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Resumo Há alguns anos atrás, os objectos eram feitos pelos designers e a criação
do desenho era feita com lápis e papel vegetal. Não existiam computadores
nos gabinetes de desenho para ajudar na modelação dos objectos. Após
o desenho estar concluído este era entregue aos analistas para calcularem
a resistência do mesmos quando solicitados por cargas externas. Assim,
o gabinete de design e o gabinete de análise estavam em constante co-
municação. Nos tempos de hoje os designers utilizam as ferramentas de
Computer-Aided Design (CAD) para gerar os objectos, representando assim
a geometria original. Por outro lado, os analistas fazem a análise baseada
no Método dos Elementos Finitos (MEF). Neste método, inicialmente, gera-
se uma malha para fazer a aproximação do objecto e utiliza-se esta malha
gerada na análise. A forma de combater esta barreira é a construção de um
novo processo de análise, mas ao mesmo tempo manter a compatibilidade
com a análise do Método de Elementos Finitos. Este novo método foca-se
na geração de um modelo geométrico, sendo este modelo utilizado tanto
para a representação da geometria como para a análise. A principal susten-
tação deste novo método é a utilização das funções de base da criação e
representação dos objectos, posteriormente, utilizadas na análise dos mes-
mos. Este novo conceito é designado por Análise Isogeométrica.
Neste trabalho é exposto o desenvolvimento de ferramentas para gerar cur-
vas e superfícies utilizando as formulações de Bézier, B-spline e NURBS.
Assim, desenvolveram-se sub-rotinas para calcular as funções de base. Ini-
cialmente apresentaram-se as formulações matemáticas e posteriormente os
algoritmos desenvolvidos para a representação das curvas e superfícies.
O desenvolvimento de ferramentas de análise para problemas no espaço bidi-
mensional e tridimensional utilizando o Método de Elementos Finitos e a
Análise Isogeométrica também é abordado neste trabalho. Para ser mais
fácil a sua aplicação, foi desenvolvida um interface. Por �m utilizaram-
se problemas e estudaram-se as curvas de convergência dos resultados e
compararando-os com as referência analíticas e com o programa Abaqus.
Em termos de conclusão, os resultados obtidos com a Análise Isogeométrica
convergem mais rapidamente para os valores de referência do que o Abaqus
e o programa desenvolvido com base no método de elementos �nitos.





Keywords Isogeometric Analysis (IGA); Finite Element Method (FEM); Computer
Aided Design (CAD); Computer Aided Engineering (CAE); Non-Uniform
Rational B-Spline (NURBS).

Abstract A few years ago drawings were made in the drawing boards and using pen-
cils on vellum. There were no computers helping the designers in the parts
modeling. After designing the object, the design was passed to the analysts.
The designers and analysts were in constant communication. Nowadays, the
designers used Computer Aided Design (CAD) tools in the parts modeling.
For application the analysis at the geometries, initially a mesh to approxi-
mate the geometries is generated. After this, on the mesh the Finite Element
Method (FEM) was applied. In complex engineering design, the generation
and manipulation of meshes in FEA was estimated to take over 80% of the
overall analysis time. The form to break down the barriers between engi-
neering design and the analysis is with reconstruction the entire process, but
at the same time maintaining compatibility with existing practices. Create
only one geometric model is the focus of reconstruction process. This geo-
metric model is used in the representation of the geometry, as well as in the
analysis, and this concept is designated by Isogeometric Analysis (IGA).
In this present work the development of the tools for generate the CAD and
calculate the basis function for representation the object are proposed. Ini-
tially, the mathematical formulations for Bézier, B-Spline and NURBS, for
curves and surfaces are presented. The algorithms developed to generate
the curves and surfaces are demonstrated.
The IGA and FEM formulation for tridimensional and bidimensional spaces
are introduced. In this work, a development of a tools for application this
method are proposed. The convergence of the results for FEM and IGA
programs are studied and compared to the theoretical values and Abaqus
comercial program. The results obtained with IGA formulation converge to
the reference values.
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Chapter 1

Introduction

In this chapter the basis concepts of the Isogeometric Analysis (IGA) are initially pre-
sented. After this, the objectives and the motivation of the present work are discussed.
A reading guide for this document is also presented.

1.1 Isogeometric analysis

A few decades ago drawings were made in drawing tables and using pencils on vellum.
There were no computers helping the designers in the parts modeling. After designing
the object, this was passed to analysts. The designers and analysts were in constant
communication. Nowadays, the designers use Computer Aided Design (CAD) tools in
the parts modelation. For application the analysis at the geometries, initially a mesh to
approximate the geometries is generated. Afterwards, on the mesh, the Finite Element
Analysis (FEA) is applied [1].

In complex engineering design the generation and manipulation of meshes in FEA
are estimated to take over 80% of the overall analysis time. Figure 1.1 represents the
engineering design examples and could be seen that engineering designs are more com-
plex. For example, nowadays, a typical automobile has about 3000 parts, a missile 5000
parts and a modern nuclear submarine 1000000 parts [1]. The engineering design and
the analysis are not separable because the engineering design is based in analysis and
numerical simulation. The creation of the analysis with numerical simulation are not
made automatically and the preparation for all steps takes a long time. At Sandia,
the time for model generation and the analysis process are subdivided in three main
steps, considering the mesh generation about 20% of overall analysis time, the creation
a analysis-suitable geometry is to 60% and the other 20% referred to the analysis only
(see Figure 1.2). Nowadays, the analysis results should be high precision and high per-
formance computing. Note that, the mesh is a only approximation of the CAD geometry
and the CAD geometry is the "exact" representation. This approximation of the mesh
to original geometry, can in many situation create errors in the analytical results.

The form to break down the barriers between engineering design and the analysis is
with reconstruction the entire process, but at the same time maintaining compatibility
with existing practices. Create only one geometric model is the focus of reconstruction
process. This geometric model is used in the representation of the geometry, as well as
used in the analysis. This concept is designated by Isogeometric Analysis (IGA) and it

3



4 1.Introduction

Figure 1.1: Engineering designs are becoming increasingly complex, making analysis a time
consuming and expensive endeavor [1].

was introduced by Hughes et al. [1; 2]. Through using the functions of the geometry
developed on the CAD is combined to FEA. The surfaces for generated the geometry in
commercial programs more used are the Non-Uniform Rational B-Spline (NURBS). The
recent developed functions are the T-Splines and these are generalized of the NURBS.
These permit local re�nement and, are very robust in adjacent patches. The comercial T-
spline was introduced by Maya, Rhino and Bazilevs et al., 2009. Dorfel et al., 2008 started
research for IGA [1]. In this work NURBS functions are the focus for implementation
the IGA.

The results obtained have high precision and in many research areas in engineering,
IGA method has been applied: structural vibrations [1; 3], incompressibility [4; 5], shells
[6; 7], contact mechanics [8; 9], shape optimization [10; 11].

It is important to remember, in the 1950s - 1960s the Finite Element Analysis (FEA)
appeared at the aerospatial engineering. The �rst commercial programs (ASKA, NAS-
TRAN, etc) emerged at the end of the 1960s. After this, the FEA reached other engi-
neering areas and in nowadays this method is used in many commercial programs. CAD
emerge in 1979s - 1980s and in analysis has an important part [12].

1.2 Objectives

The objectives for this work are the computational implementation of the IGA and its
application to structural engineering. Thus, the next steps will be followed:

i) implementation of the CAD for surfaces (2D) and volumes (3D);

ii) implementation of the FEM for 2D and 3D problems;
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Figure 1.2: Estimation of the relative time costs of each component of the model generation and
analysis process at Sandia National Laboratories [1].

iii) implementation of the IGA for 2D and 3D problems;

iv) development programs (open-source) with IGA and FEM procedures;

v) application this program to problems in structural engineering and analyzing the
numerical results.

All the items previously mentioned were developed and implemented by the author.

1.3 Organization of the text

This work is divided in two parts. The �rst part is designated by Mathematical and

numerical concepts and the second part is Benchmarks. The �rst part has 7 chapters
and these are used in the basis for the programs and applications development. In the
�rst part, the contents are:

i) Chapters 2 and 3 : the basis concepts and the mathematical formulations are pre-
sented. In this chapter curves and surfaces of Bézier, B-Spline and NURBS, are
discussed;

ii) Chapter 4 : the basis concepts for application of the FEM in continuum mechanics
are discussed;

iii) Chapter 5 : a summary of the FEM formulation is presented;

iv) Chapter 6 : the mathematical formulations for implementation the IGA are men-
tioned;
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v) Chapter 7 : the development algorithms for representation the curves and surfaces
is presented, as well as the implementation of the FEM and IGA method.

The second part of this work is called Benchmarks. This part is presented two chapters:

i) Chapter 8 : the results obtained in the FEM and IGA programs developed are pre-
sented. The results obtained and the theoretical results are compared. A standard
problems to test FEM and IGA accuracy are presented;

ii) Chapter 9 : the global conclusions of the work are presented and the future works
are proposed.



Chapter 2

Curves

Non-Uniform Rational B-Splines (NURBS) are the standard curves most used by Com-
puter Aided Design (CAD) programs.

In this chapter the necessary mathematical formulations for understanding the prop-
erties of the curves are presented. Formulations in the mathematical explicit and implicit
forms are initially presented. Afterwards, Bézier, B-Spline and NURBS curves are rep-
resented.

2.1 Representation of the curves

In this section the mathematical formulations of the parameterization of the curves are
de�ned. At �rst, the curves can be represented in two mathematical formulations in the
explicit and implicit forms. In the explicit form the curves are represented as y = f(x).

In the implicit form the curves can be represented by the expression f(x, y) = 0. This
represents multiple-valued functions, but is still axis dependent. In CAD the implicit
form can be utilized. For further reference, Bloomenthal provides a useful discussion for
the utilization of these curves in implicit forms [13].

2.1.1 Parameterization in bidimensional

The parametric curves can be represented in the form

x = f(t) , y = g(t) and z = h(t) , (2.1)

where t is a real number. This representation has additional degrees of the freedom
compared to either explicit or implicit formulations. For example, in explicit form, the
representation of a cubic equation results in

y = ax3 + bx2 + cx+ d , (2.2)

with four degrees of freedom, one for each of the four constants a, b, c and d. Rewriting
the previous equation in the parametric form as

x(t) = αt3 + βt2 + γt+ δ and

y(t) = αt3 + βt2 + γt+ δ ,
(2.3)

7
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it passes from four to eight degrees of the freedom, one for each of the eight constants,
α, β, γ, δ, α, β, γ and δ.

The derivative of y with respect to x can be represented by

dy

dx
=

dy/dt

dx/dt
. (2.4)

This can be applied to Equation 2.3, resulting in

dy

dx
=

3αt2 + 2βt+ γ

3αt2 + 2βt+ γ
. (2.5)

Analysing the �rst derivative, when the value of the denominator equals zero, the deriva-
tive is in�nity and represents a critical point on the curve. In the curve, the critical point
can represent a maximum or a minimum.

2.1.2 Extension to 3D forms

The parametric form can be extended to 3D form by using z = z(t). As an example, the
parametric analysis of a curve with an helix form can be represented in Figure 2.1 and
in the mathematical equations are

x(t) = r cos(t) , y(t) = r sin(t) and z(t) = bt , (2.6)

with values r and b diferent from zero and t ∈ R, where the curve is a cylinder with
radius |r|. It can also be represented in vector form, as

P(t) =
[
x(t) y(t) z(t)

]
=
[
r cos(t) r sin(t) bt

]
. (2.7)

The parameters in the Oz direction are represented by z(t) = bt and move the points
of the curve in the Oz direction. In summary, after one complete turn, for t = 2π, the
values x and y return to initial values and the parameter z is incremented by 2π × b.
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Figure 2.1: A circular helix created with r = 1, b = 0.7 and t varying within the interval
0 6 t 6 12π.
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2.1.3 Parametric line

The simplest curve is a straight line. In mathematical form the parametric line is de�ned
by

P(t) = P1 + (P2 −P1)t (0 6 t 6 1) , (2.8)

where P1 and P2 are vectors. These vectors can be represented in cartesian coordinates
and for any point in the cartesian coordinate system in matrix form, is represented by

P =
[
x y z

]
. (2.9)

The representation of the vectors shown in Equation 2.8 in parametric form results in

x(t) = x1 + (x2 − x1)t ,
y(t) = y1 + (y2 − y1)t and
z(t) = z1 + (z2 − z1)t .

(2.10)

2.2 Bézier curves

The Bézier curves precede the NURBS curves and are discussed in this section. The
de�nitions of the Bézier curves are presented in mathematical equations and in matrix
forms.

The Bézier curves were introduced by the French engineer Pierre Bézier, at the Re-
nault Automobile. However, Pierre Bézier didn't used these curves only in automobile
bodies, but also in aircraft wings, ship hulls and in train seats [12] . The Bézier results
are equivalent to the polynomial approximation function or Bernestein basis. This results
is demonstrated by Forrest [14] and Gordon and Riesendeld [15].

2.2.1 Bézier curve de�nition

The Bézier curves are calculated using "control points". These control points are used
for the calculation of the basis functions. These have to meet the following conditions
[12]:

1. the basis functions are real;

2. the number of control points minus one is the degree of the polynomial curve
segment;

3. the �rst and the last points of the control polygon are coincident with the �rst and
last points of the curve;

4. the curve follows the control polygon;

5. the curve is contained within the convex hull of the control polygon. An example
of the convex hull is shown in Figure 2.2 between the control polygon and dashed
line.

With these conditions, the mathematical parameterization of a curve [12] can be
written as

P(t) =

n∑
i=0

BiJn,i(t) , (0 6 t 6 1) , (2.11)
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where the basis functions are given by

Jn,i(t) =

(
n
i

)
ti(1− t)n−i , (2.12)

with (
n
i

)
=

n!

i!(n− i)!
, (2.13)

and n is the degree of the curve, Bi is the matrix with the coordinates of the control
points for the index i, where i varies from zero to n. Equation 2.12 represents the basis
function from index i to n.

The values (0)0 ≡ 1 and 0! ≡ 1 are assumed for using in Equations 2.12 and 2.13,
respectively.

0 2

2

x

y

Figure 2.2: Control polygon and the Bézier curve.

2.2.2 Matrix representation of Bézier curves

Equation 2.11 shows the Bézier parameterization, which can be represented in a matrix
form [12] as

P(t) = [TNG] = [FG] , (2.14)

with
F =

[
Jn,0 Jn,1 . . . Jn,n

]
, (2.15)

and the matrix G given by

G =


B0

B1
...
Bn

 . (2.16)

This represents the control points used for the creation of the polygon. Cohen and
Riesenfeld generalized the equation of the curve, resulting in [16]

P(t) = [TNG] , (2.17)

in which the matrix T is given by

T =
[
tn tn−1 . . . t 1

]
. (2.18)
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The matrix N (Equation 2.14) is calculated by

N =



(
n
0

)(
n
n

)
(−1)n

(
n
1

)(
n − 1
n − 1

)
(−1)n−1 . . .

(
n
n

)(
n − n
n − n

)
(−1)0

(
n
0

)(
n

n − 1

)
(−1)n−1

(
n
1

)(
n − 1
n − 2

)
(−1)n−2 . . . 0

.

.

.

.

.

