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resumo 

 

Este trabalho propõe o estudo das interações, ao nível 

molecular, entre diversos líquidos iónicos (ILs) e membranas 

celulares mediante a aplicação de modelos de membrana 

celular segundo a técnica de Langmuir Blodgett. Pretendemos 

estabelecer uma melhor compreensão sobre o papel 

fundamental das interações de ILs com as membranas 

celulares, em particular os ILs da família imidazólio e colina. 

Assim, propõe-se a avaliação do efeito da concentração, bem 

como dos comprimentos da cadeia alquílica de ILs da família 

imidazólio, na organização e estabilidade de monocamadas 

lipídicas e a comparação com o comportamento de líquidos 

iónicos da família das Colinas. Em suma, este trabalho 

pretende fornecer uma visão sobre os factores moleculares 

que contribuem para a toxicidade dos ILs, que possam ajudar 

no desenvolvimento de ILs menos tóxicos. 
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abstract 

 

This work proposes the study of the interactions, at a molecular 
level, between diverse ionic liquids (ILs) and the membrane cells, 
by applying membrane cell models, namely Langmuir-Blodgett 
technique. We intend to establish a better understanding about the 
role of the interactions of ILs with membrane cells, in specific, the 
imidazolium and choliniumcholinium families. Hence, we propose 
the evaluation of the effect of the concentration as well as of the 
alkyl chain lengths of imidazolium ILs, on the lipid monolayers 
organization and stability and compare it with the behaviour of 
choliniumcholinium ILs. Summing up, this work is expected to 
provide an insight into the molecular mechanism contributing to the 
IL toxic activity that should help in the design of less toxic ILs.  
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1 – Introduction 

 

1.1 – Ionic Liquids: Properties and applications 

In the last decades, a new class of chemical compounds called room temperature 

ionic liquids (RTILs or simply ILs) have been developed. These chemical compounds are 

based exclusively on ionic systems, being liquids at room temperature. (Plechkova N. and 

Seddon K., 2008) Contrary to the molten salts which are produced by heating metallic 

salts at elevated temperatures (e.g. NaCl to over 800°C), ILs melt at temperatures below 

100 °C (Huddleston J. and Rogers R., 1998) This new class of ionic compounds is 

constituted by a wide range of organic cations and inorganic or organic anions 

(Brennecke J. and Maginn E., 2001). The most commonly ILs used to date are composed 

by cations such as imidazolium, pyridinium, pyrrolidium, piperidinium, quaternary 

ammonium, phosphonium, and cholinium plus diverse anionssuch as halide [Cl–, Br–, I–], 

nitrate [NO3–], acetate [CHCO2–], trifluoroacetate [CF3CO2–], tetrafluoroborate [BF4–], 

triflate [CF3SO3–], hexafluorophosphate [PF6-], and bis(trifluoromethylsulfonyl) imide 

[(CF3SO2)2N–] (Peric B. et al., 2012).(Figure 1) 

 

Figure 1: Principal ions used in the ILs synthesis. (Peric B. et al., 2012) 

The combination of different ion types and the manipulation of the ions 

composition yield different ILs with unique properties, such as a wide liquid temperature 

range and high chemical and electrochemical stabilities (Zhang S. et al., 2008). Low 

vapour pressures, non-flammability and thermal stability have gained much attention in 

the last decades, but it is the possibility of designing ILs with a specific set of properties to 

a certain scientific and industrial application that is calling the attention of the researchers. 

There is a huge expectation that from the research and the development of processes 

based in different ILs, real benefits in the technology field will arise. Moreover, ILs have 
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been cited as a promising tool to apply in the green chemistry field, due to their huge 

potential as alternative solvents for industrial catalytic reactions. (Seddon K., 1997; Zhao 

D., 2002;Bourbigou H. and Magna L., 2002; Sheldon R., 2001) Furthermore, their set of 

unique properties allows them to be used over a much wider set of applications, namely 

coordination chemistry (Cocalia V. et al., 2006) analytical chemistry (Koel M., 2005) 

polymer materials (Kubisa P., 2005) and nanotechnology (Antonietti M. et al., 2004). 

Taking into account the unique properties and characteristics of ILs, diverse studies have 

been developed considering the implementation of these compounds in the development 

and optimization of a wide range of manufacturing processes, aiming at the reduction of 

their environmental impact and improving their economic viability. (Plechkova N. and 

Seddon K., 2008; Anastas P. and Eghbali N. 2010) 

  

1.2 - Environmental assessment 

The reduction of hazard potentials associated with the design, manufacture and 

use of chemical substances is one of the principal aims of Green Chemistry. 

(Wasserscheid P. and Welton T. 2008;Anastas P. and EghbaliN. 2010) Therefore, 

governments, industry and independent laboratories are joining efforts in order to 

develop methods to evaluate and to identify the potential hazards of new and existing 

chemical substances, aiming to reduce their environmental impact. (Anastas P. and 

Eghbali N. 2010) In order to protect human health and the environment, as well as 

concurrently maintain the competitive edge enhancing the capability of the EU chemicals 

industry, EU proposed a new regulation framework for the Registration, Evaluation, 

Authorization, and Restriction of Chemical Substances (the so-called REACH). (Regulation 

E., 1999) REACH regulates the safety of chemical products, their manufacturing process, 

toxicity, biodegradability, transport and use in the industrial sector. According to REACH 

regulation, the implementation and use of new chemicals requires a detailed 

(eco)toxicological evaluation. Therefore, ILs as new chemical products have to fulfil the 

requirement of REACH criteria before they can be commercialized. Although there were 

many reports emphasizing the attractiveness of ILs as green solvents due to their 

advantageous physicochemical attributes (Welton T., 1999; Wasserscheid P. et al., 

2008; Prasad A. et al., 2005), their sustainability, chemical risk and environmental 

impact should not be ignored. ILs are categorised as non-volatile substances, hence they 

are not considered as air pollutants. However, many ILs are soluble in water (Freire M. et 

al., 2007), which may cause water and soil contamination if accidentally released into 
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terrestrial and aquatic environment. Furthermore, recent findings showed that some 

imidazolium ILs were resistant to photodegradation (Stepnowski P. and Zalesk A., 2005) 

and scarcely biodegradable (Gathergood N. et al., 2004; Garcia M. et al., 2005), which 

indicate that their effluents may accumulate in the environment. In this sense, REACH 

requested the examination of ILs’ ecotoxicity, bioaccumulation, biodegradability, as well 

as its environmental fate, highlighting that ILs must be compliant under their criteria. 

(Peric B. et al., 2012) The first studies on ecotoxicity profile of the most used ILs on living 

organisms have been implemented based on numerous standard tests (OECD). These 

represent a flexible ecotoxicological test battery in the evaluation of ecological risk of ILs 

considering aquatic and terrestrial compartments, as well as different trophic levels, 

including the luminescent marine bacteria, freshwater green algae, crustacean, zebrafish 

as well as enzymes (for example the acetilcholiniumsterase from the nervous system) - 

Figure 2. Considering the aquatic environment, it is highly recommended the use of 

bioassays on standard test organisms as the cladoceran Daphnia magna (invertebrates) by 

OECD (2008), the green alga Pseudokircheriella subcapitata by OECD (2011), and the fish, 

Danio rerio (vertebrates) (Pretti C. et al., 2009). However, a wide range of other tests 

using other organisms is also being investigated, namely the Growth inhibition test with 

Lemna sp. by OECD (2006) and the Acute Immobilisation test with Daphnia sp. by OECD 

(2004) In addition, some toxicity information on common ILs using the Microtox® assays 

(Jennings V. et al, 2001) was also considered. 

 

Figure 2: Different aquatic organisms contemplated in the principal toxicological tests. 

 The Microtox® bioassay is a standardised toxicity test system, which is fast, 

sensitive, reproducible, simple and cost-effective. It is based on the bioluminescence 

inhibition assessing on the marine bacteria Vibrio fischeri when exposed to a 
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concentration range of a certain tested chemical. This toxicity test system is approved as a 

standard test to chemical toxicity on aquatic environments. (Steinberg S. et al., 1995) 

The end point of this methodology, EC50, is used as a parameter to measure the 

concentrations of compounds in which 50% of the light emission from a specific strain of 

luminescent bacteria is reduced. (Ventura S. et al., 2011) 

 

1.3 - Ecotoxicological risk profile 

Although the ILs are frequently reported as an alternative solvent due to their 

negligible vapour pressure, similarities on the toxicological effects of some ILs have been 

shown to those observed for specific conventional solvents. Bernot and co-workers 

(Bernot R. et al., 2005) revealed on their studies that imidazolium-based ILs were more 

toxic to Daphnia magna than benzene, tri-choloromethane and tetra-chloromethane. Cho 

and co-authors (Cho C. et al., 2007) have conducted a study on the use of several ILs and 

traditional organic solvents on the growth of the green microalga Selenastrum 

capricornutum. The authors observed that the ILs investigated were generally found to be 

two to four orders of magnitude more toxic than organic solvents such as methanol, 

dimethylformamide and 2-propanol. Based on these results, we may conclude that not all 

ILs are suitable as alternative solvents, but also that more studies are needed before their 

implementation in the industry. Other studies have been demonstrated that many of the 

common ILs used have different levels of toxicity for different living organisms (Latala A. 

et al., 2005), (Pretti C. et al., 2006). These findings suggested that the toxicity of ILs 

could admit different levels of tolerance for different groups of organisms. The findings by 

Ventura and co-authors (Ventura S. et al, 2011) show that this tolerance could be related 

with variations on the morphological aspects of the external structure of the organism cell, 

since the morphological characteristics and chemical composition of the ultrastructure 

could be responsible for the protection of the microorganisms against the ILs “attack” 

(Ventura S. et al, 2011). The mentioned results evidenced a wide range of coherent 

toxicological tendencies, that as the observations of many other researchers have been 

leading to a evaluation of different sources of toxicity of the ILs’ structure, such as the alkyl 

chain length (Garcia M. et al., 2005), the cation (Couling J. et al., 2006) and the anion 

(Ranke J. et al., 2004; Garcia M. et al., 2005). Despite the general guidelines established 

about the toxicological potential of the most common ILs, few conclusions are known 

about the toxicological profile of some specific ILs families and chemical structures. 

Several studies have been done to identify the most important structural features that 
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affect the toxicity of ILs, being discussed that the toxicity of the ILs strongly depends of the 

cation or the alkyl side chain (Ventura S. et al., 2012 a/b; Matzke M. et al., 2010; Pham 

T. et al., 2009). In what concerns the toxicological profile of the cation, reports show that 

the aromatic cations like imidazolium and pyridinium are, in general, more toxic than non-

aromatic ILs such pyrrolidium, piperidinium, ammonium and phosphonium (Couling J. et 

al., 2006; Luis P. et al., 2007; Stolte S. et al., 2007; Pretti C. et al., 2009) Based on those 

tendencies, Ventura and co-workers (Ventura S. et al., 2013), have established in a recent 

study that the toxicity character of the cations can be divided into two main groups, the 

aromatic and non-aromatic ILs. In general, the toxicity observed for the aromatic cations 

seems to be related to the number of carbon atoms in the aromatic ring (Couling J. et al., 

2006). The evaluation of the relationship between structure and activity of ILs has been 

recently used to evaluate the toxicological effect of the cation alkyl chain length (Garcia M. 

et al., 2005). These evaluations suggest that the magnitude of the ILs toxicity depends on 

the cation side chain length and that there is higher toxicity levels with the increase of side 

chain length (the so-called “side chain effect”) (Matzke M. et al., 2007/2010; Bernot R. 

et al. 2005; Cho C. et al., 2007; Ventura S. et al 2012-a). These results can be explained 

through the possible interaction of the alkyl chain of the cation with the cell membrane, 

which could disturb the interactions between the phospholipids, change the structure of 

the membrane and lead to loss of membrane stability and function (Sikkema J. et al, 

1995). The ability of an IL to interact with the cell membrane is usually associated with 

the lipophilicity nature of the cation (Stepnowski P. and Storoniak, P. 2005; Ranke J. et 

al., 2007). This attribute was found to increase with the hydrophobic nature of the cation, 

which is related with the increase of the alkyl length (Stepnowski P. and Storoniak P., 

2005; Ranke J. et al., 2007). Literature results suggest that the lipophilicity is a key 

parameter on the toxicity of the ILs and that the analysis of lipophilic nature of the ionic 

liquids provides a better understanding of their adverse potential to organisms 

(Stepnowski P. and Storoniak P. 2005). However, the evaluation of the lipophilicity is 

not enough for the full understanding of the ILs toxicity, since the correlation between the 

increase in both the alkyl side chain length and toxicity is not linear for an indefinite alkyl 

chain length due to the “cut-off” effect (Ventura S. et al., 2012 a/b; Matzke M. et al., 

2010) Various explanations are proposed for this phenomenon based either on 

insufficient solubility or kinetic aspects (Matzke M. et al., 2010). The correlation between 

both lipophilic and hydrophilic nature of chemical compounds, with their biological 

activity has been widely used for assessing the toxicity of substances as well as used in 

modelling of environmental fate of organic chemicals. (Hansch C. et. al, 1979) Moreover, 
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chemical partitions have been used in several studies as a mechanism to evaluate 

qualitatively the capability of ILs to interact with cell tissues. (Ventura S. et. al, 2011) 

Toxicity tests for imidazolium- and pyridinium-based ILs carried out by Docherty and 

Kulpa (Docherty K. et al., 2005) confirm that the hydrophobicity of ILs induces an 

increase of the toxicity, which is in close agreement with literature (Matzke M. et al., 

2007; Ranke J. et al., 2004). Although the hydrophobicity of the alkyl chain can often be 

correlated with the lipophilicity parameter, the idea that high hydrophobicity corresponds 

to high lipophilicity is not always observed (Matzke M. et al., 2007; Stolte S. et al., 2007). 

