weight 

and liver (Table 4). 

In liver function tests, there was no difference in total protein levels, liver enzymes and 

bilirubin. It only was observed a statistically significant decrease in plasma levels of albumin in 

HFDMG group (Table 4). 

 

After the analysis of fatty acids from diets by GC-FID, it was found that the standard diet has less 

amount of fatty acids and is more rich in PUFA (18:2). On the other hand, fat diet is much more rich 

in fatty acids (in species and amount), especially in MUFA (18:1) and SFA (16:0 and 18:0). Fat diet 

has also high levels of essential fatty acid 18:2 (linoleic acid) (Table 5). 

 

Table 5: Fatty acid species from standard and high-fat diet and respective amount per gram of diet (mg/g), by GC-FID. 
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Macroscopy analysis of the appearance of the liver shortly after the sacrifice showed visible lipid 

accumulation in HFD and HFDMG groups (Figure 14). 

 

  

Figure 14: Macroscopic visualization of a representative liver for each group. ├┤scale 2cm 

 

2. In vivo magnetic resonance spectroscopy  

 

At the end of treatment and days prior to sacrifice, rats performed a non-invasive technique of 

magnetic resonance imaging to analyze the liver and the amount of fat by 1H spectroscopy, in which 

each peak corresponds to a different environment proton in the same molecule (Figure 15). 

Phospholipids do not vibrate in the same way as the cytosolic lipids, so the signals received by 

NMR are only the cytosolic lipids (TG and DAG) and not the membrane lipids(45). 

 

After obtaining data and peak values, it was used the already pre-established equations to 

determine values of the lipid fraction and saturated, unsaturated, mono and polyunsaturated 

fractions(45). 

 

Considering the previous results of Figure 13, Figure 14 and Table 5, it is possible to confirm the 

results with this in vivo technique. 
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Figure 15: adapted figure of 1H NMR assignments for control rat liver tissue  (39) and diagrammatic representation of 
typical glycerolipid molecule(46). Fatty acyl chain represents linoleic acid (18:2), R represents other fatty acyl chain or 
hydrogen. Each type of proton has different chemical shift (ppm) and peak in resonance spectrum.  

 

The lipid fraction increased in the HFD and HFDMG group, while the unsaturated fraction 

decreases and saturated fraction increases over the groups, with a significant difference more 

evident only in the HFDMG group (Figure 16). 

Although the unsaturated fraction is decreasing, polyunsaturated fraction decreases in the 

groups with administration fat diet (HFD and HFDMG groups) and monounsaturated fraction have 
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a trend to increases due to the high concentration of oleic acid (18: 1) in the high-fat diet (Figure 

16). 

 

Figure 16: Liver lipid mass fraction (A), unsaturated (UL) and saturated (SL) (B) and monounsaturated (MUL) and 
polyunsaturated (PUL) (C) lipid fractions, international units, (equations calculated from (45)). *different from Ct. # 
different from MG. 1 symbol p<0.05, 2 symbols p<0.01. 

 

Besides this, the formula for identifying DAG and fatty acids was never described, mainly the 

inability of the MRI used in previous studies to separate 5.19 ppm signal corresponding to an 

identifier of glycerol (isolated proton) and the proton signal 5.29 ppm of double bonds between 

carbons (Figure 15). 

 

However, the magnetic resonance imaging machine used at ICNAS has a 9 Tesla magnet and it 

can isolate the peak 5.19 ppm. Thus, it was possible to calculate the percentage of esterification of 

glycerol, by the ratio 2.24ppm x (2/6)/5.19ppm, and the levels of NEFA, by the ratio of 0.9ppm x 

(3/9)/5.19ppm. Results reveal a decreasing esterification of glycerol and an increasing ratio of the 

fatty acid/glycerol in HFDMG group compared to the control group, suggesting an increase of non-

esterified fatty acids (fatty acids from phospholipids not include) (Figure 17). 

 

 

 

Figure 17: Percentage of total esterification (A) and FA/glycerol ratio (B). *different from Ct. # different from MG. $ 
different from HFD. 1 symbol p<0.05, 2 symbols p<0.01. 
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3. Lipidomic analysis 

3.1. Analysis of liver trigycerides content 

Liver triglycerides (TG) quantities were obtained in the positive mode complexed with 

ammonia (+17 NH3), showing increasing trend in the groups with fat diet administration, despite 

the HFDMG group has a very large deviation (Figure 18). 

 

 

Figure 18: Total amount of TG in units of the area of reconstructed ion chromatogram (UA) by HPLC-MS/MS. 