.

.
.
.

.

.

.(
n
0

)(
n
1

)
(−1)1

(
n
1

)(
n − 1

0

)
(−1)0 . . . 0

(
n
0

)(
n
0

)
(−1)0 0 . . . 0


. (2.19)

The terms of the matrix N are

(Ni+1,j+1)ni,j=0 =


(
n
j

)(
n− j

n− i− j

)
(−1)n−i−j 0 6 i+ j 6 n

0 otherwise

. (2.20)

2.2.3 Derivatives of Bézier curves

At the ends of the Bézier curves, the tangent vector must keep the slope and curvature
along the Bézier curves [12]. The �rst derivative of the Bézier curve (Equation 2.11) is

P′(t) =

n∑
i=0

BiJ
′
n,i(t) , (2.21)

and the second derivative is given by

P′′(t) =

n∑
i=0

BiJ
′′
n,i(t) . (2.22)

The �rst and second derivative of the basis functions, represented in Equations 2.21 and
2.22, respectively, are calculated using Equation 2.12, resulting for the �rst derivative in

J ′n,i(t) =

(
n
i

)(
iti−1(1− t)n−1 − (n− i)ti(1− t)n−i−1

)
=

(
n
i

)
ti(1− t)n−i

(
i

t
− n− i

1− t

)
(2.23)

=
i− nt
t(1− t)

Jn,i(t)

and, for the second derivative in

J ′′n,i(t) =

(
(i− nt)2 − nt2 − i(1− 2t)

t2(1− t)2

)
Jn,i(t) . (2.24)

Considering the variable t at the beginning and the end of the Bézier curve i.e. t = 0 and
t = 1, respectively, the results for the �rst and the second derivatives comes as

P ′(0) = n(B1 −B0) , (2.25)

P ′(1) = n(Bn −Bn−1) , (2.26)
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Figure 2.3: Example of Bézier curve with �rst and second derivatives as well as the control
polygon [12].

and

P ′(0) = n(n− 1)(B0 − 2B1 +B2) , (2.27)

P ′(1) = n(n− 1)(Bn − 2Bn−1 +Bn−2) , (2.28)

respectively. Considering the Bézier curve shown in Figure 2.2, the �rst and the second
derivatives are represented in Figure 2.3.

2.3 B-Spline curves

The Bernstein basis functions (Equation 2.12) are used on the calculation of the Bézier
curves (Equation 2.11). These basis functions restricted the �exibility of the curve be-
cause the degree of the curve is connected to the number of the control points and the
basis functions are nonzero for all the points within the range of t. If there is a change
in a control point, the result of the curve will be changed [12].

B-Spline (from Basis Spline) is another method and the basis functions contains the
Berstein basis as a special case [12]. However, B-Spline basis functions are nonglobal. For
each control point one basis functions is associated and these basis functions a�ect the
curve in only that interval. The degree of the polynomial curve can be changed without
changing the number of control points. This theory was introduced by Schoenberg [17].

In this section the de�nition of B-Spline curves is presented, with its mathematical
formulation and properties.

2.3.1 B-Spline curve de�nition

The function P(t) de�nes the position of the vector along the curve and depends on the
parameter t. The curve is given by

P(t) =

n+1∑
i=1

BiNi,k(t) , tmin 6 t < tmax , 2 6 k 6 n+ 1 , (2.29)
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where (as mentioned before) Bi represents the position of the control points (varies for
i = 1 to i = n + 1, with n being the degree of the curve) and Ni,k represents the basis
functions.

The basis functions are de�ned by Cox-de Boor as follows [12]

Ni,1(t) =


1 if xi 6 t 6 xi+1

0 otherwise
. (2.30)

When k = 1 the value the Ni,1 is equal to one for the values within the range of t. For
all values which do not belong to the range, the value of the basis function Ni,1 is equal
to zero [12]. When k 6= 1, the following equation is used for the calculation of basis
functions

Ni,k(t) =
(t− xi)Ni,k−1(t)

xi+k−1 − xi
+

(xi+k − t)Ni+1,k−1(t)

xi+k − xi+1
, (2.31)

where the values of xi are the values of the knot vectors (introduced in Section 2.3.3)
and xi 6 xi+1.

The B-Spline curves are de�ned for a polynomial spline function of order k with
degree k − 1 and these curves has to follow two conditions. The conditions are [12]:

1. the curve P(t) must be of degree k−1 and must be within the range xi 6 t 6 xi+1;

2. the polynomial curve derivatives must be continuous for the order 1, 2,. . . , k − 2
in all the curve.

The t parameter varies within the interval tmin and tmax, i.e., 0 6 t 6 n+ k + 1.

Note that, for instance, if the order of a B-Spline curve is four (k = 4), the degree of
the polygon is 3.

2.3.2 Properties of B-Spline curves

The properties of B-Spline curves are the following [12]:

1. the sum of the basis functions for any parameter t is equal to one (Gordon [15] and
deBoor [18])

n+1∑
i=1

Ni,k(t) = 1 ; (2.32)

2. for every parameter t, the values of the basis functions are always greater than or
equal to zero, i.e. Ni,k ≥ 0;

3. the maximum order of the polygon is equal to the number of the control points;

4. the degree of the control polygon is one less than k, the order of the basis functions;

5. the curve follows the control polygon.
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2.3.3 Knot vectors

The basis functions are in�uenced by the knot vectors. In Equations 2.30 and 2.31, the
variable xi is the knot value in position i on the knot vector X. The knot vectors have
only a requirement and this is that xi 6 xi+1.

Knot vectors can be divided in two forms, periodic and open. The open knot vectors
are subdivided in uniform and nonuniform. The periodic knot vectors begin at zero and
are incremented by 1 up to some maximum value, for example

[
0 1 2 3 4

]
, or in

the normalized form, for example, from 0 to 1, as
[

0 0.25 0.5 0.75 1
]
. The open

uniform knot vectors are given by


xi = 0, 1 6 i 6 k
xi = i− k, k + 1 6 i 6 n+ 1
xi = n− k + 2, n+ 2 6 i 6 n+ k + 1

. (2.33)

In Equation 2.33, the open uniform knot vectors has multiplicity of knot values equal to
the order k at the beginning and the end of the knot vector. The internal values of the
knot vectors are equally spaced. For example, considering the order being k = 3 and the
degree of the curve n = 3 the knot vector values result in


xi = 0, 1 6 i 6 3
xi = i− k, 4 6 i 6 4
xi = n− k + 2, 5 6 i 6 7

. (2.34)

In this case, in the interval xi = 0 with 1 6 i 6 3 the positions in knot vector are
x1 = x2 = x3 = 0, in interval xi = 4 − 3 with 4 6 i 6 4 the position in knot vector is
x4 = 1 and xi = 3−3+2 with 5 6 i 6 7 the positions in knot vector are x5 = x6 = x7 = 2.
In summary, considering x the knot vector, the result is x =

[
0 0 0 1 2 2 2

]
and the curve is split into two segments, 0 6 t 6 1 and 1 6 t 6 2.

If the order of the B-Spline basis functions is equal to the number of control points,
the B-Spline basis functions are equal to the Bernstein basis functions. For this special
case, the B-Spline curve is equal to Bézier a curve. For example, if �ve control points
are considered and the order is k = 5, the open uniform knot vector is

[
0 0 0 0 0 1 1 1 1 1

]
.

In summary, the Bézier curves are a special case of B-Spline curves and can be calculated
using the B-Spline curves.

For the uniform knot vectors, the space between the individual knot values are equal,
as for example, for

[
0 1 2 3 4

]
or
[
−0.2 −0.1 0 0.1 0.2

]
. If the space of

the knot values isn't equal, the knot vector is considered a nonuniform. The nonuniform
knot vector may be in the periodic form, as the examples

[
0 1 2 2 3 4

]
, or in

normalized form
[

0 0.28 0.5 0.72 1
]
and open form

[
0 0 0 1 1 2 2 2

]
.

These knot vectors have a multiple internal knot values. For the nonuniform knot vector,
the symmetry of the knot values is lost.
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2.3.4 Derivatives of B-Spline curves

Equation 2.29 represents the position of the vector along the B-Spline curve. The �rst
derivative is

P′(t) =
n+1∑
i=1

BiN
′
i,k(t) (2.35)

and the second derivative is

P′′(t) =
n+1∑
i=1

BiN
′′
i,k(t) . (2.36)

The calculation of the �rst derivative of the basis functions (Equation 2.31) is given by

N ′i,k(t) =
Ni,k−1(t) + (t− xi)N ′i,k−1(t)

xi+k−1 − xi
+

(xi+k − t)N ′i+1,k−1(t)−Ni+1,k−1(t)

xi+k − xi+1
(2.37)

and the second derivative by

N ′′i,k(t) =
2N ′i,k−1(t) + (t− xi)N ′′i,k−1(t)

xi+k−1 − xi
+

(xi+k − t)N ′′i+1,k−1(t)− 2N ′i+1,k−1(t)

xi+k − xi+1
.

(2.38)

Note that, from Equation 2.30 , the �rst and second derivatives N ′i,1 = 0 and N ′′i,1 = 0
for all t.

Figure 2.4 shows that the �rst derivatives for order k = 4, where the degree of the
basis function are n = k − 1 = 3 (cubic equations), are n = 2 (parabolic equations),
where the second derivative are n = 1 (linear equations).
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Figure 2.4: For k = 4 and n = 6, illustration of (a) basis functions, (b) �rst derivative and (c)
second derivative.

2.4 NURBS curves

Computer graphics were introduced by Steve Coons with the rational curves and surfaces.
Non-Uniform Rational B-Splines (NURBS) are the standard curves used on CAD and
since 1983, when Initial Graphics Exchange Speci�cation (IGES) standard was created.
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IGES is used on projects and links the Computer Aided Design (CAD) with Computer
Aided Manufacturing (CAM), being and is one of the standards used for this process.
Nowadays the CAD systems uses NURBS curves [12].

In this section, the de�nition of the rational B-Spline curves is presented, with the
mathematical formulations and its properties.

2.4.1 NURBS curve de�nition

A rational B-Spline curve is the projection of a non-rational B-Spline curve in polynomial
form. The non-rational B-Spline curve is de�ned in a four-dimensional (4-D) space with
homogeneous coordinates space and to tridimensional (3D) space are transformed. The
mathematicaly formulation is given by [12]

P(t) =
n+1∑
i=1

Bh
iNi,k(t) , (2.39)

where Bh
i are the homogeneous control polygon vertices in a four-dimensional space

for the non-rational four-dimensional B-Spline curve. The basis functions Ni,k, were
previously de�ned in Equation 2.31.

The projection of Equation 2.39 in a tridimensional space is represented by

P(t) =

∑n+1
i=1 BihiNi,k(t)∑n+1
i=1 hiNi,k(t)

=
n+1∑
i=1

BiRi,k(t) , (2.40)

where Bi de�nes the coordinates for control point with index i in tridimensional form
and matrix h represents the matrix of weights, de�ned by

h = [hi hi+1 · · · hn+1] . (2.41)

Here, Ri,k(t) are the rational B-Spline basis functions, represented by

Ri,k(t) =
hiNi,k(t)∑n+1
i=1 hiNi,k(t)

. (2.42)

2.4.2 Properties of NURBS curves

The properties of the rational B-Splines basis functions and curves, which can be gener-
alized from the non-rational B-Spline basis functions, are:

1. rational basis functions are greater than or equal to zero for all parameter values,
i.e., Ri,k ≥ 0;

2. the sum of the rational B-Spline basis functions are equal to one for any parameter
t, i.e.,

n+1∑
i=1

Ri,k(t) = 1 ; (2.43)

3. for order k (degree k − 1) the rational B-Spline curve has Ck−2 continuity every-
where;
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4. the maximum order for the rational B-Spline curve is equal to the number of the
control points;

5. in general, the rational B-Spline curve follows the control polygon vertices.

By means of NURBS curves it is possible to create B-Spline and Bézier curves. These
curves are therefore a special case of NURBS curves. Equation 2.42, considering the
matrix of weights hi with the values for all index i equal to 1, with i varying from i = 1
to n+ 1 and n the degree of the curve, results is

Ri,k(t) =
Ni,k(t)∑n+1
i=1 Ni,k(t)

. (2.44)

According to the properties of the basis functions represented in Section 2.3.2, Equation
2.32 can be introduced in Equation 2.44,

Ri,k(t) = Ni,k(t) . (2.45)

Substituting the previous Equation in Equation 2.40,

P(t) =

n+1∑
i=1

BiNi,k(t) , (2.46)

which is equal to the equation that represents a B-Spline curve (Equation 2.29). Con-
sidering the order of the B-Spline basis functions equal to the number of control points,
the B-Spline basis functions are reduced to Bernstein basis functions. For this case, the
B-Spline results in Bézier curve.

In summary, applying the particular cases previously presented, B-Spline and Bézier
curves can be obtained by means a NURBS curves.
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Chapter 3

Surfaces

In design and manufacturing surfaces play a key role. An example of the applications
are automobile bodies, boat hulls, turbine pumps, etc. The surfaces and the geometries
of the model have great signi�cance in both the functional and the aesthetics parts of
the object. In this chapter the mathematical parameterization of surfaces is presented.
Initialy, the representation in parametric form is studied and afterwards the Bézier, B-
spline and NURBS surfaces are presented.

3.1 Parametric surfaces

For the parameterization of a surface two parameters are required. These parameters are
represented by u and w, as

x = x(u,w) , y = y(u,w) and z = z(u,w) . (3.1)

In Figure 3.1, variables u and w are considered in these intervals, 0 6 u 6 1 and
0 6 w 6 1. When a variable u or w is considered as constant and another variable varies
within an interval (u = constant and 0 6 w 6 1, or 0 6 u 6 1 and w = constant),
it is considered an isoparametric curve. The boundary of the curves are represented
in �gure and these resulted from the conjugation of variables u and w. Considering
the variable u = 0 or u = 1 and 0 6 w 6 1 the boundary curves are in direction w.
Similarly, considering the variable w = 0 or w = 1 and 0 6 u 6 1 the boundary curves
are in direction u. The calculation of the diagonals of the surface, for the intervals of the
parametric variables presented previously, resultes in u = 1− w e w = 1− u.

Considering a biparametric surface

Q(u,w) = Q
[
x(u,w), y(u,w), z(u,w)

]
, (3.2)

the normal vector at any point on a biparametric surface is given by

n =
Qu ×Qw
| Qu ×Qw |

, | Qu ×Qw |6= 0 , (3.3)

where

Qu(u,w) =
∂Q

∂u
= Q

[
xu(u,w), yu(u,w), zu(u,w)

]
,

Qw(u,w) =
∂Q

∂w
= Q

[
xw(u,w), yw(u,w), zw(u,w)

]
.

(3.4)
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The normal vector of the surface does not depend of the parameterization, but associated
only the tangent plane to the surface.

Figure 3.1: Example of a parametric surface with representation of boundary curves, isopara-
metric lines (when u or w constant) and diagonals [12] .

3.1.1 Mapping parametric surfaces

Parameters u and w, x, y and z, are used in mapping a parametric surface, in planar
and tridimensional surface, respectively. In Figure 3.2 a rectangular parametric planar
surface is represented and the mapping of this surface is given by

C1 6 u 6 C2 ,
C3 6 w 6 C4 ,

(3.5)

where C1, C2, C3 and C4 de�ne the boundaries of the rectangular planar surface.

