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lente, Professor Auxiliar do Departamento de Engenharia Mecânica da Uni-

versidade de Aveiro, e de Stefanie Reese, Professora Catedrática do Institute
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Palavras-chave Anisotropia plástica; Fenómenos de endurecimento ćıclico; Grandes deformações;

Modelos constitutivos; Algoritmos de integração; Método dos Elementos Finitos

Resumo No presente trabalho, são desenvolvidas formulações constitutivas elastoplásticas

para grandes deformações, adequadas a materiais metálicos avançados. Os prin-

cipais objectivos deste estudo consistem na correcta descrição do comportamento

elastoplástico, incluindo anisotropia plástica acentuada e fenómenos de endureci-

mento ćıclico, no regime de grandes deformações, bem como o desenvolvimento

de procedimentos algoŕıtmicos eficientes para a implementação numérica dos mod-

elos constitutivos em códigos de simulação numérica pelo Método dos Elementos

Finitos. São usadas duas metodologias diferentes na derivação das formulações

constitutivas de grandes deformações, nomeadamente, hipoelasticidade e hipere-

lasticidade.

Por um lado, relativamente ao modelo baseado em hipoelasticidade, é dada particu-

lar atenção ao desenvolvimento de algoritmos eficientes do ponto de vista computa-

cional, considerando técnicas particulares. Por outro lado, em relação ao modelo

baseado em hiperelasticidade, a possibilidade de usar qualquer critério de cedência

(quadrático ou não-quadrático) e a apresentação de um procedimento inovador, que

garante a correcta descrição da anisotropia na presença de grandes deformaçães,

são destacadas. Além disso, as relações constitutivas são expressas unicamente

na configuração de referência, resultando no uso de apenas variáveis simétricas de

segunda ordem. Esta simetria e o uso de um algoritmo que a preserva são cruciais

no que diz respeito à eficiência numérica da implementação do modelo, uma vez

que reduz significativamente o espaço de armazenamento e o custo computacional

de cálculo, relativamente aos modelos hiperelásticos convencionais.

Os modelos, e respectivos algoritmos de integração, são posteriormente alargados

ao uso de múltiplos tensores das tensões inversas de modo a permitir uma melhor

descrição dos fenómenos de endurecimento ćıclico. Para tal, foi considerado um

modelo reológico modificado de endurecimento cinemático e usadas variáveis de

estado adicionais.

O desempenho dos modelos desenvolvidos na reprodução precisa de anisotropia

plástica e fenómenos de endurecimento ćıclico é avaliado através da sua imple-

mentação no código comercial Abaqus usando subrotinas de utilizador. A precisão

e eficiência computacional dos modelos e algoritmos desenvolvidos são compara-

dos entre si através de simulações de benchmarks. Estes benchmarks permitem a

avaliação dos modelos na descrição de, por exemplo, defeitos na conformação de

chapas metálicas, tais como a formação de orelhas e o retorno elástico, bem como

a comparação da estabilidade e precisão dos algoritmos numéricos.





Keywords Plastic anisotropy; Cyclic hardening phenomena; Finite strains; Constitutive mod-

els; Integration algorithms; Finite Element Method

Abstract In the present work, finite strain elastoplastic constitutive formulations suitable

for advanced metallic materials are developed. The main goals are the correct

description of the elastoplastic behaviour, including strong plastic anisotropy and

cyclic hardening phenomena, in the large strain regime, as well as the develop-

ment of numerically efficient algorithmic procedures for numerical implementation

of the constitutive models into codes of numerical simulation by the Finite Element

Method. Two different approaches are used in the derivation of the finite strain

constitutive formulations, namely, hypoelasticity and hyperelasticity.

On the one hand, regarding the hypoelastic-based model, particular attention is

given to the development of computationally efficient forward- and backward-Euler

algorithms considering distinct techniques. On the other hand, concerning the

hyperelastic-based model, the focus is on the possibility of using any (quadratic or

nonquadratic) yield criteria and on a new procedure that ensures that the anisotropy

is correctly described in the finite strain regime. Moreover, the constitutive rela-

tions are solely expressed in the reference configuration, hence yielding symmetric

tensor-valued quantities only. This symmetry, allied to an algorithm that preserves

it, is crucial for the computational efficiency of the model’s implementation since

it reduces the storage effort and the required solver capacities when compared to

the model’s standard counterparts.

For a better description of cyclic hardening phenomena, the developed models

and corresponding algorithms, are extended to include several back stresses. This

extension is carried out by considering a modified rheological model of nonlinear

kinematic hardening and using additional state variables.

The capabilities of the developed models for accurate reproduction of the plastic

anisotropy and cyclic hardening phenomena are assessed by means of their imple-

mentation into material user subroutines of the commercial code Abaqus. The

accuracy and computational efficiency of the models and numerical algorithms are

compared by means of simulations of benchmarks. These benchmarks allow the

models’ assessment in the description of, e.g., metal forming defects such as ear-

ing and springback, as well as the comparison of the stability and precision of the

numerical algorithms.
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Chapter 1

Introduction

1.1 Motivation

The production of metallic components employs procedures that can be classified into four

groups, namely: casting, machining, forming, and consolidating smaller pieces (by, e.g., weld-

ing or powder metallurgy). Metal forming processes make use of the fact that metals can

plastically deform without degradation of their main properties. These processes are usually

subdivided into four categories such as squeezing, bending, shearing, and drawing. Drawing

of sheet materials (metals) is the process of interest in this work, due to its several benefits.

It allows for the production of very diversified industrial items, ranging from simple pots and

pans for cooking, sinks, and containers to complex automotive parts such as panels and gas

tanks, with a fast production rate and, in some cases, very small waste of raw material.

The process consists of stretching a flat metal sheet or plate into the desired three-

dimensional part, with a depth of several times the initial thickness of the initial material.

The sheet is mounted between a die and a punch, then the punch is moved downwards (or

upwards, depending on the relative position of the tools) forcing the material to flow into

the die cavity, and thus shaping the material according to the design of the mating punch-

die set. Usually, in order to prevent the formation of wrinkles in the sheet’s flange during

deformation, the blank is clamped down by a blank holder over the die.

Drawing of sheet metals can be classified as hot or cold drawing. In one hand, hot

drawing is a non-isothermal forming process where forming and quenching take place in the

same forming step. It is usually chosen to produce parts of simple geometry, from relatively

thick metal sheets but with high strength and minimum springback. In hot drawing, the

material usually undergoes considerable thinning as it flows through the tools. On the other

hand, cold drawing is performed at room temperature, using relatively thin metal sheets,

which thickness changes very little comparatively to hot drawing. Although cold drawing

is limited by the lower formability of the materials (relatively to hot drawing) and the final

parts usually undergo considerable springback, it is one of the most important cold-working

operations due to the high variety, in shape and size, of parts that can be produced by this

1
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process, allied to its rapid press cycle times.

When the depth of a stamped part is lesser than its “diameter”, it is generally designated

as shallow drawing. Otherwise, it is termed deep drawing. In deep drawing, thinning is

usually higher, and to achieve the final part’s shape several successive drawing steps with

progressive dies may be required.

The production of metallic parts by deep drawing is usually preceded by several expensive

empirical trial-and-error attempts to design proper tools and stablish adequate features of

the process (e.g., lubrication and blank holder force), in order to produce the parts with the

required performance (e.g., structural stiffness), fulfilling the dimensional tolerances (which,

for example, can be crucial for assembly), and to avoid defects in the final part such as

undesired wrinkling, earing, tearing, thinning, springback, and lack or excess of material.

The constantly increasing demand for faster and more economical manufacturing allied to

the fast development of computational systems, in both hardware and software, has been

stimulating the development and production of new parts consistently assisted by virtual

tools such as Computer Aided Design (CAD) and Computer Aided Manufacturing (CAM).

The numerical simulation of sheet metal forming, mainly based on the Finite Element

Method (FEM), is increasingly being used as a virtual tool in the design of parts of high

complexity and performance, with reasonable accuracy and computation time. It is continu-

ously replacing the traditional, expensive and time-consuming, experimental trial-and-error

tests by cheaper and faster computational trial-and-error tests using numerical simulations

based on FEM. This is not only due to the fact that these computational tests allow the

reduction of costs and time relatively to traditional ones, but also the possibility of produc-

tion of parts with improved quality and performance. Thus, in sheet metal forming industry,

numerical simulation has been extensively employed to shorten the design cycle, to reduce the

preproduction costs in the design of a new product (due to the high cost and time required to

produce metal forming tools), and to assist the design of parts with optimized performance.

The outcome from numerical simulation of sheet metal forming processes is influenced

by several features such as the element technology, the contact model, and the material’s

constitutive model. The latter is crucial, since without a proper constitutive model the final

deformed part’s shape can not be well predicted, the same for possible defects such as ear-

ing, thinning, springback, and tearing. Moreover, during the production of metallic parts by

forming, the material experiences large displacements, rotations, and deformations, implying

the consideration of material models that encompasses these nonlinearities. Several com-

mercial software codes of numerical simulation, based on the Finite Element Method exist

nowadays specifically oriented (or suitable) to sheet metal forming processes. These codes

include, usually, a wide database of constitutive models, but is the user’s responsibility to

select the proper constitutive model to represent the material’s behaviour. When an appro-

priate constitutive model is not available in the software’s database, the user has to develop

and algorithmically implement a proper one, which often represents a lengthy, difficult, and

error-prone task.



1.Introduction 3

The increasing use of advanced materials in industrial applications has stimulated demand

for better constitutive descriptions that enable the accurate modelling of complex plastic

behaviour at finite strains. Generally, these materials, such as aluminium alloys and advanced

high-strength steels, exhibit some inherent planar anisotropy and/or complex cyclic hardening

phenomena.

Sheet metal anisotropy is generally related to the presence of preferred orientations on the

crystal texture, coming from the thermo-mechanical process associated to the production of

metallic sheets (rolling process) and from the plastic deformation during stamping operations.

Nevertheless, the assumption that the deformation-induced anisotropy is small and negligible

comparatively to the initial anisotropy (induced by rolling operations and heat treatment)

is usually adopted. In sheet metal forming processes, anisotropic yielding and flowing are

directly associated to the occurrence of earing and thinning.

After the forming step, the metallic parts undergo elastic recovery and springback when

they are unloaded and removed from the tooling. The springback, which is related to

elastically-driven changes of the part’s shape, is dependent on the internal stress distribution

within the metal blank. Thus, a correct computation of the material’s stress-strain response

is required to correctly predict the amount of springback. In addition, during the unloading

of the part, some material points in the continuum can experience reverse loading. Some

materials exhibit the so-called Bauschinger effect, which describes the reduction of the yield

stress upon reverse loading after the occurrence of plastic deformation during the initial

loading, hence affecting the amount of springback that occurs. This way, a kinematic hard-

ening model, capable of describing the Bauschinger effect, among with other cyclic hardening

phenomena, is required when a good prediction of the springback is desired.

1.2 Objectives

The present work is related to the study, development, and algorithmic implementation of ad-

vanced constitutive models, providing a reliable representation of complex plastic behaviour

of advanced metallic materials. Moreover, aiming for the correct description of these ma-

terials’ behaviour in industrial applications, such as in sheet metal forming, models that

encompass large deformations and rotations are considered.

Preceding the development of any constitutive model, a thorough study of the state-of-

the-art has to be carried out. Here, focus will be given to those models in the literature that

comprise plastic yielding anisotropy, by means of anisotropic yield criteria, and/or cyclic

hardening phenomena. Based on that search, a constitutive model grounded on the infinites-

imal theory is developed. The study, development, and improvement of accurate, efficient,

and robust algorithms for the numerical implementation of the small strain model is also

considered.

The development of constitutive models that account for large deformations and rota-

tions is carried out by following both hypoelastic and hyperelastic approaches. Whereas the
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hypoelastic approach is studied in this work due to its simplicity, efficiency in metallic appli-

cations, and vast incorporation into material databases of commercial FEM codes, a model

based on the hyperelastic approach is developed due to its theoretically sounder background

that, among others advantages, allows its application in a broader range of materials, such

as polymers. Efficient numerical methodologies are considered in the algorithmic implemen-

tation of the developed finite strain constitutive models, which represent different challenges

depending on the approach (hypoelastic- or hyperelastic-based) in question.

The aforementioned models are initially derived following the combined nonlinear hard-

ening law (assumed as standard nowadays), based on the association of nonlinear isotropic

hardening with the nonlinear kinematic hardening law of Armstrong and Frederick (1966).

Aiming at a better description of complex cyclic hardening phenomena displayed by advanced

materials, these models and corresponding algorithmic procedures are adapted, so their kine-

matic hardening law is improved to include several back stress components. Whereas the

employment of such hardening law in the context of hypoelasticity has been presented in sev-

eral works in the literature, its use in the context of hyperelasticity is very rare in published

works. The hyperelastic-based model, considering this hardening law and developed within

this Thesis, follows a different approach from the literature, by representing a continuum

mechanical extension of a modified rheological model of the Armstrong-Frederick kinematic

hardening law.

Also within the objectives of this work is the numerical implementation of the aforemen-

tioned algorithmic procedures into material user subroutines of in-house and commercial codes

of numerical simulation by the FEM. Doing this way, the numerical performance, accuracy,

and robustness of the developed numerical algorithms and corresponding constitutive models

can be assessed and compared by means of both academic and industry-relevant numerical

examples. An exhaustive analysis is carried out by comparing the obtained results with ex-

perimental and numerical data presented in the literature for numerical benchmarks where

plastic anisotropy and/or cyclic hardening phenomena have a strong effect in the deformation

process.

1.3 Reading guide

Besides this chapter, where after a description of this work’s motivation the main objectives

of the Thesis are established, the present text is divided in 7 more chapters, organized as

follows:

Chapter 2 The basal topics of continuum mechanics, which are the foundation for the

material constitutive models developed in Chapters 4 and 5, are presented. Also, it is

briefly indicated the basic fundamentals of thermodynamics on which the FEM and the

studied constitutive models are based;

Chapter 3 The concepts inherent to computational plasticity are presented. Firstly, a brief
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comparison between crystallographic and phenomenological models is given and the

choice of using the phenomenological approach in this work is sustained. Secondly, a

state-of-the-art of isotropic and anisotropic yield functions suitable for metallic mate-

rials is presented. Thirdly, the most common cyclic hardening phenomena are enu-

merated and the state-of-the-art of hardening laws that enable the description of such

behaviours is discussed. Particular attention is given to the classical and modified rhe-

ological models of Armstrong-Frederick kinematic hardening, since they are the bases

to the constitutive models presented in Chapters 4 and 5;

Chapter 4 A small strain elastoplastic model that represents a continuum mechanical ex-

tension of the rheological model of Armstrong-Frederick kinematic hardening to three-

dimensional conditions is developed. For the sake of generality, the derivation of the

model allows the inclusion of any isotropic or anisotropic (quadratic or nonquadratic)

yield function. The algorithmic treatment of the constitutive equations for numerical

implementation into codes of numerical simulation is given. Here, the classical forward-

Euler and backward-Euler approaches are adapted to the present model and enhanced

in order to improve their numerical efficiency;

Chapter 5 Elastoplastic models that account for finite strains and rotations are discussed in

this chapter. Firstly, the state-of-the-art of finite strain hypoelastic- and hyperelastic-

based models is presented.

Secondly, the constitutive model presented is Chapter 4 is extended to finite strains and

rotations in the context of hypoelasticity. Preceding the derivation of the hypoelastic-

based model, the concept of objectivity is addressed. The employment of objective

integration algorithms for hypoelastic-based models is also discussed. An algorithm that

preserves the structure and the inherent simplicity of those for small strain constitutive

models, as discussed in Chapter 4, is adapted to the constitutive model in study.

Thirdly, a hyperelastic-based model, that is suitable for any quadratic or nonquadratic

yield function and based on the rheological model of Armstrong-Frederick kinematic

hardening, is developed. The followed approach express all the constitutive equations

in the reference configuration, resulting on symmetric tensor-valued quantities only.

Overcoming the limitation to quadratic yield criteria displayed by most hyperelastic-

based models in the literature, a new procedure is proposed to ensure that the material’s

anisotropic axes follow the rigid body motions of the material. For numerical implemen-

tation purposes, the algorithmic procedure used to numerically integrate the evolution

equations is presented. A backward-Euler scheme based on the exponential map is

adapted to the presented hyperelastic-based model.

Fourthly, the kinematic hardening law of the hyperelastic-based model is enhanced

by considering a modified rheological model of Armstrong-Frederick kinematic hard-

ening, thus taking into account several back stress components. This is accomplished
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by taking several multiplicative decompositions of the plastic part of the deformation

gradient into account, resulting on multiple strain-like tensor-valued internal variables

that characterize the complex kinematic hardening law. This modification follows a

distinct approach comparatively to the few works present in the literature that encom-

pass this hardening law. At the end, the algorithmic procedure is adapted to consider

the modifications on the constitutive model;

Chapter 6 A procedure used to identify the material’s constitutive parameters employed

by the developed constitutive models is presented. This parameters’ identification pro-

cedure is based on an inverse methodology grounded on an optimization algorithm.

The assessment of the presented procedure is carried out by applying it to a virtual

(fictitious) material. Then, the presented procedure is used to identify the constitutive

parameters of some of the materials used in the numerical simulations of Chapter 7;

Chapter 7 The results obtained from several numerical simulations are presented, by im-

plementing the analysed constitutive models in material user subroutines of a com-

mercial FEM code. Firstly, the correctness of the user subroutines’ implementation is

assessed. Secondly, some fundamental limitations of the hypoelastic- and hyperelastic-

based models are analysed. Thirdly, a comparison of the accuracy and stability of the

integration algorithms related to the hypoelastic-based model is given. Fourthly, the

performance of the presented constitutive models and numerical algorithms is analysed

in industry-relevant benchmarks of sheet metal forming. Finally, the hypoelastic- and

hyperelastic-based formulations are compared by means of a numerical example where

finite elastic strains occur;

Chapter 8 The main conclusions of this Thesis, along with its contribution to the present

literature, are presented. Some perspectives of future developments, giving continuity

to the present work, are also outlined.



Chapter 2

Topics of continuum mechanics and

thermodynamics

In this chapter the fundamental topics of continuum mechanics, which constitute the foun-

dation of the constitutive models developed in Chapters 4 and 5, are presented, namely the

kinematics of continuum bodies as well as strain and stress measures. Furthermore, the ba-

sic concepts of thermodynamics, in which the FEM and the studied constitutive models are

based, are briefly covered in this chapter.

2.1 Kinematics

2.1.1 Body motion and deformation gradient

Let B be a material body which occupies the region Ω and consists of a continuous set of

particles defined by the spatial points P (see Fig. 2.1). Every point P is represented in the

three-dimensional Euclidean space, E3, by means of a vector, x(t) ∈ E3, that is formed by the

point’s coordinates with respect to a global Cartesian basis, ei, with i = 1 . . . 3. The evolution

of each point’s position with time is defined by a smooth one-to-one function designated by

deformation map, ϕ, according to

x = ϕ(X, t), (2.1)

where X represents the point’s position at t0.

This way, ϕ(Ω, t) denotes the region occupied by B at t, which is called current or Eulerian

configuration. The motion of B, given by ϕ, is commonly defined regarding a fixed reference

or Lagrangian configuration. For convenience purposes the reference configuration is usually

chosen to be the one at t0 (undeformed configuration).

The displacement of a material particle between the reference and the current configura-

tions is given by the vector field

u = ϕ(X, t)−X, (2.2)

7
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as represented in Fig. 2.1. The body B may undergo combined stretch and rigid deformations.

Rigid deformations occur when the deformation, in the time interval [t0, t], preserves the

distances between all material particles of B and can be characterized by rigid translation,

rotation, or the combination of both. The time derivative of the point’s position in the current

configuration provides the spatial velocity,

v =
∂x(X, t)

∂t
. (2.3)

reference
configuration

ϕ

x

Ω

X

e3

e2e1

u

t0

t

current
configuration

ϕ(Ω)

P

p

Figure 2.1: Schematic representation of the motion of a continuum body B.

The deformation gradient, F, of the motion ϕ, is a key quantity in finite deformation

analysis and is expressed by

F =
∂x(X, t)

∂X
=
∂ϕ(X, t)

∂X
= I +

∂u(X, t)

∂X
= I +∇u, (2.4)

where Iij = δij is the second-order identity tensor and ∇(•) is the gradient operator with

regard to X. As represented in Fig. 2.2, the deformation gradient is the linear operator that

maps infinitesimal material fibres dX, which connects two neighbouring material particles

X and X + dX, into their counterparts dx at t, i.e.,

dx = FdX. (2.5)

From Equation 2.4 it is trivially concluded that for t = t0 the deformation gradient equals

the second-order identity tensor, i.e., F = I, since the current configuration corresponds to

the reference one. Moreover, the deformation gradient is not able to represent rigid body

translations, because ∂u(X, t)/∂X = 0.

Let A be a second-order tensor-valued quantity defined in the reference configuration. It
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is mapped into the current configuration through the deformation gradient according to

a = FAFT. (2.6)

reference
configuration

current
configuration

F

x

dx

ϕ(Ω)
Ω

X X + dX
dX

x+ dx

Figure 2.2: Schematic representation of the deformation gradient.

2.1.2 Polar decomposition

Considering that the deformation gradient provides information about stretching and rigid

body rotations and such rotations do not affect the shape or size of the body B, the use of

the polar decomposition theorem to F is particularly interesting and follows

F = RU = VR, (2.7)

where the symmetric tensors U and V are the right and left stretch tensors, respectively, and

the orthogonal tensor R is the local rotation tensor, that possesses the properties: R−1 = RT

and det(R) = 1. These decompositions are schematically represented in Fig. 2.3, introducing

two local configurations. They are denoted as local because the “neighbourhood points” do

not “fit together” unless the body is strictly subjected to rigid deformations (Simo and

Hughes, 1998). The relation between the right and left stretch tensors is given by

V = RURT. (2.8)

Since U and V encompass only the stretch part of F, they are very important in the definition

of strain measures (see Section 2.2). Moreover, from U and V the right and left Cauchy-Green

strain tensors, C and B, respectively, are defined by

C = U2 = FTF and B = V2 = FFT, (2.9)

respectively. Considering these expressions, the stretch tensors, U and V, can be obtained

from

U =
√

C and V =
√

B, (2.10)



10 2.Topics of continuum mechanics and thermodynamics

respectively. Through the spectral decomposition, C and B can be represented following

C =
3∑

A=1

λ2
AcA ⊗ cA and B =

3∑
A=1

λ2
AbA ⊗ bA, (2.11)

respectively, where λ2
A are the eigenvalues of C and B, and cA and bA are the correspon-

ding eigenvectors. Introducing Equation 2.8 into these equations, the relation bA = RcA is

obtained. Taking into account the coaxiality of U and C, and V and B, respectively, the

stretch tensors can be attained from

U =
3∑

A=1

λAcA ⊗ cA and V =
3∑

A=1

λAbA ⊗ bA. (2.12)

Due to these relations, λA are also named as principal stretches.

Ω
ϕ(Ω)

reference
configuration

current
configuration

R

R V

U

F

θ

θ

Figure 2.3: Schematic representation of the polar decomposition of the deformation gradient.

2.1.3 Spatial rate of deformation and continuum spin tensor

The spatial velocity gradient, l, is obtained by

l =
∂v

∂x
=

∂

∂t

(
∂x

∂X

)
∂X

∂x
= ḞF−1, (2.13)

where the relations

Ḟ = RU̇ + ṘU and (2.14)

F−1 = (RU)−1 = U−1R−1, (2.15)
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hold. Therefore, it is possible to derive l as

l = ṘRT + RU̇URT. (2.16)

The first term of the right-hand side of this equation is commonly denoted as the rotation rate

tensor (or angular velocity of the material) and physically represents the rate of rigid-body

rotation at a given material point about a predefined axis (Dienes, 1979). As indicated in

Section 5.2.1, this skew-symmetric tensor is used as the spin tensor in the Green-McInnis-

Naghdi objective rate, i.e., ΦGMN = ṘRT.

The spatial velocity gradient can also be additively decomposed into a symmetric, d, and

a skew-symmetric, w, parts, i.e.,

l = d + w, (2.17)

with

d =
1

2
(l + lT) = Rsym(U̇U)RT = R

(
1

2
Ċ

)
RT and (2.18)

w =
1

2
(l− lT) = ṘRT + Rskew(U̇U)RT, (2.19)

where d is the spatial rate of deformation or stretching tensor and w is the continuum spin

or vorticity tensor.

The continuum spin tensor, w, is used as the spin tensor in the corotational objective

rate of Zaremba-Jaumann, i.e., ΦZJ = w (see Section 5.2.1), and physically represents the

rate of rotation of the principal axes of the spatial rate of deformation, d. Moreover, w has

no contribution for straining. When the principal directions of U and U̇ are kept the same,

the tensor U̇U is symmetric, hence the relation w = ṘRT holds, therefore ΦZJ = ΦGMN.

2.1.4 Determinant of the deformation gradient

Here, an infinitesimal volume defined by dA, dB, and dC with the corresponding origins at

point P , at a position X in the reference configuration, is considered (see Fig. 2.4). The

infinitesimal volume is denoted by dv0 and given by

dv0 = (dA× dB) · dC. (2.20)

Applying the deformation map ϕ to the material body, the deformed infinitesimal volume,

dv, is obtained by

dv = (FdA× FdB) · FdC. (2.21)

Hence, the local volume change ratio is determined by

dv

dv0
=

(FdA× FdB) · FdC

(dA× dB) · dC = J, (2.22)
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where J is the determinant of the deformation gradient, i.e., J = detF. The physical meaning

of J implies that it is always non-null since the infinitesimal volume would collapse to a point

if J = 0. Moreover, considering that J = 1 for the reference configuration and J would have

to “pass” by 0 to reach a configuration where it would present a negative value, yields J > 0

regardless to ϕ.

ϕ(Ω)

reference
configuration

current
configuration

F
x
db

dc

da

dv

Ω

X
dB
dC

dA

dv0

Figure 2.4: Schematic representation of the volume change.

2.2 Strain measures

The polar decomposition of the deformation gradient (see Section 2.1.2) has been used to

distinguish pure rigid rotations and pure stretching. The neighbourhood region of P is said

to be unstrained when the distances between the material particles are kept constant (in

pure rigid deformations) or strained if otherwise (when stretching, characterized by U and

V, occurs).

However, it has not been yet defined a measure to quantify straining. Thus, it is required

to introduce a strain measure to rate how much U and V deviate from I. There is not

a unique strain measure to quantify straining, and the definition of strain measure is still

somewhat arbitrary, with its specific choice being prescribed by mathematical and physical

convenience (Souza Neto et al., 2008).

A natural way to quantify straining is by using the right and left Cauchy-Green tensors,

which can be alternatively represented following

C = I +∇u+ (∇u)T + (∇u)T∇u and (2.23)

B = I +∇u+ (∇u)T +∇u(∇u)T, (2.24)

respectively. However, it can be seen that these strain measures are not zero for unstrained

regions.

A family of Lagrangian strain tensors, based on the right stretch tensor, U, has been
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defined by Seth (1962) and Hill (1978), according to

E(m) =


1

m
(Um − I) if m 6= 0

ln(U) if m = 0
(2.25)

where m is a real number. According to the chosen value for the exponent m, some particular

strain measures of this family can be given, such as

Green-Lagrange m = 2,

Biot m = 1,

Henchy or logarithmic m = 0,

Swainger m = −1,

Almansi m = −2, and

No strain m = −∞.

By means of the spectral decomposition (compare with Equation 2.12), the Lagrangian strain

tensors can be rewritten as

E(m) =



3∑
A=1

1

m
(λmA − 1)cA ⊗ cA if m 6= 0

3∑
A=1

ln(λA)cA ⊗ cA if m = 0

(2.26)

The adopted term “Lagrangian” is then justified by its representation based on the La-

grangian triad. When local rigid deformation, i.e., F = R and U = I, is considered, for any

m it yields E(m) = 0.

Analogously to E(m), based on the left stretch tensor, V, the Eulerian counterpart of the

family of Lagrangian strain measures is defined by

ε(m) =


1

m
(Vm − I) =

3∑
A=1

1

m
(λmA − 1)bA ⊗ bA if m 6= 0

ln(V) =

3∑
A=1

ln(λA)bA ⊗ bA if m = 0

(2.27)

Similarly to relation 2.8, the Eulerian and Lagrangian strain tensors are related by

ε(m) = RE(m)RT. (2.28)

An important strain measure used in the hyperelastic-based constitutive model presented

in Chapter 5 is, for instance, the Green-Lagrange strain, which, taking Equation 2.23a into
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account, can be alternatively rewritten as

E(2) =
1

2
[∇u+ (∇u)T + (∇u)T∇u]. (2.29)

2.3 Stress measures

In order to mathematically quantify the forces at the boundary and within a body, the

concept of stress measure is used, dimensions of which being force per unit area. One of the

most used stress measures is the Cauchy stress tensor, denoted as σ. It is a second-order

tensor-valued quantity given by the linear relation of a surface force t that acts across any

surface characterized by a normal vector n in the current (deformed) configuration, per unit

area also defined in the current configuration, according to

t = σn. (2.30)

From the balance of angular momentum results the symmetry of σ, i.e., σ = σT (see Section

2.4.2).

Considering the Cauchy stress tensor, the Kirchhoff stress tensor, τ , which is frequently

used in continuum mechanics, can be defined as

τ = Jσ. (2.31)

Owing to the symmetry of the Cauchy stress, the Kirchhoff stress is also a symmetric tensor.

For incompressible deformations, i.e., J = 1, the Cauchy and Kirchhoff stress tensors provide

the same value. Thus, in metal plasticity, where elastic strains are assumed to be small and

the plastic behaviour is considered incompressible, the approximation σ ≈ τ is commonly

employed.

The first Piola-Kirchhoff (or nominal) stress tensor, P, is obtained from the counterpart

of the surface force t that acts on surfaces defined in the current configuration per unit area

defined in the reference configuration. This stress measure is related to the Cauchy and

Kirchhoff stress tensors following

P = JσF−T = τF−T. (2.32)

In contrast to the tensors σ and τ , the second-order tensor P is generally nonsymmetric.

Finally, the second Piola-Kirchhoff stress tensor, S, is the representation of the Kirchhoff

stress tensor in the reference configuration. It is obtained from the relations

S = JF−1σF−T = F−1τF−T. (2.33)

Due to the symmetry of σ, the second Piola-Kirchhoff stress tensor is also a symmetric tensor.

As for the strain measures, many other stress measures can be defined, such as the Mandel
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stress tensor discussed in Chapter 5.

For all the stress tensors indicated before there is an associated rate of deformation tensor.

The conjugated stress-rate of deformation pairs are obtained considering that they provide

the same power per unit volume of the reference configuration, i.e., they obey the following

stress-power relationships

τ : d = P : Ḟ

= S : Ė(2) =
1

2
S : Ċ.

(2.34)

2.4 Basic fundamentals of thermodynamics

2.4.1 Conservation of mass

This work refers only to processes where the mass of a subdomain Bp of the body B, that

occupies the region Ωp in the reference configuration, is maintained constant during the

deformation, i.e.,

m =

∫
Ωp

ρ0dv0 =

∫
ϕ(Ωp)

ρdv, (2.35)

where ρ0 = dm/dv0 and ρ = dm/dv are the densities of mass of Bp at the reference and

current configurations, respectively. From this consideration, the postulate of conservation

of mass in its local form can be expressed as

ρ̇+ ρdivx(v) = 0, (2.36)

where divx(•) = ∂(•)i/∂xi is the spatial divergence operator. This equation states that the

mass of an isolated domain can not vary due to processes that act inside the system.

2.4.2 Momentum balance

The linear momentum of a subdomain of a body, in the current configuration, can be defined

by

I =

∫
ϕ(Ωp)

ρvdv. (2.37)

When the resultant forces that act on the subdomain are null the subdomain remains in

uniform motion, otherwise the change of linear momentum in time equals the resulting volume

and surface forces, i.e.,

İ =
∂

∂t

∫
ϕ(Ωp)

ρvdv =

∫
ϕ(Ωp)

bdv +

∫
ϕ(∂Ωp)

tda, (2.38)

where ∂Ωp is the space occupied by the boundary of the subdomain Bp and b are the body

forces per unit volume of the deformed body. This relation is known as the linear momentum
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balance and can be rewritten in a local form according to

divxσ + b = ρv̇ in ϕ(Ωp)

t = σn in ϕ(∂Ωp).
(2.39)

On the other hand, the angular momentum of a subdomain Bp, respectively to the coor-

dinate system’s origin, is defined by

D =

∫
ϕ(Ωp)

x× ρvdv. (2.40)

The angular momentum balance states that the rate of the angular momentum equals the

resulting applied moments caused by the volume and surface forces, i.e.,

Ḋ =
∂

∂t

∫
ϕ(Ωp)

x× ρvdv =

∫
ϕ(Ωp)

x× bdv +

∫
ϕ(∂Ωp)

x× tda. (2.41)

The local form of the angular momentum balance states the symmetry of the Cauchy stress

tensor, i.e., σ = σT, and thus also the symmetry of the second Piola-Kirchhoff stress tensor.

2.4.3 First law of thermodynamics

The first law of thermodynamics, also called balance of internal energy, postulates the con-

servation of total energy and is mathematically expressed, in the current configuration, in a

local form, by

ρė = σ : d + ρr − divxq, (2.42)

where e is the specific internal energy per unit mass, r is the heat supply (or heat production)

per unit mass and unit time, and q is the heat flux. Thus, the left-hand side term represents

the rate of the internal energy per unit deformed volume, the second right-hand side term is

the heat supply per unit deformed volume, and divxq is the spatial divergence of the heat

flux. Moreover, the term σ : d is the stress power per unit deformed volume.

2.4.4 Second law of thermodynamics

The entropy of a thermo-mechanical system measures the microscopic randomness and dis-

order and is used to determine the evolution of the thermodynamic process. The entropy

relative to a subdomain of a body, Bp, is given by the specific entropy per unit mass, s. The

rate of the subdomain’s entropy is given by∫
ϕ(Ωp)

ρṡdv =

∫
ϕ(Ωp)

ρr

θ
+ ργsdv −

∫
ϕ(∂Ωp)

1

θ
q · nda, (2.43)

where ρr/θ represents the source of entropy inside the subdomain due to evolution of tem-

perature, γs is the production of entropy per unit mass and unit time and −q · n/θ is the
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supply of entropy due to heat flux through the boundary surface of the subdomain. Here, n

is the normal vector of the area element da.

The second law of thermodynamics states that in thermodynamic processes the production

of entropy is never negative, i.e., ργs ≥ 0. In other words, it establishes the irreversibility of

entropy production. In its local form, this law can be expressed by the inequality

ργs = ρṡ− ρr

θ
+ divx

q

θ
≥ 0. (2.44)

2.4.5 Helmholtz free energy

The Helmholtz free energy per unit mass, ψ̄, results from the additive split of the internal

energy into a part related to the entropy and a part that measures the “available” energy to

produce work, i.e.,

ψ̄ = e− θs. (2.45)

It can be expressed in a generic form as

ψ̄ = ψ̄(ε,Ai,a), (2.46)

where ε is an appropriated strain measure, Ai, with i = 1 . . . N , are tensor-valued internal

variables, and a is a vector given by scalar-valued internal variables and/or constitutive

parameters of the material.

2.4.6 Clausius-Duhem inequality

From the combination of the first and second law of thermodynamics, the fundamental in-

equality

ρṡ− 1

θ
(ρė− σ : d + divxq) + divx

q

θ
≥ 0, (2.47)

is obtained. Considering the definition of the Helmholtz free energy (Equation 2.45) and the

identity

divx
q

θ
=

1

θ
divxq −

1

θ2
q · ∇xθ, (2.48)

the local form of the so-called Clausius-Duhem inequality is obtained, following the expression

−ρ( ˙̄ψ + sθ̇) + σ : d− 1

θ
q · ∇xθ ≥ 0. (2.49)

This work is related to isothermal processes only, i.e., θ̇ = 0 and ∇xθ = 0. Thus, for such

isothermal conditions, the Clausius-Duhem inequality is reduced to the form

−ρ ˙̄ψ + σ : d ≥ 0. (2.50)
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Chapter 3

Computational plasticity

In this chapter, the concepts inherent to computational plasticity are presented. Initially, a

succinct comparison between crystallographic and phenomenological material models is pre-

sented, and the main advantages of phenomenological models over crystallographic ones are

outlined to sustain the choice of considering the former in this work. Then, the fundamentals

of phenomenological models, along with the state-of-the-art of yield functions and hardening

models, are presented. Special attention is given to complex anisotropic yield functions and

to the classical and modified rheological models of Armstrong-Frederick kinematic hardening,

since they are the bases of the constitutive models presented in the following chapters.

3.1 Cristalographic vs. phenomenological models

Several efforts have been made to model experimental anisotropic mechanical behaviours as

accurately as possible, resulting in many micro- and macro-anisotropic models presented in

the literature. The description of the (yield and hardening) anisotropy using FEM usually

employs either crystallographic texture-based models or phenomenological models.

On the one hand, crystallographic models are grounded on the crystallographic structure

of the material and simulate the slip on the crystal’s slip systems to determine the elastic and

plastic deformations as well as the evolution of the material’s properties. Due to the nature

of the crystallographic structure of metallic materials, this type of models are inherently ani-

sotropic. The ability of crystal plasticity models to relate the plastic behaviour of crystalline

materials to their microstructures represents their main advantage and has motivated several

efforts on the development of time-efficient numerical algorithms and constitutive models,

which overcome, e.g., the numerical problems due to the interdependency of slip systems.

Crystal plasticity models have some more advantages such as the use of the crystallographic

texture as an input parameter, thus avoiding the substantial number of mechanical tests re-

quired by some complex phenomenological anisotropic models, or the capability to directly

follow the evolution of the material’s anisotropy through the plastic deformation. Hence,

these models have been used for many purposes such as texture design, calculation of evo-

19



20 3.Computational plasticity

lutionary coefficients of phenomenological yield functions, calculation of damage parameters,

evaluation of forming limit diagrams (FLD), and the simulation of microcrack initiation,

crack propagation, fatigue, creep in small scale plasticity, and fracture criteria, for crystalline

materials.

The simulation of anisotropic metallic materials using crystal plasticity models can be

performed by directly modelling aggregates of grains one-by-one, by associating an aggre-

gate to each integration (Gauss) point, and thus providing the mechanical behaviour of the

macro structure using polycrystal models (e.g., full or relaxed constraint Taylor’s model, self-

consistent approach, and N-point model), or even using homogenization techniques by cou-

pling multiple scales through the use of representative volume elements (RVE), for instance.

Crystal plasticity has been used to successfully simulate sheet metal forming operations, see

e.g., Beaudoin et al. (1994), Nakamachi et al. (2001), Raabe and Roters (2004), Raabe et al.

(2005), Böhlke et al. (2006), Chen et al. (2007), Tikhovskiy et al. (2007), and Van Houtte et al.

(2012). However, despite the significant progress in computational technology and in crystal

plasticity modelling, these approaches still involve much heavier calculations comparatively

to phenomenological models, turning prohibitive the analyses of complex forming operations.

An extensive and comprehensive review of crystal plasticity constitutive modelling in FEM

was published by Roters et al. (2010).

On the other hand, phenomenological models consist of sets of empirical mathematical

relations that describe the experimental macroscopic behaviour of the materials as accurately

as possible. Even though the derivation of some of these mathematical relations are physi-

cally motivated with bases on the crystallographic structure of the materials, the parameters

that characterize a particular material are determined by fitting with experimental data.

In other words, the constitutive parameters related to a particular material are obtained

by their tuning in order to fit the modelled behaviour with data coming from experimen-

tal mechanical tests, rather than from the material’s crystallographic structure. The main

disadvantage of this type of models consists of the high number of experimental tests usu-

ally required to describe the complex anisotropic behaviours of some materials. The yield

anisotropy is modelled by a macroscopic anisotropic yield surface characterized by anisotropy

parameters, whose determination can be quite complex for some yield criteria. Moreover, in

sheet metals the macroscopic characterization of the out-of-the-plane behaviour requires very

complex, unconventional and usually very expensive, experimental mechanical tests. Thus,

for such characterization of the material, crystallographic models are often employed in the

determination of some parameters used in phenomenological models.

Nevertheless, phenomenological models are widely used in both academia and industry in

the simulation of a vast range of material behaviours, such as yield anisotropy, cyclic hard-

ening phenomena, damage, fracture, creep, etc. Their main advantages consist of their time

efficiency and relative simplicity. On the one hand, phenomenological models require fairly

low computational costs, allowing the numerical simulation of industrial complex processes

in the production of real parts. On the other hand, their formulations are usually not very
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complicated from the point of view of an engineer and thus their adaptation and/or improve-

ment are not such complex tasks. Moreover, even though the algorithmic implementation of

phenomenological models represents a challenging, time-consuming, and error-prone task, it

is still simpler then the algorithmic implementation of crystallographic models.

Considering these advantages and comparisons, putting special attention to the goal of

efficiently modelling industry-relevant sheet metal forming processes, the work developed in

this Thesis will only focus on phenomenological models.

3.2 Fundamentals of elastoplastic phenomenological models

In the context of isothermal rate-independent elastoplastic constitutive models, the material’s

behaviour is characterized by two domains, namely the elastic and elastoplastic ones. In the

elastic behaviour domain, where loading and unloading imply no dissipation of energy, the

mechanical response is described by an elastic law, in which the stress is given from an energy

potential as a function of a suitable measure of the elastic deformation. In elastoplastic models

it is assumed that the elastic domain is bounded by a yield criterion. In one-dimensional

situations, as in the uniaxial tensile test, the boundary is typically easily distinguishable and

characterized by the yield stress, σy, and the yield criterion simply states that the elastoplastic

domain is defined by Φ = |σ|−σy = 0. When this criterion is reached, further loading leads to

elastoplastic deformations. The elastoplastic behaviour is characterized by its irreversibility,

due to the dissipation of energy inherent to plasticity. The concepts of elastic domain and

yield criterion are schematically represented in Fig. 3.1a for one-dimensional conditions.

Considering this, three-dimensional phenomenological elastoplastic models are grounded

in three principles, namely:

Yield criterion Its main purpose is to delimit the elastic domain, and expresses mathemat-

ically the so-called yield surface in the three-dimensional stress space, also called as the

Haig-Westergaard space (see Fig. 3.1b, for two-dimensional plane stress conditions).

The state-of-the-art of isotropic and anisotropic yield criteria is presented in Section

3.3. Stress states represented inside this yield surface are in the elastic domain, whereas

the ones represented on the yield surface are in the elastoplastic domain. The region

outside the yield surface represent stress states that have no physical meaning;

Hardening law When the yield surface is reached, if the material is subjected to further

loading it experiences hardening phenomena. This, usually nonlinear, phenomena are

described by a hardening law, which may induce expansion, translation, rotation, or

distortion of the yield surface with ongoing deformation. Detailed information on this

phenomena and the state-of-the-art of hardening laws are presented in Section 3.4;

Plastic flow rule Along with hardening, when the material is subjected to loading after

the yield surface being reached, plastic flow, i.e., evolution of plastic deformation, takes
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place. The normality flow rule, in which it is assumed that the plastic deformations

are normal to a plastic potential of stress, is commonly considered. It encompasses

the associated and nonassociated flow rules, which consider that the plastic and yield

potentials are equal and different, respectively. Based on its plastic incompressibility,

the adoption of the associated flow rule to describe the behaviour of metallic materials

is widely accepted.

elastic domain
(Φ < 0)

(Φ = 0)

unphysical domain
(Φ > 0)

b)

σ1

σ2

σ−σy σy0

elastoplastic domain
(Φ = 0)

a) unphysical domain
(Φ > 0)

unphysical domain
(Φ > 0)

elastic domain
(Φ < 0)

elastoplastic domain

Figure 3.1: Elastic, elastoplastic, and unphysical domains in a) 1D and b) 2D conditions.

3.3 Plastic yielding

As indicated before, plastic yielding occurs when a yield criterion is satisfied. Yield criteria

are commonly expressed in terms of a potential of stress (the so-called yield potential), generic

definition of which is

Φ(σ,Ai,a) = σ̄(σ,Ai,a)− σy(Ai,a), (3.1)

where σ̄ is the effective stress, which is a function of the stress tensor, N tensor-valued internal

variables (Ai, with i = 1 . . . N), and of a vector a given by scalar-valued internal variables

and/or constitutive parameters of the material. The dependence of the effective and yield

stresses on Ai and a enables the description of several features, such as yield anisotropy,

yield surface’s evolution with hardening, yield surface’s dependency on the temperature, etc.

With the definition of yield potential in hands, the yield criterion states that the elasto-

plastic boundary of the elastic domain is defined by the stress states that verify the condition
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Φ(σ,Ai,a) = 0. (3.2)

Thus, the representation, in the Haig-Westergaard space, of the set of all stress states that

verify this condition is the yield surface. The elastic domain is then characterized mathemat-

ically by the set of stress states for which Φ(σ,Ai,a) < 0. The set of all admissible stress

states results from the union of the elastic and elastoplastic domains, i.e., Φ(σ,Ai,a) ≤ 0.

Hence, all stress states that lie outside of the admissible domain, i.e., Φ(σ,Ai,a) > 0, possess

no physical meaning, being achievable only mathematically during the algorithmic procedure

used to numerically integrate the constitutive equations.

The yield surface must be closed, smooth, and convex (exception is made to the yield

criterion of Tresca presented in the following, in which some regions of the surface are flat).

Besides its physical motivation, the convexity of the yield surface is a convenient property in

the numerical implementation, because together with the absence of singular points (again,

exception is made to the yield criterion of Tresca) it ensures a one-to-one relationship between

the stress and strain increments, thus ensuring the stability and convergence of the algorithmic

procedure.

Based on experimental observations, it is widely assumed that hydrostatic pressure does

not cause plastic deformations in metallic materials characterized by low porosity. Thus, the

yield surface of such materials is represented in the Haig-Westergaard space by the lateral

surface of a prism, axis of which is coincident with the diagonal of the space (defined by the

points that satisfy the relation σ1 = σ2 = σ3) (see Fig. 3.2a). Since any surface’s section

normal to this axis is identical, it is convenient to geometrically represent the yield surface

by its projection on the deviatoric plane. This plane is normal to the diagonal of the Haig-

Westergaard space and includes the origin of the coordinate frame, hence being characterized

by the points that verify σ1 + σ2 + σ3 = 0 (see Fig. 3.2b).

upper bound

von Mises

Tresca

σ1 σ2

σ3

σ1

σ2

σ3

von Mises

Tresca

hydrostatic axis

a) b)

Figure 3.2: Geometric representation of von Mises’s and Tresca’s yield surfaces a) in Haig-
Westergaard space and b) their projection on the deviatoric plane.

Anisotropic yielding is modelled by considering an anisotropic yield potential representing

a yield surface that accounts for the variation of the yield stress with the loading direction.

Such yield potentials use effective stress functions in which are included specific material
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parameters that characterize the yield surface’s shape. In constitutive models that consider

the associated flow rule, the anisotropic flow is intrinsically modelled and is directly related

to the yield anisotropy, when an anisotropic yield potential is taken into account. In the

following, the state-of-the-art of isotropic and anisotropic yield criteria is presented.

3.3.1 Isotropic yield functions

A material is assumed isotropic when its properties are independent of the directions consid-

ered. Hence, yield criteria used to describe yield isotropy can be expressed by means of some

kind of stress invariants only. Several different sets of stress invariants can be used, such as

the principal stresses (or eigenvalues of the stress tensor), σi, with i = 1 . . . 3, or the stress

invariants themselves, i.e.,

I1 = tr(σ), (3.3)

I2 =
1

2
tr(σ2) =

1

2
σ : σ, and (3.4)

I3 =
1

3
tr(σ3) = det(σ). (3.5)

In the context of metal plasticity, where plastic deformation is independent on the hydro-

static pressure, isotropic yield criteria can be solely represented using the principal deviatoric

stresses or the second and third invariants (J2 and J3) of the deviatoric stress tensor, given

by

s = σD = P : σ = σ − 1

3
tr(σ)I, (3.6)

where (•)D denotes the deviatoric part of a tensor and the operator Pijkl = δikδjl − 1
3δijδkl

maps second-order tensor-valued quantities into their deviatoric part.

Among the most well-known isotropic yield criteria are the ones considered in the follow-

ing.

Tresca (1864) Based on experimental observations that plastic strains occur by crys-

tallographic slip due to shear stresses, Tresca proposed the oldest yield criterion. It assumes

that the elastic limit is established when the maximum shear stress reaches a critical value.

