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Resumo 

 

 

As respostas dos organismos aquáticos a alterações naturais, nomeadamente, 
alterações de salinidade, têm recebido pouca atenção, inversamente à 
preocupação que tem vindo a crescer em relação aos impactos da 
contaminação em populações marinhas bentónicas. De facto, a salinidade é 
um dos factores ambientais dominantes que mais afetam os bivalves 
marinhos, o que limita a sua distribuição espacial no ecossistema. As marés 
combinadas com entradas de água doce, de rios ou períodos de chuva longos 
e estações secas extremas, podem alterar drasticamente a salinidade da água, 
provocando alterações nas populações de bivalves bentónicos, 
nomeadamente intertidais. Além disso, a salinidade de um determinado 
ambiente irá restringir a distribuição espacial das espécies, o que é 
especialmente importante quando se avalia a propagação de uma espécie 
invasora num ambiente novo. A fim de entender como espécies nativas 
(Venerupis decussata e Venerupis corrugata) e invasoras (Venerupis 
phiippinarum) de molluscos lidam com as mudanças de salinidade, foram 
investigados parâmetros fisiológicos, bioquímicos e metablómicos. Os 
resultados obtidos mostraram que V. decussata e V. philippinarum 
apresentaram elevada mortalidade em salinidades baixas (0 e 7), mas toleram 
as salinidades mais altas (35 e 42). Por outro lado, V. corrugata apresentou 
elevadas taxas de mortalidade tanto em salinidades baixas (0 e 7) como em 
salinidades altas (35 e 42). A quantificação do teor de Na e K, revelou que ao 
longo do gradiente de salinidade, a V. decussata foi a espécie com maior 
capacidade de manter a homeostasia iónica. Os parâmetros bioquímicos 
também mostraram que V. decussata foi a espécie que melhor lidou com as 
mudanças de salinidade enquanto a V. corrugata foi a mais sensível. Além 
disso, os resultados obtidos mostraram que as ameijoas, sob condições 
adversas de salinidade, podem alterar os seus mecanismos bioquímicos, 
nomeadamente aumentando as suas defesas antioxidantes, para lidar com um 
maior stress oxidativo resultante das condições de hipo e hipersalinidade. 
Entre os parâmetros fisiológicos e bioquímicos analisados (glicogénio, glucose, 
proteinas, níveis de peroxidação lípidica (LPO), atividade de enzimas 
antioxidantes; glutationa total, reduzida e oxidada), LPO,  superoxide 
dismutase (SOD) e glutathiona S-transferase (GST) mostraram ser 
biomarcadores úteis para avaliar os impactos de salinidade em bivalves. Os 
efeitos das alterações de salinidade no perfil metabólico das três espécies 
foram também estudados através de Ressonância Magnética Nuclear de 

1
H 

(RMN). A análise multivariada dos espectros de RMN permitiu a observação 
de alterações em relação à exposição de ameijoas a diferentes concentrações 
de salinidade. Quando expostos a baixas salinidades, as reservas energéticas 
destes organismos podem ser esgotadas, aumentando o desequilíbrio 
osmótico, afetando o desempenho metabólico e aumentando o stress 
oxidativo. V. corrugata mostrou ser a amêijoa mais sensível a mudanças de 
salinidade. O intervalo de salinidades entre 21 e 28 foi o ideal para V. 
decussata e V. philippinarum e a salinidade 21 foi a ideal para V. corrugata. 
Este estudo mostrou que as mudanças de salinidade têm impactos diferentes 
em espécies nativas e invasoras. 
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abstract 

 

Unlike the concern that has been growing in relation to the impacts of 
contamination in marine benthic populations, the responses of aquatic 
organisms to natural alterations, namely changes in salinity, have received little 
attention. In fact, salinity is one of the dominant environmental factors that most 
affect marine bivalves, limiting their spatial distribution in the environment. Tide 
combined with fresh water inputs, from rivers or heavy rainy periods, and 
extreme dry seasons can dramatically alter the salinity of water, causing 
alterations in the benthic populations, namely intertidal bivalves. Furthermore, 
salinity of a given environment will restrict the spatial distribution of the species, 
which is especially important when assessing the spread of an invasive species 
into a new environment. In order to understand how native (Venerupis 
decussata and Venerupis corrugata) and invasive (Venerupis philippinarum) 
clam species cope with salinity changes, physiological, biochemical and 
metabolomic patterns were investigated. The results obtained showed that V. 
decussata and V. philippinarum presented high mortality at low (0 and 7) but 
tolerate high (35 and 42) salinities. On the other hand, V. corrugata presented 
high mortality rates both at low (0 and 7) and high salinities (35 and 42). The 
quantification of Na and K content revealed that, along the salinity gradient, V. 
decussata was the species with higher ability to maintain the ionic 
homeostasis. The biochemical parameters also showed that V. decussata was 
the clam that best cope with salinity changes and V. corrugata was the most 
sensitive. Furthermore, the results obtained showed that clams under salinity 
stressful conditions can alter their biochemical mechanisms, such as increasing 
their antioxidant defences, to cope with the higher oxidative stress resulting 
from hypo and hypersaline conditions. Among the physiological and 
biochemical parameters analysed (glycogen, glucose and protein content; lipid 
peroxidation (LPO) levels, antioxidant enzymes activity; total, reduced and 
oxidized glutathione), superoxide dismutase (SOD), LPO and glutathione S-
transferase (GST) showed to be useful biomarkers to assess salinity impacts in 
clams. The effects of salinity changes in the metabolic profile of the three 
species were also studied using 

1
H Nuclear Magnetic Resonance (NMR) 

spectroscopy of clam extracts. Multivariate analysis of the NMR spectra 
enabled metabolite changes to be observed in relation to clams exposure to 
different salinity concentrations. When exposed to low salinities, energy 
reserves of clams may be exhausted, increasing the osmotic imbalance, 
affecting the metabolic performance and increasing the oxidative stress. V. 
corrugata showed to be the most sensitive clam to salinity changes. The 
optimal salinity for V. decussata and V. philippinarum was between 21 and 28 
and for V. corrugata was salinity 21. This study showed that changes in salinity 
have different impacts in native and invasive species 
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1.1. Aquatic Systems under global changes 

 

1.1.1. Climate changes: salinity alterations 

 

The alterations on climate are a global problem and have been studied in the last few decades 

(Hull and Tortoriello, 1979; Beare and Heaney, 2002; Milly et al., 2002; Booij, 2005; Kay et al., 

2006; Solomon et al., 2007). Behind these alterations is the increase of greenhouse gas 

concentrations provoked by anthropogenic activities (Houghton et al., 1996; Beare and Heaney, 

2002; Karl and Trenberth, 2003; Booij, 2005; Solomon et al., 2007). The consequences of these 

events may occur at several levels, as described by the International Panel on Climate Change 

(IPCC, 2007). The increase of sea level, evapotranspiration, runoff and river discharge, changes in 

ocean circulation, extreme precipitation, changes in sea surface temperature, wind speed and 

even changes in nutrient supply and distribution of plankton are some of the changes predicted 

by IPCC (2002; 2008). IPCC also predicted that global climate changes will occur in the next 

hundred years and the main alterations in marine environment include water acidification and 

changes in water salinity (Booij, 2005; Kay et al., 2006). It is expected that the increase of mean 

sea level will intensify flooding and provoke flood of low-lying coastal areas, erosion of lagoon 

sand barriers and invasion of saltwater in estuaries and aquifers, which will cause a freshwater 

lack and loss of natural ecosystems in these environments (Nicholls et al., 2007; FitzGerald et al., 

2008; Nicholls, 2010). Thus, due to erosion of barriers in lagoon systems and intensification of 

flooding, it is expected the increase of salinity in estuaries (Hull and Tortoriello, 1979; Beare and 

Heaney, 2002). In fact, estuaries are particularly affected by climate changes, especially by salinity 

fluctuations, due to tidal inputs and mainly due to long periods of extreme precipitation, 

decreasing the salinity of the water, and dry and hot seasons increasing the salt concentration. 

Thus the organisms that live in these ecosystems, periodically experience hypo and hypersaline 

stresses.  

In a warmer world dominated by human influences, longer periods of precipitation and more 

intense variations of salinity are predicted to become seriously frequent. These events will 

certainly affect the organisms living in ecosystems where the salinity fluctuations are common. 

Due to these changes, it is very important and extremely urgent to study the effects of salinity 

fluctuations in aquatic organisms, especially those living in estuaries and lagoon systems, like 

bivalves.  
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The impact of climate change on salinity shifts is studied since 1979 (Hull and Tortoriello, 

1979) and since then, other studies have been performed in this field of work and it is known that 

salinity profoundly affects chemical, physical and biological dynamics of estuaries (Gibson and 

Najjar, 2000). Johnson et al. (1991) affirmed that the effect on density, circulation and 

stratification is the most important physical consequence of salinity. Furthermore, biological 

dynamics are affected, since salt concentrations in a transitional water system affect the density 

and occurrence of populations in ecological niches according to their salinity tolerance (Attrill and 

Rundle, 2002). Nicholls et al. (2007) affirmed that salt concentration alterations, induced by 

climate change, affect the ecological equilibrium of transitional water systems, forcing organisms 

living in these very productive environments, to readapt in relation of their distribution. Velasco 

et al. (2006) investigated the biomass of primary producers in a hypersaline stream and concluded 

that the main factor determining the composition and structure of macroinvertebrate 

communities in a protected area in Spain (Rambla Salada) was salinity. Furthermore, it has been 

shown that salinity alterations disrupts the organisms affecting their distribution, survival, growth 

and reproduction (Hall and Burns, 2002; Gonçalves et al., 2007; Brucet et al., 2010). The exposure 

of larvae states to salinity changes have influence in the survival capacity, growth and 

development of organisms (Giménez and Anger, 2001; Giménez and Torres, 2002; Giménez, 

2003). Giménez and Anger (2001) discovered that higher losses of carbon and nitrogen at lower 

(15 and 20) than at higher (32) salinities leads to a loss of biomass during embryogenesis of the 

estuarine crab Chasmagnathus granulata and concluded that salinity changes may have effects in 

the survival of early larvae in the field. Giménez and Torres (2002) also studied the influence of 

salinity in C. granulata during embryonic development and found that a group of physiological 

and development processes and variability in biomass are affected in embryos when exposed to a 

salinity stress, which may influence the survival and growth in advanced stages of its life cycle. 

When assessing the spread of an invasive species into a new environment salinity is one of 

the major factors limiting the spatial distribution of marine species (Widdows and Shick, 1985; 

Berger and Kharazova, 1997). Thus, the study of interactions between the alien and native marine 

species under stressful conditions, namely salinity shifts, has become a focus of interest, 

especially when it comes to economically relevant species.  
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1.1.2. Alien species 

 

One of the major threats to biological diversity is now acknowledged to be biological invasions 

caused by alien species, which has been recognized as an important element of global change 

(Pravoni et al., 2006). Elliot (2003) describes that there are many aspects in which introduced 

marine organisms can be regarded as being no different from chemical pollutants and encourages 

the use of the term biological pollution. 

Exotic, alien, or allochthonous species are defined as species that are introduced out of their 

native habitat by the man (intentionally or accidentally) or naturally (Ruiz et al., 1997; Occhipinti-

Ambrogi and Savini, 2003). When this introduction become a threat to biodiversity, economy 

or/and public health, the species are identified as invasive.  

Marine species are probably the easiest group of animals to transport to a new environment. 

Since the beginning of ship traveling organisms have been accidentally transported on ballast of 

the ships, making the marine invasions historical (Bax et al., 2003). Navigation, aquaculture, 

channels building, some recreation activities, discharges of ballast water, tourism and sportive 

fishery represent some of the vectors that contribute to the introduction of exotic marine 

organisms (Leppäkoski, 1991; Bax et al., 2003; Ruiz et al., 1997). Thousands of freshwater, 

estuarine and marine species have been established far away from their native regions (Elton, 

1958; Carlton and Geller, 1993). 

 

Some of the exotic species adapt to the new habitat becoming part of the ecosystem, 

coexisting with the native species. However, some non-native species just compete with the 

native becoming invasive if they have more favourable characteristics (Bax et al., 2003). Like 

Charles Darwin proposed, natural selection will command the most adapted species to live in 

certain habitat and under certain conditions. For example, the native species can lose their priori 

advantage in an environment where they were well-adapted if anthropogenic alterations rapidly 

alter the environmental conditions and they had to compete with exotic species (Pravoni et al., 

2006). This means that if the environmental conditions suddenly changed, the exotic species will 

compete with the native because the former are as well or better adapted to the new conditions 

(Byers, 2002). Invasions can be considered threats for native species. The alteration on ecosystem 

properties and consequent influence in other species include reduction of food availability, 

changes on concentrations of phytoplankton and zooplankton; change in flow of nutrients, 

influencing the biogeochemical cycle; quality of physical resources, including free space, 
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temperature and light (Gutiérrez et al., 2003; Crooks, 2002).  The invasions also have impacts on 

economic and social issues, affecting the activities involved on marine environments – fisheries, 

aquaculture, tourism activities and recreational activities (Bax et al., 2003). Invasive species are 

not only directly involved in social impacts, but they have also an indirect responsibility on the 

decrease of local people’s well-being, degrading and reducing the quality of their natural 

environment.  

On the other hand, in some cases, alien species could also be positive. It can be one reason to 

create new economic activities and consequently, increase workstations related to this activities 

and others like project management of exotic marine species (Bax et al., 2003). Positive effects of 

invasion of exotic species also include the opportunity of native species to escape to predation, 

taking advantage of shells of living molluscs that provide a structural barrier. It can also create 

other micro-habitats on the empty spaces between shells and protect other organisms from 

waves, currents, temperature and others stresses (Gutiérrez et al., 2003).  

The most part of marine exotic species are found in the tidal and subtidal zones (Bax et al., 

2003). Streftaris et al. (2005), showed that zoobenthos represents about 57 % of the non-

indigenous species in European seas, being the dominant group of organisms invading new 

habitats. The same study demonstrated that the Mollusca phylum represents 23 % of all alien 

species in seas of Europe.  

 

Bivalves are one of the examples of invasion in oceans, colonising several aquatic ecosystems 

with particularly ecological and economic impacts (Sousa et al., 2009). Some invasions of bivalves 

are positive for invertebrate density and species richness, but on the other hand, there are cases 

of bivalves invasions associated with decreases, or even extinction, of some species (Solidoro et 

al., 2000; Pravoni et al., 2006; Sousa et al., 2009). 

 

1.2. Bivalves as bioindicators 

 

Bivalves are characterised by the presence of two shells or valves, articulated in its dorsal 

portion by a corneal ligament. Their shells are constituted by one layer with protein composition 

and two layers composed by calcium carbonate (CaCO3) (Gosling, 2003; González, 2012).  They 

filter the water catching organic matter and phytoplankton as food. In species that live buried in 

sediment, feeding and breathing are performed through two siphons (one inhalant and other 

exhalant). Bivalves can be found in fresh or seawater, and their survival capacity and life quality 
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depends on environmental (abiotic) and biological (biotic) factors. The three species under 

analysis in this study are gonochoric (with separated sexes in different organisms), although 

hermaphroditism is rarely detected (González, 2012). In bivalves, fertilization occurs externally 

after females and males discharge the gametes in water and especially during de summer 

(González, 2012). When gametes are fertilized, larval development initiates with cleavage of the 

embryo yielding a trochophore pyriform, an invertebrate free-swimming larva. The straight-

hinged larva or Dlarva stage (D-stage, the second larval form) presents already two valves 

protecting a complete digestive system, and the velum, a locomotor and feeding organ. During 

this stage while the larvae swim, feeding and growing, a protuberance in shell near the hinge, 

called umbo, develops until larvae approach maturity. A foot and gills are formed in the maturity 

stage. Metamorphosis occurs when the branchia is developed and the velum is lost. In this phase 

of their life cycle, clams change to a sedentary benthic life style. Thanks to the foot, postlarvae 

organisms (with similar appearance to adults) bury in sediment and rapidly become adults 

(Gosling, 2003; González, 2012).  

The sessile condition and feeding habits (filtration), put bivalves constantly subjected to 

environmental stressful conditions, such as fluctuations in water temperature, oxygen 

concentrations and salinity, predators, alterations on food availability and the quality of the 

surrounding environment (Almeida et al., 2007). Salinity, temperature, dissolved oxygen, light and 

pH are some of the abiotic factors that influence the biological processes of bivalves and their 

activity and the presence of parasites, competitors and quantity of food available represent the 

potential biotic threats (Berger and Kharazova, 1997).  

 

1.2.1. Responses of bivalves to salinity alterations 

 

Bivalves, such as many other organisms, have the ability to adapt themselves to different 

alterations in the surrounding environment, based on regulating processes, which maintain 

physiological homeostasis of individuals (Manduzio et al., 2005). These organisms are examples of 

benthic species and have been considered good aquatic bioindicators for having a wide 

geographical distribution, tolerance to several adverse conditions, great capacity of 

bioaccumulation, sedentary behaviour and single sampling (Pruell et al., 1986; Usero et al., 1997; 

Gómez-Ariza et al., 2000; Reid et al., 2003; Luedeking and Koehler, 2004; Albentosa et al., 2007; 

Liu et al., 2011;  Kamel et al., 2012; Antunes et al., 2013; McEneff et al., 2014). 
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Because molluscs bivalves are filterers and due to their habitat characteristics and functional 

morphology, these organisms become a “mirror” of the environment. The analysis of several 

organic parts of bivalves, allows to obtain indicators of the condition of sediment and water 

column where they inhabit. Their bioaccumulation action, as the capacity of concentrating many 

elements existing in the environment (e.g. metals or organic compounds), make these organisms 

very important indicators of pollution levels in their ecosystem.  

Typical responses of aquatic organisms to salinity changes include, besides mortality, 

biochemical, physiological and metabolic responses and the reduction of feeding activity and 

growth rates (Shumway, 1977a, 1977b; Navarro, 1988; Guerin and Stickle, 1992; Matozzo et al., 

2007; Carregosa et al., 2014a). In particular, marine organisms living in estuaries are subjected to 

tidal and rain periods, causing short-term and long-term changes in salt concentrations. These 

events force these organisms to appeal to physiological mechanisms to be able to survive under 

these stress conditions (Navarro and Gonzalez, 1998).  

The abiotic factors have consequences in the bivalves accumulation capacity, since it may 

limit the filtration rate. Thus, the monitoring of the bivalves’ health is an important indicator of 

microbiological and chemical quality of their production areas. Since bivalves are among 

organisms that are highly influenced by salinity fluctuations, because they are mostly estuarine or 

near shore nature, it is important to understand the implications of such alterations on these 

organisms. 

 

Bivalves may immediately close their valves when the surrounding salinity concentration 

changes as a mechanism of defence against osmotic stress (Kim et al., 2001; Gosling, 2003). 

Akberali (1978) and Elston et al. (2003) demonstrated, respectively, that Scrobicularia plana and 

Venerupis philippinarum are able to close their valves when exposed to low salinities so that they 

can resist to this osmotic stress. Kim et al. (2001) suggested that valves closure in V. philippinarum 

when it is exposed to low salinities (5, 10, 15 and 20), resulting into a reduction of Oxygen 

Consumption Rate (OCR), and respiration rate.   

Navarro (1988) showed that when the mussel Choromytilus chorus was exposed to a range of 

salinities (15, 18, 24 and 30), low feeding activity and high metabolic rate at lower salinities, 

promoted a decrease growth efficiency. Similar results were found by Navarro and Gonzalez 

(1998). These authors exposed the scallop Argopecten purpuratus to different salinity 

concentrations (18, 21, 24, 27 and 30) and concluded that its scope for growth was negatively 

affected by lower salinities (18 to 24) due to low feeding activity, loss of energy in excretion and 
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respiration activity, ingestion and absorption rates. Long periods of exposure to low salinity have 

important effects on the performance and osmoregulatory mechanisms, inducing a significant 

decrease of the ingestion and scope for growth rates of Chlamys opercularis and Patinopecten 

caurinus (Shumway, 1977b; Bernard, 1983). As described by Sarà et al. (2008), the scope for 

growth of the Brachidontes pharaonis is negatively affected by low salinity (15) in a range of 

salinities from 37 to 15. 

