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Resumo 
 

 

A presente dissertação tem como objetivo abordar dois dos maiores desafios na 

produção de bioetanol a partir de biomassa lenhocelulósica: (i) elevada tolerância 

de microrganismos a inibidores, e (ii) prevenção de contaminação microbiana. 

Os inibidores lenhocelulósicos são uma fração relevante do licor de cozimento ao 

sulfito ácido (SSL), um subproduto das indústrias do papel e pastas. O SSL de 

folhosas (HSSL) é rico em pentoses, principalmente xilose, que podem ser 

fermentadas em etanol pela levedura Scheffersomyces stipitis. Neste estudo, 

utilizou-se uma população de S. stipitis previamente adaptada a 60 % (v/v) HSSL, 

e avaliou-se a sua estabilidade na ausência de inibidores durante dez 

transferências sequenciais. Comparando com a estirpe original, todos os clones 

isolados exibiram taxas de consumo de xilose e ácido acético superiores e 

produtividades em etanol inferiores. O clone que demonstrou a maior taxa de 

consumo de xilose (0,558 g L-1 h-1) foi designado isolado C4, e o efeito de 

adaptação de curta duração no seu desempenho fermentativo foi investigado 

através do seu pré-cultivo na presença ou ausência de 60 % (v/v) HSSL. Nas duas 

condições, as taxas de consumo de glucose e xilose foram idênticas, contudo, 

atingiu-se maior taxa de consumo de ácido acético (0,101 g L-1 h-1) e maior 

concentração máxima de etanol (4,51 g L-1) foram atingidas na ausência do 

processo de adaptação de curta duração. Tais resultados demonstram a robustez 

do isolado C4. 

A maioria dos processos de produção industrial de bioetanol é realizada na 

ausência de esterilidade, favorencendo a contaminação por microrganismos. 

Neste estudo, investigou-se o mecanismo responsável pela contaminação com 

Lactobacillus pentosus na indústria de SSL. Para tal, utilizou-se um hidrolisado 

sintético mimetizando a composição média de açúcares e inibidores de SSL de 

resinosas (SSSL) e averiguou-se o impacto de vários fatores na viabilidade de L. 

pentosus e S. cerevisiae. A presença de extrato de levedura foi responsável pelo 

aumento da produção de ácido lático (9 vezes) e da viabilidade bacteriana quando 

L. pentosus foi cultivado na ausência de levedura. Diferentes proporções de 

inóculo de levedura/bactéria não afetaram a produção de etanol após 48 h de 

fermentação, e L. pentosus foi incapaz de ser a estirpe dominante durante os 

ensaios de co-cultura. A presença de inibidores retardou o crescimento da 

levedura, mas a bactéria foi de novo incapaz de se a espécie dominante. 

Ajustando o valor de pH para o ótimo de L. pentosus nos ensaios de co-cultura, a 

viabilidade celular da bactéria diminuiu mais lentamente. Os resultados 

demonstram que L. pentosus não foi a espécie dominante nos ensaios de co-

cultura. A presença de extrato de levedura e de valores de pH favoráveis a L. 

pentosus podem desempenhar um papel importante no mecanismo responsável 

pela contaminação bacteriana nas indústrias de produção de bioetanol.   
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Abstract 

 
 

The present work aimed to tackle two of the major challenges in bioethanol 

production from lignocellulosic feedstocks: (i) high tolerance of microorganisms to 

lignocellulosic inhibitors, and (ii) microbial contamination avoidance. 

Lignocellulosic inhibitors are an important fraction of spent sulphite liquor (SSL), a 

by-product of the pulp and paper industries. Hardwood SSL (HSSL) is rich in 

pentose sugars, mainly xylose, which can be converted to ethanol by the yeast 

Scheffersomyces stipitis. In this work, a population of S. stipitis previously adapted 

to 60 % (v/v) of HSSL was used, and its stability on the absence of inhibitors during 

ten sequential transfers was investigated at single-clone level. During the 

screening trials, all the isolated clones showed higher xylose and acetate uptake 

rates and lower ethanol productivities than the parental strain. The clone exhibiting 

higher xylose uptake rate (0.558 g L-1 h-1) was named isolate C4. The effect of 

short-term adaptation on isolate C4 fermentation performance was evaluated by 

pre-cultivating the clone in the presence or absence of 60 % (v/v) of HSSL. The 

uptake rates of glucose and xylose were similar under both conditions, but a higher 

acetate consumption rate (0.101 g L-1 h-1) and maximum ethanol concentration 

(4.51 g L-1) were achieved without pre-adaptation step, suggesting the robustness 

of isolate C4. 

The industrial bioethanol production is mostly carried out under non-sterile 

conditions, which favours microbial contamination. In this work, the mechanism that 

triggers Lactobacillus pentosus contamination in SSL plants was investigated. A 

simulated synthetic hydrolysate mimicking the average composition of sugars and 

inhibitors of softwood SSL (SSSL) was used and the impact of different factors in 

bacterial and Saccharomyces cerevisiae viability was analysed. The presence of 

yeast extract led to an increase in lactate production (9-fold higher) and L. pentosus 

viability when only bacteria was inoculated. Using different inoculation ratios of 

yeast/bacteria, the ethanol production rates were not affected after 48 h, and L. 

pentosus failed to overtake S. cerevisiae. The presence of inhibitors delayed yeast 

growth, but the bacteria did not outcompete S. cerevisiae. When the pH was 

optimal to L. pentosus in co-culture experiments, the bacterial cell viability 

decreased slower. The results indicate that L. pentosus was unable to overtake S. 

cerevisiae. The presence of yeast extract and favourable pH to bacteria are 

important factors that can play a role in the mechanism that triggers the bacterial 

contamination in ethanol plants. 
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Chapter 1 

Introduction 

 

1.1 General context 

Lignocellulosic biomass, that is the most abundant renewable resource on Earth, can be divided 

into several groups. Among them, by-products from pulp and paper industry, like spent sulphite 

liquor (SSL), are typically non-valued. SSL is the side product of acidic sulphite pulping process, 

and can be generated from hardwoods or softwoods (HSSL or SSSL, respectively). Both HSSL 

and SSSL are composed by high amounts of sugars (mainly glucose, mannose and xylose), and 

thus can be used for the production of biofuels [1].   

Biofuels, which consist of fuels produced from biomass, are suitable alternatives to conventional 

and non-renewable fuels (e.g. gasoline, diesel), which pose serious adverse effects to the 

environment and society. Bioethanol and biodiesel are currently the most promising liquid 

biofuels, and can be produced from various raw materials, like lignocellulosic biomass and its 

derivatives [2]. The baker’s yeast Saccharomyces cerevisiae is the preferred organism for 

industrial bioethanol production due to its robustness, high bioethanol productivity and tolerance 

towards high concentrations of sugar [3-5]. However, it lacks the ability to convert pentose sugars 

into ethanol. Scheffersomyces stipitis (formerly Pichia stipitis), a well-studied organism, can 

ferment a wide variety of sugars present in lignocellulose, including hexoses, pentoses and 

cellobiose [6].  

Regarding the bioethanol production from lignocellulosic biomass, there are two important 

challenges: (i) high tolerance of microorganisms to fermentation inhibitors, and (ii) microbial 

contamination avoidance [7].  

Microbial inhibitors (e.g. acetate, phenolics) can severely affect microbial growth, thereby limiting 

the economic feasibility of bioconversion processes from SSL [8]. The adaptation process is a 

possible strategy to enable significantly inhibitors-tolerance, and is based on the effect of selective 

pressure for a short- or long-term [7, 9]. As a result, an adapted population is obtained, and 

stability tests over time in the absence of selective pressure should be performed at single-clone 

level. This approach is of great importance and aims to verify if the tolerance towards inhibitors 

and better fermentation performance was definitely acquired or not.  
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At industrial scale, bioethanol production is carried out under non-sterile conditions, due to high 

sterilization costs. This favours the introduction of microbial contaminants, which can affect 

negatively the yeast performance and pose serious economic consequences. Lactic acid bacteria 

are one of the most frequent contaminants of ethanol plants [3, 10]. However, its effect on the 

viability of S. cerevisiae is not clear. 

1.2 Objectives 

The present work aimed to tackle two of the major challenges in bioethanol production from 

lignocellulosic feedstocks: (i) high tolerance of microorganisms to lignocellulose inhibitors, and (ii) 

microbial contamination avoidance. 

The first project was included in an evolutionary engineering study, and the main goal was to 

investigate, at single clone level, the stability of an adapted population of S. stipitis to HSSL, and 

if improved tolerance to lignocellulosic inhibitors was acquired.  

In another study, related with microbial contamination during ethanol fermentations, the main 

purpose was to understand the mechanism responsible by Lactobacillus sp. contamination on 

ethanol plants. In addition, the process conditions which can simultaneously optimise the 

fermentation of S. cerevisiae and suppress growth and product formation of Lactobacillus were 

investigated. 
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Chapter 2 

Background 

 

2.1 Lignocellulosic biomass 

Lignocellulosic biomass (LCB), a typically non-edible plant material, has been recognized as the 

most abundant and cheapest sustainable carbon source throughout the world [11, 12]. In general, 

LCB can be classified into four different groups: (i) wood; (ii) non-food agricultural crops and 

residues; (iii) municipal solid wastes, and (iv) by-products and/or wastes from pulp and paper 

industries [13]. 

Cellulose, hemicelluloses and lignin are the three major components of LCB (Figure 1) [14]. Since 

cellulose and hemicellulose are polysaccharides, both can be hydrolysed to fermentable sugars 

that can be converted into bulk chemicals (e.g. ethanol, succinic acid) [15, 16]. Whilst cellulose is 

a linear polymer of D-glucose subunits, hemicellulose consists of a heterogeneous polymer 

composed by pentoses (D-xylose, D-arabinose), hexoses (D-mannose, D-glucose, D-galactose) 

and sugar acids. The composition of hemicelluloses varies widely across biomass sources [17]. 

Lignin is a large complex polymer consisting of phenylpropane units that are held together by 

different types of linkages. It is extremely resistant to degradation, and may be used for the 

production of bulk chemicals (e.g. phenols, vanillin) [15, 18]. 

 

Figure 1. Schematic representation of a group of lignocellulosic biomass 

(wood) and its composition. Adapted from [19]. 
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Typically, LCB is composed of 33-51 % cellulose, 19-34 % hemicellulose and 20-30 % lignin. 

However, the composition and content of each polymer can vary widely among plant species [7].  

LCB is traditionally used as a source for pulp and paper production, fertilisers, biomass fuels, and 

other goods and services [20]. More recently, the interest in lignocellulose as a feedstock for the 

production of high-value compounds, like biofuels (e.g. bioethanol) and chemicals, has been 

growing [21, 22]. 

2.1.1 Wood 

Wood is a complex biological structure, which comprises numerous cell types acting together to 

serve the needs of the plant [23]. It is mainly composed by cellulose, hemicelluloses and lignin. 

At a lesser extent, inorganic compounds (ash) and other low molecular-weight substances, mainly 

extractives (e.g. terpenes, fatty acids, phenols), can also be found in wood species [24, 25].  

Taxonomically, woods can be divided in two general classes – softwoods and hardwoods. 

Whereas softwoods are those woods coming from gymnosperms (e.g. pine, spruce), hardwoods 

are woods that come from angiosperms (e.g. birch, eucalyptus). The chemical composition and 

abundance of celluloses are relatively uniform in softwoods and hardwoods, however the same 

does not occur with lignin and hemicelluloses. Hardwood hemicelluloses are richer in pentoses 

(xylose), while softwood hemicelluloses contain more hexoses (glucose, mannose) [23, 24, 26]. 

2.1.2 Pulp and paper industry 

Currently, the global paper industry is, definitely, one of the world’s largest industrial sectors [27]. 

According to Lucintel, it is expected to reach a total market value of about €190 billion in 2017 

[28]. Worldwide, paper is mostly produced from cellulose fibers, of which less than two-thirds 

come from wood, one-third from recycled paper and approximately 5 % from non-wood sources 

(e.g. bagasse, cereal straw) [29]. 

The paper and paperboard manufacturing can be divided into four main phases: (1) raw material 

production, storage and preparation; (2) pulping; (3) bleaching, and (4) papermaking [30, 31]. 

One of the key steps in the paper production process is the pulping. During that stage, lignin is 

removed from the raw material and cellulose fibers (pulps) are released. Pulps produced are then 

further used for paper manufacture [26, 30]. Besides, they may be used to produce cellulose 

derivatives or chemical compounds [13]. The process of pulping can be accomplished 

mechanically, chemically or by a combination of both methods [24]. Chemical pulping (e.g. Kraft 

and acidic sulphite process) is the most common process, and is performed using aqueous 

chemical solutions at extreme pH with high temperature and pressure [31, 32]. 
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2.1.2.1 Acidic sulphite pulping 

The acidic sulphite pulping process is based on the use of a cooking liquor, which is mainly 

composed by sulphur dioxide and bisulphite, as well as a counter ion (calcium, magnesium, 

sodium or ammonium). This process is carried out in batch digesters under acidic conditions (pH 

1-2) at high temperatures [2, 26, 33].  

During the pulping stage, the main reaction occurring is the lignin sulphonation, leading to its 

hydrolysis [33]. As a result of wood cooking, cellulose fibers are held together, forming 

unbleached pulps, while most of the lignin and hemicelluloses are dissolved in spent sulphite 

liquor (SSL). Subsequently, unbleached pulp is submitted to bleaching stage for lignin residues 

removal. SSL, the side-product from the acidic sulphite pulping, is usually concentrated by 

evaporation and a thick liquor is generated. Then, the thick liquor is burned for chemical and 

energy recovery (Figure 2).  

 

Figure 2. Process diagram of acidic sulphite pulping with spent sulphite liquor release. Adapted 

from [2, 26]. 

