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Palavras Chave SDN, OpenFlow, fast fail-over, fail-safe, tolerância a falhas, redundância,

cloud, OpenDaylight.

Resumo Hoje em dia coloca-se um valor imenso em redes Ethernet, especialmente

para operações em data centers que fornecem serviços na cloud ou em

enormes infraestruturas de rede em geral. No entanto, nem sempre é possí-

vel existir e garantir comunicações a 100% devido ao facto de a redundância

em Ethernet ter sido considerada sempre como um problema não resolvido,

tendo em conta a grande quantidade de recursos de rede a serem geridos.

Ao longo da história têm sido desenvolvidas diversas soluções que tentaram

resolver este problema, apenas para enfrentarem o falhanço em fornecer os

requisitos adequados.

Software-defined Networking (SDN) é um paradigma inovador e um

mecanismo dinâmico e configurável que traz uma natureza programável que

permite a implementação de soluções que possam, finalmente, resolver os

problemas identificados. Através do uso de interfaces abertas programáveis,

o controlo e gestão do comportamento da rede está a tornar-se mais fácil e

menos propenso a erros.

O objetivo principal desta dissertação foi a implementação e avaliação

de uma solução baseada em SDN à prova de falhas para comunicações

críticas, portanto para gestão de falhas em tecnologias Ethernet redundantes

num cenário típico de gestão de data centers.

Esta dissertação apresenta a solução desenvolvida e as principais fa-

ses da sua implementação. A solução implementada utiliza uma rede

redundante L2 e um controlador SDN para calcular a topologia da rede. A

solução faz uso de extensões para o protocolo OpenFlow e módulos do

controlador OpenDaylight.

Durante a fase de avaliação, diferentes cenários foram testados onde

ocorreram mudanças na topologia. Os resultados da avaliação mostram

que a solução proposta se comporta de forma satisfatória sempre que uma

ligação falha, obtendo perda de pacotes nula. Para concluir, a solução

mostra-se promissora para as operações em data centers críticas tendo em

conta o tempo de adaptação obtido nas avaliações.





Keywords SDN, OpenFlow, fast fail-over, fail-safe, fail-tolerant, redundancy, cloud, Open-

Daylight

Abstract Nowadays, we put an immense value on Ethernet networks, especially for

data center operations empowering cloud environments or huge network

infrastructures in general. However, it is not always possible to bring 100%

up-time communications since redundancy in Ethernet has always been an

unresolved problem, considering the large amount of network resources to be

managed. Through history there have been many developed solutions that

tried to solve this issue, only to fail in providing the proper support.

Software-defined Networking (SDN) is a novel paradigm and a dynamic

and configurable mechanism that brings a programmable nature for devel-

opers to implement solutions that may finally solve the identified issues. Via

the use of programmable open interfaces, the control and management of

network behavior is becoming easier and less error prone.

The main objective of this dissertation was the implementation and evaluation

of a fail-safe SDN-based solution for critical communications, therefore for

fault management in redundant Ethernet technologies on a typical data center

management scenario.

This dissertation presents the developed solution and the main phases

of its implementations. The implemented solution uses a redundant L2

network and a SDN controller to calculate the network topology. The solution

makes use of extensions to both the OpenFlow protocol and OpenDaylight

controller’s modules.

During the evaluation stage, different scenarios were tested where topology

changes occur. The evaluation results show that the proposed solution

behaves satisfactorily whenever a link fails, obtaining none packet loss. To

conclude, the solution shows to be promising for critical data center operations

concerning the adaptation time obtained.
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chapter 1
Introduction

1.1 motivation

The value we put on today’s communications causes them, now more than ever, to be more reliable,

safe and have almost 100% up time. In order to achieve that criteria the evolution of current paradigms,

technologies and standards must be performed. On a company where its main income is directly

connected with the amount of time its services are online, it is essential that the internal network

failures are covered by backups. Usually, those backups are based on existing technologies without

the freedom of changing a standard to suit each company’s specific needs. With the advance in the

performance of today’s CPUs it makes no sense to continue having a network adjusting itself on a

distributed way when a company may want a real-time control of it. In addition with the technology

currently deployed on the enterprise networks it is not always possible to bring a 100% uptime due to

multiple factors such as equipment failure, security incidents (directly or indirectly related with the

network of the organization), natural disasters, among other incidents.

Supposing a company has a network similar to the one illustrated on Figure 1.1, in order for it

to have redundancy on a data link level it is necessary to have multiple paths to reach the primary

and backup machines. For over fifteen years it has been used the same technology to achieve that

redundancy. Contrary to what happened fifteen years ago, the bandwidth of each link increased

significantly over the years and the requirements back then were different from the today’s. Nothing

lasts forever and it is relevant to make sure in the case an equipment failure, the communications

conducted by that equipment do not fail.

Network protocols are conceptually divided by seven layers: physical; data link; network; transport;

session; presentation and application layer. The first layer, the physical layer, defines the electrical,

physical and optical specifications as well the bit signaling for the data transmission. One of the

protocols from the second layer, the data link layer, is studied on this dissertation: the IEEE 802.3
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Figure 1.1: A network topology pattern for data centers 1.

(often called Ethernet). This protocol defines how the information is exchanged between two directly

connected nodes. However, when it was designed, it was not considered a mechanism for forwarding

such as hop count. Thus, it is impossible having redundancy on Ethernet without dealing with the so

called broadcast radiation. To deal with this problem, in 1985 appeared an algorithm called Spanning

Tree Algorithm (STA) [1]. Later in 1990, that algorithm was used on a protocol called Spanning Tree

Protocol (STP) standardized as IEEE 802.1D. On Figure 1.1, the communication between the access

layer and the services layer would be made through the aggregation layer. STP creates a topology tree

without loops by setting some ports of the switches on a blocked state causing the traffic to go through

one of the links attached on an available non-blocking port. In case the main link fails, and since the

communication has a backup link, the topology reconfigures itself and the communication between the

two machines continues after the spanning tree convergence. Unfortunately, that reconfiguration takes

a few dozens of seconds to complete during which, no communication is made on all the topology.

Some improvements were made and the Rapid Spanning Tree Protocol (RSTP) appeared in 2001 as

a substitute for STP. One of the RSTP improvements focuses on reducing those dozens of seconds

in the reconfiguration process to a couple of seconds. Although there were great improvements over

those years, there is still a problem on those protocols: they create a tree-based network topology, and

there is not a full use of all the equipment deployed on the topology, which consists in a lack of overall

efficiency on the network usage. In addition, a single machine transfers all the traffic, designated by

root bridge, causing a bottle neck in the network. Besides those problems, there are still those couple

of seconds of offline time which are taken for the topology to reconfigure itself after a change. All the

previously defined issues do not help in providing a 100% uptime between two or more machines in

critical communications.

1Image available: http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Data_

Center/DC_3_0/dc_serv_pat.html
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Multiple manufacturers have created their own STP and RSTP alternatives such as the proprietary

protocols QFabric [2], Virtual Cluster Switching (VCS) [3] and FabricPath [4] to overcome those

problems and bring some new features that were not possible with the existing protocols from IEEE.

This brought another problem such as cross-manufacturing issues: it was not possible to have two

products from different brands using another company’s algorithm.

Over the years many efforts have been undertaken to develop network management solutions to

follow a software controlled network management approach. Since 2005 some projects have appeared as

a result of those efforts such as: 4D [5] [6], Routing Control Platform (RCP) [7], Security Architecture

for Enterprise Networks (SANE) [8] and Ethane [9]. This led to the creation of a new concept, created

by Martìn Casado in 2008, creator of SANE and Ethane, called Software-defined Networking (SDN) [10].

Although the concept is new, it is difficult to create a definition for it since its technical principal is

old. Martìn Casado brought it as a new organizing principle with proving concepts [11].

With SDN came the first technology from it called OpenFlow. Its main purpose was to help

developers and investigators create and test new protocols on a live network [12]. This brought the

definition of two networking planes, the control plane and the forwarding/data plane. The data plane

processes packets in the forwarding unit, depending on its layer, such as a layer 2 switch for Ethernet

or a router for Internet Protocol (IP). The control plane is more complicated since the control of a

network goes from its routing passing by the isolation and finishing in traffic engineering. Furthermore,

it is not possible to perform different actions for each individual packets [13]. However OpenFlow

brought new possibilities to change and control a network topology in real time from a central controller

providing a new paradigm to network administrators. With that control it is possible to have a network

that controls itself taking more factors into consideration as well as making decisions faster than a

human and legacy technologies such as STP-based protocols.

This dissertation describes the implementation of a fault-tolerant SDN-based resource management

solution.

1.2 objectives

The main goal of this dissertation is to develop a solution providing, in an SDN, a free-loop layer

2 topology with redundancy. The objectives of this dissertation were:

• Study of current protocols deployed for redundancy;

• Familiarization with SDN concepts;

• Study the OpenFlow protocol;

• Present some of the vast capabilities of an SDN;
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• Create an implementation of an experimental prototype that provides a fault-tolerant topology

on an SDN topology.

1.3 contributions

The work presented on this dissertation has been submitted to the scientific community.

It was defined a fault-tolerant mechanism for network management. Taking advantage on the

OpenFlow, this mechanism allows for a fail-safe SDN topology.

The source code for the plugins implemented for the OpenDaylight controller are available online

in 2.

The implemented fail-safe Ethernet solution was accepted by the 16th International Telecommuni-

cations Network Strategy and Planning Symposium committee (Funchal, Madeira, 2014) [14].

This work was also submitted in the 5th edition of the Fraunhofer Portugal Challenge in the

area of “Autonomic Computing - smarter devices, less configuration and maintenance (remote &

self-management, configuration and control)”.

1.4 structure

This document is divided in six chapters. The current chapter outlines the motivation for the work

of this dissertation, on redundant communication for Ethernet using OpenFlow, as well as providing

information on the contributions already made. The remaining chapters provide information as follows:

• Chapter 2: Presents the current work related to redundancy on Ethernet. It is described an

overview of the Ethernet’s history and the current protocols developed and applied in the

industry such as STP, RSTP and MSTP. The emerging protocols, such as TRILL and SPB,

are also considered;

• Chapter 3: Describes the Software-defined Networking concept and its history. It is focused on

the architecture of an SDN topology and the primary key components of those type of networks;

• Chapter 4: Starts by enumerating the requirements of an implementation to be developed for

SDN in order to solve the primary objective of this dissertation. Later, it describes the key

aspects of the solutions developed and the main differences between them;

• Chapter 5: Illustrates and describes the tests made in order to evaluate the different developed

solutions. This chapter ends with an overall conclusion about which is the ideal scenario for

each developed solution;

2https://github.com/aanm/multipath-openflow
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• Chapter 6: Wraps up the dissertation with a brief overview of the concepts discussed, the main

results obtained and an indication of a direction for future work.
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chapter 2
Defining redundancy on

Ethernet

Ethernet was designed to become a protocol for point-to-point communications. Later was concluded

that was necessary to have more machines connected in order to have more computational power. To

connect those machines it was necessary to add bridges, a layer 2 forwarder packet, creating a Local

Area Network (LAN). While LANs keep growing it was more difficult to control the communication’s

collisions, although the Carrier Sense Multiple Access with Collision Detection (CSMA/CD) method

was present, it was not enough causing instability in the network. Having multiple bridges laid on a

respective way, as one can seen in Figure 2.1, where only a path exists between any pair of machines,

it was possible to increase the number of bridges but it would also increase the number of failures over

time.

Figure 2.1: Single path topology for all connected hosts.

Unfortunately, Ethernet was not enabled with any mechanism to measure the distance between

two network nodes. For example, IP protocol from Open Systems Interconnection (OSI) model third
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layer, has a hop count value that decreases by one unit for each router where that packet has passed.

On Ethernet there is not such option and with the LANs increasing in complexity, it was urgent to

build a mechanism to control Ethernet packets on redundant networks, avoiding the packets to be on

the topology until resource exhausting, called broadcast storms.

Being essential to have redundancy for multiple destinations, there is another problem besides

broadcast storms. On Figure 2.2 there are two machines, machine A directly connected to switch 1

and machine B directly connected to switch 2. Supposing machine 1 is sending information to machine

2, switch 1 does not know where it should transmit those packets and floods them to all ports except

the one where the packets came from. Switch 2 will receive packets from port 1 and have the same

behavior as switch 1, sending those packets to all ports except the one it received. Supposing switch 3

knows the port to the destination’s packets, it sends it to port 3.

While the flooding process occurred on switch 1, the original packet was multiplied by the number

of ports (two, in this case) connected to the topology. This caused one of the packets to pass through

switch 2 and the second to be sent directly to switch 3. The problem occurs when the second packet

reaches the receiver because it might cause some confusion by receiving the double amount of the

information sent.

Figure 2.2: Redundant topology where machine B receives the double of the information sent by machine A.

Last but not least, there is still a problem related with the MAC database from the switches called

MAC database instability. On the same example from Figure 2.3b, supposing switch 3 does not know

where machine 3 is, it will send the same packet through all ports. When switch 1 receives it, it will

learn that machine 1 is on port 3, which is not true. When another packet is received from machine 1,

switch 1 will learn that machine 1 is on port 1 and not on port 3. This will repeat every time a packet

is sent from machine 1, causing the MAC database from switch 1 to become unstable.

In the following sections are explained some algorithms and protocols developed to solve these

problems. In the end of this section is recapitulated in form of a table the algorithms listed and some

of their major characteristics.
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(a) A packet sent from machine 1 passing
through switch 1 and switch 2, reaching
switch 3 where it will be flooded.

(b) The same packet sent on Figure 2.3a
flooded to all ports on switch 3. All switches
start having their MAC database unstable.

Figure 2.3: An exemplification of the MAC database instability.

2.1 Spanning Tree Protocol (IEEE 802.1d)

This need for a loop-free topology with redundancy is not new, in 1985 this lead to the proposal of

STA developed by Radia Perlman [1], that wrote the following poem, while developing the algorithm.

Algorhyme

I think that I shall never see

a graph more lovely than a tree.

A tree whose crucial property

is loop-free connectivity.

A tree that must be sure to span

so packets can reach every LAN.

First, the root must be selected.

By ID, it is elected.

Least-cost paths from root are traced.

In the tree, these paths are placed.

A mesh is made by folks like me,

then bridges find a spanning tree.

In 1990, Institute of Electrical and Electronics Engineers (IEEE) standardized a protocol as a

standard IEEE 802.1D, that includes Spanning Tree Protocol. Since the protocol was standardized, it

was possible for different manufacturers to implement STP on their equipment.

On a STP topology, such as the one represented on Figure 2.4, it is possible to have redundancy

and still having a free-loop Ethernet topology. The protocol defines a switch designated by root-bridge,

the switch 2 on Figure 2.4. The root-bridge is in charge of all traffic that goes through the topology.
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As seen, if switch 1 or switch 4 wants to communicate with switch 3, the traffic goes through the root

bridge. One of the scalability issues this protocol has, is the circumstance that all traffic needs to go

through this particular switch creating a bottle neck for the topology.

Figure 2.4: A STP topology with its root bridge and all ports status accordingly with the STP.

