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palavras-chave                          Peroxissomas, mitocôndrias,  infecção por Helicobacter pylori 
 

 
 
 

 resumo                                      Helicobacter pylori é uma bactéria gram-negativa microaerofílica. Os seres 

humanos são o seu principal reservatório e estima-se que cerca de 50% da 
população mundial encontra-se infetada, embora apenas cerca de 20% dos 
pacientes apresentem sintomas. H. pylori coloniza a mucosa gástrica humana e 
está associada a várias doenças gastrointestinais, como gastrite crónica, úlcera 
péptica e cancro gástrico. 

  
                          Os peroxissomas são organelos de membrana simples, que se encontram 

virtualmente em todas as células eucarióticas. Nestes ocorrem várias reações 
metabólicas, com destaque para a oxidação dos ácidos gordos, a biossíntese de 
lípidos e a desintoxicação do peróxido de hidrogénio. 

  
                           É cada vez mais aceite que os peroxissomas desempenham muito mais do que 

simples funções metabólicas. Em estudos anteriores foi demonstrado que os 
peroxissomas estão envolvidos na resposta imune em infeções virais. Para além 
disso, foi sugerido que tanto os patogénios bacterianos como os virais podem ser 
expostos ao reconhecimento peroxissomal. 

  
                            Assim, torna-se importante estudar melhor o papel dos peroxissomas em resposta 

a infeções. 
  
       No presente trabalho foram analisadas possíveis alterações peroxisomais 

relativamente à sua morfologia, número e função enzimática, em células 
infetadas, com o principal objetivo de explorar o possível papel dos peroxissomas 
na infeção por  H. pylori.  

 
Os resultados obtidos sugerem que a infeção por H. pylori não afeta 
significativamente a morfologia, número ou localização dos peroxissomas. No 
entanto, os resultados sugerem que a infeção por H. pylori afeta a quantidade de 
catalase peroxissomal, provavelmente devido a um aumento das EROs no meio 
celular, resultante da infeção bacteriana. 
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abstract                          The Helicobacter pylori  is a gram-negative microaerophilic bacterium. Humans 

are the principal reservoir and it has been estimated that about 50% of the 
world population is infected by this bacterium, even though only about 20% of 
the patients present symptoms. The H. pylori colonizes the human gastric 
mucosa and is associated to several gastrointestinal diseases, such chronic 
gastritis, peptic ulceration and gastric cancer. 

 
Peroxisomes are membrane-enclosed subcellular organelles, which can be 
virtually found in all eukaryotic cells. They are involved in several metabolic 
reactions, with emphasis for the fatty acid oxidation, lipid biosynthesis and 
hydrogen peroxide detoxification. 
 
It is increasingly accepted that peroxisomes are more than simple metabolic 
organelles within cells. Previous studies of viral infections have demonstrated 
that peroxisomes are involved in the cellular innate immune response. It has 
also been suggested that all bacterial and viral pathogens may be exposed to 
peroxisomal recognition. 

 
Thus, it becomes important to better study the role of the peroxisomes in 
response to infections. 
 
In the present work we have analysed the possible peroxisomal alterations in 
morphology, number and enzymatic function in infected cells with the main aim 
of exploring a possible role for peroxisomes in H. pylori infection. 
 
The obtained results suggest that H. pylori infection does not affect significantly 
the peroxisomal morphology, number or localization. However, the results 
obtained suggested that H. pylori infection affects the amount of peroxisomal 
catalase, probably due to an increase of ROS in the cellular environment, as a 
consequence of the bacterial infection.     
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ABBREVIATIONS 

 

BabA – Blood group antigen adherence adhesin   

CagA – Cytotoxin associated gene A 

CagE – Cytotoxin associated gene E 

Cag PAI – Cag Pathogenicity Island  

DLP – Dynamin-like protein 

Drp – Dynamin-related protein 

ER – Endoplasmic reticulum 

FA – Fatty acid 

HpaA – Helicobacter pylori adhesion A  

HP-NAP – Neutrophils-activating protein  

IceA – Induced by contact with epithelium  

LPS – Lipopolysaccharide 

MAVS – Mitochondrial antiviral signaling protein 

MOM – Mitochondrial outer membrane 

MOMP – Mitochondrial outer membrane permeabilization 

mtDNA – Mitochondrial DNA 

OMPs – Outer membrane proteins  

PBD – Peroxisomes biogenesis disorder 

PEDs – Single peroxisomal enzyme/transporter deficiencies  
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Pex – Peroxin 

PMP – Peroxisomal membrane protein 

PTS – Peroxisomal targeting signal 

ROS – Reactive oxygen species 

SabA – Sialic acid binding adhesion 

SES – Socioeconomic status 

SOD – Superoxide dismutase  

TLRs – Toll-like receptors  

T4SS – Type Four Secretion System 

VacA – Vacuolating cytotoxin A 

VLCFA – Very-long-chain fatty acids 
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1.1.   Peroxisomes  

1.1.1.  The multifaceted organelle 
 

The interest in the study of peroxisomes and their physiological functions and alterations has 

considerably increased in recent years. 

Peroxisomes are crucial ubiquitous subcellular organelles that can be found virtually in all 

eukaryotic cells.  This organelle is present in all tissues but is more abundant in liver and kidney  

(F. Camões et al., 2009; Delille et al., 2006; M. Islinger & Schrader, 2011; Schrader & Fahimi, 

2008).  

Peroxisomes are constituted by a single lipid bilayer membrane with embedded peroxisomal 

membrane proteins (PMPs) surrounding a fine granular matrix, which may contain crystalline 

inclusions of matrix enzymes, such as is schematized in Figure 1.1 (F. Camões et al., 2009; M. 

Islinger & Schrader, 2011; Ribeiro et al., 2012). Their diameter ranges between 0.1 μm and 1 μm 

in typical human cells (F. Camões et al., 2009).  

 

 

 

 

 

Figure 1.1 – Schematic representation of the peroxisome. From facult.une.edu. 

Peroxisomes are highly dynamic, versatile, metabolically active and interconnected organelles. 

Their dynamics is associated to a great plasticity, hence, peroxisomes present an ample variety of 

different shapes and they have the vital capacity of changing their morphology to adapt to 

physiological changes in the cellular environment (M. Islinger et al., 2010). Peroxisomes can 

present different shapes ranging from small, spherical compartments to tubular reticular 

networks, and move along the cytoskeletal track (F. Camões et al., 2009; Schrader et al., 2003). 
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1.1.2. The life of the peroxisome: from the beginning to the end  
 

Interestingly, the peroxisomes have distinctive features, which have often been in disagreement 

with existing dogmas in cell biology, particularly relating to their biogenesis and protein import, 

which differs substantially from the other organelles such as mitochondria (Delille et al., 2006). All 

proteins of peroxisomes are encoded by nuclear genes, because this organelle does not possess 

molecules of DNA or protein translation machinery (Schrader & Fahimi, 2008). The majority of the 

peroxisomal matrix and membrane proteins are consequently synthesized on free polyribosomes 

present in the cytosol and then post-translationally imported directly into pre-existing 

peroxisomes (Delille et al., 2006; Schrader & Fahimi, 2008).  

The peroxisome biogenesis encompasses three main stages: the formation of the peroxisomal 

membrane, the import of proteins into the peroxisomal matrix, and the proliferation of the 

organelle. Distinct machineries are involved in this process. Peroxins are PEX genes-encoding 

proteins required for the biogenesis of the peroxisomes. Several peroxins identified are 

implicated in the import of matrix proteins and contribute to the formation of the coupling and 

translocation machinery at the peroxisomal membrane (Baker & Paudyal, 2014; Delille et al., 

2006; Schrader, 2006). For example, Pex 5p and Pex 7p are cytosolic receptors that mediate the 

screening and internalization of peroxisomal matrix proteins which contain PTS1 (carboxy-

terminal peroxisomal targeting signal 1) or PTS2 (peroxisomal targeting signal type 2) sequences 

(Baker & Paudyal, 2014; Delille et al., 2006; Schrader, 2006). However, the selection and insertion 

of peroxisomal membrane proteins (PMPs) are less understood and require other molecules than 

those involved in mechanism of peroxisomal matrix import (Delille et al., 2006). Pex 19p is the 

main protein that binds the PMPs in the cytoplasm and recruits them to the Pex 3p receptor at 

the organelle’s membrane (Fujiki et al., 2006).  

