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resumo 
 

 

O trabalho apresentado nesta Tese focou-se na dinâmica e nas interações 
moleculares da p22HBP e do complexo p22HBP-tetrapirrol, nomeadamente 
nos resíduos chave envolvidos nesta interação. Estudos prévios de modelação 
molecular identificaram três possíveis resíduos chave R56, K64 e K177 como 
sendo importantes na interação com os tetrapirróis, através de interações 
eletrostáticas com os grupos propionato do tetrapirrol. Foram desenhados e 
construídos variantes da p22HBP murina e foram desenvolvidos estudos de 
extinção de fluorescência e RMN para avaliar a integridade dos variantes e a 
sua interação com os tetrapirróis. Os mesmos estudos de modelação 
molecular identificaram ainda uma zona flexível (Y171-R180) na p22HBP que 
diminui a mobilidade com a interação do tetrapirrol. Para confirmar esta 
alteração de mobilidade, foram realizados estudos de dinâmica, baseados em 
RMN. Por fim, com o intuito de obter uma versão não funcional da p22HBP 
humana, foi planeada e construída uma versão quimérica da p22HBP humana. 
No futuro, esta nova versão da p22HBP quimérica, será importante para os 
estudos de knockdown envolvendo siRNA. 
O capítulo um introduz uma revisão dos aspetos biológicos da p22HBP 
nomeadamente os estudos estruturais e as possíveis funções que foram 
identificadas. Os principais objetivos da tese são também apresentados neste 
capítulo. No capítulo dois é apresentada uma descrição detalhada dos 
diferentes vectores de sobreexpressão (pNJ2 e pet28-a) e dos métodos de 
sobreexpressão e purificação da p22HBP murina e respectivos variantes, bem 
como da p22HBP humana. Todos os sistemas de sobreexpressão e 
purificação utilizados obtiveram bons rendimentos e permitiram a marcação 
isotópica das proteínas. No capítulo 3 são apresentados os resultados de 
extinção de fluorescência para a interação da p22HBP murina e humana com 
hemina através das constantes de dissociação determinadas na ordem dos 
nanomolar. Os mesmos estudos foram realizados para os variantes da 
p22HBP murina, com alterações hidrofóbicas e de polaridade nos resíduos 
R56, K64 e K177. Em alguns casos, as constantes de dissociação 
determinadas são mais elevadas, embora não se tenham verificado alterações 
significativas na força da interação proteína-hemo. As interações tetrapirrólicas 
com a p22HBP foram também estudadas por espectroscopia de RMN, onde 
foram mapeadas as diferenças nos desvios químicos para identificar a 
localização da zona de interação. A localização da zona de interação dos 
variantes da p22HBP e a p2HBP humana mantém-se igual à p22HBP murina. 
No capítulo 4 encontram-se os resultados das experiências 2D e 3D realizadas 
na p22HBP humana, isotopicamente marcada com 

15
N/

13
C, para identificar as 

ressonâncias da cadeia principal. 82% dos sistemas de spin da cadeia 
principal foram identificados através da comparação com a p22HBP murina, 
das titulações com PPIX e de cálculos teóricos baseados nos desvios químicos 
(Talos+). No capítulo 5 são apresentados os resultados das experiências de 
relaxação, usados para comprovarem a dinâmica do loop na p22HBP aquando 
da interação com o tetrapirrol. A proteína no seu todo move-se de uma forma 
isotrópica na forma livre e ligada. No entanto os resultados para comprovar as 
alterações de mobilidade no loop 171-180 na presença de hemo, foram 
inconclusivos uma vez que só a um resíduo foi atribuído um sistema de spin, e 
não foi indicativo da perda significativa de mobilidade. O último capítulo 
descreve o planeamento e a construção da p22HBP quimérica. Para tal, a 
sequência que codifica a hélix alfa 1 da p22HBP humana, no plasmídeo 
phHBP1, foi substituída pela sequência homóloga da SOUL humana, uma 
proteína com uma estrutura 3D semelhante mas não liga ao hemo. Os 
resultados no entanto demonstraram que ou a sequência não foi introduzida 
corretamente no plasmídeo ou o sistema de purificação não foi adequado. 
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abstract 

 
The work presented in this Thesis investigates the dynamics and molecular 
interactions of p22HBP and the p22HBP-tetrapyrrole complex. Specifically, the 
key residues involved when a tetrapyrrole binds to p22HBP were sought. 
Previous molecular modelling studies identified three possible charged 
residues R56, K64 and K177 as possibly being important in tetrapyrrole binding 
via electrostatic interactions with the propionate groups of the tetrapyrrole. A 
number of variants of murine p22HBP were therefore prepared and 
fluorescence quenching and NMR used to verify the integrity of the variants 
and their interaction with tetrapyrrole. The same molecular modelling studies 
identified a mobile loop Y171-R180 in p22HBP that decreased in mobility on 
tetrapyrrole binding, therefore to confirm this mobility change dynamics studies 
based on NMR relaxation experiments were carried out. Finally in order to 
obtain a non heme-binding form of human p22HBP a chimeric p22HBP was 
designed and constructed. This construct, and the resulting protein, will be 
important for future siRNA knockdown studies where rescue or recovery of 
function experiments are required to prove the knockdown results. 
Chapter one discusses the current state of the art in terms of the biological, 
structural and functional aspects of p22HBP. The main objectives of the Thesis 
are also introduced here. Chapter two presents a detailed description of the 
different expression vectors (pNJ2 and pet28-a) and procedures used for 
overexpression and purification of murine p22HBP and its variants and human 
p22HBP. All expression and purification systems used gave good yields and 
allowed isotopic labeling to be carried out. The fluorescence quenching results 
for tetrapyrrole binding to murine p22HBP and variants are presented in 
chapter three along with the dissociation constants that were found to be in the 
nanomolar range for wild type murine and human p22HBP. The same studies 
were performed for murine p22HBP variants, with hydrophobic and polar 
changes being introduced at R56, K64 and K177. The dissociation constants 
were found to double in some cases but no significant changes in the strength 
of hemin-protein interactions were observed. The tetrapyrrole interaction with 
p22HBP was also followed by NMR spectroscopy, where chemical shift 
mapping was used to identify binding pocket location. All the variants and wild 
type human p22HBP were found to bind at the same location. Chapter 4 
contains the data from 2D and 3D experiments carried out on 
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human p22HBP that was used to obtain backbone assignments. Comparison 
with wild type murine p22HBP assignments, PPIX titrations and theoretical 
calculations based on chemical shifts (Talos+) allowed 82% of the backbone 
resonances to be assigned. The results from the relaxation experiments used 
to probe the dynamics of the mobile loop in p22HBP on binding to tetrapyrrole 
are presented in chapter 5. The overall protein was found to tumble 
isotropically in the free and bound forms however the results to probe mobility 
changes in the 171-180 loop on tetrapyrrole binding proved inconclusive as 
only residue could be assigned and this did not seem to become significantly 
less mobile. The final chapter describes the design and construction of a 
chimeric p22HBP. For these purpose, the alfa1-helix sequence of human 
p22HBP in the phHBP1 plasmid was replaced by its homologous sequence in 
hSOUL, a non heme-binding protein with identical 3D structure. The results 
however indicated that either the incorrect sequence was introduced into the 
plasmid or the purification procedure was inadequate. 
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1.1 Heme 

In the human body, 65% to 75% of the total iron is present as heme iron in red blood cells. 

Heme and its active forms play important physiological roles such as electron transfer, O2 

transport and storage. Because of the toxicity and low solubility of heme, the intracellular 

level of uncommitted heme is maintained at a low concentration (<10
-9 

M) [1]. In heme 

proteins, heme is involved in many aspects of oxidative metabolism and function both as 

an electron carrier and a catalyst for redox reactions [2]. The heme taken up by cells plays 

roles in their proliferation and differentiation, in mediating gene expression at the level of 

transcription, and by working as a regulatory molecule [1]. Despite being ubiquitous, free 

heme has inherent peroxidase activity and can intercalate and disrupt lipid bilayers of cell 

membranes, resulting in cytotoxicity[3]. It can also cause oxidative stress by generating 

reactive oxygen species[4], produce DNA damage, lipid peroxidation and protein 

denaturation [5]. 

Heme is composed of an iron molecule tetra-coordinated at the center of a large 

heterocyclic organic ring called a porphyrin. The insertion of ferrous iron into the 

tetrapyrrole macrocycle of Protoporphyrin IX (Figure 1.1) is catalyzed by ferrochelatase, 

an enzyme which resides in the mitochondrial matrix [6]. 

 

Figure 1.1. Heme synthesis. The final step in heme synthesis is catalyzed by the mitochondrial 

enzyme ferrochelatase (FECH). The enzyme catalyzes the insertion of one atom of ferrous iron 
(red) into the Protoporphyrin IX macrocycle [2]. 

The heme biosynthetic pathway can be broken down into four basic processes: formation 

of the pyrrole; assembly of the tetrapyrrole; modification of the tetrapyrrole side chains; 

oxidation of protoporphyrinogen IX to Protoporphyrin IX and finally the insertion of iron 
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[2]. These processes require eight enzymes, four acting in the mitochondria and the 

remaining four acting in the cytosol (Figure 1.2) [7]. The first enzyme of the heme 

biosynthetic pathway is aminolevulinate synthase, which catalyzes the condensation of 

glycine and succinyl-CoA to form 5-aminolevulinic acid [8]. At least in non-erythroid 

cells, this reaction is the rate limiting step in heme production [9]. The first and the last 

three steps of heme biosynthesis occur in the mitochondria, whereas all remaining steps 

occur in the cytosol. The intermediates formed during biosynthesis must therefore cross the 

mitochondrial membrane (Figure 1.2) [3]. 

 

Figure 1.2. Schematic representation of the heme biosynthetic pathway in mammals. The different 

enzymes are compartmentalized between the mitochondria (represented in gray) and the cytosol. 
Adapted from reference [10] . 

Porphobilinogen synthase is the second enzyme of the heme biosynthetic pathway (Figure 

1.2) and it catalyzes the asymmetric condensation of two molecules of 5-aminolevulinic 

acid to yield the monopyrrole, porphobilinogen. The third and fourth enzymes of the heme 

biosynthetic pathway, porphobilinogen deaminase and uroporphyrinogen III synthase, 

catalyze the conversion of four molecules of porphobilinogen into uroporphyrinogen III. 

Uroporphyrinogen decarboxylase catalyzes the decarboxylation of uroporphyrinogen III to 

coproporphyrinogen III. Coproporphyrinogen oxidase, the antepenultimate enzyme of the 

heme biosynthetic pathway, catalyzes the conversion of two propionate groups at positions 

two and four of coproporphyrinogen III to two vinyl groups. The product of the 

coproporphyrinogen oxidase-catalyzed reaction is, therefore, protoporphyrinogen III. The 
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six-electron oxidation of protoporphyrinogen III into Protoporphyrin IX is the next step 

and it is catalyzed by Protoporphyrinogen Oxidase. Finally ferrochelatase catalyzes the 

insertion of ferrous iron into the Protoporphyrin IX to yield Heme [1]–[3], [7]. 

Heme synthesis takes place mostly in developing red blood cells in the bone marrow but 

about 15% of the daily production occurs in the liver for the formation of heme-containing 

enzymes [2]. Because both iron overload and iron deficiency are incompatible with normal 

body physiology, mammals regulate their iron levels at both the systemic and cellular 

levels [3].  

The mechanisms of heme uptake, catabolism and trafficking in the cells are linked to 

cytosolic heme binding proteins. These are responsible for the intracellular transient 

transport of heme from the place of its enzymatic synthesis to the site of hemeprotein 

synthesis and from the site of degradation of hemeproteins to the site of enzymatic heme 

degradation [1]. A number of heme binding proteins have been isolated and characterized 

based on their ability to bind heme such as FABP, GSTs, HBP23 [11] and p22HBP [12]. 

However, since there are few studies of the functions of these proteins, their participation 

in cellular regulation by heme and the intracellular transport of heme still remains poorly 

understood [13].  

1.2 p22HBP 

p22HBP (Heme Binding Protein) is a 22 kDa protein expressed constitutively in various 

tissues with highest mRNA levels seen in liver, spleen and kidney [12], [14]. p22HBP was 

initially purified from mouse liver cell extracts and was characterized as a cytosolic heme-

binding protein due to its high affinity for hemin. In addition to hemin, p22HBP can also 

bind intermediaries from heme biosynthesis, such as Protoporphyrin IX and 

coproporphyrinogen, other porphyrins, bilirubin and fatty acids [12], [14]. In mice, the 

gene that codifies p22HBP is located on chromosome 6 and encodes for a 190 aminoacid 

protein while in humans the gene is located on chromosome 12 and encodes for a 189 

aminoacid sequence. These two proteins have an homology of 87% (Figure 1.3) [15]. 

p22HBP belongs to an evolutionary conserved heme binding protein family, with a number 

of putative members in animal, plant and bacterial species. The SOUL protein, or heme 

binding protein 2, a p22HBP homologous protein, has been identified in chicken 
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(ckSOUL), murine (mSOUL) and in humans (hSOUL). Figure 1.3 shows the protein 

sequence alignment between these proteins. mSOUL has 27% identity to p22HBP from the 

same organism. The heme-binding properties and coordination structure of SOUL are 

distinct from those of p22HBP  [16]. hSOUL was initially identified as a heme binding 

protein, and biochemical studies performed by Sato et al in 2004 revealed that the protein 

specifically binds one heme per monomer [16]. Comparison of the SOUL-encoding 

sequence, with those of human and murine p22HBP led Lathrop et al. [17] and Shin et al. 

[18], to conclude that possibly SOUL does not have any heme-binding motif, although it 

has some hydrophobic amino acid-rich segments. More recently, Freire (2012) [19] 

confirmed that hSOUL does not bind heme using chemical shift mapping by NMR 

spectroscopy. Finally it was found that SOUL protein can promote mitochondrial 

permeability transition and facilitate necrotic cell death under different types of stress 

conditions [20]. 

 

Figure 1.3. Protein sequence alignment between murine and human p22HBP, ckSOUL and 
mammalian SOUL using CLUSTALW. Identical amino acids are shaded in black and similar 

residues are shaded in grey. Adapted from [16], [21].  

The three-dimensional structure of murine p22HBP (Figure 1.4), the first for a protein 

from HBP/SOUL family was determined, in 2006 by NMR methods. The protein consists 

of a 9-stranded distorted β-barrel flanked by two long α-helices. Each α helix packs against 

a four-stranded sheet in an equivalent way, such that the β2-β3-αA-β4-β5 subdomain 

(residues 21-105) is equivalent to the β6-β7-αB-β8-β9 subdomain (residues 114-190) [10]. 

This type of conformation suggests symmetry evocative of an ancestral gene-duplication 
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event (Figure 1.4). The work of Dias et al. in 2006 concluded that heme binding to murine 

p22HBP was via a hydrophobic pocket on the surface of the protein with the centre of the 

heme ring located near M63 (Figure 1.5). 

 

Figure 1.4. Two views of the 20 murine p22HBP conformers (pdb 2GOV). 

 

Figure 1.5. Model of the p22HBP-hemin complex. The binding location was determined by 

minimizing the differences between experimental chemical shift differences and calculated PPIX 

ring current shifts [10]. 

 

 

90 
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The study used ring current shifts and chemical shift mapping to localise the tetrapyrrole. 

However, due to the symmetrical nature of tetrapyrrole ring current shifts the position of 

the propionate groups could not be determined.  In order to characterize further the 

molecular recognition process that takes place when heme binds to p22HBP a molecular 

modelling study has been carried out by Micaelo et al. Here heme and heme intermediates 

involved in heme synthesis were studied. These results confirmed that the p22HBP binding 

pocket is essentially composed of nonpolar residues that create a hydrophobic binding 

region exposed to the solvent and that this binding pocket is conserved for both the murine 

and human proteins [22]. This study also found that hemin and PPIX have identical 

binding orientations (Figure 1.6 and Figure 1.7), in which the stabilization of the 

propionate side chains is mainly achieved by electrostatic interactions with R56, K64 and 

K177 (K176 in human pp2HBP) located at the edges of the protein-binding pocket. The 

sequentially (and structurally) conserved lysine and arginine residues seem to play an 

identical role in stabilizing the tetrapyrrole propionate side chains in both proteins [22]. 

 

Figure 1.6. Representative structure of the Hemin-mHBP (A) and Hemin-hHBP (B) complexes. 

The binding site of each complex is shown with Hemin rendered in ball and stick. The protein is 

rendered in cartoon. Key side chain residues are rendered in sticks. Adapted from [22]. 
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Figure 1.7. Representative structure of the PPIX-mHBP (A) and PPIX-hHBP (B) complexes. The 
binding site of each complex is shown with PPIX rendered in ball and stick. The protein is rendered 

in cartoon. Key side chain residues are rendered in sticks. Adapted from [22]. 

A preliminary 3D structure of hSOUL was proposed by Freire et al. [23] where  molecular 

replacement, using the structures of murine p22HBP (pdb 2GOV) as search models, 

allowed a preliminary model to be obtained (pdb 4AYZ). More recently (2011) Ambrosi et 

al [24] solved the crystal structure of human SOUL BH3 domain in complex with Bcl-xL 

by X-ray crystallography (pdb 3R85). It was found that although the 3D structures of 

hSOUL and p22HBP are very similar (RMSD 3.26) hSOUL has no hydrophobic patch 

near the a1-helix and therefore does not bind heme. 

Although a structure is available for p22HBP its function remains unknown. In 2002 

Blackmon et al. reported Kd values of the order of μM, for p22HBP upon binding heme 

and other tetrapyrroles (hemin and Protoporphyrin XI) [14]. Babusiak et al. carried out a 

mass spectrometry based proteomic study, using erythrocyte precursor cells labelled with 

59
Fe-hemin. They demonstrated that p22HBP was a component of one of the four 

multiproteic complexes identified in hemoglobin synthesis. It was suggested that p22HBP 

can represent an heme transporter or a chaperone for the insertion of heme into hemoglobin 

or, in addition, a regulator of coproporphyrinogen transport into mitochondria [25]. More 

recent studies have suggested that p22HBP has potent chemoattractant activity, related to 

infection and apoptosis. In these studies, an acetylated N-terminal fragment (residues 1-21) 
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of p22HBP was purified from porcine spleen extract, named F2L, and was subsequently 

found to selectively recruit leukocytes by activating a G-protein coupled receptor, the 

formyl peptide receptor like 2 (FPRL2), expressed specifically on monocyte and dendritic 

cells[26], [27].  

Preliminary functional studies of p22HBP were undertaken in collaboration with Jean-

Marc Moulis (data not published). siRNA (small interfering RNA) experiments were used. 

Here small RNA oligonucleotides (21-25 bp) that are chosen to specifically bind to the 

complementary sequence of an mRNA which results in repression of the translation of the 

mRNA target [28], [29]. Briefly, the technique works by hijacking an endogenous process 

involving RNAse III (Dicer) and its co-factor TRBP (transactivating response RNA-

binding protein) that act with the Argonaut protein family. The complex is called the RNA-

Induced silencing complex (RISC). Dicer cleaves long double-stranded RNA (dsRNA) 

molecules into short double-stranded fragments with two unpaired nucleotides at each 3’ 

end, giving siRNA. Each siRNA is converted into two-single stranded RNAs: a passenger 

strand, which is eliminated, and a guide strand which is incorporated into RISC. When the 

guide strands pairs with a complementary sequence on an mRNA molecule, cleavage  is 

induced by Argonaut and the target gene is silenced [30]. Using this method K562 (human 

erythroleukemia cells) and HepG2 (human hepatocarcinoma) cells were transfected with 

control siRNA (no targeting of p22HBP) and siRNA targeting 3 different siRNA 

sequences for p22HBP. RT-PCR (Real Time Polymerase Chain Reaction) indicated that 

siRNA knock-down of p22HBP was occurring. These cells were used to study if the first 

step of heme biosynthesis was sensitive to the loss of p22HBP by analyzing ALAS2 

expression. No changes for ALAS2 mRNA band were found and no back regulation on 

heme biosynthesis was observed. However, the expression of Heme oxygenase-1 was also 

studied and it was found that HMOX-1 was strongly upregulated in p22HBP knockdown 

cells. This is a strong indication that p22HBP is involved in heme transport or regulation.   
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1.3 Objectives 

The overall aim of the research carried out for this thesis was to probe, in more detail than 

has been carried until now, the dynamics and molecular interactions (including any key 

residues involved in binding) involved in tetrapyrrole binding to p22HBP in order to 

identify key residues involved in their interaction with Hemin and PPIX. The main 

techniques used to carry these studies include molecular biology, NMR spectroscopy and 

Fluorescence Quenching. 

Using results from molecular modelling studies a number of basic amino acids were 

identified as having interactions with the propionate groups of heme/PPIX and therefore 

are possible targets for site-specific mutagenesis studies. A number of variants of murine 

p22HBP were prepared using molecular biological techniques in collaboration with the 

USF, Tampa, USA. These variants were studied by NMR, to assign peaks in the HSQC 

spectra, and by fluorescence quenching to study tetrapyrrole-protein interactions. The 

human form of p22HBP was also prepared and studied by NMR in order to assign the 

backbone resonances and to subsequently study tetrapyrrole binding. The dynamics of the 

protein backbone in solution and when bound to PPIX was also analysed using NMR 

relaxation studies. As functional studies involving siRNA knockdown normally require a 

functional and non-functional form of the knocked-down protein to perform a recovery of 

function or rescue experiment a chimeric human p22HBP was also constructed. Chimeric 

proteins have found wide application for the study of protein folding and protein structure 

stability [31]. Chimeric proteins are created through the joining of two or more function 

domains, which originally coded for domains in separate proteins, using recombinant DNA 

technology. Translation of this fusion gene results in a single polypeptide with functional 

properties derived from each of the original proteins. This approach was used to attempt to 

produce a non heme-binding version of human p22HBP. The α1-helix that interacts with 

heme/PPIX in p22HBP was replaced with the corresponding α1-helix found in hSOUL, a 

protein with an identical 3D structure to p22HBP but does not bind heme/PPIX. 

 

 

http://en.wikipedia.org/wiki/Fusion_gene
http://en.wikipedia.org/wiki/Polypeptide
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2.1 Introduction 

Due to the inherent insensitivity of NMR spectroscopy, the first challenge of any dynamic 

and structural studies by NMR is the production of enough amount of pure and correctly 

folded protein. The minimum concentration of a protein for NMR studies is approximately 

0.5 mM. In order to obtain this amount of protein cloning and protein overexpression is 

carried out. Typically a bacterium such as E. coli is used to perform this overexpression, as 

these systems are cheap and have been utilized extensively over the last 20 or 30 years. 

Therefore the first goal was to optimize the overexpression of p22HBP for both the murine 

and human forms and also for the variants. 

The primary choices for initial screening of recombinant expression systems are bacterial 

cells due to the cost-effectiveness, well characterized genetics and the large range of many 

different bacterial expression strains. E.coli growth is performed in chemically defined 

media where it can reach high densities. The widely used rich medium called Luria-Bertani 

broth (LB) is popular with bacteriologists because it permits fast growth and good growth 

yields for many species and supports E.coli growth to an optical density at 600 nm (OD600) 

of 7 [32]. Moreover, E.coli accepts a wide variety of plasmids with a diversity of copy 

number (both low and high); and can be obtained with a wide range of plasmid systems 

that facilitate high-throughput cloning and expression [33]. Despite these advantages, there 

are some drawbacks of using E. coli for recombinant protein production such as no 

secretion systems for efficient release of proteins to the growth medium and the inability to 

perform extensive disulfide-bond formation and other posttranslational modifications [34]. 

Furthermore, proteins expressed in large amounts can precipitate into insoluble aggregates 

called inclusion bodies; and initial lysis steps to recover cytoplasmatic proteins often 

results in the release of endotoxins, which must be removed from the final product[35]. 

Several vectors such as lambda phages, plasmids and cosmids, can achieve the insertion of 

DNA into host cells. Plasmids are widely used as they ensure easy insertion of the 

recombinant DNA into the host cells. The plasmid vectors must possess specific features to 

perform overexpression: they must have at least one DNA sequence which acts as an 

origin of replication, so they are able to multiply within the cell and they normally contain 

an antibiotic resistance gene often used as a selection marker to ensure that only the 



p22HBP cloning, overexpression and purification 

38 

bacteria with the plasmid of interest can grow in a culture. A promoter also has to be 

present in the vector to induce protein expression and to reach suitable yields.  

One of the most popular commercial vector systems for E.coli is the Novagen pET system 

based on the T7 promoter. In pET systems, the plasmid containing the target gene is 

transferred to an E. coli strain containing a chromosomal copy of the gene for T7 RNA 

polymerase. There are a large number of cell strains that can be used in order to express 

proteins in E. coli. The most widely used cell strain is BL21 which does not encode the 

Ion, ompT, and ompP proteases, thus minimizing protein degradation during purification. 

Furthermore, there are different strains within BL21. For example, BL21(DE3) contains a 

T7 RNA polymerase gene that is integrated into the genome and that is under control of the 

lacUV5 promoter, which is a lactose analog IPTG inducible system. This means that the 

addiction of IPTG to a medium containing these cells will induce T7 RNA polymerase 

production which will ultimately transcribe the target gene in the plasmid (see Figure 2.1). 

 

 

Figure 2.1. Induction of the lac gene by IPTG, in the pET system[36]. 
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After the overexpression step, the purification of proteins from native or recombinant 

sources, in their biologically active form follows and represents a step of major importance 

in molecular biology. It must be remembered that proteins are easily degraded and 

modified by microorganisms, very sensitive to temperature, pH, salts, metals and it is of 

extreme importance to plan precisely the purification procedure in terms of buffer 

composition, temperature, sequence and duration of the steps. Chromatographic methods 

are used extensively for the purification of proteins. There are a range of techniques 

available including anion and cation exchange, which can be carried out at different pHs, 

hydrophobic interaction chromatography, gel filtration and affinity chromatography [37]. 

Normally a stationary phase (matrix) is packed in a column through which a mobile phase, 

which contains the protein, is eluted. The proteins in the mobile phase are adsorbed on the 

stationary phase to be later removed by elution with a suitable mobile phase resulting in 

separation of the different molecules. Depending on the column, proteins can be separated 

by means of charge (ionic change chromatography), hydrophobicity (HIC – 

chromatography of hydrophobic interaction), size (GF – gel filtration) or capacity to link 

specific chemical groups (affinity chromatography – Ni-Sepharose) [38]. 

Immobilized metal ion affinity chromatography (IMAC) is one of the most useful methods 

for purifying recombinant proteins as this tag can be easily introduced at the N- or C-

termini of cloned proteins. As histidine can form a complex with divalent metals around 

neutral pH a polyhistidine-tag binds strongly to a stationary phase that contains Ni
2+

. 

Therefore separation of the histidine-tagged proteins from most untagged proteins even 

under denaturing conditions can be carried out. The binding can be disrupted by eluting the 

tagged sample from the resin by reducing the pH and increasing the ionic strength of the 

buffer or by including EDTA (Ethylenediamine tetraacetic acid) or imidazole in the buffer 

[39]. In order to utilize this purification method all murine and human p22HBP variants 

were cloned with N-terminal hexahistidine-tags.  
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2.2 Murine p22HBP  

A plasmid, pNJ2, containing the gene encoding murine p22HBP lacking the first 6 amino 

terminal residues was obtained with a hexahistidine tag at the N-terminus resulting in a N-

terminal of: MKQSTHHHHHHN. The pNJ2 expression plasmid was generated at the USF, 

Tampa, by subcloning a PCR-amplified fragment for heme-binding protein p22HBP – 

from Taketani et al. (1998) [12] into pGF23 [64] (a derivative of CASS-3, [65]) previously 

digested with Sal I and Bam HI. This pNJ2 plasmid (Figure 2.2) was then transformed into 

BL21 (DE3) cells and grown in a modified version of MOPS minimal medium (phosphate 

limiting) with ampicilin as selection. Details can be found in Dias et al [40]. 

 

Figure 2.2. Schematic representation of pNJ2 plasmid. Constructed by Naomi Jeanty and Professor 
Glória Cruz Ferreira, University of South Florida.  

The cells were grown using a standard procedure in which LB medium is used to achieve 

good cell density and a MOPS minimum medium is subsequently use for induction. For 

overexpression purposes, starter cultures were prepared by inoculating 20 μL of cells taken 

from glycerol stocks in 20 mL of LB media (Nzytech) previously autoclaved and 

supplemented with ampicilin 50 mg/mL, and incubated at 37ºC with shaking at 180 rpm 

for 12 to 16 hours (overnight). The culture was then inoculated into 1 L LB medium, 

enriched with 1 mL ampicilin 50 mg/mL and incubated for 5 hours at 37 ºC, 180 rpm. The 

cells were then harvested by centrifugation at 8000 rpm for 10 min at 4ºC, ressuspended 
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into an autoclaved MOPS medium supplemented with 1 mL ampicilin 50 mg/mL, 2 mL O 

solution, 100 µl P solution, 1mL S solution, 0.5 Thiamine/HCl 0,2%, 10 mL NaHCO3 1M, 

4 g glucose and 1 g NH4Cl. See appendix 9.1 for MOPS and O, P, S solutions receipts. For 

isotopic labelling, 1 g of 
15

N-NH4Cl was added to MOPS media, and this was the unique 

source of Nitrogen for E.coli growth. Ressuspended cells were incubated at 30ºC, 180 rpm, 

for 12-16 hours and enriched MOPS media was the inductor of murine p22HBP 

overexpression. The cells were recovered by centrifugation at 8000 rpm for 10 minutes and 

ressuspended in a 50 mM KH2PO4/ 300 mM NaCl buffer at pH 8.0. Incubation for 1 hour 

with Lysozyme 10 mg/mL, with gently mixing, was performed to start cell lysis. Cell 

lysate was sonicated for 6 minutes (59 seconds with 59 second intervals) while the 

suspension was kept on ice to prevent heating. Centrifugation at 20000 rpm at 4ºC for 1 

hour was applied to separate the homogenate components into cytoplasmatic fraction 

(supernatant) and cell pellet. The supernatant was then applied to a Ni-NTA (Nickel-

nitrilotriacetic acid) column with Sepharose matrix functionalized with chelating groups 

charged with Ni
2+

 for purification. The system was equilibrated with 50 mM KH2PO4, 300 

mM NaCl buffer, pH 8, and the purification procedure was performed under native 

conditions. His-tagged protein was eluted using an imidazole gradient (10-500 mM). The 

purest fractions containing murine p22HBP were pooled together and concentrated using 

10 kDa centricons (Millipore) to 2.5 mL. This volume was applied to a PD10 Desalting 

column (Amersham Biosciences), previously equilibrated with 20 mL of 50 mM phosphate 

buffer and eluted with this buffer to a final volume of 3.5 mL. SDS-PAGE (Sodium 

dodecyl sulfate- polyacrylamide gel electrophoresis) 15% (Mini-Protean Biorad) was used 

to examine purity of the protein separation as well as to determine its molecular weight. 

Purified protein samples were quantified by UV-Vis spectrophotometric method, according 

to the Lambert-Beer law, by measuring the absorption at 280 nm. The experimental value 

of molar absortivity for murine p22HBP variants was found to be 31574 M
-1

cm
-1

. 

In Figure 2.3, the protein expression profile after purification with an imidazole gradient in 

a Ni-NTA column is shown. The band for murine p22HBP appears at approximately 24 

kDa as expected. The gel also reveals that the imidazole gradient used was appropriate to 

obtain the purest fraction of murine p22HBP (75 mM imidazole). On the right side of 
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Figure 2.3, a UV-Vis spectra of murine p22HBP (diluted 1:50) is shown. An absorbance of 

0.165 was obtained at 280 nM which corresponds to 0.26 mM murine p22HBP.  

 

Figure 2.3. Left: SDS-Page analysis of the different fractions obtained from a Ni-NTA Agarose 

column for murine p22HBP. Right: UV/Vis spectrum of murine p22HBP 0.26 mM. 

2.3 Murine p22HBP variants 

Murine p22HBP site specific variants were prepared based on the results of molecular 

modelling studies carried out by Micaelo et al. in 2010. The basic aminoacids arginine 56, 

lysine 64 and lysine 177, thought to be important for heme-binding, were the initial targets 

for the mutagenesis studies. This work was carried out at the College of Medicine, 

University of South Florida under the supervision of Professor Glória Ferreira. 

The strategy used to construct these variants was based on whole plasmid PCR. In this 

approach, a two-step polymerase chain reaction (PCR) is used to first create a megaprimer 

with the desired mutation and then to insert this mutation into a plasmid (Figure 2.4).  

 

Figure 2.4. Schematic representation of megaprimer and whole plasmid principle. Adapted from 

[63]. 

All enzymes used were purchased from New England Biolabs. Primers with desired 

mutations (Table 2.1) used for the PCR amplifications were purchased from Integrated 

DNA Technologies, and were as follows: 
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Primer Variant Sequence 

HBP7 K177A GACCCTCCCATGGCGCCCTATGGACGC 

HBP8 K64A GCCCAAGATCATGGCGTATGTGGGTGGCACC 

HBP9 K177E GACCCTCCCATGGAGCCCTATGGACGCCGT 

HBP10 R56E GTGGATGAGGCTCTCGAGGAAGCGATGCCCAAG 

HBP11 K64E GCCCAAGATCATGGAGTATGTGGGTGGCACC 

HBP12 R56A/K64A 
GTGGATGAGGCTCTCGCGGAAGCGATGCCCAAGATCATGGCGTAT

GTGGGTGGCACC 

Table 2.1. Primer sequences that codify mutations (bold) for different murine p22HBP variants. 

For Megaprimer construction, plasmid DNA template pNJ2 (20 ng), 7.5 µL of each 5’ 

primer [20 µM] (table 3); 2,5 µL of each 3’ primer [20 µM] (table 3); 2.5 U of Vent 

Polimerase, 10 µL Vent reaction buffer 10x [200 mM Tris-HCl, 100 mM (NH4)2SO4, 100 

mM KCl, 2 mM MgSO4, 1 % Triton X-100]; 16 µL dNTPs 1,25 mM, were mixed in 

different PCR tubes, in a final volume of 100 µL and subjected to PCR (MJ mini gradient 

thermal cycler from BioRad) as follows: initial denaturation at 94°C for 4 minutes; 28 

cycles at 94°C for 40 seconds, 55°C for 1 minute and 72ºC for 1 minute, followed by final 

extension at 72°C for 5 minutes [63]. The megaprimers were then purified by a 

QIAquick® PCR purification kit [66], analyzed and quantified by agarose gel 1%. 

Variant Primer 5’ Primer 3’ 

K177A HBP-7 PBRevo2 

K64A HBP-8 HBP-R2 

K177E HBP-9 PBRevo2 

R56E HBP-10 HBP-R2 

K64E HBP-11 HBP-R2 

R56A/K64A HBP-12 HBP-R2 

Table 2.2. Murine p22HBP variants, its mutations and primers used in PCR. HBP-R2 5'-

TTATAAGGATCCTCATGCCTTCACAAGCCAGACCTCGT-3'; pBRevo2 -5’ TACGAG 

TTGCATGATAA -3'. 

In a second round of PCR, plasmid DNA template pNJ2 (20 ng), 20 µL of each 

megaprimer (50 ng/µL) generated in the first round of PCR, 2.5 U of Vent Polymerase, 10 

µL Vent reaction buffer 10x, 6 µL MgSO4 10x, 2.5 µL dNTPs 20 mM were mixed, in 
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different PCR tubes, in a final volume of 100 mL and subjected to PCR under the same 

conditions as the first round. The samples were treated with Dpn I at 37ºC for 45 minutes. 

This restriction enzyme is specific for dam- methylated DNA fragments and allows the 

elimination of the original, methylated, plasmid in contrast to the un-methylated plasmid 

generated by Whole Plasmid PCR containing the desired mutation. Dpn I treated DNA 

samples were purified as previously by QIAquick® PCR purification kit [66] and in order 

to evaluate Dpn I digest efficacy, samples were analyzed on a 1% agarose gel, using λ-

DNA-BstE digest from New England Biolabs as a marker. 

E.coli DH5α competent cells were then transformed with the plasmids obtained after DpnI 

treatment. The transformation was obtained by electroporation: 1 µL of each sample 

(plasmid with desired mutation) was mixed in 40 µL of competent cells, transferred to 

electroporation cuvettes and submitted to a pulse of 1.8 Volts, 3 seconds. After 

electroporation, cells were immediately ressuspended in 1 mL of LB media, enriched by 20 

% of sterile glucose, and incubated at 37ºC, 150 rpm. After recovering the cells, 300 µL of 

each culture were spread on LB plates containing by Ampicilin. These plates were 

incubated for 12 hours, and the presence of colonies indicated successful transformation.  

Single colonies were picked from plates, and used to inoculate LB media for further 

growth at 37ºC, overnight. Plasmid DNA was purified with GeneJET® Plasmid Miniprep 

kit of Fermentas [69]. The DNA preps were sent for sequencing at the University of 

Florida, USA. HBP-7 and HBP-10 were sequenced using pBRSTOP as primer while the 

remaining templates were sequenced using pBRevo1. Sequencing results indicated that the 

desired mutations had been introduced into the original pNJ2 plasmid (data not shown). 

Finally a triple R56A/K64A/K177A variant was constructed using the same whole plasmid 

PCR method by Jerome Clayton and Professor Glória Ferreira (College of Medicine, 

University of South Florida). 

Murine p22HBP variants were overexpressed in the same hosts cells as murine p22HBP 

wild type with identical overexpression and purification protocols as described in section 

2.2. The fractions obtained from Ni-NTA column were analyzed by SDS-PAGE, and 

Figure 2.5 represents a SDS-PAGE image of the R56A/K64A variant. On the gel, the 

target protein band appears in a position expected for murine p22HBP (around 22 kDa). 

The gel also shows that the imidazole gradient used (10-500 mM) with the purest fractions 
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collected at 75 and 50 mM imidazole. These fractions were then gathered, concentrated 

and desalted. Figure 2.5 also shows the UV visible spectra of R56A/K64A, where an A280 

of 0.267 (considering the dilution factor, 1:25) and a ε of 31574 cm
-1

 M
-1

, gave a protein 

concentration of 0.21 mM. In Table 2.3, protein yields obtained after overexpression and 

purification of all murine p22HBP variants are shown. 

 

Figure 2.5. Left: SDS-Page analysis of the different fractions obtained from Ni-NTA Agarose 

column in murine p22HBP-R56A/K64A purification. Right: UV-Visible spectra of the 

concentrated fractions of p22HBP variant 0.21 mM. 

 

Murine p22HBP variants 
Concentration 

[mM] 

Yield 

(mg protein/L culture) 

R181A 0.20 16 

K177E 0.18 14 

K64A 0.47 36 

R56A/K64A/K177A 0.15 12 

K64E 0.22 18 

R56A/K64A 0.21 19 

R56E 0.19 17 

Table 2.3. Protein yields obtained in overexpression and purification of murine p22HBP variants. 

The final volume obtained for each variant was 3.5 mL. 
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2.4 Human p22HBP  

The gene encoding human p22HBP, with a His-tag located at N-terminal, was introduced 

into pET28a expression vector, flanked by NcoI and XhoI sites, after the T7 promoter and 

the His-tag encoding sequence (Figure 2.7). This plasmid was used to transform E.coli 

BL21 (DE3) competent cells, a step carried out by Nzytech genes & enzymes Ltd. 

 

Figure 2.6. A) Human p22HBP cloning procedure. B) The pet28-a plasmid map for human 

p22HBP with then encoding sequence flanked by XhoI and NcoI restriction sites. 

A B
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Figure 2.7. Optimized gene encoding sequence for human p22HBP overexpression in E.coli BL21 

strains. 

Glycerol stocks were prepared in order to store these E.coli strains. After an overnight 

culture in LB enriched with Kanamycin 50 mg/mL, 375 µL of growth media were 

collected and mixed with 125 µL 80% glycerol (previously autoclaved). Different glycerol 

stocks were prepared and stored at -80ºC. 

