
Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática,

2013

João Pedro
Nogueira Bastos

Análise de Prioridade Fixa em Multiprocessadores
de Tempo-Real
Fixed Priority Analysis for Real-Time
Multiprocessors

Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática,

2013

João Pedro
Nogueira Bastos

Análise de Prioridade Fixa em Multiprocessadores
de Tempo-Real
Fixed Priority Analysis for Real-Time
Multiprocessors

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia
Electrónica e de Telecomunicações, realizada sob a orientação cient́ıfica
do Dr. Paulo Bacelar Reis Pedreiras, Professor Auxiliar do Departamento
de Electrónica, Telecomunicações e Informática da Universidade de Aveiro,
e do Dr. Orlando Moreira, Principal DSP Systems Engineer na Ericsson
(Eindhoven).

Apoio financeiro da FCT e do FSE no
âmbito do III Quadro Comunitário de Apoio.

o júri / the jury

presidente / president Professor Doutor Ernesto Fernando Ventura Martins
Professor Auxiliar da Universidade de Aveiro

vogais / examiners committee Professor Doutor Paulo José Lopes Machado Portugal
Professor Auxiliar da Faculdade de Engenharia da Universidade do Porto

Doutor Orlando Miguel Pires dos Reis Moreira
Principal DSP Systems Engineer, Ericsson

agradecimentos /
acknowledgements

I would like to thank everyone that has supported and help me throughout
my academic endeavor. Unfortunately it is impossible to mention everyone,
but I will try to address all the people that had a direct impact in my final
project.

First, I want to thank Orlando Moreira for allowing me the opportunity
to come to the Netherlands and making me feel very comfortable on my
first work environment. For his patience and availability to help and guide
me throughout my work. For his easy-going personality, sense of humor
and never ending interesting topics of conversation. I trully appreciate his
teachings and friendship.

I wish to thank Professor Paulo Pedreiras for his help in my preparation for
this project. It was only so that I felt comfortable and at ease to go on this
adventure. For his friendship, trust and support during all stages of this
work.

I wish to thank Hrishikesh and Yu Yi for helping me settling in and for being
my private printer and Heracles support team. To Alok for his sharpness,
incredible patience and tutoring. To all of them for the cheerful and always
interesting coffee breaks, lunches and procrastination pauses. To Cupertino
for his curious personality and for understanding my slightly hypochondriac
condition. And to all the folks at Ericsson for the good and relaxed company
environment, it was really a pleasure.

To my parents, for all the unconditional support and love in all good and
bad moments of my work and exile. For always knowing what to say and,
although annoying sometimes, for constantly reminding me of my mistakes
and how to learn from them.

To all the people I am fortunate to call my friends, for the moments, the
growing up together and for being always there when I need. For those I
met during my stay in the Netherlands, thank you for the amazing reception
and for pulling me away from work, even when I shouldn’t. And of course,
a special thank you to my six Oceans mates, obrigado malta!

Thank you all.

Abstract MultiProcessor Systems-on-chip (MPSoCs) are versatile and powerful plat-
forms designed to fit the needs of modern embedded applications, such
as radios and audio/video decoders. However, in a MPSoC running sev-
eral applications simultaneously, resources must be shared while the timing
constraints of each application must be met.

Embedded streaming applications mapped on a MPSoC, are often mod-
eled using dataflow graphs. Dataflow graphs have the expressivity and
analytical properties to naturally describe concurrent digital signal process-
ing applications. Many scheduling strategies have been analyzed using
dataflow models of applications, such as Time Division Multiplexing (TDM)
and Non-preemptive Non-blocking Round Robin (NPNBRR). However, few
approaches have focused on a preemptive Fixed Priority (FP) scheduling
scheme.
Fixed Priority scheduling is a simple and often used scheduling scheme. It is
easy to implement in any platform and it is quite predictable under overload
conditions.
This dissertation studies the temporal analysis of a set of dataflow mod-
eled applications mapped on the same resources and scheduled with a fixed
priority scheme. Our objective is to improve the existing analysis for Sin-
gle Rate Dataflow (SRDF) graphs and develop the necessary concepts and
techniques to extend it for applications modeled with state-of-art dataflow
flavor, Mode Controlled Dataflow (MCDF). MCDF is a more suitable model
than SRDF, since it can capture the natural dynamic behavior of modern
streaming applications, and therefore, reduce the gap between model and
real application.

To reach our main objective we present two contributions: improvement
of the existing fixed priority scheduling analysis for SRDF and a complete
temporal analysis technique for MCDF graphs.

We propose a novel method, for a general case of a set of n graphs, to de-
termine the worst-case response time of a low priority task by characterizing
the worst-case load that higher priority tasks generated on the processor.
We also demonstrate, that in the case of graphs that exhibit a single domi-
nant periodic/sporadic source, it is possible optimize the analysis for tighter
results. We validate and compare our analysis with the current state-of-art
technique for periodic streaming applications, and conclude that, for all the
experimented graphs, our analysis always provides tighter results.

Furthermore, we propose an implementation of a complete and optimal
temporal analysis technique for MCDF graphs that is based on a finite
state machine description of the graphs dynamic behavior. We propose
solutions to include in the analysis specific properties of MCDF graph, such
as pipelining execution and intermodal dependencies. Despite being limited
to time bounded and strongly connected graphs, results obtained using this
analysis are as good or better than any currently used temporal analysis
technique.

Resumo Os sistemas multiprocessadores (MultiProcessor Systems-on-Chip (MP-
SoCs)) são plataformas versáteis e potentes desenhadas especialmente para
satisfazer as necessidades de aplicações de streaming, como rádios e descod-
ificadores de áudio/v́ıdeo. Contudo, quando se executam várias aplicações
em simultâneos num MPSoC, os recursos têm de ser partilhados entre
aplicações, ao mesmo tempo que os requisitos temporais de cada aplicação
têm de ser cumpridos.

As aplicações de streaming mapeadas num MPSoC, são usualmente mod-
eladas usando modelos de computação dataflow. Estes modelos possuem a
expressividade e propriedades anaĺıticas necessárias para representar ideal-
mente aplicações de processamento digital de sinal.

Até hoje, foram analisados alguns esquemas de escalonamento em modelos
de computação dataflow, como Time Division Multiplexing (TDM) e Non-
preemptive Non-blocking Round Robin (NPNBRR). No entanto, poucas
tentativas foram feitas no sentido de estudar escalonamentos de prioridade
fixa.
O escalonamento de prioridade fixa é simples e popular, visto que é de
fácil implementação e o seu comportamento em condições de sobrecarga é
previśıvel.

Esta dissertação estuda a análise temporal de um conjunto de aplicações
modeladas com grafos dataflow, quando mapeadas nos mesmos recursos
e escalonadas com um esquema de prioridade fixa. O nosso objectivo
é melhorar a análise existente para grafos do tipo Single Rate Dataflow
(SRDF) e desenvolver os conceitos e as técnicas necessárias para realizar
esta análise utilizando um tipo de dataflow de estado-de-arte, o Mode Con-
trolled Dataflow (MCDF). Os grafos MCDF são mais adequados como mod-
elos de aplicações streaming, visto que conseguem capturar o seu compor-
tamento dinâmico, e consequentemente, reduzir a diferença entre modelo e
aplicação real.

Para atingir o objectivo apresentamos duas contribuições: melhoramos a
análise de escalonamentos de prioridade fixa existente para grafos SRDF e
apresentamos uma técnica de análise temporal completa para grafos MCDF.

Nesta dissertação apresentamos um método inovador, para o caso genérico
de n grafos, para determinar o tempo de resposta máximo de uma tarefa de
baixa prioridade, através da caracterização de carga máxima imposta num
processador pelas tarefas de mais alta prioridade. Demonstramos ainda,
que no caso particular de grafos com fontes dominantes, periódicas ou es-
poradicamente periódicas, é posśıvel optimizar a análise para obter melhores
resultados. A análise é ainda validada e comparada com o actual estado-
de-arte, constatando-se que para todos os testes realizados a nossa análise
apresenta melhores resultados.

Propomos ainda, uma implementação de uma análise temporal completa
e óptima para grafos de dataflow do tipo MCDF, baseada na descrição do
comportamento dinâmico dos grafos através de uma maquina de estados
finitos. Apresentamos soluções para incluir na análise caracteŕısticas especi-
ficas dos grafos MCDF, como execuções paralelas de tarefas e dependências
intermodais. Apesar de limitada a grafos fortemente ligados, os resultados
obtidos são iguais ou melhores que os de análises utilizadas actualmente.

2

Contents

Contents 3

List of Figures 7

List of Tables 9

List of Acronyms 11

1 Introduction 13

1.1 Basic Concepts . 14

1.1.1 Streaming Applications . 14

1.1.2 Real-Time Applications . 15

Timing Constraints . 16

1.1.3 Fixed Priority Scheduling . 16

Preemption . 17

Rate-Monotonic Scheduling . 17

Deadline-Monotonic Scheduling . 18

1.1.4 Dataflow Graphs . 18

1.2 Related Work . 19

1.3 Problem Description . 19

1.4 Contributions . 20

1.5 Document Organization . 21

2 Data Flow Computational Models 23

2.1 Graphs . 23

2.1.1 Paths and Cycles in a Graph . 23

2.1.2 Strongly-Connected Components . 23

2.2 Data Flow Graphs . 24

2.2.1 Single Rate Dataflow . 25

2.3 Dataflow Scheduling . 25

2.3.1 Self-Timed Scheduling . 25

2.3.2 Static Periodic Scheduling . 26

2.3.3 Time Division Multiplexing (TDM) 26

2.4 Temporal Analysis . 27

2.4.1 Monotonicity . 27

2.4.2 Relation between STS and SPS . 28

2.4.3 Throughput Analysis . 28

3

2.4.4 Latency Analysis . 28

Maximum Latency from a periodic source 29

Maximum latency from a sporadic source 29

2.5 Mode-Controlled Dataflow . 29

2.5.1 Overview . 30

Mode Controller . 30

Data-Dependent Actors . 30

2.5.2 MCDF Composition and Constructs 31

Construction Rules . 32

2.5.3 Example . 32

2.5.4 Temporal Analysis . 33

2.6 Scenario-Aware Dataflow . 34

2.6.1 Composition and Construct Rules . 34

2.6.2 Example . 35

3 Software Framework 37

3.1 Heracles . 37

3.1.1 Overview . 37

OCaml . 38

3.1.2 Heracles Temporal Analysis . 39

MCDF Temporal Analysis . 39

3.1.3 Heracles Scheduler . 40

3.1.4 Heracles Simulator . 40

3.1.5 Heracles Fixed Priority Analysis . 41

3.2 Major Modifications to Heracles . 41

4 FSM-MCDF 45

4.1 Max-Plus Algebra . 45

4.1.1 Vectors and Matrices . 46

4.2 Max-Plus and Dataflow . 47

4.3 Implementation . 51

4.3.1 Converting MCDF to Max-Plus . 52

4.3.2 State-Space Generation . 55

Inter-Modal Dependencies . 56

Limiting the number of transitions . 61

Technique Limitations . 62

4.3.3 State-Space Analysis . 62

Throughput Analysis . 62

Latency Analysis . 63

4.4 Results . 63

4.4.1 Validation . 63

Case 1: Simple MCDF Graph . 64

Case 2: Simple MCDF Graph with Pipelining 64

Case 3: Simple MCDF Graph with Intermodal Dependencies 65

Results . 65

4.4.2 Comparison . 66

FSM-MCDF vs SDT . 66

4

FSM-MCDF vs SPS-AP . 67
4.4.3 Conclusions . 67

4.5 Software Implementation . 69
4.6 Summary . 70

5 Fixed Priority Analysis for SRDF graphs 71
5.1 Fixed Priority in SRDF graphs . 71
5.2 Fixed Priority Analysis . 73

5.2.1 Load of a single load actor . 73
5.2.2 Load of a SRDF graph . 74
5.2.3 Maximum load of a single actor . 75

Start time of the load window . 76
Execution time of the actors . 78
Start times of the actors . 82
Gathering all conditions . 83

5.2.4 Maximum load of a SRDF graph . 83
5.2.5 Response Time Analysis . 85
5.2.6 Response Model . 89

5.3 Fixed Priority Analysis for N applications . 90
5.4 Maximum load set-up in a SRDF graph . 90

5.4.1 Methodology . 91
Example . 92

5.4.2 Blocking Actor . 92
General Case . 93
Optimization for applications with a dominant source 95

5.4.3 Multiple load actors . 96
5.5 Implementation . 96

5.5.1 Our Algorithm Overview . 96
5.5.2 Core algorithm . 97

Preparing the initial conditions . 97
Determining the maximum load . 98
Setting the load window . 98
Interference analysis . 98

5.5.3 Full Exploration Algorithm . 98
5.5.4 Final Results and Tests . 99
5.5.5 Hausmans’s Approach . 100

Analysis Flow . 100
Response Times . 101
Compute Schedules and Derive Jitter 101
Convergence of the flow . 101

5.6 Results . 101
5.6.1 Case Studies: WLAN and TDSCDMA models 103
5.6.2 Interference Analysis (2 Applications) 103

WLAN - TDSCDMA . 103
WLAN - WLAN . 104

5.6.3 Interference Analysis (3 Applications) 104
WLAN - WLAN - TDSCDMA . 106

5

WLAN - TDSCDMA - TDSCDMA . 106
5.6.4 Conclusions . 107

5.7 Software Implementation . 109
5.8 Summary . 109

6 Conclusions 111
6.1 Future Work . 112

Bibliography 115

6

List of Figures

1.1 Dataflow graph example . 18

2.1 Synchronous Dataflow Graph (SDF) example 24

2.2 Example of a TDM wheel, as in [24] . 26

2.3 MCDF model of a WLAN Receiver . 33

2.4 Example of an SADF graph . 34

2.5 SADF model of a WLAN Receiver . 36

3.1 Description of the Heracles Tool General Flow 38

3.2 Description of the Heracles Simulator Flow 42

4.1 SRDF graph example . 48

4.2 Gantt Chart of two iterations of Figure 4.1 graph 49

4.3 MCDF graph example . 53

4.4 FSM-MCDF graph example. a) Modal Graph 1 b) Modal Graph 2 c) Finite
state machine or transition graph . 53

4.5 State-Space of the example FSM-MCDF . 57

4.6 More complex MCDF example . 58

4.7 Gantt Chart of MCDF example in Figure 4.6 with Mode Sequence [3,1,2,2] . 60

4.8 Generated State Space for Mode Sequence [3,1,2,2]. Total Execution Time = 45 61

4.9 a) Transition Graph T1 - b) Transition Graph T2 64

4.10 MCDF graph example for Case 2 . 64

4.11 MCDF graph example for Case 3 . 65

4.12 Validation results for FSM-MCDF State Space Analysis 65

4.13 Comparison results between FSM-MCDF and SDT analysis 67

4.14 LTE MCDF model graph . 68

4.15 Comparison results between FSM-MCDF and SPS-AP analysis 68

5.1 Example of enforced static order in actors execution 72

5.2 SRDF graph example with a single load actor 73

5.3 Gantt chart of SRDF example . 73

5.4 SRDF graph example with multiple load actors 75

5.5 Gantt chart of SRDF example Figure 5.4 . 75

5.6 Influence of the start time of the load window 76

5.7 Example of two SRDF applications with actors B and X mapped on the same
processor. 78

5.8 Gantt chart of the execution of example SRDF in Figure 5.7 79

7

5.9 Execution of example SRDF in Figure 5.7 with slower execution of non-load
actors . 80

5.10 Execution of example SRDF in Figure 5.7 with faster execution of load actors 81
5.11 Example SRDF graph with cyclical dependencies and a blocked state 84
5.12 Timeline for the example of Figure 5.11 . 84
5.13 Example of interference between two SRDF applications 86
5.14 Execution of actors X and Z before and after being mapped on the same processor 86
5.15 Example of interference between two SRDF applications 87
5.16 Execution of actors X,Y and Z before and after being mapped on the same

processor . 88
5.17 Example of the general SRDF graph we want to maximize the load 91
5.18 Example of Figure 5.7 with a Block actor . 92
5.19 State that represents the maximum load in the SRDF graph 93
5.20 Timeline of the example SRDF with different block times (15, 25 and 35 time

units) . 94
5.21 Slot filling algorithm example . 99
5.22 Analysis Flow of [18] . 100
5.23 SRDF Model of a WLAN Radio . 102
5.24 SRDF Model of a TDSCDMA Radio . 102
5.25 Abstract target architecture template . 102
5.26 Results for the analysis of experiment WLAN+TDSCDMA 103
5.27 Results for the analysis of experiment WLAN+TDSCDMA 104
5.28 Results for the analysis of experiment WLAN+WLAN 105
5.29 Results for the analysis of experiment WLAN+WLAN 105
5.30 Results for the analysis of experiment WLAN+WLAN+TDSCDMA 106
5.31 Results for the analysis of experiment WLAN+WLAN+TDSCDMA 106
5.32 Results for the analysis of experiment WLAN+TDSCDMA+TDSCDMA . . . 107
5.33 Results for the analysis of experiment WLAN+TDSCDMA+TDSCDMA . . . 107
5.34 Results for the schedulability of experiments 107
5.35 Response time analysis for both techniques 108

8

List of Tables

4.1 Initial Tokens (Graph to Matrix) . 54
4.2 Initial Tokens (Graph to Matrix) . 60

5.1 Load generated by actor X . 74

9

10

List of Acronyms

BFS Breadth First Search

CSDF Cyclo Static Data Flow

DDF Dynamic Data Flow

DES Discrete Event Systems

DFS Depth First Search

FPS Fixed Priority Scheduling

FSM Finite State Machine

FSM −MCDF Finite State Machine Mode-Controlled Data Flow

FSM − SADF Finite State Machine Scenario-Aware Data Flow

MC Mode Controller actor

MCDF Mode-Controlled Data Flow

MCM Maximum Cycle Mean

MoC Model of Computation

MPSoCs MultiProcessor Systems-on-Chip

MRDF Multi Rate Data Flow

NPNBRR Non-Preemptive Non-Blocking Round Robin

ROSPS Rate-Optimal Static Periodic Schedule

SADF Scenario-Aware Data Flow

SDF Synchronous Data Flow

SDT Static Dataflow Techniques

SPS Static Periodic Schedule

SPS −AP Static Periodic Schedule AProximation

SRDF Single Rate Data Flow

11

STS Self-Timed Schedule

TDM Time Division Multiplexing

TDSCDMA Time Division Synchronous Code Division Multiple Acess

WCET Worst Case Execution Time

WCT Worst-Case Throughput

WCTS Worst-Case Self-Timed Schedule

WLAN Wireless Local Area Network

12

Chapter 1

Introduction

Nowadays it is practically impossible not to be surrounded by one or more embedded
system devices, even if we are not aware of it. Mobile phones, TV remotes, coffee machines or
MP3 players are all examples of embedded systems, that can be seen as dedicated computer
systems interacting with larger mechanical or electric systems. The worldwide market for
embedded systems was valued around 160 billion euros, with growth of 9 percent per year,
in 2009 [12]. Part of its growth is due to a high demand for smart embedded devices, such
as smartphones [22, 35] or smart domestic utensils [16]. The evolution of the concept of the
Internet of Things (IoT) allied with mass social networks, is poised to spur even more growth
in the market for embedded systems. Sensors that inform the user via instant messaging that
a plant needs watering or kitchen ovens that can be turn on and off via SMS are just a few ex-
amples of the perks of new products with direct connectivity to the Internet. Another sector
that has been propelling the growth of market share for embedded systems is the automotive
market. Almost every control system in a car is done by an individual embedded device:
temperature control, electric steering, ignition and cruise control, to enumerate a few.

Multiprocessor technology has become a large part of the embedded system market. Mul-
tiProcessor Systems-on-Chip (MPSoCs) embody an important and distinct branch of multi-
processors. They have been designed to fulfill unique requirements of embedded applications,
comprised of multiple, usually heterogenous, processing elements with specific functionalities
(general-purpose processors, accelerators, vector processors, etc.) in the same chip. Advan-
tages of MPSoCs include cost-savings, performance improvements and lower power consump-
tion.

Multimedia and signal processing applications have been widely implemented using MP-
SoCs. The availability of multiple different processing units fits the need of such high com-
putational and streaming applications. Most computing of digital signal processing involves
two types of processing units: a general-purpose core and a vector processor. Most of the flow
control decisions are made by the general-purpose processor, while high computational pro-
cesses, like vector and matrix operations, are delegated to specific-purpose processors, vector
processors.

Multi Radio systems benefit largely from the heterogeneity of MPSoCs. Such systems
require several different radio transceivers running simultaneously on the same platform. For
example, smartphones radios offer various different connectivity options to its users (Wifi,
GSM, 3G, 4G, etc.). However, such flexible and complex systems also pose new challenges in

13

terms of analysis and design techniques. For instances, having multiple applications, running
on limited shared resources, with high demands for performance and robustness, requires a
highly reliable management of available resources and scheduling of tasks executions.

This dissertation intends to address some of the problems of scheduling real-time streaming
applications on a MPSoC. We focus on the use of a fixed-priority scheduling scheme. Despite
not being as fair as other scheduling techniques, such as Time Division Multiplexing, fixed-
priority scheduling is predictable in overload conditions [10] and can be easily implemented
in hardware platforms. Although much has been done in fixed priority scheduling of real-
time periodic applications, few attempts have focused on real-time streaming applications,
that may have a non-periodic behavior. Therefore, in this dissertation we will develop and
improve the necessary methods and tools for the analysis of a fixed-priority assignment scheme
for applications mapped on MPSoCs. For this purpose, we will use data flow as a basic model
of computation as it fits the application domain.

Dataflow is a natural paradigm for describing digital signal processing applications with
concurrency properties and parallel computation [8]. Dataflow models, such as Synchronous
Dataflow (SDF), have been proved to offer the necessary properties to model and analyze
real-time streaming applications. For instances, checking of deadlock-freedom and temporal
analysis techniques. However, many of the applications modeled by this Model of Computa-
tion (MoC) have a natural dynamic behavior, which cannot be reproduced with such Dataflow
models. Other models, such as Dynamic Dataflow (DDF), are expressive enough to mimic
the dynamism of applications, but lack the formal analytical properties that are present in
Static Dataflow models, such as SDF. This led to the appearance of new models that could
both capture the dynamic behavior of an application and still provide the verifications and
analysis which are important to the design and characterization of streaming applications.

Scenario-Aware Dataflow (SADF), [36], and Mode-Controlled Dataflow (MCDF), [28], are
two of the state-of-art models in Dataflow MoC. Both offer strict constructs that guarantee
the correctness of the model and can reproduce the dynamic behavior of applications, by
allowing for different modes of operation within the same model.

For this dissertation our aim was to give the first steps in the analysis of a fixed-priority
scheme using state-of-art dataflow model Mode-Controlled Dataflow. Unfortunately, due to
lack of time and the meanwhile publishing of more related work, we were not able to meet our
final goal. Instead, we focused on creating and improving the necessary tools and concepts
to address this problem in the future. In order to do so, we make two major contributions to
the state-of-art: develop a technique for temporal analysis of MCDF graphs that is complete
and optimal, and improve the work done in [1] for the fixed-priority dataflow model using
Single Rate Dataflow.

In the remainder of this chapter we will provide the reader with the fundamental concepts
of the problem explored in this dissertation, as well as the state-of-art on fixed-priority analysis
techniques on streaming applications.

1.1 Basic Concepts

1.1.1 Streaming Applications

As the denomination implies, a streaming application is an application whose input is a
large (potentially infinite) sequence of input data items, a data stream [38]. Input data is

14

fed into the application by an external source and each data item is processed in a limited
time before being discarded. The output is also a long (potentially infinite) sequence of data
items. Typically applications in this domain have three characteristics:

• High computational intensity: High number of arithmetic operations per I/O.

• Data parallelism: Data items from the input stream can be processed simultaneously
without needing results from previous items.

• Data locality: Data is local to the application, once produced and read it is never
used again.

As an easy analogy, a dictation exercise can be seen as a streaming application. The
teacher will read a text out loud at a certain speed while the student must follow and write
down the text on a piece of paper. If the student takes to much time to write down certain
words he might not be able to transcript the full text and, therefore, fail the exercise.

Examples of such applications include communication protocols, software-defined radio,
audio and video decoding, cryptographic kernels and network processing [28].

1.1.2 Real-Time Applications

Real-time applications are applications that must produce results within certain imposed
time constraints. In fact, if the output of such applications violates its temporal constraints
it might become irrelevant, wrong or even lead to catastrophic results. For example, the
Anti-lock Brake System (ABS) of a car is a real-time application. The ABS system allows the
wheels to maintain tractive contact with the road surface, impeding the car from skidding,
by implementing cadence braking. Therefore, locking and unlocking of the brakes must be
done within strict time intervals. Otherwise, traction is lost and the driver loses control of the
car. However, not all real-time application have such harsh consequences for failing to meet
their timing constraints: MP3 players, TV receivers or Wifi transceivers are all examples of
real-time systems that failing to meet their standard timing requirements will only result in
degradation of service for the user. Thus, an important classification of real-time applications
is related to how important the timing requirements are. One simple classification, widely
used in industrial settings, divides real-time applications in two classes [9]:

• Hard Real-Time: Requirements cannot be violated under any circumstances, or the
results of the computation will be completely useless, and failure may, in case of life
critical systems, have catastrophic consequences.
Examples: Pacemakers, Fly-by-wire systems, ABS and others.

• Soft Real-Time: Requirements can be occasionally disrespected, but the rate of fail-
ures must be kept below a certain maximum.
Examples: Video Streaming, Gesture recognition in a tactile device and others.

In addition, if failure to meet the temporal of functional requirements of an application
can jeopardize the safety of human lives or lead to important economical damage, then these

15

applications are referred as critical real-time applications.

