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Viticultura sustentável, Vitis vinifera L., Região Demarcada da Bairrada, 
características do ano de colheita e da parcela de vinha, potencial enológico 
da casta, estudo integrado, rede de aroma. 
 
 
 

A viticultura sustentável de uma região passa, entre outros aspetos, pela 
maximização das potencialidades das castas, minimizando posteriores 
intervenções ao nível da vinificação, contribuindo para a produção de vinhos 
de qualidade mantendo a sua tipicidade e racionalizando custos. O 
conhecimento detalhado das especificidades de cada região, nomeadamente 
as características da parcela de vinha (tipos de solo e dados topográficos) e as 
condições climatéricas do ano, é fundamental para a sustentabilidade neste 
setor. Assim, em linha com esta tendência atual, o ponto de partida para o 
desenvolvimento da presente tese de doutoramento consistiu em avaliar o 
potencial enológico de diferentes castas cultivadas na Região Demarcada da 
Bairrada em Portugal. Ao longo da maturação as uvas das diferentes 
variedades sofrem várias alterações, tais como, os bagos tornam-se mais 
doces e menos ácidos, e desenvolvem as suas propriedades de sabor, aroma 
e cor. O desenvolvimento dessas características é essencial para definir o 
potencial enológico das uvas, ou seja, para estimar a possibilidade da sua 
utilização para a produção de vinhos com características específicas. Foi 
desenhado um plano de amostragem de três anos para avaliar o efeito do ano 
de colheita e das características da parcela na composição das uvas V. 
vinifera cv. Arinto, Bical, Sauvignon Blanc, Baga, Castelão, Touriga Nacional e 
Sousão. Para cada casta foram selecionadas 3 parcelas com diferentes 
características. Foram avaliados diversos parâmetros físico-químicos, ao longo 
da maturação: peso do bago, pH, acidez titulável, conteúdo de açúcar e 
compostos fenólicos totais, atividade anti-radicalar e composição volátil (fração 
livre). Para as uvas maduras foi também feita a análise da fração 
glicosidicamente ligada. A análise abrangente aplicada aos resultados obtidos 
para as uvas maduras, permitiu avaliar a significância dos efeitos do ano de 
colheita e das características da parcela na composição de cada casta. 
Considerando todos os parâmetros em estudo, foi possível destacar algumas 
diferenças significativas. De acordo com os resultados obtidos ao longo da 
maturação, foi possível concluir que as uvas Arinto, Bical e Sauvignon Blanc 
provenientes das parcelas com solos argilo-arenosos e argilo-calcários tinham 
maior teor em compostos fenólicos e maior atividade anti-radicalar. Por outro 
lado, a casta Sauvignon Blanc apresentou uma composição volátil semelhante 
para as uvas provenientes das 3 parcelas, enquanto que as uvas Arinto e Bical 
provenientes dos solos argilo-arenosos e argilo-calcários apresentaram maior 
teor em compostos voláteis. Para as castas tintas Baga, Castelão e Touriga 
Nacional, uvas com teores mais elevados de compostos fenólicos totais, de 
atividade anti-radicalar e de compostos voláteis foram obtidos a partir das 
parcelas com solos argilosos e argilo-calcários. Para a Touriga Nacional, a 
altitude das parcelas também parece modular a composição das uvas. Para 
além do efeito da parcela, as condições do ano de colheita também 

 



 
 

 
 
 

influenciaram a composição das uvas: a colheita de 2011 está relacionada com 
menor teor em compostos fenólicos totais e menor composição volátil, bem 
como menor atividade anti-radicalar. Para as uvas maduras, a análise de 
variância-análise simultânea de componentes (ASCA) foi aplicada combinando 
todos os parâmetros em estudo, a fim de avaliar a influência das 
características da parcela e do ano de colheita no potencial enológico de cada 
casta. Os resultados obtidos com esta abordagem global estão estritamente 
relacionados com os resultados observados ao longo da maturação e 
revelaram que o ano de colheita é o principal fator que influencia a composição 
uvas (53% a 68% da variabilidade total dos dados), seguido das características 
da parcela que explicaram 15% a 19% da variabilidade total dos dados. O 
potencial enológico de cada casta é diferente de uma parcela para outra, ou 
seja, um ambiente relacionado com solos argilo-arenoso e argilo-calcários 
parece favorecer a composição das castas brancas Arinto e Bical, no entanto 
para as castas tintas a composição das uvas parece ser favorecidas pelos 
solos argilosos e argilo-calcários. Para além disto, altitudes mais elevadas 
parecem também favorecer a composição das uvas Touriga Nacional. O 
Sauvignon Blanc parece ser uma casta bem adaptada às diferentes 
características das parcelas. 
Com o intuito de ir mais além na valorização destas castas, as propriedades de 
aroma de 6 vinhos monovarietais foram estudadas usando uma rede de 
aroma, que combina dados moleculares relacionados com a composição volátil 
e as moléculas ativas chave do aroma. Esta abordagem permitiu identificar 
diferentes propriedades no aroma dos vinhos e inferir sobre a perceção 
sensorial do consumidor. Verificou-se que as propriedades de aroma diferem 
entre castas: enquanto os vinhos Arinto e Sauvignon Blanc exibiram mais 
aromas a frutos de árvore, doces e florais, relacionados essencialmente com 
ésteres e norisoprenóides em C13, o oposto foi obtido para o vinho Bical. Estas 
perceções sensoriais de aroma foram corroboradas pelo painel treinado. Os 
vinhos da casta Sauvignon Blanc também exibiram mais aromas tostados, 
relacionados com tióis, principalmente com o 2-metil-3-furantiol. O vinho tinto 
da casta Touriga Nacional exibiu mais aromas a frutos de árvore, tropicais e a 
bagas (descrito sensorialmente como fruta doce), e mais aromas tostados e 
florais, enquanto estes são semelhantes para os outros vinhos tintos em 
estudo. Para além dos vinhos Portugueses da Bairrada, esta abordagem de 
rede de aroma é uma ferramenta que pode ser usada para explicar as 
propriedades de aroma dos vinhos em todo o mundo. 
No âmbito da presente tese de doutoramento, os dados obtidos para as uvas e 
vinhos das castas em estudo, provenientes da Região Demarcada da Bairrada, 
mostram o caráter único de cada casta e podem ser utilizados pelos 
produtores de uvas e vinhos como um suporte para a tomada de decisões com 
base em critérios objetivos, aumentando a sustentabilidade neste sector. Por 
exemplo, é possível tirar proveito dos recursos naturais e produzir vinhos com 
características diferentes, obtidos a partir da mesma casta, minimizando os 
custos durante o processo de vinificação. 
 



 
 

 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

  

keywords  
 

Sustainable viticulture, Vitis vinifera L., Bairrada Appellation, harvest and 
vineyard parcel characteristics, grape variety oenological potential, 
comprehensive study, aroma network. 
 

abstract  
 

The sustainable viticulture of a region passes, among other aspects, for 
maximizing the varieties potential minimizing subsequent interventions during 
winemaking, which should contribute to the production of quality wines 
maintaining their typicity and rationalizing costs. The detailed knowledge of 
each Appellation specificities, namely vineyard parcel (soil type and 
topographical peculiarities) and harvest climatic conditions is crucial for 
sustainability in this sector. Thus, in line with this current trend, the starting 
point for the development of this PhD thesis was to evaluate the oenological 
potential of different varieties cultivated throughout Bairrada Appellation 
(Portugal). During maturation several changes in grape varieties occur, namely 
berries become sweeter, less acidic, and they develop flavour, aroma and 
colour properties. The development of these characteristics is essential to 
define grapes oenological potential, i.e. to estimate the possibility of their usage 
to produce specific wines. A three years sampling plan was designed to 
evaluate the effect of harvest year and parcel characteristics on V. vinifera cv. 
Arinto, Bical, Sauvignon Blanc, Baga, Castelão, Touriga Nacional, and Sousão 
grapes composition. For each variety, 3 parcels with different characteristics 
were selected. Several physicochemical parameters were evaluated, during 
maturation: berry weight, pH, titratable acidity, sugar and phenolic contents, 
antiradical activity, and volatile composition (free fraction). Special attention 
was devoted to grapes at technologic maturity, since, besides these 
parameters, glycosidically-linked fraction was also considered. By using the 
results obtained at technologic maturity, a comprehensive approach was 
applied to identify the significance of harvest and parcel characteristics effects 
on each variety composition. 
Considering all the parameters under study, it may be highlighted some 
significant differences. According to the obtained results determined during 
maturation, it was possible to conclude that Arinto, Bical and Sauvignon Blanc 
grapes from parcels with clay-sandy and clay-calcareous soils have higher 
phenolic content and antiradical activity. Otherwise, Sauvignon Blanc 
presented similar volatile composition for grapes cultivated in the 3 parcels, 
while Arinto and Bical exhibited higher volatile content in grapes from clay-
sandy and clay-calcareous soils. For Baga, Castelão and Touriga Nacional red 
varieties, grapes with higher phenolic content, antiradical activity, and volatile 
content were obtained from clayey and clay-calcareous soils. Furthermore, for 
Touriga Nacional, parcels altitude seems also to modulate grapes composition. 
Beyond parcel effect, harvest year conditions also influence grapes 
composition: 2011 harvest was related with lower phenolic and volatile 
contents, as well as lower antiradical activity. 



 
 

 
 

For grapes collected at technologic maturity, analysis of variance-simultaneous 
component analysis (ASCA) was applied combining all the parameters under 
study, in order to assess the influence of harvest and parcel characteristics on  
each variety oenological potential. The results obtained using this 
comprehensive approach is closely related with those observed during 
maturation and revealed that harvest was the main factor that influenced 
grapes composition (53% to 68% of the total data set variance) followed by 
parcel characteristics, explaining ca. 15-19% of the total data set variance. The 
oenological potential of each variety may be different from one parcel to 
another, i.e., clay-sandy and clay-calcareous related-environments seem to 
favour Arinto and Bical white grapes composition, but for the red varieties, 
grapes composition was favoured by clayey and clay-calcareous soils. Besides, 
also higher altitude seems to favour Touriga Nacional grapes composition. 
Sauvignon Blanc seems to be a variety well adapted to the different parcel 
characteristics. 
In order to go forward in the valuation of these varieties, the aroma properties 
of 6 monovarietal wines were studied based on an aroma network-approach, 
linking molecular data related to volatile composition and aroma data about the 
key odor active molecules. This approach allowed to identify different wine 
aroma properties and to infer about the consumer’s sensory perception. It was 
found that aroma properties differ from one wine variety to another: while Arinto 
and Sauvignon Blanc wine exhibited higher tree fruity, sweety and flowery 
aromas, related essentially with ester compounds and C13 norisoprenoids, the 
opposite was obtained for Bical wine, corroborating the aroma sensory 
perceptions of the trained panel. Sauvignon Blanc also exhibited higher toasted 
aromas (related with thiols, mainly with 2-methyl-3-furanthiol). Touriga Nacional 
red wine exhibited higher tree, tropical, and berry fruits notes (sensory 
described as sweet fruits), toasted and flowery aromas, while these are similar 
for the other red wines under study. Besides Portuguese Bairrada wines, this 
aroma network approach is a tool that can be used to explain the aroma 
properties of wines worldwide. 
The grape and wine data generated under the present PhD thesis, in the 
context of Bairrada Appellation, shows the unique character of each variety, 
and may be used by growers and wine producers as a support for decision-
making based on objective criteria, increasing the sustainability in this sector. 
For instance, it is possible to take advantage of the natural resources and 
produce products with different characteristics obtained from the same variety, 
minimizing costs during the winemaking process. 
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Introduction 

 

 

 

Overview 

This Chapter compiled the aims of this PhD thesis and the state of the art of the 

most relevant topics related to the field under study. The sustainable viticulture concept 

and the environmental factors that influence viticulture, namely the climatic conditions 

modulated by the harvest year and the vineyard parcels characteristics, such as soil and 

topographical conditions, were discussed in detail. Aiming to develop an application of this 

concept to Bairrada Appellation, its characteristics were described. The methodologies of 

extraction and gas chromatographic analysis used for the determination of the volatile 

composition of Vitis vinifera L. related products were reviewed using sesquiterpenic 

compounds as model analytes. To understand the variety oenological potential regarding 

the region characteristics, and mainly considering the uncontrollable environment 

conditions, advanced data processing was considered. 

This chapter was written based on two published works: 

1. Book chapter - Sílvia Petronilho, António S. Barros, Manuel A. Coimbra, Sílvia 

M. Rocha. Efficient Use of Non-renewable Natural Resources for Quality Wine through 

Sustainable Viticulture. A. Raza (Ed.), “Agricultural Systems in the 21st Century - Global 

Agriculture Developments”. Nova Science Publishers Inc, New York, 2013, Chapter 9, pp. 

195-230, ISBN: 978-1-62948-026-8; 

2. Review article - Sílvia Petronilho, Manuel A. Coimbra, Sílvia M. Rocha. 

Review: A critical review on extraction techniques and gas chromatography based analysis 

for sesquiterpenic compounds from Vitis vinifera L.. Anal. Quim. Acta, 846 (2014) 8-35. 
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I. 1. PhD thesis aims 

Sustainable viticulture appeared as a breakthrough approach aiming to enhance 

grape varieties quality as an efficient use of non-renewable natural resources. This leads to 

wine quality enhancing while maintaining an economically viable production. The detailed 

knowledge of the natural specificities of each region is crucial for sustainability. Even 

within each Appellation, heterogeneity can be observed regarding the characteristics that 

may influence grape and wine composition and quality. In line with this actual trend, the 

evaluation of the variety oenological potential regarding the Appellation conditions, as a 

strategy for sustainable viticulture, was the starting point for the development of this PhD 

thesis. 

This research study was developed in collaboration with a wine and grape grower 

company: Manuel dos Santos Campolargo Herdeiros. This company is located in Bairrada 

Appellation (Portugal), having 170 hectares of vineyard in different locations 

corresponding to differences in soil types, altitudes, and sunlight exposures. This company 

produces their wines potentiating the grape varieties attributes, avoiding oenological 

products, justifying the several international awards won by its wines. Thus, the vineyards 

of Manuel dos Santos Campolargo Herdeiros at Bairrada Appellation were used to assess 

the oenological potential of different grape Vitis vinifera L. varieties (Arinto, Bical, 

Sauvignon Blanc, Baga, Castelão, Touriga Nacional and Sousão), belonging to different 

vineyard parcel characteristics over 3 consecutive harvests (2010-2012). 

The quality of grapes is influenced by several environmental factors, namely the 

vineyard parcels characteristics such as type of soil and topography, and climatic 

conditions which are conditioned by the harvest year, among others. In order to understand 

the effects of the environment in specific grape variety and, consequently, in wine quality, 

it is essential to evaluate its effects on physical and chemical parameters, such as berry 

weight, pH, titratable acidity, sugar and phenolic contents, and volatile composition. Thus, 

for the determination of vineyard parcel characteristics and harvest year effects on the 

oenological potential of the different varieties, the following specific aims were 

established: 
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1. Determination of the physicochemical parameters (berry weight, pH, sugar 

content, titratable acidity, total phenolic content, and antiradical activity), for each variety, 

at 3 vineyard parcels, during maturation, in 3 consecutive harvests (2010-2012). 

2. Evaluation of the volatile composition, for each variety, at 3 vineyard parcels, 

during maturation, in 3 consecutive harvests (2010-2012). 

3. Evaluation of the aroma potential, for each variety, based on the free and 

glycosidically-linked volatile components, at 3 vineyard parcels, at technologic maturity, 

in 3 consecutive harvests (2010-2012). 

4. Combination of the physicochemical parameters with the volatile pattern (free 

and glycosidically-linked), for each grape variety, for systematic assessment of variety 

oenological potential, in order to study the influence of harvest and parcel characteristics. 

5. Application of statistical tools that may support winemaker’s decisions. 

6. Taking advantage of the collaboration with the Laboratory of the Analysis of 

Aromes and Oenology of the University of Zaragoza (Spain), the wines produced from the 

varieties under study were studied combining sensory and instrumental analyses (aroma 

network construction), in order to establish the aroma properties of each wine variety, 

helping to explain the wine aroma perceptions by the consumers. 

 

I. 2. Sustainable viticulture: concept 

Sustainability is a visionary development paradigm that, at the beginning of the 21st 

century, is widely recognized by world leaders, and is a common topic of discussion by 

society all over the world (Lamastra et al., 2010; Zucca et al., 2009). This term was 

established in 1987 by the Brundtland Commission that defined the sustainable 

development as a progress that "meets the needs of the present without compromising the 

ability of future generations to meet their own needs” (United Nations General Assembly, 

1987). This definition acknowledges that while development may be necessary to meet 

human needs and improve the quality of life, it must occur without depleting the capacity 

of the natural environment to meet present and future needs. The concept of sustainable 

development emerged as an attempt to bridge the gap between environmental concerns 

about the increasingly evident ecological consequences of human activities, and socio-

political concerns about human development issues (Robinson, 2004). 
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Sustainable development represents an actual concern of the society and influences 

the market trends and also some local and international policies. Thus, this concept was 

extended to several fields, including agriculture. The adaptation of this important concept 

to the agriculture sector defines sustainable agriculture as an integrated system of plant and 

animal production practices having a site-specific application that over the long-term will: 

i) satisfy human food and fibre needs, ii) enhance environmental quality and the natural 

resources based upon which the agriculture economy depends, iii) make the most efficient 

use of non-renewable and on-farm resources and integrate, where appropriate, natural 

biological cycles and controls, iv) sustain the economic viability of farm operations, and v) 

enhance the quality of life of the society as a whole (Lamastra et al., 2010; Lichtfouse et 

al., 2009). Permaculture is another area that adopts sustainable development concept. This 

offers a unique approach to the practice of sustainable farming, ranching, gardening and 

living. Permaculture integrates plants, animals, landscapes, structures and humans into 

symbiotic systems where the products of one element serve the needs of another, and once 

established, it can be maintained using a minimum of materials, energy and efforts. This 

system is designed to be diverse, so when one element fails, the system has enough 

stability and flexibility to prosper (Mollison, 1988). 

In line with the actual trends, sustainable viticulture emerged as a breakthrough 

approach for improving the quality of environmental and natural resources, namely grape 

varieties, based on an integrated and efficient use of non-renewable resources, integrating 

environmental, economic and social issues (Lamastra et al., 2010) (Figure 1). 

Sustainability is a particularly interesting challenge in wine sector, as it tends to grow up in 

an equilibrium between tradition and innovation (Jackson and Lombard, 1993). 

 

Economical Environmental

Social
 

Figure 1. Graphical definition of sustainable viticulture, adapted from Lamastra et al. (2010). 
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The sustainable viticulture is not yet a global practice due to several factors. This 

concept and its advantages are not fully known by some winegrowers and wine producers 

(a broad topic that means many things to many people, because people often 

misunderstand the term ‘sustainable’). Global education and the definition of the limits and 

advantages of the sustainable viticulture should be done as a base for the development of 

an integrated platform of global sustainability. The wine producers of each region need to 

know the potentialities of their vineyards and varieties to go ahead in this field. Achieving 

sustainable practices is viewed as a process requiring small, realistic, and step by step 

improvements. 

Several examples may be pointed out in different places around the world. Two 

examples were selected in two continents (America and Europe) to highlight the concept 

under discussion. In California, sustainable viticulture began in the early 1990s, as a result 

of the efforts of growers and winemakers in the central valley of California around the 

town of Lodi. The Lodi–Winegrape Commission established a sustainable winegrowing 

program where a range of sustainable viticultural practices were implemented and tracked 

over time. This program involved work with a core group of 40 Lodi growers and about 15 

pest control advisors in 60 different vineyards. Various sustainable viticultural practices 

were implemented in these vineyards, including pest monitoring and vineyard inputs such 

as water, fertilizers and pesticides, so that growers could see the effects of the sustainable 

practices. This sustainable winegrowing program has been adapted by several other 

regional winegrowing associations and regions in Californian (Zucca et al., 2009). Also, in 

Italy, a sustainable winegrowing program (SOStain) was developed. This program 

constituted a framework for viticultural and winemaking practices that protected the 

environment while efficiently and economically produced premium grapes and wines. In 

this program, the assessment and the interpretation of the results occurred through the use 

of agro-environmental indicators, the EIOVI (Environmental Impact of Organic Viticulture 

Indicator) in this case. EIOVI took into account the different agronomical practices used in 

viticulture (pest, disease, fertilizer, irrigation and soil management, and machinery used) 

and estimated the effect of vineyard management on soil organic matter and on the 

biodiversity. The indicator helped decision-makers by informing them of the linkages 

between viticulture activities and environmental impacts and it could provide an early 

indication of potential changes in the state of the environment (Lamastra et al., 2010). 
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The grapes characteristics and composition and wine quality depend on a complex 

network of variables known to influence viticulture, including environmental conditions 

and agricultural practices (Figure 2). Thus, the detailed knowledge of these specificities for 

each region is crucial for the sustainability in this sector. With this perspective on 

sustainable viticulture it is possible to maximize the potential of the varieties, minimizing 

further interventions during winemaking process, which should contribute to the 

production of high quality wines, reducing costs and also environment impact. 

 

Appellation / Variety

Climate
• Temperature
• Sunlight exposure
• Precipitation

Topography
• Altitude
• Slope

Soil
• Composition
• Water-holding capacity
• Heat-holding capacity

Water status

Grapes

Composition Yield production Harvesting moment

Wine making process

Wine quality

Vine behaviour

Future?

Agricultural practice
• Irrigation
•Thinning
• Trellising
• Mulching

 

Figure 2. Environmental factors, agricultural practices and winemaking processes that influence 
wine composition and quality. 
 

In viticulture, the sustainability concept may be explored in different areas, namely 

i) in the adaptation of agricultural practices and winemaking technologies to each variety 
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and region, reducing costs and environmental impacts, ii) in the implementation of more 

eco-friendly agriculture with respect to environment, iii) in the development of tools that 

may support winemakers and local/national/international agencies decisions and policies, 

iv) in the development of marketing and communication with the consumers. Thus, in line 

with these subjects, the central focus of the present PhD thesis is the development of tools 

that may support winemaker’s decisions, taking advantages from each variety potential, 

through the knowledge of its characteristics to the Appellation specificities. As a complex 

network of variables influences grapes characteristics and composition (Figure 2), in the 

present PhD thesis two main factors were considered: harvest and vineyard parcel 

characteristics, which are greatly related to climatic conditions, soil and topographical 

characteristics. Beyond these factors, agricultural practices have also great impact on 

grapes composition and quality (Figure 2). However, as similar agricultural practices were 

performed by the grape grower that supplied the samples for all the vineyards under study, 

this factor was not considered. 

 

I. 3. Environmental factors that influence viticulture 

Wine is produced around the world in different locations, using several hundreds of 

varieties selected for each local, where varieties characteristics are influenced by soil type 

and topographical features of the vineyards, and also with climatic conditions of the 

harvest. Thus, it may be possible to find information about Vitis vinifera L. varieties 

produced in a wide range of conditions, even in extreme ones. Indicatively, some ranges 

may be considered: temperatures (from < 0 °C to 38 °C), sunlight exposure (1200 to 2800 

hours per year), precipitation (0.1 to 20 dm), soils (clay-sandy, clayey, clay-calcareous, 

volcanic, loam, silt, silt-loam, clay-loam), and topographical features (6 to 3000 m altitude 

and slope: terrace until 60 %). In this section, the influence of these parameters on 

viticulture and consequently on grape and wine composition is discussed and some 

examples are used to illustrate the topics under discussion. 

Grape components are produced by the plant itself, in leaves and in berries (sugars, 

acids, phenolics, volatiles, among others) during fruit development and maturation. Thus, 

the growth and the fructification of grapevines in the vineyard are of utmost importance to 

grapes, and consequently, to wine quality. Grape maturation is a very important and 

decisive physiological period that starts at véraison (characterized by the appearance of 
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colour in red varieties and a translucent skin in white ones) and lasts when the maturity is 

reached, until fruit is fully ripe. Sugar content and titratable acidity are usually used to 

define the grapes maturity state destined to produce wine: sugar content tend to increase 

while acidity tend to decrease and then both stabilize when maturity is reached (Conde et 

al., 2007). The quality of grapes is influenced by several environmental factors (Lila, 

2006), namely type of soil, topography, agro-pedological features, and edaphoclimatic 

conditions, among others (Coelho et al., 2009; Gómez et al., 1995; Pozo-Bayón et al., 

2004; Smart, 2003; Turner and Creasy, 2003; Vaudour and Shaw, 2005). However, the 

dependence of grape berry attributes on the specific environmental conditions of many 

Appellations remains uncertain, although the specific and systematic knowledge is crucial 

for sustainability. There are several physicochemical parameters that are commonly used in 

order to identify the grapes maturity stage, namely berry weight, pH, sugar content, and 

titratable acidity (Crippen and Morrison, 1986; del Llaudy et al., 2008). Beyond these, 

volatile and phenolic composition are also considered in order to understand the effects of 

environment in specific grape variety, and consequently, in wine quality. 

 

I. 3.1.  Climate conditions 

Growing any crop with quality and economically sustainable, anywhere in the 

world, is strongly dependent on harvest climate conditions (Anderson et al., 2012). Climate 

is a very complex, highly variable from one harvest to another, and also pervasive factor in 

our natural and human-based systems. It is widely recognized that climate has significant 

implications for the agricultural sector, including viticulture (Jones et al., 2005). It is well 

known that climate have impact on grapes and wines quality through the effect of both 

regional and local-scale climatic conditions during the growing season, generating 

variations in grapevine growth and in berry composition (Jones et al., 2005; Soar et al., 

2008). Climate can express its influence through several elements, namely temperature, 

sunlight exposure, and precipitation, among others (Holland and Smit, 2010; Jones and 

Davis, 2000; Mateus et al., 2001a). 

I. 3.1.1.  Temperature 

Among climate variables, temperature is recognized as having the greatest effect on 

physiological behaviour of the grapevine and on chemical changes in the berry during its 
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formation and maturation, affecting plant vitality, maturation rate, and harvesting date 

(Due et al., 1993). The effect of infield temperature on grapevine development may be 

reflected in a network that comprises several mechanisms, namely photosynthesis and 

respiration. 

Temperature influences photosynthesis. A study comparing Trebbiano grapevines, 

grown in Italy at 20, 27.5 and 35 °C in separated chambers, showed that the lowest 

photosynthetic rate was observed for the vines grown at the maximum temperature tested 

(Ferrini et al., 1995). The functional activities of the photosynthetic apparatus of two 

grapevines (V. vinifera cv. Müller-Thurgau and Lagrein) were investigated after low night 

temperature treatment (ca 5 ºC). During daylight, these plants were kept at ca 25 °C. The 

low night temperatures applied caused important reductions of the photosynthetic rate, 

limiting photosynthesis via inhibition of electron transport and photophosphorylation 

(Allen and Ort, 2011; Bertamini et al., 2007). A recent study carried out in Australia 

(Greer, 2012) showed that during the growing season of V. vinifera cv. Semillon, the 

higher photosynthetic rates were observed from 25 to 30 ºC. 

Temperature also influences the grape berry respiration, which is a key process in 

the grape maturation. The organic acids of grapes, namely malic acid, are formed in the 

respiratory process of sugars (Staden et al., 2005). The organic acids formation represents 

intermediary steps of the respiratory process, releasing a part of the stored energy in sugars 

molecules (Popescu-Mitroi et al., 2009). If the berry temperature rises during maturation, 

simultaneous increase in malic acid respiration occurs, accounting for the low acidity of 

the sunburned berries. Such phenomenon implicitly suggests up-regulation of respiration 

as a temperature-sensitive malic acid metabolic pathway due to the involvement of malic 

acid in this pathway during maturation (Bondada and Keller, 2012). Thus, the influence of 

the temperature in respiration process regulates the organic acids and sugars content in the 

grapes. 

Temperature regulates the grapevine metabolism and the production and 

accumulation of metabolites, such as those responsible for aroma and colour. As an 

example, some studies showed the influence of temperature on the concentration of the 

grape components associated to colour properties (for example phenolic compounds) 

(Fregoni and Pezzutto, 2000; Montes et al., 2012). It was found that cold days (15 ºC) 

during maturation improved colour development (due to anthocyanins increasing) in 
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Cardinal, Pinot Noir, and Tokay berries, while hot days (35 ºC) significantly reduced the 

formation of anthocyanins. A cold night temperature (10 or 15 ºC) does not reverse the 

effect of hot days influence on berry colour (Buttrose et al., 1971; Kliewer and Torres, 

1972). Similar results were obtained from V. vinifera cv. Cabernet-Sauvignon (Goto-

Yamamoto et al., 2009) and Merlot (Spayd et al., 2002), suggesting that higher 

temperatures than 30 to 35 °C promote significant reductions on phenolic content, 

especially on anthocyanins. 

I. 3.1.2.  Sunlight exposure 

Berry temperature in the field is largely regulated by the flux density of absorbed 

radiation and convective heat loss and has been shown to increase linearly with incident 

radiation. The effects of light on grape composition are heavily dependent upon the extent 

to which berry temperature is elevated as a result of increased sunlight exposure 

(Bergqvist, 2001). This effect on grape berry development and composition has been 

investigated during the last few decades, showing that an increasing of sunlight grape 

exposure during maturation generally improves grape and wine composition (Bergqvist, 

2001; Price et al., 1995; Spayd et al., 2002), namely increasing the content of total soluble 

solids and phenolics, namely anthocyanins (Dokoozlian and Kliewer, 1996; Spayd et al., 

2002). Otherwise, prolonged exposure to direct sunlight, rising temperatures in the field 

around 30 to 35°C, promoted the reduction on phenols content, namely on anthocyanins 

(Buttrose et al., 1971; Goto-Yamamoto et al., 2009; Kliewer and Torres, 1972). 

Sunlight-exposed grapes have also shown higher levels of sugar content and lower 

values of titratable acidity, malic acid content, and pH when compared to shaded grapes 

(Crippen and Morrison, 1986; Dokoozlian and Kliewer, 1996; Macaulay and Morris, 1993) 

and increased wine colour, anthocyanins and tannin contents, and also total phenolics 

(Song et al., 2015). Sunlight provides light energy for photosynthesis and other light-

stimulated metabolic processes (namely the biosyntheses of phenolic compounds promoted 

by phenylalanine ammonia lyase), and provides heat, both by direct solar radiation on plant 

surfaces and by heating the surrounding air (Crippen and Morrison, 1986; Ribéreau-Gayon 

et al., 2000). Heat from sunlight can influence reaction rates of metabolic processes and 

can also cause stress, either by direct temperature stress or by dehydration (Crippen and 

Morrison, 1986). The environment surrounding the vines, namely the presence of trees, the 

abundance of vegetation, and excessive leaf areas, may affect the sunlight exposure, 
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reducing the levels of light penetration and also reducing the air flow (Smithyman et al., 

1997). The effect of surrounding vegetation height on Touriga Nacional grapes, from 

Douro Appellation, in Portugal, was already evaluated. The results showed that grapes 

grown in vineyards with higher vegetation height (100 cm) had higher carotenoid levels, 

while grapes grown in vineyards with lower vegetation height (60 cm) with higher sunlight 

exposure, had higher weight and sugar content. Furthermore, during the maturation period, 

a lower decrease in carotenoid degradation was observed in vineyards surrounded with 

higher vegetation height, explaining their higher carotenoid content (Oliveira et al., 2004). 

A study carried out on Gewürztraminer grape berries composition showed that the levels of 

glycosylated monoterpenoids were much higher on the sun-exposed grapes when 

compared with grapes that remained in the partial or total shadow (Reynolds and Wardle, 

1989b). The sunlight also promoted the biosynthesis of carotenoids from the first stage of 

berry formation until véraison, decreasing between véraison and maturity, giving rise to 

the glycosylated C13 norisoprenoids and other compounds (Baumes et al., 2002). 

Furthermore, modifications on grape environment such as the hedging and basal leaf 

removal, or crop level reduction, increased the level of both free and glycosylated 

terpenoids (Belancic et al., 1997; Reynolds and Wardle, 1989a; Reynolds et al., 1996a; 

Reynolds et al., 1996b). 

I. 3.1.3.   Precipitation 

The period and precipitation level and the moment when it occurs influence vine 

water status. The effect of precipitation during initial vegetative phase, flowering, berry 

development and prior to harvest are considered in this sub-chapter. 

The grapevine vegetative phase is influenced by water availability (Acevedo-Opazo 

et al., 2010) and, depending on the intensity and period of water stress, different effects 

may be observed such as shoot growth stopping (Hsiao and Xu, 2000; van Leeuwen et al., 

2009) and high reduction of leaves size and number, which increases the risks of berry 

sunburn during its development (Bondada and Keller, 2012). In these cases, irrigation can 

increase the shoot growth rates and the leaf area. However, a regulation of the water 

administration needs to be done, as overdone water amounts can originate denser canopies 

that decrease the radiation levels and airing inside the canopy. Thus, lately, this can lead to 

a deficient berry development and an increase of the risk of diseases, having a negative 

effect in the berry quality. 



Introduction 

15 
 

Water deficit between anthesis (flowering period) and véraison decreases flowers 

formation which leads to the diminishing of berry formation and also of its size, and this is 

often irreversible even if there is no water shortage after the beginning of maturation 

(McCarthy, 1997). Cell division of pericarp occurs during the first growth phase of the 

berries. Early water stress reduces the rate of cell division, which explains the inability of 

berries to recover in size after an early water deficit during the flowering period. 

Furthermore, organic acids (as tartaric), phenolics (as tannins) and several other 

compounds such as minerals, micronutrients, and aroma compounds are accumulated 

during the first phase of berry growth (Cardoso et al., 2005). Thus, an early water stress 

reduces the accumulation of these components, affecting grapes quality (Conde et al., 

2007). Water stress during the development phase of the berry may also decrease berry 

weight, but in this case the reduction is related to reduce cell volume or diminished sugars 

and other solutes in the cells. Nutrient deficiencies and other disorders that reduce 

photosynthesis may also reduce berry growth or slow maturation by decreasing the supply 

of sugars to the berries (Ojeda et al., 2001). The water status during berry development 

influences the berry sugar content, which is yield-dependent. For low yields, vine water 

deficit enhances berry sugar content (Trégoat et al., 2002; van Leeuwen et al., 2009). 

However, extreme water stress, due to low precipitation, is harmful to the development of 

the berries, and may lead to yield and quality losses (Ojeda et al., 2002; van Leeuwen et 

al., 2009). In this case, the irrigation should be an adequate option. Precipitation just prior 

to harvest can affect grape sugar content, usually expressed as ºBrix, by diluting the sugar 

and causing ºBrix to drop, thus it is expecting the production of wines with low alcohol 

content (van Leeuwen and Seguin, 2006). Excessive precipitation at this period can also 

increase berry size and promote the decreasing the concentration of organic acids, 

anthocyanins, and tannins content (Keller et al., 2006). Several vine diseases and grapes 

rotting can also be observed. Otherwise, vines that experience low amount of water have 

been found to produce fewer and smaller grapes, but with higher sugar, phenolic and 

volatile content (Jackson and Lombard, 1993; van Leeuwen and Seguin, 2006). In these 

cases, it is expected to produce wines with high alcohol content, and more intense aroma 

and colour. This fact is particularly relevant in red wine production due to the fact that 

controlled water stress of the vine increases berry colour, specially due to the increasing of 
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the concentrations of anthocyanins and tannins (Koundouras et al., 2006; van Leeuwen and 

Seguin, 1994). 

 

I. 3.2.   Vineyard characteristics 

I. 3.2.1.   Soil 

The soil has an important role for viticulture sustainability, since several 

environmental factors affecting the vine growing and grape and wine composition are 

related to the soil properties. Soil acts as a regulator of the climate elements, because soil 

may affect water and nutrient availability to the plant by its retaining capacity, it may 

affect the microclimate by its heat-retaining and light reflecting capacity, and may affect 

the root growth by its penetrability (Jackson and Lombard, 1993; Martinez et al., 2011).  

Soil types may be defined according to different criteria, namely, taxonomy, 

morphology, genesis, and texture, among others (Gerrard, 2000; USDA, 1999). 

Considering the texture features, soil is usually classified as clayey, clay-calcareous and 

clay-sandy. 

The soil type is highly related to the water status through its water-holding capacity 

(Oliveira et al., 2003; van Leeuwen et al., 2004). The restriction of water supply plays a 

significant role in vine behaviour and berry composition. A limitation in vine water uptake 

reduces shoot growth, berry weight and yield and increases berry anthocyanin and tannin 

content (Choné et al., 2001; Koundouras et al., 2006; van Leeuwen and Seguin, 1994), 

which, if not excessive, are favourable to grape quality potential (Kennedy et al., 2002; 

Roby et al., 2004; van Leeuwen et al., 2009). For example, water stress imposed by some 

types of soils (namely silt-clay) have been shown to increase the oenological potential of 

Agiorgitiko red grape variety by: i) accelerating sugar accumulation and malic acid 

breakdown in the juice, ii) promoting the concentration of anthocyanins and total phenolics 

in berry skins, and iii) increasing the amount of glyco-conjugates of the main aroma 

components of grapes (Koundouras et al., 2006). 

The influence of soil regarding its texture, depth, chemical composition, and water 

availability on the characteristics of wines was evaluated (Prado et al., 2007; van Leeuwen 

et al., 2004). The soil type was found to influence significantly the volatile composition of 

sparkling wines obtained from Fernão-Pires and Baga varieties from Bairrada Appellation, 
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in Portugal. Sparkling wines produced from the clay-calcareous soil presented the highest 

content of volatiles related to aroma properties when compared to those obtained from 

grapes produced in clay soils (Coelho et al., 2009). According to these data, clay-related 

soils seems to improve wine quality (namely increasing its phenolic and volatile contents), 

when compared to other kind of soils. However, the outcome observed results from a 

network of other natural factors, intrinsically related to each region, thus its extension to 

other vineyards and Appellations is not possible. These studies are helpful and needed for 

each specific wine region, which has specific environments, agricultural practices, 

varieties, and other inherently natural parameters. 

I. 3.2.2.   Topographical features 

Altitude and slope can strongly regulate the climatic conditions since they are 

directly associated to the resulting temperature, precipitation, humidity, vineyards 

surrounding vegetation height, sunlight exposure and shadow of vineyards, vineyards 

orientation and trellising, influencing grapevine vigour and grape maturation (Jackson and 

Lombard, 1993). Scarce information is available about the influence of these topographical 

features on viticulture. 

The effect of altitude and its related climatic conditions on phenolic composition 

(procyanidin and anthocyanin components) of grapes and wines of Touriga Nacional and 

Touriga Francesa red varieties, from Douro Appellation, have been reported (Mateus et al., 

2002; Mateus et al., 2001a; Mateus et al., 2001b). At berry maturity, low altitude (100 to 

150 m above the sea level) was shown to be an important factor favouring the biosynthesis 

of higher concentrations of grape-skin catechin monomers ((+)-catechin, (-)-epicatechin 

gallate), procyanidin dimers, trimer C1, as well as total extractable proanthocyanidins, 

when compared to higher altitudes (250 to 350 m above the sea level), contributing to 

improve wine quality (Mateus et al., 2001a). Higher altitudes are associated with lower 

temperatures and high humidity, which affect grape maturation, diminishing its 

polyphenolic composition (Mateus et al., 2002; Mateus et al., 2001a; Mateus et al., 

2001b). Similar trend was observed in Cabernet Sauvignon wines produced at different 

altitudes (909 m and 1280 m) in Loess Plateau (China). The content of phenolic 

compounds (flavonoids and flavanols) and antioxidant activity of the wines from the lower 

altitude vineyard (909 m) were relatively higher than those from the higher altitude 

vineyard (1280 m) (Jiang et al., 2011). 
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The altitude effect was also studied using grapes from two varieties harvested in 

different terraces from Douro Appellation (Touriga Franca: 85, 145 and 180 m, and 

Touriga Nacional: 90, 155 and 210 m) (Oliveira et al., 2004). Touriga Franca grapes grown 

at lower altitude (85 m) had the lowest carotenoid concentrations. Conversely, for this 

variety, grapes grown at higher altitudes (145 and 180 m) had higher carotenoid levels. 

High altitude, which presented lower temperature and higher humidity, is associated with a 

lower berry growth, decreasing the carotenoid degradation during the maturation period, 

and this could explain the higher carotenoid values in the high-elevation sites in Touriga 

Franca variety. This observation was not so evident in Touriga Nacional grapes. At 

maturity, the carotenoids content of these grapes produced at 155 m altitude were 

significantly higher than at 90 and 210 m, suggesting that moderate temperatures on 

moderate altitude positions with good sunlight exposure are ideal for colour development 

and also for carotenoid accumulation. The latter, as precursors of aroma compounds, may 

also contribute positively to the wine sensorial properties. It was also reported that aroma 

potential, given by monoterpene and norisoprenoid components, showed higher content for 

V. vinifera cv. Veneto grapes grown at lower altitude (Tomasi et al., 2000), being expected 

to obtain wines with higher aroma quality. According to the selected examples, in the same 

vineyard, grapevines located at lower altitudes produced grapes with better oenological 

potential, specially related to phenolic and volatile composition. 

The slope of a vineyard has also high influence on the temperature and soil 

drainage, both of which are critical for the growing of grapevines. The manner by which 

the vines are trellising is the one that best overcomes the restraints imposed upon them by 

climate, soil, plant needs, and production goals. Vineyards can be planted on very steep 

slopes (until 60 %) or on terraces. A slope can reduce exposure to heat or cold depending 

on its aspect (is the term used to describe the direction that slope faces). The aspect of the 

slope is important for sunlight interception: more sunlight intercepted leads to warm the 

vineyard. The contribution of slope and its aspect depends on the region; however, it is 

common to consider that Southern aspects slopes are preferred due to its highest 

temperature and higher sunlight interception, being great for grapes maturation. The slope 

of a vineyard lead to changes in several parameters, namely in grapevine vegetative height 

and also in grapes chemical composition. 
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I. 4. Natural characteristics of Bairrada Appellation 

The evaluation of the variety adequacy regarding the Appellation characteristics 

should be considered as a strategy for sustainable viticulture. To demonstrate this concept, 

Bairrada, a Portuguese Appellation legally established in 1979 (Portaria nº 709-A/79, 

December 28), was selected. Bairrada Appellation is located in the Beiras region, in 

northwest of Portugal (Figure 3), located between Vouga and Mondego rivers, at east of 

Caramulo and Bussaco hills and at west of the Atlantic Ocean (Salvador, 1993). 
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Figure 3. Location of Bairrada Appellation (Portugal). 
 

The total surface area of this region extends over 108,000 hectares, of which only 

12,000 hectares are planted with grapes for wine production, representing the red and 

white vineyards 70% and 30%, respectively. For each Portuguese Appellation there are 

specific recommended and authorized grape varieties. According to Decreto-Lei nº 

301/2003, for the Bairrada Appellation there are a list of 10 white and 16 red V. vinifera 

varieties. These grape varieties are recommended for QWPSR (quality wine produced in 

specified region) of Bairrada (Decreto-Lei nº72/98, March 26 and Decreto-Lei 301/2003, 

December 4). From these, Arinto, Bical, Sauvignon Blanc, Baga, Castelão, Touriga 

Nacional, and Sousão were considered in this PhD thesis based on the representativeness 

of these varieties to this Appellation and on the opinion of the company involved in this 

work. Bairrada Appellation presents some natural environmental heterogeneity at several 

levels, namely climate, soils, and altitude. 
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Bairrada Appellation climate 

The climate of Bairrada Appellation is essentially Atlantic and it may present some 

Mediterranean characteristics with maximum temperatures ranging between ca 25 and 35 

ºC during summer (June-September). In this Appellation of remarkable maritime influence, 

it is important to point out the large temperature range between day and night at the time 

the grapes ripe (reaching a range of 20 ºC), which contributes to maintain the acidity of the 

grapes and consequently freshness of the wines. Further, the sunlight exposure of Bairrada 

varies between 2,300 to 2,600 hours/year. Most areas of this Appellation benefit from 

about 2,500 to 2,600 hours of sunlight per year (Figure 4), which is favourable for grapes 

maturation. 
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Figure 4. Annual Bairrada sunlight exposure (adapted from http://www.cvbairrada.pt/). 

 

The average annual precipitation characteristic of Bairrada Appellation increases 

from west to east, varying between 80 to 160 cm per year, being the higher precipitation 

observed at east (ca 120 to 160 cm) (Figure 5). Precipitation amount of this Appellation is 

irregular throughout the year, peaking during winter season, attaining its maximum at 

November/December (between ca 20 to 25 cm). The occurrence of precipitation in the 

spring is common until the middle of April or, rarely, until the first days of May, 

conditioning mainly the early harvesting varieties. In some years, the abundance of rain in 

the second half of September may cause rotten whose extent depends on the varieties. 
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Figure 5. Annual Bairrada precipitation (adapted from http://www.cvbairrada.pt/). 

 

Bairrada Appellation soils 

The name “Bairrada” has its roots in the nature of the soils of this region, “barro” 

(Portuguese word for “clay”). The vineyards of Bairrada Appellation were planted mostly 

in soils from inferior and medium Jurassic, which are clay-calcareous soils. Therefore, the 

soil in this region has some heterogeneity in its texture and was usually classified into 3 

types: i) clayey; ii) clay-calcareous; and iii) clay-sandy. Figure 6 shows the geological map 

of Bairrada Appellation. 
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Figure 6. Geological map of Bairrada (adapted from http://www.cvbairrada.pt/). 
 

Bairrada soils are quite varied. Basically, there are large areas of calcareous, clayey 

and sandy soils. At north of this Appellation there are sands, sandstones and clays while at 

south are calcareous and sandstones. Schists can be found in the northeast and east, while 
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at west soils are sandier. Furthermore, near the rivers there are areas of alluvia and 

conglomerates. 

Bairrada Appellation altitude 

This Appellation presents a wave relief with ca. 50 to 150 m of altitude, featuring 

steep hills and serpentine valleys. 

 

I. 5. Characterization of Vitis vinifera L. volatile components 

I. 5.1. Vitis vinifera L. volatile components 

Vitis vinifera L. (common grapevine) is a species of Vitis that belongs to the 

Vitaceae family. This species is a perennial woody vine native to the South-Western Asia 

and then introduced in Mediterranean region, in Europe, and in other continents, being 

spread throughout the world (Bombardelli and Morazzoni, 1995). V. vinifera is considered 

one of the major world fruit crops based on the extent of cultivated land and on its 

economic value. Grapes are used mainly for wine production, but they are also consumed 

in fresh and as dried fruits or in juice. 

There are hundreds of volatile and semi-volatile compounds already reported in V. 

vinifera matrices, namely grapes, musts (grape juices) and wines, representing different 

chemical families, namely esters, alcohols, acids, aldehydes, ketones, terpenoids, and 

phenols (Cabredo-Pinillos et al., 2006; Rocha et al., 2007a). Some of these volatile 

compounds that are responsible for wine aroma could have origin on grapes and must or 

are formed during alcoholic fermentation by the yeasts (González-Marco et al., 2008; 

Polášková et al., 2008). These compounds can be present at the free form (volatile) or at 

the glycosidically-linked one (non-volatile). During grape maturation, the glycosidically-

linked fraction is accumulated in the fruit, and may be released during winemaking through 

the action of endogenous or exogenous β-glucosidases (López-Tamames et al., 1997). 

The varietal aroma is directly associated to the grape variety, biosynthesized during 

grape development, being dependent on harvest and vineyard conditions, and grape 

maturity state. The terpenic compounds and C13 norisoprenoids are associated to the 

varietal aroma (González-Barreiro et al., 2015; Marais, 1983). The pre-fermentative 

aromas result from several mechanic or technological operations (transport, crushing, 

among others) performed before the beginning of the fermentation process. During this, 
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occurs the enzymatic oxidation of fatty acids leading to the formation of C6 aldehydes and 

alcohols (Bakker and Clarke, 2011), which are responsible for pre-fermentative aromas. 

The volatile compounds exhibit different polarities, volatilities, chemical structures, and a 

wide range of concentrations, which make difficult the establishment of an accurate 

methodology of analysis. Thus, the establishment of a suitable extraction procedure 

combined with a gas chromatographic method is always an important challenge to those 

working on wine chemistry. 

The terpenic compounds, namely the sesquiterpenic ones, play a significant role in 

the varietal aroma of wines due to their flowery, fruity, and fresh odours (Lalel et al., 

2003b; Rapp and Mandery, 1986; Williams et al., 1980). Moreover, attending to the 

complexity of physicochemical characteristics of sesquiterpenic compounds, and also to 

their importance for the aroma properties of V. vinifera related products, sesquiterpenic 

compounds are selected as a representative analyte model to present the state-of-the-art and 

the technical know-how about the extraction and gas chromatographic techniques used for 

their determination on V. vinifera related products. The sesquiterpenic compounds present 

in wines may arise directly from grape and/or may have their origin on the rearrangement 

processes during winemaking process and/or aging (Rocha et al., 2006a). These secondary 

metabolites are predominantly formed from farnesyl pyrophosphate. After losing the 

pyrophosphate residue, different ways of cyclisations are followed. Skeletal rearrangement 

via carbocation intermediates with hydride or methyl group migration at low pH or 

temperature conditions (Bülow and König, 2000; Yu and Utsumi, 2009) can give rise to an 

enormous type of structures (König et al., 1999) (Figure 7). 
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Compound Chemical Structure Compound Chemical Structure 
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Figure 7. Sesquiterpenic compounds identified in V. vinifera related matrices, representing the four 
detected chemical families: hydrocarbons, ketones, oxides and alcohols. 

 

The determination of secondary metabolites of natural products, such as terpenic 

compounds, represents an essential need for the valuation of these products. Besides V. 

vinifera related matrices, sesquiterpenic compounds have also been found on several 

natural products of different species of plants (Jalali et al., 2013; Minh et al., 2003; 

Petronilho et al., 2012; Petronilho et al., 2011; Petronilho et al., 2013; Rafii et al., 1997; 

Zidorn, 2006; Zielińska and Kisiel, 2000), liverworts (Wurzel and Becker, 1990; Yoyota et 

al., 1997), fruits (Coelho et al., 2006; Coutinho, 2007; Reis et al., 2009; Rocha et al., 

2006a), marine algae (Denys et al., 1993; Elias et al., 1997; Sun et al., 1976), corals 

(Newberger et al., 2006; Roussis et al., 2000), and sponges (Braekman et al., 2000; 

Salmoun et al., 2000), among others. The increasing interest on sesquiterpenic compounds 

comes from the fact that they are present in many natural products claimed as presenting 

health benefits (Petronilho et al., 2012; Rocha et al., 2006a). For instance, these 

compounds have been included in cosmetics and functional food products due to their 

aroma and preservative and bioactive health properties. 
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Figure 8. Literature survey of published articles in sesquiterpenic compounds, using a search query 
with keywords sesquiterpen* in topic, from 1980 to 2014 via Web of ScienceTM. 

 

Sesquiterpenic compounds have been the subject of several studies in numerous 

areas. To date, a total of ca. 25,300 publications related to the topic of sesquiterpenic 

compounds are available on the international scientific databases (search queried with 

sesquiterpen*, from 1980 to 2014 via Web of Science). The interest on this topic has 

been increased rapidly over the past 10 years (Figure 8). These studies have been 

conducted with different purposes, which include several studies mainly in the fields of 

pharmacology and pharmacy, chemical characterization, molecular biology, plant science, 

and toxicology. The sesquiterpenic compounds are described as presenting antioxidant 

(Haraguchi et al., 1997), anti-inflammatory (Lim et al., 2005; Xu et al., 2000), anti-

bacterial (Simões et al., 2008; Tamemoto et al., 2001), and anti-cancer (Ahmed et al., 

2004; Tatman and Mo, 2002; Wang et al., 2007) properties, among others. Furthermore, as 

these analytes are hydrophobic and present in several fruits and vegetables, it has been 

proposed that a diet based on these products, can provide their accumulation in the human 

body, promoting long and medium-term health beneficial effects (Vinholes et al., 2014). 

There are several types of V. vinifera related products presenting different 

characteristics, namely grapes, pomaces, berry skin and pomace distillates, grape skins, 

musts, and wines (table, fortified, and sparkling), increasing the complexity of 

sesquiterpenic compounds determination. Furthermore, sesquiterpenic compounds can 

occur in free form (thus they are volatile and can be more easily detected with adequate 

extraction and gas chromatographic techniques), or in glycosidically-linked one. In this 

later case, a previous hot acid and/or enzymatic hydrolysis with β-glycosidases should be 
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performed to release the analytes in order to allow their determination by gas 

chromatography. Beyond the matrix properties, the physicochemical characteristics of 

sesquiterpenic compounds should also be taken into consideration. Sesquiterpenic 

compounds i) are semi-volatile compounds with boiling points ranging, in general, 

between 250 to 280 ºC (Gildemeister, 1913); ii) present low solubility in water (for 

example, 0.0023, 0.0108, 1.7, and 2.07 mg L-1, at 25 ºC, for α-bisabolol, β-farnesene, 

farnesol, nerolidol, respectively) (Petronilho et al., 2012); iii) belong to different chemical 

families; and iv) can exist at different concentration ranges (from ng to mg L-1) (Baumes et 

al., 1986; González-Marco et al., 2008). 

 

I. 5.2.  Important tools for the determination of sesquiterpenic compounds 

The determination of volatile compounds usually includes two steps: i) sample 

preparation, comprising sample handling, extraction and/or concentration of volatile 

components, followed by ii) gas chromatographic analysis. Table 1 summarizes a 

systematic compilation of the sesquiterpenic compounds reported for V. vinifera products, 

organized by chemical families. For each compound the general methodology for 

extraction and gas chromatographic analysis is indicated (Álvarez et al., 2011; Alves et al., 

2005; Bueno et al., 2006; Câmara et al., 2006a; Câmara et al., 2006b, 2007; Câmara et al., 

2004; Coelho et al., 2009; Coelho et al., 2008; Coelho et al., 2006; González-Álvarez et 

al., 2012; Hampel et al., 2005; Kalua and Boss, 2009, 2010; Keyzers and Boss, 2010; 

López-Vázquez et al., 2010; Lukić et al., 2010; May et al., 2013; May and Wüst, 2012; 

Oliva et al., 1999; Parker et al., 2007; Perestrelo et al., 2011; Perestrelo et al., 2012; 

Perestrelo et al., 2006; Piombino et al., 2010; Robinson et al., 2011; Rocha et al., 2006a; 

Rocha et al., 2000; Rocha et al., 2006b; Ruberto et al., 2008; Salinas et al., 2004; Schmarr 

et al., 2010; Schreier et al., 1976; Siebert et al., 2008; Tao et al., 2008; Todorova et al., 

2010; Versini et al., 1994; Welke et al., 2012). Special attention is devoted to the 

extraction techniques parameters. The selection of extraction techniques are based mainly 

on the solubility of sesquiterpenic compounds, especially on non-polar organic solvents 

(liquid–liquid extraction - LLE, solid–liquid extraction - SLE, and simultaneous 

distillation-extraction - SDE), and on sorption on a wide range of stationary phases with 

different design configurations/devices (solid-phase extraction - SPE, solid-phase 

microextraction - SPME, and stir bar sorptive extraction - SBSE). From these, LLE and 
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SPME followed by gas chromatography-mass spectrometry (GC–MS) represent the most 

frequently used methodologies (Table 1 and Figure 9). All of these methodologies allowed 

the characterization of sesquiterpenic compounds, mainly in free form, as only few reports 

are available regarding the glycosidically-linked fraction (Perestrelo et al., 2012; Piombino 

et al., 2010). 

 

Extraction techniques Gas chromatographic analysis

Gas chromatography-flame ionization detection 
(GC–FID)

Solid-phase microextraction
(SPME)

Simultaneous distillation and extraction
(SDE)

Liquid-liquid extraction
(LLE)

Adsorption-thermal desorption
(A-TD)

Solid phase extraction
(SPE)

Stir bar sorptive extraction
(SBSE)

Comprehensive two-dimensional gas 
chromatography with time of flight mass 

spectrometry detection 
(GC×GC-ToFMS)

Comprehensive two-dimensional gas 
chromatography-mass spectrometry detection 

(GC×GC-MS)

Gas chromatography-mass spectrometry 
(GC–MS)

Dynamic headspace extraction
(DHS)

Solid-liquid extraction
(SLE)

 

Figure 9. Extraction and gas chromatographic techniques used for sesquiterpenic compounds 
determination in V. vinifera related matrices. Bold letters indicate the most commonly used 
techniques. 
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Table 1. Sesquiterpenic compounds of V. vinifera related matrices and the respective methodologies of analysis. 

Compound Type of Sample General Methodology 
Sample Preparation 

References 
Extraction Device p Experimental conditions 

Hydrocarbon-type 

α-Alaskene Table wine HS-SPME/GC×GC-ToFMSa SPME syringe (50/30 µm DVB/CAR/PDMS) 
Sample was thermostated at 30 ºC, 10 min, stirring (500 rpm), NaCl 
addition (300 g L-1), then SPME fibre was exposed to the sample 
headspace during 2 h, stirring (600 rpm) 

(Robinson et al., 
2011) 

α-Amorfene 

Grape 

HS-SPME/GC–MSb SPME syringe (65 µm CW/DVB) 
Sample was thermostated at 40 ºC, 60 min, stirring (1000 rpm), NaCl 
addition (200 g L-1), then SPME fibre was exposed to the sample 
headspace during 60 min 

(Coelho et al., 
2006)  

HS-SPME/GC–MS SPME syringe (50/30 µm DVB/CAR/PDMS) 
SPME fibre was exposed to the sample headspace at 60 ºC, 45 min, 
stirring (800 rpm), NaCl addition (222 g L-1) 

(Perestrelo et al., 
2011) 

LLE/GC–MSc Continuous liquid-liquid extraction apparatus Must preparation, dichloromethane extraction for 23 h, followed by 
silica column elution with pentane and Vigreux column concentration 

(Parker et al., 2007) 

SLE/GC–MSd - 
Grape berries dipped one by one into acetone (10 mL, 1 min). Resultant 
extract evaporated to dryness 

(Todorova et al., 
2010) 

Table wine HS-SPME/GC×GC-ToFMS SPME syringe (50/30 µm DVB/CAR/PDMS) 
Sample was thermostated at 30 ºC, 10 min, stirring (500 rpm), NaCl 
addition (300 g L-1), then SPME fibre was exposed to the sample 
headspace during 2 h, stirring (600 rpm) 

(Robinson et al., 
2011)  

Aristolene Berry skin distillates 
LLE/GC–MS Parafilm-sealed separatory funnel- 

Dichloromethane extraction (5 mL, 90 min), repeated three times, 
followed by nitrogen stream concentration 

(Lukić et al., 2010) 

LLE/GC–FIDe Parafilm-sealed separatory funnel- Dichloromethane extraction (5 mL, 90 min), repeated three times, 
followed by nitrogen stream concentration 

(Lukić et al., 2010) 

Aromadendrene 

Grape 
HS-SPME/GC–MS SPME syringe (65 µm CW/DVB) 

Sample was thermostated at 40 ºC, 60 min, stirring (1000 rpm), NaCl 
addition (200 g L-1), then SPME fibre was exposed to the sample 
headspace during 60 min 

(Coelho et al., 
2006) 

HS-SPME/GC–MS SPME syringe (50/30 µm DVB/CAR/PDMS) 
SPME fibre was exposed to the sample headspace at 60 ºC, 45 min, 
stirring (800 rpm), NaCl addition (222 g L-1) 

(Perestrelo et al., 
2011) 

Pomaces 
SDE/GC–MSf Likens-Nickerson apparatus Hexane (1mL, 3 h) 

(Ruberto et al., 
2008) 

SDE/GC–FIDg Likens-Nickerson apparatus Hexane (1mL, 3 h) (Ruberto et al., 
2008) 

Table wine HS-SPME/GC×GC-ToFMS SPME syringe (50/30 µm DVB/CAR/PDMS) 
Sample was thermostated at 30 ºC, 10 min, stirring (500 rpm), NaCl 
addition (300 g L-1), then SPME fibre was exposed to the sample 
headspace during 2 h, stirring (600 rpm) 

(Robinson et al., 
2011) 

allo-Aromadendrene Grape HS-SPME/GC–MS SPME syringe (50/30 µm DVB/CAR/PDMS) 
SPME fibre was exposed to the sample headspace at 60 ºC, 45 min, 
stirring (800 rpm), NaCl addition (222 g L-1) 

(Perestrelo et al., 
2011) 

1(5),3-Aromadenedradiene Table wine HS-SPME/GC–MS SPME syringe (65 µm CW/DVB) 
SPME fibre was exposed to the sample headspace at 40 ºC, 60 min, 
stirring (200 rpm), NaCl addition (200 g L-1) 

(Rocha et al., 
2006a) 

α-Bergamotene 

Berry skin distillates 
LLE/GC–MS Parafilm-sealed separatory funnel- Dichloromethane extraction (5 mL, 90 min), repeated three times, 

followed by nitrogen stream concentration 
(Lukić et al., 2010) 

LLE/GC–FID Parafilm-sealed separatory funnel- 
Dichloromethane extraction (5 mL, 90 min), repeated three times, 
followed by nitrogen stream concentration 

(Lukić et al., 2010) 

Pomaces 
SDE/GC–MS Likens-Nickerson apparatus Hexane (1mL, 3 h) 

(Ruberto et al., 
2008) 

SDE/GC–FID Likens-Nickerson apparatus Hexane (1mL, 3 h) 
(Ruberto et al., 

2008) 

Bicyclogermacrene Grape HS-SPME/GC–MS SPME syringe (50/30 µm DVB/CAR/PDMS) 
SPME fibre was exposed to the sample headspace at 60 ºC, 45 min, 
stirring (800 rpm), NaCl addition (222 g L-1) 

(Perestrelo et al., 
2011) 
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Bicyclosesquiphellandrene Grape LLE/GC–MS Continuous liquid-liquid extraction apparatus 
Must preparation, dichloromethane extraction for 23 h, followed by 
silica column elution with pentane and Vigreux column concentration 

(Parker et al., 2007) 

α-Bisabolene Grape HS-SPME/GC–MS SPME syringe (50/30 µm DVB/CAR/PDMS) 
SPME fibre was exposed to the sample headspace at 60 ºC, 45 min, 
stirring (800 rpm), NaCl addition (222 g L-1) 

(Perestrelo et al., 
2011) 

β-Bisabolene Table wine HS-SPME/GC×GC-ToFMS SPME syringe (50/30 µm DVB/CAR/PDMS) 
Sample was thermostated at 30 ºC, 10 min, stirring (500 rpm), NaCl 
addition (300 g L-1), then SPME fibre was exposed to the sample 
headspace during 2 h, stirring (600 rpm) 

(Robinson et al., 
2011)  

α-Bourbonene Berry skin distillates 
LLE/GC–MS Parafilm-sealed separatory funnel- 

Dichloromethane extraction (5 mL, 90 min), repeated three times, 
followed by nitrogen stream concentration 

(Lukić et al., 2010) 

LLE/GC–FID Parafilm-sealed separatory funnel- 
Dichloromethane extraction (5 mL, 90 min), repeated three times, 
followed by nitrogen stream concentration 

(Lukić et al., 2010)  

β-Bourbonene (isomer 1) 

Grape 

HS-SPME/GC–MS SPME syringe (65 µm CW/DVB) 
Sample was thermostated at 40 ºC, 60 min, stirring (1000 rpm), NaCl 
addition (200 g L-1), then SPME fibre was exposed to the sample 
headspace during 60 min 

(Coelho et al., 
2006) 

HS-SPME/GC–MS SPME syringe (50/30 µm DVB/CAR/PDMS) 
SPME fibre was exposed to the sample headspace at 60 ºC, 45 min, 
stirring (800 rpm), NaCl addition (222 g L-1) 

(Perestrelo et al., 
2011) 

HS-SPME/GC–MS SPME syringe (85 µm PA) 
Sample was thermostated at 45 ºC, 30 min, then SPME fibre was 
exposed to the sample headspace during 10 min 

(May and Wüst, 
2012) 

LLE/GC–MS - 
Must preparation, Pentane-methylene chloride (2:l) extraction, followed 
by Vigreux column concentration 

(Schreier et al., 
1976) 

LLE/GC–MS Continuous liquid-liquid extraction apparatus 
Must preparation, dichloromethane extraction for 23 h, followed by 
silica column elution with pentane and Vigreux column concentration 

(Parker et al., 2007) 

Pomaces 
SDE/GC–MS Likens-Nickerson apparatus Hexane (1mL, 3 h) (Ruberto et al., 

2008) 

SDE/GC–FID Likens-Nickerson apparatus Hexane (1mL, 3 h) 
(Ruberto et al., 

2008) 

β-Bourbonene (isomer 2) Grape HS-SPME/GC–MS SPME syringe (65 µm CW/DVB) 
Sample was thermostated at 40 ºC, 60 min, stirring (1000 rpm), NaCl 
addition (200 g L-1), then SPME fibre was exposed to the sample 
headspace during 60 min 

(Coelho et al., 
2006) 

β-Bourbonene (isomer 3) Grape HS-SPME/GC–MS SPME syringe (65 µm CW/DVB) 
Sample was thermostated at 40 ºC, 60 min, stirring (1000 rpm), NaCl 
addition (200 g L-1), then SPME fibre was exposed to the sample 
headspace during 60 min 

(Coelho et al., 
2006) 

Cadalene 

Grape 

HS-SPME/GC–MS SPME syringe (65 µm CW/DVB) 
Sample was thermostated at 40 ºC, 60 min, stirring (1000 rpm), NaCl 
addition (200 g L-1), then SPME fibre was exposed to the sample 
headspace during 60 min 

(Coelho et al., 
2006) 

HS-SPME/GC–MS SPME syringe (50/30 µm DVB/CAR/PDMS) 
SPME fibre was exposed to the sample headspace at 60 ºC, 45 min, 
stirring (800 rpm), NaCl addition (222 g L-1) 

(Perestrelo et al., 
2011) 

LLE/GC–MS Continuous liquid-liquid extraction apparatus 
Must preparation, dichloromethane extraction for 23 h, followed by 
silica column elution with pentane and Vigreux column concentration 

(Parker et al., 2007) 

Table wine 

HS-SPME/GC–MS SPME syringe (50/30 µm DVB/CAR/PDMS) 
SPME fibre was exposed to the sample headspace at 35 ºC, 90 min, 
stirring (250 rpm), NaCl addition (300 g L-1) 

(Keyzers and Boss, 
2010) 

HS-SPME/GC–MS SPME syringe (65 µm CW/DVB) 
SPME fibre was exposed to the sample headspace at 40 ºC, 60 min, 
stirring (200 rpm), NaCl addition (200 g L-1) 

(Rocha et al., 
2006a) 

HS-SPME/GC×GC-ToFMS SPME syringe (50/30 µm DVB/CAR/PDMS) 
Sample was thermostated at 30 ºC, 10 min, stirring (500 rpm), NaCl 
addition (300 g L-1), then SPME fibre was exposed to the sample 
headspace during 2 h, stirring (600 rpm) 

(Robinson et al., 
2011)  

Sparkling wine SBSE-LD/LVI-GC–MSh PDMS stir bar (0.5 mm × 10mm, 24 µL) 
Extraction:  20 ºC, 60 min, stirring (800 rpm).  
Back-extraction: pentane (200 µL) under ultrasonic treatment 

(Coelho et al., 
2009) 

α-Cadinene Grape 
HS-SPME/GC–MS SPME syringe (65 µm CW/DVB) 

Sample thermostated at 40 ºC, 60 min, stirring (1000 rpm), NaCl 
addition (200 g L-1). SPME fibre exposed to headspace during 60 min 

(Coelho et al., 
2006) 

LLE/GC–MS Continuous liquid-liquid extraction apparatus 
Must preparation, dichloromethane extraction for 23 h, silica column 
elution with pentane and Vigreux column concentration 

(Parker et al., 2007) 



Introduction 

 

Pomaces 
SDE/GC–MS Likens-Nickerson apparatus Hexane (1mL, 3 h) 

(Ruberto et al., 
2008) 

SDE/GC–FID Likens-Nickerson apparatus Hexane (1mL, 3 h) 
(Ruberto et al., 

2008) 

β-Cadinene 

Grape HS-SPME/GC–MS SPME syringe (65 µm CW/DVB) 
Sample thermostated at 40 ºC, 60 min, stirring (1000 rpm), NaCl 
addition (200 g L-1). SPME fibre exposed to the sample headspace 
during 60 min 

(Coelho et al., 
2006) 

Pomaces distillates SPE/GC–MSi 
Cartridge with 1g Styrene-divinylbenzene 

(SDVB) polymer 

Sample washed with methanol/water (20 mL, 15% v/v) and water   (20 
mL). Analytes were removed by dichloromethane (30 mL), followed by 
Vigreux column concentration 

(López-Vázquez et 
al., 2010) 

γ-Cadinene 

Grape 

HS-SPME/GC–MS SPME syringe (65 µm CW/DVB) 
Sample was thermostated at 40 ºC, 60 min, stirring (1000 rpm), NaCl 
addition (200 g L-1), then SPME fibre was exposed to the sample 
headspace during 60 min 

(Coelho et al., 
2006) 

HS-SPME/GC–MS SPME syringe (85 µm PA) 
Sample was thermostated at 45 ºC, 30 min, then SPME fibre was 
exposed to the sample headspace during 10 min 

(May and Wüst, 
2012) 

HS-SPME/GC–MS SPME syringe (85 µm PA) 
Sample was thermostated at 60 ºC, 30 min, stirring (400 rpm), then 
SPME fibre was exposed to the sample headspace during 10 min 

(May et al., 2013) 

LLE/GC–MS - 
Must preparation, Pentane-methylene chloride (2:l) extraction, followed 
by Vigreux column concentration 

(Schreier et al., 
1976) 

LLE/GC–MS Continuous liquid-liquid extraction apparatus 
Must preparation, dichloromethane extraction for 23 h, followed by 
silica column elution with pentane and Vigreux column concentration 

(Parker et al., 2007) 

Berry skin distillates 
LLE/GC–MS Parafilm-sealed separatory funnel- Dichloromethane extraction (5 mL, 90 min), repeated three times, 

followed by nitrogen stream concentration 
(Lukić et al., 2010) 

LLE/GC–FID Parafilm-sealed separatory funnel- 
Dichloromethane extraction (5 mL, 90 min), repeated three times, 
followed by nitrogen stream concentration 

(Lukić et al., 2010) 

Pomaces 
SDE/GC–MS Likens-Nickerson apparatus Hexane (1mL, 3 h) 

(Ruberto et al., 
2008) 

SDE/GC–FID Likens-Nickerson apparatus Hexane (1mL, 3 h) 
(Ruberto et al., 

2008) 

Pomaces distillates SPE/GC–MS 
Cartridge with 1g Styrene-divinylbenzene 

(SDVB) polymer 

Sample washed with methanol/water (20 mL, 15% v/v) and of water (20 
mL). Analytes were removed by dichloromethane (30 mL), followed by 
Vigreux column concentration 

(López-Vázquez et 
al., 2010) 

δ-Cadinene 

Grape 

HS-SPME/GC–MS SPME syringe (65 µm CW/DVB) 
Sample was thermostated at 40 ºC, 60 min, stirring (1000 rpm), NaCl 
addition (200 g L-1), then SPME fibre was exposed to the sample 
headspace during 60 min 

(Coelho et al., 
2006) 

HS-SPME/GC–MS SPME syringe (50/30 µm DVB/CAR/PDMS) 
SPME fibre was exposed to the sample headspace at 60 ºC, 45 min, 
stirring (800 rpm), NaCl addition (222 g L-1) 

(Perestrelo et al., 
2011) 

LLE/GC–MS - 
Must preparation, Pentane-methylene chloride (2:l) extraction, followed 
by Vigreux column concentration 

(Schreier et al., 
1976) 

Pomaces 
SDE/GC–MS Likens-Nickerson apparatus Hexane (1mL, 3 h) (Ruberto et al., 

2008) 

SDE/GC–FID Likens-Nickerson apparatus Hexane (1mL, 3 h) 
(Ruberto et al., 

2008) 

Pomaces distillates SPE/GC–MS 
Cartridge with 1g Styrene-divinylbenzene 

(SDVB) polymer 

Sample washed with methanol/water (20 mL, 15% v/v) and water   (20 
mL). Analytes were removed by dichloromethane  (30 mL), followed by 
Vigreux column concentration 

(López-Vázquez et 
al., 2010) 

Table wine HS-SPME/GC×GC-ToFMS SPME syringe (50/30 µm DVB/CAR/PDMS) 
Sample was thermostated at 30 ºC, 10 min, stirring (500 rpm), NaCl 
addition (300 g L-1), then SPME fibre was exposed to the sample 
headspace during 2 h, stirring (600 rpm) 

(Robinson et al., 
2011) 

Fortified wine HS-SPME/GC–MS SPME syringe (85 µm PA) 
SPME fibre was exposed to the sample headspace at 40 ºC, 2 h, stirring 
(1200 rpm), NaCl addition (300 g L-1) 

(Câmara et al., 
2006b) 

α-Calacorene Grape HS-SPME/GC–MS SPME syringe (65 µm CW/DVB) Sample was thermostated at 40 ºC, 60 min, stirring (1000 rpm), NaCl (Coelho et al., 
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addition (200 g L-1), then SPME fibre was exposed to the sample 
headspace during 60 min 

2006) 

HS-SPME/GC–MS SPME syringe (50/30 µm DVB/CAR/PDMS) 
SPME fibre was exposed to the sample headspace at 60 ºC, 45 min, 
stirring (800 rpm), NaCl addition (222 g L-1) 

(Perestrelo et al., 
2011) 

LLE/GC–MS Continuous liquid-liquid extraction apparatus Must preparation, dichloromethane extraction for 23 h, followed by 
silica column elution with pentane and Vigreux column concentration 

(Parker et al., 2007) 

Berry skin distillates 
LLE/GC–MS Parafilm-sealed separatory funnel- 

Dichloromethane extraction (5 mL, 90 min), repeated three times, 
followed by nitrogen stream concentration 

(Lukić et al., 2010) 

LLE/GC–FID Parafilm-sealed separatory funnel- 
Dichloromethane extraction (5 mL, 90 min), repeated three times, 
followed by nitrogen stream concentration 

(Lukić et al., 2010) 

Pomaces 
SDE/GC–MS Likens-Nickerson apparatus Hexane (1mL, 3 h) 

(Ruberto et al., 
2008) 

SDE/GC–FID Likens-Nickerson apparatus Hexane (1mL, 3 h) 
(Ruberto et al., 

2008) 

Table wine 

HS-SPME/GC–MS SPME syringe (65 µm CW/DVB) 
SPME fibre was exposed to the sample headspace at 40 ºC, 60 min, 
stirring (200 rpm), NaCl addition (200 g L-1) 

(Rocha et al., 
2006a) 

HS-SPME/GC×GC-ToFMS SPME syringe (50/30 µm DVB/CAR/PDMS) 
Sample was thermostated at 30 ºC, 10 min, stirring (500 rpm), NaCl 
addition (300 g L-1), then SPME fibre was exposed to the sample 
headspace during 2 h, stirring (600 rpm) 

(Robinson et al., 
2011) 

β-Calacorene 
Grape 

LLE/GC–MS Continuous liquid-liquid extraction apparatus 
Must preparation, dichloromethane extraction for 23 h, followed by 
silica column elution with pentane and Vigreux column concentration 

(Parker et al., 2007) 

HS-SPME/GC–MS SPME syringe (85 µm PA) 
Sample was thermostated at 60 ºC, 30 min, stirring (400 rpm), then 
SPME fibre was exposed to the sample headspace during 10 min 

(May et al., 2013) 

Table wine HS-SPME/GC×GC-ToFMS SPME syringe (50/30 µm DVB/CAR/PDMS) 
Sample was thermostated at 30 ºC, 10 min, stirring (500 rpm), NaCl 
addition (300 g L-1), then SPME fibre was exposed to the sample 
headspace during 2 h, stirring (600 rpm) 

(Robinson et al., 
2011) 

Calamenene 

Grape 

HS-SPME/GC–MS SPME syringe (65 µm CW/DVB) 
Sample was thermostated at 40 ºC, 60 min, stirring (1000 rpm), NaCl 
addition (200 g L-1), then SPME fibre was exposed to the sample 
headspace during 60 min 

(Coelho et al., 
2006) 

HS-SPME/GC–MS SPME syringe (50/30 µm DVB/CAR/PDMS) 
SPME fibre was exposed to the sample headspace at 60 ºC, 45 min, 
stirring (800 rpm), NaCl addition (222 g L-1) 

(Perestrelo et al., 
2011) 

HS-SPME/GC–MS SPME syringe (85 µm PA) 
Sample was thermostated at 45 ºC, 30 min, then SPME fibre was 
exposed to the sample headspace during 10 min 

(May and Wüst, 
2012) 

HS-SPME/GC–MS SPME syringe (50/30 µm DVB/CAR/PDMS) 
Sample was thermostated at 40 ºC, 5 min, stirring (300 rpm), then SPME 
fibre was exposed to the sample headspace during 30 min 

(Kalua and Boss, 
2010) 

LLE/GC–MS - 
Must preparation, Pentane-methylene chloride (2:l) extraction, followed 
by Vigreux column concentration 

(Schreier et al., 
1976) 

Berry skin distillates 
LLE/GC–MS Parafilm-sealed separatory funnel- 

Dichloromethane extraction (5 mL, 90 min), repeated three times, 
followed by nitrogen stream concentration 

(Lukić et al., 2010) 

LLE/GC–FID Parafilm-sealed separatory funnel- 
Dichloromethane extraction (5 mL, 90 min), repeated three times, 
followed by nitrogen stream concentration 

(Lukić et al., 2010) 

Table wine HS-SPME/GC–MS SPME syringe (65 µm CW/DVB) 
SPME fibre was exposed to the sample headspace at 40 ºC, 60 min, 
stirring (200 rpm), NaCl addition (200 g L-1) 

(Rocha et al., 
2006a) 

Calarene Table wine HS-SPME/GC–MS SPME syringe (65 µm CW/DVB) 
SPME fibre was exposed to the sample headspace at 40 ºC, 60 min, 
stirring (200 rpm), NaCl addition (200 g L-1) 

(Rocha et al., 
2006a) 

Calamene Table wine 

HS-SPME/GC–MS SPME syringe (65 µm CW/DVB) 
SPME fibre was exposed to the sample headspace at 40 ºC, 60 min, 
stirring (200 rpm), NaCl addition (200 g L-1) 

(Rocha et al., 
2006a) 

HS-SPME/GC×GC-ToFMS SPME syringe (50/30 µm DVB/CAR/PDMS) 
Sample was thermostated at 30 ºC, 10 min, stirring (500 rpm), NaCl 
addition (300 g L-1), then SPME fibre was exposed to the sample 
headspace during 2 h, stirring (600 rpm) 

(Robinson et al., 
2011) 

α-Caryophyllene Grape HS-SPME/GC–MS SPME syringe (50/30 µm DVB/CAR/PDMS) 
SPME fibre was exposed to the sample headspace at 60 ºC, 45 min, 
stirring (800 rpm), NaCl addition (222 g L-1) 

(Perestrelo et al., 
2011) 
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HS-SPME/GC–MS SPME syringe (50/30 µm DVB/CAR/PDMS) 
Sample was thermostated at 40 ºC, 5 min, stirring (300 rpm), then SPME 
fibre was exposed to the sample headspace during 30 min 

(Kalua and Boss, 
2010) 

β-Caryophyllene 
Grape 

HS-SPME/GC–MS SPME syringe (65 µm CW/DVB) 
Sample was thermostated at 40 ºC, 60 min, stirring (1000 rpm), NaCl 
addition (200 g L-1), then SPME fibre was exposed to the sample 
headspace during 60 min 

(Coelho et al., 
2006) 

HS-SPME/GC–MS SPME syringe (50/30 µm DVB/CAR/PDMS) 
Sample was thermostated at 40 ºC, 5 min, stirring (300 rpm), then SPME 
fibre was exposed to the sample headspace during 30 min 

(Kalua and Boss, 
2009) 

HS-SPME/GC–MS SPME syringe (50/30 µm DVB/CAR/PDMS) 
SPME fibre was exposed to the sample headspace at 60 ºC, 45 min, 
stirring (800 rpm), NaCl addition (222 g L-1) 

(Perestrelo et al., 
2011) 

HS-SPME/GC–MS SPME syringe (85 µm PA) 
Sample was thermostated at 45 ºC, 30 min, then SPME fibre was 
exposed to the sample headspace during 10 min 

(May and Wüst, 
2012) 

LLE/GC–MS - 
Must preparation, Pentane-methylene chloride (2:l) extraction, followed 
by Vigreux column concentration 

(Schreier et al., 
1976) 

Foliage DHS/GC–MSj Dynamic headspace device Terminal stems were cut and placed into the dynamic headspace device, 
and the volatile components were sorbed on a Tenax column for 48 h 

(Hampel et al., 
2005) 

α-Cedrene 
Table wine 

HS-SPME/GC–MS SPME syringe (65 µm CW/DVB) 
SPME fibre was exposed to the sample headspace at 40 ºC, 60 min, 
stirring (200 rpm), NaCl addition (200 g L-1) 

(Rocha et al., 
2006a) 

HS-SPME/GC×GC-ToFMS SPME syringe (50/30 µm DVB/CAR/PDMS) 
Sample was thermostated at 30 ºC, 10 min, stirring (500 rpm), NaCl 
addition (300 g L-1), then SPME fibre was exposed to the sample 
headspace during 2 h, stirring (600 rpm) 

(Robinson et al., 
2011) 

Sparkling wine SBSE-LD/LVI-GC–MS PDMS stir bar (0.5 mm × 10mm, 24 µL) 
Extraction: at 20 ºC, 60 min, stirring (800 rpm).  
Back-extraction: pentane (200 µL) under ultrasonic treatment 

(Coelho et al., 
2009) 

α-Chamigrene Table wine HS-SPME/GC–MS SPME syringe (65 µm CW/DVB) 
SPME fibre was exposed to the sample headspace at 40 ºC, 60 min, 
stirring (200 rpm), NaCl addition (200 g L-1) 

(Rocha et al., 
2006a) 

β-Chamigrene Sparkling wine 

SBSE-LD/LVI-GC–MS PDMS stir bar (0.5 mm × 10mm, 24 µL) 
Extraction: at 20 ºC, 60 min, stirring (800 rpm).  
Back-extraction: pentane (200 µL) under ultrasonic treatment 

(Coelho et al., 
2009) 

SBSE-LD/LVI-GC–MS PDMS stir bar (0.5 mm × 10mm, 24 µL) 
Extraction: at 20 ºC, 60 min, stirring (800 rpm), addition of ethanol 
(10%, v/v).  
Back-extraction: pentane (200 µL), under ultrasonic treatment 

(Coelho et al., 
2008) 

α-Copaene 

Grape 

HS-SPME/GC–MS SPME syringe (50/30 µm DVB/CAR/PDMS) 
Sample was thermostated at 40 ºC, 5 min, stirring (300 rpm), then SPME 
fibre was exposed to the sample headspace during 30 min 

(Kalua and Boss, 
2009) 

HS-SPME/GC–MS SPME syringe (85 µm PA) 
Sample was thermostated at 45 ºC, 30 min, then SPME fibre was 
exposed to the sample headspace during 10 min 

(May and Wüst, 
2012) 

HS-SPME/GC–MS SPME syringe (50/30 µm DVB/CAR/PDMS) 
Sample was thermostated at 40 ºC, 5 min, stirring (300 rpm), then SPME 
fibre was exposed to the sample headspace during 30 min 

(Kalua and Boss, 
2010) 

LLE/GC–MS - 
Must preparation, Pentane-methylene chloride (2:l) extraction, followed 
by Vigreux column concentration 

(Schreier et al., 
1976) 

Pomaces 
SDE/GC–MS Likens-Nickerson apparatus Hexane (1mL, 3 h) 

(Ruberto et al., 
2008) 

SDE/GC–FID Likens-Nickerson apparatus Hexane (1mL, 3 h) 
(Ruberto et al., 

2008) 

Pomaces distillates SPE/GC–MS 
Cartridge with 1g Styrene-divinylbenzene 

(SDVB) polymer 

Sample washed with methanol/water (20 mL, 15% v/v) and water   (20 
mL). Analytes were removed by dichloromethane (30 mL), followed by 
Vigreux column concentration 

(López-Vázquez et 
al., 2010) 

β-Copaene 

Grape LLE/GC–MS Continuous liquid-liquid extraction apparatus 
Must preparation, dichloromethane extraction for 23 h, followed by 
silica column elution with pentane and Vigreux column concentration 

(Parker et al., 2007) 

Berry skin distillates 
LLE/GC–MS Parafilm-sealed separatory funnel- 

Dichloromethane extraction (5 mL, 90 min), repeated three times, 
followed by nitrogen stream concentration 

(Lukić et al., 2010) 

LLE/GC–FID Parafilm-sealed separatory funnel- 
Dichloromethane extraction (5 mL, 90 min), repeated three times, 
followed by nitrogen stream concentration 

(Lukić et al., 2010) 

α-Cubebene Grape HS-SPME/GC–MS SPME syringe (50/30 µm DVB/CAR/PDMS) 
Sample was thermostated at 40 ºC, 5 min, stirring (300 rpm), then SPME 
fibre was exposed to the sample headspace during 30 min 

(Kalua and Boss, 
2009) 
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HS-SPME/GC–MS SPME syringe (50/30 µm DVB/CAR/PDMS) 
SPME fibre was exposed to the sample headspace at 60 ºC, 45 min, 
stirring (800 rpm), NaCl addition (222 g L-1) 

(Perestrelo et al., 
2011) 

HS-SPME/GC–MS SPME syringe (50/30 µm DVB/CAR/PDMS) 
Sample was thermostated at 40 ºC, 5 min, stirring (300 rpm), then SPME 
fibre was exposed to the sample headspace during 30 min 

(Kalua and Boss, 
2010) 

β-Cubebene Grape 
HS-SPME/GC–MS SPME syringe (65 µm CW/DVB) 

Sample was thermostated at 40 ºC, 60 min, stirring (1000 rpm), NaCl 
addition (200 g L-1), then SPME fibre was exposed to the sample 
headspace during 60 min 

(Coelho et al., 
2006) 

HS-SPME/GC–MS SPME syringe (50/30 µm DVB/CAR/PDMS) 
SPME fibre was exposed to the sample headspace at 60 ºC, 45 min, 
stirring (800 rpm), NaCl addition (222 g L-1) 

(Perestrelo et al., 
2011) 

α-Curcumene Table wine HS-SPME/GC×GC-ToFMS SPME syringe (50/30 µm DVB/CAR/PDMS) 
Sample was thermostated at 30 ºC, 10 min, stirring (500 rpm), NaCl 
addition (300 g L-1), then SPME fibre was exposed to the sample 
headspace during 2 h, stirring (600 rpm) 

(Robinson et al., 
2011) 

Cycloisolongifolene Sparkling wine SBSE-LD/LVI-GC–MS PDMS stir bar (0.5 mm × 10mm, 24 µL) 
Extraction: at 20 ºC, 60 min, stirring (800 rpm).  
Back-extraction: pentane (200 µL) under ultrasonic treatment 

(Coelho et al., 
2009) 

Cyclosativene 

Grape 
HS-SPME/GC–MS SPME syringe (65 µm CW/DVB) 

Sample was thermostated at 40 ºC, 60 min, stirring (1000 rpm), NaCl 
addition (200 g L-1), then SPME fibre was exposed to the sample 
headspace during 60 min 

(Coelho et al., 
2006) 

LLE/GC–MS Continuous liquid-liquid extraction apparatus 
Must preparation, dichloromethane extraction for 23 h, followed by 
silica column elution with pentane and Vigreux column concentration 

(Parker et al., 2007) 

Pomaces 
SDE/GC–MS Likens-Nickerson apparatus Hexane (1mL, 3 h) (Ruberto et al., 

2008) 

SDE/GC–FID Likens-Nickerson apparatus Hexane (1mL, 3 h) 
(Ruberto et al., 

2008) 

Cyperene Grape SLE/GC–MS - 
Grape berries dipped one by one into acetone (10 mL, 1 min). 
Resultant extract evaporated to dryness 

(Todorova et al., 
2010) 

4,5,9,10-Dehydro-
isolongifolene 

Table wine HS-SPME/GC×GC-ToFMS SPME syringe (50/30 µm DVB/CAR/PDMS) 
Sample was thermostated at 30 ºC, 10 min, stirring (500 rpm), NaCl 
addition (300 g L-1), then SPME fibre was exposed to the sample 
headspace during 2 h, stirring (600 rpm) 

(Robinson et al., 
2011) 

γ-Elemene Grape 
HS-SPME/GC–MS SPME syringe (65 µm CW/DVB) 

Sample was thermostated at 40 ºC, 60 min, stirring (1000 rpm), NaCl 
addition (200 g L-1), then SPME fibre was exposed to the sample 
headspace during 60 min 

(Coelho et al., 
2006) 

HS-SPME/GC–MS SPME syringe (50/30 µm DVB/CAR/PDMS) 
SPME fibre was exposed to the sample headspace at 60 ºC, 45 min, 
stirring (800 rpm), NaCl addition (222 g L-1) 

(Perestrelo et al., 
2011) 

δ-Elememne Grape HS-SPME/GC–MS SPME syringe (65 µm CW/DVB) 
Sample was thermostated at 40 ºC, 60 min, stirring (1000 rpm), NaCl 
addition (200 g L-1), then SPME fibre was exposed to the sample 
headspace during 60 min 

(Coelho et al., 
2006) 

Epi-bicyclosesquiphellandrene Grape 
HS-SPME/GC–MS SPME syringe (65 µm CW/DVB) 

Sample was thermostated at 40 ºC, 60 min, stirring (1000 rpm), NaCl 
addition (200 g L-1), then SPME fibre was exposed to the sample 
headspace during 60 min 

(Coelho et al., 
2006) 

HS-SPME/GC–MS SPME syringe (50/30 µm DVB/CAR/PDMS) 
SPME fibre was exposed to the sample headspace at 60 ºC, 45 min, 
stirring (800 rpm), NaCl addition (222 g L-1) 

(Perestrelo et al., 
2011) 

Epizonarene Grape 

HS-SPME/GC–MS SPME syringe (65 µm CW/DVB) 
Sample was thermostated at 40 ºC, 60 min, stirring (1000 rpm), NaCl 
addition (200 g L-1), then SPME fibre was exposed to the sample 
headspace during 60 min 

(Coelho et al., 
2006) 

HS-SPME/GC–MS SPME syringe (50/30 µm DVB/CAR/PDMS) 
SPME fibre was exposed to the sample headspace at 60 ºC, 45 min, 
stirring (800 rpm), NaCl addition (222 g L-1) 

(Perestrelo et al., 
2011) 

HS-SPME/GC–MS SPME syringe (85 µm PA) 
Sample was thermostated at 45 ºC, 30 min, then SPME fibre was 
exposed to the sample headspace during 10 min 

(May and Wüst, 
2012) 

HS-SPME/GC–MS SPME syringe (85 µm PA) 
Sample was thermostated at 60 ºC, 30 min, stirring (400 rpm), then 
SPME fibre was exposed to the sample headspace during 10 min 

(May et al., 2013) 

LLE/GC–MS Continuous liquid-liquid extraction apparatus 
Must preparation, dichloromethane extraction for 23 h, followed by 
silica column elution with pentane and Vigreux column concentration 

(Parker et al., 2007) 
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Pomaces 
SDE/GC–MS Likens-Nickerson apparatus Hexane (1mL, 3 h) 

(Ruberto et al., 
2008) 

SDE/GC–FID Likens-Nickerson apparatus Hexane (1mL, 3 h) 
(Ruberto et al., 

2008) 

Pomaces distillates SPE/GC–MS 
Cartridge with 1g Styrene-divinylbenzene 

(SDVB) polymer 

Sample washed with methanol/water (20 mL, 15% v/v) and of water (20 
mL). Analytes were removed by dichloromethane  (30 mL), followed by 
Vigreux column concentration 

(López-Vázquez et 
al., 2010) 

α-Farnesene 

Grape 
HS-SPME/GC–MS SPME syringe (85 µm PA) 

Sample was thermostated at 45 ºC, 30 min, then SPME fibre was 
exposed to the sample headspace during 10 min 

(May and Wüst, 
2012) 

LLE/GC–MS - 
Must preparation, Pentane-methylene chloride (2:l) extraction, followed 
by Vigreux column concentration 

(Schreier et al., 
1976) 

Grape skin SPE/GC–MS 
Column (40 cm × 1 cm) filled with XAD-2 resin 

(12 cm, 0.15-0.25 mm) 

Preparation of grape skins ethanolic extract (15 h). 
Extract dilution with water and introduction on the column.  
Analytes were removed by pentane/dichloromethane (80 mL, 2:1 v/v), 
followed by concentration 

(Versini et al., 
1994) 

Berry skin distillates 
LLE/GC–MS Parafilm-sealed separatory funnel- 

Dichloromethane extraction (5 mL, 90 min), repeated three times, 
followed by nitrogen stream concentration 

(Lukić et al., 2010) 

LLE/GC–FID Parafilm-sealed separatory funnel- 
Dichloromethane extraction (5 mL, 90 min), repeated three times, 
followed by nitrogen stream concentration 

(Lukić et al., 2010) 

Foliage DHS/GC–MS Dynamic headspace device 
Terminal stems were cut and placed into the dynamic headspace device, 
and the volatile components were sorbed on a Tenax column for 48 h 

(Hampel et al., 
2005) 

Table wine 

HS-SPME/GC–MS SPME syringe (50/30 µm DVB/CAR/PDMS) 
SPME fibre was exposed to the sample headspace at 35 ºC, 90 min, 
stirring (250 rpm), NaCl addition (300 g L-1) 

(Keyzers and Boss, 
2010) 

HS-SPME/GC×GC-ToFMS SPME syringe (50/30 µm DVB/CAR/PDMS) 
Sample was thermostated at 30 ºC, 10 min, stirring (500 rpm), NaCl 
addition (300 g L-1), then SPME fibre was exposed to the sample 
headspace during 2 h, stirring (600 rpm) 

(Robinson et al., 
2011) 

Sparkling wine 

SBSE-LD/LVI-GC–MS PDMS stir bar (0.5 mm × 10mm, 24 µL) 
Extraction: at 20 ºC, 60 min, stirring (800 rpm).  
Back-extraction: pentane (200 µL) under ultrasonic treatment 

(Coelho et al., 
2009) 

SBSE-LD/LVI-GC–MS PDMS stir bar (0.5 mm × 10mm, 24 µL) 
Extraction: at 20 ºC, 60 min, stirring (800 rpm), addition of ethanol 
(10%, v/v).  
Back-extraction: pentane (200 µL), under ultrasonic treatment 

(Coelho et al., 
2008) 

α-Farnesene (isomer) 

Grape HS-SPME/GC–MS SPME syringe (85 µm PA) 
Sample was thermostated at 45 ºC, 30 min, then SPME fibre was 
exposed to the sample headspace during 10 min 

(May and Wüst, 
2012) 

Grape skin SPE/ GC–MS Column (40 cm × 1 cm) filled with XAD-2 resin 
(12 cm, 0.15-0.25 mm) 

Preparation of grape skins ethanolic extract (15 h). 
Extract dilution with water and introduction on the column.  
Analytes were removed by pentane/dichloromethane (80 mL, 2:1 v/v), 
followed by concentration 

(Versini et al., 
1994) 

Table wine HS-SPME/GC–MS SPME syringe (50/30 µm DVB/CAR/PDMS) 
SPME fibre was exposed to the sample headspace at 35 ºC, 90 min, 
stirring (250 rpm), NaCl addition (300 g L-1) 

(Keyzers and Boss, 
2010) 

Sparkling wine SBSE-LD/LVI-GC–MS PDMS stir bar (0.5 mm × 10mm, 24 µL) 
Extraction: at 20 ºC, 60 min, stirring (800 rpm).  
Back-extraction: pentane (200 µL) under ultrasonic treatment 

(Coelho et al., 
2009) 

β-Farnesene Table wine 

HS-SPME/GC–MS SPME syringe (50/30 µm DVB/CAR/PDMS) 
SPME fibre was exposed to the sample headspace at 35 ºC, 90 min, 
stirring (250 rpm), NaCl addition (300 g L-1) 

(Keyzers and Boss, 
2010) 

HS-SPME/GC×GC-ToFMS SPME syringe (50/30 µm DVB/CAR/PDMS) 
Sample was thermostated at 30 ºC, 10 min, stirring (500 rpm), NaCl 
addition (300 g L-1), then SPME fibre was exposed to the sample 
headspace during 2 h, stirring (600 rpm) 

(Robinson et al., 
2011) 

Germacrene D Grape 
HS-SPME/GC–MS SPME syringe (65 µm CW/DVB) 

Sample was thermostated at 40 ºC, 60 min, stirring (1000 rpm), NaCl 
addition (200 g L-1), then SPME fibre was exposed to the sample 
headspace during 60 min 

(Coelho et al., 
2006) 

HS-SPME/GC–MS SPME syringe (50/30 µm DVB/CAR/PDMS) 
SPME fibre was exposed to the sample headspace at 60 ºC, 45 min, 
stirring (800 rpm), NaCl addition (222 g L-1) 

(Perestrelo et al., 
2011) 
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HS-SPME/GC–MS SPME syringe (85 µm PA) 
Sample was thermostated at 45 ºC, 30 min, then SPME fibre was 
exposed to the sample headspace during 10 min 

(May and Wüst, 
2012) 

HS-SPME/GC–MS SPME syringe (85 µm PA) 
Sample was thermostated at 60 ºC, 30 min, stirring (400 rpm), then 
SPME fibre was exposed to the sample headspace during 10 min 

(May et al., 2013) 

LLE/GC–MS - Must preparation, Pentane-methylene chloride (2:l) extraction, followed 
by Vigreux column concentration 

(Schreier et al., 
1976) 

Berry skin distillates 
LLE/GC–MS Parafilm-sealed separatory funnel- 

Dichloromethane extraction (5 mL, 90 min), repeated three times, 
followed by nitrogen stream concentration 

(Lukić et al., 2010) 

LLE/GC–FID Parafilm-sealed separatory funnel- 
Dichloromethane extraction (5 mL, 90 min), repeated three times, 
followed by nitrogen stream concentration 

(Lukić et al., 2010) 

Pomaces 
SDE/GC–MS Likens-Nickerson apparatus Hexane (1mL, 3 h) 

(Ruberto et al., 
2008) 

SDE/GC–FID Likens-Nickerson apparatus Hexane (1mL, 3 h) 
(Ruberto et al., 

2008) 

Foliage DHS/GC–MS Dynamic headspace device Terminal stems were cut and placed into the dynamic headspace device, 
and the volatile components were sorbed on a Tenax column for 48 h 

(Hampel et al., 
2005) 

Germacrene B 

Grape HS-SPME/GC–MS SPME syringe (65 µm CW/DVB) 
Sample was thermostated at 40 ºC, 60 min, stirring (1000 rpm), NaCl 
addition (200 g L-1), then SPME fibre was exposed to the sample 
headspace during 60 min 

(Coelho et al., 
2006) 

Pomaces 
SDE/GC–MS Likens-Nickerson apparatus Hexane (1mL, 3 h) 

(Ruberto et al., 
2008) 

SDE/GC–FID Likens-Nickerson apparatus Hexane (1mL, 3 h) 
(Ruberto et al., 

2008) 

Guaiazulene 

Grape HS-SPME/GC–MS SPME syringe (50/30 µm DVB/CAR/PDMS) 
SPME fibre was exposed to the sample headspace at 60 ºC, 45 min, 
stirring (800 rpm), NaCl addition (222 g L-1) 

(Perestrelo et al., 
2011) 

Sparkling wine 

SBSE-LD/LVI-GC–MS PDMS stir bar (0.5 mm × 10mm, 24 µL) 
Extraction: at 20 ºC, 60 min, stirring (800 rpm).  
Back-extraction: pentane (200 µL) under ultrasonic treatment 

(Coelho et al., 
2009) 

SBSE-LD/LVI-GC–MS PDMS stir bar (0.5 mm × 10mm, 24 µL) 
Extraction: at 20 ºC, 60 min, stirring (800 rpm), addition of ethanol 
(10%, v/v).  
Back-extraction: pentane (200 µL), under ultrasonic treatment 

(Coelho et al., 
2008) 

3,7-Guaiadiene 

Grape HS-SPME/GC–MS SPME syringe (65 µm CW/DVB) 
Sample was thermostated at 40 ºC, 60 min, stirring (1000 rpm), NaCl 
addition (200 g L-1), then SPME fibre was exposed to the sample 
headspace during 60 min 

(Coelho et al., 
2006) 

Pomaces 
SDE/GC–MS Likens-Nickerson apparatus Hexane (1mL, 3 h) 

(Ruberto et al., 
2008) 

SDE/GC–FID Likens-Nickerson apparatus Hexane (1mL, 3 h) 
(Ruberto et al., 

2008) 

Guaia-6,9-diene Grape 

HS-SPME/GC–MS SPME syringe (85 µm PA) 
Sample was thermostated at 45 ºC, 30 min, then SPME fibre was 
exposed to the sample headspace during 10 min 

