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Palavras-chave Arroz branqueado, caracterização, composição, métodos de cozedura, 
microondas, vapor. 

Resumo O arroz (Oryza sativa) é uma das principais culturas a nível 
mundial, sendo consumido por mais de metade da população do 
mundo. Embora as suas características e composição variem, de 
um modo geral o arroz branqueado é composto por amido, água, 
proteínas, lípidos, fibra dietética, vitaminas e minerais. O arroz 
vaporizado é processado de um modo diferente e representa uma 
percentagem significativa da produção total de arroz a nível 
mundial. 
Devido ao estilo de vida atual e ao aumento do uso de fornos micro-
ondas, congeladores e frigoríficos, os consumidores têm cada vez 
mais tendência a guardar restos de comida. O arroz branqueado é 
a forma de arroz mais consumida, sendo cozinhado por diferentes 
métodos. A composição do arroz tem uma grande influência nas 
suas características de cozedura e determina a preferência que os 
consumidores têm pelo arroz. 
Este trabalho pretendeu caracterizar as diferentes variedades de 
arroz comercializadas pela empresa Novarroz em termos de 
tamanho, brancura e composição. As variedades escolhidas 
pertencem aos tipos aromático, agulha, agulha América do Sul, 
agulha vaporizado, carolino, médio, risotto,  redondo e redondo 
vaporizado. Diferentes métodos de cozinhar arroz, tal como o forno 
micro-ondas e o vapor, foram testados e comparados com o 
método comum de cozedura em água fervente. 
Fortes correlações foram detetadas entre os parâmetros de 
tamanho, brancura e composição analisados. Pode-se concluir 
que a composição do arroz tem uma grande influência nos tempos 
de cozedura e aparências registadas. Dos três métodos de 
cozedura testados, a pré-cozedura durante 10 minutes, seguida de 
congelamento e posterior descongelamento e cozedura usando 
um forno micro-ondas permitiu o método de cozedura mais rápido, 
do ponto de vista do consumidor. O arroz cozido obtido, com 
exceção de algumas variedades, era visualmente agradável. Uma 
grande variedade de arrozes cozinhou com uma aparência 
“pegajosa”, mas alguns cozinharam com a aparência final 
“solta/não-pegajosa”. 



 

  

 

 

 
 
 



 

 

  

 

  

  

Keywords Milled rice, characterization, composition, cooking methods, microwave, steam. 

Abstract Rice (Oryza sativa) is one of the leading food crops in the world and 
it is consumed by more than half of the world’s population. Although 
its characteristics and composition vary, in general, milled rice is 
composed of starch, water, proteins, lipids, dietary fibre, vitamins 
and minerals. Parboiled rice, a differently processed rice, 
represents a significant percentage of the total worldwide rice 
production. 
Due to the current lifestyle and increasing use of microwave ovens, 
freezers and refrigerators, consumers tend to store food leftovers 
more than ever. Milled rice is one of the most consumed form of 
rice, being cooked with various different methods. Rice composition 
highly influences its cooking characteristics and determines rice 
preference by consumers.  
This work intended to characterise the different rice varieties 
commercialised by the company Novarroz in terms of size, 
whiteness and composition. The varieties chosen belong to the 
types aromatic, agulha, agulha South America, agulha parboiled, 
carolino, medium, risotto, round and round parboiled. Different 
cooking methods, such as using a microwave oven and steam, 
were also tested and compared with the ordinary boiling method. 
Strong correlations were found between the size, whiteness and 
composition parameters analysed. It can be concluded that rice’s 
composition, such as resistant starch content, has a great influence 
on the cooking times and appearances registered. From the three 
cooking methods tested, the pre-cooking of rice for 10 minutes, 
followed by freezing and later de-frosting and post-cooking by using 
a microwave oven allowed the fastest cooking method, considering 
the consumer point of view. The obtained cooked rice, with 
exception of some varieties, was visually appealing. A wide range 
of rices cooked with a “sticky” appearance, but some were also 
found to provide a “non-sticky” end result. 
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This report is divided into six chapters. Firstly, on this chapter, a brief introduction to 

rice consumption around the world is presented, contextualising the topic of my internship 

report, while also mentioning the organisation and objectives proposed. The second 

chapter addresses the current state of the art, focussing on rice composition, the 

relations/interactions between its components and, finally, its cooking. The third chapter 

describes the company and important concepts learned while working at their quality 

control laboratory. Afterwards, the fourth and fifth chapters, consist in all the 

methodologies used and in the discussion of the results obtained while also describing the 

optimisation of some of the methodologies. A brief conclusion is presented in chapter six. 

 

Rice is one of the leading food crops in the world and is one of the most important 

staple foods1, being consumed by more than half of the world’s population2. This cereal 

provides 21 % of the energy supply, 14 % of the protein supply and 3 % of the fat supply at 

the worldwide scale.3 In fact, rice is very rich in carbohydrates, specially starch,4 contains 

a moderate amount of protein4 with excellent biological value, amongst cereals, and high 

digestibility5, lipids with high nutritional value5, due to its lysine content, and is a good 

source of B complex vitamins4 and minerals3. 

In 2012, the worldwide harvested area was 163.5 million hectares, of which India and 

China are responsible for 42.5 and 30.3 million hectares, respectively, and Portugal for 31.4 

thousand hectares. In terms of unprocessed rice grains, in 2012, 17.7 million tons were 

produced worldwide, of which 7.0 million tons were produced by China, 3.2 million tons by 

India and 3.5 thousand tons by Portugal.6 However, these numbers do not represent the 

real rice consumption in Portugal, since the Portuguese are the biggest rice consumers (per 

capita) in the European Union. In fact, Portugal imports annually 110 thousand tons of 

brown rice, while only exporting 20 thousand tons.7 

It is estimated that about 20 % of the worldwide rice production is consumed as 

parboiled rice.8 This rice is appreciated by consumers mainly for two reasons: it is firmer, 

less sticky and has an improved nutritional value when compared to non-parboiled rice, 

mostly because it retains more of its natural vitamins, such as the vitamin B1.9 However, 
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parboiling can be achieved with different processing conditions, some more severe than 

others and therefore a grand variety changes may occur in parboiled rice.10  

Rice characteristics such as size, appearance, industrial processing and composition 

highly influences rice cooking and eating quality.11 Cooking practices are very diverse 

around the world and also influence the final appearance of cooked rice12-13 with milled rice 

being the most consumer form of rice.5, 14 

Nowadays, due to changes in lifestyle and lack of time, consumers tend to store rice 

leftovers for later consumption.15 Moreover, there has also been an increasing tendency in 

the consumption of more firm and less sticky rice, since its grains remain separate for 

longer periods of time. Rice with such characteristics also enable an easier cooking 

experience due to being less prone to overcooking.16 

 

The present internship report has the purpose of describing the work that was 

performed under the curricular internship at the company Novarroz – Produtos 

Alimentares, S.A., and at the University’s laboratory for the Masters in Science in Food 

Biotechnology.  

The company Novarroz – Produtos Alimentares, S.A is specialized in the processing 

and commercialization of rice and its by-products. Therefore, this company has a great 

interest in acquiring a deeper knowledge regarding its main product, in order to best serve 

the consumers, understand any possible complaints and necessities and optimize or 

develop new products to satisfy new market niches. 

The main objective of this internship was the acquisition of work experience in an 

entrepreneurial environment of the food sector and therefore the knowledge of the 

company’s organizational structure as well as its mission and policies. At Novarroz, more 

specifically the company’s quality control laboratory, the objective was to learn and apply 

the methods used to assess the rice quality and commercial price, along with all the stages 

of rice processing until it is ready for the consumers. Another objective was the 

characterisation of the rice varieties commercialised by Novarroz using a wide range of 

parameters. These included size and whiteness parameters, analysed at the company, and 

composition and cooking parameters, analysed at the University. The last objective was 
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to compare different cooking methods in order to access their effects on cooked rice. The 

cooking methods considered included the traditional boiling method in excess water and 

two new cooking methods using a microwave oven or steam. These new methods are two-

stepped: the first, designated as pre-cooking, is thought to be done industrially only while 

the second step, designated as post-cooking, would be the step done by consumers, at 

home. 
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2.1. Rice Species and Subspecies  

Rice is a cereal from the Gramineae family and Oryza genus, comprised of 23 species 

from which only Oryza glaberrima and Oryza sativa are cultivated.3  

The Oryza sativa species is by far the most presently cultivated and can be divided 

into three subspecies: indica, japonica and javanica. Rice belonging to the indica subspecies 

is the most commonly cultivated and is typically grown in tropical regions due to being 

drought tolerant whilst not tolerating colder temperatures. On the other hand, japonica 

rice is typically grown in regions with temperate climates, tolerating colder temperatures. 

However japonica rice is less tolerant to drought, insects and diseases. Another striking 

dissimilarity between these two subspecies is that indica grains are medium to long, 

narrow and flat, while japonica grains are short and wide.3 Lastly, javanica rice varieties are 

short and wide just like japonica, but are generally grown in tropical regions. This 

subspecies may also be called tropical japonica.17-18 Of all the subspecies, indica is the most 

common, constituting about 80 % of all cultivated rice, followed by japonica.3 

 

2.2. Rice Grain Morphology 

In general, the rice grain, depicted in Figure 1, is composed by four main 

components: the hull, the caryopsis coat (also known as bran), the endosperm and the 

embryo (also designated by germ).5, 19-20 

The hull constitutes approximately 19 % of the total grain11 and is composed by the 

two modified leaves designated palea and lemma. Bellow the hull is the caryopsis, which 

is composed by the caryopsis coat, the endosperm and the embryo. The caryopsis coat 

surrounds the endosperm and embryo and is composed, from the outside in, by the 

pericarp, the seed coat (also referred as tegmen) and the nucellus.21 Under the caryopsis 

coat is the endosperm, which comprises the aleurone layer, the outermost layer of the 

endosperm tissue and the starchy endosperm.19 The latter is composed by the 

subaleurone layer, surrounding an inner endosperm, featuring starch granules and some 

protein bodies. Finally, the embryo contains the embryonic leaves, or plumule, and an 

embryonic primary root, also known as radicule. The embryonic leaves and primary root 
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are joined by a very short stem referred as mesocotyl. The plumule is also surrounded by 

the coleoptile, which is in turn surrounded by the scutellum and the epiblast.19 

 

Figure 1 – Morphology of the rice grain.19 

 

Rice receives different designations according to its physical state. All rice starts as 

paddy rice, which is rice in its natural unprocessed state. When the hull is removed, paddy 

rice yields de-hulled rice, also referred as brown rice. The consequent milling, at different 

extents, of brown rice yields semi-milled or milled rice, the latter being commonly known 

as white rice. The semi-milling process only removes  the upper layers of bran and part of 

the germ, while the complete milling process completely removes the bran and germ.22 

 

2.3. Rice and its Components 

The knowledge of rice composition is of great importance to understand rice 

behaviour in cooking.11 

Even though the rice variety has great influence on its composition, on average, it 

can be established that milled rice is composed by 75 % starch3, 23, 12 % water5, 10 % 
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protein3, 24, 2 % lipids5, 0.9 % dietary fibre25,  and even less quantities of vitamins and 

minerals3. 

The rice nutritional values do not only differ amongst different varieties, but also 

with the soil used, the environmental conditions felt throughout the plant development 

and, finally, with the industrial processing method to which rice is subjected. For example, 

brown rice, contains a higher amount of proteins11, lipids and dietary fibre than milled rice 

due to the removal of bran and germ26. Dietary fibre is also removed, together with 

essential fatty acids, 80 % of the B1 vitamin, 67 % of the B2 vitamin, 90 % of the B6 vitamin, 

50 % of the manganese, 50 % of the phosphorus and 60 % of the iron. However, rice after 

milling usually follows the same tendency, having low fat and low protein content and a 

higher protein digestibility.5  

 

2.3.1. Starch 

Starch is the major component of rice, being widely associated with all the other rice 

components such as proteins, lipids and minerals.3, 27-28 This  α-glucan is a semi-crystalline 

biopolymer that serves as a carbohydrate reserve in many plants29, including cereals. It is 

mainly found in the grain’s endosperm and occurs in the form of granules.19 The rice starch 

granules are the smallest known to exist in cereal grains and are composed of amylose and 

amylopectin macromolecules.23, 27, 30 

The starch’s origin has great influence on its chemical composition, structure and 

properties, impacting several characteristics such as overall distribution of amylose and 

amylopectin, their structures, and size and shape of the granules.28 

 

2.3.1.1. Amylopectin 

Amylopectin is the main component of the rice starch, constituting more than 70 % 

of its total content.27-28 It is a highly branched glucose polymer consisting of a backbone of 

α-1,4-linked glucosyl units and α-1,6 branches (Figure 2).23, 31  
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Figure 2 – Molecular structure of amylopectin.27  

 

The amylopectin’s structure consists of alternating crystalline and amorphous 

domains, due to its branched nature: when adjacent, its branches can form a double helix 

structure that is associated with crystallinity, while the branching points constitute the 

amorphous regions of its structure.28, 30, 32 

 

2.3.1.2. Amylose 

Amylose (Figure 3) is an essentially linear glucose polymer consisting of long chains 

of α-1,4-linked glucosyl units.20, 23, 27 

 

 

Figure 3 – Molecular structure of amylose.27 

 

The amylose molecules usually form single helical structures, which are associated 

with the amorphous regions in the rice starch.28, 30 

In general, rice starches contain up to 33 % of amylose28. According to this content, 

rice can be classified as waxy (0-2 %) or non-waxy (more than 2 %). Amylose content from 

non-waxy rice can still be sub-classified as very low (2-10 %), low (10-20 %), intermediate 

(20-25 %), or high (more than 25 %).3, 33 The glutinous rice, also designated as waxy, is an 

example of rice with really low amylose content.20 When cooked, this rice is sticky and 
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soft34 as opposed to rices with higher amylose content, which are more firm. Thus, 

amylose is one of the major factors found to affect the eating quality of rice.24 Rice’s 

subspecies feature different tendencies regarding amylose content, with japonica rices 

being more prone to have lower amylose contents than indica rices.3, 35 

Amylose has been found to form complexes with other rice components such as 

proteins and lipids, changing starch properties such as gelatinisation.35 

 

2.3.1.3. Resistant Starch 

Resistant start is defined as the sum of starch and products of starch degradation 

that escape digestion in the small intestine, followed by partial fermentation by the 

anaerobic bacteria that inhabit the colon.31, 36-37 This particular type of starch can be 

composed of retrograded starch (both amylopectin and amylose fractions), physically 

inaccessible starch (if encapsulated within plant cell walls), chemically modified starch, 

starch complexed with other food components (such as protein and lipids) and non-

digestible starch due to enzymatic inhibition (by phytic acid, for example).31, 38-39 

Resistant starch can be formed, or its content can be increased, by heat treatments 

such as baking or cooking.40 Besides baking, amylose and moisture content, 

amylose/amylopectin ratio, extent of starch gelatinisation, pH, processing time and 

temperature, number of heating-cooling cycles, freezing or drying also influence the 

formation/increase of resistant starch.31, 41 However, Goñi et al. (1996) reported a decrease 

in the resistant starch content of rice when cooked: raw rice was found to contain 5 to 15 

% of resistant starch (high content) while boiled rice contained 1 to 2.5 % (low content) or 

under 1 % (negligible content) depending if it was, respectively, cold or warm36. Åkerberg 

et al. (1998) also reported that sample preparation also influenced the resistant starch 

results: cooked whole rice  was found to contain more resistant starch, about 4.6 %, than 

its cooked ground form (flour), which contained 1.6 %.37 

 

2.3.1.4. Relation with Rice Properties 

The white chalky appearance that occurs in the belly of some rice grains is a common 

feature for many rice varieties42 and it can influence consumer preference between rices.35, 
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43-44 Chalkiness is caused by the loose-packed starch granules that characterise the 

amorphous regions of starch. This loose-packing is due to the existence of air spaces in 

between the granules, which consequently cause light to scatter, giving an opaque and 

white look to the grains. Although this chalky look can occur in all rice varieties, it is usually 

more abundant in rice belonging to the subspecies japonica.45 One reason for this is, as 

Patindol et al. (2003) reported, is that chalky grains, besides containing less amylose, 

contain amylopectin majorly characterised for having shorter chains, i.e. more branching 

points and consequently a bigger amorphous domain.46 Also, due to the loose-packed 

feature, chalky grains have been found to absorb more water and have shorter cooking 

times when compared to translucent grains. Chalky grains have also been found to be 

more fragile, less resistant, less hard and less cohesive, which affects the rice cooking 

quality.43, 46 

Gelatinisation is the irreversible process of swelling of the starch granules and 

consequent collapse/disruption of the molecular order within the granule. In other words, 

it’s the loss of crystallinity, in conjunction with water absorption followed by the rupture 

of the granular structure.20 Starch granules experience gelatinisation when exposed to 

excess water and increasing temperature. In these conditions amylose is leached out of 

the starch granule, which consequently plays an important role during the retrogradation 

process that follows and on the cooking process.20, 47 The temperature at which starch 

starts to experience the above mentioned changes is designated as gelatinisation 

temperature and usually varies from 55 up to 79 °C.35 Amylose can for complexes with 

lipids, providing rigidity to the gelatinised starch47 and consequently influencing rice 

cooking and eating quality48. These complexes are responsible for more significant 

variations in the gelatinisation than amylose alone, even in rices with low lipid content, 

such as milled rice. These complexes inhibit swelling and therefore may be responsible for 

increases in the gelatinisation temperature.47 Because of the particular interaction 

between amylose and lipids, in general, the amylopectin content has a tendency to have a 

bigger influence on the swelling behaviour of starch. In fact, waxy starches with very low 

amylose content are less resistant to gelatinisation, i.e., have a lower gelatinisation 

temperature than non-waxy starches.49 
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Retrogradation of starch is a two-step process that takes place when the molecules 

of gelatinised starch start to reassociate in an ordered structure50, i.e., start to crystallize, 

upon cooling. A two-step process occurs during retrogradation: firstly occurs the gelation 

and crystallization of amylose, followed by amylopectin crystallization. These 

crystallisation processes are fully reversible, in the case of amylopectin, and partially 

irreversible, in the case of amylose.20, 39, 51 In other words, retrograded starch is the result 

of spontaneous changes that occur on subsequent cooling, ageing and/or drying of 

gelatinised starch.20, 31 As mentioned before, amylose plays an important role in the overall 

retrogradation of starch by having a greater influence on its pasting properties.47 More 

specifically, the solubilisation of amylose during gelatinisation results in a paste. In time, 

as the retrogradation process occurs, that paste becomes increasingly more opaque, gels 

and an increasing tendency to release water, also known as syneresis, occurs.20 Just like in 

the gelatinisation process, amylose-lipid complexes influence the formation of gel 

because, since retrogradation depends on the amylose content, less amylose will be 

available to retrograde. A higher degree of amylopectin crystallization is found in waxy 

rice starch than in non-waxy, mainly due to their composition. It is mentioned in the 

literature47 that amylopectin is more commonly the reason for starch retrogradation than 

amylose, which will, in fact, limit the extent of the retrogradation. Therefore, in general, 

the variation and extent of the retrogradation increases with the decreasing amylose 

content.31 Amylose also tends to retrograde faster, taking up to 2 days, and at a larger 

scale than amylopectin, which takes up to 30-40 days.39 This is a consequence of the 

amylose tendency to reassociate by forming hydrogen bonds with adjacent amylose 

molecules52. This reassociation, although allowing a higher degree of molecular 

organization, does not imply an increase in the starch’s crystalline degree.53 

 

2.3.2. Proteins and Amino acids 

Protein is the second most abundant component of rice.3, 5 It is found distributed 

throughout the rice grain with a higher concentration in the endosperm and germ54 and 

decreasing, in the grain, from the outside in.11 Rice protein is not only highly digestible54, 
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but has excellent biological value, amongst cereals,5 while also being considered 

important for the rice eating and cooking quality.24  

Kennedy et al. (2003) reported, after an extensive analysis of almost 3000 Oryza 

sativa rice varieties, that protein content could vary from 4.5 to 15.9 % in milled rice.3 Rice 

proteins include several different fractions.55 Glutelins are the main storage proteins56, 

accounting for 68 to 72 % of the overall content and are alkali-soluble. Globulins, the salt-

soluble fraction, make up for 12 to 17 % of the total content and albumins, the water-

soluble fraction, account for 10 to 12 %. Lastly, prolamins, the smallest fraction, are 

alcohol-soluble and constitute only 2 to 3 % of the rice protein content.11, 20, 35 Oryzenin is 

one of the major glutelin proteins in rice, accounting for 70 % of the glutelin content.57 Rice 

proteins are found as globoids, in the aleurone layer and in the germ, and as in protein 

bodies in the endosperm, the latter having a rich lipid core. Proteins can also be found 

bound to amylose granules.35, 54 

Rice contains amino acids such as glutamic acid and aspartic acid, in high contents5 

(18 % and 10 % of the total protein content, respectively)58, while also being quite deficient 

in the essential amino acid lysine59 (approx. 4 % of total protein content)5, 54.Nevertheless, 

the lysine content of rice protein is one of the highest amongst cereal proteins.54 Brown 

rice has been found to have a lower percentage content of glutamic acid than polished 

rice, which indicates that this non-essential amino acid is more concentrated in the most 

interior layers of the grain. On the other hand, brown rice has a higher content in lysine 

than polished rice due to lysine being present in the outer and inner most layers of the 

grain.58 

 

2.3.3. Lipids 

Rice lipids, besides having a high nutritional value with about 80 % being 

unsaturated fatty acids5, also impact the cooking and eating quality of rice through 

interaction with other rice components48. Its main location in the grain is the bran, hence 

the common designation of rice bran oil, constituting almost 20 % of the total lipid 

content54. Rice lipids can also be found in the aleurone layer5, 11 and, in smaller quantities, 

in the endosperm60. 
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 The lipids present in rice can be classified in non-starch lipids5 and starch lipids48. 

