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resumo 
 
 

O Cerrado brasileiro abriga uma enorme biodiversidade e é 
considerado um bioma prioritário para conservação. Uma das maiores 
ameaças à integridade desse ecossistema é a introdução de gramíneas 
africanas, que têm a capacidade de excluir competitivamente as gramíneas 
nativas, causando alterações no microclima e nos regimes de perturbação do 
ecossistema. O Cerrado é um mosaico de vegetação que oferece 
combinações diferentes em termos espaciais e temporais, de fatores de 
stress natural para vegetação herbácea (disponibilidade de água, nutrientes, 
luz etc.). Os diferentes cenários no ambiente físico refletem diferenças nas 
relações biológicas entre espécies nativas (Aristida recurvata, Aristida 
setifolia, Axonopus barbigerus, Echinolaena inflexa, Gymnopogon spicatus, 
Paspalum gardnerianum, Paspalum stellatum, Schizachyrium 
microstachyum, Schizachyrium sanguineum) e invasoras (Melinis minutiflora, 
Andropogon gayanus), afetando a competição entre elas e criando situações 
(local / estação) que são mais ou menos suscetíveis à invasão. Este estudo 
tem como objetivo identificar as diferentes respostas biológicas de 
gramíneas nativas ( e invasoras às variações de stress ambiental natural e à 
perturbação (fogo e corte), a fim de compreender as mudanças no 
funcionamento do ecossistema e os processos de competição entre essas 
espécies, ajudando assim a compreender a dinâmica de invasão neste 
ecossistema. No campo, a presença de espécies invasoras mostrou afetar o 
funcionamento dos ecossistemas, aumentando a atividade dos detritívoros 
do solo. Estas diferenças não foram, porém, observadas na estação seca 
nem quando o fogo é frequente, mostrando que a disponibilidade de água e 
de fogo são mais determinantes para a atividade dos detritívoros do solo do 
que para a vegetação. Os experimentos de laboratório mostraram que tanto 
a seca quando o excesso de água causa danos em ambas as espécies, 
porém as espécies invasoras apresentam um melhor desempenho em 
qualquer condição de rega e respondem melhor à adição de fertilizantes. Os 
mecanismos subjacentes, como a eficiência da fotossíntese e mecanismos 
antioxidantes, ajudam a explicar esse comportamento. Com estes 
mecanismos ativos, a espécie invasora tem capacidade de crescer mais 
rapidamente, apresentando menos danos celulares e um fotossistema 
saudável, apresentando taxas de assimilação mais elevadas. No entanto, 
estas discrepâncias entre espécies nativas e invasora são reduzidos com a 
aplicação do corte, especialmente nos solos secos e sem fertilização, onde 
as espécies nativas recuperaram melhor, em relação aos valores em pré-
corte. O excesso de água representa um stress semelhante ao induzido pela 
seca, mas em solos com melhor drenagem, as espécies invasoras são 
capazes de contornar esse problema de forma mais eficiente que a nativa. O 
fogo provou ser mais prejudicial que o corte, provocando uma recuperação 
mais lenta. Além disso, as temperaturas pós- fogo são capazes de afetar a 
germinação de sementes tanto de espécies nativas quanto da invasora, 
podendo ser um fator importante e que influencia a persistência da 
biodiversidade no campo. Os resultados desse trabalho contribuirão para a 
escolha da técnica de manejo mais adequada para a conservação da 
biodiversidade do Cerrado. 
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abstract 
 The Brazilian Cerrado houses a hugely diverse biota and is 

considered a conservation hotspot. One of the greatest threats to the integrity 
of this ecosystem is introduced African grasses, which can competitively 
exclude native grasses and cause changes in the microclimate and other 
disturbances. The Cerrado is a mosaic vegetation that provides different 
combinations, both spatially and temporally, of conditions that can become 
natural stressors to the herbaceous vegetation (water, nutrient and light 
availability). These mosaics are reflected in differences in relationships 
among native and invasive species, affecting competition and creating 
situations (place/season) that are more, or less, susceptible to invasion. The 
present study aimed to identify the different biological responses of native 
(Aristida recurvata, Aristida setifolia, Axonopus barbigerus, Echinolaena 
inflexa, Gymnopogon spicatus, Paspalum gardnerianum, Paspalum 
stellatum, Schizachyrium microstachyum, Schizachyrium sanguineum)  and 
invasive (Melinis minutiflora and Andropogon gayanus) grasses to variations 
in natural stressors and to disturbance (fire and clipping), in order to 
understand changes in ecosystem functioning and competition processes 
between the grasses, and to understand invasion dynamics in this 
ecosystem. The presence of invasive species proved to affect the ecosystem 
functioning by increasing soil feeding activity. These differences were no 
longer observed in the dry season or when fires were frequent, showing that 
water availability and fire are more detrimental to soil feeding activity than is 
the vegetation. Laboratory experiments showed that both drought and flood 
simulated scenarios damaged both species, although the invasive species 
performed better under all watering conditions and responded better to 
fertilization. Underlying mechanisms such as the efficiency of photosynthesis 
and antioxidant mechanisms helped to explain this behavior.  The invasive 
species grew faster and showed less cellular damage and a healthier 
photosystem, reflected in higher assimilation rates under stress. These 
differences between the native and invasive species were reduced with 
clipping, especially in dry soil with no fertilization, where the native species 
recovered better in relation to the pre-clipping levels. Flooding was as 
stressful as drought, but the invasive species can bypass this issue by 
growing an extensive root system, especially in the better-drained soils. Fire 
is more detrimental than clipping, with a slower recovery, while post-fire 
temperatures affect the germination of both invasive and native seeds and 
may be an important factor influencing the persistence of a diverse biota. 
This approach will finally contribute to the choice of the appropriate 
management techniques to preserve the Cerrado’s biodiversity. 
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THE CERRADO 

 
The Cerrado is a tropical savanna that covers more than 2 million km2 or about 

25% of the area of Brazil, from 5 °N to 34° S, including all or parts of several states 

(Figure 1). It is the second-largest biome in the country, smaller only than the 

Amazon Forest. Changes in land use, mainly farming and ranching, have reduced 

the natural Cerrado area by half, i.e., over three times the deforested area in the 

Amazon basin.  

 

 

Figure 1. Cerrado distribution along Brazilian territory. Source 
http://coffee4missions.com/brazillian-cerrado-daterra-farms/. Accessed on 
august 2014. 

 
Cerrado is the home of a hugely diverse biota including 12,000 plant species 

and >160 mammals > 800 bird, >120 amphibian, >150 reptile, and >1200 fish 

species, many of them endemic and endangered, which makes it a conservation 

hotspot (Myers et al. 2000, Klink & Machado 2005, Mendonça et al. 2008). However, 

less than 5% of the remaining natural Cerrado is presently protected.  
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In addition to deforestation, the Cerrado is threatened by biological invasions, 

mainly by African grasses. These grasses were introduced into Brazil either by 

accident during the colonial period or intentionally for improving pastures. Exotic 

grasses presently cover over 500,000 km2 and can also spread to conservation units 

and deplete the local biota (Klink & Machado 2005). 

 
CLIMATE AND SOIL 

 
The Cerrado climate is seasonal and tropical (Köppen’s CWA), with two well-

marked seasons, a dry winter and a wet summer. Mean annual temperatures are 

around 22-23 °C and oscillate little during the year. Mean annual precipitation is 

around 1600 mm, and 90% of the rain falls from October to April. During the dry 

season, monthly precipitation may reach 0%, and air relative humidity can be below 

10% (Eiten 1972) (Figure 2). 

 

Figure 2.  Seasonality expressed as monthly averages of precipitation and 
temperature in the Cerrado region, Brazil. (França & Braz 2013) 

 
The most frequent soil type is red-latosols (oxisols or acrustox soil according 

to the American classification), i.e., old, well drained, deep, highly weathered and 
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strongly acid, dystrophic (poor in nutrients), and with high concentrations of aluminum 

(Haridasan 1994). For farming and pastures, the pH is corrected with limestone and 

fertilizers are added. Worldwide, human activities and population growth account for 

over twice as much as the natural production of nitrogen on the land surface, 

affecting the world nitrogen cycle (Kauffman et al. 1994, Galloway et al. 2004). In the 

Cerrado, anthropogenic inputs originate mainly from pastures and soybean 

plantations (Filoso et al. 2006). Soil fertility significantly influences the species 

composition in Cerrado ecosystems (Ratter & Dargie 1992), and changes in soil 

chemical properties may alter soil-plant interactions and competition among plants. 

 

VEGETATION  

 
Cerrado is often referred to as the Brazilian Savanna, and it has the richest 

flora among world savannas (over 10,000 plant species, of which 44% are endemic 

(Klink & Machado 2005). The wide variety of structural forms or physiognomies range 

from open grasslands (campo-limpo/campo-sujo) to closed-canopy forests (cerradão) 

(Ribeiro & Walter 1998) (Figure 3). The vegetation gradient is related to edaphic and 

topographic factors such as depth, distance from the water table, fertility, mother rock 

composition, and is also related to fire (Coutinho 1978) (Figure 3). Aboveground 

biomass, root-shoot ratio, and floristic composition differ along the gradient (Castro & 

Kauffman 1993). 
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Figure 3. Cerrado vegetation forms along a gradient of soil depth and 
distance to the water table. The canopy gradient goes from open grassland 
physiognomies (“campo limpo) to closed canopy forests (“cerradão). (Castro 
& Kauffman 1993). 

 

Aboveground biomass in the Cerrado is very low in comparison to other 

tropical ecosystems, because of the low productivity resulting from water stress, low 

nutrient content and aluminum toxicity (Eiten 1972, Haridasan 1992, Castro & 

Kauffman 1993). On the other hand, root biomass is high, especially in grasslands 

where the root biomass can reach over seven times the amount of aboveground 

biomass (Castro & Kauffman 1993). 

In open grasslands and savanna formations, the herbaceous layer is 

prominent and composed mainly of grasses, which account for over 70% of the 

primary production of this layer (Batmanian & Haridasan 1985). Grasses (Poaceae) 

are one of the largest plant families, covering over 30% of the dry land surface of the 

earth (Watson 1990). They are of great economic and ecological importance, being 

used since ancient times in agriculture, and support the natural fauna and stabilize 

the soil (Silva 2000). The grasses have morphological traits and reproductive 
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strategies that enable them to grow and spread rapidly and to tolerate herbivory, fire, 

drought and flood, recovering quickly after stress events (Watson 1990). In the whole 

Cerrado biome, there are over 500 species of native grasses while in the Federal 

district about 300 of these species have been reported (Mendonça et al. 2008). 

These grasses are considered of low palatability and nutritional value to cattle 

(Filgueiras 1992). Very little is known about their phenology, seeds, and response to 

water stress, fertility and fire (Almeida 1995, Oliveira 1998, Cole et al. 2005, Lindsay 

& Cunningham 2011). 

Cerrado shrubs and trees are xenomorphic vegetation, with thick bark and 

tortuous trunks (Eiten 1972). The plants are adapted to low soil fertility, and are able 

to grow accumulating low levels of nutrients in their tissues. They also show high 

reabsorption rates, resulting in the low decomposition rates that are common in 

Cerrado plant communities (Resende 2001, Nardoto et al. 2006). 

In order to endure the dry season and conserve water and nutrients, the plants 

possess adaptive mechanisms such as leaf scleromorphism, deciduous syndromes, 

and death of the aerial part (grasses), which enable them to maintain transpiration 

rates comparable to those in the rainy season (Quesada et al. 2004). 

 
 
FIRE 

Fire can be considered an important ecological factor worldwide, influencing 

patterns of distribution of plants, vegetation structure and floristic composition 

(Whelan 1995). Fire has become more important with the establishment of C4 

grasses, common in tropical savannas. Plants with this photosynthetic pathway show 

high growth rates in locations with high radiation intensity, and are able to 

photosynthesize more efficiently by reducing photorespiration. Occupation of space 
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by these grasses promotes fire by creating favorable conditions for the fire front to 

spread, such as fuel continuity, abundant fine fuel that easily dries, and a biomass 

that can recover quickly during the rainy season. These characteristics create a 

positive cycle that benefited the advance of grasslands and the retreat of forests 

around 10 million years ago, favoring the formation of open landscapes such as 

savannas (Pennington et al. 2006). Phylogenetic studies suggest that the origin of 

the Brazilian savanna followed this same ecological expansion of flammable C4 

grasses, and Cerrado flora evolved from fire-free ecosystems (forests) by developing 

adaptations to resist fire (Simon et al. 2009). However, the most ancient record of fire 

in the Cerrado is from 32,000 years (Salgado-Labouriau & Ferraz-Vicentini 1994). 

The lack of evidence of human occupation in the area implies that fires were a 

natural occurrence. Lightning-caused fires may occur in dry spells during the rainy 

season or in the transition between dry and wet seasons.  However, the human 

settlement begun 12,000 years ago and changed the fire regimes. Fire was used by 

humans as a hunting technique and still is to clear land for agriculture, mostly in the 

dry season, and with a higher frequency than natural fires. Also, accidental or arson 

fires during the dry season tend to consume much larger areas, and may influence 

the species composition by impairing the reproduction of many species that disperse 

their seeds during this season (Coutinho 1990, Munhoz & Felfili 2005). 

 Cerrado fires are rapid surface fires, consuming mostly the herbaceous layer 

and thin branches (fine fuel) (Miranda et al. 2002), although Cerrado flora is known to 

be resistant to frequent burns (Coutinho 1990). Shrubs and trees have a thick bark 

that protects the cambium from high temperatures (Guedes 1993). Trees may lose 

thin branches after fires, and because flames do not usually reach the canopy, the 

leaves are not consumed by fire. However, leaves usually die and fall after fires 
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because of lethal temperatures and the exposure time (Miranda et al. 2002). The 

highest temperatures during a fire occur at 60 cm above the ground (over 800 °C) 

(Miranda et al. 1993). Wright (1970) showed that the death of plant tissue depends 

primarily on moisture content, and is an exponential function of temperature and time. 

Consequently, the heat tolerance of a plant (the ability of the organs to withstand high 

temperatures) along with its fire resistance may vary with season, as a result of the 

seasonal changes in plant water content. Many species have underground storage 

organs such as xylopodia, and are also able to store nutrients and water in their 

trunks (Rawitscher & Rachid 1946). 

Since fire residence time is low, and the soils function as a thermal insulator, 

the roots and soil seed bank are protected from the high temperatures of fire. After a 

fire, these plants have different types of sprouting (basal, subterranean and aerial), 

reproducing vegetatively. Some species' flowering and seed dispersal are also aided 

by fire (Haddad & Valio 1993), although frequent fires may reduce the cover. In the 

case of the herbaceous layer, the species flower a few days after a burn (Coutinho 

1990). Although they lose their aerial parts, recovery from their root systems is rapid 

(Andrade 1998). The seed bank, although somewhat reduced by fire, is also an 

important source for recovery afterward, and it recovers rapidly due to the induced 

flowering (Andrade & Miranda 2014). Fire and heating are also an important factor in 

breaking seed dormancy in other fire-prone environments (Portlock et al. 1990).  

The reduction of the vegetation cover and the deposition of an ash layer on the 

soil surface result in a post-fire alteration in soil microclimate. This condition 

increases the amplitude of soil temperature after the fire on the order of 30°C at 1 cm 

depth and of 10°C at 5 cm depth, with no alteration at 10 cm depth (Dias 1994; 

Castro Neves & Miranda 1996) (Figure 4). These alterations in soil microclimate may 
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have some effect on plant colonization, seed germination and soil micro-organisms 

(Frost & Robertson 1987). 

Andrade (1998) reported a recovery of over 80% of the fuel load of the 

herbaceous layer of a campo  one year after a fire, while Neto et al. (1998) observed 

that 2 years were enough for campo sujo to completely recover from fire. Andrade 

Miranda reported that the seed bank density recovers one year after fire, and 

although fire doesn’t affect immediately the seed bank, it may reduce the contribution 

of the monocts , if it occurs during the dispersion period, in late dry season. Oliveira 

(1998) show that most of native grasses present flowering and anemochoric 

dispersion in the end of the dry season, when wind is faster favoring their spread 

(Almeida 1995). Therefore, if fire occurs at this time, the reproduction of grasses 

would be damaged. Frequent fires may cause even more damage and reduce tree 

cover.  
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Figure 4. Changes on soil thermal profile with the removal of 
aboveground biomass after fire. Castro-Neves, unpublished 
data. 
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Changes in fire frequency can also favor the establishment of invasive plants, 

like African grasses (San José & Farinas 1991, D’Antonio & Vitousek 1992, Pivello et 

al. 1999; Williams & Baruch 2000) that are able to accumulate more biomass than 

Cerrado species, favoring more intense fires.  

 

BIOLOGICAL INVASIONS 

 
Invasive species are exotic species that were introduced intentionally or 

accidentally and were able not only to establish and adapt to the new environment, 

but also have the potential to outcompete native species. Only 0.01% of introduced 

exotic species became invasive, but when succeeded they may cause major 

problems (Williamson & Fitter 1996, Gurevitch & Padilla 2004). Invasive species 

usually lack natural enemies, aiding habitat colonization (Randall 1996; Richardson 

et al. 2000). Gurevitch & Padilla (2004) considered invasive species to be one of the 

greatest causes of biodiversity loss worldwide, after land-use change, and in Brazil 

this issue is no different (Pivello et al. 1999, Richardson et al. 2000, Martins 2006). 

These species may monopolize resources by limiting space, radiation, water and 

nutrients. Also, they can change ecosystem functions such as nutrient cycling and 

the fire regime. For instance, African grasses can alter the nutrient cycling due to 

their ability to uptake and accumulate nutrients more efficiently and in producing litter 

that decomposes faster than the native plants’ litter. They can also alter the fire 

regime by increasing the frequency and intensity of fire. This is due to a fast recovery 

rate, tremendous biomass accumulation and higher combustion temperatures. 

Overall, invasive plants have caused significant changes in vegetation structure and 

composition in many ecosystems around the world (San José & Fariñas 1991, 
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D’Antonio & Vitouseck 1992, Williams & Baruch 2000, McNeely et al. 2001, Brooks et 

al. 2004). The success of an exotic species in becoming an invader is a function of 

the characteristics of this species but also of the host environment, including natural 

populations, environmental stress, disturbance frequency, and management 

practices (MacIntyre et al. 1995). 

In Brazil, African grasses are the most common and widespread invasive 

species. These grasses were introduced mainly to improve livestock grazing. 

Although many Cerrado grasses do not have an equivalent growth rate or palatability, 

suitable native species for grazing do exist (Filgueiras 1992). Much of the reason that 

African grasses are used is the lack of knowledge about the value of native species. 

For the same reason, invasive species are also used in the recovery of degraded 

areas that have undergone erosion, exploitation and natural disasters, creating 

another source of invasions (Carneiro et al. 2001, Silva et al. 2007). 

In the Brazilian Federal District, the federative unit where the capital (Brasília) 

is located, established populations of the African grasses Melinis minutiflora (P. 

Beauv.), Andropogon gayanus Kunth, Rhynchelytrum repens (Willd.) C. E. Hubb, 

Hyparrhenia rufa (Nees) Stapf, and Urochloa decumbens (Stapf) R.D. Webster, have 

been reported in conservation units such as the National Park of Brasília (Martins et 

al. 2004, Martins 2006, Zanin 2009) and in the Reserva Ecológica do IBGE (IBGE 

2004, Aires 2009). The M. minutiflora is reported also all over the country (Martins & 

Leite 1997, Pivello et al. 1999). These grasses produce great numbers of viable 

seeds that can disperse into natural reserves, where they usually establish in open 

areas such as campo limpo and campo sujo1. Being C4 species, they also require 

                                                
1 The most common physiognomic forms of Cerrado are grasslands (campo limpo); grasslands with 
scattered shrubs (campo sujo); open scrub (cerrado ralo); closed scrub (cerrado sensu strictu) and 
arboreal woodland with a woody underlayer and sparse grasses (cerradão)(Ribeiro and Walter 1998). 
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intense radiation, which is more available in these open areas (Freitas & Pivello 

2005, Pivello et al. 1999).  

Competition can be defined as an impairment in the performance of an 

individual when sharing limited resources (space, water, light, nutrients). These 

invasive grasses outcompete native species by affecting the establishment and 

development of their seedlings, adding a massive amount of seeds to the soil seed 

bank and possessing higher growth rates. African grasses have a history of 

coevolution with large herbivores in Africa, and the absence of equivalent grazers in 

the Cerrado may explain their higher growth rates in comparison to native species 

(Baruch et al. 1985). Also, in the invaded Cerrado, African grasses limit the 

development of native species by shading them and growing rapidly below ground. 

Silva & Castro (1989) found a direct effect of shading by Andropogon semiberbis 

(Nees) Kunth affecting biomass accumulation of native grasses in Venezuela, and 

Holl (1998) showed the extent of root competition in determining the growth of nearby 

seedlings in Australia. Aires (2013) studied the competition of native grasses with M. 

minutiflora in the Cerrado, and how both aerial and root biomass impairs native 

seedling growth. Maintenance of the native biodiversity depends on the recruitment, 

survival and growth of seeds. Therefore, invasive grasses affect these initial stages 

of the natives' life cycle.  

These grasses are even reported as able to affect water and fire regimes and 

nutrient cycling of ecosystems (D’Antonio & Vitousek 1992, Williams & Baruch 2000, 

Hoffmann & Haridasan 2008). Native Cerrado grasses are adapted to these 

disturbance regimes. Nevertheless, when the invasive grass changes the frequency 

or intensity of fire, it may affect the response of the native species, delaying its 
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recovery and facilitating invasion and spread of other African grasses, creating a 

positive feedback favoring the dominance of exotic grass species. 

It is believed that a species-rich community is more stable, with overlapping 

ecological niches, which may impede the establishment of new species (Tilman 

1996). More-diverse stable environments usually show healthier functioning, with 

higher productivity and nutrient cycling (Stachowicz & Tilman 2005). There is 

evidence that a community may be more susceptible to invasion when disturbed. 

Even with the natural disturbance of the environment, such as dry seasons and 

natural fires, native species should be able to better resist invasion, for being 

naturally adapted to these conditions, having evolved with them (Lockwood et al. 

2007). Also, African grasses have lower tolerance to water stress than the native 

species (Baruch & Fernandez 1993). It is also widely accepted that invasive grasses 

establish more rapidly in soils with high nutrient content (Barger et al. 2003). 

However, due to the accelerated rate of Cerrado destruction, human impacts, 

lack of appropriate management, their high propagule pressure and rapid growth 

rate, African grasses can invade and easily establish in open Cerrado areas (Baruch 

et al. 1989, Rejmánek 1989, Elton 2000, Levine et al. 2003, Stachowicz & Tilman 

2005). These mixed communities are in a continual dynamic equilibrium, controlled 

by the competitive interactions between invasive and native species.  

 

MELINIS MINUTIFLORA P. Beauv. 

 
This grass is one of the greatest threats to biodiversity in the Brazilian Cerrado 

(Martins et al. 2004). Also known as molasses grass, Melinis minutiflora (P. Beauv., 

Figure 5) is a perennial grass that can reach up to 180 cm high. Its name comes from 
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the secretion of a volatile oil through the leaf hairs, with a characteristic strong odor 

(FAO 2011, Partridge 2003). Molasses grass is native to tropical and southern Africa, 

and was first introduced to South America and India (Duke 1983) in colonial times by 

accident. More recently, it has been used to improve pastures because of its high 

growth rate and biomass accumulation.  

 

 

Figure 5.  An area invaded by M. minutiflora in Brazil. Source: 
http://ameninaeasmontanhas.blogspot.com.br. Accessed on august 
2014. 

 

Molasses grass yields about 2-20 t/ha depending on moisture and fertilization 

conditions, far more than the 7 t/ha of native grasslands (Neto et al. 1998). Although 

other species are preferred nowadays, it is still used as the principal component of 

the diet of grazing cattle in many states. It is a sticky, tufted grass that produces 

enormous quantities of seeds (Carmona & Martins 2010), most of them viable, 

although it can also spread vegetatively by stolons. It is considered a weed in Brazil, 

Colombia, Hawaii, and Venezuela (Duke 1983). However, it is now widely considered 

as naturalized in many tropical countries (FAO 2011), as it has been introduced so 
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long and is now completely adapted and spread throughout the biome. It is so 

widespread and is so commonly used by local populations that, by common sense, 

locals may consider this species as a native species. 

 Its distribution ranges from 16N and 30.5°S, from sea level to 2500 m altitude 

at forest edges and on open ground or grassland (Ecocrop 2011, Quattrocchi 2006). 

It can displace native grasses and form monospecific stands in open areas, and 

impairs the recruitment of dicot seedlings in forest edges (Hoffman & Haridasan 

2008). Molasses grass is a fast-growing grass, both above and below the ground, 

outcompeting native species for light, space and soil nutrients (Partridge 2003, 

Freitas & Pivello 2005). It also has impacts on the nitrogen cycle by producing litter 

with a lower  nitrogen content (Silva & Haridasan 2007). Molasses grass thrives in 

areas with 960-1700 mm annual rainfall and 30°C, and is also relatively tolerant to 

drought that last up to four to five months. These are precisely the conditions found in 

the Cerrado biome. During the dry season, cattle prefer other grasses because the 

palatability and digestibility of this species decreases sharply in the dry season, 

probably because nutrients are used more efficiently by reabsorbing from dying 

leaves (Silva & Haridasan 2007). Göhl (1981) found that this species is not resistant 

to waterlogging, preferring well-drained soils such as latosols. It also tolerates the 

low-fertility, low-pH Cerrado soils with their high concentration of aluminum. However, 

it also responds positively to fertilization (Ecocrop 2011). Furthermore, this species 

has been reported to maintain green biomass longer in the dry season, probably due 

to its extensive root system (Silva & Haridasan 2007).  

The large biomass along with the compounds secreted by the leaf hairs lead to 

more-intense fires than in native grasslands. Although this species has been reported 

to alter the fire cycle in Hawaiian ecosystems by increasing fire frequency and 
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intensity, in the Cerrado the native grassland can recover faster from fire than can 

burned invaded sites (Barros et al. 2006), and M. minutiflora does not seem to 

increase the frequency of fire. Marinho & Miranda (2013) also reported that it has a 

low tolerance to fire, and stated that M. minutiflora does not withstand heavy grazing, 

especially when plants have not reached 15 cm in height (FAO, 2011). Although fire 

itself may not promote the spread of molasses grass in the Cerrado, it may facilitate 

invasion by other invasive grasses such as H. rufa and A. gayanus. 

 

MANAGEMENT 

 
Prevention, control and eradication of invasive species account for significant 

costs to the economy and may lead to losses in the environment (Zanin 2009). The 

study and implementation of effective techniques are therefore imperative. 

Experiments have been carried out in Brazil in order to test control methods, 

such as fire, mowing and herbicide application. Although fire does not promote 

flowering in M. minutiflora, and reduces its seed bank, adults can resprout after fire 

(Marinho & Miranda 2013). Some authors have stated that this species is tolerant to 

fire (Filgueiras 1990, Pivello & Norton 1996, Martins 2006). On the other hand, 

Williams & Baruch (2000) claimed that M. minutiflora can be controlled by fire. 

Furthermore, D’Antonio et al. (2001) reported high mortality of mature plants after 

fire, and Marinho & Miranda (2013) showed that annual burns can reduce its cover. 

Successes in management by fire and clipping are reported in the literature 

(DiTomaso et al. 1999). Nevertheless, no control technique was able to eliminate the 

individuals established previously during the rainy season (Martins et al. 2009). 
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Furthermore, the different intensities and combinations of the natural 

environmental variations encountered in the Cerrado (discussed above), or by the 

frequent human disturbances (such as increases in nitrogen deposition and fire 

frequency), can influence the susceptibility of a site to invasion. Environmental 

factors and disturbances can affect the efficiency of management techniques such as 

clipping. Ferraro & Oesterheld (2002) noted that plants respond differently to 

herbivory, for example, when growing in different environmental conditions of water 

and nutrient availability. Environmental factors affect the capability of plants to 

compete by changing photosynthetic rates, growth, seedling emergence and water 

relationships (Ballaré et al. 1996). Since competition is the main factor determining 

species dominance in the environment, it is important to understand the dynamics of 

competition in order to plan management techniques. The methods should be 

developed taking into account the natural conditions of plant relationships, cost, and 

applicability to extensive areas. Also, plant invasion dynamics must be analyzed with 

a view toward the potential effects of climate change. 

 

 
MAIN OBJECTIVES  

The main objective of this study was to measure the effects of different water 

and nutrient levels and their interactions with fire and clipping, on the performance of 

native and invasive species of the Cerrado. The treatments simulated the seasons 

and natural or anthropogenic variations in soil properties in Cerrado areas. Several 

traits were measured at different levels of organization: morphological, physiological 

and biochemical. This integrated approach will finally lead to conclusions as to the 

most appropriate management techniques to be used in order to maintain the 
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sustainability of the Cerrado biome, by implementing higher levels of settlement for 

the native species. 

 
APPROACH 

The objects of study were native and invasive grasses found in the Cerrado 

and their performance in different environmental conditions. The chosen 

environmental conditions were: (a) Soil Moisture – assessment of biological activity in 

the soil in different seasons, assessment of growth in different watering regimes 

(intermittent and constant) and different levels of soil moisture (from severe drought 

to flood); (b) Fertilization - assessment of the effects of higher nutrient availability to 

one invasive and one native species, in combination with different levels of soil 

moisture. (c) Fire: assessment of the effects of fires on soil feeding activity, effects of 

post-fire temperatures on seed germination and effects of fire on plant recovery, in 

combination with differences in soil moisture. (d) Clipping: assessment of the effects 

of clipping on one native and one invasive species in combination with different 

watering regimes, different levels of soil moisture, and fertilization.  

In order to compare invasive and native plants, plant responses were 

assessed by measuring several traits at different levels of organization. At a 

community level, soil feeding activity was assessed. At the population level the 

germination parameters were assessed, considering for that germination rate, time of 

germination and viability of different plant species. At the individual level, growth and 

physiology were the main parameters evaluated. Finally, biochemical parameters 

were measured to evaluate oxidative stress responses in plant tissue.  
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MEASURED TRAITS 

(A) Bait-Lamina 

 The bait-lamina test is a simple and inexpensive tool for evaluating the 

biological community in soils, by assessing soil feeding activity. It consists of visually 

assessing the consumption of the bait substrate contained within the holes of the 

lamina strips, by counting the number of empty holes after the lamina strips were 

inserted in the soil. The test can be performed under different conditions (Kratz 

1998). Through this test, it was possible to quantify the effect of the environmental 

factors: soil moisture (perceived as rainy and dry season), fire (annual fire and 

protection from fire), and also the invasion on the functioning of the soil community. 

 

(B) Germination 

Germination is only one of the important steps in plant competition and 

establishment; however, it is one of the first bottlenecks affecting the population. An 

invaded area that is chosen for management to be applied, for instance, will have to 

be recolonized by the surviving adults and also by the remaining soil seed bank, that 

will have to germinate. However, the soil seed bank will perceive the managed area 

in a different way than the unmanaged area. As explained in Figure 4, after fire, due 

to the removal of vegetation and the reduction of surface albedo, the heat exchange 

between the soil and the air is performed more easily. Therefore, temperatures in the 

soil are more extreme during the day and the night. Serveral germination parameters 

were analysed, simulating the temperatures found in the field after fires, to assess 

the potencial effect of this modified environment of germination of native and invasive 

grass seeds.  
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(C) Gas exchanges and chlorophyll fluorescence: assessing 

photosynthesis in vivo 

In order to better understand the mechanism that lead to the observed 

morphological characteristics, namely growth impairment, we assessed 

photosynthetic parameters. Photosynthesis was measured by means of non invasive 

in vivo techniques: gas exchange parameters with an Infra-red gas analyser (IRGA); 

leaf chlorophyll fluorescence with a mini-PAM (Pulse modulating fluorometry).  

