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resumo 
 

 

O presente trabalho reporta o estudo da bioacumulação de elementos 
potencialmente tóxicos (cádmio, chumbo e mercúrio) por macroalgas marinhas 
(Ulva lactuca, Fucus vesiculosus e Gracilaria gracilis), abundantes nas costas e 
sistemas estuarinos a nível mundial. Estes organismos mostraram ser capazes 
de resistir a contaminação multi-metálica moderada (concentrações 
ambientalmente relevantes), incorporando uma elevada quantidade de metal 
nos seus tecidos. As elevadas percentagens de remoção alcançadas, em 
especial para o mercúrio (99%), demonstram a potencialidade destas algas 
como base de uma nova biotecnologia de tratamento de águas salinas 
contaminadas com metais (mais eficiente, de menor custo e mais amiga do 
ambiente que os métodos convencionais). A U. lactuca foi considerada a mais 
promissora pelo melhor desempenho apresentado. A comparação entre os 
processos de bioacumulação e biossorção sugeriu que em alguns casos a 
utilização do organismo vivo terá vantagens sobre a aplicação da sua biomassa, 
pela maior simplicidade de aplicação do processo global, e pelas menores 
concentrações residuais de metal alcançadas na solução (em especial para o 
Cd). 
A transferência e acumulação de Hg por plantas terrestes (Lolium perenne e 
Brassica Juncea) em campos agrícolas perto de uma zona industrial 
contaminada foi também estudada. Apesar dos baixos fatores de 
bioacumulação encontrados (<1), registaram-se elevados conteúdos de Hg nas 
plantas (até 84 mg Kg-1 nas raízes e 6.9 mg Kg-1 na parte aérea, peso seco). 
Estimativas da ingestão diária por animais de pasto (vacas e ovelhas) 
apontaram para o potencial risco para a saúde humana derivada do consumo 
da sua carne.  
Os resultados evidenciaram o importante papel que as plantas e as algas 
estudadas poderão ter na proteção, avaliação de risco e remediação de 
sistemas ambientais contaminados com metais.  
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abstract 

 
The present work reports the study of the bioaccumulation of potentially toxic 
elements (cadmium, lead and mercury) by marine macroalgae (Ulva lactuca, 
Fucus vesiculosus and Gracilaria gracilis), abundant in the coast and estuarine 
systems worldwide. These organisms proved to be capable of withstanding 
moderate multi-metallic contamination (environmentally relevant 
concentrations), incorporating high amounts of metal in their tissues. The high 
removal percentages achieved, in particular for mercury (99%), demonstrate the 
potential of these algae as a basis for a new biotechnological treatment of saline 
waters contaminated with metals (more efficient, cost-effective and 
environmentally friendly than conventional methods). U. lactuca was considered 
the most promising due to the better performance presented. The comparison 
between the bioaccumulation and biosorption processes suggested that in some 
cases the use of the living organism will have advantages over the application of 
biomass, due to the simplicity of the overall process, and the lower residual 
concentration of metal achieved in the solution (especially for Cd). 
The transfer and accumulation of Hg by terrestrial plants (Brassica juncea and 
Lolium perenne) in agricultural fields near a contaminated industrial area was 
also studied. Despite the low bioaccumulation factors found (<1), there were high 
Hg content in plants (up to 84 mg kg-1 in roots and up 6.9 mg kg-1 in shoots, dry 
weight). Daily intake estimates for grazing animals (cows and sheep) pointed to 
the potential risk to human health derived from consumption of their meat. 
The results highlighted the important role that plants and algae may have in 
protection, risk assessment and remediation of environmental systems 
contaminated with metals. 
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1 Introduction 
 

1.1 Ecosystems: importance and pressures 

 
Healthy and naturally functioning ecosystems are the backbone of all life on the planet, 

offering fundamental resources and services such as food, water, clean air, shelter, climate 

regulation, raw materials and energy to all forms of life (Eftec 2005, Harley et al. 2006). The 

Man's ability to gather those resources and process them in different ways allowed the human 

population to thrive and flourish like no other in our planet. However the rapid demographic 

growth and economic development, observed since the beginning of the last century, led to 

an enormous demand for food, water, timber, metal, fuel and other raw materials, resulting 

in dramatic pressures on global ecosystems.  

The “Millenium Ecosystem Assessment’s Report” (2005) states that natural 

ecosystems have changed more rapidly and extensively in the former 50 years than in any 

period of human history. Stress and effects of anthropogenic origin include: overexploitation 

of natural resources; deforestation and habitat destruction; expansion of areas reserved for 

agriculture and livestock; release of a major greenhouse gas (CO2), and its consequent 

contribution to global warming; and decrease of availability of fresh water by discharges of 

agricultural, domestic and industrial effluents. Available data shows that cropland areas 

increased by 466% over the last 300 years (Goldewijk and Ramankutty 2004) and nowadays 

approximately 25% of Earth’s terrestrial surface is already being used for food production 

(Millennium Ecosystem Assessment 2005). Estimates for the available amount of water per 

person (a key resource for human health) indicate a decrease from 16 800 m3 in 1950 to 6800 

m3 in 2000, and currently one third of the world's population is under moderate-to-high water 

scarcity stress (Millennium Ecosystem Assessment 2005). It should be notice that of all the 

earth’s water, 97% is salt water, 2% is frozen and only 1% is fresh water available for 

humans to drink (Meindersma et al. 2006). It is also known that the distribution of fresh 

water on Earth is not uniform, there exist regions with large rivers and lakes but also areas 

with extensive desert, where little oasis turn into true paradises. These scenarios can become 

even worse if we look at projections which reveal that during the next 5 decades the demand 

for food will increase by 70-80% and for water 30-85% (Millennium Ecosystem Assessment 

2005). 
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The growing and continuous stress on ecosystems can lead to the complete rupture of 

their structure and consequently to the degradation of their support and regulation services. 

Biodiversity, food production, climate regulation and water quality regulation will be 

inevitably affected, yielding major adverse impacts on human health. 

In order to avoid ecosystem disruption is imperative to prevent and reduce the 

environmental damage caused by unsustainable anthropogenic actions (e.g. avoiding the use 

of potentially toxic elements, or reducing their levels in industrial discharges).  Moreover, 

the identification, risk assessment, and mitigation of injured ecosystems (e.g contaminated 

soils) is crucial for animal and human well-being. 

 

1.2 Contamination of ecosystems by metals: issues and challenges 
 

Nature offers a whole range of chemical elements that make life possible on Earth as 

we know it, mostly through the soil overlying the Earth's outer layer (Kabata-Pendias 2007). 

Some of them are designated as trace elements (TE's) because of their occurrence at 

concentrations lower than 100 ppm (Hooda 2010). Actually, many of these elements are 

present in much lower concentrations than this (Sparks 2003). TE’s have also been termed 

“toxic metals”, “trace metals” or “heavy metals”, although none of the terms is entirely 

satisfactory from a chemical viewpoint. In fact, most of them are metals, for example Cd, 

Cr, Co, Cu, Pb, Hg, Ni and Zn, but metalloids like As and B (Sparks 2003), non-metals (for 

example Se) and halogen (for example I and F) are also included (Hooda 2010). The term 

“heavy metal” commonly used to describe metals that are toxic has never been defined by 

any authority e.g., IUPAC (Duffus 2002). In fact, there are numerous definitions of “heavy 

metals” classifying them according to certain properties, including density (specific gravity), 

atomic weight and number, and no relationship can be found between them and the toxicity 

attributed to “heavy metals” (Chojnacka 2009a). Regarding the term "toxic metals", it is not 

always clear whether a given element should be considered as toxic (Chojnacka 2009a).  

There are elements essential to life, known as micronutrients, which are needed, in low 

quantities, for the proper functioning of an organism (Table 1.1). They contribute for protein 

structure stabilization, facilitate electron transfer reactions (Ash and Stone 2003), or like Cu, 

Zn and Fe are constituents of catalytic sites of several enzymes (Torres et al. 2008). 

However, when the concentration of these elements becomes higher than required they can 

become toxic. In some cases the difference between essential and harmful concentration is 



                       Chapter 1 

 

 
3 

 

very narrow. Another group of elements plays only harmful role in living organisms, such 

as carcinogenicity and negative effects on kidneys, nervous system, endocrine system, 

reproduction, and respiratory system (Hodgson 2004). Mercury, Cd and Pb are examples of 

toxic elements that have no known metabolic or beneficial function on organisms, cause no 

problem if missing from a diet and thus are considered non-essential (Table 1.1) (Siegel 

2002). This so-called “toxic-trio” may displace or substitute essential elements on enzymes, 

interfering with their proper functioning (Torres et al. 2008). Furthermore, they may trigger 

oxidative stress, i.e., lead to enhanced generation of reactive oxygen species, which can 

overwhelm cell’s antioxidant defenses, causing damage on subcellular organelles (Ali et al. 

2013). They can enter in the human beings via food chain and often exceed the toxic levels 

before they produce visible effects (Srivastava and Goyal 2010).  

Metals are among the most common environmental contaminants along with dyes, 

phenols, insecticides, pesticides and a wide spectrum of aromatics (Dadhaniya, Patel et al. 

2007). However, when compared with the majority of contaminants, metals stand out since 

they are not biodegradable. They persist in the environment indefinitely, circulating within 

or between ecosystems, being subject to phenomena of bioconcentration in organisms and 

biomagnification along food chain (Ernst et al. 2008, He and Chen 2014). In fact, living 

organisms incorporate in their tissues, in a gradual manner over time, amounts of metals 

greater than those of the surrounding medium (Goel 2006). This problem unleashes along 

the trophic levels (Selin 2009) and, consequently, the man is one of the most affected living 

beings since it occupies the top of the food chain (Chojnacka 2010).  

 

Table 1.1: Essential elements for optimal functioning of biological processes and organs in humans and non-

essential elements (Siegel 2002). 

Essential metal/metalloid micronutrients 

(a few mg* or µg** per day): 

Co**, Cr**, Cu*, Fe*, Mn*, Mo**, Ni**, 

Se**,V*, Zn* 

Non-essential elements Be, Cd, Hg, Pb, Sb, Ti 

Macronutrients (~100 mg or more per day): Ca, Cl, Mg, P, K, Na, S 

Other essential micronutrients F, I, Si 

 

The health hazards of metals in food chains, even at low concentrations, have been 

recognized by the World Health Organization (WHO), by the Environmental Protection 

Agency of the United States (Srivastava and Goyal 2010), as well as by a large number of 
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governmental institutions worldwide. The Agency for Toxic Substances and Disease 

Registry of the United States of America (ATSDR 2011) periodically revises and publishes 

the “Priority List of Hazardous Substances”, taking into account their toxicity, quantity 

released and the ease of exposition. In this list, the “toxic-trio” is highlighted: lead is ranked 

as 2nd, mercury 3rd and cadmium 7th (arsenic is the “king of poisons”). A brief description of 

major sources, applications and health adverse effects of these three metals will be made 

below. 

 

1.2.1 Cd, Pb and Hg: properties, applications and harmful effects on human health 

 

1.2.1.1 Cadmium 

 

Cadmium (Cd, CAS No. 7440-43-9) is a soft and malleable bluish white metal 

(Herber 2008). It was discovered by Friedrich Strohmeyer at 1817, as an impurity in zinc 

carbonate. In fact, its name came from the Latin word "cadmia" meaning "calamine" (zinc 

carbonate, ZnCO3) (Winter 2012). Some of the physical and chemical properties of Cd are 

referred in Table 1.2.  

Although scarce, this element occurs naturally in the earth's crust, in its elemental 

form and in solid state. As mineral, Cd may be combined with other elements, such as 

sulphur (greenockite, CdS) or oxygen (monteponite, CdO). Other simple compounds formed 

during weathering processes are Cd(OH)2, CdCl2 and CdF2 (Kabata-Pendias 2007, Herber 

2008). In soils, Cd may form several types of complex ions and organic chelates, existing 

mostly (99%) associated with soil colloids (Kabata-Pendias 2007).  

In the aquatic systems, Cd exists as the hydrated ion or as ionic complexes with other 

inorganic or organic substances (ATSDR 2012). For pH < 7, the hydrated ion Cd2+ is the 

dominant species in solution, while for higher pH values, Cd2+ coexists with hydroxides, 

which will gain growing expression. Soluble forms of cadmium migrate in water whereas 

insoluble forms will deposit and absorb to sediments (Kabata-Pendias 2007). The mean 

concentration of Cd in unpolluted natural fresh water is approximately 1 µg L-1 while for 

seawater it is between 0.04-0.30 µg L-1 (Reimann and Caritat 1998). In 2000, the main 

applications of Cd at global level included batteries (12 390 tons, 70%), pigments (2301 

tons, 13%), coatings (1416 tons, 8%), stabilizers (1239 tons, 7%) and alloys and others (354 

tons, 2%) (Økland et al. 2005, Kabata-Pendias 2007). It also plays a critical role in several 
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cutting-edge technologies such as solar cells, due to its remarkable characteristics as great 

resistance to corrosion, and excellent electrical conductivity (Srivastava and Goyal 2010). 

 

Table 1.2: Main properties of cadmium (adapted from Winter (2012)). 

Symbol Cd 

Melting point 321ºC 

Boiling point 767ºC 

Atomic number 48 

Molar mass 112.41 g mol-1 

Density 8.65 g cm3 

Atomic radius (calculated) 1.61 Å 

Covalent radius 1.44 Å 

Electronegativity 1.69 

 

Cadmium is obtained mainly as a by-product of mining of other metals like zinc, lead 

and copper  but it is also recovered from recycled materials such as Zn-Cd batteries (ATSDR 

2012). The general trend in the overall consumption of cadmium in the last two decades has 

been the increase in their use in the production of batteries and a decrease in other 

applications. 

Breathing high levels of cadmium can severely damage the lungs. Eating food or 

drinking water with very high levels severely irritates the stomach, leading to vomiting and 

diarrhea. Long-term exposure to lower levels of cadmium leads to a buildup of cadmium in 

the kidneys and possible kidney disease. Other long-term effect is the weakening of bones 

(ATSDR 2012). Cadmium and cadmium compounds are also listed as probable Human 

carcinogens (Otero et al. 2009). 

 

1.2.1.2 Lead 

 

Lead (Pb, CAS no. 7439-92-1) is a naturally occurring metal, with color bluish gray, 

ductile and soft, whose levels in different ecosystems result mainly from various 

anthropogenic activities. It is one of the oldest metals known to man and its name probably 

came from the Celtic word “luaide” meaning reddish (because of the colour of lead 

tetroxide), whereas its symbol Pb is originated from the Latin word "plumbum" (Winter 

2012). Table 1.3 shows some of the physical and chemical properties of this metal. 
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Lead is rarely found in its elemental form, occurring mainly as Pb2+ and being a 

constituent of various minerals (Srivastava and Goyal 2010). Galena (lead sulfide, PbS; 87% 

Pb) is the most common lead ore, followed by anglesite (lead sulfate, PbSO4; 68% Pb), and 

cerussite (lead carbonate, PbCO3; 77.5% Pb) (Gerhardsson 2008). According to Kabata-

Pendias (2007), the overall mean value of Pb for different unpolluted soils is 25 mg kg–1. In 

soil solution the Pb concentrations are relatively low, varying from <1 to 60 µg L–1, where 

it occurs as cationic species: Pb2+, PbCl+, PbOH+, and anionic species: PbCl3
–, Pb(CO3)2

2–. 

In aqueous medium, lead may exist in multiple forms, depend especially on the pH 

and dissolved salt contents of the water. Its main forms in seawaters are PbCO3 and PbCl2 

while in surface and ground waters its species are: Pb2+, PbOH+, PbHCO3
+, and PbSO4 

(Kabata-Pendias 2007). In most of the aquatic environments (generally neutral or alkaline) 

it has low mobility and eventually ends to precipitate on the bottom sediments. The median 

concentration of Pb in worldwide ocean waters has been calculated as 0.03 µg L–1 whereas 

in river waters contents vary highly from 0.007 to 3.8 µg L–1 (Kabata-Pendias 2007). 

Table 1.3: Main properties of lead (adapted from Winter (2012)). 

Symbol Pb 

Melting point 327.5ºC 

Boiling point 1750ºC 

Atomic number 82 

Molar mass 207.2 g mol-1 

Density 11.34 g cm3 

Atomic radius (calculated) 1.54 Å 

Covalent radius 1.46 Å 

Electronegativity 1.87 

 

Usually, Pb is obtained from galena deposits where it is extracted together with zinc, 

silver and (most abundantly) copper (Srivastava and Goyal 2010). In 2001, about 325 000 

tonnes were mined in Europe, 150 000 tonnes in Africa, 1100 000 tonnes in America, 725 

000 tonnes in Asia, and 715 000 tonnes in Oceania (Gerhardsson 2008). 

Lead has many different uses including production of batteries, ammunition, cables, 

fishing lures, devices to shield X-rays and as petrol additives (Økland et al. 2005). It is also 

used in paints and ceramic products, caulking, and pipe solder although these applications 

have been dramatically reduced in recent years, due to health concerns. Due to the gradual 
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and increasing use of unleaded gasoline since the 1980s, exposure to lead has decreased 

dramatically (Gerhardsson 2008). 

Lead can affect almost every organ and system in human body, however, his main 

target is the nervous system. It can also cause weakness in fingers, wrists or ankles and cause 

small increases in blood pressure. High-level exposure in men can damage the organs 

responsible for sperm production (ATSDR 2007). Lead accumulates in mammals and 

aquatic organisms and some lead compounds are considered possible carcinogens (Økland 

et al. 2005). 

 

1.2.1.3 Mercury 

 

Mercury (Hg, CAS no. 7439-97-6) is a high volatile element, bright silvery, and the 

only metal that is liquid at room temperature (Table 1.4). There are reports about mercury in 

Roman literature (Drasch et al. 2008), but its poisonous properties were known long before, 

perhaps since 2000 BC where it was used by Chinese alchemists (Kabata-Pendias 2007). Its 

name honors the Mercury planet and its symbol "Hg" came from the Latin word 

"hydrargyrum" meaning "liquid silver" (Winter 2012). 

Table 1.4: Main properties of mercury (adapted from Winter (2012)). 

Symbol Hg 

Melting point -38.83ºC 

Boiling point 356.73ºC 

Atomic number 80 

Molar mass 200.59 g mol-1 

Density 14.190 g cm3 

Atomic radius (calculated) 1.71 Å 

Covalent radius 1.32 Å 

Electronegativity 2.00 

 

Several forms of mercury occur naturally in the environment – metallic mercury (also 

known as elemental mercury), inorganic mercury (mercurous and mercuric salts) and 

organometallic mercury (e.g. CH3Hg+) - and can be found in three oxidation states (0, +1, 

+2). Its distribution is the result of natural processes and human activity. Volcanic eruptions, 
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erosion and volatilization from the surface of the oceans are the main natural sources of this 

element.  

Mercury can gets in soil through natural, or anthropogenic deposition of ash (e.g. coal 

burning, municipal incineration) and precipitation. Other important sources are the use of 

pesticides, sewage sludge and disposal of industrial and domestic waste. Some argue that 

today, due to widespread pollution is not possible to speak in “natural levels” of Hg in soils, 

however it can be considered that these rarely exceed 1 mg kg-1 (Kabata-Pendias 2007). In 

the soil-solution, cationic species (Hg2
2+, HgCl+, and HgCH3

-) coexists, but some anions 

(HgCl3
– and HgS2

2–) may also be found.  

In the aquatic system, mercury contents vary significantly depending on type and 

location of water, but they are generally low. In open sea the Hg levels are in the range of 

0.5-3.0 ng L-1, whereas coastal and bay waters contain from 2 to 65 ng Hg L-1 (Kabata-

Pendias 2007). In surface fresh waters the concentration of Hg is well below 20 ng L-1 

(Drasch et al. 2008). Mercury may reach and enter the water system in several ways: 

atmospheric deposition (wet and dry), transport water from runoff, or leaching of top layer 

of soils to groundwater. In the aquatic environment, Hg exists in several forms, Hg0, Hg2+, 

complexes of Hg2+ with different organic and inorganic ligands, and organometallic Hg 

forms, mostly methylmercury and dimethylmercury (Drasch et al. 2008); and it is associated 

with suspended particulate matters, organic matters and dissolved organic carbon (DOC) 

(Kabata-Pendias 2007). In oceanic waters, mercury exists mainly as chloro-complexes, 

HgCl4
-2and HgCl3

-, and thus Hg is bound to humic substances in less extent than occurs in 

freshwater environments. Changes in chemical, physical, biological and hydrological 

conditions can cause changes in its oxidation state and chemical forms, as for example, the 

reduction of Hg2+  to Hg0 and, most important, the in-situ bacterial conversion of inorganic 

mercury species to the much more toxic methylmercury. 

Most of the virgin mercury is produced by the mining of its most representative 

mineral, Cinnabar (HgS). The EU was traditionally a major exporter of mercury, generating 

around 3000 tonnes per year (about 25% of the total global supply of Hg) (European 

Commission 2013). The old Hg mine in Almadén, Spain was the largest Hg producer in the 

world, but meanwhile it ceased functions. Due to its toxic properties and strict regulations, 

globally the use of mercury has decreased (from 680 tonnes in 1999 to 320 tonnes in 2007 

in EU ) (Kabata-Pendias 2007, European Commission 2013). According to the Portuguese 
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Environmental Agency (APA 2012), in 2010 the total amount of mercury emitted in Portugal 

from anthropogenic sources was 2 tons (no available data regarding natural emissions). 

Nowadays, mercury is still used in a variety of applications: fluorescent lamps, 

batteries, measuring and control equipment, electric conductors, metal recovering processes, 

dental fillings, bactericides, fungicides, insecticides, pharmaceuticals (merbromin and 

thiomersal) and also in paints (Økland et al. 2005). Some industrial plants in the chlor-alkali 

sector, which produces chlorine and caustic soda were also known to use large amounts of 

Hg (about 160-190 tonnes in EU, 2007), but this use is being phased out. 

Exposure to Hg in humans occurs primarily via food, with fish being a major source 

of methyl mercury (Sakamoto et al. 2001), which is the most toxic form of it (Challa et al. 

2008). In humans, concentrations > 10 µg g-1 of Hg in the liver or > 6 µg g-1 of Hg in the 

brain can cause death whereas > 20 µg dL-1 of Hg in the blood can cause chromosome 

damage. A body burden of 55 mg Hg for a 51 kg person can cause the onset of loss of motor 

control (ataxia) (Seiler et al. 1988). Other effects of exposure to mercury in humans, namely 

on brain functioning are irritability, shyness, tremors, changes in vision or hearing and 

memory problems (ATSDR 1999). Mutagenic and teratogenic effects of Hg are recognized, 

although data on the mechanisms of action are scarce and controversial in the available 

literature (Cardoso et al. 2013). 

 

Due to production-oriented policies, the mobilization and release of these metals into 

the environment by anthropogenic action increased significantly. As result, levels and 

bioavailability of these toxic elements in soils and waters grew considerably, which poses a 

risk to the environmental and human health. Within this thematic, some issues and 

challenges, that have attracted the scientific community attention in the last years, will be 

presented below. 

 

1.2.2 The Ecosystem soil 

 

Soil, being a fundamental part of the terrestrial ecosystem, is the main source of metals 

for plants (micronutrients and contaminants). As all trace elements, metals in soils may have 

various origins: (i) lithogenic – inherited from the lithosphere (parent material), (ii) 

pedogenic – from lithogenic sources but forms changed due to soil-forming processes, and 
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(iii) anthropogenic – elements deposited onto and/ or into soils as results of human’s 

activities.  

It has been assumed that the behavior of metals in soils and in consequence their 

availability to organisms and plants (or bioavailability) differ as to their origin (Kabata-

Pendias 2007). Metals originated from Earth's formation, exist occluded within the mineral 

or strongly bounded to it, in the solid phase of the soil, and their bioavailability is very slight. 

By contrary, metals that came from anthropogenic sources are moderately and easily 

available to plants or to other organisms. This is due to the fact that the metals originated 

from human activities, generally exist in the solid phase weakly bound, for example adsorbed 

to soil organic matter or to the surface of soils minerals, being potentially exchangeable. 

Inputs via natural sources (e.g. weathering of minerals, erosion and volcanic activity) 

constitute a significant burden of metals in the soil, nevertheless the contribution from 

anthropogenic sources in polluted soils for many of them can be several times that from 

natural source. Studies of metals distribution in some Portuguese ecosystems showed that 

soils near industrial and mining sites contain much greater levels of these elements compared 

with their local background concentrations (Da Silva et al. 2005, Reis et al. 2009). Soils with 

high levels of metals pose a long-term risk of increased plant uptake and leaching (Xue et 

al. 2003, Álvarez-Ayuso et al. 2008, Zhao et al. 2009).  

The food chain is considered a major pathway to transfer many metals from soil to 

humans, although there are several possible routes to transfer metals including drinking 

water, air/ dust inhalation or absorption through skin. 

In the last three decades there has been a real “explosion” of research data and various 

studies on the occurrence and behavior of almost all trace elements have been published 

(Kabata-Pendias 2007). This has provided a better understanding on the concentrations at 

which plants and organisms are protected from “excessive accumulation” of potentially toxic 

elements. These “safe” concentrations of PTE’s are the basis of current regulations (for 

example EU sludge  Directive  limits 86/278/EEC), for their inputs to soils, as for example 

through the application of sewage sludge in soils in Europe, North American and other areas. 

However, the current regulatory framework must be in continuous improvement to better 

protect the wider environment, which is only possible through continued scientific study. 

For example, in the UK recent field experiments indicated that the current soil total Cd limit 

of 3 mg kg-1 (maximum possible concentrations (MPC) in Sludge Directive) may not be 
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adequately protective against producing wheat grain with concentrations of Cd above the 

EU grain Cd MPC of 0.235 mg kg-1, unless the pH is maintained above 6.8 (Chaudri et al. 

2007). 

Recent studies also showed that in order to assess the environmental risk of metals to 

ecosystems and human health, the evaluation of total contaminant concentrations may not 

be sufficient (Rodrigues et al. 2010b). For example, in the 1950s, a major incidence of severe 

cadmium toxicity, causing the itae-itae disease, occurred in Toyama, Japan (Nogawa 1981, 

Nogawa and Kido 1993). The total Cd contents of Toyama rice fields was very low (5 mg 

kg-1) when compared with those of Shipham in the UK or Stolberg in Germany (50–150 mg 

kg-1). However, contrary to Toyama, few or no effects of Cd were observed in the latter two 

cases (Inskip et al. 1982, Ewers et al. 1985, Alloway et al. 1988). The difference in soil 

chemistry was a main factor responsible for this paradoxical outcome. The low soil pH at 

Toyama favored Cd mobilization and uptake by rice, whereas neutral pH of the Shipham 

and Stolberg soils restricted Cd uptake by vegetables.  

 

1.2.2.1 Pools of metals in soil 

 

Soil is a dynamic system that consists of heterogeneous mixtures of different organic 

and organic-mineral substances, clay minerals, oxides and hydroxides of Fe, Mn, and Al, 

and other solid components as well as a variety of soluble substances (Kabata-Pendias 2007). 

The binding mechanisms for metals and forms of their occurrence in the different soil 

compartments (Figure 1.1) are manifold, and are determined by soil physical, chemical and 

biological processes (Hooda 2010), which can vary between nanoseconds and centuries or 

more (Kabata-Pendias 2007). 

The speciation and transfer of metals between the soil compartments should be 

considered as the main process controlling their behavior and bioavailability. According to 

the direct chemical availability, a partitioning approach well-accepted by the scientific 

community considers 3 fractions of metals in soils: available, reactive and inert fractions 

(Rodrigues et al. 2010a). It should be emphasized that other conceptual fractions can be 

defined, for example according to the metal speciation, e.g. inorganic and organometallic 

fractions. 
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In upland soils of England and Wales, the maximum percentages in soil solution in an 

individual sample were 4% for Cu, 19% for Zn, 9% for Cd, 0.7% for Pb (Tipping et al. 

2003). Yet this tiny soluble fraction might have important environmental significance, 

because it represents the direct available pool of metals in soils for groundwater, plants, and 

other living organisms (Saxe et al. 2001, Lofts et al. 2004, Hough et al. 2005, Peijnenburg 

et al. 2007, Koopmans et al. 2008).  

 

 

Figure 1.1: Schematic representation of various pools of metals in the soil system. The soil solution is the 

central gateway through which various forms of metals interact with the soil solid phase and soil biological 

activity (Hooda 2010). 

 

When in the soil solid part, metals can be superficially adsorbed or complexed with 

soil components such as clay minerals, hydrated oxides of iron and manganese, or organic 

matter, being in equilibrium with the soil solution phase. This fraction is commonly referred 

to as the reactive pool (Rodrigues et al. 2010a, Tack 2010). This fraction of metals is in 

equilibrium with the directly available pools, which can be leached from soils by transport 

through the soil solution, be detrimental to soil (micro)organisms, and be incorporated into 

trophic chains (Sastre et al. 2007).  

When occluded within soil solid matrix, strongly bound within the crystalline matrix 

of the solid phase, metals become unavailable for transport or plant uptake, at least in the 

short term. The release from this pool usually occurs only within a large time frame, 

particularly in aerobic soils since it generally depends on slow weathering processes. This 
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fraction is commonly referred to as the inert pool of the soil (Rodrigues et al. 2010a, Tack 

2010). 

 

1.2.2.2 Evaluation of metals pools in soil 

 

The determination of various fractions of these elements are broadly used to link their 

soils contents with potential bioavailability/uptake by plants, and to predict their mobility 

and potential transport to groundwater (Kabata-Pendias 2007). Several methodologies to 

assess and quantify the conceptual fractions in soils have been developed and tested, 

particularly during the last decade.  

Most of the analytical techniques to assess total (or pseudo-total) metal contents in 

soils are dissolution based, i.e., decomposition techniques that involve the use of strong acids 

and an external heat source to decompose the sample matrix. Nondestructive techniques such 

as particle-induced X-ray emission and X-ray fluorescence spectrometry  have also been 

used for metal analysis in soils (Du Laing 2010).  

Soil chemical extractions can also be used to determine reactive pools of metals 

although at present only operationally defined protocols exist (Römkens et al. 2004, 

Rodrigues et al. 2010a). Single extraction procedures using strong complexing agents 

(chelating agents such as EDTA - 0.05/0.1 M ) and diluted solutions of strong acids (such as 

HCl – 0.1 M and HNO3 – 0.43 M) have been applied to assess metal reactive pools (Tipping 

et al. 2003, Römkens et al. 2004, Peijnenburg et al. 2007, Romkens et al. 2009) with 

comparable results 

The use of artificial soil solutions, and weak extractants such as NaNO3, NH4NO3, 

Ca(NO3)2 or CaCl2 have been commonly used to estimate the available pool of Cd, Cu, Ni, 

Pb and Zn in soils (Houba et al. 2000, Degryse et al. 2007, Meers et al. 2007, Romkens et 

al. 2009). The use of 0.01 M CaCl2 as an extraction reagent was proposed by Novozamsk et 

al. (1993) to estimate the bioavailability of metals and nutrients in air dried soil samples, 

being considered at present the extractant that gives better indication of the bioavailable 

pools of cationic metals such Cd and Zn (Du Laing 2010). 
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1.2.2.3 Metals behavior modelling 

 

The use of single extractions is important to ascertain chemically distinguishable pools 

of metals within the soil matrix and to assess their availability. However to perform a more 

accurate assessment of the current and future risk levels it is  necessary to develop  tools that 

are able to explain the relationship between the soil and the soil solution (and the role of soil 

properties). Tools to predict available pool of metal contaminants, to estimate for example 

leaching losses, uptake by crops or exposure to soil micro-organisms are therefore necessary 

to evaluate if soils can be used safely for example, for food production. 

During the last three decades numerous models (both empirical and mechanistic) have 

thus been proposed and developed (Sauvé et al. 2000, Tipping et al. 2003, Romkens et al. 

2009), revealing the role of soil properties such as clay, organic matter, pH, dissolved 

organic carbon and ionic strength in controlling solid solution partition of metals (Yin et al. 

2002, Gustafsson et al. 2003, Rieuwerts et al. 2006). For example, certain studies showed 

that an increase in both clay and organic matter, increases the capacity of the soil to retain 

metals (McBride 1994). Similarly, with an increase in pH, metal retention for cationic metals 

like Cd, Zn, Cu and Pb also increases (Selim and Sparks 2001).  

Although there are studies focused on the assessment of the concentrations of metals 

in plants, and derivation of soil to plant transfer functions (Al-Masri et al. 2008, Vandenhove 

et al. 2009), little information is available about the contaminant mercury. The transfer and 

accumulation of organo-metallic mercury (OrgHg) in terrestrial ecosystems is poorly 

documented, and information about the exposure of grazing animals to OrgHg from soils 

and feed as well as on risks of exposure to animal and humans is also very scarce. 

 

1.2.2.4 Metals in Portuguese soils 

 

In Portugal, there is no global and comprehensive legislation on soil protection 

(DGADR 2009). The Decree-Law 276/2009 on the agricultural use of sewage sludge, proves 

to be an exception, although insufficient because there is no specific legislation governing 

the assessment and/or remediation of contaminated soils (Rodrigues et al. 2009b). Actually, 

only some of the EU Member States, have developed and implemented gradually over the 

past 20-30 years, a policy of soil protection, namely England, Holland and Germany 

(Rodrigues et al. 2009a). However, a scenario change  is expected in the medium term, with 
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the possible approval of the Framework Directive for Soil Protection, since to date the soil 

is the only environmental component that is not protected at Community level by specific 

legislation (DGADR 2009). Also, information on soil contamination in Portugal, soil risk 

assessment and animal/human exposure is generally scarce. Past soil studies include mostly 

soil fertility and agricultural productivity investigations (Abreu et al. 1993, Fernandes et al. 

2000). In the last decade, research on soil contamination at mining areas and (eco) toxicity 

of soils gained particular attention (da Silva et al. 2004, Loureiro et al. 2005, Pereira et al. 

2006). More recently, a study on the background concentrations of metals and other PTE’s 

in the entire country provided relevant information that can be used as baseline data for 

future studies (Inácio et al. 2008). A few studies have also been undertaken in Portugal on 

the effectiveness of phytoremediation technologies of historical contamination at mining 

sites (Alvarenga et al. 2004, Díez Lázaro et al. 2006). A more limited number of studies have 

focused on diffuse and line sources of contamination such as the impacts of urban 

development on soil systems (Rodrigues et al. 2006). An important research on metallic 

contaminant levels in various areas of Portugal was recently executed, following an approach 

which to date have been applied only in temperate regions (Rodrigues et al. 2010a, 

Rodrigues et al. 2010b). Through the application of well-accepted soil extraction procedures 

and empirical Freundlich-type models in combination with mechanistically based models, 

the authors were able to predict the "reactive" and the "available" content of some metals 

and other PTEs successfully. 

 

1.2.3 The Ecossytem Water 
 

 

All life on the Earth emerged from water and may disappear by the water itself, 

because it is undeniably the most valuable and indispensable natural resource existing on 

our planet. Maintaining water quality is critical to secure all forms of life and crucial for 

health and for a good environmental management. Thus, water is certainly the most studied 

environmental compartment, and part of the research seeks to understand the distribution of 

chemical elements and their forms, in different types of water, and its uptake into biota 

(Raspor 2008). 

In aquatic systems, Na+, K+, Mg2+, Ca2+, Cl–, SO4
2– and HCO3

- are the major ions, 

and their concentration is usually much higher in sea than in river waters. These ions may 
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also occur as different species adsorbed by inorganic and organic colloidal particles (Kabata-

Pendias 2007). Metals and the so-called secondary elements, such as C, N, P, S, and Si are 

also present in all water systems. 

As for soils, human pollution plays a significant role in increasing the concentration 

of metals in the different water resources (Torres et al. 2008). Metallurgical industry, paints 

and tanneries, mineral extraction and fertilizers generate high amounts of metal-rich 

effluents whose final destination is usually aquatic ecosystems (Afkhami et al. 2010, Fu and 

Wang 2011, He and Chen 2014). This phenomenon is particularly significant at estuaries 

and coastal areas, since they are the main disposal sites for anthropogenic contaminants 

(Torres et al. 2008).  

In the aquatic environment, metals tend to be associated with the particles in 

suspension due to its high affinity for particulate matter (Kim et al. 2004). In most cases, 

they are rapidly absorbed either by clay or organic compounds, and deposited in estuarine 

and marine sediments (Ramalhosa 2001), or they are caught by plankton and aquatic plants 

(Kabata-Pendias 2007). Thus, in most situations, metal concentrations in bottom sediments 

and/or in plankton constitute good indicators of water contamination. The speciation of 

metals in sediments is generally very similar to that in soil.  

Although immobilized in sediments, even for years, the metals remain a hazard since, 

at any time, they may be released to the water column (Kabata-Pendias 2007), and thus 

become available to aquatic organisms and transport (Kim et al. 2004, Cardoso et al. 2008). 

This release may occur due to sediment resuspension, or result from redox changes or 

microbial activity (Kabata-Pendias 2004). Burrowing organisms as well as organisms 

feeding on benthic invertebrates also contribute to transport metals from sediments to the 

water column. Another important factor to take into account are nuisances induced by 

extreme weather events.  

Several biotic and abiotic parameters (salinity, temperature, light, pH, Eh, and ligand 

concentration) influence metal species distribution in aquatic systems, and their uptake and 

accumulation by organisms (Raspor 2008). For example, inorganic mercury may be 

methylated, by anaerobic organisms in aquatic systems to methylmercury, which is more 

easily assimilated and bioaccumulated by the aquatic invertebrates than the inorganic form 

(Lawson and Mason 1998). 
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Nowadays, environmental policies related to water quality are starting to reflect the 

character of non-renewable resource, whose availability may be compromised by human 

activity. In order to protect the environment and the humans from the adverse effects of 

metal contaminants, a large number of governmental institutions worldwide have set 

maximum limits for their levels in the aquatic systems as well for effluent discharges (He 

and Chen 2014). It should be noticed that environmental law has become more stringent 

every day (Yetilmezsoy et al. 2009). 

 

1.2.3.1 Legislation regulating water quality 

 

In 2001 (roughly one year after the approval of the EU Water Framework Directive 

- 2000/60/EC), the European Union classified Hg, Cd and Pb as “priority hazardous 

substances” in the field of water policy (Decision No 2455/2001/EC), and therefore, their 

discharges should be ceased or eliminated progressively within 20 years. The final Directive 

on Priority Substances, released in 2008 (Directive 2008/105/EC), excluded lead and its 

compounds of the list, which however remain in the List II of substances whose discharge 

into the aquatic environment are subject to prior authorization and emission values set 

(Directive 2006/11/EC). List II refers to substances, which despite having a detrimental 

effect on the aquatic environment, this effect may be limited to a certain area, and be 

dependent on the characteristics and location of the water in which these substances are 

released. Recently, the new Directive 2013/39/EU brought some amendments to Directives 

2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. 

New substances have been added to the list of priority hazardous substances (e.g. dicofol, 

perfluorooctane sulfonic acid), which should now be reviewed at least every six years. There 

were no changes related to the classification of Hg, Cd and Pb. Table 1.5 shows the levels 

of some PTEs in raw effluents and their maximum admissible concentration in effluents and 

drinking water (American and European regulations) (Chojnacka 2009a). It is possible to 

see that in general the European law is more demanding. 

At the national legislation level, in the field of water resources and water quality, two 

of the most important decrees in Portugal are: the Decree-Law 236/98, establishing 

standards, criteria and quality goals, in order to protect the aquatic environment and to 

improve the quality of water in terms of its main uses; and the Decree-Law 306/2007, 

regulating the quality of water used for human consumption. More recently, Decree-Law 
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103/2010, transposes Directive 2008/105/EC and partly, Commission Directive 

2009/90/EC, establishing environmental quality standards (EQS’s) in the field of water 

policy. 

Table 1.5: Levels of some PTEs in raw effluents, maximum admissible concentration in effluents and drinking 

water (American and European regulations) [µg L-1] (adapted from (Chojnacka 2009a). 

PTE 
Domestic 

wastewater 

Wastewater discharge limits Drinking water standards 

European American European American 

As 1-5 100 2000 10 10 

Cd 1-4 not allowed1 100 5 5 

Cu 30-100 500 5000 2000 1300 

Hg 1-3 not allowed1 5 1 2 

Ni 10-40 Variable 2 5000 20 100 

Pb 25-80 Variable 2 2000 10 15 

Se - 1000 - 10 50 

Zn 80-300 2000 5000 - - 

1 - priority hazardous substance whose discharge must be stopped; 2 – priority substance in the field of water 

policy, whose discharge is subject to prior authorization and emission values set (Directive 2013/39/EU). 

 

Table 1.6 summarizes the wastewater discharge limits for Cd, Hg and Pb, as well as 

the EQS’s for surface waters and limit-values for these metals in water for human 

consumption, in Portugal. Following the trend, also in Portugal the legislation has become 

increasingly restrictive. This is notorious for the maximum allowable concentrations for 

surface waters, which about 4 years ago were 1, 10 e 50 µg L-1 for Hg, Cd and Pb, 

respectively. 

The control of metal discharges and the removal of metals from aqueous solutions 

have become a challenge for the twenty-first century (Srivastava and Goyal 2010). A quick 

search on the academic citation indexing service "Web of Knowledge", using the key words 

"metal removal” and “water" revealed that the number of studies performed regarding this 

thematic more than triplicated in the last decade (from approximately 600 citations in 2003 

to approximately 2000 citations in 2013). 
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Table 1.6: Limit-values for the concentration of Pb, Hg and Cd in wastewater discharges, EQS’s in surface 

waters and limit-values in water for human consumption according to Decrees-law 236/98, 306/2007 and 

103/2010. 

 
Wastewater 

discharges 
Fresh surface waters 

Other surface 

waters 

Human 

consumption 

 
ELV 

(µg L-1) 

AA-EQS 

(µg L-1) 

MAC-EQS 

(µg L-1) 

AA-

EQS 

(µg L-

1) 

MAC-

EQS 

(µg L-1) 

MRV 

(µg L-1) 

MPV 

(µg L-1) 

Cd and its 

compounds 
200 

≤ 0.08 C1 

0.08 C2 

0.09 C3 

0.15 C4 

0.25 C5 

≤ 0.45 C1 

0.45 C2 

0.6 C3 

0.9 C4 

1.5 C5 

0.2 

≤ 0.45 C1 

0.45 C2 

0.6 C3 

0.9 C4 

1.5 C5 

1 5 

Hg and its 

compounds 
50 0.05 0.07 0.05 0.07 0.5 1 

Pb and its 

compounds 
1000 7.2 -- 7.2 -- -- 10 

ELV – emission limit-value; EQS -  environmental quality standard; AA – annual average; MAC – maximum 

allowable concentration; MRV – maximum recommended value; MPV – maximum permissible value; C1, C2, 

C3, C4 and C5 are classes of water hardness according to Directive 2008/105/EC. 

 

Currently there are several processes that can be applied to the removal and recovery 

of metals from aquatic systems, namely ion exchange (Korngold et al. 2001), membrane 

filtration (reverse osmosis, ultrafiltration) (Landaburu-Aguirre et al. 2009), electrochemical 

techniques (Chen 2004), precipitation (Matlock et al. 2002), coagulation and flocculation (El 

Samrani et al. 2008), and adsorption using activated carbon (Yanagisawa et al. 2010). An 

overview on these techniques will be presented in the next section. Some aspects common 

to the studies reported in the literature will be also presented. 

 

1.3 Metal removal from waters: techniques used so far 

 

Since it is impossible to degrade the metals, the only way forward will be their safe 

disposal, i.e. their removal from the contaminated system, their concentration and 

immobilization in a solid state, not available to living organisms and biological cycles. The 

commonly used processes for the treatment of waters contaminated with metals are based 

on this principle. 
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1.3.1 Precipitation 

 

Chemical precipitation is commonly employed as a pre-treatment for other treatment 

technologies of raw wastewaters. By changing the pH of the medium or adding other 

chemical species to the solution, metals precipitate typically as hydroxides, sulfides, or 

carbonates (Tchobanoglous et al. 2003). The forming insoluble precipitates are separated 

from the water by sedimentation or filtration. In the precipitation process, apart from the 

addition of chemical precipitants, coagulants and flocculants are also used to increase 

particle size through aggregation (Dabrowski et al. 2004). This process is relatively simple 

and by far the most widely used process in industry (Fu and Wang 2011). A major 

disadvantage of this method is the requirement of large doses of alkaline materials to increase 

and maintain pH values typically from 4.0 to above 6.5 for optimal metal removal (Matlock 

et al. 2002). Other disadvantages of this technique are the production of a large amount of 

sludge rich in metals which are highly regulated, and have costly disposal requirements 

(Farooq et al. 2010), and the low efficiency when the target contaminant is present in low 

concentrations. 

 

1.3.2 Coagulation and flocculation 

 

Just as chemical precipitation, coagulation and flocculation followed by sedimentation 

or filtration can be used for the removal of most of the metals. Through the addition of 

coagulants, such as aluminium, ferrous sulfate and ferric chloride, the forces that keep the 

metals in solution are neutralized leading to their aggregation/coagulation. Flocculation uses 

polymers to form bridges between the flocs and bind the particles into large agglomerates, 

which are then removed or separated by filtration or floatation (Fu and Wang 2011). 

Coagulation-flocculation must be followed by other treatment techniques since generally 

they cannot treat the metal wastewater completely. Furthermore these methods produce 

concentrated and toxic wastes, which lead to disposal problems (Farooq et al. 2010). 

 

1.3.3 Electrochemical techniques 

 

Electrochemical methods involve the use of an electrochemical cell, which allows the 

reduction of the metals to their zero oxidation state. Thus metals are recovered in their 
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elemental state and with a high degree of purity. The cell consists of two electrodes, positive 

(anode) and negative (cathode) which are kept at a given potential through an external power 

source. Metallic ions in solution are attracted to the electrode due to electrostatic forces 

between opposite charges. Electrochemical technologies have the great advantage of being 

selective, however they involve a relatively large capital investment and the expensive 

electricity supply (Fu and Wang 2011). Maybe for that they have not been widely applied. 

In addition they require a neutral medium which implies pre-treatment (Farooq et al. 2010). 

 

1.3.4 Membrane filtration 

 

Membrane filtration technologies are no more than physical procedures for separating 

particles by means of semipermeable membranes. Depending on the size of the 

particles/contaminants which are to be removed, it may be applied: microfiltration, 

ultrafiltration, nanofiltration and reverse osmosis. These techniques promise high efficiency 

and easy operation (Fu and Wang 2011). 

Ultrafiltration (UF) techniques use low transmembrane pressures to achieve metal 

removal and are based on the addition of surfactants, such as sodium dodecyl sulfate (SDS) 

to wastewater. Surfactant molecules will aggregate into micelles that can bind metal ions to 

form large metal-surfactant structures, which will be retained by the UF membrane. The 

efficiency of this process is dependent of the characteristics and concentrations of the metals 

and surfactants, solution pH, ionic strength, and parameters related to membrane operation. 

The main disadvantages of UF are the required low flow rate and high costs (Farooq et al. 

2010). 

Since the development of the first practical cellulose acetate membranes in the early 

60's and  the  subsequent  development of thin-film, composite  membranes, the uses of 

reverse osmosis (RO) have expanded to a wide variety of wastewater treatment applications 

(Williams 2003). Reverse osmosis (Figure 1.2) is a pressure-driven process whereby a semi-

permeable membrane rejects dissolved constituents present in the feed water. This rejection 

is due to size exclusion, charge exclusion and physical–chemical interactions between solute, 

solvent and membrane (Malaeb and Ayoub 2011).  
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Figure 1.2: Reverse osmosis operating principle. 

 

Reverse osmosis has become an increasingly popular treatment technology, being 

responsible for more than 20% of the world’s desalination capacity (Fu and Wang 2011). A 

major concern for reverse osmosis systems remains to be the cost dictated by both energy 

consumption and membrane replacement costs (Malaeb and Ayoub 2011). 

 

1.3.5 Adsorption using activated carbon 
 

Adsorption is a process in which a particular component is accumulated on the 

surface or interface between two phases as a result of chemical and physical factors. It should 

be distinguished from absorption, where the component is “incorporated” in another phase. 

The overall process, which includes adsorption, absorption and ion exchange is referred as 

sorption. It should be noted that the term adsorption is often found in the literature on studies 

where a given material is used to promote the removal of metals, but where the mechanism 

is not the subject of study. In such cases the term sorption would be more suitable. 

Activated carbon (AC) is an adsorbent widely used in the removal of metal 

contaminants. Its extensive surface area, result of large volume of micro and mesopores, 

enables a quick and effective removal (Fu and Wang 2011). The major problem with the 

activated carbon based treatment process is the regeneration of the material after its 

adsorptive capacity has been reached, which makes this process costly (Farooq et al. 2010). 

In addition, the acquisition cost AC is becoming increasingly high. 

 

1.3.6 Ion-exchange 

 

Ion exchange is a process of purification where ions to be removed are exchanged 

between the contaminated solution, and a solid polymeric or mineral “ion exchanger” 

(Figure 1.3). The most wide-spread use of this technology is in domestic water softening, 
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where sodium ions from a cationic-exchange resin replace the calcium and magnesium ions 

in the treated water thus reducing the hardness. However, ion exchange has been also used 

in wastewater applications for the removal of metals, nitrogen and total dissolved solids, due 

to their many advantages, such as high treatment capacity, high removal efficiency and fast 

kinetics (Tchobanoglous et al. 2003, Fu and Wang 2011). A vast variety of ion exchangers 

have been used for metal and other PTEs removal, including natural or synthetically 

produced polymers, clays, zeolites, several types of biomaterials and more recently 

nanomaterials (Gonzalez et al. 2010). Ion-exchange is considered to be cost-effective if only 

low-cost ion exchangers such as natural zeolites or other materials that are abundantly 

available in nature are used (Entezari and Tahmasbi 2009). Ion exchangers can be either 

cation exchangers or anion exchangers. There are also amphoteric exchangers which are able 

to exchange both cations and anions simultaneously. However, better results are obtained in 

mixed beds that contain a mixture of anion and cation exchange resins or passing the treated 

solution through several different ion exchange materials (Srivastava and Goyal 2010). 