Since water is considered the most important molecule of life, its internal loss on cells is 

certainly a threat to organisms (Yancey, 2005) and cope with this changes is extremely important 

for survival of organisms exposed to such alterations. Osmoregulation is one of the protection 

mechanisms, and perhaps the most effective one, working for survival of marine organisms under 

salinity alterations (Shumway, 1977a; Berger and Kharazova, 1997). Normally, osmoregulation in a 

new environment, namely with different salt concentration, is performed by inorganic cations, 

such as Na, Cl, and K (Evans et al., 2005; Bianchini et al., 2008). However, osmoregulation 

performed by inorganic cations represents a less energy costly mechanism than the one regulated 

by organic compounds (Carregosa et al., 2014a). Additionally, major osmotic components in cells 

of multicellular organisms are organic osmolytes, although the extracellular fluids are mostly 

composed by inorganic compounds, such as NaCl (Yancey, 2005). Osmoregulation achieved by 

organic molecules, include the functioning of osmolytes, is used by organisms to maintain cell 

volume when they are under osmolarity stress (Yancey, 2005). Organic osmolytes have unique 

properties such as protecting metabolic reactions and counteracting the destabilizing forces on 

macromolecules, which confers them an important role on the prevention of cellular damage 

(Carregosa et al., 2014a). 

Osmoconformers are organisms that adapt their fluids osmolarity according to the external 

environment. This type of organisms are most commonly found in the oceans and include 

vertebrates and some arthropods (Yancey, 2005). Whereas some osmoregulators in oceans 

(sharks, hagfishes, skates, fishes…) have regulator organs, namely gills and kidneys, which 

maintain the osmolarity of their internal body fluids, avoiding in general, the use of organic 

compounds, osmoconformers need these molecules to regulate their metabolism and match their 

body osmolarity to the surrounding environment. Organic osmolytes include, among others, small 

carbohydrates like sugars and amino acids (for example, glycine, proline, taurine) (Yancey et al., 

1982; 2001). These compounds have a very diffuse occurrence. While some organic osmolytes, 

such as glycine and betaine, are found in every kingdoms of life, others like taurine is more 

common in marine organisms and in some mammalian organs (Yancey, 2005). 



 
 

  Introduction 

9 
 

 

Aquatic organisms under osmotic pressure can also respond to these adverse conditions with 

oxidative stress. The study of different stages related to this mechanism can give relevant 

information about their physiological status. Oxygen plays an important role in the species 

diversification and in their distribution on the ecosystems (Manduzio et al., 2005). Many biological 

reactions and processes have oxygen as base, making this molecule essential to aerobic 

organisms, but it can also be dangerous due to its great oxidizing capacities (Abele, 2000; 

Manduzio et al., 2005).  

Reactive Oxygen Species (ROS), atoms or molecules that are extremely unstable and 

potentially reactive (Manduzio et al., 2005; Almeida et al., 2007), are generated by all the 

reactions involving oxygen consumption (Abele, 2000). Organisms rely on a respiratory chain and 

enzymatic systems to use oxygen, but they also need some mechanisms to deal or eliminate the 

toxic effects of oxygen (Ďuračková, 2008). When this mechanisms are not balanced meaning that 

preference is given to the formation of oxidants, allowing the generation of reactive metabolites 

of oxygen and nitrogen (ROS and RNS, Reactive Nitrogen Species), oxidative stress can be 

established, leading to oxidation of key cell components like proteins, fatty acids and DNA (Sies, 

1997; Hayes et al., 2004; Manduzio et al., 2005; Wakamatsu et al., 2008; Niki, 2012; Antunes et 

al., 2013). Oxidants are also produced as a result of aerobic metabolism, being a common 

outcome during the development of natural physiological processes in cell, but in adverse 

conditions, it can be produced at higher levels (Sies, 1997), forcing the cell to fight against this 

uncontrolled production of oxidants to avoid cell damage (Storey, 1996). Superoxide anion radical 

(O2•ˉ), hydrogen peroxide (H2O2) and hydroxyl radical (•HO) formation are intermediate steps for 

oxygen reduction (Sies, 1997; Griendling and FitzGerald, 2003). Free radicals become toxic to the 

cell when the protective mechanisms fail, leading to a damage on molecules, cells, organs and 

even to death of the organisms. Damages in mitochondria caused by superoxide, can lead to 

apoptosis – cellular suicide (Abele, 2002). One way of interception of toxic free radicals is 

performed by enzymatic antioxidants. Superoxide dismutases, catalases and glutathione 

peroxidases are the main classes of antioxidant enzymes. Specialized antioxidant defences pass 

through catalase (CAT), that detoxificate H2O2, superoxide dismutase (SOD), for decomposition of 

O2•ˉ, oxidized glutathione (GSSG), glutathione S-transferase (GST) (Sies, 1997; Griendling and 

FitzGerald, 2003). 

 

1.2.2. Tested species 
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The clams Venerupis decussata, Venerupis corrugata and Venerupis philippinarum were used 

in the present study. These species belong to Animalia kingdom, Mollusca phylum, Bivalvia class, 

Veneroida order, Veneridae family, Venerupis genus (ITIS report). Several studies demonstrated 

that these species are found worl-wide (Flassch and Leborgne, 1992; Usero et al., 1997; Allam et 

al., 2000; Elston et al., 2003; Pravoni et al., 2006; Delgado and Pérez-Camacho, 2007; Bebianno 

and Barreira, 2009; Dang et al., 2010; Figueira and Freitas, 2013). 

 
 

Venerupis decussata (Linnaeus, 1758) (Figure 1C), formerly known as Ruditapes decussatus, 

also known as grooved carpet shell or European clam (Usero et al., 1997) is characterized by its 

yellowish colour with brown stains, radial and concentric ridges. It is an euryhaline species that 

lives in sheltered areas of the coast, bays, estuaries and river mouths. This bivalve lives buried in 

sediment up to 12 cm. Feeding and breathing are performed by two siphons separated along its 

whole length. The fertilization of this species occurs in water, where females lay their oocytes and 

males deposit the sperm, since they have separated sexes.  

V. decussata is native from Europe and it is distributed along Atlantic coast from Norway to 

Congo, English Channel, Mediterranean Sea and in Red Sea (Parache, 1982; Gosling, 2002). This 

species is mainly produced in France, Spain, Portugal and in the Mediterranean basin (Schuller, 

1998; FAO 2011). The European clam has a great economic value and a consequent high 

commercial value, representing an important resource (Matias et al., 2009; 2013). In Portugal, this 

species is hardly produced and harvested, representing a large portion of the aquaculture 

production (27 % in 2009; DGPA, 2011), being the Ria de Aveiro one of the main production areas 

(Matias et al., 2009; 2013).  

 

Figure 1.  Clam species: A - Venerupis corrugata; B - Venerupis philippinarum; C - Venerupis decussata. 
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Venerupis philippinarum (Adams & Reeve, 1850) (Figure 1B), formerly known as Ruditapes 

philippinarum, is characterised by a solid, equivalve and inequilateral shell, with many variations 

in colour and pattern, generally brownish. This species, also known as Japanese carpet shell or 

Manila clam, lives buried in sediment approximately at 4 cm to surface in intertidal and subtidal 

zones.  

The manila clam is native from Indo-Pacific regions (Gosling 2003), being the wild populations 

found in Asiatic coast (Philippines, South and East China Seas, Yellow Sea, Sea of Japan, Sea of 

Okhotsk and around Southern Kuril Islands) (FAO). 

Manila clam was accidentally introduced in east part of Pacific coast, North America, in the 

beginning of 1930s, imported together with Pacific oysters, Crassostera gigas (Flassch and 

Leborgne, 1992). Late, due to the unstable yields and overfishing of European V. decussata, force 

the intencional import of V. philippinarum with aquaculture proposes (Breber, 1985; Pellizzato et 

al., 1989; Gosling, 2003). At the beginning of 1970s this species was introduced in France (Bodoy 

et al., 1981; Flassch and Leborgne, 1992; Gosling 2002) and rapidly spread along European coastal 

systems, becoming in some places the main contributor to the local fisheries. Because this species 

showed to have a faster growing that V. decussata, other countries, like Ireland, Italy, England, 

Spain (Flassch and Leborgne, 1992; ICES, 2011) also imported it into European waters following 

the large aquaculture hatchery. Thus, presently, V. philippinarum is one of the mollusc species 

that have been able to settle far away from its natural habitat (Melià and Gatto, 2005; Melià et 

al., 2004) being one of the most exploited bivalves species (Usero et al., 1997; Allam et al., 2000; 

Pravoni et al., 2006; Dang et al., 2010; Figueira et al., 2012; Moschino et al., 2012; Figueira and 

Freitas, 2013; FAO, 2014a).  

The great capacity of V. philippinarum to introduce itself into a new environment, coupled 

with its fast growth give to this species a high commercial value (Usero et al., 1997), which have 

been changed sharply the exploitation of living resources in aquatic ecosystems, with Manila clam 

representing 2.36 million tonnes of produced organisms in 2002 (FAO, 2010).  

It is unknown when and how Manila clam was introduced in Portugal, but it was registered for 

the first time in the Tagus estuary in 2000, in extensive intertidal and shallow areas (ICES, 2011). 

At the same time that abundance of V. philippinarum increased, it was noticed a massive decrease 

in abundance of the native V. decussata (Pravoni et al., 2006; ICES, 2011), living in sympatric in 

same places. This species is the most commonly cultured clam species (Clam fisheries and 

Aquaculture), being the fourth species more produced in world in 2011 with 3.68 million tonnes 

among fishes, crustaceans, molluscs and others (FAO, 2013). Some authors have been described 
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V. philippinarum as being more capable to survive to physical, environmental and anthropogenic 

stressors than other species, which make this species able to take the ecological niche of native 

species in the locals where V. philippinarum was introduced (Solidoro et al., 2000; Pravoni et al., 

2006). 

 

Venerupis corrugata (Gmelin, 1791) (Figure 1A), formerly known as Venerupis pullastra, is 

also known as pullet carpet shell (and), present an equivalve and not equilateral shell and its 

coloration can vary from cream to light brown, grey or yellowish white, with darker bands 

representing the growth stages.  Unlike V. decussata and V. philippinarum, the siphons of this 

species are joined along their entire length, except in the end zone. The outside of the shell, 

periostracum, is fine and flat with concentric and irregular ridges usually more pronounced in the 

posterior area and radial ridges very fine. It leaves buried in sand and silty mud, up to 5 cm and it 

can be found from the low tide mark to nearly 40 m of depth of water column.  

This species is distributed from the North of Norway to Atlantic coast of Morocco undergoing 

by Iberian Peninsula and the majority of the harvesting of this species occurs in Portugal, Spain, 

France and Italy (FAO, 2010). The intensive capture of this species started in 1926 (Anacleto et al., 

2013; FAO, 2014c). 

 

According to FAO, in 2009 the production of fishes and molluscs in Portugal represented 

almost 100 % of total aquaculture production. According the last update information (INE, 2013), 

42 % of the total shellfish production represents the national annual production of clams in 

Portugal, being extremely important to the national socioeconomic framework, since it implies, 

directly or indirectly, thousands of employees. 

The organisms included in Bivalvia phylum are economically relevant in Portugal, representing 

a significant part of national fishery (IPIMAR, 2008). These organisms are part of Portuguese 

cuisine, being much appreciated by their consumers especially in summer (Nunes and Campos, 

2008). 
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1.3. Objectives 

 

Unexpected and irreversible consequences are expected for the native communities when 

different stressors act together, namely biological invasions and salinity alterations (Occhipinti-

Ambrogi and Savani, 2003; Whitfield et al., 2007). Indeed, salinity is one of the most relevant 

environmental factors that have impact in marine organisms, restricting their spatial distribution 

(Widdows and Shick, 1985; Berger and Kharazova, 1997). Thus, salinity changes in aquatic systems 

are especially important when assessing the spread of an invasive species in a new environment. 

For this reason, the present work was conducted with the aim to investigate the influence of 

salinity alterations in native (V. decussata and Venerupis corrugata) and invasive (Venerupis 

philippinarum) clam species. The three clam species, collected at the Ria de Aveiro (where they 

live in sympatry), were exposed to a range of salinities under controlled laboratory conditions. To 

assess the salinity effects on these species, ionic content, physiological, biochemical and 

metabolic alterations were investigated. Powerful tools, such as RMN, were used to assess the 

biological impacts of salinity changes on these three Veneridae clams aiming to identify the 

mechanisms activated as response to this osmotic stress. 
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2.1. Study area 

 

In the present study, clams (Venerupis philippinarum, Venerupis decussata and Venerupis 

corrugata) were collected at the Mira Channel in the Ria de Aveiro (Figure 2), which is considered 

the less impacted channel in this system (Castro et al., 2006; Freitas et al., 2014). Ria de Aveiro is a 

shallow coastal lagoon in Northwest of Portugal, representing one of the most notable 

geographical accidents of the Portuguese coast. This lagoon system, comprises a complex system 

of a longitudinal channel and several ramifications (Lopes et al., 2007) and is about 45 km long 

(NNE-SSW) and 8.5 km wide. The area covered with water at high tide is approximately 47 km2 

and at low tide is about 43 km2 (Barroso et al., 2000).  

Figure 2. Study area: Ria de Aveiro 
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The Ria de Aveiro presents significant intertidal zones (mud flats and salt marshes) and it is 

connected to the Atlantic Ocean only through a narrow channel with 1.3 km of length, 350 m 

width and 20 m of depth (Dias et al., 2000). The water exchange is performed through the 

navigation channel, by the tidal inputs (Dias et al., 1999) and there are many rivers and streams 

that flow into Ria de Aveiro, being Rio Vouga, Antuã and Fontão (on North) and Rio Boco (on 

South) the principal fluxes (Rebelo and Pombo, 2001).  

It is notorious the seasonal and spatial salinity variation in the Ria de Aveiro (Dias et al., 2011). 

The adjacent rivers, periods of rain, hot and dry seasons and sea water inputs are the agents 

responsible for the wide range of salinities (0-36) in this ecosystem. However, the water 

circulation is dominated by the sea water penetrating the Ria de Aveiro (70 x 106 m3 in spring 

tides) comparatively with the input of freshwater (1.8 x 106 m3 per tidal circle) (Moreira et al., 

1993). In terms of seasonal variation, during the winter and at the beginning of Spring the lowest 

salinities are found, while the highest values of salinity are registered during late Spring and 

Summer (Dias et al., 2011). As a consequence of the spatial gradient of salinity (from about 0 at 

the freshwater discharges from the tributaries, and about 36 at the connection with sea), this 

lagoon system represents a habitat for many different species. Here, like in all marine habitats, 

the benthic community distribution (including the species used in this research) is strongly 

influenced by the hydrodynamics and salinity gradient (Rodrigues et al., 2011), which is one of the 

most important factor for spatial distribution of the species. 

 

2.2. Sampling procedure 

 

In the present study, clams were collected from a subtidal area. Although the three species 

live in sympatry in this lagoon, they may not co-existe in the same site. Considering this, the 

sampling area was selected taking into account the co-existence of the 3 species to ensure that 

they were under the same conditions. A total of approximately 200 organisms were collected in 

the sampling site and at same time (October of 2012). In order to minimize the effect of body size 

on biochemical and physiological responses to salinity changes, organisms of similar size were 

collected. The harvest was carried out by professional divers (Figure 3). The species were 

confirmed and brushed carefully on board to remove fine sediments and transported to the 

laboratory in ice-cold plastic containers. 
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A sample of sediment from the sampling site was collected using a corer with 20 cm diameter. 

The sediment was transported in containers with ice (0 °C) and in the laboratory it was preserved 

at -20 °C until further analysis. These sediments were used for grain size analysis and organic 

matter content determination (total volatile solids). At the sampling site, redox potential (Eh), pH, 

salinity and temperature were measured at sediment surface with specific probes. 

 

 
 

2.3. Laboratory procedures 

 

After clams collection, 63 organisms of each species were weighted and measured (width and 

length) in laboratory (Figure 4).  

To reduce the content in potential pathogenic microorganisms, organic and inorganic 

contaminants, and to provide an adaptation period to the laboratory conditions, clams were 

acclimated for 48 h, under continuous aeration (Freitas et al., 2012b), by placing organisms in 

plastic tanks with artificial seawater (salinity 28)). According to previous studies (Freitas et al., 

2012b), the salinity of 28 was selected as representing control conditions, resembling the natural 

conditions of clams in their natural habitat.  

 

Figure 3. Harvesting the organisms. 

Figure 4. Measurement (A) and Weight (B) of organisms. 
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After acclimation, the organisms were exposed during 144 hours to salinity assays (Elston et 

al., 2003), consisting of the exposure of 9 organisms/salinity level (3 replicates per level, 3 

individuals/replicate). The salinities used were: 0, 7, 14, 21, 28, 35 and 42 (Figure 5). It is 

important to note that salinity is considered to be dimensionless, being defined by UNESCO 

Practical Salinity Scale of 1978 (PSS78) as a conductivity ratio (NASA, 2010).  

A plastic container with 1 L of water was used for each replicate. Water was prepared with 

commercial salt (Tropical Marin – sea salt, the pharmaceutical grade sea salt especially for 

modern reef aquaria). A temperature of 18 ± 1 °C was maintained during acclimation and 

experimental periods, each container was maintained under continuous aeration and the 

photoperiod was fixed to 12 h light and 12 h dark. During the experiment, the water of each 

container was renewed every other day and dead organisms were removed from the containers 

whenever the water was changed. Organisms were considered dead when their shells gaped and 

failed to shut again after external stimulus. At the end of the experiment, surviving organisms 

were frozen at -80 °C for further analysis. 

  

 

  

Figure 5. Experimental design for clams exposure to different salinities (0, 7, 14, 21, 28, 35 and 42). 
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2.3.1. Sediments grain size and Organic matter content 

 

To determine sediment grain size of the sampling site, the procedure described by Quintino et 

al. (1989) was followed. The sediment was weighed (approximately 120 g), washed with 

destilated water and the chemical destruction of organic matter was performed with successive 

increasing concentrations of hydrogen peroxide (H2O2): 30, 60 and 120 volumes (Figure 6A). After 

H2O2 addition, the samples were dried in an oven at 60 °C until obtaining a constant weight (from 

24 to 48 h) and the total weight was determined (P1). The chemical dispersion of sediments was 

carried out for 24 h with decahydrate pyrophosphate tetra-sodium (30 g/L) - agent which allows 

disaggregation of particles. A wet sieving was performed, by wet sieving through a 63 µm mesh 

and the material retained at this mesh was dried again in an oven at 60 °C until obtain a constant 

weight (P2). The weight of fraction lower than 63 µm was determined by the difference between 

P1 and P2. Sediments with diameter higher than 63 µm (P2) were mechanically dry sieved using 

sieves with mesh sizes of 63 pm (4 ɸ) and 4 mm (-2 ɸ), with an interval of 1 ɸ (ɸ = -log2 particle 

size expressed in mm) (Figure 6B). The fractions retained on each sieve were weighed and the 

percentage was determined in relation to the total dry weight. The median (P50) was measured 

from the percentages obtained, value where 50 % of the cumulative percentage of the sample is 

located. The sediments were classified according to the Wentworth scale, based on the median 

value and taking into account the level of fines (Table 1). 

 

  

Figure 6. A- Destruction of organic matter with H2O2; B- Dry 

separation of sediments on a battery of sieves 
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Table 1. Classification of sediments, adapted from Wentworth (Doeglas, 1968). 

 

Total organic matter (TOM) content was determined following the procedure described by 

Byers et al. (1978). Sediment samples were firstly dried in an oven at 60 °C after which 1 g of each 

sample was weighted. Loss by ignition was performed during 5 h at 450 °C – for a minimal risk of 

volatizing inorganic carbon (Kristensen and Andersen, 1987) - in a muffle furnace. After 30 min in 

a dessicator, the ashes were weighted once again. TOM was expressed as a percentage of total 

sediment dry weight. 

