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resumo 
 

 

O presente trabalho visou estudar o contributo das distâncias-inter simbólicas 
na segmentação do ADN. Para esse efeito, foi estudada a segmentação das 
sequências genómicas em código e não código e em ilhas e não ilhas CpG. 
Desenvolveu-se um estudo das distâncias inter-trinucleótidas no contexto da 
identificação de regiões codificantes e das distâncias inter-dinucleótidas para a 
identificação de ilhas CpG. Com base nestas distâncias foi analisado o 
desempenho de um algoritmo para discriminação de regiões de código e não 
código, tendo os resultados evidenciado haver ainda margem para 
aperfeiçoamento e foi desenvolvido um algoritmo para identificação de ilhas 
CpG tendo as taxas de boa classificação atingido valores elevados. 
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abstract 

 
The present work aimed to study the contribution of the inter-symbolic 
distances in DNA segmentation. To this end, the segmentation of genomic 
sequences into coding and non coding regions and CpG islands and non CpG 
islands was studied. A study of the inter-trinculeotide distances in the context of 
identifying coding regions and of the inter-dinucleotide distances for identifying 
CpG islands was developed. Based on these distances the performance of an 
algorithm to discriminate coding and non coding regions was analyzed, with the 
results showing there is still room for improvement and an algorithm for 
identification of CpG islands was designed, resulting in high values of good 
classification rates. 
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1. Introduction 

The human genome contains information about how cells are organized in our 

body and how the body interacts with the surrounding environment. In the last years 

there has been a considerable interest in the study of the human genome, which has 

already been sequenced.  

The DNA of each species can be seen as a long sequence of letters of an 

alphabet made up of four symbols, A, C, G and T, which make up the DNA. The inter-

symbolic distances are believed to be an important contribute in providing relevant 

information stored in the DNA, namely information about the three-dimensional DNA 

structure [1].  

The present study aims at exploring the capability of using the inter-symbolic 

distances to identify genomic regions, of different species, which display features with 

biological interest, such as coding and non coding regions and CpG islands.  

In order to explore this capability, some tools were developed, using MATLAB, 

that allow the study of the inter-symbolic distances between nucleotides, dinucleotides 

(CpG islands) and trinucleotides (coding and non-coding regions) in an easy and 

efficient way, representing a contribution to the genomic signals processing. 

1.1. History of DNA study 

Curiosity and academic interest in DNA has been stimulating its study, 

experiments and research since the 19
th

 century. The pioneering experiments were 

conducted by Gregor Mendel, a Czech monk, who after some observations and tests 

with peas, came to the conclusion that their shape and color were acquired according to 

different packages, which we now identify as their genes [2]. 

 
Figure 1 - Gregor Mendel (1822 - 1884) [3]. 
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In 1868, Friedisch Miescher, a Swiss physician, achieved a significant 

breakthrough. He managed to isolate a compound which he named as “nuclein”, which 

is now known as nucleic acid (NA) that is part of DNA (deoxyribo-nucleic-acid) and 

RNA (ribo-nucleic-acid) [4]. 

However, DNA was still a source of great controversy among distinguished 

scientists in the 1940s. In spite of their awareness that DNA might well be the molecule 

of life, some of them found it hard to recognize it because of its simplicity. 

Furthermore, they still could not figure out how the molecule was likely to look like, 

although they knew that the four bases (adenine, thymine, guanine and cytosine), were 

part of DNA.  

Further information had to be gathered, so that all the pieces of the puzzle might 

fit, such as finding out that the phosphate bases were on the inside, while its backbone 

was on the outside; understanding the reasons why the two strands could run in both 

directions; checking that the molecule had a unique base pairing and was a double helix 

[5]. 

Many people had to be involved in this painstaking research. Stick-and-ball 

models were used by Watson and Crick in order to confirm their general speculations 

about DNA structure [6]. On the other hand, another group of scientists like Rosalind 

Franklin and Maurice Wilkins used X-ray diffraction so that they might get aware of the 

physical structure of the DNA molecule. They even tried a three-helical model in 1951 

but without success.  

 

Figure 2 - Rosalind Franklin "Photograph 51"[7].  

Linus Pauling, who had already published an article on a triple-helical structure 

for DNA in 1953, was also trying to discover the real DNA shape but Franklin's famous 

"photograph 51" was the one that helped Watson and Crick to understand the double-

helical structure of DNA. 
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Figure 3 - First photo of James Watson's and Francis Crick's double helix DNA 

model. May 1953 [8]. 

In what concerns the base-paring question, Erwin Chargaff, a biochemist was 

capable, in 1949, of demonstrating that the quantity of adenine and thymine are always 

the same, even knowing that the length of the DNA sequences varies in different 

organisms. He was also able to prove that the adenine-thymine link had precisely the 

same length as the cytosine-guanine and the bases were paired according to this pattern 

[9].  

1.2 Some biological concepts 

The DNA (deoxyribonucleic acid) is an informational molecule encoding the 

genetic instructions used in the development and functioning of all known living 

organisms and many viruses. It is composed of two polynucleotide chains twisted 

around each other forming a double helix. These nucleotides are made up of a 

phosphate linked to a sugar (known as deoxyribose) to which a base is attached. There 

are four different bases in a DNA molecule, adenine (A), cytosine (C), guanine (G) and 

thymine (T), which are joined together in pairs, with each base from one chain being 

hydrogen-bonded to a base from the other chain, lying side by side. The bounding can 

only occur between a purine and a pyrimidine so only specific pairs of bases can bond 

together, adenine (purine) with thymine (pyrimidine), and guanine (purine) with 

cytosine (pyrimidine). The backbone of each strand of the helix is composed of 

alternating sugar and phosphate residues.  
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Figure 4- Representation of the DNA molecule [10]. 

 

The sequence of nucleotides that make up DNA can be split into two different 

categories, coding and non-coding regions. The coding regions consist of sets of 

relevant sequences in terms of protein production. The number of nucleotides in these 

regions is multiple of three because each triplet (codon) represents the code of an amino 

acid, the structural unit of a protein. However, on the eukaryotic species, those zones are 

only a small part of the whole sequence of DNA (approximately 2% for the Homo 

sapiens) and are contained in the so called genes. 

On those organisms, most genes have a sequential structure of alternating parts, 

exons (constituting the code for proteins), and introns, which are non coding sequences. 

 

 
Figure 5 - The diagram of a gene (constituted by exons and introns) [11]. 

 

The RNA (ribonucleic acid) is a family of large biological molecules that 

perform multiple vital roles in the coding, decoding, regulation, and expression of 
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genes. Like DNA, RNA is assembled as a chain of nucleotides, but it is usually single-

stranded and has uracil instead of thymine in its structure. Cellular organisms use 

messenger RNA to convey genetic information that directs synthesis of specific 

proteins, while many viruses encode their genetic information using one RNA genome. 

