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palavras-chave 

 
Polihidroxialcanoatos, Culturas Mistas Microbianas, HSSL, FISH, PCR, 16S 
rDNA 

 

resumo 
 

 

Polihidroxialcanoatos (PHAs) são biopolímeros biodegradáveis e 
biocompatíveis. Os PHAs são considerados uma solução possível como 
substitutos dos plásticos derivados do petróleo, podendo ser produzidos no 
âmbito do conceito de Biorefinaria utilizando resíduos como fonte de carbono.  
Este trabalho teve como objectivo o isolamento e a caracterização de bactérias 
produtoras de PHAs a partir de licor de cozimento ao sulfito ácido (HSSL), um 
sub-produto da indústria papeleira. Os isolamentos foram realizados partindo 
de uma cultura mista seleccionada para a acumulação de PHAs por imposição 
de ciclos de fome e fartura, utilizando alguns dos componentes do HSSL como 
substrato, nomeadamente a xilose e o ácido acético. Após repicagens 
sucessivas em meio sólido contendo HSSL, foi possível obter cinco isolados 
puros capazes de acumular PHAs. A pureza dos isolados foi avaliada através 
de coloração de Gram e análise FISH e a capacidade de acumulação de PHAs 
por coloração de Azul do Nilo. Duas estirpes foram identificadas como 
Rhohococcus spp. e três como Pseudomonas spp.. Um isolado de cada 
género foi seleccionado e estudado em termos de crescimento e capacidade 
de acumulação de PHAs, a partir de três fontes de carbono distintas (HSSL, 
ácido acético e xilose). Verificou-se que ambos os isolados, Rhodococcus spp. 
e Pseudomonas spp., foram capzes de crescer nos três meios e produziram 
PHAs. Contudo, ambas as estirpe apresentaram uma taxa específica de 
crescimento (µmax) superior com HSSL como fonte de carbono, 0.212 ± 
0.0219h

-1
 e 0.251 ± 0.0526h

-1 
respectivamente. Uma avaliação qualitativa da 

acumulação de PHAs utilizando coloração Azul do Nilo mostrou uma 
acumulação maior nos ensaios em que o ácido acético era a única fonte de 
carbono.  
Numa tentativa de identificar algumas das espécies responsáveis pela 
acumulação de PHAs da cultura mista seleccionada pertencentes à classe 
dominante, Alfaproteobactéria, recorreu-se à construção de uma biblioteca de 
clones 16S rDNA. Foram identificadas as espécies Novosphingobium spp.,  
Sphingobium spp e Pleomorphomonas spp. 
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abstract 

 
Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible 
biopolymers. PHAs emerge as a possible solution as substitutes of petroleum 
based plastics, being produced under the Biorefinery concept, in which wastes 
and by-products of numerous industries may be used as carbon source.  
This project aimed the isolation and characterization of organisms able to store 
PHAs from Hardwood Sulphite Spent Liquor (HSSL), a by-product of the pulp 
and paper industry. Isolation was performed from a Mixed Microbial Culture 
(MMC) selected under feast and famine conditions, using some components 
present in HSSL as substrates, such as acetic acid and xylose. Five pure 
isolates able to produce PHAs resulted from the successive streaking in solid 
medium containing HSSL. The purity of the isolates was evaluated through 
Gram staining and FISH analysis and the PHAs accumulation by Nile Blue 
staining. Two strains were identified as Rhohococcus spp. and three as 
Pseudomonas spp.. One isolate of each genus was selected and further 
studied in terms of growth and PHAs accumulation capability from three distinct 
carbon sources (HSSL, acetic acid and xylose). Both isolates, Rhodococcus 
spp. and Pseudomonas spp., were able to grow and use the three carbon 
sources as well as to produce PHAs. However, both strains showed a higher 
maximum specific growth rate (µmax) when HSSL was used as carbon source, 
0.212 ± 0.0219 h

-1
 and 0.251 ± 0.0526 h

-1
, respectively. A qualitative evaluation 

of the PHAs accumulation through Nile Blue staining exhibited a higher 
accumulation when acetic acid was used as sole carbon source. 
In an attempt to identify some of the species responsible for PHAs 
accumulation of the selected MMC, belonging to the dominant class, 
Alphaproteobacteria, a 16S rDNA clone library was constructed. It was possible 
to identity Novosphingobium spp., Sphingobium spp. and Pleomorphomonas 
spp. 
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1. Introduction 

 

Mankind has been relying on chemicals, polymers and fuels produced from fossil 

resources (petroleum, natural gas, and coal) ever since industrialization (Kamm et al. 2006; 

Gao et al. 2011; Pei et al. 2011). However, fossil fuels are not considered sustainable. A 

significant number of environmental and economic concerns arose from the massive scale 

processing of the current fossil resources by chemical industry. In addition to this, the 

depletion of fossil resources is expected in the near future (Kamm et al. 2006; Octave et al. 

2009). Thus, it is essential to establish solutions to promote a sustainable development in 

the 21
st
 century. One of the current approaches is the progressive transition to an economy 

based on renewable materials (e.g. biomass) as feedstock for the production of bio-

products within the biorefinery concept (Kamm et al. 2006; Octave et al. 2009). The 

American National Renewable Energy Laboratory (NREL) defined biorefinery as “a 

facility that integrates biomass conversion processes and equipment to produce fuels, 

power and chemicals from biomass” and that “the biorefinery concept is analogous to 

today’s petroleum refineries, which produce multiple fuels and products from petroleum” 

(Kamm et al. 2006; NREL 2012). Biorefineries would provide energy (biofuel, heat), 

molecules (fine chemistry, cosmetics, paramedical), materials (plastics, composites) as 

well as food ingredients (Octave et al. 2009). 

Plastics have gained importance as a way to enhance life quality and comfort and 

are present in our everyday life in all sorts of forms, from disposable utensils to packaging 

(Khanna et al. 2005; Castilho et al. 2009). Their use is related to their properties such as 

strength, lightness, durability and resistance to degradation. However, some of these 

qualities are now their major problem (Khanna et al. 2005) since make their disposal 

difficult (Castilho et al. 2009). Accumulation of microscopic plastic debris at sea is 

particularly alarming as well as the exponentially increasing need of landfill for municipal 

solid waste disposal (Gomez et al. 2012). 

Polyhydroxyalkanoates (PHAs) are polymers produced biologically, with similar 

properties to synthetic plastics. PHAs are biodegradable, biocompatible and may be 

produced from renewable sources, thus offering a solution to the environmental hazards 

displayed by conventional plastics (Khanna et al. 2005; Gumel et al. 2012). 
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This project aim to study the isolation and characterization of organisms from a 

mixed microbial culture selected under feast and famine conditions able to store PHAs 

from the different carbon sources present in Hardwood Sulphite Spent Liquor (HSSL), a 

by-product of the pulp and paper industry (Caima S.A.).  

The microorganisms were isolated from a PHAs-accumulating mixed microbial 

culture (MMC) in solid medium containing HSSL. The isolates were characterized using 

microscopy and molecular biology techniques and their identification was attempted. 

Additionally, a 16S rDNA clone library was constructed in order to identify the other 

PHAs-accumulating bacteria present in the MMC. Finally the consumption of different 

carbon sources, present in HSSL, such as acetic acid and xylose, by the isolates was 

studied, and the growth kinetic parameters determined. 
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2. State of the art 

 

2.1 Plastics and Bioplastics 

 

Petrochemical-based plastics are nowadays one of the most applied materials, being 

used in domestic, medical and industrial applications. The rather low price and versatile 

qualities of strength, lightness, durability and resistance to degradation are the main 

reasons for their huge success (Zinn et al. 2001; Khanna et al. 2005; Keshavarz et al. 

2010). However, these qualities became a major disadvantage of their use. Adequate 

methods for plastics disposable are problematic (Castilho et al. 2009) and their 

accumulation in the environment is considered a world-wide problem (Khanna et al. 2005). 

Degradation rates in landfills are extremely low (Castilho et al. 2009) and incineration is 

expensive and may generate toxic by-products, such as hydrogen cyanide produced from 

the combustion of acrylonitrile-based plastics (Khanna et al. 2005; Castilho et al. 2009). 

Recycling is a time-consuming disposal method and the presence of a wide variety of 

additives limits the use of the recycled materials (Khanna et al. 2005; Castilho et al. 2009). 

In addition to this, petroleum reserves are finite, therefore a new source of durable 

materials is needed (Akaraonye et al. 2010).  

Bioplastics may provide a solution to the environmental hazards brought by 

traditional plastics. Efforts are being made in order to find polymers of biological origin, 

biodegradable and with industrial application (Zinn et al. 2001; Castilho et al. 2009). 

Bioplastics like, polyhydroxyalkanoates (PHAs), polylactic acid (PLA) and other polymers 

derived from renewable resources, are already available in the market (Pei et al. 2011).  

 

 

2.2 Polyhydroxyalkanoates (PHAs) 

 

Polyhydroxyalkanoates are polymers of hydroxyalkanoic acids produced by 

prokaryotic microorganisms (Bacteria and Archaea) accumulated in the cell cytoplasm as 

insoluble spherical inclusions, to serve as carbon and energy storage. Lemoigne was the 
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first to clarify the chemical composition of these intracellular granules in 1926, although 

numerous microbiologists had reported their presence in bacterial cells (Lemoigne 1926; 

Khanna et al. 2005). Lemoigne identified poly-3-hydroxybutyrate (P(3HB)) from Bacillus 

megaterium (Lemoigne 1926). Since then, over 90 genera of microorganisms PHAs-

producers have been identified, in both aerobic and anaerobic environments (Zinn et al. 

2001). 

The PHAs granules are usually between 0.2 to 0.5 µm in diameter (Sudesh et al. 

2000). Their structure, as represented in Figure 1, consists of a PHA core, amorphous and 

hydrophobic, delimited by a boundary phospholipid monolayer with attached proteins 

involved in PHAs metabolism, that include PHA synthase, phasins, depolymerizing 

enzymes and regulatory enzymes (Grage et al. 2009; Jendrossek 2009).  

 

 

Figure 1: Structure of PHAs granules from Cupriavidus necator (Rehm 2010). 

 

 

2.2.1 Structure 

 

Multiple PHAs have been identified, with a great variety in terms of type and ratio 

of monomers (Castilho et al. 2009). Over 150 known hydroxyalkanoic acids were 

recognized as monomers of these polymers (Rehm 2010). P(3HB) is the most abundant 

PHAs family member.  
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PHAs structure is shown in Figure 2. Monomers are linked through an ester bond 

between the carboxyl group of one hydroxyalkanoic acid and the hydroxyl group of the 

next one. This reaction is catalyzed by the PHA synthase of the microorganism. The 

number of monomers (X) can vary from 100 to 30000. The group R represents alkyl 

groups and varies from methyl (C1) to tridecyl (C13). The hydroxyalkanoic acid units are 

all in the R configuration because of the stereo-specificity of PHA synthase, therefore 

PHAs are optically active (Sudesh et al. 2000). 

 

 

Figure 2: General structure of polyhydroxyalkanoates (Hazer et al. 2012). 

 

 

Structurally, PHAs are classified on the basis of number of carbon atoms o 

monomers. There are three classes: short chain length PHAs (scl-PHAs), in which the 

monomers have between 3 and 5 carbon atoms, medium chain length PHAs (mcl-PHAs), 

consisting of monomers with 6 to 14 carbon atoms, and long chain length PHAs (lcl-

PHAs), monomers with over 14 carbon atoms (Singh et al. 2008) 

These polymers are also classified according to the type of monomeric units: 

homopolymers, copolymers and terpolymers (Keshavarz et al. 2010). Poly(3-

hydroxybutyrate-co-hydroxyvalerate) (P3HB-co-3HV) is an example of a copolymer that 

belongs to scl-PHAs and poly(3-hydroxyhexanoate-co-3-hydroxyoctanoate) (P3HHx-co-

3HO) to mcl-PHAs (Akaraonye et al. 2010).  
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2.2.2 Properties of PHAs 

 

The physical properties of PHAs, such as melting temperature, glass transition 

temperature and crystallinity (stiffness and flexibility), depend on the number of 

monomers, their compositions, side chain length and functional group (Akaraonye et al. 

2010; Nitschke et al. 2011).  

The physical properties of six different PHAs and two synthetic polymers, 

polypropylene and polystyrene, are displayed in Table 1. As the length of the side chain of 

PHAs increases, the physical properties change from glassy state to more soft and sticky 

material (Hazer et al. 2012). Scl-PHAs are crystalline polymers, rather stiff, with high 

melting points, low glass transition temperatures, and some of them have higher tensile 

strength than synthetic polymers. On the other hand, mcl-PHAs are thermoplastic 

elastomers with low crystallinity and tensile strength but high elongation to break and have 

lower melting points and glass transition temperatures, when compared to scl-PHAs 

(Akaraonye et al. 2010). 

