
 Universidade de Aveiro

2013
Departamento de Eletrónica,
Telecomunicações e Informática

Ricardo Ferreira
Figueira

Módulo para investigação e ensino de sistemas de
comunicações digitais

 Universidade de Aveiro

2013
Departamento de Eletrónica,
Telecomunicações e Informática

Ricardo Ferreira
Figueira

Módulo para investigação e ensino de sistemas de
comunicações digitais

 Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia Eletrónica
e Telecomunicações, realizada sob a orientação científica do Doutor Paulo
Miguel Nepomuceno Pereira Monteiro (orientador), Professor Associado do
Departamento de Eletrónica, Telecomunicações e Informática da Universidade
de Aveiro, e do Doutor Arnaldo Silva Rodrigues de Oliveira (coorientador),
Professor Associado do Departamento de Eletrónica, Telecomunicações e
Informática da Universidade de Aveiro.

o júri

presidente Prof. Dr. José Rodrigues Ferreira da Rocha
professor catedrático da Universidade de Aveiro

 vogais Prof.ª Dr.ª Maria do Carmo Raposo de Medeiros
professora associada da Universidade de Coimbra

 Prof. Dr. Paulo Miguel Nepomuceno Pereira Monteiro
professor associado da Universidade de Aveiro (orientador)

agradecimentos

Em primeiro lugar, agradeço e dedico este trabalho à minha família, em

particular aos meus pais, avós e irmã, pelo constante auxílio demonstrado ao
longo da minha formação, tanto pessoal como académica, e sem os quais
este trabalho não teria sido possível.

Agradeço ao Professor Paulo Monteiro, ao Professor Rui Ribeiro e ao
Professor Arnaldo Oliveira pela disponibilidade e orientação à elaboração
desta dissertação, nomeadamente nas áreas de sistemas de comunicação e
dos sistemas reconfiguráveis.

Deixo também um agradecimento ao Engenheiro Nelson Ribeiro pelas
ocasionais trocas de ideias que provaram ser uma mais-valia à realização
deste trabalho.

Por fim, agradeço aos colegas pelo companheirismo e apoio
demonstrado ao longo destes cinco anos. Em particular, um obrigado ao
colega Telmo Cavaco, que me acompanhou desde o início.

palavras-chave

Kit, Sistema Banda-base, PRBS, Formação de Pulso, AWGN, Filtros,

Recuperação de informação, FPGA

resumo

Este documento apresenta o projeto de um módulo laboratorial para ensino

e investigação de uma vasta gama de sistemas de telecomunicações de banda

base, desde os conceitos mais simples até aplicações mais complexas. O

módulo foi desenvolvido na Universidade de Aveiro (UA) e no Instituto de

Telecomunicações de Aveiro (IT). Os subsistemas digitais que simulam

diferentes componentes da transmissão digital num sistema serão

apresentados com ênfase na implementação em FPGA (field programmable

gate array) de um gerador de sequências binarias pseudoaleatórias, codificação

e descodificação de linha, filtros, gerador de ruído gaussiano e circuitos de

recuperação de informação.

keywords

Kit, Baseband system, PRBS, Pulse Shaping, AWGN, Filters, Data

Recovery, FPGA

abstract

This document presents the design of a laboratorial module for training and

research purposes of a wide range of digital baseband telecommunications

systems, from the basic concepts through to more complex applications. The

module was developed at University of Aveiro (UA) and at Institute of

Telecommunications of Aveiro (IT). The digital subsystems that emulate

different parts of a digital transmission system will be presented with emphasis

on the implementation in a FPGA (field programmable gate array) of the

programmable pseudorandom bit sequence (PRBS) generator, line coding and

decoding, filters, gaussian white noise generator and data recover circuits.

i

Content

Content ... i

List of acronyms .. iii

List of symbols .. iii

List of figures .. iv

List of tables ... vi

1. Introduction... 1

1.1 Motivation .. 1

1.2 Objectives and document structure .. 1

2. System Overview ... 2

2.1 Baseband digital communication systems basics ... 2

3. System Specifications .. 5

3.1 Sequence Generation .. 5
3.1.1 Specifications .. 5
3.1.2 PRBS .. 6

3.1.2.1 LFSR implementation ... 6
3.1.2.2 Taps Notation ... 7

3.1.3 Programmed Sequence ... 9

3.2 Pulse Shaping .. 9
3.2.1 Line Coding .. 9
3.2.2 Raised Cosine Filter ... 12
3.2.3 Fir Filter ... 15

3.3 Transmission channel ... 16
3.3.1 Coaxial cable ... 16
3.3.2 AWGN ... 18
3.3.3 SNR .. 20

3.4 Data Recovery... 22
3.4.1 Clock Recover and Sampling ... 22
3.4.2 Level Decision ... 22
3.4.3 Line Decoding and BER ... 24

4. Hardware Implementation .. 25

4.1 Spartan-6 FPGA .. 25

4.2 System Architecture .. 26

4.3 FPGA Peripherals .. 29
4.3.1 DAC ... 29
4.3.2 ADC ... 30
4.3.3 Local Control Display ... 32

4.4 System Clock ... 33

4.5 FIFO ... 34

4.6 Bit Sequence Generator .. 37
4.6.1 Pseudorandom Bit Sequence Generator (PRBS) ... 37
4.6.2 Programmed Cyclic Sequence Generator ... 38
4.6.3 Performance ... 39

4.7 Line Coding ... 39

4.8 Filters .. 41

4.9 AWGN ... 42

ii

4.10 Data Recover.. 43

5. Software .. 48

5.1 Block Initialization .. 48

5.2 Data Sending .. 52

6. Experimental Results ... 55

6.1 Sequence Data Generator .. 55

6.2 Pulse Shaping .. 56
6.2.1 Line coding .. 56

6.2.1.1 Deterministic Sequence ... 56
6.2.1.2 Random Sequence ... 59

6.2.2 Raised Cosine .. 65

6.3 Low Pass Filter .. 70

6.4 Channel Filter .. 72
6.4.1 High-Pass ... 72
6.4.2 Coaxial Cable ... 74
6.4.3 AWGN ... 75

6.5 Peripherals .. 77
6.5.1 DAC ... 77
6.5.2 ADC ... 79

6.6 Receiver Filter ... 80

6.7 Data Recover .. 81
6.7.1 Receptor filter cut-off frequency influence .. 82
6.7.2 Sampling Phase influence ... 83
6.7.3 CRC Memory size influence .. 83
6.7.4 Decision thresholds influence ... 84

7. Conclusions and Future Work .. 85

Appendix A - User Manuals .. 86

Programmer Manual ... 86
Commands List ... 86
Add new command .. 88

Common User Manual .. 88
System Parameters... 90
Probes... 90
Chain ... 91

Getting Started .. 91

Appendix B – EDK and IP cores Configuration .. 94

EDK .. 94

FIFO IP Core ... 95

Fir Filter IP Core ... 99

Appendix C – System Layout .. 102

References ... 104

iii

List of acronyms

AWGN
CMI
DAC
EDK
FIR

FIFO
FPGA

IP Core
ISI

LFSR
LSB
MSB
NRZ
pdf
PLB

PRBS
PSD
RZ

SDK
SNR
XPS

Additive White Gaussian Noise
Coded Mark Inversion
Digital to Analog Convertor
Embedded Development Kit
Finite Impulse Response
First In First Out
Field Programmable Gate Array
Intellectual Property Core
Inter-symbol-interference
Linear feedback shift register
Least Significant Bit
Most Significant Bit
Non-Return-to-Zero
Probability density function
Processor Local Bus
Pseudo-random bit sequence
Power spectral density
Return-to-Zero
Software Development Kit
Signal Noise ratio
Xilinx Platform Studio