 
Figure 6 - Representation of a RNA molecule [12]. 

1.3. Dissertation structure 

This work is organized in five chapters, four appendices and a glossary. 

The first chapter starts with an introduction setting a global framework as well as 

the motivations and the objectives to be achieved, followed by the history of the DNA 

study and some biological concepts such as the structure of both DNA and RNA. 

Moreover, in chapter two, it is described not only the importance and the goals 

of DNA segmentation, but also some state of the art algorithms used to discriminate 

coding and non coding regions and to find CpG islands. 

The third chapter covers the methods used to apply the inter-symbolic distances 

to DNA segmentation. It starts by introducing some concepts related to the inter-

nucleotide distances previously studied by other investigators and it is followed by the 

description of an algorithm used to discriminate coding and non coding regions. Finally, 

in this chapter the whole process that led to the development of a new algorithm using 

inter-symbolic distances to find CpG islands is described.  

Besides, in chapter four, the DNA data used and the MATLAB tools developed 

are described. It continues by showing the experimental results obtained during this 

work starting at those related to the exploratory studies on the stop codons distribution 

in coding and non coding regions and the CG symbol distances distribution in CpG and 
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non CpG islands. Furthermore, in this chapter, the results of the discrimination of 

coding and non coding regions are displayed, ending with the evaluation of the 

performance of the developed CpG distances algorithm. The performance of this 

algorithm was also compared to that of the Hidden Markov Model, which is one of the 

most frequently used models to find CpG islands.  

Also, in the fifth chapter, some important conclusions are drawn and some 

possible future work is proposed. 

Finally, the described chapters are followed by four appendices and a glossary 

with the definition of the most relevant biological terms used in this work. 
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2. DNA segmentation methods 

The segmentation of DNA represents an important issue for scientists, as it 

allows to extract information of useful genomic regions and to help understand the 

organization of the genetic process.  

It is known that a typical DNA sequence is not homogeneous and that some 

segments that reveal a certain homogeneity as well as regions with varying statistical 

properties may have biological meanings (such as regulatory elements, structural 

features of the DNA, CpG islands, coding and non coding regions) [13]. The 

computational methods used to identify these homogeneous regions are called 

segmentation methods [14]. 

Moreover, the comparison of sequences between species requires methods of 

determining similarities in evolution or function. Today, large chunks of the genome are 

sequenced but the role played by many of the sequences remains unknown.  

In order to face this challenge the DNA segmentation methods are used to divide 

this unknown sequences into a number of segments, where each segment has a certain 

degree of internal homogeneity, so they can be compared with previously well studied 

small sequences and provide useful characterizations [15].  

There are many segmentation techniques such as the Moving Window, the 

Maximum Likelihood Estimation, the Hidden Markov Models and Recursive 

Segmentation (see for example: [16], [17], [18], [19]). 

This work will focus on methods to discriminate coding and non coding regions 

and to detect CpG islands. 

2.1. Detection of coding and non coding regions 

 The computational recognition of genes and coding regions is one of the major 

challenges for the molecular biology in the analysis of newly sequenced genomes. 

However, there are two basic issues in gene identification: detection of protein-binding 

sites of the genes and finding out regions that code for proteins [20]. There are 

numerous segmentation methods with the goal of finding borders between coding and 

non coding regions, some of which are briefly described below (the enumeration and 

description of the methods does not pretend to be exhaustive). 
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The method described by Bernaola et al, employed a 12-symbol alphabet to 

identify the borders between coding and non coding regions based on nucleotide 

statistics inside codons [21].  

Later, Nicorici and Astola segmented the DNA sequence into coding and non 

coding regions using recursive entropic segmentation (based on Jensen-Shannon and 

Jensen- Rényi divergences) and stop-codon statistics [20]. 

Moreover, signal processing techniques based on the period-3 property 

(periodicity of DNA in exons, with the period being equal to 3 nucleotides) [22] can 

play an important role for gene finding. Thus, Tiawari used the discrete Fourier 

transform (DFT) spectrum to achieve this goal, where the DFT energy at a central 

frequency is calculated for a fixed length window, and the window is slid across the 

numerical sequence [23]. 

Plus, Vaidyanathan identified protein coding regions using an anti-notch filter 

which magnified regions with period-3 property [24] and Akhtar applied time domain 

algorithms, average magnitude difference function and time domain periodogram 

algorithms to identify eukaryotic gene locations [25]. 

  

2.2. Detection of CpG islands 

Over the last decades there has been an increasing interest in the study of CpG 

islands or CG islands, genomic regions where a cytosine nucleotide occurs next to a 

guanine nucleotide (connected by a phosphodiester bond) with high frequency, as they 

are often located around the promoters of genes that are essential for general cell 

functions [26]. These islands are useful markers for genes and play important roles 

during X-chromosome inactivation, imprinting and silencing of intragenomic parasites. 

In the last twenty five years, some studies have tried to find a precise definition 

for these regions. Gardiner-Garden and Frommer in 1987 [27] considered CpG island as 

a DNA sequence with at least 200bp, with a C+G content greater than 50% and an 

observed-to-expected CpGratio (              

                  
                                             )   

greater than 60%.  

Moreover, in 2002, Takai and Jones [28] revised this definition in order to 

discriminate other genomic sequences with rich GC content, such as Alu repeats, 

considering sequences with more than 500bp, G+C content greater than 55% and an 

observed-to-expected CpG ratio greater that 65% as more likely to be real CpG islands.  
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Although there are many models available to find CpG islands, one of the most 

used and that has a satisfactory performance is the Hidden Markov Model [26]. Hence, 

a version of this model will be presented in the next section and later its performance 

will be compared with the algorithm developed in this study.  

2.2.1 Hidden Markov Model 

Because pairs of consecutive nucleotides are important in this context, a model 

in which the probability of one symbol depends on the probability of its predecessor is 

necessary. To capture this dependency, it can be applied an Hidden Markov Model 

(HMM). 

An HMM is a system               consisting of: 

 an alphabet   

 a set of states   

 a matrix          of transition probabilities     for  ,      , and 

 an emission probability       for every   є   and       

For CpG-islands a possible model is:  

 

Figure 7 - Possible transitions between states for the HMM model [29].  

Using the alphabet              , if the symbol comes from a CpG island, 

the states are   ,   ,   ,   , otherwise, the states are            . The remaining 

state (not represented in the picture) is 0, representing the begin/end state. Thus, there 

are nine possible states [29]. 

The transition probability matrix   used in this model is displayed in Appendix 

A, in section 7.1.  
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Besides, the model emits the letters        , but for each letter there are two 

states from which the letter can come from. The emission probabilities matrix is also 

presented in Appendix A. 