The non-starch lipids are the main lipids present in milled rice and are located as lipid 

bodies or spherosomes in the aleurone layer, while the starch lipids are present low 

concentrations and in complex with amylose.5, 54, 61 The major non-starch fatty acids found 

in rice are the monounsaturated oleic acid, the essential polyunsaturated linoleic acid and 

the saturated palmitic acid.5, 54, 62 Other unsaturated fatty acids existing in rice grains are 

the polyunsaturated linolenic acids and γ-linolenic acid, although these exist in much lower 

quantities.63  

Rice contains three main types of lipids: neutral lipids, glycolipids and phospholipids, 

of which the major are, respectively, triacylglycerols and unsaturated fatty acids, 

steryglycoside, and phosphatidylcholine.64  

Waxy rices have a lower starch lipid content, mainly due to having little or almost 

none amylose, while intermediate amylose rices have the highest lipid content.54, 63 

However, waxy rices have a higher content of non-starch lipids than non-waxy rices.21, 5361 

 

2.3.4. Non-starch polysaccharides 

Non-starch polysaccharides include water soluble polysaccharides, such as soluble 

dietary fibre, and insoluble dietary fibre54, the latter being mainly composed of cellulose, 

hemicellulose65-66, lignin67 and pectic substances, all common plant cell wall materials68. 

Brown rice has a higher content of non-starch polysaccharides, of about 2.87 % in dry 

weight basis (DWB), while milled rice contains only 1.4 % (DWB).67 As for dietary fibre, 

brown rice has been reported to contain 2.87 % while milled rice only contains 0.87 %, both 

in fresh food weight basis25. In fact, most of the dietary fibre is located in the hull and bran5, 

while the endosperm has the lowest content54. 

During cooking, rice may lose some of its water soluble non-starch polysaccharides69 

but in general its presence is known to hinder the swelling of starch granules65 which in 

turn, will decrease the water absorption during cooking20. This implies that a higher 

presence of non-starch polysaccharides will be responsible for longer cooking times70. 
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2.3.5. Vitamins and Minerals 

Rice is a good source of E54, K71 and B complex vitamins4, which are mainly located 

in the bran and germ11, 54. The vitamin B1 (thiamine) content can ranges 0.117 to 1.74 

mg/100 g (DWB), B2 (riboflavin) from 0.011 to 0.403 mg/100 g (DWB) and B3 (niacin) from  

1.972 to 9.218 mg/100 g (DWB).3, 5 Vitamins B1 and B2 can be found throughout the grain11, 

54 and vitamins B3 and B6 are mainly found in the bran layers5. Rice is reported as being a 

poor source of vitamins A3, C (ascorbic acid) and D4, 54. 

Rice minerals are mostly located in the aleurone layer of the bran5, 19 and on the 

germ.11 These include calcium (0.07-0.25 %), magnesium (0.07-0.25 %), phosphorus (0.50-

0.55 %) and potassium (0.15-0.23 %) along lesser amounts of iron, zinc, copper, 

manganese and sodium (0.09-0.17 %).3, 5, 19 

 

2.4. Parboiled Rice 

Parboiled, also designated as converted rice, has been subjected, either as paddy or 

as brown rice, to soaking in water, heat treatment (usually steaming), drying and finally to 

industrial processing. Parboiled rice is, therefore, rice whose starch has been fully 

gelatinised and hence the name parboiled (partially boiled).16, 22, 72 All rice types can be 

parboiled but the consumer preferences vary according to country and rice type 

availability.54 

Four main changes can take place in the rice grain during this process: diffusion of 

water or other compounds from or to the grain, carrying nutrients with it, starch 

gelatinisation followed by retrogradation and protein denaturation73, the latter mainly 

occurring due to the high temperatures employed during parboiling.16, 74-75 

Parboiling has several advantages: this process improves the nutritional value of 

milled rice, the milling recovery of paddy rice,16 salvages poor quality or spoiled paddy rice, 

increasing the milling yield, meets the demand for firmer and less sticky rice10 and makes 

rice less prone to overcooking16. On the other hand, parboiled rice tends to become rancid 

during storage10, due to the high temperatures employed during its processing16, may 

require longer cooking times  (depending on the process and conditions used for 

parboiling)16 and more energy is necessary to achieve a proper milling degree76. Parboiling 
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costs are also a drawback, since it represents an additional cost in water, energy and 

effluent treatments.16, 77 

Prolonged parboiling decreases the vital constituents of rice such as proteins and 

minerals, not only due to the more extreme conditions used, but also due to leaching, 

therefore decreasing the rice nutritional value.78 Ibukun (2008) reported that, as parboiling 

duration was increased, the nutritional value decreased with losses in crude protein 

content, calcium, iron, sodium and potassium. A bigger percentage of grain breakages 

after milling was also reported78, eliminating one of the advantages of parboiling16 

Parboiling is responsible for several changes in rice grains. In general, it can be 

responsible for changes in grain size79, chalkiness45, coloration80 and composition16. The 

water diffusion coupled with the heat treatments employed during parboiling may result 

in thicker and longer rice grains, when compared with their non-parboiled counterparts.79 

Parboiling also reduces chalkiness45, which is a direct consequence of the gelatinisation 

and retrogradation of starch granules and hardening of the endosperm, making the grains 

translucent.54, 81 Thus, parboiled grains that still feature a white belly weren’t fully 

parboiled.76 Rice grains acquire a yellow amber coloration with parboiling, which increases 

with the severity of the parboiling process.54, 80 As for composition, the gelatinised starch 

partially retrogrades59 and the amylose content decreases due to amylose leaching during 

the processing steps of soaking and steaming.82 Parboiled rice has a lower protein content 

due to protein denaturation73, leaching78 disruption of the protein bodies and increase in 

protein polymerization by disulphide bonds. The latter leads to the decrease in protein 

solubility and digestibility.8, 54 As for lipid content, the disruption of the lipid spherosomes 

releases non-starch lipids that are consequently diffused into the outermost layers of the 

parboiled rice.54, 82 Overall, parboiling causes the loss of vitamins A, C and of the B complex 

through leaching loss and thermal breakdown. However, parboiled rice still retains B 

complex vitamins than non-parboiled rice, due to inward diffusion from the bran into the 

endosperm.54, 83 As for mineral content, parboiling may or may not affect the mineral 

composition of rice.59, 78 Finally, parboiling removes the cooked non-parboiled rice 

volatiles, hence the different smell experienced during the cooking of these rices.76 
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There are several variations on the parboiling process and each one produces a 

slightly different parboiled rice. For example, a hot water soaking stage produces a more 

discoloured parboiled rice than a cold water soaking stage, but the latter taints paddy rice 

with off-flavours; pressure parboiling produces rice that is even more discoloured than 

both previously mentioned parboiling processes.77 

 

2.5. Rice Cooking and Eating Quality 

Rice composition has been found to have a major influence on its cooking and eating 

qualities, although it doesn’t always explain its cooking characteristics.24 Just as an 

example, differences in texture have been reported among rices with similar amylose 

contents84. Rice eating quality is usually evaluated, either by panellists or with 

instruments, according to its tenderness, hardness and cohesiveness. The latter can also 

be referred as stickiness and has been found to be negatively correlated with amylose 

content.83 Amylose is heavily referenced as responsible for the cooking and eating quality 

of rice due to its gelatinisation and retrogradation, with lower values contributing to a 

reduction of the cooking time.24, 47-48, 85 Its presence has been found to hinder water 

absorption, consequently hindering the volume expansion of rice during cooking, with 

waxy rices (low amylose content) expanding the least during cooking.83 The resistance of 

the cooked grains to disintegration (also referred as loss of shape) has also been attributed 

to amylose content, with high-amylose rices being the most resistant and waxy being the 

least. This goes according with the higher tendency of low-amylose rices to stay moist and 

sticky after cooking35 and might be correlated with the solid loss that occurs during 

cooking86. On the other hand, parboiled rice is more resistant to disintegration and 

leaching of components during cooking than its non-parboiled counterpart.83 In fact, 

cooked parboiled rice is rarely sticky.54 The degree of milling is another key factor affecting 

the gelatinisation: an increased milling degree will cause a decrease in the gelatinisation 

temperature. Therefore, the higher the milling degree, the faster rice will cook. In fact, for 

brown rice, the gelatinisation temperature will have a considerable increase mainly due to 

the presence of the bran’s composition in lipids and proteins, which hinder water 

absorption by forming complexes with starch.70, 87 The protein content is also responsible 
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for a higher cooking time, since a higher amount of disulphide bonds will decrease protein 

solubility8, 54 and increase starch-protein interactions, while also decreasing the water 

absorption during cooking57. Cooking also reduces the protein’s digestibility54 and it has 

been suggested that the protein of cooked indica rice might be less digestible than the 

protein in cooked japonica rice.8 Finally, lipids have also been reported to have a great 

influence in the cooking and eating quality of milled rice: when lipids complex with 

amylose they may hinder starch gelatinisation, therefore altering the way rice cooks.48 

The shape and size of the grain has also been reported as influencing the cooking 

time, with the slimmest grains (higher lengths, smaller widths and higher length-to-width 

ratios) taking the least time. These grains have a bigger surface area and a smaller distance 

between the surface and the centre.43, 88 

Storage of cooked rice is known to cause starch retrogradation, which increases the 

level of enzyme-resistant starch through amylopectin crystallization, also diminishing the 

solubility of the starch.39 The aging of rice can also prolong its cooking time. A decrease in 

amylose leaching has been reported, which reflects an increase in starch’s insolubility and 

a higher difficulty for rice to absorb water. This can be justified by the naturally occurring 

ordering of the starch structure during its aging.89 Hardening of the rice texture and 

decreased stickiness also occur possibly due to the decreased capacity of the starch 

granules to rupture, which in turn limits the water absorption capacity of the grains, 

prolonging the rice cooking time.90-91 

Cooking time is influenced by the gelatinisation time and a direct correlation has 

been reported between the two parameters.35 Waxy rices, with a lower gelatinisation 

temperature, will have a higher degree of swelling, absorb more water and therefore cook 

faster. In contrast, non-waxy rice won’t swell as much and will require a longer cooking 

time.47, 49 The cooking time required to gelatinise the rice grains tends to be longer for 

higher protein rices.83 This happens because the protein and cell-wall matrices that 

surround the starch granules inhibit starch swelling and solubilisation during cooking92 by 

preventing water absorption93.  

 Milled rices have a cooking time range of about 15 to 25 minutes, with the exception 

of some aromatic type rices that cook even faster due to their slim and long grains.54 
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Parboiled rices may have a higher or lower cooking time than their non-parboiled 

counterpart.16 A common way of accessing the cooking time of rice is by checking the 

completion of gelatinisation of the rice grains.94 

There is no standardised way of cooking rice, and each culture has its own preferred 

methods, eating habits, rice types, rice characteristics and textures.12-13 Rice is highly used 

at the household level, where it is consumed as boiled, either with or without excess water 

(1:1 up to 4:1 water-to-rice ratio (v/v)95), fried and even steamed, the latter method being 

preferable for glutinous rice.86, 96 Many different equipments may be used to achieve such 

results. These include using open pans, microwave or induction ovens, pressure cookers, 

and even electric rice cookers.97 In some countries, washing and/or soaking rice is still a 

common practice. It is safe to say that this practice is more of a personal choice rather than 

a necessity (for most rice types) since, nowadays, rice is thoroughly cleaned from dust and 

impurities, such as stones, prior being marketed. Rice soaking and washing can, however, 

be used to reduce cooking time by increasing water absorption prior to cooking98, but this 

is done at the expense of leaching nutrients, such as starch, proteins and B complex 

vitamins into the washing/soaking water.13, 54, 96 In the same manner as soaking, boiling 

milled rice in excess water also results in nutrient leaching.14 Boiling in the above 

mentioned conditions also increases the rice’s tendency to disintegrate, resulting in mushy 

grains, that is, grains that have lost their shape.83 Steamed milled rice, however, has been 

found to retain nearly all of its naturally occurring vitamins and minerals.14 In fact, 

consumers from different countries have associated, in a study by Son et al. (2013), 

steaming with the preservation of vitamins and nutrients in rice, since rice isn’t soaked, 

preventing the loss of nutrients by leaching.13 

Changes in family lifestyle and the increased use of freezers, refrigerators and 

microwave ovens are an indication of the demands for convenient, easy to prepare foods, 

that are also suitable for frozen or chilled storage. Nowadays, the accelerated pace of 

modern life has also promoted an increase in the consumption of ready-to-eat rice, which 

is usually done by heating rice leftovers15 in a microwave oven along with a small portion 

of water.99 The domestic storage of rice leftovers is a special concern: rice must be 

refrigerated as soon as possible in order to prevent the growth of harmful bacteria such as 
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Bacillus cereus.96, 100 Besides fully cooking rice and storing for later use, rice can be pre-

cooked in advance and has been used for that purpose for years. More importantly, for this 

report, frozen rice has been reported as being used to supply chain restaurants that quickly 

heated it in microwave ovens for ready-to-eat rice.54 Pre-cooking rice has been reported 

to affects starch digestibility through retrogradation39, and consequently affects the 

cooking and eating quality of rice. 

 

2.5.1. Microwave Oven 

Microwaves are used for several food processing applications that include re-

heating, cooking and thawing due to being rapid, convenient and cost effective. Common 

household microwaves operate at 2450Mhz. Microwave ovens work by applying an 

alternating electromagnetic field to the food being heated. This radiation, in the 

microwave spectrum, causes the food’s polarized molecules, like water, to attempt to 

orient themselves according to the rapidly changing electric field. This in turn generates 

frictional heat: the molecules absorb energy from the field and then dissipate it into the 

surrounding food.101-102 The microwave’s biggest disadvantage is its limiting penetrating 

ability. So, in order to achieve a uniform heating, small quantities/volumes of food must 

be used. However, the microwave penetration increases dramatically when foods are 

being thawed, making it a useful technology for that purpose.101-102 One of the advantages 

of using a microwave oven is the low cooking time required to cook rice. Kaasová et al. 

(2001) reported that microwave treatments increased progressively the gelatinisation of 

rice starch,103 indicating the potential of this method for rice cooking. Moisture is reported 

has being uniform throughout rice portions cooked by microwave cooking, with exception 

of the top, where moisture content is slightly lower due to surface evaporation.99 

 

2.5.2. Steam 

Non-pressurised steam is one of the healthiest cooking methods used at the 

household level. Steam can be produced by pot of simmering water. Rice cookers also 

cook rice partially by steam.104 Ghasemi et al. (2009) reported the effects of non-

pressurised steaming rice that was first cooked in excess boiling water, stating that this 
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process could be used to achieve a perfectly cooked rice12 Steaming decreased the 

hardness and increased the rice adhesiveness, which means that boiled and steamed rice 

grains were softer and stickier, than those cooked only by boiling water. It was also noted 

that steaming lead to the disruption of starch complexes and molecules adopted a more 

random orientation, which resulted in a well-expanded cooked rice105. It was also reported 

that this processed for cooking rice possibly resulted in a higher degree of gelatinisation 

since steam reaches higher temperatures than boiling water.12  Son et al. (2013) reported 

that cooking glutinous rice through steam prevents the grains from turning pasty and 

sticking together too fast. This same study reported that steaming may be considered not 

convenient and time consuming, as opposed to boiling, but gives the desired stickiness 

some consumers, especially of Asian origin, prefer in rice.13 

 

To the best of my knowledge, no more studies have reported the effects of 

microwaves and non-pressurised steaming on rice cooking and eating quality. 
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3.1. The Company: Novarroz 

The Company Novarroz – Produtos Alimentares, S.A. (Figure 4) is a family company 

founded in 1979 headquartered in Adães, Oliveira de Azeméis. This factory has the 

capability of operating 24h per day, employs 63 people and, for more than half a century, 

has had the privilege of working with experienced professionals. 

 

 

Figure 4 – Novarroz factory (left) and logo (right).106 

 

Novarroz is certified by ISO 9001, BRC Food and IFS by SGS, its technologically 

advanced manufacturing technique is attested by the EUREKA program, is currently 

adherent to the Portuguese project “Compro o que é nosso” (Buy what is ours) while also 

having the status of SME leader by IAPMEI. 

This company’s mission is to transform, commercialize and place on the market 

products with quality, particularly focussing on rice. The diversity of products has to be in 

accordance with the food safety guidelines, aiming to fully satisfy costumer and consumer 

needs. Novarroz’ corporate policies establish a strategy that is developed based on six 

pillars and aims: 

 Focus on customers and market; 

 Guaranteed food quality and safety; 

 Continuous improvement; 

 Health protection and promotion of work safety; 

 Respect for the environment; and 

 Ethics and legality 
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In the Novarroz factory, rice from Portugal and around the world is dehulled, milled, 

oil-polished, packaged and sold. Rice by-products, such as broken rice and hulls are also 

sold. To accomplish all these operations this factory has at its disposal silos with storage 

capacity of 30 000 metric tons of paddy rice, a vertical modern mill with capacity to process 

15 metric tons of rice per hour and silos with storage capacity of 800 metric tons of milled 

rice. As for packaging  many options are used, such as complex polypropylene, vacuum, 

cartons, boil-in-bag bags and raffia bags.106 

 

3.2. Standard Definitions Concerning Rice 

The Portuguese Decreto-Lei n.º 62/2000 defines the characteristics for rice and 

broken rice intended for human consumption. The methodologies for analysis, types of 

commercial grades, variety classification and technical standards concerning rice 

commercialization storage and labelling are also defined.22. According to these standards, 

together with the Codex Standard for Rice107, rice can be defined regarding its physical 

state (2.2.), the length of its grains, the treatment to which it is subjected and type.  

According to its length, rice grains can be round, medium or long. Round have a 

length inferior or equal to 5.2 mm and with a length-to-width ratio (L/W) inferior to 2. 

Medium grains have a length superior to 5.2 mm and inferior or equal to 6.0 mm and have 

a L/W inferior to 3. Finally, long grains can have a length superior to 6.0 mm and have a 

L/W superior to 2 or inferior to 3, or can have a length superior to 6.0 mm and a L/W 

superior or equal to 3.22 

Regarding its treatment, rice can be parboiled, pre-cooked, glazed or oil-polished. 