STP bridges start communicating in order to elect the root bridge, as the bridge with the lowest

bridge ID. After the root bridge selection, Spanning Tree Algorithm performs the spanning tree

calculation determining the least costs paths from the network bridges to the root bridge. The root

port connects the link connected to the root bridge, or the port that has the shortest path to the root

bridge. Depending on the cost of the port, the remaining ports are then defined as designated if they

have the lower cost; or blocked ports to prevent the loops on the topology. Each port has to pass

through different states before having a rule. Those state are defined follows:

• Blocking - A port that is blocked to prevent loops in the topology, as an example it would

be port #1 of switch 3 on Figure 2.4. This port only exchange a particular type of packets,

designated by Bridge Protocol Data Unit (BPDU), that contains information about ports states,

addresses, priorities and costs on each bridge;

• Listening - A port state where it is listening for BPDU packets. This is a state present when

the tree is being created. The port stays on this state at least 15 seconds before moving to the

blocking state or learning state;

• Learning - A similar state to listening state. On this state the bridges may receive and process

data packets without passing to the forwarding state. Only after 15 seconds on this state that

the port goes to the forwarding state;

• Forwarding - Final state where the port performs its normal functions;

• Disabled - A state where the port is disabled and does not participate in the STA.
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After the tree has been created by the protocol, there is another issue to take in consideration. If

the topology changes, STP network topology has to be recalculated, taking around 30 to 50 seconds

(15 seconds for listening + 15 seconds for learning + 6 to 40 seconds of a specific timer depending

on the manufacturer) before moving from a blocked port into the forwarding state. This is a large

amount of time on today’s requirements and it started to become unacceptable to use this protocol on

data centers.

Finally, there is the problem of unused resources. As seen on Figure 2.4 there are unused links, if

they were used, this could bring a more dispersion of the traffic giving a better load-balancing topology.

Spanning Tree Algorithm is great algorithm to solve the broadcast storms on an Ethernet topology.

Bridge networks with huge bit rates, as the data center networks have huge amount of traffic that,

because of the based logical topology, need to cross through root bridge interfaces, making those

switches very expensive. Exposing that, it is not perfect if we have other needs for fast communications

that appeared with the evolution of Ethernet. Some improvements were made until RSTP was

developed and next section briefly describes it.

2.2 Rapid Spanning Tree Protocol (IEEE 802.1w)

In 2001, IEEE published the Rapid Spanning Tree Protocol designated as 802.1w. RSTP has the

characteristic of being more proactive than STP. As described before, STP has essentially four port

states: listen, learning, forwarding and blocking. The RSTP substitutes are only three:

• Discarding - similar to the STP blocking state;

• Learning - improving of the STP learning state;

• Forwarding - identical to STP forwarding state.

There are four port roles in RSTP:

• Root port - the same designation used in STP, the port to reach the root bridge;

• Designated port - the port designated for a LAN segment;

• Alternate port - a port that has an alternative route for root bridge in case the root port goes

down. It is instantly selected if the root port fails;

• Edge port - Ports that are connected with non-switch devices.

RSTP does not forget the ports like STP, instead the blocking port was removed and the alternate

port was added. Many of the timers were eliminated, such the 20 seconds before moving from a

blocking state in to a listening state and the 15 seconds for listening BPDU packets to make sure that

port is not a loop.
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On every topology change, the switches send topology change messages through the network and

every switch knows what to do with that information, instead of rediscover the network and finding

out which part of the topology had change.

On modern data centers STP is no longer used essentially due to it is large amount of time for

reconfiguration after a change in the STP topology. Using RSTP it is also possible to recalculate a

new tree for the new topology in around 3 seconds, which is a significant improvement from STP.

Those improvements have filled the needs of data centers and brought a fast recovery on topology

changes. There was still a problem regarding the usage of links from the alternate ports and the

overload of the designated root bridge.

2.3 Multiple Spanning Tree Protocol (IEEE

802.1s)

Having one of the issues from STP solved by RSTP to the non real-time scenarios, the large

amount of reconfiguration time, there was other main issue that had yet to be solved: the unused links

from the blocked/alternative ports.

Cisco created Per-VLAN Spanning Tree (PVST) [15] as a solution to solve that problem. It was

possible to have a spanning tree instance for each Virtual Local Area Network (VLAN) allowing a

load balance traffic at layer 2. Later, IEEE created the Multiple Spanning Tree Protocol (MSTP),

designated by IEEE 802.1s, with some similar functionalities of PVST. Both PVST and MSTP had

the purpose of giving STP the scalability needed for large enterprise networks, without having a bottle

neck in only one bridge as visible in STP. This protocol is an extension of RSTP and the convergence

times did not change. If only one VLAN is used on all topology, the problem of unused links are not

solved and the unused links keep existing as in STP.

Besides MSTP there was another improvement made by IEEE known as Link Aggregation

Group (LAG) (IEEE 802.3ad). This standard allows two or more links to be connected between two

switches causing those links to become a single logical link. Besides LAG, it was also standardized

IEEE 802.1ax, an extension to LAG, designated as Multichassis Link Aggregation (MC-LAG) [16].

Having two links connected to two different machines, this extension provides interconnection and

redundancy between these machines.
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2.4 Transparent Interconnection of Lots of

Links

New technologies are emerging from IEEE and IETF, they both promise to solve all problems

Spanning Tree Algorithm-based protocols did not solve. On this section it will be discussed IETF

TRILL and on later it will be discussed IEEE 802.1aq.

Transparent Interconnection of Lots of Links (TRILL) was initially proposed by Radia Perlman to

IEEE 802.1 as a substitute for all Spanning Tree Protocols. It was rejected due to the fact that it

was not very useful. The STP is reckoned to be still good and the idea of having hop counts and the

routing mechanism are both unpleasant [17]. Then, Radia Perlman organized a Birds of a Feather

session and Internet Engineering Task Force (IETF) accepted TRILL.

Perlman also created a new poem describing this new protocol and it is available in the RFC that

standardizes TRILL [18] [19] [20] [21] [22].

Algorhyme v2

I hope that we shall one day see

A graph more lovely than a tree.

A graph to boost efficiency

While still configuration-free.

A network where RBridges can

Route packets to their target LAN.

The paths they find, to our elation,

Are least cost paths to destination!

With packet hop counts we now see,

The network need not be loop-free!

RBridges work transparently,

Without a common spanning tree.

Intermediate System to Intermediate System (IS-IS) [23] is a routing protocol designed for an

administrative network. IS-IS have the same shortest path between all Routing Bridges (RBridges).

It is not necessary to replace all topology since TRILL keeps interoperability with STP. In fact, as

more bridges are replaced by RBridges, the better the bandwidth usage and more stable the topology

become [24].

Contrary to SPB, TRILL contains two new headers: an outer header and the TRILL header. The

outer header is only used to send packets between RBridges, and it essentially specifies the source and
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destination of a packet. The TRILL header contains multiple fields such as: ingress RBridge (16 bits),

egress RBridge (16 bits), hop count (6 bits), and a multidestination flag bit (1 bit).

On Figure 2.5 is illustrated a topology with six RBridges. The basic operation for a packet sent

from machine A to machine B consists in the following steps:

• Machine A sends a packet with destination machine B;

• RBridge 1 receives it and encapsulates it with a TRILL header, where ingress is RBridge 1 and

egress is RBridge 4;

• RBridge 1 then puts an outer header, different than TRILL header, to send that packet to

RBridge 6;

• RBridge 6 receives it, removes the outer header, decreases the hop count present on TRILL

header, applies a new outer header and sends it to RBridge 5;

• RBridge 5 performs the same procedure of RBridge 6 and forwards it to RBridge 4;

• When the packet finally reaches RBridge 4 it verifies that the egress bridge is itself and sends

the packet to the appropriate port, reaching Machine B.

Figure 2.5: TRILL topology with the illustration of the packets’ content on different sections of the topology.

The example described assumes that RBridge 1 knows the RBridge destination to send the packet

in order to reach Machine B. If RBridge 1 does not know where to send the packet it simple sets

the multidestination flag and sends the packet through a pre-defined tree, reaching all RBridges and

consequently the destination RBridge. Since TRILL uses IS-IS as a link state protocol, all RBridges

have information about the remaining RBridges in the topology. Once each one of the RBridges have

the same information, all of them calculate the same tree for the distribution of multidestination

packets.
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2.5 Shortest Path Bridging (IEEE 802.1aq)

Shortest Path Bridging (SPB), specified in IEEE 802.1aq and approved in 2012, was created has a

replacement for STP, RSTP and MSTP. This protocol would not be only used on enterprise networks

but also in carrier networks. Similar to STP, SPB will be specifically used on data centers as well the

campus of enterprise networks. In STP, RSTP and MSTP there is one single topology tree (per-VLAN

on the last two) for all the traffic on a redundant topology, on SPB is used Shortest Path Trees (SPTs).

With SPT is guarantee that all traffic between two bridges is sent through the shortest path [25].

IS-IS is also used in SPB as link state protocol to exchange information in order to calculate the

SPTs between bridges. SPB also calculates multiple Equal Cost Trees (ECTs) to provide support for

load balancing. Each ECT uses a different SPT algorithm. Having multiple SPTs that share the same

ECT it is possible to distribute multiple VLANs by SPTs. This is similar to MSTP and there is still

no differentiation of different flows for load-balancing. However IEEE is working on a new standard

designated by Equal-cost multi-path routing (ECMP) (IEEE 802.1Qbp). This standard has some

improvements, regarding the network size, in the scaling properties, by allowing to use many more

equal cost paths than 802.1aq’s current ECT mechanism [26]. The standard may also include a Time

To Live (TTL) field to provide loop mitigation.

2.6 chapter overview

The evolution of different protocols to suit the requirements of data center and enterprise networks

by solving some problems present on a layer 2 network is remarkable. This evolution was made

essentially because the lack of a field in the Ethernet header, the hop count, something the emerging

standards, such as TRILL and SPB, will have. On Table 2.1 are describe the major differences between

STP, RSTP, MSTP, TRILL and SPB.

Characteristics STP RSTP MSTP SPB TRILL
Organization IEEE IETF

Encapsulation None
SPB-M - MAC-in-MAC (802.1ah)

TRILL header
SPB-V - Q-in-Q (802.1ad)

Loop Prevention Block Redudant Ports
Reverse Path Forwarding Check (RPFC) TTL for unicast &

for unicast and multicast RPFC for multicast

Load Balancing No Yes
Yes (Per VLAN) &

Yes
work in progress 802.1Qbq

Time for topology
30 5 0* 0*convergence

(seconds)

Table 2.1: Comparison of major differences between existing redundant standards.

Both TRILL and SPB are similiars in some aspects and they are both promising for data centers

and large enterprise networks. Since they both use IS-IS, their convergence time is theoretical zero
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seconds. TRILL’s advantage is a new approach for layer 2 networks and provides better load balancing.

The needs of a new header, causing some frame overhead and a hop-by-hop check-sum calculation does

not give TRILL advantages on its use. SPB has been deployed over the years in the carrier market

and used on 2014 Winter Olympics, providing an inherent advantage over TRILL in terms of proof

of concept [27] [28]. Although SPB did not initially had a hop count, IEEE is working on a TTL

mechanism [26].

Accordingly with [16], TRILL and SPB can be used in three specific cases:

• Whenever the MC-LAG capacity is exceeded, for instance by thousands of ports, or an additional

switch is required that is not included in the MC-LAG configuration;

• Whenever a network is implemented using different manufacturers’ switches for example having

different switches on the access and core layers;

• The last one is related to having a single vendor producing different switches which are

incompatible and they cannot participate in each others’ fabric.

Two of the three use cases for TRILL and SPB are interoperability related, this is actually being

solved by SDNs, as described in the next chapter.
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chapter 3
Software-defined

Networking

Data centers have evolved to network virtualization increasing the need for an efficient use of bandwidth,

workload mobility and failure control. So far, all the discussed protocols have the Spanning Tree

Algorithm and IS-IS in their nature. It has been previously mentioned on this document, on Section 2.6,

that these protocols already have already solved issues, such as broadcast storms and unused equipment.

However, especially for critical communications on SDNs, there are still relevant issues to be solved.

One of the main focuses of this dissertation is to study critical communications on layer 2 with

technologies provided by SDNs.

First of all, network components are often divided in two planes the control plane, where the

decisions on how and where to perform route traffic take place; and the data plane, which is associated

with the transferred data based on the decisions learned by the control plane. These two planes often

require different abstractions. For instance, related to the data plane are multiple layers often based on

the OSI model where each layer is designed for a single task. On what refers to the control plane there

are different goals to fulfill, such as: routing, isolation, traffic engineering, among others. Nowadays,

those goals are achieved by different mechanisms, protocols and network architectures. For example,

SDN, as the name also suggests, allows for the fulfillment of these goals through software, using

multiple tools such as: OpenStack [29], OpenNebula [30], Apache CloudStack [31], Eucalyptus [32]

and Open Compute Project [33]. Some of these tools use OpenFlow to control the network topology.

Taking in consideration what was previously mentioned, and according to [34], Software-defined

Networking, a paradigm associated to network management is recalled where the control plane located

is in one centralized remote controller and the data plane is positioned in a different network forwarding

devices; as opposed to existing protocols where their decisions are destination-based, the forwarding
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devices conformed to the SDN paradigm are flow-based allowing for a more flexible network; the remote

controller must have several abstractions of the topology and be programmable enough in order to

enable the creation of more functionalities for the network by developing applications to run on that

controller. In short, the data plane is the physical network infrastructure, that consists of a forwarding

devices and the control plane consists on the physical network infrastructure abstraction provided by

the controller. In addition, the control plane has multiple applications that offer more functionalities

by using those abstractions.

Contrary to previously mentioned protocols, SDN introduced innovation that allows for investigators

to study new protocols and create a more programmable network. According to [35] this type of

networks has followed three main stages in history: from the mid-1990s to the early 2000s, the active

networks were introduced. They allowed the inclusion of programmable functions that enable fairer

networking innovation. Another stage is related to the control and data plane separation through the

development of open interfaces, which is situated between the period of 2001 and 2007. The last stage

is related to the OpenFlow API and network operating systems, dated from 2007 to, approximately

the year of 2010. It was in this stage that the development of scalable means for control-data plane

separation began, as well as practical means. This was made possible with the first instance of

widespread adoption of an open interface.

This dissertation will essentially focus on the last and most recent programmable networks stage,

introducing the OpenFlow API and related work.

3.1 openflow

OpenFlow was initially created in 2008 for researchers to run experimental protocols in the

networks [12]. Since then, it has been used in several research projects. It is an open-source

implementation and it is currently deployed on various vendors’ products. On Figure 3.1 is shown

a typical OpenFlow architecture. The main purpose of OpenFlow consists on being a southbound

protocol to communicate with network devices capable of interpreting OpenFlow and a controller that

has a centralized overview of all events and configurations that occur on the topology.

On the one hand, the control plane of these devices is in command of the OpenFlow controller

that performs operations according to the OpenFlow protocol. On the other hand, the data plane is

implemented by a table called flow table where the packets are matched against the rules previously

installed by the controller on that flow table. The first version of OpenFlow [36] was designed in a way

that a OpenFlow forwarding device had a single flow table. This single flow table was represented by

the following six fields, which still exists in most recent versions of OpenFlow, among others:

• Header fields - Are used to match the arriving packets based on their headers’ values such

as: Ingress port; Ethernet address source; Ethernet destination source; Ethernet type; VLAN
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ID; VLAN priority; IP source; IP destination; IP protocol; IP ToS; TCP/UDP source port and

TCP/UDP destination port;

• Counters - Are used for statistics purposes. There are twenty-two counters in existence,

including: Packet Matches per Table; Received Packets and Duration (nanoseconds) per Flow;

Received Packets, Receive Errors, Collisions per Port; and Transmit Packets per Queue.

• Actions - Where the actions are applied for the matching packets that arrive on the switch.

There are five required actions and two optional actions for manufacturers to implement. Some

of the required actions are: ALL, where the matched packet is sent to all interfaces except

the one where it was received; CONTROLLER, where the matched packet is sent to the

controller using the OpenFlow protocol; IN_PORT, where the matched packet is sent to the

same port where this current packet was received.

• Priority - To define different priorities for different flow entries.

• Timeouts - Where there are hard and idle timeout fields. The hard timeout defines how many

seconds a flow entry can be active before expiring, while the idle timeout defines how many

seconds of absence of traffic it is necessary before the rule expire.