These results have improved the molecular understanding of some physicochemical 

properties of ILs, helping in the correlation of ILs parameters such as lipophilicity, 

hydrophobicity and bioaccumulation. It is expected that more hydrophobic compounds 

will show a lower solubility for water (Figure 3). 

 

Figure 3. Relation between the water solubility of the different (aromatic and non-aromatic) ILs 

and their toxicity parameters (EC50 values) obtained by Microtox® assays. The lines in the figure are 

only for eye guide. This figure was adapted from literature (Ventura S. et al., 2013). 

Generally, a lower solubility in water would entail a higher affinity for the 1-octanol 

(solvent used in the octanol-water partition coefficient measurements which is an indirect 

via for the bioaccumulation assessment), which implies a greater ILs adherence to the 

living tissues that result in a higher toxicity and a lower EC50 value (Ventura S. et al., 

2011). Once there is a basic understanding of some of the relationships between the ILs 

toxicity and the nature of the alkyl chain, it starts to be clear that it should be possible to 

design less toxic ILs, based on short functionalised side chains. New researches aiming the 

design of less toxic ILs have been taking place through the incorporation of oxygenated 

groups into the alkyl chain (Couling D. et al., 2006; Kumar R. et al., 2009; Ventura S. et 

al., 2013). Literature results show that functional groups such as ether, ester and 

hydroxyl within the side chains exhibited low toxicity compared to those with “simple” 
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alkyl side chains (Kumar R. et al., 2009; Pham T. et al., 2009). Those functional groups 

showed the ability to reduce the lipophilic nature of the alkyl chain, which might reduce 

the ability of ILs’ to interact with the cell membrane and consequently reduce their 

toxicity (Stolte S. et al., 2007; Ventura S. et al, 2012-b). However, different effects are 

found for different functional groups meaning that more investigation is needed in order 

to select the less toxic and task-specific functional groups. 

 The contributions of the anion moiety for the ILs toxicity are still insufficiently 

understood as little information and data are known about their in vivo and in vitro 

behaviour. Initially, several researchers have reported that no general influences were 

found for the anion part of the IL in their toxicity and consequently, that the anion effects 

were less significant compared to the side chain effects of the cation (Ranke J. et al., 2004; 

Garcia M. et al., 2005; Bernot R. et al., 2005) In contrast, additional studies clearly 

demonstrated that the type of anion can strongly affect the toxicity of the IL, and that some 

seem to have a higher toxicity than others (Frade R. et al., 2007/2009). For example, 

toxicity tests using different anions showed that the hydrophobic 

bis(trifluoromethylsulfonyl)imide [NTf2]- anion is able to decrease the toxicity of several 

ILs, independently of the cations tested (Frade R. et al., 2007; Kumar R. et al., 2009; 

Stolte S. et al., 2006). In contrast, the toxicity observed for guanidinium-based ILs 

increased when combined with the anion [PF6]-, comparatively to [NTf2]- and dicyanamide 

[N(CN)2]- (Frade R. et al., 2007). Based on the entire set of studies reported in literature, 

it is possible to postulate that the toxicity of hydrophobic anions has a much bigger effect 

for shorter alkyl chains and less toxic cation (Kumar R. et al., 2009; Stolte S. et al., 2006). 

 Interestingly, and although the (eco)toxicological effect of ILs has been widely 

studied and characterized by a diversity techniques, just a few studies have been 

performed considering the cell membrane as the principal subject. Thus, the study of the 

interactions between membrane cell and ILs is scarce and underexplored. In a recent 

work, where different ILs were applied as impregnation reagents to provide the higher 

conductivity to SEM biological samples, some distinct phenomenological changes on the 

cellular membrane of the biological material used appeared (Kawai K. et al, 2011). 

Imidazolium and cholinium-based ILs were applied in this study, the results showing that 

while the imidazolium cation induced the appearance of rugged surfaces with deep 

wickless, the biological matrices impregnated with the cholinium presented smooth 

surfaces without deep hollows (Kawai K. et al, 2011) (Figure 4). 
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Figure 4: SEM images of Seaweed surfaces impregnated with ILs. (Kawai K. et al, 2011) 

Comparing the results, it was possible to establish that the imidazolium family, 

showed a slow penetration but a higher level of damage on the cell membrane. This result 

was expectable due to the octanol-water partition coefficients of the imidazolium ionic 

species reported so far that suggest that this IL cation has a higher ability to interact or to 

accumulated in the cell membranes. Meanwhile, the cholinium family was capable of 

penetrate through cell membranes, but without dissolution or changing the original shape 

of the biological samples.        

 On this work we propose the study of the mechanism of action of the imidazolium 

and cholinium based ionic liquids upon biological membranes. We propose the use of 

Langmuir Blodgett technique as simple and sensitive tool to evaluate the phenomenon 

involved on the interaction of these two ionic liquids families. Summing up, we intend to 

explore theoretically and practically some of the hypotheses involving the structure 

parameters of both ILs and the toxicological effect that have been pointed has hazard on 

the various toxicity tests reported so far (Matzke M. et al. 2010; Ventura S. et al., 2013). 

 

1.4 – Cellular membrane 

The cellular membranes are dynamic structures responsible for the demarcation 

of the border between the intra-and extracellular medium of the cells. It consists of a fluid 

bilayer of approximately 7-10 nm thickness, mainly composed by lipids, proteins, sterols 

and some polysaccharides. The membrane lipids comprise an extensive variety of 

amphipatic compounds with a nonpolar (alkyl chain) and a polar region. In animal cells, 

the lipids presented in greater quantities are phospholipids, followed by sphingolipids, 

which also appear in significant quantities. Various phospholipids can be distributed 

preferentially in the outer membrane sheet, such as derivatives of phosphatidylcholine 

(PC) and sphingomyelin, or preferentially in the interne leaf, such as derivatives of 

phosphatidylethanolamine (PE) and phosphatidylserine (PS).  
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1.5- Major Model Membrane Systems 

Since the biological membranes are very complex systems, several models aiming 

at mimicking of the biological membranes have been developed (Singer J. et al, 1972; 

Vestergaard M. et al, 2008). These models have been used as simple approaches to the 

study of membrane structure, properties and processes (Thakur G. et al, 2009). As they 

can be performed under controlled conditions, providing advantages to live cells 

approaches, they can be applied in diverse perspectives, (Matsuzaki K. et al., 2007; 

Planque M. et al., 2007; Devanathan S. et al., 2006; Verdier Y. et al., 2004; Paun G. 

and Rozenberg G. 2002; Khan M. et al, 2013) including toxicology (Torrano A. et al., 

2013). These studies have increased our understanding about membrane function and 

structure, providing important information for the development and progress of a wide 

range of scientific and technological areas. The best-known and more common model 

membrane systems used are lipid vesicles, supported lipid monolayers/bilayers and lipid 

monolayers (Eeman M. and Deleu M., 2009).  

 

1.5.1- Lipid vesicle models 

The lipid vesicle models are commonly applied to study the membrane phase 

behaviour as well as to investigate membrane process such as membrane fusion, 

molecular recognition and cell adhesion (Vestergaard M. et al., 2008). These structures 

are versatile biomimetic model membranes, which display a concentric lipid bilayer with 

variable size range, obtained by aqueous dispersions of membrane lipids (Eeman M. and 

Deleu M., 2009). The first work on the study of membrane interaction of ILs using 

vesicles systems has been report by Gal and co-workers (Gal N. et al., 2012). In a quest to 

understand the role of the ILs molecular parameters on their biological activities, the 

researchers evaluated the interactions between representative ILs, exhibiting distinct 

structural and biological features, and lipid/polydiacetylene (PDA) vesicles. The study 

provided a biophysical and microscopy analysis on the effect of ILs upon the lipid bilayer 

insertion, surface interaction, lipid reorganization and membrane disruption. It has been 

possible to observe that the ILs exhibit different membrane binding, insertion and 

disruption mechanisms depending to their structure, and that the increase in the 

membrane activity followed the increase of the cation side chain length of the ILs. The 

authors suggest that the vesicles membranes might be affected by electrostatic 
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interactions between the cation moieties and the negatively charged lipids and that this 

effect could be one of the mechanisms of action of IL on the real cell membrane due to the 

fact that most cellular membranes exhibit charged molecules at the surface.  

 

1.5.2 - Supported lipid monolayer/bilayer models 

The supported lipid monolayer/bilayer models are lipid structures confined to a 

solid surface, usually mica or silica. (Peetla C. et al., 2009) These biomimetic models are 

generally formed by transference of monolayers spread at the air-water interface 

(Clausell A. et al., 2004; Ihalainen P. et al., 2002), or by “fusion” of lipid vesicles onto a 

smooth and solid surface (Mingeot-Leclercq M. et al., 2008). The use of these model 

membrane lies on the characterization of the structure and morphology of the membrane 

surface following the interaction with specific molecules. In a recent study Massimiliano 

and co-workers (Galluzzi M. et al, 2013) have introduced the first experimental report of 

the ILs interaction with supported lipid models. The authors studied the effects of the 

different anions and cation lateral side chain length of imidazolium ILs on DOPC 

phospholipid monolayers. The results suggest the existence of interactions between the 

imidazolium-based ILs and DOPC phospholipid monolayers, being these interactions 

associated with the length of side chain on the cation, but not significantly associated with 

the anion nature. The results showed the importance of the hydrophobic/lipophilic 

character of the ILs cations, since short (C2 and C4) lateral chains adsorb reversely on the 

phospholipid monolayer, and long chains (C8 and C12) promote a stronger irreversible 

interaction. The authors also report that the ionic liquids were able to replace the DOPC 

coated on the surface of the electrode, which can constitute one determinant effect on the 

cell membrane stability. 

 

1.5.3 - Lipid monolayers models 

The lipid monolayers models, also referred as Langmuir films, are monomolecular 

insoluble monolayers formed on the surface of the water by amphiphilic molecules 

(Brockman H., 1999). These biometric models display a well-defined and stable 

structure, possessing a homogenous bidimensional system with a planar geometry 

(Eeman M. and Deleu M., 2009). The Langmuir films are a simple and effective system as 

well as stable, rapid and relatively inexpensive predictive technique. Studies using 

Langmuir monolayers at the air-water interface have been taking place as a successfully 
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and simple model to elucidate the surface behavior of cell membranes (Leblanc R., 2006). 

These studies have reported interesting phenomena that are providing a better 

understanding of the interaction between different classes of molecules with the cell 

membrane in a biological environment. However, no study has yet been performed 

applying the principles of Langmuir films on the study of ILs toxicity.  

 

1.5.4 -Langmuir and Langmuir-Blodgett Technique  

The amphiphilic nature of surfactants and their high surface activity at the air-

water interface allow them to be spread onto a polar liquid surface (Schwartz D. et al., 

1997). Sweeping these molecules over the liquid surface makes possible their 

compression into an ultra-thin ordered monomolecular layer (Kaganer V. et al., 1999). 

These films behave as an elastic membrane trapped at the air-water interface that can be 

repeatedly compressed and expanded. Monolayers obtained by this methodology are 

known as Langmuir films, and for experiments performed with phospholipids, the film 

resembles half of a phospholipid bilayer (Schwartz D. et al., 1997). The typical procedure 

used in the fabrication of Langmuir monolayers consists in the spread of a specific volume 

of a suitable volatile organic solvent, with a known amount of amphiphilic molecules, at 

the surface of an aqueous interface (Orbulescu J. et al, 2009). The spreading solution is 

applied uniformly on the aqueous surface under a dropwise process. After solvent 

evaporation, the Langmuir film forming material attains their favored configuration at the 

air-water interface (Orbulescu J. et al, 2009). The molecules are organized with their 

hydrophobic hydrocarbon chains (“tails”) oriented towards the gas phase and the 

hydrophilic polar group (“head”) immersed in the aqueous phase (Kaganer V. et al., 

1999). By compression of the molecules at the air-water interface a floating monolayer is 

formed (Iwamoto M. et al, 1996). The transfer of this Langmuir monolayer onto a solid 

substrate lifting vertically one solid substrate immersed in the subphase, allow us to 

prepare one Langmuir-Blogett film (Petty M., 1996; Schwartz D. et al., 1997). One or 

more layers can be transferred on the preparation of Langmuir-Blodgett films depending 

of the number of passages made by the substrate through the water surface. For an easier 

cleaning and a higher accuracy, the Langmuir films are usually produced in a container 

known as trough. This trough is coated by a hydrophobic and inert material (Teflon) and it 

contains the subphase. In addition, the trough comprises one thermostatic water channel 

system that ensures a constant temperature throughout the entire experiment. One or 

more movable Teflon barriers are placed across the trough to allow the compression of 
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the monolayer formed on the surface. One surface pressure sensor is connected to 

measure the surface tension variation of the air-water interface along the compression 

and decompression process, and a device named dipper is used on the deposition of 

monolayers onto solid substrates (Dynarowicz-Łątka P. et al., 2001; Schwartz D. et al., 

1997) - Figure 5. 

