
Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática

2014

Márcio Daniel
Tavares de Melo

Network Virtualisation from an Operator
Perspective

Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática

2014

Márcio Daniel
Tavares de Melo

Network Virtualisation from an Operator
Perspective

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Doutor em Engenharia Eletro-
técnica, realizada sob a orientação científica da Doutora Susana Sargento,
Professora Auxiliar do Departamento de Eletrónica, Telecomunicações e In-
formática da Universidade de Aveiro e do Mestre Jorge Carapinha, Consultor
Sénior Tecnológico na PT Inovação S.A.

Este trabalho foi realizado com o apoio de uma bolsa de Doutoramento em
Empresa, com referência SFRH/BDE/33751/2009, financiada ao abrigo

do programa POPH - QREN, - Formação Avançada, comparticipada pelo
Fundo Social Europeu (FSE) e por fundos do Ministério da Ciência,
Tecnologia e Ensino Superior (MCTES) através da Fundação para a
Ciência e Tecnologia (FCT) e cofinanciada pela PT Inovação S.A.

Dedico este trabalho à minha esposa pelo incansável apoio.

o júri / the jury

presidente / president Profa. Doutora Nilza Maria Vilhena Nunes da Costa
Professora Catedrática do Departamento de Didáctica e Tecnologia Educativa da
Universidade de Aveiro

vogais / examiners committee Prof. Doutor Andreas Timm-Giel
Full Professor School of Electrical Engineering, Computer Science and Mathematics
at Hamburg University of Technology

Prof. Doutor Alexandre Júlio Teixeira Santos
Professor Associado com Agregação no Departamento de Informática, Escola de
Engenharia, da Universidade do Minho

Profa. Doutora Marília Pascoal Curado
Professora Auxiliar do Departamento de Engenharia Informática da Universidade
de Coimbra

Profa. Doutora Susana Isabel Barreto de Miranda Sargento
Professora Auxiliar do Departamento de Electrónica, Telecomunicações e Infor-
mática da Universidade de Aveiro

Doutor Francisco Manuel Marques Fontes
Consultor Sénior Tecnológico na PT Inovação S.A.

agradecimentos /
acknowledgments

Agradeço a Deus por me ter dado o existir e me ter concedido a sabedoria.
À professora Susana Sargento por me ter dado esta oportunidade e por me ter
guiado a levar a bom porto este Doutoramento através sua determinação e força
de vontade. Ao Engenheiro Jorge Carapinha por ter partilhado comigo o seu vasto
conhecimento no domínio das redes de operador e pelas inúmeras discussões sobre
a temática da virtualização de rede. A vós um muito obrigado!
Aos meus colegas André Barbosa, João Monteiro, Christopher Viana, Lucas
Guardalben, Alberto Gomes, Ricardo Silva, Hélder Alves e Tiago Moreira por me
terem apoiado durante o Doutoramento.
Ao João Nogueira, Romeu Monteiro, Bruno Sendas e Rafael Gomes pelo seu con-
tributo para este Doutoramento.
Ao Engenheiro Vítor Mirones, à Engenheira Telma Mota, ao Engenheiro Pedro
Neves, ao Engenheiro Nuno Carapeto, ao Engenheiro Ricardo Azevedo e ao En-
genheiro Filipe Cabral Pinto da PT Inovação pela partilha de conhecimento e de
experiências de vida.
Ao Professor Andreas Timm-Giel por me ter concedido a oportunidade de alargar
o meu leque de conhecimentos e por me ter guiado durante o tempo em que es-
tive na Universidade Tecnológica de Hamburgo. Ao Professor Ulrich Killat por ter
partilhado a sua enorme sapiência no domínio da otimização linear e pelos princí-
pios científicos transmitidos.
Ao Kishore Angrishi, à Yunqi Luo, ao Ming Li, ao Jonas, ao Chunlei, à Nga, ao
Luis Torres, ao Frank, ao Thomas, ao Prof. Kreft e ao Tiago Silva, pelo vosso
caloroso bem-vindo e amizade.
Ao Instituto de Telecomunicações pelas excelentes condições de trabalho, pelos ex-
celentes colegas de trabalho, e ainda pelos excelentes profissionais de secretariado
e de suporte.
Ao Engenheiro Alcino Lavrador e ao Engenheiro Luís Miguel pelo suporte financeiro
dado através da PT Inovação, S.A. Quero igualmente agradecer à Doutora Gabriela
Moura, à Vera Santos e à Anabela Moreira pelo suporte dado.
Quero ainda agradecer à Fundação para Ciência e Tecnologia por me ter apoiado
financeiramente durante todo o Doutoramento.
Aos meus pais por me terem transmitido os valores da vida. Ao meu irmão pelas
inúmeras brincadeiras de infância, que contribuíram para a pessoa que sou hoje.
Aos meus familiares por me terem apoiado. À minha esposa, agradeço por existir
e por me apoiar.
Por fim, quero agradecer a todos aqueles cujos nomes ora por esquecimento ora
por desconhecimento não foram mencionados. A todos vós um caloroso obrigado!

Palavras-chave Internet do Futuro, Formulação Matemática, Migração de Redes Virtuais, NP-
complexo, Problema de Mapeamento, Programação Linear Inteira, Redes Virtuais,
Solução Ótima, Virtualização de Rede

Resumo A virtualização de rede é vista como uma abordagem promissora para ultrapas-
sar o “Impasse da Internet” e permitir inovação na Internet, possibilitando assim
uma migração fácil para novas abordagens de redes, bem como a coexistência
de arquiteturas de redes complementares numa infraestrutura compartilhada e em
ambiente comercial. Recentemente tem crescido de forma bastante significativa o
interesse pela virtualização de rede por parte dos operadores e dos grandes fabri-
cantes, desde que os potenciais benefícios da virtualização se tornaram claros, tanto
de ponto de vista económico como operacional. No início, o conceito foi versado
pelo meio académico, onde foram realizadas provas de conceito de pequena escala,
e em que a virtualização de rede foi considerada como forma de investigação de
novos protocolos. Esta Tese de Doutoramento tem como objetivo geral dotar uma
rede de operador de um conjunto de mecanismos e algoritmos capazes de gerir e
controlar redes virtuais. Para este fim, é proposta uma framework que visa alocar,
monitorizar e controlar recursos virtuais de uma forma centralizada e eficiente. De
forma a analisar o desempenho da framework, procedeu-se à sua implementação
e avaliação numa rede de pequena dimensão. De forma a permitir que se possa
efetuar uma alocação eficiente, em tempo real, e a pedido, de redes virtuais numa
rede física, é proposta uma heurística para efetuar o mapeamento na rede física.
Para que o operador de rede possa rentabilizar ao máximo a sua infraestrutura de
rede, é ainda proposta uma formulação matemática que, através de programação
linear, visa maximizar o número de redes alocadas na infraestrutura de rede. Dado
que o consumo energético de uma infraestrutura de rede começa a ter significância
nos custos de operação, é importante que se faça a alocação das redes virtuais
no menor número de recursos físicos e também em recursos físicos ativos. Para
endereçar este desafio é proposta uma formulação matemática que visa minimizar o
consumo energético da rede física sem afetar a eficiência da alocação de redes vir-
tuais. Para minimizar a fragmentação da infraestrutura de rede e ao mesmo tempo
aumentar as receitas do operador, é também estendida a formulação inicial para
contemplar a re-otimização de redes virtuais previamente mapeadas, fazendo com
que o operador tenha um melhor aproveitamento da sua infraestrutura física. Será
ainda necessário endereçar a migração de redes virtuais, quer por motivos de ba-
lanceamento de carga, quer por motivos de falha iminente de recursos físicos, sem
afetar o bom funcionamento da rede virtual. Para este fim, é proposto um método
baseado em técnicas de clonagem, para efetuar a migração de redes virtuais entre
recursos da infraestrutura física de forma transparente e sem impacto para a rede
virtual. De forma a avaliar a resiliência das redes virtuais a falhas na rede física,
e ao mesmo tempo obter a solução ótima de migração de redes virtuais em caso
de falha iminente dos recursos físicos, a formulação matemática é estendida para
minimizar o número de nós migrados em simultâneo com a realocação de ligações
virtuais. Em comparação com as nossas propostas de otimização verificou-se que
as heurísticas existentes para mapeamento de redes virtuais têm um desempenho
muito baixo. Verificou-se ainda que é possível efetuar a redução do consumo ener-
gético sem a penalização da alocação eficiente. Com a re-otimização das redes
virtuais mostrou-se que é possível obter mais recursos livres, assim como obter
uma melhor distribuição dos recursos. Por último, demonstrou-se que as redes
virtuais são bastante resilientes a falhas na rede física.

Keywords Future Internet, Integer Linear Programming, Mapping Problem, Mathematical
Formulation, NP-Hard, Optimal Solution, Virtual Network Migration, Virtual Net-
works, Network Virtualisation

Abstract Network virtualisation is seen as a promising approach to overcome the so-called
“Internet impasse” and bring innovation back into the Internet, by allowing easier
migration towards novel networking approaches as well as the coexistence of com-
plementary network architectures on a shared infrastructure in a commercial con-
text. Recently, the interest from the operators and mainstream industry in network
virtualisation has grown quite significantly, as the potential benefits of virtualisation
became clearer, both from an economical and an operational point of view. In the
beginning, the concept has been mainly a research topic and has been materialized
in small-scale testbeds and research network environments. This PhD Thesis aims
to provide the network operator with a set of mechanisms and algorithms capable
of managing and controlling virtual networks. To this end, we propose a framework
that aims to allocate, monitor and control virtual resources in a centralized and
efficient manner. In order to analyse the performance of the framework, we per-
formed the implementation and evaluation on a small-scale testbed. To enable the
operator to make an efficient allocation, in real-time, and on-demand, of virtual
networks onto the substrate network, it is proposed a heuristic algorithm to per-
form the virtual network mapping. For the network operator to obtain the highest
profit of the physical network, it is also proposed a mathematical formulation that
aims to maximize the number of allocated virtual networks onto the physical net-
work. Since the power consumption of the physical network is very significant in
the operating costs, it is important to make the allocation of virtual networks in
fewer physical resources and onto physical resources already active. To address
this challenge, we propose a mathematical formulation that aims to minimize the
energy consumption of the physical network without affecting the efficiency of the
allocation of virtual networks. To minimize fragmentation of the physical network
while increasing the revenue of the operator, it is extended the initial formulation
to contemplate the re-optimization of previously mapped virtual networks, so that
the operator has a better use of its physical infrastructure. It is also necessary to
address the migration of virtual networks, either for reasons of load balancing or
for reasons of imminent failure of physical resources, without affecting the proper
functioning of the virtual network. To this end, we propose a method based on
cloning techniques to perform the migration of virtual networks across the physical
infrastructure, transparently, and without affecting the virtual network. In order to
assess the resilience of virtual networks to physical network failures, while obtain-
ing the optimal solution for the migration of virtual networks in case of imminent
failure of physical resources, the mathematical formulation is extended to minimize
the number of nodes migrated and the relocation of virtual links. In comparison
with our optimization proposals, we found out that existing heuristics for mapping
virtual networks have a poor performance. We also found that it is possible to
minimize the energy consumption without penalizing the efficient allocation. By
applying the re-optimization on the virtual networks, it has been shown that it
is possible to obtain more free resources as well as having the physical resources
better balanced. Finally, it was shown that virtual networks are quite resilient to
failures on the physical network.

Contents

1 Introduction 1
1.1 Scope & Motivation . 2
1.2 Objectives . 4
1.3 Scientific Contributions . 4
1.4 Structure . 6

2 Network Virtualisation:
Related Work 7
2.1 Concepts & Terminology . 8

2.1.1 Network Virtualisation . 8
2.1.2 Virtual Link . 8
2.1.3 Virtual Node . 9

2.2 Existing Network Virtualisation Technologies 9
2.2.1 Asynchronous Transfer Mode . 9
2.2.2 Multi Protocol Label Switching . 9
2.2.3 Virtual Private Network . 9
2.2.4 Overlay Networks . 10
2.2.5 Active Networks . 10
2.2.6 Software Defined Networking . 10

2.3 Business Models & Roles . 11
2.3.1 Infrastructure Provider . 11
2.3.2 Virtual Network Provider . 11
2.3.3 Virtual Network Operator . 12
2.3.4 The VNP-InP Interface . 12

2.4 Virtual Network Embedding Problem . 13
2.4.1 VNE Characteristics . 14
2.4.2 Resource Allocation . 17
2.4.3 Energy-Aware Resource Allocation . 20
2.4.4 Virtual Network Resilience . 20
2.4.5 Other VNE Research Directions . 22

2.5 Virtual Network Migration . 24
2.6 Future Internet Research Projects . 25

2.6.1 Federated E-infrastructure Dedicated to European Researchers Innov-
ating in Computing network Architectures 25

2.6.2 Global Environment for Network Innovations 25
2.6.3 Trilogy . 26
2.6.4 4WARD . 26
2.6.5 Open-Access Research Testbed for Next-Generation Wireless Networks 26
2.6.6 GEYSERS . 26

i

2.6.7 Scalable & Adaptive Internet soLutions 27
2.7 Standardisation and Research Groups . 27

2.7.1 Internet Research Task Force . 27
2.7.2 European Telecommunications Standards Institute 27
2.7.3 International Telegraph Union - Telecom 27

2.8 Summary . 28

3 Network Virtualisation:
Building Blocks 29
3.1 Controlling Virtual Network Resources . 30

3.1.1 Building Blocks . 30
3.1.2 VN Setup Negotiation Process . 31
3.1.3 Signalling and Control . 32

3.2 Resource Allocation, Monitoring and Controlling 34
3.2.1 Architecture . 34
3.2.2 Built-in Capabilities . 35
3.2.3 Testbed Description . 35
3.2.4 Evaluation Results . 36

3.3 VN Migration . 38
3.3.1 Triggers for VN Migration . 38
3.3.2 VN Clone Migration Procedure . 40
3.3.3 VN Clone Migration Architecture . 43
3.3.4 Evaluation Results . 44

3.4 Summary . 46

4 Network Virtualisation:
VN Embedding Problem 47
4.1 Problem Description . 48

4.1.1 Network Description . 48
4.1.2 Unfilled Physical Network Resources 50
4.1.3 VN Request Embedding Process . 51
4.1.4 VN Request Life Cycle . 51
4.1.5 Mapping Metrics . 51

4.2 Heuristic Algorithm . 53
4.2.1 Baseline Heuristic . 54
4.2.2 Virtual Network Embedding - Enhanced Shortest-Path Heuristic . . . 55

4.3 Mathematical Formulation . 57
4.3.1 Assignment Variables . 57
4.3.2 Constraints . 57

4.4 Objective Functions - Resource Allocation . 59
4.4.1 Objective Goals . 59
4.4.2 Load Balancing plus ε Shortest Path 59
4.4.3 Shortest Distance Path . 60
4.4.4 Weighted Shortest Distance Path . 60

4.5 Re-Optimization Extension . 60
4.6 Energy Aware - Extension . 61

4.6.1 Energy Consumption Minimization . 61
4.6.2 Bandwidth Consumption Minimization 61

4.7 Virtual Network Migration Extension . 62
4.7.1 Node Migration and Bandwidth Consumption Minimization 62

ii

4.8 Evaluation Results . 62
4.8.1 Baseline Heuristics . 62
4.8.2 Simulation Parameters . 63
4.8.3 Impact of the Number of VN Requests 64
4.8.4 Impact of the Maximum Distance Between Virtual Nodes 71
4.8.5 Re-Optimization Evaluation . 72
4.8.6 Energy-Aware Evaluation . 73
4.8.7 Virtual Network Migration Evaluation 75

4.9 Summary . 78

5 Conclusions & Future Work 81
5.1 Results and Achievements . 82

5.1.1 RAMC Framework . 82
5.1.2 Virtual Network Migration . 82
5.1.3 Virtual Network Embedding . 82
5.1.4 Virtual Network Re-Embedding . 83

5.2 Operator Recommendations . 83
5.3 Future Research Directions . 83

Appendices 85

A Network Virtualisation from an Operator Perspective 87
A.1 Introduction . 89
A.2 Network Virtualisation Overview . 89

A.2.1 Historical Perspective . 89
A.2.2 Network Virtualisation Business Models and Roles 90
A.2.3 The VNP-InP interface . 91

A.3 Controlling Virtual Network Resources . 92
A.3.1 Building blocks . 93
A.3.2 VN Setup Negotiation Process . 94
A.3.3 Signalling and Control . 94

A.4 A Virtual Network Control Testbed . 97
A.5 Conclusion and Future Work . 98

B Virtual Network Mapping - An Optimization Problem 99
B.1 Introduction . 101
B.2 Related Work . 101
B.3 Problem Description and ILP Model Formulation 102

B.3.1 Virtual Network Assignment Problem Description 102
B.3.2 Integer Linear Programming Problem Formulation 103
B.3.3 Mapping Heuristic Algorithm . 105

B.4 Evaluation Results . 106
B.4.1 Simulation Parameters . 107
B.4.2 Simulation Results . 108

B.5 Conclusion . 110

C A Re-Optimization Approach for Virtual Network Embedding 111
C.1 Introduction . 113
C.2 Related Work . 113
C.3 Problem Description and Mathematical Formulation Extension 114

iii

C.3.1 Network Description . 115
C.3.2 Mathematical Formulation Extension - Re-Optimization Support . . . 115

C.4 Evaluation Results . 117
C.4.1 Simulation Parameters - VNE-NLF and VNE-ESPH 117
C.4.2 Simulation Results - VNE-NLF and VNE-ESPH 118
C.4.3 Re-Optimization . 119

C.5 Conclusion . 120

D Optimal Virtual Network Embedding: Node-Link Formulation 123
D.1 Introduction . 125
D.2 Related Work . 126
D.3 Network Description and Problem Formulation 127

D.3.1 Network Description . 127
D.3.2 Unfilled Physical Network Resources 129
D.3.3 VN Request Embedding Process . 130
D.3.4 VN Request Life Cycle . 131
D.3.5 Mapping Metrics . 131

D.4 Virtual Network Embedding - Mathematical Formulation 132
D.4.1 Assignment Variables . 132
D.4.2 Constraints . 132

D.5 Virtual Network Assignment - Objective Function 134
D.5.1 Objective Goals . 134
D.5.2 Load Balancing plus ε Shortest Path 135
D.5.3 Shortest Distance Path . 135
D.5.4 Weighted Shortest Distance Path . 135

D.6 Evaluation Results . 136
D.6.1 Simulation Parameters . 136
D.6.2 Impact of the Number of VN Requests 137
D.6.3 Impact of the Maximum Distance Between Virtual Nodes 143

D.7 Conclusion . 146

E Optimal Virtual Network Embedding: Energy Aware Formulation 147
E.1 Introduction . 149
E.2 Related Work . 150
E.3 Network Description and Problem Formulation 151

E.3.1 Network Description . 151
E.3.2 Unfilled Physical Network Resources 153
E.3.3 VN Request Embedding Process . 154
E.3.4 VN Request Life Cycle . 155
E.3.5 Mapping Metrics . 155

E.4 Virtual Network Embedding - Mathematical Formulation 157
E.4.1 Assignment Variables . 157
E.4.2 Constraints . 157

E.5 Objective Functions - Energy Aware . 158
E.5.1 Weighted Shortest Distance Path . 159
E.5.2 Bandwidth Consumption Minimization 159
E.5.3 Energy Consumption Minimization . 159

E.6 Evaluation Results . 160
E.6.1 Simulation Parameters . 160
E.6.2 Simulation Results . 161

iv

E.7 Conclusion . 165

F Optimal Virtual Network Migration: A Step Closer For Seamless Resource
Mobility 167
F.1 Introduction . 169
F.2 Related Work . 170

F.2.1 VN Migration . 170
F.2.2 Virtual Network Re-Embedding Problem 170

F.3 Seamless Approach for VN Migration . 171
F.3.1 Triggers for VN Migration . 171
F.3.2 VN Clone Migration Procedure . 173

F.4 VN Clone Migration Architecture . 176
F.4.1 VN Clone Migration Architecture . 176
F.4.2 Virtual Router Implementation . 176

F.5 Network Re-Embedding Problem Formulation 176
F.5.1 Network Description . 177
F.5.2 Unfilled Physical Network Resources 178
F.5.3 VN Request Re-embedding Process . 180
F.5.4 VN Re-Embedding - Activity Diagram 181
F.5.5 Re-Embedding Metrics . 181

F.6 Virtual Network Re-Embedding Node-Link Formulation 182
F.6.1 Assignment Variables . 182
F.6.2 Constraints . 182
F.6.3 Objective Function . 183

F.7 Evaluation Results . 184
F.7.1 VN Migration - Testbed . 184
F.7.2 VN Migration - Experiment Parameters 184
F.7.3 VN Migration - Experimental Results 185
F.7.4 VN Re-embedding - Simulation Parameters 187
F.7.5 VN Re-embedding - Simulation Results 187

F.8 Conclusion and Future Work . 191

References 193

v

vi

List of Figures

2.1 Network virtualisation Business Roles. 12
2.2 VNP-InP information flow. 13

3.1 Infrastructure Provider (InP) Building Blocks. 31
3.2 VN Creation Sequence Chart and Flow Diagram. 33
3.3 Resource Allocation, Monitoring and Controlling (RAMC) Architecture . . . 34
3.4 Network Virtualisation Testbed Photo. 36
3.5 Network Virtualisation Testbed . 37
3.6 Virtual Network Mapping Time as a Function on the number of existing VNs. 38
3.7 Virtual Network Creation Time as a Function of the existing VNs. 38
3.8 VN Migration Timeline . 41
3.9 VN Clone Migration Architecture. 43
3.10 Virtual Network downtime (or Percentage of Dropped Packets) as a Function

of the VR Memory RAM. 45
3.11 VN Migration Execution Time as Function of the VR Memory Size 46

4.1 VN Embedding System - Topology Example 48
4.2 VN Request Life Cycle - Activity Diagram . 50
4.3 Average VN Acceptance ratio as a function of VN Request rate. 65
4.4 Average Node Utilization as a function of VN Request rate. 66
4.5 Average VN Acceptance Ratio times Average Node Utilization as a function of

VN Request rate. 67
4.6 Average Link Utilization as a function of VN Request rate. 68
4.7 Average VN Request Acceptance Ratio times Average Link Utilization as a

function of VN Request rate. 69
4.8 Average Embedding Factor as a function of VN Request rate. 70
4.9 VN Solving Time as a function of VN Request rate. 70
4.10 Resource allocation evaluation as a function of the distance between virtual

nodes. 72
4.11 Re-optimization evaluation as a function of VN request rate. 74
4.12 Energy evaluation as a function of VN request rate. 76
4.13 VN migration evaluation as a function of VN request rate. 79

A.1 Network virtualisation business roles. 92
A.2 VNP-InP Information Flow. 93
A.3 InP block diagram . 95
A.4 VN creation sequence chart and flow diagram. 97
A.5 Network Virtualisation Testbed . 98

B.1 Network Topology Description . 103

vii

B.2 Evaluation Metrics per demand. 109

C.1 Network Topology Description . 115
C.2 VN Request Acceptance Ratio, Number of Existing VNs on the Substrate and

Resource Utilization as a function of the VN Size. 121
C.3 Resource Utilization as a function of the Number of VN requests. 122

D.1 VN Embedding System - Topology Example 128
D.2 VN Request Life Cycle - Activity Diagram . 130
D.3 Average VN Acceptance ratio as a function of VN Request rate. 138
D.4 Average Node Utilization as a function of VN Request rate. 139
D.5 Average VN Acceptance Ratio times Average Node Utilization as a function of

VN Request rate. 140
D.6 Average Link Utilization as a function of VN Request rate. 140
D.7 Average VN Request Acceptance Ratio times Average Link Utilization as a

function of VN Request rate. 141
D.8 Average Embedding Factor as a function of VN Request rate. 142
D.9 VN Solving Time as a function of VN Request rate. 142
D.10 Average VN Acceptance Ratio as a function of the Distance between Virtual

Nodes . 144
D.11 Average Node Utilization as a function of the Distance between Virtual Nodes 145
D.12 Average Link Utilization as a function of the Distance between Virtual Nodes 145
D.13 Average Embedding Factor as a function of the Distance between Virtual Nodes145

E.1 VN Embedding System - Topology Example 152
E.2 VN Request Life Cycle - Activity Diagram . 153
E.3 Average VN Acceptance ratio per VN request. 162
E.4 Average Embedding Factor per VN request. 162
E.5 Average Percentage of Physical Nodes Active per VN request. 163
E.6 Average Percentage of Physical Links Active per VN request. 163
E.7 Average Physical Network Energy Consumption per VN request. 164
E.8 Average Virtual Network Energy Consumption per VN request. 165
E.9 Average VN Embedding Time per VN request. 165

F.1 VN Migration Timeline . 174
F.2 VN Clone Migration Architecture. 176
F.3 VN Re-embedding System - Topology Example 178
F.4 VN Re-embedding - Activity Diagram . 180
F.5 Network Virtualisation Testbed: Virtual Router Migration Scenario. 184
F.6 Virtual Network downtime (or Percentage of Dropped Packets) as a Function

of the VR Memory RAM . 186
F.7 VN Migration Execution Time as Function of the VR Memory Size 186
F.8 Average Physical Network Resilience Factor per VN request. 188
F.9 Average Percentage of Virtual Nodes Migrated per VN request. 189
F.10 Average Embedding Factor per VN request. 189
F.11 Average Percentage of Additional Physical Bandwidth per VN request. 190
F.12 Average VN Re-embedding Time. 191

viii

List of Tables

1.1 List of scientific contributions made throughout the PhD. 5

2.1 State of the Art on Virtual Network Embedding - Efficient Resource Allocation
Algorithms. 21

2.2 State of the Art on Virtual Network Embedding - Energy Aware Algorithms. 22
2.3 State of the Art on Virtual Network Resilience Algorithms. 23

3.1 Virtual Network Characteristics. 32
3.2 Testbed specification. 35
3.3 VN migration types of trigger events, event duration and event priority. . . . 40
3.4 NV Controller - List of Commands. 44

4.1 VN Assignment Problem Notation. 49
4.2 Compared VN Embedding Methods. 64
4.3 Physical Network and Virtual Network Parameters. 72
4.4 Compared VN Embedding Methods - Energy Evaluation. 73

A.1 Virtual Network Characteristics. 96

B.1 Physical Nodes Pool Parameters. 107
B.2 Virtual Nodes Pool Parameters. 107

C.1 Physical Network and Virtual Network Parameters. 118

D.1 VN Assignment Problem Notation. 131
D.2 Compared VN Embedding Methods. 137

E.1 VN Assignment Problem Notation. 154
E.2 Compared VN Embedding Methods. 160

F.1 VN migration types of trigger events, event duration and event priority. . . . 173
F.2 NV Controller - List of Commands. 177
F.3 VN Re-assignment Problem Notation. 179

ix

x

List of Acronyms

AN Active Networks

ATM Asynchronous Transfer Mode

BCM Bandwidth Consumption Minimization

CABO Concurrent Architectures are Better than One

CAPEX CAPital EXPenditure

CLI Command Line Interface

C-NLM Coordinated - Node-Link Mapping

CONEX CONgestion EXposure

CPU Central Processing Unit

CSPF Constrained Shortest Path First

DNS Domain Name System

D-ViNE Deterministic Node Mapping with Slipttable Link Mapping using Multi-
Commodity Flow Constraint

D-ViNE-LB Deterministic Node Mapping with Splittable Link Mapping using Multi-
Commodity Flow Constraint and Load Balancing based

D-ViNE-SP Deterministic Node Mapping with Shortest Path based Link Mapping

EA-VNE-NLF Energy Aware - Virtual Network Embedding - Node-Link Formulation

ECM Energy Consumption Minimization

ETSI European Telecommunications Standards Institute

XORP Extensible Open Router Platform

FEDERICA Federated E-infrastructure Dedicated to European Researchers Innovating in
Computing network Architectures

FN Future Network

GENI Global Environment for Network Innovations

GEYSERS Generalized Architecture for Dynamic Infrastructure Services

GLPK Gnu Linear Programming Kit

xi

G-MCF Greedy Node Mapping with Splittable Link Mapping using Multi-Commodity Flow
Constraint

GRE Generic Routing Encapsulation

G-SP Greedy Node Mapping with Shortest Path based Link Mapping

GT-ITM Georgia Tech Internetwork Topology Models

HDD Hard Disk Drive

ILP Integer Linear Programming

InP Infrastructure Provider

IP Internet Protocol

IPTV Internet Protocol Television

IRTF Internet Research Task Force

ISG Industry Specification Group

ISP Internet Service Provider

IT Information Technology

ITU-T International Telegraph Union - Telecom

KVM Kernel-based Virtual Machine

LAN Local Area Network

MB Mega Byte

MCFP Multi-Commodity Flow Problem

MIP Mixed Integer Programming

MIT Massachusetts Institute of Technology

MPLS Multi Protocol Label Switching

MP-TCP Multi-Path Transmission Control Protocol

NAT Network Address Translation

NFV Network Functions Virtualisation

NM-BCM Node Migration and Bandwidth Consumption Minimization

NP-hard Non-deterministic Polynomial-time hard

NREN National Research and Education Networks

NV Network Virtualisation

NVC Network Virtualisation Controller

NVE Network Virtualisation Entity

xii

NVGRE Network Virtualisation using Generic Routing Encapsulation

NVSS Network Virtualisation System Suite

ON Overlay Network

OPEX OPerational EXpenditure

ORBIT Open-Access Research Testbed for Next-Generation Wireless Networks

OS Operating System

OSPF Open Shortest Path First

P2P Peer-to-Peer

PE Provider Edge

PoP Point-of-Presence

PSO Particle Swarm Optimization

QoS Quality of Service

RAM Random Access Memory

RAMC Resource Allocation, Monitoring and Controlling

RON Resilient Overlay Network

RSVP Resource ReSerVation Protocol

R-ViNE Randomized Node Mapping with Splittable Link Mapping using Multi-Commodity
Flow Constraint

SAIL Scalable & Adaptive Internet soLutions

SCP Session Control Protocol

SDN Software Defined Networking

SDP Shortest Distance Path

SN Substrate Network

SSH Secure Shell (Unix program)

SVNE Survivable Virtual Network Embedding

TCP Transmission Control Protocol

TNI Tenant Network Identifier

UDP User Datagram Protocol

UPS Uninterruptible Power Supply

VL Virtual Link

VLAN Virtual Local Area Network

xiii

VM Virtual Machine

VN Virtual Network

VNE Virtual Network Embedding

VNE-ESPH Virtual Network Embedding - Enhanced Shortest-Path Heuristic

VNE-NLF Virtual Network Embedding Node-Link Formulation

VNM Virtual Network Migration

VNO Virtual Network Operator

VNP Virtual Network Provider

VNR Virtual Network Request

VNRE Virtual Network Re-Embedding

VNRE-NLF Virtual Network Re-Embedding Node-Link Formulation

VNRG Virtual Networks Research Group

VoIP Voice Over IP

VPLS Virtual Private LAN Services

VPN Virtual Private Network

VPWS Virtual Private Wire Services

VR Virtual Router

VROOM Virtual ROuters On the Move

VXLAN Virtual Extensible LAN

WSDP Weighted Shortest Distance Path

XML Extensible Markup Language

xiv

Chapter 1 - Introduction

“The greatest enemy of knowledge is not
ignorance, it is the illusion of knowledge.”

—Stephen Hawking

As the first chapter in the Thesis, the introduction sets the motivation for pursuing a
PhD on network virtualisation. It presents the hypothesis, along with goals that guided the
work evolution (section 1.2), followed by the contributions that resulted from the concepts
explored (section 1.3). Finally, it presents the overall structure of the document (section 1.4).

1

1.1 Scope & Motivation

New networking applications are emerging, which are introducing increasingly higher
requirements on the networks, such as more bandwidth, quality of service, support for a
large number of end-devices, peer-to-peer connectivity, a high degree of user mobility, well-
integrated security features, and so forth. Although individual mechanisms and protocols
have been or are being developed to enable many of these features, the current Internet
architecture is rather restrictive when it comes to supporting networks that are flexible,
extensible, composable, and re-usable.

In this context, there is a significant trend on the concept of “networks of networks”,
which considers that the Internet of the Future will be a group of networks that share the
same infrastructure [PACR03, Fel07]. These networks may have a common architecture, but
they will be used for different purposes, and with different application requirements.

On the other hand, it is clear now the importance of reducing the energy consumption with
respect to the carbon footprint. The consumption of energy due to Telecom and Broadcasting
has been frenetically increased over the years. In Japan the consumption of energy due to
Telecom and Broadcasting achieved astonishing proportions [AN08]. Several procedures can
be taken for reducing the energy consumption such as putting nodes that are not being used
into sleep mode or by using “green” protocols. In [NPI+08a] it is discussed the impact on
network protocols by putting network interfaces and components into sleep for saving energy,
and in [GS03a] it is presented and evaluated two forms of power management schemes that
reduce the energy consumption of networks.

To this effect, it has been proposed to use virtualisation as the basis for a highly flexible
architecture for the Future Internet in order to circumvent the restrictions of the current In-
ternet and provide a platform enabling the introduction of novel, and possibly revolutionary,
networking capabilities [EFI14, FIN14, 4WA09], and also to reduce the energy consump-
tion [LFDM14].

The basic concept of virtualisation itself is well known and already implemented in the
Information Technology (IT) domain [BDF+03]. It is used to improve resource efficiency,
to reduce management complexity and deployment times, to isolate failure domains, and to
provide real-world test environments. The application of the idea to networking (hardware)
environments and the advantages of virtualisation can be used to optimize network resources
usage.

The virtualisation of networks will trigger the development of green protocols and will
facilitate the load distribution among the network based on the usage of the network or even
in data previsions, allowing to save energy by switching the unnecessary resources into idle
stages. It will be possible to put the virtual components into sleep or even in hibernated
modes.

Moreover, it allows to create, control, and manage coherent networks spanning multiple
infrastructure providers offering more powerful control for virtual network operators; operat-
ors will be able to share the same infrastructure for different purposes and without affecting
each other.

Network virtualisation has the potential to facilitate a variety of new scenarios and busi-
ness use cases, where providers may want to occupy different parts of the value chain and
develop their own business strategies [4WA09]. This concept can allow the co-existence and
operation of different networks, which would use different protocols, for different service re-
quirements on the same infrastructure [CJ09].

The main advantages of network virtualisation realized by the industry goes beyond the
one of future Internet scenarios, mainly to operators and service providers on a short/medium

2

term, are as follows [Cis09b, Jun09]:

- Reduction of costs: by using a single virtualised infrastructure to run multiple services,
CAPital EXPenditure (CAPEX) and OPerational EXpenditure (OPEX) can be reduced,
compared to the typical scenario where different types of service (e.g. voice, data, broad-
cast) are run in separate networks.

- Increase of revenues: by sharing infrastructure, the network operator achieves a better
utilization of the network resources and optimizes profitability.

- Flexible network planning: the swift and easy establishment of virtual networks can be
used as a safeguard against unpredictability of the service demand.

- Security and isolation: virtualisation can provide real isolation of network resources, with
benefits in terms of fault isolation, security, and performance guarantees.

- Flexibility and programmability: virtual networks can be tuned to fulfil specific service and
application requirements (e.g. security, performance, dependability), thus a “one-size-fits-
all” approach is no longer required.

According to the existing work in this area, there is already some architectural work that
initiates the concept of virtual networks, and defines mechanisms for exchanging information
between virtual networks, for example, Plutarch [CHM+03]. However, it is necessary to
improve and re-think the features of interaction between networks to enable the coexistence
of networks with different architectural principles.

There are also several tools to enable the virtualisation of machines, working mainly in
virtualisation of operating systems, XEN [BDF+03], Denali [WSG02], VMware [DBR02],
Connectix [con03], Kernel-based Virtual Machine (KVM) [kvm14]. However, the support for
multi-protocol routers to enable and consolidate multiple level 3 technologies still requires
more research, given that it is very complex and difficult to manage the isolation between
different routing domains. At the level of virtualisation of networks, an example of a practical
application of the concept of virtualisation is the Virtual Private Network (VPN) [RR06].
However, the utilization of VPNs for enabling the deployment of new architectures and pro-
tocols is restrictive, since only the virtual links are virtualized.

In the past, other examples have appeared that take into practice some of the concepts
of network virtualisation, but on the sense of running a set of parallel experiments in the
same experimental platform. Examples of this process are the experimental platforms Plan-
etLab [Pla14], EmuLab [WLS+02a] and Panlab [pan14]. Additionally, there are initiatives
like Global Environment for Network Innovations (GENI) [PAB+06, PW06] that aim to
support real traffic. Moreover there are several proposed approaches for the support of virtu-
alisation, as VINI [BFH+06], virtual testbed [APST05a], meta-network [TT05], Concurrent
Architectures are Better than One (CABO) [FGR07a, PJ06, TWEF03], all these approaches
are used for experimental networks. Recently, there are initiatives like Software Defined
Networking (SDN) [Fou14] and Network Functions Virtualisation (NFV) [ETS] that aim to
increase the network programmability through the decoupling of control functions from the
forwarding functions. SDN is a new approach to designing, building and managing networks.
This architecture decouples the control plane from forwarding plane to enable the network
control to become directly programmable and the underlying infrastructure to be abstracted
for applications and network services. NFV offers a new way to design, deploy and manage
networking services. NFV decouples the network functions, such as Network Address Trans-
lation (NAT), firewall, intrusion detection, Domain Name System (DNS), caching, etc., from
proprietary hardware appliances, so they can be run in software.

3

Although there are already several proposals on how to perform the virtualisation of
machines and network resources, there is not a clear vision of how this process can be handled,
particularly in the view of the operator: i) there is not a clear approach on how an operator
can manage and efficiently provision virtual network resources; ii) and on how to create and
manage multiple virtual networks; iii) as well as on how to re-configure virtual resources
and seamlessly move them across the infrastructure without causing any disruption on the
services running on each virtual network, either due to load balancing policies or even for
energy consumption purposes.

1.2 Objectives

The purpose of this PhD Thesis is to corroborate the following hypothesis “Can network
virtualisation be the basis for a highly flexible architecture for the Future Internet to circum-
vent the restrictions of the current Internet model, and to provide a platform enabling the
introduction of novel, and possibly revolutionary, networking capabilities?”

The general objective of this PhD Thesis is to evaluate the potential of network virtual-
isation from an operator’s perspective, with the short-term goal of optimizing service delivery
and rollout, and on a longer term as an enabler of technology integration and migration.

To accomplish this aim, it will define a framework for virtual resource control, alloc-
ation, and monitoring, which allows an operator to support virtual network technologies,
with different capabilities and requirements, in the same physical infrastructure and network
platform.

Additionally, it will define, evaluate and implement mechanisms to efficiently embed dif-
ferent virtual networks on the same physical infrastructure in a dynamic and optimised form,
which will allow operators to increase their revenue by leasing their infrastructure, and even-
tually to reduce provisioning costs by applying a heuristic algorithm.

Moreover, the energy consumption of the physical network is a big concern to network
operators, either due to environmental policies imposed by the local governments or due to
energy costs. Therefore it is required that the existent embedding mechanisms, not only aim
to efficiently embed VNs, but also to reduce the energy consumption of the physical network.

In addition, virtual networks are provisioned on-demand, for a fixed amount of time,
and not only its initial requirements can change during the VN lifetime (e.g. bandwidth,
Central Processing Unit (CPU)), but also the VN topology. Therefore, mechanisms need to
be defined, evaluated and implemented to reduce the physical network fragmentation and at
the same time to increase the revenue of the operator.

Finally, the virtual network assignment can change during the VN lifetime, i.e. either due
to physical resource failure or to load balancing policies. To support these events, mechanisms
are required to perform VN migration seamlessly, and in an optimal way (e.g. number of
migrated nodes, bandwidth re-allocation).

1.3 Scientific Contributions

The scientific work performed during this PhD has been published in several international
conferences and peer-reviewed journals, and inclusively in technical reports of research pro-
jects where the author was involved. The scientific contributions made throughout this PhD
can be grouped into three parts:

i The first part is devoted to the topic of virtual resource allocation and control. A frame-
work to handle these requirements is proposed, and a proof of concept is performed in a

4

small-scale testbed in [MSC09, Mel10];

ii The second part corresponds to the migration and reconfiguration of virtual network
resources. To this extent, it is proposed a method to move virtual resources seamlessly
across the physical network without affecting the virtual networks in [MCS13a, MSC14],
and an Integer Linear Programming (ILP) formulation to obtain the optimal solution per
VN re-embedding in [MSC14];

iii The last part incorporates the virtual network embedding problem and the optimal em-
bedding solution. To address this research challenge, it is proposed an enhancement
to an existing heuristic, and it is also proposed an ILP formulation to obtain the op-
timal solution per VN embedding in [MCS+12, MSK+13]. Extensions of this formula-
tion to perform VN re-optimization and energy consumption minimization are proposed
in [MCS+13b, MSK+14], respectively.

The scientific work performed during this PhD has also positively contributed to the
development of several Msc Thesis:

- “Demonstrador de Criação de Redes Virtuais no Âmbito do Operador” [Nog10];

- “Criação e Reconfiguração de Redes Virtuais na Perspetiva do Operador” [Mon11];

- “Integração da Cloud com Rede na Perspectiva de Operador” [Par12];

- “Demonstrador de uma rede com tecnologia OpenFlow” [Gom13].

For convenience, we summarize the contributions in Table 1.1, organized by year and
type, so the output can be better understood.

Table 1.1: List of scientific contributions made throughout the PhD.

Title Type Venue Year
Network virtualisation from an Operator
Perspective [MSC09]

Conference Conf. sobre Redes de
Computadores (CRC)

2009

Virtual Network Mapping - An Optimiz-
ation Problem [MCS+12]

Conference Springer Mobile Net-
works and Management
(MONAMI)

2011

A Re-optimization Approach for Virtual
Network Embedding [MCS+13b]

Conference Springer Mobile Net-
works and Management
(MONAMI)

2012

Network Virtualisation: A step closer for
seamless resource mobility [MCS13a]

Workshop IEEE Integrated Network
Management (IM)

2013

Optimal Virtual Network Embedding:
Node-Link Formulation [MSK+13]

Journal IEEE Transactions on
Network and Service
Management (TNSM)

2013

Optimal Virtual Network Embedding:
Energy Aware Formulation [MSK+14]

Journal Submitted to IEEE
Transactions on Network
and Service Management
(TNSM)

2014

Optimal Virtual Network Migration:
A Physical Network Resilience Evalu-
ation [MSC14]

Journal Submitted to
IEEE/ACM Trans-
actions on Networking

2014

5

1.4 Structure
The main body of work presented in this Thesis is structured around the concept of

network virtualisation and open research challenges, followed by the application on the op-
erator’s network. We present a structure consisting of an introduction and conclusion, a
related work chapter, and two central chapters incorporating the most novel contributions.
The two initial chapters, chapter 1 and chapter 2, frame the content and topics presented in
the Thesis.

The Introduction presents the motivation, setting the stage for the hypothesis and goals
of the Thesis. It also highlights the contributions stemming from the presented proposals.

Chapter 2 presents an overview on network virtualisation concepts and terminology, where
existing network virtualisation technologies and new business models that may advent from
the appliance of network virtualisation are discussed. Moreover, it examines the research
challenges and reviews the related work. Existing Future Internet research projects and
standardisation groups are also presented.

Chapter 3 starts with a description of the mechanisms and algorithms required to control
virtual network resources. It is followed by a framework proposal to address these require-
ments: resource allocation, monitoring and controlling. A small-scale testbed is presented
that is used as a proof of concept, and an evaluation is performed on the framework. Moreover,
it provides a description on the different triggers used for VN migration, and it presents the
architecture of the VN clone migration method. Finally, the evaluation results, which concern
the VN migration, are depicted and discussed.

In Chapter 4 a description of the virtual network embedding problem is given. Then, it
discusses an enhancement to a heuristic algorithm. Furthermore is proposed a ILP formu-
lation, i.e. Virtual Network Embedding Node-Link Formulation (VNE-NLF), to solve the
Virtual Network Embedding (VNE) as an optimization problem. Moreover, different pro-
posed cost functions for resource allocation are discussed. Extensions on this formulation
are proposed to address re-optimization of VNs previously embedded, energy consumption,
and the optimization of Virtual Network Migration (VNM). The major evaluation results
concerning the VNE-NLF and the proposed extensions are depicted and analysed.

As the final chapter, chapter 5 summarizes the findings of the Thesis in the context of
network virtualisation, and presents future impacts of the proposed solutions and concepts
through a discussion of some of the insights gathered throughout the research process detailed
in this document.

6

Chapter 2 - Network Virtualisation:
Related Work

“We cannot solve our problems with the
same thinking we used when we created
them.”

—Albert Einstein

This chapter presents an overview of virtualisation concepts and related work of network
virtualisation. The first section will start with a general description of the concepts and
terminology. In Section 2.2, an overview of the network virtualisation background is given.
Section 2.3 presents network virtualisation business models. Moreover, research challenges in
network virtualisation will be pointed out in Sections 2.4 and 2.5, with special focus on the
Virtual Network Embedding (VNE) problem. Furthermore in Section 2.6, Future Internet
projects will be discussed. In Section 2.7 research groups and standardization organizations
will be referred. Finally, Section 2.8 summarizes the chapter.

7

2.1 Concepts & Terminology

The virtualisation concept, as it is, is not new in the literature and it is broadly used in sev-
eral fields. In the sixties, IBM introduced the Virtual Machine concept [Gol74], where it was
described how to apply virtualisation into computers to have a set of simulators/emulators
with the same physical (virtual) hardware; this resulted in the virtual machines. One common
example of the use of virtualisation are the logical partitions on the disk drive.

2.1.1 Network Virtualisation

Network virtualisation is an approach whereby several network instances can co-exist on a
common physical network infrastructure. The type of network virtualisation needed is not to
be confused with current technologies such as VPNs, which merely provide traffic isolation.
Full administrative control as well as potentially full customization of the Virtual Networks
(VNs) is also required to realise the vision of using network virtualisation as the basis for
a Future Internet. This includes e.g. the possibility of non Internet Protocol (IP) networks
running alongside the current Internet within one future virtualised network infrastructure.
Each of these virtual networks can be built according to different design criteria and operated
custom-tailored to a specific network service.

2.1.2 Virtual Link

In several forms (for example, by means of technologies such as Asynchronous Transfer
Mode (ATM) and Frame Relay and, more recently, Ethernet-based technologies), link virtu-
alisation has been deployed in large scale operator environments for a long time. The basic
purpose of link virtualisation is to divide, share and isolate the resources of physical links.
A virtual link is an abstract entity that allows to represent the functionality of a traditional
physical link (i.e. bit transport between connected endpoints), but is not based on physical
resources. In the context of network virtualisation, virtual links provide the ability to flex-
ibly connect virtual nodes with certain guarantees such as isolation, dedicated resources or
Quality of Service (QoS). Link virtualisation may have different issues, depending on the
different types of physical links. There is a wide range of available options for wired link
virtualisation, from Ethernet Virtual Local Area Networks (VLANs) (IEEE 802.1Q [IEE11],
IEEE 802.1ad [IEE06]), to optical circuit switching. For each technology, a specific virtual
link identifier is used to provide a separation between different virtual links. Since many of
these technologies are expected to be deployed in core networks, an important feature is the
capability to aggregate multiple virtual links into a single pipe, rather than handling a poten-
tially large number of individual virtual links. This feature is crucial to evaluate scalability
of these technologies and whether or not they can be deployed in large scale scenarios.

Two standards have been proposed to overcome the limited number of VLANs that the
IEEE 802.1Q [IEE11] specification imposes, which are inadequate for complex virtualised
environments, and make it difficult to stretch network segments over the long distances
required for dispersed data centres: Virtual Extensible LAN (VXLAN) [SKD+13] standard
extended the VLAN address space by adding a 24-bit segment ID; Network Virtualisation
using Generic Routing Encapsulation (NVGRE) [SPG+13] standard includes identifying a
24-bit Tenant Network Identifier (TNI) to address problems associated with the multi-tenant
network, and using a Generic Routing Encapsulation (GRE).

8

2.1.3 Virtual Node

Virtualisation of the nodes that constitute a physical network is a fundamental issue to
network virtualisation, where router virtualisation is the most notable aspect. Modern routers
are built on very powerful hardware and software that allows resources to be “sliced” amongst
many virtual networks passing the node. A modern router is a complicated network element
with a range of functions. It operates conceptually in two operational planes, the forwarding
and the control plane. The forwarding plane functionality is to actually forward traffic from
ingress to an egress interface. The control plane decides on the route a packet is forwarded to,
QoS issues, and other aspects. Traditionally, routers operate on Layer 3 packets, but modern
devices extend their operation across lower or higher layers. The so called switching routers
are now common using Multi Protocol Label Switching (MPLS) technology to create fast
switched paths through the network instead of the traditional hop-by-hop routing approach.

2.2 Existing Network Virtualisation Technologies

2.2.1 Asynchronous Transfer Mode

ATM networks implement only one aspect of network virtualisation, namely, virtual
links [Vet95]. ATM virtual paths and virtual channels are packet switched paths which
provide isolation by resource reservation on the ATM nodes alongside of the paths. However,
ATM does not support dynamically configured virtual relay nodes inside the network, which
is essential for network virtualisation in order to allow dynamic and manageable network
architectures. In addition, although ATM is a robust technology for individual islands within
a global network, it suffers from scalability issues.

2.2.2 Multi Protocol Label Switching

MPLS is a technology for virtual call setup and resource reservation over wide area net-
works [RVC+01]. It can support multiple types of protocols by encapsulation. The objective
and functions of MPLS are very similar to those of ATM; however, MPLS addresses the
scalability problem of ATM by using label swapping instead of cell switching in ATM. MPLS
also uses a combination of IP routing algorithms (for path routing, instead of datagram rout-
ing in IP) and Resource ReSerVation Protocol (RSVP) for reservation of resources alongside
MPLS paths. MPLS addresses QoS issues to some extent within the scope of individual
autonomous systems; MPLS and network virtualisation can be combined to address the end-
to-end QoS problem in an improved global scale, beyond what can be achieved by MPLS
alone.

2.2.3 Virtual Private Network

The networking community embraced the concept of virtualisation in the late 1990s,
network-based IP/MPLS/VPNs1 [RR06] materialized the concept of building multiple virtual
IP networks over a common large scale network infrastructure. Later on, the concept was
extended to layer 2 technologies, such as Ethernet, through services like Virtual Private Wire
Services (VPWS) and Virtual Private LAN Services (VPLS). However, all these incarnations
of the concept were tightly bound to a specific protocol, either layer 3 (e.g. IP) or layer 2 (e.g.
Ethernet). On the other hand, at the node level, virtualisation was elusive, in the sense that

1The term VPN is used throughout this Thesis to refer to an IP/MPLS/VPN.

9

it was basically just a separation of addressing spaces, but not a real separation of network
resources.

2.2.4 Overlay Networks

Overlay Networks (ONs) are usually a collection of software routers deployed at the edges
of the Internet in order to allow different forwarding mechanisms other than those of the
Internet. The common denominator of the overlay networks is their operation on the top
of the Internet routing substrate [ABKM01]. They are often considered as application layer
networks with custom datagram structures that are usually encapsulated inside IP, Transmis-
sion Control Protocol (TCP), or User Datagram Protocol (UDP) packets. The Massachusetts
Institute of Technology (MIT) Resilient Overlay Networks (RONs) project [ABKM01] is a
prime example of overlay networks of this type. These networks can help to implement
custom routing algorithms that may be suitable for multicasting or broadcasting over the
Internet [ST02, CRSZ01], for instance.

A common example of the application of ONs are the VPNs (not to be confused with the
IP/MPLS/VPNs2). An overlay VPN allows building private networks on top of the Inter-
net [Con06]. The private networks can deploy different networking and upper layer protocols.
The whole concept is based on building an overlay network by the use of protocol tunnelling;
packets of the virtual networks are encapsulated inside the packets of the underlying public
network at the ingress gateway, and de-capsulated again at the egress gateway. The VPN
tunnels can also be used to encapsulate layer-2 frames inside IP datagram’s in order to en-
able geographically dispersed nodes to form a local area network over the Internet. VPNs
are particularly powerful tools to improve security of corporate networks against adversaries.

Unlike the proposed framework, the overlay networks allow agility only at the edges of
the current Internet. In addition, link virtualisation is not integrated into the architecture of
the overlay networks.

2.2.5 Active Networks

Active network architecture is composed of execution environments (similar to a Unix
shell that can execute active packets), a node operating system capable of supporting one
or more execution environments [HKM+98]. It also consists of active hardware, capable of
routing or switching, as well as capable of executing code within active packets. This differs
from the traditional network architecture which seeks robustness and stability by attempting
to remove complexity, and by the ability to change its fundamental operation from underlying
network components. Network processors are one mean of implementing active networking
concepts.

2.2.6 Software Defined Networking

SDN is an emerging architecture that is dynamic, manageable, cost-effective, and adapt-
able, making it ideal for the high-bandwidth, dynamic nature of today’s applications. In the
SDN architecture, the control and data planes are decoupled, network intelligence and state
are logically centralized, and the underlying network infrastructure is abstracted from the ap-
plications [Fou14]. As a result, enterprises and carriers gain unprecedented programmability,
automation, and network control, enabling them to build highly scalable, flexible networks
that readily adapt to changing business needs.

2The term overlay VPN is used throughout this Thesis to avoid misunderstanding between the two types
of VPNs.

10

The OpenFlow [MAB+08] protocol is a foundational element for building SDN solutions.
OpenFlow is added as a feature to commercial Ethernet switches, routers and wireless access
points – and provides a standardised hook to allow researchers to run experiments, without
requiring vendors to expose the internal workings of their network devices. OpenFlow is used
for applications such as virtual machine mobility, high-security networks and next generation
IP based mobile networks. The OpenFlow-based SDN is being rolled out in a variety of
networking devices and software.

2.3 Business Models & Roles

Players in the network virtualisation model (Figure 2.1) are different from those in the
traditional networking model. The main distinction is the presence of three different roles:
Infrastructure Provider (InP), Virtual Network Provider (VNP), and the Virtual Network
Operator (VNO), in contrast with the conventional model, characterized by a single role:
Internet Service Provider (ISP) in the conventional model [APST05a, FGR07a, APST05b,
FGR07a, ZZRR08]. From a commercial point of view, this decoupling amortizes high fixed
cost of maintaining a physical presence by sharing capital and operational expenditure across
multiple infrastructure providers, as well as one infrastructure provider for several service
providers. It should be noted that business roles do not necessarily map one-to-one to distinct
business entities (i.e., any business entity can assume multiple roles). From a business model
point of view, a very significant impact of network virtualisation is the ability to cleanly
decouple infrastructure from services, which has been pursued for a long time but never
really accomplished. This potential separation of infrastructure and services paves the way
for the creation of new business models and roles. Network virtualisation can be deployed in
a number of very different scenarios and business models but, in general, it is based on three
distinct roles, as defined in the 4WARD project [4WA09], and represented in Figure 2.1.

It should be noted that this model does not preclude the possibility of more than one role
being played by a single entity. In a vertically integrated scenario, the three roles would be
typically played by the same operator. Yet, even in this case, a functional separation of roles
based on the model should make sense.

2.3.1 Infrastructure Provider

The Infrastructure Provider (InP) deploys and runs the network physical resources, and
partitions them into isolated virtual resources using some virtualisation technology. These
resources are typically offered to virtual network operators and not to end users (but the
customer of the InP might as well be a corporation using the virtual network for its internal
use, rather than to build commercial end user services). The InP has visibility into what
resources are leased to each VN, but not into the protocols running inside.

2.3.2 Virtual Network Provider

The virtual network provider (VNP) is responsible to find and compose the adequate set
of virtual resources from one or more infrastructure providers, in order to fulfil the virtual
network operator request. The VNP leases slices of the virtualised infrastructure from one
or more InPs and puts them together. In reality, what the VNP provides is not a network,
but just an empty container where the virtual network operator builds the protocols that
will make the VN to come alive. The role of the VNP is particularly important in scenarios
where multiple InP domains are involved, but may be redundant in the case where a VN is
limited to a single network infrastructure domain.

11

Virtual Network
Provider (VNP)

Physical
Infrastructure
Provider (InP)

Physical
Infrastructure
Provider (InP)

Physical
Infrastructure
Provider (InP)

Virtual Network
Operator (VNO)

Figure 2.1: Network virtualisation Business Roles.

2.3.3 Virtual Network Operator

In each isolated network partition, the VNO is, in principle, free to deploy any protocol
stack and network architecture, independently of the underlying network infrastructure tech-
nology. The VNO operates, maintains, controls and manages the virtual network. From
a functional viewpoint, the role of the VNO should be indistinguishable from that of any
operator running a native network infrastructure. Ideally, the fact that resources are virtual,
rather than physical, should not imply any major impact from an operational point of view.
VNOs have a unified view of the network, regardless of the multiple infrastructure domains
on which it is built.

2.3.4 The VNP-InP Interface

The VNP-InP interface is a key aspect of the network virtualisation architecture.
Through this interface, the VNP is able to request the establishment, modification or removal
of virtual networks (supposedly, as a result of a corresponding request from the VNO). In its
turn, the InP is supposed to acknowledge the VNP requests and notify any relevant event
(e.g. a network error). The split of responsibilities and the information flow between the
VNP and the InP are therefore of the utmost importance. Ultimately, this will depend on
the information flowing through the VNP/InP interface in both directions, as illustrated in
Figure 2.2. In principle, one of two basic approaches could be taken:

- The InP announces the resources which are available to be leased by VNPs, i.e. the internal
structure of the InP infrastructure (or a virtual representation thereof) and the current state
of resources. The InP is supposed to publish this information in some way, e.g. by means
of a specific notice-board, such as proposed in [RR06]. It is up to the VNP to pick one or
multiple InPs amongst all possible candidates, that would be able to provide the required
resources, while fulfilling any applicable constraints (e.g. performance guarantees, cost).
Since the relationship between the VNP and the InP is quite straightforward, the complexity

12

of the VNP-InP interface is quite low in this case. This approach is appropriate for research
testbeds, or whenever there is a trust relationship between the InP and all potential VNPs;
in a commercial environment this is not likely to be the case, except perhaps in a vertically
integrated scenario, in which VNP and InP have a common business affiliation.

- The InP exposes a minimal set of resources, namely the Point-of-Presences (PoPs), and
hides the internal structure and the state of resources. Since the VNP does not know in
advance whether the InP is able to fulfil its request, the virtual network characteristics have
to be provided to the InP and a negotiation has to be carried out through the VNP/InP
interface prior to VN establishment phase, when the resources are actually reserved. In
turn, the InP decides whether the request can be accommodated in the physical resources
and, if so, it maps virtual nodes into substrate nodes and finds the substrate path between
every pair of directly connected virtual nodes. This is likely to be the approach followed
in a commercial environment, where a relationship of trust between VNPs and InPs is not
expected.

VNP InP

InP announces available network

resources

VNP requests virtual network topology

and characteristics (e.g. link bandwidth)

Figure 2.2: VNP-InP information flow.

2.4 Virtual Network Embedding Problem

Although there is a large interest on virtualized networks both from the research com-
munity and network operators, several challenges still prevent them from being deployed in
real environments [CB09]. One of the major obstacles lies in the efficient embedding3 of a Vir-
tual Network (VN) onto a physical network4, commonly known by the research academia as
the VNE problem. Since this process requires the simultaneous optimization of virtual nodes
and links placement, it is complex in nature, both in formulation and computationally. Sev-
eral works, such as [ZA06, LK09, LT06, YYRC08, CRB09, FBCB10, NMCS11b, BHFM12,

3The terms embedding, mapping and assignment are used interchangeably throughout this Thesis.
4The terms physical and substrate are used interchangeably throughout this Thesis.

13

CRB12], have already proposed solutions to this problem, mostly based on heuristic ap-
proaches; however, they either do not provide the optimal solution for each VN mapping, or
eventually, simplify the domain problem by not considering one or more parameters of the
VNE: e.g., finite and heterogeneous physical resources, heterogeneous physical and virtual
network topologies, online problem.