Parboiled rice has been described in section 2.4. Pre-cooked rice is subjected to a physical 

treatment that allows a substantial reduction of the cooking time. Glazed and oil-polished 

rice are both coated milled rice: the first is coated with a film of glucose and talcum 

powder, suitable for human consumption, while the latter is coated with white edible 

mineral oil, in accordance with the legislation in effect.22 

Worldwide, there are several types of rice and each one of has specific 

characteristics. Some of the types acknowledged during the first months of the internship 



 

Chapter 3 – The Internship 

29 

 

were agulha, carolino, medium, round, risotto, glutinous, brown, parboiled, aromatic and 

wild (Figure 5). 

 

 

Figure 5 – Rice types (from left to right) agulha, carolino, medium, round, risotto, glutinous, brown, 
parboiled, aromatic and wild. 

 

The agulha and carolino rices are the most commonly cultivated in Portugal, 

belonging to the indica and japonica subspecies, respectively. The type agulha is longer, 

thinner and usually remains firm and non-sticky after cooking, as it is usual with indica 

rices. Carolino, on the other hand, is a genuine Portuguese rice that is shorter, wider, and 

gets sticky after cooking. This rice is very appreciated in Portuguese gastronomy due to its 

ease in absorbing flavours.106, 108 The medium type has an appearance similar to carolino, 

round type rices have the shortest and widest grains and both have the characteristic 

stickiness of the japonica subspecies. Risotto rices may have similar dimensions to 

medium or round types, depending on the variety, but have a chalkier appearance. This 

rice is traditionally used in Italian gastronomy. Glutinous rice, also called sweet rice, has a 

unique white and opaque appearance and is usually used in sweet dishes. Its main 

characteristic is its very low amylose content. Brown rice is all rice that has been dehulled 

but not milled. It has a characteristic with a light brown coloration, depending on the 

variety, and requires longer cooking times than its milled counterpart. Parboiled rice has 

been described in 2.4. The aromatic type includes rices such as Basmati, an extremely long 

and thin rice commonly in Indian gastronomy, and Jasmine, common in Chinese and Thai 

gastronomy. Aromatic rices are also recognized by their fragrant scent109. Wild rice is 
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actually a grass seed from the Zizania genus110 characterized for having extremely long 

and thin grains, with a dark brown appearance and a nutty flavour. This seed is eaten in its 

brown un-milled form. 

 

3.3. The Industrial Processing of Rice 

The following industrial process describes only the stages conducted at Novarroz. 

 

As soon as the paddy rice arrives at the factory it is weighted, still inside its cargo 

(Figure 6 left). A sample is then collected, from several points of the cargo, in order to 

achieve an overall representative sample. In the meantime, this sample is taken to the 

quality control laboratory, where analyses will be performed in order to assess the quality 

of the newly arrived rice. Such analyses include the moisture content and whiteness values 

and assessment of the percentages of impurities and defects (Figure 6 centre). This 

assessment is done by selecting, either by hand or with the help of instruments, 100 grams 

of rice. Only after the laboratory has approved the sample, can the paddy rice be stored in 

the paddy rice silos (Figure 6 right) with the appropriate storage conditions in terms of 

moisture, temperature and pest control. 

 

 

Figure 6 – Rice cargo being weighted (left), assessment of the percentages of impurities and defects 
(centre), and silos used for storage of the paddy rice cargo (right). 

The first stage of processing consists in the removal, by cleaning machinery and de-

stoners, of all impurities and foreign objects, such as stones, sticks and straws which are 

mixed with the grains. 
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The following stage, the dehulling of the grains, results in the separation of the 

brown rice and the hull, and is accomplished by a huller. Within this machine two things 

happen to the paddy rice: it goes through two rubber rollers spinning in different directions 

and at different velocities, whilst being sorted for any hull that may still be mixed. The 

resulting hull is stored and sold as a by-product to local industries. 

The brown rice is then milled in the mill. Here, by friction with a spinning stone, the 

bran and germ are removed until the proper milling degree is achieved. The ground bran 

and germ are also stored and sold as by-products, to be used as animal feed. 

Next, milled rice is polished with water mists (Figure 7 left) in order to remove dust 

and to acquire sheen, making it more appealing to the consumers. It is also in this stage 

that magnets remove metallic particles that may have passed through the first stage of 

processing. 

In between the milling and polishing stages, and also after the polishing stage, rice 

is selected by graders and sifters (Figure 7 centre), wherein damaged and immature, or 

broken rice grains are removed according to colour and dimensions. In the packaging 

stage, broken rice can be reincorporated into the processed rice in percentages 

established in the legislation22, while the remaining is used as animal feed. The resulting 

milled and selected rice is then stored in silos (Figure 7 right) until the time of packaging. 

 

 

Figure 7 – Polisher (left), grade/sifter (centre) and silos of milled rice (right). 
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An additional stage may be performed before packaging: In the case of oil-polished 

rice, grains are mixed together with the appropriate amount of edible mineral oil, in 

accordance with the legislation in effect. 

The last stage of the industrial processing is packaging. Here, packaged rice goes 

through metal detectors (Figure 8 left) and finally is warehoused in the storage area 

reserved for packaged goods (Figure 8 right), at controlled temperatures and moisture 

levels, until it is ready to be marketed. 

 

 

Figure 8 – Metal detectors at the end of the packaging line (left) and storage area for packaged goods 
(right). 
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4.1. Samples 

A total of 19 different rice varieties (samples) with different origins were provided by 

Novarroz – Produtos Alimentares, S.A. All the samples supplied for this study were milled 

and polished at the quality laboratory located at Novarroz, of which 3 had been previously 

parboiled before the aforementioned processing steps. The samples belong to different 

rice types, and were encoded according to their subspecies (Table 1), not being the same 

encodings presented in the report by Soares (2014) entitled “Caracterização de variedades 

de arroz - Aspetos nutricionais”111. 

All samples were kept in airtight bags with minimal exposure to light and air, during 

the course of this report. Each sample was checked in order to remove any contaminant 

variety prior to usage. 

 

Table 1 – List of rice samples and corresponding types provided by Novarroz – Produtos Alimentares, S.A. 

Sample Type 

indica1 
Aromatic 

indica2 

indica3 
Agulha South America 

indica4 

indica5 

Agulha 
indica6 

indica7 

indica8 

indica9 
Agulha parboiled 

indica10 

japonica1 
Carolino 

japonica2 

japonica3 

Medium japonica4 

japonica5 

japonica6 
Risotto 

japonica7 

japonica8 Round 

japonica9 Round parboiled 
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4.2. Solutions, Standards and Reagents 

Pepsin min. 700 U/g (20895) was obtained from Riedel-de Haën. α-Amylase from 

porcine pancreas Type VI-B ≥10 units/mg (A3176) and Amyloglucosidase from Aspergillus 

niger ~70 U/mg (10115) were obtained from Sigma-Aldrich. D-Glucose GOD-POD kit 

(AK00161) from nzytech was prepared and used according to the manufacturer’s 

instructions. 

Apparent Amylose standards with particle size inferior to 0.180 mm were provided 

by Novarroz and having the following concentrations: standard1 0.00 %, standard2 12.10 

%, standard3 14.10 % standard4 14.25 % and standard5 22.80 %. Iodine solution for 

analysis of apparent amylose was prepared daily. Firstly, 2000±5 mg of potassium iodide 

were dissolved in approx. 20 mL of distilled water. Then, 200±1 mg of crystalline iodine 

were added and the mixture was stirred, in the dark, until full dissolution of the iodide 

crystals. Afterwards, the solution was transferred into a 100 mL volumetric flask and 

stored in the dark until needed. 

All buffers were prepared beforehand and kept at 4 °C and all other reagents were 

of analytical grade. 

 

4.3. Analysis of Grain Dimensions, Whiteness and Percentage of 

Chalky Area 

Analysis of grain dimensions (length, width and L/W), whiteness (total and 

crystalline) and percentage (%) of chalky area, of the grain, were performed using the 

AgroMay Statistic Analyzer S21 apparatus (Analyzer S21 for short) (Figure 9 left) located 

at the Novarroz quality control laboratory. Another parameter for whiteness, designated 

by Kett, was analysed using the Kett Electric Laboratory, model C-300-3 apparatus (Kett for 

short), also located at Novarroz (Figure 9 right). 

The Analyzer S21 is an inspector of cereal grains, mainly rice, which allows the 

quantification of the above mentioned parameters in rice, as well as other types of defects, 

through image processing and subsequent statistical analysis. The apparatus consists of 

two elements, the physical structure of the analyser and a software associated to a 
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computer. The physical structure is composed of a pump casing with a vertical dispenser, 

vibrating ramp, which allows the separation of the grains, and a high-speed camera that 

captures images of the sample’s individual grains.112 

Around 60-70 g of raw grains were placed in the vertical dispenser followed by 

pressing the button to capture the images and turning on the ramp vibrating system. Next, 

the vertical dispenser was opened, allowing the grains to fall on the ramp and, finally, the 

button to end capture is pressed. The recorded images were treated, according to the 

manual, discarding any overlapping grains. 

The Kett is a commercial whiteness meter that instantly provides the whiteness 

value of a rice sample, which can be used to assess the milling quality and purity of the 

analysed sample. This whiteness value is measured by light reflectance and provided in a 

scale of 0 to 100.113 

Firstly, the Kett was zeroed using an optical standard. The sample container was 

then filled with rice, closed and inserted into the Kett, as represented in Figure 9 (right). 

 

Figure 9 – AgroMay Statistic Analyzer S21 apparatus (left) and Kett Electric Laboratory, model C-300-3 
apparatus (right). 

 

4.4. Analysis of Moisture Content 

Moisture content was determined using a VirTis – Benchtop K freeze drying 

apparatus and calculated as the loss in weight of the freeze-dried samples, according to 

the following equation (a): 

% 𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 =
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑤𝑒𝑖𝑔𝑡ℎ−𝑓𝑖𝑛𝑎𝑙 𝑤𝑒𝑖𝑔𝑡ℎ

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑤𝑒𝑖𝑔𝑡ℎ
× 100                            (a) 
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Freeze-drying works in two stages. During the first stage pressure inside the 

container is lowered and enough heat is supplied in order to cause water sublimation in 

the frozen samples. During the second stage, pressure can be lowered and more heat is 

supplied in order to evaporate the remaining unfrozen water molecules from the 

sample.114 

Whole rice grains from each sample were ground, passed through a 1.000 mm sieve, 

stored in a pre-weighted container, weighted and frozen. Prior to freeze drying, the caps 

were removed and stored in a desiccator, the container with sample was sealed using 

parafilm, which was then pierced through. Samples were placed in a freeze-drying 

container and dried for 3 days. 

 

4.5. Analysis of Protein Content 

Protein content was analysed by through nitrogen elemental analysis using a 

TruSpec 630-200-200 CNHS Analyser. For this, up to 10 mg of freeze dried samples were 

combusted in a furnace operating at 1075 °C and with an afterburner at 850 °C in order to 

convert the samples’ nitrogen into nitrogen gas. Then, separation was achieved though 

gas chromatography followed by quantification with thermal conductivity.115 Nitrogen 

content was converted into protein content by multiplying by the factor 5.95116, as 

reported in the literature, followed by conversion into dry weight basis, using the 

previously determined moisture content. 

 

4.6. Analysis of Total Starch Content 

Analysis of total starch content was adapted from Teixeira (2013)117 and  Goñi et al. 

(1997)118.  

Around 5-7 whole raw grains per sample were ground, passed through a 0.500 mm 

sieve and approx. 30 mg were weighted into capped test tubes. Each sample was dispersed 

in 2 mL of KOH 2 M for 72 h at room temperature with constant stirring, followed by 

neutralisation with HCl 2 M. Afterwards, 3 mL of tris-maleate buffer 0.6 M pH 6.9 and 400 

U of α-amylase were added and left stirring for 48 h at room temperature. A 200 µL aliquot 

was transferred, in triplicate, to eppendorfs followed by addition of 1 mL of sodium acetate 
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buffer 0.4 M pH 4.75 and 21 U of amyloglucosidase. The resulting reactional mixture was 

incubated for 24 h at 60 °C, followed by centrifugation for 1 min at 1000 rpm. 

Glucose concentration of the centrifuged samples was spectroscopically quantified 

at 340 nm using the D-Glucose GOD-POD kit and a 96-well Thermo Scientific™ Multiskan™ 

GO Microplate Spectrophotometer. The obtained glucose concentration values were then 

converted into total starch content (%) by using a conversion factor of 0.9118, as reported 

in the literature, followed by conversion into dry weight basis , using the previously 

determined moisture content. 

 

4.7. Analysis of Resistant Starch Content 

Analysis of resistant starch content was adapted from Goñi et al. (1996)36 and the 

Megazyme Resistant Starch Assay Procedure119.  

Around 7-10 whole raw grains per sample were ground, passed through a 1.000 mm 

sieve and approx. 100 mg were weighted into capped test tubes. To each sample 2 mL of 

HCl-KCl 25 mM pH 1.6 and 14 U of  pepsin were added and left stirring for 1 h at 40 °C. 

Then, the reactional mixture was neutralized with NaOH 3 M and tris-maleate buffer 0.6 

M pH 6.9 was added until 3 mL were achieved. Next, 400 U of α-amylase were added and 

left stirring for 24 h at room temperature. The resulting solution was then adjusted to pH 

4.75 with HCL 6 M followed by the addition of sodium acetate buffer 0.4 M pH 4.75 until 3 

mL were achieved and finally by adding 168 U of amyloglucosidase. Incubation was 

ensured for 24 h at 60 °C. Afterwards, the tubes were centrifuged for 10 min at 3000 rpm, 

the supernatants were discarded and the residues were thoroughly washed, thrice, with 

2.5 mL of ethanol 50 % (v/v) and dried by inversion of the test tubes. Next, dispersion in 2 

mL of KOH 2 M was carried out for 30 min at room temperature with constant stirring and 

then the pH was adjusted to 4.75 with HCl 2 M. A 300 µL aliquot was transferred, in 

triplicate, to Eppendorfs followed by addition of 700 µL of sodium acetate buffer 0.4 M pH 

4.75 and 21 U of amyloglucosidase. The resulting reactional mixture was incubated for 24 

h at 60 °C, followed by centrifugation for 1min at 1000 rpm. 

Glucose concentration of the centrifuged samples was spectroscopically quantified 

at 340 nm using the D-Glucose GOD-POD kit and a 96-well Thermo Scientific™ Multiskan™ 
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GO Microplate Spectrophotometer. The obtained values were then converted into resistant 

starch content by using a conversion factor of 0.9118 followed by conversion into dry weight 

basis, using the previously determined moisture content. 

 

4.8. Analysis of Apparent Amylose Content 

Analysis of apparent amylose content was performed in accordance with the 

method described in ISO CD 6647-2120, with a few modifications. 

Around 20-25 whole raw grains per sample were ground, passed through a 0.180 mm 

sieve and 100±0.5 mg were weighted into test tubes. Standards were also weighted and 

and 1 mL ethanol 96 % (v/v) plus 9 mL NaOH 1 M were added. Then, parafilm was used to 

seal the tubes and dispersion was ensured by shaking for 2-3 days at 180 rpm in an Agitorb 

200 ICP orbital shaker. Afterwards the tubes were placed for 10 minutes in a boiling water 

bath and subsequently left to cool down until slightly warm to touch. Then, each tube’s 

content was transferred into a 100 mL volumetric flask and the volume adjusted with 

water. 

New test tubes were prepared in triplicate. In each, 0.5 mL of the prepared sample 

dispersion, 5 mL distilled water, 0.1 mL acetic acid 1 M, 0.2 mL iodine solution and 4.2 mL 

distilled water were added. Blank was prepared by substituting the prepared sample for 

NaOH 0.09 M. The reactional mixtures were homogenised right before reading the 

absorbance at 620 nm in a Jenway 6405 UV/Vis Spectrophotometer. Apparent amylose 

content was later converted into dry weight basis, using the previously determined 

moisture content. 

 

4.9. Analysis of Ordinary Cooking Time 

Analysis of ordinary cooking time was performed in accordance with the method 

described in the thesis by Sério (2013) entitled “Potencialidades da espectroscopia NIR para 

análise de arroz comercial” 121, with a few modifications. 

About 10 tea infusers were filled with 2 g of whole raw grains each. A pot was filled 

with enough tap water to cover all the tea infusers, covered with its lid and placed over a 

1500 watts ok. heating disk at the highest setting. As soon the water started to boil, the 



 

Chapter 4 – Methodologies and Materials 

41 

 

tea infusers were submerged and the time count was started. After 10 minutes or more, 

depending on the sample, as different samples required different cooking times, the tea 

infusers were removed one at a time in 1 to 4 minute intervals and submerged in cold tap 

water for a few seconds, in order to stop the cooking. Immediately afterwards each the 

tea infuser was dried as best as possible and their content was placed in a plate identified 

with the corresponding cooking minute. In the end, the cooking was checked by counting 

the nuclei of 20 randomly selected grains when pressed between two petri dishes (Figure 

10). The analysis was repeated in triplicate in the same conditions considering it is 

necessary that the last two portions of grains contain zero nuclei to ensure that the 100 % 

cooking stage is achieved. 

 

Figure 10 – Placing of grains in the petri dish (top left and right). Counting of the nuclei of 20 grains and 
appearance of the grains with (bottom left) and without (bottom right) nuclei. 

 

For the calculation of the cooking time, the number of grains with nuclei obtained 

previously was converted into the number of grains without nuclei by subtraction from the 

total of 20 grains considered for the counting. The % of cooking was then calculated from 

the median of the previous value. Two equalisations were performed and the resulting 

equalised medians were plotted against the cooking time. By polynomial interpolation, 

the second order polynomial equation for the sample’s cooking profile was obtained. 

Lastly, the cooking time for 80 % of cooked rice was obtained (Appendix A). 
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4.10. Analysis of Solids in the Drained Pre-cooking Water and 

Analysis of Post-Cooking Time Using a Microwave Oven or 

Steam 

The following procedures are composed of a first and second part that were 

repeated in triplicate for each variation of the analysis. The post-cooking analysis (second 

part) was repeated until triplicate results were performed in the same conditions, 

considering it is necessary that the last two portions contain zero nuclei. 

 

First Part: Pre-cooking and Obtaining the Pre-cooking Water 

The volume of 25 g of whole raw grains was measured, corresponding to the 

measurement “1 part”. A 1000 watts Tristar heating disk at the 3.5 setting was heated until 

the temperature was stable. Afterwards, a 400 mL beaker with 1 part distilled water 

covered with a watch glass was placed on the heating disk. As soon as the water began to 

boil, 2 parts of whole raw grains were added and the time count was started (Figure 11 

left). The samples were cooked for the desired pre-cooking time (7, 10 or 13 minutes) 

followed by drainage of the leftover cooking water into a previously weighted petri dish 

(Figure 11 top right). The drained sample was placed in a second petri dish that had been 

covered with aluminium foil.  

 

Figure 11 – Apparatus used to pre-cook and drain the samples (left), draining of a sample over a previously 
weighted petri dish (top right) and frozen sample before storage in a zip-lock bag (bottom right). 
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The petri dishes used for analysis of solids in the drained pre-cooking water were 

prepared in advance by thoroughly drying in a Binder drying oven with natural convection 

for 1 h at 105 °C and allowed to cool inside a desiccator. The above mentioned pre-cooking 

waters were then dried for 16 h at 105 °C, or until constant weight. 

The petri dishes containing the pre-cooked rice were stored in a conventional 

horizontal freezer at -18 °C until completely frozen (Figure 11 bottom right). Afterwards, 

the samples were transferred into zip-lock bags and left inside the freezer for a maximum 

of 48 h. 

 

Second Part: Post-cooking 

A) With a Microwave Oven (300 watts) 

One frozen sample was placed inside a larger petri dish (Figure 12 left). Immediately 

afterwards, 1 part of distilled water was poured over the frozen sample followed by placing 

it inside a Samsung 800 watts (23 L MS23F301EAW) microwave oven, covered with a 

microwave lid, at 300 watts (Figure 12 right). After 3 minutes, and at 1 minute intervals up 

until 11 minutes, the sample was mixed and a teaspoon-sized portion was removed, 

making sure that the microwave door isn’t left open while the portion is collected. The 

portions were placed inside a tea infuser and submerged in cold distilled water for a few 

seconds, in order to stop the cooking. Afterwards, the tea infuser was dried as best as 

possible and its content was placed in a plate identified with the corresponding cooking 

minute. In the end, the cooking was checked by counting the nuclei of 20 grains when 

pressed between two petri dishes (Figure 10) and the microwave was allowed to cool 

down before the next sample was cooked. 