• Cookie - It is used to distinguish different flow entries, mainly for controller use.

These six fields representing the single flow table allowed for the definition of specifications that

helped demonstrate the OpenFlow potential as seen in [37].

Figure 3.1: Overall architecture of OpenFlow on an SDN 1.

Since 2008 the protocol has evolved and it is currently on version 1.4 [38]. With the presentation of

new versions more actions were added, some of which were important for the implementations developed

in light of this dissertation. One of the improvements made for the switches was the opportunity to

have a pipeline of tables instead of having one single table to control all implemented rules. This

1Image available: http://networkstatic.net/the-northbound-api-2/
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added the possibility to include legacy software by using a table for each functionality, offering more

abstraction and modularity for the switches. Legacy network topologies would have one machine for

each functionality, for example an Intrusion Detection System (IDS), a firewall, a load balancer, among

others. With OpenFlow it is possible to implement those functionalities on a single network device.

Figure 3.2 illustrates this abstraction and it is possible to observe that it still presents the possibility

to have an ACL policy flow table offering similar functionalities to a firewall.

Figure 3.2: Pipeline abstraction for OpenFlow switch 2.

One of the crucial factors for critical applications on a OpenFlow topology is the controller itself

as it may represent a bottle neck and a single point-of-failure. However, this is not necessarily true

since the controller does not have to be a single physical machine and it can be seen as a single virtual

instance with multiple machines for backup or for parallel processing. For this reason, the specification

has a controller role change mechanism that is enforced by each controller implementation. The only

function for each switch on the topology is to remember the role of each controller, considering the

latter’s possibility of being regarded as multiple machines. Taking into consideration the controllers’

performance it is possible to query parallel controllers. Although some controllers’ implementation are

unable to handle high speed networks with 10 Gbps links [39], it has been proven that improving the

performance of an existing controller can tolerate the handling of 1.6 million requests per second [40].

Another implemented feature on OpenFlow was the creation of groups. They represent a set of

ports that act as a single entity made from group buckets. A group bucket contains a set of ordered

actions that can be applied on a packet before it is sent out to a port or even another group. There

are four types of groups in which two of them are required and the other two are optional:

• all - All buckets are executed. The received packet is cloned and executed on every action.

(Required)

2Image available: http://bigswitch.com/blog/2014/05/02/modern-openflow-and-sdn-part-i
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• select - Only one of the buckets from the group is executed. The choice of the bucket that is to

be used is based on a selection algorithm, external to OpenFlow, implemented on the switch.

(Optional)

• indirect - This executes the only defined bucket present on this group. It is similar to type all

if operated with a single bucket. This allows for multiple flow entries or groups to have the

same action by offering, for example, a faster and more efficient convergence in next hops for IP

forwarding [38]. (Required)

• fast failover - Executes the first live bucket. Every bucket is associated with a group or a port

for the respective actions. On this group it is only possible to apply an action of the bucket

while the respective port or group is respectively on-line or active. (Optional)

From all existing groups there is one which is fairly interesting for critical applications, the fast

failover. With this group it might be possible to have a backup port for a principal port. Once the first

port is put offline cannot be activated and the next port on that group will be used instead, without

losing any packet. In the past years there have been developed several projects related to fast failure

recovery mechanism using OpenFlow [41] [42]. Although they achieved good results, packet loss was

still evidenced, essentially due to the lack of use of fast failover groups on their mechanisms.

Among a huge amount of new features, there is one last significant feature for this dissertation. As

described previously, OpenFlow was initially created for researchers to test new protocols on a large

scale. Thus, there is a type of message that can be transferred between the controller and the switch:

the Experimenter Message. It is essentially defined by the OpenFlow header, an experimenter ID and

an array, and offers the possibility for researchers to implement new experimental features that are not

covered on OpenFlow. The reason that makes this type of messages relevant for this dissertation will

be further explained on Section 4.

Finally, on the OpenFlow protocol is defined an essential feature for critical applications. The

protocol defines that the OpenFlow switches can operate if the connection with the controller is lost.

On a worst case scenario, even if the connection between the switch and the controller is lost, the

switch, having the proactive rules installed by the controller, does not lose the flows already present.

Only new flows that are not defined on the switch are discarded.

3.2 controllers

An SDN controller can be regarded as an Operating System (OS) for a network. According to [43],

the primary functions of an OS are to provide: “application programmers (and application programs,

naturally) a clean abstract set of resources instead of the messy hardware ones and managing these

hardware resources”. On a network topology, that makes use of the SDN paradigm, the hardware

abstraction is given via OpenFlow and the abstract set of resources is given by the controller to the
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programmers. Nowadays, this hardware abstraction does not exist and network management is done

via closed Network Operating System (NOS) such as [44] [45]. However, with recent developments

there were developed open-source NOSs for OpenFlow. The first NOSs for OpenFlow were NOX [11]

and Maestro [46] [47].

The overall architecture of existing NOSs consists of five different hierarchical layers:

• Network applications layer - Layer containing applications developed by programmers to give

more functionalities to the SDN;

• Northbound layer - Offers an API for the applications so they can communicate with the NOS

core;

• Core layer - This layer contains modules that wrap up the overall information about the topology.

This layer has the necessary hardware abstractions for the developed applications;

• Southbound layer - Offers an API to the lower layer so the core can communicate and control

the hardware from the physical topology;

• Southbound applications layer - Provides applications to control the physical hardware via

management protocols. These applications do not need to be OpenFlow, there are other

protocols that can be used to configure the physical forwarding devices on this layer such as:

OVSDB [48], NETCONF [49], SNMP [50], among others. Their existence is due to legacy

hardware and they cannot provide the same functionalities offered by OpenFlow.

Additionally, on the southbound layer there is the possibility of having modules to communicate

with other different NOSs. This brings more modularity, scalability and interoperability for a SDN

that uses different implementations of a controller. Table 3.1 indicates the major differences and

functionalities of some existing NOSs.

Controller Management Processing type Northbound Southbound
OpenFlow

Language License Flows/s
Version

DISCO [51] [52] GUI/CLI Distributed REST OpenFlow, AMQP V1.0 Java - -
Floodlight [53] GUI/CLI Centralized REST OpenFlow V1.0 Java, Python Apache 600K

Maestro [46] CLI
Centralized w/ Internal

OpenFlow V1.0 Java LGPL v2.1 2M
parallel computation (DAG)

NOX [11] [54] GUI/CLI
Centralized w/

Internal OpenFlow V1.0
C++,

GPL 100K
parallel computation Python

Onix [55] CLI Distributed Internal
OpenFlow,

V1.0
C++,

- -OVSDB, Java,
NIB Python

ONOS [56] GUI/CLI Distributed Internal OpenFlow V1.0 Python GPL V2 -

OpenDaylight [57] GUI/CLI Distributed

OpenFlow,

V1.3 EPL-1.0 100K

OpenStack OVSDB,
Java,

Neutron, NETCONF,
C,

REST, BGP,
C++

Internal PCEP,
SNMP

POX [58] GUI/CLI Centralized Internal, REST OpenFlow V1.0 Python GPL 30K

Ryu [59]
GUI/CLI,

Centralized Internal OpenFlow V1.4 Python Apache 2.0 -
Web UI

The Beacon
Web UI

Centralized w/ Internal,
OpenFlow V1.0 Java GPL V2 6M

OpenFlow [60] parallel computation REST

Table 3.1: Characteristics and functionalities offered by SDN controllers. (Adapted from [34])
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The majority of the considered NOSs only offer OpenFlow as their southbound API in order to

control the network. The only exceptions are: DISCO, Onix and OpenDaylight. DISCO controller was

built on top of Floodlight to offer a distributed approach for scalability on enterprise environments. The

Advanced Message Queuing Protocol (AMQP) is used for DISCO controllers to exchange information

between themselves. Onix, also being distributed, transfers its network state by exchanging a structure

called Network Information Base (NIB). As the authors state, it is analogous to the Routing Information

Base (RIB) used by IP routers [55]. Last but not least, OpenDaylight is, by far, the controller that

provides more southbound APIs offering more integration for more heterogeneous and even legacy

topologies on a single controller. For example, there has been work done considering the creation of a

new southbound API for Cable Modem Termination System (CMTS) networks [61].

Regarding the OpenFlow version, there are only two projects within the considered controllers

that support recent versions of OpenFlow. This can reveal how bonded a project is in following the

evolution of OpenFlow.

One last thing to take into consideration is the number of flows a controller can process per

second. According to [62], a network with 100 edge switches can produce up to 10 million flows per

second. Although the scalability is an important issue to take into account, when dealing with a

centralized machine to control an entire network, it is more relevant to offer functionalities that can be

performed on that network. As pointed out previously, some researchers have discovered that it is

possible to tune a controller to enhance performance [40]. Those researchers tuned the NOX controller

and reached up from 100K flows per second to 1.6 million. Other researchers created a controller

called Mapple [63], that can reach up to 20 million requests per second. They also tested The Beacon

controller and reached up to 15 million flows per second. Both of those values were reached using 40

cores of computation power.

3.2.1 opendaylight

Considering the developed implementations, the chosen controller was the OpenDaylight as it is the

controller with more contributions and developments using OpenFlow. Its overall architecture is similar

to a typical NOS. As illustrated on Figure 3.3, the network application layer includes applications to

connect with other projects such as OpenStack [29]. In this case, OpenDaylight is the management

tool for the network topology and OpenStack is the Infrastructure as a Service (IaaS) solution.

The northbound layer from OpenDaylight uses REST in order to communicate with the core. The

controller platform offers some basic network functions analogous to the abstractions offered by a usual

OS. This is managed by the Service Abstraction Layer (SAL) API, on the Hydrogen release called

API-Driven SAL (AD-SAL). On the southbound domain there are plugins with support for OpenFlow

v1.3, which means it has OpenFlow groups fast-failover, and other protocols that give the possibility

to manage legacy networks although this last subject is not the primary focus of this dissertation.
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Figure 3.3: Overall architecture of OpenDaylight Hydrogen 3.

The OpenDaylight Hydrogen was released on February 2014, and the next release, called Helium,

is expected to be ready on September 2014. One of the major differences between the first and

second versions is the change of the SAL architecture. As an example illustrated on Figure 3.4, on

AD-SAL API if a northbound application wants to consume information from the southbound plugin,

typically they both have to include services or functions for each one at compile/build time. AD-SAL

is also stateless, its services provide asynchronous and synchronous of the same function/service and

lastly, it is restricted to flow-capable devices. The newest core architecture, called Model-Driven

SAL (MD-SAL), provides the same services by defining models. Instead of having the data adaptions

statically defined at compile time, those data adaptations between providers and consumers are defined

by models. This allows for multiple northbound or southbound plugins to access the information

created by producers. Often the producers are the southbound plugins and the consumers are core

applications and northbound applications. MD-SAL is not stateless and can store data for models

defined by the plugins. That storage, called MD-SAL storage, provides the possibility for consumer

applications to read data from provider plugins.

Since the plugins on this dissertation were developed between releases, it brought some challenges

related to the fact that some of the OpenDaylight plugins, which the developed plugins depended on,

were developed for the AD-SAL architecture and others were developed for MD-SAL.

3Image available: http://www.opendaylight.org/project/technical-overview
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Figure 3.4: Differences between AD-SAL and MD-SAL of OpenDaylight 4.

3.3 openflow forwarding devices

There are multiple OpenFlow forwarding devices deployed on the market. The term “forwarding

device” will be used as a replacement for both the terms “switch” and “router”, since OpenFlow can

also be used in routers. The primary focus of this dissertation did not include a deep study of this

subject, so only a brief explanation will be taken in consideration. The developed forwarding devices

have given a clear sign that their flow table size has grown at a considerable pace that aims to meet

the needs of future SDN deployments [34]. Among the various implemented solutions of OpenFlow

forwarding devices, there are hardware and software implementations. These two implementations

can be performed on different types of devices, such as switches, routers, chassis and cards. With the

amount of virtual access ports on data centers already exceeding the number of physical access ports,

software-based devices have shown to be very promising solutions for network infrastructures ([64] [65],

also referenced in [34]) and are also used on IaaS. Some of the hardware products already deployed

are: NetFPGA from NetFPGA [66], NoviSwitch 1248 from NoviFlow [67], 8200zl from HP [68] and

MLX series from Brocade [69]. Some of the existing software implementations are: ofsoftswitch13 from

CPqD [70], Open vSwitch from Open vSwitch [71] and contrail-vrouter from Juniper Networks [72].

Most of the solutions presented have OpenFlow v1.3 implemented. Although only a small number

of forwarding devices are enumerated, it is possible to see the acceptance of different manufacturers

to OpenFlow. The software-based devices are revealing to be a promising solution for virtualized

networks since they offer more modularity than hardware based devices and allows legacy networks to

be managed by OpenFlow [73].

4Image available: https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:FAQ
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3.3.1 open vswitch

The first forwarding device used for this dissertation was the ofsoftswitch13, since it was the only

switch with the OpenFlow v1.3 implemented and, therefore, the fast-failover group was also included.

Unfortunately, due to an implementation issue, the ofsoftswitch13 did not recognize when a port was

back online, when a link was removed and then re-added. This issue was reported to its developers and

acknowledged by them as an issue identified by other developers in the past. It was relevant to perform

this port removal and re addition recognition, especially during the evaluation stage, so another switch

was chosen as replacement, the Open vSwitch. While recognizing the relevance for a port status, the

recommendation of the OpenDaylight community to use Open vSwitch with OpenDaylight were also

taken into consideration.

Open vSwitch is an open source project to virtualize environments with multiple servers. As

observed in Figure 3.5, these multiple servers are represented as Virtual Machines (VMs). This allows

for a single physical machine to offer the services provided on those servers via Open vSwitch. This

virtual switch has the capability of forwarding the traffic between different VMs and from a physical

network to a VM. Its main features are: STP; QoS; IPv6 support; OpenFlow and extensions for

virtualization; multi-table forwarding pipeline with flow-caching engine; multiple tunneling protocols

(GRE, VXLAN, IPSec, GRE and VXLAN over IPSec) among others that can be found in [74].

Figure 3.5: Overall architecture of Open vSwitch 5.

The first Open vSwitch implementation and specification appeared in 2009 [75] and it is currently

on version 2.1.2. The version chosen for this dissertation was the version 2.1.0. Regarding this version,

it should be noted that it already include a stable implementation of the OpenFlow v1.0 and that,

in addition, the groups feature was already implemented and available for testing and development

purposes [76].

5Image available: http://openvswitch.org/
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chapter 4
Implementation

The protocols studied in the previous section 2 do not suit for critical applications. SDNs are emerging

with a huge amount of new functionalities and is essential its reliability does not fail under critical

communications. This work supplies three different approaches both of them with the purpose to have

critical communications working in case of a link failure on a SDN-topology based.

This section aims to explain technical details on the implementations developed in order to solve

the main problem of this work. The first subsection is dedicated to clarifying the changes made on

some OpenDaylight bundles1. The remaining subsections are intended to explain the three different

approaches established.

The first approach, entitled Implementation 1, focuses on topologies that have two completely full

disjoint paths between every two hosts on a topology.

The second approach, developed under the name Implementation 2, included all topologies that

either have or do not have two completely disjoint paths between every two hosts.

The third and final approach, designated Implementation 2.1, refers to an improvement on

Implementation 2 by omitting one of the matching fields sent to the topology nodes2.

Both the principal implementations methods and their overall function will be explained on a

specific subsection.

4.1 opendaylight

As previously described, in order for a fast recovery algorithm to work, there is the need for a

controller to account for some requirements. With OpenDaylight it is possible to have all of those

1On this section, the word bundles has the same meaning of plugins.
2On this section, the word nodes has the same meaning of switches or OpenFlow forwarding devices.
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requirements fulfilled with some of the bundles available. The bundles that possess the features that

are necessary to cover those requirements are the following:

✦ Support for OpenFlow 1.1+.