Photosynthesis is the key mechanism in plant physiology. This mechanism is 

nowadays well elucidated, being dependent on light and water, which interact with 

the plant's biochemical apparatus. The biochemical pathway is mainly composed by 

two electron transport chains, which create the conditions for the formation of 

NADPH, a reducing molecule. This in turn prompts the pH gradient in the thylakoid 

membranes, creating the force that drives ATP synthase. These molecules (NADPH 

and ATP) are then used in the Calvin-cycle to reduce atmospheric CO2 and produce 

the carbohydrates essentials for plant survival and growth (Figure 6).Therefore, the 

photosynthesis reactions are the drivers of the morphological parameters and the 

biochemical responses. To assess photosynthesis in vivo, gas exchange and 

chlorophyll fluorescence were both assessed.  
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Figure 6. Electron transport chain in thylakoid membrane. Light-phase of 
photosynthesis where luminous radiation is captured in PSI and PSII and used to create 
ATP and NAPH. Source: http-//en.wikipedia.org/wiki/Thylakoid assessed on august 2014. 

 

In order to perform photosynthesis, plants need to have access to water, 

absorbed by the roots, and CO2 from the atmosphere, which comes in through the 

stomata. However, for water to reach the photosynthetic tissue, water has to be 

“pumped” to the leaves. What drives this movement is a gradient of difference in 

water potential from the root to the leaves. And what is ultimately pumping water is 

the leaves' transpiration (Larsher 2003). Therefore, stomata play a crucial role not 

only in absorbing CO2 but also in water transpiration. The fine control of these cells is 

what mediates photosynthesis. To assess these gas exchange parameters an 

infrared gas analyser (IRGA) was used in the present study. This equipment possess 

a small chamber where leaves are placed, creating a small closed atmosphere. The 

equipment then measured the absorption of infrared radiation along a period of time, 

which reflects the change in concentration of the different atmospheric gases that 

absorb the radiation in different wavelengths. In this chamber, small changes in 

concentrations of these gases reflect photosynthesis (carbon assimilation), 
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respiration and transpiration. In this work, assimilation rates (amount of CO2 that is 

being absorbed from the atmosphere), stomata conductance (which reflects the 

openness of these structures), transpiration (amount of water released from the 

leaves though stomata or through the epidermis) Ci/Ca (the ratio between internal and 

ambient CO2, also reflects openness of stomata) and Water use efficiency (also 

known as WUE, is the ratio between Assimilation and transpiration) (Baker 1993) 

were chosen as study endpoints. 

Fluorescence is an inherent property of some substances of changing the 

wavelength of radiation that was previously absorbed. Usually, emitting fluorescence 

leads to an increase in the wavelength of this incident radiation. Chlorophyll presents 

these properties, re-emitting especially the lower energetic radiation (red light), which 

it absorbs, as fluorescence (Figure 7). The energy that is absorbed in higher energy 

wavelengths (blue) is partially lost in form of heat, but the energy of red light is lost by 

fluorescence, that is, a loss of energy by emission of light of longer wavelength (far 

red). This happens when the excited electrons of the antenna complex emit a photon 

when returning to its ground state (Taiz & Zeiger 1998). 

 

Figure 7. Fluorescence of chlorophyll a. Adapted from Taiz & Zeiger 
(1998). 
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 The antenna complex is an array of protein and pigments (chlorophylls and 

carotenoids) present in the thylakoid membrane in the plant cells (mainly leaves). 

This complex is responsible for capturing light energy and transferring it to the 

reactions centres. There, this energy will drive the photochemical reactions and 

initiate the photosynthetic energy conversion through the electron transport chains. In 

optimal conditions, more than 90% of this energy is efficiently converted into fixation 

of atmospheric carbon. However, depending on the environmental conditions, there 

is an excess of incident radiation. Therefore, the antenna has to balance this energy 

input (Figure 8). The plants have several mechanisms to balance energy by 

dissipating this energy as heat, fluorescence or other quenching mechanisms.  

 

Figure 8. Scheme of the leaf energy 
balance in the antenna complex. Addapted 
from Govindjee (2004). 
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Fluorescence is mostly emitted by chlorophyll a in photosystem II (PS II), 

because in PS I, the p700 pigment is relatively stable while in PSII the oxidized P680 

readily returns to its ground state by electron donation (Figure 7). This energy emitted 

as fluorescence corresponds to 3% of absorbed light. The intensity of the 

fluorescence is dependent on the openness of the reaction centres, i.e., it is 

dependent on the reduction state of the first electron acceptors (quinonea) of ETC. 

This acceptor, when being reduced, characterizes a closed centre. If the energy is 

unable to flow to the reaction centre, it increases fluorescence emission. There are 

several parameters that one can measure regarding the fluorescence, and it has 

become increasingly interesting to understand photosystems in vivo; that is, in a non-

destructive way (Krause & Weis 1991). 

The use of a PAM equipment (pulse amplitude modulated fluorometry) 

enables the measurement of this emission. Provoking different excitation states of 

the antennae, with different light intensities, enables the determination of several 

parameters. These parameters are conservative in the plants and can be used to 

understand the photochemical reactions: 

a) Fluorescence lifetime, for example, is important to study the 

organization and function of the photosynthetic apparatus and is 

useful to elucidate energy transfer and kinetics of primary 

photochemical reactions. Fluorescence measures usually result in 

the detection of two separate phases: a fast phase, which reflects on 

the measurement of F0 and Fm and corresponds to the primary 

processes of photosynthesis; and a slow phase, in which 

fluorescence quenching is detected and is related to the induction of 

Calvin cycle (Figure 9).  
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b) The F0 values correspond to the minimal fluorescence, namely, the 

fluorescence that is emitted when reactions centres are open, when 

plants are adapted to darkness. In this condition, the first electron 

acceptors on the reaction centre are ready to receive the energy from 

the antenna.  

c) The Fm values correspond to the maximum fluorescence, which is 

achieved with a saturating pulse of light that closes all reactions 

centres. In this case, because the lifetime of the excited state of the 

pigments is longer, there is a higher probability of the energy being 

dissipated as fluorescence.  

d) The variable fluorescence (Fv) is the difference between these two 

values, and the Fv/Fm ratio corresponds to the maximum quantum 

yield of PS II. This ratio is a reflection of the health of the plant's 

photosynthetic apparatus and is known to be in a narrow range in 

intact leaves of many species. In theory, environmental stress 

decreases this ratio, resulting in a lower physiological activity and the 

presence of photoinhibition.  

e) A similar parameter can also be measured in light adapted plants, 

denoting the effective quantum yield and the photosynthetic activity 

(ϕPSII).   

f) Fluorescence quenching (q) denotes processes that lower maximum 

fluorescence. It provides important information on the state of 

functionality in the plant's photosynthetic apparatus and PS II 

efficiency. This is related to the regulation of the photosystems 

according to environmental conditions, as well as the photo-



 
 

CHAPTER ONE 

47  

protective capacity of the plant. The quenching occurs due to 

competition of electrons with different ways of de-excitation. When 

the energy is captured by oxidized quinones to be used as chemical 

energy, maximum fluorescence decreases, generating the 

quenching. However, fluorescence quenching may also occur trough 

pathways independent of the redox state of quinone; that is, the non-

photochemical quenching (NPQ) mechanisms. NPQ operates in the 

translocation of proteins through the thylakoid membrane (to 

decrease transfer through PS II), in the xantophylls cycle, or, 

ultimately, in photoinhibition.  

g) ETR values, which correspond to the electron transport rate, are 

directly related to photosynthetic rate. It can be used to understand 

acclimation of plants to light intensities. Mutants with reduced ability 

for fluorescence quenching also presented lower photosynthetic rates 

and tolerance to stress. For instance, plants acclimated in high light 

achieve higher ETR values. However the rate of increase is less 

steep than in plants acclimated to low light, which achieve maximum 

ETR faster.  

Fv/Fm values are faster and more straightforward to achieve. However, light 

curves or rapid light curves can also be elucidative of the plant's photosynthetic 

apparatus, pointing to more parameters that can be analyzed. (Krause & Weis 1991, 

Li et al. 2002, Govindjee 2004). 
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Figure 9. Variation in leaf fluorescence emissions along time following 
sturating pulses of light (peaks). Adapted from Müller et al. (2001).  

 

In this work, a fast and practical approach was chosen were the Fv/Fm ratio 

(maximum quantum yield) and ϕPSII (effective quantum yield) were applied as the 

main means to assess the photosynthetic health of the leaves in relation to the 

stresses caused by water deficit, fertilization status and damage by clipping and fire. 

When possible, NPQ was also measured.  

  

(D) Growth: Morphological parameters 

Morphological traits are the most usual parameters when studying plant 

ecophysiology as they represent a visible and macroscopic effect on plants. Plant 

growth was measured by the endpoints of length and biomass. The partition of 

biomass was also studied by measuring aerial and root biomass and studied plant 

architecture by counting number of leaves, tillers and number of senescent leaves.  
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(E) Oxidative Stress: plant protection 

Plants are sessile organisms that have to endure environmental stress by 

adjusting their internal metabolism. Therefore, although photosynthesis can be highly 

efficient in optimal conditions, it has to be controlled in stress conditions. One of the 

tasks that plants have to accomplish is the control of the Reactive Oxygen Species 

(ROS) equilibrium in their cells. 

The production of ROS is a side effect of the evolution of aerobic pathways of 

energy production and can be used by the plant to monitor and optimise the 

metabolism according to the environment, regulating transcription factors, hormones, 

kinases, and post transcriptional modifications in proteins; they are also important in 

systemic signalling. On the other hand, when ROS is produced in an amount that 

plants cannot endure, damage begins to appear, with growth impairment and cell 

death (Foyer & Shigeoka 2011). 

Chloroplast organelles, mitochondria and peroxisomes are the main organelles 

producing ROS, but they can also be produced in the cell membrane and in the 

apoplast. The functioning of the electron transport chain (ETC) in the membranes 

naturally produces these radicals (Figure 10). However, overloading the ETC results 

in greater amounts of O2 being converted into ROS.  Furthermore, radicals like 

oxygen singlet (1O2), superoxide (O2
�), and peroxide (O2

2-), which are forms of 

excited O2 molecules, can form other radicals when interacting with molecules in the 

cell. They can form radicals like hydrogen peroxide (H2O2), hydroxyl radicals (OH� - 

when interacting with metals), and carbon radicals (ROO� - when interacting with 

polyunsaturated fatty acids). These radicals can be very damaging to the cell and can 
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lead to loss in PS II activity, lipid peroxidation, inactivation of enzymes and DNA 

damage (Arora et al. 2002, Gill & Tuteja 2010). 

 

Figure 10. Scheme of ROS production in the ETC of the chloroplast membrane. 
Adapted from   
http://www.psc.ac.cn. Accessed on August 2014.  

 
 

 
Abiotic stresses such as excess of light or salt, decreases in CO2 and drought 

can induce the increase in ROS production.  For instance, in drought conditions 

plants are induced to save water by closing stomata. This closure, however, not only 

reduces the transpiration, as desired, but also reduces the CO2 input. However, 

plants cannot directly control the intensity of sunlight and the antennae continue to be 

excited by sun's radiation. In this situation, electrons are being excited but are not 

able to pass normally trough the ETC due to lack of water. In this way, a “leak” of 

ROS takes place. This ROS production represents the energy that entered the 

photosystems and was not converted into sugars.  Therefore, whenever there is a 

limiting factor, such as lack of nutrients to produce the enzymes necessary for the 

Calvin cycle (like RuBisCo), or lack of water, which causes stomata closure, the plant 

is creating an overload of oxidative radicals.  
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To balance ROS production, plants have evolved many mechanisms, like leaf 

movement and chloroplast movement, in a way to reduce the incidence of light in the 

pigments. However, this avoidance behaviour cannot account for all protection since 

plants are sessile organisms. Therefore, ROS formation is inevitable and scavenging 

and repair systems are necessary. Plants make use of antioxidant buffers, 

antioxidant enzymes, and cyclic electron flow in the transport chains, reducing the pH 

potential in organelle membranes and repairing damaged molecules.  

The main non-enzymatic antioxidants buffers are Ascorbic acid (ascorbate, 

vitamin C), Glutathione (GSH), Proline, Vitamin E (Tocopherols), Carotenoids and 

Flavonoids. The main enzymes are Superoxide dismutase (SOD), Catalase (CAT), 

peroxidases such as Ascorbate Peroxidase (APX), Guaiacol Peroxidase (GPOX) 

Glutathione Peroxidase (GPX), reductases (GR, MDHAR, DHAR), and Glutathione-S-

Transferase (GST) amongst other (Arora et al. 2002, Gill & Tuteja 2010, Foyer & 

Shigeoka 2011). 

In the present study we didn’t measure the concentration of ROS in the cells, 

although there are many studies that use hydrogen peroxide concentration, 

especially, as a biomarker for stress (Silva et al. 2013). We chose to measure cell 

damage caused by ROS using malondialdehyde (MDA) concentration as a marker for 

lipid peroxidation.  We also measured carotenoid concentrations and the activities of 

APX, G-POX, GST, CAT and SOD. 

MDA is formed in the cell when ROS, especially (OH�) react with the cell 

membrane’s polyunsaturated fatty acids (PUFA) abstracting one hydrogen and 

forming alkenals and malondialdehyde. Once lipid peroxidation is initiated, its 

products can enhance cell damage by reacting with proteins and nucleic acid and 

propagating lipid peroxidation. Increases in MDA concentration have been reported in 
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plants submitted to drought, and drought tolerant plants have been recognized to 

present lower concentration of MDA under stress (Arora et al. 2002, Gill & Tuteja 

2010). Carotenoids are antioxidant pigments responsible for scavenging of singlet 

oxygen (Knox & Dodge 1985). SOD is an important enzyme that converts superoxide 

(formed primarily in PS I, but also from quinonea in PS II) into hydrogen peroxide 

while being less toxic. It is also the substrate for scavenging other enzymes. 

Superoxide formation corresponds to 2% of O2 consumption and its formation is very 

dangerous and can form the most reactive radical (OH�). Therefore, SOD activity is 

crucial for the cell's protection and plays a critical role in the survival of the plant 

under environmental stress. Catalase is one of the enzymes responsible for H2O2 

removal (along with APX and G-POX). Hydrogen peroxide is a product of SOD, and 

CAT is responsible for dismutating it. Ascorbate Peroxidase uses ascorbate as an 

electron donor to reduce H2O2 into water. This enzyme also participates in the ASH-

GSH cycle, which buffers ROS action (Gill & Tuteja 2010). G-POX is a peroxidase 

that consumes H2O2, but this enzyme prefers the flavonoid Guaiacol (a volatile 

molecule of strong smell that confers flavour to plants) as an electron donor. This 

enzyme is known for the ability of catalysing the conjugation of GSH and hydrophobic 

compounds, by reducing peroxidases. This reaction helps to scavenge cytotoxic and 

genotoxic compounds. It is related to tolerance to abiotic stress and can increase, for 

instance, with salinity.  

 
FRAMEWORK 

This thesis is divided in seven chapters. The current chapter, Chapter 1, is the 

General Introduction. Chapters 2 to 6 correspond to the description of the 

experimental designs, methodologies, statistical analysis and the presentation of the 



 
 

CHAPTER ONE 

53  

results of this thesis. Finally Chapter 7 constitutes the General Discussion of the 

obtained results. 

Chapter 2 addresses the effect of season, fire, and the presence of the 

invasive species on soil feeding activity. Using the bait-lamina test, the soil feeding 

activity was measured in the field and was interpreted as an indicator of soil 

functioning and organic-matter cycling. Measurements were performed in patches 

dominated by the invasive grass Melinis minutiflora (P. Beauv) , by the invasive grass 

Andropogon gayanus Kunth, and by mixed grasslands of native species.  

Chapter 3 addressed the effect of post-fire temperatures on seeds of nine 

native species and one invasive (Melinis minutiflora (P. Beauv.). The laboratory 

treatments simulated the field temperature after fires at the end or in the middle of the 

dry season. The effects were measured by evaluating the germination rate, mean 

germination time, and seed viability.  

 Chapter 4 aimed at quantifying, in laboratory experiments, the plant growth 

and the underlying physiological and biochemical mechanisms in response to 

drought and flooding, and to compare these traits between the native species 

Schizachyrium microstachyum (Desv. ex Ham.) Roseng. and the invasive species 

Melinis minutiflora P. Beauv..  

Chapter 5 aimed at quantifying, in laboratory experiments, the plant growth 

and the underlying physiological and biochemical mechanisms in response to 

drought, flooding, and their combination with fertilization, and to compare these traits 

between the native species Schizachyrium microstachyum (Desv. ex Ham.) Rseng. 

and the invasive species Melinis minutiflora P. Beauv.  

Chapter 6 addressed the effect of the disturbances of fire and clipping on the 

recovery of plants previously grown in the laboratory under different watering 
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regimes, levels of drought, flooding, and the combination of these two factors with 

fertilization. Plant growth and the underlying physiological and biochemical 

mechanisms were measured and compared between the native species 

Schizachyrium microstachyum (Desv. ex Ham.) Roseng and the invasive species 

Melinis minutiflora P. Beauv. 
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ABSTRACT  

Aims: The Cerrado, a South American savanna, is considered a priority for 

conservation. In this case study, we assessed soil feeding activity as a way to 

improve understanding of the ecosystem functioning, in order to support and refine 

conservation strategies. Methods: Soil feeding activity was assessed using the bait-

lamina method under different environmental conditions: in the dry and rainy 

seasons, in burned and unburned areas, and under native and invasive grasses. 

Results: Feeding activity was significantly reduced after fire, but recovered to pre-fire 

levels with the rains. Activity increased significantly during the rainy season in both 

areas, being more pronounced in the unburned area. The highest feeding activity 

was observed under the invasive grass (Melinis minutiflora (P. Beauv.). Feeding 

activity declined with soil depth and was affected by season and fire. Conclusions: 

Seasonality was the most important factor affecting the feeding activity of soil 

organisms, followed by the fire history and the extant vegetation. Although this 

method does not allow distinguishing between feeding activity of different organisms, 

it can provide valuable insights into differences in soil functioning due to changes in 

environmental conditions. 

Keywords: dry season, savanna, burn, soil biota, field experiment, invasive 

grasses 
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INTRODUCTION 

 
Ecosystem functioning is directly dependent on soil compartment, which, in 

turn, is affected by climate, fire and vegetation composition. Microbial biomass and 

the invertebrate community are regarded as essential for soil functioning. Microbial 

biomass plays an important role in organic matter decomposition, nutrient cycling, 

plant–pathogen interactions, and degradation of pollutants. In turn, the invertebrate 

community maintains the soil physical structure and promotes nutrient turnover by 

mediating organic-matter decomposition, making it more accessible to 

microorganisms (Lavelle et al. 1997, Wolters 2000, Hattenschwiler et al. 2005, 

Kaschuk et al. 2010).  

 The bait-lamina test is a simple and inexpensive tool for evaluating the 

biological community in soils, by assessing soil feeding activity. It consists of visually 

assessing the consumption of the bait substrate contained within the holes of the 

lamina strips, by counting the number of empty holes after the lamina strips were 

inserted in the soil. The test can be performed under different conditions (Kratz 

1998). Some studies have used this method in risk assessment of contaminated 

areas and for testing the effects of contaminants (Helling et al. 1998, Larink and 

Sommer 2002, Filzek et al. 2004, Niemeyer et al. 2010). Hamel et al. (2007) and 

Roembke et al. (2006) provided valuable discussions about the effects of vegetation 

and land use on soil feeding activity in temperate and tropical regions. 

 The Cerrado, a South American savanna, is considered a priority ecosystem 

for conservation (Myers et al. 2000). Assessing its soil biological activity may 

contribute to a better understanding of the ecosystem functioning and to support 

conservation strategies. This biome originally covered up to 25% of the Brazilian 
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territory, mostly on the central plateau. The most frequent soil type is a dystrophic 

Red Latosol (Acrustox soil according to American classification). The climate has two 

well-marked seasons: dry,from April to September, and rainy, from October to May, 

when most of the annual precipitation (1600 mm) occurs (Eiten 1972). The seasonal 

difference in soil moisture caused by the unevenly distributed rainfall during the year 

may alter the dynamics of soil chemical properties and biological activity (Bastida et 

al. 2008, Lopes et al. 2011).  

Fire has been a natural factor in the Cerrado for over 32,000 years (Salgado-

Laboriau and Vicentini 1994). Increases in soil temperature during fires are negligible 

at depths greater than 5 cm (Miranda et al. 1993). Nevertheless, the fire regime might 

be important for soil processes, since it contributes to the circulation and exchange of 

nutrients between soil and vegetation. Furthermore, human activities have changed 

the natural fire regime, which was once less frequent and caused by lightning during 

the rainy season (Ramos-Neto & Pivello 2000). 

Although information on the effects of the fire regime on the native Cerrado 

vegetation and invasive species is abundant (Williams & Baruch 2000, Miranda et al. 

2009, Marinho & Miranda 2013), very little is known about the effects on the soil 

compartment (Nardoto & Bustamante 2003, Pivello et al. 2010). The native flora is 

resilient to fire and some common invasive species are capable of benefiting from fire 

events in some situations (Williams & Baruch 2000, Marinho & Miranda 2013).  

The extant vegetation itself is a key factor in ecosystem nutrient cycling. The 

Cerrado contains a mosaic of vegetation physiognomies with different species 

compositions and a gradient of tree cover. Changes in plant community are likely to 

affect soil, and vice versa, since vegetation interacts with the soil in an intricate 

manner, actively taking up nutrients, interacting and competing for root fixation with 
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other organisms, and producing litter of different varied quality (Hobbie 1996). The 

open physiognomies of the Cerrado biome are frequently invaded by exotic species. 

The most common invasive grasses in central Brazil are the African species Melinis 

minutiflora P. Beauv., Andropogon gayanus Kunth and Urochloa decumbens (Stapf) 

R. D. Webster. These grasses can markedly change the natural environment by 

displacing native grasses, forming monospecific stands and increasing the total fuel 

biomass (Pivello et al. 1999, Martins et al. 2004).  

Considering that data about the biological activity of Cerrado soils are scarce, 

the aim of this case study was to evaluate the feeding activity of soil organisms under 

different conditions of rainfall, fire, extant vegetation and soil depth, using the bait-

lamina method.  

 

MATERIAL AND METHODS 

 
The experimental areas are located in the National Park of Brasília (PNB - 

15º34’ and 15º45’ S and 48º05’ and 48º53’ W). The park has an area of 30,000 ha, 

which contains the most common physiognomic forms of Cerrado: grasslands 

(campo limpo); grasslands with scattered shrubs (campo sujo); open scrub (cerrado 

ralo); closed scrub (cerrado sensu strictu) and arboreal woodland with woody 

underlayer and sparse grasses (cerradão) (Ribeiro and Walter 1998). The altitude 

ranges from 1,070 to 1,200 m and the climate is tropical (Köppen’s CWA), with a 

marked rainy season (October to April). The mean annual precipitation is 1,600 mm 

and the mean temperature is 21°C (FUNATURA/IBAMA 1998). This study was 

included in a research project on prescribed fire settled in the National Park, whose 

experimental design was originally unreplicated because of the constraints in lighting 
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fires in the Brazilian protected areas. Therefore, this case study was restricted to only 

one site. 

Two different adjacent areas of cerrado ralo were used in this study (Figure 

11). One area has been protected from fire for over 20 years (unburned), while the 

other has been subjected to annual prescribed burning since 2005 (burned). Both 

areas were invaded by M. minutiflora P. Beauv. and A. gayanus Kunth and contained 

patches of native vegetation, invasive grasses, and different combinations of native 

and invasive grasses.  

 

Figure 11. Location of the experimental area in the National Park 
of Brasília (PNB 15º34’ and 15º45’ S and 48º05’ and 48º53’ W), 
Brasília, Distrito Federal, Brazil (Source  
https://maps.google.com.br. Accessed in January, 2014). 

 
 

For each area, five patches of exclusively M. minutiflora, exclusively A. 

gayanus, or exclusively native grasses were randomly selected. In each patch type, 

five sets of 16 bait-lamina strips were used, resulting in 240 lamina strips per area. 

The laminas consisted of thin strips of about 120 x 6 x 1 mm (length x width x 

thickness) perforated with 16 holes of 1.5 mm diameter (Kratz 1998). Each set (group 
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of 16 lamina strips) occupied an area of 0.1 m2 and was placed in the soil according 

to the design shown in Figure 12. A stainless-steel spatula similar in shape to the 

lamina was used to perforate the soil so that each lamina could be inserted into the 

firmly compacted ground. The experimental design is in accordance with other 

studies using the bait-lamina method (Kratz 1998, Roembke et al. 2006). The bait 

material was adapted from that used by Hamel et al. (2007) and consisted of a 

mixture of finely ground oat grains, cellulose powder (in the proportion of 1 to 3 

respectively), agar-agar gel to moisturize the mixture, and traces of activated 

charcoal.  

 

 

Figure 12. Scheme of a set of bait-lamina strips in the 
experimental design. 

  

 

The first sampling was conducted in both areas at the end of the dry season 

(September), before the scheduled burn. Three days after the prescribed burn, a 

second sampling was carried out in the burned area. Finally, during the rainy season 

(November), the same experimental design was repeated in the burned and 
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unburned sites. The bait-lamina strips remained in the soil for 10 days. The time of 

exposure of the lamina strips and the composition of the bait were previously 

optimized in preliminary trials. Before the field work, it was necessary to fill the holes 

with the bait mixture, wait until it dried and fill the holes again, to prevent shrinkage 

resulting in the loss of bait material (Torne 1990). After the exposure period, the bait-

lamina strips were removed, individually wrapped in aluminium foil, and taken to the 

laboratory. There, they were first carefully cleaned with wet tissue to remove excess 

soil or biological material adhered to the strips, and then the empty holes were 

counted against a light source.  

The data were analyzed as the mean percentage of empty holes; each value 

was the mean of 16 bait-lamina strips. The values were standardized by arcsin 

transformation (√(%/100)). All analyses were carried out with R software (R 3.0.1 

binary for Mac OS X 10.6). A factorial ANOVA using season, extant vegetation and 

fire history as independent variables was performed to compare total feeding 

activities (total empty holes). A separate analysis was carried out to account for the 

effect of one specific fire on the biological activity of soil, using a factorial ANOVA 

with fire and extant vegetation as independent variables, and only data from before 

and after the fire, both measured during the dry season in the burned area, were 

used. Tukey’s HSD was performed as a post-hoc test for multiple comparisons. One-

way ANOVA test was applied to compare areas in terms of depth (at each hole level) 

in order to assess if there was a difference in activities at a specific depth rather than 

in the total activity. The ANCOVA analysis was used as a complementary approach 

to the ANOVA, to compare the biological activities among areas, but using depth as a 

covariant. Also, a Spearman correlation was carried out to account for the 



 
 
SOIL FEEDING ACTIVITY 

 

 
70 

significance and importance of a depth effect on soil biological activity according to 

each vegetation type and season.  

 

RESULTS  

 
In the dry season, feeding activity varied from 16% to 20% in the unburned 

area and from 15% to 20% in the burned area (Figure 13), with no significant 

difference between the areas (p=0.8953), independently of the vegetation type. 

However, during the rainy season the activity in the unburned area was 2.6 to 4.7 

times greater (p<0.001) than in the burned area. All three factors (season, fire history 

and vegetation type) seem to play an important role in explaining the variance in 

feeding activities, as well as their interactions (Table 1).  

 
 

Table 1. Three-factor ANOVA testing for effects on season, fire history and 
extant vegetation on soil feeding activity. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

In the unburned area, the feeding activity always increased significantly in 

the rainy season (all p<0.02) and there was a significant interaction between 

vegetation and season (p=0.007) (Figure 13). The activity in the M. minutiflora soil 

patches was significantly higher than in the other two vegetation types (p<0.05), 

Factors DF Sum of 
squares 

F 
value 

P 

Vegetation type 2 666 4.482 0.0164 
Season 1 5824 78.366 <0.0001 

History of fire 1 4817 64.819 <0.0001 
Vegetation*Season 2 716 4.819 0.0124 

Vegetation*Fire 2    696 4.685 0.0138 
Season*Fire 1 3700 49.795 <0.0001 

Vegetation*Season*Fire 2 512 3.444 <0.04 
Residuals 48 74.40   
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reaching over 70%, while the feeding activity in soil patches with native grasses and 

A. gayanus was around 40-50% and did not differ between the two (p=0.969). In the 

burned area, activity was not affected by either vegetation type or season. In the dry 

and rainy seasons, feeding activity remained around 15%. However, feeding activity 

increased significantly with the rains (p=0.009) in the burned area where M. 

minutiflora was predominant. 

  

Figure 13. Total soil feeding activity in a Cerrado area in the 
National Park of Brasília, Distrito Federal, Brazil. Capital letters 
indicate significant differences between areas, small letters indicate 
differences among vegetation types, and asterisks indicate 
differences between seasons. Bars correspond to standard errors 
(p<0.05, Three-factor ANOVA, Tukey’s HSD). 

 

The effect of fire (besides fire history, as observed previously) on soil feeding 

activity was immediate and significant (p<0.0001). The levels decreased from 20% to 

10-15% after fire (Figure 14). The feeding activity immediately after fire decreased 

significantly in the patches dominated by M. minutiflora (p=0.02), while p values were 
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marginally significant for the other two vegetation types (p=0.064, p=0.060, 

respectively).  

Soil depth (p<0.001), fire history (p<0.001), vegetation type (p=0.01647) and 

season (p<0.001) all significantly affected the feeding activity along the depth 

gradient. Differences in activity between seasons for each area were observed at 

each depth level (1 to 16) (Figure 15). The correlation coefficients and the 

significance of the correlation are listed in Table 2, and were useful to understand the 

magnitude of the correlation between activity and depth. A negative correlation was 

significant in all cases, except in the burned area during the rainy season following 

fire, when correlations tended to be positive, although not significant. 

 

 

Figure 14. Effect of a dry-season fire on soil feeding activity in a Cerrado area in 
the National Park of Brasília, Distrito Federal, Brazil. Bars indicate standard 
errors. Asterisks indicate a significant difference between levels from before 
and after fire. (p<0.05, T-test). 
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Table 2. Coefficients for Spearman correlation between soil feeding activity and depth. 

 
 

 

Figure 15. Soil feeding activity along the depth gradient in a Cerrado 
area in the National Park of Brasília, Distrito Federal, Brazil. Bars 
indicate standard errors. Asterisks indicate the level at which 
differences between seasons began to be significant (p<0.05, T-test). 

 Area Season Coefficient P-value (α=0.05) 
A. gayanus Kunth Unburned Dry -0.568 <0.0001 

  Rainy -0.682 <0.0001 
 Burned Dry -0.505 <0.0001 
  Dry – After fire -0.407 <0.001 
  Rainy  0.170 0.1311 

M. minutiflora P. Beauv.   Unburned Dry -0.363 <0.001 
  Rainy -0.827 <0.0001 
 Burned Dry -0.391 <0.001 
  Dry – After fire -0.373 <0.001 
  Rainy  0.014 0.9023 

Native grasses Unburned Dry -0.600 <0.0001 
  Rainy -0.522 <0.0001 
 Burned Dry -0.526 <0.0001 
  Dry – After fire -0.523 <0.0001 
  Rainy  0.117 0.3282 
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DISCUSSION 

 
With minor adaptations, the bait-lamina test proved to be suitable to evaluate 

the soil biological function in Cerrado, by measuring the feeding activity of the soil 

fauna. Although the bait-lamina test is not able to differentiate between feeding 

activity of different group organisms (Helling et al. 1998) and may yield different 

results compared to other methods for assessing biological activity (Kula & Römbke 

1998), it is a relatively easy and sensitive way to evaluate and explain differences 

among sites in Cerrado. The feeding activity recorded in this study was within the 

same order of magnitude as those found in other studies with bait-lamina strips in 

tropical areas (Geissen et al. 2001 in Roembke et al. 2006; Roembke et al. 2006). 