Figure 3.2: Rectangular parametric planar surface.

The map of the parametric surface in 3D is given by

x = x(u,w) ,
y = y(u,w) ,
z = z(u,w) .

(3.6)
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3.2 Bézier surfaces

A Bézier surface is given by

Q(u,w) =
n∑
i=0

m∑
j=0

Bi,jJn,i(u)Km,j(w) , (3.7)

where, in u and w parametric directions, Jn,i(u) and Km,j(w) are the Bernstein basis
functions. The coordinates of the control points are represented by the Bi,j matrix.
Indices n and m are the degree of the curves, in the u and w directions, respectively. In
Section 2.2.1, the Equation 2.12 represents the de�nitions of the Bernstein basis functions.
According to this de�nition, Jn,i(u) and Km,j(w) are represented by

Jn,i(u) =

(
n
i

)
ui(1− u)n−i (3.8)

and

Km,j(w) =

(
m
j

)
wi(1− w)m−j , (3.9)

with (
n
i

)
=

n!

i!(n− i)!
, (3.10)

(
m
j

)
=

m!

j!(m− j)!
. (3.11)

3.2.1 Properties of Bézier surfaces

The properties of the Bézier surfaces are analogous to those of the Bézier curves, since
the Bernstein basis functions are the same. Thus the properties are the following [12]:

1. for each parametric direction the degree of the surface is the number of the control
points minus one;

2. for each parametric direction the continuity is two less than the number of the
control points;

3. the corner points are coincident with the control points;

4. the surface follows the shape of the control points.

Figure 3.3 represents the schematic of (4 × 4) control points. These are associated
to bicubic Bézier surface. Analysing Figure 3.3, the point A is in�uenced by the control
points B0,1 and B1,0 in the direction u and w, respectively. Similarly the points B, C and
D are controlled by the control points B2,0 B3,1, B3,2 B2,3 and B1,3 B0,2, respectively in u
and w direction. The four interior points B1,1, B2,1, B2,2 and B1,2 in�uence the direction
and the magnitude of the twist vectors at the corner A, B, C and D, respectively [12] .
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B0,0 B1,0 B2,0 B3,0

B0,3

B0,2

B0,1

A B

CD

B1,1

B1,2

B1,3

B2,1

B2,2

B2,3

B3,1

B3,2

B3,3

u

w

Figure 3.3: Schematic of the control net for a 4× 4 Bézier surface.

3.2.2 Matrix representation

In matrix form the representation of the Bézier surface is given by

Q(u,w) = UNBMTW , (3.12)

where
U =

[
un un−1 . . . 1

]
, (3.13)

W =


wm

wm−1

...
1

 , (3.14)

and

B =

 B0,0 . . . B0,m
...

. . .
...

Bn,0 . . . Bn,m

 . (3.15)

Matrices N andM are given by Equation 2.19. For the calculation of the matrixM, the
index n is substituted by m.

3.3 B-Spline surfaces

A B-Spline surface is de�ned by

Q(u,w) =

n+1∑
i=1

m+1∑
j=1

Bi,jNi,k(u)Mj,l(w) , (3.16)

where the control points used for the calculation of the surface are represented by the
Bi,j matrix. Ni,j andMj,l are the B-Spline basis functions in the biparametric directions,
de�ned by

Ni,1(u) =

{
1 if xi 6 u 6 xi+1

0 otherwise
, (3.17)

Ni,k(u) =
(u− xi)Ni,k−1(u)

xi+k−1 − xi
+

(xi+k − u)Ni+1,k−1(u)

xi+k − xi+1
, (3.18)
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and

Mj,1(w) =

{
1 if yj 6 w 6 yj+1

0 otherwise
, (3.19)

Mj,l(w) =
(w − yi)Mj,l−1(w)

yj+l−1 − yj
+

(yj+l − w)Mj+1,l−1(w)

yj+l − yj+1
, (3.20)

where the elements xi and yi are elements of the knot vectors X and Y in the u and w
directions, respectively. The indices n and m are calculed from the number of control
points, which is one less than the number of the control points in u and w directions,
respectively.

3.3.1 Properties of B-Spline surfaces

The properties of the B-Spline surfaces are [12] :

1. in each parametric direction the maximum order of the surface is the same as the
number of the control points;

2. for a B-Spline surface of k and l orders for the u and w parametric directions, the
degree this cases is equal to k − 1 and l − 1, respectively;

3. the continuity of the surface is Ck−2 and C l−2 in the u and w directions, respec-
tively, two less the number of the control points for each direction;

4. in each parametric surface the in�uence of the knot vector in the surface is limited
to ±k/2 and ±l/2 spans;

5. in each parametric direction the order is considered equal to the number of the
control points. This is the particular case for the B-Spline to Bézier surfaces.

3.4 NURBS surfaces

NURBS surfaces in a four-dimensional homogeneous coordinate space is represented by
[12]

Q(u,w) =

n+1∑
i=1

m+1∑
j=1

Bh
i,jNi,k(u)Mj,l(w) , (3.21)

where, Ni,k(u) and Mj,l(w) are the non-rational B-Spline basis funcions discussed in
Section 2.4 and the Bh

i,j are the four-dimensional homogeneous polygon control vertices.

Projecting in to a 3D space, a NURBS surface is given by

Q(u,w) =

∑n+1
i=1

∑m+1
j=1 hi,jBi,jNi,k(u)Mj,l(w)∑n+1

i=1

∑m+1
j=1 hi,jNi,k(u)Mj,l(w)

=
n+1∑
i=1

m+1∑
j=1

Bi,jSi,j(u,w) , (3.22)

where Bi,j matrix represents the control points in 3D space and the Si,j is given by

Si,j(u,w) =
hi,jNi,k(u)Mj,l(w)∑n+1

i1=1

∑m+1
j1=1 hi1,j1Ni1,k(u)Mj1,l(w)

(3.23)
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and the matrix h represents the weight matrix for each node, de�ned by

h =


hi,j hi+1,j · · · hn+1,j

hi,j+1 hi+1,j+1 · · · hn+1,j+1
...

...
. . .

...
hi,m+1 hi+1,m+1 · · · hn+1,m+1

 , (3.24)

with the index i varies from i = 1 to i = n+1 and index j varies from j = 1 to j = m+1.

3.4.1 Properties of NURBS surfaces

The properties of the NURBS surfaces are [12] :

1. the sum of the basis functions for any parametric direction u and w is

n+1∑
i=1

m+1∑
j=1

Si,j(u,w) = 1 ; (3.25)

2. for all the parameters u and w, each rational surface basis function is always greater
than or equal to 0, Si,j ≥ 0;

3. for each parametric direction the maximum order for the NURBS surfaces is equal
to the number of the control points in that direction;

4. for a NURBS surface of k and l orders for the u and w parametric directions, the
degree is equal to k − 1 and l − 1, respectively;

5. the continuity of the surface is two less than the order k and l, i.e., the continuity
is Ck−2 and C l−2 for directions u and w, respectively.

Considering all hi,j equal to 1 and solving the Equation 3.23 the result is

Si,j(u,w) =
Ni,k(u)Mj,l(w)∑n+1

i1=1

∑m+1
j1=1Ni1,k(u)Mj1,l(w)

. (3.26)

According to the properties of the basis functions (Section 2.3.2), the denominator of the
Equation 3.27 is equal to 1. Equation 3.27 is then given by

Si,j(u,w) = Ni,k(u)Mj,l(w) , (3.27)

substituting this in Equation 3.22 results in

Q(u,w) =

n+1∑
i=1

m+1∑
j=1

Bi,jNi,k(u)Mj,l(w) . (3.28)

In conclusion, Equation 3.28 is equal to Equation 3.16 and the resultant is a B-Spline
surfaces.



Chapter 4

Topics on continuum mechanics

In this chapter, a review of continuum mechanics concepts is presented. The elemen-
tary relations for the stress and strain in solids, with elastic and isotropic behavior, are
presented. The particular cases of the plane stress and plane strain are discussed.

4.1 Isotropic elasticity

In this work, an elastic material homogeneous and continuous is considered. The material
is also isotropic, i.e. its elastic properties are independent of the direction considered.
The presuppositions of the elasticity theory based on the homogeneity and isotropy can
be applied to materials with a elastic behavior, for example, steel [19].

4.1.1 Static equilibrium

The in�nitesimal strain theory is considered in this work. In a cartesian referencial Oxyz,
the stress state for any point is given by

σ =

 σxx τxy τxz
τyx σyy τyz
τzx τzy σzz

 . (4.1)

The deformation in a point of a continuously deformable solid is then given by

ε =

 εxx γxy γxz
γyx εyy γyz
γzx γzy εzz

 , (4.2)

where εx, εy and εz represent linear strains, de�ned by

εx =
∂u

∂x
, εy =

∂v

∂y
and εz =

∂w

∂z
. (4.3)

In the considered point u, v and w are the displacement according to the directions
Ox, Oy and Oz, respectively. The angular strain components (engineering strains) are
de�ned as

γxy =
∂u

∂y
+
∂v

∂x
, γxz =

∂u

∂z
+
∂w

∂x
and γyz =

∂v

∂z
+
∂w

∂y
. (4.4)
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For all points in the continuum bodies the stress gradients must satisfy the equilibrium
condictions, [19] 

∂σxx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

+ bx = 0

∂τxy
∂x

+
∂σyy
∂y

+
∂τyz
∂z

+ by = 0

∂τxz
∂x

+
∂τyz
∂y

+
∂σzz
∂z

+ bz = 0 ,

(4.5)

where bx, by and bz represent volume forces.

The boundary conditions of Neumann are de�ned by
tx
ty
tz

 = σn̂ , (4.6)

with tx, ty and tz being the components of the forces over the surface (per unit of area)
and n̂ the normal versor to the surface, at each point. The stress state of the volume
subjected to external forces can be solved using Equation 4.5 and applying the Neumann
boundary conditions (Equation 4.6).

The strain components can be rearranged on a vector form, resulting in



εxx
εyy
εzz
γxy
γxz
γyz


=



∂
∂x 0 0

0 ∂
∂y 0

0 0 ∂
∂z

∂
∂y

∂
∂x 0

∂
∂z 0 ∂

∂x

0 ∂
∂z

∂
∂y




u
v
w

 . (4.7)

These strain components are related by the compatibility conditions [19]

∂2εxx
∂y2

+
∂2εyy
∂x2

=
∂2γxy
∂x∂y

,

∂2εyy
∂z2

+
∂2εzz
∂y2

=
∂2γyz
∂y∂z

,

∂2εzz
∂x2

+
∂2εxx
∂z2

=
∂2γxz
∂x∂z

, (4.8)

2
∂εxx
∂y∂z

=
∂

∂x

(
−∂γyz
∂x

+
∂γxz
∂y

+
∂γxy
∂z

)
,

2
∂εyy
∂x∂z

=
∂

∂y

(
∂γyz
∂x
− ∂γxz

∂y
+
∂γxy
∂z

)
and

2
∂εzz
∂x∂y

=
∂

∂z

(
∂γyz
∂x

+
∂γxz
∂y
− ∂γxy

∂z

)
.

(4.9)
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4.1.2 Hooke's law for linear isotropic materials

The material behavior considered in the present work is assumed to be linear elastic,
where the stress �eld is linearly related to strain �eld. For isotropic materials only two
components are required to characterize their behavior. The �rst constant is the elasticity
modulus (Young modulus), being given as

E =
σxx
εxx

. (4.10)

This represents the slope for the uniaxial stress state (σxx = σxx(εxx)) and corresponding
the Hooke's law. The second constant is the ratio of transverse strain. This is designated
by Poisson's coe�cient, being represented by

ν = −εyy
εxx

= − εzz
εxx

, (4.11)

or

εxx = −εyy
ν

= −εyy
ν

, (4.12)

εyy = −νεxx , (4.13)

εzz = −νεxx . (4.14)

Substituting this in Equation 4.10,

σxx = −E
ν
εyy = −E

ν
εzz , (4.15)

For the other two directions, Oy and Oz, the relations before are also valid and can
be generalized for a tridimensional analysis. Inverting Equation 4.15 and applying the
superposition of e�ect, leads to

εxx =
1

E

[
σxx − ν (σyy + σzz)

]
,

εyy =
1

E

[
σyy − ν (σxx + σzz)

]
and (4.16)

εzz =
1

E

[
σzz − ν (σxx + σyy)

]
.

A third useful variable is the shear modulus of the material G, de�ned as

G =
E

2 (1 + ν)
. (4.17)

The angular strains can be calculated from the shear stress as

γxy =
τxy
G

,

γxz =
τxz
G

, (4.18)

γyz =
τyz
G

.
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Applying the previously presented relations and rewriting Hooke's law for a tridimen-
sional case in matrix form, it comes that

σ = Dε (4.19)

or 

σxx
σyy
σzz
τxy
τyz
τxz


= D



εxx
εyy
εzz
γxy
γyz
γxz


, (4.20)

where

D =
E

(1 + ν) (1− 2ν)



(1− ν) ν ν 0 0 0
ν (1− ν) ν 0 0 0
ν ν (1− ν) 0 0 0

0 0 0 (1−2ν)
2 0 0

0 0 0 0 (1−2ν)
2 0

0 0 0 0 0 (1−2ν)
2


(4.21)

represents the elasticity matrix.

4.1.3 Plane stress

The plane stress is a special case of the general tridimension stress states. One dimension
(thickness) lower than the others two and the load is applied on plane, a plane stress is
considered (see Figure 4.1 ). In this case, the normal and the shear stress in plane Oz
are considered zero,

σzz = τxz = τyz = 0 . (4.22)

F1

F1

F2F2

x

z

y

Figure 4.1: Schematic representation of a plane stress case.

The conditions represented in Equation 4.22 are applied in Equations 4.16 and 4.18,
resulting in the linear and angular strain, respectively, for stress plane. The linear strain
is given by

εxx =
1

E

[
σx − νσy

]
,

εyy =
1

E

[
σy − νσx

]
, (4.23)

εzz =
−ν
E

[
σx + σy

]
,
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and the angular strain is

γxy =
τxy
G

,

γxz = 0 , (4.24)

γyz = 0 .