On the other hand, having observed a sequence of symbols generated by an 

HMM, it is important to decode the sequence states from it. The most common way to 

do this is using the Viterbi algorithm [30]. 

The advantage of the Viterbi algorithm is that it does not blindly accept the most 

likely state at each instant  , but in fact takes a decision based on the whole sequence. 

This is useful, if there is an unlikely event at some point in the sequence.  
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3. DNA segmentation with inter-symbolic 

distances 

The inter-symbolic distances were brought up by Nair and Mahalakshmi in 2005 

and provide a new approach to explore the correlation structure of DNA [31]. 

If this method is used, each symbol constituting a given DNA sequence will be 

converted into a number corresponding to the distance to the next equal symbol. 

Therefore, if the sequence is considered to be circular, the length of the new numeric 

sequence keeps the same as the original.  

Given the alphabet α            and considering a word, μ, defined in α with 

any length chosen, there can be a numerical sequence,   , that represents the distance 

between the first occurrence of the word μ and the next one in the DNA sequence. 

 For example, given the sequence: 

  A C A C G A A T T T A T T C G A A T T C A A C T T A A C  

considering a word   ={AA}, the distance sequence    of the word   assuming 

that this is a circular sequence and there is overlapping in the word, is:  

  

                

 

Figure 8 - Illustration of the distances vector for the word   ={AA} with 

 overlapping. 

 

On the other hand, considering that there is no overlapping, the distance 

sequence    is:  
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Figure 9 - Illustration of the distances vector for the word   ={AA} without 

overlapping. 

 

Other way of studying the inter-symbolic distances that can be important in 

many cases is using different reading frames. There are as many reading frames as the 

word length in study and the distance unit is the word. 

Considering the same word,   ={AA}, and a circular sequence, the distances 

vectors of this word with two different frames are: 

 

    

 
        

       

 
           

 

 

Figure 10 - Illustration of the distances vector for the word   ={AA} considering 

two different reading frames. 

3.1. Inter-nucleotide distances 

Later, in 2009, the inter-symbolic distances method was explored [1] and applied 

to the inter-nucleotide distances, introducing four new sequences, one for each 

nucleotide (  ,   ,   ,   ), in order to analyze the behaviour of the distance vector of 

the four nucleotides and of the global sequence.  
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In the next figure, the four inter-nucleotide distance sequences are represented, 

for a short sequence of the Homo sapiens chromosome 1: 

 
 

Figure 11 - Inter-nucleotide distances for the first 1600 distances of each 

nucleotide of the gi|157811749|ref|NW_001838563.2| Homo sapiens chromosome 1. 

The length (N) of the global distance sequence, d, can be calculated by the sum 

of the lengths of the four inter-nucleotide distance              . 

Furthermore, the positions of all the nucleotides in the complete sequence may 

be determined if the position of the first occurrence,   
 , of each nucleotide is known: 

  
     

    
 

 

   

 

 

whence,   
      

    
  and       

 
          

 

With a view to study some statistical properties of the DNA of different species, 

the inter-nucleotide distance distribution was used. 

In addition, it was considered that if the nucleotide sequences were generated by 

an independent and identically distributed random process, then each of the inter-

nucleotide distance sequences,   , would follow a geometric distribution. The 

probability functions are: 
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where the expected value is      and the variance is             . 

 

Moreover, to estimate the nucleotide occurrence probability,   , the relative frequencies 

of each nucleotide in the DNA segment,      , were calculated. 

3.2. Detection of coding and non coding regions 

Despite of the well known non homogenous distribution of the DNA sequence 

[32] and the existence of many published algorithms ([33] [34] [35]) to detect borders 

between coding and non coding regions, there is still room for improvement, as their 

performance is not ideal. 

In order to analyze the behavior of the distance distribution between stop 

codons: TAA, TAG and TGA (as any of these symbols signals the end of genes), in 

coding and non coding regions, an exploratory study was carried out. In this study, the 

distribution of distances between stop codons in known coding and non coding regions 

was evaluated using three different reading frames.  

The results of this study are displayed in section 4.2.1 and constitute an 

important indicator of the capability of this method to identify coding regions as it was 

found that not only the distributions of stop symbols in coding and non coding regions 

are different, but also that, in the correct reading frame of coding regions, the stop 

symbol occurs only at the end (as expected). 

This way, there was the expectation that the distance between stop symbols 

could have high potentiality in improving DNA segmentation and setting better limits 

for coding regions. This concept was used and extended to develop an algorithm to 

achieve the discrimination of coding and non coding DNA regions using the inter-stop 

distance sequences [36]. 

3.2.1 Inter-stop symbols distance sequences 

The inter-stop symbols distance sequence is determined considering a word, µ, 

composed by three nucleotides, that represent the stop codons and calculating the 

trinucleotides distance between them. From a single genomic sequence, it is possible to 

generate three trinucleotide sequences, one for each reading frame. 
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 Reading frames 

For example, considering a genomic sequence starting by 

AAACAAACTGACACAAAACACTAATAGTTTAAAATAATAATGA . . . .  

Then, the three trinucleotide reading frames (                 produce the 

following trinucleotide sequences,  

 

Figure 12 - Reading frames for the given genomic sequence. 

The distance vector represents the number of trinucleotides between the STOP 

symbols, and not the number of nucleotides, producing the following inter-STOP 

distance sequences: 

    

           

      
             

    

           

The inter-STOP distance distribution of a sequence of random and 

independently placed nucleotides is given by 

 

                                     ,         

 

with       =      +      +     . Considering that the four nucleotides have the same 

probability,             and the expected distance, assuming independence and 

equal probability for the nucleotides, value is     . This function is a specific 

application of the probability function displayed in section 3.1 to the stop symbols. 
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3.2.2 Chi-square statistic 

With the objective of measuring the lack of homogeneity of the inter-STOP 

distance distribution between the three possible reading frames a chi-square statistic was 

used. Moreover, with the aim of computing the chi-square statistic along the 

trinucleotide sequences a sliding window of fixed length ( ) was used in each frame, 

and the distances within each window were separated into two different categories: 

short distance and long distance. The measure used to separate the short and long 

distances was called cut-off.  

Furthermore, an extra category with the number of nonstop symbols within the 

window was also included. For each DNA sequence, contingency tables at the position 

of each trinucleotide were constructed, with a window of   trinucleotides: 

 

 Frame 1 Frame 2 Frame 3 Total 

non STOP     
 

    
 

    
 

    
 

short 

distance 
    

 
    

 
    

 
    

 

long distance     
 

    
 

    
 

    
 

 total     

 

    

 

    

 

                

 

Table 1 - Contingency table for each window with   nucleotides (            

       ) [36]. 