However, the exposure time adopted in this study (10 days) was shorter than the 

time reported by Hamel et al. (2007) in a dry temperate zone in Canada (65 days), by 

Helling et al. (1998) in laboratory experiments (15-45-days) and by Forster et al. 

(2004) in a grassland field in Germany or in an arable field in Portugal (14 days). On 

the other hand, it was longer than the time reported by Roembke et al. (2006) for the 

Amazon Forest (4 days) and by Filzek et al. (2004) for grasslands in the UK (6 days). 

In the present study, feeding activity was very low during the dry season; therefore, a 

10-day exposure was chosen as the optimal period to measure activity during the dry 

season without underestimating the activity in the rainy season. In the present study 

consumption may be attributed to microorganisms (bacteria and fungi) and 

invertebrates such as nematodes, insect larvae (Coleptera, Diptera, Lepdopterda) 

and adults (Isoptera, Formicidae, Collembola) and Oligochaete (specially 

Enchytraeids) abundant in Cerrado soil (Aquino et al. 2008). Furthermore, 
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collembolan and enchytraeids have been reported effective feeders of bait-lamina 

material (Helling et al. 1998). 

Feeding activity was highly affected by season. Forster et al. (2004) also 

reported that consumption of bait material was significantly related to soil moisture, in 

several soil types and conditions. The consumption may be attributed to 

microorganisms and/or to the invertebrate community. Microbial biomass and 

enzymatic activity are strongly influenced by season and present sharp increases 

with water availability (Goransson et al. 2013). The invertebrate abundance and 

distribution is also related to soil moisture (Lindberg et al. 2002). Besides water 

content, temperature differences between seasons must also be taken into account, 

since mean temperatures in the Cerrado during the dry season are 5 to 10ºC lower 

than in the rainy season and consequently, lower biological activity should be 

expected. Other soil processes such as CO2 efflux are also positively related to an 

increase in temperature (Pinto-Junior et al. 2009). This information is consistent with 

the lower activities found during the dry season in the Cerrado, in both the burned 

and unburned areas.  

Although the feeding activity tended to increase in the rainy season, it was 

significantly higher in the unburned, compared to the annually burned area, 

highlighting the importance of the fire history for this parameter. Fire as a 

management technique is widely used in the Cerrado and has been reported to affect 

soil parameters and biological activity (Silva et al. 2006). For Cerrado, Nardoto and 

Bustamante (2003) reported lower amounts of inorganic-N cycled annually through 

mineralization processes in a burned area. On the other hand, Viana et al. (2011) 

found no changes in the microbial density related to fire but did find a significant 

correlation with plant cover. For other savannas, Decaëns et al. (1994) reported a 
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decrease in invertebrate density due to fire in the Colombian Llanos, and Black and 

Okwakol (1997) found reductions in termite abundance and species richness in 

burned savannas. Therefore, the bait-lamina measurements may be representing an 

indirect negative effect of fire on organisms involved in organic-matter decomposition 

and nutrient cycling. All sample sets were located within the same continuous area 

(Figure 11), with no topographic differences. Although soil properties were not 

measured, the burned and unburned areas are 3 m apart and the discrepancies 

between the areas are unlikely to result from differences in soil type.  

The direct effect of fire was significant only for M. minutiflora patches. 

Similarly, Decaëns et al. (1994) found a significant change in the invertebrate 

community and its distribution with depth, immediately after a fire in the Colombian 

Llanos. The consumption of surface litter by fire directly damages the aboveground 

biota; for the Amazon Forest, Roembke et al. (2006) reported a reduction in feeding 

activity due to removal of aboveground litter. Nevertheless, it is known that soil 

temperatures during Cerrado fires are negligible below 5 cm (Miranda et al. 2009) 

and, therefore, the soil biota is protected from high temperatures. However, the 

consumption of vegetation changes the soil-temperature profiles and increases 

transpiration (Castro-Neves & Miranda 1996). Together, post-fire soil temperatures 

and transpiration may be responsible for the reduction in soil activity observed in this 

study, by negatively affecting microorganisms or making the top soil layers an 

unfavourable environment for soil fauna. Similarly to the observations of Decaëns et 

al. (1994), the recovery of the soil community to pre-fire levels is relatively rapid (6 

months). Loureiro et al. (2007) also reported increase in soil enzymatic activity in 

soils under recovery. This was evident in the present study from the higher feeding 

activity levels measured in the rainy season following fire.  



 
 

CHAPTER TWO 

77  

The vegetation also affected the feeding activity levels in soil, with higher 

activity found under patches of M. minutiflora. This species has been reported to 

produce litter with a lower concentration of nitrogen, compared to native Cerrado 

grasses (Silva & Haridasan 2007); and higher nitrification rates have been reported in 

the soil under this species (Asner and Beatty 1996). The invasion might be affecting 

the microbilogical community and the nitrogen cycle, however the mechanism is 

unclear and further studies are needed. Furthermore, an increase in invertebrate 

abundance in soils under an African invasive species has being reported by Benito et 

al. (2004). Therefore, M. minutiflora might affect both soil microbial and invertebrate 

community. On the other hand, A. gayanus does not seem to have the same effect, 

but this species was present in the initial stages of invasion in the area (visual 

estimation), possibly resulting in the lower soil feeding activity. In general, the 

importance of vegetation in feeding activity was no longer evident during the dry 

season, nor in the annually burned area. Marginal influence of vegetation type on 

feeding activity was also revealed by a bait-lamina test in dry grassland in Canada 

(Hamel et al. 2007). Thus, season and fire seem to be the most important factors 

affecting soil feeding activity.  

Finally, depth is also an important factor to consider when using bait-lamina 

strips to evaluate feeding activity in soils (Filzek et al. 2004, Roembke et al. 2006, 

Hamel et al. 2007). The significant interaction between depth, season and history of 

fire can be observed in Figure 15. The pattern is similar for all situations but the 

activity decreases less sharply in the rainy season. While the feeding activity in the 

unburned area differs between seasons at the soil surface, in the burned area in the 

rainy season the activity is higher at lower depths (below 5 cm). This pattern is 

confirmed by the correlation analysis, which showed that the only situation where the 



 
 
SOIL FEEDING ACTIVITY 

 

 
78 

activity does not decrease with depth was during the rainy season in the burned area. 

The absence of live vegetation may facilitate percolation of water to the deeper layer 

of soils, and enhance evaporation from the first centimetres of soil during the frequent 

dry spells, which may last up to five to ten days (Assad et al. 1993). 

 

CONCLUSION 

 
The bait-lamina method was sensitive enough to detect effects of fire events, 

fire history, extant vegetation type and season on the feeding activity of Cerrado soil 

organisms. In addition, similar studies would benefit from information on soil 

properties and soil fauna to better understand the feeding activity mechanism in the 

study areas. The effects of season were the most important. As expected, feeding 

activity was very low during the dry season, regardless of other factors. In the 

following rainy season, the fire history tended to decrease soil feeding activity, 

probably through reduction of vegetation cover; while a single burn had showed little 

immediate effect on soil feeding activity. Also, feeding activity was generally 

negatively correlated with depth, and showed to be higher in areas invaded by M. 

minutiflora, especially if protected from fire. The bait-lamina test is an inexpensive 

and easy-to-use technique and may provide a good indication of soil biological 

function.  
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ABSTRACT 

 
Background: Although fire is an important factor in determining cerrado vegetation, 

information on its effects on seed banks is sparse. Cerrado fires are rapidly moving 

surface fires with low residence time, producing only short-term heating of the 

uppermost centimetres of soil. However, the reduction of vegetation cover and 

deposition of ashes increases the daily amplitude of soil temperature up to 35°C.  

Aims: Assess the effects post-fire daily soil temperatures on the germination of one 

alien and nine native grasses.  

Methods: Seeds were stored at alternating temperatures of 45 ºC/10 ºC (10 h /14 h) 

for 7 d or 30 d, simulating two different storage times in the soil seed bank before the 

onset of the rainy season. Germination was monitored for 30 d.  

Results: The temperature treatment had a significant effect on seed germination in 

some species, either enhancing (Aristida setifolia) or reducing germination rate 

(Schizachyrium sanguineum). Increased storage time reduced the viability of S. 

sanguineum and Echinolaena inflexa. The invasive Melinis minutiflora had the 

highest germination rate and best tolerated post-fire conditions (45 ºC/10 ºC) after 7 

d, with a significant reduction in the germination time after 30 d.  

Conclusions: Fire seems to have a significant effect in early life stages of cerrado 

grasses. Some native species responded positively to the temperature oscillation, 

suggesting that they would be better prepared to compete with the invasive species 

after a fire, more of their seeds germinating and/or at a more rapid rate. 

Keywords: alien grass, burn, mean time of germination, seed germination, seed 

viability, soil seed bank, soil temperature. 
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INTRODUCTION 

 
Fire is an important ecological factor in many ecosystems, especially in 

savannas and grasslands with C4 grasses (Keeley & Rundel 2005, Bowman et al. 

2009). The cerrado, or Brazilian savanna, has been affected by natural fires for 

millennia (Simon et al. 2009). The climate in the cerrado region is seasonal, with a 

well-defined wet season (90% of the precipitation occurs between October and April), 

and a pronounced dry season, when fires may occur. Although the natural fire 

frequency is unknown, nowadays fires may recur every 1 to 4 years on average 

(Coutinho 1990), and may alter the composition and structure of the vegetation 

(Hoffmann 1998; Munhoz & Felfilli 2006, Miranda et al. 2009), changing denser 

cerrado types to open ones (Moreira 2000). 

Cerrado fires are surface fires, and consume mostly the fine fuel of the 

herbaceous layer. During fires, flame temperature may rise to 800 ºC (Miranda et al. 

1993) and soil surface temperature may reach a maximum of 280 ºC (Castro-Neves 

& Miranda 1996). Due to the low fire residence time, significant increases in 

temperature have been recorded only in the first centimetre of soil: 100 to 111 ºC at 

0.5 cm depth, during fires in Venezuelan savannas (Silva et al. 1990) and 29 to 55 ºC 

at 1 cm depth during cerrado fires (Miranda et al. 1993, Miranda et al. 2009). 

Therefore, seeds in the first centimetre of soil, which comprise over 90% of the soil 

seed bank (Andrade et al. 2002), are exposed to non-lethal temperatures during fires. 

Went et al. (1952), Gashaw and Michelsen (2002) and Scott et al. (2010) have 

hypothesised that the effect of fire on germination was not necessarily related to 

heating during a fire, but rather to the subsequent indirect effects, such as an 

increase in radiation intensity on the soil surface, reduction of competition, and 
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smoke (Read and Bellairs 1999; Dayamba et al. 2008; Figueroa et al. 2009). 

Although some plant families (e.g. Leguminosae and Cistaceae) respond positively to 

short pulses of heat (60 to 150 ºC), probably due to scarification of the hard seed 

coat, grass seeds rarely require heat shock to germinate, and the speed of 

germination is not increased by heating (Portlock et al. 1990; Tarrega et al. 1992; 

González-Rabanal & Casal 1995, Herranz et al. 1998, Hanley & Lamont 2000). On 

the other hand, alternation of temperature seems to be important to promote 

germination in many plant families (Morinaga 1926, Thompson & Grime 1983, 

Carmona et al. 1998, Baskin & Bakin 2001). Pierce & Moll (1994) and Auld & 

Bradstock (1996) concluded that daily soil temperature increases significantly and is 

likely to improve seed germination.  

Depending on tree cover, the cerrado soil seed bank density varies from 70 to 

144 seeds m-2 (Andrade et al. 2002, Salazar et al. 2011); and, as for other savannas, 

seeds of species that constitute the herbaceous layer comprise most of the soil bank 

(Tybirk et al. 1994, Williams et al. 2005, Scott et al. 2010). Few studies examined the 

effects of fire on the seed bank (Andrade et al. 2002; Ikeda et al. 2008), and the 

effects of high temperatures on germination of native species (Overbeck et al. 2006, 

Schmidt et al. 2005, Zaidan and Carreira 2008, Fichino et al. 2012, Ribeiro et al. 

2013).  

For some native cerrado grasses and dicots heat shock alone (50 to 110 ºC 

for 2 min) or long exposition time at constant temperatures (10 to 40 min at 60 ºC, 5 

to 20 min at 80 ºC or 2.5 to 10 min at 100 ºC) did not stimulate or reduce seed 

germination (Overbeck et al. 2006, Schmidt et al. 2005, Ribeiro et al. 2013), 

suggesting that fire did not have an immediate effect on germination of the seeds 

stored in the seed bank. However, it is well known that storage and oscillating 
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temperatures may have a positive effect on seed germination (Labourau 1983, 

Baskin & Baskin 2001).  

Considering that seeds stored in the soil bank may not have their germination 

stimulated by the heat pulse during cerrado fires, and that the expressive increase in 

post-fire daily amplitude of soil temperature may last to the onset of the rainy season 

or until the herbaceous vegetation is recovered (Catro-Neves & Miranda 1996), our 

study examined the effect of increased post-fire soil temperature oscillation on the 

germination of one exotic and nine native grasses common in the cerrado. The 

following questions were addressed: (1) Does the increase in daily amplitude of soil 

temperature after a fire have a significant effect on germination of soil-stored seed? 

(2) Would different storage periods, i.e. time between fire and the onset of rainy 

season, affect seed germination under the increased post-fore soil temperature 

oscillation?  

 

MATERIALS AND METHODS 

 
Seed collection 

The seeds of 10 common cerrado grass species (Clayton et al. 2006) were 

used: nine native (Aristida recurvata Kunth, Aristida setifolia Kunth, Axonopus 

barbigerus (Kunth) Hitch, Echinolaena inflexa (Poir.) Chase, Gymnopogon spicatus 

(Spreng.) Kuntze., Paspalum gardnerianum Nees, Paspalum stellatum Humb. and 

Bonpl. ex Flüggé, Schizachyrium microstachyum (Desv. ex Ham.) Roseng, 

Schizachyrium sanguineum (Retx.) Alston.) and one invasive (Melinis minutiflora P. 

Beauv). All species, except for E. inflexa and M. minutiflora, form a transient seed 

bank (Andrade 2000, Martins et al. 2009). The seeds were collected in the IBGE 



 
 

CHAPTER THREE 

91  

Ecological Reserve (Reserva Ecológica do Instituto Brasileiro de Geografia e 

Estatística), 35 km south of Brasília, 15° 56’ S and 47° 52’ W. The climate of the 

Reserve is tropical (Köppen’s CWA), with a distinct rainy season (October to April). 

The mean annual precipitation is 1453 mm and the mean temperature is 21 °C (IBGE 

2004). 

The collection of the seeds was made by manual harvesting of the panicles 

from May through July 2010. To obtain the largest number of mature seeds, 

harvesting took place after ca. one-third of the seeds had been dispersed (Baréa et 

al. 2007). As most tropical grasses have embryonic dormancy, with the embryos 

partially mature at dispersal (Adkins et al. 2002), the seeds of each species were 

pooled, and stored in paper bags at room temperature (ca. 25 °C) and humidity (ca. 

50%) until use, i.e., the end of August 2010 to ensure that most seeds were 

completely mature.  

 

Germination experiment 

Germination tests were carried out in a controlled-temperature chamber 

programmed to simulate daily post-fire soil temperatures of 45 ºC / 10 ºC, as reported 

by Castro-Neves & Miranda (1996); hereafter called the heat, or temperature 

treatment. The duration of the heat treatment simulated different lengths of periods to 

the rainy season: 30 d (fire in mid-dry season – H30) and 7 d (fire at the end of the 

dry season – H7). At the end of the heat treatment, the chamber temperature was 

changed to 37 ºC / 22 ºC to simulate the soil temperatures at the onset of the rainy 

season (Andrade et al. 2000) and the photoperiod was set to 10 h (2.34 ± 1.37 W m-

2).  
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During the H30 and H7 treatments, for each species, four batches of 100 

fertile seeds were left in the chamber in paper bags. After the treatment, the seeds 

were placed in sterilised Petri dishes containing filter paper moistened with distilled 

water. To evaluate the effect of each heat treatment on germination and germination 

time, four batches of non-treated seeds (U30 and U7) were added to the chamber. 

The number of germinated seeds was recorded during 30 d; the geotropic curvature 

of the radical was used as the criterion for germination (Labouriau 1983). For A. 

barbigerus, G. spicatus, M. minutiflora, P. gardnerianum and S. sanguineum the 

number of fertile seeds g-1 was calculated from five batches of 100 seeds. Each seed 

was manually tested to verify the presence of an embryo (Brasil 2009); for the 

remaining species, values from Aires et al. (2013) were used. 

At the end of the observation period, the seeds were tested for viability with a 

1% solution of 2,3,5-triphenyltetrazolium chloride. Seeds that stained were 

considered viable, but dormant (Lakon 1948).  

 

Data analysis 

ANOVA was used for statistical analysis after arcsine transformation of 

germination rate and viability values. For each measured parameter (germination 

rate, viability and germination time), means were compared with factorial ANOVAs 

with species, heat treatment (H or U) and storage duration (30 d or 7 d) as 

independent variables. For each species, the means of germination rate, viability and 

germination time were compared with a factorial ANOVA with heat treatment and 

storage duration as independent variables and adjusted for multiple comparisons 

using Bonferroni correction. Using a scaled covariance data matrix, a Principal 

Components Analysis (PCA) was carried out to explore and highlight the 
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relationships and patterns between species and treatments. Analysis of the 

component loadings allowed identifying which variables contributed the most (or the 

least) to explaining the discrimination between the different species along PC1 and 

PC2, as a response to post-fire conditions. The PCA was carried out by using the 

entire set of the measured variables (germination rate, viability, and mean 

germination time at H7 and at H30), to avoid loss of variance within the dataset and 

increase the confidence of the results. The input data were calculated by subtracting 

the mean values of the control from the mean values for the treatments, for ease in 

data handling and interpretation. Vectors represent absolute changes, calculated as 

post-fires mean treatment values (H30 and H7) minus the mean untreated values 

(U30 and U7). Data were analysed using the R software (R 3.0.1 binary for Mac OS 

X 10.6). 

 

RESULTS  

 
Germination rate and viability 

The germination rate differed among species (P<0.001, Table 3) and within 

species of the same genus. Germination rates were > 80% for A. barbigerus, M. 

minutiflora, P. stellatum, S. microstachyum and S. sanguineum; ranged between 30% 

and 60% for A. recurvata and P. gardnerianum; and were < 20% for the other native 

species (Figure 16).  
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Table 3. Factorial ANOVA scores for three measured dependent variables (germination rate, 
viability and germination time), using three independent variables as factors (species, storage 
duration and heat treatment) for a set of nine cerrado grass species and one invasive species 
subjected to daily post-fire soil temperatures (45 ºC / 10 ºC) for 7 or 30 days before germination 
test (37 ºC / 22 ºC, simulating soil temperature at the onset of the rainy season). Df= Degrees of 
freedom 

 

 

Figure 16. Germination rates of nine native and one exotic grass species (Melinis minutiflora) exposed 
to simulated daily post-fire soil temperatures (45 ºC / 10 ºC) for seven (H7) and 30 days (H30) or 
Untreated (U30, U7), i.e., not subjected to heat treatment. Error bars correspond to standard errors. 
Capital letters above bars correspond to significant differences between storage duration (30-d or 7-d) 
and small letters to differences in treatment (H or U). White bars represent untreated seeds. (P<0.05, 
Factorial ANOVA with heating treatment (H or U) and storage duration (30-d or 7-d) as independent 
variables, multiple comparisons were corrected with Bonferroni test). Germination was tested at 37 ºC 
/ 22 ºC that simulated soil temperature at the onset of the rainy season.  

  

Independent Variables Df F  Sum of 
Squares 

P F  Sum of 
Squares 

P F  Sum of 
Squares 

P 

Species (Sp) 9 21.393  205.539 < 0.001  16.297  120.884  < 0.001 10.716   56.448  < 0.001 

Storage duration (Sd) 1 0.159  13.768  < 0.001 0.134  8.971    0.003   2.807  133.067  < 0.001 

Heat treatment (Ht) 1 0.021  1.842    0.177  0.001  0.055    0.815  0.480   22.741  < 0.001 

Sp x Sd 9 0.525  5.045  < 0.001 1.158  8.591  < 0.001  2.725   14.354  < 0.001 

Sp x Ht 9 0.396  3.807  < 0.001 1.096  8.127  < 0.001  2.249   11.846  < 0.001 

Sd x Ht 1 0.001  0.066    0.798   0.079  5.286     0.023   0.172    8.157    0.005  

Sp x Sd x Ht 9 0.335  3.215    0.002  0.542  4.017  < 0.001  0.480    2.527  < 0.001 

Residuals 120 1.388  205.539 < 0.001 1.798  120.884  < 0.001  2.531   56.448 < 0.001 
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 The duration of heat treatment (7 d, H7 or 30 d, H30) had a significant effect on 

seed germination (P < 0.001, Table 3). Species did not respond all in the same way 

to H7 or H30, as indicated by the significant interaction between these variables (P < 

0.001, Table 3). Although no significant effect of heat treatment (simulated post-fire 

soil temperature oscillation) was detected at this stage, there was a significant 

interaction between species and heat treatment (P<0.001) and species and storage 

duration and heat treatment (P<0.01, Table 3).  

The germination rates of E. inflexa, P. gardnerianum, P. stellatum and S. 

microstachyum were not affected by the simulated daily amplitude of soil temperature 

after a fire (45º C / 10 ºC) or by the storage duration. However, there was a 

significant effect of storage duration on the germination rate of A. recurvata (P<0.01) 

and M. minutiflora (P<0.01), with an increase in germination rate at H30. 

For A. barbigerus, G. spicatus and S. sanguineum, the storage duration 

seemed to play an important role in germination rate (Figure 16). The H30 treatment 

resulted in a significant increase in the germination of G. spicatus, but no significant 

effect was observed for it in the H7 treatment (Figure 16). For A. barbigerus, 

germination increased at H7 (P<0.05) and decreased at H30 (P<0.001). Heating 

reduced the germination of S. sanguineum (P<0.05). The viability of seeds of A. 

recurvata (P<0.001), A. barbigerus (P<0.001), E. inflexa (P<0.05) and S. sanguineum 

(P<0.01) decreased significantly at H30.  

 

Germination time 

 The mean germination time differed among species, and was affected by the 

storage duration, post-fire temperature, and the interaction among these variables (all 
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P<0.05, Table 3). In general, the mean germination time did not change for seeds at 

H7 (Table 4). However, a reduction was observed for G. spicatus (P<0.005), M. 

minutiflora (P<0.05), S. microstachyum (P<0.05) and S. sanguineum (P<0.01) at 

H30. The germination times of A. barbigerus, A. recurvata, A. setifolia and P. 

gardnerianum did not differ significantly between heated and non-treated groups 

within H7 nor within H30.  However, mean germination times were shorter for A. 

barbigerus (P<0.05), G. spicatus, M. minutiflora, P. stellatum, S. microstachyum and 

S. sanguineum at H30 than at H7 (P< 0.05). 

 

 
Table 4. Mean (±SE) germination times of  nine cerrado grass species and one invasive species subjected to daily 
post-fire soil temperatures of 45 ºC / 10 ºC for seven (H7), 30 days (H30). Untreated seeds (U7, U30) not subjected 
to heat treatment. Germination was tested at 37 ºC / 22 ºC simulating soil temperature at the onset of the rainy 
season.  Capital letters above bars correspond to significant differences between storage duration (30-d or 7-d) 
and small letters to differences in treatment (H or U). 
 
 Mean time of germination (days) 

Species U7 H7 U30 H30 

Axonopus barbigerus (Kunth) Hitch 12.2 (±0.3)Aa 11.4 (±0.5)Aa 9.5 (±0.8)Ba 10.5 (±2.3)Ba 

Aristida recurvate Kunth 15.2 (±0.3)Aa 16.2 (±1.1)Aa 20.8 (±2.1)Ba 16.0 (±2.4)Bb 

Aristida setifolia Kunth 17.3 (±6.8)a 20.4 (±1.1)a 17.4 (±3.6)a 13.2 (±3.7)a 

Echinolaena inflexa (Poir) Chase 10.0 (±2.0)Aa 12.1 (±0.9)Aa 8.7 (±1.7)Ba 9.6 (±1.5)Ba 

Gymnopogon spicatus (Spreng) Kuntze 56.0 (±0.1)Aa 23.0 (±3.7)Ab 20.5 (±1.0)Ba 10.9 (±3.7)Bb 

Melinis minutiflora P. Beauv. 15.3 (±2.4)Aa 16.2 (±0.7)Aa 12.5 (±0.8)Ba 9.6 (±1.9)Bb 

Paspalum gardnerianum Nees 10.3 (±0.6)a 10.3 (±0.6)a 10.6 (±0.9)a 9.8 (±0.5)a 

Paspalum stellatum Humb. and Bompl. ex Flüggé 14.4 (±1.4)Aa 14.0 (±1.9)Aa 9.8 (±0.7)Ba 9.1 (±0.1)Ba 

Schizachyrium microstachyum (Desv. ex Ham.) Roseng. 12.3 (±0.4)Aa 11.7 (±0.8)Ab 10.1 (±0.1)Ba 9.0 (±0.8)Ba 

Schizachyrium sanguineum (Retx.) Alston 16.8 (±0.5)Aa 18.1 (±1.1)Aa 13.7 (±1-0)Ba 11.7 (±1.3)Bb 
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Principal Components Analysis 

The species separated along the axes and were related to germination rate, 

viability and mean germination time at H7 and H30 (Figure 17). PCA axes 1 and 2 

explained 83% of the data variance, and were therefore considered representative. 

A. barbigerus, G. spicatus and S. sanguineum clearly differed from the remaining 

species. 

Seed viability, germination rate, and mean germination time at H30 were the 

most important variables represented by PC1, which explained 57% of the overall 

variance. Nevertheless, while the correlation with PC1 was positive for seed viability 

and germination rate, it was negative for mean germination time, for both H7 and 

H30. PC2 accounted for 26% of the variance, explained mostly by germination rate 

and viability at H7.  

The direction of the arrow in germination rate and viability suggests a positive 

influence of the simulated daily amplitude of soil temperature after fire, and of the 

duration of heat treatment. Similarly, the direction of the arrow in mean germination 

time suggests a negative effect of the daily amplitude of soil temperature after a fire. 

These vectors indicated four groups of strategies: (a) indifferent to post-fire soil 

temperature conditions: P. stellatum (Ps) and P. gardnerianum (Pg) were the least 

affected; (b) stimulated by post-fire soil temperature conditions: M. minutiflora (Mm), 

A. setifolia (As) and G. spicatus (Gs), with the strongest effect; (c) inhibited by post-

fire soil temperature conditions, with the strongest effect represented by S. 

sanguineum (Ss); and (d) variable effect: benefited by H7 and impaired by H30, 

especially A. barbigerus (Ab). 
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Figure 17. Principal Components Analysis ordination of the species using the of variables 
germination rate, viability, and mean germination time. Input data were calculated by 
subtraction of the mean control from the post-fire mean treatment values, here represented as 
vectors. Letters correspond to initials of species name. Percentage variation accounted for by 
PC1 and PC2 shown in parentheses on axis labels. Ar, Aristida recurvata; As, Aristida folia; 
Ab, Axonopus barbigerus; Ei, Echinolaena inflexa; Gs, Gymnopogon spicatus; Mm, Melinis 
minutiflora; Pg, Paspalum gardnerianum; Ps, P, stellatum; Sm, Schizachyrium microstachyum; 
Ss, S. sanguineum. 
 

 

DISCUSSION 

 
 The germination rate, viability and mean germination time proved to be 

important parameters for use in assessing the effects of post-fire soil temperature 

oscillations. Together, they allowed us to differentiate between species-specific 

responses, which were generally corroborated by the PCA. The viability evaluation 

complemented the germination pattern by verifying the effects of daily post-fire soil 

temperatures on the seeds that did not germinate within the 30-d observation period. 

Assessing the viability of seeds after the 30-d observation period showed that the 
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reduction of germination caused by treatments was due to the killing of the embryo 

rather than to the induction of dormancy. Mean germination time was important to 

account for changes in the rate at which seeds might germinate after fires, and can 

be an indication of early space occupancy that can account for advantages in 

competition amongst species. 

 It is important to take into account the variability originating from the method 

itself when interpreting the results. As it was impossible to select an exact number of 

viable seeds without damaging the embryos, the 100 ‘viable seeds’ for each 

experimental batch were selected based on weight at the beginning of the 

experiment. Although this method is accepted (Carmona et al. 1998), it may add 

variability to the results. Therefore, the results must be interpreted with caution, and 

potential effects resulting from under- or over-estimating the mass of 100 viable 

seeds need to be considered. The effect of heat treatment on germination of G. 

spicatus (Figure 16) may have been strongly affected by a failure of the untreated 

seeds to germinate, resulting in a large discrepancy in comparison to the other 

species. Although the data may suggest a loss of dormancy for this species, the 

difference among the groups was less than the internal variability inherent of the 

estimate of 100 viable seeds (Aires et al. 2013). 

 This study used a more realistic approach than other studies available in the 

literature, to evaluating the parameters that may affect germination in the field after a 

fire. The design took into account a more complex scenario of post-fire 

establishment, based on field data, rather than a single temperature pulse 

experiment. Although our experiment was a simulation, we can assume that it 

represented fairly well the field soil temperature conditions of bare soil after a fire in 
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the dry season. Germination is only one of the important steps in plant competition 

and establishment; however, it is one of the first bottlenecks affecting the population.  

A lack of response to fire impacts can be interpreted as tolerance and 

adaptation to frequent burns (Overbeck et al. 2006). Regardless of the treatment, P. 

gardnerianum was not affected with respect to any measured parameter. This 

species probably has a harder seed coat, as was seen in the difficulty of dissecting it. 

This may partially explain its lack of response, since thicker seed coats better protect 

the embryos (Teketay 1996). The congener P. stellatum was the second least-

affected species by the post-fire conditions. However, both the non-treated and 

treated groups showed higher germination rate at 30 d, and shorter mean 

germination times. Both A. setifolia and M. minutiflora appeared to have followed the 

same germination timing as that observed for P. stellatum, with a higher germination 

rate and a shorter mean time of germination at 30 d; whereas their viability did not 

decrease with heat treatment. This can be explained by seed timing, since seeds of 

some species may show physiological dormancy associated with season (Gramshaw 

1972, Justice & Bas 1978, Donohue 2005, Scott et al. 2010). This allows them to 

germinate at higher rates in the late dry season, represented here by the 30-d 

treatment at daily post-fire soil temperatures of 45 ºC / 10º C. This is a strategy to 

avoid unsuitable conditions for seedling survival. Furthermore, a shorter mean 

germination time may be more important than germination itself, since seeds that 

germinate first in a low plant density environment are more likely to grow more rapidly 

and therefore establish more successfully (Went et al. 1952, Ross & Harper 1972). 