 

2.3.2. Quantification of elements 

 

Total concentrations of 4 elements (Na; K; Ca; and Mg) were measured in clams’ soft tissues. 

For this procedure, organisms (excluding shells) were mechanically homogenised, under liquid 

nitrogen and then transferred to Teflon bombs and the biological samples digested overnight (for 

ca. 18h) at 115 °C with 2 mL of 65 % HNO3 (Suprapur, Merk). The cooled digest was made up to 5 

mL using 1 M HNO3, and the concentrations of elements were determined by ICP-MS. All element 

quantifications were carried out by a certified laboratory at the University of Aveiro. Regarding 

quality controls, the calibration of the apparatus was made with IV standards, and they were 

verified with standard reference materials (National Institute of Standards and Technology, NIST 

SRM 1643e). The accuracy of these measurements ranged between 90 and 110 % (information 

given by the laboratory). All samples below this accuracy level were rejected and the analysis 

repeated. Determinations were performed using 3 replicates. 

 

 

  

Median (ϕ) Sediment Classification 
Fines content (%) 

< 5 5 - 25 25 - 50 

(-1) - 0 

Sand 

Very Coarse 

Clean Silty Very silty 

0 - 1 Coarse 

1 - 2 Medium 

2 - 3 Fine 

3 - 4 Very Fine 

> 4 Mud Above 50 % 



 
 

Materials and Methods   
 

22 
 

2.3.3. Metabolomic, physiological and biochemical analysis 

 

Bivalves have been proposed as good sentinel organisms in pollution monitoring studies 

through the analysis of biochemical biomarkers. Thus, physiologycal analysis (protein, glycogen 

and glucose content), biochemical measurements (lipid peroxidation, LPO; superoxide dismutase, 

SOD; catalase, CAT; glutathione S-transferase, GST; total glutathione, GSHt and reduced 

glutathione, GSH) and quantification of elements (sodium, Na; potassium, K; calcium, Ca; and 

magnesium, Mg) were preformed to analyze the responses of these organisms under salinity 

stressful conditions. 

To understand the variations in metabolomic patterns of these species, two different high 

sensitive technologies were used: two-dimensional gas phase chromatography coupled to 

spectrophotometer detector flight time (GC x GC – ToFMS), and Nuclear Magnetic Resonance 

(NMR). Volatile organic compounds (VOCs) were analyzed by GC x GC – ToFMS, which represents 

a very high resolving power for metabolomic studies employing two orthogonal mechanisms to 

detect and separate the compounds in samples (Rocha et al., 2013). NMR is a high resolution 

technique which is capable to discriminate the intensity of metabolites like aliphatic, polar and 

aromatic compounds and provide information about the molecular structure of organic molecules 

and biomolecules in solution.  

In the present study the three approaches were used in order to evaluate the effects of 

salinity changes in three species of clams living in simpatry in Ria de Aveiro – V. decussata, V. 

philippinarum and V. corrugata. 

  

2.3.3.1. Physiological and biochemical analysis 

 

The responses of organisms to biomarkers are essential to assess their physiological status at 

molecular, cellular and individual levels (Hamer et al., 2008). Physiological and biochemical 

analysis have been used to study mostly the effects of anthropogenic pollution and stresses in 

bivalves. Kamel et al. (2012) studied the biochemical responses and antioxidant defence 

(glutathione S-transferase, GST) in V. decussata when exposed to treated municipal effluents. 

Figueira et al. (2012) investigated the impact of cadmium contamination in two clam species, V. 

philippinarum and V. decussata. The effect of metals was also studied in V. decussata by Roméo 

and Gnassia-Barelli (1997), Hamza-Chaffai et al. (1999), Moraga et al. (2002), Smaoui-Damak et al. 
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(2009) and Figueira et al. (2012). Recent studies by Antunes et al. (2013) used V. decussata and V. 

philippinarum to assess the impacts of pharmaceutical drugs on clams. 

 

Reactive oxygen species (ROS) are formed by oxygen through several transfers of electrons 

and bio-molecules in cell, such as nucleic acids, lipids, proteins and polysaccharides, represent 

different substrates of ROS (Manduzio et al., 2005). Formation of ROS is inevitable in aerobic cells 

(Haeys et al., 2004) and is necessary mechanisms to eliminate these compounds to avoid the cell 

damage. Oxidative stress occurs when exist an imbalance between the formation of ROS and the 

cellular antioxidant defence system.  

The formation of ROS, responsible for oxidative stress, leads to some cellular and metabolic 

alterations, such as protein degradation and lipid peroxidation of membranes (Viarengo et al., 

1990). The response to oxidative stress include the increase of activity of antioxidant enzymes, 

oxidative modification of lipids, saccharides, proteins and nucleic acids or substitution or 

reparation of damaged molecules in cell (Ďuračková, 2008). 

 

Figure 7. Oxidative stress. Legend: Superoxide (O2•ˉ); hydrogen peroxide (H2O2); superoxide 

dismutase (SOD); catalase (CAT); water (H2O); oxygen (O2); Glutathione peroxidase (GPx); glutathione (GSH); 

hydroxyl radical (•HO); oxidized glutathione (GSSG); glutathione reductase (GR); Glutathione-S-transferase 

(GST); lipid peroxidation (LPO). Highlighted in grey, are some of the most important reactive oxygen species 

(ROS) in cells.  
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To prevent cell from protein oxidation, lipid peroxidation and DNA damage, provoked by 

oxidative stress (Figure 7), antioxidant enzymes, like CAT and SOD work as primary defence 

against oxidative damage (Livingstone, 2001), functioning as a strategy to reduce the ROS.   

In biological systems, complex reactions involving free radicals, especially oxygen free radicals 

(unstable atoms or molecules, with one or more lone electrons), normally results in different 

kinds of radicals through several chain mechanisms (Di Giulio et al., 1989; Manduzio et al., 2005). 

One of the reactive oxygen species, superoxide radical anion (O2•ˉ), results from one-electron 

reduction [Equation 1]. Iron is involved in the production of •HO the Haber-Weiss reaction 

(Storey, 1996; Di Giulio et al., 1989; Manduzio et al., 2005). Together with superoxide radical 

anion, Fe3+ react, yielding Fe2+ and O2 [Equation 2], which will be used to form •HO. Hydrogen 

peroxide is converted to hydroxyl radicals by Fe2+ [Equation 3]. 

SOD decompose O2•ˉ to H2O2 [Equation 4], which is converted to H2O and molecular O2 by 

CAT [Equation 5] (Storey, 1996; Di Giulio et al., 1989; Geret et al., 2003; Manduzio et al., 2005; 

Almeida et al., 2007). H2O2 is also reduced to water by GPx in association with GSH oxidation 

[Equation 6] (Di Giulio et al., 1989; Geret et al, 2003; Almeida et al., 2007). GSSG is reduced to 

GSH by the enzyme GR, helping to maintain the redox status (Di Giulio et al., 1989). Conjugation 

of foreign compounds with GSH normally leads to formation of less reactive products that are 

excreted. Here, GST have an antioxidant function and conjugate GSH among the end-products of 

lipid peroxidation (LPO aldehydes) transforming them into glutathione conjugates, nonpolar 

compounds. (Storey, 1996; Griendling and FitzGerald, 2003; Hayes et al., 2004; Almeida et al., 

2007; Wakamatsu et al., 2008). Despite the antioxidant defences, ROS can indirectly affected the 

cell, due to reactive secondary metabolites resulting from the oxidation of these macromolecules 

(Marnett et al., 2003). GST and GPx are examples of enzyme defences against the degradation 

products of oxidative stress (Hayes et al., 2004). Chain reactions that amplify the damages on 

lipids, result from the peroxidation of polyunsaturated fatty acids in membranes and become a 

problem for the cell (Hayes et al., 2004). 

 

     
     

       [Equation 1] 

 

  
                 

     [Equation 2] 

 

                    
              [Equation 3] 
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   ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗            [Equation 4] 

 

                 [Equation 5] 

 

                        [Equation 6] 

 

Evidences of oxidative stress in organisms under analysis in the present study can be studied 

observing alterations in antioxidant enzyme activities; antioxidant levels and oxidative damage in 

cell. 

In the present study, biochemical and physiological analysis were individually performed in 

three organisms per condition (one of each replicate). For biochemical measurements, frozen 

organisms (soft tissues) were mechanically pulverized under liquid nitrogen and frozen (-80 °C) 

until further analysis. For protein, glycogen and glucose quantification, extractions were 

performed in proportion of 1:2 (w/v), with sodium phosphate buffer 50 mM, pH 7.0 (disodium 

hydrogen phosphate dihydrate 50 mM; sodium dihydrogen phosphate monohydrate 50 mM, 

Ethylenediamine tetraacetic acid (EDTA) 1mM, Triron X-100 1% (w/v)). For superoxide dismutase 

(SOD), catalase (CAT), glutathione S-transferase (GST) and total glutathione (GSHt), homogenates 

were resuspended in potassium phosphate buffer 50 mM (1:2, w/v), pH 7.0 (dipotassium 

phosphate 50 mM; potassium dihydrogen phosphate 50 mM; EDTA 1 mM; Triton X-100 1% (v/v); 

polyvinylpyrrolidone (PVP) 1% (v/v); Dithiothreitol (DTT) 1 mM). For lipid peroxidation (LPO) and 

reduced glutathione (GSH), the soft tissue was diluted in trichloroacetic acid (TCA) 20% v/v (1:2). 

All samples were homogenised in an ultrasonic probe (2 cicles of 15 s each) and centrifuged for 10 

min at 10 000 g and 4 °C. Supernatants were divided into aliquots and either stored at -80 °C or 

used immediately. Whenever necessary, samples were diluted with same potassium phosphate 

buffer or TCA as extraction was performed. 

 

Total protein content 

Total protein contents were determined by the spectrophotometric Biuret method (Robinson 

and Hogden, 1940), using bovine serum albumin (BSA) as standards (0-40 mg/mL). This method is 

used to find peptide bonds or to find out the protein content, since each amino acid in the 

peptide has the same frequency of peptide bonds.  

For each sample 50 μL of extract and 600 μL of Biuret reagent was used. The mixture was 

shacked, making up-and-down. The colorimetric reaction was carried out at 30 °C for 10 min and 
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absorbance was measured at 540 nm. The final results were expressed in mg per g of fresh 

weight. 

 
Polypeptide separation by SDS-PAGE 

Proteins were separated by SDS-PAGE, carried out in 4-20 % of polyacrylamide (Mini-

PROTEAN TGX – Bio-Rad) following the procedure described by Laemmli (1970). Gels were stained 

with Coomassie brilliant blue R-250 and screened in a Densitometer apparatus (Bio-Rad – Model 

GS 710). Molecular mass and relative protein amount corresponding to each band were 

compared with a protein standard (NZY Colour Protein Marker II – nzy tech genes & enzymes) and 

calculated using Quantity One program software (Bio-Rad) (Figueira et al., 2005). 

 

Total carbohydrate content (Glycogen) 

Glycogen was quantified according to the phenol-sulphuric acid method, as described by 

Yoshikawa (1959). This method detects almost all carbohydrates (mono-, di-, oligo- and 

polisaccharides), but absorbance of each is different. Sulphuric acid breaks the bonds of 

polysaccharides, oligosaccharides and disaccharides, turning them into monosaccharides; 

dehydrates pentoses into furfural and hexoses to hydroxymethyl furfural. These compounds react 

with phenol and produce a yellow-gold colour (Nielsen, 2010). 

Glycogen concentrations were determined with comparison against glucose standards (0-5 

mg/mL). All the samples were diluted 25 times and 50 μL of V. philippinarum, 10 μL of V. 

decussata and V. corrugata (adding 40 µL of phosphate buffer (the same used for extraction) to 

make up 50 µL) were used. To every sample, 100 μL of phenol (5 %) and 600 μL of H2SO4 (96 %) 

were added and then incubated at room temperature for 30 min. Absorbance was measured 

spectrophotometrically at 492 nm and results were expressed as mg per g of fresh weight.  

 

Glucose content 

Glucose was quantified using a RTU-glucose kit (bioMérieux SA). Glucose oxidase catalyses the 

oxidation of glucose to gluconic acid and hydrogen peroxide (H2O2). Through an oxidative coupling 

reaction catalyzed by peroxidase, H2O2 reacts with 4-aminoantipyrine and phenol (included in 

RTU-glucose kit). The intensification of colour quinoneimine is proportional to the amount of 

glucose present in the sample. 

To every sample 10 μL of extract was used and 600 μL RTU-glucose solution was added. 

Samples were incubated at room temperature for 20 min and glucose concentrations were 
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compared with a glucose standard (0-5 mg/mL). Absorbance was measured 

spectrophotometrically at 505 nm and the results were expressed as mg per g of fresh weight. 

 

Lipid peroxidation 

LPO is a well-known mechanism of cellular injury and is used as indicator of oxidative damage 

in cells and tissues. Malondialdehyde (MDA) maybe is the most abundant aldehyde product, so 

therefore, the measure of MDA has been used as an indicator of oxidative stress in invertebrates 

(Wheatley, 2000). Lipid peroxidation implies the reorganization of the double bonds of 

unsaturated lipids, formation of lipid radicals, the capture of oxygen and possibly, the degradation 

of lipid membranes. Following the procedure described by Ohkawa et al. (1979), lipid 

peroxidation (LPO) was measured by the quantification of ThioBarbituric Acid Reactive Substances 

(TBARS), being addressed as a measure of membrane damage. This method is based on the 

reaction of MDA, with 2-thiobarbituric acid (TBA) 0.5 %, derived from LPO, forming TBARS, which 

can be read spectrophotometrically because of its characteristic color. To 100 µL of sample 

(diluted in TCA 20 %) 400 µL of TBA (0.5 %) and 300 µL of TCA (20 %) was added. The reaction was 

performed during 25 min at 96 °C. Samples were immediately transferred to ice, to stop the 

reaction. The absorbance was measured at a wavelength of 535 nm, with an extinction coefficient 

of 1.56 mM-1 cm-1 and final results were expressed as nmol of MDA per g of fresh weight. 

 

Catalase activity 

Catalase is an enzyme that protect the cell from reactive oxygen species (ROS) avoiding 

oxidative damages. It promotes the decomposition of hydrogen peroxide (H2O2) to water (H2O) 

and oxygen (O2). The method used to measure the activity of catalase is based on the reaction of 

this enzyme with methanol in the presence of hydrogen peroxide (H2O2) (Lars et al., 1988). 

To 25 µL of extract sample (previously diluted 2 times) and standards of formaldehyde (0-150 

μM) was added 125 µL of reaction buffer (50 mM potassium phosphate, pH 7.0), 37.5 µL of 

ethanol and 25 µL of H2O2 (35.28 mM) to initiate the reaction. After incubate the samples and 

standards at room temperature for 20 min in a stirrer, 37.5 µL of potassium hydroxide (KOH) (10 

M) was added to finish the reaction and 37.5 µL of 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole 

(purpald) as a chromogen, representing the formaldehyde produced. The samples were incubated 

once again for 10 min in a stirrer at room temperature and was added 12.5 µL of potassium 

periodate (KIO4), to oxidize the reaction between formaldehyde and purpald and lead to a 

coloured compound formation. The standard curve was performed with formaldehyde standards 
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and the absorbance was measured in a microplate reader at 540 nm after more 5 minutes of 

incubation. The final results were expressed in units (U) of CAT per g of fresh weight, being one 

unit defined as the quantity of enzyme responsible for the formation of 1.0 nmol of formaldeyde, 

per minute. 
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Superoxide dismutase activity 

Superoxide dismutase (SOD) is an enzyme with high importance in antioxidant defence. It 

catalyses the superoxide (O2•ˉ) into oxygen and hydrogen peroxide (H2O2). Superoxide reduces 

NBT2+ in formazan (a chromogenic product which displays a blue colour). SOD, in turn, intercepts 

the O2•ˉ blocking the formation of formazan. Thus, the less intense blue colour (meaning less 

amount of formazan), the higher content of SOD.  

The activity of this enzyme was determined following the method of Beauchamp and 

Fridovich (1971) with some modifications and adapted to microplate. This method is based on the 

reduction of superoxide anion levels by SOD. To 25 µL of each sample (previously diluted 4 times) 

were added 250 µL of reaction buffer (Tris-HCl 50 mM, pH 8.0; diethylene triamine pentaacetic 

acid (DTPA) 0.1 mM; hypoxanthine 0.1 mM and nitro blue tetrazolium (NBT) 68.4 μM) and 25 µL 

of xanthine oxidase (56.1 mU/mL) to start the reaction, converting the xanthine and oxygen into 

uric acid and H2O2 yielding superoxide anions. To 25 µL of standards of SOD (0.25–60 U/mL) was 

added 25 µL of extraction buffer, 225 µL of reaction buffer and 25 µL of xanthine oxidase. The 

samples and the standards were incubated for 10 min at room temperature in a stirrer. The 

standard curve was performed with SOD standards. SOD activity was measured in a microplate 

reader at 560 nm and the results were expressed as U per g of fresh tissue. One unit of SOD 

activity represents a reduction of 50 % of NBT. 

 

Glutathione S-transferase activity 

Glutathione-S-transferase (GST) is an enzyme that is part of a defence strategy and the 

efficiency depends on glutathione synthase to provide GSH and also depends on transporters 

actions to remove glutathione conjugates from the intracellular space (Hayes and McLellan, 

1999). GST converts the tripeptide glutathione (GSH) into xenobiotic compounds, conjugating GSH 

with 1-chloro-2,4-dinitrobenzene (CDNB), an electrophilic substrate, forming one thioether (with 

an extinction coefficient of 9.6 mM-1cm-1), that can be measured by increasing absorbance at 340 

nm.  

In the present work, the activity of this enzyme was measured following the procedure 

described by Habig et al. (1974) with some modifications to microplate method (96 flat bottom 

wells). To 50 µL of extracted sample (previously diluted 4 times) were added 200 µL of a reaction 

solution containing 1-Chloro-2,4-dinitrobenzene (CDNB) 60 mM (14.2 % of total volume), reduced 

glutathione (GSH) 10 mM (85.3 % of total volume) and potassium phosphate buffer 0.1 M, pH 6.5 

(dipotassium phosphate 0.1 M, potassium dihydrogen phosphate 0.1 M) - 0.47 % of total volume. 
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Absorbance values were obtained in a microplate reader at 340 nm (ε =9.6 mM-1 cm-1), at 

intervals of 10 s for 5 min. The GST activity was expressed in U per g of fresh weight, where U 

corresponds to the amount of enzyme that catalyzes the conversion of 1 µmol of substrate per 

min. 

 
Total glutathione 

Glutathione is an important antioxidant preventing cell damage caused by reactive oxygen 

species such as free radicals and peroxides. It exists in reduced (GSH) and oxidized (GSSG) forms. 

This enzyme interferes in the synthesis and degradation of proteins, regulation of enzymes and 

protection of the cell from ROS (Manduzio et al., 2005). 

Total glutathione (GSHt) content (the sum of the two forms) was quantified according to the 

5,5’-dithiobis-2-nitrobenzoic acid (DTNB)-glutathione reductase (GR) method described by 

Anderson (1985) and adapted to microplate method. Glutathione standards (0-500 µmol L-1) were 

prepared to compare against GSHt concentrations. To 23 µL of standards and samples (previously 

diluted 2 times) it was added 240 µL of potassium phosphate buffer 50 mM, pH 7.0 (dipotassium 

phosphate 50 mM; potassium dihydrogen phosphate 50 mM), 9.23 µL of NADPH (nicotinamide 

adenine dinucleotide phosphate) 30 mM, 23 µL of 5,5’-dithiobis-2-nitrobenzoic acid (DTNB) 10 

mM and 4.62 μL of GR 10 U mL-1 (together with NADPH, GR transform the GSSG to GSH) and then 

incubated for 5 min at room temperature. Absorbance was measured in a microplate reader at 

412 nm and the content of GSHt was expressed in µmol per g of fresh weight. 

