
Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática,
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o júri / the jury

presidente / president Prof. Dr. Udo Zölzer
Professor at Helmut-Schmidt-University / Guest lecturer at Technical University of

Hamburg

vogais / examiners committee Prof. Dr. José Vieira
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Resumo As novas tecnologias digitais são constantemente aclamadas como mais um
passo em direcção à perfeição. No entanto, no campo das tecnologias da
área da música, este paradigma é muitas vezes questionado uma vez que
é comum encontrar novas aplicações tentando replicar sistemas analógicos
antigos.
Este projeto de tese propõe-se a investigar a aplicação de um método de
modelação f́ısica derivado da análise de circuitos analógicos e modelação de
dispositivos eletrónicos não-lineares para simular com mais precisão siste-
mas analógicos que ao longo da história da produção musical continuam a
gerar interesse. Utilizando como objecto de estudo o compressor de gama
dinâmica de nome UREI 1176LN, aplicou-se nesta dissertação o método
Nodal DK em circuitos audio de controlo de gama dinâmica para imple-
mentar uma simulação digital do mesmo.
Os resultados da implementação são posteriormente comparados com
gravações audio retiradas de um protótipo do circuito constrúıdo durante o
peŕıodo deste projeto.





Abstract

New digital technology is constantly hailed as another step towards perfec-
tion yet this paradigm is being questioned in the music technology �eld,
where new tools attempt at replicating old technology. This thesis project
proposed to investigate the application of a physical modeling method de-
rived from analog circuit analysis and modeling of non-linear electronic de-
vices to more accurately simulate vintage circuits that have generated in-
creasing demand throughout the history of music production. For this mat-
ter, a popular Dynamic Range Compressor by the name UREI 1176LN was
chosen as a case study for application of the Nodal DK Method to Dynamic
Range Control audio circuits. The results of the implementation are com-
pared to audio recordings taken from a circuit prototype built during the
time of this thesis.
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Chapter 1

Introduction

In the last thirty years, consumer electronics have seen a shift of paradigm from analog to
digital, and while there has been time enough for newer technology to prove it's worth, certain
�elds seem to raise demand for outdated standards. When it comes to music technology, a lot
of focus remains on the topic of analog versus digital and while certain factors such as lower
production cost or product portability play a big role in driving the industry, other arguments
like the superior noise performance of digital systems fall to personal preference.

Today's society consensually accepts the widespread idea that the introduction of new digital
technology represents always an improvement towards perfection yet more and more we see
digital technology aiming at replicating older equipment. Often terms like �warm� or �fat�
are used to describe the sound of analog equipment and this could only make sense when
one's referring to the natural distortion these systems carry. For this reason, often software
implementations try to include the same noise that made analog special, a curious contradiction
if one takes in consideration that the advent of digital technology was greatly motivated by its
ability to overcome such issues [1].

The resurgence of vintage equipment is many times justi�ed on the basis of feelings of nostalgia
or cultural trends but such reducing arguments don't take into account that the mere sonic
characteristic of the vintage technology plays the major role in such phenomena [2]. The non-
linearities of the analog are the reason each piece of equipment has its characteristic sound and
why some are still in high demand in today's digital world. It is also where the biggest challenge
of digital audio solutions arises: to accurately simulate the behavior of these non-linear systems.

1.1 Motivation

The demand that vintage audio equipment is still able to generate in the current days, where
certain out-of-production items go for outstanding amounts in the second-hand market, is
certainly responsible for the increasing interest in the development of new digital tools that
aim at producing the same high quality sonic characteristic.

In an age where professional studios had long accepted the new paradigm and are today fully
equipped with professional standard audio interfaces, and where it was never so easy for mu-
sicians to own a home studio, it is obvious that a vintage sounding digital implementation of



2 Chapter 1. Introduction

these circuits would gather a wide market acceptance. Not only such implementations provide
musicians and recording engineers a more portable version of their needs, but also more �exi-
bility when it comes to edit recorded material. Another advantage is the predictive behaviour
of such systems, where no electronic faults are to be expected as such to require service as-
sistance and tedious debugging. On the contrary, they provide the user with a product which
lifetime is only de�ned by the progress of digital processors. Such progress enables more re-
alistic simulations, leading the focus into the achievement of a vintage sound that will please
everyone.

Many commercial products have been loudly advertised as having achieved this but these
are purely subjective claims that lack scienti�c basis and results are often unsatisfactory to
experienced musicians who have made signi�cant use of the analog equipment.

This thesis focus on the application of a physical modeling method that is derived from the
analog circuit analysis and the appropriate modeling of the non-linear electronic components
that provide the distinct behavior of the unit. These can be usually diodes, bipolar or �eld-
e�ect transistors, valve tubes or transformers, and by obtaining the non-linear currents these
elements generate we can apply a white-box approach [3] to the overall circuit, where Kircho�'s
Current Law (KCL) and Kircho�'s Voltage Law (KVL) provide the basis for its analysis. This
approach takes as reference the previous works based on this implementation that have been
published in [4] [5].

As a case study, this work aims at investigating the simulation of a Dynamic Range Compressor,
an e�ect discussed more thoroughly in the further chapter, and takes as reference the circuit
of the UREI 1176LN unit, a classic compressor prasied throughout the history of modern
professional music studios.

1.2 Structure of the Thesis Project

This thesis project is structured as follows:

• Chapter 2 attempts at describing a dynamic range control e�ect known as Dynamic
Range Compression, introducing fundamental concepts as well as the analog unit subject
to physical modeling throughout this work and its operation;

• Chapter 3 presents theory aspects behind device modeling, focusing on the non-linear
devices used in the circuit in study, and introduces the topic of state-space representation
of non-linear systems, with a description of the Nodal DK method;

• Chapter 4 deals with the implementation of parameter extraction methods used to accu-
rate simulate the devices in hand, as well as the presentation of a built circuit prototype
and further considerations in the application of a state-space model.

• Chapter 5 presents the results of parameter extraction methods for the non-linear devices
used in the circuit, as well as results of the state-space implementation of the circuit,
focusing on DC analysis, the static curve of the compressor and comparing audio tests
performed both on the circuit prototype and simulation.

• Chapter 6 presents an overview of the work performed and concludes this thesis project
with suggestions for further improvements in studies on this subject.
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Chapter 2

Dynamic Range Compression

The dynamic range of a signal is de�ned as the di�erence between its maximum and minimum
Sound Pressure Levels (SPL) (Fig. 2.1), expressed in dB. Its typical values span over the range
of 40 to 120 dB [6].

Dynamic Range Compression (DRC) consists in reducing the dynamic range of an audio signal.
The basic principle is to automatically attenuate the louder parts of the signal, making them
closer to the quieter parts.
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Figure 2.1: Dynamic range of typical audio signal.

Such e�ect came to �nd most of its relevance in modern music production, but it �ts a wider
and more general range of application. In broad terms, DRC is required in order to �t the dy-
namic range of a source material to the di�erent requirements of listening equipment, recording
mediums or reproduction environments.

This technique was proposed in 1934 as a way to improve telephone line transmission against
static noise by reducing the range of the speech intensity at the transmitter end [7]. In broad-
casting stations, it allows for a louder transmission while keeping the same signal peak am-
plitude. The same application can bene�t sound reproduction in noisy environments such as
restaurants, cars or shopping centers, where softer parts of the sound can be overshadowed by
background noise. In recording and mastering applications, it can be used to prevent overload
of AD converters or to �t the source material to the dynamic range of storage mediums as
vinyl or CD.
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However, most of its popularity arises from its use in modern music production studios, where
it is critical to apply compression to di�erent instrument and vocal tracks, in order to achieve a
consistently balanced mix. This becomes more apparent if one takes as example the recording
of a singer with a wide vocal range and a varying distance to the microphone, where the
level variation becomes critical and softer passages of his voice may be drowned out by other
instruments making the lyrics harder to understand. DRC comes in hand in avoiding such
problems by making the vocals level more consistent throughout the song (i.e., reducing the
singers dynamic range).
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2.1 Fundamentals

2.1.1 Signal Flow

The basic operation behind Dynamic Range Compression is derived from two main steps:

1. Level sensing,

2. Varying-gain control

This two steps are accomplished in separate circuit blocks and form the fundamental architec-
ture of any dynamic range compressor, linking a varying-gain ampli�er and a level detector.
In the main signal path, audio is ampli�ed by a low noise and low distortion gain stage while
in parallel a level detector circuit senses its envelope and converts it into a control voltage. In
return, this control voltage is used to vary the amount of gain of the ampli�er.

This can be achieved in two di�erent topologies, where the main di�erence relies on when to
sense the signal from the audio path.

Varying-gain 

Amplifier

Level 

Detector

Input Output

(a) Feedback topology

Varying-gain 

Amplifier

Level 

Detector

Input Output

(b) Feed-forward topology

Figure 2.2: Block diagram of the two compressor topologies.

As it can be seen in Figure 2.2, feedback compressors sense the signal at the output of the
audio path while feed-forward compressors use the input signal to derive the control voltage.

Furthermore, both topologies can be implemented with di�erent designs and four main types
of hardware compressors can be identi�ed [8] [9]:

• Tube compressors, which use a valve as the gain-controlling element. They are also known
as Vari-Mu compressors and their operation is based on feeding the resultant signal from
the level detector to the grid of the valve, hence varying its gain;

• Optical compressors, where the level detector circuit consists of a light source and a
photoresistor sensor which resistance decreases for higher incident light intensity, i.e.
higher signals;
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• VCA compressors, where a control voltage derived from the input signal controls the
amount of gain reduction supplied by a voltage-controlled ampli�er;

• FET compressors, which similarly to tube and VCA compressors, make use of a control
voltage to vary the bias of a gain-controlling element, here a Field E�ect Transistor.

Each design provides di�erent output characteristics based on the di�erent gain-controlling
elements used and the additional non-linear distortion they may introduce, thus making each
one preferred for di�erent applications in the studio environment [8]. The circuit in study here
is a feedback compressor of the FET type and will be explained in detail further in this chapter.

2.1.2 Static Curve

The amount of gain reduction can be mapped into an input-output function from where the
compression ratio of the compressor can be derived. Such mapping de�nes the static curve of
a compressor and an example taken from the UREI 1176LN is shown in Figure 2.3.

Figure 2.3: Static curve of the UREI 1176LN compressor [10].

In the horizontal axis the dB level of the input signal is mapped while the vertical axis corre-
sponds to the output. Apart from a linear curve where no compression occurs, it also shows
four di�erent curves representing each a di�erent compression ratio. Shown is also how the
compression ratio is de�ned by the ratio of change in the input and output signal amplitudes
∆Input

∆Output in dB, and for a compressor this value is always greater than 1.

As an illustrative example, when a compression ratio of 4:1 is selected, for every increase of the
input signal by 4 dB above a certain threshold, only an increase of 1 dB results at the output.



2.1 Fundamentals 7

Below the threshold level no change occurs. When operating under compression ratios of 12:1
or higher, where the static curve becomes almost �at, the compressor is usually thought of as
a limiter but, in reality, both terms describe the same e�ect. Imposing an upper limit for the
signal is particularly useful to avoid headroom overloads from high-amplitude peaks [10].

The drop in the level of the louder signals is then compensated by the varying-gain ampli�er
and controlled by an output potentiometer. This is called the make-up gain and allows for
processed signals to increase back to the original peak level. The result will often be a louder
perceived sound. Figure 2.4 illustrates how this is achieved.
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Figure 2.4: Typical compression applied to music.

An input signal with a relative peak amplitude of 0.4 is shown in Figure 2.4(a). After the signal
is processed, it is visible that the louder parts of the sound have triggered gain reduction and
are now attenuated in comparison with the input. The result is a smaller signal but also a
gain in headroom as the new relative peak amplitude is about 0.2 (Fig. 2.4(b)). This means
an increase in loudness is possible by applying make-up gain to the signal and restoring its
peak back to the original value. As it can be seen in Figure 2.4(c), the output signal is now
consistently greater than the input resulting from the peak compression applied.
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2.1.3 Dynamic Behaviour

Another important aspect that might in�uence the sound quality considerably has to do with
the time constants that shape the control signal derived from the level detector. These are
the Attack and Release times and are specially crucial when processing music material, where
speci�c settings work better with speci�c sources (i.e., di�erent instrument or vocal tracks) [10]
[8].

The Attack time can be de�ned as the time occurring between the instant the input signal
reaches the threshold and the instant the gain reduction actually starts. Release time, on the
other hand, is the time it takes for the compressor to return to its normal state after the same
signal drops below the threshold. Both parameters are variably adjustable and one can think
as adjusting the delays before and after compression when dealing with these controls.

For better illustration of their e�ect, serves the example of processing a snare drum or other
percussive instrument, where fast transients compose the actual characteristic of the sound. A
fast attack setting will make the compressor act on the fast transient and the e�ect of the snare
drum will be severely reduced. For such material, a slow attack setting allows the fast transient
to remain unaltered, maintaining the original sonic characteristic and is more appropriate. The
release time is also important to avoid severe gain variations (if it's set too short) and unwanted
gain reduction in the softer passages (if too long).

2.2 UREI 1176LN

The �rst version of the 1176 Peak Limiter came in 1966 when Universal Audio founder Bill
Putnam introduced a FET design to his line of already successful vaccuum tube based audio
compressors. It was, at the time, the �rst compressor completely based on transistor circuitry,
so-called solid-state technology. It soon became one of the most popular and present compres-
sors in professional music production studios.

This solid-state design and the use of the JFET as the gain-controlling element allowed for
very fast time constants, one of the reasons it is still widely used today. Its user manual states
attack time to be adjustable between 20 and 800µs. Other reason for its popularity comes
from its versatility, not only in recording studios where it can be applied to a wide range
of instruments as well as vocals, but also in its range of application that can include disc
mastering, broadcasting, live performance or sound reinforcement installations [10]. Another
interesting feature is the tonal shaping capabilty that it provides to its input source, derived
from the use of the JFET as well as the output transformer. As an example, an application of
the 1176 as a source for a low noise distortion e�ect was provided by Universal Audio's own
webzine in 2003 [11].

Since the introduction of the �rst version, several revisions of the original circuit consisting
of design changes have surfaced the market. The circuit in study here comprises the so-called
Revision D and its main feature is the inclusion of low-noise circuitry in the audio path that
improves stability and noise performance of the varying-gain ampli�er. It is also one of the
most popular revisions of the UREI 1176 [12].

Figure 2.5 shows the front view of the Universal Audio 1176LN, a current reissue and an exact
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Figure 2.5: Universal Audio 1176LN.

replica of the original unit produced by the same company. One can see that the front panel
features all the controls mentioned before:

• An input potentiometer attenuates the signal before being applied to the circuit in order
to guarantee that enough headroom is available for the varying-gain ampli�er stage and
no clipping distortion occurs. It is adjustable from -∞ up to 0 dB;

• the output potentiometer provides the gain compensation also known as make-up gain
by controlling the amount of signal used to drive an output stage. It is adjustable in the
same range as the input potentiometer;

• Attack and Release potentiometers adjustable from 1 to 7 shape the dynamic behaviour
of the gain reduction as described before. A fastest setting is obtained with the poten-
tiometer set to position 7;

• four Compression Ratios (4:1/8:1/12:1/20:1) are selectable with four push-buttons;

• an analog VU meter display can indicate the amount of gain reduction applied or the
amplitude of the input signal given, depending on the setting of the corresponding four
push-button farther right.

An additional feature originally not intended is achieved by pressing the four compression
ratio push-buttons at the same time, resulting in a high ratio (between 12 and 20) with a low
threshold that shows a very unpredictable behaviour but that soon became another favourite
trademark of this compressor.

In the following pages of this chapter, the operation of the UREI 1176LN will be subject to
a more insightful explanation, starting from a high-level block description and going through
each block circuit in further detail.



10 Chapter 2. Dynamic Range Compression

2.2.1 Theory of Operation

The operation of the UREI 1176LN can be summarized in the block diagram depicted in Fig-
ure 2.6 and it can be observed that it follows the feedback type con�guration described before.
Each block is then explained more explicitly further in this chapter.

Voltage-variable

Resistor

Attenuator

Signal

Preamplifier

Line

Amplifier

Gain Reduction 

Control

Amplifier

Input Output

Figure 2.6: Block Diagram of the UREI 1176LN.