 

The species containing the fatty acid 18:1 were elevated mainly in the HFD group. Moreover, 

TGs rich in 20:4 (TG-858, TG-868 and TG-894) were decreased in HFD and HFDMG groups. So, 

statistically significant alterations of TG are mainly present in the HFD group (Figure 19). Table 6 

lists up all identified species of TG, quantification and the constituent fatty acids. The most 

abundant TG are TG-870, TG-872, TG-874, TG-896, TG-898, TG-900, TG-920 and TG-922. 

 

 

Figure 19: Relative amount of TG with statistically significant difference, by HPLC-MS/MS. *different from Ct. # different 
from MG. 1 symbol p<0.05, 2 symbols p<0.01 
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Table 6: Relative amount of different species of TG ([M+NH3]+), with respective fatty acid constitution and statistical p-
value, by HPLC-MS/MS. *(carbons number/double bounds). ** identified fatty acids in MS/MS. *** less abundant fatty 
acids. 
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3.2. Analysis of liver fatty acid content 

In the sample analysis by GC-FID, it was possible to identify and quantify esterified fatty acids 

(in PL, TG, DAG and cholesterol esters). The total amount of esterified fatty acids was significantly 

increased in HFD group, but not in HFDMG group. Together with data from magnetic resonance 

informing increased lipid (fatty acid) fraction in HFD and HFDMG group, this suggests increased 

NEFA in HFDMG group (Figure 16A, Figure 17A and Figure 20B). The most abundant fatty acids in 

the esterified pool are palmitic acid (16:0), stearic acid (18:0), oleic acid (18:1), linoleic acid (18:2), 

arachidonic acid (20:4) and docosahexaenoic acid (22:6) (Figure 20A). The fatty acids 16:0 and 18:2 

did not change between groups, but HFD and HFDMG groups had decreased PUFA 20:4 and 22:6. 

Importantly, the HFD group, but not the HFDMG group, had significantly decreased levels of 18:0 

and increased 18:1. The sum of the different fatty acids resulted in increased total unsaturated fatty 

acids in HFD group, due to increased monounsaturated ones, also resulting in increased 

unsaturated/saturated fatty acid ratio (Figure 20C and D). HFDMG group showed a more modest 

increase of monounsaturated fatty acids, resulting in an unsaturated/saturared fatty acid ratio 

similar to control rats, despite the increase of total lipid mass (Figure 20C and D). 

 

 

Figure 20: Relative percentage of esterified liver FA present in total lipid extracts per group (A) and total amount (B) by 
GC-FID. Relative percentage of saturated (SAT), unsaturated (UNSAT), monounsaturated (MUFA) and polyunsaturated 
(PUFA) fatty acids (C). Unsaturated/saturated ratio (D). *different from Ct. # different from MG. 1 symbol p<0.05, 2 
symbols p<0.01, 3 symbols p<0.001. 
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3.3. Analysis of liver phospholipid profile 

Lipidomic techniques allowed to analyze liver samples after extraction of lipids, identifying and 

quantifying TG and esterified fatty acids, but also PL. The total amount of PL per gram of liver had 

no significant variations per group, but after separation by TLC and HPLC-MS/MS, all PL classes were 

quantified and observed statistically significant differences in some classes of PL (Figure 21). 

 

 

Figure 21: Total amount of PL per gram of liver (A), PC/PE ratio (B), total amount of PL per class obtained by TLC (C) and 
HPLC-MS/MS (D). *different from Ct. 1 symbol p<0.05. 

HFD and HFDMG groups showed a decrease of PC levels by TLC and an increase of the total 

levels of PE in HPLC-MS/MS. The techniques have different sensitivity, however the values for all 

classes have the same trend. Ratio PC/PE performed by TLC or HPLC-MS/MS show a statistically 

significant decrease in fat diet administration groups (HFD and HFDMG). No differences were found 

in the other classes (Figure 21). 

In the analysis by HPLC-MS/MS were identified and quantified the different species of PL 

classes and their constituent fatty acids (Table 7 and Table 8). All classes were identified in the 

negative mode and only PC, LPC and SM were identified as acetate (+58 m/z). The most abundant 

classes are PC-16:0/18:2 (m/z at 816), PC-16:0/20:4 (m/z at 840), PC-18:2/18:0 (m/z at 844), PC-

20:4/18:0 (m/z at 868), PE-16:0/20:4 (m/z at 738), PE-18:2/18:2 (m/z at 738), PE-16:0/22:6 (m/z at 

762), PE-18:2/20:4 (m/z at 762), PE-18:1/20:4 (m/z at 764), PE -18:0/20:4 (m/z at 766), LPC-16:0 

(m/z at 554), LPC-18:0 (m/z at 582), PS-18:0/20:4 (m/z at 810), PS-18:0/22:6 (m/z at 834), SM-16:0 
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(m/z at 761), PG-16:0/18:1 (m/z at 747), PI-18:0/20:4 (m/z at 885), PI-18:1/22:6 (m/z at 907), CL-

16:1/16:1/16:1/16:1 (m/z at 1343) and CL-18:2/18:2/18:2/18:2 (m/z at 1447). 

