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resumo A escolha de fontes energéticas para o sector dos transportes é uma das 
preocupações da sociedade moderna devido a questões relacionadas com o 
paradigma energético, e ao facto de este ser uma das principais fontes de 
polução do ar nas cidades, afectando significativamente a saúde humana e a 
sua qualidade de vida. Devido às limitações técnicas com que as formas de 
mobilidade avançadas ainda se deparam, os biocombustíveis são 
considerados uma alternativa viável para as próximas décadas, contribuindo 
para a redução de gases com efeito de estufa e estimulando o 
desenvolvimento rural. 
Portugal, motivado pelas políticas Europeias, tem aposto nos biocombustíveis, 
em especial no biodiesel, a fim de atingir a meta da Directiva 2009/28/CE. No 
entanto, não são conhecidos os impactos na qualidade do ar decorrentes da 
utilização de biodiesel. Assim, este trabalho pretende clarificar esta situação 
respondendo à seguinte questão: a utilização de biodiesel promove uma 
melhoria na qualidade do ar em Portugal, particularmente nas áreas urbanas? 
A primeira tarefa deste trabalho consistiu na caracterização da cadeia de 
biocombustíveis em Portugal, verificando-se que a cadeia tem problemas de 
sustentabilidade, uma vez que toda a matéria-prima usada é importada, não 
estando a promover a redução da dependência energética externa. 
Posteriormente foram avaliados os impactos associados à utilização de 
biodiesel nas emissões de poluentes atmosféricos e na qualidade do ar em 
Portugal e em particular na área urbana do Porto, através da utilização do 
sistema de modelação numérica à mesoscala WRF-EURAD e tendo por base 
2 cenários de emissões: o cenário de referência que considera que não é 
usado biodiesel e o cenário B20 que reflecte a utilização de um combustível 
constituído por 80% de gasóleo fóssil e 20% de biodiesel. Com este trabalho, 
verificou-se que o uso de B20 pode ajudar a controlar os níveis de poluição 
atmosférica tanto em Portugal como na área urbana do Porto, promovendo a 
redução das emissões de PM10, PM2.5, CO e COVNM e respectivas 
concentrações no ambiente atmosférico. Por outro lado, são esperados 
aumentos nas emissões de formaldeído, acetaldeído e acroleína com o uso de 
B20 e aumentos nas concentrações de NO2 na área urbana do Porto. Apesar 
destes compostos serem considerados tóxicos e cancerígenos, os COVNM 
dominantes no gasóleo de origem fóssil, presentes em quantidades reduzidas 
no biodiesel, têm coeficientes de perigo crónico mais elevados. Assim, a 
utilização de B20 nos transportes rodoviários apresenta maiores benefícios 
para a saúde humana e para a qualidade do ar quando comparado com a 
utilização de gasóleo convencional. 
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abstract The selection of the energy source to power the transport sector is one of the 
main current concerns, not only relative with the energy paradigm but also due 
to the strong influence of road traffic in urban areas, which highly affects human 
exposure to air pollutants and human health and quality of life. Due to current 
important technical limitations of advanced energy sources for transportation 
purposes, biofuels are seen as an alternative way to power the world’s motor 
vehicles in a near-future, helping to reduce GHG emissions while at the same 
time stimulating rural development. 
Motivated by European strategies, Portugal, has been betting on biofuels to 
meet the Directive 2009/28/CE goals for road transports using biofuels, 
especially biodiesel, even though, there is unawareness regarding its impacts 
on air quality. In this sense, this work intends to clarify this issue by trying to 
answer the following question: can biodiesel use contribute to a better air 
quality over Portugal, particularly over urban areas? 
The first step of this work consisted on the characterization of the national 
biodiesel supply chain, which allows verifying that the biodiesel chain has 
problems of sustainability as it depends on raw materials importation, therefore 
not contributing to reduce the external energy dependence. 
Next, atmospheric pollutant emissions and air quality impacts associated to the 
biodiesel use on road transports were assessed, over Portugal and in particular 
over the Porto urban area, making use of the WRF-EURAD mesoscale 
numerical modelling system. For that, two emission scenarios were defined: a 
reference situation without biodiesel use and a scenario reflecting the use of a 
B20 fuel. Through the comparison of both scenarios, it was verified that the use 
of B20 fuels helps in controlling air pollution, promoting reductions on PM10, 
PM2.5, CO and total NMVOC concentrations. It was also verified that NO2 
concentrations decrease over the mainland Portugal, but increase in the Porto 
urban area, as well as formaldehyde, acetaldehyde and acrolein emissions in 
the both case studies. However, the use of pure diesel is more injurious for 
human health due to its dominant VOC which have higher chronic hazard 
quotients and hazard indices when compared to B20. 
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Chapter 1. Scope and structure of the work 

The energy sector is a key factor in the socio-economic and environmental domains. The 

increasing industrialization and motorization of the world has led to a steep rise for the 

demand of fossil fuels. To fulfil the energy demand the sources of these fossil fuels are 

becoming exhausted. Today fossil fuels take up 80% of the primary energy consumed in 

the world, of which 20% is used in the transport sector (IEA, 2013). Furthermore, they are 

major contributors to greenhouse gas (GHG) emissions, which leads to adverse effects on 

climate change, receding of glaciers, rising sea level, increasing of extremes weather 

events and loss of biodiversity (IPCC, 2007). Progressive depletion of conventional fossil 

fuels with increasing energy consumption and GHG emissions have led to a move 

towards alternative, renewable, sustainable, efficient and cost-effective energy sources 

with less emissions (Zhao et al., 2009; He et al., 2010; Singh et al., 2010a, 2010b). 

Biomass1 as an alternative energy source has taken an important rode in the worldwide 

energy strategy due to its multiple energy applications such as electricity, heat production 

and the use on transportation (biofuels). In fact, biofuels are seen as an alternative way to 

power the world’s motor vehicles in a near-future, due to current important technical 

limitations of advanced energy sources for transports (e.g. electric and hydrogen fuel cell 

vehicles) (Felipe et al., 2014; URL 1 and URL 2). Additionally, they can help reducing 

GHG emissions and diversifying the energy sources from the transport sector, as well as 

stimulating rural development and creating jobs.  

Biofuels have attracted great attention all over the world due to their renewability and 

availability, promising to contribute to regional and rural development as well as to 

improve environmental quality. However, there has been widespread debate in popular 

media and scientific journals about the sustainability of biofuels production and use, 

                                                
1 According to the Directive 2009/28/EC on the promotion of the use of energy from renewable sources, 

biomass is the biodegradable fraction of products, waste and residues from biological origin from agriculture 

(including vegetal and animal substances), forestry and related industries including fisheries and aquaculture, 

as well as the biodegradable fraction of industrial and municipal waste. Thus, biomass is biological material 

containing energy from recent carbon fixed. 
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related to social, economic, environmental and technical issues. The "food vs fuel" 

debate, the impacts of land use changes linked to deforestation and soil erosion, loss of 

biodiversity and impact on water resources, as well as the possible modifications on 

engine to be fuelled by biofuels, are examples of issues that led to several scientific 

studies and stimulated the definition of sustainability criteria. Actually, depending on 

feedstock and production technique, there are several biofuels and not all of them have 

similar performance in terms of their impact on climate, energy security and ecosystems. 

Thus, these impacts should be assessed, specifically for each biofuel and scenario, 

throughout the entire life cycle (Bringezu et al., 2009), helping different countries to adopt 

specific measures on biofuels introduction, including sustainability criteria (Nigam and 

Singh, 2011; Savaliya et al., 2013). Some sustainability criteria on biofuels are already 

included in the current European Directive 2009/28/EC on the promotion of the use of 

energy from renewable sources (Renewable Energy Directive, REDirective). Motivated by 

European strategies, Portugal has been betting on biofuels, particularly biodiesel, 

because diesel was, and still is, the main fuel consumed, representing about 75% (e/e) of 

the energy consumed by the national transport sector (URL 3). Thus, Portugal intends to 

meet the REDirective goals for road transports (replacement of 10% fossil fuels by 

renewable energy in the transportation sector by 2020) using biofuels, especially 

biodiesel. In fact, how to fuel the transport sector is one of the main concerns of modern 

society due to energy issues but also due to the strong influence of road traffic in urban 

areas, which highly affects human exposure to air pollutants and consequently human 

health and quality of life. According to the World Health Organization news release (WHO, 

2014), 7 million premature deaths annually are linked to air pollution. Nevertheless there 

is a lack of knowledge with respect to the impacts of biodiesel blends use on regional and 

urban air quality.  

In this sense, this work aims to assess the impact on air quality derived from the biodiesel 

blends usage on road transports by trying to answer this question: can biodiesel use 

contribute to a better air quality over Portugal, particularly over urban areas? Several 

experimental studies have demonstrated the benefits of diesel/biodiesel blends use on 

vehicles exhaust gases emissions, helping in controlling air pollution (Lapuerta et al., 

2008; Xue et al., 2011). Moreover, road traffic is one of the main air pollution sources in 

European cities (EEA, 2013), largely contributing to high levels of nitrogen oxides (NOx), 

particulate matter with an aerodynamic diameter smaller than 10 µm (PM10) and 2.5 µm 

(PM2.5) measured at traffic monitoring stations (EEA, 2013).  

To reach the goal of this work, the impacts on air quality over mainland Portugal and the 

Porto urban area were assessed making use of numerical modelling tools. This type of 

tools has become as fundamental to support decision makers on air quality management 

due to its ability to estimate atmospheric pollutants concentrations over the entire region 

http://en.wikipedia.org/wiki/Food_vs_fuel
http://en.wikipedia.org/wiki/Deforestation
http://en.wikipedia.org/wiki/Soil_erosion
http://en.wikipedia.org/wiki/Biodiversity
http://en.wikipedia.org/wiki/Water_resources
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of interest, taking into account complex and non-linear physic and chemical mechanisms 

that characterize the atmosphere, as well as to evaluate the efficiency of emission 

scenarios (Ribeiro et al., 2014). In this scope, the air quality numerical simulations were 

forced by CO, NOx, NH3, sulfur oxides (SOx), PM10, PM2.5 and non-methane volatile 

organic compounds (NMVOC) emissions of all activity sectors. For the road transport 

sector, emission scenarios were designed considering that vehicles are powered by fossil 

fuels or by biodiesel blends. 

Figure 1.1 presents the methodology defined to achieve the purposes of this work. 

 

 

Figure 1.1 – Scheme of the defined methodology. 

 

Firstly, an overview regarding the biofuels situation in the world and over Portugal was 

conducted and it is presented in Chapter 2. This chapter also includes the analysis of the 

Portuguese energy sector and the operation mode characterization of the national 

biodiesel supply chain. This characterization was carried out through a vast collection of 

information and statistical data from literature and contacts with stakeholders.  

In parallel, a literature review regarding the effects on atmospheric pollutant emissions 

when diesel/biodiesel blends are used in diesel vehicles was accomplished (Chapter 3) 

aiming to define emission scenarios. Here, two main groups of atmospheric pollutants 

were analysed: the first group comprehends the regulated pollutants, such as CO, CO2, 

NOx and NMVOC; and the second group includes the non-regulated pollutants, namely 

formaldehyde (CH2O), acetaldehyde (C2H4O), benzene (C6H6) and acrolein (C3H4O). The 

interest on these non-regulated pollutants is related to their potential for tropospheric 
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ozone formation, as well as their carcinogenic and toxic characteristics, which is 

especially important on urban areas due to human exposure to these pollutants.  

Based on the emission factors from the use of diesel/biodiesel blends, two emission 

scenarios were defined for mainland Portugal and for the Porto urban area in Chapter 4. 

Regulated and non-regulated emissions were estimated regarding each scenario and 

case study, through the Transport Emission Model for line sources with Hazardous Air 

Pollutant (TREM-HAP, Tchepel et al., 2012). The analysis and comparison of both 

emission scenarios are also addressed in this chapter.  

Chapter 5 is dedicated to the selection and description of the air quality numerical 

modelling system used to simulate both emission scenarios and to investigate the impacts 

of biodiesel blends use on road transports. In this sense, the air quality numerical 

modelling comprising the Weather Research & Forecasting (WRF, Skamarock et al., 

2008) and the EURopean Air pollution Dispersion – Chemistry Transport Model (EURAD-

CTM, Hass, 1991; Ebel et al., 1997; Elbern et al., 2007) was selected through a multi-

model comparison exercise. A detailed description of the modelling system is given in this 

chapter, including the model setup defined for this study (simulation domains, physic and 

chemical parameterization options). 

The performance of the WRF-EURAD modelling system is evaluated for both case studies 

(mainland Portugal and the Porto urban area), in Chapter 6, using observational and 

modelling data.  

The emission scenarios developed in Chapter 4 were used as input data to the EURAD 

model to investigate the impacts of biodiesel blends use on air quality over both case 

studies, regarding CO, NO2, NMVOC, O3, PM10 and PM2.5 levels (Chapter 7). 

Finally, in Chapter 8, a brief summary of the main results is carried out and the final 

conclusions are explored. Additionally, possible future developments are discussed. 
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Chapter 2. Biofuels in the World’s and 

Portuguese contexts 

This chapter gives a general overview of the biofuels world’s history and production over 

the last decades. The European strategies on biofuels are also described and analyzed, 

as well as biofuels production in Europe. Aiming for a better understanding of the 

Portuguese situation on biofuels, the national energy sector is analyzed from the point of 

view of the road transport sector. Finally, the Portuguese biodiesel supply chain is 

characterized. It includes an overview of its operation as well as the biodiesel production 

from 2006 to 2012.  

2.1 Biofuels in the World 

By 1880s, Rudolph Diesel, who invented diesel engine, envisioned that vegetable oils 

could power diesel engines for agriculture in remote areas of the world, where petroleum 

was not available at that time. However, due to the low cost of the fossil fuels at that time, 

vegetable oils as an energy source were side-lined for decades. During petroleum crisis, 

in the 1970s, the world realized the pressing need to find alternative energy sources. Then 

renewable energy technologies were developed (Regnier, 2007; de Alegría Mancisidor et 

al., 2009). The first biofuel produced in an industrial scale was bioethanol in Brazil (1975) 

(Rosillo-Calle and Cortez, 1998), followed by biodiesel in Germany in 1991, according to 

the European Biodiesel Board website (URL 4). 

Biofuels are renewable energy sources derived from biomass, which might replace 

petroleum fuels. Currently, the biofuels largely produced and consumed worldwide are 

bioethanol and biodiesel that can substitute gasoline and diesel, respectively. They can be 

produced through chemical conversion (acid hydrolysis, transesterification/esterification, 

supercritic fluid extraction, aqueous phase reforming), biological conversion (fermentation, 

anaerobic digestion, enzymatic hydrolysis, photochemical conversion) or by 
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thermochemical conversion (combustion, gasification, pyrolysis, liquefaction) (Demirbas, 

2009; Gupta and Demirbas, 2010). Biofuels can also be classified as traditional (or first 

generation biofuels) which are derived from food crops, while advanced biofuels (including 

second and third generations) are produced by non-food biomass, such as microalgaes 

(third generation biodiesels), cereal straw, forest residues, as well as industrial and 

domestic waste. Traditional biofuels are already in the market, but second and third 

generation biofuels are produced by advanced technologies, still under development, 

aiming at massive production (Demirbas, 2009; Gupta and Demirbas, 2010; Nigam and 

Singh, 2011). 

Bioethanol fuels, widely used in the United States of America and in Brazil, are alcohols 

produced from sugar and starch crops, such as corn, sugarcane and sweet sorghum, but 

also from cellulosic biomass derived from non-food sources, namely forest biomass 

residues. This type of fuel can be used in its pure form, but it is usually used as a gasoline 

additive or substitute, replacing gasoline up to 85% (v/v), and contributing to improve 

vehicle performance and exhaust gases emissions (Jacobson, 2007; Demirbas, 2009; 

Gupta and Demirbas, 2010; Randazzo and Sodré, 2011). On the other hand, biodiesels 

are derived from vegetable oils (e.g. soybean, sunflower, palm oil, rapeseed, jathropha 

and microalgaes) or animal fats. They are commonly produced by converting vegetable 

oils into compounds called fatty acid methyl esters (FAME), throughout a 

transesterification reaction with methanol (Demirbas, 2007). This is the most common 

biofuel produced and used in European countries as an additive of petroleum-based 

diesel (URL 4), helping on reduction of particulate matter (PM), carbon monoxide (CO), 

and hydrocarbons (HC) emissions from diesel-powered vehicles (Lapuerta et al., 2008; 

Demirbas, 2009; Gupta and Demirbas, 2010; Xue et al., 2011).  

Over the last decades, the European Union (EU) has adopted strategies (e.g. the Kyoto 

Protocol in 1997, and the European Climate Change Programme in 2001) to raise the 

diversification of energy sources, facing the external energy dependence, and the use of 

endogenous energy resources, contributing at the same time to reduce the GHG 

emissions and to encourage a more sustainable development. Thenceforth, the world’s 

biofuel production has been growing. According to the U.S. Energy Information 

Administration (EIA, URL 5), from 2000 to 2011 the bioethanol output increased 5 times 

and the biodiesel output increased 26 times (Figure 2.1). This rapid growth in biofuels 

output is mostly supported by government policies which are driven by external energy 

dependence and energy security issues, coupled with the objective of revitalizing the 

agricultural sector and reducing GHG emissions from the transport sector.  

 

 

http://en.wikipedia.org/wiki/Biofuel_in_the_United_States
http://en.wikipedia.org/wiki/Ethanol_fuel_in_Brazil
http://en.wikipedia.org/wiki/Carbon_monoxide
http://en.wikipedia.org/wiki/Hydrocarbon
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Figure 2.1 - Bioethanol/biodiesel production/consumption in the world from 2000 to 2011 (URL 5). 

 

Bioethanol and biodiesel represent 84% and 16% of the biofuels production worldwide, 

respectively. Bioethanol is produced and consumed essentially in the USA and Brazil, 

from corn and sugar cane, while 60% of the biodiesel is produced by European countries, 

mostly Germany and France, from food feedstocks namely soybean, rapeseed and palm 

oil. The Europe is responsible for the consumption of 70% of biodiesel, which means that 

10% of the European needs are imported from non-European countries (Figure 2.1). this 

difference between American and European countries are related to the importance of 

gasoline and diesel to fuel transport sector, respectively. 

2.2 Biofuels in the Europe 

Aiming to reduce GHG emissions and develop medium- to long-term alternatives for fossil 

fuels, reducing the external energy dependence, the EU launched the first Directive 

(2003/30/EC) on the promotion of the use of biofuels or other renewable fuels for 

transport. Three years later the “EU Strategy for Biofuels" (COM(2006) 34 final) was 

published, as a complement to the Biomass Action Plan from 2005. In its strategy, the 

European Commission defines the role that biofuels may play in the future as a renewable 
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energy source (RES) and proposes measures to promote the production and use of 

biofuels in the EU countries. Seven strategic policy axes were set to: 

1. Stimulate demand for biofuels, including the implementation and revision of the 

Directive 2003/30/EC; 

2. Capture environmental benefits by highlighting the advantages of biofuels in terms of 

reducing emissions of GHG and guaranteeing that feedstock for biofuels is produced 

in a sustainable manner; 

3. Develop the production and distribution of biofuels, highlighting the opportunities 

offered by biofuels in terms of economic activity and job creation within the context of 

the cohesion policy and rural development policy; 

4. Expand feedstock supplies as a way to ensure sustainable production of biofuels; 

5. Enhance trade opportunities of biofuels, including the insurance that European 

production and imports of biofuels are sustainable; 

6. Support developing countries with potential in terms of biofuels, establishing a 

framework for effective cooperation including the development of national biofuel 

platforms and regional biofuel action plans; 

7. Support research and innovation particularly in order to improve production processes 

and to lower costs, as well as by establishing a shared European vision and strategy 

for the production and use of biofuels. 

Also in 2006, in an effort to implement future research and development of biofuels in 

Europe, a foresight report – “A vision for biofuels up to 2030 and beyond” was developed 

by a group of experts (BIOFRAC, 2006) invited by the European Commission. In this 

report the biofuels feedstocks, production and conversion techniques in Europe were 

evaluated and conclusions point out that by 2030 up to one quarter of the European’s 

transport fuel needs could be met by clean and efficient biofuels. The BIOfuel Research 

Advisory Council (BIOFRAC) made fourteen recommendations, such as the needs on 

investigation and investments concerning advanced biofuels production and development 

of quality and environmental standards for biofuels.   

In December 2008, the Climate and Energy Package (aka 20-20-20 targets) was adopted 

in order to reduce GHG emissions by 20% compared to 1990, to reduce the energy 

consumption by 20% through increased efficiency, and to achieve a 20% share of RES in 

gross final energy consumption until 2020. Under the 20-20-20 targets, the REDirective 

(2009/28/EC) establishes a common framework for the use of RES in order to limit GHG 

emissions and to promote cleaner transport, proposing sustainability criteria schemes for 
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biofuels. These criteria include GHG emissions reductions, land use and environmental 

issues, as well as economic and social criteria, and adherence to the International Labour 

Organization conventions. These criteria are not only applicable to the biofuel supply 

chain within the EU, but also to the biofuel produced from raw materials sourced from 

non-European countries. In addition, each Member State shall ensure that the share of 

RES in the transport sector in 2020 will be at least 10% of the final consumption of energy 

in transport sector. To this end, each Member State must adopt national action plans to 

reach the share of RES consumed in transport, as well as in the production of electricity 

and heating, by 2020. The REDirective sets that biofuels should contribute to a reduction 

of at least 35% of GHG emissions in order to be taken into account to the 2020 goals.  

According to the European Parliament press release, dated 11 September 2013, 

Members of the European Parliament have voted to adopt proposals which aim at 

reducing the environmental impact of biofuel production, particularly those resulting from 

indirect land use change (ILUC), by 2020. Among the proposals adopted are:  

 The amount of food-based biofuels (first generation biofuels) should not exceed 6% of 

the final energy consumption in transport, as opposed to the current 10% target in 

existing legislation;  

 Advanced biofuels, sourced from seaweed or certain types of waste, should represent 

at least 2.5% of energy consumption in transport;  

 A 7.5% limit on ethanol in gasoline blends.  

As a result of this recent discussion, the EU biofuel sector is currently under close 

scrutiny. 

As already discussed in section 2.1, Europe is the most important producer and consumer 

of biodiesel fuels (Figure 2.1). In 2012, the share of biodiesel in the biofuels consumed by 

transport sector was 79%, while 20% corresponded to bioethanol and the remaining 1% to 

biogas (EurObserv’ER, 2013).  Following the biofuel global trend, the biodiesel production 

over the EU was 12 times higher in 2011 than in 2000 (Figure 2.1).  

The main European biodiesel producers in 2011 were Germany (33%), France (18%) and 

Spain (7%) (Figure 2.2). France is also the main bioethanol producer, contributing with 

20% of the European bioethanol produced in 2011 and 24% in 2012 (Observ’ER, 2013). 

Despite the biggest slice of European biofuels is produced in Germany, France and Spain, 

is in the Slovak Republic where the incorporations of RES in road transports are higher 

(8.2%), followed by Austria (6.3%) and Sweden (6.1%). Spain, France and Germany are 
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the following countries, and in the 9th position is Portugal with 5.3%. The EU-27 average 

incorporation of RES in transports was 4.7% (AEBIOM, 2013).   

 

 
Figure 2.2 - Biodiesel production in Europe, Germany, France, Spain and Portugal, from 2002 to 2011  

(URL 4) 

 

Regarding the sustainability of biofuel used, the EurObserverv’ER survey (Observ’ER, 

2013) points out that 61% of the total biofuel consumed across the EU-27 met the 

sustainability criteria in 2011 (100% in 13 countries) and it should be 82% in 2012 (100% 

in 15 countries). In Portugal, only 3% of the total biofuel used in 2011 is certified as 

sustainable, and it is estimated that this percentage increased to 4% in 2012 (Observ’ER, 

2013).  

2.3 The energy and transport sectors in Portugal 

According to the EUROSTAT data referred to 2011 (EUROSTAT, 2013), Portugal was the 

seventh Member State of the EU-27 with higher energy import dependence (77.4%). Most 

of the imported energy is oil (46.1%), followed by gas (20.0%) and coal (9.9%). For the 

same year, the primary energy consumption was 30.1% higher than 1990. However, the 

consumption decreased 10.9% in the last decade (DGEG, 2013). This fact can be 

explained, in part, by the use of more efficient technologies and the investments on 

endogenous and renewable energy sources (like wind power), motivated by the Directive 

2001/77/CE, from which Portugal has undertaken to produce a minimum amount of 39% 

of its gross electric power consumption from renewable sources by 2010.  
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In 2010, Portugal launched the National Strategy to Energy 2020 (ENE2020, MEID, 

2010), driven by REDirective, aiming to reduce the energy external dependence to 74% 

by 2020, producing 31% of energy final consumption through endogenous sources (10% 

in transport sector), as well as increase the energy efficiency in 20% (39% in transport 

sector), among other objectives with relation to electric power. As a strategic document, 

the ENE2020 contemplates five axes:  

1. Competitiveness, growth, energy and financial independence;  

2. To bet on renewable energy sources (consubstantiated by National Action Plane for 

Renewable Energies – PNAER, 2010);  

3. The promotion of energy efficiency through the National Action Plane for Energy 

Efficiency – PNAEE, 2008); 4) assurance safety supply;  

4. Sustainability of energy strategy.  

During the last two decades, Portugal has been making an effort to reduce external and 

fossil fuel energy dependence. In the 1990’s the options were focused on coal, natural 

gas, hydroelectricity and biomass. With the ENE2020 (MEID - Ministério da economia 

inovação e desenvolvimento, 2010), Portugal has been focused on renewable energies 

such as solar, wind energy and biomass, including liquid biofuels to transport sector, 

reaching a share of RES of 24.6% of gross final energy consumption, in 2012 

(EUROSTAT, 2014). Additionally, measures to reduce the energy consumption such as 

the use of more energy efficiency technologies have been seen as one of the most 

important strategies to achieve the EU’s proposed goals. 

In Portugal, the biggest slice of primary energy consumption is the oil: 60.0% (e/e) in 2000 

and 49.3% (e/e) in 2011. The most important oil consumer is the transportation sector, 

accounting for 72% (e/e) of oil consumption and 35.5% (e/e) of total final energy 

consumption, in 2011 (DGEG, 2013). There are two main types of fossil fuels used by 

road transports: diesel and gasoline (liquid petroleum gas – LPG – is also used, however 

with a contribution lower than 0.5%, in energy basis). The share of diesel consumption on 

road transport has been increasing (Figure 2.3) from about 50% (e/e) between 1990 and 

1995 to 70-76% (e/e) during 2006-2012. 
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Figure 2.3 - Diesel and gasoline consumption (ktoe) by road transportation in Portugal, from 1990 to 2012 

(URL 3). 