Taking advantage of post-fire soil temperature conditions results in an increase 

in germination rate and/or the ability to maintain a higher proportion of germinable 

seeds, and/or a decrease in mean germination time. These changes could be 



 
 

CHAPTER THREE 

101  

explained by a loss of dormancy caused by the storage duration itself (30 d or 7 d) or 

by the conditions of storage, represented by the H or U groups (Gramshaw 1972, 

Justice & Bas 1978, Melo et al. 1979, Baskin & Baskin 2001, Pereira et al. 2010). 

Baskin and Baskin (2001) and Justice & Bas (1978) stated that conditions that 

simulate the natural environment, including alternating temperatures, may help to 

overcome dormancy, and McIvor & Howden (2000) observed enhanced germination 

in annual grass seeds that were stored in alternating temperatures. Although 

Gramshaw (1972) demonstrated that storage in alternating temperatures did not 

affect germination of the grass species Lolium rigidum Gaudin, Auld & Bradstock 

(1996) showed that increases in soil temperatures after fires are likely to break the 

dormancy of buried seeds.  

The species that were negatively affected by treatment were A. barbigerus, A. 

recurvata, E. inflexa and S. sanguineum at H30, with lower germination rate or 

viability, but A. recurvata and S. sanguineum germinated more rapidly after heat 

treatment. This confers an advantage in competition when colonising a disturbed site, 

and may compensate for the disadvantage caused by the reduction of the number of 

germinated seeds. McIvor & Howden (2000) observed reduced germination and a 

reduced pool of germinable seeds of perennial grasses stored at oscillating 

temperatures, and Went et al. (1952) observed, for two grass species a negative 

effect on maintenance of the number of germinable seeds after fire. Negative effects 

may result from physical damage caused by the oscillating temperatures, or from lipid 

peroxidation and accumulation of free radicals linked to over-drying or heating of 

seeds during storage (Hendry et al. 1992). Kos & Poschlod (2007) showed that 

seeds of species that occur under closed canopies perceive soil temperature in a 

way to favour germination under nurse-plant shade. Thus, these species, negatively 
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affected by the post-fire soil temperatures may be prioritising germination in 

colonised areas rather than in bare soil, where ruderal species, such as A. setifolia 

and G. spicatus are more common. 

Our PCA results suggested that A. barbigerus was stimulated at H7 and 

inhibited at H30. The short exposure period probably helps the seed to overcome 

dormancy, and the longer exposure time kills the embryo, as suggested by the 

results for viability. The native species E. inflexa showed a similar pattern of 

response (Figure 17); however, the variables related to PC1 seem to have had a 

weaker effect on this species. 

It has been shown that fire may favour obligate seeders by enhancing flowering 

and promoting seedling recruitment after the removal of competitors (Ferrandis et al. 

1996, D’Antonio et al. 1998, Valbuena & Trabaud 2001, Cirne & Miranda 2008, Scott 

et al. 2010). Furthermore, sexual reproduction and species richness have been 

suggested to be promoted by fire in savannas (Parron & Hay 1997, Caturla et al. 

2000, Barros et al. 2006), which can also maintain biodiversity and resilience to 

invasion (Knops et al. 1999). The present study emphasises the importance of the 

transient seed bank in colonisation of burned sites by grasses in the cerrado, in 

addition to resprouting and vegetative reproduction, which other studies have shown 

to be prominent factors in post-fire recovery (Hoffmann 1998, Miranda et al. 2009). 

Species with higher germination rates tend to produce fewer seeds per gram, 

and vice versa (Zobel et al. 2000, Aires et al. 2013). Although the production of seeds 

per gram does not necessarily represent the total production of seeds per plant, it 

might be related to species composition at the community level. This is true if one 

considers that plants that produce heavier seeds tend to produce fewer seeds. The 
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data suggest an existence of different strategies among our native species, which 

may invest in either number (A. recurvata) or quality (S. sanguineum). 

In the field, A. barbigerus may benefit from a fire at the end of the dry season, 

just before the beginning of the rains (H7), thereby allowing germination to be 

enhanced. In this situation, this species will be more likely to compete with other 

species of higher germination rate, such as S. sanguineum and Paspalum spp. On 

the other hand, if the fire occurred earlier in the dry season (H30), the seeds of A. 

barbigerus would be exposed for a longer period of time to the new temperature 

regime and could be harmed. Earlier fire could favour A. setifolia that could replace A. 

barbigerus (Almeida 1995).  

The invasive species M. minutiflora produces a large number of small seeds, 

with high germination rate (Martins et al. 2009, Aires et al. 2013). This species tends 

to displace native species and form monospecific stands (Pivello et al. 1999), but it is 

not tolerant to removal of its aerial part (DiTomaso et al. 1999, Valbuena & Trabaud 

2001). In Hawaii, studies have shown that fires tended to promote invasion by M. 

minutiflora and other grass species. However, there are no native C4 grasses in 

Hawaiian soils. This is not the case in the cerrado, where C4 grasses comprise the 

majority of the herbaceous layer. The data for Hawaii support the idea that C4 

grasses are resilient to fire and therefore become invasive, while our data show that 

in the cerrado, the post-fire condition seems to be a more likely scenario to partially 

control the invasive species and thereby promote richness (Kucera & Ehrenreich 

1962, Parron & Hay 1997).  However, our data show that although in the invasive 

species, M. minutiflora, germination does not increase and its viability is not reduced 

when heated, it does germinate faster than most native species. The reduction in the 

mean germination time may favour occupation of open space. In addition, it appears 
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that while native cerrado species form a transient soil seed bank (Andrade et al. 

2002, Salazar et al. 2011); M. minutiflora possesses a permanent soil bank. In 

laboratory conditions, 90% of M. minutiflora seeds may remain viable for periods as 

long as 3 years, and 40% for 8 years (Carmona& Martins 2010). Thus, in sites were 

M. mintiflora is the dominant species, with likely concomitant reduction in species 

richness, fire may reinforce the dominance of this invasive species due to its faster 

germination and its long maintenance of viability in comparison with native species.  

 

CONCLUSIONS 

 
Our research questions posed were positively answered: (1) The increase in 

soil daily amplitudes did have a significant effect on seed germination in some 

species, either enhancing (A. setifolia) or reducing (S. sanguineum) germination rate. 

(2) The time of exposure to these conditions could affect species differently, such as 

for A. barbigerus. Although the seeds of some native species were harmed when 

exposed to the increased soil temperature after fires, the damage was not total 

suggesting that the species were resilient to this fire effect.  

The results also suggest an intricate relationship among species. For instance, 

in this study S. microstachyum and A. recurvata could benefit from the pos-fire 

environment. The first naturally presents a high germination rate and the heat 

treatment reduced its germination time, while the latter germinated more and faster 

with heat treatment. On the other hand, the invasive species M. minutiflora 

germination rate was not stimulated by increase in post-fire daily amplitude of soil 

temperature. However, the significant reduction in its germination time added to its 

high production of viable seeds and a permanent soil seed bank may reinforce its 
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dominance in the area. Even so, S. microstachyum and A. recurvata might be the 

strongest candidates to compete with the invasive grass. 
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ABSTRACT 

 
Invasive grasses are a great threat to the integrity of the Cerrado ecosystem. 

Considering that the Cerrado region is characterized by its vegetation gradient and 

climate seasonality, this study aimed to evaluate the responses of an invasive and a 

native species to water availability, simulating different scenarios present in the field. 

Individuals of one native (Schizachyrium microstachyum (Desv. ex Ham) Roseng) 

and one invasive (Melinis minutiflora P. Beauv.) species were submitted to different 

soil moisture regimes, from drought to flood simulations (10, 40, 80, 120% of the 

maximum water holding capacity of the soil), for four weeks at 28ºC in a climatic 

chamber. Several morphological and physiological parameters recorded in grasses 

were assessed: height, biomass, number of leaves, tillers, leaf area, fluorescence of 

chlorophyll a, gas exchange parameters, pigment content, MDA concentration, GST, 

G-POX, APX and CAT activities. Results showed significant differences among 

species and treatment. Both species were able to cope with water stress conditions 

and performed better at 80% of soil moisture where normal Fv/Fm were observed. 

The invasive species grew more, presented higher net photosynthetic rates in all 

circumstances and showed less evidence of stress. Flood caused as much stress as 

drought for the native species, having a stronger effect on its biomass accumulation 

and triggering a stronger biochemical response.  

Key words: Drought, flood, flien plants, M. minutiflora, biomarkers 
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INTRODUCTION 

The Brazilian Cerrado is a savanna-like biome that occupies over 25% of 

Brazilian territory and comprises high levels of biodiversity and endemism of plant 

species. Many of those species are currently at risk due to high levels of 

deforestation and changes in land use induced by human activities (Ratter et al. 

1997) and also to the introduction of exotic species, recently pointed as one of the 

greatest concerns for local biodiversity. Therefore, the Cerrado is among the 

world’s most critical ecosystems in terms of conservation (Myers et al. 2000).  

Some exotic species can become invasive and threaten local biodiversity by 

excluding native species when competing for natural resources. Furthermore, 

exotic plant species have been reported to cause changes in the microclimate and 

the natural disturbance regimes, affecting the functioning of the ecosystem 

(D’Antonio & Vitousek 1992). African grasses are the most threatening invaders in 

the Cerrado, being considered opportunistic (Barger et al. 2003, Martins 2006) and 

able to displace native grasses and form monospecific stands (Pivello et al. 1999).  

It is known that competition is the main factor influencing species' 

dominance. Being aware that plant species respond differently to environmental 

factors, it is important to consider the potential effects of these factors on 

competition dynamics and ecosystem vulnerability to invasion. Furthermore, 

understanding these responses would help planning appropriate control plans to 

manage invaded areas and sustain biodiversity.  

The Cerrado's climate is characterized by two well-marked seasons. Mean 

annual precipitation is of 1600 mm. However, over 90% of all this rain occurs from 

October to April (rainy season), while almost no rain is recorded from May to 
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September (dry season). Along with the high transpiration rates typical of the 

tropical area and the good drainage of the Cerrado's soils, the dry season imposes 

strong water stress on plant communities in the Cerrado. The vegetation is 

represented by different physiognomies, from closed canopy sites (cerradão) to 

savannic formations (cerrado sensu strictu) and open sites with scattered trees 

and shrubs (campo-sujo and campo-limpo). Distribution of these physiognomies is 

determined, among other reasons, by distance from the water table (Coutinho 

1978). In the campo-sujo and campo-limpo, the herbaceous layer is more 

representative than in the other physiognomies, and over 70% of the herbaceous 

species are grasses (family Poaceae) (Ribeiro & Walter 1998, Munhoz & Felfili 

2005, Mendonça et al. 2008). This ecosystem may, therefore, be more or less 

susceptible to invasion in different areas and different times of the year depending 

on how the native and the invasive species cope with the environmental stress 

factors (Alpert et al. 2000). 

In this context, the main aim of the present study was to assess the effects of 

different soil moisture levels on fitness traits of the native grass Schizachyrium 

microstachyum (Desv. ex Ham) Roseng. and the African grass Melinis minutiflora P. 

Beauv.. The experimental trials used in this study tried to simulate seasonal 

variations that plants are exposed to throughout the year and/or along vegetation 

gradients, in order to understand the potential competition between them in different 

soil moisture scenarios. 
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MATERIAL AND METHODS 

Species 

Schizachyrium microstachyum (Desv. ex Ham) Roseng. is a common native 

perennial grass in Cerrado and presents high levels of fertile seeds and 

germination rates above 70% (Carmona et al. 1998). The African perennial grass 

Melinis minutiflora P. Beauv. has been reported to be widely spread in 

conservation units, being originally introduced in Brazil for use as forage pastures 

for livestock. It threatens native biodiversity by competitively excluding native 

species (Pivello et al. 1999).  

The seed collection took place within the area of the Reserva Ecológica do 

Instituto Brasileiro de Geografia e Estatística, located 25 km south of Brasília, Brazil 

(15° 56' 41" S and 47° 53' 07" W GRW). Seeds were collected manually from May to 

July of 2010, during the dispersion period (Almeida 1995). Seeds were then stored at 

room temperature until use.  

 

Experimental design 

Seeds from both species were primarily germinated in Petri dishes with 

humidified cotton and filter paper as described by Aires et al. (2013), at 37ºC:22ºC 

and 10h:14h light:dark temperature/photoperiod regime to simulate the soil 

temperatures at the onset of the rainy season (Andrade et al. 2002). Then, seedlings 

were carefully transplanted to experimental pots containing a 500 mg mixture of 

organic matter (turf and hummus) and mineral soil (50:50 v:v, Simões & Baruch 

(1991), with ten individuals per pot. Seedlings were left to grow in constant well-

watered soil for four weeks in a climatic chamber set to 28°C and 12h:12h light: dark 



 
 

CHAPTER FOUR 

117  

photoperiod (156 ± 5.37 W m-2). The soil moisture was maintained by capillary action, 

through a fiberglass wick (between 5 and 10 mm ø) located at the pot's bottom 

(Loureiro et al. 2006). After this period, the smallest seedlings were harvested, and 

eight individuals were left per pot. Watering was then regulated in order to achieve 

the desired soil moistures (10%, 40%, 80% and 120% of soil’s maximum water 

holding capacity - WHC). The treatments were maintained in quadruplicate. Soil 

moisture was kept by weighing the pots and adding the needed amount of water 

twice daily. The weight of the plant was neglected for this calculation.  

 After four weeks of growth under the referred conditions, several endpoints 

were assessed. First, chlorophyll fluorescence and gas exchange measurements 

were made (see methodology below) and afterwards plants were harvested, 

measured, weighed, and the number of leaves and tillers were counted. Five leaves 

of each replicate were separated, scanned with a desk multifunctional printer, dried 

and weighted.  The images were then analyzed with ImageJ software for 

determination of leaf area. Part of the collected material was dried for determination 

of water content, nitrate and phosphate concentrations. The remaining material was 

snapped frozen and stored at -80ºC for biochemical assays. 

 

Chlorophyll fluorescence 

Prior to harvesting, chlorophyll fluorescence parameters were measured to 

calculate the maximum quantum yield of PSII (Fv/Fm) in leaves adapted to the dark, 

and the effective quantum yield (ϕPSII) in light-adapted leaves, which are indicators of 

photoinibitory damage on plants undergoing stress. Chlorophyll a fluorescence 

parameters were measured on the adaxial side of ten mature leaves, pre-adapted to 

darkness or adapted to light, located at similar height representing all replicates, by 
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using a Mini-PAM (pulse amplitude modulation system, FMS 2, Hansatech 

Instruments, Norfolk, England). Minimal fluorescence (F0) was measured by applying 

a weak modulated light to leaves which were pre-adapted to darkness for 30 min. 

Maximal fluorescence (Fm) was measured after applying a 0.7 s long saturating pulse 

of white light (> 1 500 μmol m-2 s-1) to the same leaves. In the light-adapted leaves, 

steady-state fluorescence (Fs) and maximal fluorescence (F’m) were also measured 

following the same methodology. Definitions of fluorescence parameters (Fv/Fm, ϕPSII) 

were used as described by Van Kooten & Snel (1990) and non-photochemical 

quenching (NPQ) was calculated according to Bilger & Björkman (1990), (NPQ = (Fm 

– F’m)/F’m). 

 

Gas exchange parameters 

One day before sampling of plant material, leaf gas exchange was measured 

in the oldest intact leaves of ten plants representing all four replicates. Measurements 

were performed using a portable infrared gas analyser (LCpro+, ADC, Hoddesdon, 

UK), operating in open mode under ambient conditions. Net photosynthetic rate (A), 

stomatal conductance (gs), transpiration (E), Water use efficiency (WUE – 

determined by the ratio of A/E) and Ci/Ca ratio (internal and external CO2 

concentration ratio) were determined using the equations developed by Von 

Caemmerer & Farquhar (1981). The relative humidity of the air, temperature and the 

airflow rate in the cuvette were set to 60%, 23° C. and 300 mmol s-1, respectively.  

 

Pigments  

Pigments were extracted from the leaves in a solution of cold acetone with 

50 mM of Tris buffer (pH 7.8; 80:20, v:v) and centrifuged at 5,000 g for 10 min. 
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Absorbance at 470, 537, 647 and 663 nm was determined in 96-well microplates, 

each sample in quadruplicate. The contents of chlorophyll  a, b, and carotenoids 

were calculated with the equations (Sims & Gamon 2002):  

Chla = 0,01373 Abs663 – 0,000897 Abs537 – 0,003046 Abs647;  

Chlb = 0,02405 Abs647 – 0,004305 Abs537 – 0,005507 Abs663;  

Carotenoids = (( Abs470 – (17,1 x (Chla + Chlb) – 9,479 x Anthocyanins)) / 

119,26;  

Anthocyanins = 0,08173 Abs537 – 0,00697 Abs647 – 0,002228 Abs663.  

 

Before calculation, absorbance was corrected according to the path length 

traveled by the light in the samples in the microplates to match the 1-cm cuvette used 

in the formula (Warren 2008). Values were also used to calculate the Chla/ Chlb ratio 

to evaluate the balance between these two pigments. Shifts in this ratio can happen 

due to stress and consequently affect photosynthesis (Kitajima & Hogan, 2003). 

 

Lipid peroxidation 

 Lipid peroxidation was estimated by measuring malondialdehyde (MDA) 

production (Dhindsa et al. 1981). For the extraction of MDA, five leaf samples of 0.5g 

were ground to a powder in a mortar with liquid nitrogen and then homogenized with 

2.5 ml of a TCA solution (trichloroacetic acid at 0.1% w/v (g/100ml)) (Santos et al. 

2001). Then, an aliquot of the supernatant of the centrifuged samples was mixed with 

an equal volume of the reaction solution (20% TCA 0.5% TBA (m/v)) and left to react 

for 30 min under heat (95ºC) and then cooled and re-centrifuged. The absorbance 

was measured in 1ml cuvettes in a Thermo Fisher Scientific spectrophotometer 

(Waltham, USA) (Genesys 10-uv S). MDA concentration was estimated by 
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subtracting the nonspecific absorption at 600 nm from the absorption at 532 nm using 

an absorbance coefficient of extinction (ε), 155 mM–1 cm–1.  

 

Enzymatic activity 

Leaf samples were pulverized in a mortar with liquid nitrogen and then 

homogenized in the same mortar with a solution of 100 mM phosphate buffer (pH 

7.5) and 0.5 mM EDTA. Samples were then centrifuged at 10,000 g for 20 min to 

separate the post-mitochondrial supernatant (Howcroft et al. 2011, Oliveira et al. 

2013). All methodologies were adapted to for 96-well microplate reading. 

GluthationeS-Transferase (GST) activity was measured based on the conjugation 

product between the 1-chloro-2,4-dinitrobenzene and glutathione at 340 nm for 5 min, 

according to the method of Habig & Jakoby (1981). Catalase (CAT) activity was 

determined by measuring the decomposition of the substrate H2O2 at 240 nm during 

3 minutes, based on the method described by Clairborne (1985). The reaction 

mixture contained 0.1 M phosphate buffer (pH 7.0), and 6 mM H2O2, which started 

the reaction. L-Ascorbate peroxidase (APX) activity was determined considering the 

ascorbic acid (ε = 2.8 mM-1.cm-1) oxidation to dehydroascorbate by H2O2, at 25oC, at 

290 nm, according to the method of Nakano & Asada (1981). For Guaiacol 

peroxidase (G-POX) determination, the reaction mixture consisted of 5 μL of plant 

extract in a 10 mM phosphate buffer (pH 6.1), 12 mM hydrogen peroxide, 96 mM 

guaiacol solution. Absorbance was recorded at 470 nm for 5 min, and the specific 

activity was calculated using the 26.6 mM-1.cm-1 molar extinction coefficient (Castillo 

et al. 1984).  Protein concentration was determined in quadruplicate by the Bradford 

method (Bradford 1976), at 595 nm, using bovine serum albumin (BSA) as the 

standard. GST and G-POX activities were corrected by protein content and APX and 
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CAT by the fresh weight. All measurements were made in a Labsystem Multiskan EX 

microplate reader (Labsystems Inc., Franklin, MA). 

 

Nitrate and phosphate concentrations 

 The concentration of nitrate and phosphate in plants was determined with the 

HACH KIT DR/2000 Spectrophotometer.  Dry leaves contents were extracted by 

homogenization in water with a mortar in the proportion of 1:2 (mass:volume).  The 

extract was filtered with activated coal and filter papers (180 μm of thickness and 

11μm pore size for particle retention). The filtered solution was then mixed with Hatch 

KIT reagents according to the protocols 8151 (Program 363) for nitrate and 8183 

(Program 510) for phosphate. Results were presented as the percentage of dry 

weight. 

 

Data analysis 

Under non-normality conditions, data was transformed by either ln(x) or 

arcsine. For each parameter, means were compared using a factorial ANOVA. 

Species (S. michrostachyum - native, M minutiflora - invasive) and water treatments 

(10%, 40%, 80%, 120%) were the independent variables, and multiple comparisons 

were carried out using a TukeyHSD test. A Pearson correlation coefficient and 

significances were calculated for the variables using the whole dataset and for the 

species separately. All data was analyzed using the R software (R 3.0.1 binary for 

Mac OS X 10.6). 
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RESULTS 

Growth parameters 

The morphological parameters measured in the plants are summarized in 

Figure 18. The ANOVA results are summarized in Table 5. Native and invasive 

species differed in the majority of the growth-related parameters regardless of the 

levels of soil moisture (all p<0.001). Out of both species, M. minutiflora presented 

a more vigorous growth. For all treatments, this species presented over twice the 

length and number of leaves of the native species, three times its fresh weight and 

root:shoot ratio and at least one more tiller per plant. The native species showed 

lower water content (~70%) when compared with the invasive one, which 

presented over 80% of water content. By the end of the experiment, the native 

species presented a greater percentage of dry leaves in comparison to the 

invasive one but no difference in specific leaf area was found. 

The water stress effects were more pronounced in the native species. The 

80% soil moisture treatment was the condition where plants grew better and 

accumulated more biomass. For both species moisture stress had no effects on 

the number of leaves, tillers, specific area and water content. The percentage of 

dry leaves tended to increase with water availability (p=0.045) while the flooded 

treatment (120% WHC) decreased the root:shoot ratio (Figure 18). The results of 

Pearson's correlation calculated between endpoints pairwise can be observed in 

Table 6. Growth parameters were significantly (p<0.05) and positively (r>0) 

correlated among themselves for the whole dataset and for each species 

separately, except for the number of dry leaves, which presented a negative (r<0) 

correlation only when analyzed the full dataset.  
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Table 5. Factorial ANOVA scores for the traits measured for the native Schizachyrium microstachyum 
and invasive grasses (Melinis minutiflora) under different soil water availability treatments (10%, 40%, 
80% and 120%) and at photoperiod of 12h and temperatures of 22/28°C. Moisture and species were 
used as independent variables, followed by TukeyHSD (α=0.05). 
 

 

 

 Species Moist treatment Species X Moist 
treatment 

 F p F p F p 
Length (L) 354.64 <0.001 4.30 0.015 3.32 0.037 
Fresh weight  (FW) 267.04 <0.001 2.34 0.099 0.31 0.822 
Number of leaves (NL) 127.55 <0.001 5.04 0.008 1.48 0.245 
Number of tillers (NT) 17.95 <0.001 1.81 0.173 1.19 0.333 
Dry leaves (DL) 27.33 <0.001 3.11 0.045 1.38 0.272 
Water content (WC) 95.21 <0.001 0.46 0.715 0.15 0.929 
Specific area (SA) 0.35 0.561 2.10 0.132 0.18 0.909 
Root:Shoot (RS) 53.78 <0.001 0.14 0.870 0.11 0.898 
Stomatal conductance (g) 47.95 <0.001 4.85 0.014 5.42 0.009 
Assimilation rate (A) 14.48 0.001 3.13 0.055 2.57 0.095 
Transpiration (E) 2.01 0.167 2.861 0.053 3.24 0.037 
Water Use Efficiency (A/E)  30.82 <0.001 5.60 0.005 1.39 0.273 
Ci/Ca 19.57 <0.001 3.71 0.022 0.537 0.661 
Phosphate  0.05 0.833 9.85 0.001 8.09 0.002 
Nitrate 5.59 0.031 1.43 0.268 5.64 0.008 
Chlorophyll a 0.08 0.777 0.97 0.419 1.30 0.272 
Chlorophyll b 4.69 0.038 0.90 0.453 1.29 0.294 
Carotenoids 2.70 0.110 0.52 0.606 1.10 0.363 
Chla/ Chlb  14.46 <0.001 3.94 0.012 6.37 0.001 
Fv/Fm  14.46 <0.001 3.94 0.012 6.37 0.001 
ϕPSII 37.50 <0.001 2.65 0.058 4.11 0.011 
NPQ 0.11 0.7451 1.59 0.203 2.27 0.901 
MDA 120.50 <0.001 3.56 0.025 4.00 0.016 
GST 211.49 <0.001 3.52 0.026 1.04 0.387 
CAT 69.55 <0.001 6.50 0.001 7.45 0.001 
G-POX 0.71 0.403 1.34 0.278 3.39 0.099 
APX 46.04 <0.001 1.68 0.191 4.25 0.012 
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Figure 18. Morphological traits of one invasive (Melinis minutiflora) and 
one Cerrado native grass (Schizachyrium microstachyum) grown for 4 
weeks on different soil water availability (10, 40, 80 and 120% foil 
maximum water holding capacity).  

 

 

Gas exchange parameters 

 Gas exchange parameters (Figure 19) presented significant changes between 

species (Table 5). The native species presented higher values of stomatal 

conductance (p=0.001), while the invasive tended to present greater values of net 

assimilation rate (p=0.002). Within the flood simulated scenario, stomatal 

conductance increased significantly for S. microstachyum (p=0.002). The greatest 

assimilation rate was achieved by the invasive species at 80% WHC (Table 5, Figure 

19). WUE was also higher in the 80% treatment, and decreased significantly at 120% 

WHC (p=0.019). WUE didn’t differ between species in the 10% and 40% treatments. 

Ci/Ca was higher for the native species (p<0.001) and increased with flood (p=0.013). 

Stomatal conductance was significantly and negatively correlated with length and 
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fresh weigh while assimilation rate was positively correlated with all growth 

parameters and negatively correlated with stomatal conductance (Table 6). For each 

species separately the significant correlation was maintained for the native species). 

 

Pigments and Chlorophyll fluorescence 

 There was no significant difference in pigment concentration between species 

(Table 5, Table 7). However, Chla/Chlb ratio was significantly higher for the native 

species (p=0.034, Figure 20). Both the maximum quantum yield (Fv/Fm) and the 

effective quantum yield (ϕPSII PSII) were higher for the invasive species. The 10% soil 

moisture treatment apparently induced a higher Fv/Fm for both species, but this was 

not observed for ϕPSII. The non-photo chemical quenching (NPQ) was not affected by 

treatment and did not differ among species (data not shown). Pigments content are 

not correlated with any other parameter but Fv/Fm was negatively correlated with the 

assimilation rate for both species together and positively correlated to GST activity for 

the native species (Table 6). 

 

Nitrate and phosphate concentration 

Regarding the nutrient accumulation in leaves, a significant interaction 

between species and soil moisture was observed (p=0.00167, p=0.00783, Table 5, 

Table 7) for phosphate and nitrate. This interaction may be a reflection of the 

significantly higher amount of nitrate for the invasive species under drought. 
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Table 6. Correlation coefficients derived among measured traits (Pearson, α=0.05) for each 
species individually (Mm = Melinis minutiflora, Sm = Schizachyrium microstachyum) or using 
the full dataset (Both): Length (L),Fresh Weigh (FW), Number of Tillers (NT), Number of Dry 
Leaves (DL), Root:Shoot  ratio (R:S), stomatal conductance (g), Assimilation rate (A), 
concentration of MDA (MDA), GST activity (GST), Catalase activity (CAT). Optmum quantum 
yield (Fv/Fm).  
 
 
 

 
 
 
 

 

 

 

 

 

 

  FW NT DL R:S g A MDA GST CAT Fv/Fm 
L     Both  

        Mm 
        Sm 

0.99 
0.69 
0.88 

0.70 
0.49 
0.47 

-0.60 
ns 
ns 

0.83 
ns 
ns 

-0.65 
ns 

-0.67 

0.77 
ns 

0.53 

-0.88 
ns 

-0.54 

-0.89 
ns 

-0.39 

0.69 
ns 
ns 

ns 

FW Both  
        Mm 
        Sm  

0.71 
0.48 
0.48 

-0.81 
ns 
ns 

0.56 
ns 
ns 

-0.57 
ns 

-0.61 

0.77 
ns 

0.58 

-0.82 
ns 

-0.56 

-0.98 
ns 

-0.53 

0.70 
ns 
ns 

ns 

NT Both  
        Mm 
        Sm    

0.50 
ns 
ns 

-0.32 
ns 
ns 

0.94 
0.45 
ns 

-0.59 
ns 

-0.38 

-0.60 
ns 
ns 

0.58 
ns 
ns 

ns 

DL Both  
        Mm 
        Sm    

-0.75 
ns 

-0.47 

0.47 
ns 
ns 

-0.45 
ns 

-0.49 

0.48 
ns 
ns 

0.79 
ns 
ns 

-0.54 
ns 
ns 

ns 

R:S Both  
        Mm 
        Sm     

-0.58 
ns 

-0.59 

0.48 
ns 

0.49 

-0.69 
ns 
ns 

-0.88 
ns 
ns 

0.73 
ns 
ns 

ns 

g Both  
        Mm 
        Sm      

-0.33 
0.88 
-0.60 

0.59 
ns 
ns 

0.60 
ns 
ns 

ns 
ns 

-0.52 
ns 

A     Both  
        Mm 
        Sm       

-0.54 
ns 
ns 

-0.59 
ns 
ns 

ns 
-0.32 
-0.68 
-0.44 

MDA Both  
          Mm 

        Sm        

0.80 
ns 
ns 

-0.59 
ns 
ns 

ns 

GST Both  
        Mm 
        Sm         

-0.56 
ns 
ns 

ns 
ns 

0.45 
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Figure 19. Gas exchange parameters reported for the invasive grass Melinis minutiflora and 
the Cerrado native grass Schizachyrium michrostachyum grown for 4 weeks on different soil 
water availability (10%, 40%, 80% and 120% of soil’s maximum water holding capacity). Bars 
correspond to standard error. Different letters show significant differences among treatments 
and asterisks show differences between species in that specific treatment. 
 

 
 
Figure 20 Fluorescence and pigment parameters reported from the invasive grass Melinis 
minutiflora and the Cerrado native grass Schizachyrium michrostachyum grown for 4 weeks 
on different soil water availability (10%, 40%, 80 and 120% of soil’s maximum water holding 
capacity). Bars correspond to standard error. Different letters show significant differences 
among treatments and asterisks show differences between species in that specific treatment. 
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Lipid peroxidation and enzymatic activities 

 The results for lipid peroxidation, expressed as MDA concentration, and 

enzymatic activities can be visualized in Table 8. The native species presented 

higher concentrations of MDA (p<0.0001) than the invasive species, reaching over 

twice as much MDA than the measured in M. minutiflora, regardless of treatment 

(Table 5 and Table 8). Only the native species presented a response to drought 

stress, showing significant higher levels of MDA in the 10% treatment. MDA 

concentration was significantly and negatively correlated with all growth parameters 

and is negatively correlated with the assimilation rate for both species together and 

only for the native species when analyzed separately (Table 6). 

 APX activity differed among species, where the native species presented the 

higher activity for all treatments (p<0.005). Water stress had no particular effect on 

this enzyme, but a significant interaction between species and treatment was 

observed (p=0.012, Table 5 and Table 8). 

GST activity was affected by the moisture treatment (p=0.026, Table 5 and 

Table 8). Similarly to the APX activity, the native species presented higher values 

(p<0.001) for all treatments. GST activity was also inversely correlated with growth 

parameters when the full data set was taken into account (Table 6). 