The VNE can be described as a graph assignment problem. It involves the mapping of
Virtual Network Requests (VNRs) onto a physical network; this problem not only touches
the mapping of virtual links onto physical links as addressed on VPN scenarios, but also the
mapping of virtual nodes onto physical nodes. This simultaneous node and link mapping can
be formulated as an un-splittable flow problem [ZA06], known to be NP-hard.

To provide the reader with a better understanding on the full extent of the VNE domain
problem, we first present in Sub-section 2.4.1 the domain characteristics. Next, we present
the related work on VNE algorithms, organized according to the following criteria: resource
allocation (Sub-section 2.4.2); approaches that aim to reduce the energy consumption of the
physical network per VNE (Sub-section 2.4.3); approaches on virtual network resilience (Sub-
section 2.4.4); other research directions not endorsed on this PhD Thesis (Sub-section 2.4.5).

2.4.1 VNE Characteristics

2.4.1.1 Online VNE Problem

Researchers have investigated various methodologies for handling VN requests as they
arrive (online VNE, e.g., [YYRC08, CRB09]). On the other hand, for the offline version of
the VNE problem, the assumption is made that all VN requests are known a priori (e.g.,
[ZA06, LT06]). In the online case, resource mapping results in sub-optimal performance for
the substrate network with regard to load balancing/utilization and VN request acceptance
ratio, compared to the offline case, where optimal mapping can facilitate balanced allocation
of physical resources among the VN’s requests. To provide a trade-off among the two VNE
problem instances, hybrid approaches have been also considered, where incoming VN requests
during a time window are simultaneously processed (e.g., [YYRC08, CRB12]).

2.4.1.2 Limited Physical Network Resources

Admission control is often ignored by assuming infinite capacity on substrate nodes and
links, in order to deal with the complexity of the VNE problem (e.g.,[ZA06]). However, this
results in service degradation for existing VNs on the physical substrate, due to bottlenecks
created by resource overbooking. Finite substrate resources present a more realistic approach
where some VN requests must be rejected or postponed to avoid violating resource guarantees
for existing VNs (e.g., [YYRC08, CRB09]).

2.4.1.3 Heterogeneous Resources

The virtual resources may be heterogeneous in nature (e.g., routers, servers). Most frame-
works follow a simplistic approach where only a specific resource (e.g., CPU) is requested for
one type of node (server), whereas link capacity is examined as the single requirement related
to a link (e.g., [YYRC08]). More realistic approaches are needed (e.g., [NMCS11b]), support-
ing nodes and links with a diverse set of parameters functional (e.g., node type, hardware
type, virtualisation environment, location, etc.) and non-functional attributes (e.g., available
capacity, QoS requirements).

14

2.4.1.4 Diverse Network Topologies

VN requests may include a diverse set of topologies. The VNO may require that the VN
topology be tailored to the specific needs of the application to be delivered, for example, a
hub-and-spoke geographically distributed VN topology to access to a centralized application
server. Hub and spoke, tree, mesh, and others are quite common application topologies. In
that sense, it is important to support arbitrary topologies.

2.4.1.5 Centralized vs. Distributed Approach

Centralized approaches have been devised mainly to solve the VNE problem, where a
central entity (i.e., a broker) is responsible for receiving VN requests and assigning these sets
of interconnected virtual resources to a set of physical resources that may belong to one or
more InPs. To surmount scalability limitations, distributed algorithms have been suggested
(e.g., [HLZ08]). However, these algorithms do not perform as well as existing centralized
approaches (e.g., [YYRC08]).

2.4.1.6 Single-Domain vs. Multi-Domain

The central entity may not have access to full state information due to the multi-domain
nature of the virtualized environment. Therefore approaches oriented for multi-domain have
been suggested (e.g., [HLZ08, CSB10]) to coordinate the overall VNE.

2.4.1.7 Fixed vs. Dynamic Mapping

Static resource mapping approaches (e.g., [YYRC08, CRB09]), where during the lifetime
of the request no change is allowed in resource assignment, may lead to inefficient resource
utilization. Dynamic reconfiguration of VNs (links or links/nodes) via resource migration
allows the resource allocation to be altered adaptively on the basis of current demand and
performance (e.g.,[ZA06, FA06]). Migration of virtual resources improves resource utilization,
increases energy efficiency and acceptance ratio of VN requests, and enhances network resili-
ence in case of node/link failures, thus leading towards a more flexible and reliable network
virtualisation environment.

2.4.1.8 Concise vs. Redundant Resources

A failure of a single substrate entity will affect all virtual entities that are mapped upon
it. Therefore, in environments where fault-sensitive applications are deployed inside the
virtual networks, it can be advisable to set-up backup resources that can be used as fall-back
resources in case the corresponding primary resources fail. To do that, the embedding result
itself can be resilient regarding node and/or link failures. The redundant resources can be
reserved either per VN assignment (e.g., [RAB10]) or shared among several VNs to decrease
provisioning costs (e.g., [SYL+10]), or eventually the pool of redundant resources can be
geographically distributed to increase resilience to catastrophic disasters (e.g., [YQA+10]).

2.4.1.9 Efficient Resource Allocation vs. Energy-Aware Allocation

It is clear now the importance of reducing the energy consumption with respect to the
carbon footprint. In [NPI+08b] it is discussed the impact on network protocols by putting
network interfaces and components into sleep for saving energy, and in [GS03b] it is presented
and evaluated two forms of power management schemes that reduce the energy consumption

15

of networks. To this extent, efficient resource allocation is required to be energy-aware to
reduce energy costs.

2.4.1.10 Embedding Stages

Several of the proposed approaches decompose the problem into the node assignment
phase and the link assignment phase, to reduce the overall complexity of resource assignment.
The corresponding problems are solved sequentially. Initially, a greedy heuristic is employed
for virtual to physical node assignment. Next, an appropriate link mapping technique is
applied — either a shortest path algorithm in case of un-splittable flows (e.g., [ZA06]) or
using multi-commodity flow algorithms (e.g., [YYRC08]) when flow bifurcation is supported.
However, lack of correlation between the two phases restricts the solution space and can result
in poor performance. Recent approaches tend to solve the two problems by providing some
type of coordination among the two phases by taking link mapping constraints into account
during the node mapping phase (e.g., [CRB09]).

2.4.1.11 Embedding Efficiency vs. Complexity

The existing approaches to handle the VNE problem can be further grouped onto three
different categories according to two important evaluation metrics: i) the quality of the VNE
solution - how good is the embedding solution compared to others, or even, how far is the
obtained solution from the optimal embedding; ii) how much time do they require to perform
the VNE:

i heuristics - obtain reasonable enough embedding solutions in a short amount of time (e.g.
few tens of milliseconds [NMCS11b]);

ii meta-heuristics - obtain good enough embedding solutions in a medium amount of time
(few hundreds of milliseconds [CRB09];

iii exact solution- obtain the optimal solution according to the objective function considered
using linear programming solvers in a longer amount of time (e.g. ranging from few
thousands of seconds with commercial solvers [cpl12] to many thousands of seconds with
open-source solvers [Mak12]).

Noteworthy, the VNE solving time strongly depends both on the virtual network request size
and on the physical network size (the examples given before are for small virtual network
request sizes ranging from 2 to 10 virtual nodes, and physical network size of 50 nodes); the
solving time curve strongly depends on the VN embedding method used. While the solving
time is a direct measurable metric, the same does not apply to measure how good a VNE
solution is. To this extent different auxiliary performance metrics have been suggested by
the scientific community:

i VN Request Acceptance Ratio (or Rejection Ratio) - Represents the ratio between the
sum of VN requests accepted (or rejected) over the sum of all VN requests.

ii VN Provisioning Cost - Represents the overall sum of physical resources, e.g. processing
capacity and bandwidth, weighted by their cost that were allocated to accommodate the
VN.

iii Substrate Revenue - This represents the sum of all types of virtual resources, e.g. pro-
cessing capacity and bandwidth, weighted by their revenue that was demanded by the
VN request.

16

iv Revenue over Provisioning Cost Ratio - Represents the ratio of the generated revenue
over the VN provisioning cost. Also some authors have considered the opposite, i.e.
Provisioning Cost over Revenue Ratio.

2.4.2 Resource Allocation

2.4.2.1 Heuristics

Zhu and Ammar [ZA06] tackle the offline VNE problem; they proposed two algorithms,
one to embed the VN requests that aim to maintain the load of the physical links and of the
physical nodes balanced per embedding, and another algorithm that aims to reduce the cost
of VN re-assignment, i.e. it considers that the VN assignment is allowed to change during
the VN lifetime. Both algorithms use a two step-approach to embed the VNs: in the first
step a greedy algorithm is applied to map virtual nodes onto substrate nodes with more
available resources; in the second step the shortest-distance path algorithm [MS97] is used
to embed the virtual links. Admission control is not supported, since it is assumed that the
substrate network resources are unlimited which is not realistic in on-demand provisioning
scenarios. Fan and Ammar [FA06] proposed heuristic methods for constructing different
flavours of reconfiguration policies for overlay networks. The proposed methods ignore node
requirements, making them not suitable for the VNE problem.

Lu and Turner [LT06] also consider an offline VNE problem. They consider a set of
premises about the virtual topology, i.e. the backbone nodes are star-connected and the
access-nodes connect to a single backbone node. Based on these premises, an iterative al-
gorithm is run, with different steps for core and access mapping. However, the algorithm can
only work for specific topologies.

Ricci et al. [RAL03] proposed an assignment algorithm with the bandwidth constraint to
be used in Emulab testbed [WLS+02b] that considers the online VNE problem. The assign-
ment algorithm is based on the simulated annealing meta-heuristic [KJV83]. The proposed
algorithm performed better than a genetic algorithm [GH88] used as a performance indicator.
The node constraint in Emulab is provided as the exclusive use of nodes. Therefore, different
virtual networks cannot share a substrate node.

Yu et al. [YYRC08] proposed a two-step mapping algorithm which considers finite re-
sources in the physical network and supports path splitting (i.e. virtual link composed by
different paths). In the first-step, it embeds the virtual nodes using a greedy node map-
ping algorithm (i.e. map the virtual nodes onto substrate nodes that have more resources
available), and in the second it embeds the virtual links either using the k-shortest path
algorithm [Epp98], or by solving the Multi-Commodity Flow Problem (MFP) [EIS75], if
path splitting is used. To re-optimize the utilization of the substrate network, Yu et al. also
proposed an algorithm that performs virtual link migration (i.e. to change the underlying
mapping of virtual links previously assigned) periodically. However, this level of freedom can
lead to a level of fragmentation that is unfeasible to manage on large scale networks. To im-
prove the performance of [YYRC08], Liu et al. [LHCL11] proposed a new greedy algorithm
for the embedding of the virtual nodes based on the “proximity principle”. Instead of only
considering the available capacity of the substrate nodes, the algorithm also considers the
physical path between the former selected substrate node. To increase the utilization on the
substrate nodes, Zhou et al. [ZLJ+10] proposed a VNE scheme with two-stage node map-
ping that considers node migration. This scheme improved the performance of [YYRC08].
To decrease the VN request rejection ratio, due to the shortage of bandwidth resources on
some substrate links that are in heavy load state compared with others, Lü et al. [LHkW+11]
proposed an adaptive VNE embedding algorithm based on the status feedback of the sub-

17

strate link. Their algorithm proved to decrease the VN request rejection ratio compared
to [YYRC08]. Cheng et al. [CSZ+11] improved the performance of two existing embedding
algorithms [ZA06, YYRC08] by applying Markov Random Walk model to rank a network
node based on its resource and topological attributes.

A distributed algorithm was studied in [HLZ08]. It considers that the virtual topologies
can be decomposed in hub-and-spoke clusters and each cluster can be mapped independ-
ently, therefore reducing the complexity of the full VN mapping. This proposal has lower
performance when compared with centralized approaches.

In [LK09] a backtracking method based on sub-graph isomorphism was proposed; it con-
siders the on-line version of the mapping problem, where the VN requests are not known
in advance, and proposes a single stage approach where nodes and links are mapped simul-
taneously, taking constraints into consideration at each step of the mapping. When a bad
mapping decision is detected, a backtrack to the previous valid mapping decision is made,
avoiding a costly re-map.

A formal approach is taken by Chowdhury et al. [CRB09] to solve the online VN mapping
problem, using a Mixed Integer Programming (MIP) formulation. A two step approach is
applied to embed VNs onto the substrate. In the first step, the VN request is mapped onto
“meta-nodes” and “meta-links” by solving MIP formulation that has been relaxed (i.e. the
binary constraint on the node assignment variable has been relaxed to a real number), and
in the second step the meta-nodes are mapped onto substrate nodes either using randomized
rounding or deterministic rounding, and the virtual links are assigned to physical paths by
solving the Multi-Commodity Flow Problem (MCFP). Compared to the previous state of the
art heuristics, i.e. [ZA06, YYRC08], the formulation proposed by Chowdhury et al. provides
a better coordination of the two phases, since an augmented substrate graph construction is
used. Chowdhury et al. [CRB12] extended their preliminary results [CRB09] and included a
generalized window-based VN embedding to evaluate the effect of look ahead on the mapping
of VNs.

To better improve the coordination between the mapping phases, Gao et al. [GYA+10]
added constraints after the MIP relaxation, that consider greedy and progressively mapping
of virtual nodes.

Butt et al. [FBCB10] proposed a topology aware heuristic for VN mapping, and also
suggested algorithms to avoid bottlenecks on the physical infrastructure, where they consider
virtual node reallocation and link reassignment for this purpose.

In Razzaq and Rathore [RR10] approach, virtual nodes are mapped as close as possible to
each other, thus ensuring that the paths found for the virtual link mapping are the shortest
in length. Based on the premise of reducing the number of bottleneck nodes and leave more
available nodes for future VN requests, Razzaq et al. [RSH11] devised an algorithm that
preserves the resources of those nodes for future use.

Nogueira et al. [NMCS11b] proposed a heuristic that takes into account the heterogeneity
of the VNs and also of the physical infrastructure. Chen et al. [CLW12] followed a different
approach to reduce the physical network fragmentation and at the same time to increase the
revenue of the Substrate Network (SN). They proposed an iterative algorithm, i.e. “border
matching”, that is inspired in the theory of power law and effective diameter law [FFF99].
They consider that most nodes have a low degree of connectivity (i.e. few physical links).
To reduce the network fragmentation, the virtual nodes with a low degree of connectivity
are firstly embedded onto the physical nodes with a low degree of connectivity, leaving the
remaining virtual nodes to be embedded onto the physical nodes with higher degree of con-
nectivity.

Botero et al. [BHFM12] proposed an algorithm to solve the VN mapping problem, which

18

also considers the CPU demand of the “hidden hops” (i.e. intermediate physical nodes). They
argue that each substrate node that belongs to a physical path demands a small amount of
CPU to accommodate a virtual link. To this extent, their algorithm also considers the CPU
demand of the intermediate nodes. Li et al. [LWD+14] applied the top-k dominating model
to rank the nodes, aiming to balance different resources for evaluating the resources of the
network nodes, and consider the hops of the substrate paths in the node mapping stage,
which can reduce the hops of the substrate paths and lead to high utilization of the substrate
resources.

2.4.2.2 Meta-Heuristics

To improve the performance of existing VNE algorithms mostly based on heuristics, sev-
eral approaches based on meta-heuristics, e.g. ant colony, simulated annealing, Particle
Swarm Optimization (PSO), shuffled frog leaping have been suggested.

Fajjari et al. [FAPZ11a] proposed an algorithm to perform the VNE based on the Ant
Colony meta-heuristic [SH00]. Wenzhi et al. [WSYX11] proposed a meta-heuristic algorithm
based on the shuffled frog leaping algorithm for solving the VNE problem.
Zhang et al. [ZQGL11] proposed a flexible VNE algorithm with guaranteed load balancing
based on the meta-heuristic simulated annealing [KJV83]. Cheng et al. [CSZ+12] extended
his preliminary work [CSZ+11] on node-ranking and proposed two algorithms to perform
the VNE based on the meta-heuristic PSO [Ken10]. Zhang et al [ZCS+13] extended Cheng
work [CSZ+12] to take the location constraints on the virtual nodes into consideration.

2.4.2.3 Exact Solution

Inführ and Günther [IR11] introduced the VNE problem with delay, routing and location
constraints, and to solve VNE they applied a multi-commodity flow integer linear program.
However, neither an evaluation of the proposed formulation nor a comparison with existing
methods was performed.

Alkmim et al. [ABSdF11] proposed a mathematical formulation that aims to: i) map
virtual routers and virtual links; ii) minimize the bandwidth consumption; and iii) minimize
the time required to instantiate a virtual router. In contrast to this work, we also aim to
optimize link load, CPU load distribution, energy consumption and VN migration. To reduce
the VNE solving time, a set of approximate algorithms based on randomized rounding and
iterative randomized rounding techniques were proposed in [ABdF13].

To minimize the VN request rejection ratio, Tran et al. [TCTG12] proposed a reactive
reconfiguration mechanism mathematically formulated as an ILP problem. This algorithm
re-embeds virtual networks previously assigned to make room for VN requests rejected. To
minimize the VN reconfiguration cost (e.g. migration of virtual nodes), Tran et al. [TTG13]
extended their initial formulation to maximize the net gain of the VN reconfiguration.

2.4.2.4 Remarks

The VNE problem has received increasing attention by the research community in the last
few years. A concise survey on VNE methods for resource allocation is presented in [HPN09]
and a detailed set of parameters on the VNE problem was given in [SHT12]. An extended sur-
vey on resource discovery and allocation in network virtualisation is given by Belbekkouche
et al. in [BHK12]. The authors claim that the resource allocation problem has been ad-
dressed using mainly heuristic solutions. Consequently, exact resolution needs to be explored

19

in the future by proposing new formulations that can resolve some instances of the prob-
lem in reasonable time. Table 2.1 provides a concise view on the existing Virtual Network
Embedding approaches.

Although all these algorithms provide a solution for the VN mapping problem, an optimal
solution for the embedding task and its efficiency is not provided. Also, some of them fail
to solve the assignment problem as a simultaneous optimization of the virtual node and
link placement, which leads to non-optimal solutions. To this end, we propose and evaluate
different objective functions in Chapter 4, that aim at simultaneously optimizing the load on
the nodes, the load on links and the bandwidth consumption. A comparison with existing
heuristics [ZA06, YYRC08, CRB09] is also provided.

2.4.3 Energy-Aware Resource Allocation

Nowadays, network operators are required to pay more attention to the power consump-
tion of their networks, either due to environmental policies imposed by the local governments
or due to energy costs [AN08]. In fact, the power consumption of the data plane in idle
mode is 90% of the one in full mode [CSB+08, LGL+11], while the power consumption of the
control plane, i.e. CPU, is about 70% [BH09] of the one in idle mode.

Recent research works focused on the energy consumption aspects. Zhang et al. [SZC+12]
proposed an efficient energy-aware algorithm using a consolidation technique to reduce the
energy consumption. A comparison with the optimal solution is not provided.

Botero et al. [BHD+12] extended their preliminary work and proposed a MIP with the
aim of providing optimal energy efficient embeddings. This formulation, despite providing the
optimal solution for energy embeddings, it does not consider the resource allocation objective,
and therefore, it penalizes the VN acceptance ratio.

Rodriguez et al. [RABdF12] proposed a sequential execution of two ILPs: in the first
step it maps the virtual networks onto the substrate network with the aim of saving energy;
and the second determines the path in the substrate used to transfer the images. However,
this approach is mainly oriented for energy saving, which can jeopardize the VN request
acceptance ratio.

Recently, Fischer et al. presented in [FBTB+13] an updated survey on VNE algorithms,
and proposed a classification scheme of the current approaches. The authors pointed out
that energy-efficient algorithms or security constraints have been up to now neglected by
the scientific community. Table 2.2 provides a concise view on the existing Virtual Network
Embedding approaches for Energy-Aware.

Although all these algorithms provide a solution for the VN mapping problem, an optimal
solution for energy consumption and resource allocation is not provided.

2.4.4 Virtual Network Resilience

To handle physical network failures, Rahman et al. [RAB10] incorporate single substrate
link failures on the VNE problem and proposed a heuristic to solve the problem. To handle
resiliency protection against network failures during the process of online VN services provi-
sion, Chen et al. [CLW+10] proposed an efficient resource allocation approach to balance the
trade-off between service resource consumptions and service resiliency.

Cai et al. [CLX+10] proposed an algorithm to address network changes in response to
network growth, node failures or node joining/leaving.

To reduce the physical network fragmentation, i.e. due to the VNs dynamic lifecycle,
Fajjari et al. [FAPZ11b] proposed a virtual network reconfiguration algorithm, that relocate
the VN star topology, instead of the whole VN topology [ZA06], with the aim of minimizing

20

Table 2.1: State of the Art on Virtual Network Embedding - Efficient Resource Allocation
Algorithms.

Reference Method Major Contributions
Zhu and Ammar [ZA06] Heuristic Provides a balanced link and node load in the

SN.
Fan and Ammar [FA06] Heuristic Reconfiguration policies for overlay networks.
Lu and Turner [LT06] Heuristic Embedding in specific backbone-star VN topolo-

gies.
Lischka and Karl [LK09] Heuristic Backtracking algorithm based on a subgraph iso-

morphism search method.
Yu et al. [YYRC08] Heuristic Added path splitting and considered finite re-

sources.
Chowdhury et al. [CRB09, CRB12] Heuristic Added better coordination between the two map-

ping phases.
Added generalized window-based VN embed-
ding.

Gao et al. [GYA+10] Heuristic Added constraints after the MIP relaxation, and
also greedy and progressively mapping of virtual
nodes.

Butt et al. [FBCB10] Heuristic Added topology aware heuristic for VN mapping.
Houidi et al. [HLZ08] Heuristics Distributed VNE algorithm.
Zhou et al. [ZLJ+10] Heuristic Multiple physical nodes to host a virtual node.
Razzaq et al. [RR10, RSH11] Heuristic Nodes are mapped as close as possible.

Preserves the resources of nodes loaded for future
use.

Nogueira et al. [NMCS11b] Heuristic Add heterogeneity of the VNs and also of the SN.
Lü et al. [LHkW+11] Heuristic Adaptive VNE embedding algorithm based on

the status feedback of the substrate links.
Liu et al. [LHCL11] Heuristic Algorithm based on the proximity principle.
Cheng et al. [CSZ+11] Heuristic Added Markov Random Walk model to rank a

network node.
Botero et al. [BHFM12] Heuristic CPU demand of the hidden hops.
Chen et al. [CLW12] Heuristic Iterative algorithm following the “border match-

ing” approach.
Li et al. [LWD+14] Heuristic Top-k dominating model to rank the nodes.
Ricci et al. [RAL03] Meta-heuristic Algorithm based on the simulated annealing.
Fajjari et al. [FAPZ11a] Meta-heuristic Algorithm based on the meta-heuristic Ant

Colony.
Wenzhi et al. [WSYX11] Meta-heuristic Algorithm based on the meta-heuristic Shuffled

Frog Leaping.
Zhang et al. [ZQGL11] Meta-heuristic Flexible algorithm with guaranteed load balan-

cing based on the meta-heuristic simulated an-
nealing.

Cheng et al. [CSZ+12] Meta-heuristic Algorithm based on the meta-heuristic PSO.
Zhang et al. [ZCS+13] Meta-heuristic Added location constraints on the virtual nodes

into consideration.
Inführ and Günther [IR11] Exact Solution Introduced the VNE problem with delay, routing

and location constraints.
Alkmim et al. [ABSdF11, ABdF13] Exact Solution Added formulation to minimize the time required

to instantiate a virtual router.
Added set of approximative algorithms to reduce
the solving time.

Tran et al. [TCTG12, TTG13] Exact Solution Proposed a reactive reconfiguration mechanism
using ILP.
Maximized the net gain of the VN reconfigura-
tion.

21

Table 2.2: State of the Art on Virtual Network Embedding - Energy Aware Algorithms.

Reference Method Major Contributions
Zhang et al. [SZC+12] Heuristic Energy-aware algorithm using a consolidation tech-

nique.
Botero et al. [BHD+12] Exact Solution Added Energy-aware MIP formulation.
Rodriguez et al. [RABdF12] Exact Solution Added Energy-aware ILP formulation.

the cost of reconfiguration. Zhang and Qiu [ZQ11] proposes an algorithm that identifies
virtual nodes and virtual links mapped in a non optimal way, and migrates them to better
locations to save SN resources.

Yeow et al. [YWK11] added node and link redundancy for reliability, and use a multi-
commodity flow problem formulation to solve the VNE. To increase the resilience to link
failures, they also consider path-splitting.

To solve the Survivable Virtual Network Embedding (SVNE) from a regional failure scen-
ario, Yu et al. [YQA+10] consider failure dependent protection approach, whereby there is
a backup solution associated with each regional failure scenario. To this extent, they pro-
pose two heuristic algorithms with the objective of minimizing the redundant resources/cost.
To endorse the SVNE problem, Sun et al. [SYL+10] proposed two relaxation-based al-
gorithms: Lagrangian relaxation and decomposition. To handle network resource failures,
Houidi et al. [HLZ+10] proposed an adaptive embedding algorithm that is based on an exist-
ing distributed algorithm previously proposed in [HLZ08], to deal with three resource failure
scenarios: virtual node, substrate node and link failures.

To increase the resource efficiency of backup resources, i.e. reuse them by other VNs to
make room for accepting more incoming VN requests, Guo et al. [GWMT11] proposed two
shared backup network provision schemes for virtual network embedding: shared on-demand
approach and shared proactive approach. Herker et al. [HKA13] presented a survey on the
survivable virtual network embedding problem and different approaches to solve this problem.
The authors point out the lack of research in the survivability of VN embedding issue in a
multi-domain environment, and they also propose to extend existing approaches to handle
multiple link and node failures at the same time. Table 2.2 provides a concise view on the
existing Virtual Network Re-embedding approaches.

Although all these algorithms provide a solution for the VN mapping problem, an optimal
solution for Virtual Network Re-Embedding (VNRE) taking into account the migration costs
is not provided. Also, some of the proposals fail to solve the assignment problem as a
simultaneous optimization of the virtual node and link placement, which leads to non-optimal
resource re-allocation solutions. Our approach, the Virtual Network Re-Embedding Node-
Link Formulation (VNRE-NLF), applies a node-link formulation to solve the VNRE problem
in a single step using the multi-commodity flow constraint. This approach provides the
optimal solution for the objective problem considered, both in terms of node migration and
bandwidth re-allocation, for a given set of weights in the objective function.

2.4.5 Other VNE Research Directions

Other VNE research directions have been proposed by the scientific community. This
sub-section is an attempt to frame these research directions.

2.4.5.1 Resource Description and Discovery

Houidi et al. [HLZB09] proposed a resource description and clustering schema for Vir-
tual Network resource discovery. However, the meta-information of the virtual resource is

22

Table 2.3: State of the Art on Virtual Network Resilience Algorithms.

Reference Method Major Contributions
Ammar and Zhu [ZA06] Heuristic Added VN reconfiguration algorithm to reduce the

physical network fragmentation.
Rahman et al. [RAB10] Heuristic Incorporate single substrate link failures on the VNE

problem.
Cai et al. [CLX+10] Heuristic Algorithm to address network changes in response to

network growth, node failures or node joining/leaving.
Fajjari et al. [FAPZ11b] Heuristic Relocate the VN star topology, instead of the whole

VN topology.
Zhang and Qiu [ZQ11] Heuristic Identifies virtual nodes and virtual links that were ini-

tially mapped in a non optimal.
Yeow et al. [YWK11] Heuristic Added node and link redundancy for reliability.
Yu et al. [YQA+10] Heuristic Regional failure scenario.
Sun et al. [SYL+10] Heuristic Relaxation-based algorithms.
Houidi et al. [HLZ+10] Heuristic Distributed adaptive embedding algorithm.
Guo et al. [GWMT11] Heuristic Proposed two shared backup network provision

schemes.

registered randomly to the repositories in this method. Moreover, the searching algorithm
needs to search all the repositories blindly to find out the virtual resource candidates match-
ing the VN user’s query. To improve the resource discovery efficiency, Lv et al. [LWH+10]
proposes the design of a virtual resource organization and discovery framework.

2.4.5.2 Hierarchical Single domain

Based on a graph matching method [Bun00], Ghazar and Samaan [GS11] proposed a
hierarchical substrate management framework that performs concurrent searches for more
than one efficient VN mapping solution from which the best solution is selected.

2.4.5.3 Multi-Domain

To endorse the multi-domain scenario, i.e. multiple infrastructure providers, Houidi
et al. [HLAZ11] proposed an exact embedding algorithm that enables optimal and simul-
taneous node and link mapping across multiple substrate networks. The goal is to increase
the acceptance ratio of VN requests while decreasing the provisioning cost for InPs. Chow-
dhury et al. [CSB10] proposed a policy-based inter-domain VN embedding framework that
embeds end-to-end VNs in a decentralized manner.

2.4.5.4 Resource Pricing

To address the multi-provider service negotiation and contracting in network virtualisa-
tion, Zaheer et al. [ZXB10] proposed an open market model and enabling framework for
automated service negotiation and contracting in network virtualisation.

2.4.5.5 Security

VN requests can contain security requirements, e.g. VN to securely inter-connect different
bank offices; to this extent Fischer and De Meer [FDM11] added a set of security constraints
to the VNE problem.

23

2.4.5.6 Cloud Computing

Papagianni et al. [PLP+13] proposed an algorithm to endorse the VNE on cloud comput-
ing scenarios. Leivadeas et al. [LPP12] added socio performance metrics.

2.4.5.7 Self-organizing

Instead of focusing on the initial VNE phase, Marquezan et al. [MGNB10] proposed a
self-organizing model to address the management of substrate resources during the lifetime
of a VN.

2.4.5.8 Wireless Physical Links

To tackle VNE challenges in wireless multi-hop networks, e.g. link interference, Yun
et al. [YY11] proposed a preliminary algorithm. Yang et al. [YLZ+12] proposed a karnaugh-
map-like online embedding algorithm to endorse the VNE in wireless networks.

2.5 Virtual Network Migration

Another major obstacle lies in the VN migration problem. It is of utmost importance to
provide mechanisms for the InPs to freely move VNs across the physical network to either
reduce the fragmentation of the physical network, or to offload some physical resources, or
even to move away VNs from physical resources that are on imminent fail over.

One of the major features of Network Virtualisation is the possibility to move virtual
resources, i.e. Virtual Router (VR), on-demand and seamlessly from one physical host to
another without losing network connectivity. The ability to migrate virtual resources gives
infrastructure providers a great amount of flexibility and enables them to optimise their
resource utilisation.

The Virtual Machine (VM) migration was initially proposed for data-centres as a way to
move the CPU load from one physical server to another. This feature is not only important
for load balancing purposes, but it can also be applicable for planned maintenance operations,
i.e. moving away all the VMs from one physical server that needs to be rebooted or shut
down for maintenance to different physical servers.

In order to reduce the downtime due to the VM migration process, Clark et al. [CFH+05]
proposed the live migration of VMs, within the same Local Area Network (LAN), which allows
a VM to be migrated while still running. This not only reduces significantly the downtime
provoked by the VM migration, but it also makes the migration process seamless to the end-
users or to the running applications. Ma et al. [MLL10] proposed some improvements on the
live VM migration process, which both reduces the overall migration time and the total data
transmitted in the order of 30%.

The VM migration approach is also applicable and important to the networking area,
where it can be used for networking maintenance operations or for networking service de-
ployment. For instance, it can be used to move critical (or non-critical) VRs from physical
hosts that need some kind of maintenance operation, e.g. firmware update or hardware mod-
ule replacement or upgrade, without disrupting the routing protocols. This is much preferable
and human error safe than manually configuring routing protocol metrics to move away the
networking traffic from that physical router.

With that in mind, Wang et al. [WvdMR07] proposed Virtual ROuters On the Move
(VROOM) as a primitive for networking management tasks, which makes it possible to
move virtual routers freely without changing the IP-layer topology. Wang et al. [WKB+08]

24

extended their prior research work on VR migration and proposed to decouple the data plane
from the control plane of the VRs, which results in no performance impact on the data traffic
when a hardware data plane is used, and very low impact when a software date plane is used.

The VR migration feature was also considered and evaluated on Internet Protocol Televi-
sion (IPTV) scenarios by Marquezan et al. [MNG+09]. Pisa et al. [PFC+10] proposed a new
migration model for XEN, using also data and control plane separation, which outperforms
the XEN standard migration model.

Lo et al. [LAZ12] used the virtual router migration [WKB+08] as a primitive to per-
form the virtual network migration, i.e. the migration of an entire VN, and also proposed
three algorithms to address the VN migration scheduling problem and to minimize the total
migration cost.

Although the separation of the data plane from the control plane seems to be a very
effective approach on the VR migration, since it reduces the downtime of the VN, it is also
a limiting factor on the conception of new network architectures and on the deployment of
new network protocols.

We argue that not only the VN migration process should be independent of the networking
protocols that are running on the virtual network, but also no assumption should be taken
on the router architecture itself. Therefore, we consider each VR as a black-box and propose
the VR Cloning as an alternative to the current VR live migration process [WvdMR07].

2.6 Future Internet Research Projects

Several worldwide research initiatives have investigated and deployed new architectures,
and also transition mechanisms to mitigate the current Internet limitations. This section
describes the existing research projects on Future Internet.

2.6.1 Federated E-infrastructure Dedicated to European Researchers In-
novating in Computing network Architectures

The Federated E-infrastructure Dedicated to European Researchers Innovating in Com-
puting network Architectures (FEDERICA) project created a European wide “technology
agnostic” infrastructure made of Gigabit circuits, transmission equipment and computing
nodes capable of virtualisation to host experimental activities on new Internet architectures
and protocols [FED14]. The FEDERICA network was based on the Research & Educa-
tion multi-gigabit networks footprint. Circuits are terminated in Points of Presence (PoPs)
of National Research and Education Networks (NREN) and GÉANT, hosting FEDERICA
nodes capable of virtualising hosts e.g. open source routers and end nodes. Virtual slices of
FEDERICA’s infrastructure may be allocated to network researchers for testing even with
disruptive experiments within a large production substrate.

2.6.2 Global Environment for Network Innovations

GENI is a virtual laboratory for exploring future internet at scale, creates major op-
portunities to understand, innovate and transform global networks and their interactions
with society [gen14]. Dynamic and adaptive, GENI opens up new areas of research at the
frontiers of network science and engineering, and increases the opportunity for significant
socio-economic impact.

25

2.6.3 Trilogy

The Trilogy project [TRI14] focused on the control functions of the Internet, in particu-
lar Reachability and Resource Control. Two new protocols have resulted from this research
project: Multi-Path Transmission Control Protocol (MP-TCP) protocol that enables a TCP
connection to be spread over multiple paths; CONgestion EXposure (CONEX) that enables
all network elements to have full visibility of end-to-end congestion, information that is cur-
rently only available at the endpoints.

2.6.4 4WARD

The concept of Network Virtualisation as an overall vision of virtualising complete net-
works that can realize independent architectures and coexist with the current Internet was
the focus of the 4WARD project [4WA14].

In 4WARD approach, it is combined on one hand innovations needed to improve the
operation of any single network architecture, and on the other hand multiple different and
specialised network architectures that are made to work together in an overall framework. A
number of integrated feasibility tests and prototyping activities were carried out during the
evaluation phase of the project. Additionally, new concepts and algorithms for provisioning,
embedding and management were defined and evaluated throughput the project.

2.6.5 Open-Access Research Testbed for Next-Generation Wireless Net-
works

Open-Access Research Testbed for Next-GenerationWireless Networks (ORBIT) [ORB14]
is a two-tier laboratory emulator/field trial network testbed designed to achieve reproducib-
ility of experimentation, while also supporting evaluation of protocols and applications in
real-world settings. The laboratory-based wireless network emulator uses a novel approach
involving a large two-dimensional grid of 400 802.11 radio nodes which can be dynamically
interconnected into specified topologies with reproducible wireless channel models.

The ORBIT testbed is available for remote or on-site access by other research groups
nationally. Additional research partners and testbed equipment/software contributors are
actively sought from both industry and academia.

2.6.6 GEYSERS

Generalized Architecture for Dynamic Infrastructure Services (GEYSERS) vision is to
qualify optical infrastructure providers and network operators with a new architecture, to
enhance their traditional business operations [gey14]. Optical network infrastructure pro-
viders will compose logical infrastructures and rent them out to network operators; network
operators will run cost-efficient, dynamic and mission-specific networks by means of integ-
rated control and management techniques.

To address these points, the main technical focus of GEYSERS has been the definition and
implementation of an architecture and an optical network solution, capable of provisioning
“Optical Network and IT resources” for end-to-end service delivery. In this context, one
of the most important issues that the GEYSERS consortium has concentrated on was to
develop software solutions to make the optical network more flexible and programmable,
through virtualisation, in order to optimally serve the needs of highly dynamic computing
applications and their variable workloads.

26

2.6.7 Scalable & Adaptive Internet soLutions

Scalable & Adaptive Internet soLutions (SAIL) aimed to both design technologies for
the Networks of the Future and develop techniques to transition from today’s networks to
such future concepts [SAI14]. Cloud networking in the context of SAIL is about integrat-
ing the on-demand provisioning of network resources, through virtualisation, to data centre
resources. The concept of a flash network slice, a network resource that can be provisioned
and dimensioned on a time scale comparable to existing compute and storage resources, was
proposed within the project to overcome the limitations of VPNs with respect to elasticity
and dynamicity.

2.7 Standardisation and Research Groups

With the prominence interest of Industry on Network Virtualisation, standardisation
entities have defined research groups with interest of identifying potential needs for stand-
ardization.

2.7.1 Internet Research Task Force

The Internet Research Task Force (IRTF) created the Virtual Networks Research Group
(VNRG) to identify architectural challenges resulting from Virtual Networks, addressing
network management of Virtual Networks, and exploring emerging technological and imple-
mentation issues [IRT14]. However, due to lack of energy and participation the VNRG has
decided to close on February of 2012.

2.7.2 European Telecommunications Standards Institute

To accelerate progress, a new network operator-led Industry Specification Group (ISG)
was setup under the auspices of European Telecommunications Standards Institute (ETSI),
to define the requirements and architecture for the virtualisation of network functions and to
address the technical challenges. The aim of the NFV is to offer a new way to design, deploy
and manage networking services. It is designed to consolidate and deliver the networking
components needed to support a fully virtualised infrastructure – including virtual servers,
storage and even other networks. It utilizes standard IT virtualisation technologies that run
on high-volume service, switch and storage hardware to virtualise network functions. It is
applicable to any data plane processing or control plane function in both wired and wireless
network infrastructures. ETSI has published the first five specifications on NFV [ETS13a,
ETS13b, ETS13c, ETS13d, ETS13e].

2.7.3 International Telegraph Union - Telecom

The ITU-T Focus Group on Future Networks (FNs) was set up to collect and identify
visions of future networks, based on new technologies, assess the interactions between fu-
ture networks and new services, familiarize ITU-T and standardization communities with
emerging attributes of future networks, and encourage collaboration between ITU-T and FN
communities [ITU14, MEN+13]. ITU-T has developed and published during 2009–2012 four
recommendations: Y.3001 [ITU11], Y.3011 [ITU12a], Y.3021 [ITU12b], and Y.3031 [ITU12c].

27

2.8 Summary
This chapter presented a state-of-the-art of network virtualisation with special emphasis

on mechanisms for resource control and allocation, and existing methods to perform virtual
network migration. Virtual network embedding algorithms and mathematical formulation
were also addressed. The concepts and terminology were described. Future Internet research
projects were pointed out, and the standardisation organizations responsible were mentioned.

28

Chapter 3 - Network Virtualisation:
Building Blocks

“The four building blocks of the universe
are fire, water, gravel and vinyl.”

—Dave Barry

Prior to provision virtual networks on demand, an Infrastructure Provider (InP) must
firstly have mechanisms to discover, control, and allocate virtual resources individually. This
chapter aims at providing a contribution in this direction. It presents an architecture for
automatic virtual network creation and the corresponding approach for control of virtual
network resources, which has been proposed in [MSC09, 4WA10a, Mel10]. It comprises the
main building blocks of the network and their functionalities, and the communication required
to provide the virtual network creation. Furthermore, this Chapter includes a description of a
method that was proposed in [4WA10b, MCS13a, MSC14] to perform seamless VN migration.
This method enables the operator to freely move the virtual resources across the physical
network and without affecting the VN itself, either due to load balancing policies or even
maintenance reasons.

This Chapter starts with a description on the mechanisms and algorithms required to
control virtual network resources. In section 3.2, a resource allocation, monitoring and con-
trolling framework will be proposed and evaluated to address these requirements. Moreover,
in section 3.3 is provided a description on the VN migration process, while in section 3.3.3
is presented and evaluated the architecture of the VN clone migration method. Section 3.4
provides a summary of the chapter.

For further details on the framework proposed and also on the virtual network clone
method please see the Appendix sections A, and F, respectively.

29

3.1 Controlling Virtual Network Resources
This section presents an architecture proposed for automatic virtual network creation and

the corresponding approach for control of virtual network resources. It comprises the main
building blocks of the network and their functionalities, and the communication required to
provide the virtual network creation.

3.1.1 Building Blocks

Prior to the creation of a new virtual network, the InP should find the adequate physical
resources, taking into account the current state of the network and the level of occupancy
of the network resources, at that moment, in the case of an “on-the-fly” reservation, or at
the requested future time, in the case of an advance reservation. In practice, the mapping
of virtual nodes into physical nodes is often constrained by physical location, in which case
the selection of the physical node to associate with a specific virtual node is fixed, or limited
to a small set of choices. This is the case of edge nodes, or PoPs, which for economical
reasons are supposed to be physically close to customers or end-users. Typically, at least one
virtual node should be located in each geographic area (e.g. city, region) where the service
is to be deployed. By contrast, for other types of virtual nodes, physical location is not
relevant from the VNP point of view – this is usually the case with core nodes, with no direct
connection to end users. The mapping of virtual nodes and links into physical nodes and
links should follow a set of constraints and optimization criteria to be defined by the InP
(e.g. minimum cost, resource load balance, segregation of resources according to the service
type), and can be materialized in a complex algorithm. Physical resource control and virtual
resource embedding include three basic components (Figure 3.1):

- VN admission control: the InP verifies whether there are available resources to fulfil the
virtual network request made by the VNP, and decides whether it can be accepted or not.
VN admission control does not necessarily find an optimal solution for a VN yet – this is
supposed to be the role of resource mapping, as described below – it only verifies that, at
least, one solution can be found.

- Resource mapping: the InP identifies the set of possible substrate nodes and links to host
the requested virtual network and selects the optimal solution. The VN embedding is
a Non-deterministic Polynomial-time hard (NP-hard) problem and a trade-off had to be
chosen between computation time and embedding optimization.

- Re-optimization: the network state keeps changing as new VNs are setup and others are
torn down, or as a result of node or link failure conditions. This often leads to ineffi-
cient utilization of resources, in which some parts of the network infrastructure (either link
resources or node resources) become excessively loaded, while others are under-utilized.
Therefore, the capability to re-optimize the allocation of virtual resources across the sub-
strate network without traffic disruption, either on a periodic basis or triggered by a specific
event (e.g. when a specific resource availability threshold has been reached) is a key VN
requirement. In addition, the resource management process typically makes use of two
auxiliary components:

. Discovery: this function is responsible for discovering network resources and providing
them available for the admission control and mapping functions.

. Monitoring: this function collects real-time information from nodes and links, and signals
any significant deviation from the expected network behaviour.

30

Resource Mapping/

Re-Optimization

Data

Base

Admission Control

AllocationDiscovery Monitoring

Infrastructure Provider

Resources

VN Provider

Figure 3.1: Infrastructure Provider (InP) Building Blocks.

3.1.2 VN Setup Negotiation Process

As explained before, it is likely that in most cases the VNP has limited knowledge of the
physical resources provided by the InP. On the other hand, there will be multiple candidate
InPs to provide the required network resources in many cases. Therefore, the VNP must be
able to inquire a set of candidate InPs and, based on their responses, select one or more that
will actually provide the network resources simultaneously and cooperatively. This requires
the VNP/InP negotiation to be divided in two stages, as depicted in Figure 3.2:

- Query: the VNP inquires the InP about the availability of resources to build a specific VN.
The InP is expected to provide a yes/no reply, possibly with additional information, e.g.
cost, QoS parameters.

- Commit: the VNP requests the reservation of network resources and the InP enforces the
corresponding resource reservation, after establishing the mapping between virtual and
physical resources. It should be noted that virtual networks can be created “on-the-fly”,
i.e. just before the resource is required, or in advance, i.e. at some future point in time. In
either case, a time may be optionally specified for resources to be released; otherwise, the
VN will only be torn down through explicit signalling.

From the InP point of view, a relevant issue is how to map the blocks represented in Figure 3.1
into these two phases. The right hand side of Figure 3.2 suggests a possible approach, but
this will be further discussed in the next section. The VNP is expected to build the virtual
network topology and define resource capacity requirements, namely link bandwidth and node
computational capability. As discussed previously, other characteristics such as geographical
location of the edge nodes will be needed in most cases. The information provided by the
VNP to the InP must contain a model to describe the virtual network topology (e.g. graph),

31

with a set a virtual nodes and virtual links and including the applicable constraints (e.g. link
bandwidth, node computational capacity, physical location). Each virtual node and virtual
link must be characterized by a number of parameters. A tentative list of parameters to
characterise virtual networks, nodes, and links is shown in Table 3.1. The list of parameters
present was inspired in the work of Carapinha and Javier [CJ09].

Table 3.1: Virtual Network Characteristics.

Network virtualisation components Parameters

Virtual network
Virtual network ID
Start time of the service
End time of the service

Virtual node

Node ID
Physical location
Physical node ID
CPU
Memory
Storage

Virtual link

Link ID
End points
Physical Path
Bandwidth
Delay

3.1.3 Signalling and Control

As explained earlier the creation of a VN involves two phases, query and commit. Fig-
ure 3.2 depicts the VN creation process: the left hand side represents the message flow
between the VNO and the VNP when a new VN is requested. In this example, the VNP
contacts two candidate InPs to accommodate that VN, InP X and InP Y, and then decides
to opt for InP X, based on some criterion, e.g. InP X provides the requested resources at
lower cost than InP Y. Then, the process continues with the commit phase, in which the
resources are actually reserved.

3.1.3.1 Query Phase

The process is started when the VNO sends a VN Request to the VNP, including the
VN topology and its constraints, node constrains (i.e. physical location, CPU) and link con-
strains (i.e. bandwidth, delay). The VNP is then in charge of assigning a VN ID and an
ID for each virtual resource. Then, a V N_Query.request message is sent to one or more
InPs. This message must contain the VN ID, the nodes/links IDs, the VN topology and its
specifications, according to Table 3.1. At a first stage, the InP will perform a VN Admission
Control, checking that every requested virtual node and virtual link can be accommodated
by at least one substrate node and substrate link, respectively. If one or more virtual nodes
and/or virtual links cannot be accommodated due to the lack of resources in the substrate (i.e.
insufficient bandwidth or computational resources), the process should be stopped here and
the V N_Query.response is sent to the VNP, indicating that the request cannot be fulfilled
(optionally, indicating the reason of the failure). Otherwise, if every virtual resource can be
accommodated by the substrate, then a V N_Query.response message with a positive reply,
including the VN ID, should be sent to the VNP. It should be noted that the VN Admission
Control is not expected to find the optimal solution for the virtual-to-physical resource map-
ping problem yet, but only whether at least one solution exists. This is understandable, since

32

VN Operator InP X InP Y

VN Request

VN_Commit.request

VN_Commit.response

VN_Query.request

VN_Query.request

VN_Query.response

VN_Query.response

Query Phase

Commit Phase

VN Response

VN

Admission

Control

Resource

Mapping

Allocation

VN Provider

Figure 3.2: VN Creation Sequence Chart and Flow Diagram.

the resource mapping is the most complex step of this process, and in many cases, the query
will not be followed by a corresponding commit. However, this may not be the case in all
circumstances, and the InP may decide to go further than just performing admission control.
So, optionally, at a second step, the InP may perform a pre-reservation by mapping the VN
into the network infrastructure, making use of an optimization algorithm, knowing a priori
that every requested virtual resource can be accommodated. The choice of the first available
or optimal solution may be based on different criteria, such as: preferring substrate nodes
with more resources, selecting substrate links with more available bandwidth, link aggrega-
tion (i.e. virtual link that maps into 2 substrate links) and link segmentation (i.e. virtual
link spanning through multiple substrate links). After obtaining the best solution, the InP
must perform a reservation (at this stage, at logical level only) of the concerned substrate
resources. This reservation will be cancelled if a specific timeout expires without any effect-
ive reservation being made by a corresponding V N_Commit.request from the VNP, and the
reserved resources will be released again. Optionally, this timeout should be included in the
V N_Query.response message.

3.1.3.2 Commit Phase

If the VNP receives one or more positive responses from the candidate InPs in the query
phase, the process will typically continue with the selection of the InP (if more than one can-
didate InP answered positively), followed by a V N_Commit.request, with the corresponding
VN ID. After receiving the V N_Commit.request, the InP verifies whether a pre-reservation
exists for the given VN ID and if it is still valid. If so, it proceeds with the allocation of the
virtual resources. After allocating each virtual resource, it sends a V N_Commit.response,
including the VN ID and the ID of each virtual resource. If the VN ID is not valid or the
pre-reservation has expired, or if for some reason it cannot allocate any particular virtual
resource, the InP should send a V N_Commit.response indicating the reason of the negative
response. If a pre-reservation has not been performed beforehand, then the complete process
has to be executed. A potential issue in this case is that, because no resources have been
reserved, it may be the case that when the commit request arrives, the resources are no longer

33

available. Thus, from the point of view of the InP, there is a trade-off between increasing the
complexity of the query phase and improving the reliability of the whole process.

3.2 Resource Allocation, Monitoring and Controlling

In this section we present and describe the RAMC framework, which was implemented in
C++ and provides the build up, management and control of virtual networks using a small-
scale network virtualisation testbed. In the envisioned network virtualisation environment,
the infrastructure provider is responsible for managing and controlling physical network re-
sources. Virtual networks are established as a result of a VN Provider explicit request, or
through the network management console. Whenever a request to establish or modify a vir-
tual network is received, the network resource controller, based on specific resource utilisation
policies, should decide whether or not the request can be accepted and, if it can, how needs
to map the virtual resources into physical resources.

3.2.1 Architecture

The RAMC is composed of 2 software modules: the Agent module, and the Manager
module; their hierarchical decomposition can be analysed on Figure 3.3. The Agent module
is designed to run on every substrate node, in order to act upon it and periodically gather data
from it. The Agents receive and send requests to the Manager, which is a centralized entity
in charge of aggregating all Agents’ knowledge and sending them commands. Additionally,
the Manager is built-in with a Command Line Interface (CLI), which is the user’s front-end,
and provides him with ability to use virtual network creation, discovery, and monitoring
functionalities.

VN Manager

VN Agent

CLI
SSH

Figure 3.3: Resource Allocation, Monitoring and Controlling (RAMC) Architecture

34

3.2.2 Built-in Capabilities

3.2.2.1 Virtual Network Discovery

Physical and virtual network discovery provides a fast and easy way of having a global
view of the virtual networks running on top of a given physical infrastructure, and it is also
fundamental for the process of embedding new virtual networks, since the embedding pro-
cess requires an accurate and up-to-date view of the substrate and currently running virtual
networks. The experimental virtualisation platform works with a centralized discovery mech-
anism. The Manager requests information from the agents, e.g. virtual nodes allocated within
the physical node, virtual links identifiers (i.e. VLAN tag), to build the overall topology.

3.2.2.2 Virtual Network Creation

The Manager module gives the possibility for the user to create a new virtual network
based on a specification in a Extensible Markup Language (XML) file. The user may specify
the resources CPU capabilities, RAM amount, location, number of interfaces and also perform
network addressing configurations. The final step in creating a new virtual network is to map
it in the physical infrastructure. In the next chapter 4, two distinct approaches are proposed
to provide the VN embedding solution: a heuristic algorithm that combines a greedy node
mapping algorithm with a Constrained Shortest Path First (CSPF) algorithm; and an ILP
formulation to obtain the optimal solution.

3.2.2.3 Substrate and Virtual Network Monitoring

A dynamic resource monitoring feature is required to have an accurate view of the virtual
and physical networks, and quickly react to failures or configuration problems. The imple-
mented monitoring functions periodically update the resources’ information; therefore, it is
possible to identify diverse situations, such as failures and high resource usage, which may
require immediate action. Every Agent periodically checks its local resources’ configuration
and status, and reports back to the Manager if any change occurs. Several parameters are
monitored: CPU load, RAM, HDD usage, interface and link status, interface bridge attach-
ment and configuration, number of running virtual machines and their state.

3.2.3 Testbed Description

To demonstrate the network virtualisation concept and to evaluate the RAMC framework,
a small-scale testbed was deployed. The experimental testbed presented in Figure 3.4 is
composed of 6 physical nodes, whose CPU and RAM characteristics are described in Table 3.2.
The nodes are interconnected according to Figure 3.4, with a total of 8 Ethernet links,
ranging from 100Mbps to 1Gbps. The Operating System (OS) virtualisation is based on Xen
hypervisor version 3.1 [XEN14]. Both physical and virtual machines run Fedora 8 i386 (Linux
2.6.21.7) OS. Virtual routers are based on the Quagga Routing Suite [qua12].

Table 3.2: Testbed specification.

Node Susan Lynette Gabrielle Bree Eddie Mary
CPU PentiumD PentiumD Core 2 Duo Xeon E3110 Xeon X3220 Xeon X3330
RAM 6GB 6GB 4GB 6GB 6GB 6GB

On the top of the substrate network, 3 different VNs were created on-demand and on-
the-fly. The instantiation of the virtual nodes is performed using XEN hypervisor [XEN14].

35

Figure 3.4: Network Virtualisation Testbed Photo.

To make this process faster and easier, it was used clone techniques, where it has been pre-
configured one or more (default) virtual nodes to be replicated. On this testbed, each virtual
node needs to have its own filesystem, where we can refer the creation, or to be more accurate,
the cloning of the new filesystem. This is the process that takes longer time: in average it
can take up to 20 seconds per virtual node depending on the substrate node characteristics.
To enable the virtual links, VLANs [VLA14] were configured in each substrate link.

3.2.4 Evaluation Results

To make an evaluation of the RAMC framework, two experiments were designed: em-
bedding and instantiation of virtual networks. The performance metrics considered are the
following: time to embed a virtual network request and time to instantiate a virtual network,
with the increase of the number of existing virtual networks. The virtual networks embed-
ded and created were the same, and always a replica of the underlying physical network,
and served the purpose of being a reference throughout the tests. The virtual nodes were
configured with 1 CPU, 64MB of RAM, 1GB of Hard Disk Drive (HDD), and 1Mbps links.
The Manager was running on a separate physical machine directly connected to the testbed
(Intel Core 2 Duo P8600; 4GB of RAM; 100Mbps link). During the tests, all virtual nodes
were idle and so were the physical nodes and links. The maximum amount of created virtual
networks was 40, which corresponds to 40 virtual nodes in each physical node. The results
presented on the following sections always assume a 95% confidence interval.

3.2.4.1 Virtual Network Embedding

The considered virtual network embedding time encompasses the elapsed time between
receiving a VN request and performing the assignment of the VN. The purpose of this test
is to evaluate whether the overall time to perform the VN embedding depends or not on
the current physical network status, e.g. number of existing VNs, and not to evaluate the
performance of the embedding algorithm. Either the algorithm description or its evaluation

36

Figure 3.5: Network Virtualisation Testbed

will be provided in Chapter 4 and Appendix B, respectively.
In order to assess the mapping times, 40 virtual networks were created, one at the time.

The time required for the Manager to process the received unmapped XML and return a
mapped one was measured. The tests were repeated 3 times. The time required to perform
the mapping is shown to increase with the number of existing virtual networks (Figure 3.6).
Since the mapping procedure only depends on the virtual network to be embedded and on the
physical network, it would be expected that the mapping times remained constant. However,
this was not the case. In order to understand the increase in the required mapping time,
one must take into consideration that, when performing the mapping, the Manager needs to
refresh its internal database to reflect the current status of the physical network, therefore
needs to access each existing virtual network’s information. Thus, for each additional virtual
network, the Manager will require more time to determine each physical resource load. This
increment in needed time is revealed in the obtained results, which shows a linear scaling
with the number of existing virtual networks. Regarding the absolute mapping times, they
remained in the order of low tens of millisecond, which is very good and can be considered
real-time.

3.2.4.2 Virtual Network Creation

In order to evaluate the time required to create a virtual network on the available testbed
and its scaling with the amount of previously existing virtual networks, several creation tests
were performed. The amount of previously existing virtual networks was varied between
0, i.e. without virtual networks, and 39. For each considered point, a virtual network
was created and deleted 10 times, and the time required for creation was recorded. The
considered creation time encompasses the time required for the Manager to split the mapped
XML and send the different command messages to the Agents, as well as the time required
for the Agents to report back with updated information about the created resources and
links. The Manager was in charge of measuring these creation times. The obtained results,

37

0 5 10 15 20 25 30 35 40
6

8

10

12

14

16

18

20

22

24

26

V
ir

tu
a

lfN
e

tw
o

rk
fM

a
p

p
in

g
fT

im
e

(m
s)

NumberfoffExistingfVirtualfNetworks

Figure 3.6: Virtual Network Mapping Time as a Function on the number of existing VNs.

shown in Figure 3.7, follow a linear trend with the increase in the amount of existing virtual
networks. It is worth noting that the total creation time, encompassing both node creation
and subsequent topology discovery, only depends on the slowest physical node (Table 3.2),
from the ones chosen to have a virtual node embedded. The demonstrated increase in the
VN creation time is due to the increase in time required to gather resource information, e.g.
virtual nodes, and virtual links.

0 5 10 15 20 25 30 35 40
10

20

30

40

50

60

V
ir

tu
a

l)N
e

tw
o

rk
)C

re
a

tio
n

) T
im

e
)(

s)

Number)of)Existing)Virtual)Networks

Figure 3.7: Virtual Network Creation Time as a Function of the existing VNs.

3.3 VN Migration

The VN migration process can be started from a predicted event in the sense that it can
be scheduled in time, i.e. planned maintenance, or it can be triggered from a non-predicted
event, i.e. VN security attack or hardware failure. In this section, we start with a description
of the several factors that can lead to a VN migration process, and we finalize the section by
explaining the different actions required in our approach for VN Cloning.

3.3.1 Triggers for VN Migration

The VN migration process can be the result of a planned event or of a non-planned
event, and the time to perform all the VN migration operations can be considered critical or
non-critical depending on the event that leads to the migration process.

38

3.3.1.1 Equipment/Facilities Maintenance

The migration process can be triggered due to maintenance reasons within the physical
hosts or external to the physical hosts: within the physical hosts due to the replacement or
upgrade of hardware modules, firmware updates or patches where the physical host needs to
be rebooted or shutdown and disassembled; external to the physical hosts with the need to
temporary or permanent change the location of the physical host, or Uninterruptible Power
Supply (UPS) upgrade or power grid maintenance.

3.3.1.2 Network Performance

The VN migration can also be started due to networking performance reasons. If we
consider the fact that VNs are dynamically provisioned and constantly being created and
removed, the consumption of network resources is likely to become unbalanced due to the
dynamics of the VNs arrivals and departure events. In order to optimize the physical resources
and at the same time to distribute the network load equally per all physical hosts, or even to
alleviate the load at some physical hosts that are reaching critical levels, a re-optimization
process on the existing VNs should be performed. This usually involves the re-mapping of
existing VNs; therefore, the VN migration process would take place in order to move the VRs
to physical hosts that are less loaded.

3.3.1.3 End-user Requirement/Service Level Agreement

It may also be required to move a VR from one PoP to another PoP, which is much
closer to the end-user. It may also be required to reduce the overall round trip delay of a
VN throughout the migration of parts, i.e. VRs or Virtual Link (VL), of the VN or even the
entire VN to physical places and hosts which provide smaller round trip delays.