Peroxisomes can be formed according the growth and division model, which defends that the 

organelles can multiply from pre-existing peroxisomes (Figure 1.2) (Baker & Paudyal, 2014; Smith 

& Aitchison, 2013). This is a multistep process that includes peroxisome elongation/growth, 

constriction and final fission/division, forming spherical peroxisomes that can be asymmetrical or 

symmetrical (Smith & Aitchison, 2013). The conserved PMP Pex 11 is required for the elongation 

step and the GTPase DLP1 (dynamin-like protein 1) and the adaptors Fis1p and Mff play essential 

roles on the final fission (Itoyama et al., 2013; J. Koch & Brocard, 2012; Smith & Aitchison, 2013).   
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It has also been suggested that the peroxisomes are capable of forming de novo from the 

endoplasmic reticulum (ER) (Figure 1.2) (Baker & Paudyal, 2014; Veenhuis & Klei, 2014). It is 

suggested that PMPs accumulate at the ER and are afterwards incorporated into pre-peroxisomal 

vesicles (vesicles that have budded from the ER) that fuse to form mature peroxisomes (Van der 

Zand et al., 2010; Van der Zand et al., 2012).  

 

Figure 1.2 - Schematic view of dynamic peroxisome formation. From A. Koch et al., 2004. 

Peroxisomes possess the ability to proliferate and multiply, or be degraded in response to 

nutritional and extracellular environmental stimuli (Delille et al., 2006; Schrader, 2006). Usually 

peroxisome proliferation comprises an increase in the number of peroxisomes, and an induction 

of peroxisomal enzymes, with emphasis to proteins involved in fatty acid β-oxidation (Delille et 

al., 2006).  

When necessary, the peroxisome proliferation is reversed and the excess particles are removed 

by autophagy. Macroautophagy is a mechanism of sequestration by autophagy, where the 

organelles, such as peroxisomes, are first sequestered within autophagosomes that subsequently 

fuse with lysosomes/vacuoles where the digestion occurs (Baker & Paudyal, 2014; Schrader & 

Fahimi, 2008). 
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1.1.3.   Peroxisomal functions 
 

Peroxisomes are considered "multi-purpose” organelles, with specific metabolic functions that 

differ according to the organism and cell type, development stage of the organism and 

environment conditions (F. Camões et al., 2009; M. Islinger et al., 2010). They contribute to 

numerous biochemical pathways, such as a large variety of anabolic and catabolic reactions, being 

essential for human health and development (M. Islinger et al., 2012).  

The most notables functions of the peroxisomes are related to the metabolism of the hydrogen 

peroxide and lipids, especially the β-oxidation of fatty acids (FA) (Delille et al., 2006; M. Islinger et 

al., 2011; Ribeiro et al., 2012). Peroxisomes have also an important role in other metabolic 

processes such lipid biosynthesis (bile acids, cholesterol  and dolichol, fatty acid elongation and 

phospholipids necessary for nerve cell myelination), fatty acid α-oxidation, regulation of acyl-

CoA/CoA ratio, protein/amino acid metabolism, glycerol biosynthesis, glyoxylate detoxification 

and catabolism of purines, prostaglandins and eicosanoids (Wanders & Waterham, 2006). 

Furthermore they contribute to signaling, development and ageing (M. Islinger & Schrader, 2011). 

New biological functions have been discovered in recent years, such pheromone production, 

polyamine metabolism, GPI-anchor biosynthesis, degradation of polyunsaturated dicarboxylic 

long-chain fatty acids, H2O2 signaling in hypothalamic neurons and viral innate immune defense 

(M. Islinger et al., 2012).  

Fatty acids β-oxidation 

β-oxidation is the principal mechanism of breakdown of fatty acid molecules. When fatty acids are 

more complex, like the case of the very long chain fatty acids (VLCFA), the degradation occurs 

initially in peroxisomes (Figure 1.3). This process is similar to the one that occurs in the 

mitochondria; both organelles contain their specific set of fatty acids β-oxidation enzymes, which 

catalyse similar reactions. The β-oxidation in mitochondria includes three steps: activation, 

transport and oxidation. The product of the last step suffers oxidation to become a molecule with 

two carbons, acetyl-CoA. However, in the peroxisome, due the fact that there is no respiratory 

chain, the electrons captured by FAD in the first oxidation react with O2 to produce H2O2, making 

this mechanism a heat-generating process. In the second oxidation, the NADH has to be exported 

out of the peroxisome to be reoxidized in mitochondria. Finally, the chain-shortened acyl-CoA 
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esters have to be transported into the mitochondria where the process is completed (F. Camões 

et al., 2014; Delille et al., 2006).  

 

Figure 1.3 – Peroxisomal fatty acid β-oxidation pathway, including the reaction of detoxification of H2O2 by catalase.  

Adapted from F. Camões et al., 2015. 

Peroxide Metabolism 

Catalase is a peroxidase that exists in nearly all aerobically respiring organisms (Masters, 1995). 

This enzyme is an important regulator of oxidative stress and inflammation and is also noteworthy 

in protecting cells from toxic effects of hydrogen peroxide. In living tissue, the catalase enzyme 

decomposes hydrogen peroxide (H2O2) into water (H20) and oxygen (02). H2O2 is a product of 

several normal metabolic pathways generated in the peroxisome, including the fatty acids B-

oxidation (Figure 1.3). Catalase also utilizes the H2O2 to oxidize a variety of other substrates, that 

are especially important in liver and kidney cells, where peroxisomes detoxify various toxic 

molecules (Alberts et al., 2002; Schrader & Fahimi, 2006).   
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1.1.4.   Peroxisomal disorders 
 

There are many disorders associated with the peroxisomes, and often a simple change in a gene 

may lead to a very severe disease, sometimes even lethal. The peroxisomal disorders are usually 

classified in two groups: (1) the peroxisomal biogenesis disorders (PBDs) and (2) the single 

peroxisomal enzyme/transporter deficiencies (PEDs).  

PBDs are a group of severe developmental brain disorders with a prevalence of 1:50.000. These 

disorders are caused by a mutation in peroxin (PEX) genes, which, such referred before, are 

related to peroxisome biogenesis (Waterham & Ebberink, 2012). PBDs usually lead to death 

during the childhood. This group of diseases includes the Zellweger syndrome (ZS), the neonatal 

adrenoleukodystrophy (NALD) and the infantile Refsum´s disease (IRD) and rhizomelic 

chondrodysplasia punctata (RCDP) type 1 (Delille et al., 2006; Waterham & Ebberink, 2012).  

The single peroxisomal enzyme deficiencies are also based on a genetic mutation that affects a 

protein involved in one of the peroxisomal functions. The PEDs can be subdivided into distinct 

subgroups on the basis of the peroxisomal metabolic pathway affected: ether phospholipid 

(plasmalogen) biosynthesis, fatty acid β-oxidation, peroxisomal α-oxidation; glyoxylate 

detoxification, and H2O2 metabolism (Wanders, 2004). An example of PEDs is the metabolic 

disorder characterized by a total or close to total absence of catalase enzyme activity in 

erythrocytes, named acatalasemia, well-known as acatalasia or catalase deficiency (Wanders, 

2004).  

1.1.5.   Peroxisomes – more than simple metabolic organelles 
 

It is increasingly accepted that peroxisomes are more than simple metabolic organelles. 

Peroxisomes are active and interact functionally and morphologically with other organelles. For 

example, peroxisomes and mitochondria keep a very close interrelationship, which includes 

metabolic cooperation, such as in the degradation of fatty acids; contribute to cellular ROS 

homeostasis; share a redox-sensitive relationship and coordinated biogenesis by sharing key 

proteins of their division machinery, like Drp1 (dynamin-related protein 1), Fis1 and Mff (Hettema 

& Motley, 2009; Schrader, 2006). This cooperative interaction probably influences the 

functionality of both organelles in health and disease. In addition to the mitochondria, 

peroxisomes also interact with the ER and lipid droplets (Hettema & Motley, 2009; Odendall & 

Kagan, 2013; Schrader, 2006). Recently it has also been shown that peroxisomes play an 
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important role in the cellular antiviral immune defence mechanisms (Odendall & Kagan, 2013). 