2.1.2.2 Spent sulphite liquor 

Spent sulphite liquor (SSL) has high amount of sugars and is produced annually in large 

quantities, and thus may be instead used for bulk chemical production associated to the 

biorefinery concept (e.g. bioethanol) [2, 33]. Its chemical composition varies widely and depends 

on the wood species used as raw-materials, pulping reagent and pulping conditions [34]. 

According to the wood type used for pulping, SSL can be classified as hardwood or softwood 

sulphite spent liquor (HSSL and SSSL, respectively) [2]. The general composition of HSSL and 

SSSL is presented in Table 1. 

 

   pH 1-2 
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Table 1. General chemical composition of HSSL and SSSL. Adapted from [26]. 

Components 

Concentration (g L-1) 

HSSL SSSL 
 

Hexose sugars 
  Mannose  
  Glucose  
  Galactose  

Pentose sugars 
  Xylose 
  Arabinose 

Lignosulphonates 
Acetic acid 
2-furaldehyde (furfural) 

 

 
7.6–9.4  
2.2–2.4  
4.4–4.6  

 
24.1–25.1 
7.5–8.1 

77.6–78.8 
9.5–9.7 
Traces 

 

 
21.0–27.0  
7.0–9.7 
4.7–6.0  

 
9.0–11.0 
0.7–2.0 

110.0–120.0 
3.0 
0.2 

 

Due to the acidic sulphite pulping process, numerous compounds are generated and retained in 

the liquor. Most of SSL organic content arises from the lignin and hemicelluloses degradation. As 

a result, lignosulphonates and monosaccharides (e.g. xylose, glucose, arabinose, mannose) are 

formed [35]. The sugars composition of SSSL and HSSL is quite different.  While SSSL contains 

a high proportion of hexoses (glucose, mannose and galactose), HSSL possesses a high amount 

of pentoses (mainly xylose). Since hexoses bioprocessing is less complex than that of pentoses, 

the development of strategies to ferment simultaneously and efficiently both sugar types is highly 

recommended. In addition to lignosulphonates, HSSL and SSSL contain other microbial inhibitory 

compounds, such as acetic acid, 2-furaldehyde (furfural) and 5-hydroxymethyl-2-furaldehyde 

(HMF) [36]. These features make SSL a complex media, which constitutes a challenge for a quick 

and efficient ethanol fermentation. 

2.2 Biofuels 

In 2008, fossil fuels (e.g. oil, natural gas) accounted for 88 % of the world primary energy 

consumption [37]. However, they are non-renewable resources and have several negative 

environmental and social impacts [38]. Therefore, research on more sustainable and renewable 

energy resources is highly required.  

Biofuels, a form of renewable energy, are used to generate heat and/or power. They are expected 

to play a key role in the future, particularly in the transport sector [7, 39]. Biofuels may be derived 

from different biomass types, namely (i) forest products; (ii) agricultural products; (iii) fishery 

products, and (iv) by-products and wastes from forestry, pulp and paper, agriculture and food 

industries [21, 39]. Liquid biofuels include bioalcohols, like bioethanol and biodiesel. Biogas and 

biohydrogen are examples of gaseous biofuels [40].  
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2.2.1 Bioethanol 

Bioethanol is referred as ethanol produced from renewable biomass [41]. From 2000 to 2011, the 

world bioethanol production increased around 400 % to 545 million barrel per year, representing 

79 % of the total biofuel production by 2011 (Figure 3).  

 
Figure 3. Total biofuel and bioethanol production worldwide according to 

U.S. Energy Information and Administration (EIA) [42]. 

United States of America and Brazil are the biggest bioethanol producers worldwide and most of 

it is obtained by using sugarcane or corn as feedstock – first generation bioethanol [7, 42]. This 

class of feedstocks is generally part of the typical human and animal food chains. Therefore, the 

usage of food-related feedstock can be problematic and raise some ethical, social and economic 

issues [41]. 

In order to avoid food competition, new feedstocks are being studied for bioethanol production. 

Second generation bioethanol is produced from agricultural lignocellulosic biomass and industrial 

wastes, and thus direct competition between fuel and food is absent. Depending on the biorefinery 

type, bioethanol can be generated as a main product or co-product from this raw material, what 

implies different configuration processes (Section 2.2.2) [7]. 

2.2.1.1 Microorganisms in bioethanol production 

Bioethanol is mainly produced through fermentation of sugars, what implies the usage of 

microorganisms. To be considered for industrial scale bioprocesses, the microorganisms should 

meet some requirements: (i) high bioethanol yield, productivity and tolerance; (ii) fast growth in 

inexpensive media, and (iii) high-tolerance to microbial inhibitors. To prevent contamination, the 

microorganisms should also present growth ability under extreme conditions, such as acidic pH 

or high temperatures [43]. 
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There is a wide variety of microorganisms able to produce bioethanol, like Saccharomyces 

cerevisiae, Zymomonas mobilis, Scheffersomyces stipitis and Kluyveromyces marxianus. 

However, most of them remain limited in term of sugars co-fermentation, ethanol yield and 

tolerance to fermentation inhibitors [44]. Therefore, the microorganism’s choice for ethanol 

fermentation should be taken considering the origin and composition of raw material [13]. 

2.2.1.1.1 Saccharomyces cerevisiae 

The baker’s yeast Saccharomyces cerevisiae is one of the organisms of choice in industrial 

microbiology, and is widely studied for bioethanol production [45]. This microorganism produces 

ethanol at a high yield (higher than 0.45 g ethanol g sugars-1) and specific rate (up to 1.3 g ethanol 

g cell mass-1 h-1) under anaerobic or aerobic conditions [13, 46]. Besides, S. cerevisiae has 

proven to be tolerant towards inhibitors and high concentrations of ethanol (over 100 g ethanol L-

1 in some strains) and sugars [7, 46]. 

Most of S. cerevisiae strains are able to metabolise the hexose sugars present in lignocellulose, 

but at different rates [7]. Glucose, the preferred hexose sugar, and mannose are efficiently 

fermented by S. cerevisiae. On the other hand, galactose fermentation is strain dependent, and 

the genes responsible for galactose utilisation are repressed by the presence of glucose, leading 

to a sequential metabolism of sugars [7, 46, 47]. In addition to hexoses, pentoses are also an 

important sugar fraction of lignocellulosic biomass and are the main source of fermentable sugars 

in HSSL [7, 26]. However, S. cerevisiae cannot naturally convert pentoses, like xylose and 

arabinose, into bioethanol. The simultaneous fermentation of hexoses and pentoses constitutes 

a challenge in ethanol fermentation. Several strategies have been applied to overcome this 

challenge, including rational metabolic engineering and use of microorganisms with the ability of 

consuming both sugar types [48]. 

2.2.1.1.2 Scheffersomyces stipitis 

Naturally xylose-fermenting microorganisms can be advantageous to use when biomass contains 

high amounts of pentose sugars [46]. Scheffersomyces stipitis (formerly Pichia stipitis) is a haploid 

and homothallic yeast with the highest-native capacity for xylose fermentation of any known 

microorganism. Fed-batch cultures of S. stipitis produced ethanol with high yields (0.35-0.44 g 

ethanol g xylose-1), but its fermentation rate is considerably lower than that of S. cerevisiae [49, 

50]. A summary of the main advantages and disadvantages of S. stipitis and S. cerevisiae for 

ethanol fermentation is shown in Table 2.  
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Table 2. Summary of the main advantages and disadvantages of Saccharomyces cerevisiae and 

Scheffersomyces stipitis for ethanol fermentation. Adapted from [44]. 

 

Apart from xylose, this yeast has also the capacity to ferment other important sugars, like other 

pentoses (arabinose), hexoses (glucose, mannose, galactose, rhamnose) and oligomers 

(cellobiose, xylans, mannans) [50]. The consumption rate of pentose sugars by S. stipitis is also 

repressed by the presence of hexoses, similarly to S. cerevisiae [13]. Moreover, a very low and 

well-controlled supply of oxygen is required for an efficient fermentation, and its tolerance towards 

fermentation inhibitors and ethanol has proven to be low. In fact, yeast growth may be completely 

inhibited under acetate concentrations higher than 3.0 g L-1 and negatively affected by ethanol 

concentrations above 30 g L-1 [51]. Considering these drawbacks, evolutionary and rational 

metabolic engineering have been applied to improve S. stipitis performance and these 

methodologies are revised in Section 2.3.1.2. 

2.2.2 Biorefinery concept 

The term biorefining has been in focus in the past recent years, and is defined as the “sustainable 

processing of biomass into a spectrum of marketable products and energy”. Thus, in analogy to 

petroleum refinery, the biorefinery concept aims to separate the biomass resources (e.g. wood, 

grass) into building blocks (carbohydrates, proteins), which can be converted in high-value 

products (e.g. biofuels, chemicals) [52]. Two main types of biorefineries can be distinguished: 

energy-driven and product-driven. 

2.2.2.1 Energy-driven biorefinery 

In this approach, the biomass is primarily used for the production of energy carriers (biofuels, 

power and heat), and the process residues are sold or upgraded to added-value bio-based 

products [53]. Thus, bioethanol can be generated as a main-product in this case. The bioethanol 

 Yeast species Advantages Disadvantages 
  
 

 Saccharomyces  
 cerevisiae 

 
 
 

 
 

 Naturally adapted to ethanol 
fermentation 

 High ethanol yield (90 %) 

 High tolerance to ethanol and 
chemical inhibitors 

 Amenability to genetic modifications 
 

 
 

 Not able to ferment pentose sugars 

 

 Scheffersomyces  
 stipitis 

 Best performance for xylose 
fermentation 

 Ethanol yield (82 %) 

 Able to ferment most of 
lignocellulose sugars 

 

 Not-tolerant to ethanol at high 
concentrations 

 Does not ferment xylose at low pH 

 Sensitive to chemical inhibitors 

 Requires microaerophilic conditions to 
reach best performance 
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production process in such biorefinery type includes three main stages: (1) pretreatment, (2) 

hydrolysis and (3) fermentation (Figure 4). 

 

Figure 4. Schematic diagram for bioethanol production according to the energy-driven biorefinery approach. 

Adapted from [7].  

Considering LCB as a feedstock, the pretreatment is designed to degrade the complex 

lignocellulose matrix, occurring the separation of its main components [41]. Besides, the 

pretreatment leads to total or partial hydrolysis of hemicelluloses, being monosaccharides (e.g. 

xylose, arabinose) and oligosaccharides released. Different strategies have been employed to 

pretreat LCB, including physical, chemical, physico-chemical and biological processes [2, 54]. 

The hydrolysis aims to degrade the cellulose released during the pretreatment stage. The 

cellulose can be degraded into fermentable sugars (i.e. glucose) by either acidic or enzymatic 

hydrolysis. As a result, a lignocellulosic hydrolysate is generated and it can be fermented to 

ethanol, which is usually recovered by distillation [55]. 

2.2.2.2 Product-driven biorefinery 

The purpose of a product-driven biorefinery is the production of various added-value bio-based 

compounds from biomass. The process residues, like SSL, are then used for power and heat 

production [53]. In this approach, bioethanol can be produced as a co-product, thus resulting from 

the obtained residues (Figure 5). In these biorefineries, both the pretreatment and hydrolysis are 

optimised for the main product generation, and thus the fermentation media used for bioethanol 

production may contain undesired compounds. 

 

Figure 5. Schematic diagram for bioethanol production according to the product-driven biorefinery approach. 

Adapted from [7]. 

Feedstock 

Pretreatment Hydrolysis Fermentation Distillation 

Bioethanol Yeast 

Residues 

Feedstock 

Pretreatment Main product 

Fermentation Distillation 

Bioethanol Yeast 

Residue Hydrolysis Main process 
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2.3 Lignocellulosic inhibitors 

In the fermentation step, there are three main challenges regarding the bioethanol production 

from lignocellulose: (i) efficient simultaneous fermentation of hexoses and pentoses; (ii) high 

tolerance of microorganisms to toxic compounds, and (iii) microbial contamination avoidance [7]. 

Microbial inhibitors are particularly undesirable compounds for fermentation systems, thus limiting 

the economic feasibility of bioconversion processes [8]. Their toxicity depends on: (i) the  

concentration of inhibitors; (ii) type of fermentative organism; (iii) cultivation mode, and (iv) 

cultivation conditions (e.g. pH, temperature) [56].  Microbial inhibitors may drastically affect the 

viability, growth and fermentative ability of microorganisms [8].  

Lignocellulosic hydrolysates in general and SSL in particular contain fermentation toxic 

compounds, which are called lignocellulosic inhibitors  [2]. The amount and nature of the inhibitors 

depend primarily on the raw material and hydrolysis procedure [57]. According to their origin, 

lignocellulosic inhibitors can be divided into four groups: (i) sugar degradation products; (ii) weak 

acids; (iii) lignin degradation products; (iv) extractive-derived compounds, and (v) heavy metal 

ions (Table 3) [2, 56]. 

Table 3. Summary of the most common lignocellulosic inhibitors [2].  