 

 

In order to evaluate the homogeneity between reading frames a chi-square 

statistic was used, being in this case defined by: 

      
     

      

  
 

      

   

    
      

   

  
 

   

   

 

 

Note that when one of the categories (non stop, short distance or long distance) 

does not occur in the three frames, the    is set at 0. 
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 3.2.3 Experimental procedure 

The chi-square statistic for each symbol of the three reading frames was 

obtained for a sliding window with fixed length (1000 symbols) and a cut-off between 

100 and 400. Besides, it was applied a ROC (receiver operating characteristic) curve 

and the area under curve, (AUC), was computed so that it was possible to evaluate the 

discrimination accuracy of the chi-square statistic and to establish the cut-point for 

prediction purposes (higher AUC values mean better discrimination performance). The 

point of the ROC curve closest to (0,1) is the “optimal point” in terms of sensibility, 

specificity and global accuracy of the prediction. The method used relies on the 

occurrence of two conditions:  

 the existence of a long distance (greater than a certain threshold value) 

 the value of the chi-square statistic being above a certain reference value. 

 If a certain DNA position verifies the two previous conditions then it is 

expected that there will be a start codon near the STOP codon in that reading frame.  

Hence, starting at the STOP codon, it is necessary to search the next ATG codon 

(the most frequent initiation codon) in the same reading frame and consider it as the 

beginning of the coding regions.  

Therefore, the symbols between the STOP codon and the beginning of the 

coding region are marked as non coding symbols. On the other hand, the symbols 

between the beginning of the coding region and the next STOP codon, in the same 

reading frame, are marked as coding symbols.  

 

3.3. Detection of CpG islands 

Aiming at developing an algorithm based on the inter-symbolic distances to find 

CpG islands, an exploratory study was also carried out to ascertain how the distribution 

of the distances between CG symbols varies in segments considered as CpG islands by 

the Takai and Jones definition and in segments that are not CpG islands.  

The results of this study are shown in section 4.2. and represented an important 

motivation to develop an algorithm based on the inter C/G distances and on the concept 

of short and long distances. 
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3.3.1 Inter-CG symbols distance sequences 

In this section the distance between dinucleotides was considered without 

overlapping and without reading frames. 

This distance between CG symbols is calculated by the number of nucleotides 

between them, considering that the sequence is circular, as illustrated next: 

 

             

 

 

Figure 13 - Illustration of the distance between CG symbols. 

Moreover, as it will be presented in the next section, it can be important to 

consider a set of related symbols as a single symbol and calculate the distance between 

them. So, considering the symbol S as the set of symbols where only cytosine and 

guanine are present, S = { CC, CG, GC, GG }, the respective distance vector of this 

symbol is: 

   

                

 

 

Figure 14 - Illustration of the distance between S= { CC, CG, GC, GG } 

symbols. 

3.3.2 Methods 

 Based on the results of the exploratory study and the behavior of the inter-CG 

distances distribution, an algorithm to find CpG islands was developed. 
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 First approach  

In the first approach, two parameters were defined in order to try to find 

significant differences between segments of DNA that constituted CpG islands and 

those that were not CpG islands. 

These parameters were defined using the concept of short and long distances 

between CG symbols, considering that a certain cutpoint   separates them.  

The first parameter, meant to discriminate CpG islands in terms of the observed-

to-expected ratio of symbol occurrence is defined by,  

   
   

 
 

where     is the number of short distances between CG symbols, and   the expected 

value that is calculated by 

                    

where      represents the number of CG symbols in the sequence and   the 

probability. Considering a sequence of nucleotides generated by an independent and 

identically distributed random process (the dinucleotides distances follows a geometric 

distribution), the probability   is determined as follows: 

                 

   

   

 

where    represents an estimative of the probability of the CG symbol,  

 

    
    

 
 

with   representing the length of the segment. 

The second parameter, related to the C+G content, 

   
   

   
  

represents the ratio between short and long distances of CG symbols detected in the 

sequence. 

A DNA segment may be considered as CpG island, if    and    are greater than 

   and    which are threshold values to be found experimentally. 
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 After exhaustive tests were made, between the possible ranges for each 

parameter, ]0,     ] for    and          for   , the values that led to the best 

performance of the algorithm were    = 0.80 and    = 1.20. 

However, the results obtained with this approach were not those desired in terms 

of sensibility (see Appendix D) and in spite of an exhaustive attempt to adjust the 

parameters, the results did not improve. 

Thus, a new approach was tried, in order to improve sensibility, using 

information of other inter-dinucleotide distances. 

 Second approach: CpG distances algorithm  

Considering the symbol S as the combination of the 4 dinucleotides where only 

C and G are present, S = { CC, CG, GC, GG } and assuming that the nucleotides are 

generated by an independent and identically distributed random process with the same 

probability for each nucleotides the expected average distance between S symbols is 4 

(4 out of 16 dinucleotides). Therefore, the first parameter developed in this approach, 

was 

       

where     is the average distance between S symbols so that the segment has the 

necessary G+C content to be considered as a CpG island. However, when the algorithm 

was tested, it was found that this criterion was too restrictive, and the condition was 

changed to 

          

Furthermore, the second parameter considered, so that the segment may have the 

necessary observed-to-expected value, considering        , was, 

  
     

   

   
     

      
 

  
    

where the number of short distances of the symbol S,    
    , is divided by 4, 

the number of di-nucleotides constituting that symbol. 

This parameter represents the ratio between the number of short distances of the 

symbol    and the number of short distances between S symbols. Different cutpoints 

were exhaustively tested between the range {4,...,16} and the one that conducted to best 

results was 8, so this value has been set. Furthermore, the value of   that led to the best 

performance was         . 
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Therefore, in order to be considered as CpG island, a certain DNA segment has 

to verify          and   > 0.25. 

3.3.3 Experimental procedure 

This algorithm was then applied to different species and the results were 

compared with the formal definition of CpG island by Takai and Jones [28], so the 

length of each segment,  , considered was 500. In order to evaluate its performance, 

three statistics were considered: Accuracy, Sensibility and Specificity that were 

calculated using four measures: 

-     : number of segments considered as CpG islands by the Takai and Jones 

definition and by the algorithm in study. 

-     : number of segments considered as CpG islands by the Takai and Jones 

definition and not by the algorithm. 

-     : number of segments not considered as CpG islands by the Takai and 

Jones definition but considered by the proposed algorithm. 

-     : number of segments not considered as CpG islands by the Takai and 

Jones definition neither by this algorithm. 

 

    

 

 

Table 2 - Table representing the parameters used to determine the performance 

of the algorithm. 

so that,  

 ccurac    
       

      
     

 where,   

        is the number of segments of length 500 in the considered chromosome. 

