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Resumo Nesta tese são propostos modelos físicos e comportamentais para o amplifi-
cador óptico semicondutor reflectivo (RSOA), tendo como objectivo a avali-
ação do seu desempenho quando utilizado como modulador em ligações de
rádio sobre fibra (RoF). Os modelos propostos são capazes de prever o com-
portamento do dispositivo quando utilizado com sinais de banda larga bem
como quando estimulado por sinais de elevada potência.
Inicialmente propõe-se um modelo físico simplificado para o RSOA baseado
nas equações de taxa e nas equações de propagação electromagnética. A im-
plementação do modelo utiliza o ADS (Advanced Design Systems) e o bloco
designado por dispositivo definido simbolicamente (SDD) para descrever as
equações de taxa, assim como a propagação de fotões ao longo da cavidade.
O modelo permite uma análise detalhada do ganho óptico, distorções har-
mônicas, intermodulação e seu desempenho de transmissão com portadoras
RF modeladas.
Foram também considerados modelos comportamentais. Um modelo
baseado em rede neural artificial (ANN) e um modelo polinomial general-
izado para banda base foram considerados tendo os parâmetros respectivos
sido extraídos utilizando, para o efeito, dados obtidos experimentalmente.
São demonstradas a característica da distorção resultante da conversão am-
plitude - amplitude (AM-AM) e conversão da fase - amplitude (AM-PM) no
modulador RSOA. Um modelo baseado em parametros X, obtidos a partir do
modelo físico, foi também analisado.
Compensação da não-linearidade do modulador RSOA é realizada com base
num modelo polinomial com memória. Demonstra-se que a distorção não
linear do modulador RSOA pode ser compensada com sucesso. Com a com-
pensação obtem-se uma redução de 17 dB da distorção introduzida pelos
produtos de intermodulação de terceira ordem. O EVM (Error Vector Magni-
tude) apresenta uma melhoria de 6,1% para 2,0%.
Na última parte deste trabalho considera-se uma configuração que repre-
senta a ligação ascendente por fibra de um sistema de antenas remoto a
uma estação central de processamento. Com esta configuração pretende-
se demonstrar a possibilidade de implementação de uma tecnologia MIMO,
suportada num sistema RoF. Baseado numa técnica de multiplexação subpor-
tadora (SCM), os sinais de quatro canais com largura de banda de 100 MHz
por canal são multiplexados e utilizados para modelar o ganho do RSOA. O
desempenho deste link óptico é caracterizado para modulações OFDM con-
siderando diferentes números de sub-portadoras por símbolo (64, 512 , 1024
e 2048) assim como o formato QAM imposto sobre cada sub-portadora.





Keywords Optical communications, radio over fiber, reflective semiconductor optical
amplifier, nonlinearity, distortion, linearization, subcarrier multiplexing,
modeling.

Abstract In this work physical and behavioral models for a bulk Reflective Semicon-
ductor Optical Amplifier (RSOA) modulator in Radio over Fiber (RoF) links
are proposed. The transmission performance of the RSOA modulator is pre-
dicted under broadband signal drive.
At first, the simplified physical model for the RSOA modulator in RoF links
is proposed, which is based on the rate equation and traveling-wave equa-
tions with several assumptions. The model is implemented with the Sym-
bolically Defined Devices (SDD) in Advanced Design System (ADS) and val-
idated with experimental results. Detailed analysis regarding optical gain,
harmonic and intermodulation distortions, and transmission performance is
performed. The distribution of the carrier and Amplified Spontaneous Emis-
sion (ASE) is also demonstrated.
Behavioral modeling of the RSOA modulator is to enable us to investigate
the nonlinear distortion of the RSOA modulator from another perspective
in system level. The Amplitude-to-Amplitude Conversion (AM-AM) and
Amplitude-to-Phase Conversion (AM-PM) distortions of the RSOA modu-
lator are demonstrated based on an Artificial Neural Network (ANN) and
a generalized polynomial model. Another behavioral model based on X-
parameters was obtained from the physical model.
Compensation of the nonlinearity of the RSOA modulator is carried out
based on a memory polynomial model. The nonlinear distortion of the RSOA
modulator is reduced successfully. The improvement of the 3rd order inter-
modulation distortion is up to 17 dB. The Error Vector Magnitude (EVM) is
improved from 6.1% to 2.0%.
In the last part of this work, the performance of Fibre Optic Networks for
Distributed and Extendible Heterogeneous Radio Architectures and Service
Provisioning (FUTON) systems, which is the four-channel virtual Multiple
Input Multiple Output (MIMO), is predicted by using the developed physical
model. Based on Subcarrier Multiplexing (SCM) techniques, four-channel
signals with 100 MHz bandwidth per channel are generated and used to drive
the RSOA modulator. The transmission performance of the RSOA modulator
under the broadband multi channels is depicted with the figure of merit, EVM
under di�erent �adrature Amplitude Modulation (QAM) level of 64 and 254
for various number of Orthogonal Frequency Division Multiplexing (OFDM)
subcarriers of 64, 512, 1024 and 2048.
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Chapter 1

Introduction

The main focus of this thesis lies on the investigation of the dynamical properties of Semiconductor

Optical Ampli�er (SOA) or speci�cally Re�ective Semiconductor Optical Ampli�er (RSOA). The various

contributions during my PhD research are presented.

1.1 Radio over Fiber (RoF) Links

The integration of optical �ber and wireless communication has been the development trend of

the future communication systems [5–9]. The fundamental principle of RoF is that Radio Frequency

(RF) (analog) radio signals are transmitted through an optical �ber link [10]. The use of radio signals

means that the link is analog in nature and its performance must be characterized.

RoF is an essential technology for broadband wireless communications in a range of applica-

tions including last mile solutions, extension of existing radio coverage and capacity and backhaul.

The well known advantages of deploying optical �ber as transmission medium such as low cost,

low attenuation, large bandwidth, and immunity to electromagnetic interference make it the most

�exible solution for transporting radio signals from/to Central Unit (CU) to/from Remote Access

Units (RAUs). RoF also enables us to integrate multiple services over a single �ber with Subcarrier

Multiplexing (SCM) and Wavelength Division Multiplexing (WDM) techniques.

Due to its simplicity, a RoF link based on the most popular Intensity-Modulation Direct-Detection

(IMDD) scheme [11] is shown in Fig. 1.1. The main components in the RoF link include an Electrical-

to-Optical Conversion (E/O) converter at the transmitter side, optical �ber, and Optical-to-Electrical

Conversion (O/E) converter at the receiver side. The E/O converter plays a role of modulating an

optical carrier intensity with an electrical signal, for instance,RF signal. The optical �ber with trans-

1
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parency property delivers the modulated optical signal from the transmitter to the receiver. The O/E

performs an inverse operation of the E/O to convert the optical signal to the electrical signal. In the

IMDD communication system the O/E is usually implemented by a photodetector.

E/O O/E

RF
Input

RF
Output

Figure 1.1: A general RoF link using a simple IMDD scheme. main components include E/O
conversion, optical �ber and O/E conversion.

There are three types of RoF links presented in [1] (shown in Fig. 1.2).

• Directly Modulated Laser (DML)

A DFB laser is typically considered to act as DML due to its narrow spectral linewidth, low

noise and high linearity. The electrical signal is directly injected at the bias of the laser to

modulate its intensity.

• Mach-Zehnder Modulator (MZM)

This is a more complex and more expensive option than DML because it requires two optical

components; an unmodulated laser and a MZM. However, the MZM approach may possibly

o�er improved performance in terms of noise and distortion compared to the DML, especially

if distortion compensation techniques are considered. The MZM link type is not constrained

by the availability of analog lasers at preferred wavelengths; this �exibility means that MZM

links could be used with Dense Wavelength Division Multiplexing (DWDM) wavelengths to

provide greater capacity. MZM links can be used for both uplink and downlink directions,

although temperature stability may cause concern for the uplink direction. Bias drifting is an

issue as the gain is dependent on the MZM bias point.

• RSOA modulator

Unlike the DML and MZM approaches, the RSOA modulator is used only for the uplink di-

rection, replacing the laser diode in the RAUs by a RSOA due to the limit of the modulation

bandwidth, conferring �exibility to the optical network design, through the centralization of

the optical sources. It uses the seed light from an optical source in the CU and therefore does
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not require an extra optical source in RAU. In WDM systems, this allows to manage the wave-

length plan from the CU, without modi�cations in the optical terminal equipments and reduce

the network cost. The RSOA link can provide more �exible and dynamically recon�gurable

optical network architecture due to its colorless property [1].

PD

RF output

PD

RF output

PD

RF output

CU

DML

MZM

RSOA

RAU

Laser

RF input

MZM

RF input

Laser

RF input

RSOA

Laser

Figure 1.2: Schematic of radio over �ber links [1].

1.2 Distributed Antenna System (DAS)

One of the main applications of RoF is a DAS. The concept of the DAS was originally pro-

posed to improve the coverage performance of indoor wireless communication systems [12, 13]. In

recent years the DAS has drawn much attention in cellular communications for supporting out-

door coverage and capacity [14, 15]. As mobile wireless applications become increasingly popular,

the next-generation wireless communication systems will need to provide higher data transmis-

sion rate, higher RF transmission bandwidth and higher mobility connection when compared with

current networks. For instance, the Third Generation Partnership Project (3GPP) Long Term Evolu-

tion (LTE) is a highly �exible radio interface. Bandwidth extension in LTE-Advanced is supported

via carrier aggregation [16]. Carrier aggregation allows an overall transmission bandwidths of up to

100 MHz, enabling peak target data rates in excess of 1 Gbps for downlink and 500 Mbps for uplink



4 1. Introduction

to be achieved [17, 18]. In this context, the most e�ective way to improve the throughput per user

is to deploy networks with a small cell size to reduce the number of users per cell [19]. The small

cell architectures such as Picocell, Femtocell and DAS have attracted the attention of standardization

bodies, such as 3GPP.

In EU Fibre Optic Networks for Distributed and Extendible Heterogeneous Radio Architectures

and Service Provisioning (FUTON) project [4], a large number of RAUs, where the RAU antennas

act as elements of a virtual Multiple Input Multiple Output (MIMO) architecture proposed, are ge-

ographically distributed over a large area and connected to a CU via optical �ber [20], in order to

provide enhanced cellular coverage and capacity.

1.3 Re�ective Semiconductor Optical Ampli�er

RSOAs have recently attracted much interest of many researchers because of their nonlinear

function [21], noise reduction [22], ampli�cation [23], and modulation properties [24–28].

A RSOA is similar to a SOA. For the RSOA, however, the High Re�ective (HR) coating is about

95 % at rear facet. The Anti re�ective (AR) coating is added at the input fact and re�ectivity is

around 1 × 10−3%. SOAs and RSOAs are typically made from groiup III-V compound direct band

gap semiconductors (e.g. InP/InGaAsP, GaAs/AlGaAs, InP/InGaAs, and InP/InAlGaAs). Comparing

devices with the same characteristics SOA and RSOA (physical dimensions and design), the RSOA

has more optical and E/O gain. The SOA requires higher biasing currents to reach the same gain. For

the same current and input optical power the RSOA reaches a higher level of saturation. The large

biasing currents can raise an issue of power dissipation in a unit placed remotely. The RSOA used in

this study and designed at Alcatel-Thales III-V Laboratory in France has a wide optical bandwidth,

which is around 50 nm as depicted in Fig. 1.3. Therefore, it can be used over a wide range of

wavelengths.

1.4 Motivation and Objectives

An accurate physical model will contribute to optimally designing of devices and predicting the

characteristics of devices. Connelly [29–31] presented a wideband physical model of a bulk InP-

InGaAsP SOA. In the model, the relationship between spontaneous and stimulated emission is clari-

�ed. Spontaneous emission within the ampli�er is modeled by traveling wave power equation. The
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Figure 1.3: RSOA spectrum with low optical con�nement.

model can be applied to determine the steady-state properties of an SOA. A parameter extraction

algorithm is required to obtain the accurate intrinsic parameters. In 2008, Kuntze et al. [32] proposed

an analytical state-space model for SOA dynamics with nonlinear gain compression. The model was

possible with polynomial gain compression and position-independent carrier density. This com-

pressed model showed more accurate than existing non-compressed models. Runge et al. [33] pro-

posed a time domain model for ultralong SOAs, which can be regarded as being divided into an

amplifying section and a saturated section. Based on the model, a simulation to generate a widely

tunable short pulse (less than 2 ps) was performed [34]. More recently, Connelly proposed a physical

model for pulse (39.6 ps pulse width) propagation in RSOA in order to predict the gain dynamics,

spatial dependence of the pulse shape, and dynamic chirp [23].