CAT activity showed an inverse pattern when compared to GST and APX 

activities. The invasive species presented the highest activity for this enzyme at any 

treatment (p<0.001) when compared to the native species, but also showed to 

increase in the driest treatment (p=0.001, Table 5 and Table 8). On the other hand, 

the native species seems to present higher activities in the wetter treatments as 

suggested by the significant interaction between species and treatment (p=0.001). 
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Regarding both species together, CAT activity was positively correlated with growth 

(Table 6). 

For the G-POX activity, a significant interaction between moisture treatment 

and species was detected (p=0.029, Table 5 and Table 8), with the activity for the 

invasive species tending to decrease with water content, while the native species 

activity showed an increasing pattern. G-POX activity was not clearly correlated to 

any other parameters (data not shown). 

 

Table 7 Leaf nutrients content and leaf pigments concentration of the native (Schizachyrium 
michrostachyum) and the invasive grasse (Melinis minutiflora) under different soil water 
availability treatments (10, 40, 80 and 120%) and at a photoperiod of 12h and temperatures of 
22/28°C. The p column corresponds to significant differences between soil moistures. 
Asterisks correspond to significant differences between species. Factorial ANOVA with 
moisture and species as independent variables, followed by TukeyHSD (α=0.05). 

 

 
 
 
 
 
 

Endpoint Treatment p M. minutiflora S. microstachyum 
Leaf nitrate (% DW) 10% a 0.82 (± 0.16) 0.36 (± 0.05)* 
 40% b 0.54 (± 0.03) 0.56 (± 0.11) 
 80% b 0.54 (± 0.04) 0.67 (± 0.03) 
 120% b 0.56 (±0.06) 0.36 (±0.02) 
Leaf phosphate (% DW) 10% a 0.12 (± 0.01) 0.07 (± 0.01) 
 40% bc 0.12 (± 0.01) 0.14 (± 0.02) 
 80% b 0.13 (±0.01) 0.18 (± 0.01) 
 120% ab 0.12 (±0.01) 0.10 (±0.01) 
Chlorophyll a (μmol gFW-1) 10% ns 1.0 (±0.09) 1.0 (±0.14) 
 40% ns 0.9 (±0.09) 1.1 (±0.15) 
 80% ns 1.0 (±0.15) 1.2 (±0.22) 
 120% ns 1.1 (±0.09) 0.75 (±0.14) 
Chlorophyll b (μmol gFW-1) 10% ns 0.33 (±0.03) 0.21 (±0.06) 
 40% ns 0.33 (±0.03) 0.31 (±0.07) 
 80% ns 0.35 (±0.05) 0.34 (±0.06) 
 120% ns 0.37 (±0.03) 0.21 (±0.04) 
Carotenoids (μmol gFW-1) 10% ns 0.66 (±0.06) 0.57 (±0.07) 
 40% ns 0.64 (±0.07) 0.65 (±0.07) 
 80% ns 0.72 (±0.09) 0.70 (±0.11) 
 120% ns 0.77 (±0.08) 0.52 (0.07) 
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Table 8. MDA and enzymatic activity of the native (Schizachyrium michrostachyum) and the 
invasive grass (Melinis minutiflora) under different soil water availability treatments (10%, 40%, 
80% and 120%) and at a photoperiod of 12h:12h dark: light and temperatures of 22/28°C. The p 
column corresponds to significant differences between soil moistures. Asterisks correspond 
to significant differences between species. Factorial ANOVA using moisture and species as 
independent variables, followed by TukeyHSD (α=0.05). 
 

 
 
 
 
DISCUSSION 

The differences observed in biomass accumulation between species were 

expected. An invasive species, by definition, is considered a strong competitor to 

native species and M. minutiflora is of great concern in the Brazilian savanna and 

Hawaii (Pivelo et al. 1999, D’Antonio et al. 2001).  Baruch et al. (1989) also reported 

high levels of biomass accumulation in other invasive African grasses in the llanos, 

the Venezuelan savanna. African grasses are probably adapted to grow more and 

Enzyme Treatment p M. minutiflora S. microstachyum 
MDA  (mmol gFW-1) 10% a 4.15 (±0.47) 14.25 (±1.00)* 
 40% ab 3.86 (±0.50) 10.30 (±1.74)* 
 80% b 4.36 (±0.25) 3.86 (±0.50)* 
 120% ab 3.69 (±0.18) 11.52 (±1.29)* 
GST (ηmol ml-1 prot-1 min-1) 10% ns 1.33 (±0.25) 5.41 (±0.58)* 
 40% ns 0.91 (±0.19) 3.98 (±0.31)* 
 80% ns 0.91 (±025) 4.47 (±0.51)* 
 120% ns 1.29 (±0.21) 5.51 (±0.40) 
Catalase (mg gFW-1) 10% a 126.00 (±8.92) 21.44 (±3.91)* 
 40% b 52.09 (±4.92) 17.92 (±3.83)* 
 80% b 76.38 (±9.79) 46.72 (±10.60)* 
 120% b 75.50 (±15.27) 31.23 (±8.67)* 
APX (μmol gFW-1 min-1) 10% ns 2.45 (±0.66) 6.81 (±0.69)* 
 40% ns 4.40 (±0.84) 5.29 (±0.78)* 
 80% ns 0.73 (±0.06) 5.56 (±0.60)* 
 120% ns 3.71 (±1.02) 6.49 (±0.64)* 
GPOx (μmol ml-1 prot-1 min-1) 10% ns 3.48 (±0.65) 1.61 (±0.40) 
 40% ns 1.88 (±0.35) 2.18 (±0.44) 
 80% ns 1.64 (±0.25) 3.03 (±1.02) 
 120% ns 2.40 (±0.72) 4.03 (±0.71) 
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faster than native species as an evolutionary response to the large herbivores 

present in Africa (Baruch et al. 1985). Furthermore, the high root:shoot ratio 

presented by M. minutiflora shows that this species also presents a strong 

investment in underground biomass. Silva & Haridasan (2007) also hypothesized that 

this species presents high investment in roots, which enables reaching deeper in the 

soil for water. This hypothesis was raised when they observed that the invasive 

species was able to maintain above-ground biomass alive during part of the dry 

season, while the aerial part of the native species was already dead. The same 

authors also discuss the ability of the invasive species to recycle the nutrients of 

senescent leaves more efficiently. This ability, along with its prominent root system 

and higher water content, can help understand why this species showed a smaller 

percentage of dead leaves by the end of the experiment.  

Furthermore, the invasive species showed a higher numbers of tillers, which 

can confer an advantage in occupying space and displacing native species, for 

instance, by shading adults, seedlings and seeds (Silva & Castro 1989). However, in 

the field, other species of the Schizachyrium genus have been reported to present 

intense tillering (Leite et al. 1997). Presence of species with such characteristics 

might help to constrain the advance of M. minutiflora. Although the invasive species 

showed larger leaves, with greater area, there was no difference in specific leaf area, 

showing that each unit of leaves weighted the same per unit of area.  

The 80% treatment seems to simulate the best conditions for both species. In 

this treatment they presented higher assimilation, biomass and less stress. In the 

environment, this could be represented by the middle of the rainy season in a well-

drained soil, such as the soil of the campo-sujo or cerrado sensu strictu 

physiognomies. However, both species were able to grow in all conditions, showing 
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their functional plasticity to cope with environmental stress (Insausti et al. 2001, 

Dalmagro et al. 2013).  The fluorescence data, for instance, showed that in all 

situations leaves maintained Fv/Fm values above 0.7, reflecting healthy 

photosystems. This response was not surprising, since both species have to cope 

with different environmental conditions in their natural environment. Other studies 

showed plasticity of grass species to environmental conditions, being able to 

maintain both growth (Dias-Filho & Carvalho 2000) and active photosynthetic system 

(Flexas et al. 1999, Lima et al. 2002).  

Water is restricted during the dry season in the Cerrado and during the rainy 

season soil may become flooded in campo-limpo areas or areas adjacent to rivers 

(Eiten 1972). Although native plants were thus expected to be well adapted to water 

stress, they were more responsive than the invasive species to these conditions. 

Both deficit (10%) and excess (120%) of water seemed to be equally harmful to this 

species, but probably through different mechanisms. Plants under drought stress, in 

an attempt to save water tend to grow less aboveground and invest more energy, in 

underground growth (Chaves et al. 2003). This situation can be observed in the 

present data by the root:shoot ratio, which increased with the decrease in water 

availability. The lack of water can also postpone leaves’ senescence, which can be 

seen in the data through the reduced percentage of dry leaves in the 10% treatment 

in comparison to the 120% treatment (p=0.045). On the other extreme, a water 

saturated soil creates an anoxic environment for roots (Kennedy et al. 1992).  In this 

way, roots grow less and can show differences in anatomy, with more aerenchyma 

and less structural tissue, for instance (Insausti et al. 2001, Vasellati et al. 2001). 

Accordingly, the results presented showed a reduced root:shoot ratio for both species 

in the 120% treatment. Furthermore, the native species seems to cope with the flood 
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by further opening their stomata. Grasses have been reported to be intolerant to 

water in excess, being damaged by flood from early life stages to maturity (Capon & 

Brock 2006, Baruch 1994), unless they are adapted to wetlands (Kersher & Zedler 

2004). It is important to highlight that the method chosen for the experiments 

provided water daily to the plants, while a suspended watering method (Simões & 

Baruch 1991, Baruch 1994, Guenni et al. 2002) might induce more drastic responses 

and damages. 

The gas exchange parameters showed the invasive species uses water more 

efficiently, specially at 80% WHC (Figure 19). This species showed a higher 

assimilation rate despite having lower stomatal conductance, which was negatively 

correlated with plant length in the whole dataset. Funk & Zachary (2010) showed that 

an increase in stomatal conductance is related to an increase in the root:shoot ratio, 

i.e., plants with more roots present permeable stomata (more stomata opened or 

opened more widely and for a longer time). This relation was not observed in this 

study, where root:shoot is negatively correlated to stomatal condutance (Table 4). 

This result was probably a reflection of the damage caused to the roots of the native 

specie on the flood treatments, where roots were very fragile, together with the 

attempt of balancing the excess of water opening their stomata.   Although stomata 

must be open for CO2 assimilation, the native species might not be assimilating it 

efficiently and losing more water through transpiration in comparison to the invasive 

species. For instance, at 80% moisture, WUE was higher for the invasive species, 

although stomatal conductance did not differ between them and the Ci/Ca ratio was 

higher for the native species. Furthermore, stomatal conductance and Ci/Ca 

increased within the flood simulated scenario. This data indicates that the limitation in 

photosynthesis may be a result of a reduced efficiency on the CO2 fixation for the 
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native species rather than deficiency in CO2 intake (Hossain et al. 2009). Ennahli & 

Earl (2005) suggested that physiological limitations to photosynthesis with water 

stress might be a result of chloroplast limitation, such as photoinhibition. Stomatal 

conductance was expected to reduce with drought, (Flexas et al. 1999, Maricle et al. 

2007), but this response was not observed in this study. This discrepancy might be a 

result of the methodology. The methods used in the quoted studies consisted of 

suspended irrigation, that is, they periodically interrupted the water supply, while the 

method in the present study provided water daily to the plants, even if in low 

quantities. Therefore, effects on stomata might be less evident. Furthermore, 

Quesada et al. (2004) has already shown that the Cerrado's native flora go through 

the dry season with no major reduction of the transpiration rate. 

 The Fv/Fm values represent the maximum quantum yield of the Photosystem 

II, being used as an indicator of photosynthetic health. This ratio was shown to be 

lower for the native species, which might partially explain its reduced assimilation rate 

in comparison to the invasive species. Interestingly, Fv/Fm was slightly lower in plants 

under a 80% moisture regime than at 10% and was negatively correlated with 

assimilation rate.  Correia et al. (2014) also showed increased Fv/Fm values in plants 

subjected to drought stress. Chaves et al. (2003) explained that leaves that survive 

drought tend to present higher life expectancy and higher photosynthetic capacity, 

optimizing this rate per area. In further studies, other fluorescence parameters such 

as rapid light curves (RLC), electron transport rate (ETR) and photochemical 

quenching provided a more robust explanation on this issue (White & Critchley 1999). 

No effects of drought on NPQ values were found in this study, although other studies 

show increases in NPQ with drought stress (Loggini et al. 1999, Correia et al. 2014).  
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 Studies showed a decrease in grass chlorophyll with drought (Alberte & 

Thornber 1977, Loggini et al. 1999) that was not observed in this study. However, the 

methodologies used in these two studies (use of hypertonic solution and omitting 

irrigation, respectively) were very different from those used in the current study. On 

the other hand, Correia et al. (2014) performed a similar methodology to the one 

used in the present study and found a significant increase in chlorophyll content in 

clones of Eucalyptus globulus Labill. However, this pattern was not observed here. 

Likewise, Kronfuß et al. (1998) used a similar methodology and also showed no 

effect of drought on leaf chlorophyll content. The higher values of Chla/Chlb found on 

the native species might reflect adaptation to high light intensity (Ito et al. 1993).  

Drought seems to have an effect on the leaves’ nutritional status. Melinis 

minutiflora presented higher nitrate concentration at 10% soil moisture. Other studies 

that measured nitrogen concentration showed similar values, as well as the same 

pattern of higher concentration in dry soils (Pinheiro et al. 2001, Baruch 1994). The 

present study found a negative correlation of phosphate with drought for the native 

species and no effect of water stress on the invasive species' phosphate content. 

Accordingly, Baruch (1994) did not find a relation between drought and flood in 

phosphorus accumulation in leaves from other African grasses. It was not possible to 

measure the nutritional profile of dead leaves and derive how efficiently they were 

reutilizing nutrients. Further studies would benefit from these measurements since 

there has been reported evidence that M. minutiflora recycles nitrogen more 

efficiently than native species from senescent leaves (Silva & Haridasan 2007). 

Nevertheless, a significantly lower percentage of dry leaves in M. minutiflora in 

comparison to S. microstachyum, by the end of the experiment, supports the 

hypothesis of a more efficient nutrient reabsorption for the invasive species.  
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As for the oxidative stress responses, the native species presented a 

pronounced oxidative damage and higher oxidative response in comparison to the 

invasive species, which can partially explain a lower biomass accumulation. The 

native species presented higher MDA concentrations, indicating higher lipid 

peroxidation, which is enhanced by dry or flood-level treatments. Indeed, lipid 

peroxidation is expected to increase with stress (Moran et al. 1994, Zhang & Kirkham 

1994, Lima et al. 2002). Moreover Gill & Tuteja (2010) and Arora et al. (2002) 

observed lower levels of lipid peroxidation in drought-tolerant plants, presenting lower 

concentrations of MDA.  

APX is a very important antioxidant in plants, responsible for removing 

hydrogen peroxide. Although oxidative stress is also an important signaling pathway 

and is a natural byproduct of photosynthesis, environmental and chemical stress 

might elevate the activity levels of these molecules in the cell and affect internal 

equilibrium. In the present study, the native species showed higher APX activity and 

a significant interaction between species and treatment. This observation suggests 

the activity of APX increases during drought for the native species while, for the 

invasive species, the activity remains low. Sharma & Dubei (2005) showed that APX 

activity increased in plants under mild drought and decreased in severe drought.  

GST activity was also higher in the native species. GST is related to oxidative 

response since its substrate is glutathione, an important antioxidant buffer, and it is 

also related with transportation of flavonoids into the vacuole and signaling in plants 

(Dixon et al. 2002). This study showed significant changes in GST activity depending 

on treatment (Table 1). Other studies showed effects of drought on other enzymes 

and antioxidants related to the glutathione cycle, with an increase in glutathione 
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reductase (GR) activity in drought-stressed wheat (Loggini et al. 1999), and an 

increase in reduced glutathione (GSH) (Kronfuß et al. 1998) and higher concentration 

of GSH+GSSH in a variety of wheat less tolerant to drought (Loggini et al. 1999). 

Tobacco clones that over-express GST and glutathione peroxidase (GPX) are also 

known to be more tolerant to environmental stress (Roxas et al. 2000). 

 G-POX is also related to the oxidative stress signaling (Gill & Tuteja 2010) but 

it did not seem to play a major role in the way plants dealt with water stress in this 

study. However, a significant interaction of species and treatment suggested that M. 

minutiflora responds with higher levels of activity during drought while the native 

species presents high activity during times of flood.  

The invasive species presented higher activity of CAT in comparison to the 

native species, and the activity of this enzyme was enhanced in the 10% treatment. 

Increases in this defense mechanism might be favoring the maintenance of low 

cellular damage in invasive species subjected to drought. The removal of reactive 

oxygen molecules (namely H2O2 in the case of CAT) leads to lower levels of MDA 

and electrolyte leakage under water stress conditions. Drought-tolerant plants do 

seem to present higher CAT activity (Arora et al. 2002) while transgenic plants with 

low CAT activity tend to respond negatively to environmental stress (Chamnongpol et 

al. 1996). Furthermore, Gamble & Burke (1984) showed an increase in CAT in plants 

under drought stress. 

Although the correlation does not mean a causal relationship, it may provide 

some insights of the mechanisms underlying the responses. Using the full dataset 

enabled an overall data visualization to account for the whole variability and possible 

responses ranges. For instance, it was possible to observe significant correlations 
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between the higher CAT activity, lower MDA concentrations and a higher biomass 

accumulation. This was observed by the higher growth from the invasive species 

while the native grew less and presented lower CAT activity and high MDA 

concentration. On the other hand, the separate analysis for each species showed 

that the species present different behaviors for the assessed traits. The invasive 

species showed higher number of non significant correlations, which can reflect 

better buffering against stress, showing a less steep response.  

Although 80% seems to be the best scenario for the native species, it might 

have more conditions to compete with the invasive species in a situation with lower 

water availability, where the invasive species also presents levels of stress. This 

condition probably represents the best situation to apply management. However, in 

the field it is important to take into account the presence of other species that, 

together, might be more resilient to the invasion of a strong competitor (Tilman 1996, 

Sheley & Krueger-Mangold 2003).  

In conclusion, the invasive species performed better under all conditions and 

seems better adapted to lower soil water availability. It grows more both above and 

below ground, presenting less evidence of biochemical stress, using water more 

efficiently by controlling stomata and maintaining high assimilation rates and a more 

active photosystem. Higher nutrient concentration and delayed leaf senescence 

seemed to indicate more efficiency in nutrient assimilation by the invasive species, 

partially explaining the higher biomass accumulation. 
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ABSTRACT 

African grasses are common invaders of tropical ecosystems and are 

considered a threat to the Cerrado’s integrity, displacing native grasses by 

outgrowing them and using nutrients more efficiently. The Cerrado is a region 

characterized by a soil and vegetation mosaic. Plants have to endure low levels of 

nutrients in the soil and drought during the dry season. However, human activities, 

especially soy plantations, have increased nitrogen inputs in the Cerrado's soil, 

changing natural conditions. This study aimed at evaluating the responses of an 

invasive and a native species to water availability and fertilization, simulating different 

scenarios which exist in the field. Individuals of one native (Schizachyrium 

microstachyum (Desv. ex Ham.) Roseng.) and one invasive (Melinis minutiflora P. 

Beauv.) species were submitted to different soil irrigation regimes: 5 and 10 day 

cycles of suspended irrigation (representing drought), watered every day (control) 

and Over-watering (2 cm flood), with and without the addition of fertilizer (NPK 10-10-

10). Several morphological and physiological parameters were assessed after four 

weeks under 28ºC: plant height, biomass, tillers, leaf area, fluorescence of 

chlorophyll a, pigment content, MDA concentration, G-POX and SOD activities. 

Results showed that species reacted differently with the application of the different 

treatments. Both species were able to cope with the stress conditions but performed 

better at control conditions (watered every day to field capacity) with fertilization. 

Under stress, the invasive species grew more and showed less evidence of damage 

(lower MDA concentration, higher Fv/Fm values) while the native species showed 

increased SOD and GPOX activity with the combination of fertilization and flood.  
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Fertilization enhanced morphological differences between species, suggesting a 

more efficient nutrient assimilation by the invasive species.   

Key words: Suspended irrigation, Drought, Flood, Alien plants, M. minutiflora, 

biomarkers, NPK 

 

INTRODUCTION 

 
Alien invasive species are considered a threat to biodiversity worldwide 

(Gurevitch & Padilla 2004). The introduction of exotic species may occur by accident, 

but intentional introduction is also frequent. That is the case of many African grass 

species that have been introduced in South America and Hawaii. They are used as 

substitutes of native grasses for forage or recovery of eroded areas (Pivello et al. 

1999, Carneiro et al. 2001, Silva et al. 2007). African grass species adapt very well to 

South American savannas and can easily become invaders in the Llanos 

(Venezuela), Hawaii or in the Cerrado (Central Brazil) since these environments are 

very similar to their original one (Baruch et al. 1989, Barger et al. 2003, Freitas & 

Pivello 2005). They all present a tropical climate and an herbaceous layer that is 

represented mainly by grasses (Munhoz & Felfili 2005, Mendonça et al. 2008).  

African grass species are usually able to accumulate greater amounts of 

biomass and are considered more resilient to defoliation than Cerrado grasses, as an 

evolutionary response against the large herbivores present in Africa (Simões & 

Baruch 1991). Therefore, African species tend to displace native grasses and form 

monospecific stands, diminishing biodiversity (Allison & Vitousek 2004, Baruch & 

Jackson 2005). The invasive grasses are usually reported as opportunistic, 

responding more rapidly and efficiently to higher availability of resources (Keeley 
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1986, Baruch & Bilbao 1999), invading disturbed natural areas and dramatically 

changing the environment's microclimate and disturbance regimes (D’Antonio & 

Vitousek 1992). 

As to the native grasses, they are considered resilient to the Cerrado's 

adverse conditions, being resilient to fire, adapted to low bioavailability of nutrients 

and tolerant to drought (Eiten 1972, Coutinho 1990, Vilela & Haridasan 1994). These 

adaptations are a result of a coevolution with all these environmental factors: fire-

adapted flora has been evolving in the Cerrado for over a millennia (Simon et al. 

2009), and plants have evolved mechanisms to thrive in the Cerrado's dystrophic, 

aluminum-rich soil (Haridasan 2008), while also developing strategies to tolerate the 

severe drought that occurs annually from April to September (Eiten 1972).  

Nevertheless, the Cerrado is a mosaic of vegetation and soil types. The local 

soil's water and nutrient availability vary not only with season but also along the 

vegetation and soil gradient according to changes in soil type and the distance to the 

watercourses and to the groundwater (Coutinho 1978). Furthermore, human 

activities, such as fertilization in agricultural fields and fossil fuel burning in urban 

areas may become a source of input of nutrients to natural areas by atmospheric 

deposition or runoff (Jordan & Weller 1996, Vitousek et al. 1997). 

In order to evaluate which conditions privilege invasive species over native 

ones, this study aimed at comparing the performance of one native and one invasive 

grass under different conditions of soil water and nutrient availability. For that, the 

native species Schizachyrium microstachyum (Desv ex Ham.) Roseng. and the 

invasive species Melinis minutiflora P. Beauv. were exposed to different soil irrigation 

regimes: 5 and 10 day cycles of suspended irrigation (representing drought), watered 

every day (control) and over-watering (2 cm flood), with and without the addition of 
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fertilizer (NPK 10-10-10). Following this objective, several morphological, 

physiological and biochemical parameters were assessed in plants grown under 

different combinations of water and nutrient concentrations under controlled 

conditions. 

 

MATERIAL AND METHODS 

 
Species 

Two species were chosen for the experiments. A native species, 

Schizachyrium microstachyum (Desv. ex Ham.) Roseng. , was chosen for being a 

common perennial grass in the Cerrado and presenting a high germination rate 

(Filgueiras 1992, Carmona 1998). An invasive species, the African grass Melinis 

minutiflora P. Beauv., was chosen for being considered one of the biggest threats to 

biodiversity in Brazil (Martins 2006). Seeds were collected by hand during the 

dispersion period (from May to July of 2010) in the Reserva Ecológica area of 

Instituto Brasileiro de Geografia e Estatística (15° 56' 41" S and 47° 53' 07" W GRW), 

25 km South of Brasília, Brazil. Seeds were then stored at room temperature until 

use. 

 

Experimental design and sampling 

Seeds from both species were primarily germinated in Petri dishes with 

humidified cotton and filter paper. Conditions were maintained according to what is 

described by Andrade et al. (2002), considered similar to the environmental 

conditions at the beginning of the rains and optimum for germination (37ºC/22ºC for 

10h of light and 14h of dark, respectively). One-week-old seedlings were then 
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transplanted to experimental clay pots with 20cm height and 20cm top diameter, 

containing 1kg of soil. Soil was prepared mixing equal parts of organic matter (humus 

and turf), and mineral soil (adapted from Simões & Baruch 1991). Ten individuals 

were planted in each pot. Seedlings were left to grow in constant well-watered soil 

(watered every day to field capacity) for four weeks in a climatic chamber set to 28°C 

and 12h of light (156 ± 5.37 W.m-2). After this period, the smallest seedlings were 

harvested, equaling a total number of eight individuals per pot, and four different 

irrigation treatments were then applied: (1) watered every 10 days (10-d); (2) watered 

every five days (5-d); (3) watered every day (Control); (4) Overwatered every day 

(Ovw). Treatments representing 10-d, 5-d and Control were always watered until the 

soil's maximum field capacity was achieved whereas the Ovw group was watered 

until a 2-cm layer of water was present aboveground (adapted from Baruch 1991). 

Each treatment had six replicates, from which three were fertilized at the beginning of 

the irrigation treatment (0.5 g of solid NPK 10-10-10), and the other three lack 

fertilization. Plants were kept in these conditions for four weeks.  

Prior to sampling, fluorescence of chlorophyll a was measured on the adaxial 

side of ten mature leaves. Firstly, plants were adapted to darkness for 30 min, and 

then minimal fluorescence (F0 - fluorescence intensity with all PSII reaction centers 

open while the photosynthetic membrane is in the non-energized state) was 

measured.  In the same leaves, maximal fluorescence (Fm - fluorescence intensity 

with all PSII reaction centers closed) was measured after applying a saturating pulse 

of white light (0.7 s). In light-adapted leaves, steady-state fluorescence (Fs - 

fluorescence intensity at steady state) was measured and maximal fluorescence (Fm - 

fluorescence intensity with all PS II reaction centers closed in light-adapted state) was 

measured after a saturating pulse of white light (0.7 s) (>1 500 mol m−2s−1). All 
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measurements were taken using a Mini-PAM (pulse amplitude modulation system, 

FMS 2, Hansatech Instruments, Norfolk, England). The obtained values were used to 

calculate the non-photochemical quenching (NPQ) and the optimum quantum yield 

(Fv/Fm), where Fv is the variable fluorescence in dark-adapted leaves (Fm-F0) (Van 

Kooten & Snel 1990). The formula described by Bilger & Björkman (1990), (NPQ = 

(Fm – Fm’)/Fm’), was used to calculate NPQ. 

After fluorescence measurements, plants were harvested at soil level, 

immediately measured, weighed and counted for tillers. Five leaves of each replicate 

were separated for calculation of mean leaf area by the means of a desk 

multifunctional printer and image analysis with ImageJ software. Roots were carefully 

washed, and oven dried for root:shoot ratio determination. Approximately half of the 

aerial biomass was oven dried for determination of nitrate and phosphate 

concentration while the other part was snap frozen and stored at -80ºC for 

biochemical assays (Pigments, MDA, SOD and GPOX).  

The concentration of nitrate and phosphate was determined according to the 

HACH KIT method (DR/2000 Spectrophotometer). Dry leaves were ground in a 

mortar and homogenized in distilled water in a proportion of 1:2 (mass:vol).  The 

plant extract was filtered with activated coal and filter papers (180 μm of thickness 

and 11μm pore size for particle retention). The filtrate was analyzed according to 

protocols 8151 (Program 363, 500ηm) for nitrate and 8183 (Program 510, 890 ηm) 

for phosphate. Results were presented as the percentage of dry weight. 

Frozen samples were ground in a mortar with the extraction buffer (a solution 

of cold acetone and 50 mM Tris buffer, pH 7.8 in a proportion of 80:20, v:v) for 

pigment extraction. Homogenates were centrifuged at 5,000 g for 10 min. 
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Absorbance of the supernatant was determined at 470, 537, 647 and 663 nm in 

microplates. The concentrations were calculated as follows (Sims & Gamon 2002):  

Chla = 0.01373 Abs663 – 0.000897 Abs537 – 0.003046 Abs647  

Chlb = 0.02405 Abs647 – 0.004305 Abs537 – 0.005507 Abs663 

Carotenoids = (( Abs470 – (17.1 x (Chla + Chlb) – 9.479 x Anthocyanins)) / 

119,26  

Anthocyanins = 0.08173 Abs537 – 0.00697 Abs647 – 0.002228 Abs663  

Lipid peroxidation, an indicative of oxidative damage to the cell membranes, 

was estimated by measuring malondialdehyde (MDA) production (Dhindsa et al. 

1981). Five frozen leaf samples of 0.5g were ground to a powder in a mortar with 

liquid nitrogen and then homogenized with a solution of TCA (0,1% w/v (g/100ml)). 

Samples were centrifuged and an aliquot was mixed with another solution (TCA 20% 

(m/v), containing 0.5% (m/v) TBA) and left to react for 30 min at 95ºC. MDA 

concentration was estimated by subtracting the nonspecific absorption at 600 nm 

from the absorption at 532 nm using an absorbance coefficient of extinction (ε), 155 

mM–1 cm–1 (Elkahoui et al. 2005). Absorbance was measured with a Thermo Fisher 

Scientific (Waltham, USA) spectrophotometer (Genesys 10-uv S). 

For assessment of enzymatic activity of the antioxidant system, frozen leaf 

samples were ground to a powder in a mortar with liquid nitrogen and then 

homogenized with an extraction buffer that presented the concentrations of 100 mM 

of phosphate buffer (pH 7.5) and 0.5 mM of EDTA. After centrifugation (10,000 g, 20 

min (Howcroft et al. 2011)), the supernatant (heretofore referred to as enzyme 

extract) was used for determination of Guaiacol peroxidase (G-POX) and Superoxide 

dismutase (SOD) activity. For GPOX, the reaction mixture presented solute 

concentrations of 10 mM of phosphate buffer (pH 6.1), 12 mM of hydrogen peroxide, 
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96 mM of guaiacol, to which 5 μL enzyme extract was added. Absorbance was 

recorded at 470 nm for 5 min, and the specific activity was calculated using the 26.6 

mM-1.cm-1 molar extinction coefficient (Castillo et al. 1984).  SOD activity was 

estimated by recording the enzyme-induced decrease in absorbance of formazone 

formed by the nitro-blue tetrazolium with the superoxide radicals (Dhindsa et al. 

1981). The reaction mixture presented solute concentrations of 13 mM of methionine, 

25 mM of nitro-blue tetrazolium chloride (NBT), 0.1 mM of EDTA, 50 of mM 

phosphate buffer (pH 7.8), 50 of mM calcium carbonate, to which 0.6μl of enzyme 

extract was added. The reaction was started by adding a solution of 2 mM of 

riboflavin and placing the microplates under a 15 W fluorescent lamp for 15 min. The 

absorbance was then recorded at 560 nm and values were calculated based on the 

curve previously calculated with a standard (Activity = -2.0789(Abs)2 + 26.316(Abs) - 

1.2766). Protein concentration was determined in quadruplicate by the Bradford 

method (Bradford, 1976), at 595 nm, using bovine serum albumin (BSA) as the 

standard. G-POX and SOD activities were corrected by protein content and fresh 

weight, respectively. All enzymatic activities protocols were adapted for microplate 

reader, regarding proportions and a Labsystem Multiskan EX microplate (Labsystems 

Inc., Franklin, MA) reader was used. 