PC plasmalogens identified have a tendency to diminish, although they have not a statistically 

significant difference (O-PC: m/z at 802, 830, 854 and 882). To following PE plamalogens, were also 

identified: O-PE: m/z at 700, 722, 728, 750, 752, 776 and 778, which only the O-PE-16:1/20:4 (m/z 

at 722) and O-PE-18:0/20:4 (m/z at 752) showed a statistically significant decrease in HFD and 

HFDMG groups (Table 7 and Figure 22B). In HFD group was observed a decreasing in PC-16:1/18:2 

(m/z at 814), PC-16:1/20:4 (m/z at 838), PC-18:1/20:4 (m/z at 866) and PC-18:1/22:6 (m/z at 890). 

Regarding to PE, PE-18:1/20:4 (m/z at 764) decreased in both HFD and HFDMG groups and PE-

18:0/20:4 (m/z at 766) increased only in HFD group (Figure 22A and B). PS and LPC were no 

statistically significant differences between groups, although it appears a tendency for LPC 

increasing their levels in HFDMG group. SM-18:0 (m/z at 789) increased in HFDMG group and SM-

24:1 (m/z at 871) and SM-24:0 (m/z at 873) decreased in HFD group (Figure 22C). In HFD and 

HFDMG groups decreased PG-18:2/20:4 (m/z at 793) and PI-18:0/22:6 (m/z at 909). As for CL, there 

is a decrease of CL with m/z at 1313 in HFD and HFDMG groups and CL with m/z at 1471 only in 

HFDMG group (Figure 22D, E and F). 

 

Figure 22: Relative amount of PC, PE, SM, PI, PG and CL classes with statistically significance difference, by HPLC-MS/MS. 
*different from Ct. # different from MG. & different from HFD. 1 symbol p<0.05, 2 symbols p<0.01. 
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Table 7: Relative amount of different species of PC and PE, with respective fatty acid constitution and statistical p-value 
by HPLC-MS/MS. ** identified fatty acids in MS/MS. *** less abundant fatty acids. 
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Table 8: Relative amount of different species of LPC, PS, SM, PG, PI and CL, with respective fatty acid constitution and 
statistical p-value, by HPLC-MS/MS.*carbons number/double bounds. ** identified fatty acids in MS/MS. *** less 
abundant fatty acids. 
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4. Lipidemia and lipid Metabolism Regulation 

 

NMR and lipidomic techniques revealed alterations in groups maintained with high-fat diet, but 

given the alterations in the saturation of fatty acids in HFDMG group, it is important to analyze the 

regulation of pathways involved in lipid metabolism and insulin signaling. 

Plasma total cholesterol levels were increased in the HFD group, with a trend to increment in 

HFDMG group. TG levels didn’t have differences between groups (Table 9). 

 

Table 9: Systemic levels of TG, total cholesterol and HDL cholesterol analyzed at Hospital and by commercial kit (TG). 
*different from Ct. # different from MG. 1 symbol p<0.05. 

 

Regarding plasma FFA values, a significant increase was observed only in the HFDMG group. 

Consistently, plasma adiponectin levels were increased in the HFD group, but not in HFDMG (Figure 

23). 

 

 

Figure 23: FFA and adiponectin levels in plasma per group, analyzed by spectrophotometry and immunoassay kit, 
respectively. *different from Ct. # different from MG. $ different from HFD. 1 symbol p<0.05. 

 

Figure 24 shows values of total and phosphorylated levels of liver AMPK and although no 

significant differences are observed in the total and phosphorylated (active) forms of AMPK, the 

ratio between them decreased in HFD group, and especially in HFDMG. 
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Figure 24: Liver levels of total AMPK and Thr172-phosphorylated AMPK and ratio by western blotting. *different from Ct. 
1 symbol p<0.05. 

ACC is phosphorylated (inactivated) by AMPK and, despite no differences were observed in the 

total amounts of the protein, the phosphorylated form (inactive) was increased in the HFDMG 

group and especially in HFD. Such alterations resulted in a significant increase of the ratio between 

the inactive and total forms in the HFD group, which was more modest in the HFDMG group (figure 

25). (Figure 25). 

