 Discrimination of Water Quality Monitoring Sites in River Vouga using a Mixed-Effect State Space Model

Marco Costa · Magda Monteiro

Received: date / Accepted: date

Abstract The surface water quality monitoring is an important concern of public organizations due to its relevance to the public health. Statistical methods are taken as consistent and essential tools in the monitoring procedures in order to prevent and identify environmental problems. This work presents the study case of the hydrological basin of the river Vouga, in Portugal. The main goal is discriminate the water monitoring sites using the monthly dissolved oxygen concentration dataset between January 2002 and May 2013. This is achieved through the extraction of trend and seasonal components in a linear mixed-effect state space model. The parameters estimation is performed with both maximum likelihood method and distribution-free estimators in a two-step procedure. The application of the Kalman smoother algorithm allows to obtain predictions of the structural components as trend and seasonality. The water monitoring sites are discriminated through the structural components by a hierarchical agglomerative clustering procedure. This procedure identified different homogenous groups relatively to the trend and seasonality components and some characteristics of the hydrological basin are presented in order to support the results.

Keywords Water quality assessment · State space modeling · Kalman smoother · Classification · Structural components · River Vouga

1 Introduction

The surface water quality assessment is an important part of the environment monitoring, whose evaluation can predict the water quality and avoid public health problems of various types and levels. The existence of an effective and efficient water quality monitoring system prevents the pollution of both water and soil.

M. Costa and M. Monteiro
Escola Superior de Tecnologia e Gestão de Águeda
Centro de Investigação e Desenvolvimento em Matemática e Aplicações
Universidade de Aveiro
Apartado 473, 3754 – 909 Águeda, Portugal
E-mail: marco@ua.pt
There are several factors that contribute to water quality, some factors are known, others are unknown, which is a grey system ([30]).

Water quality monitoring procedures may be used in the decision-making process in order to support policy options. For this reason, several European Union (EU) countries have developed a national water quality system, considering characteristic structure of their own rivers and have used this type of indicators to evaluate the current situation of their water quality level. The management of water resources is regulated by EU directives and their transposition into national legislation. For instance, in Portugal, the Law n. 58/2005 (Law of Water) ensures the transposition into national law the Directive n. 2000/60/CE (the Water Framework Directive, WFD), which creates the institutional framework for sustainable management of surface, interior waters, transitional, coastal and even groundwater. The Decree-Law n. 77/2006 complements the WFD by characterizing the waters of a river basin. This regulatory instrument establishes the status of surface waters and groundwater and the ecological potential.

The knowledge of the dynamics of water quality surface can be achieved by studying the respective hydrological basin and its unique characteristics. The water quality assessment is, in general, based in a network of water quality monitoring sites which provides real-time water-quality measurements from surface-water monitoring locations. These sites can be fixed stations (usually to characterize a watershed); on a temporary basis (for instance, during the summer at bathing beaches) or on an emergency basis. This work focuses on the water quality assessment based on a set of fixed stations located in the hydrological basin of the river Vouga, Portugal. In this case, there is periodical data as frequent as possible in order to identify changes or trends in water quality over time or to devaluate sporadic behavior in medium or long term analysis. Nevertheless, nowadays, the availability of knowledge about a watershed in a considerable period of time and with a reasonable spatial coverage enables a more efficient monitoring of water quality.

It is in the context of both legal framework and a significant investment effort in the water quality monitoring infrastructures in the river Vouga basin, in Portugal, that it is important to characterize the existing network. Thus, an adequate research in order to characterize the network can identify potential redundancies of monitoring sites. The minimization of these redundancies can bring a better use of resources maintaining the effectiveness of the monitoring process. So, this work aims to contribute to a better knowledge of the dynamics of the watershed to help in decision-making processes technical and policy that may be adopted in the near future.

An important role in the surface water quality monitoring is assigned to the dissolved oxygen (DO) concentration variable. Indeed, the amount of dissolved oxygen has been considered a relevant indicator of the water quality since it results from the impact of a set of environmental factors. These factors may be originate from several conditions as the water temperature, air temperature and pressure, riverbed morphology, water cleanliness state, point and area sources of pollution of surface water, etc. Whence, several research is based on this variable.

This work presents a characterization of the river Vouga watershed, in Portugal, based on records of the DO concentration, in mg/l, identifying similarities or dissimilarities between monitoring sites. The statistical methodology classifies water monitoring sites according to both trend and seasonality time series components.
For each component, the obtained homogenous groups will be analyzed according to the watershed hydrology characteristics. The statistical approach combines time series analysis with the usual discrimination techniques as the cluster analysis. The time series analysis is performed through a state space modeling approach combined with the Kalman smoother in order to extract structural components which are used to investigate space-time patterns in the water quality monitoring sites network.

2 Literature review

Several studies have been developed on the river Vouga watershed or, particularly, on the Ria de Aveiro lagoon. The main focus of these works is related with ecological systems in the Ria de Aveiro as the diversity of flora and fauna or the contaminants into aquatic ecosystems (see, e.g., [1]). [6] presents a study in order to identify point sources of pollution and to assess the surface water quality in the Antuã basin by monitoring physicochemical variables. However, an analysis to characterize the main hydrological basin of the river Vouga according to the water quality in the monitoring sites in a discrimination view point has not been addressed yet. This work aims at giving a contribution towards this direction.

Several statistical techniques can be applied when the main goal is to characterize environmental variables through various temporal and spatial patterns. For instance, [12] presents a scheme for meteorological drought analysis at various temporal and spatial scales based on a spatial Bayesian interpolation of drought severity derived from monthly precipitation data. [17] investigates both water quality evaluation in its time-space variations and the natural and anthropogenic origins of contaminants in surface or ground water. [4] presents the application of multivariate statistics for the interpretation of surface and groundwater data from Tarkwa. Both cluster analysis and principal component analysis were used to analyze the water quality in [28] and [29] in order to evaluate the temporal/spatial variations and to identify potential pollution sources. The factorial analysis was used in [9] in order to explain and evaluate the correlation structure between observed variables in water quality sampling stations and to identify relevant factors. [15] uses cluster analysis and linear models to describe hydrological space-time series of quality variables and to detect changes in surface water quality before and after the installation of wastewater treatment plants. [8] applied clustering techniques based on Kullback Information, measures that are obtained in the state space modeling process and, for each homogeneous group, forecast models were compared with traditional linear models through the mean squared error of forecasts. Two approaches for clustering of time series oriented to large set of time series were proposed in [14]; the first is an approach based on a modification of classic state-space modeling while the second is based on functional clustering. In these works the discrimination procedure is performed directly on the environmental variables. The cluster analysis has been usefully applied also in [19] in order to differentiate between efficient and inefficient farms using a clustering model based on the imperialist competitive algorithm.