3.3.1.4 Energy Saving

The migration of VNs can also be triggered due to power consumption reasons, either to
move VNs closer to greener power grids, or to move VNs to physical hosts that consume less
energy, or even to concentrate VNs on the minimum number of physical hosts as possible,
without interfering on the service levels reliability, in order to reduce the number of active
physical hosts. This is not only due to diurnal traffic patterns, where the traffic is much
smaller in the night and therefore the number of pieces of network equipment required to
operate in the night is smaller, but it is also due to the fact that a physical router in idle
mode consumes 90% of the consumption in full mode [CSB+08].

3.3.1.5 Security Protection

The migration of a VN can be even required as a way to provide higher security protection,
or as a way to move VNs from physical hosts which are currently under attack "moving target
defense" [AS11]. A VN can evade detection or attack by changing its location in the physical
network.

3.3.1.6 Fault Management

The VN migration process can also be triggered due to fault management decisions. If
we consider a reactive fault management, the VN migration is triggered when the hardware
fails. If we consider a proactive fault management, the VN migration process is started when
the hardware that is prone to fail is flagged.

39

3.3.1.7 Service Deployment

In order to deploy new services on production networks, VNs running on trial scenarios
can be phased migrated to physical hosts located within these networks, or only just parts
of the VNs need to be moved away.

3.3.1.8 End-User Mobility

The VN migration process can be even required due to mobility reasons. An end-user
can be moving away from his home network to a foreign network and, in order to avoid the
connection break during the handover process, e.g. change the IP address and or the access
technology of the end-user, the VR migration process can be used as a complementary mech-
anism (or even in some situations in the absence of any mobility process, as an alternative)
to mobile IP implementations [Per02] and IEEE 802.21 - Media Independent Handover Ser-
vices [GWC+09]. In this way, the IP addresses of the end-users are preserved and the TCP
sessions are maintained during the transition of one network to another.

In the Table 3.3 we summarize the types of triggers considered, and we also express them
in terms of event periodicity, i.e. when they are expected to occur, event duration, i.e. the
expected time that the event will consume, and priority, i.e. this can be used as a classification
of the event in terms of urgency to be taken.

Table 3.3: VN migration types of trigger events, event duration and event priority.

Event Type Event Periodicity Event Duration Event Priority
Physical Maintenance Monthly/Annually Hours/Days Medium/Low
Network Performance Daily/Weekly N/A High/Medium
Energy Saving Daily Hours Medium/Low
Security Protection N/A Minutes/Hours Urgent/High
Fault Management N/A Minutes/Hours Urgent/High
Service Deployment Weekly/Monthly Hours/Days Medium/Low
End-user Mobility Hourly/Daily Minutes/Hours Urgent/High

As a result of the previously described triggers, we can foresee three different cases where
VN migration is required:
i In the first situation the host is considered to be removed from the physical network
topology. Therefore, all VNs using that specific host need to be reallocated to other
physical hosts.

ii In the second situation the host still exists, but one or more physical links had been
removed from the physical network topology, e.g. hardware failure. Likely some VNs
need to be reallocated to other physical hosts. Although it does not strictly mean that
we need also to migrate VRs, it may be even possible that only VLs migration can fix
the problem.

iii In the third scenario the host exists on the physical network, but it is only capable of doing
switching operations [nex12]. This implies only the migration of the VRs; the migration
of the VLs is not required.

3.3.2 VN Clone Migration Procedure

As a result of the three cases, one of two things can take place in the migration process:
migration of virtual links, or the migration of virtual links and virtual routers. Each migra-
tion process encompasses a set of different operations. In this sub-section, we describe the

40

VN migration process with VL migration, and with VL plus VR migration. Two different
approaches are evaluated for the VR migration: the VR live migration and the VR clone
migration (our proposed approach).

Figure 3.8 represents the VN migration timeline; it is intended to reflect the amount of
time that each action takes when comparing with others, to reveal its level of criticality to the
overall VN migration process, and also to identify the common actions, which are represented
in the timeline by numbers, taken in the different VN migration processes (i.e. link, live and
clone migration).

(a) Link (b) Live

(c) Clone

Figure 3.8: VN Migration Timeline

In the Figure 3.8, we can observe that the VN link migration takes less time to be fully
performed when compared to the live or the clone migration. This is due to the migration of
the VR itself, since it requires moving the VR content (e.g. memory RAM) from one physical
host to another, while in the case of the virtual link migration no data needs to be transferred
across physical nodes.

The different operations which compose the clone migration process are described here:

0. V N Migration Trigger - The VN migration process starts after receiving a VN migration
trigger (i.e. which can be one of the triggers presented on Table 3.3), and it corresponds
to step 0.

1. Compute V N Mapping - The time that this action takes to be performed can be con-
sidered as critical or non-critical to the overall migration time, and it will strictly depend
on the event which causes the VN migration (see Table 3.3), and that involves the com-
putation of a new VN mapping (i.e. VN re-embedding).

The VN mapping takes as inputs the VN nodes and links that need to be migrated,
and the output will be the new location of those nodes and links1. The VN mapping
can be performed either using a heuristic approach [NMCS11b] which performs the VN
embedding in a faster and efficient way, or using mixed integer linear programming ap-
proach [MCS+12], which takes relatively more time to perform the VN embedding, but
achieves the optimal solution.

The "available" time to perform the VN (re-)embedding will be dictated by the event
type that leads to the VN migration process, i.e. a critical event (e.g. fault management)

1It may also be possible that it is less costly (i.e. shorter virtual links=>less provisioned bandwidth) to
move not only the nodes and links that were initially considered to be migrated, but also other nodes and
links.

41

requires that the VN embedding should be performed as fast as possible, and a non-
critical event (e.g. network performance) requires that the VN (re-)embedding should be
as good as possible (i.e. optimal bond).

2. V Ls Setup - This operation comprises the setup of new virtual links, e.g. setup of VLAN
interfaces and virtual bridges, and it is considered as non-critical, since it is performed
beforehand and in the time-frame of the order of milliseconds (or even nanoseconds with
optical switches).

3. Clone/Move/Restore - This is the most critical and time consuming task to the overall
VN migration process, and it can be divided into three sub-operations:

a) Clone V R - The cloning of the VR involves saving the current state, i.e. memory
RAM, to the physical host hard-disk or even to a RAM-disk2.
This can be considered as critical or non-critical action, if the VR is put into suspend
while being cloned in the first case, or if the VR is still running while being cloned
in the latter. The time required to perform this process is given by formula (3.1),
where V Rmemory is the memory RAM size of the VR.

b) Move V R Clone - This part encompasses the transfer of the VR clone to the new
physical host and it is, in principle, the most time consuming task of the three sub-
operations, and of the overall VN clone migration process. Despite contributing to
the overall VN migration execution time, it does not affect the VN downtime, since
the VN is still running while the VR clone is being relocated. The time required
to perform this task is given by formula (3.2), where BWreserved is the bandwidth
which is effectively reserved by the operator to this kind of operations, and BWfree

is the bandwidth that is not provisioned (or available) on the physical path between
the physical hosts and at that time period. In theory, the reserved bandwidth can
be equal to zero, although operators do tend to reserve bandwidth for this kind of
operations. Note that, if this phase takes too much time to be performed, the VR
clone can easily become outdated.

c) Restore V R Clone - The restore of the VR clone is performed after it is allocated
on the new host, and it does not influence the VN downtime, since the VR clone is
not yet connected to the VN. This operation is performed in the time-frame of high
hundreds of milliseconds.

4. Add V irtual Bridge Int. & Destroy Original V R - This is a critical action and encom-
passes adding a new virtual interface (e.g. VLAN) to the virtual bridge that will be used
to connect the VR clone to the VN. It also includes the shutdown of the original VR,
which is performed in order to avoid duplicated VRs operating on the virtual network.
The VN transition, from the old VLs and VRs to the new ones, is signalled by the execu-
tion of these two operations. The VR shutdown (destroy) is executed in the time-frame
of low hundreds of milliseconds.

5. Remove V Ls - The removal of old virtual links is a non-critical action and is performed
in the same time-frame as the setup of virtual links (i.e. milliseconds). This phase does
not count to the execution time, though it is part of the VN migration process.

The VN downtime due to the migration process can be obtained using formula (3.3), where
the V Ndowntime is mostly given by the VR cloning operation (i.e. tclone). With formula (3.4),
we can obtain the VN migration execution time, where the action 3b contributes the most.

2A RAM drive (RAM disk) is a block of RAM that is treated as if the memory were a disk drive. In our
implementation we have used a ram-disk due to performance reasons

42

tclone = V Rmemory_size
RamDiskwrite_speed

(3.1)

tmove = V Rmemory_size
BWreserved +BWfree

(3.2)

tdowntime ∼= tclone (3.3)

texecution = t4 − t0 (3.4)

3.3.3 VN Clone Migration Architecture

In this section we describe the overall architecture, which was considered to support the
VN clone migration, and also the building blocks of the VR. For further details on the clone
migration method, please see the appendix section F.

3.3.3.1 VN Clone Migration Architecture

Figure 3.9a presents the Network Virtualisation (NV) architecture which was proposed
to support VR migration, comprising the Network Virtualisation Controller (NVC) and the
Network Virtualisation Entity (NVE). The NVC is responsible for coordinating the VN
migration process, and is also responsible for performing the VN mapping, choosing the new
location of the VLs and VRs. Each NVE is responsible for enforcing the NVC commands,
e.g. CloneV R. The list of possible commands performed by the NVC is shown in Table 3.4.

NV Controller

- NV Entity

- Physical Host

(a) Network Virtualisation Architecture.

VR 3VR 2
VR 1

- Network Interface

- Virtual Bridge

- Virtual Link

(b) Virtual Router Building Blocks.

Figure 3.9: VN Clone Migration Architecture.

All communications between the NVC and the NVEs are secured and performed using
the Secure Shell (Unix program) (SSH) protocol, and the secure copy protocol is also used
to move the VR clone.

3.3.3.2 Virtual Router Implementation

The VR architecture considered is shown in the Figure 3.9b. It is composed by the VR
instance, (virtual) network interfaces and virtual bridges. The virtual bridges are used either
to interconnect network interfaces within the physical host, or to interconnect virtual network
interfaces of VRs running inside of the host. The Linux Bridge Utils tool [bri12] is used in

43

Table 3.4: NV Controller - List of Commands.

Command Name Command Description
AddVInt IntId Add virtual Interface on the

Physical Host
DelVInt IntId Remove a Virtual Interface

on the Physical Host
AddVBridge BrId Add a Virtual Bridge on the

Physical Host
DelVBridge BrId Remove Virtual Bridge on

the Physical Host
AddVBridgeInt BrId IntId Add a (virtual) Interface to

the Virtual Bridge
DelVBridgeInt BrId IntId Remove a (virtual) Interface

on the Virtual Bridge
CloneVR V RId Clone Virtual Router
MoveVR V RId Dst Move the VR Clone to the

new physical host
RestoreVR V RId Restore Virtual Router on a

physical host
DestroyVR V RId Destroy Virtual Router on a

physical host

order to setup virtual bridges, and the Linux VLAN implementation [VLA14] is used to setup
the virtual links.

3.3.4 Evaluation Results

To analyze the different VN migration methods, the traffic generator D-ITG [AGE+04]
is used to evaluate the impact on the traffic carried by the virtual network due to the VN
migration process. The total experiment time is set to 100 seconds, where the traffic is
continuously generated before, during and after the VR migration event. It is considered
UDP traffic with a packet size of 1000 Bytes, and either with a bitrate of 10Mbps (i.e. 1250
packets/s) or of 20Mbps (i.e. 2500 packets/s) to evaluate the influence of the traffic bitrate
on the VN migration process. The memory RAM of the VRs, i.e. the size of the routing
tables, is set from 64MB to 256MB with intervals of 32MB. During each experiment, it is
measured the number of packets sent and the number of packets lost. The execution time
of each Linux command is also measured: bridge setup, VLAN setup, bridge interface setup,
VR cloning, VR move, VR clone restore, VR destroy, VR live migration (only for the live
migration process). For each experiment, 10 trials are performed and confidence intervals of
95% are used for every plot.

3.3.4.1 VN Downtime

Figure 3.10 shows the VN downtime as a function of the VR memory size. According to
the figure, we can observe that the VN downtime exhibits two distinct behaviours: either it
does not depend on the VR memory or it does strongly depend on it. In the live migration
and the clone migration without VR suspend, the VN downtime does not strongly depend
on the VR memory size and it is almost constant for all the memory sizes evaluated.

The live migration has a VN downtime (or percentage of dropped packets) of 400 milli-
seconds (0.4%), and the clone migration has no downtime when using UDP traffic at 10Mbps.
This behaviour is expected for both methods, where the downtime experienced on the VN

44

64 96 128 160 192 224 256
0

0.2

0.4

0.6

0.8

1

1.2

VR Memory RAM (MB)

A
ve

ra
ge

 V
N

 D
ow

n
T

im
e

(s
)

VN Live Migration − 10Mbps
VN Live Migration − 20Mbps
VN Clone Migration (VR Suspend) − 10Mbps
VN Clone Migration (VR Suspend) − 20Mbps
VN Clone Migration − 10Mbps
VN Clone Migration − 20Mbps

Figure 3.10: Virtual Network downtime (or Percentage of Dropped Packets) as a Function of
the VR Memory RAM.

live migration is mainly due to the XEN live migration procedure [CFH+05], which is an
iterative process based on memory copy of dirty pages. In the VN clone approach, the VR
memory RAM is copied at once, while the VR is still running, and at memory RAM write
speeds.

In the case of the VN clone migration with VR suspend, the VN downtime does vary with
the VR memory size and increases linearly with it. This is in fact due to the cloning phase
of the VR, where the VR is put into suspend mode while its memory RAM is being copied.
The VN clone migration without VR suspend outperforms the VN live migration approach
and achieves no VN downtimes.

The traffic carried out by the VN does not significantly affect the V Ndowntime, although
a slightly higher percentage of dropped packets is registered for the UDP traffic with higher
bitrate (i.e. 20Mbps).

3.3.4.2 VN Migration Execution Time

The VN migration execution time is illustrated in Figure 3.11. On the left side (Fig-
ure 3.11a), it is represented the execution time of the live migration process, and on the right
side (Figure 3.11b), it is represented the execution time of the clone migration process. The
VN execution time grows linearly for both migration methods with the VR memory size.
The live migration process is the one that takes less time to be fully performed, since it is
performed internally by the XEN hypervisor.

In the clone migration process, the most time consuming operation is the VR Clone move
(i.e. the relocation of the VR clone to the new physical host). This operation is influenced
both by the VR memory size and by the available bandwidth at the physical path, between
the physical host source and the physical host destination (Mary-Susan-Bree), which in our
experiment is of 1Gbps (see formula 3.2). The second most time consuming operation is the
VR cloning operation, which is also dependent on the VR memory size.

45

Both the bridging of virtual interfaces and the VLAN setup are the less time consuming
operations, and take up to 4 and 8 milliseconds, respectively, to be fully performed. The
total execution time of the clone migration process, with a VR of 64 MB memory RAM, is
2.75 seconds, while the total execution time of the live migration process is 2.36 seconds.

Notice that the total execution time of the clone migration process can be reduced, if it
is also performed internally by the hypervisor. Moreover, this time can be further reduced if
the VR clone relocation takes place in parallel with the VR cloning phase.

0

1

2

3

4

5

6

7

8

64 96 128 160 192 224 256

Ex
ec

u
ta

ti
o

n
 T

im
e

(s
)

VR Memory RAM (MB)

max{Bridge
Setup; VLAN
Setup}
VR Live
Migration

VR Restore

(a) Live

0

1

2

3

4

5

6

7

8

64 96 128 160 192 224 256

Ex
ec

u
ta

ti
o

n
 T

im
e

(s
)

VR Memory RAM (MB)

max{Bridge Setup;
VLAN Setup}

VR Cloning

VR Clone Move

VR Clone Restore

min{VR Destroy;
Bridge Int. Setup}

(b) Clone

Figure 3.11: VN Migration Execution Time as Function of the VR Memory Size

3.4 Summary
This chapter provided a new architecture for Network Virtualisation: it promotes the

deployment of new protocols and enables the emergence of new players in the telecommu-
nications market. As can be seen from the testbed description, the base testbed is running
with intervention of the RAMC framework. This chapter presented the VN clone migration
as an alternative to the live migration approach. The VN clone migration performs cloning
of the VR and transfers the VR clone to the new physical host. This approach requires no
restrictions on the virtual network itself or on the networking protocols running inside of the
virtual network. The results show that the proposed approach achieves no VN downtime,
and it takes just a few seconds to be fully performed.

Chapter 4 will address the resource mapping and resource re-optimization modules of the
RAMC framework.

46

Chapter 4 - Network Virtualisation:
VN Embedding Problem

“If I were again beginning my studies, I
would follow the advice of Plato and start
with mathematics.”

—Galileo Galilei

It is of the Infrastructure Provider (InP) best interest to have the lowest provisioning
cost solution per VN, while increasing the overall revenue income. This chapter is aligned
with this requirement and it proposes an Integer Linear Programming (ILP) formulation, the
Virtual Network Embedding Node-Link Formulation (VNE-NLF), that has been proposed
in [MCS+12] to solve the VN embedding problem as an optimisation problem, and therefore,
to provide the optimal solution per VN embedding. This approach has the following require-
ments: i) to minimize the resource allocation cost; ii) and to maximize the overall revenue. An
enhancement to an existing heuristic [NMCS11b] has also been proposed in [MCS+12]. Ex-
tensions to this formulation have been proposed in [MCS+13b] to address the re-optimization
problem (i.e. re-embedding of previously mapped VNs), and additionally a comparison with
existing state of the art heuristics have been performed in [MSK+13]. Moreover, in [MSK+14]
a formulation to address the energy consumption problem (i.e. minimization of the energy
consumption per VN embedding) has been proposed. Additionally, a formulation to address
the optimal VN migration has been proposed in [MSC14]. This chapter is an overview of the
previous articles.

This chapter starts with a description of the virtual network embedding problem. Sec-
tion 4.2 proposes an enhancement to a heuristic algorithm [NMCS11b]. Section 4.3 describes
the VNE-NLF and the applied constraints, while Section 4.4.1 discusses the different pro-
posed cost functions for resource allocation. Moreover, Sections 4.5, 4.6, and 4.7 present
the proposed extensions for re-optimization, energy-aware, and VN migration, respectively.
Section 4.8 depicts the major results and analyses the performance of the VNE-NLF with
different cost functions, and compares it with six existing heuristics. An evaluation on the
proposed extensions (i.e. re-optimization, energy-aware, and VN migration) is also presented
within this section. Finally, section 4.9 summarizes the chapter.

For further details on the formulation proposed and also on the different extensions please
see the appendix sections B, C, D, E, and F, respectively.

47

4.1 Problem Description
In this section, we introduce the virtual network embedding problem. In addition, the

VN embedding notations used throughout the chapter are presented, and the virtual network
embedding system is explained. Finally, the mapping goals are introduced to support the
mathematical formulation.

4.1.1 Network Description

We use superscript to distinguish the physical network from the virtual network, where
p and v correspond to physical and virtual, respectively.

4.1.1.1 Physical network

A physical network can be described as a weighted undirected graph Gp = {Np, Lp, Cp,
Bp, Dp,Disp} composed by a set of physical nodes, Np, and a set of physical links, Lp. Each
physical node i is characterized by its processing capacity, Cpi , commonly referred to as the
CPU, by its physical location, which can be defined by x and y coordinates. Power state -
active if the node is power-up, inactive if the node is power-off; and role - hosting node if it
accommodates virtual nodes, forwarding node if its physical links accommodate virtual links
but the node itself does not accommodate virtual nodes.

The physical distance between nodes, Disp, can be obtained using equation (4.1). With
respect to the physical links, we consider that each link ij has a given bandwidth, Bp

ij ,
and a given link delay, Dp

ij , and we also assume that each link is an undirected link. The
bottom-right side of Figure 4.1 illustrates a physical network topology example composed of
6 physical nodes and 8 physical links; the corresponding capacities of the nodes and the links
are presented on top of the elements. The physical nodes power state is represented using a
colour scheme: gray for inactive and blue for active.

Dispij =
√

(xj − xi)2 + (yj − yi)2 (4.1)

...
...

VN request k
VN Lifetime=400

VN Embedding
System

VN request 1
VN Lifetime=650

Time=0

Time=t

VN Requests

Physical Network

Mapping Result

10

10 15

a

5

7

b

c
B

A

D

C E

F

50

95 70

80

6560

90 50

657585

55 65 95

30

10 20

ed

Figure 4.1: VN Embedding System - Topology Example

48

4.1.1.2 Virtual Network Request

VN request can be described as a weighted undirected graph Gv = {Nv, Lv, Cv, Bv, Dv,
Disv} composed by a set of virtual nodes, Nv, and a set virtual links, Lv. Each virtual node
m is characterized by the amount of required CPU, Cvm, and the virtual links mn are logical
connections between virtual nodes and characterized by the amount of dedicated bandwidth,
Bv
mn, and by the maximum link delay permitted, Dv

mn. We also assume that each virtual
link is an undirected link. The maximum virtual distance between virtual nodes, Disv, can
be used to limit the physical distance between virtual nodes. The left part of Figure 4.1
represents the example of two virtual network requests, VN request 1 on the bottom-left and
VN request k on the top-left. Each VN request has a given lifetime that is, in principle,
independent from each other, and each lifetime could have different time scales, since it is
strongly dependent on the purpose of the virtual network request itself. If we consider a VN
request for a live rock concert, the time scale will be hours, but if we consider a VN for a
culinary workshop of one week, the time scale will be days.

4.1.1.3 VN Assignment Notations

First, we start with the convention used for the index notation: Np represent the set of
nodes that belong to the physical network; Lp represent the set of links that belong to the
physical network; and Lpi represents a subset of links ij that are directly connected to the node
i. The same type of notation is used to represents the VN using the letters m and n in the
virtual network. The notations used throughout this chapter for the VN assignment problem
are presented in Table 4.1. The Table is divided into three parts: the static parameters of the
physical network, the dynamic parameters of the physical network, and the virtual network
requests with the demanded capacities.

Table 4.1: VN Assignment Problem Notation.

Gp Physical Network
Np Set of Physical Nodes
i, j Physical Nodes
ij Physical Link
Lp Set of Physical Links
Lp

i Set of Physical Links directly connected to Physical Node i
Cp

i (t0) Available CPU at time t0 on Physical Node i
Disp

ij Distance Between Physical Nodes ij
Bp

ij(t0) Available Bandwidth at time t0 on Physical Link ij
Cp

i (t) Available CPU at time t on Physical Node i
Pi(t) Power Consumption at time t on Physical Node i
Bp

ij(t) Available Bandwidth at time t on Physical Link ij
Gv(k) Virtual Network Request k
Nv(k) Set of Virtual Nodes of VN Request k
Lv(k) Set of Virtual Links of VN Request k
Lv

m(k) Set of Virtual Links directly connected to Virtual node m of VN Request k
m, n Virtual Nodes
mn Virtual Link
Cv

m(k) CPU of Virtual Node m of VN Request k
Disv

mn(k) Maximum Distance Between Virtual Nodes mn of VN Request k
Bv

mn(k) Bandwidth of Virtual Link mn of VN Request k
Dv

mn(k) Delay of Virtual Link mn of VN Request k

49

VN Assigment Infeasible

VN Assigment Feasible

Allocate VN

Embed VN Request

Update Physical network

Update VN List

Release VN

Yes NoVN Lifetime
 Expired?

VN
Mapping
Method

10

10 15

a

5

7

b

c
30

10 20

ed

B

A

D

C E

F

50

95 70

80

6560

90 50

657585

55 65 95

Figure 4.2: VN Request Life Cycle - Activity Diagram

4.1.2 Unfilled Physical Network Resources

The remaining capacity of each physical node at a specific time t is given by the differ-
ence between the total processing capacity and the capacity consumed by all virtual nodes
allocated on that physical node, and is presented in equation (4.2), where U represents the
set of all virtual nodes allocated on that precise physical node and at time t. We assume that
the physical network is empty at time t0.

∀i ∈ Np : Cpi (t) = Cpi (t0)−
∑
∀u∈U

Cvu(t) (4.2)

In parallel, the available bandwidth of each physical link at a specific time t is given by the
difference between the total bandwidth and the bandwidth consumed by all virtual link seg-
ments allocated on that physical link, and is presented in equation (4.3), where w represents
the set of all virtual link segments allocated on that specific physical link and at time t.

A virtual link can be composed by one or more physical links, the physical path. We con-
sider that each virtual link has a single physical path, and we do not consider link aggregation
(i.e. virtual link composed by different physical paths).

One physical link can accommodate one or more virtual link segments belonging to dif-

50

ferent virtual links.
∀ij ∈ Lpi : Bp

ij(t) = Bp
ij(t0)−

∑
∀w∈W

Bv
w(t) (4.3)

4.1.3 VN Request Embedding Process

The VN request embedding process can be divided into two components: the component
that ensures the mapping of the virtual nodes, and the one that handles the mapping of the
virtual links.

4.1.3.1 Virtual Node Mapping

Each virtual node needs to be mapped onto one physical node. This relation is given by
the mapping functionM[m ∈ Nv(k)] = i, where virtual node m is mapped onto exactly one
physical node i. Each physical node candidate needs to have, at least, the same amount of
available CPU as required by the virtual node, which is represented in equation (4.4).

∀i,∀M[m ∈ Nv(k)] = i : Cvm(k) ≤ Cpi (t) (4.4)

4.1.3.2 Virtual Link Mapping

Each virtual link can be mapped onto one or more physical links (i.e. physical path).
This relation is given by the mapping functionM[Lvmn], where the virtual link mn is mapped
onto one physical path. Each physical link candidate belonging to the physical path needs to
have, at least, the same amount of bandwidth available as required by the virtual link which
is presented in equation (4.5).

∀ij ⊆M[mn ∈ Lv(k)] : Bv
mn(k) ≤ Bp

ij(t) (4.5)

4.1.4 VN Request Life Cycle

The embedding process begins upon a new VN arrival request, which is depicted in
Figure 4.2. A VN mapping method is used to embed the VN; it takes as inputs the current
status of the physical network (e.g. available CPU capacity, existing bandwidth, and physical
node power state: active or inactive) and the VN request itself. If the result of the mapping
process is a viable solution, the mapping is considered to be feasible; if not, it is considered
to be unfeasible and the VN embedding process stops.

4.1.5 Mapping Metrics

In order to assess the performance of an embedding method and at the same time to
evaluate the energy impact, different metrics were defined.

4.1.5.1 VN Request Acceptance Ratio

The VN request acceptance ratio, A(Gv), is given by equation (4.6) and defines the
overall performance of an embedding method: the sum of all VN requests accepted, k′, over
the sum of all VN requests, k.

A(Gv) = k′

k
(4.6)

51

4.1.5.2 Revenue

The revenue, R(Gv), is given by equation (4.7) and represents the sum of all requested
CPU capacity plus the sum of the total requested bandwidth per VN request accepted. The
weight parameter α can be used to express the current value of the different types of resources.

R(Gv) = α
∑
m

Cvm + (1− α)
∑
mn

Bv
mn (4.7)

4.1.5.3 Provisioning Cost

The provisioning cost, C(Gv), is given by equation (4.8) and represents the sum of all
allocated CPU capacity plus the sum of the total consumed bandwidth per VN request
accepted. The weight parameter β can be used to express the current cost of the different
types of resources.

C(Gv) = β
∑
i

Cpi + (1− β)
∑
ij

Bp
ij (4.8)

4.1.5.4 Embedding Factor

The embedding factor, E(Gv), is given by equation (4.9) and represents the ratio between
the amount of virtual resources that were requested and the amount of physical resources
that were effectively provisioned per VN request accepted, i.e. the efficiency on embedding,
where α can be used to weight the revenue and the cost of each type of resource, respectively.

E(Gv) = α
∑
mC

v
m + (1− α)

∑
mnB

v
mn

β
∑
iC

p
i + (1− β)

∑
ij B

p
ij

(4.9)

4.1.5.5 Physical Network Resilience Factor

The physical network resilience factor, R(t), is given by equation (4.6) and defines the
overall resilience of the physical network to migration events, i.e. the ratio of successfully
re-embedded sets of VNs, k′, over the sum of sets of VNs, k.

R(t) = k′

k
(4.10)

4.1.5.6 Physical Node Power State

The physical node power state is given by equation (4.11). The value of ui(t) is set to 1 if
physical node i hosts one or more virtual links. With this equation, we can take into account
the situation where a physical node is being used as a forwarding node only.

ui(t) =
{

1, if physical link ij ∈ Lpi hosts a virtual link
0 otherwise (4.11)

4.1.5.7 Power Consumption

The power consumption, Pi, of physical node i is given by equation (4.12), and it is
obtained by summing the power required to maintain the node active, which is denoted in
the equation as the baseline power, Pb, with the load power, Pl, currently allocated. The
baseline power is given by equation (4.13), and the load power is obtained with equation

52

(4.14). Both equations are multiplied by the parameter θ, that is used to weight the cost of
each power consumption source given in equation (4.15).

In equation (4.12), we assume that the baseline power already incorporates the power
required to operate the data plane. This assumption is relevant for the case where a physical
node is powered up to perform only the role of forwarding, i.e. its physical links host one
or more virtual links, but no virtual nodes are being hosted in it. Therefore, the power
consumption of this specific physical node will be equal to Pb only. According to [LGL+11],
it is plausible to assume that the power required to power up all physical links of a given
physical node is much smaller than the power required to power up the physical node it-
self [BH09]. Therefore, we are not considering the power required to power up each physical
link individually in the equation.

Pi(t) = Pbi + Pli (4.12)

Pbi(t) = θb × ui(t) (4.13)

Pli(t) = θl × [Cpi (t0)− Cpi (t)] (4.14)

θb + θl = 1 (4.15)

4.1.5.8 Physical Network Energy Consumption

The energy consumption of the physical network, Ep(t), is given by equation (4.16) and it
represents the amount of energy that will be required to operate the physical network. This
is obtained by summing the amount of energy required to power up (i.e. Pb) the physical
nodes and the amount of energy required to host (i.e. Pl) the virtual nodes.

Ep(t) = θb
∑
i∈Np

ui(t) + θl
∑
i∈Np

Cpi (t0)− Cpi (t) (4.16)

4.1.5.9 VN Energy Consumption

The energy consumption of a VN, Ev(tk), is given by equation (4.17) and it represents
the amount of energy that will be required to host a new VN request. This is obtained by
summing the amount of energy required to power up (i.e. Pb) new physical nodes at time
tk, and the amount of energy required to host new virtual nodes (i.e. Pl), where ε is an
arbitrarily small value.

Ev(tk) = θb
∑
i∈Np

(ui(tk)− ui(tk − ε)) + θl
∑

m∈Nv(tk)
Cvm(tk) (4.17)

4.2 Heuristic Algorithm
In this section we propose a heuristic for the VNE problem, based on the one from

[NMCS11a].

53

4.2.1 Baseline Heuristic

A pseudo-code description of the baseline mapping algorithm proposed in [NMCS11a] is
shown in algorithm 1.

Let us define kj = 0...(LVj − 1) and i = 0...(LS − 1), where kj is the link number of a
given virtual link belonging to the jth VN, LVj is the number of virtual links in the same VN,
i is the link number of a given physical link, and LS is the number of links of the Substrate
Network. The virtual link stress (SLVj) of the link kj belonging to the jth VN is equal to its
allocated bandwidth: SLVj (kj) = BW (kj).

After all virtual links stresses are determined, the physical link stresses are calculated:
SLS(i) is the link stress of the ith physical link and is defined in equation (4.18), where NV

is the number of existing VNs.

SLS(i) =
NV∑
j

LVj∑
k

((SLVj (kj)|kj ⊇ i)) (4.18)

Afterwards, it proceeds with the determination of Node Stress (SN), which is a combina-
tion of the currently available Substrate Node resources and weights active Virtual Machines,
free RAM (Free RAM) amount in Mega Byte (MB), number of CPUs (N.CPU), CPU fre-
quency in MHz (CPU Frequation) and current CPU Load, which varies between 0 and N.CPU
(number of physical CPU Cores). The Λ function, defined in 4.19, determines whether or not
a virtual node nj , belonging to the jth VN, is active and running on the ith physical node.

Λ(nj , i) =
{

1 if nj ⊇ i ∧ nj is active
0 otherwise (4.19)

The Node Stress of the ith physical node is given in equation (4.20), where δ is a small
constant to avoid dividing by 0, and NVj is the number of virtual nodes on the jth VN.

SNi =
∑NV
j

∑NVj
n Λ(nj , i)

δ + Free RAM · CPU Freq · (N.CPU - Load) (4.20)

The next step is the determination of node candidates. For each virtual node, a set
of physical candidates is determined based on eliminative constraints: location, number of
CPUs, CPU frequency, free RAM amount, and available HDD space.

After determining the candidates for each virtual node, a sorting algorithm is run that
orders the virtual nodes by their number of candidates so that virtual nodes with fewer
candidates will be mapped first.

The algorithm terminates with the final node mapping and path selection. For each
possible candidate v, a CSPF algorithm to all other candidates (u) of the virtual neighbour
nodes is calculated using the previously calculated Link Stresses as weights, and the path
cost is stored (D(v, u)). The node potential is then determined using the equation (4.21),
where VC is a set containing the candidates of the neighbour virtual nodes.

π(v) =
∑
u∈VC

D(v, u) · SNv (4.21)

The algorithm terminates successfully when all the requested virtual nodes are properly
mapped, each one on a different physical node, chosen from within its candidate set, and the
best-constrained paths for each virtual link are determined.

54

Algorithm 1: Baseline Mapping Algorithm Pseudo-Code
input : Substrate (Substrate Network) , VRequest (Requested VN)
output: VMap (Mapped Virtual Network)

1 foreach Link i in Substrate.Links do

2 SLS(i) =
∑NV

j

∑LVj

k
((SLVj

(kj)|kj ⊇ i)) ;
3 end
4 foreach Node i in Substrate.Nodes do

5 SNi
=

∑NV

j

∑NVj
n

Λ(nj ,i)

δ+Free RAM·CPU Freq·(N.CPU - Load) ;

6 end
7 foreach Node n in VRequest.Nodes do
8 foreach Node i in Substrate.Nodes do
9 if MeetsConstraints(n, i) then

10 n.Candidates.Add(i) ;
11 end
12 end
13 end
14 SortVirtualNodes(VRequest) ;
15 foreach Node n in VRequest.Nodes do
16 foreach Link k connected to n do
17 ConnectedVNode=GetLinkDestination(k) ;
18 foreach SourceCandidate v in n.Candidates do
19 π(v) = 0 ;
20 foreach DestCandidate u in ConnectedVNode.Candidates do
21 D(v,u)= Cost(CSFP_Dijkstra(v,u)) ;
22 end
23 π(v) =

∑
u∈VC

D(v, u) · SNv ;
24 end
25 end
26 n.Map = v : π(v) = min(π) ;
27 end
28 foreach Node n in VRequest.Nodes do
29 VMap.Nodes ∪ n ;
30 foreach Link k connected to n do
31 ConnVNode=GetLinkDestination(k) ;
32 VMap.Links ∪ CSFP_Dijkstra(n.Map,ConnVNode.Map) ;
33 end
34 end

4.2.2 Virtual Network Embedding - Enhanced Shortest-Path Heuristic

A pseudo-code description of the Virtual Network Embedding - Enhanced Shortest-
Path Heuristic (VNE-ESPH) algorithm is shown in algorithm 2. For further details on the
VNE-ESPH algorithm, please see the appendix section B.

Two phases are considered in the baseline algorithm to embed the VNs: in the first phase,
the virtual nodes are mapped onto physical nodes using a greedy algorithm; in the second
phase, the virtual links are embedded onto physical links using the CSPF Dijkstra algorithm.
The greedy node mapping algorithm is composed by two stages:

- Pre-candidate filtering - Physical node candidates that do not satisfy one or more con-
straints (e.g. CPU, memory, HDD, and location) are excluded.

- Candidate sorting - The virtual node candidates are sorted according to the node potential.
First, the physical link stress and physical node stress are determined using equation (4.18)
and equation (4.20), respectively. Secondly, the physical node potential is determined using
equation (4.21).

With respect to the baseline algorithm (1), this one (algorithm 2) contains several changes.
First, we used a different equation to determine the node stress, SN , which is reflected at

55

Algorithm 2: Virtual Network Embedding - Enhanced Shortest-Path Heuristic
(VNE-ESPH) Pseudo-Code

input : Substrate (Substrate Network) , VRequest (Requested VN)
output: VMap (Mapped Virtual Network)

1 foreach Link i in Substrate.Links do
2 foreach VN j in Substrate.V Ns do
3 foreach Link k in j.Links do
4 if Link kj ⊇ Link i then
5 SLS(i) += SLVj

(kj) ;
6 end
7 end
8 end
9 end

10 foreach Link i in Substrate.Links do

11 SLS(i) =
∑NV

j

∑LVj

k
((SLVj

(kj)|kj ⊇ i)) ;
12 end
13 foreach Node i in Substrate.Nodes do
14 SNi

= CPU_Freq× [(M
Pused

MPtotal
)2 + (C

Pused

CPtotal
)2];

15 π(v) = 0 ;
16 end
17 foreach Node n in VRequest.Nodes do
18 foreach Node i in Substrate.Nodes do
19 if MeetsConstraints(n, i) then
20 n.Candidates.Add(i) ;
21 end
22 end
23 end
24 foreach Node n in VRequest.Nodes do
25 foreach Link k connected to n do
26 ConnectedVNode=GetLinkDestination(k) ;
27 foreach SourceCandidate v in n.Candidates do
28 foreach DestCandidate u in ConnectedVNode.Candidates do
29 D(v,u)= Cost(CSFP_Dijkstra(v,u));
30 if u.Map then
31 D(v,u)=β × D(v,u);
32 end
33 end
34 if π(v) then
35 π(v) = mean[π(v),min(∀u ∈ VC : D(v,u)] ;
36 end
37 else
38 π(v) = min[∀u ∈ VC : D(v,u)] ;
39 end
40 end
41 π(v) = π(v)× SNv ;
42 end
43 n.Map = v : π(v) = min(π) ;
44 end
45 foreach Node n in VRequest.Nodes do
46 VMap.Nodes ∪ n ;
47 foreach Link k connected to n do
48 ConnVNode=GetLinkDestination(k) ;
49 VMap.Links ∪ CSFP_Dijkstra(n.Map,ConnVNode.Map) ;
50 foreach Link i in Substrate.Links do
51 if VMap.Links then
52 SLS(i)+ = SLVn (k) ;
53 end
54 end
55 end
56 end

line 14. The former equation represented in equation (4.20) tends to balance the number
of virtual nodes per physical node, to favour nodes with lower CPU clock frequency and to

56

reduce the combination of consumed Random Access Memory (RAM) and CPU. However,
we could have physical nodes with different capacities and also virtual nodes with different
requirements, which do not cope well with the objective of distributing the virtual nodes per
physical nodes uniformly. Moreover, physical nodes could be highly loaded at the CPU and
mostly free at the RAM or the opposite, which, for the equation is totally transparent as
long as the combination of the two has the lower value. The equation proposed for the node
stress, presented in equation (4.22), tends to balance the use of both RAM and CPU, and to
favour nodes with higher clock CPU frequency.

Lines 30 to 32 are used to tune the link − path cost, D(u, v) according to neighbours.
We have set the value of β to 0.01, which reduces the link − path cost to virtual neighbours
that have been already assigned. Lines 34 to 39 are the replacement of line 32 in algorithm
(1) used to calculate the node potential i.e., π. Here, the node potential is the average of the
minimum link− path cost to all the possible candidates to virtual neighbours, multiplied by
the node stress, which is represented in line 41. Lines 50 to 54 are used to update in runtime
the link stress, SLS , of the physical links that have been already assigned to virtual links.

SNi = CPU_Freq× [(M
Pused

MPtotal
)2 + (C

Pused

CPtotal
)2] (4.22)

4.3 Mathematical Formulation
This section describes the mathematical formulation developed to solve the online VN

embedding problem with the defined constraints. For further details on the mathematical
formulation, please see the appendix section B.

An Integer Linear Programming (ILP) approach is used to solve the online VN embedding
problem; we propose a node-link formulation, and two assignment variables are applied during
the embedding process. The index notation used here is the same as in sub-section 4.1.1.3.

4.3.1 Assignment Variables

The binary variable x is used in the mapping of the virtual nodes and is defined in equation
(4.23), where xmi → NV ×NP matrix. With respect to the virtual links, the binary variable
y is used and it is represented in equation (4.24), where ymnij → (LV)2 × (LP)2 matrix.

4.3.1.1 Virtual Node Assignment

xmi =
{

1, virtual node m is allocated at physical node i
0, else (4.23)

4.3.1.2 Virtual Link Assignment

ymnij =
{

1, virtual link mn uses physical link ij
0, else (4.24)

4.3.2 Constraints

To assure the correct mapping of the virtual nodes and of the virtual links, and also to
obey to the conservation law on the capacities of the physical nodes and physical links, a set
of constraints is defined.

57

4.3.2.1 Assignment of virtual nodes to physical nodes

Equation (4.25) ensures that each virtual node is assigned, and that it is assigned to just
one physical node.

∀m :
∑
i

xmi = 1 (4.25)

4.3.2.2 One virtual node per physical node

Equation (4.26) guarantees that each physical node can accommodate in the maximum
one virtual node per VN request, although each physical node can accommodate other virtual
nodes from different VNs. This constraint is used to ensure that each virtual node is assigned
to a different physical node per VN embedding, and can be suitable in application scenarios
where it is required to have physical node diversity for redundancy reasons.

∀i :
∑
m

xmi ≤ 1 (4.26)

4.3.2.3 CPU conservation

Equation (4.27) assures that the available CPU capacity of each physical node is not
exceeded.

∀i :
∑
m

xmi · Cvm ≤ C
p
i (4.27)

4.3.2.4 Virtual Node distance

Equation (4.28) assures that the maximum distance between virtual nodes, Dv
mn, is not

violated. The maximum distance between virtual nodes is a parameter of the VN embedding
problem. The effect of this parameter on the VN embedding will be studied on a separate
section (see sub-section 4.8.4).

This parameter is given in distance units and can be used to express the maximum radius
between virtual nodes (in the simulated scenario the location of the physical nodes is set in
a grid). The distance between physical nodes, i.e. Dispij , is obtained using equation (4.1),
and K represents a large constant which is used only in situations where the virtual node n
is not mapped at the physical node i, i.e. xni = 0.

∀m,n ∈ Lvm,m < n, ∀i :
∑
j

Dispij · x
m
j ≤ Disvmn · xni + (1− xni) ·K (4.28)

4.3.2.5 Assignment of virtual links to physical links - multi-commodity flow
conservation with node-link formulation

To simultaneously optimize the mapping of virtual links and virtual nodes, the multi-
commodity flow constraint [EIS75] is applied with a node-link formulation [PM04]; moreover,
the notion of direct flows on the virtual links is used, which is represented in Eq. (4.29), where
Lvm represents all the virtual links that are directly connected with the virtual node m, and
Lpi represent all the physical links that are directly connected with the physical node i.

∀mn ∈ Lvm,m < n, ∀i :
∑
ij∈Lpi

(ymnij − ymnji) = xmi − xni (4.29)

58

4.3.2.6 Bandwidth conservation

To ensure that the available bandwidth at each physical link is not surpassed, Equation
(4.30) is defined.

∀ij ∈ Lpi , i < j :
∑

mn∈Lvm,m<n
Bv
mn(ymnij + ymnji) ≤ Bp

ij (4.30)

4.3.2.7 Link delay limit

The virtual link delay, Dv
mn, is a parameter of the VN embedding problem, and is equal

to the sum of the delay of all physical links that compose the virtual link. To ensure that the
constraint on the link delay is not violated we apply equation (4.31).

∀mn ∈ Lvm,m < n, ∀i :
∑

ij∈Lpi ,i<j
Dp
ij(y

mn
ij + ymnji) ≤ Dv

mn (4.31)

4.4 Objective Functions - Resource Allocation

One of the major challenges when formulating an ILP model for VN assignment resides
in the definition of the objective function: the allocation of resources need to be optimized
in order to support the efficiency of the corresponding VN process.

Moreover, the correct specification of the VN mapping constraints (see section 4.3) is
also a challenge of this approach. In this section, we describe the main goals that need to
be achieved when formulating an objective function for virtual network embedding; three
different objective functions are proposed to achieve these goals.

4.4.1 Objective Goals

A primary goal for the embedding algorithm is to minimize resource consumption in order
to have resources available for forthcoming VN embedding requests. Minimization of resource
consumption is only possible for the bandwidth consumption depending on the number of
links involved in an embedding process. The processing power has just to be installed exactly
in the amount required by the VN request on some physical nodes.

Resource minimization consequently means that the VNs should exhibit minimal hop
counts on their paths. This in turn means that almost every physical node should be available
to host a virtual node. As long as the resources required by VNs are small compared to
physical capacities of nodes and links, this availability is guaranteed with high probability
by a load balancing strategy, which results in some spare capacity for each physical node or
link.

Therefore, the dominating aspects in the formulation of an objective function for the ILP
problem are the minimization of bandwidth consumption and load balancing.

4.4.2 Load Balancing plus ε Shortest Path

The objective function Load Balancing plus ε Shortest Path (LB+εSP) is proposed in
equation (4.32), and it achieves two goals: the primary goal is to minimize the maximum
load per physical resources; in the case of different mapping solutions with the same maximum
utilization, the second part of the objective function is activated which will opt for the solution

59

which consumes the lowest bandwidth. LCpmax represents the overall maximum node load; LBpmax
represents the overall maximum link load. The parameters Cpi (0), Bp

ij(0), Cvm(k), Bv
mn(k)

were defined in Table 4.1; the parameter ε represents a small constant, which should be small
enough to not affect the first objective; and the parameters α and β are used to weight the
load cost of each type of resources.

minimize α · LCpmax + β · LBpmax + ε ·
∑
mn

ymnij ·Bv
mn(t),

∀i ∈ Np : C
p
i (t) +

∑
m x

m
i · Cvm(k)

Cpi (0) ≤ LCpmax

∀ij ∈ Lp :
Bp
ij(t) +

∑
mn y

mn
ij ·Bv

mn(k)
Bp
ij(0) ≤ LBpmax (4.32)

4.4.3 Shortest Distance Path

The previous objective function (4.32) works well in situations where there are abundant
resources in the physical network. Then, bandwidth consumption is of no concern and load
balancing is beneficial because it gives a high degree of flexibility in the resource allocation
process.

Nevertheless, in situations where the physical resources are scarce, it is desirable to reduce
the number of physical links consumed to the minimum possible.

Therefore, the objective function Shortest Distance Path (SDP), proposed in equation
(4.33), aims to minimize the number of physical links consumed due to the VN embedding,
while it prefers physical links with more available bandwidth, and at the same time chooses
physical nodes with more available CPU power, thereby supporting the load balancing aspect.
The parameters α and β are used to weight the cost of each type of resource. (Note that
the first term in equation (4.33) would result in a constant, if Cpi (t) was missing in the
denominator.)

minimize α

(∑
m

∑
i

xmi
Cpi (t)

)
+ β

∑
mn

∑
ij

ymnij
Bp
ij(t)

 (4.33)

4.4.4 Weighted Shortest Distance Path

The objective function Weighted Shortest Distance Path (WSDP), proposed in equation
(4.34), is similar to equation (4.33), although here the demanded capacity by the VN is
included in the objective function. This has the effect that high demands are allocated to
nodes or links with a large amount of free capacity.

minimize α

(∑
m

Cvm(k)
[∑

i

xmi
Cpi (t)

])
+ β

∑
mn

Bv
mn(k)

∑
ij

ymnij
Bp
ij(t)

 (4.34)

4.5 Re-Optimization Extension

In order to support the re-optimization process, equation (4.35) is proposed and differs
from the initial formulation (see equation 4.26), since it takes into consideration all the VNs
that are currently assigned, and not only one VN request. Equation (4.35) is also used to

60

guarantee that each physical node accommodates, in maximum, one virtual node per VN2,
where k is used to represent all VNs running on that specific physical node. However, each
physical node can accommodate, in principle, more virtual nodes from other VNs (i.e. V Nk).
For further details on the re-optimization, please see the appendix section C.

∀k, ∀i :
∑

m∈V Nk

xmi ≤ 1 (4.35)

4.6 Energy Aware - Extension
Another important objective is related with the energy consumption of the physical net-

work, and how it can be minimized by concentrating the load on the minimum amount of
physical nodes. For further details on the proposed extension for energy-aware, please see
the appendix section E.

4.6.1 Energy Consumption Minimization

One can realize from the previous objective functions that they are agnostic to energy
consumption aspects, i.e. the power-up of new nodes.

The objective function Energy Consumption Minimization (ECM), which is proposed in
equation (4.36), is energy consumption oriented and fulfills three objectives: i) to minimize
the power-up of new physical nodes including the forwarding nodes per VN embedding - this
is achieved using the parameter Pij(t) in the first term that represents the power state of
the physical nodes i, j immediately prior to the embedding, and it is used to penalize the
allocation of virtual links on physical links attached to inactive physical nodes; ii) to minimize
the number of physical links required per VN embedding - this is achieved by summing the
decision variable ymnij , which is used to represent the mapping of virtual links; iii) to minimize
the load power - this is obtained by using the second term that considers the current CPU
allocation [Cpi (t0)−Cpi (tk)] on physical node i, plus the CPU demand [Cvm(tk)] of virtual node
m over the total CPU capacity [Cpi (tk)]. This gives the CPU ratio which is then multiplied
by Pl. To not jeopardize the second objective when physical nodes i and j are active, we
consider Pij(t) to be equal to Pl. The parameters α and β are used to weight the cost of each
term of the objective function.

minimize α

 ∑
mn∈Lv ,n<m

∑
ij∈Lp

ymnij × Pij(t)

 (4.36)

+ β

(∑
m∈Nv

Pl
∑
i∈Np

xmi
Cpi (t0)− Cpi (tk) + Cvm(tk)

Cpi (t0)

)
,where

Pij(t) =

Pl, if physical node i and j are active
Pb, if physical node i and j have different states
2Pb, if physical nodes i and j are not active

4.6.2 Bandwidth Consumption Minimization

In situations where the bandwidth resource is scarce or more expensive when compared to
the CPU, it is preferable to obtain the minimum bandwidth allocation. The objective function
Bandwidth Consumption Minimization (BCM), which is proposed in equation (4.37), fulfils
this objective: bandwidth allocation minimization per VN embedding request.

2This assumption is also taken by other authors, i.e., [ZA06, YYRC08, CRB09].

61

minimize
∑

mn∈Lv ,n<m
Bv
mn(tk)

∑
ij∈Lp

ymnij (4.37)

4.7 Virtual Network Migration Extension
The VN re-embedding problem requires the re-mapping of virtual nodes and virtual links,

i.e. decision variables. On the nodes we can minimize the virtual nodes that need to be
migrated, while on the virtual links we can minimize the overall bandwidth allocation. In
this sub-section, we propose one objective function to address the VN re-embedding problem
from a cost migration standpoint: i) virtual node migration minimization; ii) bandwidth
allocation optimization. For further details on the virtual migration extension, please see the
appendix section F.

4.7.1 Node Migration and Bandwidth Consumption Minimization

The objective function Node Migration and Bandwidth Consumption Minimization (NM-BCM),
proposed in equation (4.38), aims to minimize the overall number of virtual nodes migrated,
which is achieved by using the first term of the equation. This objective function also aims to
minimize the overall bandwidth consumption in the second term. The parameter α is used to
weight the cost of each virtual node migration, and M is a set of physical nodes that require
intervention.

minimize
∑
k∈K

∑
m∈Nv

k

∑
i∈Np

xmi ×Xm
i + (4.38)

∑
k∈K

∑
mn∈Lv

k
,n<m

Bv
mn

∑
ij∈Lp

ymnij ,where

Xm
i =

0, if virtual node m is allocated
at physical node i or i ⊆M
α, otherwise

4.8 Evaluation Results
In this section, we describe the simulation scenario, the evaluation metrics, and depict

our major results. We compare the VNE-NLF model in its several versions with six state of
the art methods. Evaluation results on the extensions are also provided.

4.8.1 Baseline Heuristics

This sub-section presents a description on the baseline heuristic algorithms that have
been used as a performance comparison with the proposed mathematical formulation, i.e.
VNE-NLF. For further details on the baseline heuristics, please see the appendix section D.

4.8.1.1 Greedy Node Mapping with Shortest Path based Link Mapping (G-SP)

The G-SP [ZA06] is a two-step mapping algorithm: in the first-step, a greedy algorithm
is applied to map virtual nodes onto substrate nodes with more available resources; in the
second step, the shortest-distance path algorithm [MS97] is used to embed the virtual links.

62

4.8.1.2 Greedy Node Mapping with Splittable Link Mapping using
Multi-Commodity Flow Constraint (G-MCF)

The Greedy Node Mapping with Splittable Link Mapping using Multi-Commodity Flow
Constraint (G-MCF) [YYRC08] is also a two-step mapping algorithm: in the first-step, it
embeds the virtual nodes using a greedy node mapping algorithm (i.e. map the virtual nodes
onto substrate nodes that have more resources available); in the second it embeds the virtual
links by solving the Multi-Commodity Flow Problem (MFP) [EIS75].

4.8.1.3 Coordinated - Node-Link Mapping (C-NLM)

The C-NLM [CRB09] is still a two-step algorithm but with better node-link mapping co-
ordination: in the first step, the VN request is mapped onto “meta-nodes” and “meta-links”;
in the second step, the meta-nodes are mapped onto substrate nodes using randomized round-
ing (R-ViNE), or deterministic rounding (D-ViNE), and the virtual links are assigned to
physical paths by applying the shortest-path algorithm, or by solving the MCFP. The several
versions of this heuristic are the following: Randomized Node Mapping with Splittable Link
Mapping using Multi-Commodity Flow Constraint (R-ViNE)[CRB09], Deterministic Node
Mapping with Slipttable Link Mapping using Multi-
Commodity Flow Constraint (D-ViNE)[CRB09], Deterministic Node Mapping with Shortest
Path based Link Mapping (D-ViNE-SP)[CRB09] and Deterministic Node Mapping with Split-
table Link Mapping using Multi-
Commodity Flow Constraint and Load Balancing based (D-ViNE-LB)[CRB09].

4.8.2 Simulation Parameters

To evaluate the VNE-NLF model, we have implemented a discrete event simulator in
Matlab R©, with the proposed formulation using different objective functions.

The physical network topology is created using the Georgia Tech Internetwork Topology
Models (GT-ITM) tool [ZCB96], the number of physical nodes is set to 50, which is rep-
resentative of a medium scale infrastructure provider, and the link probability between two
physical nodes is set to 0.5. The node CPU capacity and the link bandwidth are real numbers
uniformly distributed between 50 and 100. The VNs requests are also representative of either
small or medium scale virtual networks, and are created using the same topology generation
method; the number of virtual nodes is not fixed, but follows a uniform distribution, from
2 to 10 virtual nodes per VN topology; the virtual link probability is set to 0.5. The CPU
capacity of the virtual nodes and the bandwidth of the virtual links are also real numbers
uniformly distributed between 0 and 20, and between 0 and 50, respectively2. The considered
values for the bandwidth and for the CPU are normalized, since the objective function aims
at simultaneously optimizing the allocation of both types of resources.

We assume that VN requests arrive according to a Poisson process, and that each VN has
an associated lifetime measured in time units with an average of 1/µ = 1000, following an
exponential distribution. The same assumption was also taken by the authors of [CRB09].
The average number of VN requests per time unit, i.e., value of λ, is started with 3 VN
requests per 100 time units, and increases by 1 VN request, up to 10 requests. This can give
an insight into two opposite case scenarios, with a very high and very low acceptance ratio.
For each value of λ, 10 trials are performed. A new set of VN requests and a new physical
network topology are generated for each trial. All simulations are set to run up to 50000

2These values were also considered by the authors of [YYRC08, ZA06, CRB09]

63

time units to mitigate the transient phase effect [Jai91] and to obtain the steady-state. A
confidence interval of 95% is used for all results presented below.

The evaluated embedding methods are G-SP[ZA06], G-MCF[YYRC08], R-ViNE[CRB09],
D-ViNE[CRB09], D-ViNE-SP[CRB09], D-ViNE-LB[CRB09], and the proposed linear pro-
gramming formulation, i.e. VNE-NLF, with 3 different cost functions which were described
in the previous section. All these methods are briefly summarized in Table 4.2.

The state of the art methods are simulated using an existing implementation [vin12]; to
solve the mixed integer programming on the methods G-MCF, R-ViNE, D-ViNE, D-ViNE-
LB, and D-ViNE-SP, the Gnu Linear Programming Kit (GLPK) [glp12] solver version 4.20
is used.

All the simulations for the different embedding methods were performed using an Intel R©

Xeon R© CPU X3220@2.4GHz, and the time consumed per VN request embedding was re-
gistered.

Table 4.2: Compared VN Embedding Methods.

Notation Method Description
G-SP [ZA06] Greedy Node Mapping with Shortest Path Based Link Mapping.
G-MCF [YYRC08] Greedy Node Mapping with Splittable Link Mapping using MCF.
R-ViNE [CRB09] Randomized Node Mapping with Splittable Link Mapping using

MCF.
D-ViNE [CRB09] Deterministic Node Mapping with Splittable Link Mapping using

MCF.
D-ViNE-SP [CRB09] Deterministic Node Mapping with Shortest Path Based Link Map-

ping.
D-ViNE-LB [CRB09] Deterministic Node Mapping with Splittable Link Mapping using

MCF, where αuv = βuv = 1,∀u, v, w ∈ NS .
VNE-NLF-LB+εSP VN Embedding with node-link Formulation using overall Load

Balancing; in the case of having more than one solution, it uses
Shortest Path, where ε = 1.0× 10−11.

VNE-NLF-SDP VN Embedding with node-link Formulation using overall Short Dis-
tance Path.

VNE-NLF-WSDP VN Embedding with node-link Formulation using overall Weighted
Short Distance Path.

The CPLEX R©[cpl12] version 12.2 was used to solve the linear programming problem of
the VNE-NLF; a time limit of 600 seconds is defined for each VN mapping, although most
of the VNs are embedded in hundreds of milliseconds; and the CPLEX R© was set to use only
one CPU core for comparison purposes with the remaining methods. The evaluation metrics
are the ones defined in section 4.1.5.

4.8.3 Impact of the Number of VN Requests

This sub-section presents the evaluation results as a function of the VN request rate,
for all the previously described metrics. To increase the readability of all figures, we have
considered different x values for different strategies, e.g.: 3.4, 4.4, 5.4 for G-SP; 3.3, 4.3, 5.3
for G-MCF; 3.2, 4.2, 5.2 for R-ViNE.

Before comparing the different embedding methods and algorithms, we should group
them into four different categories according to the nature of the method itself, i.e. heuristic,
heuristic combined with mixed integer programming, and linear programming:

i Heuristic - the VN embedding problem is solved using a simple algorithm; this method
performs the VN embedding very fast and a possibly sub-optimal embedding solution is

64

obtained. The method G-SP [ZA06] fits into this category;

ii Heuristic combined with Mixed Integer Programming (MIP) - the VN embedding problem
is solved in two steps: in the first step a mathematical algorithm is used to map virtual
nodes on physical nodes, and in the second step the MIP is performed to embed the
virtual links. The method G-MCF [YYRC08] fits into this category.

iii Heuristic combined with Mixed Integer Programming (MIP) and a better coordination
between mapping phases is added - the same principle is applied, as in the above cat-
egory, to solve the VN embedding problem, although a better coordination between the
mapping phases is achieved using an augmented "substrategraphconstruction” [CRB09].
The methods R-ViNE, D-ViNE, D-ViNE-SP, D-ViNE-LB [CRB09] fit into this category;

iv Integer Linear Programming (ILP) - the VN embedding problem is solved using integer
linear programming. This method obtains an optimal solution for a given cost func-
tion combining resource consumption minimization with a load balancing strategy. The
method VNE-NLF and its different objective functions fit into this category.