 

Table 1: Physical properties of specific PHAs and two synthetic polymers. Adapted from 

(Akaraonye et al. 2010). 

Polymer 

Melting 

temperature 

(ºC) 

Glass 

transition 

temperature  

(ºC) 

Young’s 

modulus 

(GPA) 

Elongation 

to break 

(%) 

Tensile 

strength 

(MPa) 

P(3HB) 180 4 3.5 5 40 

P(4HB) 53 -48 149 1000 104 

P(3HB-co-20% 3HV) 145 -1 1.2 50 20 

P(3HB-co-16% 4HB) 150 -7 - 444 26 

P(3HB-co-10% 3HHx) 127 -1 - 400 21 

P(3HB-co-6% 3HD) 130 -8 - 680 17 

Polypropylene 176 -10 1.7 400 34.5 

Polystyrene 240 100 3.1 - 50 

 

 

The incorporation of monomer units to form copolymers can also improve physical 

properties (Khanna et al. 2005; Castilho et al. 2009). Khanna et al. (2005) reviewed the 

structure and properties of copolymers of different monomers. These authors concluded 

that as the fraction of 3HV increased, the copolymer became tougher (impact strength 
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increased), more flexible (Young’s modulus decreased), the elongation to break increased 

and the melting temperature decreased without affecting degradation temperature thus 

allowing thermal processing of copolymer melts without thermal degradation. Therefore, 

material properties can be controlled by adjusting the fraction of monomers during the 

fermentation (Khanna et al. 2005).  

Biocompatibility and biodegradability are the two other main properties of PHAs, 

responsible for the extensive attention these biopolymers have received (Akaraonye et al. 

2010). Biocompatibility is characterized by the absence of any toxic compound generated 

during polymer degradation, as well as by the shape and surface porosity of the material 

(Castilho et al. 2009).The biocompatibility of several specific PHAs has been studied and 

verified, including P(3HB), P(3HB-co-3HV), P(4HB), P(3HO) and P(3HB – co-3HHx) 

(Chen et al. 2005; Akaraonye et al. 2010).  

PHAs are biodegradable once they can be degraded producing carbon dioxide and 

water, in aerobic environments, or methane, in anaerobic conditions, by a large variety of 

microorganisms when disposed in numerous ecosystems, such as soil, sewage, sea and lake 

water (Lee 1996). The enzyme responsible for this degradation is the extracellular PHA 

depolymerase, produced by the degrading microorganisms. This enzyme converts the 

polyester into water-soluble oligomers and monomers that are used as a carbon source 

within the cells (Reddy et al. 2003). The biodegradability of PHAs is influenced by the 

properties of the polymer such as stereo-regularity, crystallinity, composition and 

accessibility of their surface to PHA depolymerizing enzymes, and by environmental 

conditions, temperature, moisture level, pH and nutrient supply (Sudesh et al. 2000). For 

example, PHA copolymers containing 4HB monomer unit degrade more rapidly than 

P(3HB) or P(3HB-co-3HV) copolymers (Reddy et al. 2003).  

 

 

2.2.3 Applications of PHAs 

 

The very particular properties of PHAs, such as physical properties similar to those 

of synthetic polymers, biodegradability and biocompatibility, resulted in a huge 

commercial interest towards these biopolymers (Grage et al. 2009; Akaraonye et al. 2010). 

The major advantage of PHAs is that both the physical properties and the rate of 
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degradation of PHAs can be altered by changing the bacterial source of the polymer and 

the corresponding fermentation conditions used (Akaraonye et al. 2010). This fact allows 

for tailoring PHAs composition according to the properties needed for a specific 

application. 

If initially PHAs were used only to make everyday articles, such as shampoo 

bottles and packaging materials, nowadays their range of applications is much wider, both 

in variety and specialization (Philip et al. 2007). The applications of PHAs may be divided 

in three areas: industrial, agricultural and medical, among others.  

 

2.2.3.1 Industrial applications 

 

PHAs have been extensively tested to be used in industry (Philip et al. 2007). PHAs 

can be used as substitutes for many conventional petrochemical products in applications 

including molded goods, foils, films and diaphragms and to produce food additives, 

flushables, non-woven fabrics, combs and pens (Philip et al. 2007; Akaraonye et al. 2010). 

Rubber made of PHAs might be applied to paper or cardboard to form a water-resistant 

layer (Nitschke et al. 2011). Furthermore, PHAs can be employed as sources for the 

synthesis of enantiomerically pure chemicals such as hydroxyalkanoic acids and as raw 

materials for the production of latex paints (Akaraonye et al. 2010). Due to their 

piezoelectric nature, it is also possible to use PHAs to make pressure sensors for 

keyboards, stretch and acceleration measuring instruments, shock wave sensors and 

lighters (Philip et al. 2007).  

 

2.2.3.2 Agricultural applications 

 

PHAs can be used as protection films for agricultural purposes, for long term 

release of fertilizers, insecticides and herbicides, as well as for the stabilization of 

commercial bacterial inoculants (Philip et al. 2007). Bacterial cultures used in inoculant 

preparations for agriculture purposes must be able to withstand stressful environments. The 

use of PHAs significantly improved the shelf life, efficiency and reliability of commercial 

inoculants (Nitschke et al. 2011).   
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2.2.3.3 Medical applications 

 

Many studies using various animal models have demonstrated that different PHAs, 

namely P(3HB), P(3HB-co-3HV), P(4HB), P(HO) and P(3HB-co-HHx), possess the 

characteristics needed for implant applications and controlled drug release, namely, 

biodegradability, biocompatibility and thermoprocessibility (Chen et al. 2005). Therefore, 

PHAs have been used for the production of temporary stents, bone plates, nails and screws, 

surgical sutures and other medically relevant materials (Nitschke et al. 2011).  

According to the requirements for the different applications, PHAs can be blended, 

surface modified or composited with other PHAs and other polymers, enzymes or even 

inorganic materials to further adjust their mechanical properties or biocompatibility. The 

many possibilities to tailor-made PHAs for medical implant applications have shown this 

class of materials to have a bright future as tissue engineering materials (Chen et al. 2005). 

 

2.2.3.4 Other Applications 

 

A recent development is the potential use of PHAs granules, formed inside 

recombinant bacterial cells, as tailor-made functionalized micro- and nano-beads in which 

specific proteins attached to the PHA core have been engineered to display various protein 

functions. The application performance of engineered PHA beads in high-affinity 

bioseparation, enzyme immobilization, protein production, diagnosis and as an antigen 

delivery system has been demonstrated, and the technology is now being commercialized 

(Rehm 2010).  

Furthermore, after used as bioplastic, PHAs monomers may be further methyl 

esterified to become hydroxyalkanoate methyl ester, which produces combustion heats 

comparable to ethanol, and so might be used as biofuels (Gao et al. 2011).  
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2.2.4 Commercially available PHAs and their applications 

 

Several commercial brands of PHAs are currently available and some of them are 

summarized in Table 2. PHAs are becoming price-competitive with petroleum-based 

polymers. The price of synthetic plastics is around 1€/kg, for polypropylene. In 2006, PHA 

cost was about 3.5 to 5.0 €/kg. Nevertheless this price has significantly decreased (Table 2) 

(Chanprateep 2010). Among PHAs-manufacturing companies, the main company with a 

large production is the USA biotech company Metabolix, Inc. in Cambridge, 

Massachusetts (Chanprateep 2010).  

 

 

Table 2: Three industrially available PHAs, the companies who produce them and their 

applications (Philip et al. 2007; Chanprateep 2010). 

Polymer Trade 

name 

Manufactures Price  

(kg
-1

)  

(in 2010) 

Applications 

P(3HB) and 

P(HB-co-HV) 

Biomer® Biomer Inc. 

(Germany) 

3.0 – 5.0 € -polymer pellets sold 

commercially for use in classical 

transformation processes 

-production of articles (combs, 

pens and bullets) 

 

P(3HB) 

 

Mirel™  

 

Metabolix 

(USA) 

 

 

1.50 € 

 

-coat paper and paperboards  

-injection, blow moulding, film 

production and for electric and 

electronic packaging 

-produce shampoo bottles, motor 

oil bottles and disposable razors 

 

P(3HB-co-3HHx)  

 

Nodax™ 

 

 

Procter and 

Gamble (USA) 

 

2.50 € 

 

-available as foam, fibres or non-

wovens, films and latex 

-produce flushables, medical 

surgical garments, upholstery, 

carpet, packaging, compostable 

bags and lids or tubs for 

thermoformed articles 

-coating for fertilizers, herbicides 

or insecticides. 
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2.3 PHAs production process 

 

Bacterial biosynthesis of PHAs is usually in response to stress conditions such as 

nutrient limitation, for example nitrogen or phosphate with excess carbon source. Bacteria 

in this group include Cupriavidus necator (formerly called Alcaligenes eutrophus, 

Waustersia eutropha or Ralstonia eutropha). However, some bacteria, such as Alcaligenes 

latus, are able to accumulate PHAs under non-limiting conditions (Akaraonye et al. 2010; 

Keshavarz et al. 2010).  

 

 

 

Figure 3: Schematic representation of PHAs biosynthesis from sugar catabolism, fatty acid β-

oxidation and intermediary pathways (Gumel et al. 2012). 
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The biosynthesis of PHAs from sugars is the best known pathway among the PHAs 

biosynthetic pathways. It normally begins with glycolysis of the sugar to pyruvate, which 

is converted to acetyl-CoA via the pyruvate dehydrogenase (PDH) oxidation pathway. 

Then, two molecules of acetyl-CoA are condensed to form acetoacetyl-CoA, by the action 

of β-ketothiolase, an enzyme encoded by the phaA gene. Acetoacetyl-CoA is reduced by 

acetoacetyl-CoA reductase (phaB) to form the monomer of (R)-3-hydroxyacyl-CoA, the 

building block of PHAs. Finally, PHA synthase (phaC) polymerizes the monomers to 

PHAs (Philip et al. 2007; Gumel et al. 2012). The three different pathways for PHAs 

biosynthesis are represented in Figure 3. 

The current industrial production processes are mainly based on the use of pure 

cultures of microorganisms in their wild form, such as Cupriavidus necator, Alcaligenes 

latus, or using genetically modified strains, such as recombinant Escherichia coli, by 

cloning the PHA synthase genes from many microorganisms, including C. necator (Lemos 

et al. 2006; Chen 2009; Akaraonye et al. 2010; Chanprateep 2010). C. necator has been the 

most commonly used wild type strain for the industrial production of P(3HB), P(3HB-co-

4HB) and P(3HB-co-3HV). E. coli has been favored in the choice as host due to its ability 

to grow fast, to achieve high cell density from several inexpensive substrates and simple 

polymer purification (Lemos et al. 2006; Akaraonye et al. 2010).  

Over the past few years, the search for alternative processes in order to reduce the 

PHAs production costs has significantly increased. The use of complex low cost carbon 

substrates and mixed microbial cultures has been proposed to reduce these costs (Serafim 

et al. 2008; Gumel et al. 2012). 

 

 

2.3.1 Mixed Microbial Cultures 

 

In order to reduce the costs of industrial PHAs production, the choice of the 

microorganism used depends on several factors that include the ability of cells to use 

inexpensive carbons sources, the growth rate, the polymer productivity, the quality and 

amount of PHAs obtained and the cost of the downstream processes (Chen 2009; 

Chanprateep 2010).  
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An interesting alternative to pure cultures is the use of mixed microbial cultures 

(MMC), such as activated sludge from wastewater treatment plants. The use of MMC 

affords the advantage that sterile conditions are not needed, thus saving the energy and 

equipment costs (Serafim et al. 2008; Villano et al. 2010). PHAs accumulation by mixed 

cultures was first detected in wastewater treatment plants designed for biological 

phosphorus removal (EBPR), which operate with alternated anaerobic and aerobic cycles 

(Serafim et al. 2008). 

Activated sludge with PHAs storage capacity may also be observed in aerobic 

wastewater treatment plants, in a process known as “aerobic dynamic feeding” (ADF) or 

“feast and famine”. In this process the activated sludge undergoes consecutive periods of 

external accessibility (feast) and unavailability (famine). PHAs storage occurs due to an 

internal growth limitation that results from insufficient intracellular components such as 

enzymes or RNA (Dias et al. 2006; Serafim et al. 2008). Under such conditions, 

microorganisms able to store the substrate during the feast phase possess a competitive 

advantage over the others, as the stored polymer can act as an internal carbon source 

during the famine phase. Therefore, under these conditions, activated sludge can be 

enriched with PHAs-accumulating microorganisms and its overall PHAs-storage potential 

is greatly increased (Serafim et al. 2008; Villano et al. 2010).  