The recognition of cellular infection by microorganisms is mediated by several receptor families, 

leading to production of different effectors that establish the immune response (Akira et al., 

2006; Mogensen, 2009). These receptors recognize different pathogen associated molecular 

patterns, such as bacterial lipopolysaccharides, flagellin, lipoproteins and double-stranded RNA 

(Odendall & Kagan, 2013). In viral infections, the receptor RIG-I recognizes the viral genome and 

interacts with the proteins MAVS (mitochondrial antiviral signaling protein) at the mitochondrial 

and peroxisomal membranes which activates a signaling cascade that culminates with the 

production of compounds that will interfere with the viral life-cycle and propagation (Odendall & 

Kagan, 2013). The peroxisomal MAVS induces the rapid interferon-independent expression of 

defense factors while mitochondrial MAVS activates an interferon-dependent signaling pathway 

with delayed kinetics, amplifying and stabilizing of the antiviral response (Odendall & Kagan, 

2013).  

A recent study have shown that the intracellular bacteria Chlamydia is able to hijack peroxisomes 

and make use of their enzymatic capacity to produce bacteria-specific phospholipids (Boncompain 

et al., 2014). However, not much more is known concerning the role of peroxisomes on the 

establishment or even the response against bacterial infections.  
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1.2. Helicobacter pylori 

1.2.1. The Infectious agent  

 

Helicobacter pylori is a small spiral–shaped gram-negative bacterium that belongs to the 

Enterobacteriaceae family (Figure 1.4) (Dunn & Cohen, 2000). It has a circular chromosome and is 

enclosed within two membranes that consist of an inner (cytoplasmic) membrane, periplasm with 

peptidoglycan, and an outer membrane of phospholipids and LPS (Lipopolysaccharide) (Figure 

1.4). The bacterium measures between 2 and 4 μm in length and have a diameter between 0.5 

and 1 μm. H. pylori  usually has two to six unipolar sheathed flagella of around 3 μm in length that 

are important for its rapid motility through the viscous mucus that overlay the epithelial cells of 

the gastric mucosa (Figure 1.4) (Kusters et al., 2006; O′Toole et al., 2000).    

H. pylori is a microaerophilic pathogen and its optimal growth occurs in the presence of 5 to 15% 

of oxygen (Kusters et al., 2006). The bacterium is generally viewed as an extracellular pathogen 

that is etiologically associated with various gastroduodenal diseases and, in 1994, it was 

considered a type I carcinogen according to IARC (International Agency for Research on Cancer), a 

subordinate organization of the WHO (World Health Organization).  

 

 

Figure 1.4 - The spiral morphology and composition of H. pylori. From © 2008 Michelle Wiepjes and iStock.com/iLexx. 

1.2.2.   Possible routes of transmission 
 

The mode of transmission of H. pylori infection is still poorly understood. Possible routes of 

transmission comprise, for example, person-to-person contact, iatrogenic route and water route. 



Exploring the role of peroxisomes in Helicobacter pylori infection 16 
 

____________________________________________________________________________

University of Aveiro – Master´s degree in Molecular Biomedicine 

 

Person-to-person contact is considered the most likely transmission route, although exact 

transmission from one person to another is unknown (Duynhoven & Jonge, 2001). It is thought to 

occur by oral-oral or faecal-oral contamination (Brown, 2000; Duynhoven & Jonge, 2001; 

Mladenova et al., 2006). The oral-oral transmission is the most probable, especially in developed 

countries, and includes saliva, dental plaque and refluxed gastric contents or vomit (Duynhoven & 

Jonge, 2001).  

The iatrogenic route includes transmission from one infected patient to another patient or to staff 

members following endoscopy (Azevedo et al., 2007; Brown, 2000). Nosocomial transmission of 

H. pylori is currently the unique proven mode of transmission; however in quantitative terms it is 

considered to be insignificant. 

Another possible route of transmission of H. pylori is through the water due to faecal 

contamination (Brown, 2000). H. pylori can survive for several days in tap water in its infectious 

bacillary form and in river water for several months in a coccoid form (Brown, 2000; Vincent, 

1995). Although there is still controversy regarding whether or not H. pylori coccoid forms are 

metabolically active or dead bacterium, or whether they can revert to original spiral shape, 

drinking water from stream, swimming in a stream and swimming in a swimming pool has been 

suggested as risk factors for the occurrence of infection, especially in developing countries 

(Brown, 2000; Goodman et al., 1996). 

Although the principal reservoir of the bacterium H. pylori appears to be the human stomach,     

H. pylori was also been isolated from non-human primates and domestic cats (Azevedo et al., 

2007; Brown, 2000; Mohamed & El-gohary, 2012). Nevertheless, results suggest that infection is 

most likely uncommon in cats and so it should not be considered a public health problem.             

H. pylori DNA was also detected in sheep (Brown, 2000; Mohamed & El-gohary, 2012; Momtaz et 

al., 2014) and the domestic housefly was suggested as a reservoir of H. pylori, however it seems 

improbable that this operates as a vector for H. pylori transmission (Brown, 2000; Mladenova et 

al., 2006).  

Some studies indicate that is possible to decrease the risk of infection through increasing 

consumption of fruits, vegetables, vitamin C and high levels of beta-carotene, for example 

(Brown, 2000).    
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1.2.3. Prevalence of the H. pylori infection and risk factors 
 

H. pylori infection has high prevalence in the entire world, being one public health problem for 

developing and developed countries. There is about 70% of prevalence in developing countries 

and about 30-40% of prevalence in developed countries. The prevalence of H. pylori infection 

depends broadly, for example, of the geographic area, age, race, ethnicity and socioeconomic 

status (SES) (Brown, 2000). Infection usually occurs during childhood, being a risk factor the age 

up to 10 years (Azevedo et al., 2007; Duynhoven & Jonge, 2001; Mladenova et al., 2006). The 

variation in age at acquisition of infection seems to be one of the factors to explain different 

effects on the gastric mucosa, which in turn result in different clinical outcomes.  

H. pylori is a successful pathogenic bacterium considering its worldwide prevalence of in 

approximately 50% of the population. Although all H. pylori-infected individuals present 

histological gastritis, only 15-20% develops more severe clinical outcomes such as gastroduodenal 

ulcers, MALT lymphoma and gastric cancer. It is thought that the risk of development of  infection 

and these diseases depends on differences in host genetic susceptibility to particular strains of H. 

pylori, genetic differences of the H. pylori strains and environmental factors (Brown, 2000; 

Yamaoka, 2010).  

In the host genetic factors are included ABO blood group, Lewis blood-group antigen and 

polymorphism in inflammatory genes and cytokines. For example, it was established that blood 

group “O” is a risk factor in the pathogenesis of duodenal ulcer disease however, is not a risk 

factor for acquiring H. pylori infection (Pathol, 1991). Several host Lewis antigens on gastric 

epithelium, such as Lewis b (Leb), Lex and sialyl-Lex, have been demonstrated act as receptors for 

H. pylori adhesions thus facilitating the bacterial colonization (Backert et al., 2011; Sheu et al., 

2003). Another example is the host polymorphism in genes encoding interleukin-1 beta and the 

interleukin-1 receptor-antagonist (genes that regulate inflammatory responses) that were 

suggested to be associated with development of gastric cancer (J. C. Machado et al., 2001).  

Several environmental factors are associated with H. pylori positivity, such as smoking, alcohol 

consumption, diet, and high salt consumption. A recent study demonstrates that a high salt intake 

promotes the carcinogenic effects of CagA+ H. pylori strains, constituting a risk factor for gastric 

cancer (Gaddy et al., 2013). Some studies have evaluated the possible association between          

H. pylori infection and active smoking (Brown, 2000), though with contradictory results. Regarding 
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the alcohol consumption, especially at moderate to high levels, studies demonstrate a negative 

association with H. pylori infection (Brown, 2000).   