The design of real-time applications is focused on providing different features than reg-
ular applications. The focus is not in user-friendliness, performance speed or usability, but
instead, the desired features of real-time applications include the following, as in [9]:

• Timeliness: Results must be correct not only in their value but also be generated
within a specific time interval.

• Predictability: The system must be analyzable in such way that all possible conse-
quences of scheduling decisions are predictable.

• Efficiency: Resources must be efficiently managed to achieve the desired levels of per-
formance.

• Robustness: Real-time systems must not collapse when they are subject to peak-load
conditions, so they must be designed to manage all anticipated load scenarios.

In the next sub-sections we explore further the subjects of timing constraints and schedul-
ing of real-time applications.

Timing Constraints

Our area of study focuses on streaming applications and we will define our timing re-
quirements accordingly using throughput and latency constraints, as opposed to following
the classical approach of deadline constraints. We define throughput as the rate at which an
iterative application produces results and latency as the time between the arrival of input data
and the production of the related output data. Applications may have one or both types of
constraints. An example of an application with throughput requirements is a video streaming
service, like Youtube, Hulu or Netflix. It is important to guarantee a certain rate of frames
to the viewer but the time it takes for the signal to travel from the server to the user is quite
irrelevant. Meanwhile, a game controller is an example of a latency constrained application.
It is fundamental that the latency is respected otherwise the controller’s response will be in-
consistent. A game controller that fails to meet its latency requirements will certainly affect
the performance of the player. In this project we focus on studying applications in terms of
worst-case throughput and latency requirements.

We give special attention to Fixed Priority scheduling, since its the objective of this project
is to study its analyzability in Dataflow Model of Computation.

1.1.3 Fixed Priority Scheduling

Priority-driven scheduling is a widely used approach to real-time scheduling. Fixed priority
scheduling dates back to job-shop scheduling, or manufacturing problems regarding machinery

16

operation scheduling, and has, since, been improved and widely implemented in industry and
computer systems. Tasks are studied at design time and given a priority value according to
a chosen parameter (request rate, earliest deadline, etc). Priorities assigned to tasks do not
change during executions, hence the term fixed. The scheduler, then, picks the next task to be
executed in terms of its readiness and priority value. For example if we have two tasks A and
B, sharing the same resources, with, respectively, priorities Pa and Pb, with Pa > Pb, then any
scheduling decision will give preference to A. This known behavior is one of fixed priority’s
advantages, predictability. In a critical situation, such as a peak of load, it is known that only
the lower priority tasks will be affected. This can be used to guarantee that, for example, a
smartphone user might lose its Wi-Fi connectivity, but never its calling capabilities. However,
fixed priority exchanges predictability for fairness. In a fixed priority scheme the behavior of
low priority tasks is always dependent on the behavior of high priority tasks.

We now introduce the concept of preemption and provide the reader with some examples
of fixed-priority scheduling algorithms: Rate-Monotonic and Deadline-Monotonic.

Preemption

A scheduler can have the ability to preempt, or interrupt, momentarily a task to give
execution to another. In terms of fixed priority scheduling, a scheduler may interrupt a lower
priority task to give way to a higher priority task, and resume the lower priority task as
soon as the higher priority task finishes. Most fixed priority scheduling techniques, like Rate
Monotonic (RM), are intrinsically preemptive and assume a preemptive system. However,
some studies have focus on non-preemptive fixed priority scheduling [29]. In this situation, a
low priority task might block a higher priority task that arrives during its execution. We focus
our study only in preemptive fixed priority schedulers, therefore, throughout this dissertation
we always assume availability of preemption.

Rate-Monotonic Scheduling

In this scheduling technique priorities are assigned according to task request rates. Each
task is characterized by a period Ti, a phase φi, a worst-case execution time Ci and a relative
deadline Di. Task with higher request rates (that is, shorter periods) will have higher priori-
ties. Assuming a periodic behavior, Rate Monotonic (RM) [25] is a fixed priority assignment.
RM is also intrinsically preemptive, a currently executing task can be preempted by newly
arrived tasks with shorter periods.

According to the study done in [25], RM is optimal, meaning that, amongst all fixed
priority assignments, no other fixed priority algorithm can schedule a task set that cannot
be scheduled by RM. Moreover, it was also found an upper bound on processor utilization
for a generic set of n periodic tasks, providing useful tools for a priori knowledge of a given
set of task schedulability according to its temporal requirements. The two reference criteria
for processor utilization based tests are the Minor Bound of Liu and Layland [25] and the
Hyperbolic bound of Bini, Buttazzo and Buttazzo [7].Further insight on the proposed tests
and their proofs can be sought in [9].

17

CA B

Figure 1.1: Dataflow graph example

Deadline-Monotonic Scheduling

In a Deadline-Monotonic (DM) Schedule tasks are assigned a priority based on their rel-
ative deadline. Again, each task is characterized by a period Ti, a phase φi, a worst-case
execution time Ci and a relative deadline Di. Since relative deadlines are constant, DM is a
fixed priority assignment. In DM a task is assigned a fixed priority Pi, inversely proportional
to its relative deadline. Thus, at any instant, the task with the shortest relative deadline is
executed.

Deadline-Monotonic is optimal for independent tasks and when the period is equal to
the deadline, such that any task set schedulable by other fixed priority algorithms is also
schedulable by DM. Proof and more detailed explanations of the DM algorithm can be found
in [3].

1.1.4 Dataflow Graphs

Dataflow modeling will be used extensively throughout this dissertation and therefore a
detailed and formal approach will be address in its own chapter. However, we provide the
reader with a brief and informal introduction to Dataflow graphs.

Dataflow is a natural paradigm for describing Digital Signal Processing (DSP) applications
with concurrency properties and parallel computation [23]. A dataflow graph is a directed
graph where nodes represent computations (or functions) and the arcs represent data paths.
It is usual to refer to dataflow graph nodes as actors and arcs as edges. Whenever the input
data of an actor is available in all of its incoming edges, the actor can fire, or in other words,
perform its computation. An actor with no input arcs may fire at any time. Because all the
behavior of the graph depends on data availability, dataflow programs are said to be data-
driven. Moreover, actors of a dataflow graph cannot have side-effects, i.e. data dependencies
amongst actors in a dataflow graphs have to be explicit by a connecting edge. Data is modeled
by tokens, or delays, that are represented as a number, or dots, between connecting edges.
Connections are conceptually FIFO queues that model communication between actors. Figure
1.1 portrays an example of a dataflow graph with three actors: A, B and C. The initial token
in edge C-A allows token A to fire, which will consume the token in the input and output
a token in the output edge A-B. B can then fire, and consecutively C will also fire. At this
point the graph has returned to its initial state and an iteration has passed.

18

1.2 Related Work

So far we have introduced all the background needed to understand the work done in this
dissertation. In this section we will make a summary of the published related work, until the
writing of this dissertation, on fixed-priority scheduling of real-time streaming applications.

Early work on holistic dataflow analysis of embedded multiprocessors systems is presented
in [5, 33]. Moreira et al propose a temporal analysis for Time Division Multiplexing (TDM)
and its variant with static-ordering in [27] for heterogenous MPSoC. Wiggers et al [40] present
a generalized technique to model starvation-free schedulers. Steine et al [34] propose a sim-
ple starvation-free (budgeted) variant of fixed priority scheduling for two levels of priority.
However, response-modeling of non-starvation-free schedulers, like Fixed Priority Scheduling
(FPS), has not received much attention from the dataflow community, even though many
embedded processors employ FPS in real-life situations.

In terms of FPS temporal analysis for MPSoC we are aware of following work. Almeida [1]
proposed an analysis for fixed-priority scheduling of two levels of priority, using dataflow based
techniques. Hausmans et al, [18], proposed a different approach for the subset of periodic
streaming applications. In this approach, interference of tasks was computed with a enabling
jitter periodic event model, as based on [39]. Results were reached by convergence of upper
bounds on worst-case or by unschedulability of the set of tasks.

Furthermore, attempts have been made to apply real-time scheduling to dataflow graphs.
Park and Lee [30] studied the non-preemptive rate monotonic scheduling for dataflow ap-
plication. In contrast this dissertation deals with preemptive fixed priority scheduling. Ba-
makhrama et al [4] shows that a Strictly Periodic Schedule for Cyclo Static Dataflow (CSDF)
graphs such that traditional real time analysis techniques may be used for analyzing dataflow
graphs. However, these works assume acyclic application graphs with no initial tokens on
their edges. Application designers exploit the use of cycles and initial tokens to model buffer
constraints between communicating actors, or complex inter-activation dependencies. In real-
time calculus [37], event streams are used to capture the dependencies that describe the indi-
vidual component timings. Another compositional approach, called SymTA/S, for analyzing
system level performance is proposed in [20] that supports any standard event models for
real-time system analysis. However, both real time calculus and SymTA/S acknowledge the
complexity of considering cyclic dependencies. Dataflow can very effectively handle cyclic
dependencies. Therefore, making it a popular mean for modeling streaming applications.

1.3 Problem Description

As we have already stated, it is expected from a multiprocessor embedded platform to
handle several applications running simultaneously. It is also assumed that applications are
real-time and their inputs are data streams. Furthermore, it has been concluded that a fixed-
priority assignment can in fact be handled by dataflow analysis and a load analysis technique
has been sketched to study task interference under worst-case assumptions. However, it is
our belief that improvements can be made to current proposed techniques [1, 18] to better
their results. The questions we wish to address are the following: Given a MPSoC platform
and a set of n hard real-time streaming applications scheduled in a fixed-priority scheme,
what will be the interference amongst tasks and how will it affect the load in the available

19

resources? How can we improve current fixed priority dataflow analysis techniques to optimal
results? And how to adapt the current approach to state-of-art models of computation such
as Mode-Controlled Dataflow?

The approach taken to reach the sought conclusion will be divided in the following steps:

• Extend current throughput analysis available for Mode-Controlled Dataflow to have an
overall worst-case analysis of the model.

• Revisit current fixed-priority analysis for dataflow models, proposed by [1].

• Optimize current load analysis technique for fixed-priority dataflow for periodic bound
cases and compare it with other proposed approaches.

• Extend current fixed-priority dataflow analysis to Mode-Controlled Dataflow models.

All the steps taken should have culminated in an attempt to join the optimized load
analysis technique with the more realistic dynamic models provided by the use of Mode-
Controlled Dataflow as a Model of Computation. However, due to pending issues with the
previous fixed priority analysis for Single Rate Dataflow (SRDF) graphs and new work added
to the state-of-art, we opted to focus on improving and optimizing the current analysis for
fixed priority scheduling of SRDF graphs.

1.4 Contributions

In result of the work done during this dissertation, the contributions to the state-of-art
can be summarized in the following points:

• Dataflow Analysis Implementation of an overall and optimal throughput analysis for
Mode-Controlled Dataflow MoCs, using a finite state machine to model the possible
mode transitions in the model and exploring a state-space of a symbolic execution of
the model.

• Fixed Priority Analysis We revisit the analysis of dataflow models of fixed priority
systems, proposed by [1], and optimize the calculation of worst-case response time
upper bounds for periodic bound application graphs, strictly or sporadically periodic.
We propose a new interference and response time analysis for n Single Rate Dataflow
applications with a fixed priority assignment scheme.

• Extension of the tools available For the purpose of the research and analysis done
in this dissertation we had at our disposition a set of dedicated software tools, namely
a dataflow graph simulator and analysis tool. In result of improvements done to the
simulation and analysis of fixed-priority dataflow graphs, we add new functionalities
and modified already existing ones. We adapted the tools to correctly simulate Mode-
Controlled Dataflow graphs and buffer states. Furthermore, we added new modules to
convert Dataflow graphs into Max-Plus matrix representation and for the implementa-
tion of state-space exploration throughput analysis for MCDF.

Further minor contribution are summarized at the end of each chapter.

20

1.5 Document Organization

The remainder of this dissertation is organized as follows: in Chapter 2 we review dataflow
computational models and their analytical properties. The software framework used through-
out this project is introduced in Chapter 3, as well as detailed explanation of the modifications
done to the tools. Chapter 4 explains in great detail how throughput analysis on Mode-
Controlled Dataflow can be improved by extending the model with the use of a finite state
machine and Chapter 5 introduces the proposed technique for fixed-priority dataflow anal-
ysis and optimization done for periodic bound applications. Finally, Chapter 6 states our
conclusion and suggestions for future work.

21

22

Chapter 2

Data Flow Computational Models

As stated in the previous chapters, we use data flow as the base model of computation
throughout this dissertation. Although there are many flavors of data flow we focus mainly
in three variants: Single Rate Data Flow (SRDF), Mode-Controlled Data Flow (MCDF) and
Scenario-Aware Data Flow (SADF). SRDF is the model used in the current fixed-priority
dataflow analysis, whilst MCDF and SADF belong to a quite different category of data flow
models, to which we wish to extend our fixed-priority analysis. In this chapter, we present
the notation and relevant properties of the mentioned data flow models. This is reference
material and most of it can be found in [8, 23,28,31,33,36].

2.1 Graphs

A directed graph G is an ordered pair G = (V,E) where V is the set of vertexes or
nodes and E is the set of edges or arcs. Each edge is an ordered pair (i, j) where i, j ∈ V .
If e = (i, j) ∈ E, we say that e is directed from i to j. i is said to be the source node of
e and j the sink node of e. We also denote the source and sink nodes of e as src(e) and
snk(e), respectively.

2.1.1 Paths and Cycles in a Graph

A path in a directed graph is a finite, nonempty sequence (e1, e2, ..., en) of edges such
that snk(ei) = src(ei+1), for i = 1,2,...,n − 1. We say that path (e1, e2, ..., en) is directed
from src(e1) to snk(en); we also say that this path traverses src(e1), src(e2), ..., src(en)
and snk(en); the path is simple if each node is only traversed once, that is src(e1), src(e2)
, ..., src(en) , snk(en) are all distinct; the path is a circuit if it contains edges ek and ek+m such
that src(ek) = snk(ek+m),m ≥ 0; a cycle is a path such that the subsequence (e1, e2, ..., en)
is a simple path and src(e1) = snk(en).

2.1.2 Strongly-Connected Components

A directed graph is strongly connected if there is a path from each node in the graph to
every other node. In a more practical definition this means that there must always exists paths
in both directions; a path from a to b and also a path from b to a. The strongly connected
components of a directed graph G are the set of all maximal strongly connected subgraphs

23

A B
t = 5

2 3

t = 10
d(a,b) = 4

d(a,a) = 1 d(b,b) = 1

1
1 1

1

Figure 2.1: Synchronous Dataflow Graph (SDF) example

of G. If we contract each strongly connected subgraph to an equivalent node, the resulting
graph is directed acyclic graph (DAG), the condensation of G.

2.2 Data Flow Graphs

Data Flow graphs are directed graphs where nodes are referred to as actors and repre-
sent time consuming functions, and edges are referred as arcs and represents a data path,
commonly modeled as a FIFO queue that directs data from the output of an actor to the
input of another. Data is transported in discrete chunks, referred to as tokens. In order for
data to travel through a data flow graph actors need to fire. The firing of an actor represents
the computation of the function associated to that actor and the conditions for an actor to
fire are called firing rules. As a result of firing an actor, data is consumed from the input
tokens and produced into the output tokens of the fired actor. Different flavors of data flow
may have different firing rules or may have different construct rules associated.

All flavors of data flow used in this dissertation are subset or extensions on Synchronous
Data Flow (SDF), or Multi Rate Data Flow (MRDF) [23], hence we will start by introducing
the notation used with the behavior of SDF graphs. Synchronous Data Flow (SDF) is a data
flow model where the firing rules are as follows: the number of tokens produced (consumed)
by the actor on each output (input) edge per firing is fixed and known at compile time. We
call execution time of an actor to the elapsed time from start to finish of the firing of an actor,
and represent it as t : V → N0; t(i) being the execution time of actor i. Arcs of a SDF graph
can be represented by three fields: delay, tokens consumed and tokens produced. The delay
d(i, j) ∈ N0 is the number of initial tokens on arc (i, j). Whilst prod(e) and cons(e) represent,
respectively, the constant value of tokens produced by src(e) and consumed by snk(e) in each
firing. Therefore, a timed SDF is defined by a tuple (V,E, t, d, prod, cons).

Figure 2.1 depicts a SDF graph with two actors, A and B, and three edges, (a,a), (a,b)
and (b,b). Each actor has associated an execution time t, while each edge has an associated
production/consumption rate and a delay d of initial tokens.

An iteration of an SDF graph occurs when all the initial tokens have travelled the graph
and returned to their exact initial position. However, to reach this state some actors must
fire different amount of times than others. In a SDF graph with |V | actors numbered from 1
to |V |, the column vector of lenght |V | in which each element represents the correct number
of times a actor in the graph must fired to completer an iteration, is denominated the repe-
tition vector and usually represented by r. Therefore in an iteration an actor fires as many
times as indicated by the repetition vector.

24

Some applications may have tasks that are modeled with varying execution times, there-
fore, upper and lower bound can be used to model varying execution times of actors. We
define ť as the best-case execution time (lower bound) and t̂ as the worst-case execution time
(upper bound). Consequently such graph is defined by a tuple (V,E, ť, t̂, d, prod, cons).

2.2.1 Single Rate Dataflow

A very important subset of SDF graphs are Single Rate Dataflow (SRDF) graphs. An
SDF graph in which, for every edge e ∈ E, it holds that prod(e) = cons(e), is an SRDF graph.
Any SDF graph can be converted into an equivalent SRDF graph, each actor i is replaced
by r(i) copies of itself, representing a particular firing of the actor within each iteration of
the graph. As an example of an SRDF graph, consider the SDF graph depicted in Figure 2.1
only with every port rate of the same value, such that each port consumes and produces the
same amount of tokens. Thus, an SRDF graph can be represented as a subset of SDF graphs
with characteristic tuple (V,E, d, t).

SRDF graphs have very useful analytical properties. A SRDF graph is deadlock-free if
and only if there is at least one delay in every cycle [28]. A graph is deadlocked when there is
a cyclic dependency where two actors cannot fire because each requires the other one to fire
in order to obtain the data required for it to fire itself.

The cycle mean of a cycle c in an SRDF graph is a very important concept, and is

defined as µc =
∑

i∈N(c) ti∑
i∈N(e) de

, where N(c) is the set of all nodes traversed by cycle c and E(c)

is the set of all edges traversed by cycle c. We can also define the Maximum Cycle Mean
(MCM) µ(G) of a SRDF graph.

µc = maxc∈C(G)

∑
i∈N(c) ti∑
i∈N(e) de

(2.1)

The MCM of a SRDF graph can be directly related to its throughput, 1
µ(G) is, in fact,

equivalent to the maximum throughput achievable. Further explanation and proof of this
statement can be found in [28].

2.3 Dataflow Scheduling

In this section we will introduce some of the modeled scheduling algorithm in dataflow
that will be used as the basis for most of our analysis and proofs. We also introduce Time
Division Multiplexing as a comparison to the scheduling algorithm we wish to study: Fixed
Priority scheduling, which we will address in more detail in Chapter 5.

For simplicity sake, we will introduce these scheduling algorithms by using SRDF graphs.
For SDF extended approach to these algorithms please refer to [28].

2.3.1 Self-Timed Scheduling

A Self-Timed Schedule (STS) of an SRDF graph is a schedule where each actor firing
starts immediately when there are enough tokens on all its input edges. The Worst-Case
Self-Timed Schedule (WCSTS) of an SRDF is the self-timed schedule of an SRDF where
every iteration of every actor i takes t(i) time to execute. The WCSTS of an SRDF graph is

25

Figure 2.2: Example of a TDM wheel, as in [24]

unique. The WCSTS of a strongly-connected SRDF graph has an interesting property: after
a transition phase, of some iterations, it will reach a periodic regime [26,28]. The number of
iterations is a constant for a given timed SRDF. The start time s(i, k), of actor i in iteration
k, on a STS schedule can be determine using Equation 2.2.

s(i, k) = max(x,i)∈E

{
s(x, k − d(x, i)) + t(x, k − d(x, i)), k ≥ d(x, i)
0 k ¡ d(x, i)

(2.2)

2.3.2 Static Periodic Scheduling

A Static Periodic Scheduler (SPS) of an SRDF graphs is where all actors fired pe-
riodically with constant period T . Therefore, it is true that for all nodes i ∈ V , and all
k > 0

s(i, k) = s(i, 0) + T · k (2.3)

Note that an SPS can be represented uniquely by a T and the values of s(i, 0),∀i ∈ V .

A SPS schedule only exists if, and only if, T ≥ µ(G), thus 1
µ(G) is the fastest possible rate

(or throughput) of any actor in a strongly-connected SRDF [28]. If a SPS has a period T
equal to the MCM of the SRDF graph µ(G), we say that the schedule is a Rate-Optimal
Static Periodic Schedule (ROSPS).

2.3.3 Time Division Multiplexing (TDM)

In a Time Division Multiplexing scheduling scheme each task is assigned a fixed amount
of time, a slice, within a fixed frame, called replenishment period. This period is common
to all tasks, but the slice sizes may be different for different tasks. Figure 2.2 depicts a simple
example of a TDM scheduling scheme, called a time wheel.

In data flow, the effect of a TDM scheduling can be modeled by replacing the worst-case
execution time of the actor by its worst-case response time under TDM scheduling. The
response-time of an actor i is the total time necessary to complete the fire of actor i in an
iteration, when resource arbitration is taken in consideration. Assuming that a TDM wheel
replenishment period P is implemented on the processor and that a time slice with duration

26

S is allocated for the firing of i, such that S ≤ P , a time interval equal or longer than θ(i)
passes from the moment and actor is enabled by the availability of enough input tokens to
the completion of its firings. The first of this is the arbitration time, i.e., the time it takes
until the TDM scheduler grants execution resources to the actor. In the worst-case, i gets
enabled when its time slice has just ended, which means that the arbitration time is the time
it takes for the slice of i to start again. If we denote the worst-case arbitration time as r̂(i)
then [24]:

r̂(i) = P − S (2.4)

2.4 Temporal Analysis

Temporal analysis is required in order to verify whether a given timed dataflow graph can
meet a required throughput or latency requirement of the application. We assume, due to
the application area we focus on, that applications graphs will behave in a self-timed fashion:
a data flow actor fires immediately whenever its firing conditions are met. The behavior of
a self-timed dataflow graph can be divided in two phases: transient and periodic. In [26]
it is proved that the self-timed execution of a a dataflow graph, where actors have constant
executions times, will eventually reach a regime with periodic behavior. Until that point,
the graph’s behavior is on its transient phase. In many of the applications we wish to study,
timing requirements need to be guaranteed to have a strictly periodic behavior from the first
output on. Therefore the techniques present in this subsection, as proposed in [28], will allow
us to reason about the temporal behavior of self-timed execution of data flow graphs, even
when considering the transient phase and/or varying execution times per actor firing.

2.4.1 Monotonicity

In a broad sense, a monotonic function can be defined as follows:

Definition 1. (Monotonicity of a function): A function f(n) is monotonic increasing
if m ≤ n implies f(m) ≤ f(n). Similarly, it is monotonic decreasing if m ≤ n implies
f(m) ≥ f(n). A function f(n) is strictly increasing if m < n implies f(m) < f(n) and
strictly decreasing if m < n implies f(m) > f(n) [11].

But in dataflow we are more interested in the concept of monotonicity of a self-timed
execution, such that: if any given firing of an actor finishes execution faster than its worst-
case execution time (WCET), then any subsequent firings in any self-timed schedule can never
happen later than in the WCSTS, which can be seen as a function that bounds all start times
for any self-timed execution of the graph. We can enunciate this as a theorem

Definition 2. (Monotonicity of a self-timed execution): In a SRDF graph G = (V,E,t,d)
with worst-case self-timed schedule sWCTS, for any i ∈ V , and k ≥ 0, it holds that, for any
self-timed schedule sSTS of G:

sSTS(i, k) ≤ sWCSTS(i, k) (2.5)

27

2.4.2 Relation between STS and SPS

Because of monotonicity, there is a very important relation between STS and SPS that
allows us to use any SPS start time of an actor as an upper bound to any start of the same
firing of the same actor in the WCSTS. That relation is enumerated in the following theorem:

Theorem 1. In any admissible SPS of an SRDF graph G = (V,E,t,d), all start times can
only be later or at the same time than in the WCSTS of that graph, that is, for all i ∈ V ,
k ≥ 0, and all admissible static periodic schedules sSPS of G, it must hold that:

sWCSTS(i, k) ≤ sSPS(i, k) (2.6)

Using the explanation from [28], ”this means that, given a SRDF graph for which we know
the worst-case execution times of all actors, we can obtain a linear conservative upper bound
on the output production times of any given actor i during self-timed execution. This bound
is given by the expression s(i, 0) + t(i) +µG ·k, where s(i, 0) is the start time of the first firing
of i on a Rate-Optimal Static Periodic Schedule (ROSPS).”

2.4.3 Throughput Analysis

Definition 3. (Throughput) The throughput of a graph is the rate at which a graph completes
an iteration over an elapsed period of time.

Previously, we stated that in our application scope and in the paradigm of dataflow
modeling, throughput and latency will be the timing requirements we want to analyze and
comply with. One way of analyzing the maximum achievable throughput of a certain graph
is to, as we have already stated, determine the inverse of the Maximum Mean Cycle of the
graph. Another way of finding the throughput of strongly connected graphs is by simulation.
The graph is simulated until it reaches a periodic phase, at that point one can analyze the
graphs throughput behavior. Its maximum throughput will be the overall longest time of
completion of one iteration of the graph.

2.4.4 Latency Analysis

Although throughput is a very useful performance indicator for concurrent real-time ap-
plications, latency is also a relevant parameter of performance. Some applications might have
strict latency constraints if the travel time of a signal is of great importance.