Thus, this criterion can be mathematically expressed, for general stress conditions, by

Φ = max {|σ1 − σ2| , |σ2 − σ3| , |σ3 − σ1|} − σy. (3.7)

The three-dimensional geometric representation of this yield criterion on the Haig-Westergaard

space and its projection on the deviatoric plane are presented in Fig. 3.2. It is represented by

a hexagonal prism, and due to the presence of singular points (vertices) and flat surfaces its

algorithmic treatment for numerical implementation requires special procedures to account

for these particularities.
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von Mises (1913) This is the most well-known yield criterion and is nowadays the

most used in the description of the plastic behaviour of isotropic materials. The von Mises’s

yield criterion, also denoted as J2 criterion, states that plastic yielding occurs when the elastic

energy of distortion reaches a critical value. It is mathematically expressed by

Φ =
√

3J2 − σy

=

√
1

2
[(σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2] + 3(σ2

12 + σ2
13 + σ2

23)− σy.
(3.8)

Its corresponding yield surface represents a cylinder of radius σy in the Haig-Westergaard

space that encircles the hexagonal prism given by Tresca’s criterion.

Drucker (1949) Considering that the Tresca’s criterion assumes that the intermediate

principal stresses do not affect plastic yielding, whereas in the von Mises’s criterion all prin-

cipal stresses has equal weight on plastic yielding, Drucker (1949) proposed a more versatile

criterion, whose yield surface lies between Tresca’s and von Mises’s surfaces, according to

Φ = J3
2 − cJ2

3 − k2, (3.9)

where c is a material parameter used to weight the effect of all principal stresses (and therefore

to fit the yield surface with experimental data) and k2 = 27(σy/3)6. The constant c is limited

to [−27/8, 2.25] in order to ensure the yield surface’s convexity.

Hershey (1954) A nonquadratic generalization of the von Mises’s criterion was intro-

duced by Hershey (1954), and later used by Hosford (1972), aiming at a more flexible yield

surface, which is expressed by

Φ =

{
1

2
[(σ1 − σ2)a + (σ2 − σ3)a + (σ3 − σ1)a]

} 1
a

− σy, (3.10)

where the exponent a is a material parameter related to its crystallographic structure. This

criterion degenerate to von Mises’s criterion for a = 2 (or a = 4 for plane stress conditions),

whereas it reduces to Tresca’s criterion for a = 1 and in the limit situation a→∞. Moreover,

while for a ∈ ]1, 2[ ∪ ]4,∞[ the corresponding yield surface lies between Tresca’s and von

Mises’s surfaces, when a ∈ ]2, 4[ it lies outside von Mises’s surface. Based on crystal plasticity,

Hosford (1972) suggested that the exponent a should be 6 for BCC materials and 8 for FCC

materials.

Karafillis and Boyce (1993) Considering the existence of a lower bound for any

isotropic yield surface, to which corresponds Tresca’s surface, and an upper bound as rep-

resented in Fig. 3.2b, Karafillis and Boyce (1993) proposed a generalization of Hershey’s
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criterion, following

Φ = [(1− c)σ̄1 − cσ̄2]
1
a − σy, (3.11)

where σ̄1 is given in analogy to Hershey’s criterion and expressed by

σ̄1 =
1

2
(|s1 − s2|a + |s2 − s3|a + |s3 − s1|a) , (3.12)

and σ̄2 is given by

σ̄2 =
3a

2a + 2
(|s1|a + |s2|a + |s3|a) . (3.13)

Here, the exponent a has the same physical meaning as the exponent of Hershey’s criterion

and the weighting coefficient c is a material parameter that is used to fit the shape of the

yield surface with experimental data. While by considering a = 1 both Equations 3.12 and

3.13 reduce to von Mises’s criterion, in the limit a → ∞ Equation 3.12 represents Tresca’s

criterion and Equation 3.13 gives the upper bound of the yield surface (see Fig. 3.2b).

Cazacu and Barlat (2004) The above mentioned criteria assume equal plastic yield

conditions for tension and compression, which is an assumption valid for materials that

deform by slip in the slip systems only, such as materials with cubic structure (BCC and

FCC). However, materials with hexagonal closest packed (HCP) structures deform by slip

and by twinning. Since twinning is a directional shear mechanism, HCP materials, such

as titanium and magnesium alloys, display the so-called strength differential effect, i.e., the

yield stress is different for tension and compression. Usually, twinning is easily activated by

compression and not activated by tension in the sheet’s plane (Cazacu and Barlat, 2004).

The strength differential effect is more pronounced for low levels of plastic deformation,

since the occurrence of twinning ceases as plastic deformation takes place. Yield surfaces

that consider the strength differential effect are nonsymmetric regarding the origin of the

stress space and its projection in the deviatoric plane have a triangular-like shape with

rounded corners. A straightforward approach to describe the strength differential effect by

means of symmetric (isotropic or anisotropic) yield functions consists of using a modified

effective stress, which is composed by the effective stress related to the symmetric yield

function and one additional weighted pressure term, i.e., related to the first invariant of the

stress tensor (see e.g., Spitzig et al. (1975), Stoughton and Yoon (2004), and Lou et al.

(2013)). Considering the plastic incompressibility of most metallic materials and the fact

that the strength differential effect displayed by HCP materials is due to the occurrence

of twinning rather than pressure sensibility, it seems that this approach lacks in terms of

physical interpretation, when HCP materials are considered.

In order to take this effect into account, Cazacu and Barlat (2004) proposed a yield

criterion expressed by

Φ = J
3
2
2 − cJ3 − τ3

y , (3.14)

where τy is the yield stress in pure shear and c is a material parameter that “measures” the
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strength differential effect, the expression of which being obtained from uniaxial tests in the

form

c =
3
√

3(σ3
t − σ3

c )

2(σ3
t + σ3

c )
, (3.15)

where σt and σc are the yield stresses in in-plane uniaxial tensile and compression tests,

respectively. In order to ensure the yield surface’s convexity, this parameter is limited to

[−3
√

3/2, 3
√

3/2]. Moreover, this criterion reduces to von Mises’s criterion for c = 0, i.e., no

strength differential effect is considered.

Extensions of this yield criterion to include the first invariant of the stress tensor into the

expression of the effective stress are found in the works of e.g., Gao et al. (2011) and Yoon

et al. (2014).

Cazacu et al. (2006) Aiming at a more flexible yield criterion that accounts for the

strength differential effect, Cazacu et al. (2006) proposed the so-called CPB06 criterion, of

the form

Φ = (|s1| − ks1)a + (|s2| − ks2)a + (|s3| − ks3)a − σy, (3.16)

where the exponent a is considered to be a positive integer and the material parameter k is

related to the strength differential effect, being given by

k =
1− h
1 + h

, with h =

2a − 2
(
σt
σc

)a(
2σtσc

)a
− 2


1
a

. (3.17)

The yield surface defined by this potential is convex for any a ≥ 1 if k ∈ [−1, 1], to which

corresponds σt/σc ∈ [2(1−a)/a, 2(a−1)/a].

3.3.2 Anisotropic yield functions

Yield anisotropy, i.e., the dependency of the yield stress on the loading direction, is mathe-

matically modelled by yield potentials that are represented by yield surfaces which account

for the variation of the yield stress. When an associated flow rule is considered, the anisotro-

pic (plastic) flow is also modelled by the yield potential, thus a flexible yield potential that

is able to simultaneously describe yield and flow anisotropies is desirable.

Flow anisotropy of sheet materials is commonly characterized by means of the so-called

Lankford r-values. The directional rθ-values are determined by in-plane uniaxial tensile tests

on sheet metals with orientation θ regarding the rolling direction and are defined by

rθ =
ε22

ε33
= − ε22

ε11 + ε22
, (3.18)

where ε11, ε22, and ε33 are the strains in the length, width, and thickness directions, respec-

tively. The rθ-values can be seen as a measure of resistance to thinning. While if rθ > 1 the
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strains in the width direction are dominant, when rθ < 1 the thickness strains are dominant,

which can lead to excessive thinning and failure in the production of parts. Also, differences

in the sheet’s plane of rθ-values are directly related to the formation of earing in the drawing

of cylindrical cups.

The right hand expression of Equation 3.18 is usually the preferential one, due to the

significant differences between the relative errors of the measurement of in-plane and thickness

strains. By convention, the rθ-values are evaluated at 20% of elongation for comparison

purposes (Banabic, 2010). Nevertheless, nowadays the tensile test machines possess systems

for continuous measurement of strain, thus allowing the determination of rθ-value’s evolution

with the plastic deformation.

Using the rθ-values regarding 0◦, 45◦, and 90◦ from the rolling direction (RD), the so-

called normal anisotropy coefficient is obtained by

rn =
r0 + 2r45 + r90

4
. (3.19)

A higher normal anisotropy represents a higher resistance against thinning, which is preferable

for sheet metal forming operations. The variation of the rθ-values in the sheet’s plane is

assessed by the so-called planar anisotropy coefficient, expressed by

∆r =
r0 − 2r45 + r90

2
. (3.20)

A more pronounced earing in the drawing of a cylindrical cup is observed for higher values

of planar anisotropy.

Considering that the experimental yield surfaces are not symmetric in the equi-biaxial

region, the biaxial rb-value has been defined. It can be experimentally determined from either

the disk compression test (Barlat et al., 2005) or the in-plane biaxial tensile test (Pöhlandt

et al., 2002). This measure of anisotropy is determined by the ratio

rb =
ε22

ε11
. (3.21)

Its value is one for isotropy and directly measures the slope of the yield surface at the equi-

biaxial stress state. The rb-value is particularly important for the correct description of the

material’s anisotropy in sheet metal forming processes, because, usually, the stress state to

which several material points are subjected is near the equi-biaxial and plane-strain stress

states.

The analytical expressions used to determine the directional and biaxial r-values directly

from the yield potential are presented in Appendix D. The use of highly anisotropic advanced

materials in the last decades has motivated the development of several anisotropic yield

criteria, the most-relevant of which are presented in the following.
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Hill’s family of anisotropic yield criteria

Hill (1948) - Von Mises proposed the first anisotropic yield criterion for a single crystal.

It was later also used for polycrystals and reduces to the yield criterion proposed by Hill

(1948) in the case of orthotropy. Nowadays, the criterion proposed by Hill (1948) is still the

most well-known and used anisotropic yield criterion to model the behaviour of orthotropic

materials, specially steels, due to its simplicity and user-friendliness. This yield criterion is

given by a quadratic function expressed by

Φ =
√
F (σ22 − σ33)2 +G(σ33 − σ11)2 +H(σ11 − σ22)2 + 2Lσ2

23 + 2Mσ2
13 + 2Nσ2

12 − σy,

(3.22)

where F , G, H, L, M , and N are six material parameters that characterize the material’s

anisotropy. By using tensorial notation, this criterion can be alternatively written as

Φ =
√
σ : A : σ − σy =

√
s : A : s− σy, (3.23)

where the fourth-order tensor A, also denoted as anisotropy tensor, represents the anisotropy

of the material and can be expressed by

A =



G+H −H −G 0 0 0

−H F +H −F 0 0 0

−G −F G+ F 0 0 0

0 0 0 2N 0 0

0 0 0 0 2M 0

0 0 0 0 0 2L


, (3.24)

using Voigt’s notation.

The determination of the six anisotropy parameters can be done by calibration with either

the yield stresses or the r-values. On the one hand, if the correct description of the variation

of the yield stresses is desired, the anisotropy parameters are determined by

F =
1

2

[
−
(

σy

σ(RD)

)2

+

(
σy

σ(TD)

)2

+

(
σy

σ(ND)

)2
]
, (3.25)

G =
1

2

[ (
σy

σ(RD)

)2

−
(

σy

σ(TD)

)2

+

(
σy

σ(ND)

)2
]
, (3.26)

H =
1

2

[ (
σy

σ(RD)

)2

+

(
σy

σ(TD)

)2

−
(

σy

σ(ND)

)2
]
, (3.27)

L =
1

2

(
σy

τ(TD)(ND)

)2

, (3.28)

M =
1

2

(
σy

τ(ND)(RD)

)2

, and (3.29)
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N =
1

2

(
σy

τ(RD)(TD)

)2

, (3.30)

where σ(RD), σ(TD), and σ(ND) are the yield stresses obtained from in-plane uniaxial tensile

tests along RD, TD, and ND1, respectively. Also, τ(TD)(ND), τ(ND)(RD), and τ(RD)(TD) are the

yield stresses in pure shear conditions along the corresponding axes of anisotropy. On the

other hand, for the simulation of sheet metal forming processes the anisotropy parameters are

commonly determined using the rθ-values along 0◦, 45◦, and 90◦ from the rolling direction.

Thus, considering G+H = 1 along with plane stress conditions, three independent anisotropy

parameters have to be determined according to the relations

F =
r0

r90(1 + r0)
, G =

1

1 + r0
, and N =

(r0 + r90)(2r45 + 1)

2r90(1 + r0)
. (3.31)

This anisotropic criterion reduces to von Mises’s criterion when F = G = H = 0.5 and

L = M = N = 1.5.

The low flexibility is the main disadvantage of Hill (1948)’s yield criterion. Only three

parameters are used to describe the planar anisotropy in metal sheets, thus not allowing the

simultaneous accurate description of the yield stress’s and r-value’s evolution in the plane.

Also, Hill (1948)’s criterion can predict only four ears in the drawing of a cylindrical cup,

whereas a higher number of ears can be experimentally observed. Moreover, from the work

of Pearce (1968), it was concluded that this criterion provides a poor description of the

behaviour of some materials with rn < 1 and σb/σ0 > 1, such as aluminium alloys.

Hill (1979) - Considering the drawbacks of Hill (1948)’s yield criterion and based on the

fact that nonquadratic functions are required to describe complex anisotropic behaviours,

Hill (1979) proposed a nonquadratic yield criterion expressed by

Φ = (F |σ22 − σ33|m +G|σ33 − σ11|m +H|σ11 − σ22|m

+A|2σ11 − σ22 − σ33|m +B| − σ11 + 2σ22 − σ33|m

+C| − σ11 − σ22 + 2σ33|m)
1
m − σy,

(3.32)

where A, B, C, F , G, and H are anisotropy parameters and the exponent m must be greater

than one to ensure the yield surface’s convexity.

This criterion is more flexible than Hill (1948)’s criterion, allowing a better description

of experimental yield surfaces. However, because no shear components of the stress tensor

are considered in this yield function, this criterion is limited to conditions where the loading

directions are coincident with the axes of anisotropy. Also, the criterion is not able to

properly describe the anisotropic behaviour of materials having r0/r90 6= 1 and σ0/σ90 6= 1.

Hill proposed four particular forms of his criterion for plane stress conditions. These forms

are based on the assumption of planar isotropy and thus the shear components of the stress

1Where RD, TD, and ND stand for rolling direction, transverse direction, and normal direction, respectively.
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tensor are not required because the axes RD and TD can be arbitrarily oriented in the sheet’s

plane.

If A = B = C = 0 and the exponent m of Equation 3.32 is replaced by the exponent a

of Equation 3.10 (given by the crystallographic structure of the material), the generalization

of the isotropic yield criterion of Equation 3.10 to orthotropy, proposed by Hosford (1979)

independently from Hill, is obtained, i.e.,

Φ = (F |σ11 − σ22|a +G|σ22 − σ33|a +H|σ33 − σ11|a)
1
a − σy. (3.33)

Another disadvantage, due to not considering shear components into account, is the inhibition

of describing planar anisotropy, except for RD and TD. To overcome this limitation, several

extensions of Hill (1979)’s criterion that include shear components in the sheet’s plane have

been proposed such as by Zhou (1990), Montheillet et al. (1991), and Chu (1995).

Hill (1990) - Later, Hill also proposed a yield criterion including shear components in the

sheet’s plane, according to

Φ =

{
1

2

{
|σ11 + σ22|m +

(
σb

τy

)m ∣∣(σ11 − σ22)2 + 4σ2
12

∣∣m2
+
∣∣σ2

11 + σ2
22 + 2σ2

12

∣∣m2 −1
[
−2A

(
σ2

11 − σ2
22

)
+B (σ11 − σ22)2

]}} 1
m

− σb.

(3.34)

The use of σ12 allows the criterion to be expressed in a general coordinate system, i.e., the

anisotropy axes are not necessarily coincident with the directions of the principal stresses,

and the description of the variation of the yield stress and r-value in the sheet’s plane is

possible. Here, A, B, and m are material parameters defined as functions of the sets {σ0,

σ45, σ90, σb, r45}, {σ45, σb, r0, r45, r90}, or {σ45, σb, r45, F , G, H, N} (Hill (1948)’s

anisotropy parameters), whereas σb and τy are the yield stresses in equi-biaxial tension and

pure shear, respectively. In order to allow the description of more mechanical parameters, Lin

and Ding (1996) and Leacock (2006) proposed extensions of Hill (1990)’s criterion. The main

disadvantages of this criterion is its complexity and the limitation to plane stress conditions.

Hill (1993) - In his work, Hill (1993) showed that his previously presented yield criteria

required that if σ0 = σ90, then the condition r0 = r90 is necessarily imposed and the reciprocal.

In order to avoid this restriction and to describe the behaviour of materials in which rn < 1

and σb/σ0 > 1, Hill (1993) proposed the following polynomial yield function,

Φ =

√(
σ11

σ0

)2

− cσ11σ22

σ0σ90
σ11σ22 +

(
σ22

σ90

)2

+

[
(p+ q)− pσ11 + qσ22

σb

]
σ11σ22

σ0σ90
− σy, (3.35)

where c, p, and q are material parameters determined as functions of the set {σ0, σ90, σb, r0,

r90}. The main disadvantages of this yield criterion is its limitation to plane stress conditions

and the absence of shear components of the stress tensor in its formulation. Thus, the
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anisotropy axes are restricted to the directions of the principal stresses and the description

of the evolution of the yield stress and r-value in the sheet’s plane is not possible.

Barlat’s family of anisotropic yield criteria

Barlat and Lian (1989) (Yld89 ) - A generalization of the isotropic yield function of Hershey

(1954) (Equation 3.10) to account with shear components, hence allowing a representation

in a general coordinate frame, was proposed by Barlat and Richmond (1987) for plane stress

conditions. This criterion was later extended by Barlat and Lian (1989) to include the

description of planar anisotropy, according to

Φ =

{
1

2
[(2− c) |K1 +K2|a + (2− c) |K1 −K2|a + c |2K2|a]

} 1
a

− σy, (3.36)

with

K1 =
σ11 + hσ22

2
and K2 =

√(
σ11 − hσ22

2

)2

+ p2σ2
12, (3.37)

where the exponent a has the same physical meaning as the exponent of Hershey’s criterion

(Equation 3.10) and c, h, and p are anisotropy parameters determined by either {r0, r90}
or {σ0, σ90} together with {τy1 , τy2}. Here, τy1 and τy2 are the yield stresses relative to

two different types of shear tests, namely, σ12 = τy1 with σ11 = σ22 = 0 and σ12 = 0 with

σ22 = −σ11 = τy2 . The disadvantages of this criterion include the limitation to plane stress

conditions, the poor description of anisotropy in biaxial stress conditions, and the fact of

not being able to simultaneously describe the variation of the yield stress and r-value in the

sheet’s plane.

Barlat et al. (1991) (Yld91 ) - Based on Hershey’s isotropic criterion, Barlat et al. (1991)

proposed an anisotropic yield criterion for any three-dimensional loading conditions employ-

ing the concept of linear transformations. This concept consists of introducing the anisotropy

feature into an isotropic yield function by replacing the components of the stress tensor, σ,

by the components of a “weighted” stress tensor, s̃, the so-called isotropic plasticity equiv-

alent deviatoric stress tensor. This way, the yield function is isotropic with regard to s̃ but

anisotropic with regard to σ (see Fig. 3.3). The concept of linear transformations is very

attractive because it allows the use of a high number of anisotropic parameters (improving

the description of the anisotropy). Also, due to the linearity of the tensor transformation,

the anisotropic yield function is convex if σ̄ = σ̄(s̃) is convex with respect to its arguments

(Barlat et al., 2005).

The extension of the Hershey’s criterion to orthotropy, proposed by Barlat et al. (1991),

is expressed by

Φ =

[
1

2
(|s̃1 − s̃2|a + |s̃2 − s̃3|a + |s̃3 − s̃1|a)

] 1
a

− σy, (3.38)
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σ1

σ2

s̃1

s̃2

Figure 3.3: Schematic representation of the linear transformation concept.

where the exponent a is given by the crystallographic structure of the material and affects

the yield surface only isotropically. Also, s̃i, with i = 1 . . . 3, are the principal values of the

weighted stress tensor, which is given by the linear transformation

s̃ = L̃ : s = L̃ : P : σ = L : σ. (3.39)

Here, L̃ is the fourth-order tensor that gives the “weights” to the components of the stress

tensor by means of anisotropy parameters. The use of the fourth-order tensor L to perform

the linear transformation was proposed by Karafillis and Boyce (1993) (see Page 39). The

tensor L describes the material’s symmetry and is restricted by

i) Lijkl = Ljikl = Lijlk and Lijkl = Lklij ,

ii) it is invariant with respect to the orthotropy group, and

iii) Lijkk = 0.

The condition Lijkk = 0 ensures that the hydrostatic component of s̃ is always zero, thus

modelling plastic incompressibility. This condition can be dropped to model compressible

materials. By using Voigt’s notation, L can be written as

L =
1

3



c3 + c2 −c3 −c2 0 0 0

−c3 c3 + c1 −c1 0 0 0

−c2 −c1 c2 + c1 0 0 0

0 0 0 3c4 0 0

0 0 0 0 3c5 0

0 0 0 0 0 3c6


, (3.40)

where ci, with i = 1 . . . 6, are the anisotropy parameters that are used to characterize the

material’s anisotropy. In plane stress conditions, such as in sheet metal forming processes, four

anisotropy coefficients are used to describe planar anisotropy and whose determination can

be carried out by numerically solving a set of four nonlinear equations. The four anisotropy

parameters can be used to describe either the yield stresses in uniaxial tension for three

directions in the sheet’s plane and the equi-biaxial yield stress, or the r-values for three
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directions in the sheet’s plane. In the case of isotropy all coefficients are equal to one and

the isotropic criterion of Hershey is recovered. The convexity of Hershey’s criterion for a ≥ 1

ensures the convexity of Yld91 criterion.

The main advantages of this criterion rely on its generality and flexibility. Nevertheless,

for plane stress conditions, its reduced number of anisotropy coefficients does not allow the

simultaneously correct description of the evolution of the yield stress and r-value in the sheet’s

plane.

Barlat et al. (1997a) (Yld94 ) - Motivated by the observation that Yld91 criterion is not

able to describe the experimental behaviour of some materials, specially near pure shear

conditions, Barlat et al. (1997a) proposed an extension to Yld91, expressed by

Φ =

[
1

2
(α1 |s̃2 − s̃3|a + α2 |s̃3 − s̃1|a + α3 |s̃1 − s̃2|a)

] 1
a

− σy, (3.41)

where s̃ is obtained from the linear transformation of Equation 3.39 using the same L as

Yld91 criterion and the parameters αi, with i = 1 . . . 3, are given by the transformation

αi = αxp
2
1i + αyp

2
2i + αzp

2
3i. (3.42)

Here, pji, with j = 1 . . . 3, are the components of the rotation tensor, p, that relates the ani-

sotropic axes with the principal directions of s̃, and αx, αy, and αz are anisotropy parameters.

When αx = αy = αz = 1, then Yld91 is recovered.

For plane stress conditions, this criterion has six independent parameters to describe

planar anisotropy, whose determination is carried out by considering the set {σ0, σ45, σ90,

σb, r0, r90}. The use of only one parameter, c4, to describe both σ45 and r45 does not allow

their simultaneously accurate description (Barlat et al., 1997b). Moreover, the convexity of

the yield surface associated to this criterion has not been mathematically proved, although

the positivity of αx, αy, and αz is a necessary condition (Barlat et al., 1997a).

Barlat et al. (1997b) (Yld96 ) - Bearing in mind that slight variations of the yield surface’s

shape may induce significant variations on rθ and the fact that Yld94 criterion does not allow

the reproduction of the r45 experimental, Barlat et al. (1997b) proposed a criterion given by

Equations 3.41 and 3.42. In this criterion, denoted as Yld96, the parameters αx, αy, and

αz are assumed to be functions of the angles between the principal directions of s̃ and the

anisotropy axes, rather than constants as in Yld94. For plane stress conditions, Yld96 has

seven independent anisotropy parameters, allowing the description of the set {σ0, σ45, σ90,

σb, r0, r45, r90}, to be determined by three uniaxial tensile tests and an equi-biaxial test.

The convexity of this criterion has not been proved for general three-dimensional conditions,

but can be proved numerically, with high probability, for plane stress conditions (Barlat

et al., 1997b). This fact, along with the difficulty related to the analytical calculation of its

derivatives and the high complexity of its implementation in numerical codes of simulation
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(particularly for full 3D stress states) are the main disadvantages of this criterion (Barlat

et al., 2003).

Barlat et al. (2003) (Yld2000-2D) - Considering only plane stress conditions, Barlat et al.

(2003) proposed an anisotropic criterion, denoted as Yld2000-2D, that avoids the disad-

vantages of Yld96 and preserves its flexibility. The criterion, convexity of which has been

analytically proven, uses two linear transformations and is expressed by

Φ =

[
1

2
(σ̄1 + σ̄2)

] 1
a

− σy, (3.43)

where

σ̄1 =
∣∣∣s̃(1)

1 − s̃
(1)
2

∣∣∣a and σ̄2 =
∣∣∣2s̃(2)

2 + s̃
(2)
1

∣∣∣a +
∣∣∣2s̃(2)

1 + s̃
(2)
2

∣∣∣a . (3.44)

Here, the two isotropic plasticity equivalent deviatoric stress tensors, s̃(k), with k = 1, 2,

are obtained by two linear transformations on the deviatoric stress tensor, i.e., s̃(k) = L̃(k) :

s. In the context of plastic incompressibility, the use of the deviatoric stress tensor, s, in

detriment of the stress tensor, σ, avoids the use of the condition L̃
(k)
ijll = 0, because a yield

function expressed in terms of the deviatoric stress tensor ensures the condition of pressure

independency, even though s̃(k) may not be deviatoric. Doing so, the number of independent

anisotropy parameters in L̃(k) is increased from six to nine for general conditions and from four

to seven for the plane stress case (Barlat et al., 2003). The use of two linear transformations

is justified by the fact that in each tensor L̃(k) only one parameter, c
(k)
44 , is available to describe

σ45 and r45. Using Voigt’s notation, for plane stress conditions the fourth-order anisotropic

tensors, L̃(k), are given by

L̃(k) =


L̃

(k)
1111 L̃

(k)
1122 0

L̃
(k)
2211 L̃

(k)
2222 0

0 0 L̃
(k)
1212

 . (3.45)

For convenience, the fourth-order tensors L(k) = L̃(k) : P, used in the transformations s̃(k) =

L(k) : σ, are considered, the components of which are obtained from

L
(1)
1111

L
(1)
1122

L
(1)
2211

L
(1)
2222

L
(1)
1212


=



2/3 0 0

− 1/3 0 0

0 −1/3 0

0 2/3 0

0 0 1



α1

α2

α7

 and (3.46)
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L
(2)
1111

L
(2)
1122

L
(2)
2211

L
(2)
2222

L
(2)
1212


=

1

9



− 2 2 8 −2 0

1 −4 −4 4 0

4 −4 −4 1 0

− 2 8 2 −2 0

0 0 0 0 9





α3

α4

α5

α6

α8


, (3.47)

where αi, with i = 1 . . . 8, are the eight independent anisotropy parameters of this yield

criterion, which reduce to one in the isotropic case. These parameters are determined from

the experimental set {σ0, σ45, σ90, σb, r0, r45, r90}. Considering that only seven parameters

are required to describe the seven experimental data of the set considered, Barlat et al. (2003)

proposed the restriction L
(2)
1122 = L

(2)
2211 or the use of rb to deal with the eighth parameter.

The description of the planar anisotropy, provided by this criterion, is limited to directions

orientated 0◦, 45◦, and 90◦ from the rolling one, which is not enough to properly describe the

anisotropy of some highly anisotropic materials. Another disadvantage lies on the limitation

to plane stress conditions.

Barlat et al. (2005) (Yld2004-18p and Yld2004-13p) - In order to have a better description

of the anisotropy in the sheet’s plane, by means of the use of a higher number of anisotropy

parameters, Barlat et al. (2005) proposed a convex anisotropic criterion for general three-

dimensional conditions, denoted as Yld2004-18p, expressed by

Φ =

1

4

3∑
i=1

3∑
j=1

∣∣∣s̃(1)
i − s̃

(2)
j

∣∣∣a
 1

a

− σy, (3.48)

where a has the same physical meaning as the exponent of Hershey’s criterion. The method-

ology used in the Yld2000-2D to introduce several anisotropy parameters is also used in

this criterion, i.e., two linear transformations on the deviatoric stress tensor are considered

(s̃(k) = L̃(k) : s). Using Voigt’s notation, the fourth-order anisotropic tensors used by this

criterion are expressed by

L̃(k) =



0 −c(k)
12 −c(k)

13 0 0 0

−c(k)
21 0 −c(k)

23 0 0 0

−c(k)
31 −c(k)

32 0 0 0 0

0 0 0 c
(k)
44 0 0

0 0 0 0 c
(k)
55 0

0 0 0 0 0 c
(k)
66


, (3.49)

and made up by eighteen anisotropy parameters to describe anisotropy. Isotropy (Hershey’s

criterion) is recovered when all these parameters are one, while Yld91 criterion is obtained

if only one linear transformation is taken into account, considering only six independent

anisotropy parameters. The relation between the parameters of Equations 3.40 and 3.49 is
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given by

c1
12 = c2

12 =
1

3
(c2 + 2c3) , c1

13 = c2
13 =

1

3

(
2c1

31 + 2c1
12 − c1

23

)
, c1

44 = c2
44 = c4,

c1
23 = c2

23 =
1

3
(c3 + 2c1) , c1

32 = c2
32 =

1

3

(
2c1

23 + 2c1
31 − c1

12

)
, c1

55 = c2
55 = c5,

c1
31 = c2

31 =
1

3
(c1 + 2c2) , c1

21 = c2
21 =

1

3

(
2c1

12 + 2c1
23 − c1

31

)
, c1

66 = c2
66 = c6.

(3.50)

For sheet forming applications, the experimental data used to determine the eighteen aniso-

tropic parameters consists of the yield stresses and r-values from in-plane uniaxial tension

tests along seven directions in the sheet’s plane, e.g., for every 15◦ from RD to TD, the

equi-biaxial yield stress from, e.g., the bulge test, the rb-value from the disk compression

test, and four additional data that characterize the out-of-plane properties (Barlat et al.,

2005). Since out-of-plane experiments are difficult to perform, Barlat et al. (2005) suggested

the use of polycrystal simulations to determine the yield stress for uniaxial tension at 45◦

between RD and ND and between TD and ND and for simple shear in the RD-ND and

TD-ND planes, for instance. If no crystallographic texture is available, it is recommended to

use isotropic values for the out-of-plane properties (Barlat et al., 2005). The determination

of the anisotropy parameters is carried out by numerical minimization of an error function

that compares experimental and predicted data.

The high number of anisotropy parameters allows an excellent description of planar ani-

sotropic behaviours, such as the evolution of the yield stress and r-value in the sheet’s plane.

As a consequence, it enables the prediction of highly anisotropic effects in sheet forming,

e.g., the formation of six or more ears in the cylindrical cup forming benchmark (Yoon et al.,

2006). Its main disadvantage, however, lies on the high number of experimental tests needed

to determine all the anisotropy parameters. Therefore, when the number of experimental

data available is limited, the authors (Barlat et al., 2005) have proposed another yield cri-

terion, denoted as Yld2004-13p, considering only thirteen anisotropy parameters for general

three-dimensional conditions (nine for plane stress conditions), expressed by

Φ =

{
1

2

[ ∣∣∣s̃(1)
1 − s̃

(1)
2

∣∣∣a +
∣∣∣s̃(1)

2 − s̃
(1)
3

∣∣∣a +
∣∣∣s̃(1)

3 − s̃
(1)
1

∣∣∣a
−
(∣∣∣s̃(1)

1

∣∣∣a +
∣∣∣s̃(1)

2

∣∣∣a +
∣∣∣s̃(1)

3

∣∣∣a)+
∣∣∣s̃(2)

1

∣∣∣a +
∣∣∣s̃(2)

2

∣∣∣a +
∣∣∣s̃(2)

3

∣∣∣a]} 1
a

− σy.

(3.51)

This criterion is convex for sufficiently high values of a (larger than about 1.7). The two

fourth-order anisotropic tensors are dependent on only thirteen parameters, according to

Equations 3.52 and 3.53. Due to the lower number of anisotropy parameters, Yld2004-13p is

not able to predict planar anisotropy as accurately as Yld2004-18p. However, it requires less

experimental data, the minimization of the corresponding error function used to determine

the anisotropy parameters is faster, and the anisotropy’s description provided is at the level
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of accuracy to that obtained with Yld2000-2D (Barlat et al., 2005).

L̃(1) =



0 −1 −c1
13 0 0 0

−c1
21 0 −c1

23 0 0 0

−1 −1 0 0 0 0

0 0 0 c1
44 0 0

0 0 0 0 c1
55 0

0 0 0 0 0 c1
66


(3.52)

L̃(2) =



0 −c2
12 −c2

13 0 0 0

−c2
21 0 −c2

23 0 0 0

−1 −1 0 0 0 0

0 0 0 c2
44 0 0

0 0 0 0 c2
55 0

0 0 0 0 0 c2
66


(3.53)

Later, an extension of Yld2004-18p accounting for 27 parameters and denoted as Yld2004-

27p, has been proposed by Aretz et al. (2010). The use of 27 anisotropy parameters was

attained by considering three linear transformations, using three fourth-order anisotropic

tensors of the type of Equation 3.49. Aretz et al. (2010) determined the additional anisotropy

parameters by also considering the yield stress from plane-strain tensile tests in 0◦, 45◦, and

90◦ from RD.

Aretz and Barlat (2013) (Yld2011-18p and Yld2011-27p) - Recently, a new yield criterion

with a formulation similar to Yld2004-18p, denoted as Yld2011-18p, has been proposed by

Aretz and Barlat (2013). Its yield potential is expressed by

Φ =

1

ξ

3∑
i=1

3∑
j=1

∣∣∣s̃(1)
i + s̃

(2)
j

∣∣∣m
 1

m

− σy, (3.54)

where the exponent m does not have the physical meaning of Hershey’s exponent (also con-

sidered in, e.g., Yld2004-18p) and the scalar ξ is derived from uniaxial or equi-biaxial tension

in the isotropic case and can be determined from ξ = (4/3)m + 4(2/3)m + 4(1/3)m. Despite

the similarities between Yld2004-18p and Yld2011-18p, the authors (Aretz and Barlat, 2013)

argue that these yield functions can be regarded as complementary.

An extension of Yld2011-18p has been also proposed by considering an additional linear

transformation. This criterion, denoted as Yld2011-27p, is expressed by

Φ =

1

ξ

 3∑
i=1

3∑
j=1

∣∣∣s̃(1)
i + s̃

(2)
j

∣∣∣m +
3∑
i=1

∣∣∣s̃(3)
i

∣∣∣m
 1

m

− σy, (3.55)

where the scalar ξ reads ξ = (4/3)m + 5(2/3)m + 6(1/3)m. As for the Yld2004-27p, to deter-
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mine the additional anisotropy parameters the yield stress in plane-strain tensile tests along

three directions in the sheet’s plane have been considered in the parameter’s identification

procedure. Both Yld2011-18p and Yld2011-27p are convex for m ≥ 1 and use fourth-order

anisotropic tensors expressed by Equation 3.49. Despite the high flexibility of the criteria

with 27 anisotropy parameters, the high amount of experimental data required to determine

these parameters is still an obstacle to their use in industrial applications.

Karafillis and Boyce (1993) Independently from Barlat et al. (1991), Karafillis and

Boyce (1993) developed the concept of linear transformations to introduce anisotropy into

isotropic yield criteria. They were the first ones to represent the concept of linear transforma-

tions by means of tensorial multiplications (see Equation 3.39). Karafillis and Boyce (1993)

used this concept to introduce anisotropy into their isotropic criterion (see Page 25). This

way, the anisotropic criterion is given by the potential of Equation 3.11, considering that σ̄1

and σ̄2 are rewritten by

σ̄1 =
1

2
(|s̃1 − s̃2|a + |s̃2 − s̃3|a + |s̃3 − s̃1|a) and (3.56)

σ̄2 =
3a

2a + 2
(|s̃1|a + |s̃2|a + |s̃3|a) , (3.57)

where the isotropic plasticity equivalent deviatoric stress tensor, s̃, is obtained from Equations

3.39 and 3.40. Comparatively to Yld91, the anisotropic criterion proposed by Karafillis and

Boyce (1993) uses the same number of anisotropy parameters and thus presents the same

level of accuracy regarding the anisotropy’s description. However, the use of the isotropic

parameter c (and thus σ̄2) increases its flexibility.

Bron and Besson (2003) An extension of Karafillis and Boyce (1993)’s criterion has

been proposed by Bron and Besson (2003). In order to take more isotropy parameters into

account, the yield function of Equation 3.11 was rewritten to account for the sum of multiple

isotropic effective stress components. In their work, it was considered only two effective stress

components, following

Φ =
[
(1− c)

(
σ̄

1/b1

1

)a
− c

(
σ̄

1/b2

2

)a] 1
a − σy, (3.58)

where c, a, b1, and b2 are isotropy parameters that only affect the yield surface’s shape

isotropically. Comparatively to Karafillis and Boyce (1993), a higher number of anisotropy

parameters is considered by using two linear transformations, thus rewriting Equations 3.56

and 3.57 in the form

σ̄1 =
1

2

(∣∣∣s̃(1)
1 − s̃

(1)
2

∣∣∣b1 +
∣∣∣s̃(1)

2 − s̃
(1)
3

∣∣∣b1 +
∣∣∣s̃(1)

3 − s̃
(1)
1

∣∣∣b1) and (3.59)

σ̄2 =
3b

2

2b2 + 2

(∣∣∣s̃(2)
1

∣∣∣b2 +
∣∣∣s̃(2)

2

∣∣∣b2 +
∣∣∣s̃(2)

3

∣∣∣b2) , (3.60)



40 3.Computational plasticity

where s̃(k), with k = 1, 2, are obtained from linear transformations on the stress tensor. Two

fourth-order anisotropic tensors with the structure of L (as in Equation 3.40) are considered,

thus allowing the use of twelve parameters to describe the anisotropy (eight for plane stress

conditions). The convexity of this yield criterion has mathematically been proven and its

main advantage relies on its flexibility due to the four isotropy parameters. Karafillis and

Boyce (1993)’s criterion is retained if a = b1 = b2 and s̃(1) = s̃(2) and, additionally, Yld91

criterion is obtained if c = 0 is further imposed. Nevertheless, the eight anisotropy parameters

are not enough to provide an accurate description of the planar anisotropy of some materials

used in sheet forming applications.

Banabic-Balan-Comsa’s family of anisotropic yield criteria

Banabic et al. (2000) (BBC2000 ) - Based on the anisotropic yield criterion of Barlat

and Lian (1989), a new family of yield criteria have been developed since 2000. The first

criterion of this family was proposed by Banabic et al. (2000), being denoted as BBC2000

and expressed by

Φ =

{
1

2

[
a (bK1 + cK2)2k + a (bK1 − cK2)2k + (1− a) (2cK2)2k

]} 1
2k

− σy, (3.61)

where the exponent k is related to the material’s crystallographic structure. The convexity

of this criterion is ensured for a ∈ [0, 1] and positive integer values of k. Here, K1 and K2

are functions of the second and third invariants of s̃ = L : σ and can be represented by

K1 = Mσ11 +Nσ22 and K2 =

√
(Pσ11 +Qσ22)2 +Rσ2

12, (3.62)

where M , N , P , Q, and R are functions of four independent coefficients of L. Apart from

the exponent k, this criterion uses seven independent anisotropy parameters determined from

the experimental set {σ0, σ45, σ90, σb, r0, r45, r90}.

In order to introduce one anisotropy parameter, and thus to allow the description of rb,

an extension of the BBC2000 was proposed by Paraianu et al. (2003) (BBC2002 ). The

flexibility of BBC2002 was improved by Banabic et al. (2005) (BBC2003 ), preserving the

number of anisotropy parameters. Later, a modification on these criteria was proposed by

Banabic et al. (2008) (BBC2005 ).

Comsa and Banabic (2008) (BBC2008 ) - The last version of BBC ’s criteria, denoted by

BBC2008, was proposed by Comsa and Banabic (2008), being expressed by

Φ =

{
(w − 1)

n∑
k=1

{
wi−1

[(
L(i) +M (i)

)2k
+
(
L(i) −M (i)

)2k
]

+

wn−i
[(
L(i) +N (i)

)2k
+
(
L(i) −N (i)

)2k
]}} 1

2k

− σy,

(3.63)
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with

L(i) = l
(i)
1 σ11 + l

(i)
2 σ22, (3.64)

M (i) =

√(
m

(i)
1 σ11 −m(i)

2 σ22

)2
+
[
m

(i)
3 (σ12 + σ21)

]2
, and (3.65)

N (i) =

√(
n

(i)
1 σ11 − n(i)

2 σ22

)2
+
[
n

(i)
3 (σ12 + σ21)

]2
, (3.66)

where w = (3/2)(1/n) > 1 and l
(i)
1 , l

(i)
2 , m

(i)
1 , m

(i)
2 , m

(i)
3 , n

(i)
1 , n

(i)
2 , and n

(i)
3 , with i = 1 . . . n, are

anisotropy parameters. When all these parameters are equal to 1/2, the isotropic criterion of

Barlat and Richmond (1987) is recovered. This criterion is convex for integer positive values

of k. In Comsa and Banabic (2008), n = 2 is used and the determination of the sixteen

anisotropy parameters for a 2090-T3 aluminium alloy was carried out considering the yield

stress and rθ-value from in-plane uniaxial tensile tests for every 15◦ from RD to TD, the

equi-biaxial yield stress, and the rb-value.

The main advantage of this criterion is its flexibility, due to the high amount of anisotropy

parameters that can be used, which allows the prediction of severe planar anisotropy, e.g.,

the formation of twelve ears in the cylindrical cup forming (Vrh et al., 2014). However, the

high number of anisotropy parameters demands the use of several experimental data to carry

out their determination. As main disadvantages of the BBC ’s criteria, one can mention that

their formulation is not user-friendly, besides being limited to plane stress conditions.

Cazacu and Barlat (2001) An alternative approach to introduce the description of

anisotropy into isotropic criteria has been proposed by Cazacu and Barlat (2001). It consists

of developing generalizations of the invariants of the deviatoric stress and using them directly

in the isotropic criterion. In Cazacu and Barlat (2001) the proposed generalizations of J2

and J3 are expressed by

J0
2 =a1 (σ11 − σ22)2 /6 + a2 (σ22 − σ33)2 /6 + a3 (σ11 − σ33)2 /6

+ a4σ
2
12 + a5σ

2
13 + a6σ

2
23 and

(3.67)

J0
3 = (b1 + b2)σ3

11/27 + (b3 + b4)σ3
22/27 + [2 (b1 + b4)− b2 − b3]σ3

33/27

− (b1σ22 + b2σ33)σ2
11/9− (b3σ33 + b4σ11)σ2

22/9

− [(b1 − b2 + b4)σ11 + (b1 − b3 + b4)σ22]σ2
33/9 + 2 (b1 + b4)σ11σ22σ33/9

− [2b9σ22 − b8σ33 − (2b9 − b8)σ11]σ2
13/3

− [2b10σ33 − b5σ22 − (2b10 − b5)σ11]σ2
12/3

− [(b6 + b7)σ11 − b6σ22 − b7σ33]σ2
23/3 + 2b11σ12σ13σ23,

(3.68)

respectively. Here, ai, with i = 1 . . . 6, and bi, with i = 1 . . . 11, are the anisotropy parameters,

which reduce to one in isotropy. Cazacu and Barlat (2001) used this approach to introduce
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anisotropy into Drucker’s criterion (Equation 3.9), i.e.,

Φ =
(
J0

2

)3 − c (J0
3

)2 − k2. (3.69)

This criterion has eighteen anisotropy parameters for three-dimensional conditions, which are

reduced to eleven for plane stress conditions. For sheet metal forming applications, the eleven

parameters are determined using the uniaxial yield stress and rθ-value in five directions from

RD to TD and the equi-biaxial yield stress. As for Drucker’s criterion, this criterion is convex

if c ∈ [−27/8, 2.25].

Cazacu and Barlat (2001) also considered the use of one linear transformation, using

Equations 3.39 and 3.40, to introduce anisotropy into Drucker’s criterion. However, such

an extension used only five anisotropy coefficients in plane stress conditions, not allowing

the same accuracy as Equation 3.69. The main advantages of the criterion expressed by

Equation 3.69 are its simple and user-friendly formulation and the high number of anisotropy

parameters employed.

Cazacu and Barlat (2004) Early works on the simultaneous description of strength

differential effect and anisotropy include, e.g., the extensions of Hill (1948) criterion proposed

by Hosford (1966) and Liu et al. (1997) to include the strength differential effect. However,

the low flexibility of these criteria does not allow an accurate description of the behaviour of

some materials such as magnesium alloys (Cazacu and Barlat, 2004). Having this in mind,

Cazacu and Barlat (2004) proposed an extension of their own isotropic criterion, that accounts

for the strength differential effect (see Page 26), to orthotropy using the approach proposed

in Cazacu and Barlat (2001). Their anisotropic criterion consists of simply replacing J2 and

J3 of Equation 3.14 by J0
2 and J0

3 given by Equations 3.67 and 3.68. This way, while c is

used to describe the strength differential effect, the seventeen anisotropy parameters, ai and

bi (ten for plane stress conditions), provide the anisotropy’s description.

Another extensions of the isotropic criterion of Cazacu and Barlat (2004) to orthotropy

have been recently proposed by Nixon et al. (2010) and Yoon et al. (2014) considering one

and two linear transformations, respectively. In these works, the anisotropic tensors are

expressed by Equation 3.40 and thus only four and eight anisotropy parameters in plane

stress conditions are taken into account, respectively.

Cazacu et al. (2006) (CPB06) - Aiming at a more flexible anisotropic yield criterion

able to describe the strength differential effect, Cazacu et al. (2006) proposed an extension

of their own isotropic criterion (see Page 27) to orthotropy by means of the concept of linear

transformations. Thus, their anisotropic criterion, denoted as CPB06, is expressed by

Φ = (|s̃1| − ks̃1)a + (|s̃2| − ks̃2)a + (|s̃3| − ks̃3)a − σy, (3.70)

where s̃ is obtained from a linear transformation on the deviatoric stress tensor, using a
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fourth-order anisotropy tensor defined by nine independent anisotropy parameters for three-

dimensional conditions (seven for plane stress conditions). The main advantage of this crite-

rion relies on its flexibility. It is worth noting that it uses a yield function with the degree of

homogeneity a, whereas Cazacu and Barlat (2004)’s criterion is limited to a third-order ex-

pression. In order to have a better description of anisotropy, Plunkett et al. (2008) proposed

an extension of the CPB06 criterion, considering two linear transformations on the deviatoric

stress tensor. This criterion, denoted as CPB06ex2, includes two parameters to describe the

strength differential effect and eighteen anisotropy parameters for three-dimensional condi-

tions (fourteen for plane stress conditions). Plunkett et al. (2008) also analysed the use of

three (CPB06ex3 ) and four (CPB06ex4 ) linear transformations in the description of the pla-

nar anisotropy of a 2090-T3 aluminium alloy. As expected, the higher the number of linear

transformations used, the better is the anisotropy’s description obtained, however at the cost

of a high amount of experimental data, the availability of which may not exist (or be easy to

obtain) for some materials.

Polynomial yield criteria Seeking for simpler formulations, making easy the corres-

ponding numerical implementation, several polynomial yield functions have been proposed

(see e.g., Gotoh (1977), Hu (2007), Soare et al. (2008), and Yoshida et al. (2013)). The use of

polynomial functions are appealing due to the simple calculation of the corresponding deriva-

tives. The recently proposed polynomial yield criteria, such as by Soare et al. (2008) and

Yoshida et al. (2013), ally the simplicity of the polynomial character with high flexibility,

by taking a considerable number of anisotropy parameters into account, hence being very

attractive for numerical simulations of real processes. As an example, Soare et al. (2008)

proposed a polynomial yield function of eighth order that uses 25 parameters to describe

the anisotropy in plane stress conditions, allowing, e.g., the prediction of eight ears in the

forming of a cylindrical cup. In the work of Soare and Barlat (2010) it is shown that some

of the recently proposed anisotropic yield criteria based on the concept of linear transforma-

tions can be expressed by means of homogeneous polynomial functions, therefore enabling a

considerable simplification of their numerical implementation in finite element codes.

