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“As you set out for Ithaka 

hope the voyage is a long one, 
full of adventure, full of discovery. 

Laistrygonians and Cyclops, 
angry Poseidon—don’t be afraid of them: 

you’ll never find things like that on your way 
as long as you keep your thoughts raised high, 

as long as a rare excitement 
stirs your spirit and your body. 

 
Hope the voyage is a long one. 

May there be many a summer morning when, 
with what pleasure, what joy, 

you come into harbors seen for the first time; 
may you stop at Phoenician trading stations 

to buy fine things, 
and may you visit many Egyptian cities 

to gather stores of knowledge from their scholars. 
  

Keep Ithaka always in your mind. 
Arriving there is what you are destined for. 

But do not hurry the journey at all. 
Better if it lasts for years, 

so you are old by the time you reach the island, 
wealthy with all you have gained on the way, 

not expecting Ithaka to make you rich. 
  

Ithaka gave you the marvelous journey. 
Without her you would not have set out. 

She has nothing left to give you now. 
  

And if you find her poor, Ithaka won’t have fooled you. 
Wise as you will have become, so full of experience, 

you will have understood by then what these Ithakas mean” 
 

“Ithaka” by Constantine P. Cavafy 
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Resumo 
 

 

O desenvolvimento da infeção por micobactérias é caracterizado pela 

formação de granulomas, os quais são agregados bem organizados de células 

do sistema imunitário, nomeadamente macrófagos infetados. A principal 

função do granuloma é restringir e prevenir a disseminação da micobactéria 

permitindo que a resposta imunitária seja centrada numa área limitada. Por 

vezes, estas lesões aumentam em tamanho, progredindo para um processo de 

necrose central levando à caseação tecidular. Contudo, o mecanismo 

subjacente a este tipo de patologia é pouco compreendido. Tem sido descrito 

que a redução da vascularização dos granulomas é essencial para a sua 

caseação e alguns estudos demonstraram que o centro do granuloma é 

altamente hipóxico. Em condições de hipóxia as células do sistema imunitário 

necessitam de se adaptar rapidamente a concentrações de oxigénio baixas de 

forma a permanecerem funcionalmente ativas. Assim, o fator indutível por 

hipóxia – 1 alfa (HIF-1α) tem emergido como o principal regulador do sistema 

de adaptação à hipoxia, mediando uma série de mecanismos fisiológicos e 

celulares. O grupo de investigação da responsabilidade do Professor 

Appelberg, desenvolveu um modelo de estudo que mimetiza a necrose do 

granuloma observado durante a infeção por Mycobacterium tuberculosis em 

humanos. Este modelo consiste na infeção intravenosa de murganhos 

C57BL/6 com uma dose baixa de uma estirpe altamente virulenta de 

Mycobacterium avium (ATCC 25291). Estes murganhos desenvolvem 

granulomas necrosados após 4 meses de infeção. Para determinar a 

relevância do HIF-1α durante a infeção por M. avium, foram utilizados 

murganhos com células da linhagem mielóide deletadas para o fator HIF-1α 

sobre o controlo do sistema Cre-lox. Os resultados obtidos indicam que os 

murganhos deficientes em HIF-1α são mais suscetíveis à infeção e em que o 

aparecimento de granulomas necróticos é antecipado. 
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Abstract 

 
The establishment of mycobacterial infection is characterized by the formation 

of granulomas, which are well-organized aggregates of immune cells, namely 

infected macrophages. The granuloma main function is to constrain and 

prevent dissemination of the mycobacteria, while concentrating the immune 

response to a limited area. In some cases these lesions can grow progressively 

into large granulomas which can undergo central necrosis leading to their 

caseation. However, the mechanism underlying this type of pathology is still 

poorly understood. It has been reported that reduced vascularization of 

granulomas may be one essential mechanism for caseation and some studies 

have demonstrated severely hypoxic regions at the center of the granuloma. 

Under hypoxic conditions the immune cells need to adapt to low oxygen 

conditions in order to remain functionally active. Thus, the hypoxia-inducible 

factor – 1 alpha (HIF-1α) has emerged as a master regulator of the hypoxia 

adaptation system, mediating a wide range of physiological and cellular 

mechanisms. The Appelberg group has developed a granuloma necrosis model 

that mimics the human pathology of Mycobacterium tuberculosis, using 

C57BL/6 mice intravenously infected with a low dose of a highly virulent strain 

of Mycobacterium avium (ATCC 25291). Such mice develop granulomas that, 

at 4 months of infection, exhibit central necrosis. To determine the relevance of 

HIF-1α during M. avium infection we used a mouse strain deleted of HIF-1α 

under the Cre-lox system in the myeloid cell lineage. The results obtained 

indicate that HIF-1α deficient mice are more susceptible to the infection and 

that the onset of necrotic granulomas is faster. 



Contents 

 

INTRODUCTION ................................................................................................................... 1 

1. Tuberculosis .................................................................................................................. 3 

1.1. Epidemiology of M. tuberculosis .............................................................................. 4 

1.2 Mycobacterium genus .............................................................................................. 4 

1.3 Immune responses to mycobacterial infections ........................................................ 5 

1.3.1 Initial events following the mycobacterium infection ............................................ 5 

1.3.2 Recognition of the mycobacteria by macrophages .............................................. 5 

1.3.3 Phagocytosis ...................................................................................................... 6 

1.3.4 Killing mechanisms ............................................................................................. 7 

1.3.5 Cytokines ............................................................................................................ 8 

1.3.6 Other innate and adaptive immune cells ............................................................. 9 

1.4 Immunopathology of mycobacteria ......................................................................... 11 

1.4.1 Granuloma necrotizing models .......................................................................... 12 

1.5 Mycobacterium avium study model ......................................................................... 14 

2. Hypoxia and mycobacteria pathology........................................................................... 14 

2.1 Hypoxia-inducible factor ......................................................................................... 15 

2.2 Immune system and hypoxia .................................................................................. 16 

2.3 HIF-1α function in immune cells ............................................................................. 17 

3. Aims of this thesis ........................................................................................................ 18 

METHODS .......................................................................................................................... 19 

Mice ................................................................................................................................. 21 

Bacteria ........................................................................................................................... 21 

In vivo infection ................................................................................................................ 22 

Isolation of liver mononuclear cells .................................................................................. 22 

HIF-1α quantification ........................................................................................................ 22 

IFNγ quantification ........................................................................................................... 23 

Flow cytometry ................................................................................................................. 23 



 
 

Gating strategy ................................................................................................................ 24 

Histology .......................................................................................................................... 25 

Morphometric analysis of the granulomatous area ........................................................... 25 

Immunohistochemistry ..................................................................................................... 26 

Statistics .......................................................................................................................... 26 

RESULTS ........................................................................................................................... 27 

Necrosis occurs in macroscopic visible granulomas in C57BL/6 mice .............................. 29 

Granuloma vascularization during granuloma progression in C57BL/6 mice .................... 29 

Granulomata is mainly constituted by macrophages ........................................................ 30 

HIF-1α is increased during M. avium infection ................................................................. 31 

HIF-1α absence leads to higher bacterial load ................................................................. 32 

HIF-1α deficient mice develop necrotic granuloma earlier compared with C57BL/6 mice . 33 

HIF-1α absence induces splenomegaly and hepatomegaly during M. avium infection ..... 35 

Infected HIF-1α deficient mice present increased cellularity ............................................. 35 

DISCUSSION ...................................................................................................................... 39 

Future perspectives ......................................................................................................... 44 

REFERENCES .................................................................................................................... 47 

 

  



Figures 
 
 

Figure 1 - Estimated TB incidence rates by country in 2013 ................................................. 3 

Figure 2 – Classical activation of macrophages .................................................................... 9 

Figure 3 – Sequence of events following the infection with M. avium .................................. 12 

Figure 4 – HIF-1α pathway. ................................................................................................ 16 

Figure 5 – Gating strategy. ................................................................................................. 25 

Figure 6 - Granuloma progression in the livers from C57BL/6 mice infected with M. avium 

25291. ................................................................................................................................. 29 

Figure 7 - Endomucin expression evaluation in the livers from C57BL/6 mice infected with M. 

avium 25291. ....................................................................................................................... 30 

Figure 8 – F4/80 expression evaluation in the livers from C57BL/6 mice infected with M. 

avium 2529. ......................................................................................................................... 31 

Figure 9 - Analysis of total HIF-1α protein in liver mononuclear cells during M. avium 

infection. .............................................................................................................................. 32 

Figure 10 – HIF-1α presence is important in the control of M. avium infection .................... 33 

Figure 11 – HIF-1α absence influences granuloma progression during M. avium infection . 34 

Figure 12 – HiF-1α absence induces an increase of spleen and liver sizes during infection 

with M. avium 25291. .......................................................................................................... 35 

Figure 13 – M. avium infected HIF-1α deficient mice present increased cellularity ............. 36 

  

file:///C:/Users/pc/Desktop/Tese_Versão%20Final14112014_MB%20(1).docx%23_Toc406681640
file:///C:/Users/pc/Desktop/Tese_Versão%20Final14112014_MB%20(1).docx%23_Toc406681652


 
 

ABBREVIATIONS 

 

AIDS Acquired immune deficiency syndrome 

APC Antigen presenting cells 

ATCC American type culture collection 

ATP Adenosine triphosphate 

CD Cluster of differentiation 

CFU Colony-forming unit 

DC Dendritic cell 

ELISA Enzyme-linked immunosorbent assay 

HIF-1α Hypoxia-inducible factor-1 alpha 

HIV Human immunodeficiency virus 

HRE Hypoxia-response elements 

IFN-γ Interferon gamma 

Ig Immunoglobulin 

IL Interleukin 

iNOS Inducible nitric oxide synthase 

LPS Lipopolysaccharide 

MAC Mycobacterium avium complex 

M. avium Mycobacterium avium 

mRNA Messenger ribonucleic acid 

MHC Major histocompatibility complex 

M. tuberculosis Mycobacterium tuberculosis 

MyD88 Myeloid differentiation factor 88 

NF-κB Nuclear factor- kappa B 

NK Natural killer 

NKT Natural killer T cell 

Nramp1 Natural resistance associated macrophage protein 1 

NTM Nontuberculosis mycobacteria 



NO Nitric oxide 

02 Oxygen 

PET Positron emission tomography 

PRR Pattern recognition receptor 

Pvhl Von Hippel-Lindau tumor suppressor protein 

ROS Reactive oxygen species 

Slc11a1 Solute carrier family 11a member 1 

TB Tuberculosis 

TH1 T helper 1 

TNFα Tumor necrosis factor alpha 

TNFRp55 p55 TNF receptor 

TLR Toll-like receptor 

TRAIL TNF-related apoptosis inducing ligand 

Treg Regulatory T cells 

VEGF Vascular endothelial growth factor 

WT Wild-type 

WHO World Health Organization 

  