 

Figure 1.3: Ion Exchange process  

 

Table 1.7 summarizes the main advantages and disadvantages associated with each of 

the treatment methods described. Although some methodologies provide good removal rates, 

high selectivity and possibility of regeneration/reuse of the sorbent material, all of them 

present several negative aspects. Formation of toxic by-products, high generation of sludge 

which require a proper disposal, and high initial and running costs are some of the 

weaknesses that jeopardize the viability of existing methods (Brinza et al. 2009, Liu et al. 

2009).  
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Table 1.7: Summary of some methods to remove metals from contaminated waters and their main advantages 

and disadvantages (adapted from Faroq et al. 2010). 

Process Advantages Disadvantages 

Precipitation 

 Simple 

 Inexpensive 

 Most of metals can be removed 

 Large amounts of sludge produced 

 Disposal problems 

Coagulation and 

flocculation 

 Sludge settling 

 Dewatering 

 

 High cost 

 Incomplete removal 

 Large consumption of chemicals 

 Further toxic wastes and disposal 

problems 

Electrochemical 

techniques 

 Metal selective 

 No consumption of chemicals 

 Pure metals can be achieved 

 High capital cost 

 High running cost 

 Initial solution pH 

Membrane filtration 

 Less solid waste produced 

 Less chemical consumption 

 High efficiency (>95% for single 

metal) 

 High initial and running cost 

 Low flow rates 

 Removal negatively affected by 

the presence of other ions 

Adsorption using 

activated carbon 

 Most of metals can be removed 

 High efficiency (>99%) 

 Cost of activated carbon 

 No regeneration 

Ion exchange 
 Metal selective 

 High regeneration of materials 

 High cost 

 Less number of metal ions 

removed 

 

Thus, it becomes crucial to develop alternative techniques, taking into account not 

only its effectiveness, but also the materials employed, the simplicity and the associated cost 

(Farooq et al. 2010). To achieve this goal, the scientific community has mainly followed two 

different approaches: the development and application of new synthetic materials, such as 

nanomaterials, highly efficient and selective (Savage and Diallo 2005, Theron et al. 2008, 

Shan et al. 2009, Bao et al. 2013); the development of biotechnologies, which are based on 

processes of biosorption and bioaccumulation to achieve metal removal (Arief et al. 2008, 

Chojnacka 2010, Flouty and Estephane 2012, Bulgariu and Bulgariu 2014), and which are 

more environmentally friendly, less expensive, without neglecting efficacy.  

Although promising, the application of nanotechnology for remediation of 

contaminated ecosystems still raises many questions related to the possible toxicity of these 

materials, both for humans and for ecosystems. It is therefore indispensable a thorough 

research about the direct and indirect effects that engineered nanoparticles may have on 

living organisms (Sanchez et al. 2011). 
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1.4 Biosorption and bioaccumulation as remediation technologies 

 

Considering the very low values required by law for the concentration of metals in 

water, and the need for alternatives to conventional treatment methods, processes such as 

biosorption and bioaccumulation have been intensively studied (Romera et al. 2007, Mata et 

al. 2009, Farooq et al. 2010). These processes occur freely and continuously in the 

environment (Chojnacka 2010), but under controlled and optimized conditions of operation, 

they can be the basis of biotechnologies for remediation of contaminated systems. 

Biotechnologies making use of biological material from plants, bacteria, fungi, yeast or 

algaeto promote the removal and recovery of metal contaminants. 

Biosorption is a physical-chemical process involving the separation of a contaminant 

in liquid phase by using a solid phase consisting of inactive or non-living biomass (Farooq 

et al. 2010). It is a process very similar to conventional adsorption and/or ion exchange, 

being the biological nature of the sorbent the main distinguishing feature (Cho and Kim 

2003, Diniz and Volesky 2005, Chojnacka 2009a). Nevertheless unlike mono functional ion 

exchange resins, biosorbents feature a range of functional groups (carboxyl groups, sulfates, 

phosphates, etc.) in their cell wall, with high capacity to attract metal ions present in the 

fluid, which provides them a remarkable removal efficiency (Flouty and Estephane 2012).  

Biosorption is relatively quick, metabolically passive, and reversible process 

(Chojnacka 2010). Thus, contrary to the adsorption by activated carbon, most of the 

biosorbents may be regenerated (Flouty and Estephane 2012). 

The first research on biomass-metal interactions dates back to 1960 (Chojnacka 2010). 

However, only in the 90s biosorption assumed greater importance in science, largely due to 

the contribution given by prof. Bohumil Volesky of McGill University in Canada (Volesky 

2007). He provided much of the theoretical basis of the process and made the first attempts 

for its marketing (Volesky 2001, Volesky and Naja 2007), showing that biomass was capable 

of concentrate metal ca. 1000 fold (Chojnacka 2010).  

Since then, a significant number of studies on biosorption of metals from aqueous 

solutions have been conducted worldwide (Arief et al. 2008). Efforts have been made to the 

use of different types of biological materials, widely available and inexpensive, and to the 

optimization of biosorption parameters, in order to achieve maximum efficiency of removal 

(Kar and Misra 2004). Some examples of the most studied biomasses include anaerobically 
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digested sludge (Tokcaer and Yetis 2006), biomass of moss and lichens (Tuzen and Sari 

2009, Tuzen et al. 2009), crab shells and eggs (Park et al. 2007, Rae et al. 2009, 

Vijayaraghavan et al. 2011), and dead biomass of algae (Romera et al. 2007, Liu et al. 2009, 

Huang et al. 2010). Agricultural waste (Rocha et al. 2013, Jaishankar et al. 2014) and 

industry by-products (Akar et al. 2009, Lopes et al. 2014) have also been used. 

Non-living biomass may be applied directly, or after pre-treatment (Klimmek et al. 

2001, O’Connell et al. 2008), which in most cases comprises, besides drying and grinding, 

acid (Choi and Yun 2004, Niu et al. 2007) or alkaline (Bulgariu and Bulgariu 2014) treatment 

(activation). 

Trends in current research on biosorption also include the study of the removal 

mechanism, i.e. identification of main processes that occur in the surfaces of the biosorbents 

and characterization of existing functional groups (Fourest E. and Volesky B. 1996, Davis 

et al. 2003, Volesky 2007, Sud et al. 2008). To this end, the combination of techniques such 

as FTIR, SEM-EDX, TEM as well as classical methods such as titrations has proven very 

useful (Arief et al. 2008). Currently it is thought that there are different processes which 

contribute to biosorption mechanism (Figure 1.4): adsorption on the surface and pores, ion-

exchange, surface precipitation, complexation and chelation, and entrapment in capillaries 

and spaces of polysaccharide network (Ahluwalia and Goyal 2007, Farooq et al. 2010). 

Nevertheless, in most cases adsorption and ion exchange are identified as the dominant 

processes. 

The mechanism by which metals bind to the biomass is closely related to the solution 

composition and structure of the cell wall of biomass (Demirbas 2008). The most common 

functional groups are: hydroxyl (-OH), carboxyl (R-COOH), sulfonate (R-SO3
-), thiol (R-

SH), amines (R-NH2), amides (R-CONH2) and phosphonates (PO4
3-) (Volesky 2007, Wang 

and Chen 2009). 

Process configurations are also studied extensively, including batch and column 

studies (Volesky 2007, Apiratikul and Pavasant 2008), as well as carrying out the process in 

membrane bioreactors (Beolchini et al. 2006).  
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Figure 1.4: Mechanism of biosorption (Sud et al. 2008, Farooq et al. 2010). 

 

Research on biosorption has focused primarily on the removal of PTEs commonly 

used in industry, such as Cu, Zn, Cr, Pb, Cd, Ni and in less extent Hg, Al, Co, As and Th 

(Figure 1.5) (Chojnacka 2009a). Despite being part of the “toxic-trio”, Hg is not as 

documented as Pb and Cd, probably due to the difficulties inherent to the study of this metal, 

such as its laboratory handling, analytical determination and complexity of solution 

chemistry (Volesky 2007). 

 

Figure 1.5: PTEs more common in biosorption studies (Chojnacka 2009a). 

 

All scientific development has culminated in a series of review papers on biosorption, 

condensing all available information on the vast array of biological materials studied (Ho et 

al. 2000, Babel and Kurniawan 2003, Davis et al. 2003, Arief et al. 2008, Sud et al. 2008, 
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Wang and Chen 2009, Farooq et al. 2010, He and Chen 2014). However, the evaluation of 

the performance of metal removal for a given biosorbent over other sorbents is not an easy 

task, since experimental conditions, such as pH, temperature and sorbate/sorbent ratio are 

very different among studies, and thus results are not entirely comparable.  

Overall, biosorption promises to fulfil the main requirements for a successfull 

biotechnology, which are efficiency, competitiveness and economic viability. Some authors 

argue that the application of biosorption processes can reduce capital costs by 20%, 

operation costs by 36% and total treatment costs by 28%, when compared with suitable ion 

exchange systems (Volesky 2001, Zouboulis et al. 2004).  

Biosorption is already commercialized and accepted by the EPA as biotechnology 

(EPA/540/S5-90/005), however only a few biosorbents are available on the market such as 

AlgaSORB® and AMT-BIO-CLAIM® (Chojnacka 2010). AlgaSORB® consists of 

powdered Spirogyra alga, which is immobilized on solid column of silica gel (Singh and 

Prasad 2000), while AMT-BIO-CLAIM® is based on bacteria of the genus Bacillus treated 

with caustic soda. 

Bioaccumulation process uses living biomass. Apart from binding to the surface, 

contaminants are also accumulated inside the cells through the organism metabolic cycle 

(intracellular accumulation) – Figure 1.6. In a first phase (I), which is fast and reversible, 

contaminants bind to the cell surface, due to various passive metabolic processes similar to 

those occurring in biosorption. For that reason this step is commonly referred to as 

biosorption, or passive accumulation. Then transport of contaminants into the cell occurs (II) 

primarily through active transport systems, which require energy consumption 

(metabolically active process) (Kadukova and Vircikova 2005, Torres et al. 2008, Chojnacka 

2009a).  

A major advantage of bioaccumulation process, in addition to the greater number of 

binding sites provided (surface and inner), is the use of growing cells (cell multiplication – 

III), which leads to a multiplication of those binding sites (Malik 2004). Thus, by using 

bioaccumulation, lower residual concentrations in treated aqueous solution will be 

potentially achieved (Chojnacka 2007).  
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Figure 1.6: Stages on the bioaccumulation of metals (adapted from Chojnacka (2009a)). 

 

Table 1.8 presents a comparison between biosorption and bioaccumulation processes 

(Chojnacka 2010). One of the main disadvantages of using living organisms, in relation to 

biosorption, is the need for a nutrient source, in order to maintain the stability and constant 

growing of the biomass. However, this limitation may be overcomed by using photosynthetic 

organisms such as algae and other aquatic plants – phytoremediation (Kara 2004, Prasanna 

et al. 2008), whose nutritional requirements are minor and require a source of inorganic 

carbon as carbon dioxide (Chojnacka 2010). Thus, companies who adopt this biotechnology 

will concomitantly decrease the levels of contaminants in their effluents (metals and/or 

compounds of phosphorus and nitrogen, which are responsible for eutrophication) and 

reduce CO2 footprint (as well as avoid carbon taxes if applicable). 

When considering the operational aspects, bioremoval by living organisms is simpler 

since biomass is placed directly in contact with the contaminated fluid on containers or 

constructed wetlands (Babatunde et al. 2008, Marchand et al. 2010, Guittonny-Philippe et 

al. 2014). There is no need for complex processes of stirring, and separation such as 

filtration, which are indispensable for biosorption, since in that case biomass is usually 

applied in powder form (in order to increase its contact surface) (Aksu and Dönmez 2000). 

In special cases, if the removal mechanism consists only of the uptake and accumulation, in 

contrast to the transformation of a contaminant, living organisms may be harvested and 

removed after remediation for disposal, or possible recovery of contaminants (Susarla et al. 

2002, Sooksawat et al. 2013). The use of live cultures also reduces the number of additional 

unit processes, related to the preparation of biomass for this kind of applications, including 

harvesting, drying, processing and activation of the material (Aksu and Dönmez 2005).  
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Table 1.8: Comparison between biosorption and bioaccumulation processes (adapted from Chojnacka (2010)) 

Biosorption Bioaccumulation 

Metabolically passive process Metabolically active process 

Sorbent dead biomass Sorbent living biomass 

Metals are bound with cellular 

surface 

Metals are bound with cellular surface 

and interior 

Main process: Adsorption/ion exchange Main process: Absorption 

Reversible process Partially reversible process 

Nutrients are not required Nutrients are required 

Single-stage process Double-stage process 

Quicker than bioaccumulation Slower than biosorption 

Not controlled by metabolism Controlled by metabolism 

No danger of toxic effect to biomass Danger of toxic effects caused by 

contaminants to biomass 

No cellular growth Cellular growth occurs 

Intermediate equilibrium concentration 

of metal ions 

Very low equilibrium concentration 

of metal ions 

 

External factors governing bioaccumulation performance are basically the same which 

influence the cultivation of organisms: composition of growth medium, pH, temperature and 

the presence of other contaminants. These factors may inhibit the growth of cells and also 

bioaccumulation itself (Chojnacka 2010). In fact, a severe limitation of this process is the 

range of concentrations where it can be used. Theoretically it is impossible to treat solutions 

with high load of contaminants since it will lead to biomass decay and consequent death. 

However, if the method is intended to be used as the final polishing step (where most existing 

methods fail or become prohibitively expensive), the concentration of contaminants in 

solution would be of a magnitude of few mg L-1 (Chojnacka 2010).  

Organisms likely to be used in bioremediation processes should have some resistance 

to considerable levels of contaminants, not having protection mechanisms against excessive 

accumulation within the cells (Deng and Wilson 2001, Kocberber and Donmez 2007). Some 

living organisms, whose capacity for bioaccumulation of metals has been studied, are yeasts, 

fungi, bacteria and microalgae (Kadukova and Vircikova 2005, Dwivedi et al. 2006, 

Chojnacka 2007, Farooq et al. 2010, Flouty and Estephane 2012).  

Within bioremediation, phytoremediation is also an emerging "green" technology, 

where terrestrial or aquatic plants are used to remove, transform or store toxic chemicals 

which are found in soils, sediments, groundwater, surface water and even the air (Raskin et 

al. 1997, Susarla et al. 2002, Fereshteh et al. 2007, Gomes and Asaeda 2013, Krems et al. 

2013, Liu et al. 2013, Tak et al. 2013). 



                       Chapter 1 

 

 
31 

 

For the reasons mentioned above, bioremoval and bioremediation, based on the 

processes of biosorption and bioaccumulation, have major advantages over traditional 

methods of treatment. Besides the low cost of operation, since biological wastes or living 

biomass, which are widely available are used, minimization of the volume and toxicity of 

produced sludge, as well as high efficiency in detoxification of complex and diluted effluents 

make this biotechnologies very promising. 

 

1.5 Common aspects on the studies of metal removal 

 

There are some common aspects to most of the studies reported in the literature 

concerning the removal of metals: researchers seek to understand the experimental factors 

which control and affect the removal, in order to optimize the process. Furthermore, they 

attempt to translate the results into mathematical functions that ensure rapid characterization 

of the kinetics and extent of the process. Basically, the ultimate goal is to be able to predict 

the course of the process at given conditions in order to design a complete technique and to 

make a practical use of it. Some factors affecting sorption processes such as sorbent nature, 

initial concentration of metal in solution, pH, presence of foreign ions, and temperature 

(Kadirvelu and Goel 2005), are now enumerated with findings of some available research 

studies. 

 

 

1.5.1 Influence of experimental parameters 
 

1.5.1.1 Effect of pH 

 

Through the literature review it is possible to observe that in most cases metal recovery 

by different types of sorbents is strongly affected by pH. The extent of that influence is 

determined by the type of sorbent and metal. 

In 2002, Manju and co-authors found that the percentage removal of metal ions by 

polyacrylamide-grafted iron(III) oxide (PGHyFeO–COOH) increased with the increase in 

pH up to a certain value and then decreased with further increase in pH. The authors reported 

that the maximum removal of Pb was observed at an optimum pH of 6.0 (95.7%), whereas, 

the maximum removal of Hg and Cd was observed at pH 5.0, 84.9% and 81.0%, respectively. 

Below and above this pH, a decreasing trend in removal was observed. The possible sites on 
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PGHyFeO–COOH for specific adsorption in acidic pH includes H+ ions in –COOH 

functional groups (Manju et al. 2002). Hence, the effect of pH on metal ions can be explained 

as due to the exchange behaviour of H+ ions from peripheral –COOH groups. At very low 

pH, the competition between M2+ (M = Pb, Hg, Cd) and the higher concentration of H+ ions 

for sorption sites is in favour of H+, and as a result, less removal efficiency was observed at 

low pH; with increase of the pH (up to optimum pH), the enhancement of sorption is 

apparently due to the hydrolysis of the exchanging cations, since the hydroxyl-metal 

complex, that is M(OH)+ is sorbed in preference to the uncomplexed cations (Manju et al. 

2002).  

In 2010 Huang et al. found that biosorption of Cd from aqueous solution onto Hydrilla 

verticillata, a perennial submerged macrophyte, was highly dependent on hydrogen ion 

concentration of solution. Maximum sorption efficiency (96%) was obtained at pH 5–7, 

while at lower pHs, there was clear competition between Cd and protons for biomass 

sorption sites, decreasing sorption efficiency. At pH values higher than 7, cadmium 

hydroxide precipitation was observed (Huang et al. 2010). Tuzen and Sari (2009) reported 

that biosorption efficiency of Hg ions onto moss Drepanocladus revolvens increased from 

70 to 91.5% as pH increased from 2 to 5. The maximum biosorption was found to be 96% 

at pH 5.5 (Tuzen and Sari 2009). 

 

 

1.5.1.2 Effect of temperature 

 

Depending on the structure and/or surface functional groups of a particular sorbent, 

temperature could have more or less impact on the sorption capacity, since temperature 

change alters the adsorption equilibrium in a specific way determined by the endothermic or 

exothermic nature of the process (Arief et al. 2008). Thermodynamic parameters like Gibbs 

free energy (ΔG0), enthalpy (ΔH0) and entropy (ΔS0) provide valuable information about the 

sorption process and allow addressing the possibility and feasibility of a certain reaction.  

In 2005, Tüzün et al. found that the biosorption capacity of the microalgae 

Chlamydomonas reinhardtii for Hg, Cd and Pb did not significantly change for different 

temperatures. These results indicate that the biosorption of Hg, Cd and Pb on the algal 

biomass appears to be temperature independent over the temperature range tested by the 

authors (5 to 35ºC) (Tuzun et al. 2005).  
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Later, Ghodbane and Hamdaoui (2008) observed that the biosorption of Hg onto 

eucalyptus bark increased with the increase in temperature, indicating the endothermic 

nature of the process. The enhancement in the sorption capacity was explained by the authors 

due to the interaction between sorbate ions and sorbent, creation of some new sorption sites 

or the increased rate of intraparticle diffusion of Hg ions into the pores of the sorbent at 

higher temperatures (Ghodbane and Hamdaoui 2008). By contrary, Huang et al. (2010) 

observed a slow decrease in the sorption of Cd with the rise in temperature, and suggested 

that was due to the increasing tendency to desorb from the interface to the solution. This 

result also indicated that the sorption process of Cd onto Hydrilla verticillata was 

exothermic.  

 

1.5.1.3 Effect of initial metal concentration 

 

The initial metal concentration in solution is another important parameter of removal 

studies, mainly due to factors such as availability of specific surface functional groups and 

the ability of surface groups to bind metals, especially at high concentrations (Arief et al. 

2008). 

The effect of initial concentration on uptake percentage of Cd by methly thiourea and 

phenyl thiourea supporting resins was studied by Sharaf et al. (2007). The uptake increases 

as the initial concentration increases until reach a plateau, after which, the concentration no 

longer affects the uptake capacity (Sharaf et al. 2007). The load capacity of the resins was 

3.2 and 3.0 mmol g-1 for the methly thiourea resin and phenyl thiourea resin, respectively. 

The biosorption capacity of the microalgae Chlamydomonas reinhardtii biomass also 

increased first with increasing initial metal concentration and reached a saturation value, 

which were 200 mg L-1 for Hg and Cd and 300 mg L-1 for Pb (Tuzun et al. 2005). In the 

biosorption of Hg onto eucalyptus bark, Ghodbane and Hamdaoui (2008) noticed that an 

increase in initial metal concentration leads to an increase in the sorption capacity of 

eucalyptus bark, consequence of the increase in the driving force. 

 

1.5.1.4 Effect of coexisting-ions 

 

Since the industrial effluents, far from being single-component, are complex solutions 

(containing several PTEs simultaneously) and the removal of a given metal may be 
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influenced by the presence of other metals (Srivastava and Goyal 2010), several authors 

include this factor on their removal studies.  

The competition among Pb, Hg and Cd for the sorption sites of PGHyFeO–COOH was 

evaluated by Manju et al. (2002). The values of sorption reported by the authors were: 

Pb=14. 6 mg g-1, Hg=9.76 mg g-1 and Cd=8.31 mg g-1, who concluded that for ions of the 

same valence, sorbent prefers the metal with higher atomic number (Manju et al. 2002). In 

2005, Lv, Hor et al. studied the competitive sorption characteristics of binary and ternary 

mixtures of metal ions Pb, Cu and Cd on microporous titanosilicates ETS-10. The authors 

observed that ETS-10 displays a high selectivity towards one metal in a two-component or 

a three-component system with affinity order of Pb>Cd>Cu. The authors suggest that such 

behaviours are determined by the hydrated ionic radii and the hydration energy of the metals 

species (Lv et al. 2005). In the same year, Payne and Abdel-Fattah (Payne and Abdel-Fattah 

2005) investigated the competition between Pb ions and cations such as potassium, and 

verified that ionic competition reduced Pb removal by natural zeolites chabazite and 

clinoptilolite. More recently, Zhang et al. (2010) studied the effects of Cl−, SO4
2−, and PO4

3− 

on Hg sorption onto PANI/HA nanocomposite. The authors observed that neither the 

presence of SO4
2− nor the PO4

3− has any significant influence on the removal of Hg but the 

effect of Cl− is notable (Figure 1.7). Possibly Cl− competed favourably with OH− for Hg to 

form Hg–Cl complexes and these complexes have less affinity to the PANI/HA, causing a 

substantially decreased on Hg removal (Zhang et al. 2010). 

 

 

Figure 1.7: Effect of coexisted ions on mercury removal by PANI/HA. Hg initial concentration = 50 mg L−1; 

ionic strength = 0.2 M NaNO3; pH 5.0 buffered by 2 mM NaAc/HAc solution; PANI/HA = 0.5 g L−1 (data 

from (Zhang et al. 2010)) 
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1.5.1.5 Regeneration of materials 

 

The regeneration of the sorbent, although not always studied, is an important factor for 

keeping the process cost down, and to open the possibility of recovering valuable metals 

extracted from liquid phase.  

In 2000, Denizli et al. reported that the regeneration of the dithiocarbamate-

incorporated microspheres loaded with Hg ions is feasible by the use of strong acids. 

Desorption ratio was very high (up to 99%) when using a desorption medium containing 1M 

HNO3. The authors reported that chelate forming interactions between incorporated 

dithiocarbamate groups and Hg ions are weaker with decreasing pH. The sorption capacity 

of the recycled dithiocarbamate-incorporated microspheres can still be maintained at 98% 

level at the fifth cycle (Denizli et al. 2000).  

Using a solution of 0.2M NaCl, Manju et al. (2002) obtained good desorption 

efficiency of various metals from PGHyFeO–COOH: 98.3% Pb, 93.1% Hg and 90.1% Cd. 

Authors reported that Na+ ions are easily displaced by metal ions bonded to sorbent during 

adsorption experiments indicating an ion-exchange process. The small fraction of sorbed 

metals not recoverable by regeneration presumably represents the metal which is bound 

through strong interaction and, as a result, the sorption capacity is reduced in subsequent 

cycles (Manju et al. 2002).  

In 2006 Lodeiro et al. studied eleven types of eluting solutions at different 

concentrations to find the most appropriate eluting agent for Cd loaded biomass. The authors 

reported high efficiency of chloride and nitrate calcium salts as desorbing agents, for the 

release of the Cd previously bound to protonated Sargassum muticum alga, causing no 

structural damage in the biomass or even reinforcing it. HNO3 and HCl were found to have 

similar desorption capacity, but were more aggressive for the stability of the algae; 

nevertheless, acid desorption contributed to sweep soluble biomass material, which could 

block a fixed-bed column employed in metal sorption–regeneration cycles (Lodeiro et al. 

2006). 

 

1.5.2 Mathematical modelling and interpretation of results 

 

Kinetics and equilibrium are two important aspects to consider when it comes to 

evaluating a particular removal process. A diverse set of mathematical models is usually 
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applied to the results by the researchers in order to describe the rate and extent of sorption 

processes. A brief presentation of the most common models found in the literature will be 

made bellow. 

 

1.5.2.1 Kinetic modelling  

 

Analysis of the uptake rate of a particular contaminant by a sorbent is a fundamental 

step for assessing the applicability of that removal process in contamination control. 

Furthermore, it is essential for the optimization of operating conditions in full-scale, since 

sorption kinetics determines the residence time required for completion of the removal 

process (Ho et al. 2000). The kinetic models can be categorized as reaction models, which 

assume the sorption process as a whole, or diffusion models that presuppose different stages 

in the process where mass transfer phenomena occur (Ho et al. 2000, Qiu et al. 2009, Malash 

and El-Khaiary 2010) (Table 1.9). 

Lagergren's first-order equation and Ho's second-order expression (Wang and Chen 

2009) are the most widely used among kinetic reaction models, which are based on the 

capacity of the sorbent. In addition to these two, the Elovich model is also very popular in 

describing chemisorption kinetics (Ho and McKay 2004). 

 

Table 1.9: Sorption kinetic models. 

Kinetic model Equation Notes 

Pseudo-first-order 

(Lagergren) 
1(1 )

k t

t eq q e


    Adsorption capacity 

Pseudo-second-order (Ho) 

2

2

21

e
t

e

q k t
q

q k t



  Adsorption capacity 

Elovich 
1

ln  (1 )tq t


    Chemisorption 

Weber-Morris 
1 2

t idq k t   Intraparticle diffusion 

Boyd 
2

2 2
1

6 1
1 exp( ); t

n e

q
F n Bt F

n q





      Film diffusion 

Note: qt and qe are the amount of solute sorbed per gram of sorbent at time t and at equilibrium, respectively; 

k1 and k2 are rate constants; α is the initial sorption rate and β the Elovich desorption constant; ki is the 

intraparticle-diffusion parameter; F is the fractional attainment of equilibrium, at different times, t, and Bt is a 

function of F. 
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Boyd’s film-diffusion (Boyd et al. 1947) and Webber’s pore-diffusion (Weber and 

Morris 1963), two widely known diffusion-based models, are often used in order to analyse 

the sorption mechanism and the rate-controlling step involved in the sorption process (film 

or external diffusion, pore diffusion, surface diffusion, sorption on the pore surface, or by 

combination of more than one step (Rocha et al. 2013)).  

 

1.5.2.2 Equilibrium models 

 

The sorption isotherm gives information about the sorbate´s distribution between the 

liquid phase (solution) and the solid phase (sorbent) when the sorption process reaches an 

equilibrium state, for a fixed temperature and pH. Its accurate mathematical description 

could provide some insight into the sorption mechanism and the surface properties (Ho et al. 

2002). However, the determination of the isotherms is not quite feasible when using living 

organisms, since the equilibrium is not truly achieved, given the continued growth of the 

organism. 

As for the kinetics, there are several mathematical models which can be used to 

describe the equilibrium sorption, usually classified into empirical equations or into 

mechanistic models (Wang and Chen 2009).The mechanistic models are based on the 

mechanism of metal sorption, which are able not only to represent but also to explain and 

predict the experimental behaviour. However, empirical models such as the two-parameters 

Freundlich (Freundlich 1906) and Langmuir (Langmuir 1918) sorption models, and the 

three-parameters Sips or Langmuir-Freundlich isotherm model (Sips 1948), among others 

(Dubinin–Radushkevich, Redlich-Petersen), are those that recur over the available literature 

(Table 1.10). 
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Table 1.10: Isotherm models. 

Isotherm Equation* Notes 

Langmuir 

eL

eLm
e

Cb

Cbq
q




1
 

Assumes a monolayer sorption, i.e. a fixed number of 

energetically equivalent sites are available on the sorbent surface 

and once a sorbate molecule occupies a site no further adsorption 

takes place; Forces of interaction between adsorbed molecules 

are negligible (Cho et al. 2010) 

 

Freundlich n
eFe CKq
1

  

Comprises heterogeneous adsorptive energies on the adsorbent 

surface and therefore may be applied to describe equilibrium  of 

nonideal sorption on heterogeneous surfaces as well as 

multilayer sorption (Ho et al. 2002) 

Sips 
 

  n
eS

n
eSm

e

Cb

Cbq
q

1

1

1
  

Results from the combination of the Langmuir and the 

Freundlich isotherms; is capable of modelling both 

homogeneous and heterogeneous binding surfaces; At low 

sorbate concentrations Sips equation reduces to a Freundlich 

isotherm, while at high sorbate concentrations it predicts a 

monolayer adsorption capacity characteristic of the Langmuir 

isotherm (Ho et al. 2002) 

*qm is the maximum sorption capacity and bL is the Langmuir constant related to the free energy of adsorption; 

KF is a constant related to the adsorption capacity of the sorbent and n is the adsorption intensity or the 

heterogeneity of the sorbent.; bS is the Sips constant related to the energy of adsorption  
 

1.5.2.3 Data analysis in sorption studies: Common errors 

 

Although nowadays an appreciable amount of mathematical models be available to 

researchers describe their experimental results, and thus study the kinetics, equilibrium and 

sorption mechanism, not always its application is well performed.  

Recently, El-Khaiary and Malash (2011) highlighted some common errors in sorption 

data analysis, which are often found in the literature, e.g., misuse of linearization, 

misapplication of models for a given situation, or abuse of R2 for model comparison. Authors 

point out that these errors render the results "not reliable", and argue that their abundance 

and proliferation in literature has granted them some credibility erroneously, leading 

researchers to accept them, inadvertently, as scientifically correct practices. 

 

Misuse of linearization 

 

Linearization is a procedure that aims to simplify the resolution of the mathematics, 

having emerging in an era where computers were not available. However, this procedure is 

still very popular today, being possible to find countless articles in the literature where the 

linearization of sorption models (kinetic and equilibrium) is performed, or even revision 

papers, where the linearization of several kinetic models is presented and explained (Qiu et 

al. 2009). Nevertheless, the linearization of an inherently nonlinear equation by use of 
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various transformations must be careful, since it may bring problems, such as the destruction 

of assumed distributional properties, and the introduction of bias which often are not 

detected by the subsequent statistical analysis of results (Crini et al. 2008, El-Khaiary and 

Malash 2011). As an example, Table 1.11 shows four linear forms of the original equation 

of Ho's pseudo-second-order kinetic model (Eq. (4)), as well as the effects of such 

transformations, according to El-Khaiary and Malash (2011). Moreover, to demonstrate the 

effect of linearizing Ho's equation on the accuracy of parameter estimates, the authors made 

use of published experimental data of  Kononova et al. (2007), and estimated kinetic 

parameters qe and k2 by means of linear and nonlinear least squares regressions. Then the 

obtained parameters were used to plot Eq. (4) - Figure 1.8. 

 

Table 1.11: Linearized forms of the pseudo-second-order kinetic model (El-Khaiary and Malash 2011). 

Type Linearized form Plot Effects of linearization 

Lin 1 
2

2

1 1

e e

t
t

q k q q
   

.
t

vs t
q

 

Reversal of relative weights of data points because 1/q in 

the dependent variable t in both dependent and 

independent variables, leading to spurious correlation 

Lin 2 
2

2

1 1 1

e e

t

q q k q t

 
   

 
 

1 1
.vs

q t
 

Reversal of relative weights of data points because of 1/q 

in dependent variable. Independent variable is 1/t, leading 

to distortion of error distribution. 

Lin 3 

2

1
e

e

q
q q

k q t

 
   

 
 

.
q

q vs
t

 

q in both dependent and independent variables, leading to 

spurious correlation. The presence of q in the independent 

variable (q/t) introduces experimental error, violating a 

basic assumption in the method of least squares. 1/t in 

independent variable, leading to distortion of error 

distribution 

Lin 4 
2

2 2e e

q
k q k q q

t
   

.
q

vs q
t

 

q in both dependent and independent variables, leading to 

spurious correlation. The presence of q in the independent 

variable introduces experimental error, violating a basic 

assumption in the method of least squares 

 

It is clear that, despite the common origin, linearized forms of Ho's equation led to 

very different estimates of the parameters (and consequently, to different curve fittings). 

Furthermore, it is obvious that nonlinear regression produced the best fit. Thus, linearization 

of data should be avoided in sorption studies, especially given the diversity of software that 

is available these days, which can be very useful in modelling the results. 
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Figure 1.8: Comparison of the pseudo-second-order parameters estimated by linear and nonlinear regressions 

for the adsorption of silver thiocyanate complexes on anion exchanger AV-17-10P (El-Khaiary and Malash 

2011). 

 

Abuse of R2 for model comparison 
 

Another common practice in research is the use of coefficient of determination, R2, to 

assess and compare the goodness of fit of several models to experimental data. R2 is 

generated in the regression output of virtually all statistical software  

Nevertheless, there are some problems associated with the use of this parameter, as 

the possibility of its value be artificially high when a model has a small degree of freedom 

for error (El-Khaiary and Malash 2011). Thus, evaluation of the performance of a particular 

model should not rely solely on this parameter. Conventional statistical tests should also be 

used, in order to test the significance of estimated regression parameters. The addition of the 

standard deviation of residuals (Sy.x) and/or the relative error (Er) between experimental and 

predicted values, leads to improvements in assessing the goodness of fit. The mathematical 

equations that translate R2, Sy.x and Er are displayed ahead, in the chapters 3, 4 and 5.  

Another important issue is its frequent use, erroneously, to compare models that have 

different degrees of freedom. For comparing models with different degrees of freedom, El-

Khaiary and Malash (2011) suggest the use of Akaike's Information Criterion (AIC), which 

is based on information theory and maximum likelihood theory, and as such, it determines 

which model is more likely to be correct and quantifies how much more likely 
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1.6 Algae: potential application in bioremoval and bioremediation 

 

Algae are cosmopolitan organisms, marking their presence in every medium that 

provides them enough light and humidity, temporarily or permanently. Thus, it is possible 

to find algae in fresh or salt water, in damp soil or even on snow (Vidotti 2004). 

The classification of algae takes into account several characteristics, including nature 

of the chlorophyll(s), cell wall chemistry and flagellation. Table 1.12 summarizes algal 

divisions belonging to Plantae kingdom as well as their most important characteristics (Davis 

et al. 2003).  

 

Table 1.12: Algal divisions and significant characteristics (Davis et al. 2003)  

Division 
Common 

name 
Pigments 

Storage 

product 
Cell wall Flagella 

Chlorophyta 
Green 

algae 

Chlorophyll a, b; α-, 

β- and γ-carotenes 

and several 

xanthophylls 

Starch 

(amylose 

and 

amylopectin) 

(oil in some) 

Cellulose in many 

(β-1,4-glucopyroside), 

hydroxyproline 

glucosides; xylans and 

mannans; or wall absent; 

calcified in some 

Present 

Rhodophyta 
Red 

algae 

Chlorophyll a (d in 

some 

Florideophyceae); 

R- and C-

phycocyanin, 

allophycocyanin; 

R- and B-

phycoerythrin. α- 

and β carotene and 

several 

xanthophylls 

Floridean 

starch 

(amylopectin

-like) 

Cellulose, xylans, 

several sulfated 

polysaccharides 

(galactans) 

calcification in 

some; alginate in 

corallinaceae 

Absent 

Phaeophyta 
Brown 

algae 

Chlorophyll a, c; β-

carotene and 

fucoxanthin and 

several other 

xanthophylls 

Laminaran 

(β-1,3-

glucopyrano

side, 

predominant

ly); mannitol 

 

Cellulose, alginic acid, 

and sulphated 

mucopolysaccharides 

(fucoidan) 

Present 

 

The presence of chlorophyll a is a common characteristic to the three types of algae. 

Additionally, in all cases, cellulose is present as the most common fibrillar material in the 

skeleton of cell walls. However other components are part of the fibrillar skeleton and of the 

amorphous embedding matrix, which together constitute the typical cell wall of an algae. 

Components, such as xylan in the red algae,  xylans and mannans in the green algae, and 

alginic acid or alginate, with a smaller amount of sulfate polysaccharide (fucoidan) in the 
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brown algae are of major importance for the performance and mechanism of the biosorption 

process (Davis et al. 2003, Romera et al. 2007). Besides cell wall chemistry, also its presence 

or absence greatly influences the sorption process. For example, Cryptophyta, which does 

not have a cell wall, does not perform very well as metal sorbents (Davis et al. 2003). 

Due to the complexity of marine environmental conditions, algae evolved becoming 

an abundant and rich source of biologically active substances  (Kumar et al. 2013). Perhaps 

for this reason, historically they always had some economic importance, being long used for 

different purposes. For example, carrageenan, a hydrocolloid extracted from red seaweeds, 

is used for centuries as a thickener and stabilizer in various food products (Van de Velde 

2002). The use of seaweed as fertilizer, especially in agricultural fields near the sea (which 

is the case of Aveiro with its "moliço" - seagrass, and "sargaço" - algae of the genus 

Sargassum) comes from the fourteenth century, and its commercial harvest was firstly 

regulated in 1309 by the Portuguese king D. Dinis (Pereira 2007). Agar, another 

hydrocolloid extracted from seaweed, has wide application in studies of microbiology and 

in the separation of macromolecules by electrophoresis, chromatography, and DNA 

sequencing (Pereira 2007).  

In the last years, new applications in several areas have been studied tirelessly for this 

natural resource, which is available in virtually unlimited quantities in the seas and oceans. 

In the energy sector, algae seem to create a strong enthusiasm in the pursuit of "greener" 

energy sources (Kovacevic and Wesseler 2010). Since they are able to replicate their 

biomass several times daily, and to produce at least 15 times more oil per hectare compared 

to competing food crops (Antunes and Silva 2010), microalgae have a considerable potential 

for the production of biofuels, in particular biodiesel. More recently the use of macroalgae 

have earned its space in this field (Allen et al. 2014). 

An increasing number of scientific studies conducted in recent years has shown that 

algae have high ability to bind metals and other trace elements (Romera et al. 2006), due to 

presence of polysaccharides, proteins and lipids on the cell wall surface, which is rich in 

functional groups (Romera et al. 2007). This ability to bind microelements, and accumulate 

them internally may be useful for the production of new food products - "biofortified food" 

(Chojnacka 2010). In fact, through processes of biosorption and/or bioaccumulation, 

biomass of algae can be enriched with essential microelements (Chojnacka 2009b), such as 

iron, iodine and zinc, whose deficiency in human and animal diet is of particular concern 
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nowadays (so-called hidden hunger) (Kennedy et al. 2003). This "biofortified" biomass can 

be consumed directly or be used as feed additive in livestock nutrition, avoiding the use of 

traditional mineral diet supplements (for animals and human) and mineral fertilizers (for 

plants) (Michalak et al. 2011). 

Another potential application of algae, which has recently been evaluated is its use as 

"chemical reagents", in processes of pre-concentration on analytical chemistry (Romero-

Gonzalez et al. 2000, Vidotti 2004). As example, algae Spirulina major was successfully  

applied to the separation and pre-concentration of Se(IV) and Se(VI) from water and river 

sediment by Shunxin et al. (1999). After pre-concentration, determination was performed on 

alga biomass by graphite furnace atomic absorption spectrometry. 

The ability of the algae to remove elements from diluted solutions and to concentrate 

them in their tissues has also been tested for the recovery of precious metals like gold, silver, 

platinum and palladium (Das 2010).  

Despite the potential applications presented previously, is in the environmental 

domain that the study of metal ion-alga interactions has gained more interest recently. 

Biosorption and bioaccumulation of metals by algae may be efficiently used in the 

assessment of environmental pollution (as biomonitors) (Das 2010) as well as in pollution 

prevention (wastewater treatment) (Gavrilescu 2004) and remediation of contaminated 

environments (phytoremediation) (Ali et al. 2013). 

Several studies conducted in recent years have shown that algae possess the ability to 

attract and bind metals and dyes from aqueous solutions (Romera et al. 2007, Wang and 

Chen 2009, Jayakumar et al. 2014). However, scientific articles involving macroalgae are in 

less number when compared with other types of biomass (mainly bacteria and fungi) 

(Romera et al. 2006) or even with publications concerning microalgae. Studies carried out 

in multi-metal systems, which more closely resemble the real aquatic systems are even rarer. 

Virtually non-existent are studies about the potential use of living macroalgae on 

bioremediation of aquatic ecosystems and effluents rich in metals (Costa et al. 2011). In fact, 

despite phytoremediation has recently become an object of intense public debate and 

scientific interest, and also an issue for some review articles (Lasat 2002, Gerhardt et al. 

2009), little information can be found in the literature about the potential use of algae on 

phytoremediation. This is somewhat surprising given that several field studies reported high 

levels of contaminants in the algal biomass obtained from contaminated sites (Giusti 2001, 
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Coelho et al. 2005, Sekabira et al. 2011). A small exception have been the studies that put 

under test their bioaccumulation capabilities on bioremediation of wastewaters from 

aquaculture, by removing nutrients (nitrates and phosphates) (da Costa 2006, Nielsen et al. 

2012). 

The use of living estuarine and marine macroalgae for the remediation of saline 

systems contaminated with metals, can bring a particular advantage over conventional 

methods of ion exchange and even biosorption. It has already been reported loss of 

performance in metal removal when a method is applied to a salty water (due to the effect 

of the presence of other ions, such as Na+ or Cl-) (Payne and Abdel-Fattah 2005). Estuarine 

macroalgae, being perfectly adapted to saline environment and to wide variations in salinity 

possess osmoregulation mechanisms, and specific mechanisms that allow them to capture 

and concentrate essential and non-essential metals under such conditions (Turner et al. 

2008). 

The accumulation of metals by living algae depends on the type of algae and metabolic 

activity, of the speciation and concentration of the metals, on the exposure time, and on other 

environmental factors, such as salinity, pH and temperature (Kamala-Kannan et al. 2008). 

Understanding these parameters is essential for the optimization of biosorption and 

bioaccumulation processes, and consequently, to develop a new biotechnology remediation, 

more advantageous than existing methods. 

 

 

1.7 General aims and thesis structure 

 

During the last century, environmental protection policies were ignored in favour of 

industrialization and economic interests, resulting in severe contamination of ecosystems. 

In order to protect ecosystems and human well-being against the hazardous effects of 

metal contaminants, it is imperative to identify and assess the risks associated with 

contaminated sites, as well as to develop strategies for their mitigation. Moreover, 

unsustainable anthropogenic actions should cease. The use of those potentially toxic 

elements should be avoided, and/or their concentrations in industrial discharges should be 

reduced to levels as close as possible to zero, by using more efficient and cost-effective 

treatment technologies. In this context, information about the potential transfer and 

consequent accumulation of metals by primary producers (such as terrestrial plants and 
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algae) in contaminated environments, is extremely valuable. This knowledge can be applied 

not only for the development of better tools for the assessment of risks to trophic chains, but 

also for the development of remediation biotechnologies, more green and effective than 

conventional ones. 

Thus, the work developed under the scope of this PhD project aimed the study and 

description of the accumulation of metals, namely Cd, Pb and Hg, by primary producers with 

special focus to marine macroalgae. More attention was also given to Hg, since this metal is 

not as documented as the other two, probably due to the difficulties inherent to the study of 

this metal. Moreover, the major concern associated with Hg, is related to its methylated 

forms (organo-metallic Hg), which are more toxic and less studied in terrestrial systems. 

The results obtained may be of outmost importance for environmental contamination 

biomonitoring, and particularly for bioremediation of contaminated saline waters. 

This thesis was structured by chapters, corresponding to manuscripts published or in 

process of submission to international scientific journals. At the end, brief final 

considerations will be made. Below are presented the abstracts of each chapter, including 

objectives and findings. 

 

Chapter 2:  

 

Although the transfer of organo-metallic mercury (OrgHg) in aquatic food webs has 

long been studied, it has only been recently recognized that there is also accumulation in 

terrestrial systems. There is still however little information about the exposure of grazing 

animals to OrgHg from soils and feed as well as on risks of exposure to animal and humans.  

In this study we collected 78 soil samples and 40 plant samples (Lolium perenne and 

Brassica Juncea) from agricultural fields near a contaminated industrial area and evaluated 

the soil-to-plant transfer of Hg as well as subsequent trophic transfer. Inorganic Hg (IHg) 

concentrations ranged from 0.080 to 210 mg kg-1 d.w. in soils, from 0.010 to 84 mg kg-1 d.w. 

in roots and from 0.020 to 6.9 mg kg-1 d.w. in shoots. OrgHg concentrations in soils varied 

between 0.20 and 130 µg kg-1 d.w. representing on average 0.13% of the total Hg (THg). In 

root and shoot samples OrgHg comprised on average 0.58% (roots) and 0.66 % (shoots) of 

THg. Average bioaccumulation factors (BAFs) for OrgHg in relation to soil concentrations 

were 3.3 (for roots) and 1.5 (for shoots).  
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The daily intake (DI) of THg in 33 sampling sites exceeded the acceptable daily intake 

(ADI) of THg of both cows (ADI= 1.4 mg d-1) and sheep (ADI= 0.28 mg d-1), in view of 

food safety associated with THg in animal kidneys. Estimated DI of OrgHg for grazing 

animals were up to 220 µg d-1 (for cows) and up to 33 µg d-1 (for sheep). 

This study suggested that solely monitoring the levels of THg in soils and feed may not 

allow to adequately taking into account accumulation of OrgHg in feed crops and properly 

address risks associated with OrgHg exposure for animals and humans. Hence, the inclusion 

of limits for OrgHg in feed quality and food safety legislation is advised. 

 

Chapter 3:  

 

In this chapter, the bioaccumulation capabilities of three different macroalgae species 

(green, red and brown), very common on temperate coasts and estuaries, for the removal of 

Hg from salt water, using environmental realistic concentrations was assessed and explored. 

Levels of Hg accumulated by all seaweeds varied between 20.8-22.7, 93.5-103.2 and 202.3-

208.5 µg g-1, for initial concentrations of Hg in solution of 10, 50 and 100 µg L-1, 

respectively, representing bioconcentration factors of c.a. 2000. A comparative evaluation 

of bioaccumulation (live biomass) and biosorption (dead biomass) processes was conducted 

for U. lactuca, which had displayed the best performance in accumulating Hg. By using only 

c.a. 500 mg L-1 of dead macroalga (d.w) it was possible to obtain removal efficiencies at 

equilibrium (achieved after 24 to 72h of contact time) between 73 and 91%, for all 

concentrations studied. The removal of Hg by living seaweed, although slower, was more 

promising, since for an equal dose (mmacroalgae/Vsolution) all Hg levels were reduced by about 

99%. Thus, through bioaccumulation, European legal criteria for drinking water quality (1 

µg Hg L-1) was fulfilled. Pseudo-second-order and Elovich models described quite well 

experimental data, assuming a biosorption essentially of chemical nature instead of physical, 

assumption which was corroborated by FTIR spectra analysis. Determination of total 

mercury content in algal biomass over time, allowed us to confirm and to follow the 

incorporation of this metal by the organism. Organo-metallic Hg concentrations in U. 

lactuca at the end of bioaccumulation trials were very low, corresponding to very small 

conversion rates of inorganic Hg (0.02-0.05%) which suggests that methylation is a slow 

process.  
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Overall, results intended to be a contribution for the development of an efficient and 

cost-effective remediation biotechnology, based on the use of widely available live 

macroalgae, for saline waters contaminated with Hg. 

 

Chapter 4: 

 

A worldwide available, green marine macroalga, with fast growth was applied for the 

removal of Cd, Pb and Hg from contaminated saline waters. Metal bioaccumulation by living 

Ulva lactuca was studied during 6 days, under different contamination scenarios, mimicking 

those found in real world. In single-contaminant systems, with concentrations ranging from 

10-100 µg L-1 for Hg, 10-200 µg L-1 for Cd, and 50-1000 µg L-1 for Pb, biomasses of 

macroalgae around 500 mg L-1 (d.w.) were able to remove, in most cases 93 to 99% of metal, 

allowing to achieve water quality criteria regarding both surface and drinking waters. Under 

multi-contaminant systems, comprising simultaneously the three metals, macroalgae still 

performed well, with Hg removal (c.a. 99%) not being significantly affected by the presence 

of Cd and Pb, even when those metals were in higher concentrations. At the same time, 

removal efficiencies for Cd and Pb varied between 57-96%, and 34-97%, respectively, 

revealing a gradient of affinity of U. lactuca toward metals: Hg>Cd>Pb. Chemical 

quantification of metal content in macroalgae, after bioaccumulation assays demonstrated 

that all Cd and Hg removed from solution was really bound in macroalgae tissues, while 

only half of Pb showed to be sorbed on the biomass. Overall, U. lactuca accumulated up to 

209 µg g-1 of Hg, up to 347 µg g-1 of Cd and up to 1641 µg g-1 of Pb, which correspond to 

bioconcentration factors ranging from 500 to 2200, in a dose-dependent accumulation. 