Vegter yield criteria Vegter et al. (1995) and Vegter and van den Boogaard (2006)

have proposed a criterion in which the yield locus is directly built from experimental data by

applying Bézier interpolations. For isotropy, four mechanical tests are required to characterize

the yield locus, namely a unixial, an equi-biaxial, a plane strain, and a pure shear test.

To characterize the yield locus for planar anisotropy this set of tests, except the equi-

biaxial test, must be carried out for several directions. If three directions are used (e.g., 0◦,

45◦, and 90◦ from RD), the yield function requires seventeen independent parameters, namely

yield stresses and r-values. Even though a high number of anisotropy parameters is consid-

ered, their determination is straightforward and does not require the solving of a nonlinear

set of equations. The main disadvantages of this criterion rely on the not straightforward
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formulation of the yield function, the use of several mechanical tests (including plane strain

and pure shear tests), and the limitation to plane stress conditions.

It was shown by Ziegler (1977) that a surface represented in the dual space of strain rates

could be related to any yield surface represented in the stress space. Having in mind that

strain rate potential formulations are more convenient than stress potential formulations (as

the ones indicated before) for implementation into specific finite element analysis and design

codes, several strain rate anisotropic potentials have been proposed in the last decades (see

e.g., Barlat and Chung (1993, 2005), Barlat et al. (2003), Kim et al. (2007), Rabahallah

et al. (2009), and Cazacu et al. (2010)). The strain rate potential conjugated to a particular

stress potential is determined from the principle of plastic work equivalence. However, this

procedure is only carried out for classical quadratic potentials, since the determination of

exact duals of nonquadratic stress potentials is a very challenging, perhaps sometimes im-

possible, task. Nevertheless, some analytical orthotropic strain rate potentials numerically

conjugated (“pseudo-conjugated”) to nonquadratic stress potentials have been proposed, e.g.,

in the works of Kim et al. (2007) and Cazacu et al. (2010).

Usually the assumption of associative flow rule is taken into account, in which the yield

and plastic potentials are identical. Nevertheless, and seeking for a higher general character,

some researchers have also adopted the nonassociated flow rule in metal plasticity (Stoughton,

2002, Stoughton and Yoon, 2004, Arghavani et al., 2011, Gao et al., 2011, Taherizadeh et al.,

2010, 2011). This type of flow rule is usually adopted to describe the behaviour of materials

whose plastic behaviour is pressure-dependent, since the plastic flow is not orthogonal to

the yield surface. However, since the pressure dependency of the plastic behaviour of most

metallic materials is negligible, the use of such models in simulations of sheet metal forming

is motivated by the increase of the anisotropy parameters’s number. In other words, these

constitutive models make use of two different potentials to define the plastic yield anisotropy

and the plastic flow. Thus, the number of anisotropy coefficients is higher than in associative

models, at the expenses of also requiring a higher amount of experimental data.

3.4 Hardening

A material point experiences hardening phenomena when it reaches the limit of the elastic

region and evolution of plastic strain takes place by imposition of further loading. Since

hardening is the result of dislocation microstructure and its evolution along the imposed strain

path, the experimentally observed abnormal hardening phenomena are always dependent on

the material itself and on the loading history.

In proportional uniaxial loading, hardening is characterized by a continuous decrease

of the material’s stiffness (comparatively to the elastic stiffness) as deformation takes place,

exceptions are made for linear hardening and perfect plasticity. Abnormal hardening phenom-

ena are commonly observed for cyclic loading conditions (cyclic hardening phenomena) or for
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abrupt changes of the loading direction (e.g., latent hardening for cross-loading conditions).

Among the most observed cyclic hardening phenomena are (see Fig. 3.4) the Bauschinger

effect (reduction of the yield stress upon reverse loading after the occurrence of plastic defor-

mation during the initial loading), the transient behaviour (smooth elasto-plastic transition

characterized by a fast change of work-hardening rate, which occurs when the Bauschinger

effect is present), the work-hardening stagnation (transient behaviour in which a plateau in

the stress-strain relation is observed), the permanent softening (lower levels of stress after the

transient period when compared to monotonic loading at a given accumulated plastic strain),

and the ratcheting (cyclic accumulation of plastic strain during cyclic loading with nonzero

mean stress). The correct description of these phenomena is crucial for an accurate prediction

of defects in parts produced by metal forming processes, e.g., the Bauschinger effect and the

permanent softening affect directly the springback (Wagoner et al., 2013).

ε

σ

2σy0

σy0

Re-yielding for pure kinematic hardening

Re-yielding (Bauschinger effect)

Stress-strain curve for pure isotropic hardening

Transient behaviour

σy

−σy

Work-hardening stagnation

Permanent softening

Figure 3.4: Influence of some of the cyclic hardening phenomena on the stress-strain relation
during uniaxial tension-compression test.

In the context of phenomenological computational plasticity, hardening is characterized

by the evolution of the elastic region, i.e., evolution of the yield surface. This evolution may be

an expansion, translation, rotation, or distortion, to which correspond isotropic, kinematic,

rotational, and anisotropic (distortion) hardening, respectively (see Fig. 3.5). In order to

obtain a better description of complex hardening behaviours displayed by advanced materials,

the combination of hardening types are usually considered. The most common combination

is the, widely called, combined hardening, in which isotropic and kinematic hardening are

simultaneously taken into account (see Fig. 3.5c).

Hardening is mathematically described by the evolution of proper state variables expressed

by functions of e.g., the accumulated plastic strain, ε̄p, which is associated to the effective

stress by means of the work-equivalence principle, or the plastic work per unit volume, Wp.

In the following the state-of-the-art of the hardening models is presented.
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Figure 3.5: Evolution of the yield surface in the σ1 − σ2 plane according to a) isotropic, b)
kinematic, c) combined, d) rotational, and e) anisotropic hardening.

3.4.1 Isotropic hardening models

The isotropic hardening is the most used hardening model and assumes that the yield sur-

face expands isotropically (see Fig. 3.5a). It is mathematically described by establishing a

dependence of the yield stress on suitable internal variables, such as the accumulated plastic

strain, i.e., σy = σy(ε̄p). The most well-known isotropic hardening laws are

Linear σy = σy0 +Kε̄p, (3.71)

Hollomon (1945) σy = Kε̄nH
p , (3.72)

Swift (1952) σy = K (ε0 + ε̄p)nH , (3.73)

Voce (1948) σy = σy0 +Q
(

1− e−βε̄p
)

, (3.74)

Ludwigson (1971) σy = K1ε̄
n1
p + e(K2+n2ε̄p), and (3.75)

(H/V) Sung et al. (2010) σy = αKε̄nH
p + (1− α)

[
σy0 +Q

(
1− e−βε̄p

)]
, (3.76)

where K, K1, K2, nH, n1, n2, ε0, σy0 , Q, β, and α are material parameters. Isotropic

hardening laws may be differentiated as either saturation (exponential) or Voce-like models

(Voce, 1948), that predict a stress saturation at large stains, or power or Hollomon-like models

(Hollomon, 1945, Swift, 1952), stress’s evolution of which is unbounded. Saturation and

power laws are, generally speaking, employed in the description of the mechanical behaviour

of aluminium and steel alloys, respectively. Aiming at a higher flexibility, combinations of

these two types of hardening laws were proposed by Ludwigson (1971) and Sung et al. (2010).

Although isotropic hardening is widely used, it is unable to describe any of the aforemen-

tioned abnormal hardening phenomena. This limitation has motivated the development of
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the hardening models presented in the following, which are or may be used in combination

with the isotropic hardening.

3.4.2 Kinematic hardening models

Seeking for the description of the Bauschinger effect, the kinematic hardening concept was

proposed by Prager (1956). It assumes that the yield surface translates in the stress space,

without change of its size, shape, or orientation (see Fig. 3.5b). Such translation is math-

ematically described by means of the evolution of the so-called back stress tensor, which

defines the center of the yield surface in the stress space. Therefore, the effective stresses,

σ̄, related to yield surfaces that undergo kinematic hardening are expressed by means of the

relative stress tensor, η = σ −α, rather than of the stress tensor, σ, alone.

Prager (1956) assumed a linear evolution of the back stress tensor, rate of which is pro-

portional to the rate of the plastic strain tensor. Considering the problems related to Prager’s

law, such as the monotonously nonproportional plastic straining under monotonously pro-

portional loading, and vice versa, for plane stress conditions even when the von Mises’s yield

criterion is used, Ziegler (1959) proposed a linear law that establishes a direct relation be-

tween the rate of the back stress tensor and the rate of the relative stress tensor. However,

the stress-strain response is rarely linear, except, in some cases, in the regime of significant

large strains. Moreover, although the kinematic hardening laws of Prager (1956) and Ziegler

(1959) are able to describe the Bauschinger effect of some materials, they fail on predicting

the remaining abnormal cyclic hardening phenomena. Having this in mind, Armstrong and

Frederick (1966) proposed a nonlinear (exponential for a monotonic uniaxial loading) evolu-

tion law for the back stress tensor, the so-called Armstrong-Frederick law, by introducing a

recall (dynamic recovery) term, collinear with the back stress tensor, to the Prager’s evolu-

tion law. This evolution law stills nowadays as one of the most used to describe the back

stress’s evolution, since it enables the prediction of Bauschinger and ratcheting effects, and

the smooth transient behaviour. These and some of the evolution laws for the back stress

tensor presented in the literature in the last decades are expressed by

Prager (1956) α̇ = cε̇p, (3.77)

Ziegler (1959) α̇ = cη ˙̄εp, (3.78)

Armstrong and Frederick (1966) α̇ = cε̇p − bα ˙̄εp, (3.79)

Chaboche (1991) α̇ =
2

3
cε̇p − ξ

〈
1− αtr

‖α‖

〉
α ˙̄εp, (3.80)

where ξ =
c

c/b− αtr
,

Ohno and Wang (1993)
α̇ =

2

3
cε̇p − bH (f)

〈
n :

α

‖α‖

〉
α ˙̄εp, (3.81)

(Model I)

where f = ‖α‖ − c/b,
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Ohno and Wang (1993)
α̇ =

2

3
cε̇p − b

(‖α‖
c/b

)m〈
n :

α

‖α‖

〉
α ˙̄εp, (3.82)

(Model II)

Abdel-Karim and Ohno (2000) α̇ =
2

3
cε̇p − µbα ˙̄εp − bH (f)

〈
λ̇f

〉
α, (3.83)

where λ̇f = ε̇p :
α

c/b
− µ ˙̄εp,

Yoshida and Uemori (2002) α̇∗ =

√
2

3
c

(
n−

√
ᾱ∗
c/b

α∗
‖α∗‖

)
˙̄εp, (3.84)

where ᾱ∗ =

√
2

3
α∗ : α∗,

Chen et al. (2005) α̇ =
2

3
cε̇p−

(3.85)

b

〈
n :

αD

‖αD‖

〉χ(‖α‖
c/b

)m〈
n :

α

‖α‖

〉
α ˙̄εp, and

Guo et al. (2011) α̇ =
2

3
cε̇p − [µ+H (f) (1− µ)]α ˙̄εp, (3.86)

where µ = µ0 exp (−kε̄p) ,

where c, b, αtr, µ, µ0, m, χ, and k are material parameters, H(•) is the Heaviside’s step

function, i.e., H(x) = 0 if x < 0 and H(x) = 1 if x ≥ 0, 〈•〉 represent the McCauley brackets,

i.e., 〈x〉 = (x+ |x|) /2, and λf is obtained by using the consistency condition ḟ = 0. Also,

α∗ represents the relative kinematic motion between surfaces in the two yield surface model

of Yoshida and Uemori (2002), discussed in Section 3.4.3, rather than the conventional back

stress tensor, α.

In order to obtain a better description of hardening, Chaboche and Rousselier (1983)

proposed the addition of several back stress components, e.g., the ones given by Equations

3.77-3.86, with significantly different recall constants, bj , i.e.,

α =

N∑
j=1

αj , with e.g., α̇j = cj ε̇p − bjαj ˙̄εp. (3.87)

This methodology increases the flexibility of the model and allows for a good hardening de-

scription at a larger strain domain and an accurate reproduction of the transient behaviour

at the onset of plastic flow. In addition, the use of one back stress component that evolves

linearly together with one or more components that evolve nonlinearly also allows the de-

scription of permanent softening. The evolution of the kinematic hardening parameters with

the accumulated plastic strain to accurately predict cyclic hardening phenomena (see e.g.,

Geng et al. (2002) and Chung et al. (2005)) or its dependency with the temperature (Metzger

and Selfert, 2013) have also been considered.

The development of evolution laws for the back stress tensor over the years was mainly

motivated by the desire of accurately describe the ratcheting effect. The Armstrong-Frederick

law can be used to describe the ratcheting of some materials, but, generally, it overpredicts

ratcheting under asymmetric loading with mean stress, because the dynamic recovery term

is always active. Considering this, Chaboche (1991) introduced a threshold to the dynamic
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recovery term (see Equation 3.80). This way, the back stress evolves linearly below the

threshold and nonlinearly, like the Armstrong-Frederick law and attaining the same asymp-

totic value, when above it. Chaboche (1991) used the superposition (according to Equation

3.87) of a linear model, two classical Armstrong-Frederick models and a fourth with a thresh-

old to describe the ratcheting behaviour of a 316 stainless steel. A generalization of this

model was later proposed by Chaboche (1994) aiming at a higher flexibility. Ohno and Wang

(1993) proposed a different approach by considering a critical state given by a surface f = 0.

In their multi-linear Model I, the dynamic recovery term is only active in the critical state,

i.e., when the back stress reaches this surface (see Equation 3.81). They also proposed a

smooth formulation (Model II, see Equation 3.82), where the Heaviside step function is re-

placed by a power function, thus providing more realistic predictions. The factor inside the

McCauley brackets deactivates the dynamic recovery term during the beginning of the re-

verse plastic flow, therefore reducing the prediction of ratcheting. One disadvantage of Ohno

and Wang (1993) models rely on the high number of αj components required to describe

realistic shapes of stress-strain hysteresis loops, hence employing a high number of material

parameters (Yoshida and Uemori, 2002). In the work of Kang et al. (2003) Model I, Equation

3.81, is rewritten to explicitly express the back stress’s rate as a function of the critical value

c/b. This critical value is then assumed to be dependent on the accumulated plastic strain

in order to describe strain range dependent cyclic hardening. Modifications on the Model II

of Ohno and Wang (1993) include the works of McDowell (1995) and Jiang and Sehitoglu

(1996), where, aiming at a better description of multiaxial ratcheting effects, the exponent

m was assumed highly nonlinear and dependent on the noncoaxiality of the plastic strain

rate and the back stress, rather than as a constant material parameter. Chen et al. (2005)

also proposed a modification of Model II, by multiplying the recovery term with a factor

dependent on the noncoaxiality of the plastic strain rate and the back stress to obtain an

accurate prediction of both multiaxial and uniaxial ratcheting simultaneously.

Later, Abdel-Karim and Ohno (2000) proposed a combination of the Armstrong and

Frederick (1966)’s model with the Ohno and Wang (1993)’s Model I, by means of a weighting

factor µ (see Equation 3.83). This way, the resulting back stress’s evolution law includes a

dynamic recovery term that is always active and another that is only active when a critical

stage is reached, thus having a higher flexibility. Hence, the parameter µ can be tuned in order

to obtain an accurate reproduction of experimental ratcheting effects. Due to its flexibility,

some modifications to the model of Abdel-Karim and Ohno (2000) have been proposed (Kang

(2004); Guo et al. (2011)). Kang (2004) proposed the replacement of < λ̇f > by (1−µ) ˙̄εp to

describe higher ratcheting under multiaxial cycling compared to uniaxial cycling, as verified

for a U71Mn rail steel. And Guo et al. (2011) considered that µ evolves exponentially with

the accumulated plastic strain to describe the deceleration of ratcheting strain rate with the

increasing number of cycles.
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3.4.2.1 Rheological model of Armstrong-Frederick kinematic hardening

The key features of the one-dimensional rheological model of the widely used Armstrong-

Frederick kinematic hardening law, in which the studied constitutive models (see Chapters 4

and 5) are based, are now presented. The formulation is related to the small strain regime

and is restricted to pure kinematic hardening.

The classical elastoplastic rheological model of Armstrong-Frederick kinematic hardening

is shown in Fig. 3.6. The elastoplastic behaviour is modelled by means of the additive

decomposition of the total strain, ε, into elastic, εe, and plastic, εp, parts. Similarly, in

order to model the kinematic hardening the plastic strain is also additively decomposed into

“elastic”, εpe , and “inelastic”, εpi , parts, i.e.,

ε = εe + εp and εp = εpe + εpi . (3.88)

The part εpe represents the strain in the “hardening” spring, with “elastic” modulus c, and,

according to Lion (2000), it is related to local elastic lattice deformations caused by dislo-

cations, while the part εpi is associated to local plastic deformations due to inelastic slip on

crystallographic slip systems. The dashpot, to which εpi is associated, enables the modelling

of the nonlinear kinematic hardening and has a “pseudo”-viscosity of c/(λ̇b). The quantity

b is a dimensionless material parameter and λ is the so-called plastic multiplier, that is a

nonnegative quantity (where λ̇ = 0 for pure elastic deformations and λ̇ > 0 for elastoplastic

deformations). Moreover, E is the elastic modulus of the elastic spring and the friction block

establishes the yield stress, σy.

ε

εp εe

σy

E
c/(λ̇b) c

εpi εpe

σ

Figure 3.6: Classical rheological model of Armstrong-Frederick kinematic hardening.

The Helmholtz free energy of the model of Fig. 3.6 can be solely defined as a function of

the elastic strains, εe and εpe , and additively decomposed as

ψ = ψe(εe) + ψkin(εpe) =
1

2
E(ε− εp)2 +

1

2
c(εp − εpi)

2, (3.89)

where the two terms ψe and ψkin are related to the energy stored in the elastic and “hardening”

springs, respectively. For any arbitrary thermodynamic process, the constitutive equations
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must fulfil the Clausius-Duhem inequality, which is expressed by

−ψ̇ + σε̇ =

(
σ − ∂ψ

∂ε

)
ε̇− ∂ψ

∂εp
ε̇p −

∂ψ

∂εpi

ε̇pi ≥ 0, (3.90)

in the case of isothermal processes (see Equation 2.50). The stress-strain relation in the

elastic spring is given by σ = ∂ψ/∂ε = E(ε − εp). Whereas the stress in the “hardening”

spring (back stress) is introduced as

α = − ∂ψ

∂εpi

= c(εp − εpi). (3.91)

From these stress-strain relations the Clausius-Duhem inequality can be reduced to (σ −
α)ε̇p + αε̇pi ≥ 0. The evolution equations of the so-called internal variables, εp and εpi ,

are then chosen accordingly to the requirement that this inequality must be fulfilled for any

thermodynamic process, providing

ε̇p = λ̇
∂Φ

∂(σ − α)
= λ̇sign(σ − α) and ε̇pi = λ̇

b

c
α. (3.92)

The evolution of the plastic deformation follows the associated flow rule and is driven by the

relative stress η = σ−α. The set of constitutive equations is completed with the Kuhn-Tucker

conditions, i.e., λ̇ ≥ 0, Φ = |σ − α| − σy ≤ 0, and λ̇Φ = 0, which are used to compute the

rate of the plastic multiplier, λ̇.

During plastic deformation, the total stress can be represented as the sum of the back

stress and the stress in the friction block, i.e., the yield stress, σy. Thus, since σy is constant,

the stress, σ = σy + α, only varies with α. This way, from Equations 3.91 and 3.92b, the

evolution of the stress is provided by the nonlinear expression

σ̇ = α̇ = cε̇p − λ̇bα. (3.93)

From this relation and Equation 3.91, one concludes that when σ does not evolve any longer

(σ̇ = 0), the relation ε̇p = ε̇pi holds, which leads to the statement

λ̇sign(σ − α) = λ̇
b

c
α⇒ α =

c

b
sign(σ − α). (3.94)

This indicates that the stress value at which the saturation process is finished, is controlled

by the ratio c/b. The parameter b defines how fast this value is achieved.

On the other hand, from Equations 3.91 and 3.92b, the evolution equation for the inelastic

part of the plastic deformation can be expressed as ε̇pi = λ̇b(εp − εpi). So, if the kinematic

hardening parameter b tends to zero, it yields that ε̇pi → 0. Thus, the back stress (Equation

3.91) became proportional to the plastic strain, εp, and hence the linear kinematic hardening

is recovered. The same conclusion can be obtained from Equation 3.93.
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3.4.2.2 Modified rheological model of kinematic hardening

A modification to the classical rheological model (Fig. 3.6) of Armstrong-Frederick kinematic

hardening is now presented in order to include multiple, N , back stress components, hence

corresponding to a 1D kinematic hardening description of Equation 3.87. The modification

consists of applying multiple, N , sets of “hardening” springs and dashpots in parallel to the

friction block, providing the model represented in Fig. 3.7.

The small strain one-dimensional constitutive model is derived analogously to Section

3.4.2.1. Based on Fig. 3.7, and similarly to Equation 3.88, the plastic strain accepts N

different additive decompositions into “elastic”, εjpe , and “inelastic”, εjpi , parts, i.e.,

εp = εjpe
+ εjpi

∀ j = 1 . . . N. (3.95)

The Helmholtz free energy, that represents the energy stored in the N + 1 springs of the

model of Fig. 3.7, is additively decomposed following

ψ = ψe(εe) +
N∑
j=1

ψjkin(εjpe
) =

1

2
E(ε− εp)2 +

N∑
j=1

1

2
cj(εp − εjpi

)2. (3.96)

Introducing this energy potential on the Clausius-Duhem inequality yields (σ − α)ε̇p +∑N
j=1 α

j ε̇jpi ≥ 0, where the total back stress is given by the sum α =
∑N

j=1 α
j and the

ε

εp εe

σy

E
c1/(λ̇b1) c1

ε1pi
ε1pe

σ

εNpe

cN/(λ̇bN ) cN

εNpi

cj/(λ̇bj) cj

εjpi
εjpe

j = 1 . . . N

Figure 3.7: Modified rheological model of Armstrong-Frederick kinematic hardening.
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back stresses αj are defined as

αj = − ∂ψ

∂εjpi

= cj(εp − εjpi
) ∀ j = 1 . . . N. (3.97)

The Clausius-Duhem inequality is fulfilled by Equation 3.92a and

ε̇jpi
= λ̇

bj

cj
αj ∀ j = 1 . . . N. (3.98)

From Equations 3.97 and 3.98 the following evolution equation for αj is obtained,

α̇j = cj ε̇p − λ̇bjαj ∀ j = 1 . . . N. (3.99)

The set of constitutive equations is completed with the Kuhn-Tucker conditions.

The total stress is given by the sum of the stress in the friction block and the N back

stresses, i.e., σ = σy +
∑N

j=1 α
j , and saturates at the value σ = (σy +

∑N
j=1 c

j/bj)sign(σ−α).

By using multiple back stresses with different bj a good description of the transient behaviour

upon the onset of yielding is obtained. Moreover, if one or more of the back stresses evolves

linearly, i.e., b ≈ 0, the permanent softening effect can be described. This is possible because

the back stress that evolves linearly creates an offset in strains (horizontal offset in the

stress-accumulated plastic strain strain curve) between the monotonic curve and the one

obtained after reverse loading. This methodology to describe the permanent softening effect

is schematically represented in Fig. 3.8. The stress-accumulated plastic strain relation for a

uniaxial tension-compression test obtained with a pure kinematic hardening model with two

back stresses (α1 and α2, with nonlinear and linear evolutions, respectively) is depicted. Due

to the nature of the kinematic hardening approach, the Bauschinger effect is modelled. For a

more flexible description of this effect the combination of isotropic and kinematic hardening

S
tr

es
s

-
σ

,
α

Accumulated plastic strain - ε̄p

Mono. Tension

Mono. Compression

T.-C. (σ = ±σy0 + α)

α = α1 + α2

σy0

Figure 3.8: Description of the permanent softening effect using multiple back stresses.
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law is widely employed. The use of one back stress that evolves nonlinearly models the

smooth transient behaviour upon the onset of yielding. More back stresses of this kind can

be used to obtain a higher flexibility. Also, in Fig. 3.8, the back stress that evolves linearly

enables the modelling of the permanent softening effect.

3.4.3 Multi-surface models

Aiming at a simultaneous description of Bauschinger effect and smooth transient behaviour by

means of linear kinematic hardening, Mroz (1967) proposed the multi-surface approach, later

modified by Krieg (1975) and Dafalias and Popov (1976). It consists of multiple embedded

surfaces that are initially coaxial, for initially isotropic materials, and translate linearly, hence

providing a piece-wise linear reproduction of the uniaxial stress-strain relation. The region

delimited by the most inner surface is the elastic region. When the material point reaches that

surface, it undergoes elastoplastic deformation and the surface translates linearly, rendering

a constant elastoplastic modulus, while the remaining surfaces do not evolve. Thereafter,

when the second surface is reached, the two surfaces translate together at a lower rate.

This way, the nonlinear stress-strain relation is described by multiple regions with constant

elastoplastic modulus, hence requiring a high number of yield surfaces to describe a nonlinear

curve smoothly.

Dafalias and Popov (1976) proposed a model based on the multi-surface approach, in

which a nonlinear stress-strain relation is described by considering only two surfaces and

additional state variables. Both inner (loading) and outer (boundary) surfaces are allowed

to expand and translate (see Fig. 3.9.) While the evolution of the loading surface, before

reaching the boundary surface (see Fig. 3.9b), establishes the transient behaviour, the evolu-

tion of the boundary surface provides the long-term hardening behaviour. The state variable

that controls the loading surface’s evolution is the distance d between the stress point in

the loading surface and the corresponding (fictitious) one in the boundary surface (it is usu-

ally considered that these stress points have the same normal to the loading and boundary

surfaces, respectively).

In addition to the Bauschinger effect and transient behaviour, multi-surface models can

describe permanent softening by allowing the boundary surface to translate. Considering its

flexibility, several works have been presented on the development of two-yield surface models

and algorithmic procedures for its numerical implementation, see e.g., Geng and Wagoner

(2002), Yoshida and Uemori (2002), Cardoso and Yoon (2009), and Kim et al. (2013). The

model proposed by Yoshida and Uemori (2002) has received much attention due to its ability

to describe work-hardening stagnation, Bauchinger effect, transient behaviour and permanent

softening with reasonably few parameters. On the one hand, they proposed a new evolution

equation of the relative kinematic motion of the loading surface with respect to the boundary

one (see Equation 3.84), that is more versatile in the description of the transient behaviour

when compared with the back stress evolution of Armstrong-Frederick law. On the other
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hand, the work-hardening stagnation is modelled by introducing the so-called non-isotropic

hardening surface in the stress space. It is then assumed that the boundary surface suffer

isotropic hardening only when its center point (back stress) lies on this surface. When the

center point of the boundary surface is inside the non-isotropic hardening surface, it can

only translate. The increasing of the plastic strain region of work-hardening stagnation with

accumulated plastic strain can also be reproduced by assuming the expansion of the non-

isotropic hardening surface.

σ2

σ1

a) σ2

σ1

b)

d

σ2

σ1

c)

No surface evolves Loading surface evolves Both surfaces evolve

Figure 3.9: Surfaces’ evolution in the model of Dafalias and Popov (1976).

3.4.4 Homogeneous anisotropic hardening model

Recently, Barlat et al. (2011) proposed the homogeneous anisotropic hardening (HAH) ap-

proach, which allows the description of the Bauschinger effect without taking the kinematic

hardening concept into account. Following this approach, the yield criterion obeys the

isotropic hardening approach, but the yield potential is modified in order to induce asymme-

tries in the yield surface as plastic deformation takes place, i.e.,

Φ =
(
σ̄q + σ̄qh

) 1
q − σy

= (σ̄q + f q1 |hs : s− |hs : s||q + f q2 |hs : s + |hs : s||q)
1
q − σy,

(3.100)

where the exponent q is a material parameter, σ̄h is a fluctuating component of the yield

potential that distorts the yield surface’s shape, f1, and f2 are functions of proper state vari-

ables, and hs is the microstructure deviator. This deviator is a state variable that expresses

the material deformation’s history and thus evolves during plastic deformation.

The hardening mechanism of this approach is represented in Fig. 3.10. When loading is

imposed in one direction (direction 1 in this figure), the yield surface expands and flattens in

the opposite direction, therefore predicting the Bauschinger effect. The distortion of the yield

surface’s shape is ruled by the evolution of f1 and f2, whereas the deviator, hs, keeps trace

of changes in the loading direction. The HAH approach was later extended independently

by Barlat et al. (2013) and He et al. (2013) to account for cross-hardening. The formulation

proposed by He et al. (2013) includes a fluctuating component that also allows the descrip-
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tion of the work-hardening stagnation. After that, the HAH formulation was improved by

Barlat et al. (2014), to allow the yield stress in cross-loading conditions to be lower than the

corresponding stress on the monotonic flow curve.

In the work of Lee et al. (2013b) a dislocation-based hardening model has been incor-

porated into the HAH approach to describe work-hardening stagnation. Moreover, a model

following the HAH approach accounting for the nonlinear elastic behaviour during unloading

and reloading according to the quasi-plastic-elastic approach has been presented by Lee et al.

(2013a), aiming at an accurate prediction of springback. The main disadvantages of this

approach rely on the high number of parameters and state variables used, along with the

severe complexity of its formulation and corresponding numerical implementation (see the

work of Lee et al. (2012a) regarding an algorithmic procedure for the HAH approach).

σ2

σ1

σ3

InitialIsotropic

HAH

Figure 3.10: Shape’s evolution of the yield surface according the HAH approach.

3.4.5 Hardening models for yield anisotropy evolution

The assumption that the yield surface’s shape remains unchanged as plastic deformation

takes place is widely assumed for sheet metal forming analysis, since it is considered valid for

a vast range of metals under moderated strains. However, the changes of the crystallographic

texture during plastic deformation may be significant for higher amounts of straining. As a

result, along with the crystallographic texture, the yield surface’s shape evolves as well, i.e.,

occurs distortional hardening, as verified experimentally by, e.g., Khan et al. (2010).

Constitutive models that account for this type of hardening are usually based on the evolu-

tion of either a fourth-order anisotropic tensor (Feigenbaum and Dafalias, 2007, Noman et al.,

2010, Pietryga et al., 2012, Shi et al., 2014, Feigenbaum and Dafalias, 2014) or anisotropy

parameters directly (Plunkett et al., 2006, Aretz, 2008, Darbandi and Pourboghrat, 2011,

Peters et al., 2014, Tuninetti et al., 2015) during plastic deformation.

On the one hand, the fourth-order anisotropic tensor that expresses the material’s plas-

tic symmetry is treated as a state variable, whose evolution, with the plastic deformation,

follows a nonlinear function of the saturation type. Doing this way, distortional hardening

effects are modelled, such as cross-hardening (Noman et al., 2010), directional hardening (i.e.,

development of a region of high curvature in the direction of loading and flattening in the
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opposite direction) (Feigenbaum and Dafalias, 2007, 2014), or both effects (Pietryga et al.,

2012, Shi et al., 2014).

On the other hand, for a more general description of the distortional hardening, multi-

ple sets of anisotropy parameters, corresponding to a finite number of fixed levels of either

equivalent plastic strain or plastic work, are initially determined. And then, the yield sur-

faces corresponding to any level of equivalent plastic strain (or plastic work) are obtained

from piece-wise linear interpolations (Plunkett et al., 2006, Aretz, 2008, Tuninetti et al.,

2015) or by fitting of each anisotropy parameter adopting a proper function (Darbandi and

Pourboghrat, 2011, Peters et al., 2014). This approach allows de continuous description of

the variation of the yield stress and r-value with the angle from RD along the deformation

process. In addition, this procedure can also be used to model the anisotropy’s evolution

with the temperature (Abedrabbo et al., 2007).
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Chapter 4

Small strain elastoplasticity

The continuum mechanical extension of the rheological model of Armstrong-Frederick kine-

matic hardening to three-dimensional conditions is presented in this chapter under the as-

sumption of small (infinitesimal) strains. Since this rate-independent model is the foundation

of the hypoelastic-based model discussed in Chapter 5, the derivation of the constitutive equa-

tions and their algorithmic implementation are thoroughly treated here. This is carried out

in a general way regarding the yield function, thus allowing for any isotropic or anisotropic

(quadratic or nonquadratic) yield function. Moreover, in order to attain a better description

of cyclic hardening phenomena, the model is improved so it can consider multiple back stress

components.

4.1 Constitutive modelling

4.1.1 Small strain tensor and its additive decomposition

In continuum mechanics, small strain theories are related to infinitesimal deformations of

continuum bodies. Deformations are assumed as infinitesimal when the displacement gra-

dient, ∇u, is sufficiently small compared to unity, i.e., ‖∇u‖ � 1. In this situation, the

second-order (nonlinear) terms of Equations 2.23 and 2.24 can be neglected, resulting in the

approximation

C ≈ B ≈ I +∇u+ (∇u)T. (4.1)

Analogously, applying the same order of approximation to the definitions of the Green-

Lagrange strain tensor, E(2) (Equation 2.29), and its Eulerian counterpart, ε(2), yields

E(2) ≈ ε(2) ≈ 1

2
[∇u+ (∇u)T]. (4.2)

From this approximation, under the assumption of infinitesimal deformations, the small strain

tensor is defined as

ε =
1

2
[∇u+ (∇u)T]. (4.3)

59
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It can be shown that all Lagrangian and Eulerian strain measures defined by Equations 2.25

and 2.27, respectively, converge to the same small strain expression, i.e., for any m and within

an error of second order in ∇u, stands the approximation E(m) ≈ ε(m) ≈ ε (Souza Neto et al.,

2008).

Analogously to the additive decomposition of Equation 3.88a, the three-dimensional total

small strain tensor can be additively decomposed into elastic, εe, and plastic, εp, parts, i.e.,

ε = εe + εp, (4.4)

and to this additive decomposition corresponds the following rate form

ε̇ = ε̇e + ε̇p. (4.5)

Moreover, the plastic strain tensor can also be additively decomposed into “elastic”, εpe , and

“inelastic”, εpi , parts, i.e.,

εp = εpe + εpi ⇒ ε̇p = ε̇pe + ε̇pi . (4.6)

This additional decomposition allows the description of the kinematic hardening and is phys-

ically motivated (see Section 3.4.2.1).

4.1.2 Helmholtz free energy potential

It is assumed that the plastic deformation and hardening effects do not affect the elastic

properties of the material. This way, the Helmholtz free energy per unit volume, ψ = ρψ̄,

associated to the Armstrong-Frederick model of kinematic hardening, can be additively split

into three parts, as

ψ = ψe(εe) + ψkin(εpe) + ψiso(ε̄p)

=
1

2
εe : D : εe +

1

2
εpe : Dp : εpe + ψiso(ε̄p),

(4.7)

where the fourth-order tensor D is the elastic stiffness tensor, given by D = ΛeI ⊗ I + 2µeI.
The elastic parameters µe and Λe are the shear modulus and the Lamé constant, respectively,

which are related to the elastic (Young’s) modulus, E, and the Poisson ratio, ν, by µe =

E/[2(1 + ν)] and Λe = νE/[(1 + ν)(1 − 2ν)]. Moreover, Dp = cI is the fourth-order “elastic

stiffness tensor” associated to the hardening spring (see Fig. 3.6) and I is the symmetric

fourth order identity tensor, i.e., Iijkl = 1/2(δikδjl + δilδjk).

In Equation 4.7, analogously to Equation 3.89, ψe is related to the macroscopic elastic

material properties and represents the energy stored in the elastic spring, while the term ψkin

is related to the kinematic hardening and represents the elastic energy stored in dislocation
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fields (in other words, the energy stored in the hardening spring). Due to the dependence of

the yield stress on the accumulated plastic strain, i.e., σy = σy(ε̄p), the additional term ψiso is

taken into account to represent the amount of stored energy due to isotropic hardening (refer

to Rice (1971), for a micromechanical motivation). Here, ε̄p is the scalar-valued strain-like

isotropic hardening variable, i.e., the accumulated (effective) plastic strain, defined by

ε̄p =

∫ t

0

˙̄εpdt, (4.8)

whose evolution rate, ˙̄εp, is defined in the following (see Equation 4.13c).

4.1.3 Clausius-Duhem inequality

Taking Equation 4.7 into account, the Clausius-Duhem form of the entropy inequality for

isothermal processes (Equation 2.50) is expressed as

−ψ̇ + σ : ε̇ =

(
σ − ∂ψ

∂ε

)
: ε̇− ∂ψ

∂εp
: ε̇p −

∂ψ

∂εpi

: ε̇pi −
∂ψ

∂ε̄p

˙̄εp ≥ 0. (4.9)

Employing the definitions of the stress and back stress tensors in the form

σ =
∂ψ

∂ε
= D : εe = D : (ε− εp) and (4.10)

α = − ∂ψ

∂εpi

= cεpe = c(εp − εpi), (4.11)

and of the scalar-valued stress-like internal variable R(ε̄p) = −∂ψ/∂ε̄p, that is related to the

isotropic hardening and is energy conjugated to ε̄p, the inequality 4.9 can be simplified as

η : ε̇p +α : ε̇pi +R ˙̄εp ≥ 0. (4.12)

The expression of the stress tensor (Equation 4.10) is physically motivated, since it ensures

that the inequality 4.9 is indifferent to ε̇.

4.1.4 Evolution equations

In order to ensure the second law of thermodynamics, inequality 4.12 must be satisfied for

any arbitrary thermodynamic process or, in other words, for any arbitrary ε̇, ε̇p, ε̇pi , and ˙̄εp.

The Clausius-Duhem inequality is sufficiently satisfied by imposing Equation 4.10 along with

the evolution equations

ε̇p = λ̇
∂Ψ

∂η
= λ̇n, ε̇pi = λ̇

b

c
α, and ˙̄εp = λ̇

∂Φ

∂R
= λ̇, (4.13)

where Ψ is the plastic potential that drives the plastic flow direction, n = ∂Ψ/∂η. The

evolution equation for εpi (Equation 4.13b) has been chosen according to Armstrong and
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Frederick (1966). The assumption of Equation 4.13c is useful when the effective stress does

not have its conjugate effective strain explicitly defined with respect to the plastic strain

tensor, as happens to most of the complex nonquadratic yield functions (Banabic, 2010).

In metal plasticity the difference between the plastic and yield potentials is commonly

neglected, i.e., Ψ = Φ, which corresponds to an associated flow rule (usually referred to as

normality rule), where

ε̇p = λ̇
∂Φ

∂η
. (4.14)

Since this assumption is widely accepted in the modelling of metal plasticity, it will be also

taken into account in this work.

Differentiating Equation 4.11 and applying Equation 4.13b, one obtains the evolution

equation for the back stress tensor, in the form

α̇ = cε̇p − λ̇bα. (4.15)

Finally, the evolution equation for the Cauchy stress tensor is achieved by differentiating

Equation 4.10, as

σ̇ = D : ε̇e = D : (ε̇− ε̇p)

= D : (ε̇− λ̇n),
(4.16)

which represents the isotropic linear elastic Hooke’s law.

4.1.5 Yield potential

In order to account for both kinematic and isotropic hardening, the yield potential for this

constitutive model can be written as

Φ(η, ε̄p) = η̄(η)− [σy0 −R(ε̄p)], (4.17)

for general 3D stress states. Here, η̄(η) is the effective stress defined by an isotropic or aniso-

tropic yield function. If the isotropic hardening is assumed to follow, e.g., Voce’s exponential

law, then

ψiso(ε̄p) = Q

(
ε̄p +

1

β
e−βε̄p

)
and R(ε̄p) = −Q

(
1− e−βε̄p

)
, (4.18)

otherwise, in the case of Swift’s power law, it yields

ψiso(ε̄p) = − K

nH + 1
(ε0 + ε̄p)nH+1 +KεnH

0 ε̄p and R(ε̄p) = −K(ε0 + ε̄p)nH +KεnH
0 . (4.19)
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4.1.6 Loading/unloading conditions

The set of constitutive equations of the small strain elastoplastic model is completed with

the loading/unloading conditions (usually referred to as Kuhn-Tucker conditions),

λ̇ ≥ 0, Φ ≤ 0, and λ̇Φ = 0. (4.20)

Thus, elastic and elastoplastic loading paths are differentiated following

Φ < 0, λ = 0 ⇒ elastic loading/unloading

Φ = 0, λ > 0, and
∂Φ

∂η
: η̇ > 0 ⇒ elastoplastic loading

Φ = 0, λ = 0, and
∂Φ

∂η
: η̇ = 0 ⇒ neutral loading

Φ = 0, λ = 0, and
∂Φ

∂η
: η̇ < 0 ⇒ elastic unloading

From the loading/unloading conditions the consistency condition,

Φ̇ = 0, (4.21)

can be derived. It states that during plastic loading the point that represents the stress state

in the principal stress space is always on the yield surface.

It should now be confirmed that the evolution equations actually fulfil the Clausius-

Duhem inequality. By employing Equations 4.13 in Equation 4.12 the second term is clearly

nonnegative (λ̇ bcα : α ≥ 0). The inequality 4.12 is then reduced to

η :

(
λ̇
∂Φ

∂η

)
+Rλ̇ = λ̇

[
η :

∂η̄(η)

∂η
+R

]
= λ̇ [η̄(η) +R] = λ̇ (Φ + σy0) ≥ 0, (4.22)

which is fulfilled by the loading/unloading conditions and by the positivity of the parameter

σy0 . In the above the property η : [∂η̄(η)/∂η] = aη̄(η), of a homogeneous yield function of

degree a, was employed1. In this work only homogeneous yield functions of degree a = 1 are

considered, since any homogeneous function of degree a raised to the power of 1/a results in

a homogeneous function of degree one.

4.1.7 Continuous elastoplastic tangent modulus

The continuous elastoplastic tangent modulus, Dep, relates the infinitesimal total strain rate

tensor to the stress rate tensor, i.e., σ̇ = Dep : ε̇.

1A function f of a variable x is positively homogeneous of a degree a if for any scalar c ≥ 0, f(cx) = caf(x).
Thus, if the tensor variable x proportionally increases, the surface associated to f − y = 0, where y is a scalar
that quantifies the size of the surface, expands without changing its shape at a rate given by y.
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Applying the consistency condition (Equation 4.21) to the yield potential of Equation

4.17 results
Φ̇ = n : η̇ −H ˙̄εp = 0

= n :
[
D : ε̇− λ̇D : n− λ̇(cn− bα)

]
−Hλ̇ = 0,

(4.23)

where the quantity

H = −∂R/∂ε̄p, (4.24)

was introduced. In Equation 4.23, the relation η̇ = σ̇ − α̇ along with Equations 4.13c, 4.15

and 4.16, were employed.

The evolution rate of the plastic multiplier is obtained though mathematical rearrange-

ment of Equation 4.23, yielding

λ̇ =

[
n : D

n : (D : n + cn− bα) +H

]
: ε̇. (4.25)

Inserting this relation into Equation 4.16, provides the following continuous elastoplastic

tangent modulus for plastic loading,

Dep =
∂σ̇

∂ε̇
= D− δ D : n⊗ n : D

n : (D : n + cn− bα) +H
, (4.26)

where δ differentiates elastic (δ = 0) from elastoplastic (δ = 1) behaviour.

4.2 Constitutive modelling with multiple back stress compo-

nents

In this section the constitutive model presented in Section 4.1 will be extended to include

a more general nonlinear kinematic hardening law. The derivation will be based on the

modified rheological model of kinematic hardening (Section 3.4.2.2), which corresponds to

the kinematic hardening law proposed by Chaboche and Rousselier (1983). The derivation of

the constitutive equations is analogous to the procedures presented in Section 4.1, thus only

the main differences will be outlined here.

Additive decomposition of the plastic strain tensor Based on the rheological

model of Fig. 3.7 and similarly to Equations 3.95 and 4.6, the plastic small strain tensor can

be additively decomposed following

εp = εjpe
+ εjpi

⇒ ε̇p = ε̇jpe
+ ε̇jpi

∀ j = 1 . . . N. (4.27)

Helmholtz free energy potential The additive decomposition of the energy potential

is expressed by
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ψ = ψe(εe) +
N∑
j=1

ψjkin(εjpe
) + ψiso(ε̄p)

=
1

2
εe : D : εe +

N∑
j=1

1

2
εjpe

: Djp : εjpe
+ ψiso(ε̄p),

(4.28)

where Djp = cjI is the fourth-order “elastic stiffness tensor” associated to the hardening spring

j (see Fig. 3.7).

Clausius-Duhem inequality Following the procedure presented in Section 4.1.3 for

the energy potential 4.28, yields the simplified inequality

η : ε̇p +
N∑
j=1

αj : ε̇jpi
+R ˙̄εp ≥ 0. (4.29)

The relative stress tensor is now given by η = σ − α, where α =
∑N

j=1α
j , with the back

stress tensors, αj , being defined as

αj = − ∂ψ

∂εjpi

= cj(εp − εjpi
) ∀ j = 1 . . . N. (4.30)

Evolution equations The sufficient conditions to ensure that inequality 4.29 is fulfilled

consist of the evolution Equations 4.13c and 4.14 along with

ε̇jpi
= λ̇

bj

cj
αj ∀ j = 1 . . . N. (4.31)

Analogously to Equation 4.15, the back stress tensors evolve according to

α̇j = cj ε̇p − λ̇bjαj ∀ j = 1 . . . N. (4.32)

Finally, the yield potential (Equation 4.17) and the loading/unloading conditions (Equa-

tion 4.20) complete the set of constitutive equations of the constitutive model.

Continuous elastoplastic tangent modulus Applying the procedure presented in

Section 4.1.7 to this constitutive model, results in the following continuous elastoplastic

tangent modulus

Dep =
∂σ̇

∂ε̇
= D− δ D : n⊗ n : D

n :
[
D : n +

∑N
j=1(cjn− bjαj)

]
+H

. (4.33)
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4.3 Numerical implementation

The implementation of a constitutive model based on rate-type equations in nonlinear finite

element analysis requires the integration of the evolution equations of the material’s state

variables at each integration point within the continuum medium, at any instant of time

(pseudo-time), during the deformation process. In this section, the numerical time integration

of the constitutive model presented in Section 4.1 is described employing two distinct time

integration procedures: forward-Euler and backward-Euler. In addition, the corresponding

(algorithmic) consistent elastoplastic tangent moduli are derived. The adaptation of the

procedures presented in the following sections to the constitutive model presented in Section

4.2 is straightforward, being therefore presented in Appendix A.

4.3.1 Time discretization of the constitutive equations

The analytical integration of the rate-type constitutive equations can, in general, be obtained

only for very simple strain paths. Thus, in realistic engineering problems, numerical schemes

that provide an approximate solution are employed. Taking the constitutive model of Section

4.1 into account, the set of differential equations that have to be integrated along the time

interval [tn, tn+1] ⊂ [t0, tend] of duration ∆t = tn+1 − tn can be summarized as

σ̇ = D : (ε̇− λ̇n), (4.34)

α̇ = λ̇(cn− bα), and (4.35)

˙̄εp = λ̇, (4.36)

obeying the loading/unloading conditions (Equation 4.20). By replacing the time derivatives

of these equations by the difference quotient, i.e.,

˙(•) =
(•)n+1 − (•)n
tn+1 − tn

=
∆(•)
∆t

, (4.37)

leads to the integrated formulas

σn+1 = σn + D : ∆ε−∆λD : nn+α, (4.38)

αn+1 = αn + ∆λ(cnn+α − bαn+α), and (4.39)

ε̄pn+1 = ε̄pn + ∆λ, (4.40)

with α ⊂ [0, 1]. At tn, it is assumed that the system is in global equilibrium and all variables

(•)n are known.

4.3.2 Elastic predictor-plastic corrector strategy

Among the different methodologies that have been proposed to numerically integrate consti-

tutive equations, the predictor-corrector (return mapping) strategy is the most popular stress
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integration scheme. This method was firstly introduced by Wilkins (1963), being commonly

referred to as radial return procedure for J2 perfect plasticity.

It consists of two successive procedures: a prediction (elastic) phase, followed by a plastic

corrector phase, the geometric interpretation being schematically represented in Fig. 4.1.