Latency is the time interval between two events. We measure latency as the difference
between the start times of two specific firings of two actors, i.e.:

L(i, k, j, p) = s(j, p)− s(i, k) (2.7)

where i and j are actors, p and k firings. We say that i is the source of the latency, and
j is the sink. However, because dataflow graphs can execute for quite long lapses of time, we
are more interested in the overall latency between two actors in all of their firings. Therefore
we also introduce the concept of maximum latency in all iterations of the graph’s execution:

L̂(i, j, n) = maxk≥0(s(j, k + n)− s(i, k)) (2.8)

28

where n is a fixed iteration distance. Next we will address the latency analysis of some
specific cases of application, those with periodic behavior.

Maximum Latency from a periodic source

The start times of a periodic source are given by:

s(i, k) = s(i, 0) + T · k (2.9)

In a graph with a periodic source of period T , the graph’s behavior and rate of execution
is imposed by the source, and we say that the graph is lower bounded by the period of the
source. Notice that if this is not true, and the graph has a longer period than the source there
would be an infinite token accumulation on some edge and periodic behavior is lost. For this
reason we will perform latency analysis under the assumption that the MCM of the graph is
lower or equal to the period T of the source. Assuming that the graph can at at most run at
its ROSPS we can derive maximum latency has:

L̂(i, j, n) = maxk≥0(sSTS(j, k + n)− s(i, k)) ≤ šROSPS(j, 0)− s(i, 0) + µ(G) · n (2.10)

where šROSPS(j, 0) represents the soonest start time of j in an admissible ROSPS. We
can determine the maximum latency for a periodic source just by determining an ROSPS
with the earliest start time j and a WCSTS for the earliest start time of i. A more extended
approach to this analysis, including a detailed explanation of the proof of expression 2.8 can
be found in [28].

Maximum latency from a sporadic source

Some applications, such as reactive systems, have sources that are not strictly periodic,
but produce tokens sporadically with a minimum interval time (mit) between subsequent
firings, which we will denote by η. In such applications, typically, a maximum latency must
be guaranteed. In this situation an application to ensure its performance must keep up with
the source, such is the case if the MCM, µ(G), of the graph G is equal or lower than the
source’s η. Therefore, we can bound the graphs behavior by its self-timed behavior with a
static periodic schedule of period η, which as we have stated is possible if µ(G) ≤ η. We will
assume that η = µ(G) and provide the formalization of maximum latency in a graph with a
sporadic source:

L̂(i, j, n) ≤ šη − s(i, 0) + η · n (2.11)

The latency L̂(i, j, n) with a sporadic source has the same upper bound as the latency for
the same source i, sink j, and iteration distance n in the same graph with a periodic source
with period η. We opt to omit the proof as it is quite extensive and it can be found in [28].

2.5 Mode-Controlled Dataflow

Mode-Controlled Dataflow is a flavor of dataflow that captures both the expressive ca-
pabilities of dynamic dataflow and the analytical properties of static dataflow models. With

29

MCDF it is possible to build more realistic models of the application and express their dy-
namic behavior, as natural of streaming applications, while providing the necessary tools to
do a temporal analysis on the built model.

Further on in this dissertation we will provide the reader with the context to which Mode-
Controlled Dataflow (MCDF), [28], and Scenario-Aware Dataflow (SADF), [36], have been
developed, however in this section we will focus on stating the properties and constructs of
such models.

2.5.1 Overview

In a broad sense a MCDF graph is a compilation of several SDF graphs that model a
certain behavior of an application. For example, in a WLAN application, there are several
different operations depending on the input received: either synchronization, processing and
CRC checking. These operations can be modeled by individual graphs, and then put together
in a complete MCDF graph. Actors common to all modes are modeled as regular SRDF
actors.

Intuitively, a MCDF graph is a dataflow graph where each firing of a designated actor,
called the Mode Controller (MC), allows actors belonging to a specific subgraph are fired.
In other words, a specific subgraph is chosen for execution, depending on an output value
produced by the Mode Controller. Therefore there are data-dependent actor firings. After all
the actors in the chosen subgraph have fired the graph returns to its initial token distribution.

Mode Controller

The Mode Controller (MC) is a special actor in MCDF graphs. The MC is responsible
for the flow of the graph, its output token drives the control input tokens of all data-dependent
actors in the MCDF graph. Each firing of the MC produces a single token with the value of
the mode of operation to execute in that iteration. A mode of operation corresponds to an
associated subgraph of the MCDF. For any given MCDF graph, there if a fixed number of
modes, M . Therefore, the value of the output token of the MC has an integer value within
the closed interval from 1 to M . Tokens produced by the MC are referred to as control
tokens.

Data-Dependent Actors

Besides SRDF actors, a MCDF graph allows the usage of three types of data-dependent
actors. These actors are the Mode Switch, Mode Select and Mode Tunnel actors. These data-
dependent actors have in common the fact that they all have a control input port. A control
token is read from this port for each firing of the data-dependent actor, and depending on its
value it determines which of the port of the data-dependent actor are producing/consuming
data during this firing.

We will provide the reader with the definition of each data-dependent actor exactly as
they are defined in [28]:

Definition 4. (Mode Switch) A Mode Switch actor has, besides the control input port, one
data input port and M output ports. Each output port is associated with a mode. When a
token is present on the control input port and on the data input port, the Mode Switch actor
is fired. It consumes both input tokens and produces a token in the output port associated with

30

the Mode indicated by the control token. The output token has the same size and value as the
token consumed on the data input port.

Definition 5. (Mode Select) A Mode Select actor has, besides the control input port, M
data input ports and one output port. Each input port is associated with a mode. When a
token is present on the control input port, its value is read and used to decide from which
input port to consume a token. The actor is fired when a token is present in the control input
port and in the data input port associated with the mode indicated by the control token. When
fired, it consumes both of these tokens. At the end of the firing, it produces on the output port
a token with the same size and value as read from the modal input port. if the input port was
not connected, the output token will have some pre-defined default value, which an be mode
dependent.

Definition 6. (Mode Tunnel) A Mode Tunnel actor has, besides the control input port, one
data input port and one data output port. The data input port is associated with an arbitrary
mode m of the graph, and the data output port is associated with a mode n of the graph,
different from m. When the token reads at the control port the value of m, the Mode Tunnel,
fires and consumes a token from the control input port and from the data input port. It stores
the token read from the data input port in its internal state. When the control input port
has value n, the Mode Tunnel fires, consuming that value and copying the token stores in its
internal state to the data output port. The initial value of the internal state is graph-specific.
In this way, the Mode Tunnel always delivers to its consumer the value produced by the last
previous execution of the source orchestrated by the Mode Controller.

2.5.2 MCDF Composition and Constructs

The rules we present for the construction of a well-constructed MCDF graph guarantee
that it can always return to its initial state of token placement, independently of the sequence
of mode control tokens. It will also ensure that per each fire of the MC only actor belong to
the selected mode of operation, of actors with no assigned mode, will fire and that no other
actors fire until another activation of the Mode Controller occurs.

An MCDF graph with M modes is composed of:

• A Mode Controller actor (MC);

• an arbitrary number of Data-Dependent actors;

• an arbitrary number of static, single-rate actors.

Before introducing the construction rules, we provide the reader with some important
terminology and definition of MCDF graphs [28]:

Definition 7. (Actor Modality) Actors in a MCDF graph are annotated with a valuation
mode: V → 1, ...,M . Since only some actors execute for specific modes, mode is partial
function. If mode(i) is defined, then the actor is said to be modal and we can say that actor
i belongs to mode(i). If mode(i) is undefined, denoted by mode(i) = ⊥, the actor is said to
be amodal.

31

Definition 8. (Actor Type) There are some actors in MCDF that have special attributes,
these are the Mode Controller, the Mode Switch and the Mode Select. We use valuation
atype: V → mc, switch, select, normal, to indicate any special attributes of an actor.

Definition 9. (Modal Graph) The mode m subgraph of G, modal graph m, is a sub-graph
Gm = (Vm, Em, t, d) of MCDF graph G = (V,E, t, d,M,mode, atype), such that its vertex set
Vm is composed of all amodal actors, and all actors that belong to mode m, and its edge set
is composed of all edges which are in E and whose sources and sinks both belong to Vm, and
where t and d are restricted to Vm.

Construction Rules

The construction rules that must be respected by a MCDF graph for it to be considered
well-constructed are as follows [28]:

• Rule 1: There is only one mode controller.

• Rule 2: Modal actors can either be connected to other modal actors, as sinks to the
output ports associated with their mode on Mode Switches, or as sources to the input
ports associated with their mode on Mode Selects. On the other hand, the ports of
amodal actors other than the output ports of Mode Switches and the input ports of
Mode Selects, can only be connected to fixed rate ports of other amodal actors.

• Rule 3: The mode control output port of the Mode Controller is connected to all
control input ports in the graph through delay-less edges.

• Rule 4: There are no delay-less cycles in the graph.

2.5.3 Example

We will use WLAN as an application example to illustrate the behavior of a MCDF graph.
Not only is it an easy to understand example of a dynamic application but also it will be a
recurrent case study in this course of this dissertation.

Figure 2.3 depicts the MCDF modeled WLAN 802.11a receiver. Arcs that communicate
control tokens are represented by dashed lines. The graph has 4 modes: Synchronization
(Mode 1), Header Processing (Mode 2), Payload Processing (Mode 3) and CRC (Mode 4).
The control flow of the modes of operations depends on the value outputted by the MC. Some
modes may need to be repeated until the operation is completed, as is the case of Mode 1
where the mode is repeated until synchronization is successful. This information is sent to
the MC by the Select actor.

After synchronization is complete the flow changes to Mode 2 to perform the processing
of the header. As depicted in the figure, a Tunnel actor connects actor HDEC to PDEM,
this represents the data dependency between modes 2 and 3, in this specific case HDEC will
send to PDEM the actual parameters for the demodulation of the payload. Once the full
payload is received the MC actor will change to Mode 4 to perform CRC checking of the
packet. Notice that the only outputs of the MC that are dependent on the current mode of
operation’s results are the ones related to modes 1 and 2, therefore there is a connecting edge
from the Select actor to the MC actor in these modes. The same does not occur for modes 3

32

switch
 1 2 3 mc

hdem

sync

 1 2
select

hdec

pdec

source

data
out

pdem

crc

code
ack

mode
ack

send
header

send
payload

shift

2:3
Tunnel 3:4

Tunnel

Figure 2.3: MCDF model of a WLAN Receiver

and 4. After completing mode 4 the next iteration of MC reverts to its initial state and the
graph is ready to process a new incoming packet.

As a model, it is easy to understand that each mode of operation could be represented
by a single SDF graph, and that a MCDF graph is a junction of several SDF graph with
the graphs flow modeled by data dependent actors and dependencies between modal graphs
represented by Tunnel actors.

2.5.4 Temporal Analysis

Temporal analysis of MCDF graphs is more complex than the previously introduced anal-
ysis for SRDF graphs. For this reason we opt to summarize the techniques proposed by [28]
for worst-case temporal analysis, the current state-of-art we wish to improve in this disser-
tation. For a detailed explanation of these techniques and the concepts derived to reach the
proofs associated, please refer to [28].

A first and simple approach is to bound on overall throughput and start times of all ac-
tors firings as given by MCM analysis of a rate-equivalent SRDF graph. This approach is a
simple adaptation of the available technique for SRDF graphs, however it is pessimistic due
to the fact of always taking into account the worst-case throughput across all modes as the
worst-case throughput of the graph when executing in any mode. If we can reduce the set of
mode sequences of interest for the application, as it is possible in some cases, then we may do
an exhaustive simulation of that set of mode sequences, using a SPS schedule, to obtain more

33

Figure 2.4: Example of an SADF graph

accurate results. Although it is still pessimistic since it still resorts to a SPS scheduling aprox-
imation, not to mention the fact that this technique is not able to cope with infinite sequences.

2.6 Scenario-Aware Dataflow

Let us first present, in a simple and informal way, Scenario-Aware Dataflow.

SADF captures the dynamic behavior of an application in a model, which is still highly
analyzable. The dynamic behavior of an application is captured in a set of scenarios, each
modeled as an SDF graph, in which a task may have varying executions times and different
port rates [36]. Each scenario models a specific mode of operation that may have unique tasks
or shared tasks with other scenarios. Dividing the application in different scenarios allows
for worst-case estimation to be more accurate. Scenario changes are controlled by scenario
detectors and control channels, which control the flow of the application during its execution.

Figure 2.4 depicts an application modeled as a SADF graph. The available scenarios are
a and b and in each scenario the actor might have different execution times. The applica-
tion can either be represented by joining all possible scenarios and using different types of
channels to distinguish different data-dependencies, data and control channels, or as a set of
separate scenarios and a finite state machine to formalize all the possible transitions between
application scenarios, such as the one in Figure 2.4.

2.6.1 Composition and Construct Rules

In SADF tasks are modeled as kernel and detector actors to be connected through
ports. We distinguish three types of ports: data input ports, data output ports and control
input ports. The finite set of input, output and control ports of a task p are denoted by Ip,
Op and Cp respectively. Edges that connect actors are referred as channels. If the channel
connection is to either a data input port or output port the denomination is data channel;
if it is to a control port then we refer to the channel as a control channel. A channel that
connects ports of the same task is denominated a self-loop channel.

Kernel actors represent the data flow of the SADF graph, and each kernel actor might have
different execution times in different scenarios. While, detector actors capture the control flow
of the graph and define to which scenario a kernel actor belongs to in a certain iteration. To

34

define SADF, we first introduce the functions φ and ψ that capture the status of data and
control channels.

Definition 10. (Channel Status) Let B denote the set of all control channels of an SADF
graph, where Bc ⊆ B is the set of control channels. A data channel status is a function
φ : B\Bc → N that returns the number of tokens stored in the buffer of each data channel.

Definition 11. (Control Status) Let Bc denote the set of all control channels of an SADF
graph. A control channel status is a function ψ : Bc → ∪c∈Bc

∑∗ c that returns the sequence
of tokens stored in each control channel.

Now we can define a SADF as:

Definition 12. (SADF Graph) An SADF graph is described by a tuple (K,D,B, φ∗, ψ∗)

where, K and D are pairwise disjoint finite sets of kernels and detectors respectively, B is
the set of channels and φ∗ and ψ∗ the respective channels status and control status. A kernel
actor can be defined as:

Definition 13. (Kernel Actor) A kernel actor k ∈ K is a tuple (Ik, Ok, Ck, Sk, {(Rsk, Esk) |
s ∈ Sk})

where Ik, Ok and Ck represent the actor’s ports, Sk the set of scenarios to which k
belongs,(Rsk) the different port rates of the actor depending on the executing scenario and
(Ssk) the execution times of k in each scenario s ∈ Sk. A detector actor can be defined as:

Definition 14. (Detector Actor) A detector actor d ∈ D is a tuple (Id, Od, Cd, Sd)

where Id, Od and Cd represent the actor’s ports and Sd the set of scenarios of the SADF
graph.

Some observations can be made from the previous definitions. A task can either be a
kernel or a detector actor and a SADF graph consists of at least one such task. Each scenario
determines the rates and execution time distribution for a kernel actor, and scenario changes
are imposed by the control token provided by the connected detector actor. It is possible
to have more than one detector actor in a SADF graph, and different detector actors may
connect to different kernel actors, however, every detector actor must have a predefined action
for all scenarios of the graph.

2.6.2 Example

For simplicity sake, we use the same case study as before, the WLAN baseband receiver.
Figure 2.5 show a adaptation of the MCDF model in Figure 2.3 to SADF. It is important that
the reader notices that a SADF graph can be easily reached by modifying a MCDF graph
model, as this will be one of the arguments for the analysis technique implemented in Chapter
4.

We can see that, in Figure 2.5, only one actor is a detector, the MC actor, that will
control the flow of the scenario choices. On the right side of the picture there is a finite state
machine that describes the order in which scenarios can transit amongst each others. We will
not repeat the behavior of the model as it is exactly the same as described previously. What

35

Figure 2.5: SADF model of a WLAN Receiver

is important to observe from this figure is how a SADF graph can be constructed and, that
similarly to MCDF graphs, the detector actor defines the flow of the graph by sending control
tokens to some kernel actors (Switch, Select and Tunnel).

For further information and examples on the construction and behavior of SADF graphs,
please refer to [14,36].

36

Chapter 3

Software Framework

This dissertation focuses on the study of temporal analysis techniques for dataflow models
of computations. We make two major contributions: one in temporal analysis for Mode Con-
trolled Dataflow (MCDF) graphs and one in fixed priority analysis for Single Rate Dataflow
graphs (SRDF). For this purpose, the whole project relies heavily on software tools for sim-
ulation and analysis of dataflow graphs. We base our software framework on the Heracles
simulator and analysis tool, envisioned and created by Orlando Moreira. Heracles is a complex
and versatile tool for the design, schedule, simulation, programming and analysis of dataflow
models. Despite the many functionalities we focus, during this dissertation, mostly on the
simulation and temporal analysis aspects of the tool.

In this chapter we introduce the reader to our software framework. We start by giving an
overview on the Heracles tool and providing a more detailed insight on the most important
modules. Furthermore, we present the reader with the current state of the modules we set on
improving: MCDF and Fixed Priority temporal analysis.

3.1 Heracles

3.1.1 Overview

Heracles provides the user with the necessary tools to throughly analyze and schedule
one, or more, applications on a MPSoC platform. Figure 3.1 depicts the flow of the Heracles
tool. For instances, if we want to test a model of a radio transceiver on a specific system,
using Heracles, we input a dataflow model of the transceiver, a description of the system in
terms of resources and their characteristics and the timing requirements of the application.
From this point, Heracles combines its scheduler and temporal analysis modules to derive,
an implementation-aware graph, from the functional graph of the transceiver, that models
worst-case assumptions about the timing of actors firings and communications in the given
platform. This allows for a mapping flow where every mapping decision can be translated
onto a transformation of the application graph, and evaluated with respect to its temporal
behavior. The scheduler will then try to find the solution that schedules the application and
makes best use of the systems resources. Moreover, it is also possible to determine buffer
sizes for the system.

Although, this is the main flow of Heracles, it is still possible to use each feature individ-
ually. For example, if the user just wants a temporal analysis of a dataflow graph, or simply
to simulate the graphs execution. Therefore, we can distinguish three different work flows for

37

Heracles Parser

CSDF/SDF/MCDF
File

System
 File

Mode Sequence
 File

Self Timed
Simulator

Scheduler
(Static Order)

Temporal
Analysis

Simulation
Event Log

Gantt
Chart

Feasibility
Results and
Schedules

Time Slicer
Modeling of
Resource
Sharing

Throughput
and Latency

Analysis

Figure 3.1: Description of the Heracles Tool General Flow

Heracles, as depicted in Figure 3.1. The three main flows are: simulation (blue), temporal
analysis (green) and scheduling (red).

In the following sections we will describe each flow with more detail. Furthermore we will
state the current implementation of Heracles modules regarding fixed priority and MCDF
temporal analysis. But first, we will give a small introduction to the base language in which
Heracles is written.

OCaml

Heracles is written in Objective Caml (OCaml). OCaml is a general-purpose language
designed with robustness and reliability in mind, developed at INRIA (Institut National de
Recherche en Informatique et en Automatique). Furthermore, OCaml has many interesting
features. To enumerate a few:

• Hybrid Paradigm: OCaml is not just a functional language, but also an imperative
and object oriented language. Therefore, it is possible to mix and match all those

38

paradigms at will.

• Type Inference: Type inference refers to the process of determining the appropriate
types for expressions based on how they are used. For example, fun a = a + 1 is a
function that receives a single input and adds the value 1. Therefore, the type of a is
an integer.

• Pattern Matching: OCaml allows the use of pattern matching in function definitions.
As a result, the structure of the function models the structure of the data it is processing,
making it easy to see base cases and harder to miss a case.

• Extensive Libraries OCaml comes with an extensive standard library: lists, tuples,
hash-tables, POSIX, and others. Moreover, there are many third-party libraries
from community contributions.

• Efficiency OCaml is very efficient in terms of execution performance. Many bench-
marks conclude that OCaml can be as fast as C.

• Portability The byte-code interpreter compiles and runs on any POSIX-compliant
system with an ANSI C compiler. The generated byte-code files are also completely
portable between most operating systems and processor architectures.

• Debugging and profiling tools are provided along with the compiler.

For more information regarding this programming language, please refer to [13,17,21].

3.1.2 Heracles Temporal Analysis

Temporal analysis is required in order to verify whether a given timed dataflow graph can
meet a required throughput or latency requirement of the modeled application. In context
with Heracles purposes, not only is temporal analysis important in terms of timing guaran-
tees, but also in order to be able to make scheduling decisions.

Currently, Heracles has implemented analysis techniques for the analysis of self-timed
behavior of data flow variants with static rates (SRDF, MRDF and MCDF), even when
considering the transient phase and/or varying execution times per actor firing.

For SRDF and MRDF specifically, temporal analysis modules allow for the latency anal-
ysis of graphs with periodic, sporadic and bursty sources; and throughput analysis of static
dataflow graphs by the use of Maximum Cycle Mean computation algorithms, or simulation.

MCDF Temporal Analysis

Current implemented temporal analysis for MCDF graphs are either pessimistic or non-
complete. One method consists on analyzing the MCDF graph as an SRDF graph. Despite
complete, this analysis is quite pessimistic as it does not take advantage of the dynamic
behavior of the graph.

The second analysis, is the Static Periodic Schedule simulation and temporal analysis of a
specific mode sequence. Although less pessimistic than the previous method, it requires that
each individual mode sequence of the MCDF graph is tested, and only works for finite mode

39

sequences.

In this dissertation, we will present a temporal analysis for MCDF that is complete and
which results are tighter than current implemented techniques.

3.1.3 Heracles Scheduler

Heracles scheduling strategy involves a combination of static-order scheduling per applica-
tion per processor, and a Time Division Multiplexing (TDM) or Non-preemptive Non-blocking
Round Robin (NPNBRR) scheduling to arbitrate between different jobs in each processor.
Therefore, the scheduling flow is divided in two main steps: intra-job scheduling and inter-job
scheduling per processor.

The scheduler requires three inputs: the task graph of the transceiver, a description of
the target platform and a set of timing requirements.

The first step is to call the inter-job scheduler for each application, to build a static order
schedule for each processor of the system. The second step is then to arbitrate, according
to each processor scheduling type, the resource sharing between applications. A final opti-
mization step can be done for TDM scheduling, where the slice times are readjusted to find
a better values in terms of resources utilization.

After concluding its operations, the scheduler returns a best schedule found per processor
of the system.

3.1.4 Heracles Simulator

Another of Heracles features is the dataflow graph simulator. Currently, it simulates any
dataflow graph (SRDF, MRDF, CSDF and MCDF) in a self-timed schedule. However, it does
not consider hardware mappings.

It is implemented as an event simulator. In other words, the execution of a dataflow
graph is represented by a series of different events: start events and finish events. An event
is defined by an id, an issue number, a start time and an actor. A start event is initially
issued for every actor in the graph and added to an ordered set of events. Every time an
event is added, the set is reordered. A finish event is issued when an actor finishes its firing
and produces its output tokens.

When the simulator is initiated it picks the event at the top of the set and checks whether
it is a start or finish event. If it is a start event then the simulator checks if the actor meets
its firing conditions and if it does, then the necessary tokens are consumed and a finish event
for that actor is issued. Otherwise, the start event is discarded. If the picked event is a finish
event then tokens are produced on the output edges and start events for that actor and its
dependencies are added to the event set. Furthermore, during its execution, the simulator
keeps constant track of all buffer sizes (tokens available in all edges).

The fundamental base of the simulator is the compare function. This function is respon-
sible for the ordering of the event set every time a new event is added. If two events have
the same start time then Finish events are always given precedence. Why? Because finish

40

events release resources while start events reserve them, thus avoiding possible deadlock of
the simulator. If the events have the same start time and are of the same type, then the
decision factor is reduced to the issue value, in a first come first serve fashion. Notice that a
poorly conceived compare function can quite easily create deadlock situations.

The simulator will run until the event queue is empty, either due to deadlock or expiration
of the simulation time, or until the same exact state is reached, in other words, the graph
assumed a periodic behavior and there is no added relevance to further simulation data. As
a result, the simulator outputs an event list for actors and edges,and a gantt chart of the
simulation. Figure 3.2 depicts the flow of the Heracles simulator.

3.1.5 Heracles Fixed Priority Analysis

Since the fixed priority analysis contribution of this dissertation is an extension of the
work done in [1] it is important to differentiate from what was already implemented and what
is new implementation work.

During the work done in [1], a fixed priority module was added to Heracles. This module
was created to perform interference and response time analysis for applications with a fixed
priority assignment. Simply put, it features two main external call functions, that we will
refer to as: merge and fill. The merge function receives two different simulation timelines of
fixed priority applications and merges them into a single timeline that considers preemption
due to different priority of applications. This function is needed since Heracles simulator does
not contemplate preemption or resource mappings.

The fill function receives a simulated timeline and slot fills a single task execution into
the timeline. The purpose of the function is to determine the response time of a low priority
actor when its execution is affected by the interference execution of higher priority actors.

In the course of this dissertation, we corrected and improve Heracles fixed priority module,
and extended all algorithms to perform the analysis for n applications, instead of the previous
limit to two applications. We will discuss further both these functions, and how we use them
in our fixed priority analysis in Chapter 5.

On a later stage, the merged timeline would be used by the slot fill function to retrieve
the response times of the the lowest priority application, considering the interference due to
higher priority applications task.

3.2 Major Modifications to Heracles

In order to achieve the objectives proposed for this dissertation some modifications had to
be made to the Heracles tool. Detailed explanations of specific modifications will be addressed
in the ending of each corresponding chapter.