The generalization of Hooke's law, represented in Equation 4.19, can be rewritten for a
plane stress. For this case, matrix D represents the elasticity matrix for the plane stress.
This results from the application of the condictions represented by Equations 4.22 and
4.21. Equation 4.19 can be represented in matrix form as

σxx
σyy
τxy

 =
E

1− ν2

 1 ν 0
ν 1 0
0 0 1−ν

2


εxx
εyy
γxy

 . (4.25)

4.1.4 Plane strain

The plane strain is also a special case of the tridimensional stress. When the load is
applied along on the higher dimension of the body, the deformations at this directions
can be considered null. Figure 4.2 represents a tunnel subjected a perpendicular load
to higher dimension. In this case, the linear and angular strain at the plane Oz are
considered

εzz = γxz = γyz = 0 . (4.26)

The linear strains result in

εxx =
1

E

[
σxx − ν (σyy + σzz)

]
,

εyy =
1

E

[
σyy − ν (σxx + σzz)

]
, (4.27)

0 =
1

E

[
σzz − ν (σxx + σyy)

]
and the angular strains are given by

γxy =
τxy
G

,

γxz = 0 , (4.28)

γyz = 0 .

q

x

y

z

Figure 4.2: Schematic representation of a plane strain state.
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The generalization of Hooke's law, represented in Equation 4.19, can be rewritten for
a stress plane. For this case, D represents the elasticity matrix to a plane strain state.
Equation 4.19 can be represented in matrix form as

σxx
σyy
τxy

 =
E

(1 + ν) (1− 2ν)

 (1− ν) ν 0
ν (1− ν) 0

0 0 (1−2ν)
2


εxx
εyy
γxy

 . (4.29)



Chapter 5

Finite Element Method

In this chapter, a summary of the mathematical formulations of the Finite Element
Method (FEM) is introduced. Initially the Principle of Virtual Work is presented. Af-
terwards, the discretization of the problem and the components for calculation of the
sti�ness matrix are discussed. The isoparametric FEM and the corresponding formula-
tion for calculating stress and strain �elds are presented.

5.1 Discretization of the elasticity problem

The strong formulation for a tridimensional problem in linear elasticity is represented by

div(σ) + b in Ω , (5.1)

σ = Dε in Ω , (5.2)

ε =
1

2

[
grad(u) + [grad(u)]T

]
in Ω , (5.3)

σ · n = t̄ in Γt and (5.4)

u = ū in Γu . (5.5)

Equation 5.1 represent the static equilibrium of a solid body, Equation 5.2 represent
the constitutive relations, Equation 5.3 represent the displacement to strain relation
(based in in�nitesimal strain theory) and Equations 5.4 and 5.5 represents the natural
and essential boundary conditions, while div(·) and grad(·) denote the divergence and
gradient operators.

Using the Principle of Virtual Work and introducing an virtual displacement vector,
represented by δu, the weak formulation can be calculated from the strong formulation.
In Figure 5.1 an generic solid with a Ω domain is represented and the boundary of the
generic solid is designated by Γ. This boundary can be subdivided in two boundaries
Γu and Γt, where in boundary Γu the displacement �eld values are prescribed and in
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boundary Γt the values of uknown primary function of the problem are prescribed. The
boundary condition is de�ned as {

Γu ∪ Γt = Γ
Γu ∩ Γt = � . (5.6)

On the boundary of the object, the virtual displacements �eld are considered null,
i.e. δu = 0 for Γu (see Figure 5.1). Applying the virtual displacement in equilibrium
equation for Ω domain, results in∫

Ω
δu ·

[
div (σ) + b

]
dΩ = 0 . (5.7)

Figure 5.1: Bidimensional representation in tridimensional of a generic solid Ω.

Substituting in this equation the identity, results

δu · div (σ) = div (δu · σ)− grad (δu) : σ . (5.8)

Rearranging the terms of equation, resulted in∫
Ω
grad (δu) : σ dΩ =

∫
Ω
δu · b dΩ +

∫
Ω
div (δu · σ) dΩ . (5.9)

The divergence theorem can be applied at the second term of the previous equation
resulting in ∫

Ω
div (δu · σ) dΩ =

∫
Γ
δu · (σ · n) dΓ . (5.10)

With Γ = Γu ∪ Γt and δu = 0 in Γu,∫
Γ
δu · (σ · n) dΓ =

∫
Γt

δu · (σ · n) dΓ . (5.11)

The substitution of the constitutive relation, the natural boundary conditions and the
Equation 5.11 in Equation 5.9, results in∫

Ω
grad (δu) : D : ε dΩ =

∫
Ω
δu · b dΩ +

∫
Γt

δu · t̄ dΓ . (5.12)
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Matrix D is symmetric and, considering the relation between strains and displacement,

grad (δu) : σ = δε : σ . (5.13)

The weak formulation for the linear elasticity problem, applying the principle of virtual
displacements is represented by

∫
Ω
δε : D : ε dΩ =

∫
Ω
δu · b dΩ +

∫
Γt

δu · t̄ dΓ . (5.14)

For the condition δu = 0 in Γu, Equation 5.14 should be valid. The �rst term in
Equation 5.14 (known as the Principle of Virtual Work) represents the internal work.
The second and third term, in previous equation, correspond the work surface and the
work of densities forces, respectively.

The virtual �eld of displacements δu can be related with the discretized �eld of virtual
displacements, δa, resulting in

δu = Nδa , (5.15)

where N represents the matrix of the shape functions.

The displacement �eld in the interior of an element (e) with a number of nodes equal
to nnode can be calculated according to Equation 5.15 as

u =


u
v
w

 =


∑
Niui∑
Nivi∑
Niwi

 =
∑

Nia
e
i = Nae , (5.16)

with

N = [N1 · · ·Ni · · ·Nnnode ] with Ni =

 Ni 0 0
0 Ni 0
0 0 Ni

 (5.17)

and

ae =



ae1
...
aei
...
aen


with aei =


ui
vi
wi

 , (5.18)

where i = 1, · · · , nnode. Applying the relations between strain and displacement and the
Equation 5.15, the strain tensor for the generic element (e) is

ε = Bae (5.19)
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with

B = [B1 · · ·Bi · · ·Bnnode ] and Bi =



∂Ni
∂x 0 0

0 ∂Ni
∂y 0

0 0 ∂Ni
∂z

∂Ni
∂y

∂Ni
∂x 0

∂Ni
∂z 0 ∂Ni

∂x

0 ∂Ni
∂z

∂Ni
∂y



. (5.20)

5.2 Finite Elements

In this work the �nite elements adopted are a linear hexahedron for tridimensional anal-
ysis and a linear quadrilateral element for bidimensional analysis, represented in Figures
5.2 and 5.3, respectively. The natural coordinates for the axis systems varies in the range
[−1, 1]. These corresponds to natural system coordinates typically used for isoparametric
de�nition.

The shape functions for the linear hexahedron element is given by

Ni(ξ, η, ζ) =
1

8
(1 + ξξi)(1 + ηηi)(1 + ζζi) , (5.21)

where, ξi, ηi and ζi, are the coordinates of the vectors ξ, η and ζ on a isoparametric
referencial. These vectores represent the coordinates of each node of the element in
natural referencial (nnode = 8). The basis functions mentioned in Equation 5.21 are
trilinear. These contain the �rst order terms ξ, η and ζ, as well as the second order
terms ξη, ξζ, ηζ and ξηζ. Note that Equation 5.21 follows the essential conditions of the
shape functions:

Ni(ξj , ηj , ζj) =

{
1 if i = j
0 if i 6= j

. (5.22)

1

2

3

4

5
6

7

8

Figure 5.2: Linear hexahedron in tridimensional space.
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At the speci�c node where the shape function is de�ned, the functions value is equal
to 1 and 0 in the remaining nodes. Other essential condition to consider the shape
functions valid is

nnode∑
i=1

Ni(ξ, η, ζ) = 1 , (5.23)

which states that the sum of all shape functions is equal to 1.

For a linear quadrilater element in bidimensional analysis (Figure 5.3), the shape
functions are

Ni(ξ, η) =
1

4
(1 + ξξi)(1 + ηηi) , (5.24)

where ξi and ηi are the coordinates of the vectors ξ and η in a bidimensional natural
referencial. These vectors represent the coordinates by each node of the element and
have nnode = 4.

1 2

34

Figure 5.3: Linear quadrilateral element.

The shape functions mentioned in Equation 5.24 are bilinear functions and contain
the �rst order terms ξ and η, as well as the second order terms ξη. Note that the shape
functions for linear hexahedron elements check the essential conditions for elements in a
bidimensional space (ξ, η).

5.3 Isoparametric concept

The isoparametric formulation eases the utilization for distorted elements. Figure 5.4
represents in tridimensional space a linear hexahedron distorted and isoparametric. The
shape functions used in calculation of the displacement and the geometry of the object
are the same, therefore, the shape functions are designated by isoparametric [20]. The
de�nition of the element is made using the nodal coordinates in the cartesian referencial
Oxyz, while the elementary integration is carried out in natural system Oξηζ for the
normalized geometry of the object. For an isoparametric element with a number of
nodes equal to nnode, the coordinates for an any point inside the element is de�ned by

x =


x
y
z

 =
∑

Nix
e
i , (5.25)
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'

'

'

Figure 5.4: Global and natural references of linear hexahedron element, �rst is distorted and
second is isoparametric.

where Ni are the components of the matrix N represented by Equation 5.17. These
are calculated using the Equation 5.21. The Jacobian matrix is used for the mapping
between reference frames (x, y, z) and (ξ, η, ζ), being represented by

Je =


∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ

 . (5.26)

If the determinant of the Jacobian for all points in the element is positive, then this
relation is biunivocal.

The displacements and strains are calculated in the cartesian coordinates system.
Using the chain derivation rule,

Je
∂Ni

∂x
= Je



∂Ni

∂x

∂Ni

∂y

∂Ni

∂z


=



∂Ni

∂ξ

∂Ni

∂η

∂Ni

∂ζ


. (5.27)

Inverting the jacobian matrix Je (Equation 5.26) results in

∂Ni

∂x

∂Ni

∂y

∂Ni

∂z


= [Je]−1



∂Ni

∂ξ

∂Ni

∂η

∂Ni

∂ζ


. (5.28)
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The previous equation allows for the calculation of the partial derivatives on the cartesian
referencial from the isoparametric element. Note that for the elementary sti�ness matrix,
the di�erential volume at the isoparametric de�nition function is calculated as

dxdydz = |Je| dξdηdζ . (5.29)

Considering a bidimensional element represented in Figure 5.3, the concepts pre-
sented previously in tridimensional space are passed to bidimensional space. Figure 5.5
represents the quadrilater of element distorced and isoparametric (nnode = 4).

x

y

1
2

3

4

1 2
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Figure 5.5: Global and natural referencial of linear quadrilater element.

5.4 Finite elements formulation

In this section the calculation of the elementary sti�ness matrix and equilibrium system
of equation are presented. The concept of the FEM is based on the discretization a
continuum into elements. These elements are connected through the nodes and the
solutions of the problem are calculated in each node of the element. Considering the δae

vector with virtual nodal displacements and fe a vector with a nodal forces, applying the
principle of the virtual work,

(δae)Tfe =

∫
V e

δεTσdV , (5.30)

and the vector of the nodal forces is de�ned by

fe =

∫
V e

NTbdV +

∫
Ae

NTtdA +

∫
V e

BTDε0dV (5.31)

−
∫
V e

BTσ0dV +
∑

qi . (5.32)

In the second member the �rst term is the volumic forces vector and the second term
represents the surfaces forces. The third and fourth term represents the initial strain and
stress, respectively.

The second member of the Equation 5.30 can be written in the form∫
V e

δεTσdV =

∫
V e

(δae)TBTDBδaedV , (5.33)
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considering the strain �eld ε = Bae and the stress �eld σ = DBae. The nodal displace-
ments are independent of position on the element, the Equation 5.30 can be rewritten as
follows

(δae)Tfe = (δae)T
∫
V e

BTDBδaedV , (5.34)

or

fe =

∫
V e

BTDBδaedV . (5.35)

This relation corresponds to fe = Keae and the static equilibrium is established. The
sti�ness matrix is de�ned

Ke =

∫
V e

BTDBdV . (5.36)

Applying the isoparametric de�nition for the elements, the sti�ness matrix is constituted
by submatrices and results in

Ke
i,j =

∫
V e

BT
i (ξ, η, ζ)DBj(ξ, η, ζ)|Je|dξdηdζ , (5.37)

associating nodes i and j.

5.5 Numerical integration

Isoparametric �nite elements presented in Sections 5.2 and 5.3 the integrals have the
generic form ∫

V e

F(ξ, η, ζ)dξdηdζ , (5.38)

where, F represents the generic function to integrate in the volume of the element, V e.
This last equation can be calculated in numerical form using the equation∫

V e

F(ξ, η, ζ)dξdηdζ =

ni∑
i=1

nj∑
j=1

nk∑
k=1

wiwjwkF(ξi, ηj , ζk) , (5.39)

where wi, wj and wk are considered the weights of integration, F(ξi, ηj , ζk) is considered
the matrix F calculated in each point with the coordinates ξi, ηj and ζk. The variables
ni, nj and nk are the numbers of integration points in each natural direction ξ, η and ζ,
respectively. The weights wi, wj and wk, and the coordinates of the integration points
(or Gauss points) result from integration rules by Gauss-Legendre [19].



Chapter 6

Isogeometric Analysis formulation

The basis functions presented in Chapters 2 and 3 for the calculation of the curves,
surfaces and solids can be used in discretization and in analysis of a given problem. In
this section the formulation for Isogeometric Analysis (IGA) is presented. As in this
work, IGA uses the NURBS basis functions for discretization of the problem and for
analysis.

The nomenclature of the NURBS equations presented in Chapters 2 and 3 were
considered for implementation in CAD. In this chapter the nomenclature is considered
equal to the Finite Element Method.

6.1 Relevant spaces

In this section the spaces normally considered in IGA, and the relation between each one
of them, are presented. The spaces are designated by index, parameter, physical and
parent space.

6.1.1 Index space

The index space is formed by knot vectors. For example, considering a given open knot
vector for a tridimensional space (ξ, η, ζ)1

� Ξ1 = [0 0 0 1 2 3 3 3]2 for the ξ direction,

� Ξ2 = [0 0 1 1] for the η direction and

� Ξ3 = [0 0 1 1] for the ζ direction,

the index space is represented in Figure 6.1. In Figure 6.1 a region with white color
represents a repetition of the knots values in zero region. That region is considered as
zero parametric. The region with gray color represent the parametric area. That area is
considered a nonzero parametric area.

Analogous, for a bidimensional space (ξ, η), Figure 6.2 presents the bidimensional
index space. The knot vectors Ξ1 and Ξ2 previously presented are considered for repre-
sentation in bidimensional space. The gray color presented in Figure 6.2, represents the

1ξ, η, ζ represents the nomenclature for directions in tridimensional space in the IGA formulations
2Ξi with i = 1, 2, 3 represents the nomenclature for knot vector in IGA formulation.

39
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non-zero parametric area. In tridimensional space as well as the bidimensional space are
considered only elements with a non-zero parametric area and eliminating the necessity
of the index space.

(a)

(b) (c) (d)

Figure 6.1: (a)Tridimensional index space with non-zero parametric area. (b) projection for the
plane (ξ, ζ), (c) projection for the plane (η, ζ) (d) projection for the plane (ξ, η).

Figure 6.2: Bidimensional index space with non-zero parametric area.

6.1.2 Parametric space

In the parametric space only the non-zero intervals between the knot values are con-
sidered. Considering the knot vectors presented in the previous example, Figures 6.3
and 6.4 represents the parametric space for a tridimensional and bidimensional space,
respectively. The knot vectors can be normalized (see Section 2.3.3) and a parametric
space in tridimensional and bidimensional represents a cube (Figure 6.3) and a square
(Figure 6.3), respectively.