 

 

Figure 25: Liver levels of total ACC and Ser79-phosphorylated ACC and ratio by western blotting. *different from Ct. # 
different from MG. 1 symbol p<0.05. 2 symbols p<0.01. 3 symbols p<0.001. 
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5. Glycemia, HbA1c and glucose tolerance test 

 

Regarding to plasma levels of glucose and glycated hemoglobin, these parameters showed no 

alterations, despite a trend to elevated glycated hemoglobin was found in HFDMG group (Figure 

26). 

 

Figure 26: Plasma levels of fasting glycemia and hemoglobin glycated HbA1c, analyzed at Hospital and HbA1c analyzer. 

 

The intraperitoneal glucose tolerance test was showed a reduced glucose tolerance in HFD 

group with higher area under the curve and glycemia at 2 hours, which is potentiated by the 

supplementation of MG (HFDMG) (Figure 27). 

 

 

Figure 27: Two hours (120 minutes) glycemia registration and area under curve of intraperitoneal glucose tolerance test 
(IPGTT). *different from Ct. # different from MG. $ different from HFD. 1 symbol p<0.05. 2 symbols p<0.01. 3 symbols 
p<0.001. 
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6. Glucose metabolism regulation 

In order to analyze the regulation of glucose metabolism, plasma insulin levels were evaluated, 

showing increased levels only in HFDMG group (Figure 28). 

 

 

Figure 28: Plasma levels of insulin by ELISA kit. *different from Ct. 1 symbol p<0.05. 

 

Accordingly, despite the total and phosphorylated (active form) levels of the insulin receptor 

showed no significant changes, the ratio presented a significant decrease in the HFD and HFDMG 

groups, being more evident in the last one (Figure 29). 

 

 

Figure 29: Liver levels of Insulin Receptor (IR) and Tyr1163-phosphorylated IR and ratio, by western blotting. *different 
from Ct. # different from MG. 1 symbol p<0.05. 2 symbols p<0.01. 
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Figure 30 presents the total levels of Akt and phosphorylated form (active), demonstrating a 

statistical reduction in levels of active Akt and ratio in the MG, HFD and HFDMG groups, especially 

in HFD and HFDMG groups. 

 

 

Figure 30: Liver levels of Akt and Ser473-phosphorylated Akt and ratio by western blotting. *different from Ct.  1 symbol 
p<0.05. 

 

The GLUT2 levels were also determined, with a significant increase only in the HFD group, 

which is consistent with a compensatory mechanism for glucose uptake. This was not observed in 

HFDMG group (Figure 31).  

 

 

Figure 31: Liver levels of GLUT2 by western blotting. *different from Ct. # different from MG. 2 symbols p<0.01. 
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Discussion 

 

This work was designed to assess the involvement of glycation induced by methylglyoxal in the 

impairment of hepatic lipid metabolism, given that lipotoxicity is a known mechanism causing 

inflammation and insulin resistance. Such mechanisms may be involved in the progression of 

obesity and pre-diabetes to type 2 diabetes. 

Previous studies confirmed that the glycation process is implicated in microvascular 

complications of type 2 of diabetes mellitus, independent of obesity and that plasma levels of 

methylglyoxal are increased in diabetic patients and animal models (22–24). As well, our group 

recently showed that oral MG administration may have functional consequences in insulin-sensitive 

tissue, namely the adipose tissue and the muscle (22,26–28)(unpublished data). Knowing this, it is 

expectable that MG-induced glycation may have consequence for the hepatic lipid metabolism in 

obesity. 

 

High-fat diet-induced mechanisms of lipid and glucose storage 

It was pertinent to evaluate the characteristics of fatty liver developed in an obese model in 

the presence of glycation, which is characteristic of diabetes and pre-diabetes states, and analyze 

the pathophysiological differences between them, given that obese patients have a higher risk for 

developing diabetes, but not all obese patients develop the disease nor NASH (3,30). 

Under normal feeding conditions, the intake of carbohydrates and fats is compensated by 

insulin levels, allowing the liver to increase glycolysis and glycogenesis, to reduce the plasma 

glucose and produce ATP. In the adipocyte, the hormone-sensitive lipase (47) is inhibited to prevent 

lipolysis and stimulate lipid storage by the activation of lipoprotein lipase (48); this mechanism 

removes blood fats and store them in adipocytes for when energy will be required.  

In high-fat diet-fed condition, insulin will respond to this increase to metabolize the post-

prandial glucose with glycolysis and glycogen synthesis and adipocytes will store the fats ingested. 