1.2.4.   Diseases associated with H. pylori infection 
 

H. pylori infection causes gastric inflammation which can lead to several gastroduodenal diseases 

(Figure 1.5) (Brown, 2000; Dunn & Cohen, 2000; Kusters et al., 2006). H. pylori is the major 

etiologic agent of chronic gastritis (CG), which consists in a cellular infiltrate of immune cells in the 

human gastric mucosa (Kusters et al., 2006). In 5% of H. pylori-positive patients the gastritis can 

lead to development of gastric atrophy. H. pylori is also associated with the development of 

peptic ulcers, either gastric or duodenal ulcers, and H. pylori-positive patients have 10 to 20% 

lifetime risk of developing peptic ulceration (Kusters et al., 2006). Peptic ulcers are considered as 

mucosal wounds with a diameter of at least 0.5 cm penetrating the muscularis mucosa. Duodenal 

ulcers generally occur around 20 and 50 years old and  gastric ulcers usually occur approximately 

at 40 years old (Kusters et al., 2006).  

Infection by H. pylori has been associated with an increased risk of developing gastric cancer, 

which occurs in 1 to 2% of infected individuals, and with mucosa-associated lymphoid tissue 

(MALT) lymphoma that occurs in less than 1% of H. pylori-positive patients (Sepulveda, 2013; 

Suzuki et al., 2009).  

 

Figure 1.5 - Schematic representation of diseases´ outcome of H. pylori infection. From Negrei & Boda, 2014. 

Currently, H. pylori infection diagnosis rely on several tests like biopsy-based tests, serological 

tests and breath urea test. Serologic test detects IgG antibodies produced against H. pylori, but 

IgA and IgM antibodies can be used as well (Brown, 2000). A “gold standard” method for detect 
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patients with H. pylori infection is an endoscopy to obtain a biopsy for testing by rapid urease test 

and/or for histological analysis The non-invasive breath urea test is also a “gold standard” method 

for H. pylori diagnosis and for confirmation of eradication after therapy (Brown, 2000). 

1.2.5. Colonization  
 

 

H. pylori is able to colonize the surface of antrum and corpus of human stomach, with a tropism 

for the intercellular junctions of gastric epithelial cells. The infection persists for decades, unless 

treated with antibiotics (Kusters et al., 2006). Indeed, although it was isolated at the first time by 

Warren and Marshall, in 1982, the bacterium has evolved with humans for thousands of years 

(58.000 years) and is well adapted to survival in the gastric mucosa for almost the entire lifetime 

of the host; furthermore spontaneous eradication from the human stomach can be considered as 

a rare event (Pacifico et al., 2008).  

Colonization mechanism of H. pylori is characterized by four steps: (1) penetration in the crypts of 

the stomach surface epithelium; (2) adaptation to the environment; (3) attachment to epithelial 

cells and finally (4) inflammation of gastric mucosa and the increase of reactive oxygen and 

nitrogen species, which results in chronic gastritis. After exploration of host defense mechanisms, 

H. pylori acquires nutrients and can have a successful replication. Colonization of the gastric 

mucosa requires a complex adaptive process (Testerman et al., 2001). In this context the main 

features that allow H. pylori development in the stomach are: its motility and penetration into the 

viscous mucus layer via flagella and spiral morphology, ability to change the pH of the stomach, 

production of urease enzyme, presence of bacterial adhesins that bind to the surface of epithelial 

cells, induction of inflammatory response and production of virulence factors like CagA and VacA 

cytotoxin (Figure 1.6).  

Urease is produced in high levels, constituting about 6% of the total bacterial protein of H. pylori. 

Urease enzyme hydrolyzes urea into ammonia and carbon dioxide, increasing this way the pH in 

the stomach, which can protect the bacterium from the gastric acidity (Marais et al., 1999).  

In the human stomach, the bacteria can be found in two different localizations: free in mucus 

layer or adhered to epithelial cells of the gastric tissue, mainly at intercellular junctions (Marais et 

al., 1999). Various H. pylori proteins had already been associated to a role in the attachment of 

the bacterium to epithelial cells (Backert et al., 2011), like H. pylori adhesion A (HpaA), blood 

group antigen-binding adhesin (BabA), sialic acid binding adhesin (SabA) and the outer membrane 
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proteins (OMPs). Around 4% of the H. pylori genome is predicted to encode OMPs, some of which 

can act as adhesions, like OipA (Yamaoka, 2010).  
 

 

Figure 1.6 – Helicobacter pylori virulence factors activities. From Morales-guerrero et al., 2001. 

1.2.6.   Pathogenesis and virulence factors 
 

Chronic active gastritis is the primary condition related to H. pylori colonization. However, a 

cascade of H. pylori-associated disorders can be activated in the infected mucosa until the 

development of gastric cancer, which is one of the most common malignancies in the world 

(Figure 1.7) (Kusters et al., 2006). H. pylori infection can lead to development of the gastric 

atrophy - with loss of stomach cells and impaired digestive system -, which can lead to metaplasia 

- characterized by transformation of the stomach lining - and, after, to dysplasia, corresponding to 

initial stages of stomach cancer. Dysplasia can, then, evolve to gastric cancer. Indeed, H. pylori is a 

carcinogenic and the most fascinating and best studied risk factor for gastric cancer (Wadhwa et 

al., 2013). It was already shown that its virulence factors induce chronic inflammation, mucosal 

damage and multiple alterations in the gene expression, including increase of oncoproteins (A. M. 

D. Machado et al., 2010; Wadhwa et al., 2013). Furthermore, H. pylori induces the expression of 

Toll-like receptors (TLRs), resulting in proliferation of gastric cells, and is also associated to genetic 
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and epigenetic alterations, which can promote transformation, invasion and metastasis of host 

cells (Polk & Peek, 2010; Sepulveda, 2013; Suzuki et al., 2009; Wadhwa et al., 2013). 

 

 

 

 

 

 

 

The pathogenicity of H. pylori is associated with the genome of the bacterium, which can be 

correlated with the severity of induced gastric lesions. H. pylori produces a number of virulence 

factors, such VacA (vacuolating cytotoxin A), CagA (cytotoxin associated gene A), CagPAI (Cag 

Pathogenicity Island), CagE (cytotoxin associated gene B), IceA (induced by contact with 

epithelium), HP-NAP (neutrophils-activating protein), and BabA that play an important role in 

disease development.  

CagA 

The cagA was the first strain-specific gene identified in H. pylori. The structure of the cagA gene 

reveals a 5´ region highly conserved however with a 3´region that possesses a variable number of 

repetitive sequences, leading to variation of the length of the CagA protein. Strains with more 

repetitive sequences seem to be associated to higher levels of CagA antibody, more severe 

degrees of atrophy and reduced survival in a low pH (Graham & Yamaoka, 1998; Kusters et al., 

2006). The cagA gene is considered a marker for infection associated with a higher level of 

inflammation and to presence of CagPAI (Kusters et al., 2006). The exact function of CagA is 

unknown, but appeared to be a major virulence factor, which perturbs host cell signalling and in 

this manner promotes disturbance of epithelium and gastric carcinogenesis, and lead to 

production of IgG and IgA specific by the organism. The antigenic protein CagA is produced by 

about 60% of the strains and it is present only in H. pylori strains that are associated with severe 

forms of gastroduodenal disease (type I strains) (Graham & Yamaoka, 1998; Orodovsky et al., 

1996).  

Figure 1.7 – Model representing the role of H. pylori 

and other factors in gastric carcinogenesis, based on 

the cascade proposed by Correa et al, 1975. From 

Kusters et al., 2006. 
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CagPAI 

CagPAI possesses about 31 genes and can be founded in about 60% of the western strains 

(Kusters et al., 2006). Furthermore CagPAI contains genes that encode components of the T4SS 

(Type Four Secretion System) which consists in a multiproteic complex that acts like a needle and 

injects bacterial effectors molecules into the host epithelial cell, such CagA protein and 

peptidoglycan components (Backert et al., 2011; Guillemin et al., 2002; Terradot & Waksman, 

2011). This process can allow the bacterium to modulate host signalling pathways, including the 

expression of proto-oncogenes. The presence of the CagPAI corresponds to greater degree of 

virulence of strains (Kusters et al., 2006). 