 

  



 
 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

INTRODUCTION 
 

 

  

 

  



 
 

  



 

3 

1. Tuberculosis 

Tuberculosis (TB) has plagued humankind worldwide for thousands of years. Besides 

archaeological evidences that TB was already present in Egyptian mummies, the climax of 

the TB epidemic occurred during the end of the XVIII century and the beginning of the XIX 

century, by the time of industrial revolution. Living and working in manufactures cities was 

terrible due to the overcrowded dwellings where sanitation and hygiene were absent. No 

wonder that TB was responsible for up to 25% of deaths in Europe. In the beginning of the 

XX century, new cases of TB began to fall as living standards (housing, nutrition, and 

income) improved, just before the advent of antituberculosis drugs. Despite the discovery of 

antituberculosis drugs more than 60 years ago, TB still remains a major global health 

problem 1-3. In 2013, there were an estimated 9.0 million new cases of TB, and despite being 

in most instances, a curable disease, 1.5 million people died in 2013 due to TB. Although all 

countries are affected, 85% of cases occur in Africa (29%) and Asia (56%), while India and 

China alone represent 35% of TB cases (Fig. 1). TB is highly connected with the human 

immunodeficiency virus (HIV). People infected with HIV represent over 10% of annual TB 

cases and are up to 37 times more likely to develop TB than HIV-negative individuals 1, 4, 5. 

Figure 1 - Estimated TB incidence rates by country in 2013. Adapted from WHO 

1
(http://www.who.int/topics/tuberculosis/en/) 
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1.1. Epidemiology of M. tuberculosis 

TB disease is mainly caused by the slow-growing acid-fast bacillus Mycobacterium 

tuberculosis (M. tuberculosis), identified by the Nobel Prize laureate, Robert Koch in 1882. 

According to estimates by the World Health Organization (WHO), one-third of the world’s 

population is infected with M. tuberculosis, but remains asymptomatic and noninfectious– 

defined as latent TB. In 90% of the cases, the infection will not lead to active disease, while 

the other 10% will develop active disease in their lifetime 3, 4. The M. tuberculosis is primarily 

transmitted by the respiratory route, through the inhalation of aerosolized droplets that carry 

the bacteria. TB is predominantly a disease of the lung and for that reason pulmonary TB is 

the most common, accounting for 70% of the cases. However, it can cause disease in other 

organs, including lymph nodes, bone and meninges, thereby causing extra pulmonary 

disease 6, 7. 

 

1.2 Mycobacterium genus 

The genus Mycobacterium includes more than 150 species that reside in a wide 

variety of habitats 8. Among these species, the great majority are non-pathogenic 

environmental organisms, although this genus also contains important human pathogens. M. 

tuberculosis complex includes M. tuberculosis, M. africanum, M. canetti, M. bovis and M. 

microti, and these are all agents of TB, being the leading cause of death from a curable 

infectious disease in world. M. leprae and M. ulcerans are the causative agents of leprosy 

and buruli ulcers, respectively. These are, respectively, the second and third most common 

mycobacterial infections in humans, after TB 9, 10. However, while TB, leprosy and buruli 

ulcers are specific diseases caused by specific mycobacteria, other mycobacteria are usually 

referred simply as atypical mycobacteria or nontuberculosis mycobacteria (NTM). According 

to current taxonomy, the NTM include more than 90 known species, however, about one 

third has been associated with human and animal diseases. Among the NTM, the 

Mycobacterium avium complex (MAC) attracts serious attention. The MAC comprises a 

group of closely related species: Mycobacterium avium (M. avium) and M. intracellulare. 

MAC is probably the most common cause of disease from NTM in most regions of the world. 

MAC is extremely widespread in numerous environmental sources, including soil, residential 

and hospital water systems, public drinking and potable water sources 11, 12. In the last years 

of the 20th century, the M. avium infection became particularly relevant due to the close 

connection with the acquired immune deficiency syndrome (AIDS) patients. M. avium is an 

opportunistic infectious agent that mostly affects patients with underlying conditions that 

compromise immunity. In fact, M. avium is frequently found in AIDS patients. The HIV 
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infection leads to a progressive reduction of CD4+ T cells that is correlated with the 

increasing risk of M. avium infection. The patients with advanced HIV disease (CD4+ T cells 

count <50 cells/µL) have higher risk of developing M. avium infection. The risk does not 

appear to vary according to the gender, ethnicity or route of transmission 13, 14. 

 

1.3 Immune responses to mycobacterial infections 

1.3.1 Initial events following the mycobacterium infection 

In humans, the most common routes of infection by M. avium are either through the 

intestinal tract, causing rapidly disseminating infections, or by the inhalation of droplets 

containing the bacillus, which slowly disseminate to other organs. Following the 

establishment of pathogenic Mycobacterium spp (including M. avium) infection, the bacilli are 

phagocytosed mainly by resident macrophages but also by neutrophils and dendritic cells 

(DCs). After successfully infecting the host, the lifestyle of M. avium is identical to that of 

other pathogenic mycobacteria. This process triggers a pro-inflammatory and anti-

inflammatory response that induce the production of cytokines and chemokines, a stimulation 

of phagocyte antimicrobial activities and the recruitment of other cell types from neighboring 

blood vessels, which leads to the granuloma formation (which will be discussed later) 6, 7. As 

previously described, the bacteria enter the host, and three outcomes are possible: (i) the 

immune system immediately destroys the mycobacteria (rare); (ii) the balance between the 

immune responses and the bacteria growth leads to the formation of the granuloma, 

preventing the dissemination of the mycobacteria - latent state; (iii) the infection leads to 

disease (this frequently occurs in immunocompromised individuals) – active disease 15, 16. 

Despite the involvement of DCs and natural killer (NK) cells in the innate immune response 

against the mycobacteria infection, macrophages play the pivotal role in the resistance 

against the mycobacteria infection. 

 

1.3.2 Recognition of the mycobacteria by macrophages 

The immune system has the ability to detect and eliminate invading pathogenic 

microorganisms by discriminating between “self” and “non-self”. The innate immune system 

detects non-self through the pattern recognition receptors (PRR), which can recognize 

conserved molecular structures found in microbes. Therefore, phagocytosis of mycobacteria 

by macrophages is a prelude to microbial killing. The internalization of mycobacteria by 

macrophages is mediated by a diverse array of receptors: type A scavenger receptors, 

complement receptors (CR3 and CR4), mannose or Fcγ receptors. 
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Apart from phagocytosis, some data have also shown the importance of the 

recognition of M. avium via the Toll-like receptor (TLR) playing a key role in the innate 

immunity. So far, thirteen TLRs have been identified in humans, and each appears to be 

required for responses to a different class of infectious pathogen 17, 18. TLR-2 has been 

described as the main receptor for mycobacterial components 19. Wang et al, described that 

M. avium infection induces TLR-2 mRNA expression and decreases TLR-4 mRNA 

expression in macrophages 20. The analysis of TLR-2 deficient mice has shown an increase 

of susceptibility to M. avium compared with the C56BL/6 mice 21, 22. Interestingly, despite the 

clear involvement of TLR-2, mice deficient in myeloid differentiation factor 88 (MyD88), an 

intracellular adaptor protein that transduces signals from most TLR, are even more 

susceptible to M. avium than TLR-2 deficient mice 22. The highly enhanced susceptibility of 

animals deficient in MyD88 was indicative that multiple TLRs might be involved in the innate 

recognition of M. avium 23. 

 

1.3.3 Phagocytosis 

Upon mycobacteria internalization, a sequence of processes leads to the formation of 

cytoplasmic vacuoles called phagosomes, which encapsulate the engulfed bacteria. 

Normally, the phagosome maturation is a complex process that leads to the fusion of the 

phagosome with the lysosome, resulting in the phagolysosome. The lysosome is a complex 

vacuolar organelle that contains hydrolytic enzymes capable of degrading the phagocytized 

material in the phagolysosome structure 24. These enzymes are active at the optimally acidic 

pH (4.5 – 5.0) maintained within the lysosome, but not at the neutral pH of the cytosol 25. The 

lysosome is, in fact, the most acidic organelle in humans 26. The acidic environment results 

from the action of the membrane adenosine triphosphate (ATP)-dependent proton pumps, 

which actively transport protons into the lysosome from the cytosol 26, 27. However, viable and 

virulent mycobacteria have the ability to prevent phagosomal maturation, by inhibiting the 

phagosome-lysosome fusion 28, 29. Thus, through this mechanism mycobacteria can adapt to 

the intracellular environment of the macrophage, creating a niche for survival, which prevents 

the acidification of the phagocytic vacuole. The normal M. avium phagosomal environment is 

between pH = 5.8 to 6.1 and the pH optimal for M. avium survival is 6.0. This collectively 

suggests that the low acidic environment encountered by M. avium within macrophages 

favors its survival 25, 30. 

However, the activation of macrophages causes a dramatic increase in the resistance 

against M. avium, leading to the maturation of mycobacterial phagosomes 31-33. While 

unactivated macrophages have low microbicidal activity and express low levels of major 

histocompatibility complex (MHC) class II molecules, an activated macrophage shows 
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increased microbicidal activity through the improvement of killing mechanism and it is 

transformed into a potent antigen-presenting cell (APC) 33, 34. Infected macrophages can 

produce numerous cytokines, namely, tumor necrosis factor alpha (TNFα) and interleukin – 

12 (IL-12). These cytokines can act in concert to drive an interferon gamma (IFNγ) response 

from T helper type 1 (TH1) and NK cells. IFNγ plays a major role in the activation of 

macrophages 35. Several in vitro studies suggest that mycobacterial phagosomes are shifted 

from an early to a late endosomal stage of the phagosome maturation by macrophage 

activation, which is associated with a reduction in mycobacterial growth and viability 36, 37. 