 

Figure 5: Representation of a typical Langmuir Trough.(Dynarowicz-Łątka, P. et al., 2001) 

The nature of the surface-active molecules at the surface of the water favors the decrease 

of the surface tension. Measuring the variation of the surface tension during the film 

compression the behavior of a monolayer can be studied. The difference between the 

surface tension of pure and clean water and surfactant-covered water is known as surface 

pressure and it is expressed by Equation 1. (Hann R. and Kathirgamanathan P., 1990) 

 

π = γ’ – γ       Equation 1 

 

Where, π is the surface pressure of the water, γ’ represents the surface tension of pure 

and clean water (72.7 mN.m-1 to pure water at 20 ºC) and γ the surface tension of the 

water covered with the surfactant. Since the number of molecules spread on the subphase 

surface is known, it is possible to measure the surface pressure as a function of the area 

occupied per molecule (Schwartz D. et al., 1997; Petty M., 1996). The measurements of 

the surface pressure are commonly carried out using a Wilhelmy plate attached to a 

microbalance. The Wilhelmy plate is partially immersed in the subphase, and allows the 

construction of a pressure-area isotherm (Kaganer, V. et al., 1999; Orbulescu, J. et al, 

2009). 
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1.5.5 - Analysis of Stearic Acid (SA) isotherm 

 

The stearic acid (SA), a “classical” surface-active material, is frequently used in the 

standardization of Langmuir film studies due to their simplicity and well-defined 

properties at the air-water interface (Hann R. and Kathirgamanathan P., 1990). By 

monitoring the changes in the surface pressure during the compression of a stearic acid 

monolayer, a pressure-area isotherm is constructed (Figure 6).  

 

Figure 6: An idealized stearic acid isotherm showing the molecular orientations.  

The isotherm shows tree distinct packaging phases used on the interpretation of the 

organization, dynamics and molecular stability of the SA Langmuir film. After the initial 

deposition of molecules on the subphase, without any external pressure applied to the 

monolayer, the molecules act as a two-dimensional gas (Dynarowicz-Łątka P. et al., 

2001; Kaganer V. et al., 1999). In this phase, the molecules are randomly distributed 

throughout the air-water interface without a specific order. This phase is characterized 

and classified by the absence of interactions between the organic molecules and the 

subphase itself, which corresponds to a surface pressure equal to zero (Kaganer V. et al., 

1999). By compressing the film, the amphiphilic molecules start to interact with each 

other and with the subphase, acting as a two-dimensional liquid. At this stage, the 

molecules begin the formation of regular arrays and the film starts to achieve some order 

(Kaganer V. et al., 1999). This phase is characterized by a decrease of area per molecule, 

increase of the hydrophobic tails interactions and consequent increase of the van der 

Waals interactions (Dynarowicz-Łątka P. et al., 2001; Iwamoto M.et al, 1996). 

Continuing to tighten the barriers, the area around each molecule reaches a minimum and 

the molecules form an ordered and compacted monomolecular film (Crawford N. et al, 

2013). This stage is classified as the solid phase and it is characterized by a linear 

relationship between the surface pressure and the molecular area. (Dynarowicz-Łątka P. 
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et al., 2001; Kaganer V. et al., 1999). By further applying an external pressure, the 

molecules are expelled out of the monolayer plane, causing the film collapse and the loss 

of the ordered monomolecular structure. The pressure needed to promote the film 

collapse is called collapse pressure (πc) and defines the maximum pressure that the 

monolayers can be compressed without losing their monomolecular structure (Kaganer 

V. et al., 1999). Quantitative data such as, the molecular dimensions and organization of 

the monolayer, can be obtained through the analysis of an isotherm. When the monolayers 

exist in the solid phase, the molecules arrangements are well organised and closely packed. 

The molecular area at zero pressure (A0) can be determined by extrapolating the slope of 

the solid phase to zero pressure. The point where the line crosses the x-axis is the 

hypothetical area filled by one molecule in the condensed phase at zero pressure.  

Considering the SA as an example, it is possible to determine that the area filled by a SA 

molecule in a condensed phase at zero pressure is about 20 to 22 Å2 (Dynarowicz-Łątka 

P. et al., 2001). The area obtained is reported as the cross sectional area of a hydrocarbon 

chain, which indicates that this compressed monolayer, has their hydrophobic chains 

oriented almost vertically (Dynarowicz-Łątka P. et al., 2001). Different strategies and 

complementary analysis techniques are nowadays available for a more complete and strict 

interpretation/understanding of the properties of the Langmuir films, such as surface 

potential-area, electrical measurements, microscopic measurements, spectroscopic 

measurements, X-ray and neutron scattering measurements, non-linear optical 

measurements and other techniques as sum-frequency generation (SFG) spectroscopies 

(Dynarowicz-Łątka P. et al., 2001). 

 

1.6 - Intermolecular interactions 

The understanding of intermolecular interactions is extremely important in order 

to understand the behaviour of the chemical and biological systems at molecular level. 

They are therefore, from the thermodynamic point of view, similar as it became obvious 

that the phenomena controlling these interactions are, in fact, based in the same basic 

thermodynamic principles. As discussed above, the Langmuir technique will be used in 

this work as a practical and simple methodology to provide a generic biophysical insight 

on some of the various molecular interactions acting between ILs and lipidic films.  

 

 



 

 

 
 

15 

1.7 – Interactions of biomolecules with Langmuir films 

The advantage of using a model membrane is to prevent handling the abundance 

of factors, which may cause varied impacts on the active molecules/cell interface dynamic 

and make difficult the interpretation of the results. Therefore, by using Langmuir 

monolayers it is possible to resemble the first barrier met by an active molecule, which 

moves towards the cell membrane. Furthermore, this technique permits the analysis of 

specific molecular level interactions between the selected materials and the cell 

membrane components under controlled conditions. Two main objectives arise from the 

use of Langmuir films; i) the first associates the interactions at a molecular level with the 

physiological activity of different types of biomolecules; ii) the second combines results 

with toxicity data, based on the interaction between the chemicals and the cell membranes. 

In what concerns the study of the interaction between active molecules and the Langmuir 

films, a wide range of strategies have been developed in the last decades, usually 

depending on the experiment objective and the molecules under study. Important 

advances on the study of chemical and biological reactions of several biomolecules with 

monolayers serving as cell model were descrived. A relevant part of those works was 

performed involving studies of the chitosan interaction with the cell membrane 

(Pavinatto F. et al., 2005). Pavinatto et al. concluded that the interactions acting between 

the chitosan and the cholesterol monolayers occur by specific groups of chitosan (-NH3
+ 

and OH) and cholesterol (-OH), mainly by hydrogen bonds. These conclusions were also 

taken by Parra-Barraza and co-workers (Parra-Barraza H. et al., 2005) on the study of 

the interactions of SA and cholesterol Langmuir films for four different chitosans with 

distinct molecular weights. For the same concentration of chitosan in the subphase, 

significant modifications in the isotherms were found, meaning that distinct interactions 

between both components SA and cholesterol are occurring. In fact, based on theoretical 

calculations, the author demonstrated that the interactions between chitosan and the 

cholesterol were triggered by –NH3+ and –OH groups. On the other hand, the interactions 

between deprotonated SA were established mainly by electrostatic interactions between 

the groups –NH3
+ and –COO-. Based on observations of more complex studies with mixed 

films of cholesterol and phospholipid dimyristoyl phosphatidic acid (DMPA) conducted by 

Pavinatto and co-workers (Pavinato F. et al., 2009) the authors proposed a model for the 

interaction between chitosan and DMPA monolayers. The model assumes that the 

mechanism of action of chitosan starts by the migration from the subphase to the interface 

and subsequent interaction with the mixed monolayer, mainly by electrostatic forces. 
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Then, chitosan penetrates on the lipid monolayer inducing the expansion of the film and a 

conformational ordering of the hydrophobic chains. In additional studies, Silva and co-

workers (Silva C. et al., 2012) examined the mechanism of action between chitosan and 

mixed films of DMPA and the protein mucin (one of the main components of the mucus). 

The surface pressure and surface potential isotherms were performed with DMPA 

monolayers onto which chitosan and/or mucin were adsorbed. The mucin was adsorbed 

on the DMPA monolayer, causing a large expansion in the isotherm and decreasing the 

surface elasticity, due to the higher affinity of mucin to biomembranes composed by 

negatively charged phospholipid molecules. The addition of chitosan in the subphase after 

the saturation of the mucin adsorption on the film resulted in the decrease of the 

expanding effect of mucin on the DMPA monolayer, which was a consequence of the 

formation of complexes between the mucin and the chitosan (promoted by electrostatic 

interactions). With the high potential and crescent applications of nanomaterials, major 

concerns about their toxicological and environmental effect have emerged. Early, studies 

have demonstrated a high capability of nanomaterials to establish interactions with 

cellular components and to penetrate into the cell membrane. (Huang Z. et al., 2008; 

Cancino J. et al. 2011) However, considering the complexity of the mechanisms involved 

in these interactions, a lack of knowledge between physicochemical and biological 

parameters of nanomaterials is still surprisingly high. Recently, researchers have been 

discovering on the Langmuir Blodgett technique an opportunity to obtain insights on 

some of the toxicological mechanisms of some nanomaterials. Guzman and co-authors 

(Guzmán E. et al., 2013) investigated the interaction effect and incorporation potential of 

silica nanoparticles, observing that the nanoparticles were incorporated into the lipid film 

through specific interactions between the nanoparticles and the lipid molecules. The study 

of the interactions of oppositely charged gold nanoparticles with cell membrane studied in 

detail by Torrano and co-workers (Torrano A. et al., 2013), found that the electrostatic 

forces are needed when nanoparticles interacted with model membranes, especially when 

negatively charged monolayers are considered. These effects might have important 

connections with the toxicity observed for these nanostructures, which relies heavily on 

the capability of guest substances to modify the elasticity of the membrane to promote 

mass transport through the membrane. 
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2 - Materials and methods 
 

 
 

2.1 - Materials 
 

The ILs studied were 1-ethyl-3-methylimidazolium chloride ([C2mim]Cl), 1-butyl-3-

methylimidazolium chloride ([C4mim]Cl), 1-hexyl-3-methylimidazoliumchloride 

([C6mim]Cl), 1-methyl-3-octylimidazolium chloride ([C8mim]Cl) and 1-decyl-3-

methylimidazolium chloride ([C10mim]Cl). All ILs were purchased from Iolitec (Ionic 

Liquid Technologies, Germany). The Cholinium chloride ([Chol]Cl) (98 wt%) was 

purchased from Sigma–Aldrich®. Ultrapure water, pH = 5,70 and resistivity 18,2 MΩcm, 

were provided by a Millipore purification system and used to prepare all IL’s aqueous 

solutions.1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) (≥ 99%), was purchased 

from Sigma-Aldrich®. Chloroform, HPLC grade (99,9%), was acquired from Sigma-Aldrich. 

 

2.2 -Metodology 

Langmuir monolayers were prepared using a NIMA 611 Langmuir-Blodgett trough. 

Surface pressure-area (π-A) isotherms, isocycles and surface pressure-time curves were 

performed at room temperature and measured with a Wilhelmy plate balance. Typically 

monomolecular films were produced by spreading 60μL of a chloroform solution of the 

amphiphilic molecules (1 mg.mL-1), using a microsyringe (Hamilton, 100μL), at the air-

water interface. Langmuir monolayers were allowed to reach equilibrium for 10 min 

before compression. The compression rate applied to the pressure-area isotherm 

measurements was 10cm2 min-1 (2.4 Å2 min-1). The influence of the different ILs in the 

subphase of the neutral/zwitterionic (DPPC) Langmuir monolayers was studied at several 

concentrations. These concentrations were obtained by diluting the ILs in ultra-pure 

water taking into consideration their water content. The isocycles were performed 

between a pressure of 0mN.m-1 and 30mN.m-1 approximately, and at a compression rate 

equal to 50cm2.min-1. This experimental procedure was repeated three times without any 

intervals between each cycle of compression/expansion. The adsorption measurements of 

the ILs were performed using distinct procedures: (i) motorization of the surface pressure 

variation at constant area as overtime in the absence of lipids on the interface; (ii) 

motorization of the surface pressure variation at constant area over time in the presence 

of lipids at the interface upon compression of the DPPC monolayer up to a surface 

pressure of 16 mN.m-1; and (iii) motorization of the surface pressure variation at constant 
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area over time, via injection of an IL solution on the subphase, after compression of the 

DPPC monolayer up  to a surface pressure of 16 mN.m-1. Changes in the mechanical 

properties and DPPC monolayer were also studied through the calculation of the 

compressional modulus (Cs−1), also known as in-plane elasticity, from the π-A isotherms 

data by applying Equation 2 (J. T. Davies and E.K. Rideal, 1963): 

Cs−1 = −A(∂π /∂A)      Equation 2 

Where Cs-1 is the surface compressibility modulus, A is the molecular area and π the 

surface pressure 
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3 - Results and discussion  

 

The present study aims at the evaluation of the molecular interactions between the 

imidazolium ILs family and DPPC monolayers in order to obtain information that could 

provide a better understanding about the differences of their mechanism of toxic action. 