 

Data analysis 

When the data did not present normal distribution, they were transformed by 

either ln(x) or arcsine. For each parameter, means were compared with factorial 

ANOVA using species (S. michrostachyum - native, M. minutiflora - invasive), 

fertilization (with or without) and water treatment (10-d, 5-d, Control, Ovw) as 

independent variables and multiple comparisons were carried out using the 
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TukeyHSD test. Using a scaled covariance data matrix, a Principal Components 

Analysis (PCA) was carried out to explore and highlight the relationships and patterns 

between species and treatments, as well as to assess which were the most important 

parameters in explaining variation among species, as a response to water and 

nutrient availability.  

 

RESULTS 

 
The summary for the morphological traits can be observed in Figure 21. 

Overall, the invasive species presented a higher amount of dry biomass, length and 

leaf area than the native species (all p<0.0001, Table 9). These differences were 

even higher upon fertilization (significant interaction between Species and 

Fertilization, p=0.001, 0.008, 0.023) for all treatments, except the 10-d treatment, 

suggesting the invasive species is more benefited by fertilization.  The number of 

tillers was not affected by water treatment when not fertilized. However, both species 

produced more tillers when fertilized, and even more if fertilized and well watered 

(interaction of Water and Fertilization, p<0.001). When fertilized, the invasive species 

tended to produce more tillers than the native species (p=0.001). The root:shoot ratio 

differed among species (p=0.001), being higher for the invasive species. This ratio 

significantly decreased for the native species with the addition of fertilizer (p=0.009). 

The means for fluorescence, chlorophyll content and nitrate concentrations 

can be visualized in Table 10 and the results for ANOVA on Table 1. The Fv/Fm 

parameter was affected by the Ovw treatment, with a significant reduction in quantum 

yield. The native species presented lower Fv/Fm than the invasive species when 

stressed (10-d and Ovw). However, these differences were reduced with fertilization. 
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NPQ was also higher for the invasive species and was affected by moisture, 

increasing in 10-d and 5-d treatments, but unaffected by fertilization.  

Pigments tended to be more concentrated in the native species (Chla p<0.001, 

Chlb p=0.008, Car p<0.001), especially in the Control group. Pigment concentrations 

were not affected by water treatment, and only Chlorophyll a increased with 

fertilization. Chlorophyll a/b ratio differed among species, with a higher ratio for the 

native species (p<0.001; Table9). Moisture level changed the Chl a/b ratio only in 

non-fertilized groups with significantly higher levels in the Ovw treatment if compared 

to Control (p=0.029). 

 
Figure 21. Morphological traits of Melinis minutiflora (invasive species, white bars) and 
Schizachyrium michrostachyum (Cerrado native grass, grey bars) grown for 4 weeks under different 
soil water availability: watered every five (5d) or ten days (10d) (to maximum field capacity), Control 
(CTR) and Over-watering (OVW) with or without addition of NPK (10-10-10). Error bars correspond to 
standard deviation. Asterisks refer to significant differences between species, small letters to 
differences between fertilized and unfertilized treatments and caption letters to differences among 
watering treatments. (P<0.05, Factorial ANOVA with species, watering treatment and fertilization 
independent variables, Tukey HSD test for multiple comparisons). 
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 Phosphate concentrations were higher for the invasive species regardless of 

moisture or fertilization. However, the differences tended to decrease with fertilization 

(data not shown) and moisture did not affect phosphate concentrations. On the other 

hand, the invasive species had a significantly higher concentration of nitrate in all 

treatments (p<0.001), especially when fertilized.  

As for the biomarkers for oxidative stress, means are summarized in Table 11. 

The native species showed higher MDA concentrations than the invasive species 

(p<0.0001). When not fertilized, plants from the Control group were the only ones 

showing equivalent MDA concentration between species. With fertilization, MDA 

concentration in the native species was reduced. The only exception was the 10-day 

treatment for the native species, which maintained higher MDA concentration values 

in relation to other treatments and to the invasive species. SOD activity differed 

between species (p=0.002), showing that their oxidative response is different. When 

fertilized the SOD activity was higher for the native species than for the invasive 

species. Furthermore, it increased with water availability while the invasive species 

presented higher  

SOD activity during drought and didn’t increase with fertilization. GPOX activity 

also differed among species (p=0.027). In the invasive species, GPOX activity was 

not affected by water treatment, while in the native species, values tended to 

increase with soil water availability. This pattern was intensified when fertilization was 

added, with significantly higher values of GPOX activity in Ovw treatment in relation 

to other treatments and to the invasive species (all p<0.05).  

 

 

 



 
 
SOIL FERTILITY 

 

 

158 

 

 Table 9. Factorial ANOVA scores for the measured dependent variables using three 
independent variables as factors: (S) species (Schizachyrium microtachym and Melinis 
minutiflora), (M) watering treatment (5d, 10d, CTR, OWV) and (F) fertilization (With or without). 
Four-week old plants were grown in a climatic chamber (28 ºC and 12h of light) for 4 weeks. 
 

 

 Fertilization Moist Species F x M x S 
 F p F p F p F p 

Length  47.452 <0.001 24.438 <0.001 186.289 <0.001 0.436 0.729 
Dry weight  38.327 <0.001 18.104 <0.001 120.616 <0.001 0.814 0.496 
N of tillers 88.005 <0.001 18.871 <0.001 3.627 0.066 1.610 0.206 
Area  37.554 <0.001 16.440 <0.001 52.918 <0.001 2.253 0.101 
Root:Shoot  0.192 0.663 1.954 0.140 15.240 <0.001 1.387 0.265 
Nitrate 29.362 <0.001 0.472 0.701 209.310 <0.001 2.552 0.073 
Phosphate  1.262 0.270 12.601 <0.001 65.787 <0.001 1.840 0.300 
Potassium 0.085 0.772 0.543 0.656 0.207 0.652 1.064 0.378 
Chlorophyll a 12.054 <0.001 1.641 0.189 53.632 <0.001 0.698 0.556 
Chlorophyll b 2.540 0.116 1.976 0.127 7.509 0.008 0.462 0.709 
Carotenoids 1.415 0.239 0.952 0.421 48.936 <0.001 0.481 0.693 
Chl a/b ratio 4.115 0.010 3.385 0.070 18.404 <0.001 0.315 0.815 
Fv/Fm  11.451 0.001 5.100 0.003 59.824 <0.001 1.093 0.359 
NPQ   4.265 0.008 22.719 <0.001 204.802 <0.001 2.221 0.094 
MDA 23.535 <0.001 35.729 <0.001 120.741 <0.001 6.785 <0.001 
G-POX 5.096 0.031 1.996 0.134 5.354 0.027 1.588 0.219 
SOD 3.158 0.085 11.158 <0.001 11.845 0.002 4.489 0.617 
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Table 10. Mean values  (±SD) of leaf fluorescence and leaf pigments of the native 
(Schizachyrium microtachym) and the invasive grass (Melinis minutiflora) under different soil 
water and nutrients availability treatments. The p column shows differences between moisture 
treatments. Caption letters refer to Fertilized treatments and asterisks refer to significant  
difference between species. 

 

 

 

Endpoint Watering Fertilized p M. minutiflora S. microstachyum 
Chlorphyll a (µmol gFW-1) 10 days No ns 0.88 (±0.09) 1.42 (±0.14)  
 10 days Yes ns 1.14 (±0.42) 1.63 (±0.14) 
 5 days  No ns 0.80 (±0.02) 1.63 (±0.07) * 
 5 days Yes  ns 1.52 (±0.13) 1.64 (±0.14) 
 Control No ns 0.98 (±0.06) 1.73 (±0.18) * 
 Control Yes ns 1.22 (±0.09) 2.13 (±0.18) * 
 OVW No ns 1.08 (±0.04) 1.70 (±0.22) * 
 OVW Yes ns 1.30 (±0.18) 1.74 (±0.15) 
Chlorophyll b (µmol gFW-1) 10 days No b 0.31 (±0.03) 0.41 (±0.03) 
 10 days Yes ns 0.40 (±0.15) 0.39 (±0.04) 
 5 days  No a 0.29 (±0.03) 0.49 (±0.03) 
 5 days Yes ns 0.52 (±0.05) 0.46 (±0.03) 
 Control No a 0.33 (±0.02) 0.60 (±0.13) 
 Control Yes ns 0.44 (±0.04) 0.54 (±0.05) 
 OVW No a 0.36 (±0.01) 0.43 (±0.04) 
 OVW Yes ns 0.44 (±0.06) 0.34 (±0.06) 
Carotenoids (µmol gFW-1) 10 days No ns 0.59 (±0.06) 1.01 (±0.07) * 
 10 days Yes ns 0.62 (±0.22) 1.01 (±0.05) 
 5 days  No ns 0.58 (±0.04) 1.05 (±0.05) * 
 5 days Yes ns 0.91 (±0.09) 1.02 (±0.05) 
 Control No ns 0.63 (±0.03) 1.18 (±0.18) * 
 Control Yes ns 0.74 (±0.07) 1.13 (±0.07) 
 OVW No ns 0.70 (±0.03) 0.98 (±0.11) 
 OVW Yes ns 0.82 (±0.11) 0.92 (±0.06) 
Chlorophyll a/b ratio  10 days No ab 2.83 (±0.38) 3.41 (±0.15)  
 10 days Yes ns 2.87 (±0.06) 4.22 (±0.12) * 
 5 days  No a 2.80 (±0.23) 3.34 (±0.18) 
 5 days Yes ns 2.91(±0.04) 3.97 (±0.12) 
 Control No a 2.93 (±0.04) 3.14 (±0.35) 
 Control Yes ns 2.82 (±0.05) 3.95 (±0.07) 
 OVW No b 3.00 (±0.04) 3.98 (±0.06) * 
 OVW Yes ns 2.96 (±0.08) 4.04 (±0.56)  
Leaf fluorescence  Fv/Fm  10 days No a 0.796 (±0.005) 0.723 (±0.004) * 
 10 days Yes A 0.805 (±0.003) 0.765 (±0.013) 
 5 days  No a 0.777 (±0.006) 0.749 (±0.009) 
 5 days Yes A 0.798 (±0.006) 0.775 (±0.006) 
 Control No a 0.782 (±0.010) 0.771 (±0.004) 
 Control Yes A 0.789 (±0.004) 0.779 (±0.003) 
 OVW No b 0.788 (±0.005) 0.719 (±0.019) * 
 OVW Yes B 0.774 (±0.004) 0.744 (±0.016) 
Non-photo quenching (NPQ)  10 days No ns 3.120 (±0.551) 2.243 (±0.207) 
 10 days Yes A 2.441 (±0.279) 2.441 (±0.287) 
 5 days  No ns 3.550 (±0.598) 2.625 (±0.515) 
 5 days Yes AB 2.675 (±0.118) 2.386 (±0.301) 
 Control No ns 4.018 (±0.173) 2.549 (±0.120) 
 Control Yes AB 3.221 (±0.053) 2.867 (±0.348) 
 OVW No ns 3.963 (±0.005) 2.602 (±0.396)  
 OVW Yes B 3.186 (±0.061) 3.023 (±0.455) 
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Table 11. Mean values (± SD) of MDA and enzymatic activity of the native and invasive grasses 
under  different soil water and nutrient availability treatments. The p column shows 
differences between moisture treatments. Caption letters refer to Fertilized treatments and 
asterisks refer to significant difference between species. (FW = Fresh weigh , DW= Dry weigh). 

 

 

The PCA showed a clear separation between species (Figure 22). The axis 

PC1 explained 46% of variation while PC2 explained 24%. In PC1 scores were 

higher for length, nitrate (positive) and MDA (negative), while in PC2 the variation 

was due mostly to changes in the leaf pigment concentrations. M. minutiflora 

variables are strongly positively correlated with morphological parameters, Fv/Fm, 

nitrate and NPQ, while S. michrostachyum is correlated with higher values of 

chlorophyll a/b ratio and MDA content.  

Endpoint Watering Fertilized p M. minutiflora S. microstachyum 
MDA  (mmol gFW-1) 10 days No a 8.11 (±1.28) 15.67 (±1.26) * 
 10 days Yes A 5.42 (±0.34) 19.96 (±1.62) * 
 5 days  No a 9.89 (±2.38) 17.00 (±1.62) * 
 5 days Yes B 4.01 (±0.26)   7.06 (±0.29) 
 Control No b 4.29 (±0.38)   7.08 (±0.39) 
 Control Yes B 4.19 (±0.04)   5.73 (±1.64) 
 OVW No b 3.08 (±0.18) 11.57 (±0.81) * 
 OVW Yes B 3.26 (±0.31) 5.95 (±0.39) 
GPOx (µmol ml-1 prot-1min-1) 10 days No ns 1.89 (±0.33) - 
 10 days Yes ab 1.40 (±0.21) - 
 5 days  No ns 1.56 (±0.43) 0.25 (±0.13) 
 5 days Yes a 1.63 (±0.21) 1.37 (±0.15) 
 Control No ns 1.40 (±0.16) 0.90 (±0.78) 
 Control Yes a 2.17 (±0.19) 2.29 (±0.39) 
 OVW No ns 1.47 (±0.35) 2.14 (±0.10) 
 OVW Yes b 0.89 (±0.20) 4.31 (±1.24) * 
SOD (	  mg gFW−1min−1)   10 days No ab 0.73 (±0.19) - 
 10 days Yes AB 0.92 (±0.20) - 
 5 days  No a 1.59 (±0.51) 2.74 (±0.92) * 
 5 days Yes A 1.35 (±0.11) 4.57 (±0.51) 
 Control No b 2.66 (±0.35) 4.16 (±1.39)* 
 Control Yes A 1.67 (±0.27) 3.09 (±0.53) * 
 OVW No ab 1.94 (±0.32) 2.57 (±0.02) * 
 OVW Yes B 1.64 (±0.22) 5.34 (±1.49) * 
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Figure 22. Principal Components Analysis ordination of the species using the variables: Dry 
weight (DW), leaf area (A), length (L), number of tillers (Til), root:shoot ratio (RS), pigment 
concentration (ChloA, ChloB, Carot), MDA concentration, GPOX and SOD activities and nitrate 
concentration (Nit). Percentage of variation accounted for by PC1 and PC2 is shown in 
parentheses on axis labels. Sm (Schizachyrium microtachym) Mm (Melinis minutiflora). Fert 
(Fertilized), Non-F (Non-fertilized), 5 (5-days water suspension), 10 (10-days water suspension), 
CTR (Control), OVW (Over-watering) 
 
 

DISCUSSION 

 
The establishment of invasive species in an ecosystem may be related to the 

availability of resources. Plants are more likely to invade habitats where limitations 

are removed, and resources are abundant (Galatowitsch et al. 1999). As expected, 

the invasive M. minutiflora was able to accumulate more biomass than the native 
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species in well-watered soils, with an intensification of this pattern when soil was 

richer in nutrients. Another African grass invading the Venezuelan Llanos 

(Hyparrhenia rufa (Nees) Stapf) was also reported to be able to accumulate larger 

amounts of biomass in wetter and more  

fertile habitats (Parsons 1972, San José & Farinas 1991). Rickey & Anderson 

(2004) reported that the invasive species Phragmites australis (Cav.)Trin. ex Steud. 

also benefited from nitrogen addition when invading marsh areas in the USA.  

Drought is the most typical stress savanna plants have to endure, due to the 

annual dry season. Limitations in the water supply cause changes in plant 

metabolism, such as arresting photosynthesis, increasing consumption of water and 

nutrient reserves, altering morphology, shifting plant biomass investment, or causing 

an overall reduction in growth. Savanna plants are considered resilient to drought 

either by evading or tolerating such conditions through different mechanisms (Jones 

et al. 1980, Ludlow 1980, Wilson et al. 1980, Baruch & Fisher, 1991). In the present 

study, it was possible to notice that in drought conditions, the difference in growth 

between the native and the invasive species was not significant, especially in 

unfertilized sites, corroborating the idea that the Cerrado would be less susceptible to 

invasion in undisturbed sites in the dry season. A similar pattern was observed in 

Chapter 4, where well-watered M. minutiflora outgrew the native species over twice 

as much, which the same did not happen in treatments where water was less 

available.  Baruch & Fernández (1993) also reported that native grasses in another 

neotropical savanna would be better able to compete with African invasive grasses in 

situations of lower resource availability. 

Flooding, on the other hand, occurs during the rainy season on poorly drained 

soils. Flooding impairs the aerobic respiration of roots, damaging plant metabolism 
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and development (Crawford 1982). Similarly, plants survive flooding by tolerating the 

anoxic situation, using different strategies such as the development of adventitious 

rootlets and aerenchyma tissue (Jackson & Drew 1984).  In the present study the 

native species was more negatively affected by flooding than the invasive species, 

which performed normally when water was abundant. Since the watering method 

provided water daily, we hypothesized that the greater root biomass of the invasive 

species was more efficient in using the provided water without creating the anoxious 

environment that the native species couldn’t avoid.  

It was noted that the biomass was not only greater in M. minutiflora, but also 

differently partitioned. Invasive plants grew both higher and wider, by producing more 

tillers and wider leaves and investing more in roots, proportionally, than the native 

species. Baruch & Jackson (2005) also reported the success of this invasive species 

in a neotropical savanna, attributing its success to its greater growing rate and 

efficiency in the synthesis of aerial biomass and leaf area. Wider leaves and a higher 

number of tillers could confer a better ability to compete for light and space, shading 

competitors' adults, seedlings and seeds, or even preventing seed showers from 

reaching the soil (Silva & Castro 1989). Although these characteristics may reduce 

the success of the invasive species’ seedlings as well, it is known that M. minutiflora 

has an enormous production of seeds, with high viability and germination rates 

(Carmona & Martins 2010), which can compensate for this intraspecific competition. 

M. minutiflora shading is reported to impair even tree regeneration in the Cerrado, 

significantly reducing tree seedling survival in forest borders when competing for light 

(Hoffman & Haridasan 2008). Furthermore, Barger et al. (2003) and Holl (1988) 

stress the importance of belowground competition in addition to aerial competition. In 

the referred study, the experimental reduction of root competition was determinant for 
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increasing height and biomass of seedlings growing nearby adult grasses. Therefore, 

the greater investments in roots presented by the invasive species, observed in its 

root:shoot ratio, could confer advantage when competing for nutrients belowground. 

All attributes together help to explain the displacement of native grasses, in these 

habitats, by the invasive species.   

The pigment results indicate that the native species presents higher 

concentrations of pigments. When fertilization was added, the difference between 

native and invasive species reduced. Higher concentration of pigments, however, 

doesn’t seem to confer higher photosynthetic capacity to the native species, which 

also presented lower Fv/Fm values. Furthermore, the data shows a higher Chlorophyll 

a/b ratio for the native species, especially in the flood treatment. This response is an 

evidence of oxidative stress, since, in such conditions, chlorophyll b is degraded 

before chlorophyll a, increasing the ratio between them (Huang et al. 2004). This is in 

accordance with Ashraf & Habib-ur-Rehman (1999) that also found increased Chla/b 

ratio in waterlogged plants. Other studies showed stronger effects of water stress on 

pigment content due to drought and flood on wheat and maize (Alberte & Thornber 

1977, Loggini et al. 1999). 

Optimum quantum yield (FV/FM) decreased with flood while NPQ increased. 

Fernándes (2005) and Rengifo et al. (2005) also showed a decrease in Fv/Fm with 

flood, indicating photodamage. However, just like in the referred studies, the values 

did not decrease below 0.71, which is considered the threshold for healthy plants 

(Bolhàr-Nordenkampf & Öquist 1983). Higher NPQ values were also observed for 

plants under water stress (Correia et al. 2014) and the higher NPQ values for the 

invasive species might be conferring stronger protection against photoinhibition (Li et 

al. 2002) 
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When fertilization was added, pigment content increased for the invasive 

species, which also presented higher efficiency in allocating nutrients to leaves, as 

can be observed by the higher concentration of nitrate. Baruch & Jackson (2005) also 

reported the better ability of M. minutiflora to incorporate nutrients to leaves. 

Furthermore, Silva & Haridasan (2007) suggested that this species reutilizes nitrogen 

more efficiently. These characteristics favor M. minutiflora, especially in areas with 

higher nitrogen deposition due to anthropogenic activities (Alpert et al. 2000) 

As expected water stress does not seem to impair the nutrient assimilation as 

fertilization does. However, in the unfertilized group with low water availability (10-d 

and 5-d), nitrate concentration in the native species reached the levels of the invasive 

species.  This finding is in accordance with Baruch (1994), who encountered nitrogen 

accumulation in the leaves of South American native grasses under drought.  

The oxidative stress parameters showed that the native species had a 

stronger response to water stress and fertilization at a biochemical level. However, 

this mechanism might not be sufficient to overcome water stress, which was reflected 

in the low fresh weight values during drought and flood, and in higher oxidative 

damage during drought, as shown by the MDA content. MDA content suggests 

elevated lipid peroxidation and damage to the cell membrane for the native species. 

This damage increased with drought for both species and is in accordance with their 

lower biomass accumulation. Other studies show an increase of MDA in plants under 

drought (Zhang & Kirkham 1994, Lima et al. 2002, Correia et al. 2014). Drought-

tolerant plants, however, do not present such high levels in MDA content in these 

conditions (Gill & Tuteja et al. 2010, Arora et al. 2002). Therefore, M. minutiflora 

seems to be more tolerant to drought than the native species. This finding was not 

expected, since the Cerrado's native plants are known to be adapted to drought 
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(Eiten 1972) and other South American grasses have been reported to tolerate 

drought better than invasive African species (Baruch & Fernández 1993). Fertilization 

seemed to diminish lipid peroxidation under drought. When fertilized the native 

species was affected only in the driest treatment (10-d) while the invasive species 

was not affected at all. This effect is in accordance to the findings of Qian et al. 

(2012) where the grass Zoysia matrella (L.) Merr recovered to normal MDA values 

with fertilization. 

GPOX and SOD are important antioxidant enzymes. SOD is the first line of 

defense in the scavenging system of Reactive Oxygen Species. It dismutates 

superoxide (O2
�-) into hydrogen peroxide, which can then be reduced by GPOX, 

which consumes H2O2 by oxidizing guaiacol. Although it was not possible to measure 

the activity of these enzymes in the 10-d treatment for the native species due to lack 

of material, both enzymes seemed to have their activity enhanced with the 

combination of watering and fertilization. Water seems to make the nutrients become 

more available, being diluted in the water, and acting synergistically with fertilization. 

Other studies showed increases in GPOX and SOD in grass species of rye and 

wheat exposed to chemical stress (Milone et al. 2003, Khan et al. 2007, Silva et al. 

2013). Although fertilization had a positive effect on biomass accumulation, it also 

seemed to cause oxidative stress in the native species. This response may be a 

reflection of its adaptation to soils with low nutrient availability.  

The PCA shows a clear difference between the two species, with M. 

minutiflora below the diagonal line and S. microstachyum above the line (Figure 22).  

The separation along the horizontal axis (PC1) is mainly due to the scores of dry 

weight, length and MDA while PC2 discriminates mainly enzymatic activity. Analyzing 

carefully, the points corresponding to the invasive plants in drought treatments 
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without fertilization (MM 5 C and MM 10 C) are closer to the native species group 

(SM). This observation suggests that the invasive species' performance was closer to 

the native species' under low water and nutrient availability, which corroborates the 

ideas of Baruch & Fernández (1993) that these are better conditions to apply 

management in. 

 

CONCLUSIONS 

 
The invasive species can outcompete the native species by accumulating 

more biomass and growing faster, using nutrients and water more efficiently, and 

investing in wider leaves and a greater underground biomass. Also, invasive species 

maintain high photon fluxes despite the lower concentrations of pigments and present 

a weaker oxidative response to drought and fertilization. The native species would 

perform in a similar pace to the invasive species in conditions of less water and 

nutrient availability whereas unnatural fertilization inputs and high water availability 

would benefit the invasive species. In the Cerrado region, sites that present natural 

levels of nutrients and a good drainage could represent a situation where these 

native and invasive grasses could compete in a similar pace. On the other hand, 

disturbed sites with artificial inputs of fertilization, and specially in the rainy season, 

could prompt the advance of M. minutiflora. 
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ABSTRACT 

 
Biological invasions are believed to be one of the biggest threats to 

biodiversity conservation. In the Cerrado region, one of the greatest problems is 

imposed by the African grass Melinis minutiflora P. Beauv. and therefore the control 

of this species is imperative in conservation units. Good management technique 

should be inexpensive and easily applicable to large areas, and clipping and fire have 

been applied in the Cerrado region. Considering that management effects might be 

influenced by other stress factors present in the environment, such as water and 

nutrient availability, abiotic related effects should also be regarded during 

management processes. The aim of this study was to assess the effect of clipping 

and fire in different conditions of soil moisture and fertilization for two grass species, 

one native and one invasive to the Cerrado. Two-month-old clipped/burned plants 

were left to recover for four weeks in the same conditions they were in prior to 

clipping: three different irrigation regimes (Constant moisture, Intermittent Watering, 

and Intermittent Watering with Fertilization) combined with four levels of water 

availability (Severe drought, Mild drought, Control and Flood). The invasive species 

grew more rapidly and presented higher assimilation rates and less lipid peroxidation 

than the native species. However, clipping reduced the differences in length and dry 

weight between species when compared to pre-clipping values, especially in the 

intermittent watering regime with no fertilization. Water availability proved to be more 

detrimental than fertilization. Pigment and Fv/Fm values were not affected by any 

factor, and enzymatic activity showed a stronger anti-oxidative response by the 

invasive species.  
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Key words: Melinis minutiflora, alien plants, management, tropical savannas, 

stress traits. 

 

INTRODUCION 

 
Biological invasions are one of the biggest threats to conservation of 

biodiversity, being considered the second most important after land use (Vitousek 

1994). This issue has caused a significant loss to both economy and the environment 

due to the costs of restoration of degraded areas (Gurevitch & Padilla 2004, 

Richardson et al. 2000, Zanin 2009). Invasive species are exotic species that have 

been accidentally or intentionally introduced to a habitat and that were not only able 

to successfully adapt to local conditions but also to outcompete native species. 

Frequently they are able to reduce local and regional biodiversity. In the Cerrado 

region (the Brazilian savanna and second biggest biome in the country), the greatest 

problems are imposed by African grasses (Pivello et al. 1999, Martins & Leite 1997). 

The invasive species Melinis minutiflora P. Beauv. is considered a serious problem in 

tropical ecosystems and many studies have reported the effects of its invasion on 

biodiversity, landscape, soil, fire frequency and fire intensity in natural reserves (San 

José & Farinas 1991, D’Antonio & Vitousek 1992, Pivello et al. 1999, Williams & 

Baruch 2000). Few studies, however, have focused on techniques to control the 

spread of such species.  

A good management technique should be inexpensive and easily applicable to 

large areas. Taking these criteria into account, fire, clipping, removal by hand, 

shading and herbicide use  have been proposed as ways to control alien invasive 

plants (Barros et al. 2006, Martins 2006, Marinho & Miranda 2013, Sato et al. 2013). 
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Removing individuals by hand, although feasible in the case of terrestrial plants, it is 

time consumable and hard work. The application of herbicides is undesirable in 

natural areas. Therefore, prescribed fire and clipping are the preferred options.  

Fire is an important natural factor in many ecosystems, and it has been 

present in the Cerrado for thousands of years (Whelan 1995, Salgado-Labouriau & 

Ferraz-Vicentini 1993), and the native flora is considered to be resilient to it. Many 

species respond positively to fire by being stimulated to flower. Clipping the aerial 

part of the plant is considered to promote similar effects to fire, but with a less intense 

response. M. minutiflora, on the other hand, is not considered to be tolerant to the 

removal of its aerial part (William & Baruch 2000).  

Nevertheless, the effects of fire or clipping are not that predictable and might 

be affected by other stress factors present in the environment, such as soil moisture, 

light, and the availability of nutrients in the soil (Oesterheld & McNaughton 1991, 

Simões & Baruch 1991, Huston 2004). The Cerrado biome, for instance, is marked 

by a well-defined rainy and dry seasonality, high presence of dystrophic soils and by 

a vegetation gradient from grasslands to closed canopy forests (Eiten 1972, Castro & 

Kauffman 1993). In this scenario, M. minutiflora performs better in open areas and in 

case of soils with more nutrient and water availability (Baruch & Fernandez 1993, 

Barger et al. 2003), and clipping is less harmful to this species when applied in the 

late rainy season (Klink 1994). Cerrado species, on the other hand, have been 

reported to respond more positively to fire in the early dry season (Coutinho 1990, 

Haddad & Valio 1993). In order to plan the best management technique, it is 

important to understand the responses of the plants to disturbance (clipping or 

burning) in different conditions encountered in the environment. 
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The aim of this study was to assess the recovery of two species of grasses 

after clipping and fire in different soil conditions. The resprouting of the species 

Schizachyrium michrostachyum (Desv. ex Ham.) Roseng (native to the Cerrado) and 

Melinis minutiflora P. Beauv. (commonly-found invasive species) was measured in 

different soil watering regimes and soil moisture levels. The former was measured in 

order to simulate differences in soil type, such as drainage and fertilization, and the 

latter to simulate differences in water availability due to seasonality. The performance 

of each species was assessed by measuring several traits in different levels of 

organizations.  

 

MATERIAL AND METHODS 

 
Studied species 

Although there are many invasive and native grass species in the Cerrado, 

only one from each of these groups were chosen for this work. The African grass M. 

minutiflora P. Beauv. is a stoloniferous, perennial, C4 grass also known as 

"molasses-grass". It is considered a serious problem in American savannas and can 

displace native grasses population in the Llanos in Venezuela (Baruch & Jackson 

2005) and the Cerrado in Brazil (Pivello et al. 1999). Although molasses-grass is able 

not only to affect other grasses but also other herbaceous or woody species (Barros 

et al. 2006, Hoffman & Haridassan 2008), the strongest effects may be considered 

the effect on grasses. Grasses are of particular importance because the herbaceous 

layer in the Cerrado exhibits a great richness of grass species, which represents the 

major part of the biomass of this layer (Munhoz & Felfili 2006). The perennial C4 

grass, Schizachyrium michrostachyum (Desv.  ex Ham.) Roseng. , is a common 
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Cerrado grass and presents high levels of seed production and high germination 

rates (Aires 2013). 

 These two species were chosen as models for the experimental approach to 

understand competition among native and invasive species. The panicles were 

harvested from the field during the seed dispersion period (from May to June of 2010) 

in order to obtain mature seeds. Harvesting took place in the Reserva Ecológica do 

Instituto Brasileiro de Geografia e Estatística (15° 56' 41" S and 47° 53' 07" W GRW), 

25 km south of Brasília – DF, Brazil. Seeds were taken to the lab, screened and 

stored in paper bags at room temperature until use.  

 

Seedling and plant preparation 

In order to obtain the best seedling success and select appropriate individuals 

for the experiments, seeds were first germinated and then transplanted to 

experimental pots. Andrade et al. (2002) described the optimum conditions for the 

germination of Cerrado seeds, simulating natural conditions in the beginning of the 

rainy season: oscillation temperatures of 37ºC during light (10h) and 22ºC at dark 

(14h). Seeds were germinated in Petri dishes with sterilized cotton and filter paper, to 

avoid moss contamination. Seeds were placed in climatic chambers in the described 

conditions until a desirable amount of seedlings was obtained. The biggest and 

healthiest-looking ones (no chlorosis, moss or other abnormalities) were transplanted 

to experimental pots. Then, seedlings were left to grow for four weeks in optimum 

conditions of water supply and temperature (28ºC, 12h of light 156 ± 5.37 Wm-2). 