Notably, experiments using IFNγ deficient mice showed an exacerbation of M. avium 

infection 38, 39. These findings suggest that resistance to mycobacteria requires the secretion 

of IFNγ, which leads to the activation of macrophages and consequently to the control of the 

infection. 

 

1.3.4 Killing mechanisms 

Among the antimicrobial mechanisms of the macrophage, those involving oxidative 

damage such as: the respiratory burst with production of reactive oxygen species (ROS) and 

nitric oxide (NO), have proven to be important mechanisms in the killing of many pathogens. 

In fact, these two systems act synergistically in killing many microbes. These mechanisms 

are considered the major players in the growth control of intracellular parasites. However, 

numerous studies highlighted the existence of antimicrobial activity, which is not dependent 

of NO and ROS generation. In fact, the use of p47phox (component of the NADPH oxidase) 

deficient mice, have shown that the respiratory burst is not required for the control of M. 

avium 40, 41. Doherty and Sher showed that inducible nitric oxide synthase (iNOS) deficient 

mice were resistant to M. avium infection 42 and that at later stages of infection they were 

even more resistant 43. With a similar approach, studies with Salmonella and Listeria using 

double knockout mice deficient in the generation of ROS and iNOS showed that 

macrophages were able to kill the bacteria 44. These findings suggest the existence of ROS 

and NOS-independent antimicrobial mechanisms. 

The deprivation of essential nutrients arises as a potential mechanism to limit 

intracellular growth of M. avium. Early studies on the genetics of susceptibility to infection 

highlighted the role of the gene natural resistance associated macrophage protein 1 

(Nramp1) or solute carrier family 11a member 1 (Slc11a1) in the control of M. avium infection 

in mice 40, 45. Nramp1 is a transmembrane protein expressed in endosomal and phagosomal 

membranes of macrophages, and has the ability to affect the capacity of the host to control 

intracellular replication, presumably by depriving the access to iron by the pathogen 46, 47. 
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Consequently, a strong dependence of the infection severity upon the presence of functional 

versus dysfunctional Nramp1 allele it has been demonstrated in mice 48, 49. 

 

1.3.5 Cytokines 

Cytokines are important mediators and regulators of the immune response against all 

pathogens. The interaction between the pathogens and cells of the immune system strongly 

induces the secretion of cytokines which are crucial in innate defense and in determining the 

subsequent adaptive response. In this section, the roles of various cytokines involved in the 

response to M. avium are discussed. 

IFNγ plays a key role in the control of M. avium infection. This cytokine is mainly 

produced by CD4+ T cells 50 and NK cells (Fig. 2). It is now known that the innate 

lymphocytes, γδ T cells, natural killer T cells (NKT) and CD8+ T cells can also produce IFNγ 

in response to mycobacterial stimulation. IFNγ plays a crucial role in the activation of 

macrophages, promoting the production of NO and other intermediates, that results in 

mycobacterial growth control. In fact, in vivo neutralization of IFNγ exacerbates M. avium 

infection 38, 39 and IFNγ deficient mice are more susceptible to the infection 42, 51. 

TNFα also plays a major role in the initial and long-term control of M. avium infection. 

M. avium induces TNFα secretion by macrophages, neutrophils, DCs and T cells. TNF is 

important in early response by activating macrophages (Fig. 2) as well as cell recruitment to 

the site of infection. The important role played by TNFα during M. avium infection was 

demonstrated through the exogenous administration of TNFα in vitro, which led to M. avium 

elimination 52, 53. In the other hand, the neutralization of TNFα led to exacerbation of M. 

avium54 and it was also shown that TNFα deficient mice succumbed to M. avium53, 55. 

IL-12 is induced in response to mycobacteria by macrophages and DCs. 

Subsequently, IL-12 stimulates the production of IFNγ by immune cells, in particular NK cells 

and helper T cells (Fig. 2) 56. The production of IFNγ has a very powerful effect in enhancing 

the ability of phagocytic cells to produce IL-12. This cytokine also enhances the production of 

IFNγ, creating a positive reinforcement loop 57. IL-12 also drives an adaptive cellular 

response, inducing TH1 differentiation, which become a major source of IFNγ. Not 

surprisingly, IL-12p40 deficient mice are highly susceptible to M. avium infection and the 

neutralization of IL-12 exacerbated M. avium infection. It has also been reported that in the 

absence of IL-12, IFNγ responses were drastically reduced and upon exogenous 

administration of recombinant IL-12, IFNγ responses were enhanced leading to increased 

protection 58, 59. Additionally, TLR-2 and CD40 appear to be required for an optimal IFNγ-

dependent protective immune response to M. avium. Both TLR-2 and CD40 play an 

important role by generating optimal levels of IL-12p40 21, 60. 
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Figure 2 – Classical activation of macrophages. Macrophages can produce numerous cytokines, 

namely TNFα and IL-12, which are essential for macrophage activation. IL-12 has the ability to 

stimulate the production of IFNγ by NK cells and TH1 cells. IFNγ play a major role in the activation of 

macrophages. Activated macrophages will enhance the production of IFNγ, creating a positive 

reinforcement loop. 

 

1.3.6 Other innate and adaptive immune cells 

There are other cells that participate in the innate response besides macrophages, 

such as DCs, NK cells, and neutrophils. 

The role played by NK cells in mycobacterial infections is not clear, however there are 

several studies demonstrating a role for this cell population. It is known that NK cells are able 

to secrete cytokines such as IFNγ, a major modulator of M. avium infection. The role of NK 

cells during M. avium infection was demonstrated through the depletion of NK cells by using 

an anti-NK1.1 monoclonal antibody. The results obtained in this in vivo model showed an 

uncontrolled multiplication of M. avium in C57Bl/6 mice 61. By using in vitro assays, it has 

been demonstrated that NK cells interact with macrophages and this leads to a reduction in 

mycobacterial proliferation 62. 

The involvement of neutrophils in mycobacterial infections has been discussed 

controversially in the literature in the past few years 63, 64. Since neutrophils only ingest 

mycobacteria in the first hours of infection and since the infection will become chronic, it is 

unlikely that neutrophils kill M. avium. However, the neutrophils as a cell type are more 

complex than the simple ingestion and killing 65. The neutrophils play an important role in 

determining the immune response and also in cooperating with other cell types to improve 

the effector responses of the immune system. The importance of neutrophils in the protective 
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response was shown by the depletion of neutrophils using a monoclonal antibody which led 

to the exacerbation of the infection 63, 64. Infected neutrophils might be involved in the 

recruitment of a protective type 1 response through the secretion of chemokines and 

cytokines (such as IL-12 and TNFα) 64. More recently, it has been suggested that neutrophils 

might be involved in the adaptive immune response by crosstalk with DCs in order to 

increase mycobacterial antigen presentation 65, 66. 

DCs are specialized in the presentation of antigen to T cells. Mycobacteria infected 

DCs migrate to the lymph nodes under the influence of IL-12p40, IL-12p70, CCL19 and 

CCL21 to drive naïve T cells differentiation toward a TH1 phenotype. DCs are the major 

source of IL-12, an essential cytokine in the production of IFNγ by immune cells (CD4+ TH1 

cells and NK) 6, 67. The role of DCs in the mycobacterial infection was demonstrated through 

the depletion of DCs. Tian et al, have shown the importance of DCs in the initiation of the 

adaptive T cell response, since the absence of DCs led to a delay of CD4+ T cell response, 

which consequently led to the exacerbation of infection 68. 

Early recognition of M. avium is crucial to bacterial growth control. However, 

protective immunity against M. avium also requires efficient cell mediated immune responses 

by CD4+ and CD8+ T cells. This section will summarize how T cells contribute to protective 

immunity against M. avium. It is clear that CD4+ T cells play a crucial role in the control of 

infection by atypical mycobacteria, such as M. avium, being the major producers of IFNγ. 

The secretion of this cytokine leads to activation of mycobacterium-infected macrophages, 

inducing NO and RNS production but also IL-12 and TNFα, which contribute to the control of 

the pathogen. M. avium is opportunistic pathogen infecting immunocompromised individuals 

such as AIDS patients with low CD4+ T cells counts 6, 11. The fact that a severe depletion of 

the CD4+ T cells in AIDS patients favors the establishment of infection by this mycobacteria, 

suggests that T cells play a major role in the host defense against M. avium infection in 

humans. In vivo experiments, using CD4+ T cell deficient mice confirmed the requirement of 

CD4+ T cell in the M. avium growth control 69. Despite substantial evidences that CD4+ T cells 

are crucial for an effective defense against M. avium, the role of CD8+ T cells remains 

unclear and does not appear to influence the control of M. avium infection. In a CD8+ T cell 

deficient mice the bacterial load did not show any difference compared to C57BL/6 mice 69. 

Another study with a β2-microglobulin deficient mice confirmed the negligible role played by 

the MHC class I-restricted CD8+ T cells 35, 70. 
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1.4 Immunopathology of mycobacteria 

After M. avium recognition and up take by the resident macrophages, the bacteria can 

interfere with key antimicrobial mechanisms and start to replicate intracellularly. Infected 

macrophages will produce a range of cytokines and chemokines that will attract additional 

monocytes, neutrophils and DCs. Infected macrophages or DCs can migrate to the draining 

lymph node under the influence of IL-12p40 and IL-12p70 and serve as APC to drive naïve T 

cell differentiation towards a TH1 phenotype. Protective antigen-specific TH1 cells migrate 

back to the infection site and produce IFNγ, thereby leading to macrophage activation 6, 15. 

After arriving at the site of infection, the immune cells of both innate and adaptive immunity 

form the classical granuloma. Granulomas are well-organized aggregates of immune cells, 

namely heavily infected macrophages and stimulated macrophages which have differentiated 

into multinucleated giant cells, epithelioid cells, foamy (lipid-rich) macrophages and 

neutrophils, surrounded by a ring of lymphocytes, largely CD4+ T cells, but also CD8+ T cells, 

B cells, DCs, NK cells and by fibroblasts, which create a peripheral fibrotic capsule 6, 71, 72. 

The mycobacterial granuloma contributes to host protection through different functions. The 

granuloma’s main function is to constrain and prevent the dissemination of the mycobacteria, 

concentrating the immune response to a limited area. Furthermore, T cell-activated 

macrophages can lead to the control of bacterial growth. Granulomas also restrict tissue 

damage by shielding the surrounding tissue from the chronic inflammation. The mycobacteria 

can persist within the granuloma structure for decades in a latent state. This latent state is 

characterized by the control of bacterial proliferation through the balance of immune 

responses 71, 73. 