The calculation of the cooking time was performed as described in 4.9. 

Lastly, samples were cooked according with the estimated time (mixing of the 

sample was always performed at the 3 minute mark) and visually checked for nucleus at 

the end of the pre-cooking and post-cooking stages, final appearance of the grains and if 

water absorption by the sample was complete or not. Observations were registered and 

can be found in Appendix B. Each sample was also photographed. 
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Figure 12 – Frozen sample (left) and microwave cooking apparatus (right). 

 

B) With Steam 

A 600 mL beaker containing 400 mL of distilled water, borosilicate glass beads and 

some weights was covered with a watch glass and was placed over a 1000 watts Tristar 

heating disk at the highest setting. When the water started to boil, a net containing one 

frozen sample was covered with the watch glass, placed inside the beaker and the time 

count was started (Figure 13). After 10 minutes or more, depending on the sample, and at 

2-4 minute intervals, the sample was mixed and a tea spoon-sized portion was removed. 

The portions were placed inside a tea infuser and submerged in cold distilled water for a 

few seconds, in order to stop the cooking. Afterwards, the tea infuser was dried as best as 

possible and its content was placed in a plate identified with the corresponding cooking 

minute. In the end, the cooking was checked by counting the nuclei of 20 grains when 

pressed between two petri dishes (Figure 10). 

The calculation of the cooking time was performed as described in 4.9. 

Lastly, samples were cooked according with the estimated time (without any 

mixing) and visually checked for nucleus at the end of the pre-cooking and post-cooking 

stages and final appearance of the grains. Observations were registered and can be found 

in Appendix B. Each sample was also photographed. 
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s  

Figure 13 – Steam cooking apparatus. 

 

4.11. Statistical Analysis 

Microsoft Excel software was used for the statistical analysis of all the data obtained. 

Whenever possible, experimental data was expressed as the means ± standard 

deviation (SD) and in dry weight basis. Composition parameters are presented in 

percentage of the grain, with the exception of moisture content. All results can be found 

in Appendix B. 

The significance of differences among samples was analysed with the Student’s t-

test considering a significant level of 90%. 

The relationship between different parameters was determined using Pearson’s 

correlation and all correlation tables can be found in Appendix C. 

 



 

46 

 

 

 

 

 

 

 

 

 

 

Tapar 



 

47 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 5 – Results and Discussion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

48 

 

 

Tapar 



 

Chapter 5 – Results and Discussion 

 

49 

 

5.1. Methodology Optimization 

 

5.1.1. Analysis of Moisture Content 

Analysis of moisture content was subjected to a small procedure optimisation. 

Sério (2013) analysed his samples following the methodology described in ISO 

712:2001122, in which ground samples (5 g ± 1 g) with particle size inferior to 1 mm were 

dried in an oven at 130 °C until constant weight121. This methodology was used at first but 

it was sluggish, not very convenient, and only a limited quantity of samples could be dried 

at once. Therefore, a new alternative was tested: freeze-drying. This alternative might not 

be readily available at many laboratories but it easily allows the quantification of moisture 

content in many samples at once in just 3 days. 

 

In Table 2 the moisture content determined using both methods is shown. The 

moisture contents obtained with freeze-drying were very similar to the ones obtained by 

oven drying, therefore this method was chosen for the analysis of moisture content, as can 

be viewed in 4.4. 

 

Table 2 – Comparison of moisture contents obtained by oven drying and freeze-drying. 

Samples Oven drying (%) Freeze-drying (%) 

indica2 11.38 11.37 

indica7 12.57 12.59 

japonica3 12.30 12.27 

japonica8 12.00 11.95 

 

5.1.2. Analysis of Total Starch Content 

Starch is the most abundant component of rice3, therefore it is of great importance 

establish a methodology for its quantification. 

The critical step in this analysis is the solubilisation or gelatinisation of starch prior 

to its degradation to glucose, which isn’t easily achieved. As Calixto et al. (1991) reported, 

raw starch granules are very slowly digested by enzymes31, so any starch must always 

receive treatments that ease its quantification. Afterwards, an amyloglucosidase 
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(exogenous enzyme) can be used to hydrolyse the 1,4- and 1,6- linkages between the 

glucose subunits of the pre-solubilised/gelatinised starch.123 

 

Sample particle size was kept the same throughout all the trials, that is, inferior to 

0.500 mm. Buffer concentrations and pHs were also kept equal as they corresponded with 

the enzymes’ requirements. The glucose concentration of the centrifuged samples was 

always quantified as described in 4.6. 

 

The first methodology and trial was conducted as described in Teixeira (2013)117 

(Scheme 1). 

 

Scheme 1 – Simplified scheme of the first methodology, by Teixeira (2013)117. 

 

The results obtained with this first trial (Table 3) weren’t as high as the expected 

averaged 75 % (approx. and in DWB)23 mentioned in the literature and the standard 

deviations were higher than desired in half of the samples tested. 

 

Table 3 – First trial: total starch content (DWB) obtained with the first methodology. 

Samples Total starch (%) 

indica3 65.79±3.06 

indica6 64.98±3.47 

japonica1 65.48±1.46 

japonica2 67.78±1.60 

 

For this first methodology, three different modifications were tested in conjunction 

(second trial). One modification was the decrease in the quantity of sample used from 100 

mg to approx. 30 mg, as this could aid the starch gelatinisation. The second and third 
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modifications were the increase in enzymatic quantities and reaction times, since the ones 

used in Teixeira (2013)117 could be lower than the required for the amount of starch used. 

The quantity of α-amylase was kept the same, but its reaction time was increased from 

overnight (approx. 16 hours) to 24 hours. As for amyloglucosidase, its quantity and 

reaction time were increased from 8.4 U to 21 U and from 45 minutes to 90 minutes.  As 

seen in Table 4, the decrease in sample quantity decreased the standard deviation of the 

obtained results, meaning that using 100 mg was hindering the crucial step of starch’ 

gelatinisation. This modification was kept for the henceforth trials. The increase in 

enzymatic quantities and reaction times didn’t increase much the results. Nevertheless, 

the 24 hour reaction time for α-amylase was kept as this is the endogenous enzyme20, 32 

for the hydrolysis of the starch’s main chain. The amyloglucosidase quantity was also kept 

since it is required in excess conditions and, through calculations, it was verified that the 

quantity used by Teixeira (2013) was too low.  

 

Table 4 – Second trial: total starch content (DWB) obtained with the modification of the first methodology. 

Samples Total starch (%) 

indica3 66.97±2.11 

indica6 67.21±2.45 

japonica1 68.64±0.83 

japonica2 68.83±0.26 

 

The second methodology tested (third trial) (Scheme 2) was adapted from Goñi et 

al. (1996)36, which reports a procedure for determining the resistant starch content. 

 

Scheme 2 – Simplified scheme of the second methodology tested, adapted from Goñi et al. (1996)36. 
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The results obtained with this more elaborate methodology still didn’t reach the 

expected averaged 75 % (approx. and in DWB)23, but a decrease in the standard deviation 

was obtained (Table 5). This may be due to the differences between the first and second 

methodologies, as the enzymatic reaction with pepsin and the dispersion step with 

potassium hydroxide were added. Goñi et al. (1996) found that adding the protein removal 

step increased only slightly, but significantly, the final values.36 Such increase might be 

due to an improvement of the α-amylase accessibility by avoiding the starch and protein 

associations, the starch encapsulation by the protein matrix and the formation of 

glutinous lumps.123-124 As for potassium hydroxide, it is the alkali used for starch dispersion/ 

solubilisation in some analyses of total starch content35-36, 118, 123. 

 

Table 5 – Third trial: total starch content (DWB) obtained with the second methodology. 

Samples Total starch (%) 

indica3 61.43±0.31 

indica6 65.54±0.04 

japonica1 63.34±0.31 

japonica2 68.61±0.35 

 

Just like for the first methodology, the increase in enzymatic reaction times were 

tested by increasing the α-amylase reaction time from 24 hours to 72 hours and the 

amyloglucosidase reaction time from 45 minutes to 90 minutes. This didn’t lead to a 

considerable increase in the final results, as can be seen in Table 6. 

 

Table 6 – Fourth trial: total starch content (DWB) obtained with the first modification of the second 
methodology. 

Samples Total starch (%) 

indica3 63.12±0.36 

indica6 66.30±0.44 

japonica1 62.12±0.28 

japonica2 69.97±0.15 

 

The next trial tested the removal of ethanol, as Goñi et al. (1996) reported that it 

could influence resistant starch results36. Moreels et al. (1987) reported that this was 
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indeed true, while also suggesting that at least ethanol content should be as low as 

possible to prevent enzyme denaturation125. Another modification tested together with 

ethanol removal was the increase in the dispersion time with potassium hydroxide from 

30 minutes to 24 hours. A small increase in the final results was observed (Table 7). 

Nevertheless, ethanol was removed from the henceforth trials and a 24 hour dispersion 

time with potassium hydroxide was re-tested in the sixth trial. 

 

Table 7 – Fifth trial: total starch content (DWB) obtained with the second modification of the second 
methodology. 

Samples Total starch (%) 

indica3 65.11±0.69 

indica6 70.61±0.39 

japonica1 68.02±0.06 

japonica2 67.77±0.10 

 

The last modification tested for this second methodology (sixth trial) was the 

dispersion with cold (4 °C) potassium hydroxide as both the Megazyme Total Starch Assay 

Procedure126 and the Megazyme Resistant Starch Assay Procedure119 use cold potassium 

hydroxide when analysing samples with high resistant starch content. However, it should 

be mentioned that, during the optimization of this analysis, the samples still hadn’t been 

analysed regarding their resistant starch content. The article by Goñi et al. (1996) was the 

only literature source found that classified raw rice as a foodstuff with high resistant starch 

content (5 % to 15 %)36. The use of cold potassium hydroxide lead to a decrease in the 

obtained results as well as an increase in standard deviation (Table 8).  

 

Table 8 – Sixth trial: total starch content (DWB) obtained with the third modification of the second 
methodology. 

Samples Total starch (%) 

indica3 68.91±1.31 

indica6 65.15±1.70 

japonica1 68.46±0.50 

japonica2 69.01±0.16 
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The third and final methodology tested (seventh trial) (Scheme 3) was based on the 

methodology employed by Goñi et al. (1997)118. 

 

Scheme 3 – Simplified scheme of the third methodology tested, adapted from Goñi et al. (1997)118. 

 

This methodology relies solemnly on potassium hydroxide to solubilise the starch 

and the final results weren’t particularly high, as expected, not reaching near the averaged 

75 % (approx. and in DWB)23 but standard deviations weren’t as big as in the first trial 

(Table 9). 

 

Table 9 – Seventh trial: total starch content (DWB) obtained with the third methodology.  

Samples Total starch (%) 

indica3 67.80±0.66 

indica6 69.28±0.57 

japonica1 69.00±0.61 

japonica2 65.45±0.25 

 

The first modification to this methodology was introducing a 24 hour α-amylase 

reaction in between the dispersion with potassium hydroxide and the reaction with 

amyloglucosidase. This originated the highest results of all the tested trials (Table 10). The 

higher standard deviation of the sample japonica1 could be due to human error and wasn’t 

regarded as meaningful. So, henceforth the 24 hour α-amylase reaction was kept whilst 

testing other modifications. 
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Table 10 – Eight trial: total starch content (DWB) obtained with the first modification of the third 
methodology.  

Samples Total starch (%) 

indica3 63.43±0.20 

indica6 74.78±0.52 

japonica1 68.86±1.31 

japonica2 72.78±0.47 

 

Next the use of ethanol, to help with starch extraction, followed by gelatinisation for 

20 minutes in a boiling water bath was tested. This was done before the amyloglucosidase 

reaction (and after the above mentioned 24 hour α-amylase reaction). The results 

obtained were lower, as can be seen in Table 11 and again, the higher standard deviation 

of the sample indica6 was regarded as human error. As mentioned during the fifth trial, 

ethanol was reported36, 125 as being a source of enzyme denaturation and it is safe to say 

that this was what happened. 

 

Table 11 – Ninth trial: total starch content (DWB) obtained with the second modification of the third 
methodology. 

Samples Total starch (%) 

indica3 58.21±0.29 

indica6 57.90±2.27 

japonica1 61.02±0.34 

japonica2 57.74±0.32 

 

In lieu of the last obtained results, ethanol was removed from the procedure. 

Therefore, the tenth trial tested the use of a 20 minute boiling bath for gelatinisation, after 

the 24 hour α-amylase reaction and before the amyloglucosidase reaction. Results (Table 

12) were higher than in the previous trial, which is another indication that ethanol 

influences negatively starch results. Nevertheless, the results weren’t as high as in the 

seventh trial (Table 10). A possible explanation for the lower percentages obtained with 

the trials containing gelatinisation with a boiling water bath (all trials with exception of the 

seventh and tenth) is the formation of retrograded starch31, hindering the enzymatic 

action over the overall starch. 
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Table 12 – Tenth trial: total starch content (DWB) obtained with the third modification of the third 
methodology. 

Samples Total starch (%) 

indica3 69.32±0.42 

indica6 72.23±0.37 

japonica1 67.61±0.68 

japonica2 66.87±0.64 

 

Some final modifications were made to the reaction times employed in the seventh 

trial: increase of the potassium hydroxide dispersion time from 30 minutes to 24 hours, 

just like in the (fifth trial), increase of the α-amylase reaction time from 24 hours to 48 

hours and increase of the amyloglucosidase reaction time from 45 minutes to 24 hours to 

ensure that both enzymatic reactions occurred in excess-type conditions. The obtained 

results (Table 13) were slightly higher than in the seventh trial and are around the 

averaged 75 % (in DWB) mentioned in the literature23. Therefore, the final procedure for 

the analysis of total starch content was attained and can be view in 4.6. 

 

Table 13 – Eleventh trial: total starch content (DWB) obtained with the optimised methodology. 

Samples Total starch (%) 

indica3 70.46±0.34 

indica6 78.49±0.87 

japonica1 78.77±0.37 

japonica2 78.45±0.64 

 

It is possible to conclude that starch dispersion or solubilisation is indeed a key aspect 

in this analysis. Further efforts should still be made to improve and simplify even more this 

procedure while also improving the obtained results. 

There is a last important observation to consider. Batey (1982) reported a reduction 

of 5 % in the glucose concentration obtained when re-analysing the final solutions of the 

total starch analysis after an overnight storage at 4ºC. A slightly smaller reduction was also 

observed when the final solutions were frozen.123 Therefore, glucose concentration must 

be analysed on the same day when the amyloglucosidase reaction is stopped. 
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5.1.3. Analysis of Resistant Starch Content 

The optimization of a direct analysis of resistant starch is important for the 

characterisation of rice samples since this is a key component of rice starch31.  

Some of the modifications and difficulties discussed in 5.1.2. still apply for this 

optimisation, such as the solubilisation of starch. So, for simplicity’s sake, they will only be 

addressed briefly in this topic. 

The key difference between total starch analysis and resistant starch analysis is the 

removal of digestible starch from the sample. It must be noted that an attempt was made 

to quantify both the resistant and digestible starch from the same procedure. However, as 

it will be discussed, the sum of both starches didn’t give a good estimate of the total starch 

content, due to losses during the procedure or due to the procedure itself. In the end, the 

results obtained didn’t justify the extra work required for the analysis of digestible starch. 

 

Sample particle size was kept the same throughout all the trials, that is, inferior to 

1.000 mm. Buffer concentrations and pHs were also kept equal as they corresponded with 

the enzymes’ requirements. Enzymatic quantities were kept in the same proportion as 

used for the analysis of total starch (4.6.). The glucose concentration of the centrifuged 

samples was always quantified as described in 4.7. 

 

The first methodology and trial tested was adapted from Goñi et al. (1996) (Scheme 

4). This methodology, as seen in Scheme 2 (5.1.2.) has the protein removal step, 

important for the correct hydrolysis of the digestible starch. Furthermore, this step will 

prove to have a greater importance in the analysis of cooked samples, allowing a better 

simulation of the physiological conditions of the human stomach such as acidic pH and 

action of proteolytic digestive enzymes.36 

Originally, this methodology didn’t comprise the analysis of digestible starch. 

Therefore, an adaptation was made right from the start consisting of saving the 

supernatants into volumetric flasks and later reacting them with amyloglucosidase. The 

conditions used for this enzymatic reaction were the same for the analysis of both resistant 

and digestible starch, meaning that, both were reacted at the same time, in the same 
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water bath in order to prevent variations in the results. For this methodology the washing 

of the residue was done in triplicate with distilled water. 

 

Scheme 4 – Simplified scheme of the first methodology tested, adapted from Goñi et al. (1996).36 

 

As mentioned in 5.1.2., Goñi et al.(1996) reports a 5 to 15 % in resistant starch 

content for raw rice36. The results obtained for the first trial were higher than the 

aforementioned range and the standard deviations were too high (Table 14). This raised 

the possibility of an incomplete hydrolysis of digestible starch or the possibility that the 

residue wasn’t properly washed during the centrifugation step. The sum of resistant starch 

and digestible starch yielded results lower than the ones obtained with the direct analysis 

of total starch (Table 13). 

 

Table 14 – First trial: resistant starch and digestible starch contents (DWB) obtained with the first 
methodology. 

Samples Resistant starch (%) Digestible starch (%) Sum (%) 

indica3 24.34±1.43 39.57±0.98 63.91 

indica6 19.21±1.92 34.88±1.18 54.09 

japonica1 24.20±0.61 26.27±0.81 50.47 

japonica2 28.48±2.52 30.74±0.79 59.22 

 

Therefore, the second trial included two modifications: reduction of the amount of 

sample used from 100 mg to 30 mg and increase in the reaction time of α-amylase from 24 

hours to 72 hours, since harsh conditions, as the ones tested in 5.1.1. can’t be used for the 

solubilisation of starch. It can be concluded, from the results seen in Table 15, that in the 

Residues 

Supernatants 
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first trial there was indeed contamination of the resistant starch with its digestible 

counterpart. The results obtained were considered good with really good standard 

deviations, despite being lower than the reported by Goñi et al. (1996)36. The sum of both 

starches didn’t yield values near those obtained for total starch. The use of the 24 hour 

reaction time with α-amylase was kept for the henceforth trials and the use of 30 mg of 

sample was kept until otherwise stated. 

 

Table 15 – Second trial: resistant starch and digestible starch contents (DWB) obtained with the first 
modifications of the first methodology. 

Samples Resistant starch (%) Digestible starch (%) Sum (%) 

indica3 5.57±0.05 63.92±0.42 69.39 

indica6 6.17±0.02 62.78±0.25 68.95 

japonica1 4.32±0.03 51.13±0.02 55.45 

japonica2 4.64±0.04 47.69±0.16 52.33 

 

The next trial tested if the results could be improved by increasing the dispersion 

time with potassium hydroxide from 30 minutes to 24 hours. As seen in Table 16, the 

content of resistant starch was, again, contaminated with digestible starch. Overall, the 

sums didn’t differ much between the first 3 trials, so another methodology was considered 

in an attempt to overcome the contamination problem. 

 

Table 16 – Third trial: resistant starch and digestible starch contents (DWB) obtained with the second 
modification of the first methodology. 

Samples Resistant starch (%) Digestible starch (%) Sum (%) 

indica3 24.54±0.21 37.24±0.41 61.78 

indica6 21.68±0.14 43.32±0.44 65.00 

japonica1 20.61±0.11 44.11±0.27 64.72 

japonica2 22.33±0.11 29.96±0.52 52.29 

 

The second methodology was still based on the first one, but took into consideration 

the Megazyme Resistant Starch Assay Procedure119 and the previously optimised 

procedure for the analysis of total starch (5.1.1.) (Scheme 5). 
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Scheme 5 – Simplified scheme of the second methodology tested, adapted from Goñi et al. (1996)36 and 
Megazyme Resistant Starch Assay Procedure119.  