• MCDF simulator:

The Heracles simulator, at the time of the beginning of this dissertation, was not able to
simulate MCDF graphs. In order to adapt the simulator to correctly run MCDF graphs
we needed to change the firing and the consumption/production rules. Firing rules for

41

Check stop
condition

Pop event from the
top of the set

Are the firing
rules met?

Reserve all the
necessary resources

for the event
(Consumption)

Release all the
resources currently
held for the event

(Production)

Discard Start Event

Issue the respective
Finish event

Issue a Start event for
all actors dependent

on this event

Simulation
ResultsStart

True

False

Start Event

Finish Event

YesNo

Figure 3.2: Description of the Heracles Simulator Flow

42

MCDF graphs, besides the natural SDF rules, need to verify that the start event either
belongs to an actor with the same mode as the currently selected mode of operation,
or to an amodal actor. The same principle had to be applied to the consumption and
production rules. Consumption and production should only occur in edges that link to
actors of the same mode as the currently selected mode of operation, or to an amodal
actor.

Implementation wise, we added a function to retrieve the current mode of operation
from the number of firings of an amodal actor, which would coincide with the correct
mode from the mode sequence. The retrieved current mode parameter is then used for
verification in various steps of the event simulator to assure that all events issued and
completed are in conformity with the correct dynamic flow of the application. Notice
that in order to make the necessary changes the core flow and algorithm of the simulator
was not changed.

• MCDF throughput analysis:

As was part of the motivation of this work, we implemented an optimal and over-
all method for throughput analysis of a dynamic MCDF graph. This implementation
required the adding of new modules to support modules for conversion, algebra and
state-space analysis. All these implementation steps will be addressed with detail at
the end of Chapter 4.

• SRDF Fixed priority analysis module:

We revisited the previously implemented model to correct some bugs and errors in the
analysis, we extended the existing technique for the analysis of n applications, instead
of just two, and implemented a new module to recreate the challenging fixed priority
analysis algorithm proposed in [18]. All these implementation steps will be addressed
with more detail at the end of Chapter 5.

43

44

Chapter 4

FSM-MCDF

Current methods for analyzing the throughput of a MCDF graphs rely on pessimistic
approximations. The simplest way of obtaining a worst-case throughput analysis is to use the
methods available for SRDF to evaluate every mode of operation of the application individu-
ally. Results will be conservative but pessimistic because a SPS scheduling is used to bound
the start-times of actors.

Marc Geilen et al [15], purposed a new method for throughput analysis for SADF models
that relies on searching the state space of all possible transitions using an automaton, a finite
state machine, and simulating the transition times and dependencies. Therefore, it is possible
to take into account transition times, overlapping modes and infinite sequences of modes.

SADF can be easily modeled as an MCDF graph, and so we decided to adapt the proposed
technique to MCDF graphs, in order to improve the current analysis methods.

This chapter introduces the basic concepts behind the proposed method, shows the im-
plementation steps and compares the results obtained with the previous methods.

4.1 Max-Plus Algebra

Max-plus algebra is a mathematical framework supported by the binary operations max
and plus in a set R ∪ {−∞}, which we will denote by Rmax. This is reference material and
most of it can be found in [19].

The Max-plus approach emerged from the need to have a mathematical framework that
would be adequate for Discrete Event Systems (DES). Discrete Event Systems represent
any system in which its dynamics are made up of events, like Dataflow models. Further-
more, the use of Max-plus algebra is limited to certain classes of DES, those which involve
synchronization of events and that events are timed events. During this section we will pro-
vide the reader with the basic concepts of Max-Plus algebra and how it can be used as a
framework for Dataflow models.

We now present the basic concepts and definitions of Max-Plus algebra, as well as all the
advanced concepts used throughout this thesis.

Let ε = −∞, e = 0 and a, b ∈ Rmax, we can define operations ⊕, max, and ⊗, plus, by

45

a⊕ b = max(a, b) and a⊗ b = a + b.

Also, for any a ∈ Rmax

max(a, ε) = max(ε, a) = a and a+ (ε) = ε+ a = ε,

Such that,

a⊕ ε = ε⊕ a = a and a⊗ ε = ε⊗ a = ε,

Therefore, ε is the zero element and the absorbent element, and e is the unit element.
Other algebraic properties of Max-Plus algebra are listed below:

To exemplify these concepts we illustrate with some numerical examples:

10⊕ 3 = max(10, 3) = 10,
10⊕ ε = max(10,−ε) = 10,
10⊗ ε = 10 + ε = ε,
10⊗ 3 = 10 + 3 = 13,

4.1.1 Vectors and Matrices

In this subsection we introduce the concepts of matrices and vectors in Max-Plus algebra.
Matrices and matrix operations will be the basis of the algorithms presented in this chapter.

In Max-Plus algebra a matrix A ∈ Rnxm, with n columns and m rows, can be written as:

A =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

am,1 am,2 · · · am,n

 (4.1)

Where aij represents the element of the matrix in row i and column j. Occasionally, the
element aij will also be denoted as [A]ij , with i ∈ n and j ∈ m. The sum of matrices A and
B is denoted by A⊕B, and is defined by:

[A⊕B]ij = aij ⊕ bij = max(aij , bij), (4.2)

for i = 1, ...,m and j = 1, ..., n. The product of matrices A ∈ Rn×lmax and B ∈ Rl×mmax is
denoted by A⊗B, and is defined by:

[A⊗B]ik =

l⊕
j=1

aij ⊗ bjk = maxj∈l(aij + bjk) (4.3)

46

for i ∈ n and k ∈ m. To illustrate matrix operations we present the reader with some
examples:

Let A =

(
2 4
ε 10

)
and B =

(
10 0
4 14

)
and that A,B ∈ Rn×mmax , then we can write the

following expressions:

[A⊕B] =

(
10 4
4 14

)
[A⊗B] =

(
12 18
14 24

)

[B ⊕A] =

(
10 4
4 14

)
[B ⊗A] =

(
12 14
6 24

)
Notice that the matrix product in general fails to be commutative, while the sum opera-

tion holds that A⊕B = B ⊕A.

As in regular algebra, vectors are a subset of the set of matrices Rn×mmax . Vectors are the
elements of Rn×1max, and the jth element of vector x ∈ Rnmax is denoted by xj .

X = [x0, x1, ..., xn]T : x ∈ Rmax (4.4)

Throughout this chapter we will use these notions as explained in this section. We refer
as vectors to column matrices. For simplicity all vectors will be written in their transposed
form.

4.2 Max-Plus and Dataflow

Dataflow models behavior can be reduced to two fundamental operations: synchronization
and delay. A dataflow graph, such as an SDF graph, running on a self-time schedule behaves
in such manner that delays, or tokens representing data, can be exchanged between actors,
or tasks, by following the firing rules. On a self-timed schedule an actor will fire as soon as
all of its input tokens are available, which can be seen as a synchronization operation. The
lapsed time between the consumption of the input tokens and the production of the output
tokens, the firing of the actor, can be seen as a delay operation. We use s(i, k) to represent
the start time of actor i in iteration k and f(i, k) to represent the finish time of actor i in
iteration k.

Let N be a set of actors and Di the set of direct dependency actors of actor i ∈ N. The
start time of actor i in iteration k depends on the finishing time of all the actors that exist
in Di and can be represented as a synchronization operation:

s(i, k) = maxj∈Di{f(j, k)} (4.5)

And the finishing time of actor i can be defined as:

47

CA B

t1

t2 t3

Figure 4.1: SRDF graph example

f(i, k) = s(i, k) + e(i, k) (4.6)

Where e stands for the execution time of actor i in iteration k. It is easy to understand
that both these expressions, synchronization and delay, are in fact Max-Plus expressions, max
and plus as we have defined them. Therefore Max-Plus algebra can be used as a semantical
framework for Dataflow models.

We can rewrite equations 4.5 and 4.6 in terms of token production times, instead of actor
firings, in the following way:

ti = maxj∈T tj + e, (4.7)

where ti represents the time at which actor i produces its output tokens, T the set of
tokens required by actor i to fire and e the execution time of actor i.

The behavior of a dataflow graph can also be characterized by the time at which tokens in
channels are produced, thus allowing us to capture the data dependencies between iterations.
We start by assuming a initial graph state of the application we wish to study, and build
a matrix that represents the dependencies between initial tokens of the graph. Such matrix
can be found by doing a symbolical execution of the model. The process of finding a matrix
can be easily understood when accompanied by an example. Lets assume the SRDF graph
of Figure 4.1, and that the tokens displayed are the initial tokens of the graph and that they
are all available at time zero. The following explanation is inspired by the one in [15].

We start by introducing the concept of time-stamp vector γ. This vector is used to keep
the productions times of all the initial tokens of the graph in each iteration of the graph.
An iteration is finished when all the initial tokens travelled the graph and have returned to
their initial positions. After one iteration there are the same number of tokens in the same
channels, but with different times at which they were produced.

Time-stamp vectors have as many elements as there are initial tokens in the graph. Each
element holds the correspondent token’s production time in that specific iteration, for our
example, the generic time-stamp vector is [t1, t2, t3]

T . Taking as an example Figure 4.1 graph,
we can state that the initial vector, under our assumptions, is [0, 0, 0]T . After one iteration
it becomes [3, 3, 2]T , after two [5, 5, 5]T , as demonstrated in the Gantt Chart of Figure 4.2.

We will now show that it is possible to find a Max-Plus matrix G that can characterize
the behavior of a dataflow graph, as in the following equation:

48

t1, t2

t3

t1, t2A1

B1

C1

0 1 2 3 4 5 6 (time units)

A2

B2

C2

t3

Figure 4.2: Gantt Chart of two iterations of Figure 4.1 graph

γk+1 = G · γk (4.8)

where γk is the time-stamp of current iteration k and γk+1 the time stamp of the next
iteration of the graph. We associate each token with a representative number and a symbolic
time-stamp vector t:

t1 = [0,−∞,−∞]T ; t2 = [−∞, 0,−∞]T ; t3 = [−∞,−∞, 0]T ;

Each symbolic time-stamp vector represents an initial token and its dependency to other
initial tokens. For instances, time-stamp t1 represents initial token t1, that in its initial state
is already available and therefore the only dependency is with himself, thus the first element is
zero. The same logic applies for all initial symbolic time-stamp vectors, the only dependency
is an instant dependency with the actor itself.

Lets now run a symbolical execution of the model. We start by firing actor C, which will
consume initial token t3, and the tokens produced by actor C will carry the symbolic time
stamp:

max([−∞,−∞, 0]T) + 2 = [−∞,−∞, 2]T , (4.9)

which corresponds to the expression t′ = max(t3) + 2. Notice that after the firing of C
generated a new symbolic time-stamp for the token produced in the edge C-A.

Now actor A can fire, consuming the newly produced token in edge C-A, and the token
on its self-edge t1. The produced tokens will carry the symbolic time-stamp:

max([0,−∞,−∞]T , [−∞,−∞, 2]T) + 1 = [0,−∞, 3]T (4.10)

Now, because, actor A is responsible for the production of tokens t1 and t2, the new tokens
will carry the time-stamp of [0,−∞, 3]T . At this point, tokens t1 and t2 have been replaced
and therefore the new time-stamp represents the overall time dependencies from all initial
tokens. We will associate these time-stamps with vectors g1 and g2, respectively, that will
later be used to generate matrix G. Lastly, actor B will fire, consuming the initial token t2

49

and producing a new token with the symbolic time-stamp:

max([−∞, 0,−∞]T) + 2 = [−∞, 2,−∞]T , (4.11)

which will be associated with vector g3, because it is the final time-stamp for token of
interest t3.
As we see that the graph has returned to its initial state, we can conclude that an iteration
as passed and we now have the three vectors, g1, g2 and g3, to build the iteration dependency
matrix G. Matrix G will be the aggregation of the found token time-stamp vectors in a new
vector [g1, g2, g3]

T , obtaining:

γk+1 =

 0 −∞ 3
0 −∞ 3
−∞ 2 −∞

 γk (4.12)

The resulting matrix G, represents all the initial token dependencies amongst them. An
entry t at column k and row m in the matrix specifies that there is a minimum distance of
t between time-stamps of token k of the previous iteration to token m of the new iteration,
from dependencies in the graph. An entry −∞ means that there is no dependency relation.

In summary, the behavior of any SDF graph can be characterized by a corresponding
Max-Plus matrix GF . This matrix can be computed by doing a symbolic execution of an
iteration of the graph, as we did above. During our example explanation we stated that for
the first three iterations the graph’s time-stamp vector, γ, would be [0, 0, 0]T , [3, 3, 2]T and
[5, 5, 5]T , corresponding to iterations 0, 1 and 2 respectively. Lets now verify that the ma-
trix GF matches these results. Notice that all the matrix operations are Max-Plus operations.

After one iteration,

γ1 = G · γ0 =

 0 −∞ 3
0 −∞ 3
−∞ 2 −∞

0
0
0

 =

 max(0 + 0,−∞+ 0, 3 + 0)
max(0 + 0,−∞+ 0, 3 + 0)
max(−∞+ 0,−∞+ 0, 2 + 0)

 =

3
3
2

 (4.13)

After two iterations,

γ2 = G · γ1 =

 0 −∞ 3
0 −∞ 3
−∞ 2 −∞

3
3
2

 =

 max(0 + 3,−∞+ 3, 3 + 2)
max(0 + 3,−∞+ 3, 3 + 2)
max(−∞+ 3, 2 + 3,−∞+ 2)

 =

5
5
5

 (4.14)

which is equivalent to what we wanted to show:

γk+1 = G · γk; (4.15)

50

Algorithm 1 describes, step-by-step, the implemented methodology for the computation
of the Max-Plus matrix representation of a specific SDFG, based on the proposition by Marc
Geilen [15].

input : Set of Initial Tokens, Graph Schedule
output: Matrix
Compute Matrix (F);
/∗ T associates symbolic time-stamp ik to initial tokens tk ∗ /;
T ← {(tk, ik)|tk ∈ InitialTokens};
σ ← Sequential Schedule of F;
for j = 1 to Lenght(σ) do

Actor a ← σ(j);
Fire a consuming tokens U ⊂ T ;
Produce output tokens with time-stamp gp ← max{g(t)|t ∈ U}+ E(a);
add new tokens to T;

end
G ← [g(t)] for all t ∈ InitialTokens;

Algorithm 1: Computation of Max-Plus matrix of a SDFG

4.3 Implementation

In this section we will adapt the throughput analysis technique of the FSM-SADF graphs,
proposed by [15,32]. The novelty of the method is the ability to explore all possible transitions
of an SADF graph by the means of a Finite State Machine (FSM).

Definition 15. FSM-SADF F is a tuple F = (S,f). S is a set of scenarios and f is an FSM
on S.

To compute the throughput all possible scenario sequences have to be checked. Therefore,
a state-space needs to be generated. The state-space is defined by:

Definition 16. (FSM State-Space) is a tuple (C, c0 , ∆). C is a set of configurations (q, γ)
with a state q of F and a (max,+) vector γ. The initial configuration c0 = (q0, 0),

And labelled transition relation ∆⊆C × R× C consisting of the following transitions:
{(q, γ), ‖γ′‖, (q′ , γ′norm)) | (q, γ) ∈ C, (q, q

′
) ∈ δ, γ′

= Gq′γ}

A state is then defined by a pair of a scenario of the SADF graph and a normalized vector
indicating the relative distance in time of the time-stamps of the tokens. An edge represents
a transition to another scenario, within the FSM possible sequences, and its weight represents
the transition time between scenarios. Note that because of linearity, it is always possible to
find an upper bound for any scenario sequence. In general, for any path leading to a state
(q,γ), the exact tightest upper bound that can be given is the sum of all the weight along the
edges of the path.

The state-space can be built in a depth-first-search (DFS) or breadth-first-search (BFS)
manner, while checking for desired constraints if needed. With all the reachable state-space

51

found, the worst-case throughput of the SADF graph can be determined by a maximum cycle
mean analysis of the state-space.

We will now explain, step-by-step, the implementation on MCDF graphs.

4.3.1 Converting MCDF to Max-Plus

In order to implement this method for MCDF graphs we first need to adapt the structure
of MCDF. MCDF, as explained in Chapter 2, has special constructs that allow for data to
flow differently according to the current mode of operation of the application. We want to
study the transition between modes of operation and do an exhaustive temporal analysis for
any possible infinite sequence of modes.

We start by dividing the MCDF graph into its modal graph representation, which is an
SDF graph per mode of operation. To avoid complex modifications we keep the MCDF
constructs in each modal graph, such as Switches, Selects and ModeControllers. We only
alter the Tunnel constructs, replacing Tunnels by a self edge in both actors connected, but
the token will be labelled the same in both self-edges. Doing this allows us to establish a FSM-
based Mode-Controlled Data flow (FSM-MCDF) graph, that in similarity to FSM-SADF, can
be defined as:

Definition 17. (FSM-MCDF) FSM-MCDF is a tuple (M, f). M is a set of modal graphs
and f is an FSM on M.

The State-Space of an FSM-MCDF will be define as in Definition 16.

The next step is to assign to each modal graph its Max-Plus matrix representation to
start the state-space generation. The process to compute the G matrix is the same described
in the previous section and in Algorithm 1.

For simplicity purposes, we will look to an example application where all initial tokens
are present in every modal graph and no tunnels exist in the original MCDF graph. This is
a very simple example, but allows for an easy exemplification of the process of state-space
generation. All other cases will be addressed later in this section.

This transformation, from MCDF to FSM-MCDF, can be done easily by following Algo-
rithm 2 and creating a transition graph to serve as a FSM. Figure 4.4 shows an example of
an FSM-MCDF graph and correspondent transition graph, of the MCDF graph in Figure 4.3

52

switch
 1 2

mc
0

A
5

1 2
select

Source
10

B
9

Figure 4.3: MCDF graph example

switch
 0

mc
0

A
5

select

0

Source
10

1 2

switch
 0

mc
0

B
9

select

0

Source
10

a) b)

c)

Figure 4.4: FSM-MCDF graph example. a) Modal Graph 1 b) Modal Graph 2 c) Finite state
machine or transition graph

53

input : ModeSequence, MCDF graph
output: A hastable with all modal graphs
replace all Tunnels from input graph;
for each mode in the ModeSequence do

tMCDF ← input graph;
m← current mode;
for each actor in the tMCDF graph do

if actor mode != i and empty then
remove actor from tMCDF;
remove edges of actor from tMCDF;

end

end
add (m, tMCDF) to modalgraphs;

end
Algorithm 2: Converting MCDF into FSM-MCDF

.

Following the symbolic execution of the model method, express in terms of Algorithm 1,
we will compute all matrices for the modal graphs. The results are the following:

G1 =


0 0 0 −∞ 10
5 5 5 0 15
−∞ 0 0 −∞ −∞

5 5 5 0 15
−∞ −∞ −∞ −∞ 10

 (4.16)

G2 =


0 0 0 −∞ 10
9 9 9 0 19
−∞ 0 0 −∞ −∞

9 9 9 0 19
−∞ −∞ −∞ −∞ 10

 (4.17)

Table 4.1: Initial Tokens (Graph to Matrix)

Tokens Producer Consumer Matrix Identifier

t1 Switch Switch 1
t2 Select MC 2
t3 MC MC 3
t4 Select Select 4
t5 Source Source 5

We are now ready to start generating the state-space for our example FSM-MCDF.

54

4.3.2 State-Space Generation

Having a defined FSM-MCDF, with a modal graph per mode of operation and a transition
graph (Finite State Machine), and having assigned to each modal graph a Max-Plus matrix
representation we can then generate the state-space of the application.

The algorithm implemented is based on a breadth-first search exploration of the possible
state transition, Algorithm (3). We defined a state as a pair (q,γ), a combination of a state
mode and a time-stamp vector.

input : G Matrixes, MCDF graph, Transition Graph
output: State-Space
BFS:= new Queue();
StSp:= new Graph();
Insert initial states in BFS;
Insert initial states in StSp;
while BFS not Empty do

(q, γ) := BFS.remove;
for q’ = all possible transition from q do

γ’ := G′q × γ;

γ′n = Normalize γ’;
w = Norm of γ’;
Add edge ((q,γ),(q’,γ′n), norm) to StSp;
if (q’,γ′n’) state does not exist in StSp then

Add (q’,γ′n’) node to StSp;
Add (q’,γ′n’) state to BFS;

end

end

end
Algorithm 3: Generating the State-Space

We start by adding all the possible initial states to the queue of the BFS algorithm. The
algorithm will then run all possible transitions for all the queue states, adding new states if
they haven’t been visited yet. A state is visited when both the state mode and time-stamp
vector already exist in the state-space. The process of adding a state to the state-space
consists on verifying if the state does not exist, and calculating the distance between the
departure state and the arrival state, to be set as the weight of the edge of the transition. In
order to be able to verify that states are equal it is necessary to normalize the time-stamp
vectors of the new state. Only by doing so can we compare two states equality. The value
of normalization, or the value by which the vector is normalized, is the maximum distance
between states.

Definition 18. (FSM-MCDF Distance) Let ts be the time-stamp of a state in the state-space,
of an FSM-MCDF, the distance between two states is equal to the norm, in (max,+) of the
ts: ∥∥ts∥∥ = max(ts) (4.18)

Every transition made into a new state, that will be added to the state-space, will have

55

associated a normalized time-stamp. This is because the values in the time-stamp will increase
with time, but the distance between tokens of the same iteration will not. Normalizing the
time-stamp vectors enables the algorithm to verify if the state with the exact token distances
as been visited. Normalization of a (max,+) vector is defined as:

ts ⊗−
∥∥ts∥∥ (4.19)

When the queue reaches an empty state we stop our state-space exploration and output
the result as a graph.

Lets exemplify the building of a sequence in in our state-space. For example mode se-
quence [1,1,1,...,1], which will lead to a cyclical sequence. We start by transition to mode 1:

[
G1

]


0
0
0
0
0

 =


10
15
0
15
10

Normalizing,


10
15
0
15
10

⊗ (−15) =


−5
0
−15

0
−5

 (4.20)

As we can see this initial transition take 15 times units and is associated with the weight
of the transition edge in the state-space. The new state will be added to the queue for later
exploration. Again lets transition to mode 1:

[
G1

]

−5
0
−15

0
−5

 =


5
10
0
10
5

Normalizing,


5
10
0
10
5

⊗ (−10) =


−5
0
−10

0
−5

 (4.21)

The weight has now changed to a 5 time unit transition time.Finally lets transition one
more time to mode 1:

[
G1

]

−5
0
−15

0
−5

 =


5
10
0
10
5

Normalizing,


5
10
0
10
5

⊗ (−10) =


−5
0
−10

0
−5

 (4.22)

And as expected we have reached the same state as before and we can stop our exploration
of this sequence and close the cycle on further transition to mode one with the weight of 10
time units.

We follow the same procedure for all unvisited states in the queue until it is empty and
we have reached our final state-space. The full state-space for this example, as well as the
infinite mode sequence we exemplified, is depicted in Figure 4.5.

Inter-Modal Dependencies

So far we have described the process to compute the state-space of an FSM-MCDF ap-
plication that has common initial tokens amongst all modes of operation. However, this is

56

1
[, -5., 0., -6., 0., -5.]

2
[, -9., 0., -14., 0., -9.]

14.

1
[, -5., 0., -10., 0., -5.]

10.

2
[, -9., 0., -10., 0., -9.]

6.

10.

6.

10.

14.

10.

2
[, -9., 0., -19., 0., -9.]

6.

10.

1
[, -5., 0., -15., 0., -5.]

14.

10.

2
[, 0., 0., 0., 0., 0.]

15.

19.

1
[, 0., 0., 0., 0., 0.]

19.

15.

Figure 4.5: State-Space of the example FSM-MCDF

a restrictive requirement for many real-life application graphs. Many application have data
dependencies between modes of operations or different initial tokens per mode of operation.
For example, a radio application might have different inputs of data for synchronization, de-
coding and processing operations, and could need information on current frame length from
one mode to the next. These constraints impact our technique and have to be addressed.

We have stated before that the matrix representation of each modal graph is done by do-
ing a symbolic execution of the model and keeping time-stamps of the initial tokens present
in the graph. However, if the application graph is like the one depicted in Figure 4.6, then
different modal graphs will have different dimensions for each matrix, which cannot happen.
Keep in mind that we remove all Tunnels and replace them by to self-cycles on each of the
Tunnel’s linked actors. Both the self-edges share the same initial token, and therefore both
these tokens only count as one in our Max-Plus representation.

So the first step to extend our technique to Inter-Modal Dependencies is to dimension
our matrices from the original MCDF graph. Therefore, any matrix that represents a modal
graph will have dimension n×n, where n is the number of initial tokens in the MCDF graph,
in its entirety. For example, the graph in Figure 4.6 has seven initial tokens, so each modal
graph’s matrix will have dimension 7×7. We have now extended the matrix to accommodate
every initial token in the MCDF application, but how do we do so and maintain the correct
behavior of the model?

Initial tokens that do not exist in a certain mode are assigned no dependencies in that

57

switch
 1 2 3

C
2

A
2

 1 2
select

D
3

B
2

Source
10

E
30

2:3
Tunnel

1 2 3

mc
0

Figure 4.6: More complex MCDF example

mode, all the entries in the matrix are −∞. However, we still need to guarantee that the
time-stamps of the modal initial tokens are preserved for subsequent iterations. To do this
we share the time-stamp of that tokens production time by allowing a self-dependency in
the extended matrix, a zero entry in i = j = ti, where ti is the modal token’s matrix index.
This way if the largest time dependency is from a modal token the time-stamp vector will be
normalized accordingly.