The reasons that limit adipocyte's ability to store fat are currently under investigation, but are 

believed to be related to hypoxia and inflammation. Therefore, if adipose tissue reaches its limit, 

there is an increased lipolysis, increased plasma FFA levels and compensation by the liver to reduce 

this increment. Insulin action deviate FFA for the de novo synthesis of PL, glycerolipids and 

cholesterol esters, in this order, releasing them in the form of VLDL or store them as lipid droplets 

(in exacerbated cases, such as obesity). The liver compensates FFA levels during fasting phase, with 

β-oxidation or cholesterol synthesis if it does not require energy supply (10). 
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Hepatic Lipotoxicity  

HFD and HFDMG groups consumed the same amount of high-fat diet, which is rich in MUFA 

(18:1) and SFA (16:0 and 18:0).  At the end of the treatment there was a substantial increase in 

body weight only in HFD group. In HFDMG group, the weight increase was not so pronounced, 

suggesting an interference of methylglyoxal in the normal lipid storage and metabolism. According 

to studies conducted by our group at the Laboratory of Physiology (IBILI), methylglyoxal have effects 

on the microvasculature of the adipose tissue and thereby create hypoxic regions leading to 

dysmetabolism. Thus, impaired adipose tissue expandability may explain the lower body weight in 

HFDMG group (26). However, given the importance of the adipose tissue in properly storing dietary 

lipids, one may believe that profound changes in lipid metabolism will occur. 

Liver weight was similar in all groups, thus the ratio of liver weight/body weight decreased in 

HFD and HFDMG groups. However, it was possible to observe fat deposition in the liver of HFD and 

HFDMG groups in the macroscopic analysis; this is characteristic of hepatic steatosis, although the 

liver function tests still remain normal and it is necessary a histological confirmation. 

It is expected that adipose tissue dysmetabolism causes lipolysis, with FFA release to the 

circulation, inducing hepatic accumulation (3,10,31,36). HFD group shows normal plasma FFA, 

meaning that fat is being accumulated in adipose tissue, what is consistent with increased fat mass 

in this group (data not shown). Alternatively, liver may accumulate triglycerides in lipid droplets or 

use fatty acids  to the cholesterol synthesis, which is consistent to increased serum cholesterol 

levels is this group, despite the normal cholesterol levels of the diet .  

In order to evaluate lipid accumulation in liver, 1H NMR and lipidomic approaches were 

performed, as they emerged as powerful tools for the profiling and characterization of lipids ex vivo 

(biopsies) and in vivo. Higher amounts of fat were observed in the HFD and HFDMG groups, with 

no differences in the total amount of phospholipid per gram of liver. Thus, despite the change in 

the amount and species of fatty acids caused by the diet, the total amount PL was kept constant 

(49). Importantly, we observed changes in the levels of specific species of PLs, which physiological 

significant should be addressed in the future. Of significance is the fact that cardiolipins, present in 

the mitochondria membranes, were decreased in the HFDMG group, suggesting a higher level of 

mitochondria dysfunction. 

Regarding fatty acid species, total MUFA were increased in the HFD group while the PUFA 

decreased in both groups (HFD and HFDMG) (3), because the diet has a high content of SFA and 

MUFA. Increased MUFA levels in the HFD group result from the abundant amount of oleic acid 

(18:1) in the diet, but also from the shift from saturated towards unsaturated fatty acyl chains 
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catalyzed the enzyme SCD1. In HFDMG group, such mechanisms appear to be impaired. Although 

they ingest the same amount of saturated fatty acids and MUFA, their liver content are different 

than in HFD rats. This may result from changed SCD1 activity in this group, increased oxidative 

modification or increased β-oxidation of MUFA. Although increased β-oxidation could be consistent 

with the hyperinsulinemia and insulin resistance observed in this group, AMPK levels were 

diminished. Furthermore, high levels of FA-CoA decrease ACC, deviating fatty acids to oxidation. In 

order to address this, PPARα levels should be determined, as it controls β-oxidation. In obesity, fats 

are deviated to the synthesis of glycerolipids, increasing lipid droplets; these lipid droplets increase 

interaction with microsomal lipase and it increases the FA-CoA formation, which in turn will inhibit 

ACC. However, HFDMG group showed less inactive form (phosphorylated) of ACC than HFD group, 

which is consistent to increased SCD1 activity in this group. Moreover, adiponectin levels are 

increased in HFD group, stimulating oxidation of fatty acids, which is not observed in HFDMG group 

(33,34,50). Interestingly, TGs have higher affinity to esterify MUFA than SFA, but this is not observed 

in HFDMG group. Such observations suggest that instead of increased β-oxidation, decreased MUFA 

levels in HFDMG group may derive from increased oxidative modification in inappropriate SCD1 

activity (future work).  