 

 Reduced and oxidized glutathione content 

Reduced glutathione content (GSH) was determined adapting the procedure described by 

Moron et al. (1979). Glutathione standards (0-500 μmol/L) were prepared in TCA 20 % (v/v) to 

compare against the GSH values. 50 μL of supernatant and standards were neutralized with 20 μL 

of sodium hydroxide (NaOH) 2M. To this mixture 500 μL of potassium phosphate buffer 50 mM 

(pH 7.0) and 50 μL of DTNB 10 mM (with 620 μL as final volume) were added. During 5 min, the 

samples and standards were incubated at room temperature. Finally, the absorbance was 

measured spectrophotometrically at 412 nm. Values of GSH were expressed as µmol per g of 

fresh weight. 

Oxidized glutathione (GSSG) was obtained calculating the difference between GSHt and GSH. 

GSSG content was expressed as µmol per g of fresh weight.  
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2.3.3.2. Nuclear Magnetic Resonance (NMR) Spectroscopy  

 

High resolution Nuclear Magnetic Resonance (NMR) spectroscopy is an important technique 

for rapid and non-invasive analysis of complex systems providing information on a large number 

of different compounds, with different concentrations (Graça et al., 2008). This technique is based 

on the magnetic properties of the atomic nuclei when placed in a strong magnetic field providing 

important information about the molecular structure of organic molecules and biomolecules. 

NMR has been the dominant method for analysing organic compounds, because in most 

situations it is possible to determine the entire structure using a reduce number of analytical 

tests. It has also been increasingly used in the area of inorganic chemistry allowing valuable 

information to be obtained about molecular structures. Besides the wide use of NMR 

spectroscopy in structural chemistry, the technique has also, more recently, been used in 

metabolomics applied in several contexts (e.g. drug development and assessment, food analysis 

disease research). Specific reports comprise studies related with tumor metavolic profiling (Rocha 

et al., 2010) for metabolic profiling and also detailed characterization of food (Duarte et al., 2002; 

2006). Although there are already some studies related to the metabolic effects of climate 

changes on marine organisms (e.g. Liu et al., 2011a; 2011b studied toxicological effects induced 

by mercury exposure of V. philippinarum), metabolic differences have not been studied on marine 

species when subjected to a stress caused by salinity fluctuations. 

 

Principals of NMR Spectroscopy 

The nuclei of some atoms have the ability to rotate around its axis, when subjected to a 

magnetic field, and this property is named as spin. The hydrogen nucleus, the proton (1H) is one of 

these nuclei. The nuclear spin is associated to an angular moment, P, and generates a magnetic 

moment (μ) characterizing each nucleus. Magnetic (μ)  and angular (P) moments are related by 

μ=ɣP, where ɣ is the gyromagnetic ratio of the nucleus, a characteristic of the nucleus (Günther, 

1998). The angular moment of spin depends on the spin quantum number, I, which takes up 

values different from zero for the nuclei with spin. For proton, I = 1/2 (Graça et al., 2008).  

By placing a proton in an external magnetic field, its magnetic moment can be oriented 

parallel (up) and anti-parallel (down) in relation to the external field. NMR spectroscopy is based 

on the occurrence of transitions between these states, by absorbing radiation in the frequency 

range of radio waves (60 to 750MHz). The exact value of energy absorbed is strongly dependent 

on the chemical environment in which the proton is found and this dependency is translated by a 
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quantity called chemical shift. The sample (containing the magnetic nuclei) is excited by selective 

absorption of radiation, then returns to the fundamental state, with the emission of radiant 

energy in the field of radio frequencies; this gives rise to the absorption peak registered in the 

NMR spectrum. 

The detailed information that can be obtained - on the molecular structure of the sample, or 

on the global internal dynamics of the molecules - is related to the exact determination of the 

chemical shifts (in ppm) corresponding to specific frequencies emitted. The 1H NMR spectra 

(graph of absorbance according to the chemical shift) is based on the different location of the 

peaks, because its position depends on electronic environment around the proton. 

 

In the present study, for NMR analysis 15 samples were selected (9 samples of V. 

philippinarum, including 1 at salinity 0, 2 at salinity 7, 3 at salinity 28 and 3 at salinity 42; 3 

samples of V. decussata at salinity 28; 3 samples of V. corrugata at salinity 28) in order to study 

the range of salinities that the three species tolerate.  

The final analysis included the study of V. philippinarum metabolic alterations when subjected 

to four different salinities: 0, 7, 28 and 42, to understand the metabolic effect of the salinity; data 

of the three species when subjected at salinity 28 were analyzed, aiming to study the differences 

between clam species under the same salinity conditions. 

 

Extraction and preparation for NMR analysis 

Metabolite extraction was performed using a water/methanol/chloroform method described 

by Hines et al. (2007). After grinding the clams’ soft tissue (0.5 g per sample) in liquid nitrogen, 2 

mL of methanol, 0.425 mL of distillated water and 1 mL of chloroform were added. The mixture 

was sonicated in an ultrasonic probe (2 cycles of 15 s each) and then centrifuged (2 500 g, 4 °C, 10 

min). The aqueous layer was removed and transferred into a new tube, and the lower phase was 

discarded. To the aqueous phase, 1 mL of chloroform and 1 mL of water were added and the 

mixture was vortexed and centrifuged (2 500 g, 4 °C, 10 min), giving rise to two layers. The 

aqueous phase and the lipidic phase were separated to different tubes, dried in a centrifugal 

concentrator (UNIVAP 100 H) and stored at -80 °C until NMR analysis. Before spectral acquisition, 

the dry polar extracts (aqueous phase) were resuspended in 600 µL of sodium phosphate buffer 

(0.1 M in D2O, pH 7.4, containing 0.5 mM sodium 3-trimethylsilyl-2,2,3,3-d4-propionate (TSP) as 

chemical shift standard); the dry nonpolar extracts (lipid phase) were resuspended in 650 µL 

deuterated chloroform (CDCl3), both followed by vortexing and centrifugation (12 000 rpm, 10 
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min). For analysis, 550 µL of supernatant of polar extracts and 600 µL of supernatant of nonpolar 

extracts were transferred into 5 mm NMR tubes. 

To compare different salinities, V. philippinarum was analyzed at salinities 0, 7, 28 and 42. The 

differences among the three species were evaluated at salinity 28.  

 

1H NMR spectroscopy 

All 1H NMR spectra were acquired on a Bruker Avance DRX-500 spectrometer using a BBI 

probe, perating at a frequency of 500.13 MHz for proton. The one-dimensional (1D) 1H NMR 

spectra were acquired at 298 K, with a NOESYPR1D pulse sequence (Bruker pulse program library) 

and referencing chemical shifts internally to the TSP signal at δ 0.00 for aqueous extracts and 

chloroform signal at δ 7.26 for lipids extracts. Water suppression was achieved by irradiation of 

the water peak during recycle (RD = 4 s) and mixing time (tm = 100 ms). A 90° pulse lengh of 12 µs 

was used and 256 transients were collected into 32 K data points with 14 ppm spectral width. All 

1D spectra were processed with a line broadening of 0.3 Hz, manually phased and baseline 

corrected. 2D homonuclear (total correlation spectroscopy, TOCSY) and heteronuclear (1H-13C) 

correlation spectra were acquired for selected samples in order to aid spectral assignment. 

Assignment was based on consultation of the Bruker Biorefcode spectral database and several 

other non-comercial databases.   

  

2.4. Data analysis 

 

The GSH/GSSG ratio, considered to be an index of cellular redox status (e.g. Ault and 

Lawrence, 2003), was determined based on the data described above. 

 

Data from biochemical and physiological parameters and the element content were 

submitted for hypothesis testing using permutation multivariate analysis of variance with the 

PERMANOVA+ add-on in PRIMER v6 (Anderson et al., 2008), following the calculation of Euclidean 

distance matrices among samples. A one-way hierarchical design was followed, with the salinity 

as the main fixed factor. When the main test revealed statistical significant differences (p≤0.05), 

pairwise comparisons were performed. The t-statistic in the pair-wise comparisons was evaluated 

in terms of significance among different salinities. The null hypothesis tested for each parameter 

were “no significant differences exist among salinities”, when comparing the different salinities 

for each species and “no significant differences exist among species”, when comparing the three 
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species in each salinity. Significance levels (p ≤ 0.05) between salinities or species are presented 

with letters. The matrix gathering the biochemical and physiological descriptors, for each species, 

per salinity were used to calculate the Euclidean distance similarity matrix. This similarity matrix 

was simplified through the calculation of the distance among centroids matrix based on the 

species condition, which was then submitted to ordination analysis, performed by Principal 

Coordinates (PCO). Pearson correlation vectors of physiological and biochemical descriptors 

(correlation > 0.5) were provided as supplementary variables being superimposed on the top of 

the PCO graph. 

 

For NMR data analysis, each set of spectra was used to set up the data matrices for the 

multivariate analysis (MVA). This method has the advantages of taking all the variables into 

account in one single analysis and, more important, allows the construction of predictive models. 

Therefore, MVA provides the appropriate tools for metabolomics data analysis. 

Thus, for aqueous extracts, all signals in δ 0.5-9.5 region except water spectral region (δ  4.60 

– 4.80) were included for analysis; for lipid extracts the region used for analysis was δ 0.5 – 10.0, 

except chloroform spectral region (δ 7.03 – 7.48). 

Probabilistic quotient normalization (PQN) of the spectra using the median spectrum to 

estimate the most probable quotient was carried out and the spectra were aligned by the 

recursive segment-wise peak alignment (RSPA) method (Veselkov et al., 2009)to reduce variability 

in the peak positions using MATLAB R2012a. The region of δ 4.60- 4.80 and δ 7.03 – 7.48 was 

removed to eliminate the effects of imperfect water suppression and chloroform signal, 

respectively, prior to normalization and alignment. The resulting datasets were then imported 

into SIMCA-P 11.5 (Umetrics, Umeå, Sweden) software for multivariate statistical analysis. 

Principal Components Analysis (PCA) is used to obtain an overview of the similarities and 

differences between the samples analysed, and Partial Least Squares - Discriminant Analysis (PLS-

DA) is used to explore the differences between classes and exclude confounding factors derived 

from differences of each individual differences. The aim of scaling is to avoid the dominance of 

the higher intensity signals over lower ones, emphasizing the differences between the spectra in 

the next steps of MVA (Veselkov et al., 2011). Unit variance (UV) scaling divides each point of the 

data matrix by the standard deviation of the respective column (peaks). All imported data were 

autoscaled (i.e unit variance) and Principal Component Analysis (PCA) and Partial-Least Squares-

Discriminant Analysis (PLS-DA) were performed on the datasets. To evaluate the differences 

between the samples groups, the separation obtained in PLS-DA scores is not enough, being 
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necessary an appropriate validation model. For that propose, R-statistical software (version 

2.15.2) was used along with the Plotrix package (Lemon, 2006) to produce PLS-DA loadings plots 

color-coded as a function of variable importance in the projection (VIP). The loading plots affords 

information about the contribution of each peak to the separation in the scores plots. The 

resulting plots provide the information in a same shape as that of a spectrum, together with a 

colour code representing the variable importance for the discrimination between the classes.  

Scores plots were analysed to see the distribution of each sample under analysis. At this 

point, all the results were analysed in two-dimensional scores plots, representing the distribution 

of samples in the model. The trends registered between the different classes were evaluated, 

validating the model. This validation was performed taking into account the following parameters: 

R2X, R2Y and Q2. In PLS-DA model, R2X is the explained variance of X explained and R2Y is the 

explained variance of Y. Q2 value represent the validation of R2 and can be used to test the validity 

of the model, whereas higher Q2 values are usually associated with best discrimination between 

classes.  

Loading plots of spectra give to each point a corresponding colour representing their 

importance in the separation of the samples. The relevant peaks, those with stronger contribution 

to the trend between classes, were integrated and normalized to total spectral area, usingAMIX 

3.9.5 (BrukerBioSpin, Rheinstetten, Germany).  

Integral variations were subjected to the Shapiro (normal distribution for p>0.05), t-student 

and Wilcoxon test (statistical relevance for p≤0.05). 

Shapiro test determined if the data followed (p>0.05) or not (p≤0.05) a normal distribution. 

For data which followed a normal distribution, the t-student test was applied and for those which 

do not followed a normal distribution was applied the Wilcoxon test. The p-value obtained in the 

statistical tests provides information about the significance of the differences between the 

classes. In the present study, the null hypothesis is “differences between the averages of the 

classes are equal to zero”, meaning that the integrals are not significantly different between the 

classes. When p-value was lower than 0.05, means that the integrals are significantly different 

between the groups. 
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3.1. Environmental data 

 

The physic-chemical characteristics of the sampling site, including sediment classification, 

percentage of fine particles, median values (), total organic matter (TOM), salinity, redox 

potential (Eh), temperature and pH, are presented in Table 2. The results obtained revealed that 

sediment from the sampling site was classified as very silty medium sand, with high percentage of 

fines (25.93 %) and high organic matter content (> 3 %, cf. Table 2).  

 

Table 2. Environmental parameters of the sampling site: temperature, pH, salinity, redox potential (Eh), 
percentage of total organic matter (TOM), percentage of fine particles, median value in units of phi (Φ). 

Environmental data 
Temperature (°C) pH Salinity Eh (mV) TOM % Fines % Median  

19.9 ± 1 8.45 ± 1.91 28 ± 2 -173.05 ± 14.07 3.34 ± 0.21 25.93 ± 2.31 1.88 ± 0.04 
 

 

3.2. Biometric data 

 

Concerning the size and weight of the clams collected, V. corrugata was the lightest and the 

smallest species, while V. philippinarum was the biggest and the heaviest one. The V. decussata 

individuals presented an average weight of 27 ± 3 g, an average length of 49 ± 2 mm and 38 ± 2 

mm wide. V. corrugata specimens had an average weight of 10 ± 2 g and measured 38 ± 3 mm in 

length with 25 ± 2 mm of wide. V. philippinarum clams presented an average length of 50 ± 2.7 

mm, 39 ± 3 mm wide and weight of 37 ± 5 g.   

 

3.3. Mortality 

 

When exposed to different salinities (0, 7, 14, 21, 28, 35 and 42), V. corrugata showed 

significantly (p≤0.05) higher mortality than the other two clams (V. philippinarum and V. 

decussata) at most of the salinities tested. Differences were especially noticeable at the lowest (0) 

and highest salinities (35 and 42) (Figure 8), where V. corrugata presented 100 % of mortality. At 

salinity 0, the 3 species showed high mortality rates, being V. decussata the species that revealed 

the highest survival capacity, revealing approximately 33 % of mortality against 77.8 % for V. 

philippinarum and 100 % for V. corrugata (cf. Figure 8). When exposed to the highest salinities (35 

and 42), V. decussata and V. philippinarum presented 100% of survival while V. corrugata 
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presented 100% of mortality, identifying this species as the most sensitive (cf. Figure 8). Although 

V. decussata presents 33 % of mortality at salinity 0, is the species that can tolerate a greater 

range of salinities. 

 

 

 

3.4. Elemens content 

 

For each species, the concentration of the elements Na (A), K (B), Ca (C) and Mg (D) along the 

salinity gradient is present in Figure 9. 

Along the salinity gradient V. decussata maintained fairly constant the amount of Na, except 

at the highest salinity (42), where this species significantly increased (p≤0.05) the content of Na 

(Figure 9A). Along the exposure gradient, both V. philippinarum and V. corrugata gradually 

increased the Na content with significant differences among salinities, especially between the 

lowest (0 and 7) and the highest (≥ 28) salinities for V. philippinarum, and between 7 and 28 for V. 

corrugata (cf. Figure 9A). V. decussata showed significant differences from V. philippinarum at 

salinities 0, 21, 28 and 35. Along the salinity gradient V. corrugata presented no significant 

differences from V. philippinarum, while significant differences were found between V. corrugata 

and V. decussata (Table 3). 

Figure 8. Mortality rate (%) in Venerupis philippinarum, Venerupis decussata and Venerupis corrugata when 

exposed to increasing salinities (0, 7, 14, 21, 28, 35, 42). Values are the mean of three replicates ± standard 

deviation. For each species, different letters (a-c) represent significant differences (p≤0.05) among salinities. 
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The total K accumulated was significantly different between V. corrugata and the other two 

species (cf. Table 3) with V. corrugata presenting the highest and V. philippinarum the lowest K 

content. V. decussata and V. philippinarum presented a similar behaviour with few significant 

differences between both species (cf. Table 3). V. decussata and V. philippinarum maintained the 

concentration of K along the salinity gradient with no significant differences, while in V. corrugata 

the content of this element increased with the salinity, presenting significant differences along 

the gradient (cf. Figure 9B). 

 

Regarding the Ca content, V. decussata presented significant differences between the lowest 

(0 and 7) and the highest (≥ 21) tested salinities, where the concentration of Ca was lower (Figure 

9C). V. philippinarum showed a similar behaviour, except for salinities 0 and 7, presenting lower 

values with no significant differences between these two salinities. Thus, the differences 

registered along the salinity range, were less pronounced in V. philippinarum than in V. decussata 

Figure 9. Concentration of Na, K, Ca and Mg (mM) in Venerupis decussata, Venerupis philippinarum and 

Venerupis corrugata when exposed to increasing salinities (0, 7, 14, 21, 28, 35, 42). Values are the mean of 

three replicates ± standard deviation. For each species, different letters (a-d) represent significant 

differences (p≤0.05) among salinities.  

A B 

C D 
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(cf. Figure 9C). In V. corrugata an opposite trend was noticed. For this species, the lowest value 

was registered at salinity 7 with significant differences with other salinities (14, 21 and 28). V. 

decussata and V. philippinarum only showed significant differences at lowest salinities (0 and 7), 

while V. corrugata showed a significantly different behaviour from the other two species, except 

at salinity 14 (cf. Table 3). 

The observed variation of Mg content was similar to the Na pattern for all species, with V. 

decussata revealing less significant differences on the concentration of this element along the 

salinity gradient. V. corrugata and V. philippinarum showed a significant increase of Mg with the 

increase of salinity (Figure 9D). Significant differences were noticed at salinities 0, 21 and 28 

between V. decussata and V. philippianrum (cf. Table 3).  At salinities 7 and 14, V corrugata did 

not show any significant differences from the other two species, while at salinities 21 and 28, V. 

corrugata presented significant differences when compared to V. decussata (cf. Table 3).  
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Table 3. Concentration of Na, K, Ca and Mg (mM) in Venerupis decussata, Venerupis philippinarum and 

Venerupis corrugata along the salinity range (0, 7, 14, 21, 28, 35 and 42). Values are the mean of three 

replicates ± standard deviation. For each element and for each salinity, different letters (a-c) represent 

significant differences (p≤0.05) among species. 

