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palavras-chave Redes oportunistas, redes tolerantes a atrasos e disrupções, encaminhamento
oportunista, encaminhamento orientado a conteúdo, rotinas diárias do
utilizador, dinâmica da rede, duração de contatos, estruturas sociais,
proximidade social, métricas de encaminhamento, modelo de avaliação,
inclusão social e digital.

resumo A maior capacidade (e.g., processamento, armazenamento) dos dispositivos
portáteis, juntamente com a necessidade constante dos utilizadores de poder
obter e enviar informação, introduz uma nova forma de comunicação. Os
utilizadores podem trocar dados de uma forma transparente através de
contatos oportunistas entre eles, o que caracteriza as Redes Oportunistas.
Este tipo de rede permite a comunicação entre utilizadores mesmo quando
não existe um caminho �m-a-�m entre eles.
Uma tendência observada nos últimos anos do encaminhamento oportunista
refere-se a levar em conta métricas de similaridade social para melhorar a
troca de informação. Os relacionamentos sociais, interesses em comum e
popularidade são exemplos deste tipo de métrica que tem sido empregue com
sucesso no âmbito do encaminhamento oportunista: como os utilizadores
interagem com base nos seus relacionamentos e interesses, esta informação
pode ser utilizada para decidir sobre quando encaminhar dados.

Esta Tese combina as características dos dispositivos pessoais e que
são facilmente encontrados no ambiente urbano com a tendência para
uso de similaridade social no contexto de encaminhamento oportunista.
Para alcancar este objetivo principal, este trabalho foi dividido em
diferentes tarefas mapeadas em objetivos especí�cos, o que resulta nas
seguintes contribuições: i) uma taxonomia atualizada sobre encaminhamento
oportunista; ii) um modelo de avaliação universal de encaminhamento
oportunista que permite a implementação e teste de novas propostas; iii) três
funções sociais que consideram o comportamento dinâmico dos utilizadores e
podem ser facilmente utilizadas em outras propostas de encaminhamento; iv)
duas propostas de encaminhamento oportunista baseadas nas rotinas diárias
dos utilizadores e no conteúdo e interesse dos utilizadores neste conteúdo;
e v) uma análise estrutural da rede social formada a partir das abordagens
desenvolvidas neste trabalho.





keywords Opportunistic network, delay/disruption-tolerant networks, opportunistic
routing, content-oriented routing, user daily routines, network dynamics,
contact duration, social structures, social proximity, routing metrics,
assessment model, digital/social inclusion.

abstract The increased capabilities (e.g., processing, storage) of portable devices
along with the constant need of users to retrieve and send information have
introduced a new form of communication. Users can seamlessly exchange
data by means of opportunistic contacts among them and this is what
characterizes the opportunistic networks (OppNets). OppNets allow users to
communicate even when an end-to-end path may not exist between them.

Since 2007, there has been a trend to improve the exchange of data by
considering social similarity metrics. Social relationships, shared interests,
and popularity are examples of such metrics that have been employed
successfully: as users interact based on relationships and interests, this
information can be used to decide on the best next forwarders of information.

This Thesis work combines the features of today's devices found in the
regular urban environment with the current social-awareness trend in the
context of opportunistic routing. To achieve this goal, this work was divided
into di�erent tasks that map to a set of speci�c objectives, leading to the
following contributions: i) an up-to-date opportunistic routing taxonomy; ii)
a universal evaluation framework that aids in devising and testing new routing
proposals; iii) three social-aware utility functions that consider the dynamic
user behavior and can be easily incorporated to other routing proposals; iv)
two opportunistic routing proposals based on the users' daily routines and
on the content traversing the network and interest of users in such content;
and v) a structure analysis of the social-based network formed based on the
approaches devised in this work.





�It is better to have enough ideas for some of them to be wrong,

than to be always right by having no ideas at all.�
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Chapter 1

Introduction

The way communication happens between devices and information is accessed has evolved over time:

few years ago the exchange of data took place between �xed devices and data was mostly retrieved

from speci�c repositories. With the advancements in technology, miniaturization of components has

made devices more portable. Moreover, such advancements have also made these devices more powerful

in terms of processing/storage and with di�erent built-in access technologies (e.g., Wi-Fi, Bluetooth,

GSM).

As a consequence, the users of these devices start not only consuming, but also producing data (i.e.,

becoming prosumers) and building a constant need to be always connected while on-the-go. However,

the existing infrastructure (or lack thereof) is not fully compliant with the new communication and infor-

mation access paradigms. This explains why the existence of di�erent wireless networking approaches,

such as mobile adhoc, mesh, cooperative, delay tolerant, opportunistic, and information centric.

All of these approaches are well known, with established architectural design, and have proven their

applicability in a wide range of scenarios. But independently of the approach, all of them share a common

concern: how to deal with link intermittency. Intermittency can result from node mobility/speed, power-

saving mechanisms, distance between communicating parties, physical obstacles, failed/crashed nodes,

shadowed areas, weather conditions, among others. Moreover, there are di�erent levels of intermittency:

fast (e.g., node reboot), medium (e.g., crossing a infrastructureless area), and long (e.g., waiting for

a Low Earth Orbit - LEO - satellite to pass over). Also, the experienced level of intermittency is

seen di�erently by each networking approach: a delay-tolerant interplanetary network may classify an

intermittent link, due to a LEO satellite revolution around Earth, as fast in comparison to a link for

communication with a Mars rover, while an intermittent link, due to the same revolution, may be seen

by an adhoc military network on a hostile situation as too long.

Considering their applicability scenarios and the level of expected intermittency, these networking

approaches employ di�erent routing schemes to cope with intermittent connectivity, and therefore with

issues such as long/variable delay, asymmetric data rates, high error rates, and network partition that

may arise. Under these conditions there is a possibility for the non-existence of end-to-end paths towards

a destination [1], which the regular routing solutions cannot properly handle [2].

As mentioned earlier, users' devices have increasing processing power and storage, and with these

features they can follow the store-carry-and-forward (SCF) paradigm, where they can keep data until

another good intermediate carrier node or the destination is found. This allows for the creation of

forwarding opportunities and to mitigate the communication problem that arises from intermittent

1
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connectivity even when an end-to-end path is absent.

Figure 1.1: Example of data delivery based on SCF paradigm

In Fig. 1.11, it is easily seen the absence of an end-to-end path due to the aforementioned problems

(e.g., lack of infrastructure) between the source (S) and destination (D) nodes. Based on the SCF

paradigm (also employed in Delay-Tolerant Networking as store-and-forward [3]), wireless devices that

opportunistically meet can serve as forwarders until the destination is found.

Opportunistic routing has gained attention by taking advantage of contact opportunities to improve

forwarding: proposals range from using node mobility to �ood the network for fast delivery (e.g.,

Epidemic [4]) up to controlling such �ooding in order to achieve the same results based on: encounter

history (e.g., PROPHET [5, 6]), limited replication (e.g., Spray and Wait [7]), prioritization (e.g.,

MaxProp [8]), and encounter prediction (e.g., EBR [9]).

Since 2007, a trend has emerged based on di�erent representations of social similarity: i) labeling

users according to their work a�liation (e.g., Label [10]); ii) looking at the importance (i.e., popularity)

of nodes (e.g., PeopleRank [11]); iii) using centrality and the notion of community (e.g., SimBet [12]

and Bubble Rap [13]); iv) considering interests that users have in common (e.g., SocialCast [14]); v)

inferring di�erent levels of social interactions aiming at predicting future social interactions from the

users' dynamic behavior found in their daily life routines (e.g., dLife [15, 16] and CiPRO [17]); vi)

combining social information and content knowledge (e.g., ContentPlace [18] and SCORP [19]).

This Thesis exploits social-aware and content-based opportunistic routing through dLife [15, 16]

and SCORP [19], respectively. They present great potential in what concerns information delivery,

since: i) cooperation among users sharing social aspects (i.e., users' relationships, shared interests,

common communities) is encouraged, which is bene�cial to improve content dissemination [20]; ii)

social information is less volatile than human mobility, providing more robust and reliable connectivity

graphs, which aids routing [2, 13]; iii) focusing on the content mitigates even more the e�ects of the lack

of an end-to-end path between nodes [18].

1Springer and the original publisher (Routing in Opportunistic Networks, v. 1, 2013, p. 27-68, Social-Aware Opportunis-
tic Routing: The New Trend, Waldir Moreira, Paulo Mendes, Figure 2.1, Copyright © 2013, Springer Science+Business
Media New York) is given to the publication in which the material was originally published, by adding; with kind permission
from Springer Science and Business Media [1].
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1.1 Motivation

The challenges faced by routing solutions are further increased by node density. In sparse scenarios,

communication su�ers with very long delay links (e.g., space communications [21]) or where commu-

nication is often disrupted, meaning that contacts do not occur very frequently (e.g., rural areas [22]).

The routing challenges imposed by these scenarios are more related to the great distances between the

communicating nodes or the time nodes are away from each other, being more of a problem to transport

protocols than to routing.

For instance, in space communications the problem is to �nd a transport protocol able to send packets

over wireless links with very long delays. Another example applies to rural areas, where the lack of

telecommunications infrastructure leads to the adoption of ferry type of solutions [23], in which the source

passes the information to a moving node that carries it directly to the destination(s). Besides space

communications and message ferrying, another example of a solution suitable to be applied to sparse

scenarios is related with data mules [24], in which speci�c nodes move around collecting information

from several nodes (e.g., sensors) carrying such information to a well-known destination.

Yet, the scenarios considered by the studied proposals (presented in Chapter 2) are more challenging

in terms of opportunistic routing, which means looking at dense networks where problems such as

long delays in the presence of several routing opportunities and intermittent links (e.g., due to node

mobility) intertwine with overlapping spectrum and di�erent sources of interference that increase the

routing challenge.

It is important to note that density is de�ned by node degree (i.e., the unique encounters a node

has with others). Thus, node density refers to how well nodes interact in the network. Examples of

the envisioned interaction scenarios are the ones found nowadays in urban areas: highly mobile users

carrying powerful devices and demanding connectivity in places with poor/without coverage at all (i.e.,

areas either full of closed APs or with many open APs but with very high interference, subways, public

areas).

The routing challenges related to dense scenarios are the main motivation of this work. Thus, social-

aware and content-based opportunistic routing approaches are proposed, aiming at forwarding messages

towards destinations with high delivery probability, within a time frame that is useful for the lifetime of

the message, and with good usage of network resources. It is worth noting that, despite not focusing on

sparse scenarios (where node degree would be at most 2, for instance), the proposals presented in this

Thesis are devised completely agnostic to the node density of the employing network.

1.2 Objectives

This Thesis aims at investigating social-aware and content-based opportunistic routing solutions. For

this purpose, the following set of speci�c objectives were established:

1. Identify the di�erent types of opportunistic routing approaches.

2. Understand the existing opportunistic routing taxonomies.

3. Study the employed opportunistic routing metrics.

4. Study how nodes can engage in cooperation.

5. Develop social-aware utility functions.
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6. Propose social-aware and content-based opportunistic routing approaches.

7. Perform an analysis on the network structure resulting from the devised social-aware approaches.

1.3 Main Contributions

The analysis of related work in the �eld of opportunistic routing shows that proposals spanning the last

thirteen years head towards an approach where mobility is exploited taking advantage of the stochastic

encounters that happen between nodes. In addition, social similarity (e.g., relationships, interests) has

been used to aid in data forwarding, since topology based in social aspects tend to be less volatile (i.e.,

vary less) than the ones based on mobility.

It is clear that one recent trend of opportunistic routing solutions is going towards the awareness

about social aspects, which are only related to inter-meeting times or actually related to more complex

social similarities. It is observed that social ties can indeed aid in data forwarding [13, 15, 16]. Such

forwarding becomes even better if user's interests [14, 18, 19] are taken into account and if the social

relationship of nodes (carried by people) is explicit [11].

This section brie�y presents a description of the contributions of this Thesis to the investigation

done in the area of opportunistic routing and to advance the state-of-the-art in the �eld of social-aware

opportunistic routing approaches.

1.3.1 Classi�cation and Evaluation of Opportunistic Routing Approaches

One can easily �nd di�erent classi�cations of opportunistic routing approaches. However, such classi-

�cations consider aspects (e.g., level of knowledge) that lead to an unbalanced classi�cation, assigning

most solutions to a few set of categories, or to very speci�c classi�cation branches (e.g., by considering

information coding or methods to control movement of nodes).

This �rst contribution covers objectives 1, 2 and 3 as described in Sec. 1.2. It provides an analysis

of existing taxonomies regarding opportunistic routing and metrics [25, 26], and proposes a suitable

routing taxonomy. The latter includes and highlights the importance of the social-aware category, for

an easy classi�cation of current and future proposals [1].

By looking at the state-of-the-art, one can observe that performance evaluation methods consider

di�erent aspects (e.g., node number, mobility models) which prevent a more reliable and objective

evaluation: proposals are compared in scenarios totally di�erent from the ones they were designed for. In

this context, another contribution of this Thesis is the development of a universal evaluation framework

[27, 28] to allow a more consistent assessment process, especially when carrying out comparisons between

older and new approaches.

1.3.2 Encouraging User Cooperation

Opportunistic routing depends on the willingness of users to cooperate by carrying/storing/relaying

information on behalf of others. Cooperation may appear in di�erent levels since it should not be

assumed that all nodes are always willing to share their constrained resources on the behalf of others.

Moreover, trust should be applied especially to identify malicious nodes nearby (e.g., DoS attack)

and to avoid such nodes for data exchange. The cooperation level between nodes may be related to the
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information being forwarded. So, this contribution covers objective 4 (cf. Sec. 1.2), investigating how

nodes can be encouraged to participate in cooperation [29, 30, 31].

1.3.3 Social-aware Utility Functions

With the gathered knowledge about existing opportunistic routing approaches, especially of those based

on social aspects, a set of social-aware utility functions was speci�ed and validated. The proposed

functions aim to provide low delivery delay while consuming low number of resources in disruptive

scenarios with dense topologies. This contribution covers objective 5 (cf. Sec. 1.2), and presents the

devised social-aware utility functions [32, 33].

1.3.4 Social-aware and Content-based Opportunistic Routing Protocols

This contribution covers objective 6 (cf. Sec. 1.2). Based on the created utility functions, the social-

aware opportunistic routing protocol based on user's social daily routines, dLife [15, 16], was created.

dLife comprises the routing solution of SocialDTN, an instantiation of the DTN architecture and

Bundle Layer for Android devices [34]. Both dLife and SocialDTN are included in the context of the

DTN-Amazon project that aims at promoting the digital/social inclusion of riverside communities of

the Amazon region.

One can easily observe that most of the current opportunistic routing proposals support only

destination-based (i.e., point-to-point) communications, being dLife an example. With that mind, a

Social-aware Content-based Opportunistic Routing Protocol, SCORP [35, 19] was devised to support

point-to-multipoint communications, since this seems to be the basic foundation of applications able to

distribute information in challenged networks.

1.3.5 Structure Analysis of Social-based Networks

Understanding the type of graphs (e.g., scale free, small world) formed by routing solutions is imperative

to guarantee the suitability of such proposals. One can normally �nd such analysis based on the social

interaction of nodes over the whole duration of the experiments.

The �nal contribution of this Thesis work covers objective 7 (cf. Sec. 1.2) and provides an analysis

of the network structure formed by the social-aware opportunistic routing approaches devised within

the context of this work. Such approaches are based on users' social behavior at di�erent periods of

time during the users' daily routines. Hence, this analysis presents the dynamic nature of these social

structure throughout the users daily interactions [36].

1.4 Outline

The remainder of this Thesis is divided into the following chapters:

Chapter 2 overviews the opportunistic routing proposals related to the development of this Thesis

work. It also provides an insight into the existing opportunistic routing taxonomies and metrics as well

as existing evaluation frameworks.

Chapter 3 provides an updated opportunistic routing taxonomy along with a universal evaluation

framework that aids in assessing the performance of opportunistic routing approaches. It also highlights

the role of cooperation in opportunistic networking
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Chapter 4 presents the devised social-aware utility functions.

Chapter 5 describes the proposed social-aware and content-based opportunistic routing approaches.

Chapter 6 presents the performance evaluation of the proposed utility functions and routing ap-

proaches against well-known opportunistic routing benchmarks.

Chapter 7 provides an analysis on the structure of social-based networks.

Chapter 8 concludes the work and provides future directions for further development of the topics

presented in this Thesis.



Chapter 2

Related Work

In order to achieve my goal of proposing a new routing solution, I had to learn about the di�erent

opportunistic routing approaches. This led me to propose a new opportunistic routing taxonomy as

well as a new universal evaluation framework. This chapter presents the relevant work that helped

understanding the di�erent opportunistic routing schemes, how they are related to one another, and the

routing metrics they employ.

2.1 Opportunistic Routing Approaches

As I surveyed the state-of-the-art literature, I observed that the existing opportunistic routing propos-

als either simply ignored social aspects or considered di�erent levels of social awareness when taking

forwarding decisions. This section brie�y presents the most relevant social-oblivious as well as the

social-aware opportunistic routing proposals that aided me carrying out my work.

2.1.1 Social-oblivious Opportunistic Routing

Prior to understanding the importance of social awareness in the context of opportunistic routing and

its applicability, I studied proposals covering a 12-year period (2000-2012). To have a better view of

the proposals and identify relationships among them, I grouped these social-oblivious proposals into

three categories: single-copy routing, aiming to improve the usage of network resources; epidemic rout-

ing, aiming to increase delivery probability; and, probabilistic-based routing, aiming to �nd an optimal

balancing between both previous categories.

2.1.1.1 Single-copy Routing

The proposals in this category aim at optimizing the usage of network resources: they refrain from

replication and forward messages at every hop based on available connectivity and some form of mobility

prediction. This means that only one copy of each message traverses the network towards the �nal

destination. Such copy can be forwarded if the node carrying it decides (i.e., randomly, or based on a

utility function) that another encountered node presents a higher probability to deliver the message.

Minimum Estimated Expected Delay (MEED) [37] is an example of a single-copy routing. It uses

a contact history (i.e., connection and disconnection times of contacts) metric that estimates the time

a message will wait until it is forwarded. A per-contact routing scheme is used to �override� regular

7
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link-state routing decision. This allows MEED to use any other contact opportunity (i.e., node) that

arises prior to what is expected (in terms of computed metric), in order to forward the message.

Spyropoulos et al. (2008) [38] present di�erent single-copy routing algorithms (e.g., direct transmis-

sion, randomized routing, utility-based routing with 1-hop di�usion, utility-based routing with transitivity,

seek and focus routing, oracle-based optimal algorithm) that simply take advantage of contacts or are

based on forwarding probability/utility functions/oracle to forward data.

Single-copy routing is a very interesting approach from a resource point of view, as it keeps the

usage of network (e.g., bandwidth) and node (e.g., energy, storage) resources at a low level. However,

the experienced delay in message delivery might be quite high. This, in turn, can a�ect the delivery

capability of single-copy approaches that ends up being very low. Another issue is related to the amount

of knowledge that needs to be exchanged/available in order to aid forwarding, which in some scenarios

generates too much overhead and may be impossible to implement.

To improve delivery, the next category of opportunistic routing approaches relies on replication to

spread copies at every contact.

2.1.1.2 Epidemic Routing

Epidemic routing replicates messages at every contact: it takes advantages of any contact to forward a

copy of messages to the encountered node as to increase their delivery probability.

A well-known example is Epidemic [4], a proposal that employs a full replication strategy, and

consequently increases delivery rate. In order to avoid replication of messages already in the bu�ers of

nodes, summary vectors are exchanged between nodes and list the already carried messages. Also, a

hop count is maintained as to avoid inde�nite message replication.

The proposal indeed increases delivery rate. However, resources of the network/nodes are exploited

at their full capacity. This can easily a�ect the scalability of the proposal, especially in dense, urban

scenarios, which are subject of this Thesis work.

The following category aimed at minimizing the consumption of resources by employing a controlled

replication approach: either based on the probabilistic choice of next nodes or by using a utility function.

2.1.1.3 Probabilistic-based Routing

Probabilistic-based routing aims at controlling replication and spreading only a few copies of messages

by considering nodes' capabilities, message prioritization, encounter history, among others. The main

goal is to achieve high delivery rates with low delay and cost.

This category is further divided considering the following routing metrics: frequency encounters,

aging encounters, aging messages, and resource allocation.

Frequency Encounters: these proposals consider the number of times nodes meet. They are: the

Probabilistic ROuting Protocol using History of Encounters and Transitivity (PROPHET), MaxProp,

Prediction, and Encounter-Based Routing (EBR).

PROPHET [5, 6] uses a probabilistic metric (delivery predictability) that tells how good a node is

to deliver a message according to past encounters with its destination. Replication only occurs when

nodes that have higher delivery predictability are found.

MaxProp [8] uses a metric called delivery likelihood of messages, by having each node keeping track

of a probability of meeting any other peer. Based on the delivery likelihood, a carrier of a message
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computes a cost for each possible path to the destination, up to n hops. This cost estimation, along

with the hop count, are then used to order messages for scheduling and for dropping. In addition,

MaxProp assigns priority levels to messages to decrease their delivery time, uses a hop list in each

message to avoid doubled reception, and uses acknowledgments for the delivered message.

Prediction [39] makes use of contact information to estimate the probability of meeting other nodes in

the future. It estimates the contact probability (i.e., timely-contact probability metric) within a period

of time by using historical contact information. Upon a contact, replication occurs if the encountered

node has a higher contact probability towards the destination of the message.

EBR [9] counts the number of contacts a node has with other nodes, and determines the Encounter

Value (EV) that represents the past rate of encounters of the node. With this information, it can predict

the rate level of future encounters: the higher EV is, the higher the probability of successful message

delivery. Thus, messages are replicated only to nodes with higher EV. EV is also used to determine the

number of replicas the encountered node is able to create after receiving a copy.

These proposals are able to increase delivery rate, while reducing the consumption of resources.

However, they can still �ood the network (in the case of low-predictability nodes only encountering

high-predictability ones) and su�er with occasional loops (PROPHET [5]), require unlimited storage

capabilities (MaxProp [8]), experience high delivery delays (Prediction [39]), or have great dependence

of frequent/long node encounters (EBR [9]).

Aging Encounters: these proposals are based on the time elapsed since the last encounter between a

given node and the destination. Proposals considering this routing metrics are: Exponential Age SEarch

(EASE), FResher Encounter SearcH (FRESH), and Spray and Focus.

EASE [40] considers the history of encounters and geographic position of nodes to make routing

decisions based on the time and location of last encounter with the destination. This means that repli-

cation is decided considering if the encountered node, either has a recent encounter with the destination,

or is physically closer to the destination.

FRESH [41] keeps track of the time elapsed since the last time nodes met. Data forwarding occurs

if the time elapsed since the last contact between the encountered node and the destination is smaller

than the time elapsed since the last contact between the carrier and the destination.

The most recent example is Spray and Focus [42], which spreads a few message copies, and then

each copy is forwarded based on a utility function considering the time elapsed since the last contact

between the encountered node and the destination.

Since these proposals are based on timers, their performance may be degraded as such timers become

obsolete in high mobile environments, resulting in inaccuracies about encounters. Some proposals (EASE

[40], FRESH [41]) depend on mobility patterns and node speed, and may not cope with disconnected

clusters, commonly seen in opportunistic communication.

Aging Messages: these proposals control the distance and time message copies can go and stay in

the network. Spray and Wait , and Optimal Probabilistic Forwarding (OPF) are the proposals using this

routing metric.

Spray and Wait [7] �rst sprays copies of a message in an epidemic-like fashion. To avoid �ooding,

up to L copies of each message can be distributed in the network. Then, the nodes holding a copy of

the message enter the wait phase and deliver the messages solely to their destinations.

OPF [43] only replicates messages if such action increases the overall delivery probability of the
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message. This means that replication maximizes the joint expected delivery probability of the copies

to be placed in the system (i.e., in the sender and receiver nodes of the message). OPF considers the

remaining hop-count and residual lifetime of messages to estimate the e�ect that message replication

may have on the expected delivery rate while satisfying the constant on the number of forwardings per

message.

These proposals have problems with stale message removal as well as computational e�ort to deter-

mine message copies that can degrade performance (Spray and Wait [7]), and given the di�erent pattern

in the mobility of nodes, the needed inter-contact time information may not be readily available (OPF

[43]).

Resource Allocation: these approaches measure resource availability to perform wise utilization.

They are the Resource Allocation Protocol for Intentional DTN (RAPID) and PRioritized EPidemic

(PREP).

RAPID [44] estimates the e�ect that message replication may have on a prede�ned performance

metric in a network with resource constraints, and replicates messages only if such e�ect is justi�able.

PREP [45] measures the average fraction of time a link will be available in the future, and de�nes

drop and transmission priorities for messages. By determining the availability of the links for future

use, PREP can wisely use the resources (e.g., storage and bandwidth).