Nielsen et al. [35] presented a transfer function to explain the resonant behavior of the small-

signal frequency response in a SOA used as a wavelength converter. Morel and Sharaiha [36] derived

a time-domain transfer matrix model for short pulse (picosecond) propagation in SOAs. Razaghi et

al. [37] proposed a modi�ed nonlinear Schrödinger equation based model for pulse propagation in
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the counter-propagation regime. In the model, group velocity dispersion, two-photon absorption1,

and ultrafast nonlinear refraction are included, which are more important for pulse propagation.

All models of SOAs and RSOAs discussed above are applied for pulse ampli�cation and propa-

gation, wavelength converter. Therefore, these models are signi�cantly more complicated and con-

sequently require more advanced numerical techniques to solve, which sometimes require signi�-

cantly more computation time. To the best of our knowledge, there is no physical model of the RSOA

modulator for analog RoF applications.

Unlike physical model, a behavioral model, also called a black box, focuses on the relation be-

tween the input and output signals of devices or systems. The behavioral model can avoid the intrin-

sic parameters extraction of a device. The key advantage of the behavioral model is that it does not

require deep knowledge of the physics and functionality of the device. Currently behavioral model-

ing techniques have been considered to characterize RF power ampli�ers [38], predistorters [39,40],

and even laser [41], Erbium-Doped Fiber Ampli�er (EDFA) [42] and SOA [43,44]. In [43], a black-box

model, which does not use any intrinsic device parameters, has presented to characterize the spec-

tral gain and noise in SOAs. In [44], An Arti�cial Neural Network (ANN) based behavioral model

for Quantum-Dot SOAs (QD-SOAs) has been characterized by accuracy and validity for wide range

of input parameters such as pulse width, energy, normalized injection rate, and frequency shift.

Volterra series was �rst developed in 1887 by Vito Volterra. It is a model for nonlinear behav-

ior, similar to the Taylor series. It di�ers from the Taylor series in its ability to capture memory

e�ects of devices. It is a general nonlinear model with memory [45] and has been successfully used

to model PAs with memory e�ect [46], which is limited to mild nonlinearities due to the highly ex-

pensive computational task and complicated algorithm involved [47]. However, a serious drawback

of the Volterra model is the large number of coe�cients that must be extracted even though some

contributions to reduce the complexity of Volterra series [38, 48].

Ku and Kenney [49] proposed a new behavioral model which treats memory e�ects in nonlinear

power ampli�ers. The model is based on a memory polynomial, and a sparse delay tap structure was

used to reduce the parameter space required for accurate model identi�cation. A baseband behavior

of PA was described using a complex polynomial by Kim et al. [50]. Ding et al. [51] proposed a be-

havioral model based on memory polynomials for a digital baseband predistorter and implemented

it using indirect learning architecture. However, the conventional polynomial model exhibits nu-
1It is a process involving the simultaneous absorption of two photons whose combined energy is su�cient to induce

a molecule transition to an excited electronic state.
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merical instabilities when higher order terms are included [52]. Raich et al. [52] presented a set of

orthogonal polynomials, which can be used for PA as well as predistorter modeling. The orthogonal

polynomials can alleviate the numerical instability problem associated with the conventional poly-

nomials. Vieira et al. [53] presented a model for directly modulated laser using memory polynomials

which basically based on the predistorter model in [50,51]. The measured baseband signal was used

to extract the parameters of the model.

Analog RoF links su�er from nonlinear distortions2 induced mainly by the modulating device

[54], speci�cally RSOA modulator in our case. The nonlinear distortions generated by the modula-

tor such as harmonic and intermodulation distortions signi�cantly limit the overall dynamic range

and performance of the RoF links. Therefore, linearization techniques should be considered to im-

prove the performance of the links. The compensation can be done in both the optical and electrical

domains [54]. In [55, 56], cascaded MZMs architectures have been proposed to eliminate both the

third and �fth distortions in the optical domain. Dual parallel MZMs method has been proposed to

linearize the transfer function of the MZMs [57]. In [58, 59], a Distributed Feedback (DFB) laser has

been linearized by using external light-injected cross-gain modulation. Tabatabai et al. [60] have

proposed a feedforward linearization technique in the optical domain to improve the linearity and

suppressing the Four-Wave Mixing (FWM) of a SOA. The operation of the feedforward scheme is

based on the subtraction of two equal signals with subsequent cancellation of the error signal in

the output spectrum of the devices. All these approaches have complicated architectures, and high

expenses due to the requirement of additional optical devices.

In the electrical domain, most popular linearization techniques are feedforward and predistor-

tion, which have been widely applied to the RF power ampli�ers [40, 50, 51, 61–63]. A feedforward

linearization scheme has been presented in [64, 65]. Additional photodetector and laser are also re-

quired. Urick et al. [66] have proposed a wideband predistortion linearization for an electro-optic

MZM in analog �ber optic links. Based on a pair of antiparallel diodes, an analog broadband predis-

tortion circuit has been designed to linearize electro-absorption modulators [67].

The objective of this thesis is to modeling of the RSOA modulator used in the RoF links. Our

research e�orts focus on the following areas:

2The nonlinearity and dispersion of an optical �ber are beyond the scope of this thesis.
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• Develop a simple physical model for the RSOA modulator for RoF applications. Detailed anal-

ysis regarding harmonic and intermodualtion distortions, transmission performance, distribu-

tion of the carriers is performed.

• Develop black-box models in system level enabling to investigate the RSOA modulator from

another perspective.

• Attempt to compensate the nonlinear distortion caused by the RSOA modulator due to its

nonlinearity.

• Predict the transmission performance of the wideband SCM based systems based on the de-

veloped physical model.

1.5 Thesis Overview

The rest of this thesis is organized as follows. Chapter 2 proposes a simpli�ed physical model

for a RSOA modulator in RoF link based on rate equation and traveling-wave equations under some

approximations. The model is implemented using Symbolically De�ned Devices (SDD) in Advanced

Design System (ADS). The model parameters are extracted using optimization tool in ADS. The

static and dynamic characteristics of the RSOA modulator are presented.

Chapter 3 discusses behavioral modeling of the RSOA modulator using three methods such

as Generalized Memory Polynomial (GMP), Tapped-Delay Multilayer Perceptron (TDMLP) and X-

parameters3. A comparison between the methods are made. Nonlinear distortion and memory ef-

fect are described by plotting the dynamic Amplitude-to-Amplitude Conversion (AM-AM) and dy-

namic Amplitude-to-Phase Conversion (AM-PM) characteristics of the RSOA modulator. For the

X-parameters based model the one-tone and two-tone tests are used in order to characterize the

nonlinearity of the RSOA modulator.

A Digital Predistortion (DPD) based compensation technique is investigated in Chapter 4. Mem-

ory e�ects are considered in the DPD model in order to improve the linearization performance. The

dynamic AM-AM and AM-PM characteristics of the RSOA modulator without and with DPD are

demonstrated. The improvement for linearity of the RSOA is obtained.

Chapter 5 describes the prediction of the transmission performance of FUTON system. The op-

tical transport system uses the SCM, where the transmission over the optical �ber is at an Interme-
3X-parameters is a registered trademark of Agilent Technologies.
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diate Frequency (IF). The performance of four channels is demonstrated with di�erent modulation

schemes and data rates, which keep the channel bandwidth of 100 MHz as proposed in the FUTON

project.

Finally, the thesis ends with Chapter 6, where conclusions are drawn and recommendations for

future work are also made.
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Chapter 2

Physical Modeling and Simulation of
RSOA

A simpli�ed time domain physical model for a bulk RSOA modulator is proposed. The light wave

propagation can be modeled with traveling wave equations, and carrier rate equation can be used to

describe the interaction between the light and the gain medium. In order to solve these equations the

multi-section model is implemented by using SDD in ADS. The static and dynamic characteristics are

demonstrated with measurement and simulation. The spatial distribution of carrier density, signal pho-

ton density and Ampli�ed Spontaneous Emission (ASE) photon density inside RSOA are also simulated

by using the proposed model in this chapter. The model has potential applications in aiding design and

optimization of the RSOA, and can also be used to predict the behavior of optical systems incorporating

RSOA, such as SCM based multi-channel transmission systems, which will be addressed in chapter 5.

2.1 Introduction

As mentioned previously, the goal of this chapter is not to propose a complex model and consider

all physical parameters in a RSOA device but to investigate the static and dynamic characteristics of

the RSOA used in RoF links with simpli�cation under some assumptions.

The e�ect of the physical parameters in the context of SOA and RSOA has not been thoroughly

studied so far. The device modeling task has become an outstanding research area [23,31,32,36,68]. In

this chapter we focus on the physical modeling of a bulk RSOA modulator based on the rate equation

and the traveling-wave equations. Previous works have addressed the nonlinear compression gain

[69] and ASE [30]. However they have not been considered and implemented simultaneously in a

11
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current-injected RSOA modulator model. In our model both nonlinear gain saturation e�ect and the

ASE on the carrier density have been considered.

To make the model suitable to analog RoF applications, some approximations have been made.

• Since, as a modulator, the RSOA will be mainly illuminated by a Continuous Wave (CW) optical

source such as a DFB laser, the material gain is assumed to vary linearly with the carrier density

but with wavelength independence.

• The ASE power noise is assumed to be Gaussian white noise with an equivalent optical noise

bandwidth.

• For the sake of simplicity the e�ect of carrier di�usion is ignored. It is valid when the length of

active region is longer than carrier di�usion length, which is typically in order of micrometer

[70, 71].

• In order to further simplify the model, the non-radiative Auger recombination is approxi-

mately proportional to the cube of carrier density.

• The e�ects of linear radiative and non-radiative recombination, bimolecular radiative and non-

radiative recombination are not distinguished.

2.2 Physical Modeling

2.2.1 Rate Equation

Generally, the carrier density is increased by the bias current and decreased by several recom-

bination mechanisms. As mentioned previously, the carrier rate equation, representing the active

region interaction between photons and carriers, can be described as

∂N(z, t)

∂t
=

I

edwL
−R(N)− gnetνgS(z, t)− gnetνgSASE(z, t) (2.1)

where N is the active region’s carrier density, I is the injected current of RSOA, L, w and d are

length, width and thickness of the active region of RSOA, respectively. e is the electron charge. The

second term to fourth term on the right hand in (2.1) represents the spontaneous recombination

rate, stimulated emission recombination rate and ASE optical �eld, respectively. gnet is the net gain.
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νg is the group velocity. S(z) and SASE(z) are the signal photon density and ASE photon density,

respectively.

R(N) in (2.1) is expressed by a polynomial [72]

R(N) = AN +BN2 + CaugN
3 (2.2)

where A, B and Caug are linear radiative and non-radiative recombination coe�cient, bimolecular

radiative and non-radiative recombination coe�cient, and Auger recombination coe�cient, respec-

tively. The carrier lifetime τ(N) dependent on the carrier density is equal to 1/(A+BN+CaugN
2).

The modulation bandwidth of the RSOA modulator is mainly limited by the carrier lifetime.

In general the material gain as a function of carrier density for a bulk SOA or RSOA is approx-

imated using a linear expression [73]. In our model the e�ect of gain saturation is considered by

introducing a gain saturation factor. Thus, the net gain gnet in (2.1) is presented as

gnet = Γgc − αint (2.3)

where αint and gc are the internal waveguide loss and the gain compression, respectively, and given

by

aint = K0 + ΓK1N (2.4)

gc =
gm

1 + εStot
(2.5)

where K0 and K1 are the carrier independent absorption loss coe�cient and carrier dependent

absorption loss coe�cient, respectively. K0 represents the intrinsic material loss and K1 is mainly

due to intervalence band absorption. ε represents the gain saturation fact, Stot is the total photon

density, gm is the material gain coe�cient given by

gm = gd(N −N0) (2.6)

where gd is the di�erential gain,N0 is the carrier density at transparency, Γ is the optical con�nement

factor.



14 2. Physical Modeling and Simulation of RSOA

The signal photon density S(z) of each section in the model has a relation with optical power

and can be described as [68]

S(z) =
P+(z) + P−(z)

νg~ωAeff
(2.7)

where P+ and P− are the signal powers of the forward and reverse optical signals, respectively, and

will be de�ned in the next subsection. ~ is the reduced Planck’s constant. ω is the optical angular

frequency. Aeff = wd/Γ is the e�ective area of the active layer.