 

The Megazyme Resistant Starch Assay Procedure119 solubilises the digestible starch 

by using an α-amylase together with an amyloglucosidase. This originates a supernatant 

wherein all the digestible starch is in the form of glucose, which in turn might help in the 

centrifugation step. The main problem with centrifuging samples only hydrolysed by α-

amylase is that this enzyme leaves behind oligosaccharides and dextrines with bigger 

molecular weight than glucose. Thus, it is possible that only glucose and less heavy 

oligosaccharides were removed with the supernatant, leaving behind the heavier products 

of the hydrolysis together with the residue. For that reason, the reaction with α-amylase 

followed by a reaction with amyloglucosidase for 24 hours was tested. Ethanol 50 % (v/v) 

was also used for washing the residue in triplicate during the centrifugation, as described 

in the Megazyme Kit119. Ethanol is commonly used for the extraction of sugars127 and, in 

fact, its use improved the removal of the supernatant by decantation since residues 

became less “fluffy” and settled easier at the bottom of the test tube, making it less likely 

to lose residue. As can be viewed in Table 17, the contamination of the residue was 

avoided and a good separation was achieved between resistant and digestible starch. 

However, the standard deviations were higher than before. It is safe to say that ethanol 
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didn’t influenced these results, since its content in the test tube is extremely low to cause 

amyloglucosidase denaturation125: after decantation of the ethanolic supernatant, 

potassium hydroxide is added followed by sodium acetate buffer. The reason for higher 

standard deviations could be the use of very small quantities of sample, which improves 

the chances of error. The sum of both starches was, just like in the first 3 trials, bellow the 

values yielded by the optimised procedure for total starch (Table 13) even with the second 

amyloglucosidase hydrolysis. However, due to the high content of ethanol in the 

supernatant the amyloglucosidase didn’t work properly during that last hydrolysis. It was 

then decided to remove the analysis of digestible starch from the procedure, and the 

supernatant was henceforth discarded. 

 

Table 17 – Fourth trial: resistant starch and digestible starch contents (DWB) obtained with the second 
methodology. 

Samples Resistant starch (%) Digestible starch (%) Sum (%) 

indica3 3.06±0.40 56.26±1.47 59.32 

indica6 8.48±2.23 47.27±0.77 55.75 

japonica1 3.05±0.17 56.22±0.44 59.27 

japonica2 5.14±1.13 55.68±1.67 60.82 

 

The fifth and last trial tested the use of 100 mg of sample, instead of the 30 mg, and 

the increase in the last reaction time of amyloglucosidase from 45 minutes to 24 hours, 

just like in the analysis of total starch. This increase lead to the decrease in the standard 

deviation (Table 18), when comparing with the previous trial. The standard deviations of 

the second trial were indeed even lower, but that might have happened due to using water 

to wash the residues. For this reason, the final procedure for analysis of resistant starch 

still requires that the residue is washed with ethanol 50 % (v/v), as can be viewed in 4.7. 

The obtained results are below the 15 % mentioned in the literature36. 
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Table 18 – Fifth trial: resistant starch content (DWB) obtained with the optimised methodology. 

Samples Resistant starch (%) 

indica3 1.38±0.07 

indica6 9.94±0.47 

japonica1 5.96±0.53 

japonica2 5.47±0.01 

 

It can be concluded that, just like for the analysis of total starch, solubilisation of 

digestible starch is one of the key aspects in ensuring a good separation of the digestible 

and resistant fractions. Additional attempts should be made to improve and simplify this 

laborious and lengthy procedure. 

 

5.2. Analysis of the Size Parameters 

The results obtained regarding the size parameters of the analysed samples are 

summarised in Chart 1. 

 

Chart 1 – Results obtained for the size parameters average length (mm), average width (mm) and length-
to-width ratio.  

 

The analysed samples varied quite a lot in the average length, with the shortest 

(japonica8) measuring just 4.977 mm and the lengthiest (indica10) measuring 7.252 mm. 

These measurements are quite characteristic of the samples’ type as japonica8 belongs to 

the round type and indica10 belongs to the agulha type. However, indica10 is a parboiled 

0.000

2.000

4.000

6.000

8.000

S
iz

e
 (m

m
)

Average length (mm) Average width (mm) Length-to-width ratio



 

Chapter 5 – Results and Discussion 

 

63 

 

sample and, as discussed in 2.4., parboiling can alter the grain’s size79, expanding it. The 

second lengthiest sample is indica1 (7.242 mm) which is an aromatic type rice, 

characteristic for  some of the lengthiest varieties42. As for average width, the samples 

range from 1.674 mm (indica1) to 2.714 mm (japonica6), which is also representative of 

their types: aromatic and risotto, a fairly wide type. The sample indica1 also has the highest 

L/W (4.326). However, the lowest ratio belongs to japonica5 (2.022), a sample belonging 

to the medium type. This sample is also the second shortest sample (5.353 mm). 

 

As described in 3.2., the Portuguese Decreto-Lei n.º 62/2000 defines rice grains 

according to their length, classifying them into four categories. According to these 

guidelines, the two parameters, length (in mm) and L/W, must be met. 

 The sample japonica8 only meets one of the parameters, by having a length of 4.977 

mm, which is inferior to 5.2 mm. However, its L/W is 2.080, which falls a little bit above the 

margin for the classification as a rice with round grains. Since this sample almost meets 

the last parameter, and no other classification is available, japonica8 is classified has 

having round grains. It is noteworthy that this sample has indeed the appearance of a 

round grain type rice. The samples japonica2, 3, 4, 5, 6, 7 and japonica9 are classified has 

having medium grains, and indeed most of them belong to the very similar types, at least 

in size terms, carolino, medium and risotto. The parboiled round rice (japonica9) falls into 

the medium classification, probably due to the parboiling it was subjected to79. The sample 

japonica1 (one of the carolino type samples) falls into the first category of long grains, 

which have a wider width than the long grains of the second category. The indica samples 

are, by exclusion, classified as having long grains of the second category. 

 

5.2.1. Correlations 

This and the henceforth correlation sub-chapters will be discussed based on the 

correlations considering all non-parboiled samples, unless otherwise stated. 

 

Between the L/W and both the length and width parameters very high correlations 

were obtained (+0.94 and -0.96, respectively) (Chart 2). When considering just the 
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japonica samples, without the parboiled samples, an only moderate correlation is obtained 

between L/W and average width (-0.65). 

 

Chart 2 – Positive and negative correlations between average length (mm) and length-to-width, and 
between width (in mm) and length-to-width ratio, respectively. 

 

A good negative correlation also exists between length and width (-0.83), which was 

also reported by Koutroubas et al. (2004)42. This is expected since longer grains tend to be 

the least wide. However, this correlation only occurs when considering all the samples at 

once, with or without parboiled samples. 

 

5.3. Analysis of the Whiteness Parameters 

Rice whiteness can be measured by four distinctive parameters: total whiteness, 

crystalline whiteness, Kett value and percentage of chalky area (Chart 3). 

 

Total whiteness values ranged from 95.33 (indica9) to 148.03 (japonica6), while 

crystalline whiteness had a maximum value of 124.65, corresponding to the sample 

japonica2, and a minimum value of 93.12, corresponding to indica9. As for Kett value, it 

varied from 20.4 (indica9) to 51.2 (japonica6). It is important to mention that the three 

lowest values of total whiteness and Kett belong to the parboiled samples indica9, indica10 

and japonica9 which have the characteristic yellow coloration of parboiled rice80 and are, 

therefore, less white. Similarly the parboiled samples also gave the lowest values for 

percentage of chalky area (2.75 % for indica9, 4.19 % for indica10 and 5.33 % for japonica9) 

which is a direct cause of parboiling45. The overall percentage of chalky area ranged from 
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2.75 % (indica9) to 40.69 % (japonica6) and the samples with highest percentages belong 

to japonica subspecies, as expected. 

 

Chart 3 – Results obtained for the parameters total whiteness, crystalline whiteness, Kett and chalky area 
(in percentage) 

 

5.3.1. Correlations 

A very high correlation was obtained between the total whiteness and the 

percentage of chalky area (+0.97) . Total whiteness also correlates highly with Kett (+0.89) 

which, in turn, correlates highly with the chalky area (+0.78).These correlations were 

expected since all three parameters represent a measurement of the visually perceptible 

whiteness of the grains. 

Total whiteness has a high positive correlation with crystalline whiteness (+0.83), 

when all samples are considered. However, this correlation is highly reduced (+0.18) when 

the parboiled samples are disregarded.  In fact, by looking at the values of total and 

crystalline whiteness it can be seen that its values are very close to the total whiteness 

values for all 3 parboiled samples. This means that the crystalline whiteness accounts for 

almost all of the total whiteness in parboiled rices. This could be an indication that the 

yellow coloration characteristic of parboiled rices80 is reflected in the total whiteness 

values. When comparing the correlation coefficients for parboiled and non-parboiled 

indica rices the correlation doesn’t subside (+0.86). This can only be justified by the 

yellower appearance that some of the agulha samples naturally have. In fact, Sério (2013), 
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also analysed samples provided by Novarroz, and reported the same slight yellow 

coloration for the agulha and medium types of rice121.  

Total whiteness also correlates with the average length, width and L/W (-0.60, +0.65 

and -0.62, respectively). Non-parboiled indica rices have a correlation coefficient of -0.66 

between total whiteness and average length, meaning that shorter grains will have a 

higher total whiteness. On the other hand, non-parboiled japonica rices have a correlation 

coefficient of +0.73 between total whiteness and the average width, meaning that the 

widest grains will have a higher total whiteness. In fact indica7 and indica8, the shortest of 

the indicas, and japonica6 and japonica7, the widest of the japonicas, have higher total 

whiteness values for their subspecies (135.26 and 134.08, 148.03 and 140.64, respectively). 

When the parboiled samples are considered, no correlation is found between the size 

parameters and total whiteness, which is consistent with the impact of parboiling on the 

visual aspect of the grains. 

Crystalline whiteness has a high positive correlation with Kett (+0.87) when 

considering all samples. Just like for the correlation between total whiteness and 

crystalline whiteness, this coefficient’s value is highly reduced (+0.41) when the parboiled 

samples are disregarded. For the indica subspecies an even higher correlation was found 

(+0.88 for all indicas and +0.97 for non-parboiled indicas). 

Between the percentage of chalky area and the crystalline whiteness exists a high 

positive correlation if all indica samples are considered (+0.81), i.e., chalkier indica samples 

will have a higher crystalline whiteness.  

The total whiteness, crystalline whiteness and Kett were found to correlate, 

positively but moderately, with the resistant starch content in the grain (+0.56, +0.68 and 

+0.63, respectively) when considering all samples, parboiled and non-parboiled. These 

correlations couldn’t be found when considering only the non-parboiled samples. This 

indicates that parboiled samples, which have lower values in all the whiteness parameters, 

are expected to also have a low resistant starch content. When considering the all the rices 

of the indica subspecies, high correlations were found between all the whiteness 

parameters and the resistant starch content (total whiteness, +0.79, crystalline whiteness, 

+0.78, Kett, +0.75, percentage of chalky area, +0.75). The same can be observed for 
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japonica rices, but with low to high correlations (+0.60, +0.61, +0.77 and +0.35 

respectively), which could be due to the existence of only one parboiled japonica amongst 

the analysed samples. If the parboiled samples aren’t considered, these correlations 

decrease. 

The Kett value also only moderately correlates with the size parameters (length -

0.54, width +0.54, L/W -0.54) and follows the same pattern of correlations as total 

whiteness: for non-parboiled indicas, a moderate correlation is found with average length 

(-0.63) and for non-parboiled japonicas, a correlation is found with the average width 

(+0.76). The correlations can no longer be found when the parboiled samples are 

considered. 

No correlation was found between crystalline whiteness and the size parameters 

when considering all the non-parboiled samples. However, a high correlation exists with 

the average length when considering the non-parboiled indica, non-parboiled japonica, 

and all the japonica (-0.83, +0.87 and +0.71, respectively). Indica samples have negative 

correlations, while japonica samples have positive correlations: this indicates that the 

expected crystalline value is highly dependent on the subspecies in question: for a shorter 

non-parboiled indica rice, a higher crystalline whiteness value is expected while for shorter 

parboiled and non-parboiled japonica rices a lower crystalline whiteness is expected. The 

last correlation also indicated that the only parboiled japonica sample included in this 

study has a total whiteness similar to that of the non-parboiled japonicas. 

The size parameters were also found to be moderately correlated with the chalky 

area (%) (length -0.56, width +0.62 and L/W -0.57). When looking at just the correlation 

coefficients for the non-parboiled japonica rices the average width is even more correlated 

with the chalky area (+0.74). This expected because, as it was mentioned in the state of 

the art, japonica rices tend to be chalkier42. This chalkiness is a consequence of their low 

amylose content and high content in short branched amylopectin, the latter being 

responsible for the bigger amorphous domain of this subspecies. The correlation isn’t as 

strong for the indica subspecies. In fact, the incidence of chalkiness in indica type grains is 

very low, being attributed to a defective development of the grain128. 
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5.4. Analysis of the Composition Parameters 

The first composition parameter to be analysed was the moisture content. This 

parameter is also defined in the Portuguese Decreto-Lei n.º 62/2000, which states that the 

maximum moisture percentage allowed in rice for human consumption is 14 %22. As can 

be seen in Chart 4, the range goes from 10.72 % (indica10) to 12.59 % (indica7) which is 

around the value described in the literature5 and below the 14 % defined by Portuguese 

law22. Amongst the samples, it is possible to observe that japonica samples tend to have 

the highest moisture content probably due to the grain’s shape. 

 

All of the following composition parameters have been converted into dry weight 

basis (DWB) to allow an easier comparison. 

 

Chart 4 – Percentages obtained for the grain composition parameters moisture and protein (DWB). 

 

Protein content ranged from 6.87±0.24 (japonica6) to 10.85±0.80 (indica1) indicating 

a medium content of protein amongst the analysed samples. In 1979, a protein content of 

6 to 8 %  was reported in 31 samples of Portuguese rices, with an average of 6.8 %54. This 

years’ average was 8.48 %, considering all samples, and 8.42 % considering only the non-

parboiled samples. The parboiled samples had a protein content higher than the averaged, 

therefore their non-parboiled counterparts would be expected to have an even higher 

protein content.73 
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Chart 5 – Percentages obtained for the grain composition parameter total starch (DWB). 

 

The lowest total starch content (Chart 5) was found in the sample indica3, with 

70.46±0.34 %, and the highest in japonica3, with 81.21±0.64 %. Overall, the standard 

deviations obtained with the optimised method were good, but some samples had higher 

standard deviations. This possibility has been reported123 and thus, a significance level of 

90 % was used for the statistical analysis, instead of the customary 95 %. The overall total 

starch average the 75 % (in DWB) mentioned in the literature23. One reason for this 

difference could be that a lower degree of milling was performed on the samples. If this 

was the case, the grains will not only have a lower total starch content, but also have a 

higher protein content5, 20. 

A wide range of resistant starch values was obtained, as can be seen in Chart 6, with 

the highest belonging to the sample indica6 (9.94±0.47 %) and the three lowest belonging 

to the parboiled samples indica9, indica10 and japonica 9 (0.53±0.01 %, 1.62±0.17 and 

0.27±0.00 %, respectively). The obtained values do reach the range reported in  the 

literature36 of 5-15 % but are also lower, even in non-parboiled samples, which average 

5.82 %. The extremely low resistant starch values of the parboiled samples could be a 

consequence of the parboiling process during which amylose is leached from the grain, 

thus, less amylose will remain on the grain to retrograde59, 82. The standard deviations 

obtained were considered good, although some samples had a higher values. 
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Chart 6 – Percentages obtained for the grain composition parameters resistant starch and apparent 
amylose (in DWB). 

 

Amylose content in the analysed samples ranged from 10.30±0.63 % (japonica7) to 

26.50±0.46 % (indica9). These values were obtained using the calibration curve obtained 

with the apparent amylose standards (y = 0.013x + 0.077, R2 of 0.998). The samples can be 

divided into the three categories mentioned in 2.3.1.2.: five samples can be classified has 

having high content (indica3, indica4, indica6, indica8 and indica9), three as having an 

intermediate content (indica1, indica7 and indica10) and the remaining (indica2, indica5, 

and all japonicas) as having low content of apparent amylose, which is coherent with the 

literature3, 35. 

 

In Chart 7, Chart 8 and Chart 9 it is possible to observe the ratios between the 4 

composition parameters analysed. 

The protein-to-total-starch ratio (P/TS) doesn’t vary much between samples but, 

higher ratios can be observed for indica1 and indica3, while lower ratios exist for japonica2, 

japonica3 and japonica6. This shows that there is a differentiating trend between indica 

and japonica subspecies, just like Koutroubas et al. (2004) observed for indica and japonica 

samples42. 
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Chart 7 – Ratios between protein, resistant starch and apparent amylose with total starch (P/TS, RS/TS and 
AA/TS, respectively). 

 

By considering the resistant-starch-to-total-starch ratio (RS/TS) lower ratios can be 

observed for the parboiled samples (indica9, indica10 and japonica9), probably as a 

consequence of the parboiling. However, a low ratio is also observed for the non-parboiled 

sample indica3. The highest ratios were found for indica6 and indica7. 

The apparent-amylose-to-total-starch ratio (AA/TS) ratio also has a wide range of 

values with the lowest belonging to japonica7, indica2, indica5, japonica3 and japonica9 and 

the highest belonging to indica3, indica4, indica6, indica9 and indica10. This shows that the 

indica subspecies is characterised for having higher ratios of amylose in relation with total 

starch3, 31. 

 

Chart 8 – Ratios between protein and resistant starch with apparent amylose (P/AA and RS/AA, 
respectively). 
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The ratio of protein-to-apparent-amylose (P/AA) also shows a wide range of values, 

with the lowest belonging to indica4 and the highest to japonica7. This relation could be 

indicative of the complexation between amylose and proteins. 

The ratio of resistant-starch-to-apparent-amylose (RS/AA) varies quite differently 

between samples and a clear trend isn’t visible: some samples, like the non-parboiled 

indica3, and the parboiled indica9, indica10, japonica9, have a higher ratio, while samples 

like indica2, indica5, indica7 and japonica7 have lower ratios.   

 

Chart 9 – Ratio between protein and resistant starch (P/RS). 

 

Finally, the ratio that had the widest range of all was the protein-to-resistant-starch 

(P/RS), ranging from low ratios for most samples, and really high ratios for two of the 

parboiled samples: indica9 and japonica9. This is suggests the influence of parboiling on 

the content of resistant starch and/or protein denaturation40, 73. 

 

5.4.1. Correlations 

The average length was found to be negatively correlated with the moisture content 

(-0.50). This is a consequence of the grain’s chalkiness: the higher the percentage of chalky 

area, higher will be the water absorption by the grain43, even in the case of the atmospheric 

moisture. 
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For parboiled and non-parboiled japonica rices, the moisture content has been found 

to be negatively correlated with the total whiteness (-0.60 and -0.55, respectively) and 

with the percentage in chalky area (-0.61 and -0.53, respectively). This means that japonica 

rices with a lower moisture content have a higher total whiteness and are chalkier, which 

is coherent with the literature: a lower moisture content signifies that more air spaces will 

exist in between the starch granules, increasing the white opaque look of the grains also 

known as chalkiness45. 

Oko et al. (2012) reported a negative correlation between carbohydrate content and 

moisture content5 so it should be expected that a correlation between total starch and 

moisture content would be observable. However, little to no correlation was found. 

A moderate correlation has been obtained between the protein content and the 

parameters average width and L/W (-0.62 and +0.58, respectively). This indicates that 

thinner rices, such as the ones belonging to the indica subspecies, have a higher protein 

content. This has also been reported by Koutroubas et al. (2004)42. If the correlations 

regarding only indicas are examined, it is possible to see that the correlation coefficients 

obtained are even higher (-0.90 and +0.71, respectively). No such correlation can be found 

for japonica rices. When the parboiled samples are considered, the correlations aren’t as 

strong, indicating the protein denaturation that these rices suffer during their 

processing73.  