On the other hand, the DO concentration is a parameter frequently used to evaluate the water quality on different reservoirs and watersheds since it is strongly influenced by a combination of physical, chemical, and biological characteristics.
of streams. The DO is considered an index of water quality and was also used
to estimate the effect of industrial and municipal effluents on the waters ([24],
[25], [16]). With the same purpose, [22] validates a water quality model for the
Ria de Aveiro, in order to better use it as a predictive tool in the study of the
main water quality processes in the this lagoon, providing a sensitivity analysis
of the model, which shows that the ocean remains the main source of oxygen
as well as the main factor controlling the DO distribution throughout the main
lagoon areas. Most recently, [27] uses dissolved oxygen (DO) indicators to calibrate
the recharge potential analysis (RPA) parameters, which results indicated that
defining the RPA parameters values based on DO indicators is necessary and
important for accuracy. The ARIMA and ARFIMA models were applied in [3]
to predict univariate DO time series for four water quality assessment stations at
Stillaguamish River located in the state of Washington.

On the one hand, the approach proposed in this work has the potential of com-
bining the temporal modeling of water quality variables evolution with a clustering
analysis. Furthermore this approach allows, at the same time, a global characteri-
zation of water quality in the river basin and the identification of redundancies of
water monitoring sites. On the other hand, the stochastic modeling is performed
using a mixed linear state space model incorporating both fixed effects and ran-
dom dynamics which has the advantage to model and forecast of non-stationary
changes inherent in climate data ([20]). Other advantage of the State space ap-
proach is that it takes into account possible measurement errors measures which
are minimized through the Kalman smoothers.

3 The river Vouga and data description

The hydrologic regime involves a summer low flow condition and the dynamic of
the coastal lagoon is dominated by tidal oscillation. Ria de Aveiro is characterized
by its rich biodiversity as well as by an increasing pressure of the anthropogenic
activities near its margins, namely building and land occupation, agricultural and
industrial activities. This has resulted in a significant change of the lagoon mor-
phology, and in a constant input of a large volume of anthropogenic nutrients as
well as of contaminant loads, with the consequent negative impact in the water
circulation, as well as in the water quality of the lagoon ([21]). The construc-
tion, management and operation of Multi-municipality System Drainage of the
Ria de Aveiro is of the responsibility of the SIMRIA - Integrated Sanitation of
Municipalities of Ria, SA, which is a private company with majority public capi-
tal (established by Decree-Law n. 101/97 of 26 April). The Ria de Aveiro lagoon
is inserted in the hydrological basin called by Vouga/Ribeiras Costeiras in the
SNIRH (Portuguese national information system for water resources). In the an-
nual report 2012 published by SNIRH, it is mentioned that the industrial activities
with more units that contribute to the sources of urban pollution in the Vouga
watershed come from manufacture of leather, manufacture of metal products and
non-metallic, wood and cork industry, chemical manufacturing, food industries-oil,
pulp and paper industry and metallurgical industries.

Vouga is a river situated in the center of Portugal and it rises at about 930m of
altitude near the geodesic landmark Facho da Lapa, in Serra da Lapa, a mountain
located in the district of Viseu; it flows 148 Km before emptying into Ria de Aveiro.
Fig. 1 Hydrological basins of mainland Portugal (source SNIRH)

Fig. 2 Water monitoring sites locations in the hydrological basin of river Vouga
Table 1 Descriptive statistics of dissolved oxygen concentration between January 2002 and May 2013