Pseudo-first order, pseudo-second order and Elovich models showed a good performance in 

describing the kinetics of bioaccumulation, in the whole period of time. No mortality was 

observed during the bioaccumulation assays. In the range of experimental conditions used, 

U. lactuca relative growth rate was not significantly affected by the presence of metals, 

which is in accordance to its known tolerance to contaminants.  

Results may be an important contribution for developing a macroalgae-based 

biotechnology, applied for contaminated saline water remediation, more “green” and cost-

effective than conventional treatment methods. 
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Chapter 5: 

 

This work aimed the assessment of the bioaccumulation of metal contaminants in salt 

water and its effect on the growth rate by Fucus vesiculosus, species very common on 

temperate coasts and estuaries. Results obtained in a 7-day study of exposure to metals of, 

using environmental realistic conditions, evidenced its high potential for the removal of Pb, 

Hg and Cd from contaminated saline waters. For monometallic solutions, by using only ca 

450 mg/L-1 (dry weight) of the living organism, it was possible to reduce the initial 

concentrations of Pb in 65%, 95% of the Hg levels, and between 25 and 76% the 

concentrations of Cd. The bioremoval carried out by the macroalgae was quicker for Hg, 

and led to residual concentrations of this metal in solution below or very close to the 

maximum permissible value (VMA) for water of human consumption. Overall, 

bioconcentration factors ranged from 600 to 2300. The removal efficiency was proven in 

multi-contaminant systems, and the performance of the process was not affected by the 

presence of the three metals simultaneously. Elovich kinetic model described very well the 

bioaccumulation of Pb and Cd over time, while pseudo-second-order model adjusted better 

to experimental data regarding Hg. F. vesiculosus showed different affinity toward studied 

metals, following the sequence order: Hg>Pb>Cd. Analysis of metal content after 

bioaccumulation, proved that al metal removed from solution was bound to the biomass, and 

depuration experiments, conducted immediately after bioaccumulation assays reveled no 

significant loss of metal back to solution along time. Exposure to metal contaminants only 

adversely affected the organism’s growth for the highest concentrations of Cd and Pb.  

Overall, results intended to be a contribution for the development of a remediation 

biotechnology for confined saline waters contaminated with metals, more efficient and with 

lower costs than the traditional treatment methods. 

 

Chapter 6: 

 

The biosorption capability of two different marine macroalgae (green Ulva lactuca and 

brown Fucus vesiculosus) was evaluated in the removal of toxic metals (Hg, Cd and Pb) 

from saline waters, under different contamination scenarios. 

Results showed that, independently of the contamination level, both green and brown 

macroalgae have a remarkable capacity to biosorb Hg and Pb.  
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In single-contaminant systems, by using c.a. 500 mg of non-pre-treated algae biomass (size 

<200 µm) per litter, it was possible to achieve removal efficiencies between 96 and 99% for 

Hg, and up to 86% for Pb. Despite the higher removal of Hg, equilibrium was always reached 

more quickly for Pb (after 24-72h of contact time for Hg and after 8h of contact time for Pb).  

Under multi-contaminant systems, comprising simultaneously the three metals, both 

macroalgae still performed well, although Pb removal by U. lactuca was more inhibited than 

that achieved by F. vesiculosus. 

Under the experimental conditions used, neither the green nor the brown macroalgae 

were effective to remove Cd from saltwater (maximum removal of 20%). Moreover, both 

algae showed similar equilibrium selectivity toward the target metals: Hg>Pb>>Cd. 

Pseudo-first order, pseudo-second order and Elovich models have been used successfully to 

describe the kinetics of Hg and Pb biosorption, in the whole period of time, and for the full 

range of concentrations tested. 

Overall, results demonstrated that F. vesiculosus and U. lactuca may be part of an 

efficient and cost-effective technology for removing metals from contaminated salt waters. 

However, the brown algae has greater potential, since always presented higher initial 

sorption rates, higher removal percentages and higher amounts of metals sorbed than the 

green one. 

 

This thesis led to the following scientific publications: 

 

 Risks associated with the transfer of toxic organo-metallic mercury from soils 

into the terrestrial feed chain.  

Henriques B., Rodrigues S.M., Coelho C., Cruz N., Duarte A.C., Römkens P.F.A.M., 

Pereira E. Environment International. (2013) 59, 0, 408-417.  

DOI: 10.1016/j.envint.2013.07.006 

 

 Bioaccumulation and biosorption of Hg by living marine macroalgae: 

prospecting for a new remediation biotechnology applied to saline waters. 

Bruno Henriques, Luciana S. Rocha, Cláudia B. Lopes, Paula Figueira, A. C. Duarte, 

M.A. Pardal, E. Pereira. 

Submitted to Bioresource Technology 

 

 Developing a macroalgae-based biotechnology for water remediation: 

simultaneous removal of Cd, Pb and Hg by living Ulva lactuca 

Bruno Henriques, Luciana S. Rocha, Cláudia B. Lopes, Paula Figueira, A. C. Duarte, 

M.A. Pardal, E. Pereira 

To be Submitted to Water Research 
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 Bioaccumulation of Hg, Cd and Pb by Fucus vesiculosus in seawater: study on 

single and multi-metal systems 

Bruno Henriques, Cláudia B. Lopes, Paula Figueira, A. C. Duarte, M.A. Pardal, E. 

Pereira 

To be Submitted to Marine Pollution Bulletin. 

 

 Comparative study on metal biosorption by two macroalgae in saline waters: 

mono and multi-metal systems 

Bruno Henriques, Cláudia B. Lopes, Paula Figueira, A. C. Duarte, M.A. Pardal, E. 

Pereira 

Submitted to Journal of Hazardous Materials 
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2 Risks associated with the transfer of toxic organo-metallic mercury 

from soils into the terrestrial feed chain 
 

2.1 Introduction 
 

Mercury (Hg) is an extremely toxic pollutant that poses global environmental and 

human health risks (Selin 2009). During the last two centuries anthropogenic emissions of 

Hg, e.g. from chlor-alkali plants (Biester et al. 2002) and coal power stations (Kabata-

Pendias 2001) significantly exceeded the emission/inputs of natural sources (Peralta-Videa 

et al. 2009) resulting is severe soil contamination (Selin 2009). Despite such contamination 

many of these sites are still being used for agriculture and pasture without a proper evaluation 

of Hg distribution and speciation in soils and without an assessment of risks to animals and 

humans. To assess such risks, it is imperative to consider the speciation of Hg, both in soils 

and crops. 

In the terrestrial and aquatic environment Hg occurs in both organic and inorganic forms 

(Challa et al. 2008), including elemental mercury (Hg0), mercurous (Hg+) and mercuric 

(Hg2+) salts (Kabata-Pendias 2001), cinnabar (HgS) and organo-metallic compounds, such 

as methylmercury(II) (MeHg+) and ethylmercury(II) (EtHg+) (Fernández-Martínez et al. 

2005). The most common Hg mineral is HgS which is quite insoluble rendering this species 

rather unavailable for transport or plant uptake, at least in the short term (Rodrigues et al. 

2010). Mercury in soil usually is strongly adsorbed onto organic matter and/or metal oxides 

which generally results in a large pool of mercury being relatively immobile (Kabata-

Pendias 2001). Inorganic mercury (IHg) species such as mercuric chloride (HgCl2) are only 

weakly sorbed to soil components (Han et al. 2003) and can also be subject to mercury 

methylation processes resulting in highly mobile organic mercury species including 

methylmercury (MeHg) one of the most toxic organo-metallic forms of Hg (Han et al. 2003; 

Selin 2009). Organo-metallic mercury (OrgHg) compounds are more toxic than IHg salts 

due to their ability to form water-soluble complexes with cysteine in body tissues (Clarkson 

and Magos 2006) which increases the potential for uptake and accumulation by organisms 

(Fernández-Martínez et al. 2005).  

Exposure to OrgHg mercury is of great concern due to its potential impact to the central 

nervous system that affects human and wildlife development and health (Mailman and 

Bodaly 2005; Meng et al. 2011). For grazing animals, environmental exposure can also result 
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in accumulation of OrgHg in kidneys of cows and sheep as well as in the transfer of OrgHg 

into animals’ milk (Olkowski 2009). Hence, along with animal health effects important 

aspects of OrgHg in livestock relate with potential risk of toxicity associated with the 

consumption of animal products by the human population.   

This is relevant for terrestrial systems since recent studies showed that soil Hg can easily 

enter the food chain (Qiu et al. 2008; Meng et al. 2010; Rimmer et al. 2010; Shao et al. 

2012). Risks for animals and humans particularly arise through dietary intake of organic 

forms of Hg present in edible plants (Gardea-Torresdey et al. 2005; Wang et al. 2011). 

Estimates indicate that in general, about 1 to 3% of total Hg (THg) in surface soils is in the 

organo-metallic form (Kabata-Pendias 2007) while in upland plants up to 2.5% of the THg 

can be in the organo-metallic form (Mailman and Bodaly 2005).  Recent studies have shown 

that rice grain is an intensive bioaccumulator of MeHg (up to 10-100 times greater than other 

crop plants (Qui et al. 2008)) due to cultivation under flooded conditions where microbial 

Hg(II) methylation occurs  (Rothenberg et al. 2011a) and that rice consumption is a 

significant pathway for human exposure to organic forms of Hg (Qiu et al. 2008; Rothenberg 

et al. 2011b; Zhang et al. 2010a,b). However, despite the recent documentation of uptake of 

OrgHg from contaminated soils for rice and other edible crops including white cabbage, 

spinach, radish and lettuce and maize (Qiu et al. 2008; Shao et al. 2012) as well as evidence 

of Hg bioaccumulation and trophic transfer to wildlife in forest ecosystems (Gnamus et al. 

2000; Rimmer et al. 2010) relatively little is know about OrgHg uptake by feed crops and 

potential transfer and bioaccumulation for grazing animals or about OrgHg thresholds for 

animals’ dietary intake to ensure food safety. To fill this gap studies on the exposure of 

grazing animals to organic forms of Hg in soils at polluted sites are necessary.  

Hence, the scientific objectives of this study were: (1) to evaluate speciation of Hg in soils 

from an historically contaminated industrial site in Portugal and to assess factors affecting 

the geographical variability of OrgHg in soils (2) to evaluate soil-to-feed transfer of IHg and 

OrgHg; (3) to estimate the animal exposure to IHg and OrgHg from contaminated soils and 

feed; and (4) to assess potential risks for animal health and food safety. 
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2.2 Materials and methods 

 

2.2.1 Study area 

 

The Estarreja Chemical Complex (ECC) is located 1 km north from the village of 

Estarreja (North-West Portugal). According to the Köppen classification (Peel et al. 2007) 

the region has a warm-summer mediterranean climate (Cbs). The annual average 

temperature is 14.6 ºC and the average precipitation per year is 914 mm (Rodrigues et al. 

2006). The fields surrounding the complex are mostly used for agricultural and livestock 

purposes. The predominant vegetation includes ryegrass and mustard greens. The ECC dates 

back to the 1950s and among other industrial units it includes a chlor-alkali plant with 

production of chlorine and sodium hydroxide from rock salt and which used electrolytic cells 

with mercury cathodes for several decades (Costa and Jesus-Rydin 2001). Since the 1950s 

and until the late 1970s, liquid effluents from the Chemical Complex were discharged into 

the “Esteiro de Estarreja”, which is a river branch of a nearby lagoon (“Ria de Aveiro”), 

through open streams that crossed the surrounding agricultural fields, such as “Vala de S. 

Filipe” (Figure 2.1). In 1986 the plant consumed 28 ton/year of Hg as a raw material and it 

was estimated that around 12% of annual consumption of Hg was released to the atmosphere 

(Rodrigues et al. 2006). 

 

Figure 2.1: Map with the area of the study and the location of the sampling points. 



Chapter 2 

 

70 
 

 

Although the chlor-alkali plant completely ceased the use of mercury cathodes in 2002, 

severe contamination by this pollutant still remains in the surrounding environment (Reis et 

al. 2009; Rodrigues et al. 2012a). 

2.2.2 Sampling and sample preparation 

 

Sampling was carried out at 39 sites along agricultural/pasture fields located in the 

vicinity of the chlor-alkali plant, as showed in Figure 2.1. Samples were collected: 

- along the former effluent stream (“Vala de S. Filipe”) – from site 1 to site 8,  

- at the former effluent stream – site 9; 

- away from the former effluent stream – from site 10 to site 13.  

At each site, soil samples were taken at two depths (0-10 cm and 10-20 cm) using a 

plastic spade. Afterwards, soils were air dried at room temperature until constant weight and 

sieved to < 2 mm using a nylon sieve. Visible stones and biological debris were removed 

during the drying stage. The following soil properties were measured: pH (according to ISO 

10390:1994 procedure), soil organic carbon content (Org C) (Elemental Analysis, LECO 

CNH-2000, according to ISO 10694:1995) and particle size distribution (using a Coulter 

LS230 laser diffraction particle size analyser). 

A total of 40 plant samples, including ryegrass (Lolium perenne, n=35) and mustard 

greens (Brassica Juncea, n=5) were collected. All samples were placed in plastic bags during 

transport to the laboratory. At the laboratory, plant samples were washed with tap water and 

thoroughly rinsed with distilled water using a brush to remove all traces of dust and soil from 

the roots and shoots. Both root and shoot samples were dried at 40 ºC until constant weight, 

as several authors agree that this temperature can be applied to avoid loss of mercury due to 

volatilization (Loredo et al. 2003; Kamal et al. 2004), and milled. 

 

2.2.3 Total mercury concentration 

 

Total mercury (THg) concentrations in soil, roots and shoots were measured by 

thermal decomposition atomic absorption spectrometry   with   gold   amalgamation   (LECO   
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model AMA-254), as described by Costley et al. (2000). The analysis is performed directly 

on the sample (sample mass varied in the range 5-150 mg d.w.), without digestion or specific 

pre-treatment, avoiding mercury losses or contamination as well as matrix interferences. At 

least three replicate measurements were carried out for each sample (acceptable relative 

standard deviation among replicates: <10%). Several blanks (i.e. an empty sample nickel 

boat) were run before and between sample analyses to ensure that mercury was not being 

carried over between samples. Detection and quantification limits obtained through blank 

measurements (n=20) were 0.01 ng Hg (defined as the mean value plus 3.3 standard 

deviation) and 0.03 ng Hg (defined as the mean value plus 10 standard deviation), 

respectively. 

Analytical quality control was performed by using Certified Reference Materials 

(CRMs):  

- BCR 060 - Aquatic plant (Lagarosiphon major); 0.34±0.04 mg kg-1 (total Hg) 

- CRM 021 – USEPA Certified soil reference; 4.7±0.4 mg kg-1 (total Hg) 

- TORT 2 - Lobster Hepatopancreas; 0.27±0.06 mg kg-1 (total Hg)  

The CRMs were analysed every day prior to the beginning of the analysis and repeated 

at the end of the day. All percentages of recovery for THg were within the range of 87–113% 

(n=19). 

 

2.2.4 Organic and inorganic mercury concentration 

 

Organo-metallic mercury (OrgHg) concentrations in soil, roots and shoots were 

assessed through a method described by Válega et al. (2006). Extraction of OrgHg mercury 

compounds from the sample matrix was achieved through digestion of 100-200 mg d.w of 

each sample with a mixture of 18% KBr in 5% H2SO4 with CuSO4 (1 mol L-1), followed by 

extraction of OrgHg by toluene. The extractions were always performed in triplicate. The 

OrgHg mercury compounds retained in the toluene fraction were back extracted into an 

aqueous solution of thiosulphate. Mercury in liquid aliquots of the extracts (250-1000 µL) 

was quantified by thermal decomposition atomic absorption spectrometry with gold 

amalgamation   (LECO model AMA-254). It was not possible to quantify OrgHg in 20 soil, 

7 root and 13 shoot samples since their contents were below the limit of quantification (0.03 
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ng Hg). To ensure the quality of results procedural blanks (i.e. procedure with the reagents 

only) and reference material TORT-2 (Lobster Hepatopancreas; 0.152±0.013 mg kg-1 of 

methylmercury) were always carried out in parallel with the samples and analysed. The 

procedural blanks were always below the detection limit of the equipment (0.01 ng Hg). The 

recovery for OrgHg mercury (assuming that the dominant form in this fraction is 

methylmercury (Ullrich et al. 2007; Nam and Basu 2011) was in the range 80-86% (n=11). 

Inorganic mercury (IHg) was obtained subtracting OrgHg from THg. 

 

2.2.5 Statistical analysis  

 

Descriptive calculations and statistical analysis of data were performed using IBM SPSS 

Statistics 19 for Windows, whereas the graphics were plotted using OriginPro 8.5 for 

Windows. 

Daily intake (DI) of THg and OrgHg for cows and sheep was estimated according to de 

Vries et al. (2007): 

    soilsoilfeedfeed
IHgIHgDI      (1) 

Where:  DI is given in mg d-1;  [Hg]feed and [Hg]soil is the concentration of Hg (THg or 

OrgHg) in feed and soil, in mg kg-1 dry weight (d.w.); Ifeed and Isoil are the daily ingestion 

rate of feed and soil by grazing animals in kg d-1 d.w.  

Here, the following ingestion rates for soil and feed (dry weight) were used: 0.41 kg d-

1 of soil and 16.9 kg d-1 of grass (for cows); 0.10 kg d-1 of soil and 2.5 kg d-1 of grass (for 

sheep) (de Vries et al. 2007). Furthermore it was assumed that animals remained in the field 

during the whole growing period and always graze at the same site.  

We estimated the concentration of THg in animal (cow and sheep) organs (kidney, 

liver and muscle) according to the approach described by de Vries et al. (2007), as follows: 

     
animalfeed

soilfeed

soil

soil

soilfeed

feed

feedorgananimal
xBAF

II

I
xTHg

II

I
xTHgTHg





















_
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Where: [THg]animal_organ = concentration of THg in the animal organ (kidney, liver or 

muscle), in mg kg-1 fresh weight (f.w.) (organ concentrations are calculated in f.w. to allow 

comparison with limit values from legislation) 

BAFfeed-anima l= transfer coefficient or bioaccumulation factor from feed to animal organ for 

THg expressed as mg Hg kg-1 animal organ (f.w.)/ mg Hg kg-1 feed (d.w.). For THg the 

BAFfeed-animal for cows is 0.638, 0.158 and 0.00092 for kidney, liver and muscle, respectively 

(de Vries et al. 2007). For sheep BAFfeed-animal equals 0.468, 0.0572 and 0.00094 for kidney, 

liver and muscle, respectively (de Vries et al. 2007).  

It was not possible to estimate levels of OrgHg in animal organs since no BAFfeed-animal 

values were found in literature for these forms of the metal. 

 

2.3 Results  

 

2.3.1 Physical-chemical properties of soil 

 

Table 2.1 summarizes physical-chemical properties of the studied soils. The pH of all 

soil samples was similar among depths, ranging between 4.5 and 5.8 for 0-10 cm layer and 

between 4.4 and 5.7 for 10-20 cm layer. These values are consistent with previous studies 

that evidenced the slightly acidic character of most of the Portuguese soil (Inácio et al. 2008). 

Furthermore, the pH range is comparable to that reported by Reis et al. (2009) for agricultural 

soils of the same region. 

The soil organic carbon content ranged from 1.1% to 6.4% for the 0-10 cm depth 

although only four samples showed values above 3%.  For the 10-20 cm depth, organic 

carbon values were relatively low (from 0.060% to 2.6%) with a median value of 1.6%. No 

significant (p<0.05) differences were found for organic carbon levels between depths 0-10 

cm and 10-20 cm, with the exception of samples 9a, 9b and 9c that showed significantly 

higher values at 0-10 cm. Soil organic carbon values showed a tendency to increase with 

distance from the Chemical Industrial Complex (from site 1 to site 9), with maximum values 

of 4.5-6.4% at samples 9a, 9b and 9c (in the 0-10 cm layer). This can be associated with the 

pattern of sedimentation of organic matter along the stream. 

 

 



Chapter 2 

 

74 
 

Table 2.1: Physical-chemical properties of soils collected at two depths. 

Soil property 
Depth 

(cm) 

nº of 

samples 
Minimum Maximum Mean ± S.D. Median 

pH 
0-10 39 4.5 5.8 5.0 ± 0.4 4.9 

10-20 39 4.4 5.7 4.9 ± 0.4 4.8 

Org C (%) 
0-10 39 1.1 6.4 2.1 ± 1.1 1.8 

10-20 39 0.06 2.6 1.3 ± 0.5 1.6 

Sand (%) 
0-10 39 21 87 68 ± 17 72 

10-20 39 23 94 70 ± 14 74 

Silt (%) 
0-10 39 11 69 28 ± 14 24 

10-20 39 4 66 25 ± 12 23 

Clay (%) 
0-10 39 2 11 4 ± 2 4 

10-20 39 1 11 4± 2 4 

 

The clay content of these soils was generally low (median of 4.0% for both depths). 

With the exception of samples 9a, 9b and 9c soil texture did not vary considerably between 

depths and included sand, loamy sand, sandy loam, loam and silt loam soils. For samples 9a, 

9b and 9c, sand percentages were relatively higher at the 10-20 cm layer (77-94 %) when 

compared to the 0-10 cm depth (53-69 %).  

 

2.3.2 Inorganic and organic mercury in soils 

 

Inorganic Hg concentrations in soils for the two depths are presented in Figure 2.2A. 

The IHg levels were highly variable, ranging from 0.080 to 210 mg kg-1 d.w. (with a mean 

of 27 mg kg-1 and a median of 5.0 mg kg-1) in the 39 samples of 0-10 cm depth and from 

0.080 to 83 mg kg-1 d.w. (with a mean of 17 mg kg-1 and a median of 5.0 mg kg-1) in the 39 

samples of 10-20 cm depth. The IHg concentration in soils varied between 97 and 100 % of 

their respective THg concentration.   

The IHg levels were higher than those observed by Biester et al. (2002) at three 

different sites contaminated by emissions from chlor-alkali plants (up to 3 mg kg-1). In 97% 

of the samples  the IHg concentrations were above THg levels in non-contaminated “natural” 

Portuguese soils (THg 0.08 mg kg-1 d.w.) as reported by Inácio et al. (2008). No specific 

legislation regulating the assessment of soil contamination exists in Portugal, yet according 
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to the Portuguese Decree-Law nº276/2009, which concerns sewage sludge application in 

agricultural soils, the limit for THg concentration in soils at pH<5.5 is 1 mg kg-1 d.w. This 

limit was exceeded in 65% of soil samples.  
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Figure 2.2: Inorganic and organo-metallic mercury concentrations in soils (A and B) for the two depths and in 

plants (C, D and E) for roots and shoots. Inorganic and organo-metallic mercury concentrations are expressed 

in mg kg-1 and µg kg-1 of dry weight, respectively. All samples in C, D and E are from Lolium perenne with the 

exception of 5 plants indicated by “B.J.” (Brassica Juncea). 
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Figure 2.2 (cont.) 

 

Organo-metallic mercury concentrations in soil are presented in Figure 2.2B. The 

concentration of OrgHg ranged between 0.20 and 130 µg kg-1 d.w. (with a mean of 14 and a 

median of 5.2 µg kg-1 d.w.), representing on average 0.13% of THg concentration in soil. 

The relatively low percentages of OrgHg in soils in relation to the respective THg are in line 

with those observed by Fernández-Martínez et al. (2005) near an abandoned mercury mining 

area in Spain (< 1%) as well as in contaminated and non-contaminated sites in Slovenia 

(0.003-0.17% OrgHg in relation to THg) (Gnamus et al. 2000).  

As observed in Figure 2.2A there is a clear pattern of increase of IHg levels from site 

1 to site 9. Such pattern shows a tendency to increasing IHg levels along the stream and with 

distance from the Chemical Complex. This is similar to what was observed for soil organic 

carbon. In fact there is a significant positive correlation between IHg and soil organic carbon 

(r=0.85, p<0.01). The main factor contributing to the distribution of IHg in soils is therefore 

not the distance to the primary Hg source but the pattern of distribution of soil organic carbon 
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along the former effluent stream. For soils located at 300-500 m away from “Vala de S. 

Filipe” (sites 10 to 13), IHg levels were considerably lower and below 0.70 mg kg-1 d.w. 

indicating IHg levels decrease rapidly with distance from the stream.   

With the exception of site 9, there was no significant difference in soil IHg 

concentrations between the two depths (ρ<0.05). These soils are regularly plowed by the 

local farmers contributing to this homogeneous distribution of the soil mercury pool within 

the surface soil layers. For samples 9a, 9b and 9c collected from inside “Vala de S. Filipe” 

relatively higher IHg levels were found at the 0-10 cm layer (140-210 mg kg-1 d.w.), 

compared to the 10-20 cm depth (12-65 mg kg-1 d.w.) that is related with the significantly 

higher organic carbon contents of the 0-10 cm layer as well as with the sandy nature of the 

10-20 cm layer (> 90% sand). Such soil characteristics contribute to a higher retention of Hg 

in the 0-10 cm layer when compared with the 10-20 cm.  

Similarly to IHg concentrations, there was an increase in OrgHg from site 1 to site 9, 

with samples 9a, 9b and 9c (0-10 cm) showing the highest levels of the dataset (84-130 µg 

kg-1 d.w.). The OrgHg concentration in soils was significantly positively correlated with the 

respective IHg concentration (r=0.96, p<0.01). A positive significant correlation was also 

observed between the organic carbon content of soils and the concentration of OrgHg 

(r=0.91, p<0.01). This is in line with previous studies reporting that OrgHg in soils have a 

great affinity for organic matter that contributes for the retention of the metal in the soil solid 

matrix (Jen-How, 2005).   

Similarly to IHg, there were no statistically significant differences between OrgHg 

concentrations in both depths (p>0.05), with the exception of site 9 that showed significantly 

higher levels in the 0-10 cm depth (84-130 µg kg-1 d.w.), compared to the 10-20 cm layer 

(11-27 µg kg-1 d.w.). 

 

2.3.3 Inorganic and organic mercury in plants 

 

As shown in Figure 2.2C and 2.2D, IHg concentration in roots ranged from 0.010 to 

84 mg kg-1 d.w. (with a mean of 9.4 mg kg-1 and a median of 0.85 mg kg-1; n=40) whereas 

in shoots, IHg concentrations varied between 0.020 to 6.9 mg kg-1 d.w. (with a mean of 1.3 

mg kg-1 and a median of 0.25 mg kg-1; n=40). The percentage of IHg in relation to THg was 
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from 85 to 100 % (in roots) and from 92 to 100 % (in shoots). Relatively higher IHg 

concentrations were obtained in roots when compared with shoots (Figure 2.2C and 2.2D). 

The IHg in plants (both roots and shoot) increased from site 1 to site 9, showing that high 

concentrations of IHg in plants were generally associated with high levels of IHg in soils. 

Almost 73 % of all shoot samples exceeded the current quality criteria for THg in feedstuff 

as proposed by the European Commission (2002) and which is 0.11 mg Hg kg−1 d.w. (for 

feed with relative moisture content of 12%). Such contaminated plant samples were collected 

either at the "Vala de S. Filipe" or at its immediate vicinity. These plants are commonly used 

as feed for local cattle.  

Figure 2.2E presents the distribution of OrgHg concentrations in plant samples. The 

concentration of OrgHg mercury varied from 1.0 to 88 µg kg-1 d.w. in roots (with a mean of 

18 and a median of 6.7 µg kg-1 d.w.) and from 0.20 to 13 µg kg-1 d.w. in shoots (with a mean 

of 4.1 and a median of 3.9 µg kg-1 d.w.), representing on average 0.58 % and 0.66 % of THg 

in the respective plant parts. The percentages of OrgHg in relation to THg obtained were 

comparable to the percentage of MeHg reported in vegetation from Canada (Mailman and 

Bodaly 2005) and Slovenia (Gnamus et al. 2000). It should be noticed that the OrgHg 

concentration in root samples (median of 6.7 µg kg-1 d.w.) was generally higher than the 

respective OrgHg concentration in soils (median of 5.2 µg kg-1 d.w.) (Figure 2.2B and 2.2E). 

 

2.4 Discussion 

 

2.4.1 Relationships between inorganic/organic mercury in soil, inorganic/organic 

mercury in plants and soil-plant bioaccumulation factors 

 

As shown in Figure 2.3A, a positive significant relationship between IHg in roots of 

Lolium perenne and IHg in soil was observed (r2=0.89; p<0.01, log-transformed) indicating 

that soil is the source of root IHg in this feed crop. The fact that there is an even stronger 

relationship between IHg in shoots of Lolium perenne and IHg in the respective roots (Figure 

2.3D, r2=0.92; p<0.01, log-transformed) suggests that the source of IHg in these plants is 

not only the sorption of IHg from small soil particles adhering to root/shoot plant surfaces 

but also the absorption of the metal into root cells and subsequent translocation to aerial 
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parts. The much lower concentrations of IHg in ryegrass shoots compared to those in roots 

also suggest that roots act as a barrier and reduce translocation of IHg to the aboveground 

plant, as was recently observed for rice (Qiu et al. 2008; Meng et al. 2011; Meng et al. 2012). 

Although the process of IHg retention in plant roots is still not fully understood, Válega and 

co-authors (2009) concluded that for Halimione portulacoides (L.) Aellen in salt marshes, 

root cell wall immobilization of Hg is a major mechanism of metal resistance. Krupp et al. 

(2009) reported that the formation of metal–phytochelatin complexes under environmental 

exposure traps Hg(II) in plant roots and reduces its translocation into shoots.  

For OrgHg, a significant positive relationship between levels in roots of Lolium 

perenne and corresponding concentrations in soils (r2=0.48: p<0.01, log-transformed) was 

observed suggesting that soil can be a source of OrgHg to roots (Rothenberg et al. 2011a; 

Zhang et al. 2010b) (Figure 2.3D). However, the r2 value of the soil-root relationship for 

OrgHg was relatively lower than that obtained for IHg indicating that OrgHg and IHg can 

have different sorption mechanisms. Differences in uptake and accumulation mechanisms 

for IHg and OrgHg were also suggested by Zhang et al. (2010b) and they reflect enhanced 

uptake of OrgHg from the soil to plants as a consequence of the different biochemical 

characteristics of OrgHg compared to IHg (Gnamus et al. 2000). Dissimilarities in the root 

uptake for OrgHg and IHg can also derive from variation in the availability of OrgHg and 

IHg from soils resulting from the interaction between Hg and soil constituents and which are 

affected by the chemical form of the metal (Gnamus et al. 2000). Previous studies showed 

that the availability of IHg in soils for root uptake is generally lower than that of OrgHg 

(Bernaus et al. 2005; Boszke et al. 2008). Furthermore, there is a strong and significant 

relationship between concentration of OrgHg and the respective IHg in roots (r2=0.71; 

p<0.01 log-transformed) which suggests that methylation of IHg in the roots can also be a 

source of OrgHg. This is corroborated by the fact that root concentrations of OrgHg in our 

study were higher than the respective OrgHg levels in soils, contrary to what happened with 

IHg.  
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Figure 2.3: Scatterplots of relationships between IHg/ OrgHg in plants and IHg/OrgHg in soil (A-F). All values 

of concentrations were log-transformed. 

 

For OrgHg in shoots of Lolium perenne, a significant and strong positive relationship 

was obtained with the respective root concentrations (r2=0.60; p<0.01, log-transformed) 

indicating that the OrgHg levels observed in the aboveground plant parts derive from the 

translocation of OrgHg from the roots. This was also observed in studies with rice (Meng et 

al. 2011). In fact, Qiu et al. (2008) reported that OrgHg is more easily translocated to 

(A) (B) 

(C) (D) 
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aboveground plant parts than IHg. According to Krupp et al. (2009) the easier translocation 

of OrgHg compared to IHg occurs because phytochelatins can sequester Hg(II) but not 

MeHg and therefore there is no retention of the organic forms of the metal in the roots as 

occurs for inorganic ones.  

Since only five samples of Brassica Juncea were analysed it was not possible to infer 

on possible patterns of uptake and/or translocation of IHg or OrgHg for this plant. From 

Figure 2.3 these seem to be relatively lower than for Lolium perenne, but additional data 

would be necessary to draw conclusions on this.  

To infer on the possible accumulation of Hg in plant tissues, bioaccumulation factors 

(BAFs, i.e. the root/soil and shoot/soil concentration ratios for IHg and OrgHg) were 

calculated (Figure 2.4). The BAFs for IHg varied between 0.030 and 2.2 with mean of 0.49 

and median of 0.39 (for roots) and between 0.010 and 1.1 with mean of 0.19 and median of 

0.080 (for shoots). With the exception of 3 samples (BAFs: 1.2-2.2), the BAFs for IHg were 

always lower than 1 suggesting that there is no accumulation of IHg in roots nor in shoots, 

relative to soil concentrations.  

From Figure 2.4 is clear the BAFs for IHg in roots and shoots are not constant. It was 

possible to establish a clear and significant relationship between the variation of BAFs of 

IHg in shoots and the variation of IHg concentrations in both soils and roots, by linear 

regression analysis (Rodrigues et al. 2012b) as described by the following regression model: 

   
RootsSoilshootsIHg

IHgLogIHgLogLogBAF  63.091.055.0
_

       (r2=0.80, p<0.01) 

This regression model suggests that BAFs for IHg in shoots decrease with increasing 

levels of soil IHg contamination and increase proportionally with concentration of IHg in 

roots.  

The mean, median (and range) of BAFs for OrgHg were 3.3 and 1.8 (0.18-22) for roots 

and 1.5 and 0.46 (0.040-13) for shoots (Figure 2.4). Accumulation of OrgHg was observed 

at 26 sites in roots and at 8 sites in shoots where the BAF was higher than 1. These BAF 

values for OrgHg in shoots are comparable to those obtained in vegetation samples from 

Slovenia (mean BAF values for vegetation from different areas varied between 0.18 and 2.7) 

(Gnamus et al. 2000), and slightly lower than those reported by Zhang et al. (2010b) for rice 

(mean values: 4.4-6.9). The BAF values for OrgHg were on average 13 times higher than 

the respective values for IHg. Higher accumulation of OrgHg when compared with IHg was 
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also previously observed in vegetation and rice samples (Gnamus et al. 2000; Zhang et al. 

2010b).  

 

Figure 2.4: Bioaccumulation factors (root/ soil and shoot/soil concentration ratios for IHg and OrgHg) vs. 

sampling points. All samples are from Lolium perenne with the exception of 5 plants indicated by “B.J.” 

(Brassica Juncea). 

There was no significant relationship (p>0.05) between the BAF of OrgHg in roots 

and the respective BAF for IHg, which confirms that OrgHg has different accumulation 

mechanisms when compared with IHg. Furthermore, the BAF for OrgHg in roots is not 

constant. Hence, to assess which variables are responsible for the variability of BAFs we 

tested the relationship between the BAF for OrgHg in roots (log-transformed values) and the 

concentration of IHg in soils; the concentration of OrgHg in soils; soil properties (including 

pH, OrgC and clay); and the concentration of IHg in roots, by linear regression analysis. 

Results showed that the levels of IHg in soils and soil properties do not significantly affect 

the accumulation of OrgHg in roots (p>0.05) suggesting that the variation in the availability 

of OrgHg in soil in association with soil properties is not the main factor controlling its 

accumulation in roots. The linear regression model (Rodrigues et al. 2012b) that best 

describes the variability of BAF for OrgHg in roots is the following: 
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   
RootsSoilrootsOrgHg

IHgLogOrgHgLogLogBAF  44.039.068.0
_

  

(r2=0.58, p<0.01) 

These results show that the accumulation of OrgHg in roots decreases with increasing 

levels of soil OrgHg indicating that these plants have an ability to reduce accumulation of 

OrgHg at the most polluted sites. By contrary, higher levels of IHg in roots lead to higher 

accumulation of OrgHg corroborating the hypothesis that both accumulation from soils and 

plant induced methylation are responsible for accumulation of OrgHg in roots. 

Finally, the BAFs for OrgHg in shoots were significantly positively correlated with the 

corresponding BAFs in roots as described by the following linear regression model: 

 
rootsOrgHgshootsOrgHg

BAFLogLogBAF
__

0.152.0    (r2=0.68, p<0.01). 

Furthermore, the BAFs for OrgHg in roots were negatively correlated with 

concentrations of OrgHg in soils (r2=0.67, p<0.01, log-transformed values) which suggests 

that accumulation of OrgHg in ryegrass shoots increases proportionally to accumulation in 

roots and that it decreases with increasing levels of OrgHg in soil, as observed for roots.  

 

2.4.2 Exposure of grazing animals to inorganic and organic mercury in soils and 

feed  

 

The estimated DI of THg as calculated by eq.1 (Figure 2.5A) varied widely between 

0.45 and 170 mg d-1 (median: 5.2 mg d-1) for cows and between 0.073 and 33 mg d-1 (median: 

0.85 mg d-1) for sheep. This wide range reflects the large range in soil and feed levels of THg 

observed in this study. The DI in 33 sampling sites exceeded the acceptable daily intake 

(ADI) of THg of both cows (ADI= 1.4 mg d-1) and sheep (ADI= 0.28 mg d-1) in view of 

food safety associated with THg in animal kidneys (de Vries et al. 2007).  

The ingestion of contaminated feed had a greater contribution than soils to most of the 

estimated values of THg daily intake for both grazing animals. For cows the relative 

contribution of feed varied between 33 and 98% (median: 77%) whereas soil contributed in 

2.0 to 67% (median: 23%). For sheep the relative contribution of soil for estimated THg 

daily intakes was slightly larger (from 3.0 to 77%, with a median value of 33%) yet the 

preponderance of feed contribution remained (from 23 to 97%, with a median value of 67%). 
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For OrgHg the estimated values of DI (Figure 2.5B) for cows were between 1.0 and 

220 g d-1 (median: 71 g d-1). For sheep the DI of OrgHg varied between 0.10 and 33 g 

d-1 with a median value of 11 g d-1. The DI of OrgHg was between 0.020 and 3.0% of the 

DI of THg for both cows and sheep. No values for ADI of OrgHg were found in literature 

or legislation for grazing animals (cows and sheep) but given the high toxicity of these Hg 

compounds such ADI values should be established urgently. For OrgHg, soil contributed 

with 7.0% and 10% (median values) and feed with 94% and 91% (median values) for cows 

and sheep, respectively, suggesting that feed is the primary source of OrgHg to grazing 

animals. 
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Figure 2.5: Daily intake of total mercury (5A) and organo-metallic mercury (5B) for cows and sheep at the 

various sampling sites (expressed in mg d-1). 
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2.4.3 Estimated levels of total mercury in animal organs  

 

The estimated concentration of THg in cow kidney calculated by eq.2 ranged widely 

from 0.017 to 6.2 mg kg-1 fresh weight (f.w.) (median: 0.19 mg kg-1 f.w.) whereas in sheep 

kidney levels of THg varied between 0.0080 and 2.9 mg kg-1 f.w., with a median of 0.090 

mg kg-1. The estimated concentrations of THg in liver were between 0.0040 and 1.5 mg kg-

1 f.w. (median: 0.050 mg kg-1) and between 0.0020 and 0.70 mg kg-1 f.w. (median: 0.020 mg 

kg-1) for cow and sheep, respectively. Muscle was the organ with the lower values of 

estimated THg concentration for both animal species and the only organ for which all 

estimated levels were below critical limit of 0.05 mg kg-1 f.w., as defined in food quality 

criteria (de Vries et al. 2007). The estimated concentrations of THg in muscle were between 

0.000020 and 0.0090 mg kg-1 f.w. in cow (median of 0.00030 mg kg-1) and between 

0.000030 and 0.010mg kg-1 f.w. in sheep, with a median of 0.00030 mg kg-1. Almost 85% 

of all estimated levels of THg in cow kidney and 53% of all estimated concentrations in cow 

liver exceeded the current food quality criteria (0.05 mg kg-1 f.w.). For sheep almost 73% of 

all estimated levels in kidney and 45% of all estimated levels in liver were above critical 

limits. These results give indication of the potential risk to human health derived from the 

consumption of offal from animals that graze in this area. 

Since BAFfeed-animal values from literature are only available for THg it is not possible 

to estimate the relative percentage of IHg and OrgHg in animal organs.  

 

2.5 Implications for risk assessment 

 

Results from this environmental study indicate that there is uptake of IHg from soils 

by roots of Lolium perenne and subsequent translocation of IHg to above ground plant parts, 

although plant roots can to a certain extent retain IHg and reduce its translocation. No 

accumulation of IHg in shoots or roots in relation to soil IHg concentrations was observed 

(BAFs<1). On average, 99% of THg in shoots is in the form of IHg. Thereby, and since 

significant relationships between BAFs for IHg in edible plant parts and the corresponding 

concentration of IHg in soils were established from experimental data, it is possible to derive 

site-specific thresholds for IHg in soils from available quality criteria for feed crops (THg), 
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as described by Rodrigues et al. 2012b. However, since IHg and OrgHg have different uptake 

and accumulation mechanisms in Lolium perenne (as also previously resported for other 

plants by Zhang et al. 2010b) and since OrgHg is known to be much more toxic than IHg, 

the establishment of soil thresholds for IHg (or THg) may not fully address the actual health 

risks for animals (and subsequently for humans). 

This study indicated that despite the relatively low percentage of OrgHg in plants, this 

pool must not be overlooked since it represents a relatively high concentration in edible plant 

parts (up to 13 µg kg-1 d.w.) and includes the most toxic and mobile forms of Hg, primarily 

MeHg (Fernández-Martínez et al. 2005). Traditionally, feed control quality only included 

measurement of THg and disregarded organo-metallic forms of the metal despite their high 

toxicity (Hedegaard and Sloth 2011). However, results suggest that there is accumulation of 

OrgHg in roots (BAFs>1) which results from both root uptake and plant enhanced 

methylation of IHg in surrounding rhizosphere (Sun et al. 2011). It has also been suggested 

that there is no barrier to the translocation of OrgHg from roots to shoots as in the case of 

IHg. These processes result in accumulation of OrgHg also in shoots, relatively to soil 

concentrations (BAFs>1). Such BAFs for OrgHg in shoots increase with increasing BAFs 

for roots. But since no limits for OrgHg concentrations in animal feed were found in 

Portuguese or European legislation (European Commission 2002) it is not possible to 

effectively evaluate potential risks of exposure for livestock associated with dietary intake 

of feed at these OrgHg levels. Also, without such limits it is not possible to back-calculate 

threshold concentrations for OrgHg in soils, using soil-to-plant transfer relationships for 

OrgHg which could be derived from experimental data as described by Rodrigues et al. 

(2012a,b). Such site-specific thresholds for OrgHg in soils could then be used as a most 

robust way to identify those fields which in fact should not be used for raising cattle or for 

the production of food and fodder products. 

Finally, since the toxicokinetics of Hg in animals depends on the chemical form of the 

metal, in order to properly ensure food safety it is necessary to further understand transfer 

and potential bioaccumulation of OrgHg in animal organs since currently no BAFfeed-animal  

are available from literature.  
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2.6 Conclusions 

 

The DI of THg in 33 sampling sites analysed in this study exceeded the acceptable 

daily intake (ADI) of THg of both cows (ADI= 1.4 mg d-1) and sheep (ADI= 0.28 mg d-1), 

in view of food safety associated with THg in animal kidneys. Furthermore, estimated daily 

intake of OrgHg for grazing animals was up to 220 g d-1 (for cows) and up to 33 g d-1 (for 

sheep). These results suggest that feed crops are an effective way of entry of OrgHg into the 

terrestrial feed and food chain which may represent a threat to animal and human health.  

At the moment, feed quality control measures (particularly European Directive 

2002/32/EC, EC 2002) only include the measurement of THg concentrations. This study 

suggested that solely monitoring the levels of THg in soils and feed may not allow to 

adequately taking into account accumulation of OrgHg in feed crops and properly address 

risks associated with the high toxicity of OrgHg required to obtain an accurate assessment 

of risks posed by metal mobilization from soils into the foodchain to animal (and human) 

health. In the future, ADIs for OrgHg for livestock should be set. Also, limits for OrgHg in 

feed and animal products for human consumption should be included in legislation for feed 

quality and food safety. 
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3 Bioaccumulation and biosorption of Hg by living marine macroalgae: 

prospecting for a new remediation biotechnology applied to saline 

waters. 
 

3.1 Introduction 

 

Increasing industrialization, which allowed Man to thrive and achieve high living 

standards, has resulted in the rise of the contamination levels in the environment at large-

scale. Due to its high toxicity, temporal persistence (Chojnacka and Mikulewicz 2014), 

bioaccumulation and bioamplification along the trophic chain (Coelho et al. 2005), mercury 

(Hg) has aroused a great concern worldwide (Bulgariu and Bulgariu 2014).  

In the aquatic environment, Hg is usually found as Hg2+ or as complexes of Hg2+ with 

different organic and inorganic ligands (Kabata-Pendias 2007). However, reduction of Hg2+ 

to elemental form Hg0 may occurs, as well as methylation of inorganic Hg, resulting in 

highly mobile organo-metallic species, such as methylmercury, which is the most toxic form 

of Hg (Clarkson and Magos 2006). Organo-metallic species are more readily assimilated by 

organisms than inorganic forms (Henriques et al. 2013), which enhances the risks associated 

with the entrance of Hg into the food chain – the main route of human exposure to this 

contaminant (mainly through the consumption of fish). 

Alerted to the toxic effects of Hg, governmental institutions around the world have 

imposed increasingly tight limits for its concentration in industrial effluents. Recently 

European Union (EU) even brought a paradigm shift, ranking Hg as "priority hazardous 

substance" in the field of water policy, whose discharges should be ceased or eliminated 

progressively until 2021 (Decision No 2455/2001/EC). So, instead of limits for wastewater 

discharges, legislation now considers environmental quality standards (EQS) for this metal 

in surface waters (Directive 2013/39/EU 2013). 

Physicochemical processes, conventionally used for metal removal, often have high 

operating costs, generate large amounts of sludge which require a proper disposal, or are 

ineffective when aim is to achieve very low residual levels (Velasquez and Dussan 2009, 

Farooq et al. 2010). The development of alternative treatment technologies, is therefore 

essential. In this sense, methods based on the use of biomasses or organic wastes – 

biosorption (Farooq et al. 2010), or even of live organisms – bioaccumulation (Chojnacka 
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2010), such as plants or macroalgae, largely available, may be the solution for reducing 

levels of Hg to acceptable limits, in a cost-effective and environmentally friendly way. 

In the literature there is a considerable number of studies reporting the successful application 

of several biomasses in metal removal (Cheung et al. 2000, Ho and McKay 2004, Chojnacka 

2007, Farooq et al. 2010), although less have been devoted to Hg (Rocha et al. 2013, Lopes 

et al. 2014). Furthermore, oddly the majority of works deals with synthetic water or 

freshwater, although most industrial effluents ends into estuaries or coastal areas (Torres et 

al. 2008), which are complex dynamic systems rich in salts. The focus on the removal of a 

particular contaminant in unrealistic and overly high concentration may also be pointed as a 

failure of most research works (Rocha et al. 2013). 

In the last years, marine macroalgae have gained special attention in the field of water 

remediation (Romera et al. 2007, Freitas et al. 2008, He and Chen 2014), due to their 

remarkably ability to bind metals, which is attributed to the structure and chemical 

composition of their cell walls, offering different metal-binding sites (Hamdy 2000, Romera 

et al. 2007). However, almost all of those studies concern the use of dead biomass, neglecting 

the potential advantages of bioaccumulation, such as metal intracellular binding, which may 

lead to lower residual concentrations (Chojnacka 2010). 

The study of metal accumulation by living organisms has been limited to microalgae 

(Flouty and Estephane 2012) and other microorganisms (Chojnacka 2007), or relates with 

field studies (Varma et al. 2011, El-Said 2012). Comparison between bioaccumulation and 

biosorption of metals by macroalgae is also virtually non-existent in the literature (Flouty 

and Estephane 2012). 

There is a need for laboratory studies, performed under controlled conditions, 

discussing metal bioaccumulation kinetics (Chojnacka 2007, Costa et al. 2011), since most 

works only reports initial and final concentrations of metal (Velasquez and Dussan 2009) or 

present data as a function of time, discarding the mathematical modelling of the results, 

which relate to short exposure periods (Wang and Dei 1999, Singh et al. 2000).  

Marine macroalgae may be divided into brown algae (Phaeophyta), red algae 

(Rhodophyta) and green algae (Chlorophyta), with differences on the cell wall, which may 

dictate the binding to a particular metal. Carboxyl and sulphate are the predominant 

functional groups in brown algae cell walls, which are mainly composed by cellulose, alginic 

acid and sulphated polysaccharides (Romera et al. 2007). Besides cellulose, red and green 
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algae contain, respectively, agar and carragenates, rich in sulphated polysaccharides, and 

glycoproteins, which comprise amino, carboxyl, sulphate and hydroxyl groups (Romera et 

al. 2007). In addition, intrinsic growth rate and potential production of exudates (Coelho et 

al. 2005, Torres et al. 2008) may also influence Hg removal by each macroalgae specie. A 

better understanding of the mechanisms and kinetics of Hg accumulation by macroalgae is 

essential to develop a full-scale biotechnology, to be applied to water remediation. 

Thus, the main objective of this study was to evaluate and compare the uptake and 

accumulation of Hg by three different living macroalgae, Ulva lactuca (green macroalgae), 

Gracilaria gracilis (red macroalgae) and Fucus vesiculosus (brown macroalgae) from Hg 

spiked saline waters, using environmental realistic concentrations. In addition, for the 

macroalgae with best performance, the study and comparison of biosorption and 

bioaccumulation processes (in terms of removal efficiencies and kinetics), as well as the 

assessment of potential Hg methylation during removal were also addressed. 