SASE(z) in (2.1) can be depicted by

SASE(z) =
N+

ASE(z) +N−ASE(z)

νg~ωAeff
(2.8)

whereN+
ASE andN−ASE are the forward and backward ASE powers, respectively, and will be de�ned

in Subsection 2.2.3

2.2.2 Traveling-Wave Equations for Optical Signal

The optical signal enters the input facet travels along the device been ampli�ed and re�ected at

the other facet and ampli�ed again while traveling in the reverse direction. The forward and reverse

propagating optical �elds at z are described by the equations as follow

∂P±(z, t)

∂z
= ±gnetP±(z, t) (2.9)

By solving (2.9) for each section1, we obtain the relation between the input optical power and

the output optical power for each section of the RSOA model as follows

P±(z ±∆z) = P±(z)egnet∆z (2.10)

These equations are obeyed to the following boundary conditions at the input and output facets

of the RSOA.

P+(0) = (1−R1)Pin +R1P
−(0)

P−(L) = R2P
+(L)

(2.11)

1The active region will be divided into multiple smaller sections to solve the traveling-wave equations for optical signal
and ASE noise.
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whereR1 andR2 are the re�ection coe�cients at the front facet and rear facet of RSOA, respectively.

2.2.3 Traveling-Wave Equations for ASE

ASE is the main noise source in a RSOA and determines the RSOA static and dynamic perfor-

mance under the low input optical power. The modeling of ASE is an important issue but quite

complex and di�cult one. In the model proposed we made some assumptions in order to simplify

modeling. ASE spectrum covers a very large range of wavelength spectrum and shows parabolic

shape. We simpli�ed this approach by assuming a constant average ASE spectrum density and de�n-

ing noise bandwidth B0, which is estimated at 10 × 1012 Hz. Assuming that the carrier density is

constant in the length of each RSOA section, the power of ASE generated by the section active region

is given by

PASE = (egnet − 1)nsphυB0 (2.12)

where nsp is the spontaneous emission factor given by

nsp =
N

N −N0
(2.13)

The ASE noise traveling-wave modeling implementation follows a similar procedure with the

optical signal traveling wave. The spontaneous emission output power for each forward and reverse

propagating signal has two contributions: the ampli�ed input noise and the generated spontaneous

emission component from the section. The forward and reverse propagating ASEs can be depicted

by

N+
ASE(z + ∆z) = PASE(1−R2) +N+

ASE(z)egnet

N−ASE(z −∆z) = PASE +N+
ASE(z)e2gnetR2 +N−ASE(z)egnet

(2.14)

The boundary conditions above equations are as follows

N+
ASE(0) = R1N

−
ASE(0)

N−ASE(L) = R2N
+
ASE(L)

(2.15)
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2.2.4 Model Implementation

As described previously, the active region of the RSOA is divided into multi smaller sections

along the length as shown in Fig. 2.1(a). For each section the carrier density is considered to be a

constant along the longitudinal direction. The rate equation and the traveling-wave equations are

solved in each section. Fig. 2.1(b) represents the implementation of our model by means of a SDD

built-in component under a commercially available software, ADS from Agilent Technologies. The

SDD is a multi-port device which is de�ned by specifying algebraic relationships that relate the port

voltages, currents, and even their derivatives, plus currents from certain other devices. Derivatives

can be implemented by using a set of implicit equations in this component. The SDD component

also permits ADS users to easily add custom behavioral, nonlinear system models. An advantage

of using ADS is that several types of analysis, both linear and nonlinear in the frequency domain

and time domain can be implemented. For instance, Harmonic Balance (HB) analysis is a popular

frequency domain analysis technique for simulating harmonic and intermodulation distortions in

nonlinear circuits and systems.

z

W

d

Lz

L

(a)

inP+
outP+

outP−
inP−

,ASE inN +

,ASE outN +

,ASE inN −
,ASE outN −

I n

zL
(b)

Figure 2.1: RSOA elementary section for numerical modeling. (a) multi-section schematic, (b)
implementation using a SDD built-in component in ADS.

To determine the number of the split sections in the active region, we observe the curve of the

optical power versus bias current by sweeping the section number. The simulation result is depicted

in Fig. 2.2. It is shown clearly that the curve of the optical power versus bias current are more

stable with increasing the number of the sections. For instance, the curves for 12 sections and 14
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sections are almost overlapped. Therefore, we use the 12-section model for further analysis. The full

simulation schematic is shown in Fig. 2.3.
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Figure 2.2: Optical power versus bias currents for 3, 4, 6, 12 and 14 sections.

2.2.5 Parameter Extraction

The reliability of models depends crucially on the validity of the parameters which appear in the

models. The best values for the model parameters are found by �tting the simulated data as closely

as possible to the measured data. A Data Access Component (DAC), which links the measurement

data in ADS, enables us to carry out the extraction of the model parameters from real measurement

data with a built-in optimization tool. The measured data, output powers versus bias currents, can be

loaded into ADS simulator by the DAC. The optimization controller based on gradient algorithm is

applied. The goal of optimization is to minimize the di�erence between the measured and simulated

output powers. The extraction procedure is as following. A Direct Current (DC) simulator enables

us to perform DC simulation to sweep all bias currents in order to extract the parameters of the

RSOA model. The parameters of the RSOA can be updated after simulation �nished. The simulation
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starts again based on the new parameters. After several periods above, the stable model parameters

would be obtained. The extracted parameters of the RSOA modulator are shown in Table 2.1.

Table 2.1: RSOA physical dimension and extracted parameters

Symbol Parameters Value Unit
L Active region length 700 µm
d Active region thickness 0.12 µm
Γ Optical con�nement factor 0.2 –
gd Di�erential gain 4.0× 10−20 m−2

ε Gain saturation factor 1.1× 10−22 m3

A Linear radiative and non-radiative recombination
coe�cient

2.0× 108 s−1

B Bimolecular radiative and non-radiative recombi-
nation coe�cient

1.9× 10−16 m3s−1

Caug Auger recombination coe�cient 2.0× 10−41 m6s−1

K0 Carrier independent absorption loss coe�cient 9000 m−1

K1 Carrier dependent absorption loss coe�cient 2960 m2

2.3 Results and Discussion

The experimental setup is shown in Fig. 2.4. The desired signal can be generated by Vector Signal

Generator (VSG). A commercial broadband Ampli�er (AMP), ZHL-42W, was used to drive the Device

Under Test (DUT).A tunable RF attenuator was added to tune the RF input power of the DUT. A

Vector Signal Analyzer (VSA) was used to obtain the output signals of the DUT. The seeding light of

the RSOA designed by Alcatel-Thales III-V Labs is from a commercial DFB laser with the wavelength

of 1550 nm, which is biased at 30 mA. The RSOA with the re�ectivity of 20% at the rear facet. The

optical input power of RSOA is set to -7 dBm by adjusting the optical tunable attenuator. An optical

circulator is used to separate the forward and reverse optical signals. A Photodetector (PD) with the

re�ectivity of 0.8 A/W is used as a detector. A commercial RF ampli�er, ZHL-42W, is used to drive

the RSOA.

2.3.1 Static Characteristics

The optical powers versus bias current measurements were carried out. Only the DUT block in

Fig. 2.4 is need with the PD removed. An optical power meter was used to measure the optical power
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Figure 2.4: Experimental test bench

at the circulator output. By tuning the bias currents a set of optical output powers can be recorded

and used for the parameter extraction process as we described previous section 2.2.5.

The measured and modeled the output optical powers versus bias currents are shown in Fig. 2.5.

From the measured data, the threshold current is at 39 mA while the slope e�ciency is at 0.06805

W/A. The modeled characteristic matches both threshold current and slope e�ciency. Fig. 2.6 is

a plot of the measured and modeled optical gain versus optical input powers at the di�erent bias

currents of 60 mA, 90 mA and 120 mA. A good agreement is achieved between the measurement

and simulation. From the measurement data, the saturation power of the RSOA modulator at the

bias currents of 90 mA is around -18 dBm.

2.3.2 Nonlinearity

It is common to use single-tone and two-tone measurements [74] in order to characterize the

nonlinearity of the RSOA modulator using the test bench shown in Fig. 2.4. The �rst test is to use

one tone signal in order to analyze the harmonic distortions. The RSOA was biased at 90 mA. Gain

compression point and harmonic distortions can be demonstrated by using a single tone RF signal (1
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Figure 2.5: Measured and simulated optical powers versus bias currents.

GHz) generated by the VSG. The RF signal can be recovered by the PD. The RF output fundamental,

2nd- and 3rd-order harmonic distortion powers of the DUT were gathered by the VSA. The measured

and modeled harmonic distortions are shown in Fig. 2.7. These enable us to evaluate an important

�gure of merit called the input 1 dB Compression Point (P1dB), which is de�ned as the input power

level at which the signal output is already compressed by 1 dB as compared to the output that would

be obtained by simply extrapolating the linear system’s small signal characteristic. The measured

and modeled input P1dB powers are 12.7 dBm and 15.1 dBm, respectively.

The performance of the RSOA based the RoF link can also be evaluate by another two �gures of

merit, in terms of Input 3rd-Order Intercept Point (IIP3) and Spurious Free Dynamic Range (SFDR)

[54]. For this purpose, generally, two-tone signals are the most widely used. The two-tone signals

were generated by VSG with carrier frequencies at 995 MHz and 1005 MHz. Fig. 2.8 presents the

experimental and simulated results obtained for the output power of the fundamental and the 3rd-

Order IMD (IMD3) products, as a function of the RF input powers. The IMD3 results are quite well



22 2. Physical Modeling and Simulation of RSOA

- 3 0 - 2 5 - 2 0 - 1 5 - 1 0 - 5 0 5

- 5

0

5

1 0

1 5

2 0

2 5
Op

tica
l g

ain
 (d

B)

O p t i c a l  i n p u t  p o w e r  ( d B m )

 6 0  m A  s i m u .
 9 0  m A  s i m u .
 1 2 0  m A  s i m u .
 6 0  m A  m e a s .
 9 0  m A  m e a s .
 1 2 0  m A  m e a s .

Figure 2.6: Measured and simulated optical gain as a function of optical input power under the
di�erent biases of 60 mA, 90 mA, and 120 mA

matched. The noise �oor was -158.2 dBm/Hz at the bias current of 90 mA. The SFDR, which can

be used to characterize the dynamic performance of the DUT, is determined by the fundamental,

IMD3 and the noise �oor. The SFDRs for measurement and simulation are 114.3 dB and 112.6 dB,

respectively. The intersection between the linear approximations for the fundamental and the In-

termodulation Distortion (IMD) curves for both measurement and simulation results in an IIP3. The

IIP3 powers for measurement and simulation are 19.8 dBm and 20.9 dBm, respectively.

2.3.3 Transmission Performance

Error Vector Magnitude (EVM) is a common �gure of merit for evaluating the quality of digitally

modulated signals. The EVM de�nes the di�erence between the ideal reference symbol and the



2.3 Results and Discussion 23

-10 -5 0 5 10 15 20
-45

-40

-35

-30

-25

-20

-15

-10

-5

P1dB_simu.=15.1 dBm

 

 

RF
 o

ut
pu

t p
ow

er
 (d

Bm
)

RF input power (dBm)

 Funda_Simu.
 Funda_Meas.
 2nd Harmonic_Simu.
 2nd Harmonic_Meas.
 3rd Harmonic_Simu.
 3rd Harmonic_Meas.

P1dB_meas.=12.7 dBm

Figure 2.7: Measured and modeled fundamental and harmonic distortions under one-tone test
with frequency of 1 GHz.

-160 -140 -120 -100 -80 -60 -40 -20 0 20 40

-160

-140

-120

-100

-80

-60

-40

-20

0

simu. SFDR=112.6 dB

RF
 o

ut
pu

t p
ow

er
 (d

Bm
)

RF input power (dBm)

 Measured f2
 Measured 2*f2-f1
 Simulated f2
 Simulated 2*f2-f1

noise floor

SFDR=114.3 dB

-158.2 dBm/Hz

meas.

Figure 2.8: Measured and simulated fundamental and IMD3 distortions under two-tone test
with frequencies of 995 MHz and 1005 MHz.



24 2. Physical Modeling and Simulation of RSOA

Reference
Signal

Error Vector

Received
Signal

I

Q
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received symbols, as illustrated in Fig. 2.9. The Root Mean Square (RMS) EVM can be employed by

the following equation

rmsEVM =

√√√√√√√√
1

N

N∑
n=1
|s(n)− r(n)|2

1

N

N∑
n=1
|r(n)|2

× 100% (2.16)

where r(n) is the reference transmitted symbol, s(n) is the measured or modeled output symbol, N

is the number of symbols.

