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O objectivo deste trabalho centrou-se no estudo das alterações 
fenotípicas e ao nível da morfologia mitocondrial em células de 
levedura Saccharomyces cerevisiae com mutações específicas 
em genes envolvidos na via de degradação proteica ubiquitina-
proteasoma. O turnover proteíco é muito importante pois garan-
te a viabilidade dos vários organelos celulares, de entre os 
quais, a mitochondria, cuja função principal é a produção de 
energia na forma de ATP. A subunidade Csn5 do COP9 signa-
losome, complexo com elevada similaridade com a lid prote-
asomal e com o factor 3 de iniciação translacional em eucario-
tas (eIF3), é responsável pela actividade da E3 ligase 
Cdc53/Cul1 através da remoção da proteina similar à ubiquiti-
na, Rub1. A delação do gene que codifica para a subunidade 
Csn5 é letal em eucariotas superiores mas não em levedura o 
que nos permite estudar os seus efeitos juntamente com outros 
mutantes: rpn11-m1, Δrub1, rpn11-m1/Δcsn5 rpn11-m1/ Δrub1. 
Mutantes e wild-type (W303-1A) foram caracterizados a nível 
de crescimento em diferentes fontes de carbono e a diferentes 
temperaturas, assim como à resposta a factores causadores de 
dano ao nível do DNA e síntese proteica (sulfonato de metil me-
tano e canavanina) juntamente com uma análise do potencial 
de membrana mitochondrial, autofagia/mitofagia através de mi-
croscopia de fluorescencia (GFP-Atg8 e GFP-Atg32) e Western 
Blot. Os resultados obtidos indicam que existe uma relação en-
tre a acção de deubiquitinação da proteina Rpn11, da subuni-
dade 19S do proteasome, e a activação dos ciclos de ru-
bilação/derubilação pela subunidade Csn5 do complex CSN 
(COP9 signalosome), sendo que o mutante rpn11-m1/Δrub1 
apresenta um fenótipo semi-letal com instabilidade ao nível do 
DNA e alterações mitocôndriais que levam a um mitofagia em 
fase exponencial em meio rico em glucose. Por sua vez, o mu-
tante rpn11-m1/Δcsn5 também revela mitofagia prematura em 
conjunto com alterações fenotípicas, como o aumento da di-
mensão celular (grande vacúolo), que ja é também evidente no 
mutante Δcsn5.  Foi ainda estabelecida uma possível relação 
entre o complex CSN e a capacidade de resistência aos danos 
causados no DNA pelo agente metilante MMS. 

Proteasoma, COP9 signalosome, SCF E3 ligase, CSN5, mito-
côndria, Saccharomyces cerevisiae 
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abstract 
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The aim of this work is the study of phenotypic changes and mi-
tochondrial morphology in Saccharomyces cerevisiae cells with 
specific mutations in genes involved in the ubiquitin-proteasome 
pathway. The protein turnover is important because it ensures 
organelles viability such as mitochondria, indispensable for cell 
survival. The COP9 complex is paralogous to the proteasome 
lid and eukaryotic translational initiator factor 3 (eIF3) complex-
es. The CSN5 subunit of the COP9 signalosome is responsible 
for the E3 ligase Cdc53/Cul1 activity through the removal of the 
ubiquitin-like protein, Rub1. Deletion of the Csn5 gene is lethal 
in high eukaryotes but not in yeast, this observation allow us to 
study the effects of this mutation in this organism (strain Δcsn5) 
together with other mutants or double mutants: rpn11-m1, 
Δrub1, rpn11-m1/Δcsn5 rpn11-m1/ Δrub1. Mutants and wild-
type (W303-1A) were characterised regarding growth in differ-
ent carbon sources and temperature as well as response to 
stress or DNA damage causing agents (methyl methanesul-
fonate and canavanin). The morphological results allowed us to 
investigate authophagy, and in particular mitophagy, through 
fluorescence microscopy (GFP-Atg8 and GFP-Atg32) and 
Western Blot analysis. We found a relation between deubiquiti-
nation undertaken by Rpn11 protein, from the 19S proteasome 
subunit, and the activation of rubylation/derubylation cycles by 
the CSN5 subunit of the CSN complex (COP9 signalosome). In 
fact, the rpn11-m1/ Δrub1 shows a semi-lethal phenotype and 
mitophagy in exponential phase in glucose rich medium. Also 
the Δcsn5 strain shows early mitophagy together with phenotyp-
ic changes, such as big vacuoles. In addition, it has been estab-
lished a possible relationship between the CSN complex and 
the resilience to damage in the DNA caused by the methylating 
agent, methyl methanesulfonate (MMS). 
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 The COP9 signalosome (constitutive photomorphogenesis 9 signalosome), also 

known as CSN complex, is a highly conserved protein complex from yeast to humans. It 

has structural and functional similarities with the 26S proteasome lid and the eukaryotic 

translation initiation factor 3 (eIF3) and functions in the ubiquitin-proteasome pathway 

regulating the activity of a specific type of ubiquitin E3 ligases, the cullin-RING ligase 

(CRL) familiy. This regulation is based on the removal of the ubiquitin-like protein Nedd8 

(known as Rub1 in budding yeast), by a deneddylase activity of the CSN subunit 5 (Csn5). 

This enzyme contains an active metal binding MPN+/JAMM metalloprotease motif. In the 

proteasome lid, the deubiquitinating enzyme, Rpn11 is the Csn5 paralog that is essential 

for maintaining a correct cell cycle and mitochondrial morphology in the model organism 

Saccharomyces cerevisiae.  

 Apart from plants, insects and mammals, S. cerevisiae can survive without the CSN 

complex given us the possibility to study subunit mutations in a living cell. In the other 

hand, is also very useful in the study of mitochondrial defects due to its capacity of per-

forming fermentation. 

 The mitochondrion, as the organelle that provides cell with energy (ATP) being 

critical for cell survival and main actor in several human diseases, is also very sensitive to 

mutations and lesions due to ROS production and therefore, misfolded/non-functional pro-

teins degradation is essential to maintain a correct function.        

 Relying on preliminary studies, the aim of this work is, in a first moment, to inves-

tigate cell phenotypes in a Wild-type (W303) strain and in the following single and double 

mutants: Δcsn5, rpn11-m1, Δrub1, rpn11-m1/Δcsn5 and rpn11-m1/Δrub1 in order to study 

the influence of this mutants in yeast cell growth, vitality, vacuolar phenotype, cell cycle 

progression and mitochondria morphology. After this, the study of a specific type of au-

tophagy, mitophagy will follow to understand if, in the case of double mutants rpn11-

m1/Δcsn5 and rpn11-m1/Δrub1 we have a cumulative defect on the rubyla-

tion/derubylation cycles and therefore a decrease in protein degradation by the proteasome 

due to the lack of cullin-RING activation that can lead to mitochondrion defects. This ap-

proach is important to know if the Rpn11 subunit of the proteasome lid plays a role in the 

deneddylation/derubylation along with Csn5, which could allow the establishment of a re-

lationship between the 26S proteasome and the CSN complex in the ubiquitin-proteasome 

pathway.   
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2.1 Ubiquitin-Proteasome system 
 
 The degradation of the protein waste is a central mechanism for the maintenance of 

cell viability. Due to transcription and translation errors, genomic mutations or diverse ge-

netic conditions, non functional proteins can accumulate in the cell forming aggregates that 

can be associated with toxicity therefore altering the natural cell environment [1]. Being 

the major workers, proteins are required for several processes such as, cell cycle progres-

sion, signaling, cell movement, transport, protection, catalysis regulation, homeostasis, 

among others. However, a high collaboration is needed among molecular chaperones and 

targeted protein degradation systems, the protein quality control (PQC) acts in order to 

keep a balance in the cell metabolism [1,2].              

 Elimination of misfolded proteins is carried by the Ubiquitin Proteasome System 

(UPS) and by the Autophagic Vacuolar (lysosomal) System (AVS). While autophagy is a 

mechanism of long-living cytosolic proteins and organelles degradation, the proteasome 

centers its action in specific short-living proteins [1,2,3].  

 
2.1.1 The role of Ubiquitin in protein degradation  
 
 Regarding the UPS, a 76 amino acid protein named ubiquitin (Ub) tags proteins for 

degradation by the proteasome, through the formation of polyUb chains that are linked by 

an isopeptide bond between the C-terminus of ubiquitin and the ε-amino group of a lysine 

side chain in the substrate [1,4]. Lysine residues in the protein are targets for ubiquitylation 

and it was once thought that a Lys48-based chain of ubiquitin was strictly necessary for the 

protein-protein interaction that leads to proteasome recognition. However, new evidences 

show that the mechanism is more complex and even a monoubiquitylated protein can be 

recognized and other residues than Lys can link ubiquitinated enlightening a high adapta-

bility of the UPS [1,4]. But, in the case of monoubiquitylation, this post-translational modi-

fication can regulate target activity instead of enforcing its destruction [5]. Interestingly, 

the UPS system also evolved to be able to recognize, not just Ub, but also Ubiquitin-like 

proteins (Ubls), whose functions go beyond protein cell targeting degradation. Examples of 

Ubls are the small ubiquitin modifier (SUMO) and the neural precursor cell expressed, de-

velopmentally downregulated 8 (NEDD8)[5,6,7]. However, this adaptability of the UPS 
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can turn against it, delivering a lack of accuracy where the proteasome is induced to de-

grade functional proteins. This fact together with aberrations in the Ub system and the ac-

cumulation of misfolded proteins are linked to some pathologies ranging from neuro-

degenerative diseases like Parkinson, Alzheimer and Huntington to immune and inflamma-

tory disorders such as type 2 diabetes and also cancer, where alterations in the machinery 

involved in linking or removing ubiquitin to specific substrates can occur in tumor-

suppressor proteins [1,4,5,8]. Hershko A., et al (1992) highlighted the ubiquitin-dependent 

degradation mechanism showing that ubiquitin does not work alone but that are a set of 

ubiquitin conjugating enzymes allowing the entire process from the ubiquitin targeting un-

til the protein degradation. These enzymes are the ubiquitin-activating enzyme (E1), the 

ubiquitin-conjugating enzymes (E2) and the ubiquitin-protein ligases (E3), which together 

perform the ubiquitination [1,9,10]. 

 

 

 
 

Figure 1. Schematic representation of the ubiquitin conjugation pathway. Formation of the thioester bond 
mediated by the E1 with ATP expend followed by the conjugation with a reactive cysteine of a second en-
zyme, E2. The next step requires the aid of a third enzyme, an E3. Two pathways are considered for this 
last step: (I) Ubiquitin is transferred to the thiol group of the E3 enzyme and only then is conjugated with 
the substrate; (II) For other E3, the enzyme seems to work more as an adaptor, juxtaposing the E2-ubiquitin 
thiolester and substrate to allow transfer of ubiquitin directly from E2 [11]. 
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2.1.2 The 26S proteasome  
 
 The ubiquitin/proteasome pathway is one of the most conserved regulatory path-

ways among eukaryotes and the proteasome structure exhibit >40% identity between yeast 

and humans. Some key components can share 70-80% of similarity with human homologs 

rescuing knockouts of yeast proteasomal genes [9]. Also in archaea and bacteria pro-

teasomes are present but with less structural complexity [10].      

 Two major subcomplexes constitute the 26S proteasome, a 20S barrel-shaped struc-

ture made up of four heptagonal rings consisting of two inner catalytic rings (β 1-7) and 

two outer regulatory rings (α 1-7) and a 19S regulatory particle that is composed by a lid 

and a base [4, 9-12].  The base is composed of six ATPases-Rpt1-6, Rpn1, Rpn2 and two 

ubiquitin receptors, Rpn10/S5a and Rpn13 being the Rpn10 subunit responsible for the 

connection with the lid. In its turn, the lid contains the remaining Rpn subunits (Rpn5, 

Rpn6, Rpn7, Rpn8, Rpn9, Rpn11 and Rpn12), of which only Rpn11 is known to have a 

deubiquitinating activity [4, 10]. The functions of the 19S regulatory complex are mainly 

related with the recognition and translocation of misfolded proteins to the 20S complex in 

which they are degradated by the proteolytic β subunits [10].  This massive holoenzyme 

with 1.5 MDa is the center of the proteolysis controlling a myriad of cellular processes but 

yet it does not work alone [9,12].  

 
  
Figure 2. Representation of the 26S proteasome. The base and the lid form the 19S regulatory complex that is 
added to the 20S core composed by the inner β catalityc rings and the outer α regulatory rings to form the 
26S proteasome complex [13].     
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2.1.3 Steps for ubiquitination  
 
 A cascade of events occur during the ubiquitination, and as first described in the 

Figure 1, it begins with the action of an E1 enzyme, with ATP expend, forming an energy-

rich thioester bond with the C-terminal glycine residue of ubiquitin and the active site cys-

teine of the enzyme. After, the ubiquitin residue is transferred to the active site cysteine of 

an E2 enzyme and finally, with the help of an E3 enzyme the ubiquitin is linked to the ly-

sine side chain of the protein to creating an isopeptide bond [1,9,11].   

 A big diversity can be found regarding E1, E2 and E3 enzymes, which is consistent 

with what it was already said about the high adaptability of the ubiquitin-proteasome sys-

tem. The ubiquitination process is just the first step for the protein degradation. It is then 

necessary to deliver the ubiquitinated protein to the proteasome and sometimes intermedi-

ates are needed such as extra-proteasomal Ub receptors. They are composed by one Ub-

like domain (UBL), that binds the 26S proteasome, and one Ub associated domain (UBA) 

that binds polyubiquitinated proteins [2,6]. As well as a protein can be ubiquitinated it can 

also be deubiquitinated by specific enzymes called deubiquitinating enzymes (DUBs) 

which main function is the removal of ubiquitin residues linked to the substrate therefore 

promoting Ub recycling [2].  