4.8.3.1 VN Request Acceptance Ratio

One of the main aspects of the performance of each embedding method is the VN request
acceptance ratio, which is shown in Figure 4.3 and is given by equation (4.6). As can be
observed, all methods show a linear behaviour with the variation on the VN requests, where
the acceptance ratio decays linearly with the number of VN requests, and the slope is approx-
imately the same for all methods. This decay represents the fact that there are no infinite
physical resources.

3 4 5 6 7 8 9 10

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Virtual Network Requests per time unit

A
v
e
ra

g
e
 V

ir
tu

a
l
N

e
tw

o
rk

 R
e
q
u
e
s
t
A

c
c
e
p
ta

n
c
e
 R

a
ti
o

G−SP

G−MCF

R−ViNE

D−ViNE

D−ViNE−SP

D−ViNE−LB

VNE−NLF−LB+εSP

VNE−NLF−SDP

VNE−NLF−WSDP

Figure 4.3: Average VN Acceptance ratio as a function of VN Request rate.

65

The method VNE-NLF, with its different objective functions, achieves the highest per-
formance, and it clearly outperforms the other approaches. This is expected since integer
linear programming is applied to solve the VN embedding problem, and the optimal solution,
according to the objective function considered, is obtained per VN embedding.

The reason for these results, not only resides in the usage of an integer linear programming
approach, but also in the utilization of the node-link formulation by the VNE-NLF, which
considers the universe of all possible embedding solutions, instead of a few solutions. If we
take, for example, the first case with only 3 VN requests per 100 time units, the VNE-NLF is
able to accept nearly all requests, while the remaining methods are able to accept only 70% of
the requests. The embedding method that has the lowest acceptance ratio is the D-ViNE-SP,
and the method with the highest VN request acceptance ratio is the VNE-NLF-WSDP.

It is expected that the VNE-NLF method will perform better in all cases. For instance,
if the embedding problem is feasible, i.e., possible solutions exist, the VNE-NLF will find
out the optimal solution according to the cost function. Using a heuristic approach or even
a combined approach, this is not always the case: frequently only a feasible solution will be
presented.

4.8.3.2 Node Utilization

The average node utilization as a function of the number of VN requests is depicted in
Figure 4.4. With a small number of VN requests, i.e., 3 VN requests, the node utilization
does not go beyond 20% and 35% for the heuristic group (i.e. groups i, ii, and iii) and for the
VNE-NLF, respectively. The VNE-NLF group is consuming more resources of the physical
nodes than the heuristics, which is expected according to the acceptance ratio. When the
number of VN requests is increased, the node utilization also increases, since we are trying
to accommodate more VNs on the infra-structure, but with the same amount of available

3 4 5 6 7 8 9 10

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Number of Virtual Network Requests per time unit

A
v
e
ra

g
e
 N

o
d
e
 U

ti
liz

a
ti
o
n

G−SP

G−MCF

R−ViNE

D−ViNE

D−ViNE−SP

D−ViNE−LB

VNE−NLF−LB+εSP

VNE−NLF−SDP

VNE−NLF−WSDP

Figure 4.4: Average Node Utilization as a function of VN Request rate.

66

physical resources.
An efficient embedding method in situations of high VN demand would be able to load the

nodes to their full capacity. The important aspect to retain here is how much node resources
can be loaded and what kind of embedding methods tends to saturate them firstly.

The node utilization shows a dependency on the VN acceptance ratio, as it can be per-
ceived from Figure 4.3 and Figure 4.4. To provide a better understanding on this issue, we
plot the acceptance ratio metric times the node utilization, which is shown in Figure 4.5.
We observe that the methods that make use of heuristics, e.g. G-SP, or heuristics combined
with MIP, e.g. G-MCF and D-ViNE-LB, show the same behaviour for all the VN requests
considered, i.e. the VN acceptance metric multiplied by the node utilization metric is nearly
constant. The same does not apply to the VNE-NLF, since it increases per VN request con-
sidered, until 6 VN requests per 100 time units, and beyond the 6 VN requests per 100 time
units, it shows the same behaviour as its counterparts. This means that, although the VN
request rate is increasing, the VNE-NLF approach is able to keep with this increase until the
VN embedding problem moves from an optimization problem (i.e. there are sufficient phys-
ical resources for the demand), to a feasibility problem (i.e. there are no sufficient resources
for the demand).

4.8.3.3 Link Utilization

The physical link utilization metric is plotted in Figure 4.6. Here we do not have the same
regular behaviour according to the number of VN requests for all the methods, as shown
before for the node utilization. Also, there is no consensus in terms of clearly identifying
which group causes the highest utilization on the physical links due to the embedding process.
Nevertheless, we can clearly state that, on average, either the G-MCF or D-ViNE-LB shows

3 4 5 6 7 8 9 10

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of Virtual Network Requests per time unit

A
v
e
ra

g
e
 V

N
 A

c
c
e
p
ta

n
c
e
 R

a
ti
o
 t
im

e
s
 A

v
e
ra

g
e
 N

o
d
e
 U

ti
liz

a
ti
o
n

G−SP

G−MCF

R−ViNE

D−ViNE

D−ViNE−SP

D−ViNE−LB

VNE−NLF−LB+εSP

VNE−NLF−SDP

VNE−NLF−WSDP

Figure 4.5: Average VN Acceptance Ratio times Average Node Utilization as a function of
VN Request rate.

67

3 4 5 6 7 8 9 10

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Number of Virtual Network Requests per time unit

A
v
e
ra

g
e
 L

in
k
 U

ti
liz

a
ti
o
n

G−SP

G−MCF

R−ViNE

D−ViNE

D−ViNE−SP

D−ViNE−LB

VNE−NLF−LB+εSP

VNE−NLF−SDP

VNE−NLF−WSDP

Figure 4.6: Average Link Utilization as a function of VN Request rate.

the highest utilization on the links; in the extreme case scenario (i.e. with 10 VN requests)
they have an average link utilization of 60% and 67%, respectively. With respect to the lowest
link utilization, we observe that the embedding methods R-ViNE, D-ViNE, D-ViNE-SP, and
VNE-NLF-WSDP are the ones that tend to consume less bandwidth, reaching values of 50%
of average link utilization, for the same considered situation.

Having in mind that one virtual link could be mapped in several ways, it is reasonable
to observe different behaviours according to the strategy of the method. If the strategy is to
save bandwidth, i.e. SP, the embedding will consume the least bandwidth possible per VN
mapping; if the strategy is load balancing on the links, i.e. LB, it will tend to balance the
utilization among all links in order to distribute the total load.

The link utilization also shows a dependency on the VN acceptance ratio, as can be
observed in Figure 4.3 and Figure 4.6. To provide a better understanding, we plotted the
acceptance ratio metric times the link utilization in Figure 4.7. In contrast to the node
utilization, the dependency factor on the link utilization shows a more complex behaviour: it
still increases significantly until reaching 6 VN requests for the case of the VNE-NLF group,
although it starts to decrease after 7 VN requests, in a not so expressive way. For the other
methods the dependency on the VN request rate is less pronounced.

4.8.3.4 Embedding Factor

Figure 4.8 shows the embedding factor as a function of the VN request rate, where the
weight parameters, α, and β of equation (4.9) are set to 0.5. The embedding factor slightly
decreases with the number of VN requests, except for the case of the VNE-NLF-LB+εSP.
The behaviour obtained when using the VNE-NLF-LB+εSP is as expected, since it performs
an overall load balancing of the physical nodes and links, choosing the solution that consumes
the least bandwidth. Therefore, in the situation of only a few VN requests, the method will
tend to allocate more resources than required due to the nature of the load balancing; with

68

3 4 5 6 7 8 9 10

0.2

0.25

0.3

0.35

0.4

Number of Virtual Network Requests per time unit

A
v
e
ra

g
e
 V

N
 A

c
c
e
p
ta

n
c
e
 R

a
ti
o
 t
im

e
s
 A

v
e
ra

g
e
 L

in
k
 U

ti
liz

a
ti
o
n

G−SP

G−MCF

R−ViNE

D−ViNE

D−ViNE−SP

D−ViNE−LB

VNE−NLF−LB+εSP

VNE−NLF−SDP

VNE−NLF−WSDP

Figure 4.7: Average VN Request Acceptance Ratio times Average Link Utilization as a func-
tion of VN Request rate.

a higher VN request rate, this situation tends to disappear once the available resources are
scarcer. Therefore, the embedding factor will increase with the number of VN requests. We
can also state that the efficiency of the heuristic group, in general, is very low, lower than
50%. With respect to the VNE-NLF group, it has a good efficiency, being in most of the
cases higher than 85%; the efficiency of the VNE-NLF-WSDP is closer to 100% which means
that, on average, this method provisions the same amount of resources as requested per VN.

4.8.3.5 VN Embedding Time

An important aspect of all the VN embedding methods is the time that they require to
embed, on average, a VN request and how it varies with respect to the different loads on the
physical infrastructure, i.e. the VN request rate.

Figure 4.9 shows the solving time for each method as a function of the number of VN
requests per 100 time units.

Before analyzing the figure, one must consider five different aspects: i) all methods have
been simulated using the same machine; ii) the time to embed a VN strongly depends on the
physical characteristics (e.g. CPU) of that machine; iii) the time to embed a VN strongly
depends on the nature of the embedding method (i.e. a mathematical algorithm will take just
a few milliseconds, while linear programming is expected to take hundreds of milliseconds);
iv) two different linear programming tools (GLPK was used to solve the MIP of G-MCF, R-
ViNE, D-ViNE,D-ViNE-SP, D-ViNE-LB; and CPLEX R© to solve the ILP of the VNE-NLF);
v) methods R-ViNE, D-ViNE,D-ViNE-SP, and D-ViNE-LB perform two linear programming
operations, i.e. one for the mapping of the virtual nodes, and another for the mapping of the
links.

The fourth aspect, although important for the solving time, will not interfere with the
curve behaviour, e.g. polynomial or exponential, since the same method, i.e. branch and cut,

69

3 4 5 6 7 8 9 10

0.4

0.5

0.6

0.7

0.8

0.9

Number of Virtual Network Requests per time unit

A
v
e
ra

g
e
 E

m
b
e
d
d
in

g
 F

a
c
to

r

G−SP

G−MCF

R−ViNE

D−ViNE

D−ViNE−SP

D−ViNE−LB

VNE−NLF−LB+εSP

VNE−NLF−SDP

VNE−NLF−WSDP

Figure 4.8: Average Embedding Factor as a function of VN Request rate.

3 4 5 6 7 8 9 10

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of VN Requests per 100 time units.

A
v
e
ra

g
e
 V

N
 E

m
b
e
d
d
in

g
 T

im
e
 (

s
)

G−SP

G−MCF

R−ViNE

D−ViNE

D−ViNE−SP

D−ViNE−LB

VNE−NLF−LB+εSP

VNE−NLF−SDP

VNE−NLF−WSDP

Figure 4.9: VN Solving Time as a function of VN Request rate.

is applied by both solvers (i.e. GLPK and CPLEX) to solve the VN embedding problem.
From the figure, we can observe two types of behaviours: the method VNE-NLF with

three different costs functions shows a decaying behaviour with the VN request rate; for the
remaining methods we observe a nearly constant behaviour.

70

For the first behaviour, i.e. method VNE-NLF with three different cost functions, one
should take into consideration that the VN request acceptance ratio is considerably higher,
e.g. 90% until 6 VN requests: more than one mapping solution per VN request is expected
to exist; therefore, the optimization process takes place and will consume the majority of the
solving time to obtain the optimal solution.

For the remaining methods, the VN request acceptance ratio is lower and below 70%:
usually there is not more than one mapping solution per VN request, on average, which
significantly reduces the solving time. This is the case of the methods G-MCF, R-ViNE,
D-ViNE, D-ViNE-SP and D-ViNE-LB.

We can also add that the methods R-ViNE, D-ViNE, D-ViNE-SP, and D-ViNE-LB take
twice the time on average to embed a VN compared to G-MCF. This is related with the
number of MIP problems solved per VN embedding. The latter only considers one MIP
problem per VN embedding, while the former ones consider two MIP problems.

The method that performs the embedding in the shortest time has the poorest perform-
ance (the G-SP), which solves each VN request embedding problem in an average of 20
milliseconds.

The method that requires the longest time to perform the embedding for the case of 3
VN requests has the highest performance (the VNE-NLF), using the WSDP cost function,
which takes less than 2 seconds on average for that case. However, if we increase the load,
the situation significantly changes, and the methods R-ViNE, D-ViNE and D-ViNE-LB take
more time to obtain the embedding solution. On average, they take 1 second to embed a
VN, while the VNE-NLF-WSDP consumes less than 200ms.

4.8.4 Impact of the Maximum Distance Between Virtual Nodes

To evaluate the impact on the overall performance of the different embedding methods
due to the restriction on the maximum allowed distance between virtual nodes represented
in equation (4.28), a new set of simulation experiments was performed. The VN request
arrival rate was fixed to 4 VN requests per 100 time units; the maximum distance between
virtual nodes was set to vary between 5 and 20 within intervals of 2.5 distance units; for each
considered value of maximum distance, the same set of VN requests was used. The remaining
parameters i.e., virtual network size, link probability, and number of nodes were maintained.
To increase the readability of all figures, only the best method of each group is presented in
this section: G-SP (heuristic), G-MCF (mixed integer programming - link-path), D-ViNE-LB
(mixed integer programming with better node-link embedding coordination - link-path), and
VNE-NLF-WSDP (integer linear programming - node-link).

4.8.4.1 VN Request Acceptance Ratio

Figure 4.10a depicts the VN request acceptance ratio as a function of the distance between
virtual nodes. Two different behaviours can be observed:

i The acceptance ratio increases with the distance between virtual nodes: this is the case
of the VNE-NLF group. This behaviour is expected if we consider the cases where VN
requests were initially not mapped due to the distance constraint; increasing the permitted
distance between virtual nodes will in principle result in more accepted VNs.

ii Increasing the distance between virtual nodes decreases the acceptance ratio: this is the
case of the assignment methods G-SP, G-MCF, D-ViNE-LB.

71

5 10 15 20
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Maximum Distance Between Virtual Nodes

A
v
e

ra
g

e
 V

ir
tu

a
l
N

e
tw

o
rk

 R
e

q
u

e
s
t

A
c
c
e

p
ta

n
c
e

 R
a

ti
o

G−SP

G−MCF

D−ViNE−LB

VNE−NLF−WSDP

(a) Average VN Acceptance Ratio.

5 10 15 20

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Maximum Distance Between Virtual Nodes

A
v
e

ra
g

e
 E

m
b

e
d

d
in

g
 F

a
c
to

r

G−SP

G−MCF

D−ViNE−LB

VNE−NLF−WSDP

(b) Average Embedding Factor.

Figure 4.10: Resource allocation evaluation as a function of the distance between virtual
nodes.

4.8.4.2 Embedding Factor

The embedding factor is depicted in Figure 4.10b, where three distinct behaviours can be
observed:

i The embedding factor slightly decreases with the maximum distance: this is the case of
methods G-SP and G-MCF, where these demonstrate to lose efficiency with the considered
distance.

ii The embedding factor does not vary with the maximum distance: this is the case of
method D-ViNE-LB.

iii The embedding factor increases with the maximum distance: this is the case of the VNE-
NLF group. This demonstrates that the VNE-NLF group is able to be more efficient with
the relaxation on the distance constraint equation (4.28).

4.8.5 Re-Optimization Evaluation

This sub-section presents the simulation results obtained using the optimization method
VNE-NLF, and its extension for re-optimization of virtual network embedding. Our evalu-
ation is primary focused on the minimum and maximum resource utilization on the CPU and
on the memory, and on the average bandwidth utilization.

Table 4.3: Physical Network and Virtual Network Parameters.

Parameters Physical Network Virtual Network
N. CPUs {2; 4; 6} {1; 2; 3; 4 }

CPU Frequency (GHz) {2.0 to 3.2 in 0.2 steps } {2.0 to 2.6 in 0.1 steps }
RAM Memory (GB) {2; 4; 6; 8} {64; 128; 256; 512 }

Link Bandwidth (Mbps) {500} {2.048; 8.448; 34.368}

The simulation parameters applied here are the same as in 4.8.2, except for the physical
and the VN network specifications which are presented on Table 4.3, and the VN request

72

arrival rate that is started with 0.8 VN requests per time unit, and increases by 0.2 VN
request, up to 1.8 requests. Regarding the re-optimization process, the results were obtained
using a virtual machine configured with 4 cores (Intel Xeon X5650@2.67GHz) and the CPLEX
was set to use up to 4 threads, the relative gap tolerance was set to 0.05 (i.e. feasible integer
solution proved to be within percent of optimal), and a time limit of 24 hours was used in
order to avoid long time simulations. However, most of the re-optimizations were performed
within the 24 hours’ time-frame.

The maximum and minimum CPU utilization are depicted in Figure 4.11a. We can
observe that the re-optimization process clearly reduces the maximum CPU utilization. The
gain is higher when the physical network is not loaded and lowers when the network is almost
fully loaded. The re-optimization achieves values 20% lower for a maximum CPU utilization
of 0.8 VN request per time unit, and 5% lower for 1.8 VN request per time unit. We can
observe also that the re-optimization process increases the minimum CPU utilization, where
it achieves values 25% larger for minimum CPU utilization. The variation on the number
of VN requests does not seem to affect substantially the gap between the two embedding
processes.

The maximum and minimum memory utilization is shown in Figure 4.11b. The same
behaviour, as for the maximum CPU utilization or minimum CPU utilization can be observed,
where the re-optimization process reduces significantly the maximum memory utilization.
The re-optimization achieves values 16% lower for maximum memory utilization of 0.8 VN
request per time unit, and 3% lower for 1.8 VN request per time unit. We can also observe
that the minimum memory utilization with the re-optimization process increases, where it
achieves values 25% higher for memory utilization.

Figure 4.11c shows the average bandwidth utilization as a function of the number of virtual
network requests. We can observe that applying the re-optimization reduces significantly the
average bandwidth utilization on the physical links. This gain is even higher with the increase
on the number of VN requests, reaching values 17.5% lower for 1.8 VN requests per time unit.

4.8.6 Energy-Aware Evaluation

In this sub-section, we evaluate the optimisation with respect to the energy consumption.
The evaluated cost functions are briefly summarized in Table 4.4.

The value of Pb is set to 175 units of power, while the value of Pl is set to 75 units of
power3. According to the previous values, θb is set to 0.7, while θl is set to 0.3.

Table 4.4: Compared VN Embedding Methods - Energy Evaluation.

Notation Method Description
VNE-NLF-WSDP Virtual Network Embedding

- Node-Link Formulation -
Weighted Shortest Distance
Path Minimization.

VNE-NLF-BCM Virtual Network Embedding
- Node-Link Formulation
- Bandwidth Consumption
Minimization

VNE-NLF-ECM Virtual Network Embedding -
Node-Link Formulation - En-
ergy Consumption Minimiza-
tion

3These values were also considered by the authors of [BH09].

73

0.8 1 1.2 1.4 1.6 1.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Virtual Network Requests

C
P

U
 U

til
iz

at
io

n

VNE−NLF−LB+εSP − Minimum CPU Utilization

VNE−NLF−LB+εSP−Re−Optimization − Minimum CPU Utilization

VNE−NLF−LB+εSP − Maximum CPU Utilization

VNE−NLF−LB+εSP−Re−Optimization − Maximum CPU Utilization

(a) Maximum and Minimum CPU Utilization

0.8 1 1.2 1.4 1.6 1.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Virtual Network Requests

M
em

or
y

U
til

iz
at

io
n

VNE−NLF−LB+εSP − Maximum Memory Utilization

VNE−NLF−LB+εSP−Re−Optimization − Maximum Memory Utilization

VNE−NLF−LB+εSP − Minimum Memory Utilization

VNE−NLF−LB+εSP−Re−Optimization − Minimum Memory Utilization

(b) Maximum and Minimum Memory Utilization

0.8 1 1.2 1.4 1.6 1.8
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Number of Virtual Network Requests

A
ve

ra
ge

 B
an

dw
id

th
 U

til
iz

at
io

n

VNE−NLF−LB+εSP−Re−Optimization

VNE−NLF−LB+εSP

(c) Average Bandwidth Utilization

Figure 4.11: Re-optimization evaluation as a function of VN request rate.

4.8.6.1 Physical Nodes Active

Figure 4.12a depicts the average percentage of physical nodes in the active state per VN
request rate. The number of active nodes increases with the rate of VN requests, with a
long-term trend to reach 100%. The cost function VNE-NLF-WSDP has almost all nodes in
the active state after a VN request rate of 6. The cost functions VNE-NLF-BCM and VNE-
NLF-ECM have reduced the number of active nodes by 15.0% (and 3.5%) and 36.2% (and
5.8%) for a VN request rate of 3 (and 10), when compared to VNE-NLF-WSDP, respectively.
These values are obtained using the overall number of physical active nodes and not the
percentage, as provided in the figure.

4.8.6.2 Physical Links Active

Figure 4.12b depicts the percentage of physical active links per VN request rate. From
the figure, we can observe that the percentage of active links increases with the rate of VN
requests. All the objective functions proposed have reduced the percentage of active links.
We also observe that the objective function VNE-NLF-ECM, aiming at minimizing energy
consumption, does not always achieve the lowest percentage of active links. This occurs for a
rate higher or equal to 7 VN requests, where the objective function VNE-NLF-BCM achieves
the same percentage of active physical links. Although this function does not consider any
energy parameters in its formulation, it implicitly reduces the number of active links by

74

directly minimizing the bandwidth consumption. The cost function VNE-NLF-ECM has
reduced the number of active links by 26.9% (12.2%) for a VN request rate of 3 (10), when
compared to VNE-NLF-WSDP, respectively.

4.8.6.3 Physical Network Energy Consumption

Figure 4.12c depicts the average physical network energy consumption as a function of the
VN request rate. From the figure, we can observe that energy consumption increases with the
VN request rate for all objective functions evaluated, which corroborates the results obtained
on Figure 4.12a: if more VNs are being allocated per time unit, more physical resources
need to be activated. We must also notice that the function VNE-NLF-BCM reduces the
energy consumption; this makes sense, since this function aims at minimizing the physical
bandwidth allocation, hence minimizing the overall number of forwarding nodes allocated.
The cost function VNE-NLF-BCM and VNE-NLF-ECM have reduced the physical network
energy consumption by 14.4% (3.1%) and 31.4% (3.6%) for a VN request rate of 3 (10), when
compared to VNE-NLF-WSDP, respectively.

4.8.6.4 VN Energy Consumption

Figure 4.12d depicts the average VN energy consumption as a function of the VN request
rate. Here we observe the same behaviour for all methods - the energy consumption decreases
with the rate of the VN requests, and tends to a specific bound. If we consider the result
obtained on Figure 4.12a, we can assume that this bound is mostly given by the second term
of equation (4.17), whereas the transition between power states (i.e. power-off and power-on)
is less frequent for a higher VN request rate.

The cost function VNE-NLF-BCM, which aims at minimizing the bandwidth consump-
tion, slightly increases the energy consumption per VN allocation, when compared to VNE-
NLF-WSDP. If we have in mind Figure 4.12a, we can state that the first term of equation
(4.17) has a minimal impact on the objective function VNE-NLF-WSDP per VN request,
since the majority of the physical nodes are already powered-up. Moreover, the cost function
VNE-NLF-BCM, despite minimizing the overall number of forwarding nodes allocated, it
does not minimize the number of power-up nodes per VN request, therefore requiring more
energy per VN request.

The cost function VNE-NLF-ECM, which aims at minimizing the energy consumption,
results in the lowest energy consumption per VN allocation, and reduces the energy consump-
tion per VN allocation by 50.9% (6.4%) for a VN request rate of 3 (and 10), when compared
to VNE-NLF-WSDP.

4.8.7 Virtual Network Migration Evaluation

We assume that a VN re-embedding request is triggered by a physical node maintenance
event (or eventually imminent failure), according to a Poisson process of 1 event per 500
time units. A set of physical nodes that need to be power-off for maintenance is randomly
generated, i.e. integers uniformly distributed between 1 and 50. We have considered sets of
1, 2 and 3 physical nodes, which correspond to a shutdown of 2%, 4%, and 6% of the physical
network resources. The CPU and bandwidth capacity of the nodes and links affected is set
to zero. All the simulations were performed using an Intel R© Core TM Processor i5-3210M
@2.5GHz, and the time consumed per set of VNs re-embedding is registered.

75

3 4 5 6 7 8 9 10

60

65

70

75

80

85

90

95

Number of Virtual Network Requests per time unit

A
ve

ra
ge

 N
um

be
r

of
 A

ct
iv

e
N

od
es

 (
%

)

VNE−NLF−WSDP
VNE−NLF−BCM
VNE−NLF−ECM

(a) Average Percentage of Physical Nodes Active.

3 4 5 6 7 8 9 10

40

45

50

55

60

65

70

75

Number of Virtual Network Requests per time unit

A
ve

ra
ge

 N
um

be
r

of
 A

ct
iv

e
Li

nk
s

(%
)

VNE−NLF−WSDP
VNE−NLF−BCM
VNE−NLF−ECM

(b) Average Percentage of Physical Links Active.

3 4 5 6 7 8 9 10

1700

1800

1900

2000

2100

2200

2300

2400

2500

2600

Number of Virtual Network Requests per time unit

A
ve

ra
ge

 P
hy

si
ca

l N
et

w
or

k
E

ne
rg

y
C

on
su

m
pt

io
n

VNE−NLF−WSDP
VNE−NLF−BCM
VNE−NLF−ECM

(c) Average Physical Network Energy Consump-
tion.

3 4 5 6 7 8 9 10

12

14

16

18

20

22

24

26

28

30

32

Number of Virtual Network Requests per time unit

A
ve

ra
ge

 E
ne

rg
y

C
on

su
m

pt
io

n
pe

r
V

N
 A

llo
ca

tio
n

VNE−NLF−WSDP
VNE−NLF−BCM
VNE−NLF−ECM

(d) Average Virtual Network Energy Consump-
tion.

Figure 4.12: Energy evaluation as a function of VN request rate.

4.8.7.1 Physical Network Resilience Factor

Figure 4.13a depicts the average physical network resilience factor as a function of the
VN request rate and the percentage of physical resources shutdown. The results show that
the network resilience decreases with the VN request rate and also with the percentage of
resources shutdown. On one hand, with a higher VN request rate, the number of VN requests
allocated in the physical network increases. On the other hand, by turning off more physical
resources, the number of VNs affected by the decrease of the amount of free resources does
not increase. Therefore, it penalizes the VN resilience factor. Noteworthy, the VNRE-NLF
is able to re-embed all sets of VNs affected for a VN request rate of 3, and for all considered
percentage of physical resources shutdown.

4.8.7.2 Virtual Nodes Migration

Virtual node migration is the component with the highest impact in the VN migration
execution time (see Figure 3.11). The virtual node migration process not only consumes
additional CPU of the source node and destination node, but also requires extra physical
bandwidth to transfer the virtual node between the physical nodes. Figure 4.13b presents
the average percentage of virtual nodes migrated per set of VNs affected and as a function

76

of the VN request rate. The virtual nodes previously assigned to physical nodes that need
to be turned off do not count to the overall percentage of virtual nodes migrated, since their
migration to new physical nodes is mandatory. Therefore, the percentage of virtual nodes
migrated only incorporates the virtual nodes placed on other physical nodes, and that need
to be migrated to make the assignment problem feasible. The number of nodes migrated
increases with the VN request rate and with the percentage of physical resources shutdown.
By increasing the number of VNs allocated on the physical network, i.e. VN request rate, and
the percentage of physical resources shutdown, the spare capacity of the physical network is
reduced. Hence, it is required to move more virtual nodes to make the re-embedding feasible.

4.8.7.3 Embedding Factor

Re-embedding sets of VNs is important to minimize the number of virtual nodes migrated,
and also to re-embed the virtual links in the smallest set of physical links possible, to save
bandwidth for the incoming VN requests. Figure 4.13c shows the embedding factor for
each set of VNs re-embedded and as a function of the VN request rate. The embedding
factor decreases with the VN request rate and with the percentage of physical resources
shutdown. By increasing the number of VN request rate and the percentage of physical
resources shutdown, we are not only reducing the spare capacity of the physical network, but
also making the VN re-embedding less efficient in terms of virtual link re-assignment (i.e. less
physical bandwidth is available to make it possible to re-embed the overall virtual links in
the smallest amount of physical links possible). Consequently, the network has virtual links
consuming more than one physical link.

4.8.7.4 Physical Bandwidth Allocation

It is also important to know how much bandwidth is additionally provisioned for each
set of VNs re-embedded. Figure 4.13d depicts the average percentage of additional band-
width allocation per set of VNs re-embedded and as a function of the VN request rate. The
additional bandwidth increases with the VN request rate, and also with the percentage of
physical resources shutdown. By increasing the number of VN request rate and the percent-
age of physical resources shutdown, we are implicitly increasing the percentage of virtual
nodes migrated (as stated in sub-section 4.8.7.2); if we aim at minimizing the number of
virtual nodes migrated, we will sacrifice the virtual links (i.e. longer paths are taken by the
virtual links). Therefore, it is consumed an additional bandwidth per VN request rate and
percentage of physical resources shutdown.

4.8.7.5 VN Re-embedding Time

An important aspect of a VN re-embedding method is the time that it requires to re-
embed, on average, a set of VNs, and how it varies with respect to the different loads on the
physical infrastructure, i.e. VN request rate, and with the different percentage of physical
resources shutdown. Figure 4.13e shows the solving time for each set of VNs and as a function
of the VN request rate. The solving time increases significantly with the VN request rate,
and also with the percentage of physical resources shutdown. The solving time directly
depends on the number of virtual links and virtual nodes that need to be re-embedded. By
increasing the VN request rate, we are increasing the number of VNs allocated and implicitly
the number of VNs potentially affected by a physical resource shutdown. By increasing the
percentage of physical resources shutdown, we are directly increasing the number of VNs
affected. Therefore, by increasing the number of VNs affected, we are increasing the number
of virtual nodes and links to be re-embedded and implicitly increasing the solving time.

77

4.9 Summary
This chapter proposed the VNE-NLF to solve the VN embedding problem. The model

applies optimization theory to simultaneously embed the virtual nodes and the virtual links.
Three cost functions are proposed: the LB+εSP which aims to minimize the overall load

on the network per VN embedding; the SDP which aims to minimize the number of physical
links consumed, and at the same time it chooses physical nodes with higher availability of
resources; and the WSDP which includes the demanded capacity by the VN in the objective
function.

Moreover, two new objective functions are also proposed to optimise the energy consump-
tion: BCM, which aims to minimize the bandwidth consumption, and ECM, which aims to
minimize the energy consumption.

Additionally, it is proposed the VNRE-NLF to solve the online virtual network re-
embedding problem as a simultaneous optimization of virtual nodes and virtual links, provid-
ing the optimal bound for each set of virtual networks migrated. This approach aims at
minimizing the overall VN migration cost per re-embedding: i) number of virtual nodes mi-
grated; ii) physical bandwidth consumption. Simulation experiments show how far the state
of the art heuristics are from an ILP based optimization method. The difference between
the performance of the heuristics and the VNE-NLF approach is, at least, 30% for the VN
request acceptance ratio (see Figure 4.3).

The results also showed that, not only the minimization of the bandwidth allocation is
important for the VN embedding, but also the load balancing has a significant impact. The
minimization of the bandwidth allocation positively affects the energy consumption, and
the consideration of both the bandwidth minimization allocation and the CPU load on the
objective function provides a good VN acceptance ratio.

The results also show that the virtual network resilience to migration events is directly af-
fected by the VN request rate and by the percentage of physical resources shutdown. One can
also conclude that it is not only important to have enough spare capacity to re-accommodate
the virtual nodes and virtual links affected by the physical resource shutdown, but also to have
additional capacity to accommodate virtual link re-assignments and virtual node migrations
performed to make the VN re-embedding problem feasible.

78

3 4 5 6 7 8 9 10

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

A
ve

ra
ge

 P
hy

si
ca

l N
et

w
or

k
R

es
ili

en
ce

 F
ac

to
r

Number of Virtual Network Requests per time unit

VNRE−NLF − Physical Resources Shutdown of 2%
VNRE−NLF − Physical Resources Shutdown of 4%
VNRE−NLF − Physical Resources Shutdown of 6%

(a) Average Physical Network Resilience Factor.

3 4 5 6 7 8 9 10

20

25

30

35

40

A
ve

ra
ge

 N
um

be
r

of
 V

irt
ua

l N
od

es
 M

ig
ra

te
d

(%
)

Number of Virtual Network Requests per time unit

VNRE−NLF − Physical Resources Shutdown of 2%
VNRE−NLF − Physical Resources Shutdown of 4%
VNRE−NLF − Physical Resources Shutdown of 6%

(b) Average Percentage of Virtual Nodes Mi-
grated.

3 4 5 6 7 8 9 10

0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

A
ve

ra
ge

 V
N

 E
m

be
dd

in
g

F
ac

to
r

Number of Virtual Network Requests per time unit

VNRE−NLF − Physical Resources Shutdown of 2%
VNRE−NLF − Physical Resources Shutdown of 4%
VNRE−NLF − Physical Resources Shutdown of 6%

(c) Average Embedding Factor.

3 4 5 6 7 8 9 10
2

4

6

8

10

12

14

A
ve

ra
ge

 A
dd

iti
on

al
 P

hy
si

ca
l B

an
dw

id
th

 C
on

su
m

pt
io

n
(%

)

Number of Virtual Network Requests per time unit

VNRE−NLF − Physical Resources Shutdown of 2%
VNRE−NLF − Physical Resources Shutdown of 4%
VNRE−NLF − Physical Resources Shutdown of 6%

(d) Average Additional Physical Bandwidth.

3 4 5 6 7 8 9 10

5

10

15

20

25

30

35

40

45

50

55

A
ve

ra
ge

 V
N

s
R

e−
em

be
dd

in
g

T
im

e
(s

)

Number of Virtual Network Requests per time unit

VNRE−NLF − Physical Resources Shutdown of 2%
VNRE−NLF − Physical Resources Shutdown of 4%
VNRE−NLF − Physical Resources Shutdown of 6%

(e) Average VN Re-embedding Time.

Figure 4.13: VN migration evaluation as a function of VN request rate.

79

80

Chapter 5 - Conclusions & Future Work

“Do not go where the path may lead, go
instead where there is no path and leave a
trail.”

—Ralph Waldo Emerson

With such a wide problem space and a comparable solution spectrum, it is important to
keep the proposed contributions in perspective, as well as understanding what can be done
as follow-up work on the different aspects of this Thesis. This final chapter presents the most
important conclusions on the explored topics. Guidelines for network operators are provided.
Future research directions are recommended.

81

Network virtualisation is seen as a promising approach to overcome the so-called “In-
ternet impasse” and bring innovation back into the Internet by allowing easier migration
towards novel networking approaches, as well as the coexistence of complementary network
architectures on a shared infrastructure and in a commercial context.

In this Thesis, a set of research challenges were addressed: How will the operator manage
and control the virtual resources? How to efficiently embed the virtual network requests
onto the physical network? How to seamlessly move the virtual networks across the physical
network?

5.1 Results and Achievements

In this section, we provide the major results of this PhD Thesis aligned with the previous
research challenges.

5.1.1 RAMC Framework

To fully operate and manage virtual networks, a network operator needs to have means in
his possession to perform resource allocation, monitoring and control. The RAMC framework
was developed to address the allocation and management of virtual networks. This framework
was implemented and evaluated in a small-scale testbed as a proof of concept, demonstrating
this way the feasibility to deploy virtual networks on commodity hardware.

5.1.2 Virtual Network Migration

The VN migration process is an important mechanism both for network management
purposes and for the conception and deployment of new network architectures and protocols
based on network virtualisation. The VN migration enables the virtual network to not be
physically tied to a set of hosts previously assigned, and it makes it viable to move components
of a VN or even the entire VN from one set of physical hosts to a new set on a seamless way
and on-demand.

In this Thesis, we presented the VN clone migration as an alternative to the live migration
approach. The proposed approach achieves no VN downtime, and it takes just a few seconds
to be fully performed.

Similar research works [WKB+08, PFC+10] have addressed this issue by modifying the
control of the VR. Nonetheless, these approaches are dependent on the networking protocols
which are configured on the VR. If we consider the scenario were VNs are being leased by
Infrastructure Providers to Virtual network Operators, it would not be viable to change the
control plane of the VR according to the networking protocols configured inside of the virtual
network.

5.1.3 Virtual Network Embedding

The RAMC framework allows the network operator to manage and control virtual net-
works. However, mechanisms are required to efficiently embed on-demand virtual networks
onto the substrate network. This Thesis not only proposed a heuristic algorithm to solve the
VNE problem, but also proposed a mathematical formulation to solve the VNE problem as
an optimization problem, and allowing this way to increase the potential revenue of the InP
by accepting more VN requests.

To endorse the efficient embedding requirement, three cost functions were proposed and
evaluated to optimise the resource allocation and load balancing. This Thesis also presented

82

how far the existing heuristic algorithms are from the optimal bound, and it is also proven
the feasibility to apply this method on the VNE problem.

Additionally, to simultaneously optimise the resource allocation and energy consumption,
two cost functions are proposed and also evaluated. It was demonstrated that it was possible
to save energy without affecting the resource allocation.

5.1.4 Virtual Network Re-Embedding

This Thesis also proposed the VNRE-NLF to solve the online virtual network re-
embedding problem as a simultaneous optimization of virtual nodes and virtual links, provid-
ing the optimal bound for each set of virtual networks migrated. The virtual networks proved
to be highly resilient to failures on the physical network.

5.2 Operator Recommendations

The decoupling of networks and infrastructure (and consequently the roles of network
provider and infrastructure provider) has a potentially disruptive effect on operators’ business.
For incumbent operators, this brings new opportunities, already analysed before, but also
new threats. Easier establishment of networks will enable increased competition from new
entrants; in addition, the economic attractiveness of providing network infrastructure, which
basically becomes a commodity, may be questionable in many scenarios.

Important lessons about running virtual networks should be learned from the experience
with MPLS VPNs, which most operators have been developing for more than 10 years.
Although VPNs should be seen as a limited form of network virtualisation, several problem
spaces, such as scalability, reliability and security, face relatively similar problems.

Standardization will surely play a key role to enable interoperability between different
vendors and, not less importantly, between network operators. Network virtualisation-ready
commercial products from major vendors have been launched. Standardization is therefore
essential to guarantee interoperability and avoid vendor lock-in. In addition, a clear regulat-
ory environment must exist to clearly define the roles of InPs, VNOs and VNPs, and also
how these players will interact.

The potential advantages of network virtualisation for operators are clear, in several
business scenarios and use cases: to partition network infrastructure into multiple logical
domains, to segregate different types of services (e.g. Voice Over IP (VoIP), IPTV, Internet),
or to enable coexistence of different network technologies (e.g. IPv4, IPv6).

5.3 Future Research Directions

This section explores areas for future work. The potential of network virtualisation shall
be analysed together with other relevant emergent trends, namely cloud computing and the
convergence of IT and networking. The combination of these ongoing transformations is
likely to raise an immense field of challenges to the scientific community.

One of these challenges relates to the efficient embedding of network resources and IT
resources. In this PhD Thesis, we have only focused on solving the VNE problem with network
constraints. Now, we shall add to the equation another type of node (i.e. server node) and
new requirements may advent from it, e.g. storage requirement, OS, CPU Architecture.

Another challenge relates with the virtual link negotiation between the InP domain and
the data centre domain. A distributed mechanism must be in place to self-assign virtual link
identifiers between those two domains.

83

On the other hand, it will necessary to research on how to deal with multi-domain scen-
arios: e.g. multi-networks, multi-clouds, or even a combination of both, and also multi-
operators. Additionally, with the emerging of cloud computing new business models are
arising that need further research: e.g. infra-structure as a service, network as a service,
security as a service, or even entity as service.

Moreover, it is necessary to integrate the concept of virtual networks in wireless networks.
Note that these networks currently have an increasing importance to telecommunications
operators, and therefore they have to engage the possibility of creating virtual networks in
these environments for commercial use.

Another important open research topic relates with Software Defined Networking (SDN).
The SDN architecture decouples the network control and forwarding functions enabling the
network control to become directly programmable and the underlying infrastructure to be
abstracted for applications and network services. It will of utmost interest to investigate on
how SDN and Network Virtualisation (NV) can be combined together to bring innovation,
and to alleviate the current Internet limitations.

Finally, it is necessary to investigate on to how to extend the NV of nodes and links,
embraced in this PhD Thesis, to functions of the network (NFV), such as NAT, firewall,
intrusion detection, DNS, caching.

84

Appendices

85

86

Appendix A - Network Virtualisation from
an Operator Perspective

Márcio Melo, Susana Sargento, and Jorge Carapinha

in Proceedings Conferência sobre Redes de Computadores,
Oeiras, Portugal, October, 2009.

The format has been revised.

87

Network Virtualisation from an Operator Perspective

Márcio Melo, Susana Sargento, and Jorge Carapinha

Abstract

Network virtualisation has been hailed by the research community as
a tool to enable a smooth transition to the Future Internet, by allowing
the coexistence of different architectures and protocols over the same
network infrastructure. Recently, the interest from the operators and
industry mainstream in network virtualisation has grown quite signific-
antly, as the potential benefits of virtualisation, both from an economical
and an operational point of view, become clear. So far, the concept has
been mainly a research topic and has been materialized in small-scale
testbeds and research network environments. The challenges posed by
the deployment of virtualisation in operator networks are still largely un-
known and require urgent study. In this paper, we present the 4WARD
architecture for network virtualisation and, based on this architecture,
we propose a framework for network resource control in virtualisation-
based network environments. We also present the developed virtual net-
work testbed and the first results of isolation between different virtual
networks.

88

A.1 Introduction

Network Virtualisation has gained an increasing prominence in networking and telecom-
munications fields in the last few years. Initially, the interest in network virtualisation
was mainly pushed by Future Internet research initiatives [PACR03, APST05b, FGR07b,
ZZRR08], mainly with the objective to find a platform on which novel Internet architectures
could be experimented and evaluated without limitations or constraints, namely those as-
sociated with the traditional IP model. Later on, it became clear that virtualisation could
constitute a key component of next-generation Internet architecture itself [TWEF03], and not
just as a mere platform for experimentation. Perhaps more importantly for network operat-
ors, it also became clear that network virtualisation could provide a number of short/medium
term business advantages, with potential reduction of costs and increase of revenues, as an
interesting tool from an operational point of view.

However, the large-scale deployment of network virtualisation by commercial operators
faces a number of challenges, most of which have not been fully evaluated up to now. One
of the key issues with network virtualisation is the management and control of network
infrastructure resources - more specifically, how to map, or embed, virtual resources into
physical substrate resources. Although this problem has been already addressed in the lit-
erature [ZA06, LT06, RAL03], the proposed solutions have been mainly oriented to research
network environments, overlooking key constraints and requirements of commercial operator
networks.

Network virtualisation has followed the usual development cycle, which started with re-
search and testbed experimentation through a number of research initiatives. Validation for
deployment in commercial operator networks is still largely unaccomplished and represents a
logical continuation of the research efforts so far. This paper aims at providing a contribution
in this direction. Our main focus is the management and control of network infrastructure
resources in a network virtualisation environment. We present both the concept and an exper-
imental testbed that entails the management and control of virtual networks in an operator
perspective. The starting point of this paper is the network virtualisation architecture and
business model developed in the framework of the 4WARD project [4WA10a].

The paper is organized as follows. Section A.2 provides a general overview of network
virtualisation. The 4WARD network virtualisation business model and roles are briefly ex-
plained. In particular, the interface between the virtual network provider and the infrastruc-
ture provider is analysed in some detail. Section A.3 examines the problems of resource
control in a network virtualisation environment, mainly from the point of view of the infra-
structure provider, and proposes a solution for resource negotiation and control. Section A.4
briefly describes a small-scale testbed, currently under development, with a view to future
testing and validation of this architecture. Finally, section A.5 concludes with a summary
and possible directions for future work.

A.2 Network Virtualisation Overview

A.2.1 Historical Perspective

In general, virtualisation provides an abstraction between a user and a physical resource,
in such a way that the user gets the illusion of direct interaction with that physical resource.
In the last few years, significant advances in operating system virtualisation technologies have
enabled the use of virtualisation in a growing number of contexts and applications. Products
like XEN [XEN14] and VMware [vmw14], which enable multiple operating systems to co-

89

exist securely within a single machine, are now widely used, both for server consolidation
and on desktop machines. Virtualisation gained strong attention, especially with the wide-
spread deployment of server virtualisation in data centres, enabling organizations to optimize
performance of large computing infrastructures. Unsurprisingly, the networking community
embraced the concept of virtualisation. In reality, the concept of network virtualisation is
not new – in the late 1990s, network-based IP/MPLS/VPNs [RR06] materialized the concept
of building multiple virtual IP networks over a common large scale network infrastructure.
Later on, the concept was extended to layer 2 technologies, such as Ethernet, through ser-
vices like VPWS and VPLS. However, all these incarnations of the concept were tightly
bound to a specific protocol, either layer 3 (e.g. IP) or layer 2 (e.g. Ethernet). On the other
hand, at the node level, virtualisation was elusive, in the sense that it was basically just
a separation of addressing spaces, but not a real separation of network resources. At that
time, “full-blown” virtualisation was not seen as a major requirement, and this limitation did
not prevent VPNs from being a remarkable market success. A somewhat related concept is
that of overlay network, which can be loosely, defined as a network built on top of one or
more existing, networks. Overlay networks have been often used to improve specific Internet
characteristics, such as routing, and to deploy new features, such as multicast, or Peer-to-
Peer (P2P) applications. The advantage of the overlay network approach is that deployment
can be incremental, thus circumventing the need to massively upgrade all nodes in the net-
work. But again, because of the limited visibility to the underlying network characteristics,
overlays are usually ineffective or sub-optimal. Network virtualisation, as it is viewed in this
paper, supersedes all the above variants and is based on two fundamental building blocks:
node virtualisation and link virtualisation. The main advantages of network virtualisation
realized by the industry to make network virtualisation potential going beyond the one of
future Internet scenarios, mainly to operators and service providers on a short/medium term,
are as follows [Jun09, Cis09a]:

- Reduction of costs: by using a single virtualized infrastructure to run multiple services,
CAPEX and OPEX can be reduced, compared to the typical scenario where different types
of service (e.g. voice, data, broadcast) are run in separate networks.

- Increase of revenues: by sharing infrastructure, the network operator achieves a better
utilization of the network resources and optimizes profitability.

- Flexible network planning: the swift and easy establishment of virtual networks can be
used as a safeguard against unpredictability of the service demand.

- Security and isolation: virtualisation can provide real isolation of network resources, with
benefits in terms of fault isolation, security, and performance guarantees.

- Flexibility and programmability: virtual networks can be tuned to fulfil specific service and
application requirements (e.g. security, performance, dependability), thus a “one-size-fits-
all” approach is no longer required.

A.2.2 Network Virtualisation Business Models and Roles

From a business model point of view, a very significant impact of network virtualisation is
the ability to cleanly decouple infrastructure from services, which has been pursued for a long
time but never really accomplished. This potential separation of infrastructure and services
paves the way for the creation of new business models and roles. Network virtualisation
can be deployed in a number of very different scenarios and business models but, in general,

90

it is based on three distinct roles, as defined by the 4WARD project, and represented in
Figure A.1:

1. The Infrastructure Provider (InP) deploys and runs the network physical resources,
and partitions them into isolated virtual resources using some virtualisation technology.
These resources are typically offered to virtual network operators and not to end users
(but the customer of the InP might as well be a corporation using the virtual network
for its internal use, rather than to build commercial end user services). The InP has
visibility into what resources are leased to each virtual network (VN), but not into the
protocols running inside.

2. The virtual network provider (VNP) is responsible to find and compose the adequate
set of virtual resources from one or more infrastructure providers, in order to fulfil the
virtual network operator request. The VNP leases slices of the virtualised infrastructure
from one or more InPs and puts them together. In reality, what the VNP provides is
not a network, but just an empty container where the virtual network operator builds
the protocols that will make the VN to come alive. The role of the VNP is particularly
important in scenarios where multiple InP domains are involved, but may be redundant
in the case where a VN is limited to a single network infrastructure domain.

3. In each isolated network partition, the virtual network operator (VNO) is, in principle,
free to deploy any protocol stack and network architecture, independently of the under-
lying network infrastructure technology. The VNO operates, maintains, controls and
manages the virtual network. From a functional viewpoint, the role of the VNO should
be indistinguishable from that of any operator running a native network infrastructure.
Ideally, the fact that resources are virtual, rather than physical, should not imply any
major impact from an operational point of view. VNOs have a unified view of the
network, regardless of the multiple infrastructure domains on which it is built.

It should be noted that this model does not preclude the possibility of more than one role
being played by a single entity. In a vertically integrated scenario, the three roles would be
typically played by the same operator. Yet, even in this case, a functional separation of roles
based on the model above should make sense.

A.2.3 The VNP-InP interface

The VNP-InP interface is a key aspect of the network virtualisation architecture. Through
this interface, the VNP is able to request the establishment, modification or removal of
virtual networks (supposedly, as a result of a corresponding request from the VNO). In its
turn, the InP is supposed to acknowledge the VNP requests and notify any relevant event
(e.g. a network error). The split of responsibilities and the information flow between the
VNP and the InP are therefore of the utmost importance. Ultimately, this will depend on
the information flowing through the VNP/InP interface in both directions, as illustrated in
Figure A.2. In principle, one of two basic approaches could be taken:

1. The InP announces the resources which are available to be leased by VNPs, i.e. the
internal structure of the InP infrastructure (or a virtual representation thereof) and
the current state of resources. The InP is supposed to publish this information in some
way, e.g. by means of a specific notice-board, such as proposed in [PJ06]. It is up to
the VNP to pick one or multiple InPs amongst all possible candidates, that would be
able to provide the required resources, while fulfilling any applicable constraints (e.g.
performance guarantees, cost). Since the relationship between the VNP and the InP

91

Virtual Network
Provider (VNP)

Physical
Infrastructure
Provider (InP)

Physical
Infrastructure
Provider (InP)

Physical
Infrastructure
Provider (InP)

Virtual Network
Operator (VNO)

Figure A.1: Network virtualisation business roles.

is quite straightforward, the complexity of the VNP-InP interface is quite low in this
case. This approach is appropriate for research testbeds, or whenever there is a trust
relationship between the InP and all potential VNPs; in a commercial environment this
is not likely to be the case, except perhaps in a vertically integrated scenario, in which
VNP and InP have a common business affiliation.

2. The InP exposes a minimal set of resources, namely the points of presence (PoPs) and
hides the internal structure and the state of resources. Because the VNP does not know
in advance whether the InP is able to fulfil its request, the virtual network characteristics
have to be provided to the InP and a negotiation has to be carried out through the
VNP/InP interface prior to VN establishment phase, when the resources are actually
reserved. In turn, the InP decides whether the request can be accommodated in the
physical resources and, if so, maps virtual nodes into substrate nodes and finds the
substrate path between every pair of directly connected virtual nodes. This is likely to
be the approach followed in a commercial environment, where a relationship of trust
between VNPs and InPs is not expected.

As stated before, in this paper we are mainly interested in commercial network environments;
therefore, in the following sections we are mainly focused on the second approach.

A.3 Controlling Virtual Network Resources

This section presents an architecture for automatic virtual network creation and the cor-
responding approach for control of virtual network resources. It comprises the main building
blocks of the network and their functionalities, and the communication required to provide
the virtual network creation.

92

VNP InP

InP announces available network

resources

VNP requests virtual network topology

and characteristics (e.g. link bandwidth)

Figure A.2: VNP-InP Information Flow.

A.3.1 Building blocks

Prior to the creation of a new virtual network, the InP should find the adequate physical
resources, taking into account the current state of the network and the level of occupancy of
the network resources, at that moment, in the case of an “on-the-fly” reservation, or at the
requested future time, in the case of an advance reservation. Several theoretical approaches
have been proposed to handle this problem [ZA06, LT06, RAL03]. However, these solutions
are mainly oriented to small-scale networks or research testbeds, and do not take into account
the constraints that usually apply in a commercial environment. In practice, the mapping
of virtual nodes into physical nodes is often constrained by physical location, in which case
the selection of the physical node to associate with a specific virtual node is fixed, or limited
to a small set of choices. This is the case of edge nodes, or PoPs, which for economical
reasons are supposed to be physically close to customers or end-users. Typically, at least one
virtual node should be located in each geographic area (e.g. city, region) where the service
is to be deployed. By contrast, for other types of virtual nodes, physical location is not
relevant from the VNP point of view – this is usually the case with core nodes, with no direct
connection to end users. The mapping of virtual nodes and links into physical nodes and
links should follow a set of constraints and optimization criteria to be defined by the InP
(e.g. minimum cost, resource load balance, segregation of resources according to the service
type), and can be materialized in a complex algorithm. Physical resource control and virtual
resource embedding include three basic components (Figure A.3):

1. VN admission control: the InP verifies whether there are available resources to fulfil
the virtual network request made by the VNP, and decides whether it can be accepted,
or not. VN admission control does not necessarily find an optimal solution for a VN
yet – this is supposed to be the role of resource mapping, as described below – it only
verifies that, at least, one solution can be found.

2. Resource mapping: the InP identifies the set of possible substrate nodes and links to
host the requested virtual network and selects the optimal solution.

93

3. Re-optimization: the network state keeps changing as new VNs are setup and others are
torn down, or as a result of node or link failure conditions. This often leads to inefficient
utilization of resources, in which some parts of the network infrastructure (either link
resources or node resources) become excessively loaded, while others are under-utilized.
Therefore, the capability to re-optimize the allocation of virtual resources across the
substrate network without traffic disruption, either on a periodic basis or triggered by
a specific event (e.g. when a specific resource availability threshold has been reached) is
a key VN requirement. In addition, the resource management process typically makes
use of two auxiliary components:

(a) Discovery: this function is responsible for discovering network resources and
providing them available for the admission control and mapping functions.

(b) Monitoring: this function collects real-time information from nodes and links, and
signals any significant deviation from the expected network behaviour.

A.3.2 VN Setup Negotiation Process

As explained before, it is likely that in most cases the VNP has limited knowledge of the
physical resources provided by the InP. On the other hand, there will be multiple candidate
InPs to provide the required network resources in many cases. Therefore, the VNP must be
able to inquire a set of candidate InPs and, based on their responses, select one or more that
will actually provide the network resources simultaneously and cooperatively. This requires
the VNP/InP negotiation to be divided in two stages, as depicted in Figure A.4:

1. Query: the VNP inquires the InP about the availability of resources to build a specific
VN. The InP is expected to provide a yes/no reply, possibly with additional information,
e.g. cost, QoS parameters.

2. Commit: the VNP requests the reservation of network resources and the InP enforces
the corresponding resource reservation, after establishing the mapping between virtual
and physical resources. It should be noted that virtual networks can be created “on-
the-fly”, i.e. just before the resource is required, or in advance, i.e. at some future point
in time. In either case, a time may be optionally specified for resources to be released;
otherwise, the VN will only be torn down through explicit signalling.

From the InP point of view, a relevant issue is how to map the blocks represented in
Figure A.3 into these two phases. The right hand side of Figure A.4 suggests a possible
approach, but this will be further discussed in the next section. The VNP is expected to
build the virtual network topology and define resource capacity requirements, namely link
bandwidth and node computational capability. As discussed previously, other characteristics
such as geographical location of the edge nodes will be needed in most cases. The information
provided by the VNP to the InP must contain a model of the virtual network topology as a
graph, with a set a virtual nodes and virtual links and including the applicable constraints
(e.g. link bandwidth, node computational capacity, physical location). Each virtual node and
virtual link must be characterized by a number of parameters. A tentative list of parameters
to characterise virtual networks, nodes, and links is shown in Table A.1.

A.3.3 Signalling and Control

As explained earlier the creation of a VN involves two phases, query and commit. Fig-
ure A.4 depicts the VN creation process: the left hand side represents the message flow

94

Resource Mapping/

Re-Optimization

Data

Base

Admission Control

AllocationDiscovery Monitoring

Infrastructure Provider

Resources

VN Provider

Figure A.3: InP block diagram

between the VNO and the VNP when a new VN is requested. In this example, the VNP
contacts two candidate InPs to accommodate that VN, InP X and InP Y, and then decides
to opt for InP X, based on some criterion, e.g. InP X provides the requested resources at
lower cost than InP Y. Then, the process continues with the commit phase, in which the
resources are actually reserved.

A.3.3.1 Query Phase

The process is started when the VNO sends a VN Request to the VNP, including the
VN topology and its constraints, node constrains (i.e. physical location, CPU) and link
constrains (i.e. bandwidth, delay). The VNP is then in charge of assigning a VN ID and
an ID for each virtual resource. Then a V N_Query.request message is sent to one or
more InPs. This message must contain the VN ID, the nodes/links IDs, the VN topology
and its specifications, according to Table A.1. At a first stage, the InP will perform a
VN Admission Control, checking that every requested virtual node and virtual link can be
accommodated by at least one substrate node and substrate link, respectively. If one or
more virtual nodes and/or virtual links cannot be accommodated due to lack of resources in
the substrate (i.e. insufficient bandwidth or computational resources), the process should be
stopped here and the V N_Query.response is sent to the VNP, indicating that the request
cannot be fulfilled (optionally, indicating the reason of the failure). Otherwise, if every virtual
resource can be accommodated by the substrate, then a V N_Query.response message
with a positive reply, including the VN ID, should be sent to the VNP. It should be noted
that the VN Admission Control is not expected to find the optimal solution for the virtual-to-
physical resource mapping problem yet, but only whether at least one solution exists. This is
understandable, since the resource mapping is the most complex step of this process, and in

95

Table A.1: Virtual Network Characteristics.

Network virtualisation components Parameters

Virtual network

Virtual network ID
Start time of the service
End time of the service
Class of service / reliability
Preemption level

Virtual node

Node ID
Physical location
Physical node ID
CPU
Memory
Storage

Virtual link

End points
Traffic characteristics
Reliability level
QoS isolation level

many cases, the query will not be followed by a corresponding commit. However, this may not
be the case in all circumstances, and the InP may decide to go further than just performing
admission control. So, optionally, at a second step, the InP may perform a pre-reservation by
mapping the VN into the network infrastructure, making use of an optimization algorithm,
knowing a priori that every requested virtual resource can be accommodated. The choice of
the first available or optimal solution may be based on different criteria, such as: preferring
substrate nodes with more plentiful resources, selecting substrate links with more available
bandwidth, link aggregation (i.e. virtual link that maps into 2 substrate links) and link
segmentation (i.e. virtual link spanning through multiple substrate links). After obtaining
the best solution, the InP must perform a reservation (at this stage, at logical level only) of the
concerned substrate resources. This reservation will be cancelled if a specific timeout expires
without any effective reservation being made by a corresponding V N_Commit.request
from the VNP, and the reserved resources will be released again. Optionally, this timeout
should be included in the V N_Query.response message.

A.3.3.2 Commit Phase

If the VNP receives one or more positive responses from the candidate InPs in the query
phase, the process will typically continue with the selection of the InP (if more than one
candidate InP answered positively), followed by a V N_Commit.request, with the cor-
responding VN ID. After receiving the V N_Commit.request, the InP verifies whether
a pre-reservation exists for the given VN ID and if it is still valid. If so, it proceeds with
the allocation of the virtual resources. After allocating each virtual resource, it sends a
V N_Commit.response, including the VN ID and the ID of each virtual resource. If the
VN ID is not valid or the pre-reservation has expired, or if for some reason it cannot allocate
any particular virtual resource, the InP should send a V N_Commit.response indicating
the reason of the negative response. If a pre-reservation has not been performed beforehand,
then the complete process has to be executed. A potential issue in this case is that, because
no resources have been reserved, it may be the case that when the commit request arrives,
the resources are no longer available. Thus, from the point of view of the InP, there is a
trade-off between increasing the complexity of the query phase and improving the reliability
of the whole process.