(May and Wüst, 
2012) 

HS-SPME/GC–MS SPME syringe (85 µm PA) 
Sample was thermostated at 60 ºC, 30 min, stirring (400 rpm), then 
SPME fibre was exposed to the sample headspace during 10 min 

(May et al., 2013) 

LLE/GC–MS Continuous liquid-liquid extraction apparatus 
Must preparation, dichloromethane extraction for 23 h, followed by 
silica column elution with pentane and Vigreux column concentration 

(Parker et al., 2007) 

α-Guaiene Grape 
HS-SPME/GC–MS SPME syringe (65 µm CW/DVB) 

Sample was thermostated at 40 ºC, 60 min, stirring (1000 rpm), NaCl 
addition (200 g L-1), then SPME fibre was exposed to the sample 
headspace during 60 min 

(Coelho et al., 
2006) 

LLE/GC–MS - 
Must preparation, Pentane-methylene chloride (2:l) extraction, followed 
by Vigreux column concentration 

(Schreier et al., 
1976) 

α-Gurjunene 
Grape HS-SPME/GC–MS SPME syringe (50/30 µm DVB/CAR/PDMS) 

Sample was thermostated at 40 ºC, 5 min, stirring (300 rpm), then SPME 
fibre was exposed to the sample headspace during 30 min 

(Kalua and Boss, 
2010) 

Berry skin distillates LLE/GC–MS Parafilm-sealed separatory funnel- 
Dichloromethane extraction (5 mL, 90 min), repeated three times, 
followed by nitrogen stream concentration 

(Lukić et al., 2010) 
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LLE/GC–FID Parafilm-sealed separatory funnel- 
Dichloromethane extraction (5 mL, 90 min), repeated three times, 
followed by nitrogen stream concentration 

(Lukić et al., 2010)  

Sparkling wine SBSE-LD/LVI-GC–MS PDMS stir bar (0.5 mm × 10mm, 24 µL) 
Extraction: at 20 ºC, 60 min, stirring (800 rpm).  
Back-extraction: pentane (200 µL) under ultrasonic treatment 

(Coelho et al., 
2009) 

β-Gurjunene Grape HS-SPME/GC–MS SPME syringe (50/30 µm DVB/CAR/PDMS) 
SPME fibre was exposed to the sample headspace at 60 ºC, 45 min, 
stirring (800 rpm), NaCl addition (222 g L-1) 

(Perestrelo et al., 
2011) 

α-Humulene 
Grape 

LLE/GC–MS - 
Must preparation, Pentane-methylene chloride (2:l) extraction, followed 
by Vigreux column concentration 

(Schreier et al., 
1976) 

HS-SPME/GC–MS SPME syringe (50/30 µm DVB/CAR/PDMS) 
Sample was thermostated at 40 ºC, 5 min, stirring (300 rpm), then SPME 
fibre was exposed to the sample headspace during 30 min 

(Kalua and Boss, 
2009) 

HS-SPME/GC–MS SPME syringe (50/30 µm DVB/CAR/PDMS) 
SPME fibre was exposed to the sample headspace at 60 ºC, 45 min, 
stirring (800 rpm), NaCl addition (222 g L-1) 

(Perestrelo et al., 
2011) 

HS-SPME/GC–MS SPME syringe (85 µm PA) 
Sample was thermostated at 45 ºC, 30 min, then SPME fibre was 
exposed to the sample headspace during 10 min 

(May and Wüst, 
2012) 

Foliage DHS/GC–MS Dynamic headspace device 
Terminal stems were cut and placed into the dynamic headspace device, 
and the volatile components were sorbed on a Tenax column for 48 h 

(Hampel et al., 
2005) 

Isocalamenene Grape LLE/GC–MS Continuous liquid-liquid extraction apparatus 
Must preparation, dichloromethane extraction for 23 h, followed by 
silica column elution with pentane and Vigreux column concentration 

(Parker et al., 2007) 

Isoledene 

Grape 
HS-SPME/GC–MS SPME syringe (65 µm CW/DVB) 

Sample was thermostated at 40 ºC, 60 min, stirring (1000 rpm), NaCl 
addition (200 g L-1), then SPME fibre was exposed to the sample 
headspace during 60 min 

(Coelho et al., 
2006) 

HS-SPME/GC–MS SPME syringe (50/30 µm DVB/CAR/PDMS) 
SPME fibre was exposed to the sample headspace at 60 ºC, 45 min, 
stirring (800 rpm), NaCl addition (222 g L-1) 

(Perestrelo et al., 
2011) 

Berry skin distillates 
LLE/GC–MS Parafilm-sealed separatory funnel- 

Dichloromethane extraction (5 mL, 90 min), repeated three times, 
followed by nitrogen stream concentration 

(Lukić et al., 2010) 

LLE/GC–FID Parafilm-sealed separatory funnel- 
Dichloromethane extraction (5 mL, 90 min), repeated three times, 
followed by nitrogen stream concentration 

(Lukić et al., 2010) 

2-isopropyl-5-methyl-9-
methylene-bicyclo[4.4.0]dec-
1-en 

Grape HS-SPME/GC–MS SPME syringe (65 µm CW/DVB) 
Sample was thermostated at 40 ºC, 60 min, stirring (1000 rpm), NaCl 
addition (200 g L-1), then SPME fibre was exposed to the sample 
headspace during 60 min 

(Coelho et al., 
2006) 

Muurola-4(14),5-diene Pomaces 
SDE/GC–MS Likens-Nickerson apparatus Hexane (1mL, 3 h) (Ruberto et al., 

2008) 

SDE/GC–FID Likens-Nickerson apparatus Hexane (1mL, 3 h) 
(Ruberto et al., 

2008) 

α-Muurolene 

Grape 

HS-SPME/GC–MS SPME syringe (65 µm CW/DVB) 
Sample was thermostated at 40 ºC, 60 min, stirring (1000 rpm), NaCl 
addition (200 g L-1), then SPME fibre was exposed to the sample 
headspace during 60 min 

(Coelho et al., 
2006) 

HS-SPME/GC–MS SPME syringe (50/30 µm DVB/CAR/PDMS) 
Sample was thermostated at 40 ºC, 5 min, stirring (300 rpm), then SPME 
fibre was exposed to the sample headspace during 30 min 

(Kalua and Boss, 
2009) 

HS-SPME/GC–MS SPME syringe (50/30 µm DVB/CAR/PDMS) 
SPME fibre was exposed to the sample headspace at 60 ºC, 45 min, 
stirring (800 rpm), NaCl addition (222 g L-1) 

(Perestrelo et al., 
2011) 

HS-SPME/GC–MS SPME syringe (50/30 µm DVB/CAR/PDMS) 
Sample was thermostated at 40 ºC, 5 min, stirring (300 rpm), then SPME 
fibre was exposed to the sample headspace during 30 min 

(Kalua and Boss, 
2010) 

LLE/GC–MS - 
Must preparation, Pentane-methylene chloride (2:l) extraction, followed 
by Vigreux column concentration 

(Schreier et al., 
1976) 

Berry skin distillates 
LLE/GC–MS Parafilm-sealed separatory funnel- 

Dichloromethane extraction (5 mL, 90 min), repeated three times, 
followed by nitrogen stream concentration 

(Lukić et al., 2010) 

LLE/GC–FID Parafilm-sealed separatory funnel- 
Dichloromethane extraction (5 mL, 90 min), repeated three times, 
followed by nitrogen stream concentration (Lukić et al., 2010) 

Pomaces SDE/GC–MS Likens-Nickerson apparatus Hexane (1mL, 3 h) 
(Ruberto et al., 

2008) 
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SDE/GC–FID Likens-Nickerson apparatus Hexane (1mL, 3 h) 
(Ruberto et al., 

2008) 

Table wine HS-SPME/GC–MS SPME Syringe (65 µm CW/DVB) 
SPME fibre was exposed to the sample headspace at 40 ºC, 60 min, 
stirring (200 rpm), NaCl addition (200 g L-1) 

(Rocha et al., 
2006a) 

γ-Muurolene 

Grape 

HS-SPME/GC–MS SPME syringe (50/30 µm DVB/CAR/PDMS) 
Sample was thermostated at 40 ºC, 5 min, stirring (300 rpm), then SPME 
fibre was exposed to the sample headspace during 30 min 

(Kalua and Boss, 
2009) 

HS-SPME/GC–MS SPME syringe (50/30 µm DVB/CAR/PDMS) 
SPME fibre was exposed to the sample headspace at 60 ºC, 45 min, 
stirring (800 rpm), NaCl addition (222 g L-1) 

(Perestrelo et al., 
2011) 

HS-SPME/GC–MS SPME syringe (50/30 µm DVB/CAR/PDMS) 
Sample was thermostated at 40 ºC, 5 min, stirring (300 rpm), then SPME 
fibre was exposed to the sample headspace during 30 min 

(Kalua and Boss, 
2010) 

LLE/GC–MS Continuous liquid-liquid extraction apparatus 
Must preparation, dichloromethane extraction for 23 h, followed by 
silica column elution with pentane and Vigreux column concentration 

(Parker et al., 2007) 

LLE/GC–MS - 
Must preparation, Pentane-methylene chloride (2:l) extraction, followed 
by Vigreux column concentration 

(Schreier et al., 
1976) 

Pomaces 
SDE/GC–MS Likens-Nickerson apparatus Hexane (1mL, 3 h) (Ruberto et al., 

2008) 

SDE/GC–FID Likens-Nickerson apparatus Hexane (1mL, 3 h) 
(Ruberto et al., 

2008) 

α-Panasinsen Table wine HS-SPME/GC×GC-ToFMS SPME syringe (50/30 µm DVB/CAR/PDMS) 
Sample was thermostated at 30 ºC, 10 min, stirring (500 rpm), NaCl 
addition (300 g L-1), then SPME fibre was exposed to the sample 
headspace during 2 h, stirring (600 rpm) 

(Robinson et al., 
2011) 

β-Patchoulene 
Table wine HS-SPME/GC×GC-ToFMS SPME syringe (50/30 µm DVB/CAR/PDMS) 

Sample was thermostated at 45 ºC, 10 min, NaCl addition (300 g L-1), 
then SPME fibre was exposed to the sample headspace during 45 min 

(Welke et al., 2012) 

Sparkling wine SBSE-LD/LVI-GC–MS PDMS stir bar (0.5 mm × 10mm, 24 µL) 
Extraction: at 20 ºC, 60 min, stirring (800 rpm).  
Back-extraction: pentane (200 µL) under ultrasonic treatment 

(Coelho et al., 
2009) 

Selina-3,7-diene Grape LLE/GC–MS Continuous liquid-liquid extraction apparatus 
Must preparation, dichloromethane extraction for 23 h, followed by 
silica column elution with pentane and Vigreux column concentration 

(Parker et al., 2007) 

Selina-4,6-diene Grape HS-SPME/GC–MS SPME syringe (85 µm PA) 
Sample was thermostated at 60 ºC, 30 min, stirring (400 rpm), then 
SPME fibre was exposed to the sample headspace during 10 min 

(May et al., 2013) 

β-Selinene 

Grape LLE/GC–MS - 
Must preparation, Pentane-methylene chloride (2:l) extraction, followed 
by Vigreux column concentration 

(Schreier et al., 
1976) 

Berry skin distillates 
LLE/GC–MS Parafilm-sealed separatory funnel- 

Dichloromethane extraction (5 mL, 90 min), repeated three times, 
followed by nitrogen stream concentration 

(Lukić et al., 2010) 

LLE/GC–FID Parafilm-sealed separatory funnel- 
Dichloromethane extraction (5 mL, 90 min), repeated three times, 
followed by nitrogen stream concentration 

(Lukić et al., 2010) 

γ-Selinene Grape HS-SPME/GC–MS SPME syringe (50/30 µm DVB/CAR/PDMS) 
SPME fibre was exposed to the sample headspace at 60 ºC, 45 min, 
stirring (800 rpm), NaCl addition (222 g L-1) 

(Perestrelo et al., 
2011) 

δ-Selinene 

Grape HS-SPME/GC–MS SPME syringe (65 µm CW/DVB) 
Sample was thermostated at 40 ºC, 60 min, stirring (1000 rpm), NaCl 
addition (200 g L-1), then SPME fibre was exposed to the sample 
headspace during 60 min 

(Coelho et al., 
2006) 

Pomaces 
SDE/GC–MS Likens-Nickerson apparatus Hexane (1mL, 3 h) 

(Ruberto et al., 
2008) 

SDE/GC–FID Likens-Nickerson apparatus Hexane (1mL, 3 h) 
(Ruberto et al., 

2008) 

Sesquichamene Table wine HS-SPME/GC×GC-ToFMS SPME syringe (50/30 µm DVB/CAR/PDMS) 
Sample was thermostated at 45 ºC, 10 min, NaCl addition (300 g L-1), 
then SPME fibre was exposed to the sample headspace during 45 min 

(Welke et al., 2012) 

β-Sesquiphellandrene Table wine HS-SPME/GC×GC-ToFMS SPME syringe (50/30 µm DVB/CAR/PDMS) 
Sample was thermostated at 30 ºC, 10 min, stirring (500 rpm), NaCl 
addition (300 g L-1), then SPME fibre was exposed to the sample 
headspace during 2 h, stirring (600 rpm) 

(Robinson et al., 
2011) 

Valencene Grape HS-SPME/GC–MS SPME syringe (65 µm CW/DVB) 
Sample was thermostated at 40 ºC, 60 min, stirring (1000 rpm), NaCl 
addition (200 g L-1), then SPME fibre was exposed to the sample 
headspace during 60 min 

(Coelho et al., 
2006) 
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β-Vetivenene Table wine HS-SPME/GC×GC-ToFMS SPME syringe (50/30 µm DVB/CAR/PDMS) 
Sample was thermostated at 30 ºC, 10 min, stirring (500 rpm), NaCl 
addition (300 g L-1), then SPME fibre was exposed to the sample 
headspace during 2 h, stirring (600 rpm) 

(Robinson et al., 
2011) 

α-Ylangene 

Grape 

HS-SPME/GC–MS SPME syringe (65 µm CW/DVB) 
Sample was thermostated at 40 ºC, 60 min, stirring (1000 rpm), NaCl 
addition (200 g L-1), then SPME fibre was exposed to the sample 
headspace during 60 min 

(Coelho et al., 
2006) 

HS-SPME/GC–MS SPME syringe (50/30 µm DVB/CAR/PDMS) 
SPME fibre was exposed to the sample headspace at 60 ºC, 45 min, 
stirring (800 rpm), NaCl addition (222 g L-1) 

(Perestrelo et al., 
2011) 

HS-SPME/GC–MS SPME syringe (85 µm PA) 
Sample was thermostated at 45 ºC, 30 min, then SPME fibre was 
exposed to the sample headspace during 10 min 

(May and Wüst, 
2012) 

HS-SPME/GC–MS SPME syringe (85 µm PA) 
Sample was thermostated at 60 ºC, 30 min, stirring (400 rpm), then 
SPME fibre was exposed to the sample headspace during 10 min 

(May et al., 2013) 

LLE/GC–MS Continuous liquid-liquid extraction apparatus 
Must preparation, dichloromethane extraction for 23 h, followed by 
silica column elution with pentane and Vigreux column concentration (Parker et al., 2007) 

LLE/GC–MS - 
Must preparation, Pentane-methylene chloride (2:l) extraction, followed 
by Vigreux column concentration 

(Schreier et al., 
1976) 

Berry skin distillates 
LLE/GC–MS Parafilm-sealed separatory funnel- 

Dichloromethane extraction (5 mL, 90 min), repeated three times, 
followed by nitrogen stream concentration 

(Lukić et al., 2010) 

LLE/GC–FID Parafilm-sealed separatory funnel- 
Dichloromethane extraction (5 mL, 90 min), repeated three times, 
followed by nitrogen stream concentration 

(Lukić et al., 2010) 

Pomaces 
SDE/GC–MS Likens-Nickerson apparatus Hexane (1mL, 3 h) 

(Ruberto et al., 
2008) 

SDE/GC–FID Likens-Nickerson apparatus Hexane (1mL, 3 h) (Ruberto et al., 
2008) 

β-Ylangene 

Grape LLE/GC–MS Continuous liquid-liquid extraction apparatus 
Must preparation, dichloromethane extraction for 23 h, followed by 
silica column elution with pentane and Vigreux column concentration 

(Parker et al., 2007) 

Berry skin distillates 
LLE/GC–MS Parafilm-sealed separatory funnel- 

Dichloromethane extraction (5 mL, 90 min), repeated three times, 
followed by nitrogen stream concentration 

(Lukić et al., 2010) 

LLE/GC–FID Parafilm-sealed separatory funnel- 
Dichloromethane extraction (5 mL, 90 min), repeated three times, 
followed by nitrogen stream concentration 

(Lukić et al., 2010) 

Zonarene Grape LLE/GC–MS Continuous liquid-liquid extraction apparatus 
Must preparation, dichloromethane extraction for 23 h, followed by 
silica column elution with pentane and Vigreux column concentration 

(Parker et al., 2007) 

Ketone-type 

Rotundone 

Grape 

SPE/HS-SPME/GC–MSk 
Cartridge with 0.5g Phenomenex Strata SDB-L 

solid phase and SPME syringe (65 µm 
PDMS/DVB) 

Must preparation. Sample washed with water and pentane, and eluted 
with pentane/ethyl acetate (10 mL, 9:1). The recovered extract was 
extracted by SPME (35 °C, 60 min) 

(Siebert et al., 
2008) 

SPE/IM-SPME/GC–MSl 
Cartridge with 0.5g Phenomenex Strata SDB-L 

solid phase and SPME syringe (65 µm 
PDMS/DVB) 

Must preparation. Sample washed with water and pentane, and eluted 
with pentane/ethyl acetate (10 mL, 9:1). The recovered extract was 
extracted by SPME (35 °C, 60 min) 

(Siebert et al., 
2008) 

Table wine 

SPE/HS-SPME/GC–MS 
Cartridge with 0.5g Phenomenex Strata SDB-L 

solid phase and SPME syringe (65 µm 
PDMS/DVB) 

Sample washed with water and pentane, and eluted with pentane/ethyl 
acetate (10 mL, 9:1). The recovered extract was extracted by SPME (35 
°C, 60 min) 

(Siebert et al., 
2008) 

SPE/IM-SPME/GC–MS 
Cartridge with 0.5g Phenomenex Strata SDB-L 

solid phase and SPME syringe (65 µm 
PDMS/DVB) 

Sample washed with water and pentane, and eluted with pentane/ethyl 
acetate (10 mL, 9:1). The recovered extract was extracted by SPME (35 
°C, 60 min) 

(Siebert et al., 
2008) 

Oxide-type 

Cabreuva oxide D Table wine HS-SPME/GC×GC-ToFMS SPME syringe (50/30 µm DVB/CAR/PDMS) 
Sample was thermostated at 30 ºC, 10 min, stirring (500 rpm), NaCl 
addition (300 g L-1), then SPME fibre was exposed to the sample 
headspace during 2 h, stirring (600 rpm) 

(Robinson et al., 
2011) 

Alcohol-type 

α-Bisabolol Table wine HS-SPME/GC×GC-ToFMS SPME syringe (50/30 µm DVB/CAR/PDMS) Sample was thermostated at 30 ºC, 10 min, stirring (500 rpm), NaCl (Robinson et al., 



Introduction 

 

addition (300 g L-1), then SPME fibre was exposed to the sample 
headspace during 2 h, stirring (600 rpm) 

2011) 

α-Cadinol 
Berry skin distillates 

LLE/GC–MS Parafilm-sealed separatory funnel- 
Dichloromethane extraction (5 mL, 90 min), repeated three times, 
followed by nitrogen stream concentration 

(Lukić et al., 2010) 

LLE/GC–FID Parafilm-sealed separatory funnel- 
Dichloromethane extraction (5 mL, 90 min), repeated three times, 
followed by nitrogen stream concentration 

(Lukić et al., 2010) 

Fortified wine SBSE/TD–GC–MSm PDMS stir bar (0.5 mm × 10mm, 24 µL) 
Extraction: at 20 ºC, 60 min, stirring (800 rpm).  
After this, the stir bar was rinsed in ultra-pure water and dried with paper 

(Alves et al., 2005) 

δ-Cadinol Pomaces 
SDE/GC–MS Likens-Nickerson apparatus Hexane (1mL, 3 h) (Ruberto et al., 

2008) 

SDE/GC–FID Likens-Nickerson apparatus Hexane (1mL, 3 h) 
(Ruberto et al., 

2008) 

Cubenol Table wine HS-SPME/GC×GC-ToFMS SPME syringe (50/30 µm DVB/CAR/PDMS) 
Sample was thermostated at 30 ºC, 10 min, stirring (500 rpm), NaCl 
addition (300 g L-1), then SPME fibre was exposed to the sample 
headspace during 2 h, stirring (600 rpm) 

(Robinson et al., 
2011) 

2,3-Dihydrofarnesol Table wine HS-SPME/GC–MS SPME syringe (50/30 µm DVB/CAR/PDMS) 
SPME fibre was exposed to the sample headspace at 35 ºC, 90 min, 
stirring (250 rpm), NaCl addition (300 g L-1) 

(Keyzers and Boss, 
2010) 

Epi-α-cadinol Pomaces 
SDE/GC–MS Likens-Nickerson apparatus Hexane (1mL, 3 h) (Ruberto et al., 

2008) 

SDE/GC–FID Likens-Nickerson apparatus Hexane (1mL, 3 h) 
(Ruberto et al., 

2008) 

γ-Eudesmol 
Table wine HS-SPME/GC–MS SPME syringe (65 µm CW/DVB) 

SPME fibre was exposed to the sample headspace at 40 ºC, 60 min, 
stirring (200 rpm), NaCl addition (200 g L-1) 

(Rocha et al., 
2006a) 

Fortified wine SBSE/TD–GC–MS PDMS stir bar (0.5 mm × 10mm, 24 µL) 
Extraction: at 20 ºC, 60 min, stirring (800 rpm).  
After this, the stir bar was rinsed in ultra-pure water and dried with paper 

(Alves et al., 2005) 

Eudesm-7(11)-en-4-ol Pomaces 
SDE/GC–MS Likens-Nickerson apparatus Hexane (1mL, 3 h) 

(Ruberto et al., 
2008) 

SDE/GC–FID Likens-Nickerson apparatus Hexane (1mL, 3 h) 
(Ruberto et al., 

2008) 

Farnesol 

Grape SBSE/TD-GC–MS PDMS stir bar (0.5 mm × 10mm, 24 µL) 
Must preparation. Extraction: at 20 ºC, 6 h, stirring (700 rpm).  
After this, the stir bar was rinsed in distilled water and dried with a 
cellulose tissue 

(Salinas et al., 
2004) 

Grape skin SPE/ GC–MS 
Column (40 cm × 1 cm) filled with XAD-2 resin 

(12 cm, 0.15-0.25 mm) 

Preparation of grape skins ethanolic extract (15 h). 
Extract dilution with water and introduction on the column.  
Analytes were removed by pentane/dichloromethane (80 mL, 2:1 v/v), 
followed by concentration 

(Versini et al., 
1994) 

Berry skin distillates 
LLE/GC–MS Parafilm-sealed separatory funnel- 

Dichloromethane extraction (5 mL, 90 min), repeated three times, 
followed by nitrogen stream concentration 

(Lukić et al., 2010) 

LLE/GC–FID Parafilm-sealed separatory funnel- 
Dichloromethane extraction (5 mL, 90 min), repeated three times, 
followed by nitrogen stream concentration 

(Lukić et al., 2010) 

Must 

HS-SPME/GC–MS SPME syringe (85 µm PA) 
SPME fibre was exposed to the sample headspace at 40 ºC, 60 min, 
stirring, NaCl addition (300 g L-1) 

(Câmara et al., 
2004) 

LLE/GC–MS Continuous liquid-liquid extraction apparatus 

Dichloromethane extraction (75 mL, 24 h, ca. 50 ºC), repeated six times, 
followed by frozen (-20 °C) and decantation to separate water from 
organic phase and then dried over anhydrous sodium sulphate. Excess of 
solvent removed by distillation at low pressure using a trap with liquid 
nitrogen 

(Rocha et al., 2000) 

Table wine 

HS-SPME/GC–MS SPME syringe (50/30 µm DVB/CAR/PDMS) 
SPME fibre was exposed to the sample headspace at 35 ºC, 90 min, 
stirring (250 rpm), NaCl addition (300 g L-1) 

(Keyzers and Boss, 
2010) 

LLE/GC–MS Continuous liquid-liquid extraction apparatus 
Fluorotrichloromethane extraction (100 mL, 24 h), followed by 
concentration in a microconcentrator 

(Bueno et al., 2006) 

HS-SPME/GC–MS SPME syringe (100 µm PDMS) Sample was thermostated at 45 ºC, 10 min, stirring, NaCl addition (125 (Tao et al., 2008) 
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g L-1), then SPME fibre was exposed to the sample headspace during 15 
min 

SBSE-LD/LVI-GC–MS PDMS stir bar (0.5 mm × 10mm, 24 µL) 
Extraction: at 20 ºC, 60 min, stirring (800 rpm), addition of ethanol 
(10%, v/v).  
Back-extraction: pentane (200 µL), under ultrasonic treatment 

(Coelho et al., 
2008) 

HS-SPME/GC×GC-ToFMS SPME syringe (50/30 µm DVB/CAR/PDMS) 
Sample was thermostated at 30 ºC, 10 min, stirring (500 rpm), NaCl 
addition (300 g L-1), then SPME fibre was exposed to the sample 
headspace during 2 h, stirring (600 rpm) 

(Robinson et al., 
2011) 

HS-SPME/GC×GC-MSn SPME syringe (85 µm PA) 
SPME fibre was exposed to the sample headspace at 45 ºC, 10 min, 
stirring 

(Schmarr et al., 
2010) 

SPE/ GC–MS Cartridge with Strata-X 33 µm polymeric 
reversed phase 

Sample washed with water (20 mL). Analytes were removed by 
dichloromethane (10 mL), dried over anhydrous sodium sulphate, 
followed by N2 stream concentration 

(Álvarez et al., 
2011; González-
Álvarez et al., 

2012) 

HS-SPME/GC×GC-ToFMS SPME syringe (50/30 µm DVB/CAR/PDMS) 
Sample was thermostated at 45 ºC, 10 min, NaCl addition (300 g L-1), 
then SPME fibre was exposed to the sample headspace during 45 min 

(Welke et al., 2012) 

Fortified wine 

HS-SPME/GC–MS SPME syringe (85 µm PA) 
SPME fibre was exposed to the sample headspace at 40 ºC, 2 h, stirring 
(1200 rpm), NaCl addition (300 g L-1) 

(Câmara et al., 
2006b) 

HS-SPME/GC–MS SPME syringe (85 µm PA) 
SPME fibre was exposed to the sample headspace at 40 ºC, 2 h, stirring 
(1250 rpm), NaCl addition (300 g L-1) 

(Câmara et al., 
2007) 

SPE/GC–MS Cartridge with 1 g of C18 reversed-phase  

Free fraction: removed from C18 reversed-phase with dichloromethane. 
The extract was dried over Na2SO4, and concentrated in a Kuderna-
Danish concentrator and then under a stream N2.  
Glycosidically-linked fraction: removed from C18 reversed-phase with 
methanol, followed by vacuum concentration. Residue was dissolved in 
phosphate-citrate buffer (5 mL, pH 5.0) containing a β-glycosidase 
enzyme, and incubated at 40 ºC, for 16 h. Extraction  of analytes with 
dichloromethane 

(Piombino et al., 
2010) 

Sparkling wine 

SBSE-LD/LVI-GC–MS PDMS stir bar (0.5 mm × 10mm, 24 µL) 
Extraction: at 20 ºC, 60 min, stirring (800 rpm).  
Back-extraction: pentane (200 µL) under ultrasonic treatment 

(Coelho et al., 
2009) 

SBSE-LD/LVI-GC–MS PDMS stir bar (0.5 mm × 10mm, 24 µL) 
Extraction: at 20 ºC, 60 min, stirring (800 rpm), addition of ethanol 
(10%, v/v).  
Back-extraction: pentane (200 µL), under ultrasonic treatment 

(Coelho et al., 
2008) 

Lanceol Table wine HS-SPME/GC×GC-ToFMS SPME syringe (50/30 µm DVB/CAR/PDMS) 
Sample was thermostated at 45 ºC, 10 min, NaCl addition (300 g L-1) 
then SPME fibre was exposed to the sample headspace during 45 min 

(Welke et al., 2012) 

ι-Muurolol 

Grape SLE/GC–MS - 
Grape berries dipped one by one into acetone (10 mL, 1 min). 
Resulting extract evaporated to dryness 

(Todorova et al., 
2010) 

Berry skin distillates 
LLE/GC–MS Parafilm-sealed separatory funnel- 

Dichloromethane extraction (5 mL, 90 min), repeated three times, 
followed by nitrogen stream concentration 

(Lukić et al., 2010) 

LLE/GC–FID Parafilm-sealed separatory funnel- 
Dichloromethane extraction (5 mL, 90 min), repeated three times, 
followed by nitrogen stream concentration 

(Lukić et al., 2010) 

Fortified wine SBSE/TD–GC–MS PDMS stir bar (0.5 mm × 10mm, 24 µL) 
Extraction: 20 ºC, 60 min, stirring (800 rpm).  
After this, the stir bar was rinsed in ultra-pure water and dried with paper 

(Alves et al., 2005) 

Nerolidol 
Grape 

HS-SPME/GC–MS SPME syringe (50/30 µm DVB/CAR/PDMS) 
SPME fibre was exposed to the sample headspace at 60 ºC, 45 min, 
stirring (800 rpm), NaCl addition (222 g L-1) 

(Perestrelo et al., 
2011) 

SPE-HS-SPME/GC–MS 
Cartridge with 200 mg of Lichrolut EN resin (12 

cm, 0.15-0.25 mm) and SPME syringe (50/30 
µm DVB/CAR/PDMS) 

Sample washed with ethyl acetate (4 mL) and of water (4 mL). Analytes 
were removed by methanol (2 mL), followed by nitrogen stream 
concentration. 
Sample was thermostated at 60 ºC, 5 min, stirring (400 rpm), NaCl 
addition (300 g L-1) then SPME fibre was exposed to the sample 
headspace during 45 min 

(Perestrelo et al., 
2012) 

Berry skin distillates LLE/GC–MS Parafilm-sealed separatory funnel- Dichloromethane extraction (5 mL, 90 min), repeated three times, (Lukić et al., 2010) 
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followed by nitrogen stream concentration 

LLE/GC–FID Parafilm-sealed separatory funnel- 
Dichloromethane extraction (5 mL, 90 min), repeated three times, 
followed by nitrogen stream concentration 

(Lukić et al., 2010) 

Pomaces 
SDE/GC–MS Likens-Nickerson apparatus Hexane (1mL, 3 h) 

(Ruberto et al., 
2008) 

SDE/GC–FID Likens-Nickerson apparatus Hexane (1mL, 3 h) 
(Ruberto et al., 

2008) 

Pomaces distillates SPE/GC–MS 
Cartridge with 1g Styrene-divinylbenzene 

(SDVB) polymer 

Sample washed with methanol/water (20 mL, 15% v/v) and of water (20 
mL). Analytes were removed by dichloromethane (30 mL), followed by 
Vigreux column concentration 

(López-Vázquez et 
al., 2010) 

Must HS-SPME/GC–MS SPME syringe (85 µm PA) 
SPME fibre was exposed to the sample headspace at 40 ºC, 60 min, 
stirring (1250 rpm), NaCl addition (300 g L-1) 

(Câmara et al., 
2006a) 

Table wine 

HS-SPME/GC–MS SPME syringe (50/30 µm DVB/CAR/PDMS) 
SPME fibre was exposed to the sample headspace at 35 ºC, 90 min, 
stirring (250 rpm), NaCl addition (300 g L-1) 

(Keyzers and Boss, 
2010) 

HS-SPME/GC–MS SPME syringe (65 µm CW/DVB) 
SPME fibre was exposed to the sample headspace at 40 ºC, 10 min, 
stirring (200 rpm), NaCl addition (200 g L-1) 

(Rocha et al., 
2006b) 

LLE/GC–MS Continuous liquid-liquid extraction apparatus 
Fluorotrichloromethane extraction (100 mL, 24 h), followed by 
concentration in a microconcentrator 

(Bueno et al., 2006) 

SBSE-LD/LVI-GC–MS PDMS stir bar (0.5 mm × 10mm, 24 µL) 
Extraction: at 20 ºC, 60 min, stirring (800 rpm), addition of ethanol 
(10%, v/v).  
Back-extraction: pentane (200 µL), under ultrasonic treatment 

(Coelho et al., 
2008) 

HS-SPME/GC–MS SPME syringe (100 µm PDMS) 
Sample was thermostated at 45 ºC, 10 min, stirring, NaCl addition (125 
g L-1), then SPME fibre was exposed to the sample headspace during 15 
min 

(Tao et al., 2008) 

HS-SPME/GC–MS SPME syringe (65 µm CW/DVB) 
SPME fibre was exposed to the sample headspace at 40 ºC, 60 min, 
stirring (200 rpm), NaCl addition (200 g L-1) 

(Rocha et al., 
2006a) 

A–TD/GC–MSo Tube with Tenax TA (60-80 mesh). Analytes were isolated by purging with helium (20 min) (Oliva et al., 1999) 

HS-SPME/GC×GC-ToFMS SPME syringe (50/30 µm DVB/CAR/PDMS) 
Sample was thermostated at 30 ºC, 10 min, stirring (500 rpm), NaCl 
addition (300 g L-1), then SPME fibre was exposed to the sample 
headspace during 2 h, stirring (600 rpm) 

(Robinson et al., 
2011) 

HS-SPME/GC×GC-MS SPME syringe (85 µm PA) 
SPME fibre was exposed to the sample headspace at 45 ºC, 10 min, 
stirring 

(Schmarr et al., 
2010) 

SPE/ GC–MS Cartridge with Strata-X 33 µm polymeric 
reversed phase 

Sample washed with water (20 mL). Analytes were removed by 
dichloromethane (10 mL), dried over anhydrous sodium sulphate, 
followed by N2 stream concentration 

(González-Álvarez 
et al., 2012) 

Fortified wine 

SBSE/TD–GC–MS PDMS stir bar (0.5 mm × 10mm, 24 µL) 
Extraction: at 20 ºC, 60 min, stirring (800 rpm).  
After this, the stir bar was rinsed in ultra-pure water and dried with paper 

(Alves et al., 2005) 

HS-SPME/GC–MS SPME syringe (85 µm PA) 
SPME fibre was exposed to the sample headspace at 40 ºC, 2 h, stirring 
(1250 rpm), NaCl addition (300 g L-1) 

(Câmara et al., 
2006a)  

HS-SPME/GC–MS SPME syringe (85 µm PA) 
SPME fibre was exposed to the sample headspace at 40 ºC, 2 h, stirring 
(1200 rpm), NaCl addition (300 g L-1) 

(Câmara et al., 
2006b) 

HS-SPME/GC–MS SPME syringe (85 µm PA) 
SPME fibre was exposed to the sample headspace at 40 ºC, 2 h, stirring 
(1250 rpm), NaCl addition (300 g L-1) 

(Câmara et al., 
2007) 

LLE/GC–MS _ 
Dichloromethane extraction (5 mL, 90 min), repeated two times, blended 
and dried over anhydrous sodium sulphate, followed by roto-evaporator 
concentration and under a stream of pure N2 

(Perestrelo et al., 
2006) 

Sparkling wine 

SBSE-LD/LVI-GC–MS PDMS stir bar (0.5 mm × 10mm, 24 µL) 
Extraction: at 20 ºC, 60 min, stirring (800 rpm).  
Back-extraction: pentane (200 µL) under ultrasonic treatment 

(Coelho et al., 
2009) 

SBSE-LD/LVI-GC–MS 
PDMS stir bar (0.5 mm thick; 10mm long, 24 

µL) 

Extraction: at 20 ºC, 60 min, stirring (800 rpm), addition of ethanol 
(10%, v/v).  
Back-extraction: pentane (200 µL), under ultrasonic treatment 

(Coelho et al., 
2008) 
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α-Santalol Table wine HS-SPME/GC×GC-ToFMS SPME syringe (50/30 µm DVB/CAR/PDMS) 
Sample was thermostated at 45 ºC, 10 min, NaCl addition (300 g L-1), 
then SPME fibre was exposed to the sample headspace during 45 min 

(Welke et al., 2012) 

β-Santalol Table wine HS-SPME/GC×GC-ToFMS SPME syringe (50/30 µm DVB/CAR/PDMS) 
Sample was thermostated at 45 ºC, 10 min, NaCl addition (300 g L-1), 
then SPME fibre was exposed to the sample headspace during 45 min 

(Welke et al., 2012) 

a Headspace-solid phase microextraction-comprehensive two-dimensional gas chromatography coupled to mass spectrometry with a high resolution time of flight analyzer; b Headspace-solid phase microextraction-gas 
chromatography-mass spectrometry; c Liquid–liquid extraction-gas chromatography-mass spectrometry; d Solid–liquid extraction-gas chromatography-mass spectrometry; e Liquid–liquid extraction-gas chromatography-
flame ionization detector; f Simultaneous distillation-extraction-gas chromatography-mass spectrometry; g Simultaneous distillation-extraction-gas chromatography-flame ionization detector; h Stir bar sorptive 
extraction-liquid desorption-large volume injection coupled to gas chromatography–mass spectrometry; i Solid phase extraction-gas chromatography-mass spectrometry; j Dynamic headspace extraction-gas 
chromatography-mass spectrometry; k Solid phase extraction followed by headspace-solid phase microextraction-gas chromatography-mass spectrometry; l Solid phase extraction followed by Immersion-solid phase 
microextraction-gas chromatography-mass spectrometry; m Stir bar sorptive extraction-thermal desorption-gas chromatography-mass spectrometry; n Headspace-solid phase microextraction-comprehensive two-
dimensional gas chromatography-mass spectrometry; o Adsorption-thermal desorption-gas chromatography-mass spectrometry; p PDMS: polydimethylsiloxane; CAR:carboxen; PA:polyacrylate; CW:carbowax; 
DVB:divinylbenzene.
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I. 5.3. Extraction techniques towards gas chromatographic analysis 

Several extraction techniques have been used to extract sesquiterpenic compounds 

from V. vinifera matrices, such as distillation (López-Vázquez et al., 2010; Ruberto et al., 

2008) or solvent extraction (Perestrelo et al., 2006; Rocha et al., 2000; Schreier et al., 

1976), which are typically time- and labour-intensive (Polášková et al., 2008). Over the 

last two decades, microextraction techniques (i.e. SPME and SBSE) (Pawliszyn, 2000; Vas 

et al., 1998; Vas and Vékey, 2004) have been developed to address the need to facilitate 

rapid and efficient sample preparation. These solvent-free or solventless techniques 

promote high extraction efficiency and also address the actual concerns about health and 

environment sustainability. 

Headspace techniques based on the sorption of the sesquiterpenic compounds on 

Tenax phase (2,6-diphenyl-p-phenylene oxide) followed by GC analysis were also used to 

study these analytes in wine (only nerolidol was identified) (Oliva et al., 1999) and V. 

vinifera foliage (four hydrocarbon sesquiterpene type were detected) (Hampel et al., 2005). 

Tenax is a hydrophobic adsorbent considered appropriate for wine volatile compounds 

extraction due to its low water- and ethanol-adsorbing capacity (Díaz-Regañon et al., 1998; 

Salinas et al., 1994). However, its saturation with the major analytes, as for example the 

esters, when reached, prevents the adsorption of the minor ones, such as the sesquiterpenic 

components (Fernandez and Diaz-Marta, 1997). It seems to be appropriate for extraction of 

sesquiterpenic compounds released by grape foliage, as mono- and sesquiterpenic 

components are the major ones. As a few bibliography is available about V. vinifera 

applications by using this technique, no further specific details will be discussed about. 

 

I. 5.3.1.  Solvent extraction methods 

Liquid-liquid and solid-liquid extraction – LLE and SLE 

The solvent extraction technique is the first crucial step for the preparation of an 

extract that should be truly representative of the sample composition (Blanch et al., 1991; 

Gupta et al., 2012; Mamede and Pastore, 2006; Romanik et al., 2007). Liquid-liquid 

extraction (LLE) has been widely applied for the determination of sesquiterpenic 

components from V. vinifera related products namely berry skin distillates (Lukić et al., 

2010), grapes (extracted before must preparation) (Parker et al., 2007; Rocha et al., 2000; 
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Schreier et al., 1976), and fortified (Perestrelo et al., 2006) and table wines (Bueno et al., 

2006), while solid-liquid extraction (SLE) was only applied to grapes (Todorova et al., 

2010). 

c)

Sample
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Heat

Heat

Solvent
(dichloromethane)

Sample
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Water bath

Solvents
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Figure 10. Schematic examples of apparatus used for solvent extraction based techniques: a) 
separatory funnel (LLE), b) liquid-liquid continuous extraction apparatus (LLE), and c) Likens-
Nickerson apparatus (SDE). 

 

LLE and SLE are used to extract components from liquid and solid matrices, 

respectively, based on their affinities to the organic solvents. Non-polar solvents (dielectric 

constant ε<20), such as dichloromethane (ε=9.1), fluorotrichloromethane (Freon 11, 

ε≈2.3), and pentane (ε=1.8)/ dichloromethane, and also a polar one (ε>20), acetone (ε=21), 

have been used to extract sesquiterpenic compounds, being dichloromethane the most 

commonly used (Table 1). Separatory funnel (Figure 10a) and liquid-liquid continuous 

extraction apparatus (Figure 10b) represent the devices usually used. With this technique, a 

wide range of chemical structures may be simultaneously extracted. However, the required 

solvent evaporation prior to GC injection can result in loss or degradation of some analytes 

with formation of artefacts (Mamede and Pastore, 2006). If the solvent evaporation is 

performed under vacuum and using a trap with liquid nitrogen for more efficient 
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condensation, it is possible to decrease the evaporation temperature, preventing and/or 

reducing the degradation and formation of artefacts. For instance, a Vigreux column 

concentration system under vacuum may be used connected to a liquid nitrogen trap. By 

using LLE, 15 to 100 mL of solvents have been used, with long extraction times (90 min to 

24 h) (Table 1). Large sample volumes (50 to 3,000 mL) are also required, which may 

represent a problem if there is not enough sample amount available. Besides, as this 

technique is only applied to liquid samples, the sesquiterpenic components of solid 

samples, such as grapes and pomaces, may be extracted using SLE. 

 

Simultaneous distillation-extraction – SDE 

SDE combines the characteristics of solvent extraction (LLE and SLE) with 

distillation, being used to extract solid and liquid samples. For several decades, the volatile 

components of V. vinifera related products have been extracted using distillation based 

techniques (Blanch et al., 1991; Caven-Quantrill and Buglass, 2006; Núñez et al., 1984; 

Sánchez-Palomo et al., 2009), although only for pomaces the presence of sesquiterpenic 

compounds (Ruberto et al., 2008), using hexane (ε=1.9) as solvent (Table 1), has been 

reported. 

SDE is a technique used worldwide due to its simplicity, being Likens-Nickerson 

apparatus one of the most common devices (Figure 10c). Basically, the sample with water 

is boiled in one flask, while the extracting organic solvent, less dense and immiscible with 

water, is simultaneously boiled in another flask, both generating steams. The solvent 

vapours are mixed in a central chamber allowing the organic solvent to extract the soluble 

analytes. Then, the water and the organic solvent condensate forming two immiscible 

phases that are able to be separated due to their different densities, returning to their own 

flasks (Reid, 2003). Due to this apparatus configuration, one of its advantages is the low 

ratio of the volume of solvent to the quantity of sample. The distillation and extraction 

processes are continuously repeated along the extraction time (3 h for the pomaces 

extraction). SDE promotes high extraction efficiency due to the continuous and 

simultaneous distillation and extraction that allow enrichment of the solvent extract. Using 

this SDE apparatus, it may be taken into consideration the control of temperature to avoid 

or reduce the loss and thermal degradation of the sample components. However, this 
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methodology has not been highly exploited for sesquiterpenic compounds extraction from 

V. vinifera. Thus, it is not well demonstrated its theoretical advantages. 

 

I. 5.3.2.  Sorptive extraction methods 

Solid phase extraction – SPE 

SPE is an extraction technique based on the partitioning of solutes between two 

phases: the sample (liquid sample or solvent extract obtained from the solid sample) and 

the solid sorbent phase (Piñeiro et al., 2004; Żwir-Ferenc and Biziuk, 2006). This 

extraction technique has been used to characterize sesquiterpenic compounds from grape 

pomace distillates (López-Vázquez et al., 2010), grape skin (Versini et al., 1994), and table 

(González-Álvarez et al., 2012) and fortified wines (Piombino et al., 2010). Free and/or 

glycosidically-linked sesquiterpenic components are achieved. 

The general procedure is to load a sample onto the solid phase, washing away 

undesired components, and then eluting the target analytes with appropriate solvent into 

the collection tubes (Castro et al., 2008; Zhou et al., 1996). Before the extraction of the 

hydrophobic sesquiterpenic compounds, water (ε=80) may be used to eliminate interfering 

substances, such as sugars (Figure 11a). This is particularly important considering the 

posterior study of the glycosidically-linked fraction, which involves the use of β-

glucosidases that may be partially inhibited by glucose. 
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Figure 11. Schematic examples of solid phase operating extraction modes: a) solid phase 
extraction using cartridges, b) HS-SPME using manual syringe extraction holder, and c) the 
corresponding most common stationary phases, and d) SBSE with PDMS stationary phase, in 
immersion or headspace (HS) sampling modes. PDMS – 100 µm Polydimethylsiloxane; PA - 85 µm 
Polyacrylate; PDMS/DVB – 65 µm Polydimethylsiloxane/Divinylbenzene; CW/DVB – 65 µm 
Carbowax/Divinylbenzene; DVB/CAR/PDMS - 50/30 µm Divinylbenzene/ Carboxen/ Polydimethylsiloxane 
 

Due to the hydrophobic characteristics of sesquiterpenic compounds, the commonly 

materials used are polymer-based sorbents such as Amberlite XAD-2, LiChrolut-EN and 

SDVB, and carbon-based sorbents such as C18 reversed-phases (Table 1). The 

sesquiterpenic compounds (free and glycosidically-linked) are adsorbed at the hydrophobic 

solid phase surface, and a selective elution is then performed using an appropriate solvent. 

For elution of the free fraction, non-polar solvents (dichloromethane, ethyl acetate (ε=6), 

pentane/dichloromethane mixture) have been employed, while the polar solvent methanol 

(ε=33) has been used for elution of the glycosidically-linked ones (Table 1). The non-polar 

extract containing the free fraction, after drying and concentration steps, can be directly 

analysed by GC, whereas the polar extract, containing the glycosidically-linked fraction, 

needs to be submitted to an hot acid and/or enzymatic hydrolysis to release the analytes 
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prior to GC analysis. Few reports are available regarding the sesquiterpenic glycosidically-

linked fraction from V. vinifera (Perestrelo et al., 2012; Piombino et al., 2010). The 

methodology used to obtain this fraction is time-consuming as it involves multi-steps. 

 

Solid phase microextraction – SPME 

The SPME is a sample preparation technique based on sorption (absorption and/or 

adsorption), used for simultaneous sampling, extraction, and pre-concentration of the 

analytes. Using SPME, only a small fraction of the analytes is extracted (non-exhaustive 

extraction), which should be representative of the overall composition of analytes in the 

free form (Vas and Vékey, 2004). SPME can be directly applied to extract analytes from 

solid, liquid or gaseous samples. Since its development, in the beginning of the 1990 

decade (Arthur and Pawliszyn, 1990; Zhang and Pawliszyn, 1993), it has been successfully 

applied to a wide variety of matrices (Jalali et al., 2013; Petronilho et al., 2013; Reis et al., 

2009), including V. vinifera related products, such as grapes (Coelho et al., 2006; Kalua 

and Boss, 2009, 2010; May and Wüst, 2012; Perestrelo et al., 2011), musts (Câmara et al., 

2006a; Câmara et al., 2004; Keyzers and Boss, 2010), and table (Rocha et al., 2006a; 

Rocha et al., 2006b; Tao et al., 2008) and fortified wines (Câmara et al., 2006a; Câmara et 

al., 2006b, 2007). 

Several SPME extraction phase geometries are available, such as fibre, thin film, 

tube, disk, vessel, stirrer, and suspended particles. From these, the fibre represents the 

highly used one, which consists of a syringe in which the needle has a base of fused silica 

coated with a thin layer of a stationary phase (Figure 11b) (Pawliszyn, 2000). Basically, 

the SPME sampling can be performed by immersion or direct extraction (IM-SPME), 

where the coated fibre is inserted into the sample and the analytes are transported directly 

from the sample to the extracting phase, or by headspace extraction (HS-SPME), where the 

analytes are extracted from the gas phase equilibrated with the sample. 

The extraction efficiency and reproducibility of SPME technique are dependent on 

several experimental parameters, such as SPME fibre coating, temperature and time of 

extraction, sample amount, type and uniformity of the sample matrix, chemical 

composition of the sample, stirring effect, salt addition (salting-out effect), among others 

(Pawliszyn, 2000; Vas and Vékey, 2004; Weber et al., 1999). Also, SPME fibre coatings 

may be used hundreds of times without showing any physical degradation. However, a 
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regular control of the fibre performance should be carried out using a chemical standard, 

and between extractions, and the fibre should be thermally cleaned-up in order to avoid 

cross-over contaminations. 

Several SPME stationary phases are available on the market, with different 

polarities, film thicknesses (Figure 11c), and types of interaction with the analyte 

(absorption and adsorption). Regarding sesquiterpenic determination, 5 types of SPME 

fibre coatings have been used (Table 1, Figure 11c): PDMS, PA, PDMS/DVB, CW/DVB, 

and DVB/CAR/PDMS. The PDMS/DVB, CW/DVB, and DVB/CAR/PDMS are produced 

using two and three different polymers, thus have a synergistic effect between adsorption 

and absorption phenomena. The mutually synergistic effect of adsorption and absorption of 

the stationary phases promotes a high retention capacity and, consequently, a higher 

sensitivity than fibres based on absorption only, such as PA and PDMS. Thus, 

DVB/CAR/PDMS has been highly used as it presents a wide range capacity of sorbing 

analytes with different physicochemical properties within a molecular weight ranging from 

40 to 275 Da. According to Table 1, PA and, more recently, DVB/CAR/PDMS were the 

most commonly used SPME fibre coatings for sesquiterpenic compounds extraction and 

from these DVB/CAR/PDMS presented the higher extraction efficiency. As V. vinifera 

products exhibit sesquiterpenic components with different chemical structures, 

corresponding to different polarities (Figure 7), fibres containing two or more stationary 

phases are more efficient. In general, polar fibres should be used for polar analytes and 

non-polar fibres for non-polar analytes (Vas and Vékey, 2004). As PA is recommended for 

polar analytes, it not the most appropriate fibre to extract sesquiterpenic compounds. The 

studies reported using PA (Câmara et al., 2006a; Câmara et al., 2006b, 2007; Câmara et 

al., 2004; May et al., 2013; May and Wüst, 2012; Schmarr et al., 2010) have been 

optimized toward the global volatile characterization of grapes, musts, or fortified wines, 

not specifically for sesquiterpenic compounds, which explains its selection.  

The extraction temperature has also a significant effect on the efficiency of the 

SPME process, because it determines the vapour pressure of analytes and also their 

solubility on liquid matrices. For V. vinifera products, extraction temperatures ranging 

from 35 to 60 ºC are used (Table 1). For liquid samples, the compromise between the 

effect on volatility and solubility is determinant to establish the appropriate extraction 

temperature. Due to the low volatility of sesquiterpenic compounds at room temperature 
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(boiling point: 250 to 280 ºC), higher extraction temperatures should increase their 

releasing to the headspace. For example, an extraction temperature of 40 ºC provides the 

higher extraction efficiency than 25 ºC for all the volatile components of Fernão-Pires table 

wines, including the sesquiterpenic ones (Rocha et al., 2006b). However, extraction 

temperatures higher than 60 ºC are not recommended for the extraction of natural products, 

in order to prevent degradation of thermolabile molecules, such as sugars, among others. 

Extraction times ranging from 10 min to 2 h have been applied to sesquiterpenic 

compounds extraction from V. vinifera products (Table 1). In order to promote higher 

transference of the analytes from the sample to the headspace, prior to the introduction of 

the SPME fibre coating, the sample can be thermostated (30 – 45 ºC) during 5 to 60 min 

(Table 1). Long extraction times are not convenient for routine laboratory assays, and a 

compromise between extraction time and maximum extraction efficiency should be 

established. Lower extraction times (20 min of extraction for wines) may be obtained when 

SPME is combined with high sensitive techniques, such as comprehensive two 

dimensional gas chromatography (Santos et al., 2013), in comparison with one-

dimensional gas chromatography (60 min), keeping constant all SPME experimental 

parameters (Câmara et al., 2004). 

For liquid samples, as juice, must, or wine, the effect of stirring and salt addition 

should also be considered. To increase extraction efficiency and facilitate rapid extraction, 

some level of agitation (200 to 1250 rpm, using a magnetic stirring bar – Table 1) is 

applied to transport analytes from the bulk of the solution to the vicinity of the fibre, 

reducing the effect caused by the depletion zone produced close to the fibre as a result of 

fluid shielding and decrease analytes diffusion coefficients (Lord and Pawliszyn, 2000). 

Besides stirring, the addition of salt is also required in order to improve the mass transport 

of analytes from the aqueous phase to the headspace and, therefore, to the SPME fibre 

coating, enhancing the extraction efficiency (Alizadeh et al., 2007). NaCl with high purity 

(≥99%) is commonly used, ranging from 0.125 to 0.300 g mL-1 (Table 1). Basically, the 

addition of salt can change the properties of the boundary phase and decrease the solubility 

of the compounds in the aqueous phase (salting-out effect). The addition of salt promotes 

two processes (Lord and Pawliszyn, 2000). Initially, an increase in the extraction 

efficiency is observed due to the salting-out effect, whereby water molecules form 

hydration spheres around the ionic salt molecules, reducing the content of water available 
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to dissolve the analyte molecules. This drives additional analytes into the headspace and, 

consequently, to the SPME fibre coating. At the saturation state, the analytes may 

participate in electrostatic interactions with the salt ions in solution, reducing their ability 

to move into the SPME fibre coating and thus decreasing the extraction efficiency (Lord 

and Pawliszyn, 2000; Melwanki and Fuh, 2008).  

 

Stir bar sorptive extraction – SBSE 

SBSE technique is rather straightforward and based on the same principles as 

SPME, being applied to solid, liquid, and gaseous matrices. In SBSE, a magnetic stir bar 

coated with a polymeric sorbent is placed in a flask containing the sample and stirred for a 

pre-determined period of time in order to promote the sorption of the sample analytes into 

the polymeric material (Baltussen et al., 1999; Serôdio et al., 2007). The stir bar can be put 

into contact with the liquid sample using either immersion or headspace sampling modes, 

by suspending the stir bar at the top of the flask, where the polymer is in static contact with 

the vapour phase from liquid or solid matrices, avoiding therefore possible contamination 

with non-volatile interferences, as exemplified in Figure 11d (Nogueira, 2012). After the 

extraction step, the stir bar needs to be removed, rinsed with distilled water for clean-up 

from any potential interferences (such as sugars or other undesirable sample constituents), 

dipped on a clean paper tissue to remove water, and submitted to the back-extraction 

process through liquid desorption (LD) using an appropriate solvent or by a thermal 

desorption unit (TD). However this later tool needs a specific unit for the back-out 

operation (up to 350 ºC), making this unit very expensive (Nogueira, 2012). SBSE with 

non-polar PDMS combined with TD or LD has been applied to grapes (Salinas et al., 

2004) and table, fortified and sparkling wines (Alves et al., 2005; Coelho et al., 2009; 

Coelho et al., 2008) (Table 1). 

Although the magnetic stir bar is the most used configuration (Figure 11d) there are 

also other SBSE configurations, such as a set of spheres coated with a sorbent stationary 

phase. PDMS, a non-polar coating, has turn the most used sorbent phase, especially for 

non-polar analytes (i.e. sesquiterpenic compounds), but for analysis that requires the 

extraction of the more polar analytes, it may represent a drawback. Thus, other strategies 

need to be performed, as for example multi-mode assays, derivatization procedures, other 

polymeric phases or alternative sorption-based approaches (Nogueira, 2012). 
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As in SPME, there are several parameters that influence the SBSE extraction 

process, namely the extraction time, stirring, salt addition, sample and stationary phase 

volumes, and analyte polarity, among others. Some of these variables affect the extraction 

kinetics (e.g. time and stirring), as well as the interaction among the analytes and the 

polymeric phase (e.g. analyte polarity) (Coelho et al., 2008; Nogueira, 2012). For 

sesquiterpenic compounds determination, SBSE extraction times ranging from 10 min to 

6h have been used, at temperatures from 20 to 30 ºC, and stirring from 500 to 800 rpm 

(Alves et al., 2005; Coelho et al., 2009; Coelho et al., 2008; Salinas et al., 2004), which 

was then followed by back-extraction with pentane for 15 min (Coelho et al., 2009; Coelho 

et al., 2008) or by desorption in a thermal unit (Alves et al., 2005; Salinas et al., 2004) 

(Table 1). 

The advantage of SBSE over SPME is the relatively high content of polymeric 

sorbent phase. For instance, SBSE contains 24 to 126 µL of PDMS coating whereas SPME 

fibre coating comprises only up to 0.5 µL for a 100 µm film thickness. The lower phase 

ratio for SBSE between the sorbent phase and the sample medium allows the increase of its 

sensitivity and sorption capacity, especially of the non-polar compounds (as sesquiterpenic 

ones) on a factor of 50 to 250 times in comparison to SPME (Alves et al., 2005; Marin et 

al., 2005; Nogueira, 2012; Zalacain et al., 2007). Although this higher sorption capacity of 

SBSE for the determination of trace analytes, this is not a determinant condition to select 

SBSE over SPME, in several cases, the higher recovery of the major analytes leads to 

overloaded chromatograms with several co-eluted peaks (Demyttenaere et al., 2003), 

neglecting the trace analytes, including the sesquiterpenic ones. 

The stir bar, as the SPME fibres, may also be used hundreds of times without 

showing any physical degradation of the PDMS coating material. However, before being 

reused, the stir bars should be cleaned-up with suitable solvents or through TD treatments 

in order to avoid any cross-over contamination (Nogueira, 2012). This technique is 

particularly interesting for liquid samples, as the implementation of the HS mode for solid 

sample analysis is not readily feasible. 

 

I. 5.4.  Gas chromatographic analysis 

After extraction, the analytes are usually analysed using gas chromatographic 

techniques. One-dimensional gas chromatography (1D-GC) was widely used for 



Introduction 

53 
 

sesquiterpenic compounds determination from V. vinifera related products (Álvarez et al., 

2011; Alves et al., 2005; Bueno et al., 2006; Câmara et al., 2006a; Câmara et al., 2006b, 

2007; Câmara et al., 2004; Coelho et al., 2009; Coelho et al., 2008; Coelho et al., 2006; 

González-Álvarez et al., 2012; Kalua and Boss, 2009, 2010; Keyzers and Boss, 2010; 

López-Vázquez et al., 2010; Lukić et al., 2010; May et al., 2013; May and Wüst, 2012; 

Oliva et al., 1999; Parker et al., 2007; Perestrelo et al., 2011; Perestrelo et al., 2006; 

Piombino et al., 2010; Rocha et al., 2006a; Rocha et al., 2000; Rocha et al., 2006b; 

Ruberto et al., 2008; Salinas et al., 2004; Schreier et al., 1976; Siebert et al., 2008; Tao et 

al., 2008; Versini et al., 1994). Over the last decades, several improvements have been 

done on the development of chromatographic equipments and software allowing in-depth 

samples characterization, improving the limits of detection, chromatographic resolution, 

and reducing the time of analysis and data processing. Thus, more recently, a high 

sensitive and high throughput technique, the comprehensive two-dimensional gas 

chromatography (GC×GC), has also been applied for V. vinifera sesquiterpenic 

characterization (Robinson et al., 2011; Schmarr et al., 2010; Welke et al., 2012). A global 

volatile profiling is established estimating the relative content of each analyte based on its 

chromatographic area. From these, few studies comprised quantitative analyses (Lukić et 

al., 2010; Ruberto et al., 2008; Siebert et al., 2008). Actually, metabolite profiling using 

multivariate analysis has attracted the interest of several researchers as it is a fast, 

convenient, and effective tool that may be used to compare groups of samples and to 

extract significant differences between them. 

 

I. 5.4.1.  One-dimensional gas chromatography 

Gas chromatography separation is based on the partition of the analytes between 

two immiscible phases, where a mobile phase (for example, helium, hydrogen, or nitrogen) 

is flowing through a stationary one (column). The elution of analytes in the column is 

according to both dispersion and specific interactions between analytes and column, 

allowing that compounds of different polarities to be spread over the total elution space. 

For the generic cases, the retention of analytes on each column may be classified according 

to the mechanism of retention (Marriott et al., 2004). 
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Figure 12. Schematic representation of a) one-dimensional gas chromatographic system (1D-GC), 
and b) comprehensive two-dimensional gas chromatographic system coupled to mass spectrometry 
with a high resolution time of flight analyzer (GC×GC-ToFMS). * Depending on the 1D-GC 
detector type, several carrier gases may be used, such as nitrogen, helium, or hydrogen, among 
others. 

 

Figure 12a shows a schematic representation of one-dimensional gas 

chromatographic system (1D-GC). The chromatographic column is connected to an 

injection system and, on the other side, to a detector. Several studies conducted to perform 

the volatile profiling, including the sesquiterpenic compounds, used polar polyethylene 

glycol columns (Lukić et al., 2010; Perestrelo et al., 2011). However, non-polar columns 

such as those commonly composed with 5% phenyl polysilphenylene-siloxane or 

equivalents are recommended for sesquiterpenic compounds targeted GC analysis. The 

plot resultant of the registration of the detector response versus time of retention is the 

chromatogram (Figure 12a). Although gas chromatographs may be equipped with several 

types of detectors, flame ionization and mass spectrometry (MS) detectors are those 

commonly used. The flame ionization detectors (FID) are a quite cheaper option when 
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compared to MS detectors and are widely used to targeted analyses for which the standards 

should be available, and the required limits of detection and quantification are not very low 

(≥ µg L-1). The most reliable way to confirm the identification of each compound is based 

on authentic standard co-injection, which in several cases is economically prohibitive, and 

often unachievable in the time available for analysis, or because standards are not 

commercially available. Thus, the MS detectors and the commercial mass spectra 

databases represent a crucial tool to tentatively assess analytes identification. Currently, 

GC–MS equipments already have suitable and robust software algorithms that make easier 

the data processing (Dettmer et al., 2007). 

MS analysis may be operating in several acquisition or processing modes. Full-scan 

mode (scanning in a m/z range) is a current acquisition mode that may promote frequent 

co-elutions, specially for complex samples. To overcome this drawback, some strategies 

may be improved, namely the use of single ion monitoring mode (SIM – MS acquisition 

using m/z diagnostic ions), and ion extraction chromatography (IEC – data processing 

using specific m/z diagnostic ions) mode, that increase the specificity and sensitivity, thus 

minimizing the contribution of co-eluted compounds and increasing the peak area of the 

target analyte(s) (Coelho et al., 2009; Rocha et al., 2012; Tranchida et al., 2013). IEC has 

the advantage to simultaneously obtaining improved data about the target analyte (i.e. 

sesquiterpenic compounds by using selected ions) plus data about the global volatile 

profile (full-scan acquisition data), that can be further explored for in-depth analysis of 

sample. 
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Figure 13. Diagnostic ions (m/z 93, 161, and 204) using for sesquiterpenic compounds detection, 
exemplified by the nerolidol mass spectrum. 
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The determination of sesquiterpenic compounds mass spectra allowed to define a 

set of m/z diagnostic ions: m/z 93, 161, and 204. The nerolidol mass spectrum is used in 

Figure 13 to illustrate the selected ions. The m/z ions 41, 69, and 43 correspond to the 

spectrum dominant peaks, however, as it is also common to MS fragmentation pattern of 

other frequent chemical families (i.e. alkanes, alkenes, aliphatic ketones, etc), these cannot 

be used as diagnostic ions of sesquiterpenic compounds. The ion at m/z 204 may be used to 

monitor the presence of oxygen-containing sesquiterpenic compounds. Also, the ion at m/z 

93 allows the simultaneous detection of monoterpenic compounds (C10) and C13 

norisoprenoids, which is an advantage on the analysis of natural products due to the 

relevant and related properties of these metabolites. Further, C10 and C15 terpenic 

compounds and C13 norisoprenoids appeared on different positions on the chromatogram, 

thus with no co-elution. 

Besides the co-injection of standards and the mass spectrum examination, other 

strategies may also be performed to improve identification confidence, as for example the 

retention indices (RI) values. RI may be computed using the van den Dool and Kratz 

equation (van den Dool and Kratz, 1963), after the injection of a n-alkanes series and 

sample, using the same GC column: 

RIX = CN + 100[(tRX-tRN) / (tRN+1 − tRN)]           (van den Dool and Kratz, 1963) 

where RIX refers to the retention index of chemical compound “X”; C N is the 

number of carbons of n-alkane hydrocarbon eluting immediately before chemical 

compound “X”; tRN and tRN+1 are retention times of the reference n-alkane hydrocarbons 

eluting immediately before and after chemical compound “X”; tRX is the retention time of 

compound “X”. 

The experimentally determined RIs can be compared with those reported in the 

literature or in the freely available open source RI libraries for chromatographic columns 

similar to the column used in the experimental analysis. While retention times vary with 

the individual chromatographic system conditions (i.e. column length and diameter, film 

thickness, carrier gas velocity, and pressure), the derived retention indices are quite 

independent of these parameters and allow comparing values measured by different 

analytical laboratories under varying conditions (Zellner et al., 2008). To compute the RI, 

the retention time of a specific analyte is normalized with the retention times of adjacent 
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eluting n-alkanes, thus RI is ruled by the number of carbons in the molecule. The 

sesquiterpenic RI values may range from ≈ 1300 to 1800 (Jalali et al., 2013). That may be 

explained by the wide range of C15 structures of this chemical family (linear, cyclic, 

hydrocarbon type, and/or oxygen-containing structures). 

Despite 1D-GC processes are widely used, providing rewarding analytical results, 

the complex nature of natural products requires extended GC runs. Furthermore, in-depth 

analysis of the chromatograms frequently indicates that some peaks are the result of two or 

more co-eluting analytes. This is due to the fact that the complexity of the natural products 

exceeds the capacity of one single separation system, and reliable MS identification is not 

possible (Rocha et al., 2007a). Thus, in the last decades, considerable research has been 

dedicated to the combination of independent techniques with the aim of strengthening 

resolving power (Kidwell and Riggs, 2004; Tranchida et al., 2004). Multidimensional gas 

chromatography, such as comprehensive two-dimensional gas chromatography appeared to 

be a reliable alternative. 

 

I. 5.4.2.  Comprehensive two-dimensional gas chromatography 

Multidimensional gas chromatography (MDGC) allows advanced characterization 

of complex samples due to its separation efficiency, which is unlikely to be accomplished 

by 1D-GC. MDGC analysis can be defined as ‘‘the process of selecting a (limited) region 

or zone of eluted compounds issuing from the end of one GC column, and subsequently 

subjecting the zone to a further GC displacement’’ (Marriott et al., 2012). These 

approaches have become particularly known for enantioselective analysis, being applied in 

the determination of monoterpenic compounds in V. vinifera foliage (Hampel et al., 2005), 

grapes (Luan et al., 2004; Luan et al., 2006), and wines (Marriott et al., 2012), and in the 

determination of sesquiterpenes in plants (König et al., 1999), among others. 

An alternative MDGC approach used for sesquiterpenic compounds determination 

on V. vinifera products was comprehensive two-dimensional gas chromatography 

(GC×GC). The GC×GC system has already been used for the detail characterization of 

sesquiterpenic components of Cabernet Sauvignon wines from Australia (Robinson et al., 

2011), Merlot wines from Brazil (Welke et al., 2012), and Pinot Noir, Cabernet Sauvignon 

and Dornfelder table wines from Germany (Schmarr et al., 2010). Basically, GC×GC 

employs two orthogonal mechanisms to separate the constituents of the sample within a 
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single analysis, based on the application of two GC columns coated with different 

stationary phases as, for example, a non-polar (separation ruled by boiling points) and a 

polar (separation by polarity), connected in series through a special interface, known as 

modulator (Górecki et al., 2006; Herrero et al., 2009) (Figure 12b). For instance, if a 

cryomodulator is used, the interface cuts small (several seconds) portions of the 1D (first 

dimension) eluate by cryofocusing and re-injects them into the second column (2D). Each 
1D peak is modulated several times, largely preserving the 1D separation. The 2D is very 

short and narrow and, consequently, each modulated portion is “flash” separated before the 

next modulation (Figure 12b). Therefore, GC×GC offers substantial advantages over 

conventional 1D-GC, namely enhanced resolution, increased peak capacity, faster run 

times, enhanced mass selectivity and sensitivity, and improved limits of detection due to 

the focusing of the peak in the modulator (Jalali et al., 2012; Seeley and Seeley, 2013; 

Song et al., 2004; Souza et al., 2009). 

GC×GC may be combined with several types of detectors, namely FID, MS or 

higher sensitive detectors as time-of-flight mass spectrometry (ToFMS). ToFMS detectors 

bring several advantages, such as full mass spectra acquisition at trace level sensitivity and 

mass spectral continuity, which allows for deconvolution of spectra of co-eluted peaks 

(Górecki et al., 2006). Narrow peaks with width at half height of 0.1 s or less are 

preferably recorded by using the high data acquisition speed of ToFMS, providing the 

sufficient data density required for GC×GC separations (Shellie et al., 2001). The analysis 

of V. vinifera cv. Cabernet Sauvignon table wine by GC×GC-ToFMS allowed to identify 

22 sesquiterpenic compounds. From these, 10 have never been reported in table wines or 

even in another V. vinifera variety, such as α-alaskene, β-bisabolene, α-curcumene, 

4,5,9,10-dehydro-isolongifolene, α-panasinsen, β-sesquiphellandrene, β-vetivenene, 

cabreuva oxide D, α-bisabolol, and cubenol (Robinson et al., 2011). However, a study 

performed by GC×GC-MS on table wines belonging to the same variety, only allowed the 

identification of farnesol and nerolidol (Schmarr et al., 2010). Beyond the fact that SPME 

experimental parameters were different in both studies, and also the variability of the 

product should be considered, the different level of detectors sensitivity were determinant 

for the level of data obtained. 

The structured 2D chromatographic space is perhaps the most important underlying 

property of GC×GC that gives rise to a number of novel capabilities of GC×GC compared 
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with 1D-GC. Essentially, this relates the positions of peaks in the 2D chromatographic 

space to the chemical properties of the corresponding analytes and, most significantly, the 

chemically-related analytes have related spatial distributions in the 2D space. This 

approach simplifies the data obtained, reduces the time of analysis (Cardeal and Marriott, 

2009; Coelho et al., 2007; Silva et al., 2010), and represents a helpful tool for more 

reliable identifications, especially for complex samples when standards are not available. 

Figure 14 elucidates the structured chromatogram principle. 
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Figure 14. Blow-up of a part of GC×GC-ToFMS chromatogram contour plot obtained for V. 
vinifera grapes a) in full-scan acquisition mode and b) IEC mode of m/z 93, 161 and 204. The n-
alkanes series (C10–C16) was superimposed on the contour plots. The clusters formed by structurally 
related compounds are indicated. 
 

Chromatograms acquired in full-scan (Figure 14a) and IEC (Figure 14b - m/z 93, 

161, and 204) modes are shown. IEC mode seems to be very useful to eliminate the 

majority of non-sesquiterpenic compounds, simplifying the data obtained, reducing the 

time of analysis, and also allowing the definition of specific 2D chromatographic space 
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containing these compounds (1tR – 655 to 1005 s and 2tR – 0.5 to 1.7 s). According to 

Figure 14b, clusters are observed according to the 1D (C10, C13, and C15) ruled by volatility 

and 2D (hydrocarbons versus oxygen-containing compounds) by polarity, as a non-polar 

thick-film 1D column and a polar 2D column are combined. Thus, two almost independent 

(orthogonal) separations are provided, allowing the resolution of many peaks that 

overlapped in the 1D chromatogram. The hydrocarbons are the least polar analytes, 

showing the lowest retention times for 1D (1tR<0.7 s), while oxygen-containing ones 

(alcohols and ketones), with the highest polarity, present the highest 2DtR values (2tR range 

from ca 0.7 to 1.7 s). Further, using this system, compounds with similar volatility may be 

separated according to their polarity. For instance, Figure 15 shows that propyl 

dodecanoate, α-calacorene, and 4,5,9,10-dehydro-isolongifolene, presenting similar 

volatility (1tR – 880 s), were separated on 2D (2tR  – 0.41, 0.49, and 0.60 s, respectively) due 

to their different polarities. 
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Figure 15. a) Blow-up of a part of total ion GC×GC chromatogram and corresponding contour 
plots obtained from a table wine, showing propyl dodecanoate, α-calacorene and 4,5,9,10-dehydro-
isolongifolene, which are separated on the 2nd Dimension, according to their polarity properties. b) 
The 100 milliseconds-wide 4,5,9,10-dehydro-isolongifolene (trace wine sesquiterpenic compound) 
GC×GC peak is easily defined and identified at a mass spectral acquisition of 100 spectra/s, and its 
spectral quality allows its identification by comparison with mass spectrum of commercial 
databases (as Wiley database). 
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Sensitivity and spectral quality are two important issues, especially in the 

identification and quantification of trace components. During the cryofocusing process in 

the GC×GC modulator, the analytes fraction that elute from the 1D column are 

significantly sharpened prior to being released into the 2D column. As a consequence, 

narrow peaks are obtained (ca. 100 ms). However, the spectral quality allows comparison 

with commercial database, as observed for 4,5,9,10-dehydro-isolongifolene, a trace wine 

sesquiterpenic component (Figure 15). The integrated usage of several data that can be 

achieved from GC×GC-ToFMS analysis is an added-value in the analytes identification. 

For instance, the tentatively identification of 4,5,9,10-dehydro-isolongifolene may be 

achieved by combination of retention times on 1D and 2D (crucial to estimate its relative 

volatility and polarity if non-polar/polar set of columns is used), mass spectrum (and 

similarity with databases), and RI, as exemplified in Table 2. 

 

Table 2. Example of the experimental data that can be achieved from GC×GC-ToFMS analysis. 

Name 1tR, 2tRa (s) Formula RIb calc. RIc lit. m/zd Similarity Area 

α-Calacorene 880, 0.49 C15H20 1542 1542 157 : 999; 142 : 518; 141 : 354 932 1055387 

4,5,9,10-Dehydro-
isolongifolene 

880, 0.60 C15H20 1543 1544 143 : 999; 185 : 756; 157 : 697 916 408414 

a Retention times for first (1tR) and second (2tR) dimensions in seconds 
b Retention Index obtained through the modulated chromatogram 
c Retention Index reported in the literature for 5% phenyl polysilphenylene-siloxane or equivalents (Petronilho et al., 2011; Setkova et 
al., 2007) 
d m/z : relative abundance 

 

________ 

In summary, several pre-treatment procedures and extraction techniques are 

required to be performed to promote sesquiterpenic compounds enrichment before GC 

analysis, because these secondary metabolites are commonly present in trace amounts, in a 

free form or as a glycosidically-linked one. Comparatively to solvent extraction techniques 

(LLE, SLE and SDE) and SPE, microextraction techniques based on analytes 

sorptive/adsorptive capacity on polymeric phases (SBSE and SPME) can be a good 

example of saving preparation steps and time, and also disposal costs, reducing error 

sources. SPME is one of the most well-established extraction techniques for sesquiterpenic 
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compounds. It integrates sampling, extraction, concentration, and sample introduction into 

a single solvent-free step, showing reliability in terms of the enrichment capacity, as well 

as great sensitivity and selectivity. As SPME coatings are mainly hydrophobic, they have 

high affinity for non-polar compounds such as the sesquiterpenic ones and have low 

affinity for the more abundant hydrophilic species, which put this technique in unique 

position to study these analytes.  

The 1D-GC is the most used system, which is a cheaper option, having low 

consumables costs. It is responsible for solving several analytical problems. However, the 

study of complex matrices or even the research of trace analytes, such as the sesquiterpenic 

compounds, fully justifies the application of GC×GC chromatographs. Actually, all these 

equipments offer several tools to make easier the analysis, which includes mass spectra 

databases and highly developed software algorithms for data processing. GC×GC offers 

substantial advantages over conventional 1D-GC. However, the structured 2D 

chromatographic space is perhaps the most important underlying property of GC×GC 

compared with 1D-GC, as it represents a helpful tool that allows more reliable 

identifications, especially for complex samples such as natural products. Moreover, as the 

majority of the standards are not commercially available, it is not realistic to acquire 

hundreds of standards, and because the sesquiterpenic compounds present a similar mass 

spectra fragmentation pattern, the structured chromatogram is definitely a relevant add-

value. Data processing and identification is a major challenge, particularly when large 

sample sets are analysed. Few methods have been developed for efficient treatment of 

large data sets produced by GC×GC-ToFMS, which have been implemented as a freely 

available open source software package. However, the GC×GC-ToFMS data processing is 

still undergoing progress, as the actual alternatives are not always able to meet the 

demands of terpenic determination from natural products, especially when they appear as 

minor components. 

 

I. 6. Using multivariate analysis in sustainability context 

To understand the grape variety oenological potential regarding the region 

characteristics, and mainly considering the uncontrollable environment conditions, the 

application of multivariate analysis in order to obtain fast and reliable information that 
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helps the winemaker decision is crucial. Robust multivariate analysis including long term 

data may represent a key tool for the analysis of emerging policies, price sets, and to 

reduce the environmental impact on wine quality by implementing adequate winemaking 

technologies. 

Over many years, research has been aimed at developing a simple model or method 

that could define and predict grape and wine quality. In fact, in the last years, different 

types of models constructed by application of different multivariate methods have been 

developed (Due et al., 1993; Marais et al., 2001; Santos et al., 2012; Santos et al., 2011; 

Urhausen et al., 2011; Valdés-Gómez et al., 2009). Multivariate analysis, machine learning 

and pattern recognition techniques play an important role in the assessment of the 

relationships that may occur between several factors such as climate, viticulture 

techniques, vineyard ecosystem, and grape composition, relevant for the definition of the 

wine quality. The general approach could include, in one hand, unsupervised studies of the 

major sources of variability, using Principal Component Analysis (PCA) and Hierarchical 

Cluster Analysis (HCA). On the other hand, the use of factors driven methods such as 

analysis of variance (ANOVA)-PCA, ANOVA-simultaneous component analysis (ASCA), 

Partial Least Squares-Discriminant Analysis (PLS-DA), and Canonical Correlation 

Analysis (CCA), could bring out important relationships among measured factors as well 

as to assess the influence of misleading factors that are pervasive in the analysis of 

environmental uncontrolled measures. 

Some models to predict wine quality based on chemical, climatic and agricultural 

data are available in literature. A discussion about these examples should be important to 

highlight their relevance and drawbacks. A model to predict wine quality that correlates 

microclimatic data (temperature and radiation) with volatile component concentrations and 

wine sensory parameters of Sauvignon Blanc variety, was developed (Marais et al., 2001). 

In this model, seventy-two independent data sets consisting of 3 harvests (1997 to 1999), 3 

climatically different regions in South Africa, 2 canopy treatments (canopy is a function of 

different climatic and viticultural factors, which determines the effects of temperature and 

radiation), and 4 maturation stages, were developed. The microclimatic data within the 2 

canopies were recorded as independent variables while the grape and wine measurements 

such as volatiles (monoterpenes and norisoprenoids) and sensory data (fruitiness and 

vegetative/asparagus/green pepper intensity) were recorded as dependent variables. 
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Pearson´s correlation coefficients were calculated between the above mentioned 

independent and dependent variables (Marais et al., 2001). The model utilises above- and 

within-canopy radiation and can explain 68.8% of the variation in the cultivar-typical 

vegetative/asparagus/green pepper intensity of Sauvignon Blanc wine. Other selected 

example is a study carried out from 2005 to 2008 to calibrate and apply near infrared 

spectroscopy to assess the spatial behaviour of 3 grape varieties (Cabernet Sauvignon, 

Syrah and Merlot) quality parameters along the vineyards of Sao Joaquin Valley (USA), 

and promote differential mechanical harvesting, according to quality zone delineation 

(Santos et al., 2012). The quality indicators (anthocyanin content, pH, titratable acidity and 

soluble solids) were subject to geo-spatial modelling, and calibrations were developed 

using PLS. Subsequently, the data set was utilized to delineate “within-field” grape quality 

zone and to determine the harvest time. The approach for field prediction of grape quality 

parameters and zone delineation allowed to distinguish two wines based on their different 

chemical composition, principally on anthocyanin content (Santos et al., 2012). 

The studies reported above and others available in the literature are restricted in 

space and in the number of parameters evaluated. Consequently, the prediction power of 

the models is very limited. In the context of sustainability, the ultimate goal of multivariate 

analysis should be to identify the natural factors, as vineyards and harvest conditions, and 

their interactions affecting grape composition and quality. In this PhD thesis, ASCA 

(analysis of variance-simultaneous component analysis) was employed for this purpose. 

ASCA is a merging of ANOVA and PCA that allows to remove the drawbacks of both 

methods, namely ANOVA cannot take into account the covariance between different 

variables and PCA does not take the experimental design into account, which means that 

the different contributions to the variation caused by the experimental design are 

confounded in the model (Jansen et al., 2005; Smilde et al., 2005). Thereby, a data analysis 

method is obtained that takes both the covariance between the multiple variables and the 

design of the experiment into account (Jansen et al., 2005). This method consists in 

partitioning the original data matrix into a set of matrices corresponding to the different 

factors of the experimental design and subsequently subjecting each of these matrices to a 

PCA. ANOVA-like model is constructed from the PCA models of all effects and 

interactions. Sub-matrices are defined to have orthogonal column spaces. Therefore, the 

column spaces of the sub-models fitted on these matrices are also mutually orthogonal. 
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This allows interpreting all sub-models independently of each other. Since loadings are 

calculated for each sub-model independently, contribution of the variables to every source 

of the variation in the data may be identified. For instance, partitioning of original data 

matrix was done in accordance with the design factors, namely factor “a” and factor “b”, 

and their interaction “ab”: 

X = Xa + Xb + Xab + E      (Jansen et al., 2005), 

where Xa is a matrix containing variation related to factor “a”, Xb is a matrix 

containing variation related to factor “b”, Xab is a matrix containing the variation related to 

the interaction between factors “a” and “b”. After running PCA on each one of those 

matrices, the following ASCA model is obtained: 

X = TaPa’ + TbPb’ + TabPab’ + E    (Smilde et al., 2005), 

where T and P are PCA scores and loadings, respectively, for each of the sub-

models, and E is a residual error. Number of significant PCs for each sub-model was 

selected using cross-validation. 

Significance of each factor was assessed using a permutation test (Meyners, 2001; 

Vis et al., 2007; Westerhuis et al., 2008). Permutation consists in changing randomly the 

order of the rows in the data set. As a result, in the permuted data set treatment, levels are 

assigned randomly to the measurements. Permutation test consists in testing the null 

hypothesis that a given effect is not significant and the respective ASCA sub-model 

describes noise using quality-of-fit criteria. Data were permuted 2000 times and the 

percentage of the variance explained by each sub-model in the total model was used as 

quality-of-fit criterion. Variance explained by each sub-model in the total model was 

calculated for each sub-model using the formula: 

  (Smilde et al., 2005), 

where Ea,tot is the percentage of explained variance of the sub-model “a” in the total 

model, Ta and Pa are the scores and loadings for the sub-model “a”, X is an original data 

matrix, and “m” and “n” are number of variables and samples in the data set, respectively. 
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ASCA is particularly helpful for analysis of the effects in the designed data sets 

where large number of variables have been measured in a set of samples. This method was 

already applied to evaluate the effects of pressure (250–650 MPa) and pressure holding 

time (15–120 min) on phenolic content of Nero D'avola Syrah red wine. The results of 

ASCA indicated that both factors significantly (p < 0.05) affect the whole data set about 

wine quality parameters whereas their interaction was insignificant (Tao et al., 2013). 

Furthermore, the effects of age and variety on the electronic tongue response and wine 

composition with respect to the organic acids, phenolics and furanic derivatives, by using 

HPLC, were evaluated. ASCA revealed that effects of age, grape variety and their 

interaction were significant (p < 0.05) for the HPLC data set and only the effect of age was 

significant for the electronic tongue data (Rudnitskaya et al., 2010). 
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Grape sampling strategy 

 

 

 

Overview 

A three years sampling plan was performed to evaluate the effect of different 

vineyard parcels characteristics and harvest year conditions on the variety oenological 

potential. For this, 3 V. vinifera white varieties (Arinto, Bical, and Sauvignon Blanc) and 4 

red varieties (Baga, Castelão, Touriga Nacional, and Sousão) were selected, each one 

collected during maturation, in 3 consecutive harvests (2010 to 2012), and obtained from 

vineyard parcels with different edaphoclimatic characteristics (3 parcels for each variety). 

Several physicochemical parameters were used to evaluate each variety oenological 

potential during maturation: berry weight, pH, titratable acidity, sugar and phenolic 

contents, antiradical activity, and volatile composition (free fraction). Besides these 

parameters, at maturity, both free volatile fraction and the glycosidically-linked fraction 

were considered. This was performed to grape varieties obtained from Bairrada 

Appellation. 
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II. 1.  Framework 

In viticulture context, a sampling strategy comprises the establishment of several 

parameters, namely, the number of samples, the sampling locations, the time of sampling, 

the vineyard characteristics and the selection of grape varieties (Totaro et al., 2013). As a 

complex network of variables are known to influence grapes composition, and thus, wine 

quality (Figure 2), in order to evaluate vineyard parcel characteristics and harvest year 

conditions effects on the variety oenological potential, a sampling strategy was defined, 

where several parameters were selected (Figure 16). Therefore, a 3 years sampling plan 

was performed considering a total of 19 parcels into two vineyards of Manuel dos Santos 

Campolargo Herdeiros company, in Bairrada Appellation. For each variety, three vineyard 

parcels with different edaphoclimatic conditions (soil type, altitude, rows orientation, and 

sunlight exposure) were selected and marked in order to collect samples from the same 

parcel during the 3 harvest years (from 2010 to 2012). Grapes were collected randomly 

throughout each parcel along their maturation. As vineyard parcels characteristics and 

harvest year conditions influenced the variety oenological potential, and thus wine quality 

(Figure 16), several physicochemical parameters were evaluated during maturity: berry 

weight, pH, titratable acidity, sugar and phenolic contents, antiradical activity, and volatile 

composition (free fraction). Special attention was devoted to grapes at maturity since the 

glycosidically-linked fraction was also considered. Seven V. vinifera varieties (Arinto, 

Bical, Sauvignon Blanc, Baga, Castelão, Touriga Nacional and Sousão) from Bairrada 

Appellation, were considered. 

The present Chapter aims to give the details related to the sampling strategy 

implemented to evaluate the effects of parcel characteristics and harvest year conditions on 

each variety oenological potential. 
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Vineyard and harvest year effects on the variety 
oenological potential
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• Sunlight exposure
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Wine making process

Wine quality

Vine behaviour

PhD 
Thesis 
aim

Harvest years
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Vineyard conditions
3 parcels for each variety

Varieties
White: Arinto, Bical, Sauvignon Blanc
Red: Baga, Castelão, Touriga Nacional, Sousão

 

Figure 16. Influence of harvest year and vineyard parcel characteristics on each variety oenological 
potential. 

 

II. 2.  Varieties under study 

From the 26 varieties recommended and authorized for controlled quality wines 

(CQW Bairrada) of Bairrada Appellation (Decreto-Lei nº 301/2003), 3 white varieties 

(Arinto, Bical, and Sauvignon Blanc) and 4 red ones (Baga, Castelão, Touriga Nacional, 

and Sousão) were selected. The selection of these varieties was made based on the 

representativeness of the varieties to Bairrada Appellation and also on the interests of 

Manuel dos Santos Campolargo Herdeiros company: these varieties are recommended for 

QWPSR of Bairrada, Baga is the most cultivated variety in this Appellation and represents 

90% of the total red Bairrada vineyard. Also, Arinto and Bical varieties represent 20% 

(10% for each one) of the total white vineyard. Sauvignon Blanc is well appreciated in this 

Appellation due to its pleasant aroma sensory properties. On the other hand, Sousão is used 

as “teinturier” to blend with other varieties (poor in colour) to give colour to the resulting 

wines. Castelão and Touriga Nacional are well appreciated for their aroma characteristics. 
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The morphological aspects and particularities of the 7 V. vinifera varieties under 

study are described as following (adapted from www.cvbairrada.pt and 

www.vinetowinecircle.com): 

 

Arinto  

Morphologic aspects: 

The leaves are very large and plane exhibiting salient and 

straight "teeth". Their bunch size is large, conical with several 

wings, and highly compacted, presenting a medium to large 

length peduncle. The berry is small to medium size, with elliptical shape, and a green-

yellow colour. 

 

Particularities: 

This variety has the ability to adapt to different climates being widespread in most wine 

regions, from North to South of Portugal. It has a late maturation being resistant to year 

climatic conditions. The aroma is mildly intense showing essentially fruity (tree fruits) 

notes. The resulting wines have an interesting aroma development in its first year of life, 

preserving this aroma complexity for several years. 

 

 

Bical 

Morphologic aspects: 

The leaves have a medium size, clear green colour and the sides 

slightly curve to down. Their bunch has a medium size and is 

low compacted, presenting a medium length peduncle. The 

berry is of medium size, with an elliptical shape, and a green-yellow colour with black 

points. 

 

Particularities: 

Bical is highly sensitive to year climatic conditions. This is a variety resistant to rot but 

particularly sensitive to oidium. Bical allowed obtaining wines with serene aromas being 

essentially fruity. 
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Sauvignon Blanc 

Morphologic aspects: 

The leaves have a medium size and a clear green colour. Their 

bunch has a small/medium size and is low compacted. The 

berry is of small/medium size, with a round shape, and a green-yellow colour. 

 
Particularities: 

This variety presents a short cycle with an early maturation. Sauvignon Blanc adapts 

readily to all kinds of growing conditions. It presents exuberant aroma sensory properties. 

It is characterized as displaying vibrant citrus, tree and tropical fruit characters with some 

herbaceous notes. 

 
 

Baga 

Morphologic aspects: 

The leaves have a medium size, with short convex teeth and 

medium to dark green colour. Their bunch has a small/medium 

size, conical shape, and is little to medium compacted, 

presenting medium length peduncle. The berry is of medium size, with a round shape, and 

a blue-dark colour. 

 

Particularities: 

This variety has a late maturation. Baga strongly reacts to year climatic conditions, thus the 

production results vary from one year to another. It is resistant to oidium, however 

maturation problems may occur with September rainfall originating grapes susceptible to 

berry rot. Baga adapts well to soils with clay in its texture, with high humidity, and 

requires good sunlight exposure for a long growth cycle. Baga wines have different alcohol 

and aroma characteristics, which are dependent on the year climatic conditions. Resulting 

Baga wines have a grenade colour, a fruity aroma, and have a good ageing potential. 
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Castelão 

Morphologic aspects: 

The leaves have a medium size, five lobes, irregular shape, 

medium to large convex teeth, and green colour with a slight 

wrinkling. Their bunch has a medium size, is conical-winged, 

and is medium compacted, presenting a short peduncle. The berry is of medium to large 

size, with a round shape, and a blue-dark colour. 

 

Particularities: 

Castelão has an early maturation when compared with the other red varieties. It is low 

sensitive to rot during maturation process, but sensitive during flowering which rot attacks 

the bunch peduncle. This red variety is well adapted to climate with maritime influence. 

Wines mainly produced from the Castelão grapes have a grenade colour and an intense and 

fruity aroma with notes of red/wild fruits. They have a good ageing potential. 

 

 

Touriga Nacional 

Morphologic aspects: 

The leaves have a small size, five lobes with rectilinear short 

teeth, and green colour. Their bunch has a small size, with 

cylindrical to conical shape, and is moderately compacted, presenting a medium length 

peduncle. The berry is of medium size, with a slightly flattened shape, and a blue-dark 

colour. 

 

Particularities: 

This variety has a late maturation and requires good sunlight exposure for a long period. 

This is a variety that resists to different years climatic conditions, however it is very 

sensitive to excessive hot summers. This variety has intense colour and aroma giving it a 

high degree of complexity. Touriga Nacional presents fruity and floral aromas, being 

related with red and wild fruits and violets combined with some toasted notes. Also, 

Touriga Nacional originates wines full of colour. They have a good ageing potential. 
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Sousão 

Morphologic aspects: 

The leaves have a medium size, three to five lobes with a striate 

profile, and green colour. Their bunch has small to medium size, with cylindrical to conical 

shape and is compacted. The berry is of small/medium size, uniform, round shape, and 

with a blue-black colour. 

 

Particularities: 

Sousão presents a late maturation. This variety is resistant to wind being well adapted to 

vineyards at open spaces. Resulting wines have a ruby colour with weak aromas, and a 

light herbal taste. In Bairrada, this red variety is used as a teinturier. Sousão is commonly 

used to blend with varieties lacking colour but which have a good aroma potential. 

 

II. 3.  Vineyards characteristics 

Several studies showed that vineyard characteristics influence grapes, and 

consequently, wine composition and quality. For instance, soil type is highly related to the 

water status through its water-holding capacity (Oliveira et al., 2004; van Leeuwen et al., 

2004), while altitude are directly associated to the resulting temperature, humidity, 

vineyards surrounding vegetation height, among others (Jackson and Lombard, 1993) 

(Figure 16). 

The soil in Bairrada Appellation has some heterogeneity in its texture, thus it is 

possible to find vineyard parcels in 3 soil types: i) clayey; ii) clay-calcareous; and iii) clay-

sandy soils. Clayey soils are composed by microscopic size particles (< 0.002 mm). It has 

good water-holding capacity, volumetric wetness, and are poor drained. In opposition, sand 

particles are large (0.05 to 2 mm) with bigger spaces (macro pores) which facilitate rapid 

movement of air and water (Plaster, 2013). Thus, clay-sandy soils have lower water-

holding capacity and dry out more quickly when compared with clayey soils. The clay-

calcareous soils have particles with intermediate size between clay-sandy and clayey soils. 

Clay-calcareous soils can retain more water amount than clay-sandy and have better 

drainage capacity than clayey soils. 
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Besides differences in soil type, Bairrada Appellation also presents slight 

differences in altitude: from ca. 50 m to 90 m. Altitude is highly related with climatic 

conditions: lower altitudes are associated with higher temperatures and lower humidity, 

which influence grape maturation, and thus its composition. Also different sunlight 

exposures can be found in this Appellation (from West and also from both South and 

West). It is already known that grapes with higher sunlight exposure, during maturation, 

improves grape and thus wine composition, namely increasing the content of total 

phenolics (Dokoozlian and Kliewer, 1996; Spayd et al., 2002; Song et al., 2015) and 

increasing the level of both free and glycosylated terpenic compounds (Belancic et al., 

1997; Reynolds and Wardle, 1989a; Reynolds et al., 1996a; Reynolds et al., 1996b). 

In this PhD thesis, grapes from two vineyards belonging to Manuel dos Santos 

Campolargo Herdeiros company, at Bairrada Appellation, were considered: São Mateus 

(SM) and Vale de Azar (VA) (Figure 17, Table 3). 

 

a) São Mateus (SM) vineyard (110 ha) 
(40°26'56"N; 8°29'20"W)

TN-SM1

TN-SM3

TN-SM2
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Figure 17. The vineyards of a) São Mateus (SM) and b) Vale de Azar (VA) are located in 
Manuel dos Santos Campolargo Herdeiros company, in Bairrada Appellation. Varieties (Vitis 
vinifera L cv. Arinto (AR), Bical (BI), Sauvignon Blanc (SB), Baga (BA), Castelão (CA), Touriga 
Nacional (TN) and Sousão (SO)), altitude (ca. 50 to 90 m), vineyard parcels (SM1 to SM3 and 
VA1 and VA2), are indicated. 
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Table 3. Main characteristics of the parcels of V. vinifera cv. Arinto, Bical, Sauvignon 
Blanc, Baga, Castelão, Touriga Nacional and Sousão are identified. 
 

Varieties Vineyard parcels characteristics 

White varieties 

Arinto 

AR-VA1  – clayey soil, 50 m of altitude, open space, and rows guided North-
South direction, sunlight exposure from West 

AR-VA2  – clay-sandy soil, 70 m of altitude, near to pine trees, rows guided 
North-South direction, sunlight exposure from West 

AR-SM1 – clay-calcareous soil, 50 m of altitude, open space, rows guided East-
West direction, sunlight from South and West 

Bical 

BI-VA1  – clayey soil, 70 m of altitude, near to pine trees, rows guided North-
South direction, sunlight from West 

BI-VA2  – clay-calcareous soil, 70 m of altitude, open space, rows guided North-
South direction, sunlight from West 

BI-SM1 – clay-sandy soil, 90 m of altitude, open space, rows guided East-West 
direction, sunlight from South and West 

Sauvignon Blanc 

SB-SM1 – clayey soil, 70 m of altitude, open space, rows guided North-South 
direction, sunlight from South and West 

SB-SM2 – clay-calcareous soil, 50 m of altitude, open space, rows guided North-
South direction, sunlight from South and West 

SB-SM3 – clay-sandy soil, 70 m of altitude, open space, rows guided North-
South direction, sunlight from South and West 

Red varieties 

Baga 

BA-VA1  – clayey soil, 70 m of altitude, near to pine trees, rows guided North-
South direction, sunlight from South and West 

BA-VA2  – clay-calcareous soil, 50 m of altitude, open space, rows guided North-
South direction, sunlight from South and West 

BA-SM1 – clay-sandy soil, 50 m of altitude, open space, rows guided North-
South direction, sunlight from South and West 

Castelão 

CA-SM1 – clay-calcareous soil, 70 m of altitude, open space, rows guided 
North-South direction, sunlight from South and West 

CA-SM2 – clayey soil, 60 m of altitude, open space, rows guided North-South 
direction, sunlight from South and West 

CA-SM3 – clay-sandy soil, 60 m of altitude, open space, rows guided North-
South direction, sunlight from South and West 

Touriga Nacional 

TN-SM1 – clayey soil, 50 m of altitude, open space, rows guided North-South 
direction, sunlight from South and West 

TN-SM2 – clay-calcareous soil, 70 m of altitude, open space, rows guided North-
South direction, sunlight from South and West 

TN-SM3 – clay-sandy soil, 50 m of altitude, open space, rows guided North-
South direction, sunlight from South and West 

Sousão 
SO-SM1 – clay-sandy soil, 50 m of altitude, open space, rows guided North-
South direction, sunlight from South and West 
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São Mateus vineyard, with 110 ha, occupy the South and North side of a hill that 

starts in Mogofores (East) and goes to Paredes do Bairro (West), being at ca. 25 km from 

the Atlantic Ocean. This vineyard has a greater extension in the East to West direction and 

lower from North to South. The cellar of this company is located in São Mateus vineyard, 

at ca. 90 m of altitude (Figure 17a). At 3 km from the cellar is located the Vale de Azar 

vineyard. This vineyard is located in a valley and is smaller (60 ha) when compared to São 

Mateus vineyard. Vale de Azar vineyard shows a more homogeneous configuration but 

more extended from North to South direction (Figure 17b). 

In these two vineyards are planted several parcels of different grape varieties. From 

the varieties under study, in São Mateus are planted 1 parcel of Arinto, 1 of Bical, 1 of 

Baga, 3 parcels of Sauvignon Blanc, 3 of Castelão, 3 of Touriga Nacional, and also 1 of 

Sousão. In São Mateus vineyard the soil texture of the different parcels is diverse with 

frequent alternation of soils typically clay-calcareous with clayey ones and also with clay-

sandy soils. In Vale de Azar are planted 2 parcels of Arinto, 2 of Bical, and 2 of Baga 

(Figure 17), and the soil is essentially clayey and clay-calcareous, with only one parcel 

with clay-sandy soil (AR-VA2). Slightly differences in parcels altitudes were observed 

varying from ca. 50 to 90 m in São Mateus vineyard and ca. 50 to 70 m in Vale de Azar 

vineyard (Table 3, Figure 17). The cultivation of these varieties on each vineyard results 

from a continuous learning process of this company, over several decades, that allowed 

understanding how each variety interacts with the vineyard conditions. These varieties are 

already well adapted to the different conditions of each vineyard however this only result 

from the empirical knowledge and the objective influence of the different parcel 

characteristics in the composition of each variety is still unknown. Thus, it is essential to 

evaluate vineyard parcels conditions effect on each variety oenological potential. 