Figure 3. Schematic representation of the ubiquitin-proteasome pahtway. (a) Ubiquitination process medi-
ated by the enzymatic machinery,E1, E2 and E3 enzymes. (b) Removal of the ubiquitin residues trough the 
action of deubiquitinating enzymes (DUBs). (c) Delivery of the protein by Ub receptors for proteasome 
degradation (d). The protein is recognize by the ubiquitin receptorslocated in the 19S base, then is translo-
cate by the α rings subunits (orange) to the center of the 20S subunit to be degraded in the catalytic core, 
the β rings (blue). At the end, polypeptides are release from the 26S proteasome [2]. 
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 The proteasomal integral DUB, Rpn11, located in the 19S lid, detains a highly con-

served MPN+ (Mpr1, Pad1, N-terminal)/JAMM (JAB1/MPN/Mov34) domain-associated 

metalloisopeptidase [12,14]. It removes polyubiquitin chains from substrates, a prerequisite 

for their future processing [15].  But this proteasome subunit has other functions besides 

deubiquitination. Rinaldi T., et al (1998) developed some studies in Saccharomyces cerevi-

sae regarding Rpn11 that were focused in a specific missense mutation, mpr1-1, after re-

named rpn11-m1. This mutation causes a frame shift, producing a premature C-terminal 

ending, resulting in a truncated protein missing the last 31 amino acids [14,16]. In this 

study, they showed, for the first time, that a proteasomal mutation could be associated with 

changes in mitochondrial phenotype [18]. Pleiotropic effects such as elongated yeast cells 

containing multiple punctate mitochondrial structures were observed at 36ºC, together with 

an undivided nucleus in the bud. These results demonstrate the role of the protein Rpn11 in 

the cell cycle control due to G2-M phase arrest in the mutant strains after shift to 36ºC, de-

lay that is caused by the failure in the release of the Cdc14 protein phosphatase from the 

nucleus in the mother cell before anaphase during FEAR (CDC fourteen early anaphase re-

lease) pathway [1,17,18]. In several cases, these mutations were accompanied by the ac-

cumulation of ubiquitinated proteins, which is due to the deubiquitinase activity of Rpn11 

[18].  
 

 

 

  

 

 

 

  

  

 Previously, Rinaldi T., et al (2008) elaborated a careful study about the Rpn11-m1 

mutant and its influence in mitochondria biogenesis and morphology [16]. They observed 

Figure 4. Observation of nuclear DNA through DAPI staining in the rpn11-m1 proteasomal mutant, com-
paring with wilp-type and rpn11-m1/ΔrDNA cells. We see a clearly change in cell morphology and a pre-
anaphase arrest with unsegregated chromosomes that migrate into the elongated bud [17]. 
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that a specific α-motif downstream the 31 amino acid sequence missing in rpn11-m1, is 

necessary for the maintenance of a correct cell cycle, while only four amino acids are nec-

essary for maintaining the correct mitochondrial morphology.  

 
 In another interesting study, Hofmann L., et al (2009), attribute another function to 

this proteasomal protein, a role in the mitochondrial fission [19]. They established that 

Rpn11 regulates the Fis1-dependent machinery (Fis/Mdv1/Caf4/Dnm1) that is common to 

both mitochondria and peroxisomes, based on mutational studies using the rpn11-m1 muta-

tion together with strains deleted of genes involved in the fission events (Δfis1, Δdnm1 and 

Δvps1) [19].  

 A study in mammalian cells also show that Rpn11-overexpression affects cell pro-

liferation and the response of cytotoxic drugs used in cancer treatments which promote tu-

mor cell escape [20].  

 

2.1.4 The Cullin-Ring Ligases 
 
 As we have seen, the ubiquitin-proteasome system is responsible for the specific 

and timely removal of regulatory proteins involved in essential cellular functions [7, 15]. 

Substrate interactions are a critical point in the process and because of that a high level of 

ubiquitin-ligases (E3) diversity provide individuality to the ubiquitin cascade reactions 

280 292 

Figure 5. Comparison between Rpn11 and rpn11-m1 C-terminal which specific sequences can be found 
in blue. Site-directed mutagenesis to introduce a deletion at position 256-270 (coiled coils) seems to in-
duce pleiotropic phenotypes while the missing-sequence in the rpn11-m1 alone may account for mito-
chondrial and cell cycle phenotypes. From the position 280 to the 292 is represented the α-motif[16]. 
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[21]. The E3 enzymes fall into three classes that can bear a HECT (homologous to E6-AP 

carboxy terminus), a RING (really interesting new gene) or a U-box domain that is struc-

turally and functionally similar to the RING [6,7,21].  The RING-finger contains two zinc 

atoms held by seven cysteines and one histidine, or six cysteine and two histidine residues 

and in total it comprises 40-60 residues being the largest E3 ligase domain [5,21]. It was 

first linked to the ubiquitin-proteasome system through its discovery in subunits of two cell 

cycle-regulatory E3-ligases: APC/C (Anaphase promoting complex/Cyclosome) and the 

SCF (Skp1-Cullin-F-box)[5,6]. Within RING finger E3s there are 2 subclasses: the simple 

RING finger that contains the E2-binding RING domain and the substrate-binding domain 

together in the same polypeptide and the cullin-RING ligases (CRLs)[22].  

 The Cullin-RING ubiquitin ligases are the largest known class regulating diverse 

cellular processes such as cell cycle, transcription and development [23]. CRLs include a 

cullin, a RING H2 finger, a substrate-recognition subunit (SRS) and an adaptor to link the 

SRS to the protein complex [21,23].  They are activated by the covalent attachment of the 

ubiquitin-like protein NEDD8 to the cullin, a process called neddylation. In turn, the inhi-

bition is performed by a cullin-associated and neddylation-dissociated 1 (CAND1) that 

binds the cullin in the absence of NEDD8 preventing the neddylation [24]. Besides this 

regulation mechanism, the formation of CRLs dimers also shows to be a potential source 

of regulation [23].         

 The SCF ubiquitin ligase complex was first identified together in budding yeast and 

C. elegans through genetic studies in cell division [6,25]. After structural analysis the piec-

es of the complex were revealed: a cullin scaffold subunit, the smaller adaptor Skp1, a F-

box protein and a RING H2 finger protein Rbx1/Roc1/Hrt1 [23]. There are five major cat-

egories of cullins in metazoan (CUL1-CUL5) being the CUL1 the most studied Cullin-

RING ubiquitin ligase (CRL) with the budding yeast ortholog, Cdc53 [5,6,7,23].   
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 The F-box protein plays an important role in protein destruction due to the direct 

interaction with the substrates. The majority interacts with specific targets depending on 

post-translational modifications that it might have, for example phosphorylation, is the 

most common [5,26]. A SCF ubiquitin ligase can be characterized based on the F-box be-

ing the most prominent the SCFSKP2, SCFβ-TRCP and SCFFBW7.  For example, the F-box 

SKP2 is specialized in the degradation of several negative cell-cycle regulators, such as the 

cyclin-dependent kinase inhibitor p27 or the p130 and therefore when overexpressed can 

act as an oncogene by targeting this proteins for degradation by the UPS [5,9]: dysregula-

tion of p27 expression occurs in various cancers [22].  

 As we saw before, NEDD8 has a role in the CRLs activation allowing the translo-

cation of the ubiquitin residues to the substrate. The NEDD8 conjugation is catalyzed by a 

specific E1-like heterodimer (ULA1-UBA) named NEDD8-activating enzyme (NAE) that 

delivers the activated protein to an E2 enzyme called UB12, via a transthiolation reaction 

[6,22,24]. The latter stage of neddylation is not clear yet but it has been suggested that 

RBX1 has a E3-type ligase activity for cullin-1 neddylation and regulates poly-NEDD8 

chain formation [27]. In fact, all the process underlying NEDD8 influence in the UPS 

pathway is being discussed. It is also thought that NEDD8 does not interact directly with 

Figure 6. Representation of the ubiquitin ligase classes: RING-finger, HECT and SCF ubiquitin 
ligase.  Regarding the SCF E3 complex it consists in a scaffold-like cullin molecule, a F-box that 
is the linking-substrate module and a RING-finger containing subunit  (RBX1) that in turn binds 
the ubiquitin-conjugating enzyme (E2) that carries the ubiquitin residue (Ub)[5]. 
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the E2-conjugating enzyme but instead it binds to the cullin C-terminal catalytic domain 

inducing a conformational change in the complex that diminishes the distance between the 

activated E2 enzyme and the substrate, stimulating ubiquitination [6,28]. In practical ex-

ample, neddylation enhances the activity of the CRL1SKP2 towards p27, an important cell 

cycle regulator [29] and is also essential for IκBα ubiquitination by CRL1β-TRCP, a process 

that allows the translocation of the NF-κB factor into the nucleus, where it activates the 

expression of important genes for cytokine and cell survival responses, for example, 

inflammatory response [5,6,23,27].  

 

 In Saccharomyces cerevisiae, the Nedd8 orthologous Rub1 (related to ubiquitin 1) 

promotes the neddylation of the CRL Skp1-Cdc53/cullin1-F-box [31]. Liakopoulos D., et 

al (1998) first described this ubiquitin-like protein (53% amino acid sequence similarity), 

in yeast, together with the enzymes required for Rub1 activation and conjugation in vivo. 

They concluded, based on the normal growth and phenotype of rub1 mutants, that the pro-

tein is not essential for normal cell growth and viability [32]. In the same year, Lammer D., 

et al (1998) data showed that Rub1p activation system is linked to the ubiquitin-

proteasome-dependent system having the Cdc53 protein as target substrate; Rub1 is dis-

pensable in yeast growing under standard laboratory conditions since rub1 mutant showed 

Figure 7. Representation of the CRL activation by the ubiquitin-like protein NEDD8. a) In the absence of this 
enzyme the CRL activity is low. b) Binding of NEDD8 to its conjugative enzyme (NAE) with ATP expends 
initiates the process leading to CRL activation. c) Transfer of NEDD8 to the E2 specific enzyme and then to 
the Cullin-ring ligase (d). e) After NEDD8 binding, a conformational changed is induced resulting in a high 
CRL activity by bringing the Ub-E2 complex closer to the protein substrate [30]. 
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normal growing rates under a wide range of temperatures. However the Rub1p pathway 

was found to be necessary when the function of SCF is compromised by mutations in 

Cdc34, Cdc4, Cdc53 and Skp1[33].  

 

 

 

 

 

 

 

2.2 COP9 signalosome 
 
	   The COP9 signalosome (CSN complex) was first identified in Arabidopsis thaliana 

when Wei et al., (1992) reported the initial characterization of a new light-regulatory locus, 

COP9, which mutation leads to a constitutive photomorphogenic phenotype in the absence 

of light [35-37].   

 Chamovitz D.A., et al (1998), proposed that this complex might also represent a 

novel yet conserved development regulator in both insects and mammals [35]. In insects, it 

was showed by Freilich S., et al (1999) that it plays an important part in the development 

of the fly Drosophila melanogaster, in which disruption of one or more subunits genes 

caused larval lethality [38]. Seeger M., et al (1998) identified the COP9 in mammals dur-

ing a purification of proteasome from a lysate of red blood cells [39, 40] and, more recent-

ly, also in the budding yeast Saccharomyces cerevisiae, a CSN-like complex has been de-

scribed [40, 41].  It is now clear that this complex is a key player in several cellular func-

Figure 8. Classes of CRLs in S. cerevisiae: Cullins Cdc53 (cullin 1), Cul3, and Rtt101 (functionally 
similar to human Cul4). The C-terminal regions of cullins bind the RING protein Hrt1/Rbx1/Roc1, and 
the N-terminal portions interact with specific adaptor proteins (Skp1, Elc1, and Mms1), which recruit 
substrate receptor proteins (F-box, SOCS-box, or DCAF proteins) [34]. 
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tions such as DNA-damage response, cell-cycle control and gene expression [36, 42].  In 

addition, it appears to be over expressed in some human tumors due to its involvement in 

cell proliferation and apoptosis [43]. 

 

2.2.1 The CSN architecture 
 
 The COP9 signalosome is a conserved large multi-complex protein (450-550 kDa) 

with a canonical composition of eight subunits (Table 1.) that functions in the ubiquitin-

proteasome pathway, regulating the activity of CRL families of ubiquitin SCF E3 com-

plexes [36, 44]. 

 
Table 1. Comparison of the CSN subunits nomenclature in mammals, plants (Arabidopsis), insects (Drosoph-
ila) and yeast (S. pombe and S. cerevisiae). * The Csn12 subunit, in S. cerevisiae, its not an integrative part of 
the complex but interacts with it [40]. 
 

 Mammals Arabidopsis Drosophila S. pombe S. cerevisiae 

CSN1 GPS1, mfh, Sgn1, FUS6, COP11 Dch1 Caa1 CSN9 

CSN2 
Trip15, hAlien, Sgn2, 

COPS2 
FUS12 Alien, Dch2  CSN10/RRI2 

CSN3 Sgn3, COPS3 FUS11 Dch3  CSN11/PCI8 

CSN4 Sgn4, COPS4 COP8, FUS4 Dch4  CSN12* 

CSN5 Jab1, COPS5 AJH1, AJH2 Dch5  
RRI1 

 

CSN6 HVIP, Sgn6, COPS6 
AtCSN6A, 

AtCSN6B 
Dch6  CSI1 

CSN7 COPS7a, Sgn7 COPS7b, 
CSN7i, FUS5, 

CSN7ii 
Dch7  RPN5/NAS5 

CSN8 hCOP9, Sgn8 COP9, FUS7    

  

 Six of the eight subunits contain a proteasome-COP9 signalosome-initiation factor 

3 domain (PCI) and two of then (CSN5 and CSN6) a MPR1-PAD1-N-terminal domain 



 
 

 15 

(MPN) [46]. These domains are also found in the 26S proteasome lid and in the eukaryotic 

translation initiation factor complex, eIF3. The degree of similarity is higher between the 

CSN and the lid with a direct correspondence by eight paralogous subunits while the eIF3 

complex is more distinct containing a major number of subunits [45-47].          

 Accordingly with structural and biochemical analysis, there are two types of MPN 

domains: MPN- and MPN+/JAMM. Like was previously pointed, the second one is present 

in the Rpn11 subunit in the 26S proteasomal lid and it is also found in the CSN5 subunit of 

the CSN complex. This domain contains a metal-binding motif which carries an isopepti-

dase activity while the MPN-, present in the Rpn8 lid subunit and in the CSN6 subunit of 

the CSN has no enzymatic activity [45]. The MPN+/JAMM motif apparently constitutes 

the catalytic center for cleavage of Nedd8-cullin conjugate by CSN and of ubiquitin-

substrates by the proteasome, thereby regulating the activity of CRLs [40]. 	  

