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Palavras-chave Redes óticas de transporte, análise estatística, modelação es-

tatística, comprimentos das ligações, comprimentos das lig-

ações parâmetros relacionados, comprimentos dos caminhos

Resumo A análise estatística e modelação de redes é atualmente uma

parte integrante da ciência e engenharia de redes. No caso das

redes óticas de transporte (OTN), a modelação estatistica pode

ser usada para o planeamento e dimensionamento quando a

informação completa não está disponível ou o seu processa-

mento é muito demorado. As redes óticas constituem atual-

mente o núcleo central das redes que suportam a Internet. Por-

tanto, as características estatísticas dessas redes devem ser estu-

dadas por forma a compreender sua natureza e estimar os seus

parâmetros. Em ciência e tecnologia, a análise e modelação

de redes é usada para vários fins, tais como análise de estabil-

idade, fiabilidade e evolução a longo prazo. O conhecimento

dos modelos estatísticos ajuda na estimativa de vários parâmet-

ros críticos das redes.

O trabalho apresentado nesta tese está focado na análise e

modelação dos comprimentos das ligaçães e dos caminhos

mais curtos em OTN. Os parâmetros usados nos modelos apre-

sentados nesta tese podem ser estimados a partir de informação

muito simples das redes, tais como a sua área de cobertura e o

número de nós, sendo que ambas podem ser obtidas a partir da

localização dos nós. Estes modelos podem ser aplicados para

estimar parâmetros-chave das redes.

Nesta tese, demonstramos que o comprimento dos ligações em

OTN segue uma distribuição do tipo general extreme value. Os

parâmetros da distribuição podem ser estimados a partir do

comprimento médio das ligações. Por sua vez mostramos que

o comprimento médio das ligações pode ser estimado com um

erro médio de 11% sendo apenas conhecida a área de cober-

tura da rede. Mostramos como é possivel aplicar o modelo de-

senvolvido à estimação de parâmetros dependentes do com-

primento das ligações. Mostramos também que o comprimento

dos caminhos mais curtos segue uma distribuição do tipo John-

son SB. Os parâmetros usados neste modelo podem ser estima-

dos a partir da área convexa e do número de nós da rede. Apli-

camos ainda este modelo para estimar diversos parâmetros de-

pendentes do caminho mais curto.





Keywords Optical transport networks, statistical analysis, statistical model-

ing, link lengths, link length related parameters, shortest path

lengths

Abstract Statistical analysis and modeling of networks is now an integral

part of network science and engineering. In case of optical

transport networks (OTNs), it can be used for the planning and

dimensioning when the complete information is not available or

is difficult to process. The core networks around the world today

are almost optical and they form the backbone of the Internet.

Therefore, the statistical characteristics of these networks must be

studied to understand their nature and to estimate their parame-

ters. In science and technology, network analysis and modeling

are used for several purposes such as the analysis of their stability,

reliability and long term evolution. Knowledge of the statistical

models helps in the estimation of several critical parameters of

the networks.

The work presented in this thesis is focused on the analysis and

modeling of link lengths and shortest path lengths in OTNs. The

parameters used in the models presented in this thesis can be

estimated from the very basic information of the networks such

as the coverage area and the number of nodes, both of which

can be found from the node locations. These models can be

applied to estimate key parameters of the networks.

In this thesis, we have shown that the link lengths of the OTNs fol-

low general extreme value distribution. The parameters of the

proposed distribution can be estimated from the average link

lengths of the networks. We develop expressions for the average

link lengths of OTNs which can be estimated with an average er-

ror of just 11%. We apply the developed model to estimate link

length dependent parameters in OTNs. We show that the shortest

path lengths of the OTNs follow Johnson SB distribution. We esti-

mate the parameters of the developed model from the convex

area and the number of nodes of the network. We also apply this

model to estimate several shortest path-dependent parameters

in OTNs.





Contents

Contents i

List of Figures v

List of Tables vii

List of Acronyms ix

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Main Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5.1 Papers in Journals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5.2 Papers in Conferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Statistical Modeling in Optical Transport Networks 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.3 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Classification of OTNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Transparent OTNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1.1 Motivation for Transparent OTNs . . . . . . . . . . . . . . . 13

2.2.2 Opaque OTNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.3 Translucent OTNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Elements of OTNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Elements of Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

i



2.3.2 Elements of Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.3 Key Enabling Technologies for OTN Deployment . . . . . . . . . . . . 18

2.4 Statistical Analysis and Modeling in OTNs . . . . . . . . . . . . . . . . . . . . 18

2.4.1 Statistical Modeling of Node Related Parameters . . . . . . . . . . . . 19

2.4.2 Statistical Modeling of Links and its Related Parameters . . . . . . 20

2.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Statistical Modeling of Link Lengths 25
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.3 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Statistical Analysis of Links in Real OTNs . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Measurement of Exact Link Lengths . . . . . . . . . . . . . . . . . . . 27

3.2.2 Selection of Appropriate Distribution . . . . . . . . . . . . . . . . . . . 28

3.2.3 Basics of GEV Distribution of Link Lengths . . . . . . . . . . . . . . . 30

3.2.4 GEV Distribution Parameters and ⟨l⟩ . . . . . . . . . . . . . . . . . . . 31

3.2.5 Relationship Between σl and ⟨l⟩ . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Estimation of Average Link Length . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.1 Different Areas of OTNs . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1.1 Convex Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1.2 Exact Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1.3 Geographical Area . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1.4 Measurement of Different Areas . . . . . . . . . . . . . . . . 37

3.3.2 Results from Different Areas . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.3 Proposed Changes for Accuracy . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Development of the Model from ⟨l′c⟩ . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Estimation of Convex Area of Optical Transport Network 49
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1.3 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Concepts of CE of OTN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.1 Properties of CE of OTN . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.2 Estimation of CE of OTN . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

ii



4.3 Estimation of OTN Parameters from CE . . . . . . . . . . . . . . . . . . . . . 53

4.3.1 Estimation of Convex Area from CE . . . . . . . . . . . . . . . . . . . . 54

4.3.2 Estimating ⟨l⟩ from ACE . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.3 Evaluation of the Method Based on CE . . . . . . . . . . . . . . . . . . 57

4.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Estimation of Link Related Parameters 61
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1.3 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Link Lengths and Link-Dependent Parameters . . . . . . . . . . . . . . . . . 63

5.2.1 Properties of GEV Distribution for Link Lengths . . . . . . . . . . . . 63

5.2.2 Link-Dependent CAPEX Parameters . . . . . . . . . . . . . . . . . . . 64

5.2.3 Errors in CL Parameter Estimation . . . . . . . . . . . . . . . . . . . . 64

5.3 Estimations Using Link Statistical Model of OTNs . . . . . . . . . . . . . . . 65

5.3.1 Number of Links in Specific Ranges . . . . . . . . . . . . . . . . . . . . 65

5.3.2 Total Number of Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3.3 Types of Modulation Schemes . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3.4 Total Length of Fiber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.4 Evaluation of the Developed Methods . . . . . . . . . . . . . . . . . . . . . . . 70

5.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6 Statistical Modeling of Shortest Path Lengths 77
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.1.3 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2 Analysis of Shortest Path Lengths in OTNs . . . . . . . . . . . . . . . . . . . . 79

6.2.1 Measurement of Link Lengths, Shortest Path Lengths and Convex

Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2.2 Statistical Distributions of Shortest Path Lengths . . . . . . . . . . . 80

6.2.3 Selection of the Suitable Distribution . . . . . . . . . . . . . . . . . . . 81

6.2.4 Basics of Johnson SB Distribution . . . . . . . . . . . . . . . . . . . . . 82

6.3 Analysis of the Statistical Parameters of the Shortest Path Lengths . . . . 85

6.4 Estimation of the Johnson SB Distribution Model . . . . . . . . . . . . . . . . 88

6.4.1 Estimation of the Parameters of Johnson SB Distribution . . . . . . 88

iii



6.4.2 Estimation of the Proposed Model . . . . . . . . . . . . . . . . . . . . . 91

6.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7 Estimation of the Shortest Path Related Parameters 97
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.1.3 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.2 Utility of Shortest Path Length Models . . . . . . . . . . . . . . . . . . . . . . 98

7.2.1 Utilities in OTNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.3 Estimation of Path-dependent Parameters in OTNs . . . . . . . . . . . . . . 101

7.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8 Conclusions 109
8.1 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.2 Potential Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

A Kolmogorov-Smirnov Statistic 113

B Estimation of the Shape Factor (ξ) of GEV Distribution 114

C Moments of Johnson SB Distribution 116

D Median and Parameters of Johnson SB Distribution 118

iv



List of Figures

2.1 Opaque and transparent switchings in OTNs. In opaque OTNs O-E-O

conversion is needed; whereas, in case of transparent OTNs the fabric is

totally optical [37]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Comparison of the General Extreme Value distribution with the link length

histogram of USA100 [1] network (171 links) . . . . . . . . . . . . . . . . . . . 29

3.2 Plot of α of GEV vs. ⟨l⟩ of 40 real OTNs (R2 = 0.9676) . . . . . . . . . . . . . 32

3.3 Plot of β of GEV vs. ⟨l⟩ of 40 real networks (R2 = 0.9225) . . . . . . . . . . . 32

3.4 Optimized vs. approximate GEV distribution of link lengths of USA100[1] net-

work. This estimation uses exact average link length, ⟨l⟩. . . . . . . . . . . . . . . 33

3.5 Standard deviation vs. average link length of 40 real networks follows a linear

trend (R2 = 0.9011) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6 Depiction of convex and exact areas: ABCDA and ACEGA are convex areas of

ABCDEA and ABCDEFGHA respectively. . . . . . . . . . . . . . . . . . . . . . . . 36

3.7 Distribution of estimated errors with convex area (Ec(%)) for 40 OTNs

(fitted to normal distribution [µ=0.53, σ=14.15]) . . . . . . . . . . . . . . . . . 40

3.8 Distribution of estimated errors with exact area (Ee(%)) for 40 OTNs (fit-

ted to normal distribution [µ=18.99, σ=13.67]) . . . . . . . . . . . . . . . . . . 40

3.9 Effect of multiplying factors, ke when using the exact area (ke=1.22 gives

minimum error). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.10 Effect of multiplying factors, kc when using the convex area (kc = 0.97 gives

minimum error). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.11 Exact vs. estimated GEV distribution of link lengths of USA100 [1] network (171

links). This estimation uses estimated average link length, ⟨l′c⟩. . . . . . . . . . . 43

4.1 CE of BREN. In this case, the CE touches the topology only at 4 points. . . 52

4.2 Relationship between the area of the CE (ACE) and the convex area (AC)

of its OTN (R2 = 0.9870) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

v



4.3 Relationships between the exact average link length (⟨l⟩) of the OTNs and

⟨lCE⟩ parameter estimated using ACE (R2 = 0.9613) . . . . . . . . . . . . . . 56

4.4 Relationships between ⟨lCE⟩ parameter and ⟨lc⟩ of the OTNs (R2 = 0.9955) 56

5.1 Estimated link length distribution for the USA100 network [2]. Its aver-

age link length is 310 km, and GEV distribution parameters are: α=213

km, β=124 km and ξ = 0.167. (The vertical red arrow shows its average

link length.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 An OTN with average link length 310 km (so, LLL = 1550 km), and GEV

distribution parameters α=213, β=124, and ξ=0.167. The proportion of

links in each interval of 100 km is given by the area under its correspond-

ing interval (i.e., S0, S1, ..., S15). . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3 An OTN with average link length 930 km, and GEV distribution parame-

ters α=600, β=390, and ξ=0.167. It shows the link probabilities according

to the half distance law proposed in [12]. . . . . . . . . . . . . . . . . . . . . . 69

6.1 Johnson SB distribution fitted to the path length histograms of Pionier

network [13]. The KSS for this fitting is: 0.0255. . . . . . . . . . . . . . . . . 82

6.2 Linear regression between the mean, median, standard deviation and the

sum of the smallest and largest shortest path lengths with the square root

of the convex area of the OTNs shown in the clockwise order, starting from

the top left. The coefficients of determination (R2) for these regressions

are 0.9623, 0.9536, 0.9522 and, 0.9596, respectively. . . . . . . . . . . . . . . 86

6.3 Estimated Johnson SB distribution fitted with the path length histograms

of Pionier network. The KSS for this fitting is: 0.0332. . . . . . . . . . . . . . 91

7.1 An optical transport network with average link length 930 km, and John-

son SB distribution parameters γ=0.7010, δ=1.1030, λ = 3200, and ζ = 2.67.

It shows the shortest path probabilities in different intervals of shortest

path lengths according to the half distance law proposed in [27]. . . . . . . 103

A.1 KSS is the maximum value of D (=∣F̂ (x) −G(x)∣). . . . . . . . . . . . . . . . . 113

B.1 Plot of Γ(1−ξ)−1
ξ , (blue, solid curve) and its approximation 1

1−ξ − 0.425, (red,

dotted curve) with respect to ξ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

vi



List of Tables

3.1 Best Fitting Distributions and Their Average (Avg. KSS), Lowest (L. KSS) and

Highest (H. KSS) KSS Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Real OTN Topologies and Their Attributes (⟨l⟩ and σl are in km). . . . . . . . . . 30

3.3 Different Areas of the 40 Real OTNs (all areas are in square km) . . . . . . . . . 38

3.4 Estimation of Average Link Lengths from Different Areas and Their Comparisons

(⟨lc⟩, ⟨le⟩, ⟨lg⟩ and ⟨l⟩ are in km) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Comparison of Errors with Optimized Multiplying Factors in Expressions (3.15)

and (3.16) (columns ‘E
′

c(%)’, ‘E
′

e(%)’, ‘Diff.’ and ‘Best Area’). Estimation of the

Parameters of the Proposed Model from the Average Link Length, (columns ‘⟨l′c⟩’,
‘α
′

c’, ‘β
′

c’, ‘ξ
′

c’), the KSS Values of the networks, (column ‘KSSGE ’), and Their Eval-

uation (column ‘Acceptable?’) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 Comparison between the parameters of the 40 real OTNs and their CEs. Param-

eters of the 40 real OTNs used in this study and their CEs are provided in the

first 8 columns (column ‘T’ – column ‘ACE ’). In the rest 5 columns (column ‘⟨lc⟩’ –

column ‘e’) we present the evaluated parameters. (⟨l⟩, a, b, ⟨lc⟩, ⟨lCE⟩, ⟨lce⟩ are in

km; AC and ACE are in sq. km). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1 Comparison between different methods for 40 real OTNs. The first five columns

represent the basic network information, the next five (ATE
, A

′

TE
, AT , ETE

(%)
and E

′

TE
(%)) are the estimations related to the optical amplifiers, and the last

five columns (FTE
, F

′

TE
, FT , EFE

(%), and E
′

FE
(%)) are the estimations related to

the total fiber length. (⟨lc⟩, FTE
, F

′

TE
and FT are in km). . . . . . . . . . . . . . . . 72

5.2 Choosing modulation formats for 40 real OTNs using the average link length ⟨lc⟩
(column UALL), link length distribution (column ULLD) and exact link lengths

(column UELL). S, E, Q and B stand for 16QAM, 8QAM, QPSK and BPSK respec-

tively (⟨lc⟩ is in km). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

vii



6.1 Best Fitting Distributions and Their Number of Input Parameters (No. I/P), Av-

erage (Avg. KSS), Lowest (L. KSS) and Highest (H. KSS) KSS Values for the

Shortest Path Lengths of the OTNs . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2 Parameters of shortest path lengths of 40 real OTNs. The first 10 columns show

the network attributes, obtained from measurement. The last 5 columns (γ, δ, λ,

ζ, and KSSJSB
) are obtained from their distribution fitting (⟨Ac⟩ is in Sq. km; ⟨p⟩,

m, σp, pM + pm, λ and ζ are in km). . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.3 Accuracy of the estimated parameters of shortest path lengths of forty real optical

transport networks. The last 4 columns (Epc , Emc , Eσpc , and EpM+pm ) are the

errors in the estimation of ⟨pc⟩, mc, σpc, and pM + pm respectively (⟨pc⟩, mc, σpc,

and pM + pm are in km). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.4 Performance evaluation of the estimated parameters for forty real optical trans-

port networks. KSSJSB
is the KSS obtained from optimized distribution parame-

ters, and KSS
′

JSB
is obtained from the estimated parameters. The CI for the KSS

values and the acceptability is set at 0.95 (λc and ζc are in km, and Ac is in sq. km). 90

7.1 Basic attributes, exact (N , L, P and ⟨p⟩) and estimated (⟨pc⟩, δc, γc, λc and ζc)

parameters of 40 real OTNs (⟨p⟩, ⟨pc⟩, λc and ζc are in km). . . . . . . . . . . . . . 100

7.2 Selection of modulation formats for 40 real OTNs using the exact information

(column ‘UESPL’), the statistical model for the shortest path lengths (column ‘US-

PLD’), and the average shortest path lengths (column ‘UASPL’). S, E, Q, and B

stand for 16QAM, 8QAM, QPSK, and BPSK, respectively. . . . . . . . . . . . . . . 102

viii



List of Acronyms

1R Reamplification

2R Reamplification and Reshaping

3R Reamplification, Reshaping and Re-timing

8QAM 8 Quadrature Amplitude Modulation

16QAM 16 Quadrature Amplitude Modulation

AD Anderson-Darling

Avg. KSS Average Kolmogorov Smirnov Statistic

BPSK Binary Phase Shift Keying

CAPEX Capital Expenditure

CDF Cumulative Distribution Function

CE Circumferential Ellipse

CI Confidence Interval

EDFA Erbium Doped Fiber Amplifier

EO Electrical to Optical

EON Elastic Optical Networking

EXC Electrical Cross Connect

GEV General Extreme Value

H. KSS Highest Kolmogorov Smirnov Statistic

ITU International Telecommunication Union

IP Internet Protocol

ix



KS Kolmogorov Smirnov

KSS Kolmogorov Smirnov Statistic

L. KSS Lowest Kolmogorov Smirnov Statistic

MANEX Management Expenditure

NB N (number of) Links (or Paths) with BPSK Modulation

NE N (number of) Links (or Paths) with 8QAM Modulation

No. I/P Number of Input Parameters

NQ N (number of) Links (or Paths) with QPSK Modulation

NS N (number of) Links (or Paths) with 16QAM Modulation

OADM Optical Add Drop Multiplexer

OE Optical to Electrical

OEO Optical Electrical Optical

OFDM Orthogonal Frequency Division Multiplexing

OLT Optical Line Terminal

OM Other Method

OPEX Operational Expenditure

OPNET Optimized Network Engineering Tool (A Software)

OSC Optical Supervisory Channel

OTN Optical Transport Network

OXC Optical Cross Connect

PDF Probability Distribution Function

QPSK Quadrature Phase Shift Keying

ROADM Reconfigurable Optical Add Drop Multiplexer

SDH Synchronous Digital Hierarchy

SDN Software Defined Networking

SOA Semiconductor Optical Amplifier

SONET Synchronous Optical Network

x



UALL Using Average Link Length

UASPL Using Average Shortest Path Length

UELL Using Exact Link Length

UESPL Using Exact Shortest Path Length

ULLD Using Link Length Distribution

USPLD Using Shortest Path Length Distribution

WDM Wavelength Division Multiplexing

N. B.: Please note that in the majority of the cases, the acronyms are defined at the first

instance they appear in a chapter. The short names of the optical transport networks

(OTNs) used for this thesis work are not listed in this section. For more information

about these OTNs, please follow the references provided in the respective chapters.

xi





CHAPTER 1

Introduction

THESE DAYS COMMUNICATION networks are found everywhere. Be it the wireless

network of mobile phones, or the landline connections, or the versatile Internet, or

the networks of several other broadcasting services such as the television and radio, the

communication networks are omnipresent. In addition to this, networks in general, are

also found in different scales: in the society, within human metabolism, in the brain of

animals, in the micro-world in the forms of bacteria and virus, and in many other forms

[1] – [15]. Due to their vital presence and importance in the world, networks are being

studied carefully to understand their nature and behavior in different contexts [4] – [18].

In the modern world, telecommunications networks have basic roles in the lives of the

human beings. With the proliferation of the Internet, telecommunications now furnish

several vital functions in the personal lives of people and business processes. The global

communication in such a fast changing world is possible due to the high speed core

networks. These days, the core networks are predominantly optical, as no other medium

can provide such high bandwidths, and handle such high traffic demands. The long

distance optical communication systems have been evolved in several forms of the optical

transport networks (OTNs). Overall, the core networks, high speed metro and access

networks, and inter-cloud networks are supported completely by optical infrastructure

[19]. In this scenario, the role of the optical networks becomes very important. Thus,

these networks must be studied systematically from their structure and behavior points

of views. Statistical analysis and modeling of the network parameters are integral parts

of these critical studies [20] – [23]. They provide several critical behavioral aspects of

the optical networks, and are quite helpful in the estimation of network parameters with

1



2 Chapter 1. Introduction

incomplete information [20],[21].

In this thesis, we study the statistical properties of the links and shortest paths of

the OTNs, analyze their statistics, and provide novel models for them which can be uti-

lized for practical purposes. OTN in the International Telecommunication Union (ITU)

standards nomenclature, includes several standards for the optical communication of

various types of data in the optical networks [24]. However, in this thesis, we use OTN

as the core optical transport network that facilitates end-to-end communications, unless

otherwise explained. In some cases, we also use ‘network’ and ‘optical network’ for these

core optical transport networks.

1.1 Motivation

Dimensioning and cost estimation of OTNs are required in several occasions for the

design and planning related operations [20], [21]. Mainly, in the early stage of planning,

network overhauling and optimization of the OTNs, there are needs of the estimation

of network parameters [20] – [23], [25] – [27]. These estimations have to be accurate

for the overall effectiveness. In most of these cases, complete information is not avail-

able or the detailed estimation is too complicated, or too much time consuming. The

parameters available at the early stage are the basic information of the OTNs, such as

the coverage area and the number of nodes [25]. Some extra knowledge of the OTN,

such as the statistical distribution, and the first and second moments of the network

parameters can be essential in network planning and design [25]. They are useful for

the determination of several network parameters such as the modulation and demodula-

tion schemes needed, compensation techniques at the transmitting and receiving ends,

number of repeaters and amplifiers along the optical links and paths, and total length

of fiber needed [28]. Thus statistical models with appropriate accuracy are needed to be

found for the statistical distribution of link lengths and the shortest path lengths. In

many cases of OTNs, fast and reliable estimations using statistical modeling are quite

effective and popular. These estimations play critical roles in situations where, getting

extra information becomes too complicated [20], [25].

1.2 Objectives

The main motivation for the subject areas of this thesis have been addressed in the

previous paragraph, which emphasizes the role of statistical analysis and modeling of

OTN parameters. There are several fundamental research problems associated with
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them. In order to solve those problems, a set of well-defined objectives are framed for

this work. The main objectives of this work are listed below.

1. To develop a statistical model for link lengths in OTNs which can be applied for

the cases of estimations with incomplete information.

2. Application of the developed link statistical model for the estimation of link length

dependent parameters of OTNs.

3. Development of a statistical model for the shortest path lengths in OTNs.

4. Application of the developed shortest path statistical model for the estimation of

shortest path dependent parameters of OTNs such as the number and types of

modulation formats needed in transparent optical networks.

1.3 Main Achievements

In this thesis work, statistical models for the measurement and estimation of net-

work parameters have been developed for the OTNs. These models have been used for

several real applications of the OTNs. The main contributions achieved in this thesis

are mentioned in the following list.

1. Development of a statistical model for link lengths in OTNs [25]. This model can

be estimated from the average link length of the OTNs. The estimation formula

for average link length of the OTNs used for dimensioning was also improved for

better accuracy [25].

2. Development of a novel method for the estimation of the convex area of OTNs,

which is used in the estimation of their parameters [29].

3. Development of new application methods for the estimation of link length depen-

dent parameters in the OTNs using the above statistical model, which improves

the estimation accuracy significantly [28].

4. Development of a statistical model for the shortest path lengths in OTNs [30]. Es-

timation of the above mentioned model without complete information of the OTNs

[30]. Application of this model for the estimation of the shortest path length de-

pendent parameters of the transparent OTNs [30].
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1.4 Thesis Outline

This thesis is organized as eight separate chapters and four appendices. In Chapter

2, we present the importance of statistical analysis and modeling of networks in different

disciplines. Then we present the main features of OTNs that are relevant for this work.

In this chapter, the fundamentals of OTNs and their components are described along

with their associated enabling technologies. The needs of statistical modeling in OTNs

are explained briefly.

In Chapter 3, we present the statistical model developed for the link lengths of OTNs.

This model can be estimated with incomplete information of the OTNs. Only the node

locations are needed for this estimation. In this chapter, we also present the improved

expressions for the average link lengths of OTNs based on different areas. We use the

expression based on the convex area to estimate the link statistical model.

In Chapter 4, we develop an estimation method for the convex area of the OTNs. Con-

vex area is a basic parameter in the estimation of average link length and several other

statistical parameters of the OTNs. We provide a novel method of estimation of convex

area using a simple planar map. In this chapter, we show the simplified expression for

the convex area obtained from the circumferential ellipse of the OTN.

In Chapter 5, we present several applications of the statistical models developed

for the link lengths for the OTNs. We developed the expressions for the estimation

of OTN parameters from the statistical model. We evaluate the effectiveness of the

developed expressions using the errors associated with these estimations with respect

to their exact values.

In Chapter 6, we present the statistical model developed for the shortest path lengths

between the node pairs of the real OTNs. This model can be estimated with incomplete

information of the OTNs. Only the node locations are needed for this estimation of

the statistical model for the shortest path lengths. In this chapter, we also present the

expressions developed for the average, standard deviation, median and an upper bound

of the shortest path lengths of OTNs.

In Chapter 7, we present the applications of the statistical model developed for the

shortest path lengths for the OTNs. In this chapter, we developed the expressions for

the parameters of the statistical model. These expressions depend on the basic informa-

tion of the OTNs. We evaluate the effectiveness of the developed expressions using the

statistical goodness to fit tests with respect to the optimized model.

In Chapter 8, we summarize the main points of the thesis with the achievements

and their applications in the OTNs. We provide the possible future directions, and the
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common outlook for the work done in this thesis framework.

In Appendix A, we show the significance and measurement of ‘Kolmogorov-Smirnov

Statistic,’ which has been used to show the statistical ‘goodness-of-fit’ for different sta-

tistical distributions. We illustrate it using appropriate graphical presentation. In Ap-

pendix B, we estimate the shape factor of General Extreme Value (GEV) distribution

which is used for the estimation of the link length distribution. In Appendix C, we show

the mathematical expressions for moments of Johnson SB distribution. In Appendix D,

we show the relationships between the median and parameters of Johnson SB distribu-

tion which can be used for the estimation of the shortest path length distribution.

1.5 List of Publications

The major findings of this work have been reported in relevant journals and confer-

ence. The main published works are listed below.

1.5.1 Papers in Journals

4. S. K. Routray, G. Sahin, J. R. F. da Rocha, and A. N. Pinto, “Statistical Analysis and

Modeling of Shortest Path Lengths in Optical Transport Networks,” IEEE/OSA
Journal of Lightwave Technology, accepted in Mar. 2015.

3. S. K. Routray, G. Sahin, J. R. F. da Rocha, and A. N. Pinto, “Estimation of Link-

Dependent Parameters of Optical Transport Networks from the Statistical Mod-

els,” IEEE/OSA Journal of Optical Communication and Networking, vol. 6, no. 7,

pp. 601 – 609, Jul. 2014.

2. S. K. Routray, “Changing Trends of Optical Communication,” IEEE Potentials Mag-
azine, vol. 33, no. 1, pp. 28 – 33, Feb. 2014.

1. S. K. Routray, R. Morais, J. R. F. da Rocha, and A. N. Pinto, “Statistical Model

for Link Lengths in Optical Transport Networks,” IEEE/OSA Journal of Optical
Communication and Networking, vol. 5, no. 7, pp. 762 – 773, Jul. 2013.

1.5.2 Papers in Conferences

1. S. K. Routray, J. R. F. da Rocha, and A. N. Pinto, “Estimating the Parameters of

Optical Transport Networks from Their Circumferential Ellipses,” in Proceedings

of IEEE International Conference on Telecommunications (ICT), pp. 119 – 123,

Lisbon, Portugal, 4 – 7 May 2014.
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CHAPTER 2

Statistical Modeling in Optical
Transport Networks

2.1 Introduction

IN THE MODERN connected world, the communication traffic is quite large. The ser-

vices over the Internet are growing every year, and they create very large demands

for bandwidth. It is not possible to provide that large bandwidth through the wired

metallic conductors in the long range. Right now, only the optical fibers can provide that

with an affordable budget. Today the main traffic around the world, whether data, video

or voice all are carried predominantly through the optical fiber core networks. Due to

the robust nature, and the ability to carry high data rates, optical transport networks

(OTNs) are the unrivaled choice for data communications. OTNs are quite versatile,

and they are meant to carry all types of traffic such as the packets from various dig-

ital devices, Internet Protocol (IP) traffic as well as the OTN, SONET/SDH traffic [1].

OTNs are upgraded regularly to cope with the high demands for increasing traffic. Over

time, their features have been changed, and now they have become quite flexible in both

the management and operation fronts. Throughout the world, OTNs serve the role of

core networks, including the intercontinental carriers. In this chapter, we provide the

main features of OTNs in the core networks, and emphasize the need for their statistical

modeling.