<table>
<thead>
<tr>
<th>Site</th>
<th>abbrev</th>
<th>obs</th>
<th>min</th>
<th>max</th>
<th>average</th>
<th>st dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agadão</td>
<td>AGA</td>
<td>111</td>
<td>5.8</td>
<td>11.0</td>
<td>8.74</td>
<td>1.26</td>
</tr>
<tr>
<td>Carvoeiro</td>
<td>CAR</td>
<td>112</td>
<td>6.2</td>
<td>11.0</td>
<td>8.79</td>
<td>1.18</td>
</tr>
<tr>
<td>Alombada</td>
<td>ALO</td>
<td>113</td>
<td>6.1</td>
<td>11.0</td>
<td>8.90</td>
<td>1.08</td>
</tr>
<tr>
<td>Captação Burgães</td>
<td>BUR</td>
<td>122</td>
<td>6.5</td>
<td>12.6</td>
<td>9.40</td>
<td>1.36</td>
</tr>
<tr>
<td>Captação Rio Ínsua</td>
<td>INS</td>
<td>122</td>
<td>6.4</td>
<td>12.4</td>
<td>9.31</td>
<td>1.05</td>
</tr>
<tr>
<td>Ponte Redonda</td>
<td>RED</td>
<td>112</td>
<td>4.6</td>
<td>11.5</td>
<td>8.88</td>
<td>1.22</td>
</tr>
<tr>
<td>Frossos</td>
<td>FRO</td>
<td>110</td>
<td>4.5</td>
<td>11.0</td>
<td>8.17</td>
<td>1.22</td>
</tr>
<tr>
<td>Pomplihosa</td>
<td>PAM</td>
<td>100</td>
<td>4.3</td>
<td>12.0</td>
<td>7.95</td>
<td>1.68</td>
</tr>
<tr>
<td>Ponte São João de Loure</td>
<td>LOU</td>
<td>112</td>
<td>5.4</td>
<td>11.0</td>
<td>8.24</td>
<td>1.25</td>
</tr>
<tr>
<td>Ponte Vale Maior</td>
<td>MAI</td>
<td>112</td>
<td>6.2</td>
<td>12.0</td>
<td>8.62</td>
<td>1.12</td>
</tr>
<tr>
<td>Ponte Água</td>
<td>AGU</td>
<td>111</td>
<td>5.1</td>
<td>11.0</td>
<td>8.39</td>
<td>1.20</td>
</tr>
<tr>
<td>São Tomé</td>
<td>TOM</td>
<td>118</td>
<td>5.0</td>
<td>11.0</td>
<td>7.88</td>
<td>1.16</td>
</tr>
<tr>
<td>Aç. Maiela</td>
<td>MAE</td>
<td>115</td>
<td>5.6</td>
<td>11.0</td>
<td>8.50</td>
<td>1.20</td>
</tr>
<tr>
<td>Aç. Rio Alfusqueiro</td>
<td>ALF</td>
<td>113</td>
<td>2.9</td>
<td>12.0</td>
<td>7.80</td>
<td>1.75</td>
</tr>
<tr>
<td>Pindelo Milagres</td>
<td>MIL</td>
<td>110</td>
<td>4.6</td>
<td>12.0</td>
<td>8.16</td>
<td>1.32</td>
</tr>
<tr>
<td>Ponte Antim</td>
<td>ANT</td>
<td>113</td>
<td>0.8</td>
<td>12.0</td>
<td>7.38</td>
<td>2.05</td>
</tr>
<tr>
<td>Ponte Pouves</td>
<td>POU</td>
<td>115</td>
<td>2.6</td>
<td>11.0</td>
<td>8.27</td>
<td>1.46</td>
</tr>
<tr>
<td>Ponte Vouzelha</td>
<td>VOZ</td>
<td>109</td>
<td>1.8</td>
<td>13.0</td>
<td>8.10</td>
<td>1.91</td>
</tr>
<tr>
<td>São João Serra</td>
<td>SER</td>
<td>115</td>
<td>6.0</td>
<td>12.0</td>
<td>8.70</td>
<td>1.18</td>
</tr>
<tr>
<td>São Miguel Mato</td>
<td>MAT</td>
<td>111</td>
<td>4.3</td>
<td>12.0</td>
<td>8.44</td>
<td>1.53</td>
</tr>
<tr>
<td>Vouguinha</td>
<td>VOG</td>
<td>114</td>
<td>5.4</td>
<td>11.0</td>
<td>8.42</td>
<td>1.35</td>
</tr>
<tr>
<td>Estarreja</td>
<td>EST</td>
<td>114</td>
<td>3.4</td>
<td>11.0</td>
<td>7.62</td>
<td>1.32</td>
</tr>
<tr>
<td>Peraes</td>
<td>PER</td>
<td>111</td>
<td>4.6</td>
<td>9.8</td>
<td>7.19</td>
<td>1.17</td>
</tr>
<tr>
<td>Ponte Canha (Vouga)</td>
<td>CAN</td>
<td>114</td>
<td>2.6</td>
<td>10.1</td>
<td>6.89</td>
<td>1.92</td>
</tr>
<tr>
<td>Ponte Minhoteira</td>
<td>MIN</td>
<td>112</td>
<td>0.7</td>
<td>10.0</td>
<td>7.73</td>
<td>1.50</td>
</tr>
<tr>
<td>Ponte Requeixo</td>
<td>REQ</td>
<td>111</td>
<td>3.9</td>
<td>11.0</td>
<td>7.13</td>
<td>1.52</td>
</tr>
</tbody>
</table>

The watershed of the Vouga is the second largest basin of watercourses that run exclusively in Portuguese territory comprising a total area of 3706 Km². More specifically, the Vouga basin is located in the transition zone between the North and South of Portugal, i.e., between the watersheds of the Douro at north and Mondego at south (see Fig.1).

The average flow of fresh water that flows into the Ria de Aveiro is about 40 m³/s. The Vouga and Antuã rivers are the main sources of fresh water, with average annual flow of 24 m³/s and 2.4 m³/s, both rivers belonging to the Vouga watershed ([23]). The main tributaries of the River Vouga are, from upstream to downstream the River Mel, the Sul River, the Varoso, the river Teixeira, the river Arões, the river Mau and the Caima river on the right bank. On its left bank the river Ribamá, the Marnel, and the river Águeda with its major tributary, the Alfusqueiro.

The dissolved oxygen concentration is available in a set of water monitoring sites in the hydrological basin of river Vouga. However, some problems arise in the statistical modeling, namely, some water monitoring sites have few data or missing values. On the other hand, due to the lack of economic resources or some other factor, the data collection was discontinued in some sites. In the SNIRH system there are 78 water-monitoring sites registered on the hydrological basin of the river Vouga. Unfortunately, the data collection is not continuous or some stations were deactivated at some time. Relatively to the DO concentration 26 stations have a
The River Vouga Hydrological Basin

significant data set until May 2013 (the last month available in the system). These
water monitoring sites are represented in the Figure 2.

Data available in the SNIRH system is not temporal equidistant, that is, in
some sites and for some months there are more than one measurement (for in-
stance, two measurements for the same site in different days of the same month).
The format of original dataset is improper to the statistical analysis, so it was
changed to producing monthly data. The adopted methodology to produce the
time series used to the purposes of this study is based on the average of mea-
urements. When in a month/year there were more than one measurement it was
considered their average to that month/year. Authors consider that an improve-
ment in the data collection is desirable to increase statistical analyses accuracy.
However, these improvements can only be applied to future collections of mea-
urements. On the other hand, the way the data was collected does not jeopardize
the results obtained in this work once, in general, data collection in the network
has been followed a monthly scheme. That is, given the annual calendar and other
constraints (holidays, weather conditions, etc.), the collection of samples remained
monthly and, whenever possible, at the same time of the month at each water
monitoring site.

Table 1 presents the descriptive statistics of the monthly DO concentration be-
tween January 2002 and May 2013 according to the final dataset. An exploratory
analysis shows that, in general, data are not normally distributed. Indeed, in some
water monitoring sites, observations are leptokurtic. This fact must be taken in
consideration in the modeling procedures since the Gaussian distribution is a usual
assumption in several statistical analyses. Moreover, the box-plots of data identi-
fied several moderate outliers in many sites, almost all in the left tail.

All graphical representations of the times series of the DO concentration show
that there is a seasonal pattern. The monthly averages of each month (empirical
seasonal coefficients) of the year indicate that DO concentration is greater in the
winter months and lower in the summer months. This result is due to the hydro-
meteorological conditions since the DO concentration is largely influenced by the
precipitation amount and temperature. Furthermore, the variances of observations
within each month of the year vary and they tend to be greater in winter months
([10]). This result indicates the existence of variance heterogeneity instead of the
usual homocedasticity assumed in several models.