This is formalized in the following equation:

[GFm] =

{ [Gm]i,j i, j ∈ Im
0 i = j ∧ i, j ∈ Im
−∞ i 6= j ∧ i ∈ If or Im ∨ j ∈ If or Im

(4.23)

If we did not consider tokens that are specific to a unique mode in the normalization,
in cases where pipelining (overlapping execution of different modes) exists, transition times
between modes would be incorrectly estimated. For example, consider MCDF graph in Figure
4.6 that exhibits on mode 3 a slow actor with execution time of 30 time units, while mode 1
and 2 will have a total transition bounded by the execution time of the source, 10 time units.
If we travel from Mode 2 to Mode 3 it has a cost of 10 time units of transition time, but if we
travel from Mode 3 back to Mode 1, we can also do so after 10 time units (because Actor E
does not connect to the Select actor). However, Mode 3 still needs a total of 30 time units to
finish the transition. Therefore, the total execution time of mode sequence 2-3-1 is: 10 + (10
+ 30) + 0 = 50 time units. If the production time of modal token of Mode 3 is not passed
in the time-stamp for the following transition, when traveling from mode 3 to mode 1, the

58

time-stamp of mode 1 will not consider the remaining execution time of actor E and it will
infer that the total execution time of mode sequence 2-3-1 is: 10 + 10 + 10 = 30, which is
incorrect as we have seen.

Furthermore, if we have a Tunnel, to model data dependencies between different modes,
and don’t pass the production time of the token associated to the Tunnel between all mode
transitions, when traveling to modes that are not affected by the Tunnel’s dependency this
information will be lost completely.

For these reasons, we must always carry the modal tokens production times in the time-
stamps of any transition in the state-space.

Lets introduce these extended concepts by using an example. Consider the FSM-MCDF
graph in figure 4.6 and let G1, G2 and G3 be the (max,+) representation matrix of each
mode:

G1 =



0 0 −∞ 0 −∞ 10 −∞
4 4 −∞ 4 0 14 −∞
−∞ −∞ 0 −∞ −∞ −∞ −∞
−∞ 0 −∞ 0 −∞ −∞ −∞

4 4 −∞ 4 0 14 −∞
−∞ −∞ −∞ −∞ −∞ 10 −∞

4 4 −∞ 4 −∞ 14 0


(4.24)

G2 =



0 0 −∞ 0 −∞ 10 −∞
5 5 −∞ 5 0 15 −∞
−∞ −∞ 0 −∞ −∞ −∞ −∞
−∞ 0 −∞ 0 −∞ −∞ −∞

5 5 −∞ 5 0 15 −∞
−∞ −∞ −∞ −∞ −∞ 10 −∞
−∞ −∞ −∞ −∞ −∞ −∞ −∞


(4.25)

G3 =



0 0 −∞ 0 −∞ 10 −∞
−∞ 0 −∞ 0 0 −∞ −∞
30 30 30 30 −∞ 40 30
−∞ 0 −∞ 0 −∞ −∞ −∞
−∞ 0 −∞ 0 0 −∞ −∞
−∞ −∞ −∞ −∞ −∞ 10 −∞
−∞ 0 −∞ 0 −∞ −∞ 0


(4.26)

The initial tokens for each mode are: Mode1 : [t1, t2, t4, t5, t6, t7], Mode2 : [t1, t2, t4, t5, t6]
and Mode3 : [t1, t2, t3, t4, t5, t6, t7]. Table 4.2 shows the relation between each matrix index
and its corresponding initial token. Notice that, as explained, each matrix with modal ini-
tial tokens has a row and line with −∞ entries, except for the self-dependency. As we did
previously, lets assume a fixed mode sequence of execution, in order to demonstrate how the
extended matrix allows for the modeling of inter-modal dependencies. Lets use the sequence
[3, 1, 2, 2], which will provide us with an example with overlapping executions.

Figure 4.7 shows a Gantt Chart of the example’s behavior for that specific Mode Sequence.
It is easy to see the overlapping of modes, assuming that the task does not use the same
resources, and that the execution time of the Mode Sequence is 45 time units.

59

Table 4.2: Initial Tokens (Graph to Matrix)

Tokens Producer Consumer Matrix Identifier

t1 Switch Switch 1
t2 Select MC 2
t3 E E 3
t4 MC MC 4
t5 Select Select 5
t6 Source Source 6

t7 Tunnel Tunnel 7

E

A

(time units)

B
0 5 10 15 20 25 30 35 40 45

Source Source Source Source

C

D

C

D

Figure 4.7: Gantt Chart of MCDF example in Figure 4.6 with Mode Sequence [3,1,2,2]

Lets now build the state-space for the sequence using matrices G1, G2 and G3. Lets start
by transiting to mode 3

[
G3

]


0
0
0
0
0
0
0


=



10
0
40
0
0
10
0


Normalizing,



10
0
40
0
0
10
0


⊗ (−40) =



−30
−40

0
−40
−40
−30
−40


(4.27)

And from mode 3 to 1:

[
G1

]


−30
−40

0
−40
−40
−30
−40


=



−20
−16

0
−40
−16
−10
−16


Normalizing,



−20
−16

0
−40
−16
−20
−16


⊗ (0) =



−20
−16

0
−40
−16
−10
−16


(4.28)

And from mode 1 to 2:

60

3
[-30,-40,0,-40,-40,-30,-40]

2
[-10,-5,0,-16,-5,-10,-5]

2
[-5,0,-5,-10,0,-5,0]

1
[-20,-16,0,-40,-16,-10,-16]

[0,0,0,0,0,0,0]

0 0 5

40

Figure 4.8: Generated State Space for Mode Sequence [3,1,2,2]. Total Execution Time = 45

[
G2

]


−20
−16

0
−40
−16
−10
−16


=



−10
−5
0
−16
−5
−10
−5


Normalizing,



−10
−5
0
−16
−5
−10
−5


⊗ (0) =



−10
−5
0
−16
−5
−10
−5


(4.29)

And, from mode 2 to 2:

[
G2

]


−10
−5
0
−16
−5
−10
−5


=



0
5
0
−5
5
0
5


Normalizing,



0
5
0
−5
5
0
5


⊗ (−5) =



−5
0
−5
−10

0
−5
0


(4.30)

Figure 4.8 show the state-space built for our sequence. Notice that some transitions have
weight zero. This is due to overlapping of mode operations in the sequence [3,1,2,2], which
is captured by preserving the time-stamp of non-initial tokens in every matrix representation
of a modal graph. In total this sequence, according to the state space, takes 45 time units to
complete which is the expected value according to the Gantt Chart of Figure 4.7.

Limiting the number of transitions

Although the results obtained from this analysis will be complete, all possible mode se-
quences are explored, they might be pessimistic when used with some applications. Most
applications we wish to study fall in the category of real-time streaming applications, such as
radio clients/servers. These applications, as we have stated many times, have a quite dynamic
behavior with different operations for different phases of their execution. However, some of
the modes will not execute in an infinite consecutive sequence, they can have a fixed or limited
number of consecutive executions. Both these situations are not taken into consideration, so
far, in our analysis. When designing the transition graph of our MCDF model we can easily
imply that a specific mode can run consecutively, by adding a self-edge on the node mode,

61

but not fix or limit the amount of times it can actually run in a row.

In applications that have no such constraints or the Source is dominant (the rate of graph
is imposed by the rate of the Source) this has no impact on the correctness of the results.
However, if the application is similar to the one depicted in Figure 4.6, where Mode 3 has
an actor E that will impose a rate of 30 in the graph, allowing Mode 3 to run in an infinite
sequence or limiting the number of consecutive runs of Mode 3 has a big impact on the
determination of the worst-case throughput sequence of the state-sapce. In the first case,
allowing for an infinite sequence of Mode 3, will definitely result in an overall worst-case
throughput of 30 time units. On the other hand if we limit the amount of runs Mode 3 can
have to 3 this value will be lower. Therefore, we added the possibility of specifying a limit
on the maximum number of consecutive runs for each Mode. If nothing is said for a specific
mode, it is assumed it can run indefinitely.

Notice, that, although this is a small change in our algorithm, it is has a decisive impact on
the performance of the worst-case analysis. Results obtained will be tighter to their real value
and the analysis is still complete, since the prohibited mode sequences are also impossible to
happen in the real application.

Technique Limitations

This analysis technique allows for a full exploration of all the possible mode sequences,
according to the transition graph, of an MCDF graph. However, there are some limitations to
the use of this technique. The building of the state-space can be unbounded due to ever grow-
ing differences in production/consumption rates over time. Consecutive transition between a
faster and a slower mode will lead to ever growing distances in time-stamp’s token production
times. For example, if the Source of Figure 4.6 was to be twice as faster, or actor E twice
as slower, it would be enough for consecutive transitions from mode 1 to 3 back to 1 would
never have the same normalized time-stamp vector, thus the state-space being infinite. In
terms of real applications, most times this might not be an issue because a faster production
of tokens in one mode might be compensated for a slower production in another mode, or
the number of consecutive transition to a specific mode might be limited. Therefore we can
only guarantee correct results for strongly connected graphs, or if it is known that the graph’s
behavior is self-time bounded. In other words, the graph is periodic or will, eventually, reach
a periodic behavior. All the examples and application used were self-time bounded graphs.

Solutions for this problem, as well as optimization proposals, are discussed in the conclu-
sion of this chapter, but they were not implemented.

4.3.3 State-Space Analysis

With the state-space generated we can now discuss what results can be taken in a post-
analysis.

Throughput Analysis

The most important result we want to have from this technique is the overall Worst-Case
Throughput (WCT) for any mode sequence of a MCDF graph. This result can be obtained by
calculating the Maximum Cycle Mean (MCM) of the entire state-space, which will compute

62

the mode sequence with the highest total execution time in the state-space. As the technique
is based on simulation the results obtained are exact results of the graph’s behavior.

Definition 19. (Worst-Case Throughput) The worst case throughput of a FSM-MCDF is
given as

min
∀q̃

lim
k→−∞

q̃ k

cq̃k
(4.31)

where q̃ is a sequence specified by the FSM, q̃k is the first k ∈ N elements of q̃ and cq̃k ∈
N is the completion time of q̃k.

Although the WCT is the most important result we wanted to analyze, there are more
interesting results that can be obtained through State-Space analysis. We can find the Best-
Case Throughput, by determining the Minimum Cycle Mean or analyze a specific mode
sequence’s performance.

Latency Analysis

In terms of latency analysis, there are two interesting results one can obtain from the
generated state-space. One is to compute the latency of a specific mode sequence, and the
other is to compute the overall maximum latency for a mode sequence of length n.

The maximum latency for a mode sequence q of length n can be obtained by searching
the state-space for the largest completion time of any sequence of length n that matches q.

Definition 20. (Latency of a mode sequence of length k) Given state-space ss and let q̃k be
a mode sequence with length k, the maximum latency is equal to:

max
∀q̃k∈ss

(cq̃k) (4.32)

where cq̃k is the completion time of a sequence q̃k with length k.

4.4 Results

4.4.1 Validation

Before we can evaluate the performance of FSM-MCDF compared with current used anal-
ysis, we must first make sure it produces correct results. For this purpose, we designed three
variation of the simple FSM-MCDF graph in Figure 4.3 and 4.4. This analysis of the graph
will result in a small state-space where we can properly validate the correctness of every step.
Furthermore, the variations of the example we will use will cover the two distinct corner cases
in our analysis: intermodal dependencies and pipelining executions.

As we want to study both the effects of our initial analysis and the improvements made in
section 4.3.2, we will run all examples with two different transition graphs. Transition graph
T1 (Figure 4.9 a)) will allow for any transition for any consecutive amount of runs, while
Transition Graph T2 (Figure 4.9 b)) will have a limit of 2 consecutive runs on Mode 2.

We now present all the cases we wish to analyze. All cases were manually solved, with
exception of case 2, in order to have expected values for the outputted results. Case 2, due
to generating a very large state-space, could not be analyzed in this fashion.

63

1 2

a)

1 2

b)

max. 2no max.no max. no max.

Figure 4.9: a) Transition Graph T1 - b) Transition Graph T2

switch
 1 2

mc
0

A
5

1 2
select

Source
10

B
30

Figure 4.10: MCDF graph example for Case 2

Case 1: Simple MCDF Graph

This is the exact example case (Figure 4.3) we solved when explaining the analysis in the
previous section. We expect the state-space graph of Figure 4.5 and an overall worst-case
throughput of 10 time units, the same as the period of actor Source. As this example has
no pipelining executions using the general transition graph (Figure 4.9 a)) or the transition
graph with limited executions of Mode 2 (Figure 4.9 b)), should yield the same results.

Case 2: Simple MCDF Graph with Pipelining

Figure 4.10 is one of the example corner cases we wish to explore. Mode 2 has now a very
slow actor B, 30 time units, that doesn’t connect to the Select actor. This allows for Mode
1 to be able to run while Mode 2 hasn’t finished an iteration. The expected results will now
depend on how we assume our transition graph. If we use the transition graph T1 we expect
an overall worst-case throughput of 30 times units, the same as the period of Mode 2. On
the other hand, if we use transition graph T2 then we will be able to see the advantages of
pipelining execution and have a tighter value for the worst-case throughput.

64

switch
 1 2

mc
0

A
5

1 2
select

Source
10

B
9

1:2
Tunnel

Figure 4.11: MCDF graph example for Case 3

Figure 4.12: Validation results for FSM-MCDF State Space Analysis

Case 3: Simple MCDF Graph with Intermodal Dependencies

The example in Figure 4.11 is another of our corner cases. We have modeled an intermodal
dependency, between Mode 1 and Mode 2, by adding a tunnel between actors A and B. As
there is no added pipelining executions in this situation we are expecting the same results
as in Case 1. However, we should be able to see on the resulting state-space evidence of the
intermodal dependency between Mode 1 and Mode 2 transitions.

Results

Table 4.12 summarizes the results obtained by running the examples from the three chosen
cases. We can conclude that the results are as expected in all scenarios. We can also notice
that in Case 1 and Case 3 the state-space is quite small, while in Case 2 the number of nodes
and edges is comparably higher. This can be justified by the fact that the source cycle is not
dominant in the graph and, therefore, more states can be created until periodicity is reached.
In other words, in Case 2 we will have more states due to a longer transient phase in the

65

graph’s execution. Consequently analyzing the state-space is quite difficult when not done in
an automated fashion. Although we could not place the state-space in this graph due to its
size, when analyzed it was possible to find several sequences that showed the correct behavior
of pipelining execution of Mode 2. All mode sequences with transitions 2-1 are executed with
transition time zero, as expected.

As for the state-space outputs of Case 1 and Case 3, they are the same, with the difference
of the extra-token modeling the intermodal dependency. As in both cases, the source cycle is
dominant in the graph the temporal behavior is the same.

This initial run of experiments served as a validation step before the actual comparison
with other throughput analysis techniques for MCDF. We concluded that the outputted
results are as expected but that the algorithm will produce quite large state-spaces even for
simple input graphs. This poses an issue on the scalability and performance of the algorithm
on very large and complex applications.

4.4.2 Comparison

In this section we will show practical results of real applications using the FSM-MCDF
analysis and compare it with the current available techniques. We will compare FSM-MCDF
with other two methods of obtaining the WCT of an application: Static Dataflow Techniques
(SDT) and a Static Periodic Schedule approximation (SPS-AP).

SDT is simply calculating the Maximum Cycle Mean of the original MCDF graph, while
SPS-AP separates the MCDF graph into its modal graph representation and then approxi-
mates a Static Periodic Schedule for a specific Mode Sequence [28].

SDT and FSM-MCDF are directly comparable because both results are an overall result
of all possible mode sequences [28]. However, FSM-MCDF and SPS-AP are not directly
comparable because SPS-AP only outputs results for a given finite mode sequence. In the
later case, we will compare both techniques by comparing latency analysis results output for
specific finite mode sequences.

FSM-MCDF vs SDT

For this comparison we use all the examples used in the previous validation section, plus
the example on Figure 4.6, which we will denominate Case 4, and two real application models
of a WLAN radio (Figure 2.3), one with a slow source and one with a fast source for pipelining
executions. In this situation we do not use the same transition graph T1 and T2 as in the
previous subsection. Instead, we use each application appropriate transition graph with no
limits on transition T1 and with correct real limits for each transition T2.

Analyzing Table 4.13 it is easy to see that both analysis have the same performance when
determining the overall worst-case throughput (WCT) when FSM-MCDF does not take into
consideration limits on the maximum number of consecutive transition per mode. However,
when this factor is taken into account, applications that exhibit this behavior, Case 2, Case
4 and the Fast WLAN, have tighter WCT results with FSM-MCDF analysis.

66

Figure 4.13: Comparison results between FSM-MCDF and SDT analysis

FSM-MCDF vs SPS-AP

For this comparison we choose two real application models in MCDF: a WLAN radio
(Figure 2.3) and a LTE radio (Figure 4.14). As it is impossible to directly compare both
analysis, as SPS-AP is not a complete analysis, we opt to compare both techniques in terms
of latency analysis. To perform latency analysis specific mode sequences will be chosen for
each application. We will then test the worst-case latency that each mode sequence generates
in both analysis. In the WLAN application we test a single mode sequence, while in the LTE
model we tryout all the possible mode sequences for the current release of the model. The
LTE model we tested can have up to 4 different static mode sequences, therefore we obtain
results for each of them.

Observing the results gathered in Figure 4.15 we see that in all mode sequences analyzed
FSM-MCDF returns tighter latency values. This is expected, since SPS-AP bases its analysis
on a Static Periodic Scheduling for the graph and mode transitions, while FSM-MCDF uses a
self-time simulator to characterize mode executions and mode transitions. On the particular
case of the WLAN, we see that the improvement is quite insignificant. However, this is due
to the WLAN application being having a periodic behavior which leads to an almost identical
schedules for both Static Periodic and Self Time scheduling schemes. On the other hand, the
LTE model we analyze exhibits several pipelining behavior between mode transition, therefore
assuming a Static Periodic schedule to characterize mode execution and mode transition will
lead to very pessimistic results, as we see in Figure 4.15.

4.4.3 Conclusions

We validated our FSM-MCDF implementation and verified its improvement in terms of
temporal analysis of MCDF graphs. We consistently proved that if a MCDF graph is designed
with pipelining behavior between modes, FSM-MCDF analysis returns much tighter results
than other analysis, in terms of throughput and latency analysis. Furthermore, we concluded
that FSM-MCDF is a complete analysis, in the sense that it returns an overall result for any
mode sequence generated by the finite state machine (FSM). However, we also established that

67

Figure 4.14: LTE MCDF model graph

Figure 4.15: Comparison results between FSM-MCDF and SPS-AP analysis

68

FSM-MCDF is only an optimal analysis technique if the FSM that describes the MCDF graph
is also optimal. For cases were consecutive mode transitions are limited we can simply add a
limit on the transition number. However, we did not address the issue if there are particular
cyclical mode transitions that have also limited consecutive occurrences. For example, cases
where consecutive transition cycle 1-2-1 has limited occurrences. As future work, we propose
that a consistent automated algorithm is designed to build the FSM of a MCDF graph. We
suggest that the behavior of the graph is expressed as a general mode sequence with limits
on each mode transition and each cyclical mode transition. Furthermore, it is important to
generalize the analysis method to not strongly-connected graphs. A possible way to address
this issue is to convert a MCDF graph into its equivalent Strongly Connected Components
(SCCs) graph, as proposed in [32].

4.5 Software Implementation

As a result of the implementation of the analysis presented in this chapter, we had to add
and modify certain aspects of the Heracles simulator and analysis tool. Specifically we had
to introduce the following changes:

• Create a Max-Plus module - We added a module to Heracles to deal with matrix
structures and all the Max-Plus algebra operations described throughout the chapter.

• Create and implement the algorithms to build the Max-Plus matrix of a
MCDF graph - We developed and implemented algorithms to analyze the initial,
modal and amodal, tokens of a MCDF graph. Moreover, we implemented an algo-
rithm to build a Max-Plus matrix representation of a MCDG graph using the Heracles
simulator and the initial tokens of the graph.

• Edit the simulator to allow for a single iteration execution - In order to build a
Max-Plus matrix of a MCDF graph we need to alter the simulation to allow for a single
iteration execution. To keep the versatility of the tool we only activate this functionality
is specified by the user when calling the simulator.

• Create an internal structure for transition graphs - The basis of this analysis is
the description of mode transition by a finite state machine. We opted to implement
this as a transition graph that describes each mode as node and each transition as a
graph arc. This graph is inputed as a file and parsed into a transition graph structure,
within Heracles.

• Create an internal structure for state-space graphs - We create an internal
structure for the generated state-space as a graph with nodes as mode states and mode
transition as edges. Each node as the following parameters: id, mode, rank and tokens
production vector. Each edge as the following parameters: transition time and transition
number.

• Implement the algorithms to build the state-space - We implemented a breath
first search algorithm to explore the transition graph of a MCDF graph and build a
state space graph of all the possible mode transitions. The algorithm takes as input the
transition graph, tokens table and Max-Plus representation of a specific MCDF graph
and build the correspondent state space for future analysis.

69

• Create a State-Space analysis module - We added a new independent module that
has the necessary function to analyze the maximum overall throughput and latency of
a state-space, or a specific results for a given mode sequence.

4.6 Summary

In this chapter we adapted and implemented a state-space analysis algorithm for charac-
terization of the temporal behavior of an MCDF graph, with the use of a finite state machine.
We began by exploring the basic concepts of Max-Plus algebra and explaining with detail
the fundamental logic behind the analysis algorithm. We then did a step-by-step description
on how we implemented the algorithms, the optimizations done and the existing limitations.
We validated the final implementation of the FSM-MCDF analysis and compared the results
obtained with the current used analysis techniques. FSM-MCDF proved to achieve tighter
worst-case throughput results than the other techniques when graphs are modeled with lim-
ited consecutive transitions in the same mode, or when pipelining was present in applications.
In all other cases, FSM-MCDF proved to be as efficient as SDT analysis.

However, it is important to give emphasis to the fact that FSM-MCDF analysis is a
complete analysis. Despite we were only interested in retrieving a worst-case throughput
analysis, FSM-MCDF outputs an complete state-space analysis of the execution of a MCDF
graph, which can be used to get throughput values for specific mode sequences or in order to
achieve best-case throughput analysis.

70

Chapter 5

Fixed Priority Analysis for SRDF
graphs

In a Multi-Processor System-on-Chip (MPSoC) platform running several applications si-
multaneously, resources must be shared between applications while the timing constraints
of each one of them must be met. There are many resource arbitration strategies, such as
Time Division Multiplexing (TDM), Round-Robin (RR) or Fixed Priority scheduling. In this
chapter we analyze how a fixed priority assignment scheme affects the temporal behavior of
streaming applications mapped on a MPSoC. We model streaming applications mapped on a
MPSoC with a fixed priority scheme as Single Rate Dataflow graphs (SRDF), and propose a
technique to characterize the temporal response behavior of the actors of a mapped applica-
tion. Specifically, we define load of an actor on a processor and derive the worst-case response
time analysis of a low priority actor, by characterizing the worst-case load that higher priority
actors generate on the same processor, when executing in a self-timed fashion. We also show
that in cases where the applications can be modeled using a periodic/sporadic event model,
our approach provides tighter worst-case response time bounds than the technique proposed
in [18], since we can implicitly take into account the effects of (a)cyclic precedence constraints.

We start by describing how we model streaming applications mapped on a multiprocessor
platform with a local fixed priority schedule in SRDF. Then, in Section 2, we propose a tech-
nique to analyze the temporal behavior of the simple case of two fixed priority applications.
In Section 3 we extend our analysis to n fixed priority applications. In Section 4 we introduce
our methodology to apply the worst-case load conditions to an actual fixed priority SRDF
graph. In Section 5 we present our experiments and results for interference and response
time analysis of a set of fixed priority SRDF graphs. Furthermore, we compare our analysis
technique with the one proposed in [18]. Finally, in Section 6 we conclude our work.

5.1 Fixed Priority in SRDF graphs

We model streaming applications as time-bounded SRDF graphs. We define a time-
bounded SRDF graph G as:

G = (V,E, d, t̂, ť) (5.1)

71

CA

B

C

B

A

a) b)

Figure 5.1: Example of enforced static order in actors execution

where V is a set of actors, E : {(i, j)|i, j ∈ V } a set of directed edges and d : E → N
is a function that describes the initial placement of tokens on the edges; each actor has a
worst and best case execution time, respectively, t̂ and ť. Furthermore, the elapsed time
t(i, k) between consumption and production of tokens for any firing k of actor i is defined by
execution time t : V ×N→ R+. We only consider valid execution times for actor firings such
that: ∀k∈N,i∈V : ť(i) ≤ t(i, k) ≤ t̂(i).

We assume that executions of SRDF graphs always occurs in a self-timed fashion. For a
given SRDF graph G = (V,E, d, t̂, ť) the start time of an actor firing is denoted by the start
time function s : G× t×V ×N→ R+, such that s(G, t, i, k) denotes the start of the (k+ 1)th

firing of actor i ∈ V in graph G and execution time function t. When assuming a graph is
self-timed, one can fully define s(i, k) with a given graph G and a execution time function t.

Regarding the system platform, we define a MPSoC as a set of processors Π = (π1, π2, ..., πn)
such that actors i ∈ V of SRDF graph G are mapped to some processor given by the func-
tion map : V → Π. Furthermore, we assume a fixed priority scheme where each streaming
application running on MPSoC is assigned a unique priority, 1 being the highest value, such
that all tasks of the application have the same priority. For simplicity, we associate a graph
with a subscript representation Gi, where i is the assigned priority.

A processor, in this scheme, always executes the highest priority active task at any mo-
ment in time. Furthermore, to ensure mutual exclusion between tasks of the same application
that share the same processor, we assume a pre-defined static ordering per application per
processor with a mapping so : (Π, G) → αn, where αn is the set actor sequences of the type
[i1, i2, ..., in], where i1, i2, ..., in ∈ V . For instances, if Figure 5.1 a) represents an application
such that actors a and c are mapped to the same processor, we model a pre-defined static
ordering by appropriately adding edges between the actors to form a non-blocking cycle [28]
as shown in Figure 5.1 b). Actors a and c have now a fixed order of execution.