To simulate the transmission performance of the proposed physical model with Orthogonal Fre-

quency Division Multiplexing (OFDM) signal, a simulation setup is shown in Fig. 2.10. A Wireless

Local Area Network (WLAN) signal source generates the desired signal. Two components named

"AddNDensity" are added to simulate the noise �oors of the RoF link and spectrum analyzer.

An IEEE 802.11g signal at frequency of 1 GHz was generated in the VSG and used as the input

signal, which is a 54 Mbit/s OFDM signal with 64-ary Quadrature Amplitude Modulation (64QAM)

modulation and 52 active subcarriers. Fig. 2.11 is a comparison of measured and simulated RMS

EVMs under di�erent optical input powers of -5 dBm, -10 dBm and -15 dBm and bias currents of 60
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Figure 2.11: Measured and simulated EVMs versus RF input powers under the di�erent optical
inputs (a) at -5 dBm, (b) at -10 dBm, (c) at -15 dBm.

mA, 90 mA and 120 mA. The �gures show "U" curves. The transmission performance is limited for

low powers by the noise, and for high powers by the nonlinearity of the RSOA modulator. At low

RF input power the EVMs are worse at 120 mA than one at 60 mA. The reason is that a stronger ASE

noise is generated at higher bias current.

2.4 Distribution of Carrier Density and Photon Density

In this section, the model is used to simulate the spatial distributions of the carrier and photon.

Fundamentally, spatial distributions of the carrier density and photon density of the RSOA modulator

are functions of the position z along the active layer length, input optical power and bias current

due to the propagation of the optical wave along the device and the interaction between carriers and
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photons. Analysis of these spatial distributions can be used to aid the design and optimization of the

RSOA.

Fig. 2.12 shows that the e�ect of increasing the bias current is to increase the RSOA carrier

density, signal and ASE photon densities. This is mainly because of the increase of the concentration

of the injected electrons into the active region with the bias current increasing. The signal photon

density increases with increasing the optical input power. The ASE photon density decreases when

the optical input power increased. Unlike SOA [29,75], the carrier density at low optical input power

is asymmetrical due to the high re�ection of the rear facet of the RSOA. For the low optical input

power the ASE noise dominates the signal power.

2.5 Link Gain Improvement

As mentioned earlier, the model can be used to aid design and optimization of the RSOA. One of

main limits of the RSOA modulator is the low link gain when compared with DFB laser modulator.

In this section, we address two-electrode schematics [76, 77] to improve the link gain of the RSOA

modulator in the RoF links.

We split the electrode of the RSOA modulator into two parts, one for the bias current and RF

signal injection and the other only for the bias current injection. Therefore, there are two kinds of

modulation schematics as depicted in Fig. 2.13:

• Case I: input&output modulation con�guration.

• Case II: mirror modulation con�guration.

In Case I, the RF modulating signal is injected at the input and output side of the RSOA as shown

in Fig. 2.13(a), and in Case II, the RF modulating signal is injected at the mirror side of the RSOA as

shown in Fig. 2.13(b). We de�ne IRF as the bias current at the section where the RF signal is also

injected and IDC as only bias current injection at the section.

A RF signal with a single carrier frequency of 1 GHz is used to demonstrate the e�ect of the bias

con�guration on the link gain. The link gains under di�erent bias current con�guration for Case I

and Case II are shown in Fig. 2.14 and Fig. 2.15, respectively. To be compared, the link gain for a

single electrode con�guration is also depicted. From both �gures we can see clearly that the link gain

degrades when the low bias current is con�gured at the input&output side. This is because the lower

injected current density causes lower carrier to be recombined, however, higher photon density is
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Figure 2.12: Spatial distribution of carrier density, signal photon density and ASE photon den-
sity as a function of position along the length of the active region at the input optical powers
of -50 dBm (left)and 0 dBm (right). The bias currents range from 20 mA to 100 mA.



2.6 Summary 29

MirrorInput 
& 

output

RFI DCI

Active region

(a)

MirrorInput 
& 

output

DCI RFI

Active region

(b)

Figure 2.13: Schematic diagramof two electrodes: (a) Case I: input&outputmodulation, (b) Case
II: mirror modulation.

necessary at the input&output side as shown in Fig. 2.12. Therefore the higher bias current should

be injected at the input&output side. Fig. 2.15 shows that the link gain can be improved up to 6 dB

under the IDC and IRF of 70 mA and 20 mA, respectively for case II since the RF signal is injected

at the mirror side and can be ampli�ed along the active region. Note that the higher link gain means

the lower input P1dB power. Therefore, a tradeo� should be made in real applications.

2.6 Summary

In this chapter, based on the rate equation and traveling wave equations, a simple time domain

physical model for a bulk RSOA modulator used in the RoF links has been proposed and validated.

The physical parameters de�ned in the model were extracted with �tting the measurement data

with the optimization tool in ADS. Good agreement is achieved between measurement and sim-

ulation. The static and dynamic characteristics of the RSOA modulator have been demonstrated.

The transmission performance between measurement and simulation are evaluated with 54 Mbit/s

OFDM signal with 64QAM modulation and 52 active subcarriers. The distribution of carrier and

photon densities gives us an overview how they distribute in the active region of the device. It can

aid the design and optimization of the RSOA. The link gain in the RoF can be improved up to 6 dB

by using multi-electrode con�guration for case II.
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Figure 2.14: Link gain versus RF input power under di�erent bias con�guration for input-
output modulation schematic (Case I).
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modulation schematic (Case II).



Chapter 3

Behavioral Modeling and Simulation
of RSOA

This chapter discusses the behavioral modeling of the RSOA modulator. Three popular methods

of the behavioral modeling such as ANN, memory polynomial and X-parameters are presented and

compared. The dynamic AM-AM and AM-PM characteristics of the RSOA modulator are demonstrated

for the memory polynomial and ANN basedmodels. Harmonic distortion and intermodulation distortion

are considered for the X-parameters based model from another point of view.

3.1 Introduction

As discussed in chapter 2, the physical model is mainly derived from the rate equation and

traveling-wave equations. However, many of the physical parameters are often unknown and di�-

cult to be measured. In contrast, The key advantage of the behavioral modeling is that it does not

require deep knowledge of the RSOA physics and functionality. A behavioral modeling technique

o�ers a system method by which the composite e�ect of nonlinearity of the RSOA modulator can

be modeled by relating the input/output characteristics of the RSOA modulator.

As mentioned earlier, the behavioral approach does not require the prior knowledge of the de-

vices. Its coe�cients rely only on the input and output measurement signals of the DUT. The

performance of behavioral modeling is in�uenced by two key aspects, the observation and the for-

mulation. The observation refers to the accurate acquisition of the signals at the input and output

of the DUT while exciting the appropriate behavior. The formulation corresponds to the choice of a

suitable mathematical relation that describes all the signi�cant interaction between the DUT’s input

and output signals.

31
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As stated in chapter 1, Volterra series is the most comprehensive modeling method for dynamic

nonlinear devices and systems. It has been used for modeling and predistortion of RF power am-

pli�ers [48, 62] and lasers [41]. However, the identi�cation process of its parameters, also called

Volterra kernels, is very complex and the number of parameters increases drastically with the non-

linearity order and the memory depth. To reduce the complexity of the Volterra series, a memory

polynomial model has been proposed [51]. It corresponds to a truncation of the Volterra series, in

which only diagonal terms in the Volterra kernels are kept. Thus, the number of parameters is sig-

ni�cantly reduced when compared to the conventional Volterra series. A variation of the memory

polynomial model has been proposed by introducing the cross-terms referred to as the Generalized

Memory Polynomial (GMP) [61].

Under large-signal drive conditions, nonlinear devices distort waveforms (in time domain) or

generate harmonics, intermodulation and spectral regrowth (in frequency domain). Recently, the

X-parameter model has been announced as a large signal modeling method, where the model can be

extracted directly from data measured using a Nonlinear Vector Network Analyzer (NVNA) or from

circuit level design. Then the extracted X-parameters can be loaded into ADS and simulated with

circuit simulator. Verspecht and Root [2] �rst proposed a Polyharmonic Distortion (PHD) model-

ing. The PHD model is identi�ed from the responses of a DUT stimulated by a set of harmonically

related discrete tones, where the fundamental tone is dominant and the harmonically related tones

are relatively small. The basic idea is that the PHD modeling approach can be used as a natural

extension of S-parameters under large-signal conditions. The X-parameters are based on the PHD

modeling [2, 3, 78].

This chapter will focus on the behavioral modeling based on ANN (see section 3.2), memory

polynomial (see section 3.3) and X-parameters (addressed in section 3.4) for the RSOA modulator

in the RoF uplink. Before addressing modeling a parameter extraction, signal pre-processing (time

alignment) and evaluation of model accuracy are introduced.

3.1.1 Parameter Extraction Procedure

The main parameter extraction procedure is illustrated in Fig. 3.1. The complex data streams

are �rst captured from the input and output of the RSOA modulator. The gathered signals need to

be aligned �rst before being used to identify the behavioral model. The details of time alignment
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algorithm will be addressed in Section 3.1.3. After time alignment and preprocessing, the data can

�nally be used to extract the parameter of the behavioral model.

DUT

Gathering baseband complex waveforms

Time alignment and pre-processing

Parameters extraction

Validation/application

( )x n ( )y n

Figure 3.1: Behavioral model parameter extraction procedure: main steps frommeasurements
to model validation.

3.1.2 Experimental Setup

In order to capture the input and output complex envelope signals of the DUT the experimental

test bench is presented in Fig. 3.2. The test baseband signals were designed in MATLAB and fed into

a VSG to be up-converted to RF domain with a carrier frequency of 1 GHz. A commercial AMP,

ZHL-42W, was used to drive the DUT. The input and output of the DUT are down-converted and

sampled by a VSA. This was realized by a switch. For instance, the direct connection between the

output of the AMP and VSA enables us to obtain the measurements of the input signals for the
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10 MHz  Ref

Trigger

Laser
 optical 
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DUT
Bias

switch
VSG VSARF tunable
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circulator

Figure 3.2: Experimental setup.

DUT. The VSG and VSA were connected to a computer controller using General Purpose Interface

Bus (GPIB) cables. A 10 MHz reference and trigger signals between the VSG and VSA were used in

order to synchronize and trigger multi measurement events. Any error in the generation acquisition

synchronization could lead to poor repeatability of measurements.

3.1.3 Time Alignment and Compensation

The time delay between the measured input and output baseband complex signals of the DUT

has to be accurately estimated in order to align the input and output signals prior to identifying

the behavioral model. Clearly, any time delay mismatch between these two signals will impact the

performance of the behavioral model [79].

A time alignment algorithm has been presented in [40]. The integer time delay between the input

and output baseband complex signals is �rst estimated by conventional cross correlation method.

Then sinc interpolation is applied to estimate the fractional time delay in order to further improve
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the distortion resulting from the time mismatch. The conventional cross correlation is depicted by

Rx̃,ỹ(dint) =


K−dint−1∑

k=0

[x̃(k + dint)− x̄][ỹ∗(k)− ȳ∗], for dint ≥ 0

R∗ỹ,x̃(−dint), for dint < 0

(3.1)

where (·)∗ is the complex conjugate operator. x̄ and ȳ∗ are the mean values of the waveform x and

the conjugate of y, respectively.

The integer time delay can be estimated by

dint = max
dint
{Rx̃,ỹ (dint)} (3.2)

In time domain, the reconstruction of the continuous-time signal from the discrete-time signal

can be considered as an interpolation process. After the integer time delay removed, the sinc inter-

polation is then used to estimate the fractional time delay dfrac. The sinc interpolation is given by

x̃r(t) =
∞∑

k=−∞
x̃(kT )sinc

(
t− kT
T

)

=
∞∑

k=−∞
x̃(kT )

sin

(
π (t− kT )

T

)
π (t− kT )

T

(3.3)

The reconstruction of the output signal ỹr(t) can be done using the similar process. Then the

reconstructed x̃r(t) and x̃r(t) are resampled and used to calculate the discrete-time cross-correlation

function Rx̃r,ỹr(dfrac).

The fractional time delay is estimated by

dfrac = max
dfrac

{Rx̃r,ỹr (dfrac)} (3.4)

After the integer time delay and fractional time delay removed, the data can �nally be used for

further process.