These proposals may not cope with short-lived contacts that may lead to performance degradation,

since global network state is required, by exchanging such information as nodes encounter (RAPID [44]),

and high level of contact disruption (PREP [45]).

2.1.1.4 Summary

This section brie�y presented the social-oblivious opportunistic routing proposals that I have considered

in my state-of-the-art surveying. My choices for these proposals were driven by: i) the number of times

they have been cited (i.e., served as benchmarks); and, ii) the number of benchmarks used for their

evaluation.

This close analysis helped me identifying the advantages and disadvantages of these proposals re-

garding their functionalities and application. With this knowledge, I further explored the potential

of social metrics to improve routing performance as they allow forwarding decisions to exploit social

similarities, which present less volatile characteristics than mobility metrics.

To conclude, it is worth noting that some authors may consider some of the aforementioned solutions

as social-aware, for taking into account history of encounters, for instance. However, I believe that social-

aware solutions function based on much more elaborate utility functions and/or consider features that

can be used to identify/classify individuals or groups of these, i.e., common a�liations, shared interests,

social ties, popularity, centrality, among others, which are further discussed next in Sec. 2.1.2.

2.1.2 Social-aware Opportunistic Routing

After gathering knowledge concerning the functioning and applicability of social-oblivious opportunistic

routing, I delved into the social-aware versions of such type of routing. As its name suggests, social-aware

opportunistic routing is based on social similarity metrics (e.g., common a�liations, shared interests,

strength of social ties, popularity, centrality).
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These metrics have shown great potential in improving opportunistic routing: the more accurate the

social similarity identi�ed among nodes, the more e�cient content dissemination is [20]. In addition,

this similarity is drawn from the existing social relationships between users, and such relationships are

less volatile (i.e., change less often) than the regular considered mobility patterns [2, 13]. This makes

social information in the context of opportunistic networks rather interesting since routing decisions can

consider strong, well-connected links as opposed to the weak, constantly changing links formed based

on mobile behavior.

Thus, one can easily observe that not only do probabilistic-based proposals consider node mobility,

but also the social similarity among such nodes. This explains the reason for the appearance, since 2007,

of di�erent proposals exploiting social aspects in order to improve delivery rate and decrease delivery

costs. This section brie�y overviews the following proposals, highlighting their functionalities, advan-

tages and disadvantages: Label, SimBet, Bubble Rap, SocialCast, ContentPlace, PeopleRank, CiPRO.

To have a better view of these proposals, I grouped them into four categories: community-based routing,

that considers user a�liations, communities to which they belong, and their centralities; interest-based

routing, that relies on users' interests in the content traversing the network as well as content spreading

and availability; popularity-based routing, which ranks the importance of nodes according to their inter-

action in the network; and, dynamic behavior-based routing, that attempts to re�ect the dynamism of

node behavior while choosing the next forwarders.

2.1.2.1 Community-based Routing

Community-based routing relies on the clustering of nodes. This clustering can be achieved by simply

grouping nodes according to their a�liation [10] or considering elaborate clustering algorithms such

as K-clique [46] and weighted network analysis [47]. Additionally, this routing approach can consider

di�erent levels of centrality of the nodes (e.g., betweenness [48]) to further improve forwarding decisions.

Proposals considering this routing approach are Label, SimBet, and Bubble Rap.

Label [10] was the �rst to introduce the usage of social information into opportunistic routing.

Besides being a rather simple approach, the proposal showed the potential application of social aspects.

It consists in labeling the nodes according to their a�liation/groups, and forwarding messages directly to

their destinations or to encountered nodes that belong to the same a�liation/group (i.e., labels) as the

destinations. Despite of the potential of the applied social information, the delivery rate performance of

Label depends on message TTL (the higher, the better) and can be easily degraded in scenarios where

nodes have a low mixing rate (i.e., nodes do not interact much outside their groups).

SimBet [12] de�nes a utility function that considers the betweenness centrality of nodes and social

similarity at cluster level. Thus, the function identi�es nodes that bridge di�erent clusters and the

probability of future collaborations of nodes sharing the same communities (i.e., clusters). Nodes com-

pute their SimBet utility towards destinations to which they carry messages. Messages are exchanged

based on the highest value of the utility function, and are removed from the bu�ers. This results in a

single-copy approach able to have a delivery rate performance close to the one shown by Epidemic and

very low associated cost (i.e., number of forwardings). However, SimBet may experience high delay as

it relies on how often and with whom nodes meet. If nodes present a low contact rate, utility values

and contact lists may take longer to be updated and di�used. Also short-lived contacts may a�ect its

performance as it requires the exchange of meta-data.

Bubble Rap [49, 13] also employs node centrality, but combines it with the idea of community

structure to perform forwarding. Communities are formed considering the number of contacts between
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nodes and their duration, and centrality is seen from a local (i.e.., inside communities) and global (i.e.,

whole network) perspective. Messages are replicated based on global centrality until they reach the

community of the destination (i.e., a node belonging to the same community). Then, local centrality

is used to reach the destination inside the community. To reduce replication, once the message reaches

the community of the destination, the node forwarding such message, removes it from its bu�er.

By mimicking human behavior through community and node popularity, Bubble Rap manages to have

good overall delivery rate performance and suitable delivery cost. The main issues Bubble Rap needs to

cope with are related to the centrality: it may create bottlenecks (i.e., the number of very popular nodes

is very small), and a high centrality node may not always have good links to the destination community.

2.1.2.2 Interest-based Routing

Interest-based routing does not focus on the hosts to perform forwarding. Instead, it considers the

interest that users have in the content traveling the network to decide whether a copy shall be created.

As presented next, proposals in this category can be much more data-aware (i.e., consider how much

of the content has been spread and its availability). Proposals based on interests are: SocialCast and

ContentPlace.

SocialCast [14] considers the interest shared among nodes. It devises a utility function that captures

the future co-location of the node (with others sharing the same interest) and the change in its connec-

tivity degree. Thus, the utility function measures how good message carrier a node can be regarding

a given interest. SocialCast functions based on the publish-subscribe paradigm, where users broadcast

their interests, and content is disseminated to interested parties and/or to high utility new carriers.

The fact that users' interests are considered allows SocialCast to achieve a good delivery rate with

very low associated cost and stable latency. However, its performance depends on the co-location

assumption (in which nodes sharing interests spend longer times together), which has been proven to

not always hold true [11].

Besides taking into account the users' interest on the content, ContentPlace [18] also considers

information about the users' social relationships to improve content availability. For that, a utility

function is computed for each data object by a node considering the access probability of the object and

the involved cost in accessing it, and the social strength of the user towards the di�erent communities

which he/she belongs to and/or has interacted with. The idea is to have the users to fetch data objects

that maximize the utility function with respect to local cache limitations, choosing those objects that

are of interest to him/herself and that can be further disseminated in the communities they have strong

social ties.

As SocialCast, ContentPlace manages to be rather e�cient in terms of delivery and resource utiliza-

tion, and it relies on the assumption that users spend time co-located with their friends, which may not

always be true (e.g., strong ties between geographically dispersed nodes, such as good friends living in

di�erent countries).

2.1.2.3 Popularity-based Routing

Popularity-based routing takes advantages of the knowledge regarding the popularity of nodes inside

the network to decide about forwarding. Some authors may argue that this category should include

centrality-based routing as mentioned in Sec. 2.1.2.1 since such algorithms do measure the importance

of nodes [49]. However, the popularity (i.e., importance) of nodes here is given by actual social interaction
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existing among nodes, and not by the number of times these nodes �nd themselves in the shortest paths

between pairs of nodes. As an example of this approach, I highlight PeopleRank.

PeopleRank [11] uses social interaction to rank nodes, and forwardings take place based on such

ranking. The approach is to consider socially well-connected nodes to choose best next forwarders. The

ranking process is analogous to Google's page rank system, in which the relative importance of a Web

page is determined according to its links to/from a set of pages.

By considering well-connected nodes, the proposal reaches high delivery rate as well as low cost and

delay. However, the proposal does not consider the socially disconnected nodes as they may also be

used to improve the routing performance. This suggests that some level of randomness while choosing

next hops could also be applied to increase performance.

2.1.2.4 Dynamic Behavior-based Routing

It has been shown that people's routines can be rather useful to determine future behavior [50], and

that considering the dynamics of social ties (based on an analysis of contact duration) from di�erent

daily routines is important to achieve a correct mapping of real social interactions into a clean social

representation able to aid data forwarding [51]. Thus, dynamic behavior-based routing considers what

is constantly happening among nodes in terms of social interactions to devise more elaborate forwarding

schemes. The Context Information Prediction for Routing in OppNets (CiPRO) employs such routing

approach.

CiPRO [17] considers the time and place where nodes meet throughout their routines. CiPRO holds

knowledge of nodes (e.g., carrier's name, address, nationality, battery level, memory of the device)

expressed by means of pro�les that are used to compute the encounter probability among nodes in

speci�c time periods. Nodes that meet occasionally get a copy of the message only if they have higher

encounter probability towards its destination. If nodes meet frequently, history of encounters is used to

predict encounter probabilities for e�cient broadcasting of control packets and messages.

CiPRO has a performance trade-o� between delivery probability/cost and delay, and perhaps in-

troducing some randomness, in the occasional contact case, could bring more improvements to the

solution.

2.1.2.5 Summary

This section brie�y presented the social-aware opportunistic routing proposals considered as I surveyed

the state-of-the-art literature. The same approach for social-oblivious proposals was employed regarding

my choices for most of these proposals: the number of times they served as benchmarks and their

evaluation against other benchmark proposals.

It is clear that social similarity has a great potential in improving opportunistic routing, and indeed

it is an interesting direction to consider while devising forwarding solutions. However, one aspect that

should be further explored is the dynamism that can be derived from users' daily routines. As observed

by Hossmann et al. (2010) [51], if social similarity metrics are able to capture the dynamic behavior of

users, the formed connectivity graphs are going to be built re�ecting the most important social edges.

Another aspect that is taken for granted is the way communication takes place: it is always based

in a source-destination pair. Point-to-multipoint communication has shown its capabilities (i.e., bet-

ter performance and wise use of resources) when applied to opportunistic routing as it increases the

reachability of information [52].
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Based on these observations, I develop my work to achieve the goal of proposing novel opportunistic

routing solutions.

2.2 Opportunistic Routing Taxonomies

Despite of not existing many classi�cations, the existing ones look at the opportunistic routing ap-

proaches from various perspectives, i.e., based on: i) message delivery strategy (single copy, �ooding,

replication); ii) employed level of node/network knowledge; iii) usage of oracles; iv) node/network be-

havior (deterministic and stochastic); v) one-hop/end-to-end information; vi) existence of special devices

to aid routing (stationary and mobile).

Another observation is that these classi�cations consider aspects (e.g., level of knowledge) that lead to

an unbalanced classi�cation, assigning most proposals to a few set of categories, or to speci�c categories

(e.g., information coding) that could otherwise be seen as methods and could be applied orthogonally to

other categories. In addition, such classi�cations either do not consider the social trend as a category,

or simply see it as mere subcategory under unrealistic scenarios (e.g., with deterministic behavior).

This led me to further analyze these opportunistic routing classi�cations and consequently propose

a more up-to-date taxonomy. This section brie�y goes over the most relevant classi�cations, from 2004

to 2010, that helped me come up with a cleaner and more concise classi�cation that includes social

similarity, and strengthen its importance amongst the already well-established routing categories.

The �rst taxonomy for opportunistic routing was proposed by Jain et al. (2004) [22] encompassing

three classi�cations based on: knowledge from network oracles (contact summary, contacts, queuing, and

tra�c demand), route computation (proactive and reactive), and determination (source- and hop-based).

The former classi�cation is the most important and represents oracles that provide summarized/detailed

information about contacts, bu�er utilization, and present/future tra�c demand. The level of knowledge

can be zero or partial/complete (by combining oracles).

Since opportunistic contacts are di�cult to accurately predict, considering network knowledge is cum-

bersome as it needs a central entity (i.e., oracle) in the network and the delay for gathering/processing

information into useful knowledge may be too high specially in scenarios where contacts are short lived.

Regarding route computation/determination, most of the solutions fall into the reactive and hop-by-hop

branches. Thus, this taxonomy does not provide a well-balanced classi�cation for opportunistic routing

proposals.

Zhang (2006) [53] provides a classi�cation with two main categories: deterministic (i.e., nodes are

aware of network topology), and stochastic (i.e., node/network behavior is random and unknown). In

addition, Zhang classi�es proposals according to their ability of controlling (or not) node movement.

One can observe that Zhang's classi�cation improves the proposal of Jain et al. (2004) as a more realistic

branch emerges (i.e., stochastic) and is able to best represent the behavior of opportunistic contacts.

But it is important to note that there are some categories in Zhang's classi�cation that can be considered

orthogonal (i.e., coding-based approaches, where coding schemes can be applied elsewhere) and do not

represent real life deployment (i.e., control movement, since only in speci�c application scenarios nodes

can change other nodes movement patterns simply to answer their needs to send/receive data).

Balasubramanian et al. (2007) [44] present two classi�cation criteria based on routing strategy (i.e.,

replication or single-copy forwarding) and the e�ect on performance metrics (i.e., which consider resource

constraints - intentional, or not - incidental). Like the proposal by Jain et al. (2004), this classi�cation

is not well balanced as most of the solutions fall into the replication and incidental branches.
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Song and Kotz (2007) [39] and Nelson et al. (2009) [9] also classify opportunistic routing according

to routing strategy (single-copy forwarding/replication). In the former, the replication branch is further

divided into considering its e�ect on resource consumption and on delivery probability. Nelson et

al. (2009) further divide replication into �ooding- and quota-based (i.e., controlled �ooding). This

classi�cation is interesting since it highlights that replication is not the cause for network �ooding, but

the scheme used to perform it. However, these classi�cation models are incomplete as they do not

include categories based on metrics such as encounter number, resource usage, or social aspects.

D'Souza and Jose (2010) [54] come up with three major categories: i) �ooding-based, where network

is �ooded with messages to increase their delivery probability, or that apply a controlled �ooding by lim-

iting the copies of messages, and by embedding additional information into messages in order to reduce

�ooding e�ects; ii) history-based, where past encounters are considered to improve routing decisions;

and, iii) special devices-based, where speci�c devices (stationary or mobile) aid communication among

nodes. This latter category may use social interaction among nodes to perform routing decisions.

Just like Zhang (2006), D'Souza and Jose (2010) categorize aspects that can be seen as orthogonal

(e.g., network and erasure coding) to any other category. However, this classi�cation is the only one that

somewhat considers social aspects, despite the fact that social-aware approaches have been around since

2007. Yet, D'Souza and Jose (2010) include this category under their special devices-based branch, which

surely does not comply with the regular behavior (i.e., random and unknown) found in opportunistic

networks: the use of special stationary/mobile devices to improve data exchange is not realistic, as the

network/nodes will have to present a deterministic behavior in order to correctly place these devices in

the system.

Spyropoulos et al. (2010) [55] divide the opportunistic routing proposals based on the employed

message exchange scheme: forwarding (similar to single-copy); replication (full and controlled replication

based on utility functions); and coding (messages are coded at the source or as they traverse the

network). Additionally, the di�erent forwarding and replication utility functions are identi�ed and

categorized according to their dependency on the destination. Finally, the authors classify Delay-

Tolerant Networks based on a set of characteristics (e.g., connectivity, mobility, node resources, and

application requirements) that impact routing and map the suitable routing solutions to the di�erent

types of DTNs considering their characteristics. Still, in this classi�cation, categories that can be

orthogonal (i.e., coding) continue to appear, and social aspects are seen as a mere destination-dependent

function, and not as a potential research direction which includes social relationships, interests, and

popularity to improve opportunistic routing.

Fig. 2.11 presents a global view of the analyzed classi�cations proposed between 2004 and 2010.

By looking at the existing opportunistic solutions, it is clear that the classi�cation model should focus

solely on the stochastic branch. First, because the deterministic one is based on available knowledge

from the network state, which is very di�cult to get given the nature of opportunistic contacts; and

second, solutions are trying to use the least knowledge possible to reduce complexity. Furthermore,

the classi�cation model should include categories of routing aiming at achieving an optimum balance

between delivery probability (e.g., replication) and resource utilization (e.g., forwarding). This is not

seen in current classi�cations.

Thus, the stochastic branch should include a category for the trend identi�ed since 2007, comprising

1Springer and the original publisher (Routing in Opportunistic Networks, v. 1, 2013, p. 27-68, Social-Aware Opportunis-
tic Routing: The New Trend, Waldir Moreira, Paulo Mendes, Figure 2.3, Copyright © 2013, Springer Science+Business
Media New York) is given to the publication in which the material was originally published, by adding; with kind permission
from Springer Science and Business Media [1].
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Figure 2.1: Opportunistic routing taxonomies from 2004 to 2010

proposals that aim at achieving a good balance between delivery probability (e.g., message replication)

and usage of network resources (e.g., forwarding) by employing the social similarity approach.

Finally, given the vast range of proposals and classi�cations, another observation is that comparison

evaluation does not always consider either a homogeneous set of parameters or comparable experimental

setups, which endangers the veracity of conclusions.

2.3 Evaluation Frameworks

The increasing capability of portable devices provide users with new forms of communication. They

can quickly form networks by sharing resources (i.e., processing, storage) to exchange information, and

even connectivity. This is possible through opportunistic contacts among nodes that can carry/forward

information on behalf of other nodes to reach a given destination or connectivity points.

As presented in Sec. 2.1, di�erent opportunistic routing proposals have emerged. Still, there is not a

clear understanding of what the best solutions are, given the di�erent application scenarios. Moreover,

my analysis of the state-of-the-art literature shows that comparison evaluation between these proposals

does not always consider either a homogeneous set of parameters or comparable experimental setups,

which endangers the veracity of performance assessment. Thus, even with a stable taxonomy, there is

the need to determine an evaluation model based on common performance metrics (e.g., delivery rate

and cost, delay, and energy e�ciency) and experimental scenarios.
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Regarding evaluation frameworks, I highlight the proposal based on Evolving Graph (EG) theory to

design/evaluate least cost routing protocols. EG provides a formal abstraction for dynamic networks

and re�ects the di�erent connectivity graphs in the time domain by considering node mobility. The

result is that connectivity of links are transcribed into subgraphs for di�erent instant in time.

Thus, Ferreira et al. (2010) [56] take into consideration one of the formalized EG criteria (i.e.,

foremost) to determine journeys (i.e., future temporary connections between nodes that can form a

path over time) in which data can quickly reach its destination. This evaluation framework provides

designers with an algorithm that is able to reach good performance in scenarios where connectivity

patterns are known beforehand. Additionally, the algorithm can be used as lower bound reference to

compare opportunistic routing solutions.

The work of Spyropoulos et al. (2010) [55] also provides principles to help developers in designing

routing solutions based on their classi�cation of opportunistic routing, identi�ed utility functions, and

DTNs characteristics. The authors show that, by knowing the application characteristics and require-

ments, the choice/design of routing solutions is eased.

After a thoroughly analysis of di�erent routing solutions under the uni-, multi-, and anycast per-

spectives, Cao and Sun (2013) [57] de�ne a framework considering one of the following major goals

that routing proposals may target: i) e�ectiveness and e�ciency, concerning a balanced tradeo� be-

tween delivery/delay and cost; ii) QoS awareness and security, referring to QoS requirements and attack

prevention; iii) scalability, aiming at the ability of coping with varying network density.

Still, these works lack a guideline of how performance metrics and experimental setups can be used.

Thus, there is the need to provide a set of experimental setups to aid designers in fairly assessing the

performance of existing and their yet-to-come opportunistic routing solutions in comparison studies.

With these observations in mind regarding the existing routing proposals, taxonomies and frame-

works, I was able to identify the opportunistic routing metrics as well as classify the proposals themselves

in a clean and concise taxonomy. Then, I devised an evaluation model based on common performance

metrics (e.g., delivery rate and cost, delay, and energy e�ciency) and experimental scenarios. My goal

is to avoid future performance assessments considering irrelevant performance metrics and biased sce-

narios. Finally, I could come up with social-aware utility functions and a couple of novel opportunistic

routing solutions. Chapters 3 through 7 present the outcomes of my close analysis to the state-of-the-art

literature and this work.
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Chapter 3

Classi�cation and Evaluation of

Opportunistic Routing

As one can observe in Chapter 2, a more up-to-date classi�cation for opportunistic routing proposals

is needed in order to suitably include the social-aware trend. Additionally, no guidelines for evaluating

opportunistic routing proposals are available in the prior art. Consequently, proposals were being

compared under conditions di�erent from which they have been designed for, jeopardizing the assessment

of their performance behavior [25, 1].

This chapter goes over the �rst set of contributions of this Thesis work: an updated taxonomy

including the social branch amongst the existing categories of opportunistic routing proposals [1], a

Universal Evaluation Framework to allow proposals to be evaluated under the same conditions aiming

at a fair comparison assessment [27, 28], and a study done regarding the importance of cooperation

when it comes to the support for opportunistic networking [29, 30, 31].

3.1 Taxonomy

Observing the considered opportunistic routing proposals (cf. Sec. 2.1), di�erent trends based on

speci�c goals are identi�ed. Thus, there is the need for a well-balanced and updated taxonomy, which

includes the social-aware trend identi�ed over the last years and that focuses solely on the branch (i.e.,

stochastic) that best re�ects opportunistic contacts (cf. Sec. 2.2).

Social similarity metrics [10, 12, 14, 49, 18, 11, 15, 17] brought a new perspective into opportunistic

routing: as devices are carried by humans, forwarding decisions are done considering characteristics of

the relationships among them (e.g., contacts with other people, time spent with these people, the level of

relationship between people, among others). The potential of these metrics are based on the connectivity

graphs they form, which are less variable than those based on mobility. Edges represent people's socially

meaningful relationships that evolve from node mobility, interaction and social structures.

Generally speaking, every opportunistic routing proposal considers node mobility and the resulting

interaction to decide on forwarding: some proposals (e.g., Epidemic [4], Direct Transmission [38]) are

rather simple and use the resulting contacts to reach the destination, while others are more elaborate

and consider social aspects in order to �nd the destination (e.g., Label [10], PeopleRank [11]). Hence,

one shall notice that the proposed taxonomy does not have a mobile-based category (e.g., Model - or

19



20 3. Classi�cation and Evaluation of Opportunistic Routing

Control Movement-based in Zhang (2006) [53] and Mobile Device-based in D'Souza and Jose (2010) [54])

as this is an inherent feature of opportunistic proposals.

The proposed taxonomy considers three categories, namely forwarding-, �ooding-, and replication-

based. The most straightforward category is the forwarding-based, which refers to the single-copy

forwarding (e.g., MEED, and approaches in Spyropoulos et al. [38]) where only one copy of each

message traverses the network towards the destination.

As presented in Sec. 2.2, depending on the level of replication, opportunistic routing proposals can

be categorized as: replication [44, 39]; �ooding- and quota-based replication [9]; greedy, controlled,

utility-based, and resource allocation replication [55]. One can easily observe that these categories are

either too generic [44, 39], or end up mixing epidemic (i.e., �ooding-based and greedy replication) with

other approaches that have di�erent levels of replication [9, 55].

Thus, the proposed taxonomy devotes a speci�c category to �ooding-based proposals, since only

proposals that allow every node to spread a copy of each message to every encountered node (e.g.,

Epidemic [4]) are considered. Additionally, this category is left out of the replication class due to the

fact that i) having (or not) the quota-based feature (i.e., where the number of created copies does not

depend on the number of network nodes [9]) can be found in the di�erent proposals; and ii) proposals

(e.g., PREP [45], MaxProp [8], PROPHET [5], and RAPID [44]) cannot be simply categorized under

the �ooding-based category just because certain conditions (e.g., mobility, limited resources) may make

them have an epidemic-like behavior [9, 55].

The last category is the replication-based one, which comprises di�erent opportunistic routing pro-

posals and metrics, and is further divided into the following sub-categories: encounter-based, resource

usage, and social similarity.

In the encounter-based sub-category, replication takes place based either on: i) frequency encounters,

where proposals consider the history of encounters with a speci�c destination to support opportunistic

forwarding of messages, or the frequency nodes met in the past, to predict future encounters (e.g.,

PROPHET, MaxProp, Prediction, and EBR); and, ii) aging encounters, where proposals consider the

time elapsed since the last encounter with the destination to decide about next hops (e.g., FRESH,

EASE, and Spray and Focus).

In the sub-category about resource usage, forwarding decisions are made considering the: i) aging

of messages, where proposals aim to avoid messages to be kept being forwarded in the network by

creating metrics that de�ne the age of message copies (e.g., Spray and Wait, and OPF ); and, ii) resource

allocation, in which knowledge about local resources (e.g., PREP, and RAPID) are taken into account.