 

Regarding GHG emissions, the transportation accounting for 24.8% (e/e) of total GHG 

emissions, which 96.8% (e/e) is referred to road transportation (IEA, 2013; APA, 2014). 

From 1990 to 2010, GHG emissions of the transport sector increased 84% (e/e) (APA, 

2014), due to the steady growth of the vehicle fleet and road travel, in association with the 

increase in family income and the strong investment in road infrastructure in the 90s. The 

increase in road traffic activity also augmented the emissions from fossil fuel storage, 

handling and distribution. However, this situation has changed in the last years, and the 

transport emissions has started to decline in most recent years, caused by economic 

factors and the use of more efficient technologies (EEA, 2012; APA, 2014).  

In 2006 (Decreto-Lei nº 62/2006, 21 March 2006), Portugal committed itself to replace 

10% of conventional fuel for transport by biofuels in 2010, instead of 5.75% (in energy 

basis) as EU suggested, taking into account:  

 The importance of the transport sector on the Portuguese energy budget;  

 The fact that national transport sector consumes, presently, 76% (e/e) of diesel and 

24% (e/e) of gasoline (Figure 2);  

 The European environmental and energy concerns, namely regarding energy security 

and supply and climate change;  

 The Directive 2003/30/EC.  

However, Portugal was far to achieve the proposed goal: in 2008 the incorporation of 

biofuels on energy to transportation was 3.12% (e/e) (market statistics from Portuguese 

Association of Biofuels Producers (URL 6). With the launch of the REDirective in 2009, 

Portugal and all the Member State, have a goal of 10% of renewable energy in the 
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transportation sector by 2020. Portugal intends to meet this goal with a contribution from 

biofuels, especially biodiesel (7.5% v/v), but also with a contribution of 2.5% (v/v) from 

bioethanol and a residual contribution from electric vehicles (Decreto-Lei nº 117/2010, 25 

October 2010; MOBI.E, 2013).  

Aligned with the European Roadmap 2050 (COM(2011) 112 final), which intends to 

reduce GHG emissions in 79-82% by 2050 (54-67% in transport sector), Portugal 

presented the national Roadmap for moving to a low-carbon economy in 2050 (APA – 

Agência Portuguesa do Ambiente, 2012). According to the modelling approach used to 

perform this roadmap, by 2030 the hybrid plug-in vehicles will begin to gain worth on light 

passenger transportation envisaging that the light passenger vehicle fleet will consist in 

99% by hybrid plug-in vehicles and 1% by diesel vehicles (using a biodiesel blend) by 

2050. On the other hand, the use of fuel with high biodiesel blends on heavy duty and 

passenger vehicles could represent an important slice on this sector (85%), followed by 

natural gas and fuel cells (APA, 2012).      

 

2.4 Characterization of the Portuguese biofuels supply chain  

Typically, the biofuels supply chain (Figure 2.4) comprises: the feedstocks production 

(energy crops); the feedstocks storage, handling and transportation to the biofuels 

production plants (or biorefinaries); the production processes, followed by the blending, 

the fuel distribution and finally the end use on road transport.  

 

 

Figure 2.4 – Typical biodiesel supply chain. 
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A detailed description of each step is given following. 

2.4.1 Raw material production and transportation 

In the same year EU has published the biofuels Directive (2003/30/EC), it also established 

specific support schemes for producing energy crops in order to assist to the development 

of the sector (Council Regulation No 1782/2003), under the EU farm policy (aka Common 

Agricultural Policy – CAP). These support schemes includes an aid of  

45 €.ha-1.y-1 for areas sown under energy crops. In Portugal the aids started in 2007 for an 

area of 196 km2 of plantation, but the number of farmers interested on aids to energy 

crops decreased 78% on the next year and 92% in 2009 (to 21.96 km2 of plantation) 

(Figure 2.5).  

 

 

Figure 2.5 – Number of producers with aid to produce energy crops and respective cultivated area, from 2007 

to 2009, in Portugal (URL 7). 

 

According to statistical data from the Portuguese Laboratory for Energy and Geology 

(LNEG, URL 8), in 2007, Portugal used 183 kton of oil to biodiesel, being 3% from 

endogenous seeds (sunflower seeds), 82% from imported seed with national oil extraction 

(soybean and rapeseed), and the reminder 15% of the oil was directly imported (palm and 

rapeseed oil).  

During this 3-years period of subsidized energy crops production, Portuguese farmers 

showed less and less attraction by bio-feedstocks cultivation, although there were five 

biodiesel production plants operating in national territory. Nowadays, sunflower crops in 
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Portugal are intended only for the food industry. From 2009 onwards there is no more 

endogenous cultivation of raw material for biofuels production. 

Indeed, Portugal has some interesting land potential to produce energy crops to 

bioethanol (barley, wheat, maize and sugar beet), but it has not an interesting potential to 

produce oil crops to biodiesel (rapeseed, soybean, palm and jatropha) (Fischer et al., 

2010). Moreover, an increase of the potential to produce advanced biofuels is not 

expected for Portugal (Fischer et al., 2010; Krasuska et al., 2010; Rettenmaier et al., 

2010). Thereby, to import raw material (especially in grain basis) from the most important 

producers has shown to be more economic efficient. As Figure 2.6 shows, Portugal had 

been import soybean and rapeseed in oil and grain basis, as well as palm oil (Figure 

2.6a,b), from Europe, America and Asia (Figure 2.7).  

 

 

Figure 2.6 – Vegetable oil used to biodiesel production in Portugal in 2007 (a) and 2010 (b) (URL 9). 

 

 
Figure 2.7 – Origin of vegetable oils used in Portugal, for 2010 (URL 9). 
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The statistical data suggests an increasing trend to the use of rapeseed oil from Europe 

and a trend to decrease the shares of palm oil and soybean from Asia and America, 

respectively, as well as the use of endogenous sunflower and rapeseed from Canada. In 

fact, there is an intention to shift towards the use of rapeseed from Europe over other 

feedstocks from non-European countries due to the cost associated to the raw materials 

transportation and to increase the sustainability of the biodiesel. According to the 

REDirective and life cycle assessment studies, soyabean has a worst environmental 

performance than rapeseed, namely in what concerns climate change (Sanz Requena et 

al., 2011). 

Note that Figure 2.7 just presents the origin of vegetable oils used to biodiesel in 2010 

because the 2010 picture is similar to 2007, except in what respect to rapeseed: in 2007, 

almost 100% of the rapeseed used was from Canada instead of Europe. 

 

2.4.2 Biodiesel production 

Portugal, motivated by the Directive 2003/30/CE, and taking advantage of national by-

products from cattle feed industry, started to produce biodiesel derived from food sources 

(first generation biodiesel), in 2006. Beyond the commitment required by the Directive 

2003/30/CE, biodiesel production was seen as a way to taking advantage of the vegetable 

oil, from the production process of food bran, namely soybean bran. 

In 2006, two production plants (PP1 and PP2) initialized the biodiesel production with a 

total production capacity of 225 kton·y-1. In the followed year, three more plants were 

implemented (PP3, PP4 and PP5), totalizing the actual production capacity of  

550 kton·y-1 (the PP are geographically represented in Figure 2.7). There are other 

biodiesel producers in Portugal (APPB, URL 6), with a small dimension, but only these 

five are producing biodiesel in accordance with the EN 14214. They are also the founders 

of the Portuguese Association of Biofuel Producers that was created to tackle the 

challenges of the growing sector of biofuels and the lack of knowledge by the general 

public about the biodiesel market in Portugal. 

Two of the production plants (PP1 and PP5) extract oil from seed (soybean, rapeseed and 

sunflower) to yield bran (no oil part), vegetable oil to food purpose, and biodiesel. All of 

the PP use a transesterification reaction between vegetable oil (soybean, rapeseed, 

sunflower and palm oils) and methanol, in the presence of a base catalyst (sodium or 
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potassium hydroxides) to produce biodiesel. Glycerine is an important product of the 

transesterification reaction, with value for both pharmaceutical and cosmetic industries 

and all the glycerine is forwarded to these industries. However, information regarding the 

countries of destination and quantities exported are not known. 

According to the General Direction for Energy and Geology (DGEG, URL 3), which is in 

charge to make the annual energy budget for Portugal, the biodiesel produced in Portugal 

is only used internally. Additionally, there are not records of biodiesel importation in this 

period.  

The biodiesel production and incorporation have increased from 91 000 m3 in 2006 to  

384 000 m3 in 2011, being the maximum production registered to 2010 (441 000 m3) (URL 

3 and URL 6).  

 

2.4.3 Biodiesel/diesel blending 

From 2006 to present, the national biodiesel production has been increasing as well as its 

incorporation in diesel, in order to fulfil the EU targets (Figure 2.8).  

 

 

Figure 2.8 – Biodiesel consumption and blends really used from 2006 to 2011. Recommended biofuel and 

biodiesel blends until 2020 and biodiesel blend projected by 2020. The data are related to Portugal (MEID, 

2010; URL 3 and URL 6). 

 

According to Figure 2.8 it is noticed that the targets for 2011 (5% v/v), proposed by 

Directive 2009/28/EC and imposed by national law (DL 117/2010) were accomplished 
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(6.99% v/v). The actual level of biodiesel incorporation must be kept at 7% (v/v) until 2019 

and then it should be increased to 7.5% (v/v), at least (but maximum incorporation of 

biodiesel allowed by EN 590:2009 is 7% v/v). Moreover, the substitution of 2.5% v/v of 

gasoline by bioethanol is expected from 2015 onwards. With both biofuels contribution, 

the transport sector would account for 10% (e/e) of energy from non-fossil sources.  

 

2.4.4 Transport and distribution associated to the national biodiesel supply 

chain 

The main infrastructures related to the biodiesel supply chain, namely the harbours of 

Lisbon and Aveiro, the petroleum refineries at Sines and Matosinhos and the biodiesel 

production plants (PP1-5), are represented in Figure 2.9. Additionally, the main railway 

and highways are also presented in Figure 2.9.  

 

 
Figure 2.9 – Biodiesel production plans, petroleum refineries, main communication lines and harbours. 

 

The raw materials enter into Portugal through the harbours of Lisbon and Aveiro. Then, 

they are distributed to the PP1 and PP4 by roadway and by railway to PP2. The 

distribution of raw materials to PP3 and PP5 are directly made from the harbours.  

The vegetable oil is converted to biodiesel in each PP and it is distributed to the petroleum 

refineries at Sines and Matosinhos in order to perform the fuel blends. This transportation 

is carried out by shipping and train. The quantities of biodiesel forward to each petroleum 

refinery are not known. However, it is known that the Refinery of Sines produces 65-70% 
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(v/v) of diesel at national level and the remaining comes from Matosinhos (Galp, 2012a, 

2012b). 

Hereupon, the biodiesel production implies a significant increase of shipping traffic due to 

the raw material importation. As a consequence, there are atmospheric pollutants and 

GHG emissions associated to this logistics. According to Jonson et al. (2009) emissions 

from international shipping in sea areas surrounding Europe contribute about 30% of the 

EU27 emissions of SOx and NO and affect ozone levels all over Europe. 

The blend distribution to the final consumer follows the same path as others petroleum 

derivate. For this purpose there is a pipeline connecting Sines and the fuel storage facility 

located nearby PP1 and PP4. The total storage capacity is approximately 350 000 m3 of 

which 315 000 m3 for diesel/biodiesel, gasoline and jet, and 30 800 m3 for LPG. The 

facility is equipped with a loading station for liquid fuels with capacity for 10 tanker trucks. 

The distribution of diesel/biodiesel blends for all the fuel station scattered across national 

territory is carried out by the tanker trucks.  

2.5 Discussion and final remarks 

In Europe, biofuels have been pursued as a potential way to reduce the use of petroleum-

based fuels and the emission of GHG as well, which have been a source of concern for 

the EU. With the REDirective (2009/28/EC), which replaced the 2003/30/EC directive, 

specifics targets on the promotion of renewable energy sources use in transport sector by 

2020 and sustainability criteria for biofuels were established. According to more recent 

intentions from Members of the European Parliament, a new directive will be published to 

promote advanced biofuels, limiting the production and use of first generation biofuels to 

minimize biofuel impacts on environment and socio-economy (ILUC impacts).  

In Portugal, the production and use of biodiesel started in 2006 and the current biodiesel 

supply chain is characterized by:  

 The importation of grain and vegetable oil (rapeseed, soybean and palm) from 

Europe, Asia and America;  

 The national extraction of a part of the vegetable oil from imported seeds,  

 The production of the total amount of biodiesel (production capacity of 550 kton·y-1); 
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 A vast transport operations of raw materials from the origin countries to national 

harbours and then to biodiesel production plants, and finally the transport of biodiesel 

to petroleum refineries.  

Besides biofuels are seen as one of the ways to reduce energy external dependence of 

the developed countries as well as to decrease GHG emissions, the Portuguese 

strategies and policies related to biofuel issues are only focused on the biofuels 

production and end-use. Moreover, the biodiesel supply chain has problems of 

sustainability due to its dependence on the raw materials importation from Europe, Asia 

and America.   

To address the importance of biofuels on national economy and the perspectives of this 

sector, meetings were organized involving experts and national stakeholders. Some 

conclusion and guidelines for decision makers came out from these meetings, namely: 

 Portugal has some interesting land potential to produce energy crops for bioethanol 

(barley, wheat, maize and sugar beet), but the same is not true for oil crops production 

for biodiesel (rapeseed, soybean, palm and jatropha), except sunflower. Additionally, 

there is just a few amount of area available for energy crops. Thereby, the importation of 

raw material from the most important producers has shown to be more economically 

efficient;  

 The importation and internal transportation of raw materials and biodiesel leads to 

atmospheric pollutant and GHG emissions increase. In this sense, the Portuguese 

energy policies and strategies related to biofuels are neither contributing to the reduction 

of external energy dependence nor to balance the GHG emitted from the biodiesel 

supply chain. Moreover, only 4% of the total biofuel consumed in Portugal was certified 

as sustainable according to the criteria defined by the REDirective. Therefore some 

additional measures/actions should be considered to define a more sustainable biofuels 

strategy for Portugal integrated with European strategies; 

 The risk of food-energy competition should be discarded by favouring the use of 

residues from other industries, such as the food industry, on biofuels production; 

 European and national law established that by 2015 a 2.5% share of bioethanol should 

be incorporated in gasoline. Portugal has an interesting land potential to produce energy 

crops for bioethanol, these crops should be actively promoted as an opportunity for rural 

development by incorporating agriculture in the energy market, generating jobs and 

incomes;   
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Recognizing some sustainability problems of the national biodiesel supply chain in terms 

of biodiesel feedstocks origins, the APPB launched, in July 2013, a campaign to promote 

national energy crops production based on food feedstocks to biodiesel 

(http://www.biodiesel.pt/), claiming that it is a challenge to increase investment in biodiesel 

production reducing, at the same time, the cost associated to the soyabean-based animal 

feed chain. More than one year after the release of this campaign no progress reports are 

known.  

In order to successfully incorporate biofuels, additional information is required regarding 

their environmental impact, especially nowadays that the introduction of advanced 

biofuels is being debated. Additionally to the use of biofuels for transportation, these 

advanced biofuels should be promoted in other sectors. At the national industry level, 

several studies have been performed in order to convert by-products and/or industrial 

residues to biofuels for use in the industrial process itself (Carvalho et al., 2010b; Dias et 

al., 2012; Fernandes and Gaspar, 2012). 

 

http://www.biodiesel.pt/
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Chapter 3. Atmospheric pollutant emission 

related to biofuels use in road 

transports 

An extended literature review regarding engine performance and the effects on 

atmospheric pollutant emissions when diesel/biodiesel blends are used as fuels on EURO 

3-4 light passenger vehicles constitutes the first part of this chapter. Two main groups of 

atmospheric pollutants were analysed: regulated pollutants (CO, CO2, PM10, PM2.5, NOx 

and NMVOC) and non-regulated pollutants (formaldehyde, acetaldehyde, benzene and 

acrolein). Moreover, to against to the lack of information an experimental work was 

conducted aiming the study of exhaust gases emissions from a EURO 5 light passenger 

vehicle.  

3.1 Effects of biodiesel on emissions 

Over the last years, several studies have been published regarding engine performance 

and the effects on atmospheric pollutant emissions when biodiesel is used as pure or 

blend fuel. Based on the these studies, the review developed by Xue et al. (2011) points 

out that the blend fuels with small content of biodiesel in place of petroleum diesel can 

help in controlling air pollution and easing the pressure on scarce resources without 

significantly sacrificing engine power and economy. The effect of biodiesel on 

performance and exhaust emissions (Figure 3.1) depends on the type of engine, engine 

speed, load conditions, ambient conditions as well as biodiesel quality and feedstocks. 

These are parameters on which the engine performance and emissions assessment and 

analysis should be based.  
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Figure 3.1 – Research work conclusions regarding the effects of biodiesel on engine performance and 

emissions with respect to pure diesel, beyond 2000 (adapted from Xue et al., 2011). 

 

The biodiesel quality is highly depend on physical and chemical properties of the fuel 

(Table 3.1), which are also dependent on the feedstock characteristics (Kumar and 

Chauhan, 2013). 

 

Table 3.1 – Physical and chemical specifications regarding biodiesel and diesel fuels (from: Bakeas et al., 

2011; Ayhan Demirbas, 2009; Gupta and Demirbas, 2010; Lapuerta et al., 2008; Lin and Fan, 2011).  

Parameter Biodiesel Diesel 

Density (kgm-3), at 15 ºC 860-895 810-860 

Viscosity (mm2s-1), at 40 ºC 3.3-5.5 2-3.5 

Cetane number 45-65 40-55 

Flash point 120-180 55-63 

Heating value (MJkg-1) 39-41 46 

Water content (mgkg-1) 0-500 <50 

Acid number (mg KOHg-1) <0.60 - 

Ester content (% mm-1) >96 - 

Glycerine content (% mm-1) <0.25 - 

Sulphur content (mgkg-1) 0 15-500 (<10 in the EU) 

 

More than 70% of the literatures consulted by Xue et al. (2011) (Figure 3.1), suggest that 

engine power drop with the increasing of biodiesel content due to the loss of heating value 

of biodiesel. According to Lin et al. (2009) and Öner and Altun (2009), higher viscosity of 

biodiesel, enhancing fuel spray penetration, improves air-fuel mixing and thus recovers 

the torque and power losses and improves the combustion efficiency as well, due to the 

lubrication improvement of the injection metallic components of the engine (Lopes et al., 

2014). The use of biodiesel also leads to reductions on PM, CO, HC and aromatic 

compounds emissions, while the NOx and carbonyl compounds emissions usually 
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increase (Figure 3.1). These variations on emissions are mainly related to the biodiesel 

content, the cetane number, the aromatic and oxygen contents, and the physic 

characteristics of biodiesel, namely viscosity and density (e.g. Bakeas et al., 2011; 

Karavalakis et al., 2011; Lapuerta et al., 2008; Lopes et al., 2014; Randazzo and Sodré, 

2011; Tan et al., 2012; Xue et al., 2011).  

The molecular structure of biodiesel (e.g. C19H36O2, elaidic acid methyl ester, Figure 3.2a) 

differs from that of conventional diesel (e.g. C16H34, hexadecane, Figure 3.2b). Typically, 

biodiesel is a fatty acid methyl ester (FAME) containing oxygen atoms, and they could 

have simple (saturated) or double bounds (monounsaturated or polyunsaturated) within 

fatty acid chain with between 12 and 22 carbon atoms long. Conventional diesel is a linear 

alkane with a shorter carbon chain (8-21 carbon atoms) than biodiesel. The molecular 

structure of the fatty acids strongly influences the biodiesel properties such as ignition 

quality, cold flow, oxidative stability, viscosity and lubricity (Kumar and Chauhan, 2013). 

 

 
a) Elaidic acid methyl ester (C19H36O2) 

 

b) Hexadecane (C16H34) 

Figure 3.2 – Molecular structure of a biodiesel a) and a conventional diesel b). Carbon, hydrogen and oxygen 

atoms are represented as grey, white and red bools, respectively.   

 

One of the most important differences between biodiesel and conventional diesel is the 

oxygen content. Biodiesel has 10-12 %(m/m) oxygen while diesel does not have it. In this 

sense, lower CO, PM and VOC emissions, but higher NOx emissions are expected from 

biodiesel when compared to diesel (Demirbas, 2009; Gaffney and Marley, 2009; Gupta 

and Demirbas, 2010; Krahl et al., 2001; McCormick et al., 2006; Serrano et al., 2011; 

Taylor, 2008; Xue et al., 2011).  

It is commonly accepted that the use of biodiesel instead of diesel decreases the engine 

power (Figure 3.1). This fact is attributed to the lower heating value of biodiesel, which 

means that biodiesel fuels release less energy for producing work. In some literatures 

(Monyem et al., 2001; Lin et al., 2009; Öner and Altun, 2009) are reported that the 

recovery in torque and engine power for biodiesel is possible due to its higher viscosity, 

which can play an important role in improving the lubrication of the injection metallic 
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components of the engine, enhancing fuel spray penetration, improving air-fuel mixing, 

and then increases combustion efficiency (Ramadhas et al., 2005; Lopes et al., 2014). 

However, if fuel viscosity reaches a very value of viscosity it could decrease combustion 

efficiency due to bad fuel injection atomization (Utlu and Koçak, 2008; Wu et al., 2009; 

Aydin and Bayindir, 2010a).  

Other fuel characteristic that usually is pointed out as an advantage for biodiesel is its high 

cetane number. Cetane number, only used for the relatively light distillate diesel oils, is a 

measure of the time period between the start of ignition and the first identifiable pressure 

increase during combustion of the fuel (fuel’s ignition delay). Thus, it is an indicator of the 

combustion quality of diesel fuels during the compression ignition. Higher cetane number 

fuels, like biodiesel, have shorter ignition delay periods than lower cetane number fuels, 

like diesel. Minimize this delay, and so increasing cetane number, results in less unburned 

fuel in the cylinder and more efficient combustion process. Thus, the use of biodiesel 

instead of diesel, generally leads to a quick burning and to lower premixed combustion, 

which provides softer changes in pressure and temperature. Accordingly, the use of a 

high cetane fuel results in less PM (e.g. Kidoguchi, 2000; Korres et al., 2008; 

Kwanchareon et al., 2007), CO (e.g. Kumar et al., 2009; Wu et al., 2009), HC emissions 

(e.g. Wu et al., 2009) and NOx (namely NO, Wu et al. (2009) and EPA, (2002)).  

As mentioned above, emissions are strongly influenced by the driving cycle. The 

kinematic profile of the driving cycles is a major factor in the measured emission 

representatively (Fontaras et al., 2009). Therefore, driving cycles were established to 

assess the performance of vehicles namely in terms of fuel consumption and pollutant 

emissions. The most important driving cycles defined to Europe driving conditions are 

New European Driving Cycle (NEDC, Figure 3.3a) and the Common Artemis Driving 

Cycle (CADC, Figure 3.3b).  
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a) 

 

b) 

Figure 3.3 – Speed profile of the a) NEDC and b) CADC (Fontaras et al., 2014). 

 

The NEDC, described in detail by the Directive 70/220/EEC and further amendments, 

represents the typical usage of a car in Europe and it is designed to assess the emission 

levels of car engines and fuel economy in passenger cars. It is constituted by two different 

cycles (Figure 3.3a): the first one is known as Urban Driving Cycle (UDC), and the second 

one is defined as Extra-Urban Driving Cycle (EUDC). In the UDC the vehicle is driven 

through 1 013 m at an average speed of 18.7 km·h-1 during 195 s. This routine is repeated 

four times in a sequence, totalizing 4 052 m in 780 s. The urban driving conditions are 

characterized by low speed, low engine load, and low exhaust gas temperature. In 

contrast, the EUDC, in the second part of the NEDC, accounts for extra-urban and high 

speed driving modes up to a maximum speed of 120 km·h-1. The vehicle has an average 

speed of 62.6 km·h-1 and it takes 400 s to move through 6955 m. The entire NEDC covers 

a distance of 11 007 m in a time period of 1 180 s and at an average speed of 33.6 km·h-1.  

However, the NEDC has been criticised for not being representative of real-world vehicle 

operation (Dings, 2013). Therefore, the CADC (Figure 3.3b) was developed to simulate a 

real-world driving cycle, representing average driving conditions in Europe (André, 2004). 

It was specifically designed for emission modelling purposes. This driving cycle is 
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distinguished into an urban (CAU), a rural (CAR), and a motorway (CAM) part, each 

representative of the corresponding driving condition.  

Based on literature review, including experimental procedures under NEDC and CADC, 

the effects of biodiesel on road transports emissions including regulated and non-

regulated pollutants are surveyed and analysed throughout this section. 

 

3.1.1 NOx 

Nitrogen oxides (NOx) is a generic term for nitric oxide (NO) and nitrogen dioxide (NO2). 

They are mainly produced from the combustion reaction, especially at high temperatures, 

when nitrogen (N2) from the air combines with oxygen (O2) also from the air or from the 

oxygenated fuel. The burning of fossil fuels, namely on road transport sector, is the main 

anthropogenic source of NOx. Besides NOx emissions from the road transport sector has 

decreased almost 40% over the last two decades in Europe (EEA, 2013), this sector is still 

the main source of this pollutant emissions, representing 46% of NOx total emissions in 

Portugal (APA - Agência Portuguesa do Ambiente, 2011) and 41% in Europe (EEA, 

2013). 

As represented in Figure 3.1, more than a half of the research studies suggest that the 

use of biodiesel causes increases on NOx emissions (Xue et al., 2011). This increase is 

mainly due to higher oxygen content of biodiesel. However, the effects of oxygenated fuel 

blends on NOx emissions is complex and there is no unanimity among the experimental 

studies performed over the last years (Lapuerta et al., 2008; Bakeas et al., 2011; 

Karavalakis et al., 2011a; Xue et al., 2011; Kumar and Chauhan, 2013). According to 

Kalligeros et al. (2003), reducing the ignition delay by increasing the cetane number drives 

to a lower NOx formation rate since the combustion pressure rises slowly, giving more 

time for cooling through heat transfer. Then, higher cetane number leads to lower 

localized gas temperature, minimizing the NO formation by thermal reactions. Additionally, 

saturated ester are pointed out to have higher cetane number than unsaturated esters 

(Canakci and Gerpen, 2001; Knothe, 2014), and then the saturation level of the fatty acids 

also leads to decrease of the NOx emissions (Wyatt et al., 2005; Knothe et al., 2006; Lin 

et al., 2009).  

Engine load also plays an important role on the NOx formation mechanism. NOx 

increases as load is increased, as a result of higher combustion temperature during the 

high engine load (Bakeas et al., 2011; Xue et al., 2011). The low speed and load imposed 

by an urban driving cycle are the main reasons for the decreasing trend of NOx emission 



The impact of biofuels for road traffic on air quality: a modelling approach 

Atmospheric pollutant emission related to biofuels use in road transports 

29 

with the increase of biodiesel content (Gumus and Kasifoglu, 2010; Zhu et al., 2010; Xue 

et al., 2011; Lopes et al., 2014).  