 

Element Salinity V. decussata V. philippinarum V. corrugata 

Na 

0 37.44 ± 5.44
a 

17.76 ± 0.80
b 

 

7 36.09 ± 4.56
a 

24.47 ± 9.19
a,b 

22.82 ± 1.37
b 

14 35.49 ± 0.01
a 

34.60 ± 12.74
a,b 

31.26 ± 0.70
b 

21 26.99 ± 1.55
a 

37.30 ± 4.75
b 

42.45 ± 5.33
b 

28 39.47 ± 2.49
a 

48.36 ± 2.38
b 

46.91 ± 2.16
b 

35 42.46 ± 0.31
a 

52.25 ± 4.36
b 

 

42 64.74 ± 6.13
a 

63.07 ± 10.10
a 

 

K 
0 5.32 ± 0.56

a 
4.84 ± 0.00

a 
 

7 6.75 ± 0.86
a 

3.39 ± 0.89
b 

7.11 ± 1.44
a 
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14 5.95 ± 0.87
a 

3.82 ± 1.24
a 

9.63 ± 0.23
c 

21 6.18 ± 1.74
a,b 

4.21 ± 0.49
a 

9.23 ± 1.34
c 

28 6.24 ± 0.76
a 

4.92 ± 0.26
b 

12.41 ± 0.16
c 

35 6.21 ± 0.57
a 

4.97 ± 0.23
b 

 

42 6.02 ± 0.48
a 

4.88 ± 0.61
a 

 

Ca 

0 8.50 ±0.96
a 

3.55 ± 0.19
b 

 

7 5.24 ± 0.17
a 

3.63 ± 1.35
b 

1.86 ± 1.66
c 

14 3.08 ± 1.91
a 

3.12 ± 2.20
a 

3.47 ± 0.00
a 

21 1.21 ± 0.10
a 

1.49 ± 0.36
a 

2.74 ± 0.20
b 

28 1.88 ± 0.68
a 

1.42 ± 0.16
a 

3.10 ± 0.26
b 

35 2.51 ± 1.30
a 

2.24 ± 1.01
a 

 

42 1.82 ± 0.05
a 

1.74 ± 0.11
a 

 

Mg 

0 5.03 ±0.63
a 

2.59 ± 0.11
b 

 

7 4.53 ± 0.93
a 

3.29 ± 0.11
a 

3.10 ± 0.25
a 

14 4.20 ± 1.21
a 

4.31 ± 1.51
a 

4.64 ± 0.03
a 

21 3.67 ± 0.39
a 

4.53 ± 0.33
b 

5.32 ± 0.26
b 

28 5.40 ± 0.42
a 

6.25 ± 0.28
b 

5.43 ± 0.63
a,b 

35 5.62 ± 0.13
a 

6.44 ± 0.57
a 

 

42 7.93 ± 0.50
a 

7.88 ± 1.44
a 
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3.5. Biochemical and physiological analysis 

 

3.5.1. Total protein content and peptide alterations 

 

For protein content, V. philippinarum and V. decussata evidenced a similar pattern along the 

salinity range (Figure 10A). The protein content was constant at lower salinities (0 to 21) and 

gradually increased from 28 to 42, with significant (p≤0.05) differences between the lowest (≤ 21) 

and the highest (> 21) salinities (cf. Figure 10A). In V. corrugata lower protein content was found 

at salinities 7 and 28, where no significant (p>0.05) differences were found to the other species 

(Table 4). At salinities 14 and 21, V. corrugata showed a significant higher protein content, 

compared to the other two species (cf. Figure 10A). However, this species showed significant 

differences along the salinities tolerated (cf. Figure 10A). Table 4 presents the differences, in 

terms of protein content, among salinities for each species. V. decussata and V. philippinarum did 

not present significant differences between the lowest (0-21), but was registered a significant 

increase to higher salinities (28-35), while V. corrugata presented significant differences between 

the highest and the lowest (7 and 28) tolerated salinities and the remaining ones (14 and 21), with 

the highest value being observed at salinity 14. Similar protein concentrations were found 

between salinities 14 and 21 that were significantly higher than at 7 and 28. Significant 

differences were not found between the protein pattern of V. decussata and V. philippinarum 

along the salinity range and V. corrugata only presented significant differences from the other 

two species at salinities 14 and 21 (cf. Table 4). 

Regarding polypeptides expression, the levels of the most abundant ones comparing the ones 

characterizing individuals under salinity 28 were represented as heatmaps (Figure 10B, C and D). 

In V. philippinarum (Figure 10B), for all salinities, ca. 30 % of the proteins did not change their 

levels, compared to salinity 28. For the remaining 70 %, most of the changes occurred at the 

lower salinities (≤ 21), with the appearance of a new band and the decrease of 64 % of the 

polypeptides. At higher salinities (35 and 42), a low number (30%) of polypeptides presented 

changes (cf. Figure 10B). For V. decussata (Figure 10C), was registered ca. 48 % of alterations in 

polypeptide expression at higher salinities (> 28) and 44 % at lower salinities (< 21). At salinities 35 

and 42, 18 % of such changes represented induction and 77 % was related to repression of 

polypeptides expression. At lower salinities (0, 7 and 14), repression was represented by 27 % of 

alterations and 17 % of that alterations corresponding to induction of polypeptides. At salinity 21 

only 14 % of polypeptides demonstrated alterations, with 86 % of polypeptides not showing any 



 
 

Results   
 

44 
 

changes in their expression (cf. Figure 10C).  In relation to V. corrugata were observed 65 % of 

alterations in polypeptide expression, being 49 % related to repression and 16 % to induction of 

that polypeptide expression at salinities analyzed (7, 14 and 21) (Figure 10D). 

 

Table 4. Protein content (mg/g FW) in Venerupis decussata, Venerupis philippinarum and Venerupis 

corrugata along the salinity range (0, 7, 14, 21, 28, 35 and 42). Values are the mean of three replicates ± 

standard deviation. For each salinity, different letters (a-b) represent significant differences (p≤0.05) among 

species. 

Salinity V. decussata V. philippinarum V. corrugata 

0 19.38 ± 2.91
a 

20.38 ± 2.25
a 

 

7 19.71 ± 1.66
a 

19.05 ± 0.23
a 

20.79 ± 3.10
a 

14 20.01 ± 2.76
a 

19.84 ± 0.06
a 

34.11 ± 1.81
b 

21 23.05 ± 3.58
a 

19.71 ± 1.00
a 

30.91 ± 0.40
b 

28 28.30 ± 2.51
a 

27.41 ± 3.47
a 

22.86 ± 6.86
a 

35 30.05 ± 3.37
a 

30.90 ± 3.80
a 

 

42 32.44 ± 2.99
a 

31.97 ± 5.77
a 
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Figure 10. A - Protein content (mg/g FW) in Venerupis decussata, Venerupis corrugata and Venerupis 

philippinarum when exposed to increasing salinities (0, 7, 14, 21, 28, 35, 42). Values are the mean of three 

replicates ± standard deviation; for each species different letters (a-c) represent significant differences 

(p≤0.05) among salinities. Protein expression B – in Venerupis philippinarum, when exposed to increasing 

salinities (0, 7, 14, 21, 28, 35 and 42); C – in Venerupis decussata, when exposed to salinities (0, 7, 14, 21, 

28, 35 and 42); D – in Venerupis corrugata, when exposed to increasing salinities (7, 14, 21 and 28); the 

different colours represent repression (white and light grey), no alteration (median grey) or induction (dark 

grey and black) of peptides in comparison with salinity 28; p1-p22 represent the different polypeptides 

identified; New bands are also marked (nb); values are the mean of n=3. 
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3.5.2. Total carbohydrates content (Glycogen) 

 

In terms of glycogen content (Figure 11 and Table 5), a significant difference (p≤0.05) was 

observed between the three species, with V. corrugata presenting the highest values and V. 

philippinarum the lowest ones. When compared to the other two species, V. corrugata showed 

higher glycogen content that was maintained along the salinity gradient tolerated by this species 

without significant differences among the salinities (cf. Figur 11). V. philippinarum presented a 

significant increased at salinities 28 and 35 and a significant decrease at salinity 42 (cf. Figure 11), 

while V. decussata showed a significant increase of glycogen content at salinity 42.  

 

 

Table 5. Glycogen content (mg/g FW) in Venerupis decussata, Venerupis philippinarum and Venerupis 

corrugata along the salinity range (0, 7, 14, 21, 28, 35 and 42). Values are the mean of three replicates ± 

standard deviation. For each salinity, different letters (a-c) represent significant differences (p≤0.05) among 

species. 

 

 

 

 

 

 

Salinity V. decussata V. philippinarum V. corrugata 

0 10.51 ± 4.1
a 

2.97 ± 0.6
b 

 

7 11.76 ± 0.8
a 

1.81 ± 0.3
b 

17.79 ± 0.9
c 

14 11.95 ± 2.3
a 

4.25 ± 2.53
b 

17.02 ± 5.1
a 

21 11.27 ± 1.9
a 

3.48 ± 0.5
b 

17.15 ± 3.4
a 

28 12.23 ± 2.0
a 

8.10 ± 2.9
b 

18.80 ± 3.4
c 

35 15.40 ± 4.51
a 

11.49 ± 1.74
a 

 

42 17.89 ± 1.72
a 

5.11 ± 1.82
b 

 

Figure 11. Glycogen content (mg/g FW) in Venerupis decussata, Venerupis corrugata and Venerupis 

philippinarum when exposed to increasing salinities (0, 7, 14, 21, 28, 35, 42). Values are the mean of three 

replicates ± standard deviation. For each species, different letters (a-e) represent significant differences 

(p≤0.05) among salinities. 
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When comparing species, significant differences were observed between V. decussata and V. 

philippinarum along the salinity range except for 35 (Table 5). At lowest (7) and highest (28) 

salinities that V. corrugata could tolerate, this species showed significant differences with the 

other two species, but at salinities 14 and 21, this species showed no significant differences 

comparing with V. philippinarum (cf. Table 5). 

 

3.5.3. Glucose content 

  

Figure 12 presents the glucose content for all species, revealing significant differences 

between species, with V. decussata being the species with the highest values. Along the salinity 

gradient all clam species increased the glucose content (cf. Figure 12). V. corrugata and V. 

philippinarum showed a significant decrease in glucose content at the highest salinity tolerated by 

each species (28 and 42, respectively). For these two species was also noticed a significant 

increase at salinity 21 for V. corrugata and at salinity 35 for V. philippinarum (cf. Figure 12). Along 

the salinity range, V. decussata presented no significant differences, except at salinity 0, being the 

glucose content fairly constant along the salinity range (cf. Figure 12).  

 

 

Figure 12. Glucose content (mg/g FW) in Venerupis decussata, Venerupis corrugata and Venerupis 

philippinarum when exposed to increasing salinities (0, 7, 14, 21, 28, 35, 42). Values are the mean of three 

replicates ± standard deviation. For each species, different letters (a-d) represent significant differences 

(p≤0.05) among salinities. 
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Comparing V. decussata and V. philippinarum, significant different behaviour were observed, 

except at salinity 35, where these two species presented the same values (Table 6).  On the 

contrary, at salinity 14 V. corrugata presented significant differences comparing with V. decussata 

and V. philippinarum (cf. Table 6). 

 

Table 6. Glucose content (mg/g FW) in Venerupis decussata, Venerupis philippinarum and Venerupis 

corrugata along the salinity range (0, 7, 14, 21, 28, 35 and 42). Values are the mean of three replicates ± 

standard deviation. For each salinity, different letters (a-c) represent significant differences (p≤0.05) among 

species. 

 

 

 

 

 

 

 

 

 

3.5.1. Lipid peroxidation 

  

Concerning LPO (Figure 13), although the three species showed the same trend, with higher 

values at the lowest and the highest salinities, V. corrugata was the species with higher and V. 

philippinarum was the one with lowest LPO values. The results showed that V. decussata and V. 

philippinarum significantly decreased LPO levels with the increase of salinity up 28, with 

significant differences between salinities 0 and 28 (cf. Figure 13). After this decrease, it was 

observed a slight increase up to salinity 42, but with no significant differences comparing with 

other salinities (≤ 28). V. decussata and V. philippinarum presented a similar pattern although the 

former presented more pronounced differences between salinities. V. corrugata presented an 

abrupt increase at salinity 28, but the statistical analysis showed no significant differences 

comparing the salinity 28 with the other salinities tolerated by this species (7, 14 and 21; cf. Figure 

13).  

 

Salinity V. decussata V. philippinarum V. corrugata 

0 1.25 ± 0.22
a 

0.37 ± 0.03
b 

 

7 1.87 ± 0.24
a 

0.38 ± 0.07
b 

1.18 ± 0.41
a 

14 1.87 ± 0.07
a 

0.51 ± 0.19
b 

1.16 ± 0.32
c 

21 1.68 ± 0.34
a 

0.84 ± 0.22
b 

1.76 ± 0.19
a 

28 1.84 ± 0.37
a 

0.99 ± 0.23
b 

0.94 ± 0.52
a,b 

35 2.17 ± 0.32
a 

2.30 ± 0.47
a 

 

42 2.19 ± 0.42
a 

1.32 ± 0.32
b 
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Between the three clam species, the main differences were noticed at salinities 14, 21 and 28, 

where were found significant differences between the three species (Table 7). On the extreme of 

the salinity range (0, 7 and 35, 42), V. corrugata and V. philippinarum did not show significant 

differences (cf. Table 7). 

 

Table 7. Lipid peroxidation (LPO, nmol/g FW) in Venerupis decussata, Venerupis philippinarum and 

Venerupis corrugata along the salinity range (0, 7, 14, 21, 28, 35 and 42). Values are the mean of three 

replicates ± standard deviation. For each salinity, different letters (a-c) represent significant differences 

(p≤0.05) among species. 

  

Salinity V. decussata V. philippinarum V. corrugata 

0 6.83 ± 1.09
a 

4.12 ± 2.30
a 

 

7 5.95 ± 2.87
a,b 

3.64 ± 1.68
a 

10.53 ± 0.09
c 

14 4.98 ± 0.28
a 

2.44 ± 0.77
b 

7.85 ± 0.00
c 

21 3.04 ± 0.38
a 

1.85 ± 0.23
b 

4.63 ± 0.05
c 

28 2.60 ± 0.24
a 

1.60 ± 0.50
b 

8.82 ± 3.83
c 

35 4.05 ± 1.96
a 

2.63 ± 1.96
a 

 

42 5.70 ± 2.97
a 

3.65 ± 0.33
a 

 

Figure 13. Lipid peroxidation (LPO, nmol/g FW) in Venerupis decussata, Venerupis corrugata and 

Venerupis philippinarum after exposure to a range of salinities (0, 7, 14, 21, 28, 35 and 42). Values are the 

mean of three replicates ± standard deviation. For each species, different letters (a-c) represent 

significant differences (p≤0.05) among salinities. 
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3.5.2. Catalase (CAT) activity 

 

Concerning the activity of CAT (Figure 14), along the salinity exposure gradient, the three 

species presented the same trend. For all species, higher CAT activity was registered at low 

salinities and, at higher salinities, the activity of this enzyme was lower. In V. corrugata, a 

pronounced decrease in CAT activity was noticed from the lowest (7 and 14) to the highest 

salinities (21 and 28) tolerated by this species (cf. Figure 14). V. philippinarum and V. decussata 

demonstrated a similar behaviour, but with V. philippinarum presenting lower values. V. 

decussata and V. philippinarum presented significant differences along all salinity gradient, 

especially between the lowest (≤ 21) and the highest (> 21) salinities (cf. Figure 14). 

 

The main differences between species was observed at salinity 42, where V. philippinarum 

presented a very low CAT activity (Table 8). V. decussata and V. philipinarum showed significant 

differences at salinities 0, 7, 21 and 42, while V. corrugata was significant different from V. 

decussata along the salinity range tolerated by the two species. At salinity 28, the three species 

did not show any significant differences (cf. Table 8). 

 

 

 

 

Figure 14. Catalase (CAT) activity (mU/g FW) in Venerupis decussata, Venerupis corrugata and Venerupis 

philippinarum after exposure to a range of salinities (0, 7, 14, 21, 28, 35 and 42). Values are the mean of 

three replicates ± standard deviation. For each species, different letters (a-d) represent significant 

differences (p≤0.05) among salinities. 
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Table 8. Catalase (CAT) activity (mU/g FW) in Venerupis decussata, Venerupis philippinarum and Venerupis 

corrugata along the salinity range (0, 7, 14, 21, 28, 35 and 42). Values are the mean of three replicates ± 

standard deviation. For each salinity, different letters (a-b) represent significant differences (p≤0.05) among 

species.  

 

 
 
 
 
 
 
 
 

 
3.5.3. Superoxide dismutase (SOD) activity 

 

In the case of activity of SOD enzyme (Figure 15), the three species evidenced the highest 

activity at salinity 14. V. decussata showed a very pronounced increase from lower salinities (0 

and 7) to salinity 14 and also an abrupt decrease to the highest salinities. Figure 15 shows that V. 

philippinarum and V. corrugata followed the same trend of SOD activity than V. decussata, but 

less pronounced. For V. corrugata it was observed the lowest value at salinity 7 and significantly 

higher values at salinities 14, 21 and 28. For V. philippinarum it was noticed a significant increase 

from salinity 0 to salinity 14 and a significant decrease up to salinity 42 (cf. Figure 15). 

Between V. decussata and V. philippinarum significant differences along the salinity range 

were noticed, except for salinity 42 (Table 9). Significant differences were found between V. 

corrugata and V. decussata at all the salinities tolerated by V. corrugata. On the ther hand, V. 

corrugata only showed significant differences from V. philippinarum at salinities 7 and 28 (cf. 

Table 9). 

 

Salinity V. decussata V. philippinarum V. corrugata 

0 33.17 ± 0.90
a 

22.00 ± 1.05
b 

 

7 33.65 ± 9.65
a 

22.97 ± 0.79
b 

38.68 ± 4.52
a 

14 34.54 ± 7.91
a
 24.71 ± 3.34

a,b 
40.45 ± 1.70

a 

21 30.82 ± 2.03
a 

23.89 ± 3.07
b 

27.72 ± 0.34
a,b 

28 26.51 ± 2.41
a 

20.85 ± 9.22
a 

25.54 ± 3.80
a 

35 24.48 ± 0.97
a 

15.88 ± 8.97
a 

 

42 21.82 ± 0.11
a 

0.00 ± 0.11
b 
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Table 9. Superoxide dismutase (SOD) activity (U/g FW) in Venerupis decussata, Venerupis philippinarum and 

Venerupis corrugata along the salinity range (0, 7, 14, 21, 28, 35 and 42). Values are the mean of three 

replicates ± standard deviation. For each salinity, different letters (a-c) represent significant differences 

(p≤0.05) among species. 

Salinity V. decussata V. philippinarum V. corrugata 

0 1.47 ± 0.33
a 

2.90 ± 0.49
b 

 

7 0.51 ± 0.16
a 

5.68 ± 0.64
b 

2.53 ± 0.15
c 

14 25.42 ± 3.45
a 

10.75 ± 2.43
b 

9.39 ± 1.28
b 

21 19.82 ± 2.00
a 

3.79 ± 0.85
b 

6.94 ± 3.26
b 

28 16.47 ± 4.54
a 

3.32 ± 0.74
b 

5.79 ± 0.67
c 

35 10.79 ± 0.69
a 

0.74 ± 0.11
b 

 

42 5.83 ± 0.23
a 

0.64 ± 0.28
a 

 

 

3.5.1. Glutathione S-transferase (GSTs) activity 

 

Regarding the activity of GSTs (Figure 16), the three clam species evidenced significant differences 
along the salinity range, but V. philippinarum showed a more stable trend. Between salinities 14, 
21 and 28 and also between salinities 35 and 42, V. philippinarum showed no significant 
differences. V. decussata and V. corrugata showed more pronounced differences along the 
salinities tested. The first, presented a significant increase from salinity 0 to salinity 21 and a 
significant decrease up to salinity 42 (cf. Figure 16). For V. corrugata the lowest GST value was 

Figure 15. Superoxide Dismutase (SOD) activity for Venerupis decussata, Venerupis corrugata and 

Venerupis philippinarum after an exposure to a salinity range (0, 7, 14, 21, 28, 35 and 42). Values are the 

mean of three replicates ± standard deviation. For each species, different letters (a-g) represent significant 

differences (p≤0.05) among salinities. 
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found at salinity 21 and seems that this species followed the opposite trend of V. decussata, 
showing no significant differences between the lowest salinities tolerated by V. corrugata (7 and 
14), where the values were significantly higher than at salinity 28 (cf. Figure 16). 
 
 
 

 

The data on Table 10, shows significant differences among the three species along the salinity 

range. Comparing V. decussata and V. philippinarum, significant differences were observed at all 

the tested salinities. V. corrugata also showed significant differences comparing with the other 

two species, except at salinity 21, where V. corrugata did not presented significant differences 

comparing with V. decussata (cf. Table 10). 

 

Table 10. Glutathione S-transferase (GST) activity (U/g FW) in Venerupis decussata, Venerupis philippinarum 

and Venerupis corrugata along the salinity range (0, 7, 14, 21, 28, 35 and 42). Values are the mean of three 

replicates ± standard deviation. For each salinity, different letters (a-c) represent significant differences 

(p≤0.05) among species. 