 

3.2 Materials and methods 

 

3.2.1 Material and chemicals 

 

All chemical reagents used in this work were of analytical reagent grade, obtained from 

chemical commercial suppliers and were used without further purification. The certified 

mercury standard stock solution, containing 1.001±2 mg L−1 of Hg(II) in nitric acid 0.5 mol 

L−1, was purchased from Merck. All working solutions, including standards for the 

calibration curves, were obtained by diluting the stock solution. All material used in the 

experiments was previously washed in Derquim 5% rinsed in Milli-Q water (18 MΩ cm-1), 

soaked in 25% HNO3 for at least 24h and subsequently rinsed with Milli-Q water. All glass 

vessels used in the experiments as reaction vessels or in the storage of the water samples 

were additionally soaked in concentrated HNO3 (65%) for at least 24h, before reuse. 
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3.2.2 Macroalgae collection and maintenance 

 

The green alga Ulva lactuca (Chlorophyta), the red alga Gracilaria gracilis 

(Rhodophyta) and brown alga Fucus vesiculosus (Phaeophyta) were collected in the 

Mondego estuary (Figueira da Foz, Portugal, 40°08′N, 8°50′W) and transported to the 

laboratory in isothermal plastic bags containing some local water. After rinse with seawater 

to remove debris and epibionts a small part of the algae was immediately freeze dried for 

subsequent quantification of the natural (baseline) concentrations of total and organometallic 

Hg. The remaining part was transferred to 30 L clear glass tanks equipped with air pump and 

filled with filtered seawater enriched with Provasoli stock solution (Costa et al. 2011). Until 

the beginning of the experiments the algae were maintained in the aquariums (water was 

changed weekly) under natural light (approximately 12L:12D), at room temperature of 

20±2°C. Seawater needed for algae maintenance and for the sorption experiments was 

collected at Vagueira beach (18 km southwest of Aveiro, Portugal), filtered through 0.45 μm 

pore size filters and stored in the dark at 4°C until further use.  

A brief characterization of seawater at 22ºC, including pH, salinity, conductivity and 

multi-elemental analysis was carried out. The pH (8.0), salinity (35 g L-1) and conductivity 

(54.5 mS cm-1) were recorded on a WTW meter. Concentrations of major (Ca, K, Mg, Na 

and Si) and minor elements (Al, As, B, Ba, Be, Cd, Co, Cr, Cu, Fe, Li, Mn, Ni, P, Pb, Sr, 

Vand Zn), obtained by inductively coupled plasma spectroscopy, using a Jobin – Yvon JY70 

Plus Spectrometer (data not show), were in line with those reported by Lopes et al. (2014), 

which correspond to the natural levels in seawater at Portuguese coast. The concentration of 

Hg in the natural seawater was also determined using the methodology described below on 

2.5.1 and the value found (3.1 ng L-1) is typical of a non-polluted water. 

 

3.2.3 Bioaccumulation experiments 

 

Bioaccumulation tests were conducted in Schott Duran® glass bottles of 1 L, where 

each macroalgae species (alive) was placed individually in contact with natural seawater 

spiked with Hg. Three initial concentrations of Hg in seawater were tested, namely 10, 50 

and 100 µg L-1. These concentrations were considered environmentally realistic, intending 
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to mimic real cases: 50 µg L-1 represent the “old” maximum permissible value for effluent 

discharges from industrial sectors (Directive 84/156/EEC 1984); 100 µg L-1 may represent 

a situation of an accidental discharge of untreated effluent and 10 µg L-1 may be the 

concentration in some point of the receiving aquatic ecosystem after the dilution of the 

discharged effluent into the water body. The spiked solutions were obtained by adding the 

desired volume of the Hg standard solution to filtered seawater. All the solutions were left 

to pre-equilibrate during 24h before the beginning of the experiments. An aliquot of each 

solution was collected immediately before adding the seaweeds to confirm the real 

concentration of Hg. Only a portion of algae was used in the experiments (Wang and Dei 

1999). Small pieces with uniform size were cut from the healthy thallus and added to the 

spiked seawater, in a total of approximately 1.6 g L-1, fresh weight (small discs with diameter 

(Ø) of 18 and 56 mm were used in the case of U. lactuca). This algae biomass does not 

jeopardize the normal macroalgae growth during experiments, as studies on U. lactuca 

biomass production (which has the highest growth rate of the three) reported maximum 

biomass yield for a stocking density 10 times higher (4 kg FW m-2 or 16 g FW L-1) 

(Nikolaisen 2011). On the other hand the chosen amount took into account the minimization 

of the final residue, reducing the issues associated with its safe disposal. All algal pieces 

were acclimatized in clean seawater for several hours prior to mercury exposure. The uptake 

of Hg by the living macroalgae was followed during 6 days by determining the concentration 

of this metal in solution samples (5-10 mL) collected at defined time intervals. All the 

samples were acidified to pH ≤ 2 using Suprapur HNO3 and stored at 4ºC until analysis. In 

the tests involving U. lactuca an algal disc (Ø=18mm) was also removed from the solution, 

at each sampling time, washed in clean seawater and freeze dried for later mercury 

quantification. The combined mass of all discs removed along the experiment represent less 

than 10% of the initial total biomass. All bioaccumulation trials were performed in triplicate, 

under natural light at room temperature of 20±2°C. Blanks (macroalgae in clean seawater) 

and controls (Hg spiked seawater in the absence of macroalgae) were always running in 

parallel with the experiments. No pH buffer was added to the system and no pH adjustments 

were made, since this could interfere with the Hg uptake and cellular metabolism of the 

organisms (Vasconcelos and Leal 2001, Velasquez and Dussan 2009). The initial pH of the 

solutions was 7.9 and slightly variations, although not significant, were observed in the 



Chapter 3 

 

98 
 

course of the experiments (8.1±0.3). At the end of the experiments, macroalgae were 

harvested, rinsed and freeze dried for later quantification of total and organometallic Hg. 

 

3.2.4 Biosorption experiments 

 

The biosorption of Hg by U. lactuca was evaluated by placing its dead biomass (≈500 

mg L-1, dry weight) in contact with seawater spiked with Hg, in the same range of 

concentrations used for bioaccumulation. At defined time intervals, aliquots (5-10 mL) were 

collected from the system and filtered through acid-washed 0.45-μm Millipore membranes. 

Filtrates were immediately adjusted to pH<2 with Suprapur nitric acid, and stored at 4ºC 

until Hg quantification. The experiments were held under the same laboratory conditions 

mentioned above, although solutions were maintained under constant stirring. Blanks and 

controls, as described above, were always running in parallel with the experiments. The Ulva 

biomass was used as biosorbent without any specific pre-treatment. Macroalgae were simply 

washed with distilled water, air-dried during several days, dried at 40ºC for 24h and milled 

using a domestic coffee grinder. 

 

3.2.5 Mercury quantification 
 

3.2.5.1 Mercury concentration in solution 

 

Mercury quantification in all water samples was performed by cold vapour atomic 

fluorescence spectroscopy (CV-AFS), using a PSA 10.025 Millennium Merlin Hg analyser 

and SnCl2 (2% m/v in HCl 10% v/v) as a reducing agent. This system provides low detection 

limits and enables determinations in the range of ng L-1 to µg L-1. The concentration of Hg 

in the collected samples was determined through a calibration curve (r2≥0.999), plotted and 

checked daily, using five standard solutions (0.0 to 0.5 µg L-1). At least three replicate 

measurements were carried out for each sample (relative standard deviation among 

replicates: <5%). In this range, detection and quantification limits obtained through blank 

measurements (n = 20) were 0.007 µg L-1 (defined as the mean value plus 2.86 standard 

deviation) and 0.021 µg L-1 (defined as the mean value plus 10 standard deviation), 

respectively. The natural baseline value for total mercury in seawater was quantified after 
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addition of 500 µL of a saturated solution of potassium persulfate to 50 mL of filtered 

seawater and irradiation by a UV lamp (1000 W) for 30 min. Following irradiation, the 

excess of oxidant was reduced with 37.5 µL of hydroxylamine solution 12% (w/v) (Pato et 

al. 2010) . The measurement was then performed by CV-AFS, using a calibration curve from 

0 and 60 ng L-1. In this range, the detection and quantification limits, as defined above, were 

1.6 and 3.0 ng L-1, respectively (n=15, 99.5% confidence level). 

 

3.2.5.2 Total mercury concentration in algal biomass 

 

Total mercury concentrations in macroalgae biomass were measured by thermal 

decomposition atomic absorption spectrometry with gold amalgamation using a LECO© 

AMA-254, as described by Costley et al. (2000). The analysis is performed directly in the 

sample (1 to 20 mg, dry weight) without digestion or pre-specific treatment, avoiding 

mercury losses or contamination as well as matrix interferences. At least three replicate 

measurements were carried out for each sample with an acceptable relative standard 

deviation among replicates: <10%. Detection and quantification limits, as described 

previously, were 0.01 ng Hg and 0.03 ng Hg, respectively (n=20, 99.5% confidence level). 

Several blanks (i.e. an empty sample nickel boat) were run before and between sample 

analyses to ensure that mercury was not being carried over between samples. The quality of 

the results was assessed by using the Certified Reference Material (CRM) BCR60 

(Lagarosiphon major; 0.34 ± 0.04 mg kg-1 of total Hg). The CRM was analyzed every day 

prior to the beginning of the analysis and repeated at the end of the day. All percentages of 

recovery for total Hg were within the range of 85–107% (n = 17). 

 

3.2.5.3 Organometallic mercury concentration in algal biomass 

 

The fraction of organometallic mercury (OrgHg) in living U. lactuca before and after 

Hg exposure was assessed through a method described by Válega et al. (2006). Extraction 

of OrgHg mercury compounds from the sample matrix was achieved through digestion of 

100–200 mg d.w. of each sample with a mixture of 18% KBr in 5% H2SO4 with CuSO4 (1 

mol L−1), followed by extraction of OrgHg by toluene. The extractions were always 

performed in triplicate. The OrgHg mercury compounds retained in the toluene fraction were 
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back extracted into an aqueous solution of thiosulphate. Mercury in liquid aliquots of the 

extracts (250–1000 μL) was then quantified as a whole by thermal decomposition atomic 

absorption spectrometry with gold amalgamation (LECO model AMA-254). To ensure the 

quality of results procedural blanks (i.e. procedure with the reagents only) and reference 

material TORT-2 (Lobster Hepatopancreas; 0.152 ± 0.013 mg kg−1 of methylmercury) were 

always carried out in parallel with the samples and analysed. The procedural blanks were 

always below the detection limit of the equipment (0.01 ng Hg). The recovery for OrgHg 

mercury (assuming that the dominant form in this fraction is methylmercury (Ullrich et al. 

2007, Nam and Basu 2011)) was in the range 87–90% (n = 10). 

 

3.2.6 FTIR spectra measurements 

 

FTIR spectra of U. lactuca before and after exposure to Hg were recorded by using a 

Bruker optics tensor 27 spectrometer coupled to a horizontal attenuated total reflectance 

(ATR) cell using 256 scans at a resolution of 4 cm-1.The samples were examined directly 

and data were obtained as transmittance. The analysis of FTIR spectra was carried out by 

examining the spectral bands that are modified (Bulgariu and Bulgariu 2014). 

 

3.2.7 Analysis of experimental data 

 

When macroalgae are exposed to seawater contaminated with Hg, uptake and 

accumulation of this metal by macroalgae is expected to occur, leading to a decrease of its 

concentration in solution over time (and to simultaneous increase of Hg content in the 

biomass). Uptake will persist until all the Hg be removed from the solution or until an 

equilibrium state be attained, assuming that necessary time for this has elapsed. Thus 

mercury uptake/accumulation by macroalgae defined as the amount of Hg bound by unit of 

mass at a given time t (qt, µg g−1) was deduced from the mass balance between the initial Hg 

concentration in the solution (C0, µg L−1) and the concentration after a particular period of 

contact time t (Ct, µg L−1): 

m

VCC
q t

t

)( 0   (1) 
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where V (L) is the volume of the solution and m (g) is the macroalga biomass, in dry weight. 

When equilibrium was attained, t=te, qt=qe and Ct=Ce (residual Hg concentration in solution). 

The performance of the removal process was also evaluated and compared using the Hg 

removal percentage (R, %), which at time t is defined by: 

100
)(

(%)
0

0 



C

CC
R t

t
(2) 

 

3.2.7.1 Biosorption and bioaccumulation kinetic models 

 

Kinetics of Hg removal process using non-living biomass (biosorption) and using live 

biomass (bioaccumulation) were described by applying three of the most common kinetic 

reaction models, in their non-linear forms (El-Khaiary and Malash 2011), namely, Lagergren 

pseudo-first-order model (Lagergren 1898), Ho’s pseudo-second order model (Ho and 

McKay 1999) and Elovich model (Ho 2006) to results. 

The pseudo first-order model (PFO), firstly used by Lagergren, is mathematically 

expressed by: 

1( )t
e t

dq
k q q

dt
     (3) 

where k1 (h
−1) is the rate constant of pseudo-first order. Its non-linear form, obtained 

after integration and application of the boundary condition qt=0 at t=0, is: 

)1( 1tk

et eqq


    (4) 

The pseudo second-order (PSO) was proposed by Ho, and contrary to the previous 

model it usually represents the sorption evolution along full time range (Ho et al. 2000). The 

kinetic rate equation is expressed as: 

2

2 ( )t
e t

dq
k q q

dt
     (5) 

where k2 (g µg−1 h−1) is pseudo-second order rate constant. The integrated form of Eq. 5, 

after applying the boundary conditions t=0 to t=t and qt=0 to qt=qe, is:  

2

2

21

e
t

e

q k t
q

q k t



   (6) 

When q/t approaches zero, the initial sorption rate (h) is expressed by the following equation: 
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2

2 eh k q    (7) 

Elovich model was established by Zeldowitsch to describe kinetics of gas 

chemisorption onto solids (Ho 2006), but in recent years it as has also been used to describe 

the sorption of contaminants from aqueous solutions (Ho and McKay 2004). Elovich model 

is defined by the following equation: 

tt qdq
e

dt

 
    (8) 

where qt is the quantity of Hg adsorbed during the time t, α (µg g-1 h−1) is the Elovich initial 

sorption rate at zero coverage, and β (g µg− 1) is the Elovich desorption constant related to 

the extent of surface coverage and activation energy for chemisorption. Integrating Eq. 6, by 

using the boundary conditions of q=0 at t = 0 and q = q at t = t, and assuming that αβt>>1, 

the simplify form of Elovich’s equation is expressed by: 

 
1

ln 1tq t


     (9) 

 

3.2.7.2 Statistical analysis  

 

All statistical data analysis was performed using GraphPad 6.0. This tool was also used 

to plot all graphs as well as to calculate all kinetic parameters through nonlinear regression. 

GraphPad 6.0 uses the least-squares as fitting method and the method of Marquardt and 

Levenberg, which blends two other methods, the method of linear descent and the method 

of Gauss-Newton for adjusting the variables. Coefficient of determination (R2) and standard 

deviation of residuals (Sy.x) were analysed in order to evaluate the goodness of fit and to 

compare models. The relative error (Er) between experimental and predicted values of qe 

was also calculated. These statistical parameters can be mathematically defined by: 
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where yi are the experimental data values, ŷ are the predicted values, y is the mean of the 

experimental data and df is the number of the degrees of freedom  (equal to number of data 

points minus the number of parameters fit). 

 

3.3 Results and discussion 

 

3.3.1 Mercury uptake by three macroalgae species 

 

Figure 3.1A, B and C shows the uptake/accumulation of Hg by living U. lactuca, G. 

gracilis and F. vesiculosus over time, when exposed to Hg spiked seawater, at different 

concentrations, namely, 10, 50 and 100 µg L-1. Values of qt were obtained through mass 

balance using Eq. (1). Baseline concentrations of Hg in macroalgae, obtained through 

analysis of their biomass after collection in the field were: U. lactuca, 0.029 ±0.002 µg g-1; 

G. gracilis, 0.047 ±0.003 µg g-1; F. vesiculosus, 0.045 ±0.002 µg g-1. These values are typical 

of macroalgae growing on no-polluted sites (Coelho et al. 2005,Eisler 2010). 

In general, accumulation profiles for the three macroalgae present similarities, i.e. 

initially for all concentrations there was a sudden and noteworthy uptake of Hg, followed by 

a phase where the rate of accumulation decreased until a plateau is reached and Hg content 

in biomass remained invariable. The remarkable uptake observed in the first hours of contact 

is explained by the high driving force at the beginning of the sorption process, since at that 

time macroalgae surface was Hg-free. Thus, at this stage uptake process is essentially passive 

(metabolic-independent), of physical-chemical nature. Afterwards, external bonding and 

internal accumulation (metabolic-dependent) of Hg occur simultaneously (Andrade et al. 

2006,Chojnacka 2007) until the steady-state is achieved, corresponding to low 

concentrations of Hg in solution (Figure 3.1D, E and F). 

For all macroalgae, initial concentration of Hg in solution had an effect on Hg 

accumulation. For a given time, greater amount of Hg was always sorbed with the increase 

on initial concentration of Hg in solution (dose-dependent accumulation). This enhanced 

uptake is attributed to the fact that higher concentration provides great driving force to 

overcome all mass transfer resistances of Hg between solution and macroalgae (Rocha et al. 

2013). In addition, none of the macroalgae species seemed to prevent or restrict 
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accumulation. So, the amount of Hg stored by algae is closely related to its initial 

concentration in solution (0.998<R2<0.999; P<0.001). It should be noted that no adverse 

effects caused by the accumulation of Hg, such as sporulation or marked loss of color which 

indicates algae decay (Han and Choi 2005) were observed for the studied concentrations 

during the trials (lasting 6 days).  

Bioconcentration factors (BCF), defined as the relation between the concentration of 

Hg in macroalgae biomass at the end of exposure and the initial concentration of Hg in 

solution, varied between 1870 and 2267 for all seaweeds and Hg concentrations. These 

results are indicative of the great affinity existing between these seaweeds and Hg, and are 

in agreement with those studies which support the use of macroalgae as biomonitors of metal 

contamination in coastal waters (Wang and Dei 1999, Barreiro et al. 2002, El-Said 2012). A 

few field studies reported that metal concentrations in algae tissues react faithfully to 

gradients of metal concentration in the surrounding environment (Coelho et al. 2005, Varma 

et al. 2011). In fact, metal content in a good biomonitor should be directly proportional to 

the bioavailable metal concentration in water column (Wang and Dei 1999), requirement 

which was fulfilled by the three macroalgae here studied. 

However, some differences on Hg uptake rate were observed among macroalgae 

species. For the lowest Hg concentration, there were significant differences in the Hg 

removal pattern, along contact time, between the green macroalga and the other two species 

(ANOVA, Wilcoxon matched-pairs signed rank test, two-tailled; P<0.01). After a period of 

contact of just 6 h, Hg level in U. lactuca was 11.3 µg g-1, corresponding to 48% of removal 

(6 µg L-1 of Hg remained in solution). At the same time, G. gracilis removed c.a. 30% and 

F. vesiculosus just 23%, which correspond to accumulations of 6.6 and 5.3 µg Hg g-1, 

respectively. After 72h of exposure, the percentages of removal for F. vesiculosus and G. 

gracilis were, respectively, 88% (qt= 20.0 µg g-1) and 87% (qt= 19.9 µg g-1), whereas U. 

lactuca achieved similar removal efficiency after just 48h. The differences on Hg 

accumulation between the three algae vanished after 96h, mainly because Hg concentrations 

in solution were already very low and the removal process was close to reach a point of 

equilibrium (0.31 µg L-1 < Ce< 0.84 µg L-1). 
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Figure 3.1: Hg accumulation (qt, expressed in µg g-1, dry weight) by three living algae (○ – U. lactuca; ■ - 

G. gracilis; ∆ -F. vesiculosus) over time (t, h), when in contact with spiked seawater (A, B and C). The 

results are expressed as the mean ± standard deviation (n=3). The variation of the concentration of Hg in 

seawater (CS, expressed in µg L-1) as well the percentage of Hg removed between 6 and 144h of contact are 

also presented in D, E and F (for clarity the error bars were omitted). 

 

The removal kinetic behaviour was also significantly different between the three 

species for 50 µg L-1 (ANOVA, Wilcoxon matched-pairs signed rank test, two-tailled; 

P<0.01). About 70, 58 and 38% of Hg was removed after 24 hours of contact time with 

green, red and brown algae, respectively, leading to Hg concentrations in solution of 15.8, 
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21.7 and 32.0 µg L-1, and accumulations of 72.6, 60.2 and 40.5 µg Hg g-1, respectively. 72h 

was the period of time required for U. lactuca to incorporate 98% of the all Hg originally in 

solution (qt= 101.5 µg g-1, Ct=1.3 µg L-1). After the same period of time G. gracilis removed 

91% (qt=93.9 µg g-1, Ct=4.8 µg L-1), while the removal efficiency for F. vesiculosus was 

limited to 76% (qt= 79.2 µg g-1, Ct=12.7 µg L-1). 

For the highest initial concentration, despite visual similarities on Hg uptake profiles, 

over the entire range of time, between U. lactuca and G. gracilis, Wilcoxon matched-pairs 

signed rank test indicates significant differences among these two macroalgae (P=0.0039). 

Removal percentages after 24h of contact time were between 56% and 61% (qt (G. 

gracilis)=121.6 µg g-1; qt (U. lactuca)= 128.8 µg g-1) reaching equilibrium values (at 96h) 

of 95% (qt = 205.2 µg g-1, Ct=5.0 µg L-1) and 99% (qt = 208.1 µg g-1, Ct =1.1 µg L-1) for G. 

gracilis and U. lactuca, respectively. Once again F. vesiculosus was the slowest in 

incorporate Hg from the solution, whose removal efficiencies and accumulations after 24h 

and 96h of exposure were, respectively, 32%, 81.5 µg g-1 and 92%, 197.3 µg g-1. 

Overall, bioaccumulation capacities of Hg (qe) for the three living macroalgae, 

determined at the end of the trials, are in the range of 20.8-22.7, 93.5-103.2 and 202.3-208.5 

µg g-1, for initial Hg concentrations of 10, 50 and 100 µg L-1, respectively. These results may 

be of great value for studies concerning transference and bioconcentration of Hg along a 

coastal trophic web. 

In all cases, U. lactuca proved to be faster in removing Hg from the solution, which 

can be attributed to its specific characteristics such as metabolism and surface area. In fact, 

this green macroalga is known to possess very high growth rates (Villares et al. 2001, Costa 

et al. 2011, Nikolaisen 2011), suggesting that U. lactuca will be faster to assimilate essential 

elements as well as toxic metals from the surrounding medium (Torres et al. 2008). So, U. 

lactuca will reflect punctual changes in environmental contamination faster than perennial, 

slow growing macroalgae such as G. gracilis and F. vesiculosus (Coelho et al. 2005). In 

addition, its thin and sheet-like thallus translates into a large surface area, with structurally 

uniform and physiologically active cells acting as “biofilters”. Sorption area to volume ratio 

also explains why living G. gracilis performed better on removing Hg than living F. 

vesiculosus, despite some studies on metal sorption by dead algae biomass report that brown 

algae have higher sorption capacities than any other algae (mainly due to the presence of 

alginates in their cell wall) (Davis et al. 2003, Romera et al. 2007). F. vesiculosus have a 
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more compact structure (less surface area) than G. gracilis, whose thin thallus with several 

growing cylindrical branches covers a higher volume of solution (less mass transfer 

resistance). 

Besides environmental monitoring aspects, results may be important for elaborating 

wastewater treatment techniques based on the use of live macroalgae. From this point of 

view, U. lactuca stands out, not only because of the faster Hg removal, but also it was the 

only one who, for all experimental conditions, led to residual concentrations of Hg in 

solution equal or lower than 1 µg L-1, which is the guideline value for drinking water quality 

(Council Directive 98/83/ EC). Moreover, this green alga proved to be the easiest to maintain 

in laboratory (being more tolerable to changes in temperature and luminosity). Cultivation 

of U. lactuca is well documented (Nielsen et al. 2012), being that of the macroalgae studied 

so far, it has the highest annual yield (up to 45 tons dry matter per hectare were reported by 

Nikolaisen (2011)). Another huge advantage for adopting this species is its high assimilation 

of CO2 (production of 1 ton of algae takes up about 1.5 ton of CO2) (Nikolaisen 2011), which 

contributes to compliance of mandatory CO2 reductions. 

On this basis following studies were focused on U. lactuca, evaluating the perspectives 

of using live seaweed (bioaccumulation) instead of its dead biomass (biosorption) to promote 

Hg removal from saline waters. 

 

3.3.2 Ulva lactuca: comparison between biosorption and bioaccumulation of Hg 

 

Figure 3.2 depicts the kinetic curves (Ct vs. t) for different initial concentrations of Hg 

in seawater: 0, 10, 50 and 100 µg L-1, when in contact with dead biomass or with live biomass 

of U. lactuca. Data regarding controls are also presented, revealing that for all 

concentrations, Hg losses were minimal and were under control over the full time range. 

Results for 0 µg L-1, which corresponds to Blanks, confirms that macroalgae (dead or alive) 

did not constitute a Hg source to solutions, and prove that care taken throughout the study, 

to reduce uncertainties associated with potential contamination issues, took effect.  

For the remaining concentrations, regardless of the removal process, kinetic profiles 

are characterized by a rapid and marked decrease in the concentration of Hg, Ct, in the initial 

period (C0-dependent), which represents a rapid metal biosorption/bioaccumulation by 

macroalgae. This step was followed by a subtle decrease in Ct until equilibrium was 
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established. After a contact time of 6 hours between dead macroalgae and contaminated 

seawater, initial concentrations of Hg of 10, 50 and 100 µg L-1 were reduced to 2.9, 26.2 and 

64.5 µg L-1, respectively. For the same range of initial concentrations and equal period of 

time, living U. lactuca led to concentrations of Hg in solution of 6.0, 34.3 and 77.2 µg L-1. 

Removal efficiencies for dead and living macroalgae after 12h were, respectively, 80 and 

60% C0,Hg of 10 µg L-1, 60 and 48% for C0,Hg of 50 µg L-1 and 45 and 37% for C0,Hg of 100 µg 

L-1. 
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Figure 3.2: Hg concentration (CS, expressed in µg L-1) in spiked seawater during the contact with living U. 

lactuca (□ – bioaccumulation) and with its dead biomass (● – biosorption). The results are expressed as the 

mean ± standard deviation (n=3). The dashed line (…) corresponds to the control, i.e. spiked seawater without 

algae. 

 

Biosorption is therefore a quicker process, which may be explained by the fact that 

only physicochemical mechanisms are involved on Hg uptake (Chojnacka 2010), whereas 

some biological efflux mechanisms may occur in bioaccumulation (Vasconcelos and Leal 

2001, Velasquez and Dussan 2009). Additionally, the use of dead U. lactuca in granular 
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form, which increases its surface area (Lopes et al. 2014), provided a greater number of 

available sorption sites, at the beginning of the sorption process, in relation to 

bioaccumulation (Figure 3.2). 

Steady state was also reached more rapidly in biosorption trials (Figure 3.3A), 

although it has resulted on higher residual levels of Hg in solution (Figure 3.3B). The period 

of time needed to attain equilibrium, te, was dependent on the initial concentration of Hg in 

solution, ranging between 24 to 72h for Hg concentrations of 10 to 100 µg L-1, respectively. 

It should be noted that equilibrium does not mean that all binding sites on macroalgae surface 

were occupied, since increasing initial Hg concentration resulted in higher values of qe 

(Figure 3.3C). In fact, as biosorption occurs surface charge will increase and electrostatic 

interactions become more intense, leading to an equilibrium between qt and Ct (Rocha et al. 

2013).  

The removal process relying on the use of live U. lactuca lasted longer (between 72 to 

96h until reach equilibrium), nevertheless with a better performance than biosorption, since 

for all experimental conditions, Hg levels were reduced by 97-99% (Figure 3.3D). With dead 

macroalgae, only for the lowest Hg concentration it was accomplished a removal efficiency 

above 90%, corresponding to a final concentration of Hg in solution of 1.2 µg L-1, which is 

very close to the limit value set by the European Union for waters for human consumption, 

1 µg L-1 (Directive 98/83/EC). The superior performance of bioaccumulation against 

biosorption is due to its additional stage of internal accumulation. Mercury bound on the 

surface was actively transported into the cells through helper proteins (Velasquez and 

Dussan 2009) under the same mechanism by which essential metals are transported across 

membranes (Sunda and Huntsman 1998, Torres et al. 2008). As consequence, binding sites 

on the surface are released (regeneration) and equilibrium shifts towards lower 

concentrations of Hg in solution. Organism growth, i.e. cellular multiplication, leads to an 

additional rise on the number of available binding sites for Hg, also contributing to greater 

metal ion binding capacity, qe (Chojnacka 2010). Similar assumptions were made by 

Chojnacka (2007) when comparing the biosorption and bioaccumulation of Cr(III) by blue-

green alga Spirulina sp.. According to the author, the higher bioaccumulation capacity in 

relation to biosorption was justified by the transfer of metal from the outside into the inside 

of cells and by microbial growth. 
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On the contrary, Kadukova and Vircikova (2005) pointed to some  disadvantages of 

the application of living algal cells (Chlorella kessleri) to promote Cu removal from solution. 

Authors reported that Cu significantly damaged the surface of living cells, which resulted in 

partial loss of cell-binding abilities and release of accumulated copper back into solution. 

Results obtained by Flouty and Estephane (2012) also showed higher metal removal 

efficiencies for dead cells of Chlamydomonas reinhardtii than for living cells, and thus it 

was concluded that biosorption was the most advantageous process in that case. 
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Figure 3.3: Equilibrium data on Hg uptake by dead (biosorption) and living (bioaccumulation) biomass of U. 

lactuca: percentage of Hg removed (A), amount of Hg sorbed per unit of alga biomass (B), time elapsed until 

the equilibrium state was reached (C) and residual concentration of Hg in seawater (D). Experimental 

conditions: initial concentration of Hg in seawater 10, 50 and 100 µg L-1; amount of algae used ≈ 0.5 g L-1, 

dry weight. 

 

In fact, bioaccumulation as a full remediation process brings great advantages but only 

if the contaminated water fulfils the criteria of minimal growth medium and exerts no critical 

toxic effect to cells (at least until removal process is finished and organism is harvested), 

which was verified for U. lactuca and for the full range of experimental conditions studied. 

It should be highlighted that the concentrations of Hg used in this work were chosen to be 

representative of real scenarios, aiming that results can be translated into the real world. For 

the same reason, real seawater was used in the experiments (not synthetic water), having 
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been added only the contaminant. Indeed, a failure existing in the literature regarding metal 

sorption is the focus on initial concentrations extremely larger than those that may be found 

in effluents or aquatic systems affected to wastewater discharges (Rocha et al. 2013). 

Although high removal percentages (> 90%) are reported, the final levels of contaminant in 

solution still are, in most cases, higher than that allowed by law, thus missing the quality 

criteria. For the same reasons, the comparison between removal performances of living U. 

lactuca and other commonly used biosorbents is not an easy and always feasible task. 

For effluents with larger load of Hg, which eventually cause cell disruption, living U. 

lactuca may be used in the final stage of treatment, i.e. as polishing step after application of 

traditional methods (Chojnacka 2010), which are not capable (or become prohibitively 

expensive) of removing Hg at low concentrations (Farooq et al. 2010), or at levels required 

by the law. 

 

3.3.2.1 Kinetic modelling 

 

The fittings of experimental data, on Hg uptake/accumulation along time by dead 

biomass and by live biomass of U. lactuca, to PFO, PSO and Elovich models are presented 

in Figure 3.4A-F. The estimated values for the different kinetic parameters as well as the 

goodness of fit and experimental qe are summarized in Table 3.1. 

Of the three kinetic models studied, PFO model presents the poorest performance on 

describing the biosorption of Hg, over the whole period of time and range of concentrations 

studied (Figure 3.4A-C), which is corroborated by the lowest values of R2 (0.868-0.935) and 

the highest values of Sy.x (2.05-20.8). This may be indicative that more than one sorption 

mechanism (e.g ion-exchange, surface precipitation, redox reaction) is involved in the Hg 

uptake process (Cheung et al. 2000, Chojnacka 2010). Furthermore, the amount of Hg sorbed 

by the dead biomass of U. lactuca at equilibrium, qe, is always underestimated by this model, 

with relative errors of 5.7, 7.1 and 9.0%, for initial Hg concentrations of 10, 50 and 100 µg 

L-1, respectively. On the contrary, PSO model accurately predicts all values of qe, with a 

maximum relative error of 1.9%. In addition, it provides the best fit to the results obtained 

for 10 µg L-1. 
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Figure 3.4: Kinetic modelling of the experimental data regarding the uptake of Hg by non-living (●) and living 

(□) biomass of U. lactuca during the contact (t, h) with spiked seawater. The following three kinetic models 

were applied: pseudo-first order (---), pseudo-second order (▬) and Elovich (…).Experimental conditions: 

initial concentration of Hg in seawater 10, 50 and 100 µg L-1; amount of algae used ≈ 0.5 g L-1, dry weight. 

 

For the highest initial concentrations of Hg, a better agreement is observed between 

the biosorption results and the fittings accomplished by the Elovich model (R2=0.987), which 

reinforces a heterogeneous sorption mechanism (Cheung et al. 2000). Overall, results of 

kinetic modelling assume a chemical sorption or chemisorption, i.e. suggest that the rate-

limiting step in the Hg biosorption is a chemical interaction between Hg ions and superficial 

functional groups of  the biosorbent (Bulgariu and Bulgariu 2014), which involves valence 

forces through sharing or exchange of  electrons, complexation, coordination and/or 

chelation, rather  than physisorption (Ho and McKay 1999). Similar behaviour and 

assumptions have been reported for the dead U. lactuca applied to the removal of Cd, Pb, 

Zn and Co (Sari and Tuzen 2008, Bulgariu and Bulgariu 2014) as well as for various types 

of algae used as biosorbents (Freitas et al. 2008, He and Chen 2014). 

For bioaccumulation, all kinetic models adequately fit the experimental results over 

the entire course of experiments, although PSO model has slightly better performances, as 

shown by the goodness of fit in Table 3.1. However, the theoretical values of qe, predicted 

by the PFO model are closer to the experimental qe values (maximum relative error of 4.5%) 
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than those overestimated by PSO model (relative errors between 5.5 and 15%). The kinetic 

constants of the PFO (k1) and PSO (k2) kinetic models (Table 3.1) are in accordance with the 

considerably faster Hg removal observed early in the biosorption process compared to the 

process of bioaccumulation. The values of initial sorption rate, h, respectively 24.8, 33.5 and 

46.2 µg g-1 h-1 for biosorption and 2.8, 8.4 and 12.1 µg g-1 h-1 for bioaccumulation, 

corresponding respectively to initial concentrations of Hg in solution of 10, 50 and 100 µg 

L-1, also corroborate that observation. 

In the literature, unlike what is observed for biosorption, there is a scarcity of 

systematic studies concerning the bioaccumulation of metals, which include mathematical 

modelling of the kinetics (Chojnacka 2007), especially in experiments involving live 

macroalgae. An exception is the work of Vasconcelos and Leal (2001) on the accumulation 

of Cu, Pb, Cd and Hg by macroalgae Porphyra spp. and Enteromorpha spp., although 

exposure experiments lasted only up to 24h. The authors assumed that metal sorption by the 

macroalgae followed PFO rates, and identified three linear segments in the modelled curves 

with different (decreasing) slopes, corresponding to different uptake rates (Vasconcelos and 

Leal 2001). 

Overall, the present kinetic results are in accordance with the idea that mechanisms 

controlling the Hg bioaccumulation rate by living macroalgae shall be the same which are 

involved in the biosorption of Hg by the dead macroalgae (Vasconcelos and Leal 2001, 

Chojnacka 2007), with the addition of intrinsic metabolic mechanisms. As stated earlier, 

initial rapid uptake will correspond to chemical sorption on cell surface, and eventually to 

simple diffusion into cells or intercellular spaces. The slow uptake will correspond to 

metabolism-dependent incorporation into cells (and eventually continuous or occasional 

excretion of Hg) (Vasconcelos and Leal 2001). Literature reports that cellular membrane is 

virtually impermeable to charged or highly polar neutral species, and thus metal ions bind to 

specialized membrane proteins and then either dissociate back into the medium or are 

transported and released into the cytoplasm (Sunda and Huntsman 1998). However, some 

neutrally charged, non-polar complexes, such as HgCl2, can diffuse directly across cell’s 

lipid bilayer without the help of those membrane proteins, in a simple and metabolic-passive 

diffusion process. Once inside the cell, HgCl2 may react with biological ligands, such as 

sulfhydryls and be internally fixed (Sunda and Huntsman 1998, Vasconcelos and Leal 2001). 

Studies have demonstrated that for seawater, chlorocomplexes of Hg dominates the Hg 
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speciation in the medium (Turner 1987, Mason et al. 1996). Yet, simulations performed in 

Visual MinteQ showed that for the experimental conditions used, most of the mercury was 

in the form of negatively charged chlorocomplexes (about 98%), HgCl3
-1 and HgCl4

-2. Thus, 

simple diffusion of neutral species of Hg, such as HgCl2, only accounts for a small part (up 

to 2%) of the all Hg transported into cells. 

 

Table 3.1: Kinetic constants obtained by fitting the experimental data on Hg uptake by non-living and living 

biomass of U. lactuca to the following models: Pseudo-first order, Pseudo-second order and Elovich. 

   Non-living biomass of U. lactuca Living biomass of U. lactuca 

  
Initial [Hg] 

in seawater 
10 µg L-1 50 µg L-1 100 µg L-1 10 µg L-1 50 µg L-1 100 µg L-1 

  
qe exp ± SD  

(µg g-1) 
20.9 ± 0.08 82.2 ± 1.57 155± 3.37 22.5 ± 0.353 102 ± 0.679 209 ± 0.808 

Pseudo-

first 

order 

Best-fit 

values 

qe 1 ± SD  

(µg g-1) 
19.7 ± 0.753  76.4 ± 3.27 141 ± 9.18 21.4 ± 0.676 102 ± 1.65 207 ± 5.10 

k1 ± SD  

(h-1) 
0.785 ± 0.152 0.290 ± 0.051 0.154 ± 0.039 0.097 ± 0.012 0.058 ± 0.003 0.046 ± 0.004 

Goodness 

of Fit 

R2 0.914 0.935 0.868 0.977 0.996 0.992 

Sy.x 2.05 7.74 20.8 1.36 2.90 8.00 

Pseudo-

second 

order 

Best-fit 

values 

qe2 ± SD  

(µg g-1) 
20.7 ± 0.465 81.8 ± 2.06 152 ± 8.28 23.8 ± 0.397 119 ± 2.54 246 ± 6.75 

k2  ± SD  

(g µg-1 h-1) 
0.058 ± 0.008 0.005 ± 0.0007 0.002 ± 0.0004 0.005 ± 0.0004 

0.0006 ± 
0.00005 

0.0002 ± 
0.00005 

Goodness 

of Fit 

R2 0.975 0.981 0.929 0.996 0.996 0.995 

Sy.x 0.638 4.13 14.6 0.571 2.79 6.29 

Elovich 

Best-fit 

values 

β ± SD  

(g µg-1) 
0.434 ± 0.038 0.081 ± 0.004 0.041 ± 0.002 0.219 ± 0.016 0.038 ± 0.004 0.017 ± 0.001 

α ± SD  

(µg g-1 h-1) 
348± 197 129 ± 26.2 129 ± 24.5 6.55 ± 1.51 13.4 ± 3.24 19.9 ± 3.55 

Goodness 

of Fit 

R2 0.960 0.987 0.987 0.985 0.980 0.988 

Sy.x 1.40 3.42 6.27 1.10 6.30 9.66 

Experimental conditions: initial concentration of Hg in seawater 10, 50 and 100 µg L-1; amount of algae used 

≈ 0.5 g L-1, dry weight; Experimental qe exp and the goodness of fit were also presented in order to assess and 

compare models.  

 

3.3.3 Total mercury concentration in the living U. lactuca 

 

Total Hg concentrations of the algae discs collected during bioaccumulation trials are 

presented in Figure 3.5A-C, along with the corresponding theoretical concentrations, 

deduced through mass balance analysis, using Eq. 1. Results confirm our assumption that 

Hg removed from seawater along time was being incorporated by macroalgae. Over the 

entire course of experiments and range of concentrations studied, no significant differences 
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were observed between time profiles representing mass balance and direct analysis 

(ANOVA, Wilcoxon matched-pairs signed rank test, two-tailled; P<0.01). The occasional 

and slight deviations observed between the curves may be attributed to variations in 

luminosity and growth rate among replicates, factors known to influence the 

bioaccumulation behaviour (Wang and Dei 1999).  

  

1 0  g  L
- 1

t (h )

q
t 

( 
g

 g
-1

)

0 2 4 4 8 7 2 9 6 1 2 0 1 4 4

0

5

1 0

1 5

2 0

2 5

5 0  g  L
- 1

t  (h )

0 2 4 4 8 7 2 9 6 1 2 0 1 4 4

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 0 0  g  L
- 1

t (h )

0 2 4 4 8 7 2 9 6 1 2 0 1 4 4

0

4 0

8 0

1 2 0

1 6 0

2 0 0

2 4 0

2 8 0

A B C

m a s s  b a la n c e d ire c t a n a ly s is

 

Figure 3.5: Concentration of Hg in the living U. lactuca (µg g-1) along the contact time with spiked seawater: 

1) deduced by mass balance using Eq. 1 (─ mass balance); 2) analytically quantified through direct analysis of 

the biomass using LECO AMA-254 © (-●- direct analysis). The results are expressed as the mean ± standard 

deviation (n=3); Experimental conditions: initial concentration of Hg in seawater 10 (A), 50 (B) and 100 (C) 

µg L-1; amount of algae used ≈ 0.5 g L-1, dry weight. 

 

At the end of exposure trials, contents of Hg determined in macroalgae discs were 18.7 

± 1.14, 100.5 ± 16.4 and 197.7 ± 20.2 µg g-1 for initial concentrations of 10, 50 and 100 µg 

L-1, respectively. These values nearly match with those obtained through mass balance, with 

the exception of the value achieved for 10 µg L-1 (Figure 3.5A), which was slightly lower 

(relative error of 17%).  This  may be explained by a “dilution effect” due to the increase of 

biomass (with growth), which was not followed by uptake of Hg, since after 72h the 

concentration of Hg remaining in solution was almost zero (Figure 3.2). Similar behaviour 

was already observed for the bioaccumulation of Hg by U. lactuca at static conditions: after 

an initial fast accumulation, a decreasing phase occurred (Costa et al. 2011). For the initial 

Hg concentrations of 50 and 100 µg L-1, this effect was not so apparent (Figure 3.5B-C) 

because Hg contents in the biomass were 5 to 10 times larger than those measured in 

macroalgae discs after exposure to 10 µg L-1. 

The good agreement between theoretical and experimental qt values with time 

reinforces the great potential of these algae for environmental biomonitoring of Hg 

contamination. Results also point out the feasibility of using U. lactuca as "chemical 
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reagent", in processes of pre-concentration for analytical chemistry (Romero-Gonzalez et al. 

2000). These processes are particularly advantageous in situations where the determination 

of Hg in natural water samples is difficult, either because its concentration is very low or the 

preservation of samples is not possible. Once accumulated by U. lactuca, Hg will remain 

stable, strongly bounded in their tissues (as proved by results showed in Figure 3.2 and 

Figure 3.5), and its quantification is simple: direct analysis of biomass by thermal 

decomposition atomic absorption spectrometry. 

Results of total mercury analysis in macroalgae biomass allow to exclude oxidation-

reduction phenomena of the main mechanisms contributing for the Hg removal from water. 

Is it well known that photochemical and biological reduction of Hg(II) to Hg(0) may occur 

in aquatic systems, leading to substantial decreases in its toxicity and biological uptake 

(Sunda and Huntsman 1998). Elemental mercury is unreactive toward complex formation, 

highly volatile, and if formed intracellularly it will readily diffuse out of the cells (Sunda 

and Huntsman 1998). In that case Hg levels in algal biomass would be much lower than 

those measured. 

Among the different processes that may be involved in the mechanism of metals 

removal by biosorbents (Farooq et al. 2010), ion-exchange and chemical 

coordination/complexation with functional groups on the cell surface are generally pointed 

as the dominant processes in studies involving dead or living algae (particularly in the rapid 

stage of metal uptake, which is identical to biosorption) (Gupta and Rastogi 2008, Flouty 

and Estephane 2012, Bulgariu and Bulgariu 2014, He and Chen 2014). Recently, Michalak 

and co-authors (2014) studied the bioaccumulation of Zn and Cu by green freshwater 

macroalga Vaucheria sessilis. By using SEM-EDX and ICP-OES analysis, authors 

concluded that ion-exchange was the main mechanism in the sorption process, and that K+ 

and Ca2+ cations played a dominating role in the process of cation exchange (Michalak et al. 

2014). In the present study, SEM-EDS analysis of the surface of clean macroalgae (data not 

shown) revealed the presence of high relative levels of K+, Na+, Ca2+ and in greater extension 

Mg2+. These cations could be potentially involved in the exchange with free Hg ions in 

solution. However, even though multi-elemental characterization of seawater after 

bioaccumulation of Hg by U. lactuca has not been performed, this is unlikely (at least as a 

main mechanism), since as mentioned earlier, Hg was present in solution predominantly in 

the form of stable chlorocomplexes. 
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3.3.4 FTIR spectra analysis 

 

In order to gain more insight into the nature of bindings present on the surface of algal 

cells, infrared analysis of U. lactuca was carried out. FTIR spectra of the green marine 

macroalga before and after exposure to Hg (100 µg L-1) are presented in Figure 3.6. Several 

important peaks, corresponding to essential functional groups were observed and assigned 

according to literature. The broad and strong band at 3250 cm-1 is attributed to the 

overlapping of O–H and N–H stretching vibrations (Bulgariu and Bulgariu 2014) and its 

shift to 3303 cm-1 indicates changes in those groups during bioaccumulation of Hg (Ghoneim 

et al. 2014). The peaks observed at 2931 cm−1 (before bioaccumulation) and 2941 cm−1 (after 

bioaccumulation) are assigned to carboxylic/phenolic stretching vibrations  (Bulgariu and 

Bulgariu 2014), while the asymmetrical  stretching band at 1627 and the weaker  symmetric 

stretching  band 1412 cm−1 (1629 and 1404 cm-1 after bioaccumulation) are associated to 

carboxylate groups (Trinelli et al. 2013). Peak at 1412 may be also due to HO- bonds of 

quinine, along with the peak at 1545 cm-1 (Bulgariu and Bulgariu 2014).  
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Figure 3.6: FTIR spectra of marine macroalgae U. lactuca before (solide line) and after contact (144h) with 

Hg spiked seawater (dashed line) with an initial concentration of 100 µg L-1. 

Ulva lactuca spectra shows a maximum absorption band at 1082 cm−1 (1111 cm−1 after 

bioaccumulation), which has been attributed to C-O stretching from the two main sugars, 
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rhamnose and glucuronic acid (Trinelli et al. 2013). Peaks at 595 cm-1 (607 cm-1 after 

bioaccumulation) and 439 cm-1 (457 cm-1 after bioaccumulation) correspond to C–N–S due 

to polypeptides structure of algae cells (Bulgariu and Bulgariu 2014).  

The shifts and changes in intensity observed for most of the bands after bioaccumulation 

of Hg by the macroalgae are indicative of the interactions between this metal and the main 

functional groups in the alga surface. However, it should be noted that no quantitative 

analysis or information about the level of affinity to Hg of the functional groups were 

provided by the FTIR spectra.  

 

3.3.5 Organometallic mercury in the living U. lactuca 

 

Mercury methylation in aquatic systems is generally induced by microorganisms, 

however production of methylated Hg and Pb by macroalgae from the genus Fucus has been 

already reported (Coelho et al. 2005).  

In order to assess the potential methylation of Hg during the removal process carried 

by the U. lactuca, levels of organo-metallic Hg (as total organo-metallic Hg - OrgHg) in 

macroalga tissues, after collection in the field (reference value), and after bioaccumulation 

trials were quantified and compared. Results are presented in Table 3.2. As expected, 

“natural” OrgHg content in reference seaweed was low, 0.004 µg g-1, corresponding to a 

percentage of 13.8% in relation to the respective total Hg concentration. These values are in 

line with those observed by Coelho et al. (2005), as well as with those reported early by Neff 

(2002). After contact with Hg spiked seawater, absolute values of OrgHg in macroalgae 

increased with the rise of the initial concentration of Hg in solution (Table 3.2). Still, the 

overall OrgHg concentrations are very low and in the range of those reported for macroalgae 

worldwide (up to 1.95 µg g-1 (Neff 2002)). These values correspond to low conversion rates 

of inorganic Hg to OrgHg (0.02-0.05%), which diminish with the increase of initial Hg 

content in solution. Similar findings were reported by Coelho et al. (2005) in their field study 

concerning macroalgae response to a mercury contamination gradient. Besides the decrease 

in OrgHg concentrations in all macroalgae, increasing the distance to source of Hg 

contamination, the authors observed a similar pattern, i.e. OrgHg fractions tended to be 

higher in low contamination sites (Coelho et al. 2005). 
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Table 3.2: Organo-metallic Hg concentrations (mean value, n=3) in U. lactuca tissues before (reference) and 

after exposure to Hg spiked seawater, with initial concentrations of 10, 50 and 100 µg L-1. 