4 A linear mixed-effect state space model

A preliminary work was performed based on the water monitoring site of Carvoeiro
data ([11]). This work showed that when a linear regression model, which incor-
porated a linear trend and seasonal coefficients, is applied, the residual series does
not present a white noise behavior. In fact, the sample autocorrelation function
(ACF) and the partial autocorrelation function (PACF) showed that residual se-
ries follows an autoregressive process of order 1, AR(1), that is, there is a temporal
correlation structure which were not explained by the linear model.

Thus, other models have to be considered in order to incorporate the structural
components of the DO concentration as well as the time correlation structure. A
proper choice is a linear mixed-effect state space (LMESS) modeling framework.
The LMESS models have been applied in several modeling works ([20], [31]) with
good results. On the one hand, static statistical models with fixed effects are
unLIKELY to have a good predictive accuracy, particularly in situations where the
predictor and predictand relationship changes over time ([20]). On the other hand,
the usual linear regression models are homoscedastic which is a strong constraint
regarding the results of the exploratory analysis. Thus, the LMESS allows to com-
bine the simplicity of linear models with a temporal dynamic structure usually
associated to the environmental variables.

Let Y_t, with $t = 1, 2, ..., n$, be the DO concentration variable in a water mon-
itoring site. The LMESS is specified by two equations: the observation equation
and the state equation. The observation equation is given by

$$Y_t = \beta t + s_t X_t + \epsilon_t$$

where Y_t is the observed DO concentration at time t in a monitoring site, β is
a slope parameter, $s_t = s_{t \mod 12} = s_i$, with $i = 0, ..., 11$, corresponding to the
monthly seasonal coefficient (0- December, 1-January, ..., 11-November) and ϵ_t is
a white noise process ($E(\epsilon_t) = 0$, $\text{var}(\epsilon_t) = \sigma^2$ for all t and $\text{cov}(\epsilon_t, \epsilon_r) = 0$ for all $t \neq r$). In addiction, X_t is an unobservable random variable, the state, which is
assumed to follow an autoregressive process of order 1, AR(1), according to the
state equation

$$X_t = \mu + \phi (X_{t-1} - \mu) + \epsilon_t$$

where μ is a parameter, ϕ is the transition parameter and variables ϵ_t are a white
noise process ($E(\epsilon_t) = 0$, $\text{var}(\epsilon_t) = \sigma^2$ for all t and $\text{cov}(\epsilon_t, \epsilon_s) = 0$ for all $t \neq s$).

It is assumed that the processes ϵ_t and ϵ_s are uncorrelated, $E(\epsilon_t \epsilon_s) = 0$ for all t
and s. When the state process $\{X_t\}$ is stationary, that is $|\phi| < 1$, the parameter
μ represents the mean of the process.

The model defined by Eq. (1) and Eq. (2) can be interpreted as a linear re-
gression model which incorporates a stochastic calibration factor in the seasonal
component. In fact, the component $s_t X_t$ includes the usual seasonal coefficients
which are calibrated through a stochastic factor X_t. This formulation incorporates
the heterocedasticity which was identified in the exploratory analysis. Indeed, it
was checked, in an empirical analysis, that the monthly standard deviations of the
detrended time series were greater in the months with a higher value of the DO
concentration (winter months). Moreover, the LMESS model includes the usual
linear trend.

The observation equation of the LMESS model (1)-(2) can be rearranged in
order to emphasize the seasonal coefficients with the desirable property $\sum_{i=0}^{11} s_i = 0$
as

$$Y_t = \alpha X_t + \beta t + s^*_t X_t + \epsilon_t$$

where $\alpha = \frac{1}{12} \sum_{i=0}^{11} s_i$ and $s^*_t = s_t - \alpha$.

This formulation is equivalent to Eq. (1) but it is more useful for interpretation
and modeling purposes. Indeed, this formulation shows a trend component, $T_t = \alpha X_t + \beta t$, with a constant slope but with a stochastic intercept and a stochastic
seasonal component, $S_t = s^*_t X_t$, based on the overall seasonal coefficients but
that allows its calibration dynamically. As the states X_t are unobservable random
variables they must be predicted. This is done through the Kalman smoother
([26]). As usual, $\hat{X}_{t|t-1}$, $\hat{X}_{t|t}$ and $\hat{X}_{t|n}$ represent the one-step-ahead forecast, the
filtered prediction and the smoother prediction of X_t based on time up to $t-1$, t
and n, respectively.
Table 2 Estimates of slopes and seasonal coefficients from the method of least squares