– org.opendaylight.openflowplugin

✦ Bundle that has an overall notion of the network topology.

– org.opendaylight.controller.md.topology-lldp-discovery

– org.opendaylight.controller.md.topology-manager

✦ Bundle to track hosts.

– org.opendaylight.controller.hosttracker

– org.opendaylight.controller.arphandler

✦ Bundle with a graph searching algorithm.

– org.opendaylight.controller.routing.dijkstra_implementation

Although the bundles worked as expected, it was necessary to apply a few modifications in their

source code as well as to create non-existing features and methods needed for the bundles developed

in order to cope with the ambitions of this dissertation. Those modifications are described on the

following subsections.

The sequence diagram that represents the communications between the bundles when an event

occurs in the topology can be found on Figure 1 which is located in Appendix A-Sequence diagrams

related to the implementations on OpenDaylight.

4.1.1 openflow plugin

The overall objective of the OpenFlow Plugin is to bring support for OpenFlow 1.0 and 1.3.x [77].

Without changing its main purpose, the introduced changes were made on the code extracted from the

openflowplugin project available online [78].

The first modification conducted referred to the addition of the missing buffer_id field from the

OpenFlow messages translated by this plugin from the OpenFlow library bundle. The buffer_id

refers to a buffer ID destined for a packet buffered at the switch and is sent to the controller in form of

a packet-in type message [79].

This buffer_id field is essential for both implementations due to the fact they will make use of it

when the controller receives a packet-in message (an unmatched packet from the switch). Also, when

the packet-in reaches the controller, there is expected a delay in the calculation of the primary and

backup path. In between that period, the switch will not stop working while waiting for an answer

from the controller and will save the unmatched packet in a buffer. To prevent any packet loss for
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Figure 4.1: Overall architecture of OpenFlow Plugin 3.

those unmatched packets, when the controller sends the rules for the switches, it registers the same

buffer_id value the switch sent in the packet-in message on the rule the controller sends to that same

switch.

The second modification processed was also an addition in the OpenFlow Plugin project. The

OpenFlow specification defines the structure of an experimenter message. Experimenter messages,

furthermore, provide a standard way for OpenFlow switches to offer additional functionality within

the OpenFlow message type space [79]. Although it was not completely put aside by its developers,

the experimenter message was omitted in the first release of this plugin because they intend to create

an extensibility support for different manufacturers in the OpenDaylights’ next release [80].

In light of this project, the main purpose of the experimenter message was to use the learning feature

provided by Open vSwitch. Learn feature is an experimenter action for Open vSwitch often referred

to as learn. With this action is possible for nodes to reconfigure themselves, without contacting the

controller, due to the controller’s capability to predict what to do, on each node, in case an interruption

occurs in the primary path. A usage for this type of message will be described in section 4.2 -

Implementation 1.

4.1.2 topology manager and lldp discovery

The LLDP discovery bundle and the OpenFlow plugin are essential to the topology manager as

they are used to find links over a topology. As acknowledged in Figure 4.1 the OpenFlow plugin

contains a topology service. That service gets notified by the OpenFlow plugin whenever a port change

3Image available: https://wiki.opendaylight.org/view/OpenDaylight_OpenFlow_Plugin:

Overview_Architecture
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occurs in the topology. If the port changes to up, the service adds it to the lists of ports and sends

an LLDP message to that port. The topology-lldp-discovery bundle has an LLDP listener, which

listens for LLDP packets and, if they match a format sent by the OpenFlow plugin topology’s service,

it emits a LinkDiscovered notification. Until the port is set down, LLDP messages are sent every 5

seconds. The topology-manager is listening for LinkDiscovered events and whenever it receives a

notification this bundle updates the topology accordingly with the given description. This happens

when either a link is added or removed.

The topology-manager is also responsible of sending notifications when the topology changes.

One of the listeners is the Dijkstra’s bundle that needs to know whenever a change in the topology

occurs so it can update its internal graph.

4.1.3 host tracker and arp handler

The hosttracker, as the name indicates, tracks the hosts over the topology. Host tracker is

characterized as a passive process as it only saves the node connector where a host is attached by

analyzing the different packet-in messages received by the controller. This enables other bundles,

including the topology manager, where a host is connected. It is similar to a MAC table on a layer 2

switch but instead of serving only one switch, it is destined for the whole OpenDaylight topology.

The ARP handler is a more active bundle. Similar to an ARP table on a layer 2 switch, the ARP

handler saves the respective MAC address that corresponds to an IP Address.

When a host sends an ARP request, that packet will be captured by the node directly connected

to it. Because there is not any rule to deal with ARP requests, the nodes send these packets to the

controller. When the ARP handler bundle receives this packet one of two things happen: either the

ARP handler knows the questioned MAC address or it does not.

If it has it, the ARP handler sends an ARP reply on behalf of the ARP request’s destination to

the ARP requester.

Though, if it does not have the address, the ARP handler produces a MAC flood. It will replicate

the ARP request for every node connector that is not directly connected to another OpenFlow node in

the topology. As result, it will receive an answer from its respective host without the ARP passing

by the OpenDaylight topology core. Similar to ARP request, the node does not have a rule for ARP

replies and will send it to the controller. When this unmatched packet is received in the controller, the

ARP handler will send the ARP reply to the node connector where the ARP request came from. At

the same time hosttracker will save the location for the host that sent the ARP reply.

Those two bundles work in a way that offer the possibility to see the OpenDaylight topology as a big

layer 2 non-OpenFlow switch. Unfortunately, both of them as well the Dijkstra’s bundle, are developed

for the AD-SAL architecture. This situation brought some challenges on every implementation

developed for this work. For instance, due to the fact that every other bundle was already developed for
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MD-SAL, it revealed to be more difficult to create a bundle that could interact with both architectures

at the same time. There is a proposal to create a better hosttracker [81], as well as to develop it in

MD-SAL, with its conclusion dated for the next release of OpenDaylight.

4.1.4 dijkstra’s bundle

The Dijkstra’s bundle uses the Dijkstra’s shortest path algorithm and equally offers a good

interface to calculate a path between two nodes in the topology. The topology is the same located in

the topology-manager bundle. When an event related with the topology occurs, such as a port down,

a link removal, a node addition, among others, the topology-manager triggers that change to the

other bundles through AD-SAL. When that notification is received, the internal graph of Dijkstra’s

bundle is updated. Then, triggers all bundles listening for Dijkstra’s topology changes. Since the

implementations developed are consumers, therefore listeners, they will listening for those changes

when the internal graph of Dijkstra’s bundle is updated.

Although this bundle provides an interface to calculate the shortest path between two nodes, some

methods were added to provide essential functionalities for the developed implementations. One of the

existing methods was: getRoute(Node src, Node dst).

This method provides a path between 2 nodes (src and dst) for the current topology. However it

was not enough due to the need of some features that could be provided by this bundle. Therefore 2

more methods were added:

getRouteWithoutAllEdges(Node src, Node dst, List<Edge> edges);

getRouteWithoutSingleEdges(NodeConnector srcNodeConnector, Node dst, List<Edge> edges);

The getRouteWithoutAllEdges method is used to return a path without all the given edges between

src and dst nodes. The implementation of this methods starts by copying Dijkstra’s bundle internal

graph and removes all edges, then tries to get a path between src and dst nodes, returning an

alternative path from the current graph. This is only used for implementation 1 as it was needed to

find two disjoint paths between two nodes.

The second method, getRouteWithoutSingleEdges, returns a hash map with a list of available

paths for each node connector between the node where srcNodeConnector node connector is attached

and dst node. On Dijkstra’s bundle internal graph edge has an head and tail node connector as

seen in Figure 4.2. On the illustrated graph, T1 from node 1 is the srcNodeConnector and node 3

is the dst node. The implemented code for this method starts by removing the first edge from the

given list of edges edges from Dijkstra’s bundle internal graph, on this example the first edge is the

one connecting node 1 and node 4. Then calculates a path (if available) between the node where the

srcNodeConnector node connector is attached and the dst node, on this case would be 〈S1, S2, S3〉.

Afterwards, it puts in the hash map, to return the path found for that node connector. The process is

then repeated for every tail node connector from the given list of edges as the srcNodeConnector and
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dst node being the same. The end result will essentially be a list of alternative paths for every edge

failure from the primary path in the topology, the gist of implementation 2.

Figure 4.2: Representation of Dijkstra’s internal graph with head and tail connectors for each node. (H#
represents a head node connector for that edge and T# represents a tail node connector for that edge.)

Although this bundle has a method on its interface to give a route with a particular bandwidth,

the same was not implemented. If this bundle had notion of the bandwidth traffic circulating in the

topology, it would be possible to have a proper load balancing for the links.

The code changed and produced is available online in 4.

4.2 implementation 1

All the described bundles in the previous sections are used on all the developed implementations.

After OpenDaylight starts, the topology-manager creates a topology when it receives LLDP messages

and triggers the Dijkstra’s bundle to update its internal graph. When a communication between 2

hosts start, the packet reaches the node and since it does not have any rule associated to the node,

contacts the controller. When the controller receives that unmatched packet the implementations

are notified by calling onPacketReceived method. The activity diagram for this method on this

implementation is the one represented on Figure 4.3 as well a more detailed explanation.

When a link is removed, the topology-manager receives a port down message that will trigger the

Dijkstra’s bundle that will trigger the recalculteDone method also explained later on this section.

The sequence diagram for this event is described on Figure 2 from Appendix A-Sequence diagrams

related to the implementations on OpenDaylight.

4.2.1 unmatched packet process

Since there is one instantiation of onPacketReceived for each unmatched packet received by

the controller, it was necessary to create a collection of semaphores to prevent the controller from

recalculating a path while the same criteria for the rules was used. Thus, when an unmatched packet

is received, the first thing done is a calculation of an hash value based on the node ID where the packet

came from, the source MAC address and the destination MAC address for that unmatched packet.

4https://github.com/aanm/multipath-openflow
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That hash is used to try acquiring a semaphore from the collection of semaphores, each one for a

different match. The reason between trying for it and waiting indefinitely is mainly because in the

event of a calculation of a route is already being processed, it means all nodes from that path are

being configured. Therefore the acquisition will be more likely to fail at this point for the remaining

unmatched packets. In case of failure for the first semaphore acquisition, the implementation tries

one more time but with 1 second timeout. Having a timeout prevents the delay for being longer than

1 second for each unmatched packet to be processed, the trade off is after that 1 second passes, the

packets are discarded and therefore lost.

On both cases when the semaphore is acquired, the implementation searches on cache if there was

any rules for the given node ID, source MAC address and the destination MAC address. If the cache

does not contain any rules it means it is necessary to create them as it will be explained after activity

diagram from Figure 4.4. After the rules are successfully found on cache, the implementation obtains

them.

On the left side of the activity diagram of Figure 4.3 is represented the case where a semaphore

was acquired at the first try but the rules were not present on cache, this means an unmatched packet

was sent by the node when a rule expired from it but is still present on cache. When this happens, the

implementation sends the rules for the backup path and only after sends the rules for the primary

path. Both procedures of those activity diagram are present on Figure 4.7 and Figure 4.5 and will be

explained in the following.

The reason for the backup path is programmed first is to prevent, in case of a link failure on the

primary path while sending the rules, the backup path’s nodes to contact the controller. The way it is

done, if that failure occurs, the backup path’s nodes are already prepared to send the incoming traffic

from the primary path’s nodes.

On the right side of the diagram is represented the case where a semaphore was acquired at the

second time, meaning the implementation was already calculating and sending the rules for the primary

and backup path for the source MAC address and destination MAC address. Since those rules were

sent for every node, there is only need to resend the rule for the node that contacted the controller.

On both cases, if the rules were found on cache and also to prevent a delay for the following

unmatched packets that want to acquire the semaphore, there is no need to wait for confirmation of

rules received from by the nodes. Thus, the release of the semaphore is done immediately.

At the beginning of the activity diagram represented on Figure 4.4 the rules were not present on

cache therefore is required to create them.

First is necessary to contact the hosttracker’s bundle in order to find out on which node connector

the host with the destination MAC address is connected. If it is not found the semaphore is released

and the process stops for this unmatched packet.

Second, the Dijkstra’s bundle is used to find the shortest path between the source node, where

the unmatched packets are coming from, and the destination node, where the destination MAC address

is directly connected. If a path was not found it does not mean that the hosts could not communicate
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Figure 4.3: Activity diagram when an unmatched packet is received for implementation 1.

with each other. For that reason it is necessary to verify if the source and destination node are the

same, which technically means there is no path on a vertex and the hosts are connected to the same

node. Thus, there is only need to apply the buffer_id value received from the node on the rule for

that node, send it and release the semaphore.

If a path was found, it will become the primary path for the communication between those hosts.

Since on this implementation the backup path must be disjoint from the primary path, is necessary to

find that disjoint path. That will be the function of getRouteWithoutAllEdges method. If a disjoint

path is found, it will be the backup path for this communication. This path as well the rules associated

to it, will be saved on cache for the future unmatched packets received by the controller and those

rules will be sent for every nodes on the backup path.

If a disjoint path was not found, it will be only a single path for the communication between those

hosts. Similar to the backup path, the rules from the primary path as the path itself, will be saved on

cache before sending the rules for every respective nodes present in the primary path.

Afterwards, the implementation will wait for a confirmation that every rule was sent for the
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Figure 4.4: Activity diagram when an unmatched packet is received for implementation 1 (Continuation).

primary and also, if exists, for the backup path. Finally the semaphore will be released so the other

unmatched packets that have the same criteria for the rules’ match could be processed.

4.2.2 primary path rules process

The sendFlowsForPrimaryPath method, which its activity diagram is represented on Figure 4.5,

is used to create and send the rules for the nodes on a given path. The first thing this method checks

for is the absence or existence of a backup path. If a backup path does not exist, the method starts by

creating the rules that match a given source and destination MAC address as well the incoming port

from where the traffic comes from. Each match has a respective action that redirects the matched

traffic to the port that is directly connected to the next node from the given path.
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Multiroutev1 - sendFlowsForPrimaryPath
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Figure 4.5: Activity diagram of primary path’s rules configuration for implementation 1.

If there is a backup path, it is necessary to create OpenFlow groups for the primary path. On

this implementation a group from the primary path will always have a first port, the one that directly

connects to the next node from the primary path, and a second port, the one where the traffic came

from. Supposing the primary path from Figure 4.6, located between node 1 and 3 is 〈1, 4, 5, 3〉, and

the backup path is 〈1, 2, 3〉, on node 4 and 5 the groups created will have a first port #3 and a second

port #1, and for nodes 4 and 5 a first port #1 and a second port #2. This means that if the link

between node 4 and node 5 or node 5 and node 3 fail, the traffic begins to go the way back. On node 1

its first port is port #3 and its second port #2, the one that is directly connected to the second node

of the backup path, being node 1 the first node.

After the controller constitutes the groups it is necessary to send them before the rules or, on the

other hand, if it was sent an OpenFlow rule with an action that would send the traffic to a inexistente

group (in the node), the nodes would respond with an error, OFPBAC_BAD_OUT_GROUP, specified by

OpenFlow [79].

Once the groups are sent to the nodes, the rules are created, based on their source and destination

MAC address, as well as the ingress port, from where the traffic is prevenient, and then act to output

that traffic to the respective group (created previously). To prevent an increase of the nodes’ memory,

the primary path’s rules will have a 30 second idle_timeout that will cause an automatic deletion 30

seconds after the traffic stops. After being created them, they are saved on cache for future use.

Afterwards, the same buffer_id value, received by the controller from the unmatched packet, is
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applied on that specific rule for the node were the unmatched packet came from.