For the rest of the chapter, we assume all SRDF graphs are defined as such and that
they are self-timed scheduled. Again, we also assume that all actors, from the same graph,
mapped on the same processor are statically ordered. Furthermore, since a processor cannot
simultaneously execute more than a single task instance, we add a self-edge with a single
token to every actor in the graph to model non self-concurrent execution of firings.

72

HP Application

Target Processor P

B
10

A
5

X
5

Figure 5.2: SRDF graph example with a single load actor

A1

X1

(time units)
B1

A1

X1

B1
0 5 10 15 20 25 30 35 40

Load Window Length = 28

Figure 5.3: Gantt chart of SRDF example

5.2 Fixed Priority Analysis

We start by explaining our proposed interference and response time analysis strategy for
the simple case of two self-time scheduled fixed priority applications: A high priority (HP)
application and a low priority (LP) applications.

We want to address the issue of having several real-time applications mapped on the same
resources. More specifically, analyze how higher priority applications interfere with the execu-
tion of lower priority applications. For this purpose, we will extensively use the concept of load.

Simply put, load is the amount of time a certain resource spends with a task, or a set
of tasks, within a given time interval. However, as we are assuming that applications are
modeled as SRDF graphs, it is important that we define the concept of load created by a
graph.

Given a SRDF graph G = (V,E, d, t̂, ť) using resources Π, and m ∈ Π a processor, we
call load actor of m to any actor i ∈ V with map(i) = m, and non-load actor of m to all
remaining actors of G.

5.2.1 Load of a single load actor

For example, consider the SRDF graph in Figure 5.2. In Figure 5.2 we depict a SRDF
graph with three actors, A,B and X. Actor X is a load actor of P, while A and B are non-load
actors of P. Figure 5.3 describes in a Gantt chart two iteration of the self-timed execution of
the SRDF example graph.

Now lets assume we want to study the load of processor P due to a single load actor, as

73

Table 5.1: Load generated by actor X

Time interval Total Load

[0, 5] 0
[0, 10] 5
[0, 40] 10
[5, 10] 5
[0, 28] 8

in the example graph. In order to determine the load we must first define a time interval,
that we refer to as load window. Table 5.1 show the total load generated by load actor X
considering different values for the length of the load window.

Analyzing Table 5.1 we see that the load generated by a load actor is the sum of all firings,
of that load actor, which occur within the specified load window. Moreover, we only consider
the amount of time of a firing that occurs inside the window. For instances, in the case of
interval [0,28], we consider as load of actor X, firing X1 and a partial firing X2 that occurs
before the end of the time interval.

We can then define load of a single load actor on a processor as:

Definition 21. (Load of a processor due to a single load actor with a schedule s) Given a
SRDF graph G, with schedule s, running on resources Π, the load of processor m due to single
load actor i is equal to:

L(G,m, i, s, t, δ0, δ) =
∑
k

min
(
s(G, t, i, k) + t(i, k), δ0 + δ

)
−max

(
s(G, t, i, k), δ0

)
(5.2)

where k is a firing of i such that k : δ0 − t(i, k) < s(G, t, i, k) < δ0 + δ; s(i, k) is the start
time of the kth firing of i and t(i, k) the execution time of the kth firing of i.

For simplicity sake, we henceforth reduce equation 5.2 by assuming that graph G, schedule
s and execution time function t to be implicit in our definition. Rewriting equation 5.2:

L(m, i, δ0, δ) =
∑
k

min
(
s(t, i, k) + t(i, k), δ0 + δ

)
−max

(
s(t, i, k), δ0

)
(5.3)

5.2.2 Load of a SRDF graph

Consider, now, that we have an application modeled by the graph in Figure 5.4. We now
have more than one load actor mapped on the same processor. Figure 5.5 depicts the timeline
execution of the actors mapped on processor P. As we assume that actors mapped on the
same processor, and from the same applications, are statically ordered, the load generated in
processor P can be determined simply by extending our load definition to all the firings of all
the load actors of processor P. Therefore,

74

B

A

C D

Figure 5.4: SRDF graph example with multiple load actors

B1A1

0 5 10 15 20 25 30 35 40 45 50 (time units)
B2A2

Figure 5.5: Gantt chart of SRDF example Figure 5.4

Definition 22. (Load of a processor due to a SRDF graph) Given a SRDF graph G, with
schedule s, running on resources Π, the load of processor m due to the load actors of m is
equal to:

L(G,m, s, t, δ0, δ) =
∑
k,i

min
(
s(G, t, i, k) + t(i, k), δ0 + δ

)
−max

(
s(G, t, i, k), δ0

)
(5.4)

where i is a load actor of m, k is a firing of i such that k : δ0t(i, k) < s(G, t, i, k) < δ0 + δ;
s(i, k) is the start time of the kth firing of i and t(i, k) the execution time of the kth firing of
i.

5.2.3 Maximum load of a single actor

Now consider an hypothetical characterization of graph Ĝ, schedule ŝ, execution t̂ and
some time instant δ̂0 such that:

L(Q̂,m, ŝ, t̂, δ̂0, δ) ≥ L(Q,m, s, t, δ′0, δ), (5.5)

that is, if we can realize such a bound for the worst-case load of the data flow graphs of all
high priority applications, we can obtain a the worst-case response bound of a lower priority
task.

Analyzing the load function of Equation 5.3 we can conclude that, in order to characterize
the maximum load, we must analyze individually three parameters: 1) the start times of load
and non-load actors, 2) the execution times of load and non-load actors and 3) the start time
of the load window.

75

0 10 20 30 40 50 60 70 80

Load Window = [10,45]

0 10 20 30 40 50 60 70 80

Load Window = [0,35]

Load Window Length = 35 time units

L = 20

L = 15

a)

b)

0 10 20 30 40 50 60 70 80

Load Window = [15,50]
L = 15

b)

Target Processor P

Z
10

S
10

Figure 5.6: Influence of the start time of the load window

In the following subsections, we will analyze each of the parameters that may contribute
to the maximum load of a single actor. We then summarize the necessary conditions and
extend them for the general case of multiple load actors.

Start time of the load window

Given a load window, [δ0, δ0 + δ) all firings of the load actor within this time interval will
contribute to the generated load, L. Therefore it is important to define the start time of the
load window δ0 so that the maximum number of firings of the load actor occur within the
time window.

As an example, lets analyze three different situations: a) The first firing of the load actor
begins at time δ0, b) The first firing of the load actor begins after the time δ0 and c) The first
firing of the load actor begins before the time δ0.

We use Figure 5.6 as an example. In the figure we have different starts for a load window

76

applied to the same timeline of load actor X of a processor P .

Case A:

We start by analyzing the most intuitive case, the start time of the load window δ0
coincides exactly with the start of a load actor ’s firing. This is the situation described in
Figure 5.6 a). Applying Equation 5.3 to the example in 5.6 a) we determine that the total
load is equal to 20 time units.

L(X,P, 10, 35) =
(
min(10 + 10, 10 + 35)−max(10, 10)

)
+(

min(30 + 10, 10 + 35)−max(30, 10)
)

=

(20− 10) + (40− 30) = 10 + 10 = 20

(5.6)

Case B:

In this case we consider that the start time of the load window, δ0, begins before the
start time of a firing of the load actor. This situation is depicted in Figure 5.6 b). We see
that by shifting the load window earlier in time, one of two things can happen: load will be
pushed out due to the window’s shifting or the load will remain constant because shifting of
the window compensates the amount of load lost with load from previous firing.

For the example in 5.6 b):

L(X,P, 0, 35) =
(
min(10 + 10, 0 + 35)−max(10, 0)

)
+(

min(30 + 10, 0 + 35)−max(30, 0)
)

=

(20− 10) + (35− 30) = 10 + 5 = 15

(5.7)

Case C:

Case C and B are quite similar. In this case, the start time of the load window is set
after the start time of a firing of the load actor, as depicted in Figure 5.6 c). Again, we see
that shifting the load window forward will result in two scenarios: the load is pushed out by
shifting the window and it is either replaced by including load from a next firing of the load
actor or by a slack interval between firings. Therefore, the amount of load will decrease or
remain the same.

For the example in 5.6 c):

L(X,P, 15, 35) =
(
min(10 + 10, 15 + 35)−max(10, 15)

)
+(

min(30 + 10, 15 + 35)−max(30, 15)
)

=

(20− 15) + (40− 30) = 5 + 10 = 15

(5.8)

77

Target Processor P

BA C

Figure 5.7: Example of two SRDF applications with actors B and X mapped on the same
processor.

In summary, we conclude that the load is maximum when the start of the load window
coincides with the start of a firing of the load actor. In all other scenarios the load can
decrease but never increase. We can then characterize the start time of the load window that
generates the maximum load in the following theorem:

Theorem 2. For any load window [δ0, δ0 + δ) in the self-timed execution of a graph, δ0 ±
∆ denotes the start time of the first firing of the load actor such that L(r, t, δ0 ± ∆, δ) ≥
L(r, t, δ0, δ), where r ∈ Π.

Proof. The start time of a load window [δ0, δ0 + δ) can either occur when the processor is
idle, or when the processor is busy with the load actor. If the load window starts when the
processor is idle, then we derive the a new load window of equal length δ whose start coincides
with the start of the first firing of the load actor after δ0 i.e. at time δ0 + ∆.

Since the processor is idle from time δ0 until δ0 + ∆, no load will be lost by choosing the
load window to start at δ0+∆. Furthermore, as the load imposed from the end of the original
timeline δ0 + δ to the end of the new load window δ0 + ∆ + δ must be non-negative we deduce
that the load imposed within the new load window can never be less than the load imposed
in the the original load window.

Similarly, if the load window [δ0, δ0 + δ) starts during the execution of the load actor, we
derive a new load window whose start coincides with the start of that execution of the load
actor at say δ0 −∆. As the processor is busy executing the load actor from time δ0 −∆ up
to δ0 it compensates for any load lost since the new load window ends at δ0 −∆ + δ instead
of δ0 + δ.

Since the above proof applies for any δ0, we conclude that the maximum load can be
characterized such that the start of the load window δ0 coincides with the start of a firing of
the load actor. We now re-write Equation 5.3 as:

L(m, t, δ0, δ) =
∑
k

min(s(t, i, k) + t(i, k), t+ δ)− s(t, i, k), (5.9)

where k : δ0 ≤ s(t, i, k) < δ0 + δ.

Execution time of the actors

To understand the influence of the execution time of both load and non-load actors in
the processor load we will study the total load for a fixed length load window in different

78

B1

C1
(time units)0 10 20 30 40 50 60 70 80 90 100

A1 A2 A3 A4 A5

B2 B3 B4

C2 C3 C4

Execution Times:
A = 21, B = 8, C = 20

Length = 25

Figure 5.8: Gantt chart of the execution of example SRDF in Figure 5.7

situations. We assume that the start time of the load window coincides with the start time
of the first firing of load actor B.

Considering the starting point of our analysis to be the gantt chart in Figure 5.8, we will
assume that the non-load actors are executing at its fastest execution time and that load
actors are running at their slowest pace. In this situation the total load within the defined
load window is:

L(B,P, 20, 25) =
(
min(20 + 8, 20 + 25)−max(20, 20)

)
+(

min(40 + 8, 20 + 25)−max(40, 20)
)

=

(28− 20) + (45− 40) = 8 + 5 = 13

(5.10)

We now derive conclusions by first analyzing the effects of varying the execution times of
non-load actors and then of load actors.

Non-load actors

In this case, we slow down the execution of the non-load actors by increasing their ex-
ecution time. The results can be seen in Figure 5.9. The total load in this situation equal
to:

L(B,P, 30, 25) =
(
min(30 + 8, 20 + 25)−max(30, 30)

)
(38− 30) = 8

(5.11)

We see that by reducing the execution time of non-load actors the generated load is lower.
Therefore we state:

Theorem 3. Within any load window [δ0, δ0 + δ) slower execution for the firings of any
non-load actor cannot increase the load imposed by the load actor.

79

B1

C1
(time units)0 10 20 30 40 50 60 70 80 90 100

A1

B2

Execution Times:
A = 31, B = 8, C = 30

A1 A1

C1

 Length = 25

Figure 5.9: Execution of example SRDF in Figure 5.7 with slower execution of non-load actors

Proof. The time intervals between consecutive firings of the load actor i are caused by data
dependencies of the load actor on some other actor(s). The start of a firing of the load actor
is constrained by:

∀j:(j,i)∈Es(t, i, k) ≥ s(t, j, i− d(i, j)) + t(j, k), (5.12)

Monotonicity of actor firings implies that slower execution of an actor may only cause
delayed firing of the next actor. Assume a firing h = k − d(i, j) of actor j, where (j, i) ∈ E,
executes slower such that t′(i, h) = t(i, h) + ∆i,h and ∆x,h ≥ 0. This may only imply that the
kth firing of the load actor is constraint such that s(t, i, k) ≤ s(t′, i, k) ≤ s(t, i, k) + ∆j,h. If
we assume that every actor except our load actor executes faster, it may only affect the start
time of the load actor such that s(t′, i, k) ≥ s(t, i, k). Due to this delay in firings of the load
actor, there may be some load component that was previously within the given load window
which may now be pushed outside it.

Let ∆n denotes the shift in n-th firing of the load actor which is originally the first firing
of the load actor outside the given load window such that s(t′, i, n) − s(t, i, n) = ∆n where
∆n ≥ 0. The shift ∆n implies that the last ∆n time within the load window has now been
pushed outside and therefore the load imposed within this ∆n time must now be reduce from
the original load to compute the new load.

L(t′, r, δ0, δ) = L(t, r, δ0, δ)− L(t, r, δ0 + δ −∆n,∆n), (5.13)

where r = map(i). Since we know we can never impose a negative load for any load
window, i.e. L(t, r, δ0 + δ −∆n,∆n) ≥ 0 we conclude that L(t′, r, t, δ) ≥ L(t, r, t, δ).

Load actors

Similarly, we will start off from the gantt chart in Figure 5.8 assuming that the load actors
execution time is at its slowest rate, and increase the execution time of load actor B. The
results can be seen in Figure 5.10. The total load is now equal to:

L(X,P, 20, 45) =
(
min(20 + 5, 20 + 25)−max(20, 20)

)
+(

min(42 + 5, 20 + 25)−max(42, 20)
)

=

(25− 20) + (45− 42) = 5 + 3 = 8

(5.14)

80

B1

C1
(time units)0 10 20 30 40 50 60 70 80 90 100

A1 A2 A3 A4 A5

B2 B3 B4

C2 C3 C4

Execution Times:
A = 21, B = 5, C = 20

Length = 25

Figure 5.10: Execution of example SRDF in Figure 5.7 with faster execution of load actors

We see that decreasing the execution time of load actors does not increase the total
generated load. Therefore,

Theorem 4. Within any load window [δ0, δ0 + δ) faster execution of the load actor firings
cannot increase the load imposed by the load actor.

Proof. Consider that the firings of the load actor i may execute faster than originally defined
by t(i, k). We express these new execution times as t′(i, k) = t(i, k)−∆k where ∆k ≥ 0. The
monotonicity of actor firings implies that faster execution of an actor firing can only result
in sooner arrival of input for the next firing:

s(t′, i, k) ≤ s(t, i, k) ∧ t′(i, k) ≤ t(i, k)⇒ s(t′, i, k + 1) ≤ s(t, i, k + 1) (5.15)

We may also bound the earliest possible arrival of the next firing of the actor using linearity
of actor firing as:

s(t, i, k + 1)− s(t′, i, k + 1) ≤ s(t, i, k)− s(t′, i, k) + ∆k, (5.16)

where ∆k = t(i, k) − t′(i, k). Since we only consider faster execution for the load actor
within the given load window [δ0, δ0 + δ), we observe that start of the first firing of the load
actor (say s(t, i, h)) within the given load window does not change, i.e. s(t′, i, h) = s(t, i, h).

Let the hth firing of the load actor be originally its first firing outside the load window
(i.e. s(t, i, h) ≥ δ0 + δ) such that it does not impose load on the processor within the load
window [δ0, δ0 + δ). However, since we now consider that the firings of the load actor to
execute faster, it may be that the hth firing also starts sooner such that s(t′, i, h) < δ0+δ. We
apply Equation 5.16 recursively to deduce that the soonest possible arrival of the hth firing
is expressed as:

s(t, i, h)− s(t′, i, h) ≤ s(t, i, n)− s(t′, i, n) +
∑

n≤k<h
∆k

≤
∑

n≤k<h
∆k (5.17)

81

Since the h-th firing is now inside the load window, we must also compute the load imposed
by it as well as any other firing that might now be inside the load window. If originally the
h-th iteration is just outside the load window (s(t, i, h) = δ0 + δ), Equation 5.17 implies that
the soonest possible start of h-th firing is s(t′, i, h) = δ0 + δ −

∑
k ∆k where n ≤ k < h. To

compute the load imposed by the load actor within the given load window, we need to sum
the new load components for all original firings within the given load window, and the load
imposed by firings k onward until the end of the load window. The total load for the load
window [δ0, δ0 + δ) for the faster execution setting can be expressed as:

L(t′, δ0, δ) = L(t′, δ0, s
′(i, k)− δ0) + L(t′, s(t′, i, h), δ0 + δ − s(t, i, h)), (5.18)

Considering faster execution times t′(i, k) = t(i, k) −∆k for each firing n ≤ k < h of the
load actor, we deduce that:

L(t′, δ0, s(t
′, i, h)− δ0) = L(t, δ0, δ)−

∑
n≤k<h

∆k (5.19)

According to our definition of the load function we know that the maximum possible load
that can be imposed within a load window is the length of that load window, i.e.

L(t′, s(t′, i, h), δ0 + δ − s(t′, i, h)) ≤ δ0 + δ − s(t′, i, h)

≤
∑

n≤k<h
∆k. (5.20)

Placing these observations in Equation 5.18, we deduce:

L(t′, δ0, δ) = L(t, δ0, δ)−
∑

n≤k≤h
∆k + L(t′, s(t′, i, h), δ0 + δ − s(t′, i, h))

≤ L(t, δ0, δ). (5.21)

We conclude that reducing the execution time of firings of the load actor cannot increase the
load imposed in the given load window. In other words, the maximum load imposed by the
load actor must assume the worst-case execution time for each firing of the load actor in the
load window [δ0, δ0 + δ).

Start times of the actors

In [28], Moreira defines dependence distance dd(i, j) as the number of firings of actor j ∈ V
that can occur before the first firing of actor i ∈ V , in an admissible schedule. That is, for
any admissible schedule, s(j, dd(i, j)) ≥ s(i, 0) + t(i, 0). Because SRDF actors have unary
rates of production and consumption, it also means that s(j, k + dd(i, j)) ≥ s(i, k) + t(i, k).

Furthermore, [28] shows that, given a self-timed schedule s for a strongly connected SRDF
graph we can construct a new schedule s′ such that all firings are self-timed except the n-th
firing of the an actor l, which is instead forced to fire at s′(l, n) = s(l, n)+φ. The constructed
new schedule is then such that for i ∈ V :

s(i, k) ≤

{
s′(i, k) ≤ s(i, k) + φ, if k − n = dd(i, l)
s′(i, k) = s(i, k), if k − n 6= dd(i, l)

(5.22)

82

If we forcibly delay the n-th firing of an actor j such that s′(j, n) = s(j, n) +φ considering
a sufficiently large φ we can construct a schedule s′ in which for all i ∈ V and k−n ≤ dd(j, i),
s′(j, n) ≥ s′(i, k). In other words, we intentionally delay the n-th firing of j until all firing
that do not depend on its finishing such that any future firings must wait for the n-th firing
of j. We then define the constructed schedule s′ as blocked on the n-th firing of j. As any
progress in execution of the graph is only possible after the n-th firing of j, any further delay
in this firing will equivalently delay all future firings:

Theorem 5. For the admissible schedules s′ and s′′ constructed from a self-timed schedule
s of a given SRDF graph, if both s′ and s′′ are blocked on the n-th firing of an actor l ∈ V
such that s′(l, n) = s(l, n) + φ and s′′(l, n) = s(l, n) + Φ, it holds that for all i ∈ V and
k − n ≥ dd(l, i)

s′′(i, k) = s′(i, k) + Φ− φ (5.23)

Theorem 5 implies that the minimum distance between firings s(j, h) and s(i, k) where
k − h ≤ dd(j, i) and j, i ∈ V is obtained by constructing a schedule that is blocked on the
firing s(j, h). Without loss of generality we apply the blocking concept to the first firing to
obtain the maximum possible firings of the load actor within a given load window:

Theorem 6. For a given strongly connected SRDF graph, the minimum distance between two
firings of an actor i in a self-timed schedule s is bounded by constructing schedule s′ from s
that is blocked on the first firing of that actor:

s(i, k + h)− s(i, k) ≥ s′(i, h)− s′(i, 0) (5.24)

From Theorem 6 we deduce that by blocking the first firing of the load actor we obtain
the minimum distance to all its future firings and therefore maximize the load imposed by
the load actor.

We explain with detail how we apply the blocking concept in practice, and how we deter-
mine the necessary blocking time to achieve the maximum load condition, later on, in section
5.4.2.

Gathering all conditions

We conclude our characterization by listing the conditions under which a load window
within the self-timed execution of a SRDF graph gathers the maximum load for that actor:
1) the start of the load window coincides with a firing of the load actor; 2) by blocking the
graph, all future firings activate at their natural distance from the first firing of the load actor
in the given load window; 3) we consider the worst-case execution time for each firing of the
load actor; and 4) we consider the best-case execution time for each firing of all other actors.

5.2.4 Maximum load of a SRDF graph

So far we have defined the necessary conditions for maximizing the load imposed by a
single high priority load actor. However, an application may often have more than one load
actor mapped on the same processor. If that is the case, then which load actor’s firing should
coincide with the start time of the load window?

83

B

A

C D

B

A

C D

a) b)

Figure 5.11: Example SRDF graph with cyclical dependencies and a blocked state

B1

(time units)
B1 B2

A1

A1

0 5 10 15 20 25 30 35 40 45 50

0 5 10 15 20 25 30 35 40 45 50

(time units)
B2A2

A2

Length = 20

Length = 10

a)

b)

Figure 5.12: Timeline for the example of Figure 5.11

84

Consider the graph in Figure 5.11 such that actor a and b are mapped on the same
processor while actor c and d are mapped to different processors. Lets assume constant
execution times ta = 5, tb = 10, tc = 10 and td = 5. Figure 5.11 a) shows the condition
of the graph when all future firings are dependent on actor a, and Figure 5.11 b) shows the
condition of the graph when all future firings are dependent on actor b. The timeline for both
cases is depicted in Figure 5.12.

Lets now compute the load in each timeline, with the load window starting from the first
firing of the load actor that fires first. We observe that the load imposed in each case is
different and dependent on the length of the load window. For instances, for a load window
of length δ = 20 the load imposed in Figure 5.12 a) is greater, while for a length of δ = 10
the load imposed is greater in the timeline of Figure 5.12 b).

Theorem 2 states that to obtain the maximum load within a load window, the start of
the load window must coincide with the start of a load actor firing. Furthermore, Theorem 5
defines that by sufficiently delaying the n-th firing of a load actor u we minimize the distance of
all future firings of all actors (including any other load actors) from this firing. We generalize
Theorem 6 such that for all actors v ∈ V and k − n ≥ dd(u, v)

s(v, k)− s(u, n) ≥ s′(v, k)− s′(u, n) (5.25)

This implies that the maximum load imposed within a load window whose start coincides
with s(u, n). In case we have multiple load actors, we repeat this process for each of the load
actors. Without loss of generality, we sufficiently block the first firing of one of the load actors
to obtain the maximum load that can be imposed in a given load window assuming that the
start of the load window coincides a firing of that load actor. The maximum of the above
load value obtained gives us the maximum load imposed by the application in the given load
window.

5.2.5 Response Time Analysis

In a fixed priority scheme, the execution of a low priority task can be preempted by the
activation of a higher priority task, thus delaying its completion. We can use our maximized
load function to build a worst-case response time analysis for any actor in a SRDF graph
with a fixed priority scheme.

Lets consider we have a set of two SRDF graphs mapped on the same resources, as in
Figure 5.13. We focus on a single resource: processor P. We see that actors X and Z are load
actors of P. Furthermore, actor X belongs to a high priority (HP) application and Z to a
low priority (LP) application. We also assume that the high priority application is running
under all the necessary conditions (Section 5.2.3) such that the load actors of P produce their
maximum load. If we look at the timeline of processor P, depicted in Figure 5.14, we see that
the response time of a firing of actor Z is equal to 30 time units, instead of 20 time units.
This is due to the interference created by the load actors of processor P with higher priority
than Z, actor X.

What if the HP application has multiple load actors? Consider the example in Figure 5.15.
In this case, our HP application is the same as in the example of section 5.2.5, Figure 5.11.
Therefore, as stated in 5.2.5, to determine the worst-case response time, we need to analyze

85

HP Application

Target Processor P

B
10

A
5

X
5

Z
20

S2
40

LP Application

Figure 5.13: Example of interference between two SRDF applications

(time units)
X1

0 5 10 15 20 25 30 35 40
X2

(time units)
X1

0 5 10 15 20 25 30 35 40
X2

Timeline after mapping of actors X and Z on the same processor

Timeline before mapping of actors X and Z on the same processor

(time units)
Z1

0 5 10 15 20 25 30 35 40

Z1 Z1

<30 time units>

<20 time units>

Figure 5.14: Execution of actors X and Z before and after being mapped on the same processor

86

HP Application
Target Processor P

Z
20

S2
40

LP Application

Y
10

X
5

A
10

B
5

Figure 5.15: Example of interference between two SRDF applications

the maximum load conditions for each of the load actors of P, and retrieve the maximum load
imposed by the application in the given load window.