PHAs production processes by mixed cultures are usually operated in two or three 

steps, depending on the type of substrate used as feedstock (Dias et al. 2006). The three-

step process consists firstly of a fermentative stage. In this stage occurs acidogenic 

fermentation, thus converting the biodegradable waste into a high-concentration mixture of 

acetate and other volatile fatty acids (VFAs), the substrates used by MMC for PHAs 

storage. The second step consists of an enrichment stage. Activated sludge process is 

performed at high organic load imposing periodic feeding in a fully aerobic SBR, in order 

to enrich and produce sludge with a high storage response. Finally, an accumulation step is 

performed. The storage response of the produced sludge is aerobically exploited in order to 

increase the amount of polymer produced (Dias et al. 2006; Villano et al. 2010). The two 

step process lacks the first stage described (Dias et al. 2006).  
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2.3.2 Low Value Substrates 

 

The selection of a suitable substrate is an important factor to optimize PHAs 

production since it affects the final cell content, composition and properties of the polymer.  

40% of total operating expenses of PHAs production are related to the raw materials, and 

more than 70% of this cost is attributed to the carbon source. Because of these costs there 

has been considerable interest in the use of cheap carbon substrates (Salehizadeh et al. 

2004; Akaraonye et al. 2010).  

Several agricultural or industrial waste materials have been explored as cheap 

carbon and nitrogen sources for PHAs production. Recycling of wastes generated from 

agriculture and industries for PHAs production is not only crucial for reduction of 

production costs but also for waste management. Process economics have revealed that the 

use of inexpensive and renewable carbon substrates as PHAs carbon feedstock can 

contribute to as much as 40-50% reduction in the overall production cost (Nitschke et al. 

2011). The various cheap carbon sources already tested include whey, wastewater from 

olive mills, molasses, corn steep liquor, starchy wastewater, palm oil mill effluent and 

subproducts of lignocellulosic biomass processing, such as hardwood sulphite spent liquor, 

HSSL (Keenan et al. 2006; Akaraonye et al. 2010).  

 

2.3.2.1 Hardwood Sulphite Spent Liquor (HSSL) 

 

HSSL is a by-product resulting from the sulphite pulping of hardwood, such as 

Eucalyptus globulus, and is usually concentrated and burned for chemicals and energy 

recovery (Figure 4) (Lawford et al. 1993; Marques et al. 2009). Acidic sulphite 

magnesium-based pulping of Eucalyptus globulus wood occurs usually around 130ºC and a 

pH of 1.5 (Marques et al. 2009).  
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Figure 4:Representation of the pulp production process by acidic magnesium-based sulphite 

pulping of Eucalyptus globulus wood (Fernandes et al. 2012) . 

 

 

The chemical composition of HSSL is listed in Table 3. The main components are 

lignosulphonates and sugars, with concentrations around 78 g L
-1

 and 50 g L
-1

, 

respectively. The sugars were obtained from the partial hydrolysis of hemicelluloses 

(glucuronoxylan, glucomannan and glucans), and the D-Xylose is present at highest 

concentration, in both monomeric (about 70 to 75%) and oligomeric (about 25 to 30%) 

forms (Marques et al. 2009; Xavier et al. 2010). Due to this fact, HSSL is a potential 

substrate for bioprocessing (Marques et al. 2009).  

 

Table 3: Eucalypt HSSL chemical composition (Xavier et al. 2010). 

Components Concentration (g L
-1

) 

Lignosulphonates 78.2 ± 0.6 

Acetic Acid 8.2 ± 0.3 

Furfural <0.1 

Ash 19.8 ± 0.2 

D-Xylose 24.6 ± 0.5 

D-Mannose 8.5 ± 0.9 

L-Arabinose 7.8 ± 0.3 

D-Galactose 4.5 ± 0.1 

D-Glucose 2.3 ± 0.1 

L-Rhamnose 1.6 ± 0.3 

L-Fucose 0.4 ± 0.3 
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However, the acidic hydrolysis of lignocellulosic materials also releases several 

compounds derived from sugar and degradation of lignin, namely furfural, 

hydroxymethylfurfural, acetic acid, syringic acid, and others (Mussatto et al. 2004; 

Marques et al. 2009; Xavier et al. 2010). Some of these compounds, such as furfural and 

acetic acid, are toxic to fermentative microorganisms and inhibit their metabolism, which 

is a major factor limiting HSSL bioprocessing (Mussatto et al. 2004). Furfural is a 

degradation product from the hydrolysis of pentose sugars, namely xylose. It can inhibit 

cells and affect the specific growth rate and cell-mass yield depending on its concentration 

in the fermentation medium (Palmqvist et al. 2000). Acetic acid derives from acetyl groups 

present in the hemicellulose. According to the fermentative process conditions the toxicity 

of this acid differs (Mussatto et al. 2004). When the medium pH is low, acetic acid is in the 

undissociated form and is capable to diffuse across the cell membrane (liposoluble). Inside 

the cell it dissociates and accumulates in the cytoplasm, causing the decrease of internal 

pH, inhibiting cell activity and even causing death (Lawford et al. 1993; Mussatto et al. 

2004). 

The use of HSSL as raw material for the production of value added products fits 

well to the biorefinery concept, developed to decrease the dependence from fossil 

resources and to improve the economic sustainability of pulp mills (Marques et al. 2009; 

Xavier et al. 2010). The production of several products has been tested using this by-

product as substrate, which includes bioethanol (Lawford et al. 1993; Xavier et al. 2010; 

Pereira et al. 2012), single cell protein (Pereira et al. 2012), bacterial cellulose (Carreira et 

al. 2011) and PHAs (Queirós 2012). 

 

2.3.2.1.1 PHAs production by MMC from HSSL 

The possibility of using HSSL as a substrate for PHAs production by a MMC was 

studied by Queirós (2012). The author performed the selection of PHAs-accumulating 

organisms from activated sludge collected in a wastewater treatment plant, which was 

submitted to ADF in Sequencing Batch Reactor (SBR) using HSSL as substrate. The 

selected MMC reached a maximum PHAs content of 67.6% and consumed the total 

content of acetic acid and a small part of xylose (Queirós 2012).  
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2.4 Microbial Community Analysis of Selected MMC under ADF Conditions 

 

PHAs productivity and content obtained by activated sludge has been generally 

lower than the obtained by pure cultures. One of the main factors on the development of a 

competitive process for PHAs production with MMC is the selection of organisms with 

high storage capacity (Lemos et al. 2008). Therefore, efforts have been made towards the 

identification of microorganisms responsible for PHAs storage, including production by 

selectec activated sludge under highly dynamic conditions to promote as much storage as 

possible (Dionisi et al. 2006; Serafim et al. 2006; Lemos et al. 2008; Jiang et al. 2011; 

Jiang et al. 2012; Moita et al. 2012; Queirós 2012). 

Dionisi et al. (2006), applied molecular methods to identify PHAs-accumulating 

organisms in an ADF reactor. The authors used denaturing gradient gel electrophoresis 

(DGGE) and performed 16S rRNA (ribosomal ribonucleic acid) clone library (Figure 5). 

The most represented group was Betaproteobacteria (Thauera, Alcaligenes, Comamonas, 

Achromobacter). The second phylogenetic group characterizing the SBR sludge was 

Gammaproteobacteria (Kluyvera, Pseudomonas, Acinetobacter) and Alphaproteobacteria 

(Xantobacter, Curtobacterium) were also present. It was found that Thauera genus was the 

dominant one and was the first time it was describe as PHAs-producer. Fluorescence In 

Situ Hybridization (FISH) method in combination with Nile Blue staining was employed 

by Serafim et al. (2006), for the characterization of the microbial population in two 

reactors under ADF conditions, one adapted to acetate and the other to propionate. The 

results showed that the main PHAs-producers belonged to Betaproteobacteria and 

Alphaproteobacteria, and the main responsible for the PHAs storage was affiliated to the 

genus Azoarcus (Betaproteobacteria). Lemos et al. (2008) determined the PHAs storing 

bacteria selected under ADF conditions, using propionate or acetate as carbon source. The 

authors applied reverse transcriptase-polymerase chain reaction (RT-PCR) on 

micromanipulated cells and confirmed by FISH. Four genera were detected, Amaricoccus, 

Azoarcus, Thauera and Paracoccus, being the latter rarely present. 
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a)   b) 

 

Figure 5:a) DGGE profile of the community structure of the activated sludge used as SBR 

inoculum (I) and their corresponding SBR selected sludge (II) (Dionisi et al. 2006); b) RT-PCR 

stategy applied for the identification of PHAs-accumulating organisms (Lemos et al. 2008). 

 

 

The microbial community analysis of studies of PHAs production by selected 

activated sludge using complex substrates has also been performed. Jiang et al. (2011) used 

lactate as carbon source and Plasticicumulans acidivorans and Thauera selenatis were 

identified as the predominant bacterial species. In 2012, Jiang and co-workers, using paper 

mill wastewater, found a large amount of P. acidivorans, which was the main PHAs-

producer, which accounted for 56% of the biomass, and a flanking population, which 

exhibited limited PHAs producing capacity (Jiang et al., 2012). Moita et al. (2012) used 

bio-oil from the fast-pyrolysis of chicken beds as substrate in a SBR under ADF conditions 

and observed the dominance of Betaproteobacteria over the Alpha and 

Gamaproteobacteria using FISH. Thauera genus was found to be the dominant genus and 

Amaricocus and Zooglea were also detected (Moita et al., 2012). Finally, Queirós (2012) 

after the selection of PHAs-accumulating organisms using HSSL under ADF conditions 

analyzed the selected culture by FISH. The dominant bacteria belonged to 

Alphaproteobacteria, but Beta and Gammaproteobacteria were also present. At genus 

level were detected Paracoccus and Defluvicoccus, both belonging to 

Alphaproteobacteria.   
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2.5 Isolation of PHAs-Accumulating Bacteria from Activated Sludge 

 

Numerous researchers have attempted to isolate PHAs producing microorganisms 

from various sources aiming to discover and identify novel species with high PHAs 

production capacity (Sangkharak et al. 2012). The use of naturally producing 

microorganisms is economical as there is great potential for producing PHAs in low-cost 

substrates, which can reduce PHA production costs (Thirumala et al. 2010).  

In addition to the microbial community analysis, in order to a have a better 

understanding on the microbial strains of activated sludge responsible for PHAs 

accumulation, several studies have performed the isolation of PHAs-accumulating bacteria 

from activated sludge. The isolations were generally performed using platting techniques 

and the screening of the PHAs-accumulating microorganisms by Nile Blue staining. The 

isolates were identified, by biochemical and 16S rRNA sequence analysis and phylogenetic 

studies, and their capacity of PHAs production evaluated (Table 4).  

The first successful isolation of PHAs-accumulating bacteria from activated sludge 

was reported by Liu et al. in 2000. The activated sludge was collected from an EBPR 

system and was enriched in an anaerobic-oxic system fed with acetate. The isolates were 

able to accumulate the copolymer P(3HB-co-3HV) (Liu et al. 2000).  

The possibility of PHAs production by activated sludge isolates using food wastes 

as substrates was performed in 2001 and 2002. Law and co-workers (2001) isolated a 

bacteria related to Bacillus megaterium able to use both food wastes and accumulate 

P(3HB), whereas the Klebsiella isolated by Wong et al. in 2002 produced P(3HB-co-HV) 

copolymers with different monomer compositions (Table 4). 
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Table 4: PHAs production from bacterial isolates from activated sludge. 

Reference Isolated Bacteria 

from Activated 

Sludge 

Carbon source Polymer 

produced 

PHA 

yield 1 

(%) 

Fermentation 

Conditions 

(Law et al. 

2001) 

Related to Bacillus 

megaterium 

Malt waste P(3HB) - Batch: 3.7 L bioreactor 

37ºC and pH 7.0 

 
Soy waste P(3HB) - 

(Wong et al. 

2002) 

Klebsiella spp. Malt waste P(3HB-co-3HV) 

ratio: 93:7 

- - 

Soy waste P(3HB-co-3HV) 

ratio: 79:21 

 

- - 

(Liu et al. 

2002) 

Sphaerotilus 

natans 

Glucose P(3HB-co-3HV) 

ratio: 30:70 

15.0 Fed-batch: 10 L 

bioreactor; 30ºC; 300 

rpm; 0.5 (v/v) aeration 

 

(Akar et al. 