According to Table 3, a set of 3 parcels with different characteristics was 

considered for each variety (with the exception of Sousão where only one parcel was 

considered), where the higher differences between them is soil type. Arinto parcels present 

slight differences in altitude (ca. 50 to 70 m) and one parcel is located in the top West of 

São Mateus vineyard (AR-SM1) and the other two are located in Vale de Azar vineyard 

(AR-VA1 and AR-VA2) and. AR-VA2 has clay-sandy soil and is near to pine trees while 

the other 2 parcels, AR-VA1 and AR-SM1, with clayey and clay-calcareous soils 

respectively, are in open spaces. However, no influence in sunlight on grapes from AR-
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VA2 parcel due to pine trees shadow are expected, as these trees are at South of this parcel 

and the sunlight in Vale de Azar vineyard is essentially from West. Bical parcels are 

located in São Mateus (BI-SM1) and in Vale de Azar (BI-VA1 and BI-VA2) vineyards. 

These parcels have slight differences in altitude (ca. 70 to 90 m). BI-VA1 has clayey soil 

and is near to pine trees while the other 2 parcels, BI-VA2 and BI-SM1, with clay-

calcareous and clay-sandy soils, respectively, are both in open spaces. The pine trees are at 

East of BI-VA1 parcel and thus may influence the sunlight on this parcel in the first hours 

of the morning. Sauvignon Blanc parcels are all located in São Mateus vineyard and are in 

open spaces, presenting differences in soils type and slight differences in altitude: SB-SM1 

and SB-SM3 with clayey and clay-sandy soils are both at ca. 70 m, while SB-SM2 with 

clay-calcareous soil is at 50 m. One Baga parcel is located in São Mateus (BA-SM1) 

vineyard and two Baga parcels are located in Vale de Azar vineyard (BA-VA1 and BA-

VA2). BA-VA1 has clayey soil, is at ca. 70 m, and is near to pine trees while the other 2 

parcels, BA-VA2 and BA-SM1, with clay-calcareous and clay-sandy soils, respectively, 

are both at 50 m and in open spaces. Similar with Bical, the presence of pine trees at East 

may cause shadow early in the morning, influencing the sunlight on this parcel (BA-VA1). 

Castelão parcels are located in São Mateus vineyard, at ca. 60-70 m and in opens spaces. 

Thus the higher difference between them is related with soil type: CA-SM1, CA-SM2, and 

CA-SM3 have clay-calcareous, clayey and clay-sandy soils, respectively. The 3 parcels of 

Touriga Nacional are all located in open spaces in São Mateus vineyard, being the higher 

differences between them related with soil type and with slight differences in altitude: TN-

SM2 parcel is at 70 m and has clay-calcareous soil, while TN-SM1 and TN-SM3 parcels 

are both at 50 m and have clayey and clay-sandy soils, respectively (Figure 17, Table 3). 

Sousão variety was only collected in one vineyard parcel (SO-SM1) with 14 years, 

characterized for presenting clay-sandy soil, at 50 m, and in an open space (Figure 17a, 

Table 3). 

Different parcel rows orientations were also considered (Table 3). Globally, parcels 

were guided from North to South direction, with the exception of AR-SM1 parcel of 

Arinto and BI-SM1 parcel of Bical varieties, which rows were guided from East to West 

direction. In rows oriented North-South direction, the vineyard parcels tend to have higher 

sunlight exposed grapes when compared to East-West rows. 
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In addition to vineyard parcel characteristics, the grapes and wines quality also 

depends on several agricultural practices (Figure 2) which the winemakers can act on. This 

includes the use of several viticulture management practices, namely irrigation, and 

thinning (described as the suppression of leaves, flowers or clusters before full maturation) 

(Pastore et al., 2011). Moreover, the addition of any bulk material (mulches) placed on the 

soil surface to control weeds and/or preserve moisture can also be used (Mundy and 

Agnew, 2001). Grapevine orientation in space through the trellising system needs to be 

adapted to the local climatic conditions in order to: i) optimize the utilization of sunlight 

and promote productivity, ii) adapt to the characteristics of the grape cultivar, iii) promote 

efficient and sustainable vineyard management practices, and iv) be economically feasible 

to establish and to maintain (Palliotti, 2012). In this PhD thesis, the influence of 

agricultural practices was not considered because similar agricultural conditions were used 

for all parcels under study: they were not irrigated, thinning was not performed, and also 

no kind of mulches was added to the soil. Furthermore, the bilateral cordon trellising 

system (two cordons are fastened to the top wire at 1.6 m and three to five-bud canes plus 

spurs totalling 20 buds left on each side) was used in all the parcels under study. 

 

II. 4.  Harvest climatic conditions (2010 to 2012): Global view 

Harvest climatic conditions influence grapes development, and thus their 

composition (Jones et al., 2005; Soar et al., 2008). Among climate variables, temperature, 

sunlight exposure, and precipitation amount and the moment it occurs, have a great effect 

on physiological behaviour of the grapevine and on chemical changes in the berry during 

its formation and maturation (Holland and Smit, 2010; Jones and Davis, 2000), affecting 

grapes oenological potential (Figure 16). As uncontrollable climatic conditions varies from 

one year to another, in order to evaluate the harvest year effect on each variety oenological 

potential, this PhD thesis was conducted over the 3 consecutive harvest years. The climate 

of Bairrada Appellation is essentially Atlantic and it may present some Mediterranean 

characteristics. In a global way, precipitation amount of this Appellation attends its 

maximum during winter season, at November/December. The occurrence of precipitation 

in the spring is common until the middle of April or, rarely, until the first days of May. 

When excessive precipitation was observed, this may condition flowering period and thus 

maturation process, mainly on the early harvesting varieties. Furthermore, the abundance 
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of rain in the second half of September may also occur, causing rotting whose extent 

depends on the varieties (adapted from http://www.cvbairrada.pt/). 

For the 3 harvests under study were made all the efforts to obtain detailed 

information related to their climatic conditions however this information is not available 

for this region. However, according to grapes and wine producer involved in this PhD 

thesis, from the 3 harvests under study 2010 was considered an equilibrated year, with 

moderate temperature during spring and also summer, without excessive water stress due 

to moderate precipitation amount. These moderate temperatures and precipitation amounts 

were considered suitable for maturation process. On the other hand, 2011 was considered 

unusually warm, exhibiting a very hot and dry summer with some days of intense heat. The 

2012 harvest year exhibited lower temperatures during maturation, being more rainy and 

fresh. All these different year climatic characteristics may modulate each variety 

characteristics. 

 

II. 5.  Grape sampling 

Grape maturation is a very important period that influences the composition of the 

grapes and, consequently, the wine (Gómez et al., 1995). Thus, the knowledge of the grape 

composition during maturation offers a means of evaluating the maturity state essentially 

to determine each grape variety characteristics and, consequently, the wine quality. For 

this, a sampling strategy was defined based on a previously reported work (Coelho et al., 

2006). Healthy-state grapes from the 7 V. vinifera varieties under study were weekly 

collected on the selected parcels, from July to October (Figure 18), from half-véraison to 

maturity and, if the grapes were available, also at post-maturity state. For each variety, ca. 

1,000 g of grape berries (for each parcel and per each sampling moment) were picked 

randomly throughout the parcels, following a z-shaped pattern to avoid edge and centre 

effects, and taking into account the number of berries per bunch, and the balance between 

shadow and sun exposure at the different vineyard locations. In the post-maturity state, 

grapes in a starting rotting stage were observed in all parcels under study. In order to 

obtain random samples and avoid picking grapes from other parcels, every vine in the 

parcels was previously marked, and these were kept for the 3 harvest years. Samples were 

transported immediately under refrigeration (ca. 4 °C) to the laboratory to perform the 
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classical physicochemical parameters determination: berry weight, pH, sugar content, and 

titratable acidity. Then, samples were stored at -20 °C until further analysis (phenolic 

content, antiradical activity and volatile composition determination). The sampling period 

was shown in Figure 18, which ranged from end of July to middle of October. 
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Figure 18. Sampling period performed for the 7 varieties under study, during maturation. For each 
variety the sampling period was organized for each parcel (SM1 to SM3, VA1 and VA2) where the 
3 harvest years (2010 to 2012) were represented. The first point for each variety, indicate grapes 
collection at half-véraison and * refers to technologic maturity state. Different colours indicate the 
parcel soil type: red refers to clayey soil, orange to clay-calcareous soil, and green to clay-sandy 
soil. 
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Considering the white varieties under study, it can be observed that they have 

different maturation periods: for the 3 harvest years, the first sample collection performed 

at half-véraison on the 3 vineyards was made firstly for Sauvignon Blanc white variety, 

which has a precocious maturation, followed by Bical variety, and then by Arinto that 

exhibited a late maturation process. Besides, from the white varieties under study, Arinto 

also exhibited the longest maturation process (Figure 18). Regarding the red varieties, the 

first collection performed at half-véraison, started later than for the white varieties. From 

these, Castelão exhibited the smallest maturation process, while Touriga Nacional 

exhibited the longest one. For each variety, 2011 was the year where the half-véraison 

started earlier due to the higher temperatures of this harvest that allowed to accelerate 

grapes maturation process, while in 2012 this process started later since this was a cooler 

and fresh harvest. 

 

II. 6.  Parameters used to evaluate grapes oenological potential 

During maturation several changes in grape varieties occur, namely berries become 

sweeter, less acidic, and they develop flavour, aroma and colour properties (Conde et al., 

2007). The development of these characteristics is essential to define grapes oenological 

potential, i.e. to estimate the possibility of their usage to produce wines with specific 

characteristics. 

Figure 19 shows a scheme of the parameters selected to assess oenological potential 

of each variety. Briefly, i) berry weight is an indicator of berry development evolution 

during maturation, allowing to assess changes occurred in the berry, as for example berry 

dehydration; ii) sugar content is an indicator of the alcohol content in the wine (Conde et 

al., 2007); iii) titratable acidity and pH allow to estimate acidity, and also in indirect way 

to estimate taste and microbial stability of the resulting wines (Boulton, 1980; Conde et al., 

2007); iv) total phenolic content determination allow to estimate colour and astringency of 

the wines (Conde et al., 2007; Xia et al., 2010); v) the knowledge of the volatile 

composition (including free and glycosidically-linked fractions) offers a means of 

evaluating the aroma potential (Ribéreau-Gayon et al., 2000). Furthermore, attending to 

the interest of antiradical activity in human health, the determination of this parameter was 

also considered. 
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Harvest climatic 
conditions

Variety

Vineyard  
characteristics

Berry weight - evaluate berry 
development/dehydration control  

Sugar content - estimate alcohol content

Titratable acidity and pH - estimate acidity  

Total phenolic content - estimate 
colour/astringency 

Volatile compounds including free and 
glycosidically-linked fractions* - estimate 

aroma potential 

Antiradical activity - estimate grapes 
bioactive compounds potential

oenological potential

During maturationFactors

 

Figure 19. Parameters selected, during maturation, to evaluate harvest climatic and vineyard 
characteristics effects on grapes oenological potential. * Glycosidically-linked fraction was only 
determined at technologic maturity. 
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Evaluation of the impact of harvest and parcel characteristics, during 

maturation, on grapes oenological potential 
 

 

 

Overview 

The evaluation of the impact of harvest year and vineyard parcel characteristics on 

each variety oenological potential was performed by using data obtained during 

maturation. Relevant physicochemical parameters that have impact on grapes composition 

and, consequently, on their oenological potential, were determined. For each variety, 

obtained from the different conditions under study, evaluation of berry development/ 

dehydration control, estimation of alcohol content in wine, acidity, colour/astringency, 

were evaluated in terms of berry weight, pH, titratable acidity, sugar content, and total 

phenolic content. Besides, antiradical activity determination was also considered as a 

parameter to valorise each variety oenological potential. Furthermore, the volatile 

composition of each variety was also determined. 

Chapter III was divided in two main sections: Chapter III. 1 - Varieties general 

physicochemical parameters evaluation and Chapter III. 2 - Varieties volatile profile 

evaluation. 

 



 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter III. 1 - Varieties general physicochemical parameters 

evaluation 
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III. 1. 1.  Framework 

Grape maturation is a very important physiological period that starts at véraison 

and lasts when the maturity is reached, until fruit is fully mature. This period is 

intrinsically associated with vineyards environmental conditions, grape variety, among 

others, that influences grapes composition and, consequently wines composition and 

quality (Gómez et al., 1995; Holland and Smit, 2010; Jones and Davis, 2000; Jones et al., 

2005).  

Grapes maturation stage and also their oenological potential are evaluated by using 

several parameters. Commonly, winemakers use berry weight, pH, titratable acidity, and 

sugar content (Crippen and Morrison, 1986; del Llaudy et al., 2008). Berry weight is used 

as an indicator of the berry development behaviour. During maturation, an increase in 

berry weight is typically observed, principally due to the increase in water content. Grape 

berries require a significant amount of water for growth and development, and water 

typically contributes to 70 to 80% of berry weight at maturity. Prior to véraison, most of 

the water required by the fruit is supplied by the xylem. However, shortly after véraison 

the xylem vessels entering the berry are blocked. With water flow via the xylem disrupted, 

the phloem becomes the primary supplier of water to the berry. Sugars, minerals, and 

micronutrients entering the fruit during maturation are also supplied by the phloem 

(Dokoozlian, 2000). If grapes were not harvested when maturity is established, berry 

weight starts to diminish and overripe grapes begin to appear. Besides, if during maturation 

the berry weight starts to decreased this may indicate the onset of dehydration (Ribéreau-

Gayon et al., 2000). Titratable acidity and pH are also important indicators of grapes 

oenological potential since they allow estimating acidity, and consequently taste and 

microbial stability of the resulting wines. The main organic acids found in mature berries 

are tartaric and malic acids, making up approximately 90% of total berry acidity. The 

concentration of these acids reaches their highest levels near véraison and then decline 

through the maturation period, remaining relatively constant near maturity. Once 

synthesized, tartaric acid is believed to be stable during berry maturation, being the 

decrease in its concentration attributed to a dilution effect, since water content increases in 

the berry. In contrast, malic acid is metabolised and used as an energy source during the 

maturation process. Thus, reduction in malic acid concentration after véraison may result 

from respiration and enzyme degradation, as well as dilution effects (Boulton, 1980; Conde 
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et al., 2007). The determination of pH is a measure of the hydrogen ion concentration in 

the berry. During maturation, the pH rises gradually and the amount of malic acid in the 

berry declines. During this period a decrease in free acid and tartaric acid: malic acid ratio 

was observed resulting in an increase of overall pH (Watson, 2003). Sugar content is also 

an indicator often used to assess grape maturity. As most of the sugar is fermented to 

ethanol during the vinification process, the determination of grapes sugar content allows to 

estimate the alcohol content in the wine (Conde et al., 2007). Sugars accumulate rapidly in 

berries from véraison to maturity. Sucrose is produced in the leaves by photosynthesis and 

is transported to the berries through the phloem. Within the berries, sucrose is hydrolyzed 

to glucose and fructose, which are the primary sugars present at maturity. Glucose and 

fructose are the most abundant sugars, but several other sugars are present including 

sucrose, rhamnose, and two major pentose sugars, arabinose and xylose (Dokoozlian, 

2000). 

Phenolic compounds are secondary plant metabolites which total content varied 

with cultivar, soil type, climate, cultivation practices (Teixeira et al., 2013). Total phenolic 

compound concentration increases during grapes development however, is followed by a 

slower accumulation during maturation. The procyanidinic tannins, derived from flavanol 

polymerization, attain a maximum concentration in the seeds before véraison. This then 

start to decrease to a lower and relatively stable value when the seeds are mature. At 

véraison, the skin tannin concentration is already high, sometimes corresponding to over 

half of the concentration at maturity. In white grapes, the concentrations of phenolic acids 

esterified by tartaric acid, flavan-3-ols and oligomeric procyanidins are high at the 

beginning of grapes development, and then diminish to low concentrations at maturity. In 

red varieties, the anthocyanins begin to accumulate in the skins about two weeks before the 

colour is visible. The concentration increases during maturation, but, as with tannins, it 

attains a maximum and generally diminishes at the time of maturity. The most abundant 

phenolic compounds in grapes mainly include tannins, anthocyanins, and flavonols. 

Considering the oenological potential of phenolic compounds since they contribute to 

colour, flavour, bitterness, and astringency of the wines, their total content was also 

evaluated. Besides, phenolic compounds are well known for their antiradical properties 

(Conde et al., 2007; Xia et al., 2010). Besides, attending to the importance of antiradical 

activity to human health and also to the fact that grapes are composed by several chemical 
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compounds with this property (such as phenolics), in this PhD thesis this parameter was 

also considered to evaluate the oenological potential of the different varieties. 

The present Chapter aims to evaluate the impact of harvest and vineyard parcel 

characteristics on each variety oenological potential by using data obtained during 

maturation. For this berry weight, pH, titratable acidity, sugar and phenolic contents, and 

antiradical activity, were determined. 

 

III. 1. 2.  Material and Methods 

III. 1.2.1.  Samples 

Seven V. vinifera grape varieties, each one from 3 parcels, collected during 

maturation, were considered. The exception was Sousão which was only collected in one 

parcel. Depending on the variety, the parcel, and the harvest, the sampling moments varied 

from 3 to 9. 

 

III. 1.2.2.   Berry weight, pH, titratable acidity, and sugar content evaluation 

The classical physicochemical parameters, as berry weight, pH, alcoholic degree, 

titratable acidity and sugar content were evaluated, during the sampling period, for the 7 V. 

vinifera varieties under study, in accordance with Regulation (EC) nº 2676/90. 

Two hundred grape berries from each variety under study, each one obtained from 

3 vineyard parcels, were randomly selected, weighted and used for the determination of 

pH, sugar content, and titratable acidity. After determining their weight, the other analyses 

were made by crushing the grape berries, and the obtained juice was separated from skins 

and seeds. The pH was measured using a pHmeter (micropH 2002, Crison, Barcelona, 

Spain). Sugar content was established through the determination of alcoholic degree 

measured using a refractometer (Fabre réfractomètres, Sarl Germain, France). The 

titratable acidity was measured by titrimetry using NaOH 0.1 M (Panreac, Barcelona, 

Spain) and Bromothymol blue as indicator. All the analyses were made in triplicate. Data 

was expressed as mean ± standard deviation (SD) and the reproducibility of the results was 

expressed as relative standard deviation given in percentage (RSD %). These experiments 

were performed at the company of Manuel dos Santos Campolargo Herdeiros. 
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III. 1. 2.3.  Total phenolic content evaluation 

Grapes total phenolic content was determined by Folin-Ciocalteu colorimetric 

method (Folin and Ciocalteu, 1927), with gallic acid as a standard. This method is based on 

the reaction between phenolic compounds of a sample and the redox Folin-Ciocalteu 

reagent, forming blue reaction products (Blainski et al., 2013; Cicco and Lattanzio, 2011). 

Briefly, grape berries (ca 100 g for each variety) obtained from each sampling moment, 

from the different parcels, were crushed and centrifuged at 3000 rpm, during 10 minutes. 

Then, 0.125 mL of the resultant grape juice (diluted 5 times for white varieties and 10 

times for the red ones) was mixed with 0.5 mL of distilled water and 0.125 mL of Folin-

Ciocalteu reagent. After homogenization with a vortex, the sample was allowed to react 

during 5 min. Then, 1.250 mL of Na2CO3 (75 g L-1) and 1.0 mL of distilled water were 

added. The mixture was homogenized in a vortex and letting react during 90 min at room 

temperature. The absorbance was measured at 760 nm in a spectrophotometer (6405 

Jenway UV–Vis spectrophotometer, UK). The calibration curve of gallic acid in the 

concentration range of 10.0–200.0 mg L-1 was obtained in a similar manner to that 

described for the samples. Each sample was analyzed in triplicate and the total phenolic 

content was expressed as milligrams of gallic acid equivalents per liter (mg GAE L-1). Data 

was expressed as mean ± SD (n=3). Results reproducibility was expressed as RSD %. 

 

III. 1. 2.4.  Antiradical activity evaluation 

The antiradical activity of the grapes varieties, obtained from the vineyard parcels 

under study, was evaluated by DPPH● radical (2,2-DiPhenyl-1-PicrylHydrazyl radical) 

scavenging assay. DPPH● is a free radical capable of accept a hydrogen atom or an electron 

becoming a non-radical species very hardly oxidizable (Soares et al., 1997). Because of the 

unpaired electron, the DPPH● has a strong absorbance at 515 nm, having a purple colour; if 

this electron is paired the absorbance disappears, yielding a compound of pale yellow 

colour (Huang et al., 2005). 

The antiradical activity assay used was adapted from the DPPH● method proposed 

by (Paixão et al., 2007). Briefly, grape berries (ca 100 g for each variety under study) 

obtained from each sampling moment, from the different vineyards, were crushed and 

centrifuged at 3000 rpm during 10 minutes. Then, 0.1 mL of the obtained grape juice 
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(without dilution for white varieties and diluted 5 times for the red ones), was added to 3.9 

mL of 60 µM DPPH● methanol solution. The reaction kinetic was read after 30 min at 515 

nm on a UV/Visible light spectrophotometer (6405 Jenway UV/Vis spectrophotometer, 

UK) against blank (0.1 mL of distilled water), at room temperature. Percentage of the 

remaining DPPH● (% DPPHrem) was calculated in the following way: 

% DPPHrem = [(Asample x % DPPHrem of the blank / Ablank] 

where, Asample is the absorbance of each tested sample, Ablank is the absorbance of the blank 

and considering the % DPPHrem of the blank as 100%. The values of % DPPHrem were 

achieved from three independent assays performed in triplicate, for all experiments. Data 

are expressed as arithmetic mean ± SD (n = 3). The reproducibility of the results was 

expressed as RSD %. 

 

III. 1. 3.  Results and discussion 

III. 1. 3.1.  Berry weight, pH, titratable acidity, and sugar content evaluation 

The obtained results for the varieties under study are shown in XY graphs, where 

“0” in the x axis refers to the first sampling moment performed at half-véraison for each 

variety, on the 3 parcels and for the 3 harvests. Detailed data regarding the evaluation of 

these parameters during maturation are given in Supplementary Tables S1 to S7 

(supplementary information is given in a CD-R). 

 

Arinto 

The results obtained for Arinto variety (Figure 20) revealed that the values of the 4 

parameters studied (berry weight, pH, titratable acidity and sugar content) were similar for 

grapes from the 3 parcels under study. The exceptions were observed in 2011 for the sugar 

content, which was inferior in grapes from AR-SM1 parcel (clay-calcareous soil, ca. 50 m 

of altitude, rows guided East-West direction), and in 2012 the pH values were lower in 

grapes from AR-VA2 (clay-sandy soil, ca. 70 m) and AR-SM1 parcels. Arinto grapes 

characteristics were also different from one harvest to another. In 2010 and 2012, 

technologic maturity was obtained 21/28 and 35 days after half-véraison, respectively, 

while in 2011 this was obtained latter (56 days after half-véraison) with the exception of 

grapes from AR-SM1 parcel (35 days after half-véraison). Arinto variety is known for its 
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capacity to adapt and resist to different climates. The longer maturation period observed in 

2011, a harvest year characterized as dry and warm (Chapter II) demonstrates the Arinto 

capacity to resist to year climatic conditions without berry dehydration or rot appearance, 

maintaining relatively constant the sugar and titratable acidity contents for a long period. 

Detailed data is given in supplementary Table S1 in a CD-R. 
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Figure 20. Berry weight, pH, sugar content and titratable acidity of V. vinifera cv. Arinto, obtained 
during maturation, on the 3 parcels and 3 consecutive harvests. Technologic maturity is indicated 
with a dash line. 
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Bical 

Bical grapes characteristics in the different parcels are highly related with the 

harvest year conditions (Figure 21): in 2010, grapes from BI-SM1 parcel (clay-sandy soil, 

ca. 90 m) presented higher sugar content and lesser titratable acidity, while in 2012, the 

sugar content was lower in grapes from this parcel, while the acidity was similar for grapes 

from all parcels. Furthermore, in 2011, grapes from BI-VA2 (clay-calcareous soil, ca. 70 

m) parcel presented lower titratable acidity (detailed data is given in supplementary Table 

S2 in a CD-R). Moreover, according to Figure 21 it was observed that a moderate climate 

without excessive heat and rain, as in 2010 harvest, provided a gradual maturation with 

grapes reaching technologic maturity at ca. 35 days after half-véraison. On the other hand, 

when climatic conditions were warmer and dry or fresh and rainy as observed in 2011 and 

2012 harvests respectively, the maturation process was changed. For instance, hot 

temperatures and dry conditions of 2011 allowed grapes to rapidly accumulate sugars 

accelerating grapes maturation process (technologic maturity was obtained 14/21 days after 

half-véraison). Although in 2011, gapes from BI-VA2 parcel also accumulate sugars 

rapidly, they were collected 2 to 3 weeks later when compared with grapes from the other 

parcels. However berry weight starts to diminish at 21 days after half-véraison and than 

stabilized until technologic maturity. This suggests that some dehydration occurred 

probably caused by higher temperatures and lower precipitation amounts of 2011 harvest. 

The variability of the results observed for parcels conditions throughout the different 

harvest years demonstrated the high sensitivity attributed to this variety to the year climatic 

conditions (Chapter II). 
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Figure 21. Berry weight, pH, sugar content and titratable acidity of V. vinifera cv. Bical, obtained 
during maturation, on the 3 parcels and 3 consecutive harvests. Technologic maturity is indicated 
with a dash line. 
 

Sauvignon Blanc 

For Sauvignon Blanc variety (Figure 22) similar pH and titratable acidity values 

were determined. However, differences in berry weight and also in sugar content were 

observed for grapes obtained from the 3 parcels: grapes from SB-SM2 (ca. 50 m, clay-

calcareous soil) exhibited higher berry weight and lesser sugar content than grapes from 

the other parcels (SB-SM1 and SB-SM3, both at 70 m, with clayey and clay-sandy soils, 

respectively), being this particularly evident in grapes harvested in 2010 (detailed data is 

given in supplementary Table S3 in a CD-R). The characteristics of the 3 parcels of 

Sauvignon Blanc were very similar (Table 3, Figure 17), thus possible the soil type and the 

slight differences in altitude, may explain the different results observed. Parcels SB-SM1 

and SB-SM3 were at high slope steep (ca. 70 m) while SB-SM2 (clay-calcareous soil, ca. 

50 m) was at lower step, below the other 2 parcels. Thus, this parcel may accumulate 
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higher water amount and thus higher humidity for a longer period. This higher amount of 

water may explain the higher berry weight and also may promote sugars dilution, which 

may explain the lower sugar content observed in grapes from this parcel. As can be seen in 

Figure 22, for the 3 harvests, Sauvignon Blanc grapes attended technologic maturity at 

21/28 days after half-véraison. Sauvignon Blanc is known in Bairrada Appellation, for its 

short cycle and lower maturation process requiring few days to mature (Chapter II). 

Moreover, lower sugar content and higher acidity were determined in grapes from 2012 

harvest, which was characterized as a fresh and rainy year. It was found that grape sugar 

content accumulation was not favoured in cool climates, while grapes acidity was elevated. 

Temperature determines the respiration rate, i.e. the combustion of tartaric and, especially, 

malic acid in grapes (hotter temperatures favoured malic acid respiration) (Ribéreau-Gayon 

et al., 2000). 
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Figure 22. Berry weight, pH, sugar content and titratable acidity of V. vinifera cv. Sauvignon 
Blanc, obtained during maturation, on the 3 parcels and 3 consecutive harvests. Technologic 
maturity is indicated with a dash line. 
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Baga 

For Baga variety, similar berry weight, pH and titratable acidity were determined 

for all parcels and harvests under study. However, differences can be noticed related with 

sugar content (Figure 23). Generally, grapes from BA-VA2 (ca. 50 m, clay-calcareous soil) 

followed by BA-VA1 (ca. 70 m, clayey soil) exhibited higher sugar content when 

compared with BA-SM1 parcel (ca. 50 m, clay-sandy soil). The exception was in 2012, 

where BA-VA2 grapes exhibited lower sugar content (detailed data is given in 

supplementary Table S4 in a CD-R). This suggests that grapes from soils with moderate 

(clay-calcareous soil of BA-VA2) to higher (clayey soil of BA-VA1) water-holding 

capacity seems to be related with higher sugar content of Baga grapes. Baga was also 

influenced by harvest climatic conditions: moderate temperatures and precipitation 

amounts of 2010 harvest, followed by hot temperatures of 2011, allowed to obtain grapes 

with higher sugar content and lower titratable acidity, while in 2012 the fresh and rainy 

climatic conditions allowed to obtain grapes with lower sugar amounts. It is known that the 

alcohol content in Baga wines is very variable depending on the harvest year climatic 

conditions (Chapter II). The results obtained corroborate these observations since the 

grapes sugar content was very dependent on the harvest year climatic conditions. Besides, 

Baga requires good sunlight for a long growth cycle. As 2012 was a cooler harvest, this 

may explain the lower sugar amount observed in grapes from this harvest. Temperature is 

essential for grapes development and for the resulting grapes sun exposure (Ribéreau-

Gayon et al., 2000). 
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Figure 23. Berry weight, pH, sugar content and titratable acidity of V. vinifera cv. Baga, obtained 
during maturation, on the 3 parcels and 3 consecutive harvests. Technologic maturity is indicated 
with a dash line. 
 

Castelão 

Castelão variety collected in the different parcels and harvests under study 

exhibited similar berry weight, pH and titratable acidity for grapes obtained from CA-SM1 

(ca. 70 m, clay-calcareous soil), CA-SM2 (ca. 60 m, clayey soil) and CA-SM3 (ca. 60 m, 

clay-sandy) parcels. Nevertheless, differences may be noticed related with sugar content 

(Figure 24). For Castelão grapes, sugar content had a tendency to decrease in the following 

order: grapes from CA-SM2, CA-SM1 and CA-SM3 parcels. The exception was in 2011, 

where CA-SM1 parcel presented lower sugar content than CA-SM3 (detailed data is given 

in supplementary Table S5 in a CD-R). As these parcels were located at an open space in 

São Mateus vineyard and rows were guided in the same direction (North-South) with only 

slight differences in altitude (ca. 60 to 70 m), these results suggest that the observed 
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differences may be related with soil type: grapes from clay-calcareous (CA-SM1) and 

clayey (CA-SM2) soils, with higher water-holding capacity, seems to be related with 

higher sugar content of Castelão grapes than clay-sandy soils (CA-SM3), that had lower 

water-holding capacity. Besides the fact that Castelão variety is well adapted to climate 

with maritime influence, as in Bairrada Appellation (Chapter II), its grapes characteristics 

were different from one harvest to another (Figure 24): grapes from 2010 have a tendency 

to present higher sugar content and lower acidity when compared with 2011 and 2012. 
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Figure 24. Berry weight, pH, sugar content and titratable acidity of V. vinifera cv. Castelão, 
obtained during maturation, on the 3 parcels and 3 consecutive harvests. Maturity is indicated with 
a dash line. 
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Touriga Nacional 

Grapes of Touriga Nacional variety presented similar berry weight, pH and also 

titratable acidity for all parcels under study (Figure 25). However, sugar content was quite 

different from one parcel to another. Generally, grapes from TN-SM2 (ca. 70 m, clay-

calcareous soil) and TN-SM1 (ca. 50 m, clayey soil) had higher sugar content, when 

compared with TN-SM3 (ca. 50 m, clay-sandy soil). The exception was observed in 2010, 

where grapes from TN-SM1 exhibited lesser sugar content than grapes from TN-SM3 

(detailed data is given in supplementary Table S6 in a CD-R). Similarly to the tendency 

observed for Castelão, soils with higher and moderate water-holding capacity, as clayey 

(TN-SM1) and clay-calcareous (TN-SM2) soils, seem to be related with higher sugar 

content than soils with lower water-holding capacity (clay-sandy soil of TN-SM3). 

Besides, also harvest year conditions influence Touriga Nacional grapes characteristics: 

lower sugar content and higher titratable acidity was observed for grapes from 2011 and 

2012 harvest. During maturation, 2011 harvest was excessively hot while 2012 was cooler 

and rainy, when compared with moderate climatic conditions of 2010 harvest. Touriga 

Nacional variety has a late maturation and requires good sunlight exposure to mature. 

However, it is sensitive to excessive hot summers (Chapter II). Too much heat can delay 

physiological maturation and cause excessive dehydration, resulting in the appearance of 

overripe grapes, a characteristic that was observed in 2011 harvest for grapes from TN-

SM3 parcel (Figure 25). On the other hand, lower temperature and higher precipitation 

amounts may dilute the sugar content and decrease malic acid respiration, accounting for 

the higher acidity of the berries (Bondada and Keller, 2012; van Leeuwen and Seguin, 

2006). This may explain the reasons why Touriga Nacional grapes from 2012 harvest 

present lower sugar content and higher titratable acidity. 
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Figure 25. Berry weight, pH, sugar content and titratable acidity of V. vinifera cv. Touriga 
Nacional, obtained during maturation, on the 3 parcels and 3 consecutive harvests. Technologic 
maturity is indicated with a dash line. ** Overripe grapes. 

 

Sousão 

Sousão red variety was only evaluated during maturation in one parcel at São 

Mateus vineyard, for the 3 harvest years. According to Figure 26, grapes collected in SO-

SM1 parcel (ca. 50 m, clay-sandy soil) exhibited similar berry weigh and pH for all 

harvests under study. Grapes collected in 2010 exhibited higher sugar content, while 

grapes from 2011 and 2012 exhibited higher titratable acidity and lower sugar content 

(detailed data is given in supplementary Table S7 in a CD-R). These results clearly shows 

that moderate temperatures and precipitation amounts observed in 2010 harvest allowed to 

obtain grapes with higher sugar content and lower acidity, when compared with fresh and 

rainy conditions of 2012 harvest and with hot and dry ones of 2011. 
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Figure 26. Berry weight, pH, sugar content and titratable acidity of V. vinifera cv. Sousão, 
obtained during maturation, on SO-SM1 parcel, form 3 consecutive harvests. Technologic maturity 
is indicated with a dash line. 

 

III. 1. 3.2.  Total phenolic content and antiradical activity evaluation 

The results obtained for the total phenolic content and antiradical activity of the 

grape varieties under study, during maturation, were shown in bar graphics, where “0” in 

the x axis refers to the first sampling moment performed at half -véraison for each variety, 

in the 3 parcels and 3 harvests. Detailed data is given in Supplementary Tables S1 to S7 in 

a CD-R. 
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Arinto 

According to the obtained results for Arinto variety, grapes obtained from AR-VA2 

(ca. 70 m, clay-sandy soil, North-South direction) followed by grapes from AR-SM1 

parcel (ca. 50 m, clay-calcareous soil, East-West direction) presented higher phenolic 

content and also higher antiradical activity, when compared with grapes from AR-VA1 

parcel (ca. 50 m, clayey soil, North-South direction) (Figure 27). According to the main 

parcels characteristics, the different results observed may be related with parcels soil types. 

It is already shown that soils with higher water-holding capacity increase the oenological 

potential of Agiorgitiko red variety by promoting the concentration of anthocyanins and 

total phenolics in berries (Koundouras et al., 2006). However, for Arinto white variety, 

soils with lower (clay-sandy soil - AR-VA2) and middle (clay-calcareous soil - AR-SM1) 

water-holding capacity than clayey soil seem to favour total phenolic content and also 

antiradical activity (Table 3, Figure 17). Besides, in 2010, during maturation, the phenolic 

content and also the antiradical activity were higher than in grapes collected in 2011 or 

even in 2012 (Figure 27). The moderate climatic conditions of 2010 harvest seem to favour 

grapes phenolic content as well as antiradical activity. A moderate climate, with adequate 

temperature and precipitation, was considered to provide ideal conditions for grapes 

maturation (Conde et al., 2007). On the opposite, the higher temperatures of 2011 and the 

fresh and rainy conditions of 2012 diminished phenolic content and antiradical activity of 

Arinto grapes. This was in accordance with previous works that showed that high 

temperatures promote significant reductions on phenolic content of V. vinifera cv. 

Cabernet-Sauvignon (Goto-Yamamoto et al., 2009) and Merlot (Spayd et al., 2002) grapes. 

Also, high precipitation amounts promote the decrease in the concentration of phenolics 

content (Keller et al., 2006). 
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Figure 27. Total phenolic content (A) and antiradical activity (B) evaluation of Vitis vinifera L. cv. 
Arinto, during maturation, in 3 parcels and 3 consecutive harvests. Technologic maturity is 
indicated with a dash line. * Grapes not available. 
 

Bical 

Bical variety obtained from the 3 parcels under study revealed different total 

phenolic content and also different antiradical activity (Figure 28). According to the 

results, grapes obtained from BI-SM1 (ca. 90 m, clay-sandy soil, open space, East-West 

direction) and BI-VA2 (ca. 70 m, clay-calcareous soil, open space, North-South direction) 

parcels, followed by grapes from BI-VA1 (ca. 70 m, clayey soil, near to pine trees, North-

South direction) presented higher phenolic content and also higher antiradical activity. 

Even in 2011, when Bical grapes from BI-VA1 and BI-SM1 parcels were collected earlier 

when compared to BI-VA2 grapes, this tendency was observed. As grapes from BI-SM1 

(East-West direction) and BI-VA2 (North-South direction) parcels exhibited the higher 

phenolic content as well as higher antiradical activity, and these are at similar altitudes and 
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both at open spaces, the different rows orientation of these vineyards appears to have no 

influence in Bical grapes phenolic content and antiradical activity. Thus, similarly with 

Arinto, the obtained results showed that clay-sandy and clay-calcareous soils seem to be 

related with higher phenolic content and also higher antiradical activity of Bical grapes. 

Besides, BI-VA1 parcel with clayey soil (higher water-holding capacity soil) is near to 

pine trees, which due to pines location at East of this parcel may reduce grapes sunlight in 

the first hours at the morning, which may reduce BI-VA1 grapes phenolic composition, 

and thus its oenological potential. Furthermore, similarly to Arinto variety, the higher 

phenolic content and also antiradical activity were found in 2010 harvest. 
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Figure 28. Total phenolic content (A) and antiradical activity (B) evaluation of Vitis vinifera L. cv. 
Bical, during maturation, in 3 parcels and 3 consecutive harvests. Technologic maturity is indicated 
with a dash line. * Grapes not available. 
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Sauvignon Blanc 

For Sauvignon Blanc variety the determination of total phenolic content and 

antiradical activity during maturation was only evaluated for 2010 harvest (Figure 29). For 

Sauvignon Blanc variety, higher phenolic content and antiradical activity were obtained for 

SB-SM3 (ca. 70 m, clay-sandy soil) and SB-SM2 (ca. 50 m, clay-calcareous soil) grapes, 

while the opposite was obtained from SB-SM1 grapes (ca. 70 m, clayey soil). As the main 

characteristics of these 3 parcels are very similar (Table 3, Figure 17), the different results 

determined may be related with the soil texture: clay-sandy (SB-SM3) and clay-calcareous 

(SB-SM2) soils, with low and medium water-holding capacity, respectively, allowed 

obtaining grapes with higher phenolic and antiradical activity, while the opposite was 

determined for grapes form clayey soil (SB-SM1). 
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Figure 29. Total phenolic content (A) and antiradical activity (B) evaluation of Vitis vinifera L. cv. 
Sauvignon Blanc, during maturation, in 3 parcels, in 2010. Technologic maturity is indicated with a 
dash line. 
 

Baga 

The total phenolic content and antiradical activity of Baga red variety was 

evaluated, during maturation, only in 2010 harvest (Figure 30). For this variety, higher 

phenolic content as well as higher antiradical activity were determined in grapes obtained 

from BA-VA2 (ca. 50 m, clay-calcareous soil) followed by grapes from BA-VA1 (ca. 70 

m, clayey soil), when compared with grapes from BA-SM1 parcel (ca. 50 m, clay-sandy 

soil) parcel. Slightly differences in altitude and the same rows orientation were observed 

for all the 3 Baga parcels under study (Table 3, Figure 17). BA-VA1 parcel was near to 

pine trees, while the others were at open spaces. Similar with Bical, the presence of pine 

trees at East of BA-VA1 parcel may influence its sunlight early in the morning. However, 

as grapes from this parcel presented higher phenolic content and lower antiradical activity 
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than open space parcel located in São Mateus vineyard (BA-SM1), this suggests that the 

main parcel characteristic that influences Baga grapes composition was the soil type: 

clayey and clay-calcareous soils allowed obtaining grapes with higher phenolic content and 

also higher antiradical activity. These soils have higher water-holding capacity than clay-

sandy soil (BA-SM1). It is already shown that soils with higher water-holding capacity 

increased the oenological potential of other red grape variety (V. vinifera cv. Agiorgitiko) 

by promoting the concentration of anthocyanins and total phenolics in the berries 

(Koundouras et al., 2006). 
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Figure 30. Total phenolic content (A) and antiradical activity (B) evaluation of Vitis vinifera L. cv. 
Baga, during maturation, in 3 parcels, in 2010. Technologic maturity is indicated with a dash line.* 
Grapes not available. 

 

Castelão 

Regarding the results obtained for V. vinifera cv. Castelão different phenolic 

content and antiradical activity were obtained for the 3 parcels (Figure 31). Castelão grapes 

from CA-SM1 (ca. 70 m, clay-calcareous soil) and CA-SM2 (ca. 60 m, clayey soil) parcels 

presented higher phenolic content as well as higher antiradical activity, than grapes from 

CA-SM3 (ca. 60 m, clay-sandy soil). According to the parcels characteristics (Figure 17, 

Table 3) the different phenolic content and antiradical activity observed between grapes 

from the 3 parcels can be explained by the different soil type of these parcels: grapes from 

clay-sandy soil of CA-SM3 parcel, with lesser water-holding capacity, had lesser phenolic 

content and antiradical activity than grapes from clay-calcareous and clayey soils. 

Furthermore, in 2010 harvest, grapes from all parcels under study presented higher 

phenolic content and also higher antiradical activity when compared with the other 2 

harvest years. 
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Figure 31. Total phenolic content (A) and antiradical activity (B) evaluation of Vitis vinifera L. cv. 
Castelão, during maturation, in 3 parcels and 3 consecutive harvests. Technologic maturity is 
indicated with a dash line. * Grapes not available. 

 

Touriga Nacional 

Touriga Nacional variety was also evaluated in terms of their total phenolic content 

and antiradical activity, for grapes from 3 parcels and 3 harvests (Figure 32). According to 

the obtained results grapes from TN-SM2 parcel (ca. 70 m, clay-calcareous soil), followed 

by grapes from TN-SM1 (ca. 50 m, clayey soil) and TN-SM3 (ca. 50 m, clay-sandy soil) 

parcels, presented higher phenolic content as well as higher antiradical activity. The 3 

parcels of Touriga Nacional variety have different soil types and also slightly differences 

in altitudes (Figure 17, Table 3) which may explain the different grapes characteristics 

determined for Touriga Nacional parcels: TN-SM2 parcel presents clay-calcareous soil and 

is at ca. 70 m which seems to be related with higher total phenolic content and antiradical 
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activity. Furthermore, moderate climatic conditions of 2010 harvest seem to be related with 

higher phenolic content and antiradical activity of Touriga Nacional grapes. Also, 2011 

climatic conditions caused berries dehydration with overripe grapes formation in TN-SM3, 

a parcel with clay-sandy soil thus with lower water-holding capacity and with higher 

drainage when compared with the other parcels (Figure 32). 
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Figure 32. Total phenolic content (A) and antiradical activity (B) evaluation of Vitis vinifera L. cv. 
Touriga Nacional, during maturation, in 3 parcels and 3 consecutive harvests. Technologic maturity 
is indicated with a dash line. * Grapes not available ** Overripe grapes 
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Sousão 

For Sousão variety only grapes from SO-SM1 parcel (ca. 50 m, clay-sandy soil), 

collected in 2010 harvest were considered (Figure 33). During maturation, phenolic 

content and antiradical activity were similar, with a slight decrease in day 14 after half-

véraison. The phenolic content and also the antiradical activity of this red variety were 

similar or even higher when compared with the other red varieties under study. This shows 

its huge oenological potential related with wines colour potential. 
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Figure 33. Total phenolic content (A) and antiradical activity (B) evaluation of Vitis vinifera L. cv. 
Sousão, during maturation, in SO-SM1 parcel, in 2010. Technologic maturity is indicated with a 
dash line. 

 

Once determined the general physicochemical parameters for each variety in the 

different conditions under study, according to the overview of Chapter III, the following 

sub-chapter (Chapter III. 2) refers to the determination of volatile composition (free 

fraction) of each grape variety. 

 



 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter III. 2 - Varieties volatile profile evaluation 
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III. 2. 1.  Framework 

Grapes undergo many changes during the maturation process which involve a 

number of physical and chemical modifications, including changes in weight, sugar, 

acidity, colour and aroma (volatile composition). The volatile composition of grapes is one 

of the most important factors to determine grapes, and thus, wine aroma quality, which is 

determinant for consumer acceptance. However, the type and concentration of volatile 

compounds is dependent of several natural factors such as harvest climatic conditions, soil 

type, vineyard altitude, as well as agricultural practices, among other factors. The 

knowledge of the volatile composition offers a means of evaluating the aroma potential of 

each variety (Ribéreau-Gayon et al., 2000). There are several volatile and semi-volatile 

compounds already reported in grapes from different varieties, representing different 

chemical families, namely alcohols, aldehydes, ketones, norisoprenoids, and terpenic 

compounds (González-Marco et al., 2008; Polášková et al., 2008). Form these, terpenic 

compounds (mono-, sesqui-, and diterpenic ones), norisoprenoids, aromatic alcohols, and 

C6 alcohols and aldehydes, were considered in this PhD thesis, due to their importance to 

the grapes aroma properties. This will allow determining the variety volatile characteristics 

in the different vineyard parcels, for the 3 harvests.  

Although a number of volatile compounds contributing to wine quality are 

produced by the yeasts during fermentation, or are derived from precursors during the wine 

aging, a good many are already present in the grapes (González-Barreiro et al., 2015; 

Jackson, 2014). These compounds present in grapes are responsible for the varietal aroma 

of the wines and are biosynthesized during grapes maturation. The term ‘varietal aroma’ 

should not, however, be taken to imply that each variety has specific volatile compounds. 

In fact, the same volatile compounds are found in different varieties. Thus, the individual 

aroma properties of wines made from each grape variety is due to the infinitely varied 

combinations and concentrations of the various compounds (Ribéreau-Gayon et al., 2006). 

The terpenic compounds and norisoprenoids are important chemical families associated to 

the varietal aromas. 

Terpenic compounds belong to secondary plant constituents whose biosynthesis 

begins with the production of mevalonic acid from glucose by acetyl-coenzyme A (CoA) 

pathway. All terpenic compounds are built from isopentenyl pyrophosphate (IPP), a C5 

isoprenic-base unit, produced from mevalonic acid. This IPP unit is isomerised into 
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dimethylallyl pyrophosphate (DMAPP). These two units play an active role in terpenic 

compounds synthesis. By the action of prenyltransferases, DMAPP molecule condensates 

with varying numbers of IPP units to form geranyl pyrophosphate (GPP), farnesyl 

pyrophosphate (FPP), and geranylgeranyl pyrophosphate (GGPP). Then, terpene synthases 

convert GPP, FPP, and GGPP to mono-, sesqui- and diterpenic compounds, respectively. 

These, after losing the pyrophosphate residue, the synthetic pathways can form either 

acyclic or cyclic terpenic compounds (Ribéreau-Gayon et al., 2000). Mono- and 

sesquiterpenic compounds, formed from two and three isoprene units, respectively, are the 

most commonly determined terpenic compounds in grapes and wines. From these, linalool, 

α-terpineol, nerol, geraniol, citronellol, and nerolidol are the most common ones. Although 

terpenic compounds are present at trace amounts, their sensory thresholds are rather low 

(few hundred micrograms per litre), thus these compounds can therefore contribute 

significantly to the aroma potential of the varieties. These are greatly related with fruity, 

citric, and floral aromas (Ribéreau-Gayon et al., 2000; Ribéreau-Gayon et al., 2006). 

Norisoprenoids are a diverse group of aroma compounds derived from grape 

carotenoids. The oxidative degradation of carotenoids, terpenes with 40 carbons 

(tetraterpenes) produces derivatives with 9, 10, 11 or 13 carbon atoms. Among these 

compounds, the 13 carbon atoms derivatives (C13 norisoprenoids) are the most commonly 

found in grapes. Although they are only present at trace levels, sensory thresholds for most 

norisoprenoids are very low (e.g. 0.09 µg/L for β-ionone and 0.05 µg/L for β-

damascenone), thus these compounds can therefore contribute significantly to the aroma 

potential of the varieties, essentially with flowery, fruity, and sweety aromas (Ribéreau-

Gayon et al., 2006). 

The aromatic alcohols, as benzyl alcohol and 2-phenylethanol, are commonly 

determined in grapes. Although they are synthesized in grapes in small amounts, they are 

mainly produced during fermentation process by yeasts. Besides the fact that a portion of 

these compounds can derive from glycosidic hydrolysis, a greater proportion is formed 

from grape-derived aldehydes, in the metabolism of the amino acid phenylalanine. 

Aromatic alcohols are an important chemical family that contributes with pleasant aromas 

to the wines, principally with flowery and sweet aromas (Jackson, 2014; Moreno-Arribas 

and Polo, 2009). 
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Besides the varietal aromas, also pre-fermentative ones are found in grapes. These 

aromas result from several mechanical or technological operations (transport, crushing, 

maceration and clarification) performed before the beginning of the fermentation process. 

Six-carbon alcohols and aldehydes are mainly related with the pre-fermentative aroma 

(González-Barreiro et al., 2015). The C6 aldehydes (like hexanal, 2- and 3-hexenal) are 

formed by enzymatic oxidation of fatty acids in the grapes, namely linolenic and linoleic 

acids, by the activity of lipoxygenase enzymes, following mechanical or technological 

processes. Briefly, an acylhydrolase hydrolyses the fatty acids from membrane lipids. 

Next, the lipoxigenase catalyzes the fixation of oxygen on these C18 unsaturated fatty 

acids. This enzyme preferentially forms hydroperoxides in C13 from linoleic and linolenic 

acids which are then cleaved into C6 aldehydes. Some of these aldehydes are then reduced 

to their corresponding alcohols by the action of alcohol dehydrogenase of the grapes 

(Bakker and Clarke, 2011; Crouzet, 1986). These compounds are related with herbaceous 

aromas, which are commonly regarded as negative quality of the wine aroma, although 

consumers appreciate a certain herbaceous notes in some wines (Welke et al., 2012). 

The present Chapter aims to evaluate the impact of harvest and vineyard parcel 

characteristics on each variety volatile composition by using data obtained during 

maturation. For this, varietal (terpenic compounds, norisoprenoids, and aromatic alcohols) 

and pre-fermentative (C6 alcohols and aldehydes) aroma compounds were selected. These 

chemical families were selected because the varietal volatile composition offers means of 

evaluating the aroma potential of each variety and the herbaceous odours of C6 alcohols 

and aldehydes are associated as negative quality parameters, however in some wines these 

notes are appreciated by the consumers. 

 

III. 2. 2.  Material and Methods 

III. 2.1.  Samples 

Seven V. vinifera grape varieties, each one from 3 parcels, collected during 

maturation, were considered. The exception was Sousão which was only collected in one 

parcel. Depending on the variety, the parcel, and the harvest, the sampling moments varies 

from 3 to 9. 
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III. 2. 2.2.  Determination of grapes volatile profiles by HS-SPME/GC×GC-ToFMS 

HS-SPME procedure 

The HS-SPME experimental parameters were adopted from a previously study 

using grapes (Perestrelo et al., 2011). The SPME holder for manual sampling and fibre 

were purchased from Supelco (Aldrich, Bellefonte, PA, USA). The SPME device included 

a fused silica fibre coating partially cross-linked with 50/30 µm DVB/CAR/PDMS). This 

coating (molecular weight ranging from 40 to 275 Da) combines the absorption properties 

of the liquid polymer with the adsorption properties of porous particles, which contains 

macro (>500 Å), meso (20–500 Å) and microporous (2–20 Å) and has bipolar properties. 

The mutually synergetic effect of adsorption and absorption of the stationary phase 

promotes a high retention capacity and, consequently, higher sensitivity than fibres based 

only on absorption, which seems to be adequate for the analysis of complex matrix such as 

grapes. Prior to use, the SPME fibre was conditioned at 270 °C for 60 min in the GC 

injector, according to the manufacturer's recommendations. For HS-SPME assay, 4 g of 

each variety (from each sampling moment) were crushed manually and inserted into a 20 

mL glass vial. After the addition of 5 mL of ultra-pure water, 2 g of sodium chloride 

(NaCl) and stirring (0.5 × 0.1 mm bar) at 400 rpm, which corresponds to a volume ratio of 

0.5 of the liquid phase relatively to the headspace volume (1/β), the vial was capped with a 

PTFE septum and an aluminium cap (Chromacol, Hertfordshire, UK). The vial was placed 

in a thermostated bath adjusted to 60.0 ± 0.1 °C for 5min, and then the SPME fibre was 

inserted in the headspace for 20 min. All measurements were performed in triplicate. 

 

GC×GC-ToFMS analysis 

The analysis of volatile composition of the 7 V. vinifera under study were carried 

out based on a previously reported work (Perestrelo et al., 2010) that uses a LECO Pegasus 

4D (LECO, St. Joseph, MI, USA) GC×GC-ToFMS system consisted of an Agilent GC 

7890A gas chromatograph (Agilent Technologies, Inc., Wilmington, DE), with a dual stage 

jet cryogenic modulator (licensed from Zoex) and a secondary oven, and mass 

spectrometer equipped with a high resolution ToF analyzer. After the 

extraction/concentration step, the SPME coating fibre was manually introduced into the 

GC×GC-ToFMS injection port at 250 ºC and kept for 3 min for desorption. The injection 

port was lined with a 0.75 mm I.D. splitless glass liner. Splitless injections were used (30 
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s). An Equity-5 column (30 m x 0.32 mm I.D., 0.25 µm film thickness, Supelco, Inc., 

Bellefonte, PA, USA) was used as first-dimension (1D) column and a DB-FFAP (0.79 m x 

0.25 mm I.D., 0.25 µm film thickness, J&W Scientific Inc., Folsom, CA, USA) was used 

as a second-dimension (2D) column. The carrier gas was helium at a constant flow rate of 

2.50 ml/min. The primary oven temperature program was: initial temperature 40 ºC (hold 1 

min), and then raised to 230 ºC (10 ºC min−1) (hold 2 min). The secondary oven 

temperature program was 30 ºC offset above the primary oven. The MS transfer line and 

the MS source temperatures were 250 ºC. The modulation time was 6 s; the modulator 

temperature was kept at 20 ºC offset (above secondary oven). A 6 s modulation time with a 

20 ºC secondary oven temperature offset was chosen to be a suitable compromise as it 

maintained the 1D separation, maximized the 2D resolution, and avoided the wrap-around 

effect (i.e. when the elution time of a pulsed solute exceeds the modulation period) for 

compounds that were late to elute from the 2D. Ideally, all peaks must be detected before 

the subsequent re-injection and, hence, 2tR must be equal or less than the modulation period 

(Dallüge et al., 2003; Mondello et al., 2008). The ToFMS was operated at a spectrum 

storage rate of 100 spectra/s. The mass spectrometer was operated in the EI mode at 70 eV 

using a range of m/z 35-350 and the detector voltage was -1434 V. Total ion 

chromatograms (TIC) were processed using the automated data processing software 

ChromaTOF (LECO) at signal-to-noise threshold of 100.  

Contour plots were used to evaluate the separation general quality and for manual 

peak identification. For identification purposes, the mass spectrum and retention times (1D 

and 2D) of the analytes were compared with standards, when available. Also, the mass 

spectrum of each compound detected was compared to those in mass spectral libraries, 

which included an in-house library of standards and two commercial databases (Wiley 275 

and US National Institute of Science and Technology (NIST) V. 2.0 – Mainlib and Replib). 

The identification was also supported by the experimentally determined retention index 

(RI) values that were compared, when available, with the values reported in the 

bibliography for chromatographic columns similar to the one used in the present PhD 

thesis for one dimensional GC with 5%-phenyl-methylpolysiloxane GC column or 

equivalent (Adams, 1995, 2000; Adams et al., 2005; Alissandrakis et al., 2007; Araujo et 

al., 2003; Baccouri et al., 2007; Beaulieu and Grimm, 2001; Buchin, 2002; Carrapiso et 

al., 2002; Cho et al., 2007; Couladis et al., 2001; D'Arcy et al., 1997; Dickschat et al., 
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2005; El-Sayed et al., 2005; Engel et al., 2002; Engel and Ratel, 2007; Ferhat et al., 2007; 

Flach et al., 2004; Flamini et al., 2002; Hazzit et al., 2006; Hognadottir and Rouseff, 2003; 

Isidorov et al., 2003; Jalali-Heravi et al., 2006; Kim et al., 2006; Kobaisy et al., 2002; 

Lalel et al., 2003a; Marongiu et al., 2006; Mevy et al., 2006; Mondello and Costa, 2006; 

Pino et al., 2003; Pino et al., 2005; Radulović et al., 2012; Robinson, 2006; Sarikurkcu et 

al., 2008; Saroglou et al., 2006; Setzer et al., 2006; Vasta et al., 2007; Vujisic et al., 2006; 

Zhao et al., 2006; Zhao et al., 2008) and for comprehensive GC×GC system with Rxi-

5SilMS and VF-5MS for the 1D column (Robinson et al., 2011; Weldegergis et al., 2011) 

or with the same column set used in this PhD thesis - Equity-5 1D column and a DB-FFAP 

for 2D column (Jalali et al., 2012; Jalali et al., 2013; Petronilho et al., 2011; Petronilho et 

al., 2013; Rocha et al., 2012; Rocha et al., 2007a; Rocha et al., 2013; Silva et al., 2010). 

RI values were determined using a C8-C20 n-alkanes series (the solvent n-hexane was used 

as C6 standard) and calculated according to the van den Dool and Kratz equation (van den 

Dool and Kratz, 1963). The majority (> 85%) of the identified compounds presented 

similarity matches ≥ 850 (850/1000). The DTIC (Deconvoluted Total Ion Current) GC×GC 

area data were used as an approach to estimate the relative content of each volatile 

component in the grape varieties under study, and were expressed as arbitrary units (a. u.). 

Three independent replicates were analysed for each variety at the different conditions 

under study. Reproducibility was expressed as relative standard deviation (RSD). Detail 

data was given in supplementary information in a CD-R. 

 

III. 2. 3.  Results and Discussion 

The volatile composition of each variety under study was analyzed by GC×GC-

ToFMS. The obtained GC×GC-ToFMS total ion chromatogram contour plot (data not 

shown) exhibited several hundreds of peaks. As several hundreds of chromatograms were 

obtained for the different varieties and conditions under study, only one illustrative figure 

of these chromatograms were shown (Figure 34). Figure 34 shows a blow-up of part of the 

chromatogram contour plot obtained for Arinto variety (for AR-VA2 parcel), indicating the 

chromatographic spaces corresponding to varietal (aromatic alcohols, mono (C10) and 

sesquiterpenic compounds (C15) and C13 norisoprenoids) and pre-fermentative (C6 alcohols 

and aldehydes) volatile compounds determined at half-véraison and at technologic 
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maturity. This figure clearly shows the different volatile composition of grapes collected at 

half-véraison when compared to technologic maturity state. 
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Figure 34. Blow-up of a part of GC×GC-ToFMS chromatogram contour plot obtained for Arinto 
variety in full-scan acquisition mode for a) grapes collected at half-véraison and b) grapes collected 
at technologic maturity. The chromatographic spaces corresponding to C6 alcohols and aldehydes, 
aromatic alcohols, mono (C10) and sesquiterpenic compounds (C15) and C13 norisoprenoids were 
highlighted. 

 

The GC×GC analysis was performed on a system comprising a non-polar thick-film 
1D (first-dimension) column and a 2D (second-dimension) column containing a thin-film 

polar stationary phase. This column combination provided two almost independent 

separations (orthogonality). On the non-polar column, analytes were separated according to 

their vapour pressure/volatility, and on the polar column, analytes were separated 
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according to their polarity. Consequently, compounds with similar vapour pressures had 

similar retention times in the 1D and compounds with similar polarities had similar 

retention times in the 2D. Thus, it was expected that structurally related compounds 

exhibited similar elution order, i.e. they eluted within a cluster in a GC×GC plane (Rocha 

et al., 2007). Therefore, it was possible to relate their chemical structures with their 

chromatographic position (Marriott et al., 2004). According to the 1D, the GC×GC-ToFMS 

extracted ion chromatogram contour plots (Figure 34) shows that the compounds were 

organized into four groups: the C6 alcohols and aldehydes, the C13 norisoprenoids, and the 

mono (C10) and sesquiterpenic components (C15). However, according to the 2D, the 

GC×GC–ToFMS extracted ion chromatogram contour plot shows that the compounds 

were organized into five groups: the C6 alcohols and aldehydes, the aromatic alcohols, the 

C13 norisoprenoids, the hydrocarbons (C10 and C15) placed in the lower retention times 

(lower polarity) and the terpene oxygen-containing (C10 and C15) placed in the higher 

retention times (higher polarity). Thus, a classification based on the presence of ordered 

structures in the GC×GC chromatogram of structurally related compounds was observed 

(Figure 34). The peak finding routine based on deconvolution method allowed to identify a 

total of 95 varietal and pre-fermentative compounds, in the 7 V. vinifera varieties and 

conditions studied, which were identified based on comparison of their mass spectra to 

mass spectra of high purity chemical standards, reference commercial and in-house MS 

databases, and by comparison of the RIs calculated (RIcalc) with the values reported in the 

literature (RIlit) for the columns used (or equivalents) (Table 4). Table 4 summarizes the 

information related with the varietal and pre-fermentative volatile compounds determined 

by GC×GC-ToFMS analysis in the 7 V. vinifera varieties, obtained from the different 

parcels of São Mateus and Vale de Azar vineyards under study, during 3 consecutive 

harvests, grouped by chemical families: 7 C6 compounds (alcohols and aldehydes), 3 

aromatic alcohols, 17 norisoprenoids (1 C9 and 16 C13 norisoprenoids), and 68 terpenic 

compounds (47 mono-, 20 sesqui-, and 1 diterpenic compounds). 
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Table 4. Volatile components determined in Vitis vinifera L. cv. Arinto, Bical, Sauvignon Blanc, Baga, Castelão, Touriga Nacional, during maturation, for the 
parcels and harvests under study. 

 
    RI lit.

c Ref. RIlit. d Varieties 

1Dtr(s),2Dtr(s)a Compound CAS number Formula RI calc.
b 1D-GC GC×GC 1D-GC GC×GC Arinto  Bical 

Sauvignon 
Blanc 

Baga Castelão 
Touriga 
Nacional Sousão 

C6 compounds                

194, 0.640 Hexanal 66-25-1 C6H12O 801 800 800 (Adams, 1995) (Rocha et al., 2012) x x x x x x x 

206, 0.630 3-Hexenal 6789-80-6 C6H10O 805 803 _ (Carrapiso et al., 2002) _ x x x x x x x 

230, 0.651 2-Hexenal 6728-26-3 C6H10O 851 854 855 (Adams, 2000) (Rocha et al., 2013) x x x x x x x 

242, 0.630 3-Hexen-1-ol 928-96-1 C6H12O 858 857 861 (Adams, 2000) (Rocha et al., 2013) x x x x x x x 

248, 1.076 2-Hexen-1-ol 928-95-0 C6H12O 864 862 _ (Baccouri et al., 2007) _ x x x x x x x 

266, 0.903 1-Hexanol 111-27-3 C6H14O 876 865 877 (Cho et al., 2007) (Rocha et al., 2013) x x x x x x x 

296, 0.930 2,4-Hexadienal 142-83-6 C6H8O 914 912 _ (Engel and Ratel, 2007) _ x x x x x x x 

                

Aromatic alcohols               

420, 3.014 Benzyl Alcohol 100-51-6 C7H8O 1048 1052 1044 (Dickschat et al., 2005) (Robinson et al., 2011) x x x x x x x 

446, 1.426 α,α-Dimethyl Benzyl alcohol 617-94-7 C9H12O 1089 1102 _ (Dickschat et al., 2005) _ x x x x x x  

470, 1.960 2-Phenylethanol 60-12-8 C8H10O 1115 1129 1107 (Dickschat et al., 2005) (Weldegergis et al., 2011) x x x x x x x 

                

C9 Norisoprenoid               

506, 0.761 Norinone 38651-65-9 C9H14O 1142 1142 1183 (Zeng et al., 2007) (Rocha et al., 2007a)    x x x  

                

Monoterpenic compounds               

314, 0.440 α-Pinene 80-56-8 C10H16 938 939 941 (Adams, 2000) (Jalali et al., 2012) x x x x x x x 

338, 0.480 Dehydroxylinalooloxide 13679-86-2 C10H18O 972 971 _ (Pino et al., 2003) _ x    x x x 

344, 0.457 β-Pinene * 18172-67-3 C10H16 988 989 987 (Buchin, 2002) (Jalali et al., 2012) x x x x x x x 

356, 0.570 β-Myrcene 123-35-3 C10H16 1001 991 1008 (Adams, 1995) (Jalali et al., 2012) x  x x    

362, 0.520 3-Carene 13466-78-9 C10H16 1007 1004 1020 (Engel et al., 2002) (Jalali et al., 2012)   x   x  

368, 0.790 α-Phellandrene 99-83-2 C10H16 1013 1010 _ (Jalali-Heravi et al., 2006) _   x     

392, 0.405 m-Cymene 535-77-3 C10H14 1025 1020 1027 (Araujo et al., 2003) (Jalali et al., 2012) x x x x x x x 



Varieties volatile profile evaluation 

 

 
 

398, 0.476 Limonene * 138-86-3 C10H16 1028 1029 1035 (Adams et al., 2005) (Jalali et al., 2012) x x x x x x x 

404, 0.476 1,8-Cineole 470-82-6 C10H18O 1034 1032 1039 (Adams, 2000) (Jalali et al., 2012) x x x x x x x 

416, 0.560 β-Ocimene 3779-61-1 C10H16 1045 1050 1043 (Adams, 2000) (Jalali et al., 2012) x  x x  x  

428, 0.678 Linalool oxide (isomer)  C10H18O2 1071 1071 1078 (Saroglou et al., 2006) (Jalali et al., 2012) x x x x x x x 

434, 0.727 Dihydromyrcenol 53219-21-9 C10H20O 1073 1073 1076 (Vasta et al., 2007) (Rocha et al., 2007a) x x x x x x x 

440, 0.560 α-Terpinolene 586-62-9 C10H16 1076 1088 1097 (Adams, 2000) (Jalali et al., 2012) x  x x x x  

440, 0.790 Linalool oxide (isomer)  C10H18O2 1076 1087 1097 (Saroglou et al., 2006) (Jalali et al., 2012)   x  x x  

446, 0.700 Dihydrolinalool 78-69-3 C10H22O 1088 1097 _ (Pino et al., 2005) _ x x x x x x  

452, 0.746 Linalool * 78-70-6 C10H18O 1096 1098 1108 (Adams, 2000) (Jalali et al., 2012) x x x x x x x 

464, 0.600 Rose oxide (isomer)  C10H18O 1107 1111 1117 (Adams, 1995) (Jalali et al., 2012) x  x x x x  

464, 0.844 Fenchol 22627-95-8 C10H18O 1108 1112 1118 (Couladis et al., 2001) (Jalali et al., 2012) x x x x x  x 

470, 0.646 Hotrienol 53834-70-1 C10H16O 1113 1114 1122 (D'Arcy et al., 1997) (Jalali et al., 2012) x x x x x x x 

470, 0.780 Camphenal 4501-58-0 C10H14O 1114 1125 _ (Adams, 2000) _   x x x   

476, 0.770 Rose oxide (isomer)  C10H18O 1118 1127 1130 (Adams, 1995) (Jalali et al., 2012) x       

482, 0.890 1-Terpineol 586-82-3 C10H18O 1120 1127 _ (Kim et al., 2006) _   x x    

488, 0.690 Cosmene 460-01-5 C10H14 1122 1134 _ (Flamini et al., 2002) _ x  x     

494, 1.050 Pinocarveol 547-61-5 C10H16O 1130 1139 1142 (Adams, 2000) (Jalali et al., 2012)  x   x   

500 , 0.970 β-Terpineol 138-87-4 C10H18O 1136 1137 1150 (Isidorov et al., 2003) (Jalali et al., 2012)   x   x  

506, 1.190 Pinocarvone 34-41-3 C10H14O 1140 1144 1164 (Boskovic et al., 2005)      x  x 

512, 0.635 Nerol oxide 1786-08-9 C10H16O 1151 1151 1172 (Saroglou et al., 2006) (Jalali et al., 2012) x x x x x x  

518, 0.834 Ocimenol 5986-38-9 C10H18O 1166 1155 1179 (Zhao et al., 2008) (Jalali et al., 2012) x x x  x  x 

518, 1.200 m/z 68, 94, 79, 109 (alcohol)  C10H18O2 1167 _ _ _ _   x  x x  

524, 0.860 Borneol 507-70-0 C10H18O 1169 1165 1172 (Adams, 1995) (Jalali et al., 2012) x x x x x x  

530, 0.884 p-Mentha-1,5-dien-8-ol 1686-20-0 C10H16O 1171 1170 1172 (Adams et al., 2005) (Jalali et al., 2012)   x x x   

530, 0.984 Menthol * 1490-04-6 C10H20O 1175 1170 _ (Flach et al., 2004) _ x x x x x x x 

536, 0.715 Terpinen-4-ol 562-74-3 C10H18O 1183 1177 1181 (Adams, 2000) (Jalali et al., 2012) x x x x x x  

536, 1.269 p-Cymen-8-ol 1197-01-9 C10H14O 1184 1183 1203 (Adams, 2000) (Jalali et al., 2012) x x x x x x  

542, 0.835 α-Terpineol * 98-55-5 C10H18O 1195 1189 1206 (Adams, 2000) (Jalali et al., 2012) x x x x x x x 

548, 0.850 Dihydrocarvone  7764-50-3 C10H16O 1197 1193 1211 (Adams, 1995) (Jalali et al., 2012)    x    

554, 0.900 Safranal 116-26-7 C10H14O 1199 1197 _ (Saroglou et al., 2006) _   x     
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560, 0.850 Verbenone 80-57-9 C10H14O 1214 1204 1214 (Adams, 2000) (Jalali et al., 2012) x x x x x x  

566, 0.703 p-Menth-1-en-9-al 29548-14-9 C10H16O 1217 1217 1219 (Pino et al., 2003) (Jalali et al., 2012) x x x x x x x 

572, 1.340 2-Hydroxycineole 92999-78-5 C10H18O2 1219 1228 1237 (Setzer et al., 2006) (Petronilho et al., 2013)   x  x   

578, 0.700 m/z 93, 121, 119, 136 (alcohol)  C10H16O 1224 _ _ _ _     x   

584, 0.873 Geraniol (isomer) *  C10H18O 1235 1224 1235 (Vujisic et al., 2006) (Jalali et al., 2012) x x x x x x x 

584, 0.943 β-Citronellol * 106-22-9 C10H20O 1237 1233 1237 (Adams, 2000) (Jalali et al., 2012) x x x x x x  

590, 0.737 Geraniol (isomer) *  C10H18O 1244 1237 1242 (Ferhat et al., 2007) (Jalali et al., 2012) x x x x x x  

596, 0.976 Citral (isomer)  C10H16O 1247 1240 1245 (Beaulieu and Grimm, 2001) (Jalali et al., 2012) x x x x x x x 

602, 0.815 Carvone * 99-49-0 C10H14O 1251 1253 1245 (Adams, 2000) (Jalali et al., 2012) x x x x x x x 

626, 0.775 Citral (isomer)  C10H16O 1274 1270 1287 (Beaulieu and Grimm, 2001) (Rocha et al., 2007a) x x x x x x  

                

C13 Norisoprenoids               

566, 0.532 m/z 159, 91, 131 (hydrocarbon)  C13H18 1216 _ _ _ _ x x x x x x x 

602, 0.660 α-Ionene 475-03-6 C13H19 1250 1266 1261 (El-Sayed et al., 2005) (Robinson et al., 2011) x   x    

620, 0.595 Vitispirane 65416-59-3 C13H20O 1286 1281 1287 (Pino et al., 2003) (Robinson et al., 2011) x x x x x x x 

632, 0.517 Theaspirane (isomer)  C13H22O 1302 1313 1305 (Sarikurkcu et al., 2008) (Robinson et al., 2011) x x x x x   

644, 0.528 Theaspirane (isomer)  C13H22O 1323 1331 1322 (Sarikurkcu et al., 2008) (Robinson et al., 2011) x x x x x x  

668, 0.790 TDN (1,2-Dihydro-1,1,6-trimethyl- naphthalene) 30364-38-6 C13H16 1357 1355 1361 (Alissandrakis et al., 2007) (Robinson et al., 2011) x  x     

674, 0.681 β-Damascenone (isomer)  C13H18O 1369 1359 1364 (Kobaisy et al., 2002) (Robinson et al., 2011) x x x x x x x 

680, 0.840 m/z 142, 157, 115 (ketone)  C13H18O 1371 _ _ _ _ x   x x   

700, 0.702 β-Damascenone (isomer)  C13H18O 1383 1381 1385 (Kobaisy et al., 2002) (Robinson et al., 2011) x x x x x x x 

724, 0.750 Hydroxydihydroedulan  C13H22O2 1446 1446 _ (Radulović et al., 2012) _ x x      

736, 0.648 Geranylacetone * 3796-70-1 C13H22O 1455 1449 1454 (Adams et al., 2005) (Rocha et al., 2013) x x x x x x x 

742, 0.850 5,6-Epoxy-β-ionone 23267-57-4 C13H20O2 1463 1473 _ (Mevy et al., 2006) _ x x x x x x  

760, 0.868 3,4-Dehydro-β-ionone 1203-08-3 C13H18O 1474 1485 1483 (Zhao et al., 2006) (Robinson et al., 2011) x x x  x x  

778, 0.635 α-Iso-methyl ionone 127-51-5 C14H22O 1485 1471 _ (Mondello and Costa, 2006) _ x x x x x x  

784, 0.717 β-Ionone * 79-77-6 C13H20O 1488 1485 1494 (Adams, 1995) (Silva et al., 2010) x x x x x x  

900, 0.894 Methyl dihydrojasmonate 24851-98-7 C13H22O3 1661 1650 _ (Mondello and Costa, 2006) _ x x x x x x x 

                

Sesquiterpenic compounds               
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650, 0.521 δ-Elemene 20307-84-0 C15H24 1329 1330 1330 (Jantan et al., 2003) (Jalali et al., 2013)    x x x  

656, 0.583 Longipinene epoxide 142792-93-6 C15H24 1337 1334 _ (Marongiu et al., 2006) _ x x x     

680, 0.469 α-Copaene 3856-25-5 C15H24 1371 1376 1375 (Adams, 1995) (Jalali et al., 2013)  x x  x x  

686, 0.510 β-Bourbonene 5208-59-3 C15H24 1379 1381 1379 (Saroglou et al., 2006) (Jalali et al., 2013)    x  x  

712, 0.508 Longifolene 475-20-7 C15H24 1414 1416 1395 (Adams et al., 2005) (Jalali et al., 2013) x x x     

718, 0.481 β-Caryophyllene 87-44-5 C15H24 1418 1418 1417 (Adams et al., 2005) (Jalali et al., 2013)    x    

724, 0.541 α-Humulene 6753-98-6 C15H24 1445 1455 1450 (Adams et al., 2005) (Jalali et al., 2013)   x  x   

756, 0.630 Aromadendrene 489-39-4 C15H24 1477 1484 1478 (Robinson, 2006) (Petronilho et al., 2013) x x x x x x x 

762, 0.450 α-Muurolene 31983-22-9 C15H24 1485 1499 1490 (Adams, 2000) (Jalali et al., 2013)   x  x   

790, 0.660 α-Farnesene 502-61-4 C15H24 1501 1508 1505 (Adams, 2000) (Petronilho et al., 2011) x x x  x x x 

796, 0.525 γ-Cadinene 39029-41-9 C15H24 1504 1513 1511 (Adams, 1995) (Jalali et al., 2013)   x x    

808, 0.630 Calamenene 483-77-2 C15H22 1514 1521 1520 (Adams, 2000) (Jalali et al., 2013) x x x  x x x 

826, 0.629 α-Calacorene 21391-99-1 C15H20 1555 1542 1554 (Adams, 2000) (Jalali et al., 2013)  x x x x x  

832, 0.880 Nerolidol 7212-44-4 C15H26O 1560 1564 1568 (Adams, 1995) (Jalali et al., 2013) x x x x x x  

844, 0.810 Epiglobulol 88728-58-9 C15H26O 1579 1582 _ (Robinson, 2006) _ x       

850, 0.751 Globulol 489-41-8 C15H26O 1594 1598 1592 (Robinson, 2006) (Petronilho et al., 2013b)  x    x  

862, 0.726 Caryophyllene oxide 1139-30-6 C15H24O 1605 1606 1601 (Hognadottir and Rouseff, 2003) (Jalali et al., 2013)   x  x x  

886, 0.690 β-Eudesmol 77-53-2 C15H26O 1642 1649 1642 (Adams, 1995) (Jalali et al., 2013) x x x x x x  

912, 0.654 m/z 119, 91, 191, 109 (alcohol)  C15H26O 1675 _ _ _ _ x x x  x x x 

942, 0.820 Farnesal 502-67-0 C15H24O 1731 1730 1724 (Adams, et al., 2005) (Jalali et al., 2013)   x     

                

Diterpenic compound               

1116, 0.929 Phytol 596-84-9 C20H34O 2021 2022 2022 (Hazzit et al., 2006) (Petronilho et al., 2013b)  x  x  x  

a 1Dtr (s), 2Dtr(s): first and second dimension retention times (in seconds) of each compound determined. 
b RIcalc: retention index obtained through the modulated chromatogram. 
c RIlit: retention index reported in the literature for 5% phenyl polysilphenylene-siloxane GC column or equivalents, reported for 1D-GC and GC×GC. 
d Ref. RIlit: references found in the literature for 5% phenyl polysilphenylene-siloxane GC column or equivalents, reported for 1D-GC and GC×GC. 
* Compounds identified based on the comparison between the obtained mass spectra and mass spectra of high purity chemical standards. 
Notation x indicates that the compound was determined in the corresponding variety. Detailed data related to the volatile components determined for each grape variety under 
study, during maturation, for 3 parcels and 3 consecutive harvests, was given in Supplementary Tables S8 to S14. 
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For straight through and rapid interpretation of the volatile composition determined 

for the different varieties, each one obtained from 3 parcels and 3 harvests, a graphical 

representation of the total GC×GC peak area (a.u.) of each compound was performed, 

organized by chemical families (from Figure 35 to Figure 41). For each XY graph “0” in 

the x axis refers to the first sampling moment performed at half-véraison. Besides, the 

same y-axis scale was kept for the 3 harvests, in order to obtain a rapid visual access of 

each variety volatile composition, allowing the comparison of the similarities and 

differences between the different parcels and harvests under study. Detailed data was given 

in Supplementary Tables S8 to S14 in a CD-R. 

 

Arinto 

According to Figure 35, the content of Arinto varietal volatile components 

increased in both parcels and harvests under study, in the first or second weeks after half-

véraison and then tends to stabilize, as observed for terpenic compounds, or continues to 

increase until technologic maturity (the case of aromatic alcohols). The exception was 

observed for C13 norisoprenoids that increased in the first week after half-véraison and 

then a continuous decrease was observed. This could be explained by the fact that between 

véraison and technologic maturity occur the glycosylation of norisoprenoids, leading to a 

decrease of these compounds in the free form (Baumes et al., 2002). Besides the variability 

on the composition of pre-fermentative compounds, these compounds tend to increase until 

technologic maturity. However, a maximum was reached in 2010 at day 7 for AR-VA1 

grapes and in 2011 at day 35 for AR-VA1 and AR-VA, decreasing in the following weeks 

to values that approached those observed at half-véraison (Figure 35). 

Despite the observed trend through maturation, several differences between grapes 

volatile composition from the 3 parcels were observed (Figure 35): similarly to the 

tendency observed for Arinto phenolic content and antiradical activity, the total GC×GC 

peak area of varietal compounds (mono- and sesquiterpenic compounds and also aromatic 

alcohols) tends to be higher in grapes from AR-VA2 (clay-sandy soil, ca. 70 m, near to 

pine trees, rows guided North-South direction) followed by AR-SM1 (clay-calcareous soil, 

ca. 50 m of altitude, open space, rows guided East-West direction) parcels than in AR-VA1 

(clayey soil, ca. 50 m, open space, rows guided North-South direction). The areas of C13 

norisoprenoids and C6 compounds were similar in grapes from both parcels. 
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Figure 35. Varietal and pre-fermentative volatile components evolution, organized by chemical 
families, during Arinto maturation, obtained from AR-VA1, AR-VA2, and AR-SM1 parcels, along 
3 harvests (2010-2012). Technologic maturity is indicated with a dash line. The areas are expressed 
as arbitrary units (a.u.). Detail data was given in Supplementary Table S8 in a CD-R. 
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As AR-VA1 parcel (clayey soil) was at an open space and at ca. 50 m, similarly to 

AR-SM1, and the rows orientations were similar to AR-VA2 (North-South direction), the 

lower level of volatile components of grapes from AR-VA1 parcel can be explained by the 

different soil types (Figure 35): clayey soil (AR-VA1) with higher water-holding capacity, 

seems to be related with lower grapes varietal volatile content when compared to the other 

soils parcels (clay-calcareous and clay-sandy). This was in accordance with a recent study 

performed with sparkling wines obtained from Fernão-Pires white variety, from Bairrada 

Appellation, where wines produced from the clay-calcareous and sandy soils presented the 

highest content of varietal compounds (Coelho et al., 2009). These results showed that 

middle to lower water-holding capacity soils seem to favour Arinto volatile composition. 

Arinto grapes volatile composition was also different from one harvest to another 

(Figure 35): in 2011 the GC×GC peak areas of terpenic compounds and C13 norisoprenoids 

were lower when compared to the other harvests, increasing from 2011 to 2010. The 

content of C6 compounds and aromatic alcohols were similar between the 3 harvests. The 

warm and dry conditions of 2011 harvest and the fresh and rainy ones of 2012 seem to be 

related with lower varietal volatile content of Arinto grapes, while the moderate climatic 

conditions of 2010 harvest seems to favour grapes volatile composition. It was already 

shown that vines that experience hot and dry climates (Ribéreau-Gayon et al., 2006) or 

higher precipitation amounts (Jackson and Lombard, 1993) cause grapes aromatic quality 

losses. 

Arinto variety is known to resist to different year climatic condition (Chapter II). 

Although sugar content and titratable acidity were kept constant during a long period in 

2011 harvest, without rot appearance or berry dehydration (Figure 20) resisting to warm 

conditions of this year, the hot temperatures may influence sesquiterpenic composition of 

Arinto grapes, allowing sesquiterpenic content to slightly decrease from day 35 until 

technologic maturity (Figure 35). These compounds provide a wide spectrum of aromas, 

mostly perceived as very pleasant and may contribute positively to the aroma perception of 

the final wines. 
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Bical 

Figure 36 shows the total GC×GC peak area of varietal- and pre-fermentative-

related volatile compounds, during the maturation process of Bical. For the parcels and 

harvests under study, the content of volatile components increased in the first week after 

half-véraison and then tends to stabilize (monoterpenic compounds), or continues to 

increase until technologic maturity (aromatic alcohols and sesquiterpenic compounds). 

Similarly with Arinto, C13 norisoprenoids increased in the first week after half-véraison 

and then a continuous decrease was observed (norisoprenoids glycosylation). 

Several differences between grapes volatile composition from the 3 parcels were 

observed (Figure 36): with the exception of C6 compounds, which content was very similar 

between grapes from the 3 parcels, the volatile composition was, during maturation, 

always lower in BI-VA1 parcel than in BI-SM1 and BI-VA2. This trend was followed by 

terpenic compounds, principally the monoterpenic ones, which were the major contributing 

group for the total area of Bical varietal volatile compounds. This was in accordance with 

phenolic content and antiradical activity of Bical grapes from the 3 parcels (Figure 28). 

According to the main characteristics of Bical parcels (Figure 17, Table 3), grapes from 

clay-calcareous (BI-VA2) and clay-sandy (BI-SM1) soils with middle and lower water-

holding capacity, exhibited the higher volatile content comparatively to grapes from clayey 

soil (Figure 36). Thus, higher water-holding capacity soil seems to be related with lower 

Bical volatile content. There was also pine trees located at East of BI-VA1 parcel, reducing 

grapes sunlight exposure in the first hours at the morning, while the other two parcels are 

at open spaces (Figure 17, Table 3). This may modulate BI-VA1 grapes volatile 

composition, since lower sun exposed berries inhibited the synthesis and accumulation of 

terpenic compounds and C13 norisoprenoids (Reynolds and Wardle, 1989b; Skinkis, 2010; 

Zhang et al., 2014). 

The harvest climatic conditions also influence Bical grapes composition: in 2011, 

the GC×GC peak areas were lower, principally regarding the varietal components, 

followed by grapes from 2012, and higher in grapes from 2010. Warm conditions of 2011 

harvest accelerate grapes maturation process, principally for grapes from BI-SM1 and BI-

VA1, allowing grapes to achieve technologic maturity earlier comparing with the other 

harvests. However, this is not followed with a rapidly accumulation of volatiles. 
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Figure 36. Varietal and pre-fermentative volatile components evolution, organized by chemical 
families, during Bical maturation, obtained from BI-VA1, BI-VA2, and BI-SM1 parcels, along 3 
harvests (2010-2012). Technologic maturity is indicated with a dash line. The areas are expressed 
as arbitrary units (a.u.). Detail data was given in Supplementary Table S9 in a CD-R. 
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Sauvignon Blanc 

For the particular case of Sauvignon Blanc variety, the evaluation of the volatile 

composition for grapes from the 3 parcels during maturation was only performed in 2010 

(Figure 37). Similar volatile composition was observed for Sauvignon Blanc grapes from 

the 3 parcels under study with only slightly differences related with sesquiterpenic content 

(Figure 37). The main characteristics of these parcels were very similar: they were at an 

open space and the rows were guided from North to South direction, presenting slightly 

differences in altitudes and different soils type (Table 3). Contrarily to the trend observed 

for the determination of Sauvignon Blanc phenolic content and antiradical activity (Figure 

29), which contents were higher for grapes from SB-SM3 (ca. 70 m, clay-sandy soil) and 

SB-SM2 (ca. 50 m, clay-calcareous soil), these results showed that the 3 parcels conditions 

seem to have no influence on the volatile composition of Sauvignon Blanc grapes. 
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Figure 37. Varietal and pre-fermentative volatile components evolution, organized by chemical 
families, during Sauvignon Blanc maturation, obtained from SB-SM1, SB-SM2, and SB-SM3 
parcels, along 2010 harvest. Technologic maturity is indicated with a dash line. The areas are 
expressed as arbitrary units (a.u.). Detail data was given in Supplementary Table S10 in a CD-R. 
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Baga 

Figure 38 shows the total GC×GC peak area of the volatile compounds of Baga 

grapes, obtained from BA-VA1, BA-VA2, and BA-SM1 parcels, for 2010 harvest. Despite 

the observed variability during maturation, different grapes volatile compositions were 

determined: grapes from BA-VA2 followed by BA-VA1 parcels tend to exhibit higher 

varietal volatile content, mainly on mono- and sesquiterpenic compounds, when compared 

to grapes from BA-SM1. This was in accordance with phenolic content and antiradical 

activity determined in Baga grapes, since BA-SM1 grapes exhibited also lower phenolic 

content and antiradical activity when compared with the other parcels (Figure 30). As BA-

SM1 parcel (clay-sandy soil) was at an open space, at ca. 50 m, and the rows orientation 

was from North to South direction, similarly with BA-VA2 conditions, the lower level of 

volatile components of grapes from BA-SM1 parcel can be explained by the different soils 

type (Table 3): clay-sandy soil of BA-SM1 seems to be related with lower grapes varietal 

volatile content when compared to the other parcels. The obtained results allowed inferring 

that clay-calcareous and clayey soils, with middle to higher water-holding capacity than 

clay-sandy soil, seem to favour varietal volatile composition of Baga grapes. 
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Figure 38. Varietal and pre-fermentative volatile components evolution, organized by chemical 
families, during Baga maturation, obtained from BA-VA1, BA-VA2, and BA-SM1 parcels, along 
2010 harvest. Technologic maturity is indicated with a dash line. The areas are expressed as 
arbitrary units (a.u.). Detail data was given in Supplementary Table S11 in a CD-R. 
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Castelão 

The evaluation of the volatile composition of Castelão variety, during maturation, 

for gapes from the 3 parcels and 3 harvests under study, was shown in Figure 39. Besides 

the fact that the GC×GC areas of C6 alcohols and aldehydes were similar for grapes from 

the 3 parcels, it was determined that grapes from CA-SM1 and CA-SM2 parcels tend to 

exhibit higher volatile content, especially on monoterpenic compounds and C13 

norisoprenoids, when compared to grapes from CA-SM3. This was similar to the trend 

observed for Castelão phenolic content and antiradical activity (Figure 31). The 3 Castelão 

parcels under study were located at an open space in São Mateus vineyard and the rows 

were guided from North to South direction presenting similar altitudes (ca. 60-70 m). Thus, 

the higher differences between them were related with the soil type (Figure 17,Table 3): 

the higher volatile content was found for grapes from CA-SM2, with clay-calcareous soil, 

followed by grapes from CA-SM1 with clayey and CA-SM3 with clay-sandy soils. Thus, 

middle followed by higher water-holding capacity soils of CA-SM2 and CA-SM1 parcels 

respectively, seem to be related with higher varietal volatile content. This trend was also 

followed by the results determined for Castelão grapes phenolic content and antiradical 

activity (Figure 31). 

Harvest climatic conditions also influence Castelão grapes volatile composition. 

Considering the 3 harvests under study, differences can be noticed (Figure 39): with the 

exception of C6 alcohols and aldehydes, in 2011 harvest, the GC×GC peak areas of varietal 

volatile compounds were lower when compared with 2010 and also with 2012 harvests. 

Furthermore, the maturation process of CA-SM1 and CA-SM3 grapes was longer in 2011, 

however the hot temperatures have not changed the varietal volatile content of Castelão 

grapes, maintaining it constant until technologic maturity (Figure 39). 
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Figure 39. Varietal and pre-fermentative volatile components evolution, organized by chemical 
families, during Castelão maturation, obtained from CA-SM1, CA-SM2, and CA-SM3 parcels, 
along 3 harvests (2010-2012). Technologic maturity is indicated with a dash line. The areas are 
expressed as arbitrary units (a.u.). Detail data was given in Supplementary Table S12 in a CD-R. 
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Touriga Nacional 

Figure 40 shows the volatile composition obtained, during maturation, for Touriga 

Nacional variety, at 3 parcels and 3 harvests (2010 to 2012). The total GC×GC peak area 

of terpenic compounds and norisoprenoids was, during maturation, higher in grapes from 

TN-SM2 than in TN-SM1, followed by TN-SM3. On the contrary, aromatic alcohols (with 

the exception of 2012 harvest) and C6 alcohols and aldehydes were similar in both parcels. 

Touriga Nacional parcels was at an open space of São Mateus vineyard, and the rows were 

guided from North to South, presenting differences in soil type and also slightly ones in 

altitude (Figure 17, Table 3): the higher volatile content was found in grapes form a parcel 

with clay-calcareous soil and at ca. 70 m (TN-SM2), followed by grapes from parcels both 

at ca. 50 m - TN-SM1 (clayey soil) and TN-SM3 (clay-sandy soil). 

The influence of harvest climatic conditions were not as evident as observed for the 

other varieties under study (Figure 40). However, it can be seen that grapes from 2010 

seem to have a little higher volatile content, principally in norisoprenoids and sesqui- and 

diterpenic compounds, when compared with 2011 and 2012. As the volatile content 

between grapes from 2011 and 2012 harvests was very similar, this shows that this is a 

variety that resists to different harvests climatic conditions, maintaining similar its volatile 

content. However, the excessive hot and dry summer of 2011 harvest, combined with a soil 

with higher drainage and lower water-holding capacity (TN-SM3), allowed to obtained 

overripe grapes. 
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Figure 40. Varietal and pre-fermentative volatile components evolution, organized by chemical 
families, during Touriga Nacional maturation, obtained from TN-SM1, TN-SM2, and TN-SM3 
parcels, along 3 harvests (2010-2012). Technologic maturity is indicated with a dash line. The 
areas are expressed as arbitrary units (a.u.). Detail data was given in Supplementary Table S13 in a 
CD-R. 
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Sousão 

Figure 41 shows the total GC×GC peak areas of the chemical families determined 

in Sousão variety obtained from SO-SM1 parcel (sandy soil, ca. 50 m, open space, rows 

guided from North-South direction), during maturation, at 2010 harvest. According to this 

figure, the volatile content increased in the first week of analysis and then tends to 

stabilize, as observed for C6 alcohols and aldehydes and monoterpenic compounds, or 

continues to increase until technologic maturity, which was the case of aromatic alcohols. 

The exception was observed for C13 norisoprenoids that increased in the first week of 

analysis, and then a continuous decrease was observed, which could be explained by the 

glycosylation of norisoprenoids (Baumes et al., 2002). The sesquiterpenic compounds 

attended their maximum at the first week of analysis and then slightly decreased and 

stabilized until technologic maturity. 
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Figure 41. Varietal and pre-fermentative volatile components evolution, organized by chemical 
families, during Sousão maturation, obtained from SO-SM1 parcel, along 2010 harvest. 
Technologic maturity is indicated with a dash line. The areas are expressed as arbitrary units (a.u.). 
Detail data was given in Supplementary Table S14 in a CD-R. 
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III.  Concluding remarks 

The results obtained for each parameter under study reveals the unique character of 

each variety. According to parcels characteristics it was found that, berry weight, pH, 

titratable acidity and sugar content were similar for the 3 parcels of Arinto, followed by 

Sauvignon Blanc, but were variable for Bical. Besides, Arinto, Bical and Sauvignon Blanc 

white varieties from parcels with clay-sandy and clay-calcareous soils have higher 

phenolic content and antiradical activity. However, Arinto and Bical from these parcels 

exhibited also higher volatile content, while for Sauvignon Blanc grapes the volatile 

content was similar between the 3 parcels. This suggests that parcels conditions seem to 

have low influence in aroma potential of Sauvignon Blanc grapes. For Baga, Castelão and 

Touriga Nacional red varieties, higher sugar content was determined in grapes from clay-

calcareous soil. Furthermore, parcels with clayey and clay-calcareous soils were related 

with grapes with higher volatile and phenolic contents, as well as higher antiradical 

activity. Besides soil type, for Touriga Nacional red variety, also altitude seems to 

modulate its volatile composition: higher altitude (TN-SM2, ca. 70 m, clay-calcareous soil) 

seems to be related with higher volatile content. 

Harvest climatic conditions influenced all the 7 grape varieties oenological 

potential. For all varieties under study, it was found that 2010 harvest was related with 

higher phenolic and volatile contents, as well as higher antiradical activity, while the 

opposite was observed in 2011. Besides, it was found that Bical variety was very sensitive 

to climatic conditions since its physicochemical characteristics, as sugar content and 

titratable acidity, were very variable from one harvest to another. Besides the fact that 

Arinto variety resist to different harvest climatic conditions, the excessive dry and hot 

conditions of 2011 harvest allowed sesquiterpenic content to slightly decrease until 

technologic maturity, which may influence its aroma potential. Also, the sugar contents of 

Baga and Sousão were very variable from one harvest to another, which may influence the 

alcohol content in the resulting wines. 

The knowledge of the particularities of each variety related with these factors 

(parcel characteristics and harvest climatic conditions) may represent a support for grape 

and wine producer’s decisions. 
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Comprehensive study of variety oenological potential 

by using statistic tools 
 

 

Overview 

A comprehensive study was performed by using data obtained at technologic 

maturity, in order to evaluate the impact of vineyard parcel characteristics and harvest 

climatic conditions on each variety composition and thus, in its oenological potential. 

Special attention was devoted to grapes collected at technologic maturity since they were 

the raw material for wines production that had developed all essential characteristics 

responsible for wine character and quality. Beyond berry weight, pH, titratable acidity, 

sugar content, total phenolic content, antiradical activity, and free volatile fraction, also 

glycosidically-linked fraction was determined for mature grapes. The knowledge of these 

two fractions offers a mean of evaluating the aroma potential of each variety. A 

comprehensive approach combining the different domains was made by using analysis of 

variance-simultaneous component analysis (ASCA). 
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III. 1.  Framework 

Grapes constitute the raw material for producing wines. Its technologic maturity 

level is one of the most deciding factors in determining wine character and quality. It is the 

result of the entire complex physiological and biochemical phenomena whose development 

is intricately related to environmental conditions (vineyard, varieties, soils, and climate). 

During maturation, grapes accumulate sugar while acidity falls, and accumulate secondary 

products of major oenological importance, such as phenolic and volatile compounds 

(Ribéreau-Gayon et al., 2000). Mature grapes particularly contain levels of numerous free 

and glycosidically-linked forms of volatile compounds, which are accumulated in the 

berries during maturation (Sánchez-Palomo et al., 2007). Free forms are volatile 

compounds directly involved in aroma, playing a key role in the quality and the peculiar 

aroma of wines. Glycosidically-linked forms, which are non-volatile and odourless 

(Günata et al., 1985; Sánchez-Palomo et al., 2007), can be released during winemaking 

process by enzymatic activity through the action of endogenous or exogenous β-

glucosidases (López-Tamames et al., 1997), giving rise to odorant compounds that play a 

role in the aroma characteristic of wines. Located predominantly on the grape skin (Günata 

et al., 1985), the glycosidic aroma compounds are constituted by different aglycones, 

including monoterpenic compounds, C13 norisoprenoids, phenol derivatives, and aliphatic 

alcohols, associated to a sugar part represented by glucose or disaccharides (glucose-

rhamnose, -arabinose and -apiose) (Bayonove, 2003). Several studies carried out on free 

and glycosidically-linked volatiles of different grapes recognized a relationship between 

the wine varietal character and grape compounds such as terpenic compounds and C13 

norisoprenoids (Schreier et al., 1976; Versini et al., 1994). Thus, all the knowledge about 

the mature grapes volatile composition, including both free and glycosidically-linked 

fractions, offers a means of evaluating their aroma potential. 

The grapes characteristics and composition, and wine quality depend on a complex 

network of variables known to influence viticulture, including environmental conditions. A 

comprehensive approach by using statistic tools seems to be a useful tool to evaluate each 

variety oenological potential. Thus, the present Chapter aims to perform a comprehensive 

study combining different grape parameters (berry weight, pH, acidity, volatile and 

phenolic composition) by using statistic tools (ASCA) applied to each variety. 
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IV. 2.  Material and Methods 

The procedures performed for grapes physicochemical parameters determination, at 

technologic maturity, including berry weight, pH, titratable acidity, sugar and phenolic 

content, and antiradical activity, and also grapes free volatile composition determination by 

HS-SPME/GC×GC-ToFMS, have already been described in Chapter III (Material and 

Methods sections). 

 

IV. 2.1.  Samples 

Six V. vinifera grape varieties, each one from 3 parcels, collected at technologic 

maturity, were considered. 

 

IV. 2.2.  Determination of grapes glycosidically linked profiles by SPE/GC×GC-

ToFMS 

SPE procedure 

The glycosidically-linked experimental procedure was adopted from a methodology 

previously developed in our laboratory (Rocha et al., 2000). Prior to glycosidically-linked 

components extraction, 350 g of grape berries (sub-sample from the ca. 1000 g) from each 

variety and each parcel and harvest under study, at technologic maturity, were manually 

crushed and centrifuged at 3000 rpm, during 25 min, at 4 ºC in order to separate the solid 

fraction from the liquid one. The supernatant represented the liquid pulp (grape juice) 

fraction. Then, each supernatant was submitted to a process of solid-phase extraction 

(SPE), using Amberlite XAD-2 resin (20-60 mesh), obtained from Supelco, Inc. (Bellefont, 

PA). This resin was submitted to a pre-treatment before use: a) it was sequentially washed 

with methanol and ethyl acetate by Soxhlet (each one for 8h), and then dried and stored in 

methanol. Before the extraction procedure the resin, suspended in methanol, was poured 

into a glass column (50 x 1 cm i.d.). The packed column contained about 12 cm of resin. 