 

  

Salinity V. decussata V. philippinarum V. corrugata 

0 0.45 ± 0.03
a 

0.31 ± 0.01
b 

 

7 0.53 ± 0.07
a 

0.35 ± 0.01
b 

0.88 ± 0.01
c 

14 0.67 ± 0.02
a 

0.39 ± 0.15
b 

0.83 ± 0.02
c 

21 0.78 ± 0.01
a 

0.29 ± 0.09
b 

0.68 ± 0.15
a 

28 0.56 ± 0.03
a 

0.29 ± 0.08
b 

1.04 ± 0.10
c 

35 0.33 ± 0.04
a 

0.25 ± 0.00
b 

 

42 0.30 ± 0.01
a 

0.01 ± 0.03
b 

 

Figure 16. Glutathione S-transferase (GST) activity for Venerupis decussata, Venerupis corrugata and 

Venerupis philippinarum when exposed to salinities (0, 7, 14, 21, 28, 35 and 42). Values are the mean of 

three replicates ± standard deviation. For each species, different letters (a-e) represent significant 

differences (p≤0.05) among salinities. 



 
 

Results   
 

54 
 

3.5.2. Total glutathione (GSHt) 

 

Concerning GSHt content (Figure 17), it was observed that V. corrugata was the species with 

lower levels without significant differences along salinities. However, a smooth decrease from the 

lowest (0 and 7) to the highest (21 and 28) salinities was noticed for this species. V. decussata 

maintained the GSHt content up to salinity 14, showing no significant differences between these 

salinities followed by a significant decrease up to salinity 35 (cf. Figure 17). V. philippinarum 

presented an slight increase up to salinity 21, followed by a decrease to salinity 35 and a 

significant increase to salinity 42. Both V. decussata and V. philippinarum showed a significant 

increase of GSHt content at salinity 42 (cf. Figure 17).  

 

 

Among the three clam species greater significant differences were noticed at salinity 21 (Table 

11).  V. decussata and V. philippinarum showed significant differences at salinities ≥ 21, while V. 

corrugata presented significant differences at salinities 14, 21 and 28, when compared with V. 

philippinarum and, at salinities 14 and 21, comparing with V. decussata (cf. Table 11). 

 

 

 

 
 

Figure 17. Total glutathione (GSHt) content (µmol/g FW) in Venerupis decussata, Venerupis corrugata and 

Venerupis philippinarum. Values are the mean of three replicates ± standard deviation. For each species, 

different letters (a-c) represent significant differences (p≤0.05) among salinities. 
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Table 11. Total glutathione (GSHt) content (µmol/g FW) in Venerupis decussata, Venerupis philippinarum 

and Venerupis corrugata along the salinity range (0, 7, 14, 21, 28, 35 and 42). Values are the mean of three 

replicates ± standard deviation. For each salinity, different letters (a-c) represent significant differences 

(p≤0.05) among species. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.5.1. Reduced glutathione (GSH) 

 

The quantification of GSH (Figure 18) revealed significant differences for three species 

between the tested salinities. V. decussata presented a significant GSH increase up to salinity 14 

and was also noticed a significant decreased from salinity 14 to salinity 28 and an increase up to 

the highest salinity tested (42), without significant differences comparing with other salinities (cf. 

Figure 18). V. philippinarum followed the same trend, except between salinities 21 and 35 where 

the GSH values were constant. V. corrugata presented a decrease at higher salinity, that this 

species tolerates (28), although with no significant differences between the remaining salinities.  

Between V. decussata and V. philippinarum, except at salinity 28, no significant differences 

were found (Table 12). V. corrugata showed significant differences comparing with V. decussata 

at salinities 7 and 14 and when compared with V. philippinarum no significant differences were 

found. At salinity 21 no significant differences between the three species were registered (cf. 

Table 12). 

 

 
 
 
 
 
 
  

Salinity V. decussata V. philippinarum V. corrugata 

0 0.58 ± 0.04
a 

0.50 ± 0.02
a 

 

7 0.57 ± 0.06
a 

0.53 ± 0.02
a 

0.39 ± 0.12
a 

14 0.55 ± 0.01
a 

0.55 ± 0.03
a 

0.39 ± 0.03
b 

21 0.45 ± 0.04
a 

0.56 ± 0.03
b 

0.33 ± 0.05
c 

28 0.39 ± 0.00
a 

0.51 ± 0.02
b 

0.33 ± 0.06
a 

35 0.42 ± 0.01
a 

0.49 ± 0.04
b 

 

42 0.55 ± 0.00
a 

0.60 ± 0.02
b 
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Table 12. Reduced glutathione (GSH) content (µmol/g FW) in Venerupis decussata, Venerupis philippinarum 

and Venerupis corrugata along the salinity range (0, 7, 14, 21, 28, 35 and 42). Values are the mean of three 

replicates ± standard deviation. For each salinity, different letters (a-b) represent significant differences 

(p≤0.05) among species. 

Salinity V. decussata V. philippinarum V. corrugata 

0 0.30 ± 0.06
a 

0.25 ± 0.01
a 

 

7 0.34 ± 0.02
a 

0.29 ± 0.02
b 

0.28 ± 0.01
b 

14 0.41 ± 0.01
a 

0.38 ± 0.09
a,b 

0.30 ± 0.00
b 

21 0.27 ± 0.02
a 

0.28 ±0.00
a 

0.28 ± 0.06
a 

28 0.22 ± 0.01
a 

0.27 ± 0.03
b 

0.18 ± 0.10
a,b 

35 0.28 ± 0.04
a 

0.27 ± 0.02
a 

 

42 0.30 ± 0.07
a 

0.31 ± 0.03
a 

 

 

 

3.5.1. Ratio of reduced glutathione (GSH) / oxidized glutathione (GSSG) 

 

The results concerning the ratio between GSH and GSSG, showed significantly higher values at 

salinity 14 for V. decussata and V. philippinarum, with significant differences between the 

remaining salinities (Figure 19).  V. corrugata demonstrated a different behaviour, comparing with 

the two other species, presenting the higher GSH/GSSG value at salinity 21, followed by an abrupt 

and significant decrease up to salinity 28 (the highest salinity tolerated by this species). 

 

Figure 18. Reduced glutathione (GSH) content (µmol/g FW) for Venerupis decussata, Venerupis corrugata 

and Venerupis philippinarum. Values are the mean of three replicates ± standard deviation. For each 

species, different letters (a-d) represent significant differences (p≤0.05) among salinities. 



 
 

  Results 

57 
 

 

Comparing the three species under the same salinity range, significant differences were only 

detected at salinities 21 and 28, where V. corrugata had a different behaviour from the two other 

species, presenting the highest value at salinity 21 and an abrupt decrease up to salinity 28 (cf. 

Figure 19 and Table 13). 

 

Table 13. GSH/GSSG ratio in Venerupis decussata, Venerupis philippinarum and Venerupis corrugata along 

the salinity range (0, 7, 14, 21, 28, 35 and 42). Values are the mean of three replicates ± standard deviation. 

For each salinity, different letters (a-b) represent significant difference (p≤0.05) among species. 

Salinity V. decussata V. philippinarum V. corrugata 

0 1.22 ± 0.62
a 

0.99 ± 0.03
a 

 

7 1.56 ± 0.41
a 

1.26 ± 0.29
a 

2.64 ± 2.21
a 

14 2.91 ± 0.58
a 

2.66 ± 1.40
a 

3.48 ± 1.04
a 

21 1.63 ± 0.70
a 

1.01 ± 0.10
a 

4.43 ± 2.06
b 

28 1.28 ± 0.12
a 

1.16 ± 0.21
a 

0.62 ± 0.16
b 

35 1.69 ± 0.23
a 

1.27 ± 0.25
a 

 

42 1.30 ± 0.66
a 

1.07 ± 0.23
a 

 

 

 

  

Figure 19. GSH/GSSG ratio for Venerupis decussata, Venerupis corrugata and Venerupis philippinarum. 

Values are the mean of three replicates ± standard deviation. For each species, different letters (a-d) 

represent significant differences (p≤0.05) among salinities. 
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3.6. Nuclear magnetic resonance (NMR) spectroscopy 

 

3.6.1. Aqueous extracts 

 

 

 

Figure 20. 
1
H Nuclear Magnetic Resonance (NMR) spectra of aqueous extracts obtained from Venerupis 

philippinarum exposed to different salinities: A: 0, B: 7, C: 28, D: 42. Each spectrum represents the mean of 

the replicates (salinity 0, n=1; salinity 7, n=2; salinity 28, n=3; salinity 42, n=3). Legend: 1, 2, 3, isoleucine 

(Ile), leucine (Leu) and valine (Val); 4, ethanol (extraction solvent); 5, threonine (Thr)/lactate; 6, alanine 

(Ala); 7, arginine (Arg); 8, glutamine (Gln); 9 acetoacetate (tentative); 10, glutamate (Glu); 11, succinate; 12, 

asparagine (Asn); 13, betaine; 14, taurine; 15, hypotaurine; 16, glycine (Gly); 17, homarine; 18, glucose (an 

anomer); 19, glycogen (anomeric protons); 20, uridine; 21, inosine/adenosine; 22, tyrosine (Tyr); 23, 

phenylalanine (Phe); 24, hypoxanthine; 25, formate. Arrows indicate some of the differences noted by 

visual inspection of the spectra. 
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Figure 20 shows representative 1H NMR spectra obtained for V. philippinarum species, when 

exposed to salinities 0, 7, 28 and 42. Due to the limited number of replicates, comparison of these 

spectra should be considered as exploratory. However, apparent spectral changes between 

different salinities may be noted by visual inspection of the spectra (cf. Figure 20), such as those 

regarding threonine (peak 5), alanine (peak 6), acetoacetate (peak 9), succinate (peak 11), glucose 

and glycogen (peaks 18 and 19) and formate (peak 25). Table 14 lists the variations noted in the 

integrals of some metabolites, at low salinities (0 and 7) and at the highest salinity (42), compared 

to 28, although most variations are qualitative at this stage and only formic acid showed a 

statistically relevant change. Regarding amino acids, deviation from the ideal salinity 28 (either 

towards low or high salinity) seems to be associated with generally higher amino acid levels (Thr, 

Ala, Glu, Gln, Gly, Tyr), with the exceptions of Asn (decreased non-specifically at three salinities) 

and Arg, which showed an apparently specific response to low (↓ Arg) and high (↑ Arg) salinities. In 

relation to organic acids, lower (0 and 7) and higher (42) salinities seem accompanied by 

increased acetoacetic acid (acetoacetate) and succinic acids (succinate) and a decrease for 

salinities 7 and 42 in formic acid (formate), the latter becoming significant at 42 (p = 0.00121). 

Other changes seem to be mostly non-specific to salinity, such as the decreases in taurine, 

betaine, glucose and glycogen and the increase in adenosine/inosine. On the other hand, 

apparent salinity-specific changes are noted either in terms of different magnitudes of change 

(namely for formic acid, hypotaurine and homarine) or of decrease or increase of change (for 

uridine, hypoxanthine and Arg, as mentioned above). 
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Table 14. Changes in metabolites as viewed by 
1
H NMR spectroscopy of aqueous V. philippinarum extracts 

exposed at different salinities (0, 7 and 42) comparing to organisms of the same species exposed at salinity 

28. 

Labeling 
numbers 

Compound 
δ/ppm 

(multiplicity)
a
 

Variation direction and magnitude (%) 
vs. Salinity 28 (n =3) 

 
Salinity 0 (n=1)            Salinity 7 (n=2)        Salinity 42

 
(n=3) 

 Amino acids     

1 Leucine 0.96 (t) ↓ (- 21.7 ± 12.5) ↑ ↑ 

2 Isoleucine 1.01 (d) ↓ ↑ ↑ 

3 Valine 1.04 (d) ↓ ↑ (19.5 ± 8.5) ↑ (20.6 ± 9.3) 

5 Threonine/Lactate 1.34 (d) ↑ (15.2 ± 1.2) ↑ (11.1 ± 1.2) ↑ 

6 Alanine 1.49 (d) ↑ ↑ (61.1 ± 25.6) ↑ (31.9 ± 11.8) 

7 Arginnine 1.92 (m) ↓ ↓ ↑ 

10 Glutamate 2.35 (m) ↑ (15.8 ± 5.5) ↑ (55.8 ± 15.5) ↑ 

8 Glutamine 2.43 (m) ↑ (26.0 ± 3.6) ↑ (68.0 ± 8.0) ↑ (34.4 ± 15.2) 

12 Asparagine 2.81 (dd) ↓ (- 23.5 ± 7.6) ↓ ↓ 

16 Glycine 3.57 (s) ↑ ↑ ↑ (55.3 ± 19.9) 

22 Tyrosine 6.91 (d) ↑ ↑ ↑ (25.8 ± 9.9) 

23 Phenylalanine 7.38 (m) ↓ ↑ ↑ 

 Organic acids     

9 Acetoacetate
d
 2.27 (s) ↑ ↑ (71.4 ± 45.0) ↑ 

11 Succinate 2.41 (s) ↑ (699.7 ± 10.9) ↑ (897.6 ± 88.0) ↑ (411.7 ± 130.9) 

25 Formate 8.46 (s) ↑ (103.2 ± 5.8) ↓ ↓ (- 80.2 ± 15.9)
b
 

 Osmolytes     

15 Hypotaurine 2.66 (t) ↑ ↑ (106.7 ± 31.6) ↑ 

14 Taurine 3.43 (t) ↓ (- 32.1 ± 12.7) ↓ ↓ 

13 Betaine 3.91 (s) ↓ (- 20.3 ± 11.2) ↓ ↓ 

17 
Homarine (N- 

methylpicolinic acid) 
8.72 (d) ↓ ↑ ↑ (46.1 ± 17.9) 

 Carbohydrates     

18 Glucose 5.25 (d) ↓ (- 91.8 ± 15.2) ↓ (- 76.7 ± 22.7) ↓ 

19 Glycogen 5.42 (br) ↓ (- 95.2 ± 17.2) ↓ (- 76.6 ± 34.0) ↓ (- 48.4 ± 27.1) 

 Others     

20 Uridine 5.92 (m) ↑ (103.6 ± 9.2) ↑ ↓ 

21 Adenosine/inosine 6.10 (d) ↑ (40.0 ± 11.2) ↑ ↑ 

24 Hypoxanthine 8.21 (s) ↓ ↑ ↓ 

 Unassigned
c
     

 Un1 1.29 (t) ↑ ↓ ↓ (-65.4 ± 35.7) 

 Un2 2.25 (s) ↑ ↑ (26.7 ± 10.1) ↑ (21.1 ± 12.3) 

 Un3 2.26 (s) ↑ ↑ (59.4 ± 28.0) ↑ 

 Un4 3.03 (t) ↑ ↑ ↓ 

 Un5 4.37 (s) ↑ ↑ ↑ 

Variations indicated with a single arrow should, at this stage, be regarded as qualitative only; for 

the remaining variations, the corresponding magnitude is indicated, although large deviations are noted 

(except for formate), probably due to biological variability. 
a 

Chemical shifts shown correspond to signals 

used for integration, in some cases part of the full spin system; s, singlet; d, doublet; t, triplet; m, multiplet; 

dd, doublet of doublets; br, broad; Un, unassigned resonance. 
b
 p = 0.00121. 

c 
Still unassigned NMR peaks. 

d 

Tentative assignment. 
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Figure 21 shows the representative 1H NMR spectra obtained for the V. decussata, V. 

corrugata and V. philippinarum species, when exposed to salinity 28. Comparison of these spectra 

is still exploratory, being required larger numbers of replicates in order to confirm these results. 

However, apparent spectral changes between the three species may be noted by visual inspection 

of the spectra (cf. Figure 21), such as those regarding glutamine (peak 8), acetoacetate (peak 9), 

succinate (peak 11), glucose and glycogen (peaks 18 and 19) and formate (peak 25). Regarding 

amino acids, V. decussata seems to be associated with generally higher amino acid levels (Leu, Ile, 

Val, Glu, Tyr). In relation to organic acids, V. decussata also showed to be the species with higher 

levels of acetoacetic (peack 9) and succinic acid (peak 11). Other changes seem to be mostly non-

Figure 21. 
1
H Nuclear Magnetic Resonance (NMR) spectra of aqueous extracts obtained from Venerupis 

decussata (A), Venerupis philippinarum (B) and Venerupis corrugata (C), exposed to salinity 28. Each  

spectrum represents the mean of three replicates. Legend: 1, 2, 3, isoleucine (Ile), leucine (Leu) and valine 

(Val); 4, ethanol (extraction solvent); 5, threonine; 6, alanine (Ala); 7, arginine (Arg); 8, glutamine (Gln); 9 

acetoacetate (tentative); 10, glutamate (Glu); 11, succinate; 12, asparagine (Asn); 13, betaine; 14, taurine; 

15, hypotaurine; 16, glycine (Gly); 17, homarine; 18, glucose (an anomer); 19, glycogen (anomeric protons); 

20, uridine; 21, inosine/adenosine; 22, tyrosine (Tyr); 23, phenylalanine (Phe); 24, hypoxanthine; 25, 

formate. Arrows indicate some of the differences noted by visual inspection of the spectra. 
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specific of species, such as the differences in taurine, betaine, glucose and glycogen and in 

adenosine/inosine. On the other hand, apparent species-specific changes are noted in terms of 

different magnitudes of change or of direction of change (decrease or increase). Table 15 lists the 

variations noted in the integrals of some metabolites, of V. decussata and V. corrugata compared 

with V. philippinarum, although most variations are qualitative at this stage and any statistically 

relevant change was noticed. Regarding amino acids, V. decussata seems to show generally higher 

amino acids levels (Leu, Ile, Val, Thr, Glu, Gln, Gly, Tyr, Phe), while V. corrugata seems to present 

mostly lower amino acids levels (Leu, Ile, Val, Thr, Asn, Tyr, Phe). Glu (↑), Gln (↑), Asn (↓) and Gly 

(↑) present the same qualitative variation in V. decussata and V. corrugata. In relation to organic 

acids, only formic acid showed lower levels in V. decussata and an increase was reported in 

acetoacetic and succinic acids in both species, comparing with V. philippinarum.  Osmolytes 

presented, in general, a decrease in V. decussata (taurine, betaine and homarine) and an increase 

in V. corrugata (hypotaurine, taurine and homarine). Glucose, uridinine, adenosine and 

hypoxanthine showed the same variation (↓) in V. decussata and V. corrugata. 
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Table 15. Changes in metabolites as viewed by 
1
H NMR spectroscopy of aqueous extracts of Venerupis 

decussata and Venerupis corrugata comparing with Venerupis philippinarum, all exposed at salinity 28. 

Labeling 
numbers 

Compound 
δ/ppm 

(multiplicity)
a
 

Variation direction and magnitude (%) 
vs. V. philippinarum (n =3) 

 
V. decussata (n=3)       V. corrugata

 
(n=3) 

 Amino acids    

1 Leucine 0.96 (t) ↑ ↓ 

2 Isoleucine 1.01 (d) ↑  ↓ 

3 Valine 1.04 (d) ↑ ↓ 

5 Threonine/Lactate 1.34 (d) ↑ ↓ 

6 Alanine 1.49 (d) ↓ ↑ (191.8 ± 40.6) 

7 Arginnine 1.92 (m) ↓ ↑ 

10 Glutamate 2.35 (m) ↑ ↑ 

8 Glutamine 2.43 (m) ↑ ↑ 

12 Asparagine 2.81 (dd) ↓ ↓ 

16 Glycine 3.57 (s) ↑ (32.0 ± 18.8) ↑ (40.9 ± 18.3) 

22 Tyrosine 6.91 (d) ↑ ↓ 

23 Phenylalanine 7.38 (m) ↑ ↓ 

 Organic acids    

9 Acetoacetate
c
 2.27 (s) ↑ ↑ 

11 Succinate 2.41 (s) ↑ ↑ (173.2 ± 87.7) 

25 Formate 8.46 (s) ↓ ↑ 

 Osmolytes    

15 Hypotaurine 2.66 (t) ↑ (248.0 ± 15.0) ↑ (149.7 ± 31.2) 

14 Taurine 3.43 (t) ↓ ↑ 

13 Betaine 3.91 (s) ↓ ↓ 

17 
Homarine (N- 

methylpicolinic acid) 
8.72 (d) ↓ ↑ 

 Carbohydrates    

18 Glucose 5.25 (d) ↓ ↓ 

 Others    

20 Uridine 5.92 (m) ↓ ↓ 

21 Adenosine/inosine 6.10 (d) ↓ ↓ 

24 Hypoxanthine 8.21 (s) ↓ ↓ 

 Unassigned
b
    

 Un1 1.29 (t) ↓ ↑ 

 Un2 2.25 (s) ↑ ↑ 

 Un3 2.26 (s) ↓ ↑ 

 Un4 3.03 (t) ↑  ↑  

 Un5 4.37 (s) ↓ ↑ 

Variations indicated with a single arrow should, at this stage, be regarded as qualitative only; for 

the remaining variations, the corresponding magnitude is indicated, although large deviations are, probably 

due to biological variability. 
a 

Chemical shifts shown correspond to signals used for integration, in some 

cases part of the full spin system; s, singlet; d, doublet; t, triplet; m, multiplet; dd, doublet of doublets; br, 

broad; Un, unassigned resonance . 
b 

Still unassigned NMR peaks. 
c 
Tentative assignment. 
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3.6.2. Lipid extracts 

 

Figure 22 shows the representative 1H NMR spectra of lipid extracts obtained for V. 

philippinarum, when exposed to salinities 0, 7, 28 and 42. Due to the limited number of replicates 

available, at this stage, comparison of these spectra should be considered as exploratory. 