 Reference 
After exposure to 

10 µg L-1 

After exposure to 

50 µg L-1 

After exposure to 

100 µg L-1 

[Hg]org (µg g-1) 0.004 0.010 0.029 0.043 

Hg org/total (%) 13.8 0.05 0.03 0.02 

 

Results suggest that methylation of Hg is a slow process, whose rate will not be directly 

controlled by the total concentration of Hg in solution, but by other factors such as 

metabolism (Coelho et al. 2005). Further studies are needed in order to obtain a better insight 

on both uptake of OrgHg and methylation of Hg by macroalgae. 

According to the results, one can conclude that seawater decontamination achieved by 

the use of live macroalgae did not resulted in a significant increase of the risks associated 

with exposure to OrgHg, under the experimental conditions used. 

 

3.4 Conclusions 

 

The uptake/accumulation of Hg by three marine macroalgae, widely abundant 

temperate coasts – U. lactuca, G. gracilis and F. vesiculosus – was studied and compared, 

under environmental realistic conditions. All living seaweeds showed huge bioaccumulation 

capabilities, reaching up to 209 µg of Hg per gram of macroalgae (d.w.), which corresponds 

to 99% of Hg removed from the contaminated seawater. The accumulation was dose-

dependent, with bioconcentration factors ranging from 1870 to 2267. U. lactuca was the 

fastest to accumulate Hg, and under the experimental conditions studied, allowed to reach 

final levels of Hg in solution equal or lower than 1 µg L-1, thus fulfilling the legal criteria for 

drinking water quality (Council Directive 98/83/ EC). The better performance demonstrated 

by this green macroalga in relation to the other two species was justified by its high growth 

rate, combined with its uniform structure and larger surface area. The removal efficiencies 

obtained for biosorption and for bioaccumulation processes were compared and the results 

showed that, for all experimental conditions tested, the use of living U. lactuca instead of its 

dead biomass is more advantageous, since internal accumulation, together with the organism 

growth allowed to obtain lower residual concentrations of Hg in seawater. Biosorption and 

bioaccumulation kinetic data fitted to the pseudo-second-order and Elovich models, 
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suggesting chemisorption as the rate limiting step in the sorption of Hg.  Analysis of the 

FTIR spectra confirmed the presence of some important functional groups in the surface of 

U. lactuca, as well as their chemical interaction with Hg ions. Results on total Hg contents 

in algal biomass over time proved that all Hg removed from seawater is incorporated by the 

organism, and thus hypothetical reduction of Hg(II) to Hg(0) and consequent volatilization 

were not considered as responsible for the decrease of Hg levels in solution. During 

decontamination of seawater carried out by the living U. lactuca, there was a very small 

conversion of inorganic mercury to organometallic Hg (0.02-0.05%), corresponding to very 

low concentrations of OrgHg in macroalga tissues, which were within the range reported  for 

macroalgae collected in the field throughout the world. It was assumed that methylation is a 

slow process, but further studies are needed to clarify the role of macroalgae. 

Overall, results evidenced the tremendous potential of the studied macroalgae to 

bioaccumulate Hg from contaminated seawater, which may be useful and very important not 

only for studies on Hg transfer and bioaccumulation along food chain, but also for the 

development of new water treatment technologies. Marine macroalgae, particularly living 

ones, could be the basis of a remediation biotechnology for saline waters contaminated with 

metals, more efficient and with lower costs than the traditional treatment methods. 
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4 Developing a macroalgae-based biotechnology for water remediation: 

simultaneous removal of Cd, Pb and Hg by living Ulva lactuca  
 

4.1 Introduction 
 

Marine algae inhabit the oceans for more than 2 billion years, and always played an 

important role in human life (Simpson and Roger 2004). They are responsible for over 50% 

of the O2 produced globally (Chojnacka 2009), having long been used for food, agricultural, 

cosmetic and pharmaceutical purposes (Caliceti et al. 2002, Kumar et al. 2013, He and Chen 

2014). Recently, a strong enthusiasm is been created around macroalgae in the pursuit of 

"greener" technologies to be applied for environment protection (Torres et al. 2008, Sekabira 

et al. 2011).  

It is well recognized that water availability can be compromised by human activities, 

such as mining, smelting, or coal burning, which mobilize and release large amounts of 

metals into the environment (Freitas et al. 2008). Given the awareness for the harmful effects 

that potential toxic elements such as Cd, Pb and Hg – the so-called toxic trio – may have on 

human and animal health, environmental policies are becoming more stringent every day.  

Conventional water treatment procedures present major drawbacks (Farooq et al. 

2010), and fail to reduce metal levels to concentrations such low as required by law, or 

become prohibitively expensive (He and Chen 2014). Due to their large abundance 

worldwide and ability to bind and retain metals from the surrounding environment (Coelho 

et al. 2005, Kamala-Kannan et al. 2008, Jayakumar et al. 2014), macroalgae may be the 

needed alternative, forming the basis of new remediation biotechnologies, more efficient and 

cost-effective. 

In the last years, an intense investigation has focused on the application of macroalgae 

dried biomass to promote the removal of metals from aqueous solutions (biosorption) 

(Romera et al. 2007, Wang and Chen 2009, Trinelli et al. 2013), however, the use of living 

organisms (bioaccumulation) (Chojnacka 2010), although less studied, may be advantageous 

in some scenarios. Living macroalgae are able to remove simultaneously metals and 

nutrients (nitrates and phosphates) from aquaculture wastewaters, for example, while 

growing (Nielsen et al. 2012). Additionally, bioaccumulation by living cells, may lead to 

lower residuals levels of contaminant in solution due to additional intracellular accumulation 

(Chojnacka 2007). As a treatment method, bioaccumulation requires simpler installation 
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when compared with biosorption (Chojnacka 2010), and avoid the need for additional 

processes, such as drying, processing and activation prior to use (Li et al. 2013), which are 

indispensable for biosorption. 

A significant part of the laboratory studies concerning accumulation of metals by 

living macroalgae (Lee and Wang 2001, Masakorala et al. 2008) reports short exposure times 

(Wang and Dei 1999, Turner et al. 2008a) and ignores the mathematical description of the 

kinetic of the process. Among the metals studied less attention is given to Hg (Costa et al. 

2011), and above all no study dealt with the effects of simultaneous presence of metals 

(mixtures) on macroalgae growth rate (Vasconcelos and Leal 2001, Han and Choi 2005, Han 

et al. 2008, Turner et al. 2008a). In fact, most of researchers follow an idealistic approach, 

assessing the performance of the removal process for monometallic solutions (Chojnacka 

2009). However, real wastewaters are complex systems, containing a multiplicity of 

different ions, which interact and compete for binding sites, affecting removal efficiency. 

Moreover, extremely high concentrations of metal are often used, which does not comply 

with the values found in real contaminated waters bodies (Rocha et al. 2013, Lopes et al. 

2014). Besides the scarcity of works conducted for multimetallic systems, literature also 

lacks on studies performed in saline water. Regardless of major cities are concentrated in the 

proximity of marine coasts (Coelho et al. 2005), with wastewaters, from both industrial and 

domestic sources, finding their way into coastal environments (Torres et al. 2008), most of 

the reported results are obtained in synthetic water or freshwater. Additionally, removal is 

also dependent on speciation and mobility of metal ions in water, which varies according to 

the matrix. For instance, in river water Cd, Hg, and Pb ions are bound to humic substances 

in a greater extent than in seawater (Kabata-Pendias 2007), where Cd and Hg are heavily 

complexed by chloride ions and Pb by carbonate ions (Sunda and Huntsman 1998).  

Ulva lactuca is a green marine macroalga (Chlorophyta), very common at coastal 

areas, which owns several attractive characteristics from the viewpoint of remediation. Since 

it is perfectly adapted to the salinity variations occurring in estuaries due to tides, this 

macroalga can grow in a wide range of salinity (Yamashita et al. 2009, Costa et al. 2011). 

Additionally it withstands moderate pollution and eutrophic conditions. Its structure is 

relatively simple, with a thin (just 2 cell layers thick) and sheet-like thallus, which translates 

into a large surface area, containing structurally uniform and physiologically active cells 

(Sari and Tuzen 2008). The cell wall is constituted by cellulose along with a high percentage 
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of proteins bonded to polysaccharides (Romera et al. 2007, Trinelli et al. 2013), which 

comprises several functional groups such as amino, hydroxyl, carboxyl, and sulfate, capable 

of acting as binding sites for metal (Romera et al. 2007). Additionally, this algae grows fast 

(Nikolaisen and Jensen 2013), since their photosynthetic products are quickly converted to 

cell growth (Easton et al. 2011). 

Thus, the purpose of this work was to study and evaluate the accumulation of metals 

by Ulva lactuca from saline water. The efficiency of the removal process carried by the 

macroalga was assessed for: i) monometallic solutions of Hg, Cd and Pb, in a range of 

different environmentally relevant concentrations; ii) multi-metallic solutions containing 

Hg, Cd and Pb in the equal concentration, and at different concentrations. The evaluation of 

the influence of the chosen metals on Ulva growth rate, during accumulation, in both mono 

and multi-system, was also performed. 

 

4.2 Materials and methods 
 

4.2.1 Material and chemicals 

 

All chemical reagents used in this work were of analytical reagent grade, and were used 

as received from the suppliers. The nitric acid 65% (suprapur) and the standard stock 

solutions of mercury (1001 ± 2mgL-1), cadmium (1000 ± 2mgL-1) and lead (1000 ± 2mgL-1) 

nitrate were purchased from Merck. All working solutions, including standards for the 

calibration curves, were obtained by diluting the corresponding stock solution. All the 

material used in the experiments was previously washed in Derquim 5% rinsed in Milli-Q 

water (18 MΩ cm-1), soaked in 25% HNO3 for at least 24h and subsequently rinsed with 

Milli-Q water. 

 

4.2.2 Macroalgae collection and maintenance 

 

The green macroalgae Ulva lactuca was collected in the Mondego estuary (Figueira da 

Foz, Portugal, 40°08′N, 8°50′W) and transported to laboratory in isothermal plastic bags, 

containing local water. After rinse with seawater to remove debris and epibionts, a small part 

of the macroalgae was immediately freeze dried for latter quantification of the inherent metal 
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concentrations (baseline), following the procedures described below. The values obtained 

were 0.015±0.004 µg g-1 for Cd, 0.300±0.025 µg g-1 for Pb and 0.029±0.003 µg g-1 for Hg, 

which are characteristic of macroalgae from uncontaminated areas, being below the 

reference limits for human consumption (Leal et al. 1997, Almela et al. 2002, Ryan et al. 

2012). The remaining macroalgae was transferred to 30 L clear glass tanks equipped with 

air pump and filled with filtered seawater enriched with Provasoli stock solution (Costa et 

al. 2011). Macroalgae were maintained in the aquariums (water was weekly changed) under 

natural light, and at room temperature of 20±2°C, until the beginning of the experiments. 

Seawater for experiments and macroalgae maintenance was collected at Vagueira beach (18 

km southwest of Aveiro, Portugal), filtered through 0.45 μm Millipore membrane and stored 

in the dark at 4°C until further use. A brief characterization of the seawater which includes 

pH, conductivity, salinity and major and minor elements was performed. The pH (7.9), 

conductivity (54.3 mS cm-1) and salinity (35 g L-1) were recorded on a WTW meter and the 

concentration of major and minor elements was obtained by inductively coupled plasma 

spectroscopy, using a Jobin – Yvon JY70 Plus Spectrometer. All the measured parameters 

were in acceptable ranges according to considered non-polluted waters. Concentrations of 

Cd and Pb were below the detection limit of the quantification analysis, while total Hg 

concentration, determined using the methodology described by Pato et al. (2010),  was 3.1 

ng L-1, which is typical of a non-polluted water. 

 

4.2.3 Ulva lactuca characterization 

 

In order to assess the dry/fresh weight ratio of U. lactuca, several pieces were cut from 

the macroalgae thallus, weighed, and dried at 40ºC until constant weight. 

FTIR spectrum of U. lactuca was recorded by using a Bruker optics tensor 27 

spectrometer coupled to a horizontal attenuated total reflectance (ATR) cell using 256 scans 

at a resolution of 4 cm-1.The dried sample was examined directly and data were obtained as 

transmittance. 
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4.2.4 Bioaccumulation experiments 

 

Ulva lactuca was exposed, during 144h, to monometallic and multimetallic solutions 

of Cd, Pb and Hg, according to the experimental conditions presented in Table 4.1. 

 

Table 4.1: Experimental conditions of the performed bioaccumulation experiments. 

Matrix System Metal Concentration (µg L-1) 

Spiked natural 

seawater 

Single-contaminant 

Cd 10, 50, 100 and 200 

Pb 50, 100, 200 and 1000 

Hg 10, 50 and 100 

Multi-contaminant 

M1 

Cd 50 

Pb 50 

Hg 50 

M2 

Cd 200 

Pb 1000 

Hg 50 

 

The chosen concentrations were considered environmentally relevant, intending to 

mimic real cases: 50, 200 and 1000 µg L-1 are, respectively, the “old” limits for Hg, Cd and 

Pb wastewaters discharges (Directive 83/513/EEC 1983, Directive 84/156/EEC 1984, 

Decree-Law No. 236/98 1998). It should be remembered that European Commission has 

recently revised water policies, and determined new environmental quality standards (EQS) 

for surface waters, considering stringent levels of contaminants (Directive 2013/39/EU 

2013) in the receiving water bodies, instead of limit values for effluents discharges, since 

emissions, losses and or discharges of Pb, Cd and Hg were restricted or prohibited. The 

remaining concentrations used may represent a situation of accidental discharge of untreated 

effluent, or metal concentrations in aquatic ecosystems after the dilution of the discharged 

effluent into the water body. 

Bioaccumulation tests were conducted in Schott Duran® glass bottles of 1 L, where 

macroalgae were placed in contact with natural filtered seawater, spiked with metal, through 

the addition of a desired volume of metal standard solution. All the solutions were left to 

stabilize during 24h before the beginning of the experiments. An aliquot of each solution 

was collected immediately before adding the macroalgae to confirm the exact initial 

concentration of metals. Small discs with uniform size (10 discs of 18 mm and 5 discs of 56 

mm) were cut from the healthy thallus of U. lactuca (Wang and Dei 1999), and added to the 
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spiked seawater, in a total of approximately 1.6 g L-1 fresh weight. All algal pieces were 

acclimatized in clean seawater for several hours prior to metals exposure. Metal uptake by 

living macroalgae along time was followed by determining the concentration of each metal 

in solution samples (5-10 mL) collected at defined crescent periods of time. All samples 

were acidified to pH ≤ 2 using Suprapur HNO3 and stored at 4°C until further analysis. All 

bioaccumulation trials were performed in triplicate, under natural light, at room temperature 

of 20±2°C. Blanks (macroalgae in clean seawater) and controls (metal spiked seawater in 

the absence of algae) were always running in parallel with the experiments. No pH buffer 

was added to the system, and no pH adjustments were made at any time, since this could 

interfere with the metals uptake and cellular metabolism of the organisms (Vasconcelos and 

Leal 2001, Velasquez and Dussan 2009). However, pH was daily monitored. At the end of 

the experiments, macroalgae were harvested, rinsed and freeze dried for later quantification 

of metal contents. 

 

4.2.5 Metal quantification 
 

4.2.5.1 Metal concentration in solution 

 

Mercury quantification in water samples was performed by cold vapour atomic 

fluorescence spectroscopy (CV-AFS), on a PSA 10.025 Millennium Merlin Hg analyser and 

using SnCl2 (2% m/v in HCl 10% v/v) as reducing agent. The concentration of Hg in the 

collected samples was determined through a calibration curve (r2≥0.999) using five daily 

prepared standard solutions ranging from 0.0 to 0.5 µg L-1. In this range, detection and 

quantification limits, obtained through blank measurements (n = 20) were 0.007 µg L-1 and 

0.021 µg L-1, respectively. Cadmium and Pb quantifications were performed by inductively 

coupled plasma mass spectrometry (ICP-MS), on a Thermo ICP-MS XSeries equipped with 

a Burgener nebuliser. Calibration curves for Cd and Pb were obtained using standards (0.1–

50 μg L-1) prepared by dilution of certified standard solutions of Cd(NO3)2 and Pb(NO3)2 in 

nitric acid (2 % v/v). The limits of quantification of the method were 0.1 μg L-1 and 0.2 μg 

L-1, for Cd and Pb respectively, with a precision and accuracy <10 %. In order to avoid 

matrix interferences on metal quantification by ICP-MS, since seawater has high salinity, all 

samples were diluted 20-fold prior analysis, which results in “real” quantification limits of 

2 and 4 μg L-1, for Cd and Pb respectively. 
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4.2.5.2 Metals concentration in algal biomass 

 

Total Hg concentration in macroalgae biomass was measured by thermal 

decomposition atomic absorption spectrometry with gold amalgamation using a LECO© 

AMA-254, as described by Costley et al. (2000). Analysis was performed directly in the 

sample (1 to 20 mg, dry weight) without digestion or pre-specific treatment, avoiding 

mercury losses or contamination as well as matrix interferences. At least three replicate 

measurements were carried out for each sample, and a maximum coefficient of variation of 

10% was adopted as acceptance criteria. Detection and quantification limits were 0.01 ng Hg 

and 0.03 ng Hg, respectively (n=20, 99.5% confidence level). Several blanks (i.e. an empty 

sample nickel boat) were run before and between sample analyses to ensure that mercury 

was not being accumulated between samples. The quality of the results was assessed by 

using Certified Reference Material (CRM) BCR-60 (Lagarosiphon major). The CRM was 

analyzed every day prior to the beginning of the analysis, and repeated at the end of the day. 

All percentages of recovery for total Hg were within the range of 85–107% (n = 17). 

For the determination of Cd and Pb contents in macroalgae, samples and certified 

reference material (BCR60) were previously digested, in duplicate (Monterroso et al. 2003). 

Briefly, about 200 mg of freeze-dried sample was accurately weighted into an acid-washed 

Teflon reactor; HNO3 (conc.) was added, and reactors were placed in an oven at 60 °C for 

12 h, and then at 100 °C for 1 h. Afterward, H2O2 was added, and reactors were heated at 80 

°C for 1 h. After digestion, samples were diluted with Milli-Q water, filtered, and then 

analysed by ICP-MS. Percentages of recovery for Cd and Pb were, respectively, 85 and 92% 

(n=2). 

 

4.2.6 Effects of metal exposure on macroalgae growth 

 

The influence of studied contaminants on U. lactuca growth, along with time, was 

evaluated by means of relative growth rate (RGR), calculated by following equation: 

 

(1) 

 

1

0(% ) ((ln ln ) / ) 100tRGR day A A t   
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where A0 is the initial algae area and At is the algae area at time t (Han et al. 2008).  

Two algal discs were daily collected from each reaction bottle, placed in a transparent 

plastic sheet, and then scanned with a resolution of 200 ppi (Figure 4.1). Afterwards, discs 

area was determined using the software ImageJ. Overall, the combined mass of all discs 

collected along the experiment for RGR measurements is <10% of the initial total algal 

biomass. 

  

Figure 4.1: Scan of U. lactuca discs, and further processing by ImageJ for measurement of RGR. 

 

4.2.7 Experimental data analysis 

 

The exposure of U. lactuca to contaminated seawater leads to an increase of metals 

content in macroalgae biomass with the correspondent decrease on metal concentration in 

solution. Thus, metal accumulation by macroalgae, defined as the amount of metal bound by 

unit of mass at a given time t (qt, µg g−1), may be deduced from the mass balance between 

the initial metal concentration in the solution (C0, µg L−1) and the concentration after a 

particular period of contact time t (Ct, µg L−1): 

 (2) 

 

where V (L) is the volume of the solution and m (g) is the macroalgae biomass, in dry weight. 

When equilibrium is attained, t=te, qt=qe and Ct=Ce (residual metal concentration in 

solution). The performance of the removal process was also evaluated and compared using 

the metal removal percentage (R, %), which at time t is defined by: 

 

 (3) 

0( )t
t

C C V
q

m




0

0
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4.2.7.1 Bioaccumulation kinetics 

 

The most commonly used kinetic reaction models in metal removal batch experiments 

are Lagergren pseudo-first-order model, Ho’s pseudo-second order model and Elovich 

model (Ho et al. 2000). 

The pseudo-first-order model was firstly applied by Lagergren (Lagergren 1898) and is 

mathematically expressed by: 

 (4) 

 

where k1 (h
−1) is the rate constant of pseudo-first order and qe (µg g-1) is the amount of solute 

sorbed per gram of sorbent at equilibrium. After integration and application of the boundary 

condition qt=0 at t=0, Eq. (4) can be expressed by the following non-linear equation: 

 

(5) 

 

However, it is well known that Lagergren model may not represent the sorption 

evolution along full time range (Ho et al. 2000). 

The pseudo-second-order model was firstly described by Ho (Ho and McKay 1998) and 

in contrast with the previous model, usually correlates the behaviour over the whole range 

of sorption. The kinetic rate equation is expressed as: 

(6) 

 

where k2 (g µg−1 h−1) is the pseudo-second order rate constant. By applying the boundary 

conditions t=0 to t=t and qt=0 to qt=qe, the integrated form of Eq.(6) is: 

(7) 

 

The Elovich model was established by Zeldowitsch to describe the kinetic law of 

chemisorption (Ho 2006) and it is described by the following equation: 

(8) 
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where, α (µg g-1 h−1) is the initial adsorption rate, and β (g µg− 1) is the desorption constant. 

Integrating equation (8), by using the boundary conditions of q=0 at t=0 and q=q at t=t, and 

assuming that αβt>>1, the simplify form of Elovich’s equation is defined by: 

(9) 

 

Recently, Elovich’s equation has been widely used to describe the sorption of pollutants 

from aqueous solutions (Ho 2006). 

 

4.2.7.2 Statistical analysis 

 

All statistical analysis in this work was performed using GraphPad 6.0. This tool was 

also used to plot all graphs as well as to calculate all kinetic parameters through nonlinear 

regression. GraphPad 6.0 uses the least-squares as fitting method and the method of 

Marquardt and Levenberg, which blends two other methods, the method of linear descent 

and the method of Gauss-Newton for adjusting the variables.  

The coefficient of determination (R2) and the standard deviation of residuals (Sy.x) were 

analyzed in order to evaluate the goodness of fit. The relative error (Er) between 

experimental and predicted values of qe was also calculated. These statistical parameters can 

be mathematically defined by: 

 (10) 

 (11) 

 (12) 

 

where yi are the experimental data values, ŷ are the predicted values, y is the mean of the 

experimental data and df is the number of the degrees of freedom (equal to number of data 

points minus the number 

of parameters fit). 
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Akaike's Information Criterion (AIC) (El-Khaiary and Malash 2011), which is based on 

information theory and maximum likelihood theory, was used to determine which model is 

more likely to be correct and how much more likely. For small sample size, AIC is calculated 

from the equation: 

(13) 

 

where SSE is the sum-of-squared deviations, N is the number of data points and Np is the 

number of parameters in the model. AIC values can be compared using Evidence ratio 

(numerical value representative of the number of times that the model with a lower AIC is 

more likely to be correct) which is defined by: 

 (14) 

 

where Δ is the absolute value of the difference in AIC between the two compared models. 

 

4.3 Results and discussion 
 

4.3.1 Ulva lactuca characterization 

 

The dry/fresh weight ratio of U. lactuca ranged between 0.21 and 0.33, corresponding 

to an average water content of 73.9 ± 4.3% (n=20). These values are in line with those 

reported by Bruhn et al. (2011) for U. lactuca from the Danish coast (76.7 ± 2.7% of water 

content), and slightly  lower than those found at New Zealand (79.6 ± 1.43% of water 

content) by Lamare and Wing (2001). 

The FTIR spectrum of green macroalgae U. lactuca (Figure 4.2) shows bands at wave 

numbers of 3250, 2931, 1627, 1545, 1412, 1082, 595 and 439 cm-1, which were attributed 

to main functional groups of the algae according to the assignments made by other authors 

(Trinelli et al. 2013, Bulgariu and Bulgariu 2014). 

The broad and strong band at 3250 cm-1 is attributed to the overlapping of O–H and 

N–H stretching vibrations (Bulgariu and Bulgariu 2014). The peaks observed at 2931 cm−1 

is assigned to carboxylic/phenolic stretching vibrations  (Bulgariu and Bulgariu 2014), while 

the asymmetrical  stretching band at 1627 and the  weaker  symmetric  stretching  band 1412 

0.5

1
Evidence ratio

e 
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cm−1 are associated to carboxylate groups (Trinelli et al. 2013). Peak at 1412 may be also 

due to HO- bonds of quinine, along with the peak at 1545 cm-1 (Bulgariu and Bulgariu 2014). 

F T IR

W a v e n u m b e r  (c m
-1

)

1 0 0 02 0 0 03 0 0 04 0 0 0

 

Figure 4.2: FTIR spectra of marine macroalgae U. lactuca. 

 

Ulvan spectra  shows  a  maximum  absorption  band  at 1082  cm−1, which has been 

attributed to C-O  stretching  from  the  two main  sugars,  rhamnose  and  glucuronic  acid 

(Trinelli et al. 2013). Peaks at 595 cm-1 and 439 cm-1  correspond to the C–N–S shearing due 

to polypeptides structure of algae cells (Bulgariu and Bulgariu 2014). 

 

4.3.2 Bioremediation in single-contaminant systems 

 

The capability of U. lactuca to remove (bioaccumulate) toxic metals, such as Pb, Cd 

and Hg, from saline water was initially evaluated for monometallic solutions (single-

contaminant systems), with different initial concentrations, representing various 

contamination scenarios. 

Figure 4.3A-D shows the variation of normalized concentrations of Cd in spiked 

seawater along time (Ct/C0 vs t), for the initial concentrations of 10, 50, 100 and 200 µg L-1. 

The results of controls (dashed line) show that levels of Cd in solution, in the absence of 

macroalgae, remained stable throughout the full period of time in which the assays were 

held. By contrary, the kinetic profiles of all solutions in contact with U. lactuca were 

characterized by a rapid and marked decrease in Ct/C0, at the initial period of time, 
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representing a quick biosorption/bioaccumulation of metal by the living macroalgae. After 

just 12 hours of contact time (by using only c.a. 500 mg, d.w., of macroalgae), levels of Cd 

in seawater were reduced by about 77.8, 78.4, 66.7%, respectively for initial concentrations 

of 10, 50, 100 µg L-1, whereas for 200 µg L-1 a removal percentage of 83.8% was achieved 

after a period of time of 24h. Results suggest that for higher concentrations a longer period 

of time is required in order to obtain similar removal efficiencies (in terms of % of metal 

removed). However, it should be noted that an increase in the initial concentration of Cd 

always leads to higher amounts of metal accumulated by living macroalgae - dose-dependent 

accumulation (e.g 15.8, 66.4, 113.6 and 153.6 µg g-1 for 10, 50, 10 and 200 µg L-1, 

respectively, after 12h of contact time). Additionally, overall, initial sorption rate, 0, also 

increases with the rise of initial concentrations of Cd (Table 4.2), which can be attributed to 

the greater driving force allowing to overcome all mass transfer resistance of Cd between 

the liquid and macroalgae (Rocha et al. 2013). 
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Figure 4.3: Normalized concentrations (Ct/C0) of Cd in spiked seawater along time (t, h) – single-contaminant 

systems. The results are expressed as the mean ± standard deviation (n=3). The solid line represents the value 

of the limit of quantification (in Ct/C0). 

 



Chapter 4 

 

140 
 

All samples collected after 12h for 10 µg L-1, 24h for 50 µg L-1 and 96h for 100 µg L-

1, (Figure 4.3A-C), had concentrations of Cd below the “limit of quantification” of the 

method, 2 µg L-1, underscoring the potential application of this seaweed in water 

bioremediation processes. Additionally, the kinetic pattern observed for 10 and 50 µg L-1 

suggests that removal continued after the referred times, possibly until all metal in solution 

was accumulated by the living macroalgae, or until an equilibrium was established, with 

residual concentrations in solution near to zero. For 200 µg L-1, the remarkable reduction 

observed in the beginning was followed by a subtle decrease in Ct/C0, until a balance was 

established, corresponding to a residual value of Cd in solution of c.a. 2 µg L-1 (98.5% of 

removal). 

The fittings of pseudo-first order (PFO), pseudo-second order (PSO) and Elovich 

models to experimental data regarding the bioaccumulation of Cd by U. lactuca over time 

are presented in Figure 4.4, while respective estimated parameters and goodness of fit are 

summarized in Table 4.2. Kinetic analysis was performed on a molar basis, in order to enable 

further comparison between metals. 
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Figure 4.4: Kinetic modelling of the experimental data regarding the uptake of Cd by living U. lactuca (single-

contaminant systems). Error bars were omitted for clarity. 

All mathematical models studied adequately fit the experimental results over the entire 

course of experiments, which is corroborated by the values of the coefficient of correlation 

(0.939<R2<0.993). Akaike’s Information Criterion (AIC) (El-Khaiary and Malash 2011) 

was used to choose which model is more likely to be correct and quantify how much more 

likely (probability ratio) - Table 4.2. 

 

Table 4.2: Best-fit parameters (± standard error) and goodness of the fittings of the kinetic models used to 

describe the bioaccumulation kinetics of Cd by living U. lactuca (single-contaminant systems). 

C0  

(µg L-1) 
PFO PSO Elovich 

Preferred 

model* 

10 

k1: 0.7638±0.2700 k2:0.06294±0.002601 α: 520.3±227.2 
Elovich 

 

Probability ratio: 

214.63 

Difference AIC:  

10.74 

qe: 139.1±11.98 qe: 158.2±12.20 β: 0.03571±0.004464 

R2: 0.939 R2: 0.975 R2: 0.993 

Sy/x: 16.88 Sy/x: 10.78 Sy/x: 5.768 

0: 106 0: 1575 - 

50 

k1: 0.09133±0.01568 k2: 5.809e-05±2.435e-05 α: 89.19±19.64 

PFO 

Probability ratio: 

2.47 

Difference AIC:  

1.808 

qe: 817.1±67.79 qe: 1179±167.9 β: 0.0025±0.0006 

R2: 0.988 R2: 0.985 R2: 0.981 

Sy/x: 32.17 Sy/x: 38.75 Sy/x: 43.77 

0: 75 0: 81 - 

100 

k1: 0.07721±0.01174 k2: 4.598e-05±1.75e-05 α: 194.5±98.32 

PFO 

Probability ratio: 

18.91 

Difference AIC:  

5.880 

qe: 1493±65.63 qe: 1766±154.0 β: 0.002345±0.00056 

R2: 0.976 R2: 0.954 R2: 0.920 

Sy/x: 107.4 Sy/x: 148.9 Sy/x: 195.7 

0: 115 0: 143 - 

200 

k1: 0.05569±0.005942 k2:1.628e-05±4.588e-06 α: 335.7±136.8 

PFO 

Probability ratio: 

55.30 

Difference AIC:  

8.026 

qe: 3131±92.44 qe: 3694±233.1 β: 0.001151±0.00021 

R2: 0.987 R2: 0.971 R2: 0.942 

Sy/x: 159.6 Sy/x: 238.4 Sy/x: 337.5 

0: 174 0: 222 - 

*Comparison of the two fits with the highest R2 and lower Sy/x values. 0 calculated according to: PFO

0 1 e
k q  ; PSO 

2

0 2 e
k q   
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Generally, the best performance was attributed to PFO model (Table 4.2), which in 

fact described precisely qt over the full range of time, specially for 100 and 200 µg L-1, where 

both PSO and elovich models overestimated qt,144h (Figure 4.4C-D). 

The notable affinity of U. lactuca toward Cd was previously reported by Wang and 

Dei (1999), although results found by the authors suggested a slower accumulation than that 

observed in the present study. After 47h of contact time, for 10 µg L-1, Wang and Dei (1999) 

recorded values of Cd internalized by macroalgae between 15 and 20 µg g-1 (d.w.), while in 

our case, for an equal initial concentration of Cd, an accumulation of about 18 µg g-1 (d.w.) 

was achieved just in 12h. Furthermore, authors always observed a linear relationship 

between qt and t, without any steady-state has been reached, which may due to the fact that 

exposure to metal only lasted 2 days (Wang and Dei 1999). 

The profiles of the kinetic curves (Ct/C0 vs t), for different initial concentrations of Pb 

in seawater are presented in Figure 4.5A-D.  Results revealed that, as for Cd, seaweed are 

the main responsible for the decrease in concentrations of Pb in seawater, since metal levels 

in controls remained constant over time. Yet, a slightly different behaviour from Cd was 

observed for Pb, particularly in the initial removal period. The decrease on Ct/C0,Pb at the 

beginning of experiments was less pronounced, which is corroborated by the lower values 

of initial bioaccumulation rate, 0, estimated for Pb compared to those found for Cd (Tables 

4.1 and 4.2). In addition, after the quick initial sorption, the drop in Ct/C0 becomes less 

marked with the rise of initial concentration of Pb in solution. 
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Figure 4.5: Normalized concentrations (Ct/C0) of Pb in spiked seawater along time (t, h) – single-contaminant 

systems. The results are expressed as the mean ± standard deviation (n=3). 

 

Nevertheless, experimental data demonstrated that living U. lactuca also has a 

remarkable capacity to remove Pb from saline waters. After a period of contact of 12h with 

living macroalgae, levels of Pb in seawater were reduced by 49.5, 48.5, 34.4 and 21.2% for 

C0,Pb of 50, 100, 200 e 1000 µg L-1, whereas increasing the contact time to 48h allowed to 

obtain reductions of 75.6, 78.8, 66.2 and 37%, respectively. As mentioned previously for 

Cd, the rise in initial metal concentrations, which represents an increase of the driving force, 

leads to higher initial sorption rates (Table 4.3) and larger amounts of Pb bioaccumulated, 

qt, (Table 4.5). 

For initial concentrations of 50, 100 and 200 µg L-1, equilibrium was reached after 96h 

(Figure 4.5A-C), whereas the kinetic pattern observed for 1000 µg L-1 indicates that a longer 

period of exposure time is required in order to attain a steady-state (Figure 4.5D). 

The results of kinetic modelling of data on Pb uptake by living U. lactuca, are shown 

graphically in Figure 4.6A-D, while the best-fit parameters are summarized in Table 4.3.  
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Figure 4.6: Kinetic modelling of the experimental data regarding the uptake of Pb by living U. lactuca 

(single-contaminant systems). Error bars were omitted for clarity. 

 

Overall, there is a good agreement between experimental data and the fittings 

accomplished by the three kinetic models, with R2 varying between 0.935 and 0.999, for 50 

to 200 µg L-1. A worst performance was recorded for 1000 µg L-1, in which case equilibrium 

has not reached, with coefficients of correlation ranging from 0.886 to 0.939. 

Comparison between models by using AIC indicates that, in most cases, Elovich model 

is likely to be the most suitable model to describe bioaccumulation kinetics of Pb by the 

green macroalgae, which points to a heterogeneous uptake/bioaccumulation mechanism 

(Cheung et al. 2000). Moreover, as qt vs t for Cd and Pb followed different kinetic (PFO vs 

Elovich, respectively), probably the mechanisms behind the removal of these metals by the 

seaweeds will not be exactly the same. In their comparative study on biosorption of Cd, Zn, 

and Pb from aqueous solutions by dried marine macroalgae, Freitas et al. (2008) also found 

that PFO was better for the system Cd/B. bifurcate, whereas for Pb/B. bifurcate PSO 

performed better. Differences in behaviour were justified by the different properties of 
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metals ions in solution and different interactions between metals and biomass (Freitas et al. 

2008). 

 

Table 4.3: Best-fit parameters (± standard error) and goodness of the fittings of the kinetic models used to 

describe the bioaccumulation kinetics of Pb by living U. lactuca (single-contaminant systems). 

C0  

(µg L-1) 
PFO PSO Elovich 

Preferred 

model* 

50 

k1: 0.0701±0.0145 k2: 1.732e-04±4.112e-05 α: 115.7±20.10 
Elovich 

 

Probability ratio: 

283.95 

Difference AIC:  

11.3 

qe: 479.8±26.21 qe: 539.2±26.16 β: 0.00954±0.000573 

R2: 0.935 R2: 0.970 R2: 0.990 

Sy/x: 48.96 Sy/x: 33.33 Sy/x: 18.95 

0: 34 0: 50  

100 

k1: 0.05974±0.005767 k2: 6.047e-05±3.056e-06 α: 136.8±19.32 

PSO 

Probability ratio: 

 

Difference AIC:  

-18.69 

qe: 994.3±26.17 qe: 1153±12.64 β: 0.00391±0.000229 

R2: 0.988 R2: 0.999 R2: 0.993 

Sy/x: 46.40 Sy/x: 14.01 Sy/x: 35.68 

0: 59 0: 80  

200 

k1: 0.03408±0.007915 k2: 1.611e-05±5.949e-06 α: 179.0±50.92 

Elovich 

Probability ratio: 

5.96 

Difference AIC:  

3.57 

qe: 2101±157.8 qe: 2499±227.1 β: 0.00175±0.000241 

R2: 0.938 R2: 0.952 R2: 0.966 

Sy/x: 204.9 Sy/x: 179.8 Sy/x: 150.4 

0: 72 0: 101  

1000 

k1: 0.02294±0.007838 k2: 2.980e-06±1.655e-06 α: 466.4±169.3 

Elovich 

Probability ratio: 

7.36 

Difference AIC:  

3.993 

qe: 7669±1026 qe: 9174±1384 β: 4.78e-04±9.342e-05 

R2: 0.886 R2: 0.910 R2: 0.939 

Sy/x: 911.8 Sy/x: 811.8 Sy/x: 664.9 

0: 176 0: 251  

*Comparison of the two fits with the highest R2 and lower Sy/x values. 0 calculated according to: PFO

0 1 e
k q  ; PSO 

2

0 2 e
k q   

Despite the best performance in mathematics description of the kinetics over the entire 

period of time of trials, Elovich model did not estimated accurately the values of qt,144h 

(Figure 4.6A-D). Amounts of Pb in macroalgae tissues predicted by the PSO, for t=144h, 

are closer to the experimental points than those under- and overestimated by PFO and 

Elovich models, respectively. 
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Figure 4.7A-C shows the time evolution of normalized concentrations of Hg in 

seawater, in the presence and absence of U. lactuca, for different initial concentrations of 

metal, 10, 50 and 100 µg L-1.  
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Figure 4.7: Normalized concentrations (Ct/C0) of Hg in spiked seawater along time (t, h) – single-contaminant 

systems. The results are expressed as the mean ± standard deviation (n=3). 

Regardless the initial metal content in seawater, kinetic profiles are characterized by a 

fast and noticeable decrease in Ct/C0, in the initial period of time, followed by a subtle 

decrease in Ct/C0,  until equilibrium was established (at 72h for 10 µg L-1 and at 96h for 50 

and 100 µg L-1). Overall, macroalgae-free experiments show a constant metal concentration 

with time, proving that removal of Hg may only be attributed to interactions metal-Ulva 

lactuca. 

After 12h of contact time, green macroalgae led to removal percentages of 59.7, 49.3 

and 41.2%, for 10, 50, and 100 µg L-1, respectively, corresponding to Hg contents in 

macroalgae tissues of 13.9, 51.4 and 86.7 µg g-1, respectively. Like it was verified for Cd 

and Pb, accumulation of Hg is dose-dependent, being in accordance to those studies which 

claim that U. lactuca may serve as a good biomonitor of metal contamination in waters 
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(Wang and Dei 1999, Coelho et al. 2005, Kamala-Kannan et al. 2008). A 10-fold increase 

in the initial concentration of Hg in solution resulted in a rise on the initial bioaccumulation 

rate of 3.6 to 4.6-fold (Table 4.4), which is explained by the higher driving forces, at the 

beginning of experiments, as mentioned previously. 

Fittings of experimental data on Hg uptake/accumulation along time by the macroalgae 

are expressed in Figure 4.8. Goodness of fit as well as models parameters are presented in 

Table 4.6.  
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Figure 4.8: Kinetic modelling of the experimental data regarding the uptake of Hg by living U. lactuca (single-

contaminant systems). Error bars were omitted for clarity. 

 

All kinetic models showed high performances in the description of results, in most 

cases with better correlations (0.975<R2<0.996) than those recorded for Cd and Pb. 

Although values of qt at 144h, for 50 and 100 µg L-1, were better estimated by PFO model 

(Figure 4.8B-C), AIC suggests that PSO is the model more likely to be correct for all 

concentrations (higher R2 and lower Sy/x). Thus, kinetic analysis suggests a Hg sorption of 

chemical nature, relying on chemical interactions between Hg ions and superficial functional 
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groups of  macroalgae surface (Bulgariu and Bulgariu 2014), such as ion-exchange and 

chemical adsorption. Along with those interactions, metabolism-dependent incorporation 

into cells should control bioaccumulation rates (Vasconcelos and Leal 2001, Chojnacka 

2007). 

A summary of results obtained at the end of the assays of bioaccumulation, conducted 

in saline water, for monometallic solutions of Cd, Pb and Hg in contact with U. lactuca is 

presented in Table 4.5.  

Results show that, in percentage terms, green macroalgae have a similar and 

impressive ability to remove different metals from monometallic solutions, since in general 

removal percentages were between 93% and 99%. However, comparing the removal 

efficiencies of U. lactuca toward the metals studied, in terms of time of contact required, it 

is possible to conclude that Cd removal is more efficient, since in most cases, it was more 

rapid (Figure 4.3, 4.5 and 4.7).  

The content of Cd in macroalgae, measured after digestion, for the highest initial 

concentration (C0,Cd=200 µg L-1; qt,144h.exp=2876±93.98 nmol g-1) was very close to the value 

calculated (qt,144h.theor=3083  nmol g-1) by mass balance between metal concentrations in 

solution at the beginning and end of the trial (relative error of 6%). This indicates that all Cd 

removed from the solution is actually bound in the seaweed tissue. In 1999, Wang and Dei 

studied the uptake/accumulation of Cd by U. lactuca and Gracilaria. blodgetti, and 

examined metal depuration by the algae in clean seawater. Researchers reported that U. 

lactuca retained Cd very efficiently in their tissues, as no noticeable loss of Cd to water was 

measured (Wang and Dei 1999). Furthermore, chemical quantification of Cd in the algae 

biomass, allowed to confirm the assumption that for concentrations of 10-100 µg L-1, 

removal have continued beyond the point where it was possible to quantify this metal in 

solution, reaching virtually 100% of removal. The outstanding capability of U. lactuca to 

accumulate and retain Cd, gives it a high potential for application not only in processes of 

wastewater treatment, but also in processes of pre-concentration for analytical chemistry 

(Romero-Gonzalez et al. 2000).  
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Table 4.4: Best-fit parameters (± standard error) and goodness of the fittings of the kinetic models used to 

describe the bioaccumulation kinetics of Hg by living U. lactuca (single-contaminant systems). 

C0  

(µg L-1) 
PFO PSO Elovich 

Preferred 

model* 

10 

k1: 0.09435±0.01130 k2: 1.015e-03±9.059e-05 α: 30.46±7.48 
PSO 

 

Probability ratio: 

1222 

Difference AIC:  

-14.22 

qe: 107.0±3.220 qe: 119.3±2.069 β: 0.04317±0.003518 

R2: 0.975 R2: 0.996 R2: 0.983 

Sy/x: 6.459 Sy/x: 2.924 Sy/x: 5.953 

0: 10 0: 14  

50 

k1: 0.05871±0.003593 k2: 1.167e-04±1.312e-05 α: 68.39±17.31 

PSO 

Probability ratio: 

1.74 

Difference AIC:  

1.104 

qe: 512.5±8.582 qe: 592.8±14.48 β: 0.00757±0.000803 

R2: 0.995 R2: 0.996 R2: 0.978 

Sy/x: 15.98 Sy/x: 15.12 Sy/x: 32.97 

0: 30 0: 41  

100 

k1: 0.04553±0.003841 k2: 4.201e-05±4.978e-06 α: 99,55±17.71 

PSO 

Probability ratio: 

11.11 

Difference AIC:  

-4.816 

qe: 1033±25.41 qe: 1224±33.67 β: 0.00347±0.000291 

R2: 0.992 R2: 0.995 R2: 0.988 

Sy/x: 39.90 Sy/x: 31.36 Sy/x: 48.15 

0: 47 0: 63  

*Comparison of the two fits with the highest R2 and lower Sy/x values. 0 calculated according to: PFO

0 1 e
k q  ; PSO 

2

0 2 e
k q   

 

For Pb, results showed to be different, since only 46-58% of metal removed from the 

solution was really accumulated by the macroalgae, which suggests that other mechanisms 

may intervene in the purification of water, such as precipitation (Chen and Wang 2007). As 

concentrations remained stable in controls, precipitation of Pb had to be induced by the 

macroalgae, indirectly by raising the pH of solution (there was a gradual ascent along the 

experience until 9.3±0.3), or directly through microprecipitation on alga surface (Chojnacka 

2009) and/or by production of exudates capable of complexing metals (Coelho et al. 2005, 

Torres et al. 2008). Further studies are required in order to understand those mechanisms. 

As seen for Cd, determination of Hg levels in macroalgae biomass, at 144h, confirmed 

that all metal removed from seawater along time was being incorporated by macroalgae 

(Table 4.5). Thus, Hg-reduction phenomena and subsequent H0 volatilization (Sunda and 

Huntsman 1998) may be excluded. The largest relative error between theoretical and 

experimental qt,144h (17%) was recorded for the lowest initial concentration, 10 µg L-1, which 
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may be explained by a “dilution effect”, due to fast growth of macroalgae, not balanced with 

accumulation of Hg (Costa et al. 2011). 

 

Table 4.5: Effect of initial metal concentrations on the amount of metal bioaccumulated by the U. lactuca 

(qt,144h – theoretical and experimental),  removal percentage and residual concentration of metal in solution (Ct, 

144h). 

Metal 

C0, 

µg L-1 

(nmol L-1) 

qt,144h, 

theoretical 1 

nmol g-1 

qt,144h, 

experimental2 

nmol g-1 

Removal3
144h, 

% 

Ct, 144h, 

µg L-1 

 

Cd 

10 (89) >154.5 193.3±15.78 >78.9 (100) <2.0 

50 (445) >710.9 821.8±119.6 >94.9 (100) <2.0 

100 (890) >1457 1464±136.1 >97.5 (98) <2.0 

200 (1779) 3083 2876±93.98 98.5  2.4 

Pb 

50 (241) 512.0 266.1±79.15 92.6  4.0 

100 (483) 1053 561.0±131.9 95.4  4.9 

200 (965) 2106 977.3±129.8 93.3  16 

1000 (4826) 7922 4631±35.81 67.7 379 

Hg 

10 (50) 113.0 93.22±5.680 97.4 0.31 

50 (249) 514.2 501.0±81.75 98.9 0.84 

100 (499) 1039 985.5±100.7 99.0 1.0 

1 – obtained through mass balance using eq. 1; 2 - obtained by chemical quantification in seaweed; 3- obtained 

by using eq. 2 (obtained considering the amount of metal available initially in solution and the amount of metal 

in macroalgae biomass at 144h, determined by chemical quantification in seaweed). 

 

Overall, data demonstrate the effectiveness of U. lactuca in removing metals from salt 

water. Less than half-gram per litter of this green macroalgae allowed to reduce all 

concentrations of Hg in solution to values equal or below the limit set by the European Union 

for waters for human consumption, 1 µg L-1 (Council Directive 98/83/EC 1998). Legal 

criteria were also met for Cd, since all residual levels of metal in solution were below the 

maximum permissible values (MPV) for drinking water, 5 µg L-1 (Decree-Law No. 103/2010 

2010), and bellow or very close to the maximum allowable concentration (MAC) of EQS 

for Cd in surface waters (Directive 2013/39/EU 2013). 

As for Pb and concentrations of 50 and 100 µg L-1, levels of metal in solution at the 

end of the process were below 10 and 7.2 µg L-1, which are respectively MAC values for 

safe drinking water, according to Portuguese law (Decree-Law No. 103/2010 2010) and 

annual average (AA) of EQS for Pb in surface waters (Directive 2013/39/EU 2013). For 

1000 µg L-1, final concentration of Pb in seawater exceeds the allowed values by about 40 
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times. However, it is important to note that for this concentration, no steady-state was 

reached within 144h, and if exposure time was prolonged, macroalgae would have improved 

water quality even more. 

Bioconcentration factors (BCF) in U. lactuca, defined as the ratio between metal 

concentrations in the organisms to metal concentration in seawater, ranged between 1616-

2169 for Cd, 960-1160 for Pb and 1855-2010 for Hg. Overall, BCF varied inversely with the 

concentration gradient in seawater (Wang and Dei 1999, Coelho et al. 2005).  

 

4.3.3 Bioremediation in multi-contaminant systems 

 

After evaluating the ability of U. lactuca to remove Cd, Pb and Hg individually, metal 

uptake/accumulation by this green macroalgae was also assessed for multi-contaminant 

systems, comprising simultaneously those three metals. Two different contamination 

scenarios were studied: Mixture M1 – Cd, Pb and Hg were in equal mass concentration in 

seawater, 50 µg L-1; Misture M2 – Cd, Pb and Hg were in seawater, in concentrations of 200, 

1000 and 50 µg L-1, respectively. 

The variation of normalized concentrations of Hg, Cd and Pb (Ct/C0 vs t) in ternary 

solutions, M1 and M2, are presented in Figure 4.9A-B. 