Figure 5.16 depicts the timelines of the maximum load of processor P, due to different
blocking of the load actors, and the respective worst-case response time of the low priority
actor Z. In Figure 5.16 a), we depict the timeline of processor P, due to the HP application
behavior being dependent on load actor A. While, in Figure 5.16 b), we depict the timeline
of processor P, due to the HP application being dependent on load actor B.

Observing Figure 5.16, we conclude that the worst-case response time occurs when the
graph is blocked due to load actor B, and it is equal to 45 time units.

However, if the execution time of actor Z would be 15 time units, both scenarios would
give the same worst-case response time. Therefore, we also conclude that different low priority
task may have worst-case response times due to different conditions of the maximum load.

At this point, we define L̂i as the characterization of load function L that maximizes the
load of a processor for a specific low priority actor i, such that Equation 5.5 holds.

We can then build the following equation to derive the worst-case response time of a load
actor of a SRDF graph:

Definition 23. (Worst-case response time of a actor) Let G be a high priority SRDF graph
on resources Π with schedule s, execution time function t and m a processor of Π. Let i be an
independent low priority task with execution time ti. Then the response time of i, the elapsed
time between the start (δi) and end of the execution of i, considering interference from the

87

Y1

(time units)
Y1 Y2

X1

X1

0 5 10 15 20 25 30 35 40 45 50

0 5 10 15 20 25 30 35 40 45 50

(time units)
Y2X2

X2

Timeline after mapping of actors X,Y and Z on the same processor

(time units)
Z1

0 5 10 15 20 25 30 35 40

<40 time units>

<20 time units>
45 50

Y1X1

0 5 10 15 20 25 30 35 40 45 50 (time units)
Y2X2Z1 Z1 Z1

Timeline after mapping of actors X,Y and Z on the same processor

(time units)
Z1

0 5 10 15 20 25 30 35 40

<45 time units>

<20 time units>
45 50

0 5 10 15 20 25 30 35 40 45 50 (time units)
Y1 Y2X1 X2Z1 Z1 Z1

a)

b)

Figure 5.16: Execution of actors X,Y and Z before and after being mapped on the same
processor

88

high priority application, is equal to the smallest positive value r̂i that satisfies the equation:

r̂i = ti + L̂i(G,m, s, t, δi, r̂i), (5.26)

where δi is equal to the schedule start time of actor i and L̂i the maximum load charac-
terization of graph G for actor i.

For instances, if we use equation 5.26 to determine the response time of load actor Z of P
in the example of Figure 5.15, we get:

rZ = tZ + L̂Z
(
P, δZ , rZ

)
:

1)rZ = 20 + L̂Z(P, 0, 0) = 20 + 0

2)rZ = 20 + L̂Z(P, 0, 20) = 20 + 10 = 30

3)rZ = 20 + L̂Z(P, 0, 30) = 20 + 15 = 35

4)rZ = 20 + L̂Z(P, 0, 35) = 20 + 20 = 40

5)rZ = 20 + L̂Z(P, 0, 40) = 20 + 25 = 45

6)rZ = 20 + L̂Z(P, 0, 45) = 20 + 25 = 45

rZ = 45

(5.27)

5.2.6 Response Model

We define a simple response model for each actor of an SRDF application by using a
single non-concurrent actor with a constant execution time equal to the obtained bound on
the worst-case response time using equation 5.26. We can then use the response model to
analyze the temporal behavior of an SRDF application.

By replacing each actor of an application graph by its fixed priority response model we
obtain a SRDF dataflow graph that represents the worst-case temporal behavior of the entire
application, when scheduled with a fixed priority scheme. Therefore, we can apply SRDF
temporal analysis techniques, such as Maximum Cycle Mean (MCM) analysis, on the ob-
tained graph to verify if it meets its temporal requirements.

For instances, in the example of Figure 5.13, due to the interference of X, the response
time of the low priority actor Z is 30 time units, instead of the expected 20 time units. The
expected MCM of the low priority application graph is 40. If we replace actor Z’s execution
time by its response time, we can evaluate if the application still meets its timing require-
ments, despite the interference from higher priority applications. Performing MCM analysis
on the fixed priority response model application graph, returns an output MCM of 40. Since
the MCM remains the same, we can conclude that, despite the interference of actor X, the
low priority application still meets its timing constraints.

However, in the example case of Figure 5.15, we have interference due to the load of load
actors X and Y. In this case, the worst-case response time of actor Z is 45 time units, instead
of the expected 20 time units. If we replace actor Z for its fixed priority response mode, the
execution time of actor Z is now 45 time units. Performing MCM analysis on the response

89

model applications graph, returns an output MCM of 45 time units. Since the MCM is above
the expected value of 40 we can conclude that the low priority applications, when schedule
with the HP application of Figure 5.15, cannot meet its timing requirements.

5.3 Fixed Priority Analysis for N applications

So far we established the necessary definitions and conditions to analyze a fixed priority
scheduling of two streaming applications on a MPSoC platform. However, most real cases
have more than two running applications. In this section we demonstrate how to extend our
response time analysis for the case where we have n streaming applications scheduled with a
fixed priority scheme.

Lets extend our response time computation, Definition 23, considering the interference
from a set of n higher priority graphs. If Ĝj , ŝ, t̂ and δ̂0 characterize the worst-case load of
the j-th high priority application where 1 ≤ j ≤ n, we define the worst-case response time
bound r̂i of the low priority task, as the lowest possible value that satisfies the following
equation:

r̂i = ti +
n∑
j=1

L̂i(Ĝj ,m, ŝ, t̂, δ̂0, r̂i), (5.28)

where ti is the execution time of task i and δi is equal to the scheduled start time of task
i.

Simply put, in order to determine the worst-case response time of a low priority task,
when considering interference from the load imposed by a set of n application, we need the
following steps. First we characterize the maximum load condition of each application, using
the set of conditions of section 5.2.3 and 5.2.4. Then add up the total maximum load, from all
applications, within the load window, and determine the response time using Equation 5.28.

In the next sections we will describe the process of applying the maximum load condition
on an actual SRDF graph and a step-by-step approach on how we implemented our analysis
in the Heracles tool.

5.4 Maximum load set-up in a SRDF graph

In the previous section we characterized the conditions under which we can obtain the
maximum load for a set of SRDF graphs. Now we need to describe how to apply these
conditions to an actual SRDF model graph.

Some are quite easy to recreate: such as the start time of the load window and the
execution times of the SRDF actors. All that is needed is to set the time window to start at
the first firing of the load actor, and that the graph runs all non-load actors in their best-case
execution time and all load actors in their worst-case execution time. However, to achieve
the worst condition possible we still need to have the graph in a condition where all firings
of the graph are dependent on the first firing of the load actor.

In this section we explain the method used in our study to have the graph in the necessary
conditions for the load actor we want to study to generate the maximum load possible. Later
we extend the analysis for the existence of multiple load actors.

90

Block

AC1 C2

dC1A

dAC1

dC2A

dAC2

dAA

dBlock

Figure 5.17: Example of the general SRDF graph we want to maximize the load

5.4.1 Methodology

In Figure 5.17 we have a SRDF graph with three actors, A,C1 and C2. This graph rep-
resents a condensed model of the type of graphs we intend to study. Actor A represents the
high-priority load actor that will be responsible for generating the load in the processor it
is mapped to, while non-load actors C1 and C2 represent all the cyclical dependencies that
affect actor A. The graph is strongly connected graph and self-timed, therefore, as stated in
Section 2.4, it will have a two phased behavior: when the graph initiates its execution it will
go through a transient phase until it eventually reaches a periodic phase. As soon as the graph
enters its periodic phase the computational load that a load actor imposes, per period, on its
mapped processor becomes constant. Furthermore, the graph assumes that all the non-load
actors are running on the best-case execution time, and all load actors are running on their
worst-case execution time.

Actor A will be our load actor and in order to accumulate the largest number of tokens at
its input edges before its first firing we will add a new actor to the graph: actor Block. The
Block actor’s purpose is to block the load actor A from firing for a certain amount of time,
the blocking time, such that the rest of the graph will run and produce tokens in the input
edges of the load actor until the graph can no longer run unless the load actor is fired. This
way we can assure that the load actor has the maximum possible number of accumulated
tokens at its input edges and that, consequently, it will generate the maximum load when it
is fired.

With this method, all the necessary conditions for a load actor to produce the maximum
load possible are met:

• Best-case execution time for non-load actors

• Worst-case execution time for load actors

• The load window starts at the first firing of the load actor

• The load actor is blocked until the graph is dependent on its firing

91

Target Processor P

X

BA

Block

dblock

tblock

C

Figure 5.18: Example of Figure 5.7 with a Block actor

Example

Consider the SRDF graph in Figure 5.7 as an example graph. After adding our Block
actor in the graph, as depicted in Figure 5.18, we will vary the blocking time of the Block
actor and analyze the effect on the load generated by our load actor B.

Observing Figure 5.18, we can see that by blocking actor B and allowing the remaining
actors to keep executing, the graph will reach a blocked state as depicted in Figure 5.19. We
see that without any firing of actor B, the highest number of tokens at the input edges of B
is 2. The state of the graph in Figure 5.19 reflects the best possible condition for actor B to
generated the maximum load.

Figure 5.20 depicts the gantt chart of the execution of the blocked graph (5.18) with
blocking times: 15,25 and 35. As expected the number of consecutive firings of actor B is at
most 2, and it is the case that generates the maximum load. Furthermore, blocking the graph
by 25 or 35 time units shows no difference in the generated load. Therefore, there is in fact
a bound on the necessary blocking time for a strongly-connected SRDF graph.

It is important to give emphasis that, although this technique is conservative, some pes-
simism might be added if the blocking time reflects a state in the graph that would never
happen. In the next subsection we will discuss with detail the parameters of the Block actor.

5.4.2 Blocking Actor

The blocking actor is connected only to the load actor and to itself by a self-edge. The
two important parameters to configure the blocking actor are the blocking time, tblock, and
the number of delays in the self-edge of the blocking actor, dblock. For simplicity sake, lets
consider again the example in Figure 5.18. Once the graph is activated the block actor creates
an extra dependency for the load actor B. While the block actor does not finish its firing,
which will produce dblock tokens in edge (Block −B), B cannot fire. Meanwhile, the remain-
ing non-load actors will execute until, eventually the graph can no longer run due to pending
dependencies from load actor B. At this point the whole graph is stopped waiting for the first

92

Target Processor P

X

BA C

Block

dblock

tblockdblock

Figure 5.19: State that represents the maximum load in the SRDF graph

firing of B. This will guarantee that the maximum number of tokens is accumulated in the
input edges of actor B.

Once the end of the blocking time is reached, the block actor produces a sufficient number
of tokens on edge (Block − B) to remove its influence for the remainder execution of the
graph, and load actor B can finally fire. B will then produce the maximum number of firings
with a minimum distance, creating the worst-case scenario in terms of processor usage - the
maximum processor load.

General Case

In the general case, we assume we have a strongly-connected self-timed SRDF graph G
and a mapped processor m we wish to study. We need first to determine the blocking time
and the number of delays of the Block actor. As our assumption is that the remaining actors
of the graph are mapped to different processors, and do not depend on our load actor, the
blocking time can be derived from the maximum time it takes for the graph to stop to wait
for our blocked load actor. Which means that the slowest cyclical dependency C of the load
actor will be the maximum blocking time [1].

tblock ≥ Cm ·
∑
i∈Cm

di, , (5.29)

where i is an actor of G and Cm is the cycle with the largest execution time, Cm =
max(tC1, tC2, ..., tCn) n ∈ N.

This time is an upper bound on the maximum execution time any of the cycles in the
graph can run without needing a firing of the load actor.

On the other hand, the ddelay parameter should be chosen such as: the load actor does
not have to wait for tokens from the Block actor after the blocking time. We want to avoid

93

(time units)0 10 20 30 40 50 60 70 80

<75 time units>

90 100

Block

Response Time

Execution Times:
A = 15, B = 10, C = 10

X = 25
Block = 15

B1

C1

(time units)

X1

0 10 20 30 40 50 60 70 80

<85 time units>

90 100

Block

B2 B3 B4

Response Time

Execution Times:
A = 15, B = 10, C = 10

X = 25
Block = 35

A1 A2 A3 A4 A5 A6 A7

B5 B6

X1 X1 X1 X1

110 120

C2 C3 C4 C5 C6

B1

C1

(time units)

X1

0 10 20 30 40 50 60 70 80

<85 time units>

90 100

Block

B2 B3 B4

Response Time

Execution Times:
A = 15, B = 10, C = 10

X = 25
Block = 25

A1 A2 A3 A4 A5 A6 A7

B5 B6

X1 X1 X1 X1

110 120

C2 C3 C4 C5 C6

A1 A2 A3 A4 A5 A6 A7

B1 B2 B3 B4 B5 B6

C1 C2 C3 C4 C5 C6

X1 X1 X1 X1 X1

110 120

Figure 5.20: Timeline of the example SRDF with different block times (15, 25 and 35 time
units)

94

a second delay of the load actor due to the Block actor. A rule of thumb [1] to achieve this
is to assign:

dblock ≥
tblock
tA

+ 1 (5.30)

For instances, load actor B in the example of Figure 5.18 (Execution times: A=15, B=10
and C=20) has three cyclical dependencies: 1) cycle A-B, 2) cycle B-C and 3) cycle A-B-C.
With rates of 12.5, 15 and 11.25 respectively. Therefore, using equation 5.29 we compute:

tBlock = 15× 2 = 30 (5.31)

This result is a conservative upper bound on the blocking time. However, a tighter bound
can be found, as can be seen by the examples in Figure 5.18. Using a blocking time of 25
time units produces the same response time.

Optimization for applications with a dominant source

In a self-timed graph an actor will eventually fire as soon as its input tokens are avail-
able. By blocking the actor further than this point we are considerably adding pessimism to
the results. Therefore the correct value for the blocking time should be exactly the largest
distance, in time, between the load actor and any of its dependencies in the graph. In a self-
timed graph this would correspond to the worst-case self-timed start time of the load actor.
Unfortunately, even with current state-of-art analysis for SRDF, a bound on the worst-case
self-timed start time is not always possible to determine because the graph might have a
non-periodic behavior.

A dominant source in a SRDF graph, is an actor, or a cycle of actors, whose rate of
execution imposes the rate of the graph. In other words, all actors are dependent on the
source actor and the cycle containing such actor exhibits the maximum cycle mean (MCM)
of the graph. In our application domain, most applications, such as radios, have a dominant
source, that imposes the rate of the graph, and are periodic or sporadically periodic. If this
is the case then it is possible to estimate the blocking time more accurately using the concept
of maximum latency.

In such application the largest distance between the load actor and any of its dependencies,
is always the distance between the source actor and the load actor. Using the latency concepts
of section 2.4.4, we can estimate the maximum latency between the source actor src and the
load actor ld for the following cases:

• For a periodic source:

tBlock = L̂(src, ld, n) ≤ šROSPS(ld, 0)− s(src, 0) + µ(G) · n, (5.32)

where šROSPS(ld, 0) represents the soonest start time of ld in an admissible ROSPS

95

• For a sporadic source:

tBlock = L̂(src, ld, n) ≤ šη − s(src, 0) + η · n, (5.33)

The latency L̂(src, ld, n) with a sporadic source has the same upper bound as the latency
for the same source src, sink ld, and iteration distance n in the same graph with a
periodic source with period η.

For example, in the case of Figure 5.18 we had previously established a bound for the
general blocking time of 30 time units. However, analyzing the graph we see that at 15 time
units, B as a token in the edge (A-B), and at 20 time units a token is produced at edge
(C-B). At this points, actor B has all the conditions necessary to fire. Therefore, if we block
load actor B more than 20 time units, we are creating a state in the graph that would never
happen. Consequently, the results would be pessimistic.

5.4.3 Multiple load actors

In this subsection we address the case where a SRDF graph has multiple load actors. In
section 5.2.5 we discussed this problem in terms of maximum load in a processor.

Our approach to extend the analysis done so far for a single actor, for multiple actors, is
based on the definition of maximum load of section 5.2.4. In this situation we have several
actors that can generated load in a processor. Therefore, a set of condition can be applied to a
graph such that a particular load actor produces the maximum load. Furthermore, as we also
stated in section 5.2.4, for a different low priority task different characterizations of the graph
(one per load actor) can be responsible for the maximum load imposed on the processor that
will lead to the worst-case response time of the task. Until the writing of this dissertation, we
did not develop any analysis or heuristics to have an a priori knowledge of which load actor
is responsible for the that specific maximum load. Therefore, our solution for multiple load
actors is simple having a different characterization for the blocking of each load actor of the
graph, and try each characterization to find the maximum worst-case response time of the
task.

We explain with more detail how we explore the load imposed on the processor by the
different load actors of an application, in section 5.5.3.

5.5 Implementation

Now that we have the necessary theoretical and practical concepts, we can implement the
algorithms and functions to get results for our proposed SRDF worst-case response time and
interference analysis. Furthermore, we are interested in comparing our analysis with the one
proposed in [18]. Therefore, we will implement both analysis using the Heracles tool.

5.5.1 Our Algorithm Overview

Lets consider we have a set of n applications mapped on a MPSoC, with resources R,
and that we want results on the interference and response time analysis of processor P ∈ R.

96

Notice that we are assuming that there are n schedule applications, and that each application
may have m load actors of processor P. Since we don’t know a priori which combination of
maximum loads, of the load actors of m, will produce the maximum amount of total load
for a particular low priority task Section 5.4.3 we need to explore all combinations of blocked
load actors.

Therefore, we divided our approach in two major algorithms: a core analysis algorithm and
a full-exploration algorithm. The core algorithm creates the load timelines, adapts the load
window and performs interference and response time analysis. The full-exploration algorithm
works at a higher level and simply runs the core algorithm recursively until all combinations
of blocked load actors are explored. The full algorithm is described in pseudo-code in Algo-
rithm 4. Because of this extensive exploration of all possible combinations the algorithm has
exponential complexity. However, for the range of applications we study this complexity level
is acceptable.

input : List of SRDF graphs, Target processor P
output: Response Times, Schedulability
final-results = new Hashtable();
for each combination c of load actors do

fp-graph ← Connect block actors of (c,fp-graph);
timelines ← simulate(fp-graph);
mod-timelines ← adjust load window (timelines);
results ← generate interference analysis (mod-timelines);
final-results ← compare results (final-results,results);

end
print final results;
check schedulability;

Algorithm 4: Top-level algorithm

5.5.2 Core algorithm

In this subsection, we will describe the core algorithm of our implementation. In terms of
the description in Algorithm 4, the core algorithm corresponds to the operations done within
the main For cycle, for each combination of load actors.

Preparing the initial conditions

The first step is to prepared the SRDF model to have the necessary condition in order
to obtain the maximum load from a load actor. Therefore, all the applications we model as
SRDF graphs will have an assigned priority and a unique Block actor. When the selected
applications are introduced into the Heracles tool, they are parsed into a SRDF graph struc-
ture and the block actor is connected to the first load actor of the processor we want to
perform the interference analysis. Before we can obtain the load timelines for each load actor
we must first determine what is the type of SRDF applications, in order to determine the
correct blocking time. If the application is non-periodic we simply apply the set of equation
of section 5.4.2, for the general case. Otherwise, we must first determine what is the Period
(µ) and the Static Periodic Schedule (SPS) of that application. We hold these values in an

97

hashtable structure, with priority as a key.

Determining the maximum load

At this point, we call the Full Exploration algorithm to connect all the Block actors to
their respective load actor candidates. The blocked applications are then ran in the Heracles
simulator. After simulating, we collect all the simulated timelines, of each application, as a
list of simulation events and pass them onto the next phase: setting the load window.

Setting the load window

Now that we have collected all the timelines we need to adjust them for our load window
to reflect the load generated by the selected combination of blocked load actors. For such to
happen, for each timeline we remove all the events that occur before the set blocking time for
that application. In the end we obtain a list of timelines, whose events are all synchronized at
the start of the load window (δ0), and represent the maximum load imposed on the processor.

Interference analysis

This part of the implementation uses the fixed priority model of Heracles, created for the
work in [1]. The fixed priority model contains a function for merging two different timelines,
merge timelines, and a function to find the response time of a specific task, slot fill task. Us-
ing these functions, we create a recursive algorithm that merges the received timelines, except
the lowest priority (LP) application’s timeline, into a single maximum load timeline. The last
step is to get the response time for each task of the LP application by slot-filling it in the
merged timeline.

The pseudo-code for the interference analysis algorithm is described in Algorithm 5, and
a example of the slot filling procedure is depicted in Figure 5.21.

list = all timeline of prio < number of apps;
LP = all load actors of the application with prio = number of apps;
foreach timeline (tl) in list do

merged timeline = merged timelines (merged timeline) (tl);
end
foreach load actor la in LP do

response time = slot fill task la merged timeline;
add response time to results list;

end
return results list;

Algorithm 5: Interference Analysis Algorithm

5.5.3 Full Exploration Algorithm

The For cycle in the top-level algorithm 4, is in practice a recursive function that receives
an hashtable with the load actors per application and a the list of load actors of the highest
priority application. Then it will iterate over the list of load actor candidates and connect,

98

Low Priority Task

Timeline after slot filling the low priority task

Slot filling algorithm

Merged Timeline

<Low Priority Task Response Time>

Figure 5.21: Slot filling algorithm example

in each iteration, a Block actor to each selected load actor. Every time the Block actor of
an application is connected, the function is recalled with the list of candidates of the next
priority application. This recursion is repeated until the nth application is reached, the lowest
priority application. At this point, the algorithm stops the recursion and calls the simulator
for the current combination of blocked load actors. This recursive iteration over the load ac-
tors lists permits us to analyze all possible combinations. The pseudo-code for this particular
is described in Algorithm 6.

let rec connect block actors list prio graph = begin
if prio >= number of applications then

call core algorithm graph
end
foreach load actor l in list do

app graph ← graph(prio);
block actor ← app graph.block actor;
block actor.blocking time ← l.sps start time;
app graph ← add edge (block actor,l);
graph(prio) ← app graph;
connect block actors (graph(prio+1).load actors) (prio+1) graph;

end

end
Algorithm 6: Full exploration algorithm

5.5.4 Final Results and Tests

For every run of the core algorithm a list of response times is returned. Each value of
the results is compared with the previous, and if they reflect a worst-case response time then
they replace the previous value. Otherwise they are discarded. When all the combination of

99

Figure 5.22: Analysis Flow of [18]

blocked load actors have been tested a list with the final results is printed and the temporal
analysis using for the response model graph is called. It consists in replacing each load actor
of the LP application by a single non-concurrent actor with a constant execution time equal
to the obtained bound on the worst-case response time for that actor. Then temporal analysis
tests are run on the modified LP application graph to assert if any constraint was violated.

5.5.5 Hausmans’s Approach

Lets first introduce the approach in [18]. The presented temporal analysis technique is a
dataflow based approach that uses a enabling-jitter characterization and iterative fixed-point
computation. However, the application domain is restricted to periodic dominant source
applications. The analysis flow is quite similar to the one in [20], where the enabling jitter
of tasks combined with their period is used to compute the response time of task. However,
the computation of the enabling jitter, in contrast with other methods, is done by using the
best-case schedule and the worst-case schedule, for a dataflow graph. Convergence of the
response times is guaranteed because the response times are monotonic in the enabling jitters
of the task and because of the temporal monotonicity of dataflow graphs [40]. The analysis
finishes when the enabling jitters converge or when a violation of the temporal constraints is
detected.

Analysis Flow

The analysis flow starts by characterizing each application’s tasks in terms of priority,
period (P) and best and worst-case execution times (B and C respectively). Then a recursive
algorithm will be ran for each application until the returned response times converge. After
one application is analyzed, its results are passed onto the next lower priority application.
The analysis flow ends when all applications have been analyzed. The analysis flow is depicted
in Figure 5.22.

100

Response Times

The response times are calculated for each task by using an event model with enabling jit-
ter (J), as in [3] [2]. The model used to determine the worst-case response times is formalized
in the following equations:

wi(q) = q · Ci +
∑

j∈hp(i)

η̂j(wi(q)) · Cj (5.34)

η̂j(∆t) = dJj + ∆t

Pj
e (5.35)

R̂i = max(wi(q)− (q − 1) · Pi), 1 ≤ q (5.36)

Equation 5.34 calculates wi(q) which is the maximum amount of time it takes to finish q
executions of task i. Function hp(i) returns the set of tasking running on the same processor
as i, with a higher priority. The model for best-case response times is the same, except it
uses the best-case execution time.

Compute Schedules and Derive Jitter

The next step in the analysis flow is to build an analysis model with the determined
response times. The model chosen is a SRDF graph. A SRDF graph is then built for each
application. One that consider best-case response times (BC-SRDF) and one that consider
worst-case response times (WC-SRDF). Each dataflow graph model is then scheduled, using
a Self-Timed schedule in the case of BC-SRDF and a Static Periodic Schedule in the case of
the WC-SRDF.

The final step is to use the scheduled dataflow graph models to retrieve the jitter of each
of the application’s task.

Ji = ŝi − ši (5.37)

Convergence of the flow

The analysis flow ends when all applications have been analyzed, and when for each
application there was a convergence in the determination of the enabling jitter of each task.
The worst-case response time are then returned and, unless a violation is detected during the
analysis, the set of applications is said to meet its temporal requirements.

5.6 Results

In this section we will perform different tests on our implementation to evaluate the per-
formance and validity of our response time and interference analysis. Furthermore, we will
compare our approach with the one in [18].