Modern internal combustion engine vehicles have been recently using the exhaust gas 

recirculation (EGR) technique to reduce NOx emission by recirculating a portion of an 

engine's exhaust gas back to the engine cylinders. The use of this technique is the main 

reason for the decrease of NOx emission found for modern vehicles, and when biodiesel 

is used the reduction is more effective (Tsolakis et al., 2007). However, EGR rates are 

optimized to match the operating conditions of diesel. Therefore, EGR rates may need 

adjustments due to the change of the combustion characteristics of each biodiesel blends 

(Xue et al., 2011). 

The NOx emission variations from the biodiesel use on diesel vehicles are presented in 

Table 3.2, for EURO 3 (EMEP/EEA, 2013) and EURO 4. 

 

Table 3.2 – Effects of biodiesel blends on diesel vehicle NOx emissions for EURO 3 (EMEP/EEA, 2013) and 

EURO 4 (Bakeas et al., 2011) vehicles.  

European emission 

standards 
Vehicle type B10 B20 B30 

EURO 3  

(under NEDC) 

Passenger vehicles 0.4% 1.0% - 

Light commercial vehicles 1.7% 2.0% - 

Heavy-duty vehicles 3.0% 3.5% - 

EURO 4  

(under NEDC and CADC) 
Passenger vehicles 2.1% 5.9% 9.3% 

 

3.1.2 Particulate matter (PM) 

Particulate matter is mainly composed by dry soot, sulphate and soluble organic fraction 

(SOF) (Chen et al., 2007). Due to the higher oxygen content, the low (or inexistent) levels 

of sulphur content and higher cetane number of biodiesel, it is an overwhelming argument 

that the PM emissions decrease with the use of biodiesel instead of diesel (Lapuerta et 

al., 2008; Xue et al., 2011; Kumar and Chauhan, 2013). However, the reductions in PM 

emissions have been shown as being more effective with lower diesel concentrations in 

the blends, mainly due to the high viscosity that characterize biodiesel, which may cause 

a worse fuel atomization and volatilization processes, and further deteriorate the 

combustion quality (Senthil Kumar et al., 2003; Turrio-Baldassarri et al., 2004; 

Banapurmath and Tewari, 2008; Song and Zhang, 2008a; Wu et al., 2009; Aydin and 
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Bayindir, 2010b; Qi et al., 2010). Moreover, according to Armas et al. (2010), the 

increasing of PM emissions can also occur due to the unburned or partly unburned HC 

compounds that condensate and be absorbed on the PM surface, increasing the SOF (the 

main component of PM in exhaust gases). 

PM are formed in the locally rich regions of the heterogeneous mixture of fuel and air 

during combustion in the combustion chamber. Further air-fuel mixing results in burning of 

PM at the boundary of diffusive flame due to the high temperature and available oxygen at 

the region. The increase of oxygen content in the fuel contributes to a complete fuel 

oxidation even in locally rich zones and it is also leads to a significant decrease in PM 

emissions and smoke (Lapuerta et al., 2008). The high cetane number of biodiesel is 

another reason to justify the reduction of PM emissions, due to its contribution on 

combustion efficiency improvement (Kwanchareon et al., 2007; Song and Zhang, 2008b; 

Nabi et al., 2009).  

The PM emission variations from the biodiesel use on diesel vehicles are presented in 

Table 3.3, for EURO 3 (EMEP/EEA, 2013) and EURO 4. 

 

Table 3.3 – Effects of biodiesel blends on diesel vehicle PM emissions for EURO 3 (EMEP/EEA, 2013) and 

EURO 4 (Bakeas et al., 2011) vehicles.  

European emission 

standards 
Vehicle type B10 B20 B30 

EURO 3  

(under NEDC) 

Passenger vehicles -13.0% -20.0% - 

Light commercial vehicles -15.0% -20.0% - 

Heavy-duty vehicles -10.0% -15.0% - 

EURO 4  

(under NEDC and CADC) 
Passenger vehicles -0.7% -3.4% -5.8% 

 

3.1.3 CO and HC 

According to up to 84% of the consulted literatures, CO emissions are reduced when 

diesel is replaced by biodiesel (Figure 3.1). Similar to CO, almost 90% of the literature 

points out that the use of biodiesel instead of diesel reduces HC emissions (Figure 3.1). 

This is mainly due to the oxygen content of biodiesel, that promotes a more complete 

combustion, and its higher cetane number that contributes to lower possibility of formation 

of rich fuel zone, and then less CO emissions (Xue et al., 2011; Kumar and Chauhan, 

2013). Additionally, according to Abd-Alla et al. (2001), higher cetane number of biodiesel 



The impact of biofuels for road traffic on air quality: a modelling approach 

Atmospheric pollutant emission related to biofuels use in road transports 

31 

could reduce the burning delay, which results in the total HC emissions reduction. 

Nevertheless, experimental studies have shown that the lower biodiesel concentration is 

more effective than the higher one in terms of HC emissions, because higher reduction in 

HC emissions appeared with the low content of biodiesel (up to 50%) (Song and Zhang, 

2008b; Ghobadian et al., 2009). 

Experimental results (Ramadhas et al., 2005; Gumus and Kasifoglu, 2010) justify that the 

differences in CO emissions for biodiesel and diesel fuels at high load is caused by the 

oxygen content, but at low load they point out to the high cetane number. Actually, engine 

load has been proven to have a significant impact on CO emissions. There is an 

unanimous conclusion about the effect of engine speed on CO emissions: they decrease 

with an increase in engine speed (Xue et al., 2011). Regarding the engine load and HC 

emissions, the compiled existing studies lead to inconsistent conclusions (Xue et al., 

2011). 

Knothe et al. (2006) reported that CO and HC emissions reduced with the increasing of 

the chain length after tested on an engine with lauric (C12:0), palmitic (C16:0) and oleic 

(C18:1) methyl ester. Indeed, feedstocks of biodiesel affect CO and HC emissions, as well 

as the combustion process, since cetane number increase with decreasing unsaturation 

and increasing chain length, which are influenced by biodiesel feedstock, oil processing 

technology and climate condition of the area where oil is collected (Ramadhas et al., 

2006; Kumar and Chauhan, 2013).  

Nevertheless, some authors have reported a significant increase in CO emissions for pure 

biodiesel and also for blend fuels (Banapurmath and Tewari, 2008; Fontaras et al., 2009; 

Sahoo et al., 2009). The main reasons given by the authors are related to the higher 

viscosity and poor spray characteristic for biodiesel, which lead to poor mixing and poor 

combustion conditions. 

The CO and HC emission variations from the biodiesel use on diesel vehicles are 

presented in Table 3.3, for EURO 3 (EMEP/EEA, 2013) and EURO 4. 
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Table 3.4 – Effects of biodiesel blends on diesel vehicle CO and HC emissions for EURO 3 (EMEP/EEA, 

2013) and EURO 4 (Bakeas et al., 2011) vehicles.  

Pollutant 
European emission 

standards 
Vehicle type B10 B20 B30 

CO 

EURO 3  

(under NEDC) 

Passenger vehicles 0.0% -5.0% - 

Light commercial 

vehicles 
0.0% -6.0% - 

Heavy-duty vehicles -10.0% -9.0% - 

EURO 4 (under  

NEDC and CADC) 
Passenger vehicles -7.5% -17.0% -22.6% 

HC 

 Passenger vehicles 0.0% -10.0% - 

EURO 3  

(under NEDC) 

Light commercial 

vehicles 
-10.0% -15.0% - 

 Heavy-duty vehicles -10.0% -15.0% - 

EURO 4 (under  

NEDC and CADC) 
Passenger vehicles -3.4% -8.1% -12.3% 

 

3.1.4 CO2 

Carbon dioxide is an important GHG especially due to the huge amount emitted by 

anthropogenic sources (electricity generation, industrial and domestic combustion and 

transportation) worldwide. One of the main motivations for the use of biofuels, namely 

biodiesel, in the transport sector is the reduction of these GHG emissions.  

All the published works that study the effects of biodiesel on engine performance and 

exhaust gases emissions include CO2. However, their conclusions vary considerably 

(Figure 3.1). On one hand, some authors suggest that the use of biodiesel generates 

more CO2 emissions than pure diesel. This increase is mainly due to the presence of 

oxygen into the biodiesel molecules, promoting a more complete combustion (Lin and Lin, 

2007; Utlu and Koçak, 2008; Chauhan et al., 2012). On the other hand, some researches 

have reported that the high viscosity of biodiesel reduces cone angle which leads to the 

reduction of the amount of air available for the combustion process, resulting in hindrance 

to complete the combustion reaction (Gumus, 2008; Mani et al., 2009). Thus, contrarily to 

other pollutants, CO2 emission increase as more efficient is the combustion reaction. 

Nevertheless, the increase of CO2 emissions is not a concern due to nature’s recovery by 

raising biodiesel crops and by decreasing of production of petroleum-based diesel. Thus, 

the effect of biodiesel on CO2 emissions should be performed through life cycle 

assessment (LCA) methodologies (Nanaki and Koroneos, 2012). There are several 
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published studies that evaluate the effect of biodiesels on global greenhouses gases 

emissions through the LCA, which have pointed out that biodiesel can cause a 50-80% 

reduction in CO2 emissions compared to petroleum-based diesel, regarding each fuel life 

cycle, considering biodiesel feedstocks as endogenous (Malça and Freire, 2011; Kumar et 

al., 2012; Nanaki and Koroneos, 2012).    

The CO2 emission variations from the biodiesel use on diesel vehicles are presented in 

Table 3.3, for EURO 3 (EMEP/EEA, 2013) and EURO 4. 

 

Table 3.5 – Effects of biodiesel blends on diesel vehicle PM emissions for EURO 3 (EMEP/EEA, 2013) and 

EURO 4 (Bakeas et al., 2011) vehicles.  

European emission 

standards 
Vehicle type B10 B20 B30 

EURO 3  

(under NEDC) 

Passenger vehicles -1.5% -2.0% - 

Light commercial vehicles -0.7% -1.5% - 

Heavy-duty vehicles 0.2% 0.0% - 

EURO 4  

(under NEDC and CADC) 
Passenger vehicles 0.4% 1.1% 1.6% 

 

3.1.5 Non-regulated pollutants 

Beyond basic regulated pollutants, several measurements on non-regulated pollutants 

emitted by road transports have been recently performed (Xue et al., 2011), most 

concentred on the composition and quantification of HC and PM (Peng et al., 2012). 

These include quantification of volatile organic compounds (VOC) and carbonyl 

compounds (aldehydes) from gaseous exhaust and measurements of aromatic and 

polyaromatic hydrocarbons (PAH) from both gaseous and particulate emissions. The 

interest on these pollutants are mainly because they are hazardous for human health and 

environmentally dangerous (Peng et al., 2008).  

The existing studies point out that exhaust emissions are lower in total VOC, total 

carbonyl compounds and total PAH when biodiesel blends are used (Corrêa and Arbilla, 

2008; Peng et al., 2008; Macor et al., 2011). However, the same studies reveal that the 

ratio of total VOC to HC increase with the biodiesel concentration and the soluble organic 

fraction of the emitted PM is greater in biodiesel exhaust emissions that it is in diesel’s, 

even though the reduction are shown in total HC and total mass of PM for biodiesel.  
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3.1.5.1 Carbonyl compounds 

Carbonyl compounds (CC) belongs to a class of substances produced by the partial 

oxidation of the hydrocarbons, which appear in intermediate phases of the combustion 

process (Lapuerta et al., 2008). Aldehydes and ketones are the CC more frequently 

studied in diesel exhaust.  

Due to its adverse health effects, such as eyes respiratory system and irritation, and 

carcinogenicity, carbonyl compounds are drew the public's and research’s attention. 

Moreover, they are also precursors of photochemical smog (Bakeas et al., 2003; Macor et 

al., 2011). In urban areas, most of the aldehyde emissions are from automotive exhaust 

(Bakeas et al., 2003; Jacobson, 2007). Therefore, the effects of biodiesel fuel on these 

emissions are important for urban air quality and human health. 

Besides the discordant results for biodiesel regarding carbonyl compounds emissions, it is 

widely accepted and proved by 80% of the experimental works consulted by Xue et al. 

(2011) (Figure 3.1), that biodiesel increases these emissions as a consequence of the 

oxygen content in the molecule. Corrêa and Arbilla (2008) found that all carbonyl 

emissions exhibit a strong correlation (correlation coefficients of 0.96) with the biodiesel 

content (B2, B5, B10, B20), which indicates that the biodiesel ester molecules are 

probably the source of these carbonyls. Liu et al. (2009) detected that exist a weaker 

correlation between the biodiesel content (B10, B30, B50, B75, B100) and the carbonyl 

compounds, partially due to the fact that the engine used was designed to run on diesel. 

Carbonyl compound emissions are also influenced by the driving cycle.  

The effects of the use of biodiesel blends on CC emissions were analysed by Karavalakis 

et al. (2011b), regarding an EURO 4 light passenger vehicle. The carbonyl compound 

emission factors found for each fuel over the NEDC and the three phases of the CADC 

(urban-CAU, road-CAR and motorway-CAM) are shown in Figure 3.4. 
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a) b) 

  
c) d) 

Figure 3.4 – Average of carbonyl compound emission factors (mg.km-1) for diesel, B10, B20 and B30, over the 

a) NEDC, b) CAU, c) CAR and d) CAM driving cycles (from: Karavalakis et al., 2011b). 

 

Formaldehyde, acetaldehyde and Acrolein/acetone are the aldehydes present in greater 

quantity in the exhaust gas when the diesel is used. Karavalakis et al. (2011b) verified that 

carbonyl compounds emissions are higher over the extra-urban cycle than over the urban 

cycle.  

Additionally, subjects as aldehyde emissions other than formaldehyde, acetaldehyde, and 

acrolein, the effects of vehicle/engine age on carbonyl emissions, and ozone potential of 

carbonyl emissions, have been concerned in relation to exhaust emissions from biodiesel 

fuels. The importance of these concerns increases when more vehicles use biodiesel as a 

fuel and run over a long period of time (Peng et al., 2008). The aldehydes in exaust gases 

contribute to ozone formation in conjunction with NOx and sunlight (Macor et al., 2011). 

The Equivalent Ozone Production (EOP) is calculated based on the product of measured 

hydrocarbon emission factors and maximum incremental reactivity (MIR) (Carter, 1994; 

Chang et al., 2001; Peng et al., 2008). The MIR values for the carbonyl compounds 

presented in diesel and biodiesel blends are shown in Figure 3.5.  
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Figure 3.5 – Maximum incremental reactivity (MIR) of carbonyl compounds (CC) (Carter, 2009).  

 

The main contributors to the Equivalent Ozone Production (EOP, Equation 3.1) are 

formaldehyde, crotonaldehyde, acetaldehyde, acrolein/cetone and propinaldehyde due to 

their high MIR and high concentrations in exhaust gases.  

 

𝐸𝑂𝑃 =  ∑(𝐶𝐶𝐸𝑖 × 𝑀𝐼𝑅𝑖)

𝑖

 Equation 3.1  

(Ballesteros et al., 2012) 

Where:  

EOP – Equivalent Ozone Production (mg O3) 

CCE – Carbonyl Compound Emission (mg CC) 

MIR – Maximum Incremental Reactivity (mg O3.mg CC-1) 

 

 

 

3.1.5.2 Aromatic and PAH compounds 

Aromatic and polyaromatic hydrocarbons (PAH) compounds, especially benzene, toluene 

and xylene (BTX) and derivate are toxic, mutagenic, carcinogenic and teratogenic and 

they contribute to the formation of tropospheric ozone (Krahl et al., 2002). As well as 

carbonyl compounds, the main sources of aromatic and PAH compounds are unburned 

molecules from fuel and structural modifications during combustion (Krahl et al., 2003; 

Turrio-Baldassarri et al., 2004; He et al., 2010). 85% of the published results (Figure 3.1) 

indicate that aromatic and PAH compounds emissions for biodiesel are reduced with 

regard to diesel. The reduction in PAH is usually due to enhanced adsorption of these 

components to PM (Turrio-Baldassarri et al., 2004). According to Cheung et al. (2009), Di 

et al. (2009), Krahl et al. (2003) and Takada et al. (2003), aromatic and PAH emissions 

are strongly dependent on the engine operating conditions (load, driving cycle, etc.).  
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The BTX compounds are most notably emitted by motor vehicles and they have been 

found in the urban areas air (Schauer et al., 2002). Nevertheless, no experimental results 

were found for BTX covering the usage of biodiesel blends over the NEDC or the CADC. 

However, Di et al. (2009) measured BTX emissions from a 4-cylinder direct-injection 

diesel engine. The experiments were performed at three engine loads corresponding to 

break mean effective pressure of 0.20, 0.38 and 0.55 MPa. The results obtained for diesel 

and B20 are compiled in Table 3.6. 

 

Table 3.6 – Benzene, toluene and xylene emissions at various engine loads (Di et al., 2009). 

mg.kW-1.h Diesel B20 B40 B60 B80 B100 

0.20 MPa Benzene 79.2 109.1 127.6 143.0 133.3 119.3 

Toluene 17.1 5.8 6.2 5.4 3.6 3.3 

Xylene 69.7 20.4 25.4 24.5 13.4 12.8 

BTX 166.0 135.3 159.2 172.9 150.3 135.4 

0.38 MPa Benzene 57.0 59.4 75.1 83.7 76.4 76.2 

Toluene 8.3 4.5 3.8 3.8 2.6 2.5 

Xylene 33.2 13 16.1 12.7 10.1 8.3 

BTX 98.5 75.9 95 100.2 89.1 87 

0.55 MPa Benzene 28.1 28.5 33.1 38.3 39.2 35.4 

Toluene 3.3 1.9 2.0 1.9 1.6 1.4 

Xylene 18.7 7.5 8.4 7.7 6.2 5.6 

BTX 50.1 37.9 43.5 47.9 47 42.4 

 

BTX emissions decrease with the increase of engine load due to BTX compounds are 

easily oxidized at high exhaust gas temperature, which typically occur at high engine 

loads (Takada et al., 2003; Di et al., 2009). On the other hand, the addition of biodiesel to 

diesel leads to the reduction of exhaust gas temperature, contributing to increase in the 

benzene emissions, especially at low engine load.  It is also interesting to note that for 

biodiesel concentrations higher than 20%, the benzene emissions are higher that those 

for B20. This could be explained by the biggest temperature reduction from Diesel (510 K) 

and B20 (508 K) to B40 (502 K), B60 (501 K), B80 (501 K) and B100 (499 K) (Di et al., 

2009). These temperatures are regarding the low engine load (0.20 MPa). However, the 

same trends were verified for the remaining engine loads. 

Regarding toluene and xylene emissions, the results found by Di et al. (2009) reveal that 

those emissions are reduced with the addition of biodiesel mainly due to the oxygen 

enrichment that promotes the oxidation of these compounds.   
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3.1.6 Synthesis 

The presence of oxygen on biodiesel fuels and their higher cetane number, in comparison 

to diesel, are important reasons pointed out to explain the reductions on PM, CO and HC 

emissions. Additionally, the low aromatic compound, the low carbon to hydrogen ratio and 

the advances in injection and combustion of biodiesel are factors arguing in favour of 

decreases on PM, CO and HC emissions, respectively. On the other hand, the majority of 

the experimental studies revealed that the oxygen content and the high cetane number of 

biodiesel contribute to the increase of the combustion temperature and therefore NOx 

emission will increase as well. 

Regarding the CO2 emissions, there are not consistent conclusions: some experimental 

results revealed that CO2 emission are reduced when biodiesel is used instead of diesel 

as a result of low carbon to hydrocarbons ratio, while others studies indicate that CO2 

emissions increase or keep constant due to a more effective combustion.  

85% of the published works showed that aromatic and PAH compound emissions for 

biodiesel reduce with regards to diesel, especially toluene and xylene, due to the oxygen 

content that improve the combustion efficiency, contributing to the degradation of these 

compounds. However, the decrease of exhaust gas temperature with the increase of 

biodiesel in the fuel blend is lead to the significant increasing of benzene emissions. The 

oxygen content is also pointed out as the cause of aldehyde emissions increasing, such 

as formaldehyde, acetaldehyde and acrolein. The increase of carbonyl compounds 

emissions when biodiesel is used is an issue of concern due to their ozone formation 

potential and their carcinogenic characteristics. 

According to the majority of the studies consulted, it can be concluded that low biodiesel 

blends (< 30 %v/v) could be used to help in controlling air pollution and to reduce the 

pressure on scarce resources without compromising engine power and economy. 

Additionally, most of them also indicate B20 as the blend fuel with higher combustion 

efficiency and lower emissions than diesel and other blends. 
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3.2 Emissions characterization from EURO 5 diesel/biodiesel 

passenger vehicle2 

Based on a set of diesel/biodiesel blends as fuel, some recent studies (Karavalakis et al., 

2009, 2010, 2011b; Fontaras et al., 2010; Bakeas et al., 2011; Bermúdez et al., 2011; 

Randazzo and Sodré, 2011; Kousoulidou et al., 2012) have been published contributing to 

the understanding of the engine behaviour in terms of emission and performance profiles 

under specific driving cycles, such as NEDC and CADC (Figure 3.3). However, these 

studies focused on the EURO 2, EURO 3 and EURO 4 vehicle technology classes, thus 

referring to emission profiles of vehicles sold from 1996 to 2009. 

Due to the identified lack of information on EURO 5 emission characterization, an 

experimental work was conducted to evaluate the effects of diesel/biodiesel blends on the 

fuel consumption and the gaseous emissions from a new diesel EURO 5 passenger 

vehicle. The vehicle used in this experiment was a Renault Megane 1.5 dCi (2011) 

equipped with a common-rail direct injection diesel engine and meeting EURO 5 emission 

standards. The technical specifications of the vehicle are listed in Table 3.7. This vehicle 

was selected because it is the most sold vehicle in Portugal with 7324 units sold between 

January and October 2011 (ACAP, 2010). 

 

 

Table 3.7 - Technical specifications of the test vehicle. 

Engine type Renault Mégane 1.5 dCi 

Fuel injection system Direct injection, common-rail 

Cylinders/valves 4/8 

Displacement (cm3) 1461 

Maximum power (kW/hP) 81/110 

Maximum torque (Nm) 240/1750 rpm 

Weight (kg) 1215 

Aerodynamic (S(M²)/Cd) 2.21/0.326 

Equipped with a DPF system self-regenerating 

Equipped with a EGR system - 

 

                                                
2 Based on Lopes, M., Serrano, L., Ribeiro, I., Cascão, P., Pires, N., Rafael, S., Tarelho, L., Monteiro, A., 

Nunes, T., Evtyugina, M., Nielsen, O.J., Gameiro da Silva, M., Miranda, A.I., Borrego, C., 2014. Emissions 

characterization from EURO 5 diesel/biodiesel passenger car operating under the new European driving cycle. 

Atmos. Environ. 84, 339–348 (DOI: 10.1016/j.atmosenv.2013.11.071). 
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This vehicle, as all modern diesel cars, is equipped with diesel particulate filter systems in 

order to fulfil the requirements of EURO 5 standard. This vehicle is also fitted with an 

exhaust gas recirculation system. 

Fuel blends containing 7%v/v (B7, the blend that is currently used in Portugal) and 20%v/v 

(B20) of soyabean/palm biodiesel (84%/16%), in volume basis, in petroleum-based diesel 

were tested and compared with a 100% diesel fuel (B0). The fuel properties are presented 

in Table 3.8. 

 

Table 3.8 - Fuel properties used in the experiment. 

Parameter/unit B0 B7 B20 Test method 

Density at 15 ºC (kg·m-3) 837.0 840.1 846.0 EN ISO 3675 

Viscosity at 40 ºC (mm2·s-1) 2.430 2.845 2.980 EN ISO 3104 

Flash point (ºC) >55 74.5 76.5 EN ISO 2719 

Water content (mg·kg-1) <50 105 171 EN ISO 12937 

Calculated cetane index 51.8 51.9 52.1 EN ISO 4264 

FAME content [% (v/v)] <0.1 6.9 20.0 EN 14078 

Heating value (MJ·kg-1) 45.598 45.146 44.418 ASTM D-240 

Distillation      

     Recovered at 250ºC [% (v/v)] 36 34 27 EN ISO 3405 

     Recovered at 350ºC [% (v/v)] 93 93 93 EN ISO 3405 

     95% recovered (ºC) 361.6 359.5 357.1 EN ISO 3405 

 

 

It is relevant to note the main differences when comparing biodiesel with fossil diesel: 

biodiesel is more viscous, fuel diesel has a higher heating value, biodiesel is denser and it 

has about 10-11% of oxygen content while petroleum-based diesel does not have oxygen. 

As discusses previously (section 3.1), these factors will influence the combustion process 

and, namely the fuel consumption and emission factors for gaseous and particulate 

pollutants. 

The experiments were carried out with the vehicle placed over a chassis dynamometer 

(Figure 3.6), according to the NEDC (Figure 3.3), simulating the typical usage of a car in 

Europe in order to quantify vehicle emissions (CO2, CO, NO2, NO, SO2, VOC and PM) 

under distinct driving conditions.   
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Figure 3.6 – Scheme of the experimental infrastructure. 

 

To assure the comparability of the emission measurements, the NEDC was repeated four 

times for each fuel blend and each first replica was not considered in data analysis in 

order to minimize the impacts of the fuel change on the engine performance. Moreover, 

the exhaust gases and the engine coolant temperatures were approximately 100 ºC and 

80 ºC, respectively, at the start of the test procedure, to guarantee that each trial was 

performed at the same conditions. Thus, the concentration measurements were 

performed under hot conditions. 

 

3.2.1 Exhaust gas sampling and analysis 

The sampling and analysis of regulated pollutant emissions from motor vehicles are 

performed in accordance to the European regulation (Directive 70/220/EEC and further 

amendments), following the constant volume sampling technique. This technique 

maintains a constant total flow rate of vehicle exhaust plus dilution air. With a constant 

volume sampling system, as exhaust flow increases, such as during heavy acceleration, 

the dilution air is automatically decreased and the sampling source is representative of 

exhaust variations. 

The constant volume sampling method has been used to support vehicle emissions 

testing for over 25 years and the ‘bag’ measurement of emissions is the key method that 

is used for legislative purposes (Randazzo and Sodré, 2011). Bag measurements provide 

a single figure for CO, CO2 and NOx emissions species for the complete drive cycle, but 

have their own limitations, providing no information on the emission profile throughout the 
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test. Thus, a different sampling methodology based on continuous on-line exhaust gas 

composition measurements was adopted in the work presented here. This methodology 

provides a time profile for O2, CO, CO2, NOx, SO2 and VOC along the experimental test of 

the vehicle. 