List of symbols

𝑀
𝑟
𝑅𝑠
𝑇𝑠
𝐹𝑠
𝜎

Fir Filter Order
Roll-off Factor
Symbol Rate
Symbol Period
Sampling Frequency
Standard deviation

iv

List of figures

Figure 2.1.1 – Digital Baseband Communication System Blocks ... 3
Figure 3.1.1 – Sequence Generator Internal Blocks ... 5
Figure 3.1.2 – Two methods for LSFR implementation [2] .. 7
Figure 3.2.1 - ‘0’ and ‘1’ symbols in time domain and spectrum representation *1+... 11
Figure 3.2.2 – a) Sinc pulse in time domain and b) sinc pulse signaling for the symbol sequence: 1,1,0,1 Adapted [1] 13
Figure 3.2.4 - Frequency domain pulse Adapted [3] .. 14
Figure 3.2.5 - Time domain pulse ... 14
Figure 3.2.6 – Block diagram structure for a third-order fir filter [4] .. 15
Figure 3.2.7 –Operation of an M

th
 order causal FIR filter showing various positions of the sliding window of M+1 points

under which the weighted average is calculated [4] ... 15
Figure 3.3.1 – Infinitesimal length of electrical transmission line ... 17
Figure 3.3.2 – Transversal view of a coaxial cable ... 17
Figure 3.3.3 – Transformation method [2] .. 19
Figure 3.3.4 – Communication Chain Blocks .. 21
Figure 3.3.5 – Noise spectral content, where 𝜂/2 is the bilateral power spectral density ... 21
Figure 3.4.1 – Receiver Block Diagram ... 22
Figure 3.4.2 - Probability distributions for binary transmissions, where 𝑉0 or 𝑉1are the transmitted symbol voltages. [1]
 ... 23
Figure 4.1.1 - Arrangement of Slices within the CLB [7] .. 25
Figure 4.1.2 - CLB Array and Interconnect Channels [7] .. 26
Figure 4.2.1 - System EDK based .. 28
Figure 4.3.1 - PmodDA2 VHDL Reference Component [11] ... 30
Figure 4.3.2 - PmodDA2 VHDL Reference Component Finite State Machine [11] ... 30
Figure 4.3.3 – PmodAD1 VHDL Reference Component ... 31
Figure 4.3.4 – PmodAD1 VHDL Reference Component Finite State Machine ... 31
Figure 4.3.4 – Control block state machine ... 32
Figure 4.3.5 – Dif variable logic scheme .. 32
Figure 4.4.1 – System Clock generation signals ... 33
Figure 4.4.2 – System blocks with clock lines .. 34
Figure 4.5.1 – Read Flag Flux Diagram ... 35
Figure 4.5.2 – FIFO top level connections .. 36
Figure 4.6.1 - PRBS Hardware Implementation ... 37
Figure 4.6.2 - Control Logic Block in a PRBS register ... 38
Figure 4.6.3 - Programmed Sequence Hardware Implementation .. 38
Figure 4.6.4 - Programmed Sequence Logic Control Block .. 39
Figure 4.7.1 – Line coding flux diagram ... 40
Figure 4.8.1 – FIR Filter data and control signals. Time diagram to (a) and from (b) 5,5 ms ... 41
Figure 4.10.1 – Receptor Chain Diagram Block .. 44
Figure 4.10.2 – Temporal diagram of several test points in the receptor chain. The “U” symbol denotes a non-initialized
signal .. 44
Figure 4.10.3 – C point flux diagram – rising-edge clock dependent ... 45
Figure 4.10.4 – Line decoding flux diagram - Clock independent behavioral model ... 47
Figure 5.1.1 – Block initialization temporal diagram ... 48
Figure 5.1.2 – Command Load flux diagram in master FPGA ... 49
Figure 5.1.3 – Communication Chain Data words ... 51
Figure 5.1.4 – Master FPGA data sending flux diagram ... 54
Figure 5.1.5 – Slave FPGA data sending flux diagram .. 54
Figure 6.1.1 – PRBS generator output experiment. a) histogram and b) time domain plot .. 55
Figure 6.1.2 – Programmed generator output experiment. a) histogram and b) time domain plot 56
Figure 6.2.1 – Theoretical (black) and experimental (blue) unipolar NRZ PSD obtained by the programmed sequence
111110000000000𝐵 ... 57
Figure 6.2.2 – Theoretical (black) and experimental (blue) unipolar NRZ PSD obtained by a random sequence 59
Figure 6.2.3 – Theoretical (black) and experimental (blue) unipolar RZ PSD obtained by a random sequence 61
Figure 6.2.4 – Elementary Manchester Pulse .. 62
Figure 6.2.5 – Theoretical (black) and experimental (blue) Manchester PSD obtained by a random sequence 63
Figure 6.2.6 – Theoretical (black) and experimental (blue) PSDs for different line codes .. 65
Figure 6.2.7 – Time domain unipolar NRZ signal after a) interpolation and b) after the raised cosine filter for r=1. 66

v

Figure 6.2.8 – a) Interpolated signal PSD before and b) after the raised cosine filter (Blue) and the filter response (Red)
for r=100% ... 67
Figure 6.2.9 – a) Interpolated signal PSD before and b) after the raised cosine filter (Blue) and the filter response (Red)
for r=50% ... 68
Figure 6.2.10 – Time domain unipolar NRZ signal after a) interpolation and b) after the raised cosine filter for r = 0.5 ... 69
Figure 6.2.11 – Eye diagram for the signal after the raised cosine filter with a) r=0.5 and b) r=1 69
Figure 6.2.12 – Eye diagram for the signal (with 4 samples/symbol) after the raised cosine filter with a) r=0.5 and b) r=1
 ... 70
Figure 6.3.1 – Time domain unipolar NRZ signal a) before and b) after the low-pass Butterworth filter 71
Figure 6.3.2 – Unipolar NRZ PSD a) before and b) after the low-pass Butterworth filter ... 72
Figure 6.4.1 – Unipolar NRZ PSD a) before and b) after the channel high-pass filter .. 73
Figure 6.4.2 – High-Pass Filter Phase ... 73
Figure 6.4.3 – Coaxial cable filter response at -3dB for several cable lengths ... 74
Figure 6.4.4 – Noise generator logarithmic histogram for a) 𝜎 = 0,5 and b) 𝜎 = 1 ... 75
Figure 6.4.5 – Noise generator PSD for a) 𝜎 = 0,5 and b) 𝜎 = 1 .. 77
Figure 6.5.1 – DAC input (CH1), output (CH2) and response PSDs .. 78
Figure 6.5.3 – Eye diagrams at the a) ADC input and ADC output for signals generated at b) 100kHz, c) 250kHz and d)
400kHz. .. 80
Figure 6.6.1 – Unipolar NRZ eye diagram after a) raised cosine filter b) AWGN c) receiver ADC d) receiver filter. 81
Figure 6.7.1 – Error probability dependency with receptor filter cut-off frequency ... 82
Figure 6.7.2 – Error probability dependency with the sampling instant normalized at the bit period 83
Figure 6.7.3 – Error probability dependency with the decision level threshold .. 84
Figure A.2.1 – Matlab user interface layout .. 89
Figure A.2.2 - Master FPGA channel 1 selection ... 91
Figure A.2.3 – AWGN generation ... 91
Figure A.3.1 – Matlab user interface after loading default.dat parameters .. 92
Figure A.3.2 – a) Eye Diagrams and b) Error Probability plots obtained from the default.dat file 93
Figure B.1 – EDK Block Diagram ... 95
Figure B.2 – FIFO IP core parameters configuration. Pages a) 1, b) 2, c) 3, d) 4, e) 5, f) 6 and g) 7 98
Figure B.3 – Fir Filter IP core parameters configuration. Pages a) 1, b) 2, c) 3 and d) 4. ... 101
Figure C.1 – System Layout .. 102

vi

List of tables

Table 3.1.1 - Primitive polynomials for left-shift LSFR and right-shift LSFR [2] .. 8
Table 3.3.1 – Average signal power for different line coding formats... 20
Table 4.1.1 - Logic Resources in one CLB. [7] ... 26
Table 4.3.1 - Estimate performance metrics for the DAC block mapping ... 30
Table 4.3.2 - Estimate performance metrics for the ADC block mapping ... 31
Table 4.3.3 - Estimate performance metrics for the local control block mapping .. 32
Table 4.5.1 - Estimate performance metrics for the FIFO block mapping ... 36
Table 4.6.1 - Control Logic Block Truth Table for PRBS .. 38
Table 4.6.2 - Control Logic Block Truth table for the Programmed Sequence .. 39
Table 4.6.3 - Estimate performance metrics for the sequence generator mapping.. 39
Table 4.7.1 – Two bit signal codification .. 39
Table 4.7.2 - Estimate performance metrics for the line coding block mapping ... 40
Table 4.8.1 – Estimate performance metrics for each filter mapping ... 42
Table 4.9.1 – Estimate performance metrics for the AWGN block mapping ... 43
Table 4.10.1 – Estimate performance metrics for data recovery mapping ... 46
Table 6.4.1 – Coaxial Cable Parameters ... 74
Table 6.7.1 – Error probability dependency with the memory size .. 84
Table A.1.1 – System Commands ... 87
Table A.2.1 – Parameters range of Matlab user interface .. 90
Table C.1.1 – Layout meanings ... 103

1

1. Introduction

1.1 Motivation

The digital communication systems become more complex in order to improve the

transmission quality with higher robustness to the channel impairments and also with

higher power and spectral efficiency. The modules that were developed in this project,

emulate in hardware the fundamental blocks of a digital communications system, and will

provide to students a tool to understand the concepts that are inherent to this kind of

system. Several output test probes were made available to the user, enabling the

assessment of the communication chain module performance. Depending on the required

operating mode, the probe type is selected. A MatlabTM interface between the computer

and the hardware will enable a rigorous way of analyze the system data but on the other

hand the physical DAC outputs allow the students a real time system analysis.