Only on this implementation was an experimental feature from Open vSwitch designated by learn

tested. This feature allowed the Open vSwitch to reprogram itself without contacting the controller. In

alignment with the example stated on Figure 4.6, learn rules can only be sent to the nodes’ primary

path. As explained previously, in case a primary port fails the traffic is automatically sent to the

second port from that group. In the previous example, where the primary path is 〈1, 4, 5, 3〉, if 〈5,

3〉 link fails the traffic will be redirected to node 4 and then 1, as expected. To prevent the traffic

from following that path, because one of the links’ path is broken, reporting to the situation where it

is installed on node 1 and 4, the learn rule will reconfigure node 4 to send the traffic coming from

port #1 to that same port, instead of sending to port #3. That reconfiguration happens without the

controller’s help because the learn rule, installed on node 4, had the following condition: if there is

traffic coming from port #3, with the origin and destination MAC address the same that were sent to

that port #3, meaning there was a disruption ahead on this path, the node should stop sending traffic

to port #3 and start sending to port #1. On node 1 the learn rule was similar to the one installed on

node 4. When the traffic was received from port #3, instead of reconfiguring itself to start sending

the traffic back to port #1, like it would happen on node 4, it reconfigured to send the traffic to port

#2, the port directly connected to backup path. This is only a temporarily situation because once

the controller receives the port status from node 5 and 3 informing the port is down, the paths are

recalculated, as well the rules for that paths’ nodes, and then they are sent to the nodes, overlapping

the temporary rules previously installed by learn rules.

Figure 4.6: Topology behavior by using implementation 1 approach upon a disruption on 〈S5, S3〉 link without
contacting a controller.

Now, proceeding with the activity diagram analysis, after the creating of the experimental messages,

they are also saved in cache for future unmatched packets that are received by the controller.

Finally, all rules are sent to the respective nodes, while installing every rule on the specific node

with no particular order and leaving only the rule for the node that contacted the controller to last.

This solution prevents other nodes from the primary path to contact the controller for unmatched

37



packets in cases in which the first node received a rule previously to other nodes and forwarded the

matched packet.

4.2.3 backup path rules process

Although simple, the method in charge of sending the rules for the backup path, with its activity

diagram in Figure 4.7, is no less important. If a backup path exists, the method starts by creating the

respective rules from that path’s nodes. On the example from Figure 4.6, the backup path was 〈1, 2,

3〉. Since this is the backup path, the rules installed on those nodes are simpler than the ones of the

primary path. The rules will simply have to output the incoming packets to the port that is directly

connected to the next node from this path.

Unlike the rules from the primary path, these rules do not have any idle_timeout. It was omitted

to prevent them from expiring before the backup path was used. If the rules did not exist on the

backup path, when the primary path would be disrupted, the nodes from the backup path would start

requesting the controller for rules for the incoming unmatched packets, causing delays and maybe loss

of those packets.

In the end, those rules are also saved on cache for upcoming unmatched packets in the future. The

rules are sent to those nodes and since it is the backup path they are sent with no particular order.

Multiroutev1 - sendFlowsForBackupPath

Send rules to nodes

Is backup

path null?

Create rules that

output to ports

Save rules on cache

sendFlowsForBackupPath

[yes]

[no]

Figure 4.7: Activity diagram of backup path’s rules configuration for implementation 1.

38



4.2.4 topology change process

As seen in sequence diagram from Figure 1, present on Appendix A-Sequence diagrams re-

lated to the implementations on OpenDaylight, after a topology change, topology-manager triggers

the Dijkstra’s bundle. After updating its internal graph it calls every bundle that is registered

on AD-SAL so they can know when Dijkstra’s has finish its recalculation. The interface imple-

mented by this implementation, called IListenRoutingUpdatesWrapper, has a method designated by

recalculateDone(List<Edge> edgesChanged), the one called by Dijkstra’s when it has finished it is

recalculation.

Once this method is called, where its activity diagram is represented on Figure 4.8, the imple-

mentation starts finding, on its cache, which paths, designated by routes5, were affected by the list of

edges modified by the topology disturbance. Afterwards it will run the method recalculateRoutes,

explained in the following.

Then, it will get the remaining paths, also from cache, that were not directly affected by the

modified edges. The reason for doing this, is to make sure in case a new path is formed between two

nodes, that new path will be the primary or the backup path between those nodes.

Multiroutev1 - recalculateDone

Get paths that

have the

modified edges

Get remaining paths

recalculateRoutes

recalculateRoutes

recalculateDone

Figure 4.8: Activity diagram when a disturbance occurs in the topolgy for implementation 1.

Having a list of pairs of hosts and now that Dijkstra’s bundle has its graph updated, the method

recalculateRoutes, represented on Figure 4.9, calls getRoute method from Dijkstra’s bundle to

get a path between the nodes where each host is directly connected. If a path is not found, there is

nothing to do for those nodes, meaning that all pairs of hosts connected to those nodes will have their

communications interrupted.

5A route is considered a primary and, when exists, a backup path that have one or more pairs of
hosts using them.
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After finding a path, it is necessary to check if there is a backup path disjoint from the primary

path. At this point is irrelevant if a backup path was or was not found because is more important to

check if the old primary path is the same as the new backup path found. Since is relevant to prevent

unnecessary disruptions and path changes for a communication, only if the new backup path is the

same as the old primary path this new backup path will be the new primary path and the new primary

path will be the new backup path. This means the old primary path will be the same while the new

backup will not be the same as the one used before the disruption.
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Figure 4.9: Activity diagram when a disturbance occurs in the topolgy for implementation 1 (Continuation).

Next, if the primary path has not change nor a new backup path was found or has not changed as

well, is not necessary to create and resend rules for the nodes from those paths. If this is not the last

route to be recalculated, the process repeats itself.

Since there could be multiple pairs of hosts using the same path, is necessary to get them from

cache and, for each one of them, acquiring their respective semaphore based on the source node, the

40



source and destination MAC address. Is fundamental to not forget there could be multiple unmatched

packets trying to acquire this semaphore as well. Because the process where a topology has suffered a

disruption and is more critical than the arrival of unmatched packets, the acquisition of this semaphore

does not have a timeout.

Upon acquisition of this semaphore, the rules are created in a similar way when an unmatched

packet arrives with a difference in the order they were created. Supposing there was a new primary

path found, if the rules created for the nodes were sent by the same order of the path, this could

bring loss of packets since the old rules would be overwritten by the new ones. At first this could be

meaningless but supposing the new rules would send the traffic to an unprepared node, dealing with

that type of traffic could bring some chaos over the topology and consequently in the controller. Thus,

the first programmed nodes are the ones from the topology’s core, after the nodes from the backup

path and finally the peripheral’s nodes. Noticeably, while programming the core’s nodes the same

problem could happen but it will not since the nodes are programmed on the communication’s reverse

direction.

Right after the nodes are configured, the semaphore is released and if it is not the last pair of

hosts from the given paths, the rules configuration process repeats itself. If it is the last pair of hosts

affected, then is checked if are any more routes to reconfigure. If they exist, they will be reconfigured,

if they do not exist, the method will wait until every rule is sent before terminate.

4.3 implementation 2

The approach performed on this implementation was slightly different from the previous one.

On implementation 1 was necessary a disjoint path to have backup. Taking in consideration not

all topologies have two disjoint paths between every pair of hosts, was necessary to think on a new

approach for this kind of topologies.

Thus, with the help of getRouteWithoutSingleEdges, is possible to have a backup path for

every link failure in the primary path. With the same topology previously used and represented on

Figure 4.10, continuing to assume the primary path is 〈1, 4, 5, 3〉, on implementation 2 there will be

multiple backup paths. If link 〈1, 4〉 fails, the backup path will be 〈1, 2, 3〉, if link 〈4, 5〉 fails, the

backup path will be 〈4, 2, 3〉 and if link 〈5, 3〉 fails the backup path will be 〈5, 4, 2, 3〉. This way every

link, from primary path, is protected against failures and contrary to what may appear, the nodes will

not suffer with countless rules because every backup path’s nodes will have overlapping rules.
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Figure 4.10: Topology behavior by using implementation 2.1 approach upon a disruption on 〈S5, S3〉 link
without contacting a controller.

4.3.1 unmatched packet process

Similar to implementation 1, this method, with its activity diagram illustrated on Figure 4.11,

starts as well by trying to acquire a semaphore based on a hash code from source node, source and

destination MAC address. Unlike the previous implementation, when the semaphore is acquired,the

first thing done is to get the node connector where the destination MAC address is connected. Doing

this on an earlier stage prevents a possible problem, present on the previous implementation, where a

host changes its node connector. Despite this prevention, there is still the problem if a destination

host changes its node connector while there are traffic directed to it. For future work it would be a

good idea for the new hosttracker’s bundle [81] to have a method that could trigger listening bundles

when hosts changed their node connector. This way it would be possible for this implementation to

reconfigure a new path and redirect a traffic to the new node connector.

If the MAC destination is not found on the topology, the process releases the semaphore and

finishes. If it is found, the implementation will search, on cache, for rules that have the same source

and destination node connector as well the source and destination MAC address. If it is not found,

only the rule for the node that contacts the controller for the unmatched rule will have its buffer_id

value applied on the rules designated to it. Both primary and backup rules are resent for every node,

the methods waits for them to be sent, releasing the semaphore upon sending.

When they are not present in cache, means it is necessary to find and create the rules for that pair

of hosts. Similar to implementation 1, it gets a path for the given source and destination node, where

the hosts are connected, from Dijkstra’s bundle. Like explained before, the path from Dijkstra’s

bundle return an empty path if both source and destination node are the same. On this case is only

necessary to verify it and apply the node’s buffer_id value for the rule that will match the unmatched

packet received in the controller. Those rules are then sent for that node releasing the respective

semaphore at the end.

After finding a path, the getRouteWithoutSingleEdges method is used to return an hash map

with the node connectors as keys and a list of paths as values. That hash map as long with the

primary path are processed by the programNodes method, explained as following. After the nodes are

programmed, this method waits for them to be sent and finally releases the semaphore acquired at the
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beginning.
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Figure 4.11: Activity diagram when an unmatched packet is received for implementation 2.

4.3.2 primary path rules process

The programNodes method have the same effect of sendFlowsForPrimaryPath and

sendFlowsForBackupPath methods from implementation 1 as well it is more simpler. This method’s

activity diagram is represented on Figure 4.12.

Its first task is to find out which nodes will have overlapping rules. Thanks to the hash map from

the getRouteWithoutSingleEdges method this task is easier because there is only need to take into

account which node connectors are present on the primary path and on the key set of the hash map.

For the node connectors that are on both places it means that there is possibility to create groups.

The first port of a group will be the egress node connector from the primary path, the second port will

be the first egress node connector from the first path of the list of paths, being that list the respective

value for the ingress node connector from the primary path, used as key on the hash map.
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Same as implementation 1 the groups are first sent for the nodes than the rules. Then the

implementation applies the node’s buffer_id value for the rule that will be applied on that node.

Finally the rules from the primary and backup paths are written on the nodes. As well in implementation

1, the rules are sent in no particular order being only the node that contact the controller the last one

to receive the rule.
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Figure 4.12: Activity diagram of rules configuration for implementation 2.

Unlike implementation 1, only the border nodes have an idle_timeout value being the core nodes

rules permanent. Also, since the implementation has full control of the nodes as well their rules

installed, only new rules are sent for them, the process to know if a rule is new or not will be explained

on subsection 4.3.4 - Topology change process.

4.3.3 rules timeout process

One of the features implemented was the functionality of cleaning all the rules from the nodes

after N seconds of traffic absence, the sequence diagram for this event is on Figure 3 from Appendix

A-Sequence diagrams related to the implementations on OpenDaylight. When an idle_timeout value

from a rule reaches to 0 seconds, that rule is removed from the node and the node informs the controller

about that removal. Since this implementation is listening for rule removal messages, the method

onSwitchFlowRemoved, where its activity diagram is represented on Figure 4.13, is triggered every

time the controller receives that notification.

That notification contains, among other things, a cookie_id. Since every cookie_id is saved on

cache for a pairs of hosts, is easier to trace back and know which rules are being used for a given pairs

of hosts.

Because there will be changes in the nodes, it is necessary to acquire the semaphore related to

the source node, source and destination MAC address. After acquisition, all the rules, including the

ones installed on backup nodes, are removed from the cache. Those removed rules will return their
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cookie_id. Having that list of cookie_id values it will be possible to delete them from the respective

nodes.

After all rules related to the pair of hosts are deleted from the respective nodes, the semaphore is

released.
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Figure 4.13: Activity diagram when a rule reaches it is timeout for implementation 2.

4.3.4 topology change process

Being the recalculation of new paths and respective rules when a disruption occurs in a topology the

main purpose of this work, the activity diagram for this situation is represented on Figure 4.14, called

recalculateDoneTopo. Similar as implementation 1, this only recalculates the rules when is triggered

by Dijkstra’s bundle but, unlike implementation 1, the method is not the same. As an improvement,

this implementation does not rely only on a list of edges changed, it takes in consideration as well if at

least one edge from the topology was removed. The reason for checking this is quite important as a

performance improvement. If an edge is removed, there is only need to reconfigure the pairs of hosts

affected by that route. If an edge is added, is necessary to check every pair of hosts as that addition

may have created a new path between a pair of hosts.

Having a list of hosts pairs that could have their primary path disrupted, the implementation forks

itself, the new thread will deal with the list of pairs of hosts while the other will finish. The reason
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Figure 4.14: Activity diagram when a disturbance occurs in the topology for implementation 2.

for this fork was to prevent the Dijkstra’s bundle waiting until this method finishes, since this is a

blocking method on Dijkstra’s bundle.

Continuing on the new thread, it will check if there are remaining pairs of hosts needing to have

their paths recalculated. While iterating over all pairs, the thread itself will fork for every pair. For

this new thread, the first thing to do is to acquire the semaphore based on the source node as well the

source and destination MAC address. The process to find and reconfiguring a new path for the pair of

hosts is exactly the same as the one described in the reconfiguration of nodes when an unmatched

packet reaches the controller.

Since the controller has total control of the nodes in the topology, it is not necessary to resend

every rule when a disruption occurs in the topology. Since the cookie_id value of the rules is based on

an hash value from the ingress node connector, source and destination MAC address as well the output

action for this match, is easier to control when a rule created is different from the one present on the

node. Supposing there is a rule on cache with the cookie_id 0x12345, based on source MAC address

00:00:00:00:00:01, on destination MAC address 00:00:00:00:00:02, on ingress node connector 1

and on the output action group:2 and that same rule is installed on node 1. If a disruption occurred,
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causing node 1 to only have an option to reach the machine with MAC address 00:00:00:00:00:02,

passing by port #5, the output action would be different from group:2 to port:5. Changing this

output action cause the value from cookie_id to change from 0x12345 to 0x11111. Verifying this

value is different from the one saved on cache, is necessary to send this rule to the node as well referring

this cookie_id to the match source MAC address 00:00:00:00:00:01, destination MAC address

00:00:00:00:00:02 and ingress port 1.

If a primary path was not found it is necessary, as explained before, to check if the source and

destination nodes are the same. If they are not, the rules are removed from cache and from the nodes.

The reason for this deletion is to prevent the traffic to go through on a broken path if a new path is

found afterwards.

The semaphore is released after waiting for rules to be sent for the nodes.

4.4 implementation 2.1

Implementation 2.1 suffered one minimal, but relevant, modification on the source code based

on implementation 2. While on implementation 1 and implementation 2 the rules had their match:

the ingress node connector, the source and destination MAC address, on this implementation it was

omitted the match for the source MAC address, where the traffic has its origin. Is possible to predict

this will bring some performance improvements on the controller as well the decreasing number of

rules installed on the switches.

4.5 chapter’s summary

In this chapter was described the algorithms and the principal methods used for every implemen-

tations. It was also presented some future work for some of the OpenDaylight bundles used.