For sampling the exhaust gas, an experimental apparatus was implemented, which 

allowed connecting the vehicle tail pipe to a larger duct simulating a flue gas stack 

chimney (Figure 3.6). The sampling probes and particulate matter filters were introduced 

in the vertical duct in a sampling hole. The location of the sampling section is in 

accordance with the Portuguese Standard 2167:2007. The entire system was heated 

above 100 ºC to prevent water vapour and organics condensation, avoiding any 

interference with the measurements. Moreover, a heated filter was installed in the 

sampling probe to remove particulate compounds, protecting the flame ionization detector 

that measures VOC. 

The set of measured parameters and the respective equipment used in this experimental 

work is compiled in Table 3.9. 

The monitoring of O2, CO, CO2, NO2, NO, SO2 and total VOC concentrations was carried 

out on-line and continuously (registering period: a second for O2, CO, CO2, NO2, NO, SO2 

and a minute for total VOC). The gas sample was extracted and conducted to an infrared 

sensor to measure CO2 concentration and to electrochemical cells through a heated line, 

for the remaining gaseous compounds. Regarding PM measurement, a parallel sampler 

extracted the exhaust gas and forces it to pass through an impactor, which separates 

particles according to their diameter. The particles have been divided into three fractions, 

corresponding to diameters above 10 µm (1st filter), between 2.5 µm and 10 µm (2nd filter) 

and less than 2.5 µm (3rd filter). The impactor which contained quartz filters was kept at 

the temperature of the system (above 100 ºC) to avoid condensation in the sampler pipe. 

The mass collected in the various filters was determined gravimetrically, after a drying 

process. After gravimetric determination, filter punches were analyzed by a thermo-optical 

transmission system in order to quantify the carbonaceous content into organic carbon 

and elemental carbon. Details of the analytical technique are provided in Alves et al. 

(2011). Finally, samples of exhausted gas were collected using Tedlar bags in order to 

perform VOC speciation analysis by gas chromatography according to the methodology 

described by Evtyugina et al. (2013). 
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Table 3.9 – Equipment used in the experimental work. 

Equipment Parameters 
Detection 

limit 

Response  

time (s) 
Resolution Accuracy Test method 

Andersen control 

unit 
Dry gas meter - - 

0.0001 

 

< ± 2 % 

m.v. 
- 

Hot Box 

Support and 

heating the 

filter sampling 

- - - - 
ISO 

23210:2009 

Impactor and 

quartz filters 

PM10 and 

PM2.5 
- - - - 

ISO 

23210:2009 

Cold box 

Bubblers 

cooling in an 

ice bath 

- - - - 
EN 

14790:2005 

Thermocouple 
Exhaust gas 

temperature 
- - 1 < ± 3 - 

TESTO  

350 XL  

(gas analyser) 

O2 0.1% < 20 0.01 % 
< 0.2 % 

m.v. 

EN 

15259:2007 

CO 1 ppm < 40 1 ppm < 5 % m.v. 

CO2 0.02 % < 10 0.01 % 
< 1.5 % 

m.v. 

NO 1.8 ppm < 30 1 ppm 
< 10 % 

m.v. 

NO2 0.5 ppm < 40 0.1 ppm < 2 % m.v. 

SO2 1 ppm < 30 1 ppm < 5 % m.v. 

Bernath Atomic 

Model 3006 

Analyser (flame 

ionization 

detector) 

VOC 0.4 ppm 3 0.2 ppm 
< 5 % 

Span 

EN 

15259:2007 

EPA 25A 

Balance Mettler  

(mod. AG285) 
Mass - - 0.1 mg ± 0.017 mg - 

Balance 

Sartorius (PT 

1200) 

Mass - - 0.1 g ±0.058 g  

Gas 

chromatograph 
VOC 0.4 ng -  

< ± 7 % 

m.v. 
- 

Thermo-optical 

transmission 

system 

Elemental 

carbon / 

organic 

carbon 

0.6 ppm(1) 1  

± 2 

.filter-1 

(2) 

- 

m.v. - measured value 

1 NDIR CO2 analyzer 

2 Accuracy based on TC variability on blank quartz filter 

 

 



The impact of biofuels for road traffic on air quality: a modelling approach 

Atmospheric pollutant emission related to biofuels use in road transports 

 

44 

The measurement of concentration allows the understanding of the complete profile for 

O2, CO, CO2, NOx and SO2. However, the equipments used have a time response (Table 

3.9) which must be taken into account during the data post-processing. In spite of the 

equipments were capable to make the measurement cycle showing obvious variations of 

the various pollutants as a function of the speed in perfectly conditions, they took a little bit 

to take the first value when tests began. To address the time response problem, both 

speed and concentration curves were crossed in order to reject the first seconds of the 

concentration data series to coincide with the both curves. Since the concentration profiles 

from the tests were quite consistent, Figure 3.7 only represents the observed 

concentration profiles and the vehicle speed regarding the B20.  
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a) 

 
b) 

 
c) 

 
d) 

Figure 3.7 - B20 profiles of speed and exhausts gases temperature (a) and measured concentrations of O2 

and CO2 (b), NOx (c) and SO2 (d). 
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All trials followed the velocity profile that characterizes the NEDC cycle (Figure 3.7a), 

presenting a Pearson’s correlation coefficient of 0.998. This value reveals a strong 

association between the standard and the experimental profiles, which allows the 

validation of the tests performed. 

The O2 and CO2 contents vary oppositely throughout the test (Figure 3.7b). Moreover the 

observed CO concentrations are low, below the detection limit of the equipment (Table 

3.9), which means that the combustion process is close to complete. Additionally, the 

analysis of the oxygen content shows the consistency of results, all tests varied in the 

range of 5.28 and 16.71 % of O2, during the EUDC and UDC, respectively. 

NOx (Figure 3.7c) and SO2 (Figure 3.7d) concentrations were keeping at low levels during 

the UDC, increasing with both speed and exhaust gases temperature in the EUDC since 

both pollutants are produced especially at high temperatures (Lupiáñez et al., 2013; Shao 

et al., 2013). The concentration levels increase is especially observed during the speeding 

up periods and declines in cruise speed periods. 

 

3.2.1 Determination of the mass and volumetric exhaust flow  

The principle of mass conservation was applied to calculate of the mass and volumetric 

flow rate. The calculations were based on the assumption of complete oxidation of the 

chemical elements that compose the fuel and that the combustion air was dry. 

Furthermore, as the gaseous products resulting from combustion include a diversified set 

of substances, only their major components (CO2, H2O, O2 and N2) were considered for 

effects of global mass balance. In fact pollutants such as HC, H2, CO, NO, NO2, SO2, HCl, 

HF, and some organic micropollutants (PAH, dioxins, furans, among others) have small 

effect on the total of exhaust emissions (Heywood, 1988).  

Combustion flow was calculated by applying the principle of mass conservation, through 

the analysis of the chemical reactions translating the combustion processes of diesel 

(Equation 3.2) and biodiesel (Equation 3.3) fuels. The elemental composition of the fuels 

used in the experiments (%, m/m), on dry basis, was determined based on the analysis of 

the stoichiometry (Equation 3.2 and Equation 3.3). The data obtained are presented in 

Table 3.10. 

 

C12H26 + 18.5 O2 + 18.5 × 3.76 N2 → 12 CO2 + 13 H2O + 69.56 N2 Equation 3.2 

  

C19H34O2 + 26.5 O2 + 26.5 × 3.76 N2 → 19 CO2 + 17 H2O + 99.64 N2 Equation 3.3 
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Table 3.10 – Stoichiometric elemental composition (% m/m) of fuel, on dry basis. 

Element 
Elemental composition (%) 

Diesel Biodiesel 

Carbon 5.314 5.799 

Oxygen 21.848 22.381 

Hydrogen 0.959 0.865 

Nitrogen 71.879 70.956 

∑ 100 100 

 

Since the combustion process and its products are directly dependent of the existing air, it 

becomes indispensable to determine the current oxygen requirements, dependent of the 

stoichiometric requirement of oxygen that enables the complete oxidation of fuel. Thus, 

since the oxygen content of the combustion gases for each fuel type was measured, 

values of excess of air were arbitrated until the value of the current oxygen requirements 

is obtained (about 70%). Having compiled the information described, the mass flow of 

each combustion product (ṁgas i), expressed in ggas i·h-1, was obtained by applying 

Equation 3.4. 

 

�̇� 𝑔𝑎𝑠 𝑖 =  𝑛𝑖 × 𝑀𝑖 × 𝐺𝐹  Equation 3.4 

 

Where, ni is the elemental mass balance, in mol of element i by kg of dry fuel; Mi is the 

molar mass of product i, in g·mol-1; and GF is the fuel consumption, in g·h-1.  

Table 3.11 shows the fuel consumption and the mass air flow measured as indicator of 

the engine behaviour during the trials carried out, as well as the mass flow rates of 

exhaust gases determined according to the Equation 3.4. It should be noticed that the 

consumptions presented correspond to the mean value of the tests performed for each 

fuel, with the distinction between the respective driving cycles, whereby the flows obtained 

are presented as mean flows. By this way, the error associated with the experimental 

work was reduced. With the same purpose, the first test of each fuel type was excluded, 

to eliminate errors associated to the adjustment of the engine to the fuel. 
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Table 3.11 – Fuel consumption, mass air flow, and exhaust gas flow rates in mass and volume basis, by fuel 

and for each driving cycle. 

Fuel  

type 

Driving  

cycles 

Fuel Consumption 

(l.100km-1) 
Mass air flow  

(kg·h-1) 

Exhaust  

mass flow  

(kg.h-1) 

Exhaust  

volumetric flow  

(Nm3.h-1) Range Average 

B0 

UDC 6.32 – 6.47 6.33 30.96 31.65 24.61 

EUDC 5.56 – 5.64 5.59 65.55 93.23 72.48 

NEDC 5.84 – 5.94 5.86 48.26 52.52 40.83 

B7 

UDC 6.35 – 6.48 6.44 32.22 32.35 25.14 

EUDC 5.56 – 5.67 5.61 64.78 94.36 73.34 

NEDC 5.89 – 5.97 5.92 48.50 53.37 41.48 

B20 

UDC 6.27 – 6.37 6.31 30.78 31.65 24.60 

EUDC 5.53 – 5.50 5.53 65.28 92.71 72.05 

NEDC 5.79 – 5.84 5.82 48.03 52.35 40.69 

 

The fuel consumption and the mass air flow are similar among the different used fuel 

blends. Therefore there was no noticeable effect of the use of biodiesel in the diesel 

engine operation.  

Once the mass flow of combustion products is obtained (Table 3.11), the determination of 

the volumetric flow rate was based on the estimation of the densities of each product (ρi, 

in kg·m-3) and assuming ideal conditions. The volumetric flow rates of exhaust (Gexh), in 

Nm3·h-1, are also presented in Table 3.11. 

 

3.2.2 Determination of the emission factors 

The emission factors (EF) were calculated taking into account the volumetric flow rate for 

each fuel type analysed and each driving cycle (UDC and EUDC), the velocity (v) and the 

pollutant concentration emitted (C0i), on a dry basis (as expressed by Equation 3.5). 

Emission factors were then obtained for each pollutant, for each driving cycle and for each 

fuel type examined, expressed in g·km-1.  

 

𝐸𝐹 =  
𝐺𝑒𝑥ℎ  × 𝐶0𝑖 

1000 ∙ 𝑉
 Equation 3.5 

 

In order to establish the comparison between the different fuels analysed, mass 

concentrations were corrected for standard conditions. This condition of specific reference 

includes the temperature (T0), the absolute pressure (P0), and a value to molar fraction of 



The impact of biofuels for road traffic on air quality: a modelling approach 

Atmospheric pollutant emission related to biofuels use in road transports 

49 

oxygen (y0
0), which depends on the applications (Portuguese Decree No. 178/2003). 

Since the Portuguese Decree No. 677/2009, of June 23, establishes the emission limit 

values applicable to combustion plants, especially on internal combustion engines, to an 

oxygen content of 15%, this was the value used in the correction of oxygen. The 

acronyms T, P and y0 correspond, respectively, to the values of temperature, pressure and 

molar fraction of oxygen measured during the tests. In these circumstances the 

concentration in standard conditions, C0i, expressed in mg.Nm-3, was estimated through 

Equation 3.6. 

 

𝐶0𝑖 =  𝐶𝑚𝑖  ×  
0.21 −  𝑦0

0

0.21 −  𝑦0
 ×  

𝑇

𝑇0
 × 

𝑃0

𝑃
 Equation 3.6 

 

3.2.2.1 CO2 

One of the main motivations for the use of biodiesel in the transportation sector is the 

reduction of CO2 emissions. Despite some authors (e.g. Xue et al., 2011) reporting a 

reduction of CO2 emission when biodiesel is added to petroleum-based diesel, the current 

experimental results show that CO2 emissions can slightly increase with the use of 

biodiesel blends (Figure 3.8). The same results were obtained by Bakeas et al. (2011), 

Fontaras et al. (2010) and Karavalakis et al. (2011). 

 

Figure 3.8 – CO2 emission factors by fuel type and driving cycle. 

 

Comparing the emission factors estimated for all tested fuel blends, B7 is the fuel with 

higher CO2 emissions and higher fuel consumption (Table 3.11). On the other hand, B20 

presents the lower fuel consumption, but the emission factors under the NEDC (115.36 
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g·km-1) are between pure diesel (113.71 g·km-1) and B7 blend (117.48 g·km-1). These two 

factors could probably mean that the B20 blend leads to a more efficient and complete 

combustion than B0 and B7. 

 

3.2.2.2 CO 

As indicated in Table 3.9, the detection limit of the equipment used (TESTO 350XL) is 1 

ppm and the accuracy error of the analyser is 5% of the value measured. The high values 

measured were founded for B7, nevertheless the CO concentrations in the exhaust gas 

were within or below the detection level of the monitoring equipment used. Taking this into 

account, it was not possible to conclude about CO emission behaviour using B0, B7 and 

B20 fuels.   

 

3.2.2.3 NOx 

Various nitrogen-based components are formed during the combustion process on a 

diesel engine, in particular NO and NO2. The formation of NOx depends mainly on the 

oxygen available, the local combustion temperatures and the load conditions (Sun et al., 

2010). The nitrogen oxides emission factors obtained by fuel type and driving cycle are 

presented in Figure 3.9. 

 

 

Figure 3.9 – NO, NO2 and NOx (NO+NO2) emission factors by fuel type and driving cycle, and the emission 

limit value indicated by the EC Regulation 715/2007. 
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Looking at the complete driving cycle, the NOx emissions are below the EURO 5 limit 

value for all blends (0.18 g·km-1, EC Regulation 715/2007). Typically, the NOx produced 

by a combustion reaction on a diesel engine is about 98% NO (Sun et al., 2010). 

However, the experimental results point out a distribution of about 50% of NO and 50% of 

NO2, which means that the combustion processes occurred in the presence of excessive 

O2, allowing the oxidation of NO to NO2 from the motor to the tailpipe.  

B20 was the fuel with lower NOx emission factors (0.15 g·km-1 over NEDC) with a 

reduction of 10.8% and 11.4%, when compared to B0 and B7, respectively. Furthermore, 

the trend of NO emissions for each fuel is similar to NOx. This can be explained by the 

reduced need of air and fuel (see Table 3.11) of B20, since NO is mainly formed during 

the combustion process, in other words, B20 promotes a more efficient combustion (as 

already mentioned in section 3.2.2.1). 

The exhaust gas temperatures of B20 and B0 are similar (109.1 ºC and 109.0 ºC for B0 

and B20, respectively) and higher than B7 (100.4 ºC), which could explain the lower NO2 

emissions associated to B7 over UDC and NEDC, due to NO2 being mainly formed by the 

Zeldovich mechanism (Lavoie et al., 1970). 

Besides the results not displaying a clear trend, they point out to a decrease of NOx 

emissions, mainly due to the increase of combustion efficiency with higher mixture rates of 

biodiesel. The improvement of combustion efficiency is probably due to the increase of the 

blend’s viscosity (biodiesel is more viscous than diesel – see Table 3.8), which can play 

an important role in improving the lubrication of the injection metallic components of the 

engine.  

 

3.2.2.4  SO2 

The SO2 present in exhaust gas is entirely due to the sulphur content of the fuel. As Table 

3.8 shows, the fuels used in these set of tests had higher sulphur content than the 

maximum allowed in Europe (10 ppm) by EN 590:2009. In this sense, the SO2 emission 

factor obtained should be just analysed as variations between B7 and B20 regarding pure 

diesel (Figure 3.10). 
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Figure 3.10 – Variation on SO2 emission factor by fuel type and driving cycle, relative to pure diesel. 

 

Figure 3.10 confirms the positive influence of the use of biodiesel blended in diesel. The 

obtained results show a reduction on SO2 emission factor compared with pure diesel, in 

more than 20% using B7 and more that 50% using B20, over the UDC, EUDC and NEDC.  

 

3.2.2.5 Particulate matter  

According to the majority of the studies regarding the impact of biodiesel on particulate 

matter emissions (e.g. Bakeas et al., 2011; Xue et al., 2011), the use of a biodiesel blend 

causes a reduction in PM emissions. However, these studies refer to vehicles with 

previous technology than the vehicle tested (EURO 5). As described at the beginning of 

the section 3.2, the EURO 5 vehicles are equipped with diesel particulate filter a system, 

which means that PM emissions can be reduced in 90% (Bergmann et al., 2009; Tente et 

al., 2011). Taking this into consideration, the same filters were used in the four replicas of 

each fuel blend in an attempt to sample as much particulate matter mass as possible. 

After, the filters were weighed in laboratory, but the mass of the accumulated particulate 

matter in the filters was below the detection limit and no conclusion could be taken 

concerning the PM emissions with the use of the different biodiesel blends. Diesel 

particulate filter are not only effective in removing larger particulate matter such as PM10, 

but also effective in removing smaller particulate matter because all size fractions were 

removed by this filters. This finding confirms that diesel particulate filter installed in 

modern diesel light vehicles are in fact highly efficient and emissions cannot be quantified 

by gravimetric methods. Thus, this methodology is inappropriate to quantify PM emissions 

in vehicles equipped with diesel particulate filters.  



The impact of biofuels for road traffic on air quality: a modelling approach 

Atmospheric pollutant emission related to biofuels use in road transports 

53 

Despite the low content of particles found in the filters, it was possible to quantify the 

levels of total particulate carbon (Figure 3.11) using a thermo-optical transmission system, 

including its speciation in organic carbon (OC) and elemental carbon (EC) for fine 

particulate fractions (PM<2.5).  

 

 

Figure 3.11 – Coarse and fine fraction (EC and OC) of total carbon (TC) emission factor in PM10, for B0, B7 

and B20, considering all the NEDC. 

 

The main carbonaceous content was concentrated in the fine fraction of all experiments, 

and is dominated by organic compounds, The OC/EC ratio ranged between 3 and 6 in the 

fine fraction. A decrease in emission factor for total carbon is observed with an increase of 

biofuel in the blend mixture. The emission factor of total particulate carbon could be used 

as a lower limit of PM emission factor for these experiments. 

 

3.2.2.6  VOC  

As described in section 3.2.1, two different tupes of measurements of VOC concentrations 

took place during the experiments: (1) through the flame ionization detector total VOC 

concentrations were measured per minute; and (2) a sample of exhausted gases was 

collected into a bag during the third UDC and EUDC of each NEDC in order to perform a 

VOC speciation analysis by gas chromatography. Figure 3.12a represents the total VOC 

emissions from the three fuels used, and Figure 3.12b shows the concentration of a set of 

VOC species found in the exhaust gas.   
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a) 

 
b) 

Figure 3.12 – Total VOC emission factor (a), and concentration of some species of VOC, for B0, B7 and B20 

(b). 

 

Compared with pure diesel, the B7 fuel displays higher values of total VOC emissions 

(Figure 3.12a), especially over the UDC, while the B20 fuel presents similar values to B0. 

However, the comparison between B7 and B20 fuels indicates that total VOC emissions 

decrease with higher biodiesel rates. Lower emissions may result from higher cetane 

number and oxygen content for B20 fuels. Fuels with high cetane number can reduce 

ignition delay and help promote more complete combustion, which could lead to the 

reduction of hydrocarbon emissions. In addition, higher oxygen content in B20 fuel helps 

to combust completely and reduces emissions (Peng et al., 2008; Rounce et al., 2012). 

Gas chromatography results (Figure 3.12b) show that the set of VOC species and their 

concentrations change according to the fuel blend used. Sixteen different VOC species 

were found in B7 and B20, instead of the twelve presented on exhaust gases from 
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experiments with pure diesel. The set of dominant VOC (species with concentration above 

50 ng·m-3) regarding pure diesel is characterized by the presence of benzene (25.9%), 

toluene (21.1%) and octane (18.1%). On the other hand the set of dominant VOC for B7 

includes nonane (16.0%), benzene (13.7%), butanal (11.1%), m,p-xylene (10.6%) and 2-

ethoxyethanol (8.9%). Finally, for B20 the main VOC are butanal (18.3%) and m,p-xylene 

(14.1%). The obtained results point out that the concentration of the three main VOC 

species in exhaust gases from B0 (benzene, toluene and octane) decrease between 60 

and 80% if a B20 blend is used.  

It is also interesting to verify that specific VOC species may appear in exhaust gases if a 

biodiesel blend is used as fuel instead of pure diesel, namely 2-propanol, 1-butanol, 2-

ethoxyethanol, α-pinene.  

In accordance to Peng et al. (2012) the dominant VOC of pure diesel engine exhausts 

have higher chronic hazard quotients and hazard indices than VOC from B20. Thus, the 

use of pure diesel is more injurious for human health than biodiesel blends, in terms of 

VOC emissions. 

 

3.2.3 Synthesis 

The influence of diesel/biodiesel blends on the fuel consumption and the exhaust gas 

emissions patterns of a EURO 5 passenger vehicle (technology from 2009 to 2014) was 

assessed. Experiments were performed using a Renault Megane 1.5 dCi (2011), operated 

over the New European Driving Cycle (NEDC) on a laboratory chassis dynamometer. Fuel 

blends containing, in volume basis, 7% (B7) and 20% (B20) of biodiesel  

(84% soybean / 16% palm) in petroleum-based diesel were tested and compared with a 

100% diesel fuel (B0). 

Despite the reduction of CO2 emissions as one main reason for the use of biodiesel in 

road transportation, the results of this experimental work show that CO2 emissions may 

slightly increase with both biodiesel blends (B7 and B20), may be due to a more efficient 

combustion revealed. 

The analysis of NOx within the set of fuels tested allows the confirmation that B20 was the 

better blend in terms of emissions and also combustion efficiency. The opposite was 

found with B7. In the combustion chamber, the NO emissions decrease in the presence of 

B20, when compared to B0. On the other hand, after the combustion, NO2 emissions 

increase with B20 and decrease with B7. This occurred mainly because B20 allows higher 

combustion temperature (due to a better efficiency) than B7 and B0. 
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The results show a positive influence of the use of biodiesel blended in diesel in the SO2 

emissions. Regarding the complete NECD is possible to reduce SO2 emission factor from 

pure diesel in more than 20% using B7 and 50% using B20. On the other hand, the results 

were inconclusive concerning the influence of biodiesel on PM emissions, since the mass 

collected in the filters (by gravimetric method) was below the detection limit. However, 

through a thermo-optical transmission system, it was possible to quantify the levels of 

both organic and elemental carbon for PM2.5, which allowed verifying that, for all the 

experiments, the main carbonaceous content was concentrated in the fine fraction and is 

dominated by organic compounds. Additionally, the total carbon emissions decrease with 

the increasing of biodiesel content in the blend.    

Total VOC emissions may increase with biodiesel blend ratios. However the set of VOC 

species present on exhausted gases is highly dependent on the fuel blend used. 

B7 had a non-expectable behaviour regarding all the parameters that were taken into 

account.  For all the studied pollutants and for all the replicas executed, large error bar for 

B7 were obtained. Probably, the variation on the temperature of exhausted gases founded 

to B7 (100ºC by average) in relation to B0 and B20 (109ºC by average) may indicates that 

the combustion temperature was lower for B7 than for other blends and then justify the 

odd behaviour of B7. Moreover, the higher fuel consumption and the mass air flow, as well 

as high CO2 and VOC emissions and lower NOx emissions for B7, point out to the same 

direction. To sum up, lower combustion temperature that may occur at B7 probably 

destabilized the combustion and catalyst processes and thus increasing the fuel 

consumption and CO2, CO, NOx and VOC emissions. 
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Chapter 4. Emission scenarios 

To assess the impact of biodiesel use on road transport sector emissions, two study 

domains were considered: Portugal and the Porto urban area. For both domains two 

emission scenarios were built: 

1. The reference scenario (REF) considering that biodiesel is not used as fuel by 

road transport sector;  

2. The B20 scenario (B20) assuming that all diesel engines are fuelled with diesel 

blended with 20% of biodiesel. 

Atmospheric pollutant emissions for the REF scenarios were estimated using the  

TRansport Emission Model for line sources (TREM, Borrego et al., 2003). The emission 

factors identified and discussed on Chapter 3 regarding the use of B20 fuel were used to 

correct the emissions of REF to obtain the B20 scenario. 

 

4.1 TRansport Emission Model for line sources (TREM) 

The TRansport Emission Model for line sources (TREM), was firstly developed on the 

basis of MEET/COST methodology and focused on regulated pollutants (CO, NOx, VOC, 

CO2, SO2 and PM10) (Borrego et al., 2000, 2003, 2004; Tchepel, 2003). Recently, the 

TREM Hazardous Air Pollutant (TREM-HAP) extension  was developed to calculate 

emissions of benzene, 1,3-butadiene, formaldehyde, acetaldehyde, acrolein, naphthalene 

and PM2.5 (Tchepel et al., 2012).  

The main objective of the TREM is the estimation of road traffic emissions with high 

spatial resolution, which can be used as supporting tool for air quality modelling studies 

and air quality management proposes. TREM considers roads as line sources and 

emissions induced by vehicles are estimated individually for each road segment 
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considering detailed information on traffic fluxes, vehicle fleet distribution and road 

segment length (Figure 4.1).  

 

 

Figure 4.1 - TREM input data and main calculation modules for exhaust emission quantification  

(adapted from Tchepel, 2003). 

 

TREM uses the state of the art emission factors from the EMEP/EEA air pollutant 

emission inventory guidebook (EMEP/EEA, 2013) for regulated pollutants, and updated 

emission factors from Artemis methodology  (André and Joumard, 2005; Boulter and 

McCrae, 2007) for hazardous air pollutant relevant for mobile source. The emission 

factors are function of the average speed and vehicle class (based on engine age, type, 

and capacity, vehicle weight, fuel type, and emission reduction technology). To process 

these data, TREM is linked to Geographical Information System (ArcGIS) (Tchepel, 2003; 

Tchepel et al., 2012). 