Methanol (25 mL) and ethyl acetate (25 mL) were passed through it and finally water (50 

mL). The column was then ready for use. All the solvents used for the extraction of volatile 

compounds were analytical grade with high purity (≥ 99 %). Each supernatant (75 mL) 

was passed through the column resin XAD-2 and the free volatile compounds were eluted 

with ethyl acetate (50 mL). Subsequently, the column was rinsed with 15 mL of ultra-pure 
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water to remove interfering substances such as sugars, acids and other water-soluble 

compounds. Thereafter, the retained glycosidically-linked fraction was eluted with 75 mL 

of methanol. This methanolic extract was evaporated under vacuum until dryness. The 

residue was then dissolved in 10 mL of 0.1 M phosphate-citrate buffer (100 mL of 

C6H8O7.H2O (0.1 M) (Riedal-De-Haën) and 100 mL Na2HPO4 (0.05 M) (Merk) in 250 mL 

of ultra-pure water, pH 5.0). To release the aglycones from the glycosidically-linked 

compounds, a commercial enzyme (ProZym® Aroma M, obtained from Proenol,) at 100 

mg L-1 was used and allowed to act for 42h at 35 ºC. This enzyme preparation, reported by 

the producer to have activity of β-glucosidase, pectinase, and poligalacturonase, was 

chosen for hydrolysis of the aglycones. The generated free volatile compounds from the 

glycosidically-linked fractions were then extracted with ethyl acetate (75 mL) and 3-

octanol (8.72 µg L-1) was used as internal standard. The extracts were cooled to -20 °C and 

dried over anhydrous sodium sulphate to separate the water from the organic phase. The 

excess of low-boiling solvent was removed by distillation at low pressure using a trap with 

liquid nitrogen. The obtained concentrate (about 1 mL) was stored in a glass screw-top vial 

at -20 °C. Three replicates were done for each sample under study. 

 

GC×GC-ToFMS analysis 

The analysis of the glycosidically-linked fraction of 6 V. vinifera varieties was 

carried out based on the previously described procedure on Chapter III 2 (Material and 

Methods section), with few modifications: 0.5 µL of the obtained extract from the 

glycosidically-linked fraction was injected into GC×GC–ToFMS injection port and the 

detector was off during 150 s. The GC×GC-ToFMS injection port was 250 °C, and the 

same kit of columns were used: an Equity-5 column (30 m x 0.32 mm I.D., 0.25 µm film 

thickness, Supelco, Inc., Bellefonte, PA, USA) was used as first-dimension (1D) column 

and a DB-FFAP (0.79 m x 0.25 mm I.D., 0.25 µm film thickness, J&W Scientific Inc., 

Folsom, CA, USA) was used as a second-dimension (2D) column. The ovens temperature 

programs were the same as previously described. Total ion chromatograms (TIC) were 

processed using the automated data processing software ChromaTOF (LECO) at signal-to-

noise threshold of 100. 

Contour plots were used to evaluate the separation general quality and for manual 

peak identification. For identification purposes, the mass spectrum and retention times (1D 
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and 2D) of the analytes were compared with standards, when available. Also, the mass 

spectrum of each compound detected was compared to those in mass spectral libraries, 

which included an in-house library of standards and two commercial databases (Wiley 275 

and US National Institute of Science and Technology (NIST) V. 2.0 – Mainlib and Replib). 

The identification was also supported by the experimentally determined retention index 

(RI) values that were compared, when available, with the values reported in the 

bibliography for chromatographic columns similar to the one used in the present PhD 

thesis for one dimensional GC with 5%-phenyl-methylpolysiloxane GC column or 

equivalent (Adams, 1995, 2000; Adams et al., 2005; Alissandrakis et al., 2007; Araujo et 

al., 2003; Baccouri et al., 2007; Beaulieu and Grimm, 2001; Buchin, 2002; Carrapiso et 

al., 2002; Cho et al., 2007; Couladis et al., 2001; D'Arcy et al., 1997; Dickschat et al., 

2005; El-Sayed et al., 2005; Engel et al., 2002; Engel and Ratel, 2007; Ferhat et al., 2007; 

Flach et al., 2004; Flamini et al., 2002; Hazzit et al., 2006; Hognadottir and Rouseff, 2003; 

Isidorov et al., 2003; Jalali-Heravi et al., 2006; Kim et al., 2006; Kobaisy et al., 2002; 

Lalel et al., 2003a; Marongiu et al., 2006; Mevy et al., 2006; Mondello and Costa, 2006; 

Pino et al., 2003; Pino et al., 2005; Radulović et al., 2012; Robinson, 2006; Sarikurkcu et 

al., 2008; Saroglou et al., 2006; Setzer et al., 2006; Vasta et al., 2007; Vujisic et al., 2006; 

Zhao et al., 2006; Zhao et al., 2008) and for comprehensive GC×GC system with Rxi-

5SilMS and VF-5MS for the 1D column (Robinson et al., 2011; Weldegergis et al., 2011) 

or with the same column set used in this PhD thesis - Equity-5 1D column and a DB-FFAP 

for 2D column (Jalali et al., 2012; Jalali et al., 2013; Petronilho et al., 2011; Petronilho et 

al., 2013; Rocha et al., 2012; Rocha et al., 2007a; Rocha et al., 2013; Silva et al., 2010). 

RI values were determined using a C8-C20 n-alkanes series (the solvent n-hexane was used 

as C6 standard) and calculated according to the van den Dool and Kratz equation (van den 

Dool and Kratz, 1963). The majority (> 85%) of the identified compounds presented 

similarity matches ≥ 850 (850/1000). The data was expressed as µg L-1 of 3-octanol 

equivalents. Three independent replicates were analysed for each variety at the different 

conditions under study. Reproducibility was expressed as relative standard deviation 

(RSD). Detail data was given in supplementary information in the CD-R. 

 



Comprehensive study of variety oenological potential by using statistic tools 

 

153 
 

IV. 2.3.  Data processing 

In order to evaluate influence of parcel characteristics and harvest conditions on the 

composition of mature grapes, ASCA was applied to the data set, at technologic maturity 

(a total of 6 varieties, each variety from 3 parcels, 3 harvests (2010-2012), a total of 137 

parameters (6 general physicochemical parameters and 95 and 36 grapes volatile 

components determined in free and glycosidically-linked fractions, respectively), and 3 

independent replicates were done), combining all studied parameters, i.e. berry weight, pH, 

titratable acidity, sugar content, phenolic content, antiradical activity and volatile 

composition, including free and glycosidically-linked fractions. All variables were mean 

centered and autoscaled prior to all calculations. Partitioning of original data matrix was 

done in accordance with the design factors, parcel and harvest: 

X = Xa + Xb + E       (Jansen et al., 2005), 

where “Xa” is a matrix containing variation related to the effect of parcel, “Xb” is a 

matrix containing variation related to the harvest. After running PCA on each of those 

matrices the following ASCA model is obtained: 

X = TaPa’ + TbPb’ + E      (Smilde et al., 2005), 

where “T” and “P” are PCA scores and loadings, respectively, for each of the sub-

models, and “E” is a residual error. Number of significant PCs for each sub-model was 

selected using cross-validation. 

Significance of each factor was assessed using a permutation test (Meyners, 2001; 

Vis et al., 2007; Westerhuis et al., 2008). Permutation consists in changing randomly the 

order of the rows in the data set. As a result in the permuted data set treatment levels are 

assigned randomly to the measurements. Permutation test consists in testing the null 

hypothesis that a given effect is not significant and the respective ASCA sub-model 

describes noise using quality-of-fit criteria. Data were permuted 2000 times and the 

percentage of the variance explained by each sub-model in the total model was used as 

quality-of-fit criterion. Variance explained by each sub-model in the total model was 

calculated for each sub-model using the formula: 
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   (Smilde et al., 2005), 

where “Ea,tot” is the percentage of explained variance of the sub-model “a” in the 

total model, “Ta” and “Pa” are score and loadings for the sub-model “a”, “X” is an original 

data matrix, and “m” and “n” are number of variables and samples in the data set, 

respectively. ASCA and permutation test were implemented in MATLAB R2011a using 

the algorithms described in (Jansen et al., 2005) and (Vis et al., 2007). 

 

IV. 3.  Results and Discussion 

IV. 3.1.  Grapes composition (general physicochemical parameters and free volatile 

fraction) 

The composition obtained for each variety, at maturity, was compiled in Table 5, 

which includes berry weight, pH, titratable acidity, sugar content and phenolic content, 

antiradical activity, and also free volatile composition (detail data was given in 

Supplementary Table S1 to S6 and S8 to S13). Results obtained from these data were 

already discussed in Chapter III, for each variety obtained from the different conditions 

under study (parcels characteristics and harvest conditions). Sousão was not considered in 

this chapter as this variety was only collected in one parcel, thus it is not possible to 

evaluate parcels characteristics effect. Table 5 summarizes the results obtained, at 

technologic maturity, for each variety considering the different parcels characteristics and 

harvest conditions under study, which combined with the results of the glycosidically-

linked fraction (IV. 3.2.), were used to perform the comprehensive approach by using 

statistic tools. 
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Table 5. Synoptic table of the general physicochemical composition and free volatile fraction, obtained at technologic maturity, for V. vinifera cv. Arinto, 
Bical, Sauvignon Blanc, Baga, Castelão, and Touriga Nacional grapes, each one from a set of 3 parcels and from 3 consecutive harvests. 
 

  Parcels 

Variety Physicochemical parameters 2010 2011 2012 2010 2011 2012 2010 2011 2012 

Arinto 

 AR-VA1 AR-VA2 AR-SM1 

Berry weight (g) 1.3 (5)* 1.5 (4) 1.5 (3) 1.1 (5) 1.4 (3) 1.5 (3) 1.0 (7) 1.5 (3) 1.4 (3) 

pH 2.7 (2) 3.2 (1) 3.2 (0) 2.9 (1) 3.2 (0) 3.1 (1) 2.7 (1) 2.9 (1) 3.1 (0) 

Acidity (g tartaric acid L-1) 7.6 (1) 6.5 (2) 6.6 (3) 7.8 (1) 5.7 (2) 6.5 (3) 7.4 (2) 7.9 (2) 6.3 (4) 

Sugar content (g L-1) 214.8 (1) 219.3 (1) 197.8 (3) 221.0 (1) 226.1 (2) 206.3 (3) 210.0 (1) 172.3 (1) 187.0 (4) 

Phenolic content (mg GAE L-1) 319.1 (7) 230.5 (7) 251.5 (4) 366.1 (2) 321.0 (4) 332.8 (1) 374.4 (1) 276.7 (9) 291.6 (2) 

Antiradical activity (% DPPH rem) 85.2 (1) 84.8 (2) 88.2 (1) 68.6 (1) 70.1 (2) 80.0 (1) 70.0 (3) 73.8 (2) 82.8 (3) 

Total chromatographic area a 22527.9 (9) 21002.5 (9) 20962.1 (16) 27780.7 (9) 21573.9 (9) 20304.7 (14) 27871.1 (9) 23270.4 (11) 20019.0 (14) 

Total varietal chromatographic area a 7861.3 (8) 4435.3 (10) 5302.3 (15) 9589.9 (9) 5610.9 (9) 7353.9 (14) 10343.4 (9) 5961.6 (10) 6723.5 (13) 

Bical 

 BI-VA1 BI-VA2 BI-SM1 

Berry weight (g) 1.4 (1.0) 1.4 (1) 1.6 (1) 1.2 (2) 1.3 (4) 1.6 (3) 1.4 (3) 1.7 (3) 1.8 (3) 

pH 2.9 (2) 3.2 (1) 3.2 (1) 2.9 (0) 3.1 (0) 3.2 (1) 3.2 (0) 3.0 (1) 3.1 (1) 

Acidity (g tartaric acid L-1) 5.7 (1) 7.1 (1) 5.8 (2) 6.1 (1) 5.9 (1) 5.5 (3) 4.2 (1) 6.8 (2) 5.6 (1) 

Sugar content (g L-1) 173.4 (1) 215.3 (1) 208.5 (1) 170.0 (1) 214.8 (1) 209.7 (1) 187.0 (1) 207.4 (1) 193.2 (1) 

Phenolic content (mg GAE L-1) 294.1 (3) 197.5 (2) 214.1 (3) 304.4 (3) 283.5 (4) 262.0 (2) 333.9 (2) 248.7 (2) 268.8 (5) 

Antiradical activity (% DPPH rem) 81.5 (3) 89.9 (3) 89.7 (2) 84.4 (2) 81.1 (3) 86.1 (2) 71.7 (1) 81.6 (3) 83.3 (1) 

Total chromatographic area 26376.6 (9) 22642.9 (9) 13200.3 (14) 29345.9 (7) 19790.4 (9) 12977.4 (13) 27176.3 (7) 17867.6 (10) 13844.2 (12) 

Total varietal chromatographic area 4136.2 (9) 1958.6 (8) 2909.3 (13) 6232.2 (7) 2590.5 (8) 4279.3 (13) 5907.5 (7) 3127.2 (9) 4429.0 (12) 

Sauvignon 
Blanc 

 SB-SM1 SB-SM2 SB-SM3 

Berry weight (g) 1.3 (6) 1.4 (7) 1.6 (3) 1.6 (2) 1.8 (3) 1.9 (2) 1.5 (2) 1.5 (3) 1.7 (3) 

pH 3.2 (0) 3.1 (1) 3.0 (0) 3.2 (0) 3.0 (1) 3.0 (1) 3.1 (0) 3.0 (1) 3.0 (1) 

Acidity (g tartaric acid L-1) 6.6 (1) 7.6 (2) 7.1 (2) 5.2 (1) 7.1 (4) 6.9 (1) 6.9 (2) 7.6 (2) 7.2 (3) 

Sugar content (g L-1) 243.1 (1) 247.6 (1) 208.5 (3) 204.6 (0) 241.4 (1) 201.7 (2) 226.7 (1) 247.6 (1) 213.6 (2) 

Phenolic content (mg GAE L-1) 255.9 (4) 236.9 (9) 276.0 (7) 403.6 (6) 283.5 (6) 315.1 (6) 467.6 (3) 357.4 (6) 365.1 (8) 

Antiradical activity (% DPPH rem) 72.6 (2) 79.9 (2) 83.1 (2) 68.9 (1) 73.5 (3) 77.6 (1) 62.7 (2) 66.4 (2) 74.2 (2) 

Total chromatographic area 32810.8 (10) 19216.0 (8) 24669.3 (9) 32906.2 (9) 18451.7 (9) 23009.9 (10) 33529.7 (10) 19233.8 (9) 26291.0 (9) 

Total varietal chromatographic area 11026.3 (10) 3196.8 (8) 9260.5 (9) 12030.1 (8) 4068.2 (9) 11173.6 (9) 11024.3 (10) 4297.6 (9) 12815.1 (8) 
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Baga 

 BA-VA1 BA-VA2 BA-SM1 

Berry weight (g) 1.3 (4) 1.9 (1) 1.7 (4) 1.7 (3) 1.9 (4) 2.0 (3) 2.1 (4) 1.9 (4) 1.8 (4) 

pH 3.1 (0) 3.2 (0) 3.1 (0) 3.1 (1) 3.1 (2) 2.9 (1) 3.2 (2) 3.2 (1) 3.1 (1) 

Acidity (g tartaric acid L-1) 5.2 (2) 6.3 (2) 5.8 (3) 4.1 (3) 6.4 (2) 5.3 (6) 5.3 (1) 7.0 (3) 5.6 (5) 

Sugar content (g L-1) 189.8 (2) 196.6 (1) 176.8 (3) 214.8 (2) 202.3 (1) 163.8 (2) 176.8 (1) 190.4 (2) 175.7 (3) 

Phenolic content (mg GAE L-1) 811.0 (3) 631.4 (17) 594.8 (15) 1270.1 (15) 869.3 (11) 726.1 (8) 686.0 (12) 517.0 (20) 494.1 (11) 

Antiradical activity (% DPPH rem) 80.9 (2) 85.6 (2) 82.0 (4) 53.5 (2) 70.3 (3) 73.8 (1) 81.0 (3) 88.6 (2) 89.6 (2) 

Total chromatographic area 18930.2 (9) 15621.7 (9) 14619.2 (12) 22188.4 (9) 17530.3 (10) 12656.8 (11) 18300.6 (10) 16296.9 (9) 26169.6 (15) 

Total varietal chromatographic area 5250.9 (9) 3409.9 (8) 4515.7 (11) 5369.9 (8) 3616.2 (9) 5855.5 (11) 4529.9 (9) 2779.9 (9) 3721.1 (14) 

Castelão 

 CA-SM1 CA-SM2 CA-SM3 

Berry weight (g) 1.8 (3) 2.0 (1) 2.0 (2) 1.9 (4) 1.8 (6) 1.8 (4) 1.9 (3) 1.9 (4) 1.9 (3) 

pH 3.3 (1) 3.2 (1) 3.1 (1) 3.2 (0) 3.1 (1) 3.1 (0) 3.3 (1) 3.2 (0) 3.2 (2) 

Acidity (g tartaric acid L-1) 6.0 (2) 7.2 (2) 7.5 (3) 5.2 (2) 5.8 (2) 6.3 (4) 5.5 (1) 5.7 (3) 7.1 (1) 

Sugar content (g L-1) 221.0 (2) 196.1 (1) 181.9 (4) 241.4 (1) 218.7 (1) 186.4 (4) 218.2 (2) 193.2 (1) 170.0 (4) 

Phenolic content (mg GAE L-1) 1053.4 (4) 704.9 (13) 694.1 (14) 864.0 (4) 621.6 (20) 627.5 (16) 826.1 (5) 635.2 (16) 522.0 (12) 

Antiradical activity (% DPPH rem) 64.3 (3) 69.9 (1) 70.2 (2) 68.7 (2) 72.0 (1) 75.9 (3) 77.4 (2) 81.9 (3) 89.4 (4) 

Total chromatographic area 23893.3 (10) 19971.5 (6) 22383.9 (8) 24968.2 (8) 21025.1 (6) 23389.9 (9) 22249.2 (9) 20966.8 (6) 20824.6 (12) 

Total varietal chromatographic area 8580.0 (9) 3794.6 (6) 6231.5 (7) 7489.0 (9) 3200.0 (6) 4683.7 (8) 6330.2 (9) 2547.3 (6) 3177.9 (11) 

Touriga 
Nacional 

 TN-SM1 TN-SM2 TN-SM3 

Berry weight (g) 1.9 (2) 1.7 (3) 2.0 (3) 1.6 (6) 1.6 (3) 1.7 (5) 1.9 (1) ** 2.0 (5) 

pH 3.2 (0) 3.2 (0) 3.2 (1) 3.3 (2) 3.3 (1) 3.3 (1) 3.3 (1) ** 3.3 (0) 

Acidity (g tartaric acid L-1) 4.4 (3) 5.7 (2) 5.8 (2) 4.2 (3) 5.5 (3) 5.3 (6) 4.3 (2) ** 6.1 (7) 

Sugar content (g L-1) 200.1 (2) 193.8 (1) 187.6 (3) 254.2 (6) 205.1 (2) 201.2 (4) 199.4 (3) ** 184.7 (2) 

Phenolic content (mg GAE L-1) 747.3 (2) 948.9 (13) 646.5 (13) 1341.3 (2) 1339.8 (9) 1121.4 (9) 852.0 (11) ** 501.6 (14) 

Antiradical activity (% DPPH rem) 78.3 (3) 85.0 (1) 81.2 (1) 51.9 (1) 58.4 (2) 66.9 (1) 70.0 (3) ** 86.3 (1) 

Total chromatographic area 21020.8 (9) 21401.8 (9) 18299.1 (12) 22524.6 (9) 25627.9 (11) 19017.1 (12) 20195.1 (12) ** 22080.1 (14) 

Total varietal chromatographic area 5810.1 (8) 4470.7 (9) 5517.6 (11) 7038.4 (8) 5905.2 (10) 6973.6 (12) 4073.2 (11) ** 3494.3 (12) 

a GC×GC peak area x 104 given in arbitrary units (a.u.) 
* Relative standard deviation (RSD, % in parentheses). Detailed information is given in Supplementary Tables S1 to S6 and S8 to S13. 
** Grapes not available (grapes in an advanced rotting stage was observed). 
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IV. 3.2.  Glycosidically-linked fraction 

In the analysis of the glycosidically-linked fraction of V. vinifera cv. Arinto, Bical, 

Sauvignon Blanc, Baga, Castelão and Touriga Nacional varieties (Table 6), mono- and 

sesquiterpenic compounds, and C13 norisoprenoids were the selected chemical families. 

Particular attention was devoted to these compounds because of the considerable 

significance of these compounds to flavour and varietal character of V. vinifera varieties 

(González-Barreiro et al., 2015). In this fraction a total of 32 terpenic compounds (25 

mono- and 7 sesquiterpenic ones) and 4 C13 norisoprenoids were determined (Table 6). The 

number of total volatile compounds determined in the glycosidically-linked fraction was 

higher in Bical (28), Sauvignon Blanc (22), and Arinto (12) white varieties than in red 

varieties under study: 7 in Touriga Nacional, 8 in Castelão and 9 in Baga. It was found that 

the major class of glycosidically-linked compounds in white varieties was monoterpenic 

compounds; on the other hand in red varieties the number of sesquiterpenic and 

monoterpenic compounds was similar. Detailed information regarding each determined 

compound on the glycosidically-linked fraction of the 6 varieties under study was shown in 

Supplementary Tables S15 to S20. 
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Table 6. Volatile components determined for the selected chemical families, at technologic maturity, in glycosidically-linked fractions of grapes from Vitis 
vinifera L. cv. Arinto, Bical, Sauvignon Blanc, Baga, Castelão, and Touriga Nacional varieties. 
 

     RIlit.
c Ref. RIlit. d Varieties 

1Dtr(s),2Dtr(s)a Compound CAS number Formula RI calc.
b 1D-GC GC×GC 1D-GC GC×GC Arinto  Bical Sauvignon 

Blanc 
Baga Castelão Touriga 

Nacional 

Monoterpenic compounds              

314, 0.440 α-Pinene 80-56-8 C10H16 938 939 941 (Adams, 2000) (Jalali et al., 2012) x x x x x  

344, 0.457 β-Pinene * 18172-67-3 C10H16 988 989 987 (Buchin, 2002) (Jalali et al., 2012) x x  x x  

356, 0.570 β-Myrcene 123-35-3 C10H16 1001 991 1008 (Adams, 1995) (Jalali et al., 2012)  x  x x  

362, 0.520 3-Carene 13466-78-9 C10H16 1007 1004 1020 (Engel et al., 2002) (Jalali et al., 2012) x x x    

392, 0.405 m-Cymene 535-77-3 C10H14 1025 1020 1027 (Araujo et al., 2003) (Jalali et al., 2012)  x     

398, 0.476 Limonene * 138-86-3 C10H16 1028 1029 1035 (Adams et al., 2005) (Jalali et al., 2012) x x x   x 

404, 0.476 1,8-Cineole 470-82-6 C10H18O 1034 1032 1039 (Adams, 2000) (Jalali et al., 2012) x x x    

428, 0.678 Linalool oxide (isomer)  C10H18O2 1071 1071 1078 (Saroglou et al., 2006) (Jalali et al., 2012) x x x    

440, 0.560 α-Terpinolene 586-62-9 C10H16 1076 1088 1097 (Adams, 2000) (Jalali et al., 2012)  x     

440, 0.790 Linalool oxide (isomer)  C10H18O2 1076 1087 1097 (Saroglou et al., 2006) (Jalali et al., 2012)  x     

452, 0.746 Linalool * 78-70-6 C10H18O 1096 1098 1108 (Adams, 2000) (Jalali et al., 2012) x x x   x 

470, 0.646 Hotrienol 53834-70-1 C10H16O 1113 1114 1122 (D'Arcy et al., 1997) (Jalali et al., 2012)  x     

524, 0.860 Borneol 507-70-0 C10H18O 1169 1165 1172 (Adams, 1995) (Jalali et al., 2012)   x    

536, 0.715 Terpinen-4-ol 562-74-3 C10H18O 1183 1177 1181 (Adams, 2000) (Jalali et al., 2012)  x x    

542, 0.835 α-Terpineol * 98-55-5 C10H18O 1195 1189 1206 (Adams, 2000) (Jalali et al., 2012)  x x    

548, 0.850 Dihydrocarvone  7764-50-3 C10H16O 1197 1193 1211 (Adams, 1995) (Jalali et al., 2012)  x x    

560, 0.850 Verbenone 80-57-9 C10H14O 1214 1204 1214 (Adams, 2000) (Jalali et al., 2012)  x x    

566, 0.703 p-Menth-1-en-9-al 29548-14-9 C10H16O 1217 1217 1219 (Pino et al., 2003) (Jalali et al., 2012)  x     

578, 0.700 m/z 93, 121, 119, 136 (alcohol)  C10H16O 1224 _ _ _ _  x     

584, 0.873 Geraniol (isomer) *  C10H18O 1235 1224 1235 (Vujisic et al., 2006) (Jalali et al., 2012)   x    

584, 0.943 β-Citronellol * 106-22-9 C10H20O 1237 1233 1237 (Adams, 2000) (Jalali et al., 2012)   x    

590, 0.737 Geraniol (isomer) *  C10H18O 1244 1237 1242 (Ferhat et al., 2007) (Jalali et al., 2012)  x x    

596, 0.976 Citral (isomer)  C10H16O 1247 1240 1245 (Beaulieu and Grimm, 2001) (Jalali et al., 2012)  x x    

602, 0.815 Carvone * 99-49-0 C10H14O 1251 1253 1245 (Adams, 2000) (Jalali et al., 2012)   x    

626, 0.775 Citral (isomer)  C10H16O 1274 1270 1287 (Beaulieu and Grimm, 2001) (Rocha et al., 2007a) x x x    
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C13 Norisoprenoids              

566, 0.532 m/z 159, 91, 131 (hydrocarbon)  C13H18 1216 _ _ _ _  x     

736, 0.648 Geranylacetone * 3796-70-1 C13H22O 1455 1449 1454 (Adams et al., 2005) (Rocha et al., 2013) x x  x x x 

784, 0.717 β-Ionone * 79-77-6 C13H20O 1488 1485 1494 (Adams, 1995) (Silva et al., 2010)  x     

900, 0.894 Methyl dihydrojasmonate 24851-98-7 C13H22O3 1661 1650 _ (Mondello and Costa, 2006) _ x x x x x x 

               

Sesquiterpenic compounds              

790, 0.660 α-Farnesene 502-61-4 C15H24 1501 1508 1505 (Adams, 2000) (Petronilho et al., 2011) x x   x x 

796, 0.525 γ-Cadinene 39029-41-9 C15H24 1504 1513 1511 (Adams, 1995) (Jalali et al., 2013)    x   

826, 0.629 α-Calacorene 21391-99-1 C15H20 1555 1542 1554 (Adams, 2000) (Jalali et al., 2013)    x   

850, 0.751 Globulol 489-41-8 C15H26O 1594 1598 1592 (Robinson, 2006) (Petronilho et al., 2013b)   x    

912, 0.654 m/z 119, 91, 191, 109 (alcohol)  C15H26O 1675 _ _ _ _  x x x x x 

942, 0.820 Farnesal 502-67-0 C15H24O 1731 1730 1724 (Adams, et al., 2005) (Jalali et al., 2013)  x x  x  

1036, 0.671 Ledene oxide  C15H24O 1873 1890 1867 (Lalel et al., 2003a) (Jalali et al., 2013) x x x x  x 

a 1Dtr (s), 2Dtr(s): first and second dimension retention times (in seconds) of each compound determined. 
b RIcalc: retention index obtained through the modulated chromatogram. 
c RIlit: retention index reported in the literature for 5% phenyl polysilphenylene-siloxane GC column or equivalents, reported for 1D-GC and GC×GC. 
d Ref. RIlit: references found in the literature for 5% phenyl polysilphenylene-siloxane GC column or equivalents, reported for 1D-GC and GC×GC. 
* Compounds identified based on the comparison between the obtained mass spectra and mass spectra of high purity chemical standards. 
Notation x indicates that the compound was determined in the corresponding variety. Detailed data related to the glycosidically-linked fraction of the volatile compounds 
determined for each variety under study, at technologic maturity, each one from 3 parcels and 3 consecutive harvests was given in Supplementary Tables S15 to S20. 
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For rapid interpretation of the glycosidically-linked fractions determined for each 

variety (each one from 3 parcels and 3 consecutive harvests), a graphical representation of 

the total concentration of volatile compounds determined in these fractions was performed 

(Figure 42 to Figure 47), organized by chemical families (mono- and sesquiterpenic 

compounds - C10 and C15 respectively, and C13 norisoprenoids - C13). The total 

concentration was obtained as the sum of the individual concentrations of all compounds 

detected. This allowed obtaining a rapid visual access of each variety glycosidically-linked 

fraction, allowing the comparison of the similarities and differences between the different 

parcels and harvests under study. 

 

Arinto 

Figure 42 shows the total concentration of volatile compounds determined in the 

glycosidically-linked fractions of Arinto variety obtained from AR-VA1, AR-VA2 and 

AR-SM1 parcels, from 2010, 2011 and 2012 harvests. As observed for the volatile 

components in free fraction (Figure 35), the glycosidically-linked fractions exhibited 

differences among the parcels studied and also between the 3 harvests. It was observed that 

grapes from AR-VA2 parcel followed by grapes from AR-SM1 have higher concentrations 

of total volatile compounds determined in the glycosidically-linked fraction than AR-VA1 

grapes. The higher chemical group determined was monoterpenic compounds, representing 

ca. 59-80% of the total content determined: grapes from AR-VA2 accounted for 33.3-97.7 

µg L-1, values higher than those obtained for AR-SM1 (30.7-77.1 µg L-1) and AR-VA1 

(25.8-62.8 µg L-1) grapes (Table S15). Considering all the parcels, limonene and linalool 

were the major monoterpenic compounds presented in Arinto grapes, being in lower 

amounts in AR-VA1 grapes. The potential contribution of each component to the aroma 

properties correspond to the amount in free form plus the amount in glycosidically-linked 

form. In 2010 linalool (36 µg L-1) determined in grapes from AR-VA2 was above their 

sensory perception limit (25 µg L-1) (Ferreira et al., 2000), this may suggest its 

contribution with citrus, sweet and flowery odours (Marais, 1983). Besides, for all parcels, 

the amount of volatile compounds obtained from the glycosidically-linked fractions was 

higher in 2010 harvest (78.1-138.0 µg L-1) than in 2011 (35.6-56.7 µg L-1) and 2012 (41.9-

63.7 µg L-1). Besides, the major monoterpenic compound determined also exhibited 

different amounts between the 3 harvests: limonene was ca. 2.5 and 4.5 times higher in 



Comprehensive study of variety oenological potential by using statistic tools 

 

161 
 

2010 than in 2012 and 2011, respectively, while linalool was ca. 1.8 and 2.3 times higher 

(Table S15). These results suggest that the climatic conditions of 2010 harvest seem to 

favour the formation of Arinto secondary plant metabolites, such as monoterpenic 

compounds. 
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Figure 42. Terpenic compounds (C10 and C15) and C13 norisoprenoids determined, at technologic 
maturity, in glycosidically-linked fractions of Arinto grapes obtained from AR-VA1, AR-VA2, and 
AR-SM1 parcels, for 3 harvests (2010-2012). The concentrations are expressed as µg L-1 of 3-
octanol equivalents. Detail data was given in Supplementary Table S15 in a CD-R. 

 

Bical 

The total concentrations of volatile compounds determined in the glycosidically-

linked fractions of Bical variety obtained from BI-VA1, BI-VA2 and BI-SM1 parcels, 

from 2010-2012 harvests, organized by chemical families, were shown in Figure 43. 

Considering all parcels, Bical grapes exhibited monoterpenic compounds followed by C13 

norisoprenoids as the higher chemical families determined, accounting for ca. 54-72% and 

17-34%, respectively, while sesquiterpenic compounds only accounted for 9-13% (Table 

S16). However, the total contents determined in Bical glycosidically-linked fractions were 

different for grapes from the 3 parcels under study: BI-SM1 and BI-VA2 grapes accounted 

for 108.6-185.5 µg L-1 and 97.6-158.3 µg L-1 respectively, values that are higher than those 

determined for BI-VA1 (69.3-118.3 µg L-1) grapes (Table S16). This trend was in 

accordance with the results observed for the free volatile fractions (Figure 36). Besides, for 

all parcels under study, the amount of total volatile compounds obtained from the 

glycosidically-linked fractions was higher in 2010 harvest (118.3-185.5 µg L-1), than in 

2011 (69.3-108.6 µg L-1) and 2012 (73.1-114.1 µg L-1) (Table S16). According to these 
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results, both parcel and harvest conditions may influence grapes aroma potential, by 

influencing their volatile composition. 
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Figure 43. Terpenic compounds (C10 and C15) and C13 norisoprenoids determined, at technologic 
maturity, in glycosidically-linked fractions of Bical grapes obtained from BI-VA1, BI-VA2, and 
BI-SM1 parcels, for 3 harvests (2010-2012). The concentrations are expressed as µg L-1 of 3-
octanol equivalents. Detail data was given in Supplementary Table S16 in a CD-R. 

 

Sauvignon Blanc 

Figure 44 shows the contents of mono- and sesquiterpenic compounds (C10 and 

C15) and C13 norisoprenoids determined, at technologic maturity, in glycosidically-linked 

fractions of Sauvignon Blanc grapes obtained from SB-SM1, SB-SM2, and SB-SM3 

parcels, for 2010, 2011, and 2012 harvests. Similar composition of Sauvignon Blanc 

grapes was observed between the parcels under study. Only in 2010 some differences in 

monoterpenic content were observed: grapes from SB-SM3 (228.5 µg L-1) followed by SB-

SM2 (181.9 µg L-1) grapes exhibited higher monoterpenic content when compared to SB-

SM1 (119.6 µg L-1) (Figure 44, Table S17). These observations corroborate the results 

previously discussed for the free volatile fraction (Figure 37), showing that the conditions 

of Sauvignon Blanc parcels seem to have low influence on the volatile composition of 

Sauvignon Blanc grapes. Furthermore, the monoterpenic content accounted for ca. 70-82% 

of the total glycosidically-linked volatile content. These compounds are very important for 

the varietal aroma of the wines, being related essentially with citric, fruity, floral, and 

sweet notes (Marais, 1983). Quantitatively, considering the 3 parcels and the 3 harvests, 

monoterpene alcohols were the predominant chemical group determined, being two 

geraniol isomers the main monoterpenic compounds determined in Sauvignon Blanc 
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grapes. Together, these compounds accounted for ca. 41 to 48% of the total monoterpenic 

content. These have a low sensory perception limit being important to the general 

enhancement of the floral and fruity notes of Sauvignon Blanc grape aromas (Marais, 

1983). Besides, the harvest conditions seem to modulate Sauvignon Blanc glycosidically-

linked composition since its content varied from one harvest to another, decreasing from 

2010, 2012, to 2011. 
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Figure 44. Terpenic compounds (C10 and C15) and C13 norisoprenoids determined, at technologic 
maturity, in glycosidically-linked fractions of Sauvignon Blanc grapes obtained from SB-SM1, SB-
SM2, and SB-SM3 parcels, for 3 harvests (2010-2012). The concentrations are expressed as µg L-1 
of 3-octanol equivalents. Detail data was given in Supplementary Table S17 in a CD-R. 

 

Baga 

The content of terpenic compounds (C10 and C15) and C13 norisoprenoids 

determined, at technologic maturity, in glycosidically-linked fractions of Baga grapes 

obtained from BA-VA1, BA-VA2, and BA-SM1 parcels, for 3 harvests (2010-2012) was 

shown in Figure 45. As this figure shows, grapes from the 3 parcels under study exhibited 

different volatile composition determined in the glycosidically-linked fractions: grapes 

from BA-SM1 accounted for 22.3-25.0 µg L-1, values that are lower than those determined 

for BA-VA1 (33.6-51.1 µg L-1) and BA-VA2 (40.5-61.4 µg L-1) grapes (Table S18). 

Similar trend was previously described for grapes from the free volatile fractions (Figure 

38). The main chemical group presented in the glycosidically-linked fraction of Baga 

grapes was sesquiterpenic compounds (accounting for ca. 45-63%). These decrease in the 

following order: grapes from BA-VA2 (20.0 to 31.7 µg L-1), followed by BA-VA1 (15.7 to 

23.8 µg L-1), and BA-SM1 (12.3 to 14.9 µg L-1). Sesquiterpenic compounds represent an 
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important chemical group of V. vinifera due to their aroma properties and also bioactive 

effect as anti-bacterial, anti-inflammatory, antitumor activities, among others (Petronilho et 

al., 2012; Tamemoto et al., 2001). Furthermore, the amount of total volatile compounds 

obtained from the glycosidically-linked fractions was higher in 2010 harvest, than in 2011 

and 2012. These results suggest that both parcel and harvest conditions modulate Baga 

grapes composition. 
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Figure 45. Terpenic compounds (C10 and C15) and C13 norisoprenoids determined, at technologic 
maturity, in glycosidically-linked fractions of Baga grapes obtained from BA-VA1, BA-VA2, and 
BA-SM1 parcels, for 3 harvests (2010-2012). The concentrations are expressed as µg L-1 of 3-
octanol equivalents. Detail data was given in Supplementary Table S18 in a CD-R. 

 

Castelão 

Figure 46 shows the glycosidically-linked varietal volatile compounds of Castelão 

grapes obtained from CA-SM1, CA-SM2, and CA-SM3 parcels considering the 3 

consecutive harvests. For this variety the glycosidically-linked content was higher in 

grapes from CA-SM1 (37.6-56.3 µg L-1), followed by CA-SM2 (31.7-48.8 µg L-1) and CA-

SM3 (24.2-40.9 µg L-1). These results are in accordance with the free volatile composition 

previously discussed (Figure 39). Similar with Baga, the main chemical family determined 

in the glycosidically-linked fraction of Castelão grapes was also the sesquiterpenic 

compounds, which decreased in the same order as observed for the total content: from CA-

SM1 (19.9 to 26.5 µg L-1) followed by CA-SM2 (17.4 to 23.3 µg L-1), and CA-SM3 (15.3 

to 22.0 µg L-1). Sesquiterpenic compounds are described as contributors for aroma 

character of different matrices, where their aroma perception has been usually expressed as 

spicy, sweet, floral and woody aromas (Lalel et al., 2003b; Minh et al., 2003), thus they 
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can contribute favourably to Castelão wine aroma characteristics. Considering the set of 3 

parcels and 3 harvests, this group of compounds represents ca. 46 to 68% of the total 

varietal volatile content, while monoterpenic compounds represent only ca. 13-25%. 

Considering the 3 harvests under study different volatile compositions were determined for 

Castelão grapes (Figure 46): higher content was observed for grapes from 2010 harvest, 

principally for sesquiterpenic compounds, when compared to 2011 and 2012 harvests. 
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Figure 46. Terpenic compounds (C10 and C15) and C13 norisoprenoids determined, at technologic 
maturity, in glycosidically-linked fractions of Castelão grapes obtained from CA-SM1, CA-SM2, 
and CA-SM3 parcels, for 3 harvests (2010-2012). The concentrations are expressed as µg L-1 of 3-
octanol equivalents. Detail data was given in Supplementary Table S19 in a CD-R. 

 

Touriga Nacional 

Figure 47 shows the varietal compounds determined, at technologic maturity, in 

glycosidically-linked fractions of Touriga Nacional grapes obtained from TN-SM1, TN-SM2, and 

TN-SM3 parcels, for 3 harvests (2010-2012). Different volatile contents were determined on 

the different glycosidically-linked fractions of grapes from the 3 parcels: TN-SM2 grapes 

exhibited higher contents (43.3-67.8 µg L-1) while the lower ones were determined for TN-

SM3 grapes (29.1-34.6 µg L-1) (Table S20). Similar trend was previously observed for the 

free volatile fractions of Touriga Nacional (Figure 41). Besides the observed differences 

between the 3 parcels, the grapes exhibited sesquiterpenic compounds as the higher 

chemical family determined, followed by C13 norisoprenoids and monoterpenic 

compounds. These accounted for ca. 53-61%, 22-32%, and 13-18%, respectively (Table 

S20). These compounds were related with very pleasant aromas, thus they may have an 

important contribution on the varietal aroma of Touriga Nacional wines. According to 
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Figure 47, considering all parcels under study, the amount of total volatile compounds 

obtained from the glycosidically-linked fractions was higher in 2010 harvest (34.6-67.8 µg 

L-1), than in 2011 (38.2-43.3 µg L-1) and 2012 (29.-46.6 µg L-1) (Table S20). In 2011, no 

glycosidically-linked data was available for grapes from TN-SM3 parcel, as overripe 

grapes were observed. According to these results, both parcel and harvest conditions 

influence Touriga Nacional grapes aroma potential, by influencing its grapes volatile 

composition. 
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Figure 47. Terpenic compounds (C10 and C15) and C13 norisoprenoids determined, at technologic 
maturity, in glycosidically-linked fractions of Touriga Nacional grapes obtained from TN-SM1, 
TN-SM2, and TN-SM3 parcels, for 3 harvests (2010-2012). The concentrations are expressed as µg 
L-1 of 3-octanol equivalents. Detail data was given in Supplementary Table S20 in a CD-R.* In 
2011, at technologic maturity, no grapes were available for TN-SM3 parcel (overripe grapes). 

 

IV. 3.3.  Statistic tools to evaluate each variety oenological potential 

In order to evaluate the oenological potential of V. vinifera cv. Arinto, Bical, 

Sauvignon Blanc, Baga, Castelão, and Touriga Nacional, to different vineyard parcel 

characteristics and harvests (2010-2012), ASCA was applied for each variety, to the set of 

parameters measured at technologic maturity: data set combined berry weight, pH, 

titratable acidity, sugar content, phenolic content, antiradical activity, and volatile 

composition including free and glycosidically-linked factions. The significance of these 

factors (harvest and parcel) was assessed using a permutation test (2000 permutations). 

Resulting p-values were shown in Table 7. According to this table, the harvest effect was 

significant for all varieties studied (p-value < 0.0005) explaining ca. 54-68% of the total 

data set variance. On the other hand, with the exception of Sauvignon Blanc white variety, 
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parcel characteristic effect was also significant for the varieties studied (p-values < 0.05) 

and this factor explained ca. 15-19% of the total data set variance. Harvest climatic 

conditions exhibited higher influence in all varieties composition than vineyard parcels, 

representing the largest source of the data variability (Table 7). This was already expected 

since parcel characteristics were highly related with harvest climatic conditions. For 

instance, altitude was directly associated to the resulting temperature, precipitation, and 

humidity (Jackson and Lombard, 1993) of the parcels, while soil may affect the 

microclimate by its heat-retaining and light reflecting capacity and may affect water and 

nutrient availability to the plant by its retaining capacity (Jackson and Lombard, 1993; 

Martinez et al., 2011). Besides, the formation of phenolic and volatile compounds, object 

of study in this PhD thesis, result from plant secondary metabolism in response to several 

types of stress conditions, namely in response to environmental factors such as changes in 

temperature, humidity, sunlight, among others (Seigler, 2002). 

 

Table 7. Significance testing of factors harvest and parcel, for V. vinifera cv. Arinto, Bical, 
Sauvignon Blanc, Baga, Castelão, and Touriga Nacional varieties, determined at technologic 
maturity. 
 

 
 

p-values 
(2000 permutations) 

Explained Variance 
(%) 

Factors Arinto 

Harvest year <0.0005 62.2 

Parcel characteristics 0.0390 14.9 

 Bical 

Harvest year <0.0005 53.8 

Parcel characteristics 0.0135 17.1 

 Sauvignon Blanc 

Harvest year <0.0005 68.2 

Parcel characteristics > 0.05 * 11.9 

 Baga 

Harvest year <0.0005 61.4 

Parcel characteristics 0.040 14.8 

 Castelão 

Harvest year <0.0005 66.7 

Parcel characteristics 0.041 15.5 

 Touriga Nacional 

Harvest year <0.0005 59.3 

Parcel characteristics 0.0105 18.8 

* p-value > 0.05 (no significance) 
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Arinto  

For Arinto grapes, the effect of harvest year accounted for 62.2% of total data set 

variance (Table 7). First component of the score plot separates 2010 harvest (placed in PC1 

positive) from the others (placed in PC1 negative), while second component separates 

2011 (PC2 negative) and 2012 (PC2 positive) harvests (Figure 48a). According to the 

separation along PC1, in 2010, grapes with lower berry weight and pH, and with higher 

phenolic content and higher number and amount of volatile compounds were determined 

(Figure 48b). These comprised mono- and sesquiterpenic oxygen-containing compounds, 

as dihydromyrcenol, dihydrolinalool, nerolidol and β-eudesmol, and also C13 

norisoprenoids, principally TDN and β-damascenone (isomer 2). On the other hand, the 

separation along PC2 of grapes from 2011 and 2012 harvests were mostly due to the higher 

content of 6 monoterpenic compounds (limonene, 1,8-cineole, linalool oxide, fenchol, 

borneol, and menthol) in grapes from 2012, while α-terpinolene and rose oxide (isomer 1) 

were higher in 2011 grapes. Varietal compounds were regarded as key odorants in grapes 

contributing with floral, fruity and citrus attributes. They are secondary plant metabolites 

whose formation is highly related to climate conditions: temperature and precipitation 

amount can change the amount and type of aroma compounds present in grapes (Moreno-

Arribas and Polo, 2009). These results reveal that 2010 climatic conditions seem to favour 

the Arinto varietal compounds formation, suggesting that grapes from 2010 harvest have 

higher aroma potential when compared with the other two harvests. Also, 3 C6 aldehydes 

(hexanal, 2-hexenal, and 2,4-hexadienal) were determined in higher amounts in grapes 

from 2010, while higher content of 2 C6 alcohols (2- and 3-hexen-1-ol) were determined in 

grapes from 2012. The formation of C6 aldehydes and their reduction to the corresponding 

alcohols depends on the content of unsaturated lipids presents in grapes and also on the 

activities of lipoxygenase and alcohol dehydrogenase enzymes (Bakker and Clarke, 2011). 

These compounds have herbaceous odours that have been related to negative effects in 

wines (Baumes et al., 1986), however in white wines a small herbaceous perception is 

appreciated by the consumers (Welke et al., 2012). Although Arinto variety resist to 

different climatic conditions, it was found that berry weight, pH, phenolic content and 

mainly its varietal composition were different from one harvest to another. 
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Figure 48. ASCA scores plot for (a) harvest and (c) parcel factors, and the corresponding variable loadings plot (b, and d, respectively), obtained for 
Arinto, at technologic maturity (significance test reported on Table 7). Each variable is normalized separately by dividing by its standard deviation 
value. 
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The effect of parcel characteristics for Arinto grapes accounted for 14.9% of the 

total data set variance (Table 7). Scores and loading plots were shown in Figure 48c and d, 

respectively. PC1 distinguishes AR-VA2, placed in the positive side of PC1, from the other 

2 parcels, placed in the negative side of PC1 (AR-VA1) or near to origin (AR-SM1) 

(Figure 48c). The same number of total volatile compounds was found in grapes from all 

parcels (a total of 66 individual compounds), thus the separation observed in the loadings 

plot (Figure 48b) was due to the different amounts determined for most of the varietal 

volatile compounds, in particular, monoterpenic ones, including free and glycosidically-

linked fractions, as well as total phenolic content and antiradical activity: Arinto grapes 

from AR-VA2 with higher contents was placed in PC1 positive and grapes from AR-VA1, 

with lower content, was placed in PC1 negative. Besides, sugar content also allowed to 

distinguish grapes from AR-SM1 from the other two parcels, having these grapes lower 

sugar content. These observations should be associated to the different characteristics of 

the 3 parcels, described in Chapter II. Soil type may influence grapes composition: soils 

with lower (clay-sandy soil - AR-VA2) and middle (clay-calcareous soil - AR-SM1) water-

holding capacity than clayey soil seem to favour varietal volatile compounds, phenolic 

content, and also antiradical activity. According to these results, the oenological potential 

of Arinto variety is different from one parcel to another: it is expected that Arinto grapes 

from AR-VA2 may have higher aroma potential while AR-VA1 grapes may have the 

lower one. On the other hand AR-SM1 grapes with lower sugar content may produce 

wines with lower alcohol content. 

 

Bical 

Harvest effect on Bical grapes composition accounted for 53.8% of total data set 

variance (Table 7). According to the score plot all three harvests can be distinguished: 

2010 harvest was placed PC1 positive and the other 2 harvests under study, 2011 and 2012, 

were placed in PC1 negative and near to origin, respectively (Figure 49a). According to the 

loading plot (Figure 49c), the separation of grapes from 2010 harvest (PC1 positive) was 

related principally to lower sugar content, higher total phenolic content, and higher 

contents of mono- and sesquiterpenic compounds determined in the free fraction and also 

to the monoterpenic compounds determined in the glycosidically-linked fraction. On the 

other hand, lower amounts of these compounds were observed for grapes from 2011 
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harvest, which explains its position in PC1 negative side. Besides, higher sugar content 

was determined in grapes from 2011 harvest and higher berry weight in grapes from 2012. 

Bical variety is known to be very sensible to different climatic conditions and according to 

these results it was found that its oenological potential varied with harvest year conditions: 

higher aroma potential is expected for grapes from 2010 and the opposite for grapes from 

2011. Besides, higher alcohol content is expected for grapes from 2011. 

The scores plot obtained for parcel factor accounting for 17.1% of variance (Table 

7) was shown in Figure 49c. According to this figure, parcels were distributed along the 

first PC with BI-SM1 situated at the positive and BI-VA1 at the negative side of PC1 and 

BI-VA2 was near to origin. Analysis of loadings (Figure 49d) showed that this distribution 

along PC1 was related to the content of monoterpenic compounds determined in free and 

glycosidically-linked fractions and aromatic alcohols, and also phenolic compounds and 

antiradical activity: higher amounts were determined for grapes from BI-SM1, while the 

opposite was observed for grapes from BI-VA1. Grapes from BI-SM1 not only exhibited 

higher content of free volatile monoterpenic compounds, which are very important for 

grape aroma and quality, but also higher amounts of these compounds in the 

glycosidically-linked fraction. This suggests higher aroma potential for grapes from this 

parcel. According to this, BI-SM1 parcel characteristics seem to favour Bical grapes 

composition. The distribution observed along PC2 allowed to distinguish BI-VA2 (PC2 

positive) from BI-VA1 (PC2 negative) (Figure 49c). According to the loadings plot (Figure 

49d) this distinction was mainly due to the lower berry weight, and higher amounts of 2 

monoterpenols (hotrienol and terpinen-4-ol) and 2 sesquiterpenes (aromadendrene and α-

farnesene) in BI-VA2 grapes, while BI-VA1 exhibited higher amounts of ocimenol and 

geraniol (isomer 1). The observed differences may be related with soil type: soils with 

lower (clay-sandy soil - BI-SM1) and middle (clay-calcareous soil - BI-VA2) water-

holding capacity than clayey soil seem to favour varietal volatile compounds, phenolic 

content, and also antiradical activity. 
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Figure 49. ASCA scores plot for (a) harvest and (c) parcel factors, and the corresponding variable loadings plot (b, and d, respectively), obtained for Bical, at 
technologic maturity (significance test reported on Table 7). Each variable is normalized separately by dividing by its standard deviation value. 
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Sauvignon Blanc variety 

The comprehensive approach performed for Sauvignon Blanc grapes revealed that 

harvest and parcel factors explained ca. 68% and 12% of the total data set variance. 

However, only effect of harvest was found to be significant (p-value lower than 0.0005), 

while parcel factor had no statistical significance (p-value higher than 0.05) (Table 7). 

During maturation (Chapter III), it was determined that grapes from SB-SM2 (ca. 50 m, 

clay-calcareous soil) exhibited higher berry weight and lesser sugar content than grapes 

from SB-SM1 and SB-SM3 parcels (both at 70 m, with clayey and clay-sandy soils, 

respectively) (Figure 22, Table 5). Also, higher phenolic content and antiradical activity 

were determined for grapes from SB-SM3 followed by SB-SM2 (Figure 29, Table 5). 

However, at technologic maturity, the comprehensive approach using statistic tools 

revealed that these differences between the 3 parcels were not statistic significant, 

suggesting that similar Sauvignon Blanc grapes compositions and thus oenological 

potential, can be obtained from SB-SM1, SB-SM2 and SB-SM3 parcels. 

Harvest climatic conditions influence Sauvignon Blanc grapes composition (Figure 

50). According to the score plot (Figure 50a), samples were distributed along PC1: 2010 

harvest was placed in PC1 positive and 2011 and 2012 harvests were placed in PC1 

negative and near to origin, respectively. According to loadings plot (Figure 50b), 

practically all parameters studied contributed to the sample separation along the first PC: 

grapes from 2010 harvest had the highest content on volatile compounds, including free 

and glycosidically-linked ones, while grapes harvested in 2011 had higher titratable acidity 

values and the lower volatile content, principally related with the varietal one. From the 

varietal compounds (free and glycosidically-linked fractions), geraniol isomers were the 

higher ones determined in all parcels and harvests. In the free form, geraniol isomer 1 and 

2 accounted for ca. 1% and 3-9% of the total GC×GC areas, respectively, and accounted 

for ca. 16-20% and 13-18% of the total amount determined in the glycosidically-linked 

form, respectively. Although in small amounts, linalool was the third major monoterpenol 

and accounted for ca. 1-3% of the total GC×GC areas and 5-9% of the total amount 

determined in the glycosidically-linked form. These compounds may be important to the 

general enhancement of the fruity, floral and citric aromas (Marais, 1983). 
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Figure 50. ASCA scores plot for harvest factor (a), and the corresponding variable loadings plot (b), obtained for Sauvignon Blanc, at technologic maturity 
(significance test reported on Table 7). Each variable is normalized separately by dividing by its standard deviation value. 
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Baga variety 

The effect of harvest year accounted for 61.4% of total data set variance (Table 8). 

First component of scores plot separates 2010 harvest (placed in PC1 positive) from the 

others (placed in PC1 negative), while second component separates 2011 and 2012 

harvests (Figure 51a). The loadings plot (Figure 51b) showed that the projection of 2010 

harvest in PC1 positive was explained by the higher GC×GC peak area determined in 

grapes from this harvest, essentially of monoterpenic compounds (including hydrocarbons 

and oxygen-containing ones). From these, β-ocimene, α-terpinolene, rose oxide, 1-

terpineol, nerol oxide, digydrocarvone, menth-1-en-9-al, and carvone were only detected in 

2010 grapes. Besides, PC2 loadings showed that mainly C13 norisoprenoids and 

sesquiterpenic compounds were responsible for the separation of 2012 harvest from 2011, 

due to their higher GC×GC areas determined in grapes from 2012. Besides, grapes from 

2011 (PC2 negative) also exhibited higher titratable acidity and sugar content when 

compared to 2012 and 2010 harvests. 

The effect of parcels in Baga grapes accounted for 14.8% of total data set variance 

(Table 8). Scores and loading plots were shown in Figure 51c and d, respectively. PC1 

distinguishes BA-VA1, placed in the positive side of PC1, from BA-SM1 placed in the 

negative side of PC1, while BA-VA2 was near to origin but in the positive side of PC1. 

Corresponding loadings plot (Figure 51b) showed that this separation was due to the higher 

sugar and phenolic contents and antiradical activity, as well as higher varietal grapes 

components determined on the glycosidically-linked fraction of BA-VA2 grapes, while the 

lower contents were determined in BA-SM1 grapes. The presence of higher amounts of 

varietal compounds on the glycosidically-linked fraction in BA-VA2 grapes compared 

with the other parcels, suggest higher aroma potential of Baga variety obtained from this 

parcel, due to the significant relevance of these compounds in the varietal aroma (Moreno-

Arribas and Polo, 2009). Furthermore, the varietal volatile composition determined for 

BA-VA2 and BA-VA1 grapes was very similar, corresponding to ca. 27.5% and 26.0% of 

the total GC×GC areas respectively, while only 13.4% was determined for BA-SM1 

grapes. Thus, their distinction based on PC1 was unclear. However, PC2 allowed 

distinguishing BA-VA1, placed in PC2 negative, from the other parcels (BA-SM1 placed 

in PC2 positive and BA-VA2 was near to origin) (Figure 51c). The loadings plot (Figure 

51d) showed that the projection of BA-VA1 in PC2 negative was mainly related with the 
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higher GC×GC peak area of some monoterpenic compounds, including α-pinene, 

limonene, linalool oxide, and β-citronellol. The monoterpenic compounds, if present in 

amounts above their sensorial perception limits, can contribute with characteristic notes: α-

pinene has fresh and citrus notes, limonene has a lemon, orange and sweet notes, linalool 

has fruity, floral, and rosy notes, and β-citronellol exhibit rose and lemon notes (Marais, 

1983). Considering the main parcels characteristics described in Chapter II, these 

observations should be associated to the different soils type. The soil type is highly related 

to the water status (Jackson and Lombard, 1993): clay-calcareous (BA-VA2) and clayey 

(BA-VA1) related parcels, with middle and higher water-holding capacity than clay-sandy 

soils seem to favour varietal volatile compounds, phenolic content, and also antiradical 

activity. 
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Figure 51. ASCA scores plot for (a) harvest and (c) parcel factors, and the corresponding variable loadings plot (b, and d, respectively), obtained for Baga, at 
technologic maturity (significance test reported on Table 7). Each variable is normalized separately by dividing by its standard deviation value. 
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Castelão variety 

The effect of harvest on Castelão grapes composition accounted for 66.7% of the 

total data set variance (Table 7). According to the scores plot (Figure 52a), first PC 

allowed to distinguish 2010 harvest, placed in positive side of PC1, from the other 2 

harvests, placed in PC1 negative side. The corresponding loadings plot (Figure 52b) 

showed that the separation of grapes from 2010 harvest was related with the higher pH and 

phenolic content of these grapes and principally with the higher volatile compounds 

amounts determined, principally the monoterpenic ones which represent ca. 20% of the 

total volatiles, while in 2011 and 2012 these chemical family represent ca. 10% and 13%, 

respectively. Furthermore, PC2 allowed to distinguish 2012, placed in PC2 positive, from 

2011, placed in PC2 negative (Figure 52a). The loadings scatter plot (Figure 52b) showed 

that the projection of 2011 in PC2 negative was mainly related with the lower content of 

almost all parameters determined when compared to 2012, essentially the oxygen-

containing monoterpenic compounds (free and glycosidically-linked fractions). Besides, 

2012 grapes (PC2 positive) exhibited higher titratable acidity and lower sugar content. The 

results from the 3 consecutive harvests showed that, besides the fact that Castelão was well 

adapted to regions with maritime influence (as Bairrada Appellation), its grapes 

composition is modulated by the different climatic conditions of each harvest. 

The scores plot for the factor parcel accounted for 15.5% of the total data set 

variance (Table 7, Figure 52b). The different parcels were distributed along the first PC 

with CA-SM1 situated at the positive side and CA-SM3 at the negative side. Analysis of 

loadings (Figure 52d) showed that this distribution along PC1 was related to the higher 

titratable acidity, antiradical activity and higher content of some oxygen-containing 

monoterpenic compounds (dihydromyrcenol, hotrienol, and nerol oxide) and also higher 

varietal content determined on the glycosidically-linked fraction of CA-SM1 grapes, when 

compared with CA-SM3 grapes. Also, along PC2, it was possible to distinguish CA-SM2 

from the other parcels (PC2 negative), which was characterized essentially by lower berry 

weight and pH, and higher amounts of sugar, C6 alcohols and aldehydes, and some varietal 

compounds as linalool oxide, hotrienol, α-terpineol, vitispirane, and β-damascenone. 

According to these results clay-calcareous (CA-SM1) and clayey (CA-SM2) soils with 

higher water-holding capacity than clay-sandy soil seem to be related with higher varietal 

volatile composition of Castelão grapes. 
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Figure 52. ASCA scores plot for (a) harvest and (c) parcel factors, and the corresponding variable loadings plot (b, and d, respectively), obtained for Castelão, 
at technologic maturity (significance test reported on Table 7). Each variable is normalized separately by dividing by its standard deviation value. 
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Touriga Nacional variety 

For Touriga Nacional variety harvest accounted for 59.3% of the total data set 

variance (Table 7). First component of the score plot allowed to separate 2010 harvest, 

placed in PC1 positive side, from 2012 and 2011 harvests placed in PC1 negative side and 

near to origin, respectively (Figure 53a). The loadings plot (Figure 53b) showed that 

essentially aromatic alcohols, C13 norisoprenoids and monoterpenic compounds in the free 

and glycosidically-linked forms, contributed to discriminate harvests along PC1. In grapes 

from 2010 harvest, higher content of aromatic alcohols was determined, accounting for ca. 

4% of the total GC×GC areas, while only ca. 2.5% was determined in 2011 and 2012. 

Higher amounts of 2 isomers of β-damascenone and geranylacetone were also found in 

grapes from 2010. Besides, two monoterpenic compounds, β-ocimene and dihydrolinalool, 

were only determined in this harvest. On the other hand, higher titratable acidity and lower 

amounts of monoterpenic compounds were determined in grapes from 2012 harvest. 

However, 5,6-epoxy-β-ionone was only determined in grapes from this harvest. Touriga 

Nacional requires good sunlight exposures for a long period in order to develop its volatile 

characteristics. As 2012 was fresh and rainy this may explain the lower volatile content 

determined in this harvest. In grapes from 2011 harvest was found two monoterpenones 

(verbenone and carvone) and one C13 norisoprenoid (vitispirane) which were not 

determined in 2010 and 2012 harvests. The C6 alcohols and aldehydes were found to be 

higher in grapes form 2011, accounting for ca. 78% of the total GC×GC areas and ca. 73% 

for grapes from the other harvests. Considering all harvest under study, for Touriga 

Nacional the higher terpenic compound determined was linalool, accounting for 20-27% of 

the total monoterpenic GC×GC areas. Previous studies also identified linalool as a major 

monoterpenic compound determined in Touriga Nacional wines, being considered an 

important varietal compound in the aroma of its wines (Oliveira et al., 2006; Pinho et al., 

2007). 

The effect of parcel on Touriga Nacional grapes accounted for 18.8% of the total 

data set variance (Table 7). Scores and loadings plots were shown in Figure 53c and d, 

respectively. According to the scores plot of the two first principal components, PC1 

distinguishes TN-SM2 (PC1 positive) from the other 2 parcels, TN-SM1 and TN-SM3, 

both placed in PC1 negative. Corresponding loadings plot (Figure 53d) showed that grapes 

from TN-SM2 (PC1 positive) had lower berry weigh and higher sugar and phenolic 
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contents, antiradical activity, and content of monoterpenic compounds, mainly the oxygen-

containing ones. Besides, PC2 distinguishes TN-SM1 (PC2 negative) from TN-SM3, 

which was characterized by higher amount of varietal compounds, including mono- and 

sesquiterpenic compounds, and also C13 norisoprenoids. Linalool, the major monoterpenic 

compound determined in all parcels, accounted for ca. 27% and 25% in grapes from TN-

SM2 followed by TN-SM1 respectively, values higher than those found for TN-SM3 

grapes (ca. 14%). According to the characteristics of these parcels described in Chapter II, 

higher altitude and clay-calcareous soil of TN-SM2 parcel seem to be related with higher 

varietal aroma potential of Touriga Nacional red variety, and also higher grapes phenolic 

content and antiradical activity. 
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Figure 53. ASCA scores plot for (a) harvest and (c) parcel factors, and the corresponding variable loadings plot (b, and d, respectively), obtained for Touriga 
Nacional, at technologic maturity (significance test reported on Table 7). Each variable is normalized separately by dividing by its standard deviation value. 
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IV. 4.  Concluding remarks 

The comprehensive approach allowed identifying the effect of harvest and 

parcelling characteristics on grapes composition allowing the ascription of the oenological 

potential of each variety, on the different conditions under study, as initially proposed. 

Each variety showed different adaptation behaviour to the edaphoclimatic conditions under 

study, revealing the unique character of each variety. 

Harvest was the main factor that influences grapes composition (53% to 68% of the 

total data set variance). Considering all varieties, the moderate climatic conditions (2010) 

promoted higher phenolic and volatile contents, while the opposite was observed for 2011 

harvest. However, fresh and rainy climatic conditions (2012) promoted lower 

monoterpenic content in Touriga Nacional. This is a variety that requires good sunlight 

exposures for a long period in order to develop its volatile characteristics. 

Parcel characteristics also influence grapes compositions explaining ca. 15-19% of 

the total data set variance. According to the obtained results, the volatile and phenolic 

contents and antiradicalar activity were higher in clay-sandy followed by clay-calcareous 

soils for Arinto and Bical varieties. For Sauvignon Blanc the parcel characteristics had no 

significant effect. For Baga, Castelão, and Touriga Nacional red varieties, the phenolic and 

varietal volatile contents and antiradicalar activity were higher in clay-calcareous followed 

by clayey soils. Furthermore, sugar content was higher in Baga and Touriga Nacional and 

titratable acidity was higher in Castelão. Besides, also altitude seems to modulate Touriga 

Nacional grapes composition. 

The results obtained allowed to identify a specific behaviour for each variety 

regarding harvest year climatic conditions and also parcels characteristics. Thus, in order to 

better visualise the uniqueness of each variety, and to better compare their compositions, a 

synoptic figure was constructed, joining the entire generated grape data at technologic 

maturity, considering the variability associated to the 3 harvest years and 3 parcels 

characteristics (Figure 54). According to this figure, Sauvignon Blanc was the variety with 

higher sugar content and higher varietal volatile compounds followed by Arinto, while the 

opposite was observed for Bical grapes. Varietal compounds are related with fruity, sweety 

and floral aromas, thus their higher content on Sauvignon Blanc may explain the aroma 

sensory attributes of this variety (Chapter II). For the red varieties, Baga and Castelão had 

similar titratable acidity, sugar, phenolic and glycosidically-linked volatile compounds. 
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From the red varieties under study, Sousão grapes exhibited higher titratable acidity and 

phenolic content, and lower varietal volatile content, which may suggest higher colour and 

lower aroma potential for this variety. This may explain why this variety is used as 

“teinturier” to blend with other varieties poor in colour but rich in aromas. Besides, 

Touriga Nacional grapes had lower titratable acidity and its total phenolic content was near 

to Sousão variety. 
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Figure 54. Synotic figure of all the parameters obtained at technologic maturity for grapes from V. 
vinifera cv. Arinto, Bical, Sauvignon Blanc, Baga, Castelão, Touriga Nacional and Sousão. 
* Glycosidically-linked fraction was not determined for Sousão variety. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter V - Combining sensory and molecular data provided 

by instrumental analysis to explain wine aroma properties 
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Combining sensory and molecular data provided by instrumental 

analysis to explain wine aroma properties 
 

 

 

Overview 

Aroma plays an important role in wine quality and is related to volatile compounds 

and aroma sensory perceptions. This can yield new insights in the aroma fingerprint to be 

used for the distinction of wines based on their aroma properties. The aim of the present 

research study was to establish the aroma properties of 6 monovarietal wines. A novel 

approach, named aroma network, that links volatile compounds (instrumental analysis) and 

aroma data to key odour active molecules was used. For this, several chemical families that 

are known to contribute for wine aroma perceptions, namely esters, carbonyl compounds, 

alcohols, acids, terpenic compounds, lactones, C13 norisoprenoids, volatile phenols, and 

thiols, were considered. Wines from Bairrada Appellation were selected as a case study. 

The economic agents of this Appellation aim to greater enhance the appreciation and the 

consumption of Bairrada wines in markets worldwide. For the present study, 3 white 

(Arinto, Bical, and Sauvignon Blanc) and 3 red monovarietal commercial wines (Baga, 

Castelão and Touriga Nacional varieties) were selected. 

This network approach is a tool that can be used as an aroma fingerprint to explain 

the aroma properties of wines worldwide. The comprehensive approach can yield new 

insights in wine related science. 
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V. 1.  Framework 

Wine quality concept is very complex, being related with several intrinsic (defined 

by the drinking experience, namely pleasure, aroma, flavour, and mouthfeel) and extrinsic 

factors (winemaking, price, origin, bottle form, and colour), that influence consumers 

choice (Hopfer and Heymann, 2014; Sáenz-Navajas et al., 2013). From these, aroma is 

considered one of the most significant factors to establish wine quality and character and 

therefore, for determining consumer’s acceptance. A relationship between the wine 

character and its volatile composition has already been recognized by several researchers 

worldwide, and hundreds of volatile compounds belonging to different chemical classes, 

namely alcohols, esters, acids, aldehydes, ketones, lactones, terpenoids, and volatile 

phenols, have already been identified in different wine varieties (Rocha et al., 2000; Rocha 

et al., 2007b; Vázquez et al., 2002; Vilanova et al., 2010). As these compounds produce an 

effect on consumer’s sensory perceptions, both volatile composition and sensory properties 

are essential to determine wine aroma characteristics. 

Gas chromatography (GC) based techniques provide an effective tool for the wine 

volatile compounds determination. However, without aroma sensory analysis by a trained 

panel, the mere knowledge about the volatile composition of a wine is insufficient to 

explain the whole wine aroma properties (Álvarez et al., 2011). Thus, due to the high 

economic value of the wine-product worldwide, the exploitation of innovative approaches 

allowing to combine sensory and instrumental data (volatile composition), and explaining 

the wine aroma properties are extremely important. One of these approaches is the 

network-based approach. This approach was introduced as a network that captures the 

flavour compounds shared by culinary ingredients, identifying a series of statistically 

significant patterns that characterize the way humans choose the ingredients they combine 

in their food (Ahn et al., 2011). Firstly, a bipartite network-based approach consisting of 

two different nodes need to be built, being one node the aroma notes, and the other the 

volatile compounds. Each volatile compound can present one or different aroma notes, 

contributing to the complexity of the aroma. Then, a projection of the bipartite network-

based approach is performed, known as aroma network. For the determination of the aroma 

networks, the amount of each compound determined for each specific note, is considered. 

In this aroma network two nodes are linked if they share at least one aroma note, and the 
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thickness of the line used between aroma notes is proportional to the number of shared 

compounds (Ahn et al., 2011). 

 

V. 2.  Material and Methods 

V. 2.1.  Wines under study 

Six young monovarietal wines (all of them with less than 1 year) from 2010 harvest 

were studied: Vitis vinifera L. cv. Arinto (12.0 alcohol % v/v), Bical (13.0 alcohol % v/v), 

Sauvignon Blanc (12.5 alcohol % v/v), Baga (12.5 alcohol % v/v), Castelão (14.0 alcohol 

% v/v), and Touriga Nacional (15.0 alcohol % v/v) varieties. The wines were produced in 

Manuel dos Santos Campolargo, Herdeiros company, from Bairrada Appellation 

(Portugal). These varieties are recommended for QWPSR (quality wine produced in 

specified region) of Bairrada Appellation. Also, Baga is the most cultivated variety in this 

Appellation and represents 90% of the total red Bairrada vineyard. Also, vineyards of 

Arinto and Bical varieties represent 20% (10% for each one) of the total white vineyard. 

Briefly, the white grape varieties were pressed and decanted. Then, must fermentation 

occurred with batonnage in barrels, without temperature control for Arinto and Bical. In 

the case of Sauvignon Blanc musts, fermentation occurred in still vats with controlled 

temperature (12 ºC). The red grape varieties were crushed and de-stemmed. Fermentation 

occurred in small vats using mechanical pressing and, at the end of fermentation, they were 

passed to barrels. All samples were bottled (3 bottles of 0.75 L for each wine variety), 

sulfited and stored at 4 ºC in the dark, until analysis. 

 

V. 2.2.  Reagents and Standards 

Dichloromethane, HPLC quality, was from Fisher Scientific (Loughborough, 

U.K.), methanol of LiChrosolv quality was from Merck (Darmstadt, Germany), absolute 

ethanol (ACS quality) was purchased from Panreac (Barcelona, Spain), and pure water was 

obtained from a Milli-Q purification system (Millipore, Billerica, MA). LiChrolut EN 

resins and polypropylene cartridges were obtained from Merck (Darmstadt, Germany). The 

aroma chemical standards were supplied by Aldrich (Gillingham, U.K.), Fluka (Buchs, 

Switzerland), Sigma (St. Louis, MO), Lancaster (Strasbourg, France), PolyScience (Niles, 

IL), ChemService (West Chester, PA), Interchim (Monlucüon, France), International 
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Express Service (Allauch, France), and Firmenich (Geneva, Switzerland). α,α,α-Tris-

(hydroxymethyl)-methylamine (Tris) 99.9% was obtained from Aldrich-España (Madrid, 

Spain), and cysteine 99% and phydroxymercuribenzoic acid were from Sigma (St. Louis, 

MO). The chemical standards used were 2-butanol, 4-methyl-2-pentanol, 2-octanol, and 4-

hydroxy-4-methyl-2-pentanone, supplied by Merck (Darmstadt, Germany), PolyScience 

(Miles, USA), and Aldrich (Gillingham, UK), respectively. n-Hexane for organic trace 

analysis (UniSolv) was from Merck (Darmstadt, Germany). Diethyl ether for instrumental 

analysis and mercaptoglycerol were from Fluka (Buchs, Switzerland). Anhydrous sodium 

sulfate was for analysis ACS-ISO quality from Panreac (Barcelona, Spain). 

Ethylenediaminetetraacetic acid disodium salt 2-hydrate (EDTA), L-cystein hydrochloride 

hydrate 99%, 1,4-dithioerythritol, octafluoronaphthalene 96% (OFN) and 1,8-

diazabicyclo[5.4.0]undec-7-ene (DBU) were from Aldrich (Steinheim, Germany). O-

Methylhydroxylamine hydrochloride purum >98% and 2,3,4,5,6-Pentafluorobenzyl 

bromide (PFBBr) were from Fluka (Buchs, Switzerland). 4-Mercapto-4-methyl-2-

pentanone and 3-mercaptohexylacetate were from Oxford Chemicals (Hartlepool, UK). 2-

Furfurylthiol and 3-mercaptohexanol were from Lancaster (Strasbourg, France). 2-Methyl-

3-furanthiol and 2-methyl-3-tetrahydrofuranthiol were from Aldrich (Steinheim, 

Germany). Benzylmercaptan, 2-phenylethanethiol and 4-methoxy-α-toluenethiol were 

from Fluka (Buchs, Switzerland). Bond Elut-ENV resins, prepacked in a 50 mg cartridge 

(1 mL total volume) and semi-automated SPE Vac Elut 20 station were from Varian 

(Walnut Creek, CA, USA). 

 

V. 2.3.   Determination of wine volatile components based on gas chromatographic 

techniques 

Wines are composed by several hundreds of volatile compounds that belong to 

different chemical classes (namely alcohols, esters, acids, lactones, terpenoids, volatile 

phenols), present at different concentration ranges, which increase the complexity of their 

determination in one single analysis. Figure 55 represents a workflow of the experimental 

procedures used for the extraction techniques and gas chromatographic analysis for a 

comprehensive determination of the wines volatile composition. 
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MS
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Addition  of a 
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Figure 55. Workflow of the experimental procedures used for the extraction and gas 
chromatographic analysis for a comprehensive determination of the wines volatile composition. 

 

a) Determination of esters, carbonyl compounds, alcohols and acids by liquid-liquid 

extraction (LLE)/GC-FID - According to the LLE/GC–FID methodology already proposed 

(Ortega et al., 2001), to 10 mL screw-capped centrifuge tubes were added 4.1 g of 

ammonium sulphate ((NH4)2SO4), 2.7 mL of wine, 6.3 mL of water, 20 µL of internal 

standard solution (2-butanol, 4-methyl-2-pentanol, 4-hydroxy-4-methyl-2-pentanone, ethyl 

heptanoate, heptanoic acid and 2-octanol at 200 µg/mL in ethanol) and 0.25 mL of 

dichloromethane. The tubes were shaken in a horizontal platform shaker (Heidolph Promax 

1020), during 90 min, and then centrifuged at 2500 rpm for 10 min. Once the phases had 

been separated, the dichloromethane phase was recovered (ca. 150 µL) with a 500 µL 

syringe and transferred to a 300 µL vial. This extract was then analyzed by GC with FID 

detection. A Varian CP-3800 gas chromatograph was used. The column (30 m × 0.32 mm 

I.D., 0.5 µm film thickness, J&W Scientific, Folsom, CA, USA) was a Carbowax 20M, 

preceded by a 3 m x 0.33 mm uncoated pre-column. The temperature program was as 
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follows: 40 ºC for 5 min, then raised at 4 ºC/min up to 102 ºC, then raised at 2 ºC/min up to 

112 ºC, then raised 3 ºC/min up to 125 ºC for 5 min, then raised at 3 ºC/min up to 160 ºC 

and finally raised 6 ºC/min up to 200 ºC for 30 min. Injector and detector were both kept at 

250 ºC. Carrier gas was H2 at 2.2 mL/min, the split flow was 1.20 mL/min, and the 

injection (2 µL) was performed in split mode. Identification of each volatile compound 

was confirmed by the coincidence of the retention times of each compound by the 

corresponding chemical standard. Quantitative data were obtained by interpolation of 

relative peak areas in the calibration graphs built by the analysis of synthetic wines 

containing known amounts of the analytes. Each sample was extracted in duplicate. 

 

b) Determination of terpenic compounds, lactones, C13 norisoprenoids, volatile 

phenols, and also some esters, alcohols, and acids by solid-phase extraction (SPE)/GC–ion 

trap–MS - According to the previously developed SPE/GC–ion trap–MS methodology 

(López et al., 2002), 50 mL of wine sample containing 26 µL of surrogated standards 

solution (surrogates were isopropyl propanoate, 3-octanone, heptanoic acid and β-

damascone), was passed through a 200 mg LiChrolut EN cartridge at about 2 mL/min. The 

SPE cartridge had been previously conditioned with 4 mL of dichloromethane, 4 mL of 

methanol and, finally, with 4 mL of a water–ethanol mixture (12%, v/v). The sorbent was 

dried by letting air pass through (0.6 bar, 10 min). Analytes were recovered by elution with 

1.6 mL of dichloromethane-1% methanol. An internal standard solution (2-octanol, 4-

methyl-2-pentanol, and 4-hydroxy-4-methyl-2-pentanone in dichloromethane) was added 

to the eluted sample. The extract was then analyzed by GC with ion trap MS. The GC was 

a Star 3400CX fitted to a Saturn 4 electronic impact ion trap mass spectrometer from 

Varian. The column used was a DB-WAXetr (60 m × 0.25 mm I.D., 0.25 µm film 

thickness, J&W Scientific, Folsom, CA, USA), and was preceded by a 3 m x 0.25 mm 

uncoated (deactivated, intermediate polarity) pre-column. The carrier gas was He at 1.5 

mL/min. The temperature program was as follows: 40 ºC for 5 min, raised to 220 ºC at 2 

ºC/min. A 1079 septum-equipped programmable injector (SPI) from Varian was used. The 

initial temperature of this injector was 40 ºC for 0.3 min and was then raised to 250 ºC at 

200 ºC/min. Three microlitres of sample were injected in splitless mode. A 35–220 m/z 

mass range was recorded in full scan acquisition mode. Identification of each volatile 

compound was confirmed by the coincidence of the retention times and mass spectra of 
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each compound with the corresponding chemical standard. Quantitative data were obtained 

by interpolation of relative peak areas in the calibration graphs obtained from the GC–MS 

analysis of dichloromethane solutions containing known amounts of the analytes and of the 

internal standards. Each wine sample was extracted in duplicate. 

 

c) Determination of thiols using SPE/GC–negative chemical ionization (NCI)–MS - 

Based on the developed SPE/GC–NCI–MS methodology for the determination of thiols 

(Mateo-Vivaracho et al., 2008). In a 40 mL screw capped vial, spiked 25 mL of wine with 

0.2 g of EDTA (5 g/L) and 0.6 g of L-cystein clorhydrate (0.1 M Cys) and shake for 2 min. 

After this, 10 mL of the wine was transferred to a 20 mL volumetric flask, spiked with 15 

µL of an ethanolic solution containing 1400 µg/L of 2-phenylethanethiol as internal 

standard, and was shaken to ensure a complete dissolution, and make up to volume with 

the wine. This volume was transferred to a 24 mL screw-capped vial to which 0.2 g of o-

methylhydroxylamine was added, the mixture stirred for 15 s, and the vial purged gently 

with pure nitrogen, sealed, and incubated in a water bath at 55 ºC for 45 min. Six milliliters 

of this incubated sample were then loaded onto a 50 mg Bond Elut-ENV SPE cartridge 

(previously conditioned with 1 mL of dichloromethane, 1 mL of methanol and 1mL of 

water). Some wine volatile components (namely esters, alcohols, acids) were removed by 

rinsing with 4 mL of a 40 % methanol–water solution 0.2 M in phosphate buffer at pH 7.7 

and after this, with 1 mL of water. A second internal standard was added to the cartridge 

(20 µL of an ethanolic solution containing 150 µg/L of 4-methoxy-α-toluenethiol and 200 

µL of water) and loaded onto the cartridge. Thiols retained in the cartridge were directly 

derivatized by passing 1 mL of an aqueous solution of DBU (6.7%) and 50 µL of a 2000 

mg/L solution of PFBBr in hexane, and letting the cartridge imbibed with the reagent for 

20 min at room temperature (ca. 25 ºC). Excess of reagent is removed by adding 100 µL of 

a 2000 mg/L solution of mercaptoglycerol in 6.7% DBU aqueous solution, and letting the 

cartridge react again for more 20 min at room temperature. The cartridge was then rinsed 

with 4 mL of a 40 % methanol/water solution 0.2 M in H3PO4 and with 1 mL of water. 

Derivatized analytes were finally eluted with 600 µL of a solvent mixture (hexane 25% in 

diethylether) containing 22.5 µg/L of the internal standard (OFN). The eluate was finally 

washed with five 1 mL volumes of brine (200 g/L NaCl water solution), transferred to a 

standard 2 mL autosampler vial and spiked with a small amount of anhydrous sodium 
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sulfate. Four microliters of this sample was directly injected into the GC-negative chemical 

ionization (NCI) MS system. A Shimadzu QP-2010 Plus gas chromatograph with a 

quadrupole mass spectrometric detection system was used, with an Optic 3 injector from 

ATAS-GL (Veldhoven, The Netherlands). The initial temperature of the injector was 65 ºC 

and after 40 s it was heated at 5 ºC/s to 260 ºC, remaining at this temperature until the end 

of the analysis. The carrier gas was He, flowing through the column initially at 0.82 

mL/min. Seventeen seconds after the injection the flow was increased to 1 mL/min for 4 

min. After this period it was fixed at 3mL/min. The split valve was opened at the first 17 s 

of analysis (split flow 100 mL/min), closed at the following 3 min, and opened again for 

the rest of the analysis (split flow 50 mL/min). The column was a Factor Four capillary 

column DB-5MS (20 m × 0.18 mm I.D., 0.18 µm film thickness, Varian, Walnut Creek, 

CA, USA). The column initial temperature was 40 ºC for 4.35 min, heated to 140 ºC at 25 

ºC/min, then to 180 ºC at 15 ºC/min, then to 210 ºC at 30 ºC/min and finally to 300 ºC at 

250 ºC/min; remaining at that temperature for 10 min. The ion source was operated in NCI 

mode using methane at 2 bars as reagent gas. The temperature of the ion source was 220 ºC 

and the interface was kept at 280 ºC. The analytes and internal standards ions were 

acquired in single ion monitoring (SIM) mode from minute 5.5 to minute 18 at 0.18 

s/point: OFN was quantified with m/z 272; 2-methyl-3-furanthiol and 2-furfurylthiol were 

quantified with m/z 274; 4-mercapto-4-methyl-2-pentanone was quantified with m/z 160; 

3-mercapto-1-hexanol was quantified with m/z 133; 3-mercaptohexyl acetate was 

quantified with m/z 175; and benzylmercaptan was quantified with m/z 284. Finally, the 

quantification of the internal standards was carried out with m/z 135 and 314 for 2-

phenylethanethiol and 4-methoxy-α-toluenethiol, respectively. To obtain the concentration 

data, the corresponding analyte peak relative areas were simply divided by the slopes 

calculated for solutions containing known amounts of the analytes. 

 

V. 2.4.  Wine aroma sensory analysis 

The sensory panel was composed of eight females and five males, between the ages 

of 23 and 68, all of them belonging to the laboratory for Flavour Analysis and Analytical 

Chemistry of Zaragoza (Spain), with long experience in sensory analysis. Five specific 1 

hour training sessions were carried out. In the first one, judges generated descriptive terms 

for Bairrada wines. In sessions 2 and 3, different aroma standards were presented and 
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discussed by the panel, where a total of 15 aroma terms were selected for the following 

descriptive analysis: 11 for white wines (fermentation, tree and tropical fruits, citric, 

herbaceous, fusel, toasted, oxidized, flowery, sweet, and woody) and 10 for the red ones 

(fermentation, sweet fruits (which include tree, tropical, and berry fruits), herbaceous, 

fusel, toasted, oxidized, flowery, spicy, lactic, and reduction). In sessions 4 and 5, panelists 

scored the intensity of each attribute using a 7 point scale: 0 = no odor, 1 = weak and low 

intense odor, 2 = clear perceptive and intense odor, 3 = extremely intense odor; half values 

were allowed. After the training period, each panelist participated individually in one 

session per day, to evaluate the wine samples. In all cases, wines (20 mL, ca 20 °C, 2 

glasses) were presented in coded, tulip-shaped glasses covered by glass dishes and 

presented in a random order. The data processed was a mixture of intensity and frequency 

of detection (“modified frequency” - MF), which was calculated with the following 

formula: 

     (Dravnieks, 1985); 

where F(%) is the detection frequency of an aroma attribute expressed as percentage of 

total number of judges (n = 13) and I (%) is the average intensity expressed as percentage 

of the maximum intensity. 

 

V. 2.5.  Data processing 

A heatmap representation of the full wine volatile data set (6 wine varieties, total of 

volatile components, 2 independent replicates), normalized by maximum, was performed 

by using the Unscrambler® X (30-day trial version - CAMO Software AS, Oslo, Norway). 

Based on the wine volatile composition a bipartite network was built, consisting of 

two different nodes: one node corresponded to the volatile components determined in 

wines and the other represented the corresponding aroma descriptors (all aroma descriptors 

are indicated for each volatile compound). A total of 19 aroma notes were found (citric, 

sweet, woody, flowery, honey, coconut, tropical fruit, tree fruit, berry fruit, fermentation, 

toasted, spicy, fusel/alcohol, vanilla, herbaceous, lactic (cheese, butter), oxidized, 

reduction (animal, leather), and tobacco) for the wine components determined. Then, a 

projection of this bipartite network was performed, known as aroma network. The aroma 

network of each one of the 6 monovarietal wines was constructed based on the determined 

bipartite network and on the determined odor activity values – OAVs, described as the 



Combining sensory and molecular data provided by instrumental analysis to explain wine aroma properties 

 

197 
 

ratio between the concentration of each volatile component in a wine sample (Callejon et 

al., 2010) and its odor threshold value (the lowest concentration of a compound in vapour 

phase which can be detected by smell). The percentage of the OAV of each wine 

component that contributed for each individual aroma note was determined, and 

represented in pie charts. Only for these representations, the mean between the 2 replicates 

were considered. In these pie charts, each colour represents an aroma note, and the arc 

length/central angle of each sector (aroma note), is proportional to the quantity (OAV) it 

represents. The thickness of the line corresponds to the number of shared compounds 

found in the studied wines. 

Aroma sensory data was analyzed by two-way analysis of variance (ANOVA), in 

which wine varieties and judges were considered as the factors (significance level was 

determined according to the p-value obtained). ANOVA was applied to the sub-set of 

white wines (Arinto, Bical, and Sauvignon Blanc) and to the sub-set of red ones (Baga, 

Castelão, and Touriga Nacional), and notation * indicate significance at p < 0.05 and ** p 

< 0.01. The SPSS software for Windows, version 5.0, from SPSS Inc. (Chicago, IL, USA) 

was used. 

 

V. 3.  Results and Discussion 

V. 3.1.  Wine volatile components determination 

A total of 71 volatile compounds, distributed over 9 chemical families, including 

esters, alcohols, acids, carbonyl compounds, terpenic compounds, C13 norisoprenoids, 

lactones, phenols and thiols, were determined in the wines under study (Table 8 and Table 

9 for white and red wines, respectively). Besides their quantification, the already known 

odour threshold values (Campo et al., 2006; Gómez-Míguez et al., 2007) and the OAVs for 

each determined compound were also considered (details in Tables 8 and 9). 
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Table 8. Quantitative wine volatile components determination for the 3 Bairrada white wines studied based on the different GC techniques used, organized by 
chemical families, odor threshold, content, and odor active values (OAV). 
 

  Arinto Bical Sauvignon Blanc 

Compound 
Odor threshold 

(µg/L) a 
Content* (µg/L) 

n=2 OAV b 
Content (µg/L) 

n=2 OAV 
Content (µg/L) 

n=2 OAV 

Esters              

Ethyl acetate (a) 12264 13422.5 13483.6 1.09 1.10 12401.2 12458.4 1.01 1.02 18700.6 19540.8 1.52 1.59 

Ethyl propanoate (a) 10 94.9 92.3 9.49 9.23 103.8 107.7 10.38 10.77 94.1 97 9.41 9.70 

Ethyl butyrate (a) 20 91.7 96.1 4.59 4.81 68.1 70.1 3.41 3.51 99.5 100.1 4.98 5.01 

Isoamyl acetate (a) 30 226.2 231.1 7.54 7.70 18.4 18 0.61 0.60 289.8 301.1 9.66 10.04 

Ethyl hexanoate (b) 14 307.6 296.2 21.97 21.16 174 180.9 12.43 12.92 293.7 279.9 20.98 19.99 

Hexyl acetate (b) 1500 17.8 17.1 0.01 0.01 n.d. n.d. _ _ 58.6 53.8 0.04 0.04 

Ethyl lactate (c) 154636 8561.4 8428.3 0.06 0.05 7288.2 6926.6 0.05 0.04 10892.2 11225.6 0.07 0.07 

Ethyl octanoate (d) 5 193.6 184.2 38.72 36.84 100.1 104 20.02 20.80 198.1 201.6 39.62 40.32 

Ethyl decanoate (d) 200 60.3 68.1 0.30 0.34 60.5 69 0.30 0.35 58.9 62.3 0.29 0.31 

Diethyl succinate (e) 200000 301.3 330.7 0.00 0.00 245 211.2 0.00 0.00 359.8 363.6 0.002 0.002 

Phenylethyl acetate (d) 250 187.4 185.1 0.75 0.74 n.d. n.d. _ _ 244.9 230.7 0.98 0.92 

Ethyl isobutyrate (e) 15 22.5 23.3 1.50 1.55 32 34 2.13 2.27 17.6 16.9 1.17 1.13 

Isobutyl acetate (e) 1600 26.3 25 0.02 0.02 46.8 45 0.03 0.03 71.5 74.5 0.04 0.05 

Butyl acetate (e) 1880 5.2 5 0.003 0.003 1.9 1.9 0.00 0.00 0.4 0.4 0.000 0.000 

Ethyl 2-methylbutyrate (e) 18 3 3.2 0.17 0.18 4.1 4 0.23 0.22 4.2 4.1 0.23 0.23 

Ethyl isovalerate (e) 3 6 6.2 2.00 2.07 4.2 4.1 1.40 1.37 5.1 5.3 1.70 1.77 

Ethyl furoate (e) 16000 10 9.9 0.001 0.001 4.1 4 0.00 0.00 12.5 13 0.001 0.001 

Ethyl dihydrocinnamate (e) 1.6 n.d. n.d. _ _ 0.2 0.2 0.13 0.13 0.1 0.1 0.06 0.06 

Methyl vanillate (e) 3000 5.1 4.8 0.002 0.002 6 6.3 0.00 0.00 4.7 4.8 0.002 0.002 

Ethyl vanillate (e) 990 10.9 10.7 0.011 0.011 8.8 9.2 0.01 0.01 9.8 10.2 0.01 0.01 
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Carbonyl compounds              

Acetaldehyde (f) 500 824.3 830.1 1.65 1.66 640.3 638.5 1.28 1.28 714.9 712.9 1.43 1.43 

Diacetyl (f) 100 733.2 729.7 7.33 7.30 957.7 952.7 9.58 9.53 724.8 711.2 7.25 7.11 

Acetoin (f) 150000 2441.6 2773.9 0.02 0.02 2238.5 2357.3 0.01 0.02 2200.7 2059.4 0.01 0.01 

Phenylacetaldehyde (e) 1 33.5 32.7 33.50 32.70 25.1 24.0 25.10 24.00 12.6 12.1 12.60 12.10 

              

Alcohols              

Isobutanol  (f) 40000 10123.9 11013.7 0.25 0.28 10292.4 10396.8 0.26 0.26 11651.2 11986.8 0.29 0.30 

1-Butanol  (f) 150000 115.3 121.2 0.00 0.00 144.5 146.4 0.00 0.00 117.1 119.2 0.00 0.00 

Isoamyl alcohol (f) 30000 10966.9 10329.1 0.37 0.34 10338.4 10345.6 0.34 0.34 16990.6 17318.0 0.57 0.58 

1-Hexanol (a) 8000 422.9 444.4 0.05 0.06 704.0 744.2 0.09 0.09 643.6 678.1 0.08 0.08 

(Z)-3-Hexenol (a) 400 13.5 14.4 0.03 0.04 27.7 25.4 0.07 0.06 14.1 16.4 0.04 0.04 

Benzyl alcohol (e) 200000 28.1 26.5 0.00 0.00 9.2 10.0 0.00 0.00 107.6 101.6 0.00 0.00 

Phenylethanol (e) 14000 20485.0 21527.3 1.46 1.54 15685.2 15369.3 1.12 1.10 17561.5 17748.8 1.25 1.27 

              

Terpenic compounds              

Linalool (e) 25 15.6 15.2 0.624 0.608 10.3 10.0 0.41 0.40 11.6 11.4 0.46 0.46 

Linalool acetate (e) unknown 0.1 0.1 _ _ 0.2 0.2 _ _ 0.2 0.2 _ _ 

α-Terpineol (e) 250 8.4 8.1 0.034 0.032 3.6 3.6 0.01 0.01 5.0 4.9 0.02 0.02 

β-Citronelol (e) 100 3.2 3.3 0.032 0.033 2.6 2.5 0.03 0.03 2.7 2.9 0.03 0.03 

Geraniol (e) 20 6.1 6.3 0.305 0.315 4.4 4.8 0.22 0.24 5.1 5.2 0.26 0.26 

              

Lactones              

γ-Butyrolactone  (c) 35000 2373.7 2617.2 0.07 0.08 2051.7 1996.7 0.06 0.06 2548.4 2606.0 0.07 0.07 

(E)-Whiskylactone (e) 790 0.7 0.7 0.00 0.00 1.1 1.1 0.00 0.00 1.5 1.4 0.00 0.00 

δ-Octalactone (e) 400 17.8 18.0 0.05 0.05 n.d. n.d. _ _ n.d. n.d. _ _ 
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γ-Nonalactone (e) 30 2.2 2.2 0.07 0.07 3.4 3.2 0.11 0.11 3.3 3.4 0.11 0.11 

γ-Decalactone (e) 88 304.2 312.3 3.46 3.55 308.1 316.2 3.50 3.59 301.7 309.4 3.43 3.52 

δ-Decalactone (e) 386 47.5 46.6 0.12 0.12 41.9 40.2 0.11 0.10 22.8 21.7 0.06 0.06 

              

Acids              

Acetic acid (c) 200000 100069.0 100445.0 0.50 0.50 137267.3 145240.8 0.69 0.73 127332.8 127888.5 0.64 0.64 

Isobutyric acid  (c) 230 235.1 239.1 1.02 1.04 347.1 339.3 1.51 1.48 170.0 158.8 0.74 0.69 

Butyric acid (c) 173 679.3 725.1 3.93 4.19 643.6 704.4 3.72 4.07 656.1 672.2 3.79 3.89 

Isovaleric acid (d) 33.4 278.2 262.9 8.33 7.87 285.0 299.9 8.53 8.98 230.0 257.4 6.89 7.71 

Hexanoic acid (d) 420 2406.7 2577.5 5.73 6.14 2595.7 2789.0 6.18 6.64 3440.2 3458.3 8.19 8.23 

Octanoic acid (d) 500 2084.9 2072.8 4.17 4.15 2384.3 2340.9 4.77 4.68 2103.7 2133.1 4.21 4.27 

Decanoic acid (d) 1000 390.2 340.0 0.39 0.34 291.0 288.1 0.29 0.29 374.0 380.9 0.37 0.38 

              

Norisoprenoids              

β-Damascenone (e) 0.05 11.6 12.0 232.00 240.00 3.3 3.4 66.00 68.00 9.3 9.1 186.00 182.00 

β-Ionone (e) 0.09 0.3 0.4 3.33 4.44 0.5 0.5 5.56 5.56 0.3 0.3 3.33 3.33 

              

Volatile Phenols              

Guaiacol  (e) 9.5 0.4 0.4 0.04 0.04 0.9 0.9 0.09 0.09 0.1 0.1 0.01 0.01 

Eugenol (e) 6 4.0 3.9 0.67 0.65 5.2 4.9 0.87 0.82 0.4 0.4 0.07 0.07 

o-Cresol (e) 3 0.7 0.7 0.02 0.02 1.1 1.1 0.04 0.04 0.6 0.6 0.02 0.02 

m-Cresol (e) 68 0.4 0.4 0.01 0.01 0.6 0.6 0.01 0.01 0.1 0.1 0.00 0.00 

4-Ethylguaiacol (e) 33 201.7 198.5 6.11 6.02 123.5 128.9 3.74 3.91 154.8 149.9 4.69 4.54 

4-Propylguaiacol (e) unknown 0.7 0.8 _ _ 0.2 0.2 _ _ 0.03 0.02 _ _ 

4-Ethylphenol (e) 440 616.9 604.1 1.40 1.37 233.8 243.2 0.53 0.55 118.9 117.7 0.27 0.27 

4-Vinylguaiacol (e) 1100 3.2 3.2 0.00 0.00 8.1 8.5 0.01 0.01 13.3 14.2 0.01 0.01 
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a Odor threshold values previously reported in the literature (for mixtures of ethanol/water): Campo et al., 2006 and Gómez-Míguez et al., 2007. 
b OAV: Odor activity value was calculated by dividing the determined concentration of each wine component by its odor threshold value. 
*concentration of wines volatile components was obtained by dividing the chromatographic area of each volatile component by the area of the corresponding internal 
standard: (a) 4-methyl-2-pentanol, (b) ethyl heptanoate; (c) 4-hydroxy-4-methyl-2-pentanone; (d). heptanoic acid; (e) 2-octanol; (f) 2-butanol; (g) 4-methoxi-α-toluenothiol; 
(h) 1,4-dithioerythritol octafluoronaphthalene (OFN). Then, the corresponding analyte relative area was divided by the slope determined in the calibration graphs for each 
volatile compound (data not shown). 
n.d. - not detected. 
 

4-Vinylphenol (e) 180 135.1 132.0 0.75 0.73 129.1 134.8 0.72 0.75 221.5 213.9 1.23 1.19 

4-Allyl-2,6-dimethoxiphenol (e) 120 31.6 32.2 0.03 0.03 34.5 32.0 0.03 0.03 0.4 0.4 0.00 0.00 

Acetovanillone (e) 1000 56.2 53.1 0.06 0.05 19.1 18.3 0.02 0.02 27.7 28.8 0.03 0.03 

              

Thiols              

Methionol (e) 1000 1213.5 1250.3 1.21 1.25 1447.8 1479.1 1.45 1.48 1703.1 1713.7 1.70 1.71 

2-Methyl-3-furanthiol (g) 0.0050 0.239 0.198 47.80 39.60 0.637 0.687 127.40 137.40 0.703 0.813 140.60 162.60 

2-Furfurylthiol (g) 0.0004 n.d n.d. _ _ 0.003 0.003 6.50 7.75 n.d. n.d. _ _ 

4-Mercapto-4-methyl-2-pentanone (h) 0.0008 0.019 0.014 23.75 17.50 0.017 0.020 21.25 25.00 0.012 0.019 15.00 23.75 

3-Mercaptohexyl acetate (h) 0.0042 n.d. n.d. 0.00 0.00 0.002 0.000 0.38 0.07 0.001 0.001 0.33 0.26 

3-Mercapto-1-hexanol (g) 0.0600 0.031 0.030 0.52 0.50 0.090 0.093 1.50 1.55 0.047 0.052 0.78 0.87 

Benzylmercaptan (g) 0.0003 0.009 0.010 30.00 33.33 0.066 0.065 220.00 216.67 0.002 0.002 8.00 6.33 
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Table 9. Quantitative wine volatile components determination for the 3 Bairrada red wines studied based on the different GC techniques used, organized by 
chemical families, odor threshold, content, and odor active values (OAV). 