 

 

Moreover, 
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And finally, 
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4. Experimental results 

4.1. Materials 

4.1.1 DNA data 

The DNA sequences used in this work were the Homo sapiens (annotation 

release 105) available in the National Center for Biotechnology Information (NCBI) 

[37], the eukaryotes Sacccharomyces cerevisae [38] and Encephalitozoon cuniculi [39], 

the bacterias Bifidobacteruim asteroides [40], Haemophilus influenzae [41] and 

Thermotoga maritima [42], the phage Aeromonas phage 65 [43] and the organelle 

Calliarthtron tuberculosoum [44] all available in the European Bioinformatics Institute 

database.  

4.1.2 Developed MATLAB tools 

In order to study and test the performance of the application of the inter-

symbolic distances algorithm, in an easy and efficient way, a set of MATLAB tools 

were developed. 

The first tool has two input parameters, a DNA sequence and a word (with any 

length), and provides as output the distances vector of that word in the DNA sequence.   

 

Figure 15 - Diagram of the first tool designed. 

Aiming to test the performance of detecting CpG islands, another tool was 

developed. It receives as input a DNA sequence and has three incorporated functions, 

one to determine the CpG islands using the Takai and Jones definition (section 2.2), the 

second one using the distances algorithm and the third one using the HMM model. This 
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program outputs the results in terms of accuracy, sensibility and specificity of the two 

algorithms when compared with the Takai and Jones definition. 

 

Figure 16 - Diagram describing the second projected tool to test the performance 

 of the related algorithms. 

Finally, the diagram of the tool used to test the performance of the Inter-stop 

symbols distances [36], applied to different species to discriminate coding and non 

coding regions is displayed in figure 17: 

      

 
Figure 17 - Diagram describing the tool used to discriminate coding and non 

coding  regions. 
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This algorithm receives as input a DNA data sequence and using an internal 

function selects the cut-off that conducts to the best AUC result. Using this cut-off that 

discriminates between short and long distances and a chi-square statistic it returns as 

output not only the results of the area under curve (AUC), but also the accuracy, 

sensibility and specificity of the algorithm. 

4.2. Inter-symbolic distances  

4.2.1 Inter-stop symbols distances distribution 

To conduct the exploratory study of the distribution of distances between stop 

symbols, the annotated coding regions for each species were used. For each species, the 

distance distribution in three reading frames were determined by counting the 

occurrences of each distance, both in coding and non coding regions. In coding regions, 

frame 1 was always "the correct" reading frame, the one that results in the correct 

translation of codons into aminoacids.  

Figures 18 to 20 show the histograms for the distance distribution, in each 

reading frame, between stop codons for the Aeromonas phage 65, in non coding 

regions: 

 

 

Figure 18 - Distribution of the distances between stop codons in non coding 

 regions for the Aeromonas phage 65- Frame 1. 
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Figure 19 - Distribution of the distances between stop codons in non coding 

 regions for the Aeromonas phage 65- Frame 2. 

                   
Figure 20 - Distribution of the distances between stop codons in non coding 

 regions for the Aeromonas phage 65- Frame 3. 

Observing the graphics, there are not any clear differences between each frame. 

So, the distribution of the distances between stop codons is similar in the three reading 

frames of the non coding regions. 
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On the other hand, figures 21 to 23, show the corresponding histograms for 

coding regions: 

 

Figure 21 - Distribution of the distances between stop codons in coding regions 

for the Aeromonas phage 65-  Frame 1. 

 

 
Figure 22 - Distribution of the distances between stop codons in coding regions 

for the Aeromonas phage 65-  Frame 2. 
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Figure 23 - Distribution of the distances between stop codons in coding regions 

for the Aeromonas phage 65-  Frame 3. 

 

Contrary to what was observed in non coding regions, in this case there is a 

frame totally different from the others, frame 1. In this frame, figure 21, there is only 

one stop codon in each coding sequence, and therefore one distance, signaling the end 

of the gene. As each coding sequence is considered circular, this distance represents the 

length of the gene. The smallest distance was 27 and the maximum distance was 1287. 

This behavior was similar in all the species which were tested and the results are 

displayed in Appendix B.  

Hence, these observations constituted an important motivation in order to 

develop an algorithm based on distances between stop codons to discriminate coding 

and non coding regions.    

4.2.2 Inter-CG symbol distances distribution 

An exploratory study was carried out to characterize the inter CG symbol 

distance distribution in sequential segments of 500 nucleotides for the genome of all 

eukaryotes studied in this work. As the bacterias, the phage and the organelle do not 

have or have only a residual number of CpG islands, this study was not applied to them. 

If a segment was considered, by the Takai and Jones definition, as CpG island 

the distance counts were accumulated in a vector corresponding to CpG islands. If the 

segment was not considered as CpG island, the counts were accumulated in a different 

vector.  
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The histograms of each distances vector, for Homo sapiens, are displayed in 

Figures 24 and 25: 

 

 

Figure 24 - Distribution of CG distances in CpG islands of Homo sapiens 

 genome. 

 

Figure 25 - Distribution of CG distances in non CpG islands of Homo sapiens 

 genome. 

 

When the graphics are analyzed, it is possible to verify that the distribution of 

the CG distances in segments from CpG islands has a steeper slope than in segments 

from non CpG islands .and thus, revealing a higher percentage of short distances in 

these segments.  

The percentage of short distances between CG symbols was computed 

considering a cutpoint   = 8 (as set in 3.3.2). In the human genome the percentage of 

short distances in CpG islands was 60.64% and in non CpG islands was 20.70%. 
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In what concerns to the other two eukaryotes, Sacccharomyces cerevisae and 

Encephalitozoon cuniculi the behavior of the distribution of distances between CG 

symbols was similar to the Homo sapiens and the corresponding graphics are displayed 

in Appendix C.  

Thereby, this exploratory study demonstrated that these characteristics could be 

the base of an algorithm which could be able to find CpG islands.  

4.3. Detection of coding and non coding regions 

An adjustment to the algorithm was initially tried in order to improve its 

performance, varying the cut-off and the window length between larger ranges. 

 However, as this has not led to any significant improvement, the algorithm was 

tested as it was initially developed [36].  

It is important to note that this algorithm was applied to the Homo sapiens but 

the results were very poor. This is probably due to the presence of introns. 

The algorithm was also applied to three bacterias (Bifidobacteruim asteroides, 

Haemophilus influenzae and Thermotoga maritima), one phage (Aeromonas phage 65), 

an organelle (Calliarthtron tuberculosoum) and to the chromosomes of two eukaryotes 

(Sacccharomyces cerevisae and Encephalitozoon cuniculi).  