CagE 

The cagE gene belongs to the CagPAI and is associated with an increased production of 

interleucine-8 (IL-8) by the epithelial cells of gastric mucosa, which increasing the presence of 

neutrophils in gastric mucosa of infected patients (Dunn & Cohen, 2000; Kusters et al., 2006).  

VacA 

The vacA gene is virtually present in all strains of H. pylori and presents two variable parts,             

s (encodes the signal peptide) and m (allele of middle region). The combination in mosaic of these 

alleles determines the production of cytotoxins responsible for degree of virulence of H. pylori 

(Basso et al., 2008). The virulence factor VacA is produced by approximately 50% of H. pylori 

strains (Cover, 1996). VacA is associated to severe inflammation, ulceration and increased risk of 

gastric cancer development (Kusters et al., 2006). This protein promotes formation of large intra-

cellular vacuoles within cultured mammalian epithelial cells, increase cell permeability, 

mitochondrial network fragmentation and epithelial cell apoptosis (Figure 1.8) (Cover, 1996; Jain 

et al., 2011; Palframan et al., 2012). The VacA induces also the formation of selective channels of 

anions in epithelial cells, leading to exudation of urea into the gastric mucosa that is important as 

substrate for urease enzyme function (Kusters et al., 2006; Palframan et al., 2012).  
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Figure 1.8 - VacA cytotoxin effects in epithelial cells. From Palframan et al., 2012. 

HP-NAP 
 

The intensity of inflammation and neutrophil infiltration is connected with the severity of the 

damage induced in mucosa and DNA. The chemotactic factor HP-NAP promotes neutrophil 

adhesion to endothelial cells and stimulates the release of reactive oxygen, nitrogen and 

proteases by neutrophils (Dunn & Cohen, 2000; Kusters et al., 2006). 

 

BabA 
 

The factor adherence BabA linked to difucosylated Lewisb (Leb) blood group Ags found on 

epithelial cells. This allows the contact between the bacterium and the epithelium and facilitates 

the release of virulence factors like as CagA and VacA. The babA gene has two different alleles: 

babA1 and babA2. The babA2 appears to improve the colonization properties of H. pylori by the 

increase of colonization densities, which are important for the degree of mucosal inflammation 

and damage (Backert et al., 2011; Kusters et al., 2006; Rad et al., 2002).  

A summary of some examples of adhesins and virulence factors associated with H. pylori is 

presented in Table 1.1. 
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Table 1.1 – Examples of adhesins and virulence-associated proteins of H. pylori. 

Protein Predicted role 
Association with H. 

pylori-related disease 

VacA 

Disrupts endosomal maturation leading to 
cytoplasmic vacuolation; selectively increase the 
permeability of polarized epithelial cell 
monolayers resulting in barrier dysfunction at 
tight junction and induces mitochondrial 
damage, cytochrome c release and gastric 
epithelial cell apoptosis. 

Has been directly 
implicated in the 
development of gastric 
and duodenal ulcers and 
increased risk of gastric 
cancer development. 

CagA 

CagA is associated with a prominent 
inflammatory response. Once in the host leads 
to cytoesquelet rearrangement. cagA gene is 
considered a marker for the of presence of 
CagPAI. 

CagA is involved in gastric 
cancer development. 

CagPAI 
CagPAI is associated with increased interleukin-8 
production and mucosal inflammation. And 
encodes a type IV secretation system. 

Possibly associated to 
gastric cancer and 
duodenal ulcer disease. 

IceA 
The iceA1 allele encodes CATG-recognizing 
restriction endonucleases. 

iceA1 has been 
associated with peptic 
ulcer disease, but this 
association is not 
universal. 

HP-NAP 
HP-NAP is reported to activate neutrophils and 
is a possible adhesin to mucin; possible function 
in protection of H. pylori DNA or iron storage. 

Unknown 

BabA 
Binds to fucosylated Leb blood group antigen on 
cells. 

babA2 allele has been 
implicated in  peptic ulcer 
disease and gastric 
cancer. 

SabA 
Binds to sialyl-Lex and sialyl-Lea antigens and is 
involved in activation of neutrophils. 

None 

OipA 
OipA has been reported to assist in IL-8 
induction, but this association is not universal. 

Expression of OipA is 
linked to cag status and 
development of duodenal 
ulcers and gastric cancer. 
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1.3.  Aims of the Dissertation 
 

The main aim of this master thesis was to evaluate a possible role for peroxisomes during 

Helicobacter pylori infection. For that were established two specific objectives: 

 Evaluate if H. pylori infection in different time points induces alterations in the 

morphology and number of peroxisomes (in parallel to mitochondria) in gastric cells by 

fluorescence microscopy analysis. 

 Evaluate the possible alterations in metabolic functions of peroxisomes upon H. pylori 

infection in different time points by western blotting analysis. 
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2. MATERIALS & METHODS  

____________________________________________________________________________ 
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2.1.  Cell culture  

 

Human MKN28 gastric epithelial cell line derived gastric adenocarcinoma, and the monkey COS-7 

fibroblast-like cell line, derived from the African green monkey kidney fibroblasts, were grown in 

RPMI (Invitrogen) supplemented with 10% (v/v) heat-inactivated fetal bovine serum (Hyclone 

serum, GE Healthcare HyClone™, Utah, USA) and 1% (v/v) penicillin-streptomycin solution 

(Invitrogen) at 37 ºC in a humidified atmosphere of 5% CO2 in air. Cells were grown in T75 or T25 

plastic flask (TPP, Trasadingen, Switzerland) for protein extraction and in 6-well plates (TPP) with 

coverslips for immunofluorescence studies.    

2.2.  H. pylori strains and growth conditions 
 

 

 

 

H. pylori strains 26695 (ATCC 700392; cag PAI+; cagA+; vacA+: s1/m1), 60190 (ATCC 49503; cag 

PAI+; cagA+; vacA+: s1/m1), and 84-183 (ATCC 53726; cag PAI+; cagA+; vacA+: s1/m1) were obtained 

from the American Type Culture Collection (ATCC). H. pylori strains were cultured for 48 h in 

tryptic soy agar (TSA) plates supplemented with 5% sheep blood (Becton, Dickinson and 

Company, New Jersey, USA) and incubated at 37 ºC under microaerobic conditions. For the 

infection, bacteria grown in TSA plates were harvested in phosphate-buffered saline (PBS), pH 7.4, 

and added to the host cells at a multiplicity of infection (MOI) of 100. Bacterial density was 

estimated by the absorbance measurement at 600 nm. 

2.3.  Infection of mammalian cell lines  
 

Cell lines were seeded in culture flask (T75 or T25) or in 6-well plates to reach forty to fifty 

confluence on the day of the infection, in complete medium without antibiotics. H. pylori, 

collected in PBS from TSA plates, was added to host cells at a MOI of 100 for different times 

points, and the cultures were maintained at 37 ºC under a 5% carbon dioxide atmosphere. Control 

cell cultures (non-infected cells) were performed in the same conditions as described above in the 

absence of bacteria. After the infection period, cells were washed 3 times in PBS plus Ca2+/Mg2+ 

to remove all bacteria (non-adherent and adherent), and lysed for western blotting analysis or 

fixed for immunofluorescence studies. The cell culture and the Helicobacter pylori infection were 

performed at IPATIMUP by our collaborators, as well as the preparation of lysates for western 

blotting analysis and the samples on coverslips for immunofluorescence analysis. 
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2.4.  Western blotting analysis  

2.4.1. Lysates preparation 
 

Infected and non-infected cells were lysed in PBS, pH 7.4 with 1% Triton X-100 and 1% NP-40 lysis 

buffer with proteases (Protease Inhibitors Set, Roche Diagnostics GmbH, Penzberg, Germany) and 

phosphatases (Phosphatase Inhibitor Cocktail 2, Sigma-Aldrich Corporation, MO, USA) inhibitors. 

Cells were scraped with cold complete lysis buffer on ice, centrifuged at 14.000 rpm, 30 min, at    

4 ºC. Soluble proteins were collected after centrifugation and stored at -80 ºC. 

2.4.2.   Total protein quantification (Bradford´s method) 

 

The total protein concentration (µg) from the lysates was determined using the Bradford Protein 

Assay. Bradford Protein Assay is a simple method used to determine the total protein content of a 

sample; this method is based on the proportional binding of the dye Coomassie to proteins. 