After a �rst attenuation by the input control potentiometer, the signal is applied to a Voltage-
variable Resistor Attenuator (VVRA) that will further attenuate it if gain reduction is to be
applied. This is de�ned by a control voltage supplied by the Gain Reduction Control Ampli�er
(GRCA) in the feedback path. The additional attenuation is the actual gain reduction that
is only triggered once the signal sensed after the Signal Preampli�er (SP) block is su�ciently
high to trigger compression. In other words, a large signal at the input results in a higher
control voltage at the GRCA and some attenuation by the VVRA, thus lowering the signal
level. The Attack and Release times as well as the Compression Ratio setting are controlled
by the GRCA stage. The Signal Preampli�er increases the signal level back to line levels and
an output control potentiometer is used to control the amount of signal applied to the Line
Ampli�er stage.

2.2.1.1 Voltage-variable Resistor Attenuator

Q1
2N5457

R10
10k

R5
27k

from GRCA

Figure 2.7: Voltage-variable Resistor Attenuator.
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The �rst stage of the circuit is shown in Figure 2.7 and consists of a voltage-variable resistor
attenuator that controls the overall gain of the compressor. Simply put, it is formed by a voltage
divider where R5 is the series element and the �eld-e�ect transistor acts as a voltage controlled
resistor to ground, together with R10. This resistance is dependent on the voltage between gate
and source of the JFET. At its quiescent state, a negligible current �ows through the transistor
and thus its resistance is very high. This means that the input signal is not attenuated and
thus no compression occurs. For greater gate-source voltages, when threshold of compression
is reached, current starts �owing and resistance is decreased, resulting in a lower signal �owing
to the preampli�er stage and consequently more gain reduction. As previously stated, this is
the basic process for achieving compression in a FET style compressor.

The input signal at this stage is previously attenuated by an input level potentiomenter, re-
sulting in a low drain voltage of the JFET (range of mV) and assuring that it remains in its
linear region of operation, hence keeping distortion to minimum levels.

2.2.1.2 Signal Preampli�er
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Figure 2.8: Signal Preampli�er.

Figure 2.8 shows the Signal Preampli�er, which is formed by a three-stage circuit given by the
transistors Q2, Q3 and Q4. The �rst two stages follow a common-emitter con�guration, each
inverting the phase of the signal by 180◦ and providing a voltage gain of approximately 26 dB.
Transistor Q4 follows a common-collector con�guration, hence providing the necessary amount
of current to drive the subsequent Line Ampli�er.

Furthermore, a large amount of negative feedback is fed from this stage back to the gate of the
JFET in the Voltage-variable Resistor Attenuator block of the circuit. This is part of the so-
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called Low Noise circuitry that was introduced in this revision of the circuit, further reducing
distortion and increasing linearity of this stage.

2.2.1.3 Gain Reduction Control Ampli�er

R37
470k

R36
1M

30 V

-10 V

R39
R40

R41

R42

R43
R48

R47

R51

R38

R46

R50

R49
R52

R53

R57

R56

R59

R35

R54

R55
Q7
2N3707

Q8
2N3707

Q9
2N3707

Q10
2N3707

4.7k

270

2.4k 38.3k
7.68k

47k

180

2.4k
47k

47k

44.2k

470

25k

5M

270k

10k

47k

182k

4.7k

ATTACK

RELEASE

C17

C18
C19

C20

C21

1 μF

47 μF

6.8 μF

6.8 μF

100 μF

D1

D2

Figure 2.9: Gain Reduction Control Ampli�er.

The feedback block of the compressor is comprised of the Gain Reduction Control Ampli�er
(Fig. 2.9). This block is fed from the output end of the Signal Preampli�er and it acts as a
level-sensing circuit. Its function is to supply a control voltage to the gate of the JFET, that is
proportional to the magnitude of the signal received at its input, taken after the preampli�er
and a voltage divider formed by the Compression Ratio switch-buttons. This is achieved �rst by
using two phase-inverter ampli�ers, formed by a combination of common-emitter and emitter-
follower stages (Q7-Q8 and Q9-Q10). The signal resulting from the �rst combination is sent
to the bottom current recti�er diode (CR3) and simultaneously to the second combination of
transistors, after attenuation with R42. The output of this second ampli�er is 180◦ inverted in
phase with respect to the �rst one and sent to the upper recti�er diode (CR2). This pair of
diodes form a full-wave recti�er providing a signal with constant polarity. Signal amplitudes
that reach the compression threshold modulate this recti�ed voltage while the Attack and
Release potentiometers �lter and control the DC level of the signal, respectively. The result is
a DC voltage proportional to the input signal that increases the gate voltage bias in the JFET,
triggering its conduction, for the louder parts to be compressed.

Not shown in Figure 2.9 is a resistive ladder forming a voltage divider between the output
of the SP and the input of the GRCA, that is used to select di�erent compression ratios by
varying the amount of signal present at the input of the ampli�er stage.
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Figure 2.10: Line Ampl�er.

2.2.1.4 Line Ampl�er

The output of the feedback con�guration is comprised of the three blocks already described is
fed into an output control potentiometer and subsequently to the Line Ampli�er stage. The
three transistors Q4, Q5 and Q6 shown in Figure 2.10 form a Class A output that is connected
to an output transformer. Part of the transformer winding is used to provide feedback to the
�rst stage as well as DC biasing of transistor Q5. This compensates for stability of the ampli�er
while also converts the unbalanced signal into a high output balanced output.
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Chapter 3

Circuit Modeling

3.1 Device Models

As with typical analog circuitry, analog audio e�ects are comprised of several di�erent cir-
cuit components. Looking into these circuits, one will certainly �nd resistors and capacitors
but also inductors, diodes, �eld-e�ect or bipolar junction transistors, operational ampli�ers,
vacuum tubes or transformers are other favourite components used when dealing with audio
signals. In order to successfully model the circuit under analysis, accurate models have to
be described for the non-linear devices. However, although accuracy of the model is desired,
this is compromised by the need of relative simple models that can guarantee the capability
of fast processing. The models described in this chapter accomplish such necessity by taking
parasitic resistances and capacitances out of consideration. In this section, models describing
the relation between current and voltage for the devices comprising the UREI 1176LN circuit
are proposed. Whenever possible, this models are based on the same models implemented in
SPICE2 (Simulation Program with Integrated Circuit Emphasis) [13].

3.1.1 Diode

The diodes found on the 1176LN circuit are of p-n junction type. This type of diode is formed
by a silicon semiconductor structure of neighbouring p- and n-type regions. Associated to each
region there is a contact terminal which for the case of the p-type region is called Anode and for
the n-type region is called Cathode. If a positive voltage is applied between anode and cathode
the diode is said to be forward-biased and a large current will �ow across the p-n junction. In
the inverse case, the diode is reverse-biased and only a residual current will �ow in the opposite
direction.

The ideal diode current is given by

ID = IS(e
qVD
kT − 1). (3.1)

This is also known as the Shockley diode equation, where IS is de�ned as the diode reverse
saturation current, kT

q is the thermal voltage and will be expressed by VT from now on, q is
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the electric charge and k is the Boltzmann constant. Figure 3.1 shows this ID vs VD relation
where the diode reverse saturation current can be observed for the reverse-biased region (VD
< 0) and the exponential behaviour of the current is shown in the forward region (VD > 0).

0 VD

ID

-IS

Figure 3.1: Ideal diode current-voltage relation.

There are however some limitations to this ideal diode model that should be noted [13]:

• Carrier generation-recombination in the depletion region. Real diodes exhibit impurities
in the depletion region and this gives rise to the so-called recombination and generation
current, depending on which e�ect is dominant. To account for this contribution to the
diode current the Shockley diode equation is rewritten including a coe�cient n called
emission coe�cient or ideality factor.

• Voltage drop due to series resistance. For large values of the diode current there is a
small voltage drop across it due to the existence of a series resistance generated by an
electric �eld in the neutral regions of the junction. This e�ect is however neglected here
for reasons of model simplicity.

• Junction breakdown. If large reverse voltages are applied to the junction, a so-called
avalanche breakdown occurs and the diode starts conducting an increasingly large reverse
current, departing from the characteristic curve. This is also neglected in the model as
such situation is not possible in the circuit simulation.

Considering this, the diode current equation is rewritten in the form

ID = IS(e
VD
nVT − 1), (3.2)

where n assumes a value between 1 (ideal behaviour) and 2 (dominant recombination current)
and thermal voltage VT is well approximated by 25.85mV for the typical range of temperatures
observed.

In practical terms, a diode will be modelled by a voltage-dependent current source and the
equivalent circuit representation is shown in 3.2(b)
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diode

VD

ID
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(b) Equivalent representation

Figure 3.2: Diode Representation.

3.1.2 Bipolar Junction Transistor

Bipolar Junction Transistors (BJT) are three-terminal devices essential to audio circuits. They
can be used for a wide range of applications but when it comes to audio circuits they are
mostly responsible for signal bu�ering and ampli�cation in discrete-circuit designs. Much like
the diode, p-n junctions are at the basis of a BJT operation. Each of its three terminals forms
a contact with three semiconductor regions: emitter (n-type), base (p-type) and collector (n-
type). Furthermore, two junctions between these regions are formed: emitter-base junction and
collector-base junction.

n-typen-type p-type

Emitter CollectorBase

Emitter-base

Junction

Collector-base

Junction

C

B

E

(a) Basic semiconductor structure [14]

B

C

E
(b) Circuit repre-
sentation

Figure 3.3: An npn BJT.

Taking this structure into consideration, the two p-n junctions allow one to represent the BJT
as a diode based device and the derivation of its model follows the same principles. Likewise,
the limitations of the ideal diode model described above also apply to the bipolar transistor.
Currents across the two junctions can be expressed again with the Shockley diode equation
(3.2)

IF = IES (e
VBE
nEVT − 1), (3.3)

IR = ICS (e
VBC
nCVT − 1) (3.4)
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where IF and IR de�ne the currents of the forward- and reverse-biased diodes, IES and ICS

represent their reverse saturation currents, respectively, and nE and nC the corresponding
emission coe�cients.

Four di�erent regions of operation are possible for a transistor, depending on the voltage bias
applied to the three terminals [13, 14]. The BJTs found on the 1176LN circuit function as
ampli�ers and so are biased to operate in the active region. This behaviour is achieved when
the collector voltage is greater than the base voltage and this one greater than the emitter
voltage (VC > VB > VE). This results in the emitter-base junction being forward-biased while
the collector-base junction is reverse-biased.

This region is further described by the output characteristic curve and a typical example for a
BJT is shown below.

0 0.2 0.4 0.6 0.8

10

20

30

40

50

IC (A)

IB = 0.1 A

IB = 0.5 A

VBE (V)

Figure 3.4: Ideal characteristic curve of a BJT in the forward active region with di�erent
base currents.

As seen in Figure 3.4, di�erent values of base current result in di�erent curves of the collector
current IC and collector-emitter voltage VCE . For VCE values of up to 0.2V, the transistor
is said to be in saturation. This is the region where collector current starts to �ow. Beyond
the saturation voltage (VCE = 0.2V) the transistor is in the active region and acts as a linear
ampli�er, where the collector current is stabilized at its maximum for a given base current IB.

Further analysis of the terminal currents comes from the widely used Ebers-Moll Model.

The diodes seen in Figure 3.5 represent the two p-n junctions already described, while the two
current sources account for the coupling between both junctions [13].
From Kircho�'s current law, one can now derive the collector, emitter, and base currents

IC = αF IF − IR, (3.5)

IE = −IF + αRIR, (3.6)

IB = (1− αF )IF + (1− αR)IR, (3.7)

where αF and αR are the forward and reverse large-signal current gains of a common-base
BJT. Substituting Equations (3.3) and (3.4) through Equations (3.5), (3.6), (3.7), the general
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Figure 3.5: Equivalent circuit diagram of a BJT [13].

equations for the Ebers-Moll model

IC = αF IES (e
VBE
nEVT − 1)− ICS (e

VBC
nCVT − 1,) (3.8)

IE = −IES (e
VBE
nEVT − 1) + αRICS (e

VBC
nCVT − 1), (3.9)

IB = (1− αF ) IES (e
VBE
nEVT − 1) + (1− αR) ICS(e

VBC
nCVT − 1) (3.10)

are obtained.

The Ebers-Moll equations show six unknown parameters: IES , ICS , nE , nC , αF and αR. In the
ideal transistor, the relation αRICS = αF IES holds. The same assumption can be made for a real
device based on the reciprocity characteristic of a two-port device [15]. Another assumption
made is that there are no generation-recombination currents in the depletion region of the
transistor [15], therefore the emission coe�cients can be assumed to be 1. This results in only
three parameters to determine: IES , ICS and αF .

The current gain αF can be more easily obtained from a common-emitter con�guration, fol-
lowing the relation

α =
β

β + 1
, (3.11)

and β being the large-signal current gain of a common-emitter BJT.

In addition to the limitations of the ideal diode model, further aspects arising from the sim-
plicity of Ebers-Moll Model should be mentioned:

• Parasitic base, collector, and emitter resistances are not considered.
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• It assumes constant current gains whereas in reality these show some dependency on base
current and collector-emitter voltage.

• Real devices exhibit a slight increase of the collector current with increasing collector-
emitter voltage in the saturation region. This is known as Early E�ect and is here in-
troduced with the inclusion of the term (1 − VBC

VA
) in the Ebers-Moll equation of the

collector current (eq. 3.8), where VBC is the base-collector voltage and VA is known as
Early voltage. The collector current equation then takes the form

IC = αF IES (e
VBE
nEVT − 1)(1− VBC

VA
)− ICS (e

VBC
nCVT − 1). (3.12)

3.1.3 Junction Field-E�ect Transistor

Although it is also a three-terminal device, a Junction Field-E�ect Transistor (JFET) is very
di�erent from the BJT. The main di�erence consists in its input impedance which is signif-
icantly higher than the one of a BJT. While the latter is strongly dependent on the current
that its base can draw, JFETs are solely voltage-controlled. Most of its application falls into
the design of ampli�ers and switches, but here it is used in a di�erent class of application, as
a voltage-controlled attenuator. [14]
An n-channel JFET like the one used in this work consists of an n-region channel with two
p-regions on the sides as can be seen in Figure 3.7(a). Across the n-channel are the two elec-
trical contacts Drain (D) and Source (S) and the p-type regions form the Gate (G). Unlike
the BJT, the JFET �nd its application when the p-n junction between gate and channel is
reverse-biased, meaning that a negative gate-to-channel voltage is used to control the channel
width and thus its current �ow. This dependency is depicted below in Figure 3.6, where it can
be observed that the drain current ID is controlled by a range of negative gate-source voltage
VGS . Below a voltage known as threshold voltage VTh no signi�cant current �ows across the
JFET and for a VGS = 0 the saturated drain current IDSS is obtained, over which the JFET
is prone to permanent damage.

IDSS 

0 (V)VGSVTH

ID(A)

Figure 3.6: Ideal relation between VGS and ID of a JFET.

Figure 3.7(a) shows the maximum channel width which is obtained with the application of a
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Figure 3.7: An n-channel JFET.

gate-source voltage VGS =0. Applying a positive voltage across drain and source (VDS >0) will
then give origin to a current �ow from drain to source, while a negative VDS will cause a �ow
in the reverse direction. By applying further negative VGS values, a depletion region between
the gate and channel increases, and in turn the channel width gets shortened. This results in
less current �ow, up to a point where the depletion region occupies the whole channel width,
thus cutting o� any current �ow. This is achieved when VGS reaches the so-called threshold
voltage Vth or pinch-o� voltage VP [13, 14].

The most common model used to describe the JFET operation is the Shichman-Hodges Model
[16]. SPICE2 makes use of it for describing both gate current IG and drain current ID of the
JFET [13], and an equivalent circuit diagram of the device can be seen in Figure 3.8.

D

S

G VDS
ID

IGD

IGS

IG

Figure 3.8: Equivalent circuit diagram of the JFET.