 Results show that U. lactuca is capable of remove simultaneously Cd, Pb and Hg, yet 

with a removal efficiency for each metal depending greatly on the exposure condition. In 

M1, the profiles of curves Ct/C0 were similar among metals, and removal percentages at the 

end of assays were also comparable, c.a. 96%, suggesting an equal affinity of green 

macroalgae toward different metals. However, it should be noted that initial molar 

concentration of Cd was ca. 1.8 folds the molar concentrations of Pb and Hg, and initial 

bioaccumulation rates varied among metals, according to Pb>Hg>Cd. This sequence is in 

agreement with the values of the kinetic constants of PFO (k1) and PSO (k2) models (Table 

4.6), and follows an inverse trend of the initial metal concentrations (C0,Cd>C0,Hg>C0,Pb). The 

kinetic pattern presented in M2 was very different among the three metals, with levels of Hg 

being reduced very fast, reaching up to 99.7% of removal at 144h, while removal efficiencies 

for Cd and Pb were respectively 57.1 and 33.8%, with no equilibrium achieved. Although 

lower efficiencies were recorded for the metals with high initial concentration, an inverse 

situation was observed for the amount of metal incorporated by the macroalgae (Table 4.7). 
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Figure 4.9: Normalized concentrations (Ct/C0) of Cd, Pb and Hg, simultaneously present in seawater along 

time (t, h), when in contact with living U. lactuca, under two different contamination scenarios, M1 and M2. 

The results are expressed as the mean ± standard deviation (n=3). 

The selectivity of U. lactuca toward the different metals may be quantified by the ratio 

between the distribution coefficients (K), which in turn are given by K=qe/Ce for each metal 

at equilibrium (Lopes et al. 2014). Assuming the experimental values of qt,144h, the pseudo-

equilibrium selectivity found for the living macroalgae toward the target metals followed the 

order Cd>Hg>Pb in M1, whereas for M2 the order of selectivity was Hg>Cd>Pb. It seems 

that relative initial concentrations play a fundamental role in selectivity: for the low 

contamination scenario, selectivity follows the trend of molar concentrations, while for a 

scenario of severe contamination the behavior is inverse. Kamala-Kannan et al. (2008) also 

found that the concentrations of metal in U. lactuca from Pulicat Lake (with levels of metal 

in water of 0.04-3.4 µg L-1) decreased in the order: Cd > Pb, similar to that of surrounding 

environment. Different results were obtained by Sari and Tuzen (2008) using non-living 

biomass of U. lactuca. The authors concluded that the ability for Pb biosorption was higher 

than the biosorption capacity for Cd. In fact, although it is widely accepted that the major 

mechanisms involved in metal biosorption by dead algae are the same as occur on the surface 

of the living seaweed, there are differences related to the metabolism of the organism. 

Comparing the time evolution of normalized concentrations of each metal in mono- 

and multi-metallic solutions (Figure 4.10A-F) it is possible to conclude that Hg was barely 

affect by the presence of Pb and Cd in both exposure conditions studied. However, after 48h 

the reduction in Hg concentration was slightly slower at M1, compared to Hg removal rate 

in the absence of competing metals, or at M2 (Figure 4.10E-F). The amount of Hg bound 
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per unit of macroalgae mass was very similar between M1 and M2, respectively, 539.4 and 

536.1 nmol g-1.  

Unlike what was observed for Hg, the profile of Cd removal was altered by the 

presence of competing metal ions, and differences were more noteworthy at M2. Initial 

bioaccumulation rates were lower than those recorded in the absence of Hg and Pb, and 

extension of process was also negatively affected. After 144h of contact, living U. lactuca 

accumulated 1022 and 2323 nmol Cd g-1, respectively for M1 and M2, being required a 

longer time to achieve an equilibrium in M2. 

In the case of Pb, the kinetics of removal was affected differently depending on the 

contamination scenario. In M1, as verified for Hg, removal patterns in the presence and 

absence of competing metal ions in solution were very similar: initially, the process of 

removal of Pb was very fast, followed by a subtle decrease in Ct/C0, until a balance is 

established, which corresponds to an bioaccumulation of 498.4 nmol g-1. In the exposure 

condition M2, change in kinetic profile due to the presence of other metals was evident, with 

a less pronounced decrease on Pb content in seawater, over time. The removal process was 

far from reaching equilibrium at 144h, although the algae had already incorporated an 

impressive amount of Pb, 3539 nmol g-1. 
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Figure 4.10: Normalized concentrations (Ct/C0) of Cd, Pb and Hg in spiked seawater along time (t, h), when 

in contact with U. lactuca (single vs. multi-contaminant systems). Error bars were omitted for clarity. 

The comparison between qt values at equilibrium, obtained in mixtures and in the same 

conditions but in the monometallic solution, enable to assess the effect of the presence of 

foreign metals on the bioaccumulation of a specific metal. If qe
mixture/qe

single<1, the 

bioaccumulation is inhibited by the presence other metals; if qe
mixture/qe

single =1, there is no 

observable interaction; and if qe
mixture/qe

single >1, the bioaccumulation is favoured by the 
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presence of co-existing metals. For Hg, values found were 1.05 and 1.04, respectively for 

M1 and M2, which indicates that bioaccumulation of Hg was neither favoured nor inhibited 

in both systems. The bioaccumulation of Pb was not affected by the presence of Hg and Cd 

in M1 (1.03), whereas for M2 it was highly inhibited (0.45). As for Cd, bioaccumulation was 

slightly inhibited in the case of low contamination scenario (0.94), and somehow inhibited 

by the presence of Hg and Pb, in the severe contamination scenario (0.75). 

The fitting of experimental data, on metal removal in ternary systems, to PFO, PSO 

and Elovich models are presented in Figure 4.11A-F. Table 4.6 summarises the results of 

fits. 
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Figure 4.11: Kinetic modelling of the experimental data regarding the uptake of Cd, Pb and Hg by living U. 

lactuca in multi-contaminant systems, at two different contamination scenarios, M1 and M2. Error bars were 

omitted for clarity. 

 

Overall, there was a good agreement between experimental data obtained in M1 and 

models applied (0.968<R2<0.998). For each metal, the best fit model is consistent with the 

observations in monometallic solutions: Cd (PFO); Pb (Elovich); Hg (PSO). In M2, the fits 

showed a worst performance, with exception of Hg (0.973<R2<0.993). Pseudo-first order 

and PSO models failed to describe the bioaccumulation of Cd (ambiguous), while for Pb 

coefficients of correlation ranged between 0.896 and 0.965. 
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Table 4.6: Best-fit parameters (± standard error) and goodness of the fittings of the kinetic models used to 

describe the bioaccumulation kinetics of Cd, Pb and Hg by living U. lactuca in multi-contaminant systems, 

under two different contamination scenarios, M1 and M2. 

C0  

(µg L-1) 
PFO PSO Elovich 

Preferred 

model* 

Cd in M1 

k1: 0.03079±0.003608 k2: 2.292e-05±5.713e-06 α: 56.13±12.82 PFO 

Probability ratio: 

3.14 

Difference AIC:  

2.288 

qe: 1063±42.12 qe: 1333±87.68 β: 0.00283±0.000389 

R2: 0.987 R2: 0.983 R2: 0.977 

Sy/x: 50.29 Sy/x: 56.38 Sy/x: 66.37 

Cd in M2 

k1: Ambiguous k2: Ambiguous α: 16.37±4.461 Elovich 

Probability ratio: 

- 

Difference AIC:  

- 

qe: Ambiguous qe: Ambiguous β: -1.523e-05±2.74e-04 

R2: - R2: - R2: 0.903 

Sy/x: - Sy/x: - Sy/x: 263.2 

Pb in M1 

k1: 0.1072±0.02438 k2: 0.0014±0.0003 α: 172,2±34.74 Elovich 

Probability ratio: 

197.74 

Difference AIC:  

10.57 

qe: 448.8±25.10 qe: 498.3±22.12 β: 0.01094±0.000673 

R2: 0.922 R2: 0.968 R2: 0.989 

Sy/x: 51.59 Sy/x: 32.90 Sy/x: 19.39 

Pb in M2 

k1: 0.03961±0.01173 k2: 1.383e-05±5.726e-06 α: 320.2±96.81 Elovich 

 

Probability ratio: 

20.9 

Difference AIC:  

6.080 

qe: 3108±280.8 qe: 3624±350.1 β: 0.00122±0.000167 

R2: 0.896 R2: 0.935 R2: 0.965 

Sy/x: 405.8 Sy/x: 321.0 Sy/x: 236.9 

Hg in 

M1 

k1: 0.06841±0.003913 k2: 1.367e-04±8.851e-06 α: 86.36±20.28 PSO 

Probability ratio: 

61.72 

Difference AIC:  

-8.245 

qe: 519.4±7.889 qe: 595.1±8.097 β: 0.00786±0.000721 

R2: 0.996 R2: 0.998 R2: 0.982 

Sy/x: 14.63 Sy/x: 9.688 Sy/x: 30.17 

Hg in 

M2 

k1: 0.04963±0.003788 k2: 8.720e-05±1.549e-05 α: 55.14±15.40 PFO 

Probability ratio: 

14.98 

Difference AIC:  

5.413 

qe: 542.2±11.78 qe: 639.5±25.88 β: 0.00665±0.000857 

R2: 0.993 R2: 0.989 R2: 0.972 

Sy/x: 19.32 Sy/x: 25.33 Sy/x: 39.76 

*Comparison of the two fits with the highest R2 and lower Sy/x values. 
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A summary of the data acquired at the end of bioaccumulation trials, conducted in saline 

water, for mixtures of Cd, Pb and Hg, M1 and M2, in contact with living U. lactuca is 

presented in Table 4.7.  

 

Table 4.7: Summary of results obtained for mixtures, M1 and M2, in contact with living U. lactuca: initial 

bioaccumulation rate (0) and amount of metal bioaccumulated (qt,144h – theoretical and experimental),  removal 

percentage and residual concentration of each metal in solution (Ct, 144h) at the end of trials. 

Mixture 
Metal: C0, 

nmol L-1 

qt,144h 

theoritecal1 

nmol g-1 

qt,144h 

experimental2 

nmol g-1 

Rem.,144h
3 

% 

Ct,144h 

µg L-1 

 

M1 

Cd: 445 1022 1008±206.9 96.3 2.0 

Pb: 241  498.4 248.5±12.17 96.7 2.0 

Hg: 249 539.4 518.4±10.79 96.4 2.0 

M2 

Cd: 1779 2323 2463±63.34 57.1 77.3 

Pb: 4826 3539 2519±249.1 33.8 718 

Hg: 249 536.1 525.3±12.37 99.7 0.15 

* calculated through the derivative of the function qt= f(t), when t=0; 1 – obtained through mass balance using 

eq. 1; 2 - obtained by chemical quantification in seaweed; 3- obtained through variation of metal concentration 

in solution using eq. 2 (obtained considering the amount of metal available initially in solution and the amount 

of metal in macroalgae biomass at 144h, determined by chemical quantification in seaweed). 

 

The measurement of metal content in macroalgal biomass revealed, once again, that 

all Cd and Hg removed from the seawater was fixed in the organism tissues, since 

experimental values of qt,144h matched perfectly with theoretical values of qt,144h 

(1.4%<Er<5.7%). By contrary, only 49% and 71% of all Pb removed from the dissolved 

phase of seawater, in M1 and M2 respectively, showed to be bioaccumulated by the marine 

macroalgae. Results follow the trend observed in the experiments of exposure to single-

contaminant, and are in accordance with the findings of Turner et al. (2008b), who conducted 

short-term experiments in synthetic seawater, in order to study the effect of humic substances 

and salinity in the uptake of Pd, Cd, Hg and Pb by U. lactuca. Researchers also operationally 

discriminated intracellular uptake and surface adsorption (by washing macroalgae in 3 mM 

EDTA), and found that internalization follow the sequence: Hg>Pd>Cd>Pb, being that Hg 

fraction internalized was c.a. 100% and Pb fraction internalized was below 30% (Turner et 

al. 2008b). 
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Bioconcentration factors in M1 were also in line with those obtained in monometallic 

solutions, respectively, 2266, 1032 and 2078 for Cd, Pb and Hg, whereas for M2, BCF for 

Cd and Pb were slightly lower, respectively 1384 and 522, and similar for Hg, 2106. 

Analysing the efficiency of the removal process in terms of compliance with legal 

criteria on water quality, we can conclude that, for the lowest contamination scenario, MPVs 

for water for human consumption were achieved for Cd and Pb (Decree-Law No. 103/2010 

2010), as well as EQS for Pb in surface waters (Directive 2013/39/EU 2013). The residual 

concentration of Hg in M1 was only slightly above the legal limits for drinking waters, 

however, in M2 the level of Hg was much lower than that allowable limit, due to synergistic 

effect of Cd and Pb. None of the legal criteria was accomplished for Cd and Pb in the highest 

contamination scenario, however it is important to remember that time profiles (Figure 

4.10B and D) indicate that better water quality would be attained if the period of time was 

extended. 

Based on all results, it was concluded that living U. lactuca may effectively be the 

basis of an alternative and cost-effective biotechnology for the simultaneous removal of Cd, 

Hg and Pb from wastewaters and contaminated salt waters. It should be noted that 

experimental conditions used in the present work intended to mimic real situations of 

contamination in water. Natural seawater was used as matrix along with environmental 

relevant concentrations of metal.  

 

4.3.4 Effects of metals on macroalgae growth 

 

The presence of toxic metals in the culture medium may affect organisms growth rate, 

and eventually lead to death, either by direct toxicity (Costa et al. 2011), or by nutrient 

deficiency, induced by metal competition for binding sites and transport proteins (Sunda and 

Huntsman 1998). The macroalgal growth rate is closely linked to the removal efficiency, 

since a fast growth will lead to a rapid increase of their biomass, and consequently to the 

multiplication of specific sites for metal binding (Chojnacka 2010). By other hand, 

macroalgae decay during the removal process would make unfeasible its application on 

water remediation, since all metal accumulated would be immediately released back into the 

water. Thus, the influence of Cd, Pb and Hg in Ulva lactuca growth rate was evaluated along 

the bioaccumulation experiments, for single and multi-contaminant systems. It should be 



Chapter 4 

 

159 
 

highlighted  that for the full range of concentration used, no sporulation or marked loss of 

color, which indicates algae decay (Han and Choi 2005) was observed during the 6 days of 

trials. 

Figure 4.12 shows the relative growth rate (RGR) of Ulva lactuca, expressed in % day-

1, at defined periods of exposure time to monometallic solutions of the studied metals. After 

24 hours of contact time, the RGR of reference (0 µg L-1, macroalgae in clean seawater)  was 

10.6±3.3 % day-1, which is in line with the values recorded by Han et al. (2008) for two 

macroalgae of the genus Ulva (c.a. 12%). Costa et al. (2011) documented higher RGR for 

Ulva lactuca (18±1 % day-1) in seawater, at 24h, however, researchers added nutrients to the 

culture medium. In this study, no nutrient medium was used in the bioaccumulation trials, 

since preliminary tests showed that the availability of metals in solution was very affected. 

On the whole, different growth patterns were observed between reference and the 

various contaminated solutions, however, with significant differences (two-way ANOVA, 

Tukey post hoc test, ρ<0.05) only for shorter exposure time (24h). 

Cadmium (Figure 4.12A) seems to enhance the cellular metabolism of the organism, 

causing a significant increase of RGR, at 24h, in 10 and 50 µg L-1 when compared with 

reference (Tukey test, Q=4.172 and Q=4.572, respectively; ρ<0.05). The reasons for that 

unexpected faster growing are not clear, and may be related to a defense mechanism of the 

macroalgae against high levels of metal in cells, since increasing its biomass a “dilution 

effect” occurs (Sunda and Huntsman 1998, Costa et al. 2011), and internal concentration of 

metal diminishes.  

With the increase of contact time, differences between RGR of reference and Cd 

spiked seawaters become smaller, with almost none differences at 144 hours. A similar 

behavior has been reported by Costa et al. (2011) when exposed U. lactuca to different 

concentrations of Hg in seawater. The authors explained this behavior by the fact that the 

metal concentration in solution decreases over time, but also by a possible physiological 

adaptation of the macroalgae to the presence of metal.  

On the other hand, there was a trend towards decrease of Ulva lactuca RGR along 

time, i.e., in all cases macroalgae grew (RGR is positive) but at a progressively slower rate. 

This pattern was also verified for Pb and Hg, and may be attributed to the increasingly lower 

availability of nutrients and CO2, which were consumed as algae grew. 
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Figure 4.12: Relative growth rate of U. lactuca in clean seawater (0 µg L-1), and when exposed to monometallic 

solutions of Cd (A), Pb (B) and Hg (C), in different concentrations, at 24, 48, 72 and 144h. Results are 

expressed as mean and errors bars represent standard deviations (n=6). 
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At 24 hours (Figure 4.12B), only the RGR associated to Pb,C0=50 µg L-1 was 

considerably higher (21.0±7.3 % day-1) that RGR of reference (Tukey test, Q=4.744; 

ρ<0.05). Additionally, for the highest concentration of Pb, 1000 µg L-1, a decrease on RGR 

was observed (8.2±3.2 % day-1) when compared to the reference, however with no 

significance (two-way ANOVA, ρ>0.05).  

Exposure to Hg (Figure 4.12C), affected growth rate positively (RGRPb/RGRreference>1) 

but two-way ANOVA test only indicated significant differences between reference and 50 

µg L-1. As observed for Cd and Pb, RGRs of macroalgae exposed to Hg decreased over time 

for all concentrations, which can be explained by the reduced availability of nutrients and 

CO2 in solution, capable of sustain growth rates similar to those observed in the beginning. 

The evolution of U. lactuca RGR over time, when exposed to mixtures of Cd, Pb and 

Hg, under two different scenarios, M1 (equal mass concentrations of metals, C0=50 µg L-1) 

and M2 (Cd,C0=200 µg L-1, Pb,C0=1000 µg L-1 and Hg,C0=50 µg L-1) is presented in Figure 

4.13. 
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Figure 4.13: Relative growth rate of U. lactuca in clean seawater (0 µg L-1), and in contact with spiked 

multimetallic solutions of Cd, Pb and Hg in equal mass concentrations (M1) and in different concentrations of 

the three elements (M2). 

Along the experimental trials, RGRs of macroalgae in contact with multimetallic 

solutions were in most cases higher than the correspondent RGR of reference. Significant 

differences were only observed at 24h, between control and M1 (Tukey test, Q=4.175; 

ρ<0.05), which suggests that, for the concentrations tested, growth is not adversely 

influenced by the simultaneous presence of metals in solution. In general, the growth pattern 
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was very similar for the two contamination scenarios, with exception of RGRs at 24h, where 

M1 RGR (18.4±6.1 % day-1) was significantly higher than that of M2 (10.7±3.6 % day-1). 

Once again, macroalgae RGRs decreased with time in all cases. 

 

4.3.5 Variation on pH 

 

During the experiments, the pH of solutions was daily monitored in order to evaluate 

the influence of macroalgae metabolism in that parameter, and to verify if there was a 

correlation with metallic contamination. As already mentioned, initial pH of seawater was 

7.9, and the addition of metal stock solution leads to a slightly decrease of seawater pH 

(generally less than 0.1). The major decrease was observed when the highest concentration 

of Pb, 1000 µg L-1, was prepared (pH=7.3).  

Over the full period of time, pH of all controls (metal spiked seawater in the absence 

of U. lactuca) remained unchanged. By contrary, there was a gradually increasing of pH 

along time, in all solutions containing macroalgae (including clean seawater with U. 

lactuca), until a maximum value of 8.9-9.6 was reached at 144h. This increment on pH was 

attributed to the natural metabolism of the organism (Velasquez and Dussan 2009). The 

uptake of CO2 by the macroalgae during photosynthesis, reduces HCO3
- levels in seawater 

and increases the concentration of OH- ions, leading to a rise of pH. Since experimental 

vessels were always sealed with Parafilm (to minimize eventual contamination or loss of 

metal) gas exchanges between culture medium and surrounding atmosphere were limited, as 

consequently CO2 replenishment. Collecting several solution samples, and leaving them in 

open vials for one day, lead to a reduction of pH values close to original, supporting our 

hypothesis. As explained previously, no buffer was added to solutions and no pH 

adjustments were made because that may interfere with organism metabolism (Vasconcelos 

and Leal 2001, Velasquez and Dussan 2009). 

 

4.4 Conclusions 

 

The effectiveness of living U. lactuca in the removal of metals from saline water was 

confirmed under different contamination scenarios, mimicking those found in the field. Fast-

growing marine macroalgae were able to bioconcentrate Pb, Cd and Hg in their tissues 500 
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to 2200-fold the initial concentrations of solution, leading to high metal removal 

percentages. Initial bioaccumulation rates, and final amount of metal bound in macroalgae 

biomass were positively correlated with initial concentrations of metal in solution. 

For monometallic solutions of Cd and Hg, removal efficiencies were always above 97%, 

representing final concentrations of metal in solution below, or very close to both surface 

and drinking water legal limits. Water quality criteria were also met for the lowest 

concentrations of Pb studied, while for highest concentrations a longer contact time would 

be required for improved results, since no steady-state was attained in 144h. 

Under metal competition (ternary solutions), living U. lactuca was able to 

simultaneously remove Pb, Cd and Hg, although removal efficiencies were dependent of 

exposure condition. For the lowest contamination scenario, all removal percentages were 

above 96%, whereas for the system comprising the three metals, in concentration equal to 

the respective level previously allowed for industrial effluents, removal efficiencies were 

c.a. 99% for Hg, 57% for Cd and 33% for Pb. Thus, increasing level of contamination, a 

synergistic effect was observed for Hg, while the presence of other metals affected the 

removal of Cd and Pb. Under those conditions U. lactuca showed significant different 

affinities toward studied metals: Hg>Cd>Pb. 

The bioaccumulation kinetic data was well described by the PFO, PSO and Elovich 

models, although in most cases the best fit model was different for each metal-macroalgae 

system.  

Metal quantification in macroalgae biomass, after bioaccumulation, demonstrated that 

indeed all Cd and Hg removed from the aqueous solution was incorporated by the 

macroalgae, while only c.a. 50% of Pb proved to be fixed in macroalgae cells. This suggests 

that another mechanism, such as precipitation, occurred concurrently, leading to decreased 

levels of this metal in the solution over time. 

It is noteworthy that in none of bioaccumulation assays occurred death of the organism. 

As regards to seaweed growth rate at the end of the tests, and for the full range of 

concentration studied, it was concluded that RGR was not negatively affected by the 

presence of Cd, Pb and Hg, even under multi-stressor exposure. However, at 24h RGR was 

generally higher in the presence of metals, which may represent a defense mechanism of 

seaweed, in order to dilute the internalized metal concentration. 
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Overall, results highlighted the remarkable affinity of living U. lactuca to metals, which 

gives it a huge potential application in the treatment of saline waters. In fact, macroalgae-

based biotechnologies may be the need alternative, for water remediation, environmentally 

friendly and cost-effective. 

 

4.5 References 
 

Almela, C., S. Algora, V. Benito, M. J. Clemente, V. Devesa, M. A. Suner, D. Velez and R. 

Montoro (2002). "Heavy metal, total arsenic, and inorganic arsenic contents of algae 

food products." J Agric Food Chem 50(4): 918-923. 

Bruhn, A., J. Dahl, H. B. Nielsen, L. Nikolaisen, M. B. Rasmussen, S. Markager, B. Olesen, 

C. Arias and P. D. Jensen (2011). "Bioenergy potential of Ulva lactuca: Biomass 

yield, methane production and combustion." Bioresource Technology 102(3): 2595-

2604. 

Bulgariu, L. and D. Bulgariu (2014). "Enhancing Biosorption Characteristics of Marine 

Green Algae (Ulva lactuca) for Heavy Metals Removal by Alkaline Treatment." 

Bioprocessing & Biotechniques 4(1). 

Caliceti, M., E. Argese, A. Sfriso and B. Pavoni (2002). "Heavy metal contamination in the 

seaweeds of the Venice lagoon." Chemosphere 47(4): 443-454. 

Chen, C. and J. Wang (2007). "Influence of metal ionic characteristics on their biosorption 

capacity by Saccharomyces cerevisiae." Applied Microbiology and Biotechnology 

74(4): 911-917. 

Cheung, C. W., J. F. Porter and G. McKay (2000). "Sorption kinetics for the removal of 

copper and zinc from effluents using bone char." Separation and Purification 

Technology 19(1–2): 55-64. 

Chojnacka, K. (2007). "Bioaccumulation of Cr(III) ions by Blue-Green alga Spirulina sp. 

Part I. A Comparison with Biosorption." American Journal of Agricultural and 

Biological Sciences 2(4): 218-223. 

Chojnacka, K. (2009). Biosorption and bioaccumulation in practice. New York, Nova 

Science Publishers, Inc. 

Chojnacka, K. (2010). "Biosorption and bioaccumulation - the prospects for practical 

applications." Environment International 36(3): 299-307. 

Coelho, J. P., M. E. Pereira, A. Duarte and M. A. Pardal (2005). "Macroalgae response to a 

mercury contamination gradient in a temperate coastal lagoon (Ria de Aveiro, 

Portugal)." Estuarine, Coastal and Shelf Science 65(3): 492-500. 

Costa, S., D. Crespo, B. M. G. Henriques, E. Pereira, A. C. Duarte and M. A. Pardal (2011). 

"Kinetics of Mercury Accumulation and Its Effects on Ulva lactuca Growth Rate at 

Two Salinities and Exposure Conditions." Water Air and Soil Pollution 217(1-4): 

689-699. 

Costley, C. T., K. F. Mossop, J. R. Dean, L. M. Garden, J. Marshall and J. Carroll (2000). 

"Determination of mercury in environmental and biological samples using pyrolysis 

atomic absorption spectrometry with gold amalgamation." Analytica Chimica Acta 

405(1-2): 179-183. 

Council Directive 98/83/EC (1998). "Council Directive 98/83/EC of 3 November 1998 on 

the quality of water intended for human consumption." Journal of the European 

Communities. 



Chapter 4 

 

165 
 

Decree-Law No. 103/2010 (2010). Decree-Law No. 103/2010 of the Portuguese Ministry of 

Environment and Spatial Planning of 24 September on pollution reduction, Diário da 

República : I Série. 187: 4289-4298. 

Decree-Law No. 236/98 (1998). Decree-Law No. 236/98 of the Portuguese Ministry of the 

Environment of 1 August establishing water quality standards, Diário da República 

: I Série. 176: 3676-3722. 

Directive 83/513/EEC (1983). Council Directive 83/513/EEC of 26 September 1983 on limit 

values and quality objectives for cadmium discharges (Daughter to 2006/11/EC), 

Official Journal of the European Communities. 291: 1-8. 

Directive 84/156/EEC (1984). Council Directive 84/156/EEC of 8 March 1984 on limit 

values and quality objectives for mercury discharges by sectors other than the chlor-

alkali electrolysis industry, Official Journal of the European Communities: 74: 29-

74: 29. 

Directive 2013/39/EU (2013). Directive 2013/39/EU of the European Parliament and of the 

Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as 

regards priority substances in the field of water policy, Official Journal of the 

European Union. 226: 1-17. 

Easton, C., A. Turner and G. Sewell (2011). "An evaluation of the toxicity and 

bioaccumulation of cisplatin in the marine environment using the macroalga, Ulva 

lactuca." Environmental Pollution 159(12): 3504-3508. 

El-Khaiary, M. I. and G. F. Malash (2011). "Common data analysis errors in batch 

adsorption studies." Hydrometallurgy 105(3-4): 314-320. 

Farooq, U., J. A. Kozinski, M. A. Khan and M. Athar (2010). "Biosorption of heavy metal 

ions using wheat based biosorbents - A review of the recent literature." Bioresource 

Technology 101(14): 5043-5053. 

Freitas, O. M. M., R. J. E. Martins, C. M. Delerue-Matos and R. A. R. Boaventura (2008). 

"Removal of Cd(II), Zn(II) and Pb(II) from aqueous solutions by brown marine 

macro algae: Kinetic modelling." Journal of Hazardous Materials 153(1-2): 493-501. 

Han, T. and G.-W. Choi (2005). "A novel marine algal toxicity bioassay based on sporulation 

inhibition in the green macroalga Ulva pertusa (Chlorophyta)." Aquatic Toxicology 

75(3): 202-212. 

Han, T., S.-H. Kang, J.-S. Park, H.-K. Lee and M. T. Brown (2008). "Physiological 

responses of Ulva pertusa and U. armoricana to copper exposure." Aquatic 

Toxicology 86(2): 176-184. 

He, J. and J. P. Chen (2014). "A comprehensive review on biosorption of heavy metals by 

algal biomass: Materials, performances, chemistry, and modeling simulation tools." 

Bioresource Technology 160(0): 67-78. 

Ho, Y.-S. (2006). "Review of second-order models for adsorption systems." Journal of 

Hazardous Materials 136(3): 681-689. 

Ho, Y. S. and G. McKay (1998). "A comparison of chemisorption kinetic models applied to 

pollutant removal on various sorbents." Process Safety and Environmental Protection 

76(B4): 332-340. 

Ho, Y. S., J. C. Y. Ng and G. Mckay (2000). "Kinetics of pollutant sorption by biosorbents: 

Review." Separation and Purification Methods 29(2): 189-232. 

Jayakumar, R., M. Rajasimman and C. Karthikeyan (2014). "Sorption of hexavalent 

chromium from aqueous solution using marine green algae Halimeda gracilis: 

Optimization, equilibrium, kinetic, thermodynamic and desorption studies." Journal 

of Environmental Chemical Engineering 2(3): 1261-1274. 



Chapter 4 

 

166 
 

Kabata-Pendias, A., Mukherjee, Arun B. (2007). Trace Elements from Soil to Human, 

Springer. 

Kamala-Kannan, S., B. Prabhu Dass Batvari, K. J. Lee, N. Kannan, R. Krishnamoorthy, K. 

Shanthi and M. Jayaprakash (2008). "Assessment of heavy metals (Cd, Cr and Pb) 

in water, sediment and seaweed (Ulva lactuca) in the Pulicat Lake, South East India." 

Chemosphere 71(7): 1233-1240. 

Kumar, P., M. Govindaraju, S. Senthamilselvi and K. Premkumar (2013). "Photocatalytic 

degradation of methyl orange dye using silver (Ag) nanoparticles synthesized from 

Ulva lactuca." Colloids and Surfaces B: Biointerfaces 103(0): 658-661. 

Lagergren, S. (1898). "About the theory of so-called adsorption of soluble substances." Kung 

Sven Veten Hand 24: 1-39. 

Lamare, M. D. and S. R. Wing (2001). "Calorific content of New Zealand marine 

macrophytes." New Zealand Journal of Marine and Freshwater Research 35(2): 335-

341. 

Leal, M. C. F., M. T. Vasconcelos, I. Sousa-pinto and J. P. S. Cabral (1997). "Biomonitoring 

with benthic macroalgae and direct assay of heavy metals in seawater of the Oporto 

coast (northwest Portugal)." Marine Pollution Bulletin 34(12): 1006-1015. 

Lee, W.-Y. and W.-X. Wang (2001). "Metal accumulation in the green macroalga Ulva 

fasciata: effects of nitrate, ammonium and phosphate." Science of The Total 

Environment 278(1–3): 11-22. 

Li, C., Y. Xu, W. Jiang, X. Dong, D. Wang and B. Liu (2013). "Effect of NaCl on the heavy 

metal tolerance and bioaccumulation of Zygosaccharomyces rouxii and 

Saccharomyces cerevisiae." Bioresource Technology 143(0): 46-52. 

Lopes, C. B., J. R. Oliveira, L. S. Rocha, D. S. Tavares, C. M. Silva, S. P. Silva, N. Hartog, 

A. C. Duarte and E. Pereira (2014). "Cork stoppers as an effective sorbent for water 

treatment: the removal of mercury at environmentally relevant concentrations and 

conditions." Environ Sci Pollut Res Int 21(3): 2108-2121. 

Masakorala, K., A. Turner and M. T. Brown (2008). "Influence of synthetic surfactants on 

the uptake of Pd, Cd and Pb by the marine macroalga, Ulva lactuca." Environmental 

Pollution 156(3): 897-904. 

Monterroso, P., S. N. Abreu, E. Pereira, C. Vale and A. C. Duarte (2003). "Estimation of 

Cu, Cd and Hg transported by plankton from a contaminated area (Ria de Aveiro)." 

Acta Oecologica 24, Supplement 1(0): S351-S357. 

Nielsen, M. M., A. Bruhn, M. B. Rasmussen, B. Olesen, M. M. Larsen and H. B. Moller 

(2012). "Cultivation of Ulva lactuca with manure for simultaneous bioremediation 

and biomass production." Journal of Applied Phycology 24(3): 449-458. 

Nikolaisen, L. S. and P. D. Jensen (2013). 3 - Biomass feedstocks: categorisation and 

preparation for combustion and gasification. Biomass Combustion Science, 

Technology and Engineering. L. Rosendahl, Woodhead Publishing: 36-57. 

Pato, P., M. Otero, M. Válega, C. B. Lopes, M. E. Pereira and A. C. Duarte (2010). "Mercury 

partition in the interface between a contaminated lagoon and the ocean: The role of 

particulate load and composition." Marine Pollution Bulletin 60(10): 1658-1666. 

Rocha, L., C. Lopes, J. A. Borges, A. C. Duarte and E. Pereira (2013). "Valuation of 

Unmodified Rice Husk Waste as an Eco-Friendly Sorbent to Remove Mercury: a 

Study Using Environmental Realistic Concentrations." Water, Air, & Soil Pollution 

224(7): 1-18. 



Chapter 4 

 

167 
 

Romera, E., F. Gonzalez, A. Ballester, M. L. Blazquez and J. A. Munoz (2007). 

"Comparative study of biosorption of heavy metals using different types of algae." 

Bioresource Technology 98(17): 3344-3353. 

Romero-Gonzalez, M. E., C. J. Williams and P. H. E. Gardiner (2000). "The application of 

dealginated seaweed as a cation exchanger foron-line preconcentration and chemical 

speciation of trace metals." Journal of Analytical Atomic Spectrometry 15(8): 1009-

1013. 

Ryan, S., P. McLoughlin and O. O'Donovan (2012). "A comprehensive study of metal 

distribution in three main classes of seaweed." Environmental Pollution 167(0): 171-

177. 

Sari, A. and M. Tuzen (2008). "Biosorption of Pb(II) and Cd(II) from aqueous solution using 

green alga (Ulva lactuca) biomass." Journal of Hazardous Materials 152(1): 302-308. 

Sekabira, K., H. O. Origa, T. A. Basamba, G. Mutumba and E. Kakudidi (2011). 

"Application of algae in biomonitoring and phytoextraction of heavy metals 

contamination in urban stream water." International Journal of Environmental 

Science and Technology 8(1): 115-128. 

Simpson, A. G. B. and A. J. Roger (2004). "The real ‘kingdoms’ of eukaryotes." Current 

Biology 14(17): R693-R696. 

Sunda, W. G. and S. A. Huntsman (1998). "Processes regulating cellular metal accumulation 

and physiological effects: Phytoplankton as model systems." Science of The Total 

Environment 219(2–3): 165-181. 

Torres, M. A., M. P. Barros, S. C. G. Campos, E. Pinto, S. Rajamani, R. T. Sayre and P. 

Colepicolo (2008). "Biochemical biomarkers in algae and marine pollution: A 

review." Ecotoxicology and Environmental Safety 71(1): 1-15. 

Trinelli, M. A., M. M. Areco and M. D. Afonso (2013). "Co-biosorption of copper and 

glyphosate by Ulva lactuca." Colloids and Surfaces B-Biointerfaces 105: 251-258. 

Turner, A., S. S. Pedroso and M. T. Brown (2008a). "Influence of salinity and humic 

substances on the uptake of trace metals by the marine macroalga, Ulva lactuca: 

Experimental observations and modelling using WHAM." Marine Chemistry 110(3-

4): 176-184. 

Turner, A., S. S. Pedroso and M. T. Brown (2008b). "Influence of salinity and humic 

substances on the uptake of trace metals by the marine macroalga, Ulva lactuca: 

Experimental observations and modelling using WHAM." Marine Chemistry 110(3–

4): 176-184. 

Vasconcelos, M. T. S. D. and M. F. C. Leal (2001). "Seasonal variability in the kinetics of 

Cu, Pb, Cd and Hg accumulation by macroalgae." Marine Chemistry 74(1): 65-85. 

Velasquez, L. and J. Dussan (2009). "Biosorption and bioaccumulation of heavy metals on 

dead and living biomass of Bacillus sphaericus." Journal of Hazardous Materials 

167(1-3): 713-716. 

Wang, J. L. and C. Chen (2009). "Biosorbents for heavy metals removal and their future." 

Biotechnology Advances 27(2): 195-226. 

Wang, W.-X. and R. C. H. Dei (1999). "Kinetic measurements of metal accumulation in two 

marine macroalgae." Marine Biology 135(1): 11-23. 

Yamashita, M., K. Tomita-Yokotani, H. Hashimoto, N. Sawaki and M. Notoya (2009). 

"Sodium and potassium uptake of Ulva – Application of marine macro-algae for 

space agriculture." Advances in Space Research 43(8): 1220-1223. 





 

 
 

 

 

 

 

 

 

Chapter 5 
 

 

Bioaccumulation of Hg, Cd and Pb by  

Fucus vesiculosus in seawater: study on single 

and multi-metal systems 
 

 

 





Chapter 5 

 

171 
 

5 Bioaccumulation of Hg, Cd and Pb by Fucus vesiculosus in seawater: 

study on single and multi-metal systems 
 

 

5.1 Introduction 
 

Nowadays, water is no longer regarded as an inexhaustible resource, and there is a 

general awareness about the need to safeguard its quality and integrity from the deleterious 

effects of contaminants (Chojnacka 2009). Metals, particularly the so-called toxic-trio, Cd, 

Hg and Pb, are among the most common, and hazardous contaminants, being widely 

recognized that they cause adverse effects even when released at low concentrations into 

aquatic environments (He and Chen 2014). Anthropogenic activities, such as coal burning, 

metal plating, battery manufacture and mining, among others, are the main responsibles for 

the increased mobilization and bioavailability of Cd, Hg and Pb in water bodies (Freitas et 

al. 2008). As metals are not biodegradable, they persist indefinitely, being successively 

accumulated by the aquatic organisms along the trophic chain (Coelho et al. 2005). 

Eventually they reach human beings through diet, primarily from fish consumption, and 

often exceed the toxic levels before produce visible effects on health (Srivastava and Goyal 

2010). Even those metals, that deposit in marine or estuarine sediments for years, getting 

immobilized,  remain a hazard since, at any time, they may be released to the water column 

(Kabata-Pendias 2007). 

Currently, European Union classifies Cd and Hg as “priority hazardous substances” in 

the field of water policy (Directive 2013/39/EU 2013), imposing that their emissions, 

discharges and losses cease or be phase out by 2021. Lead is grouped with the substances 

with detrimental effect, whose discharges are conditioned to prior authorization, and 

emission values set (Directive 2013/39/EU 2013). Strict limits, designated by 

“Environmental Quality Standards” are included in the text, referring to the concentration of 

these metals not in effluents but in the receiving surface water. 

Taking into account those limits and the need for alternatives to conventional methods 

of treatment – which have major disadvantages (Farooq et al. 2010, Fu and Wang 2011), 

processes such as biosorption and bioaccumulation have been intensively studied 

(Chojnacka 2010). In fact, methods based on the use of biological materials widely available 
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and inexpensive, or even biowaste, promise to be an environmentally friendly, and cost-

effective way to remove metals from solutions.  

Biosorption uses not living (dried) biomasses, of most varied origins (Lesmana et al. 

2009, Tuzen and Sari 2009, Vijayaraghavan et al. 2011, Rocha et al. 2013, Lopes et al. 2014), 

including algae, which have proven to be of the best biosorbents (He and Chen 2014). The 

outperformance of algae is due to the diversity and quantity of functional groups present on 

their cell walls, representing up to 80% of their total dry weight (Mata et al. 2008). Among 

the studied seaweeds, brown algae stand out (Davis et al. 2003, Mata et al. 2009). Their cell 

walls are characterized by presence of cellulose, acting as structural support, alginic acid, a 

polymer of mannuronic and guluronic acids (Lesmana et al. 2009), having two adjacent 

carboxylic groups at the right distance for metal bonding (Romera et al. 2007), and sulphated 

polysaccharides. 

In bioaccumulation, beyond the bonding to surface (similar to biosorption), metals are 

also metabolically accumulated inside the cells, which potentially leads to higher removal 

efficiencies (Chojnacka 2010). From the industrial scale-up viewpoint, the application of 

living macroalgae, for the remediation of wastewaters (and contaminated estuarine waters), 

may be simpler and cheaper than biosorption, because complex systems of stirring and 

separation of biomass from treated water (filtration), which can represent up to 60% of the 

total cost (Mata et al. 2009), are dismissed. Still, metal bioaccumulation studies have been 

focused on microalgae and bacteria (Kadukova and Vircikova 2005, Chojnacka 2007) 

although biomonitoring works often reports high contents of metal in macroalgal biomasses 

(Giusti 2001, Coelho et al. 2005). Conducting complementary studies, under controlled 

conditions, with arrays that mimic the actual waters (including seawater), using 

environmentally relevant concentrations of contaminants (Rocha et al. 2013, Lopes et al. 

2014), is required in order to obtain more knowledge about potential application of certain 

macroalgae in remediation. Furthermore, research should include mathematical description 

of the kinetic of bioaccumulation (Chojnacka 2007), which is a major gap in literature, and 

refer to longer exposure times than those usually studied (Wang and Dei 1999), in order to 

evaluate the potential release of metals back to the solution. Additionally, in the literature 

there is a scarcity on studies focusing on the simultaneous removal of Cd, Hg and Pb by 

living macroalgae, as well as of their effects on growth rate (Costa et al. 2011). 
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Thus the main objective of this study was to evaluate the bioremoval of metal 

contaminants in seawater by living macroalgae Fucus vesiculosus. The efficiency of the 

removal process was assessed not only for monometallic solutions of Pb, Cd and Hg but also 

for mixtures of those metals, using environmentally realistic concentrations. Further 

objectives relate to the study of the influence of these metals on Fucus growth, and the 

assessment of the ability of this species to debug the accumulated metals.   

Fucus vesiculosus is a brown seaweed (Phaeophyta), cosmopolitan, which can be 

found in habitats with a rocky substrates (Coyer et al. 2011). It belongs to the same lineage 

of Fucus spiralis, F. radicans, F. ceranoides and F. virsoides, being a key species in diverse 

habitats ranging from the Atlantic Ocean to the Pacific Ocean. It is commonly used as a 

nutritional supplement, animal feed and agricultural fertilizers (Mata et al. 2008). In the last 

decade, the application of dried seaweeds of genus Fucus as biosorbents of metals and dyes 

has generated a growing interest (Freitas et al. 2008, Mata et al. 2008, Mata et al. 2009, 

Cobas et al. 2014) although the application of living organisms has been unexplored. 

 

5.2 Materials and methods 
 

5.2.1 Material and chemicals 
 

All chemical reagents used in this work were of analytical reagent grade and were used 

as received from the suppliers. The nitric acid 65% (suprapur) and the standard stock 

solutions of mercury (1001 ± 2mgL-1), cadmium (1000 ± 2mgL-1) and lead (1000 ± 2mgL-1) 

nitrate were purchased from Merck. All working solutions, including standards for the 

calibration curves, were obtained by diluting the corresponding stock solution. All the 

material used in the experiments was previously washed in Derquim 5% rinsed in Milli-Q 

water (18 MΩ cm-1), soaked in 25% HNO3 for at least 24h and subsequently rinsed with 

Milli-Q water. All glass vessels used in the experiments as reaction vessels or in the storage 

of the water samples were additionally soaked in concentrated HNO3 (65%) for at least 24h, 

before reuse. 

 

5.2.2 Macroalgae collection and maintenance 
 

The brown macroalga F. vesiculosus (Phaeophyta) was collected in the Mondego 

estuary (Figueira da Foz, Portugal, 40°08′N, 8°50′W) and transported to the laboratory in 
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isothermal plastic bags containing some local water. After rinse with seawater to remove 

debris and epibionts, a small part of the algae was immediately freeze dried for further 

quantification of “natural” concentrations of metals, following the procedures described 

below. The remaining algae was transferred to 30 L clear glass tanks equipped with air pump 

and filled with filtered seawater enriched with Provasoli stock solution (Costa et al. 2011). 

Macroalgae were maintained in the aquariums (water was weekly changed) under natural 

light (approximately 12L:12D photoperiod), at room temperature of 20±2°C, until the 

beginning of the experiments. Seawater used for macroalgae maintenance and for the 

bioaccumulation experiments was collected at Vagueira beach (18 km southwest of Aveiro, 

Portugal), filtered through 0.45 μm Millipore membrane and stored in the dark at 4°C until 

further use. A brief characterization of the seawater which includes pH, conductivity, salinity 

and major and minor elements was performed. The pH (7.9), conductivity (54.3 mS cm-1) 

and salinity (35 g L-1) were recorded on a WTW meter and the concentration of major and 

minor elements was obtained by inductively coupled plasma spectroscopy, using a Jobin – 

Yvon JY70 Plus Spectrometer. All the measured parameters were in acceptable ranges 

according to considered non-polluted waters.  

 

5.2.3 Fucus vesiculosus characterization 
 

In order to assess the dry/fresh weight ratio of F. vesiculosus several pieces were cut 

from the macroalgae apical tips were cut, weighed, and dried at 40ºC until constant weight. 

FTIR spectrum of F. vesiculosus was recorded by using a Bruker optics tensor 27 

spectrometer coupled to a horizontal attenuated total reflectance (ATR) cell using 256 scans 

at a resolution of 4 cm-1.The dried sample was examined directly and data were obtained as 

transmittance. 

 

5.2.4 Bioaccumulation experiments 
 

Bioaccumulation assays were conducted in Schott Duran® glass bottles of 1 L 

(reaction vessels), where F. vesiculosus was exposed to natural seawater spiked with known 

concentrations of metal. Studies were performed for single- and multi-contaminant systems, 

according to experimental conditions summarized in Table 5.1. 

With the range of conditions used, we intend to simulate different contamination 

scenarios, and the concentrations used may be considered environmental realistic. 50, 200 
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and 1000 µg L-1 correspond, respectively, to the “old” limits for Hg, Cd and Pb wastewaters 

discharges (Directive 83/513/EEC 1983, Directive 84/156/EEC 1984, Decree-Law No. 

236/98 1998). Remaining concentrations may represent a gradient of metal levels in a 

surface water, after dilution of the effluent in the water body. 

 

Table 5.1: Experimental conditions of bioaccumulation experiments. 

Matrix System Metal Concentration (µg L-1) 

Spiked natural 

seawater 

Single-contaminant 

Cd 10, 50, 100 and 200 

Pb 50, 100, 200 and 1000 

Hg 10, 50 and 100 

Multi-contaminant 

M1 

Cd 50 

Pb 50 

Hg 50 

M2 

Cd 200 

Pb 1000 

Hg 50 

 

The spiked solutions were obtained by adding the desired volume of the metal standard 

solution to filtered seawater. All the solutions were left to pre-equilibrate during 24h before 

the beginning of the experiments. An aliquot of each solution was collected immediately 

before the addition of macroalgae, to confirm the exact initial concentration of metal. 

Approximately 1.7 g L-1 (fresh weight) of macroalgae was used in each assay. Small pieces 

of the apical tips were cut (Hemmi et al. 2005) and acclimatized in clean seawater for several 

hours prior to metal exposure. The uptake of metals by the living macroalgae was followed 

during 7 days by determining the concentration of each metal in solution samples (5-10 mL) 

collected at defined crescent periods of time. All samples were acidified to pH ≤ 2 using 

Suprapur HNO3 and stored at 4°C until further analysis. All bioaccumulation trials were 

performed in triplicate, under natural light at room temperature of 20±2°C. Blanks 

(macroalgae in clean seawater) and controls (metal spiked seawater in the absence of 

macroalgae) were always running in parallel with the experiments. No pH buffer was added 

to the system and no pH adjustments were made at any time, since this could interfere with 

the metals uptake and cellular metabolism of the seaweeds (Vasconcelos and Leal 2001, 

Velasquez and Dussan 2009). However, pH was daily monitored. At the end of the 
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experiments, macroalgae were harvested, rinsed and freeze dried for later quantification of 

Hg, Cd and Pb. 

 

5.2.5 Depuration experiments 

 

Living macroalgae may present a variety of biochemical strategies to reduce the 

toxicity of accumulated metals, such as internal safe sequestration of metals by 

metallothioneins or their release back to the solution (Torres et al. 2008). In order to evaluate 

the capacity of F. vesiculosus to retain accumulated metal, thus avoiding its transference 

again to the seawater, depuration experiments were also conducted in this work. Immediately 

following 7-day of exposure, macroalgae were harvested and placed in contact with clean 

seawater, for a period of 7 days (Wang and Dei 1999). At pre-determined intervals of time, 

aliquots of seawater were collected for further analysis of metals content. All samples were 

acidified to pH ≤ 2 using Suprapur HNO3 and stored at 4°C after collected. 