In sum, three types of input data are needed for TREM application: 

 The vehicle fleet distribution; 

 The road network of the study area, including the type and the length of each road; 

 Traffic information of each road (traffic fluxes and average speed of circulation). 

Based on the national statistics on automobile sector for 2009 (ACAP, 2010), it was 

possible to characterize the national vehicle fleet by age and type (Table 4.1). The vehicle 
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types considered are: light passenger vehicles (LPV), light duty vehicles (LDV), heavy 

passenger vehicles (HPV) and heavy duty vehicles (HDV). 

 

Table 4.1 – Portuguese vehicle fleet by age and type in 2009 (ACAP, 2010).  

 

 

Due to the lack of detailed information regarding the number of existing vehicles by type of 

fuel, the characterization of the vehicle fleet distribution is based on the number vehicles 

sold in 2009 by fuel type (ACAP, 2010). The vehicle fleet distribution estimated per vehicle 

type and fuel is presented in Figure 4.2.  

   

 

Figure 4.2 – Vehicle fleet distribution by type and fuel. 

 

According to the Figure 4.2, almost 72% of the vehicle fleet is diesel fuelled and the 

quantity of HPV, LDV and HDV fuelled by other fuel than diesel is negligible. Regarding 

LPV, 32.52%, 66.50%, 0.71% and 0.26% are fuelled by gasoline, diesel, hybrid and 

gasoline/liquefied petroleum gas (LPG), respectively. 

Age  

(year) 

LPV LDV HPV HDV 

(%) 

< 1 5.52 3.93 4.03 4.64 

1 – 2 4.08 3.32 3.96 4.34 

2 – 3 5.74 4.70 5.40 5.96 

3 – 4 5.58 5.60 4.83 5.87 

4 – 5 5.35 5.38 4.02 5.35 

5 – 10 26.79 30.59 22.21 20.48 

10 – 15 27.67 29.39 21.38 19.17 

15 – 20 15.32 13.06 11.97 12.10 

>20 3.95 4.03 22.20 22.09 
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The available information to characterize the national road network in terms of traffic 

volume only regards to motorways, which is not enough to calculate the total emissions 

from the road transport sector over Portugal. This problem was overcome applying the 

TREM-HAP model over the Northern Region of Portugal, for which the available 

information is significantly more detailed. It includes the mean daily traffic for several 

roads of the Northern Region of Portugal, namely: motorways, other major roads, 

secondary roads and urban roads over the municipality of Porto (Figure 4.3) (Borrego et 

al., 2009). 

 

 

Figure 4.3 – The TREM-HAP simulation domain covering the Northern region of Portugal: the Porto urban 

area, the road network and the daily mean traffic volume (vehicle.day-1) for each road, main cities and 

population distribution.  

 

TREM-HAP was applied over the Northern region of Portugal (Figure 4.3): a first run to 

calculate the emissions from gasoline vehicles and another one considering diesel 

vehicles. TREM-HAP calculate the mass of CO, CO2, PM10, NOx, NMVOC, 

acetaldehyde, acrolein, formaldehyde and PM2.5 emitted (gpollutant.km-1), as well as the 

mass of fuel consumed (gfuel.km-1) for each road. The average emission factors 

(gpollutant.gfuel
-1) were calculated for each road of the Northern region of Portugal (Table 

4.2). 

 

 



The impact of biofuels for road traffic on air quality: a modelling approach 

Emission scenarios 

61 

Table 4.2 – Average emission factors (gpollutant.gfuel
-1) calculated by TREM and TREM-HAP for the Northern 

region of Portugal. 

Pollutant 

gpollutant.gfuel
-1 

Diesel Gasoline 

NOx 2.05E-02 8.93E-04 

PM10 6.56E-04 1.90E-05 

PM2.5 1.27E-03 7.75E-05 

CO 4.99E-03 5.61E-03 

NMVOC 1.63E-03 4.07E-03 

Formaldehyde  1.23E-04 6.09E-05 

Acethaldehyde  6.69E-05 2.69E-05 

Acrolein  3.08E-05 6.79E-06 

Benzene 9.51E-06 2.01E-04 

CO2 3.14E+00 2.85E+00 

4.2 The REF scenario 

The reference scenario (REF) considers that the diesel used by the road transport sector 

is a petroleum-based diesel, meaning that no biodiesel is used. 

From the information provided by TREM-HAP and to determine the road traffic emissions 

for Portugal, the average emission factors for each pollutant and fuel (Table 4.2) were 

multiplied by the quantity of fuel sold (diesel and sum of gasoline 95 and 98) in Portugal 

during 2012, at municipality scale (URL 10) (Figure 4.4).  

 

 

Figure 4.4 – Diesel and gasoline (95+98) sold by municipality in 2012 (URL 10). 
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Since the TREM-HAP simulation (Figure 4.3) covered the entire Porto urban area (Figure 

4.5), the fuel consumption data was not taken into account, but the road network and the 

daily mean traffic volume for this area. Keeping the road transport emissions over the 

roads instead of distributed by municipality areas is especially important for the Porto 

urban area to improve the emission information to further air quality simulation (Chapter 

6).  

 

 

Figure 4.5 – The Porto urban area domain: population distribution, main cities and road network including the 

daily mean traffic volume (vehicle.day-1). 

 

Road-transport emissions estimated by TREM-HAP for mainland Portugal and the Porto 

urban area are compiled in Table 4.3. Because this is the reference scenario, atmospheric 

pollutant emission from TREM-HAP were compared against the road transport emission 

on national emission inventory (APA, 2011). Additionally, they are compared to INERPA 

emissions, which do not consider the use of biodiesel blends for road transports to 

emission estimation, in order to validate the methodology here used and to build REF 

scenarios with more realistic emission values. The representativity of the Porto urban area 

in terms of road-transport emissions within Portugal is also shown in Table 4.3. 
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Table 4.3 – Road-transport sector annual pollutant emissions estimated by TREM-HAP (T), regarding the REF 

scenario, and included in INERPA (I), over mainland Portugal and the Porto urban area. Ratio of emission 

estimated and INERPA emissions (T/I) and the representativity of the Porto urban area in mainland Portugal’s 

emissions (Porto/Portugal). 

Pollutant 

Mainland Portugal Porto urban area 
Porto/Portugal 

(%) 
TREM-HAP 

(T) 

INERPA 

 (I) 

T/I 

 (%) 

TREM-HAP 

 (T) 

INERPA 

 (I) 

T/I  

(%) 

Acroleine 129.8 - - 23.1 - - 17.8 

Benzene 252.2 - - 36.7 - - 14.5 

Acetaldehyde 295.2 - - 45.4 - - 15.4 

Formaldehyde 556.9 - - 85.5 - - 15.3 

PM2.5 2478.1 5136.9 48.2 357.3 356.064 100.3% 14.4 

PM10 2636.3 5326.7 49.5 397 370.9 107.0% 15.1 

NMVOC 10854.8 20889.9 52.0 2082 2648.1 78.6% 19.2 

CO 25878.3 130253 19.9 7483.5 13605.7 55.0% 28.9 

NOx 82616.2 99917.8 82.7 5641 5684.2 99.2% 6.8 

CO2 15570067.6 17441509.0 89.3 1223253.4 1205696.3 101.5% 7.7 

 

The comparison between the emissions determined through TREM-HAP and emission in 

the INERPA (Table 4.3) revealed that the methodology presented here based on fuel 

consumption was able to estimate more than 80% of the total NOx and CO2 emissions for 

mainland Portugal, but only about 20% of CO and 50% of NMVOC, PM10 and PM2.5 

emissions. Different results were found for the Porto urban area, mainly because the 

methodologies used for each case study were somewhat different. The comparison 

between TREM-HAP and INERPA emissions suggest that TREM-HAP was able to 

estimate emissions with more accuracy based on road-network and vehicle fleet 

information that using national statistics on fuel consumption, as expected. The pollutant 

with worst result was CO, for which the TREM-HAP was able to estimate only half of its 

emissions, while slightly overstates PM10, PM2.5 and CO2 emissions. NMVOC and NOx 

emissions estimated by TREM-HAP corresponding to about 80% and 99% of their 

INERPA emissions. These variations on emission estimations are mainly derived from the 

models used with in this work and INERPA: the COPERT IV (Ntziachristos et al., 2009) 

emission model is used within INERPA, while road-transport emissions were estimated by 

TREM in this work. The extrapolation made from the Northern Region of Portugal as well 

as the non-consideration of cold-emission, due to the lack of information on origin/destiny 

matrix per municipality, are also factors that contributed to the verified differences, 

especially on total NMVOC, PM10 and CO emissions. INERPA does not include 

emissions of acroleine, benzene, acetaldehyde and formaldehyde; and no other emission 

inventory that included these pollutants was found for Portugal. 
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The differentials between emissions from TREM-HAP and from the national inventory 

were determined and applied to correct REF scenario. As it will be discussed in next 

section, the same differentials were also applied to correct the B20 emission scenario. 

As an example of the emission distribution for both case studies, Figure 4.6 presents the 

REF emissions of NOx (Figure 4.6a,c) and formaldehyde (Figure 4.6b,d), since they are 

the most important pollutants emitted by the road transport sector from each pollutant 

group (regulated and non-regulated pollutants), according to Ho et al. (2007) and APA 

(2014). In Figure 4.6, NOx and formaldehyde emissions are in tons per year for each 

municipality of Portugal, while for the Porto urban area there was a need to convert line 

emission (from TREM-HAP) to emissions in area in order to perform the emission 

correction (see the previous two paragraphs). Both emission correction and the 

representation were made based on a 11km2 grid to be compatible with the horizontal 

resolution of the air quality simulation domain (topic addressed further in Chapter 5).   
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a) b) 

  

 
c) d) 

Figure 4.6 - Road-transport NOx (a,c) and formaldehyde (b,d) emissions for Portugal and for the Porto urban 

area (in a grid of 11km2), regarding the REF scenario. 
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4.3 The B20 scenario 

The B20 scenario considers that the fuel used in diesel vehicles is a blend with 20% (v/v) 

of biodiesel. This emission scenario was calculated based on REF values and on the 

emission variation factors summarized in Table 4.4 and Table 4.5, and discussed in detail 

within the sections 3.1 and 3.2. Wherever possible it has been taken into account the type 

of road to use the appropriated emission factor: emission factors related to complete 

driving cycles (NEDC and CADC, Figure 3.3) were used for Portugal, while urban (UDC 

and CAU) and extra-urban (EUDC, CAR and CAM) factors from specific slices of the 

driving cycles were considered on the Porto urban area case study.   

 

 

Table 4.4 - Average emission variations (%) of regulated pollutants for an EURO 4 LPV over the NEDC and 

CADC (Bakeas et al., 2011) and for an EURO 5 LPV over the NEDC (Lopes et al., 2014). 

Pollutant  
EURO 4 EURO 5  

Avg (NEDC;CADC) UDC EUDC NEDC 

NOx 5.92 -20.36 -4.09 -10.83 

  NO     - -69.92 -13.82 -29.44 

  NO2    - 1.28 8.12 4.52 

PM10 / PM2.5 -3.42        -       - -61.57 

HC -8.13 1.21 4.13 2.38 

CO -16.98        -        -        - 

CO2 1.11 -0.23 3.55 1.46 

  

 

Table 4.5 – Average carbonyl compound emission variations (%)  for an EURO 4 LPV over the NEDC and 

CADC (Karavalakis et al., 2011b) and average benzene* emissions at different engine loads for an EURO 4 

LPV (Di et al., 2009). 

Pollutant NEDC 
CAU  

(0.20 MPa) 

CAR  

(0.38 MPa) 

CAM  

(0.55 MPa) 

Formaldehyde 18.03 25.80 19.96 23.97 

Acetaldehyde 23.57 22.67 16.58 22.80 

Acrolein/acetone 45.97 28.02 34.52 46.07 

Benzene* - 37.75 4.21 1.42 

 

 

The total pollutant emissions estimated for the B20 scenario and for both case studies are 

presented in Table 4.6. 
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Table 4.6 – Annual pollutant emissions (ton) estimated for road-transports in Portugal and Porto urban area, 

regarding the B20 scenario.  

Pollutant 
Emission (ton) 

Portugal Porto urban area 

Acrolein 177 68 

Benzene 257 91 

Acetaldehyde 352 129 

Formaldehyde 664 247 

PM2.5 4523 2445 

PM10 5009 931 

NMVOC 20464 3608 

CO 20807 11145 

NOx 102586 29184 

CO2 17589714 7272492 

 

Since the spatial distribution of B20 emissions is similar to the REF ones the spatial 

distribution of B20 emissions is not presented here. However, the comparison between 

both emission scenarios is shown in section 4.4. 

4.4 Emission scenarios comparison 

The variations of the total emissions estimated for REF and B20 scenarios are presented 

in Figure 4.7. The emission variations found between both study areas are mainly due to 

different methodologies and input data used for each of them, including the emission 

factor, which are function of the driving cycles that characterize each study area (complete 

driving cycles for Portugal and specific emission factors taking into account the road 

network information for the Porto urban area).  
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Figure 4.7 – Emission variations (%) between B20 and REF scenarios [(B20-REF)/REF]. 

 

According to the Figure 4.7, three pollutant groups can be identified. The first group is 

composed by carbonyl compounds (acrolein, formaldehyde and acetaldehyde), for which 

an increase of more than 20% in emissions was estimated when using B20 fuel. The 

second group comprehends NOx, C6H6, CO2 and NMVOC which emissions vary in a 

small range [-3.98 ; 3.65]% for both domains. The third group includes CO, PM2.5 and 

PM10 which emissions are reduced when B20 is used instead of pure diesel, varying 

between [-19.60 ; -5.96]%. The higher reduction regards to CO, being the B20 emissions 

almost 20% lower than REF emissions for Portugal and 16% lower for the Porto urban 

area). PM10 and PM2.5 emission differentials for B20 are about 10% lower than for REF 

over both domains. The results obtained for regulated pollutants are in accordance to 

previous works over the Northern region of Portugal (Ribeiro et al., 2011, 2012).  

The representativeness of the estimated variations in total emissions (APA, 2011) for 

each pollutant and case studies are compiled in Table 4.7. 

  

Table 4.7 - Representativeness of the estimated variations (B20-REF) in total emissions regarding  the 

studied pollutant, for Portugal and the Porto urban area (APA, 2011). 

Pollutant Portugal (%) Porto urban area (%) 

NOx 0.94 1.89 

CO2 0.26 0.41 

Total NMVOC -0.07 -0.54 

PM10 -0.30 -0.81 

PM2.5 -0.66 -1.04 

CO -4.98 -5.31 
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According to Table 4.7, the use of B20 on road transports represent a variation in total 

emission inferior that 1% for both case studies, with exception for CO (~5%) and NOx and 

PM2.5 over the Porto urban area (~2%).  

As already discussed in section 3.1.5, the use of biodiesel/diesel blends in road transports 

increase aromatic hydrocarbon and aldehyde emissions that are especially important due 

to their reactivity, potentiating tropospheric ozone formation and rising of the probability of 

cancer, among other health disease. Figure 4.8 and Figure 4.9 show the spatial 

distribution of these pollutant emissions (a-d) over Portugal and the Porto urban area 

respectively, as well as the equivalent ozone production (EOP, see section 3.1.5) (e) 

regarding the difference between B20 and REF scenarios (B20-REF). The population 

which is potentially exposed to these pollutants is presented in Figure 4.8f) for Portugal 

and in Figure 4.9f) for the Porto urban area.  

 

 

Figure 4.8 – Difference between REF and B20 annual emissions (ton.y-1) of: a) formaldehyde, b) 

acetaldehyde, c) acrolein/acetone and d) benzene; e) increment on Equivalent Ozone Production (EOP) by 

the use of B20 and f) population distribution, over Portugal.  
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As expected, the replacement of pure diesel by B20 increases the non-regulated pollutant 

emissions especially over the urban areas and coastline of Portugal were the population is 

greater (Figure 4.8) and the fuel consumption is higher (Figure 4.4). The EOP from 

benzene and carbonyl compounds is especially important in urban areas, increasing the 

ground level ozone and potentiating the occurrence of photochemical smog. 

 

 
Figure 4.9 – Difference between REF and B20 annual emissions (ton.y-1) of: a) formaldehyde, b) 

acetaldehyde, c) acrolein/acetone and d) benzene; e) increment on Equivalent Ozone Production (EOP) by 

the use of B20 and f) population distribution, over the urban area of Porto. 

 

Regarding the urban area of Porto (Figure 4.9), results point out that if B20 fuel is used 

instead of conventional diesel, the pollutant emissions increase significantly (Figure 4.7). 

Due to their maximum incremental reactivity value (MIR, see Figure 3.5) and emission 

amounts, formaldehyde is the most critic pollutants among the non-regulated pollutant 

studied, which emissions increment from the use of B20 contributes to 58% of the EOP 

over the entire domain, while the contribution of benzene is insignificant (0.25%) and the 

remaining pollutants effect the total EOP in about 20%. Figure 4.9 also reveals that the 

hot spots are located at West and at North of the city, where the road traffic is higher.  

http://en.wikipedia.org/wiki/Ozone
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4.5 Synthesis 

In order to assess the impact of a 20% of biodiesel blended with petroleum-based diesel 

over Portugal and the Porto urban area, two emission scenarios were built (REF and 

B20). The TRansport Emission Model for line sources (TREM) was applied to estimate the 

emissions for both mentioned scenarios. The input data required by TREM includes 

information about the traffic fluxes, the vehicle fleet distribution and the road network.  

The difference between REF and B20 scenarios includes the fuel characteristics used by 

diesel engines: REF scenario considers that the conventional diesel is used by the road-

transport sector, while B20 assumes that the diesel is blended with 20% (v/v) of biodiesel. 

Thereby, the B20 scenario was built based on REF and the application of updated 

emission factors according to the approached presented in sections 3.1 and 3.2. 

The results obtained suggest that the introduction of 20% of biodiesel in petroleum-based 

diesel in road transportation promotes a reduction in PM10, PM2.5 and CO emissions 

over Portugal and urban area of Porto. However, the changes on emissions represent 

less than 1% regarding the total emissions, with exception for CO, with emission 

variations can reach to 5% in both case studies.  

On the other hand, an increase on NOx and non-regulated pollutants emissions, such as 

acrolein, formaldehyde and acetaldehyde, was observed, potentiating tropospheric ozone 

formation and eventually causing adverse effects on human health.  

In order to predict the effects of biodiesel use and its emissions on air quality over both 

study domains, air quality modelling studies were performed, especially to investigate the 

impacts on PM10, PM2.5 and O3 atmospheric concentration levels, which are currently 

the most current critical pollutants in terms of exceedences of legislated values. This work 

will be addressed in Chapter 7. 
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Chapter 5. The air quality modelling system  

This fifth chapter focused on the selection and description of the numerical and mesoscale 

air quality modelling system that will be used to investigate the impacts of biodiesel use 

for road transports on air quality over Portugal and the Porto urban area. The selection of 

the WRF-EURAD air quality modelling system was based on a multi-model comparison 

exercise that is addressed in section 5.1. A detailed description of the selected modelling 

system is addressed in section 5.2. 

5.1 Selection of the modelling system 

The selection of the air quality modelling system to be applied in this study was supported 

by the national project “ENSEMBLAIR – Improving air quality assessment with ensemble 

modelling” (Monteiro et al., 2013a, 2013b). This project aimed to reduce the uncertainty 

on numerical chemical transport models results through the applications of ensemble 

techniques. To achieve this objective five chemical transport models were selected and 

their results were compared within a multi-model comparison exercise (Monteiro et al., 

2013a). The models were select based on a state of the art revision of regional chemical 

transport models. The selection criteria were focused on models applicability and tests 

over Portugal; the availability of spatially resolved modules for anthropogenic and biogenic 

emissions as well as a complete chemical mechanism. The selected models include 

CHIMERE (Schmidt et al., 2001; Bessagnet et al., 2004), EURAD (Elbern et al., 2007), 

LOTOS-EUROS (Schaap et al., 2008), CAMx (Tesche et al., 2006) and TAPM (Hurley et 

al., 2003). All of them are mesoscale models designed for short and long-term simulations 

of oxidants and aerosol formation, through different degrees of complexity, as discussed 

by Monteiro et al. (2013a).  

The five models were applied in their optimized set up regarding input data, 

parameterization and boundary conditions, and considering an horizontal resolution of 5  

5 km2. The Portuguese anthropogenic emissions inventory (INERPA, APA, 2011) was 



The impact of biofuels for road traffic on air quality: a modelling approach 

The air quality modelling system 

74 

used as a common basis for all models, and models were meteorologically driven by the 

“Weather Research and Forecasting Model” (WRF, Skamarock et al., 2008), excepting 

TAPM that has an own meteorological data base coupled. All models were applied to over 

July 2006, with a spin-up time period of 1-2 days. 

The multi-model evaluation and comparison exercise was focused on O3 and PM10 

concentrations, due to the common exceedences of limit values of these two pollutants 

over mainland Portugal. This exercise was supported by observed data from 22 

background stations (including urban, suburban and rural environments) from the national 

air quality monitoring network3. Three statistical parameters, described in detail in section 

6.2 and Table 6.2, were chosen to evaluate the five models performance: the correlation 

factor (R) indicates the correspondence of timing and evolution between observed and 

simulated concentration values; the root mean square error (RMSE) gives information 

about the skill in predicting the magnitude of a pollutant concentration; and the systematic 

error (bias) which translate the average difference between simulated and observed 

values (negative for overestimations and positive for underestimations).  

According to the multi-model performance assessment (Monteiro et al., 2013a) the model 

with more robust prediction skills was the EURAD model (Elbern et al., 2007), having 

presented higher correlation factors and lower RMSE values for O3 (R = 0.64, RMSE = 

28.92 gm-3) and PM10 (R = 0.51, RMSE = 19.76 gm-3) surface concentrations. Based 

on this result, EURAD was selected to perform the air quality simulations to assess the 

impact of biofuels on air quality over Portugal and Porto urban area.  

Additionally, all of the applied models were found to have significant biases for both 

pollutants, indicating an overestimation of ozone (bias values range from -45.0 gm-3 to 

6.7 gm-3 for TAPM and EURAD, respectively). A different picture was obtained for 

PM10, with positive bias values for all selected models ranging from 7.0 gm-3, for TAPM, 

to 22.0 gm-3 for LOTOS-EUROS, pointing out to an underestimation of PM10 

concentrations. 

 

                                                

3 For more information about the selected monitoring sites, see Monteiro et al. (2013a), and section 

5.3.2 for detailed information regarding the national air quality monitoring network. 
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5.2 WRF-EURAD modelling system 

The WRF-EURAD is an Eulerian modelling system with the structure presented in Figure 

5.1, consists on the following three major models: 

 The Weather Research & Forecasting (WRF) model (Skamarock et al., 2008), version 

3.5.0, acts as meteorological driver for the CTM, delivering the meteorological fields 

needed (e.g. wind, relative humidity and temperature); 

 The EURAD Emission Model (EEM) (Memmesheimer et al., 1991) delivers emission 

fields for the specific grid used considering seasonal, weekly and diurnal cycles, as well 

as international holidays; 

 The EURopean Air pollution Dispersion – Chemistry Transport Model (EURAD-CTM) 

(Hass, 1991; Ebel et al., 1997; Elbern et al., 2007) – version 5.6 – computes transport, 

chemical reactions and deposition of gas-phase and aerosol-phase species. 

 

 

 
Figure 5.1 – Scheme of the WRF-EURAD air quality modelling system. 

 

The input information needed to simulate air quality includes the orography and land use 

types for its specific geographical domain as well as the climatological boundary 

conditions to provide the meteorological condition fields produced by WRF model and to 

calculate biogenic emissions by EEM. Additionally, meteorological fields are processed by 

the pre-processor (PPC) in order to calculate additional meteorological information 
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needed to the EURAD-CTM, that, together with biogenic and anthropogenic emissions, 

constitute the main input data for EURAD-CTM. The EURAD-CTM outputs include 3-D 

gases and aerosols deposition and concentrations fields. 

In this section, the WRF-EURAD modelling system is described in detail in terms of the 

models that this system includes and its geometry as well as the modelling system setup 

and details of its application with in this study. 

 

5.2.1 Geometry of the modelling system 

Both WRF and EURAD-CTM use a Lambert conformal conic projection grid with an 

equidistant rectangular horizontal spacing. The state variables are represent according to 

the Arakawa C-Grid staggering (Arakawa and Lamb, 1977) (Figure 5.2a), what means 

that the u components are located at the centre of the left and right grid faces, and the v 

and w components at the centre of the upper and lower grid faces. Mass points, such as 

potential temperature, pressure, density, moisture variables, pollutant concentrations, 

among other variables, are defined in the centre of the grid cell. Vertically, the atmosphere 

is divided by terrain-following sigma coordinate layers defined by Equation 5.1. (Figure 

5.2b) 

 

 

 
 

a) b) 

Figure 5.2 – WRF-EURAD modelling system geometry: a) horizontal and vertical views of the Arawaka C-grid 

configuration; b) example of the vertical structure of a grid for 15 vertical layers (solid lines denote sigma 

levels and dashed lines denote half-sigma levels) (Skamarock et al., 2008).  
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𝜎𝑘 =
𝑝𝑘 − 𝑝𝑡𝑜𝑝

𝑝𝑏𝑜𝑡 − 𝑝𝑡𝑜𝑝
 Equation 5.1 

Where: 

𝑘: layer number; 

 𝑝𝑏𝑜𝑡,𝑘,𝑡𝑜𝑝: Pressure at the surface, layer 𝑘 and top of the model, respectively. 

 

The geometry of the simulation domains used in this study is described in next section 

(5.2.1.1) regarding their vertical and horizontal structures and dimensions. 

 

5.2.1.1 Geometry of the simulation domains 

Based on previous applications of this modelling system (Nieradzik, 2011; Elbern and 

Friese, 2013), it was assumed that the atmosphere is divided into 23 terrain-following 

sigma coordinate layers. The top boundary of the WRF-EURAD is set at 100 hPa and the 

diffuse vertical fluxes at the top are set to zero. About 15 layers are defined above 2 km 

height and the Earth’s surface defines the bottom boundary. The vertical structure of the 

atmosphere used within this modelling application is presented in Table 5.1. 

  

Table 5.1 – The vertical structure of the WRF-EURAD grid, defined by terrain-following sigma coordinates.  

Layer index  values Pressure (hPa) Height (m) 

Surface 1.000 1013.25 0 

1 0.995 1008.68 38 

2 0.990 1004.12 76 

3 0.985 999.55 115 

4 0.980 994.99 153 

5 0.970 985.85 231 

6 0.960 976.72 309 

7 0.945 963.02 427 

8 0.930 949.32 546 

9 0.910 931.06 708 

10 0.890 912.79 872 

11 0.865 889.96 1081 

12 0.840 867.13 1294 

13 0.810 839.73 1556 

14 0.780 812.34 1825 

15 0.740 775.81 2196 

16 0.700 739.28 2581 

17 0.600 647.95 3615 

18 0.500 556.63 4775 

19 0.400 465.3 6101 

20 0.300 373.98 7658 

21 0.200 282.65 9560 

22 0.100 191.33 12064 

23 0.000 100.00 16179 
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Since the pollutant concentrations variables are defined in the centre of the cells and the 

thickness of the lowest layer is about 38 m, the concentration pollutants extracted to the 

first level correspond to a height of approximately 19 m.  