However, apparent spectral changes between different salinities may be noted by visual 

inspection of the spectra (cf. Figure 22). C26H3, C27H3 and C21H3 in cholesterol (peaks 2, 3 and 4) 

seemed to be associated with higher levels at different salinities from 28. Changes in (CH2)n in 

fatty acids (peak 6), comparatively to the amount presented at salinity 28 (Figure 22 C) was 

apparently related with higher amount at lower salinities (0 and 7, figures 22 A and B, 

respectively). A large increase of -CH2-CH=CH- environments (peak 10) was noticed at salinity 0 

(Figure 23A), comparatively to salinity 28 (Figure 22C). At salinity 7 (Figure 22B) an increase in 

intensity of the -CH2CH2COOC- resonance (peak 9) and C1H2, C(3)H2, in glycerol (peaks 15 and 16), 

were observed, when compared with salinity 28.  

The representative 1H NMR spectra obtained for the V. decussata, V. corrugata and V. 

philippinarum species, when exposed to salinity 28 are showed in the Figure 23. Comparison of 

these spectra is still exploratory, being required larger numbers of replicates in order to confront 

the herein observed results. Apparently, An increase in the resonance of (CH2)n, compared to the 

CH3 peak indicates an increase in average chain length if the fatty acids being produced, 

differentiating V. philippinarum (Figure 23B) from V. decussata and V. corrugata (Figures 23 A and 

C, respectively), showing lower levels in V. philippinarum. On the other hand, the obtained results 

suggested that V. corrugata differ itself from the other two species, revealing higher levels of -

CH=CHCH2-CH=CH environments in fatty acids (peak 12) and -CH=CH-, C(2)H in glycerol (peaks 17 

and 18). An increase in unsaturated environments compared to CH3 indicates a change in the 

average unsatuiration degree of the fatty acids being produced. 

 

 



 
 

  Results 

65 
 

 

 
 
  

Figure 22. 
1
H Nuclear Magnetic Resonance (NMR) spectra of lipid extracts obtained from Venerupis 

philippinarum exposed to different salinities: A: 0, B: 7, C: 28, D: 42. Each spectrum represents the mean of 

the replicates (salinity 0, n=1; salinity 7, n=2; salinity 28, n=3; salinity 42, n=3). Legend: 1, C18H3 in 

cholesterol; 2, 3, 4, C26H3, C27H3, C21H3 in cholesterol; 5, C19H3 in cholesterol; 6, (CH2)n in fatty acids; 7, =CH-

CH2-CH2(CH2) in  fatty acids; 8, CO-CH2-CH2 in fatty acids; 9, -CH2CH2COOC- in fatty acids; 10, -CH2-CH=CH- in 

fatty acids; 11,  CH2-COOC in fatty acids; 12, -CH=CHCH2-CH=CH in fatty acids; 13, phospholipids choline 

head group N(CH3)3; 14, methanol (extraction solvent); 15, 16, C1H2, C3H2 in glycerol; 17, 18, -CH=CH-, C2H in 

glycerol; 19, still unassigned NMR peaks. Arrows indicate some metabolites where differences were noted 

by visual inspection of the spectra. 
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Figure 23. 
1
H Nuclear Magnetic Resonance (NMR) spectra of lipid extracts obtained from Venerupis  

decussata (A), Venerupis philippinarum (B) and Venerupis corrugata (C), exposed to salinity 28. Each 

spectrum represents the mean of three replicates. Legend: 1, C18H3 in cholesterol; 2, 3, 4, C26H3, C27H3, C21H3 

in cholesterol; 5, C19H3 in cholesterol; 6, (CH2)n in fatty acids; 7, =CH-CH2-CH2(CH2) in  fatty acids; 8, CO-CH2-

CH2 in fatty acids; 9, -CH2CH2COOC- in fatty acids; 10, -CH2-CH=CH- in fatty acids; 11,  CH2-COOC in fatty 

acids; 12, -CH=CHCH2-CH=CH in fatty acids; 13, phospholipids choline head group N(CH3)3; 14, methanol 

(extraction solvent); 15, 16, C1H2, C3H2 in glycerol; 17, 18, -CH=CH-, C2H in glycerol; 19, still unassigned NMR 

peaks. Arrows indicate some of the differences noted by visual inspection of the spectra.  
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3.7. Data analysis 

 

The PCO analysis (Figure 24) revealed that PCO1 explained 37.9 % of the total variation among 

conditions, separating the three species, with V. corrugata in the negative axis spaced from the 

other two species, whose most conditions were in the positive axis. PCO2 described 19.5 % of the 

total variation separating the lower (in the negative axis) from the higher salinity conditions (in 

the positive axis). The physiological and biochemical descriptors superimposed on PCO, showed 

that glycogen presented high positive correlation with V. corrugata at salinities 21 and 28. 

Lowest salinities for V. corrugata (7 and 14) and salinity 21 for V. decussata showed strong 

correlation with the activity of the enzymes GST and CAT. The lowest salinities for V. decussata (0 

and 7) and for V. philippinarum, (7, 14 and 21, with the exception of salinity 0) showed strong 

correlation with the antioxidants GSHt and GSH (cf. Figure 24). 

 

Figure 24. Centroids ordination diagram (PCO, Principal Coordinates analysis) based on the physiological 

and biochemical responses of the three species when exposed to different salinities. Pearson correlation 

vectors are superimposed as supplementary variables, namely physiological and biochemical data (r > 

0.75). Legend: PCO1, first principal component; PCO2, second principal component; D, Venerupis 

decussata; C, Venerupis corrugata; P, Venerupis philippinarum; numbers (0, 7, 14, 21, 28, 35 and 42) 

correspond to the tested salinities; Glyc, glycogen; GST, glutathione-S-transferase; CAT, catalase; GSH, 

reduced glutathione; GSHt, total glutathione. 
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The corresponding PCA for aqueous extracts (Figure 25A) showed the clear separation 

between V. corrugata and the other two species at salinity 28 (in black) on PC2. It was also 

possible to observe a separation of samples of V. philippinarum at salinity 42 (grey squares) from 

salinity 28 on PC1. The PLS-DA scores plot (Figure 25B) confirm the separation between V. 

corrugata and both, V. decussata and V. philippinarum at salinity 28 on LV2, with same 

separation. Although the separation of salinities 42 and 28 in V. philippinarum was less clear, it 

was still possible to observe this separation on LV2. Any other clear separation was detected. 

 

 

 

 

Figure 25. MVA including all aqueous extracts tested in NMR spectroscopy, UV-scaled data.  A, PCA scores 

plot; B, PLS-DA scores plot (R
2
x=0.418; R

2
y=0.373 Q

2
=0.114). Legend: PC1, first component of PCA; PC2, 

second component of PCA; LV1, first component of PLS-DA; LV2, second component of PLS-DA; Vd, 

Venerupis decussata; Vp, Venerupis philippinarum; Vc, Venerupis corrugata; S0, S7, S28 and S42 

correspond to salinities 0, 7, 28 and 42 respectively. 



 
 

  Results 

69 
 

The MVA described for lipid extracts did not show any clear separation between the tested 

conditions. The corresponding PCA (Figure 26A) only suggested a separation between the salinity 

42 in V. philippinarum (grey squares) and the other salinities on PC2. In PLS-DA scores plot (Figure 

26B) the same separation was clearer on LV1 and it emphasized the separation of the salinity 42 

from de salinity 7 in the same species. 

 

 

  

  

Figure 26. MVA including all lipid extracts tested in NMR spectroscopy, UV-scaled data.  A, PCA scores plot; 

B, PLS-DA scores plot (R
2
x=0.409; R

2
y=0.3 Q

2
=-0.008). Legend: PC1, first component of PCA; PC2, second 

component of PCA; LV1, first component of PLS-DA; LV2, second component of PLS-DA; Vd, Venerupis 

decussata; Vp, Venerupis philippinarum; Vc, Venerupis corrugata; S0, S7, S28 and S42 correspond to 

salinities 0, 7, 28 and 42 respectively. 



 
 

Results   
 

70 
 

  



 

 
 

 

 

 

  

4. Discussion 
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4.1. Context 

 

Climate changes have been forcing organisms to rapidly adapt to a new conditions on the 

environment. These changes may be related to strong precipitation events with hyposaline stress 

conditions or associated to longer hot seasons, causing an increase in salinity. Organisms living in 

estuaries, such as bivalves, have constantly to deal with these fluctuations on salinity and indeed, 

the alterations will be more pronounced and longer with worsening on the climate changes. 

Since the salinity is one of the most important abiotic factors that affect marine organisms 

limiting their spatial distribution in the environment (Widdows and Shick, 1985) and having high 

influence in the fishery and culture of bivalves (Matozzo et al., 2007; Hamer et al., 2008), it is very 

important to understand how salinity changes affect aquatic organisms. When these abiotic 

stressors are combined with biotic, like biological invasions, the adaptations to the new 

environment can be more difficult to the native species. 

Thus, the present study aimed to compare the survival capacity and the physiological, 

biochemical and metabolomic alterations of three clams (Venerupis corrugata, V. decussata and 

V. philippinarum) inhabiting the same coastal area, exposed to a range of salinities (0, 7, 14, 21, 

28, 35 and 42) with the objective of understand the effects of salinity shifts on these species.  

 

4.2.  Mortality  

 

The results obtained showed that the native species V. corrugata was the species with lower 

survival capacity, presenting 100 % of mortality rates at the extremes of salinity tested (0, 35 and 

42) and higher mortality percentage at other salinities (7, 14, 21, 28) when comparing with other 

two species, V. decussata and V. philippinarum. The lowest percentage of mortality for this 

species was detected at salinity 21, which may indicate optimal conditions for V. corrugata 

survival. With 100 % of survival at all salinities, except at 0, V. decussata, one of the native species 

in the study area, was the species more capable to tolerate a wide salinity range. With exception 

to lower salinities tested (0 and 7), V. philippinarum also showed a great capacity to survive under 

different salt concentrations, presenting 0 % of mortality at salinities higher than 7.  

At this stage, it becomes clear that the three species used in this study have different 

performances when under salinity stress. The three species showed different tolerances to 

salinity changes, presenting different mortality rates, especially at low salinities. These differences 
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may be explained by the osmotic, physiological, biochemical and metabolic alterations provoked 

in each species, as will be discussed. 

 

4.3.  Osmotic balance 

 

Euryhaline organisms, those capable of living at different salinities, present a life-dependent 

on several adaptations. Osmoregulation based on active ion transport mechanisms is one of these 

adaptations (Berguer and Kharazova, 1997). Wu et al. (2013) reported that hypo osmotic stress 

can significantly reduce food intake, driving organisms to severe starvation. 

The survival of marine organisms, namely bivalves, is dependent on osmotic balance 

(Bianchini et al., 2008; Romano and Zeng, 2012) and this balance is mainly achieved with Na in 

marine environments. With the obtained results it is possible to observe that in V. decussata, V. 

corrugata and V. philippinarum intracellular Na levels were strongly dependent on the external 

salinity in the range between 0 and 42, increasing along the increasing salinity exposure. Berger 

and Kharazova (1997) demonstrated that in V. philippinarum Na concentrations varied according 

to the alterations on salt concentration opposed to K levels, which maintained quite constantly at 

the same considered salinity gradient. The results obtained in the present study also showed a 

difference between Na and K concentrations. V. decussata and V. philippinarum presented 

constant levels of K along the entire salinity range, while the levels of this ion in V. corrugata 

increased along with the increase of salt concentration. Like Berger and Kharazova (1997) 

proposed, these results suggested that Na plays an important key role in osmotic balance on the 

tested organisms, since the rise of Na concentrations seems to be a mechanism to protect cells 

from the influence of extremely high salinities. The same authors suggested that Na ions diffuse 

into the cell when the salinity is high, and when salinity decreases Na is actively removed. At low 

salinities, variation in Na concentrations are probably insufficient to maintain osmotic regulation. 

The higher levels of Ca at low salinities (0, 7 and 14) in V. decussata and V. philippinarum may 

indicate that osmotic regulation is compensated with this ion instead of Na. V. corrugata did not 

follow the trend of the other two species. The levels of Ca at the lowest salinity that this species 

can tolerate (7) may justify the imbalance of osmoregulation, since the mechanisms developed by 

this species are not capable to compensate the low values of Na. Oxidized products, resulting 

from oxidation of phospholipids membranes, leads to the permeability of the membranes, making 

easier the input of Ca ions, which may conduct to cellular death (Manduzio et al., 2005). Thus, the 
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higher levels of Ca registered for V. decussata and V. philippinarum at lower salinities (0 and 7), 

could represent a higher oxidative stress at these salinities. 

Works conducted by Elston et al. (2003) boosted the hypothesis that low salinity (10) forced 

V. philippinarum to strongly close their shells as a defence response to the changes in the 

surrounding environment. Shumway (1977a) also concluded that the concentrations of Na, Ca and 

Mg in hemolymph of bivalves are similar to the surrounding environment as long as the organisms 

maintain their valves opened. The same author demonstrated that the tested bivalves close their 

valves when the salinity dramatically decreases and turn to open when the salinity is tolerable to 

them. In the same study, when the seawater varied from 100 % to 30 %, finishing the cycle after 

12 h when the sweater return to 100 %, on the second cycle the levels of Na, Ca and Mg stopped 

to follow the percentage of seawater. This may indicate that if the salt concentrations were 

maintained lower for a longer period of time, probably the clams would not be able to maintain 

their valves closed and at the same time, keep a balanced osmoregulation. The present thesis 

further demonstrated that Mg levels were proportional to the salinity range used. In other words, 

the concentration of Mg in clams was increased along salinity exposure, being similar to the 

surrounding environment. This data confirm that the three species under the present study, are 

osmoconformers.  

In fact, osmoregulation is a high-cost energy process (Nelson and Cox, 2005) and marine 

organisms, namely bivalves, under stressful conditions, like changes in surrounding salt 

concentrations, are forced to spend more energy resources trying to maintain their euryhaline 

characteristics. According to Yancey (2005), some osmoconformer organisms are able to balance 

their osmotic pressure using organic osmolytes. The results obtained by 1H NMR spectroscopy in 

the present study, showed an increase of isoleucine, leucine and valine, which are also 

aminoacids, at salinity 7, comparatively to salinity 28. However, the obtained results showed that 

taurine and betaine decreased at lower (7) and higher salinities (42) comparing to salinity 28 in V. 

philippinarum samples analysed on NMR approach, which do not comply with the regulation of 

osmoregulation achieved by osmolytes. These declines are in agreement with Elston et al. (2003) 

works, which also found that the decrease in amino acids was one of the stressful metabolic 

alterations of V. philippinarum, when exposed to an altered environment with lower salt 

concentrations.  
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4.4. Physiological performance 

 

The decrease of functional activity is the most usual reaction of marine molluscs to changes in 

salinity (Berger and Kharazova, 1997). Kim et al. (2001) suggested that the shell closure and 

consequent reduction of oxygen comsumption rate, works as a defence mechanism conserving 

energy somewhat, a way of reducing energy expenditure on respiration processes and activity 

when the organisms were exposed to lower salinities. This defence mechanism can explain the 

results obtained regarding energy reserves in the three species. In fact, the present thesis 

revealed that the glycogen and glucose content in V. philippinarum were lower at salinities below 

28, which may indicate that this species protected itself from lower salinities, being forced to call 

up reserve energies. In V. decussata the differences in energy content between lower (< 28) and 

higher salinities (> 28) were less significant than in V. philippinarum. This may indicate that V. 

philippinarum close their valves sooner than V. decussata when the surrounding environment 

decreases the concentration on salt. On the other hand, V. corrugata was not responsive in terms 

of glycogen content. The glycogen content was maintained along the range of salinities tolerated 

by V. corrugata, which may indicate that this species keeps the normal filtration, with no need to 

resort energy reserves, like glycogen. However, the glucose content was significantly lower at 

salinities below and above 21 in the pattern presented for V. corrugata. It is possible that this 

species was appealing to glucose reserves when the environmental conditions were not 

favourable to it normal biological functioning.   

The results obtained evidenced that clams mobilize stored energy (glycogen) and may also 

use protein breakdown to cope with extreme salinity levels. The valve closure not only induces 

hypoxiabut also reduces food intake as well. At a limiting situation, energy resources are 

exhausted and osmotic imbalance may arise, inducing water influx into the cells, and causing 

swelling and cellular rupture (Coughlan et al., 2009). These effects may explain the high mortality 

of V. philippinarum at 0 and 7, of V. decussata at salinity 0 and of V. corrugata at low salinities (0, 

7 and 14) observed in the present work, revealing that the three species have different limit for 

tolerance to changes in salt concentrations. Also Patrick et al. (2005) and Anacleto et al. (2013) 

showed that low glycogen contents were associated with mortality events. 

Although clams can close their shell valves during long periods of time, this behaviour will 

induce hypoxia (Kim et al., 2001), which will have significant effects on cell metabolism. Low O2 

concentrations in cells will decrease the oxidative phosphorylation of ATP, which will induce the 

accumulation of metabolites that feed the respiratory chain and the activation of alternative 
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metabolic pathways of ATP production. Since these routes produce ATP less efficiently than 

oxidative phosphorylation and osmoregulation is an energetically expensive process, glycogen 

stores have to be rapidly consumed and cells have to resort to protein catabolism as an 

alternative source of energy.  

Structural and functional changes in proteins are considered stress-related effects as well 

(Risso-de Faverney et al., 2000). In fact, our results showed that protein content is increasingly 

affected by salinity decrease. The results on the diagrams of protein expression, showed that the 

majority of variations occur at lower salinities (≤ 21) in the three species and this can be related to 

a decrease in the expression of new proteins, a higher breakdown or both. The results herein 

presented revealed that most alterations in protein expression at salinities < 28 for the three 

species under analysis, are represented by their repression. Navarro and Gonzalez (1998), in 

contrast, reported that when the scallop Argopecten purpuratus was transferred to a lower 

salinity (they expanded from south to centre and north of Chile, where salinity is lower) an 

increase of protein catabolism and the subsequent increase of amino acids were observed.  