<table>
<thead>
<tr>
<th>site</th>
<th>$\hat{\beta}$</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGA</td>
<td>-0.0081</td>
<td>10.83</td>
<td>10.78</td>
<td>10.33</td>
<td>10.65</td>
<td>9.51</td>
<td>8.86</td>
<td>8.33</td>
<td>8.17</td>
<td>8.26</td>
<td>8.64</td>
<td>9.61</td>
<td>10.55</td>
</tr>
<tr>
<td>AGU</td>
<td>-0.0067</td>
<td>10.56</td>
<td>10.09</td>
<td>9.97</td>
<td>9.29</td>
<td>9.03</td>
<td>7.98</td>
<td>7.85</td>
<td>7.77</td>
<td>7.89</td>
<td>7.88</td>
<td>9.09</td>
<td>10.15</td>
</tr>
<tr>
<td>ALF</td>
<td>-0.0129</td>
<td>10.87</td>
<td>10.52</td>
<td>9.94</td>
<td>9.82</td>
<td>9.13</td>
<td>8.02</td>
<td>7.55</td>
<td>7.42</td>
<td>7.11</td>
<td>7.29</td>
<td>8.91</td>
<td>9.91</td>
</tr>
<tr>
<td>ANT</td>
<td>-0.0064</td>
<td>10.27</td>
<td>9.72</td>
<td>9.46</td>
<td>9.24</td>
<td>8.85</td>
<td>7.60</td>
<td>6.13</td>
<td>4.70</td>
<td>5.36</td>
<td>7.12</td>
<td>8.34</td>
<td>9.06</td>
</tr>
<tr>
<td>CAN</td>
<td>-0.0139</td>
<td>9.23</td>
<td>9.97</td>
<td>9.74</td>
<td>8.79</td>
<td>8.68</td>
<td>7.96</td>
<td>6.97</td>
<td>6.13</td>
<td>6.05</td>
<td>6.10</td>
<td>7.39</td>
<td>8.93</td>
</tr>
<tr>
<td>CAR</td>
<td>-0.0020</td>
<td>10.34</td>
<td>10.11</td>
<td>9.68</td>
<td>9.11</td>
<td>8.70</td>
<td>7.90</td>
<td>8.29</td>
<td>8.97</td>
<td>8.07</td>
<td>7.98</td>
<td>9.10</td>
<td>10.08</td>
</tr>
<tr>
<td>EST</td>
<td>0.0008</td>
<td>9.03</td>
<td>8.88</td>
<td>8.35</td>
<td>7.85</td>
<td>7.12</td>
<td>6.92</td>
<td>7.22</td>
<td>6.86</td>
<td>5.90</td>
<td>5.90</td>
<td>7.65</td>
<td>8.71</td>
</tr>
<tr>
<td>FRO</td>
<td>-0.0046</td>
<td>9.92</td>
<td>9.87</td>
<td>9.57</td>
<td>9.01</td>
<td>8.29</td>
<td>7.35</td>
<td>7.61</td>
<td>7.97</td>
<td>7.52</td>
<td>7.44</td>
<td>8.59</td>
<td>9.83</td>
</tr>
<tr>
<td>INS</td>
<td>-0.0070</td>
<td>10.81</td>
<td>10.52</td>
<td>10.49</td>
<td>10.13</td>
<td>9.35</td>
<td>9.23</td>
<td>8.91</td>
<td>9.26</td>
<td>9.03</td>
<td>9.68</td>
<td>9.52</td>
<td>10.54</td>
</tr>
<tr>
<td>LOU</td>
<td>-0.0038</td>
<td>9.90</td>
<td>9.80</td>
<td>9.41</td>
<td>8.96</td>
<td>8.52</td>
<td>7.80</td>
<td>7.47</td>
<td>7.28</td>
<td>7.38</td>
<td>7.61</td>
<td>8.24</td>
<td>10.07</td>
</tr>
<tr>
<td>MAE</td>
<td>-0.0037</td>
<td>10.29</td>
<td>9.72</td>
<td>9.80</td>
<td>9.22</td>
<td>8.83</td>
<td>7.99</td>
<td>8.06</td>
<td>7.57</td>
<td>7.56</td>
<td>8.26</td>
<td>8.91</td>
<td>9.30</td>
</tr>
<tr>
<td>MIN</td>
<td>0.0028</td>
<td>8.92</td>
<td>9.11</td>
<td>8.73</td>
<td>8.01</td>
<td>7.31</td>
<td>6.90</td>
<td>7.04</td>
<td>7.11</td>
<td>6.63</td>
<td>5.64</td>
<td>7.46</td>
<td>8.98</td>
</tr>
<tr>
<td>PAM</td>
<td>-0.0169</td>
<td>11.10</td>
<td>10.75</td>
<td>10.48</td>
<td>9.91</td>
<td>9.22</td>
<td>7.68</td>
<td>8.07</td>
<td>8.01</td>
<td>8.79</td>
<td>8.04</td>
<td>8.87</td>
<td>9.54</td>
</tr>
<tr>
<td>POU</td>
<td>-0.0039</td>
<td>10.21</td>
<td>9.88</td>
<td>9.56</td>
<td>9.28</td>
<td>8.94</td>
<td>8.16</td>
<td>8.00</td>
<td>8.01</td>
<td>7.67</td>
<td>8.21</td>
<td>8.17</td>
<td>9.55</td>
</tr>
<tr>
<td>RED</td>
<td>-0.0071</td>
<td>11.01</td>
<td>10.53</td>
<td>10.23</td>
<td>9.69</td>
<td>9.58</td>
<td>8.88</td>
<td>8.33</td>
<td>8.27</td>
<td>8.26</td>
<td>8.76</td>
<td>9.81</td>
<td>10.78</td>
</tr>
<tr>
<td>REQ</td>
<td>0.0062</td>
<td>8.39</td>
<td>8.53</td>
<td>8.06</td>
<td>7.17</td>
<td>6.63</td>
<td>5.96</td>
<td>5.74</td>
<td>5.36</td>
<td>5.49</td>
<td>5.57</td>
<td>6.66</td>
<td>7.93</td>
</tr>
<tr>
<td>SER</td>
<td>-0.0052</td>
<td>10.12</td>
<td>10.00</td>
<td>9.85</td>
<td>9.77</td>
<td>9.12</td>
<td>8.56</td>
<td>8.20</td>
<td>7.87</td>
<td>8.14</td>
<td>8.80</td>
<td>9.44</td>
<td>9.64</td>
</tr>
<tr>
<td>TOM</td>
<td>-0.0068</td>
<td>9.51</td>
<td>9.24</td>
<td>9.26</td>
<td>8.66</td>
<td>8.35</td>
<td>7.80</td>
<td>7.63</td>
<td>7.53</td>
<td>7.63</td>
<td>7.49</td>
<td>8.08</td>
<td>8.48</td>
</tr>
<tr>
<td>VOG</td>
<td>-0.0049</td>
<td>10.84</td>
<td>9.89</td>
<td>9.84</td>
<td>9.48</td>
<td>9.03</td>
<td>8.17</td>
<td>7.73</td>
<td>7.19</td>
<td>7.50</td>
<td>7.90</td>
<td>9.00</td>
<td>9.38</td>
</tr>
<tr>
<td>VOZ</td>
<td>-0.0011</td>
<td>10.91</td>
<td>9.72</td>
<td>9.19</td>
<td>9.41</td>
<td>8.64</td>
<td>7.32</td>
<td>7.32</td>
<td>6.61</td>
<td>5.85</td>
<td>7.72</td>
<td>8.67</td>
<td>9.47</td>
</tr>
</tbody>
</table>

5 Adjustment of the LMESS model to the DO concentration

The LMESS model formulated in (1)-(2) contains a set of unknown parameters that must be estimated from data for each of the 26 times series. These parameters are $\Theta = \{\beta, s_i, \mu, \phi, \sigma^2_e, \sigma^2_\epsilon\}$, with $i = 0, 1, \ldots, 11$ relatively to the twelve months of the year. Parameters estimation of state space models is performed usually by the maximum likelihood estimation. In the mixed-effect state space model fitting context, [20] implemented the EM algorithm assuming the normality of errors, and developing the updating equations for the M-step associated to the fixed effects parameters.