For some unknown reasons, mycobacteria can reactivate due to a deregulation of 

immune responses. This will lead to granuloma progression and no control of mycobacterial 

growth. In such situations, the granuloma is no longer able to contain the bacteria and these 

lesions grow to macroscopic sizes and may evolve to show areas of central necrosis. This 

type of lesions is present not only in M. avium infection but also in M. tuberculosis infection. 

In fact, the hallmark of human TB is the caseating granuloma with an amorphous acellular 

core of necrotic material that resembles “cheese” (with caseum being the Latin word for 

cheese). The accumulation of caseum in the center of the granuloma leads to the collapse of 

the granuloma center, releasing the virulent bacilli to other parts of the tissue where more 

lesions will be formed 15, 16, 73. 
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Figure 3 – Sequence of events following the infection with M. avium. The infection starts with the 

phagocytosis of the bacteria by tissue macrophages. Upon the contact with M. avium, DCs can 

migrate to the lymph nodes under the influence of IL-12p40 and IL-12p70 to drive naive T cell 

differentiation toward a TH1 phenotype. TH1 cells migrate back to the infection site to form the classical 

granuloma. 

 

1.4.1 Granuloma necrotizing models 

Some studies using knockout mice infected with M. avium have clearly shown the 

importance of T cells in the development of protective immunity against mycobacterium 

infections. These studies also showed that although the assembly of a granuloma may occur 
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in the absence of T cells, the granuloma is poorly structured. More interesting, neither nude 

nor CD4 deficient mice exhibited central necrosis. Morphologic analysis showed smaller 

lesions and extensive accumulations of infected macrophages and few lymphoid cells. On 

the other hand, the CD8 deficient mice present central necrosis similar to that found in 

C57Bl/6 mice 69, 74. 

The role of IFNγ in granuloma formation was demonstrated by Flórido et al using 

IFNγ deficient mice infected with M. avium 69. The histological analysis showed severe 

deficiencies in the formation of granulomas and the absence of necrosis. No granulomas 

were found in IFNγ deficient mice, but instead some accumulations of macrophages heavily 

infected with M. avium were identified 69, 74. The importance of IFNγ inducers, such IL-12, IL-

6 and CD40 in granuloma formation is also described in the literature. The IL-12 or CD40 

deficient mice also showed lack of cellular infiltration and absence of necrosis as was 

observed using IFNγ deficient mice. On the other hand, IL-6 deficient mice showed well-

structured granulomas, however these consisted of smaller lesions with less evidence of 

necrosis compared to WT mice 23, 69, 74. 

To address the role of TNF in the formation of granulomas, mice with genetic ablation 

in TNF 75, p55 TNF receptor (TNFRp55) 69, 76 or TNF-related apoptosis inducing ligand 

(TRAIL) 77 were used. The action of TNF is mediated by two different receptors, the type I 

and type II TNF receptors, also known as p55 and p75 respectively 78. The TNFRp55 has 

been shown to be important in the control of TB infection in mice 79. On the other hand, 

TRAIL is expressed by different cell types and is capable to bind to death receptors, which 

contain a death domain in the intracellular region to induce cell apoptosis 80, 81. It was shown 

that TNFRp55 is not required for the assembly of the granuloma and even in the absence of 

TNF, TNFRp55 or TRAIL necrosis still appeared 75-77. 

Curiously, the same observation was made in certain inbred strains of mice such as 

BALB/c or DBA/1. In fact, despite similar levels of M. avium proliferation found in these 

strains compared with C57BL/6 mice, the development of granuloma necrosis it was not 

observed. These experiments have shown the role of complement component C5 on the 

development of the granuloma progression, since DBA-1 strain were C5 deficient 82. The lack 

of C5 led to a diminished expression of chemokines and cytokines, which probably affected 

the recruitment of leukocytes 83, 84. These models provided evidence that complement 

component C5 is required not only for the efficient organization of granuloma but also for the 

development of the granuloma necrosis 82. 
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1.5 Mycobacterium avium study model 

The mouse model offers the best tool for the study of development and progress of 

necrotic granulomas. Nevertheless, normal mice infected with M. tuberculosis develop 

granulomas that seldom undergo necrosis. These granulomas are poorly organized and 

exclusively cellular; they lack fibrosis or hypoxia; the bacterial counts remain at a relatively 

high but apparently controlled level throughout the course of the disease; and all the mice 

ultimately die of progressive infection. This does not readily recapitulate the pathology seen 

in the human disease 6, 69, 73. However, although lacking a good model of TB in mice, TB 

lesions can be found in guinea-pigs and rabbits infected with low-doses of virulent M. 

tuberculosis. Unfortunately, this can be very restrictive in the experimental point of view, 

since the availability of these species is small 85. The Appelberg group has developed a 

granuloma necrosis model that mimics the human pathology of M. tuberculosis. Using a low 

dose (102 colony-forming units (CFUs)) inoculum of a highly virulent strain of M. avium 

(ATCC 25291) in C57BL/6 mice, it is possible to observe the development of granuloma 

necrosis in the lungs and liver after approximately four months of infection. This type of 

infection is characterized by the formation of small lesions that grow progressively into large 

granulomas that undergo central necrosis, which bears many resemblances with the lesions 

found in humans infected with M. tuberculosis or M. avium. Curiously, the same mice 

infected with the same strain of M. avium but with a higher dose (106 CFUs) never developed 

this type of lesion 69, 86. 

 

2. Hypoxia and mycobacteria pathology 

In an effort to better understand the mechanisms underlying the development of 

caseous necrosis, some studies have shown different evidences of severe hypoxic regions at 

the center of necrotic granulomas. It was already demonstrated that M. tuberculosis 

granulomas in guinea pigs, rabbits and nonhuman primates became hypoxic 85. In contrast, 

severe hypoxia was not demonstrated in pulmonary lesions of C57BL/6 mice infected with M. 

tuberculosis strain H37Rv. However, when using C57BL/6 mice infected with M. avium strain 

TMC724 hypoxic granulomas were observed87. However, both studies have shown hypoxia 

by two different methods: the direct measurement of the partial pressure of oxygen (pO2) 

using a flexible Clarke type electrode catheter, or by using the pimonidazole marker 

providing immunohistochemical evidence of hypoxia. Pimonidazole hydrochloride is an 

imaging agent that is activated under hypoxic conditions in mammalian tissue 85, 87. Recently, 

through a noninvasive positron emission tomography (PET) imaging of live animals, hypoxic 

lung necrotic granulomas in C3HeB/FeJ mice infected with M. tuberculosis strain H37Rv 
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were demonstrated. In this technique, each mouse was injected via the tail vein with 

Copper(II)-diacetyl-bis(N4-methyl-thiosemicarbazone), which in normoxic cells is reduced 

while in live cells in hypoxia is retained 88. 

 

2.1 Hypoxia-inducible factor 

The maintenance of oxygen homeostasis is an essential process in mammalian cells. 

The understanding of the molecular mechanism underlying this fundamental aspect of cell 

biology has started only few years ago 89, 90. When the balance between oxygen supply and 

demand is affected, tissue hypoxia and cell death can rapidly occur. Hypoxia is induced not 

only as a global consequence of a decreased oxygen tension, but also locally at sites of 

inflammation, tissue ischemia and injury, and solid tumor growth 91, 92. Therefore, adaptation 

to hypoxia is a vital survival mechanism in mammalian cells. These cells have the ability to 

adapt to conditions of hypoxia through the induction of the expression of several genes. The 

hypoxia-inducible factor-1 alpha (HIF-1α) has emerged as a master regulator, mediating a 

wide range of physiological and cellular mechanisms indispensable to adapt to hypoxia. HIF-

1α is directly involved in angiogenesis 93, erythropoiesis 94, cell growth and differentiation 95, 

survival and apoptosis 96. 

Under normoxic conditions, HIF-1α has a very short half-life. At normal 

concentrations of O2, HIF-1α is suppressed by hydroxylation of two prolyl residues (Pro-402 

and Pro-564). This modification allows the interaction with the von Hippel-Lindau tumor 

suppressor protein (pVHL). pVHL is the recognition component of E3 ubiquitin ligase 

complex that targets HIF-1α for ubiquitination and proteasomal degradation. Under hypoxic 

conditions, prolyl hydroxylation is suppressed and HIF-1α escapes from proteasomal 

degradation. Thus, HIF-1α becomes stabilized and translocates from the cytoplasm to the 

nucleus, where it dimerizes with HIF-1β. The HIF complex formed becomes transcriptionally 

active, binding hypoxia-response elements (HREs) 91, 97. Classical HIF-1α target genes 

include the vascular endothelial growth factor (VEGF) 98, erythropoietin 94, glucose 

transporters 99 and transferrin 100. 

Besides HIF-1α, HIF-2α is also involved in the regulation of physiological and cellular 

mechanisms in the hypoxia adaptation101. The HIF-2α and HIF-1α subunits are structurally 

and functionally similar, since they also have the two prolyl residues, which are hydroxylated 

in normoxia, and are targeted for degradation by VHL ubiquitin E3 ligase complex. In hypoxic 

conditions, the inhibition of hydroxylation results in stabilization of HIF-2α which 

consequently translocates to the nucleus, where it dimerizes with HIF-1β, resulting in the 

HIF-2 complex, which transactivates HRE-target genes 102,103. A number of studies also 
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showed that HIF-2α plays an important role in regulating macrophage responses to hypoxia, 

however there is some debate about which form of HIF is the most important in the 

regulation of macrophages in hypoxic conditions 104, 105. 

 

 
 

Figure 4 – HIF-1α pathway. Under normoxia the HIF-1α is rapidly degraded. In this condition, HIF-1α 

is suppressed by hydroxylation and target for proteasomal degradation. During hypoxia, HIF-1α 

becomes stabilized and is translocated to the nucleus, where the HIF complex becomes 

transcriptionally active. 

 

2.2 Immune system and hypoxia 

Microenvironmental conditions are frequently encountered in injured tissues and are 

characterized by low levels of oxygen. This is probably due to a combination of some factors 

including the excessive oxygen consumption by highly metabolically activated resident cells, 

but also by infiltrating immune cells. It has also been shown that chronic inflammation leads 

to a marked deregulation of vasculature 106, 107. Thus, the immune cells that are recruited to 

these inflammation sites need to adapt to hypoxia in order to remain functionally active. 