 

  Baga Castelão Touriga Nacional 

Compound 
Odor threshold 

(µg/L) a 
Content* (µg/L) 

n=2 OAV b 
Content (µg/L) 

n=2 OAV b 
Content (µg/L) 

n=2 OAV b 

Esters              

Ethyl acetate (a) 12264 49262.7 48035.2 4.02 3.92 56271.9 51631.6 4.59 4.21 64360.2 61364.1 5.25 5.00 

Ethyl propanoate (a) 10 202.9 215.2 20.29 21.52 270.1 300.3 27.01 30.03 242.3 238.9 24.23 23.89 

Ethyl butyrate (a) 20 168.4 157.2 8.42 7.86 196.7 180.4 9.84 9.02 270.5 295.2 13.52 14.76 

Isoamyl acetate (a) 30 234.3 214.4 7.81 7.15 514.1 511.7 17.14 17.06 384.6 361.9 12.82 12.06 

Ethyl hexanoate (b) 14 596.6 546.9 42.62 39.06 591.1 551.3 42.22 39.38 683.9 622.4 48.85 44.46 

Ethyl lactate (c) 154636 109213.7 110090.0 0.71 0.71 85691.8 83621.7 0.55 0.54 77143.7 72395.1 0.50 0.47 

Ethyl octanoate (d) 5 267.0 268.8 53.40 53.76 238.3 225.5 47.66 45.11 288.8 293.4 57.76 58.68 

Ethyl decanoate (d) 200 71.7 74.5 0.36 0.37 70.2 68.0 0.35 0.34 55.1 53.3 0.28 0.27 

Diethyl succinate (e) 200000 5700.9 5476.4 0.03 0.03 6268.4 6225.0 0.03 0.03 3042.0 3181.5 0.02 0.02 

Phenylethyl acetate (d) 250 124.6 128.1 0.50 0.51 213.0 199.3 0.85 0.80 147.7 149.4 0.59 0.60 

Ethyl isobutyrate (e) 15 35.6 35.4 2.37 2.36 44.3 45.4 2.95 3.03 42.0 39.9 2.80 2.66 

Isobutyl acetate (e) 1600 70.6 70.1 0.04 0.04 88.5 84.0 0.06 0.05 125.7 119.7 0.08 0.07 

Butyl acetate (e) 1880 7.6 7.2 0.00 0.00 3.5 3.6 0.00 0.00 7.3 7.6 0.00 0.00 

Ethyl 2-methylbutyrate (e) 18 5.5 5.7 0.31 0.31 6.9 7.0 0.39 0.39 5.1 5.2 0.28 0.29 

Ethyl isovalerate (e) 3 7.2 7.3 2.42 2.45 9.7 10.2 3.22 3.40 5.0 5.3 1.66 1.78 

Ethyl furoate (e) 16000 2.1 2.1 0.00 0.00 2.9 2.8 0.00 0.00 1.3 1.3 0.00 0.00 

Ethyl dihydrocinnamate (e) 1.6 0.4 0.4 0.23 0.24 0.5 0.5 0.32 0.30 0.7 0.7 0.41 0.41 

Ethyl cinnamate (e) 1.1 0.8 0.8 0.72 0.76 1.3 1.3 1.14 1.21 1.4 1.4 1.27 1.30 

Methyl vanillate (e) 3000 16.8 17.1 0.01 0.01 32.5 34.8 0.01 0.01 57.8 55.3 0.02 0.02 

Ethyl vanillate (e) 990 659.8 650.9 0.67 0.66 743.9 763.4 0.75 0.77 1241.1 1174.7 1.25 1.19 
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Carbonyl compounds              

Acetaldehyde (f) 500 1000.6 1068.9 2.00 2.14 1015.1 1070.9 2.03 2.14 556.7 542.0 1.11 1.08 

Diacetyl (f) 100 846.0 860.6 8.46 8.61 518.2 567.0 5.18 5.67 324.9 297.6 3.25 2.98 

Acetoin (f) 150000 163.6 173.5 0.00 0.00 97.8 95.6 0.00 0.00 199.3 193.3 0.00 0.00 

Phenylacetaldehyde (e) 1 14.6 14.0 14.59 13.98 14.3 15.1 14.30 15.11 14.0 15.3 14.02 15.25 

              

Alcohols              

Isobutanol  (f) 40000 79016.2 79109.2 1.98 1.98 73644.9 69250.0 1.84 1.73 63013.2 66004.1 1.58 1.65 

1-Butanol  (f) 150000 1530.4 1536.6 0.01 0.01 1187.7 1161.1 0.01 0.01 1517.1 1384.8 0.01 0.01 

Isoamyl alcohol (f) 30000 353652.7 353078.0 11.79 11.77 312121.0 292658.1 10.40 9.76 266522.1 255224.0 8.88 8.51 

1-Hexanol (a) 8000 1520.5 1483.8 0.19 0.19 1289.7 1234.8 0.16 0.15 1432.7 1356.7 0.18 0.17 

(Z)-3-Hexenol (a) 400 27.1 29.0 0.07 0.07 45.8 49.5 0.11 0.12 34.6 34.8 0.09 0.09 

Benzyl alcohol (e) 200000 23.1 21.5 0.00 0.00 73.8 77.6 0.00 0.00 57.5 56.9 0.00 0.00 

Phenylethanol (e) 14000 81537.0 86042.4 5.82 6.15 71136.2 76894.0 5.08 5.49 53554.3 56785.9 3.83 4.06 

              

Terpenic compounds              

Linalool (e) 25 5.4 5.6 0.22 0.22 9.2 9.1 0.37 0.36 30.7 29.2 1.23 1.17 

Linalool acetate (e) unknown 0.4 0.5 _ _ 0.5 0.5 _ _ 0.4 0.4 _ _ 

α-Terpineol (e) 250 2.0 1.9 0.01 0.01 4.8 4.6 0.02 0.02 14.8 15.3 0.06 0.06 

β-Citronelol (e) 100 8.6 7.9 0.09 0.08 12.0 11.5 0.12 0.12 13.5 12.5 0.13 0.12 

Geraniol (e) 20 8.3 8.1 0.41 0.41 16.0 16.3 0.80 0.82 41.5 39.4 2.08 1.97 

              

Lactones              

γ-Butyrolactone  (c) 35000 15236.1 16609.5 0.44 0.47 14132.7 13245.8 0.40 0.38 8537.7 8203.2 0.24 0.23 

(E)-Whiskylactone (e) 790 0.7 0.7 0.00 0.00 1.0 1.0 0.00 0.00 1.5 1.4 0.00 0.00 

γ-Nonalactone (e) 30 34.0 35.8 1.13 1.19 39.0 38.1 1.30 1.27 25.1 27.2 0.84 0.91 
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γ-Decalactone (e) 88 662.4 678.0 7.53 7.70 628.0 609.3 7.14 6.92 704.7 701.7 8.01 7.97 

δ-Decalactone (e) 386 52.6 56.8 0.14 0.15 45.8 41.6 0.12 0.11 58.8 55.8 0.15 0.14 

              

Acids              

Acetic acid (c) 200000 559820.7 591825.6 2.80 2.96 675261.9 609621.8 3.38 3.05 798360.9 734655.1 3.99 3.67 

Isobutyric acid  (c) 230 2260.8 2099.5 9.83 9.13 2118.0 2015.0 9.21 8.76 2012.8 1975.4 8.75 8.59 

Butyric acid (c) 173 1088.9 1049.5 6.29 6.07 1290.1 1198.0 7.46 6.92 1464.1 1386.2 8.46 8.01 

Isovaleric acid (d) 33.4 1369.7 1459.9 41.01 43.71 1589.7 1447.6 47.60 43.34 1150.4 1198.5 34.44 35.88 

Hexanoic acid (d) 420 2569.8 2548.7 6.12 6.07 2408.3 2350.8 5.73 5.60 2678.7 2594.9 6.38 6.18 

Octanoic acid (d) 500 2312.8 2373.9 4.63 4.75 1990.7 1893.3 3.98 3.79 1975.3 1865.1 3.95 3.73 

Decanoic acid (d) 1000 681.7 670.2 0.68 0.67 520.3 505.3 0.52 0.51 408.8 424.9 0.41 0.42 

              

Norisoprenoids              

β-Damascenone (e) 0.05 2.7 2.6 54.02 52.60 2.2 2.1 44.52 42.81 3.0 2.9 59.27 57.23 

β-Ionone (e) 0.09 0.6 0.6 6.95 6.70 0.6 0.6 6.24 6.18 0.5 0.5 5.39 5.83 

              

Volatile Phenols              

Guaiacol  (e) 9.5 10.5 11.1 1.11 1.17 3.7 4.0 0.39 0.42 6.1 5.8 0.64 0.61 

Eugenol (e) 6 21.9 22.1 3.64 3.69 18.1 17.3 3.02 2.89 3.4 3.5 0.57 0.59 

o-Cresol (e) 31 4.8 4.5 0.16 0.14 4.64 4.46 0.15 0.14 3.8 3.7 0.12 0.12 

m-Cresol (e) 68 1.6 1.7 0.02 0.03 1.4 1.3 0.02 0.02 1.8 1.7 0.03 0.03 

4-Ethylguaiacol (e) 33 5.1 5.4 0.15 0.16 1.7 1.6 0.05 0.05 7.2 6.9 0.22 0.21 

4-Propylguaiacol (e) unknown 0.1 0.1 _ _ 0.1 0.1 _ _ n.d. n.d. _ _ 

4-Ethylphenol (e) 440 6.0 5.9 0.01 0.01 5.6 5.3 0.01 0.01 3.7 4.3 0.01 0.01 

4-Vinylguaiacol (e) 1100 21.1 20.0 0.02 0.02 8.4 7.9 0.01 0.01 12.7 11.5 0.01 0.01 

2,6-Dimethoxyphenol (e) 120 17.3 16.6 0.03 0.03 22.63 21.82 0.04 0.04 20.0 19.7 0.04 0.03 
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a Odor threshold values previously reported in the literature (for mixtures of ethanol/water): Campo et al., 2006 and Gómez-Míguez et al., 2007. 
b OAV: Odor activity value was calculated by dividing the determined concentration of each wine component by its odor threshold value. 
*concentration of wines volatile components was obtained by dividing the chromatographic area of each volatile component by the area of the corresponding internal 
standard: (a) 4-methyl-2-pentanol, (b) ethyl heptanoate; (c) 4-hydroxy-4-methyl-2-pentanone; (d). heptanoic acid; (e) 2-octanol; (f) 2-butanol; (g) 4-methoxi-α-toluenothiol; 
(h) 1,4-dithioerythritol octafluoronaphthalene (OFN). Then, the corresponding analyte relative area was divided by the slope determined in the calibration graphs for each 
volatile compound (data not shown). 
n.d. - not detected. 
 

 

4-Vinylphenol (e) 180 2.4 2.3 0.01 0.01 3.16 3.41 0.02 0.02 1.5 1.2 0.01 0.01 

4-Allyl-2,6-dimethoxyphenol (e) 120 13.6 14.1 0.11 0.12 15.10 14.88 0.13 0.12 10.1 10.6 0.08 0.09 

Acetovanillone (e) 1000 334.4 328.9 0.33 0.33 211.3 215.6 0.21 0.22 278.0 266.8 0.28 0.27 

              

Thiols              

Methionol (e) 1000 4123.5 4389.2 4.12 4.39 3336.8 3324.5 3.34 3.32 2749.1 2629.5 2.75 2.63 

2-Methyl-3-furanthiol (g) 0.0050 0.188 0.196 37.60 39.20 0.388 0.431 77.60 86.20 0.347 0.408 69.40 81.60 

2-Furfurylthiol (g) 0.0004 0.002 0.002 4.00 5.75 0.002 0.002 4.50 5.50 0.002 0.002 5.75 5.00 

4-Mercapto-4-methyl-2-pentanone (h) 0.0008 0.022 0.024 27.50 30.00 0.022 0.019 27.50 23.75 0.010 0.012 12.50 15.00 

3-Mercaptohexyl acetate (h) 0.0042 0.001 0.002 0.31 0.45 0.002 0.002 0.52 0.52 0.001 0.002 0.21 0.38 

3-Mercapto-1-hexanol (g) 0.0600 0.103 0.106 1.72 1.77 0.102 0.104 1.70 1.73 0.047 0.022 0.78 0.37 

Benzylmercaptan (g) 0.0003 0.004 0.004 14.33 13.33 0.008 0.010 27.33 31.67 0.003 0.004 11.33 13.33 
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In order to make easier the analysis of the data set concerning the volatile pattern of 

the 6 monovarietal Bairrada wines, a heatmap representation was performed (Figure 56), 

corresponding to the graphical representation of the data from Tables 8 and 9. Two 

independent replicates for each wine were presented. Different intensities correspond to 

differences in the normalized (by maximum) concentrations of each wine component. The 

heatmap allows a rapid visual access of each wine volatile profile and the relative 

comparison of the 6 monovarietal wines. 

Esters

Carbonyl compounds

Alcohols

Terpenic compounds

Lactones

Acids

Norisoprenoids

Volatile Phenols

Thiols

Arinto Bical Sauvignon 
Blanc

Baga Castelão Touriga 
Nacional

0               0.2 0.4 0.6              0.8 1.0

 

Figure 56. Heatmap representation corresponding to the volatile composition of the 6 Vitis vinifera 
L. monovarietal wines from Bairrada Appellation: 3 white varieties (Arinto, Bical, and Sauvignon 
Blanc) and 3 red ones (Baga, Castelão, and Touriga Nacional). Two independent replicates for each 
wine were presented. Different intensities correspond to the normalized (by maximum) 
concentrations of each wine component (detail data was reported on Supplementary Tables 8 and 9 
for white and red wine varieties, respectively). 

 

The heatmap shows that, although the identified chemical families are the same for 

all Bairrada wines under study, the volatile composition determined for white and red 

wines is different, having the red wines greater amounts of almost all of the determined 

volatile compounds (Figure 56). For example, the most abundant red wine components are 
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esters, alcohols, and acids (mainly C4–C10 fatty acids). These compounds produced during 

alcoholic fermentation, play an important role in the aroma of wines (Lambrechts and 

Pretorius, 2000). Covering all the identified chemical families, esters represent the largest 

one (a total of 21 compounds were determined), and these compounds have already been 

described as important compounds in young wine aroma, associated to their fruity and 

sweet notes (Escudero et al., 2004; Falqué and Fernández, 1999; Gómez-Míguez et al., 

2007). Considering all the wines studied, Bical presents the lowest amount of esters, while 

Touriga Nacional presents the higher amount (Figure 56). On the other hand, alcohols and 

acids are quantitatively the largest groups of volatile compounds determined, although 

their composition was different between the wine varieties: higher amount was determined 

for red varieties, principally on Baga red wine, while the lower amount was found for Bical 

white wine. Among these, higher amounts of isoamyl alcohol, phenylethanol, isobutanol, 

and acetic acid were determined. Quantitatively, isoamyl alcohol accounts for more than 

50% of all alcohols determined in all the red wines under study, being higher in Baga and 

lower in Touriga Nacional wines. Isoamyl alcohol is considered the main aliphatic alcohol 

synthesized by yeast during fermentation, comprising 40-70% of the total alcohol fraction 

(Lambrechts and Pretorius, 2000). Furthermore, the alcohols with six carbons such as 1-

hexanol and (Z)-3-hexen-1-ol were determined at concentrations under their odor threshold 

values in all the analysed Bairrada wines (Tables 8 and 9), which are recognized as having 

a negative effect on wine aroma quality, when their concentrations are above their odour 

threshold values (Ferreira et al., 1995). Furthermore, the presence of aromatic alcohols, as 

benzyl alcohol and phenylethanol, are associated with positive notes, and these were 

determined in all varieties studied, suggesting their contribution to the aroma 

characteristics of these wines. For instance, in all varieties, phenylethanol was over its odor 

threshold level (14 mg/L). This compound has already been quantified in Bical (Rocha et 

al., 2005) and Sauvignon Blanc wines (Benkwitz et al., 2012), and similar amounts were 

determined (ca. 16 and ca. 18 mg/L for Bical and Sauvignon Blanc, respectively) when 

compared with those previously reported (ca. 20 mg/L and 17-43 mg/L, respectively). A9 

total of six lactones were also identified and quantified on the studied monovarietal wines, 

being the most abundant γ-butyrolactone, principally in the red wines, ranging from 8.2 

mg/L in Touriga Nacional wine to 16.6 mg/L in Baga wine (Table 9). Furthermore, the 
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heatmap also allows to infer that carbonyl compounds prevail in white wines, principally in 

Arinto and Bical. These are related to young white wine oxidation (Escudero et al., 2002). 

Other important compounds, such as volatile phenols, have been determined. 4-

Ethylphenol, 4-ethylguaiacol, and 4-vinylphenol were the most abundant volatile phenols 

determined on the white wines; principally in Arinto wine, while for the red ones was 

acetovanillone. Although volatile phenols can contribute positively to the aroma of wines, 

they are better known for their contribution to off-flavours such as animal or leather notes, 

resulting essentially from high concentrations of ethylphenols. At concentrations above 

1.74 mg/L, 4-ethylphenol is regarded as negative quality factor (Suárez et al., 2007). 

However, as the maximum concentration of this compound in these set of wines was ca. 

0.6 mg/L in Arinto wine, this off-flavour is not expected. 

Varietal compounds, including C13 norisoprenoids and terpenic compounds, were 

also determined. Two C13 norisoprenoids were quantified: α-damascenone and β-ionone. 

α-Damascenone was found at the higher amount, mainly in Arinto and Sauvignon Blanc 

white wines, and Touriga Nacional red wine. This compound has already been reported as 

having a determinant role in the Arinto wine aroma profile (Rocha et al., 2006b). Among 

the quantified monoterpenic compounds, linalool, α-terpineol and also geraniol were the 

most abundant ones. This level of monoterpenols was higher in Touriga Nacional wine 

than in the other red wines studied (Figure 56). In fact, wines from Touriga Nacional have 

already been considered richer in terpenol compounds (Pinho et al., 2007). From the white 

wines under study, the lowest amount in terpenic compounds was found in Bical wine 

(Figure 56, Table 8). The terpenic profile of Bical wine has already been quantitatively 

determined and this wine was found to be pouring in terpenic compounds (Rocha et al., 

2005). Furthermore, the major monoterpenols determined in Arinto wine were linalool and 

α-terpineol, which are also in accordance with a previous study (Rocha et al., 2006b). 

Regarding the volatile thiols, methionol, 2-methyl-3-furanthiol and also 3-

mercapto-1-hexanol were the most abundant thiols found in the Bairrada wines studied, in 

agreement with the data reported for Zalema wines from Spain (Gómez-Míguez et al., 

2007). For white wines, Bical followed by Sauvignon Blanc, exhibited higher amounts of 

these compounds, and for the red wines, the lower amount was determined in Touriga 

Nacional. These compounds have already been considered important aroma compounds in 

Sauvignon Blanc wines (Benkwitz et al., 2012). 
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According to these results, the volatile profiles determined for the wines under 

study (Figure 56), can contribute to the distinction of these varieties based on their 

different chemical compounds amount and composition. The detail knowledge of each 

wine volatile composition is essential to explain differences between their aroma 

properties. 

 

V. 3.2.   Wine aroma sensory analysis 

The aroma sensory evaluation of the 6 monovarietal Bairrada wines, described by 

the trained panel, is expressed in Figure 57. 
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Figure 57. Aroma sensory data expressed as modified frequency - MF (%) - of the 6 monovarietal 
wines from Bairrada Appellation: a) 3 white (Arinto, Bical, and Sauvignon Blanc) and b) 3 red 
(Baga, Castelão, and Touriga Nacional) ones, based on the 11 and 10 sensory terms, for white and 
red wines, respectively, selected by the trained panel (13 judges). In order to determine 
discriminant sensory terms ANOVA was applied to the sub-set of white wines and to the sub-set of 
red ones. * p < 0.05 and ** p < 0.01. 
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The aroma of the white wines (Figure 57a) are described as fruity (tree and tropical 

fruits), citric, herbaceous, toasted, oxidized, fermented, flowery, and sweety. Particularly, 

Arinto and Sauvignon Blanc wines are characterized by tree (apple, pear) and tropical 

(banana, pineapple) fruits and also citric notes, although Arinto wine also exhibited 

flowery and sweety notes. Sauvignon Blanc wine also exhibited the highest MF (%) values 

related to toasted notes and the lowest ones for fermented notes, while for Arinto wine the 

opposite was observed. The sensory aroma of Bical wine is characterized essentially by 

tree fruit notes, and also herbaceous and oxidized notes (Figure 57a). On the other hand, 

the aroma of red varieties (Figure 57b) is characterized as sweet fruits, which included tree 

(apple, pear), tropical (banana, pineapple), and berry fruits (strawberry, raspberry, 

blackberry), herbaceous, fusel, toasted, flowery, spicy, lactic, reduction, and fermented. 

Aroma sensory analysis revealed that Touriga Nacional wine exhibited the higher MF (%) 

values related to sweet fruits (including, tree, tropical, and berry fruits) and toasted and 

flowery notes. The lower MF (%) values were related to lactic, fusel, and reduction notes, 

while Castelão and Baga wines had similar MF (%) of these attributes. Furthermore, Baga 

wine exhibited spicy and lactic notes, while Castelão wine is characterized by fermented 

and reduction notes. According to ANOVA analysis performed for the sub-set of white and 

to the sub-set of red wines, the most discriminative terms are tree fruit notes (p < 0.05) for 

white wines (Figure 57a), and sweet fruits (p < 0.01) and lactic notes (p < 0.05) for the red 

wines (Figure 57b). 

 

V. 3.3.   Aroma network construction for the 6 wines from Bairrada Appellation 

A bipartite network-based approach consisting of two different nodes was built 

(Ahn et al., 2011) (Figure 58), in order to explain the wine aroma properties: one node 

represents the 71 volatile compounds that are quantified in the studied wines and the other 

represents the 19 aroma notes determined for these wine components (citric, sweet, woody, 

flowery, honey, coconut, tropical, tree and berry fruits, fermentation, toasted, spicy, 

fusel/alcohol, vanilla, herbaceous, lactic (cheese, butter), oxidized, reduction (animal, 

leather), and tobacco). Figure 58 reveals that the aroma of the wines under study was very 

complex, with several volatile compounds sharing at least two or more aroma notes 

(represented in bold), which would contribute to explain the different wines aroma 

properties. 
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Reduction (animal/leather)
Terpenic compounds
Linalool
Linalool acetate
α-Terpineol
β-Citronelol
Geraniol

Esters
Ethylacetate
Ethyl propanoate
Ethyl butyrate
Isoamyl acetate
Ethylhexanoate
Hexyl acetate
Ethyl lactate
Ethyl octanoate
Ethyl decanoate
Diethyl succinate
Phenylethyl acetate
Ethyl isobutyrate
Isobutyl acetate
Butylacetate
Ethyl 2-methylbutyrate
Ethyl isovalerate
Ethylfuroate
Ethyl dihydrocinnamate
Ethyl cinnamate
Methyl vanillate
Ethyl vanillate

Carbonyl compounds
Acetaldehyde
Diacetyl
Acetoin
Phenylaceta ldehyde

Acids
Acetic acid
Isobutyric acid
Butyric acid
Isovaleric acid
Hexanoic acid
Octanoic acid
Decanoic acid

Norisoprenoids
β-Damascenone
β-Ionone

Volatile Phenols
Guaiacol
Eugenol
o-Cresol
m-Cresol
4-Ethylguaiacol
4-Propylguaiacol
4-Ethylphenol
4-Vinylguaiacol
2,6-Dimethoxyphenol
4-Vinylphenol
4-Allyl-2,6-dimethoxiphenol
Acetovanillone

Thiols
Methionol
2-Methyl-3-furanthiol
2-Furfurylthiol
4-Mercapto-4-methyl-2-pentanone
3-Mercaptohexyl acetate
3-Mercapto-1-hexanol
Benzylmercaptan

Lactones
γ-Butyrolactone
(E)-Whiskylactone
δ-Octalactone
γ-Nonalactone
γ-Decalactone
δ-Decalactone

Alcohols
Isobutanol      
1-Butanol       
Isoamyl alcohol
1-Hexanol
(Z)-3-Hexenol     
Benzyl alcohol
Phenylethanol

Citric

Woody

Flowery

Honey

Coconut

Tropical fruit

Tree fruit

Fermentation

Toasted

Spicy

Fusel/alcohol

Vanilla

Herbaceous

Lactic (cheese/butter)

Tobacco

Sweet

Oxidized

Berry fruit

 

Figure 58. Bipartite network-based approach that explains wine aromas, constructed using the 
volatile composition of the 6 white and red wines from Bairrada Appellation: central column 
represents the wine aroma notes, and lateral ones correspond to the volatile compounds that exhibit 
that notes. Bold names indicate the volatile compounds that shared at least two or more aroma 
notes. 
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Then, a projection of the bipartite network-based approach was performed - the 

aroma network (Figure 59). For the determination of the aroma networks of the wines 

under study, the determined OAVs for each wine compound were considered. In this 

aroma network two nodes (Bairrada wine aroma notes) are linked if they shared at least 

one aroma note, and the thickness of the line is proportional to the number of shared 

compounds (Ahn et al., 2011). 

 
 

26 - 30
21 - 25
16 - 20 
11 - 15 
6 - 10    
0 - 5      

Shared compounds

Citric
Sweet
Woody
Flowery
Honey
Coconut
Tropical fruit
Tree fruit
Berry fruit
Fermentation
Toasted
Spicy
Fusel
Vanilla
Herbaceous
Lactic
Oxidized
Reduction
Tobacco

Legend:

CastelãoBaga

Touriga Nacional

b)

BicalArinto

Sauvignon Blanc

a)

 
Figure 59. Aroma networks determined for the 6 wines under study, based on the bipartite 
network: a) 3 white wines and b) 3 red wines. Each colour represents an aroma note. The arc 
length/central angle of each pie sector (aroma note) is proportional to the sum of the related odor 
active value (OAV), and the thickness of each line corresponds to the number of compounds that 
explain each aroma note (shared compounds). For pie charts representation, the mean between 2 
replicates were considered. 
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Specific aroma networks were found for the wines under study, which are in 

accordance with the sensory perceptions. The aroma notes were connected between them, 

although their intensity and the number of shared compounds were different (Figure 59). 

 

Arinto wine 

According to the aroma network determined for Arinto wine (Fig. 5a), higher 

fractions of tree fruit, flowery and sweet aroma notes were found. These are greatly related 

with esters and C13 norisoprenoids, principally with ethyl octanoate (OAV ca. 37 - 39), 

ethyl hexanoate (OAV ca. 21 - 22) and β-damascenone (OAV ca. 232 – 240). Beyond the 

fact that β-damascenone was determined in the other white wines, its OAV was higher in 

Arinto wine than in Sauvignon Blanc (OAV 182-186), and is 3.5 times higher than in Bical 

(OAV 66 - 68) wine. This is a compound well known for their contribution with sweet and 

flowery aromas to the wines. Its higher OAV in Arinto wine may explain the higher MF 

(%) values determined by the trained panel. In addition, in the determined aroma networks, 

the fractions related to fermentation aroma notes are very small when compared with the 

aroma sensory analysis (Fig. 3a) previously referred by the trained panel. Fermentation 

aroma notes are mainly related with the presence of some acids (isovaleric, octanoic, and 

decanoic acids) and also with methionol. The reason that may justify its lower fraction 

determined on the aroma networks (Fig. 5a) may be explained by the fact that these 

compounds exhibited lower OAVs (varying from ca. 0.3 to 8) (Table 8). 

 

Bical wine 

The aroma network of Bical wine revealed that this wine is characterized by tree 

fruit, sweet and floral notes, as determined for Arinto wine, or even for Sauvignon Blanc 

(Figure 59a), however these aromas are less intense when compared to these wines. This 

could be explained by the fact that the OAVs determined essentially for esters and C13 

norisoprenoids and also for phenylethanol, were lower when compared to the other white 

wines. This may clarify why this wine was considered the least fruity wine, as sensory 

described by the panel (Figure 57a). Furthermore, Bical wine also presents higher fractions 

of oxidized and herbaceous aromas. This is in accordance to the referred aroma sensory 

analysis, obtained by the trained panel, and can be explained by the higher OAVs 

determined for acids (Rocha et al., 2004), alcohols (Ferreira et al., 1995; Rapp and Versini, 
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1991), and also some thiols (Gómez-Míguez et al., 2007). Furthermore, higher tobacco 

notes related with benzylmercaptan, were also determined in the aroma network of Bical 

wine. The OAVs (220 - 217) determined for this compound in Bical wine is ca. 7 and 35 

times higher than in Arinto (30 - 33) and Sauvignon Blanc (6 - 8) wines, respectively. 

 

Sauvignon Blanc wine 

Similarly to the aroma observed for Arinto, Sauvignon Blanc wine is also 

characterized by tree fruit, sweet and flowery aromas, sharing 25, 14 and 10 aroma 

compounds with this wine. These are essentially related to esters, which are present at 

concentration above their odor threshold (Table 8). Sauvignon Blanc wine exhibited ethyl 

dihydrocinnamate, hexyl acetate, and phenylethyl acetate in its composition, all described 

as contributing with tree fruit and sweet aroma notes. However, these compounds were not 

determined or had lower OAVs when compared with Arinto and Bical white wines, 

justifying their lower content in fruit and sweet aromas, when compared to Sauvignon 

Blanc wine (Table 8). Sauvignon Blanc wine also exhibited toasted aromas (Figure 59a) 

and these can be explained by the presence of several thiols, namely 2-methyl-3-furanthiol, 

whose OAV is higher than those of the other white wines (OAVs 140 - 163). In addition, 

in the determined aroma networks, the fractions related to tropical fruit and citric aroma 

notes are smaller when compared with the aroma sensory analysis (Figure 57a) previously 

referred by the trained panel. Tropical aroma notes are mainly related with the presence of 

some esters (isoamyl acetate, hexyl acetate), lactones (δ-octalactone, (E)-whiskylactone) 

and thiols (4-mercapto-4-methyl-2-pentanone), while citric ones are related with terpenic 

compounds. Great part of these aroma compounds exhibited OAVs lower than one (Table 

8), which can justify their lower fractions determined on the aroma networks (Figure 59a). 

 

Baga wine 

Concerning the aroma network of Baga wine, tree fruit, and sweet aromas are the 

predominant ones (Figure 59b). These are related essentially with ester compounds, 

principally ethyl octanoate and ethyl hexanoate, both with OAVs higher than 39, and also 

with β-damascenone (OAV ranging from 52 to 54) (Table 9). On the other hand, also some 

lactic, oxidized and fusel/alcohol aromas were determined, but with lower fractions when 

compared with fruity and sweet ones. Lactic and oxidized aromas are mainly explained by 
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the higher OAVs determined for some acids, principally isovaleric, butyric, isobutyric, and 

octanoic acids, while fusel aromas were mainly explained by the higher OAVs determined 

for isoamyl alcohol and isobutanol (Table 9). Besides, in the determined aroma networks, 

the fraction related to spicy aroma notes is smaller when compared with the aroma sensory 

results (trained panel) (Figure 57b). Spicy notes are related with the presence of some 

lactones (γ-nonalactone, γ and δ-decalactone), phenols (guaiacol, eugenol, 4-

propylguaiacol, and 4-vinylguaiacol) and also with 3-mercaptohexyl acetate. However, 

from these compounds only γ-nonalactone, γ-decalactone, and eugenol present OAVs 

higher than one (varying from ca. 1 to 8) (Table 9), which may justify its lower aroma 

network fraction (Figure 59b). 

 

Castelão wine 

The aroma network determined for Castelão wine was shown on Figure 59b. 

According to this figure, similarly to Baga wine, Castelão presented tree fruit and sweet 

aromas, although present in lower amounts. Besides the fact that these wines shares 14 

aroma compounds related with these aromas, the lower fruity and sweet aromas of 

Castelão wine are mainly explained by the lower OAVs (Table 9) determined for ester 

compounds. Similarly to the observed for Baga wine, Castelão also exhibited oxidized and 

lactic notes, which are related with acids, whose OAVs determined were very similar to 

those found in Baga wine. Besides, similar fusel aromas were determined for Baga and 

Castelão wines related with the higher OAVs determined for isoamyl alcohol and 

isobutanol. These wines share 4 aroma compounds. Furthermore, Castelão wine also 

presents toasted aromas and this is explained by the higher OAV determined for 2-methyl-

3-furanthiol (OAV from ca. 77 to 86). 

 

Touriga Nacional wine 

The aroma network of Touriga Nacional revealed that this wine presents the higher 

fraction of tree fruit aromas (Figure 59b). This can be explained principally by the higher 

OAVs found for esters and also for β-damascenone, when compared with the other wines 

under study. Aroma sensory analysis also revealed that Touriga Nacional wine is the 

fruitiest from the studied red wines. In addition, the aroma sensory analysis refers that the 

descriptor well scored in all red wines is sweet fruit and this included tree, tropical, and 
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berry fruits aromas. Thus, considering these 3 aromas determined in the aroma networks of 

the red wines, the higher fraction is found in Touriga Nacional wine (Figure 59b). This is 

in accordance with the aroma sensory perceptions of the trained panel (Figure 57b). 

Touriga Nacional also exhibited sweet and oxidized notes, although these fractions are 

very similar among the 3 red wines studied. Similar to Castelão wine, Touriga Nacional 

presents toasted aromas, mainly explained by the higher OAV determined for 2-methyl-3-

furanthiol (OAV form ca. 69 to 82). Furthermore, flowery aromas, principally related with 

C13 norisoprenoids (β-damascenone and α-ionone) were also a characteristic of the aroma 

network of Touriga Nacional. In addition, for the determined wine aroma networks, the 

fractions related to spicy aromas are smaller when compared with the aroma sensory 

analysis (Figure 57b, trained panel). These aromas are mainly related with volatile phenols 

and lactones. This can be explained by the fact that great part of these aroma compounds 

exhibited OAVs lower than one (Table 9), justifying the lower fractions determined on the 

red wine aroma networks (Figure 59b). 

 

V. 4. Concluding remarks 

The aroma network-based approach was done linking molecular data related to 

volatile composition and aroma sensory data about the key odour active molecules. This 

allowed to identify different wine aroma properties and infer about the consumer sensory 

perception. It was found that aroma properties differ from one wine variety to another, 

which revealed their specificities: while Arinto and Sauvignon Blanc wine exhibited higher 

tree fruit, sweet and flowery aroma, related with higher OAVs essentially of ester 

compounds and C13 norisoprenoids, the opposite was obtained for Bical wine, 

corroborating the aroma sensory perceptions (trained panel). Sauvignon Blanc also 

exhibited higher toasted aromas (higher OAVs related with thiols, mainly with 2-methyl-3-

furanthiol). Touriga Nacional exhibited higher tree, tropical, and berry fruits notes (sensory 

described as sweet fruits), toasted and flowery aromas, while these are similar for the other 

red wines. It is important to point out that besides Bairrada wines, this aroma network 

approach is a tool that can be used as an aroma fingerprint and may explain the aroma 

properties of wines worldwide. This comprehensive approach can yield new insights in 

wine related science. 
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Conclusions and future perspectives 

In this PhD thesis, the evaluation of the variety oenological potential regarding 

Bairrada Appellation conditions has been exploited. It is known that grapes characteristics 

and composition, and thus wine quality, depend on a complex network of variables known 

to influence viticulture, including different parcels of the vineyards and also harvest year 

conditions. In this PhD thesis a sampling plan was implemented, which included the 

selections of 7 V. vinifera varieties, 3 parcels with different characteristics for each variety, 

and 3 consecutive harvest years. In general the grape sampling was performed from half-

véraison to technologic maturity. Several parameters were used to evaluate the variety 

oenological potential: berry weight, pH, acidity, sugar and phenolic contents, antiradical 

activity, and volatile composition, including free and glycosidically-linked fractions. 

Each parameter was evaluated during maturation, revealing the unique character of 

each variety, namely the different adaptation behaviour to the edaphoclimatic conditions. 

A comprehensive approach using the data from technologic maturity, based on statistic 

tools, was performed for each variety. These revealed that harvest year was the main factor 

that influences grapes composition (53% to 68% of the total variance). Grapes from 

moderate climatic conditions (2010) were related with higher phenolic and volatile 

contents, while the opposite was observed for 2011 harvest. Besides, fresh and rainy 

climatic conditions (2012) promoted lower monoterpenic content in Touriga Nacional. 

Parcel characteristics also influenced grapes composition explaining ca. 15-19% of the 

total data set variance. Looking for white varieties, volatile and phenolic contents and 

antioxidant activity were higher in clay-sandy followed by clay-calcareous soils for Arinto 

and Bical, while for Sauvignon Blanc the parcel characteristics had no significant effect. 

For the red varieties, phenolic and varietal volatile contents and antiradical activity were 

higher in clay-calcareous followed by clayey soils, and sugar content was higher in Baga 

and Touriga Nacional and titratable acidity was higher in Castelão. 

Besides study of grapes composition, an aroma network-approach was used for 

aroma properties assessment from 6 monovarietal wines from the varieties under study. 

This approach allowed to identify different wine aroma properties and to infer about the 

consumer sensory perceptions. Specific aroma networks were determined for each variety: 

Arinto and Sauvignon Blanc wine exhibited higher tree fruity, sweety and flowery aroma, 
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related with higher OAVs essentially of ester compounds and C13 norisoprenoids, while the 

opposite was obtained for Bical wine, corroborating the aroma sensory perceptions (trained 

panel). Sauvignon Blanc also exhibited higher toasted aromas. Furthermore, Touriga 

Nacional exhibited higher tree, tropical, and berry fruits notes (sensory described as sweet 

fruits), toasted and flowery aromas, while these are similar for the other red wines under 

study. It is important to point out that besides Portuguese Bairrada wines, this aroma 

network approach is a tool that can be used as an aroma fingerprint to explain the aroma 

properties of wines worldwide. 

In conclusion, the grape and wine data generated under the present PhD thesis, in 

the context of Bairrada Appellation, shows the unique character of each variety, and may 

be used by growers and wine producers as a support for decision-making based on 

objective criteria, increasing the sustainability in this sector. It is important to point out that 

in order to implement sustainable viticulture, the wine producers of each region need to 

know the potentialities of their varieties to go further in this field. In addition, the 

knowledge generated under this PhD thesis may be explored to implement sustainable 

programs regarding the valuation of non-renewable natural resources. These programs are 

in line with the main concerns of official organisms and are essential to save the natural 

resources for future generations. It is expected that wines produced from sustainably 

farmed grapes may be distinguished and valuated by the consumers. 

 

__________ 

The present PhD thesis opens new fields of work, namely, the: 

i) application of ASCA models to other varieties obtained from Bairrada 

Appellation; 

ii) creation of a database of these natural resources, in order to obtain fast and 

reliable information that helps the winemaker decision; 

iii) application of sustainable viticulture concept to other Appellations, in order to 

know the potentialities of the varieties of other locations. 
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Table S1. Physicochemical parameters of Arinto variety, through its maturation process, from 3 parcels with different characteristics, from 2010 to 2012. 

 AR-VA1 AR-VA2 AR-SM1 AR-VA1 AR-VA2 AR-SM1 AR-VA1 AR -VA2 AR-SM1 
ARINTO 2010 

 18/08 25/08 01/09 

Physicochemical parameters 
Mean 
(n=3) 

RSD 
(%) 

Mean 
(n=3) 

RSD 
(%) 

Mean 
(n=3) 

RSD 
(%) 

Mean 
(n=3) 

RSD 
(%) 

Mean 
(n=3) 

RSD 
(%) 

Mean 
(n=3) 

RSD 
(%) 

Mean 
(n=3) 

RSD 
(%) 

Mean 
(n=3) 

RSD 
(%) 

Mean 
(n=3) 

RSD 
(%) 

Berry weight (g) 0.8 8 0.6 5 0.8 3 0.9 2 0.6 8 1.0 3 1.3 3 1.0 1 1.0 4 
pH 2.5 1 2.4 2 2.5 0 2.5 1 2.5 1 2.7 1 2.7 1 2.6 2 2.7 1 
Titratable acidity (g tartaric acid L-1) 30.2 1 34.2 4 27.7 2 19.8 1 18.5 2 13.4 2 8.3 3 9.6 3 10.9 2 
Sugar content (g L-1) 44.2 4 55.0 5 57.2 5 91.2 2 119.6 1 99.7 2 190.4 2 178.5 2 162.6 1 
Phenolic content (mg GAE L-1) 519.9 2 694.9 1 536.2 2 402.8 6 489.2 3 356.3 3 330.9 3 388.4 2 446.0 1 
Antioxidant activity (% DPPHrem) 72.3 1 63.4 2 60.8 1 83.2 3 56.4 3 63.0 2 81.8 2 61.0 1 68.0 1 
 08/09 15/09 22/09 
Berry weight (g) 1.3 5 1.0 3 1.0 7 1.4 4 1.1 5 1.0 3 - - 1.1 3 - - 
pH 2.7 2 2.8 1 2.7 1 3.0 1 2.9 1 2.9 0 - - 2.9 1 - - 
Titratable acidity (g tartaric acid L-1) 7.6 1 6.4 2 7.4 2 6.6 2 7.8 1 7.3 2 - - 7.4 2 - - 
Sugar content (g L-1) 214.8 1 218.7 1 210.2 1 211.4 1 221.0 1 205.7 1 - - 211.9 1 - - 
Phenolic content (mg GAE L-1) 319.1 7 481.6 1 374.4 1 343.0 3 366.1 2 566.5 1 - - 538.8 3 - - 
Antioxidant activity (% DPPHrem) 85.2 1 58.9 2 70.0 3 86.6 0 68.6 1 57.7 1 - - 63.5 1 - - 
 2011 
 01/08 08/08 16/08 
Berry weight (g) 1.4 9 1.0 4 1.6 3 1.2 1 1.2 1 1.2 1 1.3 6 1.2 3 1.5 3 
pH 2.4 1 2.3 2 2.3 2 2.6 1 2.5 0 2.5 1 2.6 1 2.7 1 2.6 1 
Titratable acidity (g tartaric acid L-1) 25.4 1 28.9 4 31.7 5 16.0 0 17.0 1 22.7 1 14.6 1 10.2 2 15.2 1 
Sugar content (g L-1) 104.8 3 96.9 5 71.4 8 121.8 3 132.0 2 86.1 4 119.6 1 169.4 2 131.5 2 
Phenolic content (mg GAE L-1) 332.4 4 314.6 2 311.2 3 313.4 10 280.9 3 295.6 6 290.3 6 294.1 3 283.1 3 
Antioxidant activity (% DPPHrem) 79.8 3 77.2 0 78.0 1 90.3 2 73.4 1 76.5 4 87.9 1 70.6 2 74.9 0 
 22/08 29/08 05/09 
Berry weight (g) 1.4 1 1.2 2 1.4 2 1.6 4 1.4 8 1.3 3 1.5 4 1.3 2 1.5 3 
pH 3.0 1 2.7 1 2.8 1 3.0 0 2.9 1 2.9 1 3.0 1 3.0 1 2.9 1 
Titratable acidity (g tartaric acid L-1) 9.1 2 11.0 1 12.4 1 8.9 1 9.6 1 11.0 1 7.4 1 6.6 1 7.9 2 
Sugar content (g L-1) 188.7 1 175.7 2 149.0 2 201.2 1 198.3 1 167.7 2 206.8 1 205.7 2 172.3 1 
Phenolic content (mg GAE L-1) 287.7 3 307.0 5 294.5 5 303.6 5 304.7 5 307.8 3 261.6 10 322.5 7 276.7 9 
Antioxidant activity (% DPPHrem) 86.5 1 73.9 0 75.6 1 91.3 4 72.8 3 74.7 2 88.8 0 71.9 1 73.8 2 
 12/09 19/09 26/09 
Berry weight (g) 1.4 2 1.2 4 - - 1.6 3 1.4 5 - - 1.5 4 1.4 3 - - 
pH 3.0 0 2.9 1 - - 3.2 1 3.2 1 - - 3.2 1 3.2 0 - - 
Titratable acidity (g tartaric acid L-1) 7.2 1 7.6 2 - - 7.3 2 6.1 3 - - 6.5 2 5.7 2 - - 
Sugar content (g L-1) 198.3 1 215.3 4 - - 213.6 1 228.4 1 - - 219.3 1 226.1 2 - - 



* Gray color indicate maturity 

  

Phenolic content (mg GAE L-1) 235.0 4 343.4 2 - - 253.2 8 327.8 5 - - 230.5 7 321.0 4 - - 
Antioxidant activity (% DPPHrem) 88.1 1 74.0 3 - - 86.5 3 71.3 1 - - 84.8 2 70.1 2 - - 
 2012 
 27/08 03/09 11/09 
Berry weight (g) 1.1 1 1.2 3 1.2 3 1.1 1 1.2 3 1.2 7 1.1 6 1.2 3 1.6 2 
pH 2.7 1 2.6 1 2.4 1 2.7 0 2.7 1 2.6 0 3.0 1 2.8 1 2.8 1 
Titratable acidity (g tartaric acid L-1) 24.6 4 27.8 2 26.3 1 14.4 2 14.0 2 13.7 2 8.5 3 10.8 2 12.0 3 
Sugar content (g L-1) 103.1 3 105.4 3 82.7 3 143.4 2 132.6 3 126.9 4 163.8 3 162.6 3 158.1 3 
Phenolic content (mg GAE L-1) 318.8 3 371.9 2 340.6 3 297.1 4 350.1 3 323.9 4 280.4 4 351.5 2 302.2 3 
Antioxidant activity (% DPPHrem) 92.7 2 86.4 2 86.8 2 91.2 1 85.0 2 84.6 4 90.0 2 83.3 3 83.9 1 
 18/09 25/09 02/10 
Berry weight (g) 1.2 5 1.4 5 1.5 3 1.4 2 1.5 6 1.7 2 1.5 3 1.5 3 1.4 3 
pH 3.1 0 3.0 0 2.8 1 3.2 0 3.1 0 3.1 1 3.2 0 3.1 1 3.1 0 
Titratable acidity (g tartaric acid L-1) 7.6 2 8.7 2 9.4 3 7.1 5 6.8 3 6.9 2 6.6 3 6.5 3 6.3 4 
Sugar content (g L-1) 180.2 4 184.2 3 173.4 2 184.7 3 204.0 3 176.2 3 197.8 3 206.3 3 187.0 4 
Phenolic content (mg GAE L-1) 270.5 7 328.7 3 307.6 4 269.9 4 337.6 2 319.5 3 251.5 4 332.8 1 291.6 2 
Antioxidant activity (% DPPHrem) 87.6 3 83.1 1 83.7 3 88.6 4 81.4 2 82.4 1 88.2 1 80.0 1 82.8 3 



Table S2. Physicochemical parameters of Bical variety, through its maturation process, from 3 parcels with different characteristics, from 2010 to 2012. 

 BI-VA1 BI-VA2 BI-SM1 BI-VA1 BI-VA2 BI-SM1 BI-VA1 BI -VA2 BI-SM1 
BICAL 2010 

 02/08 09/08 16/08 

Physicochemical parameters 
Mean 
(n=3) 

RSD 
(%) 

Mean 
(n=3) 

RSD 
(%) 

Mean 
(n=3) 

RSD 
(%) 

Mean 
(n=3) 

RSD 
(%) 

Mean 
(n=3) 

RSD 
(%) 

Mean 
(n=3) 

RSD 
(%) 

Mean 
(n=3) 

RSD 
(%) 

Mean 
(n=3) 

RSD 
(%) 

Mean 
(n=3) 

RSD 
(%) 

Berry weight (g) 1.1 4 1.0 3 1.0 2 1.1 4 1.0 3 1.0 5 1.4 3 1.0 7 1.4 4 
pH 2.6 1 2.7 0 2.9 0 2.6 1 2.7 1 3.0 0 2.8 1 2.9 0 3.2 0 
Titratable acidity (g tartaric acid L-1) 15.9 1 15.5 0 12.8 1 15.0 1 15.1 1 11.3 1 7.7 1 8.6 1 6.8 1 
Sugar content (g L-1) 101.4 2 115.6 1 119.6 2 108.8 2 113.9 1 124.1 1 163.2 1 156.4 1 163.2 1 
Phenolic content (mg GAE L-1) 254.4 2 263.4 2 270.6 4 254.4 4 258.1 2 287.3 3 229.7 2 249.1 2 272.9 2 
Antioxidant activity (% DPPHrem) 80.2 2 86.0 1 84.2 0 83.8 0 87.7 3 84.6 1 88.3 1 87.3 0 82.5 2 
 23/08 30/08 06/09 
Berry weight (g) 1.3 3 0.8 4 0.8 5 1.7 4 1.2 2 1.3 3 1.4 1 1.2 3 1.3 3 
pH 3.1 0 3.2 0 3.2 0 2.9 0 2.9 1 3.2 0 2.9 2 2.9 0 3.2 0 
Titratable acidity (g tartaric acid L-1) 6.0 1 6.5 1 7.4 2 5.7 1 6.2 1 5.6 1 5.7 1 6.1 1 4.2 2 
Sugar content (g L-1) 170.6 1 165.5 1 153.0 1 171.7 1 167.7 2 184.7 1 173.4 1 169.4 1 187.6 1 
Phenolic content (mg GAE L-1) 241.1 4 262.3 1 278.6 2 235.4 3 335.4 1 335.8 2 294.1 3 304.4 3 333.9 2 
Antioxidant activity (% DPPHrem) 86.3 2 85.2 2 88.2 0 86.5 1 79.9 1 73.5 3 81.5 3 84.4 2 71.7 1 
 13/09   
Berry weight (g) 1.3 3 1.2 2 1.3 6             
pH 3.0 0 3.2 0 3.2 0             
Titratable acidity (g tartaric acid L-1) 5.7 2 5.4 1 4.4 2             
Sugar content (g L-1) 169.4 2 171.1 2 183.6 1             
Phenolic content (mg GAE L-1) 295.6 4 299.4 2 343.0 5             
Antioxidant activity (% DPPHrem) 79.9 1 79.4 1 78.1 3             
 2011 
 27/07 03/08 10/08 
Berry weight (g) 1.4 3 1.0 1 1.3 1 1.2 2 1.1 3 1.3 4 1.5 1 1.6 2 1.6 3 
pH 2.5 1 2.6 1 2.7 1 2.7 1 2.9 1 3.0 1 2.9 1 2.9 1 3.0 1 
Titratable acidity (g tartaric acid L-1) 13.8 1 12.9 4 11.6 2 10.5 1 7.7 1 7.2 2 7.2 2 7.1 2 6.8 2 
Sugar content (g L-1) 137.1 3 138.8 3 140.0 2 157.5 2 159.2 2 174.0 1 177.9 1 196.6 1 207.4 1 
Phenolic content (mg GAE L-1) 188.1 5 227.8 3 227.5 2 205.1 3 249.4 2 224.1 1 213.4 2 261.6 2 248.7 2 
Antioxidant activity (% DPPHrem) 88.7 1 87.4 2 88.4 3 90.0 2 85.9 4 83.5 1 88.5 1 84.3 1 81.6 3 
 17/08 24/08 31/08 
Berry weight (g) 1.4 1 1.5 1 - - - - 1.3 5 - - - - 1.3 4 - - 
pH 3.2 1 3.1 0 - - - - 3.1 0 - - - - 3.1 0 - - 
Titratable acidity (g tartaric acid L-1) 7.1 1 7.1 1 - - - - 6.8 2 - - - - 5.9 1 - - 



* Gray color indicate maturity 

  

Sugar content (g L-1) 215.3 1 213.1 1 - - - - 221.0 1 - - - - 214.8 1 - - 
Phenolic content (mg GAE L-1) 197.5 2 255.9 2 - - - - 305.9 4 - - - - 283.5 4 - - 
Antioxidant activity (% DPPHrem) 89.9 3 84.6 2 - - - - 84.7 1 - - - - 81.1 3 - - 
 07/09   
Berry weight (g) - - 1.3 1 - -             
pH - - 3.2 0 - -             
Titratable acidity (g tartaric acid L-1) - - 5.6 3 - -             
Sugar content (g L-1) - - 222.1 0 - -             
Phenolic content (mg GAE L-1) - - 302.8 4 - -             
Antioxidant activity (% DPPHrem) - - 86.8 2 - -             
 2012 
 16/08 23/08 30/08 
Berry weight (g) 1.3 2 1.0 1 1.5 6 1.5 3 1.3 6 1.7 3 1.7 3 1.3 4 1.6 3 
pH 2.7 1 2.7 1 2.8 1 2.9 1 3.0 1 3.1 1 2.9 1 2.9 1 3.0 1 
Titratable acidity (g tartaric acid L-1) 12.8 2 12.8 2 11.8 2 8.8 1 8.0 1 8.1 2 7.7 1 7.1 2 6.9 2 
Sugar content (g L-1) 149.0 3 141.7 2 141.1 1 170.6 2 175.7 1 157.0 2 200.0 1 191.0 1 172.3 2 
Phenolic content (mg GAE L-1) 259.0 4 271.2 7 300.1 3 260.0 3 246.7 6 294.7 1 238.9 4 264.4 2 274.6 2 
Antioxidant activity (% DPPHrem) 93.3 4 88.6 3 86.0 1 91.5 0 86.6 2 86.1 3 90.1 3 86.5 1 83.9 0 
 06/09 13/09  
Berry weight (g) 1.6 1 1.6 3 1.8 3 1.5 4 1.5 3 1.7 1       
pH 3.2 1 3.2 1 3.1 1 3.2 1 3.2 1 3.1 2       
Titratable acidity (g tartaric acid L-1) 5.8 2 5.5 3 5.6 1 5.5 2 5.6 1 5.3 3       
Sugar content (g L-1) 208.5 1 209.7 1 193.2 1 213.6 1 209.7 2 202.3 1       
Phenolic content (mg GAE L-1) 214.1 3 262.0 2 268.8 5 204.2 2 243.0 4 262.7 3       
Antioxidant activity (% DPPHrem) 89.7 2 86.1 2 83.3 1 89.1 3 85.1 2 83.2 2       



Table S3. Physicochemical parameters of Sauvignon Blanc variety, through its maturation process, from 3 parcels with different characteristics, from 2010 to 
2012. 

 SB-SM1 SB-SM2 SB-SM3 SB-SM1 SB-SM2 SB-SM3 SB-SM1 SB-SM2 SB-SM3 
SAUVIGNON BLANC  2010 

 28/07 04/08 11/08 

Physicochemical parameters 
Mean 
(n=3) 

RSD 
(%) 

Mean 
(n=3) 

RSD 
(%) 

Mean 
(n=3) 

RSD 
(%) 

Mean 
(n=3) 

RSD 
(%) 

Mean 
(n=3) 

RSD 
(%) 

Mean 
(n=3) 

RSD 
(%) 

Mean 
(n=3) 

RSD 
(%) 

Mean 
(n=3) 

RSD 
(%) 

Mean 
(n=3) 

RSD 
(%) 

Berry weight (g) 1.0 3 1.2 2 1.2 5 1.1 4 1.4 6 1.3 2 1.4 4 1.7 4 1.50 2 
pH 2.7 1 2.6 1 2.7 1 2.7 1 2.7 0 2.7 1 3.1 0 3.0 1 3.17 0 
Titratable acidity (g tartaric acid L-1) 17.7 1 20.0 0 14.3 2 12.5 2 14.3 1 12.5 2 6.3 1 7.8 1 6.5 1 
Sugar content (g L-1) 133.7 2 92.9 3 145.6 1 175.1 1 130.9 1 172.8 1 223.8 0 155.3 2 210.8 2 
Phenolic content (mg GAE L-1) 302.5 3 420.6 3 400.9 2 303.6 3 345.6 2 410.0 2 290.0 4 330.5 1 424.4 5 
Antioxidant activity (% DPPHrem) 73.0 0 65.2 5 66.9 2 79.5 3 66.8 1 60.3 2 78.1 2 72.1 1 62.7 5 
 18/08 25/08  
Berry weight (g) 1.3 6 1.6 2 1.5 2 1.3 3 1.7 2 1.5 3       
pH 3.2 0 3.2 0 3.1 0 3.1 0 3.1 0 3.1 1       
Titratable acidity (g tartaric acid L-1) 6.6 1 5.2 1 6.9 2 4.7 3 4.2 2 6.5 2       
Sugar content (g L-1) 243.1 1 204.6 0 226.7 1 285.6 1 242.0 1 253.3 1       
Phenolic content (mg GAE L-1) 255.9 4 403.6 6 467.6 3 341.9 3 389.6 5 464.2 4       
Antioxidant activity (% DPPHrem) 72.6 2 68.9 1 62.7 2 76.1 3 61.2 5 58.6 2       
 2011 
 22/07 29/07 05/08 
Berry weight (g) 1.4 5 1.4 3 1.5 2 1.4 4 1.4 4 1.5 1 1.5 6 1.7 6 1.4 1 
pH 2.6 1 2.6 2 2.6 1 2.8 1 2.7 1 2.9 0 2.9 1 2.9 1 2.9 1 
Titratable acidity (g tartaric acid L-1) 13.4 3 13.5 1 12.9 4 9.3 1 9.3 1 8.5 2 7.6 2 7.3 1 7.4 2 
Sugar content (g L-1) 174.0 2 172.8 2 179.6 2 215.3 1 185.3 1 229.5 2 225.5 1 207.4 2 226.7 1 
Phenolic content (mg GAE L-1) - - - - - - - - - - - - - - - - - - 
Antioxidant activity (% DPPHrem) - - - - - - - - - - - - - - - - - - 
 12/08 19/08  
Berry weight (g) 1.4 7 1.8 3 1.5 3 1.5 3 1.8 5 1.5 1       
pH 3.1 1 3.0 1 3.0 1 3.0 0 3.0 1 3.0 1       
Titratable acidity (g tartaric acid L-1) 7.6 2 7.1 4 7.6 2 7.4 1 7.4 2 7.4 2       
Sugar content (g L-1) 247.6 1 241.4 1 247.6 1 243.1 1 230.6 1 242.0 1       



* Gray color indicate maturity 

  

Phenolic content (mg GAE L-1) 236.9 9 283.5 6 357.4 6 - - - - - -       
Antioxidant activity (% DPPHrem) 79.9 2 73.5 3 66.4 2 - - - - - -       
 2012 
 02/08 09/08 16/08 
Berry weight (g) 1.5 2 1.5 2 1.4 3 1.5 4 1.6 3 1.5 3 1.6 5 1.9 3 1.7 2 
pH 2.5 1 2.6 1 2.5 1 2.8 1 2.8 1 2.8 1 2.8 1 2.9 1 2.8 1 
Titratable acidity (g tartaric acid L-1) 15.1 4 16.5 3 14.3 3 10.1 3 9.8 2 9.6 1 9.1 1 8.7 3 8.5 3 
Sugar content (g L-1) 131.5 3 117.3 4 123.0 4 178.5 2 168.3 1 184.2 3 191.5 1 178.5 2 204.0 2 
Phenolic content (mg GAE L-1) - - - - - - - - - - - - - - - - - - 
Antioxidant activity (% DPPHrem) - - - - - - - - - - - - - - - - - - 
 23/08 30/08  
Berry weight (g) 1.7 2 2.0 2 1.7 3 1.6 3 1.9 2 1.7 3       
pH 2.9 2 2.9 1 2.9 2 3.0 0 3.0 1 3.0 1       
Titratable acidity (g tartaric acid L-1) 7.4 4 7.4 2 7.4 4 7.1 2 6.9 1 7.2 3       
Sugar content (g L-1) 201.7 2 197.8 2 208.0 1 208.5 3 201.7 2 213.6 2       
Phenolic content (mg GAE L-1) - - - - - - 276.0 7 315.1 6 365.1 8       
Antioxidant activity (% DPPHrem) - - - - - - 83.1 2 77.6 1 74.2 2       



Table S4. Physicochemical parameters of Baga variety, through its maturation process, from 3 parcels with different characteristics, from 2010 to 2012. 

 BA-VA1 BA-VA2 BA-SM1 BA-VA1 BA-VA2 BA-SM1 BA-VA1 BA -VA2 BA-SM1 
BAGA  2010 

 20/08 27/08 03/09 

Physicochemical parameters 
Mean 
(n=3) 

RSD 
(%) 

Mean 
(n=3) 

RSD 
(%) 

Mean 
(n=3) 

RSD 
(%) 

Mean 
(n=3) 

RSD 
(%) 

Mean 
(n=3) 

RSD 
(%) 

Mean 
(n=3) 

RSD 
(%) 

Mean 
(n=3) 

RSD 
(%) 

Mean 
(n=3) 

RSD 
(%) 

Mean 
(n=3) 

RSD 
(%) 

Berry weight (g) 0.7 3 1.0 3 1.0 5 1.5 4 2.0 1 1.6 3 1.6 3 1.7 2 1.8 2 
pH 2.5 0 2.6 1 2.4 0 3.0 0 3.0 0 2.9 1 2.9 0 2.9 0 2.8 1 
Titratable acidity (g tartaric acid L-1) 35.2 0 29.6 0 28.1 0 7.0 1 9.1 1 8.4 1 5.4 1 7.0 3 5.1 1 
Sugar content (g L-1) 54.4 3 62.9 3 59.5 3 143.9 2 141.1 1 162.1 1 171.7 1 153.0 1 181.9 1 
Phenolic content (mg GAE L-1) 1504.2 1 1361.7 1 1517.8 1 437.5 4 743.6 3 401.9 6 367.8 6 632.2 4 520.1 4 
Antioxidant activity (% DPPHrem) 41.6 3 52.1 2 30.9 3 93.0 1 82.8 2 90.6 1 94.2 3 81.5 1 82.2 2 
 10/09 17/09 24/09 
Berry weight (g) 1.4 4 1.5 3 1.9 3 1.3 4 2.0 2 1.9 3 1.5 8 1.8 2 1.8 1 
pH 2.9 0 3.0 1 2.9 0 3.1 0 3.1 0 3.0 1 3.2 0 3.1 0 3.1 0 
Titratable acidity (g tartaric acid L-1) 5.7 2 6.3 1 5.1 1 5.2 2 4.9 2 5.9 1 5.3 1 4.6 2 5.8 1 
Sugar content (g L-1) 162.1 1 173.4 1 191.5 1 189.8 2 224.4 2 180.8 1 185.3 1 211.9 1 191.0 1 
Phenolic content (mg GAE L-1) 724.6 7 575.4 9 547.3 4 811.0 3 861.0 1 424.6 3 828.4 2 869.3 2 503.4 4 
Antioxidant activity (% DPPHrem) 85.1 1 84.8 1 84.9 0 80.9 2 73.3 3 89.9 1 82.7 3 67.9 2 90.1 1 
 01/10 08/10  
Berry weight (g) - - 1.7 3 2.1 4 - - 1.8 3 1.9 2       
pH - - 3.1 1 3.2 2 - - 3.2 0 3.2 0       
Titratable acidity (g tartaric acid L-1) - - 4.1 3 5.3 1 - - 3.6 2 4.6 2       
Sugar content (g L-1) - - 214.8 2 176.8 1 - - 196.0 1 179.6 1       
Phenolic content (mg GAE L-1) - - 1270.1 15 686.0 12 - - 933.0 3 654.9 2       
Antioxidant activity (% DPPHrem) - - 53.5 2 81.0 3 - - 64.4 2 75.3 1       
 2011 
 08/08 16/08 22/08 
Berry weight (g) 1.4 2 1.2 4 1.2 1 1.7 2 1.3 2 1.7 1 1.6 3 1.7 3 1.7 4 
pH 2.6 1 2.3 2 2.6 1 2.9 1 2.5 0 2.7 1 2.8 0 2.7 0 2.7 0 
Titratable acidity (g tartaric acid L-1) 18.2 0 26.4 0 19.0 1 12.2 1 17.7 1 19.0 1 13.0 1 13.1 1 14.4 1 
Sugar content (g L-1) 107.1 5 59.5 3 77.1 3 143.9 3 96.9 2 100.9 4 147.9 1 132.6 1 110.5 2 
Phenolic content (g GAE L-1) - - - - - - - - - - - - - - - - - - 
Antioxidant activity (% DPPHrem) - - - - - - - - - - - - - - - - - - 



 29/08 05/09 12/09 
Berry weight (g) 1.7 1 1.7 5 1.8 4 1.8 4 1.9 3 1.6 11 1.8 6 2.1 9 1.8 2 
pH 3.0 1 2.9 0 2.9 2 3.1 0 2.9 1 2.9 1 3.0 1 2.8 1 2.9 1 
Titratable acidity (g tartaric acid L-1) 10.9 1 9.5 1 8.0 1 7.9 1 7.1 2 7.8 1 6.4 2 7.6 2 10.4 1 
Sugar content (g L-1) 153.0 1 145.1 2 150.7 2 168.3 1 157.0 2 146.8 1 185.3 1 171.1 1 141.1 2 
Phenolic content (mg GAE L-1) - - - - - - - - - - - - - - - - - - 
Antioxidant activity (% DPPHrem) - - - - - - - - - - - - - - - - - - 
 19/09 26/09 03/10 
Berry weight (g) 1.6 2 1.9 3 1.8 5 1.6 5 2.1 2 1.8 2 1.9 1 1.9 4 1.9 4 
pH 3.1 1 3.0 1 2.9 1 3.2 0 3.1 0 3.1 0 3.2 0 3.1 2 3.2 1 
Titratable acidity (g tartaric acid L-1) 5.5 3 5.8 2 8.8 1 4.9 3 5.6 2 7.2 2 6.3 2 6.4 2 7.0 3 
Sugar content (g L-1) 184.2 1 201.7 1 143.4 2 193.8 2 186.4 1 163.2 2 196.6 1 202.3 1 190.4 2 
Phenolic content (mg GAE L-1) - - - - - - - - - - - - 631.4 17 869.3 11 517.0 20 
Antioxidant activity (% DPPHrem) - - - - - - - - - - - - 85.6 2 70.3 3 88.6 2 
 2012 
 24/08 31/08 07/09 
Berry weight (g) 1.3 4 1.6 3 1.5 3 1.3 2 1.8 3 1.7 3 1.5 1 1.4 7 1.9 5 
pH 2.6 1 2.6 1 3.0 1 2.6 1 2.7 1 2.9 0 2.9 1 3.1 0 3.0 1 
Titratable acidity (g tartaric acid L-1) 20.5 1 19.8 2 17.5 1 11.6 3 8.4 5 10.0 3 7.1 5 6.5 4 5.8 2 
Sugar content (g L-1) 97.5 6 81.0 3 98.6 8 125.8 4 128.6 2 132.0 2 140.0 2 147.9 3 159.2 4 
Phenolic content (mg GAE L-1) - - - - - - - - - - - - - - - - - - 
Antioxidant activity (% DPPHrem) - - - - - - - - - - - - - - - - - - 
 14/09 21/09 28/09 
Berry weight (g) 1.8 4 1.7 5 1.7 1 1.6 3 2.0 3 1.8 4 1.6 3 - - - - 
pH 3.1 0 2.9 0 3.0 1 2.9 1 2.9 1 3.1 1 3.1 0 - - - - 
Titratable acidity (g tartaric acid L-1) 7.4 2 6.4 5 5.7 3 6.9 3 5.3 6 5.6 5 6.0 4 - - - - 
Sugar content (g L-1) 150.7 2 145.1 2 153.0 1 140.0 2 163.8 2 175.7 3 161.5 3 - - - - 
Phenolic content (mg GAE L-1) - - - - - - - - 726.1 8 494.1 11 - - - - - - 
Antioxidant activity (% DPPHrem) - - - - - - - - 73.8 1 89.6 2 - - - - - - 
 05/10   
Berry weight (g) 1.7 4 - - - -             
pH 3.1 0 - - - -             
Titratable acidity (g tartaric acid L-1) 5.8 3 - - - -             
Sugar content (g L-1) 176.8 3 - - - -             



* Gray color indicate maturity 

  

Phenolic content (mg GAE L-1) 594.8 15 - - - -             
Antioxidant activity (% DPPHrem) 82.0 4 - - - -             



Table S5. Physicochemical parameters of Castelão variety, through its maturation process, from 3 parcels with different characteristics, from 2010 to 2012. 

 CA-SM1 CA-SM2 CA-SM3 CA-SM1 CA-SM2 CA-SM3 CA-SM1 CA-SM2 CA-SM3 
CASTELÃO 2010 

 20/08 27/08 03/09 

Physicochemical parameters 
Mean 
(n=3) 

RSD 
(%) 

Mean 
(n=3) 

RSD 
(%) 

Mean 
(n=3) 

RSD 
(%) 

Mean 
(n=3) 

RSD 
(%) 

Mean 
(n=3) 

RSD 
(%) 

Mean 
(n=3) 

RSD 
(%) 

Mean 
(n=3) 

RSD 
(%) 

Mean 
(n=3) 

RSD 
(%) 

Mean 
(n=3) 

RSD 
(%) 

Berry weight (g) 0.9 2 0.8 5 1.2 4 1.5 3 1.2 3 1.4 3 1.6 3 1.6 2 1.5 2 

pH 2.4 0 2.4 1 2.5 0 2.8 0 2.9 1 3.1 0 3.0 1 2.9 0 3.0 1 

Titratable acidity (g tartaric acid L-1) 29.7 0 29.3 0 28.1 0 9.9 2 8.7 1 8.0 1 6.3 2 6.2 1 6.1 1 

Sugar content (g L-1) 44.2 4 51.0 3 64.0 4 142.8 1 181.9 1 174.0 1 164.9 1 193.8 2 174.5 1 

Phenolic content (mg GAE L-1) 1458.7 2 1516.3 2 1095.1 2 1063.3 1 829.2 2 645.8 1 1046.6 1 513.3 1 883.7 1 

Antioxidant activity (% DPPHrem) 44.5 2 45.2 2 56.5 1 63.9 0 77.7 1 85.1 0 64.8 1 86.7 0 73.9 1 
 10/09 17/09 24/09 
Berry weight (g) 1.9 4 1.6 7 1.6 2 1.8 3 1.9 4 1.9 3 2.1 4 1.8 1 - - 

pH 3.0 0 3.0 1 3.0 0 3.3 1 3.2 0 3.3 1 3.4 0 3.3 0 - - 

Titratable acidity (g tartaric acid L-1) 5.2 1 4.7 2 5.5 1 6.0 2 5.2 2 5.5 1 4.6 2 4.3 3 - - 

Sugar content (g L-1) 215.9 1 238.0 1 185.3 1 221.0 2 241.4 1 218.2 2 227.2 1 255.6 1 - - 

Phenolic content (mg GAE L-1) 1037.5 2 714.0 2 870.8 1 1053.4 4 864.0 4 826.1 5 1098.1 1 1042.8 3 - - 

Antioxidant activity (% DPPHrem) 65.6 1 76.9 0 74.5 1 64.3 3 68.7 2 77.4 2 65.9 1 65.7 1 - - 
 2011 
 08/08 16/08 22/08 
Berry weight (g) 1.2 2 0.9 6 1.2 3 1.6 2 1.3 1 1.7 2 1.6 2 1.3 3 1.8 6 

pH 2.6 1 2.4 1 2.6 1 2.8 1 2.6 1 2.7 1 3.0 0 2.8 1 2.9 1 

Titratable acidity (g tartaric acid L-1) 20.0 1 22.7 1 18.2 1 13.6 1 13.8 1 12.2 1 12.2 1 10.0 1 9.2 2 

Sugar content (g L-1) 85.6 3 91.2 2 111.6 3 124.7 2 143.4 1 136.6 2 145.1 2 160.9 2 154.1 2 

Phenolic content (mg GAE L-1) 1007.2 5 840.5 16 693.6 14 741.3 9 650.4 12 405.7 29 697.3 4 706.4 19 514.0 24 

Antioxidant activity (% DPPHrem) 61.2 1 76.3 1 73.4 1 74.6 0 85.3 0 92.1 2 71.8 2 86.8 0 91.1 0 
 29/08 05/09 12/09 
Berry weight (g) 1.6 2 1.3 1 1.5 2 1.9 4 1.4 3 1.7 3 2.1 1 1.5 3 1.6 1 

pH 3.0 1 3.0 1 3.1 0 3.1 1 3.0 1 3.3 1 2.9 1 2.9 1 3.0 0 

Titratable acidity (g tartaric acid L-1) 11.2 1 8.3 1 8.8 1 8.3 2 7.9 3 6.3 2 7.6 2 6.9 3 5.7 2 

Sugar content (g L-1) 149.6 1 179.1 1 153.0 1 166.6 2 188.7 2 174.0 2 168.3 1 194.4 1 207.4 2 

Phenolic content (mg GAE L-1) 787.5 11 624.6 12 628.3 12 653.4 4 626.1 3 608.7 7 701.9 2 593.6 6 476.9 6 

Antioxidant activity (% DPPHrem) 70.5 1 84.4 1 92.2 1 69.6 0 74.7 1 87.3 2 69.1 2 77.3 0 85.6 1 
 19/09 26/09 03/10 



* Gray color indicate maturity 

  

Berry weight (g) 2.0 1 1.6 3 1.6 2 - - 1.8 6 1.9 4 - - - - 1.8 3 

pH 3.2 1 3.0 1 3.2 0 - - 3.1 1 3.2 0 - - - - 3.4 0 

Titratable acidity (g tartaric acid L-1) 7.2 2 6.8 1 5.8 1 - - 5.8 2 5.7 3 - - - - 5.0 2 

Sugar content (g L-1) 196.1 1 197.8 1 191.5 1 - - 218.7 1 193.2 1 - - - - 200.6 2 

Phenolic content (mg GAE L-1) 704.9 13 661.0 14 626.1 3 - - 621.6 20 635.2 16 - - - - 613.3 9 

Antioxidant activity (% DPPHrem) 69.9 1 73.3 1 83.3 0 - - 72.0 1 81.9 3 - - - - 83.7 1 
 2012 
 24/08 31/08 07/09 
Berry weight (g) 1.7 3 1.5 4 1.8 1 1.7 2 1.6 3 1.6 1 1.8 2 1.5 5 1.7 4 

pH 2.8 1 2.6 1 2.7 1 2.9 1 2.8 0 2.8 0 3.2 0 3.0 0 2.9 0 

Titratable acidity (g tartaric acid L-1) 21.8 1 20.1 1 20.9 1 10.7 1 8.8 4 10.4 3 8.5 5 7.2 2 8.3 3 

Sugar content (g L-1) 111.6 6 89.5 5 113.3 4 141.1 4 182.5 3 156.4 2 171.1 3 175.7 3 159.8 3 

Phenolic content (mg GAE L-1) 790.7 13 773.7 16 595.5 23 701.6 12 693.5 9 545.2 16 721.4 17 654.0 16 513.2 7 

Antioxidant activity (% DPPHrem) 76.6 1 78.4 1 90.5 0 73.2 3 75.6 2 92.6 1 71.3 1 71.4 3 90.1 2 
 14/09 21/09       
Berry weight (g) 1.9 5 1.7 2 1.9 3 2.0 2 1.8 4 1.9 3       

pH 3.2 1 3.1 1 3.1 0 3.1 1 3.1 0 3.2 2       

Titratable acidity (g tartaric acid L-1) 7.6 4 6.7 2 7.4 2 7.5 3 6.3 4 7.1 1       

Sugar content (g L-1) 176.8 4 180.8 3 174.5 4 181.9 4 186.4 4 170.0 4       

Phenolic content (mg GAE L-1) 683.3 11 609.8 6 501.6 21 694.1 14 627.5 16 522.0 12       

Antioxidant activity (% DPPHrem) 71.0 2 75.4 1 89.9 0 70.2 2 75.9 3 89.4 4       



Table S6. Physicochemical parameters of Touriga Nacional variety, through its maturation process, from 3 parcels with different characteristics, from 2010 to 
2012. 

 TN-SM1 TN-SM2 TN-SM3 TN-SM1 TN-SM2 TN-SM3 TN-SM1 TN-SM2 TN-SM3 
TOURIGA NACIONAL  2010 

 24/08 31/08 07/09 

Physicochemical parameters 
Mean 
(n=3) 

RSD 
(%) 

Mean 
(n=3) 

RSD 
(%) 

Mean 
(n=3) 

RSD 
(%) 

Mean 
(n=3) 

RSD 
(%) 

Mean 
(n=3) 

RSD 
(%) 

Mean 
(n=3) 

RSD 
(%) 

Mean 
(n=3) 

RSD 
(%) 

Mean 
(n=3) 

RSD 
(%) 

Mean 
(n=3) 

RSD 
(%) 

Berry weight (g) 0.8 7 0.8 3 1.0 2 1.2 5 1.2 6 1.6 2 1.6 4 1.4 2 1.8 4 
pH 2.4 1 2.3 0 2.5 0 2.6 1 2.7 0 2.8 0 2.9 0 2.9 0 2.9 0 
Titratable acidity (g tartaric acid L-1) 27.6 0 27.8 0 28.7 0 16.2 0 11.4 0 10.7 1 5.9 1 5.9 1 5.4 2 
Sugar content (g L-1) 37.5 1 44.2 4 40.8 4 94.6 3 139.4 1 140.5 1 138.8 2 215.3 1 168.3 1 
Phenolic content (mg GAE L-1) 1610.2 1 1391.3 2 1312.5 0 1114.8 1 1144.3 0.9 771.6 1 962.5 1 1084.5 1 751.1 2 
Antioxidant activity (% DPPHrem) 38.1 1 39.2 1 54.4 2 66.6 3 69.0 1 78.2 0 72.1 1 70.6 3 82.3 2 
 14/09 21/09 28/09 
Berry weight (g) 1.4 2 1.5 3 1.8 2 1.8 2 1.6 3 1.9 2 1.8 2 1.5 3 2.0 1 
pH 2.9 0 3.2 1 3.2 1 3.0 0 3.4 0 3.2 1 3.0 1 3.2 0 3.2 0 
Titratable acidity (g tartaric acid L-1) 7.4 1 5.5 2 5.4 2 6.1 1 4.0 2 4.3 2 5.2 2 4.2 3 4.4 2 
Sugar content (g L-1) 151.9 2 225.0 1 203.4 1 163.2 1 229.5 1 213.1 1 186.4 1 255.6 1 218.7 0 
Phenolic content (mg GAE L-1) 832.2 1 1044.3 1 732.2 1 967.8 2 932.2 1 983.0 1 951.1 1 1460.2 2 999.6 1 
Antioxidant activity (% DPPHrem) 80.0 2 67.7 1 82.6 1 79.1 1 71.5 2 75.5 3 72.4 2 51.7 1 69.9 2 
 05/10 12/10 19/10 
Berry weight (g) 1.9 3 1.6 3 2.0 3 1.9 2 1.6 6 1.9 1 1.8 2 - - 2.0 3 
pH 3.1 0 3.2 0 3.3 0 3.2 0 3.3 2 3.3 1 3.2 0 - - 3.4 0 
Titratable acidity (g tartaric acid L-1) 4.3 2 4.3 2 3.8 2 4.4 3 4.2 3 4.3 2 4.2 4 - - 3.7 1 
Sugar content (g L-1) 193.1 3 246.8 3 190.2 3 200.1 2 254.2 6 199.4 3 198.1 2 - - 200.4 3 
Phenolic content (mg GAE L-1) 834.5 1 1323.9 1 765.5 1 747.3 2 1341.3 2 852.0 11 761.0 2 - - 795.8 2 
Antioxidant activity (% DPPHrem) 71.9 1 53.5 2 75.0 1 78.3 3 51.9 1 70.0 3 77.6 1 - - 78.7 1 
 2011 
 11/08 18/08 25/08 
Berry weight (g) 1.3 2 1.2 2 1.4 3 1.5 1 1.1 5 1.4 2 1.5 2 1.1 1 1.5 6 
pH 2.7 1 2.6 0 2.8 1 2.7 1 2.7 0 2.9 0 2.9 0 2.8 1 3.0 0 
Titratable acidity (g tartaric acid L-1) 18.9 1 13.7 2 12.6 1 10.6 1 11.4 1 9.6 1 9.8 1 12.1 1 8.6 1 
Sugar content (g L-1) 84.4 10 130.9 3 124.1 1 150.7 2 140.0 2 164.9 1 150.2 2 146.8 2 172.8 2 



Phenolic content (mg GAE L-1) 1034.5 14 1550.4 8 1085.2 11 788.3 13 1366.3 5 692.8 15 767.8 11 1617.8 6 734.5 12 
Antioxidant activity (% DPPHrem) 55.0 1 45.1 1 61.5 0 79.7 0 74.8 1 88.1 1 79.0 2 73.4 1 91.1 1 
 01/09 08/09 15/09 
Berry weight (g) 1.6 2 1.3 3 1.6 3 1.6 5 1.2 1 1.6 2 1.6 3 1.2 2 1.6 3 
pH 3.1 0 3.0 1 3.2 0 3.1 0 3.1 1 3.3 1 3.0 1 2.9 1 3.2 5 
Titratable acidity (g tartaric acid L-1) 8.4 1 9.1 1 7.3 1 7.1 2 5.5 3 5.8 2 5.9 2 6.2 2 5.3 2 
Sugar content (g L-1) 152.4 2 175.7 1 184.2 1 170.6 2 182.5 2 185.9 1 184.2 1 185.3 1 186.4 1 
Phenolic content (mg GAE L-1) 1019.3 10 1111.0 12 737.5 15 630.7 21 1197.3 14 888.3 4 698.9 12 1081.4 8 742.0 7 
Antioxidant activity (% DPPHrem) 89.4 0 74.7 1 88.2 2 85.6 1 72.1 1 86.1 2 79.1 0 57.6 0 84.3 1 
 22/09 29/09 06/10 
Berry weight (g) 1.6 2 1.3 2 1.6 2 1.7 4 1.4 3 - - 1.7 3 1.6 3 N/A** N/A 
pH 3.3 1 3.1 1 3.3 1 3.3 1 3.2 0 - - 3.2 0 3.3 1 N/A N/A 
Titratable acidity (g tartaric acid L-1) 5.4 3 6.5 1 4.6 2 5.4 3 5.9 3 - - 5.7 2 5.5 3 N/A N/A 
Sugar content (g L-1) 200.0 1 181.3 1 188.7 2 200.0 1 197.2 1 - - 193.8 1 205.1 2 N/A N/A 
Phenolic content (mg GAE L-1) 834.5 21 1311.0 3 800.4 11 928.4 10 1414.0 9 - - 948.9 13 1339.8 9 N/A N/A 
Antioxidant activity (% DPPHrem) 80.5 0 59.6 2 82.6 1 87.6 2 61.2 3 - - 85.0 1 58.4 2 N/A N/A 
 2012 
 31/08 07/09 14/09 
Berry weight (g) 1.5 5 1.4 2 1.7 1 1.5 4 1.4 3 1.6 2 1.6 1 1.5 3 1.7 2 
pH 2.8 1 2.6 0 2.9 1 2.8 1 2.7 1 2.9 1 3.0 1 3.2 0 3.0 1 
Titratable acidity (g tartaric acid L-1) 20.8 1 22.5 1 19.0 1 10.8 2 11.6 3 10.7 3 6.2 5 6.5 5 7.1 4 
Sugar content (g L-1) 112.8 2 111.1 2 115.6 4 151.3 3 143.9 2 147.3 4 164.3 2 172.8 2 160.4 3 
Phenolic content (mg GAE L-1) 939.7 4 1231.6 7 775.1 12 930.9 11 1029.5 12 674.4 19 886.7 10 1022.0 9 639.0 12 
Antioxidant activity (% DPPHrem) 83.1 2 80.9 0 84.6 0 84.2 1 76.8 2 91.0 1 86.3 0 74.3 0 90.6 2 
 21/09 28/09 05/10 
Berry weight (g) 1.8 2 1.6 3 2.0 4 1.9 5 1.6 5 1.9 4 2.0 3 1.7 4 2.0 5 
pH 3.3 0 3.2 0 3.2 0 3.3 1 3.3 0 3.4 1 3.2 1 3.3 0 3.3 0 
Titratable acidity (g tartaric acid L-1) 6.1 3 5.6 3 6.9 2 5.8 8 5.4 7 6.4 2 5.8 2 5.4 2 6.1 7 
Sugar content (g L-1) 181.3 2 192.7 3 179.1 4 185.9 4 194.4 3 182.5 4 187.6 3 195.5 2 184.7 2 
Phenolic content (mg GAE L-1) 703.0 17 1097.6 10 542.4 25 640.4 11 1067.6 7 498.9 19 646.5 13 1084.6 8 501.6 14 
Antioxidant activity (% DPPHrem) 83.1 3 71.0 1 88.0 1 81.7 1 69.9 3 86.6 3 81.2 1 67.8 1 86.3 1 
 12/10   
Berry weight (g) - - 1.7 5 - -             
pH - - 3.3 1 - -             



* Gray color indicates maturity. ** Grapes not available (overripe grapes). 

  

Titratable acidity (g tartaric acid L-1) - - 5.3 6 - -             
Sugar content (g L-1) - - 201.2 4 - -             
Phenolic content (mg GAE L-1) - - 1121.4 9 - -             
Antioxidant activity (% DPPHrem) - - 66.9 1 - -             



Table S7. Physicochemical parameters of Sousão variety, through its maturation process, from one parcel, from 2010 to 2012. 

* Gray color indicate maturity 

SOUSÃO 
SO-SM1 

2010 
20/08 27/08 03/09 10/09 17/09 24/09   

Physicochemical parameters 
Mean 
(n=3) 

RSD 
(%) 

Mean 
(n=3) 

RSD 
(%) 

Mean 
(n=3) 

RSD 
(%) 

Mean 
(n=3) 

RSD 
(%) 

Mean 
(n=3) 

RSD 
(%) 

Mean 
(n=3) 

RSD 
(%) 

  

Berry weight (g) 1.0 4 1.1 9 1.4 3 1.5 3 1.5 3 1.6 5   
pH 2.4 1 2.5 2 2.7 1 2.9 1 3.1 0 3.1 0   
Titratable acidity (g tartaric acid L-1) 39.9 1 23.4 0 9.1 0 6.6 2 6.4 3 6.1 2   
Sugar content (g L-1) 45.9 4 106.0 2 188.7 1 193.8 1 207.4 2 206.3 1   
Phenolic content (mg GAE L-1) 1238.3 2 1222.3 1 1045.1 2 1211.7 3 1202.7 4 1432.2 4   
Antioxidant activity (% DPPHrem) 49.3 0 58.6 1 57.9 0 55.6 0 53.1 3 47.6 0   
 2011 
 08/08 16/08 22/08 29/08 05/09 12/09 19/09 
Berry weight (g) 1.3 3 1.6 3 1.5 5 1.6 2 1.7 3 1.8 3 1.6 3 
pH 2.4 1 2.8 1 2.7 1 3.0 0 2.9 1 3.0 1 3.0 2 
Titratable acidity (g tartaric acid L-1) 25.6 1 14.3 1 13.3 1 12.3 1 11.1 3 11.5 1 7.7 1 
Sugar content (g L-1) 88.4 4 139.4 2 135.4 2 155.3 1 162.6 1 169.4 2 185.3 2 
Phenolic content (mg GAE L-1) - - - - - - - - - - - - 957.2 13 
Antioxidant activity (% DPPHrem) - - - - - - - - - - - - 73.0 4 
 2012 
 28/08 04/09 11/09 18/09 25/09 02/10   
Berry weight (g) 1.5 2 1.5 4 1.4 2 1.7 6 1.7 3 1.7 3   
pH 2.5 1 2.7 1 2.9 0 2.9 0 3.0 1 3.0 1   
Titratable acidity (g tartaric acid L-1) 31.0 2 17.2 3 12.9 4 9.4 4 8.6 7 8.0 4   
Sugar content (g L-1) 94.1 3 136.6 3 150.2 4 160.9 3 171.7 3 177.9 4   
Phenolic content (mg GAE L-1) - - - - - - - - - - 1019.3 12   
Antioxidant activity (% DPPHrem) - - - - - - - - - - 72.1 2   



Table S8
Volatile components determined for Vitis vinifera  L. cv. Arinto variety obtained from 3 parcels and 3 years of harvests, during maturation, at Bairrada Appellation.