We consider a classical decomposition approach ([5], p. 23) which combines the least square estimation of the fixed-effects parameters with an estimation method focused on state space models. So, in a first step, for each time series it was applied the method of least squares in order to estimate the slope β and the seasonal coefficients s_i, with $i = 0, \ldots, 11$ (corresponding to December, January, ..., November) through the model

$$Y_t = \beta t + \sum_{i=0}^{11} d_{t,i}s_i + \omega_t$$ (4)
where ω_t is the stochastic error, s_i the seasonal coefficients, with $i = 0, \ldots, 11$ and $d_{t,i}$ is a dummy variable defined as,

$$d_{t,i} = \begin{cases} 1 & \text{if } i = t \mod 12 \\ 0 & \text{otherwise.} \end{cases}$$

The estimates of β and s_i, with $i = 0,\ldots, 11$, are obtained through the least squares method and are presented in Table 2. The analysis of the trend estimates will be performed after the global adjustment of the model and in the clustering procedure.

The second step of the modeling procedure adjusts the state space framework to the observations detrended by the regression modeling, $Y_t^* = Y_t - \hat{\beta}t$. However, data set has missing values in all monitoring sites in the period of 137 monthly measurements (see Table 1) which varies between an 11% up to 27% rate of observations. This is a problem to the implementation of the KF algorithm since it is performed based on the one step-ahead predictions. Thus, the linear model obtained in the first step was considered as a baseline model to complete the original database. This methodology is simple and removes the problem of missing values and does not change the data structure. Nevertheless, this procedure implies a more careful reading of the inferential results that may be achieved, especially if the aim is to get accurate forecasts, which is not the case in this work. However, if a more accurate methodology is needed, the Kalman smoother and the EM algorithm can be combined to estimate missing values ([2]).

After this procedure, the parameters $\{\mu, \phi, \sigma^2, \sigma^2_e\}$ of the state space models must be estimated for each site. Usually, in the state space framework the parameters are estimated through the likelihood estimation (ML) performed by the EM algorithm assuming that the disturbances ϵ_t and ε_t are normally distributed. Table 3 presents parameters estimates from ML estimation. However, the analysis of the innovations series, $\hat{\eta}_t = Y_t - (\hat{\beta}t + \hat{s}_t\hat{X}_{t|t-1})$, resulted in the state space models fitting showed that the Gaussian distribution is rejected in several cases (see p-values of both the Kolmogorov-Smirnov and the Shapiro-Wilk tests in Table 3). Thus, other approach was considered in order to avoid distribution assumptions in the errors distributions.

A non-parametric approach was applied taking distribution-free estimators (DF) based on the generalized method of moments (GMM) proposed by [7] for univariate state space models and later generalized to multivariate state space models in [16]. While the ML method assumes the normality of errors, which is not a reasonable assumption in certain environmental variables ([18]), the distribution-free estimators does not have distributions assumptions and, in addition, only depend on the lags between observations. Table 3 presents parameters estimates distribution-free estimators. Note that, in general, the ML method overestimates the autoregressive parameters and underestimates the state equation error variance relatively to the DF estimators ([7]).

Thus, since we are interested in the extraction of structural components (trend and seasonality) we take the mixed-effect state space model with the DF estimates. Indeed, the filtered prediction of the DO concentration can be interpreted as a prediction where several variations besides the structural components are minimized, as the instrumental errors from the devices or human errors (six water monitoring sites are automatic, INS, MIN, LOU, MAI, AGU and TOM). Additionally,
Table 3 Estimates of the state space parameters and p-values of both Kolmogorov-Smirnov (K-S) and Shapiro-Wilk tests to the assumption of Gaussian distribution of innovations in the ML estimation.