The sub-category about social similarity is more elaborate and exploit the social behavior existing

among nodes. It comprises: i) community detection proposals that group nodes according to their

a�liations, number of contacts, and duration of such contacts (e.g., SimBet, Label, Bubble Rap); ii)

shared interest proposals that decide on forwarding based on the interest nodes have in the content (e.g.,

SocialCast and ContentPlace); and iii) node popularity proposals, where nodes are ranked according to

their social interaction and this raking is used to decide on replication (e.g., PeopleRank). Fig. 3.11

shows the taxonomy proposed in 2011 by Moreira et al. [27, 28].

1Springer and the original publisher (Routing in Opportunistic Networks, v. 1, 2013, p. 27-68, Social-Aware Opportunis-
tic Routing: The New Trend, Waldir Moreira, Paulo Mendes, Figure 2.4, Copyright © 2013, Springer Science+Business
Media New York) is given to the publication in which the material was originally published, by adding; with kind permission
from Springer Science and Business Media [1].
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Frequency Encounters

Flooding−based

Forwarding−based

Figure 3.1: Taxonomy proposal for opportunistic routing (2011)

As new social-aware opportunistic routing proposals (i.e., dLife [15], CiPRO [17]) emerged, this

taxonomy had to be updated to include a new sub-category: user dynamic behavior as illustrated in

Fig. 3.22.

2013 Taxonomy

Replication−based

Social Sim ilarity

User Dynamic Behavior

Node Popularity

Shared Interests

Community Detection

Resource Usage
Resource Allocat ion

Aging Message

Encounter−based
Aging Encounters

Frequency Encounters

Flooding−based

Forwarding−based

Figure 3.2: Taxonomy proposal for opportunistic routing (2013)

It is important to mention that every category included in the taxonomy has advantages and disad-

vantages. Yet, the main goal with this new taxonomy was not to identify the most suitable opportunistic

routing category, but instead to: i) to emphasize the importance of the new trend based on social similar-

ity; and ii) update a previously proposed taxonomy with a new sub-category, namely the user dynamic

behavior, based on the latest social-aware opportunistic routing proposals.

3.2 Universal Evaluation Framework

The motivation to devise a Universal Evaluation Framework (UEF) is that current opportunistic routing

proposals - no matter if they are based on �ooding, forwarding or replication, or if they consider or not

levels of social relationship - do not always take into account a similar set of performance metrics and

comparable experimental scenarios.

Thus, even with a suitable taxonomy, the UEF aims at a way to fairly evaluate opportunistic routing

proposals based upon realistic scenarios (i.e., able to represent the real requirements of applications)

and based on common metrics such as delivery rate, cost, and delay. Additionally, with this UEF, de-

signers are expected to avoid the creation of future proposals comprising irrelevant performance metrics,

evaluated in speci�c scenarios and without proper benchmarks.

2Springer and the original publisher (Routing in Opportunistic Networks, v. 1, 2013, p. 27-68, Social-Aware Opportunis-
tic Routing: The New Trend, Waldir Moreira, Paulo Mendes, Figure 2.5, Copyright © 2013, Springer Science+Business
Media New York) is given to the publication in which the material was originally published, by adding; with kind permission
from Springer Science and Business Media [1].
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To support the creation of a proper UEF, a close analysis of the state-of-the-art literature (cf. Sec.

2.1) was considered in what concerns evaluation benchmarks, metrics and scenarios. The proposed

UEF spans: i) network type, size, and resources; ii) number of nodes, the relationship between them,

their interest, available resources, and willingness to participate in communication; and iii) performance

metrics, such as delivery rate, cost, and delay [27, 28].

3.2.1 Benchmarks

In order to come up with a suitable UEF proposal, I �rst identi�ed the benchmark proposals, that is,

how often proposals are referenced for comparison purposes by others. Fig. 3.3 shows the proposals

in rectangulars, with the outgoing arrows indicating other proposals that were used as benchmark to

evaluate them. The incoming arrows illustrate the importance that a proposal has as a benchmark to

other related proposals.

From Fig. 3.3 one can see that there are no rules for comparing proposals, whereas authors rely on

proposals that have clearly worse performance in relation to their own, given the considered conditions.

It is important to note that the proposals/methods presented in the ellipses are out of the scope of

this Thesis work and mostly refer to methods commonly found in the literature (e.g., Random, Wait) or

to extensions of the studied proposals (e.g., GREASE and dLifeComm in the EASE and dLife proposals,

respectively).

Figure 3.3: Analysis of most common benchmarks

Tables 3.1, 3.2, and 3.3 summarize Fig. 3.3 showing the proposals grouped according to the proposed

taxonomy presented in Sec. 3.1. By reading the tables vertically, one can observe how solid is the

evaluation of a proposal (naming the column) in what concerns the most relevant related work, while

horizontally the tables provide information about how often the proposal has served as benchmark

for comparison studies. In order to improve readability, the tables do not include proposals (i.e., in
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columns) that disregarded the considered related work from their evaluation (i.e., MaxProp, FRESH,

EASE, Label, and SocialCast).

From these tables, one can see that the proposals that were compared to the highest number of

related work were EBR and RAPID, compared to �ve and three other proposals, respectively. For

instance, EBR is an example of a proposal with a solid evaluation benchmark (cf. Table 3.1), since it

was compared to two out of three other related work in its category (PROPHET and MaxProp), and

to two of the three most used benchmarks (Epidemic, and Spray and Wait).

Epidemic, PROPHET, and Spray and Wait are the proposals that have been used most often as

benchmark, i.e., nine, seven, and �ve, respectively.

Table 3.1: Taxonomy-benchmark relationship for encounter-based approaches

Encounter-based

Frequency Encounters Aging Encounters

PROPHET Prediction EBR Spray and Focus

Epidemic � � � �

PROPHET � �

Spray&Wait � �

MaxProp �

Spray&Focus �

Table 3.2: Taxonomy-benchmark relationship for resource usage approaches

Resource Usage

Aging Messages Resource Allocation

Spray and Wait OPF PREP RAPID

Epidemic � � �

PROPHET � �

Spray&Wait � �

MaxProp �

Table 3.3: Taxonomy-benchmark relationship for social similarity approaches

Social Similarity

Community Detection Node Popularity User Dynamic Behavior

SimBet Bubble Rap PeopleRank dLife CiPRO

Epidemic � �

PROPHET � � �

Spray&Wait �

FRESH �

Label �

Bubble Rap �

With this benchmark analysis, I observed that proposals such as the �ooding-based Epidemic are

compared to more elaborate proposals. In some cases (e.g., PREP), Epidemic is used only to set the

upper bound in terms of delivery rate performance. However, in other cases (e.g., Prediction, EBR

and CiPRO), Epidemic is exposed to di�erent assumptions and conditions (e.g., di�erent number of

nodes, message size, bu�er size) from which it has been devised, and considering di�erent performance

metrics (e.g., composite metrics in EBR, network overhead in CiPRO). This consequently leads to unfair

performance assessment of this proposal.
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Figure 3.4: Analysis of performance metrics

3.2.2 Performance Metrics

Once the relationship among the benchmark proposals in terms of comparison evaluation was under-

stood, I carefully looked at the performance evaluation metrics employed in their assessment. The goal

here is to make sure that evaluations based on the UEF consider similar performance metrics and the

same evaluation conditions in order to fairly assess the performance of the proposals.

Fig. 3.4 summarizes the identi�ed performance metrics. To improve readability, the �gure uses

general terms (i.e., delivery rate, cost, delay, number of delivered messages) to identify the most used

metrics (wide rectangulars), since terminology varies according to the proposal (e.g., while RAPID

considers the delay metric as the worst-case delay, Epidemic refers to it as message delivery latency).

Additionally, when applicable, proposals have been grouped (e.g., SimBet, and PROPHET ) as they

consider the same set of metrics. Finally, the narrow rectangulars depicted in the �gure represent other

metrics relevant to few of these proposals.

It is important to mention that, since they appeared after this performance metric analysis, dLife

and SCORP already consider the performance metrics as they are de�ned next, and dLife has been

included in the presented �gures solely for illustration purposes.

Based on this analysis, one can conclude that the most important metrics for opportunistic routing

are: delivery rate, cost, delay and number of message delivered. In what concerns the delivery rate, it is

de�ned as the number of messages that have been delivered out of the total number of messages created.

This metric is used in ten out of the nineteen proposals under di�erent terminology such as: number

of messages that have been delivered out of the total of messages created (e.g., Label), the fraction of

sourced bundles that are delivered to the destination (e.g., PREP), the ratio of the number of messages

delivered to the number of total messages generated (e.g., Prediction), the proportion of messages that

have been delivered out of the total unique messages created (e.g., Bubble Rap), the ratio between the
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actual number of messages delivered to the interested subscribers and the ideal one (e.g., SocialCast),

the message delivery ratio (e.g., EBR), simply delivery rate (e.g., MaxProp and OPF ), or the success

rate of the algorithm normalized by the success rate of �ooding within a delay period (e.g., PeopleRank).

The delivery rate is a very important metric to be considered, since it represents the e�ectiveness of

the proposal. Usually, proposals are classi�ed as having good performance if they achieve high delivery

rates, i.e., they can delivery as many messages as possible to destinations in a useful time frame.

Depending on the approach, the cost metric can also be associated to the overhead necessary to build

a route from a source to a destination (e.g., search cost in FRESH ), the total number of transmissions

required to forward/search in order to deliver a message (e.g., relative cost of routes in EASE ), as well

as the distribution of the number of hops needed for all the deliveries (e.g., hop distribution in Label

and Bubble Rap), and the average number of hops per message (e.g., SimBet).

However, the e�ectiveness of a proposal has to be weighted against the cost associated to the message

delivering process.

In this analysis, the cost of opportunistic routing is de�ned as the number of replicas per delivered

message. This metric is used in fourteen out of the nineteen analyzed proposals under di�erent instan-

tiations, such as: the number of forwarded messages (e.g., PROPHET and SocialCast), the number of

transmissions per delivered message (e.g., Spray and Wait), the number of transmissions (e.g., Spray

and Focus), the total number of messages transmitted across the air (e.g., Label and Bubble Rap), the

number of times a message copy occurred due to replication (e.g., Prediction), the total number of

forwards (e.g., SimBet), the number of forwardings (e.g., OPF ), the number of retransmissions (e.g.,

PeopleRank), or the network overhead (e.g., CiPRO).

At a �rst glimpse, looking at delays on scenarios that are susceptible to high delays may sound

contradictory. Nevertheless, each message has a time-to-live that is correlated to its utility. Moreover,

it is important to remove already delivered messages as soon as possible from the network in order to

avoid waste of resources. Thus, making sure that messages reach their destination within a useful time

frame is also important from the viewpoint of the performance. Based on Fig. 3.4, it is clear that most

of the routing proposals consider delay as a performance metric, more precisely sixteen out of nineteen

proposals.

In this analysis, delay is de�ned as the time required to deliver all the bytes encompassing a message

since its creation. Delay is also seen di�erently depending on the proposal, and it can be considered as

the message delivery latency (e.g., Epidemic), the message delivery delay (e.g., PROPHET, Spray and

Wait and CiPRO), the latency of delivered packets (e.g., MaxProp), the delay distribution (e.g., Label

and PeopleRank), the delivery delay (e.g., Spray and Focus), the fraction of bundles that are delivered

within a given delay bound (e.g., delay CDF in PREP), the average delay and worst-case delay (e.g.,

RAPID), the duration between the generation time and delivery time of a message (e.g., Prediction),

the average end-to-end delay (e.g., SimBet), the average latency (e.g., SocialCast), the average delay

(e.g., EBR), or simply delay (e.g., OPF ).

In summary, one can conclude that guaranteeing a low cost to maximize delivery rate with low delay

seems to be highly desired for opportunistic routing solutions, since this guarantees that end users have

access to a signi�cant amount of useful information with a good usage of network resources. This is

re�ected in the number of proposals that consider delivery rate (ten), cost (fourteen) and delay (sixteen)

as performance metrics, as seen in Fig. 3.5.

Besides these three metrics, a small number of proposals (four) also consider the number of delivered

messages, as a performance metric under di�erent terminology such as: percentage of delivered messages
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Figure 3.5: Metrics usage for performance evaluation

(e.g., Epidemic); number of received messages (e.g., PROPHET ); number of packets delivered before a

deadline (e.g., RAPID); total number of messages delivered (e.g., SimBet). However, since the number

of delivered messages is directly related to the delivery rate, it should not be considered as major

evaluation metric.

Also in Fig. 3.5, one can observe six other metrics that are only used to evaluate speci�c proposals:

route quality used by FRESH and EASE ; node popularity used by Label and Bubble Rap; half-life

delivery time TTL used by Label ; storage usage used by Prediction; goodput used by EBR; and prediction

error by CiPRO. The route quality metric is de�ned as the di�erence between the route found by

FRESH/EASE and the route with shortest number of hops. The node popularity metric is the number

of unique contacts between a node and the others in the network. The half-life delivery time TTL metric

is the TTL value that would allow half of the messages to be delivered. The storage usage metric is the

maximum storage (in bytes) used across all nodes, and the goodput metric is the number of messages

delivered divided by the total number of messages transferred (including those transfers that did not

result in a delivery). The prediction error refers to the percentage of error in predicting encounter

probability

From these six metrics that are speci�c to some proposals, node popularity, half-life delivery TTL, and

goodput are the most interesting ones, since they can identify nodes connecting di�erent node clusters,

and guarantee message delivery within a useful time frame.

As last remarks, one can easily observe the lack of a convention regarding the terminology used for

performance evaluation metrics, and that proposals are seen from di�erent perspectives regarding such

metrics. This leads to a di�cult evaluation process and provides no fairness when comparing proposals

from di�erent categories.
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3.2.3 Evaluation Scenario

The lack of convention observed from the analysis of performance metrics is also evident in what concerns

the used evaluation scenarios. Therefore, there is the need to create a set of guidelines to be considered

when creating experimental scenarios.

Tables 3.4 and 3.5 summarize experimental setup considered by the proposals under study for per-

formance assessment, such as the number of nodes, the number of source and destination pairs, meeting

time (i.e., contact time) and time between such meetings (i.e., inter-meeting time), area size (also referred

to as network density, and expressed in number of nodes in the surface area), message size, network

load (i.e., number of generated messages), message TTL (expressed either in hops or time units), size

of node bu�er, mobility model and node speed, transmission range, and beacon usage.

From these tables, one can observe that: i) experimental setup can display great di�erences among

proposals; and, ii) few proposals (e.g., Epidemic) provide detailed information. Thus, there is the

need for de�ning guidelines to derive a default scenario setup to be used while comparing/evaluating

proposals.

Two sets of parameters can be identi�ed, concerning:

� network density (e.g., network area, number of nodes, mobility model, node meeting and inter-

meeting times, transmission range and beacon control); and

� tra�c (e.g., distribution of sources and destinations, load generation, message size, message TTL,

and bu�er size).

Table 3.4 shows the di�erent network density parameters considered by some of the studied proposals.

This set of parameters allows protocol designers to understand the behavior of proposals in sparse (i.e.,

sporadic contacts resulting in high delay) and dense (i.e., frequent contacts exploring the ability to

choose the best next hops) scenarios.

Network density may be con�gured by using three parameters: network area, number of nodes, and

mobility models. Regarding the number of nodes, one can observe from Table 3.4 that the trend is to

consider a roughly average number between 100 and 150 nodes (excluding extreme cases such as FRESH,

EASE, and Prediction). This number of nodes may be enough to con�gure dense or sparse scenarios

depending on the considered network area and node mobility model. The network area can span a

conference building as well as a city area, so designers must consider these extreme cases in order to

better assess the quality of their proposals. By considering di�erent areas, along with di�erent mobility

models, the challenge faced by algorithms increases, since di�erent levels of sparseness will emerge as

simulations run.

Since a normal assumption to have is that most of the mobile nodes are carried by people, experimen-

tal scenarios should consider realistic human mobility models. Random models may not be suitable for

that, since it has been proven that humans do have a pattern in mobility behavior [58, 50, 59]. Moreover,

people are part of communities [2] that represent their social relationship with others, considering inter-

ests and tastes [14, 11]. Hence, considering the relation between mobility models and social interaction

within a society seems to be a good method for assessing the performance of a given algorithm.
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Table 3.4: Network density parameters considered by the di�erent proposals

Proposals
Area Density
(Km²/# of
nodes)

Mobility Model/
Speed (m/s)

Node Meeting/
Inter-meeting

Time

Transmission
Range (m)

Beacon
Control

Epidemic 0.45/50
Node chooses a
point and walks
there (0 � 20)

Pairs of hosts come
in contact

periodically and
randomly

10 to 250

Internet
MANET
Encapsula-

tion
Protocol

PROPHET
0.45/50 (RWP),
and 4.5/50 (CM)

Random Waypoint
Mobility (0-20) and
Community (10-30)

Pairs of hosts come
in contact

periodically and
randomly

50 and 100

Spray

&Wait

0.25/100 (Tra�c
load) 0.04/200
(Connectivity)

Random Walk
Mobility

Exponentially
distributed meeting

time
5 to 35

Spray

&Focus
0.04/100

Random Walk,
Random Waypoint,
and Community
based Mobility

5 to 35

Nodes pe-
riodically
transmit
beacons to
recognize
each
other's
presence

PREP 9/25
Random Waypoint
Mobility (5 � 15)

250 Hello
protocol

RAPID 388/20 and 40

Meeting time
distributions are
exponentially
distributed /

Inter-meeting time
between nodes
follow either an
exponential or a

power law
distribution

Scans for
other buses
100 times
a second

Prediction 0.81/5142 Mobility traces
from CRAWDAD

Nodes could
discover and
connect each
other instantly
when they

were
associated
with a same

AP

SimBet
Lab and College

area/100
Human traces Bluetooth

Bubble
Rap

Infocom05/41
Hong-Kong/37
Cambridge/54
Infocomo6/98
Reality/97

Human traces
Inter-meeting time
follows a power-law

distribution
Bluetooth

EBR

15/26, 51, and 101
(VMM) 9/26, 51,
and 101 (REDMM,

and RWP)

Vehicular-based
Map-driven (2.7 �
13.9) Role-based,
Event-driven

Disaster Mobility
(1 � 20) Random
WayPoint (0.5 �

1.5)

250

OPF Unknown/300 and
40

Human and
Vehicular

PeopleRank

MobiClique/27
SecondLife/150
Infocom/65, 47,
and 62 Hope/414

Median Contact
time: 90, 150, 180,
and 240s Median
Intercontact time
(10, 15, 25, and

30mn)

Bluetooth
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Mobility models should also include variations in node speed and pause time in order to describe

realistic movement situations. These parameters certainly in�uence the contact and inter-contact times

of nodes. Di�erent proposals [7, 10, 44, 49] have correctly assumed that contacts and inter-contact times

are best described as exponentially and power law distributions. However, other proposals [8, 11] simply

obtain the contact and inter-contact times from the considered datasets (i.e., human traces).

Another parameter that may have an impact on the density of the network is transmission coverage.

Quite a few devices are already equipped with both Bluetooth and Wi-Fi cards, so transmission range

must be looked upon. Based on the analyzed proposals, the transmission range should be set to an

average value of 100 meters, assuming that devices work with Wi-Fi. This parameter should range from

a minimum transmission range of 10 meters, which represents Bluetooth contact between mobile nodes,

and a maximum transmission range of 250 meters in cases where �xed entities (i.e., access point) may

be used for information relay.

Lastly, the use of beacons is useful to �nd out more information about potential new neighbors.

However, beacons may not be always present since nodes are mobile, and so may go to sleep mode quite

often in order to save battery. However, there are some pros and cons. Some of the pros relate to the fact

that battery lifetime can last longer. However, this may result in the loss of good contact opportunities.

According to the studied proposals, considering beaconing every 100 ms should be enough to achieve

a good balance between battery lifetime and network knowledge. However, further investigation is

required to validate this assumption.

Table 3.5 presents the tra�c parameters considered by the studied proposals. The number of sources

and destinations is the �rst parameter to stand out. In most of the cases, these nodes are chosen

randomly and comprise a subset of the total number of nodes. What matters most regarding this

parameter is that it remains the same throughout the comparison process in order to guarantee the

same conditions to the evaluated proposals.

Regarding load, there are proposals that generate a message per second [4, 5], a number of packets

per hour [8], a number of messages uniformly distributed [10, 49], a given number of bytes/messages

per second/minute per source [45, 9], as well as proposals that give little [42] or no information about

the load used in the network (e.g., PeopleRank [11], omitted from Table 3.5 for this reason). This is a

setup parameter that must be carefully addressed as it may bring more variation to experiments. For

instance, the used load distribution may be related to the mobility model.

Another setup parameter related to tra�c is message size, which plays an important role when

measuring the consumption of network (e.g., bandwidth) and node (e.g., bu�er, and power) resources,

since the size of messages may be di�erent, depending on the applications generating them. Also,

depending on the average contact duration (especially in highly mobile scenarios) and message size,

data exchange may not even happen in each contact. This issue is further worsened if the proposal

requires exchange of meta-data information [44, 45] prior to exchanging real data, in which case nodes

may waste a portion of a potentially short contact time.

Just a few proposals explicitly mention message size, which can be of 1 KB [4, 45, 44, 39] or vary

between 10 to 100 KB [8, 9]. Based on the considered proposals, varying the message size from 1 to 100

KB should provide a more realistic evaluation. For instance, people may write short messages/emails

while on the move, so the variation of the size of messages easily represents the applications and time

employed when using portable devices on the go.

Another aspect that a�ects tra�c levels in the network is message TTL, which can be represented

in number of hops [4, 5, 43] or time units [7, 42]. If messages have high values of TTL, they may end up
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increasing network/node resource consumption. On the other hand, if messages have a small TTL, they

may not even reach their destination. From the considered proposals, TTL normally varies between

hours to months or between 3 to 11 hops in average. In the case of time units, based on experimentation

it is suggested that varying from 1, 2 days up to 3 weeks is enough to understand the performance

behavior of the studied proposals. In the case of hop-based TTL, it has been shown that only 5% of

nodes have some level of relationship with the destination in the �rst hop [49]; however, the interaction

values improve (around 35%) for more than 3 hops. Thus, the UEF suggests the number of hops to be

longer than/equal to 3 hops at least. Unlimited TTL should also be considered in order to understand

the impact of resource consumption of proposals.

Table 3.5: Tra�c parameters considered by the di�erent proposals

Proposals
Source/Dest
Distribution

# of Generated
Messages (Load)

Message
Size (Kb)

Message TTL Bu�er Size

Epidemic 45 / 44 One message per
second 1 1, 2, 3, 4, and 8

hops

10, 20, 50,
100, 200,
500, 1000,
and 2000
messages

PROPHET
45 / 44 (Random)
and 2 / 1 (Comm.)

One message/sec
(RWP), and
20mgs/sec �

2mgs/5sec (CM)

3 and 11 hops 200 messages

Spray&Wait 1 / 1

Node generate a new
message with an
inter-arrival time

distribution uniform.

4000 � 6000
unit times

Spray&Focus 1 / 1 Moderate number of
CBR tra�c sessions

1000 � 10000
time units

PREP 1 / 1 40 to 200
bytes/sec/node 1 1 to 6MB

RAPID 1 / All 4 packets/hour/node 1

100KB
(Power law)
40GB (Trace

driven)

Prediction 1 / 1

After each contact
event in the contact
trace, a message is
generated with a
given probability

0.08 to 1 Unlimited Unlimited

SimBet 1 / 1

A single message is
generated between
each node included

in the subset

Bubble Rap 1 / 1 1000 messages

EBR
1, 2, and 4 mes-

sages/minute/source
25 1MB

OPF
1 / 20 (NUS) and 1/
1 (UmassDieselNet)

3 and 1 to 5

Bu�er usage can also in�uence the performance of a given proposal. Considering unlimited bu�er

space is not realistic at all, since it cannot be assumed that users are willing to share all their storage

room with others. It is worth mentioning that this may be di�erent in scenarios where nodes are only

there to serve others (e.g., buses) [44]. However, based on experimentation bu�er space should be

limited (varying according to the device) to a size of around 200 messages (considering 10 KB messages)

or 2MB, based on the analyzed proposals.
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Table 3.6 summarizes the UEF and its proposed (a) network density and (b) tra�c parameters, for

fairly assessing the performance behavior of existing and newly-devised opportunistic routing proposals.

Table 3.6: Network and tra�c parameters of the proposed UEF

(a) Network Density Parameters

Area Density
(Km²/ # of nodes)

Mobility Model/
Speed (m/s)

Node Meeting/
Inter-meeting Time

Transmission
Range (m)

Beacon
Control

Span conference
building up to city
areas/100 to 150

Representing people
and di�erent

transportation means

Exponentially or
Power-law, if it can be

determined

Minimum of 10
(Bluetooth) and
maximum of 250

(Wi-Fi)

Every 100
ms

(b) Tra�c Parameters

Source/Dest
Distribution

# Generated
Messages (Load)

Message Size (Kb) Message TTL Bu�er
Size

Same subset throughout
all evaluation study

Load must be the
same 1 to 100

> 3 hops or
varying from 1 day

to 3 weeks.
Unlimited TTL
should be also

explored

2MB (200
messages
of 10 KB)

With this analysis, I could observe that not only are solutions evaluated against others that belong

to di�erent categories, but also consider di�erent performance evaluation metrics as well as di�erent

conditions to decide on performance. This means that the way proposals are evaluated has an important

impact on how they are classi�ed as having or not satisfactory performance, which led me to devise this

UEF.