1Dtr(s),2Dtr(s)a Compound Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)

C6 compounds
194, 0.640 Hexanal 3414.0 5 3739.5 14 3875.7 4 5744.6 18 4459.3 7
206, 0.630 3-Hexenal 211.6 15 2478.0 14 886.4 11 1189.6 8 1543.5 10
230, 0.651 2-Hexenal 2864.9 16 5595.9 5 6576.9 6 1137.7 5 1140.4 8
242, 0.630 3-Hexen-1-ol 2543.1 2 2143.1 6 154.3 5 540.7 9 425.5 3
248, 1.076 2-Hexen-1-ol 804.6 8 850.1 13 626.6 10 1852.5 8 1390.7 10
266, 0.903 1-Hexanol 807.3 3 1424.3 7 1099.7 10 1571.3 12 1073.7 7
296, 0.930 2,4-Hexadienal 213.0 4 2535.9 14 2006.0 13 2630.2 7 3117.9 13

Sub-Total 10858.4 18766.7 15225.7 14666.6 13151.0
Aromatic alcohols
420, 3.014 Benzyl Alcohol 59.2 11 84.5 5 99.3 6 70.7 11 117.4 9
446, 1.426 α,α-Dimethyl Benzyl alcohol 14.7 10 31.5 14 25.0 19 24.4 11 19.9 14
470, 1.960 2-Phenylethanol 163.0 16 79.9 11 186.8 14 243.2 3 224.1 14

Sub-Total 236.8 196.0 311.2 338.3 361.4
Monoterpenic compounds
314, 0.440 a-Pinene 68.4 8 21.8 10 27.4 12 31.6 10 21.4 9
338, 0.480 Dehydroxylinalooloxide 53.3 12 210.8 13 85.4 7 152.9 2 74.7 6
344, 0.457 β-Pinene 113.0 9 219.2 12 88.9 4 59.7 8 66.6 12
356, 0.570 β-Myrcene 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
392, 0.405 m -Cymene 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
398, 0.476 Limonene 117.6 6 376.0 2 102.2 12 109.0 14 166.7 16
404, 0.476 1,8-Cineole vt 177.7 16 144.9 14 91.3 17 161.0 15
416, 0.560 β-Ocimene 0.0 0 91.7 2 47.9 16 75.8 4 44.4 11
428, 0.678 Linalool oxide (isomer) 25.0 15 93.4 12 75.6 7 100.9 3 77.4 7
434, 0.727 Dihydromyrcenol vt 596.2 4 623.5 6 526.8 8 469.9 16
440, 0.560 α-Terpinolene 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
446, 0.700 Dihydrolinalool 0.0 0 17.6 19 13.6 17 12.4 14 25.0 13
452, 0.746 Linalool 69.0 10 802.2 7 1552.6 14 1180.4 2 1697.7 7
464, 0.600 Rose oxide (isomer 1) 0.0 0 25.1 19 30.2 6 16.7 16 25.6 11
464, 0.844 Fenchol vt 53.3 8 46.1 10 28.8 21 33.7 9

18/08/2010 25/08/2010 01/09/2010
2010

08/09/2010** 15/09/2010



470, 0.646 Hotrienol 680.0 11 530.6 9 668.6 6 960.7 3 216.0 15
476, 0.770 Rose oxide (isomer 2) 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
488, 0.690 Cosmene 0.0 0 43.2 5 36.6 18 36.6 18 38.8 4
512, 0.635 Nerol oxide 17.8 13 166.9 16 107.4 4 23.5 7 30.5 2
518, 0.834 Ocimenol vt 179.2 16 284.3 6 196.5 8 231.6 2
524, 0.860 Borneol 0.0 0 36.8 18 61.8 14 33.8 7 33.8 7
530, 0.984 Menthol vt 144.5 15 268.5 11 130.0 18 145.1 15
536, 0.715 Terpinen-4-ol 0.0 0 22.3 13 23.1 17 17.3 16 15.9 18
536, 1.269 Cymen-8-ol 0.0 0 34.2 14 27.9 10 28.1 10 16.8 11
542, 0.835 α-Terpineol 43.4 9 573.8 4 762.3 13 509.8 10 686.7 11
560, 0.850 Verbenone 0.0 0 39.9 18 48.2 17 50.2 19 32.4 17
566, 0.703 Menth-1-en-9-al 0.0 0 43.0 14 87.1 20 37.6 6 54.7 8
584, 0.873 Geraniol (isomer 1) 0.0 0 28.6 14 98.8 6 71.4 8 103.0 7
584, 0.943 β-Citronellol vt 531.6 14 244.8 11 222.6 14 468.6 15
590, 0.737 Geraniol (isomer 2) 55.6 8 1314.2 11 874.3 18 587.8 3 866.8 8
596, 0.976 Citral (isomer 1) 0.0 0 0.0 0 0.0 0 52.2 18 83.4 12
602, 0.815 Carvone 0.0 0 29.6 13 84.7 15 20.0 7 24.0 5
626, 0.775 Citral (isomer 2) 0.0 0 91.3 15 65.9 7 92.9 5 174.7 12

Sub-Total 1243.2 6495.0 6582.7 5457.6 6086.9
C13 Norisoprenoids 
566, 0.532 m/z  159, 91, 131 16.6 17 391.0 13 76.1 16 54.5 13 39.0 8
602, 0.660 α-Ionene 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
620, 0.595 Vitispirane 136.6 20 532.1 2 269.4 15 197.4 12 167.8 18
632, 0.517 Theaspirane (isomer 1) 723.5 7 320.5 5 80.1 12 134.8 8 60.8 15
644, 0.528 Theaspirane (isomer 2) 0.0 0 265.2 13 46.2 16 74.4 2 27.8 17
668, 0.790 TDN (Naphthalene, 1,2-dihydro-1,1,6-trimethyl-)0.0 0 30.3 18 21.1 9 22.4 4 22.4 4
674, 0.681 β-Damascenone (isomer 1) 0.0 0 129.4 9 80.6 5 51.3 9 58.6 7
680, 0.840 m/z  142, 157, 115 vt 1074.4 8 20.3 8 0.0 0 0.0 0
700, 0.702 β-Damascenone (isomer 2) 170.4 15 1074.4 8 1050.7 12 670.3 6 610.9 14
724, 0.750 Hydroxydihydroedulan 0.0 0 53.5 7 32.0 11 41.2 3 34.7 8
736, 0.648 Geranylacetone 201.6 4 50.9 4 272.9 19 177.8 17 408.2 19
742, 0.850 5,6-Epoxy-β-ionone 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
760, 0.868 3,4-Dehydro-β-ionone 0.0 0 13.0 15 11.3 9 11.5 18 11.9 12
778, 0.635 α-iso-methyl ionone vt 747.8 15 11.3 3 14.3 10 0.0 0
784, 0.717 β-Ionone 0.0 0 28.3 14 48.0 18 37.5 4 28.1 9
900, 0.894 Methyl dihydrojasmonate 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

Sub-Total 1248.7 4710.7 2020.0 1487.2 1470.1
Sesquiterpenic compounds
656, 0.583 Longipinene epoxide vt 46.7 12 48.5 14 52.7 2 21.7 7



712, 0.508 Longifolene 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
756, 0.630 Aromadendrene 107.6 8 42.2 19 42.2 19 39.8 15 53.0 10
790, 0.660 α-Farnesene 0.0 0 65.3 14 66.8 3 66.5 7 28.4 12
808, 0.630 Calamenene 0.0 0 46.7 14 6.1 5 0.0 0 0.0 0
832, 0.880 Nerolidol vt 106.1 17 120.5 15 218.8 22 274.8 22
844, 0.810 Epiglobulol 0.0 0 111.9 15 95.5 4 67.4 19 65.9 11
886, 0.690 β-Eudesmol vt 133.2 20 115.6 9 133.0 14 101.8 8
912, 0.654 m/z  119, 91, 191, 109 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

Sub-Total 107.6 552.1 495.2 578.2 545.6
Total 13694.7 30720.5 24634.8 22527.9 21615.1

a 1Dtr (s), 2Dtr(s): first and second dimension retention times (in seconds) of each compound determined.
* Compounds identified based on the comparison between the obtained mass spectra and mass spectra of high purity chemical standards.
** Data obtained at maturity 
vt - vestigial



Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%) Mean (n=3) RSD (%)

1413.4 20 3664.5 3 3353.1 3 5460.9 9 3042.5 7 3512.3 4 3912.2 153834.4 11
778.4 9 1067.1 14 854.4 16 1761.3 5 1193.9 14 1188.4 7 793.6 9 640.0 7
3705.7 12 6586.2 17 4809.4 11 9659.5 8 10915.5 5 13656.3 7 7484.3 11 9335.2 5
262.3 19 173.5 19 140.3 21 396.4 4 108.6 9 151.3 12 112.3 14 115.6 13
1214.2 17 1048.6 16 1179.7 21 1471.3 21 743.8 10 1338.6 22 868.2 8 752.6 7
1158.1 13 549.7 19 941.3 20 1528.6 18 767.0 15 1030.3 11 551.2 18 617.9 21
383.2 11 944.8 16 771.4 6 1696.8 19 1056.5 4 992.5 7 959.5 9 989.9 8

8915.3 14034.3 12049.5 21974.9 17827.8 21869.7 14681.3 16285.6

0.0 0 vt 104.8 19 132.2 19 124.4 16 130.9 11 141.8 21 145.6 18
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
47.6 25 60.9 10 132.8 28 129.6 24 165.7 13 195.7 19 179.7 16 159.2 19
47.6 60.9 237.6 261.8 290.1 326.6 321.5 304.7

156.8 19 156.0 22 125.1 22 22.0 132 13.1 9 12.4 15 0.0 0 0.0 0
0.0 0 0.0 0 0.0 0 24.1 20 19.2 13 14.4 16 14.4 1 21.8 11
63.8 3 53.8 6 67.4 16 70.8 7 66.5 6 60.7 4 61.1 7 74.8 19
0.0 0 0.0 0 0.0 0 54.2 19 62.1 15 32.7 20 32.1 4 44.2 20
0.0 0 0.0 0 0.0 0 24.4 21 11.6 9 11.5 10 9.0 20 11.0 17
26.0 9 14.6 22 26.0 12 38.2 8 61.7 4 57.0 19 76.0 15 97.6 7
52.0 7 32.7 17 52.1 10 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
47.3 8 47.4 18 64.4 10 24.7 24 28.3 9 15.4 2 27.7 11 19.1 14
0.0 0 0.0 0 0.0 0 246.5 18 187.3 11 77.0 6 59.5 5 50.0 4
12.0 33 16.5 21 17.5 26 28.4 13 22.5 14 24.7 10 20.7 9 28.7 15
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

417.4 14 282.6 19 436.5 12 516.9 11 545.3 12 541.2 16 669.0 7 515.9 13
0.0 0 12.9 22 38.8 17 17.3 19 18.7 17 23.3 21 19.0 20 20.3 8
0.0 0 25.2 19 34.1 14 36.7 13 0.0 0 0.0 0 0.0 0 0.0 0

22/08/2011 29/08/2011
2011

05/09/2011 12/09/2011

AR-VA1

19/09/201101/08/2011 08/08/2011 16/08/2011



638.6 13 352.0 8 389.1 18 257.3 15 216.1 9 198.4 7 159.4 21 179.7 18
15.9 29 28.0 11 53.4 11 42.0 14 15.2 15 12.4 12 13.4 10 16.6 6
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
77.7 6 50.4 12 49.7 7 53.0 10 42.2 10 24.1 15 26.3 16 15.5 30
71.0 10 56.1 7 39.4 20 52.1 9 44.2 18 50.1 8 39.8 9 23.1 9
20.9 33 12.0 20 19.6 15 20.3 15 13.0 24 11.9 6 11.9 6 11.2 14
41.2 12 26.1 17 34.9 6 38.5 2 32.6 15 35.0 17 29.4 10 28.2 7
0.0 0 0.0 0 0.0 0 13.6 19 12.2 20 11.9 15 14.1 18 14.5 20
18.5 15 18.3 15 16.6 14 22.9 12 17.3 7 13.9 17 15.7 17 15.7 5
vt 153.6 18 190.0 3 231.8 5 277.6 17 256.1 21 246.5 8 329.6 7
0.0 0 0.0 0 36.4 9 28.5 16 25.5 24 18.5 11 0.0 0 0.0 0
0.0 0 24.4 8 34.3 9 68.7 14 104.5 8 124.6 17 137.0 33 177.9 16
0.0 0 0.0 0 141.1 25 189.5 31 227.1 16 192.2 15 200.6 10 254.4 6

351.5 4 358.9 11 487.7 18 462.8 9 415.4 5 237.9 12 315.0 10 243.2 12
90.1 18 144.8 27 276.9 23 310.3 22 945.3 15 794.3 13 865.4 4 896.3 10
0.0 0 0.0 0 44.0 4 60.0 5 62.8 18 60.6 14 60.2 7 61.5 13
31.6 20 23.8 9 29.4 11 25.0 12 28.5 4 28.1 7 22.0 8 24.1 17
68.0 11 86.4 12 101.0 5 77.8 7 81.5 3 105.5 7 87.8 7 79.5 10

2200.3 1976.6 2805.1 3058.1 3597.1 3045.8 3232.8 3254.3

193.4 23 147.4 18 18.4 18 11.6 24 43.4 10 16.2 16 23.1 11 0.0 0
19.0 12 16.9 25 10.9 21 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
199.4 25 173.9 21 158.0 16 130.3 19 140.6 22 145.5 7 165.9 11 144.0 22
71.7 11 88.9 10 85.1 21 61.7 20 36.5 3 16.0 16 17.6 11 22.6 6
64.1 9 63.1 13 50.9 12 32.7 11 38.9 17 17.3 12 13.9 5 16.6 17
38.2 14 15.6 12 50.4 12 36.8 17 vt 0.0 0 0.0 0 0.0 0
0.0 0 32.7 20 41.3 24 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

411.0 14 680.6 25 380.0 21 463.6 15 391.7 17 319.9 11 410.9 20 415.1 11
84.5 25 32.2 22 33.8 21 34.9 25 39.5 7 15.9 24 29.4 8 27.7 15
141.4 23 307.1 4 224.9 14 170.3 25 118.4 12 154.6 12 158.8 20 92.4 6
48.4 10 46.3 19 138.7 17 132.2 12 69.2 12 57.7 12 89.7 18 66.1 8
33.5 13 22.3 15 29.6 5 15.7 20 16.0 10 0.0 0 0.0 0 0.0 0
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
45.7 15 56.4 16 47.1 13 27.6 8 25.0 14 28.8 8 23.6 6 29.5 19
0.0 0 40.4 15 20.7 3 33.3 14 29.9 25 79.2 22 38.2 12 38.6 7

1350.2 1723.9 1289.8 1150.8 949.0 851.1 971.0 852.6

18.6 13 43.5 11 36.3 24 75.3 9 71.4 8 51.2 13 29.5 7 48.1 17



vt 374.7 6 368.0 26 272.6 18 154.6 13 121.9 12 131.1 4 96.2 14
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
0.0 0 0.0 0 0.0 0 38.9 5 42.4 15 39.6 13 27.5 12 0.0 0
0.0 0 0.0 0 9.6 9 5.1 14 4.1 3 4.1 2 0.0 0 0.0 0
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 18.4 25 0.0 0 0.0 0
46.9 14 56.6 20 56.8 4 40.6 21 41.2 2 46.0 15 40.7 12 39.2 18
65.4 474.8 470.7 432.6 313.7 281.2 228.7 183.5

12578.8 18270.4 16852.7 26878.2 22977.8 26374.4 19435.4 20880.7



Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%)

2635.2 19 2499.2 19 2241.0 20 1970.3 19 2270.5 23 1776.2 19 1752.7 37
652.5 6 298.5 13 535.8 19 947.4 23 1421.9 21 2110.1 16 2023.3 28

10764.9 2 1423.5 29 3124.3 23 3453.7 19 2259.2 22 1797.8 6 2913.5 27
120.2 6 1205.6 2 1662.6 21 1179.7 18 630.5 18 404.6 21 336.8 17
867.5 10 442.5 17 605.9 8 892.5 14 3004.9 17 3048.8 5 3060.2 14
668.2 12 423.6 16 1349.8 31 1043.1 26 1290.9 25 3718.4 10 4346.5 15
858.8 6 338.8 16 514.1 16 973.8 12 1411.5 31 1243.4 18 1226.8 4

16567.2 6631.7 10033.4 10460.5 12289.3 14099.3 15659.7

159.9 16 66.1 10 82.1 9 65.6 3 110.0 12 162.8 24 226.9 22
0.0 0 11.4 11 13.8 21 14.9 21 13.2 25 18.0 13 17.6 24

161.3 25 89.6 4 94.7 5 71.9 11 127.1 19 153.2 15 142.2 10
321.2 167.2 190.7 152.4 250.2 334.1 386.7

0.0 0 46.0 12 149.6 23 157.1 11 116.1 21 107.1 27 214.9 16
12.0 16 0.0 0 24.6 25 33.3 22 19.2 12 13.7 16 26.4 17
54.3 18 44.1 17 60.8 16 70.4 30 41.9 14 41.2 20 48.8 14
39.0 9 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
12.4 21 39.4 25 43.1 25 43.0 16 41.0 28 33.3 6 19.3 12
87.4 3 81.7 13 144.1 29 180.3 21 120.6 24 173.5 22 224.4 20
0.0 0 vt 114.5 28 97.3 22 71.7 13 82.9 4 147.0 29
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
18.3 16 15.1 14 119.8 15 147.0 28 121.7 24 146.5 31 160.4 26
51.8 13 vt 134.1 30 152.6 33 124.9 29 149.5 23 168.1 19
21.3 20 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

513.6 9 183.7 29 599.3 13 367.5 11 176.5 18 368.2 11 329.2 12
18.2 15 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
0.0 0 0.0 0 49.8 14 65.1 15 63.9 4 68.7 4 54.5 20

11/09/2012 18/09/2012 25/09/2012 02/10/2012**
2012

26/09/2011** 27/08/2012 03/09/2012



181.4 9 290.9 14 460.9 20 336.3 13 184.8 20 233.8 21 275.9 11
16.3 20 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
0.0 0 15.2 14 19.3 20 21.7 26 31.1 13 60.1 3 42.7 13
13.5 26 vt 305.1 6 343.1 20 244.9 17 182.6 17 217.8 26
13.0 14 0.0 0 26.1 14 43.0 25 45.4 18 42.5 25 60.8 11
23.0 16 vt 206.3 28 195.5 32 237.6 14 172.3 32 247.8 16
12.5 11 0.0 0 14.6 19 29.9 20 21.8 15 29.0 27 17.2 19
15.1 11 0.0 0 26.9 18 23.8 26 15.7 10 20.0 15 18.1 29
333.7 5 23.4 30 252.5 29 251.7 23 200.5 22 199.0 30 270.2 16
0.0 0 0.0 0 38.3 16 22.1 28 11.7 17 15.4 24 10.2 9

159.1 17 0.0 0 42.3 11 51.2 8 42.0 14 56.6 23 39.3 25
229.7 17 vt 127.8 18 164.0 18 96.5 33 42.4 23 26.9 26
208.5 29 vt 509.1 17 383.2 11 284.1 24 278.2 20 283.5 7
797.4 8 108.2 22 268.2 23 274.0 6 247.4 16 253.0 14 258.0 17
51.4 21 0.0 0 35.7 17 27.3 20 20.9 21 41.9 4 47.9 12
27.0 19 0.0 0 26.3 18 83.6 17 72.6 9 48.3 9 54.6 22
70.3 6 vt 123.5 32 159.1 29 148.0 18 186.5 18 184.8 23

2980.4 847.8 3922.6 3723.2 2802.7 3046.2 3448.6

0.0 0 164.5 18 286.8 8 264.0 25 206.6 27 123.5 25 148.1 17
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

114.0 11 128.2 16 304.3 9 219.5 15 189.8 31 136.5 22 164.4 41
14.7 11 72.9 19 165.3 18 121.1 17 152.4 31 93.5 8 105.4 17
18.5 17 vt 0 151.5 25 106.7 30 92.5 18 93.8 8 83.4 14
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
0.0 0 0.0 0 169.9 27 114.3 22 177.2 39 118.1 27 144.5 23
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

496.9 11 197.8 20 421.1 10 210.6 19 204.6 31 165.2 26 167.4 9
15.8 14 0.0 0 57.7 16 25.0 20 23.8 27 19.8 24 10.2 16
96.6 9 239.9 23 407.5 18 221.0 23 163.5 21 148.0 33 111.9 19
80.9 19 0.0 0 23.7 15 28.4 25 20.5 14 15.8 25 12.9 31
0.0 0 0.0 0 22.2 20 19.3 20 21.5 10 20.6 23 13.7 26
0.0 0 0.0 0 31.1 12 23.8 17 19.5 17 13.2 26 23.3 26
24.7 15 0.0 0 25.8 22 27.0 7 19.6 15 22.9 16 15.7 21
59.4 16 0.0 0 25.0 27 42.0 21 34.1 24 22.3 9 21.5 8

921.5 803.3 2091.9 1422.6 1325.6 993.2 1022.6

50.0 16 14.6 21 16.0 27 79.9 13 66.0 18 95.5 10 49.1 5



110.4 15 vt 260.7 19 168.3 31 141.2 4 132.1 21 120.8 29
0.0 0 0.0 0 39.9 13 55.6 16 66.5 9 79.9 7 56.1 16
0.0 0 0.0 0 22.0 23 48.5 14 46.4 22 68.4 11 52.6 17
0.0 0 0.0 0 42.2 23 42.8 24 43.2 25 44.8 26 36.1 26
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
0.0 0 vt 57.0 15 43.1 28 38.8 18 36.2 8 39.6 12
0.0 0 0.0 0 0.0 0 34.7 16 37.9 27 42.5 28 22.5 2
51.7 14 32.9 24 36.3 14 32.4 14 37.2 32 53.4 23 67.7 20

212.1 47.4 474.0 505.4 477.2 552.8 444.5
21002.5 9.4 8497.4 16712.6 16264.2 17144.9 19025.6 20962.1



Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%)

2530.1 13 3475.7 13 3748.5 10 4183.2 12 4405.7 4 4109.9 4 3114.3 12
412.6 17 1863.0 3 1902.3 8 2659.1 3 1940.8 3 1749.6 5 439.8 12
2758.1 8 1778.7 8 5533.8 8 4281.8 5 3496.4 12 3372.6 18 2626.0 22
1235.6 7 1547.0 7 171.4 13 689.4 5 199.3 5 149.4 12 449.0 14
653.8 5 1518.2 6 1182.9 16 1346.9 15 2105.7 8 1933.0 7 2381.0 7
2202.5 7 1100.3 9 1311.9 11 865.3 3 1784.1 13 1770.8 6 1366.6 11
218.5 18 2560.7 8 1962.9 5 4696.5 5 4259.0 5 3770.1 4 177.0 3

10011.1 13843.5 15813.7 18722.1 18190.9 16855.4 10553.6

100.4 2 94.5 16 142.2 3 122.8 18 148.6 16 104.7 17 0.0 0
14.7 11 22.4 8 35.6 15 27.6 19 26.9 10 29.6 1 0.0 0
90.2 4 175.7 13 251.5 13 298.6 6 259.6 20 314.7 17 67.5 11

205.3 292.7 429.2 449.0 435.2 449.0 67.5

98.2 13 28.5 6 17.5 16 16.5 13 20.6 8 19.3 14 275.2 4
93.1 16 273.8 13 183.9 16 89.3 8 173.5 22 138.6 10 0.0 0
61.4 9 182.7 16 185.0 11 167.2 16 174.8 7 160.8 12 70.9 1
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

112.5 5 340.1 12 512.9 15 176.9 15 427.1 4 94.8 8 26.7 17
0.0 0 295.6 13 144.3 20 49.4 15 62.3 3 32.6 10 61.0 3
0.0 0 64.1 6 75.2 15 59.3 7 51.5 5 136.7 9 0.0 0

114.3 26 77.7 15 124.0 13 115.7 12 99.9 15 72.9 18 73.9 8
vt 577.2 4 576.9 4 580.3 5 530.9 6 580.7 8 0.0 0
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 18.4 19
0.0 0 28.2 12 12.8 13 22.3 13 13.8 10 10.0 3 0.0 0

271.8 13 946.6 8 866.1 16 953.8 1 588.9 2 359.2 14 537.7 5
0.0 0 31.2 16 35.0 14 16.1 6 36.1 12 22.9 18 22.3 15
0.0 0 54.2 14 35.8 11 28.5 7 53.9 6 34.3 15 0.0 0

15/09/2010**
2010

01/08/201122/09/201018/08/2010 25/08/2010 01/09/2010 08/09/2010



296.0 18 591.2 10 689.3 12 606.3 11 735.1 4 515.6 15 706.1 10
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 19.2 13
0.0 0 33.8 12 59.4 7 44.3 9 28.5 10 22.9 12 0.0 0
25.4 19 132.7 18 189.4 13 105.5 12 85.7 18 92.7 8 96.6 17
vt 148.8 17 290.6 11 328.5 4 306.4 9 335.3 12 144.8 28
0.0 0 73.9 5 13.9 18 24.1 12 22.2 8 43.8 8 26.7 17
vt 160.5 16 183.8 6 125.7 12 185.4 11 176.6 18 50.5 18
0.0 0 22.2 17 29.8 12 26.0 7 20.5 17 25.6 11 0.0 0
0.0 0 49.9 3 27.5 14 27.3 12 26.9 9 21.9 6 18.6 16
47.6 9 644.4 4 734.5 10 832.7 14 1052.2 7 788.0 7 vt
0.0 0 44.8 7 64.6 16 38.4 18 46.5 20 41.3 19 0.0 0
0.0 0 69.2 11 158.2 12 112.0 15 115.0 15 230.8 7 0.0 0
vt 115.7 12 297.3 16 232.3 8 294.9 7 322.9 16 vt
vt 763.7 9 714.6 9 586.6 14 231.5 9 263.2 14 407.7 22

43.3 14 1525.2 5 1580.0 17 1271.1 2 1178.0 22 1792.8 12 267.4 14
0.0 0 0.0 0 109.1 15 62.3 17 99.5 16 96.7 12 0.0 0
0.0 0 34.4 15 56.0 20 21.0 17 31.0 19 64.4 3 30.6 16
vt 167.7 3 199.3 25 121.4 20 150.0 18 158.5 15 73.9 6

1163.5 7478.0 8166.9 6840.8 6842.6 6655.7 2928.5

36.2 12 229.5 14 322.8 4 51.6 20 42.2 11 40.2 17 156.6 6
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 24.9 23

154.3 26 439.6 10 332.0 4 156.5 16 156.4 19 180.0 10 189.1 12
1373.5 19 224.7 4 123.2 13 103.6 12 110.0 19 84.5 1 85.7 9

vt 136.3 11 91.4 16 44.6 13 43.2 12 39.3 7 91.3 6
0.0 0 20.7 11 24.1 11 22.5 13 18.4 15 11.3 12 21.5 12
vt 128.6 12 146.3 13 42.7 17 53.1 12 95.5 13 48.0 21
vt 1407.8 9 33.8 12 0.0 0 0.0 0 0.0 0 0.0 0

199.0 12 1441.1 13 1241.3 11 679.6 3 793.0 15 927.8 3 674.3 11
0.0 0 75.0 7 115.9 18 48.8 15 47.1 9 42.6 18 95.0 8

253.9 13 1178.5 1 563.1 7 567.6 17 344.7 7 174.5 7 174.8 12
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 93.8 8
0.0 0 47.9 9 29.2 17 9.0 8 12.5 12 0.0 0 27.9 9
vt 468.8 8 17.6 7 0.0 0 0.0 0 0.0 0 0.0 0
0.0 0 26.1 13 44.0 6 24.5 7 29.9 11 6.2 8 55.2 23
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 20.7 9

2016.9 5824.6 3084.7 1751.0 1650.6 1601.8 1758.7

vt 41.0 9 27.1 14 57.0 3 50.2 10 27.6 10 16.1 7



0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 vt
47.5 17 37.1 9 51.5 4 65.9 4 60.2 6 54.2 6 0.0 0
0.0 0 59.6 2 69.0 16 87.2 2 78.3 10 62.5 16 0.0 0
63.9 11 74.6 16 55.8 9 6.4 10 0.0 0 0.0 0 0.0 0
vt 108.4 10 113.5 10 307.9 10 315.6 11 285.4 2 0.0 0
0.0 0 92.6 3 104.7 5 59.0 12 51.9 20 0.0 0 0.0 0
vt 167.9 22 110.7 10 106.1 7 105.3 4 98.8 8 0.0 0
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 60.9 20

111.3 581.1 532.3 689.6 661.5 528.5 77.0
13508.2 28019.8 28026.9 28452.5 27780.7 26090.3 15385.4



Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%) Mean (n=3) RSD (%)

2874.7 6 2866.8 3 3710.5 2 3466.2 6 4092.6 11 3132.9 2 4570.5 13 3631.0 6
1778.7 14 1074.8 9 741.4 14 676.3 5 857.2 5 1429.3 7 890.7 6 631.5 7
6264.0 9 7413.4 7 7930.8 14 10255.3 8 12745.6 23 9000.9 19 3024.2 19 8779.2 14
59.2 17 43.9 4 54.0 4 54.8 7 95.1 10 99.7 1 123.6 13 86.2 3

1108.0 15 2154.3 18 1097.5 4 453.9 9 1087.8 14 635.1 11 968.1 5 1050.4 3
749.7 7 1046.8 17 1387.1 22 333.4 11 1179.8 23 595.3 17 956.6 22 844.2 6
1437.2 18 1173.5 11 1288.1 10 721.6 16 852.6 3 1245.8 13 1081.6 7 940.5 8

14271.5 15773.6 16209.4 15961.5 20910.7 16138.9 11615.4 15963.0

0.0 0 139.8 10 169.6 22 132.0 11 165.3 13 173.7 16 187.0 21 179.3 18
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

158.8 17 160.5 19 211.9 15 242.9 17 250.4 14 253.9 18 237.6 19 235.9 14
158.8 300.2 381.5 374.9 415.7 427.6 424.6 415.2

205.8 23 144.3 20 12.8 13 13.1 17 10.0 5 0.0 0 0.0 0 0.0 0
0.0 0 0.0 0 26.4 8 24.9 7 22.2 6 26.9 6 9.2 10 13.0 15
71.7 8 81.8 1 86.1 11 73.0 14 82.8 5 75.9 1 47.4 10 54.2 10
0.0 0 0.0 0 52.4 3 60.1 6 34.2 10 42.6 14 36.6 15 41.4 17
0.0 0 0.0 0 27.8 16 13.9 14 13.4 25 12.9 18 8.1 18 13.4 6
19.7 17 25.6 13 69.4 4 72.2 8 66.1 7 82.7 4 67.2 12 104.2 7
59.7 7 66.6 11 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
93.4 5 124.2 19 31.9 12 33.0 9 72.4 2 17.8 17 11.5 24 21.9 10
0.0 0 0.0 0 259.9 18 240.8 16 104.2 6 78.0 9 77.2 5 66.6 8
21.1 22 24.5 19 35.1 9 22.7 12 14.0 6 28.2 8 18.9 13 24.2 12
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

607.2 4 862.5 23 901.0 10 807.4 16 633.7 14 904.1 5 707.3 10 691.3 10
31.3 21 48.6 8 32.9 10 21.7 15 23.0 21 21.2 8 24.6 16 22.2 15
27.9 10 41.9 18 44.3 15 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

22/08/2011 29/08/2011 05/09/2011 12/09/2011 19/09/2011 26/09/2011**
2011

16/08/201108/08/2011

GC×GC peak area x 104 (arbitrary units)
AR-VA2



456.1 8 413.4 4 473.3 17 286.3 13 217.1 11 214.4 19 220.8 23 210.7 21
36.1 14 65.9 7 70.4 4 20.5 9 26.5 14 16.1 24 22.2 10 19.2 23
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
66.5 12 61.4 4 68.7 7 54.8 8 27.3 22 36.7 16 23.2 13 0.0 0
103.6 17 104.3 13 74.0 20 67.0 7 69.9 12 54.4 8 39.0 15 32.6 6
12.6 15 24.8 12 24.5 16 18.5 15 20.5 19 20.1 22 20.5 18 18.8 16
31.0 8 41.1 15 66.8 6 61.4 9 48.6 11 33.8 16 36.6 20 29.3 20
0.0 0 0.0 0 18.5 15 17.0 8 19.3 12 22.5 17 25.7 7 19.8 9
16.9 7 19.0 13 17.3 17 19.7 5 18.9 13 19.9 9 20.3 20 19.0 4
182.1 21 214.0 11 305.5 19 325.1 9 348.5 5 473.2 8 421.9 12 438.1 14
0.0 0 43.2 12 36.6 13 31.3 8 25.3 12 27.8 9 19.0 9 12.6 26
40.4 16 58.6 12 82.6 6 150.9 16 147.1 12 161.0 16 189.9 9 182.9 17
123.6 15 177.9 19 188.8 21 249.9 9 249.9 17 250.8 12 313.2 24 271.1 17
518.8 7 635.1 10 572.1 15 420.3 8 383.3 22 399.8 7 280.7 17 305.8 13
418.8 11 548.3 9 621.1 11 982.1 14 910.9 16 1017.7 9 1030.7 6 942.7 11
24.2 21 45.4 5 68.3 6 72.7 7 72.1 5 67.6 12 66.8 4 57.4 4
32.9 6 39.1 9 38.6 19 42.8 7 38.1 4 47.0 10 36.1 12 51.7 12
131.1 17 145.4 17 96.2 9 102.3 13 148.2 24 95.0 9 107.5 22 84.9 5

3332.5 4056.6 4403.3 4305.3 3847.5 4248.0 3882.2 3749.1

112.7 17 71.3 11 28.4 11 16.8 16 10.1 7 18.9 22 12.2 13 12.8 17
25.2 20 81.1 8 11.1 19 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
275.8 13 135.4 17 160.6 28 159.5 11 153.7 3 129.3 26 100.6 12 144.8 14
138.3 16 80.3 10 79.7 12 31.8 16 17.7 16 19.5 23 12.2 12 14.2 9
58.5 8 42.3 11 35.1 16 22.6 13 27.3 20 33.1 17 13.8 22 21.2 23
30.2 8 12.6 16 81.3 8 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
149.8 10 165.5 20 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

802.6 9 675.8 15 616.5 7 530.5 15 629.4 11 574.7 14 618.7 9 582.9 11
71.4 15 29.1 22 35.2 21 22.8 22 15.9 12 26.8 17 17.9 22 19.1 18
217.3 22 180.0 15 291.3 6 104.2 12 138.2 24 170.9 11 131.6 21 130.5 12
60.2 11 179.1 12 138.1 14 85.2 11 89.6 8 111.5 13 90.4 1 153.3 16
23.8 6 48.5 7 20.7 2 46.6 21 0.0 0 0.0 0 0.0 0 0.0 0
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
76.2 21 46.5 10 32.0 7 27.1 21 25.7 8 28.3 18 31.5 12 29.2 9
25.3 9 13.4 20 38.2 13 74.7 8 38.3 14 31.7 7 40.7 10 73.7 5

2067.3 1761.0 1568.4 1121.9 1145.8 1144.8 1069.6 1181.7

77.1 9 51.2 8 92.0 18 123.1 8 104.3 14 94.0 17 41.2 25 70.5 7



355.5 9 407.1 9 335.6 9 250.9 19 243.0 13 129.8 8 208.9 18 133.3 19
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
0.0 0 0.0 0 45.8 9 48.8 12 28.7 13 30.6 7 0.0 0 0.0 0
0.0 0 11.2 17 7.5 21 4.3 6 4.2 4 3.9 6 0.0 0 0.0 0
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
0.0 0 0.0 0 0.0 0 18.2 4 22.8 11 0.0 0 0.0 0 0.0 0
68.3 13 61.1 4 44.4 14 49.3 18 48.3 19 48.5 24 34.8 13 61.1 8

500.9 530.6 525.3 494.6 451.3 306.9 284.9 264.9
20331.0 22422.1 23087.8 22258.3 26771.0 22266.1 17276.7 21573.9



Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%) Mean (n=3) RSD (%)

1459.4 14 2282.8 23 2124.4 23 2795.7 31 1943.5 28 1464.1 5 2516.2 11 3143.8 8
176.9 26 362.2 20 808.0 4 2746.5 21 1704.9 27 1733.1 8 239.6 7 2019.9 7
1761.9 10 2264.3 20 2519.3 16 1349.2 14 1597.3 5 2779.0 18 3522.0 2 6610.0 10
1307.8 11 1761.0 22 1455.5 8 392.9 23 237.6 24 144.9 12 2648.7 5 2035.6 4
360.6 7 521.1 15 2361.6 20 2893.3 27 3296.6 20 2485.5 21 544.7 4 2179.2 12
564.3 27 739.0 6 1219.8 23 1845.8 39 4338.8 10 3086.5 20 2526.2 8 933.6 5
201.8 5 361.6 15 392.7 13 2246.4 14 1207.5 6 1257.7 4 436.1 7 1967.2 15

5832.7 8291.9 10881.3 14269.9 14326.3 12950.8 12433.5 18889.4

109.4 17 158.3 22 168.8 7 150.5 8 207.1 16 256.7 9 166.7 15 98.9 4
12.4 19 19.5 21 30.3 19 30.7 10 17.9 20 19.9 12 16.2 6 38.8 18
129.3 21 162.0 17 185.8 13 249.1 16 236.1 19 160.2 12 87.9 15 176.3 12
251.1 339.8 384.8 430.3 461.1 436.9 270.9 314.0

60.6 11 180.5 23 202.8 35 212.2 28 222.5 23 252.5 11 52.7 18 17.3 18
0.0 0 55.9 9 82.9 7 65.0 12 66.6 28 64.9 7 115.4 8 143.3 11
73.0 12 84.5 9 62.5 15 71.0 15 57.3 15 64.8 20 125.7 16 140.5 15
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
50.2 10 79.0 8 68.8 12 59.5 8 29.0 28 20.8 31 0.0 0 0.0 0
176.2 22 233.3 16 273.4 13 288.3 13 258.6 28 277.0 21 121.4 16 267.6 17

vt 148.4 16 166.7 19 279.8 15 213.9 22 226.1 16 vt 278.4 14
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 46.1 16
24.6 14 142.0 3 252.8 17 234.2 23 222.0 17 282.4 13 23.8 12 66.8 8
vt 176.4 13 178.7 26 169.2 24 278.7 13 185.4 12 vt 582.5 2
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 31.1 16

175.1 14 925.2 6 600.3 12 608.6 6 567.3 17 539.4 3 239.4 14 1060.4 11
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 31.0 5
0.0 0 66.6 10 115.1 17 61.2 13 75.2 16 75.6 16 vt 60.7 4

02/10/2012**
2012

27/08/2012 03/09/2012 11/09/2012 18/09/2012 25/09/2012 18/08/2010 25/08/2010



335.8 20 546.8 11 533.4 10 527.1 9 492.7 9 481.0 10 313.9 16 574.3 11
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 31.0 6
27.1 10 42.0 17 34.3 16 57.3 9 97.8 21 82.5 17 20.4 7 113.9 17
vt 366.4 16 314.8 20 296.0 25 271.5 21 304.7 14 vt 198.3 9
0.0 0 33.1 24 54.8 16 66.8 18 74.9 26 69.9 33 0.0 0 34.8 3
vt 315.8 19 288.9 25 345.7 4 318.4 20 287.4 5 vt 207.2 2
0.0 0 28.0 9 31.6 9 45.4 17 59.2 29 34.8 18 0.0 0 20.0 5
0.0 0 23.1 10 45.1 9 18.3 25 14.5 24 41.6 28 0.0 0 25.3 18
38.2 10 293.8 17 319.3 21 283.7 16 287.4 18 323.8 22 175.5 18 682.9 6
0.0 0 47.7 16 19.4 17 25.9 27 35.2 33 41.3 30 0.0 0 36.9 11
0.0 0 39.9 6 62.4 10 41.0 16 61.5 10 39.6 9 0.0 0 68.8 8
vt 218.5 21 242.5 33 223.7 26 205.8 15 168.0 19 vt 164.8 1
vt 760.3 11 523.7 7 599.3 15 293.0 13 329.7 20 vt 960.4 2

175.4 15 397.2 30 291.9 5 214.5 16 224.5 20 319.4 27 35.8 14 1536.0 9
0.0 0 44.7 11 45.1 13 44.6 27 57.6 22 51.3 15 0.0 0 0.0 0
0.0 0 32.7 25 122.7 19 74.2 7 47.2 18 50.7 16 0.0 0 83.0 14
vt 209.4 28 232.4 14 186.9 21 152.9 16 224.2 11 vt 108.0 13

1136.2 5491.3 5166.3 5099.3 4685.2 4838.7 1224.0 7571.0

226.9 29 489.4 12 373.2 9 320.3 18 239.5 16 287.4 12 25.5 12 412.1 17
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

149.4 21 307.8 16 264.9 21 245.4 20 180.4 21 196.8 22 320.1 5 462.2 9
58.4 31 263.0 25 200.7 18 189.7 26 156.7 28 95.7 21 1018.5 14 340.1 4
0.0 0 198.0 32 150.4 16 138.2 33 169.1 15 84.4 10 vt 267.7 5
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 17.9 10
vt 0 146.7 33 175.1 35 176.6 37 184.3 29 43.0 8 44.3 2 132.1 11
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 vt 1176.1 5

161.1 8 505.3 12 346.3 12 297.8 22 270.5 18 274.4 13 252.3 12 1176.1 5
0.0 0 69.9 8 30.0 29 21.8 12 22.2 12 26.5 14 0.0 0 74.5 7

172.7 27 524.5 8 319.5 23 308.9 15 241.6 20 284.3 21 252.0 17 1306.7 1
0.0 0 42.4 16 30.5 22 14.7 24 27.8 11 26.9 18 0.0 0 0.0 0
0.0 0 32.8 12 20.8 30 19.8 24 25.3 9 22.2 23 0.0 0 51.4 2
0.0 0 39.1 7 23.5 7 29.9 14 30.4 15 45.5 24 vt 621.3 17
vt 34.8 17 27.4 20 21.8 27 32.8 12 33.1 31 0.0 0 21.9 18

35.0 10 54.8 11 36.3 27 29.3 10 38.5 19 39.6 10 0.0 0 0.0 0
803.5 2708.4 1998.7 1814.2 1619.2 1460.0 1912.8 6060.1

26.5 11 142.4 18 98.9 18 95.5 15 90.9 21 89.4 5 vt 36.3 9



vt 316.9 15 321.7 16 240.4 20 216.4 26 131.9 30 0.0 0 0.0 0
0.0 0 70.9 10 67.2 11 116.7 15 114.5 13 84.3 12 79.8 17 55.7 14
vt 90.4 5 79.7 12 84.4 6 86.7 14 64.0 17 0.0 0 6.3 7
0.0 0 83.5 8 51.3 24 75.9 14 73.2 14 81.8 19 0.0 0 42.0 10
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 vt 109.0 16
vt 93.6 13 81.9 9 49.5 13 44.5 19 47.0 10 0.0 0 85.7 17
0.0 0 0.0 0 42.1 30 41.6 9 43.6 13 41.6 22 vt 140.8 10
41.8 20 48.8 14 34.6 21 163.5 14 104.6 21 78.3 12 0.0 0 0.0 0
68.3 846.5 777.5 867.5 774.4 618.4 79.8 475.9

8091.8 17678.1 19208.6 22481.1 21866.2 20304.7 15920.9 33310.4



Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%) Mean (n=3) RSD (%)

3538.7 10 4331.4 13 5721.1 3 2722.6 10 2657.0 14 2610.1 1 4306.4 4 2260.4 11
1824.8 15 2664.4 5 1841.0 10 147.5 21 579.7 9 1248.1 5 1509.7 12 860.9 11
4289.6 10 1940.5 13 3411.0 13 1508.7 20 4188.7 23 6989.3 11 9237.1 7 10947.3 15
165.9 10 531.8 14 318.4 10 275.7 20 343.8 19 53.6 21 320.6 6 450.7 20
1353.4 16 1448.0 15 1422.0 9 798.3 6 1216.5 20 1314.4 16 1257.6 16 953.9 19
1478.7 6 1557.7 5 1792.3 8 537.1 15 873.2 18 1145.6 7 1132.3 18 1107.6 16
2072.4 7 5053.9 5 3717.3 2 58.3 13 395.2 5 1280.7 7 1794.9 15 727.9 22

14723.7 17527.7 18223.1 6048.1 10254.2 14641.9 19558.7 17308.8

149.3 11 126.6 12 136.7 7 0.0 0 0.0 0 118.4 7 131.0 16 168.6 25
28.5 13 21.1 14 27.8 6 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
264.1 17 319.4 18 326.9 11 59.7 13 81.5 5 141.9 14 203.3 9 182.1 24
441.9 467.1 491.4 59.7 81.5 260.3 334.2 350.7

30.9 15 17.0 8 12.2 8 176.1 18 163.0 16 113.2 17 9.0 8 10.6 5
166.9 15 149.7 16 105.0 5 0.0 0 0.0 0 0.0 0 25.4 13 22.7 21
180.2 10 84.2 3 126.8 17 71.9 3 59.5 10 79.0 8 77.6 15 67.1 3
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 50.9 7 55.7 7
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 27.7 8 14.4 20

562.6 3 129.9 16 524.8 9 23.0 23 17.2 16 23.1 12 66.1 12 62.8 4
160.6 16 62.6 4 645.3 6 62.1 5 58.0 8 60.8 22 0.0 0 0.0 0
67.3 9 30.6 9 70.5 7 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
114.2 10 120.2 17 121.6 4 72.3 10 58.4 20 106.1 15 32.7 16 32.7 22
541.7 6 436.1 7 592.8 8 0.0 0 0.0 0 0.0 0 247.7 15 199.1 19
0.0 0 0.0 0 0.0 0 13.7 21 13.7 20 20.2 4 22.1 18 30.9 14
16.5 16 12.2 16 27.3 9 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

1643.8 4 1499.2 18 667.4 12 508.2 14 496.6 4 566.2 21 597.6 14 805.2 8
28.5 3 12.6 9 28.8 17 23.2 10 23.4 9 47.6 17 30.9 9 23.4 11
36.5 15 24.2 13 32.0 2 vt 25.5 17 36.2 5 43.0 7 0.0 0

AR-SM1
2010 2011

01/09/2010 08/09/2010** 15/09/2010 01/08/2011 08/08/2011 16/08/2011 22/08/2011 29/08/2011**



597.6 1 1224.0 3 909.0 7 606.3 20 428.2 9 415.9 13 450.2 16 275.5 13
0.0 0 0.0 0 0.0 0 20.5 3 28.4 14 63.5 8 67.2 4 21.5 12
53.8 5 53.8 5 40.4 6 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
128.5 10 138.8 1 99.3 17 96.3 8 63.7 19 57.0 22 58.2 9 51.2 9
217.5 11 137.1 11 335.9 6 70.5 5 82.8 20 63.0 22 57.9 17 57.5 10
23.3 14 23.3 14 45.4 6 24.1 21 11.4 6 21.2 11 25.0 10 15.8 16
192.7 18 96.5 14 154.1 15 40.7 8 28.7 17 37.3 20 58.0 4 55.6 10
25.9 9 27.3 13 18.0 11 0.0 0 0.0 0 0.0 0 16.2 24 16.0 12
27.2 16 18.6 16 24.5 12 20.7 22 19.5 26 20.6 19 25.8 9 18.9 9
630.8 6 962.0 5 1173.2 18 vt 161.5 5 204.5 8 259.2 17 319.3 14
48.9 15 48.7 4 45.3 19 0.0 0 0.0 0 39.5 19 27.5 16 23.8 10
195.0 6 57.8 13 199.7 18 0.0 0 27.6 11 47.8 17 73.7 5 119.0 11
339.7 15 274.9 2 182.3 19 0.0 0 0.0 0 149.1 27 199.2 13 229.7 15
541.1 8 363.6 3 457.9 17 359.5 23 333.7 18 531.0 20 539.9 23 386.3 13
1324.3 9 1197.5 16 1401.8 10 89.4 5 292.5 27 426.2 18 455.5 17 975.7 9
149.0 3 60.4 3 96.0 1 0.0 0 0.0 0 45.5 19 68.3 9 69.3 10
54.8 17 23.3 12 26.9 14 26.3 24 26.4 21 38.5 16 39.2 15 44.0 23
113.4 19 131.2 16 198.6 11 67.4 5 87.0 5 120.3 14 89.9 8 90.9 7

8213.5 7417.2 8362.8 2372.3 2506.7 3333.1 3741.8 4094.7

226.1 115 48.4 19 46.4 16 166.4 6 167.2 13 12.3 14 25.6 17 25.1 18
0.0 0 0.0 0 0.0 0 16.5 17 13.8 7 19.1 6 0.0 0 0.0 0

386.7 2 135.3 14 150.3 17 196.7 23 267.5 20 149.6 4 133.7 12 169.0 19
150.2 2 238.4 12 138.9 19 114.7 15 108.4 13 88.3 14 81.7 17 45.2 11
104.8 14 104.8 18 53.7 3 90.4 19 83.7 8 50.7 19 34.4 18 26.2 14
30.4 7 32.1 10 32.1 10 30.7 3 32.3 11 13.8 15 69.3 10 0.0 0
161.8 12 46.9 11 53.2 10 0.0 0 35.4 18 148.0 13 0.0 0 0.0 0
41.7 15 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

1177.5 11 711.5 5 693.3 7 595.5 11 778.4 7 628.6 12 582.9 10 488.4 17
167.7 7 41.6 14 43.9 7 98.9 13 68.4 21 43.7 12 37.2 16 19.1 9
634.1 2 305.2 14 520.6 16 140.1 12 223.5 20 178.2 18 283.5 16 116.1 17
0.0 0 0.0 0 0.0 0 47.4 11 51.0 19 224.5 11 144.8 23 82.1 13
29.8 11 26.2 14 27.8 15 36.4 20 22.1 22 31.2 7 13.3 20 36.1 8
18.6 3 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
54.6 6 26.3 19 24.4 8 53.6 7 48.2 9 42.9 8 30.2 5 29.0 13
0.0 0 0.0 0 0.0 0 22.7 24 22.3 17 17.0 22 25.5 19 41.1 17

3184.0 1716.6 1784.7 1610.0 1922.1 1647.9 1462.2 1077.4

48.8 13 55.9 6 26.4 19 16.6 6 51.5 12 50.7 6 105.6 10 127.8 18



0.0 0 0.0 0 0.0 0 vt 418.2 21 392.0 12 266.9 9 218.8 22
109.5 12 183.3 11 178.6 18 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
94.9 6 93.5 3 97.1 7 0.0 0 0.0 0 vt 41.4 23 46.4 9
46.8 1 5.6 8 0.0 0 0.0 0 0.0 0 11.1 12 6.9 4 3.9 4
136.1 4 264.9 12 300.4 14 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
98.3 2 37.2 10 46.3 4 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
133.2 17 102.0 4 95.2 10 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
0.0 0 0.0 0 0.0 0 59.1 7 79.9 20 59.9 3 47.2 21 41.8 3

667.7 742.4 744.0 75.7 549.7 513.6 468.0 438.8
27230.8 27871.1 29606.0 10165.9 15314.1 20396.8 25565.0 23270.4



Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%)

3314.1 19 1601.3 20 2582.5 19 1809.0 10 2132.9 17 1929.2 17 1541.6 5
1067.1 17 226.7 29 426.8 16 1113.7 12 1886.1 8 2227.6 9 1345.1 23
9939.0 7 1683.7 10 1990.3 9 1580.9 21 2421.5 19 2032.1 17 1775.7 19
97.6 3 929.5 18 1246.8 22 1328.1 21 364.4 17 231.0 25 89.6 14
731.4 14 442.1 24 587.2 7 718.4 22 3262.0 26 2751.7 9 3268.1 16
753.5 11 451.2 13 526.3 15 2202.3 20 1038.1 19 3418.3 9 4399.3 18
1106.9 14 363.3 17 471.8 12 432.3 12 1845.0 20 1411.8 17 876.0 14

17009.6 5697.8 7831.7 9184.7 12949.9 14001.8 13295.5

172.8 22 124.0 20 91.1 8 124.6 17 147.3 24 163.8 18 239.3 29
0.0 0 15.3 13 20.0 14 26.6 20 21.9 16 21.3 27 19.6 17

221.6 15 157.7 17 147.6 28 138.4 26 208.7 25 196.3 23 193.8 17
394.3 297.1 258.6 289.6 377.8 381.4 452.7

12.6 20 53.7 19 215.4 21 226.7 31 179.9 25 187.5 25 226.1 10
18.1 10 0.0 0 40.6 8 67.9 22 57.3 10 68.7 4 46.7 18
81.4 11 44.2 30 73.2 27 66.3 16 57.0 17 67.7 19 57.0 15
32.0 11 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
14.4 14 43.0 23 63.3 7 62.4 8 50.5 7 45.8 21 31.8 4
66.4 3 168.3 17 211.2 18 263.4 11 215.1 19 242.5 19 290.2 7
0.0 0 vt 147.6 28 154.2 17 122.7 21 165.0 15 199.7 15
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
54.1 8 26.3 20 178.5 23 233.4 29 226.5 25 220.5 27 274.8 21
92.3 10 vt 146.9 12 210.0 27 180.5 16 209.4 31 215.5 14
25.1 17 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

685.4 24 186.1 23 810.1 11 494.5 7 421.7 5 434.8 19 526.1 4
18.1 13 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
0.0 0 0.0 0 79.5 27 97.5 8 63.6 14 75.3 29 54.2 29

25/09/2012 02/10/2012**
2012

03/09/2012 11/09/2012 18/09/201205/09/2011 27/08/2012



213.2 15 318.2 8 444.4 17 366.9 10 342.8 17 399.3 7 462.8 12
27.8 11 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
29.0 13 27.1 17 34.2 12 29.7 11 33.8 19 42.3 13 42.4 26
62.1 2 vt 344.3 13 262.3 18 164.2 26 214.9 22 258.2 23
17.0 6 0.0 0 30.8 12 66.9 15 70.8 14 66.2 14 58.6 24
44.5 23 vt 281.0 24 283.2 20 279.2 23 260.5 15 207.2 23
12.2 13 0.0 0 20.5 12 31.9 18 26.2 13 19.2 21 24.7 17
16.0 11 0.0 0 28.1 7 32.0 14 20.7 13 41.6 15 42.0 19
327.5 16 25.7 18 283.8 27 263.2 16 288.1 15 258.5 19 270.4 18
20.1 10 0.0 0 48.2 12 19.0 23 28.6 26 65.0 17 29.1 20
133.1 10 0.0 0 34.6 14 59.0 13 41.4 11 49.7 7 42.3 6
209.0 15 vt 222.7 23 231.8 28 210.3 28 217.7 17 175.0 19
332.4 21 vt 647.3 14 333.5 10 366.2 11 312.3 18 295.4 15
814.6 15 193.4 27 346.0 23 283.0 29 149.1 6 190.9 11 241.5 18
71.0 4 0.0 0 45.4 6 36.0 21 24.5 19 46.2 4 45.5 26
39.4 4 0.0 0 31.2 23 108.3 20 77.2 16 52.0 24 54.2 24
117.1 13 vt 231.9 26 230.2 23 193.3 17 224.0 19 192.2 24

3585.6 1086.1 5040.7 4513.2 3891.5 4177.5 4363.4

72.7 19 116.0 16 437.9 24 327.1 12 268.3 10 248.5 12 239.5 8
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

131.0 24 130.2 14 341.8 22 265.8 20 199.6 27 162.6 4 177.9 25
30.9 25 43.7 27 236.1 20 182.4 19 180.2 26 168.3 22 38.1 5
26.5 16 vt 161.9 21 133.5 33 114.9 28 103.8 10 95.7 9
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
0.0 0 vt 141.8 23 128.7 27 176.4 31 167.4 22 44.5 15
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

494.3 11 262.4 22 471.3 12 288.0 25 283.2 23 258.4 21 261.8 10
26.9 5 0.0 0 65.0 19 32.0 17 20.0 4 20.1 17 29.8 18
119.7 20 237.8 23 533.7 10 243.1 26 188.8 23 214.3 12 227.0 19
69.0 11 0.0 0 41.6 20 31.6 11 11.5 16 26.1 9 30.2 11
0.0 0 0.0 0 36.1 12 19.6 16 19.8 26 26.3 21 24.3 19
0.0 0 0.0 0 25.0 22 31.2 16 28.9 17 32.1 20 47.6 20
28.7 6 0.0 0 24.4 14 25.1 22 20.1 29 26.2 13 30.9 10
57.7 17 25.3 28 37.6 15 47.8 22 26.6 14 39.3 23 43.6 23

1057.2 815.4 2554.2 1756.0 1538.5 1493.3 1291.1

59.3 17 24.4 18 131.8 29 102.5 27 112.5 18 96.6 14 84.9 10



250.9 10 vt 245.1 14 199.3 22 192.2 22 178.0 29 154.4 9
0.0 0 0.0 0 84.4 8 66.5 15 89.8 25 92.6 15 75.5 10
40.0 5 vt 56.4 21 70.9 21 85.9 13 85.0 7 69.8 7
4.7 21 0.0 0 67.7 10 68.7 11 62.7 13 73.8 16 81.3 15
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
0.0 0 vt 76.8 11 51.7 20 54.7 22 41.7 23 42.9 22
13.5 12 0.0 0 0.0 0 34.6 23 42.3 9 44.2 14 33.5 23
51.7 22 63.0 10 49.1 12 35.1 24 93.6 17 84.1 10 74.1 13

420.1 87.4 711.3 629.4 733.6 696.0 616.4
22466.9 7983.7 16396.6 16372.9 19491.3 20750.0 20019.0



Table S9
Volatile components determined for Vitis vinifera  L. cv. Bical variety obtained from 3 parcels and 3 years of harvests, during maturation, at Bairrada Appellation.

1Dtr(s),2Dtr(s)a Compound Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)

C6 compounds

194, 0.640 Hexanal 2603.9 15 3120.4 20 4052.6 12 4052.6 12 4307.8 16

206, 0.630 3-Hexenal 3909.3 19 2194.3 14 1932.9 5 2172.9 3 1113.6 18

230, 0.651 2-Hexenal 0.0 0 4541.9 9 5774.7 6 7396.7 12 5357.1 7

242, 0.630 3-Hexen-1-ol 697.0 14 1979.4 13 797.4 4 834.0 2 1220.0 9

248, 1.076 2-Hexen-1-ol 1510.6 14 4355.2 7 4249.9 4 1640.4 10 4399.5 6

266, 0.903 1-Hexanol 1777.8 9 4188.4 2 3724.6 7 3614.3 15 2772.7 9

296, 0.930 2,4-Hexadienal 635.6 15 2267.8 17 3223.4 10 4048.9 6 1331.4 15

Sub-Total 11134.2 22647.3 23755.5 23759.8 20502.1

Aromatic alcohols

420, 3.014 Benzyl Alcohol 174.7 12 166.3 18 257.2 16 363.7 11 383.5 11

446, 1.426 α,α-Dimethyl Benzyl alcohol0.0 0 21.5 12 20.8 13 24.8 3 18.4 20

470, 1.960 2-Phenylethanol 32.0 12 192.2 9 343.4 7 317.8 5 323.2 11

Sub-Total 206.8 379.9 621.4 706.4 725.1

Monoterpenic compounds

314, 0.440 α-Pinene 20.3 18 16.9 17 11.2 19 18.9 5 13.6 16

344, 0.457 β-Pinene* 11.6 14 13.3 13 13.3 1 10.7 9 12.2 16

392, 0.405 m -Cymene 20.2 13 20.9 6 18.1 3 19.3 15 18.9 9

398, 0.476 Limonene 31.1 10 57.5 8 37.2 8 68.3 9 174.4 12

404, 0.476 1,8-Cineole vt 267.2 20 137.3 15 40.4 2 42.1 2

428, 0.678 Linalool oxide (isomer) 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

434, 0.727 Dihydromyrcenol vt 410.0 12 370.4 16 447.1 10 486.6 9

446, 0.700 Dihydrolinalool 0.0 0 0.0 0 0.0 0 12.5 16 13.2 4

452, 0.746 Linalool * 20.3 9 137.5 8 444.8 11 121.6 2 125.9 16
464, 0.844 Fenchol (exo) 0.0 0 0.0 0 0.0 0 38.8 18 34.3 5

2010

02/08/2010 09/08/2010 16/08/2010 23/08/2010 30/08/2010



470, 0.646 Hotrienol 163.1 25 445.3 11 315.2 16 368.0 12 259.7 9

494, 1.050 Pinocarveol vt 44.2 18 44.2 18 44.2 18 0.0 0

512, 0.635 Nerol oxide vt 146.4 10 54.6 5 42.7 5 15.0 16

518, 0.834 Ocimenol vt 65.7 9 138.0 19 216.8 12 206.4 10

524, 0.860 Borneol 0.0 0 0.0 0 0.0 0 28.5 9 20.5 5

530, 0.984 Menthol* vt 182.2 16 150.5 9 141.4 20 194.0 18

536, 0.715 Terpinen-4-ol 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

536, 1.269 Cymen-8-ol 0.0 0 15.9 16 14.9 6 26.2 7 23.7 14

542, 0.835 α-Terpineol vt 264.4 12 164.4 13 391.7 18 400.9 19

560, 0.850 Verbenone 0.0 0 0.0 0 0.0 0 66.4 20 68.3 12
566, 0.703 Menth-1-en-9-al vt 52.0 13 21.0 16 44.4 10 56.9 16
584, 0.873 Geraniol (isomer 1) * 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
584, 0.943 β-Citronellol* 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

590, 0.737 Geraniol (isomer 2) * 45.3 3 114.7 17 139.0 20 145.8 11 71.0 15

596, 0.976 Citral (isomer 1) 0.0 0 0.0 0 53.0 15 53.7 4 68.2 4

602, 0.815 Carvone * vt 65.6 6 70.9 13 76.7 15 24.4 11

626, 0.775 Citral (isomer 2) 20.6 8 20.6 8 20.6 8 59.3 15 59.3 15
Sub-Total 332.6 2340.3 2218.4 2483.4 2389.3

C13 Norisoprenoids

566, 0.532 m/z  159, 91, 131 103.8 13 88.7 1 32.9 12 37.3 4 26.6 12

620, 0.595 Vitispirane 213.0 17 125.3 10 105.1 16 77.9 6 16.4 3

632, 0.517 Theaspirane (isomer 1) 145.6 25 226.5 15 128.8 9 29.8 7 32.0 20

644, 0.528 Theaspirane (isomer 2) 0.0 0 119.4 16 31.3 16 12.4 7 9.0 12

674, 0.681 β-Damascenone (isomer 1)156.2 18 55.4 15 102.4 6 38.1 6 12.4 7

700, 0.702 β-Damascenone (isomer 2) vt 722.8 12 370.2 6 762.4 6 468.3 2

724, 0.750 Hydroxydihydroedulan 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

736, 0.648 Geranylacetone * 361.9 13 222.1 16 312.1 4 166.2 9 267.2 15

742, 0.850 5,6-Epoxy-β-ionone 0.0 0 0.0 0 0.0 0 14.8 9 14.8 9

760, 0.868 3,4-Dehydro-β-ionone vt 18.1 10 8.8 2 15.4 7 15.4 7

778, 0.635 α-iso-methyl ionone 24.0 18 18.7 10 19.7 5 22.0 6 22.0 6

784, 0.717 β-Ionone* 0.0 0 78.7 19 60.1 15 85.6 4 56.4 5

900, 0.894 Methyl dihydrojasmonate 0.0 0 41.1 2 14.3 24 35.3 8 43.5 8
Sub-Total 1004.5 1716.7 1185.8 1297.1 984.1



Sesquiterpenic compounds

656, 0.583 Longipinene epoxide 22.2 10 42.8 5 43.5 11 33.7 9 0.0 0

680, 0.469 α-Copaene 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

712, 0.508 Longifolene 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

756, 0.630 Aromadendrene 32.0 13 45.6 5 48.2 16 36.4 10 13.8 15

790, 0.660 α-Farnesene vt 41.0 5 30.9 3 23.7 18 16.5 19

808, 0.630 Calamenene 31.3 3 34.0 1 34.8 4 5.6 9 14.8 20

826, 0.629 α-Calacorene 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

832, 0.880 Nerolidol vt 82.1 9 100.6 3 76.2 3 72.1 4

850, 0.751 Globulol 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

886, 0.690 β -Eudesmol vt 101.1 2 109.9 8 139.3 20 107.7 9

912, 0.654 m/z  119, 91, 191, 109 (alcohol)vt 118.5 9 106.5 3 310.3 3 345.0 14

Sub-Total 85.5 465.0 474.4 625.2 569.9

Diterpenoid

1116, 0.929 Phytol 0.0 0 0.0 0 0.0 0 32.5 6 39.8 5
Total 12763.6 27549.3 28255.5 28904.3 25210.2

a 1Dtr (s), 2Dtr(s): first and second dimension retention times (in seconds) of each compound determined.

* Compounds identified based on the comparison between the obtained mass spectra and mass spectra of high purity chemical standards.

** Data obtained at maturity

vt - vestigial



Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%)

2621.4 16 5305.0 18 3554.6 22 2313.1 12 5880.8 14 4392.6 14 2317.3 14

1694.3 9 1194.6 17 586.1 14 976.4 11 1239.6 22 733.9 6 1226.4 11

10260.3 8 5594.6 19 2476.4 9 6458.7 13 6881.4 17 8847.4 2 1500.1 5

668.6 10 326.6 4 1311.8 19 1991.5 18 503.1 5 381.5 18 503.1 9

2818.1 9 3972.0 14 3300.4 13 2486.6 7 2162.8 13 2450.8 21 1420.2 8

1957.5 6 2757.6 2 2229.2 16 2729.8 22 1155.3 21 2837.4 29 1182.3 15

2220.2 10 1907.8 17 385.3 13 610.9 21 945.0 16 1040.8 10 391.0 5

22240.4 21058.1 13843.8 17566.9 18767.9 20684.4 8540.3

533.5 8 417.3 11 147.8 13 132.0 23 181.9 14 176.5 17 126.8 13

0.0 0 20.1 7 vt vt vt

174.3 9 245.0 3 142.0 5 124.1 19 217.1 8 252.9 23 143.4 10

707.8 682.4 289.8 256.1 399.0 429.4 270.2

15.4 18 13.9 7 16.0 12 16.5 14 6.7 5 15.4 21 18.1 14

16.4 15 10.5 13 24.5 13 14.9 5 7.9 5 44.2 7 14.6 18

13.6 16 18.3 20 0.0 0 0.0 0 0.0 0 18.6 8 10.2 20

142.1 3 44.9 10 29.1 15 12.3 21 9.7 24 51.3 4 41.5 9

30.9 4 0.0 0 49.2 5 40.1 15 55.2 8 82.5 4 0.0 0

0.0 0 0.0 0 58.7 8 47.9 19 50.2 15 0.0 0 13.9 23

454.0 5 388.3 6 79.2 3 31.2 8 39.9 5 109.5 12 22.2 23

15.2 12 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

49.5 14 142.9 16 87.2 8 103.8 13 95.7 17 100.6 18 26.6 25
21.0 9 25.7 19 36.7 20 55.4 7 66.2 6 0.0 0 21.9 21

BI-VA1

2011

06/09/2010** 13/09/2010 27/07/2011 03/08/2011 10/08/2011 17/08/2011** 16/08/2012



106.0 9 253.4 6 104.8 21 153.2 21 116.3 10 109.2 14 160.4 13

0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

49.6 2 32.3 6 36.7 14 44.6 7 28.7 33 17.5 11 vt

148.0 20 115.2 6 0.0 0 0.0 0 0.0 0 0.0 0 vt

43.3 7 0.0 0 70.7 22 62.9 10 40.6 8 46.4 2 0.0 0

152.5 32 128.2 5 9.9 7 28.8 14 39.2 6 56.9 4 vt

9.7 2 24.7 10 0.0 0 0.0 0 0.0 0 29.3 21 0.0 0

23.7 14 37.2 14 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

368.5 6 286.3 5 0.0 0 0.0 0 0.0 0 39.6 22 vt

25.6 8 47.1 9 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
28.4 14 75.5 6 0.0 0 0.0 0 0.0 0 0.0 0 vt
0.0 0 0.0 0 vt 98.3 13 130.1 4 89.7 8 0.0 0
0.0 0 0.0 0 0.0 0 0.0 0 46.5 7 18.2 13 0.0 0

134.2 12 113.9 10 7.7 7 82.8 7 50.8 14 77.1 12 30.8 4

42.2 14 72.8 15 0.0 0 0.0 0 0.0 0 29.6 9 0.0 0

15.0 16 0.0 0 vt 23.2 16 35.5 8 0.0 0 vt

24.3 15 56.4 6 0.0 0 0.0 0 0.0 0 60.9 14 27.5 17
1929.0 1887.4 610.4 815.9 819.2 996.5 387.5

13.0 18 27.0 14 70.5 2 97.7 6 27.9 7 20.6 12 120.4 10

45.9 7 27.3 9 124.6 25 166.9 18 59.5 7 58.9 11 201.7 5

13.6 16 0.0 0 57.3 18 44.4 19 42.8 14 12.8 25 147.3 6

3.3 11 0.0 0 36.4 14 27.5 19 8.2 8 10.9 13 43.3 9

0.0 0 0.0 0 381.4 5 398.4 9 209.3 16 29.6 4 147.9 15

383.7 7 262.7 10 0.0 0 0.0 0 0.0 0 0.0 0 219.4 16

0.0 0 0.0 0 30.1 21 55.2 20 21.7 20 25.0 10 65.2 5

331.2 20 258.1 12 0.0 0 0.0 0 0.0 0 0.0 0 307.4 8

17.8 10 9.2 3 128.1 14 178.1 16 75.5 20 138.4 21 0.0 0

13.2 5 13.8 10 0.0 0 0.0 0 0.0 0 12.3 13 23.7 17

15.7 15 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 15.1 26

19.0 8 43.9 11 45.5 11 24.9 21 31.1 24 14.3 15 38.2 6

33.3 6 0.0 0 16.5 21 21.0 15 43.5 13 18.0 9 15.7 10
889.7 641.9 890.5 1014.2 519.4 340.9 1345.4



0.0 0 0.0 0 50.8 8 100.0 3 60.3 14 50.4 18 30.6 19

0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 vt

45.5 17 18.6 15 0.0 0 vt 17.4 8 25.9 7 16.8 24

32.9 9 31.9 7 0.0 0 vt 18.4 18 22.8 14 0.0 0

17.4 3 15.4 9 0.0 0 0.0 0 0.0 0 0.0 0 vt

0.0 0 0.0 0 12.7 15 9.6 12 17.4 4 46.9 9 vt

60.5 12 65.4 4 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

85.2 3 72.3 3 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

64.1 8 101.4 6 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

261.5 9 109.5 9 0.0 0 vt vt 45.7 5 vt

567.1 414.6 63.4 109.6 113.5 191.7 47.4

42.6 2 41.1 5 0.0 0 0.0 0 vt vt 0.0 0
26376.6 24725.5 15697.931 19762.5322 20618.973 22642.948 10590.793



Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%)Mean (n=3)RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)

1940.4 3 2603.0 9 2181.5 19 2502.6 10 4450.8 8 4425.1 8 3513.7 7

1237.9 8 1566.1 16 2011.5 21 2300.7 16 3164.8 10 2194.1 13 1518.1 16

1794.5 19 1834.1 13 2042.5 13 2001.7 19 3896.1 6 3853.1 6 4764.5 11

525.2 13 523.9 7 537.9 16 522.6 6 661.6 11 2350.8 17 1106.2 11

1417.3 25 1526.8 16 1602.3 16 1315.7 25 2216.0 7 4364.1 6 4623.9 19

2019.0 12 2243.5 8 1377.2 11 1013.3 14 2174.3 15 3473.2 9 2273.1 7

418.4 20 536.0 6 538.2 15 576.2 3 1335.4 6 2704.3 15 2750.3 14

9352.7 10833.4 10291.1 10232.9 17899.0 23364.6 20549.8

193.6 7 216.1 23 240.6 8 261.3 4 154.3 10 242.0 10 333.9 7

16.9 12 23.7 14 21.7 7 20.9 9 0.0 0 26.6 5 23.2 10

175.0 21 172.1 18 244.9 6 231.0 6 135.8 18 268.3 14 331.5 8

385.5 411.9 507.1 513.2 290.1 536.9 688.7

21.0 15 13.9 19 10.3 7 10.5 11 34.9 14 23.0 18 18.0 7

16.9 14 20.6 15 27.1 15 13.4 21 14.3 17 16.4 4 20.5 13

21.3 12 21.3 13 24.0 16 19.7 16 20.4 11 19.3 15 14.8 14

103.1 14 111.9 18 124.9 8 108.5 25 41.3 14 41.7 11 38.7 17

47.2 11 56.5 12 105.2 13 74.9 3 vt 548.1 7 1123.4 10

12.8 10 11.9 25 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

21.0 21 32.6 18 38.9 17 21.4 20 vt 562.1 3 565.4 5

0.0 0 0.0 0 0.0 0 0.0 0 vt 20.5 17 12.8 20

77.1 8 84.4 5 129.2 27 100.5 8 vt 120.4 20 106.4 6
37.1 7 27.1 19 31.0 11 27.1 19 vt 37.2 12 31.9 8

2012

16/08/201023/08/2012 30/08/2012 06/09/2012** 13/09/2012 02/08/2010 09/08/2010



178.7 21 131.2 22 96.4 9 62.8 11 532.4 4 408.0 1 435.0 7

20.8 16 27.8 20 0.0 0 0.0 0 0.0 0 41.9 4 35.3 12

143.5 19 153.9 19 59.6 24 43.1 24 vt 210.7 12 80.2 3

73.5 15 95.4 14 80.9 9 96.7 20 vt 186.2 11 205.4 11

0.0 0 0.0 0 14.6 23 12.1 21 vt 24.6 4 24.5 7

111.0 29 126.3 18 124.5 20 79.2 17 vt 204.3 11 177.2 7

0.0 0 0.0 0 13.8 24 14.3 10 0.0 0 19.0 6 17.6 16

0.0 0 11.0 15 9.3 16 10.5 12 0.0 0 23.0 9 20.0 13

130.5 23 127.3 22 130.8 25 80.1 5 vt 420.5 4 385.8 7

vt 16.3 27 14.9 16 14.1 15 vt 45.5 9 41.5 10
19.3 29 17.3 24 14.6 27 12.1 20 vt 34.9 3 43.9 8
11.3 15 13.2 14 36.6 17 27.5 15 0.0 0 0.0 0 0.0 0
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

188.2 16 113.3 10 156.7 17 126.7 22 22.7 9 123.9 11 55.3 6

16.4 25 16.7 5 23.4 15 13.5 16 vt 23.0 13 23.0 13

36.6 15 37.9 10 21.2 28 20.9 14 vt 40.9 8 81.3 4

28.1 18 29.8 8 41.2 19 29.2 12 21.5 13 30.5 6 30.5 6
1315.3 1297.8 1329.2 1018.9 687.4 3225.7 3588.3

220.1 4 130.4 17 95.5 13 78.6 5 62.9 16 71.8 2 86.5 5

233.5 14 111.2 10 94.6 7 69.0 5 138.8 15 130.6 13 165.7 13

158.5 19 96.5 5 65.8 12 57.1 8 179.9 19 200.8 6 209.6 12

88.1 6 78.0 5 52.7 15 32.6 18 vt 118.4 4 39.4 10

159.7 15 119.2 18 77.1 6 63.1 6 613.4 2 190.3 14 167.4 14

234.7 6 174.0 12 124.2 22 110.5 18 vt 899.8 6 693.8 9

92.4 11 68.4 7 50.6 17 34.6 8 0.0 0 0.0 0 0.0 0

489.7 12 161.7 26 112.2 20 98.9 12 119.1 14 254.4 10 381.6 6

0.0 0 0.0 0 8.2 5 7.2 5 0.0 0 0.0 0 0.0 0

69.7 10 47.8 10 41.0 10 28.7 19 vt 17.6 10 12.0 16

18.7 23 16.3 12 15.2 17 9.9 4 39.9 10 19.5 10 23.3 7

22.1 14 14.8 16 10.7 18 8.1 7 vt 99.9 5 44.3 4

25.0 8 18.3 23 15.4 6 10.7 10 vt 0 44.2 6 18.5 22
1812.2 1036.7 763.2 608.9 1154.0 2047.3 1842.4



37.9 24 42.0 5 38.0 12 32.3 21 29.7 7 43.1 19 29.9 10

0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

28.1 5 18.5 15 24.0 7 24.9 14 0.0 0 0.0 0 0.0 0

32.5 12 33.3 13 26.3 20 27.8 11 42.1 7 61.6 19 48.3 12

12.8 27 18.4 19 20.7 5 20.2 13 vt 44.0 14 41.6 13

23.4 10 32.9 15 31.2 19 33.5 11 35.0 7 39.7 17 39.7 17

36.8 17 49.0 20 37.2 15 34.2 2 0.0 0 0.0 0 0.0 0

0.0 0 0.0 0 0.0 0 0.0 0 vt 99.4 19 154.9 17

0.0 0 0.0 0 58.2 8 60.0 9 0.0 0 0.0 0 0.0 0

0.0 0 23.6 14 26.8 19 28.8 24 vt 93.8 6 109.9 19

12.6 17 16.9 17 12.4 16 16.6 21 vt 124.4 18 98.9 4

183.9 234.6 274.7 278.3 106.9 506.0 523.2

0.0 0 26.4 19 35.0 7 34.6 6 0.0 0 0.0 0 0.0 0
13049.593 13840.702 13200.334 12686.756 20137.4 29680.5 27192.2



Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%)

4387.1 17 4297.1 13 3135.5 11 5224.9 14 4217.2 13 5019.2 13 5366.3 6

5036.6 12 1609.9 10 1782.0 6 1066.8 7 259.4 25 653.3 9 589.3 7

1680.4 14 6746.8 4 9071.3 10 8625.2 12 4528.7 13 6739.2 18 6781.3 10

1316.2 8 752.2 19 926.8 11 563.7 6 1804.5 11 1757.1 15 213.1 18

4245.8 4 4031.8 5 3330.8 6 3902.8 13 4602.7 24 2230.0 24 1638.3 23

2003.4 7 1549.7 16 3022.9 2 752.6 5 2355.4 15 2136.9 14 1722.1 19

4289.1 0 2141.8 15 1844.3 3 1339.6 22 339.3 20 764.0 5 469.8 16

22958.5 21129.3 23113.7 21475.6 18107.2 19299.7 16780.2

331.7 7 392.6 6 441.3 6 421.1 11 238.3 4 152.5 26 347.3 6

24.8 5 20.1 12 37.1 6 22.3 9

399.8 9 374.4 9 399.1 4 317.3 9 179.2 23 335.4 18 362.4 15

756.2 787.1 877.5 760.8 417.5 487.8 709.7

15.8 19 12.1 18 17.3 11 11.8 13 29.4 5 11.6 5 8.3 12

18.6 12 12.0 19 22.3 10 15.3 17 50.8 7 17.7 11 11.9 13

19.5 14 9.0 17 26.9 11 19.4 6 0.0 0 0.0 0 0.0 0

234.4 3 195.4 22 169.5 1 52.2 20 26.8 11 13.0 23 16.5 23

624.5 4 645.3 2 505.2 11 0.0 0 55.4 22 31.8 22 58.3 5

0.0 0 0.0 0 0.0 0 0.0 0 71.7 4 50.7 12 39.6 6

635.0 4 590.7 7 632.1 7 580.4 14 80.0 4 38.3 12 38.1 4

12.8 20 13.2 1 19.1 7 0.0 0 0.0 0 0.0 0 0.0 0

119.7 13 188.3 5 144.6 11 121.7 13 114.1 19 107.8 15 105.7 15
27.3 9 20.7 18 26.0 10 26.4 12 40.3 4 73.9 15 42.9 11

GC×GC peak area x 104 (arbitrary units)

BI-VA2

2010
23/08/2010 30/08/2010 06/09/2010** 13/09/2010 27/07/2011 03/08/2011 10/08/2011



568.5 1 432.2 13 279.0 16 262.0 11 144.9 29 228.9 11 170.5 20

35.3 12 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

24.3 16 19.8 4 27.3 14 27.4 8 50.6 15 23.0 15 17.1 10

186.5 5 182.5 24 245.0 15 158.1 12 0.0 0 0.0 0 0.0 0

10.9 11 10.9 11 21.2 5 0.0 0 78.8 19 66.0 13 68.2 18

166.2 7 160.2 19 286.8 10 188.6 19 14.1 30 34.9 23 35.9 11

17.6 16 18.3 5 27.4 11 13.1 11 0.0 0 0.0 0 0.0 0

18.6 8 21.6 14 29.5 4 24.7 10 0.0 0 0.0 0 0.0 0

421.2 1 499.6 4 590.1 13 440.7 17 0.0 0 0.0 0 0.0 0

36.5 9 33.9 10 34.7 12 40.7 11 0.0 0 0.0 0 0.0 0
55.8 18 27.9 1 85.5 5 86.0 5 0.0 0 0.0 0 0.0 0
0.0 0 0.0 0 0.0 0 0.0 0 vt 285.6 13 285.8 17
0.0 0 0.0 0 0.0 0 0.0 0 24.2 14 34.4 8 67.6 13

241.6 19 278.9 8 186.3 8 176.2 22 25.6 26 49.3 9 61.5 7

23.0 13 73.6 3 37.0 8 51.1 14 0.0 0 0.0 0 0.0 0

17.1 3 31.6 14 30.9 19 0.0 0 26.9 18 48.8 5 28.3 19

37.9 13 41.2 17 31.7 3 60.4 3 0.0 0 0.0 0 0.0 0
3568.7 3518.9 3475.4 2356.4 833.4 1115.8 1056.2

28.8 5 15.2 9 31.1 12 33.1 14 75.4 8 104.3 12 20.5 12

116.4 6 122.6 1 48.4 16 83.2 6 143.2 22 253.8 17 71.3 5

27.7 13 25.8 16 19.8 13 0.0 0 81.3 5 62.7 9 51.5 11

12.2 12 31.9 5 5.1 1 0.0 0 44.0 23 30.9 7 15.7 30

38.0 4 12.2 12 39.4 6 0.0 0 617.4 7 614.6 13 333.7 12

701.2 5 414.5 20 458.2 3 199.3 11 0.0 0 0.0 0 0.0 0

0.0 0 0.0 0 0.0 0 0.0 0 43.3 22 68.7 10 23.1 23

379.5 13 347.5 2 268.1 9 313.0 16 0.0 0 0.0 0 0.0 0

11.8 11 59.8 3 6.3 4 9.8 14 199.3 18 258.6 15 103.1 7

10.9 9 10.9 9 7.1 2 13.2 14 0.0 0 0.0 0 0.0 0

22.6 5 18.4 5 21.9 9 0.0 0 0.0 0 0.0 0 0.0 0

59.8 3 39.0 12 30.9 5 34.2 5 67.6 24 64.2 14 34.8 11

35.0 1 53.7 3 83.0 9 0.0 0 37.8 19 31.7 18 49.8 17
1444.0 1151.5 1019.3 685.6 1309.4 1489.4 703.5



19.7 12 19.5 4 30.8 5 27.5 16 79.2 8 78.7 14 68.7 13

0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

35.6 4 23.4 20 47.0 5 52.2 15 0.0 0 0.0 0 0.0 0

31.8 9 31.7 4 28.2 1 105.9 5 vt 0 10.3 10 28.4 8

5.9 4 18.9 3 11.9 21 8.2 2 0.0 0 0.0 0 0.0 0

0.0 0 0.0 0 0.0 0 0.0 0 13.7 22 27.7 21 7.8 11

86.1 10 80.1 12 60.1 14 96.5 7 0.0 0 0.0 0 0.0 0

0.0 0 220.6 10 167.5 22 0.0 0 0.0 0 0.0 0 0.0 0

114.4 12 108.2 15 113.9 5 130.3 17 0.0 0 0.0 0 0.0 0

356.4 15 319.5 6 333.2 8 103.7 22 vt vt 30.4 0

649.9 821.9 792.6 524.3 92.9 116.7 135.3

62.2 3 72.2 2 67.5 4 72.1 5 0.0 0 0.0 0 0.0 0
29439.5 27480.8 29345.9 25874.8 20760.39 22509.409 19384.934



Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%)

4335.3 10 3192.2 18 3456.7 15 3701.0 7 2199.0 24 2235.1 22 2608.8 11

400.7 22 1775.4 24 489.0 12 444.3 13 1112.8 11 1546.8 21 1673.1 18

7597.1 14 6633.2 5 8163.5 10 5691.6 13 1392.3 11 1461.8 29 1710.5 9

372.5 8 360.1 17 266.0 16 160.1 25 368.1 9 431.2 14 527.5 6

2200.4 23 2410.4 15 2016.6 6 2050.8 6 1447.0 24 1392.9 13 1606.0 17

2787.8 15 1894.3 23 1839.7 15 1943.5 22 1218.7 19 1506.4 9 1972.9 10

581.0 13 762.3 6 968.4 20 484.6 19 880.3 19 486.3 21 543.3 5

18274.8 17027.9 17199.9 14475.8 8618.3 9060.6 10642.1

403.5 16 323.4 11 343.0 19 419.0 10 140.7 20 291.3 17 313.9 6

vt vt vt vt 0.0 0 19.2 12 27.2 14

359.8 8 344.5 18 314.2 25 364.9 4 155.7 16 237.0 15 279.1 7

763.2 667.9 657.2 783.9 296.4 547.5 620.2

31.5 4 0.0 0 0.0 0 0.0 0 20.0 7 24.6 15 32.2 3

63.8 2 14.7 13 16.4 19 11.7 17 15.9 18 19.6 22 20.5 22

19.9 11 9.4 15 14.1 22 6.6 12 16.0 14 29.4 21 25.6 11

43.3 5 49.9 4 50.0 9 58.1 21 55.6 10 169.0 16 225.4 21

88.9 19 33.0 14 61.2 6 20.5 7 vt 62.3 4 105.4 16

0.0 0 0.0 0 0.0 0 0.0 0 25.9 12 21.8 16 23.5 15

162.7 13 40.3 11 46.8 22 50.3 7 32.9 26 36.5 7 52.9 3

0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

88.0 20 140.4 15 115.4 21 134.2 14 29.2 21 92.8 9 110.2 18
39.6 18 0.0 0 39.8 9 0.0 0 29.2 8 49.0 20 41.3 9

2011 2012
16/08/201217/08/2011 24/08/2011 31/08/2011** 07/09/2011 23/08/2012 30/08/2012



148.8 6 171.5 15 103.3 17 167.3 20 203.7 6 270.1 21 252.8 18

0.0 0 0.0 0 0.0 0 0.0 0 vt 35.7 21 40.0 18

28.0 10 27.9 14 28.9 9 22.9 8 vt 247.2 9 223.4 25

0.0 0 0.0 0 0.0 0 0.0 0 vt 189.8 16 169.2 14

44.7 16 20.6 16 15.0 1 17.0 12 vt 23.1 24 28.3 19

38.9 3 42.5 23 56.7 21 45.9 7 vt 173.8 31 191.2 19

41.9 4 0.0 0 48.2 14 0.0 0 0.0 0 12.0 21 15.0 24

18.4 4 0.0 0 0.0 0 0.0 0 vt 17.2 26 20.0 18

58.4 2 40.2 15 49.0 15 37.6 14 vt 184.4 12 183.8 15

0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 21.6 13 30.1 25
0.0 0 0.0 0 0.0 0 0.0 0 vt 27.2 12 32.0 10

221.8 13 281.0 16 277.6 6 213.8 12 vt 29.3 8 28.4 14
20.6 11 18.9 12 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

95.2 7 90.2 18 91.0 16 75.2 10 50.6 11 202.9 20 214.0 10

32.5 10 30.4 13 29.9 6 19.6 15 0.0 0 19.5 28 20.5 28

0.0 0 0.0 0 0.0 0 0.0 0 vt 17.1 20 46.5 8

52.8 15 38.0 10 68.0 7 59.6 9 52.5 23 36.6 17 44.3 12
1339.8 1049.0 1111.3 940.1 531.5 2012.4 2176.4

19.2 13 18.3 18 11.1 14 11.8 16 188.7 11 198.9 13 148.0 13

51.9 18 68.6 16 79.2 9 36.5 22 242.4 20 243.7 19 145.7 23

14.9 12 11.9 18 0.0 0 0.0 0 157.8 17 209.3 12 151.2 15

6.7 15 8.3 13 0.0 0 0.0 0 67.4 12 98.4 13 88.7 2

20.0 9 20.7 9 28.0 11 19.7 9 165.8 5 212.1 20 148.6 12

172.3 24 179.7 12 194.8 14 190.2 26 290.0 18 291.7 14 166.4 25

14.2 8 16.8 26 17.9 9 15.2 20 73.0 5 103.0 12 84.4 4

0.0 0 0.0 0 0.0 0 0.0 0 459.8 6 519.9 7 224.9 19

125.2 8 89.4 21 97.2 12 147.5 8 0.0 0 0.0 0 0.0 0

12.8 15 7.9 10 7.2 2 8.0 6 27.4 17 105.8 13 92.9 4

0.0 0 0.0 0 0.0 0 0.0 0 16.2 25 26.8 6 18.0 21

9.6 18 35.0 11 36.8 22 25.6 12 55.1 14 53.3 4 29.9 14

18.6 13 18.3 14 12.5 14 12.4 18 16.3 11 27.5 9 23.0 10
465.4 474.9 484.8 466.8 1760.1 2090.3 1321.6



49.3 15 47.3 19 40.6 9 50.5 25 45.4 6 51.1 7 61.1 9

0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

158.0 17 97.5 17 92.5 7 91.3 10 vt 41.9 15 45.0 15

0.0 0 0.0 0 0.0 0 0.0 0 20.5 22 45.8 4 41.9 7

47.0 11 60.9 10 53.0 12 65.5 10 0.0 0 13.4 21 21.1 22

0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 25.8 7 31.9 15

4.1 18 23.2 12 19.5 8 16.0 15 vt 38.8 2 46.1 17

0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

0.0 0 0.0 0 0.0 0 0.0 0 vt 44.4 11 51.0 11

0.0 0 30.0 2 31.4 23 25.3 19 0.0 0 10.5 8 25.9 21

35.1 8 114.7 20 100.2 12 96.6 16 vt 12.8 16 19.3 21

293.4 373.6 337.3 345.2 65.9 284.6 343.3

0.0 0 vt vt vt 0.0 0 0.0 0 39.3 10
21136.567 19593.255 19790.373 17011.938 11272.172 13995.326 15142.983



Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%)

2072.2 3 2353.9 10 4472.6 11 4214.5 10 4085.5 3 3943.2 5 5488.7 3

1833.6 19 1819.8 14 2766.5 12 1379.7 5 1728.6 13 2399.8 7 1681.1 11

1128.5 7 1556.4 12 2692.4 20 2786.6 19 5898.6 2 6362.2 16 5868.4 2

535.7 9 529.9 6 1024.0 6 2181.8 17 1163.8 6 1197.2 15 536.4 9

1184.6 11 1562.9 13 1205.6 15 4521.3 11 2527.9 9 3810.7 7 3460.1 9

1419.8 5 1563.2 18 2094.5 9 2300.6 16 4277.9 3 3597.3 11 1996.6 10

523.7 16 570.0 4 968.4 2 2488.4 15 3234.9 11 4023.1 2 1853.9 13

8698.1 9956.2 15224.0 19873.0 22917.2 25333.5 20885.1

366.9 12 349.1 10 120.3 9 264.9 1 311.1 4 332.6 5 350.8 5

30.3 11 25.0 11 vt 22.1 5 23.8 19 19.6 6 22.6 9

296.4 9 322.7 6 105.1 7 229.0 6 300.8 10 406.3 2 396.1 10

693.6 696.8 225.4 516.0 635.6 758.5 769.5

23.3 22 23.3 15 34.4 17 15.4 6 14.7 20 18.6 2 13.6 13

42.5 15 25.3 10 17.2 18 16.2 3 17.6 3 17.4 13 13.3 13

33.0 15 30.9 14 16.8 20 13.1 7 18.6 5 18.1 15 6.3 5

161.7 12 191.8 19 51.4 9 47.3 10 242.9 10 262.9 2 175.6 7

200.8 17 130.2 25 vt 562.5 10 629.9 3 609.9 3 623.2 2

0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

45.1 11 30.1 9 vt 523.9 10 572.4 11 609.1 7 624.4 3

0.0 0 0.0 0 0.0 0 11.8 12 11.1 1 11.1 1 11.6 12

239.9 16 160.4 8 13.9 14 106.2 11 139.2 13 116.0 13 131.2 13
34.4 13 34.1 18 vt 46.4 7 30.8 10 36.2 11 29.4 15

2010
06/09/2012** 13/09/2012 02/08/2010 09/08/2010 16/08/2010 23/08/2010 30/08/2010



199.8 27 183.1 17 151.9 15 463.2 14 513.3 6 572.4 6 468.9 9

0.0 0 0.0 0 0.0 0 37.5 11 32.9 11 32.9 11 0.0 0

83.8 19 58.7 8 vt 62.5 17 28.6 5 21.5 5 21.5 5

195.8 12 150.1 13 vt 207.7 15 162.5 9 167.7 12 183.1 11

23.4 18 23.3 14 vt 33.4 15 11.9 14 21.1 12 21.1 12

162.9 27 190.6 22 vt 219.6 19 223.6 10 144.1 8 163.7 11

26.9 18 19.7 25 0.0 0 15.6 14 15.8 16 15.8 16 11.5 8

18.9 17 12.1 24 0.0 0 21.0 7 28.1 18 28.9 11 25.6 10

253.2 3 182.1 24 vt 421.2 4 434.2 5 432.9 8 448.9 9

40.9 7 27.3 11 vt 51.0 11 31.4 13 38.0 18 28.5 18
32.4 14 28.0 12 vt 37.0 10 21.7 17 42.1 14 40.5 10
43.4 17 34.6 12 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

190.3 23 221.2 18 40.8 5 151.9 12 257.9 10 239.1 13 288.1 1

29.8 16 28.2 13 0.0 0 45.1 19 109.1 12 59.6 14 55.9 6

44.7 29 38.2 14 vt 52.8 7 41.3 17 17.2 13 24.0 4

48.2 10 37.3 22 20.9 12 34.4 17 46.4 13 50.1 11 42.1 5
2175.2 1860.6 347.4 3196.8 3636.0 3582.9 3451.9

128.6 18 84.8 5 65.7 7 73.9 4 80.9 2 23.8 6 23.8 6

119.8 20 104.4 20 159.7 10 120.1 17 134.3 4 147.0 11 128.4 4

81.2 10 68.3 5 182.7 11 201.3 5 224.0 4 30.4 3 21.5 8

73.8 12 48.4 12 0.0 0 125.3 4 19.1 1 11.4 12 30.4 3

101.3 7 82.3 3 670.2 8 183.2 1 182.5 11 39.3 4 11.4 12

139.4 21 101.2 15 0.0 0 914.8 1 710.7 8 720.0 2 444.6 13

73.3 11 59.6 9 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

142.8 16 121.0 17 122.5 12 275.3 5 221.0 2 383.6 4 333.5 3

18.5 4 10.9 14 0.0 0 0.0 0 0.0 0 19.2 6 19.2 6

49.9 15 39.8 19 0.0 0 18.7 6 13.6 15 16.3 7 16.3 7

18.1 26 11.9 15 31.7 14 20.2 7 21.8 5 26.0 7 16.6 17

16.9 38 10.8 21 0.0 0 116.3 11 29.0 17 63.5 6 25.7 16

15.9 17 11.6 20 0.0 0 46.5 9 27.0 4 34.8 2 39.7 8
979.5 755.0 1232.6 2095.4 1663.9 1515.2 1111.2



42.2 8 41.4 16 17.0 10 26.5 13 26.8 12 20.7 7 20.7 7

0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

44.2 10 42.4 8 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

45.6 9 41.5 11 20.6 13 45.8 3 44.8 11 39.4 2 41.0 3

37.5 12 42.1 7 vt 0 37.4 17 43.9 14 28.5 8 28.4 14

33.3 12 35.9 9 32.3 4 34.3 6 34.3 6 6.0 3 6.9 5

44.4 21 48.7 10 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

0.0 0 0.0 0 vt 112.2 8 120.6 19 76.3 5 56.4 13

77.4 6 73.2 6 0.0 0 0.0 0 0.0 0 0.0 0 108.6 10

32.3 5 36.0 9 vt 110.6 6 109.9 8 103.3 1 92.6 10

21.5 17 21.6 23 vt 108.6 4 121.7 18 356.5 13 330.2 7

378.4 382.8 69.9 475.3 502.1 630.6 684.8

52.6 16 55.7 10 0.0 0 0.0 0 0.0 0 64.1 7 70.7 2
12977.364 13707.052 17099.3 26156.5 29354.8 31884.8 26973.3



Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%)

4460.6 6 4300.3 6 3396.5 16 2996.9 4 4911.1 14 2419.9 1 2240.2 16

866.3 2 1014.7 9 537.6 17 584.8 7 908.6 18 1074.3 8 1061.8 20

8201.5 7 6915.1 10 3914.4 10 4621.2 18 5043.7 20 1752.1 21 1334.3 22

885.0 2 391.2 6 1398.2 19 1645.6 21 177.9 24 546.0 12 400.5 7

3034.3 7 3884.0 18 2552.7 8 2220.3 15 1659.3 19 1748.5 13 1339.7 20

2608.0 11 1671.2 14 4261.4 6 1956.4 17 1119.0 6 1625.7 24 1596.0 23

1212.9 7 1411.3 13 367.6 4 531.0 9 920.8 15 272.6 20 525.3 10

21268.7 19587.9 16428.3 14556.2 14740.4 9439.2 8497.8

467.6 7 441.4 10 179.8 14 274.3 20 397.9 20 187.4 26 277.1 21

31.1 12 26.1 18 vt vt vt 21.6 13

371.3 5 302.3 8 379.2 25 348.4 13 356.4 16 158.5 3 203.1 18

869.9 769.8 559.0 622.7 754.2 346.0 501.8

29.3 18 12.6 16 53.2 17 17.2 2 11.1 15 20.5 13 25.0 13

22.3 8 13.5 5 54.3 17 15.2 9 13.7 19 16.7 16 29.5 8

29.3 7 13.0 9 0.0 0 0.0 0 0.0 0 16.1 9 26.9 20

169.2 7 73.0 16 40.6 10 17.5 22 11.6 9 58.6 9 217.8 25

549.1 16 vt 126.8 17 59.6 15 109.0 9 0.0 0 93.5 6

0.0 0 0.0 0 92.0 8 48.2 9 39.2 21 27.9 16 24.3 17

640.3 7 545.3 11 57.6 9 30.8 6 43.3 13 45.5 14 54.4 7

13.1 8 10.6 14 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

130.8 8 156.6 16 110.2 11 179.3 21 224.7 10 34.0 8 90.2 12
35.2 3 25.9 13 29.1 8 88.0 7 49.1 5 40.2 11 52.2 8

BI-SM1

2011
27/07/201106/09/2010** 13/09/2010 03/08/2011 10/08/2011** 16/08/2012 23/08/2012



23.6 2 233.5 13 166.7 17 238.3 13 170.6 20 207.8 23 429.7 14

0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 36.5 22

33.5 3 28.8 9 63.3 6 17.3 18 37.3 16 vt 259.9 11

200.4 8 145.0 4 0.0 0 0.0 0 0.0 0 vt 163.0 31

23.4 12 0.0 0 73.5 4 62.5 2 99.4 19 0.0 0 30.7 13

356.8 10 179.7 16 40.7 13 41.9 7 40.8 20 vt 119.2 18

26.4 9 10.3 5 0.0 0 0.0 0 0.0 0 0.0 0 36.9 19

21.9 18 13.0 20 0.0 0 0.0 0 0.0 0 0.0 0 25.4 17

541.3 3 349.7 8 0.0 0 0.0 0 0.0 0 vt 184.3 14

39.7 6 28.7 12 0.0 0 0.0 0 0.0 0 vt 38.8 19
30.9 8 77.9 14 0.0 0 0.0 0 0.0 0 vt 48.1 15
0.0 0 0.0 0 vt 256.0 32 235.5 9 vt 31.4 22
0.0 0 0.0 0 39.8 16 61.6 10 59.3 6 0.0 0 0.0 0

169.0 14 202.0 13 30.8 7 60.0 21 72.1 16 47.5 11 201.1 9

56.7 5 130.7 16 0.0 0 0.0 0 23.4 16 0.0 0 17.1 11

28.0 7 0.0 0 34.0 5 32.0 22 37.6 23 vt 31.7 19

31.8 5 47.6 8 38.8 2 61.2 12 71.7 19 71.7 21 41.1 9
3201.9 2297.3 1051.6 1286.8 1349.1 586.5 2308.6

23.8 6 38.8 13 82.4 6 111.6 14 24.0 24 188.0 16 188.9 22

36.2 4 59.5 8 145.7 16 271.1 16 80.2 18 249.8 5 238.0 15

24.3 9 0.0 0 84.2 8 68.3 16 58.6 8 151.2 16 200.9 4

30.4 3 0.0 0 49.9 15 11.2 14 19.5 19 71.7 8 97.6 6

11.4 12 0.0 0 675.1 6 660.1 7 461.6 10 202.8 11 258.4 12

395.4 6 254.9 3 0.0 0 0.0 0 0.0 0 325.6 10 327.5 17

0.0 0 0.0 0 48.7 17 71.1 8 24.3 17 82.0 19 128.8 22

341.3 2 315.4 4 0.0 0 0.0 0 0.0 0 510.2 5 577.8 8

19.2 6 0.0 0 228.6 14 263.7 12 120.7 18 0.0 0 0.0 0

16.3 7 0.0 0 0.0 0 0.0 0 0.0 0 41.5 17 112.0 25

19.6 16 0.0 0 0.0 0 0.0 0 0.0 0 17.7 11 24.2 19

21.8 12 0.0 0 70.2 22 80.5 2 39.0 20 65.8 13 57.5 10

110.8 5 0.0 0 35.0 14 35.1 10 56.0 9 17.4 10 28.0 12
1050.5 668.6 1419.8 1572.5 883.8 1923.8 2239.6



29.0 6 0.0 0 88.8 8 98.5 8 79.2 8 52.7 7 56.0 6

0.0 0 0.0 0 0.0 0 0.0 0 21.6 3 0.0 0 0.0 0

0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 vt 45.2 11

38.4 6 39.0 13 0.0 0 0.0 0 0.0 0 45.6 15 49.3 9

33.6 6 75.4 5 vt vt 31.2 5 0.0 0 14.3 22

7.3 8 6.1 11 0.0 0 0.0 0 0.0 0 vt 28.6 14

0.0 0 0.0 0 21.0 14 28.9 8 8.1 11 vt 41.8 6

68.2 3 85.6 15 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

98.3 18 65.4 6 0.0 0 0.0 0 0.0 0 vt 44.6 20

114.4 10 84.2 5 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

326.1 3 100.2 20 0.0 0 0.0 0 0.0 0 vt 13.8 11

715.3 456.0 109.8 127.4 140.0 98.3 293.6

69.9 6 68.3 17 0.0 0 vt vt 0.0 0 0.0 0
27176.3 23847.8 19568.431 18165.662 17867.6 12393.799 13841.417



Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)

2115.2 19 1969.5 17 1707.7 16

1732.0 8 1773.5 15 1725.4 14

1476.9 21 1402.0 23 1726.4 7

466.8 4 461.6 6 540.6 3

1564.5 16 1856.0 17 1688.6 23

2102.2 11 1388.7 26 1429.6 15

506.5 2 563.9 8 503.4 9

9964.0 9415.1 9321.7

316.7 13 392.3 8 345.4 12

32.3 11 32.8 9 29.6 4

266.9 13 324.6 6 335.7 8

615.8 749.8 710.7

34.6 16 24.2 14 20.8 23

27.5 18 49.9 10 27.6 22

24.0 11 34.9 15 49.7 26

221.4 10 155.1 3 176.0 22

106.2 19 162.7 19 138.9 14

24.1 14 0.0 0 0.0 0

52.6 5 45.2 25 38.3 8

0.0 0 0.0 0 0.0 0

122.6 21 226.3 12 165.5 28
44.5 7 37.3 11 30.0 7

2012
13/09/201230/08/2012 06/09/2012**



224.6 16 198.9 8 144.3 26

39.5 7 0.0 0 0.0 0

204.3 17 85.8 18 59.7 11

184.3 20 175.7 21 144.3 19

26.7 10 26.2 15 26.2 16

188.1 25 181.3 17 200.9 16

19.0 22 30.0 14 22.8 20

22.4 9 19.1 19 15.5 10

184.8 20 246.8 14 163.8 20

32.7 22 46.0 9 29.0 15
28.6 12 33.0 8 27.0 9
30.0 9 41.4 9 35.3 11
0.0 0 0.0 0 0.0 0

217.3 7 204.8 15 217.7 13

17.0 6 33.5 12 28.5 23

39.0 10 45.2 11 35.7 20

39.0 17 47.6 25 34.9 12
2154.8 2151.0 1832.4

171.3 10 160.3 23 96.1 11

196.3 17 135.5 17 102.0 12

169.5 11 88.0 7 77.4 7

96.1 2 79.3 8 61.0 8

215.0 11 103.0 14 100.4 6

254.9 9 147.2 20 116.7 20

94.4 3 87.9 2 68.3 5

356.0 14 175.0 23 133.2 20

10.3 9 12.5 17 10.6 7

94.8 3 39.8 7 46.9 9

19.6 11 19.8 13 16.3 17

52.5 5 26.7 21 20.5 19

22.6 10 18.7 20 14.4 17
1753.4 1093.9 863.7



56.7 12 42.6 5 48.8 10

14.3 21 8.1 12 0.0 0

42.6 14 45.7 6 52.5 6

47.4 9 45.5 11 47.5 9

27.7 3 35.1 21 43.1 10

34.9 13 35.7 9 35.6 7

48.9 13 43.5 13 47.9 12

0.0 0 0.0 0 0.0 0

49.0 10 71.3 10 98.2 3

26.5 14 30.8 10 34.0 9

22.7 18 24.4 14 27.5 7

370.8 382.9 435.0

44.6 12 51.5 8 51.3 2
14903.303 13844.165 13214.873



Table S10
Volatile components determined for Vitis vinifera  L. cv. Sauvignon Blanc variety obtained from 3 parcels at Bairrada Appellation, from 2010, during maturation
and for 2011 and 2012 harvests, only maturity was considered.