The currents across the two diodes compose the gate current of the JFET and can be again
calculated from the Shockley diode equation (3.2)
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IGD = IS(e
VGD
VT − 1), (3.13)

IGS = IS(e
VGS
VT − 1), (3.14)

resulting in the sum

IG = IS(e
VGD
VT + e

VGS
VT − 2), (3.15)

where IS is the gate junction saturation current, VGD the gate-drain voltage and VGS the gate-
source voltage.
For the drain current calculation, however, the model based on Shockley equations and Shichman-
Hodges work proposes di�erent expressions for the di�erent regions of operation, which can be
a cause of errors derived from points of discontinuity. Instead, an approximation consisting of
the square-law relation governing the VGS dependency and a hyperbolic function to account
for VDS is prefered, as proposed in [17]. The drain current can be calculated from

ID =

{
IDSS(1− VGS

VTh
)2 tanh(λ| VDS

VTh−VGS
|) for VDS ≥ 0

−IDSS(1− VGD
VTh

)2 tanh(λ| VDS
VTh−VGD

|) for VDS < 0,
(3.16)

where IDSS is the saturated drain current, VTh is the threshold voltage and λ an empirical
constant adjusting the curve-�tting process. The expected forward output characteristic (VDS ≥
0) is plotted in Figure 3.9 for di�erent values of gate voltage VGS . Up to a VDS value known
as pinch-o�, which here is the absolute value of the threshold voltage VTh, the JFET operates
in the linear region. This is where it becomes useful as a resistor attenuator, if its VDS is varied
along this region. After pinch-o�, the JFET is in the saturation region where it can work as
an ampli�er.

0 VDS (V)2 4 6 8

0.2

0.4

0.6

0.8
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PINCH-OFF

VGS = 0 V

VGS = -0.5 V

VGS = -1 V

VGS = -1.5 V

ID
IDSS

(A)

Figure 3.9: Forward current-voltage characteristic of the JFET.



3.2 State-space Representation of Non-linear Systems 23

3.2 State-space Representation of Non-linear Systems

Derived from control engineering and systems theory [18], state-space representation makes use
of a set of �rst-order di�erential equations to describe the dynamic behaviour of a system in
a matrix form, where its output is computed from a set of inputs and state variables. When
such tool is applied to circuit modeling, the number of state variables is de�ned by the amount
of energy-storing elements in the circuit, hence accounting for the terminal voltage across a
capacitor or current of an inductor.
In the case of a non-linear system, as is the case of the circuit in study here, the circuit elements
described in the previous section require an extension of the set of equations to account for the
memoryless non-linearities . The state-space representation then takes the form

ẋ = Ax+Bu+ Ci, (3.17)

y = Dx+ Eu+ Fi, (3.18)

v = Gx+Hu+Ki, (3.19)

where x is a vector representing the state variables of the system, ẋ being its time derivative,
u represents the inputs, y is the output vector, i consists of the non-linear currents mapped
from their elements terminal voltages v and A, B, C, D, E, F, G, H, K are the corresponding
state-space matrices representing linear combinations of these vectors. The assumption made
is that the voltages and currents of the non-linear elements are given by the current-voltage
law

i = f(v), (3.20)

which was presented for each non-linear device in section 3.1.

The system can then be thought of as consisting of a dynamical part given by equation (3.17)
and a non-linear part given by the multiple-input multiple-output mapping of equation (3.20)
that requires a non-linear iterative solver. This approach to solve this system was proposed
in [19] and is known as the K method. It can be brie�y summarized as presented in the block
decomposition of Figure 3.10.

In order to obtain a discrete-time representation of the system, application of trapezoidal
rule [20]

T

2
(ẋ(n) + ẋ(n− 1)) = x(n)− x(n− 1) (3.21)

as described in [5] is used. Such approach yields the discrete-time formulation of the system
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Figure 3.10: Block diagram of the K method.

x(n) = Āx(n− 1) + B̄u(n) + C̄i(n), (3.22)

y(n) = D̄x(n− 1) + Ēu(n) + F̄ i(n), (3.23)

v(n) = Ḡx(n− 1) + H̄u(n) + K̄i(n), (3.24)

with the corresponding state-matrices

Ā = (
2

T
I +A)(

2

T
I −A)−1, (3.25)

B̄ = 2(
2

T
I −A)−1B, (3.26)

C̄ = 2(
2

T
I −A)−1C, (3.27)

D̄ =
2

T
D(

2

T
I −A)−1, (3.28)

Ē = E +D(
2

T
I −A)−1, (3.29)

F̄ = F +D(
2

T
I −A)−1C, (3.30)

Ḡ =
2

T
G(

2

T
I −A)−1, (3.31)

H̄ = H +G(
2

T
I −A)−1B, (3.32)

K̄ = K +G(
2

T
I −A)−1C, (3.33)

where I is the identity matrix. For reasons of simplicity, and because this work is implemented in
the discrete-time domain, the discretized state-space matrices will be from now on represented
without the corresponding bar.

The rest of this chapter focuses on the methods for obtaining these state-space matrices and
the solution of the non-linear mapping part.
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3.3 Nodal DK Method

The Discrete K method is, as the name implies, derived from the already mentioned K method,
but instead of making use of the continuous-time state-space representation (3.17, 3.18, 3.19),
it is applied with its discrete-time version [21]. Therefore, energy-storing elements governed by
a di�erential equation need to be �rst discretized. The solution for the non-linear system is
then derived from the computation of a set of matrices representing the physical model of the
circuit in analysis, based on Modi�ed Nodal Analysis (MNA) [22].

3.3.1 Discretization of Energy-storing Elements

Energy-storing elements like capacitors and inductors are described by di�erential equations
relating the voltages and currents across them. These equations can be replaced by companion
circuits comprising only resistors and current sources if trapezoidal discretization [20] is applied.
A successful implementation of such approach can be found in [4]. Since no inductors are to
be found on the UREI 1176LN, only the capacitor model will be described.

The current equation of a capacitor is given by the di�erential equation

iC = C
d

dt
vC (3.34)

and the trapezoidal rule introduces a discrete-time approximation

iC(n) =
2C

T
(vC(n)− vC(n− 1))− iC(n− 1), (3.35)

which denotes a system with memory held by the voltages and currents of the previous input,
and where T is the sampling interval. Representing memory with the canonical state

xC(n) = iC(n) +
2C

T
vC(n) (3.36)

leads to the state update equation

xC(n) = 2
2C

T
vC(n)− xC(n− 1). (3.37)

Equations (3.36) and (3.23) allow the current across the capacitor to be obtained from

iC(n) =
2C

T
vC(n)− xC(n− 1), (3.38)

which can be represented in the form of a companion circuit like the one shown in Figure 3.11.
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vc(n)

ic(n)

xc(n-1)

Figure 3.11: Equivalent circuit diagram of a capacitor.

This equivalent circuit allows one to replace all capacitors in the circuit with resistors and
current sources where the resistor value is given by 2C

T and the current source holds the state
information.

3.3.2 Matrix Description of the Circuit

In order to obtain the state-space matrices required for the solution of the non-linear system, an
adapted form of Modi�ed Nodal Analysis is performed. MNA sets the ground for such matrix
description by approaching the circuit in study using the form

Gν = c, (3.39)

where G is the conductance matrix, ν represents the voltages in each node of the circuit, and
c is a vector containing any current source related to the nodes.
The application of the DK method requires that the MNA system is in the form of the discrete
state-space system and an adapted form of MNA is derived. The current source vector c is
extended to include contributions from the state variables, inputs and non-linear currents,
while the unknowns vector ν is augmented with the state derivatives. Conductance matrix G is
adapted to include contributions from each component, resulting in a system where the number
of rows correspond to the number of nodes in the circuit. The solution of the system comes
from inversion of system matrix G to obtain vector ν containing all the node voltages, voltage
source currents and state derivatives ẋ [21].

This approach implies a KCL analysis at all nodes of the circuit, hence adopting a physical
model. A reference node is chosen while the voltages at the other nodes and currents through
the voltage sources are introduced as unknowns. The complete system is then de�ned by

(NT
RGRNR +NT

v R
−1
v Nv +NT

x GxNx)ϕ+NT
u is = NT

x x+NT
n in, (3.40)

where NR, Nv, Nx, Nu, Nn are called incidence matrices, specifying to which nodes are the
resistors, potentiometers, energy-storing elements, voltage sources and non-linear devices, con-
nected.
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GR =




1
R1

0 · · ·
0

. . . · · ·
...

... 1
RN


 (3.41)

is a diagonal matrix with the corresponding resistance values,

Rv =




αVR1 0 · · · · · · · · ·
0 (1− α)VR1 0 · · · · · ·
... 0

. . . · · · · · ·
...

...
... αVRN 0

...
...

... 0 (1− α)VRN




(3.42)

is a diagonal matrix with the variable resistances of the potentiometers parametrized with
position α, and

Gx =




2C1
T 0 · · · · · · · · · · · ·
0

. . . · · · · · · · · · · · ·
...

... 2CN
T 0 · · · · · ·

...
... 0 T

2L1
0 · · ·

...
...

... 0
. . . · · ·

...
...

...
...

... T
2LN




(3.43)

is a diagonal matrix corresponding to the resistances of the companion circuits of the energy-
storing elements, ϕ is the unknown node voltages vector, is the vector of unknown voltage
source currents, x the current states of the energy-storing elements, and in the currents of the
non-linear devices.
The incidence matrices describe how the respective component is connected in the circuit,
where each row is associated with one component and each column corresponds to a node in
the circuit, excluding the reference node. This results in a sparse matrix where most elements
are zero and where, at most, there are two entries (1 and -1) in a row, corresponding to the
terminal nodes of the respective component. The inclusion of the voltage sources as the inputs
vector u and combination with equation 3.40 allows the formulation of the system

S

(
ϕ
is

)
=

(
NT

x

0

)
x+

(
0
I

)
u+

(
NT

n

0

)
in, (3.44)

where

S =

(
NT

RGRNR +NT
v R
−1
v Nv +NT

x GxNx NT
u

Nu 0

)
(3.45)
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is the system matrix.

The solution of the unknown voltages comes from left-multiplication with S−1 and the incidence
matrices

vx =
(
Nx 0

)
S−1

((
NT

x

0

)
x+

(
0
I

)
u+

(
NT

n

0

)
in

)
, (3.46)

vn =
(
Nn 0

)
S−1

((
NT

x

0

)
x+

(
0
I

)
u+

(
NT

n

0

)
in

)
, (3.47)

vo =
(
No 0

)
S−1

((
NT

x

0

)
x+

(
0
I

)
u+

(
NT

n

0

)
in

)
, (3.48)

where vx, vn and vo are the voltages across energy-storing elements, the non-linear elements
and the chosen output nodes, respectively.

In case of a circuit containing potentiometers, the system matrix needs to be recomputed as
this variable elements change. This is done e�ciently by decomposing the system matrix as

S = S0 +
(
Nv 0

)T
R−1

v

(
Nv 0

)
(3.49)

where S0 becomes the static part of the system matrix and is de�ned as

S0 =

(
NT

RGRNR +NT
x GxNx NT

u

Nu 0

)
. (3.50)

The inverse of the system matrix of Equation (3.49) makes use of the Woodbury identity [23]
and is written as

S−1 = S−1
0 − S−1

0

(
Nv 0

)T (
Rv +Q

)−1 (
Nv0

)
S−1

0 , (3.51)

where

Q =
(
Nv 0

)
− S−1

0

(
Nv 0

)T
. (3.52)

The state-space matrices can now be obtained from
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A = A0 − 2ZGxUx

(
Rv +Q

)−1
UT
x , (3.53)

B = B0 − 2ZGxUx

(
Rv +Q

)−1
UT
u , (3.54)

C = C0 − 2ZGxUx

(
Rv +Q

)−1
UT
n , (3.55)

D = D0 − U0

(
Rv +Q

)−1
UT
x , (3.56)

E = E0 − U0

(
Rv +Q

)−1
UT
u , (3.57)

F = F0 − U0

(
Rv +Q

)−1
UT
n , (3.58)

G = G0 − Un

(
Rv +Q

)−1
UT
x , (3.59)

H = H0 − Un

(
Rv +Q

)−1
UT
u , (3.60)

K = K0 − Un

(
Rv +Q

)−1
UT
n , (3.61)

where

Ux =
(
Nx 0

)
S−1

0

(
Nv 0

)
, (3.62)

Uo =
(
No 0

)
S−1

0

(
Nv 0

)
, (3.63)

Un =
(
Nn 0

)
S−1

0

(
Nv 0

)
, (3.64)

Uu =
(
0 I

)
S−1

0

(
Nv 0

)
, (3.65)

A0 = 2ZGx

(
Nx 0

)
S−1

0

(
Nx 0

)T
, (3.66)

B0 = 2ZGx

(
Nx 0

)
S−1

0

(
0 I

)T
, (3.67)

C0 = 2ZGx

(
Nx 0

)
S−1

0

(
Nn 0

)T
, (3.68)

D0 =
(
No 0

)
S−1

0

(
Nx 0

)T
, (3.69)

E0 =
(
No 0

)
S−1

0

(
0 I

)T
, (3.70)

F0 =
(
No 0

)
S−1

0

(
Nn 0

)T
, (3.71)

G0 =
(
Nn 0

)
S−1

0

(
Nx 0

)T
, (3.72)

H0 =
(
Nn 0

)
S−1

0

(
0 I

)T
, (3.73)

K0 =
(
Nn 0

)
S−1

0

(
Nn 0

)T
, (3.74)

and the discrete-time non-linear state-space system presented �rst in section 3.2 is now com-
plete. The computation of an output sample follows the steps:

1. Calculation of p(n) = Gx(n-1) + Hu(n);

2. Numerical solving of p(n) + Kin(n) - vn(n) = 0 to obtain in, recurring to a non-linear
iterative solver;

3. Computation of the output with Equation (3.24);

4. Calculation of state update with Equation (3.23).
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3.3.3 Non-linear Iterative Solver

As mentioned before, the non-linear part of the system described in 3.2 is computed recur-
ring to a non-linear iterative solver. In the context of physical modeling, it can be seen as the
responsible for the operation of the non-linear devices by returning the currents across these
in respect to the voltages observed during simulation. For that reason, it is also within this
process that lies the core of the computational e�ort in circuit simulation. In the following, the
basic method known as Newthon's Method and a further improvement of it are presented.

3.3.3.1 Newton's Method

The Newton's Method is an iterative method for solving the roots (or zeros) of a continuous
real-valued function, i.e. x : f(x) = 0. The algorithm consists in approximating the curve of
function f(x) by a tangent at point x = x0. The intercept of this tangent with the x-axis is

then given by x1 = x0 - f(x0)
f ′(x0) and the assumption is that x1 lies closer to the root of the

function than x0. The second iteration performs the tangent of f(x) at x = x1 to obtain a x2

which now lies closer to the root than x1. This process can be formulated for n iterations as

xn+1 = xn −
f(xn)

f ′(xn)
. (3.75)

The �nal iteration will be reached for a value of f(xn) that is within a small tolerance range
previously de�ned, and xn assumed as the function's root. Such process is depicted below in
Figure 3.12, where the solution of root r is achieved after three iterations.

0 xx0x1x2

r

f(x1)

f(x0)

f(x2)

x3

y

Figure 3.12: Example of the Newton's Method application.
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3.3.3.2 Damped Newton's Method

In certain scenarios, the Newtons's Method might not converge even if f(x) = 0 has a solution.
One example is a function f for which the derivative is not continuous in the whole range (e.g.
horizontal tangents), or a very steep function that can lead to cyclic iteration, i.e., consecutive
values of f(xn+1) that jump back and forth the root and won't converge within the tolerance
range. One can identify erratic behaviour by setting a number of maximum iterations and check
whether the solver breaks this number. In such scenario, these problems can be �xed by the
damped Newton's method

xn+1 = xn −
f(xn)

αf ′(xn)
, (3.76)

in which the derivative of f(x) is multiplied by a damping factor α, with 0 < α < 1, if two
consecutive iterations result in a greater residual error. Therefore, in order to perform the
non-linear mapping of the non-linear currents and voltages of the devices described in 3.1 it is
required that derivative or Jacobian expressions for the current equations are given.
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Chapter 4

Implementation

4.1 Parameter Extraction

To accurately simulate the vintage audio circuits in study, not only should the device models
presented in the previous chapter closely approximate the device behaviour but also the pa-
rameters one can �nd in the expressions governing the current-voltage relations of these devices
should be obtained in respect to the real circuits. This is necessary because often these param-
eters are de�ned by analytic expressions who require exact knowledge of the device structure,
or are not de�ned by analytic expressions and instead result from �tting curve techniques.
This chapter describes di�erent parameter extraction methods for the di�erent devices used in
the prototype of a UREI 1176LN unit.

4.1.1 Measurement System

Common to all parameter extraction methods presented in this chapter, a measurement system
composed of the setup shown in Figure 4.1 allowed for processing experimental measurements
from real devices.

DUT

Digital

Multimeter

Power

Supply

stimulus

measurement

control

data

PC

Figure 4.1: Diagram of the measurement system.