Considering non-parboiled indica rices, a moderate correlation (+0.52) exists 

between protein content and the percentage of chalky area. This indicates that protein 

might be related with the occurrence of chalkiness in non-parboiled indica grains, probably 

interfering with the starch structure and increasing the amount of loose-packed 

granules45. An opposite observation can be made for non-parboiled japonica rices, since 

the correlation coefficient is negative (-0.56). For japonica rices, all and non-parboiled, 

protein is also correlated with Kett (-0.66 and -0.63, respectively). 

A low, almost moderate correlation can be found between the protein content and 

the apparent amylose content (+0.48), indicating the relation showed by the P/AA40. 
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Total starch has moderate correlations with total whiteness, crystalline whiteness 

and Kett, if only the non-parboiled indica samples are considered (+0.59, +0.54 and +0.60, 

respectively).  

Resistant starch content was found as being moderately correlated with the average 

width and L/W of non-parboiled japonica rices (-0.60 and +0.62, respectively). This can only 

be justified by what was mentioned in the state of the art: waxy rices (low amylose 

content) were reported as having higher degrees of crystalisation, i.e., higher degrees of 

retrogradation47. However, no correlation was found between amylose content and 

resistant starch. 

The size parameters also correlate, although only moderately, with the apparent 

amylose content in the grain (+0.55, for average length, -0.63, for average width, and 

+0.62, for L/W). This has also been verified by Koutroubas et al. (2004) and signifies that, 

the longer or narrower the grain, the higher the apparent amylose content. According to 

these results, samples belonging to the japonica subspecies are expected to have lower 

apparent amylose contents, while indica samples will have higher contents42. 

Calixo et al. (1991) reported a direct association between amylose content and the 

formation of retrograded starch, one of the fractions that compose resistant starch.31 

Several other studies37, 51, 129 reported that higher amylose contents are correlated with a 

high resistant starch content. However, no such correlations were found in this report 

when considering all samples, or the indica and japonica subspecies separately. 

Orford et al. (1987) reported that, at lower starch concentrations amylose 

retrogradation is favoured.130 Therefore, the total starch content should be negatively 

correlated with the resistant starch content. However, the opposite was verified when 

considering the non-parboiled indica samples (+0.56). No correlation was found when 

considering all samples or only the japonica samples.  
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5.5 Analysis of the Cooking Parameters 

 

5.5.1. Analysis of the Ordinary Cooking Time 

The ordinary cooking times obtained for the analysed samples are summarised in 

Chart 10. 

 

Chart 10 – Times (in minutes) obtained for the ordinary cooking time (80 % of cooked rice). 

 

Sério (2013) calculated the ordinary cooking time for a final 90 % of grains cooked 

because it’s at this percentage of cooking that the consumers are able to visually 

understand when the rice is ready to eat.121 However, for this report 80 % was chosen 

instead of the 90 % in order to get a good margin to prevent the overcooking of rice. 

Another alteration was made in the calculations made: a median of the three cooking 

replicas was made instead of the average. The median has the advantage of not being 

influenced by any outlier values that can occur with such methodologies131. 

A wide range of ordinary cooking times (considering rice 80 % cooked) were 

obtained. The lowest value corresponds to the sample indica1 which has the lengthiest and 

narrower grains of all the analysed samples. This time is characteristic of some aromatic 

rices with the mentioned characteristics54. The longest time belongs to the parboiled 

sample japonica9, taking 37.66 minutes. As mentioned, parboiling may increase the 

cooking times16. The second longest ordinary cooking time also belongs to another 
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parboiled sample (indica10) which takes 27.57 minutes to be 80 % cooked. The third 

longest time corresponds to the non-parboiled sample japonica2 (26.56 minutes). This 

sample has a higher cooking time than the reported range for milled rices (15-25 minutes 

considering 100 % of cooked rice). This higher time could be a consequence of a lower 

milling degree5, 20 or of a more compact starch structure. In fact, this sample has the 

highest crystalline whiteness of all (124.65). As the sample indica1 is the fastest to cook, it 

would be expected to have a low apparent amylose content. However, that is not the case 

(22.98±1.55 %). One justification for this could be the shape of the grains: this sample has 

the lengthiest, narrowest grains and the highest L/W amongst all the analysed samples. 

Therefore, the water absorption by this grain will be easier due to the bigger surface area 

of the grain and a reduced distance between the surface and the centre of the grain.43 

 

5.5.1.1. Correlations 

The ordinary cooking time for 80 % of cooked grains was found to be moderately 

correlated with the protein and total starch content (-0.51 and +0.50, respectively). This is 

coherent with the literature, as protein hinders the water absorption during cooking, 

therefore increasing the cooking time required57. 

When considering only the non-parboiled indica samples, more correlations were 

found: the ordinary cooking time was found to correlate with length (-0.67), width (+0.50), 

L/W (-0.71), crystalline whiteness (+0.64), Kett (+0.50) and resistant starch (+0.69). The 

correlation with the size parameters indicates that shorter and wider grains will require a 

longer cooking time due to their lower surface area and higher distance between the 

surface and the centre of the grain43, 88. The resistant starch, just like protein, hinders the 

water absorption, therefore longer cooking times are required for higher resistant starch 

contents43. 

Considering the non-parboiled japonica samples, contrary correlations are found 

with the length and L/W (+0.55 and +0.53, respectively). A correlation between the 

ordinary cooking time and moisture, protein and total starch contents were also found (-

0.59. -0.59 and +0.63, respectively). As discussed in the state of art, a higher protein 
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content hinders starch swelling and water absorption, and consequently prolonging the 

cooking time. 

If all the japonica samples are considered, a correlation with the resistant starch is 

found (-0.64). This signifies that lower resistant starch contents are responsible for longer 

cooking times. However, it must be noted that the resistant starch content of the japonica 

samples analysed only varies from 0.27 % until 5.96 %, a value that is half of the values 

obtained for some of the indica samples. Still considering all the japonica samples, the 

ordinary cooking time is found to correlate with the total whiteness (-0.64) and with the 

Kett value (-0.78), meaning that samples with a whiter appearance will require shorted 

cooking times. 

 

5.5.2. Analysis of the Solids in the Drained Pre-cooking Water 

The percentages of solids in the drained pre-cooking waters have been summarised 

in Chart 11. 

The maximum percentages of solids obtained for both drained pre-cooking times, 

10 and 13 minutes, belong to the parboiled sample japonica9 (2.68±0.11 and 2.27±0.01, 

respectively). The second and third highest percentages were obtained for the other two 

parboiled samples, indica9 (2.01±0.10 % and 1.79±0.03 %, respectively) and indica10 

(2.00±0.17 % and 1.61±0.12 %, respectively). The highest percentages considering only 

non-parboiled samples are 1.77±0.26 % (indica8) for the 10 minute pre-cooking and 

1.04±0.29 % (indica6) for the 13 minute pre-cooking. The minimum percentages obtained 

for both pre-cooking times belong to the sample indica1 (0.98±0.06 and 0.03±0.01, 

respectively). This sample was also analysed for the pre-cooking time 7 minutes. With the 

increase in pre-cooking time, a decrease of solids in the drained water can be observed for 

all samples. The reduction between the 10 and the 13 minute pre-cooking time occurs for 

all the samples, varying from 0.22 to 1.71. This goes against the findings by Tamura et al. 

(2014), which reported that the quantity of leached solids increases with temperature and 

cooking time132. However, the methodology used was different: it must be noted that, at 

13 minutes of pre-cooking, almost no water is left to be drained, and therefore, most of 

the solids that did in fact leach into the cooking water will sticky to the rice grains. 
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Chart 11 – Percentages of solids in the drained pre-cooking water for 7, 10 and 13 minutes of pre-cooking. 

 

5.5.2.1. Correlations 

The average length, average width and L/W, considering the non-parboiled indica 

samples, were found to be  highly to moderately correlated with the percentage of solids 

in the drained pre-cooking water for the 10 minute pre-cooking time (-0.75, +0.58 and -

0.76, respectively). If the non-parboiled japonica samples are considered, then the size 

parameters correlate with the pre-cooking time of 13 minutes (-0.43, +0.52 and -0.67, 

respectively). Just like before, this is a consequence of the grains’ shape but it indicates 

that japonica samples will tend to have a higher leaching with higher cooking times and 

that indica samples start to leach their components earlier in the cooking process. 

When all samples are considered, the parameters total whiteness, crystalline 

whiteness, Kett and percentage of chalky area were found to correlate highly to 

moderately with the percentage of solids in the drained 13 minute pre-cooking water (-

0.77, -0.76, -0.86 and -0.56, respectively). The correlation with the 10 minutes of pre-

cooking is lower (-0.53, -0.46, -0.60 and -0.41, respectively). However, if only the non-

parboiled samples are considered, these correlations are no longer observable, meaning 

that these correlations are a consequence of the behaviour of the parboiled samples: 

parboiled samples with higher values (for either one of the four whiteness parameters) will 

have a lower leaching during the pre-cooking with 13 minutes. If all indica or japonica 

samples are considered, high correlations are found between the total whiteness (-0.84 
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and -0.71), crystalline whiteness (-0.83 and -0.73), Kett (-0.84 and 0.89), chalky area (-0.73 

and -0.47) and the percentage of solids in the drained 13 minute pre-cooking. For the same 

japonica samples, the total whiteness and Kett have even higher correlation coefficients 

with the percentage of solids in the drained 10 minute pre-cooking water (-0.82 and -0.91, 

respectively). However, these correlations decrease when only the non-parboiled japonica 

samples are considered, indicating that, for parboiled samples, the higher the total 

whiteness or Kett, the higher percentage of solids will occur for the drained 10 minute pre-

cooking waters. The correlation between for the chalky area mentioned indicates that 

non-parboiled japonica samples with higher percentages in chalky area will have a higher 

percentage of leaching. 

When considering the all the non-parboiled and non-parboiled indica samples, the 

resistant starch content is found to be highly correlated with the percentage of solids in 

the drained 13 minute pre-cooking waters (+0.70 and +0.79, respectively). For non-

parboiled indicas a moderate correlation is also found with the solids in the drained 10 

minute pre-cooking waters (+0.52). For the latter, a correlation with protein content is also 

found (-0.60). A negative correlation occurs when considering all the japonica samples, 

correlating with both the 10 and 13 minute pre-cooking waters (-0.79 and -0.88, 

respectively). However, these correlations are no longer found when considering only the 

non-parboiled japonica samples, indicating that the percentage of solids for parboiled 

japonicas increases with the decrease in the resistant starch content of the samples. 

A moderate but positive correlation is found between the solids of the 13 minute pre-

cooking waters and the apparent amylose content (+0.57), which might be indicating what 

has been reported by Juliano (1979): since amylose is more soluble in boiling water than 

amylopectin, the solids in the drained cooking water have the tendency of being lower for 

low-amylose rices than for high-amylose rices. In other words, japonica samples have a 

lower tendency to suffer leaching than indica samples.83 However this isn’t’ entirely true, 

since japonica rices are more sticky, it is harder to properly drain the leftover water, leaving 

the solids stuck around the cooked grains. 

The ordinary cooking time also correlates highly and positively with the percentage 

of solids in the 10 and 13 minute pre-cooking waters (+0.80 and +0.71, respectively) when 



 

Chapter 5 – Results and Discussion 

80 

 

all samples are considered. However, no correlation is found when considering all non-

parboiled samples. This indicates that the higher the ordinary cooking time of the 

parboiled samples, the higher the solid percentages will be on any of the pre-cooking 

waters. Oko et al. (2012) also reported positive, but moderate, correlations between these 

two parameters86. 

Lastly, the percentages of solids correlate with each other (+0.74) only when all 

samples are considered. 

 

5.5.3. Post-cooking Using a Microwave Oven or Steam 

Before analysing the data, some observations must be noted. 

 

Three different pre-cooking times were tested, the main being the 10 minute pre-

cooking time. However, the sample indica1 had already an ordinary cooking time so short 

that an adaptation for a 7 minute pre-cooking was tested just for that sample. The 13 

minute pre-cooking time with post-cooking using a microwave oven lacks the cooking 

time for two samples: indica1 wasn’t analysed because, due to its short ordinary cooking 

time, it couldn’t be successfully analysed with a pre-cooking time of 13 minutes; indica3 

was a sample of limited quantity.  

Another important note is regarding the designations used in the Registry of 

observations from the post-cooking analysis (Appendix B). Many different expressions 

can be found throughout the literature so a clarification of the chosen words is given for 

the present report. The first classification designates if the cooked grains are “opened” or 

“closed”. “Opened” grains, as can be seen in Figure 14 (left), maintain their raw shape, 

while “closed” grains experience, with more or less extent, a division of the grain (Figure 

14 centre). It is common for a sample to have both types of grains, however, the sample 

was classified as having “closed grains” only when all the observable grains were indeed 

“closed”. The proportion of “opened” and “closed” grains wasn’t registered as this would 

require a more time consuming statistical registry and less time would be available to 

analyse as much rice types as the ones considered for this report. As an alternative, a 

photographic registry was made and was given to the quality control laboratory at 
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Novarroz for future reference. The second classification designates if the cooked grains 

are “non-sticky”, “sticky” or “mushy-prone”. “Non-sticky” is used to describe cooked 

grains that don’t clump together, i.e. remain separate and don’t have a viscous feel. In the 

literature the words “fluffy”, “flaky” or “dry”133 are sometimes used instead of “non-sticky”. 

“Sticky” is used to describe the opposite of “non-sticky”, i.e., the cooked grains clump 

together with the help of the residual viscous water that remains on their surface. The 

literature also describes these grains as “clingy” or “moist”133. The last designation, 

“mushy-prone”, is used to describe cooked grains that that have disintegrated, i.e. lost 

their shape and are no longer differentiable from the surrounding grains (Figure 14 right). 

This designation also implies that the grains are also “opened”. 

 

Figure 14 – Appearance of the grains and the corresponding designation used for its description: closed 
and non-sticky (left), opened and sticky (centre), opened, sticky and mushy-prone (right). 

 

A key difference was noticed between post-cooking with a microwave oven and 

post-cooking with steam: the microwaves allows a homogenised cooking, while for steam 

it is essential that the rice is thoroughly mixed from time to time to allow the steam to 

reach all the grains in the sample and to prevent a final “mushy-prone” cooked rice. It is 

also important to note that, since the pre-cooked rice samples are used frozen, some 

extent of retrogradation is expected. This could be responsible for a higher overall cooking 

time. The frozen samples must always be heated for the same initial time in order to 

defrost. When using the microwave oven, the defrost time was of 3 minutes (in 300 watts) 

and when using steam, it was of 10 minutes. Finally, when using the microwave oven at 

300 watts, a maximum of 11 minutes can be used to cook the samples. After this time the 

cooked grains become extremely dry and unappealing for consumption. 
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Initially, several different powers and water volumes were tested for the post-

cooking analysis using a microwave oven. The powers tested were 100, 300, 450 and 800 

watts. The same rice sample (japonica8 pre-cooked for 10 minutes) was used throughout 

all the tests with or without 1 part of distilled water. By using the microwave with 800 watts 

without additional water, rice was found to become mushy and dry in 3 minutes. The same 

was observed when 1 part of water was used. By reducing the power for 450 watts, the rice 

took 2 more minutes, without water, and 3 more minutes with water, to reach a “mushy” 

and dry appearance. None of these tests allowed the required separation of the 20 grains 

for the assessment of the cooking time. Distilled water was henceforth added as a 1 part 

volume. Higher water volumes weren’t considered because the samples had already 

absorbed water during the pre-cooking stage, and an excess of water increases the 

tendency of rice becoming “mushy”. Next, the 100 watts were tested but the required time 

for cooking the sample japonica8 reached 25 minutes. This time was too long, so the power 

was increased for 300 watts. This way, the cooking time of 6.57 minutes for a 10 minute 

pre-cooking was achieved. 

 

The post-cooking times using a microwave oven obtained for the analysed samples 

are summarised in Chart 12. 

As mentioned, the sample indica1 was the only analysed for the 7 and 10 minutes of 

pre-cooking. The required post-cooking times for this sample were 5.73 and 4.21 minutes, 

respectively: an increase of 3 minutes in the pre-cooking time decreased the post-cooking 

time by 1.52 minutes. The cooked grains didn’t differ in appearance between the two pre-

cooking times tested, remaining “opened” and “sticky”. However, the water that was 

added at the beginning of the post-cooking wasn’t fully absorbed for the 10 minutes of 

pre-cooking but was fully absorbed for the 7 minutes. It is possible to conclude that the 

limit of absorption for indica1 was exceeded for the 10 minutes of pre-cooking. A similar 

situation occurred for the sample indica2 between the 10 and 13 minutes of pre-cooking. 

The opposite situation was also observed, i.e., incomplete water absorption for the 10 

minutes of pre-cooking and complete water absorption for the 13 minutes of pre-cooking. 

This can be justified by the differences inherent to the samples’ grains, i.e., the portion 
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used for the first post-cooking could have a lower percentage of chalky grains than the 

second post-cooking. Another situation was observed: incomplete water absorption for 

both the pre-cooking times tested. This happened for the parboiled sample indica9, and 

these observations are coherent with the difficulty of absorbing water that parboiled 

samples, especially the parboiled agulhas, have.  

 

Chart 12 – Times (in minutes) obtained for the microwave post-cooking for 7, 10 and 13 minutes of pre-
cooking (80 % of cooked rice). 

 

For the 10 minutes of pre-cooking, the highest post-cooking time belongs to the 

sample indica7 (8.29 minutes) and the shortest to indica1 (4.21 minutes). The cooked 

appearance of the grains for both of these samples was “opened” and “sticky”. The sample 

indica3 should be highlighted due to its cooked appearance: disregarding the parboiled 

samples, this was the sample with the most “non-sticky” grains of all the samples (Figure 

15). This sample also stands out from the remaining non-parboiled indica samples by 

having the lowest crystalline whiteness (117.86), percentage of chalky area (9.56 %), total 

starch (70.46±0.34 %), resistant starch (1.38±0.07 %), the third highest amylose content 

(25.94±0.89 %) and the second highest protein content (10.19±0.24 %). When re-analysing 

the ratios provided in Chart 7, Chart 8 and Chart 9, it was observed that this sample had 

the lowest P/TS, RS/TS, RS/AA, and the highest AA/TS and P/RS. The composition of this 

sample could be a clue to finding more non-parboiled varieties that have “closed” and very 

“non-sticky” cooked grains. Some of the samples weren’t able to cook with this 
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methodology (indica6, indica10, japonica2, japonica3 and japonica9). Observing these 

post-cooking times, side by side with the ordinary cooking times, it can be seen that all of 

those samples require more than 20 minutes to cook through the ordinary boiling method. 

However, it should be noted that indica8 and indica9 also have cooking times of about 20 

minutes, but don’t correspond to the highest post-cooking times (for the 10 minute test). 

Both of these samples have significantly similar protein contents (8.91±1.02 and 

8.94±0.61, respectively) but all other parameters differ between the two. 

 

Figure 15 – Example of the photographic registry performed the post-cooking samples. Sample 
represented: indica3. 

 

For the 13 minutes of pre-cooking, the highest post-cooking time belongs to the 

sample indica4 (6.93 minutes) and the shortest to japonica4 (4.21 minutes). The required 

cooking time decreased within the range of o.64-2.22 minutes. Again, no specific trend 

can be observed for this pre-cooking time. It should be noted that the sample japonica7 

had an increase in the required cooking time. No possible explanation could be found for 

this behaviour, other than that each replica cooked has its own set of grains. The same 

samples that weren’t able to cook with 10 minutes of pre-cooking still didn’t cook when 

the pre-cooking time was increased. Holm et al. (1988) has reported that, in many starchy 

foods, a portion of residual starch is not fully gelatinised during processing, usually due to 

limited water content or insufficient heating.52 In this case, it is safe to rule out insufficient 

heating, as the main problem with microwave cooking is the water content present in or 

around the food. Therefore, it is possible to conclude that, for the varieties that didn’t 

reach optimal cooking, two changes could be applied to the cooking process: either 
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increase the volume of water added at the beginning of the post-cooking step, or increase 

the pre-cooking time, which allows more time for the rice to absorb the pre-cooking water. 