For comparison a cholinium was also studied. Monolayers at the air-water interface 

mimicking the cell membrane outer leaflet were formed by spreading a chloroform 

solution of the DPPC phospholipid onto a subphase containing the ILs. The interactions 

between the phospholipids and the ionic liquids were studied by film balance 

measurements followed by the analysis of the surface pressure-area isotherms and 

calculation of the monolayers compressibility modulus. The stability of the monolayers 

was also assessed via three consecutive compression-expansion cycles also referred as 

isocycles. Notice that the experiments were performed and the results interpreted taking 

as reference the values of EC50 of the [C6mim]Cl and [Chol]Cl (170,0 and 469,3 mg/L to 30 

min of exposure). As during the initial stages of the experimental work a number of 

inconsistencies were identified between replicates, several experiments were conducted 

and a significant number of publications on trends in the pressure-area isotherms 

reviewed in order to identify and correct these errors as discussed next. 

 

3.1 – Experimental errors  

 In the first section of this work, some of the most critical sources of experimental 

error identified are defined and the strategies to minimize or correct them are presented 

and discussed. 

 

3.1.1 – Over-flow/ film leakage phenomenon 

During the compression of the monolayer at high surface pressures, it was 

observed that the subphase started to overflow the trough. The overflow process started 

near the barriers (Figure 7-a) and, as the superficial film was continuously being 

compressed, under the walls of the trough (Figure 7-b). 
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Figure 7: Representation of the over-flow phenomenon observed during the compression of the 

monolayer at high surface pressures, first near the barriers (a) and then under the walls of the 

trough (b). 

Typically, as the overflow phenomenon evolves, the subphase level drops and film leakage 

occurs. Traditional measurements of the interfacial behavior of insoluble surfactants are 

extremely sensitive to this effect as it involves the loss of material from the air-water 

interface. Consequently, changes in the measurement of area per lipid occur, affecting the 

shape of the isotherm and leading to situations such as, the premature occurrence of the 

film collapse (Tabak S. A. and Notter R. H., 1977). Like us, several researchers have been 

correlating the leakage effect with sources of experimental errors such as irreproducibility 

of the isotherms profile and shifts of the minimum area per molecule at LC phase, specially 

for films of high relatively rigidity and large dynamic collapse pressure such as DPPC 

(Notter R. H. et al., 1980; Tabak S. A. et al., 1977). Figure 8 shows the effects of this 

phenomenon on the pressure-area isotherm of DPPC monolayers.  

 

Figure 8: Effect of the subphase overflows and film leakage during the study of pressure-area 

isotherm of DPPC monolayers on pure water. 

a) 
b) 
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The first decrease in the slope of the pressure-area isotherms, observed at surface 

pressures at around 55 mN.m-1, resulted from the film leakage near to the barriers. At this 

point, the losses of material are small which allow the self-reorganization of the film inside 

the trough and the continuous increase of the surface pressure. As the surface pressure 

reaches maximum values, the subphase overflow takes place at a much more significant 

level, and the irreversible and substantial loss of material causes subsequent and the 

accentuate decrease of the surface pressure. As the leakage effect involves different levels 

of material losses between assays, distinct collapse pressures are obtained, which lead to 

misinterpretation of the results. In one attempt to minimize the effects of film leakage, 

additional studies regarding the evaluation of the subphase volume influence on the 

overflow phenomenon were performed. Using different volumes of ultra pure water, it 

was possible to conclude that the potential of the subphase overflow and film leakage was 

higher when larger volumes of water were used. We observed that in these cases, the 

curvature angle of the water with respect to the barriers and the walls of the trough 

increased, affecting the dynamic collapse pressure of the monolayers. We believe that for 

high curvature angles, the DPPC phospholipids trapped in a transient or non-equilibrium 

state between the interface and the boundaries of the barriers during the compression 

increase (Figure 9).  

 

Figure 9:Representation of the curvature angle of the water with respect to the barriers for high 

volumes of subphase. The image show DPPC phospholipids trapped between the boundaries of the 

barrier and interface during the compression of a monolayer. 

This increase, induces higher levels of disorder of the DPPC molecules at this specific 

region, contributing to the subphase overflow phenomena and consequently film leakage. 

Despite a significant decrease of overflow phenomenon with the decrease of subphase 

volume, phenomena associated with the hysteresis of the Wilhelmy plate contact angle 

occur during the assays performed with the lowest volumes tested. These phenomena 

involved the progressive decrease and subsequent loss of contact between the Wilhelmy 

plate and the interface during the compression of the film, which turned impossible the 

monitoring of the surface pressure until the end of the film compression (Figure 10). 

 Barrier (hydrophobic material) 

Subphase (ultra pure water) 
DPPC 

Leakage effect 
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Figure 10:Consequence of the Wihelmy plate contact angle hysteresis on the study of the pressure-

area isotherm of DPPC monolayers formed on ultra-pure water. 

As Teflon has a hydrophobic nature and since the curvature angle effect is inherent 

to the barriers and walls, we were unable to completely avoid the overflow and leakage 

phenomenon. However, by reducing the subphase volume the problems associated with 

overflow and leakage were overcome. Based on our observations, it is possible to conclude 

that the volume at which the overflow remained at its minimum and at which there is no 

Wilhelmy plate contact angle hysteresis is 450 mL, which corresponds to a the level of the 

subphase that is slightly lower than the level of the trough walls but still within that of the 

barriers. Tabak and co-workers (Tabak S. A. and Notter R. H., 1977; Tabak S. A. et al., 

1977) found that troughs equipped with a continuous Teflon ribbon barrier were able to 

avoid the film leakage when compared with standard barriers. The authors proved that 

the use of ribbon barriers instead of the conventional Teflon barriers enables a better 

confinement of the monolayer at higher packing densities (> 70mN.m-1 for DPPC). Thus, as 

the through used in this work is composed by a set of conventional Teflon barriers, it is 

expected the occurrence of experimental limitations in what concerns film leakage.  

      

3.1.2 - Isotherm reproducibility 

The shape of the isotherms is a critical parameter on the interpretation of the 

molecular thermodynamics and morphological properties of insoluble monolayers. 

Therefore, accurate measurements and high level of reproducibility are essential 

parameters for a proper analysis. Figure 11 shows some of the pressure-area isotherms 

obtained from the study of the DPPC monolayers in ultra-pure water. Three different tests 

with three replicates each, performed on ultra-pure water using the same methodology 

are presented in the figure. The analysis of the isotherms reveals significant differences 
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involving irreproducibility of the shape of the isotherms for the different tests including 

the collapse phase, which prevented a proper interpretations of the results. 

 

Figure 11:Pressure-area isotherms of DPPC monolayers in ultra-pure water (lines with the same 

color represent replicates of the same experiment using the same conditions and experimental 

procedure). 

Since the Langmuir-Blodgett technique is extremely sensitive, the accumulation of 

insoluble impurities at the surface of the water has always a significant effect. These 

molecules remain and accumulate at the interface, changing the molecular concentration 

or even affecting the intermolecular interactions between the film molecules, which 

induces changes on the isotherms profile. Thus we concluded that the differences 

observed between replicates were related to subphase contamination by surface-active 

impurities. We concluded that the source of these contaminations aroused from air-borne 

particles accumulation and from the reuse of the same subphase in different assays. We 

observed that despite of cleaning the surface of the subphase after each test, the risks of 

contamination of lipids from older assays were high. When the subphase was not replaced 

by fresh water and when the barriers and the trough were not properly cleaned before 

each study, the isotherms were more susceptible to variations. The same behavior was 

observed when the films were exposed at the air-water interface during long periods of 

time as the probability of deposition and accumulation of air-borne particles was higher. 

In order to eliminate these sources of contamination, we decided to clean the barriers and 

the tank with chloroform and to use fresh water before performing each test. In addition, 

we have made sure that the environment around the equipment was always free of dust 

and that the time of evaporation after the spreading process was always the same. 

As discussed in the introduction, the collapse phase results from the compression 

of insoluble films beyond the minimal area available to accommodate the molecules in the 
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2D plane. Moreover, in normal collapse processes, the surface pressure might remain 

constant and a horizontal plateau might be formed (Notter R. H., 2000) (Figure 12). 

 

Figure 12: Collapse pressure (πc) and collapse area (Ac) of a DPPC monolayer. Being the Ac’’’, the 

area where the isotherm departs from its steepest slope; Ac’’, the area where the collapse plateau 

intersects the line of steepest slope; and Ac’, the area where the maximum pressure (πc) is reached. 

Adapted fromNotter R. H., 2000. 

On Figure 11 no horizontal plateau was observed but, instead, a slightly increase of the 

surface pressure. Therefore, we suggest that the presence of experimental errors like 

interface contamination and leakage effects might also be leading to the irreproducibility 

of the collapse pressures and areas. From the analysis of the results reported in literature 

it is evident that the collapse mechanism of the DPPC monolayers is still not well 

understood. Studies have been describing different interpretations of this phase. Duncan 

and Larson concluded that variations regarding experimental isotherms have been leading 

to misinterpretation of the real point of collapse phase of DPPC monolayers (Duncan S. L. 

and Larson R. G., 2008). Wustneck et al. concluded that under circumstances as film 

over-compression, the monolayers can suffer gradual rearrangements that allow changes 

in the surface pressure that lead to premature collapse phases (Wustneck N. et al., 2000). 

As the study of the collapse phase is not essential to accomplish the objectives of our work, 

we performed our tests by taking into consideration the reproducibility of our results. 

Hence, we have decided to perform our experiments at lower compression rates of 

10cm2.min-1 in order to avoid premature collapse. Considering the structural features of 

DPPC and the apparatus limitations earlier discussed, the highest surface pressure that 

can be reached during the compression of a DPPC monolayer in the conditions at which 

we are working are, as shown in Figure 13, approximately 60 mN.m-1. 
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 The concentration of the molecules added to the subphase is essential for a correct 

evaluation of the pressure-area isotherm during the compression. This parameter is 

defined in the software used to store and correlate the data from the experimental studies. 

If the concentration of the DPPC solution is not correct, the number of molecules added to 

the subphase will not be the same as the number of molecules used by the software during 

the evaluation of the interfacial changes, and irreproducibility problems will arise. As for 

each of the three tests different solutions of DPPC were used, we concluded that the large 

variability observed in the isotherm between different tests was due to errors on the 

concentration of the DPPC solution. Efforts were made in order to eliminate variations on 

the concentration of the DPPC solutions. Therefore, we decided to prepare fresh solutions 

of DPPC every week. After the solution preparation, several isotherms were performed in 

order to evaluate the possibility of contamination or to identify old and new errors on the 

experimental preparation. The solution was used during the same week, and precautions 

were taken in order to minimize the alteration of the solution concentration or purity. 

Between each assay, the solution was tightly sealed in order to avoid chloroform 

evaporation, which could change the concentration along time. At the end of the 

experiments, the solution was kept at constant temperature (5ºC) in the fridge. At the 

beginning of each day, one isotherm was performed to compare and validate the quality of 

the solution. If the quality of the solution changed, a new solution was prepared and 

validated before further studies. Figure 13 shows the reproducibility achieved after taking 

in consideration all the considerations discussed above. 

 

Figure 13: Langmuir π-A isotherms of a DPPC monolayer spread on the air-water interface. The 

solution was prepared and tested at the beginning of each day, during 5 days, aiming its validation, 

thus minimizing potential problems and guaranteeing the reproducibility of the results. 
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Furthermore, notice should be made that recent studies carried out by our collaborators 

at IFSC-USP in a 10000 clean room at room temperature, 22 (±1 °C)have confirmed our 

results. 

3.3 – Dynamic packaging of DPPC monolayers  

Taking into consideration the natural composition of cell membranes and the 

natural abundance of phosphatidylcholine derivate, especially in the outer leaflet of the 

cell membrane, we decide to use Langmuir films of DPPC phospholipids as a cellular 

membrane model. The chemical structure of DPPC is constituted by an uncharged head 

group formed by two spatially separated oppositely-charged moieties, a positive choline 

moiety linked to a negative phosphate group (polar head), and two saturated alkyl chains 

with 16 carbons (non-polar tail)– see inset of Figure 14. The use of the DPPC allows a close 

representation of the external leaflet of the cell membrane, and thus a reasonable 

simulation of the interactions acting between the ionic liquids and the living cell 

membranes. 

 

Figure 14. Langmuir π-A isotherms of a DPPC monolayer spread on the air-water interface. Inset -

molecular structure of DPPC. 