A Device Under Test (DUT) consisting of a diode or a transistor is connected in a test circuit
optimized for providing signi�cant measurements. This test circuit is in turn powered by a
Agilent E3631A power supply that is controlled by a PC running a MATLAB script. Two
digital Fluke 8846A multimeters collect experimental data that is consequently recorded and
available for processing in MATLAB.
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4.1.2 Diode

As presented in Chapter 3, the current-voltage characteristic of a diode is approximated by the
Shockley diode equation (3.2)

ID = IS(e
VD
nVT − 1).

The equation shows two parameters that are linked to each speci�c diode and thus need to be
extracted: the diode reverse saturation current IS and the emission coe�cient n.
The procedure for extracting such parameters follows a conventional method of extracting data
from the linear range of operation of the diode and extrapolating a linear curve from the semi-
logarithmic current-voltage (I-V) plot.
For values of VD > 3VT , the exponential term in (3.2) becomes signi�cantly higher than 1 and
the equation is rewritten as

ID = IS(e
VD
nVT ) (4.1)

and can now be linearised by plotting the current in a logarithmic scale

ln(ID) =
VD
nVT

+ ln(IS). (4.2)

By �tting a straight line of the form y = mx + b to the semi-logarithmic plot of equation
(4.2), shown in Figure 4.2, both parameters can be extracted from the curve. The current axis
intercept (at V = 0) gives the saturation current IS = eb and the slope of the straight line gives
the ideality factor n = 1

mVT
.
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Figure 4.2: Semi-logarithmic plot of I-V characteristic of an ideal diode.

Data measurements are obtained by connecting the diode under test in a test circuit as shown
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in Figure 4.3.

R

ID

VD

Vin

Figure 4.3: Test circuit for I-V measurements of the diode.

An input voltage Vin sweep from 0V to 10V in steps of 10mV was applied to the circuit and
a resistor value of R = 10 kΩ was chosen to compute the current across the diode using Ohm's
Law. An extra multimeter records the voltage across the diode VD. The collected VD vs ID data
is then used to obtain a similar plot as the one shown in Figure 4.2. For the correct assessment
of the parameters, only extracted data in the voltage range of 0.4V < VD < 0.8V, where
the diode starts showing signi�cant conduction, is usually considered. Parameter extraction is
accomplished in three steps as shown in the Sourcecodes 4.1,4.2,4.3.

1 for i=1:length(vm(:,1))-1
2 vl = vm((i:length(vm(:,1))),1);
3 il = im((i:length(vm(:,1))),1);
4
5 lin = fit(vl,log(il),’poly1’);
6 is(i) = exp(lin.p2);
7 n(i) = 1/(lin.p1*vt);
8
9 id = is(i)*(exp(vm/(n(i)*vt)) - 1);
10 res(i) = max(abs(id-im));
11 i=i+1;
12 end
13 minrange = find(res==min(res));

Sourcecode 4.1: Parameter extraction script for the Shockley diode equation parameters
(Step 1).

The �rst approach consists in �nding the appropriate range of values from the measured dataset
that result in the minimum residual error between the measurement and approximation pro-
vided by equation 3.1. This is performed in two steps. First, in the Sourcecode 4.1, the minimum
limit for the appropriate range is de�ned, and in turn, Sourcecode 4.2 de�nes the maximum
limit. Datasets vm and im contain the measured data of voltage across diode VD and current
ID, correspondingly. Variable vt represents the thermal voltage and is previously de�ned as
26mV . In Sourcecode 4.1, for each measured value i, the considered data range is made to
vary by increasing the minimum limit in each iteration while maintaining a �xed maximum.
The extracted data is stored in the variables vl and il (code lines 2 and 3). Afterwards this
datasets are used to perform data �tting by recurring to MATLAB's own function fit, with vl
and log(il) as data inputs and parameter poly1 used to achieve a linear polynomial curve
as described in Figure 4.2. This function returns this curve coe�cients m and b as lin.p1 and
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lin.p2 respectively and these are used to obtain the diode parameters IS and n as described
before (code lines 5 to 7). These parameters are then used to calculate the diode current ID as
proposed in Chapter 3 (line 10) and the result is compared to the measured data in the residual
error form (line 11). This process is performed for every iteration and the corresponding result
is stored in the variable res. After completion, the minimum limit minrange for the data
range is found from the iteration for which the residual error was smaller (line 15). The same
procedure is used in Sourcecode 4.2, in which the used data range is now varied between the
minrange and every possible onwards measurement i.

1 for i=minrange+1:length(vm(:,1))-1
2 vl = vm((minrange:i),1);
3 il = im((minrange:i),1);
4
5 lin = fit(vl,log(il),’poly1’);
6 is(i) = exp(lin.p2);
7 n(i) = 1/(lin.p1*vt);
8
9 id = is(i)*(exp(vm/(n(i)*vt)) - 1);
10 res(i) = max(abs(id-im));
11 i=i+1;
12 end
13 maxrange = find(res==min(res))

Sourcecode 4.2: Parameter extraction script for the Shockley diode equation parameters
(Step 2).

Finally, the parameters that result in the least residual error are found in the same way by
considering only the obtained data range limits.

1 vl = vm((minrange:maxrange),1);
2 il = im((minrange:maxrange),1);
3
4 lin = fit(vl,log(il),’poly1’);
5 is = exp(lin.p2)
6 n = 1/(lin.p1*vt)

Sourcecode 4.3: Parameter extraction script for the Shockley diode equation parameters
(Step 3).

4.1.2.1 Implementation for the Non-linear Solver

As explained in 3.3.3, the non-linear iterative solver returns the device currents from the non-
linear equations and the voltages across the device terminals. Also described was the Newton's
Method, that requires the derivative of the current expressions.
The diode is then implemented as seen in the Sourcecode 4.4.

The �rst expression is the diode current equation (3.2), where Vx(1) represents the voltage
across the diode VD and the second expression constitutes the derivative of the diode current
equation in respect to VD. These are the two inputs taken by the non-linear solver for the case
of the diode.
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1 Ix1 = -Is*(exp(Vx(1)/(N*Vt)) - 1);
2 dIx1dVx1 = -(Is*exp(Vx(1)/(N*Vt)))/(N*Vt);

Sourcecode 4.4: Non-linear equations of the diode for the non-linear solver.

4.1.3 Bipolar Junction Transistor

The theory of BJTs was presented in section 3.1.2 and it was shown that the BJT can be
thought of as a diode based device. Four parameters were identi�ed as needed to model the
device. The �rst two consist of the two junctions respective reverse saturation currents (IES ,
ICS) of the Shockley diode equation (3.3) (3.4), while the latter two consist of the forward and
reverse current gains (αF , αR), of which only one is needed to derive the other. The parameter
extraction process has been described already and can be found in section 4.1.2. However, in
order to collect the two necessary datasets (IE vs VBE , IC vs VBC) di�erent test circuits are
used and presented in Figure 4.4.

Vin

RB

RE

VBE

B

E

C

IE

(a) Base-emitter junction test circuit

Vin

RB

RC

VBC

B

C

E

IC

(b) Base-collector junction test circuit

Figure 4.4: Test circuits for extracting the Shockley equation parameters of the BJT.

For this case, the same input voltage sweep as for the diode case was applied. Resistors values
were chosen RB = 99.51 kΩ, RE = 1kΩ and RC = 1kΩ as to provide signi�cant measured
data. The datasets IE vs VBE and IC vs VBC , taken while the other junction is kept constant,
are then used to extract the parameters recurring again to the script shown in Sourcecodes
4.1,4.2,4.3.

The parameter left to extract is the forward current gain βF , used to describe the Ebers-Moll
model presented in section 3.1.2. This can be obtained from the measurement of collector
current IC and base current IB in the forward active region and given by the current relation
IC
IB

of the transistor in a common-emitter con�guration. If βF is plotted against the collector-
emitter voltage VCE , the result should show a �at curve for the greater range of voltages. To
obtain this, the test circuit of Figure 4.5 was used.

Two voltage sources were used in order to apply voltages VBB and VCC . The BJT was �rst
biased so that base-emitter voltage VBE was approximately 0.67V, a typically observed value in
the circuit in study, by applying VBB = 1.45V, while the other voltage source VCC was stepped
from 0V to 3.5V. To compute perform measurements of the currents, external current sensing
resistors are used. The base resistor was measured as RB = 99.51 kΩ and collector resistor RC

= 1kΩ. For typical current gains of over 100, these resistor values guarantee a good resolution
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VBB
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VCE
B

E

C

IC

IB

VCC

Figure 4.5: Test circuit for extracting the current gain of the BJT.

of the data extracted. Measurements were taken for the voltage across base resistor VRB
and

collector-emitter voltage VCE . The currents IB and IC were computed from Ohm's Law using

IB =
VRB
RB

and IC = VCC−VCE
RC

and consequently the current gain was obtained from IC
IB
.

4.1.3.1 Implementation for the Non-linear Solver

The non-linear equations describing the BJT are implemented as seen in the Sourcecode 4.5.

1 Ix1 = Ies*(exp(Vx(1)/Vt) - 1)*(alphaF - 1) + Ics*(exp((Vx(1) - Vx(2))/Vt)
- 1)*(alphaR - 1);

2 Ix2 = Ics*(exp((Vx(1) - Vx(2))/Vt) - 1) - Ies*alphaF*(exp(Vx(1)/Vt) - 1)
.*(1-((Vx(1) - Vx(2))/Va));

3

4 dIx1dVx1 = Ies*exp(Vx(1)/Vt)*(alphaF - 1))/Vt + (Ics*exp((Vx(1) - Vx(2))/
Vt)*(alphaR - 1))/Vt;

5 dIx1dVx2 = -(Ics*exp((Vx(1) - Vx(2))/Vt)*(alphaR - 1))/Vt;
6 dIx2dVx1 = (Ics*exp((Vx(1) - Vx(2))/Vt))/Vt + (Ies*alphaF*(exp(Vx(1)/Vt) -

1))/paramQ2.Va + (Ies*alphaF*exp(Vx(1)/Vt)*((Vx(1) - Vx(2))/paramQ2.Va
- 1))/Vt;

7 dIx2dVx2 = -(Ics*exp((Vx(1) - Vx(2))/Vt))/Vt - (Ies*alphaF*(exp(Vx(1)/Vt)
- 1))/paramQ2.Va;

Sourcecode 4.5: Non-linear equations of the BJT for the non-linear solver.

Here, Ix1 and Ix2 represent the base current IB (eq. 3.10) and the collector current IC (eq.
3.12) respectively, while Vx(1) and Vx(2) account for the non-linear voltages VBE and VCE .
The existence of 2 current equations and 2 non-linear voltages requires the derivative to be
represented by a Jacobian matrix, for which the �rst-order partial derivatives are calculated
through lines 4 and 7.

4.1.4 Junction Field-e�ect Transistor

The JFET model described in 3.1.3 can be de�ned by Equations 3.15 3.16, therefore four pa-
rameters can be identi�ed for extraction: the gate saturation current IS , saturated drain current
IDSS , threshold voltage VTh and the empirical constant λ. One of the main characteristics of
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a JFET is that it is a voltage-controlled device and it draws little to none gate current. For
this reason, and because the interest relies on its output characteristics, a standard value of
10e−14 A , used in the simulation software SPICE2, is de�ned for this parameter. The maximum
value of drain current ID occurs in the saturation region for VGS = 0 and it is is the designated
IDSS . The threshold voltage is the most important parameter in modeling the JFET as it
represents the value at which conduction starts to occur. The procedure for its extraction is
based on the Extrapolation in the Linear Region (ELR) method [24]. A small drain voltage
VD of 10mV is applied to the JFET to keep it in the linear region and ID is plotted against
an increasingly negative gate-source voltage VGS . A linear curve is traced tangentially to the
point of maximum slope in the plotted data to �nd its intercept with the x-axis, where ID =
0. To this value, a voltage VD

2 is subtracted to �nd the threshold voltage VTh. The procedure
is shown in the Sourcecode 4.6. Data collection was performed with the JFET connected as
shown in Figure 4.6.

VGS
VG

RD

ID

VD

Figure 4.6: Test circuit for extracting the threshold voltage of the JFET.

Gate voltage VG is stepped from -2V to 0V while VD is kept constant at 10mV. A current
sensing resistor measured with RD = 10.2Ω is placed. The gate-source voltage VGS is directly
measured with one multimeter while the drain current is computed from the voltage across the

drain resistor with
VRD
RD

.

1 gm = diff(i_ds)./diff(v_gs);
2 i = find(gm==max(gm));
3 m = (i_ds(i+1)-i_ds(i))/(v_gs(i+1)-v_gs(i));
4 b = i_ds(i)-m*v_gs(i);
5 vth = -b/m - v_ds/2;

Sourcecode 4.6: Parameter extraction script for the threshold voltage of the JFET.

The recorded datasets v_gs and i_ds are used to compute the slope across the curve ID vs
VGS in line 1. The result represents as well the transconductance of the JFET gm. In line 2,
the point of maximum transconductance is found and afterwards a linear curve (i.e., of the
form y = mx + b) tangent to this point is derived (line 3 and 4). At the end, the threshold
voltage vth is calculated from the intercept of this curve with i_ds = 0 and the subtraction
of v_d/2.

The parameter left to extract is the empirical constant λ used for data �tting of the measured
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data and can be obtained with the same test circuit as Figure 4.6 by setting |VDS | = |VTh| and
VGS = 0V and computing the relation

λ = tanh−1(
IDP

IDSS
) (4.3)

where IDP is the drain current when |VDS | = |VTh| and VGS = 0V [17].

4.1.4.1 Implementation for the Non-linear Solver

The non-linear equations describing the JFET are implemented as seen in the Sourcecode 4.7.

1 if Vx(2) >= 0
2 Ix2 = -Idss*tanh((lambda*abs(Vx(2)))/abs(Vp - Vx(1)))*(Vx(1)/Vp - 1)^2*exp(12*Vx(1)+12)

/(1+exp(12*Vx(1)+12));
3 dIx2dVx1 = (12*Idss*tanh((lambda*abs(Vx(2)))/abs(Vp - Vx(1)))*exp(24*Vx(1) + 24)*(Vx(1)/

Vp - 1)^2)/(exp(12*Vx(1) + 12) + 1)^2 - (12*Idss*tanh((lambda*abs(Vx(2)))/abs(Vp -
Vx(1)))*exp(12*Vx(1) + 12)*(Vx(1)/Vp - 1)^2)/(exp(12*Vx(1) + 12) + 1) - (2*Idss*tanh
((lambda*abs(Vx(2)))/abs(Vp - Vx(1)))*exp(12*Vx(1) + 12)*(Vx(1)/Vp - 1))/(Vp*(exp
(12*Vx(1) + 12) + 1)) + (Idss*lambda*exp(12*Vx(1) + 12)*abs(Vx(2))*sign(Vp - Vx(1))

*(tanh((lambda*abs(Vx(2)))/abs(Vp - Vx(1)))^2 - 1)*(Vx(1)/Vp - 1)^2)/(abs(Vp - Vx(1)
)^2*(exp(12*Vx(1) + 12) + 1));

4 dIx2dVx2 = (Idss*lambda*exp(12*Vx(1) + 12)*sign(Vx(2))*(tanh((lambda*abs(Vx(2)))/abs(Vp -
Vx(1)))^2 - 1)*(Vx(1)/Vp - 1)^2)/(abs(Vp - Vx(1))*(exp(12*Vx(1) + 12) + 1));

5 else
6 Ix2 = Idss*tanh((lambda*abs(Vx(2)))/abs(Vp - Vx(1)+Vx(2)))*((Vx(1)-Vx(2))/Vp - 1)^2*exp

(12*Vx(1)+12)/(1+exp(12*Vx(1)+12));
7 dIx2dVx1 = (12*Idss*exp(12*Vx(1) + 12)*tanh((lambda*abs(Vx(2)))/abs(Vp - Vx(1) + Vx(2)))

*((Vx(1) - Vx(2))/Vp - 1)^2)/(exp(12*Vx(1) + 12) + 1) - (12*Idss*exp(24*Vx(1) + 24)*
tanh((lambda*abs(Vx(2)))/abs(Vp - Vx(1) + Vx(2)))*((Vx(1) - Vx(2))/Vp - 1)^2)/(exp
(12*Vx(1) + 12) + 1)^2 + (2*Idss*exp(12*Vx(1) + 12)*tanh((lambda*abs(Vx(2)))/abs(Vp
- Vx(1) + Vx(2)))*((Vx(1) - Vx(2))/Vp - 1))/(Vp*(exp(12*Vx(1) + 12) + 1)) - (Idss*
lambda*exp(12*Vx(1) + 12)*sign(Vp - Vx(1) + Vx(2))*abs(Vx(2))*((Vx(1) - Vx(2))/Vp -
1)^2*(tanh((lambda*abs(Vx(2)))/abs(Vp - Vx(1) + Vx(2)))^2 - 1))/(abs(Vp - Vx(1) + Vx
(2))^2*(exp(12*Vx(1) + 12) + 1));

8 dIx2dVx2 = - (2*Idss*exp(12*Vx(1) + 12)*tanh((lambda*abs(Vx(2)))/abs(Vp - Vx(1) + Vx(2)))

*((Vx(1) - Vx(2))/Vp - 1))/(Vp*(exp(12*Vx(1) + 12) + 1)) - (Idss*exp(12*Vx(1) + 12)

*((Vx(1) - Vx(2))/Vp - 1)^2*(tanh((lambda*abs(Vx(2)))/abs(Vp - Vx(1) + Vx(2)))^2 -
1)*((lambda*sign(Vx(2)))/abs(Vp - Vx(1) + Vx(2)) - (lambda*sign(Vp - Vx(1) + Vx(2))*
abs(Vx(2)))/abs(Vp - Vx(1) + Vx(2))^2))/(exp(12*Vx(1) + 12) + 1);

9 end
10

11 Ix1 = -Igs*(exp((Vx(1) - Vx(2))/Vt) + exp(Vx(1)/Vt) - 2);
12 dIx1dVx1 = -Igs*(exp(Vx(1)/Vt)/Vt + exp((Vx(1) - Vx(2))/Vt)/Vt);
13 dIx1dVx2 = (Igs*exp((Vx(1) - Vx(2))/Vt))/Vt;

Sourcecode 4.7: Non-linear equations of the JFET for the non-linear solver.