<table>
<thead>
<tr>
<th>site</th>
<th>$\hat{\mu}$</th>
<th>$\hat{\sigma}^2$</th>
<th>$\hat{\phi}$</th>
<th>$\hat{\sigma}_t^2$</th>
<th>K-S</th>
<th>S-W</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGA</td>
<td>0.986</td>
<td>0.824</td>
<td>0.430</td>
<td>0.455</td>
<td>0.987</td>
<td>0.330</td>
</tr>
<tr>
<td>AGU</td>
<td>1.002</td>
<td>0.677</td>
<td>0.863</td>
<td>0.273</td>
<td>1.002</td>
<td>0.339</td>
</tr>
<tr>
<td>ALF</td>
<td>0.991</td>
<td>0.719</td>
<td>0.881</td>
<td>0.844</td>
<td>0.990</td>
<td>0.300</td>
</tr>
<tr>
<td>ALO</td>
<td>0.992</td>
<td>0.746</td>
<td>0.922</td>
<td>0.412</td>
<td>1.004</td>
<td>0.559</td>
</tr>
<tr>
<td>ANT</td>
<td>0.992</td>
<td>0.776</td>
<td>0.936</td>
<td>0.855</td>
<td>0.991</td>
<td>0.361</td>
</tr>
<tr>
<td>BUR</td>
<td>0.994</td>
<td>0.532</td>
<td>4.026</td>
<td>0.100</td>
<td>0.994</td>
<td>0.340</td>
</tr>
<tr>
<td>CAN</td>
<td>0.993</td>
<td>0.756</td>
<td>1.330</td>
<td>0.964</td>
<td>0.992</td>
<td>0.299</td>
</tr>
<tr>
<td>CAR</td>
<td>1.001</td>
<td>0.591</td>
<td>2.892</td>
<td>0.455</td>
<td>1.001</td>
<td>0.585</td>
</tr>
<tr>
<td>EST</td>
<td>1.002</td>
<td>0.735</td>
<td>1.376</td>
<td>0.668</td>
<td>1.003</td>
<td>0.446</td>
</tr>
<tr>
<td>FRO</td>
<td>1.001</td>
<td>0.534</td>
<td>2.842</td>
<td>0.171</td>
<td>1.001</td>
<td>0.493</td>
</tr>
<tr>
<td>INS</td>
<td>0.994</td>
<td>0.715</td>
<td>0.836</td>
<td>0.383</td>
<td>0.994</td>
<td>0.328</td>
</tr>
<tr>
<td>LOU</td>
<td>1.007</td>
<td>0.770</td>
<td>0.892</td>
<td>0.348</td>
<td>1.008</td>
<td>0.420</td>
</tr>
<tr>
<td>MAE</td>
<td>1.002</td>
<td>0.697</td>
<td>1.814</td>
<td>0.340</td>
<td>1.003</td>
<td>0.440</td>
</tr>
<tr>
<td>MAI</td>
<td>1.002</td>
<td>0.675</td>
<td>1.694</td>
<td>0.215</td>
<td>1.002</td>
<td>0.609</td>
</tr>
<tr>
<td>MIG</td>
<td>0.992</td>
<td>0.729</td>
<td>1.180</td>
<td>0.823</td>
<td>0.991</td>
<td>0.303</td>
</tr>
<tr>
<td>MIN</td>
<td>1.000</td>
<td>0.805</td>
<td>1.034</td>
<td>0.829</td>
<td>1.002</td>
<td>0.470</td>
</tr>
<tr>
<td>PAM</td>
<td>0.996</td>
<td>0.844</td>
<td>0.888</td>
<td>0.610</td>
<td>0.998</td>
<td>0.344</td>
</tr>
<tr>
<td>PER</td>
<td>0.990</td>
<td>0.629</td>
<td>1.273</td>
<td>0.309</td>
<td>0.990</td>
<td>0.381</td>
</tr>
<tr>
<td>PIN</td>
<td>1.008</td>
<td>0.711</td>
<td>1.997</td>
<td>0.400</td>
<td>1.007</td>
<td>0.371</td>
</tr>
<tr>
<td>POU</td>
<td>0.994</td>
<td>0.800</td>
<td>0.652</td>
<td>0.819</td>
<td>0.992</td>
<td>0.222</td>
</tr>
<tr>
<td>RED</td>
<td>0.997</td>
<td>0.706</td>
<td>0.975</td>
<td>0.316</td>
<td>0.998</td>
<td>0.407</td>
</tr>
<tr>
<td>REQ</td>
<td>1.004</td>
<td>0.823</td>
<td>1.128</td>
<td>0.630</td>
<td>1.008</td>
<td>0.439</td>
</tr>
<tr>
<td>SER</td>
<td>0.997</td>
<td>0.340</td>
<td>7.076</td>
<td>0.001</td>
<td>0.997</td>
<td>0.381</td>
</tr>
<tr>
<td>TOM</td>
<td>1.002</td>
<td>0.797</td>
<td>0.592</td>
<td>0.557</td>
<td>1.002</td>
<td>0.496</td>
</tr>
<tr>
<td>VOG</td>
<td>1.000</td>
<td>0.615</td>
<td>2.442</td>
<td>0.334</td>
<td>1.000</td>
<td>0.353</td>
</tr>
<tr>
<td>VOZ</td>
<td>1.003</td>
<td>0.788</td>
<td>0.539</td>
<td>0.815</td>
<td>1.003</td>
<td>0.155</td>
</tr>
</tbody>
</table>

Dynamic properties inherent in each site allow identifying patterns in order to discriminate the water quality monitoring sites. This discrimination may not be the same based on each component (trend and seasonality). Two procedures are intended to identify patterns in each one of the structural components previously predicted.
A hierarchical agglomerative clustering procedure is adopted since it is the most common approach in discrimination and it is typically illustrated by a dendrogram, which makes the analysis of results more easy. It is considered a hierarchical agglomerative cluster analysis performed by means of Ward’s method. Ward’s method uses a variance approach to evaluate the distances between clusters, in an attempt to minimize the sum of squares of any two clusters that can be formed at each step ([13]). Ward’s minimum variance criterion minimizes the total within-cluster variance. At each step the pair of clusters with minimum between-cluster distance is merged. The initial cluster distances in Ward’s minimum variance method are computed through the squared Euclidean distance.
6.1 Discrimination using the trend component

Figure 3 represents the dendrogram and the agglomeration coefficients of the filtered predictions of the trend component. Different levels were considered to cut the dendrogram and the resulting hierarchical structures were analyzed in the context of the basin. The solution that is considered acceptable and has an interpretation in the basin context indicates four main clusters. This solution is
geographically represented in Fig 4 with the monthly average of the DO concentration considering all the monitoring sites in each group.

On the one hand, this solution is reasonable since the number of clusters is small and follows from the agglomeration schedule (see Fig 3). On the other hand, the total annual precipitation in the region has an unequal distribution (see Fig 5). As is well known, the hydrological conditions and the drainage areas are relevant characteristics which influence the water quality. In this case, greater amount of precipitation leads to a higher levels of DO concentration ([16]).

Considering that the cluster analysis produces homogenous groups of monitoring sites, a linear trend was adjusted to each cluster in order to estimate the global linear trend of each group. Table 4 presents the least squares estimates with the associated empirical 95% confidence intervals of both interceptions and slopes of the global linear trends of each cluster. All clusters are discriminated by the interceptions since all empirical confidence interval are disjuncted. Moreover, this discrimination reflects the different average levels of each clusters. Clusters II, III and IV have statistically significant negative slopes with similar empirical confidence intervals while in the cluster I the slope estimate is not statistically significant, i.e., in this cluster the average level of the DO concentration is constant.

Cluster I has only two monitoring sites: Captação Burgães (BUR) e Captação Rio Insua (INS). This cluster corresponds to the sites with the highest DO concentration levels, i.e., has the best water quality. In the other extreme, cluster IV with the monitoring sites CAN, TOM, PER, REQ, EST, MIN and ANT has the overall
Table 4 Least squares estimates with the empirical 95% confidence intervals of interceptions and slopes of global linear trends of clusters.