The parametric space can be reduced to a linear interval (dp = 1), square (dp = 2)
or cube (dp = 3). So, the parametric space is de�ned by Ω̂ ⊂ Rdp . If normalisation is

performed, it is de�ned by Ω̂ = [0, 1]dp .
Figures 6.3 and 6.4 for tridimensional and bidimensional spaces also reveal that re-

gions bounded by knot lines with non-zero parametric areas lead to a natural de�nition
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unnormalised

normalised

Figure 6.3: Tridimensional parametric space with non-zero knot intervals (knot vector unnor-
malized and normalised).

of element domains. Mathematically form is de�ned by

S = {ξ1, ξ2, . . . , ξns} ξi 6= ξi+1 for 1 6 i 6 ns − 1 , (6.1)

where ns is the number of unique knot values and ξi represents knot values in the knot
vector. Considering Si ⊂ Ξi with i = 1, 2, · · · dp, represents the unique knot values for
each parametric direction, and the elements can be de�ned by

Ω̂e = [ξi, ξi+1]⊗ [ηj , ηj+1]⊗ [ζp, ζp+1] 1 6 i 6 n1
s − 1 , (6.2)

1 6 j 6 n2
s − 1 ,

1 6 p 6 n3
s − 1 ,

where n1
s, n

2
s and n

3
s represent the number of the unique knots in the ξ, η and ζ parametric

directions. The number of the elements result in

e = p(n2
s − 1)(n1

s − 1) + j(n1
s − 1) + 1 . (6.3)

6.1.3 Physical space

Equations 3.16 and 3.22 for B-spline and NURBS surfaces transform the parametric space
in physical space Ω ⊂ Rdp . For a tridimensional space, the cordinate system x = (x, y, z)
is considered, while in bidimensional space x = (x, y). Figures 6.5 and 6.6 represent
the physical space for the knot vectors previously presented. NURBS mapping for the
parametric space with a grid of control points is presented. The non-interpolatory nature
of control points in the interior of domain is presented. Comparing with a conventional
Lagrangian meshes this is a notable di�erence.

In Figures 6.5 and 6.6 the black lines represent the solid and a surface, respectively
in tridimensional and bidimensional space. The control mesh is shown in red lines with
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unnormalised

normalised

Figure 6.4: Bidimensional parametric space with non-zero knot intervals (knot vector unnormal-
ized and normalised).

x

z

y

Figure 6.5: A volume B-Spline de�ned for knot vectors Ξ1,Ξ2 and Ξ3.

control points denoted by black circles. The element boundaries are presented by blue
lines.

6.1.4 Parent space

The previously presented space for B-Spline and NURBS solids or surfaces is transformed
into a parent space Ω̃ = [−1, 1]dp . This space is used for application of the numerical
integration routines de�ned in interval [−1, 1]. For the parent space the coordinates are

considered by ξ̃ =
(
ξ̃, η̃, ζ̃

)
. Figures 6.7 and 6.8 represent the transformation from parent

space to physical space.

6.2 Isogeometric formulation

Before presenting the IGA formulation it is important to compare the di�erences between
IGA and FEM. In FEM the lagrangian functions are used for discretization of the geom-
etry as well as for calculations of the displacements, stress and strain. The geometry is
always approximated and therefore there is an error associated to the discritization, that
can disappear with successive re�nements.
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x

y

Figure 6.6: A B-Spline surface de�ned for knot vectors Ξ1 and Ξ2.

IGA formulation also uses the isoparametric concept but the basis functions utilized
in calculation came from the CAD. As a consequence, the geometry is always modelated
in an exact way, and the same basis functions are used for the analysis. In Table 6.1 the
IGA and FEM formulations are comparison.

Table 6.1: IGA and FEM comparison.

Finite Element Method (FEM) Isogeometric Analysis (IGA)

i)The Lagrangian basis functions make i) At all stages of the analysis is
an approximation of the geometry used the exactly geometry
ii) The CAD geometry and analysis ii) The CAD and the analysis are
are done separately combined for using a only process

6.3 Isogeometric discretisation

The discretization of the B-Splines and NURBS, presented in Chapters 2 and 3, are
written in parametric coordinates. To use those equations in the analysis, a creation of
a mapping to operate in the parent space is important.

Considering that the basis functions for B-Splines and NURBS can be written in
principal coordinates, The geometry for a generic element e is given by

xe
(
ξ̃
)

=

nen∑
i=1

PeiR
e
i

(
ξ̃
)
, (6.4)

where i is a local basis functions index. The index i varies from 1 to nen = (p + 1)dp ,
where nen is the number of the non-zero basis functions for a generic element e and Be

i

and Re
i are the control points and NURBS basis functions for a index i, in a generic

element e, respectively. The connectivity of the elements is given by [21]

A = IEN(i, e) . (6.5)

This makes the translation between local and global indexes. The control points may be
related as PA ≡ PIEN(i,e) ≡ Pei . These relations can be applied at the basis functions,
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resulting in RA ≡ RIEN(i,e) ≡ Re
i . The displacement �eld comes in the form

ue =

nen∑
i=1

deiR
e
i

(
ξ̃
)
, (6.6)

where dei represents a control (nodal) variable. As in conventional discretization, these
coe�cients are not interpolatory at the nodes [22; 23; 24].

6.4 Mapping space

The use of NURBS basis functions introduces a concept of parametric space. To use
a coordinate in the parent space a additional mapping should be considered. Figures
6.7 and 6.8 present two possible mappings in IGA method for a tridimensional and
bidimensional space: a mapping φ̃e : Ω̃→ Ω̂e and S : Ω̂e → Ωe. The composition S ◦ φ̃e
represents the mapping xe : Ω̃→ Ωe.

parameter space

parent space

physical space

x

z
y

Figure 6.7: Diagram for interpretation of the mappings in tridimensional space from parent space
to physical space.
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parameter space

y
physical space

parent space

x

Figure 6.8: Diagram for interpretation of the mappings in bidimensional space from parent space
to physical space.

Considering dp = 3, an element in tridimensional space is de�ned by Ω̂e = [ξi, ξi+1]⊗
[ηj , ηj+1] ⊗ [ζp, ζp+1] and is mapped from the parent space to the parametric one with
the function

φ̃e =



1
2 [(ξi+1 − ξi) ξ̃ + (ξi+1 + ξi)]

1
2 [(ηj+1 − ηj) η̃ + (ηj+1 + ηj)]

1
2 [(ζp+1 − ζp) ζ̃ + (ζp+1 + ζp)]

 . (6.7)

The Jacobian determinant is given by

|Jξ̃| =
−1

8
(ξi+1 − ξi)(ηj+1 − ηj)(ζp+1 − ζp) . (6.8)
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In tridimensional space, the Jacobian of the transformation is

Jξ =



∂x

∂ξ

∂x

∂η

∂x

∂ζ

∂y

∂ξ

∂y

∂η

∂y

∂ζ

∂z

∂ξ

∂z

∂η

∂z

∂ζ


. (6.9)

The components of the Jacobian matrix are calculated as

∂x

∂ξ
=

nen∑
i=1

Be
i

∂Rei (ξ)

∂ξ
, (6.10)

with, x = (x, y, z) and ξ = (ξ, η, ζ). The Jacobian determinant is denoted by |Jξ|. Other
mapping xe : Ω̃→ Ωe can be written as

xe(ξ̃) =

(
N∑
A=1

BARA

(
φ̃e(ξ̃)

))∣∣∣∣∣
e

(6.11)

=

(
nen∑
i=1

BiRi

(
φ̃e(ξ̃)

))∣∣∣∣∣
e

(6.12)

=

nen∑
i=1

Be
iR

e
i

(
ξ̃
)
, (6.13)

where N is the number of basis functions and (·)|e denotes that the expression (·) is
related to a generic element e. The Jacobian determinant for this second mapping comes
from the combination of Equation 6.21 and 6.22 , being given by

|J| = |Jξ̃||Jξ| . (6.14)

It is possible to integrate a function f : Ω → R in the physical domain using the �nal
mapping and Jacobian determinant as

∫
Ω
f(x)dΩ =

nel∑
e=1

∫
Ωe

f(x)dΩ (6.15)

=

nel∑
e=1

∫
Ω̂e

f
(
x(ξ)

)
|Jξ|dΩ̂ (6.16)

=

nel∑
e=1

∫
Ω̃e

f
(
x(φ̃e(ξ̃))

)
|Jξ||Jξ̃|dΩ̃ (6.17)

=

nel∑
e=1

∫
Ω̃e

f(ξ̃)|J |dΩ̃ . (6.18)
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Partial derivatives of the basis functions can be calculated by

[
∂Rei
∂x

]
=

[
∂Rei
∂ξ

]


∂x

∂ξ

∂x

∂η

∂x

∂ζ

∂y

∂ξ

∂y

∂η

∂y

∂ζ

∂z

∂ξ

∂z

∂η

∂z

∂ζ


=

[
∂Rei
∂ξ

]
J−1
ξ . (6.19)

Considering dp = 2, an element in a bidimensional space it is de�ned by Ω̂e = [ξi, ξi+1]⊗
[ηj , ηj+1] and mapped from the parent space to the parametric space by

φ̃e =


1
2 [(ξi+1 − ξi) ξ̃ + (ξi+1 + ξi)]

1
2 [(ηj+1 − ηj) η̃ + (ηj+1 + ηj)

 . (6.20)

The Jacobian determinant for a bidimensional space result in

|Jξ̃| =
1

4
(ξi+1 − ξi)(ηj+1 − ηj) . (6.21)

Similarly, the mapping from parametric space to physical space is given by Equa-
tion 3.16 for a surface element (bidimensional space). In this case, the Jacobian of the
transformation is

Jξ =


∂x

∂ξ

∂x

∂η

∂y

∂ξ

∂y

∂η

 . (6.22)

The components of the Jacobian matrix are calculated using Equation 6.10, with x =
(x, y) and ξ = (ξ, η).

Partial derivatives of the basis functions in bidimensional space can be calculated by

[
∂Rei
∂x

]
=

[
∂Rei
∂ξ

]
∂x

∂ξ

∂x

∂η

∂y

∂ξ

∂y

∂η

 =

[
∂Rei
∂ξ

]
J−1
ξ . (6.23)
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Chapter 7

Code development

In this chapter a code, entirely developed within this dissertation, and suitable for the
analysis of curves, surfaces and solids (Bézier, B-spline and NURBS) with the IGA
framework is presented. For tridimensional and bidimensional spaces, the implementation
of the Finite Element Method (FEM) and Isogeometric Analysis (IGA) are discussing.
The FEM code was also developed from scratch within the present work. Therefore the
di�erences between IGA and FEM approaches can be compared. The necessary steps
for the implementation are presented in algorithm �ow charts, with the programming
language used being MATLAB®.

7.1 Curves

In this section the implementation of the Bézier, B-Spline and NURBS curves is pre-
sented. The mathematical formulations of the curves were shown in Chapter 2 . The
sequence used for the discussion on the development of the code is the same as for the
mathematical formulations presented before.

7.1.1 Bézier curves

In this section the programs and subprograms necessary for calculation and drawing
the curves and control polygons are presented. Table 7.1 shows the algorithm of the
subprogram to input the coordinates of the control points. Considering the de�nition
in Section 2.2, the degree of the curve is equal n = Np − 1 (Np number of the control
points). Table 7.2 represents the algorithm for drawing the control polygon and the
control points.

This subprogram has an option for the control polygon and the control points to be
plotted or not. This subprogram needs the subprogram represented in Table 7.1 because
the input necessary in the function is the matrix B.

The algorithm for the calculation of the Bézier curves is represented in Table 7.3. In
this algorithm, the subprograms presented in the Tables 7.1 and 7.2 are also considered.
In program Beziercurve, some necessary information for computing of the Bézier curve
are initially presented.

The algorithm in Table 7.3 is considered for calculation of Bézier curves. As an
example, considering the number of control points equal to Np = 5, the degree of the
curve is n = 5− 1 = 4 and the coordinates of the control points in a cartesian referencial

49
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Table 7.1: Algorithm for input control points.

1. Enable function [B, n] = controlpoints(Np)

2. Compute n = Np − 1

(a) De�ne matrix B of the control points, B = zeros(Np, 2)

(b) Loop bi = 1 to Np

i) De�ne B(bi, 1) = Bx

ii) De�ne B(bi, 2) = By

(c) End loop bi

3. Close function controlpoints

Table 7.2: Algorithm for drawing the control polygon and control points.

1. Enable function controlpolygon(B, n)

2. PC - Drawing the control polygon - 'Y' to 'Yes' or 'N' to 'No'

3. if 'Yes'

(a) hold on - draw in the same �gure of the curve

(b) De�ne x = B(:, 1)

(c) De�ne y = B(:, 2)

(d) plot(x,y,'r') - draw the control polygon

(e) Loop bi = 1 to n+ 1

i. hold on - draw in the same �gure of the curve

ii. plot(B(bi, 1),B(bi, 2),'og') - draw the control points

(f) End loop bi

(g) break

4. elseif 'No'

(a) break

5. else

(a) disp('Error in answer')

(b) clear PC

6. Close function controlpolygon
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Table 7.3: Algorithm for calculation of Bézier curves.

1. Enable function Beziercurve

2. De�ne the number of the control points - Np

3. Enable function [B, n] = controlpoints(Np) (Table 7.1)

4. Enable function Beziercurve(n,B)

(a) Compute of the Bernstein Basis functions (Equation 2.12)

(b) De�ne the increments number

(c) Compute of the Bézier curve (Equation 2.11)

5. Enable function controlpolygon(B,n) (Table 7.2)

6. Close function Beziercurve

(x, y) are given by B0 = [0, 0], B1 = [2, 6], B2 = [4, 3], B3 = [6, 6] and B4 = [8, 6].
Figure 7.1 shows the corresponding Bézier curve along with the control points and the
control polygon.

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

x

y

Bezier curve
Control polygon
Control points

Figure 7.1: Example of a Bézier curve created with the algorithm Beziercurve (Table 7.3).

7.1.2 B-Spline curves

In Section 2.3, the mathematical formulations for the calculation of the B-Spline curves
were discussed. In this section the necessary algorithms developed for representation
of B-Spline curve are presented, as well as the subprograms used for calculation of the
B-Spline curves. The subprogram presented in Table 7.1 is responsible for the inputting
the coordinates of the control points in a cartesian system, while Table 7.4 shows the
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algorithm for calculation of the knot vector. This subprogram is based on Equation 2.33,
and the knot vector is in open uniform. The essential input data for the de�nition of
the knot vector are the k order of the control polygon and the degree of the B-Spline
curve (n). Similarly to the Bézier curves, the degree of the B-Spline curve is equal to the
number of the control points minus one, n = Np − 1.

Table 7.4: Algorithm of the subprogram for knot vector.

1. Enable function [knotvector] = knotvector(k, n)

2. Loop the index i = 1 to n+ k + 1

(a) if 0 6 i 6 k

i) knotvector(1, i) = 0

(b) elseif k + 1 6 i 6 n+ 1

i) knotvector(1, i) = i− k
(c) elseif n− k + 2 6 i 6 n+ k + 1

i) knotvector(1, i) = n− k + 2

(d) end if

3. End loop i

4. Close function knotvector

Table 7.5 represents the algorithm for the calculation of the B-Spline curves. In this
algorithm the subprograms presented in the Tables 7.1 and 7.4 are considered. The
algorithm in Table 7.5 is used for the calculation of the B-Spline curve. As an example,
a k = 3 order for the control polygon and Np = 5 control points are considered. A
subprogram presented in Table 7.1 to de�ne the coordinates of the control points in
cartesian system is used. The coordinates considered for this example are B1 = [0, 2],
B2 = [2, 5], B3 = [3, 4], B4 = [3, 1] and B5 = [5, 0]. Applying the subprogram to an open
uniform knot vector (Table 7.4), with the k order previously presented and the degree of
the curve equal to n = Np − 1 = 4, the resultant knot vector is X = [0 0 0 1 2 3 3 3].
The basis functions and the B-Spline curve are calculated using the equations mentioned
in Section 2.3. Figures 7.2 and 7.3 are the result after applications of the algorithm of
Table 7.5.