3.3 The Role of Cooperation in the Support to Opportunistic

Networking

Even if nodes have di�erent contact opportunities that could lead to an e�cient exchange of content,

such opportunities are useless if nodes are not willing to cooperate between themselves. Cooperation can

take place in di�erent forms (e.g., resource exchange, selling services, and to improve network experience)

and cooperative behavior only brings bene�ts to both users and network.

This section highlights the importance of cooperation to the support for opportunistic networking.

Thus, it starts by presenting what users can exchange upon a cooperation opportunity, the incentives

employed so users have cooperative behavior, and how cooperation can be seen. Then, it shows the

proposed scheme to encourage nodes in engaging in cooperation for resource sharing.

3.3.1 An Overview of Cooperation

The capabilities of users' devices nowadays allow them to easily share their resources (e.g., storage

space, bandwidth, processing power), divide e�orts (e.g., download of �les), and/or provide services

(e.g., Internet connectivity, printing capability).

However, despite the fact of the improved capabilities of devices, users may still not be willing to

engage in cooperation and share their resources and/or services. There are three major reasons that
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can a�ect the user willingness to share [29]: i) trust issues (e.g., interaction with unknown users), ii)

not enough local resources (e.g., battery, storage), and iii) the natural egoistic behavior.

Cooperation plays an important role in opportunistic networking, in the sense that it can overcome

the lack of trust on other users by considering i) the existing social similarities among cooperating nodes

such as communities they belong to [13] and/or interests they share [14]; and ii) the use of virtual

crediting used to �pay for� the provided resource/service/e�ort. If the issue is the availability of local

resources, cooperation can increase user willingness by, in turn, providing them with the resources they

lack at that moment (e.g., processing power [60], storage [61]) to improve their own operation. In

the case of egoistic behavior, cooperation works around that by guaranteeing users that they will have

resources available upon their needs.

As discussed in this section, cooperation manifests according to: i) the utilities the users need and

have to o�er (e.g., resources, services, e�orts); ii) the incentives for encouraging users to engage in

cooperation (e.g., exchange- and rewarding-based); and, iii) the perspective that cooperation is seen

(e.g., utility-sharing and networking-experience).

It is important to mention that, in this section, I am not interested in the target network where the

di�erent cooperation utilities, incentives, and perspective are employed and seen. Instead, my sole goal

is to show how cooperation can take place independently of the application scenario with few examples

found in the literature.

3.3.1.1 Cooperation Utilities

Users may cooperate through sharing the same (or di�erent) type(s) of resources (e.g., storage, pro-

cessing), services (e.g., Internet connectivity) and/or splitting networking e�orts (e.g., obtain the same

content).

When it comes to sharing resources, users tend to cooperate by sharing the same type of resources

(e.g., storage and processing) [29]. Cooperation can be based on storage sharing [61]: nodes store

information based on a coding scheme aiming at a reliable delivery of data in scenarios where nodes

sporadically shut down their wireless cards to save energy. Processing is another type of resource that

improves the utilization of devices [60]. Nodes cooperate by sharing the processing of tasks among

themselves. The approach consists in opportunistically distributing tasks followed by making available

the resulting data.

By simply using the Bluetooth Dial-Up Networking, any node can start sharing its Internet service.

This can also be achieved by installing applications to this end (e.g., JoikuSpot3). However, in these

examples of service sharing cooperation, the nodes providing connectivity have no incentives to coop-

erate. Despite not being deployed in personal devices, Fon spots4 are a clear example of cooperation

among nodes for service sharing. Just by sharing the home connection with other foneros, the user has

its Internet connectivity experience increased to a worldwide scale.

E�ort splitting results from when users want to achieve a common goal (e.g., video download) aiming

at sparing resources and time. In e�ort-sharing schemes, nodes interested in the same video �le download

di�erent parts (i.e., video descriptors) of it [62]. Then, these parts are shared between the interested

parties through a less energy costly medium (e.g., 802.11a). E�orts can also be exchanged by other

resources: nodes serve as relays by forwarding messages on behalf of others, and in turn they get a

portion of bandwidth for their own bene�t [63].

3http://www.joiku.com/
4http://corp.fon.com
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3.3.1.2 Cooperation Incentives

Cooperative behavior can be further encouraged by the use of incentives. Such incentives can be given

by means of utilities exchange (i.e., resources, services, and/or e�orts [29]) when required, or rewarding-

based schemes, where virtual currency [64] may be used to acquire a resource/service/e�ort in scenarios

that trust may still be an issue, and potential providers do not interact with users outside their com-

munities [30, 31].

One can �nd a classi�cation of cooperation mechanisms considering trust-based (i.e., exchange-based)

and trade-based (i.e., rewarding-based) patterns [65]. In the former, trust is imperative so nodes can

engage in cooperation, while for the former what matters is the remuneration (done immediately or as

a promise) that the potential provider gets.

In summary, for incentives based on the exchange of utilities, the cooperation decision considers

the levels of trust between the cooperative nodes. In this case, a trust management system is required

and can be centralized and/or decentralized. As for rewarding-based incentives, cooperation only takes

place if the provider gets the respective amount of credits (i.e., virtual currency) for the required re-

source/service/e�ort [30].

3.3.1.3 Cooperation Perspectives

Cooperation can be seen from two perspectives, namely utility-sharing and networking-experience. The

utility-sharing perspective depicts the cooperation process as nodes sharing utilities, based on the fact

that they will get the same/other utilities in return, or even virtual currency [30]. This may or not

have impact in the wellness (i.e., suitable operation) of the network. Yet, the networking-experience

perspective rely on the users themselves to cooperate in order to maintain such wellness.

As network operation is a�ected by the presence of misbehaving (i.e., non-cooperative, greedy) nodes,

overall networking experience can be further improved through cooperative actions of nodes to report

their own experiences in certain locations (e.g., sharing information on networking condition to a node

going in that direction) [29].

Upon receiving such information, users can react fast and refrain from going to such locations,

and interacting with misbehaving nodes. An example of such approach is when nodes are classi�ed as

malicious for using more resources than they usually share [66]. This classi�cation happens as nodes

interact directly with the malicious node or malicious activity information is received from neighboring

nodes. Consequently, malicious nodes have their data refused for forwarding, and the overall experience

of cooperative nodes improves.

3.3.2 Cooperation Scheme for Resource Sharing

The proposed cooperation scheme is based on trust and users exchange solely utilities (e.g., resources

and/or services) or utilities for credits. The idea is to increase user willingness to engage in cooperation

while in trusty (i.e., known, cooperative communities) and untrustworthy (i.e, unknown, uncooperative

areas) scenarios.
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Figure 3.6: Cooperation scheme

As depicted in Fig. 3.6, users can be requesters (i.e., consumers) or requestees (i.e., providers) of

resources and services. In the case of requestees, they can operate in two distinctive modes, namely

volunteer or retailer. For the former mode, the requestee operates based on the trust it has on requesters,

and provides whatever resources and services it has available knowing that it will have resources and

services whenever it requires. However, if operating on retailer mode, the requestee only provides

resources and services upon an agreement with requesters to pay a corresponding amount of credits.

Upon bootstrapping (1) the user device gets an initial amount of cooperation of credits based on

its willingness to cooperate (re�ected in terms of trust on others). As this relates to a new user in the

network, these credits are provided in order to allow him/her to interact (i.e., pay) with other users

specially in untrustworthy scenarios (i.e., requestees do not know this user).

As the cooperation opportunity arises with a volunteer requestee, the requester sends an amount of

cooperation credits (2) he/she believes is fair for getting the required resource/service. The requestee

accepts the sent credits (3) and cooperation takes places.

If the cooperation involves a retailer requestee, the user sends the cooperation credits to the requestee

(4) which engages in cooperation. This process also involves a bank entity which controls the transfer

of credits (5) between the accounts of requester and requestee.

The lesson learned from the proposed scheme is that, by engaging in cooperation independently of

being exchange- or rewarding-based, contact opportunities indeed become the key aspect of opportunis-

tic networking: content and its handling (e.g., storage, processing) happen easily and appropriately

guaranteeing the wellness of network and users.

Independently of the di�erent utilities/incentives/perspectives that cooperation can exchange/be

based and seen, within the context of this Thesis work, cooperation takes place from the utility-sharing

perspective (i.e., more speci�cally storage) and can only be exchanged by the same resource. Addi-

tionally, users are always operating in volunteer mode as I envision users willingly cooperating among

themselves. Trust indeed is of major concern and drives the cooperation process [31]; however, it is out

of the scope of this Thesis work, and therefore, it is not taken into account.

It is important to mention that the work done in this section is inserted in the User-centric Wireless

Local Loop (ULOOP5) European project. This project targets User-Centric Networks (UCN), which has

5http://uloop.eu



3.4 Summary of the Chapter 35

the user as the focus for determining routing, security, information sharing, and among other networking-

related mechanisms. Additionally, UCN nodes have the ability to provide other nodes with services and

connectivity independently of the regular access/infrastructure providers [67].

Despite the di�erences between user-centric and opportunistic networking, both paradigms share one

common aspect also found in the context of this Thesis: exploiting the user willingness in participating

in the cooperation process.

3.4 Summary of the Chapter

Since 2007, a new trend has led opportunistic routing proposals to consider some level of social interaction

and behavior to perform forwarding decisions. Still, previous taxonomies were either not considering

such new routing trend, or simply looking at it as yet another destination/device-dependent function

(cf. Sec. 2.2). Thus, this chapter introduced a new, updated taxonomy, which gives proper attention

to the identi�ed social similarity branch of opportunistic routing proposals, and highlights its potential

to improve opportunistic routing based on social relationships, common communities, shared interests,

node popularity, and dynamic behavior of users [1].

By reviewing the opportunistic routing state-of-the-art literature, I observed that the evaluation of

opportunistic routing proposals does not consider a similar set of performance metrics and comparable

experimental scenarios. Hence, this chapter presented a Universal Evaluation Framework (UEF) that

allows a fair comparison assessment of opportunistic routing solutions. This UEF considers common

performance evaluation metrics (e.g., delivery rate, cost, and delay) and provides a set of guidelines to

be considered when creating experimental scenarios, spanning di�erent parameters regarding network

density (e.g., network area, number of nodes, mobility model, node meeting and inter-meeting times,

transmission range and beacon control) and tra�c (e.g., distribution of sources and destinations, load

generation, message size, message TTL, and bu�er size) [27, 28].

Finally, the chapter is concluded with a study concerning the role of cooperation among users as to

support opportunistic networking. The user willingness in engaging in cooperation can be encouraged

by means of exchanging resources, or by the provision of incentives such as virtual currency. Such

willingness is very important since it allows a better networking experience [29, 30, 31]. Despite this

study has been done in the context of user-centric networking, it explores user willingness to encourage

cooperation, which is of great interest to this Thesis work.
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Chapter 4

Social-aware Utility Functions

After gathering enough knowledge about the functioning of the di�erent opportunistic routing proposals

and understanding the importance of cooperation in opportunistic routing, I was able to come up with

three utility functions based on the dynamics of user behavior [32, 33, 35, 19], which are then used in

the proposals I have designed in the context of this Thesis work.

This chapter starts by introducing the time-evolving property (i.e., behavior in di�erent time periods)

that is imperative for social-aware opportunistic networking. Then, it presents the devised social-aware

utility functions that capture the level of social relationship between nodes and measure their social

importance in the system to improve routing. Next, it shows a set of experimental analysis carried out

over the utility functions. The chapter also presents a third social-aware utility function that measures

the social relationship among users sharing interests. Finally, the chapter concludes with a scalability

study on the devised utility functions.

4.1 Time-evolving Property

It has been proven that information about social relationships is useful for data exchange [10, 12, 14, 18,

11, 13, 17]. As shown in Chapter 2, several opportunistic routing solutions have emerged, attempting to

exploit social graphs created considering di�erent contact metrics, such as inter-contact times, similarity

(e.g., communities, interests), and betweenness centrality. However, these social metrics are not fully

capable of accurately capturing the dynamics of user's behavior [51], resulting in ine�cient social graphs.

On the one hand, graphs may include edges that do not have signi�cant social meaning. On the other

hand, some metrics lead to edges that may end up having the same importance over time producing

random-based forwarding solutions. Hence, it is imperative to devise social graphs able to accurately

capture signi�cant social ties in scenarios created based on realistic user behavior (e.g., people have

di�erent habits in di�erent moments of the day).

It has also been shown how important it is to capture the di�erent connectivity patterns throughout

network lifetime [56]. These patterns change as nodes interact in the network, and such feature has

a major impact on how social graphs are devised. This means that the performance of forwarding

algorithms is directly linked to the used mobility models [68] and how the resulting interactions are

mapped into the social graph [51].

In order to build social graphs that re�ect dynamic connectivity patterns and social interactions,

I introduce the time-evolving property of social ties that allows opportunistic routing protocols to

37
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Figure 4.1: Contacts of node A with nodes x (CD (a, x)) in di�erent time intervals ∆Ti

operate based on social graphs that re�ect what is happening during the daily habits in terms of social

interactions among people. It is expected that social graphs based on the time-evolving feature may more

accurately re�ect users' social relationships and contacts than other social metrics such as inter-contact

times.

4.2 Time-Evolving Contact Duration Utility Function

Prior opportunistic routing protocols have been investigating the utilization of inter-contact times,

namely the time elapsed since last contact and the number/frequency of contacts. The expectation is

that such metrics allow the creation of accurate social graphs based on the mobility behavior of nodes,

and that such social graphs allow the development of less volatile opportunistic routing approaches. The

assumption is that social relationships are more stable than sporadic physical contacts. Although routing

based on social graphs may lead to more stable forwarding in the presence of intermittent connectivity,

I believe that a utility function based on the time or number of contacts is not enough to create graphs

re�ecting the time-evolving feature of social ties.

This work aims at showing that the accuracy level of social graphs is mainly dependent upon the

duration of contacts at di�erent moments in time, instead of the time elapsed since last contact, num-

ber/frequency of contacts, or node importance. Contact duration at di�erent moments in time is taken

into account, since people have daily habits that lead to a periodic repetition of behaviors [58, 50, 59].

The Time-Evolving Contact Duration (TECD) utility function is proposed to derive the weight of

edges in a social graph based upon the statistical contact duration that nodes have over time. TECD

encompasses: i) the duration of contacts, representing the intensity of social ties among users; and, ii)

time-evolving social ties, re�ecting users' habits over di�erent time periods (referred to as daily samples).

Fig. 4.1 (Copyright © 2012 IEEE [15]) shows how the social interaction (from the point of view of

node A) changes over time re�ecting daily routines. As an example, for a period between 8 p.m. and

midnight, the social interaction of node A is stronger with nodes D, E, and F than it is with nodes B

and C, being the weight of the edges illustrated by the intermittency of the line.

As illustrated in Fig. 4.1, two nodes may have a social weight w (x, y)i that depends on the average

total contact duration they have in that same period of time over di�erent days. Within a speci�c daily

sample ∆Ti, node x has n contacts with node y, having each contact k a certain Contact Duration

(CD (x, y)k). At the end of each ∆Ti, the Total Connected Time (TCT (x, y)i) between nodes x and y

is given by Eq. 4.1.
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TCT (x, y)i =

n∑
k=1

CD (x, y)k (4.1)

Each ∆Ti represents a di�erent period of time in the daily routine of a person. Since a behavior

pattern can be observed, one can consider that, at each daily sample, a speci�c social behavior is taking

place at work/study place, home, or somewhere else (e.g., out of town, friends' houses). It has been

shown that people can have their future behaviors predicted by considering previous ones [50]. Thus,

this approach tries to capture such behaviors considering the time that nodes spend together (i.e., Total

Connected Time) in the same daily samples ∆Ti along di�erent days j.

Through a cumulative moving average (cf. Eq. 4.2), on day j, I determine the Average Duration

(AD (x, y)ji) of the Total Connected Time between nodes x and y at ∆Ti by considering the current be-

havior (TCT (x, y)ji) and the Average Duration in the same period of the previous day (AD (x, y)(j−1)i).

AD (x, y)ji =
TCT (x, y)ji + (j − 1)AD (x, y)(j−1)i

j
(4.2)

I believe that the social strength between nodes in a certain daily sample should also give some

indication about the strength between such nodes in subsequent periods of time (referred to as Time

Transitive Property). For instance, the social strength of nodes between 8 a.m. and 12 p.m. should

provide an expected strength between 12 p.m. and 4 p.m. For routing purposes, such time transitive

property helps to select nodes that may provide good delivery probability over consecutive periods of

time, where long messages can be fully transmitted using the contacts expected to occur in consecutive

periods.

Hence, TECD (cf. Eq. 4.3) gives the social weight between any pair of nodes, w (x, y)i. Such social

weights are a function of the Average Duration of the Total Connected Time between nodes x and y in

∆Ti (AD (x, y)i) and in subsequents t − 1 daily samples, being t de�ned by default as the number of

con�gured samples. Thus, k evolves from the current daily sample i to the daily sample i + t− 1 (e.g.,

from daily sample three, corresponding to 4 p.m. - 8 p.m. to daily sample two, corresponding to 12 p.m.

- 4 p.m., as shown in Fig. 4.1). For values of k > t, the value of AD (x, y) corresponds to the time slot

k − t. For instance, for a con�guration with six daily samples, for k equals to 9, the value of AD (x, y)

corresponds to the third sample of the day, which means 4 p.m. - 8 p.m., as illustrated in Fig. 4.1. In

Eq. 4.3, the time transitive property of TECD is represented by t
t+k−i , giving more importance to the

average duration of contacts in the current daily sample, and decreasing such importance in subsequent

ones.

TECD = w (x, y)i =

i+t−1∑
k=i

t

t + k − i
AD (x, y)k (4.3)
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4.3 Importance Utility Function

As social interaction may also be modeled to consider the node importance, I propose a variation of

TECD, called TECD Importance (TECD i). TECDi computes the Importance (I(x)i) of a node x (cf.

Eq. 4.4), considering the weights of the edges between x and all the nodes in its neighbor set (N(x)) at

a speci�c ∆Ti along with their importance.

TECDi = I(x)i = (1− d) + d
∑

yεN(x)

w (x, y)i
I(y)i
N(x)

(4.4)

TECDi is based on the PeopleRank function [11]. However, it is my understanding that the selection

of next hops should consider not only their importance, but also the strength of social ties between

message holder and potential next hops. Another di�erence is that, with TECDi, the neighbor set of a

node x only includes the nodes which have been in contact with node x within a speci�c daily sample

∆Ti, whereas in PeopleRank the neighbor set of a node includes all the nodes that ever had a link to

node x. Note that the dumping factor (d) in the formula is the same used in PeopleRank and represents

the level of randomness considered by the forwarding algorithm.

4.4 Experimental Analysis of Utility Functions

This section presents further analysis to improve the utility functions considering: i) the inclusion of

message TTL while taking a forwarding decision; ii) the level of importance given to the average duration

of contacts while determining the social weight; iii) the suitable number of daily samples.

Other improvements (results from code debbuging in the Java implementation for the ONE simulator

[68]) done to ensure that the proposed utility functions have satisfactory performance are reported in

the format of a technical report [32].

4.4.1 TTL Impact on the Time Transitive Property

To further explore the Time Transitive Property mentioned in Sec. 4.2, I considered the Time-To-Live

(TTL) of the messages while determining the weight to a potential next forwarder.

Thus, for this set of tests, TECD was adapted in order to also take into account the message

TTL, which is referred to as TECD_TTL. Fig. 4.2 shows the results considering the average delivery

probability, average cost, and average latency.

In TECD_TTL, message TTL is checked for every message in order to determine how far (in terms

of daily samples) it is still alive. Once this in known, the weights to a given destination are then

determined considering only the daily samples over which the message is still useful.

Regarding the average delivery probability (cf. Fig. 4.2(a)), TECD_TTL has a gain of only 0.96%

over TECD for a 24-hour TTL. Such gain is dramatically reduced when the message TTL is set to

unlimited (TECD has performance of more than 18% over TECD_TTL).

When it comes to the average cost (cf. Fig. 4.2(b)), TECD_TTL creates 2.79 and 125.81 replicas

more than TECD for 24-hour and unlimited TTL, respectively.
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Figure 4.2: E�ect of message TTL when determining the social weight

Finally, in what concerns the average latency (cf. Fig. 4.2(c)), TECD_TTL has an increase in terms

of latency (439.73s) when compared to TECD for a 24-hour TTL. For the unlimited TTL case, the

lower latency (4041.09s) of TECD_TTL is explained by the fact that the reported latency is a function

of the delivered messages, which for this case was low.

In TECD_TTL, messages were able to spend less time in bu�er (11156s) than with TECD (11379).

One can see that, considering the message TTL to determine link weights, TECD_TTL has only a

slightly gain compared to its counterpart TECD in terms of delivery probability. However, this comes

with an increase in the number of created replicas and latency. More replicas are created especially

when TTL is close to expiring, since TECD_TTL is expected to increase its delivery probability by

forwarding messages as quickly as possible. This latency behavior is justi�ed by the increase in the

number of created replicas, since these extra few copies also contribute to the overall latency.

As a conclusion, the inclusion of TTL does not bring improvements, and therefore, it is not considered

in the TECD computation.

4.4.2 Impact of Importance Level on the Estimation of Average Contact

Duration

Social weight between a pair nodes (cf. Eq. 4.3) considers the summation of the di�erent average

duration (AD) of contact between these nodes. Additionally, each of these ADs is given a level of

importance ( t
t+k−i ), and the AD in the current daily sample gets the most importance. In order to

understand how such level should be set (i.e., how much of each subsequent AD should be considered
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while determining TECD), the three levels below were de�ned, considering the number of daily samples

t = 6:

� Level A: w = 6
21AD + 5

21AD + 4
21AD + 3

21AD + 2
21AD + 1

21AD, given by 4.5.

t−1∑
k=0

t− k
t∑

j=1

j

AD (4.5)

� Level B: w = 6
6AD + 6

7AD + 6
8AD + 6

9AD + 6
10AD + 6

11AD, given by 4.6.

t∑
k=1

t

t + k − 1
AD (4.6)

� Level C: w = AD + 0.81AD + 0.62AD + 0.43AD + 0.24AD + 0.05AD, given by 4.7.

t−1∑
k=0

1− (0.19× k)AD (4.7)

Level A is devised to give very little importance to all ADs and to present a subtle importance reduction

from one AD to another (approximately 0.05), while levels B and C are devised to give much more

importance to these ADs. However, the importance reduction from one AD to another is di�erent

between these last two levels: it is rather variable for level B and of 0.19 for level C. Fig. 4.3 shows how

the level of importance is given to each AD per daily sample.
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Figure 4.3: Di�erent importance levels

Based on Fig. 4.3, the performance of each level is assessed when determining the social weight for

the same performance evaluation metrics, namely average delivery probability, average cost, and average

latency as shown in Fig. 4.4.

Regarding average delivery probability (cf. Fig. 4.4(a)), TECD with level B managed to have slightly

better performance than with levels A and C. This performance of TECD with level B comes with a

subtle increase in cost (as shown in Fig. 4.4(b)), especially when compared to its version with level A.

Regarding latency (cf. Fig. 4.4(c)), TECD with level B had an increase in 45% of the cases (i.e., TTL

at 10, 96, 384, 768, and in�nity).
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Figure 4.4: E�ect of di�erent levels when determining the social weight

One can see that the results are statistically equivalent. Thus, level B is chosen for the TECD

implementation. The reason is that with this level, TECD increases faster as well as decreases faster,

which is a good approach especially when penalizing the social weight between nodes to improve routing

performance. This is an interesting approach as TECD is expected to re�ect what is happening in every

daily sample between the nodes in terms of social interactions, so only the best ties are considered for

data forwarding.

4.4.3 Impact of Daily Sample Size on Social Weights

I also investigated the e�ect of length of the daily samples when determining the social weights. Thus,

I considered 6, 8, 12, and 24 daily samples each with 4, 3, 2, and 1 hour of length.

As it can be seen in Fig. 4.5, the performance improves as daily sample length decreases, and is

rather stable in terms of average delivery probability and cost (cf. Figs. 4.5(a) and 4.5(b)). However,

this improvement comes with higher latency behavior as shown in Fig. 4.5(c), which results from the

fact that now next forwarders are carefully chosen, and thus forwarding decisions take more time to

happen.
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Figure 4.5: E�ect of di�erent daily samples when determining the social weight

Still, the 24-daily sample con�guration was the one considered, as it provides a much more stable

behavior as the TTL increased, and a more re�ned view of the social weight and importance of nodes

in the system.