 Surface pressure-area isotherm measurements are the conventional way to 

characterize the phase behavior of Langmuir films. Figure 14 shows the surface pressure-

molecular area isotherm of DPPC monolayer on a pure water subphase as well as the 

schematic representation of the corresponding stages of packing of the molecules during 

the compression of the film. Similarly to the study of stearic acid mentioned in the 

introduction, as the DPPC solution is spread on the air-water interface, the molecules 

assume a freely packed form at the water surface. At this stage, the molecules behave as a 
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2D gas, being organized in a way that there are no interactions between them. This phase 

is classified as gas phase and is represented by a perfectly horizontal plateau at a surface 

pressure equal to 0mN.m-1(Region I). As the DPPC monolayer is being compressed, the 

molecules start to approach in a way that they start to feel the closest molecules 

(approximately between 80 to 100Å2). In this packaging phase, the molecules assume the 

behavior of a 2D liquid classified as liquid-expanded phase (LE), which is graphically 

represented as the first plateau to the far right of the isotherm (Region II). By further 

compression of the monolayer, the molecules get closer to each other and physical 

contacts are established (between 80 to 50Å2 approximately). This stage is classified as 

the liquid-expanded/liquid-condensed phase transition (LE-LC), and it is graphically 

represented in the isotherm as the second plateau, observed around 6mN.m-1 (Region III). 

As the monolayer is being compressed to higher values of pressure, the DPPC molecules 

reach a high stage of organization in which the area around each molecule reaches a 

minimum and the molecules form an ordered and compacted film (between 50 to 45 Å2, 

approximately). In this packaging stage, the molecules assume the behavior of a 2D 

semicrystaline phase. This phase is classified as a liquid-condensed phase and, similarly to 

the solid phase of the stearic acid, it is graphically represented by a linear relationship 

between the surface pressure and the molecular area (Region IV). Further compression of 

the monolayer causes the rupture of the DPPC monomolecular film, allowing the 

formation of aggregates, lipids dissolution and/or the formation of bilayers and/or 

multilayers (about 45Å2approximately). This stage is classified as the collapse phase, and 

it is graphically represented as a final kink of the isotherm, found at surface pressures 

around 60mN.m-1 (Region V). For pure DPPC monolayer on ultrapure water, a limiting 

molecular area was obtained at around 51,1 Å2.molecule-1.This value is in agreement with 

the estimated minimum area of DPPC headgroups on a monolayer in a liquid condensate 

phase (approximately 50Å2)(Gennis R. B., 1989), and is consistent with data reported in 

literature (Pavinatto F. J. et al., 2007). 

 

3.4- Interaction between [C6mim]Cl with DPPC monolayer  

It is known that the pressure-area isotherms are a function of the surface pressure, 

surface area and temperature. As discussed in the introduction, this correlation is the 

result of a thermodynamic relationship that acts upon the molecules during the 

compression and packing of the monolayer. When measured accurately and under 

equilibrium conditions this relationship ought to be universal and specific of the 
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superficial film molecules (Duncan S. L. and Larson R. G., 2008). Based on that, and in 

case that there are interactions acting between the DPPC monolayers and the ionic liquids, 

the thermodynamic relationship acting during the compression of pure DPPC monolayers 

is affected, causing changes on the packaging kinetic that lead to changes in the pressure-

area isotherms. In our studies, the interactions of the DPPC monolayer with different 

[C6mim]Cl concentrations added to the aqueous subphase were initially studied using the 

surface pressure-molecular area isotherm technique. The [C6mim]Cl has been selected to 

analyse the interactions of the alkyl chain length with the DPPC monolayers as it 

represents the alkyl chain length at which the EC50 values of the imidazolium ILs family 

present a remarkable increase. Figure 15 shows the influence of the [C6mim]Cl in the 

subphase on DPPC monolayers at the air-water interface 

 

Figure 15: Pressure-area isotherm for DPPC monolayers formed in ultra-pure water and, formed in 

a subphase containing the ionic liquid [C6mim]Cl at the concentration between 128.1 mg.L-1and 

212,6 mg.L-1. 

Considering our interest in using the LB technique to get complementary 

information at molecular level regarding the toxicity of ILs, we took as reference 

concentration that of EC50 of [C6mim]Cl (170 mg/L). Comparing the DPPC pressure-area 

isotherms obtained on ultrapure water with those obtained in the presence of [C6mim]Cl, 

significant changes on the isotherms shape were observed. The effect of the [C6mim]Cl 

was found to be significant as the results obtained indicate that it perturbs the LE 

transition and the LC phase.By a general analysis of the isotherms we were able to observe 

that as the [C6mim][Cl] concentration increases (from 128,1 to 212,6 mg L-1), the 

transition region of G phase to the LE phase is shifted to bigger molecular areas. 

Furthermore, the LE-LC transition phase converges to similar values of those obtained on 

Cl- 
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pure DPPC monolayers and the LC phase is shifted to higher values of area per molecule. 

As an illustration of the effect of the [C6mim]Cl on the DPPC monolayers, in Figure 16 and 

17 are depicted the variations of the area per molecule and the surface pressure as a 

function of the ILs concentration for a fixed surface pressure and a fixed area per molecule 

respectively. 

 

Figure 16: Surface pressure variation at the fixed area of 90Å2mol-1 and molecular area at the fixed 

pressure of 2mN.m-1 as a function of the [C6mim][Cl] concentration. 

 

Figure 17: Surface pressure variation at the fixed area of 50Å2mol-1 and molecular area at the fixed 

pressure of 15mNm-1 as a function of the [C6mim][Cl] concentration. 

On these figures it is possible to observe that above the concentration of 148,0 mg.L-1 the 

changes in both LE phase (Figure 16) and LC phase (Figure 17) caused by the [C6mim]Cl 

follow a linear increase. The fact that this increase is proportional to the concentration of 
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[C6mim]Cl suggests the inclusion of the [C6mim]Cl molecules inthe monolayer. Although 

not observed in the range of concentrations tested, this approach can be useful, not only to 

assess the changes suffered by the monolayers, but also to evaluate the saturation 

concentration of the [C6mim]Cl in the lipidic films. This phenomenon involves the 

reversibility of the expansion effect observed and reported before, which might occur 

above certain concentrations of [C6mim]Cl in cases where: i) the monolayer assumes 

residual charge as a result of the adsorption of the charged molecules, that might repel and 

avoid the adsorption of new molecules; ii) the ions interact, to some extent, with all ions of 

opposite charge in their vicinity, reducing the strength of their intramolecular interactions 

and, therefore, the range over which their effects are significant on the expansion of the 

DPPC monolayers (Pavinatto F. J. et al., 2007). The saturation concentration might be of 

crucial importance not only for the possible correlation with the effects reported so far, 

but also with many others that at this point we are unable to test or understand (e.g. 

kinetics of adsorption and mechanisms of toxicity). Therefore, in future studies, this issue 

must be addressed by testing a higher range of concentrations.  

From the analysis of Figures 15 to 17 we concluded that LE phase seems to be 

favoured by the presence of [C6mim]Cl as the G-LE transition occurs at larger values of 

areas. Thus, we suggest that the [C6mim]Cl might be affecting the kinetics of the nucleation 

process of the DPPC monolayer and that the formation of LE phase domains is promoted. 

This might be due to inductive forces such as electrostatic interactions between the 

[C6mim]+ and the positive ammonium group of the DPPC polar head, that might increase 

the density of forming DPPC domains at the G phase allowing early LE transitions. Indeed, 

it is known that the growth of the DPPC domains begins at lower pressures and continues 

evolving with the increase of the pressure until they achieve their fundamental shape and 

size at the LC phase (Cary W. and T. Kyle Vanderlick, 1997). In this context, it is obvious 

that the morphology and size of the LC phase domains might be typically defined by the 

phenomenon ruling the coexistence region. Many studies about the effects of specific 

molecules on DPPC Langmuir monolayers at the air-water interface have shown that their 

interactions, making or not changes in the LC phase, are correlated with significant 

changes on the LE phase (Aroti A. et al., 2004). Thus, we conclude that although 

[C6mim]Cl might be able to induce the formation of LE phase domains, it does not affect 

significantly the morphology (size and shape) of the DPPC domains. This conclusion is 

based on the convergence of the plateau of the LE-LC phase transition during the increase 

of the [C6mim]Cl concentration towards similar values to those registered for the DPPC 

monolayers in ultrapure water. As far as we know, this behaviour is quite unusual in 
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literature considering that, with the increase of the [C6mim]Cl concentration, this 

convergence is later followed by displacements of the LC phase to higher molecular areas. 

In this sense, these results suggest that the conditions at which the [C6mim]Cl is able to 

interact with the lipidic domains only occurs at higher levels of organization. As at high 

surface pressures the isotherms are not converging to molecular area values as those of 

pure DPPC monolayers, we propose that the monolayer expansion shown may be caused 

by the establishment of strong local interactions between the DPPC molecules and the IL 

that allow the [C6mim]Cl to remain in the monolayer. Since many studies have shown that 

the presence of NaCl in the subphase causes little to no shift in the DPPC pressure-area 

isotherms (Aroti A. et al., 2004; ShapovalovV. L., 1998), we propose that the 

interactions between the DPPC monolayers and the [C6mim]Cl might be predominantly 

ruled by the cation [C6mim]+. However, the contribution of Cl- to structural changes of the 

DPPC monolayer should also be considered as several studies have found slight changes of 

the isotherm shape and area per molecule for large variations of the ionic strength 

(Zaitsev S. Y. et al., 1996). 

 

3.5-In-plane elasticityof DPPC and DPPC-[C6mim][Cl] monolayers 

 Besides the morphological characterisation made by the direct analysis of the 

pressure-area isotherms, it is also possible to obtain an insight about the mechanical 

properties of the DPPC monolayers by calculating their in-plan elasticity or 

compressibility modulus. This additional approach provides valuable information about 

the elasticity and compressibility of the monolayers, which defines the ability of these 

structures to change and restore their physical morphology during the action of external 

forces (Khattari Z. et, al. 2011). In presence of specific molecules in the subphase, the 

changes of monolayers elasticity and compressibility are of much importance in the 

interpretation of the interactions acting between perturbing agents and the lipidic films. In 

this work, these evaluations were made by the calculation of the compression modulus of 

the DPPC films at the air-water interface. The compressibility modulus of an amphiphilic 

monolayer at the air-water interface is mathematically defined by Equation 2 and was 

calculated using the pressure-area isotherms data. Notice that a high value of Cs-1 indicates 

that the monolayer has a higher elasticity (flexible morphology) and vice versa. In addition, 

it is predictable that the highest compressibility modulus will be found at high surface 

pressure during the LC phase as the monolayers are more compact. Hence, it involves 

large reduction of the surface tension for a small decrease of molecular area. The Cs-1 
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values of a DPPC monolayer on ultra-pure water were calculated and then analysed as a 

function of the molecular area. To make the interpretation of these results easier the 

corresponding pressure-area isotherms were also plotted (Figure 18). 

 

Figure 18: andCs-1 as a function of areaof DPPC monolayers on ultra-pure water. 

 From the evaluation of the Cs-1-A curve it is possible to identify analogies between 

the different regions of compressibility to the phase transitions of the pressure-area 

isotherms. In general, it is possible to observe that at the beginning of the compression the 

value of elasticity of the monolayer is zero, which is in agreement with the packing level of 

the film at the G phase. Moreover, at the value of 100Å2 the film elasticity started to 

increase reaching a maximum compressibility of 27,93mN.m-1 at 84Å2. This 

compressibility phase is characteristic of the LE phase and it correlates with the increase 

of the compaction and rigidity of the film, resulting from the formation of LE domains. As 

the monolayer is further compressed, the elasticity decreases until 3mN.m-1, remaining 

then constant until the area of 58Å2 (LE-LC phase transition). At the area of 59Å2 the 

elasticity of the monolayer starts to increase linearly achieving a final maximum of 

300mNm-1 at 45Å2 (LC phase). As the monolayer is compressed beyond the maximum 

compressibility, the elasticity drops, making the monolayer more susceptible to 

morphological deformations (Wang Z. and Yang S., 2009). Another way to evaluate the 

compressibility modulus of monolayers is to plot it as a function of the surface pressure 

(Cs-1- π). Although this study does not provide direct evidence for the existence of phase 

transitions, it gives an important support for the interpretation and infer of different 

states of molecular arrangements, interaction and aggregationresulted from the insertion 

of molecules of a second component in superficial monolayers (Schmidt T. F. et al., 

2008)(Figure 19). 
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Figure 19: Compressibility modulus as a function of the surface pressure (Cs-1- π) of the DPPC 

monolayer at the air-water interface. 

We highlight the example about the surface pressure at which the maximum 

compressibility is reached (between 35 to45 mNm-1). This pressure is extremely 

important, as it represents the pressure frontier between flexible and rigid monolayers 

and embodies an important proximity to the values described for the biological 

membranes (Marsh D., 1996). Thus it gives us a way to compare and interpret the 

experimental data obtained from our studies with those from toxic tests for living cells. To 

better understand the effects of [C6mim]Cl on the monolayer stability and clarify their 

interactions with the DPPC Langmuir films, the compressibility modulus data were 

examined. The Cs-1 values of the monolayers formed in presence of an increasing 

concentration of [C6mim]Cl in the subphase were calculated and are plotted as a function 

of the molecular area and the surface pressure in Figure 20. 