Regarding saturated lipids, they have more affinity to be incorporated in DAG. Although DAG 

quantification in liver should be performed in the future, magnetic resonance imaging suggested 

the existence of increased levels. Consistent with increase MUFA and possibly with increased SCD1 

activity, HFD group had equal (16:0) or decreased (18:0) esterified SFA than controls. In normal 

conditions, insulin stimulates SCD1 gene expression via-SREBP1, reducing SFA and increasing MUFA 

to deviate them for synthesis of PL, TG and cholesterol esters or oxidation (16). HFDMG group did 

not show decreased SFA and increased MUFA esterification, suggesting increased DAG formation 

(15,51). 

TG levels have a trend to increase in HFD group, with a large deviation in the HFDMG group, 

turning necessary to increase the samples number. However, according with the literature, hepatic 

TG are increased in obesity patients, accumulated in lipid droplets, but in diabetic patients, hepatic 

TG levels could be diminished, possible by inhibition of esterification, depending of insulin function, 

oxidative stress and pathology progression (3,52,53). Previous studies from QOPNA, University of 

Aveiro, using diabetic rats reveal the same alterations in liver associated to diabetic rat model (54). 
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The role of phospholipis in oxidative stress and inflammation  

Esterified linoleic acid (18:2) did not change between groups. This fatty acid is essential for the 

formation of the PUFAs arachidonic acid (20:4) and docosahexaenoic acid (22:6), which are 

decreased in esterified lipids in high-fat diet-fed groups (3). The type 3 omega fatty acid 

(docosahexaenoic acid, 22:6) is a more effective activator of PPAR-α signaling than the type 6 

omega fatty acid (arachidonic acid; 20:4). However, the reduction of esterification of both may 

denote an increase of their free levels, which could increases PPAR-α activation and suppress 

SREBP1. This would induce fatty acid oxidation and VLDL secretion and reduces cholesterol and 

fatty acid synthesis, in the end decreasing hepatic lipid accumulation (52). On the other hand, 

increased availability of arachidonic acid seems to result in enhanced production of 

proinflammatory molecules in liver, by the reaction with cycloxygenase and lipoxygenase and 

overproduction of prostaglandins and leukotrienes; this contributes to development of the 

inflammation, activation of Kupffer cells and NASH (52,55,56). 

Plasmalogen PE are free radical scavengers, which are decreased in metabolic syndrome and 

diabetes, suggesting an elevation of hepatic oxidative stress and impairment of the antioxidant 

capacity (57). We observed decreased plasmalogen PE in HFD rat, but mostly in HFDMG. This is 

consistent with increased SM-18:0 levels in HFDMG, which was previously associated with impaired 

liver function (58). The decreased levels of PG and PI founded in HFD and HFDMG groups are 

associated to the decreased levels of esterified arachidonic and docosahexaenoic acids. Similarly, 

CL are present in the mitochondrial membrane, being sensitive to reactive species of oxygen due 

to high content of unsaturated fatty acids, but may be also involved in the protection against ROS. 

We observed that HFDMG group has further decreased levels of the CL 1313 and 1471, suggesting 

an increased ROS production (59). 

Regarding PL classes, the PC/PE ratio decreased in the HFD and HFDMG groups, which means 

PC are decreasing, by inactivation of PE N-methyltransferase (Pemt), and PE are increasing, 

impairing membrane integrity and starting a process of hepatic dysfunction (3,60). A study from 

Chitraju et al. (2012) used high-fat diet-fed rats and another from Zhaoyu et al. (2006) induced 

steatohepatitis in Pemt-/- mice, and they showed a decreased PC/PE ratio too, considering an 

interesting marker of inflammation. Similarly, several studies have shown that diabetic models have 

decreased levels of this enzyme (61,62). Pmet activity may be regulated by insulin and glucagon, 

although the mechanisms are currently unknown (63–65). 
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Insulin resistance 

Magnetic resonance imaging suggested increased DAG levels in HFDMG group, due to a 

decrease in the percentage of esterification. DAG is known to be a strong inducer of insulin 

resistance and lipotoxicity (10,32,36). The calculation of glycerol esterification and FA/glycerol ratio 

suggest the levels of DAG and NEFA, respectively. The use of this formula is based on the fact that 

1,2-DAG and 2,3-DAG are more abundant  in the cell(>70%) (66) as they are obtained from 

glycerolipid synthesis (1,3-DAG is produced only during TG hydrolysis ) (63). FA/glycerol ratio was 

bigger than 1, which means that there are more FA than glycerol molecules and thus NEFA. So, 

crossing the results from 1H NMR and lipidomic, the amount of esterified fatty acids is increased 

only in HFD group, while HFDMG group appears to have more NEFA. Therefore, such changes in the 

HFDMG group will have a strong influence on liver lipid oxidation and insulin signaling. This group 

also has glucose intolerance at 2 hours, hyperinsulinemia, hypoadiponectinemia and increased 

plasma FFA levels (3,10,22,23). 