9
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2.1.1 Motivation

Statistics has vital roles in science and engineering. It is used in several studies,

measurements, characterization, analysis, modeling and applications in science and en-

gineering. With the growing complexities in the studies of networks and systems, statis-

tics provide new methods to unearth their mysteries. One of the prime motivations for

the statistical modeling of networks is their characterization, which is used in several

fields of science, engineering and social science. However, depending on the contexts

and areas of application, the motivations for the statistical analysis and modeling of

networks are different.

The mathematicians solve the problems related to graphs using the concepts of graph

theory which was started accidentally by Euler when he tried to solve the puzzle popu-

larly known as the ‘Seven Bridges of Königsberg’ [2]. In fact, a lot of network analysis is

done in graph theory. In some cases statistical modeling is also used to solve the prob-

lems of graphs. For physicists, issues like statistical mechanics (origin and growth) of

the networks are of great interest. Generally, a common network modeling aims to ex-

plain the time dependent degree distributions of networks and their structural changes

such as the percolations [3] which have extensive uses in physics, chemistry and ma-

terial science. In computational biology, there are numerous applications of statistical

network analysis and modeling such as the spread of epidemics, growth of bacteria,

rapid infections of viruses (like HIV and Ebola), protein-protein interactions in human

metabolism. Communication networks are one of the main users of network statistical

models. Since the early days of telegraph to the recent advances of the Internet, we

find a lot of applications of network statistics in communication engineering. It helped

understanding several complexities of the networks and their properties.

Sociology and Psychology are among the oldest disciplines in which the network

concepts were applied [4]. The researches on the ‘small-world’ behavior (in a small-

world network most of the nodes are not neighbors of one another; however, they can be

reached from every other node by a small number of hops or links) were being done in

Sociology much before the arrival of the modern social networking sites like LinkedIn,

Facebook, MySpace and Google+ [4],[5]. The idea of ‘six degrees of separation’ was bor-

rowed from the ‘small-world’ concept which was very popular in 1990 [6]. The brain cells

are also found to be linked in a ‘small-world’ pattern [3]. In business and international

trade, researchers use the ‘small-world’ models to increase the efficiency of trade and

logistics [8].

The task of finding hidden states and groups are popular in communication networks,
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and the sleeper cells of terrorists which are analyzed using the statistical and stochastic

methods [3]. Computer networks use the network models and their properties to study

the propagation of viruses. In management and businesses, several functions such as

marketing and strategy use the concepts of network statistics and also use the model-

ing aspects. In machine learning, network models are used to predict the missing links.

These methods are also applicable to business models to predict the risks and opportu-

nities, and to terrorist networks to find out their missing links [3]. Besides these issues,

the uses and applications of network parameters also motivates the use of statistical

analysis and modeling. For instance, optimal routing and backup paths need the struc-

tural information of the networks and their paths.

For OTNs, the main motivation comes from the utilities of the statistical models

in network measurement, planning, design and management. Furthermore, the issues

like visualization, security and survivability analysis also rely on the statistical mod-

els. There are several statistical models of networks which are applied to the Internet,

and other complex networks. The popular statistical models such as the ‘small-world’,

‘scale-free’, ‘random’ and ‘complex’ have some characteristics common with the OTNs.

However, there is no specific model available for the OTNs. Mainly for the early stage

planning there are needs for these models.

2.1.2 Related Work

Study of networks in mathematics has its roots in graph theory which was started

during the times of Euler [2] in the 18th century. Systematic analysis and character-

ization of networks in different forms started around 1930s in a few areas of science

[4]. Early statistical analysis of the networks are found mainly in the literature of so-

cial sciences [7]. The social scientists look for the nexus between different groups of

different entities and find out the reason behind their relationships using the networks

[3]. These relationships are analyzed in many different aspects such as the strategic

alliances, partnerships, and also for rivalries [3]. Problems related to the networks such

as the estimation of the shortest paths, diameter and clustering became prominent with

the communication networks and their applications [3]. An extensive review of popular

statistical models of networks is presented in [3] which includes both static and dynamic

types. Network models and their statistical properties were being used in mathematics,

social science and business theories before the other branches of science [2] – [8]. In

the 1990s, Internet was studied extensively and statistical network models found their

ways into communication and computer engineering [4]. Since then, it has been used in

several new areas of science, arts and social science in various forms for many different
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purposes [1] – [36].

2.1.3 Chapter Outline

The rest part of this chapter is organized in four different sections. In section 2.2, we

classify the OTNs on the basis of transparency and present the features of each class.

In section 2.3, we separate the elements of the OTNs on the basis of their presence in

nodes and links, and then present the functions of the main elements. In section 2.4, we

present the needs and uses of statistical analysis and modeling in OTNs using relevant

literature. In section 2.5, we conclude the chapter with a few points on the utilities of

the work done in this thesis.

2.2 Classification of OTNs

OTNs can be classified in to several categories on different bases. With respect to

the work presented in this thesis, we classify them on the basis of transparency. In

communication engineering, transparency can be explained as the physical medium (it

is optical fiber in case of the OTNs) that can support end-to-end communication of data

independent of the bit rates and the signal formats [9]. On the basis of transparency,

OTNs can be either fully transparent, or partially transparent (i.e., translucent), or not

at all transparent (i.e., opaque). Broadly, OTNs are now divided in to three categories,

depending on their ability to handle the changes in the network data rates and types of

regenerations along the channel: transparent, translucent and opaque.

This classification can also be explained on the basis of the types of repeaters used

along the links. There are three types of repeaters used in optical networks: 1R, 2R

and 3R [10]. In 1R repeaters, only optical amplifiers or 1R regenerators are used. In

2R repeaters, both regeneration and reshaping is done, and thus O-E, O-E-O and E-O

conversions are required. Similarly in the 3R repeaters, regeneration, reshaping and

re-timing is done which also needs O-E, E-O and O-E-O conversions. Depending on the

types of the repeaters used, the data rates in the links of the OTNs have different limits.

Despite all these diversities in the links of the OTNs, new techniques are available to

groom the traffic to optimum data rates, and the overall performance is maintained at

the optimum level [1],[10].

2.2.1 Transparent OTNs

In case of the transparent OTNs, the processing along the channel is all-optical.

There is no conversion of the optical signal to the electrical domain in the channel be-
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tween the source and the destination. The repeaters used along the channel for the

transparent OTNs are all-optical. In fact, for the transparent OTNs, only optical am-

plifiers (1R regenerators) are used along the channel. It has the ability to handle the

changes in data rates, protocols, and they can adapt with the changing modulation for-

mats as well. In terms of their adaptability to changes, transparent OTNs are the most

flexible. To a large extent, they are future proof as they can handle the increasing de-

mand of the data rates, the changes in the protocols and other basic changes. That is

why they are more popular for the long term planning and deployment of long range

communications. Erbium doped fiber amplifiers (EDFAs), and other modern optical am-

plifiers such as the Raman are the main components that enabled the all-optical trans-

parency in the core networks. More and more core optical networks are heading towards

transparency.

2.2.1.1 Motivation for Transparent OTNs

These OTNs use only the optical amplifiers (1R repeaters) to strengthen the signal

in the fiber when it is weakened over some distance. 1R repeaters do not limit the

data rates and the protocols. Thus the limits of the transparent OTNs are determined

by signal degradations (nonlinearities of the fiber in most of the cases). Due to these

flexibilities, these OTNs are popular for the large and long term operation of networks.

There are enough motivation and rationale behind the deployment of transparent op-

tical networks. Presently, the data rate demand is increasing very fast. This leads to the

need of higher network capacity, which in return implies an increase in the bandwidth.

But it is not possible to put new fiber in the core network every now and then. The

alternative is to have the main trunks, which are able to adapt with the changing traffic

and very much durable as far as the changes in the data rates are concerned. The solu-

tions based on this front very much indicate towards the transparent optical networks

[1]. These networks gain popularity in the core and other other durable networks. In

addition to the data rates, in several other fronts elasticity is required in the modern

core optical networks. Only the transparent optical networks can fit into those require-

ments. Software defined networking (SDN) is a necessity in the modern core networks

to optimize the resource allocation and spending. Implementation of SDN is the best

over the transparent optical networks. It gives the flexibility needed for the optimiza-

tion. Furthermore, the latency and delay can be reduced significantly in the transparent

optical networks, which are important requirements for the real-time applications and

businesses. The extra cost factor that comes into picture for the signal processing in

the transparent optical networks over the opaque can frequently be surpassed by the
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benefits, because in the core networks the demand for adaptability, and the future proof

abilities are very important [1]. Overall, the cost of data transmission tends to be much

cheaper in transparent optical networks, when all the factors like adaptability, reconfig-

urability and longevity are taken into account [1], [9].

2.2.2 Opaque OTNs

In case of the opaque OTNs the ability to adapt to the changes are very limited and

they cannot adapt to changes in the data rates as O-E-O conversions (3R regeneration)

are used along the channel. 3R regenerations have re-timing and reshaping devices,

and these devices are not able to handle the changes in the signal formats and data

rates. So, opaque networks have fixed limits for these changes. As the major changes in

the adaptable networking technologies emerge, opaque networks are getting out-of-date

with every passing year. In Figure 2.1, we show the differences between the opaque and

transparent switchings in OTNs. In case of opaque switching, the incoming and outgo-

ing signal are processed in the electrical domain in the switching devices (such as the

2R/3R regenerators and the cross-connects) of the OTNs; whereas in case of transparent

switching, the signal remains in the optical domain throughout.

Figure 2.1: Opaque and transparent switchings in OTNs. In opaque OTNs O-E-O con-

version is needed; whereas, in case of transparent OTNs the fabric is totally optical [37].

2.2.3 Translucent OTNs

Translucent OTNs are mixed hybrid of the transparent and opaque OTNs. In these

OTNs, some of the links have 1R, some have 2R, and some may also have 3R repeaters.

Thus translucent networks are not entirely transparent, but they are able to handle

the changes in data rates and protocols to some extent (in the links having only 1R re-

peaters). Translucent networks can play a compromising role in an OTN with respect

to the data rates. In the small and highly demanded links they normally provide trans-
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parency, and the long and lowly demanded links may be left as opaque channels. As it is

very difficult and expensive to convert the whole opaque networks into transparent, most

of the old networks are now translucent and their degree of transparency increases over

time [11]. As an intermediate choice better than the fully opaque networks, translucent

networks used to be very popular in the core OTNs [12] in the last decade.

2.3 Elements of OTNs

OTNs are consist of several network elements. In a typical wavelength routed OTN,

several multi-wavelength cross-connect switches are interconnected by the optical fibers

with several regeneration facilities along the channel. However, here, we present the

network elements and their features, which are relevant to this thesis work. In this

work, we broadly separate the elements as: elements of nodes, and elements of links.

Nodes are the points where the information is either originated or terminated. Nodes

are also the places, where the links are connected with each other. In the nodes, several

cross-connects are placed, which work as switches. Both optical and electrical cross-

connects are normally found in the nodes. In addition to these switching elements, sev-

eral signal processing related components are also placed in the nodes according to the

requirements of the OTNs. Links are physical connections through which the communi-

cation traffic moves directly from one node to the other. Along the links, several network

elements such as the optical amplifiers, re-timing devices, add-drop multiplexers, and

optical filters are placed according to the requirements.

2.3.1 Elements of Nodes

Nodes are responsible for several important functions of the OTNs such as reception,

transmission, internal nodal signal processing, and routing. The nodes in the OTNs

have several electronic and optical components to furnish these functions. The main

components of a typical node of OTNs are briefly described below.

1. OXCs: Optical Cross-Connects are the high speed optical switches used in the

OTNs at the nodes. The cross-connects provide the interconnections between the

links, routing, forwarding, regeneration and conversion of wavelengths if required,

and other signal switching related functions at the node. In addition to these func-

tions, OXCs also provide traffic provisioning, grooming and restoration facilities

[13]. Depending on the networks and nodal arrangements, they can be either

transparent or translucent or opaque. Depending on their transparency, the in-
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ternal switching fabric of the OXCs can be either completely optical, or partially

optical.

2. EXCs: Electrical Cross-Connects are the digital switching devices that provide

switching facilities at the nodes in the electrical domain. Normally, the light paths

which are not to be processed optically, are bypassed to the EXCs. In majority of

the cases, EXCs are used for the traffic that is either dropped or added to a core

network at a node. The traffic dropped by the EXC, is usually meant for the local

destination, and the ones either bypassed or added is usually meant for the re-

mote destination. EXCs used to perform all the switchings at the nodes before the

invention of the OXCs [13].

3. Transponders: Transponders or optical transponders are the devices that receive

the light signal, processes it, and then transmit it to the channel. A typical optical

transponder adapts the signal coming in from a client of the OTN into a signal suit-

able for use within the OTN. Similarly, in the reverse direction, it adapts the signal

from the OTN into a signal format that is suitable for the client [1]. The interface

between the client and the transponder depends on the client specifications such as

the bit rate, and distance and/or loss between the client and the transponder [1]. In

several cases, the transponders are found inside the optical line terminals (OLTs).

However, they can also exist outside the OLTs. Depending on the link lengths, the

transponders can be short reach, medium reach or long reach.

4. OLTs: OLTs are the devices used at the ends of a WDM link, typically before and

after the OXCs. They are used at either end of a point-to-point link to multiplex,

and demultiplex wavelengths using the three functional elements (within an OLT):

transponders, wavelength multiplexers, and optionally, optical amplifiers [1]. The

OLTs may also terminate the optical supervisory channels (OSCs), which are car-

ried on a separate wavelength, different from the wavelengths carrying the actual

traffic, and used for monitoring the performances of the optical amplifiers and other

management related functions [1].

2.3.2 Elements of Links

A typical optical link consists of optical fiber and its associated components that help

in the communication of the light signal. In case of short links, in which the nodes are

not too far apart, the signal processing components are placed in the nodes. However,

in case of long and extra-long links, the fibers are provided with several signal regener-
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ators or repeaters. The common link related elements are the regenerators of different

types. These regenerators include the optical amplifiers, reshaping devices, and the re-

timing devices. Along the channel, sometimes wavelength changing is required. For that

purpose, optical add / drop multiplexers (OADMs) and reconfigurable optical add / drop

multiplexers (ROADMs) are used. The commonly used optical components of a typical

OTN are presented below.

1. Optical Amplifiers: These amplifiers (also known as 1R regenerators) work in the

optical domain, and strengthen the incoming weak light signal to a stronger one.

These amplifiers are deployed in periodic intervals along the optical fiber links.

The power needed for this amplification is provided by the pumps that allow the

incoming photons to be multiplied by several times as they pass through the gain

block of the optical amplifiers [1]. Multiple gain blocks and automatic gain control

blocks are provided, where more gain is required [1]. The EDFA, Raman and the

semiconductor optical amplifier (SOA) are the popular ones used in the OTNs.

2. 2R Regenerators: These regenerators use optical amplifiers, and reshaping devices

for strengthening and repairing the signal. In addition to the strength, these de-

vices also rectify the shape of the signal that usually get distorted after traveling

some distance in the fiber. The reshaping is done in the electrical domain using

wave shaping circuits. So, O-E-O conversion is mandatory for these regenerators.

3. 3R Regenerators: These regenerators use optical amplifiers, reshaping devices, and

re-timing devices for the strengthening and conditioning of the signal. In addition

to the strength, these devices rectify the shape and timing of the signal that usu-

ally get distorted, and time-shifted after traveling some distance in the fiber. The

reshaping and re-timing are done in the electrical domain using wave shaping and

re-timing circuits. O-E-O conversion is also mandatory for these regenerators.

4. OADMs: Optical Add / Drop Multiplexers are the devices used in the WDM systems

for adding, dropping, forwarding and routing of different light paths into or out of

optical channels. These devices are similar to the OXCs to some extent. However,

OADMs are smaller switching elements having limited scopes, and used in the

links; whereas OXCs are placed in the nodes, and provide large scale switching

functions.

5. ROADMs: These are Reconfigurable Optical Add / Drop Multiplexers. In terms

of the function, ROADMs are the OADMs which can be reconfigured. Here, re-

configurability means the ability to select the desired wavelengths to be dropped
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and added to the optical channel, without having prior plan during the deployment

phase as it is done in case of the OADMs [1]. This reconfigurability, provides a lot

of advantages in the network operations such as the flexibility of adding and drop-

ping the light paths without the change of wavelengths, remote configuration, and

remote power balancing. Overall, it increases the flexibility in the OTNs, and thus

very much important.

2.3.3 Key Enabling Technologies for OTN Deployment

In typical OTNs, the above mentioned components are required for the basic func-

tioning. In addition to the components, the enabling technologies too affect the cost and

function of the OTNs. The communication in the OTNs is enabled by some key technolo-

gies those make the system work continuously. In OTNs, the switching is provided by

selecting or rejecting the wavelengths. So, the frequency division multiplexing technique

used in the optical domain is commonly known as the wavelength division multiplexing

(WDM). The main enabling technologies in the optical domain are: WDM, optical ampli-

fiers, ROADM, coherent receivers, efficient modulation formats, and the low-cost access

area techniques. However, with the progress in research, now several new advanced

technologies such as the orthogonal frequency division multiplexing (OFDM), digital

signal processing, compensation techniques and SDN have also been used. Depending

on the enabling technologies used, the span and capacity of the OTNs, the capital, oper-

ational and other associated expenditures for the deployment are found to be different

in cost and performance.

2.4 Statistical Analysis and Modeling in OTNs

Statistical analysis is vital for the characterization of networks, and now it has

crossed beyond its traditional fields of graph theory and circuit theory. A new area of

study on networks, called ‘network science and engineering’ has emerged which is being

used in almost every field, where networks are used [14] – [25]. OTNs are large core

networks, and they carry huge traffic around the world. They are the backbone of the

modern communication systems, and thus the reliability and safety of these networks

are of immense importance. In order to study the characteristics of the OTNs system-

atically, their statistical analysis is necessary. In the last decade, statistical analysis,

modeling, formalism and estimation related issues of OTNs have become very popular

[26] – [30]. Statistical modeling of network parameters is helpful in the early stage of

planning and design when there is not enough data available.
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The knowledge of statistical distribution of OTN parameters provide clear idea about

its properties. In the novel paradigms, such as EON and SDN, there are always the need

of statistical data of the OTNs such as the average link length, shortest path lengths,

back up paths, and the express links [32] – [34]. For flexible operations and management

of the modern OTNs, statistical information is necessary [34]. Besides the above reasons,

the study of network statistics and stochastic natures have now spread in almost all the

associated fields of networks, and all types of contemporary networks such as the Inter-

net, metabolic networks, social networks, cellular networks, trade networks and several

other complex networks are being studied and modeled for their physical characteriza-

tion and application [14] – [31]. However, in optical communication engineering, there

are not too many statistical models for their characterization. Therefore, we aim to fill

this void, and apply the developed models for the related engineering estimations.

2.4.1 Statistical Modeling of Node Related Parameters

Nodes may serve as either the source or sink of information. In fact, in the modern

OTNs, the nodes are both source and sink of information, and they also serve as the

main signal processing hubs. Nodes also route the traffic from one link to the other. In

the large OTNs, very often their topologies are survivable (a topology is survivable, if

its each node is connected with two or more links [27]). OTN topology survivability can

be quantified in terms of nodal degree. Nodal degree of a node is the number of links

connected to that node. A survivable topology has nodal degree always larger than or

equal to 2 for each node.

A lot of work have been done on the nodal degrees of the networks of different types

[17] – [31]. Mainly, in the complex networks, such as the Internet, it is a popular topic

as it provides a lot of information about the structural mechanics of the networks and

their stability related issues [14] – [17]. In case of OTNs too, statistics of nodal degrees

provides several information about the network and its features. In addition to surviv-

ability, nodal degrees and the mean nodal degree provide other information about the

structure and function of the OTNs. When the mean nodal degree is exactly equal to

2, the survivable network becomes a simple ring. A central node (one node connected

with almost all other nodes) has high nodal degree, and typically OTNs having central

nodes exhibit high mean nodal degrees. In a similar fashion, the overall statistical dis-

tribution of the nodal degrees of an OTN provides the connection related characteristics

of the network. In the early days of optical communications, OTNs used to have a Pois-

son’s distribution for the nodal degrees [27], [31]. However, from the measurement, we

found that several networks in the recent times have shown a deviation from that, and
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they exhibit scale-free characteristics.

2.4.2 Statistical Modeling of Links and its Related Parameters

Links in OTNs play the important role of connecting the nodes through the fiber

channels. The lengths of the links are the lengths of the fibers that carry information

from one node to the other. Total sum of link lengths provides the length of the fiber

needed for a network. In addition to these directly related parameters, there are several

other link-dependent parameters such as the number of amplifiers needed in a network,

types of modulation and demodulation schemes required at the ends of the links (i.e.,

nodes), types of compensation schemes needed, and the number of preamplifiers needed.

However, there used to be no statistical model for link lengths of OTNs. In this thesis

work, we develop a statistical model for the link lengths in OTNs which is presented

in Chapter 3 (reported in [35]), and its applications for the real networks in Chapter 5

(reported in [36]).

In case of routing and forwarding of traffic in OTNs, shortest paths between the

nodes play key roles. In case of the transparent OTNs, shortest path lengths are needed

in determining the types of modulation-demodulation schemes, and compensation meth-

ods to be used at the nodes. In addition to that, there are several other cases in which

shortest path lengths play vital roles in the network related estimations. These informa-

tion can be used in both the data and control plane related operations [38]. For shortest

path lengths of OTNs, unfortunately, there used to be no statistical model. We develop

such a model for shortest path lengths in OTNs which is presented in Chapter 6 and its

applications in Chapter 7.

2.5 Chapter Summary

OTNs are the backbone of the modern communication networks. They carry almost

all the traffic in the core, which runs the whole Internet and several other networks.

Without the OTNs, there would not be the Internet as we see it today. Considering on

the essence of the OTNs in modern communication, their statistical modeling and char-

acterization become very important. Statistical modeling helps understanding the OTNs

better. In the planning and design stage, it provides very important information to the

network architects. Statistical modeling can be used for the estimation of the network

parameters from the basic information. The statistical models also explain a lot about

the structure and dynamics of the networks. In the present scenario, statistical analy-

sis and modeling of OTNs has a great role to play in both their study and engineering
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applications.

References

[1] R. Ramaswamy, K. N. Shivrajan, and G. H. Sasaki, Optical Networks: A Practi-
cal Perspective, San Francisco, CA: Morgan Kaufman, 2009.

[2] G. L. Alexanderson, “Euler and Königsberg’s Bridges: A historical view,” Bul-
letin of the American Mathematical Society, vol. 43, no. 4, pp. 567 – 573, Oct.

2006.

[3] A. Goldenberg, A. X. Zheng, S. E. Fienberg, E. M. Airoldi, “A survey of statistical

network models,” Foundations and Trends R© in Machine Learning, vol. 2, no. 2,

pp. 129 – 233, Jun. 2010.

[4] E. D. Kolaczyk, Statistical Analysis of Network Data, New York, NY: Springer,

2009.

[5] S. Milgram, “The small world problem,” Psychology today, vol. 2, no. 1, pp. 60 –

67, 1967.

[6] J. Guare, Six degrees of separation: A play, New York, NY: Random House LLC,

1990.

[7] S. E. Fienberg, “A brief history of statistical models for network analysis and

open challenges,” Journal of Computational and Graphical Statistics, vol. 21,

no. 4, pp. 825 – 839, Dec. 2012.

[8] A. Wilhite, “Bilateral trade and ‘small-world’ networks,” Computational Eco-
nomics, vol. 18, no. 1, pp. 49 – 64, 2001.

[9] B. Ramamurthy, H. Feng, D. Dutta, J. P. Heritage, B. Mukherjee, “Transpar-

ent vs. Opaque vs. Translucent Wavelength-Routed Optical Networks," in the

Proceedings of the OFC, pp. 59 – 61, Mar. 1999.

[10] B. Mukherjee, “WDM optical communication networks: progress and chal-

lenges,” IEEE Journal on Selected Areas in Communications, vol. 18, no. 10,

pp. 1810 – 1824, Oct. 2000.

[11] G. Shen, and R. Tucker, “Translucent optical networks: the way forward ,” IEEE
Communications Magazine, vol. 45, no. 2, pp. 48 – 54, Feb. 2007.



22 References

[12] X. Yang, and B. Ramamurthy, “Dynamic routing in translucent WDM optical

networks: the intradomain case,” IEEE/OSA Journal of Lightwave Technology,

vol. 23, no. 3, pp. 955 – 971, Mar. 2005.

[13] N. A. Jackman, S. H. Patel, B. P. Mikkelsen, and S. K.Korotky, “Optical cross

connects for optical networking,” Bell Labs Technical Journal, vol. 4, no. 1, pp.

262 – 281, Jan. 1999.

[14] A. L. Barabási, and R. Albert, “Emergence of scaling in random networks,” Sci-
ence, vol. 286, pp. 509 – 512, 1999.

[15] R. Albert, H. Jeong, and A. L. Barabási, “Internet: Diameter of the world-wide

web,” Nature, vol. 401, pp. 130 – 131, 1999.

[16] L. A. Adamic, and B. A. Huberman, “Power-law distribution of the world wide

web,” Science, vol. 287, pp. 2115 – 2115, 2000.

[17] R. Albert, and A. L. Barabási, “Statistical mechanics of complex networks,” Re-
views of modern physics, vol. 74, no. 1, pp. 47 – 97, Jan. 2002.

[18] Y. Y. Ahn, J. P. Bagrow, and S. Lehmann, “Link communities reveal multiscale

complexity in networks,” Nature, vol. 466, pp. 761 – 764. 2010.

[19] A. L. Barabási, N. Gulbahce, and J. Loscalzo, “Network medicine: a network-

based approach to human disease,” Nature Reviews Genetics, vol. 12, no. 1, pp.

56 – 68, 2011.

[20] M. Vidal, M. E. Cusick, and A. L. Barabási, “Interactome networks and human

disease,” Cell, vol. 144, no. 6, pp. 986 – 998, 2011.

[21] E. Bullmore, and O. Sporns, “The economy of brain network organization,” Na-
ture Reviews Neuroscience, vol. 13, no. 5, pp. 336 – 349, 2012.

[22] B. Barzel, and A. L. Barabási, “Universality in network dynamics,” Nature
physics, vol. 9, no. 10, pp. 673 – 681, 2013.

[23] M. Schich, C. Song, Y. Y. Ahn, A. Mirsky, M. Martino, A. L. Barabási, and D.

Helbing, “A network framework of cultural history,” Science, vol. 345, pp. 558 –

562, 2014.

[24] S. Suweis, F. Simini, J. R. Banavar, and A. Maritan, “Emergence of structural

and dynamical properties of ecological mutualistic networks,” Nature, vol. 500,

pp. 449 – 452, 2013.



References 23

[25] W. Van Heddeghem, F. Idzikowski, W. Vereecken, D. Colle, M. Pickavet, and

P. Demeester, “Power consumption modeling in optical multilayer networks,”

Photonic Network Communications, vol. 24, no. 2, pp. 86 – 102, 2012.

[26] S. K. Korotky, “Network global expectation model: A statistical formalism for

quickly quantifying network needs and costs,” IEEE/OSA Journal of Lightwave
Technology, vol. 22, no. 3, pp. 703 – 722, Mar. 2004.

[27] C. Pavan, R. M. Morais, J. R. F. da Rocha and A. N. Pinto, “Generating Realistic

Optical Transport Network Topologies,” IEEE/OSA Journal of Optical Commu-
nication and Networking, vol. 2, no. 1, pp. 80 – 90, Jan. 2010.

[28] E. Bouillet, Path routing in mesh optical networks, Chichester, England: John

Wiley & Sons, 2007.

[29] J. F. Labourdette, E. Bouillet, R. Ramamurthy, and A. A. Akyamaç, “Fast ap-

proximate dimensioning and performance analysis of mesh optical networks,”

IEEE/ACM Transactions in Networking, vol. 13, no. 4, pp. 906 – 917, Aug. 2005.

[30] K. M. Sivalingam, and S. Subramaniam,(Eds.) Emerging optical network tech-
nologies: architectures, protocols and performance,New York, NY: Springer,

2005.

[31] B. Waxman, “Routing of multipoint connections,” IEEE Journal of Selected Ar-
eas in Communications, vol. 6, no. 9, pp. 1617 – 1622, Dec. 1988.

[32] M. Channegowda, R. Nejabati, and D. Simeonidou, “Software defined optical

networks technology and infrastructure: Enabling software-defined optical net-

work operations,” IEEE/OSA Journal of Optical Communication and Network-
ing, vol. 5, no. 10, pp. A274-A282, Oct. 2013.

[33] R. Ramamurthy, J. F. Labourdette, S. Chaudhuri, R. Levy, “Routing light-paths

in optical mesh networks with express links,” in the Proceedings of OFC, pp. 503

– 504, 2002.

[34] L. Velasco, M. Klinkowski, M. Ruiz, J. Comellas, “Modeling the routing and

spectrum allocation problem for flexgrid optical networks,” Photonic Network
Communications, vol. 24, no. 3, pp. 177 – 186, 2012.