 

Figure 20: In-plane elasticity (CS-1) of DPPC monolayers formed in the presence of different 

concentrations of [C6mim]Cl as a function of the molecular area and the surface pressure (Cs-1-A and 

Cs-1- π). 
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Figure 20shows that the DDPC monolayers elasticity is affected by the presence of the 

[C6mim]Cl on the subphase. It can be seen that the [C6mim]Cl induces slight shifts on the 

typical compressibility of the packing degree of the DPPC monolayer. We observed that 

the increase of the compressibility at the LE phase is moved to higher areas, which is 

justified by the earlier transition of G phase to the LE phase. Moreover, the values of Cs-1 of 

the LE-LC phase transition converge to approximately the same value as the pure DPPC 

(around 26 mN.m-1± 2), which reflect the similar packing profile observed on the 

pressure-area isotherms. In addition, the adsorption of [C6mim]Cl onto the DPPC 

monolayers causes the decrease of the maximum Cs
-1 from a value of approximately 300 

mN.m-1 for pure DPPC films to values between 261 and 250 mN.m-1. The results obtained 

show that in presence of the [C6mim]Cl the monolayer assumes a lower elastic 

morphology, suggesting a more rigid monolayer with a more condensed and organized 

physical state that might turn the monolayer more susceptible to morphological 

deformations. We conclude that the [C6mim]Cl was able to interact with the DPPC 

monolayer affecting the packing of the lipids.  

 

3.6 – Compression-Expansion Hysteresis of DPPC monolayers  

During compression processes, surfactant monolayers at the interface air-water 

can suffer phenomena of partial ejection and squeeze out of material even if under surface 

pressure below the collapse. Moreover, during the expansion processes, these phenomena 

can be partially/fully reversible (dynamic re-spreading) (Notter, R.H., 2000). As the 

ejection and the integration of the material can present different rates between 

compression and expansion, several differences can be observed on the isotherms of both 

processes. If after the compression, the area occupied by the molecules is increased, the 

expansion isotherm is displaced to lower values of area and a hysteresis profile is 

obtained. The study of hysteresis phenomena using cycles of compression and expansion 

is called isocycles and allows us to evaluate both reversibility and stability of the films 

under specific conditions. The study of DPPC monolayer hysteresis in presence of ILs is 

especially important, since it could give us direct indications of hysteresis caused by the 

interaction of the ILs with the monolayers. If [C6mim]Cl is able to interact with the DPPC 

monolayer, the dynamics of re-spreading of the material is affected thus, the levels of 

hysteresis of the lipidic films are altered. The stability and reversibility of DPPC 

monolayers, with and without the presence of [C6mim]Cl in the subphase were studied 
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using the isocycles approach. The studies performed with a DPPC monolayer on ultra-pure 

water and in the absence of [C6mim]Cl are shown on Figure 21. 

 

Figure 21: Hysteresis curves of pure DPPC monolayers formed in ultra-pure water.   

Figure 21 demonstrates that the DPPC monolayers in ultra-pure water were stable, being 

characterized by a reversible packaging process. However, it is observed that the shape of 

the isotherms was not totally similar between the cycles of compression and expansion. In 

addition, it should be noted that in the successive cycles, the isotherms were slightly 

displaced to smaller values of area. Although not very significant, the hysteresis behavior 

observed suggests, as explained before, that there-spreading of DPPC molecules at the 

interface was not fully efficient. These results suggest the formation of three-dimensional 

aggregates and/or the squeezing out of DPPC molecules during the compression. 

 The isocycles of DPPC monolayers in presence of [C6mim]Cl for 140, 170 and 

212mg.L-1 are shown in Figures 22, 23 and 24, respectively.  

 

Figure 22: Isocycles of pure DPPC monolayers in the presence of 140,0mg.L-1 of [C6mim]Cl. 
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Figure 23: Isocycles of pure DPPC monolayers in the presence of 169,5mg.L-1 of [C6mim]Cl. 

 

 

Figure 24: Isocycles of pure DPPC monolayers in the presence of 212,4mg.L-1 of[C6mim]Cl. 

By the analysis of the isocycles in Figures 22 to 24,we observed that in the presence of 

[C6mim]Cl, the hysteresis of the DPPC monolayers is slightly reduced when compared with 

the films obtained for DPPC in ultra-pure water. Moreover, after the first compression 

cycle, the expansion/compression profiles remained unchanged and no displacement of 

the isotherm to lower values of area occurred. This means that during the expansion of the 

monolayer, the lipids aggregated or squeezed-out are more efficiently re-spread in the 

presence of this specific IL than in ultra-pure water. In this sense, it is possible to conclude 

that [C6mim]Cl affects not only the phase behavior and elasticity of the DPPC monolayers, 

but also the dynamics of the re-spreading process, inducing higher levels of stability and 

reversibility of the lipidic films.         
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3.7 - Study of the interaction between [Chol]Cl and DPPC monolayers 

As discussed in the introduction it has been recently proposed that the cholinium 

family exhibits a different mechanism of toxic action comparatively to the imidazolium 

counterparts. In order to investigate these mechanisms, several studies regarding the 

interactions of DPPC monolayer with different concentrations of [Chol]Cl, were performed 

(Figures 25 and 26). It was observed that, when [Chol]Cl is added in the subphase, both 

the pressure-area isotherm and the compressibility modulus of the DPPC monolayer 

suffered alterations.  

 

Figure 25. Representation of the pressure-area isotherms for pure DPPC monolayers on an 

aqueous subphase and in the presence of [Chol]Cl, from 172.6 to 551.1 mg .L-1. 

Figure 25 shows that, despite the small changes observed, the pressure–area isotherm of 

the DPPC monolayers is not affected when the concentration of [Chol]Cl is increased. Thus, 

it was concluded that, as opposed to the [C6mim]Cl results, the effect of this cholinium 

structure on the DPPC monolayers was not dependent of the concentration tested. The 

slight shift of the isotherm at the beginning of the LC phase, suggests that [Chol]Cl is  

capable of interacting and probably of being incorporated into the head group region of 

the DPPC monolayer. However, the convergence of the solid phase suggests that the 

penetration and expansion of the monolayer at high pressures is reversible, and that the 

[Chol]Cl is expelled from the film. The effect of cholinium in the film elasticity was also 

investigated through the calculation of the compressibility modulus of the DPPC 

monolayer, which was then plotted as a function of the molecular area and the surface 

pressure (Figure 26). 

 

 

Cl- 



 

 

 
 

38 

 

Figure 26: In-plane elasticity (CS-1) of DPPC monolayers formed in the presence of different 

concentrations of [Chol]Cl, as a function of molecular area and surface pressure. 

Figure 26 shows that [Chol]Cl induced significant differences on the film compressibility 

modulus at specific stages of the DPPC packing. The displacement at the beginning of the 

LC phase for higher area values in the films containing [Chol]Cl is a reflection of the 

expansion imposed by the ionic liquids on the DPPC films. However, contrary to what was 

observed for [C6mim]Cl, the change on the compressibility observed in the LC phase 

converge to values of pure DPPC monolayers. This parameter is in agreement with the 

conclusions taken from the analysis of the isotherm shown in Figure 25 regarding the 

ejection of [Chol]Cl from the monolayer at higher pressures. Similarly to the [C6mim]Cl, 

the incorporation of [Chol]Cl in the films seems to cause a reduction of the maximum value 

of the film elasticity, which was about 300mN.m-1 for the pure DPPC film in ultra-pure 

water and between 248 and 251mN.m-1 for films containing [Chol]Cl. These values suggest 

that the incorporation of [Chol]Cl might interfere with the dense packing of the polar head 

group and change the fluidity of the lipidic monolayers. It can be seen on the Cs-1- π plot 

that at pressures between 0 and 30 mN.m-1 as well as between 50 and 60mN.m-1 the 

compressibility modulus remain similar between the different concentrations tested. 

However at pressures between 30 and 50mN.m-1 significant changes are observed. This 

effects of the [Chol]Cl on the DPPC monolayers at this specific pressure is special 

interesting as this pressure is more similar to the biological membranes. We propose that 

after adsorption on biological membranes, the [Chol]Cl might not be able to remain 

bonded to the monolayer, however, this proposal does not invalidates the ability of 

cholinium to penetrate the membrane cell, for example by diffusion processes.  
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3.8 - Study of the alkyl chain effect on DPPC monolayers 

As discussed in the introduction, the alkyl chain length is being correlated with 

some of the toxic effects obtained from the interaction of ionic liquids with cell 

membranes. This toxic effect is often described as a disturbing interaction between the 

alkyl chain and cellular membrane molecules (e.g. membrane phospholipids), leading to 

membrane instability and function losses. It is well known that the toxicity of the ionic 

liquids is higher with the increase of the alkyl chain, phenomenon classified as the “side 

chain effect”, being the number of carbons at which the alkyl chain has no increased 

influence on the toxicity described as “cut-off effect”. In order to better understand these 

effects, several studies were performed, by testing the effects of different ILs with alkyl 

chain lengths distinct of the already discussed C6 (C2, C4, C8 andC10) in terms of the DPPC 

pressure-area isotherms (Figure 27).  

 

Figure 27. Pressure-area isotherms for pure DPPC monolayers on an aqueous subphase and in the 

presence of [C2mim]Cl,[C4mim]Cl, [C6mim]Cl, [C8mim]Cl and [C10mim]Cl at 122.77, 172.4, 195.4 and 

220.6 mg/L respectively.  

Comparing the DPPC pressure-area isotherms on ultra-pure water with those obtained 

with imidazolium-based IL with different alkyl chain lengths, significant changes were 

found. We observed that the increase of the alkyl chain length induced changes in the 

pressure-area isotherm, as well as in the minimal area occupied by a DPPC molecule at the 

LC phase. It is possible to observe from the analysis of Figure 27 that most of the ILs tested 

behaved as theoretically expected.The increase of the area filled by one molecule of the 

lipidic film in the condensed phase at zero pressure was 57, 54, 56, 58 and 62Å2.molecule-1, 

for [C2mim]Cl,[C4mim]Cl, [C6mim]Cl, [C8mim]Cl and [C10mim]Cl, respectively. Thus, we 

concluded that with the addition of these ILs to the subphase, the films are more expanded, 

and that this expansion gradually increases with the alkyl chain length. As concluded by 
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the analysis of the isotherm and the value of the minimal area at the LC phase, [C2mim]Cl 

showed higher film expansion than the [C4mim]Cl and [C6mim]Cl. These results are not 

coincident with the behavior expected for [C2mim]Cl, which means that possible distinct 

mechanisms are acting. Regarding the differences observed between [C4mim]Cl and 

[C10mim]Cl, we concluded that the effect of the increase of the alkyl chain length is 

regulated by their lipophilic characteristics. In this context, the number of carbons may 

play an important role on the impact and nature of the interactions. The transition of the 

surface-active features expected between ionic liquids of small and long alkyl chains are 

clear on the isotherm studies. This transition is revealed on the isotherm profile of 

[C8mim]Cl, which is structurally often cited as the transition of the surfactant properties of 

the ILs. We propose that due to the lower degree of solubility of their alkyl chain in water, 

the [C8mim]+will naturally migrate from the subphase to the interface adsorbing and 

interacting with the DPPC monolayers. Notice that as opposed to the ionic liquids with 

small alkyl chain the [C8mim]+ is able to induce changes in all packing phases, which 

suggests their ability to surpass earlier the electrostatic repulsions acting between the 

positive ammonium group that might be avoiding the penetrations of ionic liquids with 

C≤6. Yet, comparatively to the [C10mim]Cl it is possible to observe that the changes 

induced by [C8mim]+ do not totally alter the phase behaviour of the DPPC monolayer. In 

turn, [C10mim][Cl] proved to be extremely efficient in the modification of the DPPC 

molecules arrangement. We suggest that its alkyl chain will strongly interact with the films 

through hydrophobic and dipole interactions inducing not only the expansion of the 

membranes as reported before, but also earlier collapse phases. Its higher ability to 

accumulate on the films might be followed by higher changes in the stability and elasticity 

of the films. Figure 28 shows the [C10mim]Cl induced monolayer hysteresis.  

 

Figure 28: Hysteresis curves of DPPC monolayers in the presence of [C10mim][Cl] in the molar 

concentration referent to [C6mim][Cl] EC50. 
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The profile variation on the hysteresis isotherm registered for the DPPC monolayers in the 

presence of [C10mim]Cl may be associated with selective squeeze-out of phospholipds 

from the mixed film formed at the surface after the adsorption of the [C10mim]+. These 

effects might arise from the unbalance among cohesion phenomena related to the 

structural configuration of the DPPC monolayers at closely packed liquid condensed states 

formed under compression (Figure29).  

 

Figure 29: Representation of a possible mechanism of squeeze-outof DPPC molecules during the 

monolayer compression in the presence of the [C10mim][Cl]. When the mix DPPC+[C10mim][Cl] is 

compressed, some constituents can be selectively injected or squeezed out of the interface.  