 

5.2.6 Metal quantification 
 

 

5.2.6.1 Metal concentration in solution 
 

Mercury quantification in water samples was performed by cold vapour atomic 

fluorescence spectroscopy (CV-AFS), on a PSA 10.025 Millennium Merlin Hg analyser and 

using SnCl2 (2% m/v in HCl 10% v/v) as reducing agent. The concentration of Hg in the 

collected samples was determined through a calibration curve (r2≥0.999) using five daily 

prepared standard solutions ranging from 0.0 to 0.5 µg L-1. In this range, the detection and 

quantification limits, obtained through blank measurements (n = 20) were 0.007 µg L-1 and 

0.021 µg L-1, respectively. Total Hg concentration in clean seawater was determined after 

addition of 500 µL of a saturated solution of potassium persulfate to 50 mL of filtered 

seawater and irradiation by a UV lamp (1000 W) for 30 min. Following irradiation, the 

excess of oxidant was reduced with 37.5 µL of hydroxylamine solution 12% (w/v) (Pato et 

al. 2010). The measurement was then performed by CV-AFS, using a calibration curve from 

0 to 60 ng L-1, with  detection and quantification limits of 1.6 and 3.0 ng L-1, respectively 

(n=15, 99.5% confidence level). The value obtained was 3.1 ng L-1, which is a typical value 

of a non-polluted water 
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Cadmium and Pb quantification in aqueous solution was performed by inductively 

coupled plasma mass spectrometry (ICP-MS), on a Thermo ICP-MS XSeries equipped with 

a Burgener nebuliser. The calibration curve for Cd and Pb quantification was obtained 

through standards (0.1–50 μg L-1), prepared by dilution of the certified standard solution of 

Cd(NO3)2 and Pb(NO3)2 in nitric acid solution (2 % v/v). Quantification limits of the method 

were 0.1 μg L-1 and 0.2 μg L-1, for Cd and Pb respectively, with a precision and accuracy 

<10 %. Since water samples had high salinity, in order to avoid matrix interferences, a 20-

fold dilution with HNO3 (2%) was always performed prior the measurements by ICP-MS. 

Therefore the “real” quantification limits for Cd and Pb were 20-fold higher than values 

referred previously. The concentrations of Cd and Pb in clean seawater were below the 

detection limit. 

 

5.2.6.2 Metal concentration in macroalgal biomass 
 

Total mercury concentration in macroalgae biomass was measured by thermal 

decomposition atomic absorption spectrometry with gold amalgamation using a LECO© 

AMA-254, as described by Costley et al. (2000). Analysis was performed directly in the 

sample (1 to 20 mg, dry weight) without digestion or pre-specific treatment, avoiding 

mercury losses or contamination as well as matrix interferences. At least three replicate 

measurements were carried out for each sample, and a maximum coefficient of variation of 

10% was adopted as acceptance criteria. Detection and quantification limits were 0.01 ng Hg 

and 0.03 ng Hg, respectively (n=20, 99.5% confidence level). Several blanks (i.e. an empty 

sample nickel boat) were run before and between sample analyses to ensure that mercury 

was not being accumulated between samples. The quality of the results was assessed by 

using Certified Reference Material (CRM) BCR-60 (Lagarosiphon major, Total Hg 0.34 ± 

0.04 µg g−1). The CRM was analyzed every day prior to the beginning of the analysis and 

repeated at the end of the day. All percentages of recovery for total Hg were within the range 

of 85–107% (n = 17). 

Cadmium and Pb contents in macroalgae were determined by ICP-MS, after sample 

digestion, as described by Monterroso et al. (2003). Briefly, about 200 mg of freeze-dried 

sample was accurately weighted into acid-washed Teflon reactor and HNO3 (conc.) was 

added. Reactors were placed in an oven at 60 °C for 12h and then at 100 °C for 1h. 

Afterwards, H2O2 was added, and reactor was heated at 80 °C for 1 h. After digestion, 
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samples were diluted with Milli-Q water and filtered. Percentages of recovery for Cd and Pb 

were, respectively, 102 and 87% (n=4). 

The baseline concentrations of Hg, Cd and Pb in F. vesiculosus were 0.045±0.002, 

0.29±0.044 and 4.1±0.29 µg g-1, respectively. These values are characteristic of macroalgae 

growing in uncontaminated areas (Giusti 2001, Coelho et al. 2005). 

 

5.2.7 Effects of metal bioaccumulation on macroalgae growth 

 

The influence of exposure to metal on F. vesiculosus growth, for mono and 

multimetallic solutions, was evaluated by means of the relative growth rate (RGR), using the 

equation: 

  

(1) 

 

where A0 is the initial macroalgae area and At is the macroalgae area at time t (Han et al. 

2008). Areas, at the beginning and end of the exposure (7 days), were determined using 

ImageJ software after scanning, with a resolution of 200 ppi (Figure 5.1A-B). 

 

 

Figure 5.1: Example of image treatment for determination of growth area (A) and F. vesiculosus growth 

evolution over a period of 15 days (B). 

 

5.2.8 Experimental data analysis 

 

The uptake of metals from contaminated seawater leads to an increase of metals 

content in macroalgae tissues, with the correspondent decrease in solution. Thus, metal 

A B 

1

0(% ) ((ln ln ) / ) 100tRGR day A A t   
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bioaccumulation, in terms of amount of metal bound by unit of macroalgae mass, at a given 

time t (qt, µg g−1), was deduced from the mass balance between the initial metal 

concentration in the solution (C0, µg L−1) and the concentration after a particular period of 

contact time t (Ct, µg L−1): 

 (2) 

where V (L) is the volume of the solution and m (g) is the macroalga biomass, in dry weight. 

When equilibrium is attained, t=te, qt=qe and Ct=Ce (residual concentration of metal in 

solution). The performance of the removal process was also evaluated and compared using 

the removal percentage (R, %), which at time t is defined by: 

 (3) 

5.2.8.1 Bioaccumulation kinetic models 

 

In this study, three of the most widely accepted and commonly used kinetic models 

were applied to experimental data, in order to describe the kinetic of the metal uptake 

process: the Lagergren pseudo-first-order model (Lagergren 1898), the Ho’s pseudo-second 

order model (Ho and McKay 1998) and the Elovich model (Ho 2006). Models were used in 

their non-linear forms (El-Khaiary and Malash 2011): 

 (4) 

 (5) 

 (6) 

where k1 (h
−1) is the rate constant of pseudo-first order, k2 (g µg−1 h−1) is the pseudo-second 

order rate constant, α is the initial adsorption rate (µg g-1 h−1), and β is the desorption constant 

(g µg− 1). 
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5.2.8.2 Statistical analysis 

 

All statistical data were analysed using GraphPad 6.0. This tool was also used to plot 

all graphs as well as to calculate all kinetic parameters through nonlinear regression. 

GraphPad 6.0 uses the least-squares as fitting method and the method of Marquardt and 

Levenberg, which blends two other methods, the method of linear descent and the method 

of Gauss-Newton for adjusting the variables. The goodness of fit was evaluated by the 

analysis of coefficient of determination (R2) and the standard deviation of residuals (Sy.x). 

The relative error (Er) between experimental and predicted values of qe was also calculated. 

These statistical parameters can be mathematically defined by: 

 (7) 

 (8) 

 (9) 

where yi are the experimental data values, ŷ are the predicted values, y is the mean of the 

experimental data and df is the number of the degrees of freedom (equal to number of data 

points minus the number of parameters fit). 

Akaike's Information Criterion (AIC) (El-Khaiary and Malash 2011), which is based 

on information theory and maximum likelihood theory, was used to determine which model 

is more likely to be correct and how much more likely. For small sample size, AIC is 

calculated from the equation: 

(10) 

 

where SSE is the sum-of-squared deviations, N is the number of data points and Np is the 

number of parameters in the model. AIC values can be compared using Evidence ratio 
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(numerical value representative of the number of times that the model with a lower AIC is 

more likely to be correct) which is defined by: 

(11) 

 

where Δ is the absolute value of the difference in AIC between the two compared models. 

 

5.3 Results and discussion 

 

5.3.1 Fucus vesiculosus characterization 

 

The dry/fresh weight ratio and the water content (in %) of the algae were evaluated for 

all algae sample used in the essays. The dry/fresh weight ratio ranged between 0.20 and 0.32 

and the average water content was 74.6±4.2% (n=22), which is in agreement with the value 

reported by Back et al. (1992) for F. vesiculosus.  

FTIR spectrum of F. vesiculosus is presented in Figure 5.2. The most specific peaks 

were attributed to functional groups of the macroalgae according to the assignments made 

by other authors (Pereira et al. 2003, Sheng et al. 2004, Mata et al. 2009).  
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Figure 5.2: FTIR spectra of marine macroalgae F. vesiculosus. 

The broad band at 3264 cm-1 represents bonded –OH and –NH groups, whereas 

asymmetric bands at 2919, 2848 and 1614 cm-1 are associated with –CH stretch (Sheng et 

al. 2004, Mata et al. 2009). The weak band at 1540 cm-1 and the strong asymmetrical peak 

at 1417 cm-1 were attributed to COO- deformation (Radwan et al. 1996, Sheng et al. 2004, 
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Mata et al. 2009). Finally, symmetrical peak at 1243 cm-1 and intense band at 1023 cm-1 

are associated with C-O-C and C-OH stretching modes (Pereira et al. 2003, Mata et al. 2009). 

 

5.3.2 Bioremediation in single-metal contamination scenarios 

 

The capacity of F. vesiculosus to bioremediate contaminated salt waters was evaluated 

for monometallic solutions (single-contaminant systems) of Pb, Cd and Hg, in a range of 

concentrations, representing various contamination scenarios. 

The bioremoval curves of Pb at four contamination scenarios (C0 = 50, 100, 200 and 

1000 µg L-1) are shown in Figure 5.3a-d, in terms of normalized concentration vs time, i.e. 

Ct/C0 vs t. 
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Figure 5.3: Normalized concentrations (Ct/C0) of Pb in solution with time: circles – sample essay: Pb solution 

+ F. vesiculosus; dash line – control essay: Pb solution. 

The results showed that c.a. 450 mg of F. vesiculosus (d.w.) can bioaccumulate a 

considerably amount of Pb and consequently decreased extensively its concentration in the 
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water (1L). The reduction of Pb concentration in solution is attributed to the interactions 

metal-algae since data from macroalgae-free experiments reveal a constant metal 

concentration with time (Figure 5.3). Moreover, for all levels of contamination, the Pb 

uptake by the macroalgae is faster at the beginning of the experiments, slowing down with 

time without the attainment of a plateau value on Ct, during the period of the essay. This fact 

suggests that F. vesiculosus will continue to uptake lead from solution, promoting a better 

water quality. 

Moreover, under the experimental conditions tested, the efficiency of the 

bioremediation process (in terms of removal %) seems to be blind to the contamination level. 

For all initial Pb concentrations, the Ct/C0 kinetic profiles have an almost coincident pattern, 

corresponding to similar removal degrees. At the end of the essays the removal percentages 

were 64.4, 61.5, 62.5 and 66.5, respectively for C0 of 50, 100, 200 and 1000 µg L-1. 

However, the initial metal concentration provides an important driving force to 

overcome all mass transfer resistance of Pb between the liquid and solid phases. 

Consequently, an increase of C0 from 50 to 1000 µg L-1 increased the initial removal rate 

(estimated from the first derivative of Ct=f(t) at t=0) from 2.65 to 43.9 µg L-1 h-1, and the 

amount of Pb bioaccumulated by the F. vesiculosus from ca. 82 to approximately 1500 µg 

g-1, as observed in Table 5.2. 

 

Table 5.2: The effect of initial metal concentrations on the amount of metal bioaccumulated by the F. 

vesiculosus (qt) and the initial removal rate (0). 

Metal C0 (µg L-1) qt,168h (µg g-1) 0 (µg L-1 h-1)* 

Pb 

50 81.8 2.65 

100 143 4.20 

200 231 5.87 

1000 1504 43.9 

Cd 

10 17.7 0.22 

50 53.8 1.64 

100 98.0 1.27 

200 122 0.80 

Hg 

10 23.1 0.54 

50 108 1.63 

100 215 3.70 

*Estimated from the first derivative of Ct=f(t) at t=0. 
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The experimental amount of Pb bioaccumulated by the algae with time, qt vs t, for 

the different contamination levels are shown in Figure 5.4a-d, together with the fittings of 

the pseudo-first- order(PFO), pseudo-second-order (PSO) and Elovich models. 
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Figure 5.4: Experimental and modelling results for the amount of Pb bioaccumulated by the algae F. 

vesiculosus. (Error bars were omitted for clarity). 

The results show a good agreement between experimental data and the fittings 

accomplished by the models adopted in this work. The coefficient of determination, R2, 

obtained for the different models was always higher than 0.95 (PFO: 0.955-0.976; PSO: 

0.978-0.993; Elovich: 0.992-0.997). The goodness of the fits was also compared by the 

Akaike’s Information Criterion (AIC) (El-Khaiary and Malash 2011) (Table 5.3), which 

confirm that the Elovich model is likely to be the most appropriated model to describe the 

bioaccumulation kinetics of Pb by F. vesiculosus (lower AIC), corroborating the initial 

conclusion achieved from R2 comparison. Moreover, for almost all contamination scenarios, 

the Elovich model was able to fit the data in the transition between the steep ascendant part 
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of each curve and the horizontal branch, where the kinetic profile is usually difficult to fit or 

simulate, while both the pseudo-first- and pseudo-second-order models underestimated the 

equilibrium qt values. 

Table 5.3: Best-fit parameters (± standard error) and goodness of the fittings of the kinetic models used to 

describe the bioaccumulation kinetics of Pb by F. vesiculosus algae. 

C0  

(µg L-1) 
PFO PSO Elovich Preferred model* 

50 

k1: 0.035±0.007 k2:4.9e-04±1.1e-04 α: 6.06±0.63 

Elovich 

Probability:99.9% 

qt,e: 73.2±4.6 qt,e: 87.1±4.9 β: 0.049±0.002 

R2: 0.955 R2: 0.980 R2: 0.996 

Sy/x: 6.29 Sy/x: 4.18 Sy/x: 1.98 

100 

k1: 0.029±0.005 k2: 1.9e-04±4.4e-05 α: 8.03±0.97 

Elovich 

Probability:98.8% 

qt,e: 135±8 qt,e: 163±10 β: 0.025±0.002 

R2: 0.968 R2: 0.984 R2: 0.993 

Sy/x: 9.45 Sy/x: 6.69 Sy/x: 4.30 

200 

k1: 0.026±0.005 k2: 1.1e-04±3.0e-05 α: 11.7±1.6 

Elovich 

Probability:99.3% 

qt,e: 217±16 qt,e: 263±19 β: 0.015±0.001 

R2: 0.958 R2: 0.978 R2: 0.992 

Sy/x: 17.3 Sy/x: 12.5 Sy/x: 7.63 

1000 

k1: 0.042±0.006 k2:2.9e-05±4.0e-06 α: 127±10 

Elovich 

Probability:99.3% 

qt,e: 1365±58 qt,e: 1622±52 β: 0.0027±0.0001 

R2: 0.976 R2: 0.993 R2: 0.997 

Sy/x: 88.5 Sy/x: 47.8 Sy/x: 29.3 

*Comparison of the two fits with the highest R2 and lower Sy/x values; Probability reported by Graphad6® 

after model comparison using Akaike’s Information Criterion. 

 

The bioremoval of cadmium by the algae F. vesiculosus is illustrated in Figure 5.5a-d, 

in terms of normalized concentration vs time, i.e.Ct/C0 vs t, for the contamination scenarios 

selected (C0 = 10, 50, 100 and 200 µg L-1). 
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Figure 5.5: Normalized concentrations (Ct/C0) of Cd in solution with time: diamonds – sample essay: Cd 

solution + F. vesiculosus; dash line – control essay: Cd solution. 

The results show that F. vesiculosus is able to uptake Cd from saltwaters, however the 

bioaccumulation capacity and kinetics depend on the contamination level. For the lowest 

concentrations studied (10 and 50 µg L-1), the kinetic profile of the bioaccumulation curves 

for Cd are characterized by a speedy decrease on Cd concentration in solution, but as long 

as C0 increases the uptake process becomes slower, as confirmed by the kinetic constants 

estimated by the PFO and PSO models (Table 5.2). Although, the equilibrium was not 

attained due to the continuous metal uptake by the macroalgae, at the end of the essays the 

removal percentages were 76.3, 45.4, 46.2 and 25.1, respectively for C0 of 10, 50, 100 and 

200 µg L-1, reflecting the effect of the contamination level on the bioremoval process. 

However, as mentioned previously, the initial metal concentration provides an 

important driving force to overcome all mass transfer resistance of the metal between the 

liquid and solid phases, and consequently, an increase of C0 from 10 to 200 µg L-1, increased 
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the amount of Cd bioaccumulated by the F. vesiculosus from ca. 18 to ca. 122 µg g-1 (Table 

5.2). 

The fittings of the PFO, PSO and Elovich models for the amount of Cd bioaccumulated 

by the macroalgae with time, and the qt values evaluated experimentally are shown in Figure 

5.6a-d.  
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Figure 5.6: Experimental and modelling results for the amount of Cd bioaccumulated by the algae F. 

vesiculosus. (Error bars were omitted for clarity). 

 

For all contamination scenarios there is a good agreement between the experimental 

data and the fittings accomplished by the kinetic models. Indeed, the fittings given by the 

models adopted in this work are very similar and the comparison of goodness of the fits by 

the Akaike’s Information Criterion (AIC) indicates that in most of the cases the Elovich 

model is likely to be the most appropriated model to describe the bioaccumulation kinetics 

of Cd by F. vesiculosus (lower AIC) but the ratio of probability is small (Table 5.4). 
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Table 5.4: Best-fit parameters (± standard error) and goodness of the fittings of the kinetic models used to 

describe the bioaccumulation kinetics of Cd by F. vesiculosus algae. 

C0  

(µg L-1) 
PFO PSO Elovich Preferred model* 

10 

k1: 0.013±0.002 k2: 4.5e-04±1.4e-04 α: 0.367±0.046 

Elovich 

Probability:91.4% 

qt,e: 19.1±1.8 qt,e: 25.7±2.7 β: 0.129±0.016 

R2: 0.978 R2: 0.984 R2: 0.990 

Sy/x: 0.934 Sy/x: 0.790 Sy/x: 0.624 

50 

k1: 0.019±0.005 k2: 3.1e-04±4.4e-05 α: 2.04±0.48 

Elovich 

Probability:91.6% 

qt,e: 52.8±5.7 qt,e: 65.2±7.9 β: 0.061±0.009 

R2: 0.938 R2: 0.954 R2: 0.972 

Sy/x: 4.60 Sy/x: 3.93 Sy/x: 3.10 

100 

k1: 0.007±0.002 k2: 2.1e-05±1.0e-05 α: 1.10±0.13 

Elovich 

Probability:63.9% 

qt,e: 142±24 qt,e: 219±43 β: 0.012±0.003 

R2: 0.984 R2: 0.985 R2: 0.987 

Sy/x: 4.30 Sy/x: 4.11 Sy/x: 3.88 

200 

k1: 0.003±0.002 k2:4.2e-06±4.3e-06 α: 0.972±0.125 

Elovich 

Probability:52.5% 

qt,e: 277±117 qt,e: 473±216 β: 0.005±0.003 

R2: 0.980 R2: 0.980 R2: 0.981 

Sy/x: 5.85 Sy/x: 5.80 Sy/x: 5.74 

*Comparison of the two fits with the highest R2 and lower Sy/x values; Probability reported by Graphad6® after 

model comparison using Akaike’s Information Criterion.. 

 

For Hg, the bioremoval curves, Ct/C0 vs t, for three contamination levels (C0=10, 50 

and 100 µg L-1) are shown in Figure 5.7a-c. 

Like for lead and cadmium, the decrease on Hg concentration in solution may only be 

attributed to the interactions metal-algae since data from macroalgae-free experiments show 

a constant metal concentration with time. Moreover, for the contamination scenarios 

selected, the Hg uptake by the macroalgae was very faster at the beginning of the 

experiments, slowing down with time. Although the equilibrium was not achieved, at the 

end of the essay it was possible to reach an almost totally Hg-free solution, with the removal 

efficiencies ranging from 93 to 97%. 
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Figure 5.7: Normalized concentrations (Ct/C0) of Hg in solution with time: squares – sample essay: Hg 

solution + F. vesiculosus; dash line – control essay: Hg solution. 

 

Like for the others contaminants an increase on the initial Hg concentration resulted 

on an increase of the amount of Hg bioaccumulated by the algae and of the initial 

bioaccumulation rate as a consequence of a higher driving force. In the particular case of an 

increase on C0 from 10 to 100 µg L-1, the qt values raised from ca. 23 to 215 µg g-1 while the 

initial removal rate changed from 0.54 to 3.70 µg L-1 h-1 (Table 5.2). 

The time evolution of the qt values for the bioaccumulation of Hg by F. vesiculosus 

and the fittings obtained using the PFO, PSO and Elovich models are shown in Figure 5.8a-

c. For all experimental conditions there is a good agreement between experimental data and 

the fittings accomplished by the kinetic models used (R2 >0.98). However, the model that 

has displayed higher R2 and lower Sy/x was the PSO (Table 5.5). 
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Table 5.5: Best-fit parameters (± standard error) and goodness of the fittings of the kinetic models used to 

describe the biosorption kinetics of Hg by F. vesiculosus macroalgae. 

C0  

(µg L-1) 
PFO PSO Elovich Preferred model* 

10 

k1: 0.037±0.003 k2: 1.5e-03±1.4e-04 α: 1.69±0.25 

PSO 

Probability:99.1%  

 

qt,e: 22.6±0.6 qt,e: 27.1±0.6 β: 0.153±0.012 

R2: 0.992 R2: 0.997 R2: 0.991 

Sy/x: 0.832 Sy/x: 0.522 Sy/x: 0.901 

50 

k1: 0.022±0.001 k2: 1.5e-04±1.3e-05 α: 3.87±0.38 

PSO 

Probability:93.8% 

qt,e: 110±3 qt,e: 141±4 β: 0.0252±0.002 

R2: 0.997 R2: 0.998 R2: 0.995 

Sy/x: 2.39 Sy/x: 1.82 Sy/x: 2.97 

100 

k1: 0.023±0.002 k2: 7.5e-05±1.4e-05 α: 7.96±1.38 

PFO 

Probability:96.8% 

qt,e: 223±6 qt,e: 288±15 β: 0.012±0.002 

R2: 0.996 R2: 0.993 R2: 0.986 

Sy/x: 5.45 Sy/x: 7.68 Sy/x: 10.8 

*Comparison of the two fits with the highest R2 and lower Sy/x values; Probability reported by Graphad6® 

after model comparison using Akaike’s Information Criterion. 

 

Comparing the bioaccumulation efficiency of the macroalgae F. vesiculosus toward 

the metals studied it is possible to conclude that the highest removal percentages were record 

for Hg and the lowest for Cd. Indeed, in the case of Hg it was possible to reach an almost 

totally metal-free solution, even in a complex matrix like saltwater. The fact, that the 

equilibrium was not achieved in any system suggests that the algae F. vesiculosus still has 

capacity to uptake more metal and consequently improve even more the water quality, 

highlighting the great potential of the algae for water decontamination. Moreover, in the case 

of Pb and Hg the level of contaminations did not have a strong effect on the bioremoval 

efficiency (%), contrary to Cd which removal from water decrease ca. 67% with the increase 

of C0 from 10 to 200 µg L-1. 

In an analogous studied performed with the macroalgae U. lactuca (personal data), the 

lowest bioaccumulation efficiency was record for Pb suggesting that each macroalgae has 

its specificities and the chemical composition of the macroalgae play a vital role on the 

biosorption/bioaccumulation of metals. 
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Figure 5.8: Experimental and modelling results for the amount of Hg bioaccumulated by the macroalgae F. 

vesiculosus. (Error bars were omitted for clarity). 

 

5.3.3 Bioremediation in multi-metal contamination scenarios and algae selectivity 

 

The bioaccumulation capacity of F. vesiculosus toward metals such as Pb, Cd and Hg 

was evaluated under metal competition (ternary solutions) for two contamination scenarios, 

designated by mixture 1 (CPb,0=CCd,0=CHg,0=50 µg L-1) and mixture 2 (CPb,0=1000 µg L-1; 

CCd,0=200 µg L-1; CHg,0=50 µg L-1). 

The curves of the metal removal by F. vesiculosus from solution are shown in Figure 

5.9, in terms of normalized concentration Ct/C0 vs t for both mixtures. 
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Figure 5.9: Normalized concentrations (Ct/C0) of Pb, Cd and Hg in solution with time for different 

contamination scenarios: mixture 1 (CPb,0=CCd,0=CHg,0=50 µg L-1); mixture 2 (CPb,0=1000 µg L-1; CCd,0=200 µg 

L-1; CHg,0=50 µg L-1). 

 

The data shows that in ternary metal solutions the macroalgae F. vesiculosus is still 

able to bioaccumulate the three metals. However, the extension of the bioaccumulation 

depends on the metal and/or on the contamination level. As it may be seen, the residual 

concentration of Hg in solution in both situations was remarkably low, despite the presence 

of the other metals, even when their concentration is in large excess. In mixture 1, the values 

of the metal removal percentage followed the order Hg>Pb>Cd, and the values were 

respectively, 94, 76 and 63%. However, it must be highlighted that the initial molar 

concentration of Cd was ca. 1.8 folds the molar concentrations of Hg and Pb. Please 

remember, that the relative atomic masses of Hg, Pb and Cd are 200.6, 207.2 and 112.4 g 

mol-1, respectively. This fact, is reflected in terms of the amount of metal that is 

bioaccumulated by the macroalgae: 0.605 µmol g-1 of Hg, 0.596 µmol g-1 of Cd and 0.397 

µmol g-1 of Pb. In mixture 2, the values of metal removal kept the same order, Hg>Pb>Cd, 

but with a decrease on the magnitude of the value for the metals whose the initial 

concentration was increased. Note, that the initial concentrations of Hg, Cd and Pb used, 

corresponded to the value of the old maximum legal limit allowed for wastewater discharges 

(respectively, 50, 200 and 1000 µg L-1). The removal values achieved for this contamination 

scenario were 97% for Hg, 68% for Pb and 28% for Cd. In terms of the amount of metal 

bioaccumulated by the macroalgae an inverse situation was observed, i.e. the values 

increased with an increase on C0, respectively 0.605 µmol g-1 for Hg, 1.02 µmol g-1 for Cd 

and 6.85 µmol g-1 for Pb. 
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The selectivity of the macroalgae toward the different metals (S) is given by the ratio 

between the distribution coefficients (K) of the metals at equilibrium. Where, the distribution 

coefficient is defined as qt,e/Ct,e. Considering the experimental values of qt at 168 hours, the 

pseudo-equilibrium selectivity found for the F. vesiculosus toward the target metals followed 

the order Hg>Pb>Cd, independently of the initial metal concentrations. This order is in 

agreement with the results achieved by Mata et al. (2008) in their study of metal biosorption 

by dried biomass of F. vesiculosus. According to the equilibrium Langmuir isotherm model, 

authors concluded that affinity of metals for the biomass followed this order: Pb > Cu > Cd. 

Similar findings were reported for the biosorption of Pb and Cd by different types of algae 

(Romera et al. 2007). Both studies did not included Hg. A plausible explanation for the 

different affinity of brown algae toward divalent cations is described in the work of Davis et 

al. (2003). The authors argue that the variation in affinity for metals are related to the 

molecular conformation between two homopolymeric blocks (mannuronic and guluronic 

acid) in alginate (a linear polysaccharide present in brown algae), in a description known as 

the ‘‘egg-box’’ model and intrinsic metal properties, such as ionic radii and electronegativity 

(Davis et al. 2003). 

Relevant differences were observed on the kinetics of the simultaneous 

bioaccumulation of Hg, Pb and Cd by the F. vesiculosus. The uptake of Hg and Pb by the 

macroalgae was very faster and similar at the beginning of the experiments, as confirmed by 

the kinetic constants (k1 and k2, Table 5.6) estimated by the PFO and PSO models and slowed 

down with the approach of the plateau value on Ct, that independently of the metal was not 

attained during the conduction of the essays. The Cd bioaccumulation was much slower than 

for Pb and Hg, in particular for the highest level of contamination (Figure 5.9). 

Like for the monometallic systems, the modelling of the kinetic results in the mixtures 

showed that there is a good agreement between the experimental data and the fittings 

accomplished by the models (Figure 5.10): PFO model (R2: 0.976 – 0.986); PSO model (R2: 

0.985 – 0.996) and the Elovich (R2: 0.976 – 0.998). 
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Table 5.6: Best-fit parameters (± standard error) and goodness of the fittings of the kinetic models used to 

describe the biosorption kinetics of metals by F. vesiculosus algae in ternary solutions. 

 PFO PSO Elovich Preferred model* 

Mixture 1 

Pb 

k1: 0.0355±0.00530 k2: 0.0903±0.0146 α: 0.0274±0.00305 

Elovich 

Probability:94.1% 

qt,e: 0.372±0.018 qt,e: 0.445±0.0176 β: 9.262±0.522 

R2: 0.976 R2: 0.991 R2: 0.995 

Sy/x: 0.0241 Sy/x: 0.0146 Sy/x: 0.0110 

Cd 

k1: 0.00331±0.0189 k2: 7.67e-04±8.84e-04 α: 4.75e-03±6.59e-04 

Elovich 

Probability:50.4% 

qt,e: 1.40±0.644 qt,e: 2.47±1.28 β: 0.928±0.538 

R2: 0.976 R2: 0.976 R2: 0.976 

Sy/x: 0.0313 Sy/x: 0.0313 Sy/x: 0.0313 

Hg 

k1: 0.0329±0.00439 k2: 0.0527±0.00844 α: 0.0403±0.00468 

Elovich 

Probability:88.1% 

qt,e: 0.582±0.0255 qt,e: 0.700±0.0279 β: 5.901±0.354 

R2: 0.980 R2: 0.991 R2: 0.994 

Sy/x: 0.0331 Sy/x: 0.0219 Sy/x: 0.0179 

Mixture 2 

Pb 

k1: 0.0308±0.00375 k2: 4.19e-03±4.91e-04 α: 0.389±0.0273 

Elovich 

Probability:96.7% 

qt,e: 6.53±0.268 qt,e: 7.94±0.238 β: 0.499±0.0194 

R2: 0.984 R2: 0.996 R2: 0.998 

Sy/x: 0.332 Sy/x: 0.173 Sy/x: 0.124 

Cd 

k1: 0.00710±0.00174 k2: 1.98e-03±1.00e-03 α: 0.0113±0.00148 

PSO 

Probability:50.8% 

qt,e: 1.46±0.234 qt,e: 2.338±0.475 β: 1.10±0.288 

R2: 0.985 R2: 0.985 R2: 0.985 

Sy/x: 0.0460 Sy/x: 0.0459 Sy/x: 0.0461 

Hg 

k1: 0.0328±0.00368 k2: 0.0505±0.00735 a: 0.0392±0.00547 

PSO 

Probability:71.8% 

qt,e: 0.591±0.0218 qt,e: 0.714±0.0261 β: 5.703±0.419 

R2: 0.986 R2: 0.993 R2: 0.992 

Sy/x: 0.0282 Sy/x: 0.0201 Sy/x: 0.0220 

*Comparison of the two fits with the highest R2 and lower Sy/x values; Probability reported by Graphad6® 

after model comparison using Akaike’s Information Criterion. 
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Figure 5.10: Experimental and modelling results for the amount of Pb, Cd and Hg bioaccumulated by the 

macroalgae F. vesiculosus for different contamination scenarios: mixture 1 (CPb,0=CCd,0=CHg,0=50 µg L-1); 

mixture 2 (CPb,0=1000 µg L-1; CCd,0=200 µg L-1; CHg,0=50 µg L-1) (Error bars were omitted for clarity). 

 

Comparing the accumulation performance of F. vesiculosus for each metal in mono- 

and multi-metallic solutions it is possible to conclude that Hg was barely affected by the 

presence of Pb and Cd. Only a small increase on the initial bioaccumulation rate, from 0.008 



Chapter 5 

 

196 
 

to 0.015 µmol L-1 h-1, and on the percentage of removal from 93 to 97% was observed from 

monometallic systems to the mixtures. Moreover, by comparing the qt,e value for Hg in the 

mixtures with the one obtained previously in the same conditions but in the monometallic 

solution, it is possible to evaluate the effect of the presence of the metals on the Hg 

bioaccumulation. If, qt,e
mixture/qt,e

mono <1, the bioaccumulation of Hg is inhibited by the 

presence of Cd and/or Pb; if qt,e
mixture/qt,e

mono =1, there is no observable interaction; and if 

qt,e
mixture/qt,e

mono >1, the bioaccumulation is favored by the presence of the other metals. The 

values found were 1.12 for both mixture 1 and 2, indicating that in both systems the 

bioaccumulation of Hg by the macroalgae F. vesiculosus was slightly favored by the 

presence of Cd and Pb, probably due to an increase of the ionic strength of the solution.  

In the case of the Pb bioaccumulation, it was observed a decrease on the initial 

removal rates in the mixtures in comparison with the respective monometallic solutions 

(from 0.012 to 0.009 µmol L-1 h-1 for C0 of 50 µg L-1, and from 0.207 to 0.163 µmol L-1 h-1 

for C0 of 1000 µg L-1), and an increase on the final degree of metal removal from solution. 

The value found for the qt,e
mixture/qt,e

mono coefficient was 1.00 for mixture 1 and 0.94 for 

mixture 2, suggesting none or little influence of the other metals on Pb bioaccumulation. 

For Cd it was observed a small increase on the metal removal percentage in the 

mixtures in comparison with the respective monometallic solution. For an initial 

concentration of 50 µg L-1, the Cd bioaccumulation was favored by the presence of other 

metals (qt,e
mixture/qt,e

mono coefficient of 1.24), while for the more contaminated scenario 

occurred a small inhibition of the Cd bioaccumulation by the macroalgae (qt,e
mixture/qt,e

mono 

coefficient of 0.96). 

 

5.3.4 Metal contents in F. vesiculosus and bioconcentration factors 
 

 

Metal contents in F. vesiculosus biomass, immediately after bioaccumulation trials, 

are presented in Figure 5.11, along with the corresponding theoretical concentrations, 

obtained through mass balance analysis between the initial concentration of metal in solution 

and the concentration at the end of experiments. Results confirm our assumption that all 

metal removed from seawater along time was incorporated by macroalgae, since for the full 

range of contamination scenarios studied, experimental and theoretical values of qt,168h 

perfectly matched (maximum relative error of 7.9% for Pb, 1000 µg L-1). 
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Figure 5.11: Metal contents in F. vesiculosus after exposure of 168h to single contaminant (a) and mixture (b) 

systems, determined through mass balance using Eq. 1 (qt,168h theoritecal) and obtained by chemical 

quantification in seaweed (qt,168h, experimental). 

 

The good agreement between theoretical and experimental values of qt , even in 

mixtures, reinforces the great potential of this brown macroalgae as biomonitor of 

environmental contamination (Varma et al. 2011), as well as a useful tool in processes of 

analytical chemistry (Romero-Gonzalez et al. 2000, Vidotti 2004). The ability of F. 

vesiculosus concentrate metals on tissues, along with the characterization of the 

bioaccumulation kinetics, may allow to estimate the concentrations of these metals in natural 

waters at very low levels, which determination may be difficult for the usual analytical 

techniques. By other hand, from the viewpoint of application in wastewater remediation, a 

biotechnology based in the use of this macroalgae assures the safe removal of metal from 

solution, i.e. none of the metal removed from the solution remain in the system, for example 

as precipitates, after macroalgae are harvest from the medium. 



Chapter 5 

 

198 
 

As previously mentioned, the amount of metal bound by macroalgae was positively 

related with the initial metal concentration in solution (Figure 5.11a), and thus highest metal 

contents in biomass were observed for Pb, 1000 µg L-1. However, maximum 

bioconcentration factors (BCF), defined as the ratio between the concentration of metal in 

macroalgae biomass at the end of exposure and the initial concentration of metal in solution, 

were recorded for Hg (2147 to 2308 in monometallic solutions and c.a. 2400 for mixtures). 

In single contaminant, an increase of initial concentration of Cd from 10 to 200 µg L-1 

resulted in a decrease of BCF from 1772 to 608, while for Pb, BCFs were not strongly 

affected by the initial concentration. Under metallic competition, BCF of Cd and Pb were 

respectively 1340 and 1645 for the lowest contamination scenario, while for mixture 2, BCFs 

were 574 and 1419 for Cd and Pb respectively. 

 

5.3.5 Depuration experiments 
 

 

The results presented in the previous section demonstrated that all metal removed from 

the solution was bound to the seaweed tissues. However, in order to evaluate the detoxifying 

ability of the seaweed, i.e. the capacity to release the accumulated metals back to a clean 

solution, additional experiments were conducted. After bioaccumulation trials, the living 

seaweed was immediately placed in clean seawater, and the concentrations of metals in 

solution were quantified over 7 days. Results are presented in Figure 5.12 as percentage of 

metal retained by the brown seaweed over time. 

Cleary, there was no loss of Hg during the 7 days of contact with clean seawater, 

demonstrating the irreversibility of Hg binding in F. vesiculosus. Even when the biomass of 

the living macroalgae was loaded with the three metals (Mixtures 1 and 2), no Hg was 

released back to solution, which highlights the strong interactions Hg-algae.  
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Figure 5.12: Metal retention in algae for different metals concentrations, in both monometallic and 

multimetallic solutions. 

Like Hg, none of Cd bioaccumulated was released back to solution, with exception of 

macroalgae exposed to the highest concentrations of Cd (only for single-contaminant), 

where a negligible loss of metal (less than 2%) was recorded in the first 12h.  Moreover, 

until the end of experiments, F. vesiculosus bioaccumulated again that metal, leading to 

residual concentrations of Cd in solution below the limit of quantification. These results are 

in accordance with the findings of Boisson et al. (1997), who reported a very efficient 

retention of metals by this brown seaweed. The efflux rate constant for Cd determined by 

the authors was not significantly different from zero (Boisson et al. 1997). 

A different behaviour from that of Hg and Cd, was observed for Pb, which was always 

released to the solution in the beginning of depuration experiments, with the exception of 
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macroalgae exposed to the lowest concentration, 50 µg L-1 (in both single- and multi-

contaminant systems). The initial loss of metal increased with the growing degree of 

contamination that macroalgae were exposed. Thus, the highest percentage of release (of 

about 10%) was recorded at the highest concentration of Pb (1000 µg L-1). This tiny fraction 

of Pb was probably associated with the apparent free space in macroalgae (Wang and Dei 

1999), or was weakly bound to extracellular polymers produced by the macroalgae as a 

defense mechanism (Andrade et al. 2010). However, the pattern observed for Pb indicates a 

re-uptake of Pb over time, which eventually would lead to metal concentrations in solution 

of almost zero. 

Overall, F. vesiculosus does not seem to be able to debug, to eliminate the metals that 

have been accumulated. 

 

5.3.6 Effects of metals on macroalgae growth 

 

The effect of Cd, Pb and Hg on F. vesiculosus growth was evaluated after 7-day period 

exposure to mono and multimetallic solutions, with different concentrations. For this 

purpose, relative growth rates (RGR) were determined by measuring macroalgae area at the 

beginning and at the end of each assay. The RGR of blank (macroalgae in seawater in the 

absence of contaminant), which was always run in parallel with the bioaccumulation assays 

was used as reference. 

In the absence of any contaminant, the RGR of F. vesiculosus varied between 0.5 and 

1.7 % day-1 (n=10), which is in agreement with the values obtained by (Lehvo et al. 2001) 

for F. vesiculosus growing on Baltic sea (less than 0.3 % day-1 at winter and 0.7 % day-1 at 

summer).  

In order to compare the effect on growth rate among metals, all data were normalized 

considering the correspondent RGR of blank (RGRnormalized=RGRmetal/RGRblank). The 

normalized values are presented in Figure 5.13. 
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Figure 5.13: Relative growth rate (normalized) of F. vesiculosus in seawater and when exposed for 7 days to 

mono and multimetallic solutions of Hg, Cd and Pb. 

Results shows an enhancement of macroalgae growth rate exposed to different 

monometallic solutions of Hg (RGR 1.2 to 1.9 times higher than reference). This apparently 

positive effect on growth may in fact represent a defense mechanism of the seaweed against 

toxic metal. F. vesiculosus may increase its cellular metabolism, growing faster, in order to 

reduce the concentration of internalized Hg, by a rise in its biomass area - dilution effect 

(Sunda and Huntsman 1998, Costa et al. 2011). A similar behavior was verified for green 

macroalgae U. lactuca when exposed to Hg, Cd and Pb, under the same experimental 

conditions (personal data). However, contrary to observed in that case, in the present study 

only for Hg occurred an enhancement of RGR, which is nonetheless intriguing and even 

contradictory. Further studies are needed in order to clarify the mechanisms of Hg-acting on 

the cellular metabolism of macroalgae and their strategies for response to toxicity. 

In the case of Cd, levels of 10, 50 and 100 µg L-1 in solution induced a slightly decrease 

in macroalgae RGR (RGR was 80 % of blank RGR), while the highest concentration (200 

µg L-1) caused a more pronounced negative effect on RGR (42 % of blank RGR). Indeed, 

the amount of Cd bioaccumulated by the brown seaweed, at 200 µg L-1, was 2 to 7-fold that 

recorded for the lowest concentrations. 

Lead presented two distinct behaviours according to level of contamination. For lower 

concentrations (50 and 100 µg L-1) there was almost no influence of contaminant in the 

macroalgae growth. However, for higher concentrations (200 and 1000 µg L-1), a strong 

deleterious effect on RGR was verified, with a reduction of about 70% compared to blank 

RGR. 
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RGRs of brown macroalgae in multimetallic solutions were not significantly affected 

by the simultaneous presence of Cd, Hg and Pb, even in the scenario of severe contamination 

(Mixture 2).  

Overall, results of RGR, particularly those achieved in mixtures, together with the fact 

that no sporulation or marked loss of color, which indicates algae decay (Han and Choi 

2005), was observed, are a good evidence of the potential application of these algae in the 

remediation of real aquatic systems (at least for contamination levels similar to that studied). 

 

5.4 Conclusions 

 

The high capacity to accumulate metals by the brown seaweed F. vesiculosus was 

demonstrated (bioconcentration factors varied between 600 and 2300), in single and multi-

contaminant systems, pointing to its great potential in the removal of metals from saline 

waters. Its application would be particularly advantageous when a large volume of 

contaminated salt water, with relative low concentrations of metals needs to be remediated, 

as for example a confined estuarine or aquaculture system. Moreover, its high availability, 

would render the biotechnology also very effective economically. 

In all cases, higher removal percentages were achieved for Hg, followed by Pb and 

then Cd. Yet the highest amount of metal bioaccumulated was recorded for Pb, as metal 

uptake reflects its occurrence in solution. The kinetics of the removal process was accurately 

described by the reaction kinetic models studied, and the highest bioaccumulation rates were 

observed for Hg.  

Results on metal contents on macroalgae biomass, after bioaccumulation, and the 

depuration experiments, revealed that macroalgae strongly bound all metal removed from 

the solution. This suggests that seaweeds could act as a protecting agent against hazard 

effects of metals in aquatic ecosystems, since removing metals from the dissolved phase and 

keeping them “safes” internally, avoid the bioaccumulation by key-species organisms, more 

sensitive to metal toxicity. 

Finally, it may be concluded that metal bioaccumulation did not affect significantly 

the relative growth rate of the brown macroalge, during the 7 days of exposure, with the 

exception of Cd, 200 µg L-1, and Pb, 200 and 1000 µg L-1. Nevertheless, further studies are 
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needed to explain de different behaviour of Hg in F. vesiculosus metabolism, in relation to 

Cd and Pb. 
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6 Comparative study on metal biosorption by two macroalgae species 

in saline waters: mono and multi-metal systems 
 

 

6.1 Introduction 
 

Biosorption is singled out as the most promising alternative to the traditional 

physicochemical methods of water treatment (e.g. chemical precipitation, membrane 

filtration, electrochemical techniques) (Freitas et al. 2008), which present severe 

disadvantages in removing metals from aqueous solutions (Lo et al. 2014). Formation of 

toxic by-products, high generation of sludge requiring a proper disposal, and high initial and 

running costs, are some of the weaknesses that jeopardize the viability of such conventional 

methods (Farooq et al. 2010). Additionally, they do not allow compliance with the 

increasingly strict criteria imposed by environmental legislation in the field of water 

(Chojnacka 2010). For example, emissions, discharges and losses of Cd and Hg were 

recently prohibited by the European Union, who imposed concentration levels of these 

metals in surface waters in the order of few µg L-1 (Directive 2013/39/EU 2013). Lead is 

also a metal with special relevance from the environmental point of view, owning very tight 

limits of concentration in the water resources (Directive 2013/39/EU 2013). The concern of 

governmental entities toward these elements relates to their temporal persistence, toxicity, 

and ease of exposition, as they may be easily bioaccumulated and bioamplified along the 

food chain (Coelho et al. 2005). 

As biosorption relies on the use of abundant biological material, which features cell 

walls rich in functional groups with high affinity to metal ions (Davis et al. 2003), this 

technology offers remarkable removal efficiencies, being environmentally friendly and cost-

effective (Farooq et al. 2010). 

A growing number of scientific studies, carried out in recent years, has shown that 

dried algae possess a high capacity to bind metals (Romera et al. 2006, Mata et al. 2008), 

presenting recoveries higher than those achieved by activated carbon and natural zeolites, 

and comparable to those obtained with synthetic ion exchange resins (El-Sikaily et al. 2007, 

Romera et al. 2007). Some authors even stated that algal cells are able to concentrate metals 

2–3 orders of magnitude as compared to other organisms (Chojnacka and Mikulewicz 2014).  



Chapter 6 

 

210 
 

Some studies have tackled the enhancement of the biosorptive capacity of macroalgae 

biomass, through chemical pretreatments (Bulgariu and Bulgariu 2014), however those 

modifications on cell surface will not be profitable at large scale (Park et al. 2010).  

The affinity toward specific metals, and consequently removal efficiencies are related 

to the chemical state of the algal surface, amount and diversity of existent functional groups 

(Davis et al. 2003). Thus is important to explore and investigate different species of algae, 

seeking to better understand the mechanisms behind the sorption process and selectivity, 

which are still poorly understood (Park et al. 2010). As metal speciation in solution and ionic 

competition also play a fundamental role in biosorption, research should go ahead of the 

usual idealistic approach (using a single contaminant and synthetic water) and focus on the 

simultaneous removal of metals (Pagnanelli et al. 2002) by using complex systems 

mimicking real waters and wastewaters. Additionally, studies should be performed for metal 

concentrations with environmental relevance (Rocha et al. 2013, Lopes et al. 2014), with 

values lower than those extremely high often found in the literature, which do not allow the 

findings to be translated into the real world.  

The development of treatment technologies to be applied for saline waters, although 

very desirable, since estuaries and coastal environments are the main receiver of industrial 

effluents (Torres et al. 2008), has been neglected to date. So research should also point to 

that path. 

Ulva lactuca (Chlorophyta) and Fucus vesiculosus (Phaeophyta) are two marine 

macroalgae, respectively green and brown species, very common worldwide. Besides their 

abundance, these macroalgae possess several specific characteristics very attractive for 

biosorption application. Ulva structure is relatively simple, with a thin and sheet-like thallus, 

which translates into a large surface area, containing structurally uniform and 

physiologically cells (Sari and Tuzen 2008). The cell wall is constituted by cellulose along 

with a high percentage of proteins bonded to polysaccharides (Romera et al. 2007, Trinelli 

et al. 2013), containing several functional groups such as amino, hydroxyl, carboxyl, and 

sulfate, capable of acting as binding sites for metal (Romera et al. 2007). Additionally, this 

algae grows quickly (Nikolaisen and Jensen 2013), since their photosynthetic products are 

quickly converted to cell growth (Easton et al. 2011).  

Although slower growing, seaweeds of genus Fucus as biosorbents of metals and dyes 

have generated a growing interest in the last decades (Freitas et al. 2008, Mata et al. 2008, 
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Mata et al. 2009, Cobas et al. 2014). Some studies have pointed to the superior performance 

of brown algae in the removal of metals due to their chemical constitution (Davis et al. 2003, 

Mata et al. 2009). The cell walls of brown macroalgae are characterized by the presence of 

cellulose, acting as structural support, sulphated polysaccharides and alginic acid, a polymer 

of mannuronic and guluronic acids (Lesmana et al. 2009), which have two adjacent 

carboxylic groups just at the right distance for metal bonding (Romera et al. 2007). 

The main objective of this work was to assess and compare the biosorption capabilitiy 

of two very abundant macroalgae, in respect of three metals: Cd, Hg and Pb, using non-

treated dried biomass and environmentally relevant concentrations of these metals in 

seawater (single and multi-contaminant solutions). Ultimately, the approach followed aimed 

to evaluate the feasibility of using these macroalgae as a low-cost treatment method, to be 

applied to effluents rich in salts, or in contaminated estuarine environments. 

 

6.2 Materials and methods 
 

6.2.1 Material and chemicals 
 

All chemicals were of analytical reagent grade and were used as received from the 

suppliers. The nitric acid 65% (suprapur) and the standard stock solutions of mercury (1001 

± 2mgL-1), cadmium (1000 ± 2mgL-1) and lead (1000 ± 2mgL-1) nitrate were purchased from 

Merck. All working solutions, including standards for the calibration curves, were obtained 

by diluting the corresponding stock solution. All glassware material used in the experiments 

was acid-washed prior to use. 

 

6.2.2 Biosorbent material 
 

Green marine macroalga Ulva lactuca and brown marine macroalgae Fucus 

vesiculosus used in this work were collected in the Mondego estuary (Figueira da Foz, 

Portugal, 40°08′N, 8°50′W). The algae biomass was used without any specific pre-treatment. 

Algae were simply washed with distilled water, air-dried during several days, dried at 60°C 

for 24h and milled using a domestic coffee grinder. The milled material was sieved using a 

mechanical sieve shaker and only particles with size <200 µm were used. Algae biomass 

was stored at room temperature in plastic containers until further use. Total Hg concentration 

in both macroalgae was evaluated by pyrolysis atomic absorption spectrometry with gold 
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amalgamation (LECO® model AMA-254) with no sample digestion. For Cd and Pb content, 

macroalgae were analysed by inductively coupled plasma spectroscopy (Jobin – Yvon JY70 

Plus Spectrometer), after digestion following the procedure described below. Results 

indicate that both brown and green macroalgae have a low metal content (0.040 µg g-1 and 

0.030 µg g-1, respectively for Hg, 0.015 µg g-1 and 0.29 µg g-1, respectively for Cd,  and 0.30 

µg g-1 and 4.1 µg g-1, respectively for Pb). 