[35] S. K. Routray, R. M. Morais, J. R. F. da Rocha, and A. N. Pinto, “Statistical

Model for Link Lengths in Optical Transport Networks,” IEEE/OSA Journal of
Optical Communication and Networking, vol. 5, no. 7, pp. 762 – 773, Jul. 2013.



24 References

[36] S. K. Routray, G. Sahin, J. R. F. da Rocha, and A. N. Pinto, “Estimation of Link-

Dependent Parameters of Optical Transport Networks from the Statistical Mod-

els,” Journal of Optical Communication and Networking, vol. 6, no. 7, pp. 601 –

609, July 2014.

[37] S. K. Routray, “The Changing Trends of Optical Communication,” IEEE Poten-
tials Magazine, vol. 33, no. 1, pp. 27 – 33, Feb. 2014.

[38] R. Casellas, R. Muñoz, R. Martìnez, and R. Vilalta, “Applications and Status of

Path Computation Elements,” IEEE/OSA Journal of Optical Communication
and Networking, vol. 5, no. 10, pp. A192 – A203, Oct. 2013.



CHAPTER 3

Statistical Modeling of Link
Lengths

3.1 Introduction

IN THE FIRST two chapters, we have discussed the importance of statistical analysis

and modeling of network parameters in optical transport networks (OTNs). In this

chapter, we develop a statistical model based on probability density function (PDF) for

the link lengths in OTNs. In oder to make the distribution model useful in the early

stages of network planning, we develop expressions for the estimation of its parameters

with only the knowledge of the node locations. The parameters of the developed model

are found to depend on the average link length of the OTN. In this chapter, we also

improve the expressions for the average link length of the OTN for better accuracy.

The validity of this model for link lengths is tested by comparing it with the statistical

properties of link lengths in real OTNs.

3.1.1 Motivation

Very often, in the early stage planning and dimensioning, the network engineers do

not have complete information of the OTNs. These cases have to be dealt with partial

or incomplete information of the OTNs. In the majority of such cases, parameters avail-

able at the early stage are the coverage area, and the number of nodes of the network. In

these situations, some knowledge of the statistical distribution is required for network

25
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planing and design. Several fast estimations without complete information are also pos-

sible through these models. For instance, determination of compensation techniques at

the receiving end, number of repeaters and amplifiers along the optical links, and total

length of fiber needed can be estimated using a link statistical model. Thus, there is

need of a statistical model of link lengths, which can provide the estimations related to

the OTNs with partial information. In addition to that, the model needs to be as accu-

rate as possible so that the outcomes of the estimations are quite reliable for practical

applications. That is why, the developed model should be tested over the existing real

OTNs.

3.1.2 Related Work

Though there was no prior model available for the link lengths of the OTNs, some

statistical formalism for the parameters of OTNs were proposed in [1] – [4] . In [1], a

semi-empirical expression is proposed for the average link length of OTNs. This expres-

sion in [1], depends only on the coverage area and the number of network nodes. Topo-

logical analysis are helpful in the study of the structures of OTNs. In [3], SDH network

topologies of Telefónica in Spain (these networks are commercial OTNs) are analyzed

with respect to their pattern of randomness with some known parameters, and the roles

of their link lengths in it. The obtained empirical results show that the OTNs have char-

acteristic traits of complex systems at different scales, both at national and provincial

levels [3]. It is also found that the OTNs exhibit several scale-free and small-world net-

work properties [3]. In [4], artificial OTN topologies are generated through simulation

using the real characteristics of the OTNs. These topologies are survivable in nature

(i.e., every node is connected with 2 or more links). OTN parameters and statistics such

as the nodal degree and number of hops are estimated and compared with the real net-

works in [4]. In [5], artificial OTN topologies are generated and optimized for CAPEX

using genetic algorithms. Accuracy of average link length estimation provides a good

basis for dimensioning and calculation of other link and network related parameters,

such as the network traffic gain [6]. In [7] and [8], the role of links and link lengths are

analyzed in various network traffic modeling, and its related statistical distributions

and comparisons. In [1] – [7], several expressions are proposed for the quick estimation

of network attributes with incomplete information and their subsequent applications in

different cases. Majority of these cases just take the very basic parameters to estimate

the network requirements. In [10], network topologies and the role of link lengths in

their growth and expansion are addressed in general for different types of networks.
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3.1.3 Chapter Outline

We organize the rest of this chapter in 4 different sections. In section 3.2, we analyze

the real OTN topologies, and develop a new model to describe the statistical properties

of their link lengths. In this section, we present the expressions developed for the esti-

mation of the parameters of the proposed statistical model, which depend on the average

link length. In section 3.3, we present different approaches for the estimation of average

link length of OTNs. We propose three different areas for these estimations. In this

section, we evaluate the expressions for their accuracy. We found the estimation based

on the convex area of the OTNs provide the best estimate for average link length. In

section, 3.4, we estimate the developed model from the average link length. We show

that the resulting model for estimating the average link length depends only on the

node locations. In section 3.5, we present the main summary and a discussion of the

effectiveness of the proposed model. The work presented in this chapter is reported in

[11].

3.2 Statistical Analysis of Links in Real OTNs

For this study of the statistical behavior of the link lengths, we used the topologies

of the real OTNs. The topologies used for this study are widely known, and have been

used for the previous studies of related works on OTNs. In this study, we analyzed 40

real OTNs to develop a general statistical model for the link length distribution. Out of

these 40 OTNs, 29 are mentioned and used in [4], and the rest are listed in [12] – [23].

The graphics of these topologies, and other basic parameters of the OTNs can be found

in [12].

3.2.1 Measurement of Exact Link Lengths

Accurate measurement of the link lengths of the OTNs is essential for their statis-

tical analysis. In this work, we used two software tools for the measurement of link

lengths. We used OPNET Transport Planner 15 (a commercial software tool for network

dimensioning and optimization) to find out the exact great circle (the shortest distance

along the surface of earth) link lengths of the real OTNs. The measurement accuracy of

the link lengths were cross-checked using Google Earth Professional (version 6.2). The

measurements using OPNET Transport Planner 15 have very small errors (the maxi-

mum error is less than 1%) with respect to the measurements of Google Earth Profes-

sional.
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Table 3.1: Best Fitting Distributions and Their Average (Avg. KSS), Lowest (L. KSS) and
Highest (H. KSS) KSS Values

# Distribution Avg. KSS L. KSS H. KSS
1 General Extreme Value 0.1061 0.0360 0.1785
2 Log-Logistic (3P) 0.1096 0.0476 0.2154
3 Pearson 5 (3P) 0.1098 0.0411 0.1877
4 Log-Normal (3P) 0.1123 0.0411 0.1997
5 Log Pearson 3 0.1133 0.0469 0.2101
6 Frechet (3P) 0.1145 0.0413 0.2034
7 Inverse Gaussian (3P) 0.1159 0.0403 0.2276
8 General Pareto 0.1164 0.0610 0.2107
9 Burr 0.1181 0.0337 0.3539
10 Pearson 6 0.1226 0.0419 0.2246
11 WeiBull (3P) 0.1251 0.0531 0.2581
12 Weibull 0.1318 0.0429 0.2567
13 Gamma 0.1324 0.0389 0.4169
14 Log-Gamma 0.1359 0.0731 0.2461
15 Log-Logistic 0.1392 0.0709 0.2815
(3P) indicates the 3-parameter version of the distribution

3.2.2 Selection of Appropriate Distribution

In order to get an appropriate distribution, we analyzed all the exact link lengths

obtained from the above measurements, and studied their statistical properties for 40

real OTNs. From the analysis, we found that the link length statistics do not fit with the

commonly used distributions such as the normal or Poisson. In addition to that, none of

the one- and two-parameter distributions are found to be suitable for the link lengths.

For these reasons, we extended our analysis to a wide range of distributions. For this

statistical analysis, we used EasyFit software (of Mathwave.com), and also cross-checked

using Matlab, wherever possible. Out of the 61 distributions used for this study, the top

15 best fitting are presented in Table 3.1. We measure the validity or the ‘goodness of fit’

of the distributions in terms of Kolmogorov-Smirnov (KS) statistic (KSS value), which is

illustrated in Appendix A. Because KS test is suitable for small samples, and can also

be applied to large ones (fits our case, in which, the number of links of networks, L,

range from 11 to 171). The confidence interval (CI), of all the KS tests are set to 0.95

(i.e., significance level = 0.05). The smaller the KSS is, the smaller is the maximum

difference between the hypothesized cumulative distribution function (CDF) and the

empirical distribution function of the real data (thus better fitting is the distribution

relative to the sample). The ranking of the best-fitting distributions in Table 3.1 has

been done as per the average KSS values (column ‘Avg. KSS’ in Table 3.1). These values

were obtained for each distribution, by taking the average over the KSS values obtained

for each one of the 40 networks studied.
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As can be seen in Table 3.1, the average KSS value of General Extreme Value (GEV)

distribution is the smallest among the 61 distributions analyzed for this study. In

this distribution, the probability density function (PDF) increases initially and then de-

creases with the increase of link lengths. This behavior can be observed in Figure 3.1,

which shows the real link length histogram and the best fit distribution for the USA100

network (having 171 links). The exact link lengths of the 40 real networks follow the

GEV distribution to a large extent. It is better than its nearest rivals in almost all as-

pects. As can be seen in Table 3.1, the highest value of KSS (H. KSS), is the lowest for

this distribution. In case of lowest value of KSS (L. KSS), the GEV distribution is very

much close to the Burr distribution (L. KSS column of Table 3.1), but is lower than the

values for all other distributions.

Figure 3.1: Comparison of the General Extreme Value distribution with the link length

histogram of USA100 [1] network (171 links)

Basic attributes of the 40 real OTNs such as the number of nodes (N), links (L), and

average nodal degree (average number of links connected to any node, ⟨D⟩) are presented

in Table 3.2. The average and standard deviation of link lengths of the real topologies

are calculated using expressions (3.1) and (3.2), respectively.

⟨l⟩ = 1

L

L

∑
i=1

li (3.1)

σl = ( 1

L

L

∑
i=1

(⟨l⟩ − li)2)
1
2

(3.2)

In expressions (3.1) and (3.2), li represents individual link lengths, and ⟨l⟩, is the

average link length in kilometer. KSS values of General Extreme Value distribution

for each network are listed in the last column of Table 3.2 (i.e., column ‘KSSG’). We
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also calculated the average and standard deviation of the average link lengths of the 40

networks (shown at the bottom of ‘⟨l⟩’ column in Table 3.2). Those numbers give the idea

about the link length diversity of the 40 real OTNs.

Table 3.2: Real OTN Topologies and Their Attributes (⟨l⟩ and σl are in km).
# Network N L ⟨D⟩ ⟨l⟩ σl KSSG
1 VIA Network[4] 9 12 2.67 571 338 0.1744
2 BREN[4] 10 11 2.20 94 33 0.1785
3 RNP[4] 10 12 2.40 748 517 0.1709
4 Abilene Core[15] 10 13 2.60 1067 516 0.1266
5 LEARN[13] 10 12 2.40 189 111 0.1476
6 CompuServe[14] 11 14 2.55 1161 859 0.1543
7 vBNS[4] 12 17 2.83 965 563 0.1005
8 CESNET[4] 12 19 3.17 91 31 0.1425
9 NSFNET[4] 14 21 3.00 1086 707 0.1014

10 ITALY[4] 14 29 4.14 280 146 0.0783
11 ACONET[4] 15 22 2.93 119 111 0.1397
12 MZIMA[4] 15 19 2.53 852 430 0.0896
13 GARR-B[4] 16 27 3.37 224 140 0.1354
14 ARNES[4] 17 20 3.25 38 19 0.1388
15 GERMANY[4] 17 26 3.06 143 78 0.1057
16 REDIRIS[4] 17 28 3.29 319 131 0.0820
17 LambadaRail[4] 19 23 2.42 671 378 0.0901
18 MEMOREX[4] 19 24 2.53 137 68 0.0865
19 CANARIE[4] 19 26 2.74 668 632 0.0685
20 EON[4] 19 37 3.89 754 356 0.1043
21 ARPANET[4] 20 32 3.20 839 491 0.0739
22 OPTOSunet[17] 20 24 2.40 100 34 0.1219
23 Hibernia USA[18] 20 27 2.70 279 207 0.0823
24 PIONIER[4] 21 25 2.38 131 55 0.1418
25 COX [4] 24 40 3.33 662 428 0.0673
26 SANET[4] 25 28 2.24 36 14 0.1553
27 NEWNET [4] 26 31 2.38 528 268 0.1183
28 PORTUGAL[4] 26 36 2.77 203 325 0.1593
29 RENATER[4] 27 35 2.59 155 66 0.0790
30 IBN31[19] 31 51 3.29 131 59 0.0914
31 BULGARIA[20] 32 33 2.06 51 21 0.1039
32 GEANT2[4] 32 52 3.25 661 455 0.0716
33 LONI[4] 33 37 2.24 62 15 0.0886
34 METRONA[4] 33 41 2.48 73 40 0.0798
35 COST37[21] 37 57 3.08 439 248 0.0840
36 CERNET[22] 37 53 2.86 636 503 0.0698
37 OMNICOM[4] 38 54 2.84 298 153 0.0796
38 INTERNET2[4] 56 61 2.18 334 186 0.0694
39 CORONET[23] 75 99 2.64 326 265 0.0546
40 USA100[1] 100 171 3.42 310 174 0.0360

Average: 410.78 0.1061
Standard Deviation: 332.83 —

3.2.3 Basics of GEV Distribution of Link Lengths

The General Extreme Value distribution [24] has three parameters: α, β and ξ. The

parameter α, is the location factor, β, is the scale, and ξ, is the shape factor. Its CDF,

F (l), and PDF, f(l), as functions of link length l are shown in (3.3) and (3.4), in which,

t = 1 + ξ(l − α)/β.

F (l;α,β, ξ) = F (t; ξ) = exp{− [t]−1/ξ} (3.3)

f(l;α,β, ξ) = f(t;β, ξ) = 1

β
[t](−1/ξ)−1 exp{− [t]−1/ξ} (3.4)
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In Figure 3.1, we show the PDF of this distribution as fitted with the link length

histogram of USA100 network (α = 196.66, β = 128.89, and ξ = 0.0597). As can be seen

in Table 3.2, the KSSG value for this network is 0.0360, which indicates the appropriate-

ness of the GEV distribution for this network. The KSSG values for the other networks

in Table 3.2 are also generally low, resulting in good average value of 0.1061 (last row

of column ‘KSSG’), when all 40 networks are considered. The higher KSS values are

obtained for the networks having fewer links or irregular shapes (few links are either

too long or too short than the average, e.g., VIA Network, BREN, RNP, PORTUGAL,

ACONET).

3.2.4 GEV Distribution Parameters and ⟨l⟩
The relationship between the first moment of the link lengths, ⟨l⟩, and parameters of

the GEV distribution are key to understand and estimate the parameters of the distri-

bution. The location factor, α, gives the location of the distribution. The longer are the

link lengths, the larger is the α of the distribution. The scale factor, β, gives the spread

out of the distribution (β is proportional to the standard deviation). The shape factor,

ξ, controls the shape of the distribution (both PDF and CDF). There are the following

bounds on l and ξ with respect to their domains:

i. l ∈ (α − β
ξ ,∞), when, ξ > 0;

ii. l ∈ (−∞,∞), when, ξ = 0;

iii. l ∈ (−∞, α − β
ξ ), when, ξ < 0.

The three bounds shown in expressions i - iii above are theoretical ones [24]. In case of

OTNs, l is always greater than 0. Out of the 40 OTNs of Table 3.2, the optimum PDF

fitting led to ξ > 0, in 26 networks (i.e., case i), and in the rest 14 networks, ξ < 0, (i.e.,

case iii).

In order to determine the relation between the statistical parameters of GEV distri-

bution, α and β, and the average link length (⟨l⟩) of the networks, we started by plotting

the value of each parameter as a function of the average link length. Then a linear re-

gression over the plotted data was used to get the approximate expressions for α and β.

As shown in Figure 3.2 and Figure 3.3, the linear regressions result in expressions (3.5)

and (3.6), with good coefficients of determination (i.e., R2).

α ≈ 0.6577⟨l⟩ + 8.67 (3.5)
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Figure 3.2: Plot of α of GEV vs. ⟨l⟩ of 40 real OTNs (R2 = 0.9676)

β ≈ 0.441⟨l⟩ − 12.37 (3.6)
From the analysis, we found that ξ < 1, for all the 40 OTNs. Under this condition,

we show the exact expression for the mean, E(l), of the GEV distribution in terms of

α, β and ξ in (3.7). The error in the value of the first moment, obtained from (3.7) with

respect to the exact average link length (i.e., ⟨l⟩ in Table 3.2) is very small.

Figure 3.3: Plot of β of GEV vs. ⟨l⟩ of 40 real networks (R2 = 0.9225)

E(l) = α − β
ξ
+ β
ξ

Γ(1 − ξ) (3.7)

In expression (3.7), Γ(⋅), represents the mathematical gamma function (see Appendix

B for more information). Assuming, ⟨l⟩ is equal to E(l) of the GEV distribution, from

expression (3.7), we obtain:
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⟨l⟩ − α
β

= Γ (1 − ξ) − 1

ξ
. (3.8)

Estimation of the shape parameter, ξ using (3.8) is quite accurate, if the exact values

of ⟨l⟩, α and β are used. But the gamma function, Γ(⋅) in (3.8) needs to be resolved for

a simpler expression. In order to obtain an explicit expression for ξ, we substitute the

right hand side of expression (3.8) with the following simple approximation (which is

same as expression B.3 in Appendix B):

Γ(1 − ξ) − 1

ξ
≅ 1

1 − ξ − 0.425. (3.9)

Using this substitution along with expressions (3.5) and (3.6) in (3.8), we obtain the

following approximate expression for ξ (same as expression B.5 in Appendix B):

ξ ≈ 0.0887⟨l⟩ − 1.557

0.5297⟨l⟩ − 13.927
. (3.10)

For large OTNs, the expression in (3.10) provides good results. From this expression,

it can be seen that for large OTNs (for which, ⟨l⟩ ≫ 26.3 km), we can use the approxima-

tion ξ ≈ 0.167. In our model, we use this value for all the 40 OTNs. The best-fit and the

estimated distributions (using (3.5), (3.6), and ξ = 0.167) of USA100 network are shown

in Figure 3.4. The impact of using an estimated average link length is studied in the

next section, after the development of an expression for this parameter.

Figure 3.4: Optimized vs. approximate GEV distribution of link lengths of USA100[1] network.
This estimation uses exact average link length, ⟨l⟩.

GEV distribution is the generalized version of three lognormal distributions. As its

name suggests, it is the generalized form of three extreme value distributions: Gumble,
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Fréchet and Weibull [24]. In terms of the shape, the PDF of GEV distribution is similar

to that of normal distribution (i.e., symmetrical about the mode), when ξ ≈ −0.2064 (as in

the case of MZIMA). When, ξ is closer to 1, its PDF curve is tilted towards the left (i.e.,

towards the shorter link lengths), and when its value is closer to -1, it is tilted towards

the right (i.e., towards the longer link lengths). Overall, the negative values of ξ moves

the peak of the PDF curve (i.e., the mode) away from the smaller values.

3.2.5 Relationship Between σl and ⟨l⟩
We have presented the relationships between ⟨l⟩ and the parameters of the GEV

distribution in the previous subsection. These relationships reveal several information

of the distribution, and provide outlook for their estimations. In this subsection, we

verify the relationships between the first moment (i.e., ⟨l⟩), and the standard deviation

(i.e., σl) of the distribution. As shown in the Table 3.2, the standard deviation of the link

lengths of the 40 real OTNs is large. For ξ< 1, and ξ /= 0, the standard deviation of the

GEV distribution is given by expression (3.11).

σG = β
ξ

√
Γ(1 − 2ξ) − [Γ(1 − ξ)]2 (3.11)

Figure 3.5: Standard deviation vs. average link length of 40 real networks follows a linear trend
(R2 = 0.9011)

The complexity of this expression is that it has two gamma functions. Instead of

using the gamma functions along with the estimates of β and ξ, we can approximate

(3.11) by a linear regression. We found that in real OTNs, the standard deviation, σl,

follows an approximate linear trend with the average link length as shown in expression
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(3.12), which corresponds to the linear regression in Figure 3.5. This expression is free

from both the gamma functions, and the parameters of the GEV distribution.

σl ≈ 0.64⟨l⟩ − 6.9 (3.12)

We also found that σl follows a linear trend with the scale factor of the GEV distribution,

β. It again confirms the linear dependance of σl on ⟨l⟩.

3.3 Estimation of Average Link Length

In the previous section, we have developed the expressions for the parameters of

the GEV distribution. Clearly, the proposed model for link length distribution depends

significantly on the average link length. In the previous section, it is shown that the

expressions (3.5), (3.6) and (3.10), need appropriate estimates of the average link length.

Expression (3.1) needs the total information of the link lengths, and thus is not suitable

for the estimations, where the complete information is not available. Instead, expression

(3.13), first proposed for OTNs in [1], is preferred in these cases for quick estimation.

⟨lx⟩ ≅
√
Ax√
N − 1

(3.13)

In expression (3.13), ⟨lx⟩ is the estimated average link length of the network whose

area is Ax and number of nodes N. This expression, depends only on the territorial

coverage area of the network, and the number of nodes. The subscript x represents

the kind of area. In this section, we use three different areas, viz. exact area (x=e),

convex area (x=c) and geographical area (x=g) of the networks. The ‘area of a network’

normally indicates its area of coverage, which may be quite complex to estimate. There

are many networks, which do not completely cover the whole geography of a country or

province. In that case, taking the whole geographical area of the country or province

is not logically correct. Furthermore, there are networks, which cover more than one

country. In such cases, the sum of the areas of all the concerned countries can give big

errors. Additionally, in the planning stages of a network, it is difficult to predict the

boundary links since there is not enough information. This makes the estimation of

exact area quite difficult.

Overall, all these complex issues point to the use of some kind of area, which does

not need the link information, rather only the node locations. To deal with this con-

straint, we introduced the convex area of the networks. Issues related to different area

definitions are explained in the following subsections.
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3.3.1 Different Areas of OTNs

In [1], the area is not defined rigorously where expression (3.13) was proposed for

the OTNs. The areas of networks can be of different types depending on the contexts

in which it is measured. It may be the exact area (i.e., area confined by the boundary

links), or the convex area (i.e., area which can be found from the nodes alone), or the

geographical area (i.e., the area of the country or province or countries or provinces

where the network operates). These areas are described briefly in this subsection. Exact

and convex areas are illustrated with examples in Figure 3.6.

Figure 3.6: Depiction of convex and exact areas: ABCDA and ACEGA are convex areas of
ABCDEA and ABCDEFGHA respectively.

3.3.1.1 Convex Area

Convex area is the smallest area that includes all the nodes and line segments be-

tween any two points of that area. This area (denoted as Ac) is formed by convexing the

boundary of the network (it is a convex set). That means the line segment joining any

two interior points of convex area always remains inside that area. It is also true that,

when the sides of a non-convex polygon is elongated in both directions, at least one of

them passes through the interior of the polygon. In case of convex polygon, this does

not happen. The concepts of convexity and concavity are explained in Figure 3.6. The

line segment XY in Example – 1, has some points outside the polygon ABCDEA. So the

corresponding area is not convex; but ABCDA defines a convex area. Similarly, in Ex-

ample – 2, the convex area corresponding to polygon ABCDEFGHA is the quadrilateral

ACEGA. In other words, ABCDEFGHA defines the exact area in Example – 2; while

ACEGA defines the convex area. We use this area (i.e., Ac) to estimate the average link

length, ⟨lc⟩.
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3.3.1.2 Exact Area

This is the area confined by the boundary links of the network (denoted as Ae). In

order to calculate this area, the knowledge of the boundary links is essential. For in-

stance, the polygon ABCDEFGH in Example – 2 of Figure 3.6 defines the exact area.

This area is always smaller than or equal to the convex area (Ae ≤ Ac). When the inside

of a network is convex, the exact area becomes the convex area. We use this area (i.e.,

Ae) to estimate the average link length, ⟨le⟩.

3.3.1.3 Geographical Area

This is the area mentioned in the geographical maps (denoted as Ag). In fact, it is the

total land area or the territorial area of a certain country or province or countries where

the network operates. We use this area to estimate the average link length, ⟨lg⟩. We

collected these values from the World Atlas [25], and did some necessary changes where

appropriate. For example, we use the area of mainland USA for American networks

(which excludes the areas of Alaska and islands such as Hawaii). For OMNICOM, and

other such European networks (having nodes in Russia), we use the European part of

the Russian area, instead of the whole area of Russia. Similar appropriate steps are

adopted for other such cases as well.

3.3.1.4 Measurement of Different Areas

We measure the three areas presented in this section using appropriate tools. Exact

and convex areas, (Ae and Ac) used for the estimations are measured using Google Earth

Professional (version 6.2) which are shown in Table 3.3, columns ‘Ae’ and ‘Ac’. Most of the

geographical areas, (Ag) are calculated using the data from the World Atlas [25] which

are shown in Table 3.3, column ‘Ag ’. Using the expressions for statistical distribution,

the link length bound probability, Pr(li ≤
√
Ac) ≥ 0.8, is found for all the 40 networks

presented in Table 3.3. It indicates, at least 80% links of the 40 OTNs are smaller than

the square root of their convex areas. Clearly, from Table 3.3, it is observed that there

can be big differences between the three areas presented.

3.3.2 Results from Different Areas

The average link lengths estimated using expression (3.13) are approximate and de-

viate from the exact values. We determine these deviations in terms of percentage of

errors (i.e., Ec, Ee and Eg) in Table 3.4. These errors are estimated according to expres-

sion (3.14).
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Table 3.3: Different Areas of the 40 Real OTNs (all areas are in square km)
# Network Ac Ae Ag
1 VIA Network[4] 1267876 824464 1915456
2 BREN[4] 42196 33780 110883
3 RNP[4] 1814676 1077222 8514965
4 Abilene Core[15] 5698507 3728429 8080464
5 LEARN[13] 183296 148137 696241
6 CompuServe[14] 5442148 4661688 8080464
7 vBNS[4] 6279993 4182861 8080464
8 CESNET[4] 45957 32357 78909
9 NSFNET[4] 6007605 5005030 8080464
10 ITALY[4] 436577 291715 301230
11 ACONET[4] 52826 39297 83858
12 MZIMA[4] 6805153 4278891 8080464
13 GARR-B[4] 476100 242064 301230
14 ARNES[4] 12645 7112 20273
15 GERMANY[4] 196675 157319 357021
16 REDIRIS[4] 463539 367094 504882
17 LambadaRail[4] 6899337 4393019 8080464
18 MEMOREX[4] 253850 141524 981834
19 CANARIE[4] 3462688 2095793 9985140
20 EON[4] 5800056 2524156 6550943
21 ARPANET[4] 5975012 5640345 8080464
22 OPTOSunet[17] 122980 81063 449964
23 Hibernia USA[18] 1257762 531658 2697216
24 PIONIER[4] 194178 163888 312685
25 COX [4] 4870065 3531799 8080464
26 SANET[4] 24336 18496 48845
27 NEWNET [4] 7033452 4200490 8080464
28 PORTUGAL[4] 888824 612952 92391
29 RENATER[4] 462096 320900 642346
30 IBN31[19] 426658 200382 300448
31 BULGARIA[20] 95108 73138 113477
32 GEANT2[4] 7703318 3383604 770326
33 LONI [4] 68008 52069 128578
34 METRONA[4] 158837 75727 244820
35 COST37[21] 5371917 3329573 6228201
36 CERNET[22] 6719547 2628942 9644552
37 OMNICOM[4] 2596279 2091020 2646447
38 INTERNET2[4] 7169590 5974161 8080464
39 CORONET[23] 7903482 6046394 8080464
40 USA100[1] 8191044 5992704 8080464

Ex =
⟨l⟩ − ⟨lx⟩

⟨l⟩ (3.14)

We present the effectiveness of expression (3.13), using exact area, geographical area

and convex area of the 40 OTNs in Table 3.4. It can be observed that there are both pos-

itive and negative errors. So average error does not provide a representative evaluation

criterion. However, average absolute error (average of absolute error values) is a good

parameter to present the overall effectiveness. The values for the average and absolute

averages for all 40 OTNs are shown in the last two rows of Table 3.4. From this data, it

is clear that the average absolute error in the average link length is higher in the cases

of exact and geographical areas (see the last row under columns ‘Ec(%)’, ‘Ee(%)’ and

‘Eg(%)’ in Table 3.4).