For each case, the cut-off that led to the best AUC result was calculated and the 

performance values, for each species, are displayed in tables 3, 4 and 5: 

 

Species Cut-off AUC     
  Accuracy (%) Sensibility (%) Specificity (%) 

Aeromonas phage 65 190 0,89 0 83,49 85,60 82,83 

Calliarthtron 

tuberculosoum 
 

170 0,76 130,43 71,19 96,11 55,58 

Thermotoga maritima 

 
340 0,79 8,05 52,70 84,44 67,45 

Haemophilus 

influenzae 

 

210 0,82 0 77,68 95,22 64,40 

Bifidobacteruim 

asteroides 

 

420 0,72 0 70,75 72,23 69,93 

 

Table 3 - Results of the inter-stop symbol distances algorithm for five different 

 species. 
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From the results presented in table 3 it is possible to conclude that while the 

sensibility was good (average 86,72%), its accuracy (average 71.16% and 75,80% when 

the worst result for the Thermotoga maritima is excluded) and specificity (average 

68,04%) were poorer. In terms of AUC, the results were good, with average 0.8 (the 

best possible value for the AUC is 1). 

 

For the two eukaryotes, tables 4 and 5 show the results of the performance of the 

algorithm for segmentation of coding and non coding regions: 

 
Chromosome Cut-off AUC     

  Accuracy (%) Sensibility (%) Specificity (%) 
1 240 0,81 8,64 80,09 88,78 77,22 

2 230 0,82 0 80,01 88,51 76,09 

3 270 0,77 0 78,01 79,78 77,14 

4 320 0,79 0 65,50 83,96 77,05 

5 210 0,81 5,11 75,71 91,23 68,09 

6 350 0,79 20,18 79,91 78,78 81,36 

7 250 0,81 0 78,85 87,71 73,03 

8 320 0,77 0 77,88 82,87 74,77 

9 280 0,75 0 79,40 83,55 73,25 

10 310 0,78 0 79,20 84,30 71,30 

11 230 0,79 3,25 78,55 92,75 70,47 

12 220 0,81 12,99 78,67 87,19 74,17 

13 320 0,78 0 78,12 91,38 71,08 

14 230 0,79 0 79,19 85,30 75,69 

15 310 0,78 47,33 79,02 83,80 75,92 

16 260 0,79 0 77,37 86,13 72,00 

 

Table 4 - Results of the inter-stop symbol distances algorithm for all 

 chromossomes of the Sacccharomyces cerevisae. 

Chromosome Cut-off AUC     
  Accuracy (%) Sensibility (%) Specificity (%) 

1 300 0,78 0 72,62 84,28 66,09 

2 410 0,78 0 78,40 76,92 79,75 

3 370 0,77 0 75,11 74,09 76,18 

4 310 0,70 26,96 71,11 73,87 68,82 

5 320 0,75 0 74,53 83,45 64,82 

6 340 0,75 0 73,27 76,89 70,88 

7 410 0,74 12,08 70,97 76,13 64,99 

8 330 0,70 15,61 70,58 75,71 67,05 

9 360 0,79 0 77,46 75,18 78,92 

10 410 0,78 0 77,08 71,69 81,20 

11 270 0,71 15,14 65,23 89,67 51,00 

 

Table 5 - Results of the inter-stop symbol distances algorithm for all 

 chromossomes of the Encephalitozoon cuniculi. 
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From the analyze of tables 4 and 5 tables it is possible to assess that, in terms of 

accuracy, the results were better in the case of the Sacccharomyces cerevisae, with an 

average of 77.84% in the whole genome sequence (78,72% excluding the worst result in 

chromosome 4), while the Encephalitozoon cuniculi had an average accuracy of 73.30% 

(74.11% also excluding the worst result). 

Relating to the sensibility, the results were also good for the Sacccharomyces 

cerevisae (average 86,00%) and a little worse for the Encephalitozoon cuniculi (average 

77,99%). 

As in Table 3, the specificity was the worst parameter for the two eukaryotes 

(average 74.3% and 69.97%).  

Finally, in what concerns to the AUC values, the results were again good, 

averaging 0,79 and 0,75, respectively. 

These results are generally good but there is still room to improve the 

performance of the algorithm, mainly in terms of specificity, which had the worst 

results. 

  

4.4. Detection of CpG islands 

The results of the performance of the developed CpG distances algorithm, when 

compared to the Takai and Jones definition, are shown, for each chromosome of the 

Homo sapiens, in table 6.  
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Chromosome Accuracy (%) Sensibility (%) Specificity (%) 
1 99,21 95,27 99,24 

2 99,38 94,83 99,40 

3 99,39 95,34 99,41 

4 99,42 94,61 99,44 

5 99,36 95,25 99,39 

6 99,27 94,78 99,29 

7 99,24 93,55 99,28 

8 99,43 94,44 99,46 

9 99,21 94,18 99,25 

10 99,28 94,30 99,31 

11 99,25 94,50 99,29 

12 99,16 93,87 99,19 

13 99,36 93,04 99,39 

14 99,26 95,14 99,29 

15 99,23 96,51 99,25 

16 98,94 94,00 99,00 

17 98,69 95,53 98,74 

18 99,34 93,68 99,37 

19 97,94 93,62 98,05 

20 99,09 95,17 99,13 

21 99,23 96,23 99,25 

22 98,78 93,92 98,85 

X 99,46 94,89 99,48 

Y 99,44 87,69 99,47 

 

Table 6 - Performance of the new approach of the distances algorithm for each 

 chromosome of the Homo sapiens ( with          and       ). 

 

Moreover, the algorithm was applied to the Saccharomyces cerevisiae and to the 

Encephalitozoon cuniculi and the results are shown in the tables 7 and 8 ( '*' means 

there were no CpG island by the definition of Takai and Jones detected on that 

chromosome) : 
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Chromosome Accuracy (%) Sensibility (%) Specificity (%) 

1 97,83 100,00 97,80 

2 98,89 * 98,89 

3 97,31 * 97,31 

4 98,96 * 98,96 

5 97,75 50,00 97,83 

6 97,96 100,00 97,96 

7 99,04 100,00 99,04 

8 99,02 * 99,02 

9 97,72 100,00 97,72 

10 98,12 * 98,12 

11 98,27 * 98,27 

12 97,91 100,00 97,91 

13 98,70 100,00 98,70 

14 99,04 100,00 99,04 

15 98,72 100,00 98,72 

16 98,42 * 98,42 

 

Table 7 - Performance of the distances algorithm for each chromosome of 

 Saccharomyces cerevisiae (with          and       ). 

Chromosome Accuracy (%) Sensibility (%) Specificity (%) 

1 84,00 48,72 87,63 

2 93,15 37,50 94,30 

3 96,39 100 96,36 

4 92,67 55,56 93,44 

5 94,79 28,57 95,90 

6 96,36 100 96,36 

7 96,69 83,33 96,87 

8 94,12 50 95,45 

9 95,20 66,67 96,08 

10 96,38 82,35 96,85 

11 93,83 70 94,29 

 

Table 8 - Performance of the distances algorithm for each chromosome of 

 Encephalitozoon cuniculi (with          and       ). 