In Section 2.3.2 the properties of the B-Spline curves are discussed. Considering the
control points previously presented and changing the coordinates of the control point
B4 to B4 = [2, 1] and B4 = [0.5, 1]. Figure 7.4 now shows the change of the curve and
demonstrates the property that the curves follow the control polygon.

7.1.3 NURBS curves

In this section the algorithms to calculate and represent of the NURBS curves are pre-
sented. This algorithms follows the mathematical formulations which were discussed in
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Table 7.5: Algorithm for calculation of B-Spline curves.

1. Enable function bspline

(a) De�ne the order of the control polygon, k

(b) De�ne the number of the control points, Np

(c) De�ne the cordinates of the control points using subprogram in Table 7.1

(d) Compute the knot vector, using the subprogram in Table 7.4

(e) Compute of the basis functions (Equation 2.31)

(f) Compute of the B-Spline curve (Equation 2.29)

(g) Plot the basis functions

(h) Plot the curve and control polygon

2. Close function bspline

1 2
0

0.2

0.4

0.6

0.8

1

0 t

N

N3,3

N2,3

N1,3

N4,3

N5,3

3

Figure 7.2: Example of the basis function for n = 4 and k = 3, with knot vector X =
[0 0 0 1 2 3 3 3].
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Figure 7.3: Example of the B-Spline curve created with the algorithm bspline (Table 7.5).
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Figure 7.4: Example the local control of B-Spline curve.
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Table 7.6: Algorithm of the subprogram de�ning matrix h.

1. Enable function [h] = weights_h(Np)

2. De�ne matrix h = zeros(1, Np)

3. Loop the index i = 1 to Np

(a) De�ne h(1, i) = hi;

4. End loop i

5. Close function weights_h

Section 2.4. The coordinates of the control points in cartesian system and the calculation
of the knot vector are equal to presented in B-Spline curves and the subprograms show
in Tables 7.1 and 7.4 were considered.

The algorithm to de�ne the weights for the NURBS curves is presented in Table
7.6. The input variable for this subprogram is the number of the control points used in
calculation of the curve.

Table 7.7 represents the algorithm for calculation of the NURBS curves. For example,
considering the order of the control polygon equal to k = 3 with Np = 5 control points,
the degree of the NURBS curve is equal to n = Np− 1 = 4. In this case, the knot vector
is X = [0 0 0 1 2 3 3 3] (Table 7.4). The coordinates for the control points are B1 = [0, 0],
B2 = [1, 2], B3 = [2.5, 0], B4 = [4, 2] and B5 = [5, 0]. Figure 7.5 represents the NURBS
curve, with matrix h with values of 1 for all index i (h = [1 1 1 1 1]). Afterwards, the
algorithm presented in Table 7.7 can be applied.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0
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x

y

NURBS curve
Control polygon
Control points

Figure 7.5: Example of the NURBS curve created in program NURBS (Table 7.7).

The e�ects of the matrix h for NURBS curves are shown in Figure 7.6. The values of
the matrix h are equal to hi = 1, except i = 3 and the values of h3 varies within of the
range from 0 to 5, h3 = [0, 1/4, 1, 5] (see Figure 7.6). When h3 = 0, the vertex B3 did
not in�uence the curve, with the vertices B2 and B3 being connected by a straight line.
In the Figure 7.6 with a blue line this e�ect is represented. Comparing the results R2,3,
R3,3 and R4,3 in Figure 7.7 and 7.8 , it can be concluded that R2,3 and R4,3 decreases
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Table 7.7: Algorithm for calculation of NURBS curves.

1. Enable function NURBS

(a) De�ne the order of the control polygon, k

(b) De�ne the number of the control points, Np

(c) Compute the degree of the curve, n = Np− 1

(d) De�ne the cordinates of the control points using subprogram in table 7.1

(e) Compute the knot vector, using the subprogram in table 7.4

(f) De�ne the matrix h, using the subprogram in table 7.6

(g) Compute of the basis functions (Equation 2.31)

(h) Compute the ratioal B-Spline basis functions (Equation 2.42)

(i) De�ne the increments number

(j) Compute of the NURBS curve (Equation 2.40)

(k) Drawing the basis functions

(l) Drawing the curve and control polygon

2. Close function NURBS

and R3,3 increases. It is worth noting that when h3 = 5 the curve is closer to vertex B3.

It was seen before that Bézier curves can be assumed as a special case of NURBS
curves. In order to demonstrate this special case, the coordinates of the control points
presented in Section 7.1.1 are now considered. Considering that all values of the matrix
h equal to 1 (h = [1 1 1 1 1]) and the k order of the control polygon equal to number of
the control points, the resultant is a Bézier curve (see Figure 7.9). In this case, the knot
vector is given by X = [0 0 0 0 0 1 1 1 1 1].

Similarly as the Bézier curve, the B-Spline curve can be calculated using the NURBS
curves. In this case, the matrix h is considered with all values equal to 1. For demon-
stration of the special case, the coordinates of the control points and the k order of the
control polygon presented in Section 7.1.2 are considered. The knot vector and the degree
of the curve are maintained, and Figure 7.10 represents this special case.

7.2 Surfaces

In this section the implementation of the Bézier, B-Spline and NURBS surfaces is pre-
sented. The mathematical formulations of the surfaces were shown in Chapter 3 , being
now used for the developed code. The implementation sequence of the code is identical
to the mathematical formulations presented previously.
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Figure 7.6: Example of the e�ect of matrix h in the NURBS curves (h = [1, 1, h3, 1, 1], with
h3 = [0, 1/4, 1, 5]).
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Figure 7.7: Example of rational B-Spline basis function when h3 = 0.
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Figure 7.8: Example of rational B-Spline basis function when h3 = 5.
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Figure 7.9: Example of special case, NURBS curve is transformed into Bézier curve.
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Figure 7.10: Example of special case, NURBS curve is transformed into B-Spline curve.

7.2.1 Bézier surfaces

In Section 3.2 the mathematical formulation for Bézier surfaces is discussed. Now, in the
present section the programs and subprograms for calculating, and plotting the surfaces
and corresponding control polygon are presented. Table 7.8 represents the algorithm of
the subprogram that de�ne the coordinates of the control points in a cartesian system
(x, y, z). The essential variables for this subprogram are the number of the control points
at u (Nu) and w (Nw) parametric directions. The output variables are the matrix with
the coordinates of the control points (matrix B) and the surface degree in u and w
parametric direction, represented by variables n and m, respectively.

Table 7.8: Algorithm of the subprogram for input a control points in the surfaces.

1. Enable function [B, n,m] = surfacesCP(Nu, Nw)

2. Compute n = Nu − 1 and m = Nw − 1

(a) De�ne matrix of the control points, B = zeros(Nu, Nw × 3)

(b) Loop bu = 1 to Nu

i) Loop bw = 1 : 3 : 3×Nw

A. De�ne B(bu, bw) = Bx

B. De�ne B(bu, bw) = By

C. De�ne B(bu, bw) = Bz

ii) End loop bw

(c) End loop bu

3. Close function surfacesCP
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Table 7.9 represents the algorithm for calculation of the Bézier surface, and Fig-
ure 7.11 shows an example of such a surface. For this case, Nu = 4 and Nw = 4 represent
the number of control points in u and w parametric direction, respectively, and the sub-
program presented in Table 7.8 is used to de�ne the coordinates of the control points.
Initially the degree of the curve is computed, and in this case results in n = 3 and m = 3
for the parametric direction u and w, respectively. Figure 3.3 schematically de�nes of
control points. In a matrix form, the control points are according to Equation 3.15, and
results in

B =


−15 0 15 −15 5 5 −15 5 −5 −15 0 −15
−5 5 15 −5 5 5 −5 5 −5 −5 5 −15
5 5 15 5 5 5 5 5 −5 5 5 −15
15 0 15 15 5 5 15 5 −5 15 0 −15

 .

For each control point the coordinates in the cartesian system is de�ned by Bn,m =
(x, y, z).

Table 7.9: Algorithm for calculation of Bézier surface.

1. De�ne the number of the control points Nu and Nw for parametric direction u
and w, respectively

2. Enable function surfbezier

(a) De�ne the matrix B with the subprogram in Table 7.8

(b) Compute of the Bernstein Basis functions for two parametric directions
(Equations 3.8 and 3.9)

(c) De�ne the increments number

(d) Compute of the Bézier surface (Equation 3.7)

(e) Plot the surface and control polygon

3. Close function surfbezier

7.2.2 B-Spline surfaces

In this section the principal algorithms for the calculation and representation of the B-
Spline surfaces are presented. The mathematical information for the B-Spline surfaces
were reported in Section 3.3 and these are considered as a basis in implementation code.
Table 7.4, represents the algorithm to de�ning the knot vector (open uniform) at the
parametric direction u and w. The algorithm to de�ne the coordinates of the control
points in cartesian system is represented by Table 7.8, with the schematic of the coordi-
nates and the de�nition of the control points in matrix form similarly to Bézier surface.
Table 7.10 de�nes the algorithm for calculation and plotted B-Spline surface, as well as
the corresponding control polygon.

An example of a B-Spline surface is shown in Figure 7.12. For this example, the order
of the control polygon in the parametric directions u and w are considered k = 3 and
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Figure 7.11: Example of the Bézier surface created in program surfbezier.

Table 7.10: Algorithm for calculation of B-Spline surfaces.

1. De�ne the order of the control polygon, k and l for parametric directions u and
w, respectively

2. De�ne the number of the control points, Nu and Nw for parametric directions u
and w, respectively

3. Compute the knot vectors for parametric direction with subprogram in Table 7.4

4. Enable function surfbspline

(a) De�ne the coordinates of the control points using the subprogram presented
in Table 7.8

(b) Compute of the basis functions for u and w parametric directions (Equations
3.18 and 3.20)

(c) De�ne the increments number

(d) Compute of the B-Spline surface (Equation 3.16)

(e) Plot the surface and control polygon

5. Close function surfbspline
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l = 3, respectively, and the number of the control points used Nu = Nw = 4. The knot
vectors then results in X = Y = [0 0 0 1 2 3 3 3] and the coordinates of the control
points are

B =


−15 0 15 −5 5 15 5 5 15 15 0 15
−15 5 5 −5 10 5 5 10 5 15 5 5
−15 5 −5 −5 10 −5 5 10 −5 15 5 −5
−15 0 −15 −5 5 −15 5 5 −15 15 0 −15

 .

Note that the coordinates in cartesian system for each control point is de�ned by Bn,m =
(x, y, z).

Figure 7.12: Example of the B-Spline surface created in program surfbspline.

7.2.3 NURBS surfaces

In this section the programs and subprograms for calculation and drawing of the NURBS
surfaces and control polygon are presented. For implementation of the code, the algo-
rithms developed follows the mathematical formulations that were mentioned in Section
3.4. Tables 7.4 and 7.8 are considered in NURBS surfaces, and represent the algorithm
for de�ne the knot vector and algorithm for de�ne the coordinates of the control points
in cartesian system, respectively.

The algorithm for calculation and drawing of the NURBS surface is represented in
Table 7.11. The order of the control polygon, the coordinates of the control points and
the knot vectors are considered equal to used at the B-Spline surface. The matrix h has
the dimension hi,j . Index i varies from i = 1 to i = Nu and index j varies from j = 1
to Nw, with Nu and Nw the number of control points in the parametric directions u and
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Table 7.11: Algorithm for calculation of NURBS surfaces.

1. De�ne the order of the control polygon, k and l for parametric directions u
and w, respectively

2. De�ne the number of the control points, bfu and bfw for parametric directions
u and w, respectively

3. Compute the knot vectors for parametric direction with subprogram in Table
7.4

4. De�ne the matrix h with the weights for the surface

5. Enable function surfnurbs

(a) De�ne the coordinates of the control points using the subprogram pre-
sented in Table 7.8

(b) Compute of the basis functions for u and w parametric directions (Equa-
tions 3.18 and 3.20)

(c) Compute of the rational basis functions Si,j(u,w) (Equation3.23)

(d) De�ne the increments number

(e) Compute of the NURBS surface (Equation 3.22)

(f) Plot the surface and control polygon

6. Close function surfnurbs

w, respectively. The matrix h, for the example presented in Figure 7.13 is de�ned as

h =


2 2 2 2
2 1 1 2
2 1 1 2
2 2 2 2

 (7.1)

and the example presented in Figure as 7.14

h =


5 5 5 5
5 1 2 5
5 2 1 5
5 5 5 5

 . (7.2)

The matrices h presented before are considered and the in�uence of changing the weights
matrix resulted in an approximation of the surface to the control polygon. Considering
the particular case when matrix h has all its values equal to 1, the resultant NURBS
surface is then equal to a B-Spline surface.
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Figure 7.13: Example of the NURBS surface created in program surfnurbs, with matrix h
represented by the matrix 7.1.

Figure 7.14: Example of the NURBS surface created in program surfnurbs, with matrix h
represented by the matrix 7.2.
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7.3 FEM and IGA implementation

In this section, the structure of the implemented codes based on FEM and IGA method-
ologies is presented. It is worth noting that both approaches were implemented from
scratch within the present work, with the developed codes for FEM and IGA being be
subdivided in three main parts: pre-processing, processing and post-processing.

The structure of a IGA code can be similar to a classic FEM program. The main
di�erence between the two implementations are the basis functions used in analysis. In
this section the di�erences and the similarities of these two implementation methods are
discussed in detail.

7.3.1 Pre-processing

For the developed FEM program the pre-processing tasks are performed with the GiD®1

pre-post processing software. In addition to generate meshes with di�erent type of the
elements (structured mesh or not) and several protocols to import external �les, provides
the user ample possibilities con�guration. In addition to creating the geometry, GID also
allows the imposition of boundary conditions, the de�nition of material properties and
any other parameters for the analysis.

The programs start to read the data �le with the information of the mesh, the co-
ordinates of nodes and the connectivity of the elements, and the user introduces the
properties of the material, as example the Young modulus and the Poisson coe�cient.

The structure of the �le is:

� the �rst line has the information of mesh dimension, element type and number of
the nodes;

� the second line has a string Coordinates;

� the third line the coordinates of the nodes are presented and should be written in the
form: �rst column the number of the control point corresponding the coordinates
and the second, third and fourth column the coordinates in x, y and z;

� the loop of the algorithm stops when the string End Coordinates appears;

� afterwards leaves a empty line and in next line the string Elements appears;

� the loop for save the information of the connectivity is started after the string
Elements and end when the string End Elements appears.

The structure of the �le is the same when applied an bidimensional (2D) or an tridimen-
sional (3D) case.