Initially, the step is assumed to be purely elastic, meaning that there is no plastic flow or

evolution of internal variables, i.e.,

∆λ = 0, (4.41)

εtrial
en+1

= εen + ∆ε, (4.42)

σtrial
n+1 = σn + D : ∆ε, (4.43)

αtrial
n+1 = αn, and (4.44)

ε̄trial
pn+1

= ε̄pn . (4.45)

If the trial relative stress state is within the yield surface, i.e., Φ(σtrial
n+1,α

trial
n+1, ε̄

trial
pn+1

) < 0, this

initial assumption is correct and the material point is effectively in an elastic state. Otherwise,

the elastic (predictor) trial relative stress state is at the exterior of the yield surface, hence

requiring a corrector phase in order to project the stress onto the yield surface (i.e., to enforce

the consistency condition at tn+1). This method is summarized in Box 4.1.

Φn = 0
Φn+1 = 0

σn

σn+1

σtrial
n+1

elastic
predictor

plastic
corrector

elastic
domain at tn

Figure 4.1: Schematic representation of the elastic predictor-plastic corrector method.

To perform the plastic correction, it is necessary to make an assumption for the defor-

mation path. Many integration algorithms have been proposed, mainly differing in how the

flow rule is imposed along the corrector phase. Under plane stress conditions, for instance,

Ortiz and Pinsky (1981) and Ortiz et al. (1983) have proposed the closest point projec-

tion method. Ortiz and Simo (1986) also proposed the cutting-plane method, based on an

explicit iterative process to meet the consistency condition. Later, Yoon et al. (1999) pro-

posed a stress integration method based on the incremental deformation theory, denoted

multi-stage return mapping method, which follows the minimum plastic work path. De-

pending on which time tn+α is employed in the variables’ evaluation during the correction

step, the stress integration schemes can be categorized in two different approaches, known as

forward-Euler (α = 0) and backward-Euler (α = 1) formulations. In other words, while the
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forward-Euler approach makes use of a previous or trial (known) stress state as its reference,

the backward-Euler method on the other hand, employs the current (unknown) stress state.

Therefore, algorithms based on the forward-Euler method are simple and straightforward to

implement, however being conditionally stable. In contrast, backward-Euler formulations are

more complex, requiring the use of the 2nd derivatives of the yield function, but providing

more accurate results even for large time steps.

In the following sections, the numerical integration of the constitutive equations of the

present rate-independent small strain model, adopting the forward-Euler and backward-Euler

approaches, is described.

Box 4.1: Scheme of the elastic predictor-plastic corrector method.

Given ∆ε and the history data σn, αn and ε̄pn

1. Set initial estimate (trial) values (Equations 4.41-4.45)
2. Evaluate the yield potential

Φtrial = η̄(σtrial
n+1,α

trial
n+1)− [σy0 −R(ε̄trial

pn+1
)]

3. Check for plasticity onset:
IF (Φtrial ≤ 0) THEN

Set variables at tn+1

σn+1 = σtrial
n+1, αn+1 = αtrial

n+1, and ε̄pn+1 = ε̄trial
pn+1

EXIT
ELSE

Perform plastic corrector phase to evaluate σn+1, αn+1, and ε̄pn+1

EXIT
ENDIF

4.3.3 Forward-Euler algorithm

As mentioned before, algorithms belonging to the forward-Euler category integrate the con-

stitutive equations, along the increment of step/time, based on the variables at a known

(previous or trial) stress state. Since the flow direction n is known (and kept constant along

the return procedure) the only unknown variable required to evaluate the stress and the

back stress states at tn+1 is the plastic multiplier, which can be directly calculated from the

consistency condition.

In the forward-Euler algorithm presented in this section, it is convenient to split the

increment of total strain in two parts, as ∆ε = (1− βη)∆ε+ βη∆ε, where βη is the ratio of

the increment of stress to be corrected, given by

βη =
η̄trial − σy(ε̄pn)

η̄trial − η̄n
. (4.46)

Doing this way, σn + (1− βη)D : ∆ε is the last stress state that ensures the yield criterion,

and βηD : ∆ε−∆λD : nn is the increment of stress during to plastic loading (see Fig. 4.2).
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Although the relation of Equation 4.46 is only valid for monotonic loading, numerical results

have shown that this can be a good approximation for nonmonotonic loading paths during

sheet metal forming processes.

From the loading/unloading conditions (Equation 4.20), the incremental consistency con-

dition can be stated as

∆Φ = 0, if (Φ = 0 and ∆λ > 0). (4.47)

Thus, applying this condition to Equation 4.17, results

∆Φ = nn : ∆η −Hn∆ε̄p = 0. (4.48)

Using Equations 4.38-4.40 and the relation ∆η = ∆σ −∆α into Equation 4.48 leads to

nn : [βηD : ∆ε−∆λD : nn −∆λ(cnn − bαn)]−Hn∆λ = 0. (4.49)

Finally, the increment of the plastic multiplier can be obtained through mathematical rear-

rangement of Equation 4.49, in the form

∆λ =
nn : ∆σtrial

nn : (D : nn + cnn − bαn) +Hn
, (4.50)

where ∆σtrial is the increment of stress to be corrected, following the equation

∆σtrial = βηD : ∆ε. (4.51)

By employing the increment of the plastic multiplier (Equation 4.50) on Equations 4.38-

4.40 the stress and the state variables are updated. In this work, the plastic flow direction

is evaluated at the last known configuration where the yield condition is ensured, i.e., at

σn + (1− βη)D : ∆ε.

Proportioning procedure Since in the forward-Euler method the incremental con-

sistency is not a-priori granted, after the return mapping there is still a gap between the

predicted stress state after the plastic correction and the correct stress state on the yield

surface. In other words, the predicted stress state is not on the updated yield surface (see

Fig. 4.2). To eliminate this gap, a proportioning procedure is considered in this work. This

procedure consists of applying a radial return to ensure the consistency condition as

σn+1 = αn+1 +
(
ηn+1

)BPσy

(
ε̄pn+1

)
(η̄n+1)BP

, (4.52)

where (•)BP refers to quantities evaluated before the proportioning procedure. Considering

that, generally, the radial direction is not parallel to the normal to the current yield surface

for anisotropic yield criteria, the normality condition at the current state is not granted.
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Alternatively to the proportioning procedure, the projection (i) along the plastic corrector

direction or (ii) normal to the current yield surface can be performed (Hinton, 1992). In order

to eliminate this gap, Vrh et al. (2010) proposed the next increment corrects error (NICE)

algorithm, in which the incremental consistency condition (Equation 4.47) is replaced by a

Taylor’s power series expansion of Equation 4.20b.

Sub-incrementation technique In order to ensure an algorithmic convergence for

larger time increments, the sub-incrementation technique is considered in this work. This

technique consists of dividing the increment of stress to be corrected in M equal parts and

performing the correction step for each sub-increment, k = 1 . . .M , separately and sequen-

tially, thus allowing for larger time steps without the occurrence of divergence. Additionally,

the sub-incrementation method help decreasing the gap between the predicted stress state

after the plastic correction and the correct stress state on the yield surface, therefore also

improving the accuracy of the algorithm. The presented forward-Euler algorithm accounting

for the sub-incrementation technique is described in Box 4.2 and schematically represented

in Fig. 4.2.

Φn Φn+1

σn

σk=0

σk=1

σn+1

nk=0

nk=1

σtrial
n+1

(1− βη)

βη

βη

M

Figure 4.2: Forward-Euler algorithm and the sub-incrementation technique.

In the picture, the material point is initially in an elastic state and the trial stress is

outside of the yield surface, thus requiring the correction step to ensure the consistency

condition. For the sake of clarity, in Fig. 4.2 only two sub-increments of stress are displayed
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and the difference between the yield surfaces before and after the proportioning procedure

was represented in an exaggerated way.

Following this technique, the incremental consistency condition (Equation 4.47) is evalu-

ated for each sub-increment k, providing the increment of the plastic multiplier as

∆λk =
nk−1 : ∆σtrial

k

nk−1 : (D : nk−1 + cnk−1 − bαk−1) +Hk−1
, (4.53)

where ∆σtrial
k is now the sub-increment of stress to be corrected in each iteration k, following

the equation

∆σtrial
k =

βη
M

D : ∆ε. (4.54)

At each iteration k, after the evaluation of the plastic multiplier (Equation 4.53), the following

variables are updated,

σk = σk−1 + D : (∆εk −∆λknk−1)

= σtrial
k −∆λkD : nk−1, (4.55)

αk = αk−1 + ∆λk (cnk−1 − bαk−1) , and (4.56)

ε̄pk = ε̄pk−1
+ ∆λk, (4.57)

where σtrial
k is the trial stress at iteration k (σtrial

k = σk−1 +∆σtrial
k ). Then, the proportioning

procedure is performed,

σk = αk + (ηk)
BPσy (ε̄pk)

(η̄k)
BP

, (4.58)

and the plastic flow direction tensor, n, and the quantity H are finally updated in order to

perform the return mapping of the next sub-increment.

The number of sub-increments, M , is assumed to be the higher integer number that

respects the condition

M =

[
η̄trial − σy(ε̄pn)

σy0

]
× 8 + 1, (4.59)

as proposed by Owen and Hinton (1980). This forward-Euler algorithm is presented in Box

4.2. If M is set to be equal to 1, the standard forward-Euler algorithm is recovered.

4.3.4 Backward-Euler algorithm

As indicated before, in backward-Euler formulations the state variables used in the returning

procedure are evaluated at tn+1, stress state that is unknown. Consequently, this type of

algorithms must account for the variation of the normal to the yield surface (flow direction)

during the returning procedure. As a result, they are rather complex, requiring the use of the

2nd derivatives of the yield function. Nevertheless, this methodology provides great accuracy

even for large time steps, being more appropriated for an implicit time integration scheme

(Cardoso and Yoon, 2009), as chosen for the present work.
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Box 4.2: Scheme of the forward-Euler algorithm accounting for the sub-incrementation tech-
nique.

1. Determine the number of sub-increments (Equation 4.59)
2. Determine the sub-increments of stress to be corrected (Equation 4.54)
3. Compute the correction step

Initiate variables
σk=0 = σn + (1− βη)D : ∆ε, αk=0 = αn, and ε̄pk=0

= ε̄pn

Incremental procedure:
DO k = 1 : M

a) Evaluate the plastic flow direction tensor, nk−1, and the quantity Hk−1

b) Compute the increment of the plastic multiplier (Equation 4.53)

c) Update of the state variables (Equations 4.55-4.57)

d) Perform the proportioning procedure (Equation 4.52)
ENDDO

This type of algorithms relies on iterative procedures to determine the state variables at

tn+1. For the constitutive model presented in Section 4.1, the system of nonlinear equations

to be iteratively solved (using e.g., the Newton-Raphson procedure) is given by the yield

criterion and the implicit versions of Equations 4.38 and 4.39, i.e.,

η̄(ηn+1)− [σy0 −R(ε̄pn+1)] = 0, (4.60)

σn+1 = σn + D : ∆ε−∆λD : nn+1, and (4.61)

αn+1 = αn + ∆λ(cnn+1 − bαn+1). (4.62)

In the following, the iterative procedure developed within this work is given. For the sake of

simplicity, in the remaining equations of this section the subscripts n+ 1 are omitted. From

Equations 4.60-4.62, the following auxiliary residua can be written,

r1 = η̄(η)− [σy0 −R(ε̄pn + ∆λ)] = 0, (4.63)

r2 = D−1 :
(
σ − σtrial

)
+ ∆λn = 0, and (4.64)

r3 = α−αn −∆λ (cn− bα) = 0. (4.65)

After convergence these residua should be approximately zero, within a given tolerance. In

order to employ the Newton-Raphson method, these nonlinear functions are linearised, at

each iteration i, around the current values of the state variables to obtain the increment i of

the increment of the plastic multiplier, ∆∆λi. Using the Taylor’s series expansion (only the

linear terms were considered) the resulting linearised residua, for each iteration, are given as

r1 + n : ∆σ − n : ∆α−H∆∆λ = 0, (4.66)
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r2 +

(
D−1 + ∆λ

∂n

∂η

)
: ∆σ −∆λ

∂n

∂η
: ∆α+ n∆∆λ = 0, and (4.67)

r3 − c∆λ
∂n

∂η
: ∆σ +

[
(1 + b∆λ) I + c∆λ

∂n

∂η

]
: ∆α− (cn− bα) ∆∆λ = 0. (4.68)

Here and in the following, the superscripts i are omitted for the sake of simplicity. This

system of nonlinear equations can be represented in matrix form as



n −n −H

D−1 + ∆λ
∂n

∂η
−∆λ

∂n

∂η
n

−c∆λ∂n

∂η
(1 + b∆λ) I + c∆λ

∂n

∂η
−cn + bα





∆σ

∆α

∆∆λ


= −



r1

r2

r3


. (4.69)

Although this system of equations can be solved numerically, here the closed form solutions

for ∆σ, ∆α, and ∆∆λ are presented, which are advantageous from the computation point

of view when compared to numerical procedures. The equation that describes the evolution

of the back stress tensor (Equation 4.70) is obtained through a mathematical arrangement of

Equation 4.68 and the evolution equation for the stress tensor (Equation 4.71) is then obtained

from Equation 4.67 and Equation 4.70. Finally, these evolution equations are introduced in

Equation 4.66, in order to obtain the increment i of the increment of the plastic multiplier

(Equation 4.72):

∆α = A−1
1 :

[
−r3 + c∆λ

∂n

∂η
: ∆σ + (cn− bα) ∆∆λ

]
; (4.70)

∆σ = −E−1 :

(
r2 + ∆λ

∂n

∂η
: A−1

1 : r3 + a2∆∆λ

)
; (4.71)

∆∆λ =
r1 − a3 : r2 +

(
n : A−1

1 −∆λa3 : ∂n∂η : A−1
1

)
: r3

a3 : a2 + n : A−1
1 : (cn− bα) +H

. (4.72)

The auxiliary variables used in Equations 4.70-4.72 are defined as

E = D−1 + ∆λ
∂n

∂η
− c(∆λ)2∂n

∂η
: A−1

1 :
∂n

∂η
, (4.73)

A1 = (1 + b∆λ) I + c∆λ
∂n

∂η
, (4.74)

a2 = n−∆λ
∂n

∂η
: A−1

1 : (cn− bα) , and (4.75)

a3 = n : E−1 − c∆λn : A−1
1 :

∂n

∂η
: E−1. (4.76)

At the end of each iteration i, the increment of the plastic multiplier and the stress and back
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stress tensors are then updated as

∆λi = ∆λi−1 + ∆∆λi, (4.77)

σi = σi−1 + ∆σi, and (4.78)

αi = αi−1 + ∆αi. (4.79)

The iterative procedure continues until the root-mean-square value of the total residuum

(right-hand side of Equation 4.69) reaches a zero value, within a prescribed tolerance.

Multi-stage return mapping procedure For large strain increments the solution of

Equation 4.60 can be difficult to be numerically obtained. Here, an algorithm that uses the

multi-stage return mapping procedure, as proposed by Yoon et al. (1999) and based on the

control of the potential residuum, is adapted to the material constitutive model presented.

Following the multi-stage return mapping procedure, the nonlinear Equation 4.60 is solved

in N sub-steps performed sequentially (see Fig. 4.3), through the following modification

η̄(ηn+1)− [σy0 −R(ε̄pn+1)] = Φk, (4.80)

where the residuum Φk, for each sub-step k = 1 . . . N , has a prescribed value and Φ1 > Φ2 >

. . . > Φk > . . .ΦN (ΦN ≈ 0).

The residua of Equations 4.63-4.65 are then rewritten for each sub-step k as

r1k = η̄(ηk)− [σy0 −R(ε̄pn + ∆λk)]− Φk = 0, (4.81)

r2k = D−1 :
(
σk − σtrial

)
+ ∆λknk = 0, and (4.82)

r3k = αk −αn −∆λk (cnk − bαk) = 0. (4.83)

Through the linearisation of these residua around the current state variables, and analogously

to the procedure presented before, the increments of the back stress, stress and increment of

the plastic multiplier, at each iteration i of each sub-step k, are given, without derivation, by

∆αk = A−1
1k

:

[
−r3k + c∆λk

∂nk
∂ηk

: ∆σk + (cnk − bαk) ∆∆λk

]
, (4.84)

∆σk = −E−1
k :

(
r2k + ∆λk

∂nk
∂ηk

: A−1
1k : r3k + a2k∆∆λk

)
, and (4.85)

∆∆λk =
r1k − a3k : r2k +

(
nk : A−1

1k
−∆λka3k : ∂nk∂ηk

: A−1
1k

)
: r3k

a3k : a2k + nk : A−1
1k

: (cnk − bαk) +Hk

, (4.86)

respectively. The auxiliary variables Ek, A1k , a2k and a3k are computed from Equations 4.73-

4.76 using the quantities related to the sub-step k. And the update of the state variables

during the iterative procedure within the sub-step k is performed in analogy to Equations
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4.77-4.79. This algorithm is summarized in Box 4.3. It is worth noting that from the pre-

sented backward-Euler algorithm with the multi-stage return mapping procedure, the classical

backward-Euler algorithm can be derived by imposing the number of sub-steps to be equal

to 1.

Φn Φk=N = Φn+1

σn

σn+1

σtrial
n+1

Iterative procedure
at each stage k

ΦtrialΦk=2 Φk=1

Figure 4.3: Backward-Euler algorithm and the multi-stage return mapping procedure.

4.3.5 Consistent elastoplastic tangent modulus

In order to evaluate the stiffness matrix for nonlinear implicit finite element solvers based on

the Newton-Raphson procedure, at each time iteration in each integration point the consistent

(algorithmic) elastoplastic tangent modulus (material Jacobian) is required as

Dalg
ep =

∂(∆σ)

∂(∆ε)

∣∣∣∣∣
n+1

. (4.87)

The elastoplastic tangent modulus should be consistently derived from the implemented in-

tegration algorithm is order to ensure the asymptotically quadratic rate of convergence for

the Newton-Raphson algorithm of the global equilibrium.

Regarding the computational speed, the use of an analytical closed form expression for

the consistent tangent modulus is desired. However, since its derivation for complex nonlinear

constitutive models can be a complicated and error-prone task, its numerical computation

may be attractive in some situations. This computation is commonly performed by means of

the classical perturbation technique that consists of a finite difference approximation (Miehe,

1996b) (see Appendix C). The employment of a numerically obtained consistent tangent

modulus does not affect neither the accuracy of the numerical solution nor its convergence

rate. Still, this numerical calculation leads to a higher computational effort when compared to



76 4.Small strain elastoplasticity

Box 4.3: Scheme of the backward-Euler algorithm accounting for multi-stage return mapping
procedure.

Initiate variables
σi=0
k=0 = σn, αi=0

k=0 = αn, and ε̄i=0
pk=0

= ε̄pn

Multi-stage procedure:
DO k = 1 : N

1. Define the residuum Φk

Φk =

(
1− k

N

)
Φtrial

2. Compute the auxiliary residua, r0
1k

, r0
2k

, and r0
3k

(Equations 4.81-4.83)

3. Evaluate the root-mean-square value of the total residuum

‖ r0 ‖=
√

(r0
1k

)2+ ‖ r0
2k
‖2 + ‖ r0

3k
‖2

4. Iterative procedure (TOL = 10−8):

DO WHILE ‖ r ‖> TOL

a) Compute the auxiliary variables Eik, Ai1k , ai2k , and ai3k
(Equations 4.73-4.76)

b) Compute the increment i of the increment of the plastic

multiplier, ∆∆λik (Equation 4.86)

c) Update the state variables ∆λik, σ
i
k, and αik

(Equations 4.77-4.79)

d) Re-evaluate the auxiliary residua, ri1k , ri2k , and ri3k
and the root-mean-square value of the total residuum, ‖ ri ‖

ENDDO
ENDDO

the computation of analytical expressions. Therefore, in the following the closed form of the

consistent elastoplastic tangent modulus for the presented constitutive model is consistently

derived from the two integration algorithms presented.

Forward-Euler algorithm From the integrated formula of the stress tensor (Equation

4.38), the relation between the increments of stress and total strain tensors is obtained as

∂(∆σ)

∂(∆ε)
= D− δD : n⊗ ∂(∆λ)

∂(∆ε)
. (4.88)

Treating ε as a variable, the return mapping procedure presented in the Section 4.3.3 yields

the following relation between the increments of the plastic multiplier and total strain tensor

∆λ =

[
n : D

n : (D : n + cn− bα) +H

]
: ∆ε =

∂(∆λ)

∂(∆ε)
: ∆ε. (4.89)

Introducing this relation in Equation 4.88, the final closed-form of the elastoplastic tangent
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modulus consistent with the presented forward-Euler algorithm is expressed as

Dalg
ep =

∂(∆σ)

∂(∆ε)
= D− δ D : n⊗ n : D

n : (D : n + cn− bα) +H
. (4.90)

Backward-Euler algorithm The algorithmic elastoplastic tangent modulus consistent

with the backward-Euler algorithm for the presented constitutive model is computed by

performing the linearisation of the residua of Equations 4.63-4.65 treating ε as a variable.

Doing so, the increment of the stress tensor (Equation 4.71), after convergence, becomes

∆σ = −E−1 : (−∆ε+ a2∆∆λ). (4.91)

Moreover, the increment of the back stress tensor (Equation 4.70) converges to

∆α = A−1
1 :

[
c∆λ

∂n

∂η
: ∆σ + (cn− bα) ∆∆λ

]
. (4.92)

Introducing Equations 4.91 and 4.92 into Equation 4.66, the converged increment of the

plastic multiplier is expressed as

∆∆λ =

[
a3

a3 : a2 + n : A−1
1 : (cn− bα) +H

]
: ∆ε. (4.93)

The closed-form of the elastoplastic tangent modulus consistent with the backward-Euler

algorithm is obtained by replacing Equation 4.93 in Equation 4.91 and solving it in order to

the relation between the increments of stress and total strain tensors,

Dalg
ep =

∂(∆σ)

∂(∆ε)
= E−1 − δ E−1 : a2 ⊗ a3

a3 : a2 + n : A−1
1 : (cn− bα) +H

. (4.94)
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Chapter 5

Finite strain elastoplasticity

In industrial forming processes small strain theories are, in general, not valid due to the large

deformations and rotations that the material to be processed may suffer. More specifically,

one of the limitations of such models consists in the fact that the direct relation between

the deformation tensor and the material time derivative of the stress (Equation 4.16) fails

on preserving the objectivity when large rotations take place. Therefore the need for models

that accurately describe the mechanical behaviour of materials under finite (large) strains has

motivated the development of several methodologies, which rely in one of two approaches,

namely, hypoelasticity and hyperelasticity formulations.

In this chapter these two approaches are explored. On the one hand, a hypoelastic-based

model is derived based on the small strain model presented in Chapter 4. An objective

integration algorithm for this hypoelastic-based model that preserves the simplicity of the

structure of numerical algorithms for small strain constitutive equations is presented.

On the other hand, an innovative hyperelastic-based model is entirely developed. The

model can be suitable for any yield function, overcoming the limitation of hyperelastic-based

models, presented in the literature, to quadratic yield functions. Another noteworthy fea-

ture of the proposed hyperelastic-based model is that it accounts for nonlinear combined

hardening.

In contrast to the majority of the concepts of hyperelastic-based anisotropic modelling

presented in the literature, the proposed model is formulated in the reference configuration,

hence allowing the use of symmetric tensorial quantities only, which is advantageous from

the computational point of view. The numerical implementation of this model is carried

out by a backward-Euler procedure based on the exponential map. The exponential map

is particularly interesting since it preserves the plastic incompressibility of the material and

the symmetry of the tensor-valued quantities. Also, a new procedure taking into account the

implementation of any general yield surface is presented in detail.

At the end, the presented hyperelastic-based model is extended to include several back

stress components, thus providing a better description of cyclic hardening phenomena. In

contrast to the few hyperelastic-based works in the literature that consider such feature,

79
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this model is based on the modified rheological model of Armstrong-Frederick kinematic

hardening (see Fig. 3.7) and takes into consideration several multiplicative decompositions

of the plastic part of the deformation gradient. This methodology is theoretically sounder

when compared to the works of Wallin and Ristinmaa (2005), that considered a nonassociated

flow rule where the plastic potential is used to determine multiple strain-like internal variables

related to kinematic hardening, and Tsakmakis (1996), back stress tensor of which evolves

according to an objective rate.

5.1 State-of-the-art

Early works on finite deformation theory for elastoplasticity consisted mostly on models based

on hypoelasticity, e.g., Hibbitt et al. (1970), McMeeking and Rice (1975), and Argyris and

Kleiber (1977). This approach relies on a hypoelastic relation between the elastic part of the

deformation tensor and a proper objective rate of the stress tensor. Moreover, in analogy to

the small strain theory, the additive split of the rate of deformation tensor into elastic and

plastic parts is taken into account.

However, several shortcomings of this approach were pointed out over the following

decades, such as

i) the spurious oscillatory shear stress response during monotonic shear loading conditions

if the (widely used) Zaremba-Jaumann rate is considered (Dienes, 1979),

ii) the nonphysical dissipation of energy in elastic deformation paths, thus violating the

second law of thermodynamics (Simo and Pister, 1984),

iii) the nonuniqueness respectively to the choice of the objective rate employed (Nemat-

Nasser, 1982), and

iv) the noninsurance of objectivity displayed by the early proposed algorithms, that mo-

tivated the development of incrementally objective algorithms (Hughes and Winget,

1980).

In order to avoid these issues, the logarithmic objective rate was proposed by Xiao et al.

(1997). This objective rate was developed in a consistent way to provide an exactly integrable

elastic behaviour and, among all possible objective Eulerian rate-type models, those that

employ this objective rate are, according to Bruhns et al. (1999), the unique self-consistent

ones. A recent model based on this objective rate was proposed by Zhu et al. (2014), which

consists of the extension of the nonlinear kinematic hardening rule developed by Abdel-Karim

and Ohno (2000) to finite strains. Despite the shortcomings of classical objective rates, most

of the recently proposed constitutive models and in-built material models in commercial finite

element codes are based in such hypoelastic approaches, since they are acceptable when the

elastic deformations are considered small comparatively to their plastic counterparts. As a

consequence, hypoelastic-based models are widely used in the literature to describe a broad
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range of features such as evolving elasticity (Zang et al., 2007, Sun and Wagoner, 2011, Lee

et al., 2013a), anisotropic plasticity (Yoon et al., 2006, Rabahallah et al., 2009, Taherizadeh

et al., 2011, Lee et al., 2012b), anisotropic hardening effects (Yoshida and Uemori, 2003,

Chung et al., 2005, Barlat et al., 2012, Cardoso and Yoon, 2009), damage (Haddag et al.,

2009), etc.

On the other hand, hyperelastic-based models rely upon a hyperelastic constitutive equa-

tion for the stress tensor based on a energy potential (Simo, 1985, Simo and Ortiz, 1985).

Due to the nature of the energy potentials, in these models issues related to lack of objectivity

and nonpreservation of energy are innately avoided. Regarding elastoplasticity, these models

can be categorized into two groups, the ones that consider the multiplicative decomposition

of the deformation gradient and those that assume an additive decomposition of generalized

strain measures.

Suggested by Kröner (1960) and Lee (1969), among others, the models of the first group

assume that the deformation gradient is multiplicatively decomposed into elastic and plastic

parts, i.e., F = FeFp. This assumption is widely accepted in the context of finite strains,

being conceptually sound and physically motivated. Here, the elastic part, Fe, is associated to

the stretching and rotation of the crystal lattice, whereas the plastic part, Fp, represents the

plastic deformation caused by dislocation motion on crystallographic slip systems (Asaro,

1983, Reina and Conti, 2014). In the last decades this concept has been used in a large

variety of scientific areas such as plastic anisotropy (Eidel and Gruttmann, 2003, Menzel and

Steinmann, 2003, Svendsen et al., 2006, Sansour et al., 2008, Vladimirov et al., 2010), thermo-

mechanics (Lion, 2000, H̊akansson et al., 2005, Rodas et al., 2014), damage mechanics (Menzel

et al., 2005, Brünig et al., 2008, Vladimirov et al., 2014), and crystal plasticity (Bargmann

et al., 2011, 2014), to name just a few.

The concept of additive decomposition of strain measures was firstly proposed by Green

and Naghdi (1965) and later extended for generalized strain measures, i.e., E(m) = E
(m)
e +E

(m)
p

(see Equation 2.25) by e.g., Papadopoulos and Lu (1998) for isotropic and Papadopoulos and

Lu (2001), Schröder et al. (2002), and Löblein et al. (2003) for anisotropic response. The par-

ticular case of m = 0 (logarithmic strain) has been extensively used for quadratic anisotropy

in finite strain plasticity (see e.g., Miehe et al. (2002), Miehe and Apel (2004), and Ulz (2009)).

Due to the additive character, the structure of the classical small strain theory is retained,

thus taking advantage of the simplicity inherent to its classical return mapping schemes.

However, some inconsistencies of the additive models with the multiplicative approach can

been seen.

If the Green-Lagrange strain tensor is considered, E(2) = 1
2(C − I), as an example and

taking into account the multiplicative decomposition of F, yields
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E(2) =
1

2
(FTF− I)

=
1

2
(FT

p FT
e FeFp − FT

p Fp + Cp − I)

= FT
p E(2)

e Fp + E(2)
p

6= E(2)
e + E(2)

p ,

(5.1)

showing that the physical meaning of the elastic strain is lost in finite strains. Additive

formulations usually prescribe a constitutive equation for the plastic strain, E
(m)
p , while the

“elastic” strain is obtained from the relation E
(m)
e = E(m)−E

(m)
p . Moreover, Schmidt (2005)

has proved that the use of the additive decomposition implies a nonphysical dependence of the

elastic parameters on the plastic strain. In addition, under large simple shear deformations

in rigid isotropic plasticity the additive formulation of generalized strain measures leads to

spurious variations of shear stress regardless the specific value of m (Itskov, 2004). Such

phenomena are not verified when the multiplicative approach is considered.

Most of the anisotropic hyperelastic-based models use structural tensors in order to de-

scribe the anisotropy of the material. This concept, developed initially by Spencer (1971)

and Boehler (1979), consists of using scalar- or tensor-valued isotropic functions dependent

on a proper set of second-order tensors (the so-called structural tensors) which represents

the symmetry group of the considered material. Doing this way, on the one hand, the

elastic anisotropy of the material can be described by the inclusion of structural tensors

into an elastic energy potential (Reese, 2003, Eidel and Gruttmann, 2003, Svendsen et al.,

2006). On the other hand, if the structural tensors are introduced into the yield function, or-

thotropic yielding and plastic flow can be attained, as in the models of Eidel and Gruttmann

(2003), Menzel and Steinmann (2003), Sansour et al. (2006a), Svendsen et al. (2006), and

Vladimirov et al. (2010) for quadratic yield functions. Also, Shi and Mosler (2013) proposed

a hyperelastic-based model that accounts for the nonquadratic anisotropic yield criterion of

Cazacu and Barlat (2004), which employed (in contrast to the model presented in Section

5.3) nonsymmetric internal variables. Under the limitation of small elastic strains, Badred-

dine et al. (2010) presented a nonassociative finite plastic strain model that accounted for

the nonquadratic Karafillis and Boyce (1993)’s yield criterion and isotropic ductile damage.

Generally, hyperelastic-based models including kinematic hardening laws follow one of

two main strategies (Dettmer and Reese, 2004). The first strategy, which represents the so-

called “Chaboche-type” models, makes use of an evolution equation for the back stress tensor.

Hence, these models employ a stress-like internal variable (back stress) and an objective rate

of this variable in order to preserve the objectivity (Tsakmakis, 1996, Lührs et al., 1997,

Tsakmakis and Willuweit, 2004).

Alternatively, the second strategy employs a strain-like internal variable. It is assumed

that a term of the energy potential, related to the kinematic hardening, is dependent on
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this variable. Also, the back stress is obtained from the derivative of the energy potential

regarding this strain-like quantity (see e.g., Wallin et al. (2003) and Sansour et al. (2006b),

among others). A particular type of models included in the second strategy consists of

considering that the plastic part of the deformation gradient is multiplicatively decomposed

into elastic and inelastic parts (Lion, 2000, Dettmer and Reese, 2004, Vladimirov et al., 2008,

Henann and Anand, 2009, Freund et al., 2012). This decomposition is physically motivated

(Lion, 2000) and represents a continuum mechanical extension of the classical rheological

model of Armstrong-Frederick kinematic hardening (see Section 3.4.2.1) to finite strains in

the context of hyperelasticity. Considering that kinematic hardening can be seen as a specific

kind of induced plastic anisotropy, which evolves with the deformation process, some authors

have formulated the kinematic hardening effect employing the concept of structural tensors

(Svendsen, 2001, Dettmer and Reese, 2004).

The theoretical background of (and comparisons between) hypoelastic- and hyperelastic-

based formulations can be found in, e.g., Xiao et al. (2006) and Shutov and Ihlemann (2014).

Shutov and Ihlemann (2014) proposed the notion of weak invariance, which states that a con-

stitutive model is weakly invariant if, by simply employing suitable transformations on the

initial conditions, the constitutive equations are preserved when the local reference configu-

ration is transformed. In their analysis, they concluded that the Zaremba-Jaumann rate (see

Section 5.2.1) is the only weakly invariant corotational objective rate. In addition, regarding

hyperelastic-based formulations, multiplicative models are weakly invariant, in contrast to

additive models using the logarithmic strain. Numerical application-oriented comparisons of

hypoelastic- and hyperelastic-based formulations can be found in, e.g., the works of Chatti

(2010) and Brepols et al. (2014) for anisotropic, following Hill (1948)’s criterion, and isotropic

plasticity, respectively.

A comprehensive application-oriented comparison of these two approaches for complex

nonquadratic anisotropy is still missing in the literature.

5.2 Finite strain hypoelastoplasticity

In this section, an extension of the previously presented small strain model (Chapter 4) to

finite strains in the context of hypoelasticity is shown. Firstly, since Eulerian hypoelastic

constitutive models rely on the use of objective constitutive equations, a brief review on the

topic of objectivity is given. Then, the derivation of the finite strain hypoelastic-based model

is presented. This section ends with the adaptation of an objective integration algorithm to

the presented hypoelastic-based model.

5.2.1 Objective constitutive quantities

The principle of objectivity (or frame indifference) requires that any physical process must

not be influenced by an arbitrary change of observer. This invariance must be taken into
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account by the mathematical constitutive relations that represent the physical phenomena.

The relation that defines the change of spatial referential, from observer O to observer O+,

at the instant t, of an arbitrary vectorial quantity y is defined by

y+(t) = Q(t)y(t) +G(t), (5.2)

where Q and G denote arbitrary (time-dependent) rotation tensor and translation vector,

respectively, between the two observers.

One may consider the two classes of objective second-order tensor-valued quantities (de-

noted Lagrangean and Eulerian) which transforms under a change of observer according to

Γ+(t) = Γ(t) and (5.3)

Λ+(t) = Q(t)Λ(t)QT(t), (5.4)

respectively. The conventional material time rate of an objective Lagrangean tensor, Γ̇ is

also objective, i.e., Γ̇
+

= Γ̇. In opposite, the conventional material time differentiation of an

Eulerian second-order tensor quantity yields

Λ̇
+

= Q̇ΛQT + QΛ̇QT + QΛQ̇T 6= QΛ̇QT. (5.5)

This implies that even though Λ is objective and may be used as a constitutive variable, its

conventional material time rate should not be used in the constitutive formulation, since it is

only objective for a time-independent rotation, i.e., Q̇ = 0. Examples of objective Eulerian

tensors are the Cauchy stress tensor, σ, and the rate of deformation, d. Thus, considering

that only objective quantities should be used in hypoelastic constitutive relations, the stress

rate σ̇ is not suitable for hypoelastic formulations. This implies that relation 4.16 can not

be directly employed to describe the time evolution of the Cauchy stress in the context of

hypoelasticity.

In order to avoid this issue, i.e., to ensure that the objectivity is fulfilled, the conventional

material time rate of the stress tensor is replaced by a proper objective rate. Considering a

generic Eulerian second-order tensor, Λ, its objective rate can be expressed in general terms

according to
∇
Λ? = Λ̇ + ΛΦ? + Φ?TΛ, (5.6)

where
∇

(•)? stands for the objective rate and Φ? is a proper second-order tensor.

Depending on the choice of Φ?, two distinct subclasses of objective rates of Eulerian

tensors may be defined, namely corotational rates if a skew-symmetric tensor (Φ?T = −Φ?)

is considered, or non-corotational rates in the case of non-skew-symmetric tensors (Φ?T 6=
−Φ?). The corotational rate of an objective Eulerian tensor-valued quantity can be seen as

the conventional material time rate of that Eulerian quantity when represented in a locally

rotating (corotational) coordinate frame, where the spin tensor is defined as Ω? = Φ?. This
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means that the structure of classical Galilean space-time is preserved and hence the Leibniz’s

chain rule for derivatives is respected by the corotational rate. In contrary, regarding non-

corotational rates, the structure of the Galilean space-time is distorted implying the violation

of the Leibniz’s rule (Xiao et al., 2006).

The most common examples of non-corotational rates are

Cotter-Rivlin rate ΦCR = l,

Oldroyd rate (Lie derivative) ΦO = −lT, and

Truesdell rate ΦT = −l + 1
2trl,

which require a special mathematical treatment due to the violation of the Leibniz’s rule.

Regarding the corotational rates, the representation

∇
Λ? = Λ̇ + ΛΩ? −Ω?Λ, (5.7)

is commonly employed and the most important rates are

Zaremba-Jaumann rate ΦZJ = w,

Green-McInnis-Naghdi rate ΦGMN = ṘRT, and

Logarithmic rate ΦLog = w +
m∑

i,j=1

i 6=j

(
1 + (λ2

i /λ
2
j )

1− (λ2
i /λ

2
j )

+
2

ln(λ2
i /λ

2
j )

)
bidbj ,

where λ2
i and bi, with i = 1 . . .m, denote the m distinct eigenvalues and the eigenvectors of

the left Cauchy-Green deformation tensor, B, respectively (see Section 2.1.2) (Xiao et al.,

1997).

The Zaremba-Jaumann rate is widely used in the context of hypoelastic-based elasto-

plasticity. However, it has the disadvantage of predicting spurious phenomena, known as

shear oscillations during monotonically progressing simple shear deformation. This phenom-

ena were firstly revealed by Lehmann (1972) for rigid plastic von Mises flow theory with

Prager kinematic hardening rule and occurs even when purely elastic behaviour is considered

(Dienes, 1979).

Comparatively to the Zaremba-Jaumann rate, the Green-McInnis-Naghdi rate provides

a more realistic stress response during simple shear deformations. Nevertheless, Dashner

(1986) has questioned the physical meaning of its theoretical basis and the determination of

ΦGMN is computationally more expensive in comparison to ΦZJ, because it requires the polar

decomposition of F. In the context of hypoelastic-based elastoplasticity, the continuum spin

(see Equation 2.19) can be additively decomposed into an elastic, we = ṘRT, and a plastic,

wp = Rskew(U̇U)RT, parts. Considering that in sheet metal forming shear loading in the

normal direction of the sheet’s plane is not relevant, the assumption that the plastic spin
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is negligible comparatively to its elastic counterpart, i.e., we � wp, is commonly accepted

(Alves, 2003). In other words, this assumption considers that the Zaremba-Jaumann and

Green-McInnis-Naghdi rates are approximately equal, i.e., ΦZJ = w ≈ we = ṘRT = ΦGMN,

in sheet metal forming processes.

With the exception of the logarithmic one, the well-known objective rates mentioned

before are not exactly integrable, except for some particular set of elastic constants, thus

predicting nonphysical dissipation of energy during purely “elastic” deformation. The loga-

rithmic rate has been proposed by Xiao et al. (1997) based on Prager’s yielding stationary

criterion1 and on a new “elastic integrability criterion”2. Although this can be considered

as the more correct objective rate, the determination of the associated second-order rotation

tensor, ΦLog, is computationally very expensive.

5.2.2 Additive decomposition of the rate of deformation

The rate of deformation, d, is an Eulerian objective tensor quantity, and hence it is a proper

deformation rate to be used in the hypoelastic-based formulation. Motivated by the additive

decomposition of the strain rate in the small strain theory of elastoplasticity (Equation 4.5),

the rate of deformation is assumed to decompose additively according to

d = de + dp, (5.8)

where de and dp are denoted as elastic and plastic rates of deformation, respectively. It

is worth mentioning that, similarly to d, the second-order tensors de and dp are Eulerian

objective quantities and can be used as variables in the constitutive hypoelastic model.

5.2.3 Hypoelastic constitutive law

The hypoelastic constitutive law establishing the relation between any objective rate of stress

and the elastic rate of deformation can be generally expressed by

∇
σ? = f(σ,de), (5.9)

where f is a function of the stress and elastic rate of deformation. In contrast to the

hyperelastic-based formulation to be seen in detail in Section 5.3, the constitutive relation

of Equation 5.9 is not based on an elastic potential. Thus, during a closed large “elastic”

deformation cycle the conservation of energy may not be ensured whereas the work done

is not zero, with the exception to models based on the logarithmic rate where the “elastic

integrability criterion” is imposed. Due to this nonphysical dissipation of energy, hypoelastic

1“The simultaneous vanishing of the stress rate and plastic flow should render yield function stationary”
(Xiao et al., 2006).

2“For every process of elastic deformations with de = d, the rate equation de = (∂2ψ(τ )/∂τ 2) :
∇
τ should be

exactly integrable to deliver a dissipationless elastic relation and hence really characterize recoverable elastic
behaviour” (Xiao et al., 2006).



5.Finite strain elastoplasticity 87

constitutive laws are mainly used to describe the elastic behaviour of finite strain elastoplas-

tic models where the elastic strains are expected to be small when compared to the plastic

counterparts, i.e., Fe ≈ I, such as in metal elastoplasticity. In this situation, the spatial

velocity gradient can be approximately obtained from

l = ḞeF
−1
e + FeḞpF−1

p F−1
e

= le + FelpF−1
e

≈ le + lp ⇒ d ≈ de + dp.

(5.10)

Note that the additive decomposition of the rate of deformation (Equation 5.8) is recovered.

Considering this, the most used hypoelastic law is the extension of the small strain isotropic

linear constitutive relation 4.16 to the objective stress rate, as follows

∇
σ? = D : de = D : (d− dp). (5.11)

5.2.4 Evolution equations

Considering the Eulerian objective plastic rate of deformation, dp, the associated flow rule

(see Equation 4.14) is expressed as

dp = λ̇
∂Φ

∂η
, (5.12)

where the yield potential, Φ, has the same structure as in the small strain theory (see Equation

4.17).

Taking into account that any second-order tensor-valued internal variable must be objec-

tive, the above argumentation regarding the objective rate of the Cauchy stress holds for the

back stress tensor. Thus the objective back stress rate reads

∇
α? = cdp − λ̇bα. (5.13)

Finally, the evolution equation of the accumulated plastic strain is given by Equation

4.13c and the loading/unloading conditions (Equation 4.20) complete the set of constitutive

equations.

5.2.5 Numerical implementation

In this section the numerical implementation of the considered hypoelastic-based model is

presented. The numerical treatment is suitable for most of the rate-independent hypoelastic-

based models grounded on the isotropic linear constitutive law of Equation 5.11. Thus, its

adaptation to a model in which several back stress components are included can be seen as

a straightforward task. Nevertheless, a more general and comprehensive discussion on this

topic can be found in, e.g., Simo and Hughes (1998).
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5.2.5.1 Objective integration algorithms

The crucial issue in the numerical implementation of hypoelastic-based models stands on the

development of numerical integration algorithms that yield discrete equations in which the

principle of material frame indifference is ensured in the time discrete frame. This leads to

the so-called incrementally objective algorithms (Hughes and Winget, 1980) which preserve

the condition of incremental objectivity in order to avoid the occurrence of spurious stresses

in rigid body motions (Simo and Hughes, 1998). The development of such algorithms consist

of three steps as follows:

1. firstly, the given rate-constitutive equations are mapped from the spatial configuration

to a local configuration, in which the rate-type equations are unaffected by superim-

posed spatial rigid body motions;

2. then, a time integration algorithm is carried out, providing the objective discrete equa-

tions in the local configuration;

3. finally, the discrete equations are mapped back from the local to the spacial configura-

tion.

Following this procedure, two basic methodologies exist to define a suitable local config-

uration (Simo and Hughes, 1998):

Convective representation This methodology considers the convective (reference) config-

uration as the “local” configuration. It exploits the fact that tensor-based quantities

defined in this configuration are independent of, and thus unaffected by, superimposed

rigid body motions. As pointed out in Section 2.1.1, the mapping between the refer-

ence (material) and current (spacial) configuration is carried out by proper tensorial

transformations using the deformation gradient. While this methodology seems inter-

esting from the conceptual point of view, it preserves the simplicity inherent to the

state-update integration algorithms used in small strain formulations (e.g., the algo-

rithms presented in Section 4.3) only when the Oldroyd rate of the Kirchhoff stress for

J2-plasticity models is considered (Simo and Hughes, 1998).

Local rotating representation This methodology transforms the rate-type evolution equa-

tions to a locally rotating Cartesian coordinate system (also called material corotational

coordinate system), properly defined to precisely ensure that the rotated constitutive

equations remain unaffected under any superimposed rigid body motion. This method-

ology has the advantage of leading to state-update integration algorithms whose struc-

tures are indeed identical to the ones used in the integration of small strain constitutive

equations. It is particularly suitable to models based on corotational objective rates,

which involve spin-like tensors such as the Zaremba-Jaumann, Green-McInnis-Naghdi,

and logarithmic rates. The crucial computational feature in this methodology relies on
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the determination of the locally rotating configuration. This issue is solved by numeri-

cally integrating an initial-value problem that produces a subgroup of proper orthogonal

transformations, as presented in Section 5.2.5.2.

Considering the advantages of the second methodology, this will be the one analysed in

this work. This methodology is based on the theorem stating that, for any given rotation

tensor Q?, there is a skew-symmetric (spin) tensor Ω? given by Ω? = Q̇?Q?T, and which

evolution (Q̇?) is obtained from the initial-value problem of Equation 5.32. Considering that

the rotation tensor Q? is properly computed and is indeed a rotation tensor from the locally

rotating (unaffected by superimposed rigid body motions) configuration to the spatial config-

uration, the hypoelastic constitutive law (Equation 5.11) is mapped to the local configuration

by multiplying it with Q?T and Q? from the left and right sides, respectively, resulting in

Q?T∇σ?Q? = Q?T(D : de)Q
? = D : (Q?TdeQ

?)

˙̂σ? = D : d̂?e

(5.14)

where the isotropy of the constitutive elastic stiffness tensor, D, has been used. Moreover,

the following notations have been introduced to denote the rotated Cauchy stress and the

rotated rate of deformation,

σ̂? = Q?TσQ? and (5.15)

d̂? = Q?TdQ?, with d̂? = d̂?e + d̂?p, (5.16)

respectively. Also, by simply differentiation one can show that the representation of the

complex corotational objective rate of the Cauchy stress in the locally rotating configuration

is indeed the simple material time derivative of the rotated Cauchy stress, i.e.,

˙̂σ? = Q?T∇σ?Q?. (5.17)

This procedure must be employed to all evolution equations of tensor-valued internal variables

of the constitutive model. Hence, applying this procedure to the objective rate of the back

stress tensor (Equation 5.13), one obtains

Q?T∇α?Q? = Q?T(cdp − bλ̇α)Q? = cQ?TdpQ? − bλ̇Q?TαQ?

˙̂α? = cd̂?p − bλ̇α̂?,
(5.18)

where the rotated back stress tensor and its material time derivative are given by

α̂? = Q?TαQ? and (5.19)

˙̂α? = Q?T∇α?Q?, (5.20)

respectively.
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Remark 1 It is now shown that the representation of an Eulerian objective quantity in the

locally rotating configuration, Λ̂
?
, is indeed objective in that configuration. The quantity Λ̂

?

transforms under a change of observer according to

(Λ̂
?
)+ = (Q?TΛQ?)+ = (Q?T)+(Λ)+(Q?)+

= (Q?TQT)(QΛQT)(QQ?)+

= Q?TΛQ? = Λ̂
?
,

(5.21)

which shows that Λ̂
?

is precisely objective in the locally rotating configuration. This proves

that ˙̂σ?, α̂?, and d̂?, and thus the constitutive relations 5.14b and 5.18, are unaffected by

superimposed rigid body motions.

At this point the first step of the objective algorithm is concluded. The next step consists

of the time discretization of the constitutive relations represented in the local configuration.