101

Figure 5.23: SRDF Model of a WLAN Radio

Figure 5.24: SRDF Model of a TDSCDMA Radio

Figure 5.25: Abstract target architecture template

102

Figure 5.26: Results for the analysis of experiment WLAN+TDSCDMA

5.6.1 Case Studies: WLAN and TDSCDMA models

For our experiments, we will use two SRDF models from real life applications: a Wireless
Local Area Network 802.11a (Figure 5.23) and a Time Division Synchronous Code
Division Multiple Access (TDSCDMA) (Figure 5.24). The system architecture for the
MPSoC platform were the application are mapped is depicted in Figure 5.25. It includes
one or more general-purpose ARM cores, to handle control and generic functionality, one or
more of the EVP [6] core, to handle detection, synchronization and demodulation, and one
or more Software Codec processors, that take care of the baseband coding and decoding
functions.

Each actor in the graph contains the information on the task it represents and the execu-
tion time, in CPU cycles. As we will be focusing on studying only the task mapped on the
EVP processor, all load actors of the EVP are shaded in the application graphs. The EVP
is a vector processor designed and create by ST-Ericsson, with a clock speed of 300 MHz.

Prior to beginning of the experiments, each application graph is given a priority and a
unique unconnected Block actor. For each experiment we will gather results from our proposed
analysis and the analysis proposed in [18]. We will then discuss and derive conclusion from
the results.

5.6.2 Interference Analysis (2 Applications)

For this case, we will run analyze the following experiments:

• WLAN+TDCDMA: A WLAN application with high priority and a TDSCDMA ap-
plication with low priority;

• WLAN+WLAN: A Fast WLAN application with high priority and a Slow WLAN
application with low priority;

WLAN - TDSCDMA

For this experiment we use a WLAN application, with a periodic source of 40000 CPU
cycles, and a TDSCDMA application, with a periodic source of 675000 CPU cycles. We
give high priority (HP) to the WLAN application and low priority (LP) to the TDSCDMA
application. We run the same experiment for our proposed analysis, with the blocking time
determined by the general case equation (GA), by our optimized approach (OA), and for the
approach proposed by Hausmans (HA).

103

Figure 5.27: Results for the analysis of experiment WLAN+TDSCDMA

Looking at the results in Figure 5.26 and Figure 5.27, we can derive several conclusions.
The most pessimistic results are delivered by our analysis using the general case rule for
determining the blocking time (GA). This is expected since both applications have a periodic
behavior and therefore the value for the blocking time can be tighter. This is reflected by the
results returned by both periodic regime constrained analysis (OA and HA) that have tighter
worst-case responses.
Between these two analysis we see that in the particular cases of LP actors MI, DASS and
JD2, our optimized analysis (OA) returns tighter response times than Hausmans approach
(HA). In all the other cases the results are exactly the same.

WLAN - WLAN

For this experiment we use a fast WLAN application, with a periodic source of 40000
CPU cycles, and a slow WLAN application, with a periodic source of 349600 CPU cycles.
We give high priority (HP) to the fast WLAN application and low priority (LP) to the slow
WLAN application. We run the same experiment for our proposed analysis, with the blocking
time determined by the general case equation (GA) and by the periodic case equation (OA),
and for the approach proposed by Hausmans (HA).

Looking at the results in Figure 5.28 and Figure 5.29, we see that in this case the most
pessimistic results are the ones returned by Hausmans approach (HA). As expected, we still
have tighter results returned by our optimized analysis (OA) than our general analysis (GA).

5.6.3 Interference Analysis (3 Applications)

For this case, we will run analyze the following experiments:

• WLAN+WLAN+TDSCDMA: A WLAN application with high priority, a WLAN
application with medium priority and a TDSCDMA application with low priority;

• WLAN+TDSCDMA+TDSCDMA: A WLAN application with high priority, a TD-
SCDMA application with medium priority and a TDSCDMA application with low pri-
ority;

104

Figure 5.28: Results for the analysis of experiment WLAN+WLAN

Figure 5.29: Results for the analysis of experiment WLAN+WLAN

105

Figure 5.30: Results for the analysis of experiment WLAN+WLAN+TDSCDMA

Figure 5.31: Results for the analysis of experiment WLAN+WLAN+TDSCDMA

WLAN - WLAN - TDSCDMA

For this experiment we use a fast WLAN application, with a periodic source of 40000
CPU cycles, a slow WLAN application, with a periodic source of 349600 CPU cycles, and a
TDSCDMA application, with a periodic source of 675000 CPU cycles. We assign high priority
(HP) to the fast WLAN application, medium priority (MP) to the slow WLAN application
and low priority (LP) to the TDSCDMA application. We run the same experiment for our
proposed analysis, with the blocking time determined by the periodic case equation (OA),
and for the approach proposed by Hausmans (HA).

In this more complex case, we see that our optimized analysis returns tighter results than
Hausmans approach for all LP actors of the TDSCDMA application.

WLAN - TDSCDMA - TDSCDMA

For this experiment we use a fast WLAN application, with a periodic source of 40000 CPU
cycles, a first TDSCDMA application, with a periodic source of 675000 CPU cycles, and a
TDSCDMA application, with a periodic source of 675000 CPU cycles. We assign high priority
(HP) to the fast WLAN application, medium priority (MP) to the slow WLAN application
and low priority (LP) to the TDSCDMA application. We run the same experiment for our
proposed analysis (OA), with the blocking time determined by the periodic case equation,

106

Figure 5.32: Results for the analysis of experiment WLAN+TDSCDMA+TDSCDMA

Figure 5.33: Results for the analysis of experiment WLAN+TDSCDMA+TDSCDMA

and for the approach proposed by Hausmans (HA).

Again, the results in Figure 5.32 and 5.33 show that our optimized analysis (OA) has
tighter response times, than Hausmans approach (HA), for all the LP application’s actor.
However, in terms of the schedulability (Figure 5.34) of these three applications both methods,
OA and HA, concluded that the throughput constrains of the LP application are not met.

5.6.4 Conclusions

In all experiments done the results returned by our optimized analysis (OA) are always
tighter than our general analysis (GA) and Hausmans approach (HA). Regarding our gen-
eral case analysis (GA), this was expected due to the fact that the analysis is pessimistic

Figure 5.34: Results for the schedulability of experiments

107

0 10 20 30 40 50 60 70 80

0
10 20 30 40 50 60 70 80

Our merged timeline

Hausmans merged timeline

Low Priority Task Exec. Time = 20

0 10 20 30 40 50 60 70 80

0 10 20 30 40 50 60 70 80

Our response time result

Hausmans response time result

<Response Time = 30>

<Response Time = 50>

Figure 5.35: Response time analysis for both techniques

in determining the blocking times for the load actors. Leading to a state in the graph that
would never be possible, under the graphs assumptions, and therefore, giving also pessimistic
response times results.

On the other hand, Hausmans approach (HA) has as an application domain of strictly
periodic applications, and therefore, the returned response times are tighter, in most cases,
than our general case analysis (GA). However, since Hausmans approach does not consider
offsets between tasks due to data-dependencies, for the applications we tested the results are
never better than our optimized analysis (OA). This is strictly due to our analysis using a
dataflow based approach in determining the load function that actually considers a simula-
tion of the application to detect the (a)cyclical data-dependency offsets, which are already
naturally described in a dataflow graph. This is depicted in Figure 5.35 where we show how
each approach’s final timelines format is, and how the response time are then determined.

All in all, we have proposed an approach for the interference analysis between fixed priority

108

streaming applications and response time analysis. The approach we suggest is for the general
case of any SRDF graph. The same is not valid for the approach suggested by Hausmans,
which focus only in periodic applications. Furthermore, our optimized analysis for periodic
and sporadically periodic applications has proven to give the tighter response times.

5.7 Software Implementation

As a result of the implementation of the analysis presented in this chapter, we had to add
and modify certain aspects of the Heracles simulator and analysis tool. Specifically we had
to introduce the following changes:

• Change the inputs of the tool - Prior to the work done in this chapter, a set of
applications were added in a single file. Graphs were manually merged. We added a
simple option to import all files from a folder and automatically add the correspondent
values and changes needed to be used as a set of fixed priority SRDF applications.

• Adapt and improve the Fixed Priority module - As result of the work done in [1],
a fixed priority module was added to Heracles. However, most of its purpose was for a
fixed 2-application analysis. Part of the implementation was to adapt and improve on
this module to be able to perform interference and response time analysis for a set of n
fixed priority SRDF applications, according to the techniques described in 5.2.3, 5.2.4,
5.3 and 5.4.

• Implementation of the interference analysis - As result of the work done in this
dissertation, we designed, tested and implemented all the algorithms described in Sec-
tion 5.5. As well as the algorithms described in [18] in order to be able to compare
results.

5.8 Summary

In this chapter we presented a solution for the temporal analysis of fixed priority scheduled
applications on a MPSoC, using a dataflow based approach. We proposed a characterization of
the load imposed by actors, by exploiting the temporal properties of the self-timed execution
of SRDF, and used this load characterization to derive worst-case response times for lower
priority tasks. We first illustrated how the worst-case response time bound on a low priority
task is obtained assuming a maximum load imposed by tasks with higher priority. We then
demonstrated how we determine the conditions for the self-timed execution of a dataflow graph
to impose the maximum load on a given processor. Furthermore, we proposed the concept
of blocking to achieve the maximum load imposed, and showed how to reduce the optimism
when determining the correct blocking time for applications with dominant periodic sources.
We validated our observations with experiments of simultaneous execution of multiple radio
applications on a MPSoC. Furthermore, our analysis presents tighter results than the current
state-of-art approach in terms of worst-case response time computation, but for a cost of
exponential complexity of the analysis flow. However, for the practical examples studied, this
complexity was acceptable.

109

110

Chapter 6

Conclusions

MultiProcessor Systems-on-chip (MPSoCs) are an often sought solution for platforms to
run several real-time streaming applications simultaneously. MPSoCs are versatile and pow-
erful platforms designed to fit the needs of embedded applications. Embedded streaming
applications mapped on a MPSoC, are often modeled using dataflow Models of Computation
(MoC). Dataflow graphs have the expressivity and analytical properties to naturally describe
concurrent digital signal processing applications [8]. Many scheduling techniques have been
analyzed for dataflow models of applications, such as Time Division Multiplexing (TDM) and
Non-preemptive Non-blocking Round Robin (NPNBRR) [24,28]. However, few attempts have
been made to characterize the temporal behavior of dataflow modeled applications under a
Fixed Priority (FP) scheduling scheme. Fixed priority scheduling is very popular, mostly
because it is very easy to implement and predictable in overload conditions [10]. When a
processor with a fixed priority schedule has a peak of load, the only affected tasks are the
ones with the lowest priorities. Therefore, systems that have one or more critical applications
find fixed priority scheduling a very attractive solution.

This dissertation set off with the objective of building the necessary concepts and tech-
niques to analyze fixed priority scheduling for applications modeled with a state-of-art dy-
namic dataflow MoC, Mode-Controlled Dataflow. However, since fixed priority analysis of
streaming applications, whose tasks do not exhibit periodic activations, is not trivial, and
moreover, there were still issues with the analysis for static dataflow models, from the work
in [1], our main objective could not be achieved within the time span of this dissertation.
Instead, we opted to improve the existing fixed priority analysis for static dataflow models
and temporal analysis of MCDF graph models, in order to establish the necessary ground
work to extend the analysis for dynamic dataflow MoC in the future.

We presented an implementation solution for a temporal analysis technique of MCDF
graphs, using a finite state machine (FSM) to describe the dynamic behavior of a MCDF
graph, FSM-MCDF analysis. The proposed solution is able to consider intermodal depen-
dencies, pipelining execution and provide a complete analysis of the temporal behavior of a
graph. When compared with the current available analysis techniques, our solution proved
to provide equal or better results for throughput and latency analysis. Furthermore, FSM-
MCDF provides optimal results for the temporal analysis of an MCDF graph, but only if the
description of the FSM matches exactly the natural behavior of the real application.

111

We propose an improved fixed priority analysis for SRDF graphs, based on the initial
work done in [1]. Specifically, we demonstrated how to obtain the worst-case response time
bound of a low priority task assuming maximum load imposed by higher priority tasks. We
showed how to characterize a self-timed execution of a dataflow graph such that it imposes
the maximum load on a processor. Furthermore, we proposed an optimization for the case
of applications with a single dominant source on a fixed priority assignment. Finally, we
validated and compared our analysis with the ones in [1] and [18]. We conclude that in all
cases, our analysis provides the tightest results for the worst-case response time analysis of a
low priority task. Moreover, the analysis technique we proposed is for a general case of any
SRDF graph, while the analysis in [18] has a narrowed application domain of strictly periodic
applications.

However, we were not able to devise a methodology, or heuristics, to determine the com-
bination of characterization of a set of SRDF graph that would impose the maximum load on
a processor. Therefore we base our analysis on a full exploration of all possible characteriza-
tions of the maximum load of load actors of the set of scheduled graphs, which leads to our
proposed analysis to have exponential complexity. Nonetheless, our results for the practical
cases for which we tested this technique, the execution time of the analysis tools was perfectly
acceptable.

6.1 Future Work

As suggestions for future work we leave the following topics:

• Automate the generation of the transition graph (Finite State Machine):
One of the problems discovered when implementing the FSM-MCDF analysis was that
the analysis was only optimal if the FSM description of the MCDF graph portrayed
the correct behavior of the real application. We currently build our FSM manually
and, although for simple graphs with few modes of operation this is sufficient, for more
complex applications it is quite prone to errors. Furthermore, an automated generation
of the FSM could solve our current issues with limiting the number of consecutive
transitions of cyclical mode sub-sequences (ex. 1-2-1-2-1-2-...) that would never occur
in the real application.

• Adapt the FSM-MCDF analysis for non-strongly connected graphs: The cur-
rent implementation of FSM-MCDF only supports strongly connected graphs. Despite
this being the case of most of the graphs we study, it is still a restriction in our applica-
tion domain. As already suggested, a possible solution would be to convert non-strongly
connected graphs to a a graph of its strongly connected components, as in [32].

• Improve the performance of the fixed priority exploration algorithm: Some
adjustments can be made to the current implemented version of our fixed priority anal-
ysis technique to, at least, reduce the number of explored cases. For instances, finding
a set of heuristic parameters to narrow down the number of combinations to explore.
Or a conservative simplification of the analysis that provides slightly more pessimistic
results, but is of less algorithmic complexity.

112

• Fixed Priority for MCDF analysis: The goal of this dissertation was to give the
first steps in establishing an analysis strategy for the worst-case response time analysis
of MCDF graphs with a fixed priority assignment. MCDF allows for a more realistic
modeling of applications, since it captures the natural dynamic behavior of modern
streaming applications, consequently reducing the gap between model and real appli-
cation. Therefore, we expect that, with MCDF graphs, our worst-case response time
analysis would give results closer to the actual values of the real application. Unfor-
tunately we could not reach this objective within the time span of this dissertation.
Ideally, if we can determine the mode sequence of a MCDF graph that imposes the
maximum load on a processor, we can build an equivalent SRDF graph of that par-
ticular sequence and simply use our proposed fixed priority analysis for SRDF graphs.
However, the problem lies in determining which is that particular mode sequence, since
it is not clear what are the main factors that influence a mode sequence to impose the
most load on a processor.

113

114

Bibliography

[1] Ricardo Almeida. Real-time fixed priority scheduling for multiprocessors (escalonadores
de prioridade fixa em multiprocessadores de tempo-real). Master’s thesis, University of
Aveiro, 2012.

[2] N.C. Audsley, A. Burns, M.F. Richardson, K. Tindell, and A.J. Wellings. Applying new
scheduling theory to static priority preemptive scheduling. Software Engineering Journal,
8(5):284–292, 1993.

[3] NeilC. Audsley, Alan Burns, RobertI. Davis, KenW. Tindell, and AndyJ. Wellings. Fixed
priority pre-emptive scheduling: An historical perspective. Real-Time Systems, 8(2-
3):173–198, 1995.

[4] Mohamed Bamakhrama and Todor Stefanov. Hard-real-time scheduling of data-
dependent tasks in embedded streaming applications. In Proceedings of the Ninth ACM
International Conference on Embedded Software, EMSOFT ’11, pages 195–204, New
York, NY, USA, 2011. ACM.

[5] M. Bekooij et al. Dataflow analysis for real-time embedded multiprocessor system de-
sign. In Dynamic and Robust Streaming in and between Connected Consumer Electronic
Devices, volume 3, pages 81–108. Springer, 2005.

[6] K. Berkel et al. Vector processing as an enabler for software-defined radio in handheld
devices. EURASIP Journal on Applied Signal Processing, 2005(16), 2005.

[7] E. Bini, G.C. Buttazzo, and G.M. Buttazzo. Rate monotonic analysis: the hyperbolic
bound. Computers, IEEE Transactions on, 52(7):933–942, 2003.

[8] J.T. Buck. Scheduling dynamic dataflow graphs with bounded memory using the token
flow model. PhD thesis, Univ. of California, Berkeley, September 1993.

[9] G.C. Buttazzo. Hard Real-Time Computing Systems. Kluwer Academic Publishers, 1997.

[10] Giorgio C. Buttazzo. Rate monotonic vs. edf: judgment day. Real-Time Syst., 29(1):5–26,
January 2005.

[11] T.H Corman et al. Introduction to Algorithms. McGraw-Hill, 2001.

[12] Christof Ebert. Embedded software: Facts, figures, and future. IEEE Computer Society,
April 2009.

[13] Pascal Manoury Emmanuel Chailloux and Bruno Pagano. Developing Applications with
Objective Caml. O’Reilly, 2000.

115

[14] M. Geilen. Dataflow scenarios. In IEEE Transactions on Computers, 2010.

[15] Marc Geilen. Synchronous dataflow scenarios. ACM Trans. Embed. Comput. Syst.,
10(2):16:1–16:31, January 2011.

[16] Global Industry Analysts, Inc. . http://www.prweb.com/, 2013.

[17] Jon D. Harrop. OCaml for Scientists. May 2007.

[18] Joost P.H.M. Hausmans, Stefan J. Geuns, Maarten H. Wiggers, and Marco J.G. Bekooij.
Dataflow analysis for multiprocessor systems with non-starvation-free schedulers. In
Proceedings of the 16th International Workshop on Software and Compilers for Embedded
Systems, pages 13–22, New York, June 2013. ACM.

[19] Bernd Heidergott, Geert Jan Olsder, and Jacob W. van der Woude. Max Plus at work
: modeling and analysis of synchronized systems : a course on Max-Plus algebra and
its applications. Princeton series in applied mathematics. Princeton University Press,
Princeton (N.J.), 2006.

[20] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst. System level
performance analysis - the symta/s approach. Computers and Digital Techniques, IEE
Proceedings -, 152(2):148–166, 2005.

[21] Jason Hickey. Introduction to Objective Caml. Cambridge University Press, 2008.

[22] International Business Times . http://www.ibtimes.com/worldwide-smartphone-users-
cross-1-billion-mark-report-847769, 2012.

[23] E.A. Lee and D.G. Messerschmitt. Synchronous data flow. In Proceedings of the IEEE,
1987.

[24] Alok Lele, Orlando Moreira, and Pieter J.L. Cuijpers. A new data flow analysis model for
tdm. In Proceedings of the tenth ACM international conference on Embedded software,
EMSOFT ’12, pages 237–246, New York, NY, USA, 2012. ACM.

[25] C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a
hard-real-time environment. J. ACM, 20:46–61, January 1973.

[26] O. Moreira and M. Bekooij. Self-timed scheduling analysis for real-time applications.
EURASIP Journal on Advances in Signal Processing, 2007.

[27] O. Moreira, F. Valente, and M. Bekooij. Scheduling multiple independent hard-real-
time jobs on a heterogeneous multiprocessor. In Proc. Embedded Software Conference
(EMSOFT), October 2007.

[28] Orlando Moreira. Temporal Analysis and Scheduling of Hard Real-Time Radios on a
Multiprocessor. PhD thesis, Eindhoven University of Technology, 2012.

[29] Moonju Park. Non-preemptive fixed priority scheduling of hard real-time periodic tasks.
In Yong Shi, GeertDick Albada, Jack Dongarra, and PeterM.A. Sloot, editors, Compu-
tational Science – ICCS 2007, volume 4490 of Lecture Notes in Computer Science, pages
881–888. Springer Berlin Heidelberg, 2007.

116

[30] T.M. Parks and E.A. Lee. Non-preemptive real-time scheduling of dataflow systems. In
Acoustics, Speech, and Signal Processing, 1995. ICASSP-95., 1995 International Con-
ference on, volume 5, pages 3235–3238 vol.5, 1995.

[31] R. Reiter. Scheduling parallel computations. Journal of the ACM, 15(4):590–599, Octo-
ber 1968.

[32] Firew Siyoum, Marc Geilen, Orlando Moreira, and Henk Corporaal. Worst-case through-
put analysis of real-time dynamic streaming applications. In Proceedings of the eighth
IEEE/ACM/IFIP international conference on Hardware/software codesign and system
synthesis, CODES+ISSS ’12, pages 463–472, New York, NY, USA, 2012. ACM.

[33] S. Sriram and S.S. Bhattacharyya. Embedded Multiprocessors: Scheduling and Synchro-
nization. Marcel Dekker Inc., 2000.

[34] Marcel Steine, Marco Bekooij, and Maarten Wiggers. A priority-based budget scheduler
with conservative dataflow model. In DSD, pages 37–44, 2009.

[35] The Statistics Portal. http://www.statista.com/statistics/201182/forecast-of-
smartphone-users-in-the-us/, 2013.

[36] Bart Theelen. Scenario-aware dataflow. Technical report, Technical University of Eind-
hoven, 2008.

[37] L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for scheduling hard real-
time systems. In Circuits and Systems, 2000. Proceedings. ISCAS 2000 Geneva. The
2000 IEEE International Symposium on, volume 4, pages 101–104 vol.4, 2000.

[38] William Thies. Language and Compiler Support for Stream Programs. PhD thesis,
Massachusetts Institute of Technology, 2009.

[39] K. W. Tindell. Extendible approach for analysing fixed priority hard real-time tasks.
Journal of Real-Time Systems, 6, 1992.

[40] Maarten H. Wiggers, Marco J.G. Bekooij, and Gerard J.M. Smit. Monotonicity and
run-time scheduling. In Proceedings of the Seventh ACM International Conference on
Embedded Software, EMSOFT ’09, pages 177–186, New York, NY, USA, 2009. ACM.

117

	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Basic Concepts
	Streaming Applications
	Real-Time Applications
	Timing Constraints

	Fixed Priority Scheduling
	Preemption
	Rate-Monotonic Scheduling
	Deadline-Monotonic Scheduling

	Dataflow Graphs

	Related Work
	Problem Description
	Contributions
	Document Organization

	Data Flow Computational Models
	Graphs
	Paths and Cycles in a Graph
	Strongly-Connected Components

	Data Flow Graphs
	Single Rate Dataflow

	Dataflow Scheduling
	Self-Timed Scheduling
	Static Periodic Scheduling
	Time Division Multiplexing (TDM)

	Temporal Analysis
	Monotonicity
	Relation between STS and SPS
	Throughput Analysis
	Latency Analysis
	Maximum Latency from a periodic source
	Maximum latency from a sporadic source

	Mode-Controlled Dataflow
	Overview
	Mode Controller
	Data-Dependent Actors

	MCDF Composition and Constructs
	Construction Rules

	Example
	Temporal Analysis

	Scenario-Aware Dataflow
	Composition and Construct Rules
	Example

	Software Framework
	Heracles
	Overview
	OCaml

	Heracles Temporal Analysis
	MCDF Temporal Analysis

	Heracles Scheduler
	Heracles Simulator
	Heracles Fixed Priority Analysis

	Major Modifications to Heracles

	FSM-MCDF
	Max-Plus Algebra
	Vectors and Matrices

	Max-Plus and Dataflow
	Implementation
	Converting MCDF to Max-Plus
	State-Space Generation
	Inter-Modal Dependencies
	Limiting the number of transitions
	Technique Limitations

	State-Space Analysis
	Throughput Analysis
	Latency Analysis

	Results
	Validation
	Case 1: Simple MCDF Graph
	Case 2: Simple MCDF Graph with Pipelining
	Case 3: Simple MCDF Graph with Intermodal Dependencies
	Results

	Comparison
	FSM-MCDF vs SDT
	FSM-MCDF vs SPS-AP

	Conclusions

	Software Implementation
	Summary

	Fixed Priority Analysis for SRDF graphs
	Fixed Priority in SRDF graphs
	Fixed Priority Analysis
	Load of a single load actor
	Load of a SRDF graph
	Maximum load of a single actor
	Start time of the load window
	Execution time of the actors
	Start times of the actors
	Gathering all conditions

	Maximum load of a SRDF graph
	Response Time Analysis
	Response Model

	Fixed Priority Analysis for N applications
	Maximum load set-up in a SRDF graph
	Methodology
	Example

	Blocking Actor
	General Case
	Optimization for applications with a dominant source

	Multiple load actors

	Implementation
	Our Algorithm Overview
	Core algorithm
	Preparing the initial conditions
	Determining the maximum load
	Setting the load window
	Interference analysis

	Full Exploration Algorithm
	Final Results and Tests
	Hausmans's Approach
	Analysis Flow
	Response Times
	Compute Schedules and Derive Jitter
	Convergence of the flow

	Results
	Case Studies: WLAN and TDSCDMA models
	Interference Analysis (2 Applications)
	WLAN - TDSCDMA
	WLAN - WLAN

	Interference Analysis (3 Applications)
	WLAN - WLAN - TDSCDMA
	WLAN - TDSCDMA - TDSCDMA

	Conclusions

	Software Implementation
	Summary

	Conclusions
	Future Work

	Bibliography