On air quality simulations is desired, in general, a high resolved look at physics and 

chemical states of the atmosphere in a certain region. To simulate only the region of 

interest would be a great loss of information since many tropospheric constituents are 

long-living and can be transported over large distances and information inflow from 

outside the area could not be considered this way. On the other hand, to simulate an area 

large enough to comprise all necessary sources with desired high resolution is not 

feasible due to computational limitations. To overcome these impasses, different domains 

with increasingly finer resolution are considered using nesting capacities.  

In this study, the WRF-EURAD simulations were started on a grid with large extent, in a 

continental scale, covering Southern Europe and Sahara Desert, but with a low horizontal 

resolution of 125 125 km2 (C125, the coarse domain). Inside C125, is defined a region 

around the area of the next domain to provide boundary conditions that need to be 

interpolated to the next smaller domain grid. The second simulation domain covers Iberian 

Peninsula with 25 25 km2 of horizontal resolution (IP25). The same nesting process is 

applied to the third domain over Mainland Portugal, with 5 5 km2 (PT05) and then to the 

last domain covering the Porto urban area with a fine horizontal resolution of 1 1 km2 

(OP01). The OP01 horizontal resolution is on the limit recommended by EURAD-CTM 

(Ebel et al., 1997; Monteiro et al., 2012). 

Table 5.2 compiles all the information regarding domain dimensions and Figure 5.3 shows 

the simulation domains chain. 

 

Table 5.2 – Dimensions of the simulation domains used in WRF-EURAD modelling system. 

ID Domain 
Parent  

ID 

Horizontal resolution 

(km) 

Number  

of cells (WRF) 

Number  

of cells (EURAD) 

x y x y x y 

1* C125   - 125 125 49 39 49 39 

2 IP25 1 25 25 55 50 51 46 

3 PT05 2 5 5 85 140 81 136 

4 OP01 3 1 1 30 30 26 26 

* Coarse domain 
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Figure 5.3 – Simulation domains used in the WRF-EURAD modelling system application. 

 

With exception to the coarse domain, that has the same dimensions for WRF and EURAD 

simulations, the remaining simulation domains are not exactly the same for both models, 

but very similar (Table 5.2). In fact, WRF domains have two more cells in each side of the 

domain in order to better integrate the meteorological input on the CTM model. 

 

5.2.2 Weather Research Forecasting model (WRF) 

The WRF model (Skamarock et al., 2008) is a numerical weather prediction and 

atmospheric simulation system designed for both research and operational applications. 

Its dynamics solver integrates compressible and non-hydrostatic Euler equations.  
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A multi-agency4 effort is on the basis of the WRF development to build a next-generation 

model and data assimilation system. Currently, WRF is a state-of-the-art model reflecting 

flexibility portable code, being efficient in computing environments ranging from 

massively-parallel supercomputers to laptop. It is suitable for a board span of applications 

from large-eddy (grid cell size >1 km) to global simulations (grid cell size >100 km). Such 

applications include real-time numerical weather predictions, data assimilation 

development and studies, parameterized-physics research, regional climate simulations, 

air quality modelling, atmosphere-ocean coupling and idealized simulations. WRF have 

been supported as a common tool for the universities/research and operational 

communities, and to facilitate the wide internationally use (Skamarock et al., 2008).  

Here, a simplified description of the WRF model is given in the flow chart presented in 

Figure 5.4. Skamarock et al. (2008) and Wang et al. (2014) provide more detailed 

information regarding this model. 

 

 

Figure 5.4 – WRF model flow chart (adapted from Wang et al., 2014). 

 

To weather prediction, WRF needs topography and land-use for each domain, and 

meteorological global data to initialize the coarse domain simulation (Figure 5.4). Firstly, 

external data is prepared by the WRF Preprocessing System (WPS) throughout three 

programs (Geogrid, Ungrib and Metgrid) (Figure 5.4). The first program of the WPS chain 

is Geogrid, which defines model domain and interpolates static geographical data to the 

model domain grids. GRIB-formatted global data files contain several encoded variables 

                                                

4 The agencies that have been collaborating into the WRF development are: the National Center for 

Atmospheric Research’s (NCAR) Mesoscale and Microscale Meteorology (MMM) Division, the National 

Oceanic and Atmospheric Administration’s (NOAA) National Centers for Environmental Prediction (NCEP) and 

Earth System Research Laboratory (ESRL), the Department of Defense’s Air Force Weather Agency (AFWA) 

and Naval Research Laboratory (NRL), the Center for Analysis and Prediction of Storms (CAPS) at the 

University of Oklahoma, the Federal Aviation Administration (FAA) and university scientists. 
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(more than are needed to initialize WRF). Ungrib uses “variable tables” (Vtables), 

provided with the software for common GRIB model output files, to identify the fields 

though codes. Then, Ungrib extracts needed meteorological fields from GRIB files and 

writes the data in a simple and WPS specific format (intermediate format). Metgrid 

horizontally interpolates the intermediate-format meteorological files extracted by Ungrib 

onto the simulation domains defined by Geogrid. The interpolated Metgrid output can then 

be ingested by the Real WRF program. 

Like WPS, the WRF model also contains three programs, namely: Real, Ndown and WRF 

(Figure 5.4). Real reads the meteorological and static input information from the WPS and 

generate initial condition files. It vertically interpolates the required levels (Table 5.1) for 

the specified land surface scheme, in order to prepare soil fields for use into the model, 

and check if soil categories, land use, land mask, soil temperature and sea surface 

temperature are all consistent with each other. Additionally, Real generates initial 

condition files and processes multiple input time periods to generate the 3D lateral 

boundary conditions, namely u-, v- and w- wind components, potential temperature, 

vapour mixing ratio and geopotential height, which are couple with total column pressure. 

This program can run as either a serial or a distributed memory (parallel) job. For this 

work the second option was used. The Ndown program applies the nesting technique. 

WRF supports two nested options: 1-way nesting and 2-way nesting. 1-way nesting uses 

the output of a coarser grid simulation as input for the finer grid simulation, while 2-way 

nesting involves feedback from the fine domain to the coarse domain and vice versa 

(Misenis and Zhang, 2010). Ndown run in-between the coarser and finest domains in 

order to provide the initial and boundary conditions from the coarse together with input 

from higher resolution terrestrial fields provided by Real with regards to nest domain. In 

this work it was used the 1-way nesting technique because EURAD-CTM is not prepared 

to use other. Moreover, according to Misenis and Zhang (2010), that performed a 

comparison between these two nesting techniques, both reveal similar results and 2-way 

nesting requires more computational time. Finally, the WRF program provides 3D 

meteorological fields required by EURAD-CTM for each simulation domain, through 

numerical integration methods, based on data from previous programs. 

The WRF setup used in this study is described in following section (5.2.2.1). 
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5.2.2.1 WRF model application  

The global meteorological fields from the National (USA) Center for Environmental 

Prediction (NCEP/NOAA, 2000), which provides final (FNL) operational global data on 1º 

by 1º grids with a temporal resolution of six hours, were used to supply initial and 

boundary conditions for the coarse domain (C125). The FNLs are produced from the 

same model which NCEP uses in the Global Forecast System (GFS), however the FNLs 

are prepared about an hour after the GFS is initialized in order to observational data can 

be used. The FNL are available on the surface and at 63 sigma layers from 1000 millibars 

to 10 millibars. Parameters include surface pressure, sea level pressure, geopotential 

height, temperature, sea surface temperature, soil values, ice cover, relative humidity, u- 

and v- winds, vertical motion, vorticity and ozone (NCEP/NOAA, 2000). They are linearly 

interpolated to the WRF grid and linear time interpolation is also applied to obtain hourly 

values. For the other domains (not C125), the initial and boundary conditions come from 

the respective parent domain (Table 5.2 and Figure 5.3) and from the previous simulated 

day. 

The WRF model has a large variety of physic parameterizations (described in detail in 

Wang et al. (2014)), namely regarding: 

 Microphysics (mp_physics); 

 Long- and shortwave radiation (ra_lw_physics and ra_sw_physics); 

 Land and surface schemes (soil temperature and moisture) (sf_sfclay_physics 

and sf_surface_physics); 

 Planetary boundary layer schemes (bl_pbl_physics); 

 Cumulus parameterization (cu_physics). 

 

Table 5.3 summarizes the selected physics options used in this study. Their selection was 

based on recommendations included in Wang et al. (2014), as well as on validation and 

sensitivity studies previously performed over Portugal (Aquilina et al., 2005; Carvalho et 

al., 2006) and over the Iberian Peninsula (Fernández et al., 2007). 
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Table 5.3 – Summary of WRF physic options used. 

Physic parameter  Option Domain ID 

mp_physics WSM 6-class graupel scheme (Hong and Lim, 2006) 1-4 

ra_lw_physics Rapid Radiative Transfer Model scheme 1-4 

ra_sw_physics Rapid Radiative Transfer Model scheme 1-4 

sf_sfclay_physics 
Pleim-Xiu surface layer (ARW only) 

Monin-Obukhov (Janjic) scheme 

1-3 

4 

sf_surface_physics Pleim-Xiu LSM (ARW) 1-4 

bl_pbl_physics 
ACM2 (Pleim) PBL (ARW) (Pleim, 2007) 

Mellor-Yamada-Janjic TKE scheme (Janjić, 1994) 

1-3 

4 

cu_physics 
Kain-Fritsch (new Eta) scheme (Kain, 2004) 

no cumulus 

1-3 

4 

 

The WRF model generates several meteorological fields required by the EURAD-CTM, 

such as wind, temperature, water vapour mixing ratio, cloud liquid water content, 2 m 

temperature, surface heat, moisture fluxes and precipitation.  

 

5.2.3 EURAD Emissions Model (EEM) 

The EURAD Emission Model (EEM) aims to estimate proper emission data for the CTM 

simulations. The EEM converts annual anthropogenic emission (tonyear-1) of CO, NH3, 

NMVOC, SOx, NOx, PM2.5 and PMcoarse for each anthropogenic source-sectors, the so-

called SNAP5 codes, into gs-1 grid box, following seasonal, weekly and diurnal variations. 

The time-profiles used are shown in Figure 5.5.  

 

                                                
5 SNAP1 – Combustion  in energy and transformation industries; SNAP2 – Non-industrial combustion plants; 

SNAP3 – Combustion in manufacturing industry; SNAP4 – Production processes; SNAP5 – Extraction and 

distribution of fossil fuels and geothermal energy; SNAP6 – Solvent use and other product use; SNAP7 – 

Road transport; SNAP8 – Other mobile sources and machinery; SNAP9 – Waste treatment and disposal; 

SNAP10 – Agriculture. 
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Figure 5.5 – EEM time-profiles defined by EMEP for SNAPs and pollutants: a-c) annual profiles; d) weekly 

profiles and e-f) daily profiles. 

 

The time-profiles defined by EMEP and used in EEM, suggest a larger share of emissions 

during the winter months in the annual profiles (Figure 5.5a-c), especially for activity 

sectors involving combustion (SNAP 2, 3 and 7), as well as during working days in relation 

to the weekend (Figure 5.5d). Regarding the daily profiles (Figure 5.5e-f), a difference 

between day and night periods is well marked, especially for the transport sector (SNAP 

7, Figure 5.5f), which daily profile identifies two rush hour (7-9h and 17-19h) on working 

days. During the weekend there is only a peak at lunch time on Saturday and another one 

on Sunday evening.  
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Besides time-profiles, emissions are also vertically allocated. The vertical profile (Table 

5.4) adopted in EIRAD-IM modelling system is in accordance to a default distribution 

based upon plume-rise calculations performed for different types of emission source 

which are thought typical for different emission categories, under a range of stability 

conditions (EMEP, 2013). 

 

Table 5.4 – Vertical distribution of anthropogenic emissions: percentage of each SNAP (S) sector allocated to 

the vertical layers of the EURAD-CTM (EMEP, 2013).  

h
e
ig

h
t 

(m
) 

782-1106 17 0 6 0 0 0 0 0 0 0       

523-781 29 0 30 0 0 0 0 0 0 0       

325-522 46 0 41 0 0 0 0 0 35 0     0% 

185-324 8 0 19 0 0 0 0 0 40 0     1-30% 

93-184 0 50 4 10 10 0 0 0 15 0     31-60% 

0-92 0 50 0 90 90 100 100 100 10 100     60-99% 

  

 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10     100% 

 

The vertical profiles presented in Table 5.4 reveals that emissions from SNAP 4, 5, 6, 7, 8, 

and 10 are mostly in the surface layer (0-92 m), while energy production (SNAP 1) and  

combustion in manufacturing industry (SNAP 3) emit at higher altitudes (93-1106 m). 

The emission specie groups of NMVOC, NOx, SOx and PM emissions that enter into the 

EEM as input files are split into single compounds, namely: 

 NOx: NO and NO2 

 SOx: SO2, H2SO4 

 NMVOC: alcohols, esters and alkynes (low, medium and high HO rate constant), 

ethane,  ethane, primary and internal alkenes (including allenes), formaldehyde, 

aldehydes, ketones, toluene, xylene, butadiene and other anthropogenic diens, 

acid and higher acids, limonene and gyoxal 

 PM: Elemental carbon, organic carbon and PM for post number distribution. 

Biogenic emissions do not enter into modelling system as input files. However, they are 

calculated in a module of the EEM, according to the given atmospheric condition 

(temperature, radiation, wind) and the given land use type, and following Guenther et al. 

(1993) approach.  

The emission databased used within this study for Portugal and Porto urban area for the 

REF scenario is from the national emission inventory (APA, 2011), as discussed in section 

4.2.  
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5.2.4 EURopean Air Pollution Dispersion – Chemical Transport Model 

(EURAD-CTM)  

The EURAD-CTM (Hass, 1991; Ebel et al., 1997; Elbern et al., 2007) is a comprehensive 

Eulerian chemical transport mesoscale model in a non-hydrostatic configuration. The 

model’s nesting facility enables to telescope from 1000 km to 1 km of horizontal 

resolution, allowing the combination of both high grid resolutions and the representation of 

large-scale transport processes. As already mentioned, anthropogenic and biogenic 

emissions temporally disaggregated from EEM, static geographical data of the simulation 

domains (geogrid file, from WPS), as well as meteorological fields from WRF and 

processed by the PPC, are the key information for the EURAD-CTM simulates transport, 

chemical transformation and deposition of tropospheric constituents (Figure 5.6). 

 

 

Figure 5.6 – Scheme of the EURAD-CTM model. 

 

The chemistry is calculated on a fixed three-dimensional (3D) grid and transport is 

simulated as fluxes through the boundaries of each grid cell. As a CTM, the model 

simulates advection and diffusion, chemical conversion and deposition of trace gases and 

aerosols in the atmosphere (Nieradzik, 2011) thought solving mass conservation equation 

(Equation 5.2,(Hass, 1991). 
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𝜕𝑐𝑖

𝜕𝑡
= −∇(𝑢𝑐𝑖) + ∇(𝐾∇𝑐𝑖) +

𝜕𝑐𝑖

𝜕𝑡
|𝑐ℎ𝑒𝑚 + 𝐸𝑖 + 𝐹𝑖 +

𝜕𝑐𝑖

𝜕𝑡
|𝑐𝑙𝑜𝑢𝑑 +

𝜕𝑐𝑖

𝜕𝑡
|𝑎𝑒𝑟𝑜𝑠𝑜𝑙 Equation 5.2 

Where: 

𝐶𝑖: is the mean concentration of the specie i 

−∇(𝑢𝑐𝑖): Advection, that is transport by wind, where u is the vector of wind velocity 

∇(𝐾∇𝑐𝑖): Turbulent diffusion, with the tensor of turbulent diffusion K 
𝜕𝑐𝑖

𝜕𝑡
|𝑐ℎ𝑒𝑚: Chemical conversion in the gas phase 

𝐸𝑖: Emission rates 

𝐹𝑖: Sum of the following fluxes: 

- 𝐹𝑖,𝑒𝑚𝑖𝑠: Flux by emissions from the surface 

- 𝐹𝑖,𝑑𝑒𝑝: Flux by dry deposition to the surface 
𝜕𝑐𝑖

𝜕𝑡
|𝑐𝑙𝑜𝑢𝑑: Aqueous chemistry, transport in clouds and wet deposition 

𝜕𝑐𝑖

𝜕𝑡
|𝑎𝑒𝑟𝑜𝑠𝑜𝑙: Aerosol chemistry processed in Modal Aerosol Dynamics Model for Europe (MADE) 

 

To initialize the simulation, latitude-dependent vertical profiles of the transported species 

are equally distributed over the whole coarse domain. However, for short-lived species 

initial values are set to zero. In this sense, and according to Schell (1996), a spin up run of 

four or five days should be computed providing realistic 3D fields of initial values for the 

desired period-time. Nevertheless, a simulation can also be set up on existing restart files 

from previous simulations, on interpolated fields from a mother domain or from initial 

values from data assimilation (Nieradzik, 2011). With initial values and boundary 

conditions defined, the chemical and physical calculations take place according to 

parameterization options that are described in following (section 5.2.4.1). 

 

5.2.4.1 Chemical and physics options 

The EURAD-CTM has several chemical and physical options available to simulate 

deposition, chemical transformations and transport of the pollutants on the atmosphere, 

namely regarding: 

 Photolysis frequencies; 

 Cloud processing; 

 Dry deposition; 

 Diffusion; 

 Aerosol dynamics; 

 Gas phase chemical mechanism; 

 Data assimilation (not used in this study); 

 Pollen module (not used in this study); 

 EURAD-Fire-Model (not used in this study). 
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The chemical and physical options available to EURAD-CTM simulations are compiled in 

the model’s run-script file, which an excerpt is shown in Figure 5.7. The options selection 

has also place in this run-script file. 

# ================================== CTM configuration ==================================== 

# 

# DATASS:    variational data assimilation 

#            = 0: no 

#            = 1: 1D-VAR (not yet available...) 

#            = 2: 2D-VAR (not yet available...) 

#            = 3: 3D-VAR 

#            = 4: 4D-VAR 

# PHOTO:     Method for calculation of photolysis frequencies 

#            = 1: S. Madronich (offline) 

#            = 2: A. Ruggaber  (online) 

#            = 3: S. Madronich (online) 

#            = 4: FTUV (online) 

# CLOUD:     Cloud module 

#            = 0: no clouds 

#            = 1: R2.6 version 

#            = 2: R2.6 version with MM5 clouds (B.Roeben) 

# MADE:      Aerosol dynnamics 

#            = 0: Disable modal aerosol dynamics 

#            Bit 1 = 1: Include modal aerosol dynamics 

#     Bit 2 = 1: modal aerosol dynamics with secondary organic aerosol  

#             (SORGAM, Schell et al. 2001) 

#            Bit 3 = 1: permit APC and HDMR of APC 

#            Bit 4 = 1: permit natural particle sources 

# POLLEN:    Pollen module 

#            = 0: disable pollen module 

#            = 1: enable pollen module 

# CHEMISTRY: Choose kinetic chemistry mechanism 

#            = radm2:      RADM2 

#            = adradm2:    Adjoint version of the RADM2 mechanism 

#            = euro_radm:  EURO_RADM + RADM-C 

#            = racm:       RACM 

#            = racm_soa:   RACM with extensions for secondary organic aerosol 

#            = racm_mim:   RACM_MIM mechanism 

#                         (RACM with updated isoprene degradation) 

#            = racm_mim2:  RACM_MIM2 mechanism 

#            = chest:      CHEST 

#                         (RACM_MIM with extensions for stratospheric chemistry) 

#            = tracer:     TRACER 

#            = racm_radon: RACM_MIM with radon decay chain 

# SOLVER:    Chemistry solver 

#            = 1: QSSA 

#            = 2: ros2 (Rosenbrock integrator with 2 stages) 

#            = 3: radau5 (implicit Runge-Kutta method of order 5) 

# EFM:       EURAD-Fire-Modell 

#            = 0: off 

#            = 1: on, emission model according to J. Hoelzemann 

#            = 2: on, GFAS wildfire emission data 

# DRYDEP:    Dry deposition module 

#            Bit 1 = 1: enable Wesely (1989) 

#            Bit 2 = 1: enable Zhang et al. (2003) 

#========================================================================================== 

Figure 5.7 – EURAD-CTM configuration options piece from the model run-script. 

 

The set of parameterization options used herein was recommended for applications over 

Europe and Portugal (Borrego et al., 2011; Nieradzik, 2011; Monteiro et al., 2013a). A 

description of each selected parameterization is given following. 
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5.2.4.1.1 Photolysis frequencies 

Tropospheric ultraviolet (UV) radiation is the driving force for all tropospheric 

photochemical processes, having the potential to break down molecules into free radicals 

(photolysis) and thus initiate reaction chains by which primary pollutants (hydrocarbons 

and NOx) react to form secondary pollutants such as peroxyacyl nitrates and tropospheric 

ozone. The radiative transfer model used by EURAD-CTM is based on the Tropospheric 

Ultraviolet-Visible Model (Madronich, 1987), for calculating the spectral irradiance, the 

spectral actinic flux and photodissociation coefficients (J-values).   

 

5.2.4.1.2 Cloud processing 

According to (Elbern and Friese, 2013), the sub-grid cloud scheme in the EURAD-CTM 

was derived from the cloud model in the EPA Models-3 Community Multiscale Air Quality 

(CMAQ) modelling system (Roselle and Binkowski, 1999). Cloud effects on both gas 

phase species and aerosols are simulated by the cloud module. The effects of sub-grid 

clouds on grid-averaged concentrations are parameterized by modelling the mixing, 

scavenging, aqueous chemistry, and wet deposition of a representative cloud within the 

grid cell. For all sub-grid clouds, a 1-hour live time has been assumed. Depending upon 

weather the pollutant participates in the cloud water chemistry and on the liquid water 

content, pollutant scavenging is calculated by two methods: 

1. For those pollutants that are absorbed into the cloud water and participate in the cloud 

chemistry, the amount of scavenging depends on Henry’s law constants, dissociation 

constants, and cloud water pH; 

2. For pollutants, which do not participate in aqueous chemistry, the model uses the 

Henry’s law equilibrium to calculate ending concentration and deposition amount. 

The accumulation mode and coarse mode aerosols are assumed to be completely 

absorbed by cloud water and rain water. Some rapidly established equilibria between the 

gas and aqueous phase (HNO3 ,N2O5, NH3, O3, H2O2, SO2, formic acid, methyl hydrogen 

peroxide and peracetic acid) are superimposed on five irreversible reaction involving the 

oxidation of SO2 to SO3
2- (Walcek and Taylor, 1986).  

 

 

 

 

 

http://en.wikipedia.org/wiki/Peroxyacyl_nitrates
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5.2.4.1.3 Dry deposition 

The deposition scheme devised by Zhang et al. (2003) has been employed to calculate 

dry deposition velocities of twenty gas phase species6 using a model which considers the 

aerodynamic resistance, the quasi-laminar layer resistance and, the ground or canopy 

resistances, depending on land use characteristics.  

 

5.2.4.1.4 Diffusion 

An upstream algorithm (Bott, 1989) was chosen to calculate the horizontal and vertical 

advection. The calculation of vertical Eddy diffusion is based on the specific turbulent 

structure in the individual regimes of the planetary boundary layer (PBL) according to the 

PBL height and the Monin-Obukhov length (Holtslag and Nieuwstadt, 1986). The vertical 

diffusion is semi–implicitly discretised following Crank–Nicholson scheme, with the 

Thomas algorithm used as solver. 

 

5.2.4.1.5 Gas phase chemical mechanism 

The chemical mechanism selected within this work was developed by Geiger et al. (2003). 

It is based on the Regional Atmospheric Chemical Mechanism (RACM) combined with the 

Mainz Isoprene Mechanism (MIM, Poeschl et al., 2000). The RACM-MIM reflects an 

advanced description of the air chemistry of biogenic ozone precursors like isoprene and 

others. It treats 84 chemical species (as real species and condensed species classes) and 

contains 23 photolysis reactions and 221 chemical reactions of higher order, solved by a 

stage-2 Rosenbrock algorithm (Verwer et al., 1999). 

 

5.2.4.1.6 Aerosols dynamics 

To simulate the aerosols dynamics, the EURAD-CTM incorporates the Modal Aerosol 

Dynamics model for Europe (MADE, Ackermann et al., 1998), developed specifically to 

EURAD-CTM, that describes the physical and chemical processes concerning particles 

species. 

The dynamical processes concerning size distribution are transport, nucleation, 

condensation, coagulation and evaporation, which are calculated taking into account the 

interaction with clouds, wet and dry deposition, emissions into the air and the gas phase 

                                                
6 Sulphur dioxide; Formaldehyde; Sulphuric acid; Acetaldehyde; Nitrogen dioxide; Methyl-Vinyl-Ketone; 

Ozone; Methacrolein; Hydrogene peroxide; Methylglyoxal; Nitric acid; Cresol; Nitrous acid; Formic acid; 

Pernitric acid; Acetic acid; Ammonia; Organic peroxides; Peroxyacetylnitrate and Organic nitrates. 
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chemistry. The particles in MADE are separated into two groups: fine and coarse 

particles. The aerosol species treated as fine particle are secondary inorganic aerosols, 

primary and elemental carbon, other unspecified material of anthropogenic origin, as well 

as anthropogenic and biogenic secondary organic species. The coarse particles consist 

on unspecified material of anthropogenic origin, sea salt and mineral dust.  

The formation of secondary organic aerosols (SOA) is treated by the Secondary ORGanic 

Aerosol Module (SORGAM, Schell et al., 2001). To provide concentrations of ammonia 

and nitrate in both gas and particle phase, sulphate in the particle phase and the amount 

of liquid water, SORGAM includes an aerosol thermodynamic model (Analytical Predictor 

of Condensation – APC), which solves particle chemistry in the NH4
+ - NO3

− - SO4
2− - H2O 

system. The APC is implemented as a fully equivalent operational model version, using 

the High Dimensional Model Representation technique (HDMR, Nieradzik, 2005). Overall 

MADE delivers size distribution, number concentration and volume of the aerosol, dry and 

wet deposition and aerosol and gas phase mass concentrations.  

For a more detailed information about MADE and HDMR, see Nieradzik (2011). 

 

To summarize, the physic and chemical parameterization options selected to this 

application, based on recommendations from Borrego et al. (2011b), Nieradzik (2011) and 

Monteiro et al. (2013a), are compiled in Table 5.5.  