Inhibitor’s group Compound Inhibitor’s group Compound  
 
 

Sugar-derived 
 
 

 

Weak acids 
 
 
 
 

Lignin-derived 
 

 

 
 

a)  Furfural 
b)  HMF 
 

 

a)  Acetic acid 
b)  Formic acid 
c)  Levulinic acid 
 
 

a)  Aromatics 
b)  Polyaromatics 
c)  Phenolics 
d)  Aldehydes 
e)  Lignosulphonates 

 
 

Extractives 
 
 
 
 

Heavy metal ions 
 

 
 

a)  Acidic resins 
b)  Terpenic acids 
c)  Tannin acids 
 
 

a)  Iron 
b)  Chromium 
c)  Nickel 
d)  Copper 

 
 

 

During the hydrolysis of LCB, the furan aldehydes furfural and HMF are formed from dehydration 

of pentose and hexose sugars, respectively [8, 36]. These sugar-derived products have been 

found to negatively affect cell growth and ethanol productivity by interfering with glycolytic 

enzymes [8]. However, HMF is not so toxic to microorganisms as furfural [2]. Interestingly, 

Lohmeier-Vogel et al. [58] suggested the occurrence of a synergistic effect between furfural and 

HMF, even at low concentrations of each inhibitor (below 1.0 g L-1). Considering ethanol-

producing yeasts, Hanly et al. [59] reported that the furan aldehydes have stronger inhibitory 

effects on S. stipitis than on S. cerevisiae. 

The most common weak acids found in lignocellulosic hydrolysates are acetic, formic and levulinic 

acid. Acetic acid is formed by hydrolysis of hemicelluloses, while formic and levulinic acids arise 
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from the degradation of HMF. Formic acid may also be generated from furfural degradation [60]. 

Weak acids inhibit cell growth. At low pH medium, weak acids are undissociated and can diffuse 

across the plasma membrane, thus decreasing the neutral intracellular pH and affecting 

negatively cell proliferation and viability. The concentration of undissociated acids in 

lignocellulosic hydrolysates is highly dependent on pH, and therefore this is an important variable 

during fermentation [36]. In general, a pH of at least 5.5 improves fermentation performance by 

reducing the toxicity of weak acids [8]. Despite their severe effects, a low concentration of weak 

acids have been shown to stimulate ethanol production by yeasts [36]. Among the referred weak 

acids, acetic acid is the most toxic to cell growth and no synergistic effects occur between them 

[13, 60].  

Lignin degradation products are formed during the hydrolysis of lignocellulose, and include 

aromatic, polyaromatic, phenolic and aldehydic compounds. Phenolic compounds are the most 

toxic substances found in lignocellulosic hydrolysates for microorganisms and severely affect 

biological membranes, reducing cell growth and sugar uptake [2].  Some few examples of lignin-

derived compounds are vanillin, syringaldehyde, 4-hydroxybenzoic acid and catechol. Vanillin 

was found to be the strongest inhibitor for both xylose- and hexose-fermenting yeasts [56]. In 

SSL, lignin-degradation substances are commonly found in the sulphonated form due to the 

cooking process, thus generating lignosulphonates [2]. Hernandez-Pérez et al. [61] suggested 

that also lignosulphonates have a partial microbial inhibiting effect, resulting in slower growth 

kinetics. 

Another group of lignocellulosic inhibitors includes extractives (e.g. acidic resins, tanninic acid 

and terpenic acids), which are less toxic to cell growth than lignin-degradation products. Some 

hardwoods contain high amounts of hydrolysable tannins, leading to phenolics formation during 

the pulping process [26]. 

Heavy metal ions (e.g. iron, chromium, nickel, copper) are usually found in hydrolysates as a 

result of equipment corrosion during LCB hydrolysis. These compounds are commonly present in 

SSL, having an inhibitory effect on microbial metabolism [26]. 

According to Almeida et al. [62], an inhibitory synergistic effect occurs when furan derivatives, 

weak acids and phenolic compounds are present simultaneously [63]. Therefore, the 

development of strategies to counteract the negative effects of lignocellulosic inhibitors is highly 

required to improve the fermentation performance [26]. Those strategies are crucial to achieve an 

economically viable bioprocess of ethanol fermentation [13].  

2.3.1 Improving yeast tolerance 

According to the literature, two main alternative measures can be taken to enhance the efficiency 

of fermentation process and avoid the negative effects caused by microbial inhibitors: (i) 
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detoxification of the lignocellulosic hydrolysate before fermentation, and (ii) development of 

inhibitors-resistant microorganisms. 

2.3.1.1 Detoxification of lignocellulosic hydrolysates 

A wide variety of physical, chemical and biological methods can be used to detoxify lignocellulosic 

hydrolysates, and they are based on the removal or conversion of inhibitors, and should not 

degrade the sugars [8, 13]. A common objection against detoxification is based on the assumption 

that it would require a separate process step, increasing the cost of bioethanol production [60].  

The physical methods are based on the adsorption process, thus promoting the removal of 

inhibitors from hydrolysates without changing their chemical structure. These methods include 

the use of: (i) activated charcoal; (ii) ion exchange resins, and (iii) phase transfer processes [64].  

The main chemical detoxification treatments are based on the addition of reductive substances 

(e.g. dithionite treatment) and pH modification (e.g. alkali treatment). While reductive substances 

lead to the conversion of inhibitors into less toxic compounds, pH alteration to high values (pH 9-

10) may promote the precipitation and/or decomposition of toxics [2, 64].  

Biological detoxification methods are more feasible and environmentally friendlier than the 

physical and chemical treatments, and involve the use of enzymes and/or microorganisms, which 

act on inhibitors found in hydrolysates by changing their chemical structures [56, 64]. Lignolytic 

enzymes from the white-rot fungus Trametes versicolor (e.g. laccase, peroxidase) have the 

capability to oxidise weak acids and phenolic compounds, allowing improved fermentability [2]. 

There are numerous microorganisms with the inhibitor-removing ability from hydrolysates. Lopéz 

et al. [65] used the fungus Coniochaeta ligniaria (obtained from furfural contaminated soil) to 

detoxify a pretreated corn stover hydrolysate. As a result, 97 % of furfural and 78 % of HMF were 

converted into non-inhibitory substances. Besides, Pereira et al. [66] demonstrated that HSSL 

can be successfully biodetoxified using the fungus Paecilomyces variotii, allowing improved 

ethanol production. This methodology resulted in the decrease of acetic acid and phenolics 

content in HSSL. Table 4 summarizes some of the detoxification strategies adopted by research 

groups to improve ethanol fermentation. 
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Table 4. Fermentation performance of Saccharomyces cerevisiae and Scheffersomyces stipitis in various 

lignocellulosic hydrolysates under different detoxification methodologies. 

a   Ethanol yield (g ethanol g consumed sugars-1). 
b   Ethanol productivity (g ethanol L-1 h-1). 

2.3.1.2 Development of inhibitor-tolerant organisms 

Unlike hydrolysate detoxification, this approach has microorganism as the main target and is 

based on the selection of microbial species and strains tolerant to inhibitory compounds. 

According to this approach, inhibitor-resistant microorganisms may be obtained by two main 

strategies: (i) rational metabolic engineering, and (ii) evolutionary engineering [60, 70]. 

2.3.1.2.1 Rational metabolic engineering 

Rational metabolic engineering refers to the engineering of metabolic pathways (namely 

enzymes, transporters, regulatory proteins) based on the available information. Based on this 

information, a methodology is typically designed to improve the metabolic flux and/or a phenotypic 

trait. This methodology is strongly based on systems biology and genetic engineering, and has 

been successfully used for strain improvement in a wide range of applications [71-73]. For 

instance, Petersson et al. [74] proved that S. cerevisiae strains overexpressing the ADH6 gene 

(encoding for alcohol dehydrogenase 6) showed increased HMF reduction capacity. Besides, 

Fujitomi and colleagues [75] showed that deleting the PHO13 gene (encoding for p-

nitrophenylphosphatase), S. cerevisiae improved the ethanol fermentation in the presence of 

three important inhibitors – furfural, and acetic and formic acids. 

2.3.1.2.2 Evolutionary engineering 

By definition, the term evolutionary engineering includes all the methods for empirical strain 

improvement, such as: (i) adaptation; (ii) induced mutagenesis, and (iii) genome shuffling. This 

approach can be very effective, and is based on sequential and multiple cycles of random genetic 

   Process parameters  

 Organism Feedstock Detoxification Yethanol/S 
(g g-1)a 

Pethanol 

(g L-1 h-1)b 
Ref. 

 

 

 S. cerevisiae 

    Baker’s 

    Baker’s 

    Baker’s 

    RLJY-019 

    TMB 3720 
 

  

 S. stipitis 

    DSM 3651 

    DSM 3651 

    Y-NRRL 7124 

    Y-NRRL 7124 

    Y-NRRL 7124 

 

 

 

Spruce hydrolysate 

Spruce hydrolysate 

Spruce hydrolysate 

HSSL 

SSSL 
 

 

 

Sugarcane bagasse 

Sugarcane bagasse 

HSSL 

HSSL 

HSSL 

 

 

 

None 

Alkali treatment 

Anion-exchange resins 

Overliming  

None 
 

 

 

None 

Ion-exchange resins 

None 

Overliming 

Paecylomyces variotii 

 

 

 

0.42 

0.45 

0.46 

0.47 

0.37 
 

 

 

0.20 

0.30 

0.16 

0.30 

0.24 

 

 

 

0.21 

0.34 

1.71 

0.45 

– 
 

 

 

0.04 

0.16 

0.01 

0.11 

0.09 
 

 

 

 

[67] 

[67] 

[67] 

[68] 

[3] 
 

 

 

[69] 

[69] 

[68] 

[68] 

[66] 
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perturbation and selection, resulting in various genetic alterations. However, all the evolutionary 

engineering methods depend on suitable screening methods for the improved trait, what can 

constitute a major drawback. Therefore, the applications of this approach are restricted to few 

phenotypic improvements, like higher growth rate or substrate consumption [73].  

Adaptation 

The adaptation of fermenting microorganisms to lignocellulosic hydrolysates is a natural 

mutagenesis technique and has been appointed as an alternative to the detoxification strategy. It 

may reduce bulk chemical production cost, and avoid loss of fermentable sugars. Moreover, 

adaptation has been found to increase yeast tolerance to inhibitors, decrease fermentation time, 

and increase ethanol production [2, 8, 76]. This approach is based on the fact that microorganisms 

can be adapted by constant exposure to sublethal inhibitor concentrations in hydrolysates in fed-

batch or continuous cultivation [76]. At these conditions, cells are under selective pressure, and 

the variants of cell population with selective advantage will take over the initially dominating cells 

[77].  

The adaptation process can be divided in short- and long-term [76]. Short-term adaptation is 

performed immediately prior to fermentation by cell cultivation on the hydrolysate or on a defined 

media supplemented with synthetic inhibitors. Sànchez i Nogué et al. [78] showed that the short-

term adaptation of an industrial strain of S. cerevisiae at pH 5.0 in the presence of acetic acid (at 

least 4 g L-1) enhanced aerobic growth and fermentation performance under low pH (3.7) and 

inhibitory levels of acetic acid (6 g L-1).  

Long-term adaptation is usually realised by cell cultivation (i) in increasing concentrations or (ii) 

in a dilution of the lignocellulosic hydrolysate or inhibitors-containing defined media [8, 77]. After 

this process, an adapted population is obtained, and stability tests over time in the absence of 

selective pressure should be performed at single clone level. This approach is of great importance 

and aims to verify if the phenotype improvement was definitely acquired or not. For instance, 

Nigam [68] has found that long-term adaptation of S. stipitis on non-detoxified dilute acid 

hydrolysate of wheat straw resulted in an improved ethanol yield. On the other hand, Sànchez i 

Nogué [7] reported that after a long-term adaptation of S. cerevisiae in mineral medium containing 

inhibitors, a stable population was obtained, but the acquired tolerance to inhibitors was transient, 

since the population was not able to grow in their presence after being stored as glycerol stock. 

Table 5 summarizes some of the work done by research groups to improve the ethanol 

fermentation using the adaptation strategy. 
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Table 5. Adaptation effect on the fermentation performance of Saccharomyces cerevisiae and 

Scheffersomyces stipitis in various lignocellulosic hydrolysates. 

            a   Ethanol yield (g ethanol g consumed sugars-1). 

        b   Ethanol volumetric productivity (g ethanol L-1 h-1).  

Induced mutagenesis 

Induced mutagenesis is another approach of evolutionary engineering, and can be divided in two 

steps. The first stage includes the treatment of microorganism with mutagens (e.g. N-

nitroguanidine, UV-light), leading to the generation of random mutations. The second step is of 

enormous relevance, and comprises the screening/selection for the mutants with the desired 

characteristics. This is an efficient, quick and widely used method to obtain a desired microbial 

strain [8, 81]. Bajwa et al. [82] found that UV irradiation combined with a screening on HSSL was 

a good strategy to improve inhibitors-resistance and fermentation efficiency of S. stipitis.  

Genome shuffling 

This approach can be used to combine phenotypes conferring tolerance to various inhibitors, 

since it can accelerate directed evolution by facilitating recombination between members of a 

distinct population. The genome shuffling is a process that combines the advantage of 

multiparental crossing through DNA shuffling, along with the recombination of entire genomes [7, 

83]. Bajwa et al. [84] used this method to obtain two different S. stipitis strains, GS301 and GS302, 

with improved tolerance to HSSL when compared to the parental strain. These strains were able 

to consume all the glucose and xylose and produce higher amounts of ethanol. 

2.4 Microbial contamination during ethanol fermentation 

The industrial ethanol fermentations of sugar-based feedstocks are not designed to run under 

sterile conditions, due to the high sterilization costs. This favours microbial contamination, which 

can occur in any stage of the process and pose serious economic consequences. A wide variety 

of yeast and bacteria have been isolated and identified from ethanol plants (Table 6) [3, 10, 40]. 

Microbial contaminants can compete for nutrients with the fermenting organism and also produce 

toxic compounds, thus affecting considerably the yeast fermentation performance [44]. 

   Process parameters  

 Organism Feedstock Strain improvement Yethanol/S 
(g g-1)a 

Pethanol 
(g L-1 h-1)b 

Ref. 