2006) 

Microlunatus 

phosphovorus  

(DMS 10555) 

Glucose P(3HB) 23.97 Batch: 2 L bioreactor; 

30ºC, 250 rpm 

Glucose P(3HB) 25.91 Batch, Anaerobic-

aerobic cycles; 30ºC Acetate 

 

P(3HB) 23.23 

(Kourmentza 

et al. 2009) 

Pseudomonas sp. 2 

 

VFAs mixture (Acetate, 

propionate and butyrate), 

with N limitation 

P(3HB) 23.77 Batch: 1 L Erlenmeyer 

Flasks; room 

temperature; 250 rpm 

VFAs mixture, with N and 

O2 limitation 

P(3HB) 50.61 

Pseudomonas sp. 3 

 

VFAs mixture, with N 

limitation 

P(3HB) 13.58 

VFAs mixture, with N and 

O2 limitation 

 

P(3HB) 11.22 

(Thirumala et 

al. 2010) 

Bacillus sp. 112A Glucose P(3HB) 67.73 Batch: 500 mL 

Flask;30ºC; 150 rpm Sucrose P(3HB) 58.50 

Starch 

 

P(3HB) 50.50 

(Chen et al. 

2011) 

Gamma 

proteobacterium  

WD-3 

Sodium butyrate P(3HB-co-3HV) 

ratio: 35:65 

45.0 Fed-batch: 250 mL 

Erlenmeyer flask; 

30ºC;180 rpm 

 

(Venkateswar 

Reddy et al. 

2012b) 

Pseudomonas 

otitidis 

Synthetic acids P(3HB-co-3HV) 58.0 Batch: flasks; 120 rpm; 

28ºC Acidogenic effluent P(3HB-co-3HV) 54.0 

1PHA yield is given in terms of PHA content (% of cell dry weight); 

2 Pseudomonas sp. with 99% similarity with Pseudomonas putida ATCC 17390, Pseudomonas sp. strain ONBA and 

Pseudomonas sp. strain HR13; 

3Pseudomonas sp. with 99% similarity with Pseudomonas putida ATCC 17453 and  Pseudomonas putida ATCC 17514. 

. 

 

The production of the copolymer P(3HB-co-3HV) from inherent bacteria in 

activated sludge was further evaluated due to the advantage of production of the copolymer 

once PHAs copolymers composed of primarily 3HB with a fraction of longer chain 

monomers, such as 3HV, are more flexible and tougher plastics, and such plastics typically 

have a wider range of applications. Liu et al. (2002) isolated Sphaerotilus natans and 

investigated its ability to produce P(3HB-co-HV) using glucose and peptone, or by adding 
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valeric acid or sodium propionate as precursor and concluded that the highest 3HV content 

of the copolymer was 70% using glucose as carbon source and sodium propionate as 

precursor. Chen and co-workers, in 2011, isolated the Gamma proteobacterium WD-3 

strain. The effects of altering of the C/N ratio (mol mol
-1

) and changing in the carbon 

source (propionate, acetate and butyrate) on PHAs production were investigated in batch 

experiments. The highest PHAs content (22%) was obtained for a C/N ratio of 35. The use 

of different carbon sources produced a different combination of monomers in the PHAs, 

and the authors concluded that this strain could accumulate PHAs containing both the 3HB 

and 3HV monomers in the presence of a single carbon source. Finally, the authors 

performed a fed-batch experiment, with a C/N ratio of 35, in which the maximum PHAs 

accumulation was 45% of cell dry weight and the proportion of 3HV occupied one-third of 

the PHA end product. Venkateswar Reddy et al. (2012a) performed the isolation of several 

microorganisms involved in PHAs accumulation and waste treatment, after the enrichment 

of activated sludge under ADF conditions. The authors selected over 30 phenotypically 

different colonies, and 7 of these isolates were further characterized. The dominant 

organisms were related to phylum Firmicutes, and were identified as B. subtilis, B. badius, 

B. tequilensis, Staphylococcus arlettae and Enterococcus italicus. The other two isolates 

belonged to Gamaproteobacteria, Serratiaureilytica and Pseudomonas otitidis 

(Venkateswar Reddy et al. 2012a). PHAs production from the isolated Pseudomonas 

otitidis was further investigated, using two substrates, synthetic acids and acidogenic 

effluent from biohydrogen reactor. The results obtained revealed that this isolate showed 

ability to grow and accumulate PHAs (Table 4) with simultaneous waste remediation 

(Venkateswar Reddy et al. 2012b). 

The production of homopolymer P(3HB) has also been studied. PHAs production 

by the isolated Microlunatus phosphovorus was studied by Akar et al. (2006) from an 

EBPR system. The authors investigated the PHA storage behavior of the isolate under 

different growth conditions and using different carbon sources. Two different strategies 

were employed, first batch-growth systems using chemically defined growth media with 

glucose as only carbon source followed a batch-growth system with anaerobic-aerobic 

cycles and varying concentrations of glucose or acetate as the sole carbon sources, similar 

to EBPR processes. After evaluation of all the experiments, the main polymer produced 

was P(3HB) with yields between 20-30% of cell dry weight and the highest P(3HB) 
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production was observed in batch-growth similar to EBPR with glucose as carbon source. 

Kourmentza et al (2009) isolated two Pseudomonas sp. from an enriched MMC by 

alternating cycles between limitation of carbon and nitrogen substrates. The isolates were 

studied in terms of PHAs accumulation under both nitrogen limitation and simultaneous 

nitrogen and oxygen limitation conditions, with a synthetic medium with volatile fatty 

acids as carbon source, and the results compared to the use of the mixed culture. The 

authors concluded that the enriched culture was more promising for PHAs production 

when compared to the two isolates, from that same mixed culture. However, the high 

percentage of PHAs accumulation in the first isolate (50.61%), under nitrogen and oxygen 

limitation indicated that this specific strain could lead to quite high yields under properly 

selected limiting conditions. Thirumala et al. (2010) studied the P(3HB) production by an 

isolated bacteria belonging to genus Bacillus sp. from different carbon sources (galactose, 

fructose, glucose, mannitol, sucrose, maltose and starch). Bacillus sp. 112A produced a 

maximum of 67.73% P(3HB) from glucose, 58.50% from sucrose, followed by 50.50% 

from starch as carbon substrates, but also produced the polymer from the others carbon 

sources but with a lower PHA yield. The authors also performed the polymer analysis. 
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3. Methods and Materials 

 

3.1 Culture 

 

The mixed microbial culture used in this work as a source of microorganisms was 

collected from the Sequencing Batch Reactor (SBR) under Aerobic Dynamic Feeding in 

order to select PHA-accumulating organisms from HSSL by Queirós (2012). 

 

 

3.2 Culture Medium 

 

3.2.1 HSSL pretreatment 

 

The hardwood sulphite spent liquor (HSSL) from magnesium based acidic sulphite 

pulping of Eucalyptus globulus was supplied by Caima – Indústria de Celulose SA 

(Constância Portugal). Pre-evaporated HSSL was collected from inlet evaporator in a set of 

multiple-effect evaporators to avoid the presence of free SO2 in liquor. The pretreatment of 

HSSL consisted in pH adjustment to 7.0 with 6M KOH followed by aeration with 

compressed air (2 h.L
-1

). Afterwards, the liquor was centrifuged for 1 hour at 2000 rpm. 

The precipitated colloids were then filtered off using a 1 µm glass microfiber filter 

(Ahlstrom, grade 131) (Xavier et al. 2010).  

 

 

3.2.2 Medium composition 

 

The medium selected was the same used in the SBR for the selection of PHA-

storing organism by Queirós 2012. The three carbon sources used were either the by-

product HSSL (4.2 gCOD.L
-1

) or one of the two major carbon sources present in HSSL, 

Sodium acetate (CH3COONa) and Xylose (C5H10O5) in concentrations of 0.172g.L
-1

 and 

0.360 g.L
-1

, respectively. The composition in micronutrients of culture medium is listed in 

Table 5. Phosphate salts were prepared separately, in order to avoid precipitation with 



Isolation and characterization of PHAs-accumulating bacteria from HSSL 

24 
 

magnesium salts during sterilization. The pH of the medium was kept above 7.0 before 

sterilization and for solid medium the amount of agar used was 20 g.L
-1

. The solutions 

were then autoclaved and left to cool down in a laminar flow hood. After cooling, 

phosphates and carbon source were added to the medium and then it was distributed to 

petri dishes.  

 

Table 5: Concentration of nutrients in the culture medium. 

Compound Concentration (g.L
-1

) 

Monopotassium phosphate (KH2PO4) 0.016 

Dipotassium phosphate (K2HPO4) 0.064 

Magnesium sulfate heptahydrate (MgSO4·7H2O) 0.160 

Calcium sulfate dihydrate (CaSO4·2H2O) 0.080 

Iron(III) chloride (FeCl3) 0.020 

Sodium Molybdate dihydrate (Na2MoO4·2H2O) 0.008 

Ammonium chloride (NH4Cl) 0.160 

 

 

3.3 Bacterial isolation 

 

In order to isolate some PHA-accumulating bacteria from the selected MMC, solid 

culture medium was prepared (Table 5).A volume of 50 µL of the selected mixed culture 

were spread onto agar growth medium and the inoculated plates were therefore incubated 

at 20ºC. Pure cultures of PHA-storing bacteria were isolated by repeated streaking of 

isolated colonies. The purity of the isolates was evaluated performing gram staining and 

FISH analysis. The cultures were then inoculated in liquid medium, 50 mL with the 

respective carbon source from where it was isolated, to determine the growth rate. Then, a 

400 mL Erlenmeyer was inoculated with an inoculum from the previous liquid medium. 

Kinetic tests were performed in triplicates. Samples were taken to evaluate the culture 

growth (absorbance at 420 nm), substrate consumption and to perform Nile Blue staining. 
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3.4 Analytical Methods 

 

3.4.1 Carbon Sources Analysis 

 

Overall substrate consumption was determined using the Chemical Oxygen 

Demand (COD), through Spectroquant® photometric kit (Merck), according to the kit’s 

instructions. 

 

 

3.4.2 Biomass concentration 

 

VSS (volatile suspended solids) were determined according to Standard Methods 

(American Public Health Association 2005). 50 mL of sample were filtered using a filter of 

1 µm (Whatman). The filter was dried in the oven at 105ºC for 2 hours, for the 

determination of the Total Suspended Solids (TSS). Afterwards, the same filter was placed 

in the muffle furnace at 505ºC for 2 hours, for the VSS determination. The determination 

of biomass concentration was performed through the conversion of the absorbance at 420 

nm (Abs420nm) into concentration using a calibration curve of Abs420nm versus biomass 

concentration, in VSS (g.L
-1

). 

 

3.5 Sample fixation and storage 

 

Biomass was harvested by centrifugation and ressuspended in 1 volume of 1x 

Phosphate Buffered Saline (PBS). This washing step was performed two more times. 1 

volume of paraformaldehyde (4% (v/v)) was then added to the eppendorf with the 

ressuspended biomass and afterwards incubated at 4ºC for 2 hours. The fixed sample was 

centrifuged (5 min, 4ºC, 12 000 rpm) and the supernatant poured away. Then the sample 

was ressuspended in 1 volume of ice-cold 1xPBS and 1 volume of ice-cold 96% (v/v) 

ethanol was added. The sample was stored at -20ºC (Amann et al. 1995). 
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3.6 Gram Staining 

 

After sample fixation on slide, followed by air drying, the microscope slide was 

stained for 1 minute with crystal violet solution. Then the solution was removed with 

water. Further, the slide was treated with solution of lugol for 1 minute and the washed out 

with water, decolorized with acetone and dried. Lastly, the slide was covered with a 

solution of safranin for 1 minute and the washed with water. The slide was left to air dry 

and then it was observed under oil immersion at 1000x magnification with direct 

illumination resorting to Zeis Axioskop equipped with JVC TK-128OE Color Video 

Camera (VLC software), Figure 6 (Jenkins et al. 1986). 

 

 

 

Figure 6: Optic microscope Zeis Axioskop equipped with JVC TK-128OE Color Video Camera. 
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3.7 Nile Blue Staining 

 

Thin smears were prepared on microscope slides. After drying, the slides were 

submerged in a nile blue solution (1% w/v), pre-heated at 55ºC, for 10 minutes. The slides 

were the recovered and washed with an 8% acetic acid solution for 1.5 minutes and left to 

air dry. Then slides were observed under oil immersion at 1000x magnification resorting to 

an epifluorescence microscope, Olympus BX51, equipped with an Olympus XM10 camera 

(Cell-F software), Figure 7 (Rees et al. 1992). 