 

Observing the results in tables 6, and 7 it is possible to verify that the CpG 

distances algorithm shows good performance in all parameters which were considered, 

having improved significantly in terms of sensibility, when compared to the first 

approach (Table 13 in Appendix D).  
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However, there are some poor results in terms of sensibility in table 8. This 

happens because, in this species, there are only a small number of segments considered 

as CpG islands by the Takai and Jones definition and every increment in the     

parameter (number of segments considered as CpG islands by the Takai and Jones 

definition and not by the algorithm) has a very significant weight in the sensibility 

value. 

4.4.1. Comparison with HMM model 

In order to better evaluate the performance of the developed distances algorithm, 

it is important and challenging to see how one of the most used state-of-art algorithms 

in finding CpG islands (the HMM model described in 2.2.1 section) performs.  

This model was applied to the same DNA data and the results, once again, were 

compared to the Takai and Jones definition.  

For the chromosomes of the Homo sapiens, the results were:  

Chromosome Accuracy (%) Sensibility (%) Specificity (%) 

1 95,68 98,93 95,66 

2 96,79 98,30 96,78 

3 97,56 99,12 97,55 

4 97,43 98,59 97,42 

5 97,24 99,04 97,23 

6 97,21 99,25 97,19 

7 95,71 98,36 95,70 

8 96,60 97,44 96,60 

9 94,83 98,61 94,80 

10 96,18 98,79 96,16 

11 95,26 98,71 95,23 

12 96,16 98,76 96,15 

13 97,22 98,09 97,21 

14 95,89 99,40 95,86 

15 96,25 99,66 96,23 

16 91,84 98,63 91,76 

17 91,02 99,07 90,89 

18 97,03 98,42 97,03 

19 85,04 99,22 84,68 

20 93,96 98,61 93,91 

21 93,67 98,45 93,63 

22 87,39 98,19 87,23 

X 97,89 99,10 97,88 

Y 98,07 96,92 98,07 

 

Table 9 - Performance of the HMM model for each chromosome of the Homo 

 sapiens. 
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Analyzing the results for the Homo sapiens, it is possible to verify that while the 

HMM model has better sensibility than the distances algorithm, but it has poorer 

accuracy and specificity (Tables 6 and 9). 

 

The results, for the two eukaryotes, are shown in tables 10 and 11: 

Chromosome Accuracy (%) Sensibility (%) Specificity (%) 

1 98,91 80,00 99,12 

2 99,20 * 99,20 

3 99,37 * 99,37 

4 99,12 * 99,12 

5 98,87 50,00 98,96 

6 98,52 100,00 98,52 

7 
99,36 100,00 99,36 

8 99,73 * 99,73 

9 99,20 100,00 99,20 

10 98,99 * 98,99 

11 99,10 * 99,10 

12 98,65 100,00 98,65 

13 99,03 100,00 99,03 

14 99,43 100,00 99,43 

15 98,85 100,00 98,85 

16 99,05 * 99,05 

 

Table 10 - Performance of the HMM model for each chromosome of 

 Saccharomyces cerevisiae. 

Chromosome Accuracy (%) Sensibility (%) Specificity (%) 

1 90,69 79,49 91,84 

2 97,21 75 97,67 

3 97,16 100 97,14 

4 97,94 66,67 98,59 

5 97,16 71,43 97,59 

6 97,95 100 97,95 

7 97,13 100 97,09 

8 95,59 71,43 96,32 

9 97,80 73,33 98,56 

10 97,71 94,12 97,83 

11 97 90 97,14 

 

Table 11 - Performance of the HMM model for each chromosome of 

Encephalitozoon cuniculi.   
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In the case of the Saccharomyces cerevisiae, the performance of the two 

algorithms was similar, although there were some worst results of the HMM model in 

terms of sensibility, visible on chromosomes 1 and 5 (Tables 7 and 10). 

Finally, in relation to the Encephalitozoon cuniculi both the developed algorithm 

and the HMM had some problems in terms of sensibility, because of the reason 

explained before in relation to this species, which is worse in the CpG distances 

algorithm, having a similar good performance in the other two parameters (Tables 8 and 

11). 
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5. Conclusion 

 Firstly, the inter-nucleotide distances revealed that the inter-symbolic distances 

algorithm could be very important in the characterization of DNA sequences, as well as 

for finding relevant patterns that are distinguishing characteristics of each species [1]. 

This work aimed at exploring new possible applications for the inter-symbolic 

distances, and its capability of discriminating coding and non coding regions and 

detecting CpG islands. 

Thus, an exploratory study was carried out in order to analyze the behavior of 

the distribution of the distances between stop codons in coding and non coding regions, 

in three different reading frames. As expected, in one frame of the coding regions, there 

was only one stop symbol per coding region, and its distance represented the length of 

that gene. 

This behavior was the basis of an algorithm to discriminate coding and non 

coding regions [36], and as it was not possible, in this work, to successfully adjust it to 

improve its performance, this algorithm was evaluated. The performance results showed 

that there is still room for improvement. Neverthless, it has revealed that the inter-

symbolic distances can also play an important role in finding coding regions. 

Moreover, a study was also conducted to analyze some characteristics of the CG 

dinucleotide distances distribution in CpG islands and in non CpG islands. From the 

results of this study, it was possible to verify that the percentage of short distances in the 

segments from CpG islands tend to be higher than in other segments, representing an 

important indicator that the inter-symbolic distances can be important to find these 

regions. Therefore, the inter-symbolic distances were used to develop an algorithm to 

find CpG islands. 

From the results of the developed CpG distances algorithm, it is possible to state 

that the developed algorithm constitutes an important tool to detect CpG islands and 

performing in some cases better than the Hidden Markov Model.  

Finally, the tools developed in MATLAB provide a contribution to the 

processing of genomic signals, which was another of the objectives of this work. 
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5.1. Future work  

As it has not been possible yet to apply the presented algorithm [36] to 

discriminate coding and non coding regions to more complex organisms, such as the 

Homo sapiens, possibly because of the presence of introns, this represents an important 

future challenge in the study of the inter-symbolic distances.  

Moreover, other possible application of the inter-symbolic distances may be 

finding transposons elements, and this subject may constitute another future challenge.    
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7. Appendix 

7.1. Appendix A 

 
 

Figure 26 - Transition matrix for HMM applied to CpG islands [29]. 