 
 

 S. cerevisiae 
    Y-265 
    Y-265A-3 
 

  

 S. stipitis 
    Y-NRRL 7124 
    Y-NRRL 7124 
    Y-NRRL 7124 
    Y-NRRL 7124 

 
 

 
Synthetic medium 
Synthetic medium 
 

 

 
Wheat straw 
Wheat straw 
HSSL 
HSSL 

 
  

 
None 
Adaptation 
 

 

 
None 
Adaptation 
None 
Adaptation 

 
 

 
0.15 
0.24 
 

 

 
0.36 
0.41 
0.16 
0.28 

 
 

 
0.09 
0.13 
 

 

 
0.30 
0.54 
0.01 
0.07 
 

 
 

 
[79] 
[79] 
 

 

 
[80] 
[80] 
[68] 
[68] 
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                         Table 6. Microbial contaminants usually found in ethanol plants. 

 Microbial contaminant Feedstock Reference  
 

 Bacteria 
Lactobacillus buchneri 
Lactobacillus plantarum 
Lactobacillus fermentum 
Lactobacillus pentosus 
Acetobacter tropicalis 
Acetobacter syzygii 

 

 Yeast 
Candida sp. 
Dekkera bruxelensis 
Pichia sp. 

 

 
 

Bacteria 
Corn 
Spent sulphite liquor 
Corn 
Corn 
Spent sulphite liquor 
Spent sulphite liquor 
 

Yeast 
Sugar cane 
Sugar cane 
Sugar cane 
 

 
 

Bacteria 
[85] 
[10]  
[86] 
[85] 

[10] 

[10] 
 

Yeast 
[87] 
[87] 
[87] 

 

2.4.1 Lactic acid bacteria 

Lactic acid bacteria (LAB), the most common bacterial contaminants found in ethanol facilities, 

are gram-positive, neutrophile and non-sporulating microaerophilic [88-90]. They can assimilate 

sugars by a homofermentative and/or heterofermentative pathway, and the resulting main 

fermentation end-product is lactate [89]. The most known inhibitory compounds formed by LAB 

are lactate and acetate, which lower the pH of the media, contributing to a non-optimal pH range 

for S. cerevisiae and other ethanol-producing microorganisms [40]. Moreover, at low pH, such 

acids are in undissociated form and can diffuse across the plasma membrane, decreasing the 

intracellular pH and the cell proliferation and viability [88]. Other compounds with antifungal 

activity, like reuterin and hydrogen peroxyde, are also formed by LAB (Figure 6). 

 

Figure 6. Summary of the main antifungal inhibitors produced by 

lactic acid bacteria [88]. 

Different studies have shown that pure cultures of S. cerevisiae are clearly affected by the addition 

of lactate and acetate to the fermentation media, resulting in decreased growth rates and ethanol 

productivities [91, 92]. The effects of contaminating organisms are less clear [85]. Thomas et al. 

[93] demonstrated that growth of Lactobacillus fermentum for 24 h in corn mash prior to 

inoculation of S. cerevisiae resulted in a 22 % loss of ethanol production. However, when the 
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Phenyllactic  
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Diacetyl 

Hydroxygen 
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yeast and bacteria were both inoculated at the same time, the ethanol production decreased only 

3 % if compared to the control. Albers et al. [10] reported that the presence of L. pentosus, L. 

plantarum or L. buchneri had no negative effect in S. cerevisiae viability during ethanol 

fermentation of SSL. In other study, L. paracasei was introduced as a contaminant in a defined 

medium (with no pH control) at ratios of 1:100, 1:1 and 70:1 with S. cerevisiae, but failed to 

overtake the yeast. However, when medium pH was increased up to 6.0, L. paracasei was able 

to compete with S. cerevisiae, resulting in 44 % loss of ethanol production [94]. More research 

studies are needed to understand what triggers the contamination by Lactobacillus sp. in ethanol 

plants. 

2.4.2 Avoiding bacterial contamination 

Several strategies are being evaluated to reduce the levels of bacterial contamination in ethanol 

facilities. They can be controlled by the use of antibiotics, acid washing, among others [88]. The 

use of antibiotics (e.g. penicillin, virgiamycin) should be avoided, due to economic and 

environmental reasons. Additionally, they only reduce the contamination levels temporarily and 

not permanently [7]. The acid washing treatment can be a feasible alternative to the antibiotics’ 

usage. In this process, cells are collected from the fermentation broth and sulphuric acid is used 

to adjust the pH. The acid treatment can be successfully used in batch processes, but not in 

continuous cultures with cell recirculation [95]. Other strategies, such as modification of the 

fermentation parameters can be further investigated to solve the bacterial contamination in 

ethanol plants. Changing process conditions like pH and temperature during ethanol fermentation 

process can avoid the growth of bacterial contaminants [10, 96]. This is a simple, economic and 

effective measure, which can contribute to the development of more economically viable ethanol 

plants. However, the effect on ethanol-producing strains also needs to be evaluated.  
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Chapter 3 

Materials and methods 

 

As previously outlined, this work is composed of two studies concerning different challenges of 

ethanol fermentation: (i) evolutionary engineering for yeast improvement, and (ii) microbial 

contamination. For a better understanding of each topic, the chapters 3 and 4 are thus divided in 

two sections. 

3.1 Evolutionary engineering study  

3.1.1 Strains and maintenance 

Scheffersomyces stipitis NRRL Y-7124, denoted parental strain, was gently supplied by ARS 

Culture Collection (NCAUR, Peoria, IL, USA) [97]. The parental strain was cultivated in increasing 

concentrations of HSSL (0-60 % v/v) supplemented with CDM by operating a continuous stirred-

tank reactor during 68 days with a working volume of 1 L. The cells collected from the final 

medium, designated as adapted population, were stored for further studies [98]. 

The parental strain and adapted population were grown at 28ºC and maintained in YMG Agar 

plates. The detailed composition of the mentioned media is shown below (Section 3.1.2). 

3.1.2 Cultivation media 

3.1.2.1 Hardwood spent sulphite liquor 

HSSL from the magnesium-based acidic sulphite pulping of Eucalyptus globulus was kindly 

provided by Caima-Indústria de Celulose S.A. (Constância, Portugal). Pre-evaporated HSSL was 

collected, and its composition is shown in Table 7. The pretreatment of HSSL consisted in pH 

adjustment to 7.0 with KOH, followed by aeration with compressed air (2 h L-1) and centrifugation 

at 5,000 rpm for 20 min, 4ºC. The precipitated colloids were filtered off using a 1.0 µm glass 

microfiber filter (Filtres Fiorini, France). 
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Table 7. Composition of hardwood spent sulphite liquor provided by Caima-

Indústria de Celulose S.A. (Constância, Portugal) [99]. 
 

 

 

 

 

 

 

 

 

3.1.2.2 Chemically defined medium  

The composition of chemically defined medium (CDM) [100] is shown in Table 8. CDM was 

formulated in order to mimic the sugars composition (xylose and glucose) of HSSL, and 

supplemented with salts, vitamins and trace elements. A buffer solution at pH 5.5 was also part 

of CDM.  

Table 8. Composition of chemically defined medium (CDM).  

 

3.1.2.3 Solid growth media 

The composition of solid media used (YMG Agar, YMX Agar, YMXH Agar) during the study of 

evolutionary engineering of S. stipitis is shown in Table 9.  

 

 

 

 Components Conc. (g L-1) Components Conc. (g L-1) 
 
 

 Hexose sugars 
     D-Mannose  
     D-Glucose  
     D-Galactose  
 

 Pentose sugars 
     D-Xylose 
     L-Arabinose 
     L-Rhamnose 
     L-Fucose 

 
 

 
8.5 ± 0.9 
2.3 ± 0.1 
4.5 ± 0.1 
 

 
24.6 ± 0.5 
7.8 ± 0.3 
1.6 ± 0.3 
0.4 ± 0.3 

 
 

Lignosulphonates  
Acetic acid  
Furfural 
Ash 
 

 
 

78.2 ± 0.6 
8.2 ± 0.3 
< 0.1 
Traces 

 Components Conc.  
(g L-1) 

Components Conc.  
(mg L-1) 

Components Conc.  
(mg L-1) 

 
 

 Sugars 
  D-Glucose  
  D-Xylose 

 Salts 
  (NH4)2SO4 
  MgSO4·7H2O 
  KH2PO4 

 Buffer 
  KHC8H4O4 

  KOH 

 
 

 
2.3  
24.6 

 
5.0 
0.5 
3.0 

 
5.1 
1.1 
 

 
 

Vitamins 
Biotin 
Panthothenic acid  
calcium salt 
Nycotin acid 
Myo-inositol 
Thiamine·HCl  
Piridoxine·HCl 
ρ-Aminobenzoic acid 

 

 
 

 
0.05  
1.00  
 
1.00 
25.0 
1.00 
1.00 
0.20 
 

 
 

Trace elements 
ZnSO4·7H2O 
MnCl2·4H2O 
CoCl2·6H2O 
CuSO4·5H2O 
Na2MoO·2H2O 
CaCl2·2H2O 
FeSO4·7H2O 
H3BO3 
KI 

 
 

 
4.50 
1.00 
0.30 
0.30 
0.40 
4.50 
3.00 
1.00 
0.10 
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Table 9. Composition of solid growth media. Abbreviations: YMG, Yeast Mold 

supplemented with glucose; YMX, Yeast Mold supplemented with xylose; YMXH, Yeast 

Mold supplemented with xylose and 60 % (v/v) of HSSL [98]. 

 Components 

Concentration (g L-1) 

YMG Agar YMX Agar YMXH Agara 
  
 

 Malt extract 
 Yeast extract  
 Peptone from casein 

 HSSL 
 D-Glucose 
 D-Xylose  
 Agar 

 
 

3.00 
3.00 
5.00 

– 
10.0 
– 
20.0 

 
 

3.00 
3.00 
5.00 

– 
– 
10.0 
20.0 

 
 

1.20  
1.20  
1.60  

60 % (v/v)b 
– 
4.00  
20.0  

           a   Solid medium composed of HSSL/YMX Agar (60/40 % v/v). Agar was added as 100 % (v/v).  
   b   HSSL concentration expressed in volume percent (% v/v). 

3.1.3 Selection of tolerant clones 

The pre-culture of the adapted population of S. stipitis was performed by taking colonies from 

YMG Agar plates into 5 mL of CDM. Cells were grown in 50 mL conical tubes until late exponential 

phase at 28ºC, 180 rpm. The pre-grown cells were then streaked in YMXH Agar plates and 

incubated at 28ºC for 5 days. Ten of the originated colonies (i.e. clones) were randomly selected 

and their phenotypic stability was evaluated. For that, ten sequential transfers of each clone were 

performed under non-selective conditions in YMX Agar plates incubated at 28ºC for 48 h per 

transfer. In the final of the process, the clones-containing plates (of the 10th transfer) were stored 

at 4ºC for further studies. 

3.1.4 Screening trials 

3.1.4.1 Pre-culture 

The yeast pre-cultures were performed by taking colonies of S. stipitis parental strain, adapted 

population or clones from the respective agar plates into 5 mL of CDM. Cells were grown in 50 

mL conical tubes until late exponential phase at 28ºC, 180 rpm. 

3.1.4.2 Intermediate step 

The intermediate step was performed in 5 mL of HSSL/CDM (60/40 % v/v). The vitamins and 

trace elements solution of CDM were added as 100 % (v/v). The biomass needed to start the 

fermentation with an initial optical density at 620 nm (OD620) of 0.5 was obtained from the pre-

culture. Cells were grown in 50 mL conical tubes until late exponential phase at 28ºC, 180 rpm. 

3.1.4.3 Shake flask fermentation 

The shake flask fermentations were performed in 12 mL of HSSL/CDM (60/40 % v/v). The 

vitamins and trace elements solution of CDM were added as 100 % (v/v). The biomass needed 
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to start the fermentation with a starting OD620 of 0.5 was obtained from the intermediate step 

culture. Cells were grown in 100 mL shake flasks at 28ºC, 180 rpm, and the best-performing clone 

was further studied. 

3.1.5 Clone characterisation 

3.1.5.1 Pre-culture 

The pre-culture was performed by taking colonies of the best-performing clone from YMXH Agar 

plate into 10 mL of CDM. Cells were grown in 100 mL shake flaks until late exponential phase at 

28ºC, 180 rpm. 

3.1.5.2 Intermediate step 

To obtain enough biomass for fermentations and to investigate the effect of short-term adaptation 

on clone performance, an extra cultivation step was required. The intermediate step was 

performed in two different media: (i) 100 mL of CDM, or (ii) 100 mL of HSSL/CDM (60/40 % v/v) 

with vitamins and trace elements solution of CDM as 100 % (v/v). The medium was inoculated 

with the clone pre-culture at an initial OD620 of 0.5, and the cells were grown in 1 L shake flasks 

until late exponential phase at 28ºC, 180 rpm. 

3.1.5.3 Batch reactor fermentation 

In order to obtain the biomass needed to start the batch fermentations, the medium was 

inoculated with the intermediate step-culture at an initial OD620 of 0.5. The fermentations were 

performed in a 1 L stirred tank reactor (BioLab, B. Braun, Germany) with a working volume of 800 

mL. A medium consisting of 800 mL of HSSL/CDM (60/40 % v/v) with vitamins and trace elements 

solution of CDM as 100 % (v/v) but without buffer solution was used. The temperature was set at 

28ºC, agitation at 240 rpm, aeration at 0.24 L min-1 and pH was maintained at 5.5 by automatic 

addition of 3 M KOH or 3 M H2SO4. 

3.1.6 Analytical methods 

3.1.6.1 Metabolites determination 

The fermentation samples were centrifuged (2 min at 13,000 rpm) in order to remove the cells. 

The supernatant was then filtered through 0.20 µm membrane filters (CoStar, Cambridge, MA, 

USA) by centrifugation (10 min at 8,000 rpm), and stored at -20ºC.  