Following the procedure presented in Section 4.3.1, the rate-type constitutive constitutive

Equations 5.14 and 5.18 are integrated along the time interval [tn, tn+1] ⊂ [t0, tend] by em-

ploying the difference quotient (Equation 4.37), leading to the following integrated formulas

σ̂?n+1 = σ̂?n + D : ∆t(d̂?n+α − d̂?pn+α) and (5.22)

α̂?n+1 = α̂?n + c∆td̂?pn+α − b∆λα̂?n+α. (5.23)

With the integrated formulas in hand, the final step can be performed. The mapping of these

equations back to the spatial configuration is carried out by replacing the rotated quantities

by Equations 5.15, 5.16, and 5.19 accordingly, i.e.,

Q?T
n+1σn+1Q

?
n+1 = Q?T

n σnQ
?
n + D : [Q?T

n+α(∆tdn+α)Q?
n+α −Q?T

n+α(∆tdpn+α)Q?
n+α]

σn+1 = Q?
∆σnQ

?T
∆ + D : [Q?

δ(∆tdn+α)Q?T
δ −Q?

δ(∆tdpn+α)Q?T
δ ] and

(5.24)

Q?T
n+1αn+1Q

?
n+1 = Q?T

n αnQ
?
n + cQ?T

n+α(∆tdpn+α)Q?
n+α − b∆λQ?T

n+ααn+αQ?
n+α

αn+1 = Q?
∆αnQ

?T
∆ + cQ?

δ(∆tdpn+α)Q?T
δ − b∆λQ?

δαn+αQ?T
δ ,

(5.25)

where the incremental rotations from the configurations at n and n+ α to the configuration

at n+ 1 are denoted by Q?
∆ and Q?

δ , and expressed by

Q?
∆ = Q?

n+1Q
?T
n and (5.26)

Q?
δ = Q?

n+1Q
?T
n+α, (5.27)

respectively.

Note that the integration of evolution equations for scalar variables does not require

the use of an objective integration algorithm. Thus, the integration of the evolution of the
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equivalent plastic strain is given by the standard integration formula of Equation 4.40.

The main advantage of the methodology using the local rotating representation is that

the resulting system of equations (5.24, 5.25 and 4.40) can be numerically integrated using

the structure of algorithms for small strain theory, such as those presented in Sections 4.3.3

and 4.3.4. In order to employ the elastic predictor-plastic corrector method the following

trial quantities should be considered,

∆λ = 0, (5.28)

σtrial
n+1 = Q?

∆σnQ
?T
∆ + D : [Q?

δ(∆tdn+α)Q?T
δ ], (5.29)

αtrial
n+1 = Q?

∆αnQ
?T
∆ , and (5.30)

ε̄trial
pn+1

= ε̄pn . (5.31)

In this work it is assumed that the directions of the anisotropy axes follow the material’s

rigid body motions, so these axis are assumed to be fixed in the locally rotating (material

corotational) coordinate system. This way, for anisotropic materials, the structure of the

elastic predictor-plastic corrector algorithms for small strain theory are used to numerically

integrate Equations 5.22, 5.23 and 4.40, before the mapping to the spatial configuration.

5.2.5.2 Determination of the rotation tensor

The numerical computation of the incremental rotation tensors is analysed in this section.

The rotation tensor Q?, associated to the skew-symmetric (spin) tensor Ω?, is obtained by

solving the following initial value problem,

Q̇? = Ω?Q?, with Q?
∣∣∣
t=0

= I. (5.32)

Following the work of Simo and Hughes (1998), this problem can be solved using the expo-

nential map according to

Q?
n+1 = exp(∆tΩ?

n+α)Q?
n, with Q?

∣∣∣
t=0

= I. (5.33)

The use of the exponential map ensures that the rotation tensor Q?
n+1 is indeed a rotation,

since a tensorial exponential function exactly maps skew-symmetric tensors onto orthogonal

ones. As pointed out by Simo and Hughes (1998), the algorithm of Equation 5.33 is consistent

with the initial value problem (5.32) and second-order accurate for the particular case of

α = 1/2. Moreover, the computation of Q?
n+α and Q?

n+1 is notably easy and straightforward

when α = 1/2 is considered. In this situation, one has

Q?
n+ 1

2

= Q̄?Q?
n, (5.34)

Q?
n+1 = Q̄?Q?

n+ 1
2

, thus (5.35)
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Q?
n+1 = Q̄?2Q?

n, (5.36)

where Q̄? is a proper orthogonal tensor.

On the other hand, considering the following property of a tensor exponential function,

exp(A + B) = exp(A)exp(B), if AB = BA, (5.37)

and bearing in mind that (∆tΩ?
n+ 1

2

)/2 commutes with itself, the algorithm of Equation 5.33

can be rewritten as

Q?
n+1 = exp

(
1

2
∆tΩ?

n+ 1
2

+
1

2
∆tΩ?

n+ 1
2

)
Q?
n

=

[
exp

(
1

2
∆tΩ?

n+ 1
2

)]2

Q?
n.

(5.38)

Comparison of Equations 5.36 and 5.38 provides the relation

Q̄? = exp

(
1

2
∆tΩ?

n+ 1
2

)
, (5.39)

which can be used to compute Q?
∆ and Q?

δ by replacing Equations 5.36 and 5.34 into Equations

5.26 and 5.27, respectively.

The computation of the tensor exponential function can be performed using a closed-form

expression, for any skew-symmetric tensor Ω?, using the Rodrigues’ formula. Nevertheless,

Q?
∆ can be computed in an approximated way according to

Q?
n+1 = exp

(
1

2
∆tΩ?

n+ 1
2

)
exp

(
1

2
∆tΩ?

n+ 1
2

)
Q?
n

Q?
n+1Q

?T
n =

[
exp

(
−1

2
∆tΩ?

n+ 1
2

)]−1

exp

(
1

2
∆tΩ?

n+ 1
2

)
Q?

∆ ≈
(

I− 1

2
∆tΩ?

n+ 1
2

)−1(
I +

1

2
∆tΩ?

n+ 1
2

)
,

(5.40)

where a first order truncation of the tensor exponential function was considered. This relation

can also be obtained if the standard version of the generalized midpoint rule is used to solve

the initial value problem 5.32 (Simo and Hughes, 1998).

Considering specific choices for the corotational objective rate, in the case of the Zaremba-

Jaumann rate (ΩZJ = w) the spin tensor at t = n+ α is computed according to

wn+α =
ln+α − lTn+α

2∆t
. (5.41)

The spatial velocity gradient is evaluated at t = n+ α from

ln+α = ∆Fn+αF−1
n+α, (5.42)
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where the relations

∆Fn+α =
1

α
(Fn+α − Fn) and (5.43)

Fn+α = αFn+1 + (1− α)Fn, (5.44)

hold. This task is simplified if the Green-McInnis-Naghdi rate is considered. In this case, the

rotation tensor between the local and the spatial configurations equals the rotation tensor

in the polar decomposition, i.e., QGMN
n+α = Rn+α. Thus, the algorithm presented above can

be avoided, since Rn+α can be obtained from the polar decomposition of the deformation

gradient Fn+α (Simo and Hughes, 1998).

5.3 Finite strain hyperelastoplasticity

In this section, a continuum mechanical extension of the rheological kinematic hardening

model of Armstrong-Frederick to 3D finite strains in the context of hyperelasticity is pre-

sented. As in Chapter 4, the constitutive equations are derived in a general way regarding the

yield function. This way, the yielding of the material can be described by any isotropic or ani-

sotropic (quadratic or nonquadratic) yield function. Hence, the model is able to successfully

overcome the limitation to quadratic yield criteria that is typical of the hyperelastic-based

anisotropic models in the literature.

Following the works of Dettmer and Reese (2004) and Vladimirov et al. (2008, 2010),

the constitutive equations are entirely defined in the reference configuration. Doing this way,

the formulations lead to objective tensorial objects only. Moreover, this approach avoids the

determination of the plastic spin, leading to the fact that only symmetric tensorial quantities

are considered in this model. This is advantageous regarding the numerical implementation

of the model into finite element codes, since it drastically reduces the number of nonlinear

scalar functions to be numerically integrated at the Gauss point level.

This approach is in contrast to, e.g., the concepts of hyperelastic-based anisotropic plas-

ticity of Eidel and Gruttmann (2003) and Sansour et al. (2007). While Eidel and Gruttmann

(2003) considers that the plastic spin is zero, coming from the assumption that the yield cri-

terion is dependent on the symmetric part of the relative stress only, in the work of Sansour

et al. (2007) a “material plastic spin”, related to the Mandel’s stress tensor, is defined. The

use of rate equations for symmetric tensors in finite plasticity has also been discussed by Han

et al. (2003) and Menzel and Steinmann (2003) for isotropic hardening and by Shutov and

Kreißig (2008) and Vladimirov et al. (2008, 2010) for isotropic-nonlinear kinematic hardening.

At the end of this section, an algorithm used to numerically integrate the constitutive

equations, based on the exponential map, is thoroughly discussed. The exponential map is

particularly interesting regarding its application to this constitutive model, since it preserves

the plastic isochoric behaviour and the symmetry of the variables (Dettmer and Reese, 2004).
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5.3.1 Kinematics

In this work, the widely accepted and physically motivated multiplicative decomposition of

the deformation gradient, i.e., F = FeFp, into elastic, Fe, and plastic, Fp, parts is assumed.

This decomposition introduces a (physically fictitious) local intermediate plastic (stress-free)

configuration, as shown in Fig. 5.1.

rc - Reference configuration
cc - Current configuration
ipc - Intermediate plastic configuration
ick - Intermediate configuration of

kinematic hardening

ccrc

ipcick

F

Fp
Fe

Fpi

Fpe

Figure 5.1: Multiplicative decompositions of the deformation gradients.

In the context of the Armstrong-Frederick kinematic hardening law, and in analogy to

the additive split of εp, the multiplicative split of the plastic deformation gradient,

Fp = FpeFpi , (5.45)

into “elastic”, Fpe , and “inelastic”, Fpi , parts, is assumed. This decomposition is physi-

cally motivated, since Fpe and Fpi have the same physical interpretations as εpe and εpi ,

respectively. Similarly to the decomposition of F, the multiplicative decomposition of Fp

introduces an additional configuration (see Fig. 5.1), usually referred to as the intermediate

configuration of kinematic hardening (Lion, 2000).

5.3.2 Helmholtz free energy potential

Taking into account the notion of elastic isomorphism (Bertram, 1998) and the principle of

material frame indifference, which impose that the constitutive equations must be indepen-

dent of superimposed rigid body motions, one can assume that the Helmholtz free energy

is only dependent on the elastic right Cauchy-Green deformation tensors Ce = FT
e Fe and

Cpe = FT
pe

Fpe . This way, analogously to the decomposition of Equation 4.7, the Helmholtz

free energy per unit volume associated to the Armstrong-Frederick model of kinematic hard-

ening can be additively split into three parts, as

ψ = ψe (Ce) + ψkin (Cpe) + ψiso (ε̄p) . (5.46)

As in Section 4.1.2, the terms ψe and ψkin represent the energy stored in the elastic and in the

hardening springs, respectively (see Fig. 3.6), while ψiso describes the isotropic hardening.
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5.3.3 Clausius-Duhem inequality

The constitutive equations of the hyperelastic-based model are derived in a thermodynami-

cally consistent manner in this section. The derivation is grounded on the Clausius-Duhem

form of the entropy inequality for isothermal processes (Equation 2.50) expressed in terms of

Lagrangian quantities (second Piola-Kirchhoff stress and right Cauchy-Green strain tensors),

i.e.,

−ψ̇ + S :
1

2
Ċ ≥ 0. (5.47)

By introducing the Helmholtz free energy into Equation 5.47 and differentiating with respect

to time, the Clausius-Duhem inequality becomes

−
(
∂ψe

∂Ce
: Ċe +

∂ψkin

∂Cpe

: Ċpe +
∂ψiso

∂ε̄p

˙̄εp

)
+ S :

1

2
Ċ ≥ 0. (5.48)

We should now exploit the terms inside the brackets in this inequality. Firstly, the elastic

right Cauchy-Green deformation tensor can be rewritten as

Ce = F−T
p CF−1

p , (5.49)

which material time derivative yields

Ċe = Ḟ−T
p CF−1

p + F−T
p ĊF−1

p + F−T
p CḞ−1

p . (5.50)

From the definition of the inverse of a tensor (F−1
p Fp = I) the relation

Ḟ−1
p = F−1

p ḞpF−1
p = F−1

p lp (5.51)

is obtained, where lp = ḞpF−1
p stands for the “plastic” velocity gradient. Taking this relation

into account, Ċe (Equation 5.50) can be rewritten as

Ċe = −lTp Ce + F−T
p ĊF−1

p −Celp. (5.52)

Employing the following properties of the double inner product of second-order tensors,

A : B = tr(ATB) = tr(ABT) and (5.53)

sym(A) : B = sym(A) : sym(B), (5.54)

one can arrive at the identities

∂ψe

∂Ce
: (Celp) =

(
Ce

∂ψe

∂Ce

)
: lp =

(
Ce

∂ψe

∂Ce

)
: dp and (5.55)

∂ψe

∂Ce
:
(
F−T

p ĊF−1
p

)
= 2

(
F−1

p

∂ψe

∂Ce
F−T

p

)
:

1

2
Ċ, (5.56)
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where the definition of the plastic rate of deformation tensor, dp = sym(lp), was considered.

The above derivation exploited the fact that, in this work, it is assumed that the free energy

ψe and ψkin parts are isotropic functions of the elastic right Cauchy-Green tensors Ce and

Cpe , respectively. This assumption ensures the coaxiality of the tensors Ce and ∂ψe/∂Ce and

of the tensors Cpe and ∂ψkin/∂Cpe , hence also the symmetry of the tensors Ce(∂ψe/∂Ce)

and Cpe(∂ψkin/∂Cpe), respectively.

Applying this procedure to Cpe , we arrive at

∂ψkin

∂Cpe

: Ċpe =

(
2Fpe

∂ψkin

∂Cpe

FT
pe

)
: dp −

(
2Cpe

∂ψkin

∂Cpe

)
: dpi , (5.57)

where the relation

dp =
1

2
F−T

p ĊpF−1
p (5.58)

was employed. Using the identities of Equations 5.55-5.57 in the Clausius-Duhem inequality

(Equation 5.48), it yields

(
S− 2F−1

p

∂ψe

∂Ce
F−T

p

)
:

1

2
Ċ +

(
2Ce

∂ψe

∂Ce
− 2Fpe

∂ψkin

∂Cpe

FT
pe

)
: dp

+

(
2Cpe

∂ψkin

∂Cpe

)
: dpi −

∂ψiso

∂ε̄p

˙̄εp ≥ 0. (5.59)

This inequality must be fulfilled for any arbitrary thermodynamic process, or in other words,

for any arbitrary Ċ, dp, dpi , and ˙̄εp. Thus, to stablish that this inequality is fulfilled regardless

to Ċ, the physically motivated expression for the second Piola-Kirchhoff stress tensor, S, is

commonly defined as

S = 2F−1
p

∂ψe

∂Ce
F−T

p . (5.60)

One may now introduce the so-called Mandel stress tensor expressed by

M = 2Ce
∂ψe

∂Ce
, (5.61)

and its analogous quantity related to the kinematic hardening,

Mkin = 2Cpe

∂ψkin

∂Cpe

. (5.62)

The symmetry of these stress tensors is guaranteed by the coaxiality of the tensors Ce and

∂ψe/∂Ce and of the tensors Cpe and ∂ψkin/∂Cpe , respectively.

It is assumed that ψkin has the same structure as ψe. Thus, by analogy to S, the back

stress tensor, X, in the reference configuration is defined as

X = 2F−1
pi

∂ψkin

∂Cpe

F−T
pi
, (5.63)
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whose push-forward to the intermediate configuration results on the back stress tensor

χ = FpXFT
p = 2Fpe

∂ψkin

∂Cpe

FT
pe
. (5.64)

Introducing the stress tensors indicated before and the stress-like isotropic hardening

variable, R, in the Clausius-Duhem inequality (Equation 5.59), it reduces to the form

Σ : dp + Mkin : dpi +R ˙̄εp ≥ 0, (5.65)

were Σ = M− χ is the relative stress in the intermediate configuration. This tensor, which

results from the subtraction of two symmetric tensors, is also a symmetric tensor.

5.3.4 Evolution equations

The inequality 5.65 is sufficiently satisfied by considering Equation 5.60 and the following

evolution equations,

dp = λ̇
∂Φ

∂Σ
, dpi = λ̇

b

c
MD

kin, and ˙̄εp = λ̇
∂Φ

∂R
= λ̇. (5.66)

Similarly to Equations 4.13a and 4.13b, Equation 5.66a represents the associated flow rule and

the evolution equation for the deformation variable related to kinematic hardening (Equation

5.66b) has been chosen according to Armstrong and Frederick (1966).

The yield potential and the loading/unloading conditions (Equation 4.20) complete the

set of constitutive equations.

The confirmation that the evolutions equations actually fulfil the Clausius-Duhem in-

equality 5.65 is presented now. It is easy to prove that the second term of Equation 5.65 is

naturally nonnegative:

Mkin : dpi = λ̇
b

c
Mkin : MD

kin = λ̇
b

c
MD

kin : MD
kin ≥ 0. (5.67)

The remaining of inequality 5.65 can be simplified in the following way,

Σ :

(
λ̇
∂Φ

∂Σ

)
+Rλ̇ = λ̇

[
Σ :

∂σ̄(Σ)

∂Σ
+R

]
= λ̇ [σ̄(Σ) +R] = λ̇ (Φ + σy0) ≥ 0. (5.68)

Taking into account the loading/unloading conditions and the positivity of the parameter

σy0 , this inequality results to be always ensured.

5.3.5 Representation in the reference configuration

Although the set of constitutive equations was consistently and completely derived at this

point, it should be noted that these equations are defined in different configurations. While S
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(Equation 5.60) acts in the reference configuration, Σ, M (Equation 5.61), and dp (Equation

5.66a) are expressed in the intermediate plastic configuration and Mkin (Equation 5.62) and

dpi (Equation 5.66b) are defined in the intermediate configuration of kinematic hardening.

The remaining constitutive equations are scalar functions. In the following, all constitutive

equations will be transformed to the reference (undeformed) configuration.

The use of this configuration is advantageous since it is known and kept constant during

the deformation process. It will turn out that there is no need to determine the intermediate

configurations, avoiding the computation of the (nonsymmetric) Fp and Fpi tensors. More-

over, in this work the pull-back to the reference configuration is carried out in such a way

that the symmetry of the constitutive variables is preserved for any arbitrary thermodynamic

process.

By introducing Equation 5.49 in Equation 5.61 and multiplying the left and the right

sides by the second-order identity tensor (I = F−1
p Fp = F−T

p FT
p ), yields

M = 2Ce
∂ψe

∂Ce

= FpF−1
p

(
2F−T

p CF−1
p

∂ψe

∂Ce

)
F−T

p FT
p

= Fp

(
F−1

p F−T
p C2F−1

p

∂ψe

∂Ce
F−T

p

)
FT

p

= Fp

(
C−1

p CS
)
FT

p .

(5.69)

Introducing this relation and the back stress tensor defined in the intermediate plastic con-

figuration, χ, in the definition of the relative stress tensor, one obtains

Σ = M− χ
= Fp

(
C−1

p CS
)
FT

p − FpXFT
p = Fp

(
C−1

p CS−X
)
FT

p

= FpYFT
p .

(5.70)

Here, the representation of the relative stress tensor in the reference configuration, Y, is

introduced as

Y = C−1
p CS−X. (5.71)

In addition, the pull-back of the deviatoric part of the relative stress tensor, ΣD, to the

reference configuration is carried out as

ΣD = FpYFT
p −

1

3
tr
(
FpYFT

p

)
I

= FpYFT
p −

1

3
tr
(
FT

p FpY
)
FpF−1

p F−T
p FT

p

= Fp

[
Y − 1

3
tr (CpY) C−1

p

]
FT

p

= Fp

[
(YCp)DC−1

p

]
FT

p = Fp

[
C−1

p (CpY)D
]
FT

p .

(5.72)
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Analogously, Mkin can be expressed as

Mkin = FpiYkinFT
pi
, (5.73)

where its representation in the reference configuration is defined as

Ykin = C−1
pi

CpX. (5.74)

The deviator of Mkin can be written by

MD
kin = Fpi

[
(YkinCpi)

DC−1
pi

]
FT

pi
= Fpi

[
C−1

pi
(CpiYkin)D

]
FT

pi
. (5.75)

At this point, attention will be focused on the representations of the evolution equations in

the reference configuration. Making use of the relation 5.58 and Equation 5.66a, the evolution

equation for the plastic right Cauchy-Green deformation tensor is expressed by

Ċp = 2λ̇FT
p

∂Φ

∂Σ
Fp = 2λ̇FT

p

(
∂Φ

∂Y
:
∂Y

∂Σ

)
Fp. (5.76)

Taking into account that(
∂Y

∂Σ

)
ijkl

=
1

4
[(F−1

p )
ik

(F−T
p )

lj
+ (F−1

p )
il
(F−T

p )
kj

+(F−1
p )

jk
(F−T

p )
li

+ (F−1
p )

jl
(F−T

p )
ki

],

(5.77)

Equation 5.76 now becomes

Ċp = 2λ̇nY, with nY =
∂Φ

∂Y
. (5.78)

Additionally, by using the relation Ċpi = 2FT
pi

dpiFpi and Equation 5.75 into 5.66b the fol-

lowing evolution for Cpi is obtained,

Ċpi = 2λ̇
b

c
(CpiYkin)DCpi . (5.79)

Remark 2 It will be now detailed the representation and the symmetry of the stress tensors

Y and Ykin. Taking into account that the free energy ψe is an isotropic function of Ce, one

can represent the tensor ∂ψe/∂Ce as an isotropic (tensor-valued) function of Ce, as follows

∂ψe
∂Ce

= α0I + α1Ce + α2C
2
e , (5.80)

where the scalar factors αi, with i = 0 . . . 2, are scalar-valued isotropic functions of Ce.

Introducing this expression in Equation 5.60 leads to
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S = 2F−1
p

∂ψe

∂Ce
F−T

p

= 2α0C
−1
p + 2α1C

−1
p CC−1

p + 2α2C
−1
p

(
CC−1

p

)2
.

(5.81)

This relation indicates that the second Piola-Kirchhoff stress tensor is in fact symmetric and

can be determined solely by means of C and Cp. Analagously, ∂ψkin/∂Cpe is an isotropic

function of Cpe and can be expressed by

∂ψkin

∂Cpe

= β0I + β1Cpe + β2C
2
pe
, (5.82)

where the scalar factors βi, with i = 0 . . . 2, are scalar-valued isotropic functions of Cpe .

Hence, the expression of the back stress tensor in the reference configuration may be defined

as

X = 2F−1
pi

∂ψkin

∂Cpe

F−T
pi

= 2β0C
−1
pi

+ 2β1C
−1
pi

CpC−1
pi

+ 2β2C
−1
pi

(
CpC−1

pi

)2
,

(5.83)

which shows that X is symmetric and can be fully expressed by Cp and Cpi only.

Introducing Equations 5.81 and 5.83 in the definition of the relative stress tensor in the

reference configuration (Equation 5.71) results in

Y = 2α0C
−1
p CC−1

p + 2α1C
−1
p CC−1

p CC−1
p + 2α2C

−1
p CC−1

p

(
CC−1

p

)2
− 2β0C

−1
pi
− 2β1C

−1
pi

CpC−1
pi
− 2β2C

−1
pi

(
CpC−1

pi

)2
, (5.84)

which is a symmetric tensor for every arbitrary deformation history. The same procedure

can be applied to confirm the symmetry of the tensor Ykin.

It should be mentioned that some works in the literature, related to the topic of consti-

tutive modelling of quadratic anisotropy and kinematic hardening at finite strains, perform

the pull-back according to Σ = F−T
p YFT

p and Mkin = F−T
pi

YkinFT
pi

, thus using the relations

Y = CS−CpX and (5.85)

Ykin = CpX, (5.86)

which are nonsymmetric tensors. Performing the derivation in a consistent way leads to

symmetric evolution equations for Cp and Cpi as well. However, in Vladimirov et al. (2010)

a complex symmetrization procedure was carried out which have affected the clarity of the

derivation, leading to additional CPU time effort and reducing the robustness of the numerical

implementation. These drawbacks are now completely overcome in the present model.
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5.3.6 Yield potential

The yield potential used in this model is expressed by quantities defined in the reference

configuration, as follows

Φ(Ā,Y, ε̄p) = σ̄(Ā,Y)− [σy0 −R(ε̄p)]. (5.87)

where Ā is the anisotropic tensor that acts on stress quantities defined in the reference

configuration in the Y stress space, whose components describe the anisotropy of the material.

The effective stress, σ̄, is not explicitly defined at this point to allow for the possibility of

implementation of any isotropic or anisotropic yield function.

Before moving to the description of the implementation of anisotropic yield functions into

this model, it is convenient to establish the relation between the relative stress state in the

reference configuration, Y, and the relative stress tensor in the current configuration in the

material corotational coordinate frame (or locally rotating configuration), η̂ = σ̂ − α̂.

Firstly, taking into account the relation between the relative stresses represented in the

global frame, η, and in the material corotational coordinate frame, η̂ = Q?TηQ?, and the

relation between the second Piola-Kirchhoff stress tensor and the Cauchy stress tensor (Equa-

tion 2.33), the following relation is obtained,

η̂ = J−1Q?TFTFTQ?, (5.88)

where T = S − ᾱ is the relative stress in the reference configuration related to the second

Piola-Kirchhoff stress space and Q? is the rotation tensor between the material corotational

and the global (spatial) coordinate frames (Equation 5.32).

Secondly, by employing the identity

Y = C−1
p C(S−C−1CpX︸ ︷︷ ︸

= ᾱ

) = C−1
p CT, (5.89)

the following relation between the relative stresses in the current and reference configurations

is obtained,

η̂ = J−1Q?TF−TCpYFTQ?. (5.90)

In this work, it is assumed that the deformation-induced anisotropy of the material (e.g.,

associated with plastic deformation during stamping operations) is small and negligible com-

pared to the initial anisotropy (induced by rolling and heat treatment of the material’s pro-

duction process). Therefore, the directions of the material’s anisotropy axes are fixed in

the current configuration in the material corotational (locally rotating) coordinate frame.

Quantities defined in this coordinate frame, and thus also the material’s anisotropic axis, are

unaffected by superposed rigid body motions.
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The choice of this approach in detriment of formulations that express the yield function

in the intermediate configuration provides an increase of numerical efficiency, since the later

would entail the determination of the nonsymmetric tensors Fp and Fe. Special attention

should be paid to the representation of the yield function, since it must always obey the

principle of material frame indifference.

In the following, a procedure to be carried out in order to represent anisotropic yield

criteria as a function of arguments solely defined in the reference configuration is employed for

the quadratic criterion proposed by Hill (1948) and for the nonquadratic criterion, Yld2004-

18p, proposed by Barlat et al. (2005). Here, the yield functions are represented by quantities

defined in the reference configuration by exploiting the principle of material frame indifference.

In the context of yield functions, this principle states that a yield function must provide the

same value if expressed by arguments defined in the current or reference configuration, i.e.,

σ̄ (A, η̂) = σ̄
(
Ā,Y

)
, (5.91)

where A is a fourth-order anisotropic tensor related to stress quantities expressed in the

current configuration in the material corotational coordinate frame.

(Quadratic) Hill 1948 yield function Regarding the yield function proposed by Hill

(1948), the effective stress is given by σ̄ =
√
η̂ : A : η̂. Introducing the relation 5.90 in this

yield function, one obtains

η̂ : A : η̂ = η̂ijAijklη̂kl

= J−2(Q?TF−TCp)imYmn(FTQ?)njAijkl(Q
?TF−TCp)koYop(F

TQ?)pl

= YmnĀmnopYop = Y : Ā : Y.

(5.92)

The fourth-order tensor Ā is related to the anisotropic tensor A following the expression

Āmnop = J−2(CpF−1Q?)mi(F
TQ?)nj(CpF−1Q?)ok(F

TQ?)plAijkl. (5.93)

The fourth-order anisotropic tensor A can in turn be represented by means of structural

tensors (Vladimirov et al., 2010), following

A = a1I + a2M1 ⊗M1 + a3M2 ⊗M2 + a4(M1 ⊗M2 + M2 ⊗M1) + a5G1 + a6G2, (5.94)

where the auxiliary fourth-order tensors G1 and G2 are given by

(Gα)ijkl =
1

2
[(Mα)ikδjl + (Mα)ilδjk + (Mα)jkδil + (Mα)jlδik] ∀ α = 1, 2. (5.95)

The coefficients ai, with i = 1 . . . 6, are related to the classical Hill’s coefficients (F , G, H, L,

M , and N). The structural tensors represent the symmetry of the material and are expressed
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as

Mi = Ni ⊗Ni ∀ i = 1 . . . 3, (5.96)

where Ni are the privileged directions of the material.

Applying Equation 5.93 to the anisotropic tensor defined by Equation 5.94 and consider-

ing, for the sake of simplicity, only the second term, yields

M1 ⊗M1 → J−2(CpF−1Q?)mi(F
TQ?)nj(CpF−1Q?)ok(F

TQ?)pl(M1)ij(M1)kl

= (M̄1)mn(M̄1)op, (5.97)

where the structural tensor in the reference configuration is expressed as

M̄1 = J−1CpF−1Q?M1Q
?TF

= J−1(CpF−1Q?N1)⊗ (N1Q
?TF)

= N̄′1 ⊗ N̄′′1,

(5.98)

which is dependent on two privileged directions that distinctly evolve according to

N̄′1 = J−
1
2 CpF−1Q?N1 and N̄′′1 = J−

1
2 N1Q

?TF. (5.99)

The representation of the remaining terms of Equation 5.94 in the reference configuration

may be done following the same procedure.

(Nonquadratic) Yld2004-18p yield function As mentioned in Section 3.3.2, this

anisotropic yield function employs the concept of linear transformations in order to introduce

the anisotropy into an isotropic yield function (see Equations 3.48 and 3.49). This way, the

Yld2004-18p yield function is an isotropic convex function with respect to s̃(k) (k = 1, 2), i.e.,

Φ(s̃(1), s̃(2), ε̄p) = σ̄(s̃(1), s̃(2))− [σy0 −R(ε̄p)]. (5.100)

Taking this isotropy into account, the condition 5.91 is fulfilled for this yield function by

ensuring that the stress tensors s̃(k) are independent of the configuration in which the stress

tensor used in the linear transformations is defined, i.e.,

s̃(k) = L(k) : η̂ = L̄(k) : Y, (5.101)

where L̄(k) stands for the fourth-order anisotropic tensors that act in the reference configu-

ration.

Employing the relation 5.91 in the condition 5.101, yields
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s̃
(k)
ij = L

(k)
ijmnη̂mn

= L
(k)
ijmnJ

−1(Q?TF−TCp)moYop(F
TQ?)pn

= L̄
(k)
ijopYop,

(5.102)

where

L̄
(k)
ijop = J−1(CpF−1Q?)om(FTQ?)pnL

(k)
ijmn. (5.103)

This fourth-order anisotropic tensor ensures that the equality 5.101 is always fulfilled.

From relations 5.99 and 5.103 it can be seen that, if the material’s anisotropy was assumed

to be constant in the reference configuration, the orthotropic symmetry of the material in the

current configuration would be destroyed when deformation occurred. This is an issue in the

large deformation regime, because it leads to unrealistic evolution of the material’s anisotropy.

In previous works on finite anisotropic plasticity (Vladimirov et al., 2010) employing the Hill

(1948)’s quadratic yield criterion, the fourth-order anisotropic tensor was assumed to be

constant in the reference configuration. Thus, from Equation 5.93 one can easily see that the

anisotropy was, in contrast to the present formulation, dependent on F.

5.3.7 Continuous elastoplastic tangent modulus

As the presented constitutive model is formulated in the reference configuration, the La-

grangian continuous elastoplastic tangent modulus relates the rate of the right Cauchy-Green

deformation tensor to the rate of the second Piola-Kirchhoff stress tensor, according to

Ṡ = Dep : Ė(2) = Dep :
1

2
Ċ. (5.104)

Bearing in mind that S is fully defined by C, Cp and proper scalar-factors (see Equation

5.81), its rate can be represented in the form

Ṡ = 2
∂S

∂C
:

1

2
Ċ + 2δ

∂S

∂Cp
: nYλ̇, (5.105)

where the rate of Cp, given by Equation 5.78, is taken into account. During plastic loading,

λ̇ 6= 0, the consistency condition implies

Φ̇ = nY : Ẏ −Hλ̇ = 0. (5.106)

Differentiating Equation 5.71 in order to the time, the rate of the stress tensor Y is

expressed as
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Ẏ = ˙(
C−1

p

)
CS + C−1

p ĊS + C−1
p CṠ− Ẋ

= −2C−1
p nYC−1

p CSλ̇+ C−1
p ĊS + C−1

p C

(
2
∂S

∂C
:

1

2
Ċ + 2

∂S

∂Cp
: nYλ̇

)
− 2

∂X

∂Cp
: nYλ̇− 2

b

c

∂X

∂Cpi

:
[
(CpiYkin)DCpi

]
λ̇,

(5.107)

where the Equations 5.78 and 5.105 and the relation ˙(A−1) = −A−1ȦA−1 are considered.

Moreover, in the above expression, the following rate of the back stress is taken into account,

Ẋ = 2
∂X

∂Cp
: nYλ̇+ 2

b

c

∂X

∂Cpi

:
[
(CpiYkin)DCpi

]
λ̇, (5.108)

where the evolution rates of Cp and Cpi (Equations 5.78 and 5.79, respectively) are employed.

By introducing Equation 5.107 into the consistency condition (Equation 5.106) and solving

the relation in order to the rate of the plastic multiplier, it is obtained

λ̇ =
AN

AD
:

1

2
Ċ, (5.109)

where the auxiliary variables

(AN)ij = (nY)kl

[
(C−1

p )kiSjl + (C−1
p )kmCmn

(
∂S

∂C

)
nlij

]
and (5.110)

AD = nY :

{
C−1

p nYC−1
p CS−C−1

p C
∂S

∂Cp
: nY

+
∂X

∂Cp
: nY +

b

c

∂X

∂Cpi

:
[
(CpiYkin)DCpi

]}
+H, (5.111)

are introduced. The continuous elastoplastic tangent modulus is finally obtained by replacing

Equation 5.109 into Equation 5.105,

Dep =
∂Ṡ

∂Ė(2)
= 2

∂S

∂C
+ 2δ

∂S

∂Cp
: nY ⊗

AN

AD
. (5.112)

5.3.8 Summary of the constitutive model

The set of constitutive equations of the present model are summarized in Box 5.1. All tensor-

valued equations are formulated in the reference configuration and are defined solely by the

symmetric tensors C, Cp, and Cpi , and the plastic multiplier λ̇. The quantities Cp, Cpi , and

ε̄p are the so-called internal variables of the constitutive model which describe the evolutions

of the plastic deformation, kinematic hardening, and isotropic hardening, respectively. It is

worth to highlight that the present constitutive model have been derived in a general way,

hence it is suitable for any yield criterion and isotropic hardening law.

For the sake of generality of the model, up to this point S and X are determined by
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derivatives of the Helmholtz free energy, the particular form of which has not been specified

yet. To perform the numerical simulations discussed in Chapter 7, the free energy terms ψe

and ψkin are assumed to follow the well-known Neo-Hookean form. Consequently, the model

is able to represent the behaviour of materials under both finite elastic and finite plastic

strains. Doing this way, the model can be applied to describe the behaviour of materials

where finite elastic strains take place, e.g., polymeric materials. The free energy terms are

then particularized as

ψe (Ce) =
µe

2
(trCe − 3)− µeln

(√
detCe

)
+

Λe

4

[
detCe − 1− 2ln

(√
detCe

)]
and

(5.113)

ψkin (Cpe) =
c

4
(trCpe − 3)− c

2
ln
(√

detCpe

)
. (5.114)

Following this assumption, the second Piola-Kirchhoff stress tensor and the back stress tensor

in the reference configuration are expressed as

S = µe(C
−1
p −C−1) +

Λe

2

(
detC

detCp
− 1

)
C−1 and (5.115)

X =
c

2
(C−1

pi
−C−1

p ), (5.116)

respectively.

Box 5.1: Hyperelastoplastic constitutive model

Kinematics F = FeFp, Fp = FpeFpi ,

Cp = FT
p Fp, Cpi = FT

pi
Fpi

Helmholtz free energy ψ = ψe (Ce) + ψkin (Cpe) + ψiso (ε̄p)

Stress tensors S = 2F−1
p

∂ψe

∂Ce
F−T

p , X = 2F−1
pi

∂ψkin

∂Cpe

F−T
pi
,

Y = C−1
p CS−X, Ykin = C−1

pi
CpX

Evolution equations Ċp = 2λ̇nY, Ċpi = 2λ̇
b

c
(CpiYkin)DCpi , ˙̄εp = λ̇

Yield function Φ(Y, ε̄p) = σ̄(Y)− [σy0 −R(ε̄p)],

Loading/unloading conditions λ̇ ≥ 0, Φ ≤ 0, λ̇Φ = 0

Continuous tangent modulus Dep = 2
∂S

∂C
+ 2δ

∂S

∂Cp
: nY ⊗

AN

AD
.
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5.3.9 Numerical implementation

In this section the procedures to be followed in order to implement the hyperelastoplastic

constitutive model into a numerical simulation code are presented. An integration algorithm

based on the elastic predictor-plastic corrector method is presented, along with its consis-

tent (algorithmic) elastoplastic tangent modulus. The tensor-valued evolution equations are

implicitly integrated according to the exponential map.

5.3.9.1 Integration of the evolution equations based on the exponential map

The numerical implementation of the presented constitutive model require the integration of

the differential evolution equations presented in Box 5.1 along the time interval [tn, tn+1] ⊂
[t0, tend] of duration ∆t = tn+1 − tn. Here, a backward-Euler scheme is built based on the

exponential map in order to integrate the tensor-valued evolution equations of Cp and Cpi .

The exponential map was firstly introduced in the context of computational plasticity by

Weber and Anand (1990). Its application ranges from problems of crystal plasticity (Miehe,

1996a, Souza Neto, 2001), viscoelasticity (Reese and Govindjee, 1998), isotropic elastoplas-

ticity (Simo, 1992) to combined isotropic-nonlinear kinematic elastoplasticity (Dettmer and

Reese, 2004, Vladimirov et al., 2008, 2010). The exponential map is very attractive for models

defined by evolution equations of deviatoric character, since it exactly preserves the inelastic

incompressibility of the material, i.e., detCp = 1. Another feature of the exponential map is

the fact that it automatically preserves the symmetry of the internal variables, hence allowing

the use of the spectral decomposition of the tensor-valued arguments.

The evolution equations of Cp (Equation 5.78) and Cpi (Equation 5.79) can be written

in a more general form as

Ȧ = λ̇f(C,Cp,Cpi) = g(C,Cp,Cpi)A, (5.117)

where g = λ̇fA−1 is a nonsymmetric tensor. It is worth noting that the function f is a

symmetric tensor, since A is symmetric. If the function g is constant (g = g0), the exact

solution of the differential equation Ȧ = g0A is given analytically by A(t) = exp[(t −
tn)g0]A(tn). Nevertheless, the function g is, in general, nonlinear in the time interval [tn, tn+1]

and thus an analytical solution of the Equation 5.117 is not available. For that reason, an

approximated solution is used following

A(t) = exp(ḡ)A(tn) = exp(∆λfA−1)A(tn), (5.118)

where the term ḡ = ∆λfA−1 is kept piecewise constant in the time interval [tn, tn+1]. Since

in this work we employ a implicit integration scheme, this term refer to the time tn+1 and

thus it is updated iteratively. For the sake of simplicity, the subscript n+ 1 is omitted in the

following equations. Thus, and unless otherwise indicated, all quantities refer to tn+1.
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The nonsymmetry of ḡ imposes the use of the power series representation,

exp(ḡ) =

∞∑
k=0

1

k!
ḡk, (5.119)

if the implicit integration formula (Equation 5.118) is directly employed to solve Equation

5.117. Pietryga et al. (2014) assessed the performance of integration algorithms that use

the power series representation and the spectral decomposition (see Equation 5.122), in the

context of elastoplasticity and viscoplasticity. They concluded that the use of the power

series representation is computationally faster if a small number of terms is considered, at

the expense of some accuracy.

Dettmer and Reese (2004) suggested a methodology to preserve the symmetry of the

internal variable A, by multiplying the approximated solution (Equation 5.118) by A−1
n A

from the right side. Applying this methodology to the evolution equation of Cp, it yields

CpC−1
pnCp = exp(∆λfC−1

p )CpnC−1
pnCp

=
∞∑
k=0

1

k!
(∆λfC−1

p )
k
Cp

=

[
I + ∆λfC−1

p +
∆λ2

2
(fC−1

p )2 + . . .

]
Cp

=

{
Up

[
I + ∆λU−1

p fU−1
p +

∆λ2

2
(U−1

p fU−1
p )2 + . . .

]
U−1

p

}
Cp

= Up exp(∆λU−1
p fU−1

p )Up,

(5.120)

where the definition

f = 2nY, (5.121)

holds and Up =
√

Cp, is the plastic right stretch tensor. Since U−1
p fU−1

p is a symmetric

tensor, exp(∆λU−1
p fU−1

p ) can be represented by means of the spectral decomposition, i.e.,

Z = ZT =
3∑

A=1

ZAnA ⊗ nA ⇒ exp Z =
3∑

A=1

(expZA)nA ⊗ nA, (5.122)

where ZA and nA are the eigenvalues and eigenvectors of the symmetric tensor Z, respectively.

The final form of the integrated plastic flow rule is derived from Equation 5.120 and is

expressed as

C−1
pn = U−1

p exp(∆λU−1
p fU−1

p )U−1
p . (5.123)

We should now confirm that the inelastic incompressibility is ensured throughout the

numerical analysis, i.e, detCp = 1. By applying the determinant operator in Equation 5.123
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and making use of the identity det[exp(Z)] = exp[tr(Z)], the relation

detC−1
pn = detU−1

p det[ exp(∆λU−1
p fU−1

p )]detU−1
p

= (detUp)−1 exp[tr(∆λU−1
p fU−1

p )](detUp)−1,
(5.124)

is obtained. One can rewrite the trace of the product ∆λU−1
p fU−1

p as

tr
(
2∆λU−1

p nYU−1
p

)
= 2∆λtr

[
U−1

p

(
n :

∂η̂

∂Y

)
U−1

p

]
= 2∆λtr

[
J−1U−1

p CpF−1Q?nQ?TFU−1
p

]
= 2∆λJ−1tr

(
Q?TFC−1

p CpF−1Q?n
)

= 2∆λJ−1tr (n) = 0,

(5.125)

where the property tr (n) = 0 was employed. In the above equation, from the relation 5.90,

the following identity was inserted,(
∂η̂

∂Y

)
ijkl

= J−1(Q?TF−TCp)ik(F
TQ?)lj . (5.126)

Introducing Equation 5.125 in the expression of the determinant of C−1
pn (Equation 5.124),

results into

detC−1
pn = (detUp)−1 exp

[
2∆λJ−1tr (n)

]
(detUp)−1

(detCpn)−1 = (detUp)−2

= (detCp)−1,

(5.127)

which confirms that detCp = detCpn = 1.

Following the same line of though, the integrated formula for the kinematic hardening

rule (Equation 5.79) can be obtained analogously as

C−1
pin

= U−1
pi

exp(∆λU−1
pi

fkinU−1
pi

)U−1
pi
, (5.128)

where the definition

fkin = 2
b

c
(CpiYkin)DCpi , (5.129)

stands.

Remark 3 The standard backward-Euler integration scheme can be used to integrate the

evolution equation represented by Equation 5.117. Following this scheme the time derivative

is replaced by the difference quotient (Equation 4.37), leading to the implicit integration

formula

An+1 = An + gn+1An+1∆t. (5.130)
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However, the fact that the standard backward-Euler scheme does not preserve the plastic

incompressibility represents a major drawback. It leads to nonphysical solutions with large

errors if large step sizes are considered. In order to eliminate these errors additional as-

sumptions must be included so that the condition detCp = 1 is fulfilled (Lührs et al., 1997,

Helm, 2006, Vladimirov et al., 2008, Shutov and Kreißig, 2008). In addition, the exponential

map provides a better performance comparatively to the standard backward-Euler scheme for

large strain increments, as shown by Vladimirov et al. (2008) for finite strain and by Artioli

et al. (2006, 2007) for small strain formulations.

Finally, the time discretization of the scalar evolution equation for the isotropic hardening

variable (Equation 5.66c) is carried out following the classical backward-Euler integration

scheme by employing the difference quotient (Equation 4.37), resulting on Equation 4.40.

5.3.9.2 Integration algorithm

The elastic predictor-plastic corrector method presented in Section 4.3.2 is used here to

numerically integrate the constitutive equations of the hyperelastic-based model.

Firstly, the rotation tensor Q?
n+1 is computed according to Equation 5.36 and the trial

quantities are computed based of the assumption that no plastic flow, and thus no evolution

of internal variables, occurs, i.e.,

∆λ = 0, (5.131)

Ctrial
pn+1

= Cpn = U2
pn , (5.132)

Ctrial
pin+1

= Cpin
= U2

pin
, (5.133)

Strial
n+1 = µe(C

−1
pn −C−1

n+1) +
Λe

2

(
detCn+1

detCpn

− 1

)
C−1
n+1, (5.134)

Xtrial
n+1 =

c

2
(C−1

pin
−C−1

pn ), (5.135)

Ytrial
n+1 = C−1

pnCn+1S
trial
n+1 −Xtrial

n+1, (5.136)

Ātrial
n+1 = Ā

(
A,Fn+1,Q

?
n+1,Cpn

)
, and (5.137)

ε̄trial
pn+1

= ε̄pn . (5.138)

Secondly, the yield condition is evaluated based on the trial quantities, i.e.,

Φtrial = Φ(Ytrial
n+1, Ātrial

n+1, ε̄
trial
pn+1

). (5.139)

Then, if the initial assumption is not verified (Φtrial > 0), the plastic corrector phase is

performed by solving the nonlinear evolution equations, implicit integration formulas of which

are presented in Section 5.3.9.1, imposing that the yield condition must be satisfied at tn+1.

The system of equations to be solved can be represented in residuum format as
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r1 = Φ(Y) = 0, (5.140)

r2 = −C−1
pn + U−1

p exp(∆λU−1
p fU−1

p )U−1
p = 0, and (5.141)

r3 = −C−1
pin

+ U−1
pi

exp(∆λU−1
pi

fkinU−1
pi

)U−1
pi

= 0. (5.142)

This system of equations consists of 13 nonlinear scalar functions and has to be solved it-

eratively, employing e.g., Newton’s method, until the residua converge to zero within a pre-

scribed tolerance. Due to the fact that the symmetry of the constitutive model’s variables

was exploited, the second-order tensor-valued residua, r2 and r3, can be represented as six-

dimensional arrays following the Voigt’s notation. This is in contrast to constitutive models

which use Fp and Fpi as internal variables. Such models involve the solution of 19 equations

at the Gauss point level which leads to a significantly higher CPU time effort and higher

memory allocation.

If the system of Equations 5.140-5.142 is solved according to the Newton method, the

residua are linearised around the current values of the state variables. The linearisation of

the residua 5.140-5.142 is presented in Appendix B. Then, the increments, at each iteration

i, of the state variables are obtained from

∆∆λ

∆U−1
p

∆U−1
pi


= −



r1

r2

r3





∂r1

∂(∆λ)

∂r1

∂U−1
p

∂r1

∂U−1
pi

∂r2

∂(∆λ)

∂r2

∂U−1
p

∂r2

∂U−1
pi

∂r3

∂(∆λ)

∂r3

∂U−1
p

∂r3

∂U−1
pi



−1

, (5.143)

where the superscripts i are omitted for the sake of simplicity. At each iteration, the state

variables are updated following

∆λi = ∆λi−1 + ∆∆λi, (5.144)

(U−1
p )i = (U−1

p )i−1 + (∆U−1
p )i, and (5.145)

(U−1
pi

)i = (U−1
pi

)i−1 + (∆U−1
pi

)i. (5.146)

This integration algorithm is summarized in Box 5.2.

5.3.9.3 Consistent elastoplastic tangent modulus

In analogy to the continuous elastoplastic tangent modulus presented in Section 5.3.7, the

algorithmic elastoplastic tangent modulus, consistent with the numerical algorithm used to

integrate the constitutive equations of the hyperelastic-based model, relates the increments
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Box 5.2: Implicit numerical integration of the hyperelastic-based model.