	  

	  

2.2.2 The CSN5 subunit 
 
	   Among the CSN complex subunits, the CSN5 is by far the most studied subunit. 

This 334 residues consisting protein was first isolated as a c-Jun activation-domain-binding 

Figure 9. Schematic representation of the three complexes: eIF3, proteasome lid and CSN (left to right). 
PCI domains are outlined in gray while MPN subunits are pink and dashed lines show internal interactions 
among subunits but are not intended to accurately represent complex architecture or interaction strength. 
Marked with a yellow line are the active MPN+ subunits: Rpn11 in the proteasome and the CSN5 subunit 
in the CSN complex[45]. 
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protein, which stabilizes the c-Jun-DNA complex and co-activates with c-Jun transcription, 

and for this reason it is also named Jab1 [40,48].      

 The main function associated with CSN5/Jab1 is the deneddylase activity that lo-

calizes to the catalytically active metal binding MPN+/JAMM metalloprotease motif. This 

activity is based on the removal of the ubiquitin-like protein Nedd8/Rub1 creating neddyla-

tion/deneddylation cycles [36,44]. Besides the JAMM motif, the CSN5 possesses N-and C-

terminal regions that tightly pack against the MPN fold and form an extended catalytic 

domain [48]. In mammalian cells, CSN5 subunit seems to be the most versatile of the CSN 

subunits because, apart from the other seven subunits, it can work independently and in 

smaller complexes. However, like Rpn11 in the 26S proteasome lid, it only manifests met-

alloisopeptidase activity when is part of the CSN complex and because of this it is also 

considered the key subunit ensuring the multiple functions of the holo-complex, [40,42].	  	  

	  

 
 
 
 
 

 The versatility of CSN5 increases in each new study that is undertaken on these 

subunit functions and its interactions with other cellular components. Depending on the 

Figure 10. Overall human CSN5 comprising 1-127 residues structure and oligomeric arrangement rep-
resentation, identified through mass spectrometry and N-terminal sequencing. (A) Secondary structure 
showing a central MPN domain in light brown and the N- and C-terminal in green. The catalytic center 
is show in ball-and-stick representation. (B) CSN5 domain organization. The five residues of the 
JAMM motif (E76, H138, H140, S148 and D151) are indicated by red dashed lines. The crystal struc-
ture was solved by selenium-single-wavelength anomalous dispersion (SAD) [48]. 
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specific target it exerts different effects on their stability. On one hand, through deneddyla-

tion activity it promotes the degradation of several factors such as p27, p53, 9-1-1 DNA 

repair complex, misfolded cystic fibrosis transmembrane conductance regulator (CFTR), 

among others (this target for destruction is possible through the already mentioned process 

of deneddylation of the SCF complexes [22]). On the other hand, CSN5 stabilizes several 

of its binding targets, including hypoxia-inducible factor 1 α subunit (HIF1-α), c-Jun and 

transformed mouse 3T3 cell double minute 2 (Mdm2)[46].        

 Cell cycle regulation involves several factors that control its progression, being 

crucial for a correct cell development and proliferation. A well-known factor that partici-

pates in G1 phase control progression is the cyclin-dependent kinase (Cdk)1 inhibitor p27 

(p27Kip1) whose expression is controlled both at the level of transcription and by multiple 

post-translational mechanisms, among which cell cycle-dependent and substrate-specific 

proteolysis seems to play an important role [49]. Tomoda K., et al (1999) found that a spe-

cific protein encoded by the Jab1 gene interacts with this cyclin inhibitor causing its trans-

location from the nucleus to the cytoplasm thereby decreasing its amounts in the cell pro-

moting a faster degradation, essential passage for cell cycle progression [50]. The two final 

steps of p27 down-regulation involve ubiquitination mediated by the ubiquitin ligase SCF-
Skp2 complex and proteolysis by the 26S proteasome [49,51]. So, besides its role in the p27 

translocation, CSN5 is also related with its direct degradation by deneddylation of the 

SCFSkp2 complex through COP9 signalosome [43,49,50]. Deregulation of CSN5, in an 

overexpression context, is link to p27 protein downregulation in cancers, since one of this 

factor functions is to protect normal cells from undergoing abnormal cell proliferation, 

working as a tumor suppressor. In this way, the CSN complex can be involved in cancer 

development scenarios [51].              

 Another important factor is known to be actived under cell stress, acting in cancer 

prevention by maintaining the genomic integrity through cell cycle arrest and/or apoptosis. 

It is named p53, and like p27, is a tumor suppressor [52]. The levels of p53 in the cell are 

controlled by ubiquitination and consequent degradation by the proteasome allowing the 

maintenance of the proper functions in normal cell growth and tumorigenesis prevention. 

Ubiquitination of p53 is mediated by the cullin ring ligase Mdm2, which in turn is stabi-

lized by the CSN5 subunit [51].  
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 Tomoda K., et al (2004) performed studies in Jab1-null mice; they demonstrated 

that embryonic cells, besides lacking other CSN subunits, also showed high levels of both 

p27 and p53 [53].  

 Step by step we start to realize the great involvement of the CSN complex and par-

ticularly of the CSN5/Jab1 subunit in a large number of cell pathways, contributing to the 

hard task that is to keep this system on. 

 

2.3 Yeast as model to study Proteasome and CSN com-
plex  
	  
	   The eukaryotic organism currently known as the budding yeast is by far the most 

studied model in molecular and cell biology. Since ancient times, Saccharomyces cerevi-

siae is used in basic biotechnological process such as winemaking, baking and other types 

of fermentation. Nowadays this unicellular fungus is largely used in scientific research to 

study the expression of many important genes that have homologs in human and that are 

known to cause hereditary diseases [54].  

 The genome of this organism was totally sequenced in 1997, has about 12,06 Mbp 

and contains about six thousand genes organized in sixteen linear chromosomes. The func-

tions of more than 75% of all opening-reading frames (ORFs) are known [55].  

 Yeast is easy to manipulate and it is possible to integrate a large spectrum of DNA 

molecules, like plasmid DNA by transformation, endogenous/exogenous DNA and replica-

tive and integrative molecules by homologous recombination in a specific position of the 

genome. The powerful tool that is this eukaryote resides also in the ability to quickly map a 

phenotype-producing gene to a region of its genome and the possibility to grow in haploid 

and diploid state. The haploid cells could be of two genders, a or α (alpha), and to form a 

diploid cell, two cells of opposite mating type should mate by fusing. This allows to easily 

create mutants in the laboratory by promoting conjugation between two haploid cells with 

the desirable genotypes that then can grow and replicate by mitosis or undergo meiosis to 

originate four haploid cells [54].       

 Another important point is the fact that S. cerevisiae can be easily cultured because 

it can grow in fermentative (glucose) and non-fermentative (ethanol, glycerol) medium, 
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performing respiration, within a short generation time, approximately 2 hours [54,56].  

 As other many protein complexes, the CSN complex is essential for the develop-

ment of several organisms from plants to mammals like was described before. In S. cere-

visiae a protein complex was identified with structural and functional similarities with 

metazoan CSN [57]. A very interesting fact is, whereas CSN is essential for development 

of several different organisms such as plants (A. thaliana) and animals (D. melanogaster, 

Caenorhabditis elegans, mouse and human), S. cerevisiae can survive without CSN. This, 

together with the fact that the Csn5 subunit is highly conserved and presents a significant 

homology in human, makes it an interesting model to highlight the role of this multi-

protein complex and its interactions with the proteasome ubiquitinase activity [44].	  	  	  

	  

2.4 Saccharomyces cerevisiae CSN complex (ScCSN) 
 
	   The S. cerevisiae CSN complex has a particularly divergent six subunits composi-

tion that is: Rri1, Rri2, Pci8/Csn11, Csi1, Rpn5/Nas5 and Csn9 in which only the Rri1 

(Csn5 ortholog) has a MPN domain while the others have a PCI domain (See also Table.1) 

[58].  
	  

	  

	  

	  

	  
	  

	  

	  

	  

Figure 11 CSN complex subunits interactions in S. cerevisiae. In yellow is represented the RRi1 
subunit (CSN5 orthololog), and in grey the other subunits. The CSN12 (YJR084W systematic name) 
interacts with complex but is not a constitutive subunit (see also Table 1). This scheme does not rep-
resent the tridemensional organization of the complex, just the interactions among subunits  (SGD, 
Saccharomyces Genome Database). 
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	   Maytal-Kivity V., et al (2002) performed a study with ScCSN mutants (csi1, csn5, 

csn9, csn12 and pci8/csn11) where they observed that, except for the csn12 mutant, there 

are accumulation of Rub1-modified Cdc53 confirming that, also in yeast, the CSN com-

plex plays an important role in the activation of this E3 ligase. It also shows that, under 

overexpression, the extent of Rub1-hydrolase activity for all the subunits is indistinguisha-

ble from the wild-type strain, which stands	  for the fact that the CSN complex as a whole is 

necessary for the rubylation of the cullin [41]. Wee S., et al (2002), in their turn add human 

CSN to csn deficient budding yeast cell lysate, which restored, with a ratio of ~1:1 compar-

ing with the wild-type, modified to unmodified Cdc53p, indicating an efficient removal of 

the Rub1p in vitro and, in this way, proving the existence of functional, besides structural, 

similarities between human and yeast CSN complex [58].   

 Another interesting study developed by Yu Z., et al (2011), points the attention in a 

common ScCSN and proteasome lid subunit: Rpn5. In this study they co-relate Cdc53 

derubylation and proteasome integrity based in the analysis of the Cdc53-Rub1 and Cdc53 

amount in ScCSN and proteasome subunit mutants and also Δrub1. They concluded that, at 

least in budding yeast, the CSN and proteasome are independent complexes since each one 

carry its own copy of Rpn5, and that CSN by itself is sufficient to perform Cul1/Cdc53 

derubylation. However the authors cannot dissociate the proteasome from rubyla-

tion/derubylation cycles due to the fact that the Csn5 substrate (Rub1) shares a high struc-

tural similarity with the Rpn11 substrate (ubiquitin) and therefore, directly or indirectly, 

this proteasome subunit lid might influence this cycles [59].  

 More recently, Zemla A., et al (2013), showed that the carbon-source used for the 

metabolic activities of Saccharomyces cerevisiae influence the Cdc53/Cul1 derubylation 

response in a way that, in the presence of glucose (fermentable) the majority of the cullins 

is rubylated meanwhile under glycerol-growth, the rubylation is reduced, suggesting that 

the derubylated status is the most common and therefore the Cdc53/Cul1 is inactive in a 

non-fermentable medium [56].  
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 Besides derubylation/rubylation cycles, this protein complex (ScCSN) presents oth-

er functions like interfering in the mating pheromone response or involvement in the mod-

ulation of the genes controlling amino acid and lipid metabolism [41,44].  

 
2.5 Mitochondrion: the cell living organelle 
 
 Mitochondrion is a particular organelle, considered the powerhouse of the eukary-

otic cell, contains is own DNA (mtDNA) encoding a small subset of proteins, 13 in hu-

mans and 8 in budding yeast, thus being semi-autonomous [60, 61].  

 The yeast, Saccharomyces cerevisiae, is a perfect model to study mitochondria de-

fects since, as long as a fermentable carbon source is available, like glucose, it does not 

need to appeal for mitochondria because it obtains ATP as a final fermentation product 

[61]. For this reason it is possible to observe mitochondrial morphology defects without 

losing cell viability.   

 

Figure 12 (a) Yeast growth curve (days of growth vs. culture density) and (b) Cdc53 derubylat-
ed/rubylated ratio in glycerol and glucose bars graphic based on the Cdc53 Western Blot. In exponential 
phase, yeast uses glucose as a carbon source producing ethanol. With the shift for non-fermentable car-
bon sources like ethanol and glycerol a diauxic shift occurs and the cells enter in a post-diauxic phase. 
After the exhausting of substrates, yeast goes on stationary. Concentration of rubylated cullin (*) is high-
er in a glucose-containing medium and consequently the ratio of derubylated/rubylated Cdc53 is higher 
in glycerol [56]. 
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 2.5.1 Biogenesis, structure and mitochondrial functions 
 
 In terms of structure, mitochondria have two membranes that create five different 

spaces: outer membrane, intermembrane space, inner membrane, inner membrane cristae 

and the matrix, each one having different functions [60]. Thus, mitochondrion biogenesis 

is a complicated process that requires a coordinated assembly and sorting of both nuclear 

and mitochondrial encode proteins [62].  

 The inner membrane is similar to the bacterial membrane in lipid constitution and it 

has some of the most important functions in the mitochondria metabolism. Cristae for-

mation increases the mitochondria efficiency since it contains the proteins to perform re-

dox of oxidative phosphorylation, NADH, succinate dehydrogenases, ATP synthases, mi-

tochondria’s fusion and fission proteins and proteins that regulate the transport of proteins 

and metabolites [63]. 
 

 

 

 

 

 

 

 

 

 

 

	   Mitochondria grow by the incorporation of proteins, production of phospholipids 

and transport from others organelles, it is an essential organelle like the endoplasmic retic-

Figure 13 Mitochondria structure and organization. In the left is represented from a schematic point 
of view and in the right is complemented with an image made in transmission electronic microsco-
py. 
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ulum, and they cannot be synthesized de novo by a cell. The shape, morphology, and num-

ber of the mitochondria are controlled by the balance between fusion and fission events 

and they are regulated by specific proteins: Mfn1, Mfn2 and OPA1 for fusion events and 

Fis1 and Drp1 for fission. These events have also impact on mitochondrial functions  (cel-

lular energy metabolism, survival and proliferation) and distribution in the cell [61, 63].  

 
2.5.2 Mitochondrial inheritance and diseases  
  
 The maintenance of an intact respiratory chain is essential for life from yeast to 

humans. Since mitochondrion is inherited from the mother there are hereditary diseases 

that are linked to mutations in the mtDNA.  As so is important to ensure the passage of in-

tact mtDNA in a way that the cell will not be compromised in their respiratory capacity. 

However, due to the production of reactive oxygen species (ROS), the mtDNA, with aging, 

will inevitably be damaged by these products of the oxidative phosphorylation. [61].  