Adiponectin secretion and circulating levels were shown to be decreased in diabetic patients 

(24), reducing lipid oxidation capability and contributing to NAFLD and hepatic and peripheral 

insulin resistance (3,24,32).  Active/total AMPK ratio was decreased in HFD and HFDMG groups, but 

this was more evident in HFDMG group, further supporting the idea of impaired lipid β -oxidation. 

This may derive from hypoadiponectinemia or inactivation of Akt.  

A decrease of the active form of the insulin receptor and consequently less active Akt were 

observed in the HFD group and further in the HFDMG group, indicating that the liver needs to 

increase the overall levels of insulin receptor to achieve its activation. Insulin promotes the 

synthesis of glycerolipids (TG, PL), retaining them in lipid droplets or releasing them with VLDL, 

despite high insulin levels diminish the production of lipoproteins, independently of FFA levels 

(3,67). Thus, insulin resistance predisposes to increased acetyl-CoA accumulation by β-oxidation, 

causing mitochondrial dysfunction. This will cause the activation of the microsomal lipid 

peroxidases-mediated PUFA peroxidation (3,67). GLUT2 levels were elevated in HFD group, what is 

expected, given that its gene expression is stimulated by elevated levels of MUFA, independent of 

hyperglycemia. GLUT2 levels are also upregulated in insulin-resistance and when gluconeogenesis 

stimulation. In HFDMG group, GLUT2 levels are not different from control group, what is consistent 

with lower 18:1 levels than HFD rats and decreased activity of the insulin receptor pathway (68). 

Thus, our results show that glycation further decreases the activity of the insulin-Akt pathway 

and hyperinsulinemia in obesity. Such events may apparently result from impaired lipid 
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metabolism, lipotoxicity and oxidative stress, deviating the metabolic process, with inhibition of 

glycolysis and glycogen synthesis and overstimulating lipid oxidation. 

 

NAFLD and NASH 

It is important to distinguish liver steatosis in obese and type 2 diabetic patients. Although the 

diet in both pathologies is based on the same saturated fats, the body will respond in different 

ways. It can be assumed that obesity can be inducing an early stage of diabetes, but the patient 

may never develop chronic hyperglycemia and microvascular complications associated to glycation. 

Therefore, it should be recalled that an obese have an increase in adipocytes size and when it 

reaches its storage limit, the liver compensate the adipocyte failure, preventing early metabolic 

dysfunction.  

Thus, obese patients may have hepatic steatosis and lipotoxicity associated with high saturated 

fat intake, but not yet systemic dysmetabolism, compensating elevated fatty acids with 

glycerolipids and cholesterol synthesis.  

On the other hand, in diabetic patients, insulin resistance comes to disrupt hepatic glucose and 

lipid clearing, inducing systemic dysmetabolism and dysregulation of liver glucose and lipid 

metabolism, which may contribute to the progression of NAFLD to NASH. Moreover, the chronicity 

of the disease and oxidative stress damage in the liver, increasing the inflammatory process, leads 

to NASHS, this pathology needs a careful observation by health practitioner due to high risk 

progression to cirrhosis, liver failure or even hepatocellular carcinoma (52,53) (see Figure 32). 

 

 

Figure 32: Adapted proposed model of lipotoxicity progression(53). (LOX: lipoxygenase. DNL: De novo lipogenesis. NAFL: 
Non-alcoholic Fatty Liver. NASH: Non-alcoholic Steatohepatitis 
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Integration of 1HNMR with lipidomic approaches  

1H NMR and lipidomic approaches use has been increasing for the detection of lipid alterations 

in any tissue or body fluid due to its high sensitivity for detection of lipid species, therefore 

contributing to an improvement in lipidology and the analysis the beneficial and detrimental 

changes which can appear in specific diets and pathologies. 

However, the techniques do not exhibit the same results and they are both necessary in order 

to obtain the largest possible information. Their use is however limited to the fact that in vivo organ 

analysis depends of biopsies, which is an invasive procedure difficult to implement in a large scale. 