Human p22HBP overexpression differs from murine p22HBP in antibiotic resistance and 

induction media. Human p22HBP is overexpressed in M9 media enriched with kanamycin 

50 mg/mL and not in MOPS media enriched with ampicilin 50 mg/mL as described for 

murine p22HBP. 
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Starter cultures were prepared by inoculating 20 μL of cells taken from glycerol stocks in 

20 mL of LB media previously autoclaved and supplemented with kanamycin 50 mg/mL, 

and incubated at 37ºC with shaking at 180 rpm, overnight. The culture was then inoculated 

into 1 L of LB medium and incubated for 5 hours at 37 ºC, 180 rpm. The cells were then 

harvested by centrifugation at 8000 rpm for 10 min at 4ºC and resuspended into an 

autoclaved M9 medium (1 L H2O enriched with M9 salts (see receipt in appendix 9.1): 6.4 

g Na2HPO4.7H2O, 1.5 g KH2PO4 and 0.25 g NaCl) supplemented with 1 mL kanamycin 50 

mg/mL, 0.5 mL MgSO4 1M, 0.5 mL CaCl2 0.1M, 0.25ml Thiamine-HCl 0.2%, 0.5ml 

FeSO4 0.1M, 1 g NH4Cl and 4 g glucose. For isotopic labelling, NH4Cl and glucose were 

replaced by 
15

N-NH4Cl and 
13

C-glucose.  

Resuspended cells in M9 medium were left at 30ºC, 150 rpm, 2 hours for adaptation to the 

new medium. After 2 hours, overexpression was induced with 1 mL of IPTG 0.5M and left 

overnight at 30ºC, 150 rpm. Cell lysis and purification was similar to that described for 

murine p22HBP in section 2.2. The experimental value of molar absortivity for human 

p22HBP was found to be 33205 M
-1

cm
-1

. 

 

Figure 2.8. Left: SDS-Page analysis of the different fractions obtained from Ni-NTA Agarose 
column in human p22HBP purification. Right: UV-Visible spectra of concentrated fractions of 

human p22HBP 0.25 mM. 

As shown in Figure 2.8, pure human p22HBP was obtained from the 75 mM imidazole 

fraction. Considering the protein concentration, an absorbance of 0.422 was obtained at 

280 nm for a 1:20 diluted sample, which corresponds to a final concentration of 0.25 mM. 

A final volume of 3.5 mL of human p22HBP was obtained which corresponds to a yield of 

20 mg per Litre. 
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3.1 Introduction 

Fluorescence spectroscopy is a well developed technique and is very useful when applied 

to biological systems and in particular it is used to study protein-ligand interactions [41]. 

Many biological molecules display fluorescence, particularly those that contain aromatic 

systems, such as reduced nicotinamide dinucleotide (NADH), oxidized flavins, chlorophyll 

and proteins [41]. Almost all proteins have natural fluorophores, tyrosine and tryptophan, 

which allow changes in protein conformation to be studied, and in case of absence of these 

residues, site-specific labelling with external fluorophores can be made by mutagenesis and 

chemical modifications [42], [43]. Combined with biophysical analysis of structure, these 

methods can reveal the complete and complex nature of protein ligand structure and 

dynamics [44]. Despite the recent developments in fluorescence applications, as well as the 

continuous improvement of instrumentation and technology, the principles on which is 

based this phenomenon remain the same [41]. 

Fluorescence is a special case of photoluminescence, a phenomenon in which light 

emission occurs from the excited electronic states of a molecule or an atom. Electronic 

states can be classified into two categories, singlet states and triplet states. When electrons 

in a molecule have their spins paired, the electronic state is known as singlet state. Triplet 

states are those in which electrons are unpaired (Figure 3.1). Depending on the nature of 

the excited state, photoluminescence can be classified as fluorescence or phosphorescence.  

 

Figure 3.1. Possible electronic states of 2 electrons in a molecule or atom. 

 

The partial energy diagram for a photoluminescence system, the Jablonski diagram, 

illustrates these electronic states and their respective electronic transitions (Figure 3.2).  
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Figure 3.2. Jablonski diagram [45]. 

Each of the ground or excited electronic states has different vibrational levels 

corresponding to possible changes in vibrational modes. The energy of a photon required 

to generate a particular excited state is the difference in energy between the excited state 

and the ground state, represented by: 

  
  

 
 

where   is the wavelength of the light, h is Planck's constant (6.626 × 10 
-34 

Js) and c is the 

speed of light (2.998 × 10
8
 m/s). Once a molecule absorbs energy and is excited into a 

singlet state, it can return immediately to the ground state, spin allowed, by emission of 

energy: this is fluorescence. Relaxation rates are typically 10
8
 s

-1
, with a fluorescence mean 

time of 10
9 
s

-1
.  

Phosphorescence, another possible way to return to the ground state, corresponds to energy 

emission from a triplet state (see Figure 3.2). The transitions from triplet states occur more 

slowly (10
-3

 to 10
2 

s
-1

) with a mean relaxation time milliseconds to seconds.[46] Triplet 

states populated by direct absorption from the ground state are insignificant and the most 

efficient way to populate triplet states is by intersystem crossing. This process is a spin-

dependent internal conversion.   
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A special case of Fluorescence occurs when there is an intensity decrease in fluorescence 

emission [41]. This fluorescence quenching can occur by mechanisms such as molecular 

collisions or during molecular contact (static quenching). In both cases molecular contact 

between the fluorophore and quencher is required. In static quenching, the quencher makes 

a stable ground-state complex with the fluorophore and prevents the fluorophore from 

entering the excited state. In dynamic (collisional) quenching, the quencher transiently 

contacts the excited state fluorophore and provides a route for the excited state fluorophore 

to lose energy without emitting a photon [44]. 

Fluorescence quenching experiments are normally carried out by measuring the 

fluorescence of a dye in the presence of increasing concentrations of quencher. In the case 

of ligand-protein interactions, the intrinsic fluorescence of the protein is used and 

measured as either the ligand (quencher) concentration is varied [42]. 

3.2  Principles of receptor binding experiments 

In order to understand the results obtained from FQ studies a basic understanding of the 

theory receptor-ligand interactions is needed in order to choose the best model to fit the 

experimental results.  

There are three main types of receptor binding experiments [47]: 

 kinetic experiments, where the binding of one or more concentrations of a ligand 

to a receptor (fixed concentration) is measured with an incrementing series of 

time points. These data are used to estimate association (Kon) and dissociation 

(Koff) rate constants.   

 saturation experiments, where binding of different concentrations of a ligand 

with a receptor (fixed concentration) is measured at equilibrium and analysed to 

determine the binding constant (affinity constant, K, or dissociation constant 

Kd). 

 competition/modulation experiments, where the binding of one or more fixed 

concentrations of a ligand with a receptor (fixed concentration) is measured at 

equilibrium in the presence of an increasing concentration of a competing 

ligand. 
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3.3 Equilibrium binding model used to model FQ data 

Considering a simple two state equilibrium-binding model:  

 

Equation 3.1 

 

The equilibrium affinity constant, K, with units of Molarity
-1

 is defined as  

  
    

      
 

   

    
 

Equation 3.2 

 

As K increases so does the concentration of the protein-ligand complex, with a consequent 

reduction in the free species. The decrease in free ligand concentration as a consequence of 

protein binding is called ligand depletion. 

Alternatively Kd, the dissociation constant, is defined as:  

   
      

    
 

    

   
 

Equation 3.3 

The dissociation constant defines the tendency of the protein-ligand complex to dissociate. 

Swillens in 1995 [48] defined a binding model that accounts for ligand depletion at high 

receptor concentrations. He considered that, when the receptor concentration is too high 

and the added ligand concentration is in the bound form, the typical equilibrium binding 

experiments cannot be described using a standard binding model. In the Swillens model the 

ligand binds to a single receptor site, although nonspecific binding is also catered for. 

Michaelis Menten Kinetics where Kd and Rtotal (total receptor concentration) are 

characterized.  
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Considering Equation 3.3, and assuming that, at equilibrium, the total receptor 

concentration [Rtot] is defined as,  

         
     

Equation 3.4 

and the total bound ligand concentration,     
 , can be defined as a function of free ligand 

concentration,     

     
   

 

  

          
           

     
   

      

  

          
     

       
                         

     

       
                                

       
           

    

       
                    

     

       
            

               

     
   

          

       
 

Equation 3.5 

Nonspecific binding, characterized by α, is defined as the ratio of nonspecifically bound 

ligand to free ligand, and depends on ligand concentration. This linearity was defined by 

Swillens [48] as: 

     
   

          

       
     

Equation 3.6 
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Equation 3.7 

At equilibrium, it follows that a quadratic equation (Equation 3.8) governs the relationship 

between the concentration of the receptor-ligand complex, the total ligand concentration, 

the total receptor concentration and Kd [48]. 

 

    
            

           
                   

        
            

           

Equation 3.8 

In the case of fluorescence quenching data, dissociation constants can be obtained 

accounting for ligand depletion, by nonlinear fitting of the emission maxima (y) as a 

function of tetrapyrrole concentration (x) (Equation 3.9)[15]. 

  
            

      
                                       

Equation 3.9. Equation used for    values determination, by plotting the emission maxima, y, as a 

function of tetrapyrrole concentration, x, where    and      are emission intensities at 0 and 

saturating concentrations of tetrapyrrole, respectively, and [hbp] is the protein concentration [15].  

 

3.4 Ligand-protein interactions revealed by intrinsic fluorescence quenching 

Fluorescence quenching provides a means of probing the accessibility of aromatic residues 

to small molecules and thus can reveal information about the structural environment 

surrounding the small molecule. This technique involves the quantification of protein 

fluorescence in the presence of increasing amounts of quencher, followed by fitting of the 

data to quantify the interaction of the quencher with the protein. 

Intrinsic fluorescence of proteins is a result of a contribution of three aromatic aminoacid 

residues (Tryptophan, Tyrosine and Phenylalanine). These aromatic residues can absorb 

radiation around 280nm and become excited from their ground state (S0) to an higher 

energy electronic state (S1) (see Figure 3.2). The energy is rapidly lost via vibrational 

energy to the surroundings as thermal energy. During the return of the system to the 

ground state emission of radiation of lower energy or non-radiative exchange such as 

quenching can occur.  
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However, the observed quantum yields (fluorescence efficiency) for tryptophan, tyrosine 

and phenylalanine of 0.2, 0.1 and 0.04 respectively coupled with their relative absorption 

coefficients, (Tryptophan 5540 M
−1

 cm
−1

, Tyrosine 1480 M
−1

 at 280 nm and 195cm
-1

/M at 

257.5nm for Phenylalanine) make tryptophan mainly responsible for protein fluorescent 

emission. It should be noted that the emission maximum for Trp can shift between 330 nm 

in nonpolar environments to 360 nm in polar environments [44]. Phenylalanine does not 

absorb above 275 nm and its weak fluorescence is not normally observed and the 

fluorescence intensity of free tyrosine is approximately one-fifth of tryptophan and in 

proteins it is usually much weaker. This is due to a combination of interactions, such as the 

presence of neighbouring charged groups, hydrogen bonding to peptide carbonyl groups 

and non-radiative energy transfer to tryptophan or disulfide bonds, resulting in tyrosine 

fluorescence being diminished or quenched [46]. 

The intensity of fluorescence observed for both tyrosine and tryptophan depends on 

interactions with ligands that may quench the fluorescence emission from the native 

conformation. The degree of quenching varies from protein to protein and provides an 

indicator of solvent accessibility to tryptophan residues and the dynamics of protein 

conformation. The presence of specific extrinsic quenchers in physical contact with an 

excited protein can lead to sharing or transfer of the excitation energy, leading to reduction 

in the quantum yield and consequent decrease of fluorescence intensity. The yield of this 

quenching depends on physical access of the quencher to the protein [49]. Thus for a 

ligand-protein complex, when the ligand binds to its receptor protein, there is a change in 

the fluorescence of the protein if an aromatic group is near to the binding site. This makes 

fluorescence a useful tool to study the equilibrium and kinetics of a wide range of proteins 

and ligands, enzymes and substrates.  

In conclusion, fluorescence quenching is an important tool to characterize protein binding 

to specific ligands and therefore fluorescence quenching was used to study the heme-

p22HBP interaction, and to evaluate how binding changes with the introduction of point 

mutations near the p22HBP binding site. 
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3.4.1 Aromatic residues location 

As mentioned previously, Tryptophan, Tyrosine and Phenylalanine are the main amino 

acids responsible for intrinsic fluorescence of proteins. In an attempt to understand which 

residues will be more important in intrinsic fluorescence decrease with heme interaction, it 

is crucial to locate them in protein structure. 

Considering murine p22HBP, the aromatic residues present in the sequence are Tryptophan 

16, 18, 101 and 186; Tyrosine 31, 66, 131, 138, 144, 162, 167, 168, 172 and 179; 

Phenylalanine 10, 41, 84, 87, 102, 108 and 135 (Figure 3.3, left). The aromatic residues 

present in human p22HBP are Tryptophan 16, 18, 101 and 185; Tyrosine 31, 65, 131, 138, 

144, 161, 166, 171 and 178; and Phenylalanine 10, 41, 84, 87, 102, 108, 135 and 167 

(Figure 3.3, right). 

 

 

Figure 3.3. The location of the aromatic residues (Phe-yellow, Trp-red, Tyr-green) in murine (left: 

pdb 2GOV) and human p22HBP (right: modeller structure: see chapter 4). 
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3.5 Material and methods 

3.5.1 Sample preparation 

Protein and ligand solutions should be prepared in buffers with low absorbance (less than 

0.1) in the regions of excitation and emission and fluorescence close to zero. When the 

protein is added to the buffer solution the observed fluorescence should arise exclusively 

from the protein. Therefore, the buffer solution used to dissolve the protein should be used 

as fluorescence blank.  

The protein sample should not be too concentrated otherwise absorption will be too high. 

(Figure 3.4 a). Another parameter that should be considered is the purity of sample (Figure 

3.4 b). Protein solutions must be freed from turbidity resulting from dust and aggregated 

protein. If the sample contains any fluorescent impurities, the fluorescence emission will 

be distorted by the impurity fluorescence emission. [41] These impurities can be removed 

by filtration or centrifugation. Many proteins can be filtered using a 0.22 µm filter fitted to 

a syringe. On the other hand, if the filters adsorb protein, the solution can be clarified by 

centrifuging at 4ºC to avoid protein denaturation. 

 

Figure 3.4. Common errors in sample preparation. a) Fluorophore concentration too high; b) 

Contaminated sample or cuvette. Adapted from [41]. 

3.5.2 Hemin solutions preparation 

Hemin solutions used in fluorescence quenching studies were freshly made for each 

titration session. Approximately 1 mg of Hemin (Sigma-Aldrich) was weighed and 

dissolved in 50 µL of 25% ammonia followed by dilution in 1 mL of ddH2O. 150 µL of 
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Tween 80 (1.5% v/v) was added and mixed vigorously followed by 7 mL of ddH2O. The 

pH was adjusted to 8.0 with NaH2PO4. The total volume was adjusted to 10 mL with 

ddH2O [15], giving a solution with final concentration of approximately 1.54 x 10
-4

 M. The 

final hemin concentration was estimated by measuring the UV-Visible absorption at 400 

nm. The experimental value for the molar absortivity of hemin was 32257 M
-1

cm
-1

. 

 

3.5.3 Fluorescence measurements 

All fluorescence measurements were performed using a Fluoromax fluorescence 

spectrophotometer. The fluorescence cuvettes used were the standard 10 x 10 mm 

fluorescence quartz cuvettes (with all four faces polished) from Hellma. The protein 

samples used for fluorescence quenching measurements were prepared by dilution from a 

stock solution using a 50 mM phosphate buffer at pH 8.0. The protein concentration used 

in the titrations was estimated by UV spectroscopy (ε280 = 33920 M
-1

cm
-1

) to be 100 nM. 

Increasing volumes of Hemin [1.5 mM], were added (total final hemin volume 0.5 mL), to 

2 mL of protein solution. After each addition, sample homogenization and equilibration 

was carried out (1 minute) followed by an emission scan from 300 to 400 nm with 

excitation at 295 nm. Each titration was repeated twice with new protein and porphyrin 

solutions, from the same stock, to avoid errors associated with sample preparation. Each 

titration gave an emission maximum as a function of tetrapyrrole concentration and these 

values were used to determine dissociation constants using Equation 3.9. Intensity values 

were corrected for dilution factors. 
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3.6 Results and discussion 

Experimental results for intrinsic Fluorescence Quenching of murine p22HBP are shown in 

Table 3.1.  

Exp.

No 

Int340nm 

(x10
6
)  

VHemin ad. 

(µL) 

VHemin ad. 

(µL)Total  

dilution 

factor 

Int340nm  

(x10
6
)corr  

nadic 

(x10
-10

mol) 

[Hemin] 

(µM) 

[p22hbp] 

 (nM) 

1 2.81 0 0 1.00 2.81 0 0.00 100.00 

2 2.20 3 3 1.00 2.21 3 0.01 99.90 

3 1.58 5 8 1.00 1.58 8 0.04 99.60 

4 1.15 10 18 1.01 1.16 18 0.09 99.10 

5 0.92 20 38 1.02 0.94 38 0.19 98.10 

6 0.76 50 88 1.04 0.79 88 0.42 95.80 

7 0.62 100 188 1.09 0.67 188 0.86 91.40 

8 0.53 200 388 1.19 0.63 387 1.62 83.80 

9 0.46 350 738 1.37 0.63 737 2.69 73.00 

10 0.44 500 1240 1.62 0.72 1240 3.82 61.80 

Table 3.1. Experimental fluorescence quenching data for the titration of murine p22HBP with 
hemin.  

The decrease in maximum intensity emission values at 340 nm shown in Table 3.1, is a 

result of the intrinsic murine p22HBP fluorescence being quenched by increasing amounts 

of hemin interacting with the protein. Dilution factors were calculated by dividing the total 

solution volume present in fluorescence cell (murine p22HBP + Hemin) by the initial 

volume (2 mL of protein). The maximum intensity corresponds to the intrinsic 

fluorescence of the aromatic residues present in the protein. When hemin is titrated with 

p22HBP, protein-ligand interactions occur and as a result the fluorescence is quenched via 

a loss of excitation energy due to molecular collisions between the fluorophore (aromatic 

residues of murine p22HBP) and quencher (hemin). The experimental data were analyzed 

and p22HBP emission maxima as a function of Hemin concentration (Figure 3.5) was 

plotted. Using Equation 3.9, Kd values were determined by fitting the protein emission 

maxima as a function of hemin concentration. OriginPro software was used for fitting and 

independent parameters as protein concentration were used for fitting each curve. 
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Figure 3.5. Intrinsic tryptophan fluorescence of murine p22HBP at maximum emission (340 nm) as 

a function of hemin concentration. 

Figure 3.5 shows two different curves that resulted from fitting the same data points. The 

protein concentration was considered fixed [100 nM] (blue curve) or allowed to vary 

between 1 nM and 101 nM (green curve). The Kd values determined with these different 

approaches are shown in Table 3.2. 

p22HBP approach Kd (nM) [p22HBP] (nM) 
Reduced 

χ
2 

(x10
10

) 

Adjusted 

R
2
 

murine p22HBP [p22HBP] fixed 4.81 ± 5.42 100.00 ± 0.00 2.73 0.95 

[p22HBP] variable 23.70 ± 4.00 18.20 ± 8.43 0.18 1.00 

human p22HBP [p22HBP]fixed 59.14 ± 33.20 100.00 ± 0.00 1.60 0.97 

[p22HBP] variable 79.74 ± 10.54 101.00 ± 51.19 0.50 0.99 

K64A [p22HBP]fixed 8.47 ± 5.10 100.00 ± 0.00 0.86 0.98 

[p22HBP] variable 27.13 ± 4.54 31.18 ± 9.85 0.09 1.00 

K177A [p22HBP]fixed 8.29 ± 6.35 100.00 ± 0.00 1.43 0.96 

[p22HBP] variable 27.60 ± 7.38 23.70 ± 15.60 0.28 0.99 

R56A/k64A [p22HBP]fixed -5.82 ± 9.46 100.00 ± 0.00 2.12 0.97 

[p22HBP] variable 46.82 ± 20.85 1.00 ± 33.08 0.41 0.99 

R56E [p22HBP]fixed 48.35 ± 18.31 100.00 ± 0.00 0.98 0.97 

[p22HBP] variable 76.84 ± 24.02 1.00 ± 43.37 0.34 0.99 
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p22HBP approach Kd (nM) [p22HBP] (nM) 
Reduced 

χ
2 

(x10
10

) 

Adjusted 

R
2
 

K64E [p22HBP]fixed 17.47 ± 9.32 100.00 ± 0.00 2.20 0.97 

[p22HBP] variable 55.56 ± 11.42 1.00 ± 19.45 0.30 1.00 

K177E [p22HBP]fixed 22.75 ± 11.39 100.00 ± 0.00 2.52 0.96 

[p22HBP] variable 53.53 ± 11.60 1.00 ± 21.48 0.42 0.99 

R56A/K64A/K177A [p22HBP]fixed 34.55 ± 15.12 100.00 ± 0.00 1.95 0.96 

[p22HBP] variable 62.63 ± 16.24 1.00 ± 29.75 0.44 0.99 

Table 3.2. Dissociation constants obtained by non-linear fitting of the emission maxima as a 
function of Hemin concentration for human p22HBP, murine p22HBP and respective variants. 

[p22HBP] variable corresponds to a range between1 and 101 nM. 

As shown in Table 3.2, the best fit was obtained when the protein concentration was 

allowed to vary between 1 and 101 nM. This makes sense as, during the titration, the 

p22HBP concentration decreases with increasing amounts of Hemin. Moreover, it is a 

fundamental principle in biophysics that dissociation constants can only be measured 

precisely for protein concentrations of the order of Kd [50] [51]. 

 

Figure 3.6. p22HBP dissociation constants obtained by non-linear fitting of the emission maxima 

as a function of Hemin concentration.  
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Considering first the murine and human wild type proteins; although human p22HBP has a 

much larger associated error, the Kd value is ca. 3 times larger than that for the murine 

protein. However, the values for the dissociation constants obtained for these Hemin 

complexes were of the same order of magnitude (nM) and are comparable to those from 

Dias et al. [40] , Delgado (2011) [52] and Freire (2012) [19] as the same technique was 

used for all of these studies. Dias et al. obtained Kd values of 3 nM for the hemin 

complexes. Dias et a.l reported Kd for murine p22HBP of 0.4 nM with PPIX and 3.0 nM 

with Hemin. Freire (2012) reported 2.6 nM for murine p22HBP Kd with PPIX and 11.1 

nM with Hemin. In case of human p22HBP, Freire (2012) and Delgado (2011) [52] 

reported a Kd of 6.4 nM with PPIX and 20.4 nM with Hemin. These values can also be 

compared to those initially reported by Taketani et al. [1] although a different methodology 

was used for determination of Kd. However Blackmon et al. [14] determined Kd values 

with a discrepancy of 10
-3

 (µM versus nM). In this case, receptor concentrations were 

higher, when compared to concentrations used in this work (nM), which may have 

unintentionally influenced the resulting Kd values. 

The difference between human and murine p22HBP binding found here may result from 

the differences in primary sequence (human-murine: E28D, A30S, V62I, A63M, I74V, 

I82V, S110G D111S, K118E, M133T, 147QH, R150Q, A153T, A154T, R162-Q163, I165-

V166, F167-Y168, T169-A170, I184-V185, L187-V188, T189-A190) or the fact that 

human p22HBP has the complete N-terminus while the murine form starts at N7. In any 

case the difference is small and both forms of the protein show tight binding especially as 

measured by NMR where peaks are seen for the free and bound forms of the proteins in 

slow exchange (vide infra). In order to probe in more detail heme-p22HBP binding, and 

due to that fact the chemical shift mapping and ring current shift studies by Dias et al. 

could not distinguish the orientation of the tetrapyrrole ring when bound to p22HBP, a 

selected set of amino acids were chosen to be mutated based on molecular modelling 

studies (Micaelo et al.) [22]. If tetrapyrrole binding is stabilized by interactions between 

the propionates of the porphyrin ring and conserved positively charged residues located at 

the edge of the binding site: arginine 56, lysine 64 and lysine 177 (176 in human), the 

replacement of these positively charged residues by a negatively charged side chain such 

as glutamic acid should destabilize binding due to electrostatic repulsion. The same effect 

should also be seen by replacement with a neutral side chain such as alanine, although to a 
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lesser extent. Figure 3.7 shows the position of the mutated residues in relation to the bound 

tetrapyrrole ring [22]. 

 

Figure 3.7: Representative structures of the hemin-murine p22HBP (A) and hemin-human p22HBP 

(B) complexes. The heme-binding site of each complex is shown with hemin rendered in ball and 
stick. The protein is rendered in cartoon. Key side chain residues are rendered in sticks. Reprinted 

from [22]. 

Considering first the R56E variant the Kd value is about 2.5 times larger than murine wt-

p22HBP therefore a slight reduction in binding is occurring which indicates that 

electrostatic interactions may modulating heme binding but only to a small extent. The 

results for the K64E and K64A variants show that this residue does not have any role in 

stabilizing heme binding as the K64A variant has the same Kd value as wild type. The 

higher Kd for K64E (x 2) must result from slight repulsion between the propionates and the 

negatively charge glutamic acid. The results for K177A (x 1) and K177E (x 2) are very 

similar to the K64A and K64E variants indicating no role in stabilization for this residue 

either. The double R56A/K64A and triple R56A/K64A/K177A variants follow the pattern 

of the previous variants: a slight reduction in binding, confirming that heme binding does 

not involve electrostatic interactions to any great extent. In summary the fluorescence 

quenching results indicate that electrostatic interactions between the propionates of the 

tetrapyrrole ring and conserved charged residues in murine p22HBP are not important for 

heme binding and that an hydrophobic interaction with the p22HBP hydrophobic pocket 

identified in Dias et al. is the main driving force for binding. 
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4.1 Introduction 

Although NMR was discovered in 1946, its application to biological systems only started 

in the late 1960s and early 1970s. The application was very limited due to the poor 

sensitivity and very low resolution offered by the one-dimensional techniques used in those 

days[53]. Fourier transformation (FT) NMR that permitted rapid recording of NMR signals 

and 2D NMR spectroscopy that radically increased spectral resolution, in combination with 

the advance of stable magnets at higher fields led to rapid advances and in the mid 1980s 

several groups reported the first generation of solution structures of small proteins (< 10 

kDa) using 2D NMR methods. The structure of the α-amylase inhibitor Tendamistat 

determined independently by NMR and crystallography confirmed the success of the NMR 

methods for structure calculations[54]. 

In the late 1980s and early 1990s, when multidimensional heteronuclear NMR methods, in 

conjunction with advances in molecular biological techniques, were developed the 

molecular size limit of NMR structures jumped to approximately 35 kDa. In June 2013, the 

number of structures available in the PDB archive determined using Nuclear Magnetic 

Resonance (NMR) spectroscopy has passed the 10,000 mark. Nowadays, NMR-derived 

structures account for more than 10% of the PDB archive. 

 

Figure 4.1. Yearly growth of released structures in the PDB solved by NMR. Adapted from Protein 
Data Bank (http://www.pdb.org/pdb/, March 2014) 
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Multidimensional Heteronuclear NMR of isotopically labelled proteins 

has opened the door to studying a wide variety of proteins and protein 

domains. The technique has been successfully applied in the field of 

structure determination and dynamic characterization of proteins [55]. 

Techniques based on NMR spectroscopy are also an important tool to 

observe and characterize the interactions between proteins and their 

ligands[56]. 

4.2 Basic principles 

The basis of NMR spectroscopy is the property of an isotope of an element to have a 

nuclear spin which results in a nuclear magnetic moment [56]. Only nuclei with a non-zero 

nuclear spin quantum number I can be observed in an NMR experiment. Nuclei with an 

even number of both mass and charge have a spin quantum number of zero and are NMR 

inactive. By applying an external magnetic field non-degenerate energy states are produced 

by the interaction between the applied magnetic field B0 and nuclear angular moment P, 

           

Equation 4.1 

 

where   is Planck’s constant divided by 2π and I the nuclear spin quantum number. The 

angular moment P can be characterized by the z component, Pz and is defined as  

      

Equation 4.2 

 

where the magnetic quantum number m has a total possible values of 2I+1 and defines the 

orientations of nuclear angular momentum. This definition quantifies in space the number 

of projections of nuclear angular momentum on the z axis. For example, magnetic nuclei 

with spin I=1/2 (e.g. 
1
H, 

13
C, 

15
N, 

19
F) have allowed m of 1/2 and -1/2. Thus two spin 

states are possible: one aligned with the z axis, the α state, and the other aligned against, 

the β state. 



Protein NMR spectroscopy of p22HBP 

71 

 

Figure 4.2. The different spin states of a nucleus in a magnetic field [57]. 

The magnetic moment, µ, or nuclear moment of a nucleus is defined as,  

μ  γ  γ         
Equation 4.3 

where   is the nuclear gyromagnetic ratio, a characteristic constant for a specific nucleus. 

Thus, the angular moment P is the same for nuclei with the same magnetic quantum 

number and magnetic moment   is different for each nuclei. The magnetic moment is used 

to characterize nuclear spins and is parallel to the angular moment if   is positive or 

antiparallel if   is negative. When nuclei are placed in an external magnetic field B0, they 

will rotate about it due to the torque generated by the interaction of the nuclear angular 

moment P with the magnetic field. For each orientation state, also known as a Zeeman 

state or spin state, there is energy associated with this continuous rotation which is 

characterized by the frequency of the precession, the Larmor frequency, ω0. The energy of 

a Zeeman state can be described in terms of Larmor frequency as 

   μ    μ
 
      γ     ω  

Equation 4.4 

where    is the external magnetic field strength in Tesla, and  ω   γ  . 

The energy difference between of the allowed transitions (for instance between the 

quantized α and β states for a spin ½ nucleus) is given by 

        
Equation 4.5 

If    is replaced by     ω, the frequency of the required electromagnetic radiation for 

the transition is defined by a linear dependence on the magnetic field strength:  

       (rad.s
-1

) 
 Equation 4.6 
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 (Hz) 

 Equation 4.7 

The Larmor frequency for the 
1
H nucleus (a proton) at specific field strength is innfact 

used to characterize the magnetic field of a spectrometer. The energy difference between 

two transition states becomes larger with the increasing strength of the magnetic field. 

According to Boltzmann’s equation, the ratio of the populations in α and β states is defined 

by 

 β

 α

  
   

     
  γ  

  
  

 

 
 γ  

  
 

 

Equation 4.8 

where    and    are the population of the α and β states, respectively, T temperature and 

k is Boltzmann’s constant. This equation indicates that a small fraction of spins will 

contribute to signal intensity at room temperature due to the small energy difference 

between α and β states which makes NMR spectroscopy a very insensitive spectroscopic 

technique. As  E is directly related to B0, a stronger magnetic field will give better 

sensitivity, as the energy separation and therefore the population difference will increase. 

An observable NMR signal result from an ensemble of nuclear spins, in the presence of the 

magnetic field, where α state nuclear magnetic moments are distributed randomly about a 

processional cone, parallel to the z-axis, and the β states randomly distributed in an 

antiparallel manner. The sum of the z components of the nuclear moments gives a net 

magnetization M0 aligned along the z axis. The vector M0 therefore results from the small 

population difference between the α and β states. 

 

Figure 4.3. Two processional cones for a collection of 1/2 spin nuclei in the α- and β-states [57]. 
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Once at thermal equilibrium, the spins have no phase coherence in the transverse plane and 

the net longitudinal magnetization is a static vector and the frequencies associated with the 

nuclear magnetization can only be observed by rotating the net longitudinal magnetization 

towards or into the transverse plane. This can be accomplished by subjecting the sample to 

a short pulse (few µs) of radiofrequency irradiation (RF) in MHz range with a magnetic 

component B1, to excite all frequencies of a given nucleus at the same time. The initial 

longitudinal magnetization experiences a torque from the applied B1 field and the M0 

vector will rotate towards the transverse plane where it can be detected, as illustrated in 

Figure 4.4. 

 

Figure 4.4. Representation of net magnetization M0 under equilibrium conditions (left) and the 

effects on the M0 of a 90º and 180º rf pulses [57]. 

The amplitude and duration of the pulse will define the angle θ through which 

magnetization vector M turns. When B1 field is applied long enough, M0 can be 

completely excited onto the transverse plane (called 90º pulse) reaching the maximum 

signal intensity, or even inverted to the -z axis (called 180º pulse) where no signal is 

detected since only magnetization in the x,y plane is able to induce a signal in the detection 

coil. 

When the RF pulse is switched off, the system will immediately adjust to re-establish the 

Boltzmann distribution, and so the transverse magnetization will decay under the 

interaction of the static magnetic field B0 while precessing about the z axis and realign 
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along the z axis. This return to equilibrium, referred to as relaxation, causes the NMR 

signal to decay with time, generating the observed Free Induction Decay (FID). In order to 

separate the individual signals and display them in terms of their frequencies, the FID 

(time domain) is converted to frequency spectra by applying a Fourier Transformation. 

 

Figure 4.5. NMR experiment: a) after an Rf pulse M lies in the x'-y' plane and precesses about the 

z-axis (b) resulting in a time domain free induction decay (FID) (c) detected after the application of 

the RF pulse [57]. 

Relaxation is one of the most important phenomena in NMR and by measuring parameter 

related to relaxation the dynamics of the nuclei under study can be observed. The 

longitudinal relaxation time or spin lattice relaxation time (T1) describes the rate at which 

the magnetization returns to the thermodynamic equilibrium along B0, after an rf pulse. T1 

is correlated with the overall rotational tumbling of the molecule in solution and may be 

further affected by intramolecular mobility in flexible structures [58], [59]. 

The transverse relaxation time or spin-spin relaxation time (T2) describes the decay of the 

effective magnetization observed in the x,y plane after a 90º pulse. T2 is correlated with 

dynamic processes in the molecule under study; in particular it decreases with increasing 

molecular size, which presents a limiting factor for high resolution NMR with large 

proteins. This happens because NMR resonance linewidths in solution are inversely 

proportional to the T2 relaxation time, which decreases with increasing molecular size and 

tumbling time. This line broadening, in addition to the increase in the number of 

resonances observed, due to the increase in molecular weight, causes chemical shift 

overlap and loss of spectral sensitivity, making spectral analysis and peak identification 

more difficult in large molecules [22], [58], [59]. Therefore there is a molecular size limit 

encountered in NMR of biological systems, large proteins above 500 amino acids cannot 

be studied by NMR [58]. 
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4.3 Chemical shift 

Different useful parameters can be extracted from NMR spectra, providing important 

information for molecular structure characterization. A key feature is the chemical shift 

which is sensitive to the local environment of a nucleus [60]. The phenomenon of chemical 

shift is caused by the shielding of nuclei from the external magnetic field by electrons in 

molecular orbitals. The effective magnetic field experienced by nucleus, Beff, results from 

the contributions of B0 and the local magnetic fields produced by the movements of 

surrounding electrons and is expressed as  

             

Equation 4.9 

where σ is the shielding constant, which reflects the extent to which the electron cloud 

around the nucleus shields it from external magnetic field. Thus, protons at the various 

sites in the molecule are magnetically shielded to different extents according with their 

chemical environment (type of chemical bond and neighbouring atoms). These slight 

changes in local magnetic field experienced by each nucleus will result in different 

frequencies in an NMR spectrum. 

The shielding constant is influenced by several factors, such as the spherical electronic 

distribution of s orbital electrons. This type of shielding is known by diamagnetic shielding 

(σdia) and refers to the induced field with an opposite direction to the external magnetic 

field B0. Electron orbitals other than s, induce a shielding effect from a nonspherical 

electronic distribution in which the induced local field has the same direction as B0, known 

as paramagnetic shielding (σpara). 

             

Equation 4.10 

σ    and σ     have opposite contributions to the shielding constant: σ     is proportional 

to (m
2
 E)

-1
 where m represents the mass of the nucleus and  E the excitation energy to the 

lowest excited molecular orbital and asymmetry of electronic dispersion. On the other 

hand, σ    is proportional to m
-1

 and the symmetry of electronic distribution. These 

parameters will dictate chemical shifts range for protons and heteronuclei. Chemical shift 

range for different heteronuclei in proteins is shown in Table 4.1 . For protons, energy gap 
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is large and consequently the σ     is very small resulting in a small shift range, normally 

10 ppm whereas in 
13

C,  E is small and σ     assumes an important contribution to the 

shielding. The bonding environment near the nuclei induces a distortion of the spherical 

electronic distribution which can significantly affect the respective chemical shift value of 

nuclei. Thus 
13

C has a large range of possible chemical shifts (300 ppm) when compared 

with 
1
H and this behaviour is usually observed for other heteronuclei. The local magnetic 

field produced, in opposite direction to B0, by precession Larmor, makes paramagnetic 

contributions dominant when compared with diamagnetic. 

Nucleus NHbackbone NHsidechain CHaromatic CαH CO CβH 

1H 8-10 6.5-8 6.5-8 3.5-5  1-4 

13C   110-140 40-65 170-185 20-75 

15N 110-140      

Table 4.1. Chemical shift range in proteins and peptides. 
1
H and 

13
C chemical shifts in parts per 

million are referenced to DSS and 
15

N in parts per million is referenced to liquid NH3. 

Shielding constants can also be influenced by the ring current effect, an important 

contribution generated by delocalized electrons of p orbitals in an aromatic ring. When 

exposed to an external magnetic field, the π electrons circulating above and below the ring 

produce an additional magnetic field that opposes B0 at the center of the aromatic ring and 

adds to B0 at the edge of the ring. Thus, there is shielding at the center of the ring and 

protons directly attached to the ring are exposed to a field larger than B0 due to the addition 

of the induced field, experiencing deshielding (Figure 4.6). 

 

Figure 4.6. Diagram of an aromatic ring current. B0 is the external magnetic field represented by 

blue arrow. The green arrow shows the direction of the ring current while light blue arrows 

represent the direction of the induced magnetic field. Extracted from 

http://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/Spectrpy/nmr/nmr1.htm. 

http://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/Spectrpy/nmr/nmr1.htm
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The position of a resonance signal in a NMR spectrum is measured by its resonance 

frequency although it is not expressed in units of Hertz, since this would make chemical 

shifts dependent on the magnetic field strength. To overcome this inconvenience the 

frequency scale of NMR spectrum is expressed in terms of ppm, normalized by using a 

signal from a reference compound, which for proton is usually tetramethylsilane (TMS) or 

3-(trimethylsilyl)propionate (TSP), and is defined as: 

  
           

        
        

Equation 4.11 

where υ and υref are, respectively, the positions, in Hz, observed for the signal of interest 

and for the reference compound. This dimensionless quantity is defined as chemical shift, 

δ, given in parts per million, and it is independent of the external magnetic field strength of 

spectrometer. Table 4.2 represents the average chemical shifts of active nucleus (H, C and 

N) that are present in the 20 naturally of amino acids. 