The if-block of lines 1 to 9 implement the drain current equation (eq. 3.16) and corresponding
partial derivatives, where Vx(1) and Vx(2) stand for VGS and VDS , correspondingly. Here,
a weighting factor e12VGS+12

1+e12VGS+12 of logistic form is required in order to guarantee the correct

VGS vs. ID behaviour for values below the threshold voltage (VGS < VTh) as shown in Figure
3.6. This is explained by the modulus nature of the hyperbolic tangent approximation used to
describe the drain current (3.1.3), that results in an increase in current for VGS < VTh when
in reality is tending towards zero (JFET o�). From lines 11 to 13, the gate current is given by
Ix1 with corresponding partial derivatives.
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4.2 Circuit Prototype

Throughout the implementation of the digital simulation, not only the circuit schematic pro-
vided by UREI [10] and shown in section 2.2.1 served as a reference but, most important, a
prototype of the circuit was built (Fig. 4.7), based on the M.NATS 1176LN REV D V2.2 [25]
printed circuit board of the same revision. The state-space implementation is based on both
linear and non-linear components used throughout the assembly of this prototype. While it
fully implements the block diagram shown in Figure 2.6, the built prototype strips the circuit
out of some of the original features, namely the transformer-balanced input connection, the
internal power supply unit and the VU meter. The assumption made is that these features
don't have in�uence on the operation of the circuit and realization of the DRC. On the other
hand, the prototype features an unbalanced input connector; it is supplied with +30V and
- 10V voltage rails by a TOE 8433 power supply; and signal visualization is made possible with
the use of a HAMEG HMO03524 oscilloscope.

Figure 4.7: UREI 1176LN circuit protoype.

4.2.1 Component Measurement

Each used component was previously tested and a measurement of its correct value was taken.
The state-space implementation is then implemented with the measured values, assuring that
it is as close as possible to the circuit in test. The measurements for resistors, capacitor and
potentiometer values can be found in Appendix A.
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4.2.2 Circuit Calibration

In order to guarantee the proper operation of the circuit, further adjustments need to be
performed. The most important one is the Q Bias Adjustment, critical for the realization of
DRC.

4.2.2.1 Q-Bias Adjustment

The Q Bias Adjustment is the only adjustment that directly a�ects the compression response
of the circuit. It is performed by adjusting the variable resistor R59 in the GRCA block of
the circuit (Fig. 2.9). The function of this variable resistor is to set a correct quiescent bias
of the signal going out from the GRCA to the VVRA. What one does while performing this
adjustment is to directly set a quiescent voltage in the gate of the JFET that is close to its
threshold voltage VTh. This means that the JFET is put into a slight conduction mode and
that the further transients generated by the GRCA will a�ect conduction across the JFET.
The �rst step in order to perform this adjustment is to apply a signal to the input (1 kHz,
0 dBu) with R59 completely turned counter-clockwise. At this stage, the gate of the JFET is
set much more negative than its threshold voltage and thus no drain current �ows. This means
that the maximum signal passes the VVRA and no attenuation is performed by the JFET. By
being biased at a value far from the threshold voltage, no transient from the GRCA can cause
the JFET to conduct. In other words, no threshold of compression can be reached. The input
control potentiometer is then raised from -∞ up to a point where the oscilloscope reads 5 dBu
at the output of the compressor, and R59 is adjusted until a drop of 1 dB is observed and the
oscilloscope read 4 dBu. This process sets the gate bias of the JFET close to the threshold
voltage hence setting it into slight conduction. This guarantees that further transients from
the GRCA will result in gain reduction.

4.3 State-space Implementation

In this section, the implementation of the state-space model �rst approached in Chapter 3 is
applied to the UREI 1176LN circuit described in section 2.2.1. First, several adaptations to the
circuit are discussed and �nally the resulting circuit and state-space model is presented. For
the purpose of this work, the Line Ampli�er is assumed to be linear and therefore focus will
be given to the modeling of the fundamental blocks in the DRC e�ect: the Voltage-variable
Resistor Attenuator, the Signal Preampli�er and the Gain Reduction Control Ampli�er.
Several adaptations of distinct nature have been applied to the original circuit in order to op-
timize its digital implementation. Two di�erent classes of adaptations can be identi�ed: circuit
simpli�cations that don't a�ect its behaviour for the purpose of this work, and adaptations
necessary for the application of the nodal DK method.

4.3.1 Circuit Simpli�cations

The �rst simpli�cation and a minor one is the non-inclusion of capacitor C2 present in the
Signal Preampli�er block (Fig. 2.8). This 27 pF capacitor is placed at the input of the �rst
BJT stage in order to assure �ltering of radio-frequency interference (RFI). This might be an
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issue when dealing with analog circuitry but de�nitely not in a software implementation. The
removal of this capacitor from the circuit in study allows for less state variables (see section
3.2) hence improving the performance of the simulation, even if only slightly.

More signi�cant is the implementation of the Compression Ratio push-buttons. As presented
in Chapter 2, the UREI 1176LN features four compression ratios selectable with four push-
buttons. This is done by controlling the series element of a voltage divider via a switched
resistor ladder. In fact, it controls two voltage dividers acting on di�erent parts of the circuit.
The �rst one is �tted in the path between the output of the Signal Preampli�er and the GRCA.
Its function is to determine the level of the signal that is sent to the GRCA. Another voltage
divider is connected to the GRCA and a�ects it by applying a bias level to the rectifying diodes
D1 and D2 (Fig. 2.9), hence controlling the threshold of compression. From these two voltage
dividers one can acknowledge how each selected compression ratio results in di�erent amounts
of compression and di�erent threshold of compression. Shown in Figure 4.8 is the original im-
plementation of the �rst described voltage divider and the resulting simpli�cation.

R78 R19 R20 R21

R22
56k 68k 56k 56k

47k

from SP

to GRCA

(a) Original implementation

 α1RCR1

(1-α1)RCR1

from SP to GRCA

(b) Simpli�ed implementation as a resistor
switch

Figure 4.8: Compression Ratio push-buttons implementation.

By taking the overall resistance value as the sum of all resistors in the voltage divider of
Figure 4.8(a) one can represent the push-button selection as a variable resistor switch with
�xed discrete resistor values, so that α1 takes a set of values de�ned for each selected button.
The same procedure is assumed for the second voltage divider already described.

4.3.2 Adaptations for Nodal DK Method

The solution of the state-space system presented in section 3.2 requires that the system matrix
of Equation 3.50 is invertible so that the state-space matrices can be obtained. This equation
relates the resistors, capacitors and inputs to each node of the circuit. In case of a node to which
none of this elements is connected (�oating node), the resulting S0 matrix will be singular and
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no solution of the system can be obtained. Such situations are not so uncommon in analog
circuits and require special attention. Another problems may arise with convergence aspects of
the non-linear iterative solver. In the case of the UREI 1176LN circuit this happens too and
adaptations are suggested here.

The �rst encountered problem was found to happen when consecutive BJT stages link the
collector of the �rst BJT to the base of the second BJT on the same node, as can be seen
in both SP and GRCA blocks. This introduce convergence problems within the non-linear
iterative solver where the solution of one BJT is directly dependent on the other. This is solved
by introducing 1Ω resistors in between the stages, hence making them independent in the view
of the non-linear solver.

Another problem related to �oating nodes was observed from the use of potentiometers. Both
output and attack potentiometers introduced �oating nodes. To avoid these, resistors are con-
nected in parallel to the potentiometer so that resistance values are maintained, as shown in
Figure 4.9.

(1-α)R

αR

=
2(1-α)

2R

2R
2-(1-α)

R

2α
2-α

R

Figure 4.9: Substitution of potentiometer to avoid �oating nodes [26].

4.3.3 State-space Model

The circuit to be implemented as a state-space model is shown in Figure 4.10 with the resulting
adaptations and measured component values. Potentiometers are highlighted in the dashed
areas and a total of 50 nodes were identi�ed and numbered.
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Figure 4.10: Circuit schematic to be implemented as a state-space model.

The incidence matrices (de�ned in section 3.3) resulting from the nodal analysis are shown in
Appendix B. The 45 resistors seen in the circuit plus the augmented 4 from the potentiome-
ter substitution described in 4.3.2 give a matrix NR of size 49×50 with each of the 50 nodes
described by each column. Fifteen capacitors are present and so Nx is of size 15×50. Each
potentiometer is modelled by two resistors so the six potentiometers shown in the circuit give
Nv of size 12×50. Furthermore, 10 non-linear devices are used: seven BJTs, one JFET and
two diodes. BJTs are described by their base-emitter and collector-emitter voltages (VBE and
VBC), JFETs are similarly described by the gate-source and drain-source voltages (VGS and
VDS) and the two diodes are solely described by the voltage across them VD. This results in a
matrix Nn of size 18×50. Finally, Nu is comprised of 4 rows, one for the input signal (node 1),
two for the 30V supply rail (nodes 14 and 34), and one for the 10V rail (node 45), while No

states the only output to be taken from node 23, resulting in a 1×50 matrix.



46 Chapter 4. Implementation

4.3.4 User Controls

Aside from the matrix description of the circuit elements positioning and their values, a set of
dynamic controls that complement the state-space system have to be de�ned. More speci�cally,
the user controls that make part of the unit front panel as mentioned in Chapter 2 and visible
in Figure 4.11.

Figure 4.11: Front view of the Universal Audio 1176LN.

For each of the continuously variable potentiometers (Input, Output, Attack, Release), static
positions were chosen to represent typical usage of the unit. These were de�ned as marked in the
original unit front panel, and measurements of the voltage divider resistances were taken while
di�erent positions were tested in the prototype. This allows one to calculate the multiple values
of the constant α that multiply with the potentiometers resistor values forming the voltage
divider. The positions de�ned taking as reference the unit front panel and the corresponding
measurements yielded the α values observed in Table 4.1. Similarly, the compression ratio push-
buttons form two voltage dividers, as explained in 4.3.1 and visible in Figure 4.10, where they
are labelled Compression Ratio 1 (CR1) and Compression Ratio 2 (CR2). The measurement
of their resistance values provided Table 4.2.
The α values are then multiplied with the measured potentiometer and switch overall resistance
values as shown in Tables A.3,A.4.
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Potentiometer Position α

Input
24 0.87

18 0.67

12 0.36

6 0.02

Output
36 0.97

30 0.94

24 0.91

18 0.79

12 0.41

Attack
1 0.00

3 0.36

5 0.73

7 1.00

Release
1 1.00

3 0.68

5 0.27

7 0.00

Table 4.1: Parameters of the user controls.

Potentiometer Position α

4:1
CR1 0.835

CR2 0.000

8:1
CR1 0.636

CR2 0.186

12:1
CR1 0.438

CR2 0.407

20:1
CR1 0.199

CR2 0.999

Table 4.2: Parameters of the Compression Ratio push-buttons
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4.3.5 Calibration

With a matrix model of the circuit implemented and the equations of the non-linear devices
described with their corresponding parameters, the simulation was ready to compute a so-
lution of the state-space system. The �rst simulations followed somewhat similar procedures
as those expected of troubleshooting an hardware unit. These include an initial performance
check as well as circuit calibration, particularly the Q-Bias adjustment 4.2.2.1. Both hardware
calibration procedures require that compression is disabled in the circuit and this is typically
accomplished by shorting node 24 (Fig. 4.10) to ground, thus avoiding the audio signal from
feeding the GRCA block. The same thing is required for calibrating the state-space simulation
and, for that matter, the following procedures were implemented with the same node shorted
to ground in the matrix description of the circuit.

First, a performance check consisting of feeding a sine wave signal of approximately 0 dBu
(0.775Vrms), turning the Input control to approximately half-rotation (position 24) and ad-
justing the Output control until +4 dBu were measured at the output was performed. In the
case of the hardware unit, this certi�es that the audio signal path in the unit is performing as
expected. In the context of the simulation, a simultaneous measurement of the voltage across
the signal path in the unit, allowed one to compare it with the signal evolution in the sim-
ulation, and because the output of the hardware unit is taken after the Line Ampl�er (not
implemented in the state-space system), one could �nd the gain of this stage and implement
it as a scaling factor applied to the signal in node 23. This measurement resulted in a gain
of 18.33V/V (25.26 dB) for the Line Ampli�er stage and the �rst simulation was performed
successfully.

Secondly, the Q-Bias adjustment was performed. The procedure consisted in applying a sine
wave of 1 kHz and 0 dBu, turning the Input control until the output read 5 dBu, with the
Output control set in the maximum rotation, and turning the Q-Bias Adjust (R59) until a
drop of 1 dB occurred in the output. This resulted in consecutive simulations and �nally R59
was decomposed as two resistors with the values R59a = 0.4885 kΩ and R59b = 1.5125 kΩ.
This setting assured the circuit was now calibrated accordingly to the prototype.
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Chapter 5

Results and Evaluation

In this chapter, two categories of results are presented. First, results of the device parameter
extraction methods described in the previous chapter are shown and afterwards the �nal results
are presented and discussed taking into account a comparison between audio tests performed
in both the simulation and the circuit prototype.

5.1 Parameter Extraction Results

Several parameter extraction methods have been described in Chapter 4 attempting at ap-
proximating the real devices used in the circuit to the models described in Chapter 3. In more
detail, a total of ten non-linear devices are present in the circuit (two diodes, seven BJTs and
one JFET) and the parameters used to model these are found below.

5.1.1 Diode Parameters

Two diodes of type FDH333 are used to perform signal recti�cation in the GRCA (Chapter 2)
and labeled D1 and D2. The process for extracting the parameters used in the diode model
was introduced in 4.1.2 and the results are here presented for both diodes.
Figure 5.1 shows the semi-logarithmic plot of the collected current-voltage data. Comparing
with the idealized plot of Figure 4.2, it is clear that real diodes show a deviation from the
ideal model: while the semi-logarithmic I-V characteristic of an ideal model tends to a linear
curve early at about 0.2V, measurements of the real diodes only provide coherent data at a
later point. This is, however, in agreement with the known operation of silicon and germanium
devices, for which signi�cant conduction is only achieved for voltage values greater than their
threshold voltage [15]. The script detailed in Sourcecodes 4.1,4.2 came in use at this point
and provided the data range for which parameter extraction is less erratic. Without surprise,
these came to be approximately the same for both diodes, between 0.60V and 0.67V, a range
at which the semi-logarithmic current data (in blue) seems to better approximate a linear
curve, and coherent with the idea of the diode threshold voltage being achieved. This range is
delimited in Figure 5.1 by the two dashed vertical lines seen in both plots.