The increase of the water ratio was tested for one of these samples (japonica3) with poor 

results: due to the excess of water, the grains became extremely “mushy” impeding the 

separation of the 20 grains required assessment of the cooking time (Figure 16). However, 

the increase in the pre-cooking time doesn’t seem to be the reason since for most of the 

samples almost all of the pre-cooking water was absorbed.  

 

Figure 16 – Appearance of the sample japonica3 with 13 minutes of pre-cooking after cooking for 5 minutes 
in the microwave oven with a volume of water equal to two parts. 

 

The post-cooking times using steam obtained for the analysed samples are 

summarised in Chart 13. 

 

Chart 13 – Times (in minutes) obtained for the steam post-cooking for 7 and 10 minutes of pre-cooking (80 
% of cooked rice). 

 

Again, the sample indica7 was the only sample analysed for the 7 and 10 minutes of 

pre-cooking. However, the post-cooking time increased from 19.48 to 20.95 minutes. The 
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major difficulty of this post-cooking process is the wide range of nucleus obtained for a 

certain time. In other words, a higher number of outliers is obtained due to the non-

homogeneous cooking, making this post-cooking process not as precise as when using a 

microwave oven. 

For the 10 minutes of pre-cooking the post-cooking times varied from 14.07 minutes 

(indica3) to 34.10 minutes (indica10). The cooked grains’ appearance was, respectively, 

“closed” and “sticky”, and “opened” and “non-sticky”. 

Some samples can be distinguished as far as the cooked grains’ appearance. All 

parboiled samples had “non-sticky” grains while all the non-parboiled japonica samples 

had “sticky” grains. For the steam post-cooking, half of the japonica sample grains became 

“mushy-prone” while for the microwave cooking no such behaviour was observed 

(japonica3, japonica5, japonica6 and japonica8). This is a consequence of the direct steam 

on the grains, which cause a higher leaching of the amylose, increasing the grains’ 

tendency to disintegrate. As for the indica rices, the “mushy-prone” appearance was also 

observed for the steam post-cooking (indica5 and indica6). The sample indica5 cooked as 

“sticky” for both the pre-cooking times tested in the microwave, but the sample indica6 

was one of the samples that didn’t cook in the microwave. One indica sample, the indica8, 

cooked to a “mushy-prone” appearance when pre-cooked for 10 minutes followed by post-

cooking in the microwave. However, the sample didn’t appear “mushy-prone” when the 

highest pre-cooking time was used. No possible explanation could be found for this 

behaviour, other than that each replica cooked has its own set of grains. 

 

5.5.3.1. Correlations 

Regarding the 10 minutes of pre-cooking time, the post-cooking time using the 

microwave oven is correlated with the resistant starch content (+0.63), with the ordinary 

cooking time (+0.88) and with the 13 minute pre-cooking time using a microwave oven 

(+0.75). When only the non-parboiled indica samples are considered, the correlation with 

the resistant starch content increases (+0.76), but if non-parboiled japonica samples are 

considered, the correlation coefficient decreases (+0.51). This indicates that the higher 
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resistant starch content of the indica samples directly influences the post-cooking time 

using a microwave and a 10 minute pre-cooking time. 

Regarding the 13 minutes of pre-cooking time, the post-cooking time using the 

microwave is highly correlated with resistant starch (+0.62), amylose content (+0.71), 

ordinary cooking time (+0.61), with the solids drained for the same pre-cooking time 

(+0.66) and with the post-cooking time using steam with a 10 minute pre-cooking time 

(+0.64). The correlation with amylose content may be justified because, with the pre-

cooking time of 13 minutes almost no water is left behind by the rice, therefore, the solids, 

which are mainly composed by amylose, remain stuck at the surface of the rice grains, 

covering them and are frozen together with the samples, and will therefore influence the 

post-cooking time. Oko et al. (2012) reported a negative correlation between amylose 

content and stickiness86. In fact, in the Registry of observations from the post-cooking 

analysis (Appendix B) it is possible to observe that all non-parboiled japonica varieties 

were classified as being “sticky” or “mushy-prone” after all the post-cooking processes.  

Regarding the 10 minutes of pre-cooking time, the post-cooking time using steam is 

only moderately correlated with the ordinary cooking time (+0.59). A low correlation can 

also be found with resistant starch (+0.45). This correlation coefficient increases if only 

non-parboiled indica rices are considered (+0.73) as these samples were found to have 

higher resistant starch contents. 

 

5.5.4. Comparison of the Cooking Methods 

Between the ordinary cooking time and the steam post-cooking time (10 minutes 

pre-cooking), considering the 10 minutes of pre-cooking, all samples were found to require 

longer cooking times. Besides this expensive and time consuming disadvantage, there is a 

higher tendency for the disintegration of the grains, resulting in a “mushy”, “sticky” and 

unappealing rice. 

Between the ordinary cooking time and the microwave post-cooking time (10 

minutes pre-cooking) the biggest increase in the cooking time is obtained for the sample 

indica1 while the biggest decreases are obtained for indica8 and indica9. However, when 

considering the 13 minutes of pre-cooking there is an overall increase in the cooking times 
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required, with the exception that the samples indica8 and indica9 still had a reduction in 

the cooking time. 

As for the 7 minutes of pre-cooking, for both post-cooking methods, an increase in 

the cooking time occurs.  

In can be concluded that the only method viable for cooking rice with a two-step 

cooking procedure is the use of a microwave oven. However, there are visible differences 

between using 10 or 13 minutes of pre-cooking, the best being the 10 minutes. One 

possible reason why the 10 minutes of pre-cooking is slightly faster may be due to the 

draining step performed between the pre- and post-cooking stages: as it was explained 

earlier, after 13 minutes there is almost no water left to drain and the solids (mainly 

amylose) which leached throughout the pre-cooking step will remain on top of the grains’ 

surface, increasing the cooking time required. Since a low amylose content has been 

reported as a factor contributing to lower cooking times24, 47-48, 85, then it is expected that 

the 10 minutes of pre-cooking, by enabling a lower amylose content in the overall sample, 

allows shorter cooking times. One possible alteration that could provide faster overall 

cooking times with the 13 minutes of pre-cooking would be to use a larger quantity of 

water in the pre-cooking step. This would prevent the amylose accumulation on the grains’ 

surface. However, with this change another consideration must be made: the use of a 

higher quantity of water could decrease the quality of the final product by loss of the 

nutrients present in the pre-cooking water, which is discarded. 
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A methodology for the analysis of total starch content and of resistant starch in raw 

rice samples was achieved. However, further efforts should be made to improve these 

methodologies in order to simplify their use and obtain better results. 

An extensive sample characterisation was made in this report and it is hoped that 

these results will allow Novarroz to gain more insight regarding the varieties 

commercialised. Differences were found between non-parboiled indica, non-parboiled 

japonica samples and parboiled samples: indica varieties were characterised for being 

lengthier, slimmer and having higher protein contents while japonica were characterised 

for their shorter and wider grains and also for their lower apparent amylose content. 

Parboiled samples had lower whiteness values, which is expected due to their yellow 

appearance and contained an extremely low resistant starch content. The latter wasn’t 

expected since parboiling is known to promote starch retrogradation. Strong correlations 

were also found between the parameters considered for their characterisation. The 

analysis of the composition of these samples also allowed a better understanding of the 

components influence in the samples’ cooking and eating quality. New methods of rice 

cooking were created for this report, using microwave and steam, and were used to access 

the samples’ cooking time and appearance. A classification of the rice’s appearance was 

also established and it is hoped that it is simple enough that future interns can use it after 

being familiarised with rice behaviour during cooking. The microwave and steam methods 

may, in the future, require some modifications depending on the equipments and 

apparatus used. However, it is also hoped that this report will make such adaptation easier. 

Between the three cooking methods, using the 10 minute pre-cooking together with a 

microwave oven post-cooking proved to be the fastest way of cooking rice of all types, 

when disregarding the pre-cooking times. A possible way of reducing even further the 

post-cooking times would be to use excess water together with higher pre-cooking times 

in order to prevent the amylose accumulation on the grains’ surface. The sample indica3 

cooked with this method was highlighted as having the most “non-sticky” cooked grains 

and its whiteness and composition parameters could be a clue to finding other rice 

varieties that have a similar cooking behaviour. Some rice types appear more adequate for 

cooking with the tested methods than others, but further studies are needed in order to 
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access if the varieties used are representative or not of those types. Also, a more balanced 

selection of samples should be used in further studies, i.e., equal number of samples within 

each rice type. 

In the future, the different cooked samples should be analysed throughout the pre-

cooking and post-cooking processes to check the variations in composition, in an attempt 

to better understand rice cooking and eating quality. A more extensive characterisation of 

the samples regarding their composition should also be made. One parameter that could 

help to further understand the cooking behaviour of rice is its lipid content or the degree 

of crystallisation of starch. 

With this internship I acquired irreplaceable work experience in the industrial food 

sector,   which I consider to be a very valuable complement to my academic studies.    The 

internships established between the university and companies, such as Novarroz, enable 

students to contact with the entrepreneurial environment, getting an insight that isn’t 

possible with a thesis that only requires laboratory work. This internship was also 

advantageous for the company in several ways: new insights were given on the commonly 

employed methods of the quality control laboratory allowing their optimisation or 

adaptation, the rice databases were complemented with results for the year 2013 and it is 

hoped that the new findings will allow the company’s further growth.  
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Calculations for the analysis of ordinary, microwave and steam cooking time 

(example). 

Time (min) 
Number of grains 

with nuclei 
Number of grains 

without nuclei 
Median % 1st Eq. 2nd Eq. 

15 11 10 10 9 10 10 10 50 
    

  
62.5 

16 4 6 5 16 14 15 15 75 68.75 

75 

17 5 5 0 15 15 20 15 75 80 

85 

18 1 3 1 19 17 19 19 95 90 

95 
19 1 1 1 19 19 19 19 95 96.25 

97.5 

20 0 0 1 20 20 19 20 100 98.75 

100 

21 0 0 0 20 20 20 20 100 
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R² = 0.9988 
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Results obtained from the analyses performed (Part A). Means in columns followed by the same upper case letters are not 

significantly different (p<0.10). 

Samples 
Average 
length 
(mm) 

Average 
width 
(mm) 

Length-
to-width 

ratio 

Total 
white 
ness 

Crysta
lline 

white
ness 

Kett 
Chalky 

area 
(%)) 

Moisture 
(%) 

Protein 
(%) (DWB) 

Total starch 
(%) (DWB) 

Resistant 
starch 

(%) (DWB) 

Apparent 
Amylose 

(%) (DWB) 

indica1 7.242 1.674 4.326 130.63 118.33 40.4 21.22 10.93 10.85±0.80A 75.18±1.30A 4.94±0.19A 22.98±1.55A 

indica2 7.038 1.914 3.677 129.89 122.43 43.4 13.21 11.37 8.75±0.24 B 80.15±1.00A 6.34±0.35B 12.85±0.27B 

indica3 7.043 1.902 3.703 123.54 117.86 37.4 9.56 11.96 10.19±0.43A 70.46±0.34B 1.38±0.07C 25.94±0.89C 

indica4 7.137 2.041 3.497 124.10 118.07 36.8 10.24 11.13 7.43±0.47C 72.96±0.29C 7.37±0.29D 26.37±0.42C 

indica5 6.671 2.109 3.163 126.91 120.39 37.2 11.02 11.25 6.96±0.27C 71.98±2.25A 6.82±0.73BD 12.23±0.71B 

indica6 6.681 1.975 3.383 132.41 122.41 42.4 18.66 11.62 8.39±0.40BC 78.49±0.87AC 9.94±0.47E 25.30±1.39AC 

indica7 6.479 1.921 3.373 135.26 124.60 44.3 20.52 12.59 9.86±0.30A 75.94±0.23C 9.63±0.13F 22.30±0.46A 

indica8 6.316 1.932 3.269 134.08 124.09 46.7 18.37 11.25 8.91±1.02ABC 73.93±0.37BC 6.35±0.63BG 25.51±0.82C 

indica9 6.220 1.877 3.314 95.33 93.12 20.4 2.75 11.88 8.94±0.61ABC 78.12±0.37A 0.53±0.01H 26.50±0.46A 

indica10 7.252 1.945 3.729 107.49 104.38 27.1 4.19 10.72 8.50±0.78BC 72.29±0.21BC 1.62±0.17I 22.39±1.66C 

japonica1 6.071 2.313 2.625 130.03 122.44 41.5 13.46 11.89 8.24±0.19BC 78.77±0.37A 5.96±0.53BG 17.94±1.49D 

japonica2 5.985 2.574 2.325 143.55 124.65 46.1 35.35 10.86 7.45±0.34C 78.45±0.64A 5.47±0.01G 14.60±1.28BE 

japonica3 5.833 2.394 2.437 130.83 123.61 42.5 13.24 12.27 7.28±0.24C 81.32±0.64A 5.37±0.17G 13.68±0.24E 

japonica4 5.448 2.427 2.245 126.89 121.06 42.0 10.21 12.46 8.92±0.45B 76.80±0.72A 5.25±0.00G 16.60±0.27DE 

japonica5 5.353 2.647 2.022 138.53 120.24 44.0 30.48 11.72 8.30±0.71BC 79.56±0.49A 2.75±0.17J 17.53±0.00DE 

japonica6 5.927 2.714 2.184 148.03 124.04 51.2 40.69 11.85 6.87±0.24C 75.05±0.65AC 5.16±0.31AGJ 16.09±0.65DE 

japonica7 5.424 2.643 2.052 140.64 121.23 45.3 33.03 12.21 8.64±0.65BC 74.74±0.82AC 4.69±0.14AJ 10.30±0.63F 

japonica8 4.977 2.393 2.080 141.87 112.24 45.1 35.47 11.95 7.75±0.86BC 76.70±0.62BC 5.68±0.66ABGJ 15.02±1.44EF 

japonica9 5.479 2.659 2.061 113.64 110.09 25.8 5.33 12.41 8.89±0.20B 76.73±1.34A 0.27±0.00K 14.18±0.72EF 
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Results obtained from the analyses performed (Part B). Means in columns followed by the same upper case letters are not 

significantly different (p<0.10). 

Samples 

Ordinary 
cooking time 

(min) 
(80% cooking) 

Volume 
of 1 
part 
(mL) 

Solids in 
drained 

waters (DWB) 
7 min 

Solids in 
drained 

waters (DWB) 
10 min 

Solids in 
drained 

waters (DWB) 
13 min 

Microwave 
time (min) 

(80% cooking) 
7 min 

Microwave 
time (min) 

(80% cooking) 
10 min 

Microwave 
time (min) 

(80% cooking) 
13 min 

Steam 
time (min) 

(80% cooking) 
7 min 

Steam 
time (min) 

(80% cooking) 
10 min 

indica1 12.98 32.50 1.81±0.22 0.98±0.06A 0.03±0.01A 5.73 4.21  19.48 20.95 

indica2 16.60 28.75  1.09±0.00B 0.06±0.00B  5.91 5.24  17.46 

indica3 14.88 31.25  1.00±0.18AB   5.11   14.07 

indica4 18.99 30.00  1.22±0.17BC 0.77±0.02C  7.83 6.93  27.02 

indica5 15.79 30.00  1.70±0.08D 0.20±0.03D  6.05 5.13  22.45 

indica6 20.72 29.35  1.76±0.40BDE 1.04±0.29C  Doesn't cook Doesn't cook  21.61 

indica7 18.86 30.00  1.22±0.14BC 0.45±0.10E  8.29 6.56  24.65 

indica8 20.46 29.35  1.77±0.26DE 0.06±0.01B  7.07 6.08  20.41 

indica9 20.76 30.65  2.02±0.10E 1.79±0.03F  5.12 5.76  14.10 

indica10 27.57 30.65  2.00±0.17E 1.61±0.12G  Doesn't cook Doesn't cook  34.10 

japonica1 19.19 28.75  1.30±0.06CE 0.07±0.00B  8.18 6.18  19.34 

japonica2 26.56 28.75  1.70±0.00DEF 0.22±0.04DH  Doesn't cook Doesn't cook  26.93 

japonica3 24.44 29.35  1.70±0.30DEF 0.07±0.02BI  Doesn't cook Doesn't cook  28.60 

japonica4 16.94 28.75  1.71±0.34DEF 0.12± 0.00I  5.61 5.10  15.22 

japonica5 17.27 28.75  1.53±0.01E 0.23±0.00DHI  5.90 5.13  18.16 

japonica6 18.17 28.15  1.05±0.03ABC 0.16±0.03DHI  7.69 5.47  20.41 

japonica7 14.83 28.75  1.50±0.10E 0.12±0.03I  5.38 5.79  23.97 

japonica8 18.26 28.75  1.27±0.15BCE 0.21±0.04DHI  6.57 5.82  20.69 

japonica9 37.66 29.35  2.68±0.11F 2.27±0.01HI  Doesn't cook Doesn't cook  14.75 
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Ratios between the analysed composition parameters: protein, total starch, resistant starch and apparent amylose. 

Samples P/TS RS/TS AA/TS P/AA P/RS RS/AA 

indica1 0.14 0.07 0.31 0.47 2.19 0.22 

indica2 0.11 0.08 0.16 0.68 1.38 0.49 

indica3 0.14 0.02 0.37 0.39 7.36 0.05 

indica4 0.1 0.1 0.36 0.28 1.01 0.28 

indica5 0.1 0.09 0.17 0.57 1.02 0.56 

indica6 0.11 0.13 0.32 0.33 0.84 0.39 

indica7 0.13 0.13 0.29 0.44 1.02 0.43 

indica8 0.12 0.09 0.35 0.35 1.4 0.25 

indica9 0.11 0.01 0.34 0.34 16.81 0.02 

indica10 0.12 0.02 0.31 0.38 5.23 0.07 

japonica1 0.1 0.08 0.23 0.46 1.38 0.33 

japonica2 0.09 0.07 0.19 0.51 1.36 0.37 

japonica3 0.09 0.07 0.17 0.53 1.36 0.39 

japonica4 0.12 0.07 0.22 0.54 1.7 0.32 

japonica5 0.1 0.03 0.22 0.47 3.01 0.16 

japonica6 0.09 0.07 0.21 0.43 1.33 0.32 

japonica7 0.12 0.06 0.14 0.84 1.84 0.46 

japonica8 0.1 0.07 0.2 0.52 1.36 0.38 

japonica9 0.12 0 0.18 0.63 33.25 0.02 
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Registry of observations for indica samples from the post-cooking analysis using a microwave oven or steam: number of 

nucleus at the end of the pre-cooking and the post-cooking stages, final appearance of the grains and water absorption. 

 Microwave post-cooking Steam post-cooking 

Samples 7 minutes 10 minutes 13 minutes 7 minutes 10 minutes 

indica1 
Pre/post nucleus: 20/4 

Grains: opened and sticky 
Water: absorbed 

Pre/post nucleus: 20/2 
Grains: opened and sticky 

Water: incomplete 
 

Pre/post nucleus: 20/4 
Grains: opened and sticky 

Pre/post nucleus: 20/1 
Grains: opened and sticky 

indica2  
Pre/post nucleus: 20/4 

Grains: opened and sticky 
Water: complete 

Pre/post nucleus: 20/2 
Grains: opened and sticky 

Water: incomplete 
 

Pre/post nucleus: 20/0 
Grains: closed and sticky 

indica3  
Pre/post nucleus: 20/2 

Grains: closed and non-sticky 
Water: incomplete 

  
Pre/post nucleus: 20/2 

Grains: closed and non-sticky 

indica4  
Pre/post nucleus: 20/3 

Grains: closed and non-sticky 
Water: incomplete 

Pre/post nucleus: 20/3 
Grains: opened and sticky 

Water: complete 
 

Pre/post nucleus: 20/3 
Grains: opened and non-Sticky 

indica5  
Pre/post nucleus: 20/1 

Grains: opened and sticky 
Water: incomplete 

Pre/post nucleus: 15/3 
Grains: closed and sticky 

Water: complete 
 

Pre/post nucleus: 19/1 
Grains: opened and sticky/mushy-prone 

indica6     
Pre/post nucleus: 20/2 

Grains: opened and sticky/mushy-prone 

indica7  
Pre/post nucleus: 20/3 

Grains: opened and sticky 
Water: complete 

Pre/post nucleus: 20/3 
Grains: opened and sticky 

Water: complete 
 

Pre/post nucleus: 20/0 
Grains: opened and sticky 

indica8  
Pre/post nucleus: 20/4 

Grains: opened and sticky/mushy-prone 
Water: complete 

Pre/post nucleus: 20/4 
Grains: opened and sticky 

Water: complete 
 

Pre/post nucleus: 20/4 
Grains: opened and sticky 

indica9  
Pre/post nucleus: 20/3 

Grains: closed and non-sticky 
Water: incomplete 

Pre/post nucleus: 7/4 
Grains: closed and non-sticky 

Water: incomplete 
 

Pre/post nucleus: 7/0 
Grains: opened and non-sticky 

indica10     
Pre/post nucleus: 8/0 

Grains: opened and non-sticky 
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Registry of observations for japonica samples from the post-cooking analysis using a microwave oven or steam: number 

of nucleus at the end of the pre-cooking and the post-cooking stages, final appearance of the grains and water absorption. 