As the DPPC phospholipids and the alkyl chains of [C10mim]+ do not have the same free 

energy and equal mobility at the surface, the molecules with lower affinity for the 

interface will tend to be preferentially ejected from the film during the compression. The 

curves show that after the first compression a reversible behaviour is achieved which 

indicates that the [C10mim]+ remains in the Langmuir film. As no significant reduction of 

the area occupied per molecules was observed between the successive compressions and 

expansion cycles, no signals of material loss were observed, thus we concluded that 

[C10mim][Cl] is not able to induce the phospholipids dissolution in the subphase and that 

during the expansion process the DPPC returns to the interface (Figure 30).  

 

Figure 30: Representation of the integration of the squeezed-out DPPC molecules during the 

monolayer expansion.  

21

1
st 

2nd 



 

 

 
 

42 

 From a general analysis of the compressibility modulus of the DPPC monolayer 

present in the Figure 31, we were able to observe that the elasticity of the lipidic films 

decreases with the increase of the alkyl chain.  

 

Figure 31. In-plane elasticity (CS-1) of DPPC monolayers formed in the presence of [C2mim][Cl], 

[C4mim]Cl, [C6mim]Cl, [C8mim]Cl to [C10mim]Cl in the molar concentration referent to [C6mim]Cl 

EC50 as a function of molecular area and surface pressure. 

The results for the compressibility modulus with respect to[C4mim]Cl showed that the 

interactions with the monolayer described a very similar pattern to that observed for the 

[C6mim][Cl]. Both ionic liquids adsorbed into the monolayer are modulating the structural 

properties of the film, causing the decrease of the monolayer elasticity. We observed that 

the incorporation of ionic liquids on the films caused changes in the maximum value of 

film elasticity, from 300 mN.m-1 for the pure DPPC film on ultra-pure water to 273 and 232 

mN.m-1 for films containing[C4mim]Cl and [C6mim]Cl respectively. On the other hand, for 

the DPPC monolayers in the presence of [C8mim]Cl and [C10mim]Cl, the region of nearly 

zero elasticity, characteristic of the G phase and LE-LC phase were extinct. On these cases, 

the monolayers also registered a shift of the maximum compressibility modulus to lower 

surface pressures and a reduction in the maximum elasticity for values of 171 and 

126mN.m-1, respectively. These results indicate that the incorporation of long alkyl chains 

induces the formation of more rigid monolayers, which support the hypothesis of 

important implications for the stability of real cell membranes.  
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3.9 - Kinetics of adsorption – Ionic liquids surface activity 

As stated above, the effects that might result from the interaction of the ionic 

liquids and cells are a consequence of their ability to approach and adsorb upon the cell 

membrane. We believe that for the ionic liquids that we are studying, this ability is 

especially important and determinant for their mechanism of action as, in many cases, 

they possess a significant affinity to organic phases. In order to understand the 

relationship between the structural aspects of the ionic liquids and their ability to interact 

with the cell membranes, we believe that is essential to understand the properties of the 

individual components intervenient and responsible to produce the phenomenon 

observed so far. Thus, we studied the qualitative relationship between the alkyl chain 

length and the surface activity of the ILs as a tool to evaluate their adsorption upon the 

membranes. In order to understand when and how the ionic liquid is adsorbed into the 

lipid monolayer, the migration from the bulk and adsorption of different ionic liquids at 

the air-water interface in the absence and presence of DPPC monolayers was tested. For 

that purpose, we monitored the variation of the water surface pressure in the presence of 

the ionic liquid over time. Figure 32 shows the kinetics of adsorption of [C6mim]Cl at the 

air-water interface in the absence of DPPC monolayer. 

 

Figure 32: Kinetics adsorption of [C6mim][Cl at the interface of the water in a concentration of 

170,0 mg/L in the absence of DPPC monolayers on the surface.  

From the analysis of the Figure 32 it is possible to observe that in the absence of DPPC 

films on the water surface (concentration at around 170 mg/L), [C6mim]Cl showed no 

interfacial activity. In addition we concluded that [C6mim]Cl is not capable of forming  

Langmuir or Gibbs monolayers (soluble monolayers), which is proved by the negligible 

alteration of the surface pressure during compression of the barriers of the Langmuir 
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trough (Figure 33). Notice should however be made that to comply with the software 

requirements of the trough to plot a π versus Area isotherm data regarding the 

concentration of molecules spread on the surface must be provided. Thus, in view of the 

fact that we do not have that information, the data entered correspond to those of DPPC. 

Therefore, this isotherm does not have any physical meaning.  

 

Figure 33: Pressure-area isotherms obtained by sweeping the interface of a subphase containing 

[C6mim]Cl in a concentration of 170mg/L after 1hour of equilibrium and in the absence of DPPC 

monolayers.  

Nevertheless it seems to suggest that the adsorption of [C6mim]+ to the interface might be 

triggered by the presence of the DPPC monolayers at the surface, in mechanisms involving 

electrostatic interactions between [C6mim]+ and the charged groups of the phospholipid.  

Figure 34 shows the kinetics of adsorption of [C8mim]Cl the air-water interface in the 

absence of DPPC monolayer. 

 

Figure 34: Kinetics adsorption of [C8mim]Cl at the interface of the ultra-pure water (193,0 mg/L).  
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By the analysis of the Figure 34 we concluded that [C8mim]+ has a low surface activity. 

However, contrarily to [C6mim]+, the octyl alkyl chain shows some ability to form a Gibbs 

monolayer, as the surface pressure increased during the sweeping of the interface (Figure 

35). Yet, as mentioned before, care should be taken regarding the absence of physical 

meaning of this plot. 

 

Figure 35: Pressure-area isotherms obtained by sweeping the interface of a subphase containing 

[C8mim]Cl in a concentration of 195mg/L after 1hour of equilibrium and in the absence of DPPC 

monolayers. 

Nevertheless, in view of the profile of the plot shown in Fig 33 we propose that the 

hydration of the octyl alkyl chain of the [C8mim]+ causes an unfavorable distortion of the 

intermolecular structure of the water which increases the overall free energy of the 

system. Thus, in order to regain that entropy, the system “forces” the migration of 

[C8mim]+ from the subphase to the interface and the release of the associated water 

molecules. We suggest that at equilibrium, the [C8mim]+ will form several Gibbs 

monolayers distributed parallel to each other at the subphase. Each molecule from the 

first layer provides a spot for the molecules of the subsequent layer. The molecules 

following the second layer will on other hand behave as a saturated phase and migrate to 

upper layers only when the first and second layer experience losses of molecules (Figure 

36) 
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Figure 36:Representation of the [C8mim]+ migration from the bulk to the air water interface 

as a consequence of the low solubility of the octyl alkyl chain in water. 

Figure 37 shows that, after compressing the [C8mim]+ film formed at the interface, the 

monolayer assumes a stable conformation at the surface. Notice that the decrease of the 

pressure right after the compression might be a result of the migration of [C8mim]+ 

molecules to the subphase due to the reduction of the free surface area available to the 

molecules packing, which means that the monolayers are still partially soluble in water. 

 

Figure 37: Stability of [C8mim]Cl monolayer formed at the interface of the water after being 

compressed to the minimal available surface area.  

Following the same strategy we next studied the kinetic adsorption of [C10mim]Cl at the air-

water interface in the absence of DPPC monolayers (Figure 38).  
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Figure 38: Kinetics adsorption of the [C10mim]+atthe interface of the water in a concentration of 

220,0 mg/L approximately and in the absence of DPPC monolayers onthe surface. 

As it is possible to observe, [C10mim]+ has a higher surface activity. Contrarily to [C8mim]+, 

the adsorption of [C10mim]+on the interface is significant and takes place in a really short 

period of time (from 0 mN/m to11 mN/min approximately 9 minutes). Upon compression 

of the barriers, it was possible to confirm that at the concentration of 220 mg.L-1, the 

[C10mim]+ was able to form a monolayer at the interface (Figures 39). 

 

Figure 39: Pressure-area isotherms obtained by sweeping the interface of a subphase with 

[C10mim]Cl in a concentration of 193,0mg/L, after 1hour of equilibrium. 

As referred before, despite of the fact that such plots lack physical meaning, these results 

shoe that the [C10mim]+ molecules adsorbed at the interface might have their alkyl chains 

oriented away from the subphase, which allow the formation of Langmuir monolayers. In 

addition, we propose that similarly to the [C8mim]+ the [C10mim]+ molecules are forced to 

move again to the bulk as a consequence of the compression of the monolayer to the 

minimal area available between the barriers (Figure 40) 
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Figure 40:Migration of [C10mim]+ molecules from the air-water interface to the bulk as a 

consequence of the compression of the monolayer formed at the water surface.  

Similar to what was done with [C6mim]Cl and [C8mim]Cl the stability of the compressed 

film was assessed. See Figure 41. As before we bealive that the surface pressure drop 

registered in the early stages may be due to dissolution of some [C10mim]+ molecules, as a 

result of reduced free surface area available that show the decrease of the surface 

pressure over time after compression.  Despite of their longer alkyl chain [C10mim]+ 

doesn’t seem to be able to pack efficiently enough thus some molecules are forced to 

migrate back into the subphase. 

 

Figure 41: Study of the stability of the [C10mim][Cl] monolayer formed at the interface of the water.  

Next the adsorption of [C6mim]Cl,  [C8mim]Cl and [C10mim]Cl in the presence of a 

monolayer of DPPC was studied. Figure 42 shows the kinetics of adsorption of [C6mim]Cl 

onto a DPPC monolayer previously compressed at a surface pressure of 16 mN.m-1. 
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Figure 42: Kinetics adsorption of the [C6mim]+ontoDPPC Langmuir films. The concentration of the 

[C6mim][Cl] was 170,0 mg/L approximately.  

From the analysis of the Figure 50 we were able to observe that after compressing the 

DPPC monolayer to a target pressure of 16 mN.m-1, in presence and absence of the 

[C6mim]+ in the subphase, the surface pressure decreases. The DPPC monolayer in absence 

of ionic liquid in the subphase, presented a reduction of the surface pressure to 5,0 mN.m-1. 

On other hand the replicate 1 and 2 presented both a reduction in the surface pressure of 

15 and 11mN.m-1 approximately. The results suggest that pure DPPC monolayers film 

suffered significant rearrangements along time, and that in presence of the [C6mim]+ on 

the subphase these rearrangements are significantly reduced. Thus, we confirmed that 

[C6mim]+ is able to adsorb to the DPPC monolayers, interact and cause changes in its 

equilibrium surface pressure. In the present test we also observed significant differences 

between replicates (R1 and R2), which might be due to the nature of the adsorption of the 

[C6mim]+. We propose that the adsorption of the [C6mim]+ might be diffusion dependent 

and that may be due to the fact that their approach to the DPPC monolayers will depend of 

their distribution on the subphase. DPPC monolayer in the presence of [C8mim]Cl and 

[C10mim]Cl in the subphase showed also lower level of rearrangements over time (Figure 

43 and 44). 
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Figure 43: Kinetic of adsorption of the [C8mim]+onto DPPC Langmuir films. The concentration of 

the [C8mim][Cl] was 194,0mg/L approximately.  

 

Figure 44: Kinetic of adsorption of the [C10mim]+onto DPPC Langmuir films. The concentration of 

the [C10mim]+ was 219,1 mg/L approximately.  

Although the equilibrium surface pressure of DPPC monolayers for both [C8mim]Cl and 

[C10mim]Cl over time reaches similar values of surface pressure (around 11 ± 1mN.m-1), 

monolayers in presence of [C10mim]Cl achieved the equilibrium in shorter periods of time 

than monolayers in presence of [C8mim]Cl. These results were expected because, as 

discussed before, the adsorption of [C10mim]+ on the interface is significant and takes place 

in a really short period of time. Notice that the replicates of both ILs had higher 

similarities than those obtained for assays with [C6mim]Cl. The results suggest that with 

the increase of the alkyl chain the ILs will adsorb more to the DPPC monolayer, and that 

contrary to ILs of short alkyl chain, the adsorption will not be dependent of diffusion 

phenomena.  
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3.9.1 - Kinetics adsorption of [C6mim]Cl, [C8mim]Cl and [C10mim]Cl by 

injection into the subphase  

The injection of the specific molecule in the subphase is an important methodology 

on the evaluation of the modification caused by the insertion of molecules of a second 

component in superficial monolayers. A typical injection experiment might involve the 

formation of an insoluble monolayer at a specific surface pressure, after which a soluble 

surface material is injected below the film. The changes in surface pressure (at constant 

area) induced by the adsorption or penetration of the new material in the monolayer are 

monitored and used to study the new properties of the mixed films formed (Figure 45). 

 

Figure 45: Kinetic of the rearrangements suffered by a DPPC Langmuir monolayer along time after 

compression until the target pressure and injection of a specific molecule.  