The lower activity of the electron respiratory chain decreases the oxidation of amino acids 

obtained by protein catabolism, leading to their accumulation, or the accumulation of their 

degradation intermediate metabolites, such as succinic acid (in isoleucine, threonine and 

methionine metabolism) or formic acid (in serine metabolism). This is consistent with the NMR 

results of V. philippinarum exposed to 7 and 42, which have shown higher levels of most amino 

acids and their oxidation intermediates (succinic and formic acids), compared to control (28). An 

exception is made for asparagine but this amino acid can be converted into glutamate and 

glutamine (which are increased) with ATP production. Other amino acids (leucine, lysine, 

phenylalanine, tryptophan and tyrosine) may be degraded into ketone bodies (Nelson and Cox, 

2005). This is confirmed in the present work by the observed increase in acetoacetic acid with 

formation of glutamate (seen to increase). Liu et al. (2011b) reported that alanine and succinic 

acid are responsible for most of the end products of glucose and amino acid breakdown in 

anaerobic metabolism. Pierce et al. (1992) also found elevated levels of alanine in salinity-stressed 

bivalves. Thus, V. philippinarum also seems to obtain energy by anaerobic metabolism. The results 

obtained evidenced that low salinity appears to increase nucleotides in V. philippinarum. Indeed, 

hypoxanthine, product of adenine/inosine (purine) metabolism and uridine (pyrimidine) increased 

at lower (7) salinity, compared to control (28). Dykens and Shick (1988) suggested that anoxia 

tolerance may be achieved by the predominance of xanthine dehydrogenase over xanthine 

oxidase activity, leading to hypoxanthine accumulation. Uridine increase was also reported to be 
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related to hypoxia (Harkness and Lund, 1983). Thus, both hypoxanthine and uridine changes 

suggest that at low salinity V. philippinarum experiences anoxic conditions, which may arise from 

the closure of shell valves as a mechanism to tolerate salinity. 

The ability of these animals to sustain prolonged periods of hypoxia is linked with a 

coordinated suppression of many metabolic processes including enzymes, protein synthesis, and 

the movement of ions across membranes. Kim et al. (2001) suggested that reduced OCR, due to 

shell closure in the Manila clam, could function as a way of “energy conservation” to a certain 

extent by reducing energy expenditure on respiration and activity when exposed to lower 

salinities. This mechanism can explain why the three species analysed in the present study did not 

decrease the energy reserves, such as glycogen, when exposed to lower salinities compared to 

glycogen content found at the “optimal salinity conditions” (between 21 and 28). Besides 

glycogen be considered the main energy reserve, lipids could also be consider as energy reserve in 

bivalves, particularly when feed activity is insufficient to maintain their normal metabolism, 

providing even more energy reserve than glycogen (Beninger and Lucas, 1984). In fact, our results 

showed a decrease in some fatty acids at lower salinities (0 and 7), in metabolic performance 

assessed by 1H NMR spectroscopy for V. philippinarum. This could be an evidence that lipids were 

being used as energy reserve when they close their valves to protect themselves of stressful 

surrounding environment, limiting the filtration rate.   

 

4.5.  Oxidative stress 

 

The overproduction of reactive oxygen species (ROS), represent an important challenge to 

organisms, normally leading to oxidative stress, which will cause different cellular dysfunctions 

and several adaptive responses (Manduzio et al., 2005; Antunes et al., 2013). Physiologically 

stressful conditions, such as salinity changes can increase cellular damage in marine invertebrates 

due to an overproduction of ROS, leading to the oxidation of the lipid membranes (Abele et al. 

2002, Abele and Puntarulo (2004). Some studies have concluded that clams are capable to deal 

with metal contamination, activating defence systems, like antioxidant enzymes, to eliminate the 

overproduced ROS and, consequently, reducing the oxidative damage, such as decreasing the lipid 

peroxidation (LPO) levels (Figueira et al., 2012). The present study also showed that at the 

salinities outside the optimal concentrations for the studied species (between 21 and 28, salinities 

causing lower mortalities), clams tend to significantly increase lipid peroxidation, which results 

from the higher ROS production. Significantly higher levels of LPO were observed in V. corrugata, 
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which may reveal a stronger oxidative stress out of the preferred salinity (21). Although the 

differences along the salinity range in V. decussata and V. philippinarum were less marked 

comparatively to V. corrugata, it was possible observe the same trend, with salinities 21 and 28 

presenting the lowest values of lipid peroxidation. Since LPO has been considered the main cause 

of the loss of the cell function, when it was in an oxidative stress situation (Storey, 1996; Freitas et 

al., 2012b; Figueira et al., 2012; Carregosa et al, 2014b), these results suggests lower levels of 

oxidative stress at salinities between 21 and 28. 

The induction of the activity of antioxidant enzymes, like SOD (an enzyme scavenging 

superoxide anion) and CAT (an enzyme that catalyses the decomposition of H2O2), also result from 

the overproduction of ROS in an oxidative stress situation (Freitas et al., 2012b; Figueira et al., 

2012). Thus, lower levels of these two enzymes, represent lower levels of oxidative stress. The 

present study, revealed a significant decrease of SOD’ activity from salinity 14 up to salinity 42 for 

both V. philippinarum and V. decussata and up to salinity 28 for V. corrugata, fighting against the 

superoxide anion which indicate an increase of oxidative stress at lower salinities. However, low 

levels of SOD activity were registered at the lowest salinities (0 and/or 7) for three species. 

Monari et al. (2005) showed that anoxia, due to shell closure, significantly decreased total 

haemocyte count as well as SOD activity, in the clam Chamelea gallina. The results obtained in the 

present work are in agreement with such findings since at the lowest tested salinities (0 and 7) 

the three species presented the lowest activity of SOD due to their tendency to remain their 

valves closed at low salinities. On the other hand, this decrease in SOD activity may indicate a 

response to the provoked stress. As Geret et al. (2003) suggested a decrease of antioxidant 

systems can represent a first response to stress caused by pollutants. In V. decussata, the activity 

of SOD presented lower levels at low salinities (0 and 7) than at higher salinities (35 and 42), 

which can be explained by the overproduction of ROS. The extreme high amount of ROS interfere 

with these enzymes, inhibiting them, with consequent increase of oxidative stress, possibly 

meaning that the cells were in apoptosis. This is an evidence that the tested organisms are 

experiencing a very high stressful environment, justifying thus the mortality rates at low salinities 

for the three species. 

Several authors have demonstrated the positive relationship between CAT and SOD (Geret et 

al., 2002; Geret and Bebianno, 2004; Maria and Bebianno, 2011; Wang et al., 2012). The present 

study further revealed that at salinity 14 the three species increased the activity of the 

antioxidant enzyme CAT, suggesting a little increase of oxidative stress at this salinity. It was not 

observed an extreme decrease of the activity of this enzyme at salinities lower than 14, as well as 
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in the activity of SOD, maybe because H2O2 levels were lower that superoxide anion, which 

allowed the functioning of CAT. Since the SOD could be inactivated at extreme lower salinities, 

O2•ˉ was not reduced to H2O2, whose levels were possibly maintained and CAT was able to 

perform its function. Significantly lower levels of CAT, confirm lower oxidative stress at higher 

salinities (> 21) comparing with salinities lower than 28. In fact, the increase in the SOD activity 

contributed to the strong decrease of the LPO levels, especially at salinities 14 and 21. At higher 

salinities (35 and 42) the activity of these antioxidant enzymes significantly decreased 

contributing to the increase in the LPO levels. Also Silva et al. (2005) showed that CAT activity in 

the oyster Crassostrea rhizophorae was higher at salinity 9 decreasing with the increase of salinity 

(15, 25 and 35).  

GSTs catalyse the conjugations of glutathione and the result-compounds of cell injury (lipid 

peroxidation) (Storey, 1996). The obtained results allowed to observe the occurrence of 

significant differences along the salinity gradient and between the three clam species in relation 

to GSTs activity.  For V. decussata, the highest values were found in salinity 21 and, consequently, 

in the remain salinities the activity of GST was lower. According to Hayes et al. (2004), the 

inhibition of GST activity may be an indicator of cell damage and toxicity and on opposite its 

induction can be related to an adaptive response to an altered environment. The behaviour 

observed for V. corrugata, could represent this adaptive response, since the activity of GST was 

induced outside of salinity 21. Although V. philippinarum showed slight differences between 

salinities under and above 21, this species did not revealed pronounced differences as in two 

other species, meaning that this enzyme was not highly responsive to salinity alterations in V. 

philippinarum. The present work also evidenced that in V. decussata and V. philippinarum the 

higher GSTs activity was accompanied by lower LPO levels, but V. corrugata did not show the 

same behaviour. GSTs are a major Phase II detoxication enzymes found mainly in the cytosol and 

function as a substrate of antioxidant enzymes to eliminate the reactive oxygen induced by 

xenobiotic compounds providing protection against electrophiles and products of oxidative stress 

(Hoarau et al., 2002). Thus, the elevation of GSTs activity between salinities 14 and 28 in V. 

decussata may strongly contributed to the lower LPO levels found at these salinities. 

Furthermore, the decrease in GSTs activity, accompanied by the decrease in the activity of the 

antioxidant enzymes SOD and CAT in V. decusssata, may be responsible for the increase in the 

LPO levels at the highest tested salinities (35 and 42). For V. philippinarum, the same relationship 

was suggested in the results obtained for SOD and CAT activity (decreasing  from salinities 14 and 

21, respectively, up to salinity 42) and LPO levels (increasing at salinities higher than 28). The 
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increase registered at salinity 28 for LPO levels of V. corrugata, may be explained by the decrease 

observed in activity of CAT. Concentration of MDA (Malondialdehyde) is the reflection of 

unsaturated fatty acids composition in cell, in proportion with the lipid peroxidation levels 

(Wheatley, 2000). As LPO is an indicator of oxidative damage, it is possible to suggest that under 

different conditions from those at salinities 21 and 28, for V. decussata and V. philippinarum and 

21 for V. corrugata, the cell damage could occur and tend to worsen whenever the changes were 

higher. Membrane’s function is affected by the presence of lipid hydroperoxides, derived from 

lipid peroxidation, which consequently, leads to the leak of some ions into the cell, like Ca2+, 

resulting from the decrease of fluidity of the membrane (Storey, 1996). In fact, the results showed 

higher amounts of Ca at lower salinities (0 and 7), which may be related with the higher 

permeability of the membranes.  

Glutathione (GSHt), a tripeptide of glutamate, cysteine and glycine, playing as a detoxification 

agent and it has been considered important in osmotic and oxidative stresses (Figueira et al., 

2005; Manduzio et al., 2005). Along the increasing salinity gradient the three studied species tend 

to decrease the GSHt content, up to salinity 35 for V. decussata and V. philippinarum and up to 28 

for V. corrugata. Similar findings were found by Anthony and Patel (2000) who demonstrated that 

at higher salinities (32) glutathione significantly decreased compared to salinity 16 in the clam 

species Anadora granosa. 

Reduced glutathione (GSH) ensures the cellular status redox, working as a cofactor in the 

response to several toxic compounds, being thus considered an important defence against ROS 

(Antognelli et al., 2006). In normal redox status of cell, i.e. when the surrounding environment do 

not present any stress, high levels of intracellular glutathione are registered, which control the 

effects of reactive oxygen species before the oxidative stress occurs (Storey, 1996).  Thus, higher 

levels of GSH would mean lower levels of oxidative stress. However, GSH presented higher values 

at salinity 14 for V. decussata and V. philippinarum, which did not seem to be in agreement with 

the values of SOD and CAT, for example. This increase may be achieved by the higher activity of 

SOD, which were decreasing superoxide anion and consequently, the oxidative stress. On the 

other hand, this increase of GSH in V. decussata and V. philippinarum, can indicate a deficient 

performance of glutathione peroxidase (GPx). In other words, the higher levels registered for this 

antioxidant at salinity 14, could indicate that, despite de oxidative stress was higher than at 

salinities higher than 14, GSH was not used by GPx. The results of GSH for V. corrugata showed 

that this species was less responsive than the other two species, V. decussata and V. 

philippinarum.  
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The GSH/GSSG ratio is considered to be an index of cellular redox status, indicating the level 

of oxidative stress in cell (Storey, 1996; Ault and Lawrence, 2003). When the levels of GSSG 

increase due to higher amount of oxyradicals, this ratio decreases, meaning higher oxidative 

stress in cells (Storey, 1996). V. corrugata showed significantly lower levels of this ratio at salinity 

28, probably meaning a higher oxidative stress. The higher value of GSH/GSSG for this species was 

found at salinity 21, which may indicate lower oxidative stress in cells, being in agreement with 

other markers, like LPO and GST. The results obtained for GSHt showed a significant increase at 

salinity 42 for V. decussata and V. philippinarum and for the ratio GSH/GSSG a slight decrease at 

the same salinity was observed.  This may indicate that GSSG is increased. A similar increase 

found in GSH, was registered at salinity 14 for both, V. philippinarum and V. decussata in ratio 

between reduced and oxidized glutathione. Along the salinity range, the values were maintained 

around 1, which may indicate that GSH and GSSG were balanced. These results do not comply 

other markers, such as LPO, SOD and GST which allowed to deduce higher oxidative stress out of 

salinities 21 and 28. 
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5.1.  Conclusions  

 

As bivalves are very important resources for costal populations around the world, in 

economically terms, this kind of studies (assessing the health of the organisms and the effects of 

natural stressors) can provide important information about the physiological status of the animals 

in a climate change scenario and could be a useful tool for assessing the environmental quality to 

potential bivalve farming areas. 

The results herein presented, revealed that V. corrugata was the most sensitive clam to 

salinity changes, with high mortality rates at the lowest (0 and 7) and the highest (35 and 42) 

salinities tested. On the other hand, V. decussata and V. philippinarum were able to tolerate all 

salinities higher than 7 and up to salinity 42. The present work showed that clams experiencing 

changes in salinity altered their biochemical mechanisms to cope with these stressful conditions. 

The mortalities registered at low salinities, may indicate that in fact, the clams’ metabolic 

performance is affected and the organisms are not capable to lead with such alterations. The 

mortality rates, clearly showed that extremely low salinities represent higher stress to this three 

species studied.  

This study also evidences that V. decussata and V. philippinarum can survive at salinities 

between 14 and 42 for some days, which is a time interval consistent with changes in salinity 

caused by heavy rainfall periods, or short episodes of heat.  

Surviving organisms can also evidence the effects of exposure to salinities shifts. In fact, 

organisms showed alterations in the levels of glucose, glycogen and ions with important biological 

functions such as Ca and Mg. These differences will certainly be reflected in the growth 

performance of clams and will imply lower productivity in those areas of the ecosystem where 

sub-optimal salinities for these three species arise repeatedly.  

 V. philippinarum tolerates a wide range of salinities, through an apparent mechanism of Na 

regulation. At extreme salinities (0, 7 and 42), the ionic osmoregulation seems to be achieved by 

Ca increase and shell valve closure, since the metabolites related to the anaerobic metabolism of 

glucose and amino acid breakdown are accumulated and the metabolites related to hypoxia 

conditions are increased especially at low salinities. The alteration of the metabolite profile, as 

viewed by NMR spectroscopy, seems to be a consequence of hypoxia and not of osmotic 

adjustment since the accumulation of compatible osmotic compounds, such as betaine and 

taurine, decreased relatively to the salinity 28 in V. philippinarum. The overall profile changes 
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means that the NMR-visible profile is sensitive to salinity and, hence, further studies should be 

carried out. 

 

The results give evidence that clams mobilize stored energy (glycogen) and may also use 

protein breakdown to cope with extreme salinity levels. The valve closure not only induces 

hypoxia but also reduces food intake as well and in a limit situation, the osmotic imbalance may 

increase, leading to swelling and cellular rupture. These effects may explain the mortality rates of 

V. decussata at salinity 0, of V. philippinarum and V. corrugata at 0 and 7, observed in the present 

work.  

Also, LPO, SOD and GST showed to be very useful biomarkers to salinity stress, with a strong 

correlation with the increasing salinity gradient. The clams used in the present study 

demonstrated that the optimal salinity range varied between 21 and 28, where these species 

presented lower LPO levels and therefore lower mortality. 

Studies of the environmental stress in marine organisms are particularly important, specially 

to assess the health condition of those species cultivated for human consumption. For this, the 

assessment of stress responses related with oxidative stress in marine organisms, furnish 

important information useful to examination of the environmental quality.  The results here 

presented and discussed, with bivalve species from the Ria de Aveiro, indicate that salinity 

fluctuations can cause substantial changes in their antioxidant defence systems and oxidative 

injury levels.  

The biomarkers tested in this study, allow to infer that although tested organisms are 

considered euryhaline, they are not capable to adapt to extremely low salinities. This is a 

particularly interesting finding, since the comparison of these three clam species allowed to 

conclude that, despite they are living together in same areas, they have distinct responses to 

salinity alterations. This information is of major importance for the management of this resource 

and should be taken into account when defining areas and intensity of capture. 

The invasive species used in this study, V. philippinarum, showed to be less tolerant to 

changes in salinity than V. decussata, one of the native species studied. Comparing these two 

species, V. philippinarum presented higher mortality rate and lower values of almost all of the 

physiological and biochemical parameters tested. In a scenario of great salinity changes in areas 

where these species live together, might mean a higher problem for V. philippinarum, than for V. 

decussata, especially when the changes represent a decrease in salinity. The other native species 

under analysis, V. corrugata, showed to have very different responses, compared with V. 
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decussata and V. philippinarum. Thus, this kind of changes will certainly have impacts on the 

occurrence of V. corrugata, since the invasive species presented higher survival capacity under 

salinity alterations. In fact, local fishermen testify the difficulty of finding this species in Ria de 

Aveiro. Although one of the native species (V. decussata) showed higher capacity to deal with 

these alterations, comparatively to the exotic species (V. philippinarum), they continue to live in 

simpatry in same areas, with higher abundance of the invasive species, according to the local 

fishermen. These facts indicate that changes in salinity have different impacts in native and 

invasive species, getting worse the competition in the field for those with higher difficulties to 

deal with these alterations, as V. corrugata.  

 

5.2.  Future considerations 

 

Studies related with salinity fluctuations in marine bivalves should be performed in the future 

approaching metabolic alterations by NMR spectroscopy with enough samples to use multivariate 

analytical tools to statistically evaluate the alterations registered comparing to biological 

variability, since there is not any studies related with this issue.  

Regarding to GC x GC – ToFMS data, these should be processed and analysed in order to 

understand the alterations in terms of volatile metabolites, which also was not studied yet, 

subjecting these three species to a natural stressor, as salinity fluctuations.  

It is clear that salinity, is not the only stress that influences the biological functioning of the 

tested organisms and others living in the same or similar ecosystems. Thus, field studies shoud be 

performed, especially in farming zones, assessing salinity and other environmental conditions 

with the aim to found the ideal conditions to better health of the organisms. Also, a combination 

of natural stressors and anthropogenic pollution requires further research as it results in several 

adverse effects. 
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Unlike the  concern  that  has  been  growing  in  relation  to  the  impacts  of  contamination  in  

marine benthic populations, the responses of aquatic organisms to natural alterations, namely  

changes  in  salinity,  have  received  little  attention.  In fact, salinity is one of the dominant 

environmental factors that most affect marine bivalves, limiting their spatial distribution in the 

environment. The ebb and flood of the tide combined with fresh water inputs, from rivers or  heavy  

rainy  periods,  and  extreme  dry  seasons  can  dramatically  alter  the  salinity  of  water,  causing 

alterations in the benthic populations, namely intertidal bivalves. Furthermore, salinity of a given 

environment will restrict the spatial distribution of the species, which is especially important when 

assessing the spread of an invasive species into a new environment.  In order to understand how 

native (Ruditapes decussatus and Venerupis pullastra) and invasive  (R. philippinarum)  clam  species  

cope  with  salinity  changes,  biochemical  and  metabolomic  patterns  were  investigated.  The 

results obtained showed that Ruditapes species presented high mortality at lower salinities (0, 7) 

but tolerate high salinities (35, 42). On the other hand, V. pullastra presented high mortality rates 

both at low (0, 7) and high salinities (35, 42). The quantification of Na and K content revealed that, 

along the salinity gradient, R. decussatus was the species with higher ability to maintain the ionic 

homeostasis. The biochemical parameters  also  showed  that  R. decussatus  was  the  clam  that  

best  cope  with  salinity  changes  and  V. pullastra was the most sensitive. Metabolomic patterns 

were obtained by 1H Nuclear Magnetic Resonance (NMR) spectroscopy of clam extracts.  

Multivariate analysis of the NMR spectra enabled metabolite changes to be observed in relation to 

clam exposure to different salinity concentrations. The relevance of these metabolite change s, in 

relation to salinity response and resistance metabolic signatures, is discussed.  

mailto:vanessacarregosa@ua.pt


 

 
 

 