 
 

Figure 27 - Emission matrix for HMM applied to CpG islands [29]. 
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7.2. Appendix B 

In this appendix are displayed the results of the distribution of the stop codons 

distances in coding and non coding regions in the three different frames. In each figure, 

the three graphics on the top correspond to non coding regions and the three below 

correspond to coding regions.  

Moreover, on the left are the graphics corresponding to reading frame 1, on the 

center the graphics of the reading frame 2 and, finally, on the right the graphics of the 

reading frame 3. 

Figure 28 shows the distribution for the Bifidobacteruim asteroides: 

 

Figure 28 - Distribution of the stop codons distances in coding and non coding 

 regions in the three different frames. 

 

  

0 50 100
0

200

400

Distances

0 50 100
0

200

400

600

Distances

0 50 100
0

200

400

600

Distances

0 1000 2000
0

2

4

6

Distances

0 50 100
0

200

400

Distances

0 50 100
0

100

200

300

Distances



 

47 

 

In figure 29 are the results for the Haemophilus influenzae: 

 

Figure 29 - Distribution of the stop codons distances in coding and non coding 

 regions in the three different frames. 

 

Figure 30 shows the results for the Calliarthtron tuberculosoum: 

 

Figure 30 - Distribution of the stop codons distances in coding and non coding 

 regions in the three different frames. 
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The results for the Thermotoga maritima are displayed in figure 31: 

 

 Figure 31 - Distribution of the stop codons distances in coding and non coding 

 regions in the three different frames. 

 

For the eukaryota Sacccharomyces cerevisae the results are shown in figure 32: 

 

Figure 32 - Distribution of the stop codons distances in coding and non coding 

 regions in the three different frames. 
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Figure 33 shows the results for the Encephalitozoon cuniculi: 

 
 

Figure 33 - Distribution of the stop codons distances in coding and non coding 

 regions in the three different frames. 

 

Finally, the maximum and minimum length of a gene in reading frame 1 of 

coding regions for each species was also determined and the results are displayed on 

table 12: 

Species Maximum Minimum 

Bifidobacteruim asteroides 1829 32 

Haemophilus influenzae 1493 31 

  Calliarthtron tuberculosoum 1241 31 

Thermotoga maritima 1691 31 

Sacccharomyces cerevisae 2489 15 

Encephalitozoon cuniculi 

 
2410 49 

 

Table 12 - Maximum and minimum length of a gene in reading frame 1 of 

 coding regions for each species. 
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7.3. Appendix C 

 

Figure 34 and 35 shows the distribution of the inter-CG distances for the 

Sacccharomyces cerevisae genome in CpG islands and non CpG islands: 

 

 
 

Figure 34 - Distribution of CG distances in CpG islands of the Sacccharomyces 

 cerevisae genome (the percentage of short distances is 58.85%, δ = 8). 

 

 

 
 

Figure 35 - Distribution of CG distances in non CpG islands of the 

 Sacccharomyces cerevisae genome (the percentage of short distances is 24.22%, 

δ = 8). 
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Figures 36 and 37 shows the results for the Encephalitozoon cuniculi: 

 

 

 
Figure 36 - Distribution of CG distances in non CpG islands of the 

 Encephalitozoon cuniculi genome (the percentage of short distances is 49.93%, 

δ = 8). 

 
Figure 37 - Distribution of CG distances in non CpG islands of the 

 Encephalitozoon cuniculi genome (the percentage of short distances is 24.45%, 

δ = 8). 
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7.4. Appendix D 

 

The results for each chromosome are presented in the next table: 

Chromosome 
Accuracy 

(%) 

Sensibility 

(%) 

Specificity 

(%) 

1 92,69 75,14 92,83 

2 92,20 73,00 92,31 

3 91,67 74,95 91,75 

4 90,20 71,01 90,28 

5 91,40 72,84 91,50 

6 91,50 72,56 91,61 

7 92,51 71,26 92,65 

8 92,20 74,55 92,30 

9 92,95 74,97 93,08 

10 93,57 72,55 93,71 

11 92,40 74,87 92,52 

12 92,36 69,54 92,50 

13 91,19 70,48 91,29 

14 92,42 75,77 92,53 

15 94,23 78,19 94,35 

16 95,75 72,47 96,02 

17 95,80 74,62 96,13 

18 92,54 70,96 92,66 

19 96,07 69,79 96,74 

20 94,95 77,23 95,11 

21 93,39 70,07 93,55 

22 97,10 76,44 97,39 

X 91,04 68,34 91,13 

Y 88,62 52,31 88,69 

   

Table 13 - Performance of the first approach of the distances algorithm for each 

 chromosome of the Homo Sapiens. 
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8. Glossary  

CHROMOSSOME - organized structure of DNA and protein found in cells. It is a 

single piece of coiled DNA containing many genes, regulatory elements and other 

nucleotide sequences.  

  

GENE - the functional units of chromosomes, corresponding to DNA fragments each 

formed by a specific sequence of nitrogenous bases and with a specific mission: 

encoding the information required for the synthesis of a protein. 

 

NUCLEOTIDES - are biological molecules that form the building blocks of nucleic 

acids (DNA and RNA) constituted by a pentose, a phosphate group and a nitrogenous 

base (adenine (A), guanine (G), thymine (T), cytosine (C), uracil (U)). 

 

PURINE - two fused rings of carbon and nitrogen atoms, one ring has six members and 

the other has five, each with two nitrogen. A group of important elements are derived 

from purines, including adenine and guanine. 

 

PYRIMIDINE - a crystalline organic base that is the parent substance of various 

biologically important derivatives like cytosine, thymine and uracil, having a single six-

member ring in which the first and third atoms are nitrogen and the rest are carbon. 

 

AMINO ACID - the building block of proteins, containing an acid functional group 

and an amine functional group on adjacent carbon atoms in which each is coded for by a 

codon and linked together through peptide bonds (bond between the carboxyl group of 

one amino acid to the amino group of the other amino acid). 

 

CODONS - A sequence of three adjacent nucleotides constituting the genetic code that 

determines the insertion of a specific amino acid in a polypeptide chain during protein 

synthesis or the signal to stop/start protein synthesis. Possible stop codons in ADN are 

"TGA", "TAA" and "TAG". The most common start codon is "ATG". 
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GENOME - the complete set of hereditary information present in an organism where 

all the information for its construction and operation is contained. 

 

JUNK DNA/NONCODING DNA – describes components of an organisms DNA 

sequences that do not encode proteins. Much of this DNA has no known biological 

function, however many such sequences serve to regulate transcription of protein coding 

sequences. 

 

EXONS AND INTRONS - The genes contain regions which encode proteins called 

exons. These regions are interrupted, in some genomes, by sequences which are not 

used for coding, introns. 

Exons are constituted by a sequence that is not translated (Untranslated Region) and one 

that contains the code for a particular amino acid (Coding DNA Sequence). 

 