Coomassie absorbs at 595 nm. 

The Bradford reagent was diluted 1:5 with H2O, to the necessary final volume. Tubes with known 

BSA concentrations (1-15 μg), were prepared using BSA stock solution with 1 µg/µl, and used as 

standards. Sample tubes were also prepared using the same volume of lysates. Duplicates were 

done for all the conditions. After, all tubes were filled up to 100 μl with 0.1 M NaOH, 1 ml of 

diluted Bradford was added to each tube and all were incubated for 15 min at room temperature 

(RT). The optical density at 595 nm (OD595) of the samples and standards was measured using a 

spectrophotometer. A standard curve was created and the samples total protein concentration 

was calculated using Excel software.  

2.4.3.   SDS-PAGE 

 

Sodium Dodecyl Suftate - Polyacrylamide Gel Electrophoresis (SDS-PAGE) is a technique 

commonly used, which uses a discontinuous polyacrylamide gel as a support medium and SDS, an 

anionic detergent that denatures proteins and confers a net negative charge to the polypeptide in 

proportion to its length. In SDS-PAGE, the proteins are separated by an electric current according 

to their molecular weight, this means that heavy molecules have a slow migration and light 

molecules have a rapid migration. 



Exploring the role of peroxisomes in Helicobacter pylori infection 30 
 

____________________________________________________________________________

University of Aveiro – Master´s degree in Molecular Biomedicine 

 

Polyacrylamide gels were prepared with a 10% resolving gel on the bottom and a 4% stacking gel 

on top (composition at the Appendix). Samples with 60 μg of protein were prepared with loading 

buffer (composition at the Appendix), boiled for 5 min and loaded on the gels. A molecular weight 

marker was also loaded. The apparatus with gels were placed in a tank filled with running buffer 

(composition at the Appendix). The electrophoresis ran at 80 V and 300 mA for 2h to 2h 30 min. 

2.4.4. Electrotransference  

 

Separated proteins were transferred from the electrophoresis gel to a support membrane of 

nitrocellulose. A sandwich made with blotting paper, gel, membrane and blotting paper was 

assembled in the appropriate apparatus filled with transfer buffer (composition at the Appendix). 

The electrotransference occurred at 0.4 A and 100 V for 2h. After the transference, the 

membranes were stained with Ponceau S solution (composition at the Appendix) to verify the 

transference efficiency. Membranes where then washed with PBS and let dry for further analysis.  

2.4.5. Immunoblotting 
 

The membranes were hydrated with PBS, incubated with a 5% dry milk solution in PBS for 1h, for 

blocking and washed with TBS-T (Tris-buffered saline and 0.15% Tween 20). After, the membranes 

were incubated with the primary antibody, for 1-3h. The primary antibodies were diluted in TBS-T 

containing 3% dry milk, according to the table 2.1. After the incubation the membranes were 

washed with TBS-T, 3 times for 10 min. The membranes were then incubated for 1h with the 

secondary antibodies diluted 1:5000 in PBS. The secondary antibodies are conjugated with 

horseradish peroxidase (HRP) and were raised in goat against rabbit or mouse IgGs. Thus, it was 

used goat anti-rabbit or goat anti-mouse, depending on the primary antibody used. Finally, the 

membranes were washed with TBS-T, 3 times for 10 min. All the incubations and washes were 

done with agitation and at RT. 

 

 

 



Exploring the role of peroxisomes in Helicobacter pylori infection 31 
 

____________________________________________________________________________

University of Aveiro – Master´s degree in Molecular Biomedicine 

 

Table 2.1 – Primary antibodies used in western blotting analysis. 

Target Protein Antibody Dilution Expected MW Product 

Catalase 
α-catalase rabbit 

polyclonal 
1:500 64 KDa 

sc-50508, Santa cruz 
biotechonology® 

CagA (Cytotoxin associated 
gene A) 

α-CagA rabbit 
polyclonal 

1:750 120KDa 
sc-25766, Santa cruz 

biotechonology® 

GAPDH (Glyceraldehyde-3-
Phosphate Dehydrogenase) 

α-GAPDH mouse 
monoclonal 

1:7500 37 KDa 
sc-47724, Santa cruz 

biotechonology® 

 

2.4.6. Chemioluminescence detection (ECL) 
 

 

ECL™ is a light emitting non-radioactive method for the detection of immobilized antigens, 

conjugated with HRP antibodies. The membranes previously incubated with primary and 

secondary antibodies were incubated with the ECL detection solution for 1 min, in the dark at RT. 

The membranes were then exposed to x-ray films in a proper cassette for the appropriate time. 

After, the films were developed and fixed with the respective solutions. 

2.4.7. Quantification and data analysis 
 

The intensity of the obtained bands (protein expression) on film was quantified by densitometry 

using GS-880 calibrated imaging densitometer and Quantity One software (BioRad). The 

expression of proteins was expressed as percentage of control meaning that to the control was 

attributed 100%. 

2.5.   Immunofluorescence analysis  

2.5.1.   Samples preparation  

 

After the infection period (as described at section 2.1), mammalian cells grown on coverslips were 

washed 3 times in PBS plus Ca2+/Mg2+ to remove all bacteria (non-adherent and adherent) and 

fixed with 4% para-Formaldehyde (pFA) for 20 min at RT. Then were washed and stored in PBS at 

4 ºC. This procedure was also done in IPATIMUP by our collaborators. 
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2.5.2. Immunofluorescence procedure 
 

To continue the immunofluorescence procedure, the coverslips to be used were transferred to a 

new multiwells, washed 3 times with PBS, permeabilized with 0.2% Triton X-100 for 10 min at RT 

and washed again 3 times with PBS. The samples were then blocked with 1% BSA in PBS for         

10 min at RT, followed by the incubation with the primary antibodies at appropriate dilutions in 

PBS (Table 2.2) for 1h at RT. Each coverslip was incubated simultaneously with two different 

primary antibodies, which dilutions were prepared together. To prevent from drying, the 

multiwells were wrapped in wet paper. After the incubation the coverslips were washed 3 times 

with PBS. Then, the appropriate secondary antibodies were incubated for 1h as previously. The 

coverslips were once again washed 3 times with PBS. An incubation with the Hoechst solution, for 

2 min, was also performed as previously. Each coverslip was dipped 2 times in dH2O and mounted 

with a drop of Mowiol solution on slide.  

Table 2.2 – Primary and secondary antibodies (and dye) used in IMF analysis. 

Primary antibody Dilution Product 

α-PMP70 mouse monoclonal 1:100 SAB4200181, Sigma-aldrich® 

α-TOM20 rabbit monoclonal 1:100 612278, BD Biosciences 

Secondary antibody and dye Dilution Product 

Donkey α-Mouse IgG, Alexa 488 1:400 A21202, Invitrogen™ 

Donkey α-Rabbit IgG, TRICT 1:100 711-025-152, Jackson ImmunoResearch 

Hoechst  33258 dye 1:2000 09460 Polysciences 
 

2.5.3. Microscopy analysis 

 

Microscopy analysis was done using an Olympus IX-81 inverted microscope (Olympus Optical Co.) 

equipped with a Plan Apo 100x/1.40 oil objective (Olympus Optical) and with the appropriate 

filter combinations. 

Images were acquired with an F-view II CCD camera (Soft Imaging System) driven by Soft Imaging 

software. Obtained images were processed using the Soft Imaging Viewer.  
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3. RESULTS  

_________________________________________________________________________ 

 

 

 

 

 

 

 

 

 
 



Exploring the role of peroxisomes in Helicobacter pylori infection 34 
 

____________________________________________________________________________

University of Aveiro – Master´s degree in Molecular Biomedicine 

 

3.1.  Morphological analysis 
 

Peroxisomes’ remarkable dynamics is associated to a great plasticity, presenting an ample variety 

of different shapes and the capacity of changing their morphology to adapt to physiological 

changes in the cellular environment (M. Islinger et al., 2010). Alterations in peroxisome 

morphology have been observed under certain disease conditions such as carcinogenesis and 

even viral infections (Ribeiro et al., 2012). The study of peroxisome morphology and metabolism 

during bacterial infections is yet an unexplored field of research that we aimed at tackling with 

the experimental procedure followed in this master thesis. We have selected the bacterium         

H. pylori, due its high prevalence worldwide, causing several gastroduodenal diseases (Kusters et 

al., 2006). Furthermore, there are evidences that this bacterium directly affects the mitochondria, 

including mtDNA mutations and activating the cellular mitochondrial fission machinery in the 

infected cells  (Jain et al., 2011; A. M. D. Machado et al., 2010).  