96

VN Operator InP X InP Y

VN Request

VN_Commit.request

VN_Commit.response

VN_Query.request

VN_Query.request

VN_Query.response

VN_Query.response

Query Phase

Commit Phase

VN Response

VN

Admission

Control

Resource

Mapping

Allocation

VN Provider

Figure A.4: VN creation sequence chart and flow diagram.

A.4 A Virtual Network Control Testbed

To demonstrate the concept of network virtualisation, it was implemented a small scale
testbed with 7 substrate nodes, 1 server, 4 routers with no routing protocol running and 2
clients. Figure A.5 depicts the implemented testbed. On top of the substrate network, 2
VNs were created manually, VN 1 and VN 2; XEN hypervisor [XEN14] was used for the
creation of the Virtual machines. Regarding that some virtual machines will act as routers,
for instance VRouter1-1, the Extensible Open Router Platform (XORP) [xor14] was installed
in each of them (i.e. virtual router) and the Open Shortest Path First (OSPF) protocol was
configured as a routing protocol. In the virtual servers, a video stream will be activated
through VLC media player [vlc14], and the virtual servers will stream a video across the
VNs; VLC was also installed in the clients. To enable the virtual links, VLANs [VLA14] were
configured in each substrate link, VLAN2 for VN1 and VLAN3 for VN2. The VNs are similar
in terms of topology, and the virtual resources belonging to VN1 have the same IP address
as the corresponding resources in VN2. Our experiment starts with virtual server (VServer)
1 and 2 streaming two different videos. With the OSPF protocol, stream 1 is forced to use
Virtual Router1-2 (VRouter) by giving lower port cost to it in VRouter1-1, and the stream
2 is forced to use VRouter2-2. The clients will immediately start receiving the corresponding
stream. After a while, the connection between Router1 and Router2 is broken, causing
the breakdown of the corresponding virtual links, between VRouter1-1 and VRouter1-2 and
between VRouter2-1 and VRouter2-2. Therefore, stream 1 will be interrupted, and stream
2 will continue without problems since it is not using that connection. After a couple of
seconds, stream 1 will be restored and will be using the virtual link between VRouter1-1 and
VRouter1-3 and between VRouter1-3 and VRouter1-4 in a different virtual network from
the stream 2. The recovery time is just due to OSPF converging process. Stream 1 will
have no influence in stream 2: the measured round trip time of the packets in stream 2 did
not change with the recovery of stream 1. Both streams will be using the same path but in
different virtual networks. This demonstrates the isolation between VN1 and VN2 in terms
of performance and IP addressing.

This testbed will be the basis for more complex experiments in the future, such as resource

97

VNet1

VNet2

VServer2
VRouter2-1

VRouter1-1VServer1

Server Router1

Router2

Router3

Router4

Client1

Client2

VRouter2-2

VRouter2-3

VRouter2-4

VRouter1-2

VRouter1-3

VRouter1-4

Client1

Client2

Network

Figure A.5: Network Virtualisation Testbed

management algorithms, and the support of automatically controlled VNs.

A.5 Conclusion and Future Work
A new Architecture for Network Virtualisation based on the 4WARD project has been

presented: it promotes the deployment of new protocols and enables the emergence of new
players in the telecommunications market. A new role has been defined, the one of the Virtual
Network Provider; this element will trigger the competition and/or cooperation among dif-
ferent Infrastructure Providers to provide substrate resources. The Virtual Network creation
process has been explained, including the several processes of admission control, resource
mapping and allocation. The entities responsible for each process were also described, and
a special focus has been included in the internal composition of the Infrastructure Provider.
As can be seen from the testbed description, the base testbed is running with manual in-
tervention for virtual networks control. Currently, we are working on the deployment of a
management and control solution for network virtualisation that will enable the automatic
creation and deletion of Virtual Networks. Moreover, we will also work on an optimal al-
gorithm for resource management between different virtual networks, taking into account the
Infrastructure Provider constraints.

98

Appendix B - Virtual Network Mapping -
An Optimization Problem

Márcio Melo, Jorge Carapinha, Susana Sargento, Luis Torres,
Tran Phuong Nga, Andreas Timm-Giel, and Ulrich Killat

in Mobile Networks and Management Lecture Notes of the In-
stitute for Computer Sciences, Social Informatics and Tele-
communications Engineering, vol. 97, pp 187-200, 2012.

The format has been revised.

99

Virtual Network Mapping - An Optimization
Problem

Márcio Melo, Jorge Carapinha, Susana Sargento, Luis Torres, Tran
Phuong Nga, Andreas Timm-Giel, and Ulrich Killat

Abstract

Network Virtualisation is acclaimed to be a key component for the
Future Internet by enabling the coexistence of heterogeneous (virtual)
networks on the same physical infrastructure, providing the dynamic
creation and support of different networks with different paradigms and
mechanisms in the same physical network. A major challenge in the
dynamic provision of virtual networks resides on the efficient embedding
of virtual resources into physical ones. Since this problem is known to
be NP-hard, previous research focused on designing heuristic-based al-
gorithms; most of them do not consider a simultaneous optimization of
the node and the link mapping, leading to non optimal solutions. This
paper proposes an integer linear programming formulation to solve the
Virtual Network embedding problem, as a simultaneous optimization
of virtual nodes and links placement, providing the optimal boundary
for each VN mapping. A link − node formulation is used and the
multi-commodity flow constrain is applied. In addition, a heuristic al-
gorithm for VN embedding is also proposed and compared against the
optimal formulation. The performance of the ILP formulation and of the
heuristic are evaluated by means of simulation. Simulation experiments
show significant improvements of the VN acceptance ratio, on average
additional 10% of the VN requests are accepted when using the ILP
formulation, which corresponds, on average, to more 7 virtual networks
accommodated on the physical network.

100

B.1 Introduction

Network Virtualisation has gained an increasing prominence in networking and telecom-
munications fields in the last few years. Initially, the interest in network virtualisation
was mainly pushed by Future Internet research initiatives [PACR03, APST05b, FGR07b,
ZZRR08], mainly with the objective to find a platform on which novel Internet architectures
could be experimented and evaluated without limitations or constraints, namely those as-
sociated with the traditional IP model. Later on, it became clear that virtualisation could
constitute a key component of next-generation Internet architecture itself [TWEF03], and not
just as a mere platform for experimentation. Perhaps more importantly for network operat-
ors, it also became clear that network virtualisation could provide a number of short/medium
term business advantages, with potential reduction of costs and increase of revenues, as an
interesting tool from an operational point of view [CJ09, MSC09]. Although there is a large
interest on virtualized networks both from the research community and network operators,
several challenges still prevent it from being deployed on real environments [CB09]. One
of the major obstacles lies in the efficient embedding1 of a virtual network onto a physical
network. Since this process requires the simultaneous optimization of virtual nodes and links
placement, it is complex in nature and requires large amounts of computing power. Some
authors, such as [ZA06, LK09, LT06, YYRC08, CRB09, FBCB10, NMCS11a], have already
proposed solutions to this problem, mostly based on heuristic approaches, but have failed to
provide the optimal solution for each VN mapping.

In this paper we propose a linear integer programming formulation to solve the virtual
network assignment problem and to provide the optimal boundary for each VN embedding.
The formulation supports heterogeneous virtual and substrate networks. In addition, we
propose an heuristic algorithm based on [NMCS11a] to solve the VN assignment problem.
Simulation experiments show significant improvements of the VN acceptance ratio: on av-
erage more 10% of the VN requests are accepted which corresponds to 7 more embedded
virtual networks on the physical network. The paper starts with the discussion of the related
work on existent mapping algorithms B.2. Section B.3 describes the network embedding
problem, specifies the ILP model and shortly summarizes the enhancements proposed to a
mapping heuristic based on [NMCS11a]. Section B.4 analyzes the performance of both the
ILP optimization model and corresponding heuristic, and section B.5 concludes the paper
and describes the future work.

B.2 Related Work

This simultaneous nodes’ and links’ mapping optimization can be formulated as an un-
splittable flow problem [ZA06, And02], known to be NP-hard, and therefore, it is only
tractable for a small amount of nodes and links. In order to solve this problem, several
approaches have been suggested, mostly considering the off-line version of the problem where
the VN requests are fully known in advance.

In [LK09] a backtracking method based on subgraph isomorphism was proposed; it con-
siders the on-line version of the mapping problem, where the VN requests are not known
in advance, and proposes a single stage approach where nodes and links are mapped simul-
taneously, taking constraints into consideration at each step of the mapping. When a bad
mapping decision is detected, a backtrack to the previous valid mapping decision is made,
avoiding a costly re-map.

1The terms embedding, mapping and assignment are used interchangeably in this paper

101

The work in [LT06] defines a set of premises about the virtual topology, i.e. the backbone
nodes are star-connected and the access-nodes connect to a single backbone node. Based on
these premises, an iterative algorithm is run, with different steps for core and access mapping.
However, the algorithm can only work for specific topologies.

A distributed algorithm was studied in [HLZ08]. It considers that the virtual topologies
can be decomposed in hub-and-spoke clusters and each cluster can be mapped independently,
therefore reducing the complexity of the full virtual network mapping. This proposal has
lower performance and scalability, when compared with centralized approaches.

Zhu et al. [ZA06] proposed a heuristic, centralized, algorithm for dealing with VN em-
bedding. The goal of the algorithm is to maintain a low and balanced stress of both nodes
and links of the substrate network. However, the stress of nodes and links do not consider
heterogeneity on their characteristics.

Yu et al. [YYRC08] propose an embedding algorithm which considers finite resources
on the physical network, and enables path splitting (i.e. virtual link composed by different
paths) and link migration (i.e. to change the underlying mapping) during the embedding
process. However, this level of freedom can lead to a level of fragmentation that is infeasible
to manage on large scale networks. In [CRB09], it was taken a formal approach to solve the
on-line VN embedding problem using a mixed integer programming formulation in a two-step
approach. This approach, despite providing a better coordinated node and link mapping, it
does not solve the VN assignment problem as an overall, and does not support heterogeneity
of nodes.

Butt et al. [FBCB10] proposed a topology awareness heuristic for VN embedding and
also suggest some algorithms to avoid bottlenecks on the physical infrastructure, where they
consider virtual node reallocation and link reassigning for this purpose. Nogueira et al.
[NMCS11a] proposed a heuristic that takes into account the heterogeneity of the VNs and
also of the physical infrastructure. The algorithm is evaluated by means of simulation and also
on a small scale testbed, where it achieves mapping times of the order of tens of milliseconds.

Although all these algorithms provide a solution for the virtual network mapping problem,
most of them fail to provide the optimal boundary for each VN mapping. Also, some of them
fail to solve the assignment problem as a simultaneous optimization of the virtual node
placement and of the virtual link placement, which lead to non optimal solutions.

B.3 Problem Description and ILP Model Formulation

In this section, we start with the description of the VN assignment problem. The ILP
model formulation is then presented, followed by a proposal of enhancement of a heuristic
based on [NMCS11a].

B.3.1 Virtual Network Assignment Problem Description

First, we start with the convention used for the index notation: we use i, j for nodes and
links in the physical network, and m,n for nodes and links in the virtual network.

We consider that we have a physical network with a given number of nodes, N, and with a
random topology, as depicted in figure B.1a. Each node is described by the number of CPU,
which correspond to letter C in the Figure, the clock CPU frequency, F, and by the RAM
amount he possesses, M. With respect to the links, we consider the bandwidth capacity, B,
and we assume that each link is an unidirectional link. Virtual networks are described the
same way as physical networks, as shown in Figure B.1b. We use the letter P when we want

102

to refer to the physical resources, e.g. CP , and the letterV is used for virtual resources, e.g.
CV .

(a) Example of a substrate network topology de-
scription

(b) Example of a virtual network topology descrip-
tion

Figure B.1: Network Topology Description

The CPU capacity, the RAM size and the CPU frequency of the nodes is stored in a array
with NP entries, e.g. CP → NP × 1.

We denote the total CPU capacity (the initial capacity) by CPtotal , the non allocated
capacity is denoted by CPfree , and the used capacity is denoted CPused , where CPtotal =
CPused + CPfree . The same notation is used for the RAM. We use the adjacency matrix
(B.1), AP → NP ×NP , to describe the connectivity of the physical network, and (B.2) to
describe the connectivity of the virtual network, AV → NV ×NV .

APij =
{

1, the physical node i is neighbour of j
0, else (B.1)

AVmn =
{

1, the virtual node m is neighbor of n
0, else (B.2)

B.3.2 Integer Linear Programming Problem Formulation

We use an ILP formulation [Wol00] to solve the embedding problem of VNs . Here we
only use two assignment variables for the virtual network mapping: for the virtual nodes,
we use the binary variable x shown in equation (B.3), where xmi → NV × NP matrix;
for the virtual links, we use the binary variable y represented in equation (B.4), where
ymnij → (NV)2 × (NP)2 matrix (4-dimensional).

Our objective function is represented in equation (B.5) and is divided into two parts.
Our primary goal is to minimize the maximum load per physical resource and, in the case
of having different mapping solutions with the same maximum utilization, the second part
of the objective function is activated which will opt for the solution that consumes the less
physical links.

103

The maximum load at each different resource, i.e. memory RAM load (Mload), the
CPU load (Cload), and the link load (Bload), are represented in equations (B.6),(B.7),(B.8),
respectively. We multiply the CPU frequency by the CPU load in equation (B.6) and by the
RAM load in equation (B.7), in order to firstly use physical nodes with lower frequency and
to preserve the remaining for virtual nodes with higher frequency demands.

Equation (B.9) ensures that each virtual node is assigned and it is assigned to just one
physical node, and equation (B.10) guarantees that each physical node can accommodate
in maximum one virtual node per virtual network request, although each physical node can
accommodate other virtual nodes from different VNs. We use equations (B.11) and (B.12)
to make sure that we do not exceed the available capacity of all physical nodes, and we use
equation (B.13) to guarantee that we do not violate that requirement on the CPU frequency.

In order to optimize the mapping of the virtual links and at the same time to cope with the
optimization of the virtual nodes, we apply the multi-commodity flow constraint [EIS75] with
a node− link formulation [PM04], and we also use the notion of direct flows on the virtual
links, which are represented in equation (B.14). To ensure that we have enough bandwidth
available at each physical link, we use equation (B.15).

Assignment Variables

xmi =
{

1, virtual node m is allocated at physical node i
0, else (B.3)

ymnij =
{

1, virtual link mn uses physical link ij
0, else (B.4)

Optimization Function

minimize Cmax
load +Mmax

load +Bmax
load + ε×

∑
m,n∈NV (m),n<m

ymnij ×B
V
mn (B.5)

Constraints
Derived from the Optimization Function

∀i : F Pi ×
CPused
i +

∑
m x

m
i × CV

m

CPtotal
i

≤ Cmax
load (B.6)

∀i : F Pi ×
MPused +

∑
m x

m
i ×MV

m

MPtotal
i

≤Mmax
load (B.7)

∀i, j ∈ NP (i), i < j :
BPused
ij +

∑
m,n∈NV (m) y

mn
ij ×BV

mn

BPtotal
ij

≤ Bmax
load (B.8)

Assignment of virtual nodes to physical nodes

∀m :
∑
i

xmi = 1 (B.9)

One virtual node per physical node

∀i :
∑
m

xmi ≤ 1 (B.10)

CPU conservation

104

∀i :
∑
m

xmi × C
V
m ≤ C

Pfree

i (B.11)

Memory conservation

∀i :
∑
m

xmi ×M
V
m ≤M

Pfree

i (B.12)

Frequency limitation

∀i :
∑
m

xmi × F
V
m ≤ F

P
i (B.13)

Multi-commodity flow conservation with link − node formulation

∀m,n ∈ NV (m),m < n,∀i :
∑

j∈NP (i)
(ymnij − y

mn
ji) = xmi − x

n
i (B.14)

Bandwidth conservation

∀i, j ∈ NP (i), i < j :
∑

m,n∈NV (m),m<n
BV
mn × (ymnij + ymnji) ≤ BPfree

ij (B.15)

B.3.3 Mapping Heuristic Algorithm

In this section we propose a heuristic for network embedding, based on the one from
[NMCS11a]. A pseudo-code description of the mapping algorithm is shown in algorithm
3. With respect to the base algorithm, this one contains several changes. First, we used
a different equation to determine the node stress, SN , which is reflected at line 14. The
former equation represented in equation (B.16) tends to balance the number of virtual nodes
per physical nodes, to favour nodes with lower CPU clock frequency and to reduce the
combination of consumed RAM and CPU. However, we could have physical nodes with
different capacities and also virtual nodes with different requirements, which do not cope well
with the objective of distributing the virtual nodes per physical nodes uniformly; moreover,
physical nodes could be highly loaded at the CPU and mostly free at the RAM or the opposite,
which, for the equation is totally transparent as long as the combination of the two has the
lower value. The equation proposed for the node stress, presented at line 14, tends to balance
the use of both RAM and CPU, and to favour nodes with higher clock CPU frequency.

Lines 30 to 32 are used to tune the link− path cost, D(u, v) according to neighbours.
We have set the value of β to 0.01, which reduces the link−path cost to virtual neighbours
that have been already assigned. Lines 34 to 39 are the replacement of line 32 in [NMCS11a]
used to calculate the node potential i.e., π. Here, the node potential is the average of the
minimum link − path cost to all the possible candidates to virtual neighbours, multiplied
by the node stress, which is represented in line 41. Lines 50 to 54 are used to update in
runtime the link stress, SLS , of the physical links that have been already assigned to virtual
links.

SNi =
∑NV
j

∑NVj
n Λ(nj, i)

ε+ Free RAM · CPU Freq · (N.CPU - Load)
(B.16)

105

Algorithm 3: Mapping Algorithm Pseudo-Code
input : Substrate (Substrate Network) , VRequest (Requested VN)
output: VMap (Mapped Virtual Network)

1 foreach Link i in Substrate.Links do
2 foreach VN j in Substrate.V Ns do
3 foreach Link k in j.Links do
4 if Link kj ⊇ Link i then
5 SLS(i) += SLVj

(kj) ;
6 end
7 end
8 end
9 end

10 foreach Link i in Substrate.Links do

11 SLS(i) =
∑NV

j

∑LVj

k ((SLVj
(kj)|kj ⊇ i)) ;

12 end
13 foreach Node i in Substrate.Nodes do
14 SNi

= CPU_Freq× [(MPused

MPtotal
)2 + (CPused

CPtotal
)2];

15 π(v) = 0 ;
16 end
17 foreach Node n in VRequest.Nodes do
18 foreach Node i in Substrate.Nodes do
19 if MeetsConstraints(n, i) then
20 n.Candidates.Add(i) ;
21 end
22 end
23 end
24 foreach Node n in VRequest.Nodes do
25 foreach Link k connected to n do
26 ConnectedVNode=GetLinkDestination(k) ;
27 foreach SourceCandidate v in n.Candidates do
28 foreach DestCandidate u in ConnectedVNode.Candidates do
29 D(v,u)= Cost(CSFP_Dijkstra(v,u));
30 if u.Map then
31 D(v,u)=β × D(v,u);
32 end
33 end
34 if π(v) then
35 π(v) = mean[π(v),min(∀u ∈ VC : D(v,u)] ;
36 end
37 else
38 π(v) = min[∀u ∈ VC : D(v,u)] ;
39 end
40 end
41 π(v) = π(v)× SNv ;
42 end
43 n.Map = v : π(v) = min(π) ;
44 end
45 foreach Node n in VRequest.Nodes do
46 VMap.Nodes ∪ n ;
47 foreach Link k connected to n do
48 ConnVNode=GetLinkDestination(k) ;
49 VMap.Links ∪ CSFP_Dijkstra(n.Map,ConnVNode.Map) ;
50 foreach Link i in Substrate.Links do
51 if VMap.Links then
52 SLS(i)+ = SLVn (k) ;
53 end
54 end
55 end
56 end

B.4 Evaluation Results
In this section, we describe the simulation scenario and depict our major results. Our

evaluation is primarily focused on the VN acceptance ratio according to different number of

106

Table B.1: Physical Nodes Pool Parameters.

N. CPUs {2; 4; 6}
CPU Frequency (GHz) {2.0 to 3.2 in 0.2 steps }
RAM Memory (GB) {2; 4; 6; 8}

Link Bandwidth (Mbps) {500}

Table B.2: Virtual Nodes Pool Parameters.

N. CPUs {1; 2; 3; 4 }
CPU Frequency (GHz) {2.0 to 2.6 in 0.1 steps }
RAM Memory (MB) {64; 128; 256; 512 }

Link Bandwidth (Mbps) {2.048; 8.448; 34.368}

demands, i.e. average number of VN requests per time unit, and also on how many VNs can
be accommodated on the physical network using the proposed model. We also compare the
proposed ILP model with the heuristic proposed in the previous section.

B.4.1 Simulation Parameters

In order to evaluate the ILP model according to different number of VNs requests per
time unit, we have implemented a discrete event simulator in Matalab R©.

The physical network topology was created using the Waxman random topology gen-
eration method [Wax88], with 30 substrate nodes. The recommended parameters for link
probability, α = 0.4 and β = 0.1, were used although some topologies did not have full
connectivity, i.e. one physical node with no viable path to all the remaining nodes (e.g. a
node with no links or non connected clusters). In order to circumvent this, after generating
the topology, additional links were added to the nodes with fewer interfaces until total con-
nectivity was reached. For each substrate node, a set of parameters was randomly attributed,
from a pool of possible ones, using an uniform distribution, such as RAM amount, number
of CPUs and CPU frequency. The physical link’s bandwidth was set at a fixed bitrate. The
set of parameters is presented on Table B.1.

The virtual networks were generated using the same model, although the number of virtual
nodes follows a uniform distribution, from 2 to 10. After generating the virtual topology,
the same set of specifications was assigned, with a uniform distribution. The virtual nodes
specification pool can be observed on Table B.2.

We assume that VN requests arrive according to a Poisson distribution and that each VN
has an associated lifetime with an average of µ = 100, following an exponential distribution.
Regarding the average number of VN requests per time unit, we have started with 0.8 VN
requests per time unit and we have increased by intervals of 0.2 until reaching 1.8. For each
different demand, i.e. value of 1/ λ, 10 trials were performed. A new set of VNs requests
and a new physical network topology were generated for each trial and for each value of 1/
λ. All simulations were set to run until 1000 time units. A confidence interval of 95% is used
for every result presented below.

We have used CPLEX R©[cpl12] version 11 to solve the linear programming problem, and
a time limit of 600 seconds was defined for each VN mapping, although most VNs were
embedded in hundred of milliseconds.

107

B.4.2 Simulation Results

We use several performance metrics to evaluate the optimal model and heuristic. We
measure the acceptance ratio and the number of accommodated VNs as a function of the
number of requests. We also measure the average memory RAM and CPU utilization on the
nodes, and the average bandwidth utilization on the links. In all these cases, we plot the
performance metrics as function of the number of VN requests per time unit.

Figure B.2a presents the VN acceptance ratio of the proposed ILP model (’optimal’) and
of the modified heuristic (’heuristic’) for different number of requests (’number of demands’).
As can be observed, the acceptance ratio decays linearly with the number of requests for both
mapping methods. For instance, with a 1/λ = 0.8, i.e. 0.8 VN request per time unit, nearly
all the virtual networks are accepted when using the ILP model, while with the heuristic only
85% of the requests are accepted.

The average number of accommodated VNs per request is depicted in Figure B.2b. The
number of accommodated VNs increases linearly with the number of demands for both em-
bedding methods, although the ILP model embeds on average seven more VNs.

The remaining results concern the average utilization of the different types of resources:
memory RAM and CPU for the physical nodes, and bandwidth for physical links according
to the VN requests. Figure B.2c shows the average CPU utilization for different number of
demands. With the ILP model, there is an increase of the CPU utilization with the increase
of requests, reaching 80% while the heuristic maintains the utilization at 50%. The average
memory RAM utilization according to different demands is depicted in Figure B.2d. Both
mapping methods produce an increase of memory utilization with the number of requests,
reaching a stable value at 84% for the ILP model and 71% for the heuristic. The average
bandwidth utilization is depicted in Figure B.2e. Again, with both mapping methods, there
is an increase of the resource utilization, with the optimal model reaching higher utilization
values.

108

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of demands

V
irt

ua
l N

et
w

or
k

A
cc

ep
ta

nc
e

R
at

io

Optimal
Heuristic

(a) Average acceptance ratio

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
45

50

55

60

65

70

75

80

85

90

95

Number of demands

N
um

be
r

of
 A

co
m

m
od

at
ed

 V
irt

ua
l N

et
w

or
ks

Optimal

Heuristic

(b) Average number of accommodated virtual net-
works

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of demands

C
P

U
 U

til
iz

at
io

n

Optimal
Heuristic

(c) Average CPU utilization

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of demands

M
em

or
y

U
til

iz
at

io
n

Optimal

Heuristic

(d) Average memory utilization

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of demands

B
an

dw
id

th
 U

til
iz

at
io

n

Optimal
Heuristic

(e) Average bandwidth utilization

Figure B.2: Evaluation Metrics per demand.

109

B.5 Conclusion
This paper proposed an ILP model to solve the virtual network embedding problem and to

provide the optimal boundary for each VN mapping. The model applies optimization theory
and simultaneously optimizes the virtual nodes and the virtual links assignment, supporting
heterogeneous virtual and substrate networks. This paper also proposed a heuristic algorithm
that is used as comparison with the ILP model.

The obtained results show significant improvements of the VN acceptance ratio, when we
compare the ILP model with the heuristic. In average, the ILP model is able to map additional
10% VN requests. Translating in the number of extra virtual networks accommodated on
the physical network, on average 7 more VNs are accommodated. The ILP model is able to
load the resources to a maximum of 80% on average, with a high VNs demand, while the
heuristic does not go beyond 70%.

Future work will endorse the global optimal solution (which may require reassignment of
previously mapped virtual nodes or links), and the migration of virtual nodes and networks.
Scalability issues will also be addressed.

110

Appendix C - A Re-Optimization Ap-
proach for Virtual Network
Embedding

Marcio Melo, Jorge Carapinha, Susana Sargento,Ulrich Killat,
and Andreas Timm-Giel

in Mobile Networks and Management Lecture Notes of the In-
stitute for Computer Sciences, Social Informatics and Tele-
communications Engineering, vol. 58, pp 271-283, 2013.

The format has been revised.

111

A Re-Optimization Approach for Virtual Network
Embedding

Marcio Melo, Jorge Carapinha, Susana Sargento,Ulrich Killat, and
Andreas Timm-Giel

Abstract

Network Virtualisation is claimed to be a key component of the Future
Internet by enabling the coexistence of heterogeneous (virtual) networks
in the same physical infrastructure, providing the dynamic creation and
support of different networks with different paradigms and mechanisms
in the same physical network. A major challenge in the dynamic pro-
vision of virtual networks resides in the optimal embedding solution of
virtual resources into physical ones.

Since this problem is known to be NP-hard, previous research fo-
cused on designing heuristic-based algorithms; most of them do not con-
sider either a simultaneous optimization of the node and the link map-
ping or the re-optimization of VNs, leading to non-optimal solutions.

This paper proposes an extension of Virtual Network Embedding
Node-Link Formulation to support the re-optimization of existing VNs
and to provide the optimal bound. It also presents an evaluation of the
proposed approach when applied to a previous heuristic in the literature.
Simulation experiments show significant improvements when using the
VN re-optimization process: not only the bandwidth consumption have
been reduced by 17.5%, but the same is true for the maximum utilization
levels on the CPU and on the memory.

112

C.1 Introduction

Network Virtualisation has gained an increasing prominence in the last few years. Ini-
tially, the interest in network virtualisation was mainly pushed by Future Internet research
initiatives [PACR03, APST05b, FGR07b, ZZRR08], mainly with the objective to find a plat-
form on which novel Internet architectures could be experimented and evaluated without
limitations or constraints, namely those associated with the traditional IP model.

Later on, it became clear that virtualisation could constitute a key component of next-
generation Internet architecture itself [TWEF03], and not just as a mere platform for ex-
perimentation. Perhaps more importantly for network operators, it also became clear that
network virtualisation could provide a number of short/medium term business advantages,
with potential reduction of costs and increase of revenues, as an interesting tool from an
operational point of view [CJ09, MSC09].

Although there is a large interest on virtualized networks both from the research com-
munity and network operators, several challenges still prevent them from being deployed in
real environments [CB09]. One of the major obstacles lies in providing the exact embed-
ding1 solution of a VN into a physical network. Some solutions to this problem were already
proposed [ZA06, YYRC08, CRB09], mostly based on heuristic approaches; however, they
have failed to provide the optimal solution for each VN mapping. An earlier publication
[MCS+12] proposed a mathematical formulation, VNE-NLF, that uses ILP to provide the
optimal bound. However, the optimal re-assignment of VNs previously embedded was not
considered.

This paper focuses on the VN re-optimization process: it proposes an extension to
VNE-NLF to support the re-optimization of VNs previously assigned, providing an optimal
bound. First, the performance of VNE-NLF [MCS+12] is analyzed, where it is compared
with a new proposed heuristic, the VNE-ESPH. Second, the re-optimization approach is
proposed and compared to VNE-NLF. Simulation experiments show significant improve-
ments when using the VN re-optimization process. Not only the bandwidth consumption has
been reduced by 17.5%, but it has also reduced the maximum utilization levels on either the
CPU and the memory, where it achieves maximum levels of utilization 20% and 16% lower,
respectively.

The rest of the paper is organized as follows. After summarizing the related work in
section C.2, section C.3 describes the virtual network embedding problem, and explains the
mathematical formulation proposed to support the VN re-optimization on the assignment
process. Section C.4 analyzes the performance of both the VNE-NLF and of the VNE-
ESPH, and also evaluates the performance of the re-optimization process when compared to
VNE-NLF. Section C.5 concludes the paper and describes the future work.

C.2 Related Work

The simultaneous node and link mapping optimization can be formulated as an un-
splittable flow problem [ZA06], known to be NP-hard, and therefore, it is only tractable for
a small amount of nodes and links. In order to solve this problem, several approaches have
been suggested, mostly considering the off-line version of the problem where the VN requests
are fully known in advance.

In [LK09] a backtracking method based on sub-graph isomorphism was proposed; it con-
siders the on-line version of the mapping problem, where the VN requests are not known

1The terms embedding, mapping and assignment are used interchangeably in this paper

113

in advance, and proposes a single stage approach where nodes and links are mapped simul-
taneously, taking constraints into consideration at each step of the mapping. When a bad
mapping decision is detected, a backtrack to the previous valid mapping decision is made,
avoiding a costly re-map.

The work in [LT06] defines a set of premises about the virtual topology, i.e. the backbone
nodes are star-connected and the access-nodes connect to a single backbone node. Based on
these premises, an iterative algorithm is run, with different steps for core and access mapping.
However, the algorithm can only work for specific topologies.

A distributed algorithm was studied in [HLZ08]. It considers that the virtual topologies
can be decomposed in hub-and-spoke clusters, and that each cluster can be mapped inde-
pendently, therefore reducing the complexity of the full VN mapping. This proposal has
lower performance and scalability when compared with centralized approaches.

Zhu et al. [ZA06] proposed a heuristic, centralized, algorithm to deal with VN embedding.
The goal of the algorithm is to maintain a low and balanced load of both nodes and links of
the substrate network. However, the load of nodes and links does not consider heterogeneity
on their characteristics.

Yu et al. [YYRC08] proposed an embedding algorithm which considers finite resources
on the physical network, and enables path splitting (i.e. virtual link composed by different
paths) and link migration (i.e. to change the underlying mapping) during the embedding
process. However, this level of freedom can lead to a level of fragmentation that is infeasible
to work on large scale networks. In [CRB09], a formal approach was taken to solve the on-
line VN embedding problem using a mixed integer programming formulation in a two-step
approach. This approach, despite providing a better coordinated node and link mapping,
does not solve the VN assignment problem, and does not support heterogeneity of nodes.

Butt et al. [FBCB10] proposed a topology-aware heuristic for VN embedding and also
suggested a set of algorithms to avoid bottlenecks on the physical infrastructure, where they
consider virtual node reallocation and link reassignment for this purpose. Nogueira et al.
[NMCS11b] proposed a heuristic that takes into account the heterogeneity of the VNs and
also of the physical infrastructure. The algorithm is evaluated by means of simulation and also
on a small scale testbed, where it achieves mapping times of the order of tens of milliseconds.

Botero et al. [BHFM12] proposed an algorithm to solve the VN embedding problem
considering also the CPU demand by the hidden hops. Lu et al. [LHkW+11] proposed an
adaptive algorithm based on multi-commodity flows to solve the VN embedding. Chowdhury
et al. [CRB12] extended his preliminary results [CRB09] and included a generalized window-
based VN embedding to evaluate the effect of look ahead on the mapping of VNs. Melo et
al. proposed in [MCS+12] a mathematical formulation to solve the VN mapping using ILP,
and compared it with the heuristic in [NMCS11b].

Although all these algorithms provide a solution for the VN mapping problem, the optimal
re-assignment of existing VNs is not considered. This is the purpose of this paper, which
evaluates both VNE-NLF ILP embedding approach and its heuristic (the VNE-ESPH), and
proposes the optimal re-assignment of VNs currently embedded through VNE-NLF.

C.3 Problem Description and Mathematical Formulation Ex-
tension

In this section, we start with the description of the VN assignment problem. The math-
ematical model extension for VN re-optimization is then presented.

114

C.3.1 Network Description

We consider a physical network with a given number of nodes, N, and with a given
topology, as depicted in Figure C.1a. Each node is described by the number of CPUs, which
corresponds to letter C in the Figure, the clock CPU frequency, F, and by the RAM amount
it possesses, M. With respect to the links, we consider the bandwidth capacity, B, and we
assume that each link is a unidirectional link. Virtual networks are described the same way
as physical networks, as shown in Figure C.1b. We use superscript to distinguish virtual from
physical resources, where the letter P is used for the physical resources, e.g. CP , and the
letterV is used for virtual resources, e.g. CV . The convention used for the index notation
is: i, j for nodes and links in the physical network, and m,n for nodes and links in the VN.

(a) Substrate Network Topology (b) Virtual Network Topology

Figure C.1: Network Topology Description

C.3.2 Mathematical Formulation Extension - Re-Optimization Support

An extension to VNE-NLF [MCS+12] is proposed in order to support the embedding
problem of VNs using re-optimization. The proposed formulation only uses two assignment
variables for the VN mapping problem: one for the assignment of the virtual nodes to physical
nodes, and another to express the assignment of virtual links into physical links. The binary
variable x is used for the virtual nodes and is expressed in equation (C.1), where xmi →
W V × NP matrix (and W V =

∑
kN

Vk which is the sum of all virtual network size’s
currently embedded on the physical network). For the virtual links, the binary variable y is
used and it is represented in equation (C.2), where ymnij → (W V)2 × (NP)2 matrix.

The objective function is represented in equation (C.3) and achieves two goals: the
primary goal is to minimize the maximum load per physical resource and, in the case of
having different mapping solutions with the same maximum utilization, the second part of
the objective function is activated which will opt for the solution which consumes the lowest
bandwidth, where ε represents a small constant.

Assignment Variables

115

xmi =
{

1, virtual node m is allocated at physical node i
0, else (C.1)

ymnij =
{

1, virtual link mn uses physical link ij
0, else (C.2)

Optimization Function

minimize Cloadmax +Mload
max + Bloadmax + ε×

∑
m,n∈NV (m),n<m

ymnij ×B
V
mn (C.3)

Constraints
(Maximum) Resource Utilization of the CPU

∀i : F Pi ×
CP
i +

∑
m x

m
i × CV

m

CP
i (0)

≤ Cloadmax (C.4)

(Maximum) Resource Utilization of the Memory

∀i : F Pi ×
MP

i +
∑
m x

m
i ×MV

m

MP
i (0)

≤Mload
max (C.5)

(Maximum) Resource Utilization of the Bandwidth

∀i, j ∈ NP (i), i < j :
BP
ij +

∑
m,n∈NV (m) y

mn
ij ×BV

mn

BP
ij(0)

≤ Bloadmax (C.6)

Assignment of virtual nodes to physical nodes

∀m :
∑
i

xmi = 1 (C.7)

One virtual node per physical node

∀k,∀i :
∑

m∈V Nk

xmi ≤ 1 (C.8)

Multi-commodity flow conservation with node− link formulation

∀m,n ∈ NV (m),m < n,∀i :
∑

j∈NP (i)
(ymnij − y

mn
ji) = xmi − x

n
i (C.9)

CPU conservation
∀i :

∑
m

xmi × C
V
m ≤ C

Pi (C.10)

Memory conservation

∀i :
∑
m

xmi ×M
V
m ≤M

Pi (C.11)

Bandwidth conservation

∀i, j ∈ NP (i), i < j :
∑

m,n∈NV (m),m<n
BV
mn × (ymnij + ymnji) ≤ BP

ij (C.12)

116

CPU frequency requisite
∀i :

∑
m

xmi × F
V
m ≤ F

P
i (C.13)

Remarks:
The (maximum) utilization per resource type, i.e. memory RAM (Mload

max), CPU (Cloadmax),
and bandwidth (Bloadmax), is represented in equations (C.4),(C.5),(C.6), respectively, where
CP
i represents the currently available capacity and CP

i (0) represents the total capacity. The
resource utilization on the CPU and on the memory is also multiplied by the CPU frequency,
in order to firstly use physical nodes with lower CPU frequency and to preserve the remaining
for virtual nodes with higher CPU frequency demand. Therefore, the second term of (C.4) and
(C.5) is not only the maximum resource utilization, but it is the CPU frequency multiplied
by the resource utilization either on the CPU or on the memory.

Equation (C.7) ensures that each virtual node is assigned and it is to just one physical
node.

In order to support the re-optimization process, equation (C.8) is proposed and differs
from the initial formulation [MCS+12] once it takes into consideration all the VNs that are
currently assigned, and not only one VN request. Equation (C.8), is also used to guarantee
that each physical node accommodates, in maximum, one virtual node per VN2, where k
is used to represent all VNs running on that specific physical node. However, each physical
node can accommodate, in principle, more virtual nodes from other VNs (i.e. V Nk).

In order to optimize the mapping of the virtual links and at the same time to cope with
the optimization of the virtual nodes, the multi-commodity flow constraint [EIS75] is applied
with a node− link formulation [PM04], and the notion of direct flows on the virtual links
is also used, which is represented in equation (C.9). To ensure that the available capacity at
the CPU, memory and bandwidth is not exceeded, equations (C.10), (C.11) and (C.12) are
used, respectively. Finally, equation (C.13) is used to guarantee that we do not violate that
requirement on the CPU frequency.

C.4 Evaluation Results

In this section we depict our main results. Our evaluation is primarily focused, on the
impact due the VN size and due to the physical network size, on VN acceptance ratio ac-
cording to the VN size, i.e. the number of virtual nodes, and also on the number of VNs that
can be accommodated on the physical network using the proposed model. We compare the
VNE-NLF with the VNE-ESPH embedding approach, and we then evaluate the performance,
in terms of resource utilization, of the re-optimization proposal when compared to VNE-NLF.

C.4.1 Simulation Parameters - VNE-NLF and VNE-ESPH

In order to evaluate the VNE-NLF and the VNE-ESPH, we have implemented a discrete
event simulator in Matlab R©. The physical network topology was created using the Waxman
random topology generation method [Wax88], and the number of physical nodes was set to
30, 40 and 50, according to the evaluated scenario.

The recommended parameters for link probability, α = 0.4 and β = 0.1, were used
although some topologies did not have full connectivity, i.e. one physical node with no viable
path to all the remaining nodes (e.g. a node with no links or non-connected clusters). In
order to circumvent this, after generating the topology, additional links were added to the
nodes with fewer interfaces, until total connectivity was reached.

2This assumption is also taken by other authors, i.e., [ZA06, YYRC08, CRB09].

117

For each substrate node, a set of parameters was attributed using an uniform distribution,
such as RAM amount, number of CPUs and CPU frequency. The physical link’s bandwidth
was set to a fixed bitrate.

The VNs requests were created using the same topology generation model, and the number
of virtual nodes was fixed from 2 to 10 virtual nodes with intervals of 2 nodes, where the
size of the VN was changed according to the evaluated scenario. After generating the virtual
topology, the same set of specifications was assigned, with a uniform distribution. Either the
physical network or the virtual network specifications can be observed on Table C.1.

We assume that each VN request arrives according to a Poisson process, and that each VN
has an associated lifetime with an average of 1/µ = 75 time units, following an exponential
distribution. Regarding the average number of VN requests per time unit, they are set to
1.8 VN requests per time unit. For each considered size of VN, 10 trials were performed.
For each trial, a new set of VN requests and new physical network topology were generated.
All simulations were set to run until 1000 time units. A confidence interval of 95% is used
for every result presented below. The CPLEX [cpl12] version 12 was used to solve the linear
programming problem, and a time limit of 600 seconds was defined for each VN mapping,
although most VNs were embedded in hundreds of milliseconds.

Table C.1: Physical Network and Virtual Network Parameters.

Parameters Physical Network Virtual Network
N. CPUs {2; 4; 6} {1; 2; 3; 4 }

CPU Frequency (GHz) {2.0 to 3.2 in 0.2 steps } {2.0 to 2.6 in 0.1 steps }
RAM Memory (GB) {2; 4; 6; 8} {64; 128; 256; 512 }

Link Bandwidth (Mbps) {500} {2.048; 8.448; 34.368}

C.4.2 Simulation Results - VNE-NLF and VNE-ESPH

This section compares VNE-NLF with VNE-ESPH methods through several metrics: VN
request acceptance ratio, number of VNs that were running after the simulation experiment
was finished, average resource utilization, e.g. memory RAM and CPU, on the nodes, and
average bandwidth utilization on the links.

The VN request acceptance ratio is depicted in Figure C.2a. It decays linearly with the
VN size for both embedding methods, which is due to the fact that both try to accommodate
more virtual resources with the same amount of physical resources available; the slope is
sharper for the case of the VNE-ESPH. Therefore, we can infer that the performance of the
heuristic is influenced by the size of the virtual network. We can also infer that the size of
the physical network influences significantly the VN request acceptance ratio, where smaller
physical networks are more prone to reject VN requests. Another important aspect to retain
is the fact that the VNE-NLF method applied on a physical network with 40 physical nodes
is able to have the same VN request acceptance ratio as the VNE-ESPH method applied on
a physical network with 50 nodes, which is 20% larger.

The average number of accommodated VNs is presented in Figure C.2b. The number of
VNs running on the substrate decays linearly with the VN request size for both embedding
methods, and the slope is sharper in the case of the heuristic. This kind of behaviour is
expected once we are trying to embed larger VNs with the same amount of physical resources,
although the total number of virtual nodes is almost the same. If we consider the case of a
physical network with 50 physical nodes and running the VNE-NLF as a embedding method,

118

we have the same number of virtual nodes running on the substrate either with VN requests
of 8 nodes or with VN requests of 10 nodes, i.e. 8× 100 = 10× 80.

The average CPU utilization is shown in Figure C.2c. The same levels of average CPU
utilization, i.e. 75%, are reached in the VNE-NLF, independent either on the physical network
size or on the virtual network size. Regarding the VNE-ESPH, the average CPU utilization
does depend on the virtual network size, and for VNs larger or equal to 4 virtual nodes,
the average CPU utilization starts to decay linearly with the VN size. This is strongly
related with the VN acceptance ratio which is lower for VNs with the same network size; this
embedding method performs worse with larger VNs.

The average memory utilization as a function of the VN size is depicted in Figure C.2d.
The same behaviour is perceived for the average memory utilization as for the average CPU
utilization for both embedding methods. The average memory utilization reaches values of
80% for both embedding methods, although the average memory utilization using the VNE-
ESPH starts to decay with VNs larger than 4 nodes.

The average bandwidth utilization is depicted in Figure C.2e. The same behaviour is per-
ceived for both the average bandwidth utilization and the average memory or CPU utilization,
where the average bandwidth utilization reaches values of 80%. The average memory utiliz-
ation reaches values of 80% for both embedding methods, although the average bandwidth
utilization using the VNE-ESPH starts to decay with VNs larger than 4 nodes.

C.4.3 Re-Optimization

This section, presents the simulation results obtained using the optimization method
VNE-NLF, and its extension for re-optimization of virtual network embedding. Our evalu-
ation is primary focused on the minimum and maximum resource utilization on the CPU and
on the memory, and on the average bandwidth utilization.

The simulation parameters applied here are the same as in Section C.4.1, except for the
physical and the VN size. VN requests ranging from 0.8 VN per time unit to 1.8 VN per time
unit were considered. Regarding the re-optimization process, the results were obtained using
a virtual machine configured with 4 cores (Intel Xeon X5650@2.67GHz) and the CPLEX was
set to use up to 4 threads, the relative gap tolerance was set to 0.05 (i.e. feasible integer
solution proved to be within percent of optimal), and a time limit of 24 hours was used in
order to avoid long time simulations. However, most of the re-optimizations were performed
within the 24 hours’ time frame.

The maximum and minimum CPU utilization are depicted in Figure C.3a. We can observe
that the re-optimization process clearly reduces the maximum CPU utilization. The gain is
higher when the physical network is not loaded and lowers when the network is almost fully
loaded. The re-optimization achieves values 20% lower for a maximum CPU utilization of 0.8
VN request per time unit, and 5% lower for 1.8 VN request per time unit. We can observe also
that the re-optimization process increases the minimum CPU utilization, where it achieves
values 25% larger for minimum CPU utilization. The variation on the number of VN requests
does not seem to affect substantially the gap between the two embedding processes.

The maximum and minimum memory utilization is shown in Figure C.3b. The same
behaviour, as for the maximum CPU utilization or minimum CPU utilization can be observed,
where the re-optimization process reduces significantly the maximum memory utilization.
The re-optimization achieves values 16% lower for maximum memory utilization of 0.8 VN
request per time unit, and 3% lower for 1.8 VN request per time unit. We can also observe
that the minimum memory utilization with the re-optimization process increases, where it
achieves values 25% higher for memory utilization.

119

Figure C.3c shows the average bandwidth utilization as a function of the number of virtual
network requests. We can observe that applying the re-optimization reduces significantly the
average bandwidth utilization on the physical links. This gain is even higher with the increase
on the number of VN requests, reaching values 17.5% lower for 1.8 VN requests per time unit.

C.5 Conclusion
This paper proposed a re-optimization mechanism to enhance the performance of the

virtual network embedding process. The proposed re-optimization approach proved to be a
very efficient approach. It was not only able to reduce significantly the overall bandwidth
consumption, where the average bandwidth utilization decreased 10%, but it also decreased
clearly the maximum CPU and memory utilization levels. This is not only important from
a load balancing perspective, where the load of nodes that are already at critical levels is
being moved to nodes less loaded, but it is also important from a revenue perspective, where
bandwidth that was previously provisioned is being released and that could be leased to new
VNs.

Future work will endorse the utilization of the re-optimization as a way to improve the
VN request acceptance ratio. The evaluation of the VNE-NLF with different cost functions
and with other heuristics available in the literature will also be performed, as well as its
evaluation using other metrics, e.g. revenue or provisioning cost.

120

2 4 6 8 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Virtual Network Size − Number of Virtual Nodes

V
irt

ua
l N

et
w

or
k

R
eq

ue
st

 A
cc

ep
ta

nc
e

R
at

io

VNE−NLF − Physical Network Size: 30 Physical Nodes

VNE−ESPH − Physical Network Size: 30 Physical Nodes

VNE−NLF − Physical Network Size: 40 Physical Nodes

VNE−ESPH − Physical Network Size: 40 Physical Nodes

VNE−NLF − Physical Network Size: 50 Physical Nodes

VNE−ESPH − Physical Network Size: 50 Physical Nodes

(a) VN Request Acceptance Ratio

2 4 6 8 10
20

40

60

80

100

120

140

Virtual Network Size − Number of Virtual Nodes

A
ve

ra
ge

 N
um

be
r

of
 A

co
m

m
od

at
ed

 V
irt

ua
l N

et
w

or
ks

VNE−NLF − Physical Network Size: 30 Physical Nodes

VNE−ESPH − Physical Network Size: 30 Physical Nodes

VNE−NLF − Physical Network Size: 40 Physical Nodes

VNE−ESPH − Physical Network Size: 40 Physical Nodes

VNE−NLF − Physical Network Size: 50 Physical Nodes

VNE−ESPH − Physical Network Size: 50 Physical Nodes

(b) Average Number of VNs

2 4 6 8 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Virtual Network Size − Number of Virtual Nodes

A
ve

ra
ge

 C
P

U
 U

til
iz

at
io

n

VNE−NLF − Physical Network Size: 30 Physical Nodes

VNE−ESPH − Physical Network Size: 30 Physical Nodes

VNE−NLF − Physical Network Size: 40 Physical Nodes

VNE−ESPH − Physical Network Size: 40 Physical Nodes

VNE−NLF − Physical Network Size: 50 Physical Nodes

VNE−ESPH − Physical Network Size: 50 Physical Nodes

(c) Average CPU Utilization

2 4 6 8 10
0.3

0.4

0.5

0.6

0.7

0.8

0.9

Virtual Network Size − Number of Virtual Nodes

A
ve

ra
ge

 M
em

or
y

U
til

iz
at

io
n

VNE−NLF − Physical Network Size: 30 Physical Nodes

VNE−ESPH − Physical Network Size: 30 Physical Nodes

VNE−NLF − Physical Network Size: 40 Physical Nodes

VNE−ESPH − Physical Network Size: 40 Physical Nodes

VNE−NLF − Physical Network Size: 50 Physical Nodes

VNE−ESPH − Physical Network Size: 50 Physical Nodes

(d) Average Memory Utilization

2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Virtual Network Size − Number of Virtual Nodes

A
ve

ra
ge

 B
an

dw
id

th
 U

til
iz

at
io

n

VNE−NLF − Physical Network Size: 30 Physical Nodes

VNE−ESPH − Physical Network Size: 30 Physical Nodes

VNE−NLF − Physical Network Size: 40 Physical Nodes

VNE−ESPH − Physical Network Size: 40 Physical Nodes

VNE−NLF − Physical Network Size: 50 Physical Nodes

VNE−ESPH − Physical Network Size: 50 Physical Nodes

(e) Average Bandwidth Utilization

Figure C.2: VN Request Acceptance Ratio, Number of Existing VNs on the Substrate and
Resource Utilization as a function of the VN Size.

121

0.8 1 1.2 1.4 1.6 1.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Virtual Network Requests

C
P

U
 U

til
iz

at
io

n

Optimization − Minimum CPU Utilization

Re−Optimization − Minimum CPU Utilization

Optimization − Maximum CPU Utilization

Re−Optimization − Maximum CPU Utilization

(a) Maximum and Minimum CPU Utilization

0.8 1 1.2 1.4 1.6 1.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Virtual Network Requests

M
em

or
y

U
til

iz
at

io
n

Re−Optimization − Maximum Memory Utilization

Optimization − Maximum Memory Utilization

Re−Optimization − Minimum Memory Utilization

Optimization − Minimum Memory Utilization

(b) Maximum and Minimum Memory Utilization

0.8 1 1.2 1.4 1.6 1.8
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Number of Virtual Network Requests

A
ve

ra
ge

 B
an

dw
id

th
 U

til
iz

at
io

n

Re−Optimization

Optimization

(c) Average Bandwidth Utilization

Figure C.3: Resource Utilization as a function of the Number of VN requests.

122

Appendix D - Optimal Virtual Network
Embedding: Node-Link For-
mulation

Márcio Melo, Susana Sargento, Ulrich Killat, Andreas Timm-
Giel, and Jorge Carapinha

in IEEE Transactions on Network and Service Management,
vol. 10, Issue: 4 2013.

The format has been revised.

123

Optimal Virtual Network Embedding:
Node-Link Formulation

Márcio Melo, Susana Sargento, Ulrich Killat, Andreas Timm-Giel, and
Jorge Carapinha

Abstract

Network Virtualisation is claimed to be a key component of the Fu-
ture Internet, providing the dynamic support of different networks with
different paradigms and mechanisms in the same physical infrastruc-
ture. A major challenge in the dynamic provision of virtual networks
is the efficient embedding of virtual resources into physical ones. Since
this problem is known to be NP-hard, previous research focused on
designing heuristic-based algorithms; most of them either do not con-
sider a simultaneous embedding of virtual nodes and virtual links, or
apply link-path formulation, leading to non-optimal solutions.

This paper proposes an integer linear programming (ILP) formula-
tion to solve the online virtual network embedding problem as a result
of an objective function striving for the minimization of resource con-
sumption and load balancing. To this end 3 different objective functions
are proposed and evaluated. This approach applies multi-commodity
flow constraint to accomplish a node-link formulation that optimizes the
allocation of physical network resources.

This proposal is evaluated against state of the art heuristics. The
performance of the heuristics related to VN request acceptance ratio is,
at least, 30% below the one of the VNE-NLF method. From the three
cost functions evaluated, the Weighted Shortest Distance Path (WSDP)
is the one which embeds more VNs and also requires, on average, less
physical resources per embedding.

124

D.1 Introduction

Network Virtualisation has gained an increasing prominence in networking and telecom-
munications fields in the last few years. Initially, the interest in network virtualisation
was mainly pushed by Future Internet research initiatives [PACR03, APST05b, FGR07b,
ZZRR08], mainly with the objective to find a platform on which novel Internet architectures
could be experimented and evaluated without limitations or constraints, namely those as-
sociated with the traditional IP model. Later on, it became clear that virtualisation could
constitute a key component of the next-generation Internet architecture itself [TWEF03], and
not just as a mere platform for experimentation. It also became clear for network operators
that network virtualisation could provide a number of short/medium term business advant-
ages, with potential reduction of costs and increase of revenues, as an interesting tool from
an operational point of view [CJ09, MSC09].

Although there is a large interest on virtualized networks both from the research com-
munity and network operators, several challenges still prevent them from being deployed in
real environments [CB09]. One of the major obstacles lies in the efficient embedding1 of a
Virtual Network (VN) onto a physical network. Since this process requires the simultaneous
optimization of virtual nodes and links placement, it is complex in nature, both in formu-
lation and computationally. Several works, such as [ZA06, LK09, LT06, YYRC08, CRB09,
FBCB10, NMCS11b, BHFM12, CRB12], have already proposed solutions to this problem,
mostly based on heuristic approaches; however, they do not provide the optimal solution for
each VN mapping.

This paper focuses on the online embedding of VN requests in the physical network.
An ILP formulation, the Virtual Network Embedding Node-Link Formulation (VNE-NLF),
is used to solve the VN assignment problem on the basis of a minimization of resource
consumption and load balancing strategy. The VNE-NLF includes link delay constraints
and supports the specification of the maximum distance between virtual nodes. In addition,
different cost functions are proposed and analyzed, which enforce load balancing of links and
nodes, and shortest distance paths. Simulation experiments show how far the state of the
art heuristics differ from an ILP method. If the VN request acceptance ratio is used as a
measurement metric, the solutions obtained by the state of the art heuristics are, at least,
30% below the ones of the VNE-NLF (see Figure D.3). From the cost functions evaluated,
the WSDP is the one which embeds more VNs and also requires, on average, less physical
resources per embedding. Compared to our previous work in [MCS+12], this paper:

i extends the mathematical formulation to support two new constraints, i.e. link delay and
maximum distance between nodes;

ii proposes three new cost functions, i.e. Load Balancing plus ε Shortest Path (LB+εSP),
SDP, and WSDP;

iii defines a new evaluation metric, i.e. the embedding factor, which represents the amount
of resources that have been requested over the amount of resources that have been leased;

iv and it provides a performance comparison with 6 state-of-the-art heuristics.

The contributions of this paper can be summarized as follows:

i ILP optimization for virtual network embedding, which is based on node-link formulation;
it enables the simultaneous embedding of virtual nodes and links, which optimizes the

1The terms embedding, mapping and assignment are used interchangeably in this paper.

125

allocation of physical network resources, i.e. CPUs on the physical nodes and bandwidth
on the physical links.

ii Analysis and evaluation of different objective goals: load balancing objective function
LB+εSP, shortest path objective function SDP, and load balancing combined with
shortest path objective function WSDP;

iii Comparison of the performance of existing VN embedding solutions, heuristics, with a
pure ILP formulation.

iv Evaluation metrics that relate e.g. VN acceptance ratio and link utilization. Moreover, a
new metric, the embedding factor, is proposed.

The rest of the paper is organized as follows. After summarizing the related works in
section D.2, section D.3 describes the virtual network embedding problem, the notations and
parameters used, and the embedding process. Section D.4 describes the proposed VNE-NLF
and the applied constraints, while section D.5.1 presents and discusses the different proposed
cost functions. Section D.6 analyzes the performance of the VNE-NLF with different cost
functions, and compares it with six existing heuristics. Finally, section D.7 concludes the
paper and describes the future work.

D.2 Related Work
This simultaneous node and link mapping optimization can be formulated as an un-

splittable flow problem [ZA06], known to beNP-hard. In order to solve this problem, several
approaches have been suggested, mostly considering the off-line version of the problem where
the VN requests are fully known in advance.

In [LK09] a backtracking method based on sub-graph isomorphism was proposed; it con-
siders the on-line version of the mapping problem, where the VN requests are not known
in advance, and proposes a single stage approach where nodes and links are mapped simul-
taneously, taking constraints into consideration at each step of the mapping. When a bad
mapping decision is detected, a backtrack to the previous valid mapping decision is made,
avoiding a costly re-map.

The work in [LT06] defined a set of premises about the virtual topology, i.e. the backbone
nodes are star-connected and the access-nodes connect to a single backbone node. Based on
these premises, an iterative algorithm is run, with different steps for core and access mapping.
However, the algorithm can only work for specific topologies.

A distributed algorithm was studied in [HLZ08]. It considers that the virtual topologies
can be decomposed in hub-and-spoke clusters and each cluster can be mapped independ-
ently, therefore reducing the complexity of the full VN mapping. This proposal has lower
performance when compared with centralized approaches.

Zhu et al. [ZA06] proposed a heuristic based on a centralized algorithm to deal with VN
mapping. The goal of the algorithm is to maintain a low and balanced load of both nodes and
links of the substrate network. Yu et al. [YYRC08] proposed a mapping algorithm which
considers finite resources in the physical network, and enables path splitting (i.e. virtual
link composed by different paths) and link migration (i.e. to change the underlying map-
ping) during the embedding process. However, this level of freedom can lead to a level of
fragmentation that is unfeasible to manage large scale networks.

In [CRB09] a formal approach is taken to solve the on-line VN mapping problem using
a mixed integer programming formulation. Chowdhury et al. applied a two step approach
to embed VNs on the substrate. In the first step, the virtual nodes are assigned to physical

126

nodes and in the second step the virtual links are assigned to physical paths. Compared to
the previous state of the art heuristics, i.e. [ZA06, YYRC08], the formulation proposed by
Chowdhury et al. provides a better coordination of the two phases, since an “augmented
substrate graph construction” is used.

The approach in [CRB09] completely differs from the mathematical formulation proposed
in this paper, which applies a node-link formulation. In our approach, the universe of em-
bedding solutions is considered within the ILP formulation, and the VN embedding problem
is solved in a single step using the multi-commodity flow constraint and by considering the
notion of direction of the flows.

Butt et al. [FBCB10] proposed a topology aware heuristic for VN mapping, and also
suggested algorithms to avoid bottlenecks on the physical infrastructure, where they consider
virtual node reallocation and link reassignment for this purpose. Nogueira et al. [NMCS11b]
proposed a heuristic that takes into account the heterogeneity of the VNs and also of the
physical infrastructure. The heuristic is evaluated by means of simulation and also on a small
scale testbed, where it achieves mapping times of the order of tens of milliseconds.

Botero et al. [BHFM12] proposed an algorithm to solve the VN mapping problem, which
also considers the CPU demand of the hidden hops. Chowdhury et al. [CRB12] extended
his preliminary results [CRB09] and included a generalized window-based VN embedding to
evaluate the effect of look ahead on the mapping of VNs.

Alkmim et al. [ABdF13] proposed a mathematical formulation that aims to: i) map
virtual routers and virtual links; ii) minimize the bandwidth consumption; and iii) minimize
the time required to instantiate a virtual router. In contrast to this work, we also aim to
optimize link load and CPU load distribution.