  Microwave post-cooking Steam post-cooking 

Samples 7 minutes 10 minutes 13 minutes 7 minutes 10 minutes 

japonica1   
Pre/post nucleus: 20/4 

Grains: opened and sticky 
Water: complete 

Pre/post nucleus: 19/4 
Grains: closed and sticky 

Water: complete 
  

Pre/post nucleus: 20/4 
Grains: opened and sticky 

japonica2         
Pre/post nucleus: 20/4 

Grains: opened and sticky 

japonica3         
Pre/post nucleus: 20/1 

Grains: opened and sticky/mushy-
prone 

japonica4   
Pre/post nucleus: 20/4 

Grains: closed and sticky 
Water: complete 

Pre/post nucleus: 14/1 
Grains: closed and sticky 

Water: incomplete 
  

Pre/post nucleus: 20/4 
Grains: opened and sticky 

japonica5   
Pre/post nucleus: 20/4 

Grains: closed and sticky 
Water: complete 

Pre/post nucleus: 17/4 
Grains: closed and sticky 

Water: complete 
  

Pre/post nucleus: 20/1 
Grains: opened and sticky/mushy-

prone 

japonica6   
Pre/post nucleus: 20/4 

Grains: closed and sticky 
Water: complete 

Pre/post nucleus: 13/4 
Grains: closed and sticky 

Water: complete 
  

Pre/post nucleus: 20/0 
Grains: opened and sticky/mushy-

prone 

japonica7   
Pre/post nucleus: 20/3 

Grains: closed and sticky 
Water: incomplete 

Pre/post nucleus: 18/4 
Grains: closed and sticky 

Water: complete 
  

Pre/post nucleus: 20/2 
Grains: opened and sticky 

japonica8   
Pre/post nucleus: 20/4 

Grains: closed and sticky 
Water: complete 

Pre/post nucleus: 18/3 
Grains: closed and sticky 

Water: complete 
  

Pre/post nucleus: 19/3 
Grains: opened and sticky/mushy-

prone 

japonica9         
Pre/post nucleus: 9/2 

Grains: closed and non-sticky 
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Pearson correlations between the obtained results, considering all non-parboiled samples. 
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Average length (mm) 1.00                                   

Average width (mm) -0.83 1.00                                 

Length-to-width ratio 0.94 -0.96 1.00                               

Total whiteness -0.60 0.65 -0.62 1.00                             

Crystalline whiteness 0.09 0.12 -0.05 0.18 1.00                           

Kett -0.54 0.54 -0.54 0.89 0.41 1.00                         

Chalky area (%) -0.56 0.62 -0.57 0.97 0.00 0.78 1.00                       

Moisture (%) -0.50 0.30 -0.42 0.05 0.06 0.17 -0.03 1.00                     

Protein (%) (DWB) 0.37 -0.62 0.58 -0.33 -0.12 -0.22 -0.25 0.11 1.00                   

Total starch (%) (DWB) -0.37 0.32 -0.35 0.27 0.32 0.36 0.16 0.14 -0.21 1.00                 

Resistant starch (%) (DWB) 0.23 -0.33 0.25 -0.03 0.31 0.04 -0.14 -0.02 -0.15 0.16 1.00               

Apparent Amylose (%) (DWB) 0.55 -0.63 0.62 -0.40 -0.09 -0.31 -0.34 -0.19 0.48 -0.38 0.18 1.00             

Ordinary cooking time (min) (80% cooked) -0.23 0.30 -0.33 0.28 0.47 0.31 0.15 -0.08 -0.51 0.50 0.30 -0.05 1.00           

Solids in drained waters (%) (DWB) 10 min -0.39 0.29 -0.40 0.04 0.35 0.08 -0.06 0.02 -0.39 0.27 0.24 -0.20 0.53 1.00         

Solids in drained waters (%) (DWB) 13 min 0.31 -0.23 0.24 -0.18 -0.06 -0.28 -0.13 -0.06 -0.11 -0.10 0.70 0.57 0.19 0.13 1.00       

Microwave time (min) (80% cooked) 10 min -0.08 0.16 -0.20 0.20 0.38 0.27 0.06 0.21 -0.47 0.12 0.63 0.17 0.88 0.02 0.50 1.00     

Microwave time (min) (80% cooked) 13 min 0.36 -0.42 0.40 -0.15 -0.01 -0.17 -0.14 -0.03 0.18 -0.32 0.62 0.71 0.61 -0.31 0.66 0.75 1.00   

Steam time (min) (80% cooked) 10 min -0.01 0.14 -0.10 0.22 0.26 0.07 0.18 -0.16 -0.44 0.17 0.45 -0.14 0.59 0.28 0.28 0.44 0.74 1.00 
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Pearson correlations between the obtained results, considering all samples, non-parboiled and parboiled. 
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Average length (mm) 1.00                                   

Average width (mm) -0.82 1.00                                 

Length-to-width ratio 0.94 -0.96 1.00                               

Total whiteness -0.34 0.44 -0.40 1.00                             

Crystalline whiteness -0.05 0.23 -0.16 0.83 1.00                           

Kett -0.24 0.30 -0.29 0.96 0.87 1.00                         

Chalky area (%) -0.46 0.52 -0.48 0.87 0.48 0.78 1.00                       

Moisture (%) -0.60 0.39 -0.51 0.06 0.06 0.05 0.00 1.00                     

Protein (%) (DWB) 0.31 -0.55 0.52 -0.27 -0.16 -0.21 -0.28 0.12 1.00                   

Total starch (%) (DWB) -0.43 0.30 -0.38 0.16 0.12 0.17 0.16 0.27 -0.18 1.00                 

Resistant starch (%) (DWB) 0.15 -0.18 0.14 0.56 0.68 0.63 0.29 -0.04 -0.20 0.13 1.00               

Apparent Amylose (%) (DWB) 0.55 -0.69 0.65 -0.42 -0.31 -0.31 -0.37 -0.24 0.45 -0.33 0.01 1.00             

Ordinary cooking time (min) (80% cooked) -0.19 0.30 -0.28 -0.36 -0.31 -0.46 -0.28 0.05 -0.20 0.19 -0.36 -0.10 1.00           

Solids in drained waters (%) (DWB) 10 min -0.29 0.24 -0.30 -0.53 -0.46 -0.60 -0.41 0.11 -0.14 0.14 -0.41 -0.10 0.80 1.00         

Solids in drained waters (%) (DWB) 13 min 0.11 -0.10 0.11 -0.77 -0.76 -0.86 -0.56 0.05 0.13 -0.12 -0.55 0.34 0.71 0.74 1.00       

Microwave time (min) (80% cooked) 10 min -0.08 0.22 -0.23 0.34 0.40 0.37 0.17 0.18 -0.47 0.05 0.65 0.05 0.64 -0.14 -0.09 1.00     

Microwave time (min) (80% cooked) 13 min 0.36 -0.39 0.39 -0.08 0.00 -0.08 -0.13 -0.03 0.17 -0.31 0.45 0.63 0.53 -0.25 0.27 0.68 1.00   

Steam time (min) (80% cooked) 10 min 0.26 -0.04 0.12 0.14 0.14 0.12 0.13 -0.43 -0.37 -0.12 0.31 -0.05 0.18 0.00 -0.08 0.50 0.64 1.00 
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Pearson correlations between the obtained results, considering only non-parboiled indica samples. 

 

A
ve

ra
g

e
 le

n
g

th
 (m

m
) 

A
ve

ra
g

e
 w

id
th

 (m
m

) 

L
e

n
g

th
-t

o
-w

id
th

 r
a

ti
o

 

T
o

ta
l w

h
it

e
n

e
ss

 

C
ry

st
a

lli
n

e
 w

h
it

e
n

e
ss

 

K
e

tt
 

C
h

a
lk

y
 a

re
a 

(%
) 

M
o

is
tu

re
 (%

) 

P
ro

te
in

 (%
) (

D
W

B
) 

T
o

ta
l s

ta
rc

h
 (%

) (
D

W
B

) 

R
e

si
st

a
n

t 
st

a
rc

h
 (%

) (
D

W
B

) 

A
p

p
ar

e
n

t 
A

m
y

lo
se

 (%
) 

(D
W

B
) 

O
rd

in
a

ry
 c

o
o

k
in

g
 t

im
e

 (
m

in
) 

(8
0

%
 c

o
o

k
e

d
) 

S
o

lid
s 

in
 d

ra
in

e
d

 w
a

te
rs

 (%
) 

(D
W

B
) 1

0 
m

in
 

S
o

lid
s 

in
 d

ra
in

e
d

 w
a

te
rs

 (%
) 

(D
W

B
) 1

3 
m

in
 

M
ic

ro
w

a
ve

 t
im

e
 (

m
in

) 
(8

0
%

 c
o

o
k

e
d

) 1
0

 m
in

 
M

ic
ro

w
a

ve
 t

im
e

 (
m

in
) 

(8
0

%
 c

o
o

k
e

d
) 1

3 
m

in
 

S
te

am
 t

im
e

 (
m

in
) 

(8
0

%
 c

o
o

k
e

d
) 1

0
 m

in
 

Average length (mm) 1.00                                   

Average width (mm) -0.38 1.00                                 

Length-to-width ratio 0.76 -0.88 1.00                               

Total whiteness -0.66 -0.28 -0.13 1.00                             

Crystalline whiteness -0.83 0.14 -0.53 0.86 1.00                           

Kett -0.63 -0.27 -0.15 0.90 0.88 1.00                         

Chalky area (%) -0.35 -0.59 0.24 0.89 0.54 0.71 1.00                       

Moisture (%) -0.40 0.09 -0.30 0.28 0.43 0.23 0.14 1.00                     

Protein (%) (DWB) 0.20 -0.90 0.71 0.28 -0.05 0.28 0.52 0.30 1.00                   

Total starch (%) (DWB) -0.04 -0.21 0.11 0.59 0.54 0.60 0.48 0.03 0.06 1.00                 

Resistant starch (%) (DWB) -0.49 0.34 -0.47 0.61 0.64 0.40 0.46 0.20 -0.41 0.56 1.00               

Apparent Amylose (%) (DWB) -0.01 -0.25 0.14 0.02 -0.16 0.05 0.23 0.14 0.36 -0.27 -0.07 1.00             

Ordinary cooking time (min) (80% cooked) -0.67 0.50 -0.71 0.44 0.64 0.50 0.18 0.24 -0.43 0.28 0.69 0.33 1.00           

Solids in drained waters (%) (DWB) 10 min -0.75 0.58 -0.76 0.35 0.50 0.29 0.13 -0.12 -0.60 0.03 0.52 -0.04 0.66 1.00         

Solids in drained waters (%) (DWB) 13 min -0.02 0.41 -0.31 -0.13 -0.06 -0.24 -0.09 0.29 -0.35 0.12 0.79 0.49 0.60 0.28 1.00       

Microwave time (min) (80% cooked) 10 min -0.57 0.57 -0.71 0.30 0.55 0.29 0.04 0.43 -0.43 0.07 0.76 0.18 0.90 0.38 0.72 1.00     

Microwave time (min) (80% cooked) 13 min 0.02 -0.15 0.10 0.04 -0.11 0.00 0.26 0.30 0.25 -0.27 0.56 0.91 0.76 -0.27 0.80 0.94 1.00   

Steam time (min) (80% cooked) 10 min -0.18 0.33 -0.29 0.19 0.14 -0.05 0.22 -0.07 -0.45 0.03 0.73 0.11 0.42 0.27 0.56 0.67 0.77 1.00 

 

 



 

Appendix C 

 

117 

 

Pearson correlations between the obtained results, considering only all the indica samples, non-parboiled and parboiled. 
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Average length (mm) 1.00                                   

Average width (mm) -0.19 1.00                                 

Length-to-width ratio 0.75 -0.79 1.00                               

Total whiteness 0.08 0.02 0.06 1.00                             

Crystalline whiteness 0.11 0.15 -0.01 0.99 1.00                           

Kett 0.02 0.00 0.03 0.98 0.97 1.00                         

Chalky area (%) -0.07 -0.31 0.19 0.89 0.81 0.87 1.00                       

Moisture (%) -0.56 0.02 -0.39 0.11 0.11 0.12 0.17 1.00                     

Protein (%) (DWB) 0.11 -0.89 0.65 0.13 0.03 0.16 0.38 0.31 1.00                   

Total starch (%) (DWB) -0.30 -0.25 -0.03 0.02 -0.04 0.10 0.23 0.23 0.08 1.00                 

Resistant starch (%) (DWB) -0.15 0.31 -0.28 0.79 0.78 0.75 0.75 0.19 -0.25 0.30 1.00               

Apparent Amylose (%) (DWB) -0.15 -0.28 0.07 -0.24 -0.29 -0.21 -0.03 0.17 0.34 -0.15 -0.21 1.00             

Ordinary cooking time (min) (80% cooked) -0.13 0.30 -0.32 -0.48 -0.45 -0.43 -0.44 -0.18 -0.34 0.01 -0.16 0.27 1.00           

Solids in drained waters (%) (DWB) 10 min -0.50 0.36 -0.56 -0.56 -0.55 -0.53 -0.46 -0.17 -0.49 0.06 -0.21 0.12 0.76 1.00         

Solids in drained waters (%) (DWB) 13 min -0.11 0.11 -0.18 -0.84 -0.83 -0.84 -0.73 0.06 -0.18 0.04 -0.55 0.48 0.75 0.69 1.00       

Microwave time (min) (80% cooked) 10 min -0.28 0.58 -0.58 0.38 0.43 0.40 0.23 0.32 -0.41 -0.06 0.75 0.06 0.60 0.07 -0.06 1.00     

Microwave time (min) (80% cooked) 13 min 0.09 -0.07 0.12 0.14 0.11 0.12 0.27 0.25 0.22 -0.29 0.34 0.77 0.57 -0.29 0.21 0.81 1.00   

Steam time (min) (80% cooked) 10 min 0.39 0.28 0.05 0.01 0.03 -0.05 -0.04 -0.45 -0.35 -0.31 0.22 -0.03 0.60 0.25 0.21 0.70 0.63 1.00 
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Pearson correlations between the obtained results, considering only non-parboiled japonica samples. 
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Average length (mm) 1.00                                   

Average width (mm) 0.00 1.00                                 

Length-to-width ratio 0.76 -0.65 1.00                               

Total whiteness -0.06 0.73 -0.53 1.00                             

Crystalline whiteness 0.87 0.29 0.47 -0.06 1.00                           

Kett 0.10 0.76 -0.43 0.91 0.13 1.00                         

Chalky area (%) -0.20 0.74 -0.64 0.99 -0.18 0.85 1.00                       

Moisture (%) -0.36 -0.30 -0.06 -0.55 -0.24 -0.35 -0.53 1.00                     

Protein (%) (DWB) -0.42 -0.20 -0.16 -0.56 -0.24 -0.63 -0.44 0.42 1.00                   

Total starch (%) (DWB) 0.26 -0.45 0.50 -0.49 0.20 -0.58 -0.52 -0.15 -0.15 1.00                 

Resistant starch (%) (DWB) 0.34 -0.60 0.62 -0.15 0.01 -0.06 -0.23 0.03 -0.25 -0.12 1.00               

Apparent Amylose (%) (DWB) 0.18 -0.25 0.31 -0.26 -0.01 -0.17 -0.27 -0.14 0.00 0.32 -0.09 1.00             

Ordinary cooking time (min) (80% cooked) 0.55 -0.22 0.53 0.01 0.41 -0.04 -0.08 -0.59 -0.59 0.63 0.35 0.01 1.00           

Solids in drained waters (%) (DWB) 10 min -0.02 -0.19 0.10 -0.51 0.24 -0.59 -0.48 -0.01 0.37 0.50 -0.16 -0.23 0.40 1.00         

Solids in drained waters (%) (DWB) 13 min -0.43 0.52 -0.67 0.65 -0.35 0.45 0.72 -0.61 -0.16 -0.14 -0.47 0.13 0.04 -0.06 1.00       

Microwave time (min) (80% cooked) 10 min 0.71 -0.27 0.71 0.12 0.25 0.22 0.00 -0.55 -0.65 0.16 0.51 0.52 0.84 -0.79 -0.32 1.00     

Microwave time (min) (80% cooked) 13 min 0.29 -0.46 0.53 0.04 -0.14 -0.11 0.01 -0.20 -0.15 -0.09 0.63 -0.22 0.29 -0.48 -0.52 0.55 1.00   

Steam time (min) (80% cooked) 10 min 0.35 0.05 0.22 0.24 0.33 0.12 0.17 -0.33 -0.55 0.33 0.24 -0.64 0.70 0.29 -0.12 0.03 0.60 1.00 
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Pearson correlations between the obtained results, considering only all the japonica samples, non-parboiled and 

parboiled. 
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Average length (mm) 1.00                                   

Average width (mm) -0.05 1.00                                 

Length-to-width ratio 0.76 -0.68 1.00                               

Total whiteness 0.06 0.21 -0.11 1.00                             

Crystalline whiteness 0.71 -0.04 0.53 0.50 1.00                           

Kett 0.17 0.00 0.10 0.93 0.68 1.00                         

Chalky area (%) -0.09 0.42 -0.36 0.95 0.27 0.78 1.00                       

Moisture (%) -0.38 -0.15 -0.16 -0.60 -0.40 -0.45 -0.61 1.00                     

Protein (%) (DWB) -0.43 -0.03 -0.27 -0.66 -0.46 -0.63 -0.56 0.50 1.00                   

Total starch (%) (DWB) 0.28 -0.47 0.51 -0.21 0.24 -0.11 -0.35 -0.19 -0.20 1.00                 

Resistant starch (%) (DWB) 0.29 -0.57 0.56 0.60 0.61 0.77 0.35 -0.28 -0.49 0.07 1.00               

Apparent Amylose (%) (DWB) 0.20 -0.29 0.33 -0.06 0.10 0.07 -0.14 -0.18 -0.07 0.33 0.08 1.00             

Ordinary cooking time (min) (80% cooked) 0.17 0.17 0.01 -0.64 -0.45 -0.78 -0.48 0.01 0.09 0.20 -0.64 -0.12 1.00           

Solids in drained waters (%) (DWB) 10 min -0.13 0.20 -0.22 -0.82 -0.53 -0.91 -0.66 0.30 0.54 0.12 -0.79 -0.24 0.85 1.00         

Solids in drained waters (%) (DWB) 13 min -0.17 0.37 -0.36 -0.71 -0.73 -0.89 -0.47 0.30 0.42 -0.16 -0.88 -0.14 0.85 0.87 1.00       

Microwave time (min) (80% cooked) 10 min 0.71 -0.27 0.71 0.12 0.25 0.22 0.00 -0.55 -0.65 0.16 0.51 0.52 0.84 -0.79 -0.32 1.00     

Microwave time (min) (80% cooked) 13 min 0.29 -0.46 0.53 0.04 -0.14 -0.11 0.01 -0.20 -0.15 -0.09 0.63 -0.22 0.29 -0.48 -0.52 0.55 1.00   

Steam time (min) (80% cooked) 10 min 0.37 -0.12 0.33 0.50 0.55 0.48 0.38 -0.44 -0.64 0.35 0.52 -0.48 -0.08 -0.29 -0.49 0.03 0.60 1.00 

 