 S. cerevisiae reproduces by a process called budding or assymetric cell division and 

all the components must be divided [64]. Right after the emergence of the bud, the mito-

chondria are transported to the new cell through actin filaments driven by myosin motor 

proteins. A faithful distribution of mitochondria and mtDNA during cell division depends 

on many processes such as mitochondrial motility, tethering, fusion and fission and 

mtDNA partitioning [61].  

 The equilibrium between fusion and fission events is of main importance for the 

mitochondria viability in the cell. In yeast, after replication, cells reveal a branched tubular 

network around the nucleus that is frequently remodeled by this two processes [64]. If 

there are problems in the fission pathway, mitochondria forms interconnected nets due to 

continuous fusion. On contrary, if there are fusion problems mitochondria are fragmented. 

The proteins involved in fusion/fission equilibrium are highly conserved on evolution 

which recognizes the importance of mitochondria correct morphology maintenance [65]. In 

fact, changes in this equilibrium leads, in humans, for example, to neurodegenerative dis-

eases. Mutation in MFN2 gene cause Charcot-Marie-Tooth (CMT) subtype 2 disease that 

is characterized by muscle weakness and axonal degradation of sensory and motor neurons 

[65]. Another well-known case is Parkinson disorder in which mutation in the Pink1 kinase 
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leads to neurons degeneration due to the accumulation of toxin/non-degraded proteins. 

This protein is targeted mainly for mitochondria because of the accumulation of ROS fol-

lowed by loss of membrane potential and an increase of damaged proteins. So, lost of its 

function can cause alterations in mitochondria morphology due to the lack of Parkin E3 

ligase recruitment that, in its turn, performs ubiquitination marking proteins for degrada-

tion by the proteasome and therefore inducing mitophagy [8, 62].    

 So, due to the mitochondria essential role and its susceptibility to DNA damage and 

production of aberrant proteins it is important that the cell possesses a quality control sys-

tem able to manage this situation [1].  
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3.1 Yeast strains and growth conditions 
 
 The yeast strains can be grown in liquid or in solid media, which is supplemented 

with 2.15% agar (FormediumTM) and placed in plates with 9 cm in diameter. Based on the 

conditions that we want to test, different media can be used and they can be undefined or 

defined changing in carbon source, growth factors and macro/micronutrients needed for the 

strain to grow. For an optimal growth, the cells are incubated in Yeast extract-

peptone+dextrose medium (YPD), at 28ºC in agitation under aerated conditions. 

Strain Genotype Source  

WM-1A (W303) 
MATa, his3-11, ade2-1, leu2-3,112, ura3-1, trp1-

Δ2, MPR1, can1-100 

Rothstein (Colum-

bia University) 

Δcsn5 
MATα, his3-11, ade2-1, leu2-3,112, ura3-1, trp1-

Δ2, MPR1, can1-100, YDL216c::KanMX4 
EUROSCARF* 

 

rpn11-m1 
Mat a, his3Δ-200, ade2-101, leu2Δ1,ura3-52, lys2-

801, trp1Δ62, bar1::HIS3 

Carl Mann 
(CEA/Saclay, 

Gif-sur-Yvette, 
France) 

 

Δrub1 
MATα, his3-11, ade2-1, leu2-3,112, ura3-1, trp1-

Δ2, MPR1, can1-100, YDR139c::KanMX4 
EUROSCARF* 

 

 
*EUROSCARF (European Saccharomyces cerevisiae Archive for Functional Analysis; Institut für 
Mikrobiologie, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany) 

  

 The strains rpn11-m1/Δcsn5 and rpn11-m1/Δrub1 were obtained through mating, 

sporulation and tetrad dissection. 
 

 

 

Table 2. Saccharomyces cerevisiae strains used in this work with correspondent genotype and source. 
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Yeast extract-peptone+dextrose medium (YPD): 
-  1% yeast extract (Duchefa Biochemie), 1% bacto-peptone (FormediumTM) and supple-

mented with 2% dextrose (Titol Chimica). Solid medium contains: 2.15% agar 

 

Yeast extract-peptone+dextrose medium (YEP+D): 
-  1% yeast extract (Duchefa Biochemie), 2% bacto-peptone (FormediumTM) and supple-

mented with 2% dextrose (Titol Chimica). Solid medium contains: 2.15% agar 
 

Yeast extract-peptone+glycerol medium (YPGly):  
- 1% yeast extract (Duchefa Biochemie), 1% bacto-peptone (FormediumTM) and supple-

mented with 2% glycerol (Sigma-Aldrich). Solid medium contains: 2.15% agar. 

 

Yeast minimal media/Synthetic defined medium (SD):  
- 0.17% yeast nitrogen base (without aminoacids, DifcoTM), 0.5% ammonium sulfate (Car-

lo Erra, reagents) and supplemented with 2% dextrose (Titol Chimica). 

 - (SD-URA): 0.17% yeast nitrogen base (with all aminoacids except uracil, Difco), 0.5% 

ammonium sulfate (Carlo Erra, reagents) and supplemented with 2% dextrose (Titol Chim-

ica). Solid medium contains: 2.15% agar. 

 

Amino acids Stock Concentration (ml/L) 

Uracil 240mg/100 ml H20+ 0.% (w/v) NaHCO3 10 

Lysine 360mg/100 ml H20 8.3 

Tryptophan 480mg/100 ml H20 8.3 

Leucine 720mg/100 ml H20 10 

Histidine 240mg/100 ml H20 10 

Adenine 500 mg/100 ml HCl (50mM) 8.3 

Methionine 240 mg/100 ml H20 (100x) 10 

Table 3. Amino acids solution volume to make 1 L of SD medium with specific concentration in stock.  
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3.2 Bacteria strains and growth conditions 
 
 Similar to yeast, bacteria can be grown in liquid or solid media, which is supple-

mented with 2.15% agar (Bactoagar Difco) and placed in plates with 9 cm in diameter. In 

this case, the Escherichia coli strain was grown in Luria-Bertani medium supplemented 

with ampicillin, at 37ºC.  

  

 

Luria-Bertani medium (LB) 

- 1% yeast extract (Duchefa Biochemie), 1% bacto-tryptone (FormediumTM) and supple-

mented with 2% of sodium chloride (NaCl) (FormediumTM). Solid medium contains: 

2.15% agar. 

  
 

3.3 Plasmid vectors 
 
 The plasmids used in this work were the pRS416-GFP-Atg32 [66], kindly provided 

by Daniel J. Klionsky (Life Sciences Institute and Departments of Molecular, Cellular and De-

velopmental Biology and Biological Chemistry, University of Michigan) , the plasmid express-

ing the GFP-Atg8 [67] that, in its turn was kindly provided by Hagain Abeliovich (Depart-

Strain Genotype Source 

DH5α SupE44, ΔlacU169(Φ80lacZΔM15), hsdR17, 
recA, endA1, gyrA69thi 

Miller and 
Mekalanos 

Antibiotic Stock Concentration (µg/mL) 

Ampicillin (Ap) 10mg/mL 10 

Table 4. Escherichia coli strain used in this work with the correspondent genotype and source. 

Table 5. Antibiotic supplement for LB medium. 



 
 

 29 

ment of Biochemistry and Food Science; Hebrew University; Rehovot, Israel) and the 

pVT100UmtGFP [68].   

 

3.4 Escherichia coli transformation  
 
 In order to amplify the plasmids used in this work, a bacteria transformation with 

the E. coli strain DH5α was performed. The competent DH5α cells were taken from -80ºC 

and 100µl were transferred to an eppendorf. At this point, 2µl of plasmidic DNA were add-

ed and the solution left on ice for 30 minutes. A termic shock was induced by incubation 

for 2 minutes at 42ºC and 1 mL of LB+Amp medium was added. The cells grew for 60 

minutes at 37ºC. After this, 100µl were plated in selective medium, LB+Amp, in order to 

have a more concentrated culture. The remaining solution was centrifuged at 4000 rpm for 

10 minutes, a portion of the supernatant eliminated and the pellet ressuspend. The cells 

were cultured in the same selective medium, LB+Amp and placed at 37ºC to grow over-

night. In this way we have 2 plates with different cell concentration.           

 
3.5 Plasmidic DNA extraction  
 
 The extraction of the plasmidic DNA was carried with the BioRad® kit, Quantum 

PrepTM Plasmid Midiprep allowing us to obtain the plasmid vectors for S. cerevisiae trans-

formation. 

 E.coli cells transformed with the plasmid vector were incubated overnight at 37ºC 

in 50 mL LB+Amp medium. The extraction started with a centrifugation for 20 minutes at 

5000 rpm, the supernatant eliminated and the pellet ressuspend mechanically.  At this point 

5 mL of cell ressuspension was added and the solution vortexed followed by the addition 

of 5 mL of cell lysis solution with gently agitation (invert 6 to 8 times). One more centrifu-

gation for 15 minutes at 5000 rpm and the supernatant was recuperated in a falcon. Mean-

while the quantum prep matrix was ressuspended and 1 mL was added to the solution in 

the falcon followed by a centrifugation for 5 minutes at 5000 rpm. After supernatant elimi-

nation, 10 mL of wash buffer was added to the pellet that was subsequently centrifuged 

and washed again with 600µl of the same washing buffer. The solution was then trans-
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ferred to a 2 mL eppendorf with a spin column and centrifuged for 1 minute at 15 000 rpm 

being the solution that passes in the eppendorf, discarded. One last washing was performed 

with the addition of 500µl of wash buffer, centrifugation for 1 minute at 15000 rpm, elimi-

nation of the remaining in the eppendorf and again centrifugation in the same conditions. 

 The spin column was transferred to a new 2 mL eppendorf, 600µl of ddH2O added 

and the solution centrifuged, 2 minutes at 15 000 rpm. 

 After extraction, the plasmidic DNA was quantified through spectrophotometry 

(Thermo Scientific NanoDrop™ Spectrophotometer) at the wavelength of 260nm. Protein 

and phenolic contamination resulting from the extraction procedure was also measured us-

ing the absorbance ratio of 260/280 and 260/230, respectively. To have “pure” DNA the 

ratio value should be 1.8-2.0 (A260/280) and 2.0-2.3 (A260/230). 

             

3.5.1 Control of the extracted DNA in agarose gel  
 
 In order to verify the integrity of the plasmidic DNA extracted, an electrophoresis 

in agarose gel (1%) was preformed. The colorant ethidium bromide (2µl) was added after 

boiling the gel (40 mL TE + 0,4g agarose). The solution to load in the gel was composed 

by 3µl loading buffer, 2µl of DNA and 10µl of H2O. We used the λ marker and set the 

conditions for 90V, approximately 45 minutes in TBE 1X running buffer. In the end of the 

running, the gel was exposed to UV light.         

 

3.6 Saccharomyces cerevisiae transformation 
 
 Yeast cells were grown in 10 ml YPD liquid medium until reach a concentration of 

5x106- 2x107 cells/ml (log phase). The total volume was transferred to a falcon and centri-

fuged for 5 minutes at 10000 rpm and the pellet resuspended with 2.5 mL of Lithium Ace-

tate + TE 1X (Stock Lithium Acetate + TE 1X). After a second centrifugation in the same 

conditions the pellet was resuspended with 200 µL of Lithium Acetate + TE 1X and the 

volume transferred into eppendorf tubes.  
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 In the eppendorfs, 10 µL of Salmon Sperm (previously denatured at 95ºC for 2’, 

precisely), 5 µL of DNA and 700 µL of Solution PEG: Lithium Acetate 1X  (Stock 10X) 

TE 1X (Stock 10X) + PEG 3350 40% (Stock 50%) were added.  

 The cells were then incubated for 30 minutes at 28ºC with agitation followed by 

another period of incubation but this time for 15 minutes at 42ºC. After, the samples were 

centrifuged for 1 minute at 5000 rpm, the supernatant eliminated and the pellet resuspend-

ed in the remaining solution. The transformants were plated in solid selective terrain and 

putted at 28ºC to grow.    

 
3.7 Growth curve  
 
 Yeast cells were grown in 2mL of YPD liquid medium at 28ºC with agitation, until 

they reached a concentration of 5x106- 2x107 cells/ml (log phase).  

 To inoculate the same number of cells (104 cells/mL), a Burker chamber was used 

to calculate the cell concentration (Cells/mL= (nº of cells/12)*25*104*dilution) and a new 

inoculum was made in 10 mL YPD liquid medium and placed at 28ºC in agitation to grow.  

Every 2 hours, during 12 hours, the cells were counted in the Burker chamber and the con-

centration calculated. 

 After 11 hours, a second inoculum was made, under the same conditions, to reach 

the 14 hours of growth in the next morning.  

 In the second day, the first inoculum was at 25 hours and the cell concentration was 

calculated, for both inoculums, following the same procedure of the previous day. 

 

3.8 Vitality test  
 
 Yeast cells were grown in 2mL of YPD liquid medium at 28ºC in agitation, until 

reached a concentration of 5x106-2x107 cells/ml (log phase). The cell concentration was 

accessed by cell counting in the Burker chamber (See Growth curve protocol) and 200 

cells were plated in YDP solid medium, in three replicas for each strain in study. This pro-

cedure was repeated for three times in a way of having three biological independent probes.	  	  	  	  	    
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3.9 Stress conditions assessment 
 
3.9.1 Temperature and carbon source 
 
 Yeast cells were grown in 2mL of YPD liquid medium at 28ºC in agitation, until 

reached a concentration of 5x106-2x107 cells/ml (log phase). Cell concentration was calcu-

lated using the Burker chamber (See Growth curve protocol) and a dilution series was 

made in order to obtain the following concentrations:  107, 106, 105, 104, 103 cells/mL. The 

cells were plated in YPD and YPGly media, with a 5 µL drop to each dilution, in duplicat-

ed plates than were putted at 28ºC and 36ºC to grow overnight. In this terms we have four 

growth conditions: YPD 28ºC, YPD 36ºC, YPGly 28ºC and YPGly 36ºC.     

 

3.9.2 Protein degradation, autophagy and DNA repair 
 
 Yeast cells were grown in 2mL of YPD liquid medium at 28ºC with agitation, until 

reach a concentration of 5x106-2x107 cells/ml (log phase). Cell concentration was calculat-

ed using the Burker chamber (See Growth curve protocol) and a dilution series was made 

in order to obtain the following concentrations:  107, 106, 105, 104, 103 cells/mL.  