In order to unravel a possible role for peroxisomes during H. Pylori infection, we started by 

performing a detailed analysis of the peroxisome morphology (in parallel to mitochondria 

morphology) in different time points after infection of gastric cells. MKN28 cells were infected 

with the highly pathogenic H. pylori 26695 and 60190 strains (cagPAI+ and vacA+ strains of            

H. pylori) to assure that the results obtained were not strain-specific. Cells were fixed in 4% 

paraformaldehyde immediately after infection, subjected to immunofluorescence with antibodies 

against peroxisomal and/or mitochondrial proteins and observed under a fluorescence 

microscope.  

Two hundred cells were analysed per condition taking into account the size/shape and number of 

their peroxisomes in comparison to the non-infected controls in the following time points: 3h, 6h, 

10h and 24h after infection. We considered cells containing “fragmented” 

peroxisomes/mitochondria as those whose organelles were smaller and in higher number when 

compared to the control cells. On the other hand, cells containing “elongated” 

peroxisomes/mitochondria presented longer and less organelles than in control cells. 

As shown in Figure 3.1, Figure 3.2 and Figure 3.3 upon H. pylori infection, the mitochondrial 

network presents a progressive fragmentation over the time. At 24h post-infection, the 

mitochondria were practically all fragmented, especially in the samples of cells infected with the 

H. pylori 60190 strain, which appears to be more virulent that the H. pylori 26695. The results 
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show that the H. pylori infection (independently of the used strain) induced the transition of 

mitochondrial networks into significantly shorter punctiform organelles, which is similar to the 

results previously reported in other related studies (Ashktorab, 2004; Jain et al., 2011). And 

demonstrating that H. pylori-dependent fragmentation of mitochondria is not idiosyncratic to a 

single strain. 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 - Morphology analysis of Mitochondria. Percentage of MKN28 cells with normal, fragmented or elongated 

morphology of mitochondria in uninfected (control) and H. pylori infected (26695 and 60190 strains) MKN28 cells, in 

different time points. 
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Figure 3.2 – Fluorescence microscopy analysis of peroxisomes and mitochondria in MKN28 cell line infected with          
H. pylori strains 26695 and 60190, 10h post-infection. Peroxisomes were marked with α-PMP70 and mitochondria were 
marked with α-TOM20. Nuclei are shown in blue. Scale Bars: 20 μm. 

 

Figure 3.3 - Fluorescence microscopy analysis of peroxisomes and mitochondria in MKN28 cell line infected with           
H. pylori strains 26695 and 60190, 24h post-infection. Peroxisomes were marked with α-PMP70 and mitochondria were 
marked with α-TOM20. Nuclei are shown in blue. Scale Bars: 20 μm. 
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As shown in Figure 3.2, Figure 3.3 and Figure 3.4, no significant alterations were observed on 

peroxisome morphology after the H. pylori infection, at any of the observed time points. Our 

results, hence, suggest that mitochondrial morphology changes are relevant for the establishment 

of H. pylori infection but demonstrate no specific influence of peroxisomal morphology on this 

mechanism. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 - Morphology analysis of Peroxisomes. Percentage of MKN28 cells with normal or elongated morphology of 

peroxisomes in uninfected (control) and H. pylori infected (26695 and 60190 strains) MKN28 cells, in different time 

points. 

We have also analysed (in parallel to the previous analyses) the presence of vacuoles, which are 

strictly associated with the pathogenicity of VacA cytotoxin. Significant differences between the 

strains were not observed, as both are vacA+ with the highly vacuolating genotype (s1/m1), and 

the expected slight rise in the number of vacuoles is observed in the last time points (Figure 3.5), 

in accordance with the increase of toxicity caused by the infection over the time.  
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Figure 3.5 – Percentage of cells with vacuoles in MKN28 cell line, over the time in control and H. pylori-infected cells. 
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3.2.   Metabolic analysis 
 

Two of the main functions associated to peroxisomes are the β-oxidation of long- to very long-

chain fatty acids and the metabolism of hydrogen peroxide, a reactive oxygen specie (ROS), by the 

catalase enzyme. Previous studies have demonstrated that H. pylori infection can induce ROS 

production and apoptosis in human gastric epithelial cells (Cytotoxin et al., 2003; Kuck et al., 

2001; Tsugawa et al., 2012). High levels of ROS have been involved in cellular physiological and 

pathological mechanisms such as cell proliferation, apoptosis, differentiation, carcinogenesis, 

among others.  

Besides the peroxisomal morphological analysis presented above, another aim of this study was 

the evaluation of the possible alterations in metabolic functions of this organelle upon H. pylori 

infection. With that in mind, we have used lysates of COS-7 cells infected with the H. pylori 26695 

strain and analysed the presence and amount of the peroxisomal protein catalase, in comparison 

to the control uninfected cells. The cell lysates were subjected to western blotting analysis as 

previously described. The samples were analysed at different time points: 6h, 8h, 12h, 16h and 

24h post-infection with H. pylori.  GAPDH was used as loading control of the protein input in all 

membranes. 

By analysing the expression of catalase in the different samples we could observe a rapid and 

significant increase in the protein levels in infected cells when compared to uninfected control 

cells, following by a clear decrease with the time post-infection as shown in Figure 3.6. 
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Figure 3.6 – Effect of H. pylori infection on catalase expression in COS-7 cells. Cells were infected with H. pylori and 

collected at the specified time points (6h, 8h, 12h, 16h and 24h). A. The expression levels of catalase was analysed by 

immunoblotting with specific antibody. GAPDH levels were also assessed as a loading control. B. Results obtained were 

quantified, catalase expression levels were normalised with GAPDH levels and values represented graphically as 

percentage of control (cells not infected). 

As the H. pylori also contains catalase, we tested whether the α-catalase antibody also recognized 

the bacterial catalase from pure samples of H. pylori 84183 strain. Surprisingly in Figure 3.7 we 

observed that, indeed, the used antibody clearly also recognized the catalase from the H. pylori. 

However, it is not expected that the amount of bacteria that remains in the samples decreases 

throughout the time. In order to check this, we used an antibody against CagA, a specific virulence 

factor of H. pylori, and, as shown in Figure 3.7, there was no significant differences on the amount 

of bacteria present in the sample. With this we can conclude that the decrease observed in the 

catalase expression is due to a specific decrease on the peroxisomal catalase from the infected 

mammalian cells.  

 

Figure 3.7 - Analysis of catalase and CagA expression in COS-7 cells and in pure bacterial lysate. The expression of 

catalase and CagA was analysed by western blotting in lysates of uninfected cells and cells infected with H. pylori, for 

6h, 8h, 12h, 16h and 24h. A pure bacterial lysate was included to evaluate if the anti-human catalase antibody cross-

reacted with the bacterial catalase. The CagA expression was used as a reference for the contribution of bacterial 

protein to the total protein of the samples. 
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4. DISCUSSION 
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Peroxisomes are crucial ubiquitous membrane-enclosed subcellular organelles, which can virtually 

be found in all eukaryotic cells. They are involved in several metabolic pathways, with emphasis 

for the β-oxidation of fatty acids, lipid biosynthesis and production and scavenging of ROS, in 

particular of hydrogen peroxide (M. Islinger et al., 2012; Schrader & Fahimi, 2006). However, 

peroxisomes are more than simple metabolic organelles: they are active and dynamic organelles 

that interact functionally and morphologically with other organelles, such mitochondria, ER and 

lipid droplets (Odendall & Kagan, 2013; Schrader, 2006). Indeed, peroxisomes and mitochondria 

exhibit a close interrelationship that includes metabolic cooperations, cross-talk and share of key 

components of their fission machinery (F. Camões et al., 2009; Schrader, 2006) . Alterations in 

metabolism, biogenesis, dynamic and proliferation in one organelle can potentially influence the 

other. Previous studies have demonstrated that peroxisomes are involved in innate immunity and 

protective responses of the cell, such as during viral infections, where they work in partnership 

with mitochondria (Odendall & Kagan, 2013). However, not much is yet known about the role of 

peroxisomes in bacterial infections.  