4.4.4 Suitability of TECD for Community Detection

Since social similarity may also involve community formation, I tried to �nd other uses for the proposed

utility functions. Thus, I decided to employ TECD when forming communities to understand whether

TECD could improve community detection.

An algorithm usually considered for community formation is K-clique [46]: it is used by Bubble Rap

[13], for instance. Thus, I considered the version of K-clique proposed by Hui et al. [69] in which a node

A builds a familiar set Fi comprising other nodes i that it spends time with (i.e., i is included in Fi, i�

the cumulative contact duration with i exceeds a certain threshold Tth). Then, node B will add node

A to its local community CB if at least k − 1 nodes in the familiar set Fi of node A can also be found

in CB .

The idea is to create alternative algorithms for community detection based on the TECD utility

function, which is used to decide about including new nodes to the familiar sets, and local communities

considering the weights of nodes that are already part of the community. Additionally, if a node already

in the local community has a lower weight than the threshold (expressed in terms of average or median

of weights), it will be removed from the community.
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For instance, a node A has in its local community nodes B, C and D with social weights to them of

35, 30, and 40, respectively. Now, node A encounters node E with some regularity. It will only include

node E in its familiar set and consequently to its local community:

� when its weight to E is greater than the average of its weights towards the nodes already in its

community (w(A,E) > average(w(A,B), w(A,C), w(A,D));

� or when its weight to E is greater than the median of its weights towards the nodes already in its

community (w(A,E) > median(w(A,B), w(A,C), w(A,D));
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Figure 4.6: Performance of Bubble Rap with di�erent community detection approaches

For the sake of simplicity, these new community detection algorithms are referred to as Average

and Median, respectively. Fig. 4.6 shows the performance of Bubble Rap with the original version of

K-clique, as well as with the proposed algorithms. It is worth mentioning that the algorithms only di�er

from the original K-clique when adding nodes to familiar sets (and consequently to local communities).

The common k − 1 node approach remains the same for all algorithms in the case of adding solely to

local communities. To conclude, I de�ned k = 5, since it increased the performance of Bubble Rap, and

message TTL was set at 24 hours for these experiments.

The results show a di�erent conclusion from what was expected: social weight-based community

detection algorithms was to result in communities comprising nodes with strong social connections.

Indeed, the utilization of TECD resulted in many di�erent close-knit groups, with very low connection
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between them. The consequence was a lower average delivery probability (cf. Fig. 4.6(a)) with higher

latency (cf. Fig. 4.6(c)). Regarding cost (cf. Fig. 4.6(b)), Average produced the highest number of

copies while Median produced the lowest. The reason for that is that the Average approach resulted in

more nodes in the communities than Median, leading to higher number of replications.

It is important to remember that the goal here was to check whether TECD-based community

detection algorithms could determine communities re�ecting the reality found in the users' daily routines.

This could be seen as an extra contribution of this Thesis; however, results have shown that this topic

deserves more attention given the ability of TECD to cope with the dynamic behavior of nodes and

their communities, suggesting a potential future work.

4.5 Time-Evolving Contact to Interest Utility Function

By looking at the opportunistic routing solutions that have emerged, one can conclude that almost all

of them aim to transport data from point A to point B considering content forwarding (e.g., single-copy

forwarding), or content replication at di�erent levels based on node encounter, resource usage, or social

similarity. That is, opportunistic routing solutions operate based on the identi�cation of hosts (source,

destination) and are not based on the transported content. However, it has been shown how dynamic

scenarios can bene�t (performance improvements and wise resource usage) from considering the content

while performing routing [52, 70, 71].

Based on this observation and on the stable version of TECD, I propose the Time-Evolving Contact

to Interest (TECI ) utility function. TECI considers the interests of users on the content traversing the

network. This means that the social weight given by TECI re�ects the probability of meeting nodes with

a given interest among those which have similar social daily routine, while the social weight given by

TECD refers to the probability of meeting nodes with same social daily routine.

To help illustrate how TECI is computed, Fig. 4.71 shows the social interactions that node A has

with others during di�erent daily samples. In order to simplify this example, each encountered node

has only one interest (nodes B and F have interest 1, and nodes C, D and E have interests 2, 3, and 4,

respectively).
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Figure 4.7: Contacts node A has with interests x (CD(a, x)) of other nodes in di�erent daily samples
∆Ti.

As for TECD, with TECI contact duration is measured, but instead of attributing such duration to

1Springer and the original publisher (Ad Hoc Networks, v. 129, 2014, p. 100-115, Social-Aware Opportunistic Routing
Protocol Based on User's Interactions and Interests, Waldir Moreira, Paulo Mendes, Susana Sargento, Figure 1, Copy-
right © 2014, Institute for Computer Sciences, Social Informatics and Telecommunications Engineering) is given to the
publication in which the material was originally published, by adding; with kind permission from Springer Science and
Business Media [19].
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nodes, it is attributed to interests that these nodes have (cf. CD(a, b1) in Fig. 4.7). This means that

nodes measure the di�erent levels of social interaction (intermittency of lines in graphs) with interests

(w(a, 1)) of nodes encountered throughout their daily activities. It is based on such social interactions

levels (i.e., weights) that nodes decide whether an encountered node is a good forwarder for a message

carrying a speci�c interest.

So, for every daily sample ∆Ti, node A has n contacts with other nodes having an interest x, with

each contact k having a certain duration (CD (a, x)k); and at the end of each daily sample, node A

computes the Total Connected Time to Interest x based on Eq. 4.8.

TCTI (a, x)i =

n∑
k=1

CD (a, x)k (4.8)

The Total Connected Time to Interest x in the same daily sample over consecutive days is used to

estimate the average duration of contacts towards this interest x for that speci�c daily sample. Thus,

from node A's perspective, the Average Total Connected Time to Interest x during a daily sample ∆Ti

in a day j is given by a cumulative moving average of TCTI in that daily sample (TCTI (a, x)ji) and

the ATCTI during the same daily sample ∆Ti in the previous day (ATCTI (a, x)(j−1)i) as illustrated

in Eq. 4.9.

ATCTI (a, x)ji =
TCTI (a, x)ji + (j − 1)ATCTI (a, x)(j−1)i

j
(4.9)

Then, node A computes Time-Evolving Contact to Interest x (TECI) (cf. Eq. 4.10) to determine its

social strength (w(a, x)i) towards x in a daily sample ∆Ti based on the ATCTI in such daily sample

and in consecutive t − 1 samples, where t is the total number of samples. In Eq. 4.10 t
t+k-i

represents

the time transitive property as explained in Sec. 4.2.

TECI = w(a, x)i =

i+t−1∑
k=i

t

t + k − i
ATCTI(a, x)k (4.10)

As TECI is a variant of the stable TECD, no further improvement was required, and the initial goal

was achieved: having utility functions that capture the dynamism of social relationships between nodes

and between nodes sharing interests.

4.6 Scalability Analysis of Utility Functions

This section presents a scalability analysis for TECD, TECDi, and TECI. For this purpose, it was

considered the memory needed for computing these utility functions.

Considering a worst case scenario with k time slots and n nodes, where every node meets all other

nodes in each ∆Ti, there are: i) n× (n−1) variables to store the starting time for every new connection;

ii) n × (n − 1) variables to store TCT computations; and iii) k × n × (n − 1) variables to store AD

computations.

If each variable has X bits, TECD 's needed resources is given by Eq. 4.11.

TECD = n× (n− 1)× (k + 2)×X bits (4.11)

In an example scenario where there are 150 nodes, 6 time slots, and 64 bit double for storing, this
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results in 1.364 MB of total memory usage in the system, which means that, in average, each node needs

up to 4 MB (including the 2 MB of bu�er space).

As for TECDi, nodes need to store their importance and the importance of nodes they meet. Thus,

the amount of needed resources is given by Eq. 4.12.

TEDCi = n2 ×X + TECD bits (4.12)

Assuming the illustrated worst case, TECDi needs a storage capacity of 1.536 MB, which means

that, in average, a node needs to reserve the same 4 MB.

Regarding TECI, its scalability is given by the total number of existing interests. Hence, for a worst

case scenario with k time slots and m interests, and with every node meeting all other nodes (having at

least one interest) in each ∆Ti, there are: i) m variables to store every connection; ii) m variables to

store TCTI computations; and iii) k×m variables to store ATCTI computations. If each variable has

X bits, TECI's required resources is given by Eq. 4.13.

TECI = m× (k + 2)×X bits (4.13)

With 35 interests, 24 time slots, and 64 bit double for storing, TECI requires 7.11 KB of storage in

each node.

Given the amount of required resources, both TECD- and TECDi -based proposals can easily scale.

In the case where bu�er is very limited, a solution is to keep track of the best social weights, eliminating

those under a threshold. A con�guration with pre-de�ned thresholds should be considered to investigate

which is the most suitable value to be used.

As for TECI, content-driven networks are expected to have a high number of interests: in the case

where a node meets other nodes that have 1 billion di�erent interests per day, TECI requires 193.71

GB of memory, which is still feasible today since nodes (e.g., laptops) do have storage up to 500 GB.

However, not all nodes (i.e., smartphones) in dynamic networks have such storage capabilities, and

even if they had, owners would probably not share all of it on behalf of others. Thus, TECI can scale

through reducing its encountered interest space by: i) setting a daily threshold of 2 MB (equivalent to

daily meeting nodes with more than 10000 interests); ii) eliminating the interests associated to nodes

not well socially connected to them at the end of a day; and iii) if the threshold is reached. These rules

set the basics to allow TECI -based solutions to scale.

4.7 Summary of the Chapter

One can easily observe that social-aware opportunistic routing has shown great potential. However, the

social metrics employed in such routing do not fully capture the dynamic behavior of users [51], which

in�uences its performance. Thus, this chapter started by introducing the time-evolving property of

social ties (i.e., behavior in di�erent time periods). This property allows the operation of opportunistic

routing over social graphs that re�ect the daily social interaction of users. Consequently, opportunistic

routing leads to a better usage of network and node resources.

Then, the chapter presented social-aware utility functions, namely: i) the Time-Evolving Contact

Duration (TECD) that determines the social weight among nodes based on their level of interaction;

ii) the TECD Importance (TECDi) that measures node importance based on its neighboring nodes and
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social weights towards them; and iii) the Time-Evolving Contact to Interest (TECI ) that weighs the

social interaction among nodes sharing similar interests.

The chapter also presented an analysis of the proposed utility functions as to improve their perfor-

mance and to assess their scalability considering worst case scenarios.
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Chapter 5

Social-aware and Content-based

Opportunistic Routing

With stable versions of the TECD, TECDi and TECI utility functions, I started the implementation

of two social-aware opportunistic routing proposals: dLife, an opportunistic routing proposal based on

the users' social daily routine; and the Social-aware Content-based Opportunistic Routing Protocol,

SCORP, based on the content traversing the network and the interest of the users in such content.

This chapter starts by presenting dLife [15] and its ongoing speci�cation e�ort [16]. Then, SCORP

[19] is presented, followed by the di�erentiating aspects between these proposals [35]. The chapter is

concluded by presenting how these proposals �t in the context of the DTN-Amazon project [34].

5.1 Opportunistic Routing Based on User Social Daily Routine

In what concerns solutions based on social similarities, it is important to achieve a correct mapping

between real node interaction and the social graph that aids routing. Hossmann et al. (2010) [51] show

that the key for successful forwarding is related to the ability of mapping social interaction (resulting from

the mobility process) into a clean social representation (i.e., that best re�ects the mobility structure),

which should capture the daily life routine of nodes. Gonzalez et al. (2008), Eagle and Pentland (2009),

and Hsu et al. (2009) [58, 50, 59] show that people have periodical mobility patterns (i.e., routines) and

location preferences that can be used to identify future behavior, as well as interaction with people with

whom they share similar behavior and potentially the same community.

On the other hand, the identi�cation of social structures encompasses the challenge of detecting and

adjusting communities on-the-�y in a useful time frame. Current research e�orts show the di�culty of

constructing and adjusting social structures in short periods of time [12, 14, 13].

Based on the evidences that opportunistic routing should mimic social behavior (e.g., daily routines)

and that the creation of social structures may lead to complex solutions, I propose dLife that takes

into account the people's daily life routine and identi�es strong social ties, aiming at reaching a clean

representation of social interactions.

dLife combines TECD and TECDi to forward messages to nodes that have a stronger social rela-

tionship with the destination, or that have greater importance than the current carrier of the message.

With TECD each node computes the average of its contact duration with other nodes during the

51
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same set of daily time periods over consecutive days. I assume that contact duration can provide more

reliable information than contact history, or frequency when it comes to identifying the strength of

social relationships. The reason for considering di�erent daily time periods relates to the fact that users

present di�erent behavior during their daily routines [50].

In the case that the carrier and/or encountered node have no social information towards the desti-

nation, forwarding takes place based on a second utility function, TECDi, where the encountered node

gets a message if it has greater importance than the current carrier of the message.

5.1.1 dLife Algorithm

As mentioned earlier, dLife [15] decides to replicate messages based on the TECD and TECDi utility

functions: if the encountered node has better relationship with the destination in the current daily

sample, it receives the copies of the messages (also known as basic strategy). By having higher weight

(i.e., high social relationship), there is a much greater chance for the encountered node to meet the

destination in the future. If the relationship to destination is unknown, replication only happens if the

encountered node has higher importance than the carrier.

The operation of dLife happens as follows (cf. Alg. 5.1, Copyright © 2012 IEEE [15]): when the

CurrentNode meets a Nodei in a daily sample ∆Tk, it gets a list of all neighbors of Nodei in that daily

sample and its weights towards them (Nodei.WeightsToAllneighbors). Then, every Messagej in the

bu�er of the CurrentNode is replicated toNodei if the weight towards the destination (getWeightTo(Destinationj))

of the latter is greater than the weight of the CurrentNode towards the same destination. Otherwise,

CurrentNode receives the importance of Nodei, and messages are replicated if Nodei is more important

than the CurrentNode in the current ∆Tk.

Algorithm 5.1 Forwarding with dLife

1 begin
2 foreach Nodei encountered by CurrentNode do
3 receive(Nodei.WeightsToAllneighbors)
4 foreach Messagej ∈ bu�er.(CurrentNode) & /∈ bu�er(Nodei) do
5 if (Nodei.getWeightTo(Destinationj) >
6 CurrentNode.getWeightTo(Destinationj))
7 then CurrentNode.replicateTo(Nodei, Messagej)
8 else

9 receive(Nodei.Importance)
10 if (Nodei.importance > CurrentNode.importance)
11 then CurrentNode.replicateTo(Nodei, Messagej)
12 end

5.1.2 dLife Speci�cation

The speci�cation of the dLife protocol comes in the format of an Internet-Draft that has been presented

to the Delay Tolerant Networking Research Group [16]. This section presents the most relevant parts

that are covered in the Internet-Draft: the applicability scenarios, the architecture of a dLife node, and

the messages and phases involved in the operation of the protocol.

5.1.2.1 Applicability Scenarios

Generally speaking, dLife targets scenarios where it is not possible to assume the existence of an end-to-

end path between any pair of nodes in any moment in time. The absence of an end-to-end path may be
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a consequence of node mobility and availability (e.g., nodes may switch o� their radios to spare energy),

physical obstacles, interference, among others.

As devices are carried by humans who do present a pattern in behavior (i.e., periodical mobility

patterns and location preferences [58, 50, 59]), dLife can be easily employed to take advantages of the

social interactions among the owners of such devices, and to overcome this lack of end-to-end path to

deliver content to its due destinations.

With this in mind, dLife is expected to operate in urban and mission critical networks. Both scenarios

share characteristics such as high node density, mobility and interaction, which are prone to the use of

dLife.

� Urban Area Networks: this scenario comprises a high number of �xed and mobile devices that

could be used to disseminate/exchange information. Unfortunately, this is not feasible due to

security reasons (i.e., proprietary access points), egoistic behavior (i.e., lack of incentives for users

to cooperate with one another), high cost of providers, among others. Users can bene�t from dLife

in this scenario as the protocol could allow them to disseminate/exchange content any time just

by considering their social interactions. There would be no need for accessing expensive services.

Additionally, the regular egoistic behavior would lead users to automatically engage in cooperation,

as they know that, by carrying content on behalf of others, it is enough for them to have some

level of connectivity even in places where no connectivity exists.

� Mission-critical Networks: this scenario involves natural catastrophes or hostile environments (e.g.,

war zone). Networks formed here cannot rely on the infrastructure as they may be destroyed

due to �oodings, earthquakes, bombings. However, any Wi-Fi enabled device (e.g., PDAs, cell

phones, laptops, APs) could be used, assuming the humanitarian behavior of the owners of such

devices. This way, networks could be formed taking into consideration the social interactions

among the civilians, police, rescue teams, medics and soldiers to improve the dissemination of

relevant information to each of these agents. Consequently, this would result in better disaster-

relieving actions in the a�ected areas.

5.1.2.2 Architecture of a dLife Node

The architecture of a dLife node comprises �ve main computational components, as illustrated in Fig.

5.1. Such components compute the social weights and node importance (cf. Sec. 4.2 and 4.3), de�ne

the forwarding strategies (cf. Sec. 5.1.1), and implement interfaces to the Bundle Agent (as de�ned in

the Bundle Protocol [72]) and to the lower layers.

The envisioned components are:

� Social Information Gatherer (SIG) - gathers information on the contact duration between the

current node and encountered nodes. This is done for each of the daily samples, corresponding to

di�erent periods of time in the daily routine of a person. Additionally, SIG obtains social weights

and importance of encountered nodes (i.e., potential next forwarders) to be used for forwarding

decisions when required.
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Figure 5.1: Architecture of a dLife node

� Social Information Repository (SIR) - stores information regarding contact duration of encounters,

social weights and importance of encountered nodes and the current node.

� Social Weighter (SW) - interacts with SIR to get contact duration information at the end of every

daily sample. Such information is used to determine the total contact time between the current

node and encountered nodes, and the average duration of such contacts in order to compute the

social weight between nodes (i.e., TECD).

� Importance Assigner (IA) - interacts with SIR to get the social weight between the current node

and encountered nodes, and the importance of these encountered nodes at the end of every daily

sample. This information is then used to compute the importance of the current node (i.e.,

TECDi).

� Decision Maker (DM) - interacts with SIR upon a new encounter to obtain relevant information

in order to decide whether replication should occur.

Besides the forwarding strategy in Sec. 5.1.1 de�ned in the speci�cation as basic strategy, a second

strategy called prioritized is de�ned. It is similar to the basic forwarding strategy, but it prioritizes

bundles destined to the encountered node.

Finally, as for the interfaces, dLife requires one to the Bundle Agent and another to the lower layers:

� Bundle Agent interface: as expected, dLife is only responsible for forwarding decisions, and the

Bundle Agent is the one responsible for sending and receiving bundles between peers. Through

this interface, the dLife routing agent knows about the bundles in the node, and allows it to inform

the Bundle Agent about the bundles to be sent to a peering node. These are the interfaces and

functionalities that the Bundle Agent is expected to provide to dLife routing agent:

� Get Bundle List: provides the dLife routing agent with a list of the stored bundles and their

attributes.

� Send Bundle: noti�es the Bundle Agent to send a speci�c bundle.

� Drop Bundle Advice: advises the Bundle Agent that a speci�c bundle may be dropped if

appropriate.

� Acked Bundle Noti�cation: informs dLife routing agent whether a bundle has been delivered

to its �nal destination and time of delivery.
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� Lower Layers interface: dLife needs to be aware of the presence of neighboring nodes, as well

as when these nodes are not anymore in the vicinity in order to start accounting for the contact

duration between nodes. Thus, these are the interfaces and functionalities that the lower layers

are expected to provide to dLife routing agent:

� New Neighbor: informs the dLife routing agent of the presence of a new node currently within

communication range of the current node, based on the used wireless networking technology.

� Neighbor Gone: informs the dLife routing agent that one of its neighboring nodes is out of

communication range.

5.1.2.3 dLife Messages

dLife messages comprise a header followed by one or more Type-Length-Value (TLVs) components. For

the sake of simplicity, this section brie�y explains the purpose of each TLV that may be included in

dLife messages. For further details on the �elds in the header and TLVs, the reader is encouraged to

refer to the dLife Internet-Draft [16].

� Hello TLV: sets up a link between two dLife nodes. Hello messages are the �rst messages to be

exchanged between neighboring nodes and contain the Endpoint Identi�er (EID), storage capacity,

and current time of the node and a timer value. Nodes store the information in this message, and

acknowledge by signaling that the communication has been established. This is done by means of

an ACK that, if failed to be received, disconnection occurred and link is assumed broken.

� ACK TLV: informs the peering node that i) the connection must be broken due to storage con-

straints; ii) the Social TLV was correctly received; and iii) there are discrepancies/errors with

EIDs.

� EID Dictionary TLV: contains the list of EIDs used by the peering nodes to make routing decisions,

and it is used to synchronize this information between the peering nodes.

� Social TLV: contains the list of nodes that the peering node has encountered, its social weight

towards them, and the importance of the peering node (SWNI), as well as a list of bundles carried

by the peering node (bundleList), and a list of acknowledged bundles (ackedBundleList). This

TLV counts with a "More Social TLVs" �ag that informs whether (1) or not (0) the social message

requires more TLVs to be sent in order to be fully transferred.

5.1.2.4 Protocol Operation

The operation of the dLife protocol follows the states depicted in Fig. 5.2. All nodes start at the sensing

state. Upon a new contact (1), noti�ed by the lower layer, the dLife node starts counting the contact

duration with this peering node and the hello procedure is initiated. As the protocol is being worked

to support multiple contacts, it also remains at the sensing state to detect other contact opportunities.

If by any reason (e.g., peer moved away or ran out of battery) the peer is out of communication range,

the lower layer noti�es (2) the dLife module, which in turn stops counting contact duration towards the

peer and remain in the sensing state awaiting for other peers.

Once in the hello state, the dLife node awaits for the Hello TLV. Upon the reception of this TLV

(3), the dLife node acknowledges the successful reception and saves the information in this message.



56 5. Social-aware and Content-based Opportunistic Routing

Figure 5.2: Operation of dLife protocol

This means that the hello procedure is done (4), and the dLife node can shift to the exchange state. If

the lower layer noti�es that the peer is not in the vicinity anymore (2), the dLife node stops counting

contact duration towards the peer and shifts back to the sensing state.

As soon as the dLife node enters the exchange state, it sends its EID dictionary and SWNI infor-

mation to the peer. The dLife node remains in this state until: i) the EID dictionary of the peer is

received (5), which is used to update its local dictionary; ii) the Social TLV of the peer is received (6),

that is used by its routing agent to inform the Bundle Agent about the bundles to be forwarded to the

peer; and iii) there are new bundles (8) to be sent to the peering node. The dLife node shifts back to

the sensing state if i) the lower layer noti�es that the peer is gone (2), or ii) the More Social TLVs �ag

is set to 0 (7).

It is important to note that, for the sake of simplicity, the inner states for both hello and exchange

states have been omitted. These inner states make sure that the link is established between the peering

nodes prior to the exchange state and whether the EID dictionaries have no errors, ackedBundleList is

updated, among others further detailed in [16].

5.2 Opportunistic Routing Based on Content

As one can observe, dLife makes use of social weights among nodes and their importance to deliver

content between a speci�c pair of nodes. Additionally, one can easily notice that dLife and SCORP

di�er in what social weight re�ects.

The di�erentiating aspect between these social-aware opportunistic routing solutions concerns the

type of information abstracted from the computed social weights. In the context of dLife, the so-

cial weight provides information about the probability of encountering nodes with similar daily social

habits, while in its content-based counterpart, SCORP, social weight is understood as the probability of

encountering nodes with a certain interest among the ones that have similar daily social habits.

It has been shown that focusing on the content, and not on the host, can improve the performance

of challenged networks [14, 18] by allowing an e�cient direct communication between producers and



5.2 Opportunistic Routing Based on Content 57

consumers of information. In addition, exploiting nodes' social interactions and structure (i.e., commu-

nities [13], levels of social interaction [15, 17]) has increased opportunistic routing performance. Thus,

combining content knowledge (i.e., information type, interested parties) with social proximity shall bring

bene�ts (faster, better content reachability) in challenged networks.

Reasons that motivate bringing content knowledge and social awareness together are: i) nodes with a

similar daily habits have higher probability of having similar (content) interest [14]; and, social awareness

allows a faster dissemination of data taking advantage of the more frequent and longer contacts between

closer nodes. Thus, this section introduces how the Social-aware Content-based Opportunistic Routing

Protocol (SCORP) functions.

As explained in Sec. 5.1, dLife considers how nodes interact in their daily routines. Based on that,

this routing solution can determine the social strength existing between nodes based on the duration of

their contacts (by means of TECD) and compute the importance of nodes in speci�c periods of time

(by means of TECDi).