 

6.2.3 Seawater sampling and characterization 
 

Seawater used for biosorption experiments was collected at Vagueira beach (Aveiro, 

Portugal) using polyethylene bottles that were rinsed with surface water before the filling. 

Seawater was then filtered through 0.45 μm Millipore membrane and stored in the dark at 

4°C until further use. A brief characterization of the seawater which included pH, 

conductivity, salinity and major and minor elements was performed. The pH (7.9), 

conductivity (54.3 mS cm-1) and salinity (35 g L-1) were recorded on a WTW meter and the 

concentration of major and minor elements was obtained by inductively coupled plasma 

spectroscopy, using a Jobin – Yvon JY70 Plus Spectrometer. All the measured parameters 

were in line with those reported by Lopes et al. (2014), which are in ranges to be considered 

non-polluted waters. The concentration of Cd and Pb were below the detection limit of the 

quantification method. Hg concentration was determined using the methodology described 

by Pato et al. (2010) and the value found (3.1 ng L-1) is typical of a non-polluted water. 

 

6.2.4 Batch biosorption studies 
 

Batch sorption kinetic experiments were performed at room temperature (20±2 °C) by 

contacting 500 mg of macroalgae dried biomass (particle size < 200 μm) with a known 

concentration of metal solution. Schott Duran® glass flasks (1 L) were used as reaction 

vessels, where the macroalgae biomass was placed in contact with natural seawater spiked 

with metal, under constant stirring (800 rpm). 

Biosorption experiments were conducted for single and multi-contaminants systems, 

simulating different contaminations scenarios. A summary of the experimental 

concentrations of metal used is presented in Table 6.1. Concentrations were considered 

environmentally realistic, intending to mimic real cases: 50, 200 and 1000 µg L-1 are, 

respectively, the “old” limits for Hg, Cd and Pb wastewater discharges (Directive 
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83/513/EEC 1983, Directive 84/156/EEC 1984, Decree-Law No. 236/98 1998). The 

remaining concentrations may represent a situation of accidental discharge of untreated 

effluent, or metal concentrations in aquatic medium after dilution of the discharged effluent 

into the water body. 

 

Table 6.1: Experimental conditions used in the biosorption studies. 

Matrix System Metal Concentration (µg L-1) 

Spiked natural 

seawater 

Single-contaminant 

Cd 10, 50, 100 and 200 

Pb 50, 100, 200 and 1000 

Hg 10, 50 and 100 

Multi-contaminant 

M1 

Cd 50 

Pb 50 

Hg 50 

M2 

Cd 200 

Pb 1000 

Hg 50 

 

All experiments were carried out at the intrinsic pH of seawater (7.9) and no pH 

adjustments were made at any time. All the experiments were performed in duplicate and 

the results are always expressed as the mean value obtained. Controls, defined as metal 

spiked seawater in the absence of macroalgae biomass, were always run together with all 

experiments, in order to assess the loss of metals to glass vessels or in the samples filtration 

process. Metals solutions were prepared through the adequate dilution of specific standard 

stock solution to the desired concentration in seawater. Before the kinetic batch sorption 

begin an aliquot (ca. 10 mL) of each solution was collected to confirm the real initial 

concentration of metals. After adding macroalgae to the solution, samples (ca. 10 mL) were 

collected at crescent periods of time, filtered through a pre-acid washed 0.45 µm Millipore 

membrane and then acidified to pH<2 with nitric acid. Afterwards, samples were stored at 4 

°C until being analysed. 

 

6.2.5 Metals quantification 
 

Mercury analysis was performed by cold vapour atomic fluorescence spectroscopy 

(CV-AFS), on a PSA cold vapour generator, model 10.023, using SnCl2 as reducing agent. 

The Hg concentration was quantified through a calibration curve of five standards prepared 

in a nitric acid solution (2% v/v), by dilution from the certified standard solution of 
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mercury(II) nitrate, whose concentrations ranged from 0.0 to 0.5 μg L-1. In this range, the 

limit of detection of the method is 0.02 μg L-1, and the precision and accuracy are <5%. 

The quantification of Cd and Pb was performed by inductively coupled plasma mass 

spectrometry (ICP-MS), on a Thermo ICP-MS X Series equipped with a Burgener nebulizer. 

The calibration curve for Cd and Pb quantification was obtained using standards (0.1 – 50 

µg L-1) prepared by dilution of the certified standard solution of cadmium nitrate or lead 

nitrate in a nitric acid solution (2% v/v). Due to the high salinity of samples, they were 

diluted 20-fold prior to measurement in ICP-MS, in order to avoid matrix interferences. 

Quantification limits of the method (before dilution) were 0.1 μg L-1 and 0.2 μg L-1, for Cd 

and Pb respectively, with a precision and accuracy <10 %. 

 

 

6.2.6 Data evaluation 
 

6.2.7 Metal removal efficiency 

 

Metal uptake by algae, defined as the amount of metal bound by unit of mass at a given 

time t (qt, µg g−1), was deduced from the mass balance between the initial metal 

concentration in the solution (C0, µg L−1) and the concentration after a particular period of 

contact time t (Ct, µg L−1): 

(1) 

where V (L) is the volume of the solution and m (g) is the dry weight of alga biomass. When 

the equilibrium is attained, t=te, qt=qe and Ct=Ce (residual metal concentration in solution). 

The performance of the removal process was also evaluated using the metal removal 

percentage (R, %), which at time t is defined by:  

(2) 

6.2.8 Sorption kinetic models 

 

Kinetic modelling may provide a better understanding on the interactions between the 

sorbent and the sorbate, giving detailed information on the rate at which these interactions 
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occur. Hence, it is an important characteristic in assessing how rates are affected by sorption 

capacity or by the character of the sorbent, i.e., in comparing the efficiency of a sorption 

process (Ho et al. 2000, Park et al. 2010). 

In this work, the sorption kinetics was studied using three different kinetic models, 

namely the pseudo-first-order model (or Lagrergren model), the pseudo-second-order model 

(Ho model) and the Elovich model (Table 6.2). 

 

Table 6.2: Sorption kinetic models. 

Kinetic model Equation Notes 

Pseudo-first-order 

(Lagergren) 
1(1 )

k t

t eq q e


    Adsorption capacity 

Pseudo-second-order (Ho) 

2

2

21

e
t

e

q k t
q

q k t



  Adsorption capacity 

Elovich 

1
ln  (1 )tq t


    Chemisorption 

Legend to symbols: 

qt – amount of solute sorbed per gram of sorbent at time t (mg g-1); 

qe – amount of solute sorbed per gram of sorbent at equilibrium (mg g-1); 

k1 – rate constant of pseudo-first order (h-1); 

k2 – rate constant of pseudo-second order (g mg-1 h-1); 

α – initial sorption rate (mg g-1 h-1); 

β – desorption constant (g mg-1); 

Bt – function of F; 

 

 

6.2.9 Error analysis 

 

All kinetic reaction model parameters were calculated through nonlinear regression 

using GraphPad Prism 6 software program. The coefficient of determination (R2) and the 

standard deviation of residuals (Sy.x) were analyzed in order to evaluate the goodness of fit 

and to compare models with equal degrees of freedom. The relative error (Er) between 

experimental and predicted values of qe was also calculated. These statistical parameters can 

be mathematically defined by: 

 (3) 2
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 (4) 

 (5) 

where yi are the experimental data values, ŷ are the predicted values, y is the mean of the 

experimental data and df is the number of the degrees of freedom (equal to number of data 

points minus the number of parameters fit). 

In order to compare the goodness of the different models applied, the Akaike's 

Information Criterion (AIC) (El-Khaiary and Malash 2011) was used. AIC is based on 

information theory and maximum likelihood theory, and as such, it determines which model 

is more likely to be correct and quantifies how much more likely. For small sample size, AIC 

is calculated from the equation: 

 

(6) 

where SSE is the sum-of-squared deviations, N is the number of data points and Np is the 

number of parameters in the model. 

AIC values can be compared using Evidence ratio (numerical value representative of 

the number of times that the model with a lower AIC is more likely to be correct) which is 

defined by: 

 (7) 

where Δ is the absolute value of the difference in AIC between the two compared models. 

 

6.3 Results and discussion 
 

6.3.1 Sorption kinetics of Hg, Pb and Cd in single-contaminant systems 

 

The biosorption capability of green and brown macroalgae powders toward the metals 

Hg, Pb and Cd was evaluated in monometallic solutions, for several contamination scenarios. 
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Figure 6.1 shows the kinetic curves corresponding to the biosorption of Hg onto green 

and brown macroalgae, expressed as normalized concentration vs time, i.e., Ct/C0 vs t for the 

three levels of contamination (C0 = 10, 50 and 100 µg L-1). 
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Figure 6.1: Normalized concentrations (Ct/C0) of Hg in solution with time: green squares – sample essay: Hg 

solution + U. lactuca; brown diamonds – sample essay: Hg solution + F. vesiculosus; dash line – control 

essay: Hg solution. 

The results clearly show that both macroalgae are very effective at sorbing Hg from 

solution. Indeed, the green macroalgae was able to decrease the concentration of Hg in 

solution to values lower than the guideline value for drinking water quality (1 µg L-1) 

(Council Directive 98/83/EC 1998), for two contamination levels (10 and 50 µg L-1), while 

the brown one was able to reach that value for all contamination scenarios studied. 

Independently of the type of algae, the kinetic profile show that the uptake is very fast at the 

beginning of the process and then slows down with the attainment of equilibrium. This is 

explained by the high driving forces to mass transfer that prevailed at the beginning since 

the macroalgae were initially free of metal. 

Independently of the initial Hg concentration, the sorption of this metal by the brown 

alga was always faster than by the green one, as can be observed by the initial slope of the 
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curves (Figure 6.1), and confirmed by the initial sorption rates estimated from the first 

derivative of C=f(t) at t=0 (B and G, where the subscript letters denote the algae, 

respectively brown and green) and displayed in Table 6.3. The higher initial sorption rates 

for the systems Hg:brown algae helped Hg to approach more quickly the equilibrium in these 

systems, which was most notable at the highest concentration. However both macroalgae 

presented similar equilibrium uptakes of Hg (Table 6.3). 

The increase of the initial metal concentration provides an important driving force to 

overcome all mass transfer resistance of Hg between the liquid and solid phases. 

Consequently, the rise of C0 from 10 to 100 µg L-1 increased not only the initial biosorption 

rate but also the amount of Hg biosorbed by the macroalgae from ca. 0.1 µmol g-1 to 

approximately 1 µmol g-1, as observed in Table 6.3. Nevertheless, the increase of the 

contamination level also resulted in the necessity of having a higher contact time to reach 

equilibrium. For the brown macroalgae the equilibrium time change from 24 to 48 hours, 

while for the green algae the equilibrium was set after 24 hours for the lowest contamination 

scenario and after 72 hours for the highest one. In brief, it was also observed that the relative 

difference between the initial sorption rates for both algae increased with the level of 

contamination. 

Moreover, it was recorded that in the case of seawater contamination with Hg, both 

green and brown macroalgae have shown good capacity to sorb the metal, achieving removal 

efficiencies between 96 and 99% (Table 6.3). Furthermore, the removal of Hg from spiked 

seawater can only be related to its interaction with the algae since the corresponding controls 

did not show such behavior. The efficiency of U. lactuca as biosorbent for Hg removal was 

already demonstrated by Zeroual et al. (2003) (removal >90%), although  experiments have 

been conducted in distilled water, and the algal biomass has been pre-treated with 0.3 M 

H2SO4. More recently, Vijayaraghavan and Joshi (2012) also investigated the interaction of 

Hg ions with brown (Sargassum sp. and Turbinaria conoides) and green (Ulva sp.) 

macroalgae biomasses, reporting removal efficiencies up to 58%. However, contrary to the 

findings of the present study, no significant differences were observed between the rates of 

Hg biosorption by the three seaweed, and higher equilibrium uptakes were recorded for 

brown algae (Vijayaraghavan and Joshi 2012). 
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Table 6.3: Estimated initial sorption rates (ν0, µg L-1 h-1), removal percentages (R, %) and amount of metal 

sorbed per unit of algae biomass (qt, µmol g-1), at different times (8h and at equilibrium), for monometallic 

mercury solutions. 

 Brown algae F. vesiculosus Green algae U. lactuca 

C0 

(µg L-1) 

ν0 

(µg L-1 h-1) 

t 

(h) 

R 

(%) 

qt 

(µmol g-1) 

ν0 

(µg L-1 h-1) 

t 

(h) 

R 

(%) 

qt 

(µmol g-1) 

10 85 
8 94 0.108 

53 
8 83 0.096 

eq(24h) 99 0.114 eq(24h) 93 0.107 

50 383 
8 93 0.508 

177 
8 75 0.400 

eq(48h) 99 0.545 eq(48h) 98 0.527 

100 674 
8 93 1.052 

281 
8 65 0.716 

eq(48h) 99 1.120 eq(72h) 96 1.060 

 

The experimental amount of Hg biosorbed by both macroalgae with time, qt vs t, for 

different contamination levels are shown in Figure 6.2, together with the fittings of the 

pseudo-first- order (PFO), pseudo-second-order (PSO) and Elovich models. 

In general, the data set obtained with green macroalgae show a better agreement with 

the fittings accomplished by the models adopted in this work than the data set obtained with 

the brown algae. Moreover, for both macroalgae the poorest fitting was always the one 

obtained with the PFO model, while the best was the one obtained with the Elovich model 

(Table 6.4). Comparison of the fits goodness by the Akaike’s Information Criterion (AIC) 

(El-Khaiary and Malash 2011), indicates that the Elovich model is likely to be by far the 

most appropriated model to describe the biosorption kinetics of Hg onto U. lactuca, 

(probability always higher than 99.99%), while in the case of F. vesiculosus, the probability 

of the Elovich to be better than the PSO model is 78.5, 99.4 and 85.9%, respectively for C0 

of 10, 50 and 100 µg L-1 (Table 6.4). This fact may suggest the Hg biosorption mechanism 

may be slightly different from macroalgae to macroalgae. Additionally, the estimated kinetic 

parameters of the models corroborate that the Hg biosorption was much faster onto F. 

vesiculosus than onto U. lactuca (Table 6.4). 

Moreover, for almost all systems studied, the Elovich model was able to fit the data in 

the transition between the steep ascendant part of each curve and the horizontal branch, 

where most of the times the kinetic profile is usually difficult to fit or simulate, and both 

pseudo-first- and pseudo-second-order models were not able to accurately estimate the 

equilibrium qe values, underestimating them. 
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Figure 6.2:  Experimental and modelling results for the amount of Hg biosorbed by the macroalgae F. 

vesiculosus (brown diamonds) and by U. lactuca (green squares). (Error bars were omitted for clarity). 

 

 

Table 6.4:  Best-fit parameters (± standard error) and goodness of the fittings of the kinetic models used to 

describe the biosorption kinetics of Hg by F. vesiculosus and U. lactuca macroalgae. 

C0 

(µg L-1) 
PFO PSO Elovich 

Preferred 

model* 

F. vesiculosus 

10 

k1: 4.565±1.134 k2: 69.17±11.49 α: 49.09±42.29 Elovich 

 

Probability: 

78.5% 

 

qe: 0.1025±0.004441 qe: 0.1073±0.002907 β: 101.4±10.19 

R2: 0.893 R2: 0.965 R2: 0.972 

Sy/x: 0.01175 Sy/x: 0.006734 Sy/x: 0.005987 
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50 

k1: 4.675±1.131 k2: 14.21±2.869 α: 174.4±101.5 Elovich 

 

Probability: 

99.4% 

 

qe: 0.4879±0.01931 qe: 0.5106±0.01272 β: 20.70±1.434 

R2: 0.892 R2: 0.964 R2: 0.984 

Sy/x: 0.05474 Sy/x: 0.03175 Sy/x: 0.02087 

100 

k1: 3.188±0.6730 k2: 4.773±0.8272 α: 114.0±59.68 Elovich 

 

Probability: 

85.9% 

 

qe: 1.009±0.03847 qe: 1.058±0.02460 β: 8.919±0.6498 

R2: 0.911 R2: 0.972 R2: 0.979 

Sy/x: 0.1054 Sy/x: 0.05872 Sy/x: 0.05051 

U. lactuca 

10 

k1: 1.129±0.3030 k2: 16.44±4.573 α: 1.013±0.2365 Elovich 

 

Probability: 

>99.99% 

 

qe: 0.09536±0.005507 qe: 0.1024±0.004701 β: 70.25±3.429 

R2: 0.859 R2: 0.933 R2: 0.989 

Sy/x: 0.01351 Sy/x: 0.009301 Sy/x: 0.003864 

50 

k1: 0.6596±0.1799 k2: 1.742±0.4612 α: 1.880±0.1713 Elovich 

 

Probability: 

>99.99% 

 

qe: 0.4505±0.02662 qe: 0.4950±0.02280 β: 13.54±0.2893 

R2: 0.867 R2: 0.941 R2: 0.998 

Sy/x: 0.06492 Sy/x: 0.04334 Sy/x: 0.008823 

100 

k1: 0.3822±0.1037 k2: 0.5656±0.1590 α: 1.840±0.2580 Elovich 

 

Probability: 

>99.99% 

 

qe: 0.8617±0.05800 qe: 0.9495±0.05065 β: 6.545±0.2463 

R2: 0.870 R2: 0.939 R2: 0.994 

Sy/x: 0.1231 Sy/x: 0.08463 Sy/x: 0.02827 

*Comparison of the two fits with the highest R2 and lower Sy/x values. Probability reported by Graphad6® after 

model comparison using Akaike’s Information Criterion. 
 

 

The sorption curves of Pb at four contamination scenarios (C0 = 50, 100, 200 and 1000 

µg L-1) onto F. vesiculosus and U. lactuca algae are shown in Figure 6.3, in terms of 

normalized concentration vs time, i.e. Ct/C0 vs t, and are characterized by a strong and quick 

decrease of Ct/C0 values with time. This decrease can only be related to the presence of the 

macroalgae since the controls remained constant over time. 

In the case of Pb contamination, both macroalgae were able to decrease Pb 

concentration in seawater, but the removal was not complete for any of the considered levels 

of contamination. For all systems, the brown macroalgae always showed a better 

performance than the green one, reflected in higher removal percentages and in higher initial 

sorption rates (Table 6.5). Contrarily to Hg, the higher initial sorption rates observed for the 

systems Pb:brown macroalgae did not led to a faster equilibrium, since steady-state was 

attained at same time (8 hours) for the two macroalgae. 
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Figure 6.3: Normalized concentrations (Ct/C0) of Pb in solution with time: green squares – sample essay: Pb 

solution + U. lactuca; brown diamonds – sample essay: Pb solution + F. vesiculosus; dash line – control essay: 

Pb solution. 

The rise of the contamination level from 50 to 1000 µg L-1 resulted in a strong increase 

on the initial removal rates from ca. 100 µg L-1 h-1 to 3200 µg L-1 h-1 in the case of brown 

macroalgae or to 1490 µg L-1 h-1 in the case of the green macroalgae (Table 6.5). Also, the 

amount of Pb biosorbed by the macroalgae increased considerably with the rise of the initial 

metal concentration (around 23 folds for the brown macroalgae and 10 folds for the green 

one) (Table 6.5), without reaching a constant value, which indicates that both algae were not 

saturated in the tested conditions. On the other hand, it was noted a slight decrease on the 

removal efficiency for the system Pb:brown algae (86 to 79%) and a strong decrease for the 

system Pb:green algae (63 to 32%), which clearly highlights the higher sorption capacity 

and affinity of the brown macroalgae toward Pb than the green macroalgae. Moreover, for 

the lowest contamination level (50 µg L-1), the brown alga was able to reduce the lead 

concentration in water to values ca. 5.6 µg L-1, which is below the Portuguese environmental 

quality standard for surface waters (7.2 µg L-1) (Decree-Law No. 103/2010 2010) and about 
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a half of the guideline value for drinking water quality (10 µg L-1) (Council Directive 

98/83/EC 1998). Furthermore, for the contamination scenario of 100 µg L-1 the residual 

concentration obtained (11 µg L-1) stayed much closed to those guideline values. The 

suitability of using brown algae (Laminaria hyperborean, Bifurcaria bifurcate, Sargassum 

muticum and Fucus spiralis) for the removal of Pb from diluted wastewaters streams was 

already demonstrated by Freitas et al. (2008). In their comparative study of biosorption of 

metals by different algae, Romera et al. (2007) also achieved lower concentrations of Pb in 

solution using brown algae (Fucus spiralis). The superior performance of brown seaweeds 

over green ones in the uptake of Pb was justified by the presence of alginates in their 

compositon (Romera et al. 2006). Indeed, alginic acids, which comprise different 

proportions of mannuronic and guluronic acid, are rich in carboxyl groups with high affinity 

to divalent metals (Davis et al. 2003). 

 

Table 6.5: Estimated initial sorption rates (ν0, µg L-1 h-1), removal percentages (R, %) and amount of metal 

sorbed per unit of algae biomass (qt, µmol g-1), at different times (2h and at equilibrium), for monometallic 

lead solutions. 

 Brown algae Green algae 

C0 

(µg L-1) 

ν0 

(µg L-1 h-1) 

t 

(h) 

R 

 (%) 

qt 

(µmol g-1) 

ν0 

(µg L-1 h-1) 

t 

(h) 

R 

(%) 

qt 

(µmol g-1) 

50 112 
2 76 0.292 

109 
2 58 0.238 

eq(8h) 86 0.331 eq(8h) 63 0.260 

100 289 
2 79 0.637 

214 
2 46 0.385 

eq(8h) 86 0.696 eq(8h) 53 0.443 

200 600 
2 78 1.242 

385 
2 52 0.895 

eq(8h) 85 1.357 eq(8h) 54 0.934 

1000 3200 
2 75 6.744 

1490 
2 32 2.985 

eq(8h) 79 7.148 eq(8h) 32 2.985 

 

 

The modelling (PFO, PSO and Elovich models) of the amount of Pb biosorbed by F. 

vesiculosus and U. lactuca with time and the qt values obtained experimentally, for all 

contamination levels studied are shown in Figure 6.4.  
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Figure 6.4: Experimental and modelling results for the amount of Pb biosorbed by the algae F. vesiculosus 

(brown diamonds) and by U. lactuca (green squares). (Error bars were omitted for clarity). 
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In the case of Pb biosorption, the data set obtained with both macroalgae show, in most 

of the cases, a better agreement with the fitting accomplished by the pseudo-second-order 

model. Moreover, according with the Akaike’s Information Criterion (AIC) (El-Khaiary and 

Malash 2011) this model is likely to be the most appropriated model to describe the 

biosorption kinetics of Pb onto U. lactuca for all contamination scenarios, while in the case 

of F. vesiculosus for C0 of 200 µg L-1 the Elovich model has a probability slightly higher 

(58.9%) than the PSO model (Table 6.6). Besides, the PSO model was able to estimate 

accurately the equilibrium values of the amount of Pb biosorbed by both macroalgae. For 

the brown macroalgae the relative error ranged from 0.3 to 10% and for the green algae 

ranged from 0.3 to 14%. 

 

Table 6.6:  Best-fit parameters (± standard error) and goodness of the fittings of the kinetic models used to 

describe the biosorption kinetics of Pb by F. vesiculosus and U. lactuca algae. 

CA,0  

(µg L-1) 
PFO PSO Elovich Preferred model* 

F. vesiculosus 

50 

k1: 3.466±0.3556 k2: 17.43±2.123 a: 57.05±62.66 
PSO 

 

Probability: 96.1% 

 

qe: 0.3074±0.006313 qe: 0.3265±0.005410 β: 28.37±4.418 

R2: 0.987 R2: 0.994 R2: 0.978 

Sy/x: 0.01348 Sy/x: 0.009038 Sy/x: 0.01744 

100 

k1: 3.661±0.5877 k2: 8.843±1.102 a: 153.1±101.7 
PSO 

 

Probability: 67.2% 

 

qe: 0.6468±0.02028 qe: 0.6869±0.01132 β: 13.82±1.254 

R2: 0.969 R2: 0.994 R2: 0.993 

Sy/x: 0.04365 Sy/x: 0.01909 Sy/x: 0.02088 

200 

k1: 4.098±0.6315 k2: 5.205±0.5285 a: 658.0±359.1 
Elovich 

 

Probability: 58.9% 

 

qe: 1.278±0.03640 qe: 1.352±0.01693 β: 7.640±0.5105 

R2: 0.973 R2: 0.996 R2: 0.997 

Sy/x: 0.07950 Sy/x: 0.02916 Sy/x: 0.02788 

1000 

k1: 4.557±0.5632 k2: 1.161±0.08370 a: 12874±13601 
PSO 

 

Probability: 99.7% 

 

qA,e: 6.861±0.1477 qA,e: 7.207±0.05867 β: 1.631±0.1798 

R2: 0.984 R2: 0.998 R2: 0.993 

Sy/x: 0.3270 Sy/x: 0.1032 Sy/x: 0.2158 

U. lactuca 

50 

k1: 4.767±0.6397 k2: 28.35±5.525 a: 16.29±17.96 
PSO 

 

Probability: 61.7% 

 

qe: 0.2394±0.006336 qe: 0.2544±0.007322 β: 30.85±6.038 

R2: 0.977 R2: 0.980 R2: 0.922 

Sy/x: 0.01426 Sy/x: 0.01352 Sy/x: 0.02641 
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100 

k1: 8.935±1.692 k2: 32.98±6.300 a: 210.4±381.2 
PSO 

 

Probability: 94.2% 

 

qe: 0.3640±0.009758 qe: 0.3813±0.008230 β: 26.67±5.916 

R2: 0.974 R2: 0.987 R2: 0.950 

Sy/x: 0.02353 Sy/x: 0.01661 Sy/x: 0.03284 

200 

k1: 4.415±0.3429 k2: 8.912±0.8067 a: 2371±4396 
PSO 

 

Probability: 97.9% 

 

qe: 0.8949±0.01234 qe: 0.9371±0.009590 β: 13.00±2.420 

R2: 0.994 R2: 0.998 R2: 0.982 

Sy/x: 0.02720 Sy/x: 0.01686 Sy/x: 0.04570 

1000 

k1: 4.405±0.8113 k2: 2.970±0.8261 a: 6963±17136 
PSO 

 

Probability: 75.7% 

 

qe: 2.853±0.1010 qe: 2.949±0.09259 β: 4.120±1.015 

R2: 0.969 R2: 0.981 R2: 0.974 

Sy/x: 0.2052 Sy/x: 0.1594 Sy/x: 0.1875 

(cont.) *Comparison of the two fits with the highest R2 and lower Sy/x values. 

 

Comparing the modelling of Hg and Pb biosorption onto the macroalgae it is possible 

to state that in the case of Hg the Elovich is the better model to describe the sorption kinetics, 

while in the case of Pb is the pseudo-second-order model. This fact may suggest that the 

interaction metal-algae may depend of the nature of the metal and/or of the macroalgae 

(Freitas et al. 2008, Elrefaii et al. 2012).  

The sorption of Cd onto green and brown macroalgae was also evaluated in 

monometallic conditions for four contamination scenarios (10, 50, 100 and 200 µg L-1). The 

results obtained were very distinct from the ones obtained for Hg and Pb, since under the 

experimental conditions studied, Cd was barely removed from solution (data not shown). 

For all contamination scenarios, only a slight decrease of metal concentration in solution 

was observed in the first minutes, in the case of green macroalgae, while for the brown algae 

were observed fluctuations on Cd concentration around the initial value, with no significant 

removal perceived. The sorption efficiencies were always lower than 20% for both 

macroalgae and for all the considered contamination scenarios. The obtained results allow 

us to conclude that under the current experimental conditions, neither the green nor the 

brown macroalgae are effective biosorbents to remove Cd from saltwater. 

 

6.3.2 Sorption kinetics of Hg, Pb and Cd in multi-contaminant systems 

 

The simultaneous sorption of Hg, Pb and Cd onto green and brown macroalgae was 

evaluated for two contamination scenarios, named as M1 (mixture 1) and M2 (mixture 2). 

The scenario M1 corresponds to a mixture of all metals in equivalent mass concentrations 
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that equal the old guideline value established in the Directive 84/156/EEC for maximum 

value allowed for Hg discharges in wastewaters (50 µg L-1). The scenario M2 corresponds 

to mixtures of metals in concentrations that equal their old allowable limits in wastewater 

discharges (Hg, 50 µg L-1; Cd, 200 µg L-1; Pb, 1000 µg L-1).  

The kinetic curves of the simultaneous biosorption of Hg, Pb and Cd onto brown and 

green macroalgae for both multi-contamination scenarios are shown in Figure 6.5. The 

controls experiments were omitted from the graphs for clarity, but results indicate that in the 

absence of macroalgae, metal concentrations in solution remained constant along time. 
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Figure 6.5: Normalized metal concentrations (Ct/C0) in ternary solutions with time for the contamination 

scenarios M1 and M2: brown diamonds – brown macroalgae; green squares – green macroalgae. 
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The simultaneous biosorption of Hg, Pb and Cd with time showed the same pattern 

observed in the monometallic solutions, i.e. the biosorption of Hg and Pb was initially fast, 

slowing down until reach equilibrium, while the biosorption of Cd was very low, occurring 

only in the first minutes. After that, concentrations of Cd in solution remained almost 

constant. 

In the contamination scenario M1, both macroalgae were able to effectively reduce Hg 

concentration in solution, reaching removal efficiencies up to 99% and residual 

concentrations lower than the guideline value for drinking water quality (1 µg L-1). However, 

the biosorption of Hg by the brown macroalgae was much faster than onto the green one, as 

observed by the initial slope of the kinetic curves and corroborated by the estimated initial 

sorption rates (brown algae: Hg = 431 µg L-1 h-1; green algae: Hg = 166 µg L-1 h-1). This 

fact also resulted in different equilibrium times. While brown macroalgae reached a steady-

state after 24 hours, the green macroalgae needed 48 hours to achieve the equilibrium state. 

However, it is worth to highlight that the considerable increase of the presence of other 

divalent metals, like Cd and Pb in the solution (M2) did not originated relevant differences 

neither on the kinetics neither on the equilibrium of Hg uptake by both macroalgae, as can 

be observed by the sorption profile displayed in Figure 6.6. Despite the increase of 4- and 

20-fold on initial Cd and Pb concentrations, the estimated initial Hg sorption rates in M2 

scenario (B = 447 µg L-1 h-1; G = 153 µg L-1 h-1) were very similar to the ones estimated 

for M1, as well as the equilibration times (respectively, around 24 hours for brown algae and 

48 to the green one). In terms of removal performance at equilibrium, Hg removal was higher 

than 98% in the highest contamination scenario, corresponding to an amount of Hg sorbed 

by the macroalgae of c.a. 0.5 µmol g-1 (Table 6.7). 

Moreover, the comparison of the qe value for Hg in the mixtures with the one obtained 

previously in the same conditions but in the monometallic solution, it is possible to evaluate 

the effect of the presence of the divalent metals on the sorption of Hg by the algae. If, 

qe
mixture/qe

mono <1, the sorption of Hg is inhibited by the presence of Cd and/or Pb; if 

qe
mixture/qe

mono =1, there is no observable interaction; and if qe
mixture/qe

mono >1, the sorption is 

favored by the presence of the metals. The values found ranged from 1.00 and 1.09 for both 

macroalgae and mixtures, indicating that for the studied systems the biosorption of Hg by 

the algae F. vesiculosus and U. lactuca was not inhibited by the presence of Cd and Pb. 
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Figure 6.6: Normalized metal concentrations (Ct/C0) in ternary solutions with time for the brown and green 

macroalgae: filled symbols – mixture 1; open symbols – mixture 2. 

Like for Hg, the removal of Pb by both macroalgae is characterized by a strong and 

rapid decrease of metal concentration in solution (more pronounced in brown macroalgae) 

(Figure 6.5), as confirmed by the estimated initial sorption rates (B = 400 µg L-1 h-1; G = 

185 µg L-1 h-1 in M1 and B = 3443 µg L-1 h-1; G = 1103 µg L-1 h-1 in M2), followed by a 

slower stage. However, contrary to Hg the equilibration time was almost the same for both 

macroalgae and was attained in less than 8 hours. In both contamination scenarios, the brown 

macroalgae was more efficient at removing Pb from solution that the green one, reaching 
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removal efficiencies that range from ca. 80 to 88% depending on the level of initial 

contamination (Table 6.7). 

Table 6.7: Estimated initial sorption rates (0, µg L-1 h-1), removal percentages (R, %) and amount of metal 

sorbed per unit of algae biomass (q, µmol g-1), for multimetallic solutions. 

   Brown algae Green algae 

Solution Metal C0 

(µg L-

1) 

0 

(µg L-1 h-

1) 

t 

(h) 

R 

(%) 

q 

(µmol g-

1) 

0 

(µg L-1 h-

1) 

t 

(h) 
R 

(%) 

q 

(µmol g-

1) 

M1 

Hg 50 431 48 99.9 0.597 166 48 99.8 0.587 

Cd 50  8 9.7 0.053  8 0.0 0.0 

Pb 50 400 8 87.8 0.417 185 8 67.8 0.287 

M2 

Hg 50 447 48 99.7 0.585 153 48 98.4 0.558 

Cd 200  8 7.6 0.284  8 3.0 0.107 

Pb 1000 3443 8 79.5 7.801 1103 8 26.0 2.531 

 

In the contamination scenario M2, where the initial Pb concentration was much higher 

than in M1, it was noted a strong decrease on Pb uptake by the green macroalgae but 

remarkably, the brown macroalgae was almost insensitive to the increase of metal 

concentration (Figure 6.6). However, the rise of the initial metal concentration provides an 

important driving force to overcome all mass transfer resistance of Pb between the liquid 

and solid phases. Thus, despite the decrease on the removal percentage, an rise of C0 from 

50 (M1) to 1000 µg L-1 (M2) increased the initial sorption rate (as mentioned previously), 

and the amount of Pb biosorbed by the F. vesiculosus from ca. 0.42 to 7.8 µmol g-1 and by 

the U. lactuca from 0.29 to 2.5 µmol g-1, as displayed in Table 6.7. 

Comparing the qe values for Pb in single and in ternary solutions it is possible to 

conclude that for the majority of the systems studied, the value of the coefficient 

qe
mixture/qe

mono  was >1, indicating that the sorption of Pb is favored by the presence of other 

metals. The only exception was recorded for the green macroalgae and for the highest level 

of contamination (M2), where qe
mixture/qe

mono was equal to 0.83. 

Like in single contamination conditions, neither the brown neither the green 

macroalgae were able to effectively reduce Cd contamination in seawater. Only, a small 

decrease on Cd concentration in solution was observed for the brown algae at the very 

beginning of the essays followed by no variation in Cd concentration until the end of the 

experiments.  



Chapter 6 

 

231 
 

In both ternary contamination scenarios the efficiency of the macroalgae in terms of 

removal efficiency was Hg > Pb >> Cd (Table 6.7). However, in terms of amount of metal 

sorbed per gram of biomass (qt) (Table 6.7) the sequence was not the same for both scenarios 

due to the different initial metal concentrations: for M1 the sequence was Hg > Pb >> Cd 

while for M2 it was Pb >> Hg > Cd. So, besides the Hg has been almost totally removed 

from solution, there was more Pb sorbed than Hg by the algae. These results are corroborated 

by the selectivity of the macroalgae toward the different metals (S), which is given by the 

ratio between the distribution coefficients (K) of the metals at equilibrium, and the 

distribution coefficient that is defined as qe/Ce. The equilibrium selectivity found for the F. 

vesiculosus and U. lactuca toward the target metals followed the order Hg>Pb>Cd, 

independently of the level of contamination. Romera et al. (2007) also found that the affinity 

of different algal biomasses for metal was higher for Pb than for Cd (Hg was not included in 

the study). Authors pointed to intrinsic metal properties, such as ionic radii and 

electronegativity of atoms, as hypothesis for different affinity toward metals (Romera et al. 

2007). In fact, Freitas et al. (2008) reported that the ionic character of the binding forces 

decreased in the same order of the sorption capacity of different algal biosorbents with 

metals: Pb>Cd. The same order was previously verified by Brady and Tobin (1995), 

regarding the metal uptake capacity by biomass of Rhizopus arrhizus, which was correlated 

with covalent index of the metal ions (the greater the covalent index value of a metal ion, 

the greater its potential to form covalent bonds with biological ligands) (Brady and Tobin 

1995). 

Comparing both macroalgae, it is possible to conclude that in general the brown 

macroalgae is more efficient than the green macroalgae at sorbing Hg and Pb from saltwater 

both in single and ternary saltwater conditions. F. vesiculosus displayed higher initial 

sorption rates, higher removal percentages and higher amounts of metals sorbed than U. 

lactuca. 

The kinetics of the sorption of Hg and Pb by F. vesiculosus and U. lactuca was also 

investigated using common kinetic models such as PFO, PSO and Elovich models (Figure 

6.7). In the case of Hg, sorption kinetics onto both macroalgae is well described by the 

Elovich model (Table 6.8), while for Pb several models are able to describe the sorption 

process. These results are in accordance with the modelling results achieved for the 

monometallic solutions. 
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Figure 6.7: Experimental and modelling results for the amount of Hg (diamonds) and Pb (circles) biosorbed 

by the algae F. vesiculosus (brown color) and by U. lactuca (green color), for two contamination scenarios M1 

(filled symbols) and M2 (open symbols). (Error bars were omitted for clarity). 
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Table 6.8: Best-fit parameters (± standard error) and goodness of the fittings of the kinetic models used to 

describe the biosorption kinetics of metals by F. vesiculosus and U. lactuca algae in ternary solutions. 

Algae Metal PFO PSO Elovich 
Preferred 

model* 

 Mixture 1 

B
ro

w
n

 a
lg

ae
 Hg 

k1: 5.608±1.417 k2: 15.71±3.388 a: 325.1±160.8 
Elovich 

Probability: 

99.99% 

qe: 0.5223±0.02047 qe: 0.5462±0.01394 β: 20.33±1.118 

R2: 0.888 R2: 0.960 R2: 0.991 

Sy/x: 0.05894 Sy/x: 0.03542 Sy/x: 0.01691 

Pb 

k1: 10.32±2.846 k2: 38.62±9.761 a: 338.2±163.3 
Elovich 

Probability: 

99.98% 

qe: 0.3697±0.01570 qe: 0.3908±0.01164 β: 26.75±1.534 

R2: 0.9205 R2: 0.970 R2: 0.996 

Sy/x: 0.03893 Sy/x: 0.02405 Sy/x: 0.009198 

G
re

en
 a

lg
ae

 Hg 

k1: 0.8230±0.2331 k2: 1.947±0.5781 a: 1.817±0.2103 
Elovich 

Probability: 

>99.99% 

qe: 0.4602±0.02925 qe: 0.5131±0.02748 β: 12.11±0.3628 

R2: 0.8651 R2: 0.934 R2: 0.996 

Sy/x: 0.06825 Sy/x: 0.04759 Sy/x: 0.01180 

Pb 

k1: 4.060±0.7349 k2: 21.61±2.651 a: 12.92±6.431 
PSO 

Probability: 

98.01%  

qe: 0.2698±0.01012 qe: 0.2878±0.005415 β: 25.95±2.457 

R2: 0.955 R2: 0.991 R2: 0.979 

Sy/x: 0.02226 Sy/x: 0.009722 Sy/x: 0.01499 

 Mixture 2 

B
ro

w
n

 a
lg

ae
 Hg 

k1: 6.528±1.565 k2: 18.84±3.648 a: 957.4±692.6 
Elovich 

Probability: 

99.47% 

qe: 0.5276±0.01873 qe: 0.5496±0.01196 β: 22.30±1.591 

R2: 0.902 R2: 0.969 R2: 0.987 

Sy/x: 0.05464 Sy/x: 0.03097 Sy/x: 0.02003 

Pb 

k1: 5.806±0.9657 k2: 1.152±0.1234 a: 979.1±701.2 
PSO 

Probability: 

99.75% 

qe: 7.257±0.2234 qe: 7.700±0.1152 β: 1.109±0.1248 

R2: 0.965 R2: 0.994 R2: 0.976 

Sy/x: 0.5161 Sy/x: 0.2206 Sy/x: 0.4296 

G
re

en
 a

lg
ae

 

Hg 

k1: 0.9290±0.2350 k2: 2.504±0.6362 a: 2.374±0.2391 

Elovich 

Probability: 

>99.99% 

qe: 0.4454±0.02487 qe: 0.4883±0.02161 β: 13.28±0.3236 

R2: 0.887 R2: 0.950 R2: 0.997 

Sy/x: 0.05927 Sy/x: 0.03958 Sy/x: 0.009265 

Pb 

k1: 5.098±0.2266 k2: 2.994±0.5063 a: 265.6±373.4 

PFO 

Probability: 

99.97% 

qe: 2.501±0.02147 qe: 2.645±0.06441 β: 3.170±0.7284 

R2: 0.998 R2: 0.985 R2: 0.903 

Sy/x: 0.04875 Sy/x: 0.1210 Sy/x: 0.3054 

*Comparison of the two fits with the highest R2 and lower Sy/x values. 

 

Overall, both PFO and PSO models underestimated the amount of metal bound to 

brown and green seaweeds biomass at equilibrium. Yet, in most cases the relative errors 

associated with predicted qe were lower for PSO model. 
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6.4 Conclusions 

 

The effectiveness of U. lactuca and F. vesiculosus non-treated powders in the removal 

of metals such as Hg, Pb and Cd from saline waters was demonstrated under different 

contamination scenarios.  

In single-contaminant systems, both macroalgae were able to reduce initial Hg levels 

to values below or very close to the legal limit for waters for human consumption. Moreover, 

in mixtures, the biosorption of Hg by brown and green algae was not inhibited by the 

presence of Cd and Pb, even when the coexisting metals were present in higher 

concentrations in solution.  

Both macroalgae showed large uptake capacities toward Pb, although the removal was 

not complete for any of the considered levels of contamination. In addition, a strong decrease 

in the removal efficiency of Pb by the green macroalgae was recorded in the scenario of 

higher contamination, M2. 

Contrary to Hg and Pb, in all contamination scenarios, Cd was barely removed from 

solution by both brown and green algae (maximum removal of 20%). 

Overall, dried F. vesiculosus proved to be more effective in removing metals from 

seawater than U. lactuca, since brown algae displayed higher initial sorption rates, higher 

removal percentages and higher amounts of metals biosorbed. The superior performance of 

brown macroalgae was attributed to the presence of alginate in their composition, which 

features several carboxyl groups with high affinity toward divalent metals. However, the 

equilibrium selectivity observed for the F. vesiculosus and U. lactuca toward the target 

metals followed the same order: Hg>Pb>Cd. The biosorption kinetics was well described by 

the models considered, over the whole period of time and full range of concentrations.  

In general, the results suggests that the two macroalgae studied may be effectively 

used as alternative method for metal removal from contaminated seawater, more cost-

effective and environmentally friendly than conventional methods. 
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7 Final considerations 
 

 

Overall, the findings of the present PhD project highlight the importance of studying 

the transfer and accumulation of metals by living plants and macroalgae in contaminated 

systems. 

Terrestrial plants Lolium perenne and Brassica Juncea growing in agricultural fields 

near an industrial area, showed to be able to uptake considerable amounts of Hg from soil. 

Although bioconcentration factors (BCF) of inorganic Hg had been smaller than 1, estimates 

revealed that, in some cases, daily intake of IHg were above the acceptable daily intake for 

both cow and sheep (in terms of kidney concentration). Moreover, the estimated levels of 

total mercury in animal organs pointed out the potential risk to human health derived from 

the consumption of offal from animals that graze in that area.  

Organo-metallic Hg (OrgHg) contents in both terrestrial plants were in general below 

1% of total Hg concentrations, yet above the respective OrgHg concentration in soil, which 

indicates that bioaccumulation of organometallic species (the most toxic species of Hg) also 

occurs in terrestrial systems. In addition, results suggested that there is no barrier to the 

translocation of OrgHg from roots to shoots of L. perenne as observed for IHg. Hence, the 

inclusion of limits for OrgHg in feed quality and food safety legislation was advised.  

The following study dealt with the assessment of Hg bioaccumulation by three 

different marine macroalgae (U. lactuca, G. gracilis and F. vesiculosus) in a different saline 

matrix: Hg contaminated seawater. Experiments conducted in laboratory, with experimental 

conditions aiming to mimick those found in real aquatic ecosystems, emphasized the already 

recognized affinity between algae and metals (almost 99% of all Hg was removed from 

solution by the seaweeds). Bioconcentration factors were much higher than those found for 

terrestrial plants (c.a. 2000), which in part may be attributed to the higher bioavailability of 

Hg in the medium, in relation to soil, but also to the absence of any restriction mechanism 

to the accumulation by the algae.  

OrgHg contents in U. lactuca biomass were very low, and below that recorded for L. 

perenne and B. Juncea, suggesting that methylation is a slow process. 

Overall, the amount of Hg bioaccumulated by the seaweeds was positively correlated 

with the initial concentration of metal in solution, which is in agreement with field studies 
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supporting their use in environmental biomonitoring. In addition, the huge capability to 

remove Hg from water pointed to the enormous potential of these marine macroalgae as a 

basis for a new remediation biotechnology. Since macroalgae represent a largely available 

resource, the new treatment methodology will be more cost-effective than conventional 

methods, besides being more environmentally friendly. In this context, of the macroalgae 

studied, U. lactuca stood out, since the removal carried out by this macroalgae was faster, 

and more extensive than that observed for the other two species. The better performance of 

U. lactuca was mainly attributed to its high growth rate and high surface area. Moreover, the 

residual concentrations of Hg in solution showed compliance with legal criteria for drinking 

water quality.  

Despite most of works found in the literature, regarding metal removal and recovery, 

are conducted using dried biomass of macroalgae (biosorption), a comparative study 

between biosorption and bioaccumulation processes, demonstrated that the use of living 

organisms may be more advantageous. For the experimental conditions used, living U. 

lactuca allowed to achieve lower residual concentrations of Hg than its dried biomass. The 

growth of living macroalgae and the additional internalization of the sorbed metal were the 

appointed reasons for the best performance. Additionally, the process of separating the 

biosorbent from the treated solution was simpler in the bioaccumulation, since no filtration 

was required. 

The ability of U. lactuca to bioaccumulate metals was also evaluated in monometallic 

and multimetallic solutions of Cd, Pb and Hg (which are closer to the real aquatic systems), 

in different levels of contamination. This study was also conducted for F. vesiculosus, and 

effects of metal exposure on both macroalgae growth were assessed. Again, the macroalgae 

showed an extraordinary capability for remove toxic metals from salt waters, even when the 

contaminants were present simultaneously. Like observed previously for Hg, the highest 

removal efficiencies for Pb and Cd were achieved by the green macroalgae. Furthermore, 

the green macroalgae showed to be tolerant to the different contamination scenarios studied, 

whereas the relative growth rate of F. vesiculosus was negatively affected by the presence 

of Cd and Pb in high concentrations. Nevertheless, it should be pointed out that none of the 

exposure conditions tested caused death or organism decay. 

The green and brown macroalges presented different sequences of selectivity toward 

metals (U. lactuca: Hg>Cd>Pb; F. vesiculosus: Hg>Pb>Cd), which reveals that each 
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macroalgae has its specificities, and the chemical composition of the macroalgae play a vital 

role on the biosorption/bioaccumulation of metals.  

The results obtained from living algae seem to contradict the trend revealed by studies 

involving non-living algae, which indicate that the brown algae are those that have higher 

affinity to metals. As such, in the work that gave rise to the last chapter of this doctoral thesis, 

the biosorption capacity of the dried biomass of U. lactuca and F. vesiculosus towards toxic 

metals studied was evaluated and compared. In order to obtain maximum performance of 

removal only the powder fraction (particles with size <200 µm) was used, since it is well 

known that biosorbent surface area is a vital parameter in biosorption. Results actually 

supported the assumption that brown algae have a better performance, since higher removal 

percentages and higher amounts of metals sorbed were achieved by the F. vesiculosus. 

Overall, the behavioral difference recorded between bioaccumulation and biosorption 

experiments, reinforces the idea that the algae metabolism plays a fundamental role in metal 

removal. In fact, the results of biosorption clearly showed that both macroalgae biomasses 

were also very effective at sorbing Hg and Pb from solution. However, despite the increased 

surface area/solution ratio, neither the green nor the brown algae biosorbents were effective 

to remove Cd from saltwater, case where the application of the living ones proved to be more 

advantageous.  

Thus, the development and implementation of a remediation biotechnology based on 

the use of these macroalgae, should take into account the composition of the solution to be 

treated, or the metal to be removed. Yet, the time required, the associated cost and the 

simplicity of the process are major factors when it came to choose between bioaccumulation, 

biosorption, and a hybrid technology.  

The description of the kinetics of the removal process is critical in the development of 

the treatment technology, which has been successfully accomplished using kinetic reaction 

model, widely accepted by researchers. However, the effect of the amount or dose of algae 

(biomass/solution ratio) in the efficiency of removal is also very important and should be 

evaluated in the future. 

During the studies, some questions emerged indicating future potential research 

directions emerged. The role of plants and macroalgae in the methylation of Hg are not clear 

and should be investigated. Future studies should also focus on the mechanisms of metal 

binding to macroalgae cell walls and intracellular accumulation. Additionally it would be 



Chapter 7 

 

244 
 

interesting to assess the potential application of the studied macroalgae in the removal and 

recovery of elements of high economic value, as well as of emerging pollutants, such as 

metal nanoparticles. 