3.1.4 Model Accuracy Evaluation

The behavioral model operates on baseband time domain waveforms. In order to assess the per-

formance of the model, two assessments, termed Normalized Mean Square Error (NMSE) criterion
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in the time domain and RMS EVM given in Equation (2.16), can be employed. The NMSE veri�ca-

tion metric is the total power of the error vector between the measured and modeled waveforms,

normalized to the measured signal power, depicted explicitly by

NMSE = 10log10


N∑

n=1

(
[ymeas

I (n)− ymodel
I (n)]

2
+ [ymeas

Q (n)− ymodel
Q (n)]

2
)

N∑
n=1

(
[ymeas

I (n)]2 + [ymeas
Q (n)]2

)
 (3.5)

where ymeas
I , ymeas

Q , ymodel
I and ymodel

Q are the in-phase and quadrature components of measured

and modeled output waveforms, respectively.

3.2 TDMLP

In this section, we focus on the modeling of the RSOA modulator with ANN. ANN based

behavioral models have been widely used to model RF power ampli�ers [80, 81], EDFA [42] and

QD-SOA [44] because of its generality and accuracy. In [44], the pulse ampli�cation and FWM char-

acteristics of the QD-SOA has been investigated by using a Multilayer Perceptron (MLP) model.

3.2.1 TDMLP Model

Schematic representation of a single hidden layer TDMLP based model is shown in Fig. 3.3. To

account for the memory e�ects, a set of neurons can be added in the input layer. The transformation

from the input layer to the hidden layer is nonlinear, while the transformation from the hidden layer

to the output layer is pure linear. bh,j (j = 1, 2, ...,M ) are the biases in the hidden layer. f(·) is the

activation function in the hidden layer, which will be introduced in Section 3.2.3. bo,k (k = 1, 2 in

our case) are the biases in the output layer.

The output uj(n) of the jth node in the hidden layer is depicted by

uj(n) = f(

m∑
i=0

ωi,jx(n− i) + bh,j) (3.6)

where the ωi,j is the weighting coe�cient from the ith node in the input layer to the jth node in the

hidden layer. The x can be xI or xQ.
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Figure 3.3: TDMLP based model with 2 × (m + 1) input nodes, m is the number of memory
depth, z−1 is for unit delay operation,M hidden nodes and two output nodes.

The output of the kth node in the output layer is given by

yk(n) =
M∑
j=1

ωj,kuj(n) + bo,k (3.7)

where the ωj,k is the weighting coe�cient from the jth node in the hidden layer to the kth node in

the output layer. yk is yI or yQ in our case.

All of the weighting coe�cients ωi,j , ωj,k and bias parameters bh,j , bo,k need to be determined

during the training phase. One of the most critical issues in constructing the ANN is to determine

the number of hidden layers and the number of neurons in hidden layers. The number of the hidden

layer can be increased if needed. The mathematical results, however, have been shown that the single

hidden layer MLP is capable of approximating uniformly any continuous multivariate function to

any desired degree of accuracy [82]. This implies that any failure of a function mapping must arise

from inadequate choice of parameters or an insu�cient number of hidden nodes. More than one

hidden layer is often used to reduce the number of total nodes in hidden layers.

3.2.2 Over�tting

It is di�cult to determine the optimal number of hidden nodes. The large number of nodes in

the hidden layer makes the poor generality of the TDMLP as the nets with too much capacity over�t

the training data [83]. In order to avoid over�tting during the training phase, it is necessary to use
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additional techniques such as regularization, early stopping, or cross-validation [84]. The cross-

validation is the most popular method to achieve generalization by evaluating the performance of

the model on a di�erent set of data from ones for training [81].

3.2.3 Activation Function

The e�ects toward obtaining the best performance of the ANN based model also need to focus

on the neuronal activation scheme. Di�erent choices of the activation functions result in di�erent

network models. In general, the activation function in the hidden layer is a nonlinear function. The

anti-symmetric functions often yield faster convergence. The most common choice of the activa-

tion function in the hidden layer is the anti-symmetric hyperbolic tangent, which is di�erentiable

everywhere and mathematically described as:

f(x) = tanh(x) =
ex − e−x

ex + e−x
(3.8)

3.2.4 Back Propagation Learning Algorithm (BPLA)

BPLA is a popular method of training ANN, especially training MPL nets. The traditional BPLA,

however, converges very slowly when compared with second-order algorithms. The Levenberg-

Marquardt (LM) method was designed to utilize the advanced and complex second-order optimiza-

tion algorithm to achieve signi�cant advances in training speed and accuracy [85]. The LM back

propagation algorithm is the fastest method for training feed-forward neural networks. It has been

implemented in the MATLAB ANN toolbox. In order to obtain the optimal weight and bias parame-

ters, one will minimize the average error function, which is represented as [84], [85]

V (ω) =
1

2P

P∑
p=1

N∑
i=1

[tpi (ω)− ypi (ω)]
2

=
1

2P

P∑
p=1

N∑
i=1

[epi (ω)]
2 (3.9)

where P is the number of training patterns. N is the number of the output nodes (N is equal to

2 in our model). t is the target output and y is the model output. e is the network errors. ω is the

parameters such as weights and biases to be extracted. In our case, t and y choose the corresponding

in-phase parts and quadrature parts when i is equal to 1 and 2, respectively.
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For the LM algorithm, the weight and bias parameters are updated by [85]

ωn+1 = ωn −
[
JTJ + µI

]−1
JTe (3.10)

where (·)T denotes the transpose operation. n is the number of iteration. ω denotes the vector of

all training parameters (weights and biases). J is the Jacobian matrix that contains �rst derivatives

of the net errors with respect to the weights and biases. e is the vector of the network errors. I is

the identity matrix and µ is the learning parameter.

3.2.5 TDMLP Training

The training of the TDMLP involves choosing a set of weights and biases to optimize the accu-

racy of the mapping. The TDMLP based model can be easily trained by the BPLA in MATLAB. In

order to train the TDMLP, a random 64QAM signal with the symbol rate of 20 Msymbol/s, which

were �ltered with a Square Root Raised Cosine (SRRC) �lter with the roll-o� factor ofα = 0.22, were

created at baseband in MATLAB. The 64QAM signal creates a Peak-to-Average Power Ratio (PAPR)

of around 7.1 dB. The signal with a sampling rate at 80 MHz was fed into the VSG memory to be

up-converted to the RF band at 1 GHz and �nally to be passed through the DUT. In our case the

average RF input power of the DUT was set up to 13 dBm, which is near the input 1 dB compres-

sion point of the RSOA modulator. as mentioned earlier, the complex baseband (complex envelope)

input and output signals of the DUT were captured from the VSA. After time alignment and pre-

processing, around 40 000 samples were captured to train, validate and test the TDMLP model. Using

the cross-validation technique, the training, validation and testing of the TDMLP were carried out

using di�erent segments of the measured input and output signals. The �rst 10 000 samples were

used for training the nets. The second 20 000 samples, which were di�erent with ones for training,

were used to validate the model. The remaining 10 000 di�erent samples were used for testing of

the capacity of the model to predict the output of the RSOA modulator.

Table 3.1 shows the performance of the TDMLP model as a function of the memory depth and

the number of nodes in the hidden layer. Based on Table 3.1, the higher memory depth and larger

number of hidden nodes do not imply the better performance. The performance of the TDMLP

model increases with the number of hidden nodes increasing. By further increasing the hidden

nodes, however, the performance starts to degrade due to over�tting the training data set, which

reduces the generality of the TDMLP. This issue can be solved by increasing the training data set.
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Table 3.1: TDMLPmodel performance versus memory depth and the number of hidden nodes.

NMSE (dB) Number of nodes (M)
5 10 15 20 25 30 35

Memory
depth (m)

0 -28.62 -28.64 -28.65 -28.66 -28.64 -28.64 -28.65
1 -30.49 -36.8 -37.03 -37.08 -37.08 -37.09 -37.11
2 -31.05 -41.68 -41.83 -41.79 -42.21 -42.22 -42.42
3 -41.96 -43.01 -43.73 -44.33 -44.31 -43.46 -44.12
4 -42.37 -43.62 -44.18 -44.21 -44.37 -44.39 -44.32
5 -41.56 -44.13 -44.24 -43.88 -44.38 -44.36 -44.29
6 -41.22 -44.05 -44.23 -43.53 -43.95 -44.19 -44.35

In our work we chose the hidden nodes of 20 and memory depth of 3 for following analysis even

though there are several slightly better points but the more weighting coe�cients are required.

3.2.6 TDMLP Validation

The training, validation and testing performance under the hidden nodes of 20 and memory

depth of 3 is shown in Fig. 3.4. It is shown that the performance of the TDMLP model improves with

increasing number of training epochs. The error on the validation and testing data sets starts o�

decreasing as the under�tting is reduced, but then it eventually begins to increase again as over�tting

occurs. A solution to ensure the best generality of the TDMLP is to use the procedure of early

stopping. One trains the network on the training data set until the performance on the validation

data set starts to deteriorate and then stops the training phase. Therefore, the over�tting problem

can be avoided by introducing validation step.

The time domain waveforms of in-phase and quadrature parts of the RSOA outputs are shown

in Fig.3.5, where only �rst 250 samples are shown for clarity. They indicate that the measured data

points are �tted by the modeled ones well.

When studying nonlinear distortion, it is important to observe the Power Spectral Density (PSD)

which will demonstrate the spectral regrowth due to the nonlinearity of the RSOA modulator. It gives

us an overview of the �tting between measurement and model in frequency domain. The measured

and modeled PSDs are shown in Fig. 3.6. The spectral regrowth is clearly visible. A compensation

strategy can be introduced, which will be addressed in chapter 4.

After demodulation process, the constellation for symbols of the transmitted, measured output

and TDMLP model outputs are depicted in Fig. 3.7. Comparison of the EVM with the level of distor-
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Figure 3.4: The training performance of the TDMLP basedmodel for the RSOAmodulator with
memory depth of 3 and hidden nodes of 20.

tion of the constellation points caused by the RSOA would further help to show whether su�cient

accuracy has been achieved. The EVMs for measured and modeled output symbols are 5.70% and

5.64%, respectively, calculating by the formula (see Equation (2.16)).

The nonlinear distortion and memory e�ect can be described by plotting the dynamic AM-AM

and dynamic AM-PM characteristics as shown in Fig. 3.8. We can clearly see that the distortion

including static nonlinearities and memory e�ects was induced by the RSOA modulator. It is also

clearly shown that the TDMLP model can produce a similar scattering to ones exhibited by the

measurement data since the memory e�ect is considered in the model. The TDMLP based model

with memory can accurately predict the dynamic behaviors of the RSOA modulator. The AM-PM

conversion graph appears to show large random phase at low input powers due to the e�ect of

measurement noise. The small signal is more sensitive to the noise. Thus, the AM-PM curve is open

at the low input power side. The phase changes are up to 7◦ at the high input power side.



42 3. Behavioral Modeling and Simulation of RSOA

0 50 100 150 200 250
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

Sample index

In
-p

ha
se

 s
ig

na
l

 

 
measured
modeled

(a)

0 50 100 150 200 250
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

Sample index

Q
ua

dr
at

ur
e 

si
gn

al

 

 
measured
modeled

(b)

Figure 3.5: Measured andmodeled outputs in-phase (a) and quadrature (b) parts in timedomain.
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Figure 3.6: Normalized power spectral density of measured and modeled outputs.

Figure 3.7: Normalized constellation (red ‘+’ for the transmitted symbol, blue ‘·’ for the mea-
sured output, and green ‘x’ for the TDMLP model output).



44 3. Behavioral Modeling and Simulation of RSOA

(a)

(b)

Figure 3.8: Dynamic AM-AM (a) and AM-PM (b) characteristics of the RSOA modulator.
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3.3 GMP

As mentioned previously, the memory polynomial is one of the most popular methods to model

the nonlinear devices [52,86] or to compensate the nonlinear distortion of the devices [50,51,61]. In

this section we attempt to model the RSOA modulator by using the GMP.

3.3.1 GMP Based Modeling

The baseband GMP model [61] is described as follows

ỹ(n) =
Ka∑
k=1

La−1∑
l=0

aklx̃ (n− l) |x̃ (n− l)|k−1

+
Kb∑
k=1

Lb−1∑
l=0

Mb∑
m=1

bklmx̃ (n− l) |x̃ (n− l −m)|k

+
Kc∑
k=1

Lc−1∑
l=0

Mc∑
m=1

cklmx̃ (n− l) |x̃ (n− l +m)|k

(3.11)

where x̃ and ỹ are the baseband input and output signals, respectively; Ka, La are the number of

coe�cients for aligned signal and envelope, Kb, Lb and Mb are the number of coe�cients for signal

and lagging envelop, Kc, Lc and Mc are the number of coe�cients for signal and leading envelope,

akl, bklm and cklm are the corresponding polynomial coe�cients.