 

 

 

Figure 7: Epifluorescence microscope Olympus BX51, equipped with an Olympus XM10 camera 
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3.8 FISH analysis 

 

10 µL of biomass fixed on formaldehyde (4 % v/v) were placed in individual wells 

of a Teflon coated slide and then air dried. The slide was then dehydrated in ethanol series 

of 50 %, 80% and 98%, 3 minutes each. Afterwards, 10 µL of hybridization buffer 

(previously prepared and according to stringency of the probes used) were added to each 

well of the slide and the remainder used to moisten a tissue paper for the hybridization 

chamber. Finally, 0.5 µL of probe (50 ng.µL
-1

) were added to the wells and the slide placed 

in the hybridization chamber at 46ºC for 1.5 hours. Then, the slide was lightly washed with 

the pre-heated washing buffer and subsequently placed in a Falcon tube, containing the 

washing buffer at 48ºC for 15 minutes. Cold Milli-Q water was used to remove the 

washing buffer from the slide. After air-drying, the slide was mounted with Vectorshield 

mounting medium containing DAPI stain (Amann et al. 1995).  

The list of the probes used is shown in Table 6. The slide was observed under oil 

immersion at 1000x magnification resorting to an epifluorescence microscope, Olympus 

BX51, equipped with an Olympus XM10 camera (Cell-F software), Figure 7. Evaluation 

of probes efficiency was performed using the web tool mathFISH (Yilmaz et al. 2011). 

  

Table 6: Probes and their sequences used in FISH. 

Probe Sequence (5’ – 3’) Target References 

EUB338 GCTGCCTCCCGTAGGAGT 

Bacteria (Amann et al. 1995) 
EUB338 II GCAGCCACCCGTAGGTGT 

EUB338 III 

 

GCTGCCACCCGTAGGTGT 

Alf968 GGTAAGGTTCTGCGCGTT Alphaproteobacteria 

(except Rickettsiales) 

 

(Neef 1997) 

Bet42a GCCTTCCCACTTCGTTT Betaproteobacteria 

 

(Manz et al. 1992) 

 

Gam42a GCCTTCCCACATCGTTT Gammaproteobacteria 

 

(Manz et al. 1992) 

Hgc69a TATAGTTACCACCGCCGT Actinobacteria (high GC 

Gram+ bacteria) 

 

(Roller et al. 1994) 

Sph120 GGGCAGATTCCCACGCGT Sphingomonadales  

 

(Eilers et al. 2000) 

 

  



Isolation and characterization of PHAs-accumulating bacteria from HSSL 

29 
 

3.9 DNA extraction 

 

For the DNA extraction of the selected mixed culture a bead-beating protocol was 

used (Rossetti et al., 2003). 2 ml sample were centrifuged and the pellet resuspended in 

500 µl 2x buffer A (200 mM Tris, pH 8.0, 50 mM EDTA, 200 mM NaCl, 2 mM sodium 

citrate, 10 mM CaCl2) and 30 µl lysozyme (100 mg/mL, freshly prepared) in a 2 ml screw-

capped tube. The solution was incubated for 40 minutes at 37°C. A volume of 60 µl 

proteinase K (20 mg.mL
-1

) and 10 µl 20% SDS were then added, and the solution was 

mixed by gentle inversion and incubated for a further 30 minutes at 50°C. The sample was 

mixed on a Mini-Beadbeater (Biospec Products), at the low setting for 2 minutes in the 

presence of 500 µl phenol/chloroform/isoamyl alcohol (24:24:1), 200 µl 20% SDS and 

approximately 0.3 g acid-washed zirconium beads (0.1 mm of diameter). After 

centrifuging at approximately 12 000 g at 4°C for 3 minutes to deposit the beads and 

sample debris, the lysate was extracted with 1 volume phenol/chloroform/isoamyl alcohol 

(24:24:1). The nucleic acids from the approximately 500 ml aqueous phase were then 

precipitated by adding an equal volume of 2-propanol and 0.1 volume 3 M sodium acetate, 

pH 5.2, and incubating for 20 minutes on ice. The DNA pellet was recovered by 

centrifuging the solution at 12 000 g for 20 minutes at 4°C. The pellet was rinsed with 500 

µl 70% ice-cold ethanol and then, after discharging the ethanol solution by inverting the 

tube, air-dried and resuspended in 20 ml TE buffer (10 mM Tris/ HCl, 1 mM EDTA, pH 

8.0) (Rossetti et al. 2003). 

An extra step was performed to purify the extracted DNA by adding 20 µL of 

phenol/chloroform/isoamyl alcohol (24:24:1) followed by mixing through gentle inversion 

and centrifugation at 13000 g for 15 minutes. To the supernatant obtained (around 20 µL) 

were added 0.1 volume 3 M sodium acetate and 2 volumes of 70% ice-cold ethanol. The 

solution was kept on ice for 3 hours and the centrifuged at 13 000 g for 15 minutes. After 

discharging the ethanol solution by inverting the tube, the pellet was air-dried and 

resuspended in 100 ml TE buffer (10 mM Tris/ HCl, 1 mM EDTA, pH 8.0). 
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3.10 PCR and Sequencing 

 

This approach was applied to the isolates obtained, to DNA extracted from the 

MMC and to the clones of the 16S rDNA clone library. For this, a TaKaRa Ex Taq
TM

 kit 

was used. The eppendorfs were prepared with general reaction mixture as described by the 

kit. The primers used were 27 forward (f) and 1492 reverse (r), for the isolates and 

genomic DNA of the MMC and T7f and U19r, which are specific plasmid primers, for the 

first screening of clones, and T7f was used with M13r, for the second screening Table 7. 

For the PCR the Perkin Elmer GeneAmp PCR System 2400 was used, programmed with 

two different cycle conditions according to the used primers.  

When 27f and 1492r were employed, those were the following cycles: 

- 94C for 4 minutes (1 cycle) 

- 94ºC for 1 minute, 48ºC for 0,30 minute and 72ºC for 2 minutes (35 cycles) 

- 72ºC for 12 minutes (1 Cycle). 

When T7f and U19r were used, or T7f and M13r, the cycles were the following: 

- 95C for 2 minutes (1 cycle) 

- 95ºC for 0.5 minute, 57ºC for 1 minute and 72ºC for 2 minutes (35 cycles) 

- 72ºC for 10 minutes (1 Cycle). 

After the last cycle, the samples were cooled down until 4ºC and an agarose (1%) 

electrophoresis was performed to check if there was amplification. Afterwards PCR 

products were purified using the QIAquick® PCR purification kit of (Quiagen, Milan, 

Italy) and quantified using the NanoDrop2000 Spectrophotometer (ThermoScientific, 

Milan, Italy).  

The samples were then sent to BioFab (Rome, Italy) for sequencing, using the 

following primers: 530f, 926f, 907r and 519r, Table 7. After receiving the results, the 

sequences were assembled and run into BLAST.  
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Table 7: Probes and their sequences used in FISH. 

 Primers Sequence (5’ – 3’) 

PCR 27f AGAGTTTGATCMTGGCTCAG 

 1492r TACGGYTACCTTGTTACGACTT 

 T7f TAATACGACTCACTATAGGG 

 U19r GTTTTCCCAGTCACGACGT 

 M13r TCACACAGGAAACAGCTATGAC 

Sequencing 530f GTGCCAGCMGCCGCCG 

 926f AAACTYAAAKGAATTGACGG 

 907r CCGTCAATTCMTTTRAGTTT 

 519r GWATTACCGCGGCKGCTG 

M = C:A; Y = C:T; K = G:T; R = A:G; W = A:T; all 1:1 

 

 

3.11 Cloning of the 16S rDNA 

 

Two different cloning kits were used in order to create a 16S rDNA clone library. 

In the first screening performed, rDNAs were PCR-amplified from the extracted DNA 

from the microbial community as previously described, using the 530f and 1492r primers. 

After purification and quantification, the amplified rDNAs were ligated into pNZY28-A 

vector (NZYTech, Portugal), and transformed into NZYStar competent E. coli, according 

to the manufacturer instructions.The rDNA inserts from recombinant clones were 

amplified by PCR, using specific plasmid primers (U19 and T7) following the PCR 

protocol presented previously.  

The second screening was performed as described above, however, using pGEM®-

T Easy Vector and JM109 High Efficiency Competent Cells (Promega, USA). In addition 

to this, the primers used for the PCR were T7f and M13r. 
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4. Results and Discussion 

 

4.1 Isolation attempts using HSSL – based medium 

 

The isolation of diverse PHAs-producing bacteria may help to identify novel and 

more efficient PHAs producers, which may lead to better PHAs yield in a short period of 

time, thus cutting down production costs (Chien et al. 2007). Therefore, aiming the 

isolation of microorganisms able to store PHAs from the different carbon sources present 

in HSSL, from a mixed microbial culture selected under feast and famine conditions, 

isolation attempts by platting in solid medium containing HSSL were performed.  

Despite the wide variety of PHAs-accumulating bacteria in different environments, 

only some reports have focused the potential for PHAs production of using resident 

bacterial species from activated sludge, which is generated in large quantities in biological 

wastewater treatment (Law et al. 2001; Reddy et al. 2008; Koller et al. 2011).  

Biomass from the mixed microbial culture (MMC) previously selected under ADF 

conditions (Queirós 2012) was spread in solid medium containing HSSL and some 

colonies grew separately after 2 days. Five randomly chosen colonies were selected and 

continuously streaked onto solid medium in order to obtain pure cultures. The isolates were 

named as strains AF1 to AF5. The isolation of PHAs-accumulating bacteria from this 

sample of MMC had already been performed by Queirós (2012). The author isolated a 

bacteria identified as Klebsiella spp. using a plating isolation technique in a defined 

medium with xylose as carbon source.  
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(A) 

 

(B) 

 

Figure 8: MMC plated in solid medium containing HSSL (A); isolated strain AF2 in pure culture, 

in solid medium containing HSSL (B). 

 

 

After several replating cycles, Gram and Nile Blue staining and FISH analysis were 

performed in order to evaluate the purity of the isolates, as well as to determine their 

morphology, PHAs-accumulating capability and elucidate on their taxonomy. The results 

are resumed in Table 8.  

Gram staining showed that AF1 and AF2 were Gram variable, as they appeared to 

be Gram negative with Gram positive inclusions inside the cells, and the three remaining 

isolates were Gram negative. A higher number of Gram negative isolates was expected as 

it was the dominant morphotype on the MMC (Queirós 2012). Gram staining also allowed 

for the description of the morphology of the strains, which was confirmed by phase 

contrast microscopic observation. Strains AF1 and AF2 had a bacillus morphology, which 

was one of the main morphotype found on the MMC (Queirós 2012) and AF3, AF4 and 

AF5 a coccobacilus morphology, also detected in the MMC (Queirós 2012). 
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In order to verify the PHAs-accumulating abilities of the isolates, mineral base 

medium with sodium acetate at a concentration of 0.5g.L
-1

 was prepared and each one of 

the isolates was inoculated. Nile Blue staining, which is a specific staining for PHAs 

inclusions, allowed the confirmation that the five isolates were PHAs-accumulating 

bacteria. The presence of inclusion bodies of PHAs was easily observed by the presence of 

brilliant dots in the cells after Nile Blue staining procedure under epifluorescence 

microscopy. In the majority of cases the brilliant dots were replaced by the full 

fluorescence of the cells, which lead to believe that the cells stored a high amount of 

PHAs. 

FISH analysis was performed as a preliminary taxonomic analysis of the isolates. 

From the five probes used (EUB338mix, Alf968, Bet42a, Gam42a and Hcg69a) the five 

isolates gave a positive result for EUB338mix, and therefore belonged to Bacteria Domain 

and three were positive for Gam42a, belonging to Gammaproteobacteria. The remaining 

two isolates showed negative result for Alf968, Bet42a, Gam42a and Hcg69a. 
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Morphology Nile Blue Stain 

(Phase Contrast / Epifluorescence) 
Sequencing 

Morphology Gram Stain 

AF1 Bacilli 

Gram variable 

 
 

Complete Sequencing: 100% 

identity with Rhodococcus 

spp. 

AF2 Bacilli 

Gram variable 

 
 

Partial Sequencing: 100% 

identity with Rhodococcus 

spp. 

Table 8: Pictures of Gram and Nile Blue staining of the five isolates and the results of sequencing. 

 



Isolation and characterization of PHAs-accumulating bacteria from HSSL 

 

37 
 

.

AF3 Coccobacilli 

Gram(-) 

 
 

Complete Sequencing: 99% 

identity with Pseudomonas 

spp. 

AF4 Coccobacilli 

Gram(-) 

 
 

Partial Sequencing: 100% 

identity with Pseudomonas 

spp. 

AF5 Coccobacilli 

Gram(-) 

 
 

Partial Sequencing: 100% 

identity with Pseudomonas 

spp. 
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No bacteria belonging to Alphaproteobacteria, the dominant group present in the 

selected MMC (Queirós 2012), or to Betaproteobacteria were isolated. Therefore, as an 

attempt to isolate bacteria belonging to the dominant group, an isolation approach on solid 

medium containing acetic acid or xylose, as carbon source, was adopted. However, after 

obtaining three different isolates for each carbon source, FISH analysis was performed and 

the six isolates gave a positive result for Gammaproteobacteria. Therefore, the taxonomic 

affiliation of the isolates obtained in this study is consistent with the identity of the one 

isolated previously (Queirós 2012). They belonged either to Gammaproteobacteria or 

Actinobacteria. This finding meant that the culturable fraction of the MMC belonged to 

these two phylogenetic groups.  