Given Fn+1 and the history data Q?
n, ε̄pn , Upn , and Upin

1. Compute Cn+1 and Q?
n+1 (Equation 5.36)

2. Set initial estimate (trial) values (Equations 5.131-5.138)
3. Evaluate the yield potential (Equation 5.139)
4. Check for plasticity onset:

IF (Φtrial ≤ 0) THEN
a) Set variables at tn+1

Sn+1 = Strial
n+1, ε̄pn+1 = ε̄trial

pn+1
, Upn+1 = Utrial

pn+1
, and Upin+1

= Utrial
pin+1

b) EXIT
ELSE

a) Compute the auxiliary residua r0
1, r0

2, and r0
3 (Equations 5.140-5.142)

b) Evaluate the root-mean-square value of the total residuum

‖ r0 ‖=
√

(r0
1)2+ ‖ r0

2 ‖2 + ‖ r0
3 ‖2

c) Iterative procedure (TOL = 10−8):

DO WHILE ‖ r ‖> TOL

i) Linearise the residua (Appendix B)

ii) Compute the increments ∆∆λi, (∆U−1
p )i, and (∆U−1

pi
)i

(Equation 5.143)

iii) Update the state variables ∆λi, (U−1
p )i, and (U−1

pi
)i

(Equations 5.144-5.146)

iv) Re-evaluate the auxiliary residua, ri1, ri2, and ri3
and the root-mean-square value of the total residuum, ‖ ri ‖

ENDDO

d) EXIT
ENDIF

5. Compute the Cauchy stress tensor at tn+1

σn+1 = J−1FSn+1F
T

of the right Cauchy-Green deformation tensor to the increment of the second Piola-Kirchhoff

stress tensor, according to

∆S = Dalg
ep : ∆E(2) = Dalg

ep :
1

2
∆C. (5.147)

Here, Dalg
ep is obtained following the procedure presented in the works of Dettmer and

Reese (2004) and Vladimirov et al. (2010). Taking into account that S is a function of the

tensors C and Cp (Equation 5.81), the last relation can be expressed as

∆S =

(
2
∂S

∂C
+ 2δ

∂S

∂Cp
:
∂Cp

∂C

)
:

1

2
∆C, (5.148)
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where the right Cauchy-Green deformation tensor C is now treated as a variable, whereas

during the local iteration procedure it was treated as a known constant. This way, after

convergence of the local solution the residua 5.140-5.142 can be represented as

r1 = r1(∆λ,C,Cp,Cpi) = 0, (5.149)

r2 = r2(∆λ,C,Cp,Cpi) = 0, and (5.150)

r3 = r3(∆λ,Cp,Cpi) = 0. (5.151)

Note that there is no dependency of r3 on C due to the independence of fkin with regard to

C. Linearising and solving this system of equations in order to ∆Cp, the following relation

between ∆C and ∆Cp is obtained,

∆Cp =
∂Cp

∂C
: ∆C = −A−1

p : Ac : ∆C, (5.152)

where the auxiliary fourth-order tensors Ac and Ap are expressed, without derivation, as

Ac = M(2)
c −M(2)

pi
: (M(3)

pi
)−1 : M(3)

c and (5.153)

Ap = M(2)
p −M(2)

pi
: (M(3)

pi
)−1 : M(3)

p . (5.154)

which are functions of the fourth-order tensors

M(k)
c =

∂rk
∂C
−
[
∂r1

∂(∆λ)

]−1 ∂rk
∂(∆λ)

⊗ ∂r1

∂C
, (5.155)

M(k)
p =

∂rk
∂Cp

−
[
∂r1

∂(∆λ)

]−1 ∂rk
∂(∆λ)

⊗ ∂r1

∂Cp
, and (5.156)

M(k)
pi

=
∂rk
∂Cpi

−
[
∂r1

∂(∆λ)

]−1 ∂rk
∂(∆λ)

⊗ ∂r1

∂Cpi

, (5.157)

with k = 2, 3. The algorithmic tangent for the numerical integration procedure presented in

Section 5.3.9.2, associated to the present constitutive model, is finally expressed by

Dalg
ep = 2

∂S

∂C
− 2δ

∂S

∂Cp
: A−1

p : Ac. (5.158)

5.4 Finite strain hyperelastoplasticity with multiple back stress

components

Based on the modified rheological model of kinematic hardening presented in Section 3.4.2.2,

the hyperelastic-based constitutive model presented in Section 5.3 is extended in this section.

The following modifications allow for a better description of the nonlinear cyclic hardening

behaviour due to the use of multiple back stress components. For the sake of simplicity only

the main modifications are presented in this section.
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Similarly to the present model, the hyperelastic-based formulations proposed by Tsak-

makis (1996) and Wallin and Ristinmaa (2005) incorporates several back stress components.

Their works are limited to the isotropic criterion of von Mises and are not based on the

multiplicative slip of Fp, which is in contrast to the formulation presented in this section.

While in Wallin and Ristinmaa (2005) it is employed a nonassociated flow rule, where the

plastic potential, distinct from the yield potential, is used to compute the strain-like internal

variables related to the kinematic hardening, in Tsakmakis (1996) the back stress tensor usu-

ally used in the yield function is replaced by the quantity k = χ+ (2/c)χχ and an objective

rate of the back stress tensor, χ, in the intermediate configuration, that follows the classical

Armstrong-Frederick evolution law (similarly to Equation 5.18), is employed.

In this work an innovative and distinct approach is followed. By considering the modified

rheological model of Armstrong-Frederick kinematic hardening, several multiplicative decom-

positions of Fp are taken into account, resulting on multiple strain-like variables (Cj
pi , see

Equation 5.167) that describe the complex kinematic hardening behaviour. Moreover, since

the derivation of the constitutive equations follows the same approach as for the hyperelastic-

based model presented in Section 5.3, all the resultant tensor-valued quantities are symmetric.

Kinematics The kinematic hardening law with multiple (N) back stress components

is described in this model through N multiplicative decompositions of the plastic part of the

deformation gradient into elastic and inelastic parts, i.e.,

Fp = Fj
pe

Fj
pi
∀ j = 1 . . . N. (5.159)

Moreover, this decomposition introduces N additional configurations, as schematically rep-

resented in Fig. 5.2.

rc - Reference configuration
cc - Current configuration
ipc - Intermediate plastic configuration
ick - Intermediate configurations of

kinematic hardening

ccrc

ipc

F

Fp

Fe

F1
pi

Fj
pe

F1
pe

FN
pe

Fj
piFN

pi

(N)
ick

(j)
ick

(1)
ick

Figure 5.2: Multiplicative decompositions of the deformation gradients considering multiple
back stress components.

Helmholtz free energy potential Multiple energy parts, ψjkin, related to the hard-

ening springs (see Fig. 3.7) are included in the Helmholtz free energy potential. Similarly to
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the split of Equation 5.46, the Helmholtz potential can be additively split according to

ψ = ψe (Ce) +
N∑
j=1

ψjkin

(
Cj

pe

)
+ ψiso (ε̄p) . (5.160)

Clausius-Duhem inequality Introducing the Helmholtz free energy potential into

the Clausius-Duhem inequality (Equation 5.47) and considering the procedure presented in

Section 5.3.3, the following simplified inequality is obtained,

Σ : dp +

N∑
j=1

Mj
kin : djpi

+R ˙̄εp ≥ 0, (5.161)

where the relative stress in the intermediate configuration is now given by Σ = M −∑N
j=1χ

j . The component j of the back stress tensor in the intermediate configuration

is defined as χj = FpXjFT
p , whose representation in the reference configuration is ex-

pressed by Xj = 2(Fj
pi)
−1(∂ψjkin/∂Cj

pe)(F
j
pi)
−T. Moreover, the stress quantities Mj

kin, anal-

ogous to the Mandel stress tensor and related to the kinematic hardening, are defined by

Mj
kin = 2Cj

pe(∂ψ
j
kin/∂Cj

pe), and djpi = sym[Ḟj
pi(F

j
pi)
−1].

Evolution equations The inequality 5.161 is sufficiently satisfied by assuming that

djpi
= λ̇

bj

cj
(Mj

kin)D ∀ j = 1 . . . N, (5.162)

and taking the evolution Equations of 5.66a and 5.66c into account.

Finally, the yield function (Equation 5.87) and the loading/unloading conditions (Equa-

tion 4.20) complete the set of constitutive equations.

Representation in the reference configuration Analogously to the pull-back of

Equation 5.70, the representation of the relative stress, that accounts for multiple back stress

components, in the reference configuration is expressed by

Y = C−1
p CS−

N∑
j=1

Xj . (5.163)

The pull-back of Mj
kin from the intermediate configuration j of the kinematic hardening

to the reference configuration is carried out, analogously to Equation 5.73, according to

Mj
kin = Fj

pi
Yj

kin(Fj
pi

)T ∀ j = 1 . . . N, (5.164)

representation of which in the reference configuration is defined as

Yj
kin = (Cj

pi
)−1CpXj ∀ j = 1 . . . N, (5.165)
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and deviator of which can be expressed by

(Mj
kin)D = Fj

pi

[(
Yj

kinCj
pi

)D
(Cj

pi
)−1

]
(Fj

pi
)T = Fj

pi

[
(Cj

pi
)−1
(
Cj

pi
Yj

kin

)D
]

(Fj
pi

)T. (5.166)

Finally, by employing the relation Ċj
pi = 2(Fj

pi)
TdjpiF

j
pi and the above equation in Equa-

tion 5.162 the evolution equation of Cj
pi can be expressed by

Ċj
pi

= 2λ̇
bj

cj
(Cj

pi
Yj

kin)DCj
pi
∀ j = 1 . . . N. (5.167)

Continuous elastoplastic tangent modulus Following the procedure presented in

Section 5.3.7, the continuous elastoplastic tangent modulus related to the model that accounts

for multiple back stress components is expressed, without derivation, by

Dep =
∂Ṡ

∂Ė(2)
= 2

∂S

∂C
+ 2δ

∂S

∂Cp
: nY ⊗

AN

AΣ
D

, (5.168)

where AN is given by Equation 5.110 and

AΣ
D = nY :

C−1
p nYC−1

p CS−C−1
p C

∂S

∂Cp
: nY

+
N∑
j=1

{
∂Xj

∂Cp
: nY +

bj

cj
∂Xj

∂Cj
pi

:

[(
Cj

pi
Yj

kin

)D
Cj

pi

]}+H. (5.169)

Summary of the constitutive model Box 5.3 summarizes the set of constitutive

equations of the present model. The evolutions of the plastic deformation and hardening

(isotropic and kinematic) are described by N + 2 internal variables, namely Cp, Cj
pi , and

ε̄p. In analogy to Equation 5.114, the free energy terms ψjkin are assumed to follow the

Neo-Hookean form, i.e.,

ψjkin

(
Cj

pe

)
=
cj

4

(
trCj

pe
− 3
)
− cj

2
ln

(√
detCj

pe

)
∀ j = 1 . . . N. (5.170)

Hence, the back stress components in the reference configuration are expressed as

Xj =
cj

2

[
(Cj

pi
)−1 −C−1

p

]
∀ j = 1 . . . N. (5.171)

Numerical implementation Following the procedure presented in Section 5.3.9.1,

the implicit integrated formulas based on the exponential map for the state variables Cj
pi are

expressed by

(Cj
pin

)−1 = (Uj
pi

)−1 exp[∆λ(Uj
pi

)−1f jkin(Uj
pi

)−1](Uj
pi

)−1, (5.172)
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Box 5.3: Hyperelastoplastic constitutive model with multiple back stress components.

Kinematics F = FeFp, Fp = Fj
pe

Fj
pi
∀ j = 1 . . . N,

Cp = FT
p Fp, Cj

pi
= (Fj

pi
)TFj

pi

Helmholtz free energy ψ = ψe (Ce) +

N∑
j=1

ψjkin

(
Cj

pe

)
+ ψiso (ε̄p)

Stress tensors S = 2F−1
p

∂ψe

∂Ce
F−T

p , Xj = 2(Fj
pi

)−1∂ψ
j
kin

∂Cj
pe

(Fj
pi

)−T,

Y = C−1
p CS−

N∑
j=1

Xj , Yj
kin = (Cj

pi
)−1CpXj

Evolution equations Ċp = 2λ̇nY, Ċj
pi

= 2λ̇
bj

cj
(Cj

pi
Yj

kin)DCj
pi
, ˙̄εp = λ̇

Yield function Φ(Y, ε̄p) = σ̄(Y)− [σy0 −R(ε̄p)]

Loading/unloading conditions λ̇ ≥ 0, Φ ≤ 0, λ̇Φ = 0

Continuous tangent modulus Dep = 2
∂S

∂C
+ 2δ

∂S

∂Cp
: nY ⊗

AN

AΣ
D

where

f jkin = 2
bj

cj
(Cj

pi
Yj

kin)DCj
pi
∀ j = 1 . . . N. (5.173)

The numerical implementation of this model is carried out using the algorithm previously

shown in Box 5.2. The system of nonlinear equations to be solved is constituted by the

residua related to the yield condition (r1) and to the evolutions of Cp (r2) and Cj
pi (r2+j),

i.e.,

r1 = Φ(Y) = 0, (5.174)

r2 = −C−1
pn + U−1

p exp(∆λU−1
p fU−1

p )U−1
p = 0, and (5.175)

r2+j = −(Cj
pin

)−1 + (Uj
pi

)−1 exp[∆λ(Uj
pi

)−1f jkin(Uj
pi

)−1](Uj
pi

)−1 = 0. (5.176)

The linearisation of these residua is presented in Appendix B. Due to the fact that the

symmetry of the internal variables of the constitutive model was systematically exploited,

the number of scalar equations that represent this system of equations is significantly re-

duced from 10 + 9j to 7 + 6j, through the representation of the tensor-valued residua as

six-dimensional arrays following the Voigt’s notation.

Consistent elastoplastic tangent modulus The algorithmic elastoplastic tangent

modulus consistent with the numerical algorithm presented above is obtained from Equation

5.147. The closed form expression of the tangent modulus can be obtained following the
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procedure presented in Section 5.3.9.3, by linearising and solving the system of equations

r1 = r1(∆λ,C,Cp,C
j
pi

) = 0, (5.177)

r2 = r2(∆λ,C,Cp,C
j
pi

) = 0, and (5.178)

r2+j = r2+j(∆λ,Cp,C
j
pi

) = 0. (5.179)

in order to Cp, after convergence of the local iteration procedure. Although this derivation

is straightforward, when a high number of back stress components is considered, it can be a

very lengthy and error prone task. Thus, a numerical computation by means of the classical

perturbation technique (Miehe, 1996b) presented in Appendix C is advised. As mentioned

in Section 4.3.5, the numerical computation of the consistent elastoplastic tangent modulus

requires a higher effort comparatively to the use of the analytical closed form, but its use

does not affect neither the accuracy of the numerical solution nor its convergence rate.



Chapter 6

Identification of constitutive

parameters

This section presents the procedures used to identify the constitutive parameters of the

materials used in some of the numerical examples presented in Chapter 7. Firstly, the inverse

methodology developed is presented and assessed through its application considering a virtual

(fictitious) material. Secondly, the procedure is used to identify the constitutive parameters

of the 6022-T43 and 5182-O aluminium alloys and for the DP590 steel.

6.1 Introduction

The identification of the constitutive parameters is an important, and mandatory, task that

precedes the numerical simulation of realistic processes, since the quality of the numerical

results depends on a reliable set of parameters used as input for analysis. Over the years,

several identification strategies have been developed with the purpose of properly determine

constitutive parameters to be used in numerical simulation models. Generally, they can be

divided in three categories (Haddadi and Belhabib, 2012), namely (i) the identification of

constitutive parameters using stress-strain data obtained by conventional mechanical tests,

performed using standard specimens and characterized by homogeneous strain distributions,

(ii) the parameters’ identification by using the total applied force and total elongation of the

specimens, where the mechanical behaviour is dependent on the specimen’s shape and thus

the real shape of the sample must be taken into account in each iteration of the identification

procedure, and (iii) the use of full-field measurement methods, which are based on the experi-

mentally obtained measurements of the applied force and strain maps and, therefore, involves

the acquisition of a large amount of information data. Usually, conventional tests are used to

identify the anisotropy parameters of anisotropic yield functions, such as the ones considered

in this work. Therefore, a suitable parameters’ identification strategy based on stress-strain

input data should be considered. This strategy consists of an inverse methodology, as the

one presented in the following.

119
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6.2 Inverse methodology

The inverse methodology used in this work is illustrated in Fig. 6.1, and consists of an

iterative procedure that aims the minimization of an objective function that compares the

experimental data with analytical and/or numerically obtained one.

Simulation results

Initial parameters

Experimental data

Acceptable Not acceptable

End of optimization

Comparison
(Objective function)

Parameters update
(Optimization algorithm)

Figure 6.1: Inverse methodology used to identify the constitutive parameters.

From an initial set of constitutive parameters, suitable data (stress-strain relations, r-

values, etc.) are analytically and/or numerically computed. Then, a proper objective func-

tion is used to compare the experimental data with the data obtained from the current set of

constitutive parameters. If the value provided by the objective function is higher than a sat-

isfactory limit, an optimization algorithm is used to update the set of constitutive parameters

accounting for the minimization of the objective function’s value. The iterative procedure

continues until the satisfactory limit is reached.

In this work, the numerically obtained data is attained by using the commercial Finite

Element code ABAQUS, by means of the material subrotine, UMAT, used to implement

the presented constitutive models. The verification of the correct implementation of the

constitutive models is presented in Sections 7.1 and 7.2. In this section, the hypoelastic-

based model with the Zaremba-Jaumann rate presented in Section 5.2 is employed and the

backward-Euler algorithm is considered.

6.3 Objective function

As aforementioned, the identification procedure is guided by the minimization of a prede-

fined objective function. Therefore, the success of the optimization methodology demands a

suitable definition of this function. The experimental data used in this type of optimization

problem is composed by discrete values representing, e.g., a set of stress-strain measured
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points. Moreover, the numerical results are defined by a curve, hence interpolations for each

experimental point are required in order to compare both data. This is schematically repre-

sented in Fig. 6.2 for a stress-strain relation. One of the most common objective functions

applied in parameters’ identification consists of the sum of the squares of the difference of

relevant data and can be written as

fobj(x) =
1

ncurves

ncurves∑
j=1

1

npointsj

npointsj∑
i=1

(
Y exp
i,j − Y num

i,j (x)

WYj

)2

+
1

nr

nr∑
k=1

(
rexp
k − rnum

k

Wrk

)2

, (6.1)

where Y is a quantity of interest, such as stress or force defined as a function of strain or

displacement, respectively. Also, ncurves is the number of curves compared and npointsj is

the number of points that represents the curve j. The superscripts exp and num refer to

experimental and analytical or numerical data, respectively. The directional and biaxial r-

values are represented by rk. The constants WYj and Wrk are weighting factors used to

differentiate the quantity of interest Yj and the r-value k, respectively. Due to the different

orders of magnitude of the quantities of interest considered in the parameters’ identification

processes presented in the following, in this work, these weighting factors are chosen so the

difference (•)exp − (•)num is normalized in terms of its order of magnitude. Furthermore, the

value provided by the objective function is independent of the number of experimental points

considered, due to the use of the term 1/npointsj , and independent of the number of curves

and r-values taken into account by using the terms 1/ncurves and 1/nr, respectively.

During the optimization procedure, the value of the objective function moves towards to

zero and reaches that value if a perfect correspondence between numerical and experimental

points is obtained (global minimum). Although the square difference objective function is

the most used in parameters’ identification procedures, some alternative objective functions

have been proposed in the last years such as by Cao and Lin (2008) and Andrade-Campos

et al. (2012), among others.

S
tr

es
s

Strain

σnum
j

σexp
j

σnum
n

σexp
n

εj εn

Experimental
Anaytical/Numerical

Figure 6.2: Scheme of the comparison between experimental and analytical or numerical
data.
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6.4 Optimization algorithm

Optimization numerical methods are applied to update the set of constitutive parameters

during the identification procedure, with the aim of minimizing the value provided by the

objective function. A large number of optimization methods can be used for this purpose,

which can be divided in two main groups, namely (i) heuristic methods and (ii) classic

gradient-based methods. The objective function is composed by several local minima and

some of the optimization methods do not have mechanisms to avoid these points. Therefore,

the selection of the optimization method assumes a great importance because it controls the

efficiency of the parameters’ identification process.

On the one hand, in heuristic methods the nature inspired algorithms can be distinguished.

These are probabilistic optimization methods based on biological evolution mechanisms such

as the reproduction or natural selection (Andrade-Campos et al., 2007). It is used a pop-

ulation where each individual can be a possible solution. These optimization methods are

very robust because the search is initiated with a set of possible solutions, only using the

information of the objective function value (Furukawa and Yagawa, 1997). However, they

require a large number of iterations and, consequently, large computational time.

On the other hand, the gradient-based methods are characterized by using the informa-

tion of the derivative of the objective function to successively update the solution until a

satisfactory limit is satisfied. Usually, the results obtained with this type of algorithms are

characterized of being dependent on the initial set of parameters, since they do not have

mechanisms that hinder the convergence for local minima (Andrade-Campos et al., 2007).

However, these algorithms are widely used in optimization since they show an excellent rela-

tionship between efficiency and required computational time. In this work, the widely used

Levenberg-Marquardt gradient-based algorithm (Levenberg, 1944, Marquardt, 1963) is uti-

lized in the parameters’ identification process. This algorithm consists of an evolution of the

classic Newton method and calculates a search direction between the Gauss-Newton direction

and the steepest descent direction. The algorithm is characterized by alternating between a

slow descending (when moved away from a minimum) and a quick convergence (when in the

neighbourhood of a minimum).

6.5 Assessment of the identification procedure

The presented constitutive parameters’ identification procedure is here assessed by applying

it to a virtual (fictitious) material. This means that the identification procedure is carried

out using the mechanical behaviour of the virtual material as “experimental” data. This kind

of analysis is very interesting in the assessment of the ability and accuracy of the developed

procedure in determining the best optimal solution (global minimum), since that solution is

known.

The considered virtual material’s parameters, to which correspond the ideal (optimal)
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solution, are depicted in Table 6.1. It is considered an aluminium-like material with isotropic

(Swift’s law) and nonlinear kinematic (one back stress component) hardening, and anisotropic

behaviour described by the Yld2004-18p yield function. From these constitutive parameters

the “experimental” data that characterize its mechanical behaviour is reproduced by

i) stress-strain relations for in-plane uniaxial tensile tests at every 15◦ (0◦, 15◦, 30◦, 45◦,

60◦, 75◦, and 90◦) from RD,

ii) directional r-values obtained from in-plane uniaxial tensile tests at every 15◦ from RD,

iii) stress-strain relations for uniaxial tensile tests at 45◦ from RD in the RD-ND and

TD-ND planes of the sheet,

iv) hydraulic pressure-polar displacement relation in the hydraulic bulge test,

v) shear stress-shear strain relations for in-plane shear tests at 0◦ and 45◦ from RD,

vi) shear stress-shear strain relations for shear tests in RD in the RD-ND and TD-ND

planes of the sheet, and

vii) shear stress-shear strain relations for three in-plane Bauschinger shear tests in the RD,

with inversion of loading direction at 10%, 20%, and 30% of shear strain, respectively.

Table 6.1: Constitutive parameters of the virtual material.

Elasticity
E [GPa] ν [-]

69.0 0.33

Isotropic hardening Kinematic hardening
K [MPa] ε0 [-] nH [-] c [MPa] b [-]

500.8 4.78x10−3 0.20 68.2 2.2

Yld2004-18p anisotropy parameters (a = 8)
c1

12 c1
13 c1

21 c1
23 c1

31 c1
32 c1

44 c1
55 c1

66

1.2410 1.0783 1.2165 1.2239 1.0931 0.8892 1.3491 0.5019 0.5572
c2

12 c2
13 c2

21 c2
23 c2

31 c2
32 c2

44 c2
55 c2

66

0.7754 0.9227 0.7655 0.7934 0.9187 1.0276 0.5898 1.1158 1.1123

The procedure framework is conducted by an interface program, developed in Fortran,

that is linked to the commercial Finite Element code ABAQUS, in order to perform the nu-

merical simulations, being also linked to the optimization software SDL (Andrade-Campos

et al., 2007), to verify if the stagnation criterion is satisfied and to update the set of consti-

tutive parameters at each iteration of the identification procedure.

Regarding the numerical modelling, 3D models of a single element are used for the uniaxial

tensile, shear, and Bauschinger tests. In the case of the hydraulic bulge test, a converged

and structured mesh composed by 128 elements is used considering the setup schematically

depicted in Fig. 6.3, following the work of Alves de Sousa et al. (2007). Due to the symmetry
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of the process and the orthotropy of the material only a quarter section of the specimen is

analysed. In all simulations 8-node trilinear finite elements with reduced integration (C3D8R,

in ABAQUS) are employed. Concerning the r-values, they can be directly computed from the

in-plane uniaxial tensile tests by computing the ratio rθ = εp22/εp33 , or analytically following

Appendix D.

h P

Rb

Rd
Blank radius Rb = 81.0
Die profile radius Rd = 12.70
Initial blank thickness t = 1.24

[mm]

Figure 6.3: Schematic setup of the hydraulic bulge test.

Concerning the optimization process, some conditions have to be established such as, the

derivatives of the objective function are numerically computed through a finite difference

with a perturbation value of 5x10−3, the maximum number of allowed iterations is 500,

and the stagnation stopping criterion equals to 10−30. Moreover, the weighting factors are

normalized so that all features of interest (stress-strain curve, r-value, etc.) have the same

importance. Additionally, some material parameters are not subjected to the identification

process, namely the elastic modulus, E, the Poisson ratio, ν, and the exponent of the yield

function a. This means that these parameters are kept constant during the optimization

process and assume the same values as the virtual material.

In Table 6.2 it is shown the initial, reference, and optimal identified set of parameters.

Additionally, the relative errors between the reference and the optimal identified values are

presented. The initially chosen anisotropy parameters are all equal to 1.0, and therefore the

identification process started with the description of the Hershey’s isotropic yield function

(Barlat et al., 2005). The identification process performed 500 iterations and the optimal

solution corresponds to a local minimum. Indeed, the relative errors between reference and

identified parameters clearly elucidates their difference. It should be mentioned that obtention

of the global minimum in the identification process of the constitutive parameters for the

considered material model is a quite difficult task due to the high number of parameters

taken into account. Moreover, one has to bear in mind that the gradient-based nature of the

Levenberg-Marquardt algorithm makes the solution to be dependent on the initial estimation

of the parameters, leading, in general, the optimization process to a local minimum of the

objective function.

The evolution of the normalized value of the objective function is presented in Fig. 6.4.

The value of the objective function is reduced significantly to 0.34% of its initial value. This

reduction mainly occurs until iteration 300 and a stabilization of the objective function’s value

is observed in the following iterations. This type of behaviour is justified by the fact that the

Levenberg-Marquardt always seeks the best descent direction, accelerating to convergence.
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Table 6.2: Initial, reference, and optimal identified set of parameters for the virtual material.

Parameters Initial Optimal Reference Rel. Error (%)

K [MPa] 400.0 492.4 500.8 -1.7
ε0 [-] 2.0x10−3 2.561x10−3 4.78x10−3 -46.4
nH [-] 0.12 0.184 0.20 -8.0
c [MPa] 51.5 55.04 68.2 -19.3
b [-] 6.0 3.69 2.2 67.7
c1

12 1.0 1.1912 1.2410 -4.0
c1

13 1.0 1.0333 1.0783 -4.2
c1

21 1.0 1.0752 1.2165 -11.6
c1

23 1.0 0.8853 1.2239 -27.7
c1

31 1.0 0.8032 1.0931 -26.5
c1

32 1.0 0.5231 0.8892 -41.2
c1

44 1.0 1.2771 1.3491 -5.3
c1

55 1.0 0.4651 0.5572 -16.5
c1

66 1.0 0.4151 0.5019 -17.3
c2

12 1.0 0.8300 0.7754 7.0
c2

13 1.0 1.1956 0.9227 29.6
c2

21 1.0 0.8962 0.7655 17.1
c2

23 1.0 1.0896 0.7934 37.3
c2

31 1.0 1.0681 0.9187 16.3
c2

32 1.0 1.3796 1.0276 34.3
c2

44 1.0 0.6981 0.5898 18.4
c2

55 1.0 1.2260 1.1123 10.2
c2

66 1.0 1.2218 1.1158 9.5
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Figure 6.4: Evolution of the objective function’s value in the parameters’ identification pro-
cess.

However, when the objective function is close to a possible solution, its value tends to stabilize

until a stopping condition is satisfied. In the carried out identification process, the maximum

number of iterations was reached. Nevertheless, considering the relationship between required

computational time and obtained results, it is important to refer that, in this case, only

300 iterations would be enough to obtain similar results comparatively to those achieved at

iteration 500.
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Regardless the difference between the optimal identified and the reference parameters, in

order to infer about the real quality of the obtained solution, it is mandatory to compare the

experimental and numerical data by visual analysis. For that purpose, the “experimental”

and numerical data are presented in Figs. 6.5-6.7 for all data considered in the identification

process. The extremely good prediction of the r-values evolution in the sheet’s plane is

presented in Fig. 6.5. In addition to the seven values used in the identification process,

the analytical curves obtained with the reference and optimal identified parameters are also

depicted. It is worth noting that, even though only the discrete values at every 15◦ are

used in this identification process, the overall predicted evolution of the r-values in the sheet

plane is in excellent agreement with the “experimental” evolution. An accurate reproduction

of the “experimental” stress-strain curves for the uniaxial tensile, shear, and Bauschinger

tests by the identified parameters is seen in Fig. 6.6. This means that although there is a

significant difference between the reference and identified hardening parameters (Table 6.2),

the obtained solution provides a reliable reproduction of the combined isotropic-nonlinear

kinematic hardening of the virtual material. Finally, the hydraulic bulge test results and the

“experimental” data are also in excellent agreement for polar displacement up to 35 mm,

with a small deviation for larger displacements (Fig. 6.7). It is worth mentioning that even

though the equi-biaxial stress-strain curve provides more information about the hardening

and anisotropy of the material relatively to the hydraulic pressure-polar displacement curve,

the latter is considered in this example to confirm that the developed identification procedure

can be applied to a wide range of different type of data.

In Fig. 6.8 the “experimental” yield surfaces with 0.25 increments of normalized shear

contours, along with the ones predicted by the initial and identified set of parameters, are

depicted. Considering the noticeable similarity of the yield surfaces and the excellent agree-

ment between the “experimental” and numerical data presented in Figs. 6.5-6.7, one may

conclude that the developed parameters’ identification procedure is able to predict the com-

plex anisotropic behaviour described by the considered constitutive model.
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Figure 6.5: Virtual material - “Experimental” and analytically obtained, with the identified
parameters, directional r-values.
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Figure 6.6: Virtual material - “Experimental” and numerically obtained, with the identified
parameters, stress-strain curves for a) uniaxial tensile tests and b) monotonic and Bauschinger
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Figure 6.8: Virtual material - “Experimental” and numerically obtained, with the initial and
identified parameters, normalized yield surfaces.

6.6 6022-T43 aluminium alloy - Hardening parameters’ iden-

tification

The identification methodology presented before is now applied to the 6022-T43 aluminium

alloy, which is employed in the numerical example of Section 7.9 related to the benchmark

#3 of NUMISHEET’05 international conference. Here, the parameters related to the ma-

terial’s elasticity and anisotropy are known and assume the values provided by Stoughton

et al. (2005), i.e., E = 70.2 [GPa] and ν = 0.363 [-], while the anisotropy is described by

the Yld2004-18p yield function considering the anisotropy parameters depicted in Table 6.3.

Due to the lack of information in Stoughton et al. (2005) regarding the hardening parameters

related to the kinematic hardening, the identification of the isotropic and nonlinear kine-

matic hardening parameters is presented here. Also, the experimental data for the in-plane

uniaxial tensile and tension-compression/Bauschinger tests presented in Taherizadeh et al.

(2011) are considered as reference data. It is assumed that the isotropic hardening follow

the Voce’s exponential law, while the kinematic hardening is described using only one back

stress component.

Table 6.3: Al6022-T43’s anisotropy parameters (a = 8) (Stoughton et al., 2005).

c1
12 c1

13 c1
21 c1

23 c1
31 c1

32 c1
44 c1

55 c1
66

0.9499 1.1099 1.0641 1.3281 1.1431 1.2537 1.2752 1.0025 1.0033
c2

12 c2
13 c2

21 c2
23 c2

31 c2
32 c2

44 c2
55 c2

66

0.9170 0.8469 0.9086 0.6211 0.7359 0.7974 0.5219 0.9889 1.0134

The set of optimal identified hardening parameters is presented in Table 6.4. The exper-

imental data and the numerical curves obtained with the identified parameters are depicted

in Fig. 6.9. It can be seen an excellent representation of the experimental hardening evolu-
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tion, including cyclic phenomena, namely the Bauschinger effect and the transient behaviour.

Since only one back stress component is required to describe the behaviour of this material

(with excellent accuracy) no additional identification procedures, including more than one

back stress component, are carried out.

Table 6.4: 6022-T43 aluminium alloy - Identified hardening parameters.

Isotropic hardening Kinematic hardening
σy0 [MPa] Q [MPa] β [-] c [MPa] b [-]

129.26 208.73 7.705 1385.50 142.43
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Figure 6.9: 6022-T43 aluminium alloy - Experimental and numerically obtained, with the
identified parameters, stress-strain curves for uniaxial tensile and tension-compression /
Bauschinger tests.

6.7 DP590 steel - Hardening parameters’ identification

The hardening parameters of the DP590 steel to be considered in the numerical example

of Section 7.8, related to a benchmark of the NUMISHEET’93 international conference, are

here determined using the described identification procedure. The material is assumed to be

isotropic (von Mises yield function) and its elasticity is described by E = 190.0 [GPa] and

ν = 0.33 [-] (Lee et al., 2012b). The experimental data employed in the identification process

consist of i) in-plane uniaxial tensile test, ii) in-plane monotonic shear test, and iii) in-plane

Bauschinger shear tests with reverse loading at 3%, 8%, and 13% of pre-strain. Three different

hardening models are considered, namely, 1) pure isotropic hardening following the Swift’s

power law, 2) pure nonlinear kinematic hardening using only one back stress component, and

3) pure nonlinear kinematic hardening using two back stress components. Due to the inability
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of isotropic hardening laws to describe cyclic hardening phenomena, the parameters of Model

1 are identified using only stress-strain data related to monotonic tests, i.e., experimental

data i) and ii).

The sets of optimal identified hardening parameters for the three hardening models are

presented in Table 6.5, along with the corresponding objective function’s values.

Table 6.5: DP590 steel - Identified hardening parameters.

Model 1 - Isotropic hardening Obj. func. value
K [MPa] ε0 [-] nH [-] fobj (Rel.)

948.9 0.00356 0.153 8.38 (11.2%)

Model 2 - Kinematic hardening (1)
σy0 [MPa] c1 [MPa] b1 [-]

403.5 5142.2 24.7 142.52 (190.9%)

Model 3 - Kinematic hardening (2)
σy0 [MPa] c1 [MPa] b1 [-] c2 [MPa] b2 [-]

380.5 7066.3 71.7 1589.9 9.6 74.65 (100.0% - Ref.)

The experimental data, coming from Lee et al. (2012b), and the numerical curves ob-

tained from the identified parameters for the three hardening models are depicted in Fig.

6.10. From this figure, an accurate reproduction of the experimental stress-strain curves

is observed especially for Model 3. Comparatively to Model 2, the use of more than one

back stress component in Model 3 enables a better reproduction of the Bauschinger effect

and the transient behaviour after reverse loading, resulting in a significant reduction of the

objective function’s values (see Table 6.5). With Model 1 an excellent reproduction of the

monotonic curves is obtained, hence a considerable small value of the objective function is

achieved. However, this model does not take cyclic hardening phenomena into account, and

therefore its overall reproduction of the experimental data for the five mechanical tests can

be considered fairly poor.

6.8 5182-O aluminium alloy - Hardening and anisotropy pa-

rameters’ identification

In order to perform the numerical example of Section 7.10 related to the benchmark #2 of

NUMISHEET’14 international conference, the constitutive (hardening and anisotropy) pa-

rameters of the 5182-O aluminium alloy are determined using the described identification

procedure. The experimental data used in the identification process, coming from Stoughton

et al. (2013), consists of
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Figure 6.10: DP590 steel - Experimental data (Lee et al., 2012b) and numerically obtained,
with the identified parameters, stress-strain curves for a) uniaxial tensile test and b) mono-
tonic and Bauschinger shear tests, considering three different hardening models.

i) stress-plastic strain relations for in-plane uniaxial tensile tests at every 15◦ from RD,

ii) directional r-values obtained from in-plane uniaxial tensile tests at every 15◦ from RD,

iii) biaxial stress-plastic thickness strain relation in the hydraulic bulge test,

iv) biaxial rb-value obtained from the disk compression test, and

v) stress-plastic strain relation for in-plane uniaxial cyclic test in RD.

The Yld2004-18p yield function is used to model the anisotropy of the material, the hardening

behaviour of which being described using a combined isotropic-nonlinear kinematic hardening

law considering two back stress components. The nonlinear isotropic expansion of the yield

surface is represented using a modified Voce’s law, i.e., σy0−R(ε̄p) = σy0 +Q[1−exp(−βε̄p)]+
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Kε̄p. This hardening law represents a particular case of the H/V law, proposed by Sung et al.

(2010), considering α = 1/2 and nH = 1 (see Equation 3.76). As for the previous materials,

the elastic parameters are not subjected to the identification process, therefore having those

particular values provided by Stoughton et al. (2013), i.e., E = 70.0 [GPa] and ν = 0.333 [-].

Additionally, the yield function’s exponent a is assumed to be equal to 8 (FCC material).

Moreover, due to the lack of information about the out-of-plane properties of the material,

the corresponding anisotropy parameters take their isotropic value, i.e., c1
55 = c2

55 = c1
66 =

c2
66 = 1.0.

The set of optimal identified constitutive parameters for the 5182-O aluminium alloy is

presented in Table 6.6. The numerical results obtained with the optimal identified set of

constitutive parameters and the experimental data, coming from Stoughton et al. (2013),

are presented in Figs. 6.11-6.13. An accurate reproduction of the experimental data is

observed regarding both material’s hardening and anisotropy. The excellent description of

the anisotropy can be seen particularly in the great reproduction of the directional and biaxial

r-values (see Fig. 6.12). From Figs. 6.11 and 6.13 the good description of the hardening

behaviour provided by the employed combined hardening law can by observed. In addition

to the considered hardening model, the numerical results obtained with combined hardening

with only one back stress component are also depicted in Fig. 6.13. The improvement

of the experimental data’s reproduction given by the use of two back stress components,

comparatively to the use of only one, is remarkable, in particular concerning the transient

behaviour of the material. The constitutive hardening parameters of this hardening model

(combined with one back stress component) were obtained from a new identification process

and read: σy0 = 83.8 [MPa], Q = 204.6 [MPa], β = 9.0 [-], K = 174.3 [MPa], c = 4937.4

[MPa] and b = 100.0 [-].

Table 6.6: 5182-O aluminium alloy - Identified hardening parameters.

Isotropic hardening
σy0 [MPa] Q [MPa] β [-] K [MPa]

40.2 164.5 12.4 173.3

Kinematic hardening
c1 [MPa] b1 [-] c2 [MPa] b2 [-]
20670.8 404.9 166.4 4.8

Yld2004-18p anisotropy parameters (a = 8)
c1

12 c1
13 c1

21 c1
23 c1

31 c1
32 c1

44 c1
55 c1

66

0.7300 0.9137 0.6485 1.1986 0.3905 0.9065 0.8019 1.0 1.0
c2

12 c2
13 c2

21 c2
23 c2

31 c2
32 c2

44 c2
55 c2

66

1.0320 0.3568 1.0460 0.3539 1.0970 0.7676 1.0540 1.0 1.0
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Figure 6.11: 5182-O aluminium alloy - Experimental data (Stoughton et al., 2013) and numer-
ically obtained, with the identified parameters, stress-strain curves for a)-g) uniaxial tensile
tests at every 15◦ from RD and h) hydraulic bulge test.
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Figure 6.12: 5182-O aluminium alloy - Experimental (Stoughton et al., 2013) and analytically
obtained, with the identified parameters, a) directional r-values and b) biaxial rb-values.
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Figure 6.13: 5182-O aluminium alloy - Experimental data (Stoughton et al., 2013) and nu-
merically obtained, with the identified parameters, stress-strain curves for in-plane uniaxial
cyclic test, considering one and two back stress components.



Chapter 7

Numerical results and discussion

The description of the anisotropic elastoplasticity provided by the finite strain constitu-

tive models presented in Chapter 5, as well as the numerical performance of the algorithms

presented in Sections 4.3 and 5.3.9, are assessed in this section by means of numerical sim-

ulations. To this purpose, the considered constitutive models have been implemented with

the presented algorithms into the commercial Finite Element code ABAQUS/Standard, via

material user subroutines, UMATs, which have been developed in Fortran.

In this section, the numerically obtained results related to the hypoelastic- and hyperelastic-

based models are referred to as “Hypoelastic” and “Hyperelastic”, respectively, followed by

a suffix that characterizes the algorithm and/or the methodology to define the corotational

coordinate frame. This way, regarding the hypoelastic-based formulation, the following suf-

fixes are considered,

i) BE1 - Standard backward-Euler algorithm,

ii) BE - Backward-Euler algorithm with the multi-stage return mapping procedure,

iii) FE1 - Standard forward-Euler algorithm,

iv) FE - Forward-Euler algorithm with the sub-incrementation technique,

v) ZJ - Zaremba-Jaumann objective rate, and

vi) GMN - Green-McInnis-Naghdi objective rate.

Also, the suffixes considered for the hyperelastic-based formulation are R and RZJ, whether

the rotation tensor between the global and the material corotational coordinates frames is

obtained from the polar decomposition of F or from the spin tensor, w, respectively.

This section is organized as follows. Firstly, the correctness of the UMATs’ implementa-

tion is assessed by means of the comparison of numerically obtained Lankford r-values and

obtained results for the tensile test at finite strains with analytical data (Section 7.1 and

7.2). Secondly, some fundamental limitations of the hypoelastic- and hyperelastic-based for-

mulations are analysed considering the numerical simulation of the shear test at finite strains

(Section 7.3). Thirdly, the accuracy and stability of the integration algorithms related to the

135
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hypoelastic-based model are compared by means of the so-called iso-error maps (Section 7.4).

Fourthly, the performance of the considered constitutive models and numerical algorithms is

assessed in industry-relevant benchmarks of sheet metal forming (Sections 7.5-7.10). Finally,

the hypoelastic- and hyperelastic-based formulations are compared using the numerical sim-

ulation of the thermoforming of a polymeric sheet, where finite elastic strains occur (Section

7.11).

7.1 Numerical prediction of Lankford r-values

The correct numerical implementation of the anisotropic yield functions into the material

user subroutine, UMAT, can be confirmed by computing the Lankford r-values numerically.

In addition to the anisotropic yield function, this numerical test also assesses the implemen-

tation of its derivatives, as well as the accuracy of the integration procedure. This two-step

numerical procedure consists of a 1x1x0.1 mm single element, which is elongated up to 5%

and subsequently unloaded to eliminate the effects of elasticity. This procedure is schemati-

cally represented in Fig. 7.1 and is carried out for every 15◦ from the rolling direction. For

each orientation the respective rθ value is determined according to rθ = ε22/ε33.

y
y0

x
x0

u

u

θ

X

Y RD

Loading Unloading

Figure 7.1: r-values prediction - Scheme of the procedure followed.

The numerical simulations are carried out for a 2090-T3 aluminium alloy. Its mechanical

behaviour is described by the following parameters: E = 70 [GPa]; ν = 0.30 [-]; isotropic

hardening following Swift’s law as σy0−R(ε̄p) = 646.0(0.025+ε̄p)0.227 [MPa]; and no kinematic

hardening, i.e., c = 0.0 [MPa] and b = 10−8 ≈ 0 [-] (Yoon et al., 2006).

Here, the assessment of the implementation of the Yld91 and Yld2004-18p yield criteria is

presented. Since Yld91 employs the concept of linear transformations to introduce anisotropy

character into an isotropic yield function, its incorporation into the hyperelastic-based model

is carried out similarly to Yld2004-18p (see Section 5.3.6). The assessment of the implemen-

tation of these yield criteria is of interest in this section because they are employed in the

numerical examples that follow. This way, the anisotropy of the 2090-T3 aluminium alloy

is described by the Yld91 and Yld2004-18p anisotropy parameters listed in Table 7.1 (Yoon

et al., 2000, Barlat et al., 2005).



7.Numerical results and discussion 137

Table 7.1: Al2090-T3’s anisotropy parameters (a = 8) (Yoon et al., 2000, Barlat et al., 2005).

Yld91
c1 c2 c3 c4 c5 c6

1.0674 0.8559 1.1296 1.2970 1.0000 1.0000

Yld2004-18p
c1

12 c1
13 c1

21 c1
23 c1

31 c1
32 c1

44 c1
55 c1

66

−0.0698 0.9364 0.0791 1.0030 0.5247 1.3631 0.9543 1.0690 1.0237
c2

12 c2
13 c2

21 c2
23 c2

31 c2
32 c2

44 c2
55 c2

66

0.9811 0.4767 0.5753 0.8668 1.1450 −0.0792 1.4046 1.1471 1.0516

The UMATs related to the hyperelastic-based model employing RZJ (obtained from the

spin tensor w) and R (obtained from the polar decomposition of F), as well as the UMATs

related to the hypoelastic-based model using the Zaremba-Jaumann and the Green-McInnis-

Naghdi rates considering the forward-Euler and backward-Euler algorithms, are assessed in

this numerical example. The numerically predicted r-values are presented in Figs. 7.2a and

7.3a for Yld91 and Yld2004-18p, respectively, along with the analytical values, computed

according to a procedure shown in Appendix D, and the experimental data comes from Yoon

et al. (2000). In addition to the r-values, the normalized yield stresses are also computed,

providing the results presented in Figs. 7.2b and 7.3b. The plots present an excellent agree-
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Figure 7.2: r-values prediction - Numerically, analytically, and experimentally (Yoon et al.,
2000) obtained a) r-values and b) normalized yield stresses, considering Yld91 criterion.
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ment between the obtained results and the analytical curves, hence confirming the correct

implementation of the yield functions. It is visible the excellent description of the anisotropy

for this material when the Yld2004-18p criterion is considered, comparatively to the Yld91

criterion. Such description is possible due to the considerable flexibility of this yield function

related to the high number of anisotropy parameters.
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Figure 7.3: r-values prediction - Numerically, analytically, and experimentally (Yoon et al.,
2000) obtained a) r-values and b) normalized yield stresses, considering Yld2004-18p crite-
rion.

7.2 Tensile test at finite strains

Here, the numerical simulation of the uniaxial tensile test, employing a single element, is used

to validate the description of the anisotropy at finite strains and the implementation of the

kinematic hardening law.

Anisotropy at finite strains Firstly, the plastic yielding of the material is assumed

to be anisotropic, while isotropic hardening is adopted. To confirm the assumption that

the anisotropic yielding is described with accuracy in the finite strain regime, the uniaxial

tensile test is performed up to 300% of accumulated plastic strain, along 0◦ and 90◦ from the

rolling direction. It is worth mentioning that the materials analysed in this work would not

undergo such large deformations experimentally, since failure would occur before reaching
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the imposed 300% of accumulated plastic strain. Nevertheless, such large deformations are

taken into account in these simulations to assess the performance of the proposed material

constitutive models in extreme conditions. The numerical simulations are carried out for a

2090-T3 aluminium alloy, whose material parameters are indicated in Section 7.1. Here, for

the sake of particularization the anisotropy of the material is described by the Yld2004-18p

function.

The obtained results for the hyperelastic-based model employing RZJ and R, as well as

the ones related to the hypoelastic-based model using the Zaremba-Jaumann and the Green-

McInnis-Naghdi rates and considering the forward-Euler and backward-Euler algorithms are

compared to the analytical stress-accumulated plastic strain curves in Fig. 7.4. The analytical

curves are obtained considering that the relation [σyθ(ε̄p0)]/[σy(ε̄p0)] = [σyθ(ε̄p)]/[σy(ε̄p)]

holds during the deformation process, since it is assumed that the anisotropy does not evolve

with the plastic deformation. The excellent agreement between the obtained results and

the analytical curves proves the correct description of the yielding anisotropy in the large

plastic strain regime, regardless the elasticity law, the choice of the rotation tensor that

transforms quantities from the locally rotating configuration to the spatial configuration, or

the algorithms used to implement the hypoelastic-based model.
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Figure 7.4: Uniaxial tensile test - Stress-accumulated plastic strain relationships for the
Al2090-T3 along RD (red) and TD (blue).