<table>
<thead>
<tr>
<th>cluster</th>
<th>intercept estimate</th>
<th>C.I. 95%</th>
<th>slope estimate</th>
<th>C.I. 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>9.850</td>
<td>[9.705, 9.994]</td>
<td>-0.00097</td>
<td>[-0.00279, 0.00085]</td>
</tr>
<tr>
<td>II</td>
<td>9.088</td>
<td>[9.019, 9.158]</td>
<td>-0.00118</td>
<td>[-0.00206, -0.00030]</td>
</tr>
<tr>
<td>III</td>
<td>8.783</td>
<td>[8.698, 8.869]</td>
<td>-0.00113</td>
<td>[-0.00221, -0.00005]</td>
</tr>
<tr>
<td>IV</td>
<td>7.769</td>
<td>[7.680, 7.858]</td>
<td>-0.00114</td>
<td>[-0.00226, -0.00002]</td>
</tr>
</tbody>
</table>

smallest values of the DO concentration. This cluster, which has the worst level of the DO concentration, i.e. the worst water quality in view of the DO, contains a set of monitoring sites located mainly in the industrial areas. In the site of Estarreja (EST) there are several chemical industries, which can justified the poor quality of surface water quality. For instance, the monitoring site of Ponte Minhoteira (MIN) is located to a downstream from two industrial cities (São João da Madeira and Oliveira de Azeméis) where there are a strong manufacture of shoes and associated products. On the other hand, the majority of these sites correspond to locations with a greater population density, thus, with a more intensive human activities. In Ponte Requeixo (REQ) are located the main industrial activities of the city of Aveiro, the capital district. The site that does not have these characteristics is the Ponte Antim (ANT). This monitoring site is located in the municipality of São Pedro do Sul, rural area and with a small population density. However, in this area there is economic activities of poultry and lagomorphs slaughterhouses, which may explain the lower DO concentration levels associated to pollutant discharges into waterways.

Cluster II and cluster III are distinguished by the precipitation amount in the respective drainage areas. Cluster II is located in the central area of the basin located downstream from two relevant areas with high value of precipitation amount while cluster III is located at upstream of the most rainier area, so is not influenced by these high values of precipitation (see Fig. 5). These precipitation patterns are associated to the topography of the region. Indeed, two locations with the highest annual amount of precipitation in the region correspond to northeast of the Serra da Freita mountain and to southeast of the Serra do Caramulo mountain.

6.2 Discrimination using the seasonal component

The discrimination of the water monitoring sites in order to the seasonal component shows that there are less differentiation. Fig. 6 shows the dendrogram and the agglomeration coefficients based on the Ward’s method. It is very clear two main groups: cluster I with the majority of the monitoring sites located in the west and the remain sites in Cluster II concentrated to east (see Fig. 7). The discrimination is evident in Fig. 7 where cluster I presents a seasonal component with a lower amplitude instead of cluster II that has a higher annual range.

If we analyze the solutions with three or more clusters, the differences between clusters are essentially in the summer months. Indeed, even in the solution with two clusters the main differences are in the summer months. In cluster II, the seasonal component has values near of −2 in the summer month instead of −1 in
Fig. 6 Dendrogram (top) and the agglomeration coefficients (bottom) of the extracted seasonality component based on the Ward’s method

cluster I. However, this discrepancy is not so significant in the winter months since the seasonal component varies, approximately, between 1.5 and 2, respectively in clusters I and II.

On the one hand, if we want a parsimony solution, we consider that the solution with two groups is a reasonable discrimination solution mainly if we take into consideration that watershed of Vouga is a small hydrological basin. On the other hand, this solution is consistent with the annual average values of the real evapotranspiration in the region (see Fig. 8).

7 Conclusions

The linear mixed-effect state space approach shows to have versatility in order to incorporate the usual trend and seasonality components of water quality variables. This model combines the most useful properties of both multiple linear regression
and state space models. This versatility accommodates a type of heteroscedasticity which is present in the DO concentration at the same time that it takes into account the time correlation, of first order. The proposed models were fitted through a two-step parameter estimation procedure, which used the least square method combined with the state space parameters estimators. This approach is simple since combines parameters estimation procedures that are usually applied, having no additional complexity. On the other hand, the Kalman filter predictors provided predictions to the structural components as the trend and seasonality, which were used to classify the water monitoring sites. The filtered predictions...
of these components allowed to identify homogeneous groups of monitoring sites relatively to both trend/level and seasonal components. The level discrimination procedure provided four clusters with different levels. These clusters correspond to a four water quality levels in terms of the DO concentration. Mainly, the poor water quality is associated to industrial areas and with higher population densities while the major levels of the DO concentration are verified in the east of the hydrological basin, i.e., in the upstream locations or in areas with high levels of drained precipitation. Besides, the cluster I which has the higher level of DO concentration shows a constant average level whereas the remaining clusters have negative trend. The seasonal component is more related with environmental characteristics, as the real evapotranspiration, and less with human activities. An overall analysis of the models adjustments shows that the water quality has deteriorated in the sense of that the DO concentration has been decreasing slowly.

In addition to a global characterization of the evolution of water quality in the basin, the cluster analysis identified potential redundancies monitoring sites. Homogeneous groups of monitoring sites in terms of the evolution of DO were identified in both trend and seasonal components. The strategy that will be adopted to reduce the number of stations implies a combination between the statistical results and
both environmental and operational technical decisions, which must be
framed in the political decision-making process.

Acknowledgements The authors would like to thank the Associated Editor and the anony-
mous reviewers for their helpful and constructive comments that greatly contributed to im-
proving the final version of the paper. Authors were partially supported by Portuguese funds
through the CIDMA - Center for Research and Development in Mathematics and Applications,
and the Portuguese Foundation for Science and Technology ("FCT– Fundação para a Ciência
e a Tecnologia"), within project UID/MAT/04106/2013.

References
1. Ahmad I, Mohmood I, Coelho JP, Pacheco M, Santos MA, Duarte AC, Pereira E (2012)
Role of non-enzymatic antioxidants on the bivalves’ adaptation to environmental mercury;
Organ-specificities and age effect in Scrobicularia plana inhabiting a contaminated lagoon.
Environ Pollut 163:218-225
with the EM algorithm to patch gaps in daily riverflow series. Hydrol Earth Syst Sc 9:209-224
of aquatic environments in Tarkwa (Ghana) using multivariate statistical analysis. J Environ
Stat 1:1-13
Springer-Verlag, New York
pollution in the Antuã River basin (Northwestern Portugal). Env Monit Assess142:325-335
Monitoring in a Hydrological Basin - Space and Time Approaches. In: Voudouris K and
Voutsas D (ed) Water Quality Monitoring and Assessment, Intech, Croatia, pp 121-142
Conference Proceedings, Rhodes, (in press)
based on a Bayesian interpolation approach in Huai River basin, China. Stoch Environ Res
Chichester
approaches for the study of the temporal coherence of multiple time series. Stoch Environ
Linear Models. Environmetrics 22:933-945
environmental variables modelling via Kalman filtering. Stoch Environ Res Risk Assess
27(5):1021-1038
olution of groundwater composition in an alluvial aquifer (Pisuerga river, Spain) by principal
component analysis. Wat Res 34:807-816