Residue HN Hα 
13

CO 
13

Cα 
13

Cβ 
15

N 

ALA 8.19 4.26 177.73 53.15 19 123.22 

ARG 8.24 4.3 176.42 56.79 30.68 120.78 

ASP 8.31 4.59 176.40 54.69 40.88 120.65 

ASN 8.34 4.67 175.27 53.54 38.69 118.93 

CYS 8.39 4.66 174.87 58.24 32.66 120.13 

GLU 8.33 4.25 176.89 57.35 30 120.66 

GLN 8.22 4.27 176.32 56.59 29.18 119.88 

GLY 8.33 3.94 173.88 45.36 - 109.65 

HIS 8.25 4.61 175.25 56.49 30.24 119.66 

ILE 8.27 4.18 175.85 61.63 38.61 121.45 

LEU 8.22 4.32 176.99 55.64 42.30 121.83 

LYS 8.18 4.26 176.65 56.96 32.77 121.04 

MET 8.26 4.41 176.2 56.12 32.99 120.09 

PHE 8.36 4.63 175.43 58.11 39.95 120.47 

PRO - 4.4 176.73 63.34 31.85 133.96 

SER 8.28 4.48 174.64 58.74 63.79 116.26 

THR 8.24 4.46 174.57 62.23 69.72 115.41 

TRP 8.29 4.68 176.13 57.68 29.98 121.67 

TYR 8.32 4.63 175.4 58.13 39.32 120.52 

VAL 8.29 4.18 175.63 62.51 32.72 121.12 

Table 4.2. The statistics presented in this table were calculated from the full BMRB (Biological 

Magnetic Resonance Bank) database. This includes only the diamagnetic proteins. The calculated 

statistics are derived from a total of 4603403 chemical shifts in the 20 natural amino acids found in 

proteins [61] . 
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In principle, the structural and chemical environment of the atoms dictates chemical shifts 

of NMR-active nuclei such as 
1
H, 

15
N and 

13
C. In proteins chemical shifts of signals from a 

protein are never used to determine which amino acids are present as this information is 

has to be known a priori when studying a protein by NMR. Apart from the dependence of 

the chemical shift on chemical structure, neighbouring amino acids, there is also a 

dependence on secondary structure described by Case et al. in the middle 1980s. The 

deviations of 
13

Cα (and to some extent, 
13

Cβ) chemical shifts from their random coil values 

can be well correlated with the α-helix or β-sheet conformations: 
13

Cα chemical shifts 

larger than the random coil values tend to occur for helical residues whereas the opposite is 

observed for β-sheet residues. A good correlation is also observed for proton Ha shifts with 

secondary structures: 
1
Hα shifts smaller than the random coil values tend to occur for 

helical residues whereas the opposite is observed for β-sheet residues [53]. Chemical shift 

is also highly sensitive to the exact environment of the atom, and therefore yields 

information about whether a small molecule binds to a target protein, what parts of the 

small molecule are interacting and to which part of the macromolecular target the ligand is 

bound [62]. Chemical shifts for the free and bound states will, in general, be different 

because of changes in environment [63].  

4.4 Spin coupling constants 

J coupling constants are derived from the scalar interactions between atoms and they 

provide geometric information about torsion angles of the bonds between atoms in 

molecule (Figure 4.7). The most useful and coupling constants are vicinal scalar coupling 

constants, 
3
J, between atoms separated from each other by three covalent bonds. Scalar 

couplings are used in multidimensional (2D, 3D, 4D) correlation experiments to transfer 

magnetization from one spin to another in order to identify spin systems, e.g. spins which 

are connected by up to three chemical bonds [53], [58]. 

 

Figure 4.7. Spin system of the peptide backbone and size of the 
1
J and 

2
J coupling constants that are 

used for magnetization transfer in 
13

C and 
15

N-labelled proteins.[64]  
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4.5 High molecular weight protein NMR techniques 

The one-bond coupling 
1
H-

15
N is the most important starting point for the NMR analysis of 

proteins. This bond is present in every amino acid residue in a protein, except for the N-

terminus and proline residues (Figure 4.8). The experiments used to correlate bound 
1
H 

and 
15

N nuclei is called the 
1
H-

15
N HSQC (heteronuclear single quantum correlation). This 

HSQC experiment exploits the repeating nature of the protein’s primary sequence and 

three-dimensional structure. As there is about one peak per residue, a 
15

N-
1
H HSQC 

spectrum is something of a NMR fingerprint of a protein and is usually the first 

heteronuclear experiment performed on a newly purified protein. HSQCs spectra are very 

commonly used to detect ligand binding - if the fingerprint changes (peaks move) it 

indicates that binding is occurring. Although natural abundance 
1
H-

15
N HSQC spectra can 

be acquired, isotopic labelling is normally required to obtain an HSQC spectrum.  

 

Figure 4.8. Protein backbone. Each aminoacid is connected via a peptide bond between the 

carbonyl carbon of first aminoacid and the nitrogen of the next aminoacid. The 
1
H-

15
N HSQC 

experiment detects protons directly coupled to nitrogen and the resulting spectra contains one peak 

for every aminoacid in the protein [30]. 

Magnetization is transferred from the proton to attached 
15

N nuclei via the J-coupling. The 

chemical shift evolves on the nitrogen and the magnetization is then transferred back to the 

proton for detection. The H-N correlation seen include backbone amide groups, Trp side-

chain Nε-Hε; groups and Asn/Gln side-chain Nδ-Hδ2/Nε-Hε2 groups. The Arg Nε-Hε peaks 

are in principle also visible, but because the Nε chemical shift is outside the region usually 

recorded, the peaks are folded/aliased (this essentially means that they appear as negative 

peaks and the Nε chemical shift has to be specially calculated) [65].  
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HSQC spectra degrade as the molecular weight of a protein increases: line widths increase 

and intensity decreases. For larger proteins the introduction of the TROSY (Transverse 

Relaxation Optimized Spectroscopy) experiment and higher magnetic fields (>600MHz) 

allowed a wide range of new applications of solution NMR, in particular in the emerging 

field of structural and functional genomics. The TROSY experiment can replace the HSQC 

experiment for large proteins. This technique has been developed to reduce relaxation 

losses during the chemical shift evolution of a heteronucleus X (e. g. 
15
N), the X→

1
H 

magnetization transfer and the acquisition time (Figure 4.9). Transverse relaxation is 

mainly caused by DD (dipole-dipole) coupling and CSA (chemical shift anisotropy). The 

DD interaction is independent of the static magnetic field, whereas the CSA increases with 

higher magnetic fields. The optimal TROSY effect, for an amide proton, is about 23.5 T, 

corresponding to a proton resonance frequency of 1000 MHz [66]. The technique is 

especially useful combined with deuteration of the protein. 

 

Figure 4.9. NMR spectroscopy with small and large molecules in solution. (a) The NMR signal 

obtained from small molecules in solution relaxes slowly; it has a long transverse relaxation time 
(T2). A large T2 value translates into narrow line widths in the NMR spectrum after Fourier 

transformation (FT) of the NMR signal. (b) For larger molecules, the decay of the NMR signal is 

faster resulting in a smaller T2. (c) Using TROSY, the transverse relaxation can be considerably 
reduced, which results in improved spectral resolution and improved sensitivity for large molecules 

[67]. 
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In detail, considering the components of a doublet of I in a weakly coupled two spin 

system IS the transverse relaxation rates are different due to addition or subtraction of the 

influence of DD coupling and the CSA. A narrow and a broad component is the result. In a 

non-decoupled two-dimensional 
15

N-HSQC spectrum only one component of the quartet 

has a narrow line width in both dimensions (the TROSY component) as shown in below 

(Figure 4.10). TROSY experiments select solely these narrow components and suppress 

the broad components of the quartets. Note that the signals in a TROSY experiment are 

shifted in both dimensions by
 ½

JNH. To summarize, TROSY suppresses transverse 

relaxation, e. g. in 
15

N-
1
H moieties by constructive use of interference between DD 

coupling and CSA [68]. 

 
Figure 4.10. Region of 

15
N-

1
H correlation spectra. a) None-decoupled HSQC spectrum with 

different relaxation rates (line width) for each of the four components of 
15

N-
1
H correlation. b) 

Decoupled 
15

N, 
1
H HSQC spectrum; c) TROSY- selectively detect only the narrowest component 

(1 out of 4). Adapted from [69]. 

With TROSY spectra there is an intrinsic loss in sensitivity due to rejection of the broad 

components of the quartets (Figure 4.10). However, for large proteins (>20 kDa) at high 

magnetic fields, the detection of the most slowly relaxing peak compensates for the loss of 

sensitivity [69].  

4.6 Sequential resonance assignment in unlabeled and 
15

N labeled proteins 

For the complete investigation of the structure and dynamics of proteins by NMR a 

complete resonance assignment is a prerequisite [59], [65]. Sequential assignment is a 

process by which a particular amino acid spin system identified in the spectrum is assigned 

to a particular residue in the amino acid sequence.  

It is not always feasible to produce a 
13

C, 
15

N doubly labelled protein sample. Initially the 

sequential assignment method was developed by Wüthrich and co-workers, based on the 
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identification of spin systems within individual amino acids using through-bond 
1
H-

1
H 

connectivity measured with correlation spectroscopy (COSY) and later on by total 

correlation spectroscopy (TOCSY) [70]. In a second step, the sequential connectivity 

between neighbouring amino acids is established via nuclear Overhauser effect 

spectroscopy (NOESY). In the two most common types of secondary structure (α-helix and 

β-sheet) the peptide chain brings 
1
H of the peptide backbone and the side chains of 

neighbouring residues close together (< 5Å) so that they are observable by NOE 

spectroscopy. Small peptide segments of different lengths are thus obtained which are then 

matched to the primary sequence. In order to complete the resonance assignment these 

segments are extended and linked [71].  

For larger proteins spectral overlap means this method cannot be used. In these cases other 

nuclei must be introduced and observed (indirectly).
 
 Here labelled proteins are required 

and the assignment is based on through bond correlations based on scalar coupled nuclei. 

Triple-resonance heteronuclear correlation experiments are used to observe nuclei coupled 

by efficient magnetization transfer through heteronuclear spins (
1
H, 

13
C and 

15
N). [53] 

Nowadays many 3D triple resonance experiments are available whose names indicate the 

nuclei they correlate. Figure 4.11 shows how CBCA(CO)NH and HNCACB experiments 

are used to link neighboring residues. One 
1
H-, 

13
C-, and 

15
N-heteronuclear three-

dimensional NMR spectrum, which records the one bond coupling between 
1
HN and 

15
N 

and the one and two bond coupling between 
15

N and 
13

Cα

 

and 
13

Cβ in one residue. The 

spectrum is called a HNCACB. This type of experiment also records the coupling across 

13
CO to the

 13
Cα and 

13
Cβ

 

in the preceding residue. [72] The other experiment measures the 

heteronuclear coupling between 
1
HN and 

15
N in one residue and the coupling across 

13
CO to 

the
 13

Cα and 
13

Cβ

 

in the preceding residue. This spectrum is called a CBCA(CO)NH 

spectrum. In a combined analysis of these two types of spectra it is possible from each 

individual 
1
HN - 

15
N peak in the 

1
HN -

15
N correlation spectrum, to identify the 

13
Cα and 

13
Cβ

 

in the same residue and the preceding residue. If the same 
13

Cα - 
13

Cβ pair, as shown in 

the open green frame of figure 13, are seen to couple to two different pairs of 
1
HN –

15
N 

couplings as indicated by the black and red arrows in the two panels, they may be assigned 

as signals from neighboring residues. As Cα and Cβ chemical shifts are indicative of amino 

acid type the linked residues can be compared to the primary sequence and an assignment 

can be made (Figure 4.11). 
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Figure 4.11. The two panels show the scalar coupling correlation, which is measured by the 

HNCACB (top) and by the CBCA(CO)NH (bottom). In the HNCACB (top) the coupling is 
mediated through the chemical bonds shown on a black background. The 

1
HN –

15
N coupling pair of 

residue (i) is correlated to the 13Cα - 13Cβ pair of residue (i) and (i-1). In the CBCA(CO)NH 

(bottom) the coupling is mediated through the bonds shown on a red background. Here the 
1
HN –

15
N coupling pair of residue (i) is correlated to the 13Cα - 13Cβ in residue (i-1). [71] 

To obtain a robust assignment strategy, however, other 3D experiments must be used, for 

example a set of additional 4 triple-resonance experiments HN(CA)CO, HNCO, 

HA(CACO)NH and HA(CA)NH) which deliver the CB, CA, C’ and HA frequencies of 

residues i and of previous residues i-1. HNCO and HN(CA)CO experiments are used to 

obtain the carbonyl 
13

C chemical shifts of residue i and i-1. The experiments 

HA(CACO)NH and HA(CA)NH or HN(CA)HA deliver the HA frequencies of residue i 

and i-1. Most recent versions and a variety of other triple-resonance experiments are 

reviewed in the literature and other combinations of triple-resonance experiments are 

possible, even strategies based on 4D experiments [53], [71], [73].  

The segments which have been assigned can be extended by finding matching spin patterns 

until the protein is completely assigned. Dynamics and exchange can lead to missing 

signals which prevent complete assignment. A correct backbone assignment is indicated by 

a full consistency of all data and represents a starting point for studies of the structure, 

dynamics and binding properties of proteins [74]. 
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4.7 Chemical shift mapping to identify Ligand Binding  

Small molecules in the presence of proteins tumble and diffuse much more rapidly when 

they are free in solution compared with when they are bound. By monitoring changes in 

NMR spectral properties, it is possible to evaluate how and where the binding between a 

ligand and a protein occurs [75]. Mapping binding sites in proteins can be achieved by 

two-dimensional NMR experiments such as HSQC and TROSY [63]. In practice, using 
1
H 

NMR spectra can be difficult due to the difficulty of assigning chemically shifted 

resonances in the presence of a ligand due to overlap[62]. The first application of 
1
H/

15
N 

HSQC experiments to screen ligands for binding activity was demonstrated for the FK506-

binding protein (FKBP) that inhibits calcineurim (a serine-threonine phosphatase) and 

blocks T cell activation when it is complexed to FK506 [76]. Valuable information on 

intermolecular interactions can be derived from chemical shift mapping. If sequence-

specific resonance assignments for the receptor protein are available, they become even 

more useful [62]. When a ligand binds to a receptor protein, the chemical shifts of both 

ligand and protein proton resonance signals are affected [75], mainly nuclei located in the 

protein binding pocket, a reflection of different nuclear environments around the binding 

site [60].  

 

4.8 Sample preparation 

Protein sample preparation for NMR studies can be time-consuming as the protein under 

study has to be purified and isotopically labelled [77]. The development of a good 

expression system is normally the first step for protein overexpression and the following 

problems should be avoided: protein precipitation at high concentration, low stability and 

low expression levels. As NMR samples require large quantities of isotopically labelled 

proteins at milimolar concentrations, recombinant technology is widely used as it can 

provide high concentrations of proteins compared to extraction from natural sources. In 

addition, these recombinant expression systems can be controlled to produce protein 

domains or to attach tags for simple purification, which is particularly important for NMR 

studies that focus on the structures and dynamics of protein domains or domain-domain 

complexes. Currently, most isotopically labelled recombinant proteins are expressed in a 
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bacterial host such as E. coli [78], and many are commercially available with different 

fusion partners and different features depending on the laboratory source. It is frequently 

difficult to predict the best expression vector for a particular protein due to the different 

behaviour of individual proteins in different expression systems [53], [59], [70].  

For Heteronuclear multidimensional NMR experiments, the protein is overexpressed in a 

bacterial host, and labelled isotopically with 
13

C, 
15

N, or 
2
H [49], [72]. Because the cost of 

13
C, 

15
N and 

2
H source compounds is significantly higher than natural abundant sources, 

the isotopic labelling of the proteins is usually done in minimal growth media using 

bacterial expression systems, commonly standard or modified versions of M9 minimal 

media employing 
13

C glucose for carbon labelling, 
15

N ammonium sulphate or 
15

N 

ammonium chloride for nitrogen labelling, and deuterium oxide for deuteration [79], [80]. 

Purification of isotope-labelled proteins is the next step of sample preparation and probably 

the most time-consuming. The procedures are the same for purifying non labelled-proteins 

and are discussed in chapter 2. If the labelled proteins contain tags, fusion targeted affinity 

columns are the first step of purification after cell lysis. When proteins are not fused, the 

chemical structure and physical properties of the proteins are the two key parameters used 

to develop the most efficient purification protocols. Normally 90% purity is sufficient for 

Heteronuclear NMR studies. 

The last step for NMR sample purification is to choose a good buffer in which the protein 

is concentrated to approximately 1 mM. Phosphate buffer at pH 5–8 (20–50 mM) with or 

without salt (e.g., KCl, NaCl) is often used for many NMR samples. High quality NMR 

tubes should be used for protein samples, which are usually tubes 5 mm in diameter 

containing 0.5 mL 95% H2O/5% 
2
H2O for aqueous samples. If the volume of the sample is 

limited, microtubes can be chosen for a total sample volume of approximately 200 μL, 

such as Shigemi micro tubes (Shigemi Inc., Allison Park, PA). The buffer contains from 5-

7% 
2
H2O used for 

2
H lock. In addition, the samples are usually required to be degassed by 

blowing high purity argon or nitrogen gas into them to remove oxygen—the paramagnetic 

property of which will broaden the line shapes of protein resonances [53]. 
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4.9 Murine p22HBP backbone assignments 

Previously, Dias et al. [10] obtained resonance backbone assignments and determined the 

solution structure of murine p22HBP by NMR spectroscopy. The researchers used standard 

methods to obtain chemical shifts assignments. HN, Hα, NH, CO, Cα and Cβ resonances 

were carried out manually by using the 2D 
1
H-

15
N HSQC and 

1
H-

15
N TROSY and 3D 

trHNCO, trHN(CO)CA, trHNCA, trHN(CO)CACB, trHNCACB, 
15

N-edited NOESY-

HSQC (mixing time, 60 ms), and 
15

N-edited TOCSY-HSQC (mixing time, 43.2 ms) 

spectra. Starting point was peak picking in the 2D TROSY spectrum and transposed to 

trHNCO where the spin systems were identified. The peaklist generated in trHNCO was 

loaded onto the trHN(CO)CA, trHNCA, trHN(CO)CACB and trHNCACB spectra, where 

the alfa and beta carbon resonances were identified for each spin system. With these 3D 

spectra, sequential connectivities between different spin systems were determined as 

shown in Figure 4.12.  

 

Figure 4.12. Sequential backbone assignments of the Lys 121 to Arg 125 resonances for murine 

p22HBP. A) trHN(CO)CA (1) and trHNCA (2) spectra acquired in the 
15

N/
13

C labelled p22HBP 

sample; B) trHNCO (3) and HN(CA)CO (4) spectra acquired in the 
2
H/

15
N/

13
C labelled p22HBP 

sample. 

More than 90% of the 
1
H, 

15
N and 

13
C protein resonances were assigned although some 

solvent exposed amide resonances in the N-terminal (residues 7-17) and loop residues 173-

181 were undetected due to exchange broadening, along with residues 80, 90, 136, 152-3, 

157 and 164. 



Protein NMR spectroscopy of p22HBP 

87 

Chemical shifts differences were also studied by NMR for murine p22HBP with PPIX and 

Hemin and several 
15

N labelling were prepared with increasing amounts of PPIX or 

Hemin. A 2D 
1
H-

15
N TROSY spectrum was collected for each sample and chemical shift 

changes were monitored upon the titration with either PPIX or Hemin. Researchers 

observed that in the presence of less amounts of porphyrins, two sets of TROSY signals 

were registered, corresponding to the free protein and to the PPIX-bound form. With 

excess of PPIX, the original signals corresponding to free protein were no longer visible. 

This was explained by the formation of a high affinity 1:1 complex with an off rate 

corresponding to the slow exchange regime of the chemical shift time scale. A more 

detailed study of porphyrin titrations was developed: 3D trHNCO and trHNCA for three 

samples, murine p22HBP, murine p22HBP-PPIX and murine p22HBP-Hemin. PPIX and 

Hemin induced chemical shift differences were mapped as a function of murine p22HBP 

sequence in order to identify the tetrapyrrole binding site (Figure 4.13). 

 

Figure 4.13. Experimental 
1
H chemical shift differences observed for murine p22 HBP upon 

binding of PPIX or Hemin plotted as a function of the p22HBP amino acid sequence and secondary 
structural elements [10]. 
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As shown previously, hemin induced some signals to be lost which was attributed to 

extreme broadening by the paramagnetic Fe(III) center (gray boxes along the residue axis). 

Despite the difference in the magnitude of the shift perturbations by PPIX and hemin, the 

patterns of chemical shift mapping were identical suggesting that the two ligands bind the 

same site in similar orientations. The largest shift differences were observed in a cleft 

bounded by the α1 helix (around M63) and the β8– β9 loop (residues 171–180) and they 

were shielding in nature suggesting that the middle of the αA helix must be above or below 

the plane of the porphyrin ring. In addition, because the porphyrin can induce strong and 

highly directional ring current shifts, relatively distant parts of the structure were also 

affected [10]. 

4.10 Materials and methods  

4.10.1 NMR measurements 

Data acquisition for human p22HBP backbone assignment 

NMR spectra were recorded on a Bruker DRX500 equipped with a four-channel probe and 

triple axis gradients, and more recently Bruker Avance III HD 700, at 303 K. Bruker 

Avance II 800 MHz from CERMAX-ITQB. These spectrometers are integrated in 

Portuguese Nuclear Magnetic Resonance Network (PTNMR). 3mm Shigemi micro tubes 

(Shigemi Inc., Allison Park, PA) with 250 µL of protein sample were used in all NMR 

experiments. Human p22HBP experiments for backbone assignment were performed with 

double labelled protein (
15

N and 
13

C) at approximately 1.0 mM concentration, in 50 mM 

phosphate buffer pH 8.0, with 10 % D2O (CortecNet). Protein deuteration was obtained by 

using Deuterium oxide (D2O) 99.8% (Cortecnet) in minimal media preparation instead of 

distilled water. All NMR data were processed and analyzed by NMRPipe/NMRDraw [81], 

Topspin  and CARA [82] software. In Table 4.3 is described the list of experiments carried 

out to human p22HBP backbone assignment. 
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Experiment Pulseprogram 
FID 

size 
Nucleus 

Spectral 

width (Hz) 

Acquisition 

mode 
scans 

15N HSQC-NOESY noesyhsqcf3gpwg3d  2048 1H 12820.513 DQD ns 256 

trHNCO 2H trhncogp3d 2048 1H 10775.862 DQD ds 32 

  
40 15N 2189.445 Echo-antiecho ns 16 

 
 128 13C 3320.446 States-TPPI  

trHNCA trhncagp3d2 2048 1H 9615.385 DQD ds 32 

  

40 15N 2311.077 Echo-antiecho ns 16 

  

128 13C 4829.151 States-TPPI 

 
trHNCOCA 2H trhncocagp2h3d 2048 1H 9615.385 DQD ds 32 

  
40 15N 2222.219 Echo-antiecho ns 16 

  
128 13C 4829.151 States-TPPI  

trHNCOCACB 2H trhncocacbgp2h3d 2048 1H 9615.385 DQD ds 32 

  
40 15N 2222.222 Echo-antiecho ns 16 

  
128 13C 11363.637 States-TPPI 

 
1H15N-TROSY trosyf3gpphsi19.2 1024 1H 8417.509 DQD ds 32 

  
256 15N 2432.713 Echo-antiecho ns 8 

Table 4.3. Human p22HBP NMR experiments. Human p22HBP NMR spectra parameters, 

including pulseprogram, FID size, number of scans, spectral width and corresponding acquisition 

mode, acquired for backbone assignment. 

For murine p22HBP variants chemical shift mapping, 
1
H

15
N-TROSY spectra were 

acquired, in 50 mM phosphate buffer, pH 8.0, 10 % D2O, using trosyf2gpst19 as 

pulseprogram, with 128 ns and 256 ds. For 
1
H, it was used a FID size of 2048, spectral 

width of 8012.82 Hz and acquisition mode of DQD. For 
15

N, it was used a FID size of 256, 

spectral width of 2027.351 Hz and States-TPPI as acquisition mode. 

Tetrapyrrole titrations of murine p22HBP, variants and human p22HBP. 

For chemical shift mapping; uniformly 
15

N, 
13

C-labeled samples of murine p22HBP variants 

(50 mM phosphate buffer, pH 8.0) in H2O/D2O (7%) at a concentration of 1 mM were used. 

All NMR spectra were acquired at 303 K on a Bruker DRX500 spectrometer equipped with a 

four-channel probe and triple axis gradients. A series of 2D spectra, 1H, 15N-TROSY were 

acquired for p22HBP variants: K64A, K177A, K177E, R56A/K64A and 

R56A/K63A/K177A; in the presence (p22HBP:PPIX, 1:1.4 ) and absence of Porphyrin. Due 

to their poor solubility in acidic and neutral pH, tetrapyrroles were initially dissolved in 
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ammonia followed by dilution in water. After addition of a surfactant, Tween 80 (1.5% v/v), 

the pH was adjusted to 8.0 with KH2PO4 and the volume adjusted to 1 mL. Hemin and PPIX 

concentrations used in titration were estimated by UV spectroscopy. Molar absortivity for 

PPIX was found to be 97071 M
-1

cm
-1

 while for Hemin was 32257 M
-1

cm
-1

. 

4.10.2 Talos+ calculations 

Assigned residue assignments for human p22HBP were used as input to the program 

Talos+ to predict protein phi and psi backbone torsion angles [83]. Talos+ is a hybrid 

system for empirical prediction of protein phi and psi backbone torsion angles using a 

combination of six kinds of chemical shift assignments (HN, Hα, Cα, Cβ, CO, N) for a 

given residue sequence [83]. In Figure 4.14 a scheme of how TALOS+ perform the Ψ and 

Φ predictions is shown. 

The Talos+ server was used (http://haddock.chem.uu.nl/enmr/services/TALOS/) and a 

chemical shift file in Talos format (Figure 4.14 B) was prepared and uploaded. 

 

Figure 4.14. A- Chemical shift file in TALOS format. B- Flowchart for TALOS+ database search 

procedure [83]. 

 

 

A

B
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4.11 Results and discussion 

4.11.1  Chemical shifts differences of p22HBP variants 

NMR experiments were carried out in order to confirm that no structural changes have 

been introduced by mutations in p22HBP and were evaluated by chemical shift mapping 

using 
1
H-

15
N TROSY experiments. 

A preliminary TROSY spectrum (Figure 4.15) of 
15

N labelled p22HBP-K64A sample 

showed good chemical shift dispersion (indicative of folded protein) and contained the 

expected number of signals for a 190 residue protein. The backbone assignments of 

p22HBP variants were performed using TROSY spectra superimposed on wild type 

murine p22HBP spectrum.  

 

Figure 4.15. 
1
H,

15
N TROSY spectra of murine p22HBP (red), and K64A (blue) recorded at 500 

MHz. Both spectra were acquired at 303 K in 50 mM phosphate buffer at pH 8.0. 

Chemical shift differences were observed for the variants, mainly located near the 

modified residues. Figure 4.16. shows the main differences between p22HBP variants and 

wild type murine p22HBP. The small differences indicate similar, correctly folded, 

structures in solution  

k64
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Figure 4.16. Chemical shift mapping for p22HBP variants when compared to murine p22HBP. 

Grey bars correspond to prolines.  

For K64, the main differences were observed around residue K64. When lysine was 

replaced for an alanine, the shift differences were lower when compared with those 

observed in variant with lysine replaced by Glutamic acid. In the overall, the proton shifts 

differences were less than 0.1, and the structure remain as murine p22HBP wild type. 

Residues G110 and S116 experiment a chemical shift difference of -0.222 and 0.193 

respectively in K64E. S116 is far from K64 in sequence but with tertiary structure, are 

close in space and thus also experiment chemical environment changes. 

In both K177 variants, chemical shift differences were observed around residue 177 and 

also in residue G110. Curiously, although G110 is not close in space with K177, in 

K177A, the spin system of Glycine 110 moves to the left (with high 
1
H chemical shift) 

while in K177E moves to the right, which corresponds to lower 
1
H chemical shift. 

For R56E variant, the main differences were also observed near the mutation site as 

expected. Residue E141 is close in space with R56 and the presence of a Glutamic acid 

instead of Arginine, promoted the peak deviation to left which corresponds to high 
1
H 

chemical shift. 

Double and triple variants, experiment the same behavior as in single variants, and the 

main chemical shift differences were observed around residues R56 and K64. In 
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R56A/K64A a new deviation is observed in residue K96 although it was not confirmed in 

R56 and K64 variants. This residue is located near R56 and could experiment the 

hydrophobic changes with the replacement of Arginine 56 by an Alanine.  

4.11.2 Tetrapyrrole titrations of murine p22HBP, variants and human 

p22HBP 

NMR studies were also used to evaluate the interactions of murine p22HBP variants with 

PPIX. There is slow exchange (on the NMR chemical shift time scale) between free and 

bound forms. This allows most peaks in the bound form to be identified relatively easily 

and therefore allows mapping of the interaction site. In Figure 4.17, an overlay of the 

TROSY spectrum of 
15

N labelled p22HBP-K64A with PPIX and p22HBP-K64A (free) is 

shown. 

 

Figure 4.17. 
1
H,

15
N TROSY spectra of K64A (blue) and K64A-PPIX (red) recorded at 500 MHz. 

Both spectra were acquired at 303 K in 50 mM phosphate buffer at pH 8.0. 

By analyzing the chemical shift differences observed in the TROSY spectra of all variants 

with PPIX (spectra not shown) it was possible to determine chemical shifts differences and 

identify the location of the tetrapyrrole binding site for the variants (Figure 4.18). 
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Figure 4.18. 
1
H chemical-shift deviations plotted by the residue number for human and murine 

p22HBP and respective variants, upon binding to PPIX. 

According to Figure 4.18, the largest chemical shifts differences of p22HBP upon binding 

with PPIX were observed in murine and human p22HBP. As the same pattern of chemical 

shift differences is observed for human p22HBP and variants when compared to murine 

p22HBP, it is possible to conclude that the mode and position of binding is very similar to 

the wild type form. The largest shifts differences were observed for the α-helix extending 

from Valine 51 to Glycine 67 and were less pronounced in the region around residues 105 

and 171. In human p22HBP and variants, PPIX also induces positive and negative shifts as 
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reported for murine p22HBP [10].The ring currents of porphyrin induce shielding in nuclei 

above and below the plane of the porphyrin ring and deshielding around the “edge” of the 

ring. 

4.11.3 Backbone Resonance assignments for human p22HBP  

Backbone chemical shift assignments for human p22HBP were obtained by a variety of 

strategies: human/murine p22HBP sequence alignment, triple resonance experiments, 

talos+ calculations and tetrapyrrole titration experiments. Initially, the assignment of HN, 

NH, peaks was carried out manually by using 2D 
1
H-

15
N HSQC and 

1
H-

15
N TROSY 

experiments and by comparing assigned peaks for the murine form of p22HBP with the 

human form. As the two forms have 87% homology, the resonance signals of conserved 

residues in both human and murine p22HBP were expected to appear in the same region of 

the HSQC/TROSY spectrum. This strategy however did not provide complete assignment 

and therefore triple resonance experiments were carried out: 3D trHNCO, trHN(CO)CA, 

trHNCA, trHN(CO)CACB, trHNCACB, 
15

N-edited NOESY-HSQC and 
15

N-edited 

TOCSY-HSQC spectra. Spin systems picked in 2D 
1
H-

15
N HSQC spectra were correlated 

with trHNCO peaks to identify NH backbone peaks and to help determine how many peaks 

were appearing in overlapped regions of the 2D HSQC spectra. Although the TROSY-

HNCO is highly sensitive, it provides only one C'i-1 peak per residue and therefore does not 

allow the establishment of connectivity between spin systems. Sequential connectivity was 

achieved by comparing trHNCA and trHN(CO)CA spectra: trHNCA correlates each NH 

group with the Cα of its own residue (strongly) and of the preceding residue (weakly) and 

trHN(CO)CA only correlates the NH group with the preceding Cα chemical shifts. Figure 

4.19 shows the sequential assignment of segment D91-Q95 using a 3D trHNCA spectrum. 
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Figure 4.19. Sequential assignments of the resonances from residues D91 to Q95 of human 

p22HBP using the trHNCA spectrum.  

trHN(CO)CACB and trHNCACB spectra were used, in addition to trHNCA and 

trHNCOCA spectra, to identify alpha and beta carbon resonances for each spin system and 

to determine sequential connectivity between different spin systems. A set of spectra was 

also recorded for a deuterated form of human p22HBP at high field (800MHz, ITQB). This 

allowed a trHN(CA)CO experiment to be obtained and compared to an trHNCO to aid 

sequential assignment. Data from a PPIX titration was also used to confirm the 

assignments. Figure 4.20 shows the chemical shifts changes observed on PPIX binding for 

human p22HBP using the final set of assignments. 
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Figure 4.20. 
1
H, 

15
N TROSY of human p22HBP titrated with PPIX (1:1.4) at 303K. Red-human 

p22HBP free, blue-human p22HBP titrated with PPIX. 

Assuming a similar structure and similar binding mode for PPIX the very similar pattern 

seen for the chemical shift changes for the human form compared to the murine form 

confirms the backbone assignments are correct (Figure 4.18). Finally as a last step a Talos+ 

calculation was run using the assigned 
1
H, 

15
N and 

13
C resonances. TALOS+ is a hybrid 

system for empirical prediction of protein phi and psi backbone torsion angles using a 

combination of six kinds of chemical shift assignments (HN, Hα, Cα, Cβ, CO, N) for a 

given residue sequence. Assuming the structures of the murine and human forms are very 

similar the secondary structure predicted by Talos+ was compared to the actual secondary 

structure seen for murine p22HBP in solution. At this point some assignments that were 

indicating no secondary structure using Talos+ but had been assigned to a section of 

protein with an α-helix were modified and the Talos+ calculation rerun. This was repeated 

until the best match between predicted and “actual” secondary structure was obtained. The 

complete results from the Talos+ prediction are shown in Appendix 9.1 and it is possible to 

see that the predicted results for human p22HBP are in agreement with murine p22HBP 

and the secondary structural elements are well defined. A complete table of chemical shifts 

for assigned nuclei in human p22HBP based on trHNCA, trHNCOCA, trHNCACB, 

trHNCOCACB, HN(CA)CO and HNCO spectra and Talos+ calculations at 303 K is 



Protein NMR spectroscopy of p22HBP 

 

100 

shown in appendix 9.2. Figure 4.21 shows a visual summary of the backbone human 

p22HBP assignments. 

 

Figure 4.21. Human p22HBP assignments overview. Assigned residues are colored in green and 

unassigned residues are colored in grey. Prolines are colored in red. (Structure was calculated using 

the Robetta server). 

Approximately 82% of all backbone resonances and 92% of the structured regions of the 

protein were assigned while for the unstructured loop regions only 63% of observed peaks 

were assigned. There are still 22 peaks that have not been assigned in the HSQC spectrum 

and 9 residues are absent in HSQC spectra. Rapid exchange is probably the reason for the 

lack of peaks in the loop regions. 

The assignments were also be checked using the chemical shift index (CSI) used for the 

identification of protein secondary structure [84]. This method is based on the secondary 

structure shift, which is the difference between the observed chemical shift and the random 

coil value (Table 4.2) assigned to this amino acid type in the unfolded conformation. The 

chemical shift index method is used for assigning secondary structural elements in proteins 

before structure calculation. The secondary structure is established by an alpha helix if four 

or more sequential negative  δHA (classified as -1) and/or positive  δCα (classified as +1) 

are found and a beta-strand if three or more sequential positive  δHα (+1) and/or negative 

 δCα (-1) are found. In Figure 4.22, the CSI for human p22HBP is shown and a complete 

table with CSI results is shown in appendix 9.2. 

PRO 174

PRO 177

PRO 173
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Figure 4.22. Chemical shift index plotted as a function of human p22HBP sequence. Red bars are 

related to HA chemical shifts variations and blue bars are related to CA chemical shifts variations. 

The CSI results indicate a β-sheet for residues 31-36 and 39-48 and an α-helix is seen for 

51-67 although HA chemical shifts variations are not well defined. Four more β-sheets are 

located for residues 82-87, 96-103, 120-125 and 128-135. Another α-helix is seen for 

residues 141-158 and the C-terminus end with two β-sheets 166-170 and 182-186. These 

results are in agreement with secondary structures seen in the murine p22HBP structure.
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5.1 Introduction 

The relationship between structure, dynamics and function in complex molecular systems 

is one of the fundamental problems in understanding life at the molecular level. Most of 

biological functions in cells are performed by proteins, which make proteins the molecular 

machines that control all key events in living cells. Static three-dimensional structures and 

respective amino acid sequences provide very important information on the organization 

and on interactions with other molecules. However, proteins are not strictly static and 

assume a variety of ensembles or conformations that are essential for most protein 

function. There are a variety of possible protein motions such as, bond vibrations, side-

chain rotations, segmental motions and domain movements. These motions occur over a 

variety of length and time scales, and have been linked to functionally relevant phenomena 

such as allosteric signaling and enzyme catalysis [85][86]. As dynamic properties intrinsic 

to a protein structure are extremely complex (a variety of motions occur in the same 

molecule at the same time) they can be difficult to analyze. However due to the nature of 

the NMR method, isotopic labelling coupled with multidimensional NMR methods can be 

used to monitor dynamic behaviour in solution, and can provide a complete picture of 

protein motions ranging from picoseconds up to seconds.  The type of motion that is 

accessible to NMR is illustrated in Figure 5.1. 

 

Figure 5.1. Dynamic time scales, types of protein motions and NMR parameters available to study 

these processes [87]. 

http://en.wikipedia.org/wiki/Allosteric_regulation
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5.1.1 Correlation times and Spectral Density Functions 

In an external magnetic field, molecular tumbling and internal motions cause reorientation 

of an 
1
H-

15
N spin pair (represented with a single bond vector) with respect to this external 

magnetic field and the local magnetic field at the 
15

N nucleus fluctuates due to the directly 

attached 
1
H magnetic dipole (Figure 5.2). Despite the fact that the local dipolar interaction 

between the 
1
H and 

15
N spins average to zero, because of molecular tumbling, the time-

dependent fluctuations in the field at any point in time are not zero and cause a spin system 

that has been perturbed by radio-frequency pulses to return to thermal equilibrium. This 

process is called relaxation. Fluctuations of the local magnetic fields are sensitive to 

overall molecular tumbling and internal motions and the measurement of NMR relaxation 

rates provides an important source of information about the dynamics of a system.  

 

Figure 5.2. A. Orientation-dependent magnetic field experienced by an amide 
15

N nucleus due to 

the directly bonded proton [88].  

The magnitude of the changes depends on how fast the molecule tumbles. Considering the 

orientation of the bond vector, with a fixed orientation with respect to a molecular frame of 

reference, at time t and at a time t+δ, for a large molecule which rotates slowly, the 

orientation at time t+δ is very similar to the orientation at time t: both orientations are 

correlated to a high degree. On the other hand, if the molecule tumbles fast, the bond 

vector orientations at time t and t+δ are very different, and are not correlated to each other 

anymore.  
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Figure 5.3. 
15

N–
1
H bond vector orientation for long correlation time (A) and short correlation time 

(B) [89].  

This correlation can be described by a correlation function C(t) and for isotropic rotational 

diffusion of a spherical top, it is  

        
 

 
   

Equation 5.1 

where the normalization constant   equals 
 

 
 and    is the rotational correlation time of the 

molecule. The rotational correlation time can also be related to the hydrodynamic property 

of a molecule via Stoke’s law: 

   
      

 

    
 

Equation 5.2 

in which    is the viscosity of the solvent,   is the effective hydrodynamic radius of the 

solute,    is the Boltzmann constant and T is the temperature. According to Equation 5.2, 

large values of    correspond to slow tumbling (large molecules or low temperatures) and 

small values of    indicate fast tumbling (small molecules or high temperatures). The 

Fourier transformation of a correlation function results in the corresponding spectral 

density function     : 

       

  

      
 
 

Equation 5.3 
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As the correlation time is dependent on the motional regime (affected by molecular size), 

the spectral density function is different for different regimes i.e. slow, intermediate or fast 

[90]. Considering a small molecule with rapid tumbling and consequently short τc, there is 

an almost equal chance of having components at both high and low frequencies, up to ca. 

1/τc at which point the probability drops rapidly. On the other hand, for large molecules, 

with slow tumbling and consequently high τc, the probability of generating rapidly 

oscillating fields is very small and thus the corresponding spectral density is concentrated 

into a smaller frequency window. 

 

Figure 5.4. Spectral density (J(ω)) variation with the molecular motion as a function of the 

frequency (ω) [91]. 

 

5.1.2 The NOE 

One of the most important parameters to evaluate the dynamic behaviour of a protein is 

obtained from the measurement of the Nuclear Overhauser Effect (NOE), which occurs 

between protons located close in space (within 5Å), and arises from dipole-dipole cross-

relaxation. The NOE can be determined by observing the change in intensity of one 

resonance when the spin transitions of another spin is perturbed from its equilibrium 

population [92].  

J(
ω

)

ω (Hz)
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Figure 5.5. Schematic representation of NOE effect. Irradiation of resonance A leads to an increase 

of peak intensity of the neighboring spin C (positive NOE) or to a decrease of peak intensity 

(negative NOE). 