1Dtr(s),2Dtr(s)Compound Mean (n=3) RSD (%)Mean (n=3)RSD (%)Mean (n=3)RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3)RSD (%) Mean (n=3) RSD (%)
C6 compounds
194, 0.640 Hexanal 3762.6 4 2128.3 4 4402.4 3 4865.3 3 3830.8 7 3276.1 7 2922.9 6
206, 0.630 3-Hexenal 1553.2 8 2229.3 2 1849.9 14 1674.4 17 1179.8 13 774.2 13 2282.5 15
230, 0.651 2-Hexenal 5021.7 7 5877.6 9 6421.4 2 5653.4 10 7921.7 7 5471.5 11 4659.7 24
242, 0.630 3-Hexen-1-ol 2084.1 7 1818.4 17 1818.4 17 291.0 14 686.2 13 360.1 16 1389.3 17
248, 1.076 2-Hexen-1-ol 2927.1 4 3476.5 9 2482.4 7 3813.0 8 2688.1 7 3215.4 10 978.1 16
266, 0.903 1-Hexanol 0.0 0 2617.7 10 1483.8 12 2956.0 13 2756.0 10 2257.8 8 1318.9 21
296, 0.930 2,4-Hexadienal 1130.1 11 3163.7 11 2814.4 9 2531.4 5 1345.3 15 664.0 17 1857.4 16

Sub-total 16478.8 21311.5 21272.9 21784.5 20407.9 16019.2 15408.7
Aromatic alcohols
420, 3.014 Benzyl Alcohol 64.1 5 237.8 8 404.2 11 412.7 8 551.2 11 vt 802.7 11
446, 1.426 α,α-Dimethyl Benzyl alcohol12.8 16 20.4 16 27.9 16 22.9 5 24.6 5 0.0 0 13.1 15
470, 1.960 2-Phenylethanol 122.5 20 299.8 12 427.3 3 508.5 5 400.3 8 122.4 16 802.3 8

Sub-total 199.4 558.0 859.4 944.1 976.2 122.4 1618.2
Monoterpenic compounds
314, 0.440 α-Pinene 67.9 11 21.6 3 12.5 15 18.7 13 35.1 10 17.4 11 14.4 31
344, 0.457 β-Pinene * 52.8 13 67.3 15 83.0 7 114.4 8 110.5 7 19.5 9 354.3 8
356, 0.570 β-Myrcene 54.8 10 163.8 12 51.0 16 51.0 16 0.0 0 35.8 17 0.0 0
362, 0.520 3-Carene 127.0 19 284.5 19 284.5 19 24.6 9 0.0 0 19.0 13 0.0 0
368, 0.790 α-Phellandrene 6.5 11 6.5 11 27.3 17 0.0 0 0.0 0 0.0 0 0.0 0
392, 0.405 m -Cymene 0.0 0 55.7 10 56.0 9 49.6 12 40.0 13 0.0 0 33.2 5
398, 0.476 Limonene * 111.4 15 111.4 15 70.0 3 1517.5 19 179.3 19 20.8 5 59.9 7
404, 0.476 1,8-Cineole 0.0 0 280.9 10 280.9 10 148.1 14 125.3 13 159.3 11 161.4 14
416, 0.560 β-Ocimene 0.0 0 39.9 17 12.0 11 12.0 11 48.0 5 0.0 0 0.0 0
428, 0.678 Linalool oxide (isomer 1)73.9 13 401.7 11 121.7 20 118.4 7 72.6 9 171.7 16 154.7 8
434, 0.727 Dihydromyrcenol 0.0 0 0.0 0 445.2 6 752.1 10 606.3 11 vt 570.9 13
440, 0.560 α-Terpinolene 35.0 18 64.4 15 34.8 12 28.1 8 15.8 13 13.1 15 0.0 0
440, 0.790 Linalool oxide (isomer 1)34.3 18 34.3 18 34.3 18 34.3 18 18.0 11 0.0 0 0.0 0
446, 0.700 Dihydrolinalool 0.0 0 16.4 11 8.6 2 19.9 13 33.0 14 0.0 0 0.0 0

SB-SM1
2010 2011 2012

28/07/2010 04/08/2010 11/08/2010 18/08/2010 ** 25/08/2010 12/08/2011** 30/08/2012**



452, 0.746 Linalool * 0.0 0 590.9 8 695.7 2 550.4 7 498.6 6 228.3 16 227.8 3
464, 0.600 Rose oxide (isomer) vt 39.5 9 5.8 7 5.8 7 22.9 12 6.0 3 0.0 0
464, 0.844 Fenchol vt 761.5 18 1614.3 15 138.2 10 259.4 3 293.3 9 168.3 25
470, 0.646 Hotrienol vt 29.9 18 11.7 11 38.0 15 43.3 9 33.5 10 44.9 7
470, 0.780 Camphenal 0.0 0 0.0 0 0.0 0 15.8 12 0.0 0 0.0 0 0.0 0
482, 0.890 1-Terpineol vt 55.1 8 42.8 17 35.9 14 0.0 0 0.0 0 0.0 0
488, 0.690 Cosmene 19.1 18 34.0 8 29.5 7 24.0 17 0.0 0 0.0 0 0.0 0
500 , 0.970β-Terpineol vt 30.3 4 14.3 9 39.1 4 0.0 0 0.0 0 0.0 0
512, 0.635 Nerol oxide 24.2 16 124.7 15 78.3 9 85.2 12 68.4 5 63.9 17 58.4 7
518, 0.834 Ocimenol 0.0 0 26.6 18 257.7 18 232.0 11 199.3 17 0.0 0 148.4 8
518, 1.200 m/z  68, 94, 79, 109 (alcohol)23.0 13 23.0 13 23.0 13 175.2 6 163.6 13 67.7 13 0.0 0
524, 0.860 Borneol 0.0 0 36.0 10 61.7 14 31.9 8 0.0 0 0.0 0 0.0 0
530, 0.884 Mentha-1,5-dien-8-ol 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 76.2 9
530, 0.984 Menthol * vt 210.0 11 195.0 14 204.6 11 218.8 8 25.3 21 131.7 19
536, 0.715 Terpinen-4-ol 47.8 2 127.3 16 75.4 10 65.1 18 38.6 8 20.2 13 45.5 7
536, 1.269 Cymen-8-ol 0.0 0 35.9 16 24.8 10 48.7 12 24.3 11 vt 44.0 9
542, 0.835 α-Terpineol * 120.7 18 571.8 18 286.1 4 723.5 2 594.8 2 115.9 20 418.0 10
554, 0.900 Safranal 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 12.5 14 0.0 0
560, 0.850 Verbenone vt 280.5 16 34.5 14 52.6 12 57.4 17 0.0 0 55.1 12
566, 0.703 Menth-1-en-9-al vt 102.3 13 107.1 13 68.5 13 40.1 14 43.5 15 47.9 7
572, 1.340 2-Hydroxycineole 29.2 17 64.2 8 52.8 15 61.2 7 24.2 17 0.0 0 0.0 0
584, 0.873 Geraniol (isomer 1) * vt 229.7 12 242.4 11 225.8 6 244.0 10 179.9 9 160.5 12
584, 0.943 β-Citronellol * 0.0 0 71.1 17 63.8 5 46.1 6 34.1 12 vt 12.9 17
590, 0.737 Geraniol (isomer 1) * 43.4 9 785.0 17 980.1 8 1187.6 12 1705.1 8 603.2 9 1449.8 16
596, 0.976 Citral (isomer 1) vt 101.6 15 115.2 12 135.1 17 98.4 2 28.8 22 111.3 21
602, 0.815 Carvone * vt 50.5 19 20.1 11 34.3 15 43.2 10 38.2 18 43.1 13
626, 0.775 Citral (isomer 1) 33.5 11 126.7 9 169.7 11 222.0 11 118.4 10 75.7 12 332.9 8

Sub-total 904.6 6056.2 6723.6 7335.2 5781.1 2292.5 4925.3
C13 Norisoprenoids
566, 0.532 m/z  159, 91, 131 151.6 5 275.2 3 165.0 10 165.2 12 42.3 6 0.0 0 128.4 11
620, 0.595 Vitispirane 259.6 19 229.6 19 185.4 15 205.6 10 0.0 0 26.0 17 152.0 11
632, 0.517 Theaspirane (isomer 1)410.6 19 324.4 11 309.3 9 319.1 11 55.7 6 71.0 9 264.3 11
644, 0.528 Theaspirane (isomer 1) vt 183.6 12 107.4 15 97.8 9 24.9 20 19.6 13 100.2 13
668, 0.790 TDN 0.0 0 18.4 11 12.7 9 0.0 0 0.0 0 92.3 18 0.0 0
674, 0.681 β-Damascenone (isomer 1)vt 89.4 4 38.7 15 75.9 4 0.0 0 0.0 0 73.9 14
700, 0.702 β-Damascenone (isomer 2)271.2 16 824.2 13 666.0 5 662.0 2 445.7 6 134.6 18 405.4 13
736, 0.648 Geranylacetone * 253.5 8 367.2 11 460.4 4 400.0 4 176.5 7 77.5 11 683.5 13
742, 0.850 5,6-Epoxy-β-ionone 0.0 0 20.8 13 9.2 11 12.1 16 0.0 0 0.0 0 16.6 4
760, 0.868 3,4-Dehydro-β-ionone 0.0 0 39.7 17 17.4 6 15.6 19 0.0 0 0.0 0 49.4 26



778, 0.635  α-Iso-methyl ionone vt 114.0 16 73.4 11 33.3 15 14.2 20 0.0 0 24.5 10
784, 0.717 β-Ionone * 43.3 11 137.9 16 68.2 15 63.3 2 0.0 0 20.6 4 20.7 11
900, 0.894 Methyl dihydrojasmonate0.0 0 252.2 3 196.3 16 147.5 20 369.3 69 33.5 8 156.1 15

Sub-total 1389.8 2876.6 2309.3 2197.5 1128.6 475.0 2075.0
Sesquiterpenic compounds
656, 0.583 Longipinene epoxide 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
680, 0.469 α-Copaene vt 27.8 15 21.2 15 19.0 8 27.6 3 10.3 17 84.3 13
712, 0.508 Longifolene 0.0 0 7.4 9 12.5 11 21.9 19 13.0 14 23.1 12 71.4 22
724, 0.541  α-Humulene 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
756, 0.630 Aromadendrene 41.4 18 22.8 11 32.1 6 32.1 6 0.0 0 17.4 13 83.8 13
762, 0.450  α-Muurolene 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
790, 0.660 α-Farnesene vt 95.1 9 126.0 15 72.1 3 58.2 5 38.0 16 81.6 13
796, 0.525 γ-Cadinene 7.5 13 20.8 8 29.8 7 22.5 17 44.6 10 24.2 9 39.5 17
808, 0.630 Calamenene 54.9 16 13.5 14 12.3 18 12.3 18 0.0 0 0.0 0 0.0 0
826, 0.629  α-Calacorene 12.6 19 18.5 9 15.8 14 15.8 14 0.0 0 10.4 16 26.6 13
832, 0.880 Nerolidol 0.0 0 0.0 0 0.0 0 164.4 2 99.1 3 72.4 12 80.1 11
862, 0.726 Caryophyllene oxide 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
886, 0.690  β-Eudesmol 0.0 0 0.0 0 156.2 16 104.6 25 124.2 4 51.5 9 62.4 13
912, 0.654 m/z  119, 91, 191, 109 (alcohol)vt 160.2 14 112.0 8 84.9 9 87.1 3 59.7 13 112.5 15

Sub-total 116.5 366.2 517.8 549.6 453.9 306.9 642.1
Total 19089.1 31168.5 31683.0 32810.8 28747.6 19216.0 24669.3

a 1Dtr (s), 2Dtr(s): first and second dimension retention times (in seconds) of each compound determined.
* Compounds identified based on the comparison between the obtained mass spectra and mass spectra of high purity chemical standards.
** Data obtained at maturity
vt - vestigial



Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%)

2075.3 5 2883.5 2 4644.9 2 3556.8 15 4890.3 14 3330.5 12 1265.6 8
1809.6 14 1910.5 16 1772.0 13 2016.2 9 1331.8 8 661.6 12 2001.1 12
6977.2 13 5665.4 9 6774.0 9 6867.2 9 7079.7 16 4572.1 14 2264.9 25
1858.8 11 905.6 6 905.6 6 318.2 18 450.1 12 345.2 20 1466.1 30
2764.5 17 4392.2 16 3127.1 10 2742.0 5 3032.5 8 2608.2 2 1082.8 22

0.0 0 2085.0 14 2485.0 3 2806.8 18 2471.6 6 2193.0 1 1366.8 15
1658.5 1 2705.2 10 2900.9 2 2568.8 10 1658.5 10 672.9 0 2389.1 12

17143.8 20547.4 22609.5 20876.0 20914.5 14383.5 11836.3

173.6 10 386.5 15 461.9 2 555.4 1 628.0 6 vt 768.3 15
16.9 18 34.5 13 20.9 12 43.1 6 23.3 14 0.0 0 20.1 16
59.8 4 231.0 16 583.4 1 478.6 3 462.1 6 143.4 12 924.7 5

250.3 652.0 1066.2 1077.0 1113.4 143.4 1713.0

62.4 7 17.5 13 39.7 6 29.8 8 39.6 4 10.8 9 18.6 3
35.7 16 202.0 4 79.9 7 119.3 13 90.7 17 27.9 16 453.8 6
121.8 14 288.2 6 57.0 6 63.2 5 0.0 0 38.7 20 0.0 0
129.1 7 390.8 14 71.1 12 46.1 9 45.4 6 19.0 6 0.0 0
8.1 13 8.1 13 18.8 20 21.8 14 0.0 0 0.0 0 0.0 0
vt 100.9 18 58.1 14 56.5 7 39.4 12 vt 44.9 12

200.8 20 74.8 16 277.7 15 173.2 2 194.4 12 13.4 21 62.6 7
vt 512.3 9 385.6 19 186.3 6 127.6 13 198.0 15 210.0 11
0.0 0 75.7 13 35.9 10 44.1 7 54.5 9 0.0 0 0.0 0
74.6 14 69.7 11 68.8 8 96.6 5 61.7 12 174.6 16 150.4 6
vt vt 735.2 5 745.1 4 587.0 1 vt 542.9 4

41.8 2 95.1 19 34.6 15 55.1 13 22.5 20 35.0 16 0.0 0
35.9 14 35.9 14 35.9 14 35.9 14 25.9 15 vt vt
0.0 0 16.7 4 23.2 14 20.0 13 21.7 13 vt vt

GC×GC peak area x 104 (arbitrary units)
SB-SM2

2010 2011 2012
30/08/2012**28/07/2010 04/08/2010 11/08/2010 18/08/2010** 25/08/2010 12/08/2011**



vt 743.0 6 678.6 2 616.3 11 569.2 7 553.4 17 229.0 11
0.0 0 11.2 15 11.2 15 11.2 15 7.3 4 6.2 4 0.0 0
vt 555.5 17 725.4 5 1136.3 8 394.8 15 617.8 3 262.5 4
0.0 0 29.9 18 46.0 6 54.0 5 32.9 17 21.5 4 52.2 2
0.0 0 0.0 0 17.3 18 20.0 5 0.0 0 0.0 0 0.0 0
vt 64.7 1 27.5 19 34.7 12 vt vt vt

36.0 15 36.7 14 18.0 5 24.5 7 0.0 0 0.0 0 0.0 0
0.0 0 29.2 6 15.3 17 17.9 16 0.0 0 0.0 0 0.0 0
14.7 14 82.8 16 70.3 12 82.0 10 52.4 9 98.0 10 47.8 24
vy 67.3 19 262.1 8 392.0 7 312.0 10 0.0 0 175.3 24
0.0 0 0.0 0 186.2 15 330.7 2 285.4 3 59.4 4 vt
0.0 0 15.4 6 25.1 12 65.6 6 vt 0.0 0 vt
0.0 0 0.0 0 0.0 0 vt vt vt 72.5 7
vt 222.2 8 250.2 8 204.5 10 214.3 4 21.4 14 155.2 15

45.2 18 148.5 13 79.2 9 102.2 7 80.4 1 12.4 13 53.7 10
vt 72.9 8 57.0 10 82.9 5 31.3 15 vt 41.7 5

122.2 13 433.7 8 939.2 2 941.5 1 697.7 11 117.9 20 658.4 11
0.0 0 27.7 3 40.7 4 29.1 18 0.0 0 18.9 12 0.0 0
vt 112.6 3 50.1 7 100.3 12 104.1 9 vt 57.0 9
vt 55.8 19 45.4 7 85.2 2 48.4 10 60.0 12 58.9 15

38.5 8 124.8 19 53.8 2 63.1 2 25.2 8 0.0 0 vt
vt 309.0 10 383.9 1 312.6 7 284.0 8 138.0 14 177.6 5
vt 91.7 13 62.6 15 53.8 6 24.6 3 vt 17.6 13

28.0 9 731.6 12 989.2 12 1102.1 3 1358.6 5 592.4 5 1950.9 7
vt 101.2 15 142.9 8 138.5 11 112.0 8 35.8 7 207.9 26
vt 41.0 5 29.3 7 27.2 12 43.5 8 30.8 16 47.6 7

35.0 6 121.9 9 197.8 17 198.8 7 187.0 18 68.6 7 404.9 20
1029.9 6117.9 7325.7 7920.1 6175.6 2969.6 6154.0

136.5 5 261.0 13 185.5 19 129.4 16 36.0 18 0.0 0 197.0 25
211.2 16 193.0 6 380.2 11 246.8 9 0.0 0 26.0 21 196.6 28
247.1 11 214.8 17 205.3 14 179.6 8 142.9 11 78.1 16 269.8 12
0.0 0 169.0 7 81.8 15 50.9 11 40.7 17 17.3 16 110.1 10
0.0 0 16.2 10 0.0 0 0.0 0 0.0 0 68.8 8 0.0 0
0.0 0 101.7 10 39.1 17 41.7 4 0.0 0 0.0 0 93.8 19

542.9 17 1102.2 5 728.9 2 606.0 13 441.5 14 154.9 21 492.5 17
253.1 12 498.5 16 280.9 11 607.9 8 454.4 12 164.4 14 919.5 5
0.0 0 24.1 9 17.4 16 24.2 10 12.0 11 0.0 0 21.6 12
0.0 0 32.1 14 25.5 12 25.8 15 10.1 8 0.0 0 81.2 11



0.0 0 64.7 5 78.4 9 13.6 7 9.8 6 0.0 0 23.3 9
62.2 17 208.2 13 141.3 6 239.7 16 73.6 4 39.5 15 40.6 9
0.0 0 340.6 11 260.8 8 146.7 8 226.2 47 21.9 16 176.1 24

1453.0 3226.2 2424.9 2312.3 1447.3 571.0 2622.1

0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 26.5 21 0.0 0
0.0 0 0.0 0 25.5 8 22.2 9 25.2 7 12.7 9 85.5 17
0.0 0 14.2 16 21.9 13 30.1 12 28.4 10 34.8 16 87.1 8
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
40.1 11 61.7 2 33.9 8 33.9 8 0.0 0 27.4 15 64.7 4
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
vt 96.0 3 123.6 7 88.3 16 42.2 5 55.3 7 87.9 17
8.0 6 32.9 8 32.9 8 32.9 8 89.8 12 0.0 0 45.1 4
58.3 12 15.8 12 9.3 9 6.3 17 0.0 0 0.0 0 0.0 0
15.8 20 27.3 7 14.1 4 15.1 17 0.0 0 21.5 14 40.5 13
0.0 0 0.0 0 131.2 13 172.4 11 100.7 14 83.4 16 92.5 11
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
vt 100.5 6 123.9 9 232.7 10 118.6 18 58.2 14 68.7 13
vt 199.7 7 116.4 17 86.8 5 63.6 7 64.4 16 112.5 8

122.2 548.1 632.8 720.8 468.6 384.3 684.5
19999.1 31091.6 34059.0 32906.2 30119.4 18451.7 23009.9



Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)

2917.3 17 2916.2 5 4516.7 3 4260.7 1 3469.5 10 1344.2 20
1391.7 13 1679.6 12 1743.7 9 1839.4 8 490.4 18 2829.7 22
4118.5 14 6637.9 4 6370.3 5 6303.7 7 4898.3 5 2275.4 13
2728.7 17 995.5 5 995.5 5 192.6 10 497.4 13 2261.8 7
3487.5 8 4688.4 13 3449.9 4 2721.1 5 2994.7 4 1134.0 18

0.0 0 2323.9 6 2615.3 11 2734.9 10 2003.0 12 1212.9 21
1345.9 13 2729.4 9 2813.9 5 2655.7 3 583.0 15 2418.0 2

15989.6 21970.9 22505.3 20708.0 14936.2 13475.9

133.8 6 346.2 12 424.3 5 514.6 7 0.0 0 960.4 10
16.6 7 21.7 9 21.8 6 27.6 13 0.0 0 21.8 9
116.1 14 276.4 5 540.9 5 457.6 5 170.7 11 1120.2 7
266.5 644.3 987.0 999.7 170.7 2102.4

59.8 16 35.2 5 26.9 12 19.6 7 10.8 8 17.9 11
52.3 3 101.8 2 132.5 18 152.2 6 22.4 18 489.1 12
81.7 5 149.1 6 149.1 6 65.8 7 38.8 4 0.0 0
182.5 6 375.8 7 55.0 10 29.1 16 22.0 19 0.0 0
15.1 19 33.7 7 21.8 14 0.0 0 0.0 0 0.0 0
104.1 4 80.6 7 63.3 12 47.8 5 0.0 0 45.7 19
126.0 17 454.2 8 15.0 7 282.4 14 15.3 19 60.5 2

vt 85.4 6 186.3 6 vt 251.3 7 261.2 9
0.0 0 0.0 0 21.7 14 40.4 19 0.0 0 0.0 0
47.3 5 277.8 14 76.8 13 123.6 19 177.2 6 193.9 18
0.0 0 0.0 0 727.1 3 647.9 3 0.0 0 577.4 8
44.6 14 75.5 18 51.6 6 37.1 19 11.5 15 0.0 0
20.6 3 20.6 3 20.6 3 43.3 17 0.0 0 0.0 0
0.0 0 7.1 8 18.8 6 12.6 19 0.0 0 0.0 0

SB-SM3
2010 2011 2012

30/08/2012**28/07/2010 04/08/2010 11/08/2010** 18/08/2010 12/08/2011**



vr 608.0 8 638.2 8 641.9 3 378.9 18 315.9 24
0.0 0 0.0 0 7.2 7 7.2 7 6.6 16 0.0 0
vt 662.8 12 746.1 14 1726.8 18 754.0 15 332.1 8
vt 49.1 12 39.1 16 27.2 11 18.8 12 62.2 10
0.0 0 vt 16.6 4 0.0 0 0.0 0 0.0 0
vt 57.9 4 30.3 6 62.5 2 0.0 0 0.0 0

28.1 15 30.7 6 28.0 10 25.3 7 30.8 6 0.0 0
0.0 0 31.6 16 27.8 11 4.5 8 0.0 0 0.0 0
27.0 19 115.3 13 85.2 6 55.0 6 113.0 15 53.5 10
0.0 0 136.6 9 341.4 10 256.4 20 0.0 0 206.1 20
14.8 16 186.2 15 124.0 13 314.6 9 117.7 16 0.0 0
0.0 0 12.0 6 26.2 18 0.0 0 0.0 0 0.0 0
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 85.6 6
vt 112.9 7 233.3 6 144.7 15 20.9 16 159.2 9

37.4 17 121.3 7 104.9 18 84.9 9 14.6 14 60.1 10
vt 68.4 10 45.9 4 33.0 5 0.0 0 55.7 4

105.1 12 477.3 5 832.9 3 814.7 9 111.0 30 685.8 7
vt 40.7 4 29.1 18 25.0 15 20.6 12 0.0 0
vt 59.7 12 66.9 8 49.6 5 vt 64.9 7
vt 93.5 3 69.7 7 107.8 3 58.6 31 63.4 5

25.4 8 58.9 18 65.2 16 59.6 6 0.0 0 0.0 0
vt 244.7 15 333.0 11 401.5 16 160.3 19 174.8 17
vt 74.5 17 50.5 17 44.1 4 vt 17.7 27

115.7 14 736.8 11 1120.9 12 1265.1 17 612.9 6 2092.4 6
80.6 1 80.6 1 136.8 11 128.3 5 35.5 9 218.0 23
vt 48.3 15 27.6 17 31.5 6 39.1 15 50.7 13

45.0 7 127.4 8 220.0 11 159.2 13 65.6 4 435.3 14
1213.0 5932.0 7013.2 7972.0 3108.4 6779.1

130.3 5 323.8 8 198.8 17 139.1 17 0.0 0 250.7 5
165.7 1 317.8 16 329.9 5 63.7 3 30.6 16 268.3 10
519.0 4 383.5 7 264.0 11 306.5 6 50.1 13 283.2 10

vt 198.8 4 109.8 15 101.8 11 15.6 24 184.1 3
0.0 0 18.3 12 0.0 0 0.0 0 52.8 14 0.0 0
vt 84.3 12 31.0 15 44.7 13 0.0 0 219.1 27

262.0 15 756.4 3 810.0 8 758.1 14 178.4 13 594.0 12
373.3 16 444.9 13 349.0 19 594.3 15 179.1 15 884.4 11
0.0 0 22.7 3 19.4 9 30.5 4 0.0 0 20.6 13
0.0 0 46.2 6 16.3 12 23.8 2 0.0 0 104.0 12



vt 131.9 3 18.8 14 25.3 5 0.0 0 37.1 17
68.8 12 170.6 12 59.1 15 95.0 7 33.7 22 49.3 6
0.0 0 324.1 5 150.3 29 159.7 5 36.0 13 305.0 14

1519.2 3223.2 2356.5 2342.7 576.5 3199.9

0.0 0 0.0 0 0.0 0 0.0 0 25.0 9 0.0 0
vt 30.5 7 23.3 5 24.5 15 13.9 13 88.2 7

31.4 18 62.1 12 82.5 13 80.3 13 76.3 18 116.5 25
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
36.9 11 85.0 3 29.1 17 32.1 6 20.1 13 53.8 19
0.0 0 0.0 0 vt vt 0.0 0 vt
vt 93.4 3 134.0 13 71.5 8 66.3 16 92.2 5
8.8 13 44.3 4 28.3 10 28.0 12 0.0 0 38.2 7
62.6 8 12.0 3 16.2 10 14.9 28 0.0 0 0.0 0
12.8 12 16.1 3 14.2 20 12.8 17 17.4 13 29.7 6
vt vt 127.5 9 117.0 19 88.3 16 96.2 13
0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0
vt 94.9 4 105.0 9 147.7 18 64.2 13 89.4 13
vt 160.9 4 107.6 8 133.0 10 70.5 24 129.4 11

152.5 599.1 667.6 661.9 442.0 733.7
19140.8 32369.6 33529.7 32684.3 19233.8 26291.0



Table S11
Volatile components determined for Vitis vinifera  L. cv. Baga variety obtained from 3 parcels, at Bairrada Appellation, from 2010, during maturation, and for 2011 and 2012 harvests,
only maturity was considered.

1Dtr(s),2Dtr(s)Compound Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)

C6 compounds
194, 0.640 Hexanal 1121.7 16 2180.7 15 4770.4 6 3867.6 13 3573.6 10 3960 8 2765.9 19
206, 0.630 3-Hexenal 273.2 18 667.9 10 690.1 6 458.9 11 335.2 8 671.3 5 467.3 18
230, 0.651 2-Hexenal 2218.4 11 4569.9 14 5039.6 12 3213.4 14 3466.1 15 5367.2 7 2313.1 9
242, 0.630 3-Hexen-1-ol 872.4 4 954.3 4 966.2 10 449 10 504.4 16 866.7 5 459.4 14
248, 1.076 2-Hexen-1-ol 798.3 14 3041.5 8 2371 11 2324.7 9 2924.6 9 1719.5 14 2965 17
266, 0.903 1-Hexanol 994.1 12 2542.9 13 2116.4 7 2727.2 13 2547.7 19 2276.7 11 2984.2 9
296, 0.930 2,4-Hexadienal 233.5 5 773.4 11 844.5 17 316 8 327.7 20 639.9 8 256.9 19

Sub-total 6511.6 14730.6 16798.2 13356.8 13679.3 15501.3 12211.8
Aromatic alcohols
420, 3.014 Benzyl Alcohol 170 14 250.8 8 417.3 5 709 9 604.1 4 595.7 3 507.9 8
446, 1.426 α,α-Dimethyl Benzyl alcohol0 0 0 0 0 0 0 0 vt 36.6 6 0 0
470, 1.960 2-Phenylethanol 95.6 4 257 20 282.8 10 327.5 15 432.5 16 425.8 8 378.1 1

Sub-total 265.6 507.8 700.1 1036.5 1036.6 1058.1 886
C9 Norisoprenoid
506, 0.761 Norinone 16.8 21 44.9 5 47.4 12 52.1 4 52.0 7 49.2 11 59.7 13

Monoterpenic compounds
314, 0.440 α-Pinene 26.9 12 16.9 6 15.5 10 15.5 10 19.5 6 35.1 5 7 2
344, 0.457 β-Pinene 32.1 15 31.3 19 38.5 10 20.4 14 20.3 19 18.3 6 0 0
392, 0.405 m -Cymene 19.9 9 39.7 8 48 8 31.3 5 32.5 14 17.3 19 18.4 8
398, 0.476 Limonene 0 0 31.7 18 35.9 20 23.5 10 93.2 8 43.8 8 15.8 14
404, 0.476 1,8-Cineole 0 0 0 0 0 0 0 0 vt 61.0 14 85.1 15
416, 0.560 β-Ocimene 312.7 11 208.2 11 157.8 20 210.1 3 192.7 2 226.8 6 0 0
428, 0.678 Linalool oxide (isomer)vt 84.7 13 96.3 5 107.8 4 145.1 9 40.2 18 vt
434, 0.727 Dihydromyrcenol 24.0 19 102.7 10 72.4 12 64.2 5 24.9 16 27.9 13 33.6 7
440, 0.560 α-Terpinolene 0 0 426.9 5 400.5 6 433.5 15 417.8 10 459.6 12 0 0
446, 0.700 Dihydrolinalool 19.8 9 18.8 9 18.7 3 14.6 7 0 0 0 0 0 0
452, 0.746 Linalool 0 0 19.1 11 27.1 11 35 2 21.5 6 58.6 16 63.5 10

BA-VA1
2010 2011

20/08/2010 27/08/2010 03/09/2010 10/09/2010 17/09/2010** 24/09/2010 03/10/2011**



464, 0.600 Rose oxide (isomer) 151.6 8 171.7 9 156.8 9 160.8 2 159 5 116.2 5 0 0
464, 0.844 Fenchol 114.8 7 83.2 13 59.3 14 52.6 4 59.3 7 57.1 5 69.8 5
470, 0.646 Hotrienol 0 0 13.1 9 21.9 20 23.8 8 23.8 8 14.4 10 26.8 16
470, 0.780 Camphenal vt 54.8 7 61.4 7 42.2 4 46.8 7 59.7 9 19.5 20
482, 0.890 1-Terpineol vt 27.4 12 58.1 4 28 20 22.6 3 34.5 13 0 0
512, 0.635 Nerol oxide 0 0 0 0 0 0 vt 16.3 6 34.8 5 0 0
524, 0.860 Borneol vt 133.6 3 223.9 19 203.3 14 169 5 143.8 14 156.7 19
530, 0.984 Menthol* 0 0 0 0 0 0 0 0 vt 23.8 19 38.9 9
536, 0.715 Terpinen-4-ol vt 152.9 8 217.6 15 175.4 12 111 12 153.3 7 29.6 19
536, 1.269 Cymen-8-ol 78.4 18 27.1 18 29.9 16 25 4 25 4 14 10 14.4 11
542, 0.835 α-Terpineol* 0 0 20.1 13 31.4 3 26.1 16 20.9 7 24.5 12 258.4 18
548, 0.850 Dihydrocarvone vt 280.3 4 251.3 13 236.7 11 178.5 5 220 16 0 0
560, 0.850 Verbenone 0 0 0 0 0 0 0 0 vt vt 38.9 5
566, 0.703 Menth-1-en-9-al vt 53.9 11 60 13 51.9 15 48.2 4 45.6 17 0 0
584, 0.873 Geraniol (isomer 1)* 0 0 0 0 0 0 vt 53.5 12 110.4 5 227.3 13
584, 0.943 β-Citronellol* vt 83.5 13 161.6 11 162.1 4 192.4 18 139.8 18 164.3 21
590, 0.737 Geraniol (isomer 2)* 0 0 0 0 0 0 0 0 0 0 0 0 372.1 14
596, 0.976 Citral (isomer 1) 23.7 13 145.6 17 164.1 4 171.9 7 151.2 6 114.1 12 26.7 17
602, 0.815 Carvone* 68.3 18 284.5 10 254.9 3 269 5 289.7 13 246.3 15 0 0
626, 0.775 Citral (isomer 2) vt 36.2 16 46.9 14 42.1 10 27.3 15 26.9 9 0 0

Sub-total 872.2 2547.9 2709.8 2626.8 2562 2567.8 1666.8
C13 Norisoprenoids
566, 0.532 m/z 159, 91, 131 0 0 14.4 17 15.4 10 11.9 8 10.9 10 10.9 10 0 0
620, 0.595 Vitispirane 292.2 6 58.7 2 27.9 7 27.2 10 42.2 4 34.6 12 0 0
632, 0.517 Theaspirane (isomer 1)127.6 14 180.9 19 120.6 20 82.1 3 76.8 1 100.8 9 11.9 9
644, 0.528 Theaspirane (isomer 2)vt 134.5 19 81.6 19 68.7 5 42.9 11 55.2 10 8.0 2
674, 0.681  β-Damascenone (isomer 1)vt 49.8 6 45.1 13 34.5 12 17.2 8 26.6 12 0 0
680, 0.840 m/z  142, 157, 115 (ketone)59.5 4 70.2 5 122.9 13 188.4 6 173.9 2 144.2 19 0 0
700, 0.702  β-Damascenone (isomer 2)74.4 6 538.3 9 571.7 10 425.9 7 327.5 5 343.1 6 186.6 24
736, 0.648 Geranylacetone * 270.5 18 390.4 8 428.1 3 352.4 8 308.2 9 245.2 18 192.8 7
742, 0.850 5,6-Epoxy-β-ionone 0 0 0 0 13.2 23 23.2 13 13.2 23 19.8 13 69.4 15
778, 0.635  α-Iso-methyl ionone 0 0 vt 31.0 16 13.5 14 14 10 21.8 8 14 8
784, 0.717  β-Ionone * vt 113.3 13 154.6 9 87.3 6 32.7 5 28.1 11 16.8 14
900, 0.894 Methyl dihydrojasmonate0 0 27.9 12 27.1 9 20.5 10 19.3 18 88.1 47 97.8 13

Sub-total 824.2 1578.4 1639.2 1335.6 1078.8 1118.4 597.3
Sesquiterpenic compounds
650, 0.583 δ-Elemene 0 0 0 0 17.7 1 22 6 23.8 8 25.4 6 45.1 6
686, 0.510 β-Bourbonene 0 0 vt 56.1 13 59.4 3 56.1 13 55.8 6 14.1 17
718, 0.481 β-Caryophyllene 0 0 0 0 0 0 vt 10.3 18 11.3 0 46.4 10



756, 0.630 Aromadendrene vt 59.1 12 64.3 5 60.7 6 62.2 1 62.8 6 vt
796, 0.525 γ-Cadinene 0 0 0 0 0 0 0 0 vt vt 0 0
826, 0.629  α-Calacorene 41.7 4 41.7 4 33.4 6 51.5 5 59.1 5 70.6 2 0 0
832, 0.880 Nerolidol vt 60.7 7 124.1 13 75.2 14 79.2 9 84.1 8 0 0
886, 0.690 β-Eudesmol vt 190.1 13 223.2 5 199 7 173.8 13 199.7 1 12.1 15

Sub-total 41.7 351.6 518.8 467.8 464.5 509.7 117.7
Diterpenic compound
1116, 0.929 Phytol 0 0 vt 45.1 7 58.8 2 57.0 10 60.2 2 82.4 9

Total 8532.1 19761.2 22458.6 18934.4 18930.2 20864.7 15621.7
a 1Dtr (s), 2Dtr(s): first and second dimension retention times (in seconds) of each compound determined.
* Compounds identified based on the comparison between the obtained mass spectra and mass spectra of high purity chemical standards.
** Data obtained at maturity
vt - vestigial



Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%) Mean (n=3) RSD (%)

2634.7 14 1885.1 10 2920.6 10 4377 8 4302.8 8 4791.8 9 3741.4 10 4770.2 3
408.2 5 259.1 18 511.5 12 817.1 2 746 9 503 5 507.3 14 674.1 6
2764.6 14 1637.9 12 4925.4 2 4528.9 9 4124.4 7 5030.3 4 6234.9 20 3529.6 14
453.8 12 767.4 3 727.1 8 948.4 12 869.3 6 802.5 5 556.2 9 750 5
1746.1 10 794.9 18 3336.7 12 3600.9 14 3253.2 10 3498.1 17 2853.2 14 2658 13
1860.6 16 1017.6 7 2383.2 8 2182 14 516.7 12 2461.8 3 1653.5 5 3955.4 15
235.5 6 235.9 13 585.8 4 674.3 16 657.3 19 477.2 4 540.8 3 481.2 6

10103.5 6597.9 15390.3 17128.6 14469.7 17564.7 16087.3 16818.5

548.4 11 168.4 2 209.1 4 671.6 12 707.8 12 621.4 6 640.2 3 600 6
vt 0 0 0 0 0 0 vt vt 33.0 5 31.8 13

419.7 23 110.9 12 298.1 5 297 7 324 16 518.8 10 430.9 3 500.5 9
968.1 279.3 507.2 968.6 1031.8 1140.2 1104.1 1132.3

50.7 3 12.0 12 58.8 7 54.5 5 60.1 3 55.8 6 58 6 50.8 10

22.5 9 32.9 19 10.7 14 19.3 5 18.9 12 11.6 13 28.8 17 7.6 7
41.3 14 22.9 4 19.9 8 27.1 11 23.9 13 24 7 16.7 7 18.4 16
12.7 27 18.2 6 38.6 5 37.1 7 37.5 8 37.5 12 17.5 10 40.2 17
10.6 15 0 0 26.2 4 38.8 6 35.4 10 90.3 10 49.6 3 vt
133.2 19 0 0 0 0 0 0 0 0 0 0 0 0 vt

0 0 376.2 15 141.4 16 167.8 20 148.9 29 86.8 3 254 13 231.7 7
48.8 6 vt 76.3 4 86.2 7 129 18 18.2 4 0 0 0 0

0 0 21.7 10 99 17 83.9 12 77.8 4 29.3 14 40.5 3 29.9 2
0 0 vt 463.5 6 469.3 11 447.1 5 631.4 4 430.3 4 430.1 7
0 0 0 0 17.2 9 17.2 9 17.2 9 0 0 0 0 0 0

180.2 29 0 0 25.7 12 40.3 6 38 10 25.1 8 63.7 3 33 13

BA-VA2
2012 2010

GC×GC peak area x 104 (arbitrary units)

05/08/2012** 20/08/2010 27/08/2010 03/09/2010 10/09/2010 17/09/2010 24/09/2010 01/10/2010**



0 0 79.0 10 144.1 14 161.9 13 162.9 16 109.7 6 127.7 9 101.6 1
56.7 6 78.3 3 40.5 3 39.6 17 48.7 4 95.6 12 92.3 6 89 3
78.3 22 0 0 13.4 9 13.4 22 23.4 12 15.6 16 14.3 11 13.9 10

0 0 vt 60.9 10 43.6 18 41.9 3 40.1 4 57.7 2 52.5 5
0 0 vt 47.0 15 28.4 3 24.8 17 34.5 6 38.4 15 38.5 16
0 0 0 0 0 0 0 0 vt 23.7 12 17.4 5 18 15

83.7 25 vt 209.9 11 197 37 201.1 7 226.5 13 167.4 15 134.1 11
78.5 11 0 0 0 0 0 0 vt vt 36.8 15 13.1 19
67.8 13 vt 139.8 19 175.4 19 174.1 20 120.5 16 178.7 11 167.6 15
16.6 27 32.8 10 24.1 17 20.3 10 20.3 10 20.3 10 19.4 14 87.6 14
257.7 13 0 0 25.2 7 25.7 10 33.5 14 31.4 2 25.4 9 25.8 13

0 0 vt 302.6 3 281.2 12 247.5 9 177 10 208.7 12 239.1 7
35.1 18 0 0 0 0 0 0 0 0 0 0 vt vt

0 0 vt 54.9 14 50 18 40.9 12 44.4 5 40.6 4 43 6
195.5 17 0 0 0 0 0 0 0 0 0 0 vt 64.6 17
137.3 28 vt 135.6 20 153.1 22 172.2 3 288.9 9 138.7 12 132.7 11
231.4 6 0 0 0 0 0 0 0 0 0 0 0 0 vt
33.4 8 34.2 11 127.4 6 162.5 18 154.9 5 175 17 124 26 236.2 20

0 0 136.6 14 288.5 23 351.5 7 317.9 11 401.3 11 328.6 9 302 6
27.7 12 vt 56.3 6 48.5 8 36.6 15 25.9 9 37.5 14 50.9 6
1749 832.8 2588.7 2739.1 2674.4 2784.6 2554.7 2601.1

22.4 25 0 0 14.9 8 25.1 13 18.8 14 29.5 9 18.2 7 20.9 8
51.5 9 84 19 64.4 16 75.4 3 79 8 58.1 6 16.2 16 0 0
16.9 29 279.7 19 194.7 12 210.3 7 86.7 3 87 6 277.4 12 160.9 5
9.1 17 vt 161.8 14 173.2 15 89.1 4 67.1 11 13.1 4 23.3 7
29.1 31 vt 38.4 9 30.4 5 20 15 30.7 13 21.7 11 31.5 13

0 0 60.5 12 93.3 5 95.3 8 102.3 17 98.6 8 86 11 94.3 27
711.7 8 89.3 8 445.7 2 514.6 2 525.3 16 440.4 1 424.9 6 418.7 3
291.5 9 263.6 11 434.2 8 411 4 297.4 11 233.6 15 279.4 18 234.9 9

vt 0 0 0 0 6.3 4 13.9 17 13.9 17 11.5 8 0 0
27.5 11 0 0 21.7 18 21.1 22 21.1 22 22.3 5 17.1 18 19.9 15
33.5 24 vt 132.3 15 163.6 1 103.8 8 32.2 15 23.5 7 37.2 9
105.8 19 vt 19.2 14 19.9 21 18.3 19 32.5 18 21.5 3 16.2 7
1299 777.1 1620.6 1746.2 1375.7 1145.9 1210.5 1057.8

77.7 12 0 0 0 0 21.6 4 26.6 3 30.5 5 30 6 20.8 5
135.2 16 vt vt 62.2 3 63.8 4 65.8 3 68.5 5 15.4 20
46.5 5 0 0 0 0 0 0 0 0 0 0 vt vt



41.2 3 vt 36.9 10 62.0 2 58 16 58.5 4 159.1 11 59.8 2
26.9 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25.2 15 40.9 2 40.9 2 50.4 1 58.1 6 62.9 5 65.7 3 vt
vt vt 116.7 18 117.2 8 111.2 16 137.5 12 82 4 134.8 8

15.3 10 vt 209.7 3 225.5 14 221.3 19 244.6 4 124.2 15 231.4 16
368.0 40.9 404.2 538.9 539.0 599.8 529.5 462.2

80.9 10 0 0 vt 54.1 5 60.6 7 63.6 8 73.4 9 65.7 6
14619.2 8540 20569.8 23230 20211.3 23354.6 21617.5 22188.4



Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%) Mean (n=3) RSD (%)

3699.8 15 2395.1 18 1236.1 15 1401.5 8 3345.9 8 3799.8 10 4254.8 7 4618.4 8
529.4 7 460.2 16 574.6 8 154.9 17 867 4 714.5 9 746 2 570 8
4003.5 13 3642.5 6 2281.1 9 1798.1 19 5180.5 2 5763.2 8 3875.4 11 4452.5 1
478.7 1 418.1 19 316.5 19 682.1 1 1027 6 1002.4 20 495.5 13 771.6 4
1889.3 7 3285.6 9 1093.7 21 399.9 18 3444.7 13 2921.9 12 3145.7 16 2369.4 16
2989.4 8 3442.8 10 1063.9 10 1020.7 7 2424.5 19 1742 5 1333.4 20 4062.3 6
404.1 18 269.8 13 235.4 6 57.3 8 725.3 1 1114.5 20 688.2 13 367.1 17

13994.2 13914.1 6801.3 5514.5 17014.9 17058.3 14539 17211.3

569.2 10 658.5 8 620.3 10 170.5 15 193.2 4 473.5 8 556.5 5 556.8 5
35.1 21 0 0 vt 0 0 0 0 0 0 0 0 0 0
482.6 6 252 13 645.6 7 90.1 2 283.1 15 209.7 7 348.4 11 454.6 5

1086.9 910.5 1265.9 260.6 476.3 683.2 904.9 1011.4

48.7 11 41.2 5 86.2 13 9.8 1 48.9 7 48.9 4 53.1 3 48.7 9

30.4 19 8.7 6 23.4 14 23.7 8 16.3 11 11.2 20 11.2 20 9.1 9
43.7 11 0 0 42.7 14 27.8 17 41.9 11 22.4 16 18.6 18 36.9 11
17 19 12.8 13 13.4 10 17.9 3 48.6 10 42.7 15 33.2 19 44 17
0 0 30.2 12 17.8 26 0 0 31.8 17 33.2 2 27.7 14 44.4 8
vt 113.5 10 155.5 19 0 0 0 0 0 0 0 0 0 0

272.8 11 vt vt 206.2 17 95.5 7 173.9 14 212.3 5 103.1 3
0 0 0 0 54.4 21 0 0 51.6 5 56.7 15 106.9 4 112.1 11

25.8 13 47.6 7 vt 23.2 18 78.9 10 62.3 12 71.6 8 27 19
530.4 9 vt vt vt 437.6 6 216.4 1 136.5 19 549.3 19

0 0 0 0 0 0 12 13 11.6 10 11.6 10 15.5 29 0 0
36.9 45 104.2 8 461.4 14 0 0 24.9 11 27.2 5 29.4 15 40.5 19

2011 2012 2010
BA-SM1          

20/08/201008/10/2010 03/10/2011** 21/09/2012** 27/08/2010 03/09/2010 10/09/2010 17/09/2010



143.5 66 0 0 vt 82.2 9 113.7 19 126.4 13 123 12 81.2 10
0 0 41.4 9 57.3 5 109.8 16 43.1 11 43.9 15 43.9 15 43.9 15
0 0 32.8 15 88.4 15 vt 18.1 6 11.9 11 15.5 12 20.5 14

54.5 41 19.1 12 vt vt 61.2 5 38.4 10 39.6 19 60.3 1
32.5 18 0 0 vt vt 45.0 3 28.5 15 31.9 4 51.2 15
7.8 6 0 0 0 0 0 0 0 0 0 0 0 0 11.8 12

192.6 19 171.9 17 106.6 7 vt 125.5 20 137.6 28 154.1 14 157 12
18.4 6 55.7 10 72.9 7 0 0 0 0 0 0 0 0 0 0
116.3 15 26.4 10 82.3 24 vt 137.6 23 134.6 21 173.3 4 120.4 5
25.3 18 26 19 33.9 9 34 10 27.2 9 22.4 14 22.4 7 24.6 10
32 12 308.8 11 284.3 8 0 0 25.6 16 24.5 4 27 13 26.1 3

219.8 4 vt vt vt 256.0 13 257.8 19 252.1 13 89.1 3
vt 34.5 17 33.3 11 0 0 0 0 0 0 0 0 0 0

58.5 15 vt vt 0 0 54.1 9 40.8 13 40.4 2 29.4 3
116.4 12 203.1 11 266.5 3 0 0 0 0 0 0 0 0 0 0
108.8 19 159 20 167.6 25 vt 156.7 16 172.3 2 133.9 12 162.9 20

vt 308.9 14 231 10 0 0 0 0 0 0 0 0 0 0
51.1 16 17 21 34.3 10 35.6 13 195.4 17 176.8 13 145.2 15 127.5 14
164.1 18 vt vt 67.4 8 257.6 16 183.9 8 206.6 13 259.9 13
46.3 5 vt 37.2 16 vt 41.5 17 31.7 17 25.6 8 46.6 5

2344.9 1721.6 2264.2 639.8 2397 2089.1 2097.4 2278.8

30.9 10 0 0 25.5 3 0 0 27.1 10 26.2 15 13.6 6 26.3 6
0 0 0 0 57.5 9 130.6 19 32.1 13 41.6 19 43.6 7 35.9 5

58.3 12 16 8 19.4 22 347.5 16 134.8 20 186.8 4 65.1 3 57.1 3
29.6 9 9 4 11.2 6 vt 102.6 12 82 9 42.9 10 28.5 19
30.2 5 9.6 11 32.7 13 0 0 36.3 12 41.9 6 22.3 12 25.6 8
63.2 18 0 0 0 0 58.8 15 75.4 8 66.8 7 192.2 18 185.8 8
527.1 10 263.1 27 850.7 14 47.6 13 581.7 12 568.4 15 440.9 9 387.4 8
240.3 12 245.5 23 359.1 9 276.2 6 349.1 8 411.8 7 218.6 3 178.6 14

0 0 76.5 5 0 0 0 0 6.3 4 9.6 18 6.2 15 5.7 8
18.1 15 10 1 42 5 0 0 0 0 0 0 17.4 12 26.3 5
30.1 17 12.1 13 53.1 19 vt 107.4 14 98.9 12 87.4 3 43.2 14
21.6 18 61.9 20 280.6 18 0 0 14.2 16 15.8 18 12.9 26 18.4 20

1049.4 703.7 1731.8 860.7 1467 1549.8 1163.1 1018.8

0 0 47.2 9 87.1 10 0 0 0 0 22.7 15 24.8 15 24.9 8
0 0 25.2 31 136 22 0 0 vt 52.7 15 82.4 9 55.3 5
vt 42.1 7 61.5 8 0 0 0 0 0 0 0 0 0 0



184.1 9 9.1 16 61.8 6 vt 68.2 10 64.9 6 64.9 6 61.3 14
0 0 0 0 19 13 0 0 0 0 0 0 0 0 0 0
0 0 7.5 3 21.6 4 61.9 13 18.8 6 17.2 20 14.2 12 14.8 18

136.4 10 0 0 0 0 vt 88.8 13 89.3 3 111.6 18 110.1 6
186.3 17 13.2 20 14.9 13 vt 179.6 13 184.7 8 202.8 10 198.5 7
506.8 144.3 401.9 61.9 355.4 431.5 500.7 464.9

62.4 13 94.9 14 105.5 16 0 0 vt 50.7 8 61.3 12 73.6 11
19093.3 17530.3 12656.8 7347.3 21759.5 21911.5 19319.5 22107.5



Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%) Mean (n=3) RSD (%)

4121.4 10 4843.7 11 3597.4 4 2939.4 15 1413.9 26
488.9 9 522.9 15 513.9 9 602.6 10 552.9 21
4590 17 3467.6 15 4851 10 4297.6 10 1878.8 9
744.8 15 518.4 12 330 15 429.4 12 436.7 18
3192.6 16 2240.7 19 1958 16 1735.6 8 2556.4 5
2124.3 17 1747.4 11 1641.7 23 3129.2 20 15195.8 2
516.6 10 430 19 524.4 20 383.2 8 414 29

15778.6 13770.7 13416.4 13517 22448.5

575 5 606.4 4 584.6 4 451.9 8 436.8 19
29.7 3 38.4 2 29.9 9 vt vt
379.1 5 414.4 9 420.8 4 225.3 8 373.6 15
983.8 1059.2 1035.3 677.2 810.4

47.7 13 46.8 5 44.4 14 49.1 9 45.4 9

30.5 12 0 0 0 0 7.6 6 7.7 6
21.5 15 19.7 10 19.8 15 0 0 37.7 18
19 7 37.2 11 19.6 8 14.3 22 12.5 22

50.8 2 0 0 0 0 17.3 22 9.5 11
vt vt vt 113.4 15 102.3 12

195.9 3 195.8 6 218.7 13 vt vt
0 0 vt vt 0 0 49.8 18

20.4 13 0 0 0 0 43.3 11 0 0
416.3 3 413.1 4 404.9 5 0 0 0 0

0 0 0 0 0 0 0 0 0 0
53 5 36 18 41.7 11 101 8 183.2 9

2011 2012
08/10/2010 03/10/2011** 21/09/2012**24/09/2010 01/10/2010**



109.6 15 109 18 97.8 15 vt vt
59 13 94 2 0 0 54.6 23 38.6 15

11.7 16 19.4 10 0 0 42.8 18 73.6 16
45.9 15 56.8 6 55.4 7 39.4 19 vt
31.9 3 29.3 17 39.0 14 vt vt
14.5 7 0 0 0 0 0 0 0 0
165.7 7 113.5 18 99.0 7 162.8 16 78.7 8
15.8 14 0 0 0 0 37.2 16 59.4 4
145.9 5 130.9 9 126.2 67 25.7 13 45.6 22
26.2 12 23.9 11 34.2 1 33 11 31.6 17
29.5 5 25.9 15 32.2 5 189.6 3 208.3 35
218 4 226.9 19 193.9 7 0 0 vt
0 0 vt vt 59 14 30.8 12

32.2 9 51.3 17 39.5 2 0 0 0 0
0 0 32.1 8 74.4 16 98.8 11 195.8 26

137.6 13 131.4 19 116.2 6 77.4 17 46.2 26
0 0 0 0 0 0 164.3 11 138.5 23

83.6 16 110.8 13 86.2 12 20.5 14 24.1 17
290.2 9 241.8 19 219.4 6 0 0 vt
25.8 7 26.2 10 63.3 9 vt 30.6 7

2250.5 2125 1981.4 1302 1404.5

16.2 9 17.3 17 0 0 0 0 20.5 25
30.9 15 0 0 0 0 0 0 29.0 25
49.2 15 45.5 7 30.3 4 19.6 20 14.3 29
23.4 9 12.5 7 10.8 12 19 20 8.1 5
16.3 14 23.2 11 17.9 9 8.2 8 25.2 15
162 8 148.2 7 117.4 4 0 0 vt

238.1 19 186.4 17 193.1 14 174.9 14 576 15
352.6 8 279.8 7 299.4 18 142.7 6 313.6 28

0 0 0 0 0 0 63.9 8 vt
14.6 4 19.8 20 22.5 11 0 0 24.3 19
29.8 8 52 17 31.7 17 23.5 14 18.3 5
77 8 25.9 19 26.6 18 54.4 10 156 24

1010.1 810.6 749.7 506.2 1185.3

23.3 6 0 0 0 0 65.1 2 51.2 11
19.6 6 26.7 17 0 0 15.5 8 49.4 12

0 0 0 0 0 0 58.1 8 36.9 15



62.1 1 49.3 19 42.3 8 7.8 5 31.8 9
0 0 vt vt 0 0 13.1 25

14.8 17 14.7 5 0 0 6.1 5 17.9 18
122.3 9 114.3 6 133.8 11 0 0 0 0
188.1 17 214.7 6 216 5 13.3 12 12.6 19
430.2 419.7 392.1 165.9 212.9

62.6 3 68.6 8 59.9 7 79.5 8 62.6 5
20563.5 18300.6 17679.2 16296.9 26169.6



Table S12
Volatile components determined for Vitis vinifera  L. cv. Castelão variety obtained from 3 parcels and 3 years of harvests, during maturation, at Bairrada Appellation.

1Dtr(s),2Dtr(s)Compound Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)

C6 compounds
194, 0.640 Hexanal 1791 9 3773.4 21 3715.3 10 3701.1 4 3968.6 10 3607.7 10
206, 0.630 3-Hexenal 1154.9 2 625.5 12 684.5 6 784 18 746.5 18 538.2 12
230, 0.651 2-Hexenal 1510.8 26 5894.6 3 5641.8 10 5068.9 4 3817.6 11 5819.4 13
242, 0.630 3-Hexen-1-ol 846.6 10 717.6 6 850.6 8 774 7 831.4 15 475.4 6
248, 1.076 2-Hexen-1-ol 960.2 6 2897 20 2085.1 13 2524.6 4 3067.9 10 2466.1 9
266, 0.903 1-Hexanol 811.9 6 857.3 4 1913.6 26 2812.8 4 2009.8 14 3120.8 20
296, 0.930 2,4-Hexadienal 72.3 13 912.6 5 778.5 8 978.8 17 871.5 4 707.9 22

Sub-total 7147.7 15678 15669.4 16644.2 15313.3 16735.5
Aromatic alcohols
420, 3.014 Benzyl Alcohol 114.4 6 244.5 15 430.8 7 377.2 11 397.9 20 578.1 10
446, 1.426 α,α-Dimethyl Benzyl alcohol vt 31.2 11 40.9 8 26.9 18 30.3 14 32 18
470, 1.960 2-Phenylethanol 80.9 3 106.4 9 112 11 230.4 15 310.3 9 45.2 5

Sub-total 195.3 382.1 583.7 634.5 738.5 655.3
C9 Norisoprenoid
506, 0.761 Norinone 37.4 8 39.6 3 35.5 7 39.9 8 39.8 7 37.2 9

Monoterpenic compounds
314, 0.440 α-Pinene 34.6 8 35.6 19 24.3 18 22.3 9 13.9 11 15.5 20
338, 0.480 Dehydroxylinalooloxide 22.1 21 50.7 13 85.4 2 vt vt 0 0
344, 0.457 β-Pinene * 31.4 13 38.2 12 31 8 33.2 9 69.1 4 30.2 12
392, 0.405 m -Cymene 0 0 35.1 1 30.5 18 37.1 15 24.8 16 29.8 11
398, 0.476 Limonene * 9.7 9 49.4 9 90.8 5 97.3 2 159 2 175.5 3
404, 0.476 1,8-Cineole 262.8 6 233.4 7 188.7 8 109.2 7 118.4 9 124.5 7
428, 0.678 Linalool oxide (isomer 1) 52.6 5 109.3 12 42.8 16 48.8 19 71.8 16 52.6 22
434, 0.727 Dihydromyrcenol vt 71.5 2 77.6 6 49.5 7 56.1 16 64.2 8
440, 0.560 α-Terpinolene 27.7 7 18.8 12 20.9 6 22 12 22.1 17 12.4 13
440, 0.790 Linalool oxide (isomer 2) 61.6 2 46.1 6 47.8 9 33.6 8 56.6 2 vt

17/09/2010** 24/09/2010
2010

20/08/2010 27/08/2010 03/09/2010 10/09/2010



446, 0.700 Dihydrolinalool 0 0 26.6 4 37.9 7 63 7 55.3 16 33.5 2
452, 0.746 Linalool * 78.7 10 225.5 17 305.8 19 249.2 1 477.8 11 434.6 17
464, 0.600 Rose oxide (isomer) 0 0 0 0 12.4 13 19.2 15 37 15 15.2 15
464, 0.844 Fenchol 0 0 34.4 15 47 33 92.6 12 68.5 4 38.1 10
470, 0.646 Hotrienol 989.7 8 1061.8 16 788.0 11 766.4 7 609.1 8 546.1 11
470, 0.780 Camphenal vt 48.2 5 43.1 5 69.8 2 51.2 15 46.1 13
494, 1.050 Pinocarveol 0 0 0 0 0 0 41.1 10 42.8 6 vt
506, 1.190 Pinocarvone 0 0 0 0 0 0 26.5 16 35.8 5 vt
512, 0.635 Nerol oxide 157.3 22 154.0 15 87.0 2 71.3 10 137.6 20 56.4 15
518, 0.834 Ocimenol 0 0 181.1 7 186.5 13 258.6 13 266.7 19 252.5 11
518, 1.200 m/z  68, 94, 79, 109 (alcohol)48.2 20 58.5 5 60.5 1 87.6 4 128 17 68.0 4
524, 0.860 Borneol 0 0 0 0 0 0 0 0 0 0 0 0
530, 0.884 Mentha-1,5-dien-8-ol 0 0 0 0 vt 32.4 16 26.9 7 vt
530, 0.984 Menthol * 12.4 13 306.7 13 400.9 9 413.6 4 293.9 6 304.1 8
536, 0.715 Terpinen-4-ol 32.1 17 52.4 13 46.9 3 31.2 15 39.9 13 25.9 14
536, 1.269 Cymen-8-ol 0 0 30.2 9 42.2 5 52.4 4 53.5 6 54.3 8
542, 0.835 α-Terpineol * 392.4 14 608.1 6 656.0 9 506.6 5 329.1 5 502.6 16
560, 0.850 Verbenone vt 54.9 4 137.0 8 118.8 18 104.0 7 109.8 17
566, 0.703 Menth-1-en-9-al 198.3 14 171.5 16 197.4 7 160.7 16 194.4 7 193.6 11
572, 1.340 2-Hydroxycineole 0 0 0 0 0 0 0 0 0 0 0 0
578, 0.700 m/z  93, 121, 119, 136 (alcohol)23.1 20 23 11 17.6 8 18 12 24.7 9 17 14
584, 0.873 Geraniol (isomer 1) * 21.4 18 95.6 10 167.0 10 308.6 13 425.6 7 339.1 15
584, 0.943 β-Citronellol * vt 102.1 16 105.8 18 131.8 14 436.0 3 382.9 2
590, 0.737 Geraniol (isomer 2) * vt 232.6 5 362.5 15 568.7 19 786.6 4 613.0 10
596, 0.976 Citral (isomer 1) 0 0 0 0 0 0 204.9 2 72.2 3 86.2 9
602, 0.815 Carvone * 0 0 39.3 5 59.7 14 37.6 16 38.1 17 40.6 15
626, 0.775 Citral (isomer 2) vt 51.3 12 44.5 8 50.8 2 123.8 5 96.7 10

Sub-total 2456.1 4245.9 4445.5 4834.4 5450.3 4761.0
C13 Norisoprenoids
566, 0.532 m/z  159, 91, 131 8.3 14 26.6 20 19.2 8 0 0 0 0 0 0
620, 0.595 Vitispirane 276.3 15 194 23 88 7 34.9 16 19.7 7 22.6 14
632, 0.517 Theaspirane (isomer 1) 18.9 16 0 0 0 0 0 0 0 0 0 0
644, 0.528 Theaspirane (isomer 2) 20.2 12 vt 0 0 0 0 0 0 0 0
674, 0.681 β-Damascenone (isomer) 0 0 25.8 7 33.3 7 34.7 8 38.3 15 21.5 2
680, 0.840 m/z  142, 157, 115 (ketone) vt 93.8 5 102 18 178 19 104 12 106.6 5
700, 0.702 β-Damascenone (isomer) 62.5 14 508.2 10 512.8 10 349.6 10 424.7 11 372.3 8
736, 0.648 Geranylacetone * 416.5 10 447.5 8 475.1 3 531.1 13 404.4 11 387.1 4
742, 0.850 5,6-Epoxy-β-ionone 0 0 0 0 0 0 11.6 11 21.0 23 0 0
760, 0.868 3,4-Dehydro-β-ionone 0 0 0 0 0 0 0 0 vt 0 0



778, 0.635 α-Iso-methyl ionone 16.2 7 22 8 23 10 44.5 16 50.2 6 16.4 12
784, 0.717 β-Ionone * 22 17 21.6 18 27.1 8 54.5 3 89.5 8 35.5 10
900, 0.894 Methyl dihydrojasmonate vt 68.0 10 87.4 13 35.7 4 69.0 6 24.1 13

Sub-total 840.9 1407.5 1367.9 1274.6 1220.8 986.1
Sesquiterpenic compounds
650, 0.583 δ-Elemene 0 0 0 0 0 0 37.2 20 35.4 7 28.8 4
680, 0.469 α-Copaene 20.3 27 67.8 7 71 6 121.8 11 143.4 9 207.2 18
724, 0.541 α-Humulene 0 0 0 0 0 0 17.7 21 8 2 44.3 10
756, 0.630 Aromadendrene 93.2 1 144.7 9 34.3 5 155.3 5 34.2 5 142.3 11
762, 0.450 α-Muurolene vt 77.2 5 50.6 2 74.1 5 vt 0 0
790, 0.660 α-Farnesene 0 0 0 0 46.8 6 vt 0 0 0 0
808, 0.630 Calamenene 21.2 9 16.3 10 12.1 17 16.4 7 16.8 10 20.9 7
826, 0.629 α-Calacorene 36.5 12 15.1 11 24.1 9 15.7 6 17 15 19.4 10
832, 0.880 Nerolidol vt 189.3 31 135.5 17 145.3 16 196.7 15 179.8 6
862, 0.726 Caryophyllene oxide vt 96.3 4 74.6 4 26.3 16 27.4 12 0 0
886, 0.690 β-Eudesmol vt 264.8 16 195.3 6 272.2 17 304.4 14 232.9 5
912, 0.654 m/z  119, 91, 191, 109 (alcohol)57.7 4 361 7 465.6 1 133.9 19 201.5 18 92.6 15

Sub-total 228.9 1232.5 1109.9 1015.9 984.8 968.2
Diterpenic compound
1116, 0.929 Phytol 0 0 0 0 84.2 1 105.7 6 145.8 11 143 4

Total 10906.3 22985.6 23296.1 24549.2 23893.3 24286.3
a 1Dtr (s), 2Dtr(s): first and second dimension retention times (in seconds) of each compound determined.
* Compounds identified based on the comparison between the obtained mass spectra and mass spectra of high purity chemical standards.
** Data obtained at maturity
vt - vestigial



Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3)RSD (%) Mean (n=3) RSD (%)

3065.9 8 2215.7 8 3006.1 8 2828.3 9 3430.9 13 3878.8 22 2743 5
780.7 14 1018.7 17 933.9 5 774.4 4 659.8 7 940.2 16 675.2 14
4071 11 5510 18 3851.3 11 5360.7 15 6207.3 2 8496 10 6706.1 7
470.7 13 2222.9 22 748.5 5 268.1 7 427.1 19 315.7 15 303.1 21
2420.1 25 2486.7 3 2147.4 7 2269.4 11 1778.6 16 1837.8 7 1576.8 6
1940 13 1655 15 2478.1 10 2429.4 17 2314.9 5 2431.4 7 3559.6 13
511.7 9 676.4 21 362.5 13 353.2 16 558.4 13 733.2 23 613.1 4

13260.1 15785.4 13527.8 14283.5 15377 18633.1 16176.9

152.8 6 201.4 27 185.9 22 174.9 26 159.8 32 188.9 9 125.2 27
0 0 0 0 0 0 0 0 vt vt 0 0

65.6 10 46.9 13 72.5 14 130.1 7 136.0 7 192.9 23 251.9 8
218.4 248.3 258.4 305.0 295.8 381.8 377.1

75.3 15 50.8 18 13.8 34 26.6 16 12.8 20 7.2 12 8.6 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0
40.3 4 22.8 11 20.7 8 18.7 11 0 0 0 0 0 0
62 21 49.4 4 38.9 5 13.6 20 36.8 12 31.3 9 238.9 9

32.7 18 18.7 22 15.3 24 17.3 25 17.6 5 21.1 22 15.6 17
57.6 23 54.8 8 35.9 11 21.2 14 60.5 2 152.7 23 153.6 10
42.6 9 46.5 14 134.5 13 121.4 10 79.9 9 121.5 11 92.4 8
160.1 13 248.5 17 172.1 2 147.1 16 24.7 13 11.7 20 60.2 19
43.2 21 52.8 3 28.6 10 38.1 8 67 8 80.3 2 89 3
16.5 23 8.3 9 23.7 10 10.6 6 10.7 11 13 15 0 0
185.8 12 234.5 6 210.3 10 223 21 22.6 16 26.2 23 17.6 16

29/08/2011 05/09/2011 12/09/201108/08/2011 16/08/2011 22/08/2011 19/09/2011**

CA-SM1
2011



0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 vt vt 202.1 23 228.4 20 192 11

30.9 14 16.4 15 19.8 9 21 13 12.9 16 10.2 11 9.5 10
31.4 19 23 10 0 0 0 0 0 0 0 0 0 0
223.5 13 745.9 17 591.8 4 714.5 5 618.5 22 245 12 216.8 20

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

102.1 9 100.1 23 81.4 4 35.9 10 60.2 14 51.7 11 56.7 12
0 0 vt 49.0 6 40.9 6 54.3 19 68.9 14 35.4 5
0 0 32.9 19 35.3 23 38.9 4 43.5 22 42.8 9 40 7
0 0 0 0 0 0 0 0 0 0 0 0 0 0

29.2 14 34.7 7 42.7 13 167.4 23 87.5 12 100.3 17 75 4
34.3 16 27.5 9 25.8 8 18.7 8 31.8 6 22.3 18 20.5 23

0 0 0 0 0 0 0 0 0 0 0 0 0 0
112.9 10 183.7 18 212.7 8 183.3 21 127.8 22 107.3 14 91.1 9

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

59.8 14 62.1 14 59.1 4 43.5 7 39.6 18 30 19 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

149.8 14 267.7 16 288.1 11 234.3 17 186.8 10 169.4 14 109.2 11
84.6 3 182.4 5 202.5 9 170 12 143.6 24 142.2 8 111.3 5

0 0 0 0 0 0 73.5 15 480.7 5 641.3 8 749.6 9
0 0 0 0 0 0 0 0 26 6 26.7 3 35.3 12

30.7 6 30.5 4 43.6 8 62 5 48.9 16 60.7 12 64 6
0 0 0 0 vt 45.9 8 34.2 10 33.8 11 35.1 7

1530 2443.2 2331.8 2460.8 2518.2 2438.8 2508.8

17.1 4 15.3 6 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

102.3 13 158.3 14 59.3 12 37.8 9 40.6 17 40.4 8 32.3 6
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 vt vt 104.0 9 146 15 171 14
0 0 0 0 0 0 0 0 0 0 0 0 0 0

195.3 8 255.2 7 302.9 13 253.0 7 146.5 17 160.2 3 168.5 15
125.1 12 256.9 10 170.6 13 152.1 3 129.5 19 115.8 16 74.2 7



0 0 0 0 0 0 0 0 0 0 0 0 0 0
32.1 14 34.8 1 31.5 9 44.1 6 52 10 36.1 16 44.9 13
17.7 8 30.1 10 42.3 8 40.5 8 55 10 41 9 40.4 11

489.6 750.6 606.6 527.5 527.6 539.5 531.3

19.8 11 30.1 10 10.4 10 13.1 7 14.4 25 11.7 14 11.6 6
0 0 vt 34.1 9 33.8 15 66.3 10 53.4 5 44.3 8
0 0 0 0 0 0 0 0 0 0 0 0 0 0

33.9 3 46 9 55.2 4 78.7 1 49.4 11 45.9 7 32.6 9
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 96.2 1 114.1 12 123.7 7 102.2 1 100.3 8

16.6 3 17.4 12 10.5 7 7.5 10 6.9 9 7 7 0 0
13.7 37 18.3 9 17.2 12 14 7 13.3 34 7.5 5 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 vt vt 48.8 10 53.9 4 50.7 4
0 0 87.8 3 124.3 14 70.9 11 75.7 8 75.3 13 66.7 4

84 199.6 347.9 332.1 398.5 356.9 306.2

0 0 0 0 0 0 56.5 4 62.7 4 58.7 9 62.6 4
15657.4 19477.9 17086.3 17992 19192.6 22416 19971.5



Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3)RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)

1869.5 12 3060.1 4 2608.4 23 3062.7 7 3282.5 14 1307.3 2 3986 20 4491.6 7
322.8 29 589.2 21 308.7 12 709.7 9 821.2 7 1216.1 2 646.1 19 659 8
2255.6 12 1690 19 2205.5 5 3367 8 3865.2 3 1438.3 13 4118.9 13 4846.4 8
67.1 25 172.9 30 226.8 15 516 10 589.5 6 535.7 7 795.8 3 872 6
683.3 13 964.9 18 5314 15 3706 9 3615.9 3 851.4 15 5049.2 21 4285.9 5
595.3 10 1316 22 1026.7 19 2145.3 10 2257.2 19 879.7 4 593 3 363.4 8
59.4 20 305.5 3 928.7 7 1224.9 17 1720.9 24 80.9 8 785.5 3 797.4 4
5853 8098.6 12618.8 14731.6 16152.4 6309.4 15974.5 16315.7

194.2 9 341.4 16 354.9 10 476 8 442.7 13 147.6 7 240.0 19 395.3 13
vt 38.4 18 53.8 18 49.1 11 49.3 20 vt 36.0 15 37.9 12

125 17 166.5 29 307.8 3 389.2 5 371.7 8 77 3 110.2 14 218 19
319.2 546.3 716.5 914.3 863.7 224.6 386.2 651.2

32.6 8 36.2 10 33.4 8 32 3 28.3 17 33.1 12 37.9 11 37.7 5

12.3 9 9.4 3 9 4 8.5 4 8.2 4 16.1 10 22.3 6 14 16
50.5 8 42.2 13 34.1 13 0 0 0 0 15.1 14 32.9 3 46 13
19.4 19 310.3 10 59 4 62.3 10 62.3 10 30.1 6 33.8 6 38.8 11
24 21 62.5 14 59.6 5 66.2 8 80.5 6 0 0 36.2 9 39.7 3
50 13 104.7 16 110.4 13 110.6 15 99.3 3 10 8 102.8 8 341.9 8

149.1 28 277.8 13 554.3 7 696.1 8 725 6 212 18 43.2 10 98.9 8
25.9 10 55.8 16 67.9 15 67.9 15 67.9 15 45.3 7 64.2 13 36.9 9

0 0 61.2 8 64.1 1 65.9 6 65.8 5 vt 60.7 4 74.2 13
0 0 0 0 0 0 0 0 0 0 11.4 13 18.3 10 17.1 10
0 0 0 0 0 0 vt vt 68.5 7 65.1 4 39.6 11

2010
20/08/2010 27/08/2010 03/09/201021/09/2012**24/08/2012 31/08/2012 07/09/2012 14/09/2012

2012



0 0 0 0 0 0 0 0 0 0 0 0 18.1 5 35.9 14
210.5 21 280.7 13 504.7 13 737.9 18 681 17 77.7 10 230.4 20 195.3 23

0 0 0 0 0 0 0 0 0 0 0 0 vt 13.1 19
9.9 10 34.9 12 39.7 18 45 7 48 13 0 0 36.2 8 22.5 19

237.6 21 396.2 15 348 29 482.2 3 488.7 5 438.6 12 940.2 13 552.6 9
0 0 0 0 0 0 0 0 0 0 0 0 37.3 19 37 15
vt 51.1 9 46.9 19 48.2 8 46.9 19 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

162.9 9 233.5 22 193.8 9 89.1 2 73.8 4 48.3 12 91 13 44.3 7
vt 62.1 4 57.2 7 53.5 6 36.4 8 vt 178.4 6 145.5 8
0 0 0 0 0 0 0 0 0 0 26.4 6 54.6 2 63.8 6
0 0 42.7 9 53.8 22 58.9 7 57.1 24 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

60.6 8 59.4 3 74.1 4 65.9 4 66 6 vt 137.3 11 245.7 14
87.2 12 89.7 13 83.3 19 78.5 7 76.3 9 35.6 5 66.9 16 28.4 12
vt 47.2 20 48 8 50.3 5 51.6 5 vt 39.9 22 26.6 20

180.8 15 439.1 14 367.4 20 427.6 13 593.1 7 13.5 16 321.2 8 460.0 8
vt 62.3 1 36.7 5 38.9 12 42.8 5 vt 72.5 12 51.2 16

67.4 16 65.5 1 59.4 7 57.6 8 55.1 9 153.6 5 150.5 15 142.6 13
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 16.5 4 12.7 16

188.1 7 198.1 14 70.8 6 62.8 9 44.2 9 vt 109.2 14 192.3 26
vt 163.4 14 90.2 2 81.4 11 63.7 4 vt 215.0 11 149.6 11

164.6 16 306.4 6 368.3 18 390.8 16 387 2 20.4 15 492.4 12 596.2 2
20.7 7 126.1 20 67.3 24 63.9 8 62 4 0 0 0 0 vt
27.7 22 26.1 26 29.7 18 19.6 14 20.3 20 vt 77.0 8 69.9 13
58.4 8 53.7 10 65.5 30 62.2 9 55.4 12 vt 48.2 10 51.8 9

1807.6 3662.1 3563.2 3991.8 4058.4 1222.6 3812.3 3884.1

8.1 4 23.4 18 21.3 15 23 10 0 0 6.2 8 19.4 13 14.3 9
83 4 115.9 19 98.6 4 112.6 20 89 9 184.8 12 145.4 6 47.2 17

30.3 7 62.1 6 57 7 60 8 47.8 6 12.5 23 0 0 0 0
15.5 19 28.6 15 30.9 10 18.4 13 17.4 30 16.9 17 vt 0 0
vt 34.7 14 38.8 3 28.8 7 31.8 16 vt 24.3 15 30.2 7
0 0 0 0 0 0 0 0 0 0 vt 77.2 8 85.1 7

65.1 11 214.7 25 316.9 19 332.3 8 250.2 11 59 10 444.4 16 466.2 8
319.7 11 378.3 10 233.9 20 94.7 10 82.1 4 215.1 20 384.7 20 407.9 16

vt 41.4 9 36 5 34.2 19 21.5 13 0 0 0 0 vt
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



22 27 32.1 14 36.9 15 39.7 10 32.7 21 23.1 4 16.6 5 17.7 10
31.3 19 46 10 51.4 12 64.1 6 52.6 5 16.7 21 21.7 4 44.3 13
127.5 16 110.5 10 119.4 6 118.5 11 112.5 17 vt 126.5 15 85.9 7
702.5 1087.7 1041.1 926.3 737.6 534.3 1260.2 1198.8

0 0 12.2 10 16.6 17 25.8 15 30.8 9 0 0 0 0 21.1 12
31.8 5 45.5 8 27.8 16 35.4 8 39.4 4 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
40.2 23 77.5 13 68.5 5 74.1 5 68.3 4 18.7 19 153.3 20 66.6 6

0 0 0 0 0 0 vt 0 0 vt 92.8 12 125.6 12
56.1 22 70.4 9 119.2 10 99 10 93.7 7 0 0 0 0 39.2 13
12.2 17 12.1 18 10.7 23 8 4 6.6 5 21.5 9 18.8 7 6.7 2
19.6 11 10.4 18 12.4 18 11.3 16 8.4 8 27.2 14 27.2 18 34.2 5

0 0 0 0 0 0 0 0 0 0 vt 130.8 14 110.5 9
0 0 0 0 0 0 0 0 0 0 100.2 8 101.1 5 88.9 2
0 0 18.4 31 20.3 10 17.9 11 18.2 12 vt 194.8 9 172.1 21

65.2 27 221 28 124.2 16 139.7 23 126.6 23 73.0 12 335 10 199.5 12
225.1 467.5 399.7 411.2 392 240.6 1053.8 864.4

0 0 55.8 13 80.1 5 159.2 8 151.5 11 0 0 vt 58.9 3
8940 13954.2 18452.8 21166.4 22383.9 8564.6 22524.9 23010.8



Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%) Mean (n=3) RSD (%)

3909.5 12 4146.4 7 3937.4 7 2627.3 22 2119.9 21 2497.9 21 2620.3 13 2873.9 17
792.3 8 825.3 1 500.1 14 688.3 13 651.7 20 1051.6 7 548.2 6 666.7 19
4029.7 10 4148.8 15 4491.3 9 5655.3 8 4362 9 5274.7 23 4760.9 176632.8 23
651.1 13 860.4 14 528.6 6 477.6 23 344.4 11 296.4 25 233 7 493.3 13
3789.8 6 3241.4 11 2997.4 13 2405.1 8 1915.4 15 1480.4 2 2059.715 1960 6
762.8 4 3139.9 1 2991.6 6 2134.5 17 2249 20 2272.6 9 1640.1 14 2266.1 11
922 17 1117 2 769.7 7 572.8 20 456.1 12 379.9 13 230.7 4 559.5 4

14857.2 17479.2 16216.1 14560.9 12098.5 13253.5 12092.9 15452.3

392.5 12 388.1 10 572.5 1 176.6 22 125.0 22 158.2 26 186.0 29 165.8 20
22.5 11 30.8 4 22.6 6 0 0 0 0 0 0 0 0 0 0
206.1 11 287.8 13 47.4 7 62.8 7 96.0 23 84.8 16 90.1 11 175.0 27
621.1 706.7 642.5 239.4 221.0 243.0 276.1 340.8

39.5 3 38.1 11 35.8 14 78.3 6 13.2 22 10.8 9 11 14 17.5 22

14.2 16 15.2 11 11.5 6 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 53.6 23 26.9 16 17.8 8 17.4 12 0 0

43.5 5 64 11 42 5 89.6 8 42.2 12 34.1 9 10.5 22 53.4 24
29.6 18 28.1 13 19.5 11 35.4 13 19.9 22 18.3 4 15.9 4 16.7 24
116.3 9 152 3 184.8 19 59 7 44.5 12 33.8 11 20.9 9 18.4 23
132.8 4 55.2 6 250.6 12 36.5 11 64.9 16 97.6 4 90.4 3 233.8 19
40.2 11 171.9 8 50.8 15 134.4 23 223 3 188.4 18 116.3 12 22.7 15
37.7 9 43.1 14 63.1 7 38.9 16 38.9 4 28.3 19 27.5 8 70.4 9
17.9 9 18.9 18 13.5 21 26.6 13 21 22 19.3 12 10.8 13 10.1 6
29.3 12 27.4 5 vt 140.4 10 222 14 201.5 20 158.8 16 15.8 21

GC×GC peak area x 104 (arbitrary units)
CA-SM2

2010 2011
10/09/2010 17/09/2010** 24/09/2010 08/08/2011 16/08/2011 22/08/2011 29/08/2011 05/09/2011



44.1 10 63.3 4 29.4 10 0 0 0 0 0 0 0 0 0 0
317.6 16 326.2 15 278.7 13 0 0 0 0 0 0 0 0 327 22
32.8 13 55.7 4 19.1 18 17.8 11 39.8 24 25.7 9 12.5 19 13.6 10
87.8 10 55.2 5 47.2 11 31.1 10 22.2 9 0 0 0 0 0 0
291.1 12 386 7 211.8 12 173.8 21 728.6 13 483.7 4 473.1 9 478 21
67.7 3 41.9 11 34 7 0 0 0 0 0 0 0 0 0 0
35.5 5 40.6 11 vt 0 0 0 0 0 0 0 0 0 0
14.1 9 16.7 9 0 0 0 0 0 0 0 0 0 0 0 0
36.3 15 75.4 7 55.4 3 0 0 0 0 0 0 0 0 0 0
281.4 9 165.2 4 226.7 6 95.9 12 88.7 15 62.6 9 30.8 6 41.7 14
81.3 12 46.5 3 82.1 7 0 0 0 0 45.9 3 35 12 37.1 12

0 0 vt 0 0 0 0 27.2 8 29.7 6 25.1 14 31.7 9
29.4 14 25.2 6 0 0 0 0 0 0 0 0 0 0 0 0
207.3 14 293.6 12 299.4 6 27.0 20 31.3 8 35.7 13 139.9 2 51.5 19
29.1 19 42.4 0 20.9 10 23.0 23 26.7 6 20.8 8 16 12 15.4 10
59.4 9 49.9 19 27.1 6 0 0 0 0 0 0 0 0 0 0
316.9 9 440.1 22 538.7 11 104.7 8 174 15 204.4 5 174.5 14 93.2 13
135.4 11 97.2 7 44.7 9 0 0 0 0 0 0 0 0 0 0
184.0 3 172.5 3 0 0 0 0 0 0 0 0 0 0 0 0

vt vt 0 0 44.6 7 44.8 6 40.1 6 35 11 32.7 4
12.7 14 22.3 20 15.3 21 0 0 0 0 0 0 0 0 0 0
489.5 7 542.7 4 151.4 20 128.8 18 220.4 5 240.9 11 204.1 14 153.1 12
253.2 20 267.8 11 71.2 12 73.4 6 160.8 7 196.5 5 169.3 4 117.2 20
632.9 5 671.8 6 625.7 8 0 0 0 0 vt 62.8 6 470.4 16
67.9 11 72.1 8 55.2 7 0 0 0 0 0 0 0 0 23.3 10
31.7 6 39.7 11 36.5 8 30.4 2 29 10 36.6 13 41.4 23 43.2 19
283.3 5 126.7 17 101.5 2 0 0 0 0 0 0 51.1 10 33.1 6

4483.9 4712.5 3607.8 1364.9 2296.8 2061.7 1939.1 2403.5

0 0 0 0 0 0 25.3 8 22.8 29 0 0 0 0 0 0
25.2 9 62.6 8 23.3 10 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 73.4 10 133.3 20 32.4 17 36.2 13 34.1 10

34.5 6 33.8 14 17.9 23 0 0 0 0 0 0 0 0 0 0
99.1 15 101.3 7 63.1 7 0 0 0 0 0 0 0 0 0 0
331.6 17 379.1 5 251.2 6 0 0 0 0 0 0 vt 90.0 5
553 8 363.5 12 358.5 14 0 0 0 0 0 0 0 0 0 0
12.5 7 19.5 7 0 0 187.5 8 303.3 11 254.2 29 192.9 4 124.9 15

0 0 vt 0 0 139.2 20 177.8 6 162 13 135.7 15 120.5 16



23.8 19 45.3 4 15.2 22 0 0 0 0 0 0 0 0 0 0
51.5 13 89 6 30.6 18 29.5 12 22.4 1 19.1 14 18.5 12 40.6 13
67.6 10 59 10 30.7 12 16.3 25 20.7 4 23 10 21.8 9 28.1 13

1198.8 1153.1 790.5 471.2 680.3 490.7 405.1 438.2

49.3 1 83.7 6 23.8 16 74.9 131 25.2 8 10.1 22 9.5 19 14.1 11
53.8 9 33.8 9 123 16 0 0 vt 33.5 10 32.7 21 54.4 20
14.7 5 16.4 8 45 8 0 0 0 0 0 0 0 0 0 0
58.4 9 55.6 10 75 5 vt 43.1 11 34 2 34.9 14 44.4 7
119.1 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 vt 94.2 3 101.8 4 118.2 11
15.8 11 17.3 12 13.3 8 17.6 7 16.9 21 10.1 3 7 3 6.3 8
13.3 16 13.3 12 11.4 11 15.4 20 21.9 21 11.8 32 9.8 4 9.2 1
172 19 173.1 20 165.8 20 0 0 0 0 0 0 0 0 0 0
42.7 14 55.2 16 0 0 0 0 0 0 0 0 0 0 0 0
201.7 17 193.7 4 231 17 0 0 0 0 0 0 vt 48.2 8
153.1 14 111.3 12 142.7 22 vt 44.8 10 96.7 1 94.3 4 52.4 7
893.9 753.4 831 107.9 151.9 290.4 290 347.2

98.6 9 125.2 10 132.5 20 0 0 0 0 0 0 44.8 10 40.6 13
22193 24968.2 22256.2 16822.6 15461.7 16350.1 15059 19040.1



Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%) Mean (n=3) RSD (%)

3758.7 13 2990.6 10 4250.1 13 1358.8 28 2254.5 30 3083.6 23 3452.2 14 3087 14
1579.1 19 724.3 14 1002.4 4 527.7 29 383.8 18 324.1 31 468.1 8 851.8 28
3257 13 8254 25 6353.4 21 1765.9 15 1853.3 14 2368 9 3727.4 15 5146.8 4
356.8 14 884.5 12 564.3 2 503.9 22 204.8 13 302 9 458.5 12 585.7 9
1881.5 9 1722.1 10 2729 1 1469.7 16 1590.6 20 7141.8 12 4892.6 19 4839.6 27
2211.9 6 2251 8 2198.9 8 2379.4 20 1849 18 816.5 10 2201.7 20 2915.2 11
695.6 11 555.5 15 727 5 61.4 27 331.4 14 714.7 12 1274.8 17 1280.1 13

13740.6 17382 17825.1 8066.8 8467.4 14750.7 16475.3 18706.2

147.9 12 104.9 16 109.1 20 140 33 348.5 9 321.2 26 363.3 8 391.1 5
0 0 vt vt vt 29.5 20 52.8 9 21 16 26.7 3

196.2 14 222.5 19 198.1 4 112.9 16 134.5 16 310.6 5 331.6 14 348.8 4
344.1 327.4 307.2 252.9 512.5 684.6 715.9 766.6

8.7 16 9.1 8 9.3 5 26 13 32.1 13 25.3 15 27.1 18 23.2 12

vt vt 0 0 10.4 13 8.9 13 8.1 7 6.9 8 5.9 10
0 0 0 0 0 0 46.5 9 35.1 6 31.2 10 0 0 0 0

277.4 61 170.7 20 16.7 6 17.5 22 260.8 25 35.8 14 51.4 24 57.5 5
15.5 14 9 20 17.3 16 15.2 27 35.7 14 52.6 7 61.4 5 65.7 12
21.3 14 55.1 7 21 13 43.2 4 41.7 2 50.6 21 47.2 13 64.2 20
179.2 14 67.4 11 93.3 10 84 9 130 19 378.7 15 459 7 618.9 12
25.4 26 90.6 6 140.7 9 16.9 15 51.5 17 46 14 39.9 14 51.3 26
77 16 71.2 2 80.1 2 0 0 24 7 16.8 15 52.7 3 44.6 17

85.5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22.1 4 19.5 8 29.4 12 0 0 0 0 0 0 vt vt

2012
19/09/2011 26/09/2011** 24/08/2012 31/08/2012 07/09/2012 14/09/2012 21/09/2012**12/09/2011



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
250.1 11 182.2 22 229.6 11 216.3 11 197.2 6 319.1 13 392.7 12 387.5 7
8.2 6 7.1 4 8.3 7 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 11.1 21 38.1 26 28.6 16 35.8 15 38.1 14

267.5 12 358.1 20 411.4 8 137.5 27 250.8 17 250.1 14 375.3 11 406.6 6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 vt 26 11 24.1 28 22.2 7 22.1 17
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 130.9 21 154.3 25 49.1 10 39.3 23 42.5 23

30.4 20 40.4 4 37 8 vt 55.5 11 46.1 26 40.4 7 24 3
29.4 4 35 11 23.8 21 0 0 0 0 0 0 0 0 0 0
38.8 14 34.3 12 38.8 12 vt 30.7 9 42 16 38.9 8 41.5 10

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
60.1 15 42.7 11 50.7 16 56.1 9 56.5 7 68.9 4 57.9 6 58.5 12
14.2 16 16.6 20 17 25 63.2 7 69 11 70.3 14 58.1 15 58.2 12
vt vt 0 0 0 0 22.3 18 37.4 12 27.7 14 29.2 11

104.9 6 85.6 6 93.8 10 121.3 10 318.5 14 329.2 15 387.3 21 454.3 10
0 0 vt 0 0 vt 51.5 4 38.7 10 34.7 12 35.3 10
0 0 vt 0 0 62.9 7 61.1 5 34.8 11 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

131.1 20 96.1 10 88.9 3 175.1 12 178.6 26 52.5 9 34.3 22 13.8 32
121.3 23 61.4 11 78.8 6 vt 124.8 15 88.7 1 80.1 9 54.2 2
482 5 648.5 4 633.3 10 118.5 11 92.5 24 324.3 10 349 10 241.1 21
24.1 6 26.6 23 25.1 13 45.9 8 95.8 21 56.6 7 49.9 10 52.2 3
45.9 8 51.6 10 31.4 3 27.2 25 22.1 18 19.9 20 10.8 25 0 0
34.8 8 35.8 4 0 0 53.0 5 44.2 19 57.6 21 54.6 20 27.6 4

2346.2 2205.5 2166.4 1452.7 2477.2 2557.8 2807.5 2894.8

0 0 0 0 0 0 7.3 5 12.6 25 20.5 2 21.3 16 0 0
0 0 0 0 0 0 42.9 14 97.4 10 92.2 10 102 22 83.5 7
0 0 0 0 0 0 41 6 68.9 11 51.9 14 41.9 16 31.4 15

39.4 15 28.7 2 22.9 14 18.7 7 53.8 9 44 12 27.9 17 15.5 32
0 0 0 0 0 0 0 0 25.9 15 30.5 7 25.9 17 29.8 12
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

150.9 12 159.5 21 151 24 63.1 8 187.6 21 284.3 13 305.9 14 133.6 27
0 0 vt vt 375.6 13 324.2 2 219.3 27 88.9 21 73.5 11

143 13 136.3 9 157.6 27 0 0 29.7 18 24.8 14 28.1 20 11.2 6
93.6 1 67 1 46.7 11 0 0 0 0 0 0 0 0 0 0



vt 0 0 0 0 24 20 31.2 8 24 18 35.7 3 28.5 16
28.4 12 25.6 11 24.4 14 30.6 15 50 15 42.8 5 58.5 7 46.6 7
32.9 3 27.4 6 25.9 10 104.6 23 98.6 13 108.3 4 119.3 18 91.9 30

488.2 444.5 428.5 707.8 979.9 942.6 855.4 545.5

11.8 24 8.3 10 10.5 5 0 0 0 0 9.4 7 13.4 29 29.8 8
32.8 20 35.2 8 38 9 18.4 24 28.6 12 17.3 18 27 15 33.2 7

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
36.5 11 20.1 13 22.9 14 21.9 19 61.5 10 63.9 10 49.8 42 42.5 7

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
91.8 4 76.3 5 71.6 3 38.8 23 47.1 7 58.8 10 58.2 20 52.5 12
5.9 3 0 0 0 0 10 10 9.2 17 6 6 7.1 8 5.1 6
8.5 2 0 0 0 0 9.9 4 14.4 29 13.5 19 18.5 24 8.6 4
0 0 vt 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

48.7 5 47.7 9 39.6 11 vt 14.8 22 18.2 9 15.9 13 15.3 14
41.8 15 43.6 7 51 6 66.5 12 214.3 20 102 8 107.4 16 130.6 15

277.8 231.2 233.6 165.5 389.9 289.1 297.3 317.6

42.7 2 50.2 12 55.0 9 0 0 54.2 21 55.2 13 126.5 4 136 5
17248.3 20649.9 21025.1 10671.7 12913.2 19305.3 21305 23389.9



Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%) Mean (n=3) RSD (%)

1084.9 20 3301.8 6 4517 10 3907.7 15 4221.4 11 3071.9 16 3521.2 23 3652 15
1194.2 1 1654.1 21 1312.3 18 756.4 4 702.5 15 833.6 17 627.5 22 802.6 14
1223.1 12 3386.1 11 3411.6 14 3848.9 15 4417.4 4 4030.5 19 5036.7 16 5235.3 9
544.7 17 612.2 15 533.6 16 540.4 6 587.2 16 1099.9 15 784.9 23 348.5 18
1008.1 7 4902.9 7 3410.7 10 3440.5 8 3430.5 12 3354.7 8 2916.3 12 1299.6 15
855.7 7 554.4 6 1403.6 16 1865.3 3 1719.8 12 3153.6 8 2220.3 7 2297 8
48.4 15 1711.9 21 1845.5 13 868.6 11 840.2 10 584.2 15 420.2 22 310.3 4

5959.1 16123.4 16434.3 15227.8 15919 16128.4 15527.1 13945.3

166.1 5 262.1 14 424.3 5 370.4 19 434 3 116.9 25 96.0 16 108.9 6
0 0 20.5 7 31.6 3 24.1 12 34.5 5 0 0 0 0 0 0

86.4 1 92.6 9 97.1 10 178.8 30 238.5 15 57.1 21 84.3 13 75 11
252.5 375.2 553.0 573.3 707.0 174.0 180.3 183.9

31.8 15 35.8 20 32.3 27 34.2 17 33.9 18 13.1 19 26.7 12 10.5 20

49.1 18 19.8 16 25.4 7 17.3 3 13.7 13 0 0 0 0 0 0
17.4 13 26.8 4 31 3 0 0 0 0 21.6 9 37 10 15.4 14
14 21 46.4 9 27.4 15 18.6 13 34.3 15 22.2 19 48.1 15 19.3 14
0 0 35.8 12 26.4 9 25.8 11 26 18 27.5 18 17.5 23 16.9 22

9.7 6 510.7 13 143.3 19 144 9 222 7 36.9 10 41.3 8 28.7 6
196.6 12 232.6 8 102.7 7 170.2 18 93.5 2 28.6 18 39.8 5 75.8 15
48.4 12 52.3 23 34.8 13 51.4 19 50.7 3 106.7 9 177.4 3 61.9 8

0 0 54.9 2 73.4 9 42.8 7 50 9 0 0 24.0 23 51.5 4
11.6 20 15.4 12 14.7 7 18.5 13 23.6 8 11.6 13 9 9 16.6 25
15.6 18 24 9 25.5 18 32.7 7 26.7 12 112.9 17 160.7 19 303.8 6

2010
08/08/2011 16/08/2011 22/08/201120/08/2010 27/08/2010 03/09/2010 10/09/2010 17/09/2010**



0 0 13.7 8 31.7 17 39.5 15 58 19 0 0 0 0 0 0
36.8 9 187.9 14 215.7 9 195.3 15 279.9 9 0 0 0 0 0 0

0 0 0 0 14 19 15.1 11 18.2 15 16.8 21 15.2 17 13.2 3
vt 27.2 2 29.7 7 81.1 18 77.2 19 25.8 14 20.4 10 0 0

434.7 10 520.9 13 328.1 12 353.7 3 182.5 12 150.4 16 424.5 9 178.5 23
0 0 34.1 13 34.1 9 44.5 7 38 2 0 0 0 0 0 0
0 0 0 0 51.9 14 44.8 17 40.9 5 0 0 0 0 0 0
0 0 0 0 67.8 4 36.3 7 17.5 16 0 0 0 0 0 0

38.3 19 61.5 15 59.9 13 38.2 18 46.8 13 0 0 0 0 0 0
vt 176.1 19 203.6 6 247 16 255.1 19 65.6 8 53.5 8 28.5 14

29.4 8 33.9 3 47.6 7 60.9 2 36.3 9 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 vt 21.9 17 28.1 9
0 0 0 0 0 0 27 10 31.1 3 0 0 0 0 0 0
vt 224.9 26 206.5 16 308.4 8 386.6 8 26.5 17 31.8 16 27.9 1
32 4 36.4 11 34.9 15 28.1 14 32.5 2 19.9 16 21.6 9 18.9 10
0 0 35.7 7 33.9 5 52 5 65.2 5 0 0 0 0 0 0
vt 206.9 4 200.4 6 230.7 19 261.8 16 80.9 7 96.7 6 97.4 7
vt 45.9 21 46.7 2 122.6 9 119 10 0 0 0 0 0 0

190.7 9 108.2 11 149.1 14 35.3 10 52.7 4 0 0 0 0 0 0
0 0 0 0 0 0 vt 0 0 38.9 9 39.6 8 37.8 5

13.6 8 16.1 10 16.3 14 11.1 6 25.5 6 0 0 0 0 0 0
vt 137.5 12 122.5 19 106.9 19 255.3 11 114 17 230 19 235 9
vt 125.6 17 256.5 8 75 19 159.3 17 62.2 5 94.6 7 80.2 8
vt 248.2 18 468.0 12 315.3 9 664.5 15 0 0 0 0 0 0
0 0 0 0 vt 49.3 5 54.5 2 0 0 0 0 0 0
vt 32.6 19 74.5 3 35.3 8 45.7 10 19.8 13 26 6 26.5 22
vt 58.5 16 53.4 4 53.7 3 55.3 3 vt vt vt

1137.9 3350.5 3251.4 3128.4 3799.9 988.8 1630.6 1361.9

6.5 17 15.1 7 21.7 20 0 0 0 0 22.3 6 8.6 20 0 0
102.2 21 41.2 16 101.3 11 53.2 11 25.1 12 0 0 0 0 0 0

28 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23.2 17 0 0 0 0 0 0 0 0 51.1 7 43.9 18 21.9 21

0 0 20.3 3 27.3 16 37 13 21 11 0 0 0 0 0 0
vt 165.4 19 132.7 19 109.5 11 94.6 7 0 0 0 0 0 0

100.5 7 432.6 8 422.9 16 224.3 21 244.7 21 0 0 0 0 0 0
274.3 5 415.4 10 331.4 8 501.2 8 401.1 9 0 0 0 0 0 0

0 0 0 0 0 0 10.4 5 13.6 20 142.8 26 218 8 128.1 6
0 0 0 0 0 0 0 0 0 0 121.9 2 169.2 6 111.6 21



16.4 6 19.1 8 29 13 29.5 4 37.9 12 0 0 0 0 0 0
30.6 4 26.2 13 13.4 5 70.9 2 48.7 10 22 20 22.6 12 19 13

0 0 39 12 70 9 66.5 4 48.2 19 11.1 3 18.1 3 22.1 8
581.7 1174.3 1149.7 1102.5 934.9 371.2 480.4 302.7

0 0 0 0 0 0 30.8 3 32 6 11.7 8 10.2 6 6.2 7
0 0 0 0 27.5 9 34 8 29.8 4 0 0 0 0 28.6 2
0 0 0 0 0 0 8.1 1 16.6 9 0 0 0 0 0 0

39.8 7 63.7 11 53.2 4 41.4 12 75 9 vt 30.0 21 31.2 5
vt 65.6 2 51.5 6 67.6 2 0 0 0 0 0 0 0 0
0 0 vt 48.5 13 0 0 0 0 0 0 0 0 0 0

14.4 7 8.2 2 8.8 9 10.3 4 17.2 13 14.8 8 11 13 8.5 3
23.7 8 25.3 6 11.5 8 11.6 9 21.9 4 11.6 9 15.2 16 10.4 7
vt 109.6 21 196.6 2 132.9 21 110.6 7 0 0 0 0 0 0
vt 106.5 7 60.2 13 57.7 8 78.4 9 0 0 0 0 0 0
vt 157.1 14 179.3 20 239.6 23 242.3 9 0 0 0 0 0 0

63.6 6 252.5 15 107 19 141.9 18 121.8 17 vt 52.4 3 64.3 14
141.5 788.5 744.1 775.9 745.6 38.1 118.8 149.2

0 0 0 0 53.1 4 92.3 7 108.9 13 0 0 0 0 0 0
8104.5 21847.7 22217.9 20934.4 22249.2 17713.6 17963.9 15953.5



Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%) Mean (n=3) RSD (%)

2336.2 23 3296.7 10 4440.3 6 4256.6 5 3499.8 13 3610.7 9 1622.7 23 2768.4 26
519.4 14 2556.4 8 896 20 603 11 780.1 10 734.6 14 243.9 31 362.2 30
3999.4 23 6247.1 17 4824.1 20 8017 13 8290.8 4 8750.2 2 1822.4 17 2620.7 29
181.3 26 298.2 17 760.7 16 732.2 15 682.5 10 592.8 15 164.2 15 43.2 22
2227.9 17 1876.8 21 1753.9 17 1922.3 13 2323.8 15 2710.3 12 1282.8 22 1241.3 3
2158.2 19 2060.3 10 2383.2 4 3722 4 2306.1 8 2766.9 4 1561.1 8 1876.1 6
207.9 4 447.5 11 497 17 537.8 8 536.4 6 445.5 1 72.6 23 434.4 10

11630.3 16783 15555.2 19790.9 18419.5 19611 6769.7 9346.3

142.3 27 118.3 22 141.3 23 148 18 160.0 20 189.7 6 113.2 16 148 3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 26 22

90.9 23 117.9 11 119.6 12 109.4 10 118 16 99.4 18 71.4 7 90.1 6
233.2 236.2 260.9 257.4 278.0 289.1 184.6 264.1

12.3 16 9.5 21 7.9 2 8.1 1 26.9 13 14.7 21 19.3 16 23.6 18

0 0 0 0 0 0 0 0 0 0 0 0 6.2 4 4.6 10
16.5 18 0 0 0 0 0 0 0 0 0 0 19.8 28 10.2 4
11.9 14 36.5 8 187.9 9 194.5 7 19.6 25 9.7 25 16.9 12 239.2 14
8.6 9 35.2 8 40.9 2 6.1 11 17.1 3 13 18 17.3 23 11.2 15
27 19 44.6 21 51.9 7 35 5 16.5 4 24.6 15 29.5 28 25.8 22

67.9 18 108.6 4 57.4 4 49.2 6 207.8 20 217.4 17 59.2 5 87.5 5
69.7 24 20 6 13.4 24 17.3 23 21.7 21 168.6 18 19.5 14 32.3 12
60.3 5 36.4 22 54.9 8 57.2 9 95.1 13 42.5 17 0 0 14.0 21
17.2 15 32.2 4 19.7 6 0 0 0 0 0 0 0 0 0 0
265.4 8 24.5 16 16.5 2 17.7 20 17 15 13.9 24 0 0 0 0

2011
12/09/201129/08/2011 05/09/2011 26/09/2011** 03/10/2011 24/08/2012 31/08/201219/09/2011

CA-SM3



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
53.2 5 259.7 21 338.4 20 181.1 6 270.9 15 123.8 16 135.1 15 180.9 22
11.1 12 12.8 18 8.6 6 8.9 4 9.7 6 82 6 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 8.5 9 19.1 2
181.4 16 143.9 16 199.9 16 172.1 23 149.2 20 58.6 5 121.9 28 215.9 12

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 18.9 10
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 101.5 3 100.2 26

21.9 16 27.3 13 24.8 17 25.1 12 21.8 14 0 0 vt 36.3 10
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23 10 24.3 17 30 7 28.4 7 44 9 0 0 vt 32.3 15
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

39.3 12 42.4 15 40.8 10 41.4 21 31.2 3 41.1 16 46 16 37.2 7
13.1 18 14 7 15.3 14 12.7 12 12.1 12 13.9 7 43.9 8 66.9 12

0 0 0 0 0 0 0 0 0 0 0 0 0 0 18.5 16
72.4 11 69.7 8 69.1 22 76.6 4 34.8 10 32.2 10 135 8 300.9 21

0 0 0 0 0 0 0 0 0 0 0 0 vt 45.8 13
0 0 0 0 0 0 0 0 0 0 0 0 33.7 17 22.2 16
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

228.1 14 166.5 6 124.2 13 94 4 89.8 11 83.8 4 153.5 12 149.5 26
61 11 65 19 58.4 6 65.1 5 64.4 4 53.4 5 vt 83.1 3

41.7 8 399.5 13 150.9 18 61.5 4 570.2 10 564.9 9 85.4 8 67.9 9
0 0 23.7 7 22 7 27 7 23.8 10 24 7 34.3 4 94.2 9

48.6 18 39.2 23 39.9 8 41.9 14 27.6 6 24.2 6 24.9 24 19.6 17
33.7 8 34.4 11 44.6 11 42.6 13 0 0 0 0 41.8 8 39.3 15
1373 1660.4 1609.5 1255.4 1744.3 1591.6 1133.9 1973.5

0 0 0 0 0 0 0 0 0 0 0 0 6.4 3 15.3 6
0 0 0 0 0 0 0 0 0 0 0 0 30.1 8 83.8 11
0 0 0 0 0 0 0 0 0 0 0 0 20.3 27 12.8 25

17.2 21 20.5 12 17.7 17 18.1 14 0 0 0 0 11.6 17 7.8 10
0 0 0 0 0 0 0 0 0 0 0 0 0 0 20.8 11
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
vt 59.5 10 65.9 9 114 15 97.5 3 91.4 6 53.3 17 217 18
0 0 0 0 0 0 0 0 0 0 0 0 110.8 16 144.9 23
97 22 116.8 14 138 13 113.6 8 130.6 19 158.6 19 0 0 0 0

111.4 8 108.2 11 69 8 63.8 6 61.5 5 74.6 4 0 0 0 0



0 0 0 0 0 0 0 0 0 0 0 0 20.3 7 18.3 12
15 3 25.3 18 23.6 23 24.6 10 23.9 9 13.8 15 18.5 18 28.1 7

16.3 7 21.8 18 30.1 13 26.1 15 19.5 18 12.4 16 85.5 6 82.1 6
256.9 352.1 344.3 360.2 333 350.8 356.8 630.9

17.9 10 16.2 16 10.4 5 7 9 8.5 5 7.1 9 0 0 0 0
30.1 9 29.8 11 20.3 14 18.6 11 19.8 8 18.2 12 15.2 16 13.4 21

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
31.6 11 27.1 16 23.2 13 0 0 0 0 0 0 16.7 17 40.9 6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
86.0 10 75.1 6 62.7 3 42.3 4 40.7 15 30.4 7 25.2 37 36.5 9

6 7 5.8 10 4.1 7 0 0 0 0 0 0 10.2 25 9.3 8
7.9 16 8.5 3 0 0 0 0 0 0 0 0 9.6 12 9.1 7
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 21.2 16 27.1 10 20 10 25.7 19 22.2 5 vt 20.8 26

40.8 8 33.1 10 43.5 6 30.7 7 37.3 14 36.8 16 36.9 10 115.2 18
220.3 216.8 191.3 118.6 132 114.7 113.8 245.2

40.5 9 38 16 30.6 11 30.2 16 33.1 11 26.4 14 0 0 52.1 2
13766.5 19296 17999.7 21820.8 20966.8 21998.3 8578.1 12535.7



Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)

2062.4 6 3857.7 8 3031.1 26
330.8 14 884.2 28 864.3 21
1872.3 75 3544.6 22 3991 15
191.3 18 659.2 24 881.4 8
5383.2 11 4346.2 11 4469 24
1398.5 25 2537 5 3110.2 17
1041.3 26 1447.3 7 1299.7 16

12279.8 17276.2 17646.7

215.2 14 322.5 9 308.3 3
32.4 7 20.4 3 23.9 22
225.4 14 314.6 9 289.3 10
473.0 657.5 621.5

18.9 21 16.1 8 17.2 24

3.8 9 4.2 8 2.7 18
10.9 25 0 0 0 0
35 3 44.8 13 53.6 5

12.4 21 11.6 27 11 23
39.4 10 38 27 28.2 28
213 15 934.4 128 206.6 14
26.9 19 34.8 14 39.4 17
29.1 16 48 9 33.9 20

0 0 0 0 0 0
0 0 0 0 0 0

2012
21/09/2012**07/09/2012 14/09/2012



0 0 0 0 0 0
315.6 17 335.8 23 374.4 15

0 0 vt vt
27.3 10 31.2 9 34 5
258.1 10 290.7 8 293.3 25

0 0 0 0 0 0
16.2 14 17.3 14 15.4 18

0 0 0 0 0 0
31.4 14 21.8 24 30.4 23
34.9 22 25.7 18 12.2 6

0 0 0 0 0 0
35.4 13 34.6 8 36.5 4

0 0 0 0 0 0
47.3 26 36.1 21 33 12
53.9 5 60.3 28 33.3 21
18.3 13 25.9 14 18.5 22
333.7 19 277.2 11 351.6 5
27.1 13 27.2 15 22.6 24
29.9 13 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

41.5 11 24 24 13.4 18
78.6 17 78.4 23 31.8 31
206.2 19 145.3 26 126.7 20
49.3 13 46.2 6 38.6 17
11.9 9 0 0 0 0
28.5 12 24.4 13 27.2 22

2015.6 2617.9 1868.3

16.9 28 15.3 20 0 0
89 7 52.5 14 32.1 10

16.5 24 17.2 31 21.4 21
9.7 4 9.4 14 14 11
19.5 12 10.2 14 10.5 26

0 0 0 0 0 0
212.5 7 192.9 19 146 31

68 17 64.2 9 49 18
0 0 20.0 20 13.6 17
0 0 0 0 0 0



21.5 10 19.4 18 18.2 25
23.1 11 28.3 8 32 6
97.7 13 66.1 15 58.4 16

574.4 495.5 395.2

6.8 13 8.6 7 9.5 6
13.1 28 17.2 12 17.9 15

0 0 0 0 0 0
43.3 25 38.3 6 34.1 10

0 0 0 0 0 0
44.8 9 68.9 6 49.4 11
4.8 15 4.4 9 3 12
8.2 6 7.1 9 6.3 5
0 0 0 0 0 0
0 0 0 0 0 0

14.5 14 13.9 14 13.4 10
97.7 19 89.5 5 79.1 9

233.2 247.9 212.7

46.4 21 63 26 63 7
15641.3 21374.1 20824.6



Table S13
Volatile components determined for Vitis vinifera  L. cv. Touriga Nacional variety obtained from 3 parcels and 3 years of harvests, during maturation, at Bairrada Appellation.