The concentrations of glucose, xylose, xylitol, glycerol, acetate and ethanol were determined by 

high performance liquid chromatography (HPLC). The sample injection volume was 20 µL, and 
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the compounds were separated using a 10 µm Eurokat H ion-exchange column (Knauer, 

Germany). The separation was performed at 40ºC with 0.01 N H2SO4 at 0.4 mL min-1 as mobile 

phase. The HPLC equipment consisted of a Hitachi L-2130 pump, autosampler (Hitachi L-2200), 

column oven Gecko-2000 (Teknokroma, Spain) and Hitachi Refractive Index Detector L-2490. 

3.1.6.2 Cell viability 

The cell viability was evaluated as colony-forming units per milliliter (CFU mL-1). CFU 

determination was performed by serial dilutions with 0.9 % (v/v) NaCl solution, in quadruplicate. 

When the desired dilution factor was achieved, 100 µL were spread on YMG Agar plates. The 

agar plates were then incubated at 28ºC for 48 h. 

3.1.6.3 Cell dry weight                                                              

Cell dry weight was determined, in quintuplicate, by filtering 5 mL of sample with a 0.45 µm 

membrane filter (ME 25/21 ST, Whatman, England), and washing with 15 mL of distilled H2O. The 

membranes were then dried until constant weight (at 105ºC, 72 h).  
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3.2 Microbial contamination study  

3.2.1 Strains and maintenance 

The industrial yeast strain Saccharomyces cerevisiae TMB3500 was used in this work [101]. A 

lactic acid bacteria strain identified as Lactobacillus pentosus was isolated from an industrial 

ethanol plant [7]. 

Yeast and bacterial strains were maintained at -80ºC in 25.0 % and 12.5 % glycerol (v/v) with 

YPD broth and MRS broth (Merck, Darmstadt, Germany), respectively.  

For short-term storage, S. cerevisiae was grown at 30ºC and maintained in YPD Agar plates, and 

L. pentosus was grown at 37 ºC and maintained in MRS Agar plates. The detailed composition of 

the mentioned media is shown below in Table 10 (Section 3.2.2.1). 

3.2.2 Cultivation media 

3.2.2.1 Solid and liquid media                                                              

The composition of solid and liquid media used for yeast (YPD Agar, YNB Agar, YNB broth) and 

for bacteria (MRS Agar and MRS broth – Merck, Darmstadt, Germany) in this study is shown in 

Table 10. The media were prepared according to the manufactures’ instructions. 

Table 10. Composition of solid and liquid growth media. Abbreviations: YPD, Yeast Extract Peptone 

Dextrose; YNB, Yeast Nitrogen Base; MRS, De Man, Rogosa and Sharpe [13, 102]. 

 Components 

 Concentration (g L-1) 

YPD Agar YNB Agar MRS Agar YPD broth YNB broth MRS broth 
 
 

 Malt extract 
 Meat extract 
 Yeast extract 
 Peptone from casein 
 YNB w/o aminoacidsa 

 KHC8H4O4 

 KOH 
 K2HPO4 

 C6H14N2O7 

 C2H3NaO2 

 MgSO4 
 MnSO4 

 D-Glucose  
 Tween® 80 
 Agar 

 
 

– 
10.0 
20.0 
– 
– 

–   
–   
–   
– 
– 
–   
– 

20.0  
– 
15.0 

 
 

– 
– 
– 
– 
6.70 

–   
–   
–   
– 
– 
–   
– 

20.0  
– 
12.0 

 
 

– 
10.0 
4.00 
10.0 
– 

–   
–   
2.00  
2.00 
5.00 
0.20 
0.04 

20.0  
1.00 
14.0 

 
 

– 
10.0 
20.0 
– 
– 

–   
–   
–   
– 
– 
–   
– 

20.0  
– 
– 

 
 

– 
– 
– 
– 
6.70 

10.2   
2.20 
–   
–   
–   
–   
–   

20.0  
–   
–   

 
 

– 
8.00 
4.00 
10.0 
– 

–   
–   
2.00 
2.00 
5.00 
0.20 
0.04 

20.0  
1.00 
–   

   a   Yeast Nitrogen Base without aminoacids. 
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3.2.2.2 Simulated synthetic hydrolysate 

The fermentations were performed on a simulated synthetic hydrolysate (SSH) [100], whose 

chemical composition is shown in Table 11. SSH was formulated in order to mimic the average 

composition of sugars and inhibitors of SSSL formed in Scandinavia. The pH of SSH medium 

was adjusted to 5.0 or 6.5 with concentrated KOH. Besides, the effect of yeast extract 

supplementation (10 g L-1) and absence of inhibitors on the fermentation performance was also 

investigated.   

Table 11. Composition of simulated synthetic hydrolysate (SSH) medium.  

Components Conc. (g L-1) Components Conc. (mg L-1) 
 

 

Sugars 
D-Mannose  
D-Glucose  
D-Galactose  
D-Xylose 

Inhibitors 
Acetic acid 
Furfural 
HMF 
Vanillin 

Salts 
(NH4)2SO4 
MgSO4·7H2O 
KH2PO4 

Buffer 
KHC8H4O4 

 
 

 
25.0  
10.0  
5.0 
10.0 

 
6.0 
0.2 
0.2 
0.5 

 
5.0 
0.5 
3.0 

 
10.2 
 

 

 

Vitamins 
   Biotin 
   Panthothenic acid  
   calcium salt 
   Nycotin acid 
   Myo-inositol 
   Thiamine·HCl  
   Piridoxine·HCl 
   ρ-Aminobenzoic acid 

Trace elements 
   ZnSO4·7H2O 
   MnCl2·4H2O 
   CoCl2·6H2O 
   CuSO4·5H2O 
   Na2MoO·2H2O 
   CaCl2·2H2O 
   FeSO4·7H2O 
   H3BO3 
   KI 

 
 

 
0.05  
1.00  
 
1.00 
25.0 
1.00 
1.00 
0.20 
 

4.50 
1.00 
0.30 
0.30 
0.40 
4.50 
3.00 
1.00 
0.10 
 

 

3.2.3 Cell cultivation 

3.2.3.1 Pre-culture                                                               

The yeast pre-cultures were performed by taking a single colony of S. cerevisiae from YPD Agar 

plates into 5 mL of YNB broth. Cells were grown in 50 mL conical tubes until late exponential 

phase at 30ºC, 180 rpm. 

The bacterial pre-cultures were performed by taking a single colony of L. pentosus from MRS 

plates into 25 mL of MRS broth. Cells were grown in 50 mL conical tubes until late exponential 

phase at 37ºC with no agitation. 

3.2.3.2 Intermediate step 

To obtain enough biomass for anaerobic batch fermentations, an extra cultivation step was 

required. The yeast intermediate step was performed in 25 mL of YNB broth/SSH medium, pH 
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5.0 (50/50 % v/v). The biomass needed to start the fermentation with an initial OD620 of 0.2 was 

obtained from the yeast pre-culture. Cells were grown in 250 mL baffled shake flasks until late 

exponential phase at 30ºC, 180 rpm. 

The bacterial intermediate step was performed in 25 mL of MRS broth/SSH medium, pH 5.0 (50 

% v/v). The medium was inoculated with the bacterial pre-culture at an initial OD620 of 0.2, and 

the cells were grown in 50 mL conical tubes until late exponential phase at 37ºC with no agitation. 

3.2.3.3 Anaerobic batch fermentation 

In order to obtain the biomass needed to start the anaerobic fermentations, cells obtained from 

the intermediate step were harvested by centrifugation (5 min, 4ºC at 4,000 rpm), washed with 

0.9 % (v/v) NaCl and then inoculated in the medium. In order to obtain different inoculation ratios 

of S. cerevisiae/L. pentosus (1:0, 0:1, 1:1, 1:100), a relationship between OD620 and the colony-

forming units per milliliter (CFU mL-1) of each strain was determined. 

The anaerobic batch fermentations were performed in 50 mL of SSH supplemented with 

ergosterol and Tween 80® at a final concentration of 0.01 g L-1 and 0.42 g L-1, respectively. The 

effect of optimal pH for bacteria or yeast, yeast extract supplementation and presence/absence 

of chemical inhibitors on the fermentation performance and cell viability was investigated. Serum 

flasks sealed with a rubber stopper, and an outlet needle for carbon dioxide removal were used 

in all cultivations. The anaerobic conditions were maintained by using a mineral oil layer (7 mL) 

on the surface of SSH. The serum flasks were incubated at 30ºC in a water bath equipped with a 

multi-magnetic stirring plate (Variomag Telesystem, Thermo Scientific, Waltham, MA, USA) at 

140 rpm. All the fermentations were performed in biological duplicates. Table 12 shows, in detail, 

the conditions of all the performed anaerobic fermentations. 

Table 12. General scheme and parameters of anaerobic batch fermentations performed. Abbreviations: 

SSH, synthetic simulated hydrolysate medium; YE, yeast extract; I, inhibitors.  

 Fermentation medium  Starting inocculum  

 # Substrate pH   Ratioa Yeast  

(CFU mL-1) 

Yeast  

(OD620) 

Bacteria  

(CFU mL-1) 

Bacteria  

(OD620) 
 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
 

 
 

SSH 
SSH + YE  
SSH 
SSH + YE 
SSH 
SSH + YE 
SSH 
SSH + YE 
SSH – I 
SSH + YE – I 
SSH – I 
SSH + YE – I 

 
 

5.0 
5.0 
5.0 
5.0Bac
5.0 
5.0B 
5.0 
5.0 
5.0 
5.0 
6.5 
6.5act 

 
 
 

1:0 
1:0 
0:1 
0:1 
1:1 
1:1 
1:100 
1:100 
1:1 
1:1 
1:100 
1:100 

 
 

107 
107 
– 
– 
107 
107 
105 
105 
107 
107 
105 
105 

 
 

2.500 
2.500 
– 
– 
2.500 
2.500 
0.025 
0.025 
2.500 
2.500 
0.025 
0.025 

 
 

– 
– 
107 
107 
107 
107 
107 
107 

107 
107 
107 
107 

 
 

– 
– 
0.150 
0.150 
0.150 
0.150 
0.150 
0.150 
0.150 
0.150 
0.150 
0.150 

          a   Ratio of S. cerevisiae/L. pentosus was obtained by dividing the cell viable number per milliliter (CFU mL-1) of  
            each strain. 
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3.2.4 Analytical methods 

3.2.4.1 Metabolites determination 

The fermentation samples were centrifuged (2 min at 13,200 rpm) in order to remove the cells, 

and the supernatant was stored at -20ºC.  

The concentrations of glycerol, xylitol, acetate, ethanol, HMF and furfural were determined by 

HPLC. The sample injection volume was 10 µL, and the compounds were separated using two 

Aminex HPX-87H resin-based columns (Bio-Rad, Hercules, CA, USA) preceded by a Micro-

Guard Cation-H guard column (Bio-Rad). The separation was performed at 45ºC with 5 mM 

H2SO4 at 0.6 mL min-1 as mobile phase. The HPLC equipment consisted of a Waters HPLC pump, 

autosampler (Waters 717 plus), Waters column heater module, Shimadzu refractive index 

detector RID-10A and Shimadzu spectrophotometer detector UV-Vis SPD-6AV. 

The concentrations of xylose, glucose, galactose and mannose were also determined by HPLC 

(Waters) using an Aminex HPX-87P resin-based column (Bio-Rad) preceded by a Micro-Guard 

Cation-H and Anion CO3
- guard columns (Bio-Rad). Separation was performed at 60ºC, with 

MilliQ H2O at 0.6 mL min-1 as mobile phase. The HPLC equipment consisted of a Waters HPLC 

pump, autosampler (Waters 717 plus), Waters column heater module, refractive index detector 

(Waters 2410) and absorbance detector (Waters 2487 Dual λ). 

3.2.4.2 Cell viability 

The cell viability was evaluated as colony-forming units per milliliter (CFU mL-1). CFU 

determination was performed by serial dilutions in 0.9 % (v/v) NaCl, in triplicate. When the desired 

dilution factor was achieved, 100 µL were spread on YNB or MRS Agar plates. For S. cerevisiae 

cells counting, YNB Agar plates were incubated at 30ºC for 48 h. For L. pentosus, MRS Agar 

plates (supplied with 4 mg L-1 of cyclohexamide when co-cultured with yeast) were incubated 

anaerobically (Anaerocult A, Merck, Darmstadt, Germany) at 37ºC for 48 h.  
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Chapter 4 

Results and discussion 

 

4.1 Evolutionary engineering study 

Currently, the evolutionary engineering is a well-established approach for the improvement of 

microorganisms’ performance. However, most of the published studies report the use of S. 

cerevisiae, a model yeast organism, which is not able to consume pentose sugars in its wild type. 

Lignocellulosic feedstocks have high content in pentoses, mainly xylose, and thus the use of 

pentose-metabolising microorganisms combined with the evolutionary engineering methodology 

may be a good approach to improve simultaneously the resistance towards lignocellulosic 

inhibitors and fermentation performance. S. stipitis, a native xylose-consuming yeast, was 

adapted to increasing concentrations of HSSL (0-60 % v/v) during 68 days in a continuous stirred 

tank reactor, and an adapted population was obtained in the final of this process [98]. From that 

population, 10 clones were isolated, cultivated under non-selective conditions during ten 

sequential transfers, and their phenotypic stability was then investigated. The obtained data is 

presented and discussed below. 