On Table 4.1 are described the main functionalities and restrictions for each one of the implemen-

tations.

Functionalities/Restrictions Implementation 1 Implementation 2 Implementation 2.1
Needs a

Yes No No
disjoint path

Multi-threading No Yes Yes
Matching Port in, MAC Source Port in, MAC Source Port in and
for rules and MAC Destination and MAC Destination MAC Destination

Cleaning rules after Only border nodes
All nodes All nodes

N seconds of traffic absence and from primary path
Sending rules after a Resend every Resend new Resend new

topology change rules rules only rules only

Table 4.1: Overall of the functionalities and restrictions for all the implementations developed.
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chapter 5
Evaluation

This section presents how the tests for the described implementations on the previous section 4 were

performed. In the end, some discussion and conclusions are presented based on the obtained results

from those tests.

Three different testbeds were made for the developed implementations. The first was constituted

by a mesh topology where multiple computers were connected in a way where multiple paths for every

pair of hosts existed. With this testbed it will be possible to determine the number of packets lost

every time a link goes down and the amount of time to reestablish a communication after completely

cutting it off.

Since the first implementation has the requirement of having two or more disjoint paths in order

to have a proper fast-failover mechanism, the second test has a single point of failure on its topology.

When one of the other redundant links were removed, it was possible to acquire enough data to

compare how drastic it is an implementation requirement of having two or more disjoint paths for

every communication.

The third and last test was designed to test the scalability of the solutions implemented over a

large number of hosts. The number of rules every time new hosts were added to the topology was

measured as well as the amount of time the controller took to reconfigured every directly affected and

non-affected paths when a disturbance occurred in the topology.

As it was mentioned in the previous section 4, all three implementations were developed for

OpenDaylight. This controller was running on a machine with an Intel i5-4200M CPU @ 2.50 GHz

and 8 GB of RAM (only 1 GB was given to OpenDaylight), running Fedora 20 x86_64 with Java

"1.7.0_51". Mininet’s topologies were running on another machine with an Intel Core2 Duo CPU

T6600 @ 2.20 GHz and 4 GB of RAM running Kubuntu 13.10 x86_64. Mininet was used to emulate

various network topologies.
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The machines involved in the tests were directly connected by an Ethernet cable. On each machine

a delay of 15 ms was set for every outgoing packet. With those 30 ms delay it is a fair assumption to

simulate, on a worst case scenario, for a switch to reach out a server where a controller is running.

On every topology tested a 1 ms delay was set on every link, also to simulate the closest to a real

environment.

The topologies presented in the figures on this section will have nodes and computers, where every

node represents a switch and every computer represents a host. Those components are connected by a

solid line that represents a virtual link between each other. The numbers outside the nodes represent

the respective port’s numbers for that link.

The OpenDaylight offers lots of bundles with vast features but not all of them were needed for this

dissertation purpose due the amount of CPU usage which was increasing with an increasing number of

rules, making it necessary to stop some non-essential, statistics related, OpenDaylight bundles. All

those non-essential bundles stopped were statistics related, were as follow:

• org.opendaylight.controller.statistics.northbound_0.4.2.SNAPSHOT

• org.opendaylight.controller.statisticsmanager_0.5.1.SNAPSHOT

• org.opendaylight.controller.statisticsmanager.implementation_0.4.2.SNAPSHOT

• org.opendaylight.controller.model.flow-statistics_1.1.0.SNAPSHOT

• org.opendaylight.controller.md.statistics-manager_1.1.0.SNAPSHOT

5.1 mesh topology

On this first test, ICMP echo requests were sent every 100 ms, from hosts h1 to h2, h1 to h3, h1

to h4, h2 to h3, h2 to h4 and h3 to h4. The disposition of the hosts as well as the topology itself is

illustrated on Figure 5.1. After all communications had stabilized, the 〈S12, S9〉 link was removed.

Then, after 15 seconds, 〈S12, S13〉 link was removed and finally the 〈S12, S16〉 link. When this last link

was removed, all communications between h1 and h2, h1 and h4, h2 and h3, h3 and h4 ceased to exist.

To test a restoration scenario, where a new link is added or re-added, the 〈S12, S9〉 link was attached

again in the topology. The purpose of this was to see how much time it takes for a communication to

restart after a breakdown.

Although all hosts are communicating with the others, it will only be analyzed the communications

which suffer a major impact every time a change in the topology was made. On this case it will be

h1 ↔ h2 and h1 ↔ h4.
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Figure 5.1: A mesh topology with hosts having multiple paths to reach the remaining hosts.

5.1.1 implementation 1 - h1 ↔ h2

When the communication started, the primary path for these hosts was 〈S7, S8, S12, S13, S10〉

(both in request and reply) and the backup path was 〈S7, S11, S12, S9, S10〉 (also both in request and

reply). On Figure 5.2 is represented a plot where it is marked the disturbances that were wittingly

made on the topology and the end-to-end delay for every packet sent on this communication. When

〈S12, S9〉 link was removed this communication did not suffer a major disturbance because the link

removed belonged to the backup path. After the controller received the notification stating this link

was removed, the controller changed the backup path to 〈S7, S11, S12, S16, S13, S9, S10〉, disjoint from

the primary path, for the ICMP requests and the inverse path for ICMP replies.

Around 60.027 seconds from the plot represented on Figure 5.2, after removing 〈S12, S13〉 link, the

first ping afterwards suffered a massive delay in contrast with the previous ones. This occurred because

as soon as the switch S12 detected that its port #4 was down it sent that ping to the previous switch,

S8. The S8 switch did the same thing and sent it to the previous one, S7. The way the implementation

was created, those 3 switches (S7, S8 and S12) reprogrammed themselves, with the learn action,

preventing more traffic to go trough this path. After S7 received the traffic from S8, S7 started to send

the traffic to the second switch from the backup path, S11 (being S7 the first one).
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Figure 5.2: End-to-end delay for h1 and h2 communication when the different disruptions were made to the
topology.

A similar thing happened on the reply with S13 and S10. After switch S10 received traffic from
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S13 with the source h2 and destination h1, S10 started to send the traffic to the second switch from

the backup path, S9 (being S10 the first one).

The communication stabilized after receiving a new path from the controller. Despite the lack of a

disjoint path, the controller sent a different path (〈S7, S8, S12, S16, S13, S10〉) than the one that was

being used temporarily (〈S7, S11, S12, S16, S13, S9, S10〉).

With no surprises, when the 〈S12, S16〉 link was removed the communication between h1 and h2

ceased to exist.

After the 〈S12, S9〉 link was re-added, the traffic between h1 and h2 took around 611 ms to stabilize.

5.1.2 implementation 1 - h1 ↔ h4

The primary and backup paths for h1 and h4 were different than h1 and h2. Before the first

disruption, the primary path went through 〈S12, S13〉 and the backup went through 〈S12, S16〉, both

on ICMP request and ICMP reply. After the disruption, when 〈S12, S9〉 link was removed, both

paths change, the primary path began to go through 〈S12, S16〉 and the backup began to go through

〈S12, S13〉.

After the 〈S12, S13〉 link removal, there was not any relevant disturbance on this communication

because the affected path was the backup one. Since the backup path ceased to exist, switches that

belong to the primary path had to be reconfigured, that reconfiguration caused the disturbance observed

around second 60.027 from the plot of Figure 5.3 in the following four ICMPs.

Like the previous communication, when the 〈S12, S16〉 link was removed, this one also stopped

and the packets were dropped instantaneously.

After the 〈S12, S9〉 link was re-added, the traffic between h1 and h4 took around 545 ms to stabilize

as it is possible to see illustrated on the plot from Figure 5.3.

The same experience was made with the pair of hosts h2 ↔ h3 and h3 ↔ h4. Those pairs obtained

similar results and their respective charts are available on Appendix B-Mesh topology charts.
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Figure 5.3: End-to-end delay for h1 and h4 communication when the different disruptions were made to the
topology. The values off the chart after second 102.731 are 184 ms and 193 ms end-to-end delay.
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5.1.3 implementation 2.1 - h1 ↔ h2

After the communication between h1 and h2 started, the chosen path for ICMP request was

〈S7, S8, S12, S13, S10〉 and for ICMP reply was 〈S10, S13, S12, S11, S7〉. When the 〈S12, S9〉 link was

removed, the communication did not suffer any significant packet delay nor packet loss. Since the

primary path was not disrupted, the controller did not change it and only reconfigured a new backup

path for S12 switch in a way that instead of going through S9, if the 〈S12, S13〉 link fails, the traffic

goes directly to S16. On Figure 5.4 is represented a plot where are the disturbances marked that were

wittingly made on the topology and the end-to-end delay for every packet sent on this communication.

As planned, when the 〈S12, S13〉 link was removed, the traffic was redirected to the backup switch

S16. Although there was some visible end-to-end delay disturbance, not as different the one seen when

〈S12, S9〉 was removed, the end-to-end delay rose a little due the addition of a link in the backup path

in comparison to primary path.

Once there was only one available path on this communication, after the removal of 〈S12, S16〉

link, the traffic stopped and the packets were dropped.

When the 〈S12, S9〉 link was added, the end-to-end delay increased drastically to around 360 ms

gradually dropping to 270 ms, 170 ms, 70 ms and 12 ms until the communication stabilized. The reason

for this to happen is implementation-defined behavior.
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Figure 5.4: End-to-end delay for h1 and h2 communication when the different disruptions were made to the
topology. The values off the chart after a re addition of 〈S12, S9〉 link are respectively: 362 ms, 274 ms, 173 ms
and 69 ms.

After removing the 〈S12, S16〉 link, belonging to the last known path between h1 and h2, the

controller removed the rules matching the destination h2 from all the switches belonging to that path.

A similar behavior happened for rules matching the destination host 1 (from the reply’s path). Once

the S7 switch stopped having that rule, it started to contact the controller every time it received a

packet from h1 with destination h2. As explained in the previous Section 4.1.4, when Open vSwitch

contacts the controller it saves the packet received in a buffer. After the addition of 〈S12, S9〉 link, the

controller knows a path between h1 and h2 and, when it receives a new unmatched packet, it configures

the rules for that new path between those two hosts reconfiguring every switch belonging to that path.

The rule sent from the controller to S7 switch has the buffer identification number previously sent
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from the switch to the controller when the unmatched packet arrived. Since the controller took around

320 ms (160 ms for request and 160 ms for reply) to find the new path and the ICMPs were sent every

100 ms, the controller received at least 3 unmatched packets while reconfiguring the switches. After

that reconfiguration, the controller started to reply for those unmatched ICMPs to the respective

switches, until S7 and S10 received the matching rule.

The same experience was performed on pairs h1 ↔ h4, h2 ↔ h3 and h3 ↔ h4. Since the results

obtained were the similar to the plot from Figure 5.4, they are present on Appendix B-Mesh topology

charts.

5.2 single point of failure topology

Since the first implementation does not calculate a backup path in case the topology does not have

a physical disjoint path of principal’s path, this topology, represented on Figure 5.5 was intentionally

created to have a single point of failure, the 〈S9, S11〉 link. The purpose of this topology is to observe

the recovery time when a link of the primary’s path is removed as well the number of packet loss (if

any) between the first and second implementation.

Figure 5.5: A single point of failure topology with some pair of hosts having multiple paths while the remaining
have a single point-of-failure (〈S9, S11〉 link) on their communications.

Similar to the previous test, it was sent ICMP echo requests every 100 ms, from hosts h1 to h2, h1

to h3, h1 to h4, h2 to h3, h2 to h4 and h3 to h4. After all communications had already stabilized, the

〈S12, S13〉 link was removed. This will provide data to analyze traffic that reaches a “dead-end”. On

this testbed will be all traffic from h1 and h3 with h2 as its destination. Later, this link was re-added.

Afterwards it was removed the 〈S14, S13〉 link to force all the connections, that had this link in their

primary path, to be reconfigured by the controller. Finally, the 〈S11, S12〉 link was removed to notice

if the connection between h2 and h4 suffer any delay or disruption, since that link belong the backup

path on both implementations for these hosts.

54



5.2.1 implementation 1 - h1 ↔ h2

As seen on Table 5.1, the primary path between host h1 and h2 was 〈S7, S8, S9, S11, S12, S13〉, the

communication was interrupted, losing 2 packets, when the 〈S12, S13〉 link was removed. The controller

was notified and reconfigured a new path for the hosts h1 and h2 in approximately 100 ms, accordingly

with the plot on Figure 5.6. The communication continued like before after the reconfiguration for the

new path.

There was not a significant change in the communication’s delay when the 〈S12, S13〉 link was

re-added. The minimal disturbances observed were due the reconfiguration from the controller to the

switches for the new path found.

After the 〈S12, S13〉 link failure, the controller change the primary path for the ICMP reply from

〈S13, S12, S11, S9, S8, S7〉 to 〈S13, S14, S11, S9, S10, S7〉. Because of that change, the communication

between hosts h2 and h1 lost 1 packet when the 〈S14, S13〉 link was removed. Like the previous

disruption, the primary path was interrupted and the controller tries to find out if there is a new path

between those 2 hosts, reconfiguring the switches for the new path.

The addition of 〈S14, S13〉 link had the same results observed as on 〈S12, S13〉 link.

Like the previous disruptions, the 〈S11, S12〉 link removal caused a packet loss. This was unfortunate

because the link belonged to the primary path. Finally, the addition of 〈S11, S12〉 link only made the

controller to calculate if there existed a new path different the one used. Since the controller found a

different path it reconfigured the switches causing an insignificant variation in the communication’s

end-to-end delay.

Event Source Destination Primary Path Backup Path
Beginning of h1 h2 〈S7, S8, S9, S11, S12, S13〉 N.A.
communication h2 h1 〈S13, S12, S11, S9, S8, S7〉 N.A.

link 〈S12, S13〉 h1 h2 〈S7, S8, S9, S11, S14, S13〉 N.A.
down h2 h1 〈S13, S14, S11, S9, S10, S7〉 N.A.

link 〈S12, S13〉 h1 h2 〈S7, S8, S9, S11, S12, S13〉 N.A.
up h2 h1 〈S13, S14, S11, S9, S8, S7〉 N.A.

link 〈S13, S14〉 h1 h2 〈S7, S8, S9, S11, S12, S13〉 N.A.
down h2 h1 〈S13, S12, S11, S9, S10, S7〉 N.A.

link 〈S13, S14〉 h1 h2 〈S7, S8, S9, S11, S12, S13〉 N.A.
up h2 h1 〈S13, S14, S11, S9, S8, S7〉 N.A.

link 〈S11, S12〉 h1 h2 〈S7, S8, S9, S11, S14, S13〉 N.A.
down h2 h1 〈S13, S14, S11, S9, S8, S7〉 N.A.

link 〈S11, S12〉 h1 h2 〈S7, S8, S9, S11, S12, S13〉 N.A.
up h2 h1 〈S13, S14, S11, S9, S8, S7〉 N.A.

Table 5.1: Chosen paths by implementation 1 after each perturbation made in the topology of the communi-
cations between host h1 and host h2.
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Figure 5.6: End-to-end delay for h1 and h2 communication when the different disruptions were made to the
topology.

5.2.2 implementation 1 - h1 ↔ h3

This pair of hosts was only to have a control group of hosts. Since the path that connect those

hosts was not disturbed, as it can be seen on Figure 9 from Appendix B-Single point of failure topology

charts, after every link addition and removal, the disturbances observed should be associated to the

machine where all the topologies were emulated.

5.2.3 implementation 1 - h1 ↔ h4

As seen in Figure 5.5, the path that connects host h1 and host h4, only has a primary path without

a fully disjoint backup one. On the first, second, third and fourth disruption, it is possible to visualize

on Figure 5.7 this path was not affected since those disruptions did not belong directly to the primary

path. Only when the 〈S11, S12〉 link was removed, 3 packets were lost. Like it was explained before, it

was caused because of the first implementation’s approach by needing a full disjoint path.