With the signi�cant data range de�ned, the diode saturation current and emission coe�cient
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Figure 5.1: Semi-logarithmic plots of I-V characteristics of diodes D1 and D2.

can be retrieved in the last step of the parameter extraction script (Sourcecode 4.3), and the
results are presented in Table 5.1.

IS n

D1 2.7791× 10−10 A 1.7102

D2 2.2455× 10−10 A 1.6831

Table 5.1: Extracted parameters of diodes D1 and D2.

With these values, the Shockley diode equation (3.2) can be computed for any value of voltage
applied to the diode. In order to validate the model described by this equation, the exact same
voltage values used throughout the measuring process (Fig. 4.1) were used to compute the
current, providing a direct comparison between the simulated and the measured I-V curves.
The result is shown in Figure 5.2, in which the blue curve represents the simulated model while
the red dashed curve respects the measured data.
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Figure 5.2: I-V characteristics of diodes D1 and D2.
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From a �rst inspection of both curves, it is clear that the model closely follows the measured
data and that both behave accordingly to what is expected from a diode. Further analysis is
performed by plotting the residual error of the model in respect to the measured data (Fig.
5.3). This value is computed as the absolute value of the di�erence between the two.
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Figure 5.3: Residual error of the diode device model.

Figure 5.3 shows a similar behaviour for both diodes. The maximum residual error is observed
approximately at 0.55V, at the brink of signi�cant conduction, after which it decreases and
is maintained below this value. The maximum residual error calculated was 10.34µA for D1
and 10.22µA for D2, both values that represent a negligible di�erence in current. This leads
to the satisfactory conclusion that the implemented model accurately simulates the device, for
the context of this thesis.

5.1.2 BJT Parameters

In total, an amount of 7 BJTs are present in the implemented circuit. The Signal Preampli�er
block makes use of 3 of the type 2N3391 (labeled Q2, Q3 and Q4), while the remaining 4,
consisting of type 2N3707 (labeled Q7, Q8, Q9 and Q10), are present in the GRCA block.
Here, each type of BJT is represented by a single device, an assumption made possible after
veri�cation of similar behaviour between same species during the measurement process. The
�rst stage of parameter extraction follows the same method used for the diode, as discussed in
Chapter 4, and is depicted in Figures 5.4,5.5, yielding the results for the saturation current of
each BJT junction.

Figure 5.4 shows the semi-logarithmic plots of voltage-current for each junction in the two
species of BJTs. The results showed coherent behaviour in each of the four di�erent cases (two
junctions for each BJT). Data ranges selected for consideration were approximately de�ned in
between 0.53V and 0.57V in all cases and shown in the vertical dashed lines. The parameters
extracted at this stage, presented in Table 5.2, resulted again in close approximations between
the Shockley diode equation and the junction characteristics of each BJT, as can be observed
in Figure 5.5. These results constitute no surprise as the diode device model, on which they
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Figure 5.4: Semi-logarithmic plots of I-V characteristics of each junction in the BJT.

are based, was already validated in this section.
The extraction of the forward and reverse current gains is achieved by plotting the ratio IC

IB
against VCE and taking the value at which it saturates for increasing voltage. Figure 5.6 shows
such plots for both BJT species, where the blue curve represents the mentioned current ratio,
known as βF , and the horizontal red dashed line signals its value in the saturation region. The
forward current gain βF was found to be 293.5 for the 2N3391 and 315.9 for the 2N3707 BJTs.
This value was then computed to provide αF , which in conjuction with the saturation current
of each junction, extracted before, allows the computation of reverese current gain αR (Chapter
4). The four parameters are summed in Table 5.2.
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Figure 5.5: I-V characteristics of each junction in the BJT.
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Figure 5.6: Forward current gain of the BJT.
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IES ICS αF αR

2N3391 3.55× 10−14 A 9.17× 10−14 A 0.9966 0.38

2N3707 3.35× 10−14 A 10.2× 10−14 A 0.9968 0.28

Table 5.2: Extracted parameters of the BJTs.

With the 4 parameters extracted, a comparison between the chosen device model and measured
data is again possible as depicted in Figure 5.7, in which the blue curve represents the device
model and the red dashed curve represents the measured data. Two sets of data were chosen
from the measurements with base-emitter voltage VBE as criteria. The two values observed in
each plot of this �gure attempt to represent similar voltages as observed in the circuit, shown
further in this chapter (Table 5.5), so that one can more accurately simulate the Early e�ect,
which is dependent on the value of VBE . For each case, a linearization of data in the saturation
region provided the Early voltage VA as the intercept of this curve at the voltage axis. For the
2N3391, approximate VA values of -190V for VBE = 0.59V and -70V for VBE = 0.64V were
found, while in the case of the 2N3707, these were -96V for VBE = 0.59V and -70V for VBE =
0.66V. In both species, the results showed a good approximation in the saturation region while
a shift in current is observed in the linear region. This is con�rmed in Figure 5.8, where it can
be observed that up to approximately 0.3V there is a signi�cant error. This error is, however,
negligible when taking into consideration that all BJTs in the circuit are biased as to operate
in the saturation region, where, on the contrary, the residual shows more optimistic results.
For the 2N3391, residual is kept below 1µA for VBE = 0.59V and 9µA for VBE = 0.64V.
In the case of the 2N3707, residual is kept below 2µA for VBE = 0.59V and 12µA for VBE

= 0.66V. Similar values of the residual error were already observed for the diode model, in a
magnitude for which its in�uence in the simulation can be neglected, making the BJT model
equally validated.
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Figure 5.7: I-V characteristics of the BJT.
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Figure 5.8: Residual error of the BJT device model.
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5.1.3 JFET Parameters

The only JFET used in the circuit is of type 2N5457 and, as explained in Chapter 4, can be
simulated by a model consisting of 3 extracted parameters. The �rst and most important is
the threshold voltage VTh which is obtained from the measurements of drain current ID for
a varying gate-source voltage VGS . Figure 5.9 shows this curve in blue, and a red dashed line
tangent to the curve in its point of greater slope, while a drain-source voltage of 10mV was
applied to those JFET terminals, as predicted in the ELR method (4.1.4). The computed value
for VTh was -1.1V.
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Figure 5.9: Gate characteristic of the 2N5457 JFET.

The two following parameters can be extracted from the plot of the drain current ID against the
drain-source voltage VDS with VGS = 0V, shown in Figure 5.10. The red dashed line provides
IDSS , the value at which the drain current saturates for increasing voltage. The calculated
result was 2.2mA. Finally, the empirical constant λ is found from the current value at which
VDS is equal to the threshold voltage found before, as depicted in the green dashed lines.
Application of equation 4.3, provides then the value 1.2 for this last parameter.
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VTh IDSS λ

−1.1V 2.2× 10−3 A 1.2

Table 5.3: Extracted parameters of the 2N5457 JFET.

The three parameters are summed in Table 5.3 and result in the simulations performed in
Figure 5.11.
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Figure 5.11: I-V characteristics of the 2N5457 JFET.

In Figure 5.11(a), drain current is plotted against the gate-source voltage. Good approximation
is critical for this relation, as this represents the controlling voltage responsible for amount of
compression. As observed, this requirement was successfully accomplished. The measured data
is plotted in dashed red while the simulation provides the blue curve. The curved behaviour
towards the threshold voltage results from the weighting function detailed in 4.1.4.1 and assures
that the drain current rests at 0 for increasing negative voltage, something that wouldn't occur
otherwise due to the modulus nature of the JFET drain current equation (eq. 3.16). Figure
5.11(b) depicts the relation between drain current and drain-source voltage for a �xed gate-
source voltage (here of 0V). The result shows a good approximation up to 1.1V, which is the
pinch-o� voltage (absolute value of VTh) and de�nes the linear region of the drain current. For
increasing voltage, the model shows a slightly greater current until it saturates at 2.2mA. For
both �gures, residual plots that validate the approximations are shown below (Fig. 5.12).

In Figure 5.12(a), maximum residual calculated was 0.39µA and in the second case it was 78
µA, values which for the given context represent negligible di�erences. Furthermore, the range
of greater residual in Figure 5.12(b), occurs in the saturation region of the JFET, while the
magnitude of the audio in this point of the signal path is in the order of a few millivolts, thus
placing the JFET in the linear range of operation, where residual is even smaller.
Once more, very satisfactory results were achieved and one can say that the JFET device model
is validated, allowing for the consequent circuit state-space implementation to be evaluated.
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Figure 5.12: Residual error of the JFET device model.

5.2 Simulation Results

5.2.1 DC Analysis

The �rst simulations performed consisted of a DC analysis procedure (no input signal). These
were essential, �rst because they allowed for node voltage comparison between the circuit
prototype and the simulation, assuring the matrix model was error-free, and second because
solution of the state-space system provided stable values for the terminal voltages of the non-
linear devices as well as state variables of the energy-storing elements (charging of capacitors).
These two vectors represent the initial state of circuit and assure the simulation is in a stable
state before attempting to process any input signal.

Prototype Simulation

VGS VDS VGS VDS ∆VGS
∆VDS

Q1 -1.22 0 -1.21 0 0.01 0

Table 5.4: JFET DC voltages and absolute di�erence between measured and simulated
results in V.

Prototype Simulation

VBE VCE VBE VCE ∆VBE
∆VCE

Q2 0.53 1.24 0.53 1.23 0 0.01

Q3 0.62 10.55 0.61 10.61 0.01 0.06

Q4 0.63 18.89 0.63 18.85 0 0.04

Q7 0.59 10.97 0.59 11.01 0 0.04

Q8 0.65 15.71 0.66 15.67 0.01 0.04

Q9 0.58 14.29 0.58 14.40 0 0.11

Q10 0.65 13.49 0.66 13.39 0.01 0.10

Table 5.5: BJT DC voltages and absolute di�erence between measured and simulated
results in V.
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4:1 8:1 12:1 20:1

Prototype
D1 -0.31 -1.26 -2.41 -5.46

D2 -0.30 -1.26 -2.40 -5.44

Simulation
D1 -0.31 -1.30 -2.48 -5.63

D2 -0.31 -1.30 -2.48 -5.63

∆VD1
0.00 0.04 0.07 0.17

∆VD2
0.01 0.04 0.08 0.19

Table 5.6: Diode DC voltages and absolute di�erence between measured and simulated
results in V.

Tables 5.4,5.5,5.6 show the resulting non-linear voltages for both the circuit prototype and the
simulation of the DC analysis. All in all, results indicate a good functioning of the simulation. In
the case of the JFET, a di�erence of 0.01V is observed for VGS . This voltage is directly de�ned
by the Q-Bias adjustment and the small error can arise from particularities of this process.
While, in the case of the circuit prototype, the Q-Bias adjustment is performed recurring to
a multimeter, the simulation takes as reference the computed output which involves a scaling
factor as well as prior discrepancies originating in the setting of the controls and all non-linear
device models, that are ampli�ed along the signal path. The simulation of the BJTs proved
successful as well, where VBE values showed particularly good approximation with the circuit
prototype. The maximum error for this voltage was 0.01V, and only observed for Q3, Q4 and
Q5. Comparison of VCE values show a greater error, while still relatively small, and apart from
the possible causes already mentioned, one can include as well small voltage discrepancies in
the power supply rails of the prototype, which for the simulation were set as 30V and -10V
while the power supply might show a tolerance interval. Interesting to note is the greater error
in Q9 and Q10, that results from these being the last BJTs in the compression chain, where
previous errors su�ered ampli�cation already. The same argument explains the error observed
for the voltages across the recti�cation diodes, that come as the last non-linear devices in the
GRCA, as well as all error sources mentioned already.
Nevertheless, no alarming errors were produced by the simulation, that was now ready to take
audio signals as input.
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5.2.2 Static Curve

For measuring the compression ratios being e�ectively applied in the compressor, a reading
of the output for di�erent input levels and ratio settings was performed. In order to achieve
similar results between the prototype and the simulation, the same control settings were applied
to both. The input control was set in half-rotation (position 24) and the output control was
adjusted as to read 0 dBu with an input signal of 0 dBu, while compression was disabled.
Following this, di�erent input levels (3 dB steps from +3dBu down to -18 dBu) were tested
and measurements of the output level were taken. Interpolation of this measurements resulted
in the static curves shown in Figure 5.13 and the Compression Ratios of Table 5.7.
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Figure 5.13: Comparison of measured (dashes) and simulated (line) static curve

4:1 8:1 12:1 20:1

Prototype 5.5 9.4 15.6 21.2

Simulation 5.2 9.7 16.3 19.2

Table 5.7: Results of compression ratios.

While a slightly increased output is observed for the measured curves, this can be easily justi�ed
by discrepancies in the setting of the input and output controls and does not necessarily
represent less total gain in the simulation. More important to note is the similar behaviour
of the output in regards to the input level observed in both occasions. For this matter, a
calculation of the compression ratio for each curve was performed taking into account only
the measurements taken after the compression threshold is overcome and the curves exhibit
a somewhat linear behaviour. The result is presented in Table 5.7. The �rst thing to note is
that the actual compression ratios are, for the most part, higher than the reference values.
This comes as no surprise as there are many variables at stake when de�ning this value, the
most signi�cant one being the JFET used, for there no two devices behave exactly the same.
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Other in�uencing factors arise from the di�erent non-linear devices used in comparison with
the �rst original units as well as tolerance errors in resistor values. More important, is to
compare the prototype and the simulation results, and these show a relative success, given
the many in�uencing factors that can disturb the measurement (user control settings, power
supply tolerances, device models).

5.2.3 Audio Tests

While the results shown above indicated good approximation between the circuit prototype
and the simulation, the most signi�cant results come from using the unit as it is intended to,
that is, as a tool for the musician. For this matter, audio tests were performed on both the
circuit prototype and the simulation, using drum, bass and vocal tracks taken from multitrack
recordings [27], and a MOTU UltraLite-mk3 recording interface to input and record audio
to and from the prototype. To assure that the input level is matched between prototype and
simulation, a scaling factor was applied to the input of the simulation. This is required due to the
di�erent domains through which audio is applied. While there is no direct conversion between
dBFS (digital domain) and dBu (analog domain), there is also the need for the simulation
to interpret an audio source as a voltage. For this matter, a reference value was found by
generating a sine wave in the audio editor software Audacity and adjusting its level until 0 dBu
(0.775Vrms) was read externally at the circuit input. This sine wave was then saved as a WAV
�le and loaded into the simulation environment (MATLAB), where a scaling factor is applied to
the signal until it reads the same 0.775Vrms. This process resulted in a scaling factor of 4.1246
that is further applied to every WAV input in this study. Following, a comparison between
original uncompressed sources and compressed prototype and simulations results is presented
for a bass, vocal and drum track, with di�erent control settings applied.

5.2.3.1 Bass

The �rst test was performed with a bass guitar track, for which the user control settings shown
in 5.8 were applied.

Input Output Attack Release Ratio

24 24 3 5 8:1

Table 5.8: User control settings for bass guitar track test.

Comparing to the original source, the compressed audio tests provided results where the most
obvious di�erence is the consistence in volume. That is also suggested by visual observation of
Figure 5.14, where the three waveforms are displayed. In the original track, one can observe
how the waveform envelope instantly decreases after a note is struck. Audibly, this translates
in fading of certain notes caused by severe volume variation. As expected, both results of com-
pression show that bass notes are more sustained resulting in a sound that is more present
without sacri�cing de�nition.
The comparison between prototype and simulation results shows no apparent visual di�erence
between Figures 5.14(b) and 5.14(c), which suggests the simulation of the circuit was accurate.
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This is also backed by the audible tests performed, where no signi�cant di�erence could be
discerned. Another convincing aspect is the low average number of iterations needed by the
non-linear solver to compute an output sample (2.39 iterations/sample). Further analysis is
made by plotting the residual, with both compressed signals normalized to the same relative
signal energy (0.0179). As expected, Figure 5.2.3.1 shows a low residual with a relative signal
energy of 5.765× 10−5, 0.3% of the total energy, a value su�ciently low to validate the success
of the simulation.
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Figure 5.14: Waveforms of original uncompressed bass guitar and prototype and simu-
lation results.
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Figure 5.15: Residual of prototype and simulation bass guitar test results.

5.2.3.2 Vocal

For testing the simulation with a vocal track, user controls were set accordingly to table 5.9.

Input Output Attack Release Ratio

6 30 5 5 8:1

Table 5.9: User control settings for vocal track test.