Although all these algorithms provide a solution for the VN mapping problem, an optimal
solution for the embedding task and its efficiency is not provided. Also, some of them fail
to solve the assignment problem as a simultaneous optimization of the virtual node and link
placement, which leads to non-optimal solutions.

The VNE-NLF applies a node-link formulation to solve the VN embedding problem in a
single step using the multi-commodity flow constraint. This approach provides the optimal
solution for the objective function used, since the universe of solutions is considered within
the ILP formulation.

D.3 Network Description and Problem Formulation
In this section, we introduce the virtual network embedding problem. In addition, the

VN embedding notations used throughout the paper are presented, and the virtual network
embedding system is explained. Finally, the mapping goals are introduced to support the
mathematical formulation.

D.3.1 Network Description

We use superscript to distinguish the physical network from the virtual network, where
p and v correspond to physical and virtual, respectively.

D.3.1.1 Physical network

A physical network can be described as a weighted undirected graphGp = {Np, Lp, Cp,
Bp, Dp,Disp} composed by a set of physical nodes, Np, and a set of physical links, Lp.
Each physical node i is characterized by its processing capacity, Cp

i , commonly referred to
as the CPU, and by its physical location, which can be defined by x and y coordinates. The

127

...
...

VN request k
VN Lifetime=400

a

10

b

10 15

7.5

c

5

VN Embedding

System

VN request 1
VN Lifetime=650

Time=0

Time=t

85

D

C E

F

95 70

80

6560

90 50

75 65

55 80 95

50

A

B

VN Requests

Physical Network

Mapping Result

d

10

e30

20

Figure D.1: VN Embedding System - Topology Example

distance between virtual nodes, Disp, can be obtained using equation (D.1). With respect
to the physical links, we consider that each link ij has a given bandwidth, Bp

ij , and a given
link delay, Dp

ij , and we also assume that each link is an undirected link. The bottom-right of
Figure D.1 illustrates a physical network topology example composed of 6 physical nodes and
8 physical links, and the corresponding capacities of the nodes and the links are presented
on top of the elements.

Dispij =
√

(xj − xi)2 + (yj − yi)2 (D.1)

128

D.3.1.2 Virtual Network Request

VN request can be described as a weighted undirected graph Gv = {Nv, Lv, Cv,
Bv, Dv,Disv} composed by a set of virtual nodes, Nv, and a set virtual links, Lv. Each
virtual nodem is characterized by the amount of required CPU, Cv

m, and the virtual linksmn
are logical connections between virtual nodes and characterized by the amount of dedicated
bandwidth, Bv

mn, and by the maximum link delay permitted, Dv
mn. We also assume that

each virtual link is an undirected link. The maximum distance between virtual nodes, Disv,
can be used to limit the number of intermediate hops between virtual nodes. The left part
of Figure D.1 represent the example of two virtual network requests, VN request 1 on the
bottom-left and VN request k on the top-left. Each VN request has a given lifetime that is,
in principle, independent from each other, and each lifetime could have different time scales,
since it is strongly dependent on the purpose of the virtual network request itself. If we
consider a VN request for a live rock concert, the time scale will be hours, but if we consider
a VN for a culinary workshop of one week, the time scale will be days.

D.3.1.3 VN Assignment Notations

First, we start with the convention used for the index notation: Np represent the set of
nodes that belong to the physical network; Lp represent the set of links that belong to the
physical network; and Lpi represent a subset of links ij that are directly connected to the node
i. The same type of notation is used to represent the VN using the letters m and n in the
virtual network. The notations used throughout this paper for the VN assignment problem
are presented in Table D.1. The table is divided into three parts: the static parameters of the
physical network, the dynamic parameters of the physical network, and the virtual network
requests with the demanded capacities.

D.3.2 Unfilled Physical Network Resources

The remaining capacity of each physical node at a specific time t is given by the differ-
ence between the total processing capacity and the capacity consumed by all virtual nodes
allocated on that physical node, and is presented in equation (D.2), where u represents the
set of all virtual nodes allocated on that precise physical node and at time t.

∀i ∈ Np : Cp
i (t) = Cp

i (0)−
∑
u

Cv
u(t) (D.2)

In parallel, the available bandwidth of each physical link at a specific time t is given by the
difference between the total bandwidth and the bandwidth consumed by all virtual link
segments allocated on that physical link, and is presented in equation (D.3), where w
represents the set of all virtual link segments allocated on that specific physical link and
at time t.

A virtual link can be composed of one or more physical links, physical path. We consider
that each virtual link has a single physical path, and we do not consider link aggregation (i.e.
virtual link composed by different physical paths).

One physical link could accommodate one or more virtual link segments belonging to
different virtual links.

∀ij ∈ Lp(k) : Bp
ij(t) = Bp

ij(0)−
∑
w

Bv
w(t) (D.3)

129

VN Assigment Infeasible

VN Assigment Feasible

Allocate VN

Embed VN Request

Update Physical network

Update VN List

B

85

A

D

C E

F

50

95 70

80

6560

90 50

75 65

55 80 95

Release VN

Yes
No

a

10

b30

20

b

10

a

30 25

15

20

c

5

VN Lifetime

 Expired?

VN

Mapping

Method

Figure D.2: VN Request Life Cycle - Activity Diagram

D.3.3 VN Request Embedding Process

The VN request embedding process can be divided into two components: the component
that ensures the mapping of the virtual nodes, and the one that handles the mapping of the
virtual links.

D.3.3.1 Virtual Node Mapping

Each virtual node needs to be mapped onto one physical node, this relation is given by
the mapping functionM[m ∈ Nv(k)] = i, where virtual node m is mapped onto physical
node i. Each physical node candidate needs to have, at least, the same amount of available
CPU as required by the virtual node, which is represented in equation (D.4).

∀i, ∀M[m ∈ Nv(k) = i] : Cv
m(k) ≤ Cp

i (t) (D.4)

D.3.3.2 Virtual Link Mapping

Each virtual link can be mapped onto one or more physical links (i.e. physical path), this
relation is given by the mapping functionM[Lvmn], where the virtual link mn is mapped

130

Table D.1: VN Assignment Problem Notation.

Gp Physical Network
Np Set of Physical Nodes
i, j Physical Nodes
ij Physical Link
Lp Set of Physical Links
Lp

i Set of Physical Links directly connected
to Physical Node i

Cp
i (0) Total CPU of Physical Node i

Disp
ij Distance Between Physical Nodes ij

Bp
ij(0) Total Bandwidth of Physical Link ij

Cp
i (t) Available CPU at time t on Physical

Node i
Bp

ij(t) Available Bandwidth at time t on Phys-
ical Link ij

Gv(k) Virtual Network Request k
Nv(k) Set of Virtual Nodes of VN Request k
Lv(k) Set of Virtual Links of VN Request k
Lv

m(k) Set of Virtual Links directly connected to
Virtual node m of VN Request k

m,n Virtual Nodes
mn Virtual Link
Cv

m(k) CPU of Virtual Node m of VN Request
k

Disv
mn(k) Maximum Distance Between Virtual

Nodes mn of VN Request k
Bv

mn(k) Bandwidth of Virtual Link mn of VN
Request k

Dv
mn(k) Delay of Virtual Linkmn of VN Request

k

onto one physical path. Each physical link candidate belonging to the physical path needs to
have, at least, the same amount of bandwidth available as required by the virtual link which
is presented in equation (D.5).

∀ij ⊆M[mn ∈ Lv(k)] : Bv
mn(k) ≤ Bp

ij(t) (D.5)

D.3.4 VN Request Life Cycle

The embedding process begins upon a new VN request arrival, which is depicted in Figure
D.2. A VN mapping method (e.g., heuristic) is used to embed the VN; it takes as inputs the
current status of the physical network (e.g. available CPU capacity and existing bandwidth)
and the VN request itself. If the result of the mapping process is a viable solution, the
mapping is considered to be feasible; if not, it is considered to be unfeasible and the VN
embedding process stops.

D.3.5 Mapping Metrics

In order to assess the performance of an embedding method, and at the same time to
compare it with others, different performance metrics were defined.

131

D.3.5.1 VN Request Acceptance Ratio

The VN request acceptance ratio, AVN, is given by equation (D.6) and defines the overall
performance of an embedding method: the number of VN requests accepted, k′, over the
number of all VN requests, k.

AVN =
k′

k
(D.6)

D.3.5.2 Embedding Factor

The embedding factor, EVN, is given by equation (D.7) and represents the ratio between
the amount of virtual resources that were requested for the VN and the amount of physical
resources that were effectively provisioned to accommodate that VN, i.e. the efficiency on
embedding. The parameters, α, β, γ and η, are used to weight the different types of
resources.

EVN =
α
∑
mC

v
m + β

∑
mnB

v
mn

γ
∑
iC

p
i + η

∑
ij B

p
ij

(D.7)

D.4 Virtual Network Embedding - Mathematical Formulation

This section describes the mathematical formulation developed to solve the online VN
embedding problem with the defined constraints.

An Integer Linear Programming (ILP) approach is used to solve the online VN embedding
problem; we propose a node-link formulation, and two assignment variables are applied during
the embedding process. The index notation used here is the same as in section D.3.1.3.

D.4.1 Assignment Variables

The binary variable x is used in the mapping of the virtual nodes and is defined in equation
(D.8), where xmi → NV ×NP matrix. With respect to the virtual links, the binary variable
y is used and it is represented in equation (D.9), where ymnij → (LV)2 × (LP)2 matrix.

D.4.1.1 Virtual Node Assignment

xmi =
{

1, virtual node m is allocated at physical node i
0, else (D.8)

D.4.1.2 Virtual Link Assignment

ymnij =
{

1, virtual link mn uses physical link ij
0, else (D.9)

D.4.2 Constraints

To assure the correct mapping of the virtual nodes and of the virtual links, and also to
obey to the conservation law on the capacities of the physical nodes and physical links, a set
of constraints is defined.

132

D.4.2.1 Assignment of virtual nodes to physical nodes

Equation (D.10) ensures that each virtual node is assigned, and that it is assigned to just
one physical node.

∀m :
∑
i

xmi = 1 (D.10)

D.4.2.2 One virtual node per physical node

Equation (D.11) guarantees that each physical node can accommodate in the maximum
one virtual node per VN request, although each physical node can accommodate other virtual
nodes from different VNs. This constraint is used to ensure that each virtual node is assigned
to a different physical node per VN embedding, and can be suitable in application scenarios
where it is required to have physical node diversity for redundancy reasons.

∀i :
∑
m

xmi ≤ 1 (D.11)

D.4.2.3 CPU conservation

Equation (D.12) assures that the available CPU capacity of each physical node is not
exceeded.

∀i :
∑
m

xmi · C
v
m ≤ C

p
i (D.12)

D.4.2.4 Virtual Node distance

Equation (D.13) assures that the maximum distance between virtual nodes, Dv
mn, is not

violated. The maximum distance between virtual nodes is a parameter of the VN embedding
problem. The effect of this parameter on the VN embedding will be studied on a separate
section (see D.6.3).

This parameter is given in distance units and can be used to express the maximum radius
between virtual nodes (in the simulated scenario the location of the physical nodes is set in
a grid). The distance between physical nodes, i.e. Dispij , is obtained using equation (D.1),
and K represents a large constant which is used only in situations where the virtual node n
is not mapped at physical node i, i.e. xni = 0.

∀m,n ∈ Lvm,m < n,∀i :∑
j

Dispij · x
m
j ≤ Disvmn · x

n
i + (1− xni) ·K (D.13)

D.4.2.5 Assignment of virtual links to physical links - multi-commodity flow
conservation with node-link formulation

To simultaneously optimize the mapping of virtual links and virtual nodes, the multi-
commodity flow constraint [EIS75] is applied with a node-link formulation [PM04]; moreover,
the notion of direct flows on the virtual links is used, which is represented in Eq. (D.14),
where Lvm represents all the virtual links that are directly connected with the virtual node
m, and Lpi represent all the physical links that are directly connected with the physical node

133

i.

∀mn ∈ Lvm,m < n,∀i :∑
ij∈Lp

i

(ymnij − y
mn
ji) = xmi − x

n
i (D.14)

D.4.2.6 Bandwidth conservation

To ensure that the available bandwidth at each physical link is not surpassed, Equation
(D.15) is defined.

∀ij ∈ Lpi , i < j :∑
mn∈Lv

m,m<n

Bv
mn(ymnij + ymnji) ≤ Bp

ij (D.15)

D.4.2.7 Link delay limit

The virtual link delay, Dv
mn, is a parameter of the VN embedding problem, and is equal

to the sum of the delay of all physical links that compose the virtual link. To ensure that the
constraint on the link delay is not violated we apply equation (D.16).

∀mn ∈ Lvm,m < n,∀i :∑
ij∈Lp

i ,i<j

Dp
ij(y

mn
ij + ymnji) ≤ Dv

mn (D.16)

D.5 Virtual Network Assignment - Objective Function

One of the major challenges when formulating an ILP model for VN assignment resides
in the definition of the objective function: the allocation of resources need to be optimized
in order to support the efficiency of the corresponding VN process.

Moreover, the correct specification of the VN mapping constraints (see Section D.4) is
also a challenge of this approach. In this section, we describe the main goals that need to
be achieved when formulating an objective function for virtual network embedding; three
different objective functions are proposed to achieve these goals.

D.5.1 Objective Goals

A primary goal for the embedding algorithm is to minimize resource consumption in order
to have resources available for forthcoming VN embedding requests. Minimization of resource
consumption is only possible for the bandwidth consumption depending on the number of
links involved in an embedding process. The processing power has just to be installed exactly
in the amount required by the VN request on some physical nodes.

Resource minimization consequently means that the VN’s should exhibit minimal hop
counts on their paths. This in turn means that almost every physical node should be available
to host a virtual node. As long as the resources required by VN’s are small compared to
physical capacities of nodes and links, this availability is guaranteed with high probability
by a load balancing strategy, which results in some spare capacity for each physical node or
link.

134

Therefore, the dominating aspects in the formulation of an objective function for the ILP
problem are the minimization of bandwidth consumption and load balancing.

D.5.2 Load Balancing plus ε Shortest Path

The objective function Load Balancing plus ε Shortest Path (LB+εSP) is proposed in
equation (D.17), and it achieves two goals: the primary goal is to minimize the maximum
load per physical resources; in the case of different mapping solutions with the same maximum
utilization, the second part of the objective function is activated which will opt for the solution
which consumes the lowest bandwidth. LCp

max represents the overall maximum node load;
LBp

max represents the overall maximum link load. The parameters Cp
i (0), Bp

ij(0), Cv
m(k),

Bv
mn(k) were defined in Table D.1; the parameter ε represents a small constant, which

should be small enough to not affect the first objective; and the parameters α and β are used
to weight the load cost of each type of resources.

minimize α · LCp

max + β · LBp

max + ε ·
∑
mn

ymnij ·B
v
mn(t),

∀i ∈ Np :
Cp
i (t) +

∑
m x

m
i · Cv

m(k)
Cp
i (0)

≤ LCp

max

∀ij ∈ Lp :
Bp
ij(t) +

∑
mn y

mn
ij ·Bv

mn(k)
Bp
ij(0)

≤ LBp

max (D.17)

D.5.3 Shortest Distance Path

The previous objective function (D.17) works well in situations where there are abundant
resources in the physical network. Then, bandwidth consumption is of no concern and load
balancing is beneficial because it gives a high degree of flexibility in the resource allocation
process.

Nevertheless, in situations where the physical resources are scarce, it is desirable to reduce
the number of physical links consumed to the minimum possible.

Therefore, the objective function SDP, proposed in equation (D.18), aims to minimize
the number of physical links consumed due to the VN embedding, while it prefers physical
links with more available bandwidth, and at the same time chooses physical nodes with more
available CPU power, thereby supporting the load balancing aspect. The parameters α and
β are used to weight the cost of each type of resource. (Note that the first term in equation
(D.18) would result in a constant, if Cp

i (t) was missing in the denominator.)

minimize α

(∑
m

∑
i

xmi
Cp
i (t)

)
+ β

∑
mn

∑
ij

ymnij

Bp
ij(t)

 (D.18)

D.5.4 Weighted Shortest Distance Path

The objective function WSDP, proposed in equation (D.19), is similar to equation (D.18),
although here the demanded capacity by the VN is included in the objective function. This
has the effect that high demands are allocated to nodes or links with a large amount of free
capacity.

135

minimize α

(∑
m

Cv
m(k)

[∑
i

xmi
Cp
i (t)

])
+

β

∑
mn

Bv
mn(k)

∑
ij

ymnij

Bp
ij(t)

 (D.19)

D.6 Evaluation Results

In this section, we describe the simulation scenario, the evaluation metrics, and depict
our major results. We compare the VNE-NLF model in its several versions with six state of
the art methods.

D.6.1 Simulation Parameters

To evaluate the VNE-NLF model, we have implemented a discrete event simulator in
Matlab R©, with the proposed formulation using different objective functions.

The physical network topology is created using the GT-ITM tool [ZCB96], the number of
physical nodes is set to 50, which is representative of a medium scale infrastructure provider,
and the link probability between two physical nodes is set to 0.5. The node CPU capacity
and the link bandwidth are real numbers uniformly distributed between 50 and 100. The
VNs requests are also representative of either small or medium scale virtual networks, and are
created using the same topology generation method; the number of virtual nodes is not fixed,
but follows a uniform distribution, from 2 to 10 virtual nodes per VN topology; the virtual
link probability is set to 0.5. The CPU capacity of the virtual nodes and the bandwidth of the
virtual links are also real numbers uniformly distributed between 0 and 20, and between 0 and
50, respectively2. The considered values for the bandwidth and for the CPU are normalized,
since the objective function aims at simultaneously optimizing the allocation of both types
of resources.

We assume that VN requests arrive according to a Poisson process, and that each VN has
an associated lifetime measured in time units with an average of 1/µ = 1000, following an
exponential distribution. The same assumption was also taken by the authors of [CRB09].
The average number of VN requests per time unit, i.e., value of λ, is started with 3 VN
requests per 100 time units, and increases by 1 VN request, up to 10 requests. This can give
an insight into two opposite case scenarios, with a very high and very low acceptance ratio.
For each value of λ, 10 trials are performed. A new set of VN requests and a new physical
network topology are generated for each trial. All simulations are set to run up to 50000
time units to mitigate the transient phase effect [Jai91] and to obtain the steady-state. A
confidence interval of 95% is used for all results presented below.

The evaluated embedding methods are G-SP[ZA06], G-MCF[YYRC08], R-ViNE[CRB09],
D-ViNE[CRB09], D-ViNE-SP[CRB09], D-ViNE-LB[CRB09], and the proposed linear pro-
gramming formulation, i.e. VNE-NLF, with 3 different cost functions which were described
in the previous section. All these methods are briefly summarized in Table D.2.

The state of the art methods are simulated using an existing implementation [vin12]; to
solve the mixed integer programming on the methods G-MCF, R-ViNE, D-ViNE, D-ViNE-
LB, and D-ViNE-SP, the GLPK [glp12] solver version 4.20 is used.

2These values were also considered by the authors of [YYRC08, ZA06, CRB09]

136

All the simulations for the different embedding methods were performed using an Intel R©

Xeon R© CPU X3220@2.4GHz, and the time consumed per VN request embedding was re-
gistered.

Table D.2: Compared VN Embedding Methods.

Notation Method Description
G-SP [ZA06] Greedy Node Mapping with Shortest Path Based Link Mapping.
G-MCF [YYRC08] Greedy Node Mapping with Splittable Link Mapping using MCF.
R-ViNE [CRB09] Randomized Node Mapping with Splittable Link Mapping using

MCF.
D-ViNE [CRB09] Deterministic Node Mapping with Splittable Link Mapping using

MCF.
D-ViNE-SP [CRB09] Deterministic Node Mapping with Shortest Path Based Link Map-

ping.
D-ViNE-LB [CRB09] Deterministic Node Mapping with Splittable Link Mapping using

MCF, where αuv = βuv = 1, ∀u, v, w ∈ NS .
VNE-NLF-LB+εSP VN Embedding with node-link Formulation using overall Load

Balancing; in the case of having more than one solution, it uses
Shortest Path, where ε = 1.0× 10−11.

VNE-NLF-SDP VN Embedding with node-link Formulation using overall Short Dis-
tance Path.

VNE-NLF-WSDP VN Embedding with node-link Formulation using overall Weighted
Short Distance Path.

The CPLEX R©[cpl12] version 12.2 was used to solve the linear programming problem of
the VNE-NLF; a time limit of 600 seconds is defined for each VN mapping, although most
of the VNs are embedded in hundreds of milliseconds; and the CPLEX R© was set to use only
one CPU core for comparison purposes with the remaining methods. The evaluation metrics
are the ones defined in section D.3.5.

D.6.2 Impact of the Number of VN Requests

This sub-section presents the evaluation results as a function of the VN request rate,
for all the previously described metrics. To increase the readability of all figures, we have
considered different x values for different strategies, e.g.: 3.4, 4.4, 5.4 for G-SP; 3.3, 4.3, 5.3
for G-MCF; 3.2, 4.2, 5.2 for R-ViNE.

Before comparing the different embedding methods and algorithms, we should group
them into four different categories according to the nature of the method itself, i.e. heuristic,
heuristic combined with mixed integer programming, and linear programming:

i Heuristic - the VN embedding problem is solved using a simple algorithm; this method
performs the VN embedding very fast and a possibly sub-optimal embedding solution
is obtained. The method G-SP [ZA06] fits into this category;

ii Heuristic combined with Mixed Integer Programming (MIP) - the VN embedding problem
is solved in two steps: in the first step a mathematical algorithm is used to map virtual
nodes on physical nodes, and in the second step the MIP is performed to embed the
virtual links. The method G-MCF [YYRC08] fits into this category.

iii Heuristic combined with Mixed Integer Programming (MIP) and a better coordination
between mapping phases is added - the same principle is applied, as in the above category,
to solve the VN embedding problem, although a better coordination between the mapping

137

phases is achieved using an augmented “substrate graph construction” [CRB09].
The methods R-ViNE, D-ViNE, D-ViNE-SP, D-ViNE-LB [CRB09] fit into this category;

iv Integer Linear Programming (ILP) - the VN embedding problem is solved using integer
linear programming. This method obtains an optimal solution for a given cost func-
tion combining resource consumption minimization with a load balancing strategy. The
method VNE-NLF and its different objective functions fit into this category.

3 4 5 6 7 8 9 10

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Virtual Network Requests per time unit

A
v
e
ra

g
e
 V

ir
tu

a
l
N

e
tw

o
rk

 R
e
q
u
e
s
t
A

c
c
e
p

ta
n
c
e
 R

a
ti
o

G−SP

G−MCF

R−ViNE

D−ViNE

D−ViNE−SP

D−ViNE−LB

VNE−NLF−LB+εSP

VNE−NLF−SDP

VNE−NLF−WSDP

Figure D.3: Average VN Acceptance ratio as a function of VN Request rate.

D.6.2.1 VN Request Acceptance Ratio

One of the main aspects of the performance of each embedding method is the VN request
acceptance ratio, which is shown in Figure D.3 and is given by equation (D.6). As can
be observed, all methods show a linear behaviour with the variation on the VN requests,
where the acceptance ratio decays linearly with the number of VN requests, and the slope
is approximately the same for all methods. This decay represents the fact that there are no
infinite physical resources.

The method VNE-NLF, with its different objective functions, achieves the highest per-
formance, and it clearly outperforms the other approaches. This is expected since integer
linear programming is applied to solve the VN embedding problem, and the optimal solution,
according to the objective function considered, is obtained per VN embedding.

The reason for these results, not only resides in the usage of an integer linear programming
approach, but also in the utilization of the node-link formulation by the VNE-NLF, which
considers the universe of all possible embedding solutions, instead of a few solutions. If we
take, for example, the first case with only 3 VN requests per 100 time units, the VNE-NLF is
able to accept nearly all requests, while the remaining methods are able to accept only 70% of
the requests. The embedding method that has the lowest acceptance ratio is the D-ViNE-SP,
and the method with the highest VN request acceptance ratio is the VNE-NLF-WSDP.

It is expected that the VNE-NLF method will perform better in all cases. For instance,
if the embedding problem is feasible, i.e., possible solutions exist, the VNE-NLF will find
out the optimal solution according to the cost function. Using a heuristic approach or even
a combined approach, this is not always the case: frequently only a feasible solution will be
presented.

138

3 4 5 6 7 8 9 10

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Number of Virtual Network Requests per time unit

A
v
e
ra

g
e
 N

o
d
e
 U

ti
liz

a
ti
o
n

G−SP

G−MCF

R−ViNE

D−ViNE

D−ViNE−SP

D−ViNE−LB

VNE−NLF−LB+εSP

VNE−NLF−SDP

VNE−NLF−WSDP

Figure D.4: Average Node Utilization as a function of VN Request rate.

D.6.2.2 Node Utilization

The average node utilization as a function of the number of VN requests is depicted in
Figure D.4. With a small number of VN requests, i.e., 3 VN requests, the node utilization
does not go beyond 20% and 35% for the heuristic group (i.e. groups i, ii, and iii) and for the
VNE-NLF, respectively. The VNE-NLF group is consuming more resources of the physical
nodes than the heuristics, which is expected according to the acceptance ratio. When the
number of VN requests is increased, the node utilization also increases, since we are trying
to accommodate more VNs on the infra-structure, but with the same amount of available
physical resources.

An efficient embedding method in situations of high VN demand would be able to load the
nodes to their full capacity. The important aspect to retain here is how much node resources
can be loaded and what kind of embedding methods tends to saturate them firstly.

The node utilization shows a dependency on the VN acceptance ratio, as it can be per-
ceived from Figure D.3 and Figure D.4. To provide a better understanding on this issue, we
plot the acceptance ratio metric times the node utilization, which is shown in Figure D.5.
We observe that the methods that make use of heuristics, e.g. G-SP, or heuristics combined
with MIP, e.g. G-MCF and D-ViNE-LB, show the same behaviour for all the VN requests
considered, i.e. the VN acceptance metric multiplied by the node utilization metric is nearly
constant. The same does not apply to the VNE-NLF, since it increases per VN request con-
sidered, until 6 VN requests per 100 time units, and beyond the 6 VN requests per 100 time
units, it shows the same behaviour as its counterparts. This means that, although the VN
request rate is increasing, the VNE-NLF approach is able to keep with this increase until the
VN embedding problem moves from an optimization problem (i.e. there are sufficient phys-
ical resources for the demand), to a feasibility problem (i.e. there are no sufficient resources
for the demand).

D.6.2.3 Link Utilization

The physical link utilization metric is plotted in Figure D.6. Here we do not have the
same regular behaviour according to the number of VN requests for all the methods, as shown
before for the node utilization. Also, there is no consensus in terms of clearly identifying which

139

3 4 5 6 7 8 9 10

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of Virtual Network Requests per time unit

A
v
e
ra

g
e
 V

N
 A

c
c
e
p

ta
n
c
e
 R

a
ti
o
 t
im

e
s
 A

v
e
ra

g
e
 N

o
d
e

 U
ti
liz

a
ti
o
n

G−SP

G−MCF

R−ViNE

D−ViNE

D−ViNE−SP

D−ViNE−LB

VNE−NLF−LB+εSP

VNE−NLF−SDP

VNE−NLF−WSDP

Figure D.5: Average VN Acceptance Ratio times Average Node Utilization as a function of
VN Request rate.

3 4 5 6 7 8 9 10

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Number of Virtual Network Requests per time unit

A
v
e
ra

g
e
 L

in
k
 U

ti
liz

a
ti
o
n

G−SP

G−MCF

R−ViNE

D−ViNE

D−ViNE−SP

D−ViNE−LB

VNE−NLF−LB+εSP

VNE−NLF−SDP

VNE−NLF−WSDP

Figure D.6: Average Link Utilization as a function of VN Request rate.

group causes the highest utilization on the physical links due to the embedding process.
Nevertheless, we can clearly state that, on average, either the G-MCF or D-ViNE-LB shows
the highest utilization on the links; in the extreme case scenario (i.e. with 10 VN requests)
they have an average link utilization of 60% and 67%, respectively. With respect to the lowest
link utilization, we observe that the embedding methods R-ViNE, D-ViNE, D-ViNE-SP, and
VNE-NLF-WSDP are the ones that tend to consume less bandwidth, reaching values of 50%
of average link utilization, for the same considered situation.

Having in mind that one virtual link could be mapped in several ways, it is reasonable
to observe different behaviours according to the strategy of the method. If the strategy is to
save bandwidth, i.e. SP, the embedding will consume the least bandwidth possible per VN
mapping; if the strategy is load balancing on the links, i.e. LB, it will tend to balance the
utilization among all links in order to distribute the total load.

The link utilization also shows a dependency on the VN acceptance ratio, as can be
observed in Figure D.3 and Figure D.6. To provide a better understanding, we plotted the
acceptance ratio metric times the link utilization in Figure D.7. In contrast to the node

140

3 4 5 6 7 8 9 10

0.2

0.25

0.3

0.35

0.4

Number of Virtual Network Requests per time unit

A
v
e
ra

g
e
 V

N
 A

c
c
e
p
ta

n
c
e
 R

a
ti
o
 t
im

e
s
 A

v
e
ra

g
e
 L

in
k
 U

ti
liz

a
ti
o

n

G−SP

G−MCF

R−ViNE

D−ViNE

D−ViNE−SP

D−ViNE−LB

VNE−NLF−LB+εSP

VNE−NLF−SDP

VNE−NLF−WSDP

Figure D.7: Average VN Request Acceptance Ratio times Average Link Utilization as a
function of VN Request rate.

utilization, the dependency factor on the link utilization shows a more complex behaviour: it
still increases significantly until reaching 6 VN requests for the case of the VNE-NLF group,
although it starts to decrease after 7 VN requests, in a not so expressive way. For the other
methods the dependency on the VN request rate is less pronounced.

D.6.2.4 Embedding Factor

Figure D.8 shows the embedding factor as a function of the VN request rate, where the
weight parameters, α, β, γ, and η of equation (D.7) are set to 1. The embedding factor
slightly decreases with the number of VN requests, except for the case of the VNE-NLF-
LB+εSP. The behaviour obtained when using the VNE-NLF-LB+εSP is as expected, since
it performs an overall load balancing of the physical nodes and links, choosing the solution
that consumes the least bandwidth. Therefore, in the situation of only a few VN requests,
the method will tend to allocate more resources than required due to the nature of the load
balancing; with a higher VN request rate, this situation tends to disappear once the available
resources are scarcer. Therefore, the embedding factor will increase with the number of VN
requests. We can also state that the efficiency of the heuristic group, in general, is very low,
lower than 50%. With respect to the VNE-NLF group, it has a good efficiency, being in most
of the cases higher than 85%; the efficiency of the VNE-NLF-WSDP is closer to 100% which
means that, on average, this method provisions the same amount of resources as requested
per VN.

D.6.2.5 VN Embedding Time

An important aspect of all the VN embedding methods is the time that they require to
embed, on average, a VN request and how it varies with respect to the different loads on the
physical infrastructure, i.e. the VN request rate.

Figure D.9 shows the solving time for each method as a function of the number of VN
requests per 100 time units.

Before analyzing the figure, one must consider five different aspects: i) all methods have
been simulated using the same machine; ii) the time to embed a VN strongly depends on the
physical characteristics (e.g. CPU) of that machine; iii) the time to embed a VN strongly

141

3 4 5 6 7 8 9 10

0.4

0.5

0.6

0.7

0.8

0.9

Number of Virtual Network Requests per time unit

A
v
e
ra

g
e
 E

m
b
e
d
d
in

g
 F

a
c
to

r

G−SP

G−MCF

R−ViNE

D−ViNE

D−ViNE−SP

D−ViNE−LB

VNE−NLF−LB+εSP

VNE−NLF−SDP

VNE−NLF−WSDP

Figure D.8: Average Embedding Factor as a function of VN Request rate.

3 4 5 6 7 8 9 10

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of VN Requests per 100 time units.

A
v
e
ra

g
e
 V

N
 E

m
b
e
d
d
in

g
 T

im
e
 (

s
)

G−SP

G−MCF

R−ViNE

D−ViNE

D−ViNE−SP

D−ViNE−LB

VNE−NLF−LB+εSP

VNE−NLF−SDP

VNE−NLF−WSDP

Figure D.9: VN Solving Time as a function of VN Request rate.

depends on the nature of the embedding method (i.e. a mathematical algorithm will take just
a few milliseconds, while linear programming is expected to take hundreds of milliseconds);
iv) two different linear programming tools (GLPK was used to solve the MIP of G-MCF, R-
ViNE, D-ViNE,D-ViNE-SP, D-ViNE-LB; and CPLEX R© to solve the ILP of the VNE-NLF);
v) methods R-ViNE, D-ViNE,D-ViNE-SP, and D-ViNE-LB perform two linear programming
operations, i.e. one for the mapping of the virtual nodes, and another for the mapping of the
links.

The fourth aspect, although important for the solving time, will not interfere with the
curve behaviour, e.g. polynomial or exponential, since the same method, i.e. branch and cut,
is applied by both solvers (i.e. GLPK and CPLEX) to solve the VN embedding problem.

From the figure, we can observe two types of behaviours: the method VNE-NLF with
three different costs functions shows a decaying behaviour with the VN request rate; for the
remaining methods we observe a nearly constant behaviour.

For the first behaviour, i.e. method VNE-NLF with three different cost functions, one
should take into consideration that the VN request acceptance ratio is considerably higher,
e.g. 90% until 6 VN requests: more than one mapping solution per VN request is expected

142

to exist; therefore, the optimization process takes place and will consume the majority of the
solving time to obtain the optimal solution.

For the remaining methods, the VN request acceptance ratio is lower and below 70%:
usually there is not more than one mapping solution per VN request, on average, which
significantly reduces the solving time. This is the case of the methods G-MCF, R-ViNE,
D-ViNE, D-ViNE-SP and D-ViNE-LB.

We can also add that the methods R-ViNE, D-ViNE, D-ViNE-SP, and D-ViNE-LB take
twice the time on average to embed a VN compared to G-MCF. This is related with the
number of MIP problems solved per VN embedding. The latter only considers one MIP
problem per VN embedding, while the former ones consider two MIP problems.

The method that performs the embedding in the shortest time has the poorest perform-
ance (the G-SP), which solves each VN request embedding problem in an average of 20
milliseconds.

The method that requires the longest time to perform the embedding for the case of 3
VN requests has the highest performance (the VNE-NLF), using the WSDP cost function,
which takes less than 2 seconds on average for that case. However, if we increase the load,
the situation significantly changes, and the methods R-ViNE, D-ViNE and D-ViNE-LB take
more time to obtain the embedding solution. On average, they take 1 second to embed a
VN, while the VNE-NLF-WSDP consumes less than 200ms.

D.6.3 Impact of the Maximum Distance Between Virtual Nodes

To evaluate the impact on the overall performance of the different embedding methods
due to the restriction on the maximum allowed distance between virtual nodes represented
in equation (D.13), a new set of simulation experiments was performed. The VN request
arrival rate was fixed to 4 VN requests per 100 time units; the maximum distance between
virtual nodes was set to vary between 5 and 20 within intervals of 2.5 distance units; for each
considered value of maximum distance, the same set of VN requests was used. The remaining
parameters i.e., virtual network size, link probability, and number of nodes were maintained.
To increase the readability of all figures, only the best method of each group is presented in
this section: G-SP (heuristic), G-MCF (mixed integer programming - link-path), D-ViNE-LB
(mixed integer programming with better node-link embedding coordination - link-path), and
VNE-NLF-WSDP (integer linear programming - node-link).

D.6.3.1 VN Request Acceptance Ratio

Figure D.10 depicts the VN request acceptance ratio as a function of the distance between
virtual nodes. Two different behaviours can be observed:

i The acceptance ratio increases with the distance between virtual nodes: this is the case
of the VNE-NLF group. This behaviour is expected if we consider the cases where VN
requests were initially not mapped due to the distance constraint; increasing the permitted
distance between virtual nodes will in principle result in more accepted VNs.

ii Increasing the distance between virtual nodes decreases the acceptance ratio: this is the
case of the assignment methods G-SP, G-MCF, D-ViNE-LB.

D.6.3.2 Node Utilization

Figure D.11 depicts the average physical node utilization as a function of the distance
between virtual nodes. The behaviour observed for each method can be compared to that of
the VN acceptance ratio.

143

5 10 15 20
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Maximum Distance Between Virtual Nodes

A
v
e
ra

g
e
 V

ir
tu

a
l
N

e
tw

o
rk

 R
e
q
u
e
s
t
A

c
c
e
p
ta

n
c
e
 R

a
ti
o

G−SP

G−MCF

D−ViNE−LB

VNE−NLF−WSDP

Figure D.10: Average VN Acceptance Ratio as a function of the Distance between Virtual
Nodes

D.6.3.3 Link Utilization

The average physical link utilization is shown in Figure D.12, and different behaviours
are observed according to the embedding method:

i G-SP and G-MCF methods reduce slightly the link utilization with the distance, and
the method D-ViNE-LB maintains the link utilization, despite some fluctuations may be
observed.

ii The group of VNE-NLF demonstrates to slightly increase the link utilization with the
maximum distance between nodes. This is expected, considering the increase on the VN
request acceptance ratio with the distance.

D.6.3.4 Embedding Factor

The embedding factor is depicted in Figure D.13, where three distinct behaviours can be
observed:

i The embedding factor slightly decreases with the maximum distance: this is the case of
methods G-SP and G-MCF, where these demonstrate to lose efficiency with the considered
distance.

ii The embedding factor does not vary with the maximum distance: this is the case of
method D-ViNE-LB.

iii The embedding factor increases with the maximum distance: this is the case of the VNE-
NLF group. This demonstrates that the VNE-NLF group is able to be more efficient with
the relaxation on the distance constraint equation (D.13).

144

5 10 15 20

0.2

0.25

0.3

0.35

0.4

Maximum Distance Between Virtual Nodes

A
v
e
ra

g
e
 N

o
d
e
 U

ti
liz

a
ti
o
n

G−SP

G−MCF

D−ViNE−LB

VNE−NLF−WSDP

Figure D.11: Average Node Utilization as a function of the Distance between Virtual Nodes

5 10 15 20

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

Maximum Distance Between Virtual Nodes

A
v
e
ra

g
e
 L

in
k
 U

ti
liz

a
ti
o
n

G−SP

G−MCF

D−ViNE−LB

VNE−NLF−WSDP

Figure D.12: Average Link Utilization as a function of the Distance between Virtual Nodes

5 10 15 20

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Maximum Distance Between Virtual Nodes

A
v
e
ra

g
e
 E

m
b
e
d
d
in

g
 F

a
c
to

r

G−SP

G−MCF

D−ViNE−LB

VNE−NLF−WSDP

Figure D.13: Average Embedding Factor as a function of the Distance between Virtual Nodes

145

D.7 Conclusion
This paper proposed the VNE-NLF to solve the VN embedding problem. The model

applies optimization theory to simultaneously embed the virtual nodes and the virtual links.
Three new cost functions are proposed: the LB+εSP which aims to minimize the overall

load on the network per VN embedding; the SDP which aims to minimize the number of
physical links consumed, and at the same time it chooses physical nodes with higher avail-
ability of resources; and the WSDP which includes the demanded capacity by the VN in the
objective function.

Simulation experiments show how far the state of the art heuristics are from an ILP based
optimization method. The difference between the performance of the heuristics and the VNE-
NLF approach is, at least, 30% for the VN request acceptance ratio (see Figure D.3). The
node utilization is also higher when comparing with the existing heuristics, which is expected
since we are accommodating more virtual nodes on the network. However, the link utilization
is similar to the ones of the heuristics, and in some cases (e.g. G-MCF, D-ViNE-LB) it is
lower, which reflects the good efficiency of the embedding when using the VNE-NLF approach.
The embedding factor of the VNE-NLF is very high (i.e. it is close to 1). The results also
show that the maximum allowed distance between virtual nodes seems to affect differently the
performance of each embedding method: for the case of R-ViNE and D-ViNE with its three
variants, it does affect negatively the performance of the VN embedding; for the case of G-SP
and G-MCF, it does not seem to cause a direct impact on the embedding; and regarding the
VNE-NLF approach, it does affect positively the VN embedding.

The VNE-NLF with all its different cost functions proves to be an efficient embedding
method. Not only it provides better results, but it also performs the VN embedding faster
than the compared heuristics (with exception of G-SP) for a large number of VN requests
per time unit. From all the proposed and simulated cost functions, the WSDP is the one
that demonstrates the best overall performance.

Future work will endorse VN embedding with multi-objective optimization support, and
re-configuration of virtual networks. The definition of cost functions which take into account
energy parameters will be also addressed, through the study of the impact on energy saving,
i.e. the shutdown of an interface or even an equipment, by applying optimization to solve
the VN embedding problem.

146

Appendix E - Optimal Virtual Network
Embedding: Energy Aware
Formulation

Márcio Melo, Susana Sargento, Ulrich Killat, Andreas Timm-
Giel, and Jorge Carapinha

submitted in IEEE Transactions on Network and Service
Management (TNSM), vol. NA , Issue: NA 2014.

The format has been revised.

147

Optimal Virtual Network Embedding:
Energy Aware Formulation

Márcio Melo, Susana Sargento, Ulrich Killat, Andreas Timm-Giel, and
Jorge Carapinha

Abstract

Network Virtualisation is a key component of the Future Internet,
providing the dynamic support of different networks with different para-
digms and mechanisms in the same physical infrastructure. A major
challenge in the dynamic provision of virtual networks is the embed-
ding approach taking energy efficiency into account, while not affecting
the overall VN acceptance ratio. Previous research focused on either
designing heuristic-based algorithms to address the efficient embedding
problem or to address the energy impact.

This paper proposes an integer linear programming formulation,
Energy Aware - Virtual Network Embedding - Node-Link Formulation
(EA-VNE-NLF) that solves the online virtual network embedding as an
optimization problem, providing both the minimum energy consumption
and optimal resource allocation per VN mapping. Two different objective
functions are proposed: i) addressing primarily the resource consump-
tion problem - BCM; ii) addressing primarily the energy consumption
problem - ECM.

The performance of each objective function is evaluated by means of
simulation and compared with an existing objective function, WSDP,
that is considered state of the art on the resource allocation problem.
The simulation results show that the objective function BCM reduces
the energy consumption of the physical network by 14.4%, and the em-
bedding factor by 4.3%, consuming almost the same amount of resources
as requested per VN, and sightly worsening the VN acceptance ratio by
2.3%. ECM reduces the energy consumption of the physical network by
31.4% and improves the embedding factor by 4.1%, without affecting the
VN acceptance ratio when compared to WSDP.

148

E.1 Introduction

NOWADAYS, network operators are required to pay more attention to the power con-
sumption of their networks, either due to environmental policies imposed by the local

governments or due to energy costs [AN08]. In fact, the power consumption of the data plane
in idle mode is 90% the one in full mode [CSB+08, LGL+11], while the power consumption
of the control plane, i.e. CPU, is about 70% [BH09] the one in idle mode.

Several procedures can be taken to reduce the energy consumption, such as turning nodes
that are not being used into sleep mode or by using “green” protocols. In [NPI+08a] the
impact on network protocols by turning network interfaces and components into sleep mode
for saving energy is discussed, and in [GS03a] two forms of power management schemes are
presented and evaluated that reduce the energy consumption of networks. Not only the
power consumption of each network equipment per se is important, but also the power
consumption of the service itself. The energy consumption of the data plane can be derived
from the virtual links allocation, and the one of the control plane can be derived from the
virtual nodes, if we consider the data and control planes as two different power consumption
sources.

Network virtualisation will trigger the development of green protocols and will facilitate
an optimal load distribution in the network: virtual nodes may be concentrated on certain
physical nodes, thereby creating unused resources which can be turned into sleep mode. It is
important that all provisioned services, i.e. virtual networks, are provisioned in the smallest
number of physical nodes and links to save energy, and therefore, to reduce theCO2 footprint,
without affecting the reliability of the network.

One of the major obstacles for operators lies in the energy efficient embedding1 of a Virtual
Network (VN) onto a physical network, while maintaining the same levels of VN acceptance
ratio. Since this is a multi-objective problem, it requires the simultaneous optimization of:
i) resource allocation and ii) energy consumption. Previous research works, such as [ZA06,
YYRC08, LK09, NMCS11b, CRB12] focused on the efficient embedding, while some recent
research works, such as [SZC+12, BHD+12], focused on the energy consumption aspects.
However, most of them either do not take into account both objectives, or do not solve it as
an optimization problem, leading to non optimal embedding solutions.

This paper focuses on the online embedding of VN requests in the physical network taking
energy constraints into account. An ILP formulation, the Energy Aware - Virtual Network
Embedding - Node-Link Formulation (EA-VNE-NLF), is used to solve the VN assignment
problem on the basis of an optimization of resource allocation and energy consumption. In
addition, different cost functions are proposed and analyzed, which either primarily enforce
bandwidth consumption minimization, energy consumption minimization or both objectives.
The performance of each objective function is evaluated by means of simulation and com-
pared with an existing objective function, WSDP, that is considered state of the art on the
resource allocation problem. The simulation results show that both objective functions sig-
nificantly reduce the energy consumption of the physical network, consuming similar amount
of resources as requested per VN, and with similar VN acceptance ratios.

Compared to our previous work in [MSK+13], this paper:

i extends the mathematical formulation to support energy parameters;

ii proposes two cost functions, Bandwidth Consumption Minimization (BCM) and Energy
Consumption Minimization (ECM) that take into account the energy consumption min-
imization;

1The terms embedding, mapping and assignment are used interchangeably in this paper.

149

iii provides a performance comparison with an objective function, i.e. Weighted Shortest
Distance Path (WSDP), which is a state of the art approach for virtual network embed-
ding.

The rest of the paper is organized as follows. After summarizing the related works in
E.2, section E.3 describes the virtual network embedding problem and the evaluation met-
rics. Section E.4 describes the Energy Aware - Virtual Network Embedding - Node-Link
Formulation (EA-VNE-NLF) and the applied constraints, while section E.5 describes the
VN embedding and discusses different objective functions. Section E.6 analyzes the perform-
ance of the EA-VNE-NLF with different cost functions, and section E.7 concludes the paper
and describes the future work.

E.2 Related Work

The VN embedding problem can be formulated as an un-splittable flow problem [ZA06]
of resource allocation and energy consumption optimization. In order to solve this problem,
several approaches have been suggested, mostly considering the resource consumption aspect.

The work in [LT06] defined a set of premises about the virtual topology, i.e. the backbone
nodes are star-connected and the access-nodes connect to a single backbone node. Based on
these premises, an iterative algorithm is run, with different steps for core and access mapping.
However, the algorithm can only work for specific topologies.

A distributed algorithm was studied in [HLZ08]. It considers that the virtual topologies
can be decomposed in hub-and-spoke clusters, and each cluster can be mapped independ-
ently, therefore reducing the complexity of the full VN mapping. This proposal has lower
performance when compared with centralized approaches.

Zhu et al. [ZA06] proposed a heuristic based on a centralized algorithm to deal with VN
mapping. The goal of the algorithm is to maintain a low and balanced load of both nodes and
links of the substrate network. Yu et al. [YYRC08] proposed a mapping algorithm which
considers finite resources in the physical network, and enables path splitting (i.e. virtual
link composed by different paths) and link migration (i.e. to change the underlying map-
ping) during the embedding process. However, this level of freedom can lead to a level of
fragmentation that is unfeasible to manage in large scale networks.

In [CRB09] a formal approach is taken to solve the on-line VN mapping problem using
a mixed integer programming formulation. Chowdhury et al. applied a two step approach
to embed VNs on the substrate. In the first step, the virtual nodes are assigned to physical
nodes, and in the second step the virtual links are assigned to physical paths. Compared to
the previous state of the art heuristics, i.e. [ZA06, YYRC08], the formulation proposed by
Chowdhury et al. provides a better coordination of the two phases, since an “augmented
substrate graph construction” is used.

The approach in [CRB09] completely differs from the mathematical formulation proposed
in this paper, which applies a node-link formulation. In our approach, the universe of em-
bedding solutions is considered within the ILP formulation, and the VN embedding problem
is solved in a single step using the multi-commodity flow constraint and by considering the
notion of direction of the flows.

Butt et al. [FBCB10] proposed a topology aware heuristic for VN mapping, and also
suggested algorithms to avoid bottlenecks on the physical infrastructure, where they consider
virtual node reallocation and link reassignment for this purpose. Nogueira et al. [NMCS11b]
proposed a heuristic that takes into account the heterogeneity of the VNs and also of the
physical infrastructure. The heuristic is evaluated by means of simulation and also on a

150

small scale testbed, where it achieves mapping times of the order of tens of milliseconds.
Botero et al. [BHFM12] proposed an algorithm to solve the VN mapping problem, which
also considers the CPU demand of the hidden hops. Chowdhury et al. [CRB12] extended
his preliminary results [CRB09] and included a generalized window-based VN embedding to
evaluate the effect of look ahead on the mapping of VNs. Alkmim et al. [ABdF13] proposed a
mathematical formulation that aims to: i) map virtual routers and virtual links; ii) minimize
the bandwidth consumption; and iii) minimize the time required to instantiate a virtual
router.

In our previous research work [MCS+12], we have proposed an ILP formulation to solve
the online VN embedding problem from an optimization standpoint, moreover in [MCS+13b]
we have extended the Integer Linear Programming (ILP) formulation to contemplate the re-
optimization of VNs currently embedded. An extended approach and the comparison with
existing heuristics were recently added in [MSK+13].

The previous referred research works do not take into account energy aspects. Re-
cent approaches focusing on the energy consumption aspects comprise the one of Zhang
et al. [SZC+12], which proposed an efficient energy-aware algorithm using a consolidation
technique to reduce the energy consumption. However, a comparison with the optimal solu-
tion and baselines is not provided. Botero et al. [BHD+12] extended their preliminary work
and proposed a Mixed Integer Programming (MIP) with the aim of providing optimal energy
efficient embeddings. This formulation despite providing the optimal solution for energy em-
beddings, it does not consider the resource allocation objective, thereby penalizing the VN
acceptance ratio.

Although all these algorithms provide a solution for the VN mapping problem, an optimal
solution for energy consumption and resource allocation is not provided. Also, some of the
proposals fail to solve the assignment problem as a simultaneous optimization of the virtual
node and link placement, which leads to non-optimal resource allocation solutions.

Our approach, the EA-VNE-NLF, applies a node-link formulation to solve the VN em-
bedding problem in a single step using the multi-commodity flow constraint. This approach
provides the optimal solution for the objective problem considered, both in terms of resource
allocation and energy efficiency, for a given set of weights in the objective function.

E.3 Network Description and Problem Formulation

In this section, we introduce the virtual network embedding problem. In addition, the
VN embedding notations used throughout the paper are presented, and the virtual network
embedding system is explained. Finally, the mapping goals are introduced to support the
mathematical formulation. Readers familiar with our previous paper [MSK+13] may skip
paragraphs E.3.1-E.3.4.

E.3.1 Network Description

We use superscript to distinguish the physical network from the virtual network, where
p and v correspond to physical and virtual, respectively.

E.3.1.1 Physical network

A physical network can be described as a weighted undirected graphGp = {Np, Lp, Bp}
composed by a set of physical nodes, Np, and a set of physical links, Lp. Each physical node
i is characterized by its processing capacity, Cp

i , commonly referred to as the CPU; The node

151

...
...

VN request k
VN Lifetime=400

VN Embedding
System

VN request 1
VN Lifetime=650

Time=0

Time=t

VN Requests

Physical Network

Mapping Result

10

10 15

a

5

7

b

c
B

A

D

C E

F

50

95 70

80

6560

90 50

657585

55 65 95

30

10 20

ed

Figure E.1: VN Embedding System - Topology Example

i is also defined by its power state ui - active if the node is power-up or inactive if the node
is power-off, and by its power consumption Pi.

Additionally, the node i is characterized by the role it is performing in the network: host-
ing node if it accommodates virtual nodes; forwarding node if its physical links accommodate
virtual links but the node itself does not accommodate virtual nodes.

With respect to the physical links, we consider that each link ij has a given bandwidth,
Bp
ij ; we assume that each link is an undirected link. The bottom-right of Figure E.1 illustrates

a physical network topology example composed of 6 physical nodes and 8 physical links, the
corresponding capacities of the nodes and the links are presented on top of the elements. The
physical nodes power state is represented by white for inactive and gray for active.

E.3.1.2 Virtual Network Request

VN request can be described as a weighted undirected graph Gv = {Nv, Lv, Bv} com-
posed by a set of virtual nodes, Nv, and a set virtual links, Lv. Each virtual node m is
characterized by the amount of required CPU, Cv

m, and the virtual links mn are logical
connections between virtual nodes and characterized by the amount of dedicated bandwidth,
Bv
mn. We also assume that each virtual link is an undirected link. The left part of Figure E.1

represents the example of two virtual network requests, VN request 1 on the bottom-left and
VN request k on the top-left. VN requests have a given lifetime which is independent from
each other.

E.3.1.3 VN Assignment Notations

First, we start with the convention used for the index notation: Np represents the set of
nodes that belong to the physical network; Lp represents the set of links that belong to the
physical network; and Lpi represents a subset of links ij that are directly connected to the
node i. The same type of notation is used to represent the VN using the lettersm and n in the
virtual network. The notations used throughout this paper for the VN assignment problem
are presented in Table E.1. The table is divided into three parts: the static parameters of the

152

VN Assigment Infeasible

VN Assigment Feasible

Allocate VN

Embed VN Request

Update Physical network

Update VN List

Release VN

Yes NoVN Lifetime
 Expired?

VN
Mapping
Method

B

A

D

C E

F

50

95 70

80

6560

90 50

657585

55 65 95

10

10 15

a

5

7

b

c30

10 20

ed

Figure E.2: VN Request Life Cycle - Activity Diagram

physical network, the dynamic parameters of the physical network, and the virtual network
requests with the demanded capacities.

E.3.2 Unfilled Physical Network Resources

The remaining capacity of each physical node at a specific time t is given by the differ-
ence between the total processing capacity and the capacity consumed by the virtual nodes
previously allocated on that physical node up to time t, and is presented in equation (E.1),
where U represents the set of virtual nodes previously allocated to that physical node.

∀i ∈ Np : Cp
i (t) = Cp

i (t0)−
∑
u∈U

Cv
u(t) (E.1)

The available bandwidth of each physical link at a specific time t is given by the difference
between the total bandwidth and the bandwidth consumed by all virtual link segments al-
located to that physical link, and is presented in equation (E.2), whereW represents the set

153

Table E.1: VN Assignment Problem Notation.

Gp Physical Network
Np Set of Physical Nodes
i, j Physical Nodes
ij Physical Link
Lp Set of Physical Links
Lp

i Set of Physical Links directly connected
to Physical Node i

Cp
i (t0) Available CPU of Physical Node i at time

t0
Bp

ij(t0) Available Bandwidth of Physical Link ij
at time t0

t Time
Cp

i (t) Available CPU of Physical Node i at time
t

ui(t) Power State of Physical Node i at time t
Pi(t) Power Consumption of Physical Node i

at time t
Bp

ij(t) Available Bandwidth of Physical Link ij
at time t

tk Time of Virtual Network Request Event
k

k Virtual Network Request
Gv Virtual Network
Nv(tk) Set of Virtual Nodes at time tk
Lv(tk) Set of Virtual Links at time tk
Lv

m(tk) Set of Virtual Links directly connected to
Virtual node m at time tk

m,n Virtual Nodes
mn Virtual Link
Cv

m(tk) CPU of Virtual Node m at time tk
Bv

mn(tk) Bandwidth of Virtual Link mn at time
tk

of all virtual link segments allocated to that specific physical link at time t.
A virtual link can be composed of one or more physical links, i.e. a physical path.

We consider that each virtual link has a single physical path, and we do not consider link
aggregation (i.e. virtual link composed by different physical paths). One physical link can
accommodate one or more virtual link segments belonging to different virtual links.

∀ij ∈ Lp(t) : Bp
ij(t) = Bp

ij(t0)−
∑
w∈W

Bv
w(t) (E.2)

E.3.3 VN Request Embedding Process

The VN request embedding process can be divided into two components: the component
that ensures the mapping of the virtual nodes, and the one that handles the mapping of the
virtual links.

E.3.3.1 Virtual Node Mapping

Each virtual node needs to be mapped onto one physical node. This relation is given by
the mapping functionM[m ∈ Nv(tk)] = i, where virtual nodem is mapped onto physical

154

node i. Each physical node candidate needs to have, at least, the same amount of available
CPU as required by the virtual node, which is represented in equation (E.3).

∀i,∀M[m ∈ Nv(tk)] = i : Cv
m(tk) ≤ Cp

i (tk) (E.3)

E.3.3.2 Virtual Link Mapping

Each virtual link can be mapped onto one or more physical links (i.e. physical path). This
relation is given by the mapping functionM[mn ∈ Lvmn(tk)], where the virtual linkmn is
mapped onto one physical path. Each physical link candidate belonging to the physical path
needs to have, at least, the same amount of bandwidth available as required by the virtual
link, which is presented in equation (E.4).

∀ij ⊆M[mn ∈ Lv(tk)] : Bv
mn(tk) ≤ Bp

ij(tk) (E.4)

E.3.4 VN Request Life Cycle

The embedding process begins upon a new VN request arrival, which is depicted in Figure
E.2. A VN mapping method is used to embed the VN; it takes as inputs the current status
of the physical network (e.g. available CPU capacity, existing bandwidth, and physical node
power state: active or inactive) and the VN request itself. If the result of the mapping process
is a viable solution, the mapping is considered to be feasible; if not, it is considered to be
unfeasible and the VN embedding process stops.

E.3.5 Mapping Metrics

In order to assess the performance of an embedding method and at the same time to
evaluate the energy impact, different metrics were defined.

E.3.5.1 VN Request Acceptance Ratio

The VN request acceptance ratio,A(tk), is given by equation (E.5) and defines the overall
performance of an embedding method: the sum of all VN requests accepted, k′, over the sum
of all VN requests, k.

A(tk) =
k′

k
(E.5)

E.3.5.2 Embedding Factor

The embedding factor, E(tk), is given by equation (E.6) and represents the ratio between
the amount of virtual resources (i.e. bandwidth) that were requested for the VN, and the
amount of physical resources that were effectively provisioned to accommodate that VN, i.e.
the efficiency of embedding.

E(tk) =
∑
mn∈Lv(tk)B

v
mn∑

mn∈Lv(tk)
∑
ij⊆M[mn∈Lv(tk)]B

v
mn

(E.6)

155

E.3.5.3 Physical Node Power State

The physical node power state is given by equation (E.7). The value of ui(t) is set to 1 if
physical node i hosts one or more virtual links. With this equation, we can take into account
the situation where a physical node is being used as a forwarding node only.

ui(t) =
{

1, if physical link ij ∈ Lpi hosts a virtual link
0 otherwise (E.7)

E.3.5.4 Power Consumption

The power consumption, Pi, of physical node i is given by equation (E.8), and it is
obtained by summing the power required to maintain the node active, which is denoted in
the equation as the baseline power, Pb, with the load power, Pl, currently allocated. The
baseline power is given by equation (E.9), and the load power is obtained with equation
(E.10). Both expressions are multiplied by the parameter θ, that is used to weight the cost
of each power consumption source given in equation (E.11).

In equation (E.8), we assume that the baseline power already incorporates the power
required to operate the data plane. This assumption is relevant for the case where a physical
node is powered up to perform only the role of forwarding, i.e. its physical links host one
or more virtual links, but no virtual nodes are being hosted in it. Therefore, the power
consumption of this specific physical node will be equal to Pb only. According to [LGL+11],
it is plausible to assume that the power required to power up all physical links of a given
physical node is much smaller than the power required to power up the physical node it-
self [BH09]. Therefore, we are not considering the power required to power up each physical
link individually in the equation.