The SCORP proposal adapts the TECD utility function to shift focus from the hosts to the content,

thus introducing content knowledge and becoming able to perform point-to-multipoint delivery. This

resulted in the TECI utility function presented in Sec. 4.5.

SCORP then exploits social proximity and content knowledge to augment the e�ciency of data

delivery in urban, dense scenarios.

5.2.1 SCORP Algorithm

Alg. 5.21 shows the simple operation of SCORP : when the CurrentNode meets a Nodei in a daily

sample ∆Tk, it gets a list with all interests Nodei had contact in that daily sample and the social

weights towards the nodes having these interests (Nodei.weightsToAllinterests computed based on Eq.

4.10). Nodei also sends a list of the messages it is carrying (Nodei.carriedMessages). Then, every

Messagej in the bu�er of CurrentNode is replicated to Nodei if:

� Nodei has interest (Nodei.getInterests) in the message's content

(Messagej .getContentType ); or

� the social weight of Nodei towards an interest (i.e., Messagej .getContentType) is greater than

the weight of the CurrentNode towards this same interest.

Algorithm 5.2 Forwarding with SCORP

1 begin
2 foreach Nodei encountered by CurrentNode do
3 receive(Nodei.weightsToAllinterests and Nodei.carriedMessages)
4 foreach Messagej ∈ bu�er.(CurrentNode) & /∈ bu�er(Nodei) do
5 if (Messagej .getContentType ∈Nodei.getInterests)
6 then CurrentNode.replicateTo(Nodei, Messagej)
7 else if (Nodei.getWeightTo(Messagej .getContentType) >
8 CurrentNode.getWeightTo(Messagej .getContentType)
9 then CurrentNode.replicateTo(Nodei, Messagej)
10 end

1Springer and the original publisher (Ad Hoc Networks, v. 129, 2014, p. 100-115, Social-Aware Opportunistic Routing
Protocol Based on User's Interactions and Interests, Waldir Moreira, Paulo Mendes, Susana Sargento, Algorithm 1,
Copyright© 2014, Institute for Computer Sciences, Social Informatics and Telecommunications Engineering) is given to
the publication in which the material was originally published, by adding; with kind permission from Springer Science and
Business Media [19].
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Figure 5.3: DTN-Amazon project

Based on this, SCORP is expected to replicate only to nodes that do have interest in the content in

the message to be forwarded, or that are socially well connected to other nodes that have that speci�c

interest. Consequently, improvements to resource usage and delivery latency are expected due to the

creation of less replicas.

5.3 Implementation Context

It is worth mentioning that the work done in this chapter is part of the DTN-Amazon project between

COPELABS and Federal University of Pará (UFPA). This project aims at mitigating the e�ects of

digital divide and social exclusion in the riverside communities close to the UFPA campus in Belém,

Pará, Brazil.

The project comprises two main streams following the Delay-Tolerant and Information-Centric Net-

working paradigms as illustrated in Fig. 5.3. Both proposals devised in the context of this Thesis work,

dLife and SCORP, comprise the routing mechanisms to be employed in the project. It is important to

note that the shaded boxes represent the parts that are currently under development or �netuning. The

boxes with dashed lines have either been tested in simulator (SCORP) or are to be developed.

The DTN stream has resulted in what is called the SocialDTN [34], an Android application based

on the DTN architecture [3], Bundle Protocol [72], and dLife Internet-Draft [16]. With SocialDTN, the

idea is to exploit social proximity and interactions between agents (e.g., health and teachers) acting

in these communities, and be independent of any network infrastructure. This is to facilitate the

seamless exchange of content (i.e., videos, photos) between these agents in order to improve their actions.

Additionally, SocialDTN is expected to allow the asynchronous communications between the agents

without relying on infrastructure, which is in most cases inexistent in these areas.
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SocialDTN comprises a Bluetooth Convergence Layer (BCL) that allows nodes to communicate over

the Bluetooth technology and to exploit the aforementioned social proximity and interactions. Regarding

routing, dLife is the choice as it �ts in the context of social interaction.

Still in DTN stream, another work extended the IBR-DTN [73] to also support the BCL but with

a bundle compression control scheme. The idea with this extension [74] is to improve the exchange of

data over the short-lived contact opportunities that may happen between nodes acting in the Amazon

riverside communities.

As for the ICN stream, an Information and Content-oriented Opportunistic Networking (ICON) [75]

approach has been developed based on the content/information-centric paradigm. This means that the

focus is not on the host, but instead in the content traversing the network. As SCORP has shown great

potential for content-based routing, it will be part of ICON as routing choice.

It is important to mention that both SocialDTN and ICON are being developed in a modular way

in other to comprise di�erent operating systems, as well as to allow the development of other schemes

for routing, naming, among others.

5.4 Summary of the Chapter

This chapter presented the social-aware opportunistic routing dLife, which considers the social daily

routine of users to make routing decisions. By combining TECD and TECDi, dLife aims at choosing

only socially well-connected nodes to perform forwarding. Its algorithm as well as its speci�cation (i.e.,

application scenarios, node architecture, relevant messages, and operation) are discussed throughout

this chapter.

Then, the Social-aware Content-based Opportunistic Routing Protocol (SCORP) and its algorithm

are introduced. This second opportunistic routing approach is based on TECI and takes into account

the content traversing the network and the interest that the users have in such content. SCORP

emerged given the potential observed in terms of performance improvements and wise resource usage

when considering content to forward data [52, 70, 71].

To conclude, the chapter presented the context of implementation of both dLife and SCORP, which is

part of DTN-Amazon project. This project is a partnership between COPELABS and Federal University

of Pará (UFPA), and aims to reduce the digital divide and social exclusion observed in isolated Amazon

regions.
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Chapter 6

Performance Evaluation

The focus of this chapter is on the performance evaluation of the social-aware utility functions as well

as the social- and content-based opportunistic routing proposals developed in the context of this Thesis

work. For that, di�erent opportunistic routing benchmarks were taken into account to help assessing

the performance of the proposed work.

To facilitate presentation and understanding, the chapter is divided into three sets of experiments

dedicated to the performance analysis of the: i) social-aware utility functions (Sec. 6.3); ii) opportunistic

routing based on user social daily routine, dLife (Sec. 6.4); and iii) opportunistic routing based on

content, SCORP (Sec. 6.5).

The chapter starts by presenting the evaluation methodology employed throughout the experiments.

Then, a section is dedicated to the common setup used in these sets of experiments. It is important

to note that the experimental setup may vary according to the goal in each set of experiments, but

generally speaking, the setup comprises scenarios based on synthetic mobility models and human traces,

and exposes all the proposals to the same conditions (e.g., generated load, pair of communicating nodes,

transmission rate and range, number of nodes, among others). The di�erences in setups are mentioned

in each corresponding experimental result section when applicable.

6.1 Evaluation Methodology

Performance analysis is carried out on Opportunistic Network Environment (ONE) [68] simulator, and

all results are presented with a 95% con�dence interval.

Proposals are assessed in terms of the following performance metrics: average delivery probability

(i.e., ratio between the number of delivered messages and total number of created messages), average cost

(i.e., number of replicas per delivered message), and average latency (i.e., time elapsed between message

creation and delivery).

It is worth mentioning that, for the experiments involving content-oblivious and content-oriented

proposals (cf. Sec. 6.5), the average delivery probability metric is de�ned as the ratio between the

number of delivered messages and the total number of messages that should have been delivered for

fairness purposes while evaluating the considered proposals.

61
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6.2 Common Experimental Setup

The synthetic mobility model comprises di�erent mobility patterns. It simulates a 12-day interaction in

the city of Helsinki between 150 nodes divided into 8 groups of people and 9 groups of vehicles. Each

node may have a 250-kbps Bluetooth interface with 10-meter communication range and/or 11-Mbps

Wi-Fi interface with 100-meter communication range.

One vehicle group (10 nodes) follows the Shortest Path Map Based Movement mobility model, and

represents police patrols that randomly choose destinations and use the shortest path to reach them

with waiting times ranging from 100 to 300 seconds. The remaining 8 vehicle groups (each with 2 nodes)

represent buses following the Bus Movement mobility model with waiting times ranging from 10 to 30

seconds. The speed of vehicles range from 7 to 10 m/s.

The groups of people have di�erent number of nodes: group A has 14 nodes; groups C, E, F, and

G have 15 nodes each; groups B and D have 16 nodes each; and group H has 18 nodes. People have

walking speeds between 0.8 to 1.4 m/s following the Working Day Movement mobility model, and may

use the bus to move around. Each group was con�gured to have di�erent o�ces, meeting spots, and

home locations. Each person has an average of 8 daily working hours, and walks around the o�ce with

pause times between 1 minute and 4 hours. These people also have a 50% probability of having a leisure

activity after work, which may be done alone or in group and last up to 2 hours.

For the trace-based scenario, the CRAWDAD human traces [76] are used. It represents a period of

two months while 36 Cambridge University students moved throughout their daily routines.

The load generated in these scenarios are equivalent to 6000 messages being created among the same

source/destination pairs across all experiments. The size of messages ranges from 1 kB to 100 kB,

as to represent the di�erent applications running over opportunistic networks (e.g., asynchronous chat

messages, e-mails). The available bu�er space is also limited, as users may not be willing to share all

of the storage capacity of their devices. Regarding message TTL, it may vary from days/weeks up to

unlimited, as to observe the performance behavior (i.e., bu�er consumption, number of replicas) of the

studied proposals.

6.3 Evaluation of Social-aware Utility Functions

This section presents the performance evaluation of TECD and TECDi utility functions against contact-

based and social-based proposals.

The choices for the contact-based PROPHET [5] and Epidemic [4] rely on the fact that they are the

most used benchmarks (cf. Sec. 3.2), with the former being widely recognized within the DTN research

community, and the latter for representing a �ooding-based approach that reaches high delivery rates.

Regarding the social-based Bubble Rap [13] and PeopleRank [11], their selection relates to the fact that

they are good representatives of proposals based on social structures and node popularity.

It is important to mention that PeopleRank is represented by Rank that, instead of determining the

overall importance of a node at each encounter, as PeopleRank does, it estimates the node importance

at the end of each daily sample [33].

The section starts by presenting the experimental setup. Then it is further divided showing the

evaluation of TECD against PROPHET and Epidemic; and the evaluation of TECDi against Bubble

Rap and Rank. The results on this section have been published in [33].
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6.3.1 Experimental Setup

For this set of experiments, only the synthetic mobility model scenario is considered. Moreover, all

nodes are equipped with Bluetooth (250 kbps/10 m), and the buses also have Wi-Fi (11 Mbps/250 m)

to facilitate bus-to-bus data exchange. Due to limitations of the Bubble Rap implementation in ONE, all

nodes are equipped with only Wi-Fi (11 Mbps/100 m) interface for the experiments with this proposal.

The load generated and message bu�er sizes follow the common setup (cf. Sec. 6.2). Message TTL

is set at 1 day (i.e., 24 hours) and unlimited, as the goal is: i) to observe the impact on delivery and

cost according to the life time of messages in the experiments; and, ii) to assess the performance of the

devised social-based utility functions.

Regarding the proposals, both Rank and TECDi have the dumping factor set to 0.8, as this value

lies among the ones in which PeopleRank [11] had the best success rates. Bubble Rap [13] considers

the K-clique and single window algorithms for community formation and node centrality computation,

respectively. Also, its parameter k is set to 5, as Bubble Rap presents the best overall performance in

terms of delivery probability, cost and latency.

6.3.2 Evaluation against Contact-based Algorithms

The TECD-based routing proposal only forwards a message to a new forwarder if it has a strong social

relationship to the destination of the message (cf. Fig. 6.11). This is of advantage to TECD (cf.

Fig. 6.1(a)), which has a 16.17% and 23.77% gain over PROPHET and Epidemic, respectively, for the

24-hour TTL case. For the unlimited TTL case, the advantage of the TECD-based routing proposal

remains with a 18.41% and 23.26% gain over PROPHET and Epidemic, respectively.

As TECD captures the level of social ties, messages are only forwarded to nodes that are socially well

connected to the destinations, even if that means that the carrier has to hold to the messages for longer

times. PROPHET experiences occasional loops which a�ect its performance by taking the opportunity

of exchanging other messages, thus being re�ected in this proposal's delivery probability. As Epidemic

relies on an extreme replication approach, it experiences a quick exhaustion of bu�er space which is set

to 2 MB.

Regarding the average cost (cf. Fig. 6.1(b)), TECD produces much less replicas (57.37) to have

a successful delivery for the 24-hour TTL case, when compared to PROPHET (272.35) and Epidemic

(454.12). As for unlimited TTL, TECD presents an increase in the number of replicas (121.30) to perform

a delivery, but it still remains lower than the number of replicas created by PROPHET (247.11) and by

Epidemic (535.04).

TECD overcomes PROPHET as its forwardings take place based on the social strength between

nodes. This reduces the number of replicas, since carrier nodes keep messages for longer times until

a socially well-connected next hop comes within communication range. The observed increase in the

number of replicas of TECD for the unlimited TTL case was expected, since messages live longer in the

system. PROPHET presents a lower cost for the unlimited case, as the long-lived messages contribute

for the exhaustion of bu�er space. Finally, Epidemic is expected to have an increase in cost as TTL

increases, leading to an approximately 18% increase for the unlimited TTL case.

1Springer and the original publisher (Ad-hoc, Mobile, and Wireless Networks, v. 7363, 2012, p. 98-111, Study on the
E�ect of Network Dynamics on Opportunistic Routing, Waldir Moreira, Manuel de Souza, Paulo Mendes, Susana Sargento,
Figure 2, Copyright © 2012, Springer-Verlag Berlin Heidelberg) is given to the publication in which the material was
originally published, by adding; with kind permission from Springer Science and Business Media [33].
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Regarding average latency (cf. Fig. 6.1(c)), TECD takes less time to deliver its messages for the 24-

hour TTL case: 1672.82 s and 4173.53 s lower than PROPHET and Epidemic, respectively. Despite of

taking more time to decide on the next hop, TECD chooses nodes that have a strong social relationship

with destinations, and this reduces its number of hops (3.23) towards such destinations when compared

to PROPHET and Epidemic (3.66 and 11.10, respectively) and improves delivery time. While the

latency behavior of Epidemic is mostly due to the paths used to reach the destination, PROPHET 's

delivery time is increased also due to the identi�ed occasional loops.
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Figure 6.1: Evaluation of contact-based metrics

As for the unlimited TTL case, TECD holds messages longer as to wait for a better forwarding

opportunity in future contacts. It is also observed that PROPHET behaves similarly to what is reported

in its original paper [5]: as TTL increases, so does its latency. This relates to the fact that PROPHET

does not clear already delivered messages from the system. This in turn occupies bu�er and takes the

opportunity of undelivered messages. Regarding Epidemic, since it �oods the network with many copies

of messages, this also reduces the delivery time of few messages. Consequently, it experiences a latency

reduction, yet with a very high associated cost (cf. Fig. 6.1(b)).

6.3.3 Evaluation against Social-based Algorithms

In this section, the performance of TECD and TECDi is analyzed against Bubble Rap and Rank (cf.

Fig. 6.22). The goal is: i) to analyze the advantages of considering social weight as to best compute

2Springer and the original publisher (Ad-hoc, Mobile, and Wireless Networks, v. 7363, 2012, p. 98-111, Study on the
E�ect of Network Dynamics on Opportunistic Routing, Waldir Moreira, Manuel de Souza, Paulo Mendes, Susana Sargento,
Figure 2, Copyright © 2012, Springer-Verlag Berlin Heidelberg) is given to the publication in which the material was
originally published, by adding; with kind permission from Springer Science and Business Media [33].
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the importance of nodes (used in Rank); and, ii) to analyze how time-evolving social-based approaches

perform against proposals that only consider the identi�cation of social structures such as Bubble Rap.

Regarding the average delivery probability (cf. Fig. 6.2(a)), TECD outperforms Rank and Bubble

Rap by 22.84% and 29.26%, respectively, for the 24-hour TTL case. As for the unlimited TTL case,

one can observe a reduction in the delivery performance of TECD, TECDi, and Rank, with Bubble Rap

being the only one to improve as TTL increases.

 0

 0.2

 0.4

 0.6

 0.8

 1

24h Unlimited

%

TTL

TECD
TECDi

Rank
Bubble Rap

(a) Average delivery probability

 0

 100

 200

 300

 400

 500

 600

 700

24h Unlimited

N
u
m

b
e
r 

o
f 
re

p
lic

a
s

TTL

(b) Average cost

 2⋅10
4

 4⋅10
4

 6⋅10
4

 8⋅10
4

24h Unlimited

S
e
c
o

n
d
s

TTL

(c) Average latency

Figure 6.2: Evaluation of social-based metrics

TECDi has a 6.06% and 4.88% gain over Rank for the 24-hour and unlimited TTL cases, respectively.

When compared to Bubble Rap, TECDi has a 12% gain for the 24-hour TTL case, given the fact that

Bubble Rap has to form communities a�ecting its delivery. This advantage ceases for the unlimited TTL

case in which Bubble Rap has a 9% gain over TECDi. With messages staying longer in the system,

Bubble Rap takes this opportunity to properly form communities, and uses such information to reach

destinations as reported in [13].

Bringing social strength and node importance together has bene�ts: TECDi determines the impor-

tance of nodes considering not only their importance but also the social strength among them. This

means that a node with socially weak neighbors has a lower importance with TECDi than with Rank.

And consequently, important nodes with TECDi are those with strong social ties to other important

nodes in the network.

Regarding the average cost (cf. Fig. 6.2(b)), TECD produces the least number of replicas (57.37) for

the 24-hour TTL case by considering social strength towards destinations. TECDi has the second best

cost performance behavior, since next hops are chosen based not only on their degree, but also on the

strength of the relationships towards their neighbors. For the unlimited TTL case, the cost for TECD,

TECDi, and Rank increases as messages live longer and therefore can be further replicated. Bubble Rap

replicates more as it relies on the global centrality (while communities form) to do it so. Thus, high
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centrality nodes (e.g., buses and police patrols) are always receiving content contributing to high cost

values. The subtle cost reduction of Bubble Rap for the unlimited TTL case refers to bu�er exhaustion,

leading to less replications.

As for the average latency (cf. Fig. 6.2(c)), for the 24-hour TTL case, TECD delivers its messages in

shorter time than Rank and Bubble Rap (less 4598 s and 17476 s, respectively), while TECDi takes more

time than Rank (818.37 s) but still lower than Bubble Rap (12059 s). Regarding the unlimited TTL case,

TECD still takes less time (2752 s) to deliver its messages than Rank, but loses its advantage to Bubble

Rap, taking an average of 13299 s for a delivery. As mentioned before, the latency increase of TECD

is due to its attempt in �nding better next hops by holding the messages longer. With TECDi, once

messages reach high importance nodes, they may take longer to reach destinations if these top-ranked

nodes seldom interact outside their social groups.

The latency experienced by Bubble Rap includes the time to form communities and the time to �nd

high centrality nodes for the 24-hour TTL case. Since latency is a function of the delivered messages

and its delivery rate increased for the unlimited TTL case, the increase in the time for delivery messages

of Bubble Rap was expected.

Both Rank and TECDi present higher latency than TECD, since messages are held longer especially

when the carrier node has a high importance factor in the network. The importance factor explains the

reason why TECDi takes longer to deliver its messages when compared to Rank, as it also considers the

social strength among nodes.

6.3.4 Summary

This section presented the potential of considering the user dynamic while computing social functions.

The proposed social-aware utility functions, TECD and TECDi, are based on the daily routine of users,

and weigh the social ties among these users.

As presented, network dynamics have its impact on the performance of opportunistic routing so-

lutions: TECD presents the best overall performance amongst the studied contact- and social-based

proposals. It also outperforms TECDi with delivery gains up to 21.1%, and lower cost (242 less repli-

cas) and latency (approximately 17.3%). This is explained by the fact that TECD uses social strength

for message forwarding, which is much more reliable than node importance (message may be stuck

with high importance nodes that have little social interaction with destinations). Consequently, TECDi

has unnecessary cost increase that a�ects its delivery capability and time. Yet, when compared to the

remaining proposals, TECDi has shown potential in improving forwarding, and the combination of this

approach with TECD is further investigated in the next section.

6.4 Evaluation of Opportunistic Routing Based on User Social

Daily Routine

This section presents the performance evaluation of dLife, which emerged from the combination of TECD

and TECDi. dLife is evaluated against its community-based variant dLifeComm [15] and also social,

community-based Bubble Rap [13].

The goal is to show the potential of the social-aware dLife proposal independently of social structures

and node centrality. Additionally, the impact of centrality metrics is analyzed as they can lead to the

appearance of bottlenecks.
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The section starts by describing the experimental setup. Then, the performance results of dLife,

dLifeComm, and Bubble Rap are further divided according to the scenario used, namely synthetic

mobility and human trace. The results on this section have been published in [15].

6.4.1 Experimental Setup

For this set of experiments, both scenarios based on synthetic mobility models and human traces are

considered. All nodes are equipped with a Wi-Fi interface (11 Mbps/100 m).

The load generated and message bu�er sizes follow the common setup as before (cf. Sec. 6.2).

Message TTL varies between 1, 2, 4 days and 1, 3 weeks. These values were chosen based on the ones in

which Bubble Rap was reported to have the best performance behavior in terms of delivery probability

and cost [13].

Regarding the proposals, both dLifeComm and Bubble Rap consider K-Clique and cumulative win-

dow algorithms for community formation and node centrality computation, respectively [13]. The pa-

rameter k is set to 5. As dLife measures social weights considering di�erent time periods (cf. Sec. 5.1),

the number of daily samples is set to 24 (i.e., each of one hour).

6.4.2 Evaluation over Synthetic Mobility Scenario

This section presents the evaluation of dLife, dLifeComm, and Bubble Rap over the synthetic mobility

scenario (cf. Fig. 6.3, Copyright © 2012 IEEE [15]). Regarding the average delivery probability as

shown in Fig. 6.3(a), dLife and dLifeComm have performances up to 39.5% and 31.2%, respectively,

better than Bubble Rap.

As communities are not readily available (they are formed as nodes interact), Bubble Rap takes

forwarding decisions based on the node global centrality. However, nodes in this scenario present a

very heterogeneous centrality: only approximately 17% of the nodes have very high centrality, while

the remaining nodes have either mid or low centrality. As a great part of the messages have mid/low

centrality sources, message replication is increased, as Bubble Rap replicates upon encountering a high

centrality node. This impacts its delivery capability, since the bu�er exhausts quickly and is further

degraded as TTL increases (messages replicate more as they are allowed longer in the network).

dLife and dLifeComm also experience some level of bu�er exhaustion with TTL increase, and the per-

formance of dLifeComm is further degraded due to the overhead with community formation. However,

such performance penalty is lessened as dLifeComm is able to capture the dynamism of the behavior of

nodes.

As for the average cost (cf. Fig. 6.3(b)), dLife and dLifeComm require a much lower number

of replicas (up to 78% and 68%, respectively) when compared to Bubble Rap to perform a successful

delivery. This performance behavior is a result of the wise forwarding decisions made by these proposals

based on TECD and TECDi. Thus, such utility functions allow dLife and dLifeComm to have a social

graph encompassing strong edges and very important vertices.

Although employing a scheme to discard messages that reach the destination's community, the cost

of Bubble Rap is expected to increase with TTL, since new replicas of these messages are still being

created by other carriers. This explains the high cost of this proposal.

Fig. 6.3(c) presents the average latency in which dLife and dLifeComm take less time to deliver

messages (48.3% and 46.1%, respectively) than Bubble Rap. One can easily see how taking forwarding
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Figure 6.3: Evaluation over synthetic mobility scenario

decisions based on the dynamic social behavior of nodes is bene�cial: with TECD and TECDi, forward-

ing takes place based on social strength between nodes and their importance in speci�c time periods.

Consequently, messages reach their destinations faster, as both utility functions re�ect the ability of

encountering such destinations in the near future.

By not capturing such dynamism, replicas created with Bubble Rap take longer to be delivered, since

this proposal is not aware of the strength of the social ties between the potential next hops for the

message and its destination.

6.4.3 Evaluation over Trace-based Scenario

This section presents the evaluation of dLife, dLifeComm, and Bubble Rap over the trace-based scenario

(cf. Fig. 6.4, Copyright © 2012 IEEE [15]). Fig. 6.4(a) shows the average delivery probability, where

dLife and dLifeComm reach up to 31.5% and 31.3%, respectively, better performance than Bubble Rap.

It is observed that the delivery performance of Bubble Rap increases with TTL, as reported in Hui

et al. (2011) [13]. For the 2-day TTL case, Bubble Rap is able to reach more destinations. Yet, its

delivery increasing trend halts for the the remaining TTL cases, since it relies on high centrality nodes

to deliver inside the destination community. The issue resides on the fact that the high centrality nodes

might not be socially well connected to the wanted destinations, and the bene�t of higher TTLs is not

exploited any further by Bubble Rap.