Optimum watering conditions were achieved by capillarity using synthetic fiber 

(Loureiro et al. 2006) or by watering the soil every day to field capacity for the 
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Constant Watering Regime (CW) and Intermittent Watering regime (IW), respectively 

(Simões & Baruch 1991). 

 

Treatment – 1st part 

In both cases, water stress was only imposed at the end of the fourth week 

and kept for another four weeks. Pots were either made of plastic (Constant WHC 

regime, see below) or made of clay (Intermittent Watering regime), containing 500g 

or 1000g, respectively, of a mixture of organic matter (turf and hummus) and mineral 

soil (50:50 v:v - adapted from Simões & Baruch (1991). The regimes correspond to 

distinct methodologies and represent different soil types (distinguished by drainage 

and/or fertilization status), as described below. Within the watering regime, four levels 

of soil moisture were created: a severe drought treatment, a mild drought treatment, a 

control group and a flood treatment. The treatments were achieved for each watering 

regime as described below.  

In the Constant Watering regime, plants were kept at four different constant 

percentages of the Maximum Water Holding Capacity of the soil (10%, 40%, 80% 

and 120%, which, in this case, represent the Severe Drought, Mild Drought, Control 

and Flood treatments, respectively). Moisture was controlled by weighing the pots 

twice daily and adding the amount of water that was lost (the weight of the plant was 

ignored). This methodology is commonly used in the laboratory (Kronfuß et al. 1998, 

Lima et al. 2011, Correia et al. 2014) and enables further precision in controlling the 

amount of water in the soil. Although it could simulate a soil capable of a high level of 

water retention, this does not represent most soils found in the Cerrado biome. In the 

experiment, each treatment presented eight replicates, four of which were burned 
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and another four clipped by the end of the fourth week (see below Treatment- 2nd 

part).  

In the Intermittent Watering regime, one month old plants were watered in the 

following way: (1) every 10 days (Severe Drought); (2) every five days (Mild Drought); 

(3) every day (Control); (4) and overwatered every day (Flood) for four weeks. In this 

regime, the Severe Drought, Mild Drought and Control groups were watered until soil 

maximum field capacity was achieved, and the OVW group was watered until a 2-cm 

layer of water was present aboveground. Similar methodologies are also used in 

ecophysiology studies (Flexas et al. 1999, Baruch & Jackson 2005, Maricle et al. 

2007). Despite the fact that, in this case, the soil moisture is controlled less precisely, 

it could be a better representation of the Cerrado's well-drained soils. In the 

experiment, each treatment had six replicates. Three of them were fertilized once 

(0.5 g of solid NPK 10-10-10, single fertilization at the beginning of the experiment - 

IWF) and three were not (IW). Because of this experiment’s design, there were not 

enough replicates to sacrifice for burning and therefore the burning experiment was 

restricted to the CW experiment.  

The watering regimes represent soil types (soils with higher or lower water 

retention or with artificial inputs of nutrients) whereas the moisture levels represent 

the natural rain seasonality and the Cerrado's topography (in which soils have 

different levels of access to the water table). 

At the end of the fourth week, plants were harvested at soil level (except for 

the replicates of CW that were burned), and several parameters were measured. Half 

of the replicates of the CW regime were burned by placing combustible material (dry 

straw) on top of the pots (see below Treatment- 2nd part), which had previously been 

wrapped in aluminum foil, by adapting the methodology described by Haddad & Valio 
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(1993).  Data of the first part of the experiment (effects of soil moisture and 

fertilization) can be visualized in chapters 4 and 5. 

 

Treatment – 2nd part 

After clipping or burning, plants were left to regrow for four weeks in the same 

conditions as described above (Treatment- 1st part). At the end of the fourth week, 

several parameters were measured again (see below). 

 

Measurements on the day before 2nd harvesting 

Prior to harvesting, gas exchange parameters and fluorescence of chlorophyll 

a were measured. Assimilation rate (A), transpiration (E), stomatal conductance (gs) 

and Ci/Ca ratio were only measured in leaves from the CW regime. Measurements 

were performed using a portable infrared gas analyzer (LCpro+, ADC, Hoddesdon, 

UK) operating in open mode under ambient conditions. In the cuvette, the air 

temperature and humidity was set at 60%, and 23°C, respectively, and the air flow 

was of 300 mmol s-1. Calculations of Ci values were estimated using the equations 

developed by Von Caemmerer and Farquhar (1981): Ci = [(gs – E/2) Ca – A] (gs + 

E/2)-1, where Ca is the CO2 concentration in the air under analysis. 

Fluorescence of chlorophyll a was measured in five mature leaves for each 

treatment using a Mini-PAM (pulse amplitude modulation system, FMS 2, Hansatech 

Instruments, Norfolk, England). Minimal fluorescence (F0) was measured in 30-min 

dark-adapted leaves by applying a weak modulated light, and maximal fluorescence 

(Fm) was measured after applying a 0.7s-long saturating pulse of white light to the 

same leaves. In light-adapted leaves, steady-state fluorescence (Fs) was measured; 

then, maximal fluorescence (Fm’) was assessed after a 0.7s-long saturating pulse of 
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white light (>1 500 mol m−2s−1). Parameters were used to calculate the optimum 

quantum yield of Photossystem II (Fv/Fm, where Fv is the variable fluorescence (Van 

Kooten & Snel 1990)) and the effective quantum yield of PSII (Fv’/Fm’ - ϕPSII ). NPQ 

was calculated according to Bilger & Björkman (1990), (NPQ = (Fm – Fm’)/Fm’). 

 

Plant tissue sampling 

At the end of the fourth week of regrowth, the plants were clipped at soil level. 

Shoots were immediately measured, weighed, and the number of tillers was 

recorded. When there was enough plant material, approximately half of the aerial 

biomass was oven dried for determination of nitrate and phosphate concentrations 

while the other part was snap frozen and stored at -80ºC for biochemical assays 

(Pigments, MDA, GPOX, CAT and GST).  

 

Nutrient determination 

Using a HACH KIT (DR/2000 Spectrophotometer), the percentage of nitrate 

and phosphate was measured in the leaves. Plant tissue extract was obtained by 

mixing the oven-dried leaves with water in a proportion of 1:2 (mass:vol) in a mortar. 

Leaves were manually ground until forming a visual homogenate. The extract was 

then filtered with activated coal and filter papers (180 μm of thickness and 11μm pore 

size for particle retention). For determination of nitrate, protocol 8151 was used 

(Program 363, measuring at the wavelength of 500ηm) and for phosphate, protocol 

8183 was used (Program 510, 890 ηm). Results were presented as the percentage 

of dry weight. 
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Pigments 

Pigments were extracted from frozen leaves with the extraction buffer 

composed of acetone and Tris buffer (pH 7.8; 80:20, v:v, Tris at 50mM). Samples 

were manually homogenized in a mortar and centrifuged at 5 000 g for 10 min. 

Absorbance was measured in microplates in quadruplicate and were corrected for 

the path length traveled by the light to match the 1-cm cuvette used in the formula 

(Warren 2008). Absorbance was measured at 470, 537, 647 and 663 nm 

wavelengths for the calculation of pigments according to the Sims & Gamon (2002): 

 Chla = 0.01373 Abs663 – 0.000897 Abs537 – 0.003046 Abs647;  

Chlb = 0.02405 Abs647 – 0.004305 Abs537 – 0.005507 Abs663;  

Carotenoids = (( Abs470 – (17,1 x (Chla + Chlb) – 9.479 x anthocyanins)) / 

119.26;  

Anthocyanins = 0.08173 Abs537 – 0.00697 Abs647 – 0,002228 Abs663.  

 

Oxidative stress measurements 

In order to measure oxidative damage to cell membranes, lipid peroxidation 

was assessed by measuring the concentration of malondialdehyde (MDA). Leaf 

samples (0.5g) were ground to a powder in a mortar with liquid nitrogen and a 

solution of trichloroacetic acid (TCA 0,1% w/v). After centrifugation, another solution 

was added to the samples (TCA 20% and thiobarbituric acid 0,5%) that were then 

heated to 95ºC for 30 min (Santos et al. 2001). MDA concentration was estimated by 

subtracting the nonspecific absorption at 600 nm from the absorption at 532 nm using 

an absorbance coefficient of extinction (ε), 155 mM–1 cm–1 (Santos et al. 2001). 

Absorbance was measured with a Thermo Fisher Scientific (Waltham, USA) 

spectrophotometer (Genesys 10-uv S). 
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For determination of enzymatic activity, leaf samples were ground to a powder 

in a mortar with liquid nitrogen. Then, samples were homogenized with an extract 

solution (Phosphate buffer at 100 mM and pH 7.5, EDTA at 0.5 mM) and centrifuged 

at 10,000 g for 20min. All enzymatic activity was adapted for microplate proportions 

and a Labsystem Multiskan EX microplate (Labsystems Inc., Franklin, MA) reader 

was used. For Guaiacol peroxidase (G-POX) determination, the reaction solution in 

the microplate wells was made with phosphate buffer (pH 6.1 at contained 10 mM), 

hydrogen peroxide at 12 mM, Guaiacol at 96 mM and 5 μL of the enzyme extract. 

Absorbance was recorded at 470 nm (Castillo et al., 1984) for 5 min, and the specific 

activity was corrected by protein content. The GluthationeS-Transferase (GST) 

activity test was based on the measurement of the product generated by the reaction 

of 1-chloro-2,4-dinitrobenzene and glutathione. Absorbance was measured at 340 

nm for 5 min according to the method of Habig & Jakoby (1981). The reaction 

solution was composed of phosphate buffer at 100 mM and pH 6.5, reduced 

glutathione at 10mM and 1-chloro- 2.4-dinitrobenzene at 60mM. Catalase (CAT) 

activity was determined by measuring the decomposition of the substrate (H2O2) at 

240 nm during 3 minutes based on the method described by (Clairborne, 1985). The 

reaction solution was prepared with phosphate buffer (at 0.1 M with pH 7.0) and H2O2 

(at 6 mM). 

 

Data analysis 

For each parameter a three-factor ANOVA was performed using Watering 

regime (CW, IW, IWF), Species (Invasive, Native) and Moisture Level (Severe 

Drought-SD, Mild Drought-MD, Control-CTR and Flood-OVW) as independent 

variables. Then, for each watering regime, means were compared with factorial 
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ANOVA using species (S. michrostachyum - native, M minutiflora - invasive) and 

Moisture Level (SD, MD, CTR and OVW) as independent variables. Multiple 

comparisons were carried out using the Tukey HSD test. The p values were 

corrected using the residual error of the whole data set. Data from chapter 4 and 5 

was used to calculate the percentage of recovery after clipping/burning in comparison 

to the previous values. These means were compared with arcsine-transformed data. 

Comparisons between clipped and burned plants of M. minutiflora were made with a 

factorial ANOVA using management (clipping , burning) and moisture level (SD, MD, 

CTR and OVW) as independent variables and using the Tukey HSD test for multiple 

comparisons. All data analysis and graphs were made using the R software (R 3.0.1 

binary for Mac OS X 10.6). 

 

RESULTS 

The difference between the invasive species and the native species 

The results for the morphological traits can be observed in Figure 23 and the 

results for ANOVA in Table 12. The alien grass, M. minutiflora, grew more than the 

native grass both in height and biomass in any watering regime (Constant Watering, 

Intermittent Watering and Intermittent Watering with Fertilization) and in any moisture 

level (Severe Drought, Mild Drought, Control and Flood). It also presented higher 

assimilation rates and water use efficiency (A/E) in Severe Drought (Figure 24). 

Regardless of watering regime and moisture level, oxidative damage was lower for 

the invasive species, reflecting on lower levels MDA (below 4 mmol.gFW-1) (Table 

13). Molasses-grass also differed from the native species by presenting higher ϕPSII, 

lower NPQ and lower Chla/Chlb (Figure 25). 
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Figure 23. Morphological traits of one invasive (Melinis minutiflora, white bars) and one native 
(Schizachyrium michrostachyum, grey bars) grass. Two-month old plants were clipped and left 
to recover for 4 weeks on three different watering regimes: Constant Watering (CW), 
Intermittent Watering (IW), Intermittent Watering with NPK (IWF), each with four moisture 
levels: Severe Drought (SD), Mild drought (MD), Control (CTR) and Flood (OVW). Error bars 
correspond to standard deviation. Asterisks to significant differences between species, lower-
case letters to differences among watering regimes and capital letters to differences among 
moisture levels. (P<0.05, Factorial ANOVA with watering regimes, species, moisture level as 
independent variables, Tukey HSD test for multiple comparisons).  
 

Table 12. Factorial ANOVA scores for the measured dependent variables of Two-mont old 
plants exposed to different watering regimes, clipped and left to recover for 4 weeks, using 
three independent variables as factors: Species (Schizachyrium microtachym) and (Melinis 
minutiflora), Moisture levels (Severe Drought, Mild Drought, Control Flood) and three watering 
regimes (Constant Watering - CW, Intermittent Watering –IW, and Intermittent Watering with 
Fertilization – IWF). NS=Not Significant, (-) No comparison made due to lack of material.  

 Watering 
regime (3-way) 

CW        
(2-way) 

IW 
(2-way) 

IWF 
(2-way) 

 Error p Species Moisture Species Moisture Species Moisture 
Length  4.532 <0.001 0.0002 0.0065 0.0464 NS 0.0247 0.0132 
Dry weight  38.433 <0.001 0.0032 0.0001 NS NS 0.0719 0.0217 
N of tillers 0.749 <0.001 0.0078 NS NS NS NS NS 
Nitrate - NS NS NS - - - - 
gs - NS NS NS - - - - 
A - NS 0.0008 NS - - - - 
A/E - NS 0.0034 0.0140 - - - - 
Ci/Ca - NS 0.0066 0.0105 - - - - 
Chlorophyll a - NS NS NS NS NS NS NS 
Chlorophyll b 0.022 0.009 NS NS NS NS NS NS 
Carotenoids - NS NS NS NS NS NS NS 
Chla/Chlb  0.023 NS 0.0040 NS NS NS NS NS 
Fv/Fm  0.002 <0.001 NS NS NS NS NS NS 

ϕPSII 0.003 0.0079 NS 0.0451 0.0491 NS NS NS 
NPQ 0.517 NS 0.0011 NS 0.0016 NS 0.0011 NS 
MDA 2.413 <0.001 0.0183 NS NS - NS - 
G-POX 2.297 <0.001 - NS NS NS 0.0246 0.0067 
GST 2.011 0.04 - NS 11.845 0.002 4.489 0.617 
Catalase 786 <0.001 - NS NS NS 0.1187 0.0449 
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The differences due to the watering regime (CW vs IW vs IWF) 

 In general, the CW regime differed from the other two by presenting accentuated 

growth for both species. The presence of fertilization (IW vs. IWF) didn’t cause as high 

an effect as the change in watering regime (CW vs. IW) did (Figure 24, Table 12). 

However, fertilization did improve the performance of M. minutiflora in mild drought, in 

comparison to unfertilized groups (IW). Fertilization also increased tillering for both 

species (all p <0.001).  

 

Figure 24 Gas exchange parameters of one invasive (Melinis minutiflora) and one 
native (Schizachyrium michrostachyum) grass. Two-month old plants were clipped and left 
to recover for 4 weeks on different soil moisture levels: Severe Drought (Sd), Mild Drought 
(Md), Control (Ct), Flood (Ovw). Error bars correspond to standard errors.  Big asterisks 
refer to significant differences between species and small asterisks correspond to 
significant differences between species in that specific treatment. Lower case letters 
correspond to differences between treatments. (P<0.05, Factorial ANOVA with species and 
watering level as  independent variables, Tukey HSD test for multiple comparisons). Growth 
was conducted at 28 ºC , with a photoperiod of 12h of ligh. 
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 The differences between species were greater in CW, where invasive plants 

produced more biomass than in the other regimes (all p< 0.001) and more tillers than 

the native plants (p=0.008). Also, the Flooding treatment in the CW regime was more 

harmful to the native species than the Flooding treatment in other watering regimes. 

As a result, no native plant was able to re-sprout after clipping when kept in these 

conditions. Furthermore, the CW regime presented plants with lower concentration of 

chlorophyll b and slightly lower Fv/Fm values (p=0.007, p<0.001, Table 14). The 

moisture level in the CW regime did not affect enzymatic activity.  

 
The difference due to the moisture level (From drought to flood) 

Drought affected both the native and invasive species, with significantly less 

biomass accumulation than control groups (Figure 23, Table 13). The native species' 

assimilation rate was negatively affected in Severe Drought (all p<0.001, Figure 24). 

The same did not happen to the invasive species: higher assimilation rate reflected in 

an increased A/E in Severe Drought (p=0.014, Figure 24).  

Pigment concentration and Fv/Fm values were not affected by moisture level 

and neither differed among species (Table 13, igure 25). Lipid peroxidation increased 

significantly in drought only for the native species and was even higher when in 

Severe Drought (p=0.018, Table 13 and Table 14). For M. minutiflora samples in 

Severe Drought in IW, CAT activity increased (p=0.013) while GST decreased 

(p=0.0053). GPOX decreased for both species (p=0.0012 and p=0.0044) with 

drought. Flood negatively affected both species in CW but didn’t affect M. minutiflora 

in IW or IFW (Figure 23). 
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Table 13. Mean values  (± SD) of MDA and enzymatic activity of the native (Schizachyrium 
michrostachyum) and invasive (Melinis minutiflora) grasses under  different soil watering regimes : 
Constant Watering (CW), Intermittent Watering (IW) and Intermittent Watering with NPK (IWF). Each one 
of these regimes has four different soil moisture levels Severe Drought (SD), Mild Drought (MD), Control 
(CTR) and Flood (OVW). ( and moisture levels. The p column shows differences between moisture levels. 
Letters refer to differences among moisture levels: Severe drought (SD), Mild drought (MD)  Control (C)  
and Flood (F) within each watering regime. Asterisks refer to significant difference between species. 

 
 
 
 
 
 
 
 

Endpoint Watering Fertilized p M. minutiflora S. microstachyum 
MDA  (mmol gFW-1) CW SD a 4.03 (±0.08) 8.32 (±0.38) * 
 CW MD b 3.50 (±0.20) 6.56 (±0.18) * 
 CW C c 3.57 (±0.18) 4.99 (±0.03) * 
 CW F  c 2.88 (±0.17) - 
 IW SD ns - - 
 IW MD ns - - 
 IW C ns 2.40 (±0.11) - 
 IW F  ns 2.05 (±0.04) - 
 IWF SD ns - - 
 IWF MD ns 2.50 (±0.29) - 
 IWF C ns 2.28 (±0.22) - 
 IWF F  ns - - 
GPOx (µmol ml-1 prot-1 

min-1) 
CW SD ns 3.10 (±0.41) - 

 CW MD ns 2.79 (±0.19) - 
 CW C ns 3.01 (±0.40) - 
 CW F  ns - - 
 IW SD ns 2.20 (±0.59) - 
 IW MD ns 33.4 (±0.69) 1.71 (±0.41) 
 IW C ns 3.01 (±0.51) 2.61 (±0.59)  
 IW F  ns 3.30 (±0.69) 1.8 (±0.01) 
 IWF SD a 3.70 (±0.49) - 
 IWF MD a 4.65 (±0.33) 1.47 (±0.14) 
 IWF C b 7.42 (±0.44) 3.87 (±0.68) * 
 IWF F  ab 5.99 (±0.80) 4.18 (±0.21) 
GST (ηmol ml-1 prot-1 min-

1) 
CW SD ns 4.58 (±0.63) - 

 CW MD ns 3.65 (±0.34) - 
 CW C ns 3.11 (±0.71) - 
 CW F  ns - - 
 IW SD a 3.19 (±0.68) - 
 IW MD b 6.28 (±0.68) 3.76 (±1.17) 
 IW C a 3.10 (±0.57) 3.73 (±0.24)  
 IW F  a 2.02 (±0.04) 2.18 (±0.01) 
 IWF SD a 1.07 (±0.08) - 
 IWF MD a 1.63 (±0.24) 3.52 (±0.22) * 
 IWF C b 2.82 (±0.41) 3.86 (±0.29) 
 IWF F b 3.01 (±0.21) 4.95 (±0.48) * 
Catalase (mg gFW-1) CW SD ns 64.8 (±8.3) - 
 CW MD ns 73.8 (±6.0) - 
 CW C ns 93.1 (±12.4) - 
 CW F  ns - - 
 IW SD ns 51.9 (±4.1) - 
 IW MD ns 60.7 (±4.6) 108.0 (±55.3) 
 IW C ns 58.1 (±2.4) 71.0 (±26.0) 
 IW F  ns 76.9 (±11.8) 23.2 (±1.0) 
 IWF SD a 71.9 (±6.9) - 
 IWF MD b 58.6 (±4.6) 10.2 (±3.5) * 
 IWF C bc 27.3 (±0.5) 23.4 (±5.7) 
 IWF F c 18.8 (±7.0) 13.2 (±2.4) 
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Figure 25. Fluorescence parameters and Chla/Chlb ratio of one invasive (Melinis minutiflora) 
and one cerrado native grass (Schizachyrium michrostachyum). Two-month old plants were 
clipped and left to recover for 4 weeks in three different watering regimes: Constant Watering 
(CW), Intermittent Watering (IW) and Intermittent Watering with NPK (IWF). Each one of these 
regimes has four different soil moisture levels Severe Drought(SD), Mild Drought (MD), Control 
(CTR) and Flood (OVW). Error bars correspond to standard errors. Capital letters refer to 
significant differences among watering regimes, big asterisks refer to significant differences 
between species and small asterisks correspond to significant differences between species in 
that specific treatment. Lower case letters correspond to differences between treatments. 
(P<0.05, Factorial ANOVA with watering regimes, species, moisture level as independent 
variables, Tukey HSD test for multiple comparisons). Growth was conducted at 28 ºC , with 
photoperiod of 12h of light 
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The difference between fire and clipping management 

Fire was shown to be more harmful to plants than clipping, and only invasive 

plants were able to sprout after burning. Although tillering and plant length were 

marginally different between burned and clipped plants, clipped plants were able to 

accumulate significantly more biomass than burned plants (p<0.001) (Figure 26). 

Also, Fv/Fm values and NPQ were significantly lower for burned plants in Severe 

Drought and Mild Drought, respectively (p=0.001, p=0.004). 
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Table 14. Mean values  (±SD) of leaf pigments of the native (Schizachyrium michrostachyum). 
and the invasive grass (Melinis minutiflora) under different watering  Constant Watering (CW), 
Intermittent Watering (IW) and Intermittent Watering with NPK (IWF). Each one of these 
regimes has four different soil moisture levels Severe Drought(SD), Mild Drought (MD), Control 
(CTR) and Flood (OVW). Letters refer to differences among moisture levels. Asterisks refer to 
significant difference between species. (-) No comparison made due to lack of material. 
 

 

 

 

 

 

Endpoint Watering Fertilized p M. minutiflora S. microstachyum 
Chlorophyll a (µmol gFW-1) CW SD ns 0.92 (±0.08) 1.49 (±0.32)  
 CW MD ns 0.93 (±0.04) 1.74 (±0.50)  
 CW C ns 1.19 (±0.08) 0.88 (±0.08)  
 CW F  ns 1.33 (±0.14) - 
 IW SD ns 1.34 (±0.04) - 
 IW MD ns 1.44 (±0.16) - 
 IW C ns 1.13 (±0.11) - 
 IW F  ns 1.12 (±0.08) - 
 IWF SD ns 1.59 (±0.22) - 
 IWF MD ns 1.54 (±0.08) - 
 IWF C ns 1.18 (±0.13) - 
 IWF F  ns 1.74 (±0.13) - 
Chlorophyll b (µmol gFW-1) CW SD ns 0.34 (±0.03) 0.40 (±0.08) 
 CW MD ns 0.32 (±0.01) 0.52 (±0.17) 
 CW C ns 0.40 (±0.03) 0.25 (±0.02) 
 CW F  ns 0.44 (±0.06) - 
 IW SD ns 0.48 (±0.01) - 
 IW MD ns 0.48 (±0.06) - 
 IW C ns 0.36 (±0.04) - 
 IW F  ns 0.37 (±0.02) - 
 IWF SD ns 0.56 (±0.08) - 
 IWF MD ns 0.52 (±0.03) - 
 IWF C ns 0.40 (±0.04) - 
 IWF F  ns 0.57 (±0.05) - 
Carotenoids (µmol gFW-1) CW SD ns 0.659(±0.041) 0.894 (±0.162)  
 CW MD ns 0.623 (±0.026) 1.086 (±0.315) 
 CW C ns 0.787 (±0.052) 0.555 (±0.034) 
 CW F  ns 0.823 (±0.098) - 
 IW SD ns 0.780 (±0.015) - 
 IW MD ns 0.827 (±0.089) - 
 IW C ns 0.695 (±0.037) - 
 IW F  ns 0.646 (±0.045) - 
 IWF SD ns 0.977 (±0.142) - 
 IWF MD ns 0.966 (±0.051) - 
 IWF C ns 0.680 (±0.067) - 
 IWF F ns 1.001 (±0.089) - 
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Figure 26. Comparison of growth traits between clipped and burned plants of Melinis 
minutiflora. Two-month old plants were clipped (white bars) or burned (grey bars) and left to 
recover for 4 weeks on different soil moisture levels: Severe Drought (SD), Mild drought (MD), 
Control (CTR) and Flood (where no plant recovered). Error bars correspond to standard 
deviation. Asterisks refer to significant differences between clipped and burned plants, lower-
case letters to differences among moisture levels. (P<0.05, Factorial ANOVA with watering 
regimes, species, moisture level as independent variables, Tukey HSD test for multiple 
comparisons). Growth was conducted at 28 ºC , with photoperiod of 12h of light 
 

The recovery   

The invasive species recovered to over 75% of the former height and over 

50% of previous biomass in CW. The recovery was of 50% and 25% for the same 

parameters, respectively, in IW and IWF (Figure 27). The native species recovered 

50% and 25% of its height and biomass in CW regime and 25% and 15% of the 

same parameters, respectively, in IW and IWF. Assimilation rate, total chlorophyll 

and nitrate increased for both species in relation to pre-clipping values (all p<0.001). 

The native species’ NPQ and Chla/Chlb values were raised in Severe Drought in 

relation to pre-clipping values (p<0.001, p=0.049, data not shown). 
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Figure 27. Percentage of recovery in comparison to pre-clipped values (Chapter 4 and 5). 
Morphological traits of one invasive (Melinis minutiflora, white bars) and one native 
(Schizachyrium michrostachyum, grey bars) grass. Two-month old plants were clipped and left 
to recover for 4 weeks on three different water availability regimes (Constant Watering, 
Intermittent Watering, Intermittent Watering with Fertilization - CW, IW, IWF) and four moisture 
levels: Severe Drought (SD), Mild drought (MD), Control (CTR) and Flood (OVW). Error bars 
correspond to standard deviation. Asterisks refer to significant differences between species, 
lower-case letters to differences among watering regimes and capital letters to differences 
among moisture levels. (P<0.05, Factorial ANOVA with watering regimes, species, moisture 
level as  independent variables, Tukey HSD test for multiple comparisons. Values were 
normalized with arcsin transformation). Growth was conducted at 28 ºC, with photoperiod of 
12h of light 
 

 
 

DISCUSSION 

 
As expected, the invasive species performed better than the native species 

did, by growing higher, accumulating more biomass and producing more tillers. 

Similar results were obtained by Baruch & Jackson (2005), Simões & Baruch (1993), 

Baruch & Bilbao (1999) and Aires (2013). However, it is important to notice that the 

differences between species were much higher when the watering regime was 

keeping water continuously available in the soil (CW). This regime could represent 

poorly drained soils, which even in the dry season are able to retain more water. 
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Even when in low water availability (SD and MD) molasses-grass could overgrow the 

native species. In terms of percentage (Figure 27), plants recovered up to 50-75% in 

CW. This response may represent a compensatory growth since they grew over half 

as much, in half the time of pre-clipped plants. Many studies reported compensatory 

growth in plants. Compensation of the removed biomass might appear as an 

adaptation to herbivory and fire, or as a response to removal of apical dominance 

(Silva & Raventos 1999, Leite et al. 1997, Sarmiento 1992, Hjálten et al. 1993).  

Accordingly, Baruch & Jackson (2005) reported that African grasses recovered faster 

than South American grasses from simulated herbivory. Tillering could be another 

efficient way to compete for space. Production of tillers only increased after clipping 

for the invasive species samples in the IW regime (p=0.0047, Figure 23). Simões & 

Baruch (1993) also observed an increased tillering in an African species after clipping 

while the American native species tillered less with clipping. However, Klink (1994) 

found no effect of clipping on tillering of M. minutiflora in the field so this result must 

be regarded with caution. 

On the other hand, plants recovered only 25% in IW and IWF, showing that 

persistence of the water in the soil was more important than the presence of 

fertilization. In these regimes, water percolated more easily, and the plants had 

access to the water for a shorter period of time, what may have influenced their 

recovery. Interestingly, and IW and IWF presented higher growth rates in comparison 

to CW plants prior to clipping (Chapter 4 and 5). In this context, Oesterheld & 

McNaughton (1991) and Hicks & Turkington (2000) explain that plants with lower 

growing rates and in poorer soils present a more positive response to defoliation than 

plants growing at higher rates. 



 
 

CHAPTER SIX 

199  

Clipping reduced the differences between species in the IW and IWF regimes. 

In relation to pre clipping values (Chapter 4 and 5), native plants recovered a higher 

percentage of biomass in comparison to the invasive plants (Figure 27). In CW, the 

invasive species continued to grow twice as much as the native species did. We 

hypothesized that when water is available every day, even in low quantities, the 

invasive species can readily and efficiently use it by taking advantage of its extensive 

root system (Baruch 1984, Silva & Haridasan 2007). Klink (1994) also showed that 

clipping in soils where water was more readily available resulted in better recovery for 

M. minutilfora. This observation is in accordance with Zhao (2008), who showed that 

water availability was also much more important to plant recovery to clipping than the 

addition of fertilizers. Hicks & Turkington (2000) showed that fertilization reduced the 

ability of clipped plants to compensate for biomass loss. This information may help to 

explain the lack of differences between IW and IWF, even though the fertilized group 

was much heavier than the unfertilized group prior to clipping (Chapter 4 and 5).  

On the other hand, when soil is well drained (here represented by the IW and 

IWF plants that were in clay pots) and water is not always provided every day, both 

species tend to recover at a closer rate after clipping. Differences between the 

species in IW were noticed only when they were also fertilized (IWF). Although the 

invasive plants grew more than the native plants (Figure 23), the native plants 

recovered more in relation to pre-clipping values (Figure 27). Accordingly, Leriche et 

al. (2003) showed that African grasses needed fertilization to compensate defoliation.  

We assume that the IW regime is the best representation of the natural 

conditions of Cerrado soils: mostly red-latossols, well drained and dystrophic. 

Irrigation suspension may represent the dry season, when it rarely rains, as well as 

dry spells that may occur in the rainy season (Eiten 1972). In this scenario both 
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species would have similar recovery after management is applied. However, the 

Cerrado also presents areas with more water availability, near watercourses, for 

instance. Also, the Cerrado's soil can have its fertility altered by atmospheric 

deposition of fertilizers from agricultural areas or from fossil fuel burning in urban 

areas (Jordan & Weller 1996, Vitousek et al. 1997). Our data suggests that in those 

cases, the invasive species would show better recovery than the native species 

would. 

Fire was only used in the CW regime. No native plant sprouted after fire. 

Burned invasive plants were slightly shorter (p=0.02) and with lower biomass at 

Severe Drought (p=0.018) and Control (p=0.0049) than those submitted to clipping. 