4.1.1 Screening trials 

To assess the phenotypic stability of the isolated clones, their fermentation performance in 60 % 

(v/v) of HSSL was compared to that of the parental strain and adapted population. The results of 

growth rate, ethanol production and substrate uptake rates were determined and are shown in 

Figure 7. The parental strain S. stipitis Y-NRRL 7124 presented the lowest growth rate of all 

assays (0.116 ± 0.004 h-1), and an ethanol productivity of 0.025 ± 0.003 g L-1 h-1. The low growth 

rate is a consequence of S. stipitis cultivation in high HSSL concentrations, suggesting the major 

role of lignocellulosic inhibitors in yeast growth inhibition. Previous studies conducted by Xavier 

et al. [99] showed that cultivation in increasing HSSL concentrations led to a decrease in the 

growth rate, ethanol production and sugar consumption by the same yeast strain. Considering 

substrate consumption, the sugars (glucose, xylose) and acetate were used as carbon sources 

by the parental strain. The hexose sugar glucose was depleted after 41 h of fermentation, similarly 

to the adapted population and isolated clones (data not shown). The xylose consumption rate was 

considerably lower for the parental strain (0.496 ± 0.003 g L-1 h-1), suggesting that the adaptation 
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approach led to an improved pentose sugars uptake. Interestingly, acetate was found to be 

consumed at a low rate (0.078 ± 0.004 g L-1 h-1) if compared to the remaining trials.  

 
Figure 7. Fermentation performance of the parental strain S. stipitis Y-NRRL 7124 (O), adapted 

population (A) and isolated clones (1-10), named C1-10, cultivated in HSSL/CDM (60/40 % v/v). 

The maximum growth rate (µmax) ( ), acetate uptake rate (racetate) ( ), ethanol productivity 

(Pethanol) ( ), and xylose uptake rate (rxylose) ( ) were determined after 41 h of fermentation. 

The adapted population showed an improved growth rate (0.135 ± 0.004 h-1) and substrate 

consumption rate than the parental strain, which is probably due to a higher tolerance towards 

HSSL derived-inhibitors. While the xylose consumption was slightly faster (0.635 ± 0.00 g L-1 h-

1), the acetate uptake rate (0.216 ± 0.006 g L-1 h-1) was increased 2-fold after the adaptation 

process. However, no ethanol was produced, in contrast to the parental strain. The ethanol 

production by S. stipitis is oxygen-dependent, reaching its maximum under microaerophilic 

conditions [13]. Since the screening trials were performed under fully aerobic conditions, this is a 

possible reason for the low ethanol production rates obtained.  

The isolated clones showed a similar and stable fermentation profile among themselves. Besides, 

their fermentation performances were improved if compared to the parental strain, suggesting 

that the adapted population is considerably stable in the absence of selective pressure. 

Comparing with the adapted population, a slightly higher growth rate and similar acetate 

consumption rate were achieved. However, a noticeable decrease in the xylose uptake rate was 

displayed by the isolated clones. This finding was unexpected since the clones were cultivated in 

xylose-rich medium to assess their stability. As xylose is the major carbon source of HSSL, the 

clone showing higher xylose consumption rate (0.558 g L-1 h-1) was named isolate C4 and 

selected for characterisation studies (Section 4.1.2). The ethanol yields obtained during the 

screening trials were calculated and are shown in Figure 8. 
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Figure 8. Ethanol yields of the parental strain S. stipitis Y-NRRL 

7124 (O), adapted population (A) and isolated clones (1-10), named 

C1-10, obtained after 41 h of culture in HSSL/CDM (60/40 % v/v). 

Glucose, xylose and acetate were considered as substrate. 

The parental strain was able to achieve the highest ethanol yield of all performed fermentations 

(0.038 ± 0.001 g ethanol g substrate-1). The adapted population did not produce ethanol after 41 

h, and thus a null ethanol yield was registered. Curiously, the isolated clones showed values of 

ethanol yield in between those obtained with the parental strain and adapted population. The 

isolate C4 showed an ethanol yield of 0.03 g g substrate-1. In fact, the adapted population was 

expected to have the highest ethanol yield, being followed by the isolated clones and parental 

strain. Some factors can explain the obtained data. The evolutionary engineering approach aimed 

to develop an evolved S. stipitis strain showing higher tolerance towards lignocellulosic inhibitors, 

and thus aerobic conditions were used during that stage to optimise yeast growth. As a result, a 

microorganism with metabolism less directed to ethanol production could have been developed. 

To evaluate these and other factors, the highest xylose-consuming clone (isolate C4) was further 

characterised. 

4.1.2 Characterisation of isolate C4 

The isolate C4 was cultivated aerobically at bioreactor level in 60 % (v/v) of HSSL, and the effect 

of short-term adaptation was investigated. This effect was evaluated by pre-culturing the isolated 

clone in presence or absence of HSSL. 

When the isolate C4 was pre-cultivated in HSSL, no lag phase was detected and a maximum 

growth rate of 0.083 h-1 was achieved (Figure 9). In the end of fermentation, a cell dry weight of 

2.34 ± 0.05 g L-1 and a viable cell number of 2.78 x 108 ± 1.53 x 106 CFU mL-1 were obtained. 

Considering sugar consumption, the hexose glucose was depleted after 16.5 h of fermentation, 

while the pentose xylose only started to be consumed by the yeast afterwards. In the end of 

fermentation, 12.1 g L-1 of xylose were consumed, corresponding to an uptake rate of 0.192 g L-

1 h-1. Like in the screening trials, acetate consumption was also verified (4.4 g L-1 after 63 h), and 

a consumption rate of 0.069 g L-1 h-1 was achieved. 
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Figure 9. Fermentation performance of the pre-adapted isolate C4 cultivated in HSSL/CDM 

(60/40 % v/v). The intermediate step was performed in the same conditions. Symbols: OD620 

(    ); glucose (    ); xylose (    ); acetate (    ); ethanol (    ).  

The ethanol production reached its maximum after 58 h of fermentation (4.18 g L-1), leading to a 

yield of 0.172 g ethanol g substrate-1. In the end of fermentation, the ethanol uptake rate 

corresponded to 0.039 g L-1 h-1. The low ethanol production might be due to the aerobic conditions 

used, which do not correspond to yeast optimal oxygen concentrations for ethanol fermentation.  

The short-term adaptation is a process that is responsible by an improvement on ethanol 

fermentation from lignocellulose feedstocks, since it aims to improve yeast tolerance towards 

inhibitory compounds. To investigate the fermentation performance of isolate C4 in the absence 

of short-term adaptation, the clone was pre-cultivated in 100 % (v/v) of CDM and the remaining 

parameters were not changed (Figure 10). The isolate C4 showed a maximum growth rate of 

0.117 h-1 and a lag phase of about 10 h, suggesting that the absence of a short-term adaptation 

step leads to a slower yeast growth and fermentation. At the end of the fermentation, a cell dry 

weight of 3.00 ± 0.06 g L-1 and a viable cell number of 2.84 x 108 ± 2.07 x 107 CFU mL-1 were 

achieved. These values are identical to the previous experiment, and are further discussed later. 

Regarding sugar consumption, glucose was depleted after 18 h of fermentation, while xylose was 

only partially consumed (11.3 g L-1 after 63 h) at a rate of 0.180 g L-1 h-1. Besides, 6.3 g L-1 of the 

lignocellulose inhibitor acetate were consumed after 63 h of fermentation at a rate of 0.101 g L-1 

h-1. The ethanol production followed the yeast growth, reaching its maximum at 63 h (4.51 g L-1). 

The ethanol production rate was equal to 0.42 g L-1 h-1, while the ethanol yield was 0.125 g g 

substrate-1. 
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Figure 10. Fermentation performance of the non-pre-adapted isolate C4 cultivated in 

HSSL/CDM (60/40 % v/v). The intermediate step was performed in 100 % (v/v) of CDM. 

Symbols: OD620 (    ); glucose (    ); xylose (    ); acetate (    ); ethanol (    ).  

4.1.2.1 Overall comparison  

The summary of the results from all the experiments performed to characterise the isolate C4 in 

this work is shown in Table 13. In the presence of a pre-adaptation step, the isolate C4 showed 

a lower maximum growth rate (0.083 h-1) than in its absence (0.117 h-1). However, the opposite 

was verified for the final cell dry weight, while identical viable cell number results were achieved 

at the end of the fermentation. This suggests that the isolate C4, obtained from an evolutionary 

engineering approach, is robust towards lignocellulosic inhibitors, and thus the occurrence of a 

pre-adaptation step to improve the yeast fermentation performance is not mandatory.  

Considering substrate consumption, the effect of pre-adaptation was not evident on sugar uptake 

rate in the end of fermentation. However, the consumption of acetate was substantially different 

and surprisingly higher in the absence of short-term adaptation (0.101 g L-1 h-1). The ethanol 

maximum concentration and ethanol productivity were very similar with and without pre-

adaptation step. However, when the isolate C4 was pre-adapted to HSSL, a higher ethanol yield 

was achieved (0.172 g g substrate-1), suggesting that the yeast was able to produce more ethanol 

consuming less substrate under these conditions. Considering all the above factors, the pre-

adaptation step in HSSL did not improve in general the fermentation performance of the isolate 

C4, suggesting that the long-term adaptation exploited the maximum capacity of the strain. 
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Table 13. Fermentation parameters of isolate C4 cultivation with and without a pre-adaptation step.  

 Parameters 

Isolate C4 

Pre-adapted Non-pre-adapted 
 
 

 Yeast growth  
     Maximum growth rate (h-1) 
     Final cell dry weight (g L-1) 
     Final viable cell number (CFU mL-1) 

 Substrate consumption 
     rglucose (g L-1 h-1)a 
     rxylose (g L-1 h-1)a 
     racetate (g L-1 h-1)a 

 Ethanol production 
     Pethanol (g L-1 h-1)b 
     Ethanolmax (g L-1)c 
     Yethanol/S (g g substrate-1)d 

 
 

 
0.083 
2.34 ± 0.05 
2.78 x 108 ± 1.53 x 106 

 
0.059 
0.192 
0.069 

 
0.039 
4.18 
0.172 

 
 

 
0.117 
3.00 ± 0.06 
2.84 x 108 ± 2.07 x 107 

 
0.059 
0.180 
0.101 

 
0.042 
4.51 
0.125 

 
  
 a   Uptake rate of individual substrates (glucose, xylose, acetate) at the end of fermentation. 

 
  
 b   Ethanol productivity at the end of fermentation.  

 
  
 c   Maximum ethanol concentration during fermentation. 

 
  
 d   Ethanol yield calculated for maximum ethanol concentration considering glucose, xylose and acetate as substrate. 

When the parental strain was cultivated with and without a pre-adaptation step under the same 

conditions, completely different results emerged [98]. The cell pre-adaptation led to higher growth, 

substrate consumption and ethanol production. Since the parental strain was less tolerant towards 

the toxic compounds present in HSSL than the isolate C4, this step induced probably an adaptive 

response of S. stipitis toward inhibitors. Besides, all the results obtained with the parental strain 

were lower than those obtained with the isolate C4, showing the positive effect of evolutionary 

engineering on S. stipitis fermentation performance.  
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4.2 Microbial contamination study 

4.2.1 Initial trials using SSSL 

Microbial contamination poses serious economic consequences to the industrial ethanol 

production, and research based on the reasons triggering this occurrence has been increasing. 

Therefore, the predominating bacterial contaminant of an industrial ethanol production plant 

based on SSSL fermentation was isolated and identified as L. pentosus [7]. In the present study, 

the viabilities of S. cerevisiae and L. pentosus alone and together during an anaerobic 

fermentative process were investigated. Both microorganisms were not able to grow or maintain 

their viability in the presence of undiluted SSSL at pH 5.0 from a mixture of spruce and pine (data 

not shown). This fact was unexpected since previous studies showed that the same industrial 

yeast strain (S. cerevisiae TMB3500) was an efficient ethanol producer (19.5 g L-1 after 50 h of 

batch fermentation) under the same conditions as the ones tested in this work [3]. However, the 

feedstock was stored at 4ºC for more than 4 years, and therefore its chemical composition might 

have changed. SSSL analysis revealed that the content of the major sugars, acetate, HMF and 

furfural did not change during storage time. This result suggests that other chemical compounds 

with inhibitory capacity that could not be detected by HPLC (e.g. phenolics and other 

lignosulphonate-degradation products) may be the reason for the observed non-growth.  

Due to this challenge, further fermentations were performed using a simulated synthetic 

hydrolysate (SSH) instead, and its content in sugars and inhibitors was adjusted to mimic SSSL 

average composition. 

4.2.2 Viability of yeast and bacterial contaminant in SSH 

The industrial yeast S. cerevisiae TMB3500 was cultivated anaerobically in SSH at pH 5.0 in order 

to reproduce the process conditions used in the ethanol plants. The effect of yeast extract addition 

on the yeast viability and performance was investigated (Figure 11). These results were used as 

a control for comparison with co-cultivation experiments.   

Figure 11A shows that S. cerevisiae could grow in the absence of yeast extract as the CFU 

number was increased by 0.61 ± 0.03 log units after 48 h of fermentation. The hexose sugars 

(mannose, glucose and galactose) were consumed by the yeast. In contrast, xylose was not 

consumed since S. cerevisiae lacks a functional xylose assimilation pathway [103]. During all the 

fermentations performed in this study, no acetate was consumed (data not shown), and thus 

product yields were calculated considering only sugars as substrate. Besides, no lactate was 

produced. A maximum ethanol titer of about 19 g L-1 was achieved and the productivity was 0.37 

± 0.02 g L-1 h-1, while the ethanol yield was 0.47 ± 0.04 g g consumed sugars-1. Moreover, ethanol 

production followed yeast growth, since more than 16 g L-1 were produced after 10 h of 

fermentation.  
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Figure 11. Cell viability (upper panels), sugars consumption and product formation (lower panels) 

during cultivation of S. cerevisiae TMB3500 in SSH, pH 5.0 without (A) and with (B) yeast extract. 