1.2 Objectives and document structure

As mentioned in the previous section, the main goal of this project is to create a

laboratorial kit that will enable a real time analysis of a baseband digital communication

system. To achieve it, the designed system has two FPGA’s, a MatlabTM communication

and 4 channel DAC outputs.

The present document is divided in seven chapters and two appendix sections. It was

used an up-to-bottom approach when writing this document, where the level of detail in

the system description will increase as we move forward in chapters. In the current

chapter, is presented the motivation to this project design and a brief introduction to the

chapters that this document comprehends. In second chapter, is presented a high level

description of this baseband digital communication system and how the use of an FPGA is

relevant for the teaching of this kind of systems. After this quick overview of the system,

more detail is added in its description. In the third chapter, each one of the blocks

developed in the system (sequence generator, pulse shaping, AWGN generator, filters,

data recovery, etc) will be analyzed, without getting into hardware specifications. This

approach will let the reader to be familiar with the theoretical concepts, required to design

the blocks that are part of the communication chain module. In the fourth chapter, a brief

introduction to the hardware and programming tools used in the project is performed,

such as the Spartan-6 FPGA and the Xilinx Embedded Development Kit (EDK). Also in this

chapter will be described the VHDL algorithms used in the blocks presented in previous

chapters.

2

The designed system comprehends the communication between two FPGAs and

MatlabTM. In chapter five are presented the handshake protocols that allow these

communications. The description of algorithms will be done using flux and block diagrams,

despite the use of the C, MatlabTM and VHDL programming languages in its conception.

After the algorithms are implemented in hardware and the required block configuration is

done, is possible to test its performance. In chapter six, the different system blocks will be

tested and the results will be compared with theoretical results, through Matlab analysis.

In the final chapter some conclusions and suggestions of possible future work are

presented, given emphasis to possible blocks to be developed within the kit.

In the appendix A are provided two manuals, one for the common user and another

for the programmer to interact with the kit. The first one is a higher level manual, which

will be based in the interface created in the MatlabTM guide tool. The second one will

present the commands needed to initialize the system, without the need of the Matlab,

using only a command terminal. Still in this appendix, a small getting started guide is

presented. The appendix B is also programmer oriented, since it will describe the filters

and FIFO IP Cores configuration, upon its creation in VHDL.

2. System Overview

2.1 Baseband digital communication systems basics

An important goal in the design of a communication system is often to minimize

equipment cost, complexity and power consumption while also minimizing the bandwidth

occupied by the signal and/or transmission time. Digital communications systems usually

represent an increase in complexity over the equivalent analogue systems, however they

have become the preferred option for most new systems and, in many instances, have

replaced existing analogue systems. This is because, within other reasons, they

accomplish for:

 Increased demand for data transmission;

 Increased scale of integration, sophistication and reliability of digital

electronics for signal processing, combined with decreased cost;

 Possibility of channel coding (line, and error control) which minimizes the

effects of noise, interference and increase the data safety upon transmission.

 Ease with which bandwidth, power and time can be traded off in order to

optimize the use of these limited resources [1].

Much of the rest of this dissertation is concerned with the operating principles and

performance of a digital baseband communication system formed by a

transmitter/receiver pair linked by a communications channel. In this chapter, however,

3

we give only an overview of such a system, incorporating a brief account of what each

block in figure 2.1.1 does and why it might be required.

Fig. 2.1.1 depicts the most common blocks present in a digital baseband

communication system. In this communication chain, the generated data is already in

digital format and it can be from a fixed or a random bit sequence. After the data

generation, pulse shaping must occur in order to prepare it to the channel characteristics

(for example, bad respond at low frequencies) and to make the receptor synchronism

easier. The pulse shaping allow for that reason, a transmission quality control. Besides

from elementary pulse shaping, like the raised-cosine spectrum, this block also

implements a line coding, such as NRZ, RZ, AMI, bi-phase or Coded Mark Inversion. The

type of line coding will define, among other aspects, the efficiency of data transmission

and how the clock is recovered at the receiver.

Figure 2.1.1 – Digital Baseband Communication System Blocks

The communications path from transmitter to receiver may use lines or free space.

Examples of the former are wire pairs, coaxial cables and optical fibers. Whatever the

transmission medium is, it will be at this point that much of the attenuation, distortion,

interference and noise are encountered. The nature and severity of transmission medium

effects is one of the major influences on the design of transmitters and receivers [1]. After

the transmission channel, a low-pass filtering is applied to the signal. This filtering is

addressed in Fig. 2.1.1, at the matched filtering block. Also due to transmission channel

losses, distortions and the presence of noise, the received signal will be corrupted and

therefore a data recovery must be performed. The data recovery block will comprehend

the clock recovery, sampling, level decision and line decoding circuits.

The signal at the input and output of different blocks should be available to the user

in order to identify and study the entire signal processing along the transmission link.

Therefore, the laboratorial module provides along the system several test ports, a

MatlabTM communication and a data analyze monitor. The probe, comprehending four

channels, will allow the information analysis in real time, through the use of a DAC in

4

several points of the system. The module communicates with an external computer via a

standard serial transmission and the software for module management and data

acquisition software was implemented in MatlabTM.

Unlike processors, FPGAs use dedicated hardware for processing logic and do not

have an operating system. Because the processing paths are parallel, different operations

do not have to compete for the same processing resources. This will allow multiple

control loops running on a single FPGA device, at different rates. Since this project

represent a complex set of blocks and data to be analyzed in real time, an

implementation based in FPGA was used, enabling also the testing under real hardware

limitations.

5

3. System Specifications

The system that is presented in this document was designed to allow the user to

define some of its parameters. In this chapter, the parameters of each block in the

communication chain will be described in a more theoretical approach.

3.1 Sequence Generation

The designed sequence generator is composed by a pseudo-random bit sequence

(PRBS) and a programmed sequence generator which can be selected according to the

type of data that is to be simulated in the communication chain.

3.1.1 Specifications

As it can be seen in figure 3.1.1, the inputs of the sequence generator block are the

number of cells (#Cells), seed, clock frequency, mode and number of words (#Words).

After the PRBS and the programmed sequence configuration, the mode of operation

must be selected. The values that are generated by either the PRBS or by the

programmed sequence must go through a serial communication before reaching the

MatlabTM. These intermediate steps will allow a lower bit rate than the rate permitted by

the generators themselves. Therefore, two modes of operation were created: Continuous

- the clock frequency is chosen by the user and the limit is the maximum rate which the

generator can produce the values to be sent to the DAC; Step-by-Step - the values

generated through this second mode are stored temporarily inside the FPGA and sent to

MatlabTM at the maximum rate allowed by the UART and processor operation. The input

parameter, #Words, is defined by the user as the number of samples that will be sent to

the MatlabTM for analysis, and is only relevant in the Step-by-Step mode. Is important to

refer that the maximum value that the #Words parameter may take, will be equal to the

size of the storage element inside the FPGA.

Figure 3.1.1 – Sequence Generator Internal Blocks

6

The last step is the selection (sel input) between PRBS generator and the

programmed data sequence, to send their output values outside the generator.

3.1.2 PRBS

A linear feedback shift register (LFSR) is a key component in PRBS generation. As so,

in this section it will be discussed the operational principles of this circuit. At the end, it

will be presented some tables with the feedback taps to get the maximum length

sequences (m sequences).

3.1.2.1 LFSR implementation

The LSFR generator, as the name suggests, is composed of a shift register in which

the content of its cells must be updated according with a certain rule. This rule must

generate a linear combination of the cells in the current state and then shift the result to

one end of the current state vector [2].The linear operation comprises the arithmetic

modulo-2 (logical XOR operation).

There are two methods to implement LSFR. In first one, the result of the cells linear

combination will be placed in one end of the register and the remaining cells are just

shifted (fig. 3.1.2a). Translating to equations we have in this case:

(3.1.1) [2]

, where a and a’ represent the current and the new state vector of the register,

respectively. For a left-shift operation (as depicted in fig. 3.1.2a), a0’ represents content

the right-most bit and for a right shift operation is the left most bit. One of the necessary

conditions for a full length sequence be generated by a LFSR is that 𝑐𝑛 = 1. In other

words, the left most bit must always be part in the feedback result.