 SD solid medium with Canavanin (3 µg/mL), Rapamycin (25 nM) and 0,025% of 

methyl-methane-sulfonate (MMS), plus YEP+D solid medium with MMS and YPD medi-

um with MMS at 28ºC were use to assess stress conditions in different cell concentrations 

as mentioned above.      

 

3.10 Autophagy 
  

 Transformed yeast cells containing the GFP-Atg8 expressing plasmid were grown 

in 2 mL of YPD liquid medium at 28ºC plus 180 µL of adenine, in agitation, until reached 

a concentration of 5x106-2x107 cells/ml (log phase). Coloration with FM4-64, for the vac-
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uolar membrane, was performed and the cells observed, after a decoloration phase, at the 

fluorescence microscope. 

 

3.11 Mitophagy   
 
 Transformed yeast cells containing the pRS416+GFP-Atg32 were grown in 2 mL 

of YPD liquid medium at 28ºC plus 180 µL of adenine, in agitation, until reached a con-

centration of 5x106-2x107 cells/ml (log phase). In a similar way as in autophagy, the cells 

were colored with FM4-64, for vacuolar membrane visualization and after decoloration, 

were observed at the fluorescence microscope. 

 

3.12 H2O2 oxidative stress 
 
 Yeast cells were grown in 3 mL of YPD liquid medium at 28ºC in agitation, until 

reached a concentration of 5x106-2x107 cells/ml (log phase) plus 200 µL of adenine. From 

the culture 1 mL was taken to a new eppendorf and centrifuged for 1 min at 5000 rpm. The 

supernatant discarded and the pellet ressuspended in PBS 1X, centrifuged again (1 min, 

5000 rpm) and the supernatant discarded. A mix of PBS 1X + H2O2  (20 mM) (20 µl of 

H2O2 (1M) + 1 mL PBS 1X) was prepared and 1 mL was added to each sample. The cells 

were putted at 28ºC, in agitation, in the dark for 2 hours. The cells were washed 3 times 

with 1 mL of PBS 1X and stained with dihydrorhodamine 123.   

 

3.13 Microscopy (confocal and fluorescence)  
 

3.13.1 Vacuolar phenotype: FM4-64 coloration 
 
 From the inoculum made for the autophagy and mitophagy study, a volume of 1 

mL was transferred to eppendorf tubes with 0,6 µL of FM4-64 (N-(3-

Triethylammoniumpropyl)-4-(6-(4-(Diethylamino)Phenyl) Hexatrienyl) Pyridinium Di-

bromide). At this point the coloration phase starts when the cells stay for 1 hour in agita-
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tion in the dark. After this phase, the total volume is transferred to a new eppendorf and 

centrifuged for 1 minute at 5000 rpm. The cells are washed, two times, with 1 mL of YPD 

medium and centrifuged in the same conditions, between washes.  
 To end the decoloration phase, the cells were inoculated in 2 mL of YPD liquid 

medium for 2 hours at 28ºC with agitation in the dark. After decoloration, the cells were 

observed at the fluorescence microscope using Texas Red filter (excitation/emission max-

ima ~515/640 nm). 

 
3.13.2 Nuclear and mitochondrial DNA: DAPI coloration 
 
 Yeast cells were grown in 2 mL of YPD liquid medium at 28ºC with agitation, until 

reached a concentration of 5x106-2x107 cells/ml (log phase) plus 180 µL of adenine. 100 

µL of cells in exponential phase were transferred to eppendorf tubes and 2 times of the 

sample’s volume of formaldehyde 1% was added following 30 minutes at room tempera-

ture. The cells were centrifuged for 1 minute at 5000 rpm, the supernatant eliminated and 

washed with 100 µL of H2O. After this wash they were centrifuged for 1 minute at 5000 

rpm one last time and 100 µL of DAPI (4',6-diamidino-2-phenylindole) solution (1 µg/ml) 

prepared from the stock (1 mg/mL) was added. The cells were left at room temperature for 

5 minutes and then observed at the fluorescence microscope (340/380nm excitation and 

450/490nm emission). 
 

3.13.3 Mitochondrion membrane potential: DASPMI coloration 
 

 Yeast cells were grown in 2 mL of YPD liquid medium at 28ºC with agitation, until 

reached a concentration of 5x106-2x107 cells/ml (log phase) plus 180 µL of adenine. 100 

µL of cells in exponential phase were transferred to eppendorf tubes, centrifuged for 1 mi-

nute at 5000 rpm, the supernatant eliminated and the pellet washed with 100 µL of H2O. 

After this wash they were centrifuged for 1 minute at 5000 rpm one last time and 100 µL 

of DASPMI (2-(4-(dimethylamino)styryl)-1-methylpyridinium iodide) solution (1:100) 

prepared from the stock (0,1 M) was added. The cells were immediately observed in the 

fluorescence microscope (430/470 nm excitation and 545/565 nm emission).  
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3.13.4 ROS assay: Dihydrorhodamine 123 coloration    
 
 Yeast cells were grown in 3 mL of YPD liquid medium at 28ºC in agitation, until 

reach a concentration of 5x106-2x107 cells/ml (log phase) plus 200 µL of adenine. From the 

culture, 1 mL was taken to a new eppendorf and centrifuged for 1 min at 5000 rpm. The 

supernatant discarded and the pellet ressuspended in PBS 1X, centrifuged again (1 min, 

5000 rpm) and the supernatant discarded. A mix of PBS 1X + Dihydrorhodamina (1 µl for 

each 500 µl of PBS 1X) was prepared and 1 mL was added to each sample. The cells were 

putted at 28ºC, in agitation, in the dark for 2 hours and watch directly at the microscope 

(500 nm excitation and 536 emission). 

 

3.14 Western blot analysis  
 

3.14.1 Mechanical protein extraction 
  
 Yeast cells were grown in 30 mL SD (-URA) and YPD liquid media (negative con-

trol) for one day. The total cell volume was transferred to falcons and centrifuged for 10 

minutes at 6000 rpm. After eliminate the supernatant, the pellet was resuspended with 500 

µl of PBS 1X and the solution transferred to eppendorf tubes. Cells were centrifuged for 1 

minute at 5000 rpm, the supernatant was eliminated till the last drop and again the pellet 

resuspended with a correspondent volume in lysis buffer (PBS 1X plus protease inhibitor). 

At this point, now considering this new volume (pellet + lysis buffer), beads (0,45 µm) 

were added. The samples were vortexed for 1 minute followed with 1 minute in ice; this 

step was repeated 5 times. A 30 minutes vortex at 4ºC was performed and the lysate recu-

perated in a new eppendorf tube. After a last centrifugation for 10 minutes at 10000 rpm at 

4ºC, the supernatant was transferred to a new eppendorf and stored at -20ºC. 
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3.14.2 Protein quantification (Bradford’s Method) 
  
 A solution of 10 mg/ml of BSA in lysis buffer was prepared and from this standard 

solution a calibration curve was made with the following concentrations: 10,5,2.5,1,0.5 and 

0.25 mg/ml of BSA.  

 Meanwhile it was also prepared the Bradford solution (1/5 BioRad protein assay + 

4/5 H2O) considering that is necessary 1 ml for each sample that contain: 4 µl of protein 

extract plus 1 ml of the Bradford solution. In the case of the control, the protein extract is 

replaced for lysis buffer. The optical density (595 nm) was read in a spectrophotometer and 

the protein concentration calculated based on the calibration curve (y=ax+c).  

 

3.14.3 Protein separation 
 
 The polyacrylamide gel was prepared in two steps: resolving gel (10%) and stack-

ing gel (30%). For the resolving gel was added H2O, 30% acrylamide, 1.5 M Tris (pH 8.8), 

10% ammonium persulfate and TEMED (N,N,N’,N’-tetramethylethylenediamine), in a to-

tal volume of 10 ml for making 1 gel. Regarding the stacking gel the composition were: 

H2O, 30% acrylamide, 1.5 M Tris (pH 6.8), 10% ammonium persulfate and TEMED 

(N,N,N’,N’-tetramethylethylenediamine), in a total volume of 5 ml for making 1 gel. The 

last two components must be added simultaneously and quickly because they activate each 

other starting the polymerization.  

 After the resolving gel polymerization, the stacking gel was added and in between, 

ethanol was used to help in the first polymerization phase by exercising weight.  

 To prepare the loading solution for each sample was used: Lammeli buffer 2X, a 

volume with a concentration of 50 µg/ml of protein previously calculated for each sample 

based in the Bradford´s Method plus lysis buffer. These three components were added in 

an eppendorf tube to reach a final volume of 20 µl.  The solution was boiled for 5 minutes 

before loading the gel.  
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 Running conditions: 80 V, 120 mA (stacking gel) and 120 V, 150 mA (resolving 

gel) 

 

3.14.4 Transfer 
  
 The nitrocellulose membrane (6x8cm) was activated by passing in ethanol (10 se-

conds), H2O (5 minutes) and transfer buffer (10 minutes), in agitation at room temperature. 

The transfer apparatus was prepared (1 sponge, 2 cardboards with 3mm, gel, membrane 

and again 1 sponge and 2 cardboards) and the transfer conditions were set to: 50 V and 300 

mA for 1 hour and 15 minutes.  

 

3.14.5 Revealing 
 
 After the transfer, the membrane was washed with a Blocking buffer 1X during 1h, 

in agitation at room temperature. Incubation with the primary antibody (anti-GFP) was 

took overnight in agitation at 4ºC, in a solution of 1 ml Blocking buffer 1X plus 9 ml of 

H2O.  The primary antibody was recovered and the membrane washed with blocking buffer 

for 10 minutes in agitation at room temperature; this step was repeated 3 times.  The sec-

ondary antiboby (anti-rabbit) was added following a period of 2 hours in agitation at room 

temperature. A third phase of washing was performed, always with blocking buffer 1X 

during 10 minutes, with agitation at room temperature for 3 times. For last, the addition of 

the resolving solution (SL, chemiluminescent detection) with incubation for 3 minutes, 

darkling, at room temperature was the final step before the image acquisition in the Chem-

iDoc™ MP imager and the treatment with the Image Lab™ software. 
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4. Results and Discussion  
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4.1 Analysis on the Δcsn5 mutant strain  
 
4.1.1 Morphology of the Δcsn5 mutant  
 
 The S. cerevisiae mutant Δcsn5 was obtained from the deletion of the CSN5 gene 

in an isogenic wild-type strain (W303), as referred in the materials and methods. After ob-

servation at the optical microscope (40x), in both exponential and stationary phase, it is 

clear that the mutant differs from the wild-type in terms of size and vacuolar morphology. 

To confirm this, FM4-64 staining was performed and the cells observed under a fluores-

cence microscope before and after treatment with 0,4M NaCl to induce vacuolar fragmen-

tation through osmotic shock (Figure 14).  

                 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. W303 and Δcsn5 vacuolar phenotype. The cells were grown overnight in YPD medium at 28ºC in 
agitation and treated with NaCl 0,4M to induce vacuolar fragmentation and stained with FM4-64. The pic-
tures were obtained through fluorescence microscopy and scale bar is 2 µm. 

 

 The mutant Δcsn5 presents larger cells with big vacuoles, approximately 30% that 

occupy almost all the cell area, showing normal vacuolar fission as the WT. This means 

W303+0,4M NaCl 

Δcsn5+0,4M NaCl Δcsn5 

W303 



 
 

 40 

that we do not have a biogenesis problem but instead, the vacuolar phenotype is induced by 

the absence of the Csn5 protein.   

 

4.1.2 Mutant Δcsn5 growth curve 
 
 

 After a phenotype assessment for the Δcns5 strain it became pertinent to see the 

growth rate comparing with the wild-type strain. We know that, in the yeast S. cerevisiae, 

the duplication time is about 90 minutes in YPD medium at the optimum temperature of 

28º-30ºC and that, in exponential phase (log), it achieve a cellular density of 2 x108

 

cells/ml. This log phase gives place to a post-diauxic phase after the exhaustion of glucose, 

which changes the cell metabolism from fermentation to respiration, a process that uses 

non-fermentable carbon sources such as ethanol and glycerol. When there are no carbon 

sources available the cells enter a stationary phase that ends with senescence state where 

the cell cycle is blocked in G0 phase [54].  

 

 

 

 

 

 

 

 

Figure 15. Saccharomyces cerevisiae growth curve (culture density vs. days of growth) [56]. 
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 From the observation of the growth curve (Figure 16) regarding the growth of our 

mutant strain we can see that it presents a delay in exponential phase. For example, after 

approximately 8 hours, the concentration is steel in the 104 while the wild-type strain is al-

ready at 105 cells/mL. After 20 hours both are in the stationary phase and in the shift for the 

post-diauxic phase (diauxic-shift) we see that the mutant strain seems to have a delay on 

entering in this phase, comparing with the wild-type strain. The mutant could have prob-

lems in adaption to a new carbon source during the passage from a fermentation metabo-

lism to respiration. However, it is able to adapt and after the diauxic-shift, it equals the 

wild type in stationary phase. 

                  

 

Figure 16. W303 and Δcsn5 growth curve graphic (cell concentration vs. time in hours). Cells were grown 
overnight in YPD medium, at 28ºC in agitation. 

 

4.1.3 Growth test in different carbon sources 
 
 Our model organism, the yeast Saccharomyces cerevisiae, is a versatile eukaryote 

that can grow in the presence of glucose, which is its first choice for ATP production, but 
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cells can adapt their metabolism to non-fermentable carbon sources, which requires mito-

chondrial function to perform the oxidative phosphorylation for obtaining energy. When 

cells again encounter glucose, they rapidly switch back to fermentation.  

 In this line of though, and after seeing that our mutant shows a growth delay in 

comparison with the WT (Figure 16), we tested the growth in different carbon sources and 

at different temperatures: 28ºC and 36ºC. 
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YPD 28ºC  
 

 

                   YPD 36ºC 
 

 
Δcsn5 

 
 
 
 
 
W303  

 
Δcsn5 

 
YPGly 28ºC 

 

 
                YPGly 36ºC 

 
 
 
 
 
 

 
 
 
 

 
  

  

 From the analysis of the Figure 17, we see that, in YPD, Δcsn5 does not have prob-

lems in growing and is not temperature sensitive since it grows well at 28ºC and 36ºC. In 

YPGly medium, Δcsn5 seems to not grow so well when compared with the growth in YPD 

and also it shows more sensitivity at 36ºC, which can reflect mitochondrial problems.  