Values showed are a representative profile of each fermentation, and biological duplicates were 

performed. Symbols: S. cerevisiae CFU (    ); mannose (    ); glucose (    ); xylose (    ); galactose 

(llll); ethanol (    ); lactate (    ).  

When yeast extract was added to the fermentation medium, a slight improvement on yeast 

viability, ethanol production and sugar consumption was observed during the first 10 h of 

fermentation (Figure 11B). The maximum CFU number was achieved at 10 h, and then the yeast 

maintained its viability approximately constant. After 48 h of fermentation, the CFU increased by 

0.44 ± 0.00 log units.  The consumption rate of the hexoses was improved during the first hours, 

while no xylose was metabolised. Besides, around 19 g L-1 of ethanol were produced on the first 

10 h, and its production rate was found to be 0.39 ± 0.01 g L-1 h-1. In the end of fermentation, the 

ethanol yield was 0.47 ± 0.01 g g consumed sugars-1. 

In parallel, L. pentosus, the bacterial contaminant of a SSSL ethanol plant [7], was also cultivated 

anaerobically in SSH at pH 5.0, and the effect of the presence of yeast extract on its viability and 

performance was also investigated (Figure 12). These results were also used as a control for 

comparison with co-cultivation experiments.  

In the absence of yeast extract, the CFU decreased by 0.23 ± 0.06 log units after 48 h of 

fermentation (Figure 12A). Lactate production occurred at a slow rate (0.01 ± 0.00 g L-1 h-1) and 

a maximum titer of about 0.4 g L-1 was achieved. After 48 h of fermentation, the lactate yield was 

found to be 0.25 ± 0.23 g g consumed sugars-1. Besides, no ethanol was produced and only a 

residual sugar consumption was observed.  
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Figure 12. Cell viability (upper panels), sugars consumption and product formation (lower 

panels) during cultivation of L. pentosus in SSH, pH 5.0 without (A) and with (B) yeast extract. 

Values showed are a representative profile of each fermentation, and biological duplicates were 

performed. Symbols: L. pentosus CFU (    ); mannose (    ); glucose (    ); xylose (    ); galactose 

(    ); ethanol (    ); lactate (    ).  

When yeast extract was added to SSH, the CFU increased during the first 24 h of fermentation, 

but a decrease was observed afterwards (Figure 12B). After 48 h, bacterial viability increased by 

0.26 ± 0.48 log units. Xylose, mannose and galactose were not used, while glucose was only 

partially consumed, leading to a lactate production rate of 0.09 ± 0.01 g L-1 h-1 and a maximum 

concentration of about 4.5 g L-1. The lactate yield was 0.78 ± 0.18 g g consumed sugars-1 in the 

end of fermentation. 

Therefore, the addition of yeast extract to SSH had a positive effect on bacterial viability and 

lactate formation. During the experiments with L. pentosus, the growth rate was lower than that 

of the yeast and no ethanol or acetate production was detected. Besides, this bacterium was also 

cultivated anaerobically in MRS (data not shown), a medium regularly used for Lactobacillus sp., 

and only lactate was produced (above 10 g L-1). Since L. pentosus strain did not produce ethanol 

or acetate, homolactic fermentation was observed in all the referred conditions. However, L. 

pentosus is considered a facultatively heterofermentative organism with the ability to consume, 

among other sugars, hexoses (D-glucose, D-mannose, galactose) by the Embden-Mayerhof-

Parnas pathway and pentoses (D-xylose) by the phosphoketolase pathway. As a result, only 

lactate is produced from hexoses (homofermentation), while lactate and ethanol or acetate are 

generated from pentoses (heterofermentation) [104, 105]. This could be a possible explanation 

for the absence of xylose consumption by L. pentosus, since only lactate production was detected 

under the studied conditions. The heterofermentative metabolism of L. plantarum is known to be 

activated by glucose depletion under anaerobicity, but nothing is known about its closely-related 
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organism L. pentosus [106]. Nevertheless, a low consumption of glucose, mannose and galactose 

by the bacterial strain was observed both in the presence and absence of yeast extract. As SSH 

composition was formulated to maximise S. cerevisiae performance, some essential nutrients for 

L. pentosus growth might be missing. For instance, Lactobacillus sp. require fair amounts of 

organic nitrogen and growth-promoting substances, and their absence can affect their viability 

and performance [107]. Alternatively, lactate production can have inhibited further sugar 

consumption [108]. 

4.2.3 Co-cultivations of yeast and bacterial contaminant 

The major sources of microbial contamination in the ethanol plants are the raw-material and the 

water used during the process [85, 109]. Since there were no previous studies about the effective 

ratios of S. cerevisiae/L. pentosus, co-culture experiments were performed and different 

inoculation ratios of yeast/bacteria were tested in order to investigate the effect of L. pentosus on 

the S. cerevisiae viability and ethanol production. Firstly, SSH medium at pH 5.0 was inoculated 

with yeast and bacteria at a ratio of 1:1, corresponding to 107 CFU mL-1 of each microorganism 

at the starting point of fermentation (Figure 13). 

 

Figure 13. Cell viability (upper panels), sugars consumption and product formation (lower 

panels) during co-cultivation of S. cerevisiae TMB3500 and L. pentosus at a ratio of 1:1 in SSH, 

pH 5.0 without (A) and with (B) yeast extract. Values showed are a representative profile of 

each fermentation, and biological duplicates were performed. Symbols: S. cerevisiae CFU (    ); 

L. pentosus CFU (    ); mannose (    ); glucose (    ); xylose (    ); galactose (    ); ethanol (    ); 

lactate (    ).  

In the absence of yeast extract, both the viable cell number of yeast and bacteria increased during 

the first 10 h (Figure 13A). However, S. cerevisiae and L. pentosus showed a different behaviour 
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after this point. In contrast to the yeast, where the CFU were approximately constant, the bacterial 

viable cells substantially decreased. After 48 h of fermentation, the CFU of the yeast and bacteria 

increased 0.32 ± 0.21 log units and decreased 6.00 ± 2.09 log units, respectively. The sugar 

consumption and product formation followed the microbial growth: glucose and mannose were 

depleted after 10 h, being followed by galactose, which was consumed at a lower rate. On the 

other hand, xylose was unexpectedly not consumed after glucose and galactose depletion. 

Lactate and ethanol productivity was higher in the beginning of fermentation, which matches with 

the period when the sugar consumption occurred at a higher rate. Lactate maximum titer was 

reached after 30 h (approximately 0.4 g L-1) and the maximum ethanol concentration was about 

18.5 g L-1. Lactate and ethanol productivities were 0.01 ± 0.00 g L-1 h-1 and 0.37 ± 0.00 g L-1 h-1, 

respectively. Besides, the ethanol yield was found to be 0.47 ± 0.01 g g consumed sugars-1, while 

the lactate yield was 0.01 ± 0.00 g g consumed sugars-1. Gold and colleagues [110] have found 

that the growth of L. pentosus ATCC 8041 in MRS broth containing glucose or xylose as a sugar 

source is negatively affected by increasing concentrations of ethanol, and at concentrations of 

about 63 g ethanol L-1, almost no growth was observed after 48 h of cultivation. Therefore, apart 

from other factors, the ethanol concentrations achieved during the performed fermentations could 

have been responsible by the high decrease of CFU number of L. pentosus. 

Higher lactate production was obtained under the presence of yeast extract (Figure 13B). 

However, L. pentosus was unable to outcompete S. cerevisiae. The variation in CFU number of 

both yeast and bacteria was very similar to the one observed without yeast extract. In the end of 

fermentative process, bacterial viable cell number decreased by 5.30 ± 3.06 log units and yeast 

viable cell number increased by 0.33 ± 0.15 log units. The sugars were consumed faster than in 

the absence of yeast extract, and thus lactate titer was also increased. Whilst lactate productivity  

(0.02 ± 0.00 g L-1 h-1) was positively affected by the addition of yeast extract and a lactate 

concentration of about 0.8 g L-1 was achieved, ethanol productivity (0.38 ± 0.00 g L-1 h-1) and 

maximum ethanol titer (about 19 g L-1) were not affected by the addition of yeast extract. After 48 

h of fermentation, the ethanol and lactate yields were 0.47 ± 0.00 g g consumed sugars -1 and 

0.02 ± 0.00 g g consumed sugars-1, respectively. 

The addition of yeast extract to SSH had a positive effect on bacterial viability and lactate 

formation. However, both with and without the addition of yeast extract to SSH at pH 5.0 the 

bacteria could not compete with S. cerevisiae. In fact, S. cerevisiae growth and product formation 

was faster than the one of L. pentosus, revealing that also sugar consumption was quicker. Thus, 

when present in the same amounts, bacteria did not inhibit yeast, and therefore other possibilities 

were investigated.  

The inoculation ratio of yeast/bacteria in SSH medium with and without yeast extract at pH 5.0 

was increased to 1:100 in order to evaluate if S. cerevisiae starting from a more unfavourable 

condition would still outcompete L. pentosus. The results of this experiment are shown in Figure 

14. 
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Figure 14. Cell viability (upper panels), sugars consumption and product formation (lower panels) 

during co-cultivation of S. cerevisiae TMB3500 and L. pentosus at a ratio of 1:100 in SSH, pH 5.0 

without (A) and with (B) yeast extract. Values showed are a representative profile of each 

fermentation, and biological duplicates were performed. Symbols: S. cerevisiae CFU (    ); L. 

pentosus CFU (    ); mannose (    ); glucose (    ); xylose (    ); galactose (    ); ethanol (    ); lactate 

(    ).  

In the experiment without yeast extract, CFU of S. cerevisiae increased by 2.22 ± 0.04 log units, 

while CFU of L. pentosus decreased by 5.07 ± 3.18 log units (Figure 14A). Comparing to the 

previous results, the yeast growth rate was lower in the first 10 h, which can be explained by the 

lower amount of inoculated cells (105 CFU mL-1). However, the lactic acid bacteria strain was still 

unable to take this condition as a competitive advantage during this period, since no growth and 

only residual levels of lactate were detected. Sugar consumption was very low in the first hours 

of fermentation and glucose was depleted after 30 h. At this point, yeast achieved the maximum 

CFU and ethanol titer that were stable until 48 h of fermentation. More than 18 g ethanol L-1 were 

produced during this experiment at a rate of 0.37 ± 0.01 g L-1 h-1, while 0.4 g lactate L-1 were 

produced at a rate of 0.01 ± 0.00 g L-1 h-1. In the end of the fermentative process, the ethanol and 

lactate yields were found to be 0.47 ± 0.01 g g consumed sugars-1 and 0.01 ± 0.00 g g consumed 

sugars-1, respectively. 

When yeast extract was present, S. cerevisiae presented higher growth in the first stages of 

fermentation, and L. pentosus CFU number was held constant until 24 h of fermentation (Figure 

14B). After 48 h, the yeast viable number increased by 2.40 ± 0.21 log units and the bacterial 

viable number was decreased by 5.01 ± 3.49 log units. As in the absence of yeast extract, sugar 

consumption was low during the first 10 h, however the maximum ethanol and lactate production 

was obtained earlier (around 30 h). A similar maximum ethanol concentration, production rate 

and yield were achieved (about 18 g ethanol L-1, 0.38 ± 0.00 g L-1 h-1 and 0.49 ± 0.01 g g 
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consumed sugars-1) as compared to the experiment without yeast extract. Nevertheless, more 

lactate was formed (about 1.4 g L-1) at a rate of 0.04 ± 0.03 g L-1 h-1). The lactate yield was 0.05 

± 0.04 g g consumed sugars-1 after 48 h. 

Like in the previous experiments, a positive impact in bacterial viability and product formation was 

observed when yeast extract was present in SSH, but no effect on S. cerevisiae was detected 

after 48 h of fermentation. Therefore, a higher inoculation of bacteria under the presence of 

inhibitors and pH 5.0 did not play any negative effect on the ethanol production. The delay on the 

yeast growth and production of ethanol was probably due to a lower starting CFU.  

Considering this, other parameters can play simultaneously a major role on bacterial viability 

improvement and yeast viability inhibition. The presence of lignocellulosic inhibitors affect not only 

S. cerevisiae, but also L. pentosus fermentation performance. Therefore, it may be possible that 

in the ethanol plants microbial contaminants could resist to inhibitors and only reproduce when 

the fermentation medium is detoxified by the ethanol-producing strain. The effect of the absence 

of microbial inhibitors was then investigated. For that, co-culture experiments inoculated at a ratio 

yeast/bacteria of 1:1 were performed using SSH without inhibitors at pH 5.0 (Figure 15A). 

Besides, the effect of the presence of yeast extract was also studied (Figure 15B). 

In the absence of yeast extract, no viable cells of L. pentosus were detected after 10 h of 

fermentation without lignocellulose inhibitors (Figure 15A). S. cerevisiae demonstrated to have a 

faster sugar consumption and production formation than the bacteria in the previous tests. Thus, 

without inhibitors these parameters are expected to be even higher, which will not favour L. 

pentosus viability during the fermentation. After 48 h of fermentation, both the yeast and bacterial 

CFU decreased (0.99 ± 0.15 and 7.32 ± 0.20 log units, respectively) due to the quick sugar 

depletion. Both glucose, mannose and galactose were consumed in 10 h, while xylose was not 

metabolised. The ethanol production was slightly lower if compared to the previous obtained 

levels (around 16 g L-1) at a rate of 0.33 ± 0.02 g L-1 h-1. However, low amounts of lactate were 

produced (about 0.2 g L-1) at a rate very close to zero, which can be explained by the fast death 

of L. pentosus cells. In the end of fermentation, the ethanol and lactate yields were 0.40 ± 0.00 g 

g consumed sugars-1 and 0.00 ± 0.01 g g consumed sugars-1, respectively. 