In terms of the individual network errors, convex area provides better results in

33 cases, out of total 40 in comparison to the exact area (columns ‘Ec(%)’, ‘Ee(%)’ and

‘Eg(%)’ in Table 3.4). Exact area gives better results only in case of 7 networks, and
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Table 3.4: Estimation of Average Link Lengths from Different Areas and Their Comparisons
(⟨lc⟩, ⟨le⟩, ⟨lg⟩ and ⟨l⟩ are in km)

# Network ⟨lc⟩ ⟨le⟩ ⟨lg⟩ ⟨l⟩ Ec(%) Ee(%) Eg(%) Diff.1 Diff.2 Best Area
1 VIA Network[4] 563 454 692 571 1.40 20.49 -21.19 19.09 19.79 Ac
2 BREN[4] 95 85 154 94 -1.06 9.57 -63.83 7.86 62.77 Ac
3 RNP[4] 623 480 1350 748 16.71 35.83 -80.48 19.12 63.77 Ac
4 Abilene Core[15] 1104 893 1315 1067 -3.47 16.31 -23.24 12.84 19.77 Ac
5 LEARN[13] 198 178 386 189 -4.76 5.82 -104.23 1.06 99.47 Ac
6 CompuServe[14] 1007 932 1227 1161 13.26 19.72 -5.68 6.46 -7.58 Ag
7 vBNS[4] 1017 830 1154 965 -5.39 13.99 -19.59 8.60 14.20 Ac
8 CESNET[4] 87 73 114 91 4.40 19.78 -25.27 15.38 20.87 Ac
9 NSFNET[4] 894 816 1037 1086 17.68 24.86 4.51 7.18 -13.17 Ag
10 ITALY[4] 241 197 200 280 13.93 29.64 28.57 15.71 14.64 Ac
11 ACONET[4] 80 69 101 119 32.77 42.02 15.13 9.25 -17.64 Ag
12 MZIMA[4] 908 720 989 852 -6.57 15.49 -16.08 8.92 9.51 Ac
13 GARR-B[4] 230 164 183 224 -2.68 26.79 18.30 24.11 15.62 Ac
14 ARNES[4] 36 27 46 38 5.26 28.95 -21.05 23.69 15.79 Ac
15 GERMANY[4] 142 127 191 143 0.70 11.19 -33.57 10.49 32.87 Ac
16 REDIRIS[4] 218 194 228 319 31.66 39.18 28.53 7.52 -3.13 Ag
17 LambadaRail[4] 782 624 846 671 -16.54 7.00 -26.08 -9.54 9.54 Ae
18 MEMOREX[4] 150 112 295 137 -9.49 18.25 -115.33 8.76 105.84 Ac
19 CANARIE[4] 554 431 941 668 17.07 35.48 -40.87 18.41 23.80 Ac
20 EON[4] 717 473 762 754 4.91 37.27 -1.06 32.36 -3.85 Ag
21 ARPANET[4] 704 684 819 839 16.09 18.47 2.38 2.38 -13.71 Ag
22 OPTOSunet[17] 101 82 193 100 -1.00 18.00 -93.00 17.00 92.00 Ac
23 Hibernia USA[18] 323 210 473 279 -15.77 24.73 -69.53 8.96 53.76 Ac
24 PIONIER[4] 123 113 156 131 6.11 13.74 -19.08 7.63 12.97 Ac
25 COX[4] 566 482 729 662 14.50 27.19 -10.12 12.69 -4.38 Ag
26 SANET[4] 39 34 55 36 -8.33 5.56 -52.78 -2.77 44.45 Ae
27 NEWNET[4] 647 500 693 528 -22.54 5.30 -31.25 -17.24 8.71 Ae
28 PORTUGAL[4] 230 191 74 203 -13.30 5.91 63.55 -7.39 50.25 Ae
29 RENATER[4] 162 135 191 155 -4.52 12.90 -23.23 8.38 18.71 Ac
30 IBN31[19] 143 98 120 131 -9.16 25.19 8.40 16.03 -0.76 Ag
31 BULGARIA[20] 65 57 71 51 -27.45 -11.76 -39.22 -15.69 11.77 Ae
32 GEANT2[4] 596 395 596 661 9.83 40.24 9.83 30.41 0.00 Ag = Ac
33 LONI[4] 56 49 77 62 9.68 20.97 -24.19 11.29 14.51 Ac
34 METRONA[4] 84 58 104 73 -15.07 20.55 -42.47 5.48 27.40 Ac
35 COST37[21] 456 359 491 439 -3.87 18.22 -11.85 14.35 7.98 Ac
36 CERNET[22] 510 319 611 636 19.81 49.84 3.93 30.03 -15.83 Ag
37 OMNICOM[4] 312 280 315 298 -4.70 6.04 -5.70 1.34 1.00 Ac
38 INTERNET2[4] 413 377 438 334 -23.65 -12.87 -31.14 -10.78 7.49 Ae
39 CORONET[23] 367 321 371 326 -12.58 1.53 -13.80 -11.05 1.22 Ae
40 USA100[1] 318 272 316 310 -2.58 12.26 -1.94 9.68 -0.64 Ag
Average: 396.53 322.38 477.60 410.78 0.53 18.99 -22.09 8.97 19.99 Ac
Absolute Average: 396.53 322.38 477.60 410.78 11.26 20.22 31.25 12.69 24.03 Ac

out of these 7 networks, some have specific irregularities with respect to the node and

link distributions. For example, networks such as PORTUGAL, LambdaRail, NEWNET

and SANET, have a few very long links, and the rest of the links are quite shorter than

these long links. The other 3 of these 7 networks, such as BULGARIA, INTERNET2 and

CORONET have quite large voids in their convex areas that leads to increased errors.

For some ring-like networks, (such as INTERNET2, BULGARIA, LambdaRail, SANET,

LONI and NEWNET) better results are obtained with exact areas.

The expression for average link length in [1] uses the area of coverage, which is very

often the area of the country (used to estimate Eg and ⟨lg⟩ in Table 3.4) or province or

the sum of the areas of the countries, which are served by the network. However, this

area is not very effective as can be seen from the column ‘Eg(%)’ in Table 3.4.
We present the errors (in %, i.e., Ec(%) and Ee(%)) in histograms, and find them to

follow approximate normal distributions. In Figures 3.7 and 3.8, we present these error
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Figure 3.7: Distribution of estimated errors with convex area (Ec(%)) for 40 OTNs (fitted

to normal distribution [µ=0.53, σ=14.15])

distributions for 40 OTNs from which, it is quite clear that Ec(%) is symmetrical about

0.53%, whereas Ee(%) is shifted by 18.46% to the right with respect to the former.

Figure 3.8: Distribution of estimated errors with exact area (Ee(%)) for 40 OTNs (fitted

to normal distribution [µ=18.99, σ=13.67])

We summarize the results of the evaluation using different areas in the last three

columns in Table 3.4. Columns under headings ‘Diff.1’ and ‘Diff.2’ present the differences

between the errors in average link length estimations, when using different areas. Diff.1

is the difference between the absolute values of the errors from exact and convex areas

(i.e., Diff.1 = ∣Ee(%)∣ - ∣Ec(%)∣). Diff.2 is the difference between the absolute values of the

errors from geographical and convex areas (i.e., Diff.2 = ∣Eg(%)∣ - ∣Ec(%)∣). When Diff.1

is positive, it shows that Ac is better than Ae and vice versa. Similarly, when Diff.2 is
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positive, Ac is better than Ag and vice versa. In the last column, we present the best

area in terms of least percentage of absolute error. For 22 OTNs convex area, Ac is the

best, for 11 OTNs country area, Ag is the best, and for the rest 7 OTNs, exact area, Ae
is the best. When considering the average absolute error over all 40 OTNs, the convex

area provides the best estimate (last row, under columns ‘Diff.1’ and ‘Diff.2’ in Table 3.4).

We have also considered the effect of ellipticity (i.e., eccentricity of the circumferen-

tial ellipse which is presented in detail in Chapter 4) of the networks on their average

link lengths, in this analysis. OTNs with higher eccentricity, typically greater than 0.7,

have higher error percentages with all types of areas (such as RNP, CANARIE and BUL-

GARIA). However, ellipticity alone is not a very dominant factor.

3.3.3 Proposed Changes for Accuracy

The formula (3.13), is an approximate expression. It assumes that the average link

length of a topology is proportional to the square root of the area and inversely propor-

tional with the square root of the number of nodes. In fact, this expression is correct for a

square planar topology, with the sides of the square as its links. For other kind of topolo-

gies (even the square topology with a diagonal as a link), it gives error, whose amount

depends on the shape and other attributes of the network topology. Thus expression

(3.13) needs to be changed for better accuracy.

Using formula (3.13), we get an average absolute error of 20.22% when the exact area

is used (last row, column ‘Ee(%)’, in Table 3.4). However, using a multiplying factor, ke
= 1.22, this average error can be reduced to 12.65%. But, the individual estimates of

some of the networks (those with negative errors) get worse. With convex area, we have

average absolute error of 11.26% (last row, column ‘Ec(%)’, in Table 3.4). In this case

too, if we provide a multiplying factor, the error reduces slightly to a minimum of 10.90%

with kc = 0.97. These modified expressions are presented in (3.15) and (3.16). The effects

of multiplying factors on the exact and convex areas are presented in Figures 3.9 and

3.10, respectively. The lowest points of the curves shown in Figures 3.9 and 3.10 are the

best multiplying factors for the corresponding areas.

⟨l′e⟩ ≅
ke

√
Ae√

N − 1
(3.15)

With ke=1.22, we get 12.65% average absolute error with exact area, Ae.

⟨l′c⟩ ≅
kc

√
Ac√

N − 1
(3.16)

With kc=0.97, we get 10.90% average absolute error with convex area Ac. Using nonlin-

ear regression, we get some better expressions, which can reduce the error to around 9%.
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Figure 3.9: Effect of multiplying factors, ke when using the exact area (ke=1.22 gives

minimum error).

Figure 3.10: Effect of multiplying factors, kc when using the convex area (kc = 0.97 gives

minimum error).

But these expressions are either too complex (polynomials of the order of 7 and higher)

or need extra information such as the shape of the exact area. Therefore, use of convex

area for the better approximation of average link length as shown in (3.16) is preferred.

The results obtained for average link length estimations using the best fitting mul-

tiplying factors (ke=1.22 and kc=0.97) are presented in Table 3.5. Results under col-

umn ‘Diff.’ are the differences between the two absolute errors using multiplying fac-

tors ke=1.22 and kc=0.97 with exact and convex areas respectively (i.e., Diff.=∣E′
e(%)∣ -

∣E′
c(%)∣). A positive difference indicates that convex area gives better output than ex-

act area and vice versa. As can be seen from Table 3.5 (row ‘Absolute Average’, column

‘Diff.’), the convex area provides an improvement of 7.27% in overall absolute value,
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compared with the exact area. Using approximation (3.16), link length distribution pa-

rameters α
′
c, β

′
c, ξ

′
c and the standard deviation, σ

′
lc of the link lengths can be estimated.

3.4 Development of the Model from ⟨l′c⟩
We analyze all the relevant issues for the development of the link length statistical

model based on its PDF in the previous sections. The parameters of the corresponding

GEV distribution can be estimated using the modified expressions for the average link

length developed in the last section with reasonable accuracy. From the results obtained

in the last section, we are now confident that for obtaining the GEV distribution for the

link lengths, just the node locations are enough. Following this approach, we start by

estimating the average link length, ⟨l′c⟩, using equation (3.16). Then, we use ⟨l′c⟩ in the

place of ⟨l⟩ in expressions (3.5) and (3.6) to estimate the corresponding location factor,

α
′
c, and scale factor, β

′
c. We use the approximate value of ξ

′
c, which is equal to 0.167.

Eventually, we obtain the PDF of the GEV distribution for the link lengths as defined by

equation (3.4).

We evaluate the developed model using the KSS values. In Table 3.5, the KSS val-

ues obtained from the estimated CDFs are presented as KSSGE . The average value of

KSSGE for 40 OTNs is 0.2076 (row ‘Average’, column ‘KSSGE ’ in Table 3.5). It is con-

sidered as a good value, since the corresponding distribution parameters were obtained

without the knowledge of the networks details, rather just the nodes’ locations.

Figure 3.11: Exact vs. estimated GEV distribution of link lengths of USA100 [1] network (171
links). This estimation uses estimated average link length, ⟨l′c⟩.

In addition to this, it can be observed from Table 3.5 that 34 networks provide ‘ac-

ceptable’ model at CI = 0.95. A model is ‘acceptable,’ when its KSSGE is smaller than
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Table 3.5: Comparison of Errors with Optimized Multiplying Factors in Expressions (3.15) and
(3.16) (columns ‘E

′

c(%)’, ‘E
′

e(%)’, ‘Diff.’ and ‘Best Area’). Estimation of the Parameters of the
Proposed Model from the Average Link Length, (columns ‘⟨l′c⟩’, ‘α

′

c’, ‘β
′

c’, ‘ξ
′

c’), the KSS Values of
the networks, (column ‘KSSGE ’), and Their Evaluation (column ‘Acceptable?’)

# Network E
′

c(%) E
′

e(%) Diff. Best Area ⟨l
′

c⟩ α
′

c β
′

c ξ
′

c KSSGE Acceptable?
(kc=0.97) (ke=1.22) (CI = 0.95)

1 VIA Network[4] 4.38 2.98 -1.40 Ae 546 368 228 0.167 0.2692 Yes
2 BREN[4] 2.13 -10.64 8.51 Ac 92 69 28 0.167 0.3084 Yes
3 RNP[4] 19.25 -21.66 2.41 Ac 604 406 254 0.167 0.2231 Yes
4 Abilene Core[15] - 0.37 -2.06 1.69 Ac 1071 713 460 0.167 0.1351 Yes
5 LEARN[13] -1.59 -14.81 13.22 Ac 192 135 72 0.167 0.1243 Yes
6 CompuServe[14] 15.85 2.07 -13.78 Ae 977 651 418 0.167 0.1872 Yes
7 vBNS[4] -2.18 -4.97 2.79 Ac 986 657 422 0.167 0.1438 Yes
8 CESNET[4] 7.69 2.20 -5.49 Ae 84 64 25 0.167 0.3254 No
9 NSFNET[4] 20.17 8.29 -11.88 Ae 867 579 370 0.167 0.1849 Yes

10 ITALY[4] 16.43 -14.29 -2.14 Ae 234 163 91 0.167 0.1951 Yes
11 ACONET[4] 34.45 -29.41 -5.04 Ae 78 60 22 0.167 0.4421 No
12 MZIMA[4] -3.40 -3.05 -0.35 Ae 881 588 376 0.167 0.1468 Yes
13 GARR-B[4] 0.45 10.71 10.26 Ac 223 155 86 0.167 0.1551 Yes
14 ARNES[4] 7.89 -13.16 5.27 Ac 35 32 3 0.167 0.5283 No
15 GERMANY[4] 3.50 -8.39 4.89 Ac 138 99 48 0.167 0.1731 Yes
16 REDIRIS[4] 33.86 25.71 -8.15 Ae 211 147 81 0.167 0.3782 No
17 LambadaRail[4] -13.11 -13.41 0.30 Ac 759 508 322 0.167 0.1235 Yes
18 MEMOREX[4] -6.57 0.00 -6.57 Ae 146 105 52 0.167 0.1203 Yes
19 CANARIE[4] 19.61 21.26 1.65 Ac 537 362 224 0.167 0.1170 Yes
20 EON[4] 7.82 23.47 15.65 Ac 695 466 294 0.167 0.1223 Yes
21 ARPANET[4] 18.59 0.60 -17.99 Ae 683 458 289 0.167 0.2062 Yes
22 OPTOSunet[17] 2.00 0.00 -2.00 Ae 98 73 31 0.167 0.2619 Yes
23 Hibernia USA[18] -12.19 8.24 -3.95 Ae 313 215 126 0.167 0.1756 Yes
24 PIONIER[4] 9.16 -5.34 -3.82 Ae 119 87 40 0.167 0.2047 Yes
25 COX[4] 17.07 11.18 -5.89 Ae 549 370 230 0.167 0.0956 Yes
26 SANET[4] -5.56 -13.89 8.33 Ac 38 34 4 0.167 0.3885 No
27 NEWNET[4] -18.94 -15.53 -3.41 Ae 628 422 265 0.167 0.1178 Yes
28 PORTUGAL[4] -9.85 -14.78 4.93 Ac 223 155 86 0.167 0.6653 No
29 RENATER[4] -1.29 -6.45 5.16 Ac 157 112 57 0.167 0.1488 Yes
30 IBN31[19] -6.11 8.40 2.29 Ac 139 100 49 0.167 0.1067 Yes
31 BULGARIA[20] -23.53 -37.25 13.72 Ac 62 49 15 0.167 0.2929 No
32 GEANT2[4] 12.56 27.08 14.52 Ac 578 389 243 0.167 0.1053 Yes
33 LONI[4] 12.90 3.23 -9.67 Ae 54 44 11 0.167 0.0902 Yes
34 METRONA[4] -10.96 2.74 -8.22 Ae 81 62 23 0.167 0.2278 Yes
35 COST37[21] -0.68 0.23 -0.45 Ae 442 299 183 0.167 0.1447 Yes
36 CERNET[22] 22.17 38.84 16.67 Ac 495 334 206 0.167 0.1726 Yes
37 OMNICOM[4] -1.68 -14.77 13.09 Ac 303 208 122 0.167 0.1411 Yes
38 INTERNET2[4] -20.06 -37.72 17.66 Ac 401 272 164 0.167 0.1615 Yes
39 CORONET[23] -9.20 -20.25 11.05 Ac 356 243 145 0.167 0.1221 Yes
40 USA100[1] 0.65 -7.10 6.45 Ac 308 212 123 0.167 0.0707 Yes
Average: -3.53 1.13 1.76 Ac 384.70 – – – 0.2076 Yes
Absolute Average: 10.90 12.65 7.27 Ac 384.70 – – – – Yes
Standard Deviation: 13.72 16.70 8.86 – 303.25 – – – – –

the critical value of the corresponding KS statistic at a specific CI (here, it is 0.95). Only

for 6 OTNs, the KSSGE exceeds the critical value (at, CI = 0.95). However, one of the 6

OTNs (i.e., CESNET), passes the KS test with CI = 0.99, and becomes ‘acceptable’. The

networks which do not pass the KS test in Table 3.5, in fact, have some kind of irregu-

larity, as explained in subsection 3.3.2 for the ‘high percentage of error in the average

link lengths of seven networks’. A few other networks in which, there are comparatively

large voids in their convex areas and small number of links, too give large values of

KSSGE (such as VIA Network and BREN). However, if the exceptionally long links are

excluded (normally, they are around 10% of the total number of links in the 6 OTNs that

did not give ‘acceptable’ KSS values); the rest of the samples provide small KSS values,
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and pass the KS test. In Figure 3.11, we present the estimated PDF, for the USA100 net-

work (in blue dotted curve). For comparison, its optimized PDF is also shown (solid red

curve). The latter represents the best-fitting link length distribution for the network,

obtained using the optimized values of the GEV parameters.

3.5 Chapter Summary

In this chapter, we analyzed 40 real OTNs for the development of a statistical model

for their link lengths. We also developed an improved expression for the average link

length estimation. We perform these estimations without prior knowledge of network

configuration details, except for the node locations. Out of the 61 distributions analyzed

in this study, the GEV distribution was found to provide the best fitting distribution

model for the link length statistics of real OTNs. We found that all the three parameters

of the GEV distribution can be estimated from the average link length of the OTNs. For

the estimation of average link length, we used the ‘convex area’ as it provides the best

estimate. The multiplying factors obtained for the improvement in the accuracy of the

average link lengths are quite impressive with the exact area. For the convex area we

get a very small improvement. So, the expression for the average link length using the

convex area can be used without any multiplying factor.

The validity of the developed statistical models have been checked using the KSS val-

ues. The estimated PDF model for the link lengths has good accuracy (in terms of their

KSS values) for large networks (having large number of links). For smaller networks,

or for networks with some specificities (e.g., just a few links with a much longer span

compared to the majority of links), the KSS values obtained were larger than the other

networks. Overall, the KSS value of 0.2076, obtained by averaging over all 40 networks,

is good, considering that the estimations need only the knowledge of node locations.
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CHAPTER 4

Estimation of Convex Area of
Optical Transport Network

4.1 Introduction

IN CHAPTER 3, we have come accross cases in which the coverage areas of the optical

transport networks (OTNs) are needed for parameter estimations. During the plan-

ning stages, and also for the fast estimation of the link related parameters, the coverage

areas of OTNs are used in majority of the cases, when the main parameters are not

known. However, the coverage area of a core network is quite complex to determine. In

order to solve this problem, we provide a method for its estimation, in which, we use the

area of circumferential ellipse (CE) of the OTN.

4.1.1 Motivation

Coverage area of core networks cannot be determined from the geographical or coun-

try areas [1]. These areas give large errors, and we have come across it in Chapter 3.

Convex area (the smallest area that includes all the nodes and line segments between

any two points of that area) can be used as coverage area. In the previous chapter, we

have seen the importance of convex area as the coverage area of the OTNs in the es-

timation of the models for link lengths. As presented in Chapter 3, this parameter is

essential in the estimation of the average link length, which is used in the estimation of

other related parameters of the OTNs. The accuracy of the estimations using this area
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has been shown in Chapter 3. However, estimation of convex area from a planar map

is not trivial. In this chapter, we show an efficient method to estimate the convex area

from a planar map.

4.1.2 Related Work

Depending on the context, where it is used and how it is defined, coverage areas can

be of different types. Three types of areas for the OTNs have been defined in [1], viz.

exact area (that covers the area inside the topology formed by the boundary links), con-

vex area (that is the largest convex set formed by the nodes of the topology), and the

geographical area (as defined by the geography of the region in which the network pro-

vides the services). Convex area is found to be the most suitable out of these three, for

the link related estimations. Using this area, average link lengths of an OTNs can be

estimated with quite good accuracies [1]. The distribution model of the link lengths can

be estimated in terms of probability density function [1], using the average link length.

Several link-related parameters can be estimated from the link length distributions [2].

Approximate area of a graph can be estimated using the geometric measure theory [3].

However, in that method, a large number of inputs are required for the complex calcula-

tions, and yet, the outcome is not exact [3],[4]. Furthermore, the input parameters can

be found out, only if the whole topology of the graph is known [4]. These methods are not

very helpful in the practical estimations for graphs like the OTNs, in which the exact ar-

eas do not provide good estimations [1]. Coverage areas are used to estimate the average

link lengths of OTNs [1], [5]. In [5], [6] fast estimation of several OTN parameters are

performed without complete information. Eccentricity of network ellipse (also known

as ellipticity) is researched for the study of several properties associated with the net-

works, and graphs [7] – [14]. In [10] – [12], several approaches are followed to determine

the diameter, radius and eccentricities of the networks including the distance between

the node pairs. Fast estimation of these parameters is required in several fields such

as networking, distributed computing and graph theory [15], [16]. Such fast estimation

methods have been emphasized in different fields [15] – [18]. Shortest paths between

node pairs, and diameters of networks are estimated in [17], [18]. These methods are

helpful in the estimation of the parameters of the CEs. Fast calculation of CAPEX is

required in several estimations of the OTNs, especially during the planning phase [5].

Methods for fast calculation of CAPEX in optical multilayer networks are presented in

[5], [19].
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4.1.3 Chapter Outline

In this chapter, we present several theoretical aspects of CE, and demonstrate their

utilities for OTNs. We apply the CE concepts to the OTNs and estimate several pa-

rameters commonly used for the OTNs with incomplete information. We show that the

convex area and average link length can be estimated using the circumferential ellipses

with quite good accuracies. The rest parts of this chapter are organized in 3 sections.

In section 4.2, we define, illustrate and explain the concepts of CE. Then we show some

common properties of CE, which are required for the applications for the OTNs. In sec-

tion 4.3, we apply the concepts of CE to the 40 real OTNs used in [1], and measure their

parameters for evaluation. In section 4.4, we conclude with a few remarks on the util-

ity of the CE parameters for the OTN related estimations. The work presented in this

chapter is reported in [20].

4.2 Concepts of CE of OTN

For regular structures like squares, or rectangles, or regular polygons, we can always

find a circumferential circle (also known as circumcircle). However, for general graphs

which are commonly irregular, it is not always possible to get a circumferential circle.

Instead we can have CEs. For an OTN, the CE can be defined as the smallest ellipse (in

area) that circumscribes or surrounds the whole OTN. So, it just touches three or more

nodes of the OTN. The common points between the CE, and the OTN topology are only a

finite number of nodal points. If the CE is belittled slightly in any manner, then it must

enter into the OTN by intersecting at least a link (at least two links for survival OTNs)

of the topology. Therefore, for every network topology, there is a unique CE. In Figure

4.1, we show the CE of BREN network, which touches the topology at four nodal points.

4.2.1 Properties of CE of OTN

Though CE has several properties (some of which are common for the network lying

inside it), here we consider only a few important ones needed for the estimation of convex

area of OTN (AC). Every closed network has a unique CE. In contrast, the same CE can

surround several different networks (theoretically infinite). Under such circumstances,

the convex areas of the networks may be different from one another. In case of the

OTNs, the area of their CEs (ACE) and their convex areas have some restrictions as the

nodes of the topologies are located mainly at the big cities (i.e., the node locations are

not completely random as in a general case). Thus the centroid of the convex area of
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an OTN topology is typically very close to the centroid of its CE. The CE contains the

whole convex area of the OTN within it (thus, the exact area of the OTN as well). Thus,

ACE ≥ AC , and geometrically the inside of the convex area is a subset of the area of the

CE (i.e., AC ⊆ ACE).

4.2.2 Estimation of CE of OTN

Here, we use planar map to estimate the CE of an OTN. To get the CE, the major axis

of the ellipse has to be either approximately oriented along the chord joining the node

pairs for which the distance is the longest or approximately parallel to it. If there is

more than one longest distance of the OTN (i.e., the longest chords are equal in length),

then the major axis has to pass approximately in between those chords. Only the major

and minor axes of the CE are to be known. Area of the CE is given by:

ACE = πab. (4.1)

In (4.1), a (= OA = OB, in Figure 4.1), and b (= OC = OD, in Figure 4.1), are the semi-

major and semi-minor axes, respectively (shown as the ‘- ⋅ -’ dotted blue lines in Figure

4.1). Every ellipse has its own unique circumferential rectangle. In Figure 4.1, we have

shown it in dark red dotted lines (- - -). So, a is half of the length of the rectangle, and b
is the half of the breadth of it. Knowledge of a and b are enough to estimate the CE and

the other parameters of it, such as the eccentricity and the separation between its foci.

Figure 4.1: CE of BREN. In this case, the CE touches the topology only at 4 points.

A few specific points are to be noted while estimating the CE. The planar map used

for the estimation must have the same scale along the length and the width. Instead

of locating the nearest place, the exact end points should be used while calculating the

length of the major and minor axes. For instance, if one of the end points of the axes of
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the CE is located inside a sea or river (in Figure 4.1, B is in the sea and we considered

its exact location, not its nearest point on land), that exact point should be used instead

of its nearest town or city. Reliable and accurate maps such as the Google Earth provide

good accuracies in the overall estimation.

4.3 Estimation of OTN Parameters from CE

The CE is very closely associated with its OTN topology, and bears several common

properties. So it can be used for the network parameter estimations such as the convex

area and average link length. The statistical model for link lengths in [1] depends on the

average link length of the OTN. Average link length of an OTN is a key factor, and it is

estimated from the convex area and the number of nodes of the OTN [1]. In this section,

we find out the areas of CEs of 40 real OTNs, and evaluate their utilities in estimating

the convex areas and average link lengths of the OTNs.

We measured the link lengths of the OTNs using OPNET Transport Planner 15 and

cross-checked them using Google Earth Professional (version 6.2). Averaging the link

lengths, we calculated the exact average link length (denoted as ⟨l⟩ in Table 4.1). We

measured the semi-major axes (a), and semi-minor axes (b) of the CEs using Google

Earth Professional. The convex areas (column ‘AC ’ in Table 4.1) of the OTNs were ob-

tained using Google Earth Professional, and the areas of their CEs (column ‘ACE ’ in

Table 4.1) are obtained using (4.1). For ⟨lc⟩ (the estimated value of average link length

using AC) and ⟨lCE⟩ (a similar estimate like ⟨lc⟩, in which ACE is used in place of AC),

we use the formula proposed in [1] and [5]. Accordingly, ⟨lc⟩ and ⟨lCE⟩ are presented in

(4.2a) and (4.2b) respectively. e is the eccentricity (=
√

1 − b2

a2
) of the CE of the OTNs (see

Table 4.1).

⟨lc⟩ =
√
AC√
N − 1

; (4.2a)

⟨lCE⟩ =
√
ACE√
N − 1

. (4.2b)

For the correlations between the parameters of the OTNs, and their CEs, we used re-

gressions (both linear and nonlinear) between their parameters. We found significantly

strong correlations between their respective areas. This indicates that CE is useful in

the estimation of average link lengths of the OTNs. The regressions are evaluated in

terms of their coefficient of determination (R2), which were found to be quite high.
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Table 4.1: Comparison between the parameters of the 40 real OTNs and their CEs. Parameters
of the 40 real OTNs used in this study and their CEs are provided in the first 8 columns (column
‘T’ – column ‘ACE ’). In the rest 5 columns (column ‘⟨lc⟩’ – column ‘e’) we present the evaluated
parameters. (⟨l⟩, a, b, ⟨lc⟩, ⟨lCE⟩, ⟨lce⟩ are in km; AC and ACE are in sq. km).