 

Table 5.5 – Physic and chemical options used in EURAD-CTM. 

Physic and chemical parameters Option used 

Method for calculation of photolysis frequencies Tropospheric Ultra-Visible Model (Madronich, 1987) 

Cloud module R2.6 version, based on Roselle and Binkowski (1999) 

Dry deposition module Scheme from Zhang et al. (2003) 

Diffusion module Bott (1989) algorithm 

Aerosol dynamics module (MADE) MADE including APC and HDMR (Nieradzik, 2005) 

Kinetic chemistry mechanism 
RACM-MIM mechanism (Poeschl et al., 2000; Geiger et al., 

2003) 

Chemistry solver Rosenbrock integrator with 2 stages (Verwer et al., 1999) 
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Chapter 6. Evaluation of the air quality  

modelling system  

 

Air quality modelling systems describe mathematically innumerable physical and chemical 

processes that characterize the atmosphere. In addition, they must be able to adequately 

quantify species concentrations in the atmosphere (Dennis et al., 2010). However, the 

atmosphere is characterized by random processes that cannot be precisely described by 

numerical approached. Turbulence, which controls atmospheric dispersion, is one of 

these processes, promoting spatial and temporal variability on the observed concentration 

fields. Additionally, uncertainties in the input data and model formulation itself are also 

important factors that increase the uncertainty in the model outputs. Uncertainties 

associated to model formulation may be due to erroneous or incomplete representation of 

the dynamic and chemistry of the atmosphere, incommensurability, numerical solution 

techniques, and choice of modelling domain and grid structure. On the other side, 

uncertainties in the input data may include variability on emission sources and imprecise 

geophysical representation of the simulation domains. Therefore, model results should be 

properly evaluated and their uncertainties correctly estimated (Hanna et al., 1993; Borrego 

et al., 2008) before using model results.  

Since a model is only useful if it reflects the behaviour of the real world atmospheric 

processes being its simulations within a pre-defined level of accuracy that is acceptable 

for the intended purpose of use, the quality of a model should be determined  by 

validation, verification, and evaluation (Schlünzen and Sokhi, 2008). 

Validation is defined by Schlünzen and Sokhi (2008), as the testing of the extent to which 

a model describes the phenomena it was developed for. Typically, model validations carry 

out on model development laboratories (e.g. wind tunnels) to produce validation datasets, 

or using monitoring datasets, to check the performance of the model for a specific 

application. For each particular case, the required data completeness (suitable size, 

temporal and spatial coverage, minimum number of data gaps and consideration of any 

compilation procedures that may have caused data to be eliminated), quality and 
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accuracy of the model have to be specified. These requirements vary according to the 

intended model application, as well as the model properties, such as model scale and 

parameterizations.  

Also in according to Schlünzen and Sokhi (2008), verification is the act of confirming that 

the model exhibits a specified behaviour for a given case (e.g. an air pollution episode), 

while the main goal of evaluation exercises is to demonstrate that the model is 

“performing adequately” when compared with observations (Dennis et al., 2010).  

According to previous studies, including the multi-model comparison presented in section 

5.1 (Djalalova et al., 2010; Borrego et al., 2011; Miranda et al., 2012; Monteiro et al., 

2013a), air quality modelling systems results have important uncertainties associated, part 

of them related to systematic errors which could be removed or minimized through bias-

correction approaches. A set of these techniques was tested and the main results are 

shown in section 6.2.  

The WRF-EURAD modelling system evaluation (Dennis et al., 2010) is addressed in this 

chapter, generating statistics of the deviations between  REF scenario unbiased modelling 

results and observations, comparing their magnitudes accordingly to a set of statistical 

parameters (section 6.2), for  PT05 and OP01 simulation domains.  

6.1 The air quality monitoring network  

Observed data is essential information to validate an air quality modelling system. Thus, 

data from the air quality monitoring network of mainland Portugal 

(http://qualar.apambiente.pt/), with respect to the REF scenario year (2012), were used to 

evaluate the WRF-EURAD modelling system performance. The air quality monitoring 

network includes 68 stations classified as urban, suburban and rural regarding the type of 

environment and as background, traffic and industrial in terms of influence, following the 

classification in Garber et al. (2002). The air quality monitoring stations used for the model 

evaluation present a minimum data collection efficiency of 85% for each pollutant (CO, O3, 

NO2, PM10 and PM2.5), according to what is required by Air Quality Directive 

(2008/50/EC). A total of 28 stations with background influence (8 rural, 12 urban, and 8 

suburban) were selected for the PT05 domain. The selection of only background influence 

stations is justified by the PT05 horizontal resolution (5  5 km2) which is not sufficient 

detailed to correctly represent areas influenced by emissions from industrial or traffic 

activities (Monteiro et al., 2013a). On the other hand, 8 stations (5 urban, and 3 suburban) 

classified as industrial, background and traffic influence were selected for the OP01 

domain, because the horizontal resolution of this domain is finer (1  1 km2). Figure 6.1 

http://qualar.apambiente.pt/


The impact of biofuels for road traffic on air quality: a modelling approach 

Evaluation of the air quality modelling system 

95 

shows the location and classification of the selected stations in the study domain. Note 

that the monitoring equipment follows a quality control/quality assurance procedure which 

guarantees validation and confidence in the use of these data. 

 

 

  

a) b) 

Figure 6.1 – Location and main characteristics of the selected monitoring stations for Portugal (PT05) and 

Porto urban area domains (OP01): stations environment and the terrain elevation (in m) (a); stations influence 

(b). 

 

 

The pollutants measured in each monitoring station are listed in Table 6.1. 
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Table 6.1 – Monitoring stations selected and their classification (environment and influence and pollutants 

measured, for Portugal and Porto urban area domains (PT05 and OP01). 

Abbreviation Name 
Type of 

environment 

Type of 

influence 

Pollutants 

OP01 

C
O

 

N
O

2
 

O
3
 

P
M

1
0
 

P
M

2
5
 

ALV Alverca Urban Background X X X X 

  ANT Antas Urban Traffic X X 

 

X 

 

X 

ARC Arcos Urban Background X X X X 

  CHA Chamusca Rural Background 

 

X X X X 

 COI Coimbra - Inst. Geog.  Urban Background 

  

X X 

  CUS Custóias Suburban Industrial 

 

X X X 

 

X 

ERM Ermesinde Urban Background 

 

X 

 

X 

 

X 

ERV Ervedeira Rural Background 

 

X 

 

X X 

 FPO Fernando Pó Suburban Background 

 

X X X X 

 FRN Fornelo do Monte Rural Background 

  

X X 

  FUN Fundão Rural Background 

 

X X X X 

 HOR S. Hora Urban Traffic X X 

 

X 

 

X 

HRT Horto Suburban Background 

 

X X X 

  ILH Ílhavo Suburban Background 

 

X X X 

  LAR Laranjeiro Urban Background X X X X X 

 LEC Leça do Balio Suburban Background 

 

X 

   

X 

LNH Lourinhã Suburban Background 

  

X 

   LOU Loures Urban Background 

 

X X 

   MEC Meco Suburban Industrial 

  

X X 

 

X 

MEM Mem Martins Urban Background 

 

X X X X 

 MOV Montemor-o-Velho Suburban Background 

  

X X 

  MVE Monte Velho Rural Background X 

     OLI Olivais Urban Background X X X X X 

 OLO Lamas de Olo Rural Background 

 

X X X X 

 PFR Paços de Ferreira Urban Background 

 

X X X X 

 PP Paio Pires Urban Background 

  

X 

   SMN S. Minho Rural Background 

 

X X X 

  SOB Sobreiras Urban Background 

 

X X X 

 

X 

STR Sto. Tirso Urban Background 

 

X X X 

  TER Terena Rural Background 

  

X X X 

 VCO Vila do Conde Suburban Background 

 

X X X 

  VER Vermoim Urban Traffic 

 

X X X X X 

VNT Vila Nova da Telha Suburban Background 

 

X 

 

X 

  Total 7 25 26 28 11 8 
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6.2 Bias-correction approach 

To increase the model skills and minimize model uncertainty, there are several techniques 

based on ensemble dispersion modelling (Galmarini et al., 2004; Wilczak et al., 2006; van 

Loon et al., 2007; Vautard et al., 2009; Monteiro et al., 2013b) and on methods for 

combining results from models and monitoring data (Borrego et al., 2011b; Denby and 

Spangl, 2010; McKeen et al., 2005; Monteiro et al., 2013).  It is possible to combine these 

two types of data through methodologies that take into account physical laws (data 

assimilation) or that are based on a statistic or geometric way to combine data sources to 

create a new data set (data fusion) (Denby and Spangl, 2010). Examples of data fusion 

approaches are the bias-correction techniques which the objective is not to try to gain 

additional insight into model deficiencies or performance nor to correct artificially for them, 

but to remove potential systematic model errors intrinsic to each model formulation or 

input data. Bias-correction can be applied through different techniques, such as mean 

subtraction (McKeen et al., 2005; Wilczak et al., 2006), multiplicative ration adjustment 

(McKeen et al., 2005), hybrid forecast (Kang et al., 2005) and Kalman filter (Kang et al., 

2005; Delle Monache et al., 2006; Djalalova et al., 2010), among others. Based on 

previous studies (Borrego et al., 2011; Monteiro et al., 2013a), three bias-correction 

techniques were applied to EURAD simulation results over Portugal: a Kalman filter (KF) 

technique, a subtractive/additive correction of the mean bias (SUBST, Equation 6.1) and a 

multiplicative ratio correction (RAT, Equation 6.2).  

 

SUBST ),)(
1

, modmod day(hCCC
ndays

day)(hC el

ndays

obs

h

el

h

corrected    Equation 6.1 

RAT ),(
),(

),(

),( mod

mod
dayhC

dayhC

dayhC

dayhC el

ndays

el

ndays

obs

corrected 



 Equation 6.2 

 

The KF is a recursive, linear, and adaptive method that has been used recently to improve 

air quality forecasts of ground-based O3 (Kang et al., 2005; Delle Monache et al., 2006, 

2008; Djalalova et al., 2010; Sicardi et al., 2011). KF performance is sensitive to the error 

ratio between variances of white noise and random error, which indicates the way in which 

the KF responds to the variations in biases at prior steps. An optimal error ratio exists for 

generating the best prediction given the numerical modelling system and the dynamics of 

the study area. One way to estimate the optimal error is described by Kang et al. (2008) 

which consists in minimizing the RMSE and maximizing the correlation coefficient for all 
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the stations and modelling system. SUBST (Equation 6.1) and RAT (Equation 6.2) 

corrections force the mean bias at each monitoring site to be zero, using the bias detected 

from the previous days for each particular hour (h) of the day. These three bias-correction 

procedures are model specific, site specific and time of day specific.  

For the case of SUBST and RAT corrections, to estimate the previous days bias, different 

training periods were tested (Monteiro et al., 2013a): a 7 day training period was chosen 

as a compromise between having a sufficiently long period to gather adequate statistics, 

but not too long to mask seasonal variations in ozone, as discussed in Wilczak et al. 

(2006); and a 4 day period was also tested in order to distinguish different synoptic 

conditions, which are characterized by a 3-4 day period (Stull, 1988; Carvalho et al., 

2010a; Tchepel and Borrego, 2010). This test revealed that the RAT technique with a 4-

day training period is the most appropriate bias-correction approach to apply over 

Portugal, demonstrating significant improvements for both analysed pollutants (PM10 and 

O3), as demonstrated by daily profiles for O3 and PM10 in Figure 6.2.  

 

 

Figure 6.2 – Daily profiles, averaged over all monitoring stations, of observed values (OBS), EURAD 

simulations (RAW) and EURAD simulations with RAT04 correction (RAT04) for O3 and PM10 (adapted from 

Monteiro et al., 2013a) 

 

The improvement of the corrected data skill was measured by a bias reduction of 76 % for 

O3, and 91 % for PM10, a decrease of RMSE in 14 % for O3 and 32 % for PM10, and an 

improvement on the correlation factor of 14% for O3 and 54% for PM10. In this sense, the 

RAT04 bias-correction technique will be applied to WRF-EURAD modelling system 

(described in detail in section 5.2) outputs in order to obtain more accurate simulation 

results to investigate the impact of biofuels for road traffic on air quality over mainland 

Portugal and the Porto urban area.    
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6.3 Operational evaluation of the WRF-EURAD modelling system 

Within the framework for evaluating regional-scale numerical modelling systems 

developed by Dennis et al. (2010), operational evaluation refers to statistical and graphical 

analysis to determine whether modelling system estimates are in agreement with the 

observations in an overall sense, measuring the deviations and their magnitudes between 

simulated results and observations through statistic parameters. The set of statistic 

parameters recommended by Hanna et al. (1993) and Borrego et al. (2008), and listed in 

Table 6.2, are used to evaluate the WRF-EURAD modelling system performance 

regarding the REF scenario results for PT05 and OP01 domains, bias-corrected through 

the application of the RAT04 technique (section 6.2).  

Measured concentrations from a set of stations of the Portuguese air quality monitoring 

network (see Figure 6.1 and Table 6.1) were used in the operational evaluation process 

here presented, regarding CO, NO2, O3, PM10 and PM2.5 concentrations. This evaluation 

process cannot be applied to NMVOC because there are no measurements of total 

NMVOC on the national monitoring network. 

The correlation factor (R) reflects the linear relationship between two variables. However it 

is insensitive to either an additive or a multiplicative factor. To allows for sensitivity on the 

difference in observed and predicted values as well as proportionality changes, Elbir 

(2003) included the Index of Agreement (IA) to the statistical analysis. This indicator 

determines the degree to which magnitudes and signs of the observed value about mean 

observed value are related to the predicted deviation about mean predicted value 

(Borrego et al., 2008). Root Mean Square Error (RMSE) and bias are frequently used 

measures of the differences between values predicted and the values actually observed 

(bias) or absolute values (RMSE). Bias reflects the trends of the model results error: a 

negative bias indicates that the model is overestimating and a positive bias reveals an 

underestimated trend. However bias should not be analysed alone, because so over-

prediction and under-prediction may cancel each other, leading to bias=0, the result for an 

ideal prediction. On the other hand, RMSE allows assessing the magnitude of these errors 

(Ribeiro, 2008). Thus, bias and RMSE can provide add value to each other when taken 

together. Normalised mean square error (NMSE) and RMSE give information about the 

errors obtained within the observed-predicted pairs of results. However, RMSE ignores 

the range of the variable, which in some cases could lead to misleading interpretations of 

this parameter result. Thus, a normalized form of the parameter, NMSE, could be more 

adequate. The fraction of predictions within a factor of 2 of observations (FAC2) is a tool 

to remove outliers and can be a way of improving statistical analysis results. Thus, FAC2 

is considered as the most robust measure (Borrego et al., 2008; COST Action 732, 2009).  
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Table 6.2 – Statistical quality indicators for air quality model performance evaluation (Hanna et al., 1993; 

Borrego et al., 2008). 

Indicator Formula 
Range of  

acceptable values 

Ideal 

value 

Correlation coefficient 

(R) 

𝑅 =
∑ (𝐶𝑂𝑖 − 𝐶𝑂

̅̅̅̅ )(𝐶𝑀𝑖 − 𝐶𝑀
̅̅ ̅̅ )𝑁

𝑖=1

√∑ (𝐶𝑂𝑖 − 𝐶𝑂
̅̅̅̅ )2(𝐶𝑀𝑖 − 𝐶𝑀

̅̅ ̅̅ )2𝑁
𝑖=1

 [0.0 ; 1.0] 1.0 

Index of agreement 

(IA) 
𝐼𝐴 = 1 −

∑ (𝐶𝑀𝑖 − 𝐶𝑂𝑖)2𝑁
𝑖=1

∑ (|𝐶𝑀𝑖 − 𝐶𝑂
̅̅̅̅ | + |𝐶𝑂𝑖 − 𝐶𝑂

̅̅̅̅ |)2𝑁
𝑖=1

 [0.0 ; 1.0] 1.0 

Root mean squared  

error (RMSE) 
𝑅𝑀𝑆𝐸 = √

1

𝑁
∑(𝐶𝑂𝑖 − 𝐶𝑀𝑖)2

𝑁

𝑖=1

 n.a. 0.0 

Normalized mean 

squared error (NMSE) 
𝑁𝑀𝑆𝐸 =

(𝐶𝑂 − 𝐶𝑀)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝐶𝑂𝐶𝑀
̅̅ ̅̅ ̅̅ ̅

 n.a. 0.0 

Mean systematic error  

(bias) 
𝑏𝑖𝑎𝑠 =

1

𝑁
 ∑(𝐶𝑂𝑖 − 𝐶𝑀𝑖)

𝑁

𝑖=1

 n.a. 0.0 

Fractional bias 

(FB) 
𝐹𝐵 =

𝐶𝑂
̅̅̅̅ −  𝐶𝑀

̅̅ ̅̅

0,5(𝐶𝑂
̅̅̅̅ + 𝐶𝑀

̅̅ ̅̅ )
 [-2.0 ; 2.0] 0.0 

Average normalized  

absolute bias (ANB) 
𝐴𝑁𝐵 = (

|𝐶𝑂 − 𝐶𝑀|̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝐶𝑂
) n.a. 0.0 

Normalized standard 

deviation (NSD) 

𝑁𝑆𝐷 =
𝜎𝑀

𝜎𝑂
 [0.0 ; 1.0] 1.0 

Geometric mean bias 

(MG) 
𝑀𝐺 = 𝑒𝑥𝑝(ln 𝐶𝑂

̅̅ ̅̅ ̅̅ ̅ −  ln 𝐶𝑀
̅̅ ̅̅ ̅̅ ̅) > 0.0 1.0 

Geometric variance 

(VG) 
𝑉𝐺 = 𝑒𝑥𝑝 [(ln 𝐶𝑂

̅̅ ̅̅ ̅̅ ̅ − ln 𝐶𝑀
̅̅ ̅̅ ̅̅ ̅)

2
] > 0.0 1.0 

Factor of two of  

Observations (FAC2) 

𝐹𝐴𝐶2 =
∑ 𝐴𝑖

𝑁
𝑖=1

𝑁
 

𝑤𝑖𝑡ℎ 𝐴𝑖 = {
1 𝑓𝑜𝑟 0.5 ≤

𝐶𝑀𝑖

𝐶𝑂𝑖
≤ 2.0

0, 𝑒𝑙𝑠𝑒

 

n.a. 1.0 

n.a. – not applicable. 

𝐶𝑂𝑖 and 𝐶𝑀𝑖 are the observed and predicted concentration in monitoring station i in n monitoring station. 

CO
̅̅̅̅  and CM

̅̅ ̅̅  are the averaged concentration observed and predicted. 

σO and σM are the standard deviation of observations and predictions. 

 

Due to the distributions of the majority of pollutant concentrations are close to log-normal, 

the linear measures fractional bias (FB) and normalized mean square error (NMSE) may 

be exceedingly influenced by infrequently occurring high observed and/or predicted 

concentrations, whereas the logarithmic measures geometric mean bias (MG) and 

geometric variance (VG) may provide a more balanced treatment of extreme high and low 

values. Nevertheless, MG and VG may be excessively influenced by extremely low 

values, near the instrument thresholds and are undefined for zero values. FB and MG are 
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measures of mean relative bias and indicate only systematic errors. NMSE and VG are 

measures of mean relative scatter reflecting both systematic and unsystematic (random) 

errors, but they are not a direct measure of these errors (Borrego et al., 2008). 

The statistical quality indicators shown in Table 6.2 were adopted as a common European 

model evaluation framework (Olesen, 2001), which have been integrated and updated into 

the DELTA tool (Thunis et al., 2012). The DELTA tool is a software developed in the 

scope of the FAIRMODE (URL 11) activity by the Joint Research Centre of the European 

Commission for the evaluation and benchmarking of air quality modelling applications and 

for rapid diagnostics of model performances of air quality models, focusing on O3, PM10 

and NO2 so far, addressing from local to regional scales. In the coming years, the DELTA 

tool will be extended to other pollutants mentioned in the air quality Directive 

(2008/50/EC), as well as for scenarios assessment. In spite of this software is a powerful 

and updated tool for air quality modelling evaluations, its application in this work was 

limited since the modelling system evaluation in terms of CO and PM2.5 is required. Thus, 

the operational evaluation of the WRF-EURAD modelling system was not based on 

DELTA tool, but on the statistical parameters listed in Table 6.2. The main results from the 

operational evaluation exercise are presented in section 6.3.1 for mainland Portugal 

domain (PT05) and in section 0 for the Porto urban area (OP01).  

In spite of the results are bias-corrected, analysing their bias values, as well as bias 

related parameter values, is important to verify how far the systematic error is minimized. 

This is especially important because RAT04 results may be sharply influenced by high 

pollutant concentrations due to air pollution episodes or errors on observed and modelled 

data, and then these errors are propagated through the 4-days period (Borrego et al., 

2011).  

 

6.3.1 PT05 

Regarding the PT05 simulation domain, the median of the statistic parameters estimated 

for each type of station environment are presented in Figure 6.3, in order to investigate 

the main differences on modelling system performance over rural, suburban and urban 

environments.  

As expected, WRF-EURAD modelling system results unbiased (hereinafter referred to as 

predicted concentrations) exhibit statistical parameters values close to the ideal ones, in 

particular for background rural stations (Figure 6.3). This was already expected since 

background influence in rural environments is not largely influenced by anthropogenic 

emissions, which decrease the uncertainty associated to the simulation processes.  
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Bias values (Figure 6.3a) are typically negative suggesting that the results from the 

RAT04 technique application are slightly under predicted for all studied pollutants. 

However, they are insignificants being smaller than 0.5 µgm-3 (absolute value) for NO2, 

O3, PM10 and PM2.5, and smaller than 1.3 µgm-3 (absolute value) for CO.  

High RMSE values (Figure 6.3b) were found for CO in urban (154.3 µgm-3) and rural 

(41.8 µgm-3) environments, but other parameters such as NMSE, FAC2, ANB and NSD 

(Figure 6.3c,d) suggest that CO is well predicted, which is also translated by the daily 

profiles in Figure 6.4. This is mainly because the magnitude of the CO concentrations is 

higher comparing to the other pollutants, fact that NMSE has into account, contrarily to 

RMSE. 
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Figure 6.3– Statistical parameters for the corrected (RAT04) results from the WRF-EURAD modelling system, 

regarding the REF scenario (2012 year), for each pollutant and station environment: a) bias (µgm-3); b) RMSE 

(µgm-3); c) R, IA and FAC2; d) MG and VG; e) NSD, ANB and NMSE. Median for all the monitoring sites, over 

the PT05 domain.    

 

In Figure 6.4 are compiled a daily profile per studied pollutant and type of environment 

(rural, suburban and urban), comparing measured and predicted concentrations, including 

their concentration percentiles 25th/75th. According to the statistical parameters (Figure 

6.3) and daily profiles (Figure 6.4), the hourly mean predicted concentrations are quite 

similar to measured concentrations for all the studied pollutants and for all environments.  
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Figure 6.4 – Daily profiles of measured (blue line) and predicted (purple line) concentrations of CO, NO2, O3, 

PM10 and PM2.5, as well as the concentration ranges between percentiles 25th/75th, over the PT05 domain, 

regarding rural, suburban and urban environments.
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For O3, a secondary pollutant, daily profiles present higher concentrations during the 

periods of sunlight and higher temperature, while the daily profiles of the remaining 

pollutants present higher concentrations during the night-time than during the daylight 

period, in rural environments. This concentrations behaviour is also found for PM10 and 

PM2.5 in suburban and urban environments. On the other hand, on suburban/urban 

profiles for CO and NO2, two pecks can be identified at the typical rush hours (6h - 9h and 

17h - 22h). This is mainly due to the importance of the CO and NO2 emissions from the 

transport sector in urban/suburban areas. 

Despites the good quality of the predicted results, presenting identical daily profiles 

between measured and predicted concentrations, the daily profiles of the percentiles 

25th/75th, regarding the measured concentrations, typically cover a wider range of 

concentrations than for predicted data (Figure 6.4). This is especially visible for PM10 and 

PM2.5, which the daily profiles of the 75th percentile of the predictions are lower than 

those measured, while the daily profiles of the 25th percentile of measured and predicted 

concentrations are similar. This suggests that emissions of these pollutants used as input 

data to WRF-EURAD simulations may be underpredicted. 

 

6.3.2 OP01 

The OP01 domain, covering the Porto urban area, comprises 8 monitoring stations under 

urban and suburban environments (Table 6.1). Moreover, because this is an area strongly 

influenced by industrial and traffic activities, the evaluation process will take into account 

monitoring stations with industrial and traffic influence, in addition to the background. In 

this sense, the median values of the statistical parameters estimated per type of station 

influence are presented in Figure 6.5. Note that there are no rural monitoring stations in 

this domain (Table 6.1).  
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Figure 6.5 - Statistical parameters for the corrected (RAT04) results from the WRF-EURAD modelling system, 

regarding the REF scenario (2012 year), for each pollutant and station environment: a) bias (µgm-3); b) RMSE 

(µgm-3); c) R, IA and FAC2; d) MG and VG; e) NSD, ANB and NMSE. Median for all the monitoring sites, over 

the OP01 domain.    

 

Similarly to what was found for the previous domain (PT05, section 6.3.1), the statistical 

parameters estimated are close to the ideal values (Figure 6.5) presenting similar 

magnitudes than for PT05. The main reason to explain this is related to the bias-correction 

technique applied to the raw prediction results from WRF-EURAD modelling system for 

both domains.  

As well as verified to PT05, the RMSE regarding CO concentrations is about ten times 

larger than for other pollutants, due to its high magnitude of concentrations values. On the 
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other hand, for the OP01 domain there is no clear evidence that the predicted results have 

more quality for sites with background influence than for others, since the majority of the 

statistical parameters have similar values regardless the pollutant and the monitoring site 

influence.  

The daily profiles, comparing measured and predicted concentrations as well as their 

25th/75th  concentration percentiles, for each pollutant and type of influence (background, 

industrial and traffic) are presented in Figure 6.6. The analysis of these daily profiles 

corroborates the good overall performance of the air quality modelling, predicting the 

hourly mean concentration of the several pollutants over the OP01 domain. The PBL 

height variation during the day and the emission time-profiles (Figure 5.5) are also 

reflected by daily profiles.  