Other subroutines for generating meshes were developed by the author. In these
cases the user introduces all the values for generating a mesh. For example, the x and y
dimensions of the object in a bidimensinal space and x, y and z in a three-dimensional
space.

1The GiD® is a pré- and post-processor developed by CIMNE - International Center for Numerical

Methods in Engineering (http://www.cimne.upc.es/).
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7.3.2 Processing

The architecture of a classical FEM and an option of architecture for the IGA code is pre-
sented in this section. Flowchart 7.15 represents the algorithm for implementation of the
FEM and IGA program. After de�ning the mesh in pre-processing stages, the dimension
of the global sti�ness matrix, the displacements and forces vectors are initialized to zero.
The algorithm is initialized with a loop for all elements of the mesh. In this processing
the dimension of the elementary sti�ness matrix is de�ned for each element with all val-
ues equal to zero and then the code enters a loop through the quadrature points. At each
quadrature point, the shape functions (FEM) or basis functions (IGA) and derivates are
evaluated and the contributions to elementary sti�ness matrix are added. Afterwards
the connectivity information for each element is used in assemblage the global sti�ness
matrix and the global sti�ness matrix resulted this process for all elements.

In Figure 7.15 the modi�cations for converting a the FEM code into an IGA code are
represented in gray expressions. In IGA analysis the information of the mesh is given by
the NURBS basis functions, used for representation of the geometry. The control points
for generating the geometry are used as the nodes in the mesh. The knot intervals of
the knot vector de�ne the number of the elements of the mesh. The connectivity of the
elements is calculated through the information of the knot vectors, degree of the curve
and polynomial orders for the control polygon, by means of the Equation 6.5.

Start

Loop through quadrature
 points

Stop

Loop through elements

Read input
Data

Build connectivities and allocate
global arrays

K=0 and F=0K=0 and F=0

Solve
kd=F

e e
K=0 and F=0

Evaluate basis functions
and derivatives

e K  and F

Assemble
 e e
K ->K and F ->F

Write output
Data

Add contributions to
e 

Figure 7.15: Flowchart of a classical �nite elements code. Such a code can be converted to a
single-patch isogeometric analysis code by replacing the routines shown in gray.

7.3.3 Post-processing

In the post-processing phase the displacement of all the nodes of the mesh are calculated.
The user introduces the numbers of the nodes where the boundary condition and the
force are applied. These are multiplied by the degree of freedom and the result is the
position vector. However, the results of the displacements and the forces are obtained
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after solving the equation system Ku = f. The sti�ness matrix is represented by K, the
displacement and the force in the nodes for each parametric direction is represented by
u and f, respectively.
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Chapter 8

Results and applications

In this chapter, the results obtained with the developed Finite Element Method (FEM)
and Isogeometric Analysis (IGA) programs, are presented. When available, reference
results to test the accuracy of the FEM and IGA implementations are theoretical results
from the literature and numerical results from Abaqus software. Results for problems in
bidimensional (2-D) and tridimensional (3-D) spaces are analysed. In IGA method, the
h and p re�nements are also studied.

In bidimensional problems the part in Abaqus is created as a modeling space 2-D
planar with a deformable type and the base feature is used shell. The geometric order
for each element is considered linear and the element library is standard with plane stress
family. The integration method used in analysis is a complete integration. At the mesh,
the type of the element is CPS4 � a 4 node bilinear plane stress quadrilateral.

On the other hand, the part in tridimensional problems is created as a modeling
space 3-D with deformable type and solid extrusion. The elements used in the mesh are
considered with a linear geometric order. The type of the element used in analysis at
the Abaqus is C3D8 � an 8 nodes linear hexaedral. Therefore, each element has 8 nodes
and each node has 3 degrees of freedom. The integration method used in analysis the is
a complete integration.

8.1 2D bending of a beam

The problem bending of a beam is represented in Figure 8.1 and plane stress was con-
sidered. The beam in an extremity has a clamped and in the opposite extremity has a
distributed loading. The dimension of the beam is 100×10×1 mm3 and the load applied
to the beam is Fy = 500 N. The aluminium is considered material at the beam, with a
elasticity modulus and Poisson coe�cient, E = 70 GPa and ν = 0.32, respectively. The
maximum de�ection can be calculated by [25]

wy =
FyL

3

3EIz
(1 + Cv) , (8.1)

where wy represents maximum de�ection of the bending beam in Oy direction, L repre-
sents the lenght of the beam and Iz is the moment of inertia around Oz, and Cv represents
the contribution of the cross shear in relation of the bending moment, given by

Cv =
3

10

E

G

(
h

L

)2

, (8.2)
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Figure 8.1: De�nition of bending of a beam in bidimensional space with clamped boundary
conditions.

with G represents the shear modulus of the material (Equation 4.17) and h represents
the height of beam. Substituting the numerical values in Equation 8.1 the analytical
solution to the de�ection at the free end of the beam is wy = 2.857× 10−2 [mm].

The convergence of the results relative to the meshes is studied and 4 meshes are
considered in this analysis. These meshes have 1, 10, 50 and 100 elements (see Figure 8.2).
For the problem in analysis, the re�nement considered is according to Ox direction and
in Oy direction the number of the elements is always constant. The results obtained
in Abaqus, and those coming from the implemented FEM and IGA methodologies are
presented in Figure 8.3 per number of the elements in the mesh. The dash-dot line
presented in Figures represents the theoretical reference value. The maximum values of
the de�ection at Oy direction and the relative error are presented in Tables 8.1 and 8.2,
in millimeters [mm] and in percentage [%], respectively. In these tables the reference
result is associated to the theoretical value before presented. In IGA program the degree
of the control polygon used for study the convergence of results by maximum de�ection
are n = 1, n = 2, n = 3 and n = 4.
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Figure 8.2: Type of mesh used for discretization the 2-D bending of a beam: (a) 1 element, (b)
10 elements, (c) 50 elements and (d) 100 elements.

Table 8.1: De�ection results for 2-D bending of a beam [mm].

IGA IGA IGA IGA

Elements Ref. Abaqus FEM n = 1 n = 2 n = 3 n = 4

1 2.857 × 10−2 7.381 × 10−4 7.381 × 10−4 7.381 × 10−4 2.212 × 10−2 2.821 × 10−2 2.841 × 10−2

10 2.857 × 10−2 1.927 × 10−2 1.927 × 10−2 1.927 × 10−2 2.851 × 10−2 2.821 × 10−2 2.856 × 10−2

50 2.857 × 10−2 2.548 × 10−2 2.548 × 10−2 2.548 × 10−2 2.853 × 10−2 2.854 × 10−2 2.856 × 10−2

100 2.857 × 10−2 2.574 × 10−2 2.574 × 10−2 2.574 × 10−2 2.854 × 10−2 2.855 × 10−2 2.8572 × 10−2
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Figure 8.3: Evolution of the numerical solution for 2-D bending of a beam at the Abaqus, FEM
and IGA developed programs, per number of the elements in mesh.

Table 8.2: Relative error in percentage for 2-D bending of a beam [%].

IGA IGA IGA IGA
Elements Abaqus FEM n = 1 n = 2 n = 3 n = 4

1 97.416 97.416 97.416 22.546 1.230 0.552
10 32.519 32.519 32.519 0.209 1.230 0.027
50 10.789 10.789 10.789 0.106 0.188 0.017
100 9.882 9.882 9.882 0.071 0.061 0.010

The dashed line presented in Figure 8.3 represents the convergence obtained with
Abaqus. For linear elements used in the meshes, the results converge to the analytical so-
lution with increasing re�nement and the relative error converges to 9.882% (Table 8.2) .
Other re�nement are tested increasing the number of the elements along the Oy direc-
tion and the relative error is reduced as expected. The number of elements along the
Oy direction varies from 1 to 25, while along the Ox direction the number of elements
is maintained. The total elements number at the mesh passes the 100 to 2500 and the
results obtained for the maximum de�ection at Oy direction is 2.863× 10−2 [mm] an the
percentage of the relative error is 0, 263%. Note that the linear elements on the Abaqus
converge to analytical solution, but the re�nement of the mesh must be in all directions.

The implemented FEM program converges to the theoretical solution and the results
obtained are equal to results in Abaqus. The asterisk line presented in Figure 8.3 rep-
resent the convergence curve of the results for the 4 meshes. Analysing the convergence
results the dashed line and the asterisk line are overlapped. The numerical results and
the relative error, represented in Tables 8.1 and 8.2 , for Abaqus and FEM are equal.
Considering the same mesh used in Abaqus with 25 elements in Oy direction and 100
elements in Ox direction the maximum de�ection at Oy and the percentage of relative
error are 2.863 × 10−2 [mm] and 0, 263%, respectively. Note that, Abaqus and the de-
veloped FEM program converge to the theoretical value, but on the mesh the re�nement
should be to all directions.

In IGA program the same meshes already presented in Figure 8.2 are used in the
analysis. In Figure 8.3 the results for each degree are represented by symbols (a circle, a



74 8.Results and applications

square, an upward-pointing triangle and a diamond line, respectively). The h-re�nement
(knot insertion) and p-re�nement (degree elevation) are the re�nement methods used in
analysis. In Tables 8.1 and 8.2 h-re�nement is associated to the columns for each degree
of the control polygon and the p-re�nement is related to the rows in the tables.

The �rst analysis for validation of the IGA implemented program is considered the
linear degree (n = 1) of the polygon and applying the h-re�nement for generate the
meshes. Analysing the results for the linear degree of the polygon presented in Figure
8.3, in the IGA implemented program the results are equal to Abaqus software and FEM
implemented program. In the Tables 8.1 and 8.2 this information can be con�rmed. The
worth noting the IGA implemented program is considered valid. Thereafter, the degree
of the polygon varies from n = 2 to n = 4 and the convergence of the maximum de�ection
is studied. Analysing the convergence in Figure 8.3, a quick convergence of the results
for the reference value can be seen. However, in case 1 element on the mesh with degree
of the polygon equal to n = 2 the relative error is equal to 22, 546% (see Table 8.2). For
all other meshes and degrees of the polygon, the relative error is lower than 1.5%. In
summary, the convergence obtained for maximum de�ection in a bending of a beam with
h-re�nement in IGA program is a quick convergence for theoretical value compared to
Abaqus and FEM program. Even for lower re�nement of the mesh the results in IGA
has better accuracy than Abaqus and FEM. Displacement isovalue at Oy direction for
2-D bending of a beam is represented in Figure 8.4 .

Considering �xed the number of the elements on mesh and the degree of the polygon
ranging from n = 1 to n = 4, the p-re�nement is applied and 10 elements are considered.
In the Tables 8.1 and 8.2 the results can be seen in second line. For this type of the re-
�nement the relative error is lower than 0.6% for degree of the polygon n > 1. Note that,
the convergence of the maximum de�ection for the p-re�nement converges to theoretical
value quickly. However, the calculation of the maximum de�ection in this benchmark
for p-re�nement is heavy computationally compared to h-re�nement. This it is because
the number of the control points for p-re�nement are 4 times more when compared to
h-re�nement.

8.2 2D curved beam

A curved beam in bidimensional space is the problem in analysis, in Figure 8.5 a curved
beam is schematized and a stress plane state in the analysis was considered. The di-
mensions of the curved beam are a inner and outer radius equal to Rint = 4.12 and
Rext = 4.32, respectively and makes a arc = 90◦. The material properties applied has
a elasticity modulus equal to E = 1.0 × 107 and a Poisson coe�cient equal to ν = 0.25
[26] .

The reference value for the maximum displacement according to the radial direction
is studied in Abaqus and 9 meshes for analysis the convergence are considered. The
convergence value is used as a reference for analysis in FEM and IGA implemented
program. For circumferential direction the number of the elements are considered 1,
10 and 25 elements and in the radial direction the number of the elements are used
10, 50 and 100 elements. The reference value resultant of the convergence analysis the
maximum displacement according to the radial direction is U1 = 5.39697× 10−3. T

In Figure 8.6 the meshes are represented and has 10, 50 and 100 elements. The
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Figure 8.4: Displacement isovalues in the Oy direction: (a) in Abaqus (scaling factor of 100
used), (b) in IGA program (scaling factor of 200 used).

re�nement considered is according to radial direction and in circumferential direction
the number of the elements is always constant and equal to 1 element. The results
obtained in Abaqus, FEM and IGA are schematized in Figure 8.7 per number of the
elements in mesh. Table 8.3 and 8.4 , represents the values of maximum displacement
calculated for curved beam at the radial direction and the relative error, respectively.

In developed FEM program the analysis of the maximum displacement convergence
in radial direction for problem schematized in Figure 8.5 is analysed. The results ob-
tained in FEM program are equal to the Abaqus and converge to the reference value
(see Table 8.3 ) . The convergence line are presented in Figure 8.7 with symbol asterisk
and these results are overlapped in the Abaqus results. The relative error for mesh with
100 elements is 5.911% (see Table 8.4). In developed FEM program the mesh with 100
and 25 elements for radial and circumferential direction, respectively, is considered. The
result obtained in the analysis is equal to the Abaqus and converge to the referential
value. The results obtained are the expected and the developed FEM program can be
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Figure 8.6: Type of mesh used for discretization the 2-D curved beam: (a) 10 element, (b) 50
elements and (c) 100 elements.

considered valid.

In IGA developed program, the degree of the control polygon used for study the
maximum displacement in radial direction are n = 1 to n = 4, and the h-re�nement
(knot insertion) and p-re�nement (degree elevation) are the re�nement methods used in
the analysis.

In the �rst analysis of IGA developed program the linear degree (n = 1) of the
polygon is considered. The h-re�nement for generate the meshes presented in Figure 8.6
is applied. The results obtained with linear degree is equal to Abaqus and FEM program.
In Tables 8.3 and 8.4 this results can be con�rmed and in Figure 8.7 can be seen the
circle symbol is overlapped in dashed line and in asterisk symbol. Thereafter, the degree
of the control polygon varies from n = 2 to n = 4. Figure 8.7 shows the results obtained
in all meshes for each degree of control polygon, and a quick convergence to reference
value can be seen. The relative error when a degree of the polygon is equal to n = 2
with 10 elements is 4.098%, but for the meshes remainders the relative error is less than
1%. In summary, the results obtained with IGA developed program has a high accuracy.
Displacement isovalue at radial direction for 2D curved beam is represented in Figure
8.8 .

Considering the number of the elements on mesh �xed and the degree of the polygon
ranges from n = 1 to n = 4, the p-re�nement is applied. The results of the radial
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Figure 8.7: Evolution of the numerical solution for 2-D curved beam at the Abaqus, FEM and
IGA developed programs, per number of the elements in mesh.

Table 8.3: Displacement results for 2-D curved beam [mm].

IGA IGA IGA IGA

Elements Ref. Abaqus FEM n = 1 n = 2 n = 3 n = 4

10 5.396 × 10−3 1.024 × 10−3 1.024 × 10−3 1.024 × 10−3 5.175 × 10−3 5.346 × 10−3 5.356 × 10−3

50 5.396 × 10−3 4.538 × 10−3 4.538 × 10−3 4.538 × 10−3 5.359 × 10−3 5.357 × 10−3 5.367 × 10−3

100 5.396 × 10−3 5.077 × 10−3 5.077 × 10−3 5.077 × 10−3 5.361 × 10−3 5.357 × 10−3 5.377 × 10−3

displacement and the relative error in Tables 8.3 and 8.4 can be seen on lines for each
mesh. For p-re�nement the relative error is lower than 0.8% for the degree of the polygon
n > 1. Note that, the results in analysis converges to the reference value and has a high
accuracy.