 Zemla A., et al (2013) demonstrated that the carbon source has influence in the 

Cdc53/Cul1 rubylation/derubylation being that, in YPD, most of the protein is rubylated 

which shows high CRL complexes activity. In the other hand, when the carbon source is 

glycerol, a decrease in the rubylation is observed suggesting the majority of the 

Figure 17. Serial dilutions, 107 cells/mL to 103 cells/mL spotted in glucose (YPD) and glycerol (YPGly) 
medium plates. The cells were grown overnight in YPD medium at 28ºC in agitation and 5 µl spot of each 
dilution is placed from the less diluted to the more dilute. W303 and Δcsn5 strains are first inoculated in a 
concentration of 104 cells/mL 
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Cdc53/Cul1 is inactive. The same authors showed that cells lacking Csn5 no longer deru-

bylate the cullin after carbon switching to glycerol [56].  

       

4.1.4 Autophagy in the Δcsn5 mutant 
 
 Unicellular organisms, such as yeast, are constantly facing environmental changes 

that alter the cell homeostasis and consequently activate specific responses that allow the 

maintenance of the intracellular equilibrium and cell survival. One of these responses is au-

tophagy that, most of the times, is triggered in eukaryotes to overcome nutritional limita-

tions. Autophagy induction involves the de novo synthesis of cytosolic double-membrane 

vesicles called autophagosomes that engulf parts of the cytoplasm during formation. These 

structures then fuse with the lysosomes/vacuoles, releasing their internal vesicles content 

(proteins and organelle material) which is degraded by resident hydrolases [69].  

 This multistep catabolic process is highly conserved in eukaryotes and in S. cere-

visiae where have been identified approximately 30 autophagy-related (Atg) proteins. 

Among the Atg proteins, the ubiquitin-like protein Atg8 plays an important role in expan-

sion of the autophagosome by mediating the number of membrane fusion events during its 

formation. This protein is required for both autophagy and cytoplasm-to-vacuole targeting 

(Cvt) pathway being the expression of the ATG8 gene increased in about 10-fold in re-

sponse to starvation which causes the localization of the protein to shift from small cyto-

plasmic structures to the membrane of the autophagosomes in formation. During this pro-

cess the Atg8p C-terminus is cleaved by the Atg4 protease resulting in the conjugation 

with the phosphatidylethanolamide (PE) in an ubiquitin-like reaction allowing the attach-

ment to the autophagosome membrane [69,70]. When the complex Atg8-PE is delivered 

into the vacuole it is degraded by vacuolar proteases.  

 In this case, the study of autophagy is important to understand if the cell is suffer-

ing an early accumulation of undesired proteins. Whereas Δcsn5 presents big vacuolar 

phenotype, which is an indicator of autophagy, this is a plausible scenario.   
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W303+GFP-Atg8 

W303+GFP-Atg8 

W303+GFP-Atg8 

Δcsn5+GFP-Atg8 

Δcsn5+GFP-Atg8 

Δcsn5+GFP-Atg8 

A 

B
A

C 

Figure 18. W303+GFP-Atg8 and Δcsn5+GFP-Atg8 images obtained through confocal micros-
copy, with a 2µm scale bar. The cells were grown overnight in YPD medium at 28ºC in agita-
tion. A) Visualization of the GFP (450/490nm excitation and 500/550nm emission) in both 
strains. B) Vacuolar morphology evidence by FM4-64 staining. C) GFP and FM4-64 image 
overlay.       
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 Therefore, for monitoring the autophagy in the Δcsn5 strain, we transformed the 

W303 and the mutant with a plasmid expressing the GFP, fused to the N-terminal of the 

ATG8, due to the fact that its behavior is the same of the Atg8 and, in this way, the au-

tophagic process can be monitored by the vacuolar delivering and breakdown of the GFP-

Atg8. This cleavage releases an intact GFP moiety, which accumulates in the vacuole as 

autophagy proceeds because it is relatively resistant to degradation [71].        

 As we can see by the observation of the Figure 18, W303 does not show autophagy 

in a normal growth condition while in Δcsn5 it is clear the accumulation of GFP in the 

vacuole. Taking in account the cell conditions: no starvation, no rapamycin treatment (in-

hibits the TOR complex) and exponential growth in YPD medium at permissive tempera-

ture, the autophagy induction in the mutant clearly points to defects in maintaining cell 

homeostasis. The autophagy complements the ubiquitin-proteasome system in mediating 

protein turnover [72] and perhaps due to disequilibrium in the protein waste clearance (no 

derubylation causes no degradation of a subset of proteasomal targeting substrates), the 

Δcsn5 mutant shows autophagy in exponential phase.  

 The vacuolar phenotype together with the sensitivity in growing in YPGly medium 

and an early autophagy are signs of problems on respiration and regulation of cell homeo-

stasis.           

 

4.2 Insights on the CSN/Ubiquitin-proteasome pathway   
 
  
 To better understand if there is a relation between the derubylation activity of the 

CSN5 subunit and the deubiquitination carried by the proteasome lid subunit Rpn11 in the 

ubiquitin-proteasome pathway, we performed a study regarding also the rpn11-m1 and 

Δrub1 single mutant strains and the double mutant strains rpn11-m1/Δcsn5 and rpn11-

m1/Δrub1. The analysis passes through the cell growth assessment, maintenance and via-

bility under different conditions of carbon source (glucose, glycerol), temperature (28, 

36ºC) and inhibition (canavanin, rapamycin, MMS). This study allows an understanding of 

the cellular response under stress environments where DNA damage, cell cycle arrest, ROS 

and protein waste accumulation scenarios are present and in some cases in a greater extent 

triggering specific cell processes such as mitophagy.           
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4.2.1 Mutants growth in different carbon sources 
 
  
 The same study applied to the Δcsn5 was performed with the other single and dou-

ble mutants in order to see if there is related sensitivity with carbon sources and/or temper-

ature changing conditions.     

 
 
 
 
 
W303 
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                YPD 36ºC 
 

 
 

 

rpn11-m1 

 

Δrub1 
 
rpn11-m1/Δcsn5 

 
rpn11-m1/Δrub1 
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              YPGly 36ºC 
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Figure 19. Serial dilutions, 107 cells/mL to 103 cells/mL spotted in glucose (YPD) and glycerol (YPGly) me-
dium plates, at 28ºC and 36ºC. W303, rpn11-m1, Δrub1, rpn11-m1/Δcsn5 and rpn11-m1/Δrub1 strains are 
first inoculated in a concentration of 104 cells/mL. The cells were grown overnight in YPD medium at 28ºC 
in agitation and a 5 µl spot of each dilution is placed from the less diluted to the more dilute.    
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 Always assuming the wild type (W303) as a control, it is clearly that rpn11-m1 is 

temperature sensitive not growing at the non-permissive temperature of 36ºC, in both glu-

cose and glycerol media. As previously described (Rinaldi T., et al (1998); Rinaldi T., et al 

(2002)) the rpn11-m1 strain has fragmented mitochondria at permissive temperature and at 

non-permissive temperature it shows the characteristic phenotype of proteasome mutants 

such as cell cycle defects and accumulation of polyibiquitinated proteins, not degradatated 

due to the lack of its deubiquitinating function. So, we were already expecting the absence 

of growth in these conditions. This phenotype is present also in the double mutants rpn11-

m1/Δcsn5 and rpn11-m1/Δrub1 that do not show growth at 36ºC, so not only the absence 

of the derubylation doesn’t alleviate the rpn11-m1 phenotype but also the mutations show 

an additive negative phenotype. Moreover, the mutant rpn11-m1/Δrub1 is sensitive at per-

missive temperature in YPGly medium compared with the WT and single mutants rpn11-

m1 and Δrub1.  

 

4.2.2 Growth curve 
 
 
 The construction of the growth curve provides us a general overlook on the strains 

growth until they reach a stationary phase in glucose rich medium. Through Figure 20 ob-

servation we see that among the single mutants, Δcsn5 is the one that has the slowest grow, 

interestingly accompanied by the double mutant rpn11-m1/Δrub1, which confirms the data 

showed in the analysis of the growth in different carbon sources. Regarding the other dou-

ble mutant rpn11-m1/Δcsn5 shows a normal growth together with the other two single mu-

tants reaching first the concentration of 108 cells/mL. So, we can conclude that the rpn11-

m1/Δrub1 has the slowest growth and even after 30 hours it stays in the concentration of 

107 cells/mL. The same behavior was expected regarding the rpn11-m1/Δcsn5 strain, due 

to the slowest Δcsn5 growth comparing with the WT and also because the conditions of the 

rpn11-m1/Δrub1 and rpn11-m1/Δcsn5 cells are the same respecting the defect in maintain 

the natural functioning of the rubylation/derubylation cycles. This result leads to think that 

this mutant can be a revertant.  
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4.2.3 Vitality assessment  
 
 
 Taking into account the results of the growth curve it should be interesting to verify 

if, in fact, the double mutant rpn11-m1/Δrub1 has growth problems in YPD medium at the 

permissive temperature of 28ºC. What was found in the vitality test confirms the results 

obtained in the growth curve: the double mutant has a low percentage of living cells even 

when comparing with the other mutants. This can be observed in the Figure 21 of the nor-

malized percentage of vitality where rpn11-m1/Δrub1 has about 27% vitality, which means 

that, in 200 cells only 54 grew to form a colony, while the other strains have more than 

50% of vitality. Regarding rpn11-m1/Δcsn5 it has a vitality of around 60%, higher than 

rpn11-m1 that presents a vitality of 52% (See Appendix 2.1). Although it is in concordance 

with the growth curve we were expecting that the double mutant rpn11-m1/Δcsn5 had a 

cell vitality closer to the rpn11-m1/Δrub1, like it was also said before in the analysis of the 

curve. These results show a cumulative defect carried by the mutations that leads to a de-
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Figure 20. Wild-type (W303), single mutants (Δcsn5, rpn11-m1, Δrub1) and double mutants 
(rpn11-m1/Δcsn5, rpn11-m1/Δrub1) growth curve graphic. Cells were grown in YPD medium, 
overnight at 28ºC in agitation. 
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crease of cellular viability since the rpn11-m1/Δrub1 have a low percentage of cells grow-

ing in the conditions considered ideal (Glucose-rich medium, 28ºC) when compared with 

the single mutants, Δcsn5, rpn11-m1 and Δrub1.    

 

 

 

 

 

 

 

 

 

 
 
 

 

4.2.4 DNA stability  
 
 
 With the aim of understand if the DNA stability is compromised we visualized the 

DNA staining of the cells with DAPI, a dye that intercalates in the A-T bond in live cells, 

after they grew overnight at 28ºC and after a shift to the non-permissive temperature of 

36ºC during 5 hours. 
 The post-translational modifier ubiquitin, like the name indicates, is ubiquitous in 

the cell and because of that it virtually control every aspect of the cellular metabolism, in-

Figure 21. Wild-type (W303), single mutants (Δcsn5, rpn11-m1, Δrub1) and double mutants 
(rpn11-m1/Δcsn5, rpn11-m1/Δrub1) vitality (%) graphic. Cells were grown overnight in YPD 
solid medium at 28ºC. Values are mean ± standard deviation from three experiments 
(α=0.05). 
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cluding the promotion of DNA transcription by ensuring proteasome-mediated turnover of 

short-living transcription factors [73]. E3 ligases and DUBs are linked to several aspects of 

DNA transcription regulation and damage responses, which are in agreement with the role-

played by ubiquitin in chromatin compaction and decompaction through histone tail ubiq-

uitination. As we know the level of chromatin compression affects the accessibility of the 

transcription factors to the DNA therefore regulating gene expression and also the possibil-

ity of initiate DNA repair by ensuring access to the lesion [73,74].  
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W303 

  

Δcsn5 

  

rpn11-m1 

  



 
 

 51 

Δrub1 

  

rpn11-m1/Δcsn5 

  

rpn11-m1/Δrub1 

  

 
 From the observation of the pictures obtained through fluorescence microscopy 

(Figure 22) we see, first of all, the aberrant cell morphology of the double mutant rpn11-

m1/Δrub1.  

 The double mutant rpn11-m1/Δcsn5 immediately after the construction of the strain 

was very similar to the rpn11-m1/Δrub1 phenotype, while in this experiment the rpn11-

m1/Δcsn5 mutant is accompanied only by increase in cell size after the shift to 36ºC. Even 

if we maintained the strain to -70°C, maybe the rpn11-m1/Δcsn5 has reverted and we are 

reconstructing it again. However, we can still see an aberrant nuclear morphology at 36°C 

in both the two double mutants: the nucleus is not compact, a phenotype already observed 

for rpn11-m1. After the shift to 36ºC its clear a decompression of the nuclear DNA that 

Figure 22. Fluorescence microscope obtained pictures of WT, single mutants (Δcsn5, rpn11-m1, 
Δrub1) and double mutants (rpn11-m1/Δcsn5 and rpn11-m1/Δrub1) strains grew in glucose rich 
medium (YPD) at 28ºC overnight in agitation and after shift to 36ºC for 5 hours from the initial 
culture at 28ºC.  DAPI coloration was applied and the scale bar is 0,2 µm to all the pictures. 
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could indicate lost of chromatin structure and in the case of the rpn11-m1 mutant is ac-

compained by the presence of elongated cells due to cell cycle arrest. The mutant Δcsn5 

shows the same decompression of both nuclear and mtDNA while Δrub1 shows no prob-

lems. 

 Concerning the mitochondrial DNA, it is visualized in all strains as dots, which 

correspond to nucleoids (mitochondrial DNA compacted with proteins).  

 

4.2.5 Mitochondrial membrane potential (ΔΨm) 
 
 
 Along with the observation of alterations in DNA morphology it was also analyzed 

the mitochondrion membrane potential.  

 DASPMI is a dye that informs us about the membrane potential in the mitochondria 

since it localizes in the inner membrane where the transport of hydrogen protons creates 

differences in the quantity of positive charges that are present inside and outside the mem-

brane therefore creating what is call the membrane potential [75]. 