The bacterium H. pylori was selected for this study, due the fact that is a human gastric pathogen 

of high prevalence all over the world (Brown, 2000; Kusters et al., 2006), and there are evidences 

that H. pylori infection directly affects the mitochondria and leads to cellular apoptosis (Fannjiang 

et al., 2004; Jain et al., 2011; Willhite & Blanke, 2004).  

Our results have shown that, 10h after H. pylori infection, mitochondrial suffered a significant 

change from a reticulotubular to a punctiform phenotype, culminating at 24h post-infection with 

an almost complete mitochondrial fragmentation. These results are in agreement with previous 

studies that have also reported a change on mitochondrial morphology upon H. pylori infection 

(Ashktorab, 2004; Jain et al.,2011). 

It has been shown that the chronic infection by H. pylori is associated with increased apoptosis 

within the gastric mucosa. This increase may alter the gastric environment (loss of specialized 

cells, cellular proliferation and gastric atrophy) to promote H. pylori persistence and contribute to 

gastric disease. VacA, in addition to be important for H. pylori colonization and disease 

pathogenesis is also essential and sufficient to promote mitochondrial network fragmentation 

(Jain et al., 2011). It has been reported that VacA disrupts the cellular dynamics of mitochondria 

during infection as a mechanism to modulate the host's apoptotic machinery and to induce gastric 

epithelial cell death (Cytotoxin et al., 2003; Fannjiang et al., 2004; Karbowski & Youle, 2003).  
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VacA is a toxin that traffics to the mitochondria and is then translocated across the mitochondrial 

outer membrane (MOM); in the interior induces mitochondrial dysfunction and mitochondrial 

outer membrane permeabilization (MOMP). Increased mitochondrial fission promotes MOMP 

within VacA-intoxicated cells; VacA - dependent MOMP requires activation of the proapoptotic 

effector Bcl-2-associated X protein (Bax) and effector Bcl-2 homologous antagonist/killer (Bak), 

leading to membrane depolarisation, cytochrome c release and subsequent cell death (Ashktorab, 

2004; Parone et al., 2006; Yamasaki et al., 2006). It has been shown that VacA recruits and 

induces the activation of cellular mitochondrial fission machinery, including the dynamin-related 

protein 1 (Drp1) that localizes to focal sites of division on the MOM (Jain et al., 2011).  

Peroxisomal morphological changes are often in concert with mitochondrial alterations.  

However, our morphological analyses have revealed no apparent changes in peroxisome 

morphology upon H. pylori infection. The morphology control of these two organelles seems to be 

orchestrated independently during infection. The fact that they share most proteins of their 

fission machinery may not be of relevance in this case and the recruitment of Drp1 to the 

mitochondrial membrane (inducing its fragmentation) may indeed be solely induced by the 

localization of VacA at this organelle. 

A certain level of peroxisomal elongation could be expected in response to an increasing of ROS, 

caused by the infection and VacA (Schrader & Fahimi, 2006). However, we have not observed any 

relevant elongation when compared to control cells. The absence of a significant elongation can 

be due to the fact that the ROS levels present were not sufficient to cause this change in 

peroxisomal morphology. Moreover, it is highly likely that an increase of antioxidant proteins 

acted as the first line of defence against the increase of ROS in the environment. In fact, our 

results clearly show a dramatic increase in the amount of catalase between uninfected cells and 

cells infected with H. pylori. Oxidative stress represents a serious problem for H. pylori infection, 

as one of the host's primary defences against bacterial infection is the production of ROS, 

particularly hydrogen peroxide. To react to this cellular response H. pylori possesses sophisticated 

antioxidant defence mechanisms, including catalase, superoxide dismutase (SOD), thioredoxins, 

peroxiredoxins, alkylhydroperoxide reductase and NADPH quinone reductase.  The structure of 

the bacterial catalase is closely related to other catalases, which explains why the α-catalase 

antibody used in our experiments also recognized the bacterial catalase. However, as shown by 

the levels of CagA, there is no significant change on the amount of bacteria present in the 

analysed samples. Hence, the increase of catalase levels in comparison to the control as well as its 
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decrease with the time post-infection is clearly due to the amount of the mammalian 

(peroxisomal) catalase.  

The hyperlipidemia is a feature of bacterial infections and it has been suggested to be related to 

the elevation of the cytokine TNFα, which was related to the significant suppression of the 

expression of catalase and other peroxisomal proteins (Schrader & Fahimi, 2006). In this context, 

an elevation of cytokine TNFα promoted by H. pylori, could be a possible explanation for the slight 

decrease of catalase during infection.  

All together our results suggest that, although peroxisomal morphology does not change upon    

H. pylori infection, this organelle seems to have an important role on the infection mechanism by 

contributing for the degradation of the ROS that are produced by the cell. Further experiments 

should be performed in order to confirm our results in lysates from gastric cells. The analysis of 

other peroxisomal proteins, such as the ones involved in the β-oxidation of very-long-chain fatty 

acids would also be pertinent. It would be also interesting to repeat these analyses in cells 

infected with mutant H. pylori lacking some virulence factors such as CagA or VacA. These and 

other analyses must be performed in order to better unravel the role of peroxisomes in H. pylori 

infection and pinpoint the mechanism involved. 
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5. CONCLUSION & FUTURE PERSPECTIVES   
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The obtained results suggest that Helicobacter pylori infection does not affect significantly the 

peroxisomal morphology, number or localization. However, in the context of metabolic analysis, 

the results suggested that H. pylori infection affects the amount of peroxisomal catalase, probably 

due to an increase of ROS in the cellular environment (as consequence of the bacterial infection) 

and the subsequent necessity of to increase their degradation. 

However, more experiments are needed to confirm the observed results and it would also be 

relevant to analyse possible changes in other peroxisomal enzymes, such as the ones involved in 

the lipids β-oxidation. In addition, the enzymatic activity of catalase should also be evaluated. The 

analyses of all these proteins in samples of cells infected with mutant H. pylori, without some 

virulence factors such as CagA or VacA toxin, would also like lead to interesting results. 
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1x PBS: 1.39 M NaCl, 80 mM NaHPO4, 0.0268 M KCl, 0.0147 M KH2PO4,  pH 7.36, prepared from 

10xPBS diluted in ddH2O. 

1x TBS-T: 100 mM Tris pH8, 1,5 M NaCl, 0,05% Tween20, prepared from 10x TBS -T diluted in 

ddH2O. 

SDS-PAGE 

Polyacrylamide Gels 

Table 7.2 - Composition of the running and stacking gels for SDS-PAGE. APS – ammonium 

persulfate, SDS – sodium dodecyl sulphate, PAA – polyacrylamide.  

Components 10% Resolving Gel Stacking Gel  4% 

40% PAA 4.00ml 1.00ml 

2 M Tris pH 8.8 /1M Tris pH 6.8 2.98ml 1.25ml 

20% SDS 80µl 50µl 

H20 8.88ml 7.61ml 

TEMED 8µl 10µl 

10% APS 48µl 80µl 

  

Loading buffer: 1M Tris pH 6.80, 10% Glycerol, 1M DTT, 20% SDS, β-Mercaptoethanol, 0.1% 

Bromophenol Blue. 

Running Buffer 1x: 250 mM Tris, 1.9 M Glycin, 1% SDS.  

Electrotransference 

Transfer buffer: 0.05 M Tris, 0.4 M Glycin, 0.05% SDS, 20% Metanol. 

Ponceau S solution: 0.2% Ponceau S in 3% Acetic acid 

Protocol Immunofluorescence (IMF) 

PFA 4%: 20 g PFA in 450 mL ddH2O, 4 drops 1 M NaOH, 50 mL 10x PBS 

Mowiol Solution (3:1 Mowiol/n-propyl-Galat) 