Lewis and colleagues showed that hypoxic conditions profoundly affect a broad range of 
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myeloid cell properties in vitro, e.g., phagocytosis, cell surface marker expression, secretion 

of cytokines, chemokine receptor levels, adhesion, migration and cell survival108. To maintain 

their biological activities in hypoxia, immune cells need to shift their metabolism to anaerobic 

glycolysis to generate ATP. Some studies in hypoxia environment have shown that inhibition 

of glycolysis can directly inhibit ATP production and subsequently, myeloid cell properties as 

diverse as adhesion, extravasation, motility and invasion. Recently, HIF-1α has arisen as a 

key regulator of glycolysis and immune functions 106, 109. 

 

2.3 HIF-1α function in immune cells 

The crucial role of HIF-1α in immune cell functions using different conditional 

knockout mice lacking HIF-1α has been demonstrated in several studies. The influence of 

HIF-1α in the innate immune system is relatively well established and a role in the adaptive 

immune system has recently been proposed 90, 109. 

The absence of HIF-1α in cells from the myeloid lineage showed a profound 

impairment of myeloid cell aggregation, motility, invasiveness, and bacterial killing 109. In fact, 

Anand and colleagues have shown by in vitro assays, that HIF-1α activation led to an 

increase of the phagocytic activity and to bacterial killing under hypoxic conditions, when 

compared to normoxic conditions 110. HIF-1α is strongly stimulated under bacterial exposure 

and has the ability to regulate the production of key immune effectors molecules, including 

NO and TNFα 111. Nevertheless, studies using conditional knockout mice lacking HIF-1α in T 

cells 112, B cells 113, neutrophils 114 or DCs 115, have demonstrated an important influence of 

HIF-1α in the immune function. The loss of HIF-1α in DCs led to an impairment of DCs 

migration from the periphery, tissue and blood circulation and consequently, to a decrease of 

DCs ability to stimulate T cells. In addition, the upregulation of HIF-1α during hypoxic 

conditions led to enhanced apoptosis of immature DCs 90, 115, 116. In the adaptive immune 

response, HIF-1α works as a key metabolic sensor, regulating the differentiation of TH17 and 

regulatory T cell (Treg) 
117, 118. The absence of HIF-1α in T cells has shown the induction of 

higher levels of pro-inflammatory cytokines in response to T cell receptor activation 112. 

Surprisingly, it was found that under normoxia conditions HIF-1α complex was also 

upregulated. Apparently non-hypoxic stimuli as glucose 119, lipopolysaccharide (LPS) 120, 

TNFα 121 IFNγ 122 and nuclear factor- kappa B (NF-κB) 123 are possible modulators of HIF-1α 

transcription and therefore able to influence the expression of hypoxic genes. 
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3. Aims 

 The development of necrosis is a crucial mechanism in the progression of M. avium 

infection, however still poorly understood. Therefore, the better understanding of necrotizing 

mechanism and how granulomas can control the M. avium infection is needed. Thus, the 

main goal of this thesis is to understand the mechanism underlying caseous necrosis. Since, 

recently, some literature has described the presence of hypoxia at the center of necrotic 

granulomas and since necrosis only occurs when granulomas increase in size, we suggest 

that necrosis is a direct consequence of the absence of oxygen. Here, we show that 

granuloma increase in size and became less vascularized before the development of 

necrosis. We evaluate the impact of lacking HIF-1α in myeloid cells and the quantification of 

HIF-1α during in vivo M. avium infection. 
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Mice 

C57BL/6 wild-type (WT) mice were bred in our facilities from a breeding pair 

purchased from the Harlan Iberica (Barcelona, Spain). HIF-1α deficient C57BL/6 mice (HIF-

1α-/-) were obtained in our facilities after back-crossing the B6.129-Hif1αtm3RSjo/J and the 

B6.129P2-Lyz2tm1(cre)Ifo/J (LysMcre mice) strains, both from the Jackson Laboratory (Bar 

Harbor, ME, USA), based on the Cre-lox system. Briefly, the B6.129-Hif1αtm3RSjo/J strain has 

loxP sites on either side of exon 2 of the HIF-1α gene and LysMcre mice have a Cre 

recombinase inserted into the first coding ATG of the lysozyme 2 gene (Lyz2). The crossing 

of these two strains of mice resulted in the deletion of the HIF-1α gene only in myeloid cells 

including monocytes, mature macrophages and granulocytes. The first generation obtained 

was HIF-1α heterozygous; the second generation obtained was HIF-1α heterozygous (single 

knockout) and homozygous (double knockout). After confirming the genotype of each animal, 

the double knockouts were successively crossed to obtain an offspring of HIF-1α double 

knockouts (third generation). The genotyping was performed according to the genotyping 

protocols database from Jackson Laboratory (Bar Harbor, ME, USA).  

All mice were kept in our animal facilities in high-efficiency particular air (HEPA)-filter-

bearing cages under 12 hours light cycles, and fed autoclaved chow and water ad libitum. All 

mice were used at 8-12 weeks of age. All experiments were performed in accordance with 

the National and European guidelines and approved with by the IBMC.INEB Animal Ethics 

Committee. 

 

Bacteria 

The highly virulent M. avium strain (ATCC 25291 SmT) was obtained from the 

American Type Culture Collection (ATCC) (Manassas, VA). Mycobacteria inoculum was 

obtained from a smooth-transparent morphotype colony, grown in Middlebrook 7H9 medium 

(Difco, Detroid, MI) containing 0.04% Tween-80 (Sigma, St Louis, MO) and supplemented 

with 10% albumin-dextrose-catalase (ADC) at 37ºC until the mid-log phase of growth. 

Bacteria were harvested by centrifugation and resuspended in a small volume of saline 

containing 0.04% Tween 80. The bacterial suspension was sonicated with a Branson sonifier 

(Danbury, CT) in order to disrupt bacterial clumps and stored in aliquots at -80ºC until 

bacterial load determination and use in in vivo infection. Before inoculation, bacterial aliquots 

were thawed at 37ºC and diluted in saline to the desired concentration (5x102 CFU/ml). 
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In vivo infection 

C57BL/6 and HIF-1α-/- mice were infected with 102 CFUs of M. avium strain 25291 

through a lateral tail vein. Infected mice were euthanized (isofluorane plus cervical 

dislocation) at different times points after infection and the livers, spleens and lungs were 

aseptically collected. A portion of the liver was fixed in 4% paraformaldehyde for histological 

analysis. Spleen and liver samples were collected in Dulbecco’s modified Eagle’s tissue 

culture medium (DMEM; Life Technologies, Paisley, UK) containing 10% fetal bovine serum 

(FBS; Life Technologies), 5% glutamine and 1% penicillin/streptomycin (P/S).The bacterial 

load was determined in tissue homogenates from infected mice, by serial dilutions in distilled 

sterile water with 0.05% Tween and plated, in duplicate, onto Middlebrook 7H10 agar 

medium (Difco, Detroid, MI) supplemented with oleic acid-albumin-dextrose-catalase 

(OADC). 7H10 plates were incubated for 10 days at 37 °C and the numbers of CFU were 

counted using a magnifying glass. The bacterial load was calculated taking into account the 

dilution factor and the final volume of the tissue homogenate. 

 

Isolation of liver mononuclear cells 

Liver mononuclear cells were isolated from the liver homogenate by density 

centrifugation. A single cell suspension was obtained from the liver by passing the organ 

through a 70 µm cell strainer (BD Biosciences, San Jose, CA). Liver cells were washed at 

least two times (500g, 10 minutes) with phosphate-buffered saline (PBS) until the 

supernatant got clear. After the last centrifugation, cells were resuspended in DMEM and 

gently layered in a falcon with density gradient reagent - Histopaque 1083 (Sigma-Aldrich, 

Taufkirchen, Germany). After centrifugation at 1000g for 25 minutes at room temperature 

(RT) without acceleration or brake, liver mononuclear cells were recovered from the 

interphase between the histopaque and the DMEM. Cells were washed with DMEM to 

remove histopaque residues and liver mononuclear cells were finally resuspended in DMEM. 

 

HIF-1α quantification 

Liver mononuclear cells were fractionated into cytoplasmic and nuclear protein 

extracts using a cell fractionation kit according to the manufacturer's instructions (BioVision, 

Mountain View, CA). Total HIF-1α was quantified using the cytoplasmic extracts by a two-site 

sandwich enzyme-linked immunosorbent assay (ELISA) according to the manufacturer’s 

instructions (R&D Systems, Minneapolis, MN). Positive controls were provided by the 
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manufacturer. All samples were assayed in duplicated. The values were normalized to the 

total liver mononuclear cell number isolated from each mouse. 

 

IFNγ quantification 

Spleen cell suspensions from infected and control mice were individually prepared 

using Potter-Elvehjem tissue homogenizer, resuspended in DMEM, supplemented with 10% 

fetal calf serum (FCS; Life Technologies). Erythrocytes were lysed by incubation of the cell 

suspensions with a hemolytic buffer (155 mM NH4Cl, 10 mM KHCO3, pH 7.2) for 5 minutes at 

RT. The cell suspensions were then thoroughly washed with Hanks’ balanced salt solution 

(Life Technologies) and resuspended in DMEM with 10% FCS, 5% glutamine and 1% P/S. 

Cells were cultivated at a density of 2x105 cells/well in a U-bottom, 96-well microtitre plate. 

Cells were incubated in triplicate in DMEM with 10% FCS with no further stimulus or 

stimulated with mycobacterial antigens (4 µg/ml) or concanavilinA (4µg/ml, 

Sigma).Supernatants from the cultures were collected after 72 hours of culture at 37ºC in a 

7% CO2 incubator and the IFNγ produced was quantified by the ELISA method using anti-

IFNγ-specific affinity-purified monoclonal antibodies (R4-6A2 as capture and biotinylated AN-

18 as detecting antibody). Finally, a standard curve was generated with known amounts of 

recombinant murine IFNγ (Genzyme, Cambridge, CA). 