Pi(t) = Pbi + Pli (E.8)

Pbi(t) = θb × ui(t) (E.9)

Pli(t) = θl ×
[
Cp
i (t0)− Cp

i (t)
]

(E.10)

θb + θl = 1 (E.11)

E.3.5.5 Physical Network Energy Consumption

The energy consumption of the physical network, Ep(t), is given by equation (E.12) and
it represents the amount of energy that will be required to operate the physical network. This
is obtained by summing the amount of energy required to power up (i.e. Pb) the physical
nodes and the amount of energy required to host (i.e. Pl) the virtual nodes.

Ep(t) = θb
∑
i∈Np

ui(t) + θl
∑
i∈Np

Cp
i (t0)− Cp

i (t) (E.12)

156

E.3.5.6 VN Energy Consumption

The energy consumption of a VN, Ev(tk), is given by equation (E.13) and it represents
the amount of energy that will be required to host a new VN request. This is obtained by
summing the amount of energy required to power up (i.e. Pb) new physical nodes at time
tk, and the amount of energy required to host new virtual nodes (i.e. Pl), where ε is an
arbitrarily small value.

Ev(tk) = θb
∑
i∈Np

(ui(tk)− ui(tk − ε))

+ θl
∑

m∈Nv(tk)
Cv
m(tk) (E.13)

E.4 Virtual Network Embedding - Mathematical Formulation
This section describes the mathematical formulation used to solve the online VN embed-

ding problem with the defined constraints. For convenience of the reader, we repeat equations
describing the constraints which are explained in our previous paper [MSK+13].

An Integer Linear Programming (ILP) approach is used to solve the online VN embedding
problem; we propose a node-link formulation, and two assignment variables are applied during
the embedding process. The index notation used here is the same as in section E.3.1.3.

E.4.1 Assignment Variables

E.4.1.1 Virtual Node Assignment

xmi =
{

1, virtual node m is allocated at physical node i
0, else (E.14)

E.4.1.2 Virtual Link Assignment

ymnij =
{

1, virtual link mn uses physical link ij
0, else (E.15)

E.4.2 Constraints

E.4.2.1 Assignment of virtual nodes to physical nodes

Equation (E.16) ensures that each virtual node is assigned, and that it is assigned to just
one physical node.

∀m :
∑
i

xmi = 1 (E.16)

E.4.2.2 One virtual node per physical node

Equation (E.17) guarantees that each physical node can accommodate in the maximum
one virtual node per VN request, although each physical node can accommodate other virtual
nodes from different VNs.

∀i :
∑
m

xmi ≤ 1 (E.17)

157

E.4.2.3 CPU conservation

Equation (E.18) assures that the available CPU capacity of each physical node is not
exceeded.

∀i :
∑
m

xmi · C
v
m(tk) ≤ Cp

i (tk) (E.18)

E.4.2.4 Assignment of virtual links to physical links - multi-commodity flow
conservation with node-link formulation

To simultaneously optimize the mapping of virtual links and virtual nodes, the multi-
commodity flow constraint [EIS75] is applied with a node-link formulation [PM04]; moreover,
the notion of direct flows on the virtual links is used, which is represented in Eq. (E.19),
where Lvm represents all the virtual links that are directly connected to the virtual node m,
and Lpi represents all the physical links that are directly connected to the physical node i.

∀mn ∈ Lvm,m < n,∀i :∑
ij∈Lp

i

(ymnij − y
mn
ji) = xmi − x

n
i (E.19)

E.4.2.5 Bandwidth conservation

To ensure that the available bandwidth at each physical link ij is not surpassed, Equation
(E.20) is defined.

∀ij ∈ Lpi j :∑
mn∈Lv

m,m<n

Bv
mn(tk)(ymnij) ≤ Bp

ij(tk) (E.20)

E.5 Objective Functions - Energy Aware

The VN embedding problem requires the mapping of virtual nodes and virtual links, i.e.
it requires decision variables to handle the mapping. With respect to the nodes, we can only
optimize the distribution of the load among the physical nodes (i.e. we have a matching of
one virtual node per physical node; therefore the total CPU consumption will be independent
of the mapping). With respect to the links, we are not only able to optimize the link load,
but also the physical bandwidth consumption, since a virtual link can be mapped in different
ways: it can either be directly embedded in a single physical link or eventually span across
several physical links. Another important objective is related with the energy consumption of
the physical network and how it can be minimized by concentrating the load on the minimum
amount of physical nodes.

Having enumerated all the dimensions of our problem, we can also realize that they
are not independent, since embedding a virtual node directly affects the virtual links and
therefore the bandwidth consumption; and aiming for load balancing directly conflicts with
an energy saving strategy. Therefore, the objectives are intrinsically related. In this section,
we describe three objective functions to address the nature of the VN embedding problem
from an optimization perspective, that aims at performing one or more objectives: i) load
balancing; ii) resource consumption minimization; iii) and energy consumption minimization.

158

E.5.1 Weighted Shortest Distance Path

The objective function WSDP, proposed in equation (E.21), aims to minimize the number
of physical links, while it prefers physical links with more available bandwidth, and at the
same time chooses physical nodes with more available CPU power, thereby supporting the
load balancing aspect. This has the effect that high demands are allocated to nodes or links
with a large amount of free capacity. The parameters α and β are used to weight the cost of
each type of resource. This is the approach proposed in [MSK+13] and that we consider as
baseline for our energy-aware extensions.

minimize: α
(∑
m

Cv
m(tk)

[∑
i

xmi
Cp
i (t)

])
+

β

∑
mn

Bv
mn(tk)

∑
ij

ymnij

Bp
ij(t)

 (E.21)

E.5.2 Bandwidth Consumption Minimization

In situations where the bandwidth resource is scarce or more expensive when compared to
the CPU, it is preferable to obtain the minimum bandwidth allocation. The objective func-
tion BCM which is proposed in equation (E.22) fulfills this objective: bandwidth allocation
minimization per VN embedding request.

minimize:
∑

mn∈Lv,n<m

Bv
mn(tk)

∑
ij∈Lp

ymnij (E.22)

E.5.3 Energy Consumption Minimization

One can realize from the previous objective functions that they are both agnostic to
energy consumption aspects, i.e. the power-up of new nodes.

The objective function ECM, which is proposed in equation (E.23), is energy consumption
oriented and fulfils three objectives: i) to minimize the power-up of new physical nodes
including the forwarding nodes per VN embedding - this is achieved using the parameter
Pij(t) in the first term that represents the power state of the physical nodes i, j immediately
prior to the embedding, and it is used to penalize the allocation of virtual links on physical
links attached to inactive physical nodes; ii) to minimize the number of physical links required
per VN embedding - this is achieved by summing the decision variable ymnij , which is used
to represent the mapping of virtual links; iii) to minimize the load power - this is obtained
by using the second term that considers the current CPU allocation [Cp

i (t0) − Cp
i (tk)]

on physical node i, plus the CPU demand [Cv
m(tk)] of virtual node m over the total CPU

capacity [Cp
i (tk)]. This gives the CPU ratio which is then multiplied by Pl. To not jeopardize

the second objective when physical nodes i and j are active, we consider Pij(t) to be equal
to Pl. The parameters α and β are used to weight the cost of each term of the objective

159

function.

minimize: α

 ∑
mn∈Lv,n<m

∑
ij∈Lp

ymnij × Pij(t)

 (E.23)

+ β

 ∑
m∈Nv

Pl
∑
i∈Np

xmi
Cp
i (t0)− Cp

i (tk) + Cv
m(tk)

Cp
i (t0)

 ,where
Pij(t) =

Pl, if physical node i and j are active
Pb, if physical node i and j have different states
2Pb, if physical nodes i and j are not active

E.6 Evaluation Results
In this section, we describe the simulation scenario and depict our major results. The

evaluated cost functions are briefly summarized in Table E.2.
Due to space limitations and also to obtain a better perception on the results, we do not

present here a comparison with other embedding approaches, i.e. mostly heuristics, since this
was already performed for the WSDP approach in [MSK+13].

E.6.1 Simulation Parameters

To evaluate the EA-VNE-NLF model, we have implemented a discrete event simulator in
Matlab R© with the proposed formulation using different objective functions; the values of α
and β were set to 0.5.

The physical network topology is created using the GT-ITM tool [ZCB96], the number of
physical nodes is set to 50, which is representative of a medium scale infrastructure provider,
and the link probability between two physical nodes is set to 0.5. The node CPU capacity
and the link bandwidth are real numbers uniformly distributed between 50 and 100. The
VN requests are also representative of either small or medium scale virtual networks, and are
created using the same topology generation method; the number of virtual nodes is not fixed,
but follows an uniform distribution, from 2 to 10 virtual nodes per VN topology; the virtual
link probability is set to 0.5. The CPU capacity of the virtual nodes and the bandwidth of
the virtual links are also real numbers uniformly distributed between 0 and 20, and between
0 and 50, respectively2. The considered values for the bandwidth and for the CPU are in the
same range, since the objective functions aim at simultaneously optimizing the allocation of
both types of resources. The value of Pb is set to 175 units of power, while the value of Pl
is set to 75 units of power3. According to the previous values, θb is set to 0.7, while θl is set
to 0.3.

2These values were also considered by the authors of [YYRC08, ZA06, CRB09, MSK+13].
3These values were also considered by the authors of [BH09].

Table E.2: Compared VN Embedding Methods.

Notation Method Description
WSDP [MSK+13] Weighted Shortest Distance

Path Minimization.
BCM Bandwidth Consumption

Minimization
ECM Energy Consumption Minim-

ization

160

We assume that VN requests arrive according to a Poisson process, and that each VN has
an associated lifetime measured in time units with an average of 1/µ = 1000, following an
exponential distribution. The same assumption is also taken by the authors of [MSK+13].
The VN request rate, i.e., value of λ, is started with a rate of 3 VN requests per 100 time
units, and increases by 1 VN request, up to a rate of 10 VN requests. This can give an insight
into two opposite case scenarios, with a very high and very low acceptance ratio. For each
value of 1/λ, 10 trials are performed. A new set of VN requests and a new physical network
topology are generated for each trial. All simulations are set to run up to 50000 time units
to obtain the steady-state and to preclude the transient phase effect [Jai91]. A confidence
interval of 95% is used for all results presented below.

The CPLEX R©[cpl12] version 12.2 was used to solve the linear programming problem of
the EA-VNE-NLF. A time limit of 600 seconds is defined for each VN mapping, although
most of the VNs are embedded in hundreds of milliseconds. The CPLEX R© is set to use only
one CPU core for comparison purposes with the remaining methods. All the simulations are
performed using an AMD R© OpteronTM Processor 4238@3.3GHz, and the time consumed per
VN request embedding is registered. The evaluation metrics are the ones defined in section
E.3.5.

E.6.2 Simulation Results

This sub-section presents the evaluation results as a function of the VN request rate for
all the previously described metrics.

E.6.2.1 VN Request Acceptance Ratio

One of the main aspects of the performance of each embedding method is the VN request
acceptance ratio, which is shown in Figure E.3. From the figure, we can observe that the
three objective functions demonstrate the same behaviour, i.e. the acceptance ratio decreases
with the VN request rate. This is justified by the fact that there are more virtual resources
to allocate in the same amount of physical resources. We can also observe that the object-
ive function that aims at reducing the bandwidth consumption per VN embedding, BCM,
produces slightly worse results when compared to the remaining curves. Noteworthy, the
objective function that aims at reducing the energy consumption per VN embedding, ECM,
has similar results when compared to WSDP.

E.6.2.2 Embedding Factor

Figure E.4 shows the embedding factor as a function of the VN request rate. The em-
bedding factor decreases with the number of VN requests for all curves. This behaviour is
expected and understandable, if we have in mind one key point: when there are few virtual
network requests, the embedding problem is mainly one of optimization; when the situation
changes, i.e. there are many VN requests, the embedding problem is mainly one of feasibility.
All the objective functions have a good effectiveness per VN embedding, i.e. higher than
88%. The two objective functions proposed, BCM and ECM, improve the embedding factor
by 1.4% (4.3%) and 0.7% (4.1%) for a VN request rate of 3 (10), when compared to WSDP.

E.6.2.3 Physical Nodes Active

Figure E.5 depicts the average percentage of physical nodes in the active state per VN
request rate. The number of active nodes increases with the rate of VN requests, with a
long-term trend to reach 100%. The cost function WSDP has almost all nodes in the active

161

3 4 5 6 7 8 9 10

0.75

0.8

0.85

0.9

0.95

Number of Virtual Network Requests per time unit

A
ve

ra
ge

 V
irt

ua
l N

et
w

or
k

R
eq

ue
st

 A
cc

ep
ta

nc
e

R
at

io

WSDP
BCM
ECM

Figure E.3: Average VN Acceptance ratio per VN request.

3 4 5 6 7 8 9 10

0.93

0.94

0.95

0.96

0.97

0.98

0.99

Number of Virtual Network Requests per time unit

A
ve

ra
ge

 E
m

be
dd

in
g

F
ac

to
r

WSDP
BCM
ECM

Figure E.4: Average Embedding Factor per VN request.

state after a VN request rate of 6. The cost functions BCM and ECM have reduced the
number of active nodes by 15.0% (and 3.5%) and 36.2% (and 5.8%) for a VN request rate
of 3 (and 10), when compared to WSDP, respectively. These values are obtained using the
overall number of physical active nodes and not the percentage, as provided in the figure.

E.6.2.4 Physical Links Active

Figure E.6 depicts the percentage of physical active links per VN request rate. From
the figure, we can observe that the percentage of active links increases with the rate of VN
requests. All the objective functions proposed have reduced the percentage of active links.
We also observe that the objective function ECM, aiming at minimizing energy consumption,
does not always achieve the lowest percentage of active links. This occurs for a rate higher
or equal to 7 VN requests, where the objective function BCM achieves the same percentage
of active physical links. Although this function does not consider any energy parameters in
its formulation, it implicitly reduces the number of active links by directly minimizing the

162

3 4 5 6 7 8 9 10

60

65

70

75

80

85

90

95

Number of Virtual Network Requests per time unit

A
ve

ra
ge

 N
um

be
r

of
 A

ct
iv

e
N

od
es

 (
%

)

WSDP
BCM
ECM

Figure E.5: Average Percentage of Physical Nodes Active per VN request.

3 4 5 6 7 8 9 10

40

45

50

55

60

65

70

75

Number of Virtual Network Requests per time unit

A
ve

ra
ge

 N
um

be
r

of
 A

ct
iv

e
Li

nk
s

(%
)

WSDP
BCM
ECM

Figure E.6: Average Percentage of Physical Links Active per VN request.

bandwidth consumption. The cost function ECM has reduced the number of active links by
26.9% (12.2%) for a VN request rate of 3 (10), when compared to WSDP, respectively.

E.6.2.5 Physical Network Energy Consumption

Figure E.7 depicts the average physical network energy consumption as a function of the
VN request rate. From the figure, we can observe that energy consumption increases with the
VN request rate for all objective functions evaluated, which corroborates the results obtained
on Figure E.5: if more VNs are being allocated per time unit, more physical resources need to
be activated. We must also notice that the function BCM reduces the energy consumption;
this makes sense, since this function aims at minimizing the physical bandwidth allocation,
hence minimizing the overall number of forwarding nodes allocated. The cost function BCM
and ECM have reduced the physical network energy consumption by 14.4% (3.1%) and 31.4%
(3.6%) for a VN request rate of 3 (10), when compared to WSDP, respectively.

163

3 4 5 6 7 8 9 10

1700

1800

1900

2000

2100

2200

2300

2400

2500

2600

Number of Virtual Network Requests per time unit

A
ve

ra
ge

 P
hy

si
ca

l N
et

w
or

k
E

ne
rg

y
C

on
su

m
pt

io
n

WSDP
BCM
ECM

Figure E.7: Average Physical Network Energy Consumption per VN request.

E.6.2.6 VN Energy Consumption

Figure E.8 depicts the average VN energy consumption as a function of the VN request
rate. Here we observe the same behaviour for all methods - the energy consumption decreases
with the rate of the VN requests, and tends to a specific bound. If we consider the result
obtained on Figure E.5, we can assume that this bound is mostly given by the second term of
equation (E.13), whereas the transition between power states (i.e. power-off and power-on)
is less frequent for a higher VN request rate.

The cost function BCM, which aims at minimizing the bandwidth consumption, slightly
increases the energy consumption per VN allocation, when compared to WSDP. If we have
in mind Figure E.5, we can state that the first term of equation (E.13) has a minimal impact
on the objective function WSDP per VN request, since the majority of the physical nodes
are already powered-up. Moreover, the cost function BCM, despite minimizing the overall
number of forwarding nodes allocated, it does not minimize the number of power-up nodes
per VN request, therefore requiring more energy per VN request.

The cost function ECM, which aims at minimizing the energy consumption, results in the
lowest energy consumption per VN allocation, and reduces the energy consumption per VN
allocation by 50.9% (6.4%) for a VN request rate of 3 (and 10), when compared to WSDP.

E.6.2.7 VN Embedding Time

An important aspect of all the VN embedding methods is the time that they require to
embed, on average, a VN request, and how it varies with respect to the different loads on the
physical infrastructure, i.e. VN request rate.

Figure E.9 shows the solving time for each objective function as a function of the VN
request rate. From the figure, we can observe that the embedding time is in the order of
seconds for a lower VN request rate, while it is in the order of milliseconds for a higher VN
request rate. The obtained behaviour is to be expected: having a smaller number of VN
requests will result in an optimization problem, while increasing the VN request rate will
result in a feasibility problem.

The objective function ECM showed the best performance with respect to embedding
time. This objective function, compared to the WSDP one, does not consider the bandwidth
demanded by the VN, i.e. Bv

mn(tk), neither the available bandwidth of the physical network,

164

3 4 5 6 7 8 9 10

12

14

16

18

20

22

24

26

28

30

32

Number of Virtual Network Requests per time unit

A
ve

ra
ge

 E
ne

rg
y

C
on

su
m

pt
io

n
pe

r
V

N
 A

llo
ca

tio
n

WSDP
BCM
ECM

Figure E.8: Average Virtual Network Energy Consumption per VN request.

3 4 5 6 7 8 9 10
0.5

1

1.5

2

2.5

3

3.5

4

Number of Virtual Network Requests per time unit

A
ve

ra
ge

 E
m

be
dd

in
g

T
im

e
(s

)

WSDP
BCM
ECM

Figure E.9: Average VN Embedding Time per VN request.

i.e. Bp
i j(tk). Therefore, we can state that, removing those two parameters from the cost

function, improves the embedding time.

E.7 Conclusion

This paper proposed the EA-VNE-NLF ILP formulation to solve the VN embedding prob-
lem. The model applies optimization theory to simultaneously embed the virtual nodes and
the virtual links. Two new objective functions are proposed: BCM, which aims to minimize
the bandwidth consumption, and ECM, which aims to minimize the energy consumption.

From the two objective functions proposed and evaluated one can conclude the following:
BCM increases the embedding factor per VN request, and it simultaneously reduces the
physical network energy consumption, while it obtains a slightly smaller VN acceptance ratio
when compared to WSDP; ECM reduces significantly the physical and virtual network energy
consumption, and keeps a similar VN request acceptance ratio, and it additionally takes less
time to embed each VN request. The results also showed that, not only the minimization of

165

the bandwidth allocation is important for the VN embedding, but also the load balancing
has a significant impact. The minimization of the bandwidth allocation positively affects the
energy consumption, and the consideration of both the bandwidth minimization allocation
and the CPU load on the objective function provides a good VN acceptance ratio.

Future work will endorse the VN embedding problem applied to virtual node seamless
migration, and re-configuration of virtual networks taking into account energy parameters.

166

Appendix F - Optimal Virtual Network Mi-
gration: A Step Closer For
Seamless Resource Mobility

Márcio Melo, Susana Sargento, and Jorge Carapinha

submitted in IEEE/ACM Transactions on Networking, vol.
NA , Issue: NA 2014.

The format has been revised.

167

Optimal Virtual Network Migration:
A Step Closer For Seamless Resource Mobility

Márcio Melo, Susana Sargento, and Jorge Carapinha

Abstract

One of the key problems with Network Virtualisation is the ability
to move components of the virtual network, or even the entire virtual
network, between physical hosts, in real-time and seamlessly to the end-
users.

This paper addresses virtual resource mobility from a new perspective:
i) it proposes Virtual Network (VN) Clone migration, which requires no
assumptions regarding the protocols running inside the virtual networks
or its own architecture, leaving space for different types of protocols
and architectures to be implemented, tested and used in commercial
scenarios; ii) and it proposes VNRE-NLF, an integer linear programming
formulation to solve the online virtual network re-embedding problem as
a simultaneous optimization of virtual nodes and virtual links, providing
the optimal bound for the migration of virtual networks. This approach
aims at minimizing the overall VN migration cost per re-embedding: i)
number of virtual nodes migrated; ii) physical bandwidth consumption.

The results are very promising: the VN Clone migration achieves no
VN downtimes and it takes just a few seconds to be fully performed.
This makes the VN Clone approach suitable both for non- and real-
time traffic. The obtained results of VNRE-NLF show that the VN is
highly resilient to migration events if no more than 2% of the physical
resources need to be shut-down (i.e. resilience factor higher than 0.8).
Moreover, it shows that it is not only important to have enough spare
capacity to re-accommodate the virtual nodes and virtual links affected
by the physical resource shut-down, but also to have additional capacity
to accommodate virtual link re-assignments and virtual node migrations.

168

F.1 Introduction

ONE of the major features of Network Virtualisation is the possibility to move virtual re-
sources, i.e. VR, on-demand and seamlessly from one physical host to another without

losing network connectivity. The virtual resource migration was initially proposed by Wang
et al. [WvdMR07, WKB+08] as a primitive for network management tasks; later on, Lo
et al. [LAZ12] proposed three algorithms to schedule which resources should be migrated
firstly to minimize the overall migration cost.

The VN migration itself can be triggered by several reasons: i) equipment/facilities main-
tenance; ii) network performance; iii) end-user requirement/service level agreement; iv) en-
ergy saving; v) security protection; vi) fault management; vii) end-user mobility. The VN
migration process is composed by two distinct phases: i) VN re-embedding - to obtain a new
embedding solution of an existing VN, but taking into account the current constraints of the
physical network (available bandwidth and available processing capacity); ii) virtual resource
migration - the operation of effectively moving the virtual resources, e.g. virtual links and
virtual nodes.

This paper endorses the VN migration process. To address the first phase, the VN re-
embedding, an integer linear programming formulation is proposed, i.e. Virtual Network Re-
Embedding Node-Link Formulation (VNRE-NLF), to obtain the optimal bound per VN re-
embedding taking into account the VNmigration cost: i) number of virtual nodes migrated; ii)
overall bandwidth consumption. To endorse the second phase, the virtual resource migration,
it is proposed VR Cloning as an alternative to VR live migration [WvdMR07]. VR Cloning
is based on saving the current state of the VR and transferring the VR clone to the new
physical host. Different triggers for VN migration are described and analysed, which can
be used as an input to define new heuristics or even mathematical formulations to perform
the VN re-embedding, taking into account the current constraints of the physical network
(available bandwidth and available processing capacity).

The performance of the VR Cloning is evaluated by means of real experiments. This pro-
posed approach achieves no VN downtime and it takes 2.75 seconds to be fully performed. The
performance of the Virtual Network Re-Embedding Node-Link Formulation (VNRE-NLF) is
evaluated by means of simulation. The simulation results show that the VN resilience to
migration events is dependent on the VN request rate and also on the percentage of phys-
ical resources shut-down. The obtained results point show that the VN is highly resilient
to migration events if no more than 2% of the physical resources need to be shut-down (i.e.
resilience factor higher than 0.8).

The rest of the paper is organized as follows. After summarizing the related work in section
F.2, section F.3 presents the VN migration triggers and describes the virtual router migration
process. Section F.4 presents the Network Virtualisation architecture proposed to support
the VR cloning migration. Section F.5 describes the virtual network re-embedding problem
and the evaluation metrics. Section F.6 describes the Virtual Network Re-Embedding Node-
Link Formulation (VNRE-NLF) and presents one objective function that aims at minimizing
the VN migration cost. Section F.7 analyzes the performance of the VR clone method and
evaluates the VNRE-NLF, and section F.8 concludes the paper and describes the future work.

169

F.2 Related Work

F.2.1 VN Migration

The VM migration was initially proposed for data centres as a way to move the CPU load
from one physical server to another. This feature is not only important for load balancing
purposes, but it can also be applicable for planned maintenance operations, i.e. moving away
all the VMs from one physical server that needs to be rebooted or shutdown to different
physical servers.

In order to reduce the downtime due to the VM migration process, Clark et al. [CFH+05]
proposed the live migration of VMs, within the same LAN, which allows a VM to be migrated
while still running. This not only reduces significantly the downtime provoked by the VM
migration, but it also makes the migration process seamless to the end-users or to the running
applications. Ma et al. [MLL10] proposed some improvements on the live VM migration
process, which both reduces the overall migration time and the total data transmitted in the
order of 30%.

The VM migration approach is also applicable and important to the networking area,
where it can be used for networking maintenance operations or for networking service de-
ployment. For instance, it can be used to move critical (or non-critical) VRs from physical
hosts that need some kind of maintenance operation without disrupting the routing pro-
tocols. This is much preferable and human error safe than manually configuring routing
protocol metrics to move away the networking traffic from that physical router.

With that in mind, Wang et al. [WvdMR07] proposed VROOM as a primitive for net-
working management tasks which makes it possible to move virtual routers freely without
changing the IP-layer topology. Wang et al. [WKB+08] extended their prior work and pro-
posed to decouple the data plane from the control plane of the VRs, which results in no
performance impact on the data traffic when a hardware data plane is used, and very low
impact when a software date plane is used.

The VR migration feature was also considered and evaluated on Internet Protocol Tele-
vision (IPTV) scenarios [MNG+09]. Pisa et al.[PFC+10] proposed a new migration model
for XEN, using also data and control plane separation, which outperforms the XEN standard
migration model. Lo et al. [LAZ12] used the virtual router migration [WKB+08] as a prim-
itive to perform the virtual network migration, i.e. the migration of an entire VN, and also
proposed three algorithms to address the VN migration scheduling problem and to minimize
the total migration cost.

Although the separation of the data plane from the control plane seems to be a very
effective approach on the VR migration, once it reduces the downtime of the VN, it is also
a limiting factor on the conception of new network architectures and on the deployment
of new network protocols. We argue that not only the VN migration process should be
independent of the networking protocols that are running on the virtual network, but also
no assumption should be taken on the router architecture itself. Therefore, we consider each
VR as a black-box and propose the VR Cloning as an alternative to the current VR live
migration process [WvdMR07].

F.2.2 Virtual Network Re-Embedding Problem

The VNRE problem can be formulated as an un-splittable flow problem [ZA06] of re-
source re-allocation. In order to solve this problem, several centralized algorithms have been
suggested [LT06, ZA06, YYRC08, FBCB10, NMCS11b, CRB12], to endorse the online VNE
problem, i.e. static provisioning of VNs; others consider, instead, a distributed algorithm

170

[HLZ08] to better handle scalability issues. However, these approaches neither take into ac-
count the VNRE problem, i.e. dynamic provisioning of VNs, nor consider the VN migration
cost, i.e. virtual node migration and bandwidth re-allocation.

Moreover, centralized algorithms have been suggested [YQA+10, RAB10] to address the
SVNE problem. The aim is to reserve additional (or redundant) computing and bandwidth
capacity for each VN when it is first provisioned, which can be used in situations of node and
link failures. Nonetheless, these algorithms do not endorse the scenario where the backup
physical resources are not available, nor consider the VN migration cost.

Recently, Xiaolin et al. [LWD+14] proposed an algorithm, based on the work of Chow-
dhury et al. [CRB12], to endorse the VNRE problem. Despite, endorsing the VN re-
embedding the authors do not consider the bandwidth re-allocation nor provide the optimal
bound per set of VNs re-embedded.

In our previous research work [MCS+12], we have proposed an ILP formulation to solve
the online VN embedding problem from an optimization standpoint. Moreover in [MCS+13b]
we have extended the Integer Linear Programming (ILP) formulation to contemplate the re-
optimization of VNs currently embedded. An extended approach and the comparison with
existing heuristics was recently added in [MSK+13].

Although all these algorithms provide a solution for the VN mapping problem, an optimal
solution for VNRE taking into account the migration costs is not provided. Also, some of the
proposals fail to solve the assignment problem as a simultaneous optimization of the virtual
node and link placement, which leads to non-optimal resource re-allocation solutions. Our
approach, the VNRE-NLF, applies a node-link formulation to solve the VNRE problem in a
single step using the multi-commodity flow constraint. This approach provides the optimal
solution for the objective problem considered, both in terms of node migration and bandwidth
re-allocation, for a given set of weights in the objective function.

F.3 Seamless Approach for VN Migration

The VN migration process can be started from a predicted event in the sense that it can
be scheduled in time, i.e. planned maintenance, or it can be triggered from a non-predicted
event, i.e. VN security attack or hardware failure. In this section, we start with a description
of the several factors that can lead to a VN migration process, and we finalize the section by
explaining the different actions required in our approach for VN Cloning.

F.3.1 Triggers for VN Migration

The time to perform all the VN migration operations can be considered critical or non-
critical depending on the event that leads to the migration process.

F.3.1.1 Equipment/Facilities Maintenance

The migration process can be triggered due to maintenance reasons within the physical
hosts or external to the physical hosts: due to the replacement or upgrade of hardware
modules, firmware updates or patches where the physical host needs to reboot or shutdown
and disassembled; or due to the need to temporary or permanent change the location of the
physical host, or UPS upgrade or power grid maintenance.

171

F.3.1.2 Network Performance

The VN migration can also be started due to networking performance reasons. If we
consider the fact that VNs are dynamically provisioned and constantly being created and
removed, the consumption of network resources is likely to become unbalanced due to the
dynamics of the VNs arrivals and departure events. In order to optimize the physical resources
and at the same time to distribute the network load equally per all physical hosts, or even to
alleviate the load at some physical hosts that are reaching critical levels, a re-optimization
process on the existing VNs should be performed.

F.3.1.3 End-user Requirement/Service Level Agreement

It may also be required to move a VR from one Provider Edge (PE) to another PE which
is much closer to the end-user. It may also be required to reduce the overall round trip delay
of a VN throughout the migration of parts, i.e. VRs or VL, of the VN or even the entire VN
to physical places and hosts which provide smaller round trip delays.

F.3.1.4 Energy Saving

The migration of VNs can also be triggered due to power consumption reasons. Either to
move VNs closer to greener power grids, or to move VNs to physical hosts that consume less
energy; or even to concentrate VNs on the minimum number of physical hosts as possible,
without interfering on the service levels reliability, in order to reduce the number of active
physical hosts. This is not only due to diurnal traffic patterns, where the traffic is much
smaller in the night, and therefore the number of pieces of network equipment required to
operate in the night is smaller, but is also due to the fact that a physical router in idle mode
consumes over 90% as if it was in full mode [CSB+08].

F.3.1.5 Security Protection

The migration of a VN can be even required as a way to provide higher security protection,
or a way to move VNs from physical hosts which are currently under attack [AS11]. A VN
can evade detection or attach by changing its location in the physical network.

F.3.1.6 Fault Management

The VN migration process can also be triggered due to fault management decisions. If
we consider a reactive fault management, the VN migration is triggered when the hardware
fails. If we consider a proactive fault management, the VN migration process is started when
the hardware that is prone to fail is flagged.

F.3.1.7 Service Deployment

In order to deploy new services on production networks, VNs running on trial scenarios
can be phased migrated to physical hosts located within these networks or only just parts of
the VNs need to be moved away.

F.3.1.8 End-User Mobility

The VN migration process can be even required due to mobility reasons. An end-user
can be moving away from his home network to a foreign network and, in order to avoid the

172

connection break during the handover process, i.e. change the IP address and or the ac-
cess technology of the end-user, the VR migration process can be used as an complementary
mechanism (or even in some situations in the absence of any mobility process, as an altern-
ative) to mobile IP implementations [Per02] and IEEE802.21 - Media Independent Handover
Services [GWC+09]. In this way, the IP addresses of the end-users are preserved and the
TCP sessions are maintained during the transition of one network to another.

On Table F.1 we summarize all types of triggers considered, and we also express them
in terms of event periodicity, i.e. when they are expected to occur, event duration, i.e. the
expected time that the event will consume, and priority, i.e. this can be used as a classification
of the event in terms of urgency to be taken.

Table F.1: VN migration types of trigger events, event duration and event priority.

Event Type Event Periodicity Event Duration Event Priority
Physical Maintenance Monthly/Annually Hours/Days Medium/Low
Network Performance Daily/Weekly N/A High/Medium
Energy Saving Daily Hours Medium/Low
Security Protection N/A Minutes/Hours Urgent/High
Fault Management N/A Minutes/Hours Urgent/High
Service Deployment Weekly/Monthly Hours/Days Medium/Low
End-user Mobility Hourly/Daily Minutes/Hours Urgent/High

As a result of the previously described triggers we can foresee three different use cases
where VN migration is required:

i In the first situation the host is considered to be removed from the physical network
topology. Therefore all the VNs using that specific host need to be reallocated to other
physical hosts.

ii In the second situation the host still exists, but one or more physical links have been
removed from the physical network topology, e.g. hardware failure. Likely some VNs
need to be reallocated to other physical hosts; although it does not strictly mean that
it needs also to migrate VRs (it may be possible that only VL migration can solve the
problem).

iii In the third scenario the host exists on the physical network, but it is only capable of doing
switching operations [nex12]. This implies only the migration of the VRs; the migration
of the VLs is not mandatory.

F.3.2 VN Clone Migration Procedure

As a result of the three use cases, one of two things can take place in the migration
process: VL migration, or VL and VR migration. Each migration process encompasses a set
of different operations. Two different approaches are evaluated for the VR migration: the
VR live migration and the VR clone migration (our proposed approach).

Figure F.1 represents the VN migration timeline, which is not at scale; it is intended
to reflect the amount of time that each action takes when comparing with others, to reveal
its level of criticality to the overall VN migration process, and also to identify the common
actions, which are represented in the timeline by numbers, taken in the different VN migration
processes (i.e. link, live and clone migration).

The VN link migration timeline is represented in the left (Figure F.1a); the center (Figure
F.1b) depicts the live migration timeline; the right (Figure F.1c) depicts the clone migration
timeline.

173

(a) Link (b) Live

(c) Clone

Figure F.1: VN Migration Timeline

In the Figure F.1, we can observe that the VN link migration takes less time to be fully
performed when compared to the live or the clone migration. This is due to the migration
of the VR itself, since it requires moving the VR content (e.g. memory RAM) from one
physical host to another, while in the case of the virtual link migration, no data needs to be
transferred across physical nodes.

The different operations which compose the clone migration process are described here:

0. V N Migration Trigger - The VN migration process starts after receiving a VN
migration trigger (i.e. which can be one of the triggers presented on Table F.1), and it
corresponds to step 0.

1. Compute V N Mapping - The time that this action takes to be performed can be
considered as critical or non-critical to the overall migration time, and it will strictly
depend on the event which causes the VN migration (see Table F.1), and that involves
the computation of a new VN mapping (i.e. VNRE).

The VN mapping takes as input the VN nodes and links that need to be migrated,
and the output will be the new location of those nodes and links1. The VN mapping
can be performed either using a heuristic approach [NMCS11b] which performs the VN
embedding in a faster and efficient way, or using mixed integer linear programming ap-
proach [MCS+12], which takes relatively more time to perform the VN embedding, but
achieves the optimal bound.

The "available" time to perform the VN (re-)embedding will be dictated by the event
type that leads to the VN migration process, i.e. a critical event (e.g. fault management)
requires that the VN embedding is performed as fast as possible, and a non-critical event
(e.g. network performance) requires that the VN (re-)embedding is as good as possible
(i.e. optimal bond).

2. V Ls Setup - This operation comprises the setup of new virtual links, e.g. setup of VLAN
interfaces and virtual bridges, and it is considered as non-critical, since it is performed
beforehand and in the time frame of the order of milliseconds (or even nanoseconds with
optical switches).

1It may also be possible that it is less costly (i.e. shorter virtual links=>less provisioned bandwidth) to
move not only the nodes and links that were initially considered to be migrated, but also other nodes and
links.

174

3. Clone/Move/Restore - This is the most critical and time consuming task to the
overall VN migration process, and it can be divided into three sub-operations:

a) Clone V R - The cloning of the VR involves saving the current state, i.e. memory
RAM, to the physical host hard-disk or even to a RAM-disk. This can be considered
as critical or non-critical action, if the VR is put into suspend while being cloned in
the first case, or if the VR is still running while being cloned in the latter. The time
required to perform this process is given by equation (F.1), where V Rmemory is the
memory RAM size of the VR.

b) Move V R Clone - This part encompasses the transfer of the VR clone to the new
physical host and it is, in principle, the most time consuming task of the three sub-
operations, and of the overall VN clone migration process. Despite contributing to
the overall VN migration execution time, it does not affect the VN downtime, since
the VN is still running while the VR clone is being relocated. The time required to
perform this task is given by equation (F.2), where BWreserved is the bandwidth
which is effectively reserved by the operator to this kind of operations, and BWfree

is the bandwidth that is not provisioned (or available) on the physical path between
the physical hosts and at that time period. In theory, the reserved bandwidth can
be equal to zero, although operators do tend to reserve bandwidth for these kind of
operations. Note that, if this phase takes too much time to be performed, the VR
clone can easily become outdated.

c) Restore V R Clone - The restore of the VR clone is performed after it is allocated
on the new host, and it does not influence the VN downtime, since the VR clone is
not yet connected to the VN. This operation is performed in the time-frame of high
hundreds of milliseconds.

4. Add V irtual Bridge Int. & Remove Original V R - This is a critical action
and encompasses adding a new virtual interface (e.g. VLAN) to the virtual bridge that
will be used to connect the VR clone to the VN. It also includes the shutdown of the
original VR, which is performed in order to avoid duplicated VRs operating on the virtual
network. The VN transition, from the old VLs and VRs to the new ones, is signaled by
the execution of these two operations. The VR shutdown (destroy) is executed in the
time-frame of low hundreds of milliseconds.

5. Remove V Ls - The removal of old virtual links is a non-critical action and is performed
in the same timeframe as the setup of virtual links (i.e. milliseconds). This phase does
not count to the execution time, though it is part of the VN migration process.

The VN downtime due to the migration process can be obtained using equation (F.3), where
the V Ndowntime is mostly given by the VR cloning operation (i.e. tclone). With equation
(F.4), we can obtain the VN migration execution time, where the action 3b contributes the
most.

tclone =
V Rmemory_size

RamDiskwrite_speed
(F.1)

tmove =
V Rmemory_size

BWreserved +BWfree
(F.2)

tdowntime ∼= tclone (F.3)

texecution = t4 − t0 (F.4)

175

F.4 VN Clone Migration Architecture

In this section we describe the overall architecture, which was considered to support the
VN clone migration, and also the building blocks of the VR.

F.4.1 VN Clone Migration Architecture

Figure F.2a presents the NV architecture which is proposed to support VR migration,
comprising the NVC and the NVE. The NVC is responsible to coordinate the VN migration
process, and is also responsible to perform the VN mapping, choosing the new location of
the VLs and VRs. Each NVE is responsible to enforce the NVC commands, e.g. CloneV R.
The list of possible commands performed by the NVC is shown in Table F.2.

NV Controller

- NV Entity

- Physical Host

(a) Network Virtualisation Architecture.

VR 3VR 2
VR 1

- Network Interface

- Virtual Bridge

- Virtual Link

(b) Virtual Router Building Blocks.

Figure F.2: VN Clone Migration Architecture.

All communications between the NVC and the NVEs are secured and performed using
the SSH protocol, and the Session Control Protocol (SCP) protocol is also used to move the
VR clone.

F.4.2 Virtual Router Implementation

The VR architecture considered is shown in Figure F.2b. It is composed by the VR
instance, (virtual) network interfaces and virtual bridges. The virtual bridges are used either
to interconnect network interfaces within the physical host, or to interconnect virtual network
interfaces of VRs running inside of the host. The Linux Bridge Utils tool [bri12] is used to
setup virtual bridges, and the Linux VLAN implementation [VLA14] is used to setup the
virtual links.

F.5 Network Re-Embedding Problem Formulation

In this section, we introduce the virtual network re-embedding problem. In addition, the
VN embedding notations used throughout the paper are presented, and the virtual network
re-embedding system is explained. Finally, the mapping goals are introduced to support the
mathematical formulation.

176

Table F.2: NV Controller - List of Commands.

Command Name Command Description
AddVInt IntId V IntId Add virtual Interface

V IntId on physical inter-
face IntId

RemVInt V IntId Remove virtual interface
V IntId

AddVBridge BrId Add a Virtual Bridge on the
Physical Host

RemVBridge BrId Remove Virtual Bridge on
the Physical Host

AddVBridgeInt BrId IntId Add a (virtual) Interface to
the Virtual Bridge

RemVBridgeInt BrId IntId Remove a (virtual) Interface
on the Virtual Bridge

CloneVR V RId Clone Virtual Router
V RId

MoveVR V RId HId Move VR V RId to physical
host HId

RestoreVR V RId Restore Virtual Router
V RId

RemoveVR V RId Remove Virtual Router
V RId

F.5.1 Network Description

We use superscript to distinguish the physical network from the virtual network, where
p and v correspond to physical and virtual, respectively.

F.5.1.1 Physical network

A physical network can be described as a weighted undirected graphGp = {Np, Lp, Cp,
Bp} composed by a set of physical nodes, Np, and a set of physical links, Lp. Each physical
node i is characterized by its processing capacity, Cp

i , commonly referred to as the CPU and
that can be expressed in units of CPU. A set of physical nodes M(t) requires maintenance
at a given time t.

With respect to the physical links, we consider that each link ij has a given bandwidth,
Bp
ij , that can be expressed in units of bandwidth; we assume that each link is an undirected

link. The bottom-right of Figure F.3 illustrates a physical network topology example com-
posed of 6 physical nodes and 8 physical links; the corresponding capacities of the nodes and
the links are presented on top of the elements. In the presented figure, we have physical node
A that requires maintenance at time t, that is represented through a white circle. Either the
processing capacity of physical node A or the bandwidth capacity of the concerned physical
links is set to zero.

F.5.1.2 Virtual Network

VN can be described as a weighted undirected graph Gv = {Nv, Lv, Cv, Bv} composed
by a set of virtual nodes,Nv, and a set virtual links, Lv. Each virtual nodem is characterized
by the amount of required CPU, Cv

m, and the virtual links mn are logical connections
between virtual nodes and characterized by the amount of dedicated bandwidth, Bv

mn. We
also assume that each virtual link is an undirected link.

177

...
...

Physical Node: E

VN Re-embedding
System

Time=0

Time=t

Set of VNs Concerned

Physical Network

Mapping Result

10

10 15

a

5

7

b

c

B

A

D

C E

F

50

95 70

80

6560

90 50

657585

55 65 95

30

10 20

ed

10

10

15

f

57

g h

i

17

12

5

25

15 25

lj

Physical Node: A

Figure F.3: VN Re-embedding System - Topology Example

The left part of Figure F.3 represents the example of two sets of virtual networks, VN
request 1 on the bottom-left and VN request k on the top-left.

F.5.1.3 VN Assignment Notations

First, we start with the convention used for the index notation: Np represents the set of
nodes that belong to the physical network; Lp represents the set of links that belong to the
physical network; and Lpi represents a subset of links ij that are directly connected to the
node i. The same type of notation is used to represent the VN using the lettersm and n in the
virtual network. The notations used throughout this paper for the VN assignment problem
are presented in Table F.3. The table is divided into three parts: the static parameters of the
physical network, the dynamic parameters of the physical network, and the virtual network
requests with the demanded capacities.

F.5.2 Unfilled Physical Network Resources

The remaining capacity of each physical node at a specific time t is given by the difference
between the total processing capacity and the capacity consumed by the virtual nodes pre-
viously allocated on that physical node at time t, and is presented in equation (F.5), where
U represents the set of virtual nodes previously allocated on that precise physical node.

∀i ∈ Np : Cp
i (t) = Cp

i (t0)−
∑
u∈U

Cv
u(t) (F.5)

In parallel, the available bandwidth of each physical link at a specific time t is given by the
difference between the total bandwidth and the bandwidth consumed by all virtual link seg-
ments allocated on that physical link, and is presented in equation (F.6), whereW represents
the set of all virtual link segments allocated on that specific physical link at time t.

A virtual link can be composed by one or more physical links, i.e. a physical path.
We consider that each virtual link has a single physical path, and we do not consider link
aggregation (i.e. virtual link composed by different physical paths). One physical link can
accommodate one or more virtual link segments belonging to different virtual links.

178

Table F.3: VN Re-assignment Problem Notation.

Gp Physical Network
Np Set of Physical Nodes
Mp(t) Set of Physical Nodes that require main-

tenance at time t
i, j Physical Nodes
ij Physical Link
Lp Set of Physical Links
Lp

i Set of Physical Links directly connected
to Physical Node i

Cp
i (t0) Available CPU of Physical Node i at time

t0
Bp

ij(t0) Available Bandwidth of Physical Link ij
at time t0

t Time
Cp

i (t) Available CPU of Physical Node i at time
t

ui(t) Power State of Physical Node i at time t
Pi(t) Power Consumption of Physical Node i

at time t
Bp

ij(t) Available Bandwidth of Physical Link ij
at time t

tk Time with Virtual Network Request
Event k

k Virtual Request
Gv Virtual Network
Nv(tk) Set of Virtual Nodes at time tk
Lv(tk) Set of Virtual Links at time tk
Lv

m(tk) Set of Virtual Links directly connected to
Virtual node m at time tk

m,n Virtual Nodes
mn Virtual Link
Cv

m(tk) CPU of Virtual Node m at time tk
Bv

mn(tk) Bandwidth of Virtual Link mn at time
tk

179

VN Re-assigment Infeasible

VN Re-assigment Feasible

Re-allocate VNs

Re-embed VNs

Update Physical network

Embedding
Method

B

A

D

C E

F

50

95 70

80

6560

90 50

657585

55 65 95

Obtain set of VNs
concerned

Physical node A
requires maintenance

10

10

15

f

57

g h

i

17

12

5

25

15 25

lj

10

10 15

a

5

7

b

c

30

10 20

ed

Figure F.4: VN Re-embedding - Activity Diagram

∀ij ∈ Lp(t) : Bp
ij(t) = Bp

ij(t0)−
∑
w∈W

Bv
w(t) (F.6)

F.5.3 VN Request Re-embedding Process

The VN re-embedding process can be divided into two components: the component that
ensures the re-embedding of the virtual nodes, and the one that handles the re-embedding of
the virtual links.

F.5.3.1 Virtual Node Re-embedding

Each virtual node needs to be re-mapped onto one physical node; this relation is given by
the mapping functionM′[m ∈ Nv(t)k] = i, where virtual nodem is mapped onto physical
node i. The current virtual node assignment is given by the mapping functionM.

Each physical node candidate needs to have, at least, the same amount of available CPU
as required by the virtual node, which is represented in equation (F.7).

∀i,∀M′[m ∈ Nv(tk)] = i : Cv
m(tk) ≤ Cp

i (tk) (F.7)

180

F.5.3.2 Virtual Link Re-embedding

Each virtual link can be re-mapped onto one or more physical links (i.e. physical path);
this relation is given by the mapping functionM′[Lvmn], where the virtual linkmn is mapped
onto one physical path. The current virtual link assignment is given by the mapping function
M. Each physical link candidate belonging to the physical path needs to have, at least, the
same amount of bandwidth available as required by the virtual link, which is presented in
equation (F.8).

∀ij ⊆M′[mn ∈ Lv(tk)] : Bv
mn(tk) ≤ Bp

ij(tk) (F.8)

F.5.4 VN Re-Embedding - Activity Diagram

The re-embedding process begins upon a new VN migration request arrival, e.g. physical
node maintenance requirement, which is depicted in Figure F.4. A VN mapping method is
used to re-embed the set of VNs; it takes as inputs the current status of the physical network
(e.g. available CPU capacity, existing bandwidth) and the set of VNs affected. If the result
of the re-embedding process is a viable solution, the mapping is considered to be feasible; if
not, it is considered to be unfeasible and the VN re-embedding process stops.

F.5.5 Re-Embedding Metrics

In order to assess the performance of an embedding method, different metrics are defined:

F.5.5.1 Physical Network Resilience Factor

The physical network resilience factor, R(t), is given by equation (F.9) and defines the
overall resilience of the virtual network to migration events, i.e. the ratio of successfully
re-embedded sets of VNs, k′, over the sum of sets of VNs, k.

R(t) =
k′

k
(F.9)

F.5.5.2 Embedding Factor

The embedding factor, E(tk), is given by equation (F.10) and represents the ratio between
the amount of bandwidth that was requested for the VNs and the amount of physical band-
width that was effectively provisioned to re-accommodate the VNs, i.e. the efficiency on
embedding.

E(t) =
∑
k∈K

∑
mn∈Lv

k
Bv
mn∑

k∈K
∑
mn∈Lv

k

∑
ij⊆M′[mn∈Lv

k]B
v
mn

(F.10)

F.5.5.3 Bandwidth Allocation

The (additional) bandwidth allocation, B(t), is given by equation (F.11) and represents
the ratio between the amount of bandwidth that was provisioned to re-accommodate the VNs
and the amount of bandwidth that was initially provisioned, i.e. prior to the VN migration
event.

B(t) =
∑
k∈K

∑
mn∈Lv

k

∑
ij⊆M′[mn∈Lv

k]B
v
mn∑

k∈K
∑
mn∈Lv

k

∑
ij⊆M[mn∈Lv

k]B
v
mn

− 1 (F.11)

181

F.6 Virtual Network Re-Embedding Node-Link Formulation

This section describes the mathematical formulation and the objective function developed
to solve the online VN re-embedding problem with the defined constraints. An Integer Linear
Programming (ILP) approach is used to solve the online VN re-embedding problem. We
propose a node-link formulation, and two assignment variables are applied during the re-
embedding process. The index notation used here is the same as in section F.5.1.3.

F.6.1 Assignment Variables

This section presents both virtual node and link assignment variables:

F.6.1.1 Virtual Node Assignment

xmi =
{

1, virtual node m is allocated at physical node i
0, else (F.12)

F.6.1.2 Virtual Link Assignment

ymnij =
{

1, virtual link mn uses physical link ij
0, else (F.13)

F.6.2 Constraints

This section presents the formulation constraints.

F.6.2.1 Assignment of virtual nodes to physical nodes

Equation (F.14) ensures that each virtual node is assigned, and that it is assigned to just
one physical node.

∀m ∈ Nv(k) :
∑
i∈Np

xmi = 1 (F.14)

F.6.2.2 One virtual node per physical node

Equation (F.15) guarantees that each physical node can accommodate in the maximum
one virtual node per VN, although each physical node can accommodate more than one
virtual node per different VN.

∀k ∈ Nv, ∀i ∈ Np :
∑

m∈Nv(k)
xmi ≤ 1 (F.15)

F.6.2.3 CPU conservation

Equation (F.16) assures that the available CPU capacity of each physical node is not
exceeded.

∀i ∈ Np :
∑

m∈Nv

xmi × C
v
m(tk) ≤ Cp

i (tk) (F.16)

182

F.6.2.4 Assignment of virtual links to physical links - multi-commodity flow
conservation with node-link formulation

To simultaneously optimize the mapping of virtual links and virtual nodes, the multi-
commodity flow constraint [EIS75] is applied with a node-link formulation [PM04]; moreover,
the notion of direct flows on the virtual links is used, which is represented in Eq. (F.17),
where Lvm represents all the virtual links that are directly connected to the virtual node m,
and Lpi represent all the physical links that are directly connected to the physical node i

∀mn ∈ Lv, n < m ∈ Lvm,∀i :∑
ij∈Lp

i

(ymnij − y
mn
ji) = xmi − x

n
i (F.17)

F.6.2.5 Bandwidth conservation

To ensure that the available bandwidth at each physical link is not surpassed, Equation
(F.18) is defined.

∀ij ∈ Lp, j < i ∈ Lpi :∑
mn∈Lv,n<m∈Lv

m

Bv
mn(tk)(ymnij + ymnji) ≤ Bp

ij(tk) (F.18)

F.6.3 Objective Function

The VN re-embedding problem requires the re-mapping of virtual nodes and virtual links,
i.e. decision variables. On the nodes we can minimize the virtual nodes that need to be
migrated, while on the virtual links we can minimize the overall bandwidth allocation. In
this sub-section, we propose one objective function to address the VN re-embedding problem
from a cost migration standpoint: i) virtual node migration minimization; ii) bandwidth
allocation optimization.

F.6.3.1 Node Migration and Bandwidth Consumption Minimization

The objective function NM-BCM, proposed in equation (F.19), aims to minimize the
overall number of virtual nodes migrated, which is achieved by using the first term of the
equation. This objective function also aims to minimize the overall bandwidth consumption
in the second term. The parameter α is used to weight the cost of each virtual node migration.

minimize
∑
k∈K

∑
m∈Nv

k

∑
i∈Np

xmi ×X
m
i + (F.19)

∑
k∈K

∑
mn∈Lv

k,n<m

Bv
mn

∑
ij∈Lp

ymnij ,where

Xm
i =

0, if virtual node m is allocated
at physical node i or i ⊆M
α, otherwise

183

F.7 Evaluation Results

In this section, we start with a description of the network virtualisation testbed imple-
mented to evaluate the proposed VN migration process. Two different VN migration methods
are evaluated: the live migration and the clone migration with VR suspend and without VR
suspend. The evaluation metrics considered are the downtime and the migration execution
time. Subsection F.7.4 presents the evaluation results of the VN re-embedding process as a
function of the VN request rate for all the previously described metrics (see sub-section F.5.5).

F.7.1 VN Migration - Testbed

The testbed used is composed by 6 physical hosts, which are depicted on the bottom of
Figure F.5. The physical hosts are running Fedora Core 8 with Xen Hypervisor [BDF+03]
version 3.1, and the virtual hosts are also running Fedora Core 8 with para-virtualisation.
The top part of Figure F.5 depicts one VN, the VN V egas, which is deployed using the
Network Virtualisation System Suite (NVSS) [NMCS11a], and which is used to perform the
VN migration process. All VRs are running the Quagga routing suite [qua12], and are using
the Open Shortest Path First (OSPF) as the routing protocol which is configured with the
default parameters.

In order to generate traffic across the virtual network V egas, two physical machines are
connected: one physical server that will be acting as a traffic generator, and one physical
client that will consume the traffic. The physical links used by the server and the client are
of 100 Mbps each.

The dashed lines in Figure F.5 represent the new location of the VR Nick and the new
location of the VLs. The VR Nick is the one that will be triggered to be migrated from
the physical host Mary to physical host Bree. The physical hosts, Mary and Bree, are
rack servers with CPU Intel R© Xeon R© X3330@2.66GHz and E3110@3.00GHz, respectively,
configured with 6GB of RAM and both using Gigabit interfaces.

Eddie Mary Susan Bree Gabrielle Lynette

Su
b

st
ra

te
 N

e
tw

o
rk

V
N

 V
e

ga
s

CatherineNick
Grissom

Nick CloneServer
Client

Figure F.5: Network Virtualisation Testbed: Virtual Router Migration Scenario.

F.7.2 VN Migration - Experiment Parameters

To analyse the different VN migration methods, the traffic generator D-ITG [AGE+04] is
used to evaluate the impact on the traffic carried by the virtual network due the VN migration
process. The total experiment time is set to 100 seconds, where the traffic is continuously
generated before, during and after the VR migration event. It is considered UDP traffic with

184

a packet size of 1000 Bytes, and either with a bitrate of 10Mbps (i.e. 1250 packets/s) or
of 20Mbps (i.e. 2500 packets/s) to evaluate the influence of the traffic bitrate on the VN
migration process.

The memory RAM of the VRs, i.e. the size of the routing tables, is set from 64MB
to 256MB with intervals of 32MB. During each experiment, it is measured the number of
packets sent and the number of packets lost. The execution time of each Linux command is
also measured: bridge setup, VLAN setup, bridge interface setup, VR cloning, VR move, VR
clone restore, VR destroy, VR live migration (only for the live migration process). For each
experiment, 10 trials are performed, and confidence intervals of 95% are used for every plot.

F.7.3 VN Migration - Experimental Results

F.7.3.1 VN Downtime

If we assume that there is no packet loss before and after the VN migration, we can easily
obtain the VN downtime, which is the total time where the VN was inactive due to the VN
migration, using equation (F.20). If we consider that the total experiment time, i.e. Ttraffic,
is equal to 100 seconds, which is the case in all our experiments, we will end up having the
VN downtime equal to the percentage of dropped packets.

V Ndowntime =
∑
Dropped Packets∑
Sent Packets

× Ttraffic (s) (F.20)

Figure F.6 shows the VN downtime as a function of the VR memory size. According to the
figure, we can observe that the VN downtime exhibits two distinct behaviours: either it does
not depend on the VR memory or it does strongly depend on it. In the live migration and
the clone migration without VR suspend, the VN downtime does not strongly depend on
the VR memory size and it is almost constant for all the memory sizes evaluated. The live
migration has a VN downtime (or percentage of dropped packets) of 400 milliseconds (0.4%),
and the clone migration has no downtime when using UDP traffic at 10Mbps. This behaviour
is expected for both methods, where the downtime experienced on the VN live migration is
mainly due to the XEN live migration procedure [CFH+05], which is an iterative process
based on memory copy of dirty pages (i.e. blocks of memory which are constantly changing
due to the running processes inside of the VR). In the VN clone approach, the VR memory
RAM is copied at once, while the VR is still running, and at memory RAM write speeds (e.g.
DDR3-800 with a peak transfer rate of 6400MBps [JED12]).

In the case of the VN clone migration with VR suspend, the VN downtime does vary
with the VR memory size and increases linearly with it. This is in fact due to the cloning
phase of the VR, where the VR is put into suspend mode while its memory RAM is being
copied. It performs better than the live migration, i.e. achieves lower VN downtime or has
lower packet loss, in situations where the VR that needs to be migrated has a memory RAM
smaller than 96MB; in the remaining cases, the live migration process performs better. The
VN clone migration without VR suspend outperforms the VN live migration approach and
achieves no VN downtimes.

The VN clone migration with VR suspend, and with a memory size of 64MB, achieves a
VN downtime of 270 milliseconds, which still makes this approach suitable for non-real time
traffic and for voice over IP traffic, once it follows the ITU-T G.114[tim03] recommendation
which limits the maximum acceptable round trip delay time to 300ms.

The traffic carried out by the VN does not significantly affect the V Ndowntime, although
a slightly higher percentage of dropped packets is registered for the UDP traffic with higher
bitrate (i.e. 20Mbps).

185

64 96 128 160 192 224 256
0

0.2

0.4

0.6

0.8

1

1.2

VR Memory RAM (MB)

A
ve

ra
ge

 V
N

 D
ow

n
T

im
e

(s
)

VN Live Migration − 10Mbps
VN Live Migration − 20Mbps
VN Clone Migration (VR Suspend) − 10Mbps
VN Clone Migration (VR Suspend) − 20Mbps
VN Clone Migration − 10Mbps
VN Clone Migration − 20Mbps

Figure F.6: Virtual Network downtime (or Percentage of Dropped Packets) as a Function of
the VR Memory RAM

F.7.3.2 VN Migration Execution Time

The VN migration execution time is illustrated in Figure F.7. On the left side (Fig-
ure F.7a), it is represented the execution time of the live migration process, and on the right
side (Figure F.7b), it is represented the execution time of the clone migration process.

The VN execution time grows linearly for both migration methods with the VR memory
size. The live migration process is the one that takes less time to be fully performed, since it
is performed internally by the XEN hypervisor.

In the clone migration process, the most time consuming operation is the VR Clone move
(i.e. the relocation of the VR clone to the new physical host). This operation is influenced
both by the VR memory size and by the available bandwidth at the physical path, between
the physical host source and the physical host destination (Mary-Susan-Bree), which in
our experiment is of 1Gbps (see equation F.2). The second most time consuming operation
is the VR cloning operation, which is also dependent on the VR memory size. Both the
bridging of virtual interfaces and the VLAN setup are the less time consuming operations,
and take up to 4 and 8 milliseconds, respectively, to be performed.