 

The NOE is associated with spectral densities, J(ω), which are related via Fourier 

transformation with their respective correlation functions of reorientional motion, 

according to Equation 5.4. 

      
 
  

  
                       

  
 

Equation 5.4 

where, 

   
 
  

  
      

     
   

Equation 5.5 

As the equation for NOE contains a 1/r
6
 dependence on the distance, r, between 2 spins, 

the effect can be used to extract distance information. This is used to identify protons in a 

protein that are close in space but distant in terms of protein primary sequence in NMR 

structure determination [53], [93], [94]. 

For large molecules and/or high viscosity solvents the zero-quantum relaxation pathway is 

very efficient (molecular motion is slower than the Larmor precession frequency), and ω0 > 
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ω2. Under these conditions negative NOEs approaching -100% can be observed. It is 

sometimes worthwhile to manipulate solvent viscosity and temperature to achieve negative 

NOE's, since these are inherently larger than the positive NOEs seen under conditions of 

fast molecular motion. 

 

Figure 5.6. Effect of Molecular motion and molecular size on NOE. 

The heteronuclear two-dimensional 
1
H-

15
N Nuclear Overhauser Effect, or hetNOE, is a 

widely used NMR experiment to obtain protein dynamics information over fast time scales 

(pico to nanosecond). Here flexible regions or unstructured parts of the protein and vice-

versa can be identified if backbone assignments are available. For instance, 
15

N-
1
H 

HetNOE values lower than 0.65, at 600 MHz, are normally indicative of flexibility on a 

picosecond timescale for the protein backbone [95]. The HetNOE can be obtained 

experimentally using the ratio of cross-peak intensities from two experiments, with (INOE) 

and without (INONOE) presaturation of amide 
1
H nuclear spins, normally known as NOE and 

NONOE experiments (Equation 5.6). The respective uncertainties, σNOE, are shown in 

Equation 5.7, where I and δ are the peak intensities and the level of experimental noise, 

respectively. 

    
     

      
 

Equation 5.6 

            
    

    
 

 

  
      

      
 

 

 

Equation 5.7 
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5.1.3 Transverse and Longitudinal Relaxation 

15
N relaxation experiments are used to probe backbone dynamics in proteins and measure 

either the recovery of 
15

N Z-magnetization to its equilibrium value (T1) or the decay of 

magnetization orthogonal to the Z axis to zero (T2) (Figure 5.7). 

 

Figure 5.7. Illustration of amide 
15

N relaxation experiment. (i) equilibrium 
1
H magnetization, (ii) 

1
H to 

15
N transfer, (iii) relaxation delay, (iv) indirect 

15
N chemical shift detection, (v) 

15
N to 

1
H 

transfer and (vi) direct 
1
H chemical shift detection [88]. 

The longitudinal and transverse relaxation rates, R1 and R2 are associated with spectral 

densities, J(ω), which are related via Fourier transformation with the respective correlation 

functions of reorientional motion. Considering the backbone 
15

N amide nucleus, the main 

sources of relaxation are 
15

N chemical shift anisotropy and dipolar interaction with bound 

1
H. The relaxation parameters can be defined as: 

                                               

Equation 5.8 

 

   
 

 
                      

 

 
                                   

Equation 5.9 

where, 

   
 
  

  
      

     
                 

Equation 5.10 

  represents the contribution from 
15

N-
1
H dipolar coupling whereas   represents 

15
N 

chemical shift anisotropy.     is the conformational exchange contribution to the measured 
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R2. These equations are widely used in protein dynamics analysis to estimate spectral 

densities. 

The return of magnetization to the z-axis consequently causes loss of magnetization in the 

x-y plane, therefore T2 is always less than or equal to T1. Thus, all aspects that influence T1 

will also indirectly influence T2 and all other frequencies acting on the x-y plane will also 

act on T2. Equation 5.11 and Equation 5.12 indicates this behavior: 

 

  
      

  

           
 

Equation 5.11 

 

  
      

  

           
    

Equation 5.12 

where   is the magnetogyric ratio,    is the correlation time,    is the Larmor frequency 

and     is the mean-square average of the local magnetic fields. Figure 5.8 illustrates how 

T2 relaxation decreases with increasing molecular size and tumbling time,   .  

 

Figure 5.8. T1 and T2 behaviour as a function of correlation time. τ = Molecular correlation time: 

the time it takes the average molecule to rotate one radian [95]. 
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5.1.4 The Model Free Approach for the analysis of relaxation data 

The model-free approach was introduced by G.Lipari and A. Szabo in 1982 and extended 

by G.M. Clore and co-workers and nowadays is the most common way to analyze NMR 

relaxation data. This approach allows characterization of internal motions on time scales 

faster than the overall molecular tumbling using the dependence of the longitudinal and 

transverse relaxation rates R1 and R2 and the heteronuclear NOE on the spectral density 

function     . The original method introduces two parameters for the study of NMR 

relaxation data, a generalized order parameter    and an internal correlation time   . Once 

the spectral density function of this formalism is obtained without invoking a model or any 

other assumptions on the kind of motions, and    and    are defined in a model 

independent way, the approach is referred to as “model-free”. 

Considering a 
15

N-
1
H spin pair in a protein whose overall motion can be described by a 

single correlation time, the orientation of the bond vector changes due to internal motion, 

and is not fixed with respect to a molecular frame of reference. Assuming that the overall 

and internal motions are independent, and this is the fundamental assumption of the Model 

Free approach, the total correlation function is given as: 

                

Equation 5.13 

where o and i refer to overall and internal motions respectively. 

For isotropic overall motion       is given by equation Equation 5.1 with    
 

 
. The 

internal correlation function can be defined as: 

                
 

 
   

Equation 5.14 

 

where    is the correlation time and    is the squared order parameter of the internal 

motion . S
2
 refers do spatial restriction of the motion ranging between 0 and 1. For S

2 

approximately 1, internal motions of the bond vector are said to be restricted and relaxation 
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is defined by global motion. On the other hand, if S
2
 is approximately 0, the unrestricted 

internal motions describe the relaxation.  

The squared order parameter allows a simple geometrical interpretation depending on 

particular motional model. The relationship between model-free parameters and internal 

motion can be represented as shown in Figure 5.9 with the bond vector, µ, diffusing in a 

cone with an angle, θ, defined by the diffusion tensor and the equilibrium orientation of the 

bond vector, which characterizes the angular amplitude of the internal motion [96]. 

 

Figure 5.9. Relationship between internal motion and model-free parameters [96]. 

 

The quantity S
2 

is given by the equation: 

    
            

 
 

 

 

Equation 5.15 

S
2
 is a parameter that characterizes the angular amplitude of the internal motion, reaching 

the maximum value when θ is equal to zero and the motion of the vector is restricted to the 

fixed orientations. S
2 

decreases rapidly as θ increases and the motion of the vector becomes 

more flexible. When θ is 75º or higher, the motion becomes completely isotropic, with an 

S
2
 of almost zero.  

Inserting Equation 5.1 and Equation 5.14 into Equation 5.14 yields: 

     
 

 
 

 
 
             

 
 
    

Equation 5.16 
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with a Fourier transformation leading to the corresponding spectral density function: 

     
 

 
 

    

        
 

        

        
  

Equation 5.17 

where  

       
     

   

Equation 5.18 

 

When the internal motion is slow compared to overall molecular tumbling        , then 

     , and the spectral densityis given by           . On the other hand, if the internal 

motion is faster than rotational correlation        , then       and the spectral density 

function is scaled by S
2
:                  .  

 

Figure 5.10. S
2
 and τi illustration. S

2 
describes the spatial restriction of the motion, in this case the 

motion of a 
15

N-
1
H bond vector. The time scale of the motion is given by τi. Left: highly restricted 

motions, S
2
→1. Right: largely unrestricted motion S

2
→0 [89].  

In last case, C(t) rapidly decays to a plateau S
2
 with a time constant    due to internal 

motions. As time increases, global motions take over and C decays according to the overall 

correlation time   (Figure 5.11) 

 

Figure 5.11. 
15

N-
1
H bond vector orientation according to internal motion and overall tumbling [89]. 
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This approach was developed to include internal motions both on a fast and slow 

timescale. The 
15

N-
1
H bond vector reorients fast due to restricted internal motion and slow 

due to overall tumbling (Figure 5.12).  The extended Lipari-Szabo formalism introduces an 

additional motion, and defines the correlation function of the internal motions as: 

                          
   

 
 
      

      
 

 
   

Equation 5.19 

where      
   

 ;   
  and   

  are the squared order parameters of the slow and fast internal 

motion, respectively; τ  and τ  are the corresponding correlation times. 

A simple model for the extended Lipari-Szabo formalism is illustrated in Figure 5.12 

 

Figure 5.12. Specific motional models for interpretation of model-free order parameters. a. 

diffusion in a cone motional model (the N-H bond vector is assumed to diffuse freely within a cone 
defined by the semiangle θ); b. two-site jump model (the N-H bond vector is assume to alternate 

between two states i and j, separated by an angle φ);c. combined diffusion in a cone and two site 

jump models for internal bond vector motions (the N-H bond vector is assumed to alternate 
between two equally sized cones (on the slower timescale) or freely diffuse within each cone (on 

the faster time scale)). θf is the cone semiangle and φ is the semiangle between the two cones [97]. 

The slower motion is represented by a jump between two states (i and j) while faster 

motion is represented as free diffusion within two axially symmetric cones centered about 

the two I and j states. θof is the semi angle of the cone and φs is the angle between the NH 

vectors in the two states (i and j).  
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Figure 5.13.  Relationships of the model-free order parameter (S
2
) to the cone semiangle (θ) and the 

two-site jump angle (φ). 

The full spectral density function of motions described by generalized order parameter, 

occurring on the ns-ps time scale is defined by: 

     
 

 
 

    

      
  

     
    

 

      
   

   
       

 

      
    

Equation 5.20 

where   
               and         . If    

   , Equation 5.20 is reduced to 

Equation 5.17, which retrieves a reduced spectral density. 

 

5.1.5 The Diffusion Tensor 

Molecular tumbling in solution is an important tool for NMR relaxation. For a large 

number of proteins studied so far, an isotropic overall rotational diffusion was assumed as 

they proteins adopt approximately spherical globular shapes. However, it has been 

emphasized that anisotropic rotational diffusion has strong effects on spin relaxation and 

thus on the interpretation NMR relaxation data. Accordingly, it is important a detailed 

study of the rotational diffusion tensor for the analysis of intramolecular motions in non-

spherical proteins. The rotational diffusion tensor characterizes how a molecule “behaves” 

in solution, as a sphere or something different. The tumbling is the same for all directions 
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when the protein as a globular, spherical shape, which is defined as isotropic tumbling and 

hence isotropic diffusion tensor. In turn, if rotational diffusion is anisotropic, the molecular 

tumbling is described by three diffusion coefficients: if they all have different magnitudes 

it represents a completely anisotropic tensor; if two of them have similar size, it 

characterizes an axially symmetric diffusion tensor. In Figure 5.14 a schematic 

representation of rotational diffusion tensor is shown. 

 

Figure 5.14. Illustration of rotational diffusion tensors. Left: the isotropic tumbling is represented 
for a globular spheric shape; middle: axially symmetric diffusion tensor; right: asymmetric 

rotational diffusion tensor [89]. 

Rotational diffusion tensor has to be estimated before relaxation data fitting to the Lipari-

Szabo spectral density functions. This estimation has to be as accurate as possible since all 

relaxation rates during the fitting process depend on the diffusion tensor. Two methods 

were developed for determining the diffusion tensor: analysis of local diffusion 

coefficients using local correlation time or direct fitting of the R2/R1 ratios for 
15

N-
1
H bond 

vectors with highly restricted internal motions.  

Direct fitting of the R2/R1 ratios for 
15

N-
1
H bond vectors with highly restricted internal 

motions is widely used to determine the diffusion tensor. Rotation around the long axis of 

the tensor is faster than rotation around a perpendicular axis. Therefore, transverse 

relaxation depends on the orientation of the bond vector in the diffusion frame. 
15

N-
1
H 

vectors aligned parallel to the long axis of the diffusion tensor are not reoriented by 

rotations around the axis and consequently are characterized by faster transverse 

relaxation. This statement is illustrated in Figure 5.15 , where an example of a protein with 

three helices, with axially symmetric rotational diffusion is shown. Helix B is aligned 

parallel to the long axis thus the bond vectors have a faster transverse relaxation when 

compared to helix A and C. In this case, rotational diffusion anisotropy is evident from the 
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plot: all vectors oriented approximately parallel to the long axis of the tensor (helix B) 

have higher R2/R1 ratios due to a slower reorientation of their 
15

N-
1
H bond vectors. 

 

Figure 5.15. Estimation of the diffusion tensor anisotropy using the R2/R1 ratio. Residues with 
15

N–
1
H bond vectors oriented parallel to D‖ (helix B, Left) are readily identified in a plot of R2/R1 as a 

function of residue number (Right). 

 

5.1.6 Model definitions 

In order to obtain the motional parameters described in this chapter, the experimental NMR 

data have to be fitted against the equations defining the relaxation rates, with the 

appropriate forms of spectral density. In most cases, only three experimental parameters 

are available: the longitudinal and transverse relaxation rates and the heteronuclear NOE. 

The model free approach uses five different models to analyze 
15

N relaxation data (Table 

5.1) 

Model 1 and 3: Model 1 only requires one parameter, the squared order parameter S
2
, and 

it is the simplest model of all. In this model, the internal motions are assumed to be very 

fast, with the correlation time for the internal motion        . In the case of chemical 

exchange as an additional source of relaxation, Rex is introduced as second fit parameter in 

model 3. 

Model 2 and 4: Model 2 is also referred as “classical” Lipari-Szabo. In this model,    is 

relaxation active and the spectral density function is defined by Equation 5.17. As for 

model 3, Rex is introduced in the case of chemical exchange to characterize model 4. 

Model 5: The extended Lipari-Szabo model describes internal motions that take place on 

two distinct time scales,    and   , which is an extended form of model free spectral 

density function. In this model, it is considered that the contribution of the fast motion can 
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be discarded. Thus, while the fast motion contributes to the overall S
2
,      

   
 , the term 

containing the fast effective correlation time   is omitted. 

Model      Parameters 

1 
Simplified model-free  

(with isotropic tumbling) 

 

 
 

    

       
 
  S2 

2 

Original model-free 

 (slow isotropic tumbling with faster, 

spatially restricted internal motions) 

 

 
 

    

       
 

 
        

        
  

 

S2 

      

3 
Like model 1 with conformational 

exchange term, Rex 

 

 
 

    

       
 
  

S2 

Rex 

4 
Like model 2 with conformational 

exchange term, Rex 

 

 
 

    

       
 

 
        

        
  

S2 

      

Rex 

5 

Extended model-free 

 (two time scales of internal motion 

with isotropic tumbling) 

 

 
 

    

        
 

   
       

       
 

  

  
  

  
 

      

Table 5.1. Different models used in a model free analysis of relaxation rates. [97] 
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5.2 Materials and methods 

5.2.1 Sample preparation 

For relaxation measurements, 250 µL of 
15

N labelled human p22HBP 1 mM, were used in 

50 mM phosphate buffer, pH 8.0, with 10 % D2O. D2O 99.8% was obtained from 

Eurisotop. Shigemi micro tubes (Shigemi Inc., Allison Park, PA) were used in all 

relaxation experiments. For relaxation measurements of human p22HBP with PPIX, 125 

µL of 
15

N labelled human p22HBP 1 mM, 10 % D2O, pH 8.0 were mixed with 125 µL of 

PPIX 1.4 mM, 10 % D2O, pH 8.0. 

5.2.2 15
N relaxation measurements 

Longitudinal and transverse relaxation time (T1 and T2 respectively) and 
15

N- {
1
H} 

heteronuclear NOE values for native human p22HBP were recorded on a Bruker DRX500 

and Bruker Avance III HD 700, at 303 K, equipped with triple resonance, TXI probe (500 

and 700 MHz), and operating at 500.130 and 700.130 MHz, respectively for 
1
H, and at 

50.697 and 70.971 MHz, respectively, for 
15

N. 3mm. 

Heteronuclear NOE values were calculated as the ratio of peak intensities in spectra 

recorded with and without saturation. In 
1
H-

15
N HSQC-NOE without saturation, a total 

recycle delay, d1, of 10 seconds was used in place of the saturation delay to guarantee the 

same recycle delay between scans for both experiments. NOE errors were calculated from 

the uncertainties in the peak intensities measurements by the root mean square noise of 

each peak in both spectra. 

The 
1
H-

15
N steady state NOE experiments were recorded with HSQCNOEF3GPSI pulse 

program from Bruker library, using Echo/Antiecho-TPPI gradient selection, with 

decoupling during acquisition. A relaxation delay of 10 seconds was used, with 32 

transients in a matrix with 2048 data points in F2 and 128 in F1 with interleaved manner, 

NOE and NONOE. The interleaved spectra were separated by a Bruker standard macro 

split. 

Backbone relaxation parameters, T1 and T2, were determined by acquiring pseudo-3D 

spectra consisting in a series of 2D heteronuclear 
1
H-

15
N-HSQC experiments where the 

relaxation period varied. For the 
15

N longitudinal relaxation time (T1), 10 time points were 
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collected (0.8, 0.6, 0.4, 0.25, 0.025, 1.5, 3.0, 0.25, 0.6 and 0.025 seconds). The spectrum 

was acquired with 2048 points in 
1
H dimension and 128 points in the 

15
N dimension and 24 

scans. The spectral width was 8012.820 Hz in the 
1
H dimension and 2027.352 Hz in the 

15
N dimension and the relaxation delay was 3s. For the 

15
N transverse relaxation time (T2) 

9 time points were collected (0.017, 0.034, 0.051, 0.068, 0.085, 0.102, 0.119, 0.136 and 

0.153 s), using the pulse program hsqct2etf3gpsi3d. The spectrum was acquired using the 

same conditions as for T1. 

For T1 determination, the fit function  

         
  

  
 

 

Equation 5.21 

was used and for T2 determination 

         
  

  
 

 

Equation 5.22 

where I(t) is a decay curve of y values (peak intensities), t is the x-variable of time, I0  the 

amplitude at t=0 and T2 are fitted. The start parameter for I0 is the y-value at lowest time 

(automatically chosen by the software) and the start parameter for T2 is introduced by the 

user. 

All NMR data were processed using Bruker Topspin 3.2 software. For analyzing human 

p22HBP relaxation data it was used the FASTModelfree software (FMF). Fast Model Free 

reduces user interaction to a minimum, once every step is performed automatically: 

creation of like input files, model assignment. The analysis of relaxation data using FMF 

has at least three steps: initial estimation of the rotational correlation time or diffusion 

tensor, model selection and a final optimization. 

5.2.3 Model Free Analysis 

Robetta structures 

For human p22HBP structure prediction it was used the Robetta server once a 3D structure 

was not available for this protein. The Robetta server (http://robetta.bakerlab.org) has 

automated tools for protein structure prediction and analysis. For structure prediction, 
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sequences submitted to the server are analyzed into putative domains and structural models 

are generated using either comparative modeling or de novo structure prediction methods. 

If a confident match to a protein of known structure is found using BLAST, PSI-BLAST, 

FFAS03 or 3D-Jury, it has to be used as a template for comparative modeling.[98] 

For human p22HBP, the murine p22HBP structure was used as template, pdb 2GOV, and 

the following sequence submitted: 

1  MGHHHHHHLE LGMIKNSLFG SVETWPWQVL SKGDKEEVAY EERACEGGKF   50 

51  ATVEVTDKPV DEALREAMPK VAKYAGGTND KGIGMGMTVP ISFAVFPNED  100 

101  GSLQKKLKVW FRIPNQFQSD PPAPSDKSVK IEEREGITVY SMQFGGYAKE  150 

151  ADYVAQATRL RAALEGTATY RGDIYFCTGY DPPMKPYGRR NEIWLLKT    198 

 

Estimation of the Overall Diffusion Tensor 

Prior to estimation the rotational correlation time, the R2/R1 ratio has to be calculated, and 

residues either subject to chemical exchange or undergoing fast internal motions have to be 

excluded. The input file which contains only accepted residues is called R2R1.input with 

the sequence number, values of R2/R1 and uncertainties as a list: 

Residue R2/R1 uncertainty 

16 13.317 2.141 

18 12.598 1.847 

19 11.564 1.644 

 

For diffusion tensor estimation, a pdb file of human p22HBP as to be available and the 

center of mass of the molecular structure should be translated to the coordinate origin using 

pdbinertia script, where the option –rt translate and rotate the coordinates of input pdb 

structure to an output_pdb. 

pdbinertia –rt (input_pdb)(output_pdb) 
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For a complete distinction between axially symmetric and complete anisotropic tumbling, 

QUADRIC_CONFUSION script was used, where the local effective correlation times are 

calculated from the R2/R1 ratios using R2R1_TM. 

The program request for the following information: 

# R2/R1 Analysis: 

# nucleus: 15N 

# bond length (A): 1.02 

# CSA (ppm): -160 

# Fields for R1 and R2 (MHz): 500.13 

#residue  tm dtm 

16 13.577  1.149 

18 13.170  1.089 

19 12.561  0.988 

 

Once local effective correlation times are used, no initial guess for τc is needed. The control 

file for quadric diffusion has the following content: 

0.1 1.4 40 

1 'N' 

tm500n.out 

rob1_nt_rot.pdb 

rob1_nt_ax_qdr500n.pdb 

rob1_nt_an_qdr500n.pdb 

 

Quadric_Confusion is invoked with the command  

quadric_diffusion quadric.ctrl>quadric.log 

 

The results for isotropic, axially symmetric and fully anisotropic model are indicated in the 

output file. 
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The FMF.config File 

The FMF configuration starts with FMF.config file containing all relevant information and 

parameters: 

tensor Axially Symmetric 

cutoff 0.95 

Fcutoff 0.80 

optimize Yes 
maxloop 10 

almost1 20 

S2cutoff 0.7 
seed 1985 

numsim 300 

jobname hhbp 
gamma -2.710 

rNH 1.02 

N15CSA -160 

tm 12.12 
tmMin 7.8 

tmMax 15.5 

tmGrid 5 
tmConv 0.001 

Dratio 1.22 

DratioMin 0.5 

DratioMax 1.4 
DratioGrid 5 

DratioConv 0.001 

Theta 140 
ThetaMin 0 

ThetaMax 180 

ThetaGrid 10 
ThetaConv 0.005 

Phi 40 

PhiMin 0 

PhiMax 180 
PhiGrid 10 

PhiConv 0.005 

model1only No 
mpdb /home/bjg/hhbp_fmf_r2r1_700_500/rob1_nt_ax_qdr700.pdb 

file{0}{R1} /home/bjg/hhbp_fmf_r2r1_700_500/R1500_hhbp.txt 

file{0}{R2} /home/bjg/hhbp_fmf_r2r1_700_500/R2500_hhbp.txt 
file{0}{NOE} /home/bjg/hhbp_fmf_r2r1_700_500/NOE500_hhbp.txt 

file{0}{field} 500 

file{1}{R1} /home/bjg/hhbp_fmf_r2r1_700_500/R1700_hhbp.txt 

file{1}{R2} /home/bjg/hhbp_fmf_r2r1_700_500/R2700_hhbp.txt 
file{1}{NOE} /home/bjg/hhbp_fmf_r2r1_700_500/NOE700_hhbp.txt 

file{1}{field} 700 
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The script starts with the definition of diffusion tensor. Possible options are isotropic and 

axial symmetric; the fully anisotropic model is not yet implemented in this software. The 

cutoff of 0.95 corresponds to a confidence limit for the χ
2 

test. Any model is fitted to the 

relaxation data of a given spin acording  to residual sum squared error. The meaning of the 

confidence region can be defined as “There is a 95% chance that the true parameters fall 

within this region around the fitted ones”. The confidence limit for F-test is defined as 0.80 

and it is used for the comparison of models with a different number of parameters, like 

model 1 and 2 for example. almost1 20 defines a new cutoff for residual sum squared error. 

The lower limit of S
2
 is defined by S

2
 cutoff, and the optimization of the diffusion tensor is 

improved if residues with a larger degree of motional freedom are excluded from the 

analysis. The maxloop 10 defines the maximum number of runs and the analysis will be 

stoped if convergence of the diffusion tensor is achieved or maxloop runs have been 

performed. Seed 1985 and numsim 300 are the integer for the random number generator 

necessary for Monte-Carlo simulations and the number of Monte-Carlo simulations 

respectively. The constants for the spin pair for which data is analyzed are defined by 

gamma, rNH and 
15

N CSA. The initial guess as well as upper and lower limits for 

correlation time (tm) is defined by tm, tmMin, tmMax respectively.  tmGrid refers to the 

number of steps for grid searching and tmConv controls the convergence of Tc. Dratio is 

only used if tensor is ste to axially simetric. The script ends with names including the paths 

of the coordinate file, R1, R2 and hetNOE datafiles. A complete modelfree analysis usually 

takes 8-10 hours depending on numsim and the optimized values for the rotational 

diffusion tensor are extracted. The simulations were perperformed on a Linux system 

(Ubuntu 12.04) with a dual core processor. 

The input files with R1, R2 and NOE results for the different magnetic fields are listed in 

appendix 9.5. 
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5.3 Results and discussion 

5.3.1 human p22HBP 

15
N relaxation parameters 

Longitudinal (R1) and transverse (R2) relaxation rates as well as 
1
H-

15
N steady state NOE 

values were obtained for free human p22HBP at 303K. Detailed tables of all relaxation 

parameters are shown in appendix 9.5, 9.6 and 9.7. 

In Figure 5.16 and Figure 5.17, NOE values plotted as a function of human p22HBP 

sequence residues, for both magnetic field used, 500 MHz and 700 MHz, are shown.  

 

Figure 5.16. Heteronuclear 
15

N-
1
H NOE values plotted as a function of human p22HBP sequence at 

500 MHz. 

 

 

Figure 5.17. Heteronuclear 
15

N-
1
H NOE values plotted as a function of human p22HBP sequence at 

700 MHz. 
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Analysing Figure 5.16 and Figure 5.17 it is possible to conclude that human p22HBP 

structure is well ordered, as indicated by an average value of 0.8 for the hetNOE. However, 

NOE values from the N-terminus were not available as this region of the protein has an 

absence of peaks. Proline residues have no NH signal in an HSQC spectra and thus do not 

retrieve any hetNOE value. Low intensities for the peaks of residues 40, 90, 96, 102, 110, 

111, 157, 171, 172 and 180, 181 mean no hetNOE values could be determined. For 

residues I82 and G179 the low hetNOE values determined could be a consequence of the 

location of these residues (I82 is located near the binding pocket and could experiment 

some distortions in its position while G179 is located in the loop region with some flexible 

motion associated) (Figure 5.18). 

 

Figure 5.18. Residues I82 and G179 location in human p22HBP structure (Robetta model). 

By analyzing the secondary structure present in murine p22HBP (and by inference in the 

human form), it is possible to conclude that α helix and β sheet NOE values are averaged at 

0.775±0.049 (500 MHz) and 0.790±0.057 (700 MHz) while the loop regions average to 

0.691±0.051 (500 MHz) and 0.774±0.123 (700 MHz). The lower values observed between 

secondary structures correspond to disordered regions of human p22HBP. NOE values 

from region flanked by residues 170-182 could not be measured but a NOE value of 

0.644±0.078 for Tyrosine 178 and 0.394±0.084 for Glycine 179 at 500 MHz suggest that 

this region of the backbone is more dynamically disordered which is in agreement with 
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flexible behaviour of the homologous backbone region of murine p22HBP reported by 

Dias et al and Micaelo et al [40] [22]. As reported by Tjandra (1995)[99], HetNOE lower 

than 0.65 are indicative of a considerable flexibility on a picosecond timescale. In Table 

5.2, a detailed analysis of hetNOE values for each section of secondary structure in murine 

and human p22HBP is shown.  

 
 

β1 β2 α1 β3 β4 β5 β6 α2 β7 β8 

p22HBP 
human 0.761 0.799 0.763 0.687 0.819 0.756 0.777 0.766 0.866 0.761 

murine 0.837 0.844 0.821 0.775 0.793 0.816 0.832 0.805 0.811 0.829 

Table 5.2. Average hetNOE values for human and murine p22HBP secondary structures. 
[p22HBP]= 1mM. at 500 MHz. 

With the exception of β4 and β7, hetNOE values are higher in murine than human 

p22HBP. Overall, the total average hetNOE value is 0.82 for murine and 0.78 for human 

p22HBP.  

R1 and R2 values were determined by fitting intensity data according to Equation 5.21 and 

Equation 5.22. In Figure 5.19 a series of spectra used to determine T2 are shown, where it 

is possible to see the peaks decrease in intensity as the mixing time increases. 
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Figure 5.19. T2 measurements of human p22HBP at 500 MHZ, 303 K. 

 

In Figure 5.20, an example of T1 fitting value for residue 114 of human p22HBP at 500 

MHz is shown. 
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Figure 5.20. Fit of longitudinal relaxation time of residue 114 of human p22HBP against Equation 
5.21 using peak intensities of T1 measurements at 500 MHz, 303K. 

 

In order to estimate the diffusion tensor, R1 and R2 values were calculated and R2/R1 ratios 

analyzed as a function of p22HBP sequence (Figure 5.21 and Figure 5.22). Estimation of 

the diffusion tensor anisotropy using R2/R1 ratios in human p22HBP indicates no evidence 

of anisotropy as all secondary structural elements have approximately the same R2/R1 ratio 

as shown in Figure 5.21 and Figure 5.22. 

 

Figure 5.21. R2/R1 plot as a function of human p22HBP sequence, at 500 MHz, 303 K. 
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Figure 5.22. R2/R1 plot as a function of human p22HBP sequence, at 700 MHz, 303 K. 

The R2/R1 ratio is higher for residues 80, 82, 135 and 137. For residue V80, this high ratio 

is a consequence of an high R2 value (also confirmed at 700 MHz). This residue is located 

in a loop region and could have some anisotropy when compared with the global structure. 

Residue I82 has an high error associated and it was not possible to extract a conclusion 

about is behavior. 

Comparison of these results at 500 and 700MHz are in agreement with the dependence of 

relaxation rates with correlation time and field strength shown in Figure 5.5. For higher 

fields, T1 values are lower at lower fields and consequently have higher R1 values. In 

contrast T2 values are constant when considering different field strengths. Therefore the 

R2/R1 ratio is higher for 700 MHz (averaged 19.766±0.490) than for 500 MHz (averaged 

12.163±0.528).  

Robetta structures 

As no structure exists for human p22HBP a three-dimensional structure was predicted 

using the programs Robetta and Modeller. As sequence homology is very high for human 

and murine p22HBP, the murine p22HBP structure was used as a template (pdb 2GOV).  

The structures obtained for human p22HBP using Modeller and Robetta are represented in 

Figure 5.23. Interestingly, the Robetta model has an α helix between residues L2 and F10 at 

the N-terminus. Each α helix is separated with a four-stranded β sheet as for murine 

p22HBP structure. 
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Figure 5.23.Modeller and Robetta secondary structure alignment for human p22HBP aligned with 

murine p22HBP (pdb 2GOV). 

Diffusion tensor 

Table 5.4 summarizes the total correlation time τm obtained from the diffusion tensor 

calculations. For human p22HBP, estimates of the rotational diffusion tensor resulted in a 

significantly small correlation time: τm=12.655±0.071 ns. Theta and Phi are the polar 

angles for the symmetry axis of the diffusion tensor in the coordinate frame of the PDB 

file. This estimation results in 145º for Theta (φ) angle and 126º for Phi (θ) angle. Axial 

isotropy diffusion tensor ratio (Dratio) of 0.881 indicates that the molecule behaves as a 

spherical rotor. 

Diffusion parameters Fit value Sim value Sim error 

τm (ns) 12.655 12.681 0.074 

Dratio 0.881 0.872 0.033 

Theta (°) 145.515 144.24 13.689 

Phi (°) 126.75 128.407 18.061 

Table 5.3. Estimation of total correlation time τm of p2HBP. Fit value is the value of a parameter 
obtained by optimization of the input value, Sim value is the mean value of a parameter obtained 

from Monte Carlo simulations and Sim error the respective error. 

 

The rotational correlation time of a protein is defined as the time that the molecule rotates 

through an angle of one radian, and is dependent on the size, shape, and dynamics of the 

molecule, as well as the bulk physical characteristics of the solvent. Thus, it is directly 

related to the volume and molecular weight of the protein. In Table 5.4 some correlation 
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times for different proteins with different sizes are listed. The τm values increase as the 

protein size increases. In comparison, the value for human p22HBP is in agreement with its 

size. 

Protein 
Number of 

residues 
Temperature (K) τm (ns) 

Human Ubiquitin [100] 76 303 4.10 

Major Cold-Shock Protein (CspA) [101] 70 303 4.88 

Rat microsomal cytochrome b5 [102] 98 298 5.00 ± 0.70 

Calcium-loaded parvalbumin [103] 109 305 7.60 

Photoactive Yellow protein [104] 121 - 6.40 ± 0.60 

GMH4CO [105] 147 293 10.3 

CDK inhibitor p19INK4d [106] 166 300 13.6 ± 1.10 

Table 5.4. Correlation times examples for different proteins with different sizes. 

 

Model Free results 

Three parameters were obtained from a MF analysis of the 
15

N relaxation measurements: 

S
2
, Rex and τe. and assigned to 5 different models according to modelfree formalism. The 

models that best fit the results are models 1 and 2, with the exception of residue 28 which 

was assigned to model 4. This residue is the unique in that has an Rex term which describes 

residues affected by motions occurring on the µs-ms time-scale and accounts for chemical 

exchange processes that contribute to the decay of transverse magnetization. The glutamic 

acid present at residue 28 is located in a loop region and could experience some flexibility 

(as shown in Figure 5.24).   

In appendix 9.9 a complete table with fast model free results for human p22HBP is shown. 

It should be noted that models 1-4 have S
2

f=1.0 and S
2

s=S
2
. 
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Figure 5.24. Generalized order parameter S
2
 of human p22HBP at 303 K using data measured at 

500 and 700 MHz. 

 

Figure 5.25. Human p22HBP structure according to S
2
 values. (S

2 
> 0.95, color red; 0.95≥S

2 
> 0.85, 

color orange; 0.85≥ S
2 
>0.75 color yellow; not assigned colored grey. 

S
2
 ranges between zero for isotropic internal motions to unity for completely restricted 

motion in a molecular reference frame and accounts for the degree of spatial restriction for 

a backbone amide 
15

N-
1
H bond vector on the ps-ns time-scale. Internal motions in the 

secondary structure elements of human p22HBP are highly restricted, with an average 

squared order parameter of 0.943±0.031 giving a picture of a largely rigid protein which is 

consistent with HetNOE values previously described. If free diffusion within a cone is 

assumed as a motional model, this value of S
2
 corresponds to a semi-cone angle of 

approximately 15º. 

Regions with higher internal mobility are found in the loops, especially between helix α 

and β sheet (residues 159-163); these residues were all assigned to model 2. As molecular 
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modelling studies [107], indicated a change in mobility for a flexible region flanked by 

residues 171-180 when Hemin or PPIX binds this region should warrant particular 

attention. Unfortunately only residues Y178 and G179 could be assigned in this loop and 

Y178 shows S
2
 value of 0.988 while G179 did not retrieve any value for S

2
. 

 

Figure 5.26. Effective correlation time (τe) of human p22HBP at 303 K using data measured at 500 

and 700 MHz. 

 

Considering the effective correlation time, τe, secondary structures have small τe values as 

expected. An exception is observed at residues 24, 25, 33 70, 77, 92 and 160, 161. These 

residues are located in loops and therefore should show some internal mobility.  

5.3.2 PPIX-human p22HBP 

15
N relaxation parameters 

As for human p22HBP, hetNOE values were calculated for PPIX-human p22HBP (Figure 

5.27 and Figure 5.28). As hetNOE values suggest, the protein remains well ordered and an 

averaged NOE value of 0.773 was obtained. Once again NOE values of N-terminus were 

not available due to the absence of peaks observed in this region. Residues 50, 60, 81, 88, 

105, 112, 113, 115, 173, 174 and 177 are Prolines with no NH signal and thus no NOE 

value. K61, F84, G136, E141 and G163 have high uncertainties associated with their NOE 

values and those were not taken into account.  
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Figure 5.27. Heteronuclear 
15

N-
1
H NOE values plotted as a function of human p22HBP sequence, 

in the presence of PPIX (p22HBP:PPIX, 1:1.4), at 500 MHz. 

 

Figure 5.28. Heteronuclear 
15

N-
1
H NOE values plotted as a function of human p22HBP sequence, 

in the presence of PPIX, (p22HBP:PPIX, 1:1.4), at 700 MHz. 

Analyzing Figure 5.27 and Figure 5.28, it is possible to conclude that these results have 

much more dispersion than those obtained for human p22HBP in the free form. Low signal 

to noise ratios were obtained for this experiments due to the presence of PPIX and 

consequent low concentration of p22HBP. 

Considering secondary structures (Table 5.5), the main differences between human and 

murine p22HBP when titrated with PPIX were observed in the α1 helix and in the β5 and 

β8 sheets, although the same behaviour was expected for both proteins. The low signal to 

noise ratio obtained in human p22HBP spectra limit the correct analysis of the results. 

These experiments should be performed with high concentration of protein in order to 

increase the signal to noise ratio.  

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

1.2 

0 20 40 60 80 100 120 140 160 180 

N
O

E
 

residues 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

1.2 

0 20 40 60 80 100 120 140 160 180 

N
O

E
 

residues 



Conformational dynamics of human p22HBP 

138 

 

NOE β1 β2 α1 β3 β4 β5 β6 α2 β7 β8 

PPIX 

p22HBP 

human 0.795 0.761 0.856 0.810 0.774 0.691 0.815 0.802 0.847 0.685 

murine 0.787 0.848 0.644 0.804 0.891 0.800 0.839 0.830 0.833 0.824 

Table 5.5. 
15

N-
1
H NOE averaged values for human and murine p22HBP secondary structures in the 

presence of PPIX at 500 MHz. 

On average the R2/R1 ratio is found to be 15.128±0.532. Figure 5.29 shows that the bound 

form of human p22HBP undergoes isotropic tumbling in solution due to the fact that no 

large variations are seen for the R2/R1 ratio throughout the structure. 

 

Figure 5.29. R2/R1 plot as a function of human p22HBP sequence, in the presence of PPIX, 

(p22HBP:PPIX, 1:1.4) at 700 MHz, 303 K. 

Diffusion tensor 

Diffusion tensor estimation was also performed, and a correlation time of 10.435 ns were 

determined. This value is lower than for free human p22HBP and it is a consequence of the 

presence of Tween. This limitation results in a significant reduction of theta angle which 

was determined as 2.5º.  

Diffusion parameters Fit value Sim value Sim error 

τm (ns) 10.435 10.513 0.099 

Dratio 1.092 1.111 0.081 

Theta (°) 2.5 6.253 34.34 

Phi (°) 119.372 115.515 51.183 
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Table 5.6. Estimation of total correlation time τm of p22HBP in the presence of PPIX. Fit value is 

the value of a parameter obtained by optimization of the input value, Sim value is the mean value 

of a parameter obtained from Monte Carlo simulations and Sim error the respective error. 

Model Free results 

In appendix 9.9, a complete table with fast model free results for human p22HBP-PPIX is 

shown. No large structural changes are apparent, as the S
2
 values are similar to those seen 

for free p22HBP. An averaged S
2 

of 0.897±0.054 was obtained for the bound form. It 

should be noted that for model free analysis of human p22HBP with PPIX only relaxation 

parameters at 700 MHz were obtained. 

 

Figure 5.30. PPIX-human p22HBP structure according to S
2
 values. (S

2 
> 0.95, color red; 0.95≥S

2 
> 

0.85, color orange; 0.85≥ S
2 
>0.75 color yellow; not assigned colored grey. 

Considering the effective correlation time, τe, higher values were observed between 

secondary structures mainly in residues K26, V46, G92, S93, I104, Q134, A139, A142, 

A148, I165, C168 and I184.  