The addition of yeast extract to the medium resulted in a slower decrease of bacterial CFU (Figure 

15B). However, as in the previous trial, the viability of S. cerevisiae and L. pentosus decreased 

by 0.28 ± 0.01 and 7.71 ± 0.61 log units, respectively. Comparing with the previous experiment, 

a faster sugar consumption and a slightly improved ethanol production were denoted. Ethanol 

was found at concentrations of about 17 g L-1, and was produced at a rate of 0.35 ± 0.01 g L-1 h-

1, while lactate was found at concentrations below 0.3 g L-1 and produced at a very slow rate. 

After 48 h of fermentation, the ethanol yield was 0.43 ± 0.01 g g consumed sugars-1, while the 

lactate yield was 0.00 ± 0.00 g g consumed sugars-1. 
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Figure 15. Cell viability (upper panels), sugars consumption and product formation (lower panels) 

during co-cultivation of S. cerevisiae TMB3500 and L. pentosus at a ratio of 1:1 in SSH without 

inhibitors, pH 5.0 in the absence (A) and presence (B) of yeast extract. Values showed are a 

representative profile of each fermentation, and biological duplicates were performed. Symbols: 

S. cerevisiae CFU (    ); L. pentosus CFU (    ); mannose (    ); glucose (    ); xylose (    ); galactose 

(    ); ethanol (    ); lactate (    ).  

The absence of inhibitors in SSH did not lead to an improvement in lactate production and L. 

pentosus viability. The addition of yeast extract improved the bacterial viability, but the amount of 

lactate produced was too low to produce any effect on S. cerevisiae viability. 

The absence of inhibitors in SSH and the higher inoculation level of L. pentosus were not sufficient 

to affect the ethanol production and S. cerevisiae viability. Therefore, SSH can be missing some 

essential nutrients for the bacterial strain. Besides, the initial sugar concentration of SSH may be 

too high for bacteria, affecting negatively its performance. The SSH medium contains 50 g sugars 

L-1, and thus L. pentosus may be inhibited by such high concentrations. Narendranath et al. [111] 

reported that the specific growth rates of Lactobacillus sp., namely L. pentosus, decreased with 

higher sugar content in liquid growth medium, and this was due to the osmotic stress exerted by 

the sugars on bacteria. Besides, pH and temperature are two factors that play a key role on 

Lactobacillus sp. performance. In fact, it is a possibility, since the fermentation medium and 

conditions (pH, temperature) were formulated to improve yeast performance and to mimic the 

composition of SSSL. The optimal temperature of Lactobacillus sp. is around 37ºC, while the 

optimum pH is about 6.5 [112]. However, all the fermentations were performed at 30ºC to mimic 

the industrial conditions. 

Therefore, in order to verify if L. pentosus could overtake S. cerevisiae, more favourable 

conditions for bacteria were chosen. Co-culture experiments inoculated at a ratio of yeast/bacteria 
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1:100 were performed using SSH without inhibitors at pH 6.5. The effect of the addition of yeast 

extract to the fermentation medium was also investigated (Figure 16).  

 

Figure 16. Cell viability during co-cultivation of S. cerevisiae TMB3500 and L. pentosus at a ratio 

of 1:100 in SSH without inhibitors, pH 6.5 in the absence (A) and presence (B) of yeast extract. 

Values showed are a representative profile of each fermentation. Symbols: S. cerevisiae CFU 

(llllll); L. pentosus CFU (    ); mannose (    ); glucose (    ); xylose (    ); galactose (    ); ethanol 

(llllll); lactate (    ).  

Interestingly, the change of pH led to an improvement of bacterial CFU, but L. pentosus was again 

unable to outcompete yeast (Figure 12). In the absence of yeast extract, S. cerevisiae viable cell 

number increased during the first 24 h, and then a slight decrease was verified. On the other 

hand, the bacterial CFU was kept approximately constant through the first 24 h of fermentation, 

decreasing afterwards. Overall, S. cerevisiae CFU was improved by 2.44 log units, while L. 

pentosus CFU decreased 0.53 log units. Sugar consumption was low in the first 10 h of 

fermentation, but after 24 h of fermentation all the hexose sugars were consumed. More than 16 

g ethanol L-1 were produced at a rate of 0.34 g L-1 h-1, while 0.7 g lactate L-1 were produced at a 

rate of 0.01 g L-1 h-1. In the end of fermentation, the ethanol and lactate yields were found to be 

0.40 g g consumed sugars-1 and 0.01 g g consumed sugars-1, respectively. 

In the presence of yeast extract, S. cerevisiae growth was even faster than in the absence of that 

nutrients source, while the viable cell number of the bacterial strain decreased during the first 24 

h of fermentation. However, L. pentosus CFU increased afterwards. In the end of fermentation, 

the CFU of yeast and bacterial strain was improved by 2.58 and 0.12 log units, respectively. 

Comparing with the previous experiment, a faster sugar consumption and an improved ethanol 

and lactate production were denoted. A maximum ethanol titer of about 19 g L-1 was achieved 

and the productivity was 0.39 g L-1 h-1. The ethanol yield was found to be 0.45 g g consumed 
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sugars-1. More than 1.3 g lactate L-1 were produced at a rate of 0.03 g L-1 h-1, and the lactate yield 

was 0.03 g g consumed sugars-1. 

These results strongly suggest that the pH and cell death (through the addition of yeast extract) 

are of great importance to understand the reasons triggering the bacterial contamination in 

ethanol plants, but more research is needed. To a better comprehension of all the studied effects, 

all the results obtained were compared (Section 4.2.4). 

4.2.4 Overall comparison – understanding the tested effects  

The summary of the results from all the experiments performed in this work is shown in Table 14. 

As mentioned before, the experiments with yeast and bacteria alone (ratio 1:0 and 0:1, 

respectively) in the presence and absence of yeast extract were set as a benchmark to compare 

with the co-culture experiments.  

During co-culture experiments, L. pentosus was never able to overcompete S. cerevisiae, since 

its sugar uptake was apparently slower than the one of yeast. Moreover, while the yeast was able 

to grow at high rates, the bacteria rapidly died in many trials. As a result, ethanol productivity was 

approximately constant during the experiments (~ 0.37 g L-1 h-1) and significantly higher than 

lactate productivity. The values of ethanol yield were also stable during co-culture trials and very 

close to the ones obtained when yeast was cultivated alone (~ 0.47 g g consumed sugars-1), 

which indicates that none of the tested conditions negatively affected alcoholic fermentation. 

Moreover, the lactate concentration levels reached during co-culture experiments (below 2.0 g L-

1) were probably too low to have a negative impact on the yeast. The maximum lactate yield and 

formation rate during co-cultures were obtained using SSH medium, pH 5.0, supplemented with 

yeast extract at a ratio 1:100 of yeast/bacteria, and equal to 0.05 ± 0.04 g g consumed sugars-1 

and 0.04 ± 0.03 g L-1 h-1, respectively. Since lactate was produced at a rate of 0.09 ± 0.00 g L-1 h-

1 with a yield of 0.78 ± 0.18 g g consumed sugars-1 in the control (bacteria alone in SSH with yeast 

extract), L. pentosus was clearly affected by the presence of S. cerevisiae.  
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During this work, various factors were tested in order to determine the main reasons of microbial 

contaminations occurring in ethanol plants. In general, the addition of yeast extract to the 

fermentation medium led to a better performance with both bacteria and yeast strains. This was 

especially denoted when L. pentosus was cultivated alone, since its viability was improved and 

the lactate production rate 9-fold higher. The yeast extract is a very rich source of nutrients, and 

composed by dead yeast cells, suggesting that could be a key factor for the occurrence of 

bacterial contamination [113]. However, this was not proved, since the bacteria was not able to 

outcompete the yeast during co-culture experiments. 

The effect of inhibitors was also investigated during the co-cultivation experiments, however, in 

their absence, S. cerevisiae growth was even faster, resulting in bacterial death. In the end of 

fermentations using medium without inhibitors, the yeast viability decreased since the fermentable 

sugars were depleted in the first hours. Besides, the effect of ratio yeast/bacteria was also studied. 

However, even at a ratio of yeast/bacteria 1:100, L. pentosus was unable to take this advantage 

to outcompete S. cerevisiae. Since none of the referred factors had a positive effect on bacterial 

CFU number, the effect of pH was also studied. When yeast extract was added to SSH without 

inhibitors at a favourable pH to L. pentosus (6.5), it could survive better, but could not outcompete 

yeast. Of all the studied factors, pH was apparently one of the most favourable for increased 

bacterial viability.  
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Chapter 5 

Conclusions 

 

The present work aimed to tackle two of the major challenges in bioethanol production from 

lignocellulosic feedstocks: (i) high tolerance of microorganisms to lignocellulose inhibitors, and (ii) 

microbial contamination avoidance. 

In the first study, a population of S. stipitis previously adapted to 60 % (v/v) of HSSL for 68 days 

in an evolutionary engineering approach was used, and its phenotypic stability in the absence of 

inhibitors during ten sequential transfers was investigated at single-clone level.  

During the screening trials performed in shake flasks containing 60 % (v/v) of HSSL, 10 isolated 

clones showed higher xylose and acetate uptake rates and lower ethanol productivities than the 

parental strain. The results showed that evolutionary engineering was an effective strategy to 

improve the resistance towards microbial inhibitors. The clone exhibiting higher xylose uptake rate 

(0.558 g L-1 h-1) was named isolate C4 and further characterised at bioreactor level.  

The effect of short-term adaptation on the fermentation performance of the isolate C4 was 

evaluated by its pre-cultivation in the presence or absence of 60 % (v/v) of HSSL. The uptake rates 

of glucose and xylose were similar under both conditions, but a higher acetate consumption rate 

(0.101 g L-1 h-1) and maximum ethanol concentration (4.51 g L-1) were achieved without pre-

adaptation step, suggesting that the long-term adaptation fully exploited the maximum capacity of 

the strain. 

In the second study, the mechanism responsible by L. pentosus contamination on ethanol plants 

was investigated.  

In the first phase of this project, cultivations using the yeast S. cerevisiae TMB3500 and L. 

pentosus, a microbial contaminant isolated from an ethanol facility, were performed in undiluted 

SSSL. However, none of the strains was able to grow or maintain its viability in the presence of 

such medium. Storage time and possible alteration of chemical compounds with inhibitory capacity 

were probably responsible by the observed non-growth. 

To overcome this challenge, a simulated synthetic hydrolysate medium was used and its 

composition was adjusted to mimic the sugar and inhibitors content of SSSL average composition. 
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To investigate the reason of microbial contamination in ethanol plants, the impact of different 

factors in bacterial and yeast viability during anaerobic fermentations were studied. These factors 

included: (i) the inoculation ratio of yeast/bacteria at the starting point of fermentation; (ii) the 

presence of yeast extract; (iii) the presence of lignocellulosic inhibitors, and (iv) optimal pH for 

yeast and bacteria. 

Different inoculation ratios of yeast/bacteria were tested, and no negative effect on yeast was 

detected after 48 h of fermentation. At the ratio of 1:100, despite delaying the ethanol production 

and yeast growth, L. pentosus could not outcompete yeast and its viability was completely lost, 

since its sugar uptake rate was apparently slow. This may indicate that L. pentosus will not be able 

to outcompete S. cerevisiae in conditions of excess of sugars; this can, for instance, be due to 

poor osmotolerance and/or limited availability of low affinity sugar transporters. It also suggests 

that low sugar levels may be necessary to observe contamination outbreaks, in case L. pentosus 

has more efficient high affinity sugar transporters than yeast. 

The presence of yeast extract did not have any significant effect on ethanol production and yeast 

viability when cultured alone. However, a great improvement on lactate production (9-fold higher), 

yield and L. pentosus viability was denoted under the same conditions. This suggests that yeast 

cell death can be one of the factors triggering bacterial contamination during ethanol fermentation. 

During the co-culture experiments, the addition of yeast extract to the fermentation medium had, 

in general, a positive effect in the performance of both strains, however, L. pentosus was unable 

to compete with S. cerevisiae due to low growth rate and lactate production rate. Despite the 

positive effects of yeast extract, the bacterial viability was decreased in almost all the experiments. 

The presence of inhibitors had, interestingly, a positive effect on bacterial viability. In fact, in their 

absence, yeast growth and ethanol formation was faster, resulting in a quicker bacterial death. 

When the pH of the medium was increased to a more favourable to bacteria, bacterial viability 

decreased slower, and therefore it was one of the factors leading to best results. However, as in 

all the experiments, L. pentosus did not outcompete S. cerevisiae. 

A better understanding of other possible effects responsible by microbial contamination is 

necessary to avoid such occurrence in ethanol plants.
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Chapter 6 

Future work 

 

Considering the evolutionary engineering study, the isolate C4 should be further characterised to 

investigate why its fermentation performance was improved if compared to that of parental strain 

S. stipitis. Lipidomics, proteomics, genomics and systems biology can be possible tools helping 

to explain such differences. From the results of bioinformatics, inverse metabolic engineering can 

be a useful technique to further improve the isolate C4.  

Besides, S. stipitis fermentations should be performed under microaerophilic conditions, which 

correspond to the optimum for ethanol production by this yeast. 

Regarding the microbial contamination study, research should be continued to understand why 

the spent sulphite liquor from softwoods was so toxic to S. cerevisiae TMB3500 and L. pentosus. 

Besides, anaerobic fermentations using new hydrolysate from the ethanol plant should be 

performed in order to investigate the effect of microbial contamination in real lignocellulosic 

hydrolysate. 

Considering the investigated effects of L. pentosus contamination in SSH medium, the bacteria 

should be characterised in terms of optimum pH, temperature range and resistance to ethanol 

and high sugars concentration. Afterwards, new co-culture experiments should be realised to 

investigate more factors that can be responsible for contamination outbreak, like the addition of 

essential bacterial nutrients or the effect of limiting sugar availability.   
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