 Besides being the center of the cell energy production, mitochondrion also inter-

venes in other processes for normal cell functioning like cell calcium signaling, regulation 

of the cell redox state, transport of metabolites, etc. But one of the most important roles is 

the regulation of the cell life-death transition and the measure of the membrane potential 

give us an insight on this issue. Energy production and alterations on the mitochondrion 

membrane potential is related since its maintenance is crucial for ATP synthesis.  

 In a balancing physiologic state, the membrane potential is negative due to the gra-

dient of protons that flows through the mitochondrion inner membrane by active transport, 

process that allows the energy production in the F0/F1 ATP-synthase (Complex V) thus 

completing the electron transport chain (ETC).  

 During cellular stress the ΔΨm is altered and consequently the concentration of in-

tracellular ionic charge change leading to alterations in ATP production [76,77]. 

 The tubular morphology that characterizes the mitochondria is important in order to 

keep their functions and ensure their survival through fusion and fission events. Also, this 

organelle does not work alone in the cell, for example it communicates with the endoplas-

mic reticulum in metabolites exchange and therefore its tubular distribution allows all this 

processes  
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 Through the observation of the Figure 23, we see in the wild type strain, a func-

tional mitochondria with its characteristic reticular form that distinguishes it from other or-

ganelles. However, the single mutant rpn11-m1 reveals fragmented but functional mito-

chondria since they are stained by the DASPMI dye informing for the presence of an active 

membrane potential. When we have a decrease of mitochondria potential, the dye remains 

in the cytoplasm. With the exception of the WT and Δrub1 strains, all the mutants, Δcsn5, 

rpn11-m1, rpn11-m1/Δcsn5 and rpn11-m1/Δrub1 show abnormal fragmented mitochon-

dria, indicating an involvement of rubylation in maintaining the mitochondrial morpholo-

gy. 

 Following these results, and already knowing that rpn11-m1 and the double mu-

tants have fragmented mitochondria, we decided to focus our attention in Δcsn5 and Δrub1 

mutant strains directly correlated with the rubylation/derubylation cycles. For this we ob-

served the mitochondrial membrane potential in exponential, early stationary and late sta-

Figure 23. Fluorescence microscope obtained pictures of WT, single mutants (Δcsn5, 
rpn11-m1, Δrub1) and double mutants (rpn11-m1/Δcsn5 and rpn11-m1/Δrub1) strains 
grew in glucose rich medium (YPD) at 28ºC overnight and stained with DASPMI. The 
scale bar is 0,2 µm to all the pictures. 



 
 

 54 

tionary phase, as well as the mitochondrial morphology (See sub-subchapter 4.2.6) in the 

same conditions. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  

 In this analysis we clearly see that Δcsn5 as a functional but fragmented mitochon-

dria compared with the WT and Δrub1 (Figure 24) that shows no problems, even in late 

stationary phase. The Δcsn5 starts showing mitochondrial defects already in exponential 

phase where we see that the mitochondria tubular structure is not as clear as in WT and 

Δrub1. When arrives at late stationary phase, the fragmentation is evident, while Δrub1 

conserves the tubular structure revealing no problems in maintain the intrinsic mitochon-

drion dynamics.   
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Figure 24. Fluorescence microscope obtained pictures of WT, Δcsn5 and Δrub1 in exponen-
tial, early stationary and late stationary phase. Strains grew in glucose rich medium (YPD) at 
28ºC overnight and stained with DASPMI. The scale bar is 0,2 µm to all the pictures. 
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4.2.6 Mitochondrial morphology  
 
 To study the mitochondrial morphology along with the membrane potential we 

transformed the strains (WT, Δcsn5 and Δrub1) with a plasmid expressing a mitochondria-

targeted GFP, that encodes for a fusion protein comprising the mitochondrial processing 

peptidase (MPP). This mitochondrial enzyme is located in the matrix of the organelle, in 

fungi and mammals [68].  
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Figure 25. Fluorescence microscope obtained pictures of WT, Δcsn5 and Δrub1 transformed 
with the mtGFP (pVT100UmtGFP) in exponential, early stationary and late stationary phase. 
Strains grew in glucose rich medium (YPD) at 28ºC, overnight in agitation. The scale bar is 0,2 
µm to all the pictures. 
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 From the analysis of the Figure 25 we see that, Δcsn5, when enters in stationary 

phase, the mitochondrion morphology alters and we see fragmentated mitochondria. How-

ever, already in exponential phase, if we compare with the WT and Δrub1, it is interesting 

to see that Δcsn5 has mitochondrial defects whereas Δrub1 maintains the tubular character-

istic morphology. This shows that, in the regulation of the cullin, the role played by the 

Csn5 subunit in the rubylation/derubylation cycles is critical for a correct mitochondrion 

function.    

 

4.2.7 Genotoxic and proteotoxic stress  
 
 In order to evaluate the response to agents causing DNA damage and protein insta-

bility, wild type and mutant strains were subjected to the presence of the alkylating agent 

methyl methanosulfonate (MMS), 0.025% concentrated in YEP+D, YPD and SD medium 

plates, the amino acid canavanine in a concentration of 3 µg/mL and rapamycin (25nM) 

both in SD medium plates, at permissive temperature (28ºC) for 3 days and 5 days with 

YPD medium as a control.   

 MMS is a DNA damaging agent known to induce mutagenesis and recombination 

events through methylation of both guanine (to 7-methylguanine) and adenine (to 3-

methyladenine). This modifications cause base mispairing and replication blocks therefore 

stopping the cell cycle [78]. Ben-Aroya S., et al (2010) link for the first time, the double 

strand break repair mechanism with the nuclear proteasomal activity. They did a systemat-

ic screen of a collection of temperature sensitive alleles (Ts) on yeast and revealed that 

proteasomal subunits represent a major functional group with an evolutionary conserved 

role in chromosome instability . In this study, DNA damaged was induced with 0.025% 

MMS in YEP medium. For this reason we decided to test our mutants in the same condi-

tion and compare with the conditions used in the laboratory, YPD and SD media.  

 The amino acid canavanine, in its turn, is an arginine analog that can be efficiently 

incorporated into nascent proteins, thereby producing structurally aberrant proteins that 

may not function properly [79].   
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W303 

                       YPD 28ºC 

 

YEP+D (MMS 0,025%) 28ºC 

 
Δcsn5 

 

rpn11-m1 

Δrub1 

rpn11-m1/Δcsn5 

rpn11-m1/Δrub1 

Figure 26. Serial dilutions, 107 cells/mL to 103 cells/mL spotted in YPD, YEP+D (MMS 0,025%), at 
28ºC. W303, rpn11-m1, Δrub1, rpn11-m1/Δcsn5 and rpn11-m1/Δrub1 strains are first inoculated in a 
concentration of 104 cells/mL. The cells were grown overnight in YPD medium at 28ºC in agitation 
and a 5 µl spot of each dilution is placed from the less diluted to the more dilute. 
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Figure 27. Serial dilutions, 107 cells/mL to 103 cells/mL spotted in YDP (MMS 0,025%) medium 
plates, at 28ºC, after 3 and 5 days of growth. W303, rpn11-m1, Δrub1, rpn11-m1/Δcsn5 and rpn11-
m1/Δrub1 strains are first inoculated in a concentration of 104 cells/mL. The cells were grown 
overnight in YPD medium at 28ºC in agitation and a 5 µl spot of each dilution is placed from the 
less diluted to the more dilute. 
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Figure 29. Serial dilutions, 107 cells/mL to 103 cells/mL spotted in SD(Canavanine 3µg/mL) medium 
plates, at 28ºC, after 3 and 5 days of growth. W303, rpn11-m1, Δrub1, rpn11-m1/Δcsn5 and rpn11-
m1/Δrub1 strains are first inoculated in a concentration of 104 cells/mL The cells were grown overnight in 
YPD medium at 28ºC in agitation and a 5 µl spot of each dilution is placed from the less diluted to the 
more dilute. 
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Figure 28. Serial dilutions, 107 cells/mL to 103 cells/mL spotted in SD (MMS 0,025%) medium plates, 
at 28ºC, after 3 and 5 days of growth. W303, rpn11-m1, Δrub1, rpn11-m1/Δcsn5 and rpn11-m1/Δrub1 
strains are first inoculated in a concentration of 104 cells/mL The cells were grown overnight in YPD 
medium at 28ºC in agitation and a 5 µl spot of each dilution is placed from the less diluted to the more 
dilute. 
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 Analyzing the obtained results (Figure 26, 27, 28, 29) we see that the Δcsn5 and 

rpn11-m1 mutants have an opposite behavior since the first is resistant to MMS and sensi-

tive to canavanine and the second is sensitive to MMS and resistant to canavanine. In its 

turn, Δrub1 shows resistance to both while rpn11-m1/Δcsn5 is sensitive to both conditions 

and rpn11-m1/Δrub1 is just resistant to canavanine (Figure 29). 

 The action of damaging DNA agents like MMS causes cell cycle delay due to 

checkpoint activation, a necessary pathway that allows DNA repair and cell cycle progres-

sion in conditions of genetic stability. Checkpoints redundancy guarantees the success of 

this control mechanism that is regulated by multiple enzymes such as Rad27, Rad24, 

Mec3, Rad17, Sgs1, among others. The degradation of these enzymes is a crucial step for 

cell cycle progression and it is done via ubiquitin-proteasome [80]. Besides, it is also 

known that mutations in the CDC53 gene can cause cell cycle arrest in yeast, which might 

be related with the targeting for degradation by the proteasome of some of the proteins in-

volved in the checkpoint control [81] . However, recently, Karpov D.S., et al (2013) 

showed that proteasome inhibition enhances resistance to DNA damage via upregulation of 

Rpn4-dependent DNA repair genes. RPN4 is a transcriptional factor that stimulates the ex-

pression of proteasome genes and also genes involved in the response to DNA damage, 

which deletion sensitizes yeast to various stress conditions. The point is that the Rpn4 is a 

short-life protein being rapidly degraded by the proteasome creating a negative feedback. 

So, considering the scenario described by Karpov D.S., et al (2013)  stabilization of Rpn4 

protein can lead to an upregulation of Rpn4-dependent DNA repair genes and therefore 

creating a resistance to DNA damage agents. However, there is always the other side of the 

coin, where the consequent accumulation of proteins due this upregulation can cause a pro-

teotoxic effect on the cell and that’s the reason why there are controversial opinions on this 

subject [71].  

 Regarding these findings and the obtained results, Csn5 could be related with the 

Rpn4 degradation, for example this protein could be a substrate for the Cdc53 ligase, and 

in Δcsn5 and Δrub1 scenarios its degradation is compromised leading to an increased re-

sistance to MMS. In the other hand, the proteasome mutant rpn11-m1 is sensitive, reveal-

ing a high complex regulation system in which the balance between overexpression and 

degradation is tightly controlled. Consequently, rpn11-m1/Δcsn5 and rpn11-m1/Δrub1 are 

also sensitive which shows us the importance of an active proteasome activity in these 

conditions.  
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 In the Δcsn5 strain it is observed a high sensitivity to canavanine, which show us 

that, the Csn5 subunit plays in fact an important role in the cell capacity to degraded non-

functional proteins. Interestingly, the Δrub1 is not sensitive to canavanine showing that the 

function of the Csn5 is more relevant for the correct protein degradation than the function 

carried by the Rub1 protein.   

   In its turn, rapamycin is an antibiotic whose target is the central component of the 

TOR (target of rapamycin) pathway, the TOR kinase, through binding to a cytosolic im-

munophilin termed FK-binding protein (FKBP-12). This serine/threonine protein regulates 

cell growth, cell proliferation, motility and survival, protein synthesis and transcription 

[84,85].        
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 By observation of the Figure 30, after 5 days of grow, we see that Δcsn5 and Δrub1 

show resistance to rapamycin comparing with the WT. This drug induces autophagy and, 

Figure 30. Serial dilutions, 107 cells/mL to 103 cells/mL spotted in SD (Rapamycin 25nM) medium 
plates, at 28ºC, after 3 and 5 days of growth. W303, rpn11-m1, Δrub1, rpn11-m1/Δcsn5 and rpn11-
m1/Δrub1 strains are first inoculated in a concentration of 104 cells/mL. The cells were grown overnight 
in YPD medium at 28ºC in agitation and a 5 µl spot of each dilution is placed from the less diluted to 
the more dilute. 
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in the case of Δcsn5, this resistance can be due to the fact that the cells are already in au-

tophagy . However, as with MMS, we cannot take final conclusions, regarding the results 

due to the vast possibilities of action of these two drugs.      

 

4.2.8 Mitophagy   
 
 A specific type of autophagy, mitophagy, targets mitochondria to be degraded in 

the cell. This process is an important subcellular event to maintain proper cellular homeo-

stasis since this organelle is the major source of cellular reactive oxygen species (ROS). 

Mitophagy roles are essentially mitochondria quality control, elimination of mitochondria 

during development and when the organelle is in excess in the cell.  Accumulation of dam-

aged mitochondria is related with aging, certain types of cancer, neurodegenerative diseas-

es and can also trigger apoptosis. Knowing that Δcsn5 enters in autophagy at an early stage 

and accounting for the growth defect in YPGly of Δrub1 and the double rpn11-m1/Δrub1 

and rpn11-m1/Δcsn5 together with mitochondria morphology defects, we analyzed mi-

tophagy in order to have a more precise ideia about mitochondria viability.  

 The autophagy-related gene 32 (Atg-32) is a mitochondrion outer membrane pro-

tein that is known to be active only in mitophagy induction through interaction with other 

proteins, such as Atg11. Therefore, Atg32 confers selectivity for mitochondria sequestra-

tion and degradation by the autophagy machinery and is identification provided some in-

sight into the process of selecting and delivering mitochondrion to the vacuole in yeast 

[86,87]. Induction of mitophagy can be done by nitrogen starvation or use of rapamycin .      