8.3 3D bending of a beam

The problem bending of a beam in tridimensional space is represented in Figure 8.13. The
beam has a clamped end and in the opposite extremity is applied a distributed loading.
The dimension of the beam is 100 × 10 × 10 mm3 and the load applied is Fy = 500 N.
The aluminium is material applied at the beam and the properties of the aluminium
are presented in Section 8.1. Replacing the variables in Equation 8.1 the theoretical
maximum de�ection in the Oy direction can be calculated and result in wy = 2.857
[mm]. This value is considered as the reference value for analysis with Abaqus software
and in FEM and in IGA developed programs.

The convergence of the maximum de�ection at the beam relative to the meshes is
studied and 4 meshes with 1, 10, 50 and 100 elements in the Ox direction are considered.
In Oy and Oz directions the elements are always constant and equal to 1 element (see
Figure 8.10). The results obtained in Abaqus, as well as from the implemented FEM
an IGA methodologies are presented in Figure 8.11 , per number of the elements at the
mesh. Tables 8.5 and 8.6 represents the maximum de�ection at Oy direction and the
relative error, in millimeters [mm] and in percentage [%], respectively.
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Table 8.4: Relative error in percentage for 2D curved beam [%].

IGA IGA IGA IGA
Elements Abaqus FEM n = 1 n = 2 n = 3 n = 4

10 81.024 81.024 81.024 4.098 0.934 0.749
50 15.903 15.903 15.903 0.697 0.737 0.552
100 5.911 5.911 5.911 0.660 0.723 0.352

Table 8.5: De�ection results for 3-D bending of a beam [mm].

IGA IGA IGA IGA
Elements Ref. Abaqus FEM n = 1 n = 2 n = 3 n = 4

1 2.857 7.407× 10−2 7.363× 10−2 7.363× 10−2 2.139 2.740 2.779
10 2.857 3.500 1.821 1.821 2.839 2.847 2.848
50 2.857 6.339 2.389 2.389 2.846 2.856 2.856
100 2.857 6.505 2.412 2.412 2.863 2.856 2.856

In the Figure 8.11 the results obtained on Abaqus are represented with a dashed line.
The results for the meshes presented in Figure 8.10 did not converge to theoretical value,
with element type (C3D8) used. This fact is associated to two possibles causes, the re-
�nement used on the mesh and/or the element type considered. Other re�nement with
increasing the number of the element in Oy and Oz directions is studied and the element
type is maintained. In the Oy and Oz directions the number of the elements considered
passes the 1 to 10 and in Ox direction the elements are maintained equal to 100. The
results obtained for maximum de�ection at Oy direction is 2, 85244 [mm] and the per-
centage of the relative error is 0.160%. Afterwards, the meshes presented for this problem
are maintained and others element types are studied for example C3D8I � Incompatible
mode eight-node hexahedron element and C3D20 � Twenty node hexahedron element.
The results obtained converges to the theoretical reference value and the relative error
for meshe with 100 elements in Ox direction is 0.033% and 0.234%. Note that, the linear
elements considered converge to analytical solution, but the re�nement of the mesh must
be in all directions. The elements type C3D8I and C3D20 converge to theoretical value
with the meshes considered.

In the analysis of the convergence results in FEM program, the meshes presented in
Figure 8.10 are considered. The element type developed at FEM program in tridimen-
sional space is linear hexahedron (this element has 8 nodes and each node has a 3 degree
of freedom). A complete integration with a Gauss quadrature is used in the analysis. The
results obtained converge to theoretical value, opposite to Abaqus analysis, see asterisck
line in Figures 8.11, in FEM program. For the mesh with 100 elements the relative error
in the analysis is equal to 15.541%, see Table 8.6 .

On the IGA program the meshes presented in Figure 8.10 are considered for analy-
sis. The degree of the control polygon used for study the convergence of the maximum
de�ection are n = 1 to n = 4.

The linear degree (n = 1) of the polygon is the �rst analysis considered and the
h-re�nement for generate the meshes presented in Figure 8.10 is applied. The results
obtained with linear degree of the polygon for IGA program are equal to FEM program,
see Tables 8.5 and 8.6 . Therefore, the degree of the polygon varies from n = 2 to



8.Results and applications 79

(a)

0

1

2

3

4

5

6

x 10
−3

x

y

(b)

Figure 8.8: Displacement isovalue in the direction Ox: (a) in Abaqus (scaling factor of 500 used),
(b) in IGA program (scaling factor of 500 used).

n = 4 and the convergence of the maximum de�ection is studied. For all degrees of
the polygon, a quick convergence the results to reference value is obtained. The relative
error for degree of the polygon n ≥ 2 and the number of the elements in mesh greater
than or equal to 10 elements is less than 1%. In summary, the convergence obtained
for maximum de�ection in a bending of a beam with h-re�nement in IGA developed
program shows a fast convergence for the theoretical value, compared to Abaqus and
the implemented FEM program. On comparison, the results in the IGA program has
better accuracy than Abaqus and FEM even for lower re�nement of mesh. Displacement
isovalue at Oy direction for 3-D bending of a beam is represented in Figure 8.12 .

The number of the elements on mesh are �xed, equal to 10 elements and the degree
of the polygon varies from n = 1 to n = 4 for application the p-re�nement. The results
and the relative error are presented in Tables 8.5 and 8.6 , respectively in second line.
For this type of the re�nement the relative error is lower than 0.7% for degrees of the
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Figure 8.10: Type of mesh used for discretization the 3-D bending of a beam: (a) 1 element, (b)
10 elements, (c) 50 elements and (d) 100 elements.

polygon n > 1 and the results quickly converge to the reference value.
The number of control points used on p-re�nement is 4 times more when compared to

h-re�nement. The p-re�nement has an computationally heavy compared to h-re�nement.

8.4 3D curved beam

The problem in analysis is a curved beam in tridimensional space. The dimensions are
a inner and outer radius equal to Rint = 4.12 and Rext = 4.32, respectively, a thickness
t = 0.1 and makes a arc = 90. Figure 8.13 the curved beam is schematized. The
material properties applied has a elasticity modulus equal to E = 1.0×107 and a poisson
coe�cient equal to ν = 0.25.

A convergence of the results for the maximum displacement according to the radial
direction in the curved beam is studied. In Abaqus program 9 meshes for analysis the
convergence of the results are considered and the convergence of the value is used as
reference for analysis in FEM and IGA developed program. For Oy and Oz directions
the number of the elements are equal to 1, 10 and 25 elements. In the Ox direction the
number of the elements for each element in Oy and OZ are considered 10, 50 and 100
elements. The resultant of the convergence analysis is U1 = 5.39697× 10−2.

The maximum displacement at radial direction is studied and 3 meshes for the analy-
ses are considered. The number of elements used on the mesh is 10, 50 and 100 elements
at radial direction and 1 element in circumferential and thickness directions (see Figure
8.14). For meshes presented in Figure 8.14, the results obtained in Abaqus and from the
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Figure 8.11: Evolution of the numerical solution for 3-D bending of a beam at the Abaqus, FEM
and IGA programs, per number of the elements in mesh.

Table 8.6: Relative error in percentage for 3-D bending of a beam [%].

IGA IGA IGA IGA
Elements Abaqus FEM n = 1 n = 2 n = 3 n = 4

1 97.407 97.423 97.423 25.113 4.065 2.723
10 22.512 36.240 36.240 0.604 0.340 0.333
50 121.903 16.380 16.380 0.375 0.032 0.022
100 127.694 15.541 15.541 0.373 0.025 0.018

implemented FEM and IGA methodologies are schematized in Figure 8.15 per number of
the elements in mesh. In Figure 8.15 the dash-dot line represent the reference value pre-
sented before. The maximum displacement calculated for curved beam at radial direction
and the relative error are presented in Tables 8.7 and 8.8 , respectively.

Table 8.7: Displacement results in the radial direction for 3-D curved beam [mm].

IGA IGA IGA IGA

Elements Ref. Abaqus FEM n = 1 n = 2 n = 3 n = 4

10 5.396 × 10−2 1.158 × 10−2 1.019 × 10−2 1.019 × 10−2 5.130 × 10−2 5.346 × 10−2 5.356 × 10−2

50 5.396 × 10−2 9.409 × 10−2 4.492 × 10−2 4.4922 × 10−2 5.350 × 10−2 5.357 × 10−2 5.367 × 10−2

100 5, 396 × 10−2 1, 208 × 10−1 5.025 × 10−2 5.025 × 10−2 5.361 × 10−2 5.377 × 10−2 5.387 × 10−2

For the analysis of the convergence results in developed FEM program the meshes
presented in Figure 8.14 were considered. The element type used on the meshes is
presented in Section 8.3. In FEM program the results obtained for maxium displacement
at radial direction converges to the reference value, opposite to Abaqus, see asterisck line
in Figure 8.15. For meshes with 100 elements the relative error is equal 6.886%, see Table
8.8 . Considering other re�nement of the mesh with 10 elements in the circumferential
and thickness directions and the elements in radial direction is maintained equal to 100,
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Figure 8.12: Displacement isovalues in the direction Oy: (a) in Abaqus (scaling factor of 5 used),
(b) in IGA program.
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Figure 8.13: De�nition of curved beam in tridimensional space with boundary conditions.
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Figure 8.14: Type of mesh used for discretization the 3-D curved beam: (a) 10 element, (b) 50
elements and (c) 100 elements.

the maximum displacement at radial direction in the developed FEM program is equal
to reference value.

In the developed IGA program the meshes presented in Figures 8.14 are considered
for analysis. The degrees of the control polygon used for study the convergence of the
maximum de�ection are n = 1 to n = 4 and in Figure 8.11 shows the results for each
degree.

In the �rst analysis with the developed IGA program the linear degree (n = 1) of the
control polygon is considered and the h-re�nement for generating the meshes is applied.
The results obtained are equal to results in FEM program and the curves presented
in Figure 8.15 are overlapped. For con�rmed this information, see Table 8.7 and 8.8.
Thereafter the degree of the polygon varies from n = 2 to n = 4 and the convergence
of the maximum de�ection is studied. Analysing the results obtained, for all degrees of
the polygon a quick convergence results can be seen. The relative error obtained is less
than 1% for degree of the polygon n ≥ 3 and the number of the elements in mesh greater
than or equal to 10 elements or less than 0.86% for degree of the polygon n ≥ 2 and the
number of the elements in mesh greater than or equal to 50 elements. In summary, with
the developed IGA program the convergence obtained for maximum displacement in a
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Figure 8.15: Evolution of the numerical solution for 3-D curved beam at the Abaqus, FEM and
IGA programs, per number of the elements in mesh.

Table 8.8: Relative error in percentage for 3-D curved beam in the radial direction [%].

IGA IGA IGA IGA
Elements Abaqus FEM n = 1 n = 2 n = 3 n = 4

10 78.535 81.101 81.101 4.945 0, 934 0.749
50 74.345 16.763 16.763 0.856 0.737 0.552
100 123.929 6.886 6.886 0.660 0.352 0.167

curved beam is a quick convergence for the reference value. Even for lower re�nement
of the mesh the accuracy of the results are better and the results obtained are expected
results. Figure 8.16 represents the displacement isovalue at radial direction for 3D cruved
beam.
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Figure 8.16: Displacement isovalue in the direction Ox: (a) in Abaqus (scaling factor of 2 used),
(b) in IGA program.
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Chapter 9

Concluding remarks

As a summary, the development of the algorithms for Bezier, B-Spline and Non-Uniform
Rational B-Spline (NURBS), curves and surfaces was the initial goal of the present work.
The development of Isogeometric Analysis (IGA) and Finite Element Method (FEM)
procedures for structural problems in bidimensional and tridimensional space were the
main objectives in this work. Lastly, an interface to be more user friendly for the user is
created. The wonther noting

After implementation the algorithms for Bézier, B-Spline and NURBS curves, some
examples for each type of the curve are considered. Bézier and B-Spline curves are special
cases of the NURBS curves, as demonstrated and presented in the examples. The same
steps for the surfaces were considered and the algorithm was validated. The same special
cases presented in the curves are also true for surfaces. In summary, the algorithms
developed for the curves and surfaces have a high importance for implementation of
the IGA formulations, for example: for the calculation of the basis functions or the
representation of the knot vectors.

The reference to the validation of the developed algorithms were the Abaqus com-
mercial program and theoretical values. Note that the algorithms developed, in general,
for the examples presented converge to the reference values, and the algorithms devel-
oped for FEM and IGA methodologies can be considered available. In the �rst step
for validation the developed programs, the linear degree of the control polygon in IGA
formulations (n = 1) was considered, and in this case the IGA formulations are equal to
FEM formulation.

For the problems in a bidimensional space, the results in the developed FEM and IGA
(considering n = 1) programs are overlapped with results of Abaqus. The error of the
results obtained is approximately 10% relative to reference value and this is associated
to type of the re�nement used on the mesh. In IGA program the degree of the control
polygon is increased from n = 2 to n = 4. In theses cases the results obtained have a
high accuracy, even for, meshes with lower re�nements. For the problems analysed in
bidimensional space the results obtained have a relative error lower than 1%. In summary,
in bidimensional space analysis the results obtained for the developed programs converge
to the reference results.

For the problems in tridimensional space the results in the FEM and IGA programs
converge to the reference value. In Abaqus the results for the considered meshes didn't
converge to reference value. This fact can be associated to two possible causes: the re-
�nement used on the mesh and/or the element type considered. Other re�nement with
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increased number of elements in all directions were considered and the element type
(C3D8) was maintained. In this case at the Abaqus program the results obtained con-
verged to the reference value, but the re�nement of the mesh must be in all directions.
Other analysis with the element type C3D8I and C3D20 is used and the meshes are main-
tained. The obtained results for FEM and IGA with linear degree of the polygon were
equal. Note than in this case the IGA formulations were the same to FEM formulations.
The relative error presented 15.541% was associated to the re�nement used in mesh.

In IGA program the degree of the control polygon was increased from n = 2 to
n = 4. In theses cases the results obtained have a high accuracy even meshes with lower
re�nement. For the problems analysed in tridimensional space the obtained results have
a relative error lower than 1%. In summary, in the tridimensional space analysis, the
obtained results for the developed programs converge to the reference results.

In future work, the optimization of the algorithms developed must be made as well
as the interface developed. The subroutine for calculating strains and stress must also
be made. In the interface, a button for update the information in �gure, for example:
the representation of the displacements, or the stress or the strain, should be possible.

Interesting areas of reference departing from the present work can be, for instance:

� developing the elements for shell theory;

� nonlinear Isogeometric Analysis � in presented work were considered problems in
linear elastic, but in future work it should be expanded to the nonlinear regime;

� Extended Isogeometric Finite Element Method � a combination of Isogeometric
Analysis (IGA) and extended FEM can be tested for fracture analysis of structures;

� dynamic strutural apllications � the Isogeometric approach has been applied pri-
marily to linear and nonlinear static structural applications and it needs to be
tested on dynamic structural applications;

� contact problems.
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