In the second method, the selected bits will be changed according to the XOR

operation between the left-most bit and the bit at his right – fig. 3.1.2b

7

Figure 3.1.2 – Two methods for LSFR implementation [2]

Usually, the first method is more efficient to be implemented in common hardware,

but on a FPGA, will force to a cascade of n XOR logic operations (where n is the number of

cells in the shift register) which will lead to a greater propagation delay than the later

one. Therefore, the second method was chosen for the FPGA implementation.

The mathematical proprieties of equation (3.1.1) derive from the proprieties of a

polynomial equation:

(3.1.2) [2]

, where each cj can take the values 0 or 1 (jth cell that takes part on the feedback

loop). In equation (3.1.2), the notation of the cj’s started in the index number 1 because

the c0 (like cn) is always equal to 1.

3.1.2.2 Taps Notation

An alternative way to express the polynomial presented in equation (3.1.2) is the

representation of only the nonzero x coefficients (often referred as LFSR’s taps). It can

also be abbreviated for the powers of the polynomial. Considering the polynomial

x18+x5+x2+x+1, we have the powers given by: (18, 5, 1, 0).

The maximum length sequence (m sequence) that a LFSR can generate is equal to the

number of non-zero different states m=2n-1, where n is the number of cells in the shift

register. The only state that is not comprised is the all-zero’s state, since the state

machine will be at this state forever. To achieve an m sequence, an irreducible and

primitive polynomial must be selected. In the work that is being developed, the data

generator can be set for a PRBS with length from 23-1 up to 232-1. A table with the

primitive polynomials to generate these PRBS is provided below:

8

n (register size) Left – shift Right - Shift

3 (3,1,0) (3,2,0)
4 (4,1,0) (4,3,0)
5 (5,2,0) (5,3,0)
6 (6,1,0) (6,5,0)
7 (7,1,0) (7,6,0)
8 (8,4,3,2,0) (8,6,5,4,0)
9 (9,4,0) (9,5,0)

10 (10,3,0) (10,7,0)
11 (11,2,0) (11,9,0)
12 (12,6,4,1,0) (12,11,8,6,0)
13 (13,4,3,1,0) (13,12,10,9,0)
14 (14,5,3,1,0) (14,9,11,13,0)
15 (15,1,0) (15,14,0)
16 (16,5,3,2,0) (16,14,13,11,0)
17 (17,3,0) (17,14,0)
18 (18,5,2,1,0) (18,17,16,13,0)
19 (19,5,2,1,0) (19,18,17,14,0)
20 (20,3,0) (20,17,0)
21 (21,2,0) (21,19,0)
22 (22,1,0) (22,21,0)
23 (23,5,0) (23,18,0)
24 (24,4,3,1,0) (24,23,21,20,0)
25 (25,3,0) (25,22,0)
26 (26,6,2,1,0) (26,25,24,20,0)
27 (27,5,2,1,0) (27,26,25,22,0)
28 (28,3,0) (28,25,0)
29 (29,2,0) (29,27,0)
30 (30,6,4,1,0) (30,29,26,24,0)
31 (31,3,0) (31,28,0)
32 (32, 7, 5, 3, 2, 1, 0) (32, 31, 30, 29, 17, 15, 0)

Table 3.1.1 - Primitive polynomials for left-shift LSFR and right-shift LSFR [2]

However, the polynomials presented in [2] are only for left-shift case, considering the

less significant bit at the right. To determine the powers that will lead to a maximum

length sequence, for the right shift case, we subtract to n each one of left-shift powers.

Considering the example mentioned above, we have: Left-shift case: (18,5,2,1,0); Right-

shift case: (18-18,18-5,18-2,18-1,18-0)=(0,13,16,17,18)≡(18,17,16,13,0). The powers for

right-shift are shown in table 3.1.1 and will be those used in the PRBS implementation.

The determination of the primitive polynomials is done by factoring the polynomial

𝑥2𝑛 −1 + 1 and finding which of the resulting polynomials are primitive (have order equal

to n). Since this requires a modulo-2 linear algebra (probably with the aid of a computer

algorithm), the tables presented above are frequently obtained from a book (as is the

case in this text).

After the connections have been made, the circuit is prepared to start the sequence. An

initial state must then be loaded into the register to start the operation. This state, often

called as seed, has the same size of the register and must not take the all-zeros

combination.

9

3.1.3 Programmed Sequence

Other easy way to generate a sequence is to start with a known seed and just shift it

to one direction, which will lead to a pattern that will repeat itself through a circular shift.

This is how the programmed sequence works and if noticed, is the PRBS without the

feedback taps in the shift register. Both the PRBS and the programmed sequence will then

generate samples that meet the user specifications.

3.2 Pulse Shaping
3.2.1 Line Coding

Many of the baseband digital signals have a high content at low frequencies. These

signals would be highly affected if they were sent directly through transmission channels

with bad response to low frequencies. The spectrum of the transmitted signal in a digital

system depends of the elementary impulse shape and of the statistical proprieties in all

the impulses sent in the sequence. The line coding will generate a new signal which will

reshape each pulse. Besides the spectrum adaptation to the transmission channel

frequency response (power spectral density), there are other proprieties that the line

coding might have:

 Presence or absence of a DC level;

 Ease of clock signal recovery for symbol synchronization;

 Possibility of error detection and correction;

 Efficiency – the signal bandwidth and transmitted power should be as low as

possible;

 Transparency –the property that any arbitrary symbol, or bit, pattern can be

transmitted and received correctly, independently of the 1’s and 0’s original bit

sequence;

 BER performance – relative immunity to noise.

In Fig. 3.2.1 is presented a comparison between several line codes that were

implemented in this project: Unipolar NRZ/RZ, Polar NRZ/RZ, Manchester, Bipolar NRZ/RZ

and CMI (coded-mark-inversion) at time and frequency domain.

10

 Pulse shape in time domain Pulse spectral content

a)

b)

c)

d)

e)

11

f)

g)

h)

Figure 3.2.1 - ‘0’ and ‘1’ symbols in time domain and spectrum representation [1]

In unipolar signaling (fig. 3.2.1a and b), also called OOK (on-off keying), the binary

symbols ‘0’ and ‘1’are represented respectively by the absence and presence of a pulse

(with voltage level +V), respectively. If the duration of the pulse is equal to one symbol

period, 𝑇𝑠, the signal is called NRZ (non-return to zero). On the other hand if the pulse

duration is equal to a fraction of the symbol period, the signal is called RZ (return to zero).

The difference between the polar signaling and the unipolar case is that, in the first

case, the symbol ‘0’ is also represented by one pulse, but with an inverse voltage level

(represented as ‘–V’ in Fig. 3.2.1).

12

The dipolar signaling (Fig. 3.2.1e) is characterized by their spectral null at 0Hz and

vanishes in its vicinity, propriety that is not found in the unipolar and polar signaling,

which is a result of the total area under the pulses of symbols ‘0’ and ‘1’ be equal to 0.

This aspect enables the signal to be sent through an AC coupled transmission line.

However, this type of line coding does not have a spectral line at clock frequency (1/T0

Hz) as we can find in an OOK-unipolar RZ signaling.

The bipolar signaling (Fig.3.2.1f and g), also called AMI (Alternate-Marked-Inversion),

like the polar and dipolar code, uses three voltage levels (-V, 0, +V). The ‘0’ symbol is

respectively translated into 0 voltage level (as the unipolar case) and the ‘1’ symbol as

‘+V’ or ‘–V’ voltage (if the previous ‘1’ bit was sent as +V, the next bit will be sent as –V,

and vice-versa). This type of coding enables not only the presence of a null at 0Hz (and

fade out at its vicinity), but also a decrease in bandwidth over the one required for the

unipolar and polar case.

The last code that will be analyzed is the CMI. His shape is a mix between the AMI-

NRZ (for ‘1’ symbols) and the dipolar signaling (for ‘0’ symbols). Is possible to see in

Fig.3.2.1h, that the CMI manage to have a spectral line at clock frequency (1/T0 Hz), at the

same time that it requires a small bandwidth and extinguishes at low frequencies (as in

the previous dipolar and bipolar cases).