T Network N ⟨l⟩ a b AC ACE ⟨lc⟩ ⟨lCE⟩ ⟨lce⟩ Error(%) e
1 VIA Network[1] 9 571 1178 512 1267876 1893847 563 688 583 -2.10 0.9006
2 BREN[1] 10 94 193 103 42196 62420 95 116 100 -6.38 0.8457
3 RNP[1] 10 748 1732 534 1814676 2904148 623 788 668 10.70 0.9513
4 Abilene Core[1] 10 1067 2053 1328 5698507 8560846 1104 1353 1145 -7.31 0.7625
5 LEARN[1] 10 189 386 233 183296 282405 198 246 210 -11.11 0.7973
6 CompuServe[1] 11 1161 2434 1220 5442148 9324167 1007 1318 1115 3.96 0.8653
7 vBNS[1] 12 965 2430 1276 6279993 9736135 1017 1266 1072 -11.09 0.8510
8 CESNET[1] 12 91 197 112 45957 69281 87 107 93 -2.20 0.8227
9 NFSNET[1] 14 1086 2318 1328 6007605 9665875 894 1134 960 11.60 0.8196

10 ITALY Net[1] 14 280 567 417 436577 742418 241 314 268 4.29 0.6776
11 ACONET[1] 15 119 269 110 52826 92913 80 106 92 2.69 0.9126
12 MZIMA[1] 15 852 2322 1410 6805153 10280423 908 1116 945 -10.92 0.7945
13 GARR-B[1] 16 224 548 382 476100 657315 230 270 230 -2.68 0.7170
14 ARNES[1] 17 38 95 55 12641 16407 36 41 37 2.63 0.8157
15 GERMANY[1] 17 143 350 266 196675 292334 142 173 148 -3.50 0.6499
16 REDIRIS[1] 17 319 520 387 463539 631894 218 255 218 31.66 0.6679
17 LambadaRail[1] 19 671 2389 1292 6899337 9691886 782 927 785 -16.99 0.8411
18 MEMOREX[1] 19 137 479 291 253850 437681 150 197 169 -23.36 0.9557
19 CANARIE[1] 19 668 2299 590 3462688 4259127 554 614 521 22.01 0.9666
20 EON[1] 19 754 1933 1343 5800056 8151500 717 850 720 4.51 0.7192
21 ARPANET[1] 20 839 2197 1270 5975012 8761197 704 852 722 13.95 0.8160
22 OPTOSunet[1] 20 100 308 158 122980 152805 101 113 98 2.00 0.8584
23 Hibernia USA[1] 20 279 1243 580 1257762 2263752 323 433 368 -31.90 0.8845
24 PIONIER[1] 21 131 393 223 194178 275186 123 146 126 3.82 0.8234
25 COX[1] 24 662 2258 890 4870065 6310207 566 644 546 17.52 0.9190
26 SANET[1] 25 36 161 80 24336 40443 39 50 45 -25.00 0.8678
27 NEWNet[1] 26 528 2463 1228 7033452 9497131 647 752 637 -20.64 0.8668
28 PORTUGAL[1] 26 203 969 489 888824 1487861 230 298 254 -25.12 0.8633
29 RENATER[1] 27 155 467 416 462096 610014 162 186 159 -2.58 0.4544
30 IBN31[1] 31 131 546 394 426658 675489 143 180 154 -17.56 0.6923
31 BULGARIA[1] 32 51 248 171 95108 133161 65 78 68 -33.33 0.7243
32 GEANT2[1] 32 661 2009 1747 7703318 11020530 596 713 604 8.62 0.4938
33 LONI[1] 33 62 241 162 68008 122592 56 74 65 -4.84 0.7404
34 METRONA[1] 33 73 324 273 158837 277739 84 111 96 -31.51 0.5386
35 COST37[1] 37 439 1798 1417 5371917 7999985 456 556 472 -7.52 0.6156
36 CERNET[1] 37 636 2054 1688 6719547 10886857 510 649 550 13.52 0.5698
37 OMNICOM[1] 38 298 1282 888 2596279 3574626 312 366 311 -4.36 0.7213
38 INTERNET2[1] 56 334 2441 1168 7169590 8952416 413 462 393 -17.66 0.8781
39 CORONET[1] 75 326 2476 1390 7903482 10806750 367 429 365 -11.96 0.8276
40 USA100[1] 100 310 2605 1391 8191044 11377963 318 375 319 -2.90 0.8455

Absolute Average: 12.70

4.3.1 Estimation of Convex Area from CE

Convex area of an OTN is the smallest possible convex set which contains all the

nodes of the OTN [1]. It is always greater than or equal to the exact area [1]. It provides

better accuracies for the estimations of the OTNs than other types of areas [1]. How-

ever, estimation of convex area is not very straightforward. It needs the location of all

the nodes (though only the peripheral nodes are enough for its estimation). From the

locations of the nodes, the lengths of the sides of the convex polygon are calculated for
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the estimation of the convex area. In order to avoid these complex steps, we propose an

alternative method.

Figure 4.2: Relationship between the area of the CE (ACE) and the convex area (AC) of

its OTN (R2 = 0.9870)

AC ≅ 0.6875ACE − 1200 (4.3)

Here, we use the area of CE of OTN (ACE) to estimate its convex area (AC). The area of

the CE is estimated using (4.1), which just needs the values of a and b. From the linear

regression of these two parameters, we found a simplified expression for convex area as

shown in (4.3), and presented graphically in Figure 4.2. The coefficient of determination

for this regression is 0.9870, which shows the justification of its use.

4.3.2 Estimating ⟨l⟩ from ACE

Using (4.2a) and (4.2b), we calculated both ⟨l⟩, ⟨lCE⟩ and their regressions show linear

trends between these parameters (see Figure 4.3). From the linear regression between

the exact average link lengths and the estimated average link lengths using the CE, we

can estimate the average link length as shown in (4.4), denoted as ⟨lce⟩.

⟨l⟩ ≅ 0.8446⟨lCE⟩ + 2.3 = ⟨lce⟩ (4.4)

Now substituting the formula for ⟨lCE⟩ (from 4.2b), we get,
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Figure 4.3: Relationships between the exact average link length (⟨l⟩) of the OTNs and

⟨lCE⟩ parameter estimated using ACE (R2 = 0.9613)

⟨lce⟩ = 0.8446

√
ACE√
N − 1

+ 2.3. (4.5)

The plot of ⟨lc⟩ versus ⟨lCE⟩ too follow a linear trend (see Figure 4.4). These results

show that the average link length, and the distribution of link lengths can be estimated

from the CE. Estimation of CE parameters a and b is also quite straightforward and less

complex than estimating AC .

Figure 4.4: Relationships between ⟨lCE⟩ parameter and ⟨lc⟩ of the OTNs (R2 = 0.9955)
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In some cases, the rectangular area of a planar map that spreads the whole geogra-

phy of the coverage area was used for the fast estimations of the parameters of the OTNs

[19]. As shown here, the rectangular areas will incur larger errors than the area of CE,

and thus should be replaced by the convex area or its estimate from the CE. In fact, the

rectangular area and the area of the CE are much larger than the convex area of the

OTN (as shown in the linear regression). So, the expression proposed in (4.5) should be

used as it provides more accurate outcome.

4.3.3 Evaluation of the Method Based on CE

Evaluation of the proposed method is necessary for judging its effectiveness. We

evaluate the performance of the method developed in this chapter for the estimation of

the average link length of OTNs in terms of relative errors (in %). The error is estimated

using expression (4.6).

Error(%) = ⟨l⟩ − ⟨lce⟩
⟨l⟩ × 100. (4.6)

As can be seen in Table 4.1, in the last row under the column ‘Error (%)’, the absolute av-

erage of the errors for 40 OTNs is just 12.70%. Using convex area, the average absolute

error for these 40 real OTNs is 11.26% [1]. Thus, the error observed using the area of

CE, is a little higher than the error obtained from the convex area. Overall, this method

is very much satisfactory as the estimation of ACE is much simpler than the estimation

of AC .

4.4 Chapter Summary

Convex area is necessary for the OTN related estimations. In this chapter, we showed

the effectiveness of the estimation methods based on the CE of the OTNs. Its utilities

in the network related estimations have also been showed using the cases of 40 real

OTNs. Only the major and minor axes are needed for the estimations of the CEs. These

ellipses are instrumental in the estimation of the convex areas of the OTNs, from which

the average link lengths can be estimated. Considering the simplicities of these methods

based on the CEs, the average error of 12.70% in the average link lengths is quite good.

The link-related parameters of OTNs, in which average link lengths are used can be

estimated using the results obtained in this work.
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CHAPTER 5

Estimation of Link Related
Parameters

5.1 Introduction

IN CHAPTER 3, we presented a statistical model for the link lengths in optical trans-

port networks (OTNs). This model can be estimated from the very basic information

of the OTNs. Thus it is suitable for the estimations without complete information. In

addition to the knowledge of the distribution of link lengths, this model can be applied

to estimate link-related parameters of the OTNs. In this chapter, we develop these novel

methods for the estimation of link-dependent parameters of OTNs.

5.1.1 Motivation

There are several link-dependent parameters which are needed for the early stage

planning and dimensioning. Estimation of these network parameters is quite important

at the beginning, because it gives an approximate idea about the initial capital needed

for the deployment of the links of the OTNs. Using the statistical model developed for

links lengths in Chapter 3, the link-dependent parameters of OTNs can be estimated

with better accuracy. The methods we propose, are based on the statistical distribu-

tion model of the link lengths, which only needs an estimate of the average link length.

Using these methods, we achieve significant improvement in the estimation accuracies,

compared to the previous methods based on just the average link length. For these im-
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provement, we do not need any extra network information. Overall, these new methods

are very much attractive for the estimations with incomplete information.

5.1.2 Related Work

As presented in Chapter 2, the parameters of the OTNs can be broadly divided in to

link-dependent and node-dependent parameters. Link-dependent parameters are used

for the estimation of the link-related components of deployment expenditure [1]. In

Chapter 3, a statistical model for the link lengths of the OTNs has been proposed. This

model shows that the link lengths of the OTNs follow the General Extreme Value (GEV)

distribution, and the corresponding GEV model can be estimated from the average link

length of the OTN. This work also provides expressions for the average link lengths, and

shows that the estimation from the convex area is better than the alternative estimates.

As defined in Chapter 3, convex area is the smallest area that includes all the nodes and

line segments between any two points of that area. The average link length based on

the convex area can be estimated using only the knowledge of the node locations, and it

provides better accuracy than the other alternatives [2]. In [1] and [3], simplified em-

pirical and approximate expressions are proposed for the estimation of the parameters

of OTNs. Several network parameters are estimated in [4] and [5], including some link-

dependent parameters for which average link length is used. In [5], different costs of

OTNs, and their associated parameters are evaluated for the OTNs. In [6], parameters

of survivable OTNs are estimated using several analytical expressions without complete

information. A statistical model for fast estimation of network parameters is proposed

in [7]. In [8] and [9], the network parameter estimations are extended for multi-layer

optical networks and several modified expressions are provided. Basics of GEV distribu-

tion and its parameters can be found in [2], and [10]. In [11] – [13], distance dependent

resource allocation is proposed for better performances of the OTNs. These methods are

focused on the optimized resource allocations in the OTNs.

5.1.3 Chapter Outline

The rest of this chapter is organized in 4 different sections. In section 5.2, we present

the link length statistical model, its significance, how it can be estimated, and its rela-

tionship with the link-dependent parameters. We explain the sources of errors, when

we use just the average link length for such estimations. In section 5.3, we provide our

analytical methods, and present the new expressions for estimating the number of am-

plifiers, total fiber link length, and modulation schemes. In section 5.4, we evaluate the
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performance of our proposed methods using 40 real OTNs. Concluding remarks on the

overall effectiveness of the new methods developed in this chapter are presented in the

last section. The work presented in this chapter is reported in [14].

5.2 Link Lengths and Link-Dependent Parameters

In Chapter 3, we developed a statistical model for link lengths in OTNs [2]. We have

shown using statistical analysis and appropriate validation that the link lengths (l) of

OTNs follow the GEV distribution. This distribution has three parameters (i.e., location

parameter, α, scale parameter, β, and shape parameter, ξ) [2], [10]. All these parameters

are found to depend on the average link length of the OTN [2]. In Chapter 3, we have

shown that the average link length depends on the convex area and the number of nodes

of the network [2]. Overall, the GEV distribution of the link lengths can be estimated

with good accuracy, just from the knowledge of the nodes’ locations of OTN.

5.2.1 Properties of GEV Distribution for Link Lengths

The link length model presented in Chapter 3 is based on the probability density

function (PDF) of GEV distribution. The PDF, f(l) and cumulative distribution function

(CDF), F(l) of the GEV distribution are shown in (5.1) and (5.2), respectively.

f(l;α,β, ξ) = f(t;β, ξ) = 1

β
t(−1/ξ)−1 exp(−t−1/ξ) (5.1)

F (l;α,β, ξ) = F (t; ξ) = exp(−t−1/ξ) (5.2)

In (5.1) and (5.2), t = 1 + ξ((l − α)/β). Equations (5.1) and (5.2) are useful in calculating

the probability of link lengths in a specific range. We later use them to estimate the

CAPEX parameters of the OTNs that depend on the link lengths. The three parameters

of the GEV distribution, α, β and ξ depend on the average link length, ⟨l⟩ as shown in

expressions (5.3), (5.4) and (5.5), in which α, β and ⟨l⟩ are in km [2].

α ≈ 0.6577⟨l⟩ + 8.67 (5.3)

β ≈ 0.441⟨l⟩ − 12.37 (5.4)

ξ ≈ 0.0887⟨l⟩ − 1.557

0.5297⟨l⟩ − 13.927
(5.5)
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Using these three expressions, we can estimate the CDF, and PDF of the link lengths.

The parameter ⟨lc⟩ (the estimated version of ⟨l⟩), can be estimated using the convex area

(Ac) and the number of nodes of the OTN (N) as shown in (5.6) [2].

⟨l⟩ ≅ ⟨lc⟩ =
√
Ac√
N − 1

(5.6)

5.2.2 Link-Dependent CAPEX Parameters

In Chapter 2, we have seen that the components of CAPEX of OTNs can be broadly

divided into link-dependent parameters, CL, and node-dependent parameters, CN [1].

Therefore we can write:

CAPEX = CL +CN . (5.7)

In this chapter, we focus only on the former. The CL parameters include number of op-

tical amplifiers (1R regenerators) needed along the links, total length of fiber needed for

the whole network, type of compensation schemes needed at different nodes, number and

location of regenerators (both 2R and 3R) needed, and the choice of optical modulation

and demodulation formats to be used in each link.

5.2.3 Errors in CL Parameter Estimation

Previously used methods for the estimation of CL parameters rely on the average link

length of the OTN. If K(l) denote the parameter value for a link of length l, the typical

approach for estimating the parameter value for the whole OTN uses the expression

LK(⟨lc⟩), where ⟨lc⟩ is the estimated average link length, and L is the number of links in

the OTN. For instance, the total number of amplifiers needed along the channels in an

OTN with a specific span (distance between consecutive amplifiers) length, as presented

in [6] and [7], can be estimated as:

A
′
TE

= L⌊ ⟨lc⟩
span

⌋. (5.8)

In (5.8), the floor function, ⌊a⌋ represents the largest integer less than a. A similar

expression can be used for the estimation of compensation methods required at the ends

of the links between two nodes. The total length of the fiber needed in the network is

computed from the estimated average link length as:

F
′
TE

= L⟨lc⟩. (5.9)
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The use of estimated average link length for the above parameters as shown in (5.8)

and (5.9) can lead to significant errors. We illustrate it in Figure 5.1, which shows the

PDF of link lengths of an OTN (follows GEV distribution). The use of average link

length (or its estimate) for cost estimation amounts to the assumption that all links

have lengths equal to the average length, leading to significant error for certain type of

costs. In comparison to that, the knowledge of the link length distribution provides more

information about the links, and decreases the estimation errors.

Figure 5.1: Estimated link length distribution for the USA100 network [2]. Its average

link length is 310 km, and GEV distribution parameters are: α=213 km, β=124 km and

ξ = 0.167. (The vertical red arrow shows its average link length.)

5.3 Estimations Using Link Statistical Model of OTNs

We have explained the possibility of errors in the calculations of CL parameters using

just the average link length in the previous section. In this section, we calculate the

parameters more accurately using the PDF of link length distribution.

5.3.1 Number of Links in Specific Ranges

We use the PDF of GEV distribution as defined in expressions (5.1) and (5.3) – (5.5),

for the estimation of fraction of the total links in a specific length range. We check the

sum of links in different intervals with the total number of links of the 40 real OTNs.

For any distribution, the net sum of the area under its PDF is 1. For GEV distribution

too:
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∫
∞

−∞

f(l;α,β, ξ)dl = 1. (5.10)

In case of the OTNs, link lengths are positive entities and thus, we have:

∫
∞

0
f(l;α,β, ξ)dl ≅ 1. (5.11)

It is also true that ∫ 0
−∞

f(l;α,β, ξ)dl ≅ 0, for the values of α, β and ξ obtained using (5.3),

(5.4), and (5.5), respectively. In the estimation of link-dependent parameters such as

the total number of amplifiers for the network, we need a real and finite upper limit.

The upper limit of the integral in (5.11) can be replaced by the longest link length (LLL)

of the corresponding network. However, it is not possible to estimate the longest link

length from just the node locations. In the 40 real OTNs used in this analysis, the ratio

of the longest link length (LLL) to that of the average link length (⟨lc⟩) varies from 1.4 to

7.05. After testing those 40 OTNs using linear and nonlinear regressions, we do not get

a good single general expression for LLL (because, the coefficients of determination for

the regressions are quite small). After checking several expressions for LLL, we chose

the approximate values of this parameter as shown below:

i. LLL ≅ 2.7⟨lc⟩, when, ⟨lc⟩ ≤ 100;

ii. LLL ≅ 5⟨lc⟩, when, ⟨lc⟩ > 100.

These values are realistic for the estimation of link probabilities of all the 40 real OTNs

used in this study. With these values we confirm that:

∫
LLL

0
f(l)dl ≅ 1. (5.12)

We can estimate the number of links with lengths in a certain length range using

(5.1), as illustrated in Figure 5.2. This number can be estimated using (5.13).

Lli−lj = L∫
lj

li
f(l;α,β, ξ)dl (5.13)

In (5.13), Lli−lj is the number of links with lengths in the interval li, to lj . As the number

of links in any interval is an integer, we round it to ⌊(Lli−lj)⌉, where ⌊a⌉ is the nearest

integer of a (provides the same result as rounding). Because of (5.12),

[∫
l1

l0=0
f(l)dl + ∫

l2

l1
f(l)dl + ... + ∫

lX=LLL

lX−1
f(l)dl] ≅ 1. (5.14)

The subscript X, in (5.14) represents the number of partitions made in between 0 (= l0)
and LLL (= lX). X = 16, for the case shown in Figure 5.2 (i.e., the link lengths between 0
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Figure 5.2: An OTN with average link length 310 km (so, LLL = 1550 km), and GEV

distribution parameters α=213, β=124, and ξ=0.167. The proportion of links in each

interval of 100 km is given by the area under its corresponding interval (i.e., S0, S1, ...,

S15).

and 1550 km are partitioned into S0, S1, ..., S15). In general, for a fixed span length, X

is the smallest integer not smaller than LLL
span (i.e., X = ⌈LLLspan⌉). Using expressions (5.12),

(5.13) and (5.14), the number of links in different intervals obeys the condition:

L = ⌊(Ll0−l1 +Ll1−l2 + ... +LlX−1−lX )⌉. (5.15)

Expression (5.15) holds good for all the 40 real OTNs used in this chapter for different

span lengths between 0 and LLL. It vindicates the choices made for LLL in (5.12), for

OTNs with different values of ⟨lc⟩.

5.3.2 Total Number of Amplifiers

Optical amplifiers are needed to strengthen the weak signal in OTNs. Its exact num-

ber is essential for planners to estimate the CL part of the total CAPEX. The estimation

in (5.8) is based on the average link length, and the outcome can be erroneous in the

majority of the cases.

Here, we use the statistical model which takes the distribution of the link lengths

into account. In this method, we reduce the errors significantly. We make partitions of

the link length distribution as per length intervals that fall between integer multiples

of the span length. These partitions determine the number of amplifiers needed for

the whole network. This method uses expressions (5.12) – (5.15), and is illustrated
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in Figure 5.2, which considers spans of 100 km between amplifiers. The links having

lengths between l0(= 0) and l1(= 100) do not need any amplifier as they are too short.

However, the links between l1(= 100) and l2(= 200) need one amplifier each, the links

between l2(= 200) and l3(= 300) need two amplifiers each, and so on till the last interval,

lX−1 – lX which needs X − 1 amplifiers per link. In general, the number of amplifiers

required for the length span, li – li+1 is:

Ali−li+1 = iLli−li+1 . (5.16)

The total number of amplifiers estimated in this method (ATE ), after rounding, is:

ATE = ⌊
X−1

∑
i=0

Ali−li+1⌉ = ⌊
X−1

∑
i=0

iLli−li+1⌉; (5.17)

which can be simplified as:

ATE = ⌊0 ⋅Ll0−l1 + 1 ⋅Ll1−l2 + ... + (X − 1) ⋅LlX−1−lX ⌉.

The estimation, obtained using equation (5.17) is more accurate than the common method

based on equation (5.8), where just the average link length is used (as shown later in

section 5.4 ).

5.3.3 Types of Modulation Schemes

Distance dependent modulation-demodulation schemes are found to be more effective

than the singular choices (one type for the whole network) [11]. Like the number of

optical amplifiers, types of modulation and demodulation schemes at each node depend

on the link lengths.

A similar estimation as formulated in subsection 5.3.2, can be used to determine

the type of modulation. The number of links corresponding to each type of modulation

format can be estimated by applying the half distance law proposed in [11] and [12], to

the link distribution model. This law lowers the spectral efficiency with the increasing

link lengths for overall optimum performance. According to that, the modulation format

must be changed when the length of the span (initial span was chosen to be 375 km in

[12]) is doubled as shown in Figure 5.3. So links with lengths of 0 – 375 km, 375 – 750

km, 750 – 1500 km, and 1500 – 3000 km are to be modulated using 16QAM, 8QAM,

QPSK and BPSK, respectively.

As a result, the number of links that use 16QAM, 8QAM, QPSK and BPSK modu-

lation formats in a network are respectively given by N16QAM(= NS), N8QAM(= NE),
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NQPSK(= NQ) and NBPSK(= NB) in equation (5.18). The corresponding results are

presented in Table 5.2, and has been discussed in the next section.

Figure 5.3: An OTN with average link length 930 km, and GEV distribution parameters

α=600, β=390, and ξ=0.167. It shows the link probabilities according to the half distance

law proposed in [12].

N16QAM = NS = ⌊L∫
375

0
f(l;α,β, ξ)dl⌉; (5.18a)

N8QAM = NE = ⌊L∫
750

375
f(l;α,β, ξ)dl⌉; (5.18b)

NQPSK = NQ = ⌊L∫
1500

750
f(l;α,β, ξ)dl⌉; (5.18c)

NBPSK = NB = ⌊L∫
3000

1500
f(l;α,β, ξ)dl⌉. (5.18d)

Estimations for other link-dependent parameters such as the compensation methods

required at the ends of the links, the number and location of regenerators and pre-

amplifiers needed can be done using similar methods.

5.3.4 Total Length of Fiber

Cost of fiber is related to the length of the fiber the operators need to deploy in the

network for the planned operations. It is a significant part of the CAPEX. In general,

estimation of the total fiber cost is obtained by multiplying the cost per unit length by

the average link length (⟨l⟩) and the number of links (L). Corresponding total length of

fiber, FT , is given by
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FT = L⟨l⟩. (5.19)

In the planning phase, the exact value of ⟨l⟩ is not known, and we estimate its value ⟨lc⟩.
It gives errors because,

⟨l⟩ ≠ ⟨lc⟩. (5.20)

So, using ⟨lc⟩ we have:

Error = L (⟨l⟩ − ⟨lc⟩) . (5.21)

Using the distribution of the link lengths (estimated from ⟨lc⟩) this error can be reduced.

The accuracy in this case is dependent on the accuracy of the estimated average link

length. Considering the link lengths as a random variable l, with probability density

function f(l), and by setting the lower limit to 0 (as negative link lengths are not possible)

the total length of fiber (FTE ) is given by:

FTE = L∫
∞

0
lf(l)dl. (5.22)

The entity shown in the integral in (5.22) represents the expected value of l (thus, the

multiplication of L, and the expected value of l is the total length of fiber).

5.4 Evaluation of the Developed Methods

In this section, we evaluate the performances of the proposed statistical methods

by comparing them with alternative methods based on the same input parameters in

40 real OTNs. We start by calculating the exact parameters, i.e., the total number of

amplifiers, AT and the total fiber length, FT as shown in Table 5.1. These values are

obtained using the complete information of the OTNs. These exact results are compared

with the results ATE and FTE obtained using our proposed estimation methods based

on (5.17) and (5.22), respectively, which only need partial information of the OTN. The

results are shown in Table 5.1, which also provides the estimations A
′
TE

and F
′
TE

based

on (5.8) and (5.9), respectively and hence represent the commonly used methods. These

estimations (A
′
TE

and F
′
TE

) use the same information as our proposed statistical methods.

In Table 5.1, N and L are the number of nodes and links of the networks, respectively.

The parameter ⟨lc⟩ is the estimated average link length, obtained using (5.6), based on

just the location of the nodes of the OTNs. The span length for evaluating AT , ATE and

A
′
TE

was taken to be 100 km.
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The performances of the estimation methods are evaluated by the percentage of error

using expression (5.23). The errors are estimated with respect to the exact values (i.e.,

AT and FT ).

Error(%) = Exact −Estimated
Exact

× 100. (5.23)

In Table 5.1, column ‘ETE ’ represents the percentage errors of the number of ampli-

fiers estimations performed with our proposed method (ATE ) compared with the exact

calculations (AT ). Similarly, column ‘E
′
TE

’ shows the errors in the number of amplifiers

based on the common method (A
′
TE

). Columns ‘EFE ’ and ‘E
′
FE

’ show the percentage er-

rors related to the total fiber length when using the proposed and the common methods,

respectively.

As can be seen from Table 5.1, it is clear that the estimation of number of amplifiers

based on the proposed method provides, in general, significant error reduction, when

compared with the common method. For the estimation of number of amplifiers, in six

cases both methods provide same results; in 28 cases the proposed method is better than

the common method, and only in six cases it gives worse results. Overall performance in

terms of the absolute average error (see row ‘Absolute Average’ under columns ‘ETE(%)’
and ‘E

′
TE

(%)’) with the proposed method is quite better than the common method: the

average error is 14.74% for our proposed distribution based method, whereas for the

common method based on the average link length it is 31.10%. We have found that

these differences between the two methods are almost independent of the span lengths.

On the other hand, for the total length of fiber, we obtain an improvement of just

1.25% (= EFE(%) – E
′
FE

(%)), (see row ‘Absolute Average’ under columns ‘EFE(%)’ and

‘E
′
FE

(%)’).
Using the half distance law proposed in [12], we estimate the types of modulation

formats required for the links of the 40 real OTNs in three different methods (see Table

5.2), viz.: UELL (Using Exact Link Lengths), UALL (Using Average Link Length), and

ULLD (Using Link Length Distribution). According to this law, BPSK (B in Table 5.2),

QPSK (Q in Table 5.2), 8QAM (E in Table 5.2), and 16QAM (S in Table 5.2) formats can

be used for transmissions up to 3000 km, 1500 km, 750 km, and 375 km, respectively.