Being able to capture the dynamics of user social behavior in speci�c time periods lead both dLife

and dLifeComm to good performance. In the case of dLifeComm, its performance is further improved

when compared to Bubble Rap, since it also relies on node importance to �nd destinations instead of

simply considering the communities that nodes belong to, and their cumulative centrality which does
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Figure 6.4: Evaluation over trace-based scenario

not re�ect reality.

As the number of formed communities is small (approximately 6.7) and most of the nodes are

encompassed by these communities, this explains the similar behavior of dLife and dLifeComm, as the

latter proposal does not su�er as much with community formation overhead, as seen in Sec. 6.4.2.

Interestingly, from these results one can observe that centrality has a greater impact than the notion

of community formation on social-based opportunistic routing. Centrality leads to the appearance of

bottlenecks that can be seen when comparing dLifeComm that combines the notion of community and

TECD/TECDi, and Bubble Rap that combines the notion of community and centrality.

As for the average cost presented in Fig. 6.4(b), dLife and dLifeComm produce up to 55% and

50.5% less replicas than Bubble Rap. For the 4-day TTL case, Bubble Rap displays a cost reduction

that is linked to the sporadicity of contacts in the scenario: messages are created during periods of no

contacts, which result in a lower number of replicas.

Regarding average latency, dLife and dLifeComm are able to deliver messages in 83.7% and 84.7%,

respectively, less time than Bubble Rap for this scenario. Although nodes in such scenario have sporadic

contact, TECD and TECDi are capable of distinguishing which nodes have strong social relationships

and importance. This allows both dLife and dLifeComm to reach destinations in a few number of hops

and, consequently, in less time.

Despite of experiencing also a reduction in the number of hops to reach destinations, Bubble Rap

still presents almost similar latency behavior as presented in Sec. 6.4.2. Since communities are very few

and almost all nodes belong to them, Bubble Rap resorts to centrality, which does not re�ect reality.

Thus, nodes receive messages based on their high centrality values, but the message takes more time to

reach destinations, as such nodes may not be the best option to perform the expected delivery at that

speci�c moment.
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6.4.4 Summary

This section presented how the combination of the TECD and TECDi utility functions, comprising a

new social-aware opportunistic routing proposal, is useful for data forwarding in opportunistic networks.

dLife shows that the dynamism of users' social daily behavior brings bene�ts to opportunistic routing,

resulting in wiser forwarding decisions with suitable delivery probability, cost and latency performance.

Additionally, it is clear that, when comparing Bubble Rap and dLifeComm, centrality ends up negatively

impacting the system performance much more than the identi�ed overhead associated to the notion of

community formation.

6.5 Evaluation of Opportunistic Routing Based on Content

This section presents the evaluation of SCORP against dLife [15], Bubble Rap [13], and Spray and Wait

[7]. Despite of being a social-oblivious solution, Spray and Wait is considered in this set of experiments

as a lower bound in what concerns delivery cost.

The goal is to show the potential of combining social awareness with content information to improve

routing in opportunistic networks.

The section starts by presenting the experimental setup, followed by the results obtained based on

synthetic mobility models and trace-based scenarios. The results on this section have been published in

[19].

6.5.1 Experimental Setup

For this set of experiments, the synthetic mobility models and human traces scenarios are considered.

Also, all nodes are equipped with a Wi-Fi interface (11 Mbps/100 m).

It is worth remembering that, for these experiments, the average delivery probability metric is de�ned

as the ratio between the number of delivered messages and the total number of messages that should have

been delivered.

The load generated and message bu�er sizes follow the common setup as before (cf. Sec. 6.2), and

message TTL varies between 1, 2, 4 days and 1, 3 weeks for the synthetic mobility model scenario.

As SCORP is content-oriented, the groups of people in this scenario have 10 di�erent and randomly

assigned interests that may overlap fully or partially with the interests of other groups. So, to achieve the

same 6000-message load of the simulations of Spray and Wait, Bubble Rap and dLife, 170 messages with

content matching attributed interests are enough to generate the same 6000 messages to be delivered

throughout the simulation of SCORP.

Regarding the trace-based scenario, message TTL is set to 1 day, and the load varies according to the

number of messages generated per destination (1, 5, 10, 20 and 35 from Spray and Wait, Bubble Rap and

dLife sources) or to the number of interests nodes have (1, 5, 10, 20, and 35 for SCORP destinations).

This results in a total of 35, 175, 350, 700, and 1225 messages being expected to be received throughout

the simulations of the studied proposals. The msg/int notation in the �gures denotes the number of

di�erent messages sent by Spray and Wait, Bubble Rap and dLife sources, or the number of di�erent

interests of each of the SCORP receivers.

To guarantee fairness for Spray and Wait, Bubble Rap and dLife in the human trace scenario, node

0 has no bu�er size restriction to avoid message discarding, due to bu�er constraint given the number

of messages it has to generate. Additionally, the rate of message generation varies with the load: when
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the load is 1, 5, and 10 messages generated to each node, they are generated at a rate of 35 messages per

day. As for the load with 20 and 35 messages, the rates are of 70 and 140 messages per day, respectively.

This is done to allow Bubble Rap and dLife messages to be exchanged/delivered given the message TTL

(i.e., 1 day).

Regarding the proposals, Spray and Wait runs in binary mode with the number of copies L set to

10. Bubble Rap uses algorithms for community formation and node centrality computation (K-Clique

and cumulative window) [13]. dLife and SCORP consider 24 daily samples of one hour as mentioned

in Sections 5.1 and 5.2.

6.5.2 Evaluation of TTL Impact

This section presents the impact of TTL (cf. Fig. 6.53). The synthetic mobility model is used with

varying message TTL to observe the impact of message TTL on the studied opportunistic routing

proposals, and to choose the TTL value in which these proposals have the best overall performance. As

a general remark, the average number of contacts per hour in this scenario is of 962, happening in a

homogeneous manner.

Fig. 6.5(a) shows the average delivery probability. As Bubble Rap relies mostly on global centrality

to perform forwardings, its performance is degraded due to the fact that very few nodes have high

centrality (20%), and a high number of the messages is generated in low centrality nodes. This leads to

more replications and consequently bu�er exhaustion. This issue is further worsened as TTL increases.

dLife has a 21% advantage over Bubble Rap, since it captures the dynamism of node behavior.

However, dLife takes longer to have a stable view of the network in terms of social weights due to the

high number of contacts and their frequency. This results in unwanted replications, also leading it to

experience bu�er exhaustion and preventing other message to be delivered.

Spray and Wait overcomes Bubble Rap and dLife by up to 58.6% and 37.7%, respectively. This is

due to the fact that the random replicas created by Spray and Wait reach nodes (i.e., buses and police

patrols) covering most of the simulated area, and that have higher chance of coming into contact to the

destination of messages.

Compared to the other proposals, SCORP reaches up to 64.7%, 44.5%, and 10.7% over Bubble Rap,

dLife and Spray and Wait, respectively, by taking advantage of the interests that nodes share. This

results in a quick message dissemination. Yet, SCORP experiences a subtle decrease in its delivery rate

as message TTL increases. Since messages live longer in the network, few messages are discarded due

to the number of forwardings and resulting bu�er exhaustion.

Regarding the average cost (cf. Fig. 6.5(b)), Bubble Rap replicates more than the other proposals

to perform a successful delivery, since messages are allowed to live longer in the network [13].

dLife relies on the social strength and node importance to replicate [15], which leads it to create

up to 65.2% less replicas than Bubble Rap for the simulated TTLs. This relates to the fact that the

social weights are more accurate than community formation. Given the subjective nature of the latter,

communities are formed based on pre-de�ned and static contact duration, when in reality people consider

much more than this to de�ne their communities.

3Springer and the original publisher (Ad Hoc Networks, v. 129, 2014, p. 100-115, Social-Aware Opportunistic Routing
Protocol Based on User's Interactions and Interests, Waldir Moreira, Paulo Mendes, Susana Sargento, Figure 2, Copy-
right © 2014, Institute for Computer Sciences, Social Informatics and Telecommunications Engineering) is given to the
publication in which the material was originally published, by adding; with kind permission from Springer Science and
Business Media [19].



72 6. Performance Evaluation

0

0.2

0.4

0.6

0.8

1

1 day 2 day 4 day 1week 3week

%

TTL

(a) Average delivery probability

0

200

400

600

800

1000

1200

1400

1600

1 day 2 day 4 day 1week 3week

#
o
f
re
p
lic
a
s

TTL

Spray andWait

Bubble Rap

dLife
SCORP

(b) Average cost

5⋅10
3

1⋅10
4

2⋅10
4

3⋅10
4

4⋅10
4

1 day 2 day 4 day 1week 3week

S
e
c
o
n
d
s

TTL

(c) Average latency

Figure 6.5: Evaluation over synthetic mobility scenario

By considering interests, SCORP can easily identify the potential destinations for the carried mes-

sages. Consequently, SCORP produces up to 99.8% and 99.4% less replicas than Bubble Rap and dLife,

respectively.

Spray and Wait is less costly as it limits the number of replicas (L = 10) that should be created per

each message. This allows this proposal to have the best cost behavior among the studied solutions,

displaying an average of 10.14 replicas across the TTL con�gurations. However, for the 1- and 2-day

TTL cases, SCORP manages to have a lower cost (8.6 and 8.3 less replicas, respectively) when compared

to Spray and Wait, showing the potential of SCORP for applications generating messages with a timely

limited utility (i.e., low TTL).

Fig. 6.5(c) shows that, in terms of average latency, Bubble Rap takes more time (up to 58.1%, 52.6%

and 58.8%) to deliver messages than Spray and Wait, dLife and SCORP, respectively. Due to the fact

that communities are outdated and few nodes have high centrality, messages reach nodes which are

weakly connected to destinations

Both dLife and SCORP experience lower latencies, since messages reach only nodes that are socially

well connected to the destination or that share speci�c interests. This increases the probability of these

proposals in delivering messages in less time.

Despite of having a small advantage over Spray and Wait and dLife (up to 6.4% and 17.6% less

latency, respectively), SCORP ends up taking more time to deliver some messages (1- and 3-week TTL)

since messages can stay longer in the network. This means that SCORP shall take longer to choose the

best next forwarders.

It can be observed that message TTL has little impact in the social-oblivious Spray and Wait. How-

ever, such impact varies over the social-aware proposals. Additionally, considering content information



6.5 Evaluation of Opportunistic Routing Based on Content 73

(i.e., users' interests) is advantageous. SCORP has delivery performance up to 97.2% with very little

associated cost and low latency.

With this evaluation, the 1-day message TTL value was considered for the next set of experiments,

as it allows the proposals to deliver a fair amount of the created messages with less associated cost and

latency.

6.5.3 Evaluation of Network Load Impact

This section presents the impact of network load (cf. Fig. 6.64). The human trace-based scenario is

used with varying network load to observe the behavior of the proposals considering the exchange of

data independently of the existing levels of disruption/intermittency. As a general remark, the average

number of contacts per hour in this scenario is of 32; and Bubble Rap forms an average of approx. 6.7

communities, where most of them comprise almost all nodes. Finally, all results in this section are

presented with an increasing number of messages/interests (msg/int) per node.

Fig. 6.6(a) presents the average delivery probability. For the 1 msg/int con�guration, Bubble Rap has

better performance than Spray and Wait and dLife/SCORP (delivering 4.9% and 24.8%, respectively).

As most of the communities comprise almost all nodes and replication is done within those communities,

this is advantageous to Bubble Rap that creates more replicas, increasing its probability of delivering

content.

Spray and Wait presents a 20% advantage over dLife and SCORP. However, such advantage is

degraded when considering the results described in Sec. 6.5.2. Di�erent from the synthetic mobility

model scenario, the human trace scenario has nodes following routines, and there are no nodes covering

the whole extension of the simulated area. This results in replicas reaching nodes that never encounter

the desired destinations.

Both dLife and SCORP display similar performance, since what guides their forwarding is the social

weight or node importance (dLife) or social weight to interests (SCORP). As contacts are very little

(average 32 contact/hour) and happen in a sporadic manner, dLife and SCORP replicate less and thus

deliver less content.

For 5 and 10 msg/int con�gurations, the reduced TTL and sporadic contacts directly a�ect the

delivery performance of both Spray and Wait and Bubble Rap. As messages may be created during

periods of no contacts, TTL expires prior to the proposals delivering messages to their destination.

For the 20 and 35 msg/int con�gurations, the performance of Bubble Rap is further degraded by

bu�er exhaustion. To support this claim, bu�er occupancy is estimated for the 20 msg/int con�guration:

Bubble Rap performs an average of 39240 forwardings during the simulation; by dividing this by the

number of days (roughly 12) and by the number of nodes (35, source not included), there is an average

of 3270 replicas created per node. By multiplying this by the average message size (52275 bytes), the

result is a bu�er occupancy of 4.88 MB per node, exceeding the 2MB allowed. It is important to mention

that this is just an estimation for the worst case scenario with Bubble Rap spreading copies to all nodes.

As this does not happen, since Bubble Rap employs centrality to control replication, bu�er exhaustion

worsens as replication occurs to few nodes and not all as in the estimation. Since message generation rate

4Springer and the original publisher (Ad Hoc Networks, v. 129, 2014, p. 100-115, Social-Aware Opportunistic Routing
Protocol Based on User's Interactions and Interests, Waldir Moreira, Paulo Mendes, Susana Sargento, Figure 3, Copy-
right © 2014, Institute for Computer Sciences, Social Informatics and Telecommunications Engineering) is given to the
publication in which the material was originally published, by adding; with kind permission from Springer Science and
Business Media [19].
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increases with load, messages can easily take over forwarding opportunities of other messages, reducing

the delivery probability of the newly created messages.
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Figure 6.6: Evaluation over trace-based scenario with a 1-day TTL

dLife presents a more stable behavior than Bubble Rap, as it considers social strength or node

importance to reach destinations. Yet, due to its design choices, dLife is a�ected by the rate of contacts.

It also experiences bu�er exhaustion (approximately 24% more bu�er occupancy than the allowed) for

the 35 msg/int con�guration.

With SCORP, one can observe how content awareness can improve opportunistic routing. The

delivery probability of SCORP increases, since the ability to deliver content of nodes increases (i.e., the

more interests a nodes has, the better forwarder it becomes).

Fig. 6.6(b) presents the average cost. For the 1 msg/int con�guration, Bubble Rap presents the

highest cost, since its forwardings are based in the formed communities. Bubble Rap has an average

of 671.4 forwardings against the 317, 141 and 236 forwardings by Spray and Wait, dLife and SCORP,

respectively, to perform a successful delivery.

As expected, Spray and Wait presents a stable cost, since it limits the number of create replicas. By

considering well socially-connected nodes or nodes interested in the content of the messages traversing

the network, dLife and SCORP tend to replicate less.

Due to a particularity in its implementation, SCORP replicates more than dLife: nodes with a

certain interest, not only process that message, but also keep a copy for further replication as they may

have a chance to �nd nodes with this same interest, or that met other nodes with such interest. In this

latter case, a node receiving a message with content matching its interest, also replicates it (unnecessary

and unwanted replicas) to nodes that often have encountered it (and have a greater social weight to

that speci�c interest).
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For the 5, 10, 20 and 35 msg/int con�gurations, the number of forwardings increases with the

load. Still, this is not enough to increase the delivery performance of Bubble Rap and dLife, and just

contributes to their associated cost in delivering content.

With more interests, a SCORP node becomes a potential forwarder to other nodes. Hence, the

unwanted replicas observed in the 1 msg/int con�guration have a positive e�ect in what concerns

spreading content. Furthermore, by considering only interested nodes or nodes that interact with others

interested in the carried message, SCORP reduces cost: it produces an average of approximately 3.5

replicas across the msg/int con�gurations against an average of 9, approximately 48.4 and 16.1 replicas

of Spray and Wait, Bubble Rap and dLife, respectively. Finally, SCORP uses less resources (i.e., bu�er):

content awareness leads to a bu�er occupancy varying between approximately 0.03 MB (1 msg/int) and

0.15 MB (35 msg/int).

The average latency is presented in Fig. 6.6(c). For the 1 msg/int con�guration, Bubble Rap

messages take 24% and 52% longer to be delivered when compared to Spray and Wait and dLife/SCORP,

respectively. As most of the formed communities comprise almost all nodes, messages may be exchanged

between nodes that take longer to reach destinations (despite the fact that node do share the same

community).

In the case of dLife and SCORP, their lower latency is explained by the fact that most of their

deliveries (90%) are performed directly within the �rst two hours of simulation between source and

destinations nodes. The same behavior is observed for Spray and Wait, which delivers 85% of its

messages directly up to the second hour of simulation; however, 17% of such deliveries are performed

directly, re�ecting the power behind random replications.

For the 5, 10, 20 and 35 msg/int con�gurations, the peak at the 5 msg/int con�guration is due to

the time messages are created. By looking at the contact distribution, one can observe that messages

are created in periods of little to no contacts with followed by long periods (between 12 and 23 hours) of

almost no contact. This contributes to the observed increase in latency as messages are stored longer.

As load increases, messages are generated before or during periods of high number of contacts, which

reduces the experienced latency. Since latency is determined based on the delivered messages, this

explains the decrease and variable behavior for the 10, 20 and 35 msg/int con�gurations experienced

by Spray and Wait, Bubble Rap and dLife: the increase and decrease of delivery rate are in�uenced by

chosen forwarders that take longer to encounter the destination and deliver content.

SCORP delivers its messages up to 93.61%, 90.25% and 89.94% less time than Spray and Wait,

Bubble Rap and dLife, respectively. A SCORP node can receive more information since it is interested

in the content being replicated, and becomes a better forwarder as the chance of meeting nodes sharing

the same interests is high. It is observed that almost all communities comprise almost all nodes. Despite

the idea of community formation is of no importance to SCORP, this observation suggests that nodes

have a high number of contacts, which is of great advantage for SCORP, since it can �nd destinations

(i.e., interested nodes) faster. To support this claim, by looking at the delivered messages, one can

observe that shared interests account for 46%, 53%, 59% and 66% of deliveries in the 5, 10, 20, and 35

msg/int con�gurations, respectively. Other destinations are reached through the ability of SCORP in

identifying interested parties, which further improves its performance.
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6.5.4 Summary

This section presented the bene�ts of combining social awareness and content information (i.e., infor-

mation type, interested parties) to improve data dissemination in urban, dense scenario.

The SCORP approach is based on users' daily interactions and interests, and shows that data dis-

semination can be further improved in challenged networks when routing is devised considering content

knowledge and social proximity. SCORP presents better performance than social-aware and content-

oblivious opportunistic routing proposals, such as Bubble Rap and dLife. The delivery capability of

SCORP reaches up to 97% with an average of 46.9 minutes against the 335.5 and 343.7 minutes re-

quired by Bubble Rap and dLife, respectively, to perform a delivery. Moreover, SCORP replicates up

to approximately 13.9 and 4.7 times less than Bubble Rap and dLife, respectively.

6.6 Summary of the Chapter

This chapter presented the evaluation carried out to assess the performance of the proposed social-

aware utility functions as well as the social- and content-based opportunistic routing approaches. The

evaluation took into account di�erent opportunistic routing benchmarks for comparison purposes over

scenarios comprising synthetic mobility models and human traces. Every experiment was set to ex-

pose the studied proposals to the same conditions (e.g., generated load, pair of communicating nodes,

transmission rate and range, number of nodes, among others).

The chapter started with the evaluation of the social-aware utility functions, highlighting the per-

formance of each of them and discussing on their potential when working separate and when combined.

Then, the combination of these utility functions resulted in the new social-aware opportunistic routing

dLife, which relies on the dynamics of user behavior to take forwarding decisions. As presented, it is

clear how opportunistic routing can pro�t when focusing on the dynamism of social interactions.

Finally, the chapter presented the improvements for opportunistic routing when combining social

awareness and content information (i.e., information type, interested parties). This combination led

to the Social-aware Content-based Opportunistic Routing Protocol (SCORP), which has outperformed

social-aware and content-oblivious opportunistic routing proposals. Given the fact that SCORP consid-

ers not only the social interactions of users, but also their interest in the content traversing the network,

it is able to have almost optimum delivery with less time and associated cost.



Chapter 7

Structure Analysis of Social-based

Networks

The analysis of the structure of opportunistic networks has shown that this type of networks may exhibit

di�erent characteristics (e.g., small world, scale free, power-law). Interestingly, such networks may be

even modeled to display a speci�c characteristic (e.g., scale free [77]) based on the application scenario

to which they are subject.

Independently of the displayed feature, the satisfactory functioning of opportunistic routing solutions

is directly related to the fact that such solutions can cope with the structural properties coming from

these characteristics [78], which in turn result from the underlying user mobility patterns [51].

Moreover, given its observed dynamic behavior, opportunistic networking displays the time-evolving

(or time-varying) behavior [79], in which users' behavior and the links between them vary in di�erent

instants in time.

This chapter does not aim at showing whether the structure of opportunistic connectivity graphs

have the time-evolving/varying behavior, as there are already di�erent works that address such topic

[80, 81, 82, 83, 79]. Instead, this chapter analyzes the structure of the network of social relationships

formed based on social awareness, and shows how such structure can be characterized and whether the

featured characteristics vary in di�erent time periods [36].

It is important to note that the structure analysis throughout this chapter was carried out on the

Gephi v0.8.2 [84] and Cytoscape v2.8.3 [85] analysis tools. Finally, the di�erent/increasing sizes and

shades of gray (up to black) in the �gures indicate the degree of nodes and social strength of edges.

7.1 Introduction to Network Structure Characterization

Opportunistic networks have shown (or even have been modeled to display) features compatible with

small world [78], scale free [77], and contact/inter-contact time power law distribution [86] properties.

This section brie�y presents each of these properties with few examples that may apply to the structure

of opportunistic networks.

77
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7.1.1 Small-World Networks

In small-world networks, most of the nodes may be reached through a small series of hops. That is

to say that, the average path length between nodes is shorter than the network diameter. Moreover,

besides the presence of short paths between nodes, small-world networks also present a high clustering

coe�cient feature [87, 88].

As an example of small-world features, Fig. 7.1 illustrates a network of airline �ights1.

Figure 7.1: Airline �ight network

This network has 235 nodes (i.e., vertices) with 1297 edges between them. It presents an average

path length of 2.318, a network diameter of 4, and an average clustering coe�cient (not considering

nodes with degree ≤ 1) of 0.652, which indicate small-world features comparative to the ones reported

by Hossmann et al. (2011) [78].

The degree distribution could be another feature used to identify small-world networks. However,

such feature is unable to re�ect real-world behavior, since the small-world model was not meant to

capture real-world degree distributions [87, 88].

It has been shown that the structure of the network of contacts of di�erent human traces (e.g., Wi-

Fi associations at Dartmouth and ETH Zurich campuses, MIT Bluetooth contacts, Gowalla check-ins)

formed during the experiments does have such features [78]. These �ndings are of great interest for

this Thesis, as the goal of this chapter is to check whether such features remain in the structure of the

network of social relationships formed in di�erent periods of time.

1https://gephi.org/datasets/airlines.graphml.zip
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7.1.2 Scale-Free Networks

A scale-free feature is related to the network degree distribution following a power law [87, 88]. This

means that scale-free networks have a high number of nodes (i.e., hubs) with degree higher than the

average degree found in the network. Additionally, a large part of the nodes is connected, comprising

the giant component (i.e., a considerable number of connected vertices) [89].

In Fig. 7.2 an example of scale-free network is given: the Protein-Protein interaction network in

yeast2. It is important to mention that this network was treated as undirected graph in both tools.

Figure 7.2: Protein interaction in yeast

This network has 2361 nodes with 7182 edges between them from which 536 edges are self-loops.

Fig. 7.3 shows the degree distribution of the network, which indeed approximates a power law (y = axb,

with a = 2463.4 and b = −1.861). Regarding the average degree, it is of 5.63 and 694 (29.39%) nodes

have degree higher than such average. Finally, 2224 (94.2%) nodes are in the giant component. These

features are compatible with scale-free networks.

2https://gephi.org/datasets/yeast.gexf.zip
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Figure 7.3: Scale-free degree distribution

As observed in Sec. 7.1.1, the structure of the network of contacts displays small-world features [78].

However, it is not known whether these features remain in di�erent periods of time, as opportunistic

networks are very dynamic.

Besides that, these networks have shown satisfactory functioning when modeled with scale-free fea-

tures [77]. Thus, this section introduces these features that are used later in the chapter to check if

they can be seen when looking at the structure of the network of social relationships in di�erent time

periods.

7.1.3 Power Law

Opportunistic networking takes advantages of the contacts taking place between users for data exchange.

That is, this networking paradigm depends on the underlying human mobility [90].

This means that the contact time (i.e., duration) and inter-contact time (i.e., time elapsed between

such contacts) are of great importance to decide whether data should be exchanged to reach a speci�c

destination.