3.2.2 Raised Cosine Filter

Through a real digital system, the ideal rectangular impulses considered so far, have a

spectral content that extends to infinite frequencies. Since real channels have a limited

bandwidth, a portion of the signal spectrum will be suppressed, which cause the pulse to

spread in time domain. This spread phenomenon will lead to inter-symbol-interference

(ISI) which may result in errors at the sampling and decision process, forward in the

communication chain. The obvious solution is to send band-limited pulses, so that they

can be transmitted over a band-limited channel. However, band-limited pulses cannot be

time-limited. One example of this type of pulses is an ideal low pass filter in frequency

domain, which results in a sinc pulse in time domain (fig. 3.2.2a). The sinc pulse is zero in

all sampling instants except in one, being for that reason an ISI-free signal. It enables the

transmission of 𝑅𝑠 = 2B symbols/second using a channel with bandwidth B, with ISI = 0.

This 𝑅𝑠 rhythm is the maximum transmission rate with ISI=0, and is named the Nyquist

rate. Figure 3.2.2b shows, through an example, how null ISI is achieved with the sinc pulse

(considering once more 𝑇𝑠 as the symbol period).

13

a)

b)

Figure 3.2.2 – a) Sinc pulse in time domain and b) sinc pulse signaling for the symbol sequence: 1,1,0,1 Adapted

[1]

However, this pulse is impractical because it starts at -∞, and one must wait an

infinite time to generate it. Any attempt to truncate it would increase its bandwidth

beyond B = 𝑅𝑠/2 [3]. Even if this pulse were realizable, any deviation of 𝑅𝑠, sampling rate

or the presence of jitter could lead to a major ISI due to the slow pulse decay (∝ 1/t). This

scheme therefore fails unless everything is perfect, which is a practical impossibility [3].

In practice, due to those difficulties, are used other pulse shapes. In his first criterion,

Nyquist achieve null ISI, by choosing a pulse which has a nonzero at its center (t=0) and

zero amplitude at 𝑡 = ±𝑛𝑇𝑠, where 𝑇𝑠 is the separation between successive transmitted

pulses:

𝑝 𝑡 =

1, 𝑡 = 0

0, 𝑡 = ±𝑛𝑇𝑠 𝑇𝑠 =
1

𝑅𝑠

 (3.2.1) Adapted [3]

In order to have a low ISI in non-ideal sampling, the pulse must also have a faster

decay than the Sinc pulse but satisfies at the same time the propriety presented in (3.2.1).

Nyquist has shown that such a pulse requires a bandwidth of 𝑘.
𝑅𝑠

2
, with 1 ≤ 𝑘 ≤ 2. A

pulse that satisfies these conditions, known as the raised cosine pulse, is presented in

equations (3.2.2) and (3.2.3) and in figures 3.2.4 and 3.2.5.

14

𝑃 𝑤 =

 1

2
. 1 − sin

𝜋 𝑤 −
𝑤𝑠

2

2. 𝑤𝑥

0, 𝑤 >
𝑤𝑠

2
+ 𝑤𝑥

1, 𝑤 <
𝑤𝑠

2
− 𝑤𝑥

 ,

 𝑤 −
𝑤𝑠

2
 < 𝑤𝑥

 (3.2.2) Adapted [3]

Figure 3.2.4 - Frequency domain pulse
Adapted [3]

𝑝 𝑡 = 𝑅𝑠 .
cos 2𝜋. 𝑓𝑥 . 𝑡

1 − 4. 𝑓𝑥 . 𝑡 2
 . 𝑠𝑖𝑛𝑐(𝜋. 𝑅𝑠 . 𝑡)

(3.2.3) Adapted [3]

 Figure 3.2.5 - Time domain pulse Adapted [3]

Where 𝑤𝑠 = 2𝜋𝑅𝑠 =
2𝜋

𝑇𝑠
 (𝑟𝑎𝑑/𝑠) and 𝑟 =

2𝑤𝑥

𝑤𝑠
 (ratio between the excess bandwidth,

𝑤𝑥 , and the theoretical minimum bandwidth,
𝑤𝑠

2
). Therefore, the bandwidth of P(w) is :

𝐵𝑇 =
𝑅𝑠

2
+ 𝑓𝑥 =

𝑅𝑠

2
+

𝑟 .𝑅𝑠

2
=

(1+𝑟).𝑅𝑠

2
 and the constant r is called the roll-off factor, that is

0 ≤ 𝑟 ≤ 1 or in percent: 0% ≤ 𝑟 ≤ 100%. For example, if P(w) has a bandwidth 50%

higher than the theoretical minimum, then 𝑟 = 0.5 = 50%. As a result, 0 ≤ 𝑤𝑥 ≤
𝑤𝑠

2
.

One can find several characteristics of the raised cosine, by analyzing fig. 3.2.4 and

3.2.5. The first obvious characteristics are:

 A maximum bandwidth of 𝑅𝑠;

 For r=1, the pulse in the time domain has zero values not only at multiples of

the symbol period, 𝑇𝑠, but also at points midway between these instants;

 A fast decay proportional to
1

𝑡3. As large as the roll-off factor is, the fastest the

pulse will decay, but bigger the bandwidth will be. Therefore, a trade-off must

be made, given the channel characteristics.

15

The fast time decay and the smooth frequency transitions make the raised cosine
pulse realizable in practice.

3.2.3 Fir Filter

In order to implement the raised cosine filter (mentioned in the section 3.2.2) as well

as several other filters in the channel and in the receiver, a FIR (Finite Impulse Response)

filter was used in this project.

As seen in equation (3.2.4), each output sample, y[n], of the system is given by the

sum, L, of a finite number of weighted samples, M+1, of the input sequence, 𝑥 𝑛 − 1 ,

where n is the sample number and 𝑏𝑘 is the 𝑘𝑡 filter’s coefficient.

𝑦 𝑛 = 𝑏𝑘
𝑀
𝑘=0 . 𝑥 𝑛 − 𝑘

(3.2.4) [4]

Figure 3.2.6 – Block diagram structure for a third-
order fir filter [4]

Since (3.2.4) does not involve future values of the input, the system is causal and

therefore the output cannot start before the input is nonzero. In the filter

implementation, one must be aware of this limitation and wait for the generation of M+1

input samples, so that a correct output value at the present sample is obtained. A similar

effect will happen when the input samples stop being generated, due to their finite

sequence proprieties.

Figure 3.2.7 –Operation of an Mth order causal FIR filter showing various positions of the sliding

window of M+1 points under which the weighted average is calculated [4]

16

In figure 3.2.7 is depicted the condition mentioned before, where the filter’s sliding

window position will determine which input samples will be used in the weighted

average.

When the system input is the unit impulse sequence (eq. 3.2.5), the filter output is

named as unit impulse response (or just impulse response) and denoted as y[n] = h[n]. In

this case, the output will be non-zero only when k=n. In other words, h[n] is just the filter

coefficient sequence, 𝑏𝑘 . Therefore, the impulse response will characterize the filter to be

designed.

𝑥 𝑛 = 𝛿 𝑛 =
1, 𝑛 = 0
0, 𝑛 ≠ 0

 (3.2.5)

It is common practice to determine the impulse response of the filter from the

theoretically desired impulse response. When necessary, the target impulse response is

time truncated, time shifted and sampled, in order to become time finite, causal and

discrete. In this project, all the filter coefficients, such as the raised cosine, were

generated with the help of Matlab. The number of coefficients of the filter will determine

the number of samples to be taken from the raised cosine time domain shape. Next,

those coefficients are sent to the FPGA which will send them to the proper block in the

communication chain.

3.3 Transmission channel

One of the key points in the project is the transmission channel simulation. This

will be done through the use of simple filters such as high-pass, and more complex ones

that will try to resemble the real conditions, such as the coaxial cable. Furthermore, an

Additive White Gaussian Noise (AWGN) was integrated in this system to cope with

channel and receiver noise.

3.3.1 Coaxial cable

A coaxial cable is a commonly-used type of transmission line used in the systems of

interest and gives raise to results which are very interesting from the pedagogical point of

view. These cables exhibit frequency-dependent loss and delay due to distributed

parameters in the cable. An infinitesimal length of electrical transmission line can be

modeled as a resistance (R in Ω/𝑚) and inductance (L in H/𝑚) in series, and a

capacitance (C in F/𝑚) and conductance (G in S/𝑚) in parallel [5], as shown in figure 1

below:

17

Figure 3.3.1 – Infinitesimal length of electrical

transmission line

Figure 3.3.2 – Transversal view of a

coaxial cable

The shunt capacitance per unit length is independent of frequency and is given by

𝐶 =
2πϵ

ln
b
a

, (3.3.1) [5]

where ϵ is the permittivity of the medium between the inner and outer conductor, a and

b are the radii of the inner and outer conductor, as shown in figure 3.3.2. The series

inductance per unit length accounts for two sources of inductance and is given as:

𝐿 = 𝐿0 + 𝐿𝑠0 , (3.3.2) [5]

where 𝐿0 (3.3.3) is the ideal inductance associated with the magnetic component of the

field between the conductors and 𝐿𝑠0 (3.3.4) is the frequency-dependent inductance

associated with the magnetic component of the field interior to the inner and outer

conductors, due to the imperfect conductivity [5].