The numbers that precede S, E, Q and B in Table 5.2 are the number of links that need

to use that modulation format. In column ‘UELL’, is the exact number for the various

modulation formats required according to the half distance law. The sum of the numbers

preceding S, E, Q and B under UELL column is equal to the total number of links (L) of

the associated OTN. In column ‘UALL’, we provide the estimation using ⟨lc⟩ alone (i.e.,

⟨lc⟩ determines whether it is S or E or Q or B for all the links). In column ‘ULLD’ is our
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Table 5.1: Comparison between different methods for 40 real OTNs. The first five columns
represent the basic network information, the next five (ATE

, A
′

TE
, AT , ETE

(%) and E
′

TE
(%)) are

the estimations related to the optical amplifiers, and the last five columns (FTE
, F

′

TE
, FT , EFE

(%),
and E

′

FE
(%)) are the estimations related to the total fiber length. (⟨lc⟩, FTE

, F
′

TE
and FT are in

km).
No. Network N L ⟨lc⟩ ATE

A
′

TE
AT ETE

(%) E
′

TE
(%) FTE

F
′

TE
FT EFE

(%) E
′

FE
(%)

1 Via NET[2] 9 12 563 61 60 64 4.69 6.25 6737 6756 6852 -1.68 -1.4
2 BREN[2] 10 11 95 4 0 4 0 100 1034 1045 1034 0 1.06
3 RNP[2] 10 12 623 68 72 86 20.93 16.28 7456 7476 8976 -16.93 -16.71
4 Abilene Core[2] 10 13 1104 127 143 134 5.22 -6.72 14258 14352 13871 2.79 3.47
5 LEARN[2] 10 12 198 17 12 16 -6.25 25 2362 2376 2268 4.14 4.76
6 CompuServe[2] 11 14 1007 127 140 155 18.06 9.68 14068 14098 16254 -13.45 -13.26
7 vBNS[2] 12 17 1017 150 170 155 3.23 -9.68 17229 17289 16405 5.02 5.39
8 CESNET[2] 12 19 87 5 0 6 16.67 100 1634 1653 1729 -5.49 -4.4
9 NSFNET[2] 14 21 894 173 168 218 20.64 22.94 18717 18774 22806 -17.93 -17.68

10 ITALY[2] 14 29 241 55 58 67 17.91 13.43 4556 4579 5320 -14.36 -13.93
11 ACONET[2] 15 22 80 5 0 20 75 100 1738 1760 2618 -33.61 -32.77
12 MZIMA[2] 15 19 908 154 171 150 -2.67 -14 16141 17252 16188 -0.29 6.57
13 GARR-B[2] 16 27 230 48 54 46 -4.35 -17.39 6115 6210 6048 1.11 2.68
14 ARNES[2] 17 20 36 0 0 0 0 0 716 720 760 -5.79 -5.26
15 GERMANY[2] 17 26 142 23 26 23 0 -13.04 3660 3692 3718 -1.56 -0.7
16 REDIRIS[2] 17 28 218 47 56 66 28.79 15.15 6071 6104 8932 -32.03 -31.66
17 Lambada Rail[2] 19 23 782 157 161 142 -10.56 -13.38 17237 17986 15433 11.69 16.54
18 MEMOREX[2] 19 24 150 23 24 21 -9.52 -14.29 3345 3600 3288 1.73 9.49
19 CANARIE[2] 19 26 554 130 130 160 18.75 18.75 14414 14404 17368 -17.01 -17.07
20 EON[2] 19 37 717 238 259 220 -8.18 -17.73 26462 26529 27898 -5.15 -4.91
21 ARPANET[2] 20 32 704 207 224 253 18.18 11.46 22512 22528 26848 -16.15 -16.09
22 OPTOSunet[2] 20 24 101 11 24 9 -22.22 -166.67 2398 2424 2400 -0.08 1
23 Hibernia USA[2] 20 27 323 72 81 65 -10.77 -24.62 8366 8721 7533 11.06 15.77
24 PIONIER[2] 21 25 123 17 25 16 -6.25 -56.25 3047 3075 3275 -6.96 -6.11
25 COX[2] 24 40 566 203 200 211 3.79 5.21 22576 22640 26480 -14.74 -14.5
26 SANET[2] 25 28 39 0 0 0 0 0 1065 1092 1008 5.65 8.33
27 NEWNET[2] 26 31 647 176 186 150 -17.33 -24 19587 20057 16368 19.67 22.54
28 PORTUGAL[2] 26 36 230 64 72 45 -42.22 -60 8153 8280 7308 11.56 13.3
29 RENATER[2] 27 35 162 37 35 36 -2.78 2.78 5620 5670 5425 3.59 4.52
30 IBN31[2] 31 51 143 46 51 40 -15 -27.5 7221 7293 6681 8.08 9.16
31 BULGARIA[2] 32 33 65 2 0 1 -100 100 2080 2145 1683 23.59 27.45
32 GEANT2[2] 32 52 596 279 260 315 11.43 17.46 30906 30992 34372 -10.08 -9.83
33 LONI[2] 33 37 56 0 0 0 0 0 2036 2072 2294 -11.25 -9.68
34 Metrona[2] 33 41 84 10 0 10 0 100 3352 3444 2993 11.99 15.07
35 COST37[2] 37 57 456 227 228 223 -1.79 -2.24 25364 25992 25023 1.36 3.87
36 CERNET[2] 37 53 510 243 265 314 22.61 15.61 26948 27030 33708 -20.05 -19.81
37 OMNICOM[2] 38 54 312 138 162 133 -3.76 -21.8 16759 16848 16092 4.14 4.7
38 INTERNET2[2] 56 61 413 218 244 186 -17.2 -31.18 25416 27258 20374 24.75 33.79
39 CORONET[2] 75 99 367 309 297 338 8.58 12.13 36115 36333 32274 11.9 12.58
40 USA100 [1] 100 171 318 446 513 390 -14.36 -31.54 54089 54378 53010 2.04 2.58

Absolute Average: 14.74 31.10 10.26 11.51

proposed estimation using (5.18).

We evaluate the performances of estimation of modulation formats using the total

number of correct modulation formats predicted by the methods. We denote it as C,

the number of links for which the modulation formats have been estimated correctly

by ULLD or UALL with respect to UELL. It is estimated according to expression (5.24).

Min[], in (5.24), is the minimum selecting function, whose output is the smallest number

among its arguments in []. Z ∈ {S,E,Q,B}, and NZ/UELL is the number under column

‘UELL’ in the Z category. NZ/OM , is the corresponding number in the Z category in

other methods (OMs) under column ‘ULLD’ and ‘UALL’ for the estimation of CULLD and

CUALL, respectively. We estimate the correct predictions in each modulation category
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(i.e., S, E, Q and B) and add them together as shown in (5.24) to get the total number of

correct predictions (C).

C = ∑
Z∈{S,E,Q,B}

Min[NZ/UELL,NZ/OM ]. (5.24)

In Table 5.2, the errors are estimated using expression (5.25). The errors in UALL

and ULLD are estimated with respect to UELL (columns ‘EUALL(%)’ and ‘EULLD(%)’).
For instance, as shown in Table 5.2, Abilene Core (row 4) has 13 links and its ⟨lc⟩ is 1104

km. According to the half distance law, the UALL estimation is 13Q, meaning that all

the 13 links will have the QPSK modulation format. However, the ULLD estimation

results in 1S – 4E – 5Q – 3B, that is, 1 link will have 16QAM, 4 links will have 8QAM,

5 links will have QPSK and 3 links will have BPSK. So, the value of C for Abilene Core

in UALL (=CUALL in Table 5.2) is 6 (= Min [13, 6], because between ‘13Q’ and ‘2S – 3E

– 6Q – 2B,’ only 6 links are found to have common modulation formats as estimated in

the respective methods), and C for ULLD (=CULLD in Table 5.2) is 11 (= Min [1, 2] + Min

[4, 3] + Min [5, 6] + Min [3, 2], because between ‘1S – 4E – 5Q – 3B’ and ‘2S – 3E – 6Q

– 2B,’ 11 links are found to have common modulation formats as estimated using the

respective methods).

Error (%) = L −C
L

× 100. (5.25)

The estimation of ULLD values uses the same information as for the UALL values

(i.e., node locations and number of links). However, ULLD provides better estimations

(see the average error values in columns ‘EULLD(%)’ and ‘EUALL(%)’, last row in Table

5.2), because it successfully estimates the number of links in the four specified length

ranges. Out of the 40 networks, only in case of 3 ULLD provides a larger error than the

UALL. In fact, these errors occur in case of a few small networks with large number of

links, and are quite small in value (see the corresponding errors in column ‘EULLD(%)’).
It is worth noting that the proposed ULLD method is highly accurate in predicting the

set of modulations schemes with an average error of only 6.64%, whereas the com-

mon method entails an average error of 32.11% (see row ‘Average’, columns ‘EULLD ’

and ‘EUALL’ in Table 5.2). This is significant, given that the method only relies on the

knowledge of the node locations and the total number of links.
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Table 5.2: Choosing modulation formats for 40 real OTNs using the average link length ⟨lc⟩
(column UALL), link length distribution (column ULLD) and exact link lengths (column UELL).
S, E, Q and B stand for 16QAM, 8QAM, QPSK and BPSK respectively (⟨lc⟩ is in km).
No. Network ⟨lc⟩ UELL ULLD UALL CULLD CUALL EULLD(%) EUALL(%)

1 Via NET[2] 563 4S – 6E – 1Q – 1B 4S – 5E – 2Q – 1B 12E 11 6 8.33 50.00
2 BREN[2] 95 11S 11S 11S 11 11 0.00 0.00
3 RNP[2] 623 4S – 4E – 2Q – 2B 4S – 5E – 3Q 12E 10 4 16.67 66.67
4 Abilene Core[2] 1104 2S – 3E – 6Q – 2B 1S – 4E – 5Q – 3B 13Q 11 6 15.38 53.85
5 LEARN[2] 198 11S – 1E 11S – 1E 12S 12 11 0.00 8.33
6 CompuServe[2] 1007 3S – 3E – 5Q – 3B 2S – 4E – 6Q – 2B 14Q 12 5 14.29 64.29
7 vBNS[2] 1017 3S – 4E – 6Q – 4B 2S – 5E – 7Q – 3B 17Q 15 6 11.76 64.71
8 CESNET[2] 87 19S 19S 19S 19 19 0.00 0.00
9 NSFNET[2] 894 3S – 7E – 6Q – 5B 3S – 7E – 8Q – 3B 21Q 19 6 9.52 71.43
10 ITALY[2] 241 22S – 7E 25S – 4E 29S 26 22 10.34 24.14
11 ACONET[2] 80 20S – 2E 22S 22S 20 20 9.09 9.09
12 MZIMA[2] 908 4S – 5E – 8Q – 2B 3S – 7E – 7Q – 2B 19Q 17 8 10.53 57.89
13 GARR-B[2] 230 21S – 6E 24S – 3E 27S 24 21 11.11 22.22
14 ARNES[2] 36 20S 20S 20S 20 20 0.00 0.00
15 GERMANY[2] 142 26S 25S – 1E 26S 25 26 3.85 0.00
16 REDIRIS[2] 218 21S – 7E 25S – 3E 28S 24 21 14.29 25.00
17 Lambada Rail[2] 782 6S – 10E – 6Q – 1B 5S – 9E – 7Q – 2B 23Q 21 6 8.70 73.91
18 MEMOREX[2] 150 24S 23S – 1E 24S 23 24 4.17 0.00
19 CANARIE[2] 554 10S – 10E – 3Q – 3B 10S – 11E – 5Q – 1B 26E 24 10 7.69 61.54
20 EON[2] 717 9S – 17E – 9Q – 2B 9S – 15E – 11Q – 2B 37E 35 17 5.41 54.05
21 ARPANET[2] 704 4S – 12E – 13Q – 3B 8S – 13E – 9Q – 2B 32E 27 12 15.63 62.50
22 OPTOSunet[2] 101 24S 24S 24S 24 24 0.00 0.00
23 Hibernia USA[2] 323 20S – 6E – 1Q 19S – 7E – 1Q 27S 27 12 15.63 62.50
24 PIONIER[2] 123 25S 25S 25S 25 25 0.00 0.00
25 COX[2] 566 14S – 17E – 7Q – 2B 14S – 17E – 8Q – 1B 40E 39 17 2.50 57.50
26 SANET[2] 39 28S 28S 28S 28 28 0.00 0.00
27 NEWNET[2] 647 12S – 12E – 7Q 9S – 13E – 8Q – 1B 31E 28 12 9.68 61.29
28 PORTUGAL[2] 230 32S – 4Q 32S – 4E 36S 32 32 11.11 11.11
29 RENATER[2] 162 34S – 1E 34S – 1E 35S 35 34 0.00 2.86
30 IBN31[2] 143 51S 50S – 1E 51S 50 51 1.96 0.00
31 BULGARIA[2] 65 33S 33S 33S 33 33 0.00 0.00
32 GEANT2[2] 596 15S – 22E – 10Q – 5B 17S – 22E – 11Q – 2B 52E 49 22 5.77 57.69
33 LONI[2] 56 37S 37S 37S 37 37 0.00 0.00
34 Metrona[2] 84 41S 41S 41S 41 41 0.00 0.00
35 COST37[2] 456 29S – 22E – 5Q – 1B 28S – 22E – 7Q – 1B 57E 56 22 1.75 61.40
36 CERNET[2] 510 17S – 23E – 9Q – 4B 22S – 22E – 8Q – 1B 53E 48 23 9.43 56.60
37 OMNICOM[2] 312 37S – 16E – 1Q 40S – 12E – 2Q 54S 50 37 7.41 31.48
38 INTERNET2[2] 413 46S – 12E – 3Q 34S – 21E – 5Q – 1B 61E 49 12 19.67 80.33
39 CORONET[2] 367 53S – 35E – 11Q 63S – 30E – 6Q – 1B 99S 89 53 10.10 46.46
40 USA100 [1] 318 133S – 35E – 3Q 123S – 41E – 7Q 171S 161 133 5.85 22.22

Average: 6.64 32.11

5.5 Chapter Summary

In the initial phases, when designing OTNs, estimation of link-dependent parame-

ters is an important step. At the early stage, details of network topology may be not

known. So it is mandatory to have estimation methods based only on partial knowl-

edge of the network configuration. In this chapter, it is shown that the most important

link-dependent network parameters can be estimated with improved accuracy by using

methods based on the link length statistical model, when compared with the alternative

methods based on the average link length. In the estimation of the total number of am-

plifiers, the error (compared with exact solution) is reduced significantly from 31.10%

for the method based on the average link length, to 14.74% achieved with our proposed

method. The improvement is very significant when dealing with the type of modulation
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formats to be used on various links: here the proposed method implies an error reduction

from 32.11% to 6.64%. Of course this method for the modulation formats is suitable for

the opaque OTNs (as the shortest path lengths are required for the transparent OTNs,

it will be evaluated in Chapter 7). For total fiber length, the accuracy of the proposed

method is not very significant as we got an average improvement of just 1.26%. Overall,

the improvements are obtained without the requirement of additional information.
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CHAPTER 6

Statistical Modeling of Shortest
Path Lengths

6.1 Introduction

SHORTEST PATH LENGTHS are important physical parameters of optical transport

networks (OTNs). They exhibit several structural and dynamical characteristics

of the OTNs. In this chapter, we analyze the shortest path lengths between the node

pairs of real OTNs. Using the results of the analysis, we present a statistical character-

ization of physical shortest path lengths and their key properties in OTNs. The prime

focus of this chapter is to obtain a statistical model for the shortest path lengths of OTNs

that can be used for several practical applications. We propose a statistical model and

show that the key statistical parameters such as the mean, median, standard deviation

and an upper bound of the shortest path lengths can be estimated from the convex area

of the OTN, which depends only on the node locations. We also provide the formalism

for its estimation from basic information of the OTNs.

6.1.1 Motivation

Estimation of the shortest paths between two nodes in a network is a classic and

fundamental problem in graph theory, network science, electrical engineering, computer

science and several other related fields [1]. Shortest path lengths between the node pairs

of the OTNs are required for estimating several characteristics and parameters of the

77
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OTNs. Knowledge of the shortest path lengths between any two nodes in OTNs is used

for routing, traffic management, control and several other network management and

design purposes. The shortest path lengths can also be used for estimating the associ-

ated components of capital expenditure (CAPEX), operational expenditure (OPEX), and

management expenditure (MANEX) of the OTNs [2].

6.1.2 Related Work

Shortest path lengths are fundamental entities in many areas of science, mathemat-

ics and engineering [1]. Several studies have been conducted on the topological analysis

of OTNs. Main topological characteristics, such as the physical lengths of links and

paths, and the number of hops of each path play important roles in understanding the

behavior of graphs and networks that arise in various contexts, including OTNs [3].

Shortest path lengths in the context of large graphs such as the Internet have been the

subject of several research efforts [4]. In [4] and [5], the authors presented several prop-

erties of the shortest path lengths in large graphs collected from different websites, and

provided approximate expressions for such estimations. Improvement of path length

estimation is studied in [6] via network distance-based coordinate systems, with an em-

phasis on the accuracy of the associated parameters. In [7], the shortest path lengths in

random networks are found to follow Weibull distribution. In the case of OTNs, there

have been several efforts focusing on topological properties related to hop lengths of

paths, link lengths, as well as their applications in network design and optimization.

Several expressions are proposed for fast estimation of parameters such as the number

of hops and performance analysis of OTNs in [2] and [3]. The authors in [3] analyzed

the hop lengths of paths and provided an approximate expression for the average num-

ber of hops. Survivable hierarchical optical networks are analyzed, and their design

aspects are presented with dedicated wavelength path protection in [8]. Several OTN

parameters are estimated and dimensioning models are proposed in [9] – [12]. In these

studies, OTN costs and related parameters are estimated with incomplete information.

In [13] a statistical model for link lengths is provided (also presented in Chapter 3),

which depends only on the node locations of the OTNs. It is also shown that the convex

area (the bounded interior area of the smallest convex set comprising of all the nodes)

is more effective than the other areas (i.e., exact area and the geographical area) in the

network-related estimations in OTNs. Key parameters of the OTNs such as the average

link length, and the link length distribution model are estimated with good accuracy

using the convex area. The model developed in [13] can also be used to estimate the

link-dependent parameters of the OTNs [14] which also presented in Chapter 5. Con-
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vex area can be estimated from the circumferential ellipse of the OTN with reasonable

accuracy [15].

6.1.3 Chapter Outline

The rest of this chapter is organized in 4 sections. In section 6.2, real OTN topologies

are analyzed and a new model is proposed for the shortest path lengths between the

nodes. In section 6.3, expressions are developed for the mean, median and standard

deviation of the shortest path lengths, using only the convex area and the number of

nodes of the OTNs. In section 6.4, estimation of the model proposed in section 6.2 is

presented, requiring only the basic parameters of the OTNs. In section 6.5, the main

concluding remarks on the effectiveness of the proposed models are presented. The work

presented in this chapter is reported in [16].

6.2 Analysis of Shortest Path Lengths in OTNs

For this study, we analyzed 40 real OTNs. The total number of shortest paths be-

tween unique node pairs in an OTN is determined by its total number of nodes. For a

network with N nodes, there are N(N − 1)/2 (= P ) shortest path lengths. In general,

the actual shortest path lengths in an OTN would depend on factors such as the link

lengths, the node adjacencies, and the total number of links, L. The smallest shortest

path length is equal to the shortest link length of the network.

In order to identify a general statistical distribution for the shortest path lengths,

we analyzed a diverse set of OTNs. We included real networks of all the 6 continents in

this analysis, with OTNs of small, medium as well as large sizes (having average link

lengths spanning from 35 km to 1190 km). These 40 networks are quite well known, and

have been used in several studies, and described in [13] – [19]. Graphical topologies of

these networks can be found in [20] and [21]. Out of these 40 OTNs, 30 are mentioned

and used in [13] – [15], and the rest are listed in [22] – [31].

6.2.1 Measurement of Link Lengths, Shortest Path Lengths and Con-
vex Areas

For the statistical analysis of the shortest path lengths in 40 real OTNs, we need the

exact lengths of shortest paths between the node pairs of the OTNs, and hence the exact

link lengths. In this study, Google Earth Professional (version 6.2) was used to measure

the exact (great circle) link lengths of the 40 real OTNs. Accuracy of the measurement



80 Chapter 6. Statistical Modeling of Shortest Path Lengths

of link lengths was cross-checked using OPNET Transport Planner 15 (a commercial

software tool for network dimensioning). Both Google Earth Professional and OPNET

Transport Planner 15 provided almost the same results. The shortest path lengths be-

tween each pair of the nodes of the OTNs were calculated by adding up the associated

link lengths. As shown in Chapter 3, we measured the convex areas of the OTNs using

Google Earth Professional (version 6.2).

6.2.2 Statistical Distributions of Shortest Path Lengths

All the shortest path lengths in all of the 40 real OTNs were calculated, and their

statistical properties were studied for the development of a suitable distribution. It was

found from the analysis that the shortest path length statistics do not fit with the com-

monly used distributions such as normal and Rayleigh. Besides that, we found that none

of the one-, and two-parameter distributions is suitable for the shortest path lengths of

the 40 real OTNs. Therefore, we extended this analysis to a wide pool of 65 distribu-

tions. We used, EasyFit (a software from Mathwave.com) for this statistical analysis

(also, cross-checked using Matlab, wherever possible). For each statistical distribution,

we found the optimal parameters for each network’s shortest path length distribution,

and evaluated its validity. Out of the 65 distributions analyzed for this study, the top 15

best fitting are presented in Table 6.1.

Table 6.1: Best Fitting Distributions and Their Number of Input Parameters (No. I/P), Average
(Avg. KSS), Lowest (L. KSS) and Highest (H. KSS) KSS Values for the Shortest Path Lengths of
the OTNs

No. Distribution No. I/P Avg. KSS L. KSS H. KSS
1 Wakeby 5 0.0408 0.0129 0.0837
2 Johnson SB 4 0.0423 0.0166 0.0788
3 General Pareto 4 0.0533 0.0288 0.0863
4 Beta 4 0.0560 0.0308 0.1492
5 Gamma (4P) 4 0.0577 0.0199 0.1210
6 Log Pearson 3 3 0.0585 0.0202 0.1255
7 GEV 3 0.0589 0.0252 0.1073
8 Error 3 0.0615 0.0215 0.1260
9 Weibull (3P) 3 0.0653 0.0160 0.1343
10 Weibull 2 0.0677 0.0170 0.1715
11 Log-Normal (3P) 3 0.0691 0.0259 0.1373
12 Pearson 6 4 0.0692 0.0263 0.1405
13 Gamma 3 0.0702 0.0276 0.1450
14 Log-Logistic (3P) 3 0.0706 0.0327 0.1309
15 Uniform 2 0.0727 0.0295 0.1259
(nP) in (⋅) is the n-parameter version of the distribution

We measured the validity or the ‘goodness-of-fit’ of the distributions in terms of the

Kolmogorov-Smirnov (KS) statistic (KSS value). We choose the KS test because it is
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suitable for small number of samples, and can also be applied to medium and large ones

(suitable for our case, since the number of shortest paths of the networks, P, ranges

from 21 to 528). Furthermore, this test is also appropriate for bounded distributions,

for which the Anderson-Darling (AD) test does not provide significant outlook on the

fitting. In our pool of 65 different distributions, several are bounded, giving us further

motivation to choose the KS test for the goodness-of-fit. The smaller the Kolmogorov-

Smirnov statistic is, the smaller the maximum difference is between the hypothesized

cumulative distribution function (CDF) and the empirical distribution function of the

real data (thus better fitting the distribution is for the samples). The ranking of the

distributions in Table 6.1 has been done as per their average KSS values (Avg. KSS

in Table 6.1). These values were obtained for each of the 65 distributions, by taking

the average over the KSS values obtained for each one of the 40 studied networks. The

lowest value of KSS (L. KSS in Table 6.1) and the highest value of KSS (H. KSS in Table

6.1) among the 40 OTNs have also been presented in Table 6.1. When the confidence

interval (CI) of all the KS tests are set to 0.95 (significance level = 0.05), the results

obtained for all the networks are statistically acceptable for the first two distributions

(i.e., Wakeby and Johnson SB) shown in Table 6.1.

6.2.3 Selection of the Suitable Distribution

As can be seen from Table 6.1, Wakeby distribution has the lowest Avg. KSS and L.

KSS for the 40 real OTNs out of the 65 distributions used for this analysis. However, this

distribution needs five input parameters, and its H. KSS is larger than the H. KSS value

for the Johnson SB distribution. Furthermore, Wakeby distribution does not have a well-

defined expression for its probability density function (PDF). It is normally expressed in

terms of its quantile function. The average KSS value of Johnson SB distribution is the

second smallest among the 65 distributions analyzed (see Table 6.1). It is better than all

of its nearest rivals in almost all aspects except for the Wakeby distribution. As can be

seen in Table 6.1, the highest value of KSS (H. KSS), is the lowest for this distribution. In

terms of the lowest value of KSS (L. KSS), the Johnson SB distribution is very much close

to Wakeby distribution (L. KSS column of Table 6.1), and it is lower than the L. KSS of all

other distributions. In this distribution, the PDF can be either unimodal, in which case,

it increases initially up to the mode and then decreases with the increase of shortest path

lengths; or bimodal with two different modes. The availability of the bimodal version of

Johnson SB distribution makes it a better choice than the other distributions including

the Wakeby, because this property is exhibited by 6 networks with large convex area

and small number of nodes. Therefore, this distribution is preferred for the shortest
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path lengths of the OTNs. In Figure 6.1, we show the shortest path length histogram for

a real OTN and its best-fit Johnson SB distribution.

Figure 6.1: Johnson SB distribution fitted to the path length histograms of Pionier net-

work [13]. The KSS for this fitting is: 0.0255.

6.2.4 Basics of Johnson SB Distribution

Johnson SB distribution is one of the transformed distributions of the ‘Johnson Sys-

tem’ family. It is the only bounded distribution of this family of distributions (‘S’ stands

for ‘system’, and the subscript ‘B’ indicates the boundedness). Johnson SB is related to

the normal distribution in several ways [32] . It can be regarded as a modified lognormal

distribution [33]. However, it is different from the commonly known lognormal family

of distributions because it has four input parameters, rather than the typical value of

three. It is a true four-parameter lognormal distribution [33], with the parameters: δ, γ,

λ, and ζ. Its PDF and CDF are shown in (6.1) and (6.2).

f (z;γ, δ, λ, ζ) = δ
λ
√

2πz(1−z)
exp [−1

2
(γ + δlog ( z

1−z
))2] (6.1)

F (z;γ, δ, λ, ζ) = Φ (γ + δlog ( z
1−z

)) (6.2)

Here, z = p−ζ
λ , in which p represents the shortest path length variable, and Φ(x) =

1
√

2π ∫
x

0 e−(
t2

2
)dt. This integral presented as Φ(x), is the CDF of a standard normal distri-

bution, whose mean is 0, and standard deviation is 1. From this, it is clearly indicated

that x [= γ + δlog ( z
1−z

) = γ + δlog ( p−ζ
ζ+λ−p)], is a unit normal variable, and thus p is a log-

normal variable.
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Table 6.2: Parameters of shortest path lengths of 40 real OTNs. The first 10 columns show the
network attributes, obtained from measurement. The last 5 columns (γ, δ, λ, ζ, and KSSJSB

) are
obtained from their distribution fitting (⟨Ac⟩ is in Sq. km; ⟨p⟩, m, σp, pM + pm, λ and ζ are in km).

# Network N L ⟨D⟩ Ac ⟨p⟩ m σp pM + pm γ δ λ ζ KSSJSB

1 SANREN[23] 7 7 2.00 508348 874 913 432 1628 -0.1918 0.7582 1735 -75.46 0.0788
2 Via NET[13] 9 12 2.67 1267876 1211 1035 698 2959 0.3948 0.5895 2491 239.25 0.0615
3 BREN[13] 10 11 2.20 42196 210 210 101 488 0.5892 1.2047 577 -18.45 0.0520
4 RNP[13] 10 12 2.40 1814676 1558 1468 913 3814 0.3848 0.7198 3626 113.62 0.0546
5 LEARN[13] 10 12 2.40 183296 464 409 255 1030 0.2848 0.7345 10105 30.29 0.0686
6 Abilene Core[13] 10 13 2.60 5698507 2204 2025 1174 4964 0.3598 0.6334 4327 459.96 0.0699
7 SINET[24] 11 13 2.36 406969 580 499 346 1580 1.0951 1.0312 1976 5.80 0.0483
8 CompuServe[13] 11 14 2.55 5442148 2420 2276 1429 5375 0.1811 0.5259 4695 323.84 0.0619
9 vBNS[13] 12 17 2.83 6279993 2351 2160 1418 5107 0.1690 0.5512 4763 202.75 0.0585

10 CESNET[13] 12 19 3.17 45957 194 194 90 432 0.3194 1.1362 480 -17.53 0.0601
11 AARNET[22] 13 13 2.00 7591320 2481 2305 1495 6378 0.6582 0.9136 7176 -94.21 0.0468
12 FLRNET[30] 13 14 2.15 156097 422 406 238 1026 0.7292 1.2512 1426 -112.72 0.0533
13 NSFNET[13] 14 21 3.00 6007605 2304 2221 1186 4681 0.1563 0.7792 4832 71.31 0.0502
14 ITALY[13] 14 29 4.14 436577 524 497 256 1137 0.2106 0.8126 1076 39.89 0.0384
15 HEANET[31] 15 15 2.00 55361 297 289 154 630 0.1115 0.7372 604 11.49 0.0302
16 MZIMA[13] 15 19 2.53 6805153 2419 2344 1279 5330 0.2350 0.8527 5549 -56.88 0.0530
17 ACONET[13] 15 22 2.80 52826 311 297 169 694 0.2398 0.9029 762 -29.90 0.0485
18 KAREN[28] 16 17 2.13 349015 555 503 325 1418 0.8270 0.9464 1652 12.24 0.0402
19 BELNET[25] 16 18 2.25 17466 139 132 70 341 0.7989 1.3918 455 -30.95 0.0312
20 ERNET[27] 16 18 2.25 2382858 1713 1830 799 3612 -0.1750 0.9891 3824 -338.47 0.0406
21 GARR-B[13] 16 27 3.38 476100 549 503 292 1191 0.3441 0.8786 1304 -2.81 0.0571
22 ARNES[13] 17 20 2.35 12641 111 109 59 269 0.4956 1.0633 306 -12.08 0.0372
23 GERMANY[13] 17 26 3.06 196675 351 345 182 835 0.6316 1.4154 1181 -122.52 0.0373
24 REDIRIS[13] 17 28 3.29 463539 600 616 241 1181 -0.1013 1.2510 1374 -111.38 0.0432
25 CALREN[29] 19 22 2.32 168087 466 445 264 1040 0.1598 0.7141 1020 -2.74 0.0337
26 Lambada Rail[13] 19 23 2.42 6899337 2305 2153 1311 5665 0.5712 0.9301 6268 -65.16 0.0316
27 MEMOREX[13] 19 24 2.53 253850 396 374 193 965 0.4723 1.2133 1097 -60.51 0.0302
28 CANARIE[13] 19 26 2.74 3462688 1928 1795 1098 4339 0.2453 0.7019 4228 80.45 0.0283
29 EON[13] 19 37 3.89 5800056 1495 1397 807 4114 1.0033 1.2391 5042 -165.75 0.0433
30 OPTOSunet[13] 20 24 2.40 122980 380 372 189 838 0.0908 0.7806 767 12.91 0.0313
31 Hibernia USA[13] 20 27 2.70 1257762 783 731 458 2314 1.5218 1.5730 3715 -299.42 0.0360
32 ARPANET[13] 20 32 3.20 5975012 2339 2143 1253 4881 0.2193 0.6260 4512 353.12 0.0363
33 PIONIER[13] 21 25 2.38 194178 409 409 199 944 0.2234 1.0486 994 -43.57 0.0255
34 SANET[13] 25 28 2.24 24336 174 174 87 424 0.5721 1.3383 540 -44.72 0.0410
35 FUNET[26] 26 27 2.08 210828 441 429 231 1019 0.2186 0.8658 1010 -13.33 0.0290
36 NEWNET[13] 26 31 2.38 7033452 2303 2144 1277 5169 0.3212 0.7962 5343 69.82 0.0257
37 RENATER[13] 27 35 2.59 462096 543 541 243 1231 0.0108 1.0640 1222 -65.50 0.0190
38 BULGARIA[13] 32 33 2.06 95108 294 276 164 834 1.0845 1.3301 1092 -62.22 0.0167
39 LONI[13] 33 37 2.24 68008 288 278 155 698 0.3380 1.0449 782 -50.17 0.0257
40 Metrona[13] 33 41 2.48 158837 293 276 154 771 0.9401 1.2894 979 -44.20 0.0173

Average: 1971995 992 938 542 2284 0.4185 0.9656 2395 2.15 0.0423
Lowest: 12641 111 109 59 269 -0.1918 0.5259 306 -338.47 0.0166
Highest: 7591320 2481 2344 1495 6378 1.5218 1.5730 7176 459.96 0.0788

The parameters δ and γ are known as the shape parameters since they determine

the shape of the distribution. Always, δ > 0, and, γ can be any real number. The shape

parameter δ is key in determining the modality of the PDF (both the number, and mag-

nitude of the modes). The second shape parameter, γ determines the orientation (i.e.,

left or right tilting) of the PDFs. For unimodal distributions, when γ > 0, the PDF is

left oriented (the mode is smaller than the mean and median) and for γ < 0, the PDF

is right oriented (the mode is larger than the mean and median). The scale parameter,

λ, and the location parameter, ζ present the location and spread of the distribution. In
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other words, ζ is the starting point, and ζ +λ is the end point of the PDF and CDF of the

Johnson SB distribution.