1H NMR allows a non-invasive determination of the amount of total fat, SFA, unsaturated fatty 

acids, MUFA and PUFA in vivo. If the sufficient field force is applied, it allows getting other 

parameters as the percentage of esterification of glycerol and the ratio FFA/glycerol, which 

estimate the amount of DAG and NEFA, respectively. However, given the different vibration of the 

lipids incorporated in a bilayer, this technique only allows the quantification of non-phospholipid 

lipids. In the other hand, lipidomics allow analyzing the total amount of PL, esterified fatty acids, 

including in the PL, and identify and quantify the species of fatty acids in each lipid classes; it is also 

possible to evaluate TG and DAG using mass spectrometry techniques, but the protocol still needs 

to be optimized. The disadvantage of the type of technique is the lack of sensitivity for non-

esterified lipid species. 

 

AGE and NAFLD/NASH crossover 

There is not much information about the direct effect of glycation in NAFLD. Obese patients 

are also able to produce Amadori product through the intrahepatic oxidation of fatty acids 

consequent to lipid peroxidation, and independent of hyperglycemia-induced AGE formation. This 

event may explain the increased risk of NAFLD progression in obese patients without diabetes and 

thus to diabetes development itself. However, the levels of lipid-derived glycation products are 

small and they are only effective when there already lipotoxicity-induced liver changes, since the 

exogenous AGE without obesity have greater difficulty to induce NAFLD (69).  

Some studies indicate that the formation of AGE will interact with receptors in hepatocytes 

(RAGE). RAGEs of the hepatocytes and stromal hepatic stellate cells (HSC) bind to AGEs, inducing 

oxidative stress, HSC proliferation and fibrosis, by NF-κB and JNK activation (70). JNK pathway 

inhibit IRS1, inducing insulin resistance, proinflammatory activation and lipotoxicity (71,72). More, 

it was observed that dietary AGE may cause liver inflammation in the absence of hepatic steatosis 
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(73). Another study shows a relation between AGE-induced oxidative stress with other liver 

pathologies, such as non-ischemic, ischemic injury and hepatocellular carcinoma (48).  

A study with diagnosed hepatic steatosis, NAFLD and NASH patients revealed diminished 

plasma levels of soluble RAGE, but only in the last phase of the disease, indicating these receptors 

as a protective label to prevent the binding of AGE into tissues (74). On the other hand, 

glyceraldehyde-derived AGE is a plasmatic toxic AGE (TAGE) and it was recently demonstrated its 

effect in angiopathy from diabetes patients; it could be a novel biomarker for NASH due to the high 

levels in the end of progressive NAFLD (75). Such studies are in accordance with our data, showing 

that MG impairs lipid esterification, with increased saturation, having functional consequences in 

insulin signaling.
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Future Work 

 

At the present, the project continues with the analysis of inflammatory parameters associated 

to obesity, diabetes and NAFLD/NASH. It began with the labeling by western blotting of cells of the 

hepatic reticuloendothelial system (macrophages), Kupffer Cells, which are phenotypically positive 

for F4/80 and, according to the literature, they accumulate mainly in NAFLD and diabetes condition 

(Figure 33) (29,76). 

 

 

Figure 33: Levels of liver macrophage marker F4/80. *different from Ct. 1 symbol p<0.05. 2 symbols p<0.01. 

 

Moreover, histological analysis is being performed at the Centro Hospitalar Universitário de 

Coimbra for further analysis of the presence of microscopic fat and inflammatory infiltration. 

It is also necessary to increase the number of liver samples for lipidomic analysis, as well as 

determining the levels of total DAG and key enzymes involved in lipid metabolism such as SCD1. 

After finishing these processes, all relevant results will be published.   
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CHAPTER 7 

CONCLUSION 
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Conclusion 

 

To conclude, given the cause/consequence relationship between fatty liver disease and insulin 

resistance, this study aimed to evaluate the effects of glycation in lipotoxicity and thus the 

development of insulin resistance, contributing to this liver vicious cycle. 

 

In high-fat diet-fed rats with methylglyoxal administration, the formation of AGE triggered a 

change in peripheral lipid metabolism, caused by the adipose tissue dysfunction and consequent 

increased plasma FFA levels. This increased FFA flux to the liver is also associated with increased 

markers of mitochondria oxidative damage. Mitochondrion dysfunction increases ROS, deflecting 

the process to the synthesis of TG and DAG (3,10). In turn, lipid species like DAG cause insulin 

resistance, what was observed in HFDMG rats. Thus, insulin resistance deregulates fatty acid 

oxidation and glycerolipids synthesis, perpetuating the vicious cycle that leads to NAFLD 

progression. 

 

Thus, the deregulation of fat accumulation in liver as lipid droplets by MG-induced glycation 

contributes to hepatic lipotoxicity and insulin resistance. The evolution of such changes leads to the 

onset of NAFLD and NASH, characterized by a severe inflammatory process that can ultimately 

induce liver failure. 
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