Also, burned plants tended to produce fewer tillers than clipped ones. A similar result 

was obtained by Leite et al. (1997) and Klink (1994), who found a simplification of 

grass architecture with fire. No burned plant sprouted in the Flood treatment. 

Although native plants were expected to be able to sprout after fire, it is important to 

take into account the age and size of the plants. Native plants were much smaller 

than the invasive plants, which might have interfered in their ability to recover after 

fire. Also, burning conditions (fire intensity and time of residence) were not controlled. 

These properties interfere in the effect of fire on plants, so more effort should be 

applied in controlling these variables in future studies. 

 However, it was interesting to notice that fire did bring more damage to the 

invasive species than clipping did. In field conditions, where native species are well 

established and in greater number and richness, this might be of some advantage to 

native plants in relation to M. minutiflora. Baruch & Bilbao (1999) also found that fire 

was more harmful than clipping to an African grass in the Venezuelan savanna. For 

these authors, burning resulted in lighter and shorter resprouted individuals. On the 
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other hand, Haddad & Valio (1993) and Coutinho (1990) showed increased flowering 

in Cerrado plants after fire and pruning. Furthermore, Sarmiento (1992) describes 

fire-dependant behaviors and trade-offs in savanna plants. Therefore, in field 

conditions, colonization by native species might be enhanced by fire. Nevertheless, 

fire may promote invasion by other invasive species by favoring early successional 

species (Keeley 2005).  

It was not possible to measure some parameters (gas exchange, MDA, 

pigments and enzymatic activity) in all conditions due to lack of material. However, it 

was possible to observe that pigment concentration was barely affected and didn’t 

differ among species and moisture levels. Also, Fv/Fm values were always above 0.75 

and similar to pre-clipping values (Chapter 4 and 5), showing that the plants' 

photosystems remained healthy. However, CW plants showed slightly less 

chlorophyll and smaller Fv/Fm values. However, Chaves et al. (2003) explained that 

leaves with less access to water tend to present higher photosynthetic capacity and 

chlorophyll content. This optimization might be happening in the IW and IWF 

regimes. The Chla/Chlb ratio and NPQ were significantly higher while ϕPSII was 

significantly lower for the native species. This response might be a result of an 

increased oxidative stress in the native plants (Huang et al. 1997).  

Unlike the results from pre-clipping (Chapter 4 and 5), stomatal conductance 

did not differ among species or among treatments in CW. Assimilation rate continued 

to be higher for the invasive species, which presented higher water use efficiency in 

Sever Drought. This result explains the tolerance of the invasive species to drought 

and its ability to grow faster than the native species after clipping. Many studies 

showed that African grasses present compensatory growth when defoliated 

(Sarmiento 1992). Simões & Baruch (1997) found increased assimilation rate with 
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clipping in an African grass; however, in their study the increase was not affected by 

water stress. Furthermore, Baruch & Jackson (2005) show an increase in growth of 

M. minutiflora after clipping and discuss that the increase in Assimilation rate might 

be an evolutionary response of African grasses to large herbivores. 

 Lipid peroxidation and the activity of oxidative stress enzymes displayed the 

same pattern as pre-clipping values (Chapter 4 and 5). In this case, MDA content 

was higher in the native species, especially in the driest treatments. High MDA 

concentration reflects a greater oxidative damage and a weaker tolerance to drought 

in comparison to the invasive plants (Correia et al. 2014, Gill & Tuteja et al. 2010). 

The invasive species showed a higher activity of CAT and GPOX, which may 

represent a stronger general antioxidant response. CAT activity is important in 

drought stress with drought-tolerant plants presenting higher CAT activity (Arora e al. 

2002), while transgenic plants with low CAT activity tend to respond negatively to 

environmental stress (Chamnongpol et al. 1996). GPOX activity, as the other 

ezymes,  specific to drought stress, but has been shown to increase with chemical 

stress (Silva et al. 2013), which is in accordance with higher activities of this enzyme 

in the fertilized group. The native species presented higher GST activities than the 

invasive species, and they increased with water availability. Although this enzyme 

plays many roles in plants (Dixon et al. 2002), its increase may suggest an anti 

oxidative response. For instance, tobacco clones are more tolerant to environmental 

stress when they present an overexpression of GST (Roxas et al. 2000). 

In contrast to pre-clipping values, leaf chlorophyll content and nitrate tended to 

increase after clipping. Zhao et al. (2008) also showed a relation between clipping 

frequency and increase in chlorophyll concentration in leaves. Furthermore, 

Oesterheld & McNaughton (1991) reported higher concentrations of nitrogen on 
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plants re-growing after clipping. Also, the increase in NPQ and Chla/Chlb ratio for the 

native species in drought is an indicative of increased oxidative stress in relation to 

pre-clipping values. However, a more careful comparison could not be made. 

Samples from before and after clipping were processed with different dilution factors 

(due to lack of material) adding more error to the data, and therefore, a direct 

comparison would be inappropriate.  

 

CONCLUSIONS 

 
The invasive species performed better than the native species even after 

clipping and fire. However, clipping reduced the differences in growth between native 

and invasive species. This reduction was evident in mild drought conditions and 

when watering was intermittent with no fertilization. Such conditions could represent 

the dry season in the most frequent soil type in the Cerrado (dystrophic red latossol). 

Fire was more harmful than clipping. Data suggests that clipping should be applied in 

the early dry season in areas with low nutrient and water availability, and in places 

with presence of native species/seed bank to colonize the area.  
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APPROACH and MEASURED TRAITS 

 The chosen approach enabled the assessment of the effects of the 

environmental factors naturally found in the Cerrado and of management techniques 

on several traits, from the community to the biochemical level. Together these data 

might help to understand the functioning of the Cerrito ecosystem and shed some 

light on how susceptible this biome would be to invasion under these different 

scenarios. Furthermore, the data summarized in this thesis may come in hand when 

planning effective management techniques to control the invasive grass M. 

minutiflora and serve as a start point for other invasive grass species.  

(A)  Gas exchanges and chlorophyll fluorescence: assessing 

photosynthesis in vivo 

The invasive species was shown to have higher assimilation rates, especially in 

CTR conditions. Furthermore, WUE was higher for the native species, which 

reflected on the strong plant growth. The invasive species was most harmed by 

flooding conditions, and this reflected on high stomatal conductance, probably in an 

attempt to manage the excess of water. However, assimilation rates were very low, 

probably from root damage. Impairment in growth seems to be more related to 

stomata closure than to damage to PSII (see next section, Zanella et al. 2004). Four 

weeks after clipping, the invasive species still showed higher growth rates. However, 

the native plants presented a higher relative recovery of biomass when in control 

conditions.  

In general, all measurements showed that leaves had healthy photosynthetic 

systems, with Fv/Fm values above 0.75, while ϕPSII (effective quantum yield of PSII) 

tended to be around 0.6. The effective quantum yield is naturally lower than the 
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optimum quantum yield because of the activation of the reactions centres, i.e., the 

reduction of maximum fluorescence in light-adapted leaves is a result of the 

mechanisms of quenching, which initiate with photosynthetic active leaves, thus 

reducing the variable fluorescence FV and reducing the yield. 

The native species tended to present lower Fv/Fm values. Although this is not a 

direct measure of the photosynthetic rate and carbon assimilation, it represents an 

inference of photosynthetic activity, which seems to be less pronounced in this 

species and may partially explain its lower biomass accumulation. These values are 

also in conformity with nitrate values, which were lower for this species. Lower nitrate 

values may reflect less effective absorption of nutrients, which leads to defective 

enzyme production and lower photosynthetic capacity. However, it is also usual to 

find inactive photosystems in plants (Chylla & Whitmarsh 1989), so this may be a 

species specific response. In theory, drought stress could lower the maximum 

quantum yield, and some studies have confirmed this hypothesis (Bjorkman & 

Powles 1984, He et al. 1995). However, many studies found minor or negligible 

changes on Fv/Fm values in response to drought and fertilization (Genty et al. 1987, 

Da Matta et al. 1997, Sanchez-Rodriguez 1997, Silva et al. 2002), confirming the 

stability of the photosystems to water stress. Other studies show increases in Fv/Fm 

values during drought (Correia et al. 2014), which might be a compensatory response 

to mild stress. Rather than being due to damage to photosystems, decreases in 

photosynthesis are mostly attributed to differences in usage of N by photosystems 

(Heckathorns et al. 1997) as well as to hormonal responses that induce stomata 

closure (Queiroz et al. 2002). 

Plants under drought activate mechanisms to balance the excessive energy 

and prevent damage to their photosynthetic apparatuses (Casper et al. 1993, Lima et 
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al. 2002). In this study this could be observed as the higher NPQ values under mild 

drought. Non-photochemical quenching has been shown to increase with stress and 

is associated with protective downregulation, reversible once they are watered 

(Heckathorn et al. 1997). In addition, it was observed that mutants of the model plant 

species Arabidopsis thaliana with lower NPQ capacity perform worse (Li et al. 2002).  

Fluorescence parameters could be particularly interesting in our study to 

understand the physiological responses of these grasses in different conditions of 

light, which would simulate the canopy gradient naturally present in the Cerrado 

(Castro & Kauffman 1993). Invasive grasses are known for being very successful in 

open areas, while being less effective in invading shaded sites. In fact, shading is 

also proposed as a control technique for these grasses. Furthermore, all invasive 

grasses are C4 grasses, which present a differential distribution of the biochemical 

apparatus for carbon fixation, creating a more effective way of capturing carbon by 

reducing photorespiration (Taiz & Zeiger 1998). However, this mechanism is 

sensitive to low light intensities, explaining their success in the tropical savannahs, 

characterized by high radiation intensities. Although the majority of Cerrado grasses 

mainly have the C4 photosynthetic pathway, there is also a C3 grass, Echinolaena 

inflexa, which could be an interesting subject to compare to the invasive species in 

different light regimes. In the present study this grass was only studied regarding its 

germination in post-fire environments. It is a grass with low seed production and 

medium germination rate. However, it could, in theory, benefit from fire in closed 

canopy sites.  

Other than using the fluoresce approach in different light regimes, this study 

could also benefit from the measurement of other parameters as a more detailed 

research on non photochemical quenching and the use of rapid light curves, which 
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could lead to further insights about the functioning of photosystems in these plants in 

different light intensities. 

(B) Growth: The invasive species performs better 

This study assessed the effect of an M. minutiflora invasion in an ecosystem's 

functioning through the bait-lamina test. It also measured seed germination 

parameters and morphological, physiological and biochemical traits of young plants. 

The bait lamina test is the approach used in chapter 3 has been reported by Römbke 

(2014) as a basis for other works within similar regions and case-studies or in order 

to improve the  bait-lamina method. 

There is much in evidence in the literature of this invasive species' effects on 

biodiversity and fire regime. Furthermore, data has shown that it could also affect 

ecosystem functioning by affecting soil. In places where this plant was well-

established soil feeding activity increased tremendously. This study also confirmed 

the high and fast germination rate of this species, as well as a high seedling growth 

rate and tolerance to fire and stress.  

Germination is the first bottleneck that plants have to go through when 

colonizing an environment. M. minutiflora has high productions of seeds, seed 

viability and germination rate, as well as a fast germination. This early establishment 

is very important and Sarukhan & Harper (1973) showed that plants that establish 

themselves first are less susceptible to competitive effects when mature.  

Furthermore, fertilization enhanced the performance of the invasive species in 

a more pronounced way than in the native species, probably reflecting a better 

efficiency in nutrient absorption and use. This was confirmed by a higher 

concentration of nitrate on leaves, especially when fertilized. This study would also 

benefit from the measurement of nutrients on senescent leaves. This parameter 
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would elucidate the recycling of nutrients. Native species are known to have high 

rates of nutrient reabsorption from senescent leaves. However, studies have shown 

even higher rates of nutrient reabsorption for this invasive species when compared to 

native grasses. Experiments with fertilization in the Cerrado have shown to promote 

faster nutrient cycling, leading to litter degradation (Jacobson et al. 2011). This 

condition would probably increase the susceptibility of the environment to the 

opportunist invaders. Baruch et al. (1989) has also shown higher efficiency of nutrient 

allocation to leaves in M. minutiflora, which, combined with lower costs for tissue 

building, helps to explain its high growth rate and rapid response to fertilization. 

Constant water availability and/or water in high quantities promote a better 

performance of the invasive species, making its biomass allocation even greater than 

the native species'. This is particularly true when we compare data from Chapter 4 

and 5, which had different watering regimes. We hypothesized that when water is 

available every day, even in low quantities, the invasive species is able to readily and 

efficiently use it with its extensive root system (Silva & Haridasan 2007). Many 

studies showed the advantages that African grasses take with high availability of 

resources. Also, Klink (1994) has shown that clipping in soils where water was more 

available resulted in better recovery for M. minutilfora. Baruch & Fernadez (1993) 

discusses the trade-offs of African grasses that present higher growth rates than 

American grasses in a non-limiting environment. These same opportunistic grasses 

presented less plasticity in adverse situations, when the native species present better 

evasion mechanisms. 

This species' fast response to nutrients, tolerance to drought and its effect on 

the soil's biological activity may also be a reflection of its extensive root biomass. 

This characteristic may facilitate water uptake from deeper soil levels, also enabling a 
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fast interception of surface water. Cerrado grasses presented a high root:shoot ratio, 

but M. minutiflora presented much greater underground biomass allocation. This root 

biomass may be the reason of the increase of biological activity in the soil, which is 

known to be higher near plant roots, due to the favourable microenvironment created 

for soil biota by root exudates.  

Root biomass is also crucial in competition, mainly for nutrient and water 

acquisition. Many studies showed the importance of underground competition as well 

as aerial competition (Snaydon & Howe 1986, Silva & Castro 1989). Furthermore, 

Wilson & Shay (1990) have shown that root competition has a more specific role in 

competition among grasses. Paspalum stellatum, for instance, presents better 

performance when protected from root competition with M. minutiflora (Aires 2013).  

All of these evidences confirm the ease this species has to invade and 

establish itself in the environment, depleting biodiversity by outcompeting native 

grasses.  

This study assessed the effect of an M. minutiflora invasion in an ecosystem's 

functioning through the bait-lamina test. It also measured seed germination 

parameters and morphological, physiological and biochemical traits of young plants. 

The bait lamina test is the approach used in chapter 3 has been reported by Römbke 

(2014) as a basis for other works within similar regions and case-studies or in order 

to improve the  bait-lamina method. 

There is much in evidence in the literature of this invasive species' effects on 

biodiversity and fire regime. Furthermore, data has shown that it could also affect 

ecosystem functioning by affecting soil. In places where this plant was well-

established soil feeding activity increased tremendously. This study also confirmed 

the high and fast germination rate of this species, as well as a high seedling growth 
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rate and tolerance to fire and stress.  

Germination is the first bottleneck that plants have to go through when 

colonizing an environment. M. minutiflora has high productions of seeds, seed 

viability and germination rate, as well as a fast germination. This early establishment 

is very important and Sarukhan & Harper (1973) showed that plants that establish 

themselves first are less susceptible to competitive effects when mature.  

Furthermore, fertilization enhanced the performance of the invasive species in 

a more pronounced way than in the native species, probably reflecting a better 

efficiency in nutrient absorption and use. This was confirmed by a higher 

concentration of nitrate on leaves, especially when fertilized. This study would also 

benefit from the measurement of nutrients on senescent leaves. This parameter 

would elucidate the recycling of nutrients. Native species are known to have high 

rates of nutrient reabsorption from senescent leaves. However, studies have shown 

even higher rates of nutrient reabsorption for this invasive species when compared to 

native grasses. Experiments with fertilization in the Cerrado have shown to promote 

faster nutrient cycling, leading to litter degradation (Jacobson et al. 2011). This 

condition would probably increase the susceptibility of the environment to the 

opportunist invaders. Baruch et al. (1989) has also shown higher efficiency of nutrient 

allocation to leaves in M. minutiflora, which, combined with lower costs for tissue 

building, helps to explain its high growth rate and rapid response to fertilization. 

Constant water availability and/or water in high quantities promote a better 

performance of the invasive species, making its biomass allocation even greater than 

the native species'. This is particularly true when we compare data from Chapter 4 

and 5, which had different watering regimes. We hypothesized that when water is 

available every day, even in low quantities, the invasive species is able to readily and 
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efficiently use it with its extensive root system (Silva & Haridasan 2007). Many 

studies showed the advantages that African grasses take with high availability of 

resources. Also, Klink (1994) has shown that clipping in soils where water was more 

available resulted in better recovery for M. minutilfora. Baruch & Fernadez (1993) 

discusses the trade-offs of African grasses that present higher growth rates than 

American grasses in a non-limiting environment. These same opportunistic grasses 

presented less plasticity in adverse situations, when the native species present better 

evasion mechanisms. 

This species' fast response to nutrients, tolerance to drought and its effect on 

the soil's biological activity may also be a reflection of its extensive root biomass. 

This characteristic may facilitate water uptake from deeper soil levels, also enabling a 

fast interception of surface water. Cerrado grasses presented a high root:shoot ratio, 

but M. minutiflora presented much greater underground biomass allocation. This root 

biomass may be the reason of the increase of biological activity in the soil, which is 

known to be higher near plant roots, due to the favourable microenvironment created 

for soil biota by root exudates.  

Root biomass is also crucial in competition, mainly for nutrient and water 

acquisition. Many studies showed the importance of underground competition as well 

as aerial competition (Snaydon & Howe 1986, Silva & Castro 1989). Furthermore, 

Wilson & Shay (1990) have shown that root competition has a more specific role in 

competition among grasses. Paspalum stellatum, for instance, presents better 

performance when protected from root competition with M. minutiflora (Aires 2013).  

All of these evidences confirm the ease this species has to invade and 

establish itself in the environment, depleting biodiversity by outcompeting native 

grasses.  
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Our results showed that the invasive species presented lower concentrations 

of MDA, a reflection of less damage to its membrane in relation to the native species. 

Furthermore, the native species showed an increase in MDA concentration with 

drought, which was not observed for the invasive, regardless of environmental 

conditions (moisture, fertilization, clipping). Therefore, drought either increases ROS 

in a more pronounced way in the native species or this is a reflection of a weaker 

scavenging system. This can be related to the native lower enzymatic activities of G-

POX and CAT under drought (see below).  

In the present study, there was no significant effect of environmental stress on 

carotenoid concentration. However, other studies have shown a decrease in 

carotenoids with environmental stress, which can potentially damage the plant's 

antioxidant protective system (Sairam & Saxena 2000). Part of the data suggests that 

the invasive species has a higher production of carotenoids, but the difference 

between species is reduced with fertilization. Higher carotenoids might confer a 

stronger antioxidant mechanism that enhanced plant growth and protected 

membranes from peroxidation in the invasive species. With fertilization, the native 

species' carotenoid concentration increased, but even then the invasive species still 

performed better. Therefore, molasses-grass must make use of other mechanisms to 

deal with environmental stress. Other antioxidants that would be interesting to 

measure would be the redox state of Glutathione and the concentration of Ascorbate. 

These molecules are important buffers in controlling the effects of ROS in plants. 

Ascorbate (ASH) is a soluble antioxidant that participates in detoxification by 

donating electrons to many reactions. It can directly scavenge superoxide and 

hydroxyl, and participate in the violaxantine cycle for energy dissipation. Glutathione 

(GSH) is a substrate for many reactions. It regenerates ASH, scavenges radicals and 
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participates in the detoxification of xenobiotics. It can also conjugate with metabolites 

with the aid of GST.  There are techniques to easily measure the concentration of 

these antioxidants using microplates (Queval & Noctor 2007). Further studies would 

benefit from these measurements.  

SOD activity was higher for the native species, but only in the well watered 

treatments that were under fertilization. SOD activity was shown to increase with 

metal and salt concentrations (Elkahoui et al. 2005, Silva et al. 2013). Higher nutrient 

availability might be creating conditions that stimulate the native species to produce 

more ROS. This species is adapted to low concentrations of nutrients in the soil and 

doesn't present a positive response to fertilization as strong as M. minutiflora does. It 

was not possible to derive conclusion on this regarding severe drought exposure 

because the SOD activity was not measured in the native species due to lack of plant 

material. Higher SOD activity is consistent with MDA values for the native species. 

Studies showed increases in SOD activity with drought and enhanced drought 

tolerance in plants overexpressing SOD genes. However, the invasive species 

showed a decrease in its activity with drought (Zhang & Kirkham 1994, Gill & Tuteja 

2010). 

The invasive species presented higher levels of this enzyme and a significant 

increase under drought, even after clipping. This might be the cause of an efficient 

scavenging system that protected membranes from being damaged, reflecting on the 

low MDA concentrations under drought for this species. Other studies show 

increases of CAT with drought and its relations with tolerance to drought (Gamble & 

Burke 1984, Arora et al. 2002, Gill & Tuteja 2010). APX activity was similar between 

both species but was higher for the native species under drought, which might reflect 

this species' preferable pathway to deal with ROS, rather than by Catalase and G-
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POX activity. Maricle et al. (2007) and Lima et al. (2002) also showed increase of 

APX with drought. This enzyme is particularly easy to measure and presents strong 

activity even at low concentrations, when compared to CAT and APX. However, not 

so many studies use this enzyme as a biomarker for oxidative stress and 

comparisons are more easily found in the literature for CAT, APX and SOD (see Gill 

& Tuteja 2010 for review).  G-POX has been reported to increase with toxic 

compounds such as metals (Gill & Tuteja 2010). In this study, GPOX also increased 

with fertilization. However, the invasive species tended to present higher GPOX 

activity, especially under drought, which might be conferring protection against lipid 

peroxidation. Water availability seems to increase this activity for the native species. 

It is important to notice that flood was also detrimental to this species, causing 

damage and reduced growth. This was probably done by damaging the roots with an 

aerobic environment, thus impairing their growth. 

GST activity was higher in native plants. However, GST enzymes are a large 

and diverse group, and can account for over 1% of a plant's soluble proteins, and its 

gene family is also highly diverse. GST participates in many reactions in the plant 

such as the elimination of herbicides, hormone homeostasis, transportation of 

flavonoids into the vacuole and signalling (Dixon et al. 2002). Therefore, GST is not 

specific to oxidative stress repair and a higher activity in the invasive species might 

be a reflection of another mechanism present in this species. However, drought and 

flood seemed to enhance its activity. 
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THE EFFECT OF MANAGEMENT 

 
(A) Fire 

This study has also shown that management could reduce the performance of 

the invasive species M. minutiflora P. Beauv. species and partially control its spread, 

by permitting other grasses to coexist with it.  

In places with frequent fires, invaded patches had their soil's biological activity 

decrease to natural levels. Furthermore, post-fire temperatures, despite accelerating 

germination, were able to reduce the germination rate and viability of M. minutiflora 

seeds. On the other hand, fire seems to favour the germination of some plants. 

Paspalum stelattum Humb. and Bonpl. Ex Flüggé germination, for example, tended 

to increase with a longer period of post-fire environment (Chapter 2). Furthermore, 

Munhoz & Felfilli (2005) reported flowering for this species after burns and Aires 

(2013) recommends this species for restoration of degraded areas due to its 

relatively high germination rate, resilience to fire, and especially because of its high 

recruitment and seedling survival rate. Fire has never been reported to induce 

flowering in M. minutiflora; however, many native species bloom a few days after fire. 

Burning has also been shown to be more damaging to this species than 

clipping, decreasing biomass allocation. Marinho (2013) has shown that frequent 

burns reduce the cover by this species and Marinho & Miranda (2013) has shown 

that burns can be lethal to mature plants of this species. D’Antonio et al. (2001) found 

mortality rates of over 70% for molasses-grass after burns.  Fire also dramatically 

reduces its soil seed bank. In contrast, fire doesn’t affect the density of native soil 

seed banks (Andrade & Miranda 2014). The high specific heat coefficient and the 

architecture of the individuals (with great accumulation of dead biomass near the 
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ground) may create a favourable condition to intense fires, with high residence time 

in clumps of the invasive species, thus damaging the basal meristems and causing 

plant death (Baruch & Bilbao 1999, D’Antonio et al. 2001). Native species, on the 

other hand, present a more upright architecture, which might favour a quick fire (and, 

therefore, less damage). Neto et al. (1998) state that with high precipitation, the 

biomass of a campo-sujo (grassland with scattered bushed and small trees) area 

may completely recover within a year, while Barros et al. (2006) stated that this time 

is not enough to recover the fuel biomass of an invaded site. Also, frequent burns 

weaken plants by depleting the nutrients stored in roots, due to energy allocated to 

re-sprouting. In the present study no native species survived the experimental fire. 

However, further measurement should be done with other native species and in more 

controlled fire conditions (measuring intensity, time of residence etc.). 

Fire, however, may promote invasion by other alien species and also 

momentarily increase soil fertility due to the input of ash, promoting invasion by 

opportunist species (Coutinho 1990). In the present study we measured the effects of 

A. gayanus in the functioning of the ecosystem. In the studied area this species didn’t 

present the same effect as M. minutiflora in the soil feeding activity. However, other 

studies showed that this species has higher growth rates and is less damaged by fire 

(Marinho & Miranda 2013). Even with frequent burns, this species was able to 

increase its cover. This plant also produces a great amount of seeds, with high 

germination rate. Therefore, fire has to be regarded with caution and one might not 

use it in places where this species is present.  

Furthermore, in areas with heavy invasions of M. minutiflora fuel biomass may 

reach over twice as much as in natural areas (Silva & Haridasan 2007, Hoffman & 

Haridasan 2008, Martins et al. 2011), promoting fires that are three times more 
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intense (Marinho 2013). This may cause much more damage to native species. If the 

area does not present a native soil seed bank or nearby sources of seeds, the 

perpetuation of the invasive species might be enabled by fire. 

 

(B) Clipping 

Clipping didn’t present a strong negative effect on the invasive species. Also, 

clipping would be more expensive and would require more labour to apply in 

extensive areas.  However, other characteristics might favour the choice of this 

method instead of fire. First of all, clipping also promotes flowering of native plants 

(Haddad & Valio 1993). The effect is not as pronounced as with fire, but it is also 

present. Furthermore, this effect is not observed in the invasive species M. 

minutiflora or in A. gayanus. Klink (1994) has also shown that M. minutiflora is not 

able to recover its prior architecture after clipping. Furthermore, clipping might be an 

easier approach to convince managers to apply in natural reserves, since it is more 

controllable than fire. Studies show that clipping applied in the end of rainy season 

would be more harmful for this invasive species, which is then in the flowering phase. 

Clipping applied during this period would deplete these plants from energy to 

resprout, promote flowering of native species and the dead biomass deposed on the 

soil would shade clipped bushes, preventing resprouting. 

Our data shows that clipping reduced the differences among species when 

watering was intermittent, while in constant moisture the invasive species continued 

to grow twice as much as the native. However, the invasive species continued to 

perform better. Many studies have reported compensatory growth in plants as an 

adaptation to herbivory and fire, being a response to removal of apical dominance 

(Sarmiento 1992, Hjálten et al. 1993, Leite et al. 1997, Silva & Raventos 1999).  
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While in the field and in lab experiments we observe that without disturbance 

the invasive species will always perform better, and with high availability of nutrients 

the invasive species will perform better even when disturbed, the lab experiments 

also showed that in some environmental conditions, disturbance can make 

competition among the invasive and native grasses more balanced.  

For instance, when soil is well drained (here represented by the intermittent 

watering in clay pots), both species tend to recover in a more similar rate after 

clipping. Differences between species when watering was intermittent was noticed 

only when they were also fertilized, and although invasive plants grew more than the 

native plants, these recovered more in relation to pre-clipping values. Therefore it is 

assumed that the intermittent watering regime better represents the natural 

conditions of Cerrado soils, that are mostly red-latossols, well drained and dystrophic.  

 

LIMITATIONS 

 

This study is mostly limited to lab experiments, with the exception of the bait-

lamina experiments. For this reason, extrapolation of data to real-life scenarios must 

be taken with caution. Although in laboratory experiments environmental factors can 

be controlled to assess the effect of specific variables and conclusions drawn more 

easily, the conditions are far from real-life situations. Therefore, mesocosm and field 

experiments would be the next step to complement the present study. It would be 

interesting to measure plant competition and seedling recruitment in situ, assess 

plant ecophisyology in the environment and study the effect of management in larger 

scales. However, management in natural areas in Brazil is difficult due to 

environmental legislation. Therefore, lab studies are still necessary in parallel. 
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Additionally, different watering methods led to diverse results (Chapter 4, 5, 6). 

Methods should be chosen carefully to answer the questions raised, considering 

realistic needs. In this study it was possible to observe that adding a small amount of 

water every day for many days is less stressful to plants than irrigating them to soil 

field capacity and completely suspending irrigation for a few days.  

There was also the limitation of physical space and time. For instance, the 

slow growth rate of the native species constrained the acquisition of biological 

material sufficient for all analyses. Therefore, there were many parameters that could 

not be repetitively measured. Since no other study was found using S. microstchyum 

(for the parameters assessed in this study), many preliminary experiments had to be 

carried out. This optimization of the test conditions became very time-consuming. 

Furthermore, the native specimens were much harder to measure. Besides lack of 

material, leaves were also smaller, hindering measurements with Mini-PAM and 

IRGA chambers for this species. These difficulties led to a greater standard deviation 

for these parameters in the native species. As for the biomarkers, tissue processing 

was also problematic. Since tissue was rigid, the homogenization was arduous, 

which might have led to greater variation in the data. 

Legal transportation and collection bureaucracy in Natural Reserves in Brazil 

also constrained the use of several native species for the lab experiments. 

Furthermore, multiple seed collections had to take place in the field in Brazil since 

seed viability and seedling establishment decreased with time of storage. The use of 

many native species was only possible in one task (Chapter 3), which was carried out 

in Brazil. From this study it was possible to observe the diverse responses that a 

plant community could display. Further studies would benefit from using multiple 

native species, which would reflect a more realistic environment.  
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Furthermore, further studies would benefit from measurements of other related 

parameters: leaf elongation rates, leaf and root anatomy, concentration of nutrients in 

senescent leaves and roots, partition of biomass between leaves and culms, 

Ascorbate and GSH concentration and oxidation state, Rapid Light Curves, H2O2 

concentration, Proline, ABA, or DNA damage. 

 

MAIN HIGHLIGHTS AND CONCLUSIONS 

 
(1) The invasive species M. minutiflora affects ecosystem functioning by 

increasing biological activity, except in burned areas. This is 

probably related to the massive root system of this species.  

(2) The other invasive species, A. gayanus doesn’t present the same effect 

on soil functioning.  

(3) Fire immediately reduces biological activity, which recovers fast with 

rain, but frequent fires tend to maintain lower soil feeding activity. 

(4) The invasive species M. minutflora has high germinations rates, viability 

and fast germination, and it is not harmed by post-fire 

environments. 

(5) The community of species presents diverse germination parameters 

and multiple responses to post-fire conditions, which may confer 

resilience to invasion to the ecosystem. 

(6) M. minutiflora's initial stages (seedlings and 3-month-old plants) 

perform better than the native in any situation, being more resistant 

to drought, responding better to fertilization, maintaining healthier 
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photosynthesis activity and efficient protection against oxidative 

stress.  

(7) Water availability is more detrimental then nutrient availability for the 

invader's success. 

(8) Fire presents stronger negative effects on M. minutiflora and S. 

michrostachyum than clipping. 

(9) Clipping reduced the difference in performance between M. minutiflora 

and S. microstachyum. The latter presented a better relative 

recovery in comparison to the invasive plants, although these still 

performed better in absolute values. 

(10) Clipping seems a feasible management to be applied in places where 

the native community is still present and in the absence of other 

invasive species. Data suggests it would be more efficient when 

applied in early dry season in places with no fertilization input. 
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