 

Flow cytometry 

For the immunofluorescence staining, 106 cells were incubated in a 96-well plate with 

different combinations of the following monoclonal antibodies. Briefly, a mixture of fluorescein 

isothiocyanate (FITC) – conjugated anti-CD19 antibody (dilution 1:50), phycoerythrin (PE) – 

conjugated anti-CD3 antibody (dilution 1:80), V450 – conjugated anti-CD4 antibody (dilution 

1:200) and V500 – conjugated anti-CD8 antibody (dilution 1:150) was used in order to 

identify the different lymphocyte populations; and a mixture of brilliant violet 510 (BV 510) – 

conjugated anti-CD11b antibody (dilution 1:100), brilliant violet 421 (BV 421) – conjugated 

anti-CD11c antibody (dilution 1:100), allophycocyanin (APC) – conjugated anti-Ly6G 

antibody (dilution 1:200), allophycocyanin with cyanin-7 (APC/Cy7) – conjugated anti-F4/80 

antibody (dilution 1:80) and FITC - conjugated anti-DX5 antibody (dilution 1:200) to identify 

the myeloid cells as well as the NK cells. The monoclonal antibodies were diluted in PBS 

containing 3% FBS and 0.01% sodium azide (NaN3). After 30 minutes of incubation at 4ºC in 

the dark, cells were washed twice in PBS/3%SBF/0.01%NaN3, and fixed with 

paraformaldehyde 4% for 20 minutes at RT. Cells were washed once more in 
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PBS/3%SBF/0.01%NaN3 and resuspended in PBS/3%SBF/0.01%NaN3. All the antibodies 

were obtained from Biolegend except for V450-CD4 and V500-CD8 that were obtained from 

BD Bioscience. Single-stainings and unstained samples were used to calibrate the voltages 

for sample acquisition and for colour compensation on the flow cytometer. The acquisition of 

the spleen and liver mononuclear cells was performed using a FACS Canto II flow cytometer 

using BD FACSDiva software (BD Biosciences). Data were analyzed using FlowJo software 

(Tree Star, Ashland, OR). To determine the cell number of each cell population, the number 

of gated events was multiplied by the total cell number (counted using Kova chambers) and 

divided by the total number of events select by forward scatter (FSC) / side scatter (SSC) 

parameters. 

 

Gating strategy 

Cells were selected on the basis of FSC/SSC and the singlets were gated according 

to size versus the width. For the lymphocytes analysis we used CD19 as a marker of B cells 

and CD3 to label T cells. Inside this gate CD4+ T and CD8+ T cells were distinguished (Fig. 

5A). For the myeloid analysis the first gate was made on Ly6Ghigh/CD11b+ defined to be 

neutrophils. Another gate was made on CD11b+/Ly6G- in order to identify other types of 

myeloid cells. CD11b+ is expressed on monocytes, macrophages, neutrophils, DCs and NK. 

On the CD11b+ gate we plotted the F4/80 against DX5 to distinguish the macrophages by the 

expression of CD11b+/Ly6G-/F4/80+/DX5- and NK by the expression of CD11b+/Ly6G-/F4/80-

/DX5+. Still on the CD11b+ gate we identify DCs by the expression of CD11b+/Ly6G-

/CD11chigh/DX5- (Fig. 5B). 
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Figure 5 – Gating strategy – Spleen and liver cells were stained with different markers in order to 

identify different lymphocyte (A) and myeloid populations (B). 

Histology 

Portions of the organs from infected mice were fixed in buffered formaldehyde and 

embedded in paraffin. Sections were stained with haematoxylin and eosin, using a standard 

histological technique. For the detection of acid-fast bacteria, sections were stained by the 

Ziehl-Neelsen method. 

 

Morphometric analysis of the granulomatous area 

Histological sections of liver stained with haematoxylin and eosin (HE), from infected 

animals were captured using an Olympus CX31 light microscope equipped with a DP-25 

camera (Imaging Software CellˆB, Olympus, Center Valley, PA). Random fields within each 

section under study were analyzed. The determination of granulomatous/cell infiltration area 

was done in a total tissue area ranged from 6 to 9 x106 µm2
, corresponding to a number of 

fields analyzed in each section between 5 and 6. The number of cellular infiltrates was the 

sum of all granulomatous/cell infiltration areas. It was analyzed one liver section per animal 

and measurements were done blind. To determine the liver area covered by granulomas, the 

A 

B 
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NIH ImageJ software program was used. The percentage of granuloma area was calculated 

for each mouse by dividing the sum of granulomatous areas by the total area of the liver  

section analyzed. 

 

Immunohistochemistry 

Sections were deparaffinized in xylene, and hydrated in an ethanol gradient (100%, 

96% and 75%). The sections were next permeabilized in PBS containing 0.1% Triton X-100 

and 0.1% Tween 20 (wash solution) for 5 minutes. Antigens were retrieved with 10mM 

sodium citrate buffer for 30 minutes at 96ºC. Endogenous peroxidase activity was blocked 

with 0.3% hydrogen peroxidase in methanol for 35 minutes at RT, followed by blocking the 

nonspecific antibody binding with normal horse serum (Vector Labs, Burlingame, CA; Dilution 

1:50) in wash solution containing 5% BSA for 1 hour in a humid chamber at RT. Sections 

were incubated overnight at 4ºC with the following primary antibodies in wash solution: rat 

IgG monoclonal anti-mouse F4/80 (Clone Cl:A3-1; Abcam; Dilution 1:50) or rat IgG 

monoclonal anti-mouse Endomucin (Clone V.7C/.1; Abcam; Dilution 1:50). The day after, 

sections were washed in PBS and incubated with goat anti-rat IgG, horseradish peroxidase 

conjugated antibody (GE Healthcare; Dilution 1:100) in wash solution for 1 hour in a humid 

chamber at RT. Development was performed with DAB (3,3-diaminobenzidine) labeling 

system (Vector Laboratories, Burlingame, CA). Sections were then counterstained with Gill’s 

hematoxylin for 2 minutes, dehydrated using graded alcohols (75%, 96% and 100%) and 

xylene, and mounted with DPX (Sigma). Negative controls were generated on adjacent 

sections by omitting the primary antibodies. 

 

Statistics 

The results are presented as mean ± SD, and the statistical differences between 2 

groups were determined by the unpaired Student t-test or for multiple group comparisons, 

the one-way ANOVA test with a Tukey’s posttest was performed using GraphPad Prism 

software (San Diego, CA, USA). Statistically significant is labeled * for P<0.05, ** for P <0.01 

and *** for P <0.001 or + for P<0.05, ++ for P <0.01 and +++ for P <0.001. 
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Necrosis occurs in macroscopic visible granulomas in C57BL/6 

mice 

As referred previously, the Appelberg group has developed a study model using 

C57BL/6 mice infected with a low dose inoculum of a virulent strain of M. avium (ATCC 

25291) 69, 82. This study model allowed the establishment of a progressive infection 

characterized by the formation of small granulomas which gradually increased in size to 

macroscopic lesions and evolved to central necrosis at four months post-infection as it is 

shown in figure 6. Liver macroscopic analysis from infected C57BL/6 mice revealed lesion 

sizes between 1 and 3 mm in diameter (Fig. 6D). The hypothesis formulated in this work was 

that granuloma necrosis could take place when the inflammatory lesions reached larger 

sizes, generating a hypoxic environment leading to necrosis. 

 

 

Figure 6 - Granuloma progression in the livers from C57BL/6 mice infected with M. avium 

25291. Representative lesions in HE stained liver sections from animals intravenously infected with 

100 CFUs of M. avium 25291, at days 30 (A), 60 (B), 90 (C) and 120 (D) post-infection. 

 

Granuloma vascularization during granuloma progression in 

C57BL/6 mice 

The role of nutrient deprivation and hypoxia in the granuloma necrosis has been 

described. In fact, granulomas are poorly vascularized structures which lead to a diminished 
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blood supply and consequently to a reduction of nutrient and oxygen at the central core 87. 

To evaluate vascularization during granuloma development we evaluated the expression of 

endomucin, a known endothelial cell marker 124, by immunohistochemistry (IHC). A positive 

staining was observed on the capillaries surrounding small granulomas, inside the 

intermediate size granuloma and in areas immediately surrounding the necrotic core of 

bigger granulomas (Fig. 7 A-C). No staining was observed in necrotic areas of intermediate 

size granuloma (Fig. 7D) or in the center of necrotic granuloma since it consisted of 

amorphous acellular content. 

 

 

Figure 7 - Endomucin expression evaluation in the livers from C57BL/6 mice infected with M. 

avium 25291. Paraffin sections of livers were analyzed by IHC using mAb endomucin (A – D). 

Endomucin expression was evaluated at days 90 (A) and 120 (B – D) post-infection. 

 

Granulomata is mainly constituted by macrophages 

Some studies have been focused on the role of macrophages under hypoxic 

conditions. It has been described that under hypoxic conditions myeloid cell properties such 

as transmigration, motility and invasion could be affected 109. In this work, we evaluated the 

granuloma constitution on macrophages using F4/80, a known cell marker for resident 

(Kupffer cells) and recruited macrophages 125. The F4/80 expression was evaluated by IHC, 

using liver histological sections from infected C57BL/6 mice (Fig. 8 A-D). The results showed 

a positive staining in the granulomas from day 30 until 120 post-infection, indicating that 
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macrophages are present in small granulomas as well as in bigger granuloma, which were 

shown to be poorly vascularized. 

 

 

Figure 8 – F4/80 expression evaluation in the livers from C57BL/6 mice infected with M. avium 

25291. Paraffin sections of livers were analyzed by IHC using mAb F4/80 (A - D). F4/80 expression 

was evaluated at days 30 (A), 60 (B), 90 (C) and 120 (D) post-infection. 

 

HIF-1α is increased during M. avium infection 

Previous studies have shown the presence of hypoxic regions at the center of 

necrotic granulomas induced by M. tuberculosis or M. avium infection 85-87. Furthermore, 

since our observations revealed that small non-necrotic granulomas were poorly 

vascularized structures, and as the granulomas enlarged, the central core became less 

vascularized, probably leading to a decrease in oxygen supply, constituting an hypoxic 

environment, we hypothesized that hypoxia could be the major cause for granuloma necrosis 

in our study model. Therefore and considering HIF-1α to be the master regulator of hypoxia 

91, 97, we evaluated HIF-1α protein content in liver mononuclear cells during M. avium 

infection. A significant increase of total HIF-1α protein levels in the liver mononuclear cells 

from infected animals was found compared with the non-infected animals, starting at day 60 

post-infection (Fig. 9). These results indicate a HIF-1α accumulation, before the onset of 

granuloma necrosis (60 days and 90 days post-infection). 
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Figure 9 - Analysis of total HIF-1α protein in liver mononuclear cells during M. avium infection. 