Upon reception on the controller of the notification stating that the 〈S11, S12〉 link went down,

it recalculates a new path for the pairs of hosts affected and sends the new path to the respective

switches. That new path is described on Table 5.2. In this specific case, was sent a new rule for the

switches belonging that new path, 〈S7, S8, S9, S11, S14, S13, S12〉. It is possible to see the end-to-end
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delay increased by 4 ms when the new path started to be used as seen on Figure 5.7 after second

106.787.

Event Source Destination Primary Path Backup Path
Beginning of h1 h4 〈S7, S8, S9, S11, S12〉 N.A.
communication h4 h1 〈S12, S11, S9, S8, S7〉 N.A.

link 〈S12, S13〉 h1 h4 〈S7, S8, S9, S11, S12〉 N.A.
down h4 h1 〈S12, S11, S9, S10, S7〉 N.A.

link 〈S12, S13〉 h1 h4 〈S7, S8, S9, S11, S12〉 N.A.
up h4 h1 〈S12, S11, S9, S8, S7〉 N.A.

link 〈S13, S14〉 h1 h4 〈S7, S8, S9, S11, S12〉 N.A.
down h4 h1 〈S12, S11, S9, S10, S7〉 N.A.

link 〈S13, S14〉 h1 h4 〈S7, S8, S9, S11, S12〉 N.A.
up h4 h1 〈S12, S11, S9, S8, S7〉 N.A.

link 〈S11, S12〉 h1 h4 〈S7, S8, S9, S11, S14, S13, S12〉 N.A.
down h4 h1 〈S12, S13, S14, S11, S9, S8, S7〉 N.A.

link 〈S11, S12〉 h1 h4 〈S7, S8, S9, S11, S12〉 N.A.
up h4 h1 〈S12, S11, S9, S8, S7〉 N.A.

Table 5.2: Chosen paths by implementation 1 after each perturbation made in the topology of the communi-
cations between host h1 and host h4.
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Figure 5.7: End-to-end delay for h1 and h4 communication when the different disruptions were made to the
topology.

After the 〈S11, S12〉 link was re-added, the controller recalculates a new path for this pair of hosts.

Since the new path is different from the previous one, the controller re-configures again the affected
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switches. The new path found, 〈S7, S8, S9, S11, S12〉, made the end-to-end delay to become shorter,

approaching the original’s 10 ms end-to-end delay.

A similar behavior was observed on hosts h3 ↔ h4 as they both use the same path from this pair

of hosts. The results obtained are illustrated on Figure 10 from Appendix B-Single point of failure

topology charts.

5.2.4 implementation 1 - h2 ↔ h3

The chosen path from the controller for hosts h2 and h3 was 〈S7, S8, S9, S11, S14, S13〉 as it can be

seen on Table 5.3. When the first and second disruption on 〈S12, S13〉 link were caused, there was not

a change nor packets lost between those hosts. Only when the 〈S14, S13〉 link, belonging to the primary

path, was removed there was one packet lost. Only after receiving a new path from the controller that

the communication started to stabilize.

When 〈S14, S13〉 link was re-added, the controller found other path between h2 and h3 different

from the previous on. As seen on Figure 5.8, that reconfiguration caused a small variation in the

communication’s end-to-end delay.

Like the previous link removals, when 〈S11, S12〉 link was removed this caused a packet loss in

this communication and only stabilized when the switches were reconfigured by the controller. The

re-addition of 〈S11, S12〉 link also made the controller finding a different path from the one being used,

causing a small disturbance in the communication’s end-to-end delay.

Event Source Destination Primary Path Backup Path
Beginning of h2 h3 〈S13, S14, S11, S9, S8, S7〉 N.A.
communication h3 h2 〈S7, S8, S9, S11, S14, S13〉 N.A.

link 〈S12, S13〉 h2 h3 〈S13, S14, S11, S9, S10, S7〉 N.A.
down h3 h2 〈S7, S8, S9, S11, S14, S13〉 N.A.

link 〈S12, S13〉 h2 h3 〈S13, S14, S11, S9, S8, S7〉 N.A.
up h3 h2 〈S7, S8, S9, S11, S12, S13〉 N.A.

link 〈S13, S14〉 h2 h3 〈S13, S12, S11, S9, S10, S7〉 N.A.
down h3 h2 〈S7, S8, S9, S11, S12, S13〉 N.A.

link 〈S13, S14〉 h2 h3 〈S13, S14, S11, S9, S8, S7〉 N.A.
up h3 h2 〈S7, S8, S9, S11, S12, S13〉 N.A.

link 〈S11, S12〉 h2 h3 〈S13, S14, S11, S9, S8, S7〉 N.A.
down h3 h2 〈S7, S8, S9, S11, S14, S13〉 N.A.

link 〈S11, S12〉 h2 h3 〈S13, S14, S11, S9, S8, S7〉 N.A.
up h3 h2 〈S7, S8, S9, S11, S12, S13〉 N.A.

Table 5.3: Chosen paths by implementation 1 after each perturbation made in the topology of the communi-
cations between host h2 and host h3.
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Figure 5.8: End-to-end delay for h2 and h3 communication with the disruptions.

5.2.5 implementation 1 - h2 ↔ h4

Fortunately, for the communication between h2 and h4 there are two full disjoint paths, 〈S13, S12〉

and 〈S13, S14, S11, S12〉. When the controller received the first packet of that connection, it configured

the shortest path as the primary one and the other path as backup as seen on Table 5.4. Unlike the

other communications it is possible to see, as illustrated on Figure 5.9, that this communication did not

lost any packet when the 〈S12, S13〉 link was removed. Instead the packets from this communication

were directly redirected to the backup path.

The most interesting part on this test might be when the 〈S12, S13〉 link was re-added. Despite

the emergence of a shorter path than the currently used, this implementation did not change it to the

primary path. Instead, the controller reconfigured it as the backup path in case one of the links from

the path 〈S13, S14, S11, S12〉 failed.

When the 〈S14, S13〉 link intentionally failed, the communication started to go by the backup path

〈S13, S12〉, decreasing the end-to-end delay of the communication.

Since the last three disruptions only occurred in the backup path and not on the primary one,

there was not a major disturbance in this communication’s end-to-end delay, after second 76.2 from

the plot illustrated on Figure 5.9.
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Event Source Destination Primary Path Backup Path
Beginning of h2 h4 〈S13, S12〉 〈S13, S14, S11, S12〉
communication h4 h2 〈S12, S13〉 〈S12, S11, S14, S13〉

link 〈S12, S13〉 h2 h4 〈S13, S14, S11, S12〉 N.A.
down h4 h2 〈S12, S11, S14, S13〉 N.A.

link 〈S12, S13〉 h2 h4 〈S13, S14, S11, S12〉 〈S13, S12〉
up h4 h2 〈S12, S11, S14, S13〉 〈S12, S13〉

link 〈S13, S14〉 h2 h4 〈S13, S12〉 N.A.
down h4 h2 〈S12, S13〉 N.A.

link 〈S13, S14〉 h2 h4 〈S13, S12〉 〈S13, S14, S11, S12〉
up h4 h2 〈S12, S13〉 〈S12, S11, S14, S13〉

link 〈S11, S12〉 h2 h4 〈S13, S12〉 N.A.
down h4 h2 〈S12, S13〉 N.A.

link 〈S11, S12〉 h2 h4 〈S13, S12〉 〈S13, S14, S11, S12〉
up h4 h2 〈S12, S13〉 〈S12, S11, S14, S13〉

Table 5.4: Chosen paths by implementation 1 after each perturbation made in the topology of the communi-
cations between host h2 and host h4.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

31.400

31.501

31.602

31.702

31.803

31.904

32.005

32.105

32.206

32.307

32.408

32.509

32.610

32.710

32.811

32.912

33.013

33.113

33.214

33.315

42.284

42.384

42.485

42.586

42.687

42.788

42.888

42.989

43.090

43.190

43.291

43.392

43.493

43.594

43.695

43.796

43.897

43.998

44.099

44.200

75.616

75.717

75.818

75.919

76.019

76.120

76.221

76.323

76.423

76.523

76.624

76.725

76.826

76.926

77.027

77.128

77.229

77.330

77.430

77.531

e
n
d
-t

o
-e

n
d
 d

e
la

y
 (

m
s
)

time (s)

S12,S13 down
at 31.912

S12,S13 up
at 42.762

S14,S13 down
at 76.100

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

85.986

86.087

86.187

86.288

86.389

86.489

86.590

86.690

86.791

86.892

86.993

87.093

87.194

87.295

87.395

87.496

87.597

87.697

87.798

87.899

106.116

106.217

106.318

106.419

106.519

106.620

106.720

106.821

106.921

107.022

107.123

107.224

107.325

107.425

107.526

107.627

107.728

107.827

107.928

108.029

117.901

118.002

118.103

118.203

118.304

118.405

118.505

118.606

118.707

118.807

118.908

119.009

119.109

119.210

119.311

119.411

119.512

119.612

119.713

119.813

e
n
d
-t

o
-e

n
d
 d

e
la

y
 (

m
s
)

time (s)

S14,S13 up
at 86.530

S11,S12 down
at 106.550

S11,S12 up
at 118.341

Figure 5.9: End-to-end delay for h2 and h4 communication with the disruptions.

5.2.6 implementation 2.1 - h1 ↔ h2

While on the first implementation this communication did not had a backup path, this second

implementation produced two backup paths at the beginning of the communication as it can be seen
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on Table 5.5. On ICMP echo request, the primary chosen path was 〈S7, S8, S9, S11, S12, S13〉 and on

ICMP echo reply was 〈S13, S14, S11, S9, S8, S7〉. Also, the controller determine the backup path the

other possible paths, for example, in case 〈S7, S8〉 link or 〈S8, S9〉 link fails, the backup path will be

〈S7, S10, S9, S11, S12, S13〉. A similar thing will happen if the 〈S12, S13〉 link is disrupted, the traffic

goes instantaneously through 〈S7, S8, S9, S11, S14, S13〉.

To prove it, 〈S12, S13〉 link was intentionally removed and even though the traffic from h1 reaches

a dead-end, by reaching S12 switch, not a single packet was lost as seen on Figure 5.10. This was

possible due the knowledge of the controller regarding the topology. In order to reach h2, S12 was

programmed to send the traffic back to the port that it came, port #1.

Like explained in the previous section 4, and unlike implementation 1, the switches did not

reprogram themselves when the traffic reaches a dead-end. Only when new rules are received from the

controller that the traffic goes from S11 directly to S14. While those new rules are not received, the

traffic goes from S11 to S12, coming back to S11 and then going to S14 causing the delay observed in

the five following packets, around second 20.386 from the plot illustrated on Figure 5.10.

When 〈S12, S13〉 link was re-added, the controller changed the primary path, passing the traffic

again through 〈S12, S13〉 instead of going through S14.

Since the ICMP echo reply goes through 〈S13, S14〉 link, when it was removed caused a variation

in the end-to-end delay but nothing major. When the link was re-added, the controller change the

ICMP echo reply’s path to its original one.

The removal of 〈S11, S12〉 link did not cause the same disturbance as seen when 〈S12, S13〉 link

was removed since, on this case, the traffic did not reach a dead-end, going directly to S14. Only when

it was re-added, that was possible to see a disturbance due the reconfiguration of S11 to start sending

the traffic again to S12.

Event Source Destination Primary Path # of Backup Paths
Beginning of h1 h2 〈S7, S8, S9, S11, S12, S13〉 2
communication h2 h1 〈S13, S14, S11, S9, S8, S7〉 2

link 〈S12, S13〉 h1 h2 〈S7, S8, S9, S11, S14, S13〉 1
down h2 h1 〈S13, S14, S11, S9, S10, S7〉 1

link 〈S12, S13〉 h1 h2 〈S7, S8, S9, S11, S12, S13〉 2
up h2 h1 〈S13, S14, S11, S9, S8, S7〉 2

link 〈S13, S14〉 h1 h2 〈S7, S8, S9, S11, S12, S13〉 1
down h2 h1 〈S13, S12, S11, S9, S10, S7〉 1

link 〈S13, S14〉 h1 h2 〈S7, S8, S9, S11, S12, S13〉 2
up h2 h1 〈S13, S14, S11, S9, S8, S7〉 2

link 〈S11, S12〉 h1 h2 〈S7, S8, S9, S11, S14, S13〉 1
down h2 h1 〈S13, S14, S11, S9, S8, S7〉 1

link 〈S11, S12〉 h1 h2 〈S7, S8, S9, S11, S12, S13〉 2
up h2 h1 〈S13, S14, S11, S9, S8, S7〉 2

Table 5.5: Chosen paths by implementation 2.1 after each perturbation made in the topology of the commu-
nications and the number of backup paths that existed between host h1 and host h2.
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Figure 5.10: End-to-end delay for h1 and h2 communication with the disruptions.

5.2.7 implementation 2.1 - h1 ↔ h3

This pair of hosts was only to have a control group of hosts. Since the path that connect those

hosts was not disturbed, as it can be seen on Figure 11 from Appendix B-Single point of failure

topology charts, after every link addition and removal, the disturbances observed should be associated

to the machine where all the topologies were simulated.

5.2.8 implementation 2.1 - h1 ↔ h4

Like the first implementation, the first, second, third and fourth disruption did not cause any

major variations in the end-to-end delay’s communication as seen on Figure 5.11.

Without losing a single packet, only when the 〈S11, S12〉 link was removed it is possible

to see, accordingly with Table 5.6, the communication started to go through the backup path

〈S7, S8, S9, S11, S14, S13, S12〉. When the 〈S11, S12〉 link was re-added the communication returned to

the original’s path, also without loosing a packet.

A similar behavior was observed on hosts h3 ↔ h4 as they both use the same path from this pair

of hosts. The results obtained are illustrated on Figure 12 from Appendix B-Single point of failure
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topology charts.

Event Source Destination Primary Path # of Backup Paths
Beginning of h1 h4 〈S7, S8, S9, S11, S12〉 2
communication h4 h1 〈S12, S11, S9, S8, S7〉 2

link 〈S12, S13〉 h1 h4 〈S7, S8, S9, S11, S12〉 1
down h4 h1 〈S12, S11, S9, S10, S7〉 1

link 〈S12, S13〉 h1 h4 〈S7, S8, S9, S11, S12〉 2
up h4 h1 〈S12, S11, S9, S8, S7〉 2

link 〈S13, S14〉 h1 h4 〈S7, S8, S9, S11, S12〉 1
down h4 h1 〈S12, S11, S9, S10, S7〉 1

link 〈S13, S14〉 h1 h4 〈S7, S8, S9, S11, S12〉 2
up h4 h1 〈S12, S11, S9, S8, S7〉 2

link 〈S11, S12〉 h1 h4 〈S7, S8, S9, S11, S14, S13, S12〉 1
down h4 h1 〈S12, S13, S14, S11, S9, S8, S7〉 1

link 〈S11, S12〉 h1 h4 〈S7, S8, S9, S11, S12〉 2
up h4 h1 〈S12, S11, S9, S8, S7〉 2

Table 5.6: Chosen paths by implementation 2.1 after each perturbation made in the topology of the commu-
nications and the number of backup paths that existed between host h1 and host h4.
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Figure 5.11: End-to-end delay for h1 and h4 communication with the disruptions.

5.2.9 implementation 2.1 - h2 ↔ h3

Since this implementation had only rules’ matches by MAC address destination, the chosen path

for the ICMP echo reply was the same used for the ICMP echo request in the h1 to h2’s connection as
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seen on Table 5.5 and Table 5.7.