It has been shown that, not only can a power law characterize the degree distribution of scale-free

networks, but it can also characterize the distribution of contact and inter-contact times in opportunistic

networking environment [91]. More interestingly, this power-law property has been found in di�erent

human mobility traces with experiments spanning indoor to outdoor and campus to city-wide areas [86].

By knowing how contact/inter-contact times are characterized, opportunistic routing solutions can

be tuned to make the most out of whichever length the contacts have, and the delay involved in the

data exchange, for instance. That is, to have proposals that can cope with the dynamism found in the

user behavior [1].
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7.2 Timely Fashion Analysis

From the di�erent properties seen in Sec. 7.1 that the network structure of social relationships resulting

from opportunistic contacts may have, this chapter aims at understanding which properties are found

in the social-aware approach devised in this Thesis work.

This section starts �rst with the structure characterization considering the social and contact net-

works (resulting from user interaction) formed throughout the experiment (i.e., whole-time network

structure). Then, given the time-varying feature of opportunistic contact graphs [80, 81, 82, 83, 79], the

section presents what properties the network structure has in di�erent time periods (each of one hour),

and checks whether these properties remain or change as time evolves.

To achieve such goal, two CRAWDAD human traces are considered: i) Cambridge [76], which

comprises a group of 36 students carrying iMote devices while in their daily routines during a two-month

period in the city of Cambridge, UK; and, ii) MIT [92], which comprises 97 Nokia 6600 smart phones

distributed among the students and sta� of this institution. This dataset is worth of approximately 40

years of information.

As the main interest here is on the structure of the resulting social network, I only consider the

TECD utility function, which leads to a connectivity graph based on the social weights among users.

Since the social weight universe can comprise very low weights (resulting from short contacts), I de�ne

a threshold to eliminate few edges, which stand below the lower bound considering a 95% con�dence

interval of such social weights. This is analogous to the approach used by Hossmann et al. (2011)

[78] to improve the interpretability of weighted graphs; however, their analysis is done over the entire

experiment, while I also want to understand the social network structure in the di�erent time periods

(i.e., time period-based structure).

7.2.1 Whole-time Network Structure

This section analyzes the properties of the structures of the social and contact networks formed from

the Cambridge and MIT traces, considering the full network created throughout the experiment. Thus,

Table 7.1 presents the identi�ed small-world and scale-free properties of these formed graphs.

Table 7.1: Small-world and scale-free properties

Social-based Contact-based

Cambridge MIT Cambridge MIT

# of Edges 143.16 387.10 483 2280

Avg Clustering
Coe�cient

0.69 0.66 0.84 0.74

Small World Avg Path Length 2.27 2.64 1.23 1.51

Network
Diameter 5.2 6.2 2 3

Avg Degree 8 7.98 26.8 47

Scale Free
# of Nodes with
Degree Higher
than Avg Degree

21.22 41.57 22 52

# of Nodes in the
Giant Component

33.70 72.33 36 96

For the sake of simplicity, the table displays two graph types based on: i) social aspects considering

the TECD utility function (i.e., social-based), and ii) node contacts (i.e., contact-based). That is, the
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former is a graph where edges are socially weighted with such weights changing as nodes interact; while

the latter is an incremental graph with new edges emerging as new contacts take place among nodes.

As the goal is to characterize the structure of the network (be it social- or contact-based), checking

whether the contact/inter-contact times follow a power law is out of the scope of this work. Finally,

as TECD works based on daily samples, the social-based columns present the average of each property

over the entire simulation.

As presented in Sec. 7.1, to display small-world properties, networks shall have an average path

length smaller than the network diameter and a high clustering coe�cient [87, 88]. From Table 7.1,

one can observe that the structure of social- and contact-based networks is compatible with small-world

networks for both datasets.

When social awareness is considered, the connectivity graph has a much lower number of edges than

the contact-based version. This is expected since, as nodes interact, social-based approaches select edges

that best re�ect the existing social interaction among nodes to decide on forwarding (e.g., to reach a

brother, it is better to consider another family member than choosing a classmate).

Additionally, with social awareness nodes i) are not as clustered as in contact-based networks (0.69 <

0.84 for Cambridge, and 0.66 < 0.74 for MIT); and ii) need more hops to be reached (2.27 > 1.23 for

Cambridge, and 2.64 > 1.51 for MIT). However, social-based networks consider only very good social

links (i.e., edges), which has a positive e�ect for routing (e.g., less resource consumption and latency,

higher delivery probability as discussed in Chapter 6).

Despite the potential of weak ties [51], contact-based network routing may end up consuming much

more resources and having negative e�ect in delivery and experienced latency.

One may question this observation, as contact-based networks have more edges and small average

path length and diameter, which could lead to better delivery and low latency; however, the network

does not start with such number of edges, and the chosen next forwarders may not be the best options,

since the edge in the connectivity graph can represent a contact that happened a long time ago, and

does not re�ect reality given the fact the graph is incrementally formed.

Interestingly, the formed social- and contact-based networks have few properties compatible with

scale-free networks. From a total of 36 nodes in the Cambridge traces, both networks present a consid-

erable number of nodes with degree higher than the average (21.22 and 22) and that are included in the

giant component (33.7 and 36). However, when observing the degree distribution depicted in Figs. 7.4

and 7.5, one can conclude that the degree distributions of the formed social- and contact-based networks

do not follow a power-law distribution.

In the case of the social-based network in Fig. 7.4, the last daily sample of the last day is used

to illustrate the degree distribution. The line represents a power law (y = axb) with a = 1.291 and

b = 0.264. Fig. 7.5 shows the degree distribution of the contact-based network, where the line represents

a power law (y = axb) with a = 0.056 and b = 1.123.

Regarding the MIT traces, both social- and contact-based networks display scale-free properties.

Out of the 97 nodes, a good part of these nodes have degree higher than the average (41.57 and 52

nodes). Also, great part of the nodes are in the giant component (72.33 and 96 nodes). Yet, by looking

at the degree distribution (cf. Figs. 7.6 and 7.7), one can see that it does not �t a power law.

For the social-based network in Fig. 7.6, the last sample of the last day was also considered to

illustrate the degree distribution, in which the line representing the power law (y = axb) has a = 7.5

and b = −0.388. As for the contact-based formed from the MIT traces, the line in Fig. 7.7 represents a

power law (y = axb) with a = 0.932 and b = 0.145.
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Figure 7.4: Degree distribution of whole-time social-based network (Cambridge traces)

Figure 7.5: Degree distribution of whole-time contact-based network (Cambridge traces)
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Figure 7.6: Degree distribution of whole-time social-based network (MIT traces)

Figure 7.7: Degree distribution of whole-time contact-based network (MIT traces)
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In summary, regarding the analysis carried out over the entire network behavior, one can conclude

that, independently of being based on social awareness or solely on contacts, the connectivity graph

displays features of small-world networks. This is also observed by Hossmann et al. (2011) [78] in

their analysis, where di�erent human traces have small-world features. In what concerns opportunistic

routing, this is interesting as short path lengths and high clustering coe�cients help social-based ap-

proaches in identifying features such as communities, levels of social interaction, node centrality, which

can improve routing performance. As for contact-based routing, this is irrelevant, as these proposals

are more interested in getting information disseminated, and surely have their performance degraded

for not considering the social nature of contacts.

Moreover, both social- and contact-based networks display few scale-free properties, but not enough

to be classi�ed as such. Still, the identi�ed properties may indicate that destination nodes in the formed

networks can be quickly found, since a considerable number of nodes is well connected.

7.2.2 Time Period-based Structure

This section analyzes the properties of the structure of social and contact networks considering the

network structure in di�erent time periods. The goal in this section is to observe whether the network

structure changes in di�erent periods of time.

As TECD considers daily samples of one hour each, information about the structure of the social-

and contact-based networks was collected in di�erent days and samples considering the CRAWDAD

Cambridge and MIT traces. It is important to note that the Cambridge dataset is worth of two months

of data. However, when simulated it is worth almost 12 day of communications. Regarding the MIT

dataset, given the amount of data, the equivalent to 196.5 days (i.e., 6.5 months) was considered.

Figs. 7.8 and 7.9 show how the structure of the social- and contact-based networks formed from the

Cambridge traces changes from the �rst daily sample of the �rst day to the last sample of the last day.

It is worth mentioning that the Fruchterman Reingold layout, available in Gephi [84], was used solely

to improve the presentation of the formed networks.

With social awareness, only the links (i.e., edges) representing socially well-connected nodes are

present in speci�c time periods. This allows for a better view of the dynamicity of user behavior, since

it re�ects the di�erent levels of social interaction throughout the users' daily routines. Consequently,

opportunistic routing proposals based on social awareness can take better forwarding decisions, since

nodes shall only forward content to others which are socially well connected to destinations [15].

(a) Day 1-Sample 0 (b) Day 4-Sample 8 (c) Day 8-Sample 3 (d) Day 12-Sample 23

Figure 7.8: Social-based network (time period-based structure)
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(a) Day 1-Sample 0 (b) Day 4-Sample 8 (c) Day 8-Sample 3 (d) Day 12-Sample 23

Figure 7.9: Contact-based network (time period-based structure)

As one could expect, the contact-based network evolves in the sense that, as nodes interact, new edges

emerge. While with social awareness nodes can be distinguished in terms of their social interactions

(cf. node degree and social strength of edges in Fig. 7.8(d)), this does not apply to the structure of

contact-based networks. Fig. 7.9(d) shows a homogeneity trend in terms of node degree for the contact-

based network. This feature of contact-based networks may be costly in terms of resource utilization in

opportunistic networks, since routing based on such connectivity graphs might become a mere �ooding

solution (i.e., nodes cannot be distinguished, thus replication may occur unwisely) [33].

Table 7.2 presents the small-world and scale-free properties for di�erent time periods considered

in Figs. 7.8 and 7.9 for the Cambridge traces. In order to classify how the structure of social- and

contact-based networks changes in di�erent time periods, each of these periods are considered; however,

for the sake of simplicity, only four speci�c periods of di�erent days are displayed to facilitate reading.

The small-world properties remain for the structure of the social-based network. When compared to

the whole-time structure analysis (cf. Table 7.1), one can observe that the structure changes in terms

of node degree and social weights of edges, but the characteristics are still compliant with small-world

networks. Moreover, the number of edges stabilize, showing how TECD can indeed capture the dynamic

behavior of social interactions. The contact-based network also remains with small-world features as

identi�ed in the whole-time structure analysis.

Table 7.2: Small-world and scale-free properties found in the Cambridge traces

Small World Scale Free

Graph
Type

Time
Period

# of
Edges

Avg
Clustering
Coe�cient

Avg
Path
Length

Network
Diameter

Avg
Degree

# of Nodes
with Degree
Higher than
Avg Degree

# of Nodes
in the
Giant
Compo-
nent

Social-
based

Day 1 -
Sample 0

78 0.60 1.49 3 4.33 15 17

Day 4 -
Sample 8

125 0.67 2.23 4 6.94 21 34

Day 8 -
Sample 3

162 0.75 2.19 5 9 23 35

Day 12 -
Sample 23

162 0.77 2.41 6 9 22 34

Contact-
based

Day 1 -
Sample 0

139 0.72 1.61 3 7.72 19 24

Day 4 -
Sample 8

347 0.77 1.46 3 19.28 19 36

Day 8 -
Sample 3

462 0.82 1.27 2 25.67 18 36

Day 12 -
Sample 23

483 0.84 1.23 2 26.83 22 36
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When comparing the social-based network to the contact-based one, social-aware nodes are less

clustered and require more hops to be reached in the former for the di�erent time periods. However,

the social-based network has the advantage of displaying only socially well-connected nodes with a

lower, and yet useful number of edges. In terms of routing, this is rather interesting since social-based

approaches only select forwarders that can increase delivery probability.

One could argue that such features could also be advantageous to contact-based routing approaches

(i.e., more clusters and smaller path length and diameter). However, contact-based solutions fail in

capturing the changes in the connectivity network as they are incrementally formed (cf. Sec. 7.2.1).

Despite of the potential in quickly reaching destination nodes due to the small-world features, contact-

based routing may experience longer delays, a�ecting its delivery probability. Additionally, given the

identi�ed homogeneity trend in terms of node degree, cost (i.e., number of replications to achieve a

successful delivery) may easily become an issue.

Regarding the scale-free features, both social- and contact-based networks still display a considerable

number of nodes with degree higher than the average degree, as well as most (if not all) nodes in the

giant component.

Figs. 7.10 and 7.11 present the degree distribution of social- and contact-based networks for day 4

- sample 8 for the Cambridge traces. Still, the degree distribution of both networks does not follow a

power law, so they cannot be characterized as scale-free networks. The lines representing the power law

(y = axb) have a = 3.211 and b = −0.235 for the social-based network, and a = 0.930 and b = 0.234 for

the contact-based network.

Figure 7.10: Degree distribution of time-period social-based network (Cambridge traces)
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Figure 7.11: Degree distribution of time-period contact-based network (Cambridge traces)

Now the properties of the social- and contact-based networks formed from the MIT traces are pre-

sented. Given the number of links existing between the nodes, this section does not show how the

structure of both networks changes. However, by looking at the Table 7.3, one can still observe the

trend found with the Cambridge traces: small-world structures with a few scale-free characteristics.

Comparing to the structures formed based on the Cambridge traces, one can observe from the MIT

traces that, in almost all samples, the number of nodes with degree higher than the average has decreased

(below 50% of the total number of nodes) for the social-based structure. As MIT experiments involve

more individuals that belong to various groups and interact in di�erent areas, the number of hubs must

represent those who really can connect the di�erent existing groups.

Table 7.3: Small-world and scale-free properties found in the MIT traces

Small World Scale Free

Graph
Type

Time
Period

# of
Edges

Avg
Clustering
Coe�cient

Avg
Path
Length

Network
Diameter

Avg
Degree

# of Nodes
with Degree
Higher than
Avg Degree

# of Nodes
in the
Giant
Compo-
nent

Social-
based

Day 1 -
Sample 23

43 0.67 2.60 7 0.89 20 18

Day 60 -
Sample 0

426 0.66 2.48 6 8.78 47 76

Day 130 -
Sample 0

450 0.68 2.45 5 9.28 41 75

Day 197-
Sample 13

464 0.67 2.84 6 9.57 46 87

Contact-
based

Day 1 -
Sample 23

113 0.69 1.94 4 2.33 23 29

Day 60 -
Sample 0

1817 0.69 1.61 3 37.46 48 95

Day 130 -
Sample 0

2126 0.73 1.54 3 43.84 51 96

Day 197 -
Sample 13

2280 0.74 1.51 3 47.01 52 96
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Besides having a reasonable number of nodes as hubs and being part of the giant component, as

it can be seen in Figs. 7.12 and 7.13, the degree distribution (for day 60 - sample 0) of both social-

and contact based structures still does not follow a power law. The lines representing the power law

(y = axb) have a = 7.956 and b = −0.413 for the social-based network, and a = 1.650 and b = −0.013

for the contact-based network.

Figure 7.12: Degree distribution of time-period social-based network (MIT traces)

Figure 7.13: Degree distribution of time-period contact-based network (MIT traces)

Since user behavior is rather dynamic, in the sense that social interaction changes in di�erent time

periods, with this study I achieved the goal of observing whether the features of structure of social-based

networks remained unchanged in such periods of time.
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7.3 Summary of the Chapter

This chapter presented that the structure of social-aware opportunistic networks indeed changes in

terms of node degree and social strength of edges, but its structure still presents small-world properties

(average path length smaller than the network diameter and high clustering coe�cient [87, 88]) for the

di�erent time periods. This �nding is interesting as it highlights the importance of suitably identifying

socially well-connected nodes for the better performance of social aware opportunistic routing.

Moreover, the social networks studied also displayed features compliant with scale-free networks

(high number of nodes with degree higher than the average and comprising the giant component [87,

88]). However, the identi�ed degree distributions did not follow a power law. Scale-free properties

are interesting in the context of opportunistic networking as they present low network diameter and

high fault resilience [77]. In the context of social-aware opportunistic routing, such features can aid

in delivery, given how fast destinations can be reached and the increased number of alternate paths to

reach such destinations.

Social networks have been reported to have small-world features in their structure [78]. However,

previous analysis has been done over the whole network behavior, whereas the analysis done in this

chapter looked at the structure in di�erent time periods. The �ndings provide clues that social-aware

opportunistic routing cannot be oblivious to the existing dynamicity of user behavior, that should be

captured in a timely fashion.
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Conclusions and Future Directions

This chapter summarizes the work done in the context of this Thesis, and presents ongoing e�orts and

future research directions.

8.1 Conclusions

The advancements in the manufacturing of portable devices have introduced a new way of communica-

tion: users nowadays carry very powerful devices (in terms of processing, storage, and access technolo-

gies), and wish to exploit their devices at maximum. This means consuming and producing information

while they are on the move.

Opportunistic networking has shown great potential in such scenario, by exploring the increased

capabilities of users' devices to allow the exchange of information upon contact opportunities between

these devices.

Since these devices are carried by people who naturally have di�erent levels of interactions with

others, a new form of opportunistic routing emerged, which considers the existing social similarity

among those carrying such devices. Same work/educational a�liation, shared interests, communities in

common, and node popularity are some examples of social similarity metrics considered in the context

of opportunistic routing.

The work in this Thesis is motivated by the routing challenges (i.e., high mobility rate, lack of infras-

tructure, intermittent connectivity) found in the environment where these users want to communicate.

Thus, this Thesis exploits the dynamic social interactions among users within the context of social-aware

and content-based opportunistic routing.

For this purpose, a set of speci�c objectives was de�ned to help achieving the goal of proposing new

opportunistic routing proposals. Among these speci�c objectives were the identi�cation of the di�erent

types of existing opportunistic routing proposals; understanding of the existing opportunistic routing

classi�cations (i.e., taxonomies); the detailed study of the employed opportunistic routing metrics; the

understanding of cooperation among users; the development of social-aware utility functions; the design

and speci�cation of social-aware and content-based opportunistic routing proposals; and the analysis of

the network structure resulting from the devised social-aware approaches.

Each de�ned speci�c objective led to a contribution to the opportunistic routing research community.

The following are the main contributions achieved with this work.

Classi�cation and evaluation of opportunistic routing approaches: by looking at 12-year

91
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period worth of opportunistic routing protocols, their metrics and their existing classi�cations [25, 26],

it was clear that the new trend based on social similarity metrics needed its duly recognition.

Thus, I devised a new taxonomy for opportunistic routing proposals which included the social sim-

ilarity branch, later being updated with a new subcategory that includes the user dynamic behavior,

subject of this Thesis work [1].

With the analysis done to propose the new taxonomy, I soon realized that no guidelines were available,

so proposals (existing and newly proposed) could have their performance fairly assessed. Thus, di�erent

proposals were analyzed according to the identi�ed trends, information was collected on their evaluation

process, and common properties were found (i.e., routing strategy and metrics), which led me to the

Universal Evaluation Framework (UEF). This UEF comprises a set of performance parameters and

experimental setup to aid designers fairly assessing the performance of opportunistic routing solutions

[27, 28].

Encouraging user cooperation: the aim here is showing: i) how the cooperative behavior of

users is of great importance in opportunistic routing; and ii) how it can be achieved by simply o�ering

users other resources they might need, or even through a simple and yet safe virtual crediting system

[29, 30, 31].

Indeed, the increased capabilities of devices are of no use for routing if their owners are not willing

to cooperate by carrying, storing, and/or relaying information on behalf of others. Thus, cooperation is

a must when it comes to guaranteeing the wellness of the network and improved networking experience

for the users.

In the context of this Thesis, cooperation happens through the sharing of node resources (i.e.,

bu�er) and users are considered to be always willing to cooperate. The work developed to achieve this

contribution is inserted in the context of the ULOOP European project.

Social-aware utility functions: prior to designing and specifying new opportunistic routing pro-

posal, I was required to come up with social-aware utility functions capable of coping with the dynamic

behavior of users.

This contribution comprises three utility functions: TECD, that captures the level of social interac-

tion among nodes; TECDi, that measures the importance of node based on its social interactions; and

TECI, that quanti�es the social interactions among nodes sharing interests [32, 33, 35].

The developed utility functions have been properly tested to reach stability. As the developed social-

aware utility functions are able to capture the dynamism of user behavior, they have shown satisfactory

performance (i.e., delivering more with less associated cost and latency) when compared to the utility

functions found in the prior art.

Social-aware and content-based opportunistic routing protocols: once I have reached a

satisfactory performance behavior with the utility functions, it was time to design and implement the

proposed opportunistic routing protocols. First, this contribution starts with the social-aware oppor-

tunistic routing protocol based on user's social daily routines, dLife [15], which is based on the TECD

and TECDi utility functions.

The �rst �nding shows that opportunistic routing can indeed bene�t by considering the dynamism of

users' social daily behavior. Hence, dLife could perform wiser forwarding decisions with better delivery

probability, cost and latency performance than Bubble Rap and dLifeComm. Another �nding concerns

centrality, which has shown a more negative impact than the notion of community formation.

Currently, dLife is being speci�ed within the IRTF DTN Research Group [16]. The dLife proposal is

also inserted in the context of the DTN-Amazon project as the routing solution for SocialDTN, a DTN
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architecture implementation for Android devices [34].

Since focusing on the content, and not on the host, has shown great potential in opportunistic

network routing, another contribution is the design of point-to-multipoint routing solution: the Social-

aware Content-based Opportunistic Routing Protocol (SCORP) [19]. SCORP is a content-oriented

opportunistic proposal that allows the exchange of data based on the content and the interest of users

in it.

A third �nding refers to the fact that, by combining social awareness to content information (i.e.,

information type, interested parties), opportunistic routing can improve signi�cantly. SCORP is able

to almost reach optimum delivery rate with very little associated cost and delay when compared to

dLife and Bubble Rap. Results suggest that content-oriented solutions are much more interesting than

content-oblivious ones in the context of social-aware opportunistic routing.

Structure analysis of social-based networks: this contribution aims at understanding the

network structure formed by the social-aware approaches proposed in this work.

What is observed in the prior art is that normally, such type of analysis is carried out over the whole

network behavior. Instead, the interest here is to identify which properties (e.g., scale free, small world)

are displayed on the dynamic behavior of users and whether such properties remain in di�erent periods

of times.

First �ndings indicate that both social- and contact-based connectivity networks display small-world

and few scale-free properties over the whole network behavior and in di�erent periods of time. Addition-

ally, independently of being or not social-aware, opportunistic routing solution must not be agnostic to

the existing user dynamic behavior. This contribution is yet to be submitted to a high-impact journal.

8.2 Ongoing E�orts and Future Research Directions

This Thesis comprises di�erent topics related to social-aware opportunistic routing, such as classi�cation,

evaluation, utility functions, protocols, and structure analysis, and each of such topics can be further

updated and improved. This is referred to as ongoing e�orts or future research directions.

Amongst the ongoing e�orts are the constant update of the proposed taxonomy [1], evaluation

framework [27, 28] and dLife protocol speci�cation [16]. As new opportunistic routing proposals emerge,

the taxonomy and framework have to be updated following the new trends. The same is expected with

the speci�cation of dLife: as the real-world implementation evolves, this must be re�ected in the draft

being proposed.

Similarly to dLife and given its potential, SCORP [19] shall be further exploited in what concerns

also having its speci�cation as a protocol with the IRTF DTN Research Group.

As the functioning of opportunistic routing is related to the properties displayed in the formed

network structure, a future research direction includes the exhaustive analysis of such structure to draw

concrete conclusions. So far, I have identi�ed that small-world and scale-free properties emerge in the

structure of social-aware networks in di�erent periods of time. However, the more one understands

such structures, the more one knows that they can be further used to improve the social-aware and

content-based opportunistic utility functions and protocols devised in this Thesis work.

Another future direction involves the shift from the simulator to the real-world of the concepts

learned in this work. The devised social-aware and content-based opportunistic utility functions and

protocols have shown great potential to be employed in today's urban scenario: there are plenty of

powerful devices that are wandering around and could be used to store, carry, and forward information
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upon the need to do it so. Moreover, user willingness to engage in such cooperative behavior would be

boosted as soon as users know they will always have a means for opportunistically sending and retrieving

content with associated cost of just carrying data on behalf of others.

8.3 Deviations from the Thesis Proposal

The only point that this Thesis work left unanswered was regarding the real-world experimentation. It

was planned to have a prototype built with the �ndings of this Thesis.

This work was inserted in the context of DTN-Amazon as mentioned in Chapter 5. However, it is

important to note that the project is done without any sort of funding and so far there is a struggle to

�nd the proper manpower.

Despite these drawbacks, the team has managed to propose an initial implementation of the DTN

architecture based on Android platform, the SocialDTN [34]. But still there is work to be done in order

to have the real-world implementation ready for deployment and testing. This makes it a future research

topic, which is also related to the ongoing standardization e�ort of dLife.
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