The most notable di�erence between original and processed tracks, seen in Figure 5.16, lies
on the increase in signal content, as experienced with the bass example. But while the latter
evidenced a severe change in the signal envelope, in the case of the vocal track this is not as
much pronounced. Instead, a particular di�erence is observed for the quieter parts of the signal,
that is now much more discernible in the compressed tracks, while the louder parts maintain
a similar peak level throughout the track. Sonically this can be translated in a vocal with a
richer texture and less fading e�ects. The ampli�cation of the quieter parts provides an added
ambience to the vocal but also pronounces the breathing sounds from the singer. Comparing
the results of the simulation with the prototype track, again no obvious di�erences arise in
the visual content. Both signals have been normalized to a relative signal energy of 0.0065 and
the residual (Fig. 5.2.3.2) showed a signal energy of 7.328× 10−5, about 1% of the total. The
average number of iterations performed was 2.94, a value that indicates no severe exhaustion
of the non-linear solver occured. As expected from these results, no audible di�erences were
experienced between listening tests.
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Figure 5.16: Waveforms of original uncompressed vocal track and prototype and simu-
lation results.
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Figure 5.17: Residual of prototype and simulation vocal test results.
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5.2.3.3 Drums

The simulation of drum tracks represents a more challenging test due to the much higher content
of signal transients. For this matter, two di�erent settings are tested in order to analyse the
e�ect of changing user controls, as seen in Table 5.10.

Input Output Attack Release Ratio

Example 1 18 24 3 5 12:1

Example 2 24 24 1 7 4:1

Table 5.10: User control settings for drum track test.

Concerning the di�erences between the original and the compressed tracks, certain e�ects are
common to both examples. In sum, both drum tracks present a lively sound arising from the
increase in room ambience and overtones. Visually this is con�rmed by the increase in the
lower content of the signal, particularly pronounced in Example 2 (Fig. 5.18(d),5.18(e)). The
hi-hats become more present as well as can be observed by the increase in signal peaks in
respect to the original (Fig. 5.18(a)). Another e�ect pronounced in Example 2 is the change
in character of the kick drum, that due to the slow attack setting and the higher setting of
the output control became more punchy and powerful. However, comparing simulation results
with the prototype output, in both examples a greater di�erence was observed comparing with
the previous tests. The main di�erence relies not so much in the signal peaks, hinting that the
attack control was well implemented, but in the quieter parts of the signal. In Example 1, the
prototype shows slightly more pronounced overtones, while not much di�erence is discernible
between kick and snare sounds. Two probable causes can be pointed for this, the main one
being possible discrepancies in the output control between simulation and prototype, the other
one being the already discussed di�erence in the e�ective compression ratios (5.2.2). For the
�rst test, both signals were normalized to a relative signal energy of 0.0058 while the residual
showed a relative signal energy of 6.618× 10−4, about 11.4% of the total energy. Consistently
with the previous tests, the average number of iterations needed was 2.88. In Example 2, similar
results were obtained. The two signals, normalized to a relative signal energy of 0.0098, showed
a residual with 0.0011 for the same quantity, about 11.2% of the total. The number of iteratins
needed was 2.91. However, this result comes as a surprise as no signi�cant audible di�erence
was experienced for the listening tests of Example 2.
One can certainly assume that the error increase observed for the drum tests arises from
the greater peak content of these signals in respect to the bass and vocal tests. Despite the
low average number of iterations required, the non-linear solver reached over 50 iterations for
several output samples, provoked by the high transients of drum hits. Besides increasing the
simulation time this can sometimes result in erroneous output if the maximum iterations set
for the non-linear solver are reached.
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(d) Prototype (Example 2).
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Figure 5.18: Waveforms of original uncompressed drum track and prototype and simu-
lation results.



5.2 Simulation Results 67

0 2 4 6 8 10 12 14 16 18 20
−1

−0.5

0

0.5

1
Residual between prototype and simulation results

Time (s)

R
el

at
iv

e 
A

m
pl

itu
de

(a) Example 1.

0 2 4 6 8 10 12 14 16 18 20
−1

−0.5

0

0.5

1
Residual between prototype and simulation results

Time (s)

R
el

at
iv

e 
A

m
pl

itu
de

(b) Example 2.

Figure 5.19: Residual of prototype and simulation drum test results.
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Chapter 6

Conclusion and Future work

This thesis project proposed to investigate the application of a physical modeling method
derived from analog circuit analysis and modeling of non-linear electronic devices to more
accurately simulate vintage circuits that have generated increasing demand throughout the
history of music production. For this matter, a popular Dynamic Range Compressor by the
name UREI 1176LN was chosen as a case study for application of the Nodal DK Method to
Dynamic Range Control audio circuits. An introduction about this type of audio e�ect was
presented with a particular focus on the circuit operation of the unit in study.

The Nodal DK Method relies on a state-space representation of the non-linear system provided
by the analog circuit in study. For this, a matrix system based on node connections describes the
circuit inherent elements and, for the case of non-linear devices such as diodes and transistors,
a non-linear iterative solver based on Newton's Method is introduced to compute the current
given by these devices. This required a study of the devices in question to �nd appropriate
digital models that describe their operation. In this sense, various laboratory measurements of
the non-linear devices used in the circuit were taken, as part of parameter extraction methods
for accurate model implementation. Improvements of the device models used in previous works
were suggested based on polynomial approximations. In the case of Bipolar Junction Transis-
tors, the in�uence of Early E�ect was taken into account based on the measurements made. A
device model based on a hyperbolic tangent approximation was proposed for the simulation of
a JFET. A circuit prototype was built and provided a reference for every modeled element in
the digital implementation.

Parameter extraction methods were presented and together with the applied device models
yielded close approximations to the measurements obtained from the real devices, in the re-
gions of operation of interest. DC analysis was performed on both the simulation and the circuit
prototype and consistent approximations in the values of the non-linear devices terminal volt-
ages were found. The simulation showed as well close transfer characteristics, by measuring
the e�ective compression ratios applied to input signals, comparing to the circuit prototype.
Ultimate tests were performed with multitrack recordings for the cases of interest. The results
were specially satisfying with Bass and Vocal tracks where, both visually and audibly, no sig-
ni�cant di�erence was found. Concerning Drum track simulations, a discrepancy was found
in respect to the prototype results, due to the high transient content of these type of signal.
However, audible di�erences were only slight and case dependent. The many simulations ran
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with relatively low computational e�ort considering the dimension of the matrix model and the
greater complexity of the device models in respect to previous works. In this sense, the Nodal
DK Method was once again proved as a powerful tool for circuit simulation.

Future work should be geared into improving the implementation of this method for real-time
processing capability, if this approach is to compete with already commercially available prod-
ucts. For this matter, an implementation of the simulation core in C/C++ should be developed
and can be presented as a VST plugin or DSP solution. Although su�ciently good approxi-
mations of the non-linear device models were obtained, it is possible to improve the parameter
extraction process by using dedicated equipment for measuring these. Such equipment can also
lead to higher complexity models taking into account parasitic resistance and capacitance of
the device, making the models more accurate yet more computational consuming. Lastly, fur-
ther investigation can be done in regards to modeling output transformers, for which device
models and parameter extraction methods are not yet su�ciently developed in the context of
the physical modeling approach of this thesis.
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Appendix A

Measured Components

Component Value

R5 27 kΩ
R10 9.98 kΩ
R8 1 kΩ
R9 557.3 kΩ
R13 0.997MΩ
R18 180Ω
R84 180Ω
R14 21.86 kΩ
R17 6.77 kΩ
R11 82Ω
R12 1.79 kΩ
R15 6.77 kΩ
R86 34Ω
R85 149Ω
R6 2.2MΩ
R7 2.2MΩ
R37 470 kΩ
R36 0.995 kΩ
R38 47 kΩ
R39 4.68 kΩ
R46 46.93 kΩ
R40 2.39 kΩ
R42 181.8 kΩ
R41 269Ω
R43 38.1 kΩ
R47 44 kΩ
R48 7.66 kΩ
R49 2.39 kΩ
R51 4.68 kΩ
R50 180Ω
R52 47 kΩ
R53 47 kΩ
R45 10MΩ
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R54 468Ω
R57 268.6 kΩ
R60 3.88 kΩ
R35 9.96 kΩ
R64 1.5 kΩ
R58 149Ω

Table A.1: Measured values of the resistors used in the circuit prototype and state-space
implementation

Component Value

C1 1µF
C28 98.7µF
C4 97.3µF
C5 97.6µF
C7 0.96µF
C9 0.21µF
C3 200 pF
C6 200 pF
C17 0.98µF
C20 6.8µF
C19 6.8µF
C18 44.8µF
C21 97.1µF
C27 22 nF
C22 220 nF

Table A.2: Measured values of the capacitors used in the circuit prototype and state-
space implementation

Potentiometer Minimum value Maximum value

Input Control 1.47Ω 10.4 kΩ
Output Control 1.9Ω 245 kΩ

Attack 1.5Ω 25 kΩ
Release 1.7Ω 4.84MΩ

Table A.3: Measured values of the potentiometers used in the circuit prototype and state-
space implementation

Compression Ratio Switch Value

CR1 283.146MΩ
CR2 2.525 kΩ

Table A.4: Measured resistance values of the overall resistor ladder switch formed by the
Compression Ratio push-buttons
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Appendix B

Matrix Model

NR =




0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




Nx =




0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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Nv =




1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0




Nn =




0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0




Nu =




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0




No =
(
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

)
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Appendix C

Sourcecodes

1 %% Resistors
2 R5 = 27e3;
3 R10 = 9.98e3;
4 R8 = 1e3;
5 R9 = 557.3e3;
6 R13 = 0.997e6;
7 R3 = 1;
8 R18 = 180;
9 R84 = 180;
10 R14 = 21.86e3;
11 R17 = 6.77e3;
12 R4 = 1;
13 R11 = 82;
14 R12 = 1.79e3;
15 R15 = 6.77e3;
16 R86 = 34;
17 R85 = 149;
18 R6 = 2.2e6;
19 R7 = 2.2e6;
20 R37 = 470e3;
21 R36 = 0.995e6;
22 R16 = 1;
23 R38 = 47e3;
24 R39 = 4.68e3;
25 R46 = 46.93e3;
26 R40 = 2.39e3;
27 R42 = 181.8e3;
28 R41 = 269;
29 R43 = 38.1e3;
30 R47 = 44e3;
31 R19 = 1;
32 R48 = 7.66e3;
33 R49 = 2.39e3;
34 R51 = 4.68e3;
35 R50 = 180;
36 R52 = 47e3;
37 R53 = 47e3;
38 R45 = 10e6;
39 R54 = 468;
40 Ratt1 = 50e3;
41 Ratt2 = 50e3;
42 R57 = 268.6e3;
43 R59a = 0.4885e3;
44 R59b = 1.5125e3;
45 R60 = 3.88e3;
46 R35 = 9.96e3;
47 R64 = 1.5e3;
48 R58 = 149;
49 Rout1 = 490e3;
50 Rout2 = 490e3;
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51

52 %% Capacitors
53 C1 = 1e-6;
54 C28 = 98.7e-6;
55 C4 = 97.3e-6;
56 C5 = 97.6e-6;
57 C7 = 1e-6;
58 C9 = 220e-9;
59 C3 = 200e-12;
60 C6 = 200e-12;
61 C17 = 0.98e-6;
62 C20 = 6.8e-6;
63 C19 = 6.8e-6;
64 C18 = 44.8e-6;
65 C21 = 100e-6;
66 C27 = 22e-9;
67 C22 = 220e-9;
68

69 %% Potentiometers
70 Input1 = 10.4e3;
71 Input2 = 10.4e3;
72 Output1 = 245e3;
73 Output2 = 245e3;
74 RatioA1 = 283e3;
75 RatioA2 = 283e3;
76 RatioB1 = 2.53e3;
77 RatioB2 = 2.53e3;
78 Attack1 = 25e3;
79 Attack2 = 25e3;
80 Release1 = 4.84e6;
81 Release2 = 4.84e6;
82

83 %% Non-linear devices
84 paramQ1.Vp = -1.255;%-1.1019;
85 paramQ1.Idss = 2.2e-3;
86 paramQ1.alpha = 1.2;
87 paramQ1.Igs = 1e-14;
88 paramQ1.Vt = 26e-3;
89

90 paramQ2.Ies = 3.55e-14;
91 paramQ2.Ics = 9.173e-14;
92 paramQ2.alphaF = 0.9966;
93 paramQ2.alphaR = 0.28;
94 paramQ2.Vt = 26e-3;
95 paramQ2.Va = 190;
96

97 paramQ3.Ies = 3.7e-14;
98 paramQ3.Ics = 9.173e-14;
99 paramQ3.alphaF = 0.9966;
100 paramQ3.alphaR = 0.28;
101 paramQ3.Vt = 26e-3;
102 paramQ3.Va = 70;
103

104 paramQ4.Ies = 3.7e-14;
105 paramQ4.Ics = 9.173e-14;
106 paramQ4.alphaF = 0.9966;
107 paramQ4.alphaR = 0.28;
108 paramQ4.Vt = 26e-3;
109 paramQ4.Va = 70;
110

111 paramQ7.Ies = 3.35e-14;
112 paramQ7.Ics = 1.173e-13;
113 paramQ7.alphaF = 0.9966;
114 paramQ7.alphaR = 0.28;
115 paramQ7.Vt = 26e-3;
116 paramQ7.Va = 96;
117

118 paramQ8.Ies = 4.08e-14;
119 paramQ8.Ics = 2.173e-13;
120 paramQ8.alphaF = 0.9966;
121 paramQ8.alphaR = 0.28;



77

122 paramQ8.Vt = 26e-3;
123 paramQ8.Va = 50;
124

125 paramQ9.Ies = 3.35e-14;
126 paramQ9.Ics = 1.173e-13;
127 paramQ9.alphaF = 0.9966;
128 paramQ9.alphaR = 0.28;
129 paramQ9.Vt = 26e-3;
130 paramQ9.Va = 96;
131

132 paramQ10.Ies = 4.08e-14;
133 paramQ10.Ics = 2.173e-13;
134 paramQ10.alphaF = 0.9966;
135 paramQ10.alphaR = 0.28;
136 paramQ10.Vt = 26e-3;
137 paramQ10.Va = 50;
138

139 paramCR2.Is = 2.7791e-10;
140 paramCR2.N = 1.7102;
141 paramCR2.Vt = 26e-3;
142 paramCR3.Is = 2.2455e-10;
143 paramCR3.N = 1.6831;
144 paramCR3.Vt = 26e-3;
145

146 %% Matrix model
147 Nr = sparse([...
148 % 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
45 46 47 48 49 50

149 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% R5

150 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% R10

151 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% R8

152 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% R9

153 0, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% R13

154 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% R3

155 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% R18

156 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% R84

157 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% R14

158 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% R17

159 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% R4

160 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% R11

161 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% R12

162 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% R15
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163 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% R86

164 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% R85

165 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% R6

166 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, -1;...% R7

167 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% R37

168 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% R36

169 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, -1, 0, 0;...% R16

170 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% R38

171 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% R39

172 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% R46

173 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% R40

174 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% R42

175 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% R41

176 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% R43

177 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% R47

178 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, -1, 0;...% R19

179 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% R48

180 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% R49

181 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% R51

182 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% R50

183 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% R52

184 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% R53

185 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, -1, 0, 0, 0;...% R45

186 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0,
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0, 0, 0, 0, 0, 0, 0;...% R54
187 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% Ratt1

188 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, -1;...% Ratt2

189 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1,
0, 0, 0, 0, 0, 0, 0;...% R57

190 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0;...% R59a

191 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
-1, 0, 0, 0, 0, 0, 0;...% R59b

192 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0, 0;...% R60

193 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, -1, 0, 0, 0, 0, 0;...% R35

194 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, -1, 0, 0, 0, 0;...% R64

195 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1,
0, 0, 0, 1, 0, 0, 0; ...% R58

196 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% Rout1

197 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0 ...% Rout2

198 ]);
199

200 Nx = sparse([...
201 % 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
45 46 47 48 49 50

202 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% C1

203 0, 0, 0, 1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% C28

204 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% C4

205 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% C5

206 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% C7

207 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% C9

208 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% C3

209 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, -1;...% C6

210 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% C17

211 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% C20
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212 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% C19

213 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% C18

214 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% C21

215 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% C27

216 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1 ...% C22

217 ]);
218

219 Nv = sparse([...
220 % 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
45 46 47 48 49 50

221 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% Input1

222 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% Input2

223 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% Output1

224 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% Output2

225 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% RatioA1

226 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% RatioA2

227 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 0;...% RatioB1

228 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, -1, 0, 0, 0, 0;...% RatioB2