𝐿0 =
𝜇

2𝜋
ln

𝑏

𝑎
 (3.3.3) [5]

𝐿𝑠0 =
𝜇1/2

4𝜋3/2

𝜎𝑎

−1/2

𝑎
+

𝜎𝑏
−1/2

𝑏
 . 𝑓−1/2, (3.3.4) [5]

where 𝜇 is the permeability of the medium between the inner and outer conductor. The

series resistance per unit length arises from the same current associated with Ls0. For

good conductors, the real and imaginary parts of the wave impedance are equal [5],

therefore:

𝑅 = 2𝜋. 𝐿𝑠0 . 𝑓 (3.3.5) [5]

18

If properly terminated at both ends of the transmission line, the transfer function

from the input voltage (i.e., the voltage at the beginning of the transmission line) to the

output voltage (i.e., the voltage at distance l) is

𝐻 𝑤 = 𝑒−𝛾𝑙 , (3.3.6) [5]

where 𝛾 is the propagation constant and is given by:

𝛾 = 𝑅 + 𝑗𝑤𝐿 . (𝐺 + 𝑗𝑤𝐶) (3.3.7) [5]

Typically, the shunt conductance is negligible for well-designed transmission line.

Thus the propagation constant can be written as

𝛾 = 𝑅 + 𝑗𝑤𝐿 . (𝑗𝑤𝐶) (3.3.8) [5]

Knowing the transfer function, 𝐻 𝑤 , is possible to get the impulse response, 𝑡 ,

through the inverse Fourier transform. As the other filters in the communication chain,

the coaxial cable impulse response taps will then be sent to the FIR filter.

3.3.2 AWGN

As referred before, the AWGN will be part of the transmission channel, next to the

channel filter. In this section, the designed AWGN will be described using the

transformation method presented in [2]. According to this method, is possible to

generate a random deviate, y, from a know probability distribution p(y) = f(y), for some

positive function f whose integral is 1. The indefinite integral, F(y), of p(y) must be known

and invertible. The figure 3.3.3 below depicts the transformation method: a uniform

random variable x is chosen between 0 and 1. Its corresponding y on the definite-integral

curve is the desired deviate.

19

Figure 3.3.3 – Transformation method [2]

After F(y) is obtained, an inversion of this function must occur, F-1, in order to obtain

the y values:

𝑦 𝑥 = 𝐹−1(𝑥) (3.3.9)

In the present case, f(y) is a normalized Gaussian distribution: N (0, 1):

𝑓 𝑦 =
1

 2𝜋
. e

−y2

2 (3.3.10)

As it will be seen forward in chapter 4, a ROM will be used to contain the pre-computed

values of function F-1. Since f(y) is an even function, is possible to use only the positive

side f(y) to the calculations, decreasing at the same time the number of ROM positions.

However, one must also ensure that his integral is equal to 1. This condition can be

satisfied simply by multiplying f(y) by two and doing a variable substitution 𝑧 = 𝑦 ,

obtaining:

𝑓 𝑧 =

0 , 𝑧 ≤ 0

2

𝜋
. e

−z2

2 , 𝑧 > 0
 (3.3.11)

𝑒𝑟𝑓 𝑥 =
2

 𝜋
. e−t2

𝑑𝑡
x

0

 (3.3.12)

To obtain F(z), the Gauss error function is used (3.3.12), obtaining:

𝐹 𝑧 = 𝑓 𝑧 𝑑𝑦
z

−∞

=
2

𝜋
. e

−z2

2 𝑑𝑧
z

0

=
2

 𝜋
. . e−t2

𝑑𝑡

z

 2

0

= erf
𝑧

 2
 (3.3.13)

𝐹 𝑧 =

0 , 𝑧 ≤ 0

erf
𝑧

 2
 , 𝑧 > 0

 (3.3.14)

The inverse function is then given by:

𝑥 = 𝐹 𝑧 = erf
𝑧

 2
 ⇒ 𝑧 = 𝐹 𝑥 −1 ⟹ 𝑧 = 𝑒𝑟𝑓𝑖𝑛𝑣 𝑥 . 2 (3.3.15)

20

A non-uniform quantization of the segment x = [0, 1] must be done, through a

recursive partitioning of the segment [0, 1]. As mentioned, to reduce the complexity in

hardware, a quantized version of (3.3.15) using pre-computed values will be loaded into

several ROM’s. The number, K, of ROM’s will depend on the amount of times the partition

will be done in the [0, 1] segment.

3.3.3 SNR

In order to control the signal to noise ratio in the system (SNR), several parameters

must be determined: the noise PSD (power spectral density, 𝜂), receptor’s filter noise

equivalent bandwidth (B), average signal power (𝑃𝑠) and sampling frequency (𝐹𝑠).

The average signal power will depend of data transmitted line coding. Its value over a

period is determined by expression number 3.3.16:

𝑃𝑠 =
1

𝑇
 𝑠2 𝑡 𝑑𝑡 = 𝑃0. 𝐴0

2 + 𝑃1. 𝐴1
2

𝑇

0

, (3.3.16)

, where s(t) is the data signal over time, 𝐴1 and 𝐴0 are the signal amplitude and 𝑃1

and 𝑃0 are the probabilities for the 1 and 0 bits, respectively. However, equation (3.3.16)

is only valid if the amplitude is constant over the bit period. For example, the polar NRZ

line coding have: 𝐴1 = 𝐴 and 𝐴0 = −𝐴. For 𝑃1 = 𝑃0 =
1

2
, we have: 𝑃𝑠 =

1

2
. 𝐴2 +

1

2
. −𝐴 2 = 𝐴2.

In Table 3.3.1 is presented the average signal power for the several line codes used in

this project, where A is the absolute maximum amplitude of the data signal:

Line Coding 𝑷𝒔

Unipolar NRZ 𝐴2/2

Unipolar RZ 𝐴2/4

Polar NRZ 𝐴2

Polar RZ 𝐴2/2

Manchester 𝐴2

Bipolar NRZ 𝐴2/2

Bipolar RZ 𝐴2/4

CMI 𝐴2/2

Table 3.3.1 – Average signal power for different line coding formats

In figure 3.3.4 are presented the communication chain blocks used in the system.

21

ChannelTransmitter Receptor

Data
Generation

Pulse
Shaping

Low Pass
Filter

+

Receptor
Matched

Filter

AWGN

Band/
High Pass

Filter

Data
Racovery

BER
Analysis

FsRs
Rs

Figure 3.3.4 – Communication Chain Blocks

The noise spectral content will depend on its place in the chain, as shown in figure

3.3.5.

Figure 3.3.5 – Noise spectral content, where 𝜂/2 is the bilateral power spectral density

Considering the noise power in two different points: before, given by (3.3.18), and

after, given by (3.3.17), the receiver filter:

 3.3.17 𝑃𝑁 = 𝜎2

𝑅 = 𝜂. 𝐵 =
𝑃𝑆

𝑆𝑁𝑅

 3.3.18 𝑃𝑁 = 𝜎2 = 𝜂.
𝐹𝑠

2

 ⟹
𝜂. 𝐵 =

𝑃𝑆

𝑆𝑁𝑅

 𝜂 =
𝜎2. 2

𝐹𝑠

The SNR after the receiver filter will then be given by the ratio:

𝑆𝑁𝑅 =
𝑃𝑆 . 𝐹𝑠

𝐵. 𝜎2. 2

(3.3.19)

The user will set the parameters: 𝐹𝑠, 𝐵 and 𝜂. The receiver bandwidth must be set

between the range [
𝑅𝑠

2
, 4𝑅𝑠], where 𝑅𝑠 is the symbol rate. On the other hand, 𝐹𝑠 and 𝜂

must verify the noise standard deviation range: 𝜎 = 𝜂.
𝐹𝑆

2
 𝜖 [

𝐴

8
, 3𝐴]. The noise cannot be

higher than three times the data signal amplitude (A), which gives a maximum limit of 4A

for the signal sent over the chain. 𝐹𝑠 will be a parameter for advanced users and
𝜂

2
 (bilateral spectral density) will be set by the user and have W/Hz as units.