Uniaxial tension/compression Secondly, in order to verify the implementation of

the combined isotropic-nonlinear kinematic hardening law, one cycle of uniaxial tension/

compression with inversion of loading direction at 25% of total strain is simulated. This

time, the hardening parameters of the material used in the simulations are those identified

for the 5182-O aluminium alloy in Section 6.8. Hence, nonlinear isotropic hardening and

nonlinear kinematic hardening considering two back stress components are now taken into

account. Isotropic yielding (von Mises yield criterion) is assumed. This way, the analytical
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integration of the kinematic hardening law provides the following back stress-accumulated

plastic strain response for each back stress component (see e.g., Chaboche (2008)),

αjxx = v
3cj

2bj
+

(
αj0 − v

3cj

2bj

)
exp[−vbj(ε̄p − ε̄p0)], (7.1)

where v = ±1 defines the flow direction and ε̄p0 and αj0 are the values of the accumulated

plastic strain and back stress at the beginning of the loading branch considered. Taking into

account that for a uniaxial loading the von Mises criterion is reduced to v(σxx−
∑N

j=1 α
j
xx)−

[σy0 − R(ε̄p)] = 0, the relation of stress-accumulated plastic strain in uniaxial conditions is

given by

σxx = v(σy0 −R(ε̄p)) +

N∑
j=1

{
v

3cj

2bj
+

(
αj0 − v

3cj

2bj

)
exp[−vbj(ε̄p − ε̄p0)]

}
. (7.2)

Regarding the hyperelastic-based elastoplastic model, due to the plastic isotropy of the

material, the specific choice of the rotation tensor (Equation 5.32) used to determine the

corotational coordinate system in the current configuration (in which the yield function is

evaluated) is irrelevant, as the obtained results are independent of that choice. From Fig. 7.5

it can be seen the excellent agreement between the obtained results and the analytical curves

for one cycle of tension/compression, confirming the correct implementation of the combined

hardening law in the large plastic strain regime. The analytical curve related to monotonic

loading is additionally presented for a better visualisation of the Bauschinger and transient

phenomena.
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7.3 Shear test at finite strains

Some limitations subjacent to the hypoelastic- and hyperelastic-based models presented in

Section 5 are now pointed out and analysed by investigating the monotonic simple shear test,

characterized by the deformation gradient F = I + γe1⊗e2, where γ is the shear strain. The

accurate prediction of the shear stress in this fundamental mode of deformation represents

a challenging task due to the complexity induced by the rotation of the principal directions

of F. Most of the results presented in this section are well-known in the literature and have

lead to several research works on this topic, such as the works cited below (and references

therein). They are presented here to compare the two approaches employed and sustain the

results’ discussion of the following sections.

Shear test at finite elastic strains The elastic response of the two approaches are

assessed for a generic polymeric material, elastic properties of which are assumed to be E = 7

[MPa] and ν = 0.4 [-]. The numerical results are depicted in Fig. 7.6. The previously men-

tioned shear stress oscillations in hypoelasticity using the Zaremba-Jaumann rate is clearly

seen in this figure. This spurious phenomenon motivated the development of several objec-

tive rates such as the Green-McInnis-Naghdi rate, which fails to predict a linear behaviour

at finite strains. Comparison of the most used objective rates in hypoelastic simple shear

conditions can be found in, e.g., Liu and Hong (1999).

Regardless the abnormal behaviour predicted by the hypoelastic models, they succeed to

describe the linear response of the hyperelastic model for elastic shear strains up to 50%. The

high elastic stiffness of metallic materials precludes the occurrence of such amount of elastic

strains during sheet metal forming processes and hence allows the use of hypoelastic-based

models in the numerical simulation of industry-relevant processes.
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Shear test at finite strains with kinematic hardening A different phenomenon

of oscillating shear stresses is related to the kinematic hardening. In order to solely assess

the influence of the kinematic hardening, the material considered in this example is a generic

aluminium alloy, E = 70 [GPa] and ν = 0.33, with isotropic (von Mises) yielding and no

isotropic hardening, σy0 = 100 [MPa] (thus small elastic strains). Regarding the kinematic

hardening, two situations are considered, namely a) “linear”, b = 10−8 ≈ 0 [-], and b)

nonlinear, b = 2.0 [-], cases. In both situations the kinematic “stiffness” is assumed to be

equal to c = 1000.0 [MPa].

The obtained numerical results (see Fig. 7.7) are in agreement with the literature.

On the one hand, considering “linear” kinematic hardening the hyperelastic-based model

predicts, similarly to the results of Dettmer and Reese (2004), a monotonously crescent

curve resembling the ones of the saturation-type. The hypoelastic-based models using the

Zaremba-Jaumann and the Green-McInnis-Naghdi rates predict oscillatory and nonlinear

monotonously crescent responses, respectively, as seen in the work of Svendsen et al. (1998).

Regardless the nonlinear responses at finite strains, the hypoelastic-based models predict

a linear behaviour for shear strains up to 75%, whereas the linearity of the shear stress-
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shear strain curve is maintained until 150% of shear strain for the hyperelastic-based model.

On the other hand, considering nonlinear kinematic hardening, only the hypoelastic-based

model using the Green-McInnis-Naghdi rate predicts a monotonously crescent response of

the saturation-type. Interestingly, the hypoelastic-based model using the Zaremba-Jaumann

rate and the hyperelastic-based model provide similar results, namely they exhibit soften-

ing followed by stress stagnation. Such abnormal behaviour in hyperelastic-based models

was also predicted in the work of, e.g., Dettmer and Reese (2004). It is worth to mention,

as pointed out by Dettmer and Reese (2004), that finite strain models predict considerably

high normal stresses in simple shear conditions. These stress components clearly affect the

material’s behaviour, resulting in complex abnormal shear stress-shear strain responses.

Shear test at finite strains with plastic anisotropy Finally, oscillating shear

stresses can also be predicted in anisotropic plasticity due to the rigid body rotation to which

the material is subjected. In order to solely assess the influence of the plastic anisotropy, the

material considered in this example is a generic aluminium alloy, E = 70 [GPa] and ν = 0.33

[-], with no isotropic hardening, σy0 = 100 [MPa], and no kinematic hardening, c = 0 [MPa]

and b = 10−8 ≈ 0 [-] (thus small elastic strains). It is assumed that this fictitious material

possesses the same anisotropic behaviour as the 2090-T3 aluminium alloy, i.e., the anisotropy

is described by the Yld2004-18p criterion considering the parameters presented in Table 7.1.

The obtained results, presented in Fig. 7.8a, have an oscillatory character dependent on

the rotation tensor employed to determine the corotational coordinate system in the current

configuration. On the one hand, the hypoelastic-based model using the Zaremba-Jaumann

rate and the hyperelastic-based model employing RZJ (obtained from the spin tensor w)

reflect the orthotropic symmetry of the material in, almost identical, periodical stress re-

sponses. This periodicity is due to the linearly increasing rotation governed by RZJ (see Fig.

7.8b). This periodical oscillatory behaviour is in agreement with the response obtained by

multiplicative hyperelastic-based models that define the anisotropy in the intermediate con-

figuration and have motivated several works on the elimination of these oscillations (Dafalias,

1985, Aravas, 1992, Cleja-Ţigoiu, 2000, Itskov and Aksel, 2004, Johansson, 2008). Consider-

ing that shear stress oscillations occur when the plastic spin is neglected, Cleja-Ţigoiu (2000)

and Itskov and Aksel (2004), among others, established a proper constitutive relation for

the plastic spin which is introduced in the evolution equations. A different approach was

employed by Johansson (2008), that consists of considering evolving anisotropy of the affine

saturation type to suppress stress oscillations.

On the other hand, the angle associated to the rotation tensor R, obtained from the

polar decomposition of F, converges asymptotically to 90◦ (see Fig. 7.8b). Thus, the shear

stress responses provided by the hypoelastic-based model using the Green-McInnis-Naghdi

rate and the hyperelastic-based model employing R converge to the value relative to 90◦

after an initial oscillation (associated to the rotation from 0◦ to 90◦) (see Fig. 7.8a). Once

more, considering this rotation tensor, the hypoelastic-based and hyperelastic-based models
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provide very similar results.
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7.4 Iso-error maps

The so-called iso-error maps are widely used in the literature as a tool to assess the accu-

racy and stability of integration algorithms, in particular when a large time discretization is

considered (Ortiz and Simo, 1986, Yoon et al., 1999, Artioli et al., 2007). The construction

of these iso-error maps consists of considering a point on the initial yield surface from which

a sequence of strain increments is applied. Then, for each strain increment, the numerical

algorithm is used to compute a corresponding approximated stress tensor, σnum, which is

compared to the exact stress tensor, σexact. The iso-error maps are usually drawn based on

the percentage of the relative root mean square errors, i.e.,

ERR =
‖ σnum − σexact ‖
‖ σexact ‖ × 100 [%]. (7.3)

Here, iso-error maps are used to compare the performance of the developed and implemented
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Figure 7.9: Iso-error maps - Points considered in the plane stress yield surface.
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Figure 7.10: Iso-error maps - Point A (uniaxial).
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Figure 7.10: Iso-error maps - Point A (uniaxial) (cont.).

algorithms for the hypoelastic-based model at three different stress points, namely: A) uni-

axial, B) biaxial, and C) pure shear, as depicted in Fig. 7.9. Due to the lack of an analytical

solution, the exact stress is obtained numerically considering 1000 sub-increments of strain

and using the backward-Euler algorithm with the multi-stage return mapping procedure

(BE). Both combined hardening and yield anisotropy are taken into account in this example

by employing the 6022-T43 aluminium allow, constitutive parameters of which are presented

in Section 6.6. The analysis is carried out for the forward-Euler algorithm with and without

the sub-incrementation technique (FE and FE1, respectively) and for the backward-Euler

algorithm with and without the multi-stage return mapping procedure (BE and BE1, respec-
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Figure 7.11: Iso-error maps - Point B (biaxial).

tively).

The obtained results are presented in Figs. 7.10-7.12. Regarding the backward-Euler

algorithm, the multi-stage return mapping procedure does not affect the accuracy of the al-

gorithm, since for all three cases BE and BE1 provided the same results. On the contrary, the

use of the sub-incrementation technique in the forward-Euler algorithm significantly improves

the accuracy of the algorithm. In all three cases the standard forward-Euler algorithm (FE1)

provides the worse accuracy and its error reaches considerable high values (above 50%) for

moderate strain increments. From the obtained results it can be seen that, generally, the

backward-Euler algorithms (BE and BE1) are more accurate than the forward-Euler ones
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Figure 7.11: Iso-error maps - Point B (biaxial) (cont.).

(FE and FE1), as expected. The shape of the iso-error maps of the FE algorithm is similar

to the ones of BE and BE1 and it is worth noting that, surprisingly, FE is more accurate

than BE and BE1 in some situations. For case A, even though the general accuracy of FE

is poorer comparatively to BE and BE1, its maximum error is smaller than the maximum

error obtained with BE and BE1. In opposite, for case B, FE is generally more accurate than

BE and BE1, but reaches a higher maximum value. The good accuracy of FE is related to

the high number of sub-increments considered by the sub-incrementation technique, which

consists of performing several return mappings with small increments of strain instead of only

one return mapping.
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Figure 7.12: Iso-error maps - Point C (pure shear).

7.5 Drawing of a thin circular flange

This benchmark, proposed by Papadopoulos and Lu (2001) and analysed in the works of

Miehe et al. (2002), Miehe and Apel (2004), and Caminero et al. (2011), concerns the draw-

ing process of a thin circular flange and is considered for the analysis of anisotropic elasto-

plasticity. This drawing process, schematically represented in Fig. 7.13, can be seen as a

simplification of the flange’s drawing in the cylindrical cup drawing test, without modelling

contact. For that purpose, only planar deformations are taken into account by simply sup-

porting the lower and upper node layers of the discretized blank, whereas an inward radial

displacement of 75 [mm] is uniformly imposed to the inner rim, while the outer rim is free from
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Figure 7.12: Iso-error maps - Point C (pure shear) (cont.).

in-plane constraints. The obtained earing profile, a consequence of the material’s anisotropy,

can be seen as a rough approximation of the one obtained with the cylindrical cup drawing

process, since in the latter more drawing is considered and the material experiences distinct

loading/unloading conditions as it flows into the die (see Section 7.6).

Due to the geometrical and material symmetry, only a quarter section of the flange is

analysed in this work. The flange has a thickness of 10 mm and has been discretized by 900

(30x30, radial x angular directions) 8-node trilinear finite elements with reduced integration

(C3D8R, in ABAQUS), with one element along the thickness direction.

Three different materials are employed in this numerical problem, the 2090-T3 aluminium
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Figure 7.13: Circular flange’s drawing - Scheme of the drawing process (units in mm).

alloy (the constitutive parameters of which were presented in Section 7.1), and fictitious

isotropic and anisotropic materials, the latter introduced by Yoon et al. (2006) and denoted

as FM8. The fictitious materials are assumed to have the same hardening behaviour as

the Al2090-T3 alloy, while the anisotropic yielding behaviour of FM8 is described by the

Yld2004-18p anisotropy parameters listed in Table 7.2 (Yoon et al., 2006).

The obtained deformed configurations and distributions of accumulated plastic strain, ε̄p,

related to the hyperelastic-based model using R, are shown in Fig. 7.14. In order to quantify

the effect of the anisotropy on the earing, Fig. 7.15 shows the comparison of the obtained

profiles (for 1/4 of the plate) considering the implemented constitutive models and algorithms.

The isotropic material plate preserves the axisymmetry of its shape and distribution of ε̄p

during the deformation process, as expected. On the other hand, the anisotropy of the

Al2090-T3 alloy and FM8 material induces non-axisymmetric distributions of ε̄p and earing

in the outer rim. The Al2090-T3 and FM8 reveal 4 and 8 ears in the final configuration,

respectively, with the shape and alignment regarding the rolling direction being considerably

different from each other. In Fig. 7.16 the development of the in-plane nodal forces acting at

the nodes A and B, specified in Fig. 7.13, is depicted. When comparing the forces’ evolution

at A and B for the two considered anisotropic materials with the ones of the isotropic material,

the anisotropy is easily seen. Regarding the different models and algorithms analysed, once

more, the obtained results are in excellent agreement between each other.

Table 7.2: FM8’s anisotropic coefficients (a = 8) (Yoon et al., 2006).

c1
12 c1

13 c1
21 c1

23 c1
31 c1

32 c1
44 c1

55 c1
66

0.7297 0.8777 0.4252 0.7268 1.1386 1.0000 1.3485 1.0000 1.0000
c2

12 c2
13 c2

21 c2
23 c2

31 c2
32 c2

44 c2
55 c2

66

1.0513 1.0389 1.3289 1.1775 0.7651 0.9169 0.0432 1.0000 1.0000
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(Avg: 75%)

ε̄p
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+4.971e-01
+5.518e-01
+6.065e-01
+6.612e-01

Figure 7.14: Circular flange’s drawing - Deformed configurations and distributions of the
accumulated plastic strain for an isotropic material, Al2090-T3, and FM8.
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Figure 7.16: Circular flange’s drawing - Nodal forces’ evolution at A and B for an isotropic
material (green) along with a) Al2090-T3 and b) FM8.

7.6 Cylindrical cup drawing test

One of the most used benchmarks in the analysis of the anisotropic planar behaviour and

formability of metallic sheets is the cylindrical cup drawing test. Similarly to the numerical

example of Section 7.5, the planar anisotropy of the material induces asymmetric flow of

the material, resulting on an uneven periodic edge profile at the top of the formed cup

(earing). This earing is an undesirable effect, since in the production of metallic parts it

implies an additional processing step (trimming of the uneven top edge), leading to waste

of material, reduction of production rate and thus increased costs. In the last years, several

works have been presented on the study of this deep drawing process, e.g., in contrast to

the usual practice of considering solely isotropic hardening with constant anisotropy, the

influence of the use of combined isotropic-kinematic (Thuillier et al., 2010, Vladimirov et al.,

2011) and combined rotational-isotropic-kinematic hardening laws (Choi et al., 2006), and

evolving anisotropy (Yoon et al., 2010) have been studied. Although the prediction of the

earing profile is usually carried out numerically, some analytical approaches have also been

proposed by e.g., Chung et al. (2011) and Yoon et al. (2006). Here, this benchmark test is
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used to assess the performance of the developed and implemented material models in real

deep drawing forming processes regarding the anisotropy description. To that purpose, two

materials are considered, namely the 2090-T3 aluminium alloy and the fictitious material

FM8, whose constitutive parameters were presented in Sections 7.1 and 7.5, respectively.

This forming process is schematically represented in Fig. 7.17 and consists of forcing the

blank to flow into the axisymmetric cavity of the die by means of moving the axisymmetric

punch downwards. In order to prevent buckling on the blank’s flange a blank holder is

utilized. A blank holder force of 22.2 [kN] (5.55 [kN] for a quarter section of the blank) and

a Coulomb’s friction coefficient of 0.1 between the surfaces in contact are considered. The

adopted value of the blank holder force is just enough to prevent wrinkling and thus minimize

its influence on the earing formation. The specific dimensions of the sheet and tools as well

as the process parameters are chosen according to Yoon et al. (2006).

Punch diameter Dp = 97.46
Punch profile radius Rp = 12.70
Die opening diameter Dd = 101.48
Die profile radius Rd = 12.70
Blank diameter Db = 158.76
Initial sheet thickness t0 = 1.6

[mm]

Blank Holder

Die

Punch

Dp

Rp

Dd

Db

Rd

t

Figure 7.17: Cilindrical cup drawing test - Scheme of the drawing process.

As in the previous section, due to the orthotropic material symmetry, as well as the process

symmetry, only a quarter section of the blank is modelled and analysed. A total of 7500 8-

node trilinear finite elements with reduced integration (C3D8R, in Abaqus), distributed in

the sheet’s plane as represented in Fig. 7.18, with 4 layers along the thickness direction, are

used to discretize the blank, whereas the tools are modelled as analytical rigid bodies.

In Fig. 7.19 it is shown the deformed configurations and the non-axisymmetric evolution

of the distribution of the accumulated plastic strain, ε̄p, at different punch displacements, u,

for the 2090-T3 aluminium alloy considering the hyperelastic-based model using R and the

Yld2004-18p function.

The obtained earing profiles related to the analysed materials are depicted in Fig. 7.20

considering the implemented constitutive models and algorithms. As in Fig. 7.15, only

the earing profile between 0◦ and 90◦ is presented, since the entire profile can be obtained

by mirroring, due to the orthotropic material symmetry. The results obtained with the

Yld2004-18p criterion predicted 8 ears in the entire earing profile for both Al2090-T3 and FM8

materials. For the Al2090-T3 using the Yld2004-18p criterion, 4 additional ears at 0◦, 90◦,

180◦ and 270◦ are predicted comparatively to Fig. 7.15, because more drawing is considered.

This is due to the additional stretching coming from the friction between the blank and
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Figure 7.18: Cylindrical cup drawing test - Blank discretization.

b) c)

a)
(Avg: 75%)

ε̄p

+0.000e-00
+4.681e-02
+9.363e-02
+1.404e-01
+1.873e-01
+2.341e-01
+2.809e-01
+3.277e-01
+3.745e-01
+4.213e-01

+5.149e-01
+5.618e-01

+4.681e-01

Figure 7.19: Cylindrical cup drawing test - Deformed configurations and distributions of the
accumulated plastic strain at a) u = 30 mm, b) u = 45 mm, and c) u = 65 mm (final
configuration).

the tools, as well as the higher amount of material flow. Moreover, the bending/unbending

conditions to which the material is subjected when it is drawn through the die profile may

also affect the earing profile. When the Yld91 criterion is used to describe the Al2090-T3’s

anisotropy, its lower flexibility, comparatively to Yld2004-18p, allows the prediction of only

4 ears in the entire earing profile. Regarding FM8, the 8 ears are already obtained during

the drawing of the circular flange (see Fig. 7.15), but have now more pronounced height and

new positions for the cylindrical cup drawing test. These 8 ears have been also predicted by

Yoon et al. (2006). As expected, when the von Mises criterion is employed an axisymmetric

profile is obtained.

The predicted evolution of the punch’s force during the forming process is presented in
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Figure 7.20: Cylindrical cup drawing test - Obtained cup height profiles for an isotropic
material (green), Al2090-T3 using Yld91 (gray) and Yld2004-18p (red) yield criteria, and
FM8 (blue).

Fig. 7.21. It is interesting to observe that differences of about 20% on the maximum punch

force are predicted, even though all results were obtained considering the same hardening

law. Moreover, regarding the Al2090-T3, significant differences occurs when two different

yield criteria are used to describe the same anisotropic behaviour. The results obtained with

the considered finite strain formulations and algorithms are in great agreement with each

other, regarding both earing profiles and punch force-punch displacement relationship.

The number of increments required to completely drawn the cup (only the forming step

is taken into account) for each constitutive model with the considered integration algorithms

and the corresponding relative times of computation (considering the hypoelastic-BE-ZJ as

reference) are presented in Table 7.3. Although the differences between the obtained results

(see Figs. 7.20 and 7.21) are negligible, the performances of the employed algorithms re-

garding the computational time are quite different. Concerning the hypoelastic-based model,

on the one hand, the backward-Euler algorithms (with and without the multi-stage return

mapping procedure) provide very similar results. Because of the small size of the step incre-

ments, mainly imposed by the contact algorithm, a fast convergence of the return mapping

is obtained with only one stage, thus the advantage of using the multi-stage return mapping

procedure is wasted.

On the other hand, relatively to the forward-Euler algorithms, an improvement of per-

formance is observed in both the number of step increments and the time of computation
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Figure 7.21: Cylindrical cup drawing test - Predicted punch force-punch displacement rela-
tionships for an isotropic material (green), Al2090-T3 using Yld91 (gray) and Yld2004-18p
(red) yield criteria, and FM8 (blue).

Table 7.3: Cylindrical cup drawing test - Number of increments and relative times to com-
pletely drawn the cup.

Model Algorithm
Objective Al2090-T3 (Yld2004-18p) FM8

rate # inc. Rel. time # inc. Rel. time

Hypo-

BE
ZJ 78 1.00 (Ref.) 81 1.04

GMN 78 1.05 81 0.98

BE1
ZJ 78 1.03 81 0.97

GMN 78 0.97 82 1.00

FE
ZJ 128 2.04 113 1.74

GMN 136 2.20 116 1.81

FE1
ZJ 134 2.47 119 2.16

GMN 138 2.50 115 2.18

Rotation tensor

Hyper-
R 95 6.26 98 5.65
RZJ 95 6.26 89 5.33

when the sub-incrementation technique is considered. Nevertheless, even when the sub-

incrementation technique is used, the forward-Euler algorithm takes more than twice the

time required by the backward-Euler algorithms.

In this numerical example, the hypoelastic-based model is considerably more efficient than
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the hyperelastic-based one. The differences in the required times of computation are under-

standable considering the employed algorithms to integrate the constitutive equations. For

the hyperelastic model, the used algorithm (see Section 5.3.9.2) requires a complex lineariza-

tion of the residua (see Equations 5.140-5.142) at each iteration of the iterative procedure

if plastic deformation occurs. In turn, for the hypoelastic model the plastic multiplier is

computed using a single equation: at each iteration for the backward-Euler algorithm (see

Equation 4.86); and at each sub-increment for the forward-Euler algorithm considering the

sub-incrementation technique (see Equation 4.53). Comparing the obtained results between

the two materials, one can conclude that the anisotropy affects both the number of increments

required and the time of computation. This is related to the fact that the more pronounced

the yield surface’s anisotropy, the higher the number of iterations required to perform the

return mapping (in backward-Euler algorithms) or the error at the end of the return mapping

(in forward-Euler algorithms), specially at cornered regions of the yield surface.

In Fig. 7.22 the results obtained with the hyperelastic-based model using R for the 2090-

T3 aluminium alloy are compared with the experimental data coming from Yoon et al. (2000)

and with the numerical results obtained by Yoon et al. (2006), Alves de Sousa et al. (2007),

and Kim et al. (2008). In the (reference) experimental earing profile the cup height evolution

between 90◦ and 180◦ is not an exact mirror image of the cup height profile between 0◦ and

90◦. It was argued by Yoon et al. (2000) that this probably results from an inexact alignment

between the centre of the blank and the corresponding centre of the tools during the forming

experiment. The obtained earing profile is in good agreement with the experimental data

and with the works of Yoon et al. (2006) (based on a solid element formulation), Alves de

Sousa et al. (2007) (for an enhanced assumed strain solid-shell formulation), and also with
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Figure 7.22: Cylindrical cup drawing test - Comparison of the obtained results for the Al2090-
T3 with experimental (Yoon et al., 2000) and numerical data presented in the literature.
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Kim et al. (2008) (using shell elements). However, two unexpected ears at 90◦ and 270◦,

which did not occur experimentally, are also predicted. The same ears were also predicted in

the work of Kim et al. (2008), which used the same commercial FEM code (ABAQUS).

7.7 S-rail forming benchmark

The plastic forming of an S-shaped channel, so-called “S-rail”, was proposed in the NU-

MISHEET (1996) international conference as a benchmark problem. It was designed to com-

pare different numerical results with each other as well as with experiments. The complex

geometry of this problem makes it an interesting validation test about the springback predic-

tion capabilities of numerical formulations. Although some analytical approaches to predict

springback have been proposed (see e.g., Moon et al. (2008)), they are limited to simple

forming processes and material properties, not being suitable, in general, to the springback

analyses of real forming processes. Hence, the analysis of such complex forming processes, as

the forming of an S-rail, implies the use of numerical approaches, as the FEM.

The geometry of the blank and tools, as well as the initial setup, are shown in Fig. 7.23.

The initial blank thickness is 0.92 [mm]. The blank is placed between the die and the blank

holder and the imposed upward movement of the punch draws the blank into the curved

cavity of the die. After an imposed displacement of 37 [mm], the deformed part is removed

from the tooling and allowed to spring back. In this work, a blank holding force of 10 [kN] is

considered following the indications of the NUMISHEET benchmark’s board. A Coulomb’s

friction coefficient of 0.1 is assumed between the surfaces in contact. The simulation of this

problem is carried out for the 6111-T4 aluminium alloy, constitutive parameters of which

are presented in Table 7.4, after (Yoon et al., 1999). The hardening of the material is solely

defined by the isotropic Swift’s law (no kinematic hardening is considered, i.e., c = 0.0 [MPa]

and b = 10−8 ≈ 0 [-]), and the material’s anisotropy is described by the Yld91 yield function.

Table 7.4: Al6111-T4’s constitutive parameters (Yoon et al., 1999).

Elasticity Isotropic hardening
E [GPa] ν [-] K [MPa] ε0 [-] nH [-]

69.0 0.33 488.0 7.1x10−3 0.232

Yld91 anisotropy parameters (a = 8)
c1 c2 c3 c4 c5 c6

0.9503 0.8347 1.0240 0.9800 1.0000 1.000

The adopted mesh consists of 6000 8-node trilinear finite elements fully integrated with

incompatible deformation modes (C3D8I, in Abaqus), disposed in the sheet plane as illus-

trated in Fig. 7.24. The choice of the C3D8I formulation over conventional 3D formulations

(e.g., C3D8 or C3D8R in Abaqus) is due to the fact that preliminary simulations showed that

conventional 3D formulations were not able to properly reproduce the wrinkling patterns, ex-
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perimentally observed, in the final formed part. The tools are assumed to be rigid bodies

modelled by 4-node bilinear quadrilateral rigid elements (R3D4, in Abaqus). The deformed

configurations and distributions of Yld91 effective stress after the forming step and after the

springback are shown in Fig. 7.25, considering the hyperelastic-based model using R. As

shown in this figure, some wrinkles are revealed at the top of the formed part during the

forming step, shape of which suffer a small variation during the springback. The effective

stresses decrease considerably and the flanges of the part are slightly twisted, due to elastic

unloading, when the tools are removed.

(Avg: 75%)
σ̄

+0.000e+00
+3.306e+07
+6.612e+07
+9.918e+07
+1.322e+08
+1.653e+08
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+2.314e+08
+2.645e+08
+2.975e+08
+3.306e+08
+3.636e+08
+3.967e+08

a)

b)

Figure 7.25: S-rail forming - Deformed configurations and distributions of Yld91 effective
stress a) after the forming step and b) after the springback.

The obtained cross-section profiles along the reference lines IE and JD, measured on the

top surface of the blank and considering the implemented constitutive models and numer-

ical algorithms, are presented in Fig. 7.26. The obtained results are very similar between

each other, regardless the considered constitutive model or the algorithm used to integrate

the hypoelastic constitutive equations. The springback of the cross-sections along the refer-

ence lines IE and JD, considering the hyperelastic-based model using R, is compared with

the experimental data (NUMISHEET, 1996) in Fig. 7.27. The obtained results provide a

good prediction of the experimentally measured springback, especially in the JD line’s case.

Fig. 7.28 presents the evolution of the applied punch force with its displacement during
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the forming step. The experimental upper (EB2.03) and lower (EB2.01) curves published in

the proceedings of the NUMISHEET (1996) conference are also depicted in this figure. The

obtained punch force-punch displacement relationships are within the range and follow the

evolution trend of the experimental data. Moreover, as for the sectional profiles along the

reference lines IE and JD, the obtained results are very similar regardless the constitutive

model or integration algorithm considered.

-15

0

15

30

45

0 15 30 45 60 75 90 105

Y
-c

o
or

d
in

at
e

[m
m

]

X-coordinate [mm]

b)

0

15

30

45

0 15 30 45 60 75 90 105

Y
-c

o
o
rd

in
at

e
[m

m
]

X-coordinate [mm]

a)

Before springback

Hyperelastic - R
Hyperelastic - RZJ

Hypoelastic - BE - GMN
Hypoelastic - BE - ZJ
Hypoelastic - FE - GMN
Hypoelastic - FE - ZJ

BE1 - GMN
BE1 - ZJ
FE1 - GMN
FE1 - ZJ

Figure 7.26: S-rail forming - Numerically obtained sectional deformed shapes after springback
along a) IE and b) JD lines.

Finally, the number of increments required to numerically simulate this benchmark (only

the forming step is taken into account) for each constitutive model with the considered inte-

gration algorithms, as well as the corresponding relative times of computation (considering

hypoelastic-BE-ZJ as reference) are presented in Table 7.5. Moreover, the predicted spring-

back is quantitatively compared with the experimental results through the angles indicated

in Fig. 7.27. In terms of the number of increments to simulate this benchmark, no sig-
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Figure 7.27: S-rail forming - Comparison of the obtained cross-section profiles with the
experimental data (NUMISHEET, 1996) after springback along a) IE and b) JD lines.
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nificant differences are seen between the hypoelastic- and hyperelastic-based models. This

is due to the fact that, in this example, similarly to the one of Section 7.6, the contact is

the main feature (instead of the material model) that delimits the size of the increments

during the forming step. This means that, even though the hyperelastic-based model may

allow for larger step increments comparatively to the hypoelastic-based one, the size of the

step increments are restricted by the contact algorithm. In fact, the step increments in this

example are small enough to suppress the advantages of using the multi-stage return map-

ping procedure, since the number of step increments and the obtained results (see θ1 and θ2)

are the same. Moreover, looking at the time of computation, one can see that the classical

backward-Euler algorithm, BE1, is indeed the more efficient one. The BE algorithm is slightly

slower than the BE1 because it performs the return mapping in more than one stage in some

step increments, where its small size allows a fast convergence considering only one stage.

The forward-Euler algorithm is not so efficient as the backward-Euler regarding either the

number of step increments, the computational time, and the obtained results. Here, the use

of the sub-incrementation technique improves significantly the performance of the algorithm,

specially regarding the number of step increments and the time of computation. Regarding

the computational time, the hypoelastic-based model is clearly faster then the hyperelastic-

based one, as in the previous numerical example. Comparing the Zaremba-Jaumann and the

Green-McInnis-Naghdi rates, one can see that the former allows, in general, for a slightly

smaller number of step-increments and thus faster simulations. The obtained angles between

the flanges, θ1 and θ2, are globally very similar for all simulations. Nevertheless, the results

obtained with the hyperelastic-based model are the ones closer to the experimental data.

Table 7.5: S-rail forming - Number of increments and relative times of computation.

Model Algorithm Objective rate # inc. Rel. time θ1 [Deg.] θ2 [Deg.]

Hypo-

BE
ZJ 178 1.00 (Ref.) 170.306 168.807

GMN 179 1.02 170.313 168.835

BE1
ZJ 178 0.98 170.306 168.807

GMN 179 1.00 170.313 168.835

FE
ZJ 183 1.14 170.520 169.038

GMN 187 1.11 170.522 169.037

FE1
ZJ 284 1.48 170.674 169.218

GMN 337 1.64 170.675 169.248

Rotation tensor

Hyper-
RZJ 177 5.07 170.249 168.770
R 177 5.21 170.240 168.749

Experimental (EB2.06) — — 164.78 163.87
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7.8 U-channel forming benchmark

The benchmark of the forming of a U-channel was proposed in the NUMISHEET (1993)

international conference, also aiming at the study of springback. A scheme of the forming

process, as well as the tool dimensions, is represented in Fig. 7.29, and the initial blank size

is 350 × 45 × 1.2 [mm]. The process consists of imposing a punch displacement of 70 [mm]

and then removing the tools so the blank is allowed to recover elastically. After the two-step

simulation, from the final sheet shape, the springback and sidewall curl are assessed using

the measuring system represented in Fig. 7.30. As proposed by the NUMISHEET (1993)

benchmark committee, three parameters are used to assess the obtained profile, namely the

angles between the bottom and the sidewall and between the sidewall and the flange, θ1 and

θ2 respectively, and the radius of curvature of the sidewall, ρ. A blank holding force of 25.7

[kN] (6.425 [kN] for a quarter section of the blank) is used and a Coulomb’s friction coefficient

of 0.14 is assumed between the sheet and the tools.

Die

Blank
Holder

Punch

50

55 6.5 R5

R5
53

350

R5

Figure 7.29: U-channel forming - Scheme of the drawing process (units in mm).

15
35

40

ρ

θ2

θ1

Figure 7.30: U-channel forming - System used to measure the springback and the sidewall
curl (units in mm).

The material considered in this numerical example is a DP590 steel, identification of the

constitutive parameters of which was presented in Section 6.7. The three hardening models

considered in Section 6.7 (namely pure isotropic hardening and pure kinematic hardening

with one and two back stress components) are taken into account in this numerical example.
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Due to the material’s isotropy, only a quarter section of the blank is analysed. The blank

is discretized by 18375 8-node trilinear solid elements with reduced integration (C3D8R, in

ABAQUS), with dimensions of 1.0 × 1.5 mm (length × width). Here, 7 elements along the

thickness direction are considered and the tools are modelled as analytical rigid bodies.

The deformed profiles obtained with the constitutive models and algorithms in study are

presented in Fig. 7.31. For each hardening model the obtained results are very similar,

regardless the constitutive model or the algorithm considered. The differences between the

results obtained with each hardening model are only perceptible in the angle between the

sidewall and the flange, whereas no differences are observable in the sidewall area. As ex-

pected, among the three used models, Model 1 is the one that predicts more springback. This

is due to the fact that pure isotropic hardening is not able to describe neither the Bauschinger

effect nor the transient behaviour, thus overpredicting the levels of stress. Between Models

2 and 3 slight differences are visible, in a way that Model 2 predicts more springback than

Model 3.
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Figure 7.31: U-channel forming - Obtained deformed profiles for Model 1 (green), Model 2
(red), and Model 3 (blue).

The number of increments required to completely form the part (only the forming step

is taken into account) and the corresponding relative times of computation (considering the

hypoelastic-BE-ZJ for Model 1 as reference), for each constitutive model with the consid-

ered integration algorithms, are presented in Table 7.6. In this numerical example, the

hyperelastic-based formulation allows for larger step increments, requiring only between about
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50% (for Model 1) and 90% (for Model 3) more time of computation comparatively to the

hypoelastic-based formulation. Among the algorithms used for the hypoelastic-based model,

the standard backward-Euler is generally the more efficient in this numerical example, whereas

the advantage of considering the multi-stage return mapping procedure is again suppressed

by the use of small increments. Also, the use of an isotropic yield surface and the few changes

in the loading direction enable a fast convergence of the iterative procedure, during the plas-

tic corrector phase, with only one stage of return mapping. The forward-Euler algorithms

have, in general, a worse efficiency comparatively to the backward-Euler algorithms. Indeed,

concerning Model 1, the hyperelastic-based model required less time of computation than the

hypoelastic-based model with the standard forward-Euler algorithm. Comparing the compu-

tational effort between hardening models, one can see that both the number of increments

and the time of computation increase as the complexity of the model grows. This is justi-

fied by the increase of the number of state variables, which integrated formulas of evolution

equations must converge at the end of the increment.

Table 7.6: U-channel forming - Number of increments and relative times of computation.

Model Alg.
Obj. Hard. Model 1 Hard. Model 2 Hard. Model 3
rate # inc. Rel. time # inc. Rel. time # inc. Rel. time

Hypo-

BE
ZJ 382 1.000 (Ref.) 468 1.320 487 1.415

GMN 382 1.011 467 1.274 487 1.427

BE1
ZJ 382 0.990 488 1.372 487 1.386

GMN 382 0.996 478 1.301 487 1.393

FE
ZJ 373 1.525 493 1.993 542 2.096

GMN 362 1.520 496 2.033 537 2.076

FE1
ZJ 408 1.555 547 2.213 589 2.353

GMN 466 1.557 611 2.217 625 2.361

Rotation tensor

Hyper-
R 318 1.533 383 2.248 397 2.710
RZJ 318 1.541 383 2.248 397 2.698

The comparison between the obtained deformed profiles, considering hyperelastic-R, after

springback with the experimental data, coming from Lee et al. (2012b), is presented in Fig.

7.32. Qualitatively speaking, Model 1 overpredicts the experimental springback, whereas the

profiles obtained with Models 2 and 3 are in good agreement with the experimental profile.

In order to quantitatively assess the obtained results, in Table 7.7 the three parameters

defined in Fig. 7.30 are presented regarding the obtained results and the experimental data

and numerical results presented by Lee et al. (2012b) using the homogeneous anisotropic

hardening, HAH, approach. Generally, the obtained results are in excellent agreement with

the experimental data, slightly underpredicting the sidewall curl, ρ, and the angle between

the sidewall and the flange, θ2, and marginally overpredicting the angle between the bottom

and the sidewall, θ1. As expected, the use of a kinematic hardening law with two back stress
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components (Model 3) allows for better results than Models 1 and 2. One should notice

that the better description of the experimental springback is directly related to the better

description of the material’s hardening behaviour (see Fig. 6.10) provided by this hardening

model. Interestingly, Models 2 and 3, that use only 3 and 5 parameters, respectively, provide

better predictions of θ1 and θ2 than the HAH model, that used 9 parameters.
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Figure 7.32: U-channel forming - Comparison of the obtained deformed profiles with experi-
mental data (Lee et al., 2012b).

Table 7.7: U-channel forming - Radius of curvature and springback angles.

Experimental HAH Hyperelastic-R
(Lee et al., 2012b) Model 1 Model 2 Model 3

ρ [mm] 149.5 146.0 140.384 142.038 143.523
θ1 [Deg.] 107.1 106.3 107.630 107.571 107.494
θ2 [Deg.] 79.3 77.8 76.884 78.426 78.823

7.9 U-channel forming benchmark with drawbeads

A modification of the previous U-channel benchmark (Section 7.8) has been proposed in the

NUMISHEET’05 international conference (as benchmark #3) and considers the use of draw-

beads. These drawbeads are located on the die and induce complex cyclic bending/unbending

conditions as the material flows into it during the forming process. Moreover, the amount of

springback after the tools removal is dependent on the drawbeads’ penetration, due to the

different straining conditions attained. A scheme of this forming process including the tools

dimensions is presented in Fig. 7.33, following Stoughton et al. (2005). The process consists
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of three steps, firstly, the blank holder is moved downwards up to the point where the kiss

blocks contact the die, secondly, a punch displacement of 245 [mm] is imposed, thirdly, the

tools are removed and the material is allowed to spring back. Here, two drawbeads’ penetra-

tions are considered, namely the shallowest (25%, Db=2.34 [mm]) and the deepest (100%,

Db=9.09 [mm]). A Coulomb’s friction coefficient of 0.15 between the surfaces in contact and

a blank holding force of 250 [kN] (62.5 [kN] for a quarter section of the blank) are considered.

The kiss blocks are used to maintain a constant distance between the blank holder and the

die, i.e., the die contacts the kiss blocks since the end of the blank holder closure until the

end of the forming step. The imposed black holder force ensures that the kiss blocks are

always in contact with the die.

PunchRp

Wp

Rd
Die

Blank Holder

Wd

Width of die cavity Wd = 319.90
Radius of die profile Rd = 12.00
Width of punch Wp = 224.00
Radius of punch profile Rp = 12.00
Binder gap Bg = 1.42
Bead position Bp = 31.05
Radius of bead Rb = 4.00
Width of channel Wc = 10.80
Radius of channel Rc = 4.00
Blank width Bw = 254.00
Blank length Bl = 1060.00
Blank thickness Bt = 0.991Die

Blank Holder

Rb Bp

Bg Db

Drawbead and kiss block detail

Rc

Wc

[mm]

Figure 7.33: U-channel forming with drawbeads - Scheme of the drawing process.

ρ

θ

Figure 7.34: U-channel forming with drawbeads - System used to measure the springback
and the sidewall curl.
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Figure 7.35: U-channel forming with drawbeads - Obtained deformed profiles for a) the
shallowest (23%) and b) deepest (100%) penetrations.

The springback in this numerical example is quantitatively compared by means of the

measuring system presented in Fig. 7.34, as proposed by Green (2005). Two parameters are

used, namely the angle between the bottom and the sidewall, θ, and the radius of curvature

of the sidewall, ρ.

The material analysed in this numerical example is the 6022-T43 aluminium alloy, whose

hardening parameters’ identification was presented in Section 6.6. The anisotropy of the

material is described by the Yld2004-18p criterion, following the parameters presented in

Table 6.3. Only a quarter section of the blank is modelled and analysed due to the orthotropic

symmetry of the material, as well as the process symmetry. After a convergence study,
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Figure 7.36: U-channel forming with drawbeads - Comparison of the obtained deformed
profiles with experimental and numerical data presented by Taherizadeh et al. (2011) for a)
the shallowest (23%) and b) deepest (100%) penetrations.

the blank is discretized using a mesh of 38400 8-node trilinear finite elements with reduced

integration (C3D8R, in ABAQUS), with 5 elements along the thickness direction, whereas

the tools are modelled as analytical rigid bodies.

The obtained deformed profiles for the two drawbeads penetrations considering the con-

stitutive models and algorithms in study are presented in Fig. 7.35. A higher amount of

springback is predicted for the 25% case and the obtained results are in excellent agreement

with each other. Still, differences in the flange’s angle are observed between the hyperelastic-

and hypoelastic-based models. In Fig. 7.36 the obtained deformed profiles after springback,

considering hyperelastic-R, are compared with the experimental and numerically obtained

profiles presented in the work of Taherizadeh et al. (2011). Qualitatively speaking, a good

agreement between the obtained profiles and the experimental data is observed, especially
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for the 100% case.

The quantitative comparison of the obtained results with the experimental and numer-

ical data presented in Taherizadeh et al. (2011) is presented in Table 7.8, by means of the

measuring system presented in Fig. 7.34. The differences between the results obtained by

the hyperelastic- and hypoelastic-based formulations are mainly on the radius of curvature

of the sidewall. In general, the hyperelastic-based formulation predicts more springback than

the hypoelastic-based one, in this numerical example. Very small differences are attained

between the integration algorithms for the hypoelastic-based formulation, especially between

Table 7.8: U-channel forming with drawbeads - Number of increments and relative times of
computation.

25%

Model Algorithm Objective rate # inc. Rel. time θ [Deg.] ρ [mm]

Hypo-

BE
ZJ 658 1.000 (Ref.) 112.884 89.463

GMN 658 1.028 112.884 89.459

BE1
ZJ 658 1.018 112.884 89.463

GMN 658 1.038 112.884 89.459

FE
ZJ 822 1.042 112.883 90.256

GMN 799 1.027 112.869 90.232

FE1
ZJ 910 1.099 112.862 90.185

GMN 850 1.060 112.851 90.244

Rotation tensor

Hyper-
RZJ 491 1.337 112.793 87.988
R 491 1.341 112.793 87.988

Experimental — — 106.1 99.6
Taherizadeh et al. (2011) — — 111.0 86.8

100%

Model Algorithm Objective rate # inc. Rel. time θ [Deg.] ρ [mm]

Hypo-

BE
ZJ 1058 1.000 (Ref.) 105.077 131.271

GMN 1054 0.968 105.076 130.880

BE1
ZJ 1058 1.011 105.077 131.271

GMN 1054 0.983 105.076 130.880

FE
ZJ 1467 1.564 105.045 132.304

GMN 1468 1.519 105.041 132.119

FE1
ZJ 1777 1.575 105.065 132.404

GMN 1800 1.562 105.056 132.047

Rotation tensor

Hyper-
RZJ 800 1.506 105.133 127.736
R 804 1.516 105.129 127.773

Experimental — — 100.2 135.9
Taherizadeh et al. (2011) — — 105.6 104.1
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the backward-Euler ones. Globally, the obtained results, characterized by θ and ρ, are in

good agreement with the experimental data and provide a better prediction comparatively

to the numerical data presented by Taherizadeh et al. (2011), which were obtained using

combined isotropic-kinematic hardening and the Yld2000-2D criterion.

In addition, Table 7.8 also includes the relative times of computation (considering the

hypoelastic-BE-ZJ as reference) and the number of step increments required to completely

form the part (only the forming step is taken into account). As for the simulations of U-

channel forming without drawbeads, in the present numerical example the hyperelastic-based

formulation allows for considerably larger step increments comparatively to the hypoelastic-

based one. The significantly lower number of required step increments allows for faster

computations comparatively to the simulations performed with the forward-Euler algorithms

(for the hypoelastic-based formulation). Once more, regarding the computational time the

backward-Euler algorithms are the more efficient and the advantage of using the multi-stage

return mapping procedure is suppressed by the use of small increments. Is can be seen that the

use of the sub-incrementation technique slightly improves the efficiency of the forward-Euler

algorithm. Finally, no major differences are obtained in both numerical efficiency and quality

of the results, regarding the use of the Zaremba-Jaumann or the Green-McInnis-Naghdi rates.

7.10 Draw/re-draw panel benchmark

In order to assess the performance of the presented constitutive models in situations where

several strain path changes occur and both anisotropy and cyclic hardening phenomena

have a significant roll in the production of a part, the benchmark #2 proposed in the NU-

MISHEET’14 international conference in analysed in this section. The main objective of

this benchmark is to predict the sprung shape after stamping, restriking and trimming of a

metallic sheet panel (Carsley et al., 2013). A scheme of the forming process and the tools

dimensions are presented in Fig. 7.37. The initial dimensions of the blank are 300×250×1.1

[mm] (RD×TD×ND). The production of two parts is considered, following different forming

steps, namely

Part 1 One forming step with a “larger” tooling radius (R = 12 [mm]) to a depth of 51.6

[mm];

Part 2 Two forming steps. The first one with a “larger” tooling radius (R = 12 [mm]) to

a depth of 51.6 [mm], followed by an additional drawing step with a “smaller” tooling

radius (R = 8 [mm]) to a greater depth (u = 53.7 [mm]).

In the production of both parts, after the forming steps the panels are removed from the

tooling, sectioned along a centerline (see Fig. 7.38), and released to allow the measurement

of the sprung profile along the trim line (Carsley et al., 2013). In order to prevent wrinkling

during the forming steps a blank holder force of 245 [kN] (61.25 [kN] for a quarter section of

the blank) is considered.
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Figure 7.38: Drawing of a panel - Draw-ins measurement and trim line.