229 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% Attack1

230 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, -1;...% Attack2

231 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0,
0, 0, 0, 0, 0, 0, 1;...% Release1

232 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1,
0, 0, 0, 0, 0, 0, 0 ...% Release2

233 ]);
234

235 Nn = sparse([...
236 % 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
45 46 47 48 49 50

237 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% Q1

238 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% Q1

239 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
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0, 0, 0, 0, 0, 0, 0;...% Q2
240 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% Q2

241 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% Q3

242 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% Q3

243 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% Q4

244 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% Q4

245 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% Q7

246 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% Q7

247 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0;...% Q8

248 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% Q8

249 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% Q9

250 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% Q9

251 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 0;...% Q10

252 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% Q10

253 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% CR2

254 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0 ...% CR3

255 ]);
256

257 Nu = sparse([...
258 % 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
45 46 47 48 49 50

259 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% Vin

260 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% Vcc

261 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0;...% Vcc

262 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 0, 0, 0, 0, 0 ...% Vee

263 ]);
264

265 NuT = sparse([...
266 % 1 2 3 4
267 1, 0, 0, 0;...
268 0, 0, 0, 0;...
269 0, 0, 0, 0;...
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270 0, 0, 0, 0;...
271 0, 0, 0, 0;...
272 0, 0, 0, 0;...
273 0, 0, 0, 0;...
274 0, 0, 0, 0;...
275 0, 0, 0, 0;...
276 0, 0, 0, 0;...
277 0, 0, 0, 0;...
278 0, 0, 0, 0;...
279 0, 0, 0, 0;...
280 0, 1, 0, 0;...
281 0, 0, 0, 0;...
282 0, 0, 0, 0;...
283 0, 0, 0, 0;...
284 0, 0, 0, 0;...
285 0, 0, 0, 0;...
286 0, 0, 0, 0;...
287 0, 0, 0, 0;...
288 0, 0, 0, 0;...
289 0, 0, 0, 0;...
290 0, 0, 0, 0;...
291 0, 0, 0, 0;...
292 0, 0, 0, 0;...
293 0, 0, 0, 0;...
294 0, 0, 0, 0;...
295 0, 0, 0, 0;...
296 0, 0, 0, 0;...
297 0, 0, 0, 0;...
298 0, 0, 0, 0;...
299 0, 0, 0, 0;...
300 0, 0, 1, 0;...
301 0, 0, 0, 0;...
302 0, 0, 0, 0;...
303 0, 0, 0, 0;...
304 0, 0, 0, 0;...
305 0, 0, 0, 0;...
306 0, 0, 0, 0;...
307 0, 0, 0, 0;...
308 0, 0, 0, 0;...
309 0, 0, 0, 0;...
310 0, 0, 0, 0;...
311 0, 0, 0, 1;...
312 0, 0, 0, 0;...
313 0, 0, 0, 0;...
314 0, 0, 0, 0;...
315 0, 0, 0, 0;...
316 0, 0, 0, 0 ...
317 ]);
318

319 No = eye(50);
320

321 Gr = sparse(diag([1/R5,1/R10,1/R8,1/R9,1/R13,1/R3,1/R18,1/R84,1/R14,1/R17,1/R4,1/R11,1/R12,1/
R15,1/R86,1/R85,1/R6,1/R7,1/R37,1/R36,1/R16,1/R38,1/R39,1/R46,1/R40,1/R42,1/R41,1/R43,1/
R47,1/R19,1/R48,1/R49,1/R51,1/R50,1/R52,1/R53,1/R45,1/R54,1/Ratt1,1/Ratt2,1/R57,1/R59a
,1/R59b,1/R60,1/R35,1/R64,1/R58,1/Rout1,1/Rout2]));

322

323 Gx = sparse(diag([2*C1/T,2*C28/T,2*C4/T,2*C5/T,2*C7/T,2*C9/T,2*C3/T,2*C6/T,2*C17/T,2*C20/T,2*
C19/T,2*C18/T,2*C21/T,2*C27/T,2*C22/T]));

324

325 Z = sparse(diag([ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]));
326

327 Vr = [Input1,Input2,Output1,Output2,RatioA1,RatioA2,RatioB1,RatioB2,Attack1,Attack2,Release1,
Release2];

328

329 vnin = [];
330

331 [rowsNn colsNn] = size(Nn);
332

333 [rowsNx colsNx] = size(Nx);

Sourcecode C.1: Circuit model of the UREI 1176LN.
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1 %% Simulation setup
2 Fs = 48000;
3 Ts = 1/Fs;
4

5 options.MaxIter = 50;
6

7 options.TolFun = 10e-6;
8

9 %% Inputs
10 u(1,:) = wavread(’sound.wav’);
11 t=1:length(u(1,:));
12 u=4.1246*u(1:length(t));
13

14 vcc = 30;
15 u(2,:) = vcc*ones(1,length(t));
16 u(3,:) = u(2,:);
17

18 vee = -10;
19 u(4,:) = vee*ones(1,length(t));
20

21

22 %% User controls
23

24 switch input
25 case 24
26 input1 = 0.87;
27 input2 = 1-input1;
28 a(1,:) = input1*ones(1,length(t));
29 a(2,:) = input2*ones(1,length(t));
30 case 18
31 input1 = 0.67;
32 input2 = 1-input1;
33 a(1,:) = input1*ones(1,length(t));
34 a(2,:) = input2*ones(1,length(t));
35 case 12
36 input1 = 0.36;
37 input2 = 1-input1;
38 a(1,:) = input1*ones(1,length(t));
39 a(2,:) = input2*ones(1,length(t));
40 case 6
41 input1 = 0.02;
42 input2 = 1-input1;
43 a(1,:) = input1*ones(1,length(t));
44 a(2,:) = input2*ones(1,length(t));
45 otherwise
46 error(’Input not valid. Use 24/18/12/6 instead.’);
47 end
48

49 switch output
50 case 48
51 output1 = 0.9834;
52 output2 = 1-output1;
53 a(3,:) = output1*ones(1,length(t));
54 a(4,:) = output2*ones(1,length(t));
55 case 36
56 output1 = 0.973;
57 output2 = 1-output1;
58 a(3,:) = output1*ones(1,length(t));
59 a(4,:) = output2*ones(1,length(t));
60 case 30
61 output1 = 0.94;
62 output2 = 1-output1;
63 a(3,:) = output1*ones(1,length(t));
64 a(4,:) = output2*ones(1,length(t));
65 case 24
66 output1 = 0.91;
67 output2 = 1-output1;
68 a(3,:) = output1*ones(1,length(t));
69 a(4,:) = output2*ones(1,length(t));
70 case 18
71 output1 = 0.785;
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72 output2 = 1-output1;
73 a(3,:) = output1*ones(1,length(t));
74 a(4,:) = output2*ones(1,length(t));
75 case 12
76 output1 = 0.412;
77 output2 = 1-output1;
78 a(3,:) = output1*ones(1,length(t));
79 a(4,:) = output2*ones(1,length(t));
80 otherwise
81 error(’Output not valid. Use 48/36/30/24/18/12 instead.’);
82 end
83

84 switch attack
85 case 1
86 attack1 = 0.00005;
87 attack2 = 1-attack1;
88 a(9,:) = attack1*ones(1,length(t));
89 a(10,:) = attack2*ones(1,length(t));
90 case 3
91 attack1 = 0.36;
92 attack2 = 1-attack1;
93 a(9,:) = attack1*ones(1,length(t));
94 a(10,:) = attack2*ones(1,length(t));
95 case 5
96 attack1 = 0.73;
97 attack2 = 1-attack1;
98 a(9,:) = attack1*ones(1,length(t));
99 a(10,:) = attack2*ones(1,length(t));
100 case 7
101 attack1 = 0.99995;
102 attack2 = 1-attack1;
103 a(9,:) = attack1*ones(1,length(t));
104 a(10,:) = attack2*ones(1,length(t));
105 otherwise
106 error(’Attack not valid. Use 1/3/5/7 instead.’);
107 end
108

109 switch release
110 case 1
111 release1 = 0.999997;
112 release2 = 1-release1;
113 a(11,:) = release1*ones(1,length(t));
114 a(12,:) = release2*ones(1,length(t));
115 case 3
116 release1 = 0.68;
117 release2 = 1-release1;
118 a(11,:) = release1*ones(1,length(t));
119 a(12,:) = release2*ones(1,length(t));
120 case 5
121 release1 = 0.27;
122 release2 = 1-release1;
123 a(11,:) = release1*ones(1,length(t));
124 a(12,:) = release2*ones(1,length(t));
125 case 7
126 release1 = 0.00000015;
127 release2 = 1-release1;
128 a(11,:) = release1*ones(1,length(t));
129 a(12,:) = release2*ones(1,length(t));
130 otherwise
131 error(’Release not valid. Use 1/3/5/7 instead.’);
132 end
133

134 switch ratio
135 case 4
136 ratioA1 = 0.8345;
137 ratioA2 = 1-ratioA1;
138 a(5,:) = ratioA1*ones(1,length(t));
139 a(6,:) = ratioA2*ones(1,length(t));
140

141 ratioB1 = 8e-5;
142 ratioB2 = 1-ratioB1;
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143 a(7,:) = ratioB1*ones(1,length(t));
144 a(8,:) = ratioB2*ones(1,length(t));
145

146 init =
[-0.103967947398527;-2.63723174846145;238.837191345469;10.5374838946873;1.07083604481991;0.0431768171166190;-1.61799725364748
e-15;8.43141660953955e
-13;-0.429895636083494;10.3502968231417;11.8381570179705;118.868303142985;-14.6161399253059;-1.32184121654533
e-12;-0.0255291233210991;-1.20876970811405;-2.08609164492749e
-08;0.526339591883410;1.22849626979234;0.608981947304990;10.6078597735950;0.629485836388100;18.8454578693815;0.587891114166746;11.0101797003784;0.659013312500699;15.6672699257156;0.584007493388200;14.3984432963503;0.665611822149250;13.3880698184968;-0.313727367666094;-0.313729871342824;];

147 xo = init(1:15)
148 vno = init(16:33)
149

150 case 8
151 ratioA1 = 0.6364;
152 ratioA2 = 1-ratioA1;
153 a(5,:) = ratioA1*ones(1,length(t));
154 a(6,:) = ratioA2*ones(1,length(t));
155

156 ratioB1 = 0.1856;
157 ratioB2 = 1-ratioB1;
158 a(7,:) = ratioB1*ones(1,length(t));
159 a(8,:) = ratioB2*ones(1,length(t));
160

161 init =
[-0.103967943510883;-2.63723198667503;238.837186060396;10.5374853153881;1.07083587660148;0.0431769101235615;-2.48163712886565
e-17;8.44734692758515e
-13;-0.429895663213382;10.9948514973216;12.4827106542448;118.868303140642;-24.0948774519357;-1.32292756943183
e-12;-0.0255292190822230;-1.20877586672012;-1.19163921859017e
-06;0.526339591374674;1.22849663001336;0.608981951432358;10.6078578569032;0.629485831811107;18.8454595318319;0.587891111894911;11.0101806031985;0.659013314326111;15.6672691107361;0.584007495865000;14.3984424159617;0.665611820587884;13.3880706027845;-1.30109117573163;-1.30109391504502;];

162 xo = init(1:15)
163 vno = init(16:33)
164

165 case 12
166 ratioA1 = 0.4382;
167 ratioA2 = 1-ratioA1;
168 a(5,:) = ratioA1*ones(1,length(t));
169 a(6,:) = ratioA2*ones(1,length(t));
170

171 ratioB1 = 0.407;
172 ratioB2 = 1-ratioB1;
173 a(7,:) = ratioB1*ones(1,length(t));
174 a(8,:) = ratioB2*ones(1,length(t));
175

176 init =
[-0.103967947444236;-2.63723174797070;238.837191333786;10.5374838977319;1.07083604481738;0.0431772679000916;1.93167557687238
e-15;8.46691340560739e
-13;-0.429895635837688;11.7640200387845;13.2518802404434;118.868303142936;-35.4061873583489;-1.32292756942793
e-12;-0.0255295741123921;-1.20878252930295;-1.99139108521159e
-08;0.526339591887290;1.22849627037741;0.608981947312500;10.6078597735363;0.629485836387859;18.8454578700182;0.587891114187322;11.0101796921893;0.659013312485016;15.6672699331072;0.584007493365723;14.3984433043630;0.665611822162872;13.3880698113535;-2.47933688313629;-2.47933937206153;];

177 xo = init(1:15)
178 vno = init(16:33)
179

180 case 20
181 ratioA1 = 0.1985;
182 ratioA2 = 1-ratioA1;
183 a(5,:) = ratioA1*ones(1,length(t));
184 a(6,:) = ratioA2*ones(1,length(t));
185

186 ratioB1 = 2524.55/2524.77;
187 ratioB2 = 1-ratioB1;
188 a(7,:) = ratioB1*ones(1,length(t));
189 a(8,:) = ratioB2*ones(1,length(t));
190

191 init =
[-0.103967947172714;-2.63723175851402;238.837191392200;10.5374838818851;1.07083604761760;0.0431795230698899;2.91538067829795
e-15;8.47675052438428e
-13;-0.429895635949540;13.8238676871339;15.3117278850407;118.868303142996;-65.6980645119258;-1.32292756940176
e-12;-0.0255318292385357;-1.20888359233455;-2.67617068098164e
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-08;0.526339591905210;1.22849626717733;0.608981947263209;10.6078598049944;0.629485836464311;18.8454578412762;0.587891114177989;11.0101796959262;0.659013312491702;15.6672699297312;0.584007493375986;14.3984433007065;0.665611822157075;13.3880698146133;-5.63463459188264;-5.63463709874123;];

192 xo = init(1:15)
193 vno = init(16:33)
194

195 case ’all’
196 ratioA1 = 0.1985;
197 ratioA2 = 0.1654;
198 a(5,:) = ratioA1*ones(1,length(t));
199 a(6,:) = ratioA2*ones(1,length(t));
200

201 ratioB1 = 8e-7;
202 ratioB2 = 8e-7;
203 a(7,:) = ratioB1*ones(1,length(t));
204 a(8,:) = ratioB2*ones(1,length(t));
205

206 init =
[-0.103967947386415;-2.63723175238593;238.837191464992;10.5374838620878;1.07083605114863;0.0667983466410043;3.85338869103233
e-14;8.83293280843646e
-13;-0.429895637085020;11.3281143179917;12.8159744718631;118.868303143022;-28.9958087530067;-1.32292709310084
e-12;-0.0491506528301492;-2.32720768486518;-5.45543069185512e
-10;0.526339591935902;1.22849625952902;0.608981947199511;10.6078598507282;0.629485836562435;18.8454577994306;0.587891114083025;11.0101797336525;0.659013312569124;15.6672698956734;0.584007493479474;14.3984432639589;0.665611822091015;13.3880698473411;-0.693166506291592;-0.693169000743021;];

207 xo = init(1:15)
208 vno = init(16:33)
209

210 otherwise
211 error(’Compression Ratio not valid. Use 4/8/12/20/all instead.’)
212 end
213

214 matrixmodelHandler = @(input,Ts,xo,vno)urei1176(input,Ts,xo,vno);
215 [y, x, in, vn, iter] = simulator(u,a,Ts,matrixmodelHandler,options,xo,vno);

Sourcecode C.2: Simulation script of the UREI 1176LN.
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List of Abbreviations

A

AD Analog-to-digital.
ANT Allgemeine Nachrichtentechnik (Signal Processing and Communication)

B

BJT Bipolar Junction Transistor

C

CD Compact Disc

D

DC Direct Current
DRC Dynamic Range Compression

J

JFET Junction Field-E�ect Transistor

K

KCL Kircho�'s Current Law
KVL Kircho�'s Voltage Law

G

GRCA Gain Reduction Control Ampli�er

H

HSU-HH Helmut-Schmidt-University Hamburg

F

FET Field-e�ect Transistor

S

SP Signal Preampli�er
SPL Sound Pressure Level

V

VCA Voltage-controlled Ampli�er
VVRA Voltage-variable Resistor Attenuator



88 LIST OF ABBREVIATIONS

T

TUHH Technische Universität Hamburg-Harburg
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List of Software

Name Version URL Comment

Java Development Kit 1.5 U6 http://java.sun.com Java SDK

MATLAB R2012a http://mathworks.com Performed simulation

Audacity 2.0.5 http://audacity.sourceforge.net Played and recorded audio

Table C.2: List of Software.
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