22

3.4 Data Recovery

After the data has gone through the receiver filter (point A in fig. 3.4.1) the original

bit stream must be recovered. To achieve this, several steps must be performed, such as

the clock recover, sampling, level decision and line decoding. In this section, a brief

description will be done of each one of these blocks, depicted in figure 3.4.1 below.

Receptor

Receptor
Filter

CRC

Level
decision

Sampling
Line

Decoding
BER

Analysis
A

B

C

D E F

Figure 3.4.1 – Receiver Block Diagram

3.4.1 Clock Recover and Sampling

The clock recovery circuit, CRC, will be responsible to identify the first instants from

which the data signal can be sampled later on in the sampling block. In order to do it, it

must first detect the data signal edges, this is, the instants where the data signal changes

it value. In order to do it, first a level decision is applied to the data signal in point A (it

that can take 4095 different values). This decision output is then transformed into a

three or two level signal (depending on the line coding). The signal obtained in point B is

then used as an initial mark to choose the sampling instants though a phase setting by the

user. There must be at least two sampling instants for each symbol, so that it will be

possible to identify all the transitions in a return-to-zero signal.

More details about these two blocks are described in the hardware implementation

section 4.10, where it will be possible to understand better the interaction between all

the signals involved.

3.4.2 Level Decision

After the signal being sampled at the proper instants, a level decision (identical to the

one done in the CRC block) must be performed. The user has to set two values in this

block: the upper and the lower threshold. If the data signal (point D) is greater than the

upper threshold, the resulting signal (point E) will correspond to the “V+” level. If the

point D signal is lower than the lower decision threshold, the signal in point E will take the

“V-“ level. If it is neither of these cases, the signal will take the “0” level. However, if the

23

data signal has only two levels, the lower decision threshold will not take effect and any

sample lower than the upper decision threshold will be set to the “0” level.

Bayes’s decision criterion, described in [1], represents a general solution to setting

the optimum reference or threshold voltage, 𝑣𝑡, in a receiver decision circuit. The

threshold voltage which minimises the expected conditional “cost” of each decision is the

value of v which satisfies (3.4.1).

𝑝 𝑣 0

𝑝(𝑣|1)
=

𝐶0. 𝑃 1

𝐶1. 𝑃 0
= 𝐿𝑡 (3.4.1)

, where:

 𝐶0 - lost of information “cost” when a transmitted digital 1 is received in error as a

digital 0;

 𝐶1 - lost of information “cost” when a transmitted digital 0 is received in error as a

digital 1;

 𝑃(0) - a priori probability of transmitting the digit 0;

 𝑃(1) - a priori probability of transmitting the digit 1;

 𝑝(𝑣|0) – conditional probability density function of detecting voltage 𝑣 given that

a digital 0 was transmitted;

 𝑝(𝑣|1) - conditional probability density function of detecting voltage 𝑣 given that

a digital 1 was transmitted.

 𝐿𝑡 - likelihood threshold

If 𝐿𝑡 = 1, such as would be the case for statistically independent, equiprobable symbols

(𝑃 0 = 𝑃(1)) with equal error costs (𝐶0 = 𝐶1), then the voltage threshold would occur

at the intersection of the two conditional pdf’s [1]. This case is known as the maximum

likelihood decision criterion, and is represented in figure 3.4.2.

Figure 3.4.2 - Probability distributions for binary transmissions, where 𝑉0 or 𝑉1are the

transmitted symbol voltages. [1]

To determine 𝑣𝑡 , the conditional probability density functions, 𝑝(𝑣|0) and 𝑝(𝑣|1)

must be matched. The noise is Gaussian and its mean value, 𝜇, adds to the symbol

24

voltages. An equivalent signaling system therefore has symbol voltages of 𝑉0 + 𝜇 and

𝑉1 + 𝜇, as seen in (3.4.2) and (3.4.3).

𝑝(𝑣|0) =
1

𝜎0 2𝜋
. e

−(vth −(𝑉0+𝜇))2

2𝜎0
2

 (3.4.2)

𝑝 𝑣 1 =
1

𝜎1 2𝜋
. e

−(vth −(𝑉1+𝜇))2

2𝜎1
2

, (3.4.3)

where 𝜎0 and 𝜎1 are the Gaussian noise standard deviations for the symbols 0 and 1,

respectively. For the case in which 𝜎0 = 𝜎1, the optimum reference is given by (3.4.4).

vth =
(𝑉1+𝜇)2 − (𝑉0+𝜇)2

2(𝑉1 − 𝑉0)
 (3.4.3)

3.4.3 Line Decoding and BER

This block, as the name suggests, will transform the signal (point E), which can have

two or three levels and is described by 12 bits, into a signal with two levels which is

described only by one bit. In order to do it, the receptor must know the line coding used

in the transmission. The decoded signal must resemble as much as possible with the

signal transmitted through the communication chain. In the BER (bit error rate) block, the

comparison between the original stream and the recovered stream is performed, through

MATLAB, in order to determine the number of errors obtained in the transmission. Later,

the result can be compared, by the user, with the expected system error probability for

the given SNR.

25

4. Hardware Implementation

Before explaining the hardware scheme used to test the different algorithms used in
each block, a brief introduction to the hardware and programming tools will be
performed in this chapter.

4.1 Spartan-6 FPGA

The most important part in our system design is the FPGA, namely the Spartan-6

FPGA. A FPGA consists of a large number of gates and flip-flops whose interconnection

can be determined, or programmed, after the IC is manufactured [6]. A Configurable Logic

Block (CLB) is the main logic block for implementing sequential as well as combinational

circuits. A CLB element contains a pair of slices (without direct connectivity between

then) and is organized as a column, as depicted in figure 4.1.1.

Figure 4.1.1 - Arrangement of Slices within the CLB [7]

Each slice, is further broken down into four logic-function generators (or look-up

tables - LUTs) and eight storage elements. The first ones provide logic and ROM functions

to the slices, while the second ones acts as memory cells that can be configured as either

edge-triggered D-type flip-flops or level-sensitive latches. This leads to 8 LUTs and 16 flip-

flops within a CLB. Each slice can be of the type SLICEX, SLICEL, SLICEM. The basic LTUs

have 6 inputs and can implement any arbitrarily defined six-input Boolean function. In

addition to the basic LUTs, SLICEL and SLICEM contain three multiplexers that are used to

combine up to four function generators to provide any function up to seven or eight

inputs in a slice.

In the table 4.1.1 is shown the available CLB resources for the Spartan-6 FPGA

XC6SLX45 device, used in this project.

26

Device
Logic
Cells

Total
Slices

Slices
Number of

6-Input
LUTs

Maximum
Distributed
RAM (kb)

Shift
Registers

(kb)

Number of
Flip-Flops SLICEMs SLICELs SLICEXs

XC6SLX45 43,661 6,822 1,602 1,809 3,411 27,288 401 200 54,576

Table 4.1.1 - Logic Resources in one CLB. [7]

This Spartan 6 - CLB’s are arranged in a regular array inside the FPGA. Each one

connects to a switching matrix for access to the general-purpose routing resources, which

run vertically and horizontally between the CLB rows and columns (figure 4.1.2). A similar

switching matrix connects other resources such as DSP slices and block RAM. Routing

delays vary according to the specific implementation and loading in a design, such as the

type of routing, distance required to travel in the device and number of switch matrices

to transverse.

The routing (through a place and route tool) of the signal pathways, between the

inputs and the outputs of functional elements within the FPGA (IOB’s CLB’s, DSP slices

and block RAM), must then be done in order to deliver optimal system performance and

the fastest compile times.

Figure 4.1.2 - CLB Array and Interconnect Channels [7]

4.2 System Architecture

As mentioned in section 2.1, the module communicates with an external computer

which is running an analyzer implemented in MatlabTM. Since the test ports where the

information is read for observation and analysis can vary from experiment to experiment,

there must be an entity that coordinates and routes all the available information to the

27

physical output ports in the system (DAC converters). The Embedded Development Kit

(EDK) was the tool chosen to perform this work for several reasons:

 It allows a more comprehensive view of the system by separating their blocks

(Intellectual Property cores or IP cores) according to the function that they

provide.

 Due to the modularity of these blocks, their internal access, insertion or

removal in the system becomes easy and enables the integration of custom

blocks.

 The SDK (Software Development Kit), an Eclipse open-source framework, allows

the C programming language to be used in the MicroBlaze processor

configuration, which makes it easier to the MATLAB communication, in

comparison with the VHDL programming language.

The EDK provides a suite of design tools that enable us to construct a complete

embedded processor system for implementation in a Xilinx FPGA device, including [8]:

• The Xilinx Platform Studio (XPS) Interface - An integrated design environment

(GUI) in which it is possible to create the complete embedded design.