The necessary and sufficient conditions for the bimodality of the PDF of the Johnson

SB distribution [34] are:

i. δ < 1
√

2
, and

ii. ∣ γ ∣ < δ−1
√

1 − 2δ2 − 2δtanh−1
√

1 − 2δ2.

Out of the 40 OTNs presented in Table 6.2, the first condition is satisfied in 6 networks.

Out of those 6, only 2 networks satisfy the second condition. These 2 networks that

satisfy both conditions exhibit clear bimodal PDFs. However, the remaining 4 networks

that satisfy the first condition, but not the second exhibit hybrid characteristics. While

the second mode is not clear for those networks, their shortest path length distributions

are different from the pure unimodal and the pure bimodal PDFs.

We calculated the mean (⟨p⟩), and the standard deviation (σp) of the shortest path

lengths using the equations shown in (6.3) and (6.4), in which, pi represents the individ-

ual shortest path lengths between node pairs.

⟨p⟩ = 1

P

P

∑
i=1

pi (6.3)

σp = ( 1

P

P

∑
i=1

(pi − ⟨p⟩)2)
1
2

(6.4)

We show the parameters for the 40 real OTNs in Table 6.2. In the first five columns, we

present the basic attributes of the OTNs including the number of nodes (N ), number of

links (L), and mean nodal degree, (⟨D⟩ = 2L/N ). We present the measured parameters

such as the convex area (Ac), mean (⟨p⟩), median (m), standard deviation (σp), and the

sum of the smallest (pm) and the largest shortest path lengths (pM ), which are also

defined mathematically in 6.5(a) – 6.5(c).

pm =min(pi) (6.5a)

pM =max(pi) (6.5b)

m =median(pi) (6.5c)

We present the parameters of Johnson SB distribution (γ, δ, λ, and ζ) obtained from

the statistical fitting using EasyFit in the next four columns. In the last column, we

present the KSS values (‘goodness-of-fit’ results) for the shortest path lengths of the

OTNs, when considering the Johnson SB distribution. This distribution was chosen due
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to its low KSS values when considering all the 40 real OTNs (see last column, Table 6.1).

The values shown in the last three rows of right most column of Table 6.2 are precisely

the values presented in Table 6.1, 3rd row, columns 4 – 6.

6.3 Analysis of the Statistical Parameters of the Shortest
Path Lengths

The moments of a distribution and other statistical parameters such as the median

are quite useful in the applications of the distribution. However, Johnson SB distribution

does not have simple expressions for calculating its moments. We show the expressions

for the moments of this distribution in Appendix C. The expressions presented in [32] –

[38] for the moments and other associated statistical parameters, like the median, are

based on several assumptions such as, σp ≤ 0.2⟨p⟩. These assumptions are not consistent

with the shortest path lengths of the OTNs (see Table 6.2). Therefore these expressions

do not provide good accuracies for the shortest path lengths of the OTNs. There are sev-

eral instances in which the moments of Johnson SB distribution have been estimated for

the real data [39] – [41]. These estimation methods are also based on several assump-

tions (some of which are similar to the cases in [32] and [33]), and are not satisfied by

the OTNs. So these methods are not suitable for OTNs.

So, instead of using the expressions presented for the moments of Johnson SB dis-

tribution in Appendix C, which are not suitable for this case, we developed alternative

estimation expressions that are quite simple. Convex area, which is a key parameter

in the estimation of the average link length and the link-related parameters [13] – [14],

is found to be instrumental in the estimation of the first two moments. So, we develop

expressions for the average, median and standard deviation of the shortest path lengths

using the convex area. We also observed a linear trend between the sum of the smallest

and the largest values of the shortest path lengths with the square root of the convex

area. We show the expressions obtained from linear regression in (6.6) – (6.9), and also

in Figure 6.2. The coefficients of determination (i.e., R2) for these regressions are larger

than 0.95, which support the linear trends. We use subscript ‘c’ in expressions (6.6) –

(6.9) to indicate that these expressions depend on the convex area of the OTNs. Although

the sum of pm and pM provide a good linear trend with the square root of convex area, pm
and pM , individually do not provide good coefficient of determination for the associated

regressions with
√
Ac.

⟨pc⟩ ≅ 0.8988
√
Ac + 36.8090 (6.6)



86 Chapter 6. Statistical Modeling of Shortest Path Lengths

Figure 6.2: Linear regression between the mean, median, standard deviation and the

sum of the smallest and largest shortest path lengths with the square root of the con-

vex area of the OTNs shown in the clockwise order, starting from the top left. The

coefficients of determination (R2) for these regressions are 0.9623, 0.9536, 0.9522 and,

0.9596, respectively.

mc ≅ 0.8397
√
Ac + 45.7010 (6.7)

σpc ≅ 0.5079
√
Ac + 2.3886 (6.8)

pmc + pMc ≅ 2.0507
√
Ac + 104.3500 (6.9)

We measure the accuracy of these estimations in terms of the percentage of error as

shown in (6.10). Subscript ‘x’ in (6.10) represents the parameters with which the error is

associated. In Table 6.3, we show the values obtained with expressions (6.6) – (6.9), for

the 40 OTNs. The corresponding percentage errors are also shown in the last 4 columns

of Table 6.3. These values were obtained by using the estimated values from Table 6.3,

and the corresponding exact values from Table 6.2 in (6.10). The low average absolute
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Table 6.3: Accuracy of the estimated parameters of shortest path lengths of forty real optical
transport networks. The last 4 columns (Epc , Emc , Eσpc , and EpM+pm ) are the errors in the
estimation of ⟨pc⟩, mc, σpc, and pM + pm respectively (⟨pc⟩, mc, σpc, and pM + pm are in km).

# Network ⟨pc⟩ mc σpc pmc + pMc Epc(%) Emc(%) Eσpc(%) EpMc+pmc
(%)

1 SANREN[23] 678 644 365 1566 22.43 29.46 15.51 3.81
2 Via NET[13] 1049 991 574 2413 13.38 4.25 17.77 18.45
3 BREN[13] 221 218 107 525 -5.24 -3.81 -5.94 -7.58
4 RNP[13] 1247 1177 687 2867 19.96 19.82 24.75 24.83
5 LEARN[13] 421 405 220 982 9.27 0.98 13.73 4.66
6 Abilene Core[13] 2182 2050 1215 4999 1.00 -1.23 -3.49 -0.71
7 SINET[24] 610 581 326 1413 -5.17 -16.43 5.78 10.57
8 CompuServe[13] 2134 2005 1187 4889 11.82 11.91 16.93 9.04
9 vBNS[13] 2289 2150 1275 5243 2.64 0.46 10.08 -2.66
10 CESNET[13] 229 225 111 543 -18.04 -15.98 -23.33 -25.69
11 AARNET[22] 2513 2359 1402 5754 -1.29 -2.34 6.22 9.78
12 FLRNET[30] 392 377 203 914 7.11 7.14 14.71 10.92
13 NSFNET[13] 2240 2104 1247 5131 2.78 5.27 -5.14 -9.61
14 ITALY[13] 631 601 338 1460 -20.42 -20.93 -32.03 -28.41
15 HEANET[31] 248 243 122 586 16.50 15.92 20.78 6.98
16 MZIMA[13] 2382 2236 1327 5455 1.53 4.61 -3.75 -2.35
17 ACONET[13] 244 239 119 576 21.54 19.53 29.59 17.00
18 KAREN[28] 568 542 303 1316 -2.34 -7.75 6.77 7.19
19 BELNET[25] 155 157 69 375 -11.51 -18.94 1.43 -9.97
20 ERNET[27] 1425 1342 787 3271 16.81 26.67 1.50 9.44
21 GARR-B[13] 657 625 353 1519 -19.67 -24.25 -20.89 -27.54
22 ARNES[13] 137 140 59 334 -23.42 -28.44 0.00 -24.16
23 GERMANY[13] 435 418 227 1013 -23.93 -21.16 -24.73 -21.32
24 REDIRIS[13] 649 618 348 1501 -8.17 -0.32 -44.4 -27.10
25 CALREN[29] 405 390 211 945 13.09 12.36 20.08 9.13
26 Lambada Rail[13] 2398 2252 1337 5492 -4.03 -4.6 -1.98 3.05
27 MEMOREX[13] 490 469 258 1138 -23.74 -25.4 -33.68 -17.93
28 CANARIE[13] 1709 1608 948 3921 11.36 10.42 13.66 9.63
29 EON[13] 2201 2068 1225 5042 -47.22 -48.03 -51.80 -22.56
30 OPTOSunet[13] 352 340 181 824 7.37 8.6 4.23 1.67
31 Hibernia USA[13] 1044 987 572 2403 -33.33 -35.02 -24.89 -3.85
32 ARPANET[13] 2233 2098 1244 5116 4.53 2.10 0.72 -4.81
33 PIONIER[13] 433 416 226 1009 -5.87 -1.71 -13.57 -6.89
34 SANET[13] 177 177 82 424 -1.72 -1.72 5.75 0.00
35 FUNET[26] 449 431 236 1046 -1.81 -0.47 -2.16 -2.65
36 NEWNET[13] 2420 2273 1349 5543 -5.08 -6.02 -5.64 -7.24
37 RENATER[13] 648 617 348 1499 -19.34 -14.05 -43.21 -21.77
38 BULGARIA[13] 314 304 159 736 -6.8 -10.14 3.05 11.75
39 LONI[13] 271 265 135 640 5.90 4.68 12.90 8.31
40 Metrona[13] 395 381 205 923 -34.81 -38.04 -33.12 -19.71

Absolute Average Errors: 12.80 13.27 15.49 11.77

errors (see last row, Table 6.3), show that these estimations are quite reliable and can

be used for practical applications. The average, median, and the standard deviation of

the path lengths can be estimated with average absolute errors of 12.8%, 13.27%, and

15.49%, respectively.

Ex(%) = Exact −Estimated
Exact

× 100 (6.10)

These outcomes are significant, given that the estimations rely only on the knowledge

of the convex area of the network, which in turn can be obtained from the location of

nodes [13]. In other words, only limited network information is needed for the methods
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presented in this section. We note that our expression for pm + pM , (i.e. the sum of the

smallest and the largest shortest path length) in the network, also yields a low average

error of 11.77%. Since this expression could practically serve as an approximate upper

bound on the maximum shortest path length, it is useful, for instance in estimating the

system reach needed for near-transparent operation in an OTN.

6.4 Estimation of the Johnson SB Distribution Model

There are several cases in which the parameters of Johnson SB distribution have

been estimated for the fitting with real data. These estimations are based on several

assumptions which do not hold good for the shortest path lengths of OTNs. The methods

provided in [32] have been used for the estimation of the parameters, and it is found to

be statistically acceptable (the KSS obtained with these parameters exceed the critical

value at 95% CI) for only 19 networks out of total 40. Hence, we do not find these meth-

ods suitable for the shortest path length distributions. The method described in [34], for

the median of Johnson SB (also shown in Appendix D) can be used for the estimation

of a shape parameter (estimation of shaparters is critical for Johnson SB distribution).

However, this method does not produce satisfactory results (only 21 networks out of total

40 are statistically acceptable).

Tables to facilitate the fitting of the Johnson SB curves are presented in [35] and [36].

The tables given in [36] estimate the two shape parameters when both terminals (i.e., ζ

and λ) are known. In [36], approximate expressions for the shape parameters have been

mentioned for small values of the standard deviation. However, these expressions do

not provide satisfactory results for all the 40 OTNs. Similarly, the values obtained from

the tables are also not very effective with the estimated values of the mean, median,

standard deviation, ζ and λ; though they provide good results with the exact values of

these parameters. There are several instances of the applications of Johnson SB distri-

bution, in which both the traditional and new methods are used for the estimation of its

parameters [39] – [41]. Therefore, we choose to use the convex area and the number of

nodes for these estimations (these parameters can be obtained from the node locations).

6.4.1 Estimation of the Parameters of Johnson SB Distribution

We develop new expressions for the estimation of the parameters of the Johnson SB

distribution for the shortest path lengths in the OTNs. Out of the four parameters, λ can

be estimated from either the mean of the distribution, or the square root of the convex

area of the OTN using linear regression. However, such an expression results in large
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errors for some small networks, and the networks with small mean nodal degrees. As

this parameter represents the end point of the Johnson SB distribution, its accuracy

is very important in estimating the PDF and CDF of the distribution. That is why,

we use the following estimation formulas for λ as shown in (6.11), obtained from two

regressions.

λc ≅
⎧⎪⎪⎪⎨⎪⎪⎪⎩

10.67(
√
Ac)0.7564, if

√
Ac < 1000;

0.0016Ac − 4.076
√
Ac + 5600, if

√
Ac ≥ 1000.

(6.11)

The shape parameter, δ, determines the modality of Johnson SB distribution. Small

changes in the values of δ around the critical point, which determines the modality

(δ = 1
√

2
) changes the distribution to a large extent. Using the estimated values of σp and

λ as described in [34], we found that their ratio (i.e., σp/λ) does not vary as it should;

rather it is very much confined to a narrow range of values. Therefore the values of δ

estimated in this method gives large errors.

Thus we looked for alternative methods to have good accuracy in the estimation of δ.

The ratio of the square root of the convex area of the OTN (
√
AC), to its number of nodes

(N ), was found to be a good parameter for the estimation of δ. We found that when this

ratio (i.e.,
√
AC/N ) is less than 70, the PDF of the distribution is unimodal, and when

this ratio is larger than 70 the distribution can be either unimodal or bimodal. This

ratio is less than 70 in 25 of the 40 real OTNs, and larger than 70 in the remaining 15.

Accordingly, we developed two expressions for δ based on the values of
√
AC/N as shown

in (6.12), in which, t =
√
AC/N .

δc ≅

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cosec ( t+30
40

) + 0.25cos(62.46t)

−0.1cos(112.62t), if t < 70;

0.8sin ( t+126.5
162

) + 0.17cos(50.258t)

+0.12cos(149.226t), if t ≥ 70.

(6.12)

The location parameter, ζ, presents the starting point of the PDF of Johnson SB

distribution. For the 40 real OTNs, we observed that ζ is located around 0; but taking

ζ = 0, results in a large deviation in the overall PDF (the PDF of the shortest path lengths

of the OTN is shifted to the right for the negative values of ζ, and vice versa). However,

using the knowledge of δc, estimated in (6.12), helps in more accurate estimation of ζ. For

all the bimodal PDFs ζ > 0, and for the majority of the unimodal PDFs ζ < 0. Accordingly,

we developed expression (6.13) for the estimation of ζ, which depends on the values of
√
Ac, and δc.
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Table 6.4: Performance evaluation of the estimated parameters for forty real optical transport
networks. KSSJSB

is the KSS obtained from optimized distribution parameters, and KSS
′

JSB
is

obtained from the estimated parameters. The CI for the KSS values and the acceptability is set
at 0.95 (λc and ζc are in km, and Ac is in sq. km).

# Network N L Ac KSSJSB
δc γc λc ζc KSS

′

JSB
Acceptable?

1 SANREN[23] 7 7 508348 0.0788 0.8496 0.0866 1535 -78.43 0.2841 Yes
2 Via NET[13] 9 12 1267876 0.0615 0.6978 0.2641 3039 112.60 0.1405 Yes
3 BREN[13] 10 11 42196 0.0520 1.2003 0.3394 598 -22.55 0.1513 Yes
4 RNP[13] 10 12 1814676 0.0546 0.7222 0.1973 3031 134.70 0.0997 Yes
5 LEARN[13] 10 12 183296 0.0686 0.7277 0.2654 1044 42.80 0.1054 Yes
6 Abilene Core[13] 10 13 5698507 0.0699 0.6295 0.2311 4987 238.70 0.1296 Yes
7 SINET[24] 11 13 406969 0.0483 1.0921 0.2614 1412 -70.18 0.0984 Yes
8 CompuServe[13] 11 14 5442148 0.0619 0.5991 0.2341 4799 233.30 0.0854 Yes
9 vBNS[13] 12 17 6279993 0.0585 0.5511 0.2338 5434 250.60 0.1384 Yes
10 CESNET[13] 12 19 45957 0.0601 1.1688 0.1940 618 -23.54 0.2997 No
11 AARNET[22] 13 13 7591320 0.0468 0.9192 0.2339 6515 -303.05 0.1001 Yes
12 FLRNET[30] 13 14 156097 0.0533 1.3498 0.1053 982 -43.45 0.1387 Yes
13 NSFNET[13] 14 21 6007605 0.0502 0.7712 0.2287 5222 245.10 0.2369 Yes
14 ITALY[13] 14 29 436577 0.0384 0.9473 0.2442 1450 -72.71 0.1193 Yes
15 HEANET[31] 15 15 55361 0.0302 1.0668 0.1953 663 -25.85 0.1121 Yes
16 MZIMA[13] 15 19 6805153 0.0530 0.8551 0.2301 5857 -286.99 0.0764 Yes
17 ACONET[13] 15 22 52826 0.0485 0.8928 0.1903 652 -25.30 0.1188 Yes
18 KAREN[28] 16 17 349015 0.0402 0.9861 0.1771 1332 -65.01 0.0748 Yes
19 BELNET[25] 16 18 17466 0.0312 1.4033 0.6750 429 -14.52 0.1144 Yes
20 ERNET[27] 16 18 2382858 0.0406 1.0002 -0.4290 3121 -169.84 0.1161 Yes
21 GARR-B[13] 16 27 476100 0.0571 0.9379 0.2580 1498 -75.90 0.1020 Yes
22 ARNES[13] 17 20 12641 0.0372 0.9393 0.7728 379 -12.32 0.0857 Yes
23 GERMANY[13] 17 26 196675 0.0373 1.1674 0.6475 1071 -48.73 0.0472 Yes
24 REDIRIS[13] 17 28 463539 0.0432 0.9518 0.2159 1483 -74.91 0.1097 Yes
25 CALREN[29] 19 22 168087 0.0337 0.7622 0.3649 1010 41.00 0.0643 Yes
26 Lambada Rail[13] 19 23 6899337 0.0316 0.8956 0.1978 5934 -288.97 0.0815 Yes
27 MEMOREX[13] 19 24 253850 0.0302 1.0799 0.6726 1181 -55.44 0.0840 Yes
28 CANARIE[13] 19 26 3462688 0.0283 0.5675 -0.0949 3556 186.10 0.0878 Yes
29 EON[13] 19 37 5800056 0.0433 0.9247 0.6414 5063 -264.88 0.0922 Yes
30 OPTOSunet[13] 20 24 122980 0.0313 0.9264 0.1795 898 -38.61 0.0438 Yes
31 Hibernia USA[13] 20 27 1257762 0.0360 1.3611 1.1888 3041 -123.31 0.0670 Yes
32 ARPANET[13] 20 32 5975012 0.0363 0.6313 0.2417 5195 244.40 0.0977 Yes
33 PIONIER[13] 21 25 194178 0.0255 1.1392 0.3820 1068 -48.51 0.0332 Yes
34 SANET[13] 25 28 24336 0.0410 1.4592 0.7604 486 -17.16 0.0770 Yes
35 FUNET[26] 26 27 210828 0.0290 0.8997 0.1889 1100 -50.49 0.0528 Yes
36 NEWNET[13] 26 31 7033452 0.0257 0.7927 0.0884 6043 265.20 0.2220 No
37 RENATER[13] 27 35 462096 0.0190 0.9080 0.6182 1481 -74.80 0.1813 No
38 BULGARIA[13] 32 33 95108 0.0167 1.2420 0.5842 814 -33.88 0.0454 Yes
39 LONI[13] 33 37 68008 0.0257 1.0442 0.6721 718 -28.71 0.1543 No
40 Metrona[13] 33 41 158837 0.0173 1.2814 0.3863 990 -43.89 0.2396 No

Absolute Average: 0.0951 Yes

ζc ≈
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0.1
√
Ac, if δc < 0.82;

−0.11
√
Ac, if δc ≥ 0.82.

(6.13)

The second shape parameter, γ, can be estimated in two ways as presented in [34]:

one using the values of µc and δc; and the other using the values of the median and δc (as

shown in Appendix D). Here, µc is the transformed mean, obtained from ⟨pc⟩, λc and ζc

(i.e., µc = ⟨pc⟩−ζcλc
). This first method, provides 21 ‘Acceptable’ values (measured using KSS

values) of γ out of 40 OTNs. A statistic is ‘Acceptable’ at a certain confidence level (or
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significance level), if it is smaller than the corresponding rejection threshold. However,

γ using the second method, which needs the estimated values of δc, and the median,

mc, provides 18 ‘Acceptable’ KSS values out of 40. That is why, we look for alternative

expressions for the estimation of γ. Using
√
AC and N , we developed better expression

for γc as shown in (6.14), which provides ‘Acceptable’ KSS values for 35 OTNs at C.I.

= 95%, when used along with (6.11), (6.12) and (6.13). These estimations are further

explained in the next subsection.

γc ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0.12 + ∣1.02 − 0.06t∣ + 0.03sin(4t), if t < 29;

0.235 + sinc(2t − 112.4), if 29 ≤ t ≤ 96;

0.24 − 1
t−95 + 0.45sinc(2t − 253), if t > 96.

(6.14)

Figure 6.3: Estimated Johnson SB distribution fitted with the path length histograms of

Pionier network. The KSS for this fitting is: 0.0332.

6.4.2 Estimation of the Proposed Model

Using the parameters shown in Table 6.4, the PDF of Johnson SB distribution for

the shortest path lengths can be estimated. The location and scale parameters are not

much changed from the optimized values shown in Table 6.2. The two shape parameters

too are well within the acceptable ranges for 35 OTNs out of total 40. We estimate

the PDFs of all the 40 OTNs and measure their accuracy in terms of the KSS values

(i.e., KSS
′
JSB

). These values can be found from the 11th column of Table 6.4. In the

last column, we show whether it is acceptable or not? This acceptability is measured in

terms of the KSS values shown. We show the the evaluation of all the fittings in Table
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6.4. As can be seen from the last column (column ‘Acceptable?’) of Table 6.4, 35 OTNs

have acceptable models at 95% CI. In Figure 6.3, we present the estimated shortest path

distribution model for Pionier network. The KSS for this fitting is quite small, though

it is a little higher than the optimum value shown in Figure 6.1 for the same network.

The expressions developed for γc and δc are obtained after checking different functions

and iterating their arguments for more than 10 million times.

6.5 Chapter Summary

Shortest path lengths between the node pairs of 40 real OTNs were found to be quite

random, and to broadly follow the Johnson SB distribution. This distribution is consid-

ered a better choice than other distributions, because in addition to yielding low KSS

values in all OTNs, it also accommodates both unimodal and bimodal PDFs, which are

commonly observed in the OTNs. The bimodality is found in case of the networks having

large convex areas with small number of nodes. We have also shown that the mean, me-

dian and standard deviation of the shortest path lengths of OTNs can be estimated from

their convex areas. The expressions used for estimation of these parameters are found

to be linear. Moreover, these key metrics of the shortest paths (mean, median, standard

deviation, and upper bound on the maximum) can be estimated without full knowledge

of the network topology. This is because, the convex area can be computed simply from

node locations.
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CHAPTER 7

Estimation of the Shortest Path
Related Parameters

7.1 Introduction

SHORTEST PATH LENGTHS in optical transport networks (OTNs) are required for many

applications such as traffic management, routing, restoration, protection, control

and several other network management related operations. Estimations related to the

shortest path lengths are also quite important in the early stage planning and dimen-

sioning of the OTNs. In this chapter, we apply the statistical model for the shortest path

lengths developed in the previous chapter to 40 real OTNs. We estimate the modulation

formats required for the shortest paths between the node pairs assuming the network

to be transparent. We evaluate the outcome obtained from the statistical model by com-

paring it with the exact estimations, which use the exact shortest path lengths between

the node pairs of the OTNs.

7.1.1 Motivation

In Chapter 6, we described the importance of shortest path lengths in various fields

of science and engineering. Information of the shortest path lengths are essential for

several functions of the OTNs. Using realistic models, this shortest path data can be

used for the estimation of associated components of CAPEX, OPEX and MANEX of the

OTNs. In the modern OTNs, there are several complexities, and the changes in network

97
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traffic dynamics are quite frequent. In such changing conditions, it is always desirable

to have a statistical model for the shortest path lengths. In [1] – [5], several cases are

presented in which the dimensioning and estimation of OTN parameters are required

without complete information. Estimation of some of those parameters can be done us-

ing the shortest path model presented in Chapter 6. All these issues, points towards the

usefulness and applications of the statistical model developed in the previous chapter.

7.1.2 Related Work

Several empirical and semi-empirical expressions are proposed for the fast estima-

tion of the parameters of the OTNs in [1]. Expressions in [1] depend on the basic pa-

rameters of the networks such as the number of nodes, number of links and coverage

area. In [2], fast approximate dimensioning and performance analysis of optical net-

work topologies are presented. In this work, path lengths are analyzed and an approxi-

mate expression for the average number of hops is derived. In [6] a statistical model for

link lengths is provided, which depends only on the convex area (bounded interior of the

smallest convex set comprising of all the nodes) and the number of nodes of the OTNs.

This model can be used to estimate the link-dependent parameters of the OTNs [7]. In

[8] a Weibull model is presented for the shortest path distributions in random networks.

Shortest path lengths are studied in many disciplines of science and engineering where

they have several important utilities [9]. Real OTN topologies used for this study on the

application of shortest path model can be found in [10]. Several practical applications of

Johnson SB distribution are presented in [11] – [15].

7.1.3 Chapter Outline

Rest of this chapter is organized in 3 different sections. In section 7.2, we present the

general applicability issues of the shortest paths, and the role of the model developed

in the previous chapter. In this section, we explain the utilities of the developed model.

In section 7.3, we applied the model to determine the modulation formats needed in

transparent optical networks. In section 7.4, we present the concluding remarks, and

the effectiveness of the proposed method. The work presented in this chapter is reported

in [16].

7.2 Utility of Shortest Path Length Models

In Chapter 6, we have described the importance of shortest path lengths in different

disciplines of science, engineering and social sciences. In this section, we provide a list of
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popular shortest path algorithms and their applications in different fields. Shortest path

related problems are not very new. However, their significance have been broadened

since the arrival of the digital communication networks in the 1950s [17]. That is clear

from the following chronological list of shortest path algorithms which are always being

tested for different practical applications in networks.

1. 1955: Shimbel algorithm [18] was proposed mainly for information networks.

2. 1958: Bellman-Ford algorithm (also known as Bellman-Ford-Moore algorithm) [19]

– [21] was proposed for random networks. However, the main aim of this algorithm

was to find an economical solution for transportation. Later in Moore’s version it

was applied to the routing of long distance telephone calls.

3. 1959: Dijkstra’s algorithm [22] was proposed for the efficient routing in telecommu-

nication networks. This is a simpler and faster version of Bellman-Ford algorithm.