C57BL/6 mice were intravenously infected with 100 CFUs of M. avium 25291. Total HIF-1α protein 

was determined at days 0, 30, 60, 90 and 120 post-infection by ELISA as described in the material 

and methods section. Groups of non-infected mice (day 0) were included at every time-point of 

infection studied. Each group of non-infected mice comprised three to four animals and each group of 

infected mice comprised four to six animals. Data are expressed as means ± S.D. of protein levels 

calculated to the total liver mononuclear cells for individual mice. **P0.01, *** P0.001 using unpaired 

student t-test, comparing values from infected and non-infected animals. 

 

HIF-1α absence leads to higher bacterial load 

In order to determine the relevance of HIF-1α in in vivo on the proliferation of M. 

avium, WT and HIF-1α-/- mice were infected with 100 CFUs of M. avium 25291, and the 

bacterial loads were quantified in the liver and spleen at different time-points of infection. As 

shown in figure 10, the infection of both strains of mice resulted in a progressive infection 

with no evidence of bacterial control as previously described 69. The growth patterns of 

bacteria in the spleen and liver from infected mice were in agreement with previous 

observations 69. HIF-1α-/- mice showed increased bacterial loads within the spleen starting at 

day 15 post-infection compared to WT mice (Fig. 10B). Concerning the liver, an increased 

bacterial load was found in HIF-1α-/- mice compared to WT mice only at days 15 and 104 

(Fig. 10A). The results indicate that presence of HIF-1α is important in the control of M. 

avium infection as suggested in other infection models 111, 126. Therefore, it might be 

hypothesized that the exacerbation of infection occurs probably due to the lack of hypoxia 

adaptation mechanisms. 
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Figure 10 – HIF-1α presence is important in the control of M. avium infection. Growth of M. 

avium 25291 in liver and spleen from WT and HIF-1α
-/- 

mice intravenously infected with 100 CFUs. 

Bacterial load was determined at different time points (15, 30, 60 and 78 days post-infection). Each 

time-point represents the mean of the log10 CFUs per organ ± SD from at least five mice per group.* 

P0.05, **P0.01, *** P0.001 using unpaired student t-test. 

 

HIF-1α deficient mice develop necrotic granulomas earlier 

compared with C57BL/6 mice 

In order to understand the involvement of HIF-1α during M. avium infection, we used 

a mouse model with a genetic ablation of the HIF-1α transcription factor in the myeloid 

lineage (monocytes, mature macrophages, and granulocytes). In a first attempt to determine 

the influence of HIF-1α deficiency, we analyzed the granuloma progression during infection 

in HIF-1α-/- and WT mice by histological analysis. HIF-1α-/- and WT mice were intravenously 

infected with 100 CFUs of M. avium 25291 and were euthanized at different time-points post-

infection. Previous observations indicated that in WT mice, the granuloma central necrosis 

started around four months post-infection (Fig. 6D). In the beginning of the infection lesions 

in both HIF-1α-/- and WT mice were very small and incipient (Fig. 11A, 11D). By day 60 post-

infection, well-structured granulomas were found with an extensive lymphoid cuff surrounding 

the macrophage core in WT mice (Fig. 11B) as previously reported 69. By day 104 post-

infection, many of those granulomas were found with additional extensive lesions consisting 

of peripheral accumulations of lymphoid cells, fibrosis and vascularization (Fig. 11C). As 

show in Figure 11 (A – F), after day 60 post-infection, differences were evident between the 

lesions in both strains of mice. In fact, in the absence of HIF-1α the onset of necrosis was 

faster compared with WT mice. After day 78 post-infection (data not shown), macroscopically 

visible tubercles were present in HIF-1α-/- mice. Central necrosis was observed in all the HIF-

1α-/- mice analyzed at days 78 and 104 post-infection. Microscopically, these lesions 

A B 
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exhibited a well-defined necrotic core with infected macrophages, surrounded by a fibrotic 

capsule and accumulations of lymphoid cells as described previously (Fig. 11 F-I). In 

contrast, caseation was not observed in any of the WT animals analyzed at days 78 and 104 

post-infection. Morphometric analysis determining the infiltrated necrotic or non-necrotic 

area, confirmed the role of HIF-1α on the granuloma progression. Thus, a statistically 

significant increase of necrotic and non-necrotic areas was found in HIF-1α-/- compared with 

WT mice at day 104 post-infection (Fig. 11G). No differences were found at day 30 post-

infection. At day 60 post-infection, despite the slight increase of the non-necrotic area in HIF-

1α-/- compared with WT mice, no statistically significant difference was observed. Similarly, a 

high number of cellular infiltrates were observed in HIF-1α-/- compared with WT mice at day 

104 post-infection (Fig. 11H). No statistically significant differences were observed in the 

number of cellular infiltrates (Fig. 11H) at day 30 or 60 post-infection. These results indicate 

that absence of HIF-1α in myeloid cells anticipates the granuloma necrosis and increases the 

inflammatory cell infiltration during M. avium infection. 

 

 

Figure 11 – HIF-1α absence influences granuloma progression during M. avium infection. 

Representative lesions in HE (A-F) or Ziehl-Neelson (I) stained liver sections from WT (A-C) and HIF-

1α
-/- 

(D-F and I) intravenously infected with 100 CFUs of M. avium 25291 at days 30 (A, D), 60 (B, E), 

and 104 (C, F, I) post-infection. (I) provides a higher power view to show an intermediate layer of 

heavily infected macrophages and an inner core with necrotic material. The percentage of infiltrating 
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area (G) and the number of cellular infiltrates (H) were determined as described in the material and 

methods section. Data are expressed as mean ± S.D of the areas from mice analyzed individually in 

each group. *** P0.001 using unpaired student t-test to compare infected and non-infected. 
+
P0.05 

using unpaired student t-test to compare the area of necrotic versus non-necrotic. 

 

HIF-1α absence induces splenomegaly and hepatomegaly during M. 

avium infection 

Representative photographs of spleens and livers from infected WT or HIF-1α-/- mice 

at day 96 post-infection are shown in figure 12. Infected HIF-1α-/- exhibited a extensive 

splenomegaly and hepatomegaly, when compared with the infected WT. Macroscopic 

observation of the spleens and livers from non-infected WT or HIF-1α-/- animals indicated no 

differences (data not shown). A slight splenomegaly and hepatomegaly was evident between 

the infected WT and the non-infected WT (data not shown). Furthermore, the observation of 

livers from infected WT and HIF-1α-/- animals, showed the presence of necrotic granulomas 

at day 96 post-infection. These observations indicate that HIF-1α influenced the size and 

probably the cellularity of the spleen and livers from mice infected with M. avium 25291. 

 

  
 
 
 
 

 

Figure 12 – HiF-1α absence induces an increase of spleen and liver sizes during infection with 

M. avium 25291. Photographs of livers from WT and HIF-1α
-/-

 mice infected with 100 CFU M. avium 

25291 at day 96 post-infection. Representative images of spleens (A) and livers (B) from WT (I and III) 

and HIF-1α
-/-

 (II and IV) mice. 

 

Infected HIF-1α deficient mice present increased cellularity 

Macroscopic observation of the livers and spleens from M. avium infected HIF-1α-/-

mice indicated an increase in the size and suggested a probable increase in the cellularity in 

these organs. It was previously shown that normal numbers of T cells and macrophages 

persisted after day 60 post-infection when using WT mice infected with a low dose of M. 

avium 25291 69. In order to determine the requirement of a given cell population in the earlier 

development of necrosis in HIF-1α-/- mice, we decided to analyze the spleen and liver 

mononuclear cells by flow cytometry from control or infected WT and HIF-1α-/- mice (Fig. 13).  
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Figure 13 – M. avium infected HIF-1α deficient mice present increased cellularity. Cellular 

composition of the spleens (A) and livers (B) from WT and HIF-1α
-/- 

mice infected with 100 CFU of M. 

avium 25291 at different time points post-infection. Each group comprised at least 5 animals. All data 

are expressed as means + SD. *P0.05, **P0.01, *** P0.001 using unpaired student t-test, 

comparing infected groups within the same time point. 
+
P0.05, 

++
P0.01, 

+++
P0.001 using unpaired 

student t-test, comparing infected versus non-infected animals. 
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The analysis of the spleen showed a significant increase in the number of DCs and 

neutrophils at day 104 post-infection in both infected WT and HIF-1α-/- mice, compared to 

non-infected WT and HIF-1α-/-, respectively. In accordance with the evident splenomegaly 

observed in infected HIF-1α-/- mice, a significant increase in the numbers of macrophages, 

DCs and neutrophils was found compared with infected WT mice. In addition, the analysis of 

the liver mononuclear cells revealed a significant increase in the number of macrophages 

and DCs from infected HIF-1α-/- mice, compared to infected WT mice. The analysis of the 

spleen lymphocyte population did not shown any differences between the infected and non-

infected groups in the beginning of infection, as previously was shown 69. At day 104 post-

infection, a significant increase in all spleen lymphocyte population was noticed, which is in 

agreement with the evident splenomegaly observed in infected HIF-1α-/- mice. In contrast, no 

differences were observed in the analysis of liver lymphocyte populations, with the exception 

of CD19+ cells. Curiously a significant increase of CD19+ cells in the liver was observed in 

infected WT compared to HIF-1α-/- mice, suggesting a higher recruitment of B cells in the 

presence of HIF-1α presence. 
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In the past few years many cellular and molecular mechanisms underlying the 

structuring of granuloma have been described. However, the mechanism that leads to 

necrosis still poorly understood. Previous work has shown that this process is highly 

dependent on CD4+ T cells, IFNγ and IL-12, and partly on IL-6 and CD40 69, 127. In fact, M. 

avium intravenously infected mice lacking CD4 T cells, IFN-γ, IL-12, IL-6 and the co-

stimulatory molecule CD40 failed to develop granuloma necrosis 69. Additionally, the infection 

of DBA/1 strain 82 also failed to induce macroscopic lesions and did not develop to necrosis 