The first intentional disruption caused some disturbance in the communication because the ICMP

echo replies reach a dead-end, like the ICMP echo requests from h1 to h2. As seen on Figure 5.12,

only when the controller configured S11 the communication stabilized.

Event Source Destination Primary Path # of Backup Paths
Beginning of h2 h3 〈S13, S14, S11, S9, S8, S7〉 2
communication h3 h2 〈S7, S8, S9, S11, S12, S13〉 2

link 〈S12, S13〉 h2 h3 〈S13, S14, S11, S9, S10, S7〉 1
down h3 h2 〈S7, S8, S9, S11, S14, S13〉 1

link 〈S12, S13〉 h2 h3 〈S13, S14, S11, S9, S8, S7〉 2
up h3 h2 〈S7, S8, S9, S11, S12, S13〉 2

link 〈S13, S14〉 h2 h3 〈S13, S12, S11, S9, S10, S7〉 1
down h3 h2 〈S7, S8, S9, S11, S12, S13〉 1

link 〈S13, S14〉 h2 h3 〈S13, S14, S11, S9, S8, S7〉 2
up h3 h2 〈S7, S8, S9, S11, S12, S13〉 2

link 〈S11, S12〉 h2 h3 〈S13, S14, S11, S9, S8, S7〉 1
down h3 h2 〈S7, S8, S9, S11, S14, S13〉 1

link 〈S11, S12〉 h2 h3 〈S13, S14, S11, S9, S8, S7〉 2
up h3 h2 〈S7, S8, S9, S11, S12, S13〉 2

Table 5.7: Chosen paths by implementation 2.1 after each perturbation made in the topology of the commu-
nications and the number of backup paths that existed between host h2 and host h3.
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Figure 5.12: End-to-end delay for h2 and h3 communication with the disruptions.

Since the rules used only match the ingress port and MAC address destination, it is possible to

see a small improvement in implementation 2.1 in contrast to implementation 2. When the controller
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received a notification, stating the 〈S12, S13〉 link was removed, it only had to send one rule to S11

with the MAC address destination of h2 instead of two rules, one for the traffic coming from h1 with

destination h2 and the other one from h3 to h2.

Because the following disruptions did not occur on a dead-end link (both on request and reply),

the communication’s end-to-end delay did not suffer a major variation.

5.2.10 implementation 2.1 - h2 ↔ h4

This particular communication had similarities between both implementations 1 and 2.1. Since

the communication had two different disjoint paths, it is possible to compare both implementations.

When the 〈S12, S13〉 link was removed, like observed in implementation 1, on this one there was

not a packet loss as illustrated on Figure 5.13. The differences occurred when the 〈S12, S13〉 link was

added. On implementation 1, the path did not change because there was always only two paths, the

principal and backup. On this second implementation there is always one primary path and one or

more backup paths, on this specific case only one backup path was found as seen on Table 5.8. Once

that link was re added, the controller found a new path with less links, making it as the primary one,

decreasing the communication’s end-to-end delay.

Regarding the following disruptions, since they did not belong to the primary path, they did not

cause any disturbance in the communication.

Event Source Destination Primary Path # of Backup Paths
Beginning of h2 h4 〈S13, S12〉 1
communication h4 h2 〈S12, S13〉 1

link 〈S12, S13〉 h2 h4 〈S13, S14, S11, S12〉 0
down h4 h2 〈S12, S11, S14, S13〉 0

link 〈S12, S13〉 h2 h4 〈S13, S12〉 1
up h4 h2 〈S12, S13〉 1

link 〈S13, S14〉 h2 h4 〈S13, S12〉 0
down h4 h2 〈S12, S13〉 0

link 〈S13, S14〉 h2 h4 〈S13, S12〉 1
up h4 h2 〈S12, S13〉 1

link 〈S11, S12〉 h2 h4 〈S13, S12〉 0
down h4 h2 〈S12, S13〉 0

link 〈S11, S12〉 h2 h4 〈S13, S12〉 1
up h4 h2 〈S12, S13〉 1

Table 5.8: Chosen paths by implementation 2.1 after each perturbation made in the topology of the commu-
nications and the number of backup paths that existed between host h2 and host h4.
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Figure 5.13: End-to-end delay for h2 and h4 communication with the disruptions.

5.3 20 hosts topology

Contrary the previous topologies, this topology, illustrated in Figure 5.14, was created to test the

controller’s response when the number of flows was increased. The number of rules presented in the

topology when the number of flows was increased was also analyzed.

Figure 5.14: A 20 hosts topology.

First, ICMP echo request were sent from h1 to h6 through h10 and h16 through h20, having

twenty different connections (ten for ICMP requests and ten for ICMP replies). The 〈S8, S12〉 link was

removed as soon the communications stabilized. Then, the time the controller took since the moment
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it received the notification that the link was removed, until the last affected flow is reconfigured was

measured. This procedure was repeated for hosts h2, h3, h4, h5, h11, h12, h13, h14 and finally h15

reaching a total of 200 flows.

5.3.1 controller - time to calculate new paths

On every implementation the time it took to recalculate a new backup path increased when the

number of affected flows increased. For 20 flows, the maximum time it took for implementation 1, 2

and 2.1 was respectively 1.65, 0.41 and 0.31 seconds and for 200 flows the maximum time it took for

implementation 1, 2 and 2.1 was respectively 139, 17 and 5 seconds.

Taking these times in consideration, it can be concluded implementation 1 is not suitable for a

typical layer 2 network, either by the time it took to calculate a new backup path either by the need

for a full disjoint path of the primary path.

When observing those times for implementations 2 and 2.1, it is remarkable the performance

gained by the absence of MAC address source matching. This absence contributed to an increased

performance of around 70%. Although the implementation 2.1 took around 5 seconds to recalculate a

new backup path for 200 flows, it is necessary to take into account, for a typical network with 200

flows, it is rare the occurrence of two failures on a 5 second period [82].
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Figure 5.15: Plot with the amount of seconds the controller took to calculate new paths for the respective
number of flows.

5.3.2 rules - number of rules present in the topology.

While the time for calculating a backup rule is important, there is also need to take in consideration

the amount of rules present on the topology when the number of flows increase. Although the amount

of rules present for the implementation 1 and 2 were around 1700-1800, the lack of matching for MAC

address source allowed the number of present rules to be decreased over 77%.
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Also, 30 seconds (easily adjustable) after the communication between hosts stopped, for implemen-

tation 2 and 2.1 the number of rules present in the topology dropped to 0 while on the implementation

1 only dropped to 1243. The removal of those rules prevents a burst in the switches’ memory when

new connections appear and the old ones disappear.
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Figure 5.16: Plot with the total number of rules present in the topology for the respective number of flows.

5.4 results analysis

The different implementations produced for this dissertation were tested and further analyzed in

this chapter. Since each one of them had a different approach they produced different results. First

of all, implementation 1 produced the worst results, essentially because of the need of a full disjoint

path from the primary one to create a backup path. In addition, as Figure 5.15 illustrates, the abrupt

calculation’s time when the number of flows increased is not good for a real environment. Regarding

implementations 2 and 2.1, after the disruptions performed on a single and non-single point of failure

topologies, it was possible to obtain a critical communication with 0 packet loss upon a topology’s link

disruption. On implementation 2.1, with the removal of MAC address source from the matching rules,

a substantial improvement occurred on the controller side as well as a decreasing number of rules on

the switches’ side. Nevertheless, the approach followed on implementation 2 and 2.1 of finding multiple

backup paths did not bring major differences in the amount of time taken by the controller comparing

to implementation 1.

In essence, OpenDaylight controller is still a young project and considering the studied references,

it is not currently being used on an enterprise network. However, on a data center environment, where

there are fewer machines connected, it is possible to reach the desired 100% up time with OpenFlow.

As a conclusion to the work done throughout the dissertation, on a larger network it would be essential

to have parallel controllers in order to smooth the amount of data needed to be managed when topology

changes occur. On the other hand, to overcome the large amount of controllers it is relevant to have a
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more proactive network. This would level the amount of possible proactive scenarios and the amount

of controllers a topology could have.
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chapter 6
Conclusion

6.1 work overview

Considering the SDN paradigm, there is still a lack of development of solutions that provide

enough redundancy and explore all its functionalities. The future of the enterprises data centers is to

adopt virtualized networks in general due to the saving of resources. It is relevant, then, that these

enterprises make use of improved solutions that guarantee 100% up time. However, the protocols in

existence such as STP, MSTP, RSTP are not optimized for SDNs. In addition, in spite of TRILL and

SPB protocols being emerging, only one of them has guaranteed proof of concept, the SPB. SDNs

are evolving quickly and in order to create solutions that provide the required redundancy levels for

data centers and network infrastructures, there is already hardware and software to help implement

such solutions. Therefore, the main objective of this dissertation was to implement a robust enough

solution that uses SDN technologies, for critical communications.

Taking SDN paradigm in consideration, it was firstly chosen the NOX controller because it is the

most basic and considered as the first controller to ever being made for OpenFlow. However, since

NOX is considered deprecated it was dismissed. The next step was choosing another controller, POX.

With this controller a small tutorial was followed in order to create rules for the switches and was

possible to have a STP implementation using OpenFlow. The Mininet emulator was used for creating

the network topologies, as recommended by the tutorials. Later on, it was found that the Mininet

includes a virtual forwarding device, the Open vSwitch. Unfortunately, it was a very old version of it.

This motivated the search for another forwarding device and the ofsoftswitch13 was the next choice.

In order to adapt to ofsoftswitch13, it was followed the same tutorial used on POX. While testing

this forwarding device it was found that it did not recognized when a link was re added after its

removal. This was essential to future tests when links would be removed and added multiple times.

This implementation issue led to a new search for another forwarding device. The Open vSwitch had a
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non stable version, 2.1.0, which was still on development. This version was chosen because in spite of

not being stable yet, it showed to be promising. Later, this version transited from non-stable to stable

and no issues were added to the implementations already performed.

A deeper study on the OpenFlow protocol directed this dissertation to the fact that there was

still the need for a more stable and professional controller in order to fulfill the main objective of

implementing a fail safe solution for critical communications. Some knowledge was taken about

OpenDaylight and it was after considered as the ideal controller since it was a open-source project, has

a large number of contributors and some essentially core functionalities needed for the implementations

developed.

Following, the first implementation could be developed since all the requirements for the devices

were met. The first solution consisted on finding a primary and a backup path between the two

machines that were trying to communicate. In order to have a backup path this solution had the

requirement of needing a full disjoint path between the two switches that directly connected the

machines. This solution did not include, hence, innovation as it could not guarantee that all topologies

had two completely disjoint paths for each pair of machines.

As a result, the second implementation took place. This implementation had a totally different

approach than the one followed on the first implementation: it was not necessary to have disjunctive

paths. This happened due to the fact that it was possible to have one primary path and various sub

backup paths, where these sub backup paths could even overlap among them. This solution, however,

implied that an overload of installed rules and memory issues could happen on each forwarding device.

Each device had to know which backup and primary paths that the packets could take in order to

reach the destiny. This approach, due to memory issues that could be involved, was not completely

followed as the first approach.

The testing stage was the next phase of the dissertation. The developed tests were created

specifically to observe the existing failures on both implementations and in order to verify if any

optimizations could occur. The first test was designed in order to observe the behavior of both

implementations towards a re addition of a link, whenever a connection between two hosts had been

totally broken. The second test was designed to verify the degree of the complications which were

present on the first implementation, since its approach considered a topology where some of the

machine pairs did not have disjoint paths between them. The last test was created to observe the

controller scalability and the number of installed rules in all forwarding devices on the topology. While

performing this test, it was verified that the second implementation could still be optimized if the

matching of the source MAC addresses was removed, maintaining only the matching between the

destiny MAC address and source port. This led to version 2.1. The same tests were applied to the

new implementation and it showed impressive results on the scalability test because both the number

of installed rules as well as the time for the controller to calculate new backup paths, for a fair number

of connections, immensely dropped.

With these tests it was possible to verify that not a single packet was lost and, within 1 second,
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the packets were redirected to their destination whenever link in the topology was removed. Besides, it

could be concluded that for 200 up connections at the same time, a domestic computer can calculate

new backup paths within 5 seconds.

6.2 future work

Although the overall objectives of this dissertation were achieved, there is still some relevant work

that can be implemented in outside the data centers environments. Some of the most relevant work

and new functionalities that can be implemented in the future are:

• At a more technical level, this work was implemented between OpenDaylight releases. It would

be interesting to have the implementations developed for the next release of OpenDaylight,

including the implementation dependencies;

• The OpenDaylight supports multiple controllers for redundancy purposes [83]. Although the

OpenFlow have procedures to deal in case the communication between the switch and the

controller breaks, it would be interesting to see how the topology behaved after the switches

lose communication with the controller;

• As described in this work, one of the dependencies used was the Dijkstra algorithm to find the

shortest path between two nodes in the topology. This plugin has an interface to implement

the path between two nodes that have available bandwidth in the hole topology and it can be

interesting to have traffic engineering on a fast fail-safe topology;

• Although some tests were performed to determine the scalability of the implementations, they

were not totally conclusive for larger networks with over 100 switches. Therefore, it would be

interesting to perform these tests on future deployments;

• The solutions developed are OpenFlow based but the same principles can be implemented

on Engine Control Unit (ECU). The current car manufacturers are already moving the

internal protocols to Ethernet but there are still problems dealing with redundancy on those

environments [84]. Thus, this work can give continuity to a fast fail-safe topology for micro

controllers environment. An extra work has to be carried in order to verify SDN applicability

in automotive scenarios.
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Appendix A

sequence diagrams related to the implementa-

tions on opendaylight

In this appendix is presented the sequence diagrams for the OpenDaylight developed bundles in

this work.
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Appendix B

mesh topology charts
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Figure 4: End-to-end delay for h2 and h3 communication with the disruptions.
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Figure 5: End-to-end delay for h3 and h4 communication with the disruptions.
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Figure 6: End-to-end delay for h1 and h4 communication with the disruptions.
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Figure 7: End-to-end delay for h2 and h3 communication with the disruptions.
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Figure 8: End-to-end delay for h3 and h4 communication with the disruptions.
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Figure 9: End-to-end delay for h1 and h3 communication when the different disruptions were made to the
topology.
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Figure 10: End-to-end delay for h3 and h4 communication with the disruptions.
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Figure 11: End-to-end delay for h1 and h3 communication with the disruptions.
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implementation 2.1 - h3 ↔ h4

Event Source Destination Primary Path # of Backup Paths

Beginning of h3 h4 〈S7, S8, S9, S11, S12〉 2

communication h4 h3 〈S12, S11, S9, S8, S7〉 2

link 〈S12, S13〉 h3 h4 〈S7, S8, S9, S11, S12〉 1

down h4 h3 〈S12, S11, S9, S10, S7〉 1

link 〈S12, S13〉 h3 h4 〈S7, S8, S9, S11, S12〉 2

up h4 h3 〈S12, S11, S9, S8, S7〉 2

link 〈S13, S14〉 h3 h4 〈S7, S8, S9, S11, S12〉 1

down h4 h3 〈S12, S11, S9, S10, S7〉 1

link 〈S13, S14〉 h3 h4 〈S7, S8, S9, S11, S12〉 2

up h4 h3 〈S12, S11, S9, S8, S7〉 2

link 〈S11, S12〉 h3 h4 〈S7, S8, S9, S11, S14, S13, S12〉 1

down h4 h3 〈S12, S13, S14, S11, S9, S8, S7〉 1

link 〈S11, S12〉 h3 h4 〈S7, S8, S9, S11, S12〉 2

up h4 h3 〈S12, S11, S9, S8, S7〉 2

Table 1: Chosen paths by implementation 2.1 after each perturbation made in the topology of the communi-
cations and the number of backup paths that existed between host h3 and host h4.
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Figure 12: End-to-end delay for h3 and h4 communication with the disruptions.
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