Conformational dynamics of human p22HBP 

140 

 

Figure 5.31. Model-free relaxation analysis of human p22HBP with PPIX (1:1.4) at 303 K using 
data measured at 700 MHz. Generalized order parameter S

2
 (top) and effective correlation time (τe) 

(bottom).  

Considering the global dynamic behaviour of p22HBP, it is possible to conclude that is a 

protein well structured, taking in account the NOE values determined for both murine and 

human proteins. Human p22HBP tumbles isotropically, as confirmed by R2/R1 ratios, and a 

correlation time of 12.655 ns was obtained. The similarity between the human and murine 

structures and hetNOE data allow us to conclude that murine p22HBP also tumbles 

isotropically in solution. When bound to PPIX, the diffusion tensor remains isotropic but a 

lower correlation time of 10.435 ns was obtained. This may be due to the presence of 

Tween (not present when relaxation experiments were carried out for free human 

p22HBP). As a surfactant, Tween limits the protein motion in solution and the theta angle 

was reduced from 145° to 2.5°. In order to confirm this influence from Tween dynamic 

relaxation studies should be carried out using human p22HBP with Tween and in absence 

of PPIX. High S
2 

values of residues 178 and 179 observed in the absence and in the 

presence of PPIX, contradict previous molecular modelling studies of this region that 

identified some mobility as a consequence of binding or dissociation of tetrapyrrole 

compounds.
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6.1 Introduction 

Despite the structural studies previously reported [11], [21], [40], [108][22], p22HBP 

function remains unknown. Towards the definition of the functional role(s) of p22HBP, a 

non functional version of the native protein to be used for protein knockdown by gene 

silencing studies was designed. Protein knockdown is achieved by siRNA experiments 

where mRNA of target protein is repressed and inhibits post-trascriptional gene expression 

[109]. 

Previous fluorescence quenching and chemical shift mapping studies (chapter 3 and 4) 

have shown that point mutations in arginine-56 (R56), lysine-64 (K64) and lysine-177 

(K177) of murine p22HBP did not significantly affect the hemin-protein interactions. 

Based on these results, it was decided to build a new construct in which the hydrophobic 

patch of the heme-binding pocket in p22HBP, mainly located in α1-helix, would be 

replaced with the homologous hSOUL α1-helix. Human Soul protein (hSOUL), a 23 kDa 

protein, belongs to the SOUL/HBP heme-binding family of proteins. Of relevance; the 

hSOUL α1-helix does not contribute to heme binding. This new construct would be for a 

recombinant chimeric protein, since it would result from the fusion of structural elements 

from two different proteins. Recent studies involving titration of hSOUL with hemin, 

shown neither binding nor specific binding of heme to this protein [19]. These 

experimental data were obtained by chemical shift mapping (Figure 6.1) and UV-visible 

spectroscopy. In Figure 6.1 it is possible to see that there are no chemical shifts changes in 

human SOUL residues upon hemin binding suggesting an absence of interaction between 

them [23]. 
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Figure 6.1. 
1
H, 

15
N HSQC spectra of hemin hSOUL. 

15
N-hSOUL: hemin at molar ratio of 1:5 (red), 

1:1 (yellow), and 
15

N-hSOUL alone (blue). 

 

In order to construct a prokaryotic expression vector for a chimeric protein from human 

p22HBP and human SOUL, an experimental plan was designed to replace the α1-helix 

involved in binding in human p22HBP with the corresponding helix present in human 

SOUL. First the phHBP1-28a plasmid used to overexpress human p22HBP was searched 

to identify any unique restriction sites flanking the human p22HBP α1-helix sequence. 

While there was a unique restriction enzyme (PstI) site upstream of the human p22HBP 

α1-helix, no restriction enzyme sites were present downstream of the sequence of interest. 

Thus, a unique, “downstream” restriction site had to be designed. Although the design was 

planned in order to introduce as few changes as possible, the final sequence, using the 

selected restriction enzyme, EcoRI, would lead to the replacement of T14 with 

phenylalanine. The hSOUL-encoding sequence flanked by PstI and EcoRI sites was 

achieved by PCR of overlapping oligonucleotides, such that the PCR product after the first 

round of PCR served as DNA template for subsequent PCR rounds. 
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The construction the chimeric p22HBP expression vector, in which the human p22HBP 

α1-helix-encoding sequence was replaced with the hSOUL α1-helix-encoding sequence, 

included three main stages: 

-Stage I: To introduce a unique restriction enzyme site for subcloning of the hbp-soul-hbp 

subsequence into the pHBP1-28a expression vector (Figure 6.2). 

 

Figure 6.2. Schematic representation of unique RE site introduction. MutagenicFW is the 
mutagenic primer which contains the desired sequence for RE construction. 690..691 is the location 

of the RE site in pHBP1-28a. 

 

-Stage II: To design overlapping oligonucleotides that expand the region flanked by the 

Pst-I and Eco-RI sites (hbp-soul-hbp subsequence) (Figure 6.3). 

 

Figure 6.3. Overlapping nucleotides that expand the region flanked by Pst-I and Eco-RI sites.  

pHBP1-28a
5830 bp

pHBP1-EcoRI
5830 bp
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-Stage 3: To digest the PCR product with PstI and EcoRI and subclone into the pHBP1-28a 

expression vector. 

 

Figure 6.4. Schematic representation of subcloning into pHBP1-28a vector. 

 

 

 

 

 

 

pHBP1-EcoRI
5830 bp

Chimeric hHBP –hSOUL EcoRI sequencepHBP1-EcoRI
260 bp
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6.2 Material and methods 

6.2.1 Introduction of a unique restriction enzyme site for subcloning of the 

“partial HBP+SOUL”-encoding sequence into pHBP1-28a. 

Chimeric hHBP was designed based on the sequence of pHBP1-28a, an expression vector 

for human p22HBP (see chapter 2). After a careful analysis of the pHBP1-28a sequence 

with pDRAW32 and SnapGene software, with the aim of finding two unique restriction 

sites, flanking the human p22HBP α1 helix-encoding sequence, PstI and EcoRI were 

chosen as “the subcloning restriction enzymes”. Since the pHBP1-28a vector has a unique 

PstI restriction site at nucleotide 451 but has no EcoRI site downstream of the p22HBP α1 

helix-encoding sequence, a new EcoRI restriction site was created by replacing two base 

pairs at nucleotide 327 (Figure 6.5 and Figure 6.6). 

 

 

 

Figure 6.5 pHBP1-28a nucleotide sequence. (atg)Initiation codon. Location of EcoRI restriction 

site. 
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Figure 6.6. Schematic representation of site directed mutagenesis near nucleotide 327 with the 

replacement of Thr by Phe. Generated mutagenic primer sequence is highlighted with capitals. 

The EcoRI site was introduced by simply mutating the sequence “gaaacc” on the 5’-3’ 

strand, to “gaaTTc”. Unfortunately, the codon for TTC is for a phenylalanine (F) and not 

Threonine (T). Given the sequence constraints for this expression vector and the need for a 

unique restriction enzyme this strategy had to be used to carry out subcloning of the 

hSOUL α1-helix. 

 

Figure 6.7.Threonine 15 location in human p22HBP structure (green-robetta modeler) and in 

murine p22HBP (red pdb 2GOV). 
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However, as the N-terminus in murine p22HBP is unstructured, the replacement of 

threonine by phenylalanine (an hydrophobic side chain in place of a polar uncharged side 

chain) should not produce any significant structural changes. To introduce the EcoRI 

restriction site mutagenic primers were designed using PrimerX software. The input 

parameters for the design of primers using pHBP1-28a plasmid sequence as a template are 

described in Table 6.1. 

Protocol Site-Directed Mutagenesis 

GC content 40 to 60% 

5' flanking region  11 to 21 bp 

Terminates in G or C Yes 

Melting temperature  75 to 85°C 

Length  25 to 45 bp 

3' flanking region 11 to 21 bp 

Mutation site at center yes 

Table 6.1: Primer X input parameters for primer design. 

 

The Primer X program indicated 5 possible pairs of primers and the pair shown in table 6.2 

were chosen. 

primers sequence 

MutagenicFw: 5' GAACCTGCCACGGCCAGAATTCCACGCTGCCAAAC 3' 

MutagenicRv: 5' GTTTGGCAGCGTGGAATTCTGGCCGTGGCAGGTTC 3' 

Table 6.2: Mutagenic forward and reverse primers for EcoRI restriction site design. 

 

A site-directed mutagenesis protocol provided with a kit from Nzytech 

(www.nzytech.com) was followed. 10 µL of DNA template [5ng/µL] (pHBP1-28a), 5 µL 

reaction buffer (10X) (Nzytech exclusive receipt), 1 µL dNTP mix, 1.2 µL Mutagenic FW 

[10 µM], 1.2 µL MutagenicRv [10 µM], were mixed in a PCR tube, and the volume was 

adjusted to 49 µL with ddH2O. 1 µL of NZYDNAChange polymerase was added to the 

http://www.nzytech.com/
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reaction and mixed gently. The PCR was performed using the following parameters: initial 

denaturation at 95 ºC for 2 minutes; 18 cycles at 95 ºC for 1 minute, 60 ºC 1 minute and 68 

ºC for 9 minutes; followed by a final extension at 68 ºC for 15 minutes. The samples were 

then incubated with DpnI at 37 ºC for 1 hour. This restriction enzyme is specific for dam-

methylated DNA fragments and allows the original template plasmid to be cleaved, while 

leaving the plasmid generated by PCR, and thus containing the EcoRI restriction site, 

intact. In addition, DpnI-treated PCRs were purified with NzyGelpure from Nzytech, to 

eliminate undesired DNA fragments resulting from PCR and DpnI digestion and to 

eliminate excess primer, ddNTPs and enzyme. 

E. coli DH5α competent bacterial cells were used for transformation. Competent cells are 

E. coli cells that are especially treated to transform efficiently. There are two types of 

competent cells: chemically competent and electro-competent. Chemically competent cells 

are treated with a buffer that contains CaCl2 and other salts that disrupt the cell membrane 

creating “holes” [110]. Heat shocking these cells opens the pores of cell membranes 

allowing an exogenous plasmid to pass into the cell [111]. Electro-competent cells are 

placed in an electroporation device that delivers a pulse of electricity to disrupt the cell 

membrane allowing a plasmid to enter the cell. In this work chemically competent cells, 

prepared in our laboratory, were used. 

To prepare competent cells, 3 mL of LB medium was inoculated with 1 fresh colony of 

DH5α cells and incubated overnight at 37 ºC, with shaking. This bacterial culture was used 

to inoculate 250 mL of LB medium in an Erlenmeyer flask and incubated for 2-3 hours at 

37 ºC with shaking until the culture reached an OD600nm of 0.4. Then, the bacterial culture 

was transferred to a sterile centrifuge bottle, incubated on ice for 15 minutes and the cells 

were collected by centrifugation at 3000 rpm for 15 minutes. The supernatant was 

discarded, while the bacterial pellet was resuspended in 20 mL of sterile and ice-cold 0.1M 

CaCl2 and incubated for 30 minutes on ice and transferred to 50 mL falcon tube. Based on 

the volume, 20% glycerol was added to resuspend the cells, which then were incubated on 

ice for 2 hours. Subsequently, the prepared competent cells were aliquoted (in 200 µL 

aliquots), quickly frozen in liquid nitrogen and stored at -80 ºC. 

Competent E. coli DH5α cells were then transformed with plasmids obtained after DpnI 

treatment. A positive control with pHBP1-28a wild type plasmid was performed to check 
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the transformation efficiency. The transformation was carried out by heat shock: 10 µL of 

each sample (plasmid with desired mutation) were mixed in 100 µL of DH5α competent 

cells. After 30 minutes at 4 ºC, the cells were heated to 42 ºC and held for 40 seconds and 

then incubated at 4ºC for 2 minutes. Transformed cells were resuspended in 900 µL of LB 

media, containing 20 % (m/v) of sterile glucose, and incubated at 37 ºC, 200 rpm for 1 

hour. The cells were collected by centrifugation (5000 rpm for 1 minute). 900 µL of 

supernatant were removed and cells were then spread on LB plates with kanamycin at 50 

mg/mL. Inverted plates were incubated for 12 hours, at 37 ºC and the presence of colonies 

indicated successful transformation. One colony was picked from LB plate, and used to 

inoculate LB media with Kanamycin 50 mg/mL for growth at 37ºC, overnight. The 

pHBP1-EcoRI plasmid was extracted from cells and purified with NzyMidiprep kit from 

Nzytech. To determine the concentration and purification level of the pHBP1-EcoRI 

plasmid sample, its absorbance was measured at 260 nm using a Nanodrop ND-1000 

spectrometer. Purified pHBP1-EcoRI was finally sequenced using the T7 Fwd (5’ TAA 

TAC GAC TCA CTA TAG G3’ and T7 Rev (5’ GCT AGT TAT TGC TCA GCG G 3’) 

primers. 
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6.2.2 The design of overlapping oligonucleotides to expand the region flanked 

by the Pst I and Eco RI sites  

 

The new pHBP1-EcoRI plasmid with unique PstI and EcoRI restriction sites now allows 

excision and subcloning of an insert containing the a1-helix of hSOUL. To construct this 

new insert, overlapping oligonucleotides covering the hSOUL α1 helix-encoding sequence 

flanked by the PstI and EcoRI sites were designed, such that this region could be expanded 

by annealing the oligonucleotides, extending them by DNA polymerization  and 

amplifying the generated DNA fragment by sequential PCR [112] 

 

Figure 6.8. Chimeric hHBP encoding sequence flanked by PstI and EcoRI restriction sites. The α1-
helix hSOUL-encoding sequence is highlighted in yellow. The original pHBP1-encoding sequence 

is highlighted in grey. 

 

 

 

agttttttctgcagactaccatcttcgttcgggaaaaccgcaaaagagatcggcaccgtcatgcccataccaatgcctttatcattg 

 

TAATTATACTGCAGACTACCATCTTCGTTCGGGAAAACCGCAAA            primer 1fw 
 

                 oligo 2rev 3’AAGCCCTTTTGGCGTTTTCTCTAGCCGTGGCAGTACGGGTATGGT-5’ 
                                                   3fw 5’GTCATGCCCATACCAATGCCTTTATCATTG 

oligo 4rev 3’AGTAAC 

 

 

 

 

gtaccTTGAATGTAGCTGTTCAGTTTCGTAAAGCCCGTCTGGATGGCTGAATCCCAcggtttatccgtaacttccacggttgcgaat 

 

 

GTACCTTGA     oligo 3fw 
CATGGAACTTACATCGACAAGTCAAAGCATTT-5’4rev 
 

               5’GTTCAGTTTCGTAAAGCCCGTCTGGATGGCTGAATCCCACGGT-3’    oligo 5fw 
 

                                oligo 6rev  3’-CGACTTAGGGTGCCAAATAGGCATTGAAGGTGCCAACG-5’ 
 

                                                                               5’- GAAT                                                          

 

 

 

ttaccgccttcgcatgcacgttcttcgtaggccacttcttctttatcacctttgctcagaacctgccacggccagAAttccacgct 

                                                                                        

TTACCGCCTTCGCATGCACGTTC-3’     oligo 7fw 

oligo 8rv3’-GCGTACGTGCAAGAAGCATCCGGTGAAGAAGAAATA-5’ 

                            5’-CCACTTCTTCTTTATCACCTTTGCTCAGAACCTGC-3’           oligo 9fw 
 

                                    oligo 10rev 3’   ACGAGTCTTGGACGGTGCCGGTCTTAAGTATTAATT 
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InFigure 6.8 the primers used are shown and in Figure 6.9 the strategy used to anneal and 

extend the insert region is outlined. 

 

Figure 6.9. Sequential PCR strategy used to produce the hSOUL containing insert flanked by PstI 
and EcoRI. 1st PCR: primers 7FW and 4Rev; 2nd PCR: primers 3FW and 8Rev; 3rd PCR: primers 

9FW and 2Rev; 4th PCR: primers 1FW and 10Rev. 

Annealing and Extension  

In a sterile PCR tube, 2 µL of each primer, 5FW [100 µM] and 6Rev [100 µM], were 

gently mixed. An initial denaturation step at 94ºC for 1 minute was applied followed by 

annealing at 60ºC for 2 minutes. This reaction was ended by slowly cooling down to room 

temperature at a rate of 5ºC for 5 minutes [112][113]. The hybrid DNA fragments were 

then extended with 2.5 Units of Klenow fragment of E.coli DNA polymerase I (Nzytech), 

in the presence of Klenow buffer reaction (2.5 µL of 10x reaction buffer Nzytech) and 

dNTPs (Nzytech) 1 µL of [2mM]. The reaction mixture was left at room temperature for 

20 minutes. After this incubation, 5 µL EDTA [60 µM] was added to the reaction and 

heated at 75 ºC for 10 minutes, in order to end the extension reaction.[113] 

1
st
 PCR 

The double-stranded DNA resulting from annealing and extension was used as a template 

and the primers 7Fw and 4Rev were used in this 1
st
 PCR run. The DNA product obtained 

in this first PCR step was expected to have 116 bp. The reaction was prepared in a PCR 

tube, with 2 µL (sample A) and 4 µL (sample B) of previously generated DNA, 1 µL of 

each primer 7Fw [10 µM] and 4Rev [10 µM], 5 µL of Taq polymerase reaction buffer 

1FW 3FW 5FW 7FW 9FW

2Rev 4Rev 6Rev 8Rev 10 Rev

Annealing/ Extension

1st PCR 1st PCR

2nd PCR 2nd PCR

3rd PCR 3rd PCR

4th PCR 4th PCR

Annealing/ Extension
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[10x] Nzytech, 10 µL of ddNTPs [2 mM], 2 µL MgCl2 [50mM], 1 µL Taq polymerase 

[5U] and the remaining volume with ddH2O in a total volume of 50 µL. A total of 30, 1 

minute cycles at 94ºC followed by 60 ºC for 1 minute, and 72 ºC for 4 minutes was 

followed by an extension of 10 min at 72 ºC. An initial denaturation step of was also 

carried out by running the PCR at 94 ºC for 5 minutes. Negative controls of sample A and 

B were prepared, with the same reactants but were left at 4ºC without PCR cycling. The 

amplified DNA was quantified using agarose gel electrophoresis. Most agarose gels are 

made between 0.7% and 2%. A 0.7% gel will show good separation (resolution) of large 

DNA fragments (5–10 kb) and a 2% gel will show good resolution for small fragments 

(0.2–1 kb). To prepare a 2% agarose gel, 2 g of agarose (Nzytech) was mixed with 100 mL 

of TBE (Tris/Borate/EDTA) buffer in a 250 mL conical flask (see appendix 9.1 for TBE 

receipt). To melt the agarose in the buffer, the flask was heated in a microwave until the 

agarose was completely molten. After the gel mixture cooled down to 60ºC, 2.5 µL of 

GreenSafe from Nzytech, a DNA stain, was added to the gel. The gel was slowly poured 

into an agarose gel casting tray and any bubbles were pushed away to the side using a 

disposable tip, followed by inserting a comb in the gel to produce the DNA-loading wells. 

The gels were left at room temperature until it solidification. Afterwards, the gel was 

submerged in the agarose gel casting tray with TBE buffer used as running buffer. For each 

run a total of 50 µL of each reaction were mixed with 10 µL NZYloading buffer from 

Nzytech and applied to the gel. Electrophoresis was performed at 100 V for 40 minutes. 

2
nd

 PCR 

The reaction product from the 1
st
 PCR was further amplified with another round of PCR 

using the overlapping primers 5’(3FW) and 3’ (8REV) to generate a PCR product [112]. 

The PCR conditions were the same as for the 1
st
 PCR with the exception of the DNA 

template concentration: 10 µL of sample B [12 ng/ µL] were used (reaction C) and 5 µL of 

sample B (reaction D). A negative control was also performed with the same reactants as 

reaction D and left at 4ºC. Once more, the amplified DNA was analyzed on a 2% agarose 

gel, and purified with NzyGelPure from Nzytech.  
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3
rd

 PCR 

To proceed with the 3
rd

 PCR, 20 µL of DNA generated in 2
nd

 PCR (sample E) and 10 µL 

(sample F) were mixed in different PCR tubes with the same reactants as for previous 

PCRs in a total reaction volume of 50 µL. In this case, the forward and reverse primers 

were 9FW and 2REV respectively. The DNA fragment generated in this step should have 

213 bp. 

 

Annealing and extension reactions 

5 µL of generated DNA [10ng/µL] (sample C) were mixed with 2 µL of each primer 2Rev 

[10 ng/µL] and 9 FW [14 ng/µL]. Annealing and extension reactions were carried out as 

described above at the beginning of this strategy. 

 

4
th

 and final PCR 

The last PCR was planned using 1Fw and 10Rev as forward and reverse primers, 

respectively, and 20 µL (sample G) or 10 µL (sample H) of extension reaction as DNA 

template. 1 µL of each primer [10 µM], 5 µL of Taq polymerase reaction buffer [10x], 10 

µL of ddNTPs [2 mM], 2 µL MgCl2 [50mM], 1 µL Taq Polymerase [5U] and ddH2O up to 

same as described above. The generated fragment was expected to have 260 bp. A 2% 

agarose gel was used to analyse the DNA produced in this reaction. 
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Figure 6.10. 2% agarose gel of annealing/extension followed by PCR reactions. Lane 1: Nzyladder 
VI; Lanes 2 and 3: 30 µL sample G; Lanes 4 and 5: 30 µL sample H.. 

Analyzing Figure 6.10, it can be seen that the PCR product has the expected fragment size 

(i.e., 260 bp) for the DNA fragment encoding th -helix flanked by the PstI and 

EcoRI sites. These bands were extracted from the agarose gel and purified using 

NzyGelPure from Nzytech. The purified DNA was sent for sequencing at Stabvida.  

6.2.3 PstI/ EcoRI Double digestion 

Once the presence of the sequence of the engineered hSOUL1 α1-helix and of the EcoRI 

site was confirmed in the mutated pHBP1-28a plasmid (pHBP1-EcoRI), the hSOUL1 α1-

helix DNA fragment and pHBP1-EcoRI were digested with PstI and EcoRI. The purified 

products of these digestions, corresponding to the DNA fragments used in the ligation 

reaction to yield the expression vector for the chimeric protein, were named “insert” and 

“vector”, respectively. 4 γg of vector and 1 γg of the insert were independently mixed, i.e., 

in different tubes, with 1 µL EcoRI (10 U/µL), 1 µL PstI (10 U/µL) and 5 µL of buffer O+ 

(Roche). These samples were incubated at 37 ºC for 2 hours and then the reaction products 

were analyzed in a 3 % agarose gel. 5 µL of the doubly digested products were loaded with 

1 µL Tp 6x loading dye (Thermo Scientific) and 1 µL SyBr Gold (Thermo Scientific). The 

doubly digested vector was treated with 1 µL of calf intestinal alkaline phosphatase 

(Fermentas) [200 U] and incubated at 37 ºC for 1 hour in order to remove phosphates from 

the 5’ and 3’ends and ensure that only the insert would bind thus avoiding phHBP-EcoRI 

recircularization.  
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6.2.4 Vector purification after digestion 

1 volume of biophenol:chloroform:isoamyl alcohol 25:24:1 was added to 50 µL of 

digested plasmid, mixed gently and centrifuged at 13000 rpm for 2 minutes. The aqueous 

phase (top) was collected and the organic phase discarded. 50 µL H2O was added to the 

aqueous phase, mixed gently and centrifuged at 13000 rpm for 2 minutes. Once more the 

aqueous phase was collected to a total volume of 100 µL. Then 10 µL of 3M sodium 

acetate was added to increase the ionic strength along with 220 µL of absolute ethanol. 

This mixture was kept at -20ºC for 1 hour, centrifuged for 30 minutes at 16000 x g and the 

supernatant discarded. A final wash was performed with 100 µL of cold 70% ethanol and 

centrifuged for 15 minutes at 16000 g. The supernatant was removed and the tube left at 40 

ºC to dry the DNA. The purified DNA pellet was resuspended in 10 µL of ultrapure H2O. 

6.2.5 Purification of digested DNA insert 

The digested insert was purified with a Geneclean TurboKit. 210 µL of turbo salt solution 

(GENECLEAN) was added to 42 µL of insert, mixed and transferred to a Geneclean Turbo 

cartridge. The salt solution was removed by centrifuging at 14000 g for 5 seconds, with the 

DNA remaining bound to the cartridge. The cartridge resin was washed with 500 µL of 

“Geneclean turbo wash”, and centrifuged at 14000 g for 5 seconds. Cartridge was dried 

with an extra centrifugation step of 4 minutes at 14000 g and placed in a new tube. The 

DNA was eluted from the cartridge resin by adding 30 µL of the Geneclean Turbo elution 

solution to the cartridge, leaving it for 5 minutes at room temperature and collecting the 

DNA upon centrifugation at 14000 g for 1 minute. 

6.2.6 Ligase reactions and transformation of competent bacterial cells 

Ligation reactions should be performed using a 1:3-10 molar ratio of vector: insert. 

Equation 6.1 is useful to calculate optimal amounts of insert DNA. 

             
                                

                 
            

      

      
 

Equation 6.1 

Ligation of the purified plasmid vector and insert was performed in order to obtain the new 

chimeric pHBP plasmid. Thus 1.5 µL of purified vector, 10 µL of purified insert, 1.2 µL 
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T4 DNA ligase buffer [10X] (Fermentas) and 1 µL T4 DNA Ligase (Fermentas) were 

mixed and incubated overnight at 22ºC. A negative control was performed using 10 µL of 

H2O instead of purified insert. In a PCR tube, 6 µL of ligation product were gently mixed 

with 75 µL competent DH5α cells and incubated for 30 minutes at 4 ºC, then heat shocked 

for 40 seconds at 42  ºC and finally for 2 minutes at 4 ºC to transform the cells. The 

transformed cells were transferred to an Eppendorf tube, mixed with 950 µL of SOC media 

(see appendix 9.1 for SOC receipt) and incubated at 37 ºC for 1 hour at 800 rpm to avoid 

cell precipitation. The cells were then collected by centrifugation at 6000 rpm for 3 

minutes. 750 µL of supernatant was discarded and remaining volume was resuspended and 

spread on LB plates with kanamycin at 50mg/mL. These plates were incubated inverted, 

overnight at 37 ºC. 4 colonies were randomly picked and independently used to inoculate 

100 mL of TB (Terrific Broth) media (see appendix 9.1 for TB receipt) containing 50 

the chimeric protein 

were grown at 37ºC, 150 rpm, overnight. Plasmid DNAs from the four overnight bacterial 

cultures were purified by anion exchange chromatography using a Macherey-Nagel 

Nucleobond Ax kit for quick purification of nucleic acids. Purified plasmids were sent for 

sequencing at Stabvida (www.stabvida.com) with T7FW and T7Rev as sequencing 

primers. Sequencing results confirmed the successful of chimeric human p22HBP 

construction.  

6.2.7 XhoI/ NcoI subcloning of chimeric hHBP 

In an attempt to prevent any possible additional mutations introducing during PCR, in the 

chimeric phHBP plasmid, XhoI and NcoI restriction enzymes were used for subcloning a 

region containing chimeric insert into wild type phHBP1-28a (see Figure 6.4) obtained by 

extraction and purification from DH5α cultures [114]. 5 µl of phHBP1-28a [1400 ng/µL] 

were mixed with 1 µL XhoI [10 U/µL] (Nzytech), 1 µL NcoI [10 U/µL] (Nzytech), 2 µL 

Nzytech buffer U [10x] and H2O to a total volume of 20 µL. The same reaction was 

performed with 8 µL of chimeric phHBP [560 ng/µL]. These reactions were incubated for 

12 hours at 37 ºC followed by analysis of the resulting DNA fragments by agarose gel 

(1%) electrophoresis. The digested phHBP1-28a was treated with alkaline phosphatase: 1 

µL of alkaline phosphatase (Nzytech) [10 U/µL], 3.5 µL phosphatase buffer [10x] 

(Nzytech) were added to 30 µL of the doubly digested plasmid and incubated at 37ºC for 1 
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hour. Next, plasmid and insert were ligated with T4 DNA ligase, as described in section 

6.2.6. Competent E. coli DH5α cells were transformed with the plasmid obtained from the 

ligation reaction. These reactions were performed under similar conditions to those 

previously described in section 6.2.6. 

6.2.8 Chimeric hHBP overexpression and purification 

Protocols for chimeric hHBP overexpression and purification were the same as for human 

p22HBP, previously described in section 2.4. Bacterial growth was performed in 2 L LB 

media with 2 mL Kanamycin 50 mg/mL at 37ºC and 180 rpm for 5 hours. Cells were 

harvested by centrifugation at 8000 rpm for 5 minutes and resuspended in M9 medium 

enriched with glucose and ammonium chloride. An adaptation to M9 medium was 

performed for 2 hours at 30ºC and 150 rpm. Induction of protein production was carried 

out by the addition of IPTG [0.5 mM], followed by overnight growth at 30 ºC. Protein 

purification was carried out as described in chapter 2, using affinity chromatography and 

SDS-PAGE gels for the analysis of protein purity. 

6.2.9 Chimeric hHBP-W51V 

After a detailed analysis of the protocols and also of the putative chimeric hHBP structure 

(robetta model) a possible structural problem with a tryptophan present at residue 51 could 

be prohibiting the correct folding of the chimeric protein. Figure 6.23 shows the position of 

W51 which is in close proximity to F84. It was therefore decided to construct a new 

chimeric mutant containing W51V to remove this putative steric clash. 

 

Figure 6.11: Representative structure of chimeric hHBP. 

Phe84

Trp51
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A new strategy was designed in order to replace tryptophan by a valine in position 51 of 

chimeric hHBP. The sequence CCGTTG at nucleotide 5250 was replaced by CCGGTG.  

 

Figure 6.12. Chimeric pHBP1 plasmid and respective Forward (W51V_FW) and Reverse 

(W51V_Rev) primer annealing to replace tryptophan 51 with a valine. 

 

To introduce this point mutation, Primer X software was used with the same parameters as 

described previously for EcoRI restriction site construction (section 6.2), and one pair of 

mutagenic primers was chosen: 
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primers sequence 

W51V-FW: 5' GTTACGGATAAACCGGTGGATTCAGCCATCC 3' 

W51V-Rev:: 5' GGATGGCTGAATCCACCGGTTTATCCGTAAC 3' 

Table 6.3: Mutagenic Forward and Reverse primers for W51V site directed mutagenesis. 

PCR was performed with 2 µL of chimeric phHBP [50 ng/µL], 1 µL of each primer 

W51V_Fw [10 µM] and W51V_Rev [10 µM], 5 µL of NZYDNAchange reaction buffer 

[10x], 10 µL of ddNTPs [2 mM], 2 µL MgCl2 [50mM], 1 µL Taq Polymerase [5U] and 

ddH2O up to a final volume of 50 L. A total of 18 cycles of 95 ºC for 1 minute, 60 ºC for 

1 minute, and 68 ºC for 9 minutes was followed by an extension of 15 min at 68 ºC. An 

initial denaturation step was also included by running the PCR at 95ºC for 2 minutes. To 

eliminate the chimeric phHBP plasmid without the W51V mutation, the PCR product was 

treated with DpnI. 100 µL of competent E. coli DH5α cells were transformed with 10 µL 

of this plasmid, by heat-shocking the bacterial cells for 40 seconds at 42º C preceded by an 

incubation of 30 minutes at 4 ºC. Cells were added to SOC media and incubated at 37ºC 

with shaking at 800 rpm for 1 hour. The transformed bacterial cells were harvested by 

kanamycin. Overnight incubation at 37 ºC was performed in order to get new chimeric 

phHBP_W51V constructs. One colony was chosen and used to inoculate 100 mL LB of 

(Nzytech) and purified DNA was treated with NcoI and XhoI for subsequent subcloning. 1 

µg of chimeric phHBP was mixed with 1 µL XhoI [10 U/µL] (Nzytech), 1 µL NcoI [10 

U/µL] (Nzytech), 2 µL Nzytech buffer U [10x] and H2O to a total volume of 20 µL. The 

same sort of reactions were performed with 8 µL of chimeric phHBP [560 ng/µL]. These 

reactions were incubated for 12 hours at 37 ºC followed by analysis of double digested 

products using a 1% agarose gel. 

After double digestion, the region flanked by NcoI and XhoI in chimeric phHBP_w51v 

was extracted from the gel, purified and used to perform a ligase reaction. A 1:10, 

vector:insert molar ratio, and 1 µL of phHBP [50 ng/ µL] previously digested with NcoI 

and XhoI was mixed with 7 µL of digested insert [8 ng/ µL] (regarding Equation 6.1), 2 µL 

T4 DNA ligase buffer [10X] (Nzytech) and 1 µL T4 DNA Ligase (Nzytech). This reaction 

was incubated overnight at 22ºC, and DH5α competent cells were transformed with the 
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generated plasmids according to previously described for heat shock transformation. 

Colonies were used to inoculate LB media enriched with kanamycin 50 mg/mL and 

overexpression was induce in M9 media as previously described. Purification was also 

carried out using Ni-NTA columns and fractions analyzed by SDS-Page. 

6.3 Results and Discussion 

6.3.1 Introduction of a unique restriction enzyme site for subcloning of the 

“partial HBP+SOUL”-encoding sequence into pHBP1-28a. 

In order to evaluate whether the unique EcoRI restriction site had been introduced, LB 

plates with kanamycin were spread with transformed cells. Colonies were found on the LB 

plates indicating success and the purified plasmid resulting from overnight growth of 

randomly picked colonies were purified and analyzed by a Nanodrop ND-1000. The DNA 

concentration can be calculated from its absorbance at 260 nm where an absorbance of 1 (1 

cm path length) is equivalent to 50 μg DNA/mL. The plasmid purity can also be evaluated 

by UV spectroscopy. A ratio of A260/A280 between 1.80–1.90 and A260/A230 around 2.0 

indicates “pure plasmid DNA”. An A260/A230 ratio above 2.0 is a sign for too much RNA in 

the DNA preparation, an A260/A280 ratio below 1.8 indicates protein contamination. The 

ratio A260/A280 of 1.86 and A260/A230 of 1.67 indicated successful plasmid purification, and 

gives a concentration of 122 ng/µL. Finally, sequencing results indicated that an EcoRI 

restriction site (GAATTC) had been created in the pHBP1-28a vector (sequence results not 

shown). 

6.3.2 To design overlapping oligonucleotides that expand the region flanked 

by the Pst I and Eco RI sites  

1
st
 PCR 

The size of the PCR product was expected to be 116 bp, and the DNA bands on the 

agarose gel were around 100 bp (Figure 6.13). Bands on lanes 4 and 5, which correspond 

to a larger sample volume, were extracted and the PCR product was purified. 
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Figure 6.13. 2% agarose gel of 1
st
 PCR reaction. Lane 1: 5 µL Nzyladder VI; Lane 2: 5 µL sample 

A; Lane 3: 55 µL sample A; Lane 4: 5 µL sample B; Lane 5: 55 µL sample B; Lane 6 and 7: A and 
B negative controls. 

To estimate the amount of DNA present in each band, the amount of DNA in each 

fragment as visualized as a band from the molecular weight standard Ladder as reference 

was used. Similarity intensity for bands with the same DNA volume corresponds to 

approximately the same amount of DNA. Analysing the band in lane 4, Figure 6.13, and 

comparing its intensity with the ladder, it is possible to estimate that band corresponds to 

30 ng. Considering the total volume of sample eluted (60 µL), 360 ng of DNA had been 

obtained. This total amount of DNA was extracted from the gel, purified (NZYGelPure 

Nzytech) and eluted from the resin with 30 µL of ddH2O, which resulted in a 

concentration of 12 ng/µL. 

2
nd

 PCR 

The expected size for the 2
nd 

PCR product was 163 bp. The results illustrated in Figure 

6.17 (lanes 2- 5) are in agreement and the estimated concentration of the purified 2
nd

 PCR 

product was 12 ng/ µL. 

 

Figure 6.14. 2% agarose gel of 2
nd

 PCR reaction. Lane 1: Nzyladder VI; Lane 2: 5 µL sample C; 

Lane 3: 55 µL sample C; Lane 4: 5 µL sample D; Lane 5: 55 µL sample D; Lane 6:  negative 

control. 
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3
rd

 PCR 

Analysis of the 3
rd

 PCR products on a 2% agarose gel indicated that the expected 213 bp 

fragment was not generated (Fig. 6.17). Instead, DNA fragments of different sizes (i.e. 120 

bp and 160 bp) were produced during the 3
rd

 PCR, possibly suggesting non-specific 

binding of the primers to the DNA template. To overcome this problem, an annealing and 

extension reaction using 2
nd

 PCR product as template and oligonucleotides 2Rev and 9Fw 

was performed. The results from this approach revealed that a single 260 bp DNA 

fragment was generated (Figure 6.16).  

 

Figure 6.15. 2% agarose gel of 3
rd

 PCR reaction. Lane 1: Nzyladder VI; Lane 2: 5 µL sample E; 

Lane 3: 55 µL sample E; Lane 4: 5 µL sample F; Lane 5: 55 µL sample F. 

 

Final PCR 

Analysis of Figure 6.16, PCR product bands have the expected fragment size for the region 

flanked by the PstI and EcoRI. 

 

Figure 6.16. 2% agarose gel of annealing/extension followed by PCR reactions. Lane 1: Nzyladder 

VI; Lanes 2 and 3: 30 µL sample G; Lanes 4 and 5: 30 µL sample H. 
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6.3.3 Insert and pHBP1-EcoRI double digestion and purification 

Double digestion was analyzed using a 3% agarose gel as shown in Figure 6.17. At the top 

of lane 2, it is possible to visualize a band that corresponds to double digested pHBP1-

EcoRI and a smaller one (around 260 bp) that corresponds to the fragment excised from 

pHBP1-EcoRI. The bands detected in lanes 3 and 4 are the double digested inserts with 

approximately 260 bp.  

 

Figure 6.17. 3% agarose gel of PstI and EcoRI double digested products. Lane 
1:pBR322DNA/BsuRI. Lane 2 phHBP-EcoRI double digested; Lane 3 and 4: Double digested 

insert. 

Pure double digested pHBP1-EcoRI gave an Abs260 of 0.089 which corresponds to 222 

ng/µL with a ratio OD260/280 of 1.816 and OD260/230 of 2.225. Digested DNA insert 

absorbance measurement results in OD260 of 0.012, which corresponds to 30 ng/µL of 

DNA, with a ratio OD260/280 of 1.714 and OD260/230 of 0.706. 

6.3.4 Ligase reactions and transformation of competent bacterial cells 

The negative control did not present any colonies which meant that the double digestion 

protocol and phosphatase treatment was successful and the positive experiments gave more 

than 20 colonies. 4 constructs were purified from 4 colonies and sequenced. The sequences 

were correct except that a point mutation (A39E) was detected (sequencing results not 

shown). 

6.3.5 XhoI NcoI subcloning of chimeric hHBP 

For chimeric hHBP subcloning an agarose gel with double digest pHBP1 wild type 

plasmid and chimeric phHBP-EcoRI plasmid was run on the purified products. Figure 6.18 
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show that the digestion was successful and it is possible to identify the digested insert 

highlighted in red with an approximate size of between 600 and 800 bp, in agreement with 

the expected size of the insert. The XhoI restriction site is located at nucleotide 158 and the 

NcoI restriction site is located at nucleotide 757 which gives a 599 bp fragment. 

 

Figure 6.18. 1% agarose gel NcoI and XhoI double digested phHBP1 (highlighted in blue) and 
double digested chimeric phHBP insert (highlighted in red). 

6.3.6 Chimeric hHBP overexpression and purification 

Figure 6.19 shows a SDS-Page gel run after overexpression and purification of the 

chimeric protein. Only a very weak band can be seen in the 75mM imidazole fraction 

indicating problems with the process. An optimization of the IPTG concentration was 

attempted and the results of a SDS PAGE gel are shown in Figure 6.20. None of the three 

different IPTG concentrations tested (0.25 mM, 0.5 mM and 1 mM) resulted in an 

improvement. 