The �rst term represents the conventional memory polynomial [51]. The second and third terms

account for the e�ects of lagging and leading envelopes. A simple Least Square (LS) algorithm can

be used for the parameter estimation of the GMP model as the output ỹ(n) of the model is linear

with respect to its coe�cients.

3.3.2 Extraction Methodology

As mentioned previously, the output of the GMP model is linear with respect to its coe�cients.

It enables us to extract the coe�cients in a direct way by using measured input and output signals.

In particular, we can form a single parameter P × 1 vector h containing all coe�cients of the

GMP model. P = KaLa +KbLbMb +KcLcMc. The h is depicted as follows

h =
[
a10 a11 · · · aKa(La−1) b101 b102 · · · bKb(Lb−1)Mb

c101 c102 · · · cKc(Lc−1)Mc

]T (3.12)

where (·)T represents the transpose operator.
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We de�ne a N × P matrix X for all of the product terms of the sampled input signal appearing

in the model. AN × 1 vector Y is de�ned for the sampled output signal. Both are given in equation

(3.13) and equation (3.14), respectively.
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Therefore, the GMP model can be written as

Y = Xh + e (3.15)

where e is one N × 1 error vector. The estimation error is written as

e = Y −Xh (3.16)

As mentioned earlier, the output of the model is linear with its coe�cients. Therefore, the LS

estimator that minimizes ‖e‖2 is given as follows

ĥ =
(
XHX

)−1
XHy (3.17)

where (·)H represents the Hermitian transpose.

3.3.3 Validation and Results

An essential step in the development of any simulation model is validation. The measured sam-

ples are same with one we used in section 3.2. In this section, using cross validation technique, the

10 000 samples are used to extract the model coe�cients. Another 10 000 samples from di�erent

segments of the measured baseband input and output signals are used for the model validation.

To demonstrate the e�ect of the memory depths and nonlinear orders in the model, we use the

�gure of merit, NMSE, to evaluate the performance of the GMP model. The performances of the

model versus memory depths and nonlinear orders are shown in Table 3.2

Table 3.2 shows clearly that the performance of the model improves with the nonlinear orders

and memory depths increasing. We can see that the contribution comes mainly from the �rst term

in (3.11). For following analysis we use Ka = 5, La = 6, Kb = 2, Lb = 3, Mb = 4, Kc = 2, Lc = 1,

and Mc = 1. Under this condition, the NMSE is -46.02 dB.

The measured and modeled in-phase and quadrature waveforms versus sample index are shown

in Fig. 3.9. Only �rst 250 samples are shown for clarity. The real and imaginary components for

measurement and simulation match very well. An overview in frequency domain is plotted with the

PSD of the measured and modeled data in Fig. 3.10.
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Figure 3.9: Measured andmodeled in-phase waveform (a) and quadrature waveform (b) in time
domain.
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Table 3.2: Performance of the GMP model versus nonlinear orders and memory depths.

Nr. Coe�. Ka La Kb Lb Mb Kc Lc Mc NMSE (dB)
3 3 1 – – – – – – -28.63
5 5 1 – – – – – – -28.65
20 5 4 – – – – – – -43.88
30 5 6 – – – – – – -44.01
40 5 8 – – – – – – -44.08
32 5 6 2 1 1 – – – -45.06
38 5 6 2 1 4 – – – -45.70
54 5 6 2 3 4 – – – -45.93
78 5 6 4 3 4 – – – -45.96
56 5 6 2 3 4 2 1 1 -46.02
64 5 6 2 3 4 2 1 5 -46.09
74 5 6 2 3 4 4 1 5 -46.15
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Figure 3.10: Normalized power spectral density of measured and modeled outputs.

After 64QAM demodulation, the constellations of the transmitted, measured and modeled sym-

bols are shown in Fig. 3.11. The EVMs for measured and modeled output symbols are 5.72% and

5.71%, respectively, calculating by the formula (see Equation (2.16)).

The nonlinear distortion and memory e�ect of the RSOA modulator can be described by plotting

its dynamic AM-AM and AM-PM characteristics. In Fig. 3.12, the AM-AM and AM-PM characteris-
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Figure 3.11: Normalized constellation (red ‘+’ for the transmitted symbol, blue ‘·’ for the mea-
sured output, and green ‘x’ for the GMP model output).

tics of the measured data are compared with those of the GMP output. It can be seen that the gain is

compressed at the high-power level due to the average input power near the P1dB of the RSOA. It

is also shown clearly that the GMP model can produce a similar scattering to ones exhibited by the

measurement data since the memory e�ect is considered in the model. The GMP based model can

accurately predict the dynamic behaviors of the RSOA modulator.

3.4 X-parameters

3.4.1 Polyharmonic Distortion (PHD) Model and X-parameters

As mentioned previously, the PHD modeling approach developed by Root and Verspecht [2,3] is

a black-box frequency-domain nonlinear behavioral modeling technique that has been presented as

a natural extension of S-parameters under large signal stimulus conditions. Since the model derives

from a multi-harmonic linearization around a periodic steady state established by a large signal in-

put tone, the system depends in a strongly nonlinear way on the large signal stimulus. Nevertheless,

it responds linearly to additional harmonic components which can be considered as small perturba-

tion around the time varying system state. This is so-called the harmonic superposition principle as
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(a)

(b)

Figure 3.12: Dynamic AM-AM (a) and dynamic AM-PM (b) characteristics of the RSOA modu-
lator.
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illustrated graphically in Fig. 3.13. Basically, the PHD model uses the concept of harmonic super-

position to analytically describe the large signal Bef wave response of a nonlinear device or system

in terms of a mapping incident signals Agh. The PHD model is identi�ed from the response of a

DUT stimulated by a set of discrete harmonic tones, where the fundamental tone is dominant and

the harmonic tones are relatively small.

Nonlinear 
System

1A

2B

Figure 3.13: The concept of harmonic superposition [2].

X-parameters are derived from the PHD framework for linear and nonlinear modeling of a non-

linear device [78, 87]. X-parameters are much more powerful because they contain magnitude and

phase information on all harmonics and inter-modulation spectra. X-parameter behavioral models

may run signi�cantly faster than circuit-level or physical models. For a one-tone large signal at port

1 at the fundamental frequency, the basic PHD model can be described as follows [87]

Bef = X
(F )
ef (|A11|)P f +

∑
g,h

X
(S)
ef,gh(|A11|)P f−hAgh +

∑
g,h

X
(T )
ef,gh(|A11|)P f+hA∗gh (3.18)

where X(F )
ef , X(S)

ef,gh and X(T )
ef,gh are identi�ed as X-parameters. (·)∗ denotes the complex conjugate.

A11 is the large signal drive to the port 1 at the fundamental frequency. P (equals to A11/ |A11|)

provides phase correction for harmonic conversion. e, f , g, and h are the output port index, the

output frequency index, the input port index and the input frequency index, respectively. Agh is

the incident wave at input port g and harmonic h. Bef is the re�ected wave at output port e and

harmonic f . X(S)
ef,gh(·) , X(T )

ef,gh(·) are S-type and T-type X-parameters, providing the small-signal

added-contribution to the re�ected and phase-reversed re�ected waves at output port e and har-

monic f due to the incident wave at input port g and harmonic h.
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3.4.2 Extraction Procedure and Simulation Con�gures of X-parameters

Generally, X-parameters can be generated through measurement using a NVNA or from a sim-

ulation of a circuit-level design using the Agilent ADS software.

The NVNA based extraction of X-parameters is illustrated in Fig. 3.14, where the main element

is the NVNA equipment. The NVNA allows to measure both amplitude and phase of all spectral

components at both ports. The source 1 excite the DUT at port 1 with a large fundamental (A11 as

noted above). At a particular value of the large signal inputs, relatively small harmonic components

are injected one by one at both port 1 and port 2, with all frequencies of interest, by using the source

2. Thus, the coe�cients X(F )
ef , X(S)

ef,gh, and X(T )
ef,gh can be estimated by performing a least-squares �t

algorithm on the measured data since the model is linear in the parameters. The procedure can be

repeated for any value of the large signals.

NVNA

DUT
fundf

fundi f×

Port 1 Port 2

Tuner
Coupler

Source 2
Small Signal

Source 1
Large Signal

Figure 3.14: NVNA based X-parameter extraction setup [3].

Due to the NVNA unavailable in labs, in this section, we extract X-parameters from the physical

model which has been developed in the previous chapter. A three-port con�guration of X-parameters

extraction using X-parameter generator in ADS is illustrated in Fig. 3.15. The RSOA used in the

diagram is the physical model developed in chapter 2. The XP_Source component provides RF input

signal and establishes power sweeps. The XP_Bias component is a bias source for X-parameter

generator to establish DC biasing conditions. In our work we used a current source to bias the RSOA

modulator. The XP_Load component provides a load or a load sweep if needed. After the generation,

the extracted X-parameters will be saved into a data �le and can be used for further simulation in
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both circuit level and system level. Furthermore, the extracted X-parameters can be easily transferred

to any third party with the Intellectual Property (IP) protection. Fig. 3.16 shows plots of various

X-parameters versus amplitudes of input signal for the RSOA modulator. The variations of the X-

parameters with the input amplitude at high input power indicate the nonlinearity of the RSOA

modulator.

Out
Bias

In

X-Parameters

DC

X_Param

XP_Bias

XP_Load

RSOA_Model

XP_Source

XP1

PORT3

PORT2

X1

PORT1

Figure 3.15: Extraction of X-parameters based on the physical model of RSOA.

The simulation setup schematic based on X-parameters is shown in Fig. 3.17. The ADS X3P com-

ponent is a three-port X-parameter symbol and allows loading the X-parameter data �le generated

with the con�gure as shown in Fig. 3.15. The two DC blocks are used at input and output to prevent

DC signals generated by the X-parameter model from a�ecting the signal source and sink. In or-

der to compare the performance of both X-parameters and the physical model, the same simulation

setup can be used for the physical model.

To demonstrate the harmonic distortion of the RSOA modulator, we swept the RF input power

range from -15 to 20 dBm and carrier frequency range from 0.7 to 2.0 GHz for extraction of X-

parameters and simulation. The magnitude and phase of the fundamental signals are shown in Fig.

3.18. The magnitude and phase of the third-order harmonic distortion are shown in Fig. 3.19. From

these results, we can clearly see that X-parameter model can not only match the magnitude and phase

of fundamental signals, but the magnitude and phase of harmonic components. The X-parameters

based simulation ran �ve times faster than the physical model based one and can run even faster for

more complex systems.
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Figure 3.16: Plots of various types of X-paramters as a function of large signal amplitude (|A11|).

Two-tone test signals were generated to demonstrate the inter-modulation components for the

X-parameter model. The central frequency of two-tone signals was set to 1.0 GHz with the spacing

of 10 MHz. The RF input power of the each tone signal was swept from -7 to 18 dBm under the

di�erent biases of 60 mA, 90 mA and 120 mA. The fundamental and IMD3 of X-parameter model

and physical model are shown in Fig. 3.20. An excellent match is achieved between the X-parameter

model and the physical model.

3.5 Summary

Three types of behavioral modeling approaches such as TDMLP, GMP and X-parameters were

introduced to model the RSOA modulator.
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Ref3
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I_DC

X3P
DC_Block2DC_Block1
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SRC2
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File="RSOA_XP_generator.ds"

Num=2

voutvin

Figure 3.17: Schematic diagram of simulation with X-parameters data.

The dynamic nonlinear AM-AM and AM-PM characteristics of the RSOA modulator are demon-

strated. The TDMLP and GMP models can produce a similar scattering to ones exhibited by the

measurement data since the memory e�ects are considered in the models. The parameters of the

models were adjusted to provide a best �t to experimental measurements. The accuracy of both

TDMLP and GMP are evaluated with the NMSE as the �gure of merit. Comparing the Table 3.1

and Table 3.2, we can see that the GMP based model exhibits the better performance for the RSOA

modulator. The NMSE is up to 46.02 dB with 56 coe�cients. From the results, The RSOA modulator

does not show strong memory e�ects.