69. In contrast, it was possible to find macroscopic lesions undergoing necrosis in C57BL/6 

mice lacking TNF-α 75, NO or CD8+ T cells 69. Thus, in the beginning of this work, we 

hypothesized that the granuloma size could be a crucial factor in the development of 

necrosis during M. avium infection. As suggested by Orme, necrosis did not occur when the 

T cells reached the center of the granulomas. In contrast, local necrosis occurred either in 

fibrotic granulomatous lesions or when T cells remained at the peripheral mantle not invading 

the center of the lesion 128. The data obtained in our work suggest that the absence of 

lymphocytes at the center of granuloma is a possible consequence of the reduced 

vascularization in the center of the granuloma. Recently, it has been described that necrotic 

granulomas developed in M. tuberculosis-infected guinea pigs, rabbits and nonhuman 

primates 85, and also in M. avium strain TMC724-infected C57BL/6 mice were hypoxic 87. In 

our study, we used C57BL/6 mice infected with M. avium 25291 to address the granuloma 

vascularization during granuloma progression. The absence of vascularization in small 

granulomas, and the vascularization of large granulomas without necrosis, probably occurred 

due to a homeostatic process of angiogenesis in an attempt to prevent a hypoxic 

environment in the granuloma. Curiously, no vascularization was observed in the center of 

bigger lesions, just before they become necrotic. Our observations are in agreement with 

other studies, also in the context of M. avium infection, where a decreased vascularization in 

the central areas of the granuloma was demonstrated 129. Having in mind these results, we 

can argue that the center of larger granulomas becomes less vascularized, resulting in a 

hypoxic environment that will lead to necrosis in the center of granuloma. To better define a 

possible role of hypoxia in the development of necrotic granulomas in our study model, we 

decided to assess the influence of HIF-1α. In the last 20 years, HIF-1α has been described 

as the master regulator of physiological and cellular mechanisms indispensable in the 

adaptation to hypoxia 97, 106, 109. Under hypoxic conditions, the levels of HIF-1α increase by 

accumulation 97, 109. In our study model, we found an increase in the total HIF-1α protein in 

liver mononuclear cells during infection. Curiously, the peak of HIF-1α production occurred 

60 days after infection, which corroborates the observation of a reduced vascularization of 

the granulomas before the beginning of necrosis development. Based on this, it is possible to 

postulate that granulomas became hypoxic before the onset of granuloma necrosis. 
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However, another alternative explanation may justify the increase of HIF-1α in early time 

points of M. avium infection. Recently, it has been proposed that other factors, rather than 

only hypoxia, are able to modulate HIF-1α expression and degradation. In fact, even under 

normoxia, HIF-1α is induced by bacterial infection and regulated by TNFα and IFNγ 93, 111, 121, 

122. Tissue macrophages are believed to play an important role in the resistance against 

mycobacteria infection being its recruitment and activation crucial in the control of bacteria 

proliferation 6, 7 . It has been described that 95% of the activated macrophages present in 

inflammation infiltrates are derived from exudate monocytes 108, and that they need to move 

against oxygen gradients in order to migrate toward the areas of inflammation 106, 130. Our 

results show macrophage accumulation within the infection site even in late time-points of 

infection, where hypoxic conditions may occur. This is in accordance with other studies, 

indicating that infiltrating macrophages are able to adapt to low oxygen conditions 106, 130. 

Cramer et al has described using in vitro assays and Group B Streptococcus infection of 

macrophages, a significant impairment of motility and invasion of HIF-1α deficient 

macrophages, with a 7-fold increase of bacterial load in the absence of HIF-1α 109. In our 

study, the qualitatively analysis of F4/80 expression in the liver sections from infected WT 

and HIF-1α deficient mice did not indicate any differences in the accumulation of 

macrophages (data not shown). It was found that at early stages of infection, HIF-1α 

deficient mice failed to restrict the spread of the bacteria. This clearly shows that bacterial 

killing is limited in the absence of HIF-1α. The exacerbation of infection in HIF-1α deficient 

mice probably occurred due to the (i) failure in controlling bacterial growth caused by the 

absence of hypoxia adaptation mechanisms and (ii) different levels of IFNγ production in the 

HIF-1α absence. We could argue that the differences in bacterial numbers between WT and 

HIF-1α deficient mice could be due to low levels of IFNγ in the absence of HIF-1α. In fact, it 

has been previously shown, that IFNγ is involved in early and later protection against M. 

avium infection 38, 39. However, in our study, we did not observe significant differences in the 

production of IFNγ during infection in WT compared to HIF-1α deficient mice (data not 

shown). These results suggested that the differences in the bacterial numbers between WT 

and HIF-1α deficient mice were due to different levels of IFNγ production. Therefore, we 

hypothesize that exacerbation of infection in HIF-1α deficient mice mostly occurs in response 

to a failure in the control of bacterial growth caused by an interference of hypoxia adaptation 

mechanisms. The splenomegaly and hepatomegaly developed at latter time-points of M. 

avium infection reflect the increased recruitment of different types of immune cells 

respectively to the spleen and liver. In fact, a statistically significant increase in cell numbers 

from myeloid cell lineage, namely macrophages, neutrophils and DCs was found in infected 

HIF-1α deficient mice compared to WT mice, but that were not correlated with a better 

protection against M. avium infection. These observations are coincident with granuloma 
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necrosis occurrence in infected HIF-1α deficient mice but not in WT mice. This probably 

occurs due to an emergence of the immune system in response to inflammation. The 

granuloma disintegration leads to the release of virulent bacteria from dead macrophages, 

allowing bacteria to disseminate in the tissue spreading and infecting other tissues 6. 

Concerning the analysis of lymphocytes, a significant increase in the numbers of spleen T 

cells from infected HIF-1α deficient mice was found comparing to WT mice at later time-

points of infection. No differences were observed in the liver. Flórido et al have described, 

using M. avium aerosol infection of TNF deficient mice, the development of pulmonary 

granuloma disintegration that led to an extensive expansion of T cells and macrophages 55. It 

seems therefore, that besides T cells, also macrophages, DCs and neutrophils are 

determinant in the disintegration of the granuloma occurring in the liver in our study model. 

The Appelberg group has described a model of mycobacterial infection featuring the 

development of lesions containing causeous necrotic material. Additionally, the development 

of necrosis in this model required an intact type 1 immune axis 69. Interestingly, the 

phenotype resulting from the loss of HIF-1α in the myeloid cell lineage showed clear 

differences between WT and HIF-1α deficient mice. The results obtained in this work are 

consistent with previous findings showing that, WT mice intravenously infected with 100 

CFUs of M. avium 25291, developed granuloma with central necrosis after four months of 

infection 69. The morphometric analysis of liver sections at days 30 and 60 post-infection has 

shown small, but not significant differences, in the numbers of cellular infiltrates and in the 

percentage of infiltrated area in WT and HIF-1α deficient mice. Keeping in mind these 

results, the analysis of spleen or liver cellularity in generally showed equal numbers at earlier 

time-points of infection. In contrast, the bacterial numbers were significantly increased in HIF-

1α deficient mice compared to WT mice at these time-points of infection. In summary, at 

early stages of infection, the differences in bacterial burdens are not reflected either in 

cellularity or in the infiltrating area. Theoretically, the increase observed in the intracellular 

bacterial loads in the absence of HIF-1α at late stages of infection should reflect an 

accelerated necrotic death of infected macrophages in the granuloma and bacteria tissue 

dissemination 109, 131. This assumption was confirmed, since, the absence of HIF-1α led to an 

increase of cellular infiltrates, an increase of granuloma size and consequently an 

anticipation of necrosis. The increased size of granuloma suggests that augmented bacterial 

load led to increased numbers of heavily infected macrophages and other immune cells 

types. The lack of hypoxia adaptation mechanisms in macrophages leads to evident 

differences in the progression of M. avium infection. Here we provide evidence that HIF-1α 

plays a crucial role in the development of necrosis in this type of immunopathology.  

In conclusion, the work presented here gives a plausible explanation regarding the 

development of necrotic granulomas during M. avium infection. Altogether, we provide 
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evidences suggesting that granulomas are hypoxic before underging necrosis, through the 

analysis of vascularization and quantification of HIF-1α in a necrotizing mice model. Further, 

we used a mice model with a genetic ablation of the HIF-1α transcription factor in the 

myeloid lineage which clearly induces an impairment of the resistance against M. avium 

infection. All these data together show that hypoxia is one of the major causes in the 

progression to necrosis. This work indicates that by the manipulation or modulation of 

macrophage hypoxic adaptation during infection it might be possible to avoid pathology. 

 

Future perspectives 

 

The present work has shown that exacerbation of the M. avium infection and the 

onset of necrosis is a direct consequence of the lack of HIF-1α in myeloid cells. It has been 

also clear that macrophages adaptation to hypoxic conditions is crucial to the resistance 

against M. avium infection. To confirm this observation, we could perform in vitro studies 

using macrophages from a WT and HIF-1α deficient mice exposed to M. avium to quantified 

the bacterial load in both normoxia and hypoxia conditions. The activation of macrophages 

by IFNγ is a crucial step in the resistance against M. avium infection and different levels of 

IFNγ can lead to a profound impact in the activation of macrophages and consequently in the 

bacterial burdens. Since the macrophage activation is IFNγ-dependent, it is important to 

understand the role of IFNγ during the M. avium infection. During this work we only have 

observed the IFNγ production in later stages of the infection, since the necrosis occurs in late 

time-points of infection, however, we could perform an assay to quantify IFNγ in early time 

points of infection. 

Here we hypothesized that appearance of hypoxic regions at the center of granuloma 

occurs before the development of necrosis in M. avium infection. The appearance of hypoxic 

regions induces a cellular adaptation mechanism which is a HIF-1α-dependent process. 

Since the results showed an exacerbation of M. avium numbers in the absence of HIF-1α in 

myeloid cells, it would be interesting trying to control the bacterial burdens, using mice with 

HIF-1α over expressed. The lack of vascularization in the center of granuloma seems to be a 

crucial step in the development of necrosis either in WT or HIF-1α deficient mice. This 

process is mainly regulated by angiogenesis factors, namely VEGF. We could use mice with 

VEGF over expressed in order to try to increase the ability to re-vascularize and re-

oxygenate the center of the granuloma and consequently prevent the development of 

necrosis. On the other hand, we could use knockout mice for VEGF, which will probably 
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exacerbate the M. avium infection despite the ability of hypoxic adaptation in macrophages 

are intact. 
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