The isolation of bacteria belonging to Gammaproteobacteria instead of those 

belonging to the dominant classes has been previously observed (Gu et al. 2010). The 

isolation of nonylphenol ethoxylate-degrading bacteria from activated sludge had been 

assigned to Gammaproteobacteria, which was different from the results acquired using 

molecular techniques. Therefore, the authors used a new bacterial isolation strategy, by the 

use of gellan gum as a gelling reagent instead of agar. Gellan gum was used once it can 

effectively increase the cultivability of organisms and overcome some of the toxic effects 

that agar has on various groups of microorganisms (Gu et al. 2010). In addition, the clarity 

of the gellan gum gels allows to detect micro-colonies in plates that could not be seen on 

agar (Gu et al. 2010). The authors were able to isolate strains belonging to seven different 

genera including Sphingobium and Achromobacter, thus to Alphaproteobacteria and 

Betaproteobacteria classes (Gu et al. 2010). Future isolation attempts should be performed 

using this isolation strategy to verify if it would be possible to isolate bacteria belonging to 

the dominant group of the selected MMC. 

 

4.1.1 Identification of isolates 

 

The partial 16S rRNA sequencing followed by basic local alignment search tool 

(BLAST) analysis was performed in order to have a preliminary identification of the 

isolates. It showed that the isolated strains AF1 and AF2 had 100% similarity with 

Rhodococcus spp. and the remaining three, AF3, AF4 and AF5, had 100% similarity with 
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Pseudomonas spp. Taking these results into consideration, the complete sequencing of one 

of the isolated stains belonging to Rhodococcus spp. (AF1) and one to Pseudomonas spp. 

(AF3) was performed. The complete sequencing of the 16S rRNA allowed the 

identification of AF1 as Rhodococcus spp., which the preliminary affiliation was 100% to 

Rhodococcus qingshengii strain djl-6 (Xu et al. 2007). AF3 was identified as Pseudomonas 

spp, which the preliminary affiliation was 99% to Pseudomonas libanensis strain CIP 

105460 (Dabboussi et al. 1999).  

Members of genus Rhodococcus (Actinobacteria class) are widely distributed in 

natural environments, such as soils, water and marine sediments (Hernandez et al. 2008). 

These bacteria are well known for possessing a variety of catabolic pathways which allow 

them to degrade environmental pollutants and can be exploited to perform commercially 

useful bioconversions (de Carvalho et al. 2005). Rhodococcus species have been isolated 

from activated sludge samples, in which the main objective was the degradation of 

pollutants, such as estrogens and quinoline (Yoshimoto et al. 2004; Yu et al. 2007; Zhu et 

al. 2008). Moreover, degradation of phenolic compounds from Rhodococcus strains has 

also been reported in the literature (Martínková et al. 2009; Paisio et al. 2012). 

Lignosulphonates (LS) are the major component of HSSL, with a concentration around 

78g.L
-1

. LS include several phenolics, such as pyrogallol, syringic acid and gallic acid 

(Marques et al. 2009). Queirós (2012) reported consumption of LS during the PHAs 

production process. Therefore, it is possible that the Rhodococcus strains present in the 

MMC were one of the genera responsible for the consumption of these phenolics. 

Additionally, these microorganisms developed metabolic strategies to cope with these 

environments where nutrient limitation is common. One of these mechanisms may be the 

accumulation of storage compounds, such as PHAs, that can be utilized by cells as 

endogenous carbon sources and electron donors during periods of nutritional scarcity 

(Hernandez et al. 2008). A few members of this genus were described as PHAs-

accumulators. Rhodococcus ruber NCIMB 40126 and Rhodococcus sp. ATCC 19070 were 

reported to accumulate PHAs copolymers containing 3HV units from a range of unrelated 

carbon sources, such as glucose and fructose (Haywood et al. 1991). Using glucose as 

carbon source a PHAs content of 14 and 21% of cell dry weight was achieved, respectively 

for each strain and using fructose the PHAs content was of 11 and 14% (Haywood et al. 

1991). Rhodococcus aetherivorans IAR1 isolated from soil demonstrated ability to 
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produce 18 % cell dry weight of P(3HB-co-3HV) from toluene (Hori et al. 2009). Lastly, 

R.jostii RHA1 when cultivated with different carbon sources showed higher content of 

copolymer with gluconate (7.6% cell dry weight) (Hernandez et al. 2008). 

The genus Pseudomonas belongs to class Gammaproteobacteria, family 

Pseudomonadaceae and includes a great variety of microorganisms that are ubiquitous in 

nature being found in water and soil, being characterized by an enormous biosynthetic 

capacity and versatility (Nitschke et al. 2011). Numerous Pseudomonas spp. strains were 

also reported as phenol-degrading bacteria (Agarry et al. 2008). Several Pseudomonas 

PHAs-producing strains have been isolated from diverse environments. P. stutzeri isolated 

from oil contaminated soil produced PHAs when grown on both soybean oil and glucose 

mineral media, producing PHAs up to 63 and 52% of cell dry weight, respectively (He et 

al. 1998).P. extremaustralis sp. 14-3
T
 isolated from a temporary pond in Antarctica was 

able to accumulate P(3HB) when octanoate was used as carbon source (López et al. 2009). 

Pseudomonas species have been mainly described as mcl-PHAs producers. However, a 

sludge isolated P.aeruginosa MTCC 7925 demonstrated good capacity to synthesize scl-

lcl-PHAs copolymers from unrelated carbon sources containing scl-HAs (3HB and 3HV) 

and lcl-HAs of C16 (3HHD) and C18 (3HOD) units as the constituents (Singh et al. 2008). 

In activated sludge samples, the isolation and study of PHAs production of Pseudomonas 

spp strains was performed in some studies (Tsz-Chun et al. 2005; Porwal et al. 2008; 

Reddy et al. 2008; Kourmentza et al. 2009; Venkateswar Reddy et al. 2012a; Venkateswar 

Reddy et al. 2012b). Reddy et al. (2008) performed the isolation of PHAs producers from 

municipal sewage sludge, including activated sludge samples, and identified three 

Pseudomonas strains (Reddy et al. 2008). Porwal (2008) isolated 35 bacterial strains from 

diverse environmental sources, including activated sludge, and the activated sludge 

samples yielded 17 isolates, two of them identified as P. stutzeri, able to produce P(3HB) 

and hydrogen (Porwal et al. 2008). Considering studies of PHAs production by mixed 

cultures enriched under periodic feeding conditions in a SBR starting from activated 

sludge, the identification of Pseudomonas species as PHAs producers has also been 

performed (Dionisi et al. 2006; Lee et al. 2011). Lee et al. (2011) using nonanoic acid as 

substrate, identified P.aeruginosa as the dominant strain of the microbial community 

resorting to DGGE analysis and also performed the isolation of two strains, in which the 

16S rDNA sequences revealed that they were closely related to P.aeruginosa. In the future, 
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further studies should include the design and validation of specific FISH probes for these 

two strains, in order to confirm their presence in the initial selected MMC.  

 

 

4.2 Kinetic tests with isolates AF1 and AF3 

 

After the isolation on agar growth medium, the isolated strains AF1 – Rhodococcus 

spp. and AF3 – Pseudomonas spp., were inoculated in liquid medium, consisting of 

mineral base containing HSSL or acetic acid or xylose. After the adaptation to the liquid 

medium, kinetic tests were performed, in order to characterize the two cultures. In Figures 

9 and 10 are represented the growth and substrate consumption, in the three media, for the 

isolated strain AF1and strain AF3, respectively. Kinetic tests were performed in triplicated. 

Therefore, the determinations regarding biomass (optical density and VSS) were 

performed in triplicate. However, COD was quantified for only one of the triplicates, due 

to technical limitations. The results of the kinetic parameters obtained are summarized in 

Table 9.  

 

Table 9: Results obtained from the kinetic tests.  

Isolate Carbon Source µmax (h
-1

) td (h) 
qs  

(gS.gX
-1

.h
-1

) 

Y(X/S) 

(gX.gS
-1

) 

AF1 HSSL 0.212 ± 0.0219 3.29 ± 0.344 0.466 0.454 

 
Acetic Acid 0.153 ± 0.0252 4.61 ± 0.800 0.519 0.295 

 
Xylose 0.188 ± 0.0238 3.73 ± 0.504 0.572 0.329 

      
AF3 HSSL 0.251 ± 0.0526 2.84 ± 0.543 0.336 0.747 

 
Acetic Acid 0.194 ± 0.0147 3.58 ± 0.263 0.430 0.451 

  Xylose 0.130 ± 0.00578 5.34 ± 0.239 0.264 0.492 

 

4.2.1 Isolated strain AF1 – Rhodococcus spp.  

 

The strain AF1 – Rhodococcus spp. showed high affinity with two media, the one 

with HSSL and with xylose, since it began to grow right after inoculation, and the lag 
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phase was undetectable. With acetic acid as sole carbon source, the strain presented a lag 

phase around two hours. As observed in Figure 9, a higher biomass concentration, of 

0.510±0.0966gVSS.L
-1

, was obtained in the assay using HSSL. This value is six times 

higher than the biomass concentration obtained using xylose as sole carbon source, 

0.0867±0.0538gVSS.L
-1

, and seventeen times higher than using acetic acid, 

0.0308±0.00247gVSS.L
-1

. One reason for these differences observed on biomass amount 

may be the lower concentration of substrate in two  media with acetic acid and xylose, 

since the amount of carbon sources were determined in order to be approximately the same 

as the amount in which both carbon sources were present in the media with HSSL. 

However, as shown in Figure 9, this cannot be the only explanation, because xylose and 

acetic acid were still present at the end of the kinetic tests, acetic acid at much lower 

concentration 0.0467 g COD.L
-1

 than xylose 0.124 g COD.L
-1

, and cells were already in 

death phase. A possible explanation may be the lack of other components present in HSSL 

that are needed for microbial growth. 

When grown in liquid medium with HSSL, the isolated strain AF1 presented a 

maximum specific growth rate (µmax) of 0.212±0.0219 h
-1

 corresponding to duplication 

time of 3.29±0.344 h. This µmax was the highest showed by this strain. With acetic acid as 

sole carbon source AF1 presented a µmax of 0.153±0.0252h
-1

 corresponding to duplication 

time of 4.61±0.800h and in xylose a µmax of 0.188±0.0238h
-1

 corresponding to duplication 

time of 3.73± 0.504h. The growth and PHAs accumulation of Rhodococcus strains using 

acetate as carbon source as been reported, but the authors only report the PHAs 

accumulation content and monomers composition, not giving information towards the 

kinetic parameters of growth (Haywood et al. 1991; Hori et al. 2009). However, the effects 

of acetate concentrations on cell growth of a Rhodococcus strain, R. rhodochrous was 

previously shown (Honda et al. 1998). It was reported that cell growth was significantly 

inhibited at concentrations above 3g.L
-1

 and below 2.5 g.L
-1

 the specific growth rate was in 

a range of 0.15 to 0.16 h
-1

 (Honda et al. 1998), which goes according to our results. A very 

interesting finding was the fact that this strain was able to metabolize xylose, since there 

are no reports of utilization of this sugar from wild-type strains belonging to genus 

Rhodococcus (Hori et al. 2009; Xiong et al. 2012).  
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(A) 

 
 

(B)  

 
 

(C) 

 
 

Figure 9: Microbial growth evolution, in gVSS.L
-1

, and substrate consumption, in gCOD.L
-1

, along 

the kinetic tests performed with the isolated strain AF1- Rhodococcus spp., in three different 

medium, each with a distinct carbon source: HSSL (C), acetic acid (B) and xylose (C).  
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4.2.2 Isolated strain AF3 – Pseudomonas spp.  

 

The isolated strain AF3, identified as Pseudomonas spp., showed a very similar 

behavior as strain AF1. Both strain grew in the three media and resulted in higher biomass 

concentrations when grown in HSSL. However, the concentrations obtained were lower. In 

HSSL the biomass concentration obtained, of 0.174 ± 0.0297gVSS.L
-1

, was three times 

lower than for AF1 in the same medium. The biomass concentration achieved in HSSL 

was about three times higher than in the essays using acetic acid or xylose as sole carbon 

sources, which were respectively 0.0536±0.0121 gVSS.L
-1

 and 0.0642±0.0124 gVSS.L
-1

. 