Considering this approach, DPPC monolayers were compressed up to a surface pressure of 

16mN.m-1, the area between the barriers was then fixed and the surface pressure was 

recorded over time. When the surface pressure was stabilized, 1 mL of an IL solution 

(concentration similar to the [C6mim]Cl EC50 value) was injected in the subphase and the 

changes in the surface pressure monitored and considered for further discussion. At the 

pressure of 16 mN.m-1 the monolayer is at the beginning of the LC phase, which ensure the 

formation of DPPC domains according to typical morphology, guarantee a high level of 

organization and allow the evaluation of the penetration ability of the ILs. 

 Figure 46 shows the relaxation behavior of a DPPC monolayer on ultrapure water 

under constant area and upon compression up to 16mN.m-1. The relaxation curve is 

represented by the ratio of the surface pressure variation of the DPPC monolayer with 

time. 
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Figure 46: Kinetics of the rearrangements suffered by a DPPC Langmuir monolayer during 12 

hours after compression at 16 mN/m.  

From a general analysis of the relaxation behavior, it is possible to observe that the 

surface relaxation of DPPC monolayer suffered a significant drop. As at the surface of 

ultra-pure water the DPPC monolayer has no net charge (zwitterion), the repulsive forces 

between molecules should not be significant thus, higher levels of stability than those 

obtained by us would have been expected. Yet, this film exhibited a 37% reduction of the 

surface pressure after approximately 5 hours of relaxation. This abrupt change in the 

surface pressure stability suggests that the monolayer suffers rearrangements of the 

molecular structure, reorientation of the phospholipids alkyl chains or loss of material 

along time. As at the surface pressure of 16mN/m, the interaction between the molecules 

of the DPPC monolayer might depend on the molecular area, small morphological changes 

resulting from the relaxation of the DPPC monolayer seem to induce significant changes of 

the surface pressure.        

 Figure 47 shows the adsorption kinetics of [C6mim]Cl on a DPPC monolayer after 

injection of a solution with a concentration of 170 mg.L-1. 

 

Figure 47: Kinetics of rearrangements suffered by a DPPC Langmuir monolayer after compression 

to the target pressure of 16 mN/m and injection of a solution of [C6mim]Cl in the subphase.  
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After the compression of the DPPC monolayer up to 16mN.m-1, the monolayer was allowed 

to stabilize (i.e. permitting the molecules to adopt the most stable morphological 

conformation) and then an IL solution was injected. As shown in Figure 42, it is possible to 

observe that the surface pressure only suffers a small variation over time, which could be 

related with the adsorption of [C6mim]Cl into the monolayer.    

 This experiment was then performed using a higher concentration of IL. Figure 48 

shows the adsorption kinetic of the [C8mim]Cl onto a DPPC monolayer after injection of a 

solution with a concentration of 195 mg.L-1, which is equivalent to the molar 

concentration of the [C6mim]Cl EC50.  

 

Figure 48: Kinetics of rearrangements suffered by a DPPC Langmuir monolayer after compression 

at the target pressure of 16 mN/m and injection of a solution of C8mimCl in the subphase.  

The injection of the [C8mim]Cl in the subphase induced the increase of the surface 

pressure. Thus, we conclude that the[C8mim]+ adsorbed and penetrated the film. As there 

are several points at which the curve shows the increase and after a decrease of the 

surface pressure, we propose that the rearrangements of the monolayer induces the 

exclusion of [C8mim]+ which is later re-adsorbed.      

 Figure 49 shows the adsorption kinetic of the [C10mim]Cl onto a DPPC monolayer 

after injection of a solution with a concentration of 220 mg.L-1, which is equivalent to the 

molar concentration of the  [C6mim]Cl EC50. 
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Figure 49: Kinetics of rearrangements suffered by a DPPC Langmuir monolayer after compression 

at the target pressure of 16 mN/m and injection of a solution of C10mimCl in the subphase. 

As expected, the kinetics of adsorption of [C10mim]Cl on the DPPC monolayer showed the 

highest effect on the surface pressure. After injection, the monolayer suffered a faster 

variation of the surface pressure when compared with the remaining ionic liquids. At the 

surface pressure of 25mN.m-1 an abrupt decrease was observed. After this decrease, the 

[C10mim]Cl starts to be adsorb again and penetrate into the monolayer. At the end of the 

experiment neither [C8mim]Cl nor [C10mim]Cl have reached the surface pressure 

equilibrium. Therefore, the results obtained indicate that, the adsorption and penetration 

as well as the orientation of the phospholipids alkyl chains proceeds over a very long 

period of time. Although not tested in this work, future studies should take in 

consideration the evaluation of the ILs penetration on DPPC monolayers at pressures as 0 

and 35 mN.m-1. These additional studies will provide the opportunity to understand in 

more detail the ability of the penetration ability of the IL’s tested here.  
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4–Mechanism of interaction between [Cnmim]Cl and DPPC monolayers 

Many of the natural phenomena concerning biological assemblies such as those 

involving the cell membrane are a result of physical, intra- and intermolecular 

interactions. These forces operate between the macromolecules by nonspecific, 

nonstoichiometric and strongly directional forces over distances greater than those of 

covalent bonds. They are therefore the electrostatic and hydrophobic interactions, the 

hydrogen bonds and the van der Waals forces. Due to the structural versatility and 

complexity of the ionic liquid and the phospholipids used on this work it is more than 

expected the contribution of different types of forces during the intermolecular 

interactions of both molecules. In the last years studies using the Langmuir Blodgett 

technique have been pointing fundamental forces as electrostatic and more recently 

hydrophobic interactions as the trigger forces of complex interactions involving cellular 

membranes and specific macromolecules. As it is know, the electrostatic interactions 

between charged atoms or molecules arise when two or more molecules or atoms, with 

identical or opposite charge, approach and interacts with each other. Considering the 

zwitterion nature of DPPC phospholipid, the electrostatic interactions between the 

charged moieties and the ionic liquids will assume the form of repulsive or attractive 

forces depending of both the distance between the charges and nature of the intervening 

medium. The capability of both phosphate and glycerol moieties of DPPC phospholipids to 

establish strong hydrogen bonding with water molecules, make the negatively charged 

group surrounded by water molecules (Ma G. and Allen H.C., 2006). The hydrogen-

bonding network between water molecules and the phosphate moiety as well as the 

distribution of the negative charge between the four oxygen atoms, lower the spatial 

electronic density and weakens the PO2-group (Shapovalov V. L., 1998; Ma G. and Allen 

H.C., 2006). Thus, the solvation of the phosphate group by interfacial water might hinder 

the approach or the electronic interaction of hydrophobic charged molecules (Shapovalov 

V. L., 1998). As the ammonium group possesses a more free motion compared to the 

phosphate moiety, which is linked to the glycerol and choline group, the positive moiety 

will have a much higher sensitivity to the presence of charged molecules in the head group 

vicinity. The incapability of the ammonium group to establish hydrogen bonds and the 

presence of the positive charge on a single nitrogen atom highly favors electrostatic 

interactions with hydrophobic ILs (Shapovalov V. L., 1998). 
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Figure 50: Representation of the DPPC phospholipids polar head hydration and illustration of the 

motion of the ammonium moiety in a 2D plane. 

According to that, we propose that both the approach and establishment of 

electrostatic interactions between the [C6mim]+ and the DPPC head group might be more 

favorable via the positively charged ammonium group than with the negative phosphate 

moiety. If this scenario was to happen, strong long-range electrostatic repulsions will take 

place between the positively ammonium groups and the cation [C6mim]+. Hence, We 

propose that initially, when the DPPC monolayer is starting to organize, these repulsive 

interactions favor and induce the formation of DPPC LE phase domains. Moreover, these 

repulsion forces and the hydration state of the phosphate group prevent the [C6mim]+ of 

penetrating the film, allowing the transition of the lipidic domains from LE to the LC 

morphology to occur normally. At the beginning of the LC phase, the area around each 

DPPC molecule reaches a minimum stage, making the water of the hydration shell to be 

squeezed out. Then, the less hydrated state of the phosphate group strengthens PO2
-, 

allowing the [C6mim]+ to surpass the repulsion forces with the ammonium group and be 

attracted by the negatively charged phosphate moiety. With that, the [C6mim]+ is able to 

incorporate into the head group region, establishing strong local binding involving 

electrostatic attraction and induce the expansion of head groups of the neighbour 

phospholipids (steric effect). Finally, the low solubility of the alkyl chain of the [C6mim]+in 

water induces its penetration into the DPPC monolayer, allowing the establishment of 

hydrophobic and van der Waals interactions with the aliphatic chain of the DPPC 

molecules. As a consequence of the establishment of these interactions, the [C6mim]+ is not 

expelled from the monolayer at high pressures and the monolayer remains expanded. As 
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the concentration of the [C6mim]Cl increases, the interaction level and binding with the 

DPPC monolayer is enhanced and the expansion effect is increased (Figure 51). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 51: Representation of a possible mechanism of interaction between [C6mim]Cl and DPPC 

monolayers taking in consideration the results obtained and discussed before. 

The ability to form hydrogen bonds as well as the absence of the nonpolar moiety 

suggest that comparatively to the [C6mim]+ it would be easier for the [Chol]+ to 

incorporate the polar faction of the DPPC monolayer. However, our results show that 

similarly to [C6mim]Cl, [Chol]Cl only induces changes on DPPC monolayers at higher levels 

of packing. We suggest that similarly to the [C6mim]Cl, the phosphate moiety hydration 

state affects the interactions between the [Chol]+ and the DPPC head group. This effect 

might be once more due to the inability of the cation to be attracted with enough strength 

by the negative moiety and surpass the electrostatic repulsions with the ammonium group. 
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Thus, we propose that at beginning of the compression the [Chol]+ interacts with the DPPC 

monolayer manly by electrostatic repulsion. At higher levels of organization the [Chol]+ 

surpasses the electrostatic repulsions, and penetrates into the head group of the DPPC 

monolayer establishing strong local electrostatic attractions with the negative phosphate 

group causing the expansion of the monolayer. At high surface pressure the [Chol]+ is then 

expelled from the DPPC monolayer to the subphase and the monolayer adopts a compact 

morphology (Figure 52).  

 

Figure 52: Representation of a possible mechanism of interaction between [Chol]Cl and DPPC 

monolayers taking in consideration the results obtained and discussed before. 

The ejection of the [Chol]+ from the monolayer at higher pressures, supports the 

importance of the hydrophobic/lipophilic character of ILs cations in the interactions with 

lipidic monolayers. Thus we propose that [C8mim]+ mechanism of interaction with the 
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DPPC monolayers will comprise a stronger contribution of hydrophobic interactions but 

also a contribution of electrostatic interaction as for the [C6mim]+. In what concerns the 

interactions between [C10mim]+ and DPPC monolayers, we concluded that during the 

adsorption of molecules to the interface the alkyl chain will be preferably orientated in the 

plan at which the unfavourable interactions between the aqueous phase and the nonpolar 

sections are minimal. The resulting molecular orientation will induce the spontaneous 

penetration of the alkyl chain in the DPPC monolayer. Thus, the alkyl chain of the ionic 

liquids will interact with the lipidic monolayers through hydrophobic interactions, the 

monolayer will be expanded and the arrangement of the DPPC molecules will be affected 

(Figure 53) 

 

Figure 53: Representation of a possible mechanism of interaction between [C10mim]Cl and DPPC 

monolayers taking in consideration the results obtained and discussed before. 
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4 – Conclusions and Future Work 

Based in our results we concluded that the interaction and adsorption of ionic 

liquids on the DPPC monolayer were manly dependent of the alkyl chain length, and that 

the effects were higher for [C10mim]Cl than for [C6mim]Cl. Through the adsorption kinetics, 

we concluded that the [C6mim]Cl is not surface active but that its adsorption was triggered 

by electrostatic interaction with the lipidic monolayers and that the interactions involving 

the [C8mim]Cl and [C10mim]Cl were ruled manly by their hydrophobic/lipophilic character. 

We also concluded that contrary to the [Chol][Cl], the effects of [C6mim][Cl] depend on the 

concentration, which suggests that the mechanism of action of both ILs families is 

different. It is possible to conclude by our results that imidazolium ILs will have their 

ability to expand and remain on the monolayer decreased with the decrease of their alkyl 

chain length and that short lateral chains (C2 and C4) will only adsorb reversely on the 

phospholipid monolayer while long chains (C8 and C10) will adsorb irreversibly and 

promote stronger interactions. The observation of more drastic rearrangements, such as 

the removal, loss and dissolution of lipid molecules, was not observed throughout our 

studies.           

 In order to obtain a deeper understanding of the phenomena occurring during the 

interactions between the ILs and the DPPC monolayers and validate the mechanism of 

interaction here proposed additional studies are required. These studies might consider 

an evaluation of the stage of nucleation and growth of phospholipid domains of DPPC 

monolayers in presence of ionic liquids as well as the evaluation of the ionization state of 

DPPC monolayer during the compression. For that, we recommend for example the 

combination of two analysis: a) Brewster Angle Microscopy analysis, which will allow 

direct observations of the kinetics of the nucleation process on the DPPC monolayer; b) 

Surface potential measurements, which will allow us to evaluate the orientation of specific 

dipoles of the DPPC monolayer and finally c) sum-frequency generation (SFG) 

spectroscopies to evaluate the type of functional groups and their orientation at the 

interface. 
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