 

Figure 6.19. Chimeric hHBP purification analysis by SDS Page of different fractions of Ni-NTA 
purification column. 
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Figure 6.20. Chimeric hHBP purification analysis by SDS Page of supernatant, extract after Ni-

NTA elution and 75 mM imidazole fractions for different IPTG concentrations. 

6.3.7 Chimeric hHBP-W51V 

Transformation of E.coli cells with the new plasmid was successful and more than 10 

colonies were obtained on LB plates with kanamycin. As described in above, a single 

colony was isolated and grown overnight. The purified plasmid obtained from this growth 

was double digested. After double digestion, the region flanked by NcoI and XhoI in 

chimeric phHBP-W51V was extracted from the gel, purified and used to perform a ligase 

reaction. As shown in  

Figure 6.21, lane 2, a fragment with approximately 600 bp was obtained. 

 

Figure 6.21. 1% agarose gel NcoI and XhoI double digested chimeric phHBP_w51v. Lane 1: 
Nzyladder III; Lane 2. chimeric phHBP-W51V digested plasmid. 
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Overexpression and purification of chimeric p22HBP-W51V was then performed but, as 

illustrated in Figure 6.22, no band corresponding to p22HBP appears in the 75 mM 

imidazole fraction. 

 

Figure 6.22. Chimeric hHBP_w51v purification analysis by SDS Page of different fractions of Ni-
NTA purification column.  

However, a band with the expected size for chimeric p22HBP appeared in the 50 mM 

imidazole fraction. In an attempt to separate this band from the others with higher sizes, 

the fraction was concentrated in a 30 kDa centricon, at 7000 g but no absorbance at 280 nm 

was seen indicating that little or no protein was present in the sample. 

For chimeric hHBP design and construction a sequential procedures were taken in account 

to achieve the desired protein. PCR reactions were performed with success and enough 

amplified DNA was used in each reaction once visible bands were obtained in agarose gel 

analysis extracted and purified. Double digestion procedures were also carried out with 

success as the digested fragments obtained had the expected size and the subsequent 

subcloning retrieve the well structures plasmids. This plasmids were inserted in competent 

cells whose shown kanamycin resistance which was indicative of viable plasmids. 

Although these steps were obtained with success it was not possible to overexpress 

chimeric hHBP. Despite subcloning chimeric hHBP insert into new generated pHBP1-

EcoRI plasmid, some deletion or insertion of a base pair could occurred which 

consequently change initiation codons (signal to start protein translation) and consequently 

prevent chimeric phHBP overexpression. In order to confirm base pair deletion and/or 

insertion, chimeric phHBP plasmid sequence should be verified by sequencing all plasmid. 

This sequencing order was expensive, considering financial resources available, and was 

not carried out.  
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This work presented in this thesis is based on interactions studies of p22HBP with 

PPIX/Hemin using NMR and FQ. The overall aim was to probe, in more detail than has 

been carried out before, the dynamics and molecular interactions involved in tetrapyrrole 

binding to p22HBP and identify key residues involved in their interaction. Previous 

structural studies resulted in the structure of murine p22HBP solution by NMR in 2006 by 

Dias et al and more recently (2011) Ambrosi et al [24] solved the 3D structure of human 

SOUL by X-ray crystallography. Molecular modelling studies have also been carried out in 

order to characterize the molecular recognition process that takes place upon the binding of 

p22HBP with intermediates of heme synthesis. These studies have confirmed that a 

hydrophobic patch on the surface of p22HBP is responsible for tetrapyrrole binding. 

However some residues, namely R56, K64 and K177 may be involved in electrostatic 

interactions with key residues at the edge of the p22HBP binding pocket. These results 

were the basis of our work and key residues were the starting point and murine p22HBP 

variants were constructed to analyze how changes in hydrophobicity and polarity would 

influence the strength of PPIX/Hemin interactions. Molecular biological techniques were 

performed in order to obtain p22HBP variants and the resulted constructs were 

overexpressed and analyzed by fluorescence quenching and NMR and when titrated with 

tetrapyrrole compounds. As Micaelo and its collaborators [107] identified a mobile region 

in region flanked by β8 and β9 sheets (residues 171-180), near the protein-binding site and 

changed with binding and release of the tetrapyrrole rings, dynamics studies were carried 

out in order to confirm this flexibility upon tetrapyrrole binding. With the aim of 

supporting functional studies involving siRNA knockdown, a chimeric human p22HBP 

was also constructed. Chimeric proteins have found wide application for the study of 

protein folding and protein structure stability [31] 

Two main mutations were performed: the introduction of nonpolar side chains by replacing 

R56, K64 and K177 by alanine or the introduction of negatively charged side chain by 

replacing R56, K64 and K177 by Glutamic acid which has a carboxylate group on its side 

chain. Overexpression and purification using affinity chromatography were performed for 

these variants as well for murine and human version of p22HBP. Fluorescence quenching 

studies were performed in order to evaluate the PPIX interactions with the new variants, 

and dissociation constants were determined. Although dissociation constants for p22HBP 

variants and human p22HBP were in the same order of magnitude (nanomolar range) as 
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previously reported, the main differences were observed in variants with negatively 

charged side chain of Glutamic acid in key residues. These results demonstrated that 

residues R56, K64 and K177 are not crucial by themselves or all together (as demonstrated 

with triple mutant) for hemin interaction with p22HBP and modifications in polarity and 

hydrophobicity do not prevent neither favor Hemin interactions. 

Chemical shift mapping by NMR was also performed for p22HBP variants and human 

p22HBP and residues involved in the heme-binding were identified. These results shown 

that the binding pocket identified for murine p22HBP remains in respective variants and 

human p22HBP. The main differences in chemical shifts were observed near the binding 

site. K64 and R56 variants shown mainly differences in residues 61-66 and K177 variants 

shown mainly differences in regions flanked by 172 to 182. Triple variant shown 

differences in residues ranging from 54 to 66 and 171 to 182. These results suggest that 

human p22HBP as well as p22HBP variants have similar structures to murine p22HBP. 

Backbone resonances assignments were performed for human p22HBP and 92% of 

residues located in secondary structures were assigned while only 61% of residues located 

in unstructured regions were assigned. This difference is related to flexibility inherent to 

unstructured regions. Out of 168 spin systems found in 
1
H-

15
N HSQC, 150 were assigned 

mainly in structured regions for the protein. 18 peaks were unassigned and considering 12 

Prolines that do not show NH signals, 9 spin systems were missing in 
1
H-

15
N HSQC 

corresponding to N-terminal. 

Dynamic studies of human p22HBP were also carried out by NMR, with hetNOE as well 

as longitudinal and transverse relaxation rates being measured. Model Free analysis was 

applied to relaxation parameters and the diffusion tensor was determined. Human p22HBP 

tumbles isotropically in solution, with a correlation time of 12.655 ±0.071 ns. When bound 

to PPIX this correlation time decreased to 10.435±0.099, a possible consequence of Tween 

present in solution. Tween works as a surfactant and reduces the surface tension of 

tetrapyrrole compounds and also reduced the surface tension of p22HBP in solution. As a 

consequence the p22HBP, despite being linked to PPIX with an increasing of the 

molecular weight of the complex, tumbles more rapidly in solution. Averaged generalized 

order parameter of 0.943 suggested a restricted protein with small variations in flexible 

regions located between secondary structures especially between α2 helix and β7 sheet 
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(residues 159-163). Dynamic behaviour of loop flanked by residues 171 to 180, suggest an 

inflexible part of protein, either in the presence of PPIX, in contrast with molecular 

modelling studies previously reported. Experimental conditions of relaxation 

measurements performed with human p22HBP with PPIX should be optimized in order to 

obtain more consistent results. 

The chimeric p22HBP was the last work of this thesis and we designed it but unfortunately 

we were not able to overexpress it and consequently purified it. Before overexpression and 

purification protocols optimization, it is crucial to confirm the chimeric p22HBP encoding 

sequence is in frame in chimeric phHBP1 plasmid. Thus, a complete sequencing analysis 

of chimeric p22HB1 plasmid should be carried out. Chimeric p22HBP will be an important 

support in functional studies to confirm if p22HBP play a central role in heme transport as 

initially studied by Jean Marck Moulis. Knock down studies shown that an absence of 

p22HBP in K562- human erythroleukemia cells, strongly up regulated heme oxygenase as 

a consequence of heme accumulation. And if we have p22HBP in this cells but with the 

binding pocket replaced by a non-binding homologous sequence? Would heme accumulate 

in the cells? Would be heme oxygenase upregulated due the presence of this non-binding 

version? This is the big challenge that should be carried out in the future in order to 

specifically define p22HBP function. 
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9.1 Buffers and media receipts 

 

 

 

 

LB (1L) 

Yeast extract 5 g 

Bactotriptone 10 g 

NaCl 5 g 

up to 1000 mL ddH2O 

 

 

 

 

M solution 

MOPS 42 g 

Tricine 4 g 

NaCl 14.6 g 

KOH 8 g 

NH4Cl 2.55 g 

up to 1000 mL ddH2O 

 pH should be 7.3 to 7.4 

 

 

 

 

T solution (100 mL) 

HCl conc. 8 mL 

CaCl2 18.4 mg 

H3BO3 64 mg 

MnCl2.4H2O 40 mg 

CoCl2.6H2O 18 mg 

CuCl2.2H2O 4 mg 

ZnCl2 340 mg 

Na2MoO4.2H2O 605 mg 

up to 100 mL ddH2O 

MOPS Media 

H2O 745 mL  

M solution 200 mL 

  

  

  

O solution (50 mL) 

Dissolve 0.1 g FeCl2.4H2O in 10 

mL concentrated HCl. 

Add 10 mL H2O. 

Add 1 mL of T solution. 

Add 2.68 g MgCl2.6H2O. 

Up to 50 mL ddH2O. 

Filter sterilize. 

Store at room temperature. 

 

 

 

P solution 

KH2PO4 1.0 M 

  

  

  

S solution 

K2SO4 0.276 M 

 

 

 

M9 Salts (10×) 1L 

Na2HPO4.7H2O 128 g  

KH2PO4 30 g 

NH4Cl 10 g 

NaCl 5 g 
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TBE 

Tris base 108 g 

Boric acid 55 g 

EDTA 9.3 g 

up to 1000 mL ddH2O 

 

 

 

 

SOC media (1 L) 

Tryptone 20 g 

Yeast extract 5 g 

NaCl 5M 2  mL 

KCl 1M 2.5 mL 

MgCl2 1M 10 mL 

MgSO4 1M 10 mL 

Glucose 1M 20 mL 

up to 1000 mL ddH2O 

 

 

 

TB broth 1L 

Tryptone  12 g  

Yeast extract 24 g 

Glycerol 4 mL 

Up to 900 mL ddH2O. 

Autoclave 

Add 100 mL sterile solution of: 

KH2PO4 0.17 M/ K2HPO4  0.72 

M 
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9.2 Human p22HBP chemical shifts 

Residue δCO(ppm) δCα(ppm) δCβ(ppm) δHα(ppm) δHN(ppm) δN(ppm) 

13 V 175.340 62.076 32.151 3.993 8.077 121.857 

14 E 
 

     

15 T 
 

     

16 W 
 

   10.832 128.588 

17 P             

18 W 174.480 55.131  5.380 7.545 118.793 

19 Q 175.517 53.740 31.180 4.843 8.173 117.202 

20 V 176.080 63.366  4.691 9.234 126.680 

21 L 177.653 55.903 41.661 4.298 9.193 130.084 

22 S 171.212 58.484 64.356 4.481 7.737 110.873 

23 K 174.984 55.485 34.856 4.718 8.299 118.320 

24 G 170.732 44.552  4.173 7.578 108.426 

25 D 175.166 53.560 43.770 5.252 7.967 117.185 

26 K 175.691 56.081 33.605 4.426 8.758 122.469 

27 E 
 

57.981 26.487  9.155 124.910 

28 E 175.737 57.682 27.347 4.086 8.693 116.298 

29 V 173.292 62.435 31.493 4.089 7.886 121.541 

30 A 176.902 50.702 20.519 4.988 8.231 130.169 

31 Y 174.274 55.483 42.240 5.709 8.354 118.433 

32 E 173.932 54.159 33.057 4.868 9.016 117.819 

33 E 175.691 54.059 30.789 5.078 8.895 127.121 

34 R 173.794 53.644 33.996 5.052 9.099 125.126 

35 A 177.474 50.767 17.414 4.845 8.828 125.357 

36 C 175.486 57.549 26.252 5.052 9.123 124.892 

37 E 178.869 58.526 29.546  8.788 124.332 

38 G 172.126 44.243 8.819 4.663  111.467 

39 G 171.966 43.928   8.965 111.644 

40 K 176.469 55.721 33.683 5.036 9.804 121.756 

41 F 174.640 56.304 39.784  9.358 120.003 

42 A 176.738 50.309 19.369 5.493 9.559 122.937 

43 T 173.640 57.329 71.059 5.319 9.488 113.898 

44 V 173.977 61.272 36.973 4.300 6.941 115.918 

45 E 175.029 54.990 31.493 5.146 9.074 129.693 

46 V 175.257 61.486 34.387 4.413 8.765 126.019 

47 T 173.269 61.022 70.758 4.717 8.673 119.506 

48 D 174.649 56.670 39.080 4.355 8.206 115.025 
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Residue δCO(ppm) δCα(ppm) δCβ(ppm) δHα(ppm) δHN(ppm) δN(ppm) 

49 K 172.731 53.524 33.917 4.856 7.731 117.997 

50 P             

51 V 176.573 67.720 31.806  8.520 121.807 

52 D 179.325 58.934 40.175  9.189 116.791 

53 E 178.983 58.458  4.032 7.154 118.656 

54 A 179.737 55.195 18.509 4.693 8.867 123.857 

55 L 178.983 58.258 41.504 4.987 8.565 119.022 

56 R 177.254 58.679 29.459 3.983 7.012 116.966 

57 E 178.210 57.483 29.772 4.210 7.207 116.189 

58 A 179.131 55.056 20.386  8.442 119.790 

59 M 176.644 59.078 28.208 4.655 8.231 114.884 

60 P             

61 K 180.257 59.908 31.727 3.956 6.808 113.371 

62 V 176.194 66.137 30.241 3.435 7.250 117.873 

63 A 174.696 54.990 17.023  7.599 121.379 

64 K 179.061 59.553 30.945  8.253 117.782 

65 Y 176.738 60.835 37.046  7.498 122.011 

66 A 177.653 53.863 17.257  7.890 120.633 

67 G 174.549 44.665 4.491  4.186 103.009 

68 G 
 

44.545  4.342 6.818 105.189 

69 T 173.634 61.219 65.752 4.449 8.634 122.300 

70 N 175.869 52.094 41.817 5.145 8.310 121.163 

71 D 176.788 57.053 39.705  9.338 120.102 

72 K 176.526 54.937 33.213 4.490 7.513 116.821 

73 G 175.025 46.435 7.855  4.698 111.808 

74 I 
 

59.633 40.800 4.209 7.698 116.926 

75 G 173.634 44.884   8.534 114.416 

76 M 175.943 55.728 29.459 4.100 8.547 123.103 

77 G 
 

44.494  4.318 7.619 106.764 

78 M 174.151 53.915 32.822 4.989 7.869 112.017 

79 T 
 

61.239 69.119 4.982 8.554 119.033 

80 V 180.674 61.742  5.002 6.295 119.576 

81 P 175.851           

82 I 178.046 56.626 29.772 4.378 8.994 119.891 

83 S 174.914 60.517 62.780  8.420 107.708 

84 F 172.537 55.295 39.926 5.593 7.196 117.558 

85 A 175.509 51.013 20.933 4.440 10.003 126.611 

86 V 173.634 59.077 32.979 4.438 7.912 111.733 
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Residue δCO(ppm) δCα(ppm) δCβ(ppm) δHα(ppm) δHN(ppm) δN(ppm) 

87 F 173.749 55.311 39.940 4.960 9.038 116.551 

88 P             

89 N             

90 E   59.758         

91 D 177.019 53.361 39.549 4.490 7.775 114.780 

92 G 173.749 44.984  4.682 7.958 109.378 

93 S 172.913 58.641 64.031 4.265 8.076 115.043 

94 L 178.629 54.391 40.916 4.733 8.742 118.468 

95 Q 177.681 55.954 29.694 4.009 8.385 119.774 

96 K 175.509 57.767 27.816       

97 K 173.269 56.500 34.621 4.757 7.820 121.435 

98 L 175.564 55.242 46.119 5.297 8.623 123.399 

99 K 175.303 56.015 35.560 5.456 8.314 124.175 

100 V 173.886 63.399 32.822 3.238 9.354 130.376 

101 W 
 

57.629 29.928 5.051 9.117 125.001 

102 F             

103 R 174.755 56.689         

104 I   58.487     7.202 129.842 

105 P             

106 N 178.122 57.212   10.101 123.445 

107 Q 175.851 58.211 27.425 4.681 9.582 118.947 

108 F 174.462 57.556  4.579 8.125 115.273 

109 Q 177.040 59.560 27.973  7.178 118.985 

110 S 175.189 54.201         

111 D 180.354 63.611 39.681 4.056 7.682 126.128 

112 P             

113 P             

114 A 176.263 50.336 17.570  8.910 128.780 

115 P             

116 S 173.612 59.648 62.388 4.689 7.469 119.177 

117 D 176.400 52.907  6.931 8.268 123.235 

118 K 177.268 57.383  4.159 8.358 122.984 

119 S 
 

60.332 63.253 4.284 8.885 115.481 

120 V 174.227 61.029 30.476 4.438 7.906 124.251 

121 K 175.212 53.787 33.683 4.520 8.672 124.807 

122 I 176.961 57.697  5.329 8.261 120.480 

123 E 174.183 55.124 30.632 4.877 9.324 126.869 

124 E 175.966 54.912 31.571 5.495 8.757 121.694 
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Residue δCO(ppm) δCα(ppm) δCβ(ppm) δHα(ppm) δHN(ppm) δN(ppm) 

125 R 174.343 56.002 33.839 4.564 9.191 123.672 

126 E 
 

     

127 G 173.177 46.516  4.704 8.516 106.776 

128 I 174.206 59.465 41.192 4.674 7.632 114.058 

129 T 
 

61.179  4.993 8.288 120.553 

130 V 174.191 56.786 34.826 5.279 8.629 117.425 

131 Y 174.395 57.012 39.705 4.991 8.901 118.693 

132 S 
 

55.898 64.973 6.091 9.331 116.185 

133 M 173.875 54.701 37.672 4.998 8.676 127.106 

134 Q 174.983 54.484 31.180 3.785 8.963 127.005 

135 F 174.255 56.671 40.253 4.998 9.161 120.694 

136 G 
 

43.971   8.732 110.011 

137 G 
 

44.287   7.557 104.305 

138 Y 
 

57.448 36.655  8.534 120.711 

139 A 176.080 52.264 18.821  8.292 130.235 

140 K 177.395 54.123 34.543 4.844 9.420 123.561 

141 E 177.102 62.036 28.912  10.626 125.349 

142 A 181.039 55.072 17.883  8.565 115.593 

143 D 177.517 57.127 41.035 4.426 7.801 116.677 

144 Y 178.523 61.961   7.993 118.725 

145 V 179.014 66.179 31.966 3.833 8.146 118.070 

146 A 181.618 55.361 17.805  8.043 123.485 

147 Q 178.320 57.712 25.785 1.386 8.716 117.340 

148 A 179.323 55.787 16.397  7.880 121.598 

149 T 176.181 66.723 68.774  7.817 114.437 

150 R 178.662 59.335 29.068  7.333 121.781 

151 L 177.747 57.846 39.393 4.401 7.738 120.881 

152 R 179.554 60.808 29.615  8.396 116.866 

153 A 179.965 54.766 16.944 4.088 7.718 119.836 

154 A 178.169 54.086 17.573 4.036 7.469 120.180 

155 L 177.223 54.510 41.270 3.812 7.255 114.708 

156 E 177.680 58.280 28.520  7.293 121.686 

157 G 174.341 45.539 19.760       

158 T 173.118 63.092 70.210 4.373 8.203 114.193 

159 A 175.517 51.383 22.353 4.637 7.844 124.136 

160 T 173.175 60.142 70.210 4.299 8.322 111.733 

161 Y 170.884 52.452 40.331 4.783 7.190 117.448 

162 R 175.937 58.413     
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Residue δCO(ppm) δCα(ppm) δCβ(ppm) δHα(ppm) δHN(ppm) δN(ppm) 

163 G 
 

45.799   8.410 107.661 

164 D 174.480 53.594 39.549 4.662 9.499 115.203 

165 I 172.772 59.429 30.319 4.689 7.250 118.134 

166 Y 171.463 56.854 38.610 4.306 7.956 119.220 

167 F 
 

55.076 41.504 5.737 9.097 113.521 

168 C 173.520 55.475  5.057 8.622 119.150 

169 T 
 

58.442 70.145  8.992 111.380 

170 G 173.986 45.228     

171 Y 176.961 55.565 37.750 4.211 8.016 120.125 

172 D 
 

     

173 P             

174 P             

175 M 
 

     

176 K 
 

     

177 P             

178 Y 175.166 55.688 39.784  7.128 115.737 

179 G 174.797 44.367   7.729 106.878 

180 R 
 

     

181 R 
 

55.923 33.619  9.404 121.520 

182 N 175.851 50.421 42.147 5.416 8.247 121.436 

183 E 176.309 54.574 31.969 5.808 8.222 115.981 

184 I 174.456 58.199 37.672 4.847 8.393 118.392 

185 W 176.034 53.099 31.962 5.787 9.513 125.191 

186 L 177.131 53.189 41.797 5.005 8.964 122.102 

187 L 175.166 55.156 42.287 4.855 10.040 125.885 

188 K 175.966 58.014 33.333 3.717 8.137 127.477 

189 T 178.594 62.775 69.975 4.118 7.684 123.332 
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9.3 Chemical shift index for human p22HBP 

Residue CA (exp) HA (exp CA (ref) HA (ref) ΔδCA ΔδHA 

7 N 
 

 53.60 4.75   

8 S 
 

 58.30 4.50   

9 L 
 

 55.70 4.17   

10 F 
 

 57.90 4.66   

11 G 
 

 45.00 3.97   

12 S 
 

 58.30 4.50   

13 V 62.08 3.99 63.00 3.95 -0.92 0.04 

14 E 
 

 56.70 4.29   

15 T 
 

 63.10 4.35   

16 W 
 

 57.80 4.70   

17 P 
 

 62.90 4.44   

18 W 55.13 5.38 57.80 4.70 -2.67 0.68 

19 Q 53.74 4.84 56.20 4.37 -2.46 0.47 

20 V 63.37 4.69 63.00 3.95 0.37 0.74 

21 L 55.90 4.30 55.70 4.17 0.20 0.13 

22 S 58.48 4.48 58.30 4.50 0.18 -0.02 

23 K 55.49 4.72 56.70 4.36 -1.22 0.36 

24 G 44.55 4.17 45.00 3.97 -0.45 0.20 

25 D 53.56 5.25 54.10 4.76 -0.54 0.49 

26 K 56.08 4.43 56.70 4.36 -0.62 0.07 

27 E 57.98  56.70 4.29 1.28  

28 E 57.68 4.09 56.70 4.29 0.98 -0.20 

29 V 62.44 4.09 63.00 3.95 -0.56 0.14 

30 A 50.70 4.99 52.50 4.35 -1.80 0.64 

31 Y 55.48 5.71 58.60 4.60 -3.12 1.11 

32 E 54.16 4.87 56.70 4.29 -2.54 0.58 

33 E 54.06 5.08 56.70 4.29 -2.64 0.79 

34 R 53.64 5.05 56.30 4.38 -2.66 0.67 

35 A 50.77 4.85 52.50 4.35 -1.73 0.50 

36 C 57.55 5.05 58.80 4.65 -1.25 0.40 

37 E 58.53  56.70 4.29 1.83  

38 G 44.24 4.66 45.00 3.97 -0.76 0.69 

39 G 43.93  45.00 3.97 -1.07  

40 K 55.72 5.04 56.70 4.36 -0.98 0.68 

41 F 56.30  57.90 4.66 -1.60  

42 A 50.31 5.49 52.50 4.35 -2.19 1.14 
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Residue CA (exp) HA (exp CA (ref) HA (ref) ΔδCA ΔδHA 

43 T 57.33 5.32 63.10 4.35 -5.77 0.97 

44 V 61.27 4.30 63.00 3.95 -1.73 0.35 

45 E 54.99 5.15 56.70 4.29 -1.71 0.86 

46 V 61.49 4.41 63.00 3.95 -1.51 0.46 

47 T 61.02 4.72 63.10 4.35 -2.08 0.37 

48 D 56.67 4.36 54.10 4.76 2.57 -0.40 

49 K 53.52 4.86 56.70 4.36 -3.18 0.50 

50 P 
 

 62.90 4.44   

51 V 67.72  63.00 3.95 4.72  

52 D 58.93  54.10 4.76 4.83  

53 E 58.46 4.03 56.70 4.29 1.76 -0.26 

54 A 55.20 4.69 52.50 4.35 2.70 0.34 

55 L 58.26 4.99 55.70 4.17 2.56 0.82 

56 R 58.68 3.98 56.30 4.38 2.38 -0.40 

57 E 57.48 4.21 56.70 4.29 0.78 -0.08 

58 A 55.06  52.50 4.35 2.56  

59 M 59.08 4.66 56.60 4.52 2.48 0.14 

60 P 
 

 62.90 4.44   

61 K 59.91 3.96 56.70 4.36 3.21 -0.40 

62 V 66.14 3.44 63.00 3.95 3.14 -0.52 

63 A 54.99  52.50 4.35 2.49  

64 K 59.55  56.70 4.36 2.85  

65 Y 60.84  58.60 4.60 2.24  

66 A 53.86  52.50 4.35 1.36  

67 G 44.67  45.00 3.97 -0.34  

68 G 44.55 4.34 45.00 3.97 -0.45 0.37 

69 T 61.22 4.45 63.10 4.35 -1.88 0.10 

70 N 52.09 5.15 53.60 4.75 -1.51 0.40 

71 D 57.05  54.10 4.76 2.95  

72 K 54.94 4.49 56.70 4.36 -1.76 0.13 

73 G 46.44  45.00 3.97 1.44  

74 I 59.63 4.21 62.60 3.95 -2.97 0.26 

75 G 44.88  45.00 3.97 -0.12  

76 M 55.73 4.10 56.60 4.52 -0.87 -0.42 

77 G 44.49 4.32 45.00 3.97 -0.51 0.35 

78 M 53.92 4.99 56.60 4.52 -2.69 0.47 

79 T 61.24 4.98 63.10 4.35 -1.86 0.63 

80 V 61.74 5.00 63.00 3.95 -1.26 1.05 
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Residue CA (exp) HA (exp CA (ref) HA (ref) ΔδCA ΔδHA 

81 P 
 

 62.90 4.44   

82 I 56.63 4.38 62.60 3.95 -5.97 0.43 

83 S 60.52  58.30 4.50 2.22  

84 F 55.30 5.59 57.90 4.66 -2.61 0.93 

85 A 51.01 4.44 52.50 4.35 -1.49 0.09 

86 V 59.08 4.44 63.00 3.95 -3.92 0.49 

87 F 55.31 4.96 57.90 4.66 -2.59 0.30 

88 P 
 

 62.90 4.44   

89 N 
 

 53.60 4.75   

90 E 59.76  56.70 4.29 3.06  

91 D 53.36 4.49 54.10 4.76 -0.74 -0.27 

92 G 44.98 4.68 45.00 3.97 -0.02 0.71 

93 S 58.64 4.27 58.30 4.50 0.34 -0.24 

94 L 54.39 4.73 55.70 4.17 -1.31 0.56 

95 Q 55.95 4.01 56.20 4.37 -0.25 -0.36 

96 K 57.77  56.70 4.36 1.07  

97 K 56.50 4.76 56.70 4.36 -0.20 0.40 

98 L 55.24 5.30 55.70 4.17 -0.46 1.13 

99 K 56.02 5.46 56.70 4.36 -0.69 1.10 

100 V 63.40 3.24 63.00 3.95 0.40 -0.71 

101 W 57.63 5.05 57.80 4.70 -0.17 0.35 

102 F 
 

 57.90 4.66   

103 R 56.69  56.30 4.38 0.39 -4.38 

104 I 58.49  62.60 3.95 -4.11  

105 P 
 

 62.90 4.44   

106 N 57.21  53.60 4.75 3.61  

107 Q 58.21 4.68 56.20 4.37 2.01 0.31 

108 F 57.56 4.58 57.90 4.66 -0.34 -0.08 

109 Q 59.56  56.20 4.37 3.36  

110 S 54.20  58.30 4.50 4.10 4.50 

111 D 63.61 4.06 54.10 4.76 -9.51 0.70 

112 P 
 

 62.90 4.44   

113 P 
 

 62.90 4.44   

114 A 50.34  52.50 4.35 -2.16  

115 P 
 

 62.90 4.44   

116 S 59.65 4.69 58.30 4.50 1.35 0.19 

117 D 52.91 6.93 54.10 4.76 -1.19 2.17 

118 K 57.38 4.16 56.70 4.36 0.68 -0.20 
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Residue CA (exp) HA (exp CA (ref) HA (ref) ΔδCA ΔδHA 

119 S 60.33 4.28 58.30 4.50 2.03 -0.22 

120 V 61.03 4.44 63.00 3.95 -1.97 0.49 

121 K 53.79 4.52 56.70 4.36 -2.91 0.16 

122 I 57.70 5.33 62.60 3.95 -4.90 1.38 

123 E 55.12 4.88 56.70 4.29 -1.58 0.59 

124 E 54.91 5.50 56.70 4.29 -1.79 1.21 

125 R 56.00 4.56 56.30 4.38 -0.30 0.18 

126 E 
 

 56.70 4.29   

127 G 46.52 4.70 45.00 3.97 1.52 0.73 

128 I 59.47 4.67 62.60 3.95 -3.14 0.72 

129 T 61.18 4.99 63.10 4.35 -1.92 0.64 

130 V 56.79 5.28 63.00 3.95 -6.21 1.33 

131 Y 57.01 4.99 58.60 4.60 -1.59 0.39 

132 S 55.90 6.09 58.30 4.50 -2.40 1.59 

133 M 54.70 5.00 56.60 4.52 -1.90 0.48 

134 Q 54.48 3.79 56.20 4.37 -1.72 -0.59 

135 F 56.67 5.00 57.90 4.66 -1.23 0.34 

136 G 43.97  45.00 3.97 -1.03  

137 G 44.29  45.00 3.97 -0.71  

138 Y 57.45  58.60 4.60 -1.15  

139 A 52.26  52.50 4.35 -0.24  

140 K 54.12 4.84 56.70 4.36 -2.58 0.48 

141 E 62.04  56.70 4.29 5.34  

142 A 55.07  52.50 4.35 2.57  

143 D 57.13 4.43 54.10 4.76 3.03 -0.33 

144 Y 61.96  58.60 4.60 3.36  

145 V 66.18 3.83 63.00 3.95 3.18 -0.12 

146 A 55.36  52.50 4.35 2.86  

147 Q 57.71 1.39 56.20 4.37 1.51  

148 A 55.79  52.50 4.35 3.29  

149 T 66.72  63.10 4.35 3.62  

150 R 59.34  56.30 4.38 3.04  

151 L 57.85 4.40 55.70 4.17 2.15 0.23 

152 R 60.81  56.30 4.38 4.51  

153 A 54.77 4.09 52.50 4.35 2.27 -0.26 

154 A 54.09 4.04 52.50 4.35 1.59 -0.31 

155 L 54.51 3.81 55.70 4.17 -1.19 -0.36 

156 E 58.28  56.70 4.29 1.58  
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Residue CA (exp) HA (exp CA (ref) HA (ref) ΔδCA ΔδHA 

157 G 45.54  45.00 3.97 0.54 -3.97 

158 T 63.09 4.37 63.10 4.35 -0.01 0.02 

159 A 51.38 4.64 52.50 4.35 -1.12 0.29 

160 T 60.14 4.30 63.10 4.35 -2.96 -0.05 

161 Y 52.45 4.78 58.60 4.60 -6.15 0.18 

162 R 58.41  56.30 4.38 2.11  

163 G 45.80  45.00 3.97 0.80  

164 D 53.59 4.66 54.10 4.76 -0.51 -0.10 

165 I 59.43 4.69 62.60 3.95 -3.17 0.74 

166 Y 56.85 4.31 58.60 4.60 -1.75 -0.29 

167 F 55.08 5.74 57.90 4.66 -2.82 1.08 

168 C 55.48 5.06 58.80 4.65 -3.33 0.41 

169 T 58.44  63.10 4.35 -4.66  

170 G 45.23  45.00 3.97 0.23 -3.97 

171 Y 55.57 4.21 58.60 4.60 -3.04 -0.39 

172 D 
 

 54.10 4.76   

173 P 
 

 62.90 4.44   

174 P 
 

 62.90 4.44   

175 M 
 

 56.60 4.52   

176 K 
 

 56.70 4.36   

177 P 
 

 62.90 4.44   

178 Y 55.69  58.60 4.60 -2.91  

179 G 44.37  45.00 3.97 -0.63  

180 R 
 

 56.30 4.38   

181 R 55.92  56.30 4.38 -0.38  

182 N 50.42 5.42 54.10 4.76 -3.68 0.66 

183 E 54.57 5.81 56.70 4.29 -2.13 1.52 

184 I 58.20 4.85 62.60 3.95 -4.40 0.90 

185 W 53.10 5.79 57.80 4.70 -4.70 1.09 

186 L 53.19 5.01 55.70 4.17 -2.51 0.84 

187 L 55.16 4.86 55.70 4.17 -0.54 0.69 

188 K 58.01 3.72 56.70 4.36 1.31 -0.64 

189 T 62.78 4.12 63.10 4.35 -0.33 -0.23 
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9.4 Talos prediction for human p22HBP 

residue S
2
 

secondary 

structure 
prediction  residue S

2
 

secondary 

structure 
prediction 

13 V 0.00 X None  48 D 0.70 Loop Good 

14 E 0.00 X None  49 K 0.73 Loop Good 

15 T 0.00 X None  50 P 0.59 Loop Good 

16 W 0.00 X None  51 V 0.88 Helix Good 

17 P 0.00 X None  52 D 0.99 Helix Good 

18 W 0.32 Loop Warn  53 E 1.00 Helix Good 

19 Q 0.59 Sheet Good  54 A 1.00 Helix Good 

20 V 0.92 Sheet Good  55 L 0.99 Helix Good 

21 L 0.97 Sheet Good  56 R 0.97 Helix Good 

22 S 0.81 Sheet Good  57 E 0.95 Helix Good 

23 K 0.73 Sheet Good  58 A 0.94 Helix Good 

24 G 0.76 Sheet Warn  59 M 0.94 Helix Good 

25 D 0.69 Sheet Good  60 P 0.96 Helix Good 

26 K 0.56 Loop Good  61 K 0.95 Helix Good 

27 E 0.54 Loop Warn  62 V 0.98 Helix Good 

28 E 0.46 Loop Warn  63 A 0.97 Helix Good 

29 V 0.30 Loop Warn  64 K 0.98 Helix Good 

30 A 0.80 Sheet Good  65 Y 0.93 Helix Good 

31 Y 0.98 Sheet Good  66 A 0.50 Helix Good 

32 E 1.00 Sheet Good  67 G 0.64 Loop Good 

33 E 0.97 Sheet Good  68 G 0.86 Loop Warn 

34 R 0.91 Sheet Good  69 T 0.79 Loop Good 

35 A 0.64 Sheet Good  70 N 0.88 Loop Warn 

36 C 0.63 Loop Good  71 D 0.94 Loop Good 

37 E 0.90 Loop Warn  72 K 0.84 Loop Good 

38 G 0.90 Loop Warn  73 G 0.59 Loop Good 

39 G 0.53 Loop Warn  74 I 0.40 Sheet Good 

40 K 0.40 Sheet Good  75 G 0.43 Sheet Warn 

41 F 0.70 Sheet Good  76 M 0.67 Loop Warn 

42 A 0.88 Sheet Good  77 G 0.84 Loop Warn 

43 T 0.97 Sheet Good  78 M 0.66 Loop Good 

44 V 0.96 Sheet Good  79 T 0.39 Loop Good 

45 E 0.98 Sheet Good  80 V 0.66 Loop Warn 

46 V 0.89 Sheet Good  81 P 0.00 X None 

47 T 0.24 Sheet Warn  82 I 0.00 X None 
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residue S
2
 

secondary 

structure 
prediction  residue S

2
 

secondary 

structure 
prediction 

83 S 0.65 Loop Good  120 V 0.43 Loop Warn 

84 F 0.63 Sheet Warn  121 K 0.71 Sheet Good 

85 A 0.92 Sheet Good  122 I 0.88 Sheet Good 

86 V 0.71 Sheet Good  123 E 0.82 Sheet Good 

87 F 0.40 Sheet Warn  124 E 0.57 Sheet Good 

88 P 0.00 X None  125 R 0.83 Sheet Good 

89 N 0.00 X None  126 E 0.15 Sheet Good 

90 E 0.00 X None  127 G 0.46 Loop Warn 

91 D 0.91 Loop Good  128 I 0.60 Sheet Good 

92 G 0.95 Loop Good  129 T 0.89 Sheet Good 

93 S 0.91 Loop Warn  130 V 0.94 Sheet Good 

94 L 0.79 Loop Warn  131 Y 0.91 Sheet Good 

95 Q 0.78 Loop Good  132 S 0.98 Sheet Good 

96 K 0.45 Loop Warn  133 M 1.00 Sheet Good 

97 K 0.76 Sheet Good  134 Q 1.00 Sheet Good 

98 L 0.86 Sheet Good  135 F 0.84 Sheet Good 

99 K 0.89 Sheet Good  136 G 0.15 Sheet Warn 

100 V 0.75 Sheet Good  137 G 0.41 Loop Warn 

101 W 0.73 Sheet Warn  138 Y 0.38 Sheet Good 

102 F 0.00 X None  139 A 0.18 Loop Good 

103 R 0.00 X None  140 K 0.69 Loop Good 

104 I 0.00 X None  141 E 0.71 Helix Good 

105 P 0.00 X None  142 A 0.98 Helix Good 

106 N 0.62 Helix Good  143 D 0.96 Helix Good 

107 Q 0.86 Helix Good  144 Y 1.00 Helix Good 

108 F 0.64 Helix Good  145 V 1.00 Helix Good 

109 Q 0.46 Helix Good  146 A 1.00 Helix Good 

110 S 0.00 X None  147 Q 1.00 Helix Good 

111 D 0.00 X None  148 A 1.00 Helix Good 

112 P 0.00 X None  149 T 1.00 Helix Good 

113 P 0.00 X None  150 R 1.00 Helix Good 

114 A 0.00 X None  151 L 1.00 Helix Good 

115 P 0.98 Loop Good  152 R 1.00 Helix Good 

116 S 0.99 Loop Warn  153 A 0.99 Helix Good 

117 D 0.94 Loop Good  154 A 0.91 Helix Good 

118 K 0.78 Loop Good  155 L 0.49 Helix Good 

119 S 0.61 Loop Good  156 E 0.07 Loop Warn 
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residue S
2
 

secondary 

structure 
prediction 

157 X 0.00 X None 

158 T 0.21 Loop Warn 

159 A 0.57 Sheet Good 

160 T 0.78 Sheet Good 

161 Y 0.70 Sheet Good 

162 R 0.00 X None 

163 G 0.00 X None 

164 D 0.87 Loop Good 

165 I 0.94 Loop Warn 

166 Y 0.25 Sheet Warn 

167 F 0.00 X None 

168 C 0.00 X None 

169 T 0.00 X None 

170 G 0.00 X None 

171 Y 0.00 X None 

172 D 0.00 X None 

173 P 0.00 X None 

174 P 0.00 X None 

175 M 0.00 X None 

176 K 0.00 X None 

177 P 0.00 X None 

178 Y 0.00 X None 

179 G 0.00 X None 

180 R 0.00 X None 

181 R 0.00 X None 

182 N 0.00 X None 

183 E 0.29 Loop Warn 

184 I 0.73 Sheet Good 

185 W 0.95 Sheet Good 

186 L 0.90 Sheet Good 

187 L 0.52 Sheet Good 

188 K 0.38 Loop Good 

189 T 0.03 Sheet Good 

190 V 0.00 X None 
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9.5 Longitudinal and transverse relaxation rates, 
1
H-