In this numerical example the 5182-O aluminium alloy is considered. Both anisotropic

Yld2004-18p yield function and combined isotropic-kinematic hardening considering two back

stress components are taken into account to model the complex mechanical behaviour of

the material in study. The constitutive parameters of this material have been identified

in Section 6.8. As in some of the previous examples, only a quarter section of the blank

is modelled and analysed due to the orthotropic symmetry of the material, as well as the

process symmetry. After a convergence study, a mesh constituted by 120700 8-node trilinear
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Figure 7.39: Drawing of a panel - Draw-ins after the forming step of Part 1, along a) X-axis,
b) Y-axis, and c) corner direction.

finite elements with reduced integration (C3D8R, in ABAQUS) is employed. This way, five

elements are considered along the thickness direction and the elements are allocated in the

sheet’s plane following the distribution 170×142 (length (RD) × width (TD)). The tools are

assumed to be rigid bodies modelled by 4-node bilinear quadrilateral rigid elements (R3D4,

in ABAQUS). Considering the results obtained in the previous sections, in the numerical

simulations performed in this section only Hyperelastic-RZJ and Hypoelastic-ZJ are taken

into account.
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No coefficient of friction was provided by the benchmark organizers, since the experimental

draw-ins (see Fig. 7.38) measured after the forming step of the Part 1 were provided in

advance to the participants, so they could calibrate the friction model used in the numerical

simulations. Here, the value of the Coulomb’s friction coefficient is calibrated in order to fit

the numerically obtained draw-in along the X-axis with the experimental one. The choice of

the draw-in along the X-axis in detriment of the one along the Y-axis is considered because

this is the direction in which the panel is sectioned and the sprung profile is measured. The

fitted Coulomb’s friction coefficient obtained has the value 0.079. The comparison of the

fitted draw-in along the X-axis and the predicted draw-ins along the Y-axis and in the corner

with the experimental (BM2 0) draw-ins, and with the ones numerically obtained by the

participants of the benchmark, is presented in Fig. 7.39. From this figure, one can see that,

in general, and comparing to the results presented by the participants in this benchmark, the

obtained results are in good agreement with the experimental draw-ins.

Considering the fitted Coulomb’s friction coefficient, the production of the two parts is

numerically simulated. Regarding the production of Part 1, the deformed configurations

and distributions of the Yld2004-18p effective stress after the forming step and after the

occurrence of springback are presented in Fig. 7.40. A significant decrease of the Yld2004-

18p effective stress occurs during the springback step. The deformed configurations, along

with the distributions of the accumulated plastic strain, of Part 2, after each forming step and

after springback are depicted in Fig. 7.41. As expected, the drawing of the second forming

step induces an increase of the accumulated plastic strain. This increase is more pronounced

(Avg: 75%)
σ̄
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+5.133e+01
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+1.967e+02
+2.209e+02
+2.452e+02
+2.694e+02
+2.936e+02

a)

b)

Figure 7.40: Drawing of a panel - Deformed configurations and distributions of Yld2004-18p
effective stress after the a) forming and b) springback steps of Part 1.
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Figure 7.41: Drawing of a panel - Deformed configurations and distributions of accumulated
plastic strain after the a) first forming, b) second forming, and c) springback steps of Part 2.

in the bottom corners of the part, meaning that these are the critical locations, in which it

is more likely to occur rupture of the material if further drawing is considered.

On the one hand, regarding the production of Part 1, the comparisons of the experimental

data and of the results presented by the benchmark’s participants with the obtained evolution

of the punch force during the forming step and obtained final profile along the trim line after

springback are presented in Figs. 7.42 and 7.43, respectively. Similarly to most of the results

presented by the benchmark’s participants, the predicted punch force-punch displacement

relationships overestimate the experimental data. This may be related to the fact that the

material does not flow (see draw-ins along Y-axis and in the corner) during the simulation

as much as experimentally, meaning that the material offers more resistance to the drawing

in the numerical case. The obtained sprung profiles are, in overall, in good agreement with
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Figure 7.42: Drawing of a panel - Punch force-punch displacement relationships during the
forming step of Part 1.

the experimental data and provide a good prediction of the inclination angle of the flange.

Taking the draw-ins, punch force-punch displacement relationships, and sprung profiles

into account, the obtained results provide the best reproduction of the experimental data

comparatively to the results provided by the benchmark’s participants. In fact, the obtained

punch force’s evolution is not as good as the results provided by some benchmark’s partic-

ipants (e.g., BM2 01 and BM2 06), however they fail in the prediction of the draw-ins and

sprung profile.

On the other hand, relatively to the production of Part 2, the obtained results are com-

pared with the experimental data, as well as with the results presented by the benchmark’s
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Figure 7.43: Drawing of a panel - Sprung profiles of Part 1 of the center trim line.

participants, in Figs. 7.44-7.46, regarding the draw-ins after the second forming step, punch

force’s evolution during the second forming step, and sprung profile, respectively. All the

draw-ins (with the exception to BM2 00) presented in Fig. 7.44 are predictions, i.e., no ad-

ditional fitting to adjust the contact model is carried out. The obtained draw-ins are in good

agreement with the experimental data. In particular, the ones along the X-axis are an excel-

lent prediction of the experimental ones. This is due to the fact that this direction has been

used to calibrate the contact model in the production of Part 1. As during the first forming

step, the experimental punch force’s evolution is overestimated in the second forming step.

Nevertheless, the shape of the obtained curves is similar to the experimental data. Relatively

to the sprung profile of Part 2 (Fig. 7.46), the obtained results predict the inclination angle

of the flange with excellent accuracy. Comparatively to the springback of Part 1, a higher

offset between the experimental and numerical flanges is verified due to the inclination at the
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Figure 7.44: Drawing of a panel - Draw-ins after the second forming step of Part 2, along a)
X-axis, b) Y-axis, and c) corner direction.

top of the part that occurred experimentally and is not predicted numerically.

As for the Part 1, comparing all the obtained results with the ones presented by the

benchmark’s participants, one may conclude that the results obtained with the presented

constitutive models provide the best reproduction of the experimental data.

When comparing the used constitutive models and numerical algorithms, as in the previ-

ous examples, the results obtained with the hyperelastic- and hypoelastic-based models are

in excellent agreement with each other. In addition, the algorithms used to integrate the

hypoelastic equations provide nearly the same results.
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Figure 7.45: Drawing of a panel - Punch force-punch displacement relationships during the
second forming step of Part 2.

7.11 Thermoforming

The last numerical example consists of the simulation of the thermoforming process of a poly-

meric sheet. Among the several methods of processing polymeric materials, thermoforming is

one of the oldest and most used, being extensively utilised in the production of a wide range

of parts in, e.g., automotive, food, and medical industries. This process is schematically

represented in Fig. 7.47. The sheet, in a cold state, is initially clamped and pre-heated up

to a specified temperature. Then, it is formed by moving the mould upwards and, subse-

quently, removing the trapped air by means of a vacuum system. Finally, once the final part

is cooled, the mould is moved downwards and a reverse air supply is used to assist the part’s
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Figure 7.46: Drawing of a panel - Sprung profiles of Part 2 of the center trim line.
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a) Sheet is clamped b) Mould is moved upwards c) Pressure is applied

Figure 7.47: Thermoforming - Scheme of the procedure.
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removal from the mould. This example is particularly interesting within the context of the

present research work, regarding the comparison of hypoelastic- and hyperelastic-based for-

mulations, due to the considerable amount of elastic deformation that the polymeric material

may undergo.

The adopted process parameters, as well as mould and blank dimensions, are the same

as the ones used in Brepols et al. (2014), along with the material properties, i.e., E = 7

[GPa]; ν = 0.40 [-]; linear isotropic hardening following σy0 − R(ε̄p) = 0.7362 + 3.2083ε̄p

[MPa]; no kinematic hardening, i.e., c = 0.0 [MPa] and b = 10−8 ≈ 0 [-]; and von Mises

yield criterion. Due to the geometrical symmetry of the process, only a quarter section

of the flange is analysed in this work. The sheet is discretized by a fine mesh of 12222

(80x126, radial x angular directions) 8-node trilinear finite elements with reduced integration

(C3D8R, in ABAQUS), with two elements along the thickness direction. The clamping

system is modelled by fixing the nodes of the periphery and the vacuum’s effect is simulated

through a negative pressure applied to the top surface of the sheet. It is worth noting that

the developed constitutive formulations do not take variations of temperature into account,

hence a pure mechanical simulation is considered, representing a strong simplification of the

real process’s conditions. Even so, and as stated before, this example is useful to provide

a qualitative comparison between hypoelastic- and hyperelastic-based formulations in the

presence of large elastic strains.

Similarly to the numerical example of Section 7.10, and following the same reasoning,

only Hyperelastic-RZJ and Hypoelastic-BE-ZJ are considered in this section. The deformed

configurations and distributions of the accumulated plastic strain after the mould movement

and after vacuum, considering Hyperelastic-RZJ, are presented Fig. 7.48.

The evolution of the stress-strain relationships at the integration point of the element,

situated in the upper layer, closer to the sheet’ center during the movement of the mould is

shown in Fig. 7.49. The transition from elastic to elastoplastic domains is clearly perceptible

and, surprisingly, the two constitutive formulations provide very similar results, the curves

mainly differing on the maximum strain reached. Whereas in the case of the hypoelastic-

based model the maximum strain reached is 54.8%, for the hyperelastic-based model it goes

up to 57.9%. The evolution of the mould force with its movement is presented in Fig. 7.50.

Once more, the results provided by the two formulations are in excellent agreement with each

other.

In Fig. 7.51 the obtained distribution of the effective stress along the radial direction

of the sheet after vacuum is depicted. Unlike Figs. 7.49 and 7.50, the distributions of the

effective stress predicted by the constitutive formulations differ from each other considerably

regarding the stress magnitude, but only negligibly for distances from the sheet’s center higher

than 120 [mm], whereas the shape of the curves are similar.

In addition to the forming steps (upward movement of the punch and vacuum) analysed

in Brepols et al. (2014), the springback (removal of vacuum and downward movement of

the mould) is also simulated in this work. The procedure considered here to simulate the
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Figure 7.48: Thermoforming - Deformed configurations and distributions of accumulated
plastic strain after a) mould movement and b) vacuum.
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Figure 7.49: Thermoforming - Predicted stress-strain relationships at the integration point,
situated in the upper layer of elements, closer to the sheet’s center.

springback is clearly nonrealistic regarding the real thermoforming process because a pure

mechanical analysis is considered in this work. In real thermoforming processes the part is

removed from the mould after cooling, hence reducing considerably the amount of spring-

back due to the change of the mechanical properties of the material during the reduction of

temperature. Once more, such a simplification of the process is adopted in order to promote
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Figure 7.50: Thermoforming - Predicted mould force-mould displacement relationships.
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Figure 7.51: Thermoforming - Predicted effective (von Mises) stress distribution along the
radial direction after vacuum.

a qualitative comparison between hypoelastic- and hyperelastic-based formulations. As a

result, Fig. 7.52 plots the predicted part’s profile after springback. The profiles obtained by

the two formulations slightly differ from each other (maximum difference of 1.5% at 95 [mm]

from the sheet’s center), with the hypoelastic-based model predicting less springback than

the hyperelastic-based one. This difference is understandable taking into account the lower

levels of stress, after vacuum, that is predicted by the hypoelastic-based model.

The differences between hypoelastic- and hyperelastic-based models observed in this nu-

merical example may be due to the elastic constitutive law considered (linear Hooke’s law

vs. Neo-Hookean law) or the nature of finite strain formulation itself (hypoelastic vs. hy-

perelastic). On the one hand, the stress-strain responses provided by the two constitutive

approaches are similar only at small elastic strains. Fig. 7.53 compares the elastoplastic be-



186 7.Numerical results and discussion

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140 160

H
ei

g
h
t

[m
m

]

Distance from sheet’s center [mm]

Hyperelastic
Hypoelastic

Figure 7.52: Thermoforming - Predicted part’s profile after springback.

haviour predicted by the two constitutive approaches for the uniaxial tensile test. In addition,

the results of the tensile test considering solely elasticity are also presented. The Neo-Hookean

law, used in the hyperelastic-based model, provides a nonlinear stress-strain relation for large

elastic strains and higher levels of stress comparatively to the linear Hooke’s law, used in

the hypoelastic-based model. This may be one of the reasons for the different levels of pre-

dicted stress (see Fig. 7.51), and consequently for the different amount of springback (see

Fig. 7.52). It is worth noting that one should not do a direct comparison between Figs. 7.49

and 7.53 because of the different stress conditions to which the material is subjected, namely

multiaxial (very close to a biaxial stress state) and uniaxial stress states, respectively.

On the other hand, the hypoelastic approach assumes small elastic strains, assumption
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Figure 7.53: Thermoforming - Stress-strain relationships for elasticity and elastoplasticity
obtained from the uniaxial tensile test.
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that is not verified in this numerical example. In order to confirm the unsuitableness of this

approach to simulate the thermoforming process, the process has been simulated considering

a fictitious elastic material, i.e., E = 7 [GPa]; ν = 0.40 [-]; and no plastic behaviour. The

evolution of the effective stress at the integration point, situated in the upper layer of elements,

closer to the sheet’s center with the position of the mould, during the forming and springback

steps, is depicted in Fig. 7.54. The results provided by the two models are in excellent

agreement for displacements up to 90 [mm], and then deviate from each other due to the

different elastic constitutive laws considered (see Fig. 7.53). The activation and deactivation

of the vacuum lead to an abrupt increase and decrease of the effective stress, respectively. The

evolutions of the effective stress during the springback for the two models present significant

differences. While the hyperelastic-based model predicts a correct decrease of the stress to

zero, the hypoelastic-based model predicts a residual stress of 0.71 [MPa] after springback,

hence dissipating energy in an elastic deformation path. This dissipation of energy is also

verified by looking at the final deformed part after springback (see Fig. 7.55). The dissipation

of energy induces residual strains, not allowing the sheet to return to its initial geometry.

As expected, the nature of the hyperelastic-based model, namely the use of a strain energy

function to describe the elastic behaviour, predicted no dissipation of energy, thus allowing

the sheet to exactly return to its initial geometry.
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Figure 7.54: Thermoforming - Evolution of the effective stress at the integration point, sit-
uated in the upper layer of elements, closer to the sheet’s center for the fictitious elastic
material.
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Chapter 8

Final remarks

8.1 Conclusions

In this work, advanced elastoplastic constitutive models that provide a reliable representation,

at finite strains, of complex plastic behaviours of advanced metallic materials were developed

and implemented into Finite Element codes. The motivation for the main objectives of this

work was raised by the need of material constitutive models that provide a trustworthy

prediction of defects such as earing, thinning, and springback in parts produced by sheet

forming. Also, the high industrial competitiveness asks for fast design cycles of complex

parts with high performance, thus demanding numerically efficient and robust procedures in,

e.g., the implementation of constitutive models into the Finite Element Method.

With this in mind, the developed constitutive models embrace the use of anisotropic yield

criteria for the description of plastic anisotropy. The presented constitutive formulations

were derived in a general way regarding the yield function, hence allowing the use of any

complex quadratic or nonquadratic yield criterion. For an accurate representation of the cyclic

hardening phenomena, the developed constitutive formulations include nonlinear kinematic

hardening. The studied hardening law consists of the combination of isotropic hardening

with nonlinear kinematic hardening following the Armstrong-Frederick law. The approach

proposed by Chaboche and Rousselier (1983), in which several back stress components with

different evolutions are taken into account, was incorporated in the developed constitutive

formulation by means of a modified rheological model of kinematic hardening, hence providing

a better reproduction of cyclic hardening phenomena. Bearing in mind that, in the production

of real parts the material usually undergoes finite strains and rotations, the constitutive

models were derived in the context of hypoelasticity and hyperelasticity.

The rheological model of Armstrong-Frederick kinematic hardening was extended to con-

tinuum mechanics considering small strains. A comprehensive study on the algorithmic nu-

merical integration of the constitutive equations of the small strain model was carried out.

Both the classical forward- and backward-Euler approaches were adopted. The forward-

Euler approach leads to simpler algorithms, easily adaptable to different constitutive models,

189
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when compared to the backward-Euler approach. Nevertheless, backward-Euler algorithms

present a higher numerical performance, that leads to more accurate results combined with

faster computations. Additionally, particular techniques were employed, namely the sub-

incrementation technique and the multi-stage return mapping procedure, in order to enhance

the performance of the forward- and backward-Euler algorithms, respectively. The use of

the sub-incrementation technique improves the correctness of the integration procedure, thus

subsequently providing more accurate results and allowing for larger step increments and

faster computations. The main purpose of the multi-stage return mapping procedure is to

assist the iterative procedure, inherent to backward-Euler algorithms, when large strain in-

crements occur. The quality of the results is not affected since after the return mapping both

backward-Euler algorithms, with and without the multi-stage return mapping procedure,

virtually converge to the same value. Due to the small size of the step increments, mainly

imposed by contact nonlinearities, in sheet metal forming simulations, the advantage of us-

ing this procedure is suppressed, i.e., its effect on the computational time is not significant.

Based on the developed small strain model, a finite strain model was formulated following the

hypoelastic approach. The algorithmic procedure used in the numerical implementation of

the constitutive relations, incorporating objective rates, followed an appropriated objective

algorithm. This algorithm, widely used, preserves the structure, and its inherent simplicity,

of the numerical algorithms for small strain constitutive models, hence allowing for the direct

implementation of the forward- and backward-Euler algorithms developed for small strain

elastoplasticity.

A hyperelastic-based constitutive model that describes the considered plastic behaviours

was proposed. It has a sounder theoretical background than the hypoelastic model and

overcomes its shortcomings. The constitutive relations were directly derived, in a thermody-

namically consistent way, from an extension of the rheological model of Armstrong-Frederick

kinematic hardening to continuum mechanics. Following a different methodology than the

conventional hyperelastic-based elastoplastic models, the constitutive relations are completely

expressed in the reference configuration. As a result, the formulation leads to objective ten-

sorial quantities only and the determination of the plastic spin is avoided, leading to solely

symmetric tensorial variables. This is advantageous from the computational point of view

since it significantly reduces the number of nonlinear relations to be numerically integrated,

hence reducing the storage effort and computational time of numerical simulations. In con-

trast with the majority of the anisotropic hyperelastic-based models present in the litera-

ture, the developed formulation is suitable for any quadratic or nonquadratic yield criterion.

Moreover, for a correct description of plastic anisotropy in the presence of finite strains and

rotations, a new procedure was proposed to ensure that the material’s anisotropic axis follow

the rigid body motions of the material. For numerical implementation purposes, the evolu-

tion equations were numerically integrated by the adaptation of an algorithm that follows a

backward-Euler scheme, which is based on the exponential map, to the hyperelastic-based

constitutive model in study. The use of the exponential map enables the exact preservation
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of the plastic incompressibility, displayed by metallic materials. Moreover, it automatically

conserves the symmetry of the internal variables, hence the exponential functions can be

exactly determined by employing the spectral decomposition of its tensor-valued arguments.

The developed constitutive models, and algorithms, were implemented in Finite Element

codes of numerical simulation by means of material subroutines. These subroutines were

structured modularly, enabling the straightforward implementation of different yield criteria

and isotropic hardening laws. By carrying out the numerical simulation of several forming

processes the performance of the developed constitutive models, and algorithms, was assessed

and compared. From the results, it can be seen the significant improvement in the description

of cyclic hardening when several back stress components are used and in the modelling of

anisotropy with the use of complex nonquadratic yield criteria.

The results provided by the hypoelastic- and hyperelastic-based models are, globally, very

similar. Small differences are observed in the description of springback, with the hypoelastic-

based model predicting, in general, less springback than the hyperelastic-based one. Two

possible reasons for these differences were pointed out, namely the use of different elastic

laws and the formulation (hypoelastic vs. hyperelastic) itself. Due to the small elastic

strains involved in sheet metal forming processes, these differences are notably small in such

processes.

Regarding the time of computation, the hypoelastic-based model is the more efficient

one. This is due to the different algorithms used to perform the return mapping. Whereas

for hyperelasticity a complex linearization of the residua is carried out, for hypoelasticity the

plastic multiplier is computed using a single equation. Nevertheless, the hyperelastic-based

model is, in most examples, more efficient than the hypoelastic-based one in terms of the

overall convergence of the Finite Element Method, i.e., allowing for larger step increments.

8.2 Future works

Keeping in mind that research is a continuous task and even though the work developed

in this Thesis represents an improvement to the state-of-the-art in computational plasticity,

further developments in the research fields covered here may be outlined.

Considering the presented work, future guidelines of research should consist of either i) the

further improvement of the computational efficiency of the numerical implementation of the

developed constitutive models and their use in numerical simulations of different industrial

applications and for different materials, or ii) the upgrading of the developed constitutive

models aiming at the description of more material behaviours, such as damage, elastic and/or

evolving anisotropy, and strain rate and/or temperature dependent plastic behaviour.

The hypoelastic-based model studied in this work considers both Zaremba-Jaumann and

Green-McInnis-Naghdi rates, that provide very similar results and computational efficiency

in sheet metal forming applications. The implementation of a hypoelastic-based constitutive

model using the logarithmic rate could provide an interesting analysis. On the one hand, it
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exactly integrates the elastic law, but on the other hand, its computation is more complex. It

would be interesting to infer the real benefits of its use in simulation of sheet metal forming

processes and its effect on the computational efficiency.

In a global sense, the hyperelastic-based model allows for larger step increments compared

to the hypoelastic-based one for the simulation of sheet metal forming applications, requiring

though higher times of computation. This means that the hyperelastic-based model has the

potential to overcome the numerical efficiency (relatively to the computation time) of the

hypoelastic-based one (see Table 7.8). Thus, a thorough study on the improvement of the

numerical implementation of the hyperelastic-based model could lead to promising results,

such as in the work of Pietryga et al. (2014).

In this work, the simulations used to compare the two formulations (hypo- and hyper-

elastic) considered conventional sheet metal forming and thermoforming processes. On the

one hand, it could be interesting to evaluate the performance of the two formulations in, e.g.,

incremental sheet metal forming applications. In this forming process the material experi-

ences several loading/unloading cycles, hence, considering the dissipation of energy in elastic

deformation paths by hypoelastic models, the results provided by the two formulations may

present some differences. On the other hand, knowing that the two formulations provide

different results when polymeric materials are analysed, the comparison of these results with

experimental data to infer the real suitability of hypoelastic-based models to describe the

behaviour of such materials could be interesting.



Appendix A

Integration algorithms in small

strain theory with several back

stresses

The numerical treatment of the constitutive model presented in Section 4.2 for implementa-

tion into Finite Element codes is presented here.

The set of differential equations of this constitutive model can be summarized as

σ̇ = D : (ε̇− λ̇n), (A.1)

α̇j = λ̇(cjn− bjαj) ∀ j = 1 . . . N, and (A.2)

˙̄εp = λ̇. (A.3)

Employing Equation 4.37 the following integrated formulas are obtained,

σn+1 = σn + D : ∆ε−∆λD : nn+α, (A.4)

αjn+1 = αjn + ∆λ(cjnn+α − bjαjn+α) ∀ j = 1 . . . N, and (A.5)

ε̄pn+1 = ε̄pn + ∆λ. (A.6)

A.1 Forward-Euler

Following the procedure presented in Section 4.3.3, the incremental consistency condition is

represented by

∆Φ = nn :

∆σ −
N∑
j=1

∆αj

−Hn∆ε̄p = 0

nn :

βηD : ∆ε−∆λD : nn −∆λ

N∑
j=1

(cjnn − bjαjn)

−Hn∆λ = 0.

(A.7)
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From this equation the increment of the plastic multiplier is obtained as

∆λ =
nn : ∆σtrial

nn :
[
D : nn +

∑N
j=1(cjnn − bjαjn)

]
+Hn

. (A.8)

The state variables are updated by employing this equation in Equations A.4-A.6. Finally

the proportioning procedure is carried out using Equation 4.52 considering that αn+1 =∑N
j=1α

j
n+1. The inclusion of the sub-incrementation technique into this algorithm for this

constitutive model can be performed in a straightforward way, following the steps presented

in Section 4.3.3.

Consistent elastoplastic tangent modulus Considering the procedure presented in

Section 4.3.5, the elastoplastic tangent modulus consistent with the forward-Euler algorithm

presented above is given, without derivation, by the expression

Dalg
ep =

∂(∆σ)

∂(∆ε)
= D− δ D : n⊗ n : D

n :
[
D : n +

∑N
j=1(cjn− bjαj)

]
+H

. (A.9)

A.2 Backward-Euler

Adopting the methodology presented in Section 4.3.4 to the constitutive model presented in

Section 4.2, the auxiliary residuals are defined as

r1 = η̄(η)− [σy0 −R(ε̄pn + ∆λ)] = 0, (A.10)

r2 = D−1 :
(
σ − σtrial

)
+ ∆λn = 0, and (A.11)

r2+j = αj −αjn −∆λ
(
cjn− bjαj

)
= 0 ∀ j = 1 . . . N. (A.12)

Applying the Taylor’s series expansion on these residuals (considering only the linear terms),

for each iteration i the linearised residuals are expressed as

r1 −H∆∆λ+ n : ∆σ −
N∑
j=1

n : ∆αj = 0, (A.13)

r2 + n∆∆λ+

(
D−1 + ∆λ

∂n

∂η

)
: ∆σ −∆λ

N∑
j=1

∂n

∂η
: ∆αj = 0, and (A.14)

r2+j −
(
cjn− bjαj

)
∆∆λ− cj∆λ∂n

∂η
: ∆σ + cj∆λ

∂n

∂η
: ∆αk

+

[(
1 + bj∆λ

)
I + cj∆λ

∂n

∂η

]
: ∆αj = 0 ∀ j, k = 1 . . . N ∧ k 6= j. (A.15)

Here and in the following, the superscripts i are omitted for the sake of simplicity. This
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system of nonlinear equations can be represented in the matrix form as

Kr



∆∆λ

∆σ

∆α1

...

∆αj

...

∆αN


= −



r1

r2

r3

...

r2+j

...

r2+N


, (A.16)

where

Kr =



−H n −n · · · −n · · · −n

n D−1 + ∆λ
∂n

∂η
−∆λ

∂n

∂η
· · · −∆λ

∂n

∂η
· · · −∆λ

∂n

∂η

−c1n + b1α1 −c1∆λ
∂n

∂η

∂r3

∂α1
· · · ∂r3

∂αj
· · · ∂r3

∂αN
...

...
...

. . .
...

...

−cjn + bjαj −cj∆λ∂n

∂η

∂r2+j

∂α1
· · · ∂r2+j

∂αj
· · · ∂r2+j

∂αN
...

...
...

...
. . .

...

−cNn + bNαN −cN∆λ
∂n

∂η

∂r2+N

∂α1
· · · ∂r2+N

∂αj
· · · ∂r2+N

∂αN



, (A.17)

with

∂r2+m

∂αn
=

(1 + bm∆λ) I + cm∆λ∂n∂η if m = n

cm∆λ∂n∂η if m 6= n
(A.18)

The system of equations represented by Equation A.16 may be solved numerically. Here,

the analytical closed form solution for the particular model with two back stress components

is presented. The adaptation of the presented procedure to a model with a higher number of

back stress components may be lengthy but straightforward.

Solving the linearised form of r4 (see Equation A.15), in order to ∆α2 yields

∆α2 =
∂(∆α2)

∂r4
: r4 +

∂(∆α2)

∂(∆α1)
: ∆α1 +

∂(∆α2)

∂(∆σ)
: ∆σ +

∂(∆α2)

∂(∆∆λ)
∆∆λ (A.19)

where

∂(∆α2)

∂r4
= −A−1

2 , (A.20)

∂(∆α2)

∂(∆α1)
= −∂(∆α2)

∂(∆σ)
= −c2∆λA−1

2 :
∂n

∂η
, and (A.21)
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∂(∆α2)

∂(∆∆λ)
= A−1

2 : (c2n + b2α2), (A.22)

with

Aj =
(
1 + bj∆λ

)
I + cj∆λ

∂n

∂η
∀ j = 1, 2. (A.23)

Introducing Equation A.19 in the linearised form of r3 (see Equation A.15) and rearrang-

ing it in order to ∆α1 provides

∆α1 =
∂(∆α1)

∂r3
: r3 +

∂(∆α1)

∂r4
: r4 +

∂(∆α1)

∂(∆σ)
: ∆σ +

∂(∆α1)

∂(∆∆λ)
∆∆λ, (A.24)

where

∂(∆α1)

∂r3
= −B−1, (A.25)

∂(∆α1)

∂r4
= −c1∆λB−1 :

∂n

∂η
:
∂(∆α2)

∂r4
, (A.26)

∂(∆α1)

∂(∆σ)
= c1∆λB−1 :

∂n

∂η
:

[
I− ∂(∆α2)

∂(∆σ)

]
, and (A.27)

∂(∆α1)

∂(∆∆λ)
= −B−1 :

[
c1∆λ

∂n

∂η
:
∂(∆α2)

∂(∆∆λ)
− (c1n + b1α1)

]
, (A.28)

with

B = A1 + c1∆λ
∂n

∂η
:
∂(∆α2)

∂(∆α1)
. (A.29)

Considering that ∆α = ∆α1 + ∆α2, adding Equations A.19 and A.24 yields

∆α =
∂(∆α)

∂r3
: r3 +

∂(∆α)

∂r4
: r4 +

∂(∆α)

∂(∆σ)
: ∆σ +

∂(∆α)

∂(∆∆λ)
∆∆λ, (A.30)

where the auxiliary variables are given by

∂(∆α)

∂r3
=

[
I +

∂(∆α2)

∂(∆α1)

]
:
∂(∆α1)

∂r3
, (A.31)

∂(∆α)

∂r4
=

[
I +

∂(∆α2)

∂(∆α1)

]
:
∂(∆α1)

∂r4
+
∂(∆α2)

∂r4
, (A.32)

∂(∆α)

∂(∆σ)
=

[
I +

∂(∆α2)

∂(∆α1)

]
:
∂(∆α1)

∂(∆σ)
+
∂(∆α2)

∂(∆σ)
, and (A.33)

∂(∆α)

∂(∆∆λ)
=

[
I +

∂(∆α2)

∂(∆α1)

]
:
∂(∆α1)

∂(∆∆λ)
+
∂(∆α2)

∂(∆∆λ)
. (A.34)

Introducing Equation A.30 into Equation A.14 and rearranging it in order to ∆σ results

∆σ =
∂(∆σ)

∂r2
: r2 +

∂(∆σ)

∂r3
: r3 +

∂(∆σ)

∂r4
: r4 +

∂(∆σ)

∂(∆∆λ)
∆∆λ, (A.35)
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employing the following auxiliary variables,

∂(∆σ)

∂r2
= −E−1, (A.36)

∂(∆σ)

∂r3
= ∆λE−1 :

∂n

∂η
:
∂(∆α)

∂r3
, (A.37)

∂(∆σ)

∂r4
= ∆λE−1 :

∂n

∂η
:
∂(∆α)

∂r4
, and (A.38)

∂(∆σ)

∂(∆∆λ)
= −E−1 :

[
n−∆λ

∂n

∂η
:
∂(∆α)

∂(∆∆λ)

]
, (A.39)

with

E = D−1 + ∆λ
∂n

∂η
:

[
I− ∂(∆α)

∂(∆σ)

]
. (A.40)

The expression that establishes the increment of the relative stress tensor, ∆η = ∆σ−∆α,

is then obtained by subtracting Equation A.30 to Equation A.35, resulting in

∆η =
∂(∆η)

∂r2
: r2 +

∂(∆η)

∂r3
: r3 +

∂(∆η)

∂r4
: r4 +

∂(∆η)

∂(∆∆λ)
∆∆λ, (A.41)

where

∂(∆η)

∂r2
=

[
I− ∂(∆α)

∂(∆σ)

]
:
∂(∆σ)

∂r2
, (A.42)

∂(∆η)

∂r3
=

[
I− ∂(∆α)

∂(∆σ)

]
:
∂(∆α)

∂r3
− ∂(∆α)

∂r3
, (A.43)

∂(∆η)

∂r4
=

[
I− ∂(∆α)

∂(∆σ)

]
:
∂(∆α)

∂r4
− ∂(∆α)

∂r4
, and (A.44)

∂(∆η)

∂(∆∆λ)
=

[
I− ∂(∆α)

∂(∆σ)

]
:
∂(∆α)

∂(∆∆λ)
− ∂(∆α)

∂(∆∆λ)
. (A.45)

Finally, the increment i of the increment of the plastic multiplier is obtained by introduc-

ing Equation A.41 into Equation A.13,

∆∆λ =
r1 + n :

[
∂(∆η)
∂r2

: r2 + ∂(∆η)
∂r3

: r3 + ∂(∆η)
∂r4

: r4

]
−n : ∂(∆η)

∂(∆∆λ) +H
. (A.46)

During the iterative procedure, the increment of the plastic multiplier and the stress and

back stress tensors are updated, at the end of each iteration i, following Equations 4.77-4.79

and taking Equations A.19, A.24, A.35, and A.46 into account. The employment of the

multi-stage return mapping procedure can be done in a straightforward way by applying the

steps presented in Section 4.3.4.

Consistent elastoplastic tangent modulus By treating ε as a variable during the

procedure presented above, the elastoplastic tangent modulus consistent with the employed
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backward-Euler algorithm can be expressed in closed form, without derivation, by

Dalg
ep =

∂(∆σ)

∂(∆ε)
= E−1 + δ

∂(∆σ)
∂(∆∆λ) ⊗ n : ∂(∆η)

∂(∆ε)

−n : ∂(∆η)
∂(∆∆λ) +H

, (A.47)

where
∂(∆η)

∂(∆ε)
=

[
I− ∂(∆α)

∂(∆σ)

]
: E−1. (A.48)



Appendix B

Linearisation of the residua for the

hyperelastoplastic model

The system of nonlinear equations related to the hyperelastoplastic constitutive model with

multiple back stress components is constituted by the yield condition and by the integrated

formulas for the evolution equations (see Equation 5.174-5.176).

Starting with the flow rule, the residuum associated to its integrated formula is rewritten,

for the sake of simplicity, as

r2 = −C−1
pn + U−1

p ZU−1
p = 0, (B.1)

where the notation

Z = exp(Z̄), with Z̄ = ∆λU−1
p fU−1

p , (B.2)

is introduced. The linearisation of Equation B.1 provides

∆r2 = −∆C−1
pn︸ ︷︷ ︸

= 0

+ ∆U−1
p ZU−1

p + U−1
p Z∆U−1

p︸ ︷︷ ︸
ZD : ∆U−1

p

+ U−1
p ∆ZU−1

p , (B.3)

where ∆C−1
pn = 0 since Cpn is a known quantity and kept constant during the iterative

procedure and the auxiliary fourth-order tensor ZD has been introduced,

ZDijkl = δikZlm(U−1
p )mj + (U−1

p )imZmkδlj . (B.4)

Due to the symmetry of Z̄, the exponential tensor function can be represented using the

spectral decomposition, resulting on the following linearisation of Z,

∆Z = ∆(exp Z̄) = ∆

(
3∑

A=1

exp(Z̄A)nA ⊗ nA
)

= C : ∆Z̄, (B.5)

where Z̄A are the eigenvalues and nA are the eigenvectors of Z̄. The auxiliary fourth-order

199
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tensor C is defined by

C =
∂Z

∂Z̄
=

3∑
A,B=1

exp(Z̄A)δABnA ⊗ nA ⊗ nB ⊗ nB

+
3∑

A,B=1

A 6=B

1

2

exp(Z̄B)− exp(Z̄A)

Z̄B − Z̄A
(nA ⊗ nB ⊗ nA ⊗ nB

+nA ⊗ nB ⊗ nB ⊗ nA).

(B.6)

The linearisation of Z̄ yields

∆Z̄ = 2Ẑ∆∆λ+ 2∆λ∆Ẑ, (B.7)

with

Ẑ = U−1
p

∂φ

∂Y
U−1

p and (B.8)

∆Ẑ = ∆U−1
p

∂φ

∂Y
U−1

p + U−1
p

∂φ

∂Y
∆U−1

p︸ ︷︷ ︸
dD : ∆U−1

p

+ U−1
p ∆

(
∂φ

∂Y

)
U−1

p , (B.9)

where the auxiliary fourth-order tensor dD is obtained analogously to ZD (see Equation

B.4). For the sake of particularisation, the Yld2004-18p yield function is considered here.

Nevertheless, the presented procedure is adaptable to any yield criterion in a straightforward

way. Thus, the linearisation of the derivative of the considered yield function is given by

∆

(
∂φ

∂Y

)
= ∆

(
2∑

k=1

∂φ

∂s̃(k)
: L̄(k)

)
=

2∑
k=1

[
∆

(
∂φ

∂s̃(k)

)
: L̄(k) +

∂φ

∂s̃(k)
: ∆L̄(k)

]

=
2∑

k=1

F(k)
p : ∆U−1

p +
N∑
j=1

Fj(k)
pi

: ∆(Uj
pi

)−1

 , (B.10)

where the relation L̄(k) = (∂s̃(k))/(∂Y) is considered and the introduced auxiliary variables

are expressed, without derivation, by

F(k)
p =

[
∂2φ

∂(s̃(k))2
: E(k)

p +
∂2φ

∂s̃(l)∂s̃(k)
: E(l)

p

]
: L̄(k) +

∂φ

∂s̃(k)
: M(k) and (B.11)

Fj(k)
pi

=

[
∂2φ

∂(s̃(k))2
: Ej(k)

pi
+

∂2φ

∂s̃(l)∂s̃(k)
: Ej(l)pi

]
: L̄(k) ∀ k, l = 1, 2 ∧ l 6= k, (B.12)

where the auxiliary sixth-order auxiliary variables M(k) are defined by
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M(k) =
∂L̄(k)

∂Cp
:
∂Cp

∂U−1
p
, with

(
∂L̄(k)

∂Cp

)
ijklxy

= J−1δkxF
−1
yn Q

?
noF

T
lsQ

?
spL

(k)
ijop,(

∂Cp

∂U−1
p

)
ijkl

= −(Up)ik(Cp)lj − (Cp)ik(Up)lj .

(B.13)

In Equation B.10 the relation ∆s̃(k) = E(k)
p : ∆U−1

p +
∑N

j=1 E
j(k)
pi : ∆(Uj

pi)
−1 is assumed,

making use of the following auxiliary variables,

(E(k)
p )ijkl = L̄

(k)
ijmn(Bp)mnkl + (M (k))ijmnklYmn (B.14)

Ej(k)
pi

= L̄(k) : Bjpi
, (B.15)

where

∆Y = ∆C−1
p CS + C−1

p C∆S−
N∑
j=1

∆Xj

= Bp : ∆U−1
p +

N∑
j=1

Bjpi
: ∆(Uj

pi
)−1,

(B.16)

with

(Bp)ijkl =

(
∂C−1

p

∂U−1
p

)
imkl

CmnSnj + (C−1
p )imCmn

(
∂S

∂U−1
p

)
njkl

−
(

∂X

∂U−1
p

)
ijkl

and (B.17)

Bjpi
= − ∂Xj

∂(Uj
pi)
−1
, (B.18)

considering the relation (∂C−1
p /∂U−1

p )ijkl = δik(U
−1
p )lj + (U−1

p )ikδlj .

Finally, by introducing Equations B.5, B.7, B.9, and B.10 into the linearisation of r2

(Equation B.3) yields

∆r2 = K∆∆λ+ (2∆λHp + ZD) : ∆U−1
p + 2∆λ

N∑
j=1

Hj
pi

: ∆(Uj
pi

)−1, (B.19)

where

K = 2U−1
p (C : Ẑ)U−1

p , (B.20)

(Hp)ijkl = (U−1
p )imCmnop(

dDopkl + (Gp)opkl)(U
−1
p )nj , and (B.21)

(Hj
pi

)ijkl = (U−1
p )imCmnop(G

j
pi

)opkl(U
−1
p )nj , (B.22)

with
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(Gp)ijkl = (U−1
p )im((F 1

p )mnkl + (F 2
p )mnkl)(U

−1
p )nj and (B.23)

(Gjpi
)ijkl = (U−1

p )im((F j(1)
pi

)mnkl + (F j(2)
pi

)mnkl)(U
−1
p )nj . (B.24)

By employing the procedure described above to the residua r2+j (Equation 5.176) and

considering the shorthand notation

Zjkin = exp(2
bj

cj
∆λẐkin), with Ẑjkin = U−jpi

P : (Cj
pi

Yj
kin)Cj

pi
U−jpi

, (B.25)

and the auxiliary variables(
ZDj

kin

)
ijkl

= δik(Z
j
kin)lm(U−jpi

)mj + (U−jpi
)im(Zjkin)mkδlj , (B.26)

Kj
kin = 2U−jpi

(Cjkin : Ẑjkin)U−jpi
, (B.27)

(Bj
pkin

)ijkl = (C−jpi
)im

(
∂Cp

∂U−1
p

)
mnkl

Xj
nj + (C−jpi

)im(Cp)mn

(
∂Xj

∂U−1
p

)
njkl

, (B.28)

(Bj
pikin

)ijkl =

(
∂C−jpi

∂U−jpi

)
imkl

(Cp)mnX
j
nj + (C−jpi

)im(Cp)mn

(
∂Xj

∂U−jpi

)
njkl

, (B.29)

Fjpkin
=
∂Ẑjkin

∂U−1
p

=
∂Ẑjkin

∂Yj
kin

: Bjpkin
, (B.30)

Fjpikin
=
∂Ẑjkin

∂U−jpi

=
∂Ẑjkin

∂Yj
kin

: Bjpikin
+
∂Ẑjkin

∂U−jpi

, (B.31)

(Hj
pkin

)ijkl = (U−jpi
)im(Ckin)mnop(F

j
pkin

)opkl(U
−j
pi

)nj , and (B.32)

(Hj
pikin

)ijkl = (U−jpi
)im(Ckin)mnop(F

j
pikin

)opkl(U
−1
pi

)nj , (B.33)

the residua related to the kinematic hardening (r2+j) are linearised, without derivation,

according to

∆r2+j =
bj

cj
Kj

kin∆∆λ+ 2
bj

cj
∆λHj

pkin
: ∆U−1

p +

(
2
bj

cj
∆λHj

pikin
+ ZDjkin

)
: ∆(Uj

pi
)−1. (B.34)

The residuum r1 is linearised as follows

∆r1 = ∆Φ(Y) =
∂Φ

∆λ
: ∆∆λ+

2∑
k=1

∂φ

∂s̃(k)
: ∆s̃(k)

= −H∆∆λ+

2∑
k=1

∂φ

∂s̃(k)
: E(k)

p : ∆U−1
p +

N∑
j=1

(
2∑

k=1

∂φ

∂s̃(k)
: Ej(k)

pi
: ∆U−jpi

)
,

(B.35)

where H is given by Equation 4.24.

In Equations B.25-B.29 and B.32-B.35 the short hand notation (U−jpi )ij = [(U jpi)
−1]ij is
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employed for the sake of simplicity.

As a resume, if the Newton-Raphson method is used to solve the system of equations, the

increments, at each iteration i, of the state variables are obtained from



∆∆λ

∆U−1
p

∆(U1
pi

)−1

...

∆(Uj
pi)
−1

...

∆(UN
pi

)−1



= −



r1

r2

r3

...

r2+j

...

r2+N





∂r1
∂(∆λ)

∂r1
∂U−1

p

∂r1
∂(U1

pi
)−1 · · · ∂r1

∂(Uj
pi

)−1
· · · ∂r1

∂(UN
pi

)−1

∂r2
∂(∆λ)

∂r2
∂U−1

p

∂r2
∂(U1

pi
)−1 · · · ∂r2

∂(Uj
pi

)−1
· · · ∂r2

∂(UN
pi

)−1

∂r3
∂(∆λ)

∂r3
∂U−1

p

∂r3
∂(U1

pi
)−1 · · · O · · · O

...
...

...
. . .

...
...

∂r2+j
∂(∆λ)

∂r2+j
∂U−1

p
O · · · ∂r2+j

∂(Uj
pi

)−1
· · · O

...
...

...
...

. . .
...

∂r2+N
∂(∆λ)

∂r2+N
∂U−1

p
O · · · O · · · ∂r2+N

∂(UN
pi

)−1



−1

,

(B.36)

where the auxiliary derivatives are summarised as

∂r1

∂∆λ
= −H, ∂r1

∂U−1
p

=
2∑

k=1

∂φ

∂s̃(k)
: E(k)

p ,
∂r1

∂(Uj
pi)
−1

=
2∑

k=1

∂φ

∂s̃(k)
: Ej(k)

pi
,

∂r2

∂∆λ
= K,

∂r2

∂U−1
p

= 2∆λHp + ZD,
∂r2

∂(Uj
pi)
−1

= 2∆λHj
pi
,

∂r2+j

∂∆λ
=
bj

cj
Kj

kin,
∂r2+j

∂U−1
p

= 2
bj

cj
∆λHj

pkin
,

∂r2+j

∂(Uj
pi)
−1

= 2
bj

cj
∆λHj

pikin
+ ZDjkin,

(B.37)

and the fourth-order tensor O is defined by Oijkl = 0.
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Appendix C

Numerical computation of the

consistent elastoplastic tangent

modulus

Here, the numerical procedure presented by Miehe (1996b) is adapted to the hyperelastic-

based constitutive model presented in Section 5.3. The increments of the right Cauchy-Green

deformation tensor are related to the second Piola-Kirchhoff stress tensor according to

∆S = D̄alg
ep : ∆E(2) = D̄alg

ep :
1

2
∆C, (C.1)

where the fourth-order consistent elastoplastic tangent modulus tensor is numerically com-

puted following the forward difference approximation,

(D̄alg
ep )ijkl ≈

2

ε

[
Sij(

klCε
n+1)− Sij(Cn+1)

]
, (C.2)

where ε is a perturbation parameter, which value of ε = 10−8 is a reasonable choice for

most applications according to the work of Miehe (1996b) and klCε
n+1 is the perturbed right

Cauchy-Green deformation tensor, that is assumed to be expressed as

klCε
n+1 = Cn+1 + ε(ek ⊗ el)Cn+1, (C.3)

where ei, with i = 1 . . . 3, is the set of basis vectors.

Note that due to the history dependence of the elastoplastic response, the current (per-

turbed) stress S(klCε
n+1) has to be computed using a integration algorithm. This way, the

integration procedure presented in Section 5.3.9.2 is carried out for each set (kl), by keeping

the variables at tn frozen and replacing Cn+1 by klCε
n+1. It is worth to mention that due to

the symmetry of the variables of the constitutive model only the computation of the set of

indices (kl) = (11), (22), (33), (12), (13), and (23) is required.
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Appendix D

Determination of the analytical

Lankford r-values

Regarding the directional rθ-value obtained from an in-plane uniaxial tensile test with orien-

tation θ relatively to the rolling direction, one must consider that in such loading conditions,

the components of the stress tensor σθ expressed in the material coordinate system are given

by

σθ11 = σθy cos2 θ, (D.1)

σθ22 = σθy sin2 θ, (D.2)

σθ12 = σθ21 = σθy cos θ sin θ, and (D.3)

σθ33 = σθ13 = σθ31 = σθ23 = σθ32 = 0, (D.4)

where σθy is the yield stress in the corresponding direction. Considering this stress tensor, the

r-value associated with the orientation angle θ can be obtained from

rθ = −sin2 θ(∂σ̄/∂σθ11)− sin 2θ(∂σ̄/∂σθ12) + cos2 θ(∂σ̄/∂σθ22)

(∂σ̄/∂σθ11) + (∂σ̄/∂σθ22)
(D.5)

(see e.g., Aretz (2004)). Taking into account that the stress tensor σθ can be represented as

σθ = σθyσ̄
θ, and that this work considers only positively homogeneous functions of degree 1

(i.e., f(cx) = cf(x)), σθy can be determined from the yield criterion following

σ̄(σθyσ̄
θ)− σy = 0

σθyσ̄(σ̄θ)− σy = 0

σθy =
σy

σ̄(σ̄θ)
.

(D.6)

Moreover, from the property ∂σ̄/∂(σθyσ̄
θ) = σθy(∂σ̄/∂(σ̄θ)), the directional rθ value can be
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expressed, independently to σθy, by

rθ = −sin2 θ(∂σ̄/∂σ̄θ11)− sin 2θ(∂σ̄/∂σ̄θ12) + cos2 θ(∂σ̄/∂σ̄θ22)

(∂σ̄/∂σ̄θ11) + (∂σ̄/∂σ̄θ22)
. (D.7)

Concerning the biaxial rb-value obtained from, e.g., the in-plane balanced biaxial test,

the components of the stress tensor σb expressed in the material coordinate system are given

by

σb
11 = σb

22 = σb
y (D.8)

σb
33 = σb

12 = σb
21 = σb

13 = σb
31 = σb

23 = σb
32 = 0, (D.9)

where the biaxial yield stress is denoted by σb
y and obtained from σb

y = σy/σ̄(σ̄b). Finally,

the biaxial rb-value is attained from

rb =
∂σ̄/∂σb

22

∂σ̄/∂σb
11

=
∂σ̄/∂σ̄b

22

∂σ̄/∂σ̄b
11

. (D.10)
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Sansour, C., Karšaj, I., Sorić, J., 2006b. On free energy-based formulations for kinematic hardening
and the decomposition f = fpfe. Int. J. Solids Struct. 43, 7534–7552.
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