Basically, X-parameters are used under the large signal drive condition. X-parameters are ex-

tracted from the physical model developed in the previous chapter. Harmonic balance analysis was

applied to demonstrate nonlinear distortions of the RSOA modulator. Therefore, harmonic and inter-

modulation distortions can be depicted. X-parameters run �ve times faster than the physical model,

even faster for a complex simulation.
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Figure 3.18: Fundamental magnitude (left) and phase (right) as a function of the input power
under di�erent carrier frequencies of 0.7 GHz, 1.2 GHz, 1.7 GHz and 2.0 GHz.
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Chapter 4

Nonlinear Distortions and
Compensation

The work presented in this chapter focuses on compensation techniques in RoF links. The nonlinear

distortions of the RSOAmodulator in RoF links were experimentally compensated by using a GMP based

predistortion approach.

4.1 Introduction

The RoF links have adequate bandwidth to support wide band and high data rates services. How-

ever, when radio links are in cascade with optical links, the nonlinear distortion in RoF links becomes

the main issue [54,88]. As mentioned previously, the major impairments in the RoF links is the non-

linear distortion caused mainly by the optical modulator, speci�cally RSOA modulator in our work,

rather than the PD. The dynamic range of the RoF links is limited due to nonlinear distortion of

the optical modulator. As we know, the nonlinearity of the device generates new frequencies, for

instance, harmonic and intermodulation components which spread the signal bandwidth, in term of

spectral regrowth, as shown in Fig. 4.1 under two-tone excitation with frequencies ω1 and ω2. The

dynamic range is typically characterized by the IMD. For instance, under two-tone excitation, the

most important components are 2ω1−ω2, 2ω2−ω1, 3ω1− 2ω2, 3ω2− 2ω1, and so on, so called the

intermodulation components. They fall into "Zone 1" and are so close to the fundamental compo-

nents. Therefore, it is di�cult to eliminate them by �lters. The other components can be removed

by �ltering.
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Figure 4.1: Response spectral of a nonlinear device to a two-tone excitation with frequencies
ω1 and ω2.

4.2 Distortion Compensation Techniques

As mentioned earlier, methods for the compensation of nonlinearities in RoF links can be cate-

gorized into two main types: in optical domain and in electrical domain [54].

4.2.1 Optical Distortion Compensation

The optical compensation methods typically require the use of duplicate lasers or external mod-

ulators by selecting the biases such that the transfer function of the combination is more linear than

the individual ones [54]. This approach has economic disadvantages due to high costs for the addi-

tional optical components. The use of the optical distortion compensation, however, achieves a very

wide compensation bandwidth.

4.2.2 Electrical Distortion Compensation

In the electrical domain, a number of linearization techniques have been proposed for RoF links.

The most popular techniques are feedforward linearization and predistortion linearization1 as shown

in Fig. 4.2. In the feedforward con�gure the RF signal is split into two branches as shown in Fig.

4.2(a). In the upper branch, the signal modulates directly optical lightwave via a laser or other

modulator. A part of optical signal is coupled and converted into an electrical signal with a PD (PD1).

This electrical signal is subtracted with the lower branch electrical signal, which is �rst through a
1Here lasers are used in the diagram. In Fact, they can be other modulators such as MZM and RSOA.
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proper electrical delay, to generate an error signal, or intermodulation components in the spectral

domain. The second electrical delay (delay2) is used to adjust the phase of the error signal. The

error signal modulates the second laser (laser2) after being ampli�ed and is injected into the �rst

branch. The distortions can be canceled or reduced. This technique also requires additional optical

devices and therefore increases the cost of the systems. It has been implemented for a DML [64] and

externally modulated analog �ber-optic links [89].

Laser1

PD1 Laser2 PD2

delay2delay1

RF
input

output
RF

Optical 
coupler

Optical 
coupler

delay3

(a)

Predistorter

outputinput

Laser PD

(b)

Figure 4.2: Schematic diagrams of electrical compensation. (a): feedforward and (b): predistor-
tion.

The main principle of the predistortion is to insert a circuit with the inverse of the nonlinearity

of the laser or other modulators as shown in Fig. 4.2(b). Due to its simplicity, predistortion has been

widely proposed and used to compensate the nonlinearities of RF power ampli�ers [50, 51, 61, 90],

MZM [66] and DFB laser [91–93]. Memory e�ects are usually considered in most of predistortion

models to improve the linearization performance.

In this chapter we attempt to compensate the nonlinearity of the RSOA modulator with the

predistortion techniques based on the memory polynomial model.
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4.3 GMP Predistorter

In order to compensate the nonlinear distortion of the RSOA modulator in RoF links, a predis-

torter scheme based on GMP [61] is used, and given by

ũ(n) =
Ka∑
k=1

La−1∑
l=0

aklỹ (n− l) |ỹ (n− l)|k−1

+
Kb∑
k=1

Lb−1∑
l=0

Mb∑
m=1

bklmỹ (n− l) |ỹ (n− l −m)|k

+
Kc∑
k=1

Lc−1∑
l=0

Mc∑
m=1

cklmỹ (n− l) |ỹ (n− l +m)|k

(4.1)

where ũ and ỹ are the complex envelopes of the input and output of the DUT, respectively; Ka,

KbandKc are the order of nonlinearity; La,Lb,Lc,Mb andMc are the memory lengths; akl, bklmand

cklm are the corresponding coe�cients of the DPD.

The identi�cation of the predistorter is carried out by using an indirect learning architecture

[51, 62] as depicted in Fig. 4.3. The complex envelope signals are �rst captured from the input and

output of the RSOA modulator. Since the pth-order pre-inverse transfer function is identical to the

pth-order post-inverse transfer function [62] as shown in Fig. 4.4, the input and output of the DUT

can be regarded as the output and input of the DPD model in order to inverse the characteristics of

the DUT. Thus the coe�cients of the model can be simply extracted with an o�ine process. Once

the estimation of the coe�cients of the model, they are directly copied to the predistorter which

will be running in open-loop mode. Note that in case of nonlinear time-variant systems, the training

branch should be always connected [94].

As the model is linear in the coe�cients, the linear least-squares error minimization method can

be used to estimate the coe�cients of the model, which is described by

ĥ =
(
YHY

)−1
YHu (4.2)

where (·)H represents the Hermitian transpose. ĥ has the same meaning as in 3.12.

The matrix Y and vector u are described in detail by equations (4.3) and (4.4), respectively.
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Figure 4.3: Schematic diagram of predistortion characterization by using indirect learning ar-
chitecture.
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Figure 4.4: Pth order inverse: (a) pre-inverse and (b) post-inverse.
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In order to obtain the predistorted RF input signal of the DUT, the predistorted baseband output

signal of the DPD û can be �rst obtained by

û = Xĥ (4.5)

where X is the baseband input signal matrix (N × P ) of the DPD, which is also the desired output

signal of the DUT and is similar with the matrix Y.

4.4 Results and Discussion

In order to extract the coe�cients of the DPD and generate the predistorted signal for the RSOA

modulator, two random 64QAM signals with 20 Msymbol/s, which were �ltered with a SRRC �lter

with the roll-o� factor of α = 0.22, were generated in MATLAB. One is used to estimate the pa-

rameters of the DPD. The other is to generate the desired predistorted signal. The experimental test

bench is shown in Fig. 3.2. Next, higher power transmission experiments are performed to show that

e�ects of nonlinearity of the RSOA modulator are being compensated by the DPD. The RF signals

used to drive the RSOA is with the average power of 13 dBm, which is near the P1dB point of the

RSOA. Its PAPR is around 7.1 dB. The predistorted signal can be obtained with Equation (4.5). Its

PAPR is around 10.8 dB.

The dynamic AM-AM and AM-PM performances of the RSOA modulator without and with the

DPD and the predistorted signal are shown in Fig. 4.5 and 4.6, respectively. From these �gures, we

can clearly see that the nonlinear distortion and memory e�ects of the RSOA modulator have been

successfully compensated.

To evaluate the performance in frequency domain, the normalized power spectral densities with-

out and with the DPD and the transmitted signal are plotted in Fig. 4.7. It is clearly shown that the

third order intermodulation distortion has been improved by around 17 dB with the DPD when

compared to the situation without the DPD.

After demodulation process in MATLAB, the constellations without and with the DPD and for the

transmitted symbols are shown in Fig. 4.8. It can also be clearly seen that the nonlinearity e�ects of

the RSOA modulator have been successfully compensated. To further evaluate the performance of

the DPD, the EVM de�ned in Equation (3.9) is used as a �gure of merit. The EVMs without and with

the DPD are 6.1% and 2.0%, respectively.
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Figure 4.5: Dynamic AM-AM characteristics of the RSOA modulator without DPD, with DPD
and predistorted signal.

4.5 Summary

This chapter addressed the compensation on the nonlinear distortion of the RSOA modulator

based on the memory polynomial model.

By adding the predistorter, the RSOA modulator can be allowed to operate the nonlinear region,

thereby the signi�cantly increasing its dynamic range. As demonstrated experimentally, the nonlin-

ear distortion can be improved up to 17 dB. The memory e�ect can also be compensated due to the

memory considered in the model.
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Figure 4.6: Dynamic AM-PM characteristics of the RSOA modulator without DPD, with DPD
and predistorted signal.
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Chapter 5

Transmission Performance of
Multi-Channel Systems

This chapter is a part of the FUTON project. In chapter 2 we have developed and validated a simple

physical model for the RSOA modulator. This chapter will address the prediction of the performance of

FUTON system by using the developed model.

5.1 Introduction

There is currently in the wireless arena considerable research aiming at what is commonly called

Fourth Generation (4G) systems that are spurred by interdependent technical and economical de-

ployment trends. Such 4G systems should ful�ll several goals, among which are the provision of

true broadband wireless access, for which a new air interface has to be developed, and the enhanced

system capacity when compared with current Third Generation (3G) networks.

Towards 4G, changes in the wireless systems architectures are necessary. For instance, in order

to support more users at higher data rates, the use of higher radio carrier frequencies is required,

which results in smaller radio cells (in a cellular system), due to increased propagation losses and

line-of-sight restrictions. However, since interference does not undergo the same scaling e�ect as

the cell size, the system capacity does not increase proportionally with cell size reduction. Due to

the radio cells reduction at higher frequencies, more and more antenna sites are needed to cover a

certain area.

Since the work presented in this chapter is based on the FUTON project, an overview of the

FUTON project is �rst presented. The transmission performance of the FUTON system is predicated

by using the physical model developed previously.
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5.2 Overview of FUTON Project

The FUTON is an international collaborative EU FP7 research project, that started in January

2008 and �nished in September 2010, and involved 16 research institutes, universities, manufac-

turers and operators. The FUTON project aimed at researching, developing and validating a �exible

architecture for wireless systems based on the joint processing of the radio signals from a large num-

ber of RAUs and supported by a transparent �ber infrastructure. This architecture enables the high

bit rates targeted for the broadband component of future wireless systems and provides a framework

for the integration of the various current heterogeneous wireless systems. The FUTON infrastruc-

ture provides enough �exibility to share its resources by a wide range of wireless systems and also

by �xed optical connections. The supported systems should include outdoor Distributed Broadband

Wireless System (DBWS), where the infrastructure acts as a virtual MIMO enabler to achieve the

target high bit rates, indoor DBWS, and also the remote control of dedicated radio systems. A gen-

eral FUTON architecture is depicted in Fig. 5.1. The system is composed of the number of RAUs

and the optical �ber infrastructure, which transport the user and network information to the central

unit for its processing. In the context of the FUTON architecture, the di�erent systems can coexist

in a serving area and are connected to the same CU.
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Figure 5.1: FUTON architecture [4].

The main objectives of the FUTON project were
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• Specify, design, implement and provide proof of concept for a hybrid optical-radio infrastruc-

ture enabling the high bit rates envisioned for 4G.

• Exploit the potentialities o�ered by the infrastructure to develop mechanisms for inter-system

coordination and optimum usage of the radio resources and provide the proof of concept.

• Evaluate the implications on the current wireless architecture models of the FUTON concept.

These FUTON links are designed to support the transport of 4 di�erent radio channels per link

direction. Each of these channels carries DBWS signals between the CU and the RAUs. The link

budget calculation for the RSOA-based link, focused only on the Uplink (UL) direction, as explained

previously, and the components and parameter values of this link are in detail presented in Fig. 5.2.

The IF plan de�ned for FUTON DBWS transmission is depicted in Fig. 5.3. The Downlink (DL)

and UL channels are not interleaved, instead they occupy separate bands. The UL band is below 1

GHz so that the RSOA can be used as a transmitter option.