4. 1983: Gabow algorithm [23] was proposed for the large telecommunication net-

works. This algorithm reduced the computation time and resources in finding the

shortest paths with respect to its predecessors.

5. 1989: Gabow and Tarjan algorithm [24] was proposed to improve the previous

version of the Gabow algorithm.

6. 1993: Goldberg algorithm [25] was proposed for large computer networks such as

the Internet. It is also used in telecommunications and search algorithms.

7. 2005: Sankowski, Yuster and Zwick algorithm [26] was proposed for the improve-

ment of the computation times of the shortest paths in large graphs. Now it is

applied by several web based firms and telecommunication companies.

These algorithms have different levels of efficiency in terms of the estimation time of

the shortest paths. These algorithms are helpful for the routing and traffic management

related functions. However, there are several operations in which the knowledge of all

the shortest paths is required. Shortest path trees for the large backbone networks are

designed using Dijkstra’s algorithm [17]. The computation of the tree needs complete

information. It is thus useful only when the whole topology is known. For the early stage

planning and design related functions, the shortest paths are to be estimated without

the information of the complete topology. In such cases, the distribution of the shortest

path lengths is essential for the estimations.
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Table 7.1: Basic attributes, exact (N , L, P and ⟨p⟩) and estimated (⟨pc⟩, δc, γc, λc and ζc) param-
eters of 40 real OTNs (⟨p⟩, ⟨pc⟩, λc and ζc are in km).

# Network N L P ⟨p⟩ ⟨pc⟩ δc γc λc ζc
1 SANREN[10] 7 7 21 874 678 0.8496 0.0866 1535 -78.43
2 Via NET[6] 9 12 36 1211 1049 0.6978 0.2641 3039 112.60
3 BREN[6] 10 11 45 210 221 1.2003 0.3394 598 -22.55
4 RNP[6] 10 12 45 1558 1247 0.7222 0.1973 3031 134.70
5 LEARN[6] 10 12 45 464 421 0.7277 0.2654 1044 42.80
6 Abilene Core[6] 10 13 45 2204 2182 0.6295 0.2311 4987 238.70
7 SINET[10] 11 13 55 580 610 1.0921 0.2614 1412 -70.18
8 CompuServe[6] 11 14 55 2420 2134 0.5991 0.2341 4799 233.30
9 vBNS[6] 12 17 66 2351 2289 0.5511 0.2338 5434 250.60

10 CESNET[6] 12 19 66 194 229 1.1688 0.1940 618 -23.54
11 AARNET[10] 13 13 78 2481 2513 0.9192 0.2339 6515 -303.05
12 FLRNET[10] 13 14 78 422 392 1.3498 0.1053 982 -43.45
13 NSFNET[6] 14 21 91 2304 2240 0.7712 0.2287 5222 245.10
14 ITALY[6] 14 29 91 524 631 0.9473 0.2442 1450 -72.71
15 HEANET[10] 15 15 105 297 248 1.0668 0.1953 663 -25.85
16 MZIMA[6] 15 19 105 2419 2382 0.8551 0.2301 5857 -286.99
17 ACONET[6] 15 22 105 311 244 0.8928 0.1903 652 -25.30
18 KAREN[10] 16 17 120 555 568 0.9861 0.1771 1332 -65.01
19 BELNET[10] 16 18 120 139 155 1.4033 0.6750 429 -14.52
20 ERNET[10] 16 18 120 1713 1425 1.0002 -0.4290 3121 -169.84
21 GARR-B[6] 16 27 120 549 657 0.9379 0.2580 1498 -75.90
22 ARNES[6] 17 20 136 111 137 0.9393 0.7728 379 -12.32
23 GERMANY[6] 17 26 136 351 435 1.1674 0.6475 1071 -48.73
24 REDIRIS[6] 17 28 136 600 649 0.9518 0.2159 1483 -74.91
25 CALREN[10] 19 22 171 466 405 0.7622 0.3649 1010 41.00
26 Lambada Rail[6] 19 23 171 2305 2398 0.8956 0.1978 5934 -288.97
27 MEMOREX[6] 19 24 171 396 490 1.0799 0.6726 1181 -55.44
28 CANARIE[6] 19 26 171 1928 1709 0.5675 -0.0949 3556 186.10
29 EON[6] 19 37 171 1495 2201 0.9247 0.6414 5063 -264.88
30 OPTOSunet[6] 20 24 190 380 352 0.9264 0.1795 898 -38.61
31 Hibernia USA[6] 20 27 190 783 1044 1.3611 1.1888 3041 -123.31
32 ARPANET[6] 20 32 190 2339 2233 0.6313 0.2417 5195 244.40
33 PIONIER[6] 21 25 210 409 433 1.1392 0.3820 1068 -48.51
34 SANET[6] 25 28 300 174 177 1.4592 0.7604 486 -17.16
35 FUNET[10] 26 27 325 441 449 0.8997 0.1889 1100 -50.49
36 NEWNET[6] 26 31 325 2303 2420 0.7927 0.0884 6043 265.20
37 RENATER[6] 27 35 351 543 648 0.9080 0.6182 1481 -74.80
38 BULGARIA[6] 32 33 496 294 314 1.2420 0.5842 814 -33.88
39 LONI[6] 33 37 528 288 271 1.0442 0.6721 718 -28.71
40 Metrona[6] 33 41 528 293 395 1.2814 0.3863 990 -43.89

7.2.1 Utilities in OTNs

OTNs, like other kinds of graphs and networks have several topology-dependent

properties. Shortest path lengths are key topological parameters, and they determine

several operations of OTNs as mentioned in the first section of this chapter. In the case

of transparent networks, the optical signals of the lightpaths are not processed at each

node; rather they are allowed to pass through the intermediate nodes with only 1R pro-

cessing. In such cases, the lightpaths are often established along the shortest paths.

For the translucent networks too, along the transparent paths (where, none of the in-

termediate nodes is opaque), similar procedures are followed. The statistical model (for

shortest path lengths) can be used for the estimation of the associated shortest path

dependent parameters. In Table 7.1, we present the parameters of the 40 real OTNs
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and the associated Johnson SB distribution parameters which are applied in the next

section. These parameters have already been defined in Chapter 6.

7.3 Estimation of Path-dependent Parameters in OTNs

We apply the developed model for the shortest path lengths in OTNs to show their

utility in the practical situations. We use the model to estimate the type of modulation

schemes required at the ends of the shortest paths between the node pairs, as required

in transparent OTNs. In [7], the types of modulation schemes needed at the ends of the

links are estimated using the statistical model of link lengths. However, the approach

in [7], is suitable for the opaque networks. In case of the transparent networks, we need

the shortest path lengths instead of link lengths for these estimations.

We estimate the number and types of modulation schemes needed for the 40 net-

works used in this study, assuming them to be transparent with three different methods.

In the first method, we use the exact shortest path lengths for this calculation using the

half distance law described in [27] and [28]. This is the exact estimation as it uses the

exact shortest path lengths. In the second method, we use the statistical model devel-

oped for the shortest path lengths in the previous chapter and the half distance law. This

method needs just the node locations (or alternatively, the convex area and the number

of nodes). In the third method, we use just the estimated average shortest path length

and the same half distance law. The third method uses the same information as the

second.

The number of shortest paths corresponding to each type of modulation format can be

estimated by applying the half distance law proposed in [27] and [28], to the Johnson SB
shortest path length distribution model. According to that law, the modulation format

must be changed when the length of the span (initial span was chosen to be 375 km in

[27]) is doubled as shown in Figure 7.1. For shortest paths with lengths of 0 – 375 km,

375 – 750 km, 750 – 1500 km, and more than 1500 km, the modulations are chosen to

be 16QAM, 8QAM, QPSK and BPSK respectively. In our case, we made a small change

in the lower limit of 16QAM (in [27] it was 0 – 375 km), and the upper limit of BPSK (in

[27] it was 1500 – 3000 km). We changed the lower and upper limits of the shortest path

lengths to ζc and λc – ζc, in place of ‘0’ and ‘3000’, respectively. Accordingly, the number

of shortest paths that need 16QAM, 8QAM, QPSK and BPSK modulation formats in a

network are respectively given by N16QAM(= NS), N8QAM(= NE), NQPSK(= NQ) and

NBPSK(= NB) as shown in (7.1) – (7.4). In these equations, ⌊a⌉, represents the rounded

value of a (i.e., the nearest integer of a). The outcomes of these equations for the real
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OTNs are shown in Table 7.2.

Table 7.2: Selection of modulation formats for 40 real OTNs using the exact information (column
‘UESPL’), the statistical model for the shortest path lengths (column ‘USPLD’), and the average
shortest path lengths (column ‘UASPL’). S, E, Q, and B stand for 16QAM, 8QAM, QPSK, and
BPSK, respectively.

# Network UESPL USPLD UASPL CD CL EUSPLD(%) EUASPL(%)

1 SANREN[10] 3S – 6E – 11Q – 1B 5S – 7E – 9Q – 0B 21E 18 6 14.2857 71.4286
2 Via NET[6] 4S – 8E – 10Q – 14B 3S – 6E – 11Q – 16B 36Q 33 10 8.3333 72.2222
3 BREN[6] 43S – 2E – 0Q – 0B 39S – 6E – 0Q – 0B 45S 41 43 8.8889 4.4444
4 RNP[6] 4S – 8E – 11 Q – 22B 3S – 7E – 14Q – 22B 45Q 43 11 4.4444 75.5556
5 LEARN[6] 18S – 20E – 7Q – 0B 17S – 18E –9Q – 0B 45E 42 20 6.6667 55.5556
6 Abilene Core[6] 0S – 5E – 10Q – 30B 1S – 5E – 9Q – 30B 45B 44 10 2.2222 77.7778
7 SINET[10] 19S – 21E – 15Q – 1B 15S – 25E – 15Q – 0B 55E 50 21 7.2727 61.8182
8 CompuServe[6] 3S – 7E – 11Q – 34B 2S – 7E – 11Q – 36B 55B 53 11 1.8182 80.0000
9 vBNS[6] 4S – 6E – 13Q – 43B 2S – 8E – 12Q – 44B 66B 63 6 4.5455 90.9091
10 CESNET[6] 61S – 5E – 0Q – 0B 54S – 12E –0Q – 0B 66S 59 61 10.6061 7.5758
11 AARNET[10] 3S – 8E – 16Q – 51B 3S – 5E – 12Q – 58B 78B 71 16 8.9744 79.4872
12 FLRNET[10] 36S – 35E – 7Q – 0B 30S – 47E – 2Q – 0B 78E 67 35 14.1026 55.1282
13 NSFNET[6] 2S – 10E – 15Q – 64B 0S – 6E – 17Q – 68B 91B 85 64 6.5934 29.6703
14 ITALY[6] 31S – 41E – 19Q – 0B 27S – 35E – 28Q – 0B 91E 80 41 10.9890 54.9451
15 HEANET[10] 71S – 34E – 0Q – 0B 78S – 27E – 0Q – 0B 105S 97 71 6.6667 32.3810
16 MZIMA[6] 4S – 6E – 21Q – 74B 7S – 8E – 19Q – 72B 105B 101 74 3.8095 29.5238
17 ACONET[6] 69S – 36E – 0Q – 0B 76S – 29E – 0Q – 0B 105S 98 69 6.6667 34.2857
18 KAREN[10] 39S – 51E – 30Q – 0B 36S – 52E – 32Q – 0B 120E 116 51 2.5000 57.5000
19 BELNET[10] 120S – 0E – 0Q – 0B 120S – 0E – 0Q – 0B 120S 120 120 0.0000 0.0000
20 ERNET[10] 6S – 12E – 27Q – 75B 3S – 9E – 35Q – 74B 120Q 112 27 5.8333 77.5000
21 GARR-B[6] 36S – 50E – 34Q – 0B 36S – 45E – 39Q – 0B 120E 114 50 4.1667 58.3333
22 ARNES[6] 136S – 0E – 0Q – 0B 136S – 0E – 0Q – 0B 136S 136 136 0.0000 0.0000
23 GERMANY[6] 76S – 57E – 3Q – 0B 76S – 56E – 4Q – 0B 136E 132 57 0.7353 58.0882
24 REDIRIS[6] 29S – 67E – 40Q – 0B 38S – 52E – 45Q – 0B 136E 119 67 11.0294 50.7353
25 CALREN[10] 73S – 69E – 29Q – 0B 74S – 71E – 26Q – 0B 171E 165 69 1.7543 59.6491
26 Lambada Rail[6] 9S – 15E – 32Q – 115B 8S – 12E – 30Q – 121B 171B 164 115 3.5088 32.7485
27 MEMOREX[6] 86S – 79E – 6Q – 0B 90S – 69E – 12Q – 0B 171E 161 79 5.8480 53.8012
28 CANARIE[6] 10S – 19E – 36Q – 106B 7S – 18E – 34Q – 112B 171B 165 106 3.5088 38.0117
29 EON[6] 9S – 26E – 58Q – 78B 22S – 23E – 45Q – 81B 171B 155 78 9.3567 54.3860
30 OPTOSunet[6] 96S – 93E – 1Q – 0B 98S – 88E – 4Q – 0B 190S 185 96 2.6316 49.4737
31 Hibernia USA[6] 40S – 58E – 77Q – 15B 29S – 63E – 83Q – 16B 190Q 180 77 5.7895 59.4737
32 ARPANET[6] 4S – 15E – 39Q – 132B 4S – 20E – 37Q – 130B 190B 186 132 2.1053 30.5263
33 PIONIER[6] 94S – 107E – 9Q – 0B 97S – 102E – 11Q – 0B 210E 203 107 2.8310 49.0476
34 SANET[6] 293S – 7E – 0Q – 0B 299S – 1E – 0Q – 0B 300S 294 293 2.0000 2.3333
35 FUNET[10] 125S – 149E – 51Q – 0B 133S – 146E – 46Q – 0B 325E 314 149 2.4615 54.1538
36 NEWNET[6] 11S – 23E – 66Q – 225B 0S – 10E – 42Q – 273B 325B 278 225 14.7692 30.7692
37 RENATER[6] 96S – 178E – 77Q – 0B 157S – 123E – 72Q – 0B 351E 293 178 17.0940 49.2877
38 BULGARIA[6] 354S – 140E – 2Q – 0B 359S – 137E – 0Q – 0B 496S 495 354 1.0080 28.6290
39 LONI[6] 384S – 144E – 0Q – 0B 435S – 93E – 0Q – 0B 528S 477 384 9.6591 27.2727
40 Metrona[6] 371S – 154E – 3Q – 0B 262S – 259E – 8Q – 0B 528E 415 154 20.6440 70.8333

Average: 6.3920 47.6316

N16QAM = NS = ⌊P ∫
375

ζc
f(p; δ, γ, λ, ζ)dp⌉ (7.1)

N8QAM = NE = ⌊P ∫
750

375
f(p; δ, γ, λ, ζ)dp⌉ (7.2)

NQPSK = NQ = ⌊P ∫
1500

750
f(p; δ, γ, λ, ζ)dp⌉ (7.3)
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NBPSK = NB = ⌊P ∫
λc−ζc

1500
f(p; δ, γ, λ, ζ)dp⌉ (7.4)

Figure 7.1: An optical transport network with average link length 930 km, and Johnson

SB distribution parameters γ=0.7010, δ=1.1030, λ = 3200, and ζ = 2.67. It shows the

shortest path probabilities in different intervals of shortest path lengths according to

the half distance law proposed in [27].

We evaluate the accuracy of the second and third methods by comparing their out-

comes with the outcome of the first method. The basis for the evaluation of performances

of the estimations using the second and the third methods is the number of correctly pre-

dicted modulation formats. We denote by C, the number of shortest paths for which the

modulation formats have been estimated correctly by USPLD or UASPL with respect to

UESPL. In Table 7.2, we denote the values of C obtained from USPLD and UASPL as

CD, and CL, respectively.

C = ∑
Z∈{S,E,Q,B}

Min[NZ/UESPL,NZ/OM ]. (7.5)

The values of C are estimated according to equation (7.5). Min[ ], in (7.5), is the

minimum selecting function, whose output is the smallest number among its arguments

in [ ]. Z ∈ {S,E,Q,B}, and NZ/UESPL is the number under column UESPL in the Z

category in Table 7.2. NZ/OM , is the corresponding number in the Z category in other

methods (OM can be either USPLD or UASPL). We estimate the correct predictions in

each modulation category (i.e., S, E, Q and B) and add them together as shown in (7.5)

to get the total number of correct predictions. The comparison is then evaluated by the
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percentage of error in the estimation using (7.6). We show these results in Table 7.2, in

which EUSPLD and EUASPL represent the errors in USPLD and UASPL, respectively.

Error (%) = P −C
P

× 100. (7.6)

It can be observed in Table 7.2, the estimations using the distribution (USPLD)

are more accurate than the estimations using just the average shortest path length

(UASPL). The average error in the case of USPLD is 6.39%, while for UASPL it is

47.63%.

7.4 Chapter Summary

We applied the Johnson SB distribution model obtained for the shortest path lengths

between the node pairs of 40 real OTNs to the practical problem of determining the type

of modulation formats required for different shortest paths. This model is found to be

quite accurate for this estimation, as the percentage of error estimated with respect to

the exact calculations are found to be quite low. As presented in this chapter, the average

error for the correctly estimated number of modulation formats is just 6.4%. It is also

noteworthy that the maximum error obtained in this case is lower than 21%. Overall,

considering the information required for these estimations (i.e., convex area and number

of nodes), the results are quite good and can be used for the cases of early stage planning

and dimensioning.
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CHAPTER 8

Conclusions

THIS THESIS WORK is devoted to the analysis and development of statistical models

for the link lengths and the shortest path lengths in optical transport networks

(OTNs). The findings presented in this thesis are based on the measurements of pa-

rameters of real OTNs. In the framework of this work, we have obtained new statistical

models for the OTNs which are found to be quite realistic and accurate. The results of

the estimation methods are validated by comparing the results obtained from the exact

calculations of the real OTNs. The performances of the newly proposed methods were

also compared with the available alternatives and found to be better. In this chapter, we

summarize the work done in this thesis, and provide the potential future work which

may be carried on as its follow up.

8.1 Concluding Remarks

The link lengths in OTNs broadly exhibit the lognormal distribution. Overall, we

found the GEV distribution to be the accurate model for the link length statistics of

OTNs. The model can be estimated from incomplete information of the OTNs. The

parameters of the associated GEV distribution can be estimated from the average link

length of the OTN. We also developed expressions for average link lengths, based only

on the knowledge of network coverage area and number of nodes, and improved them for

better accuracy. We have shown that the GEV distribution estimates the link statistics

of OTNs with good accuracy and thus can be used for the real applications.

Estimation of link-dependent parameters with incomplete information is essential in
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the initial phases for the design of OTNs. It is helpful in the estimation of the initial

capital needed for the network. In Chapter 5, we showed that the common link length

dependent OTN parameters can be estimated with significant accuracy by using the

model developed in Chapter 3. Knowing the number of links in an OTN, the model can

estimate the link-dependent OTN parameters with minor errors which is not possible

by the previous methods based on the average link length.

We have used the convex area for the estimation of the models, parameters and their

subsequent applications for the parameter estimations to the estimation of link length

and shortest path dependent parameters.. We used measuring tools to find out the con-

vex area for these cases. In order to simplify the estimation of the convex area, we

developed a method, in which just a planar map is used. We showed the effectiveness of

the estimation methods based on the circumferential ellipse (CE) in case of the OTNs.

Its utilities in the network related estimations have also been showed using real OTNs.

CEs do not need the total coverage area for the estimations. Instead, only the major and

minor axes are needed for their estimations. These ellipses are instrumental in estimat-

ing the convex area of the OTNs, from which the average link length can be estimated.

In Chapter 6, we analyzed the shortest path lengths between the node pairs of OTNs.

Shortest path lengths between the node pairs of real OTNs were found to follow the

Johnson SB distribution. This distribution is considered a better choice than other dis-

tributions, because in addition to yielding low KSS values in all OTNs, it also accom-

modates both unimodal and bimodal PDFs, which are commonly observed in the OTNs.

The bimodality is found in case of the networks having large convex areas with small

number of nodes. We have also shown that the mean, median, standard deviation, and

an approximate upper bound of the shortest path lengths of OTNs can be estimated

from their convex areas. We developed expressions for the estimation of the parameters

of the Johnson SB distribution model from the information of the node locations. The

developed models are found to be statistically acceptable.

We applied the model for the shortest path lengths developed in Chapter 6, and

found it to be quite good for the estimations of the modulation formats for shortest paths

between the node pairs of the OTNs. The percentage of error estimated with respect

to the exact calculations are found to be quite low, which is remarkable considering the

information it requires for these estimation (i.e., convex area and number of nodes).

Thus overall, the model is quite good and can be used for the practical estimation of

shortest path related parameters.
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8.2 Potential Future Work

The developed models can be used for several new estimations of the OTNs. These

methods are useful where the planning and dimensioning is difficult to perform, be-

cause the information available is limited or incomplete. The potential applications are

numerous. Some of the prime examples of future work are:

1. The statistical analysis and modeling of number of hops between nodes and the

minimum hop paths (the shortest path in terms of the number of hops) in OTNs;

2. Statistical analysis and modeling of the traffic in OTNs;

3. Evaluation of quality of signal in different types of OTNs using the estimations

from the statistical distributions;

4. Applications in the resource consumption related areas including energy consump-

tion and floor space occupation in OTNs, and its optimization.





APPENDIX A

Kolmogorov-Smirnov Statistic

MEASURMENT OF DISTRIBUTION fittings are necessary in statistical assessments.

‘Goodnees-of-fit’ tests are used for this purpose. In this thesis, we use Kolmogorov-

Smirnov test which is popular for small and medium sized samples, and can also be

used for large samples. In this test, fitting is quantified as Kolmogorov-Smirnov statis-

tic (KSS). It is defined as the maximum difference (Dmax) between the theoretical CDF

(also known as hypothesized CDF, G(x)) and the empirical CDF (also known as empiri-

cal distribution function, F̂ (x)), which is mathematically defined in (A.1).

KSS =Dmax = sup
x

(∣F̂ (x) −G(x)∣) (A.1)

In Figure A.1, D (= ∣F̂ (x) − G(x)∣) is shown, whose maximum value is equal to the

KSS for the fitting (F̂ (x) is black steps and G(x) is blue curve). We also show the PDF

fitting for this data set whose samples (i.e., x) vary from –2 to 9.

Figure A.1: KSS is the maximum value of D (=∣F̂ (x) −G(x)∣).
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APPENDIX B

Estimation of the Shape Factor
(ξ) of GEV Distribution

THE MATHEMATICAL GAMMA function is found in several cases such as the statistical

distributions and probability of certain natural events. In the General Extreme

Value (GEV) distribution, its parameters α, β and ξ are related to its mean and variance
through the Gamma function. This function is defined for all complex numbers except

zero and the negative integers.

For x >0, it is defined as,

Γ (x) =
∞

∫
0

tx−1e−tdt. (B.1)

In the case of OTNs, whose link lengths follow the GEV distribution, we have [from

expression (3.7)],

E(l) = α − β
ξ
+ β
ξ

Γ(1 − ξ).

Making, E(l) = ⟨l⟩ in the above equation, we obtain,

⟨l⟩ − α
β

= Γ (1 − ξ) − 1

ξ
, (B.2)

after separating ⟨l⟩, α and β from ξ terms. Still we cannot find an explicit expression for

ξ from (B.2) due to the presence of Γ(⋅) terms on the right hand side.
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Figure B.1: Plot of Γ(1−ξ)−1
ξ , (blue, solid curve) and its approximation 1

1−ξ − 0.425, (red,

dotted curve) with respect to ξ.

For the 40 networks studied in Chapter 3, the minimum value of the shape factor, ξ

is –0.2064 (for MZIMA) and the maximum value is 0.7317 (for PORTUGAL). So, the ξ

bound for this case is: –0.2064 ≤ ξ ≤ 0.7317. For this range of values, it can be shown

(see Figure B.1) that right hand side of (B.3) provides a good approximation for the right-

hand side of (B.2).

Γ(1 − ξ) − 1

ξ
≅ 1

1 − ξ − 0.425 (B.3)

Substitution of approximation (B.3) into (B.2) results in,

⟨l⟩ − α
β

≅ 1

1 − ξ − 0.425. (B.4)

So, now we can write the approximate expression for ξ as shown below, where expres-

sions (3.5) and (3.6) are used for α and β respectively.

ξ ≈
⟨l⟩−α
β − 0.575

⟨l⟩−α
β + 0.425

= 0.0887⟨l⟩ − 1.558

0.5297⟨l⟩ − 13.927
(B.5)

For large networks, when, ⟨l⟩ ≫ 26.3 km, we can approximate ξ as shown in (B.6),

ξ ≈ 0.0887

0.5297
= 0.167. (B.6)



APPENDIX C

Moments of Johnson SB

Distribution

THE MOMENTS OF the statistical distributions are helpful in the estimations of its

parameters. However, sometimes the expressions for the moments become too com-

plex and they make the parameter estimation quite complex. Johnson SB distribution

has four parameters, and its moment generating function depends on its parameters as

shown in [1], in which r stands for the rth moment.

µr(x) =
1√
2π
∫

∞

−∞

e−
1
2
x2(1 + e−

x−γ
δ )−rdx. (C.1)

Here, z = p−ζ
λ , and x = γ + δln ( z

1−z
) = γ + δln( p−ζ

ζ+λ−p), (please note that ζ, λ, γ and δ in

this appendix are the four parameters of Johnson SB distribution for the shortest path

lengths of OTNs, and p is the path length variable as described in Chapter 6). When,

r = 1, we get the mean of the distribution.

µ1(x) =
1√
2π
∫

∞

−∞

e−
1
2
x2(1 + e−

x−γ
δ )−1dx (C.2)

However, this integral in (C.2), which represents the mean, does not yield a clear

and simple output. Using the results obtained in [2] and [3] it can be simplified to the

expression shown in (C.3):

µ1(x) =
1√
2π
e−

1
2
γ2

1
δ (0.5 +D) − 2πδE

1 + 2F
, (C.3)
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in which D, E, and F are shown in C.4 (a) – C.4(c).

D =
∞

∑
n=1

e−
n2

2δ2 cosh [n(1 − 2γδ)
2δ2

] sech [ n

2δ2
] (C.4a)

E =
∞

∑
n=1

e−
(2n−1)2π2δ2

2

sinh [(2n − 1)π2δ2]sin [(2n − 1)πγδ] (C.4b)

F =
∞

∑
n=1

e−2n2π2δ2cos(2nπγδ) (C.4c)

As presented in [1] and [4], the higher moments of this distribution can be estimated

recursively from the first moment as:

µr+1(x) = µr +
δ

r

dµr
dγ

. (C.5)

So, standard deviation depends on the mean as:

σ =
√
µ1 + δ

dµ1

dγ
− µ2

1. (C.6)

As can be seen, the expressions in (C.3), (C.5) and (C.6) are interdependent and im-

plicit with respect to the parameters of the distribution. This shows that it is not that

simple to be used for the derivation of the mean and standard deviation from the param-

eters of the distribution. Though the higher moments of the Johnson SB distribution can

be deduced from the mean as shown in [4], the mean as presented in (C.3) itself needs

complex calculations, and thus does not helpful in the direct estimation.
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APPENDIX D

Median and Parameters of
Johnson SB Distribution

MEDIAN OF A statistical distribution is one of its key parameters. It equally divides

the area under the probability density function (PDF) of the distribution into two

halves. In Chapter 6, we have shown the PDF and cumulative distribution function

(CDF) of the Johnson SB distribution of the shortest path lengths of optical transport

networks (OTNs) as shown in (D.1) and (D.2) respectively.

f (z;γ, δ, λ, ζ) = δ
λ
√

2πz(1−z)
exp [−1

2
(γ + δlog ( z

1−z
))2] (D.1)

F (z;γ, δ, λ, ζ) = Φ (γ + δlog ( z
1−z

)) (D.2)

Here, z = p−ζ
λ , in which p represents the shortest path length variable (please note

that, ζ, in this appendix stands for the location parameter of the Johnson SB distribution

for the shortest path lengths of OTNs). In Chapter 6, we have seen that the path length,

p, is a log-normal variable in the Johnson SB distribution model. As shown in Chapter

6, we present the associated normal variable x as:

x = γ + δlog ( z
1−z

) = γ + δlog ( p−ζ
ζ+λ−p) , (D.3)

in which, p has the following bounds: ζ < p < ζ + λ.

Now, reverse calculating the parameter, z, as shown in [1], and [2] we have:
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z = 1

1 + e(x−γ)/δ
. (D.4)

Putting, x = 0, we get the median value of z, which is also associated with the median of

the shortest path lengths m as:

zmed =
m − ζ
λ

= 1

1 + e−γ/δ
. (D.5)

Therefore, we can estimate the median of the shortest path lengths using (D.6).

m = λ

1 + e−γ/δ
+ ζ. (D.6)

Using the estimated values of the parameters of the Johnson SB distribution, we have:

mc =
λc

1 + e−γc/δc
+ ζc. (D.7)

Reverse calculating for the ratios of the two shape parameters of Johnson SB distribution

from (D.7), we get:

γc
δc

= −log (λc + ζc −mc)
(mc − ζc)

. (D.8)

Therefore, we have:

γc = δc ⋅ log
(mc − ζc)

(λc + ζc −mc)
. (D.9)
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