 In order to investigate if our mutants undergo mitophagy we transformed with 

GFP-Atg32 and proceed with fluorescence microscopy and western blot analysis. For the 

microscopy assay, the cells were observed in exponential phase after grew at 28°C in YPD 

liquid medium plus adenine and stained with FM4-64 to allow the observation of the vacu-

ole (Figure 31). The percentage of cells in mitophagy was also assessed and the results are 

shown in the Figure 32.       
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 From the observation of the Figure 31 we see that the WT does not undergo mi-

tophagy since de GFP is localized out of the vacuole. In the case of the singles and the 

double mutant rpn11-m1/Δrub1 we observed mitophagy since the GFP protein is present 

inside of the vacuole. To have a better understanding about the extension of this process in 

the cells we calculate a percentage of cells in mitophagy and the result is shown in the Fig-

ure 32 where we see that, as expected the WT has a very low percentage of cells in mi-

tophagy, around 1.5 %, meanwhile the single mutants present mitophagy approximately 

55%, 60% and 46% for Δcsn5, rpn11-m1 and Δrub1, respectively, a percentage that drops 

to 10% and 40% in the double mutants, rpn11-m1/Δcns5 and rpn11-m1/Δrub1, respective-

ly.        

W303+GFP-Atg32 Δcsn5+GFP-Atg32 rpn11-m1+GFP-Atg32 

 

 
 

Δrub1+GFP-Atg32 rpn11-m1/Δcsn5+GFP-Atg32 rpn11-m1/Δrub1+GFP-Atg32 

   

Figure 31. W303, rpn11-m1, Δrub1, rpn11-m1/Δcsn5 and rpn11-m1/Δrub1 strains transformed with GFP-
Atg32 plasmid observed at the fluorescence microscope, in exponential phase, stained with FM4-64 dye 
for vacuole observation. The cells were grown overnight in YPD medium at 28ºC in agitation.  
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Figure 32. Wild-type (W303), single mutants (Δcsn5, rpn11-m1, Δrub1) and double mutants (rpn11-
m1/Δcsn5, rpn11-m1/Δrub1) graphic of the cells in mitophagy (%). Cells were grown at 28ºC in YPD solid 
medium, in agitation. 

 

 Regarding the observation of autophagy in the Δcsn5 mutant, who indicates cellular 

stress, and previous studies on this mutant in the laboratory, we expected the observation 

of mitophagy, which was indeed confirmed. In the mutants indicated with an asterisk (*), 

the percentage was calculated in a base of less than 100 cells (See Appendix 2.2) due to the 

fact that, in the case of the double mutants, like we previously saw in the vitality test, we 

have growth defects which means a decrease in the number of living cells. In the case of 

rpn11-m1 we know that it has mitochondrial problems, not growing in glycerol base medi-

um at non-permissive temperature, so is reasonable to think that it can present mitophagy. 

In the other hand, the Δrub1 mutant was not expectable to undergo mitophagy because it 

does not show respiration problems or decrease in the membrane potential or abnormal 

morphology when compare with the WT in the microscope observation with DASPMI col-

oration.      
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 To confirm the observation of mitophagy we performed a western blot analysis us-

ing a primary antibody against the GFP, in cells grew in –URA selective medium (plasmid 

selection) at 28ºC, overnight in agitation, in exponential phase (1 day of growth), with the 

Ada2 gene as a control. The mutant Δcsn5, Δrub1 and rpn11-m1/Δcsn5 show a band for 

GFP-Atg32 and a band for GFP alone. The WT negative control, as expected, as no bands, 

a situation also present in the case of the double mutant rpn11-m1/Δrub1, that could be due 

to the low cell viability which leads to an inability to extract a significant amount of pro-

tein (See Appendix 1). In the case of the rpn11-m1 we see, like in the W303+GFP-Atg32, 

a unique band corresponding to GFP. From this western blot analysis we can say that 

Δcsn5 and Δrub1 clearly show mitophagy in exponential growth phase, confirming the flu-

orescence microscope analysis. These results are in concordance with the results obtained 

by Abeliovich, in a study that is still in development, giving us bases to confirm the influ-

ence of these two mutants in the mitochondrion function.       

    

Figure 33.Western blot analysis on the strains W303, rpn11-m1, Δrub1, rpn11-
m1/Δcsn5 and rpn11-m1/Δrub1 transformed with GFP-Atg32 plasmid after 1 day of 
growth in –URA selective medium, at 28ºC in agitation.     
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4.2.9 Reactive oxygen species (ROS)  

 
 Mitochondria convert energy for the cell into a usable form, ATP. The process of 

ATP formation is called oxidative phosphorylation (OXPHOS) and involves the transport 

of protons across the inner membrane by means of the electron transport chain. The final 

proton acceptor is an oxygen molecule that, in normal conditions is reduced to produce wa-

ter. However, in some cases, the oxygen can be prematurely and incompletely reduced, 

forming superoxide radicals (•O2
-). Under normal physiological conditions, the cell has the 

capacity to balance the concentration of ROS but, under oxidative stress, excessive accu-

mulation of ROS can damage cellular proteins, lipids and DNA, leading to aging, carcino-

genesis and apoptosis [88,89] .  

  As we know, the mitochondrion is the major site of ROS production (mtROS), in 

which the superoxide radicals are quickly dismutated to hydrogen peroxide (H2O2) by two 

dismutases including superoxide dismutase 2 (SOD2) in the mitochondrial matrix and su-

peroxide dismutase 1 (SOD1) in the mitochondrial intermembrane space [89] .  

 To investigate if, in our mutants, the production of ROS is causing an oxidative 

stress in the cell contributing to a decrease in viability we constructed two conditions: non-

treated and treated cells with H2O2 followed by dihydrorhodamine coloration. In the pres-

ence of ROS this molecule is oxidated to rhodamine (See Appendix 3).    
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Figure 34. W303, rpn11-m1, Δrub1, rpn11-m1/Δcsn5 and rpn11-m1/Δrub1 strains at the condi-
tions: dihydrorhodamine and dihydrorhodamine+H2O2 . The cells were grown overnight in YPD 
medium at 28ºC in agitation and the scale bar is 0,2 µm for all the pictures (visible and fluores-
cence).  

rp
n1

1-
m

1 
Δr

ub
1 

rp
n1

1-
m

1/
Δ

cs
n5

 
rp

n1
1-

m
1/
Δ

ru
b1

 



 
 

 67 

 The obtained results revealed in the Figure 34, show that, in the double mutants 

there is a significant accumulation of ROS in the mitochondria in the non-treated cells, 

comparing with the cells treated with hydrogen peroxide that exhibit the presence of ROS 

throughout the cell. This scenario is not seen in the single mutants, Δcsn5 does not accu-

mulate ROS in exponential phase, which tell us that the production of these molecules is 

not directly related with mitophagy as it is frequently thought. However, we can assume 

that the problems in the disposal of ROS in the mitochondrion in the case of the double 

mutants is somehow related with a decrease in cell viability and that this could be derived 

from the cumulative deficiency in the protein degradation due to the incapacity of CRL’s 

recycling and the mutation in the deubiquitinase protein in the proteasome (Rpn11) that in 

the end cause the triggering of mitophagy in early stages. 
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5. Conclusions and Future Perspectives 
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 In the course of this research I started by the characterization of the Δcsn5 mutant 

in Saccharomyces cerevisiae, in terms of phenotype, growth and capability to use different 

carbon sources and to maintain cellular homeostasis (autophagy). This study was made in 

comparison with the wild type strain (W303-1A) that shows a high capability of growth on 

both glucose and glycerol base medium and extended respiration, suggesting no defects on 

metabolic mitochondrial related functions. Has we know, the Csn5 subunit of the CSN 

complex, interacts in the ubiquitin-proteasome pathway by deneddylation of the 

Cdc53/Cul1 E3 ligase therefore promoting cycle completion that allows protein ubiquitina-

tion and subsequent degradation by the proteasome. In order to determine if the activity of 

this enzyme is somehow related with the Rpn11 subunit of the proteasome lid that per-

forms deubiquitination and if the proteasome degradation is somehow linked with autoph-

agy, more specifically, mitophagy, I studied a collection of mutants: rpn11-m1, Δrub1, 

rpn11-m1/Δcsn5 and rpn11-m1/Δrub1 together with Δcsn5 and the WT strain. Characteri-

zation of these strains was based in phenotype analysis, growth profile in optimal condi-

tions (glucose rich medium at 28ºC) and in different carbon sources at permissive (28ºC) 

and non-permissive temperature (36º), DNA stability, genotoxic and proteoxic stress re-

sponse and mitochondria potential defects together with cell viability (mitophagy and 

ROS). 

 The results demonstrate that the mutant rpn11-m1/Δrub1 is semi-lethal with growth 

difficulties in normal conditions, when compared with the other strains, and with an ex-

treme phenotype showing aberrant cell morphology, low vitality and mitochondrial defi-

ciency since it has problems on growing in glycerol rich medium at 28ºC. Also the double 

mutant rpn11-m1/Δcsn5 is problematic being sensitive to canavanine together with the sin-

gle mutant Δcsn5. Interestingly, Δcsn5 is at the same time resistant to the DNA damaging 

agent MMS, suggesting a role on the control of the degradation of proteins involved in 

DNA repair. The demonstration, through western blot analysis that the double mutant 

rpn11-m1/Δcsn5 is engaged in early mitophagy indicates a cumulative defect in the control 

of cellular proteostasis, defect that is also seen in Δcsn5 and Δrub1. This fact leads to think 

about the importance in the balance between the rubylation/derubylation cycles and its role 

in the maintenance of cell vitality. Regarding the rpn11-m1/Δrub1, due to his growth prob-

lems we were not able to conclude if the mitophagy is physiological or if it is due to his 

semi-lethal phenotype.  
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 In addition, this semi-lethal phenotype of the double mutants, frequent leads to the 

development of revertants, which is a drawback in their study requiring a constant screen-

ing.  

 It was also interesting to conclude that, not always, the production of ROS directly 

cause mitochondria imbalances, since we saw that in Δcsn5 and Δrub1 there are no ROS 

production but yet we have mitophagy.     

 In terms of futures perspectives I think it is important to do a more intensive study 

to understand the level of rubylated (Cdc53-Rub1) and non rubylated (Cdc53) E3 ligase in 

the double mutant rpn11-m1/Δcsn5, comparing with the single mutants rpn11-m1 and 

/Δcsn5. It would be also interesting to investigate effective Cdc53 substrates by affinity 

tests, tagging the protein Skp1, since there are much more F-box’s which difficult the anal-

ysis, and make a pull-down in a chromatography column and then analyze the extract 

through mass spectrometry. This study could bring some highlights in the subject of the 

Δcsn5 resistance to MMS. In the other hand it is also important to continue with the work 

that is being developed in the overexpression of the CSN5 gene since it is a condition pre-

sent in some human cancers. It could be also interesting to access the strains growth in gly-

cose rich medium, also together with the analysis of rubylated and non rubylated E3 ligase.        

 Is important to notice that the ubiquitin-proteasome pathway is a complex network 

that involves a lot of factors and therefore is not easy to rapidly extract final conclusions 

and is because of this that the cellular biology study of specific proteasome and CSN mu-

tants is crucial to began to understand their role in this conserved and essential cell process.      
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Appendix 1 (Bradford’s Method) 

 
 
 

	   	   	   	   	   	   	  
	   	   	   	   	   	   	  
	   	   	   	   	   	   	  
	   	   	   	   	   	   	  
 OD mg/ml 	   	   	   	  
W303 1,6714 8,57 	   	   	   	  
W303+GFP-Atg32 1,1313 5,53 	   	   	   	  
∆csn5+GFP-Atg32 0,9196 4,34 	   	   	   	  
rpn11-m1+GFP-Atg32 0,1975 0,29 	   	   	   	  
∆rub+GFP-Atg32 1,4013 7,05 	   	   	   	  
rpn11-m1/∆csn5+GFP-Atg32 0,1864 0,23 	   	   	   	  
rpn11-m1/∆rub+GFP-Atg32 0,1538 0,04 	   	   	   	  
	   	   	   	   	   	   	  
	   	   	   	   	   	   	  
	  
	   	   	   	   	   	   	  
	   	   	   	   	   	   	  
	   	   	   	   	   	   	  
	   	   	   	   	   	   	  
	   	   	   	   	   	   	  
	   	   	   	   	   	   	  
	   	   	   	   	   	   	  
	   	   	   	   	   	   	  
	   	   	   	   	   	   	  
	   	   	   	   	   	   	  
	   	   	   	   	   	   	  
	   	   	   	   	   	   	  
	   	   	   	   	   	   	  
	   	   	   	   	   	   	  

 
 

             
 

x50ug (ml) 

	  
	  
	   	   	   	   	  

W303 0,0058 	   	   	   	   	  
W303+GFP-Atg32 0,0090 	   	   	   	   	  
∆csn5+GFP-Atg32 0,0115 	   	   	   	   	  
rpn11-m1+GFP-Atg32 0,1726 	   	   	   	   	  
∆rub+GFP-Atg32 0,0071 	   	   	   	   	  
rpn11-m1/∆csn5+GFP-Atg32 0,2199 	   	   	   	   	  
rpn11-m1/∆rub+GFP-Atg32 1,1272 	   	   	   	   	  

  

mg/ml 0,25 0,5 1 2,5 5 10 
BSA (OD595) 0,0199 0,0602 0,1497 0,366 0,6877 1,4803 
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Appendix 2  
 

 

2.1 Vitality percentage  (YPD, 28°C) for WT, single and double mutants:  
 

 
 

 

2.2 Percentage of cells in mitophagy (YPD+adenine, 28°C) for WT, single 
and double mutants transformed with GFP-Atg32: 
 
 

 
 
 
  

Strain % Media vitality YPD %dev.st YPD % Media (Normalized) 
W303  69% 4% 100% 
∆csn5 49% 1% 71% 
rpn11-m1 36% 3% 52% 
∆rub1 50% 5% 73% 
rpn11-m1/∆csn5 41% 1% 60% 
rpn11-m1/∆rub1  19% 1% 27% 

Strain Cells in mitophagy Total cells % 

W303+GFP-Atg32 3 196 1,53 
∆csn5+GFP-Atg32 83 151 54,97 
rpn11-m1+GFP-Atg32 21 35 60,00 
∆rub1+GFP-Atg32 56 122 45,90 
rpn11-m1/∆csn5+GFP-Atg32 1 10 10,00 
rpn11-m1/∆rub1+GFP-Atg32 17 43 39,53 
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Appendix 3 (Dihydrorhodamine oxidation)  
 
 
 
 
 
3.1 Dihydrorhodamine oxidation reaction (conversion in rhodamine) 
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