Moreover, as can be observed in Table 9, the results showed the preference of both strains 

for growing in medium with HSSL, through the higher µmax in the essays with HSSL, 

0.212±0.0219h
-1

 and 0.251±0.0526h
-1

, presented by strains AF1 and AF3 respectively, as 

well as the biomass yield from substrate (Y(X/S)), which were 0.454 gX.gS
-1 

and 0.747 

gX.gS
-1

, respectively. On the other hand, strain AF1 – Rhodococcus spp. showed a 

preference in consuming xylose and AF3 – Pseudomonas spp. for acetic acid, as they 

presented a higher specific substrate consumption rate (qs) of 0.572gCOD.gVSS
-1

.h
-1

 and 

0.430gCOD.gVSS
-1

.h
-1

, respectively, compared to those with the two other substrates. The 

growth and PHAs production has been previously reported for Hydrogenophaga 

pseudoflava, formerly called Pseudomonas pseudoflava, from the sugars present in 

hydrolysates from the hemicellulosic fraction of hardwood, as a carbon and energy source 

(Bertrand et al. 1990). In this study, the results obtained for xylose were similar to those of 

Bertrand et al (1990) in which H. pseudoflava, showed a µmax of 0.130 h
-1

 in the production 

of the copolymer from xylose. 

The quantification of the components of HSSL along the time in the essays using 

HSSL is necessary in order to have a better understanding of the growth and consumption 

behavior of both strains using the by-product and should be performed in future studies. 

Queirós (2012) performed kinetic batch tests with the selected MMC and determined the 

kinetic parameters. In the study of the kinetics of PHAs production from HSSL 

components a µmax of 0.143 h
-1 

was obtained (Queirós 2012), which was lower than the 

obtained by the two isolated strains in this study. The same behavior was observed using 
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acetate or xylose as sole carbon sources, where the author obtained a µmax of 0.090 h
-1 

and 

0.119 h
-1

, respectively. The difference of behaviors concerning the two latter carbon 

sources may be partly explained due to the fact that the isolated strains AF1 and AF2 were 

first adapted to the liquid mediums before performing the kinetics tests, and in the case of 

the MMC the inoculum was directly removed from the SBR and inoculated into the new 

medium. Regarding the consumption of xylose, in the screening study performed by Lopes 

et al. (2009), the isolates showed a specific growth rate (µmax) range of 0.15–0.62 h
-1

using 

xylose as carbon source (Lopes et al. 2009). The results of this study are included in this 

range. Finally, taking into account that strains belonging to both isolated genera were 

previously reported as phenol-degrading bacteria (Agarry et al. 2008; Martínková et al. 

2009; Paisio et al. 2012), in further studies, the possibility of both strains in consuming LS 

should be evaluated, through the quantification of LS on the growth curves in HSSL. 

In PHAs production with the selected MMC from HSSL, acetic acid was 

completely consumed and some xylose remained in the medium (Queirós 2012). This 

allows for the use of the effluent of the PHAs production process to be use used as 

substrate for other biological processes that use this pentose as carbon source, allowing the 

integration of another production process, under the Biorefinery concept. If the same 

behavior was verified in the production process using the isolates, for example, knowing 

that acetic acid acts as an inhibitor of many biological processes, its consumption would 

allow the subsequent utilization of the effluent for bioethanol production from xylose by 

Scheffersonmycesstipiti stipitis (Pereira et al. 2012). 
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(B) 

 
 

(C) 

 
Figure 10: Microbial growth evolution, in gVSS.L

-1
, and substrate consumption, in gCOD.L

-1
, 

along the kinetic tests performed with the isolated strain AF3- Pseudomonas spp., in three different 

medium, each with a distinct carbon source: HSSL (A), acetic acid (B) and xylose (C).   
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4.2.2.1 PHAs accumulation 

 

A qualitative evaluation of the PHAs-accumulating capability of both strains, AF1 

– Rhodococcus spp. and AF3 – Pseudomonas spp., in liquid medium with the three 

different carbon sources analyzed (HSSL, acetic acid and xylose) was performed. Samples 

taken during the kinetics tests were observed under phase contrast and after Nile Blue 

staining. The results, as images of microscopic observation of AF1- Rhodococcus spp. and 

AF3 – Pseudomonas spp., are shown in Table 10 and Table 11, respectively. It was 

possible to observe that PHAs accumulation in bacterial cells increased along the 

incubation period reaching a maximum at the late exponential stage of the growth curve 

which corresponds to 9hours in Table 10 and Table 11. This PHAs accumulation behavior 

has been previously observed in other studies (Reddy et al. 2008; Queirós 2012).For both 

strains, in HSSL and xylose assays it was possible to clearly observe the PHAs inclusions 

inside cells. In acetic acid assay, cells were completely fluorescent, which meant that they 

were completely full of PHAs. The latter finding is somehow expected when acetic acid 

was the substrate, since it is a VFA that is more easily and rapidly consumed by 

microorganisms and accumulated as PHAs(Gumel et al. 2012). As the PHAs accumulation 

increased and reached the maximum PHAs content, some cells were completely 

fluorescent in the three tests. Nevertheless, the fluorescence intensity was always higher 

when acetic acid was the carbon source supplied. In addition, in the assays of PHAs 

production with HSSL, a higher intensity of fluorescence was clearly observed for strain 

AF1 than for strain AF3, indicating a higher content of PHAs produced by the former. 

The quantification of PHAs accumulated and analysis of the monomers in each 

media should be determine in order to confirm that the inclusions correspond to PHAs and 

evaluate which polymer was accumulated, once both strains were reported in previous 

studies has having capacity to accumulate the copolymer P(3HB-co-3HV). Another 

consideration is the fact that it has been reported that some strains belonging to genus 

Rhodococcus accumulate triacylglycerols (TAGs). Moreover, the strains Rhodococcus 

ruber NCIMB 40126 and Rhodococcus opacus PD630 showed capability to accumulate 

both storage compounds simultaneously (PHAs and TAGs) (Alvarez et al. 2000; 



Isolation and characterization of PHAs-accumulating bacteria from HSSL 

 

48 
 

Hernández et al. 2010). Nile Blue stain is specific for PHAs, not staining glycogen and 

polyphosphate, however can stain lipid bodies, therefore increasing the need to quantify 

and analyze samples using Gas Cromatography (GC). However due to some technical 

problems, that was not possible. 

Lower PHAs yields have been previously obtained for pure cultures using 

hemicellulosic hydrolysates. This may be due to presence of residual toxins or inhibitors 

and and/or limitation of biologically available xylose monosaccharides in the fermentation 

medium (Keenan et al. 2006). Consequently, reinforcing the need to quantify PHAs along 

time and also evaluate the PHAs-accumulating capability of the isolates increasing the 

concentration of HSSL in the medium. It is important to note that in this study, PHAs 

productivity obtained was expected to be lower compared to other studies using pure 

cultures due to minor biomass and substrate concentrations in the system and the 

uncontrolled cultivation conditions, of pH and oxygen (Yan et al. 2008). Concentrations of 

biomass and substrate used in commercial production are significantly higher. For 

example, the cell concentration of Alcaligenes latus was 76 g.L
-1

 and 5-20g.L
-1

 of sucrose 

resulted in a productivity of 4.94 gPHB.L
-1

.h
-1

 (Wang et al. 1997). 

An ideal organism for PHAs production would be a culture that could store high 

PHAs contents and grow rapidly on an inexpensive substrate (Yan et al. 2008). Several 

studies have shown that it was possible and potentially economical to develop PHAs 

production systems using activated sludge to isolate the PHAs-accumulating bacteria for 

PHAs production, and this study reinforces this. From both strains, AF1-Rhodococcus 

showed great potential for PHAs production from HSSL, due to its higher biomass 

concentration, µmax and fluorescence intensity after Nile Blue staining. Further studies are 

needed in order to characterize the polymers produced and to optimize the growth and 

PHAs accumulation.  
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Table 10: Images of Phase Contrast and Nile Blue staining of samples of AF1-Rhodococcus spp., taken at different times of growth in liquid medium 

with three different carbon sources (HSSL, acetic acid and xylose) 

Substrate 

Nile Blue Staining 

(Phase Contrast / Epifluorescence Microscopy) 

 t=0h t=6h t=9h t=25h 

HSSL 

    

 t=0h t=2h t=9h t=25h 

Acetic 

Acid 

    

 t=0h t=4h t=9h t=25h 

Xylose 
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Table 11: Images of Phase Contrast and Nile Blue staining of samples of AF3-Pseudomonas spp., taken at different times of growth in liquid medium 

with three different carbon sources (HSSL, acetic acid and xylose). 

Substrate 

Nile Blue Staining 

(Phase Contrast / Epifluorescence Microscopy) 

 t=0h t=2h t=9h t=25h 

HSSL 

    

 t=0h t=6h t=9h t=25h 

Acetic 

Acid 

    

 t=0h t=3h t=9h t=25h 

Xylose 

    

 



Isolation and characterization of PHAs-accumulating bacteria from HSSL 

 

51 
 

4.3 16S rDNA clone library 

 

In order to identify some of the main bacteria responsible for PHAs accumulation of 

the MMC, a 16S rDNA clone library was constructed on DNA extracted from the selected 

MMC. The clones were identified through the complete 16S rRNA sequencing followed 

by basic local alignment search tool (BLAST) analysis. A total of 31 clones were obtained 

and 26 successfully identified. The clones were closely related with nine different genera: 

Achromobacter spp., Comamonas spp., Clostridium spp., Methylobacillus spp., 

Novosphingobium spp., Pedobacter spp., Pleomorphomonas spp., Pseudomonas spp. and 

Sphingobium spp. In Table 12 are presented the taxonomic affiliations of the clones 

obtained.  

 

Table 12: Representation of the taxonomic affiliations of the clones obtained.  

Taxonomic affiliation 

Number 

of 

clones 

Highest similarity Identity 
Acession 

number 

Achromobacter 

spp. 

Betaproteobacteria 

 

5 Achromobacter 

denitrificans DSM 

30026 
 

99% NR_042021.1 

Clostridium spp. 

 

Firmicutes 

 

2 Clostridium 

estertheticum DSM 

14864 
 

98% NR_042153.1 

Comamonas spp. 

 

Betaproteobacteria 

 

3 Comamonas 

testosteroni CNB-2 
 

99% *
 

NR_102841.1 

Methylobacillus 

spp. 

 

Betaproteobacteria 

 

6 Methylobacillus 

flagellatus K 
 

99% * NR_074178.1 

Novosphingobium 

spp. 

 

Alphaproteobacteria 

 

2 Novosphingobium 

naphthalenivorans 

TUT562 
 

96% NR_041046.1 

Pedobacter spp. Bacteroidetes 

 

1 Pedobacter terrae 

DS-57 
 

95% NR_044005.1 

Pleomorphomonas 

spp. 

 

Alphaproteobacteria 

 

2 Pleomorphomonas 

koreensis Y9 
 

99% * NR_040997.1 

Pseudomonas spp. 

 

Gammaproteobacteria 2 Pseudomonas 

moraviensis CCM 

7280 
 

99% * NR_043314.1 

Sphingobium spp. Alphaproteobacteria 

 

3 Sphingobium sp. 

SYK-6 

95% NR_074396.1 

*partial sequencing 

  

http://www.ncbi.nlm.nih.gov/nucleotide/343201295?report=genbank&log$=nucltop&blast_rank=1&RID=TWCYH8C801R
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Nearly all the results were consistent with the findings of Queirós (2012) after 

characterized the selected MMC. Alphaproteobacteria was the dominant group of the 

MMC, accounting with 72.7 ± 4.0 %, followed by Betaproteobacteria, 11.1 ± 0.37 % and 

Gammaproteobacteria, 10.3 ± 0.3 %. A minor presence of Deltaproteobacteria, 

Actinobacteria and Bacteroides was also detected (Queirós 2012). The presence of 

Pseudomonas spp. in the MMC had already been verified, through its isolation in solid 

medium containing HHSL, as reported above. The presence of Firmicutes was not 

expected, once they had not been identified in the MMC through the FISH analysis 

(Queirós 2012). However, it is possible that they were present at a low amount and so 

undetectable.  

It is important to notice that for Novosphingobium spp., Sphingobium spp. and 

Pedobacter spp., the identity values obtained in the BLAST analysis were relatively low. 

However, only for the two first microorganisms it is possible to say that these may be new 

strains, once the sequences of the microorganisms with highest identity are complete ones. 

Regarding the remaining strains, no conclusion may be established as only the partial 

sequencing was performed.  