Observed and predicted 25th/75th percentile profiles (Figure 6.6) are close to each other, 

while in PT05 (Figure 6.4) only the predicted 25th percentile match to observations, 

suggesting that the improvement on road traffic emissions in terms of spatial resolution 

performed and described in Chapter 4 should be taking into account in further simulations 

for 1 × 1km2 but also for 5 × 5 km2 horizontal resolutions. 
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Figure 6.6 – Daily profiles of measured (blue line) and predicted (purple line) concentrations of CO, NO2, O3, 

PM10 and PM2.5, as well as the concentration ranges between percentiles 25th/75th, over the OP01 domain, 

regarding background, industrial and traffic influence. 
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Chapter 7. Impacts of biodiesel use on air 

quality 

The impacts of biodiesel use on air quality over mainland Portugal and the Porto urban 

area are addressed and discussed in this chapter. The emission scenarios REF and B20, 

developed in section Chapter 4, were used as input data to the WRF-EURAD modelling 

system (Chapter 5), which performance evaluation is addressed in Chapter 6, in order 

evaluate eventual impacts due to the use of B20 fuel instead of pure petroleum-based 

diesel in road transports. The analysis presented here is focused on mean concentration 

differentials (B20-REF) of CO, NO2, NMVOC, O3, PM10 and PM2.5, for three different 

periods defined in accordance to the European Directive 2008/50/EC on ambient air 

quality and cleaner air for Europe, in the scope of air quality assessment:  

 Annual: The entire year of 2012; 

 Summer season: from April to September 2012; 

 Winter season: from January to March and from October to December 2012. 

7.1 Impacts on air quality over mainland Portugal 

The REF and B20 emission scenarios defined in Chapter 4 were used to simulate the air 

quality over mainland Portugal (PT05), through the application of the WRF-EURAD 

mesoscale numerical modelling system (Chapter 5). The main results are shown in Figure 

7.1 regarding the spatial distribution for annual-, summer- and winter-mean concentrations 

of NO2, NMVOC and O3 for the REF scenario. The differentials found between both 

scenarios (B20-REF) are also presenting in Figure 7.1. NO2 and O3 concentration values 

are presented in gm-3. However, due to the multiple compounds in the NMVOC its 

concentrations are in parts per billion in volume basis (ppbv). 
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Figure 7.1 – Annual, summer and winter mean concentrations of NO2 (gm-3), NMVOC (ppbv) and O3 (gm-3) for REF scenario (a-c) and differential concentrations 

between B20 and REF (d-f), over the PT05 domain. 
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In general, the simulation results (Figure 7.1) show that the use of B20 fuels may implies a 

reduction on air quality levels in terms of NO2 and NMVOC, especially in urban areas. In 

spite of NOx total emissions increase in about 3% with B20 use (Figure 4.7), NO2 

concentrations decrease over the West coast of Portugal, representing a reduction in 

order of ~2 µgm-3 in Lisbon and ~1 µgm-3 in Porto urban areas (Figure 7.1a). In fact, 

relations between NOx emissions and NO2 concentrations are driven by complex 

nonlinear chemistry mechanisms, which also include NMVOC and ozone. This illustrates 

the importance of the use of a chemical transport model, like EURAD-CTM, to investigate 

the impacts on air quality in the scope of emission scenarios. 

The simulation results for REF scenario (Figure 7.1a) also suggest that NO2 

concentrations are superior during the winter period then in the summer, presenting 

higher reductions of this pollutant concentrations when B20 is compared to REF 

scenarios. This leads to a slight increment of the O3 average concentration (Figure 7.1c) 

in about 1-2 µgm-3 over the West coast, especially in urban regions.  

In the summer season, O3 concentrations decrease about 1.5 gm-3 over the inland of the 

territory, representing less than 2% of the total O3 concentrations. Negligible changes are 

found in the most polluted areas in terms of NO2 and NMVOC (Lisbon, Porto, Aveiro, 

Sines and Figueira da Foz regions).  

NMVOC is a group of pollutants mainly emitted by biogenic activity (especially during the 

summer, as shown in Figure 7.1b) and solvent industries, such as petroleum refineries 

located in Sines and Matosinhos (close to Porto). According to INERPA (APA, 2011), the 

transport sector is responsible by 3.5% of the NMVOC total emissions and the use of B20 

instead of pure diesel in road traffic can reduce NMVOC emissions in about 2%, as 

already discussed in section 4.4 (Figure 4.7). This emission reduction induces a decrease 

on NMVOC concentrations in about 8 ppbv over Porto and Sines regions. The simulation 

results also suggest that the use of B20 fuel will contribute to reduce NMVOC in a 

maximum of 5 ppbv over the remaining territory. Still for NMVOC, no significant changes 

on B20-REF differentials were also verified when summer is compared to winter period 

results over the West coast, which is the national area mostly influenced by traffic 

activities. 

To investigate the variations on the concentration bins, an analysis through histograms 

was carried out. Figure 7.2 presents the histograms for B20 and REF regarding NO2, 

NMVOC and O3, for annual, summer and winter periods. This figure also depicts the 

difference between the probability of occurrence of B20 against REF, for each 

concentration bin (∆𝑃𝐵20−𝑅𝐸𝐹 = 𝑃𝐵20𝑏𝑖𝑛 𝑖
−𝑃𝑅𝐸𝐹𝑏𝑖𝑛 𝑖

). 
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Figure 7.2 – Histograms of 1-99% of NO2 (top), NMVOC (middle) and O3 (bottom) hourly concentrations, 

regarding annual, summer and winter periods for REF (blue or green) and B20 (yellow) scenarios, for the 

PT05 domain. The difference between the probabilities of occurrence of B20 against REF is presented in 

grey. 
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In general, the histograms reveal that the lowest concentrations have higher probability of 

occurrence in B20 scenario comparing to REF. For NO2 and NMVOC, variations between 

B20 and REF are progressively less significant with the increase of concentration 

magnitude. Regarding ozone, the turning points on P(B20-REF) are close to the 

concentration peaks for annual and summer periods. However, this is not verified for the 

winter period (Figure 7.2) mainly due to the O3 concentration increasing over West coast, 

as verified in Figure 7.1 and discussed above. For this case, only the concentration range 

with higher probability of occurrence (55 – 83 µgm-3) will increase when road traffic is 

fuelled with B20.  

The spatial distribution of annual-, summer- and winter-mean concentrations of CO, PM10 

and PM2.5 are presented in Figure 7.3, as well as their spatial differential between B20 

and REF scenarios. Among these pollutants, CO is the most relevant one, with road traffic 

activities being responsible by 36% of the total CO emissions in Portugal, while PM10 and 

PM2.5 road traffic emissions represent about 5% of the total emissions of these pollutants 

(APA, 2011). The air quality simulation results (Figure 7.3) reveal that the reduction in 

almost 20% of the CO emissions (Figure 4.7), by the use of B20 fuels, can improve air 

quality levels over the West coast: CO concentrations may reduce in about 20-25% in 

Lisbon and 17-22% in Porto urban areas (Figure 7.3d). Despites CO concentrations are 

typically higher during the winter months in comparison to the summertime (Figure 7.3a), 

the differentials between scenarios and season are not evident (Figure 7.3d).  

Regarding PM10 and PM2.5 (Figure 7.3b-c,e-f), the simulation results suggest that the 

use of B20 fuels leads to a no significant decrease of these pollutant concentrations over 

mainland Portugal (Figure 7.3e-f). Over both urban areas of Lisbon and Porto, but also on 

Aveiro and Figueira da Foz, where concentration reductions are higher, variations on PM 

concentrations do not exceed 0.08 µgm-3, representing a reduction by 0.2% of these 

current pollutant concentrations.  

Figure 7.4 shows the histograms of the CO, PM10 and PM2.5 hourly-based 

concentrations (percentiles 1-99%) regarding the PT05 simulation domain, for both 

scenarios and the differentials between them (∆𝑃𝐵20−𝑅𝐸𝐹 = 𝑃𝐵20𝑏𝑖𝑛 𝑖
−𝑃𝑅𝐸𝐹𝑏𝑖𝑛 𝑖

). 
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Figure 7.3 - Annual, summer and winter mean concentrations of CO, PM10 and PM2.5 for REF scenario (a-c) and differential concentrations between B20 and REF (d-

e), over the PT05 domain. 
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Figure 7.4 – Histograms of 1-99% of CO (top), PM10 (middle) and PM2.5 (bottom) hourly concentrations, 

regarding annual, summer and winter periods for REF (blue or green) and B20 (yellow) scenarios, for the 

PT05 domain. The difference between the probabilities of occurrence of B20 against REF is presented in 

grey. 
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The graphs in Figure 7.4 suggest that the use of B20 fuels increase the probability of 

occurrence of the lowest CO concentrations (from ~80 to ~135 gm-3) and a reduction on 

the probability for concentrations after the peak of the distribution curve. Additionally, a 

second probability peak is notable for concentrations around 175 – 190 gm-3, suggesting 

that these peaks, that represent the CO concentrations in urban areas, will be reduced in 

B20 scenario.  

Regarding PM histograms, they suggest that the B20 scenario increases the probability of 

occurrence of the concentrations up to 8 and 5 gm-3 for PM10 and PM2.5, respectively. 

For higher concentrations the results suggest that B20 induce a reduction on their 

probability of occurrence. 

In sum, the use of a B20 to fuel road transports can contribute to an improvement of NO2 

and CO concentration levels in urban airshed in order of 10 and 30%, respectively. A no 

significant increase (~2%) was found to O3 winter-mean concentrations over the entire 

West coast of mainland Portugal. For the remaining studied pollutants, namely PM10 and 

PM2.5, their mean concentrations will be reduced all over the territory, however in a no 

significant amount (<1%).  

 

7.2 Impacts on air quality in Porto urban area  

To investigate more deeply the influence of B20 fuels used by road transports in urban 

areas, a downscaling modelling technique was performed over the Porto urban area 

(OP01 domain) using the WRF-EURAD mesoscale modelling system to simulate REF and 

B20 scenarios (see section Chapter 4) with higher resolution. The OP01 simulation 

domain has a horizontal resolution of 1×1km2 and covers an area of 26 × 26 km2 (Table 

5.2).  

The spatial distribution of annual-, summer- and winter-mean concentrations of NO2, 

NMVOC and O3 obtained for the REF scenario, as well as spatial distribution of differential 

of those pollutant concentrations between both scenarios is presented in Figure 7.5. 
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Figure 7.5 – Annual, summer and winter mean concentrations of NO2 (gm-3), NMVOC (ppbv) and O3 (gm-3) for REF scenario (a-c) and differential concentrations 

between B20 and REF (d-f), over the OP01 domain. 
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The simulation results presented in Figure 7.5 suggest that NMVOC and O3 

concentrations decrease over the OP01 when B20 fuel is used instead of pure diesel. On 

the other hand, an increase of NO2 concentrations was predicted, regardless the period of 

the year. Nevertheless, these variations on NO2, NMVOC and O3 concentrations are very 

small reaching the maximum of 0.07 µgm-3 for NO2 and -0.9 ppbv for NMVOC in the 

winter, and -0.03 µgm-3 for O3 during the summer period. Variations found for O3 were in 

order of 0.05%, which may be considered as negligible. This was expected because 

ozone is mainly formed during the transport of its precursors emitted in urban areas 

(namely, NO2, NMVOC and CO), causing ozone formation in remote regions. Also, the 

small dimension of the OP01 domain (26  26 km2) may have contributed to the no 

significant differences found since the transport of ozone precursors may be not 

completely reproduced.   

The areas with largest NO2 and NMVOC concentration values are Northern and West of 

Porto city town, matching with major road traffic activity hotspots (Figure 4.3) and higher 

atmospheric pollutant emission associated (Figure 4.6 and Figure 4.9). As expected, the 

highest concentration variations, notwithstanding small (less than 1%), are also located in 

those hotspots. 

The histograms of hourly-based concentrations for these three pollutants, which are 

compiled in Figure 7.6, suggest that the differences between the probabilities of the 

concentration bins (Figure 7.6, graph in grey) of each scenario are negligible. However, 

due to the verified increase on NO2 concentrations for B20 when compared to REF 

scenario, the histograms reveal that the probability of occurrence NO2 concentrations 

between [0 ; 4] µgm-3 decrease in B20 scenario in order of 0.004%, regardless the season 

of the year. The opposite is verified to NMVOC, for which the probability of occurrence low 

concentrations (from 2 to ~40 ppb) increase by 0.02% when B20 is compared to REF 

scenario. In contrast to PT05, the turning point location of O3 concentrations is not 

obvious, especially for the summer period. Nevertheless, for annual and winter periods, 

there is a trend to increase the probability in the first half of each graph that present P 

(grey graph in Figure 7.6), which turns to a decreasing trend in the second half of them.   
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Figure 7.6 - Histograms of 1-99% of NO2 (top), NMVOC (middle) and O3 (bottom) hourly concentrations, 

regarding annual, summer and winter periods for REF (blue or green) and B20 (yellow) scenarios, for the 

OP01 domain. The difference between the probabilities of occurrence of B20 against REF is presented in 

grey. 

 

The spatial distribution of annual-, summer- and winter-mean concentration of CO, PM10 

and PM2.5 are shown in Figure 7.7, as well as their concentration differentials (B20-REF). 
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Figure 7.7 – Annual, summer and winter mean concentrations of CO, PM10 and PM2.5 for REF scenario (a-c) and differential concentrations between B20 and REF (d-

f), over the OP01 domain. 
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According to the obtained results (Figure 7.7a), the use of B20 fuel improve CO levels by 

5%, reaching a reduction of more than 30 gm-3 on the Northeast hotspots (Figure 7.7). 

Regarding PM (PM10 and PM2.5), B20 scenario presents lower particulate matter 

concentrations than REF. Additionally, higher reductions on PM mean-concentrations 

were found for OP01 (~2%) than for PT05 over the Porto region (~0.2%), suggesting that 

considering line sources emission, instead of traffic emissions in area, increase the 

influence of road traffic activities in urban areas.  

As verified to NO2, NMVOC and O3, also for CO, PM10 and PM2.5. no significant 

differences were found between B20 and REF scenarios, taking into account the time 

periods, regarding CO, PM10 and PM2.5. This is verified not only in terms of spatial 

distribution but also on probability distribution, as shown in the histograms in Figure 7.8. 

Since the concentrations of these pollutants decrease with the use of B20 instead of pure 

diesel, the probability of occurrence lower concentrations increase in B20 scenario and 

decrease for higher concentrations. The turning points for CO, PM10 and PM2.5 

correspond to ~270 µgm-3, ~12 µgm-3 and ~10 µgm-3, respectively, which are higher 

when compared to the turning points verified to the PT05 domain (Figure 7.4): ~145 µgm-

3 for CO, ~5 µgm-3 for both PM10 and PM2.5. This also supports the idea that the 

simulated influence of road traffic activity on the Porto region is higher when using the 

OP01 instead of the PT05 simulation domain.  
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Figure 7.8 - Histograms of 1-99% of CO (top), PM10 (middle) and PM2.5 (bottom) hourly concentrations, 

regarding annual, summer and winter periods for REF (blue or green) and B20 (yellow) scenarios, for the 

OP01 domain. The difference between the probabilities of occurrence of B20 against REF is presented in 

grey. 
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The graphs representing P for all the studied pollutants regarding the OP01 domain 

(Figure 7.6 and Figure 7.8), suggest a variability on close concentration bins that is not 

verified on the PT05 domain (Figure 7.2 and Figure 7.4). This may be caused by unsteady 

on the modelling system response within the emission scenarios, as a consequence of the 

high horizontal resolution of the OP01 domain that could be too high for a mesoscale 

modelling system. The small dimension of the domain can also contributes to the verified 

unsteady due to a strong influence of the boundary conditions over the entire domain. 

Even so, this study also allows concluding that the use of high resolution emissions is 

crucial to obtain more realistic simulations of the urban airshed, which is also foreseen by 

the modelling system performance evaluation (Chapter 6).   

In sum, this analysis confirms that the use of B20 has a small effect on the air quality of 

the Porto urban area when compared to the REF scenario. Nevertheless, B20 can 

promote a slight improvement on air quality levels over the OP01 domain especially taking 

into account CO, but also total NMVOC, PM10 and PM2.5 concentrations. On the other 

hand, it was predicted that NO2 concentrations may increase over the entire domain.  
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Chapter 8. Conclusions 

The main aim of this study was to assess the impacts of the use of biodiesel for road 

traffic on air quality over mainland Portugal and the Porto urban area, through a 

mesoscale numerical modelling tool. The work is organized in eight chapters, starting with 

the overall introduction to the scope of this work – climate and energy policies, 

atmospheric pollutant emissions from the use of biodiesel on road transports and air 

quality numerical modelling tools. 

An overview on the World’s biofuels situation is reported with a special focus on the 

Portuguese biodiesel supply chain. In fact, biofuels have attracted great attention all over 

the world since 1970’s due to their renewability and availability, promising to contribute to 

regional and rural development as well as to face issues such as climate change, energy 

external dependence and increasing demand of fossil-fuels. The biofuel mostly produced 

and consumed worldwide (mainly in America continent) is bioethanol, replacing gasoline. 

On the other hand, Europe is the greatest producer and consumer of biodiesel as 

substitute of conventional diesel, which is the main fuel used in the transport sector in 

European countries, including Portugal.  

Based on EU strategies on energy and environmental issues, Portugal started to produce 

biodiesel derived from energy crops (sunflower, rapeseed, soybean and palm oil) in 2006. 

Currently, the diesel fuel supplied to the national distribution network has a biodiesel 

content of 7% (v/v) (B7), being totally produced within the five production plants in 

mainland Portugal representing 550 kton·y-1 of production capacity.  In spite of biodiesel 

production being a driver for economic growth of Portugal, the national biodiesel supply 

chain has problems of sustainability (only 4% of the total biodiesel consumed in Portugal 

is certified as sustainable), mainly due to its external dependence on raw materials 

(rapeseed, soybean and palm oil) that are all imported from Brazil, Malaysia, Indonesia 

and Romania. Additionally, these energy crops still compete to food feedstocks 

production.  

The sale of blend fuels with more than 7% (v/v) of biodiesel is not allowed in Europe due 

to a claimed incompatibility of diesel passenger cars for biodiesel blends higher than B7, 
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mainly related to variations on fuel injection characteristics. However, in order to 

accomplish the goal concerning the replacement of 10% fossil fuels by biofuels in the 

transport sector in Portugal, the blend fuel would contain about 13% (v/v) of biodiesel, 

which will probably increase to 20% in a near future, taking into account the importance 

and the increasing trend of diesel use in Portugal, and assuming a contribution of 2.5% of 

bioethanol. This demonstrates that there is an inconsistency on transport biofuels policy in 

Portugal.   

An extended literature review on the effects on atmospheric pollutant emissions from the 

use of diesel/biodiesel blends on road transport was addressed, aiming to identify 

emission factor to further emission scenarios definition. The majority of the experimental 

studies suggest that a blend fuel with 20% (v/v) of biodiesel promotes higher combustion 

efficiency, lower PM, CO and total NMVOC but higher NOx emissions than diesel and 

other blends. The oxygen content on biodiesel molecule and its higher cetane number 

have been the most important factors pointed out to explain these improvements as well 

as to justify increases of aldehyde emissions, such as formaldehyde, acetaldehyde and 

acrolein. These results are in contradiction with the European guideline that limits to  

7% (v/v) the biodiesel content. The increase of carbonyl compounds emissions when 

biodiesel is used is an issue of concern due to their potential for ozone formation and their 

carcinogenic characteristics. On the other hand, experimental studies have pointed out 

that the use of blend fuels reduce aromatic and PAH compound emissions with regards to 

diesel, especially toluene and xylene.  

Besides the influence of the physics and chemical characteristics of the fuel on exhaust 

gases emissions, it is well known that emissions vary with the vehicle technology and 

driving characteristics, namely the speed and engine load. Thus, only those studies 

carried out under European driving cycles were taken in consideration to emission 

scenarios design. Both the New European Driving Cycle (NEDC) and the Common 

Artemis Driving Cycle (CADC) comprise different driving cycles covering low to high 

speeds and engine loads. However, the existing experimental studies are focused on up 

to EURO 4 light passenger vehicles, not comprising the EURO 5 vehicles built from 2009 

to 2014. To overcome this lack of information, an experimental work was conducted 

aiming the study of exhaust gases emissions from EURO 5 engine operating over the 

NEDC and fuelled by: pure conventional diesel (B0), B7 and B20. The results of this work 

suggested that B20 blends revealed an improvement on combustion efficiency when 

compared to other fuels tested, increasing CO2 and total VOC emissions and reducing 

NOx, PM, VOC and CO emissions. This experimental study was also first one in literature 

presenting results from B7 blend. However, B7 had an unpredictable behaviour presenting 

large deviation results for all the studied pollutants, pointing out to instability on 

combustion and catalyst processes, increasing the fuel consumption and emission of all 
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studied atmospheric pollutant. The main reason pointed out to explain such instability is 

the biodiesel content, since other studies have revealed that a blend with less than  

10% (v/v) of biodiesel can promote instability on combustion processes. Additionally, a set 

of VOC species was analysed, allowing to verify a discrepancy regarding the dominant 

species among B0, B7 and B20 fuels and revealing that benzene, toluene and octane 

emissions (dominant VOC on B0 exhaust gases) may decrease between 60 to 80% when 

B20 is used.  

Based on emission factors collected from published experimental studies, two emission 

scenarios were designed aiming to assess biodiesel blends use influence on vehicle 

exhaust gases emissions and further in air quality over mainland Portugal and the Porto 

urban area. The reference scenario (REF) considered that biodiesel is not used as fuel by 

road transport sector and the B20 scenario (B20) assumed that all diesel engines are 

fuelled with diesel blended with 20% of biodiesel. The emissions for both scenarios were 

estimated through the emission model TREM-HAP, regarding CO, CO2, NOx, PM10, 

PM2.5, total NMVOC, formaldehyde, acetaldehyde, acrolein, and benzene.  

In general, the comparison between emission scenarios showed that the introduction of 

20% (v/v) of biodiesel in petroleum-based diesel promotes a reduction by 15-20% in CO 

and by 10% in PM10 and PM2.5 emissions in both case studies. Nevertheless, NOx and 

carbonyl compounds emissions (acrolein, formaldehyde and acetaldehyde) increased by 

5% and more than 20%, respectively. Increments of these carbonyl pollutants, which 

occur mainly in urban areas, are especially critical due to their reactivity and carcinogenic 

characteristics, enhancing tropospheric ozone formation and the probability of cancer 

diseases. On the other hand, experimental studies suggest that dominant VOC of pure 

diesel engine exhausts (e.g. toluene), with higher chronic hazard quotients and hazard 

indices than VOC from B20, can sharply decrease when blend fuels are used, which 

points out to a less injurious characteristics of biodiesel blends against pure fossil diesel to 

atmospheric pollution and human health. Nevertheless, due to the rise on NOx and 

carbonyl compounds emissions, a significant increase of the equivalent ozone potential 

over the most populated regions (the West coast of mainland Portugal, including Lisbon 

and Porto metropolitan areas) is projected, potentiating the occurrence of photochemical 

smog.  

As expected, the methodology based on road network, applied over the Porto urban area, 

revealed an improvement in terms of spatial resolution of emissions when compared to 

mainland Portugal case study. In fact, the emission estimation based on fuel consumption 

at municipal scale implies a loss of information regarding emission spatial distribution, due 

to the accounting of line emissions as area sources. The use of road network information 

to estimate road transport pollutant emission allowed the identification of hotspots located 
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at northeast of the Porto city, which are the major contributors to total pollutant emissions 

over the Porto urban area.  

The REF and B20 emission scenarios were used as input to investigate the effects of 

biodiesel use on air quality in both case studies. Mainland Portugal was simulated through 

a domain with 5  5 km2 of horizontal resolution (PT05) while in the Porto urban area the 

considered simulation domain had five times finer resolution (OP01). The selection of the 

WRF-EURAD mesoscale modelling system was carried out based on a multi-model 

comparison exercise, where EURAD exhibited the best performance at simulating air 

quality over PT05. However, as indicated by previous works on air quality modelling 

evaluation, they have important systematic errors (bias) that can be removed by bias-

correction techniques. Thus, the WRF-EURAD simulation results were corrected through 

the application of the RAT04 bias-correction technique, to improve the modelling system 

performance. In general, the evaluation exercise indicated that the WRF-EURAD-RAT04 

system provides suitable air quality simulations within the quality parameters defined for 

both regional and urban simulation domains. This was the first assessment of  

WRF-EURAD mesoscale modelling system performance applied at urban scale over 

Portugal. 

Towards achieving clear outcomes on the impact of the B20 fuel use on air quality, both 

scenario simulations were driven by meteorology regarding the year of 2012 and the 

same emission data for all the activity sectors with exception of the road transport sector, 

for which emissions differ according to REF and B20 scenarios. In general, simulation 

results revealed that B20 scenario promotes reductions up to 25% and 10% for CO and 

NO2 concentrations, respectively, on air quality over mainland Portugal, despite the slight 

increase on NOx emissions for B20 when compared to REF scenario.  

Regarding O3, slight increases on winter-mean concentrations were estimated over the 

West coast of the territory including urban areas. Nevertheless, pollutants such as PM10, 

PM2.5 and NMVOC, which have the main emission source not related with road traffic 

activity, do not assume significant variations over urban areas either in PT05 and OP01.  

Differences between scenarios concerning annual-, summer- and winter-mean 

concentrations of the studied pollutants are negligible over the Porto urban area, with 

exception to CO, which annual-mean concentrations were reduced in about 5%. Contrary 

to PT05 domain, NO2 concentrations slightly increase over OP01. The different 

approaches used on emissions calculations may be the most obvious reason to explain 

these contradictory results. On the other hand, OP01 domain may be too small (26 × 26 

km2) to include all the dynamic and chemical processes of the atmosphere that have an 

influence over the area of interest. This study also revealed a higher reduction on PM 
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concentrations over the OP01 compared to PT05, which is also justified with the 

methodology used for emission estimation.  

This study suggests that there is a co-benefit from the introduction of biodiesel as a 

renewable energy and to improve air quality. However, the Portuguese biodiesel supply 

chain (from the feedstock production to the biodiesel end-use) should be analysed 

holistically and compared to the reduction on fossil fuels production and consumption in 

terms of GHG emissions to verify if this chain is truly contributing to the climate change 

policy and its targets.  

The use of a chemical transport model has proved to be crucial to investigate the impacts 

of atmospheric pollutant emissions on air quality levels, since they react and are 

converted to other compounds in the atmosphere through complex and non-linear physics 

and chemical mechanisms. However, future developments should consider non-regulated 

pollutants emissions (aromatic, PAH and carbonyl compounds), to improve the knowledge 

on biodiesel blends for road transports impacts on air quality at regional and urban areas, 

especially in what concerns to tropospheric ozone formation. This type of pollutants 

should also be considered as individual emission inputs in chemical transport models that 

should be enhanced to include a more detailed chemical reaction mechanism. Human 

exposure to aromatic, PAH and carbonyl compounds should also be included in future 

scientific studies.  

Finally, this work represents an important attempt to assess the of EU’s and Portuguese 

efforts related to climate change and energy issues on air quality at regional and urban 

scales. It allowed to conclude that the use of B20 – the blend fuel that provides higher 

combustion efficiency and lower exhaust gases emissions – on road transport sector can 

improve air quality over mainland Portugal, especially in the West coast, and over the 

Porto urban area.  
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