15
N steady state NOE 

values and R2/R1 ratios for human p22HBP at 500 MHz  

residue hetNOE R1 (1/s) R2 (1/s) R2/R1 

16 W 0.721 ± 0.065 1.299 ± 0.191 17.299 ± 1.111 13.317 ± 0.651 

17 P 
           

  

18 W 0.695 ± 0.037 1.336 ± 0.189 16.825 ± 0.659 12.598 ± 0.424 

19 Q 0.683 ± 0.049 1.410 ± 0.186 16.300 ± 0.847 11.564 ± 0.517 

20 V 0.662 ± 0.072 1.342 ± 0.277 15.225 ± 1.591 11.341 ± 0.934 

21 L 0.864 ± 0.070 1.474 ± 0.195 16.400 ± 1.277 11.124 ± 0.736 

22 S 0.859 ± 0.041 1.288 ± 0.198 15.473 ± 0.489 12.013 ± 0.343 

23 K 0.769 ± 0.039 1.343 ± 0.252 15.730 ± 0.637 11.716 ± 0.444 

24 G 0.676 ± 0.033 1.359 ± 0.184 14.511 ± 0.480 10.681 ± 0.332 

25 D 0.574 ± 0.033 1.300 ± 0.305 14.167 ± 0.525 10.895 ± 0.415 

26 K 0.662 ± 0.032 1.347 ± 0.195 14.216 ± 0.374 10.553 ± 0.284 

27 E 0.731 ± 0.097 1.115 ± 0.274 14.064 ± 1.336 12.609 ± 0.805 

28 E 0.658 ± 0.051 1.452 ± 0.335 17.754 ± 1.119 12.231 ± 0.727 

29 V 0.690 ± 0.017 1.364 ± 0.156 15.551 ± 0.240 11.398 ± 0.198 

30 A 0.729 ± 0.035 1.375 ± 0.210 16.371 ± 0.543 11.907 ± 0.377 

31 Y 0.805 ± 0.027 1.337 ± 0.175 16.351 ± 0.373 12.231 ± 0.274 

32 E 0.757 ± 0.050 1.322 ± 0.154 16.088 ± 0.843 12.171 ± 0.498 

33 E 0.720 ± 0.031 1.361 ± 0.153 15.192 ± 0.485 11.165 ± 0.319 

34 R 0.806 ± 0.023 1.363 ± 0.176 15.339 ± 0.354 11.255 ± 0.265 

35 A 0.778 ± 0.047 1.351 ± 0.181 15.054 ± 0.668 11.140 ± 0.424 

36 C 0.699 ± 0.041 1.308 ± 0.196 14.791 ± 0.617 11.306 ± 0.407 

37 E 0.661 ± 0.048 1.342 ± 0.239 16.423 ± 0.874 12.238 ± 0.556 

38 G 0.908 ± 0.053 1.441 ± 0.264 14.687 ± 0.662 10.196 ± 0.463 

39 G 0.828 ± 0.046 1.328 ± 0.201 18.520 ± 0.962 13.942 ± 0.582 

40 K 
   

1.392 ± 0.270 16.860 ± 1.153 12.109 ± 0.712 

41 F 0.850 ± 0.055 1.514 ± 0.155 16.435 ± 0.643 10.858 ± 0.399 

42 A 0.834 ± 0.062 1.355 ± 0.167 16.751 ± 1.029 12.364 ± 0.598 

43 T 0.816 ± 0.049 1.344 ± 0.151 17.418 ± 0.846 12.958 ± 0.499 

44 V 0.698 ± 0.054 1.197 ± 0.161 16.820 ± 1.038 14.050 ± 0.599 

45 E 0.820 ± 0.044 1.379 ± 0.213 18.444 ± 0.749 13.375 ± 0.481 

46 V 0.776 ± 0.044 1.284 ± 0.092 15.485 ± 0.623 12.058 ± 0.357 

47 T 0.814 ± 0.059 1.370 ± 0.319 16.404 ± 0.876 11.972 ± 0.597 

48 D 0.760 ± 0.029 1.330 ± 0.143 16.089 ± 0.439 12.098 ± 0.291 

49 K 0.755 ± 0.033 1.390 ± 0.170 14.934 ± 0.458 10.746 ± 0.314 
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residue hetNOE R1 (1/s) R2 (1/s) R2/R1 

50 P 
           

  

51 V 0.790 ± 0.046 1.294 ± 0.161 17.527 ± 0.737 13.550 ± 0.449 

52 D 0.753 ± 0.037 1.317 ± 0.117 18.133 ± 0.630 13.771 ± 0.374 

53 E 0.684 ± 0.026 1.273 ± 0.122 16.879 ± 0.412 13.262 ± 0.267 

54 A 0.772 ± 0.033 1.326 ± 0.111 17.417 ± 0.541 13.138 ± 0.326 

55 L 0.697 ± 0.023 1.339 ± 0.161 18.645 ± 0.431 13.923 ± 0.296 

56 R 0.682 ± 0.047 1.301 ± 0.114 18.077 ± 0.866 13.890 ± 0.490 

57 E 0.758 ± 0.036 1.294 ± 0.121 17.433 ± 0.602 13.473 ± 0.361 

58 A 0.813 ± 0.028 1.350 ± 0.179 17.317 ± 0.459 12.823 ± 0.319 

59 M 0.709 ± 0.035 1.354 ± 0.158 16.307 ± 0.614 12.042 ± 0.386 

60 P 
           

  

61 K 0.842 ± 0.061 1.233 ± 0.127 15.824 ± 0.907 12.836 ± 0.517 

62 V 0.789 ± 0.025 1.408 ± 0.153 17.139 ± 0.350 12.169 ± 0.252 

63 A 0.814 ± 0.052 1.345 ± 0.222 19.223 ± 1.148 14.290 ± 0.685 

64 K 0.830 ± 0.051 1.290 ± 0.159 16.876 ± 0.811 13.082 ± 0.485 

65 Y 0.823 ± 0.042 1.404 ± 0.190 17.730 ± 0.815 12.625 ± 0.503 

66 A 0.719 ± 0.036 1.411 ± 0.173 16.042 ± 0.675 11.370 ± 0.424 

67 G 0.734 ± 0.039 1.378 ± 0.144 18.103 ± 0.898 13.141 ± 0.521 

68 G 0.762 ± 0.038 1.244 ± 0.180 18.032 ± 0.656 14.496 ± 0.418 

69 T 0.820 ± 0.038 1.344 ± 0.177 16.461 ± 0.570 12.249 ± 0.373 

70 N 0.720 ± 0.022 1.298 ± 0.189 16.425 ± 0.349 12.651 ± 0.269 

71 D 0.905 ± 0.033 1.369 ± 0.107 17.216 ± 0.440 12.580 ± 0.273 

72 K 0.712 ± 0.036 1.201 ± 0.157 15.245 ± 0.591 12.696 ± 0.374 

73 G 0.687 ± 0.024 1.333 ± 0.155 16.710 ± 0.489 12.532 ± 0.322 

74 I 0.728 ± 0.031 1.341 ± 0.156 16.566 ± 0.521 12.355 ± 0.339 

75 G 0.776 ± 0.083 1.163 ± 0.331 15.564 ± 1.347 13.378 ± 0.839 

76 M 0.686 ± 0.053 1.407 ± 0.165 14.794 ± 0.684 10.517 ± 0.425 

77 G 0.621 ± 0.046 1.445 ± 0.209 14.638 ± 0.818 10.127 ± 0.513 

78 M 0.975 ± 0.035 1.396 ± 0.146 15.835 ± 0.371 11.342 ± 0.258 

79 T 0.796 ± 0.051 1.374 ± 0.138 18.576 ± 1.160 13.521 ± 0.649 

80 V 0.815 ± 0.126 1.357 ± 0.297 27.749 ± 0.000 20.443 ± 0.148 

81 P 
           

  

82 I 0.456 ± 0.159 1.283 ± 0.563 24.662 ± 10.201 19.224 ± 5.382 

83 S 0.655 ± 0.193 1.976 ± 1.002 14.745 ± 5.845 7.462 ± 3.423 

84 F 0.696 ± 0.016 1.294 ± 0.222 15.449 ± 0.238 11.938 ± 0.230 

85 A 0.762 ± 0.059 1.347 ± 0.224 15.967 ± 0.999 11.858 ± 0.612 

86 V 0.816 ± 0.051 1.448 ± 0.142 15.332 ± 0.670 10.588 ± 0.406 

87 F 0.735 ± 0.057 1.299 ± 0.220 16.302 ± 0.943 12.554 ± 0.581 
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residue hetNOE R1 (1/s) R2 (1/s) R2/R1 

88 P 
           

  

89 N 
           

  

90 E 
           

  

91 D 0.697 ± 0.063 1.327 ± 0.346 14.801 ± 1.089 11.151 ± 0.718 

92 G 0.680 ± 0.032 1.436 ± 0.291 14.437 ± 0.424 10.054 ± 0.358 

93 S 0.724 ± 0.025 1.301 ± 0.240 15.632 ± 0.358 12.015 ± 0.299 

94 L 0.713 ± 0.043 1.378 ± 0.156 15.357 ± 0.639 11.144 ± 0.398 

95 Q 0.754 ± 0.049 1.345 ± 0.194 16.232 ± 0.932 12.066 ± 0.563 

96 K 
           

  

97 K 0.762 ± 0.032 1.318 ± 0.215 15.816 ± 0.462 12.001 ± 0.338 

98 L 0.797 ± 0.041 1.319 ± 0.179 16.042 ± 0.551 12.158 ± 0.365 

99 K 0.860 ± 0.064 1.304 ± 0.100 15.540 ± 0.890 11.921 ± 0.495 

100 V 0.777 ± 0.067 1.378 ± 0.190 17.732 ± 1.378 12.866 ± 0.784 

101 W 0.897 ± 0.037 1.353 ± 0.183 13.769 ± 0.409 10.173 ± 0.296 

102 F 
           

  

103 R 
           

  

104 I 0.801 ± 0.086 1.478 ± 0.171 21.094 ± 0.737 14.269 ± 0.454 

105 P 
           

  

106 N 0.882 ± 0.084 1.294 ± 0.200 16.811 ± 1.297 12.997 ± 0.748 

107 Q 0.814 ± 0.085 1.671 ± 0.571 18.433 ± 1.873 11.029 ± 1.222 

108 F 0.778 ± 0.032 1.333 ± 0.156 16.201 ± 0.493 12.155 ± 0.325 

109 Q 0.893 ± 0.034 1.382 ± 0.146 16.528 ± 0.432 11.956 ± 0.289 

110 S 
           

  

111 D 
           

  

112 P 
           

  

113 P 
           

  

114 A 0.835 ± 0.036 1.385 ± 0.128 17.600 ± 0.476 12.712 ± 0.302 

115 P 
           

  

116 S 0.598 
 

0.044 1.360 
 

0.242 15.092 
 

1.161 11.098 
 

0.702 

117 D 0.704 ± 0.036 1.365 ± 0.232 13.540 ± 0.469 9.921 ± 0.351 

118 K 0.680 ± 0.074 1.228 ± 0.275 14.000 ± 1.296 11.397 ± 0.785 

119 S 0.765 ± 0.040 1.427 ± 0.287 16.871 ± 0.651 11.823 ± 0.469 

120 V 0.755 ± 0.032 1.290 ± 0.178 15.557 ± 0.399 12.057 ± 0.289 

121 K 0.759 ± 0.044 1.371 ± 0.113 15.418 ± 0.725 11.244 ± 0.419 

122 I 0.687 ± 0.019 1.296 ± 0.184 15.293 ± 0.297 11.799 ± 0.241 

123 E 0.816 ± 0.045 1.386 ± 0.167 15.010 ± 0.674 10.828 ± 0.420 

124 E 0.735 ± 0.029 1.345 ± 0.151 14.928 ± 0.360 11.097 ± 0.255 

125 R 0.782 ± 0.048 1.290 ± 0.188 15.717 ± 0.679 12.188 ± 0.434 
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residue hetNOE R1 (1/s) R2 (1/s) R2/R1 

126 E 
           

  

127 G 0.693 ± 0.043 1.527 ± 0.334 14.345 ± 0.679 9.397 ± 0.506 

128 I 0.797 ± 0.047 1.300 ± 0.218 16.921 ± 0.792 13.017 ± 0.505 

129 T 0.715 ± 0.023 1.320 ± 0.190 15.048 ± 0.350 11.399 ± 0.270 

130 V 0.800 ± 0.043 1.445 ± 0.159 17.247 ± 0.679 11.935 ± 0.419 

131 Y 0.795 ± 0.050 1.444 ± 0.147 16.301 ± 0.781 11.288 ± 0.464 

132 S 0.704 ± 0.041 1.410 ± 0.178 15.651 ± 0.729 11.099 ± 0.453 

133 M 0.827 ± 0.070 1.392 ± 0.149 15.589 ± 1.067 11.199 ± 0.608 

134 Q 0.722 ± 0.035 1.418 ± 0.210 15.766 ± 0.573 11.118 ± 0.392 

135 F 0.857 ± 0.074 1.247 ± 0.259 19.783 ± 0.966 15.866 ± 0.613 

136 G 
           

  

137 G 0.588 ± 0.093 1.168 ± 0.402 20.464 ± 1.325 17.514 ± 0.864 

138 Y 
           

  

139 A 0.698 ± 0.054 1.406 ± 0.350 17.009 ± 1.042 12.095 ± 0.696 

140 K 0.794 ± 0.078 1.192 ± 0.165 15.484 ± 1.160 12.987 ± 0.662 

141 E 0.736 ± 0.089 1.300 ± 0.277 16.270 ± 1.633 12.511 ± 0.955 

142 A 0.738 ± 0.030 1.403 ± 0.127 17.206 ± 0.474 12.266 ± 0.300 

143 D 0.784 ± 0.031 1.333 ± 0.156 17.380 ± 0.535 13.041 ± 0.345 

144 Y 0.774 ± 0.047 1.414 ± 0.133 16.951 ± 0.812 11.985 ± 0.472 

145 V 0.755 ± 0.048 1.374 ± 0.134 16.936 ± 0.821 12.328 ± 0.477 

146 A 0.767 ± 0.040 1.367 ± 0.132 16.125 ± 0.665 11.799 ± 0.398 

147 Q 0.836 ± 0.057 1.444 ± 0.192 17.063 ± 0.883 11.820 ± 0.537 

148 A 0.676 ± 0.017 1.362 ± 0.151 15.315 ± 0.230 11.243 ± 0.190 

149 T 0.739 ± 0.035 1.404 ± 0.212 16.742 ± 0.611 11.924 ± 0.412 

150 R 0.956 ± 0.043 1.448 ± 0.156 17.288 ± 0.550 11.940 ± 0.353 

151 L 0.829 ± 0.040 1.359 ± 0.188 17.215 ± 0.660 12.667 ± 0.424 

152 R 0.653 ± 0.035 1.426 ± 0.193 16.261 ± 0.586 11.399 ± 0.390 

153 A 0.784 ± 0.029 1.363 ± 0.163 18.097 ± 0.501 13.277 ± 0.332 

154 A 0.772 ± 0.028 1.309 ± 0.130 17.142 ± 0.454 13.093 ± 0.292 

155 L 0.764 ± 0.037 1.410 ± 0.155 15.166 ± 0.564 10.755 ± 0.360 

156 E 0.755 ± 0.019 1.392 ± 0.130 15.384 ± 0.266 11.053 ± 0.198 

157 G 
           

  

158 T 0.704 ± 0.061 1.398 ± 0.349 14.054 ± 0.887 10.052 ± 0.618 

159 A 0.670 ± 0.026 1.336 ± 0.255 12.562 ± 0.288 9.401 ± 0.271 

160 T 0.610 ± 0.036 1.285 ± 0.316 12.552 ± 0.413 9.766 ± 0.364 

161 Y 0.668 ± 0.015 1.294 ± 0.224 15.434 ± 0.231 11.932 ± 0.228 

162 R 
           

  

163 G 0.804 ± 0.109 1.423 ± 0.314 21.061 ± 0.975 14.796 ± 0.645 
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residue hetNOE R1 (1/s) R2 (1/s) R2/R1 

164 D 0.781 ± 0.046 1.569 ± 0.303 16.977 ± 0.742 10.817 ± 0.523 

165 I 0.769 ± 0.018 1.382 ± 0.156 17.232 ± 0.297 12.473 ± 0.226 

166 Y 0.825 ± 0.034 1.393 ± 0.177 17.056 ± 0.581 12.247 ± 0.379 

167 F 0.840 ± 0.063 1.363 ± 0.265 17.875 ± 1.172 13.118 ± 0.719 

168 C 0.771 ± 0.045 1.368 ± 0.168 17.169 ± 0.736 12.547 ± 0.452 

169 T 1.028 ± 0.060 1.343 ± 0.178 18.595 ± 0.912 13.843 ± 0.545 

170 G 
           

  

171 Y 
           

  

172 D 
           

  

173 P 
           

  

174 P 
           

  

175 M 
           

  

176 K 
           

  

177 P 
           

  

178 Y 0.644 ± 0.078 1.312 ± 0.376 18.369 ± 1.987 14.002 ± 1.181 

179 G 0.394 ± 0.084 1.430 ± 0.466 14.326 ± 2.179 10.021 ± 1.323 

180 R 
           

  

181 R 
           

  

182 N 0.653 ± 0.037 1.417 ± 0.252 14.926 ± 0.633 10.535 ± 0.443 

183 E 0.770 ± 0.063 1.296 ± 0.172 16.773 ± 1.261 12.938 ± 0.717 

184 I 0.757 ± 0.049 1.417 ± 0.197 16.767 ± 0.732 11.828 ± 0.465 

185 W 0.773 ± 0.051 1.340 ± 0.172 15.353 ± 0.829 11.456 ± 0.501 

186 L 0.852 ± 0.071 1.379 ± 0.337 17.389 ± 1.127 12.607 ± 0.732 

187 L 0.848 ± 0.062 1.348 ± 0.172 14.826 ± 0.935 10.995 ± 0.554 

188 K 0.829 ± 0.083 1.278 ± 0.212 16.704 ± 1.314 13.070 ± 0.763 

189 T 0.696 ± 0.034 1.332 ± 0.151 14.114 ± 0.473 10.593 ± 0.312 

 

  



Appendix 

209 

9.6 Longitudinal and transverse relaxation rates, 
1
H-

15
N steady state NOE 

values and R2/R1 ratios for human p22HBP at 700 MHz  

residue hetNOE R1 (1/s) R2(1/s) R2/R1 

16 W 0.799 ± 0.065 0.858 ± 0.291 19.307 ± 1.362 22.495 ± 0.826 

17 P 
            

18 W 1.014 ± 0.039 0.966 ± 0.241 19.276 ± 0.570 19.945 ± 0.406 

19 Q 0.796 ± 0.056 0.898 ± 0.233 18.536 ± 0.936 20.649 ± 0.585 

20 V 0.907 ± 0.124 0.915 ± 0.341 20.517 ± 1.053 22.419 ± 0.697 

21 L 0.660 ± 0.069 0.957 ± 0.259 16.665 ± 1.238 17.417 ± 0.748 

22 S 0.719 ± 0.030 0.916 ± 0.188 17.318 ± 0.464 18.914 ± 0.326 

23 K 0.826 ± 0.052 0.864 ± 0.232 18.301 ± 0.674 21.174 ± 0.453 

24 G 0.733 ± 0.027 0.952 ± 0.273 18.245 ± 0.504 19.167 ± 0.388 

25 D 0.738 ± 0.025 0.945 ± 0.357 16.635 ± 0.431 17.609 ± 0.394 

26 K 0.519 ± 0.024 0.969 ± 0.234 14.390 ± 0.347 14.848 ± 0.291 

27 E 0.368 ± 0.157 0.793 ± 0.438 14.248 ± 1.828 17.969 ± 1.133 

28 E 0.587 ± 0.046 1.014 ± 0.331 23.555 ± 0.000 23.235 ± 0.166 

29 V 0.338 ± 0.011 0.969 ± 0.193 16.662 ± 0.206 17.194 ± 0.200 

30 A 0.705 ± 0.039 0.945 ± 0.211 16.585 ± 0.543 17.552 ± 0.377 

31 Y 0.752 ± 0.024 0.906 ± 0.167 17.869 ± 0.394 19.715 ± 0.281 

32 E 0.757 ± 0.036 0.945 ± 0.221 18.611 ± 0.721 19.697 ± 0.471 

33 E 0.820 ± 0.026 0.923 ± 0.181 19.544 ± 0.486 21.175 ± 0.334 

34 R 0.819 ± 0.020 0.940 ± 0.219 17.618 ± 0.362 18.733 ± 0.291 

35 A 0.834 ± 0.038 0.928 ± 0.221 18.822 ± 0.657 20.292 ± 0.439 

36 C 0.797 ± 0.049 0.924 ± 0.254 17.167 ± 0.718 18.570 ± 0.486 

37 E 0.820 ± 0.047 0.978 ± 0.293 17.758 ± 0.929 18.156 ± 0.611 

38 G 0.901 ± 0.034 0.967 ± 0.278 16.373 ± 0.585 16.929 ± 0.432 

39 G 0.803 ± 0.038 0.945 ± 0.286 23.188 ± 0.000 24.545 ± 0.143 

40 K 0.810 ± 0.058 0.834 ± 0.191 19.001 ± 1.204 22.792 ± 0.697 

41 F 0.705 ± 0.028 0.949 ± 0.167 17.555 ± 0.633 18.496 ± 0.400 

42 A 0.761 ± 0.049 0.905 ± 0.161 17.820 ± 0.983 19.701 ± 0.572 

43 T 0.930 ± 0.048 0.945 ± 0.159 18.031 ± 0.726 19.089 ± 0.442 

44 V 0.704 ± 0.044 0.879 ± 0.151 17.342 ± 0.954 19.735 ± 0.552 

45 E 0.850 ± 0.035 0.929 ± 0.157 19.140 ± 0.709 20.595 ± 0.433 

46 V 0.766 ± 0.037 0.908 ± 0.149 19.191 ± 0.669 21.136 ± 0.409 

47 T 0.968 ± 0.063 0.917 ± 0.362 19.038 ± 0.930 20.763 ± 0.646 

48 D 0.792 ± 0.034 0.916 ± 0.225 17.198 ± 0.412 18.782 ± 0.319 

49 K 0.770 ± 0.031 0.962 ± 0.182 16.632 ± 0.424 17.282 ± 0.303 
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residue hetNOE R1 (1/s) R2(1/s) R2/R1 

50 P 
            

51 V 0.839 ± 0.046 0.881 ± 0.158 18.974 ± 0.821 21.537 ± 0.490 

52 D 0.784 ± 0.045 0.973 ± 0.167 20.820 ± 0.065 21.388 ± 0.116 

53 E 0.611 ± 0.025 0.916 ± 0.126 17.850 ± 0.432 19.497 ± 0.279 

54 A 0.840 ± 0.028 0.942 ± 0.144 19.862 ± 0.386 21.092 ± 0.265 

55 L 0.819 ± 0.024 0.951 ± 0.190 20.342 ± 0.066 21.401 ± 0.128 

56 R 0.672 ± 0.036 0.906 ± 0.153 
 

± 
  

± 
 

57 E 0.797 ± 0.038 0.885 ± 0.141 19.072 ± 0.550 21.561 ± 0.345 

58 A 0.746 ± 0.023 0.929 ± 0.182 18.464 ± 0.398 19.869 ± 0.290 

59 M 0.997 ± 0.068 0.939 ± 0.169 17.885 ± 0.769 19.050 ± 0.469 

60 P 
            

61 K 0.746 ± 0.046 0.909 ± 0.147 19.387 ± 0.974 21.316 ± 0.560 

62 V 0.929 ± 0.026 0.972 ± 0.206 19.671 ± 0.343 20.247 ± 0.274 

63 A 0.857 ± 0.072 0.888 ± 0.195 17.864 ± 1.664 20.128 ± 0.930 

64 K 0.829 ± 0.059 0.957 ± 0.159 18.961 ± 0.915 19.812 ± 0.537 

65 Y 0.834 ± 0.035 0.885 ± 0.200 18.063 ± 0.611 20.403 ± 0.406 

66 A 0.789 ± 0.030 0.968 ± 0.159 20.243 ± 0.231 20.917 ± 0.195 

67 G 0.807 ± 0.042 0.910 ± 0.137 16.625 ± 0.896 18.275 ± 0.517 

68 G 0.773 ± 0.030 0.847 ± 0.178 18.447 ± 0.584 21.791 ± 0.381 

69 T 0.886 ± 0.039 0.893 ± 0.238 17.154 ± 0.657 19.218 ± 0.448 

70 N 0.806 ± 0.023 0.832 ± 0.237 17.989 ± 0.382 21.613 ± 0.310 

71 D 0.792 ± 0.026 0.920 ± 0.203 18.722 ± 0.498 20.347 ± 0.351 

72 K 0.819 ± 0.033 0.837 ± 0.159 17.498 ± 0.454 20.899 ± 0.306 

73 G 0.565 ± 0.026 0.926 ± 0.187 18.335 ± 0.500 19.794 ± 0.344 

74 I 0.879 ± 0.039 0.955 ± 0.165 18.838 ± 0.526 19.725 ± 0.346 

75 G 0.865 ± 0.072 0.854 ± 0.287 18.036 ± 1.231 21.118 ± 0.759 

76 M 0.744 ± 0.045 0.958 ± 0.244 16.573 ± 0.802 17.307 ± 0.523 

77 G 0.820 ± 0.059 1.057 ± 0.224 19.354 ± 0.966 18.310 ± 0.595 

78 M 0.786 ± 0.019 0.971 ± 0.160 17.719 ± 0.358 18.244 ± 0.259 

79 T 0.718 ± 0.044 0.966 ± 0.131 18.230 ± 1.333 18.876 ± 0.732 

80 V 0.781 ± 0.094 0.911 ± 0.235 30.417 ± 0.000 33.395 ± 0.117 

81 P 
            

82 I 
   

0.980 ± 1.490 27.084 ± 6.514 27.625 ± 4.002 

83 S 0.867 ± 0.225 0.961 ± 0.451 17.777 ± 5.178 18.495 ± 2.815 

84 F 0.713 ± 0.017 0.912 ± 0.319 17.274 ± 0.253 18.931 ± 0.286 

85 A 0.849 ± 0.054 0.901 ± 0.194 20.039 ± 0.646 22.237 ± 0.420 

86 V 0.857 ± 0.026 0.941 ± 0.195 17.477 ± 0.465 18.569 ± 0.330 

87 F 0.845 ± 0.044 0.856 ± 0.247 17.028 ± 0.819 19.890 ± 0.533 
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residue hetNOE R1 (1/s) R2(1/s) R2/R1 

88 P 
            

89 N 
            

90 E 
            

91 D 0.582 ± 0.047 0.866 ± 0.346 16.210 ± 0.962 18.728 ± 0.654 

92 G 0.726 ± 0.023 1.030 ± 0.333 16.423 ± 0.371 15.950 ± 0.352 

93 S 0.647 ± 0.018 0.924 ± 0.328 17.364 ± 0.369 18.784 ± 0.349 

94 L 0.820 ± 0.045 0.944 ± 0.230 17.661 ± 0.642 18.705 ± 0.436 

95 Q 0.732 ± 0.056 0.920 ± 0.104 16.980 ± 1.027 18.466 ± 0.566 

96 K 
            

97 K 0.701 ± 0.028 0.896 ± 0.235 17.018 ± 0.426 18.997 ± 0.331 

98 L 0.798 ± 0.038 0.928 ± 0.146 18.148 ± 0.625 19.554 ± 0.386 

99 K 0.811 ± 0.055 0.869 ± 0.159 18.637 ± 0.992 21.452 ± 0.576 

100 V 0.862 ± 0.062 0.975 ± 0.238 17.877 ± 1.366 18.345 ± 0.802 

101 W 0.789 ± 0.034 0.924 ± 0.236 15.775 ± 0.385 17.067 ± 0.310 

102 F 
            

103 R 
            

104 I 0.888 ± 0.096 0.949 ± 0.241 22.434 ± 0.175 23.635 ± 0.208 

105 P 
            

106 N 0.781 ± 0.066 1.011 ± 0.345 18.193 ± 1.414 18.002 ± 0.879 

107 Q 0.811 ± 0.081 0.959 ± 0.369 19.797 ± 1.307 20.649 ± 0.838 

108 F 0.804 ± 0.031 0.913 ± 0.259 17.710 ± 0.489 19.405 ± 0.374 

109 Q 0.841 ± 0.035 0.945 ± 0.176 17.798 ± 0.507 18.839 ± 0.341 

110 S 
            

111 D 
            

112 P 
            

113 P 
            

114 A 0.751 ± 0.024 0.969 ± 0.179 18.864 ± 0.427 19.460 ± 0.303 

115 P 
            

116 S 0.884 
 

0.046 0.921 
 

0.308 17.271 
 

0.742 18.747 
 

0.525 

117 D 0.737 ± 0.037 0.930 ± 0.309 14.187 ± 0.500 15.249 ± 0.405 

118 K 0.561 ± 0.054 0.898 ± 0.304 16.073 ± 1.294 17.898 ± 0.799 

119 S 0.779 ± 0.027 1.016 ± 0.381 19.505 ± 0.531 19.192 ± 0.456 

120 V 0.801 ± 0.021 0.926 ± 0.219 17.285 ± 0.379 18.675 ± 0.299 

121 K 0.833 ± 0.046 0.926 ± 0.194 18.272 ± 0.785 19.734 ± 0.490 

122 I 0.709 ± 0.023 0.891 ± 0.181 16.632 ± 0.318 18.666 ± 0.250 

123 E 0.798 ± 0.044 0.902 ± 0.169 18.969 ± 0.807 21.021 ± 0.488 

124 E 0.756 ± 0.023 0.931 ± 0.193 15.973 ± 0.343 17.155 ± 0.268 

125 R 0.763 ± 0.046 0.889 ± 0.233 18.047 ± 0.766 20.292 ± 0.500 
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residue hetNOE R1 (1/s) R2(1/s) R2/R1 

126 E 
            

127 G 0.841 ± 0.039 0.972 ± 0.363 18.060 ± 0.758 18.576 ± 0.560 

128 I 0.900 ± 0.045 0.966 ± 0.288 19.398 ± 0.817 20.084 ± 0.552 

129 T 0.743 ± 0.026 0.955 ± 0.219 16.875 ± 0.395 17.668 ± 0.307 

130 V 0.817 ± 0.037 0.938 ± 0.192 17.260 ± 0.674 18.406 ± 0.433 

131 Y 0.811 ± 0.038 0.929 ± 0.187 16.772 ± 0.631 18.056 ± 0.409 

132 S 0.752 ± 0.040 0.935 ± 0.219 17.921 ± 0.674 19.166 ± 0.447 

133 M 0.771 ± 0.054 1.007 ± 0.211 21.931 ± 0.049 21.772 ± 0.130 

134 Q 0.711 ± 0.028 0.947 ± 0.198 21.211 ± 0.000 22.386 ± 0.099 

135 F 0.761 ± 0.059 0.910 ± 0.297 22.615 ± 0.000 24.845 ± 0.148 

136 G 
            

137 G 0.849 ± 0.110 1.021 ± 0.618 16.114 ± 1.797 15.788 ± 1.208 

138 Y 
            

139 A 0.572 ± 0.061 1.013 ± 0.369 18.179 ± 1.484 17.944 ± 0.927 

140 K 0.893 ± 0.069 0.853 ± 0.179 17.326 ± 1.053 20.304 ± 0.616 

141 E 0.814 ± 0.093 0.991 ± 0.299 24.734 ± 0.000 24.951 ± 0.149 

142 A 0.893 ± 0.030 0.972 ± 0.167 19.502 ± 0.493 20.074 ± 0.330 

143 D 0.818 ± 0.028 0.936 ± 0.183 19.768 ± 0.418 21.129 ± 0.301 

144 Y 0.784 ± 0.035 0.910 ± 0.165 18.927 ± 0.687 20.789 ± 0.426 

145 V 0.806 ± 0.051 0.999 ± 0.195 19.032 ± 0.824 19.054 ± 0.510 

146 A 0.801 ± 0.034 0.977 ± 0.168 18.471 ± 0.564 18.899 ± 0.366 

147 Q 0.764 ± 0.064 0.955 ± 0.248 18.853 ± 0.988 19.734 ± 0.618 

148 A 0.838 ± 0.016 0.944 ± 0.206 16.946 ± 0.238 17.945 ± 0.222 

149 T 0.809 ± 0.028 0.896 ± 0.191 18.540 ± 0.489 20.699 ± 0.340 

150 R 0.839 ± 0.027 0.938 ± 0.166 18.250 ± 0.519 19.452 ± 0.343 

151 L 0.773 ± 0.040 0.909 ± 0.173 18.551 ± 0.594 20.407 ± 0.383 

152 R 0.888 ± 0.033 0.972 ± 0.158 18.543 ± 0.579 19.072 ± 0.369 

153 A 0.784 ± 0.030 0.962 ± 0.145 19.651 ± 0.443 20.432 ± 0.294 

154 A 0.739 ± 0.022 0.892 ± 0.162 18.413 ± 0.368 20.634 ± 0.265 

155 L 0.800 ± 0.036 0.935 ± 0.165 17.084 ± 0.490 18.274 ± 0.328 

156 E 0.713 ± 0.018 0.962 ± 0.189 16.678 ± 0.257 17.331 ± 0.223 

157 G 
            

158 T 0.853 ± 0.063 0.999 ± 0.370 15.208 ± 0.764 15.225 ± 0.567 

159 A 0.670 ± 0.022 0.976 ± 0.321 14.836 ± 0.298 15.205 ± 0.310 

160 T 0.711 ± 0.031 0.945 ± 0.372 14.190 ± 0.400 15.020 ± 0.386 

161 Y 0.735 ± 0.016 0.912 ± 0.320 17.185 ± 0.231 18.839 ± 0.276 

162 R 
            

163 G 0.835 ± 0.088 0.889 ± 0.335 22.928 ± 0.255 25.795 ± 0.295 
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residue hetNOE R1 (1/s) R2(1/s) R2/R1 

164 D 0.721 ± 0.042 1.032 ± 0.314 18.119 ± 0.725 17.553 ± 0.520 

165 I 0.809 ± 0.019 0.964 ± 0.210 19.609 ± 0.320 20.341 ± 0.265 

166 Y 0.779 ± 0.024 0.964 ± 0.200 18.891 ± 0.446 19.598 ± 0.323 

167 F 0.862 ± 0.053 0.882 ± 0.219 19.303 ± 0.990 21.891 ± 0.604 

168 C 1.009 ± 0.060 0.872 ± 0.228 19.666 ± 0.724 22.549 ± 0.476 

169 T 0.786 ± 0.037 0.943 ± 0.269 23.335 ± 0.000 24.745 ± 0.135 

170 G 
            

171 Y 
            

172 D 
            

173 P 
            

174 P 
            

175 M 
            

176 K 
            

177 P 
            

178 Y 0.651 ± 0.118 0.982 ± 0.379 19.112 ± 2.011 19.462 ± 1.195 

179 G 
   

1.120 ± 0.517 18.586 ± 3.057 16.595 ± 1.787 

180 R 
            

181 R 
            

182 N 0.607 ± 0.045 0.945 ± 0.296 16.357 ± 0.803 17.311 ± 0.549 

183 E 0.888 ± 0.081 0.830 ± 0.269 18.683 ± 1.336 22.522 ± 0.803 

184 I 0.848 ± 0.042 0.880 ± 0.208 18.931 ± 0.812 21.501 ± 0.510 

185 W 0.843 ± 0.049 0.976 ± 0.244 18.531 ± 0.833 18.993 ± 0.538 

186 L 0.793 ± 0.050 0.928 ± 0.121 17.356 ± 0.850 18.701 ± 0.486 

187 L 0.770 ± 0.044 0.989 ± 0.274 18.161 ± 0.854 18.361 ± 0.564 

188 K 0.778 ± 0.064 0.924 ± 0.284 21.076 ± 0.278 22.802 ± 0.281 

189 T 0.689 ± 0.031 0.910 ± 0.235 16.031 ± 0.454 17.608 ± 0.344 
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9.7 1
H-

15
N steady state NOE values for PPIX- human p22HBP at 500 MHz  

residue hetNOE 

13 V 0.673 ± 0.087 

16 W 0.896 ± 0.113 

17 P 
   

18 W 0.731 ± 0.049 

19 Q 0.851 ± 0.077 

20 V 0.581 ± 0.078 

21 L 0.894 ± 0.108 

22 S 0.690 ± 0.057 

23 K 0.627 ± 0.070 

24 G 0.652 ± 0.052 

25 D 0.585 ± 0.051 

26 K 0.594 ± 0.048 

27 E 0.724 ± 0.038 

28 E 0.755 ± 0.157 

29 V 0.480 ± 0.030 

30 A 0.759 ± 0.050 

31 Y 0.788 ± 0.040 

32 E 1.002 ± 0.087 

33 E 0.718 ± 0.065 

34 R 0.723 ± 0.038 

35 A 0.620 ± 0.070 

36 C 0.694 ± 0.095 

37 E 0.810 ± 0.073 

38 G 0.901 ± 0.096 

39 G 0.626 ± 0.081 

40 K 0.512 
 

0.120 

41 F 0.731 ± 0.045 

42 A 0.615 ± 0.077 

43 T 0.942 ± 0.115 

44 V 0.433 ± 0.118 

45 E 0.724 ± 0.075 

46 V 0.383 ± 0.114 

47 T 0.771 ± 0.037 

48 D 0.692 ± 0.060 

49 K 0.713 ± 0.065 

50 P 
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residue hetNOE 

51 V 0.812 ± 0.114 

52 D 0.634 ± 0.063 

53 E 0.724 ± 0.035 

54 A 0.909 ± 0.176 

55 L 0.789 ± 0.038 

56 R 0.605 ± 0.071 

57 E 0.723 ± 0.099 

58 A 0.648 ± 0.075 

59 M 
 

± 
 

60 P 
   

61 K 0.624 ± 0.191 

62 V 0.228 ± 0.123 

63 A 0.781 ± 0.086 

64 K 
 

± 
 

65 Y 
 

± 
 

66 A 0.522 ± 0.121 

67 G 0.618 ± 0.085 

68 G 0.824 ± 0.078 

69 T 0.853 ± 0.067 

70 N 0.488 ± 0.079 

71 D 0.708 ± 0.041 

72 K 0.652 ± 0.064 

73 G 0.753 ± 0.057 

74 I 0.710 ± 0.052 

75 G 0.693 ± 0.126 

76 M 0.647 ± 0.064 

77 G 0.589 ± 0.103 

78 M 0.671 ± 0.142 

79 T 0.776 ± 0.037 

80 V 0.768 ± 0.089 

81 P 
   

82 I 0.877 ± 0.091 

83 S 0.600 ± 0.236 

84 F 0.387 ± 0.183 

85 A 0.652 ± 0.159 

86 V 0.760 ± 0.079 

87 F 0.817 ± 0.094 

88 P 
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residue hetNOE 

89 N 
   

90 E 
   

91 D 0.456 ± 0.107 

92 G 0.808 ± 0.060 

93 S 0.616 ± 0.035 

94 L 0.789 ± 0.041 

95 Q 0.531 ± 0.058 

96 K 
   

97 K 0.778 ± 0.067 

98 L 0.852 ± 0.072 

99 K 0.783 ± 0.068 

100 V 0.914 ± 0.118 

101 W 0.724 ± 0.038 

102 F 
   

103 R 0.684 
 

0.043 

104 I 0.719 ± 0.172 

105 P 
   

106 N 1.066 ± 0.110 

107 Q 0.674 ± 0.112 

108 F 0.623 ± 0.037 

109 Q 0.828 ± 0.069 

110 S 
   

111 D 0.164 
 

0.074 

112 P 
   

113 P 
   

114 A 0.797 ± 0.060 

115 P 
   

116 S 0.591 
 

0.095 

117 D 0.181 ± 0.061 

118 K 0.515 ± 0.244 

119 S 0.667 ± 0.059 

120 V 0.542 ± 0.043 

121 K 0.801 ± 0.095 

122 I 0.575 ± 0.046 

123 E 0.754 ± 0.049 

124 E 0.724 ± 0.047 

125 R 0.738 ± 0.063 

126 E 
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residue hetNOE 

127 G 0.694 ± 0.087 

128 I 0.640 ± 0.067 

129 T 0.456 ± 0.072 

130 V 0.845 ± 0.081 

131 Y 0.807 ± 0.080 

132 S 0.947 ± 0.087 

133 M 0.675 ± 0.085 

134 Q 0.714 ± 0.066 

135 F 
 

± 
 

136 G 
   

137 G 0.716 ± 0.170 

138 Y 
   

139 A 0.447 ± 0.145 

140 K 0.792 ± 0.153 

141 E 0.709 ± 0.176 

142 A 0.757 ± 0.055 

143 D 0.740 ± 0.047 

144 Y 
 

± 
 

145 V 0.801 ± 0.074 

146 A 0.704 ± 0.081 

147 Q 0.684 ± 0.071 

148 A 0.470 ± 0.027 

149 T 0.777 ± 0.063 

150 R 0.712 ± 0.052 

151 L 0.827 ± 0.075 

152 R 0.719 ± 0.066 

153 A 0.670 ± 0.046 

154 A 0.796 ± 0.048 

155 L 0.707 ± 0.059 

156 E 0.708 ± 0.032 

157 G 
   

158 T 0.613 ± 0.084 

159 A 0.532 ± 0.042 

160 T 0.604 ± 0.064 

161 Y 0.656 ± 0.033 

162 R 
   

163 G 
 

± 
 

164 D 0.806 ± 0.064 
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residue hetNOE 

165 I 0.737 ± 0.035 

166 Y 0.840 ± 0.055 

167 F 0.899 ± 0.099 

168 C 0.746 ± 0.037 

169 T 0.532 ± 0.066 

170 G 
   

171 Y 0.558 
 

0.057 

172 D 
   

173 P 
   

174 P 
   

175 M 
   

176 K 
   

177 P 
   

178 Y 0.583 ± 0.082 

179 G 0.571 ± 0.107 

180 R 
   

181 R 0.839 
 

0.080 

182 N 0.423 ± 0.100 

183 E 0.384 ± 0.117 

184 I 0.637 ± 0.060 

185 W 0.780 ± 0.073 

186 L 0.874 ± 0.087 

187 L 0.507 ± 0.077 

188 K 0.637 ± 0.105 

189 T 0.535 ± 0.040 
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9.8 Longitudinal and transverse relaxation rates, 
1
H-