1Dtr(s),2Dtr(s)Compound Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)

194, 0.640 Hexanal 1501.7 8 3015.8 2 4524.9 21 3430.1 19 4203.9 16 4409.4 15
206, 0.630 3-Hexenal 357.5 1 1662.9 7 1172 20 980 12 612.2 16 631.4 8
230, 0.651 2-Hexenal 2061.2 7 3316.1 9 6881.8 6 6089.1 13 6860.5 11 4446.2 2
242, 0.630 3-Hexen-1-ol 310 18 1125.3 16 771 13 388 21 122 9 195.2 4
248, 1.076 2-Hexen-1-ol 643.5 5 4076.4 12 2854.6 5 1887.7 4 2126.9 10 1163 19
266, 0.903 1-Hexanol 542.4 7 1725.7 17 2260.7 18 3426.2 22 3287.8 2 8408.4 5
296, 0.930 2,4-Hexadienal 120.7 8 1223.9 7 942.3 17 714.5 11 319.6 15 437.5 11

Sub-total 5537.0 16146.1 19407.3 16915.6 17532.9 19691.1
Aromatic alcohols
420, 3.014 Benzyl Alcohol 33.4 5 133.6 19 162.4 9 294.7 7 326.7 16 260 7
446, 1.426 α,α-Dimethyl Benzyl alcohol vt
470, 1.960 2-Phenylethanol 14.8 11 148.5 7 232.8 15 175.8 16 245.3 14 391 6

Sub-total 48.2 282.1 395.2 470.5 572 651
C9 Norisoprenoid
506, 0.761 Norinone 21.6 3 27.3 23 37.2 9 40.5 12 37.9 14 38.5 8

Monoterpenic compounds
314, 0.440 α-Pinene 31.5 23 37 13 53.6 3 109.6 18 118.2 8 7.2 3
338, 0.480 Dehydroxylinalooloxide 0 0 29.2 10 35.2 4 0 0 0 0 0 0
344, 0.457 β-Pinene * 12.6 11 26.2 4 31.7 21 23 5 13.6 7 13.1 15
362, 0.520 3-Carene 64.1 7 46.1 12 22.5 19 40.6 3 0 0 0 0
392, 0.405 m -Cymene 58.7 5 70.8 6 44.6 10 23.7 20 14.6 19 12.2 14
398, 0.476 Limonene * vt 94.7 5 31.2 23 29.5 8 31.4 10 73.5 8
404, 0.476 1,8-Cineole 80.2 10 70.4 1 51 3 52 3 55.4 20 60.7 3
416, 0.560 β-Ocimene 33.2 2 202.8 6 163.3 23 132.5 21 124.3 3 185.9 3
428, 0.678 Linalool oxide (isomer 1)88.1 1 51.7 18 63.7 14 21.1 10 12.1 10 16.9 9
434, 0.727 Dihydromyrcenol vt 296.5 4 314.8 18 231.6 10 265.6 19 226.9 9
440, 0.560 α-Terpinolene 52.9 4 72.8 22 44.2 2 19.6 15 31.5 9 27.7 16

24/08/2010
2010

31/08/2010 07/09/2010 14/09/2010 21/09/2010 28/09/2010

C6 compounds



440, 0.790 Linalool oxide (isomer 2)118.1 5 32.7 17 25.8 23 13.4 20 12.4 5 18.7 6
446, 0.700 Dihydrolinalool vt 28.3 13 15.3 18 17.4 8 14.4 4 10.7 6
452, 0.746 Linalool * 460.0 9 573.7 14 628.5 13 792 21 799.1 11 843.7 8
464, 0.600 Rose oxide (isomer) 17.8 14 45.9 6 8 6 8.8 1 0 0 0 0
470, 0.646 Hotrienol 479.1 9 479.9 10 635.7 8 403 4 424.9 21 430 19
500 , 0.970β-Terpineol 68.3 22 29.1 18 30.7 10 0 0 0 0 0 0
512, 0.635 Nerol oxide 21.3 22 66.5 16 90.8 19 38.8 19 30.6 12 36.7 8
518, 1.200 m/z  68, 94, 79, 109 (alcohol)47.0 17 81.8 5 103.6 7 85.4 5 86.2 2 81.9 2
524, 0.860 Borneol 44.0 5 71.2 8 104.9 18 51.4 12 92.4 20 75.5 8
530, 0.984 Menthol * vt 127.4 20 119.9 17 167.1 4 118.9 15 99.6 7
536, 0.715 Terpinen-4-ol 36.1 15 52.4 13 62.3 21 34.7 9 18.2 16 16.6 19
536, 1.269 Cymen-8-ol 0 0 0 0 46.7 6 22.2 13 22.9 10 27 9
542, 0.835 α-Terpineol * 160 8 417.5 18 393.9 5 364.6 8 238.8 16 278.5 18
560, 0.850 Verbenone 25.4 9 45.8 1 40.3 7 30.6 14 30.5 5 24.3 9
566, 0.703 Menth-1-en-9-al 0 0 11.5 21 18.1 6 15.4 29 97.9 6 21.8 16
584, 0.873 Geraniol (isomer 1) * vt 68.8 5 106.9 9 158.3 14 83.6 4 174.3 4
584, 0.943 β-Citronellol * vt 77.0 11 156.9 13 184.6 35 60.3 14 41.2 4
590, 0.737 Geraniol (isomer 2) * 284.5 13 631.4 14 777.9 14 805.2 13 800.2 15 789.7 10
596, 0.976 Citral (isomer 1) 0 0 21.2 16 31.3 9 41.9 5 50.5 3 51.5 3
602, 0.815 Carvone * vt 47.2 19 48 17 28.5 17 26.4 12 52.1 11
626, 0.775 Citral (isomer 2) vt 57.5 18 58.9 12 47 22 36.6 9 70.5 14

Sub-total 2182.9 3965 4360.2 3993.5 3711.5 3768.4
C13 Norisoprenoids
566, 0.532 m/z  159, 91, 131 10 5 70.7 11 14.8 13 13.1 20 0 0 0 0
620, 0.595 Vitispirane 78.7 16 93.7 11 79.9 2 0 0 0 0 0 0
644, 0.528 Theaspirane (isomer) 0 0 0 0 0 0 0 0 0 0 0 0
674, 0.681 β-Damascenone (isomer 1)102.2 19 154.5 29 288.2 7 170.0 23 167.6 13 204.2 6
700, 0.702 β-Damascenone (isomer 2)147.4 7 516.1 9 516.1 17 291.7 17 291.2 10 278.0 16
736, 0.648 Geranylacetone * 312 4 492.3 5 488.6 14 508.1 8 294.7 11 272.6 8
742, 0.850 5,6-Epoxy-β-ionone vt 22.8 20 8.9 9 8.4 4 6.5 3 6.6 18
760, 0.868 3,4-Dehydro-β-ionone 0 0 0 0 0 0 0 0 0 0 0 0
778, 0.635 α-Iso-methyl ionone 16.9 13 19.4 4 14.8 7 0 0 0 0 0 0
784, 0.717 β-Ionone * 0 0 74 6 92.1 4 18.5 11 18.5 7 27.5 8
900, 0.894 Methyl dihydrojasmonate0 0 43.5 11 61.9 15 66.6 14 64.5 1 63.8 16

Sub-total 667.2 1487 1565.3 1076.4 843 852.7
Sesquiterpenic compounds
650, 0.583 δ-Elemene 0 0 0 0 0 0 vt 11.7 13 10.9 10
680, 0.469 α-Copaene 0 0 20.2 12 28.5 8 26.7 11 29.4 16 26.0 19
686, 0.510 β-Bourbonene 0 0 17.3 18 23.8 14 24.5 13 28.0 7 31.3 10



756, 0.630 Aromadendrene 17.7 19 16.4 6 17.8 10 23.9 18 20.8 13 38.5 16
790, 0.660 α-Farnesene 0 0 0 0 8.4 6 10.7 8 13.5 17 19.5 10
808, 0.630 Calamenene 0 0 vt 15.4 18 18.4 13 21.3 9 16.3 21
826, 0.629 α-Calacorene 0 0 0 0 8.4 19 10.4 11 13.9 1 19.3 11
832, 0.880 Nerolidol vt 98.8 7 89.9 9 81.2 14 82.4 13 103.9 9
850, 0.751 Globulol 22.2 19 22.0 6 30.2 8 90.0 7 76.3 4 54.7 3
862, 0.726 Caryophyllene oxide 0 0 0 0 18.7 11 21.3 31 17.0 18 19.4 15
886, 0.690 β-Eudesmol 83.2 0 125.2 13 156.1 22 91.4 9 78.8 7 74.8 13
912, 0.654 m/z  119, 91, 191, 109 (alcohol)0 0 109 17 74.2 16 70.8 1 63.8 8 62.1 10

Sub-total 123.1 408.9 471.4 469.3 456.9 476.7
Diterpenic compound
1116, 0.929Phytol 0 0 0 0 0 0 42.7 7 36.7 3 37.8 7

Total 8580.0 22316.4 26236.6 23008.5 23190.9 25516.2
a 1Dtr (s), 2Dtr(s): first and second dimension retention times (in seconds) of each compound determined.
* Compounds identified based on the comparison between the obtained mass spectra and mass spectra of high purity chemical standards.
** Data obtained at maturity
*** Grapes not available
vt - vestigial



Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%) Mean (n=3) RSD (%)

4667.8 14 2801.9 6 2598.7 18 2373.1 15 3325.3 10 4447.8 17 2638.2 16 4203.8 16
403.5 21 636.5 7 681.7 8 906.4 17 907.7 21 738.8 23 475.9 14 714.4 9
5366.8 15 7669.7 11 6622.8 6 4430.2 7 5034.6 15 6007 10 6113.4 10 9934.2 16
131.1 9 436.3 16 586.0 20 455.9 25 395.7 15 599.8 14 386.2 16 245.2 19
938.9 18 1530.5 9 2160.9 25 1600.5 5 2513.7 18 2101 14 1035.3 15 1608.9 4
5851.6 12 1916.4 18 2023.8 42 1561.4 21 2181.6 19 2407.3 2 2187.2 10 2569.3 14
296.2 13 219.4 8 489.4 7 528.6 20 749.4 12 527.4 16 262.8 16 770.1 7

17655.9 15210.7 15163.3 11856.1 15108 16829.1 13099 20045.9

376.2 20 435.2 10 506.2 13 210.2 10 188.4 18 162 8 234.6 7 300.9 5
vt vt vt

352.0 16 397.8 27 415.2 19 191.5 4 233.5 11 302.7 2 254.4 6 242 14
728.2 833 921.4 401.7 421.9 464.7 489 542.9

34 7 34.1 16 37.5 9 21.3 22 27.3 19 23.9 18 20.7 20 20.7 22

5.4 5 4.6 4 0 0 vt 21.4 17 11 12 10.7 7 25.3 17
0 0 0 0 0 0 23.5 11 20.6 11 11.5 6 0 0 0 0

12.9 4 13.6 4 10.3 8 35.2 16 40.4 8 35.5 7 22.8 16 64.4 20
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12.2 20 7.6 15 5.5 12 48.5 19 105.9 23 107.2 7 9.6 4 23.8 20
60.4 4 44.1 10 36.1 8 62.2 20 101.7 7 68.5 23 80.6 6 118.1 5
87.2 3 61.5 16 42.1 10 38.8 20 45.8 4 35.8 16 40.7 3 48.1 4
165.9 12 178 5 125 12 0 0 0 0 0 0 0 0 0 0
17.9 10 23.3 5 20.8 5 150.4 21 131.7 10 75 15 24 13 39.1 5
118.9 9 99.6 8 173.1 7 45.1 18 58.4 12 40.6 5 48.6 7 71.4 13

19 5 8.9 11 11.9 8 80.4 20 250.5 23 48.7 15 34.3 7 171.5 16

TN-SM1
2011

05/10/2010 12/10/2010** 19/10/2010 11/08/2011 18/08/2011 25/08/2011 08/09/201101/09/2011



10.6 6 12.2 13 17.5 6 0 0 0 0 0 0 0 0 0 0
6.8 3 7.8 4 0 0 0 0 0 0 0 0 0 0 0 0

947.8 19 1081.5 29 947.9 17 143.2 9 516.2 18 1105 4 928 16 192.9 6
0 0 0 0 0 0 32.2 3 36.9 6 29.5 7 29 8 0 0

416.7 8 463.3 29 424.0 12 168.6 20 526.3 22 561.3 24 514.9 17 601.6 11
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

21.9 9 0 0 0 0 82.0 13 69.4 18 45.4 8 47.5 7 45.9 15
84.3 4 79.5 3 62 6 81.3 8 121.3 16 24.8 12 22.2 7 34.4 11
53.1 10 44.4 15 58.8 18 259.6 19 530.5 17 401.2 15 340.3 9 46.4 14
72 7 62.2 13 57.4 11 39.1 22 31.6 11 25.4 8 21.8 7 82.7 11

18.6 17 16.5 15 14.7 19 0 0 0 0 0 0 14 20 23.5 14
21.7 5 17.3 7 19.1 12 20.0 15 36.5 13 19.9 12 20.4 9 22.9 20
240.9 15 250.8 17 256.6 22 23.7 16 35.2 12 49.7 19 220.9 13 261.7 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
77.9 4 60.4 2 18.8 6 0 0 0 0 0 0 0 0 0 0
171.1 34 172.3 4 145.5 10 348.9 5 518.2 13 460.8 15 0 0 0 0
34.9 17 35.4 11 0 0 124.7 19 252.1 16 149.2 16 146 19 91.6 15
775.8 19 877.8 12 815.7 8 246.2 7 603.5 10 645.9 9 745.2 11 889.2 4
40.2 13 41.4 4 0 0 vt 50.0 1 23 17 32.3 7 55.7 8
20 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0

36.8 16 37 14 60.6 6 33.9 15 62 6 67.6 16 17.1 15 193.3 3
3550.9 3701 3323.4 2087.5 4166.1 4042.5 3370.9 3103.5

0 0 0 0 0 0 22.4 13 37.5 16 16.4 6 0 0 0 0
0 0 0 0 0 0 58.5 16 27.5 18 16.8 21 0 0 0 0
0 0 0 0 0 0 118.4 13 188.1 38 105.2 8 0 0 0 0

126.1 7 150.3 35 117.2 8 210.5 18 210.3 6 184.7 22 21.4 10 9.3 14
242.9 10 253.6 13 218.7 9 0 0 0 0 0 0 29.4 12 141.1 16
327.9 4 277.9 18 182 34 170.3 11 271.9 12 225.2 11 161.1 11 133.5 2

0 0 0 0 0 0 28.2 22 49.6 22 112.4 19 168.3 17 154.4 19
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15.2 18 10.3 4 14.1 42 21.9 14 20.2 19 13.7 19 18.2 4 21.4 9
65.5 11 64.0 6 60.5 4 vt 24.6 15 22.4 7 19.8 12 101.3 8
777.6 756.1 592.5 630.2 829.7 696.8 418.2 561

18.4 7 23.7 4 19.1 13 23.2 11 43.7 22 30.2 7 26.7 11 14.5 5
25.8 21 29.1 19 27.6 28 10.5 7 19.3 10 25.1 14 27.2 18 33.5 18
27.6 14 26.3 11 20.9 11 7.4 12 10.6 17 12.9 7 10.4 9 16.5 21



39.7 26 42.0 13 45.4 13 16.3 15 24.8 9 27.0 12 26.5 11 27.4 16
25.8 13 28.6 17 37.9 5 0 0 0 0 14.3 17 14.9 8 15.3 3
14.2 16 12.8 5 13.6 21 0 0 0 0 7.3 8 7.4 18 6.9 16
16.8 12 13.4 13 10.3 2 0 0 0 0 0 0 12.7 10 18.4 28
90.1 10 77.0 5 84.8 13 vt 110.7 8 118.7 21 108.7 14 89.6 19
45.7 3 43.2 3 42 9 vt 15.9 11 22.8 10 31.0 7 27.8 10
22.4 9 18.3 19 21.4 12 0 0 0 0 10.4 13 12.5 17 11.8 14
82.1 21 79.7 7 77.4 16 vt 89.3 14 84.1 19 67.7 8 70.1 10
46.7 13 51.7 3 46.2 6 48.5 11 50.3 18 30.8 3 31.9 4 42.5 5
455.3 445.8 446.6 105.9 364.6 383.6 377.6 374.3

37.8 7 40.1 1 39 3 0 0 0 0 0 0 0 0 0 0
23239.7 21020.8 20523.7 15102.7 20917.6 22440.6 17775.4 24648.3



Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%) Mean (n=3) RSD (%)

3687.2 11 2994.9 20 3780.7 3 2739.8 4 2603.4 8 2983.3 4 2698.4 23 2411.6 16
602.5 4 677 6 792.8 16 792.7 9 1286.1 14 1164.1 9 2281.2 26 1517.5 7
8820.5 10 7065.2 15 6473.4 7 6767.5 21 1468.2 26 1729.6 13 3760.7 25 3749.7 27
237.7 17 471.3 5 539.1 5 488.0 12 189.2 3 272.6 13 409.4 22 464.2 18
1461.5 16 1531.9 2 1300.7 8 1873.1 12 2674.5 13 1625.3 26 2500.2 4 1818.7 10
2340.8 9 3529.2 14 3290.9 8 3705.4 9 2381.4 7 2628.2 9 2785.8 17 2112.3 19
695.2 21 461.7 21 924 14 564.6 5 554 17 688.5 6 548 17 458.3 6

17845.4 16731.2 17101.6 16931.1 11156.8 11091.6 14983.7 12532.3

303.8 5 347.8 6 295.9 8 313.5 12 38.8 17 109.1 15 158.9 21 240 9
vt vt vt vt vt

221.5 14 202.4 23 257.6 20 194.9 10 26.1 16 87.9 3 131 18 186.3 22
525.3 550.2 553.5 508.4 64.9 197 289.9 426.3

19.3 12 22.1 12 20.4 9 23.5 11 21.6 10 24.4 8 27 16 30.3 12

13.5 12 13 8 10.1 10 0 0 25 12 30.8 10 33.9 11 47 10
0 0 0 0 0 0 0 0 54.1 7 56.3 15 25.9 16 33 11

25.9 23 19.2 3 35.7 8 16.5 21 17.5 15 30.6 7 26.4 14 34.3 9
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21 10 11.2 14 30.2 21 8.9 20 21.8 2 41.3 5 38.9 6 38.8 9

173.5 12 164.8 11 137.3 17 167.1 23 144.5 15 119.8 13 126.7 20 93.3 12
23.3 20 24.2 6 98.7 2 98 12 45.1 8 47 9 52.1 9 28.3 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
70.5 5 69.2 4 59.6 6 39.5 15 141.1 24 100.4 2 82.8 4 60.6 8
60.6 2 52.2 2 61.3 6 29.4 5 200.5 17 215.6 11 186 10 193.7 17
86.6 21 45.2 2 36.9 6 20.3 6 0 0 0 0 0 0 0 0

2012
15/09/2011 22/09/2011 29/09/2011 06/10/2011** 31/08/2012 07/09/2012 14/09/2012 21/09/2012



9.9 8 10.5 11 11.9 15 6.4 7 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

247.7 17 770.5 7 851.6 1 1020.6 4 166.0 22 709.0 9 818.7 7 749.9 8
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

435.2 13 489.5 16 491.6 21 443.9 13 190.1 13 759.1 14 831.3 16 703.7 12
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

41.7 20 31 9 25.2 11 18.3 14 18.5 18 23.4 8 62.7 10 65 14
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

36.6 14 39.8 7 36.3 9 0 0 39.9 6 48.6 6 56.8 11 50.7 11
43.1 7 69.8 5 69.5 10 28.8 20 51.7 15 48.5 9 68.3 13 60.8 18
55.1 22 50.5 2 48 7 25.7 17 53.3 18 58.4 6 48.4 10 52.4 20
26.2 14 27.1 17 35.5 13 16.9 14 0 0 vt 14.1 4 31.6 19
331.7 11 253.6 11 253.5 10 401.9 19 95.8 12 155.7 19 163.9 22 242.4 4

0 0 0 0 0 0 0 0 40.2 22 49.7 3 54.1 9 30.1 8
0 0 0 0 0 0 0 0 0 0 15.3 25 20.1 8 40.7 7
0 0 0 0 0 0 0 0 vt 45.7 8 23 21 21.6 17

75.8 2 105.8 18 119.9 12 62.7 9 vt 30.9 12 130.3 17 141.4 9
860.8 6 838.4 4 760.1 2 734.2 13 237.8 3 666.2 27 615.2 4 719.6 7
56.8 3 51.2 13 32.9 19 29.3 22 vt 48.0 11 43.3 16 45 28

0 0 0 0 0 0 0 0 vt 75.8 13 72.7 8 42.2 6
111.5 19 139.3 10 133.4 13 39.9 21 vt 71.3 11 55.9 25 42.4 21
2807 3276 3339.2 3208.3 1542.9 3447.4 3651.5 3568.5

0 0 0 0 0 0 0 0 20.6 9 37.5 9 21 15 19 7
0 0 0 0 0 0 0 0 145.1 22 163.7 11 81.7 7 66.6 10
0 0 0 0 0 0 0 0 124.3 13 191.8 8 124.1 12 107.7 14

8.1 5 0 0 0 0 0 0 89.4 5 86 8 70.6 7 80.1 2
170.2 5 117 17 113.8 12 81.4 21 191.2 2 323.3 12 283.1 11 244.2 13
120.4 17 176.8 7 175.9 7 104.2 26 126.7 13 229.9 8 190.5 23 136.6 13
93.9 6 102.6 8 113.4 23 69.2 22 0 0 0 0 vt 10.3 11

0 0 0 0 0 0 0 0 67.1 21 67.8 8 21.1 9 17.7 11
0 0 0 0 0 0 0 0 28.6 8 33.7 18 28.7 11 26.2 10

21.2 6 20 10 14 11 0 0 20.8 10 28 6 24.4 19 25.6 11
41.9 5 46.6 7 56 4 54.4 3 0 0 0 0 27.6 22 31.6 6
455.7 463 473.1 309.2 813.8 1161.7 872.8 765.6

14.7 14 12.6 11 16.5 5 17.9 12 0 0 0 0 3.4 6 4.2 12
32.6 16 30.2 4 27.9 9 26.8 20 21.3 6 48.6 9 57.1 18 59.6 7
16.3 13 20.8 15 19.1 10 19.3 6 13.2 4 20.0 23 17.8 14 24.7 18



25.8 12 28.1 20 36.9 20 37.2 18 10.1 13 21.2 23 25.4 23 27.2 23
20.8 7 24.3 6 31.8 12 39.5 10 30.1 18 33.1 16 30.9 17 35.8 23
8.7 5 8.3 13 8.3 14 8.2 16 4.7 12 5.3 10 6.2 14 12.2 7
15.3 18 20.8 10 17.3 19 28.3 12 14.1 8 27.6 12 24.1 12 29.5 21
73.9 12 64.2 27 67.9 15 63.1 17 53.5 17 62.4 11 53.5 19 30.3 18
39.1 25 37.1 12 30.1 23 29.5 20 38.7 10 47.9 6 54.3 8 61.1 17
13.2 16 14.2 13 15.8 13 15.7 9 0 0 12.4 13 13.5 9 16.3 12
64.3 13 71.5 7 68.7 15 63.9 12 42.6 12 125.5 9 125.9 16 114.1 20
42.7 18 40.2 7 39.7 5 31.1 11 21.6 26 30.2 23 45.1 7 48.3 15
367.4 372.3 380 380.5 249.9 434.2 457.2 463.3

42.4 5 45.3 5 39 5 40.8 5 0 0 0 0 35.6 11 44.5 26
22062.5 21460.1 21906.8 21401.8 13849.9 16356.3 20317.7 17830.8



Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%) Mean (n=3) RSD (%)

2405.1 22 2556.1 10 1339.9 13 3312.7 10 3057 15 3867.4 13 4694.1 15 3575.8 5
680.5 19 655.2 13 294.7 17 1307.9 4 1008.9 4 693.3 12 572.1 14 395.9 13
4704.2 16 3875.2 24 1965.8 19 4525.5 5 6283.7 11 4126.6 4 5224.0 5 5321.4 6
620.1 8 529.0 32 534.6 1 727.4 3 926.2 12 727.4 12 550.6 9 580.1 5
1811.7 24 2323.2 6 1880.2 11 4673.8 4 1964.4 16 1391.7 13 1501.3 4 1180.8 11
2100.9 19 2296.6 19 928 7 2506 4 3097.9 6 3298.8 6 2979.6 7 6718.8 4
347.3 5 546.2 23 84.3 14 1059.8 5 862.6 10 485.3 5 444.3 11 313 11

12669.8 12781.5 7027.5 18113.1 17200.7 14590.5 15966 18085.8

290 23 285.9 7 32.8 6 147.9 10 297.6 10 298.9 4 398.4 20 448.7 15
vt vt vt vt vt vt

216.7 26 184.6 13 14.6 9 165.6 5 370.6 17 299 14 281.7 14 348.3 16
506.7 470.5 47.4 313.5 668.2 597.9 680.1 797

36.8 16 31.3 8 33.1 4 39.8 2 44.9 10 42.4 17 43.9 8 41.6 11

6.2 6 0 0 39.4 4 44.5 13 66.3 5 9.5 4 15.6 18 6.6 5
50.1 10 28.8 8 33.8 5 37.3 6 25.7 6 0 0 0 0 0 0
24.9 26 24.3 19 39.9 16 25.5 9 28.2 12 43.5 13 19.3 9 33.3 8

0 0 0 0 17.8 14 33.6 16 43.5 5 0 0 0 0 0 0
28.9 5 27.3 22 75.7 11 51.4 8 17.2 20 23.3 8 17 6 12.7 20
80.6 9 79.4 9 0 0 81 7 22.7 20 54.8 14 78.1 3 173.7 10
31.4 8 26.3 19 54.4 19 97.8 21 60.9 6 56.1 9 63.4 2 54.5 3

0 0 0 0 44.8 5 89.3 20 206.7 7 140.3 24 166.4 12 188.2 1
46.7 9 56.2 16 109.2 2 48 5 68.3 15 23.7 6 24.6 18 27.3 21
121.4 14 173.9 17 0 0 350.7 17 347.3 13 285.6 17 271.2 20 251.9 5

0 0 0 0 78.8 1 52.2 7 21.8 10 43.4 4 24.9 13 33.5 21

2010
24/08/201028/09/2012 05/10/2012** 31/08/2010 07/09/2010 14/09/2010 21/09/2010 28/09/2010



0 0 0 0 101.8 2 64.3 2 40 22 27 21 29.7 18 18.6 18
0 0 0 0 4.9 5 28.5 14 17.5 14 24.3 12 10.8 13 16.3 12

801.6 17 898.0 4 481.8 15 608.9 21 516.3 8 694.4 20 790.9 17 780.0 13
0 0 0 0 35.4 14 72.7 4 7.3 3 10.9 16 6.3 29 5.7 9

881.5 8 1012.3 4 345.4 15 439.2 7 688.9 20 454.9 11 579.5 20 517.5 6
0 0 0 0 34.9 12 33.1 4 46 3 0 0 0 0 0 0

73.3 14 66.1 26 22.1 12 46.2 8 93.2 13 50.6 6 41.7 18 40.6 18
0 0 0 0 42.2 2 102.5 16 232.8 18 118.5 14 82 13 98.1 2

65.7 22 62.1 5 28.6 19 81.3 16 119.6 19 50.3 8 90.8 11 98.7 21
74.9 13 68.3 10 0 0 161.3 16 173.1 26 115.4 18 109.4 19 177.9 8
43 7 52.2 7 75.3 6 78.4 15 39 13 41.4 14 29.4 14 29.1 18

21.1 8 23.4 23 0 0 0 0 41.9 5 27.2 6 24.1 9 29.9 6
214.9 19 144 9 350.3 3 354.8 11 485.4 9 838.2 10 502.5 17 657.1 6
44.1 11 27.7 5 16.8 6 35.8 15 41.4 13 28.5 18 34.8 3 19.5 7
32 9 34.4 11 0 0 13.1 7 32.6 14 76.5 2 90.1 1 86.9 2

46.3 23 56 8 vt 62.5 15 153.5 18 235.7 22 221.2 7 237.5 20
107.8 14 170.8 22 vt 61.0 12 147 6 135.5 10 211.5 7 145.2 14
810.4 11 874.5 11 310.4 10 658.5 21 717.1 6 1002.2 6 1091.8 5 902.9 12
40.2 7 51.1 7 vt 36.8 2 55.8 11 63.3 21 67.6 15 58 12
50.3 12 28.6 16 vt 34.4 5 65.5 8 31.2 16 26.3 5 43.7 20
44.5 13 26.6 23 vt 41.7 16 94.7 16 102.2 9 61.2 7 88.1 19

3741.8 4012.3 2343.7 3926.3 4717.2 4808.4 4782.1 4833

13.3 21 17.8 28 26.9 17 65.6 8 29.3 6 34.9 6 0 0 0 0
63.1 6 54.9 4 138.5 22 88.3 7 31.5 4 0 0 0 0 0 0
95.5 7 62.9 15 0 0 0 0 0 0 0 0 0 0 0 0
68.6 4 63.3 12 220.4 19 339.7 4 299.1 10 165.6 4 190.1 21 193.9 11
234.7 14 100.9 9 175.4 30 505.4 13 564.9 7 285.2 15 273 10 290.8 8
149 29 98 9 308.2 21 562.6 14 623.2 21 723.1 2 518.7 20 529.3 15
7.6 8 0 0 vt 22.3 11 13.3 16 15.2 10 12.3 10 11.4 18
18.2 11 20.5 24 0 0 0 0 0 0 0 0 0 0 0 0
26.9 27 35.1 24 41.8 18 17.6 22 16.4 5 0 0 0 0 0 0
21.4 11 18.9 26 vt 70.5 9 91.4 2 19.8 6 23.2 6 16 7
52.2 7 48.9 19 vt 48.5 13 42.6 3 66.5 2 59.2 13 57.7 13

750.5 521.2 911.2 1720.5 1711.7 1310.3 1076.5 1099.1

9.8 3 9.5 8 0 0 21.3 9 16.3 13 14.9 16 12.3 15 12.8 7
54.9 9 55.0 14 23 16 32 19 24 15 26.6 13 23.5 13 22.9 10
24.5 7 23 10 13.6 19 20.4 5 22.0 10 25.3 7 24.2 7 27.1 15



37.1 16 35.1 12 26.5 7 35.2 16 44.5 23 43.9 16 39.5 17 43.2 9
42.8 16 42.0 21 15.3 9 28.3 2 38.3 21 29.5 12 37.3 15 39.8 18
14.6 22 15.0 11 7.1 4 23.4 14 31.4 3 28.3 19 28.9 23 26.1 14
16.8 18 30.1 19 7.1 4 18.9 10 23.9 14 20.8 13 18.4 18 19.7 22
37.2 23 27.2 12 85.2 15 119.4 13 166.6 11 110 9 110.1 13 107.2 8
63 7 37.2 13 11.3 10 22.0 22 30.1 7 78.5 2 81.5 1 60.6 5

15.7 11 16.3 15 10.3 7 17.3 6 21.4 13 15.3 15 18.2 6 21.4 19
105.7 19 126.6 23 45.2 12 110.2 19 154.5 8 109.6 3 100.5 14 107.2 4
46.2 17 29.6 21 62.9 10 104.2 15 107.9 20 76.9 18 84.6 13 71.4 8
468.3 446.6 307.5 552.6 680.9 579.6 579 559.4

43.3 6 35.7 13 0 0 0 0 0 0 65.4 5 65 4 75.6 2
18217.2 18299.1 10670.4 24665.8 25023.6 21994.5 23192.6 25491.5



Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%) Mean (n=3) RSD (%)

5118.6 14 4032.7 19 2340.9 14 2883.4 20 3237.7 18 2850.8 9 3073 18 3293.5 16
209 20 333.2 16 489.6 47 698 13 641.3 25 446 13 1034.1 19 660.6 6

6465.7 16 5873.5 21 3415 18 5578 14 5041.8 20 5007.1 7 10705.4 13 9514.7 10
616.4 15 532.9 12 594.4 10 431 18 909.8 12 322.9 20 681.0 14 531.8 12
1596.1 11 2182.0 12 1902.5 14 2272.1 16 2038.8 5 1077.3 13 1965.1 22 1889.9 16
6388.5 2 2250.6 9 780.6 8 3127.2 21 2023.7 8 2288 11 3362.7 4 3175 4
219.9 15 281.3 13 340.4 16 544.3 16 266.6 19 213.9 23 638.7 6 524.8 16

20614.2 15486.2 9863.4 15534 14159.7 12206 21460 19590.3

418.3 11 506.3 13 223.5 2 248.1 13 312.4 5 282.6 21 310 7 336.9 15
vt vt vt

392.7 22 415.2 19 191.9 16 179.5 19 104 23 248.3 3 234.1 4 229.5 0
811 921.5 415.4 427.6 416.4 530.9 544.1 566.4

40.2 14 38.1 11 29.6 6 26.7 18 28.1 17 24.1 12 22 24 28.9 7

7.6 1 6.2 6 vt 26.5 7 10.7 16 13.6 5 24.6 21 14.7 5
0 0 0 0 41.5 22 28.8 17 22.5 15 0 0 0 0 0 0

20.1 2 13.3 8 39.3 18 78.2 9 26.6 22 45.5 13 59 10 23.5 6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9.7 7 6.5 2 54.4 16 91.8 11 116.7 21 16.3 14 16.4 11 21.7 18
141.9 9 133.7 17 42.6 16 91.8 8 115.1 23 115.3 4 210 2 233.1 14
80.8 7 94.5 5 81.2 19 51.7 3 47.5 7 51.5 6 56.1 4 25.1 8
163.2 12 169.8 13 0 0 0 0 0 0 0 0 0 0 0 0
24.3 13 29.3 7 242.9 13 253.5 5 84.1 16 67.9 14 137 11 84.9 5
205.6 11 177.5 21 51.4 11 34.2 10 60.5 10 76.1 8 100.3 17 66.1 3
31.1 8 24.9 20 85.3 10 90.4 22 158.9 28 39.9 11 15.7 18 155.1 21

GC×GC peak area x 104 (arbitrary units)
TN-SM2

2011
01/09/201105/10/2010 12/10/2010** 11/08/2011 18/08/2011 25/08/2011 08/09/2011 15/09/2011



13.5 9 13.9 7 0 0 0 0 0 0 0 0 0 0 10.4 12
9.4 7 7.2 13 0 0 0 0 0 0 0 0 0 0 0 0

804.0 16 812.1 12 158.7 16 1181.2 24 1938.2 6 1418.9 27 402.5 13 869.8 4
7.7 1 0 0 53.0 6 50.5 12 25.2 24 25.2 15 7 14 7.5 8

529.2 11 544.1 14 301.1 10 695.6 6 596.3 6 581.5 11 649.2 16 672.7 9
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

29.7 20 20.1 8 144.1 16 75.9 26 106 16 28.2 14 70.2 16 59.3 4
98.6 8 92.9 4 106.7 9 167 8 20.5 16 39 10 110.2 17 42.3 15
78.3 8 75.8 14 284.5 11 515.7 18 376.3 14 282 9 46 3 39.5 5
139.9 11 103.8 8 58.1 6 36.9 10 19.9 5 36 8 100.3 5 39.7 10
25.2 19 17.5 8 0 0 0 0 0 0 21.8 5 25.3 5 68.2 6
22.3 6 27 4 19.3 23 30.8 16 19 13 23.8 8 15.7 11 21.8 14
667.1 10 665.3 6 22.5 8 56.3 23 53.6 25 290.2 14 170.2 18 363.7 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
89.9 2 88.4 3 0 0 0 0 0 0 0 0 0 0 0 0
203 26 188.9 12 330.5 8 823.3 19 460.1 14 0 0 0 0 0 0
134 13 124.8 18 215.9 8 311.6 21 168.9 33 205.4 12 123.8 23 142.4 19

932.5 5 900.8 4 432.4 14 645.9 9 742.6 10 552.5 13 815.6 5 1167.3 18
57.3 11 57.6 8 0 0 73.5 12 23.5 12 33.9 7 59.1 5 57.2 4
53.5 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
67.9 12 49.5 13 38.8 6 42.2 5 62.4 13 21.6 7 116.8 15 161.4 8

4647.3 4445.4 2804.2 5453.3 5255.1 3986.1 3331 4347.4

0 0 0 0 39.8 9 32.4 8 32.2 15 0 0 0 0 0 0
0 0 0 0 86.9 3 29.8 13 35 15 0 0 0 0 0 0
0 0 0 0 129.9 14 206 7 103.8 17 0 0 0 0 0 0

138.6 11 140.6 12 214.1 5 277.7 23 269.6 18 19.8 14 8.4 6 13.9 11
242.3 18 268.7 19 0 0 0 0 0 0 36.5 13 160.5 13 210.4 9
491.8 6 481.1 7 193.4 17 466.3 7 256.5 14 189.9 15 173.2 12 118.5 12

0 0 0 0 67.5 3 64.8 8 116.6 11 217.4 5 124.1 17 91.5 4
0 0 0 0 32.6 6 24.2 24 18.3 14 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

22.5 9 19.1 8 28.4 8 21.9 15 11.1 10 18.2 9 25.7 26 23 16
63.1 5 65.6 8 0 0 24.7 14 24.3 5 37.8 7 111.1 19 54.2 7
958.3 975.1 792.6 1147.8 867.4 519.6 603 511.5

14.3 9 11.2 10 vt 56.3 11 31.9 16 31.5 4 25.6 10 17.3 15
21.6 23 21.0 16 0 0 0 0 27.6 7 38.8 5 35.5 7 22.9 9
25.3 7 21.5 10 15.6 18 18.4 16 21.4 12 28.4 17 31.3 15 54.4 7



45.8 16 53.2 23 12.7 12 26.4 15 17.0 7 19.8 12 24.8 4 26.8 16
45.9 14 47.4 3 10.5 21 13.6 12 21.6 11 17.8 13 26.3 5 46.8 5
27.3 6 26.2 9 0 0 7.5 23 8.9 10 8.4 4 8.0 4 5.2 2
17.4 18 19.0 12 22.8 16 9.6 13 10.2 8 7.2 15 11.2 10 11.7 7
109.3 20 110.2 15 53.5 23 84.9 14 65.3 16 62.8 12 52.8 14 43.7 18
52.8 13 54.9 7 42.4 11 63.5 17 59.2 19 46.3 23 44.7 18 40.3 14
22.7 8 21.9 13 0 0 0 0 20.3 8 25.2 12 17.0 9 21.4 12
114.8 21 122.3 8 84.2 10 103.0 12 89.4 12 82.6 7 75.2 12 69.4 9
77.7 15 71.8 14 66.3 21 79.9 9 85.8 5 76.9 13 74.4 0 71.8 10
574.9 580.6 308 463.1 458.6 445.7 426.8 431.7

75.6 2 77.7 1 0 0 0 0 0 0 0 0 45.3 5 57.2 8
27721.5 22524.6 14213.2 23052.5 21185.3 17712.4 26432.2 25533.4



Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%) Mean (n=3) RSD (%)

3155.8 8 4477.8 9 2471.6 10 2557.7 17 2718.3 10 1989.5 14 2063.3 9 1384.7 16
850.6 7 828.4 9 759.6 19 1587 20 1310.9 17 1969.3 7 1204.7 23 563.7 17

10568.6 20 9599.9 14 8710.7 23 2013.1 20 1653.7 15 2560.4 14 3927.1 16 4771.8 15
653.5 4 986.9 10 824.0 13 212.6 24 204.3 17 369.8 24 517.9 20 644 28
2225.2 12 2098.7 12 2822.2 20 1741.9 11 1647.1 9 1840.7 9 835.7 6 936.6 19
3219.7 3 3611.2 4 3552.2 7 2107.1 17 2066.7 5 2832.8 18 2072.6 10 1821.2 17
784.6 9 884 15 582.4 13 857.6 13 656.4 13 582.5 5 746.7 10 310.1 14
21458 22486.9 19722.7 11077 10257.4 12145 11368 10432.1

399 10 314.5 13 391.5 8 41 6 164 17 212.7 14 327.7 7 340.3 8
vt vt vt vt vt vt

222.5 19 258.1 15 286.7 22 28.2 15 101.9 5 166.9 20 294.9 6 306.3 23
621.5 572.6 678.2 69.2 265.9 379.6 622.6 646.6

26.2 8 25.9 19 18.6 19 30.8 4 28.6 5 31.1 5 34 12 41 6

14.8 10 14 14 0 0 39.9 10 35 9 42 5 51 6 36.8 13
0 0 0 0 36.6 24 61 9 65.6 15 63.8 16 61 9 59.9 6

30.5 19 39.7 18 38.9 6 35.7 9 36.9 10 33.4 19 40.2 16 25.8 4
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.7 6 33.9 8 64.1 16 34 15 48.5 8 47.5 8 52.3 14 48.4 4
183.8 12 184.9 3 57.5 17 178.1 18 139.3 12 133.3 24 115.2 16 106.9 24
24.1 5 172.5 17 40.7 9 57 6 53.8 8 50.1 7 48.8 8 38.6 12

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
79.4 6 75.5 6 105.4 12 138.1 20 114.4 12 100.2 5 73.7 17 65.5 7
85.2 17 66.9 0 50.2 4 504.2 6 204.1 10 195.7 9 209.6 19 153.3 13
60.9 9 57.5 7 87.5 11 0 0 0 0 0 0 0 0 0 0

2012
22/09/2011 29/09/2011 06/10/2011** 31/08/2012 07/09/2012 14/09/2012 21/09/2012 28/09/2012



10.8 10 13.6 11 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1395.5 17 979.4 6 1117.7 24 419.8 11 1409.2 16 1100.6 10 1155.4 18 956.8 16
7.7 3 5.3 6 40.7 14 0 0 0 0 0 0 0 0 0 0

528.1 21 628.2 13 553.7 21 177.5 24 1099.5 11 1026.5 20 1096.6 14 1121.2 9
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

52.7 10 51.6 11 68.7 5 21.6 14 27.7 26 73.2 12 77.8 14 75.8 10
76 54 36.5 8 86.8 16 0 0 0 0 0 0 0 0 0 0

45.9 8 40.4 11 227.9 12 51.7 4 58.5 7 55.8 9 58.7 5 67.8 6
54.3 7 83.7 19 51.3 13 121.3 19 74.1 5 99.4 19 98.7 24 99 12
65.9 4 65.5 11 0 0 74.1 6 62.6 8 50.3 12 68.8 3 61 4
19.1 11 23.6 15 26 20 0 0 0 0 19.8 17 20.7 15 21.1 11
261.7 10 416.9 16 26.2 5 128.6 21 253.6 8 269.1 14 290.9 17 251.3 24

0 0 0 0 0 0 57.9 21 59.6 8 77.1 9 47.4 8 47.4 5
0 0 0 0 0 0 0 0 27.8 17 26.2 16 51 9 61 6
0 0 0 0 260.9 14 vt 51.6 7 38.7 13 40.9 14 56.1 8

116.5 13 205.7 14 114.7 14 vt 119.1 19 150.1 13 151.4 17 174 17
1017.8 12 1074.1 10 1095.2 9 388.3 14 782.1 13 849.2 12 986.7 17 1025.4 13
52.9 10 40.8 20 0 0 vt 46.1 16 44.3 9 51.7 6 65.3 14

0 0 0 0 0 0 vt 80.4 25 81.4 8 59.7 8 49.4 10
151.5 5 218.8 7 58.1 26 vt 111.8 20 58.5 6 45.6 9 40.3 7
4348.8 4529 4208.8 2488.8 4961.3 4686.2 4953.8 4708.1

0 0 0 0 26.5 26 22.8 6 51.5 10 21.4 22 21.6 22 22.7 17
0 0 0 0 0 0 153.5 18 194.7 13 116.7 16 85.2 3 73.8 13
0 0 0 0 114.6 17 140.8 15 206.7 6 170.4 15 150.8 22 102.2 6
0 0 0 0 195.9 12 126.2 14 112.2 13 86.1 5 76.8 5 70.3 8

142.3 5 172.8 14 0 0 255.6 10 343.7 14 344.2 14 328.5 19 246 4
165.9 17 183.7 9 150.7 20 166.9 25 259.4 7 236.5 26 221.4 8 239 12
103.6 12 128.4 15 32.1 10 0 0 0 0 0 0 11.2 12 8.1 5

0 0 0 0 0 0 76.5 30 79.1 7 38.5 6 27 21 23.1 12
0 0 0 0 0 0 42.7 21 37.3 9 48 12 43.6 14 42.9 5

25.5 15 18.3 16 17.9 15 21.4 22 35 9 26.1 19 25.4 15 30.1 26
51.7 7 59.8 7 0 0 0 0 0 0 37.7 11 38.8 1 56.1 22
489 563 537.7 1006.4 1319.6 1125.6 1030.3 914.3

13.1 13 11.3 12 10.2 12 0 0 0 0 0 0 0 0 14.1 8
24.4 10 25.3 13 30.5 9 32.1 12 52.8 23 66.3 8 75.7 7 63.5 7
53.8 9 50.1 4 43.7 23 17.9 18 20.2 21 23.1 9 26.5 12 28.8 6



28.8 6 28.7 7 32.5 19 11.2 21 24.9 11 35.7 17 28.6 11 31.6 11
54.6 10 48.4 9 43.5 13 10.8 17 15.9 29 17.2 7 20.0 12 33.6 15
5.1 6 9.0 3 8.5 7 6.7 27 6 14 6.2 5 7.1 21 8.9 18
10.5 6 10.1 7 7.4 10 14.8 13 31.5 6 33.1 22 38.2 22 45.2 19
44.7 14 42.9 21 32.1 9 32.4 11 54.8 15 47.2 16 38.5 12 36.2 13
40.6 30 39.5 13 42.4 21 51.2 8 103.4 8 114.8 12 99.5 17 80.4 4
18.3 23 17.6 19 17.4 12 0 0 0 0 13.5 21 15.3 14 18.4 13
61.3 15 73.3 9 69.6 15 23.9 11 123.2 2 138.1 13 122 20 133.0 23
69.9 2 66.6 4 63.4 12 38.3 16 35.6 8 49.5 12 51.6 13 40.5 4
425.1 422.8 401.2 239.3 468.3 544.7 523 534.2

64.3 3 65.3 6 60.7 7 0 0 0 0 42 13 57.5 5 54.2 6
27432.9 28665.5 25627.9 14911.5 17301.1 18954.2 18589.2 17330.5



Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%) Mean (n=3) RSD (%)

2296 12 2212.4 14 1776.5 15 3998.7 13 2894 1 4180.3 19 4182.5 17 4127.6 20
486.9 17 410 18 372.7 18 1082.7 6 918.4 2 709.1 9 588.8 14 468.5 5
5277.4 20 5341.1 19 1984.1 12 944.4 8 5759.4 7 4481.7 7 4211.8 18 5526.8 14
446.1 27 474.8 20 468.3 10 433.1 7 726.3 14 170.6 14 151.3 20 186.4 12
1318.9 11 1519.2 7 1119.8 21 2224.9 5 1989.1 14 1357.2 15 1189.9 22 1638.2 7
2272.2 7 1757.3 8 915.1 7 2423.9 8 2762 15 3280.2 11 6584 6 6869.3 7
423.2 12 328.7 12 112.3 4 842.2 6 723.5 12 591.9 7 446.4 14 376.3 17

12520.7 12043.5 6748.8 11949.9 15772.7 14771 17354.7 19193.1

333.9 1 341.4 11 28.8 16 130.7 22 188.1 7 265.4 21 358.8 11 432.3 12
vt vt vt

302.4 12 296.7 16 19.2 3 170 14 255.1 21 180.5 14 178.3 11 308.6 10
636.3 638.1 48 300.7 443.2 445.9 537.1 740.9

38.2 13 30.2 20 17.7 10 24.4 13 31 13 36.3 9 34.5 5 31.5 5

29.1 11 15.7 20 43.9 12 43.1 6 51.7 17 72.5 2 85 3 5.3 4
48.6 13 35.1 11 22.1 15 21.5 5 32.3 4 0 0 0 0 0 0
44 7 29.6 6 20.7 15 48 12 32.6 20 17.3 20 11.7 16 24 23
0 0 0 0 9.6 15 25.1 8 12.3 19 0 0 0 0 0 0

36.4 21 31.6 5 64.6 23 33.6 14 33.4 19 18.3 18 12.4 18 21.3 11
85.4 7 82.3 6 0 0 55.9 6 22.5 41 56.6 2 81.3 13 36.5 3
40 5 26 14 37.3 9 45.3 7 50.9 2 75.1 4 50.5 1 59.1 10
0 0 0 0 46.7 19 51.1 4 124.1 5 166.6 5 130.1 10 150.2 12

73.7 22 58.6 12 77.2 22 31.6 12 67.1 15 49.8 11 17.6 6 15.8 18
178.8 22 163.9 23 0 0 357.1 19 220.1 31 225.1 14 243.2 13 187.8 19

0 0 0 0 60.5 13 21.8 15 41.4 5 18.6 16 20.8 18 22.6 16

2010
12/10/2012**05/10/2012 24/08/2010 31/08/2010 07/09/2010 14/09/2010 21/09/2010 28/09/2010



0 0 0 0 73.2 0 41.1 1 16.8 10 10.5 13 11.4 7 10.4 5
0 0 0 0 0 0 19.5 13 11.6 10 6.4 5 10.5 1 11 15

1557.4 9 1488.1 15 107.2 12 183.8 17 180.3 24 195.6 6 101.4 13 107.9 3
0 0 0 0 24.5 12 6.7 4 7.3 2 7.8 3 0 0 0 0

965.4 2 954.1 18 180.6 19 324.8 6 555.1 9 488.8 17 397.7 15 376.3 16
0 0 0 0 24.7 11 8.2 5 75.7 2 0 0 0 0 0 0

74.9 7 87.7 14 14 4 49.2 15 83.8 14 30 8 42 4 22.9 12
0 0 0 0 18.4 7 40.3 21 108.8 16 53.8 0 56.9 5 53.5 3

87.9 7 95.9 24 19.6 13 108.1 22 88 16 65.7 7 76.5 8 67 8
91.9 18 89.4 24 0 0 119.4 19 130.3 16 104.9 18 105.7 6 97.6 18
48.6 16 60.5 10 46.8 22 37.4 10 62.1 5 27.5 13 17.8 17 17.8 15
28.8 8 31.4 28 0 0 0 0 33.9 11 27.6 12 34.4 10 23.1 7
221.6 10 212.6 21 208.1 25 359.8 18 404.9 4 385.9 14 383.5 23 247.1 21
31.4 3 59.1 12 14.7 5 53.9 8 30.2 9 33 4 30.8 7 19.7 5
49.2 13 45.5 13 0 0 18.7 15 15.5 18 10.5 3 11.9 9 9 6
62.8 6 62.7 1 0 0 51.8 12 116.2 21 104.7 10 74.9 10 70.1 11
212.3 20 219.4 9 0 0 72.6 4 97.1 14 45.8 15 46 11 77.8 11
1263.0 22 1059.1 11 231.1 3 283.4 13 424.4 13 456.8 11 542.0 5 568.0 11
57.8 5 43.2 10 0 0 68.8 3 40.9 15 56.5 18 43.5 4 39 9
53.7 9 41.6 8 0 0 34.4 16 41.1 12 25 15 51.4 7 28.1 8
37.6 22 34.5 16 0 0 42.3 7 51.7 9 53.6 21 56.7 14 98.8 17

5380.3 5027.6 1345.5 2658.3 3264.1 2890.3 2747.6 2467.7

19.5 12 20.5 12 28.6 13 23.9 5 34.1 9 33 4 0 0 0 0
57.1 12 58.2 5 54.2 11 14.5 2 39.3 11 0 0 0 0 0 0
70.3 13 67.1 4 0 0 0 0 0 0 0 0 0 0 0 0
69.5 8 62.4 14 13.9 17 192.5 30 251.4 21 239.7 32 172.4 23 112.9 7
262.5 8 262.2 14 135.8 27 440.5 5 523.6 19 227.3 12 255.2 12 281.7 13
161.9 25 128 21 242 8 425.5 15 406.5 18 499.5 7 265 13 226.2 28

0 0 0 0 0 0 5.5 16 7.2 10 6.7 28 5.5 8 4.5 7
21.4 27 19.5 23 0 0 0 0 0 0 0 0 0 0 0 0
40.7 4 40.9 8 18.3 1 13 2 16.7 6 0 0 0 0 0 0
22.5 17 21.4 10 0 0 36.4 9 51.6 7 22.8 8 16.4 1 31.2 11
51.6 8 54.7 4 0 0 48.4 18 35.9 6 54.6 15 56.0 16 60.0 10
777 734.9 492.8 1200.2 1366.3 1083.6 770.5 716.5

13.7 24 13.1 18 0 0 0 0 0 0 12.4 12 13.4 6 8.2 4
59.6 11 59.1 6 0 0 0 0 4.3 7 6.4 10 7.3 11 23.5 13
26.5 13 26.1 24 0 0 0 0 0 0 0 0 0 0 0 0



38.7 6 45.3 26 38.3 10 41.9 18 44.2 13 47.4 21 44.9 19 51.4 11
41.1 10 45.9 16 0 0 0 0 12.7 15 13.5 17 23.6 12 27.2 7
12.8 7 13.3 18 6.1 19 13.5 13 17.4 18 14.6 11 12.0 7 11.5 12
40.2 12 23.4 25 7.3 4 12.8 11 14.6 10 12.5 13 13.4 16 15.2 18
37.0 22 35.2 12 32.5 12 86.8 20 64.3 21 93.4 5 86.7 5 77.5 20
73.5 17 53.9 19 13.7 17 14.6 19 21.9 7 54.1 2 50.1 5 47.8 4
19.4 11 19.3 12 0 0 0 0 19.6 7 21.4 13 17.3 12 16.3 11
142.5 21 133.8 16 0 0 88.9 8 115.2 12 70.5 6 87.7 10 70.8 16
35.4 21 32.6 16 58.9 9 91.1 8 86.3 11 54.1 16 42.9 15 62.2 8
540.4 501 156.8 349.6 400.5 400.3 399.3 411.6

43.4 9 41.8 14 0 0 0 0 0 0 11.2 11 12.3 12 9.9 8
19936.3 19017.1 8809.6 16483.1 21277.8 19638.6 21856 23571.2



Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%) Mean (n=3) RSD (%)

4647.7 14 4303.3 8 3327.3 8 2471.6 10 4599.6 6 4299.5 17 3278.3 8 3212.8 17
323 6 383.8 15 707.2 10 306.0 19 605 13 536.4 13 527.3 20 940.1 9

4342.7 4 5076.7 14 4816.5 14 4387.1 23 6088.5 19 6038.2 24 6614.7 17 10888.6 10
322.0 18 414.7 23 407.3 19 524.0 13 394.2 19 312.4 15 336.3 18 415.1 6
1403.9 8 2079.4 16 1746.4 16 1822.2 20 2066.7 20 1631.9 7 650 12 1388.3 15
5918.6 2 3525.3 17 3086.8 4 757.4 7 2055.8 27 2456.6 17 1752 18 2683.3 3
217.9 21 338.7 8 566.3 20 489.0 13 529.8 7 539.6 20 230.5 12 602.6 14

17175.8 16121.9 14657.8 10757.3 16339.6 15814.6 13389.1 20130.8

387.2 11 375.6 7 366.2 11 191.5 8 200.2 9 201.7 15 202 16 235.1 13
vt vt vt vt

213.1 8 326.4 5 347.5 16 186.7 22 243.8 14 208.5 16 148.2 27 268.2 9
600.3 702 713.7 378.2 444 410.2 350.2 503.3

32.3 8 30.4 11 28 14 18.6 19 22.2 10 16.2 20 14.1 12 12.4 14

4.6 5 0 0 0 0 0 0 0 0 7.8 10 9.9 5 11.4 5
0 0 0 0 0 0 36.6 24 15.3 10 16.9 8 0 0 0 0

15.2 18 23.7 14 19.9 18 38.9 6 31.6 15 20.8 14 23.7 14 33.6 14
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7.4 18 17.3 8 18.3 16 64.1 16 26.5 23 13 13 7.0 7 13.8 4
91.4 10 49.5 20 17.7 4 57.5 17 88.4 9 10.5 11 62.6 7 103.7 7
72.3 2 65 13 38.8 14 40.7 9 22 5 24 12 33.8 11 43.9 2
137.8 11 125.4 15 108.9 7 0 0 0 0 0 0 0 0 0 0
15.7 11 22.3 7 19.8 9 105.4 12 80.7 13 41.1 13 25 11 35.4 12
123 25 211.4 20 213.3 10 50.2 4 39.5 5 37.1 10 42.1 8 62.3 10
15.2 14 27.9 19 48.8 9 87.5 11 32.5 18 40.6 98 13.1 15 10.8 20

TN-SM3
2011

08/09/201105/10/2010 12/10/2010** 19/10/2010 18/08/2011 25/08/2011 01/09/201111/08/2011



13.5 19 14.8 17 18.7 6 0 0 0 0 0 0 0 0 vt
3.7 3 8.1 1 0 0 0 0 0 0 0 0 0 0 0 0
94.9 11 164.6 21 126.8 22 117.7 24 465.7 20 546.2 4 669.7 2 682.6 6

0 0 0 0 0 0 40.7 14 48 13 34.4 6 30.8 4 0 0
354.0 5 306.2 10 380.2 15 153.7 21 277.2 21 381.5 10 306.3 14 335.8 19

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25.2 6 22.2 18 19.2 12 68.7 5 29 15 39.5 14 15.8 12 42.2 15
44.3 5 0 0 0 0 86.8 16 121.5 16 25.1 4 19.3 11 27.3 11
39.9 17 57.6 17 64.4 4 227.9 12 185.6 17 208.3 23 142.5 11 46.5 10
37.5 22 70.1 12 79.3 4 51.3 13 16.8 21 15.4 21 27.2 6 72.4 7
17.8 11 32.2 9 39.5 14 0 0 0 0 0 0 0 0 24.8 16
17.6 4 24.9 14 22.5 16 26 20 17.4 22 13.8 14 16.6 17 19.3 5
169.1 17 188.9 11 122.1 22 26.2 5 34.4 25 12.2 23 186.4 4 228.9 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
84.3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
52.4 9 116.3 135 47.7 16 435.1 18 669.3 20 421.9 14 0 0 0 0
49.3 13 74.3 22 43.7 29 260.9 14 195.3 29 106.3 21 181.1 15 127.4 13
417.8 9 659.3 25 644.3 28 114.7 14 245.3 13 603.7 17 597.2 9 502.3 19
35.2 12 54.9 5 0 0 vt 46.8 10 30.8 11 22.1 15 35.9 13
24.5 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0
35.4 11 45.1 17 52.7 3 58.1 26 36.2 7 63.1 17 53.7 2 70.2 3
1999 2382 2146.6 2148.7 2725 2714 2485.9 2530.5

0 0 0 0 0 0 26.5 26 17.9 6 vt 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 114.6 17 165.1 18 106.6 9 0 0 0 0

118.6 10 122.7 9 142.3 15 195.9 12 236.4 21 101.4 23 0 0 0 0
207.4 13 194.1 11 200.1 14 0 0 0 0 0 0 19.3 16 12.2 20
209.4 19 172.2 15 160.7 14 150.7 20 221.5 7 105.7 15 92.1 14 133 22

0 0 0 0 0 0 32.1 10 50.6 6 101.4 10 122.4 10 128.8 11
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.2 19 12 1 21 13 vt 0 17.8 8 10.6 9 13.9 7 18.9 19
56.6 12 57.9 15 60.1 12 17.9 15 15.5 20 15.7 12 22.4 5 40 9
605.2 558.9 584.2 537.7 724.8 441.4 270.1 332.9

9.3 6 8.5 12 8.6 12 11.4 14 15.7 7 20.3 7 20.3 9 20.0 12
35.2 23 39.5 13 37.2 10 0 0 0 0 22.7 8 24.0 5 27.3 9

0 0 0 0 0 0 0 0 0 0 0 0 0 0 12.0 17



46.3 9 41.2 22 38.5 15 15.3 18 21.6 10 37.3 19 34.5 5 33.5 12
28.6 15 25.6 13 26.1 12 0 0 vt 21.2 21 19.3 19 18.3 14
10.4 19 11.2 16 12.5 21 0 0 0 0 6.6 6 5.3 5 5.0 12
13.2 13 10.9 13 11.2 14 0 0 0 0 14.2 19 18.4 13 13.7 5
72.3 9 72.3 11 64.8 9 20.4 13 24.6 11 45.2 15 53.9 21 47.5 17
46.6 17 47.1 9 42.9 10 vt 23.2 13 33.0 22 29.2 11 26.6 19
14.6 13 13.5 17 12.3 13 0 0 0 0 0 0 9.6 15 10.3 13
69.7 5 66.9 7 53.6 16 26.3 24 30.2 17 32.4 26 30.6 21 27.3 16
59.3 7 51.9 4 42.4 28 39.4 12 38.1 13 42.0 5 34.2 6 38.8 3
405.5 388.6 350.1 112.8 153.4 274.9 279.3 280.3

11.6 8 11.3 19 10.1 5 0 0 0 0 0 0 0 0 0 0
20829.7 20195.1 18490.5 13953.3 20409 19671.3 16788.7 23790.2



Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)Mean (n=3) RSD (%) Mean (n=3) RSD (%)

4987.5 9 3447.6 12 3001 23 3041.1 9 2687.7 21 1499.7 11 1455.1 13 2326 10
269.9 14 633.2 18 1641.1 27 1693.4 22 1784.2 16 1197.4 12 522.0 13 751.3 21
6992.1 9 9130.7 20 1958.5 31 2721.2 18 3580.2 30 4863.7 31 3709.5 13 3809.2 29
565.1 13 761.7 19 675.4 25 423.3 7 409.2 26 634.4 23 755.5 12 7324.6 31
1456.8 15 1376.5 11 1572.3 15 1790.4 17 2859.9 17 1685.8 27 1780.0 22 2105.2 27
2492.4 14 3099.0 17 1960.3 8 2468.4 14 3074.6 16 2384.7 16 1858.4 9 1826.3 15
643.3 17 507.8 9 874.9 14 726.4 8 821.8 14 739.2 18 316.3 23 443.2 12

17407.1 18956.5 11683.5 12864.2 15217.6 13004.9 10396.8 18585.8

311.1 15 359.3 11 34.9 13 76.1 8 134.3 19 197.6 13 215.5 20 216.0 28
vt vt vt vt vt

354.1 4 259.2 8 24 6 64.5 6 113.8 11 170.5 29 199.2 22 192.5 11
665.2 618.5 58.9 140.6 248.1 368.1 414.7 408.5

15.3 20 16.4 11 19.4 19 20.7 12 16.8 6 16.3 18 20 11 16.3 17

10.3 5 0 0 20.1 12 21.3 8 29.6 22 24.5 11 0 0 0 0
0 0 0 0 11.4 20 10.3 10 17 20 19 20 27.9 10 19.7 20

22.3 19 17.1 11 16.7 28 18.8 10 20.4 18 27.6 5 22.6 16 16.6 7
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12.3 15 9.2 12 39.5 47 30.2 9 29.4 3 30.4 13 25.9 16 16 29
148.8 13 108.8 11 109.1 3 107.6 11 117.4 7 88.4 9 78.2 10 59.2 12
20.5 22 18 10 29.1 6 23.8 15 37.2 11 21 12 18.7 21 12.5 22

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
65.9 7 59.4 2 96.5 14 90.6 4 78.2 7 55.2 11 35.6 15 43.1 13
60.4 3 46.6 16 148.2 15 178.3 19 152.5 19 137.6 22 89.2 15 117 14
48.2 3 37.7 21 0 0 0 0 0 0 0 0 0 0 0 0

2012
05/10/2012**015/09/2011 22/09/2011*** 31/08/2012 07/09/2012 14/09/2012 21/09/2012 28/09/2012



7.9 9 9.5 5 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

524.5 13 740.7 7 148.2 19 292.4 15 304 14 344.3 14 229.3 26 657.4 16
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

364.6 17 370.2 15 98.2 5 415.7 2 467.8 9 619.1 8 333.1 10 346 22
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

45.8 3 30.1 19 16.1 14 20.2 20 43.8 17 43.7 21 32.5 13 30.8 19
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

32.3 4 25.9 22 34.1 18 42.3 6 29.1 15 28.8 25 17.1 26 37.8 10
69.3 6 31.6 26 21.8 21 38.1 13 49.7 14 45.5 16 29.4 12 38.2 13
39.1 15 20.3 6 33.9 16 31.4 14 40.6 6 36.4 19 35.8 12 35.8 12
17.8 21 16.5 10 0 0 0 0 13.3 11 14.4 13 10.7 9 9.6 12
223.9 10 241.5 12 80.3 6 103.3 6 189.2 26 171.3 15 159.5 15 104.1 17

0 0 0 0 37.3 18 48.1 8 41.9 22 35.1 4 33.9 17 14 26
0 0 0 0 0 0 11.7 12 16 28 22.2 14 15.2 14 11.6 9
0 0 0 0 vt 30.2 14 18.8 13 21.1 26 38.6 10 25.8 10

100.9 20 104.0 21 vt 30.5 20 50.5 3 139 27 119.9 26 97.2 15
588.3 11 594.2 6 268.9 23 294.1 10 366.5 24 400.5 26 434.2 22 496.1 13

43 12 71 12 vt 38.2 9 34.3 20 38.2 20 40.6 19 16.9 17
0 0 0 0 vt 64.9 12 19.8 15 33.3 6 22.8 11 15.4 19

113.2 10 149.9 13 vt 67.4 10 34.7 10 22.5 12 35.9 13 24.4 22
2559.3 2702.2 1209.4 2009.4 2201.7 2419.1 1886.6 2245.2

0 0 0 0 15.3 32 37.3 7 18.3 20 10.2 6 11 14 10.1 29
0 0 0 0 103.8 28 98 3 79.4 11 68.0 7 51.2 11 49.0 9
0 0 0 0 89.9 3 102.3 6 88.6 3 74 25 71.1 2 27.3 10
0 0 0 0 70.6 8 66.8 11 66.3 9 47.4 19 52.2 5 54.4 11

122.8 22 86.3 10 139.6 23 251.5 13 213.6 23 152.1 10 151 16 148.6 14
111.3 17 139.2 10 111.7 12 152.3 18 136 11 111.7 19 76.1 9 44.6 15
83.2 11 82.7 1 0 0 0 0 0 0 8.2 4 6.7 12 0 0

0 0 0 0 33.9 23 43 8 19.4 13 12.6 19 13.4 23 11.1 11
0 0 0 0 21 22 27.9 22 16 18 10.2 9 32.9 2 29.7 16

21.1 4 0 0 18.6 21 20.6 15 18 12 15.8 32 16 10 14.3 19
42.7 8 38.9 7 0 0 0 0 11.5 9 48.9 29 44.8 28 47.3 34
381.1 347.1 604.4 799.7 667.1 559.1 526.4 436.4

18.5 18 14.3 15 0 0 0 0 0 0 5.4 12 8.1 4 10.2 14
22.4 7 25.9 11 21.2 10 27.2 19 33.8 18 41.9 24 47.9 20 41.2 4
18.8 12 20.1 13 10.4 13 18.5 22 16.3 21 20.3 15 22.2 24 20.3 22



37.3 18 33.1 9 10.0 5 29.2 9 29.4 17 31.4 18 33.8 14 35.1 18
19.5 6 17.6 17 8.1 8 19.9 8 20.9 14 24.3 21 26.4 22 27.7 9
6.4 9 8.3 11 5.4 7 5.0 5 7.3 8 8.3 14 9.3 12 12.5 9
12.8 14 14.3 9 21.2 13 29.9 16 22.9 27 19.8 6 12.8 19 20.9 19
40.1 16 38.3 12 65.3 16 68.4 13 59.0 9 54.2 12 53.9 13 52.3 10
25.3 18 26.2 13 22.7 8 30 8 31.4 6 26.4 10 26.7 15 17.6 6
11.4 7 10.6 8 0 0 0 0 9.5 13 10.4 12 11.5 10 12.1 12
28.6 13 20.1 17 43.1 17 89.1 10 86.3 7 81.3 8 78.0 19 87.9 15
39.5 14 38.1 20 17.6 4 53.6 29 42.2 27 40.9 24 38.2 12 27.8 14
280.6 266.9 225 370.8 359 364.6 368.8 365.6

30.3 12 30.5 9 0 0 0 0 0 0 19.2 6 22 4 22.3 2
21338.9 22938.1 13800.6 16205.4 18710.3 16751.3 13635.3 22080.1



Table S14
Volatile components determined for Vitis vinifera  L. cv. Sousão variety obtained from one parcel (SO-SM1), at Bairrada Appellation, from 2010, 
during maturation and for 2011 and 2012 harvests, only maturity was considered.

1Dtr(s),2Dtr(s)Compound Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%) Mean (n=3) RSD (%)

C6 compounds
194, 0.640 Hexanal 2069.8 6 4278.9 13 4652.4 2 4518.1 12 4847 9 6155 4
206, 0.630 3-Hexenal 391.9 11 1789.4 15 1982.7 3 291.5 11 630.7 10 917.6 7
230, 0.651 2-Hexenal 2232.5 7 5390.2 3 3736.3 5 4910.1 13 6101.1 13 5698.3 6
242, 0.630 3-Hexen-1-ol 1047.3 13 1280.9 16 1242.4 19 1392.1 2 2044.9 9 1338.5 8
248, 1.076 2-Hexen-1-ol 1059.3 10 4254.8 4 4543.6 11 6607.7 18 4650 5 4065.3 6
266, 0.903 1-Hexanol 1002 3 2640.3 13 2202.6 16 2529.3 12 2879.6 14 1558.2 19
296, 0.930 2,4-Hexadienal 194.9 10 1919.4 12 1288.3 16 698.9 14 801.1 9 959.9 4

Sub-Total 7997.7 21553.9 19648.3 20947.7 21954.4 20692.8
Aromatic alcohols
420, 3.014 Benzyl Alcohol 59.5 3 72.8 14 109.4 8 152.0 16 221.1 3 241.3 6
470, 1.960 2-Phenylethanol 25.5 21 98.5 17 114.1 3 125.2 5 211.4 19 202.3 10

Sub-Total 85 171.3 223.5 277.2 432.5 443.6
Monoterpenic compounds
314, 0.440 α-Pinene 34.2 12 22.8 17 11.9 9 26.3 20 19.9 7 20.1 16
338, 0.480 Dehydroxylinalooloxide21.3 12 37.1 16 vt 0 0 0 0 0 0
344, 0.457 β-Pinene * 32.1 5 22.3 13 13.6 13 12.7 9 10 2 0 0
392, 0.405 m -Cymene 21 9 32.3 1 16.1 7 15.1 8 12.9 6 14.7 13
398, 0.476 Limonene * 64.1 3 64 6 58.2 6 46.9 9 46.3 6 53.8 9
404, 0.476 1,8-Cineole 0 0 16.8 30 36.4 6 38.8 6 53.3 4 21.1 7
428, 0.678 Linalool oxide (isomer)28.9 16 19.2 13 34.6 6 41.8 10 29.3 1 24.8 8
446, 0.700 Dihydrolinalool 0 0 15.8 16 17 18 13.6 15 11.5 5 0 0
452, 0.746 Linalool * 82.3 22 270.3 15 227.2 19 287.1 10 235.9 7 218.4 11
464, 0.844 Fenchol 84.6 10 164.7 17 248.0 14 242.2 15 238.3 23 192.7 9
470, 0.646 Hotrienol 0 0 24.7 16 21.5 19 22.2 14 25.7 4 19 6
506, 1.190 Pinocarvone 26.7 5 88.2 3 28 13 22.9 7 vt 0 0
518, 0.834 Ocimenol 0 0 16.5 18 15.0 19 19.6 8 20.0 18 12.7 5
530, 0.984 Menthol * 21.3 13 91.1 5 141.8 15 137.8 20 177.3 23 210.3 23
542, 0.835 α-Terpineol * 17.2 12 30.1 1 38.5 9 43.4 3 40 11 43.8 8

GC×GC peak area x 104 (arbitrary units)
SO-SM1

2010
20/08/2010 27/08/2010 03/09/2010 10/09/2010 17/09/2010** 24/09/2010



566, 0.703 Menth-1-en-9-al 10.5 23 91.7 7 68.3 3 26.3 36 40.4 9 43.1 7
584, 0.873 Geraniol (isomer) * 0 0 vt 54.2 7 41.8 2 36.6 10 24.7 2
596, 0.976 Citral (isomer) vt 58.2 6 145.9 8 92.5 6 121.1 16 117.9 14
602, 0.815 Carvone * vt 22.6 16 19.9 15 14.7 19 14.7 11 16.2 11

Sub-Total 444.2 1088.4 1196.1 1145.7 1133.2 1033.3
C13 Norisoprenoids
566, 0.532 m/z  159, 91, 131 42.6 10 139.6 5 46.1 15 59.9 14 45.6 7 22.0 7
620, 0.595 Vitispirane 646.9 22 509.5 6 412.1 2 363 10 211.5 8 123.6 9
674, 0.681 β-Damascenone (isomer 1)28.1 18 116 6 66.1 4 40.5 7 36.8 7 38.4 9
700, 0.702 β-Damascenone (isomer 2)300.4 15 444.5 16 459.8 8 337.0 5 206.4 9 228.2 12
736, 0.648 Geranylacetone * 253.3 12 717 9 361.5 12 310.3 12 237.3 4 146 8
900, 0.894 Methyl dihydrojasmonatevt 29.7 6 137.1 16 81.2 6 29.2 21 32.2 13

Sub-Total 1271.3 1956.3 1482.7 1191.9 766.8 590.4
Sesquiterpenic compounds
756, 0.630 Aromadendrene 28.9 6 44 13 56.2 8 49.8 5 41 4 41.9 13
790, 0.660 α-Farnesene vt 97.4 1 51.1 3 44.7 4 42 6 55.1 7
808, 0.630 Calamenene 26.6 21 10.1 8 8.3 9 8.1 1 5.4 2 vt
912, 0.654 m/z 119, 91, 191, 109 (alcohol)74.1 12 210 3 158.9 5 183.8 15 228.7 5 171.2 16

Sub-Total 129.6 361.5 274.5 286.4 317.1 268.2
a 1Dtr (s), 2Dtr(s): first and second dimension retention times (in seconds) of each compound determined.
* Compounds identified based on the comparison between the obtained mass spectra and mass spectra of high purity chemical standards.
** Data obtained at maturity
vt - vestigial



Mean (n=3) RSD (%) Mean (n=3) RSD (%)

2408.1 21 1944.7 13
299.8 10 1017 17
2043 6 2652.4 15
482.5 8 1684.4 20
2588.4 17 2449.8 9
2718.1 20 2565.5 13
213.2 11 541.4 14

10753.1 12855.2

112.1 13 133.0 16
132.5 10 261.1 16
244.6 394.1

5.8 19 5.7 5
0 0 0 0
vt 11.8 23

12.7 17 25 23
21.3 9 23.3 23
32.2 5 vt
vt 127 15
vt vt

35.6 20 213.6 18
19.5 11 86.0 8
27.8 13 54.7 21
vt 86.9 23
vt 25.9 7

17.3 11 137.6 2
4.5 17 59.7 3

19/09/2011** 02/10/2012**
2011 2012



vt vt
17.6 16 28.8 19

0 0 119.8 4
0 0 13.9 15

194.3 1019.7

12.4 10 50.8 29
74.2 14 126.7 22
9.3 21 24.5 21
96 11 190.6 2

94.9 16 136.9 20
10.4 19 46.1 25

297.2 575.6

20.9 14 13.7 23
29.1 17 42.9 3
vt 3.2 15

27.1 13 134.4 9
77.1 194.2



Table S15
Volatile components determined in the glicosidically-linked fraction of mature grapes of Vitis vinifera  L. cv. Arinto variety obtained from 3 parcels and 3 harvests under study,
grouped by chemical classes.

1Dtr(s),2Dtr(s)Compound Media RSD (%) Media RSD (%) Media RSD (%) Media RSD (%) Media RSD (%) Media RSD (%) Media RSD (%) Media RSD (%) Media RSD (%)
Monoterpenic compounds
314, 0.440 α-Pinene 6.7 6 2.9 21 2.1 10 4.5 10 3.7 4 5.2 5 9.1 1 3.7 16 3.1 22
344, 0.457 β-Pinene 1.3 12 1.0 8 1.2 11 2.7 0 1.8 12 1.5 9 1.6 13 1.5 9 1.6 12
362, 0.520 3-Carene 7.3 9 1.2 10 1.4 9 14.2 9 3.1 15 1.7 14 10.2 8 1.7 23 1.7 15
398, 0.476 Limonene 21.6 14 5.6 2 9.1 4 30.5 12 6.2 3 10.8 7 24.8 13 5.9 13 10.6 5
404, 0.476 1,8-Cineole 6.0 13 2.6 12 2.0 23 5.6 8 3.9 2 2.2 11 5.9 20 3.3 8 2.0 10
428, 0.678 Linalool oxide (isomer cis)1.1 11 1.2 9 1.2 14 1.8 10 1.4 14 2.1 7 1.5 8 1.2 14 1.3 7
452, 0.746 Linalool 17.5 9 10.3 16 11.5 11 36.0 10 11.0 19 17.4 3 22.3 12 12.1 9 15.2 13
614, 0.775 Citral (isomer trans) (geranial)1.3 15 1.0 8 1.1 8 2.4 13 2.1 23 1.7 12 1.7 8 1.3 12 1.5 6

Sub-Total 62.8 25.8 29.5 97.7 33.3 42.7 77.1 30.7 37.2

C13 Norisoprenoids
736, 0.648 Geranylacetone (isomer trans)3.0 9 2.0 21 3.1 4 11.1 7 4.3 26 6.5 14 8.0 9 3.4 18 4.0 9
900, 0.894 Methyl dihydrojasmonate5.6 11 5.0 11 4.9 16 13.8 12 7.6 28 7.6 9 14.2 8 5.7 5 6.5 13

Sub-Total 8.6 7.0 8.0 24.9 12.0 14.1 22.2 9.2 10.5

Sesquiterpenic compounds
796, 0.525 α-Farnesene 2.4 9 1.5 13 1.9 2 5.8 12 3.0 12 3.5 5 4.3 11 2.3 12 2.6 10
1044 , 0.510 Ledene oxide 4.3 13 1.3 8 2.4 11 9.6 17 8.5 6 3.3 18 7.8 12 1.7 17 2.7 21

Sub-Total 6.7 2.8 4.3 15.4 11.5 6.8 12.1 4.0 5.3
Total 78.1 35.6 41.9 138.0 56.7 63.7 111.3 43.9 52.9

a 1Dtr (s), 2Dtr(s): first and second dimension retention times (in seconds) of each compound determined.
b Concentration expressed as equivalentes of 3-octanol (µg L-1).
* Compounds identified based on the comparison between the obtained mass spectra and mass spectra of high purity chemical standards.

2010 2011 2012

Concentration ( µg L-1) *
AR-VA1 AR-VA2 AR-SM1

2010 2011 2012 2010 2011 2012



Table S16

Volatile components determined in the glicosidically-linked fraction of mature grapes of Vitis vinifera  L. cv. Bical variety obtained from 3 parcels and 3 harvests under study,

grouped by chemical classes.

1Dtr(s),2Dtr(s)Compound Mean (n=3)RSD (%)Mean (n=3)RSD (%)Mean (n=3)RSD (%)Mean (n=3)RSD (%)Mean (n=3)RSD (%)Mean (n=3)RSD (%)Mean (n=3)RSD (%)Mean (n=3)RSD (%) Media RSD (%)
Monoterpenic compounds
314, 0.440 α-Pinene 2.9 9 2.0 3 2.8 13 4.3 4 2.6 12 2.8 17 3.7 12 2.7 0 4.2 12
344, 0.457 β-Pinene* 6.4 3 2.8 6 1.8 17 7.4 4 3.6 14 2.6 20 3.6 4 4.8 8 2.9 12
356, 0.570 β-Myrcene 3.2 10 2.6 13 2.8 11 4.2 12 3.9 10 4.2 9 5.6 12 3.2 10 4.7 6
362, 0.520 3-Carene 2.3 0 2.1 15 2.1 23 3.1 9 2.7 14 3.0 13 5.0 10 4.3 12 3.9 13
392, 0.405 m -Cymene 1.4 13 1.2 9 1.3 12 2.4 11 2.1 10 2.1 12 2.5 4 2.1 8 2.3 12
398, 0.476 Limonene 2.2 18 5.1 11 2.8 10 4.3 8 6.2 11 3.5 16 9.5 11 7.1 8 3.9 17
404, 0.476 1,8-Cineole 9.6 5 4.5 8 2.4 15 13.0 3 6.4 7 2.8 6 12.4 8 6.4 12 3.1 14
428, 0.678 Linalool oxide (isomer cis)2.4 8 2.1 13 2.3 9 4.3 21 3.1 19 2.1 18 5.5 5 3.2 6 1.8 22
440, 0.560 α-Terpinolene 3.3 12 2.4 9 2.7 13 5.3 14 4.9 8 4.2 12 7.0 13 3.5 11 4.7 11
440, 0.790 Linalool oxide (isomer trans)1.3 9 1.1 16 1.2 21 2.7 11 1.8 14 1.7 14 3.2 16 1.5 9 1.6 12
452, 0.746 Linalool * 7.1 17 2.7 13 1.6 13 6.0 6 3.8 11 3.0 6 6.7 6 3.4 13 3.0 15
470, 0.646 Hotrienol 5.3 15 3.2 9 3.9 19 7.0 13 4.2 13 5.0 12 6.8 5 4.6 15 5.3 9
542, 0.835 α-Terpineol 2.5 9 1.7 12 2.0 15 2.4 9 1.8 16 2.0 15 2.5 8 2.0 10 2.3 12
548, 0.850 Dihydrocarvone 2.3 13 1.8 10 1.9 8 2.4 12 1.9 8 1.9 6 2.5 15 1.7 0 2.0 10
560, 0.850 Verbenone (trans) 4.8 19 4.1 13 3.9 10 6.2 14 4.3 14 5.8 13 5.8 17 4.7 13 6.1 8
566, 0.703 p-Menth-1-en-9-al 2.7 11 2.3 10 2.4 15 3.0 10 2.5 14 2.6 10 2.6 17 2.3 16 2.5 11
578, 0.700 m/z 93, 121, 119, 1361.9 14 1.8 13 1.6 9 2.1 13 1.9 9 1.9 12 2.0 14 1.6 11 1.8 14
590, 0.737 Geraniol (isomer) * 4.3 17 2.6 15 1.2 17 5.3 9 3.2 16 1.7 15 6.0 11 3.5 13 1.5 24
596, 0.976 Citral (isomer cis) (neral)3.0 9 2.1 12 2.4 14 3.1 15 2.4 14 3.1 9 3.0 12 2.6 9 2.8 13
626, 0.775 Citral (isomer trans) (geranial)2.1 10 1.8 12 1.7 12 2.6 14 2.3 10 1.6 19 4.3 10 2.2 15 1.7 18

Sub-Total 71.1 50.1 45.0 91.1 65.7 57.6 100.2 67.4 62.0

C13 Norisoprenoids
566, 0.532 m/z 159, 91, 131 8.4 12 4.1 0 5.3 9 13.3 11 9.5 15 14.6 10 22.8 16 12.3 8 16.3 15
736, 0.648 Geranylacetone * 10.7 4 1.6 15 3.2 13 11.2 13 1.7 10 6.6 17 15.8 11 3.3 12 6.8 15
784, 0.717 β-Ionone* 5.7 13 2.2 8 4.6 15 7.9 9 3.6 13 5.1 12 9.9 12 4.6 8 7.5 9
900, 0.894 Methyl dihydrojasmonate9.5 6 4.0 13 6.5 8 16.0 4 8.0 21 8.1 16 12.4 13 9.3 5 8.8 4

Sub-Total 34.3 11.9 19.6 48.5 22.8 34.4 60.9 29.5 39.3

Concentration ( µg L-1) *
BI-VA3

20122011 2012 2010 20112010 20102011 2012
BI-VA1 BI-VA2



Sesquiterpenic compounds
790, 0.660 α-Farnesene 3.3 14 2.1 10 2.4 16 4.0 7 2.7 11 3.0 9 4.7 10 3.0 7 3.6 13
912, 0.654 m/z 119, 91, 191, 109 (alcohol)3.1 6 2.6 14 2.3 9 3.8 6 2.8 9 2.7 12 4.5 15 3.0 12 2.7 20
942, 0.820 Farnesal 2.3 13 1.2 8 1.0 12 2.9 11 1.0 14 1.3 2 4.0 4 1.3 15 1.6 18
10436, 0.671Ledene oxide 4.2 8 1.4 2 2.8 18 8.0 7 2.6 13 3.1 31 11.3 2 4.4 7 4.7 9

Sub-Total 12.9 7.3 8.5 18.7 9.1 10.1 24.4 11.8 12.7
Total 118.3 69.3 73.1 158.3 97.6 102.1 185.5 108.6 114.1

a 1Dtr (s), 2Dtr(s): first and second dimension retention times (in seconds) of each compound determined.
b Concentration expressed as equivalentes of 3-octanol (µg L-1).
* Compounds identified based on the comparison between the obtained mass spectra and mass spectra of high purity chemical standards.



Table S17
Volatile components determined in the glicosidically-linked fraction of mature grapes of Vitis vinifera  L. cv. Sauvignon Blanc variety obtained from 3 parcels and 3 harvests
under study, grouped by chemical classes.

1Dtr(s),2Dtr(s)Compound Mean (n=3)RSD (%)Mean (n=3)RSD (%)Mean (n=3)RSD (%)Mean (n=3)RSD (%)Mean (n=3)RSD (%)Mean (n=3)RSD (%)Mean (n=3)RSD (%)Mean (n=3)RSD (%)Mean (n=3)RSD (%)
Monoterpenic compounds
314, 0.440 α-Pinene 7.7 7 2.1 19 2.1 10 6.6 15 2.7 8 2.2 17 8.0 8 3.0 6 2.2 5
362, 0.520 3-Carene 3.7 14 vt 1.3 1 4.3 11 1.3 9 1.7 6 8.1 12 1.3 12 1.9 12
398, 0.476 Limonene * 3.3 9 2.1 15 1.5 9 4.4 4 2.1 12 1.9 16 6.9 17 2.0 8 2.0 12
404, 0.476 1,8-Cineole 12.0 14 4.3 0 5.0 16 12.3 10 4.3 15 6.6 15 14.3 6 5.1 11 6.7 8
428, 0.678 Linalool oxide (isomer)1.3 6 1.5 12 2.0 9 3.5 16 1.6 8 1.2 11 3.8 11 1.9 6 2.0 11
452, 0.746 Linalool * 7.7 5 7.5 9 8.5 20 19.5 6 5.3 17 7.0 2 23.3 18 7.4 12 8.0 9
524, 0.860 Borneol 2.4 11 1.6 6 2.1 12 5.4 5 2.3 14 2.9 13 7.6 11 2.3 10 3.1 13
536, 0.715 Terpinen-4-ol 3.2 9 2.4 11 2.2 6 5.6 12 2.4 9 2.7 16 12.1 17 2.5 12 2.9 4
542, 0.835 α-Terpineol* 10.4 11 6.6 7 6.3 10 16.6 17 6.5 12 7.8 5 19.5 15 6.2 8 6.6 3
548, 0.850 Dihydrocarvone 5.6 7 5.0 16 5.3 7 8.5 11 5.4 7 6.6 11 12.9 4 5.5 12 6.3 14
560, 0.850 Verbenone 7.4 12 1.2 9 1.2 14 11.1 7 1.3 10 1.1 13 11.3 16 1.2 17 1.4 8
584, 0.873 Geraniol (isomer) *30.0 9 17.4 15 18.3 11 45.1 6 18.7 0 19.6 5 54.2 5 20.1 0 20.8 17
584, 0.943 β-Citronellol* 1.0 16 1.3 11 1.0 13 1.1 9 1.0 14 1.0 11 1.4 4 1.0 11 1.2 7
590, 0.737 Geraniol (isomer) *20.0 12 16.5 13 15.7 9 33.0 13 17.4 8 19.5 16 39.9 14 18.5 0 20.1 15
596, 0.976 Citral (isomer) 1.0 13 1.1 6 1.1 12 1.3 8 1.0 13 1.2 14 1.4 15 1.2 12 1.2 7
602, 0.815 Carvone * 1.2 11 1.0 7 1.0 10 1.3 10 1.1 3 1.4 8 1.6 8 1.2 6 1.5 16
626, 0.775 Citral (isomer) 1.6 5 1.4 12 1.7 13 2.2 9 1.5 0 1.6 7 2.3 21 2.1 0 1.6 16

Sub-Total 119.6 73.0 76.3 181.9 75.9 86.0 228.5 82.5 89.4

C13 Norisoprenoids
900, 0.894 Methyl dihydrojasmonate4.4 1 2.2 15 9.0 7 5.9 12 2.7 7 10.2 9 6.2 17 3.6 6 11.3 8

Sub-Total 4.4 2.2 9.0 5.9 2.7 10.2 6.2 3.6 11.3

2010 2011 2012

Concentration ( µg L-1) *
SB-SM1 SB-SM2 SB-SM3

2010 2011 2012 2010 2011 2012



Sesquiterpenic compounds
850, 0.751 Globulol 1.2 8 1.0 13 1.3 9 1.5 7 1.2 9 1.3 13 1.8 11 1.4 8 1.6 13
912, 0.654 m/z 119, 91, 191, 109 (alcohol)1.0 16 vt vt 1.4 10 1.0 20 1.2 9 2.0 8 1.1 5 1.9 10
942, 0.820 Farnesal 4.6 12 2.4 4 4.8 12 6.4 8 3.5 6 5.3 11 7.9 12 5.3 12 6.8 0
1036, 0.671 Ledene oxide 24.7 17 12.5 14 17.7 15 30.8 11 14.6 21 13.7 5 32.2 13 13.2 8 16.5 5

Sub-Total 31.5 15.9 23.8 40.1 20.3 21.5 43.9 21.0 26.8
Total 155.5 91.2 109.1 227.9 98.9 117.7 278.6 107.1 127.5

a 1Dtr (s), 2Dtr(s): first and second dimension retention times (in seconds) of each compound determined.
b Concentration expressed as equivalentes of 3-octanol (µg L-1).
* Compounds identified based on the comparison between the obtained mass spectra and mass spectra of high purity chemical standards.
vt - vestigial



Table S18
Volatile components determined in the glicosidically-linked fraction of mature grapes of Vitis vinifera  L. cv. Baga variety obtained from 3 parcels and 3 harvests under study,
grouped by chemical classes.

1Dtr(s),2Dtr(s)Compound Mean (n=3)RSD (%)Mean (n=3)RSD (%)Mean (n=3)RSD (%)Mean (n=3)RSD (%)Mean (n=3)RSD (%)Mean (n=3)RSD (%)Mean (n=3)RSD (%)Mean (n=3)RSD (%)Mean (n=3)RSD (%)
Monoterpenic compounds
314, 0.440 α-Pinene 1.5 7 vt 1.3 8 1.9 15 1.0 5 1.2 7 2.0 7 vt 1.0 9
344, 0.457 b-Pinene 2.3 7 3.4 6 1.4 8 2.5 20 3.8 18 1.4 16 1.6 10 1.1 3 1.6 18
356, 0.570 b-Myrcene 4.2 13 3.8 9 1.8 23 5.4 11 4.0 10 1.9 15 1.3 14 3.8 9 1.0 12

Sub-Total 8.0 7.2 4.5 9.8 8.8 4.5 4.9 4.9 3.7

C13 Norisoprenoids
736, 0.648 Geranylacetone (isomer trans)2.8 4 6.8 6 4.6 18 2.9 14 6.9 15 6.2 11 2.8 11 3.4 18 4.6 11
900, 0.894 Methyl dihydrojasmonate16.5 19 5.3 10 4.1 10 17 2 5.2 5 4.4 8 2.4 12 1.7 17 1.3 4

Sub-Total 19.3 12.1 8.7 19.9 12.1 10.6 5.2 5.1 5.9

Sesquiterpenic compounds
796, 0.525 γ-Cadinene 2.3 10 2.3 22 1.9 18 3.9 14 4.1 16 5.7 12 1.2 6 1.7 4 1.0 9
826, 0.629 α-Calacorene 8.2 11 5.8 13 5.6 13 13.4 5 5.3 26 6.2 7 5.6 20 4.9 25 5.1 15
912, 0.654 m/z  119, 91, 191, 109 (alcohol)5.1 23 1.4 17 7.2 4 3.9 10 3.8 0 7.2 7 2.5 14 2.8 23 3.4 17
1036, 0.671 Ledene oxide 8.2 14 6.2 11 5.7 5 10.5 11 6.8 14 6.3 15 5.6 10 2.9 10 3.8 5

Sub-Total 23.8 15.7 20.4 31.7 20.0 25.4 14.9 12.3 13.3
Total 51.1 35.0 33.6 61.4 40.9 40.5 25.0 22.3 22.9

a 1Dtr (s), 2Dtr(s): first and second dimension retention times (in seconds) of each compound determined.
b Concentration expressed as equivalentes of 3-octanol (µg L-1).
* Compounds identified based on the comparison between the obtained mass spectra and mass spectra of high purity chemical standards.
vt - vestigial

2010 2011 2012

Concentration ( µg L-1) *
BA-VA1 BA-VA2 BA-SM1

2010 2011 2012 2010 2011 2012



Table S19
Volatile components determined in the glicosidically-linked fraction of mature grapes of Vitis vinifera  L. cv. Castelão variety obtained from 3 parcels and 3 harvests 
under study, grouped by chemical classes.

1Dtr(s),2Dtr(s)Compound Mean (n=3)RSD (%)Mean (n=3)RSD (%)Mean (n=3)RSD (%)Mean (n=3)RSD (%)Mean (n=3)RSD (%)Mean (n=3)RSD (%)Mean (n=3)RSD (%)Mean (n=3)RSD (%)Mean (n=3)RSD (%)

314, 0.440 α-Pinene 4.5 9 2.6 12 3.5 11 3.2 14 1.3 7 2.3 12 3.4 7 1.0 0 1.2 13
344, 0.457 β-Pinene * 3.5 7 4.0 6 3.0 3 2.8 25 3.4 13 2.7 21 2.0 13 1.4 14 1.4 5
356, 0.570 β-Myrcene 4.1 15 2.0 16 4.2 13 3.9 11 1.7 13 3.6 23 0.0 0 1.6 8 1.7 7

Sub-Total 12.1 8.7 10.7 9.9 6.4 8.6 5.4 4.0 4.3

736, 0.648 Geranylacetone *4.7 15 4.0 8 4.7 9 4.3 16 3.6 14 2.5 18 4.8 9 2.1 18 1.8 24
900, 0.894 Methyl dihydrojasmonate13.0 8 4.2 5 7.7 10 11.4 15 3.7 6 6.7 4 8.7 4 1.5 8 3.0 28

Sub-Total 17.7 8.2 12.3 15.6 7.3 9.1 13.5 3.6 4.8

790, 0.660 α-Farnesene 7.6 16 5.2 16 6.7 12 6.1 8 4.5 5 5.8 8 6.1 13 4.2 16 5.0 18
912, 0.654 m/z  119, 91, 191, 109 (alcohol)6.6 5 6.0 12 4.4 3 5.5 6 5.4 11 3.6 13 5.2 4 5.5 11 3.2 3
942, 0.820 Farnesal 12.3 8 9.5 9 8.9 17 11.7 12 8.1 18 8.0 5 10.8 5 6.8 7 7.1 30

Sub-Total 26.5 20.7 19.9 23.3 18.0 17.4 22.0 16.5 15.3
Total 56.3 37.6 43.0 48.8 31.7 35.1 40.9 24.2 24.4

a 1Dtr (s), 2Dtr(s): first and second dimension retention times (in seconds) of each compound determined.
b Concentration expressed as equivalentes of 3-octanol (µg L-1).
* Compounds identified based on the comparison between the obtained mass spectra and mass spectra of high purity chemical standards.

Sesquiterpenic compounds

Concentration ( µg L-1) *
CA-SM1 CA-SM2 CA-SM3

2010 2011 2012 2010 2011 2012 2010 2011 2012

Monoterpenic compounds

C13 Norisoprenoids



Table S20
Volatile components determined in the glicosidically-linked fraction of mature grapes of Vitis vinifera L. cv. Touriga Nacional variety obtained from 3 parcels and 3 harvests udy,
under study, grouped by chemical classes.

1Dtr(s),2Dtr(s)Compound Mean (n=3)RSD (%)Mean (n=3)RSD (%)Mean (n=3)RSD (%)Mean (n=3)RSD (%)Mean (n=3)RSD (%)Mean (n=3)RSD (%)Mean (n=3)RSD (%)Mean (n=3)RSD (%)

398, 0.476 Limonene * 3.6 4 2.4 1 1.7 11 7.1 14 2.9 15 2.2 16 1.4 6 1.4 5
452, 0.746 Linalool * 3.7 12 4.6 13 3.6 14 4.3 29 5.0 14 3.8 13 3.4 13 3.4 8

Sub-Total 7.3 7.0 5.3 11.4 7.9 6.0 4.8 4.8

736, 0.648 Geranylacetone *1.4 11 2.2 4 1.1 4 3.1 0 2.6 22 2.1 19 1.1 5 1.0 10
900, 0.894 Methyl dihydrojasmonate14.5 19 7.6 17 9.3 11 18.6 15 8.2 5 10.8 7 10.5 19 5.5 15

Sub-Total 15.9 9.8 10.4 21.7 10.8 12.9 11.6 6.5

790, 0.660 α-Farnesene 4.1 28 2.6 26 4.1 5 4.4 2 3.1 21 4.9 9 2.6 14 4.7 7
912, 0.654 m/z  119, 91, 191, 109 (alcohol)4.2 6 1.3 0 3.6 16 5.3 20 2.3 10 4.3 3 3.5 19 2.2 22
1036, 0.671 Ledene oxide 19.3 14 17.5 24 17.0 11 25.0 5 19.2 19 18.5 22 12.1 15 10.9 12

Sub-Total 27.6 21.4 24.7 34.7 24.6 27.7 18.2 17.8
Total 50.8 38.2 40.4 67.8 43.3 46.6 34.6 29.1

a 1Dtr (s), 2Dtr(s): first and second dimension retention times (in seconds) of each compound determined.
b Concentration expressed as equivalentes of 3-octanol (µg L-1).
* Compounds identified based on the comparison between the obtained mass spectra and mass spectra of high purity chemical standards.

Monoterpenic compounds

C13 Norisoprenoids

Sesquiterpenic compounds

Concentration ( µg L-1) *
TN-SM1 TN-SM2 TN-SM3

2010 2011 2012 2010 2011 2012 2010 2012