As can be observed in Table 13, species belonging to all the genera obtained from 

the clone library were previously identified or isolated from activated sludge samples, 

including Pseudomonas spp., which was discussed previously. They have been mostly 

been studied for their ability to grow in contaminated environments and to degrade those 

same contaminants. Only strains belonging to Clostridium spp., Comamonas spp., 

Novosphingobium spp., Pleomorphomonas spp. and Sphingobium spp. have been reported 

as PHAs-accumulating bacteria (Emeruwa et al. 1973; Thakor et al. 2005; Xie et al. 2005; 

Addison et al. 2007; Liang et al. 2010; Zakaria et al. 2010; Teeka et al. 2012). 
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Achromobacter spp. have been reported to be common microorganisms that use 

multiple organic pollutants in different environmental conditions (He et al. 2013). The 

ability of degrading several pollutants, such as pyridine, endosulfan, 

nonylphenolethoxylate and di-n-butyl phthalate, has been studied, including strains 

isolated from activated sludge (Li et al. 2009; Gu et al. 2010; Deng et al. 2011; He et al. 

2013). This genus has been previously identified in selected activated sludge in an ADF 

reactor for PHAs accumulation. Dionisi et al. (2006) identified Achromobacter sp. after the 

construction of a clone library, however did not verify PHAs-producing capability (Dionisi 

et al. 2006). So, it is possible to conclude that this genus belongs to a fraction of the MMC 

that does not produce PHAs. In the same study, Comamonas sp. was also identified 

(Dionisi et al. 2006). However, the genus Comamonas has been evaluated for PHAs 

production. For example, Comamonas testosteroni showed ability to store mcl-PHAs when 

cultivated on vegetable oils (Thakor et al. 2005). More recently, Comamonas sp. EB172 

was studied for its capability to produced PHAs from various carbon sources, including 

acetic acid (Zakaria et al. 2010).  

Clostridium species have been mostly isolated from moderate environments but not 

only. Clostridium estertheticum DSM 14864 was isolated from a microbial mat located in 

the moated periphery of a perennial frozen lake (Spring et al. 2003). Its presence in 

activated sludge has also been detected (Mangayil et al. 2012). There are very few studies 

concerning the PHAs-accumulating capability of Clostridium species, however it is known 

that Clostridium botulinum accumulates P(3HB) during the growth phase and utilizes it as 

an energy source for sporulation (Emeruwa et al. 1973). 

Three genera belonging to Alphaproteobacteria were identified, Novosphingobium, 

Sphingobium and Pleomorphomonas. The genus Novosphingobium includes a diverse 

group of bacteria displaying a number of unique traits that enable them to inhabit a variety 

of soil, sediment and aquatic environments (Addison et al. 2007). This genus was created 

to reclassify some species of the genus Sphingomonas by Takeuchi et al. (2001), in which 

the genus Sphingomonas was devided into four genera: Sphingomonas sensu stricto, 

Sphingobium, Novosphingobium and Sphingopyxis (Takeuchi et al. 2001). 

Novosphingobium nitrogenifigens Y88
T
 was the first species belonging to this genus 

reported as PHAs-accumulator. This strain was isolated from pulp and paper-mill of 

wastewaters undergoing biological treatment in a bioreactor operated under nitrogen-
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limited conditions (Addison et al. 2007) and is capable to accumulate a high content of 

PHAs, over 80% of its biomass, as P(3HB), when grown on glucose (Smit et al. 2012). The 

genus Sphingobium is closely related to Novosphingobium. The strain Sphingobium 

scionense WP01
T
 was isolated from a polycyclic aromatic hydrocarbon (PAH) 

contaminated soil (Liang et al. 2010). This strains was able to produce PHAs, as P(3HB), 

accumulating up to 24.1% cell dry weight from glucose. Furthermore, Sphingobium 

scionense WP01
T 

also accumulated P(3HB) from PAH, in particular benzoate (36.4% of 

cell dry weight), naphthalene (15.7%) and biphenyl (13.3%) (Liang et al. 2011). 

Pleomorphomonas spp. are nitrogen-fixing bacteria and usually found associated to plants 

(Xie et al. 2005). Their presence in activated sludge samples has been previously detected 

(Duarte et al. 2010; Zheng et al. 2013). In particular, P. oryzae is able to use a wide variety 

of carbon sources, including xylose and acetate, and accumulate P(3HB) granules (Xie et 

al. 2005). 

 

  



Isolation and characterization of PHAs-accumulating bacteria from HSSL 

 

55 
 

Table 13: Studies reporting the identification or isolation of strains belonging to the genera 

obtained in the clone library, from activated sludge samples as well as theirs PHAs production 

ability (if reported). 

  

 Studies of Identification / Isolation from Activated 

Sludge 

 

PHAs-accumulating 

capability 

 Strain Main Objective Ref. Strain Ref. 

      

Achromobacter 

spp. 

Achromobacter 

xylosoxidans CS5 

 

Biodegradation of 

endosulfan 

(Li et al. 

2009) 
  

 Achromobacter 

spp.  

 

Isolation of 

nonylphenol 

ethoxylate-

degrading bacteria  

 

(Gu et al. 

2010) 
  

 Achromobacter sp Bioegradation of 

di-n-butyl 

phthalate 

 

 

(He et al. 

2013) 
  

Clostridium spp. - Clostridium 

sporogenes CL3 

- Clostridium 

subterminale 

DSM 758 

 

Hydrogen 

production from 

glycerol 

(Mangayil 

et al. 2012) 
Clostridium 

botulinum 

ATCC 9564 

(Emeruwa 

et al. 1973) 

 Clostridium sp. 

 

Study microbial 

community in 

printing and 

dyeing 

wastewater 

treatment system 

 

(Yang et al. 

2012) 
  

 Clostridium 

uzonii 

Hydrogen 

production and 

phenol removal 

from palm oil mill 

effluent  

 

 

(Mamimin 

et al. 2012) 
  

Comamonas spp. 

 

Comamonas 

badia 

Activated sludge 

system treating 

coking effluent 

 

(Felföldi et 
al. 2010) 

 

Comamonas sp. 

EB172 

(Zakaria et 
al. 2010) 

 Comamonas sp. Assessment of 

denitrifying 

bacterial 

composition in 

activated sludge 

 

(Srinandan 

et al. 2011) 
Comamonas 

testosteroni 

(Thakor et 

al. 2005) 

 Comamonas 

acidovorans 

Biodegration of 

phenol 

 

(Safont et 

al. 2012) 
  



Isolation and characterization of PHAs-accumulating bacteria from HSSL 

 

56 
 

Table 13: Studies reporting the identification or isolation of strains belonging to the genera 

obtained in the clone library, from activated sludge samples as well as theirs PHAs production 

ability (if reported). 

  

 

Studies of Identification / Isolation from Activated 

Sludge 

 

PHAs-accumulating 

capability 

 Strain Main Objective Ref. Strain Ref. 

      

Methylobacillus 

spp. 

 

Methylobacillus sp. Identification of 

Acetate- or 

Methanol-

Assimilating 

Bacteria 

 

(Osaka et 
al. 2006) 

  

 Methylobacillus sp. antibiotics 

removal 

 

 

(Xia et al. 

2012) 
  

Novosphingobium 

spp. 

Novosphingobium 

tardaugens  

ARI-1
T
 

Isolation of an  

β-estradiol-

degrading 

bacterium 

 

(Fujii et al. 

2003) 
Novosphingobium 

nitrogenifigens sp. 

Y88
T
 

(Addison 

et al. 
2007) 

 Novosphingobium 

sp. JEM-1 

 

 

Estrogen 

removal 

(Hashimoto 

et al. 2012) 
Novosphingobium sp. 

THA_AIK7 

 

(Teeka et 

al. 2012) 

Pedobacter spp. Pedobacter sp. 

EMB 36 

Biodegradation 

of 2-chloro-

nitrobenzene 

 

 

(Xu et al. 

2011) 
  

Pleomorphomonas 

spp. 

 

Pleomorphomonas 

sp. 

 

Treatment of 

linear 

alkylbenzene 

sulfonate 

(Duarte et 

al. 2010) 
Pleomorphomonas 

oryzae 

(Xie et 

al. 2005) 

 Pleomorphomonas 

oryzae 

 

domestic 

wastewater 

treatment 

 

 

(Zheng et 
al. 2013) 

  

Sphingobium spp. Sphingobium sp. 

JZ-2 

Bioegradation 

of pyrethroid 

 

(Guo et al. 

2009) 
Sphingobium 

scionense sp. WP01
T
 

(Liang et 

al. 2010) 

 Sphingobium spp. Isolation of 

nonylphenol 

ethoxylate-

degrading 

bacteria 

 

(Gu et al. 

2010) 
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4.3.1.1 FISH analysis 

 

In order to verify if strains Novosphingobium spp. and Sphingobium spp., obtained 

in the 16S rDNA clone library, were the dominant strains of the bacteria belonging to 

Alphaproteobacteria present in the MMC, FISH analysis was performed. Probe Sph120 

was used, which is specific for the order Shingomonadales. Before FISH analysis, the 

specificity of the probe was studied using mathFISH tool (Yilmaz et al. 2011). Results are 

summarized in Table 15. It was possible to verify that Sph120 was not the best probe to be 

used in the case of Novosphingobium spp. despite the high value displayed for 

hybridization efficiency (0.9999) as it presented one mismatch very close to the middle of 

the probe sequence, and therefore decreasing the possibility of hybridization. Considering 

Sphingobium spp. it showed perfect alignment and high hybridization efficiency (0.8962). 

However, the FISH analysis showed only few cells with positive result with the 

Sph120 probe. Consequently, the cells to which the probe hybridized must be the 

Sphingobium spp. present in the MMC. This allows concluding that Sphingobium spp. 

were not the dominant PHAs-accumulating bacteria present in the MMC.  

 

 

Figure 11: Overlap of FISH pictures. Green cells were only hybridized by EubMix probe and the 

red cells represent the cells hybridized by EubMix and Sph120 probes. Blue cells represent the 

remaining biomass that was not hybridized.  
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Further studies should consider the design and validation of probes specific for the 

genus Novosphingobium, in order to evaluate the presence in the MMC, determine 

precisely the abundance, and whether Novosphingobium spp. are the main responsibles for 

PHAs production in the MMC. In addition to this, the FISH analysis of the remaining 

identified strains should be performed, including Pleomorphomonas spp., using both 

probes available or through the design and validation of specific probes.  
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5. Concluding remarks 

 

Starting from a MMC selected under feast and famine conditions for PHAs 

production from HSSL, a by-product of pulp and paper industry, strains belonging to four 

out of the 6 groups identified of the microbial community were isolated or identified. Five 

strains were successfully isolated using an isolation approach using solid medium 

containing HSSL. Strains belonging to the dominant class of the MMC were identified, 

through the construction of a 16S rDNA clone library, constructed on DNA extracted from 

the selected MMC.  

The five isolates obtained showed PHAs-accumulating capability. Two of the 

isolated strains were identified as Rhodococcus spp. with bacillus morphology. The 

remaining three had a coccobacillus morphology and were identified as Pseudomonas spp. 

The growth in liquid medium with HSSL or with the main carbon sources in HSSL (xylose 

or acetic acid), for one strain from each genus, AF1 – Rhodococcus spp. and AF3 – 

Pseudomonas spp., were further analyzed. Both strains grew and produced PHAs from 

each substrate, including AF1 – Rhodococcus spp. from xylose, which had not been 

previously reported. AF1 and AF2 showed preference for HSSL, and showed higher µmax, 

of 0.212±0.0219 h
-1

 and 0.251±0.0526 h
-1

, respectively, and greater biomass 

concentrations. Concerning the substrate consumption, AF1 showed a preference in 

consuming xylose and AF3 for acetic acid, as they presented a higher specific substrate 

consumption rate (qs) of 0.572gCOD.gVSS
-1

.h
-1

 and 0.430gCOD.gVSS
-1

.h
-1

. Finally, from 

the qualitative evaluation of PHAs accumulation resulted the increase of inclusions along 

incubation time and a higher accumulation when acetic acid was used as sole carbon 

source.  

Based on the information retrieved from the 16S rDNA clone library, 

Novosphingobium spp., Sphingobium spp. and Pleomorphomonas spp., belonging to the 

dominant class of the MMC, Alphaproteobacteria were highlighted. Furthermore, 

Achromobacter spp., Clostridium spp., Comamonas spp., Methylobacillus spp., Pedobacter 

spp. and Pseudomonas spp. were identified.  
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6. Future Prospects 

 

In future works alternative isolation procedures need to be performed to isolate 

bacteria belonging to the dominant groups of the selected MMC. A possibility may 

concern isolation attempts performed using gellan gum as a gelling reagent instead of agar. 

In addition to this, specific FISH probes for all the strains identified by clone analysis, in 

order to confirm their presence in the initial selected MMC, should be designed and 

validated. The possibility of both the isolated strains, Rhodococcus spp. and Pseudomonas 

spp., in consuming LS should be evaluated, through the quantification of LS on the growth 

curves in HSSL. Finally, the quantification of PHAs accumulated and analysis of 

monomers composition in each media and determination of the properties of the polymers. 
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