5.3 Optical Subcarrier Multiplexing

The use of MIMO results in an increase in the number of radio channels. all of these signals have

the same carrier frequency and bandwidth. They cannot be transported via the same optical �ber

without any multiplexing scheme. Three multiplexing schemes are categorized as follows.

• Space Division Multiplexing (SDM), in which each signal is delivered to a separate optical

�ber. These scheme requires one optical source and one �ber for each signal.

• WDM, in which each signal modulates a separate optical source with a separate wavelength.

All signals can be transported via the same optical �ber. Therefore, the WDM scheme requires

one optical source for each signal.

• SCM, in which each signal is converted a separate IF. These IF signals can combined in the

radio domain and then modulate a lightwave. The SCM scheme requires one optical source

for all signals, and one frequency conversion per signal at each transmitter and receiver sides

for each transmission direction.

For the FUTON system, frequency translation (subcarrier multiplexing) would be necessary to

accommodate the radio channels being speci�ed for the DBWS, since it is envisaged that multiple
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Figure 5.3: IF frequency plan for a 2×4-channel RoF link architecture in the FUTON project.
(CMS: control/monitor/synchronization)

channels operating at the same radio frequency must be transmitted between the CU and RAU over

a single optical link. As mentioned earlier, the FUTON systems provide the virtual MIMO scheme

with SCM techniques.

Optical SCM is depicted in Fig. 5.4. Several individual signals are multiplexed by separate car-

riers in the electrical domain and used to modulate an optical carrier with an E/O at a transmitter.

At a receiver the electrical signals are recovered by an O/E such as a photodetector. And then the

carriers are separated with the corresponding local oscillators. This gives an advantage over a pure

WDM access, due to the lower cost of electrical components if compared with an optical multiplexer.

The mature microwave devices such as stable microwave oscillators and high selectivity electrical

�lters are also more superior to the corresponding optical counterparts. But SCM is limited in max-

imum subcarrier frequencies and data rates by the available bandwidth of the electrical and optical

components. SCM usually is used in conjunction with WDM in order to take advantage of most

of the available �ber bandwidth. In multichannel application a wideband RF signal will su�er from

distortion from both in-channel and out-of-channel signals due to the nonlinear behavior of the E/O

modulator. Therefore, the harmonic and intermodulation products generated by the RSOA modula-

tor between channels become one of the important limiting factors in performance of RoF links.

5.4 Predicted Performance of the Multi-Channel System

Based on the model developed for the RSOA link type, and on its corresponding experimental

validation, the performance of the RSOA link in the FUTON systems can be predicted. The perfor-

mance was evaluated by using the EVM as the �gure of merit to assess the signal degradation caused

mainly by the intrinsic nonlinearity of the RSOA modulator.
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Figure 5.4: Basic schematic diagram of the optical SCM.

In this section, we attempted to use a Virtual Photonics Inc. (simulation software manufacturer)

(VPI)/ADS co-simulation to predict the performance of the FUTON since the VPI provides an OFDM

modulator module by which the arbitrary bandwidth OFDM signal could be generated by setting

corresponding parameters. The co-simulation schematic is depicted in Fig. 5.5. A co-simulation

interface block is used to pass the data into the ADS where the physical model has been implemented.

An OFDM receiver decodes the electrical OFDM signals and evaluates EVMs of the signals. The

carrier frequencies of the four channels in the FUTON uplink are set to 0.3 GHz, 0.5 GHz, 0.7 GHz

and 0.9 GHz as de�ned in Fig. 5.3.

Figure 5.5: Simulation diagram for 4-channel uplink transmission in the FUTON system.
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The simulation was carried out for various Inverse Fast Fourier Transform (IFFT) sizes (various

number of OFDM subcarriers) and QAM levels of 64 and 256 while the 3-dB RF bandwidth of each

channel is 100 MHz. This means that for the two QAM levels the corresponding data rate is 600

Mbit/s and 800 Mbit/s, respectively. Therefore, there are four cases as follows:

• Case I: 64QAM, IFFT size of 64, and data rate of 600 Mbit/s.

• Case II: 64QAM, IFFT size of 512, and data rate of 600 Mbit/s.

• Case III: 256QAM, IFFT size of 1024, and data rate of 800 Mbit/s.

• Case IV: 256QAM, IFFT size of 2048, and data rate of 800 Mbit/s.

The four-channel signal generated with OFDM transmitters in VPI for the Case IV is shown in

Fig. 5.6. The received signal for the Case IV is shown in Fig. 5.7. It clearly shows the distortions

generated by the RSOA modulator in Fig. 5.7.
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Figure 5.6: Generated wideband SCM signal for Case IV.
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Figure 5.7: Received wideband SCM signal for Case IV.

From Fig. 5.8 to Fig. 5.11, the transmission performance of the FUTON system are illustrated

for the four cases discussed above, respectively. To be compared, the single channel with the carrier

frequency of 900 MHz was also simulated and plotted with dash lines. From these �gures, we can

clearly see that there are no signi�cant di�erences between the four channels. The EVMs in all cases

start rising more or less at the same point. Some variations are observed between di�erent channels,

but these are not consistent. These could be attributed to variations in the simulation due to the

statistical nature of the signals and di�erences in the average powers between di�erent channels.

Di�erences are observed by comparing the single channel cases, especially at high RF input powers,

due to the nonlinear distortions generated by the RSOA modulator. The intermodulation distortion

products fall into the band of the signals as depicted previously in Fig. 4.1 in chapter 4. It is worth

noting that the addition of the three more channels increase the total power of the SCM signals with

6 dB in theory. The main limitation does not come from adding more OFDM subcarriers but from

increasing the number of RF carriers. For all of four cases, a large range of RF input powers is above
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30 dB when the EVMs below 3% are considered. The constellations for the Case IV under RF input

power of -5 dB and 4 dB are shown in Fig. 5.12. The �gures also show clearly the e�ect of nonlinear

distortions on the performance of the links.

5.5 Experimental Demonstration of Four Channels

Fig. 5.13 illustrates the experimental setup to study the transmission of four SCM multiplexed

signals over an optical link using an RSOA as a modulator. For EVM characterization we had avail-

able a single channel VSG and a VSA. The VSG channel generated the test RF signal which complies

with IEEE 802.11g standard: bit-rate 54 Mbps, 64 QAM OFDM modulations, using 52 active subcar-

riers. The other channels were generated from a limited bandwidth pseudo random binary sequence

(PRBS) generator. A 20 Mbps PRBS baseband signal was split into three equal signals. Each signal

had its bandwidth limited by a low pass �lter before it was up-converted to the appropriate subcarrier

frequency. Bandpass �lters selected the desired frequency and removed the unwanted frequencies

before the signals were combined again to form the multiplexed RF signal. The three channels and

the test signal were then combined to produce the four multiplexed channel signal. The power in

each channel was balanced in order to have same RF power in all the channels. An RF ampli�er,

ZHL-42W (37 dB gain), was used to boost the RF signal and drive the RSOA modulator.

The RF driving input power of the RSOA modulator can be adjusted by using a tunable 30 dB

attenuator. Fig. 5.14 represents the four channel multiplexed signals. The signal centered at 900

MHz is the 802.11g test signal. The channel frequency that we want to characterize is set by the

VSG and the LO frequencies of mixers are adjusted for the remaining carriers. Each time the test

channel frequency varies the VSG output bandpass �lter has also to be replaced and the mixers LO

frequencies are readjusted. The interferer signals and the test signal have di�erent characteristics

but as we drive the modulator into a nonlinear region, we expect to see, the e�ect in the test signal,

resulting from the presence of the other channels.

The measurement results are shown in Fig. 5.15. There is some variation between channels,

which might be attributed to the impedance matching between the driving ampli�er and RSOA and

also to minor di�erences in bandpass �lters response. When compared between the single channel

and four channels, Fig. 5.15 shows similar results with simulations in section 5.4, even though the

SCM signals are with di�erent bandwidths between measurement and simulation.
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Figure 5.8: Simulation results for IFFT size of 64 and 64QAM. single channel at 900 MHz.
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Figure 5.9: Simulation results for IFFT size of 512 and 64QAM. single channel at 900 MHz.
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Figure 5.10: Simulation results for IFFT size of 1024 and 256QAM. single channel at 900 MHz.
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Figure 5.11: Simulation results for IFFT size of 2048 and 256QAM. single channel at 900 MHz.
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Figure 5.12: Constellations of the SCM signal for Case IV at RF input powers of -5 dBm (right)
and 4 dBm (left). (a) and (b): channel 1; (c) and (d): channel 2; (e) and (f): channel 3; (g) and (h):
channel 4.
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Figure 5.13: Measurement setup.

5.6 Summary

Based on the developed model, the performance of the FUTON system was predicted with dif-

ferent modulation schemes and IFFT sizes, and the system was proven to be feasible with the RSOA

modulator based RoF link con�gure.

Comparison between single channel and four-channel cases, the performance of the FUTON

system is signi�cantly degraded due to the intermodulation distortions of the RSOA modulator. The

limit of the performance comes mainly from the increase in the number of RF carriers which result

in the intermodulation products due to the nonlinearity of the RSOA modulator.

Measurement of four-channel signals demonstrated the system performance even though the

generated SCM signals have di�erent signal bandwidth when compared to FUTON system.
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Figure 5.14: Spectrum of the SCM.
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Figure 5.15: Measured EVM for single channel and four-channel signals versus RF input power.



Chapter 6

Conclusions & Future Work

6.1 Conclusions

In this thesis the modeling and characterization of RSOA modulators in RoF links have been

investigated. A simple physical model, which is able to predict the performance of the RSOA and

aid to design the device, has been developed under some assumptions. The multi-section model

has been implemented successfully with the SDD component in ADS software. With the physical

model, we investigated static and dynamic characteristics of the RSOA modulator in the RoF links.

all �tting between measurement and model are matched well. It means that the simpli�cation with

the assumptions does not degrade the performance of the model for RoF applications.

The distributions of the carrier and photon densities along the active region were depicted, which

give insight into the interaction between carriers and photons. Based on the simulation result, the

two-electrode con�gures of the RSOA o�er a solution to enhance the link gain. Based on the physical

model, the wideband performance of FUTON system was predicted. The VPI software provides a

powerful OFDM source which can generate the OFDM signal with the desired bandwidth under

di�erent modulation schemes and IFFT sizes. when compared to the single channel, the performance

of the four-channel systems does not degrade at low input powers since the noise is dominant.

However, the performance of the systems dramatically deteriorates at high input powers due to

the intermodulation distortion of the RSOA modulator. The simulation results of the four-channel

system show that there is no signi�cant di�erent between channels.

The advantage of the behavioral modeling is no requirement of the knowledge of the device.

Several behavioral models such as TDMLP, GMP and X-paramters were addressed and compared

in this thesis. They o�er a system level simulation platform. Based on the TDMLP and GMP, the
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dynamic distortion and memory e�ects of the RSOA modulator were depicted by the AM-AM and

the AM-PM conversion characteristics. From the results, we can see that the RSOA modulator does

not show strong memory e�ects. The use of X-parameters enables us to analyze the nonlinearity of

the RSOA modulator under the large signal excitation.

The compensation technique for nonlinear distortions of the RSOA modulator has been inves-

tigated. The popular and simple predistortion technique based on the memory polynomial model

was addressed. With the method, the improvement of the linearity of the RSOA modulator has been

experimentally demonstrated in this thesis. The third order intermodulation distortion of the RSOA

modulator was reduced up to 17 dB with the DPD method. Therefore, the dynamic range of the

RSOA modulator could bene�t from the predistortion compensation.

6.2 Future Work

Many challenging tasks for future research are still ahead and need to be addressed. There are

several research topics that can be extended from this thesis.

As the simulation shows, a new device with a two-electrode con�gure can be designed in order

to improve the link gain of the RSOA with proper biases.

It is interesting to extend the TDMLP and GMP models for multi-channel systems. The dynamic

distortion and memory e�ects of multi-channel systems can be predicted in system level.

The digital predistortion compensation technique presented in this thesis was demonstrated that

it is capable of improving the linearity of the RSOA modulator. To make it useful in real applications,

an implementation with Field Programmable Gate Arrays (FPGA) is needed.

An enhanced wideband digital predistortion with the bandwidth of 100 MHz, which is suitable

for LTE-Advanced systems, is also interesting to be developed and implemented. Compensation

techniques for nonlinear distortions of the multi-channel systems are well worth a try.
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