15
N steady state NOE 

values and R2/R1 ratios for PPIX- human p22HBPat 700 MHz  

residue hetNOE R1 (1/s) R2(1/s) R2/R1 

13 V 0.713 ± 0.062 0.946 ± 0.150 14.385 ± 0.880 15.203 ± 0.515 

14 E 
            

15 T 
            

16 W 0.744 ± 0.072 0.861 ± 0.085 15.297 ± 1.052 17.761 ± 0.568 

17 P 
            

18 W 0.827 ± 0.036 0.957 ± 0.165 15.226 ± 0.444 15.909 ± 0.304 

19 Q 0.852 ± 0.055 1.004 ± 2.160 14.463 ± 0.621 14.399 ± 1.390 

20 V 0.906 ± 0.122 0.785 ± 0.255 13.437 ± 0.829 17.120 ± 0.542 

21 L 0.816 ± 0.093 0.925 ± 0.129 14.164 ± 0.891 15.313 ± 0.510 

22 S 0.777 ± 0.038 0.924 ± 0.182 13.184 ± 0.364 14.265 ± 0.273 

23 K 0.827 ± 0.074 1.047 ± 0.132 14.713 ± 0.452 14.052 ± 0.292 

24 G 0.777 ± 0.036 
 

± 
 

13.564 ± 0.486 
 

± 0.243 

25 D 0.654 ± 0.036 0.996 ± 0.226 12.125 ± 0.397 12.168 ± 0.312 

26 K 0.626 ± 0.043 1.021 ± 0.284 14.563 ± 0.372 14.258 ± 0.328 

27 E 0.762 ± 0.024 0.931 ± 0.161 15.610 ± 1.552 16.770 ± 0.857 

28 E 0.563 ± 0.123 0.935 ± 0.278 13.697 ± 0.210 14.646 ± 0.244 

29 V 0.646 ± 0.020 0.963 ± 0.141 13.977 ± 0.458 14.521 ± 0.299 

30 A 0.835 ± 0.043 1.021 ± 0.076 14.165 ± 0.654 13.870 ± 0.365 

31 Y 0.775 ± 0.030 0.921 ± 0.742 14.519 ± 0.787 15.771 ± 0.765 

32 E 0.788 ± 0.043 1.003 ± 0.174 14.798 ± 0.522 14.750 ± 0.348 

33 E 0.831 ± 0.040 0.960 ± 0.092 15.967 ± 0.495 16.626 ± 0.294 

34 R 0.755 ± 0.024 0.930 ± 0.165 14.848 ± 0.610 15.967 ± 0.387 

35 A 0.850 ± 0.048 0.944 ± 0.192 15.665 ± 1.035 16.599 ± 0.614 

36 C 0.772 ± 0.078 0.888 ± 0.207 15.041 ± 0.852 16.934 ± 0.529 

37 E 0.806 ± 0.053 0.973 ± 0.230 14.709 ± 0.575 15.119 ± 0.403 

38 G 0.899 ± 0.071 1.008 ± 0.371 13.938 ± 0.827 13.827 ± 0.599 

39 G 0.742 ± 0.051 0.942 ± 0.161 14.489 ± 0.789 15.382 ± 0.475 

40 K 0.848 ± 0.099 0.928 ± 0.166 13.957 ± 1.004 15.037 ± 0.585 

41 F 0.758 ± 0.040 0.955 ± 0.186 15.045 ± 0.481 15.760 ± 0.333 

42 A 0.888 ± 0.068 1.017 ± 0.282 13.363 ± 0.804 13.135 ± 0.543 

43 T 0.925 ± 0.100 0.870 ± 0.236 16.696 ± 1.048 19.183 ± 0.642 

44 V 0.845 ± 0.130 0.988 ± 0.279 14.339 ± 1.353 14.520 ± 0.816 

45 E 0.801 ± 0.050 0.949 ± 0.393 14.825 ± 0.638 15.625 ± 0.516 

46 V 0.377 ± 0.097 0.898 ± 0.330 15.347 ± 1.505 17.089 ± 0.917 
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residue hetNOE R1 (1/s) R2(1/s) R2/R1 

47 T 0.784 ± 0.029 0.963 ± 0.225 15.288 ± 0.458 15.870 ± 0.341 

48 D 0.729 ± 0.053 0.912 ± 0.306 14.269 ± 0.594 15.642 ± 0.450 

49 K 0.755 ± 0.048 0.973 ± 0.164 13.730 ± 0.496 14.112 ± 0.330 

50 P 
            

51 V 0.860 ± 0.076 1.086 ± 0.986 14.143 ± 0.895 13.027 ± 0.940 

52 D 0.837 ± 0.109 0.990 ± 0.170 15.996 ± 0.763 16.150 ± 0.466 

53 E 0.804 ± 0.032 0.969 ± 0.159 15.026 ± 0.409 15.505 ± 0.284 

54 A 0.900 ± 0.154 0.960 ± 0.256 14.300 ± 1.091 14.900 ± 0.674 

55 L 0.827 ± 0.032 0.968 ± 0.217 
 

± 
  

± 0.108 

56 R 0.988 ± 0.081 0.966 ± 0.171 16.138 ± 1.225 16.703 ± 0.698 

57 E 0.731 ± 0.091 0.871 ± 0.168 16.276 ± 1.129 18.676 ± 0.648 

58 A 0.848 ± 0.097 0.971 ± 0.168 14.063 ± 0.789 14.477 ± 0.479 

59 M 
            

60 P 
            

61 K 1.018 ± 0.215 0.951 ± 0.308 17.688 ± 2.958 18.601 ± 1.633 

62 V 0.798 ± 0.133 0.959 ± 0.160 15.596 ± 1.391 16.263 ± 0.775 

63 A 0.879 ± 0.089 0.940 ± 0.200 14.343 ± 0.793 15.265 ± 0.497 

64 K 
            

65 Y 
            

66 A 0.774 ± 0.102 0.899 ± 0.311 14.563 ± 1.621 16.202 ± 0.966 

67 G 0.867 ± 0.063 0.834 ± 1.401 13.122 ± 0.791 15.739 ± 1.096 

68 G 0.835 ± 0.067 0.897 ± 0.169 15.496 ± 0.665 17.277 ± 0.417 

69 T 0.787 ± 0.046 0.944 ± 0.203 
 

± 
  

± 0.101 

70 N 0.855 ± 0.071 0.897 ± 0.414 14.375 ± 0.885 16.033 ± 0.650 

71 D 0.725 ± 0.041 0.952 ± 0.109 15.258 ± 0.500 16.031 ± 0.305 

72 K 0.734 ± 0.045 0.836 ± 0.148 14.326 ± 0.479 17.136 ± 0.314 

73 G 0.839 ± 0.041 1.051 ± 0.150 14.530 ± 0.446 13.819 ± 0.298 

74 I 0.760 ± 0.041 0.971 ± 0.167 15.015 ± 0.453 15.464 ± 0.310 

75 G 0.687 ± 0.123 0.832 ± 0.324 15.379 ± 1.803 18.473 ± 1.064 

76 M 0.696 ± 0.049 0.937 ± 0.262 14.325 ± 0.660 15.295 ± 0.461 

77 G 0.659 ± 0.084 0.986 ± 0.219 15.187 ± 1.105 15.396 ± 0.662 

78 M 0.987 ± 0.141 1.050 ± 0.169 11.869 ± 0.967 11.307 ± 0.568 

79 T 0.799 ± 0.030 0.949 ± 0.234 
 

± 
  

± 0.117 

80 V 0.945 ± 0.081 1.018 ± 0.374 14.164 ± 0.873 13.911 ± 0.623 

81 P 
            

82 I 0.784 ± 0.051 0.985 ± 0.265 14.546 ± 0.700 14.774 ± 0.482 

83 S 
            

84 F 0.742 ± 0.503 0.919 ± 0.096 15.972 ± 0.747 17.372 ± 0.421 
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residue hetNOE R1 (1/s) R2(1/s) R2/R1 

85 A 0.804 ± 0.179 0.961 ± 0.380 17.573 ± 2.793 18.279 ± 1.586 

86 V 0.927 ± 0.050 0.993 ± 0.165 15.229 ± 0.577 15.336 ± 0.371 

87 F 0.791 ± 0.046 0.999 ± 0.293 13.757 ± 0.749 13.765 ± 0.521 

88 P 
            

89 N 
            

90 E 
            

91 D 0.726 ± 0.133 0.969 ± 0.650 13.252 ± 1.510 13.669 ± 1.080 

92 G 0.681 ± 0.031 1.017 ± 0.239 14.155 ± 0.398 13.924 ± 0.318 

93 S 0.709 ± 0.022 0.976 ± 0.213 14.630 ± 0.345 14.992 ± 0.279 

94 L 0.794 ± 0.037 0.969 ± 0.180 14.293 ± 0.460 14.744 ± 0.320 

95 Q 0.571 ± 0.064 0.945 ± 0.218 
      

96 K 
            

97 K 0.808 ± 0.061 0.922 ± 0.246 13.990 ± 0.560 15.179 ± 0.403 

98 L 0.660 ± 0.048 0.906 ± 0.201 
      

99 K 0.811 ± 0.062 1.032 ± 0.139 12.510 ± 0.655 12.117 ± 0.397 

100 V 0.830 ± 0.063 0.941 ± 0.175 15.729 ± 1.053 16.707 ± 0.614 

101 W 0.762 ± 0.024 0.928 ± 0.181 14.836 ± 0.887 15.986 ± 0.534 

102 F 
            

103 R 0.787 ± 0.031 0.973 ± 0.109 15.354 ± 0.421 15.776 ± 0.265 

104 I 0.509 ± 0.097 1.205 ± 0.587 15.333 ± 1.955 12.720 ± 1.271 

105 P 
            

106 N 0.857 ± 0.064 
 

± 
 

13.523 ± 0.696 
   

107 Q 0.653 ± 0.130 1.102 ± 0.709 15.747 ± 1.621 14.295 ± 1.165 

108 F 0.766 ± 0.026 0.958 ± 0.205 14.592 ± 0.367 15.237 ± 0.286 

109 Q 0.858 ± 0.048 0.999 ± 0.295 14.246 ± 0.583 14.263 ± 0.439 

110 S 
            

111 D 0.775 ± 0.079 0.938 ± 0.070 13.783 ± 0.500 14.700 ± 0.285 

112 P 
            

113 P 
            

114 A 0.814 ± 0.044 1.032 ± 0.169 15.469 ± 0.573 14.986 ± 0.371 

115 P 
            

116 S 0.764 ± 0.078 1.020 ± 0.224 13.105 ± 0.775 12.849 ± 0.500 

117 D 0.596 ± 0.090 0.894 ± 0.277 12.333 ± 0.638 13.795 ± 0.457 

118 K 0.660 ± 0.234 0.904 ± 0.203 14.385 ± 0.584 15.906 ± 0.394 

119 S 0.852 ± 0.047 1.132 ± 0.297 15.243 ± 0.526 13.460 ± 0.411 

120 V 0.567 ± 0.031 1.003 ± 0.186 11.240 ± 0.308 11.202 ± 0.247 

121 K 0.623 ± 0.053 1.079 ± 1.287 13.283 ± 0.682 12.315 ± 0.985 

122 I 0.858 ± 0.051 0.973 ± 0.130 
 

± 
  

± 0.065 
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residue hetNOE R1 (1/s) R2(1/s) R2/R1 

123 E 0.811 ± 0.046 0.978 ± 0.189 14.892 ± 0.523 15.230 ± 0.356 

124 E 0.577 ± 0.036 0.985 ± 0.092 13.337 ± 0.394 13.536 ± 0.243 

125 R 0.711 ± 0.045 0.915 ± 0.204 14.532 ± 0.639 15.889 ± 0.421 

126 E 
            

127 G 0.712 ± 0.068 1.043 ± 0.373 18.577 ± 1.310 17.818 ± 0.841 

128 I 0.933 ± 0.051 0.966 ± 0.296 16.631 ± 0.940 17.224 ± 0.618 

129 T 0.656 ± 0.084 1.059 ± 0.338 11.923 ± 0.798 11.256 ± 0.568 

130 V 0.886 ± 0.052 1.042 ± 0.172 15.041 ± 0.751 14.431 ± 0.461 

131 Y 0.787 ± 0.045 0.957 ± 0.098 14.266 ± 0.540 14.903 ± 0.319 

132 S 0.901 ± 0.055 0.953 ± 0.220 13.714 ± 0.548 14.387 ± 0.384 

133 M 0.835 ± 0.068 
 

± 
 

16.619 ± 0.922 
   

134 Q 0.709 ± 0.037 1.029 ± 0.163 15.655 ± 0.524 15.212 ± 0.343 

135 F 
            

136 G 0.479 ± 0.472 
         

137 G 0.918 ± 0.125 1.016 ± 0.547 11.941 ± 1.426 11.750 ± 0.987 

138 Y 
            

139 A 0.507 ± 0.099 1.165 ± 0.262 13.144 ± 1.856 11.286 ± 1.059 

140 K 0.770 ± 0.112 0.844 ± 0.226 14.287 ± 1.303 16.936 ± 0.765 

141 E 0.976 ± 0.284 0.909 ± 0.317 14.353 ± 2.308 15.790 ± 1.313 

142 A 0.664 ± 0.037 1.041 ± 0.171 14.965 ± 0.512 14.370 ± 0.341 

143 D 0.865 ± 0.038 0.936 ± 0.119 16.030 ± 0.390 17.135 ± 0.254 

144 Y 
            

145 V 0.827 ± 0.074 1.056 ± 0.235 14.321 ± 0.787 13.559 ± 0.511 

146 A 0.920 ± 0.060 1.023 ± 0.107 14.812 ± 0.778 14.478 ± 0.442 

147 Q 0.918 ± 0.073 1.027 ± 2.376 15.853 ± 0.724 15.442 ± 1.550 

148 A 0.709 ± 0.020 0.973 ± 0.108 13.823 ± 0.255 14.201 ± 0.181 

149 T 0.499 ± 0.038 0.959 ± 0.163 14.559 ± 0.499 15.176 ± 0.331 

150 R 0.826 ± 0.045 0.971 ± 0.111 15.091 ± 0.524 15.543 ± 0.317 

151 L 0.818 ± 0.047 0.991 ± 0.075 15.043 ± 0.558 15.179 ± 0.317 

152 R 0.937 ± 0.047 0.981 ± 0.172 15.092 ± 0.536 15.386 ± 0.354 

153 A 0.842 ± 0.042 0.971 ± 0.155 14.968 ± 0.428 15.421 ± 0.291 

154 A 0.745 ± 0.030 0.895 ± 0.113 15.054 ± 0.324 16.818 ± 0.219 

155 L 0.836 ± 0.047 0.950 ± 0.228 13.810 ± 0.489 14.544 ± 0.359 

156 E 0.752 ± 0.027 0.996 ± 0.204 13.865 ± 0.244 13.921 ± 0.224 

157 G 
            

158 T 0.693 ± 0.094 0.985 ± 0.342 13.117 ± 1.140 13.321 ± 0.741 

159 A 0.678 ± 0.030 1.004 ± 0.118 11.535 ± 0.299 11.491 ± 0.208 

160 T 0.782 ± 0.048 0.916 ± 0.308 11.084 ± 0.447 12.101 ± 0.377 
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residue hetNOE R1 (1/s) R2(1/s) R2/R1 

161 Y 0.728 ± 0.027 0.888 ± 0.184 13.268 ± 0.594 14.944 ± 0.389 

162 R 
            

163 G 0.412 ± 0.413 
 

± 
  

± 
  

± 
 

164 D 0.789 ± 0.050 1.144 ± 0.268 14.337 ± 0.554 12.534 ± 0.411 

165 I 0.712 ± 0.030 0.947 ± 0.150 15.384 ± 0.382 16.247 ± 0.266 

166 Y 0.803 ± 0.031 0.968 ± 2.304 15.051 ± 0.447 15.552 ± 1.375 

167 F 0.904 ± 0.076 0.926 ± 0.144 21.055 ± 0.310 22.742 ± 0.227 

168 C 0.760 ± 0.032 0.941 ± 0.206 15.204 ± 0.452 16.156 ± 0.329 

169 T 0.919 ± 0.052 0.963 ± 0.154 14.915 ± 0.619 15.490 ± 0.386 

170 G 
            

171 Y 0.687 ± 0.041 0.881 ± 0.133 13.382 ± 0.483 15.196 ± 0.308 

172 D 
            

173 P 
            

174 P 
            

175 M 
            

176 K 
            

177 P 
            

178 Y 1.028 ± 0.114 0.981 ± 0.415 14.157 ± 0.701 14.435 ± 0.558 

179 G 0.691 ± 0.089 0.989 ± 0.230 
      

180 R 
            

181 R 0.740 ± 0.061 0.939 ± 0.201 14.865 ± 0.694 15.838 ± 0.447 

182 N 0.667 ± 0.091 0.941 ± 0.129 14.853 ± 1.028 15.786 ± 0.578 

183 E 0.756 ± 0.115 0.865 ± 0.285 15.144 ± 1.178 17.501 ± 0.731 

184 I 0.415 ± 0.043 0.929 ± 0.176 14.764 ± 0.402 15.890 ± 0.289 

185 W 0.729 ± 0.062 1.083 ± 0.122 15.172 ± 0.641 14.004 ± 0.381 

186 L 0.857 ± 0.057 0.903 ± 0.124 13.477 ± 0.616 14.918 ± 0.370 

187 L 0.811 ± 0.062 0.966 ± 0.221 14.691 ± 0.798 15.207 ± 0.510 

188 K 0.800 ± 0.069 0.969 ± 0.143 14.286 ± 1.050 14.739 ± 0.597 

189 T 0.831 ± 0.040 0.972 ± 0.172 13.336 ± 0.418 13.721 ± 0.295 
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9.9 Relaxation parameters for human p22HBP 

Residue Model S
2
 τe (ps) Rex 

16 W 1 0.968 ± 0.047 
 

 
   

 

17 P 
     

 
   

 

18 W 
     

 
   

 

19 Q 1 0.990 ± 0.027 
 

 
   

 

20 V 1 0.978 ± 0.057 
 

 
   

 

21 L 1 0.963 ± 0.051 
 

 
   

 

22 S 2 0.904 ± 0.031 3.120E+01 ± 1.605E+01 
  

 

23 K 1 0.937 ± 0.053 
 

 
   

 

24 G 2 0.935 ± 0.021 8.850E+02 ± 4.005E+02 
  

 

25 D 2 0.851 ± 0.022 1.370E+03 ± 2.095E+02 
  

 

26 K 2 0.786 ± 0.026 4.430E+01 ± 8.098E+00 
  

 

27 E 1 0.820 ± 0.060 
 

 
   

 

28 E 4 0.898 ± 0.096 9.630E+01 ± 1.730E+02 3.123 ± 1.819 

29 V 
     

 
   

 

30 A 2 0.915 ± 0.025 5.610E+01 ± 2.594E+01 
  

 

31 Y          2 0.957 ± 0.016 6.020E+01 ± 3.634E+01 
  

 

32 E 1 0.966 ± 0.034 
 

 
   

 

33 E 2 0.970 ± 0.020 9.600E+02 ± 1.031E+03 
  

 

34 R 1 0.935 ± 0.021 
 

 
   

 

35 A 1 0.952 ± 0.036 
 

 
   

 

36 C 1 0.886 ± 0.037 
 

 
   

 

37 E 1 0.956 ± 0.032 
 

 
   

 

38 G 1 0.876 ± 0.020 
 

 
   

 

39 G          1 1.000 ± 0.043      
  

 

40 K 1 0.984 ± 0.031 
 

 
   

 

41 F 2 0.943 ± 0.026 7.850E+01 ± 5.812E+01 
  

 

42 A 1 1.000 ± 0.017 
 

 
   

 

43 T 1 0.985 ± 0.025 
 

 
   

 

44 V 2 0.883 ± 0.050 4.230E+01 ± 2.429E+01 
  

 

45 E 1 1.000 ± 0.021 
 

 
   

 

46 V 1 0.950 ± 0.029 
 

 
   

 

47 T 1 0.969 ± 0.046 
 

 
   

 

48 D 2 0.905 ± 0.014 2.160E+01 ± 1.020E+01 
  

 

49 K 2 0.877 ± 0.024 2.070E+01 ± 8.472E+00 
  

 

50 P 
     

 
   

 

51 V      1 0.962 ± 0.035 
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Residue Model S
2
 τe (ps) Rex 

52 D 1 1.000 ± 0.019 
 

 
   

 

53 E 2 0.924 ± 0.018 1.180E+02 ± 5.806E+01 
  

 

54 A 1 0.995 ± 0.028 
 

 
   

 

55 L 
     

 
   

 

56 R 2 0.958 ± 0.023 2.560E+02 ± 3.201E+02 
  

 

57 E 1 0.963 ± 0.025 
 

 
   

 

58 A 2 0.943 ± 0.018 4.620E+01 ± 2.206E+01 
  

 

59 M 1 0.947 ± 0.039 
 

 
   

 

60 P 
     

 
   

 

61 K 1 0.930 ± 0.037 
 

 
   

 

62 V 1 1.000 ± 0.012 
 

 
   

 

63 A 1 0.986 ± 0.044 
 

 
   

 

64 K 1 0.980 ± 0.036 
 

 
   

 

65 Y 1 0.959 ± 0.027 
 

 
   

 

66 A 1 0.992 ± 0.022 
 

 
   

 

67 G 1 0.892 ± 0.028 
 

 
   

 

68 G 1 0.947 ± 0.031 
 

 
   

 

69 T 1 0.900 ± 0.031 
 

 
   

 

70 N 2 0.965 ± 0.018 9.140E+02 ± 6.697E+02 
  

 

71 D 1 0.953 ± 0.020 
 

 
   

 

72 K 1 0.886 ± 0.025 
 

 
   

 

73 G 2 0.923 ± 0.018 1.350E+02 ± 6.236E+01 
  

 

74 I 1 0.978 ± 0.016 
 

 
   

 

75 G 1 0.904 ± 0.058 
 

 
   

 

76 M 1 0.912 ± 0.040 
 

 
   

 

77 G 2 0.887 ± 0.045 1.430E+03 ± 5.924E+02 
  

 

78 M 
     

 
   

 

79 T 1 1.000 ± 0.028 
 

 
   

 

80 V 1 1.000 ± 0.057 
 

 
   

 

81 P 
     

 
   

 

82 
     

     
  

 

83 
 

1 1.000 ± 0.140 
 

 
   

 

84 F 2 0.904 ± 0.019 5.380E+01 ± 1.337E+01 
  

 

85 A 1 0.969 ± 0.029 
 

 
   

 

86 V 1 0.932 ± 0.029 
 

 
   

 

87 F 1 0.918 ± 0.041 
 

 
   

 

88 P 
     

 
   

 

89 N 
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Residue Model S
2
 τe (ps) Rex 

90 E 
     

 
   

 

91 D 2 0.859 ± 0.046 5.960E+01 ± 2.908E+01 
  

 

92 G 2 0.849 ± 0.029 1.680E+03 ± 2.907E+02 
  

 

93 S 2 0.898 ± 0.021 6.440E+01 ± 1.805E+01 
  

 

94 L 1 0.933 ± 0.029 
 

 
   

 

95 Q 1 0.956 ± 0.039 
 

 
   

 

96 K         
     

 
   

 

97 K 2 0.917 ± 0.030 5.400E+01 ± 2.668E+01 
  

 

98 L 1 0.953 ± 0.021 
 

 
   

 

99 K 1 0.938 ± 0.046 
 

 
   

 

100 V 1 0.986 ± 0.038 
 

 
   

 

101 W 1 0.948 ± 0.046 
 

 
   

 

102 F 
     

 
   

 

103 R 
     

 
   

 

104 I 
     

 
   

 

105 P 
     

 
   

 

106 N      1 0.961 ± 0.050 
 

 
   

 

107 Q 1 1.000 ± 0.048 
 

 
   

 

108 F 1 0.922 ± 0.028 
 

 
   

 

109 Q 1 0.974 ± 0.025 
 

 
   

 

110 S 
     

 
   

 

111 D 
     

 
   

 

112 P 
     

 
   

 

113 P 
     

 
   

 

114 A 2 0.969 ± 0.021 8.680E+01 ± 1.131E+02 
  

 

115 P 
     

 
   

 

116 S 
     

 
   

 

117 D 2 0.786 ± 0.021 1.750E+01 ± 4.966E+00 
  

 

118 K 
     

 
   

 

119 S 1 0.999 ± 0.025 
 

 
   

 

120 V      1 0.889 ± 0.032 
 

 
   

 

121 K 1 0.933 ± 0.037 
 

 
   

 

122 I 2 0.868 ± 0.020 3.930E+01 ± 8.795E+00 
  

 

123 E 1 0.973 ± 0.026 
 

 
   

 

124 E 2 0.866 ± 0.022 2.300E+01 ± 6.668E+00 
  

 

125 R 1 0.925 ± 0.028      
  

 

126 E 
     

 
   

 

127 G 1 0.938 ± 0.020 
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Residue Model S
2
 τe (ps) Rex 

128 I     1 0.982 ± 0.037 
 

 
   

 

129 T 2 0.892 ± 0.029 3.700E+01 ± 1.331E+01 
  

 

130 V 1 0.942 ± 0.028 
 

 
   

 

131 Y 1 0.925 ± 0.040 
 

 
   

 

132 S 2 0.950 ± 0.019 9.160E+01 ± 5.849E+01 
  

 

133 M 1 0.980 ± 0.053 
 

 
   

 

134 Q 2 0.956 ± 0.044 1.350E+02 ± 2.438E+02 
  

 

135 F 1 1.000 ± 0.034 
 

 
   

 

136 G 
     

 
   

 

137 G 1 0.858 ± 0.138 
 

 
   

 

138 Y 
     

 
   

 

139 A 2 0.921 ± 0.049 1.190E+02 ± 1.427E+02 
  

 

140 K 1 0.885 ± 0.052 
 

 
   

 

141 E      1 1.000 ± 0.065 
 

 
   

 

142 A 1 1.000 ± 0.014 
 

 
   

 

143 D 1 1.000 ± 0.016 
 

 
   

 

144 Y 1 0.995 ± 0.023 
 

 
   

 

145 V 1 1.000 ± 0.024 
 

 
   

 

146 A 1 0.955 ± 0.025 
 

 
   

 

147 Q 1 0.988 ± 0.032 
 

 
   

 

148 A 
     

 
   

 

149 T 1 0.993 ± 0.018 
 

 
   

 

150 R 1 0.980 ± 0.021 
 

 
   

 

151 L 1 0.976 ± 0.026 
 

 
   

 

152 R 
     

 
   

 

153 A 1 1.000 ± 0.014 
 

 
   

 

154 A 2 0.971 ± 0.010 1.420E+02 ± 1.291E+02 
  

 

155 L 1 0.907 ± 0.031 
 

 
   

 

156 E 2 0.894 ± 0.015 3.850E+01 ± 8.294E+00 
  

 

157 G 
     

 
   

 

158 T 1 0.817 ± 0.045 
 

 
   

 

159 A 2 0.773 ± 0.013 2.400E+01 ± 3.241E+00 
  

 

160 T 2 0.703 ± 0.026 2.000E+03 ± 2.274E+02 
  

 

161 Y 2 0.895 ± 0.024 1.340E+03 ± 2.528E+02 
  

 

162 R 
     

 
   

 

163 G 
     

 
   

 

164 D 1 0.983 ± 0.025 
 

 
   

 

165 I 1 1.000 ± 0.013 
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Residue Model S
2
 τe (ps) Rex 

166 Y       1 1.000 ± 0.021 
 

 
   

 

167 F 1 1.000 ± 0.036 
 

 
   

 

168 C 1 1.000 ± 0.021      
  

 

169 T 1 1.000 ± 0.037 
 

 
   

 

170 G 
     

 
   

 

171 Y 
     

 
   

 

172 D 
     

 
   

 

173 P 
     

 
   

 

174 P 
     

 
   

 

175 M 
     

 
   

 

176 K 
     

 
   

 

177 P 
     

 
   

 

178 Y 1 0.988 ± 0.094 
 

 
   

 

179 G 
     

 
   

 

180 R 
     

 
   

 

181 R 
     

 
   

 

182 N      2 0.858 ± 0.033 5.780E+01 ± 1.918E+01 
  

 

183 E 1 0.966 ± 0.057 
 

 
   

 

184 I 1 0.999 ± 0.022 
 

 
   

 

185 W 1 0.936 ± 0.034 
 

 
   

 

186 L 1 0.951 ± 0.043 
 

 
   

 

187 L 1 0.953 ± 0.044 
 

 
   

 

188 K 1 1.000 ± 0.032 
 

 
   

 

189 T 2 0.826 ± 0.025 2.880E+01 ± 7.139E+00 
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9.10 Relaxation parameters for PPIX-human p22HBP 

Residue Model S
2
 τe (ps) 

  
Rex 

16 W 1 0.897 ± 0.051 
      

17 P 
          

18 W 1 0.942 
 

0.027 
      

19 Q 1 0.903 ± 0.039 
      

20 V 1 0.841 ± 0.051 
      

21 L 1 0.887 ± 0.051 
      

22 S 1 0.810 ± 0.022 
      

23 K 1 0.909 ± 0.027 
      

24 G 1 0.834 ± 0.030 
      

25 D 2 0.751 ± 0.024 25.531 ± 6.176 
   

26 K 2 0.867 
 

0.028 794.085 ± 221.502 
   

27 E 2 0.934 ± 0.080 49.844 ± 72.001 
   

28 E 1 0.861 
 

0.013 
      

29 V 2 0.859 
 

0.027 54.996 ± 14.988 
   

30 A 1 0.895 ± 0.035 
      

31 Y          1 0.891 ± 0.048 
      

32 E 1 0.920 ± 0.032 
      

33 E 1 0.976 ± 0.029 
      

34 R 2 0.927 ± 0.037 49.895 ± 33.217 
   

35 A 1 0.974 ± 0.061 
      

36 C 1 0.936 ± 0.052 
      

37 E 1 0.925 ± 0.036 
      

38 G 1 0.879 ± 0.051 
      

39 G          1 0.892 
 

0.046 
      

40 K 1 0.873 ± 0.058 
      

41 F 1 0.945 ± 0.030 
      

42 A 1 0.841 ± 0.049 
      

43 T 1 1.000 ± 0.062 
      

44 V 1 0.883 ± 0.079 
      

45 E 1 0.907 ± 0.039 
      

46 V 2 0.858 ± 0.035 233.151 ± 938.772 
   

47 T 1 0.925 ± 0.027 
      

48 D 1 0.871 ± 0.036 
      

49 K 1 0.848 ± 0.030 
      

50 P 
          

51 V      1 0.868 ± 0.055 
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Residue Model S
2
 τe (ps) 

  
Rex 

52 D 1 0.992 ± 0.046 
      

53 E 1 0.935 ± 0.025 
      

54 A 1 0.877 ± 0.064 
      

55 L 1 0.930 
 

0.208 
      

56 R 1 0.987 ± 0.069 
      

57 E 1 0.975 ± 0.064 
      

58 A 1 0.862 ± 0.046 
      

59 M 
  

± 
       

60 P 
          

61 K 1 1.000 ± 0.155 
      

62 V 1 0.954 ± 0.075 
      

63 A 1 0.897 ± 0.048 
      

64 K 
  

± 
       

65 Y 
  

± 
       

66 A 1 0.897 ± 0.095 
      

67 G 1 0.823 ± 0.050 
      

68 G 1 0.959 ± 0.040 
      

69 T 1 0.921 ± 0.198 
      

70 N 1 0.890 ± 0.054 
      

71 D 2 0.931 ± 0.029 72.341 ± 48.317 
   

72 K 1 0.868 ± 0.029 
      

73 G 1 0.914 ± 0.027 
      

74 I 1 0.943 ± 0.028 
      

75 G 1 0.934 ± 0.105 
      

76 M 2 0.892 ± 0.041 55.244 ± 32.702 
   

77 G 1 0.941 ± 0.065 
      

78 M 1 0.768 
 

0.056 
      

79 T 1 0.890 ± 0.219 
      

80 V 1 0.886 
 

0.054 
      

81 P 
          

82   1 0.917 ± 0.043 
      

83   
  

± 
       

84 F 1 0.957 ± 0.041 
      

85 A 1 1.000 ± 0.154 
      

86 V 1 0.940 ± 0.035 
      

87 F 1 0.845 ± 0.045 
      

88 P 
          

89 N 
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Residue Model S
2
 τe (ps) 

  
Rex 

90 E 
          

91 D 1 0.812 ± 0.091 
      

92 G 2 0.870 ± 0.032 998.645 ± 258.747 
   

93 S 2 0.909 ± 0.027 883.211 ± 279.091 
   

94 L 1 0.896 ± 0.028 
      

95 Q 1 0.895 ± 0.207 
      

96 K         
          

97 K 1 0.855 ± 0.034 
      

98 L 1 0.878 ± 0.195 
      

99 K 1 0.776 ± 0.038 
      

100 V 1 0.957 ± 0.060 
      

101 W 2 0.902 ± 0.052 31.416 ± 21.210 
   

102 F 
          

103 R 1 0.953 
 

0.025 
      

104 I 2 0.895 ± 0.096 270.587 ± 2692.936 
   

105 P 
          

106 N      1 0.831 ± 0.043 
      

107 Q 1 0.984 ± 0.100 
      

108 F 1 0.887 ± 0.022 
      

109 Q 1 0.888 ± 0.036 
      

110 S 
          

111 D 1 0.864 
 

0.028 
      

112 P 
          

113 P 
          

114 A 1 0.949 ± 0.034 
      

115 P 
          

116 S 1 0.826 
 

0.047 
      

117 D 2 0.765 ± 0.039 37.145 ± 16.954 
   

118 K 1 0.884 ± 0.035 
      

119 S 1 0.946 ± 0.032 
      

120 V      2 
 

± 
       

121 K 2 0.807 ± 0.041 41.346 ± 15.948 
   

122 I 1 0.947 ± 0.127 
      

123 E 1 0.930 ± 0.032 
      

124 E 2 0.833 ± 0.023 64.396 ± 15.789 
   

125 R 2 0.907 ± 0.039 58.598 ± 37.546 
   

126 E 
          

127 G 1 1.000 ± 0.080 
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Residue Model S
2
 τe (ps) 

  
Rex 

128 I     1 1.000 ± 0.057 
      

129 T 1 0.757 ± 0.050 
      

130 V 1 0.950 ± 0.045 
      

131 Y 1 0.897 ± 0.032 
      

132 S 1 0.862 ± 0.034 
      

133 M 1 1.000 ± 0.057 
      

134 Q 2 0.952 ± 0.037 407.220 ± 719.917 
   

135 F 
  

± 
       

136 G 1 
         

137 G 1 0.734 ± 0.086 
      

138 Y 
          

139 A 2 0.791 ± 0.113 760.412 ± 387.456 
   

140 K 1 0.869 ± 0.075 
      

141 E      1 0.888 ± 0.130 
      

142 A 2 0.934 ± 0.037 412.880 ± 512.764 
   

143 D 1 0.980 ± 0.023 
      

144 Y 1 0.901 ± 0.048 
      

145 V 1 0.930 ± 0.044 
      

146 A 1 0.962 ± 0.044 
      

147 Q 2 0.859 ± 0.016 36.349 ± 7.589 
   

148 A 2 0.890 
 

0.019 226.337 ± 428.608 
   

149 T 1 0.935 ± 0.031 
      

150 R 1 0.932 ± 0.031 
      

151 L 1 0.941 ± 0.033 
      

152 R 1 0.927 
 

0.026 
      

153 A 2 0.913 ± 0.019 43.926 ± 18.530 
   

154 A 1 0.855 ± 0.030 
      

155 L 2 0.872 ± 0.015 27.107 ± 9.325 
   

156 E 
  

± 
       

157 G 1 0.827 
 

0.070 
      

158 T 2 0.730 ± 0.018 20.180 ± 4.268 
   

159 A 
  

± 
       

160 T 1 
 

± 
       

161 Y 2 0.833 ± 0.036 25.162 ± 9.157 
   

162 R 
          

163 G 1 
 

± 
       

164 D 1 0.900 ± 0.034 
      

165 I 2 0.958 ± 0.019 216.922 ± 634.736 
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Residue Model S
2
 τe (ps) 

  
Rex 

166 Y       1 0.941 ± 0.028 
      

167 F 3 0.884 ± 0.138 
   

6.629 ± 1.862 

168 C 2 0.943 ± 0.035 899.877 ± 619.926 
   

169 T 1 0.905 
 

0.036 
      

170 G 
          

171 Y 2 0.812 
 

0.029 29.272 ± 9.847 
   

172 D 
          

173 P 
          

174 P 
          

175 M 
          

176 K 
          

177 P 
          

178 Y 1 0.873 ± 0.043 
      

179 G 1 0.947 ± 0.220 
      

180 R 
          

181 R 1 0.913 
 

0.042 
      

182 N      1 0.904 ± 0.056 
      

183 E 1 0.919 ± 0.070 
      

184 I 2 0.872 ± 0.012 243.649 ± 578.343 
   

185 W 1 0.942 ± 0.037 
      

186 L 1 0.840 ± 0.036 
      

187 L 1 0.922 ± 0.049 
      

188 K 1 0.895 ± 0.059 
      

189 T 1 0.822 ± 0.025 
      

 

 