The total execution time of the clone migration process, with a VR having 64 MB of
memory RAM, is 2.75 seconds, while the total execution time of the live migration process
is 2.36 seconds. Notice that the total execution time of the clone migration process can be
reduced, if it is also performed internally by the hypervisor. Moreover, this time can be
further reduced if the VR clone relocation takes place in parallel with the VR cloning phase.

0

1

2

3

4

5

6

7

8

64 96 128 160 192 224 256

Ex
ec

u
ta

ti
o

n
 T

im
e

(s
)

VR Memory RAM (MB)

max{Bridge
Setup; VLAN
Setup}
VR Live
Migration

VR Restore

(a) Live

0

1

2

3

4

5

6

7

8

64 96 128 160 192 224 256

Ex
ec

u
ta

ti
o

n
 T

im
e

(s
)

VR Memory RAM (MB)

max{Bridge Setup;
VLAN Setup}

VR Cloning

VR Clone Move

VR Clone Restore

min{VR Destroy;
Bridge Int. Setup}

(b) Clone

Figure F.7: VN Migration Execution Time as Function of the VR Memory Size

186

F.7.4 VN Re-embedding - Simulation Parameters

To evaluate the VNRE-NLF model, we have used a discrete event simulator implemented
in Matlab R©, with the proposed formulation and the objective function considered.

The physical network topology is created using the GT-ITM tool [ZCB96], the number of
physical nodes is set to 50, which is representative of a medium scale infrastructure provider,
and the link probability between two physical nodes is set to 0.5. The node CPU capacity
and the link bandwidth are real numbers uniformly distributed between 50 and 100. The
VN requests are also representative of either small or medium scale virtual networks, and
are created using the same topology generation method. The number of virtual nodes is
not fixed, but follows an uniform distribution, from 2 to 10 virtual nodes per VN topology;
the virtual link probability is set to 0.5. The CPU capacity of the virtual nodes and the
bandwidth of the virtual links are also real numbers uniformly distributed between 0 and 20,
and between 0 and 50, respectively2.

We assume that a VN re-embedding request is triggered by a physical node maintenance
event (or eventually imminent failure), according to a Poisson process of 1 event per 500
time units. A set of physical nodes that need to be power-off for maintenance is randomly
generated, i.e. integers uniformly distributed between 1 and 50. We have considered sets of of
1, 2 and 3 physical nodes, which correspond to a shutdown of 2%, 4%, and 6% of the physical
network resources. The CPU and bandwidth capacity of the nodes and links affected is set
to zero.

To populate the physical network, we assume VN requests arriving according to a Poisson
process, and that each VN has an associated lifetime measured in time units with an average
of 1/µ = 1000, following an exponential distribution. The same assumption was also taken
by the authors of [MSK+13]. The VN request rate, i.e., value of λ, is started with a rate
of 3 VN requests per 100 time units, and increases by 1 VN request, up to a rate of 10 VN
requests.

For each value of λ, 10 trials are performed, and the same set of re-embedding events is
considered. A new set of VN requests, a new physical network topology, and new set of VN
re-embedding events are generated for each trial. All simulations are set to run up to 50000
time units to mitigate the transient phase effect [Jai91] and to obtain the steady-state. A
confidence interval of 95% is used for all results presented below.

The CPLEX R©[cpl12] version 12.2 is used to solve the linear programming problem of the
VNRE-NLF; a time limit of 300 seconds is defined for each set of VN mapping, although most
of the VNs are re-embedded in less than 60 seconds; the CPLEX R© is set to use up to two
threads. All the simulations were performed using an Intel R© Core TM Processor i5-3210M
@2.5GHz, and the time consumed per set of VNs re-embedding is registered.

The evaluation metrics are the ones defined in section F.5.5.

F.7.5 VN Re-embedding - Simulation Results

This sub-section presents the evaluation results of the process of VN re-embedding as a
function of the VN request rate for all the previously described metrics (see sub-section F.5.5).

F.7.5.1 Physical Network Resilience Factor

Figure F.8 depicts the average virtual network resilience factor as a function of the VN
request rate and the percentage of physical resources shutdown. The results show that the

2These values were also considered by the authors of [YYRC08, ZA06, CRB09, MSK+13].

187

network resilience decreases with the VN request rate and also with the percentage of re-
sources shutdown. On one hand, with a higher VN request rate, the number of VN requests
allocated in the physical network increases. On the other hand, by turning-off more physical
resources, the number of VNs affected by the decrease of the amount of free resources does
not increase. Therefore, it penalizes the VN resilience factor. Noteworthy, the VNRE-NLF
is able to re-embed all sets of VNs affected for a VN request rate of 3, and for all considered
percentage of physical resources shutdown.

3 4 5 6 7 8 9 10

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

A
ve

ra
ge

 P
hy

si
ca

l N
et

w
or

k
R

es
ili

en
ce

 F
ac

to
r

Number of Virtual Network Requests per time unit

VNRE−NLF − Physical Resources Shutdown of 2%
VNRE−NLF − Physical Resources Shutdown of 4%
VNRE−NLF − Physical Resources Shutdown of 6%

Figure F.8: Average Physical Network Resilience Factor per VN request.

F.7.5.2 Virtual Nodes Migration

Virtual node migration is the component with the highest impact in the VN migration
execution time (see Figure F.7). The virtual node migration process not only consumes
additional CPU of the source node and destination node, but also requires extra physical
bandwidth to transfer the virtual node between the physical nodes. Figure F.11 presents the
average percentage of virtual nodes migrated per set of VNs affected and as a function of
the VN request rate. The virtual nodes previously assigned to physical nodes that need to
be turned off do not count to the overall percentage of virtual nodes migrated, since their
migration to new physical nodes is mandatory. Therefore, the percentage of virtual nodes
migrated only incorporate the virtual nodes placed on other physical nodes, and that need
to be migrated to make the assignment problem feasible. The number of nodes migrated
increases with the VN request rate and with the percentage of physical resources shutdown.
By increasing the number of VNs allocated on the physical network, i.e. VN request rate,
and the percentage of physical resources shutdown, the spare capacity of the physical network
is reduced. Hence, it is required to migrate more virtual nodes to make the re-embedding
feasible.

F.7.5.3 Embedding Factor

Re-embedding sets of VNs is important to minimize the number of virtual nodes migrated,
and also to re-embed the virtual links in the smallest set of physical links possible, to save
bandwidth for the incoming VN requests. Figure F.10 shows the embedding factor for each

188

3 4 5 6 7 8 9 10

20

25

30

35

40

A
ve

ra
ge

 N
um

be
r

of
 V

irt
ua

l N
od

es
 M

ig
ra

te
d

(%
)

Number of Virtual Network Requests per time unit

VNRE−NLF − Physical Resources Shutdown of 2%
VNRE−NLF − Physical Resources Shutdown of 4%
VNRE−NLF − Physical Resources Shutdown of 6%

Figure F.9: Average Percentage of Virtual Nodes Migrated per VN request.

set of VNs re-embedded and as a function of the VN request rate. The embedding factor de-
creases with the VN request rate and with the percentage of physical resources shutdown. By
increasing the number of VN request rate and the percentage of physical resources shutdown,
we are not only reducing the spare capacity of the physical network, but also making the VN
re-embedding less efficient in terms of virtual link re-assignment (i.e less physical bandwidth
is available to make it possible to re-embed the overall virtual links in the smallest amount
of physical links possible). Consequently, the network has virtual links consuming more than
one physical link.

3 4 5 6 7 8 9 10

0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

A
ve

ra
ge

 V
N

 E
m

be
dd

in
g

F
ac

to
r

Number of Virtual Network Requests per time unit

VNRE−NLF − Physical Resources Shutdown of 2%
VNRE−NLF − Physical Resources Shutdown of 4%
VNRE−NLF − Physical Resources Shutdown of 6%

Figure F.10: Average Embedding Factor per VN request.

F.7.5.4 Physical Bandwidth Allocation

It is also import to know how much bandwidth is additionally provisioned for each set
of VNs re-embedded. Figure F.11 depicts the average percentage of additional bandwidth
allocation per set of VNs re-embedded and as a function of the VN request rate. The addi-

189

tional bandwidth increases with the VN request rate, and also with the percentage of physical
resources shutdown. By increasing the number of VN request rate and the percentage of phys-
ical resources shutdown, we are implicitly increasing the percentage of virtual nodes migrated
(as stated in F.7.5.2); if we aim at minimizing the number of virtual nodes migrated, we will
sacrifice the virtual links (i.e. longer paths are taken by the virtual links). Therefore, it is
consumed an additional bandwidth per VN request rate and percentage of physical resources
shutdown.

3 4 5 6 7 8 9 10
2

4

6

8

10

12

14

A
ve

ra
ge

 A
dd

iti
on

al
 P

hy
si

ca
l B

an
dw

id
th

 C
on

su
m

pt
io

n
(%

)

Number of Virtual Network Requests per time unit

VNRE−NLF − Physical Resources Shutdown of 2%
VNRE−NLF − Physical Resources Shutdown of 4%
VNRE−NLF − Physical Resources Shutdown of 6%

Figure F.11: Average Percentage of Additional Physical Bandwidth per VN request.

F.7.5.5 VN Re-embedding Time

An important aspect of a VN re-embedding method is the time that it requires to re-
embed, on average, a set of VNs, and how it varies with respect to the different loads on the
physical infrastructure, i.e. VN request rate, and with the different percentage of physical
resources shutdown. Figure F.12 shows the solving time for each set of VNs and as a
function of the VN request rate. The solving time increases significantly with the VN request
rate, and also with the percentage of physical resources shutdown. The solving time directly
depends on the number of virtual links and virtual nodes that need to be re-embedded. By
increasing the VN request rate, we are increasing the number of VNs allocated and implicitly
the number of VNs potentially affected by a physical resource shutdown. By increasing the
percentage of physical resources shutdown, we are directly increasing the number of VNs
affected. Therefore, by increasing the number of VNs affected, we are increasing the number
of virtual nodes and links to be re-embedded and implicitly increasing the solving time.

190

3 4 5 6 7 8 9 10

5

10

15

20

25

30

35

40

45

50

55

A
ve

ra
ge

 V
N

s
R

e−
em

be
dd

in
g

T
im

e
(s

)

Number of Virtual Network Requests per time unit

VNRE−NLF − Physical Resources Shutdown of 2%
VNRE−NLF − Physical Resources Shutdown of 4%
VNRE−NLF − Physical Resources Shutdown of 6%

Figure F.12: Average VN Re-embedding Time.

F.8 Conclusion and Future Work

The VN migration process is an important mechanism both for network management
purposes and for the conception and deployment of new network architectures and protocols
based on network virtualisation. The VN migration enables the virtual network to not be
physically tied to a set of hosts previously assigned, and it makes it viable to move components
of a VN or even the entire VN from one set of physical hosts to a new set on a seamless way
and on-demand.

This paper proposed the VN clone migration as an alternative to the live migration
approach. The VN clone migration performs cloning of the VR and transfers the VR clone
to the new physical host. This approach requires no restrictions on the virtual network itself
or on the networking protocols running inside of the virtual network. The results show that
the proposed approach achieves no VN downtime, and it takes just a few seconds to be fully
performed.

Additionally, it is proposed the VNRE-NLF to solve the online virtual network re-
embedding problem as a simultaneous optimization of virtual nodes and virtual links, provid-
ing the optimal bound for each set of virtual networks migrated. This approach aims at min-
imizing the overall VN migration cost per re-embedding: i) number of virtual nodes migrated;
ii) physical bandwidth consumption. The results show that the virtual network resilience to
migration events is directly affected by the VN request rate and by the percentage of physical
resources shut-down. From the obtained results we can conclude that the VN is highly resili-
ent to migration events for the VN request rates considered if no more than 2% of the physical
resources need to be shut-down. We can also conclude that it is not only important to have
enough spare capacity to re-accommodate the virtual nodes and virtual links affected by the
physical resource shut-down, but also to have additional capacity to accommodate virtual
link re-assignments and virtual node migrations performed to make the VN re-embedding
problem feasible.

Future work spans from the integration of the VR cloning approach with the hypervisor,
to the investigation and inclusion of new parameters on the objective function: memory RAM
of the virtual nodes (i.e. to not only minimize the number of virtual nodes migrated, but also
to minimize the migration of virtual nodes with higher amount of memory RAM); number of
hops between physical nodes (to minimize the number of hops a virtual node needs to cross

191

to be migrated).

192

References

[4WA09] 4WARD Consortium. Virtualisation approach: Concept. Technical report, FP7-
ICT-4WARD project, Deliverable D3.1.1, Sep. 2009.

[4WA10a] 4WARD Consortium. Virtualisation approach: Evaluation and integration. Tech-
nical report, FP7-ICT-4WARD project, Deliverable D3.2.0, Jan. 2010.

[4WA10b] 4WARD Consortium. Virtualisation approach: Evaluation and integration - up-
date. Technical report, FP7-ICT-4WARD project, Deliverable D3.2.1, Jun. 2010.

[4WA14] 4WARD - Architecture and design for the future Internet. http://www.
4ward-project.eu, Jan. 2014.

[ABdF13] Gustavo P. Alkmim, Daniel M Batista, and Nelson L. S. da Fonseca. Mapping
virtual networks onto substrate networks. Journal of Internet Services and Ap-
plications, 4(1):1–15, 2013.

[ABKM01] David Andersen, Hari Balakrishnan, Frans Kaashoek, and Robert Morris. Resi-
lient overlay networks, volume 35. ACM, 2001.

[ABSdF11] Gustavo Prado Alkmim, Daniel Macêdo Batista, and NL Saldanha da Fonseca.
Optimal mapping of virtual networks. In Global Telecommunications Conference
(GLOBECOM 2011), 2011 IEEE, pages 1–6. IEEE, 2011.

[AGE+04] S. Avallone, S. Guadagno, D. Emma, A. Pescape, and G. Ventre. D-ITG dis-
tributed internet traffic generator. In Quantitative Evaluation of Systems, 2004.
QEST 2004. Proceedings. First International Conference on the, pages 316 – 317,
September 2004.

[AN08] Tohru Asami and Shu Namiki. Energy consumption targets for network systems.
In Optical Communication, 2008. ECOC 2008. 34th European Conference on,
pages 1–4. IEEE, 2008.

[And02] David G. Andersen. Theoretical approaches to node assignment. Unpublished
Manuscript, December 2002.

[APST05a] T. Anderson, L. Peterson, S. Shenker, and J. Turner. Overcoming the internet
impasse through virtualization. Computer, 38(4):34 – 41, April 2005.

[APST05b] Thomas Anderson, Larry Peterson, Scott Shenker, and Jonathan Turner. Over-
coming the Internet Impasse through Virtualization. Computer, 38:34–41, April
2005.

[AS11] Ehab Al-Shaer. Toward network configuration randomization for moving target
defense. In Sushil Jajodia, Anup K. Ghosh, Vipin Swarup, Cliff Wang, and X. Sean

193

http://www.4ward-project.eu
http://www.4ward-project.eu

Wang, editors, Moving Target Defense, volume 54, pages 153–159. Springer New
York, New York, NY, 2011.

[BDF+03] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho,
Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtual-
ization. In Proceedings of the nineteenth ACM symposium on Operating systems
principles, pages 164–177, Bolton Landing, NY, USA, 2003. ACM.

[BFH+06] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford. In VINI ver-
itas: realistic and controlled network experimentation. In Proceedings of the 2006
conference on Applications, technologies, architectures, and protocols for computer
communications, page 14, 2006.

[BH09] Luiz André Barroso and Urs Hölzle. The datacenter as a computer: An introduc-
tion to the design of warehouse-scale machines. Synthesis Lectures on Computer
Architecture, 4(1):1–108, 2009.

[BHD+12] J.F. Botero, X. Hesselbach, M. Duelli, D. Schlosser, A. Fischer, and H. De Meer.
Energy efficient virtual network embedding. Communications Letters, IEEE,
16(5):756–759, 2012.

[BHFM12] Juan Felipe Botero, Xavier Hesselbach, Andreas Fischer, and Hermann Meer. Op-
timal mapping of virtual networks with hidden hops. Telecommunication Systems,
51(4):273–282, 2012.

[BHK12] Abdeltouab Belbekkouche, Md. Mahmud Hasan, and Ahmed Karmouch. Resource
discovery and allocation in network virtualization. Communications Surveys Tu-
torials, IEEE, 14(4):1114–1128, 2012.

[bri12] 802.1D Bridge implementation for Linux. http://www.linuxfoundation.org/
collaborate/workgroups/networking/bridge, August 2012.

[Bun00] H. Bunke. Recent developments in graph matching. In Pattern Recognition, 2000.
Proceedings. 15th International Conference on, volume 2, pages 117–124 vol.2,
2000.

[CB09] N. Mosharaf K. Chowdhury and Raouf Boutaba. Network virtualization: State of
the art and research challenges. IEEE Communications Magazine, 47(7):20–26,
July 2009.

[CFH+05] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and
A. Warfield. Live migration of virtual machines. In Proceedings of the 2nd con-
ference on Symposium on Networked Systems Design & Implementation-Volume
2, pages 273–286, 2005.

[CHM+03] J. Crowcroft, S. Hand, R. Mortier, T. Roscoe, and A. Warfield. Plutarch: an
argument for network pluralism. In Proceedings of the ACM SIGCOMM workshop
on Future directions in network architecture, page 266, 2003.

[Cis09a] Cisco. Cisco Visual Networking Index Forecast and Methodology 2008-2013. White
paper, June 2009.

[Cis09b] Cisco. Router virtualization in service providers,white paper. http:
//www.cisco.com/en/US/solutions/collateral/ns341/ns524/ns562/ns573/
white_paper_c11-512753.html, July 2009.

194

http://www.linuxfoundation.org/collaborate/workgroups/networking/bridge
http://www.linuxfoundation.org/collaborate/workgroups/networking/bridge
http://www.cisco.com/en/US/solutions/collateral/ns341/ns524/ns562/ns573/white_paper_c11-512753.html
http://www.cisco.com/en/US/solutions/collateral/ns341/ns524/ns562/ns573/white_paper_c11-512753.html
http://www.cisco.com/en/US/solutions/collateral/ns341/ns524/ns562/ns573/white_paper_c11-512753.html

[CJ09] Jorge Carapinha and Javier Jiménez. Network virtualization: a view from the
bottom. In Proceedings of the 1st ACM workshop on Virtualized infrastructure
systems and architectures, VISA ’09, pages 73–80, New York, NY, USA, 2009.
ACM.

[CLW+10] Yang Chen, Jianxin Li, Tianyu Wo, Chunming Hu, and Wantao Liu. Resilient
virtual network service provision in network virtualization environments. In Paral-
lel and Distributed Systems (ICPADS), 2010 IEEE 16th International Conference
on, pages 51–58, 2010.

[CLW12] Xuzhou Chen, Yan Luo, and Jie Wang. Virtual network embedding with border
matching. In Communication Systems and Networks (COMSNETS), 2012 Fourth
International Conference on, pages 1–8, 2012.

[CLX+10] Zhiping Cai, Fang Liu, Nong Xiao, Qiang Liu, and Zhiying Wang. Virtual net-
work embedding for evolving networks. In Global Telecommunications Conference
(GLOBECOM 2010), 2010 IEEE, pages 1–5, 2010.

[con03] Connectix Virtual Server. http://www.connectix.com/products/vs.html,
2003.

[Con06] VPN Consortium. VPN Technologies: Definitions and Requirements.
http://www.cisco.com/en/US/solutions/collateral/ns341/ns524/ns562/
ns573/white_paper_c11-512753.html, March 2006.

[cpl12] IBM ILOG Optimization Products. www-01.ibm.com/software/websphere/
products/optimization, Sep. 2012.

[CRB09] N.M.M.K. Chowdhury, M.R. Rahman, and R. Boutaba. Virtual network embed-
ding with coordinated node and link mapping. In INFOCOM 2009, IEEE, pages
783 –791, april 2009.

[CRB12] M. Chowdhury, M.R. Rahman, and R. Boutaba. Vineyard: Virtual network
embedding algorithms with coordinated node and link mapping. Networking,
IEEE/ACM Transactions on, 20(1):206 –219, feb. 2012.

[CRSZ01] Yang Chu, Sanjay Rao, Srinivasan Seshan, and Hui Zhang. Enabling conferencing
applications on the internet using an overlay muilticast architecture. In ACM
SIGCOMM Computer Communication Review, volume 31, pages 55–67. ACM,
2001.

[CSB+08] J. Chabarek, J. Sommers, P. Barford, C. Estan, D. Tsiang, and S. Wright. Power
awareness in network design and routing. In INFOCOM 2008. The 27th Confer-
ence on Computer Communications. IEEE, pages 457–465, 2008.

[CSB10] Mosharaf Chowdhury, Fady Samuel, and Raouf Boutaba. Polyvine: policy-based
virtual network embedding across multiple domains. In Proceedings of the second
ACM SIGCOMM workshop on Virtualized infrastructure systems and architec-
tures, pages 49–56. ACM, 2010.

[CSZ+11] Xiang Cheng, Sen Su, Zhongbao Zhang, Hanchi Wang, Fangchun Yang, Yan Luo,
and Jie Wang. Virtual network embedding through topology-aware node ranking.
ACM SIGCOMM Computer Communication Review, 41(2):38–47, 2011.

195

http://www.connectix.com/products/vs.html
http://www.cisco.com/en/US/solutions/collateral/ns341/ns524/ns562/ns573/white_paper_c11-512753.html
http://www.cisco.com/en/US/solutions/collateral/ns341/ns524/ns562/ns573/white_paper_c11-512753.html
www-01.ibm.com/software/websphere/products/optimization
www-01.ibm.com/software/websphere/products/optimization

[CSZ+12] Xiang Cheng, Sen Su, Zhongbao Zhang, Kai Shuang, Fangchun Yang, Yan Luo,
and Jie Wang. Virtual network embedding through topology awareness and op-
timization. Computer Networks, 56(6):1797 – 1813, 2012.

[DBR02] S. W Devine, E. Bugnion, and M. Rosenblum. Virtualization system including
a virtual machine monitor for a computer with a segmented architecture. Google
Patents, May 2002. US Patent 6,397,242.

[EFI14] European Future Internet Portal. http://www.future-internet.eu, Jan. 2014.

[EIS75] S. Even, A. Itai, and A. Shamir. On the complexity of time table and multi-
commodity flow problems. In Proceedings of the 16th Annual Symposium on
Foundations of Computer Science, SFCS ’75, pages 184–193, Washington, DC,
USA, 1975. IEEE Computer Society.

[Epp98] David Eppstein. Finding the k shortest paths. SIAM Journal on computing,
28(2):652–673, 1998.

[ETS] Network Functions Virtualisation – Introductory White Paper. http://portal.
etsi.org/NFV/NFV_White_Paper.pdf, Oct.

[ETS13a] ETSI. Gs nfv 001 - network functions virtualisation (nfv); use cases, October
2013.

[ETS13b] ETSI. Gs nfv 002 - network functions virtualisation (nfv); architectural framework,
October 2013.

[ETS13c] ETSI. Gs nfv 003 - network functions virtualisation (nfv); terminology for main
concepts in nfv, October 2013.

[ETS13d] ETSI. Gs nfv 004 - network functions virtualisation (nfv); virtualisation require-
ments, October 2013.

[ETS13e] ETSI. Gs nfv-per 002 - network functions virtualisation (nfv); proofs of concepts;
framework, October 2013.

[FA06] J. Fan and M.H. Ammar. Dynamic topology configuration in service overlay
networks: A study of reconfiguration policies. In INFOCOM 2006. 25th IEEE
International Conference on Computer Communications. Proceedings, pages 1–
12, 2006.

[FAPZ11a] I. Fajjari, N. Aitsaadi, G. Pujolle, and H. Zimmermann. Vne-ac: Virtual net-
work embedding algorithm based on ant colony metaheuristic. In Communications
(ICC), 2011 IEEE International Conference on, pages 1–6, 2011.

[FAPZ11b] I. Fajjari, N. Aitsaadi, G. Pujolle, and H. Zimmermann. Vnr algorithm: A greedy
approach for virtual networks reconfigurations. In Global Telecommunications
Conference (GLOBECOM 2011), 2011 IEEE, pages 1–6, 2011.

[FBCB10] Nabeel Farooq Butt, Mosharaf Chowdhury, and Raouf Boutaba. Topology-
awareness and reoptimization mechanism for virtual network embedding. In Pro-
ceedings of the 9th IFIP TC 6 international conference on Networking, NET-
WORKING’10, pages 27–39, Berlin, Heidelberg, 2010. Springer-Verlag.

196

http://www.future-internet.eu
http://portal.etsi.org/NFV/NFV_White_Paper.pdf
http://portal.etsi.org/NFV/NFV_White_Paper.pdf

[FBTB+13] A. Fischer, J.F. Botero, M. Till Beck, H. de Meer, and X. Hesselbach. Vir-
tual network embedding: A survey. Communications Surveys Tutorials, IEEE,
15(4):1888–1906, 2013.

[FDM11] Andreas Fischer and Hermann De Meer. Position paper: Secure virtual network
embedding. Praxis der Informationsverarbeitung und Kommunikation, 34(4):190–
193, 2011.

[FED14] FEDERICA. http://www.fp7-federica.eu, Jan. 2014.

[Fel07] A. Feldmann. Internet clean-slate design: what and why? ACM SIGCOMM
Computer Communication Review, 37(3):64, 2007.

[FFF99] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law rela-
tionships of the internet topology. In ACM SIGCOMM Computer Communication
Review, volume 29, pages 251–262. ACM, 1999.

[FGR07a] N. Feamster, L. Gao, and J. Rexford. How to lease the internet in your spare time.
ACM SIGCOMM Computer Communication Review, 37(1):64, 2007.

[FGR07b] Nick Feamster, Lixin Gao, and Jennifer Rexford. How to lease the internet in your
spare time. SIGCOMM Comput. Commun. Rev., 37(1):61–64, 2007.

[FIN14] National Science Fondation Network Technology and Systems Future INternet
Design Initiative (NSF NeTS FIND). http://www.nets-find.net, Jan. 2014.

[Fou14] Open Network Foundation. Software-Defined Networking: The New Norm for
Networks. White paper, Jan. 2014.

[gen14] GENI - Global Environment for Network Innovations. http://www.geni.net/,
Jan. 2014.

[gey14] GEYSERS - Generalized Architecture for Dynamic Infrastructure Services. http:
//www.geysers.eu, Jan. 2014.

[GH88] David E Goldberg and John H Holland. Genetic algorithms and machine learning.
Machine learning, 3(2):95–99, 1988.

[glp12] GLPK (GNU Linear Programming Kit) . http://www.gnu.org/software/glpk/,
Sep. 2012.

[Gol74] R. P Goldberg. Survey of virtual machine research. IEEE Computer, 7(6):34–45,
1974.

[Gom13] R. Gomes. Demonstrador de uma rede com tecnologia openflow. Master’s thesis,
Universidade de Aveiro, 2013.

[GS03a] Maruti Gupta and Suresh Singh. Greening of the internet. In Proceedings of
the 2003 conference on Applications, technologies, architectures, and protocols for
computer communications, pages 19–26, Karlsruhe, Germany, 2003. ACM.

[GS03b] Maruti Gupta and Suresh Singh. Greening of the internet. In Proceedings of the
2003 Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications, SIGCOMM ’03, pages 19–26, New York, NY, USA,
2003. ACM.

197

http://www.fp7-federica.eu
http://www.nets-find.net
http://www.geni.net/
http://www.geysers.eu
http://www.geysers.eu
http://www.gnu.org/software/glpk/

[GS11] T. Ghazar and N. Samaan. Hierarchical approach for efficient virtual network
embedding based on exact subgraph matching. In Global Telecommunications
Conference (GLOBECOM 2011), 2011 IEEE, pages 1–6, 2011.

[GWC+09] V. Gupta, M. Williams, A. Chan, X. Liu, D. Cypher, Y. Y. An, et al. IEEE802. 21
standard and metropolitan area networks: Media independent handover services.
Draft P, 21:D00, 2009.

[GWMT11] Tao Guo, Ning Wang, K. Moessner, and R. Tafazolli. Shared backup network
provision for virtual network embedding. In Communications (ICC), 2011 IEEE
International Conference on, pages 1–5, 2011.

[GYA+10] Xiujiao Gao, Hongfang Yu, Vishal Anand, Gang Sun, and Hao Di. A new al-
gorithm with coordinated node and link mapping for virtual network embedding
based on lp relaxation. volume 7988, pages 79881Y–79881Y–9, 2010.

[HKA13] Sandra Herker, Ashiq Khan, and Xueli An. Survey on survivable virtual net-
work embedding problem and solutions. In ICNS 2013, The Ninth International
Conference on Networking and Services, pages 99–104, 2013.

[HKM+98] Michael Hicks, Pankaj Kakkar, Jonathan T Moore, Carl A Gunter, and Scott
Nettles. Plan: A packet language for active networks. In ACM SIGPLAN Notices,
volume 34, pages 86–93. ACM, 1998.

[HLAZ11] Ines Houidi, Wajdi Louati, Walid Ben Ameur, and Djamal Zeghlache. Virtual
network provisioning across multiple substrate networks. Computer Networks,
55(4):1011 – 1023, 2011. <ce:title>Special Issue on Architectures and Protocols
for the Future Internet</ce:title>.

[HLZ08] I. Houidi, W. Louati, and D. Zeghlache. A distributed virtual network mapping
algorithm. In Communications, 2008. ICC ’08. IEEE International Conference
on, pages 5634 –5640, may 2008.

[HLZ+10] Ines Houidi, Wajdi Louati, Djamal Zeghlache, Panagiotis Papadimitriou, and
Laurent Mathy. Adaptive virtual network provisioning. In Proceedings of the
Second ACM SIGCOMM Workshop on Virtualized Infrastructure Systems and Ar-
chitectures, VISA ’10, pages 41–48, New York, NY, USA, 2010. ACM.

[HLZB09] I. Houidi, W. Louati, D. Zeghlache, and S. Baucke. Virtual resource description
and clustering for virtual network discovery. In Communications Workshops, 2009.
ICC Workshops 2009. IEEE International Conference on, pages 1–6, 2009.

[HPN09] Aun Haider, Richard Potter, and Akihiro Nakao. Challenges in resource allocation
in network virtualization. In 20th ITC Specialist Seminar, volume 18, page 20,
2009.

[IEE06] IEEE. 802.1ad - provider bridges. http://www.ieee802.org/1/pages/802.1ad.
html, May 2006.

[IEE11] IEEE. 802.1q - virtual lans. http://www.ieee802.org/1/pages/802.1Q.html,
Aug. 2011.

198

http://www.ieee802.org/1/pages/802.1ad.html
http://www.ieee802.org/1/pages/802.1ad.html
http://www.ieee802.org/1/pages/802.1Q.html

[IR11] Johannes Inführ and Günther R. Raidl. Introducing the virtual network mapping
problem with delay, routing and location constraints. In Julia Pahl, Torsten Rein-
ers, and Stefan Voß, editors, Network Optimization, volume 6701 of Lecture Notes
in Computer Science, pages 105–117. Springer Berlin Heidelberg, 2011.

[IRT14] Internet Research Task Force -Virtual Networks Research Group (VNRG). http:
//www.irtf.org/charter?gtype=rg&group=vnrg, Jan. 2014.

[ITU11] ITU-T. Rec. y.3001 - future network vision — objectives and design goals, 2011.

[ITU12a] ITU-T. Rec. y.3011 - framework of network virtualiza-tion for future networks,
2012.

[ITU12b] ITU-T. Rec. y.3021 - framework of energy saving for future networks, 2012.

[ITU12c] ITU-T. Rec. y.3031 - identification framework in future networks, 2012.

[ITU14] Focus Group on Future Networks (FG FN). http://www.itu.int/en/ITU-T/
focusgroups/fn/Pages/Default.aspx, Jan. 2014.

[Jai91] R. Jain. The art of computer systems performance analysis, volume 182. John
Wiley & Sons New York, 1991.

[JED12] JEDEC. 204-Pin DDR3 SDRAM SO-DIMM Specification, August 2012.

[Jun09] Juniper. Virtualization in the core of the network, white paper. White paper,
July 2009.

[Ken10] James Kennedy. Particle swarm optimization. In Encyclopedia of Machine Learn-
ing, pages 760–766. Springer, 2010.

[KJV83] Scott Kirkpatrick, D. Gelatt Jr., and Mario P Vecchi. Optimization by simmulated
annealing. science, 220(4598):671–680, 1983.

[kvm14] Kernel-based Virtual Machine. http://www.linux-kvm.org, Jan. 2014.

[LAZ12] Samantha Lo, Mostafa Ammar, and Ellen Zegura. Design and analysis of schedules
for virtual network migration. Georgia Institute of Technology SCS Technical
Report, GT-CS-12-05, July 2012.

[LFDM14] Gergö Lovász, Andreas Fischer, and Hermann De Meer. Network virtualization
and energy efficiency, Jan. 2014.

[LGL+11] Guohan Lu, Chuanxiong Guo, Yulong Li, Zhiqiang Zhou, Tong Yuan, Haitao Wu,
Yongqiang Xiong, Rui Gao, and Yongguang Zhang. Serverswitch: a programmable
and high performance platform for data center networks. In Proceedings of the 8th
USENIX conference on Networked systems design and implementation, pages 2–2.
USENIX Association, 2011.

[LHCL11] Jiang Liu, Tao Huang, Jian-ya Chen, and Yun-jie Liu. A new algorithm based on
the proximity principle for the virtual network embedding problem. Journal of
Zhejiang University SCIENCE C, 12(11):910–918, 2011.

[LHkW+11] Bo LÜ, Tao HUANG, Zhen kai WANG, Jian ya CHEN, Yun jie LIU, and Jiang
LIU. Adaptive scheme based on status feedback for virtual network mapping. The
Journal of China Universities of Posts and Telecommunications, 18(5):87 – 94,
2011.

199

http://www.irtf.org/charter?gtype=rg&group=vnrg
http://www.irtf.org/charter?gtype=rg&group=vnrg
http://www.itu.int/en/ITU-T/focusgroups/fn/Pages/Default.aspx
http://www.itu.int/en/ITU-T/focusgroups/fn/Pages/Default.aspx
http://www.linux-kvm.org

[LK09] Jens Lischka and Holger Karl. A virtual network mapping algorithm based on
subgraph isomorphism detection. In Proceedings of the 1st ACM workshop on Vir-
tualized infrastructure systems and architectures, pages 81–88, Barcelona, Spain,
2009. ACM.

[LPP12] A. Leivadeas, C. Papagianni, and S. Papavassiliou. Socio-aware virtual network
embedding. Network, IEEE, 26(5):35–43, 2012.

[LT06] Jing Lu and Jonathan Turner. Efficient mapping of virtual networks onto a shared
substrate. Technical report, Washington University in St. Louis, 2006.

[LWD+14] Xiaoling Li, Huaimin Wang, Bo Ding, Xiaoyong Li, and Dawei Feng. Resource
allocation with multi-factor node ranking in data center networks. Future Genera-
tion Computer Systems, 32(0):1 – 12, 2014. <ce:title>Special Section: The Man-
agement of Cloud Systems, Special Section: Cyber-Physical Society and Special
Section: Special Issue on Exploiting Semantic Technologies with Particularization
on Linked Data over Grid and Cloud Architectures</ce:title>.

[LWH+10] Bo Lv, Zhenkai Wang, Tao Huang, Jianya Chen, and Yunjie Liu. Virtual re-
source organization and virtual network embedding across multiple domains. In
Multimedia Information Networking and Security (MINES), 2010 International
Conference on, pages 725–728, 2010.

[MAB+08] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rex-
ford, S. Shenker, and J. Turner. OpenFlow: enabling innovation in campus net-
works. ACM SIGCOMM Computer Communication Review, 38(2):69–74, 2008.

[Mak12] Andrew Makhorin. Glpk (gnu linear programming kit). http://www.gnu.org/
software/glpk/, 2012.

[MCS+12] Márcio Melo, Jorge Carapinha, Susana Sargento, Luis Torres, Nga Phuong-Tran,
Ulrich Killat, and Andreas Timm-Giel. Virtual network mapping - an optimiza-
tion problem. In Kostas Pentikousis, Rui Aguiar, Susana Sargento, and Ramón
Agüero, editors, Mobile Networks and Management, volume 97 of Lecture Notes of
the Institute for Computer Sciences, Social Informatics and Telecommunications
Engineering, pages 187–200. Springer Berlin Heidelberg, 2012.

[MCS13a] M. Melo, J. Carapinha, and S. Sargento. Network virtualization: A step closer for
seamless resource mobility. In Integrated Network Management (IM 2013), 2013
IFIP/IEEE International Symposium on, pages 692–695, 2013.

[MCS+13b] Márcio Melo, Jorge Carapinha, Susana Sargento, Ulrich Killat, and Andreas
Timm-Giel. A re-optimization approach for virtual network embedding. In An-
dreas Timm-Giel, John Strassner, Ramón Agüero, Susana Sargento, and Kos-
tas Pentikousis, editors, Mobile Networks and Management, volume 58 of Lecture
Notes of the Institute for Computer Sciences, Social Informatics and Telecommu-
nications Engineering, pages 271–283. Springer Berlin Heidelberg, 2013.

[Mel10] Márcio Melo. A network virtualisation framework in operator perspective. In
Revista do Departamento de Eletrónica, Informática e Telecomunicações, Univer-
sidade de Aveiro, 5(2):226–234, 2010.

200

http://www.gnu.org/software/glpk/
http://www.gnu.org/software/glpk/

[MEN+13] D. Matsubara, T. Egawa, N. Nishinaga, V.P. Kafle, Myung-Ki Shin, and A. Galis.
Toward future networks: A viewpoint from itu-t. Communications Magazine,
IEEE, 51(3):112–118, 2013.

[MGNB10] C.C. Marquezan, L.Z. Granville, G. Nunzi, and M. Brunner. Distributed auto-
nomic resource management for network virtualization. In Network Operations
and Management Symposium (NOMS), 2010 IEEE, pages 463–470, 2010.

[MLL10] Fei Ma, Feng Liu, and Zhen Liu. Live virtual machine migration based on im-
proved pre-copy approach. In 2010 IEEE International Conference on Software
Engineering and Service Sciences (ICSESS), pages 230 –233, July 2010.

[MNG+09] C.C. Marquezan, J.C. Nobre, L.Z. Granville, G. Nunzi, D. Dudkowski, and
M. Brunner. Distributed reallocation scheme for virtual network resources. In
IEEE International Conference on Communications, 2009. ICC ’09, pages 1 –5,
June 2009.

[Mon11] R. Monteiro. Criação e reconfiguração de redes virtuais na perspetiva do operador.
Master’s thesis, Universidade de Aveiro, 2011.

[MS97] Q. Ma and P. Steenkiste. On path selection for traffic with bandwidth guarantees.
In Network Protocols, 1997. Proceedings., 1997 International Conference on, pages
191–202, 1997.

[MSC09] M. Melo, S. Sargento, and J. Carapinha. Network Virtualisation from an Operator
Perspective. Proc Conf. sobre Redes de Computadores - CRC, October, 2009.

[MSC14] M. Melo, S. Sargento, and J. Carapinha. Optimal virtual network migration:
a step closer for seamless resource mobility. January, 2014.

[MSK+13] Marcio Melo, Susana Sargento, Ulrich Killat, Andreas Timm-Giel, and Jorge
Carapinha. Optimal virtual network embedding: Node-link formulation. Network
and Service Management, IEEE Transactions on, 10(4):356–368, 2013.

[MSK+14] M. Melo, S. Sargento, U. Killat, A. Timm-Giel, and J. Carapinha. Optimal virtual
network embedding: Energy aware formulation. January, 2014.

[nex12] Cisco nexus 5000 series architecture: The building blocks of the unified fabric.
Cisco White Paper, August 2012.

[NMCS11a] J. Nogueira, M. Melo, J. Carapinha, and S. Sargento. Network virtualization
system suite: Experimental network virtualization platform. In TridentCom 2011,
7th International ICST Conference on Testbeds and Research Infrastructures for
the Development of Networks and Communities, 2011.

[NMCS11b] J. Nogueira, M. Melo, J. Carapinha, and S. Sargento. Virtual network map-
ping into heterogeneous substrate networks. In Computers and Communications
(ISCC), 2011 IEEE Symposium on, pages 438 –444, 28 2011-july 1 2011.

[Nog10] J. Nogueira. Demonstrador de criação de redes virtuais no Âmbito do operador.
Master’s thesis, Universidade de Aveiro, 2010.

201

[NPI+08a] Sergiu Nedevschi, Lucian Popa, Gianluca Iannaccone, Sylvia Ratnasamy, and
David Wetherall. Reducing network energy consumption via sleeping and rate-
adaptation. In Proceedings of the 5th USENIX Symposium on Networked Sys-
tems Design and Implementation, pages 323–336, San Francisco, California, 2008.
USENIX Association.

[NPI+08b] Sergiu Nedevschi, Lucian Popa, Gianluca Iannaccone, Sylvia Ratnasamy, and
David Wetherall. Reducing network energy consumption via sleeping and rate-
adaptation. In NSDI, volume 8, pages 323–336, 2008.

[ORB14] ORBIT. http://www.orbit-lab.org, Jan. 2014.

[PAB+06] L. Peterson, T. Anderson, D. Blumenthal, D. Casey, D. Clark, D. Estrin, J. Evans,
D. Raychaudhuri, M. Reiter, J. Rexford, et al. GENI design principles. IEEE
Computer, 39(9):102–105, 2006.

[PACR03] Larry Peterson, Tom Anderson, David Culler, and Timothy Roscoe. A blueprint
for introducing disruptive technology into the internet. SIGCOMM Comput. Com-
mun. Rev., 33:59–64, January 2003.

[pan14] Pan-European Laboratory. http://www.panlab.net, Jan. 2014.

[Par12] B. Parreira. Integração da cloud com rede na perspectiva de operador. Master’s
thesis, Universidade de Aveiro, 2012.

[Per02] C. E. Perkins. Mobile ip. Communications Magazine, IEEE, 40(5):66–82, 2002.

[PFC+10] P. Pisa, N. Fernandes, H. Carvalho, M. Moreira, M. Campista, L. Costa, and
O. Duarte. Openflow and xen-based virtual network migration. Communications:
Wireless in Developing Countries and Networks of the Future, pages 170–181,
2010.

[PJ06] V. Prevelakis and A. Jukan. How to buy a network: Trading of resources in the
physical layer. IEEE Communications Magazine, 44(12):94–102, 2006.

[Pla14] PlanetLab. PlanetLab - An Open Platform for Developing, Deploying, and Ac-
cessing Planetary-Scale Services. http://www.planet-lab.org/, 2014.

[PLP+13] C. Papagianni, A. Leivadeas, S. Papavassiliou, V. Maglaris, C. Cervello-Pastor,
and A. Monje. On the optimal allocation of virtual resources in cloud computing
networks. Computers, IEEE Transactions on, 62(6):1060–1071, 2013.

[PM04] M. Pióro and D. Medhi. Routing, Flow, and Capacity Design in Communication
and Computer Networks. Elsevier/Morgan Kaufmann, July 2004.

[PW06] L. Peterson and J. Wroclawski. Overview of the GENI architecture. GENI Design
Document, pages 06–11, 2006.

[qua12] Quagga routing suite. http://www.nongnu.org/quagga/, August 2012.

[RAB10] MuntasirRaihan Rahman, Issam Aib, and Raouf Boutaba. Survivable virtual
network embedding. In Mark Crovella, LauraMarie Feeney, Dan Rubenstein, and
S.V. Raghavan, editors, NETWORKING 2010, volume 6091 of Lecture Notes in
Computer Science, pages 40–52. Springer Berlin Heidelberg, 2010.

202

http://www.orbit-lab.org
http://www.panlab.net
http://www.planet-lab.org/
http://www.nongnu.org/quagga/

[RABdF12] Esteban Rodriguez, Gustavo Alkmim, Daniel M Batista, and Nelson LS da Fon-
seca. Green virtualized networks. In Communications (ICC), 2012 IEEE Inter-
national Conference on, pages 1970–1975. IEEE, 2012.

[RAL03] Robert Ricci, Chris Alfeld, and Jay Lepreau. A solver for the network testbed
mapping problem. ACM SIGCOMM Computer Communication Review, 33(2):65–
81, 2003.

[RR06] E. Rosen and Y. Rekhter. BGP/MPLS IP Virtual Private Networks (VPNs).
Technical report, RFC 4364, February 2006, 2006.

[RR10] A. Razzaq and M.S. Rathore. An approach towards resource efficient virtual net-
work embedding. In Evolving Internet (INTERNET), 2010 Second International
Conference on, pages 68–73, 2010.

[RSH11] A. Razzaq, P. Sjodin, and M. Hidell. Minimizing bottleneck nodes of a substrate in
virtual network embedding. In Network of the Future (NOF), 2011 International
Conference on the, pages 35–40, 2011.

[RVC+01] Eric Rosen, Arun Viswanathan, Ross Callon, et al. Multiprotocol label switching
architecture. 2001.

[SAI14] SAIL - Scalable & Adaptive Internet soLutions. http://www.sail-project.eu,
Jan. 2014.

[SH00] Thomas Stützle and Holger H Hoos. Max–min ant system. Future generation
computer systems, 16(8):889–914, 2000.

[SHT12] D. Stezenbach, M. Hartmann, and K. Tutschku. Parameters and challenges for
virtual network embedding in the future internet. In Network Operations and
Management Symposium (NOMS), 2012 IEEE, pages 1272–1278, 2012.

[SKD+13] T Sridhar, Lawrence Kreeger, Dinesh Dutt, Chris Wright, Mike Bursell, Mallik
Mahalingam, Puneet Agarwal, and Kenneth Duda. Vxlan: A framework for over-
laying virtualized layer 2 networks over layer 3 networks. 2013.

[SPG+13] Murari Sridharan, Mark Pearson, Ilango Ganga, Geng Lin, Patricia Thaler, Chait
Tumuluri, Albert Greenberg, Kenneth Duda, and Yu-Shun Wang. Nvgre: Network
virtualization using generic routing encapsulation. 2013.

[ST02] Sherlia Y Shi and Jonathan S Turner. Multicast routing and bandwidth dimen-
sioning in overlay networks. Selected Areas in Communications, IEEE Journal on,
20(8):1444–1455, 2002.

[SYL+10] Gang Sun, Hongfang Yu, Lemin Li, Vishal Anand, Hao Di, and Xiujiao Gao.
Efficient algorithms for survivable virtual network embedding. volume 7989, pages
79890K–79890K–7, 2010.

[SZC+12] Sen Su, Zhongbao Zhang, Xiang Cheng, Yiwen Wang, Yan Luo, and Jie Wang.
Energy-aware virtual network embedding through consolidation. In Computer
Communications Workshops (INFOCOM WKSHPS), 2012 IEEE Conference on,
pages 127–132, 2012.

203

http://www.sail-project.eu

[TCTG12] Phuong Nga Tran, Leonardo Casucci, and Andreas Timm-Giel. Optimal mapping
of virtual networks considering reactive reconfiguration. In Cloud Networking
(CLOUDNET), 2012 IEEE 1st International Conference on, pages 35–40, 2012.

[tim03] ITU-T Recommendation G. 114. March 2003.

[TRI14] Trilogy: Re-Architecting the Internet. http://www.trilogy-project.org, Jan.
2014.

[TT05] J. Turner and D. Taylor. Diversifying the internet. In Proc. IEEE GLOBECOM,
page 755–760, 2005.

[TTG13] P.N. Tran and A. Timm-Giel. Reconfiguration of virtual network mapping con-
sidering service disruption. In Communications (ICC), 2013 IEEE International
Conference on, pages 3487–3492, 2013.

[TWEF03] J. Touch, Y. Wang, L. Eggert, and G. Finn. A virtual internet architecture. ISI
Technical Report ISI-TR-2003-570, 2003.

[Vet95] Ronald J Vetter. Atm concepts, architectures, and protocols. Communications of
the ACM, 38(2):30–ff, 1995.

[vin12] ViNE-Yard. http://mosharaf.com/ViNE-Yard.tar.gz, Sep. 2012.

[VLA14] IEEE802.1Q VLAN implementation for Linux. http://www.candelatech.com/
~greear/vlan.html, Jan. 2014.

[vlc14] VLC media player - Open Source Multimedia Framework and Player. http:
//www.videolan.org/vlc, Jan. 2014.

[vmw14] VMware. http://www.vmware.com/, Jan. 2014.

[Wax88] B.M. Waxman. Routing of multipoint connections. Selected Areas in Communic-
ations, IEEE Journal on, 6(9):1617 –1622, dec 1988.

[WKB+08] Yi Wang, Eric Keller, Brian Biskeborn, Jacobus van der Merwe, and Jennifer Rex-
ford. Virtual routers on the move: live router migration as a network-management
primitive. SIGCOMM Comput. Commun. Rev., 38(4):231–242, August 2008.

[WLS+02a] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hibler,
C. Barb, and A. Joglekar. An integrated experimental environment for distributed
systems and networks. ACM SIGOPS Operating Systems Review, 36(SI):270, 2002.

[WLS+02b] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad, Mac
Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar. An integrated ex-
perimental environment for distributed systems and networks. ACM SIGOPS
Operating Systems Review, 36(SI):255–270, 2002.

[Wol00] L.A. Wolsey. Integer programming. IIE Transactions, 32:273–285, 2000.

[WSG02] A. Whitaker, M. Shaw, and S. D Gribble. Scale and performance in the denali
isolation kernel. ACM SIGOPS Operating Systems Review, 36:195–209, 2002.

[WSYX11] Liu Wenzhi, Li Shuai, Xiang Yang, and Tang Xiongyan. Virtual network embed-
ding based on shuffled frog leaping algorithm in tunie. International Journal of
Advancements in Computing Technology, 3(11), 2011.

204

http://www.trilogy-project.org
http://mosharaf.com/ViNE-Yard.tar.gz
http://www.candelatech.com/~greear/vlan.html
http://www.candelatech.com/~greear/vlan.html
http://www.videolan.org/vlc
http://www.videolan.org/vlc
http://www.vmware.com/

[WvdMR07] Y. Wang, J. van der Merwe, and J. Rexford. VROOM: virtual routers on the
move. In Proc. ACM SIGCOMM Workshop on Hot Topics in Networking, 2007.

[XEN14] XEN hypervisor. http://www.xenproject.org/, Jan. 2014.

[xor14] XORP - Open Source Router. http://www.xorp.org, Jan. 2014.

[YLZ+12] Mao Yang, Yong Li, Lieguang Zeng, Depeng Jin, and Li Su. Karnaugh-map
like online embedding algorithm of wireless virtualization. In Wireless Personal
Multimedia Communications (WPMC), 2012 15th International Symposium on,
pages 594–598, 2012.

[YQA+10] Hongfang Yu, Chunming Qiao, Vishal Anand, Xin Liu, Hao Di, and Gang Sun.
Survivable virtual infrastructure mapping in a federated computing and network-
ing system under single regional failures. InGlobal Telecommunications Conference
(GLOBECOM 2010), 2010 IEEE, pages 1–6, 2010.

[YWK11] Wai-Leong Yeow, Cédric Westphal, and Ulas C Kozat. Designing and embed-
ding reliable virtual infrastructures. ACM SIGCOMM Computer Communication
Review, 41(2):57–64, 2011.

[YY11] Donggyu Yun and Yung Yi. Virtual network embedding in wireless multihop
networks. In Proceedings of the 6th International Conference on Future Internet
Technologies, CFI ’11, pages 30–33, New York, NY, USA, 2011. ACM.

[YYRC08] Minlan Yu, Yung Yi, Jennifer Rexford, and Mung Chiang. Rethinking virtual net-
work embedding: substrate support for path splitting and migration. SIGCOMM
Comput. Commun. Rev., 38(2):17–29, March 2008.

[ZA06] Yong Zhu and M. Ammar. Algorithms for assigning substrate network resources
to virtual network components. In INFOCOM 2006. 25th IEEE International
Conference on Computer Communications. Proceedings, pages 1–12, 2006.

[ZCB96] E.W. Zegura, K.L. Calvert, and S. Bhattacharjee. How to model an internet-
work. In INFOCOM’96. Fifteenth Annual Joint Conference of the IEEE Com-
puter Societies. Networking the Next Generation. Proceedings IEEE, volume 2,
pages 594–602. IEEE, 1996.

[ZCS+13] Zhongbao Zhang, Xiang Cheng, Sen Su, Yiwen Wang, Kai Shuang, and Yan Luo.
A unified enhanced particle swarm optimization-based virtual network embedding
algorithm. International Journal of Communication Systems, 26(8):1054–1073,
2013.

[ZLJ+10] Ye Zhou, Yong Li, Depeng Jin, Li Su, and Lieguang Zeng. A virtual network
embedding scheme with two-stage node mapping based on physical resource mi-
gration. In Communication Systems (ICCS), 2010 IEEE International Conference
on, pages 761–766, 2010.

[ZQ11] Shun-li Zhang and Xue-song Qiu. A novel virtual network mapping algorithm for
cost minimizing. Cyber Journals: Journal of Selected Areas in Telecommunications
(JSAT), 2011.

[ZQGL11] Sheng Zhang, Zhuzhong Qian, Song Guo, and Sanglu Lu. Fell: A flexible virtual
network embedding algorithm with guaranteed load balancing. In Communications
(ICC), 2011 IEEE International Conference on, pages 1–5, 2011.

205

http://www.xenproject.org/
http://www.xorp.org

[ZXB10] F.E. Zaheer, Jin Xiao, and R. Boutaba. Multi-provider service negotiation and
contracting in network virtualization. In Network Operations and Management
Symposium (NOMS), 2010 IEEE, pages 471–478, 2010.

[ZZRR08] Yaping Zhu, Rui Zhang-Shen, Sampath Rangarajan, and Jennifer Rexford. Caber-
net: connectivity architecture for better network services. In Proceedings of the
2008 ACM CoNEXT Conference, CoNEXT ’08, pages 64:1–64:6, New York, NY,
USA, 2008. ACM. ACM ID: 1544076.

206

	Introduction
	Scope & Motivation
	Objectives
	Scientific Contributions
	Structure

	Network Virtualisation: Related Work
	Concepts & Terminology
	Network Virtualisation
	Virtual Link
	Virtual Node

	Existing Network Virtualisation Technologies
	Asynchronous Transfer Mode
	Multi Protocol Label Switching
	Virtual Private Network
	Overlay Networks
	Active Networks
	Software Defined Networking

	Business Models & Roles
	Infrastructure Provider
	Virtual Network Provider
	Virtual Network Operator
	The VNP-InP Interface

	Virtual Network Embedding Problem
	VNE Characteristics
	Resource Allocation
	Energy-Aware Resource Allocation
	Virtual Network Resilience
	Other VNE Research Directions

	Virtual Network Migration
	Future Internet Research Projects
	Federated E-infrastructure Dedicated to European Researchers Innovating in Computing network Architectures
	Global Environment for Network Innovations
	Trilogy
	4WARD
	Open-Access Research Testbed for Next-Generation Wireless Networks
	GEYSERS
	Scalable & Adaptive Internet soLutions

	Standardisation and Research Groups
	Internet Research Task Force
	European Telecommunications Standards Institute
	 International Telegraph Union - Telecom

	Summary

	Network Virtualisation: Building Blocks
	Controlling Virtual Network Resources
	Building Blocks
	VN Setup Negotiation Process
	Signalling and Control

	Resource Allocation, Monitoring and Controlling
	Architecture
	Built-in Capabilities
	Testbed Description
	Evaluation Results

	VN Migration
	Triggers for VN Migration
	VN Clone Migration Procedure
	VN Clone Migration Architecture
	Evaluation Results

	Summary

	Network Virtualisation: VN Embedding Problem
	Problem Description
	Network Description
	Unfilled Physical Network Resources
	VN Request Embedding Process
	VN Request Life Cycle
	Mapping Metrics

	Heuristic Algorithm
	Baseline Heuristic
	Virtual Network Embedding - Enhanced Shortest-Path Heuristic

	Mathematical Formulation
	Assignment Variables
	Constraints

	Objective Functions - Resource Allocation
	Objective Goals
	Load Balancing plus Shortest Path
	Shortest Distance Path
	Weighted Shortest Distance Path

	Re-Optimization Extension
	Energy Aware - Extension
	Energy Consumption Minimization
	Bandwidth Consumption Minimization

	Virtual Network Migration Extension
	Node Migration and Bandwidth Consumption Minimization

	Evaluation Results
	Baseline Heuristics
	Simulation Parameters
	Impact of the Number of VN Requests
	Impact of the Maximum Distance Between Virtual Nodes
	Re-Optimization Evaluation
	Energy-Aware Evaluation
	Virtual Network Migration Evaluation

	Summary

	Conclusions & Future Work
	Results and Achievements
	RAMC Framework
	Virtual Network Migration
	Virtual Network Embedding
	Virtual Network Re-Embedding

	Operator Recommendations
	Future Research Directions

	Appendices
	Network Virtualisation from an Operator Perspective
	Introduction
	Network Virtualisation Overview
	Historical Perspective
	Network Virtualisation Business Models and Roles
	The VNP-InP interface

	Controlling Virtual Network Resources
	Building blocks
	VN Setup Negotiation Process
	Signalling and Control

	A Virtual Network Control Testbed
	Conclusion and Future Work

	Virtual Network Mapping - An Optimization Problem
	Introduction
	Related Work
	Problem Description and ILP Model Formulation
	Virtual Network Assignment Problem Description
	Integer Linear Programming Problem Formulation
	Mapping Heuristic Algorithm

	Evaluation Results
	Simulation Parameters
	Simulation Results

	Conclusion

	 A Re-Optimization Approach for Virtual Network Embedding
	Introduction
	Related Work
	Problem Description and Mathematical Formulation Extension
	Network Description
	Mathematical Formulation Extension - Re-Optimization Support

	Evaluation Results
	Simulation Parameters - VNE-NLF and VNE-ESPH
	Simulation Results - VNE-NLF and VNE-ESPH
	Re-Optimization

	Conclusion

	Optimal Virtual Network Embedding: Node-Link Formulation
	Introduction
	Related Work
	Network Description and Problem Formulation
	Network Description
	Unfilled Physical Network Resources
	VN Request Embedding Process
	VN Request Life Cycle
	Mapping Metrics

	Virtual Network Embedding - Mathematical Formulation
	Assignment Variables
	Constraints

	Virtual Network Assignment - Objective Function
	Objective Goals
	Load Balancing plus Shortest Path
	Shortest Distance Path
	Weighted Shortest Distance Path

	Evaluation Results
	Simulation Parameters
	Impact of the Number of VN Requests
	Impact of the Maximum Distance Between Virtual Nodes

	Conclusion

	 Optimal Virtual Network Embedding: Energy Aware Formulation
	Introduction
	Related Work
	Network Description and Problem Formulation
	Network Description
	Unfilled Physical Network Resources
	VN Request Embedding Process
	VN Request Life Cycle
	Mapping Metrics

	Virtual Network Embedding - Mathematical Formulation
	Assignment Variables
	Constraints

	Objective Functions - Energy Aware
	Weighted Shortest Distance Path
	Bandwidth Consumption Minimization
	Energy Consumption Minimization

	Evaluation Results
	Simulation Parameters
	Simulation Results

	Conclusion

	Optimal Virtual Network Migration: A Step Closer For Seamless Resource Mobility
	Introduction
	Related Work
	VN Migration
	Virtual Network Re-Embedding Problem

	Seamless Approach for VN Migration
	Triggers for VN Migration
	VN Clone Migration Procedure

	VN Clone Migration Architecture
	VN Clone Migration Architecture
	Virtual Router Implementation

	Network Re-Embedding Problem Formulation
	Network Description
	Unfilled Physical Network Resources
	VN Request Re-embedding Process
	VN Re-Embedding - Activity Diagram
	Re-Embedding Metrics

	Virtual Network Re-Embedding Node-Link Formulation
	Assignment Variables
	Constraints
	Objective Function

	Evaluation Results
	VN Migration - Testbed
	VN Migration - Experiment Parameters
	VN Migration - Experimental Results
	VN Re-embedding - Simulation Parameters
	VN Re-embedding - Simulation Results

	Conclusion and Future Work

	References