• The Embedded System Tools suite;

• Embedded processing IP cores such as processors (also called pcores) and

peripherals;

• The Platform Studio SDK, which is used to develop the embedded software

application.

The embedded software application will run in the MicroBlaze™, an embedded

processor soft core that is a reduced instruction set computer (RISC), optimized for

implementation in Xilinx® FPGAs. Its soft core processor is highly configurable, allowing

the selection of a specific set of features required by the design. The processor fixed

feature set, includes [9]:

• 32-bit general purpose registers;

• 32-bit instruction word with three operands and two addressing modes;

• 32-bit address bus.

MicroBlaze is implemented with Harvard memory architecture, in which instruction and

data accesses are done in separate address spaces and bus interfaces units. Each address

space has a 32-bit range (handles up to 4Gb of instructions and data memory,

respectively). In this project, the MicroBlaze is configured with a 32 bit version of the PLB

(processor local bus) V4.6 interface, which provides a connection to peripheral and

memory access.

MicroBlaze is just one of the system components. Others blocks, such as the local

controls, communication chain and UARTs, must be connected in order to the system

28

work as designed. The system is composed by two FPGAs, being the first one responsible

for holding the communication chain transmitter and channel parts and the second FPGA

having the receiver part (figure 4.2.1).

Master FPGA Slave FPGA

µP
Microblaze

IP Core
UART1

Communication Chain
(Transmitter + Channel)

Local
Controls

RAM

Matlab

Probe

PLB

DAC1

IP Core
UART1

Local
Controls

PLB

IP Core
UART2

DAC2

Probe

Communication Chain
(Receptor)

DAC1ADC1

IP Core
UART2

µP
Microblaze

RAM

Terminal

FIFO FIFO

Figure 4.2.1 - System EDK based

By separating the communication chain within the two FPGAs, we impose that the

transmitter and the receiver use independent clock generators and therefore approach a

real system.

Both FPGAs will communicate to each other through UART2, different from the one

used to the communication between the master FPGA and the PC (UART1). The second

(or slave) FPGA will be dependent of the master FPGA to communicate with the PC

(Matlab) in order to get the initialization values used in the receiver blocks. The UART1 in

slave FPGA will not be available for the common user, since it is designed only for tests on

the data processed in this FPGA. Each FPGA has also a local control block in each FPGA,

which will enable the user to confirm that the FPGA is correctly configured and ready to

emulate the system.

The protocols that rule the communication between these two FPGAs and the PC will

be described in more detail on chapter five.

29

4.3 FPGA Peripherals

As depicted in figure 4.2.1, some peripherals must be connected to each FPGA in

order to the project work as designed. In this subchapter, the DAC, ADC and the local

controls display will be described.

4.3.1 DAC

Due to their implementation simplicity, resolution and number of channels, the

Digilent PmodDA2 Module Converter was the DAC chosen to integrate the system. It

converts signals from digital values to analog voltages on two channels simultaneously,

with twelve bits of resolution each. The PmodDA2 is powered from the Digilent system

board connected to it (which holds the FPGA), at 3.3V. Ideally, it will produce an analog

output ranging from 0 to 3.3 volts when operating with this power supply voltage [10].

The VHDL component has five inputs and five outputs and has been created by

Digilent [11]. The input ports are a 50MHz clock (labelled CLK and connected to the

embedded system clock) that is divided down and used to clock the processes in the

component, and a synchronous reset signal (labelled RST) that resets the processes which

occur inside the component. The data inputs for the two DAC121S101 chips (one for each

channel) are two 12-bit vectors (DATA1 and DATA2) that are shifted out serially to the

PmodDA2 data pins. The START input signal is used to tell the component when to start a

conversion. The output ports of this VHDL component are the divided clock signal

CLK_OUT (25MHz) and two serial outputs (D1 and D2) that provide the shifted data to the

PmodDA2. An nSYNC output is used to latch the data inside the PmodDA2 after the data

has been shifted out. Lastly, an output labelled DONE tells the user when the conversion

is done [11]. A block diagram of the VHDL component described above is shown in figure

4.3.1 and the logic that shifts serially the input data word for each channel is depicted in

figure 4.3.2. The outputs of this reference component will be connected to the inputs of

the PmodDA2.

30

Figure 4.3.1 - PmodDA2 VHDL Reference

Component [11]
Figure 4.3.2 - PmodDA2 VHDL Reference

Component Finite State Machine [11]

Outside the reference component, the start signal is set high by the time the DONE

signal is set high by the component. This will enable the user to have a maximum

conversion speed in the system. According to the time diagram presented in [11] and the

component finite state machine, each DAC121S101 chip will take 17 clock cycles (at

25MHz) to convert a twelve-bit data word. This decreases the rate at which the

conversion can be done, for a maximum of 1.47 MHz.

In table 4.3.1 is presented the performance metrics for the DAC block.

Slice Registers Slice LUTs Block RAMs

Abs. % Abs. % Abs. %

71 0,13 94 0,34 0 0

Table 4.3.1 - Estimate performance metrics for the DAC block mapping

4.3.2 ADC

The chosen ADC, Digilent PmodAD1™ Anallog to Digital Module Converter, like the

DAC, has the ability to handle simultaneously two data words with twelve bits each and is

powered from the Digilent system board connected to it at 3.3V. It will produce a digital

output ranging from 0 to 4095 levels, due to the twelve bit precision. The physical module

has a 6-pin header and a 6-pin connector [12].

The VHDL component has, like the DAC, 5 inputs and five outputs. The difference to

the DAC module, is that now the SCLK output clock that drive each channel (ADC7476

chip) will be 12.5 MHz (instead of the 25 MHz), since the serial bus can run at only up to

31

20 MHz. A block diagram of the component is shown in figure 4.3.3 and the logic that

shifts serially the output data word for each channel is depicted in figure 4.3.4.

Figure 4.3.3 – PmodAD1 VHDL Reference

Component

Figure 4.3.4 – PmodAD1 VHDL Reference

Component Finite State Machine

The first state is the IDLE state in which temporary registers are assigned with the

updated value of the input SDATA1 and SDATA2. The next state is the SHIFTIN state

where the 16-bits of data from each of the ADCS7476 chips are left shifted in the

temporary shift registers. The third state, SYNCDATA, drives the output signal nCS high for

1 clock period maintaining nCS high also in the IDLE state and telling the ADCS7476 to

mark the end of the conversion. There is also a synchronous reset, like in DAC reference

component, that will reset all signals to their original state.

Outside the reference component, the START signal is set high by the time the DONE

signal is set high by the component, like the DAC. According to the component finite state

machine, each ADCS7476 chip will take 17 clock cycles (at 12,5MHz) to convert a twelve-

bit data word. This decreases the rate at which the conversion can be done, for a

maximum of 0,735 MHz. Each channel has two 2-pole Sallen-Key anti-alias filters with

poles set to 500 kHz. The filters limit the analog signal bandwidth to a frequency range

suitable to the sample rate of the converter [12].

In table 4.3.2 is presented the performance metrics for the ADC block.

Slice Registers Slice LUTs Block RAMs

Abs. % Abs. % Abs. %

72 0,13 85 0,31 0 0

Table 4.3.2 - Estimate performance metrics for the ADC block mapping

32

4.3.3 Local Control Display

In order to the user know in first instance if the system is operational or not, some

sort of visual display is needed. Therefore, an OLED display was used. This device enables

to show simple strings of data like the operating frequency, mode of operation, etc. The

display information will be sent by the MicroBlaze and will be updated according with the

Moore state machine, depicted in fig. 4.3.4:

IDLE

START_COUNT

UPDATE_SET

U = ‘0’

U = ‘1’

C = 0

C ++

C ≠ Stop

Dif = ‘1'

Dif =
 ‘0'

C
 =

 S
to

p

Dif = ‘0'

Dif = ‘1'

LineX = LineTempX

Reset = ‘1’

OR

OUT

Comparator

A

B

OUT

Comparator

A

B

Comparator
A

B
OUT

Comparator
A

B
OUT

128
128

128
128

128
128

128
128

Clk

Clk

Clk

Clk

Line0

LineTemp0

Line1

LineTemp1

Line2

LineTemp2

Line3

LineTemp3

Dif

OUT

Figure 4.3.4 – Control block state
machine

Figure 4.3.5 – Dif variable logic scheme

The IDLE state is the first that will be reached, through the asynchronous Reset signal.

It exits the IDLE state to the START_COUNT state when there is a difference in the future

content of the display. This difference is evaluated by the Dif variable which changes if

any of the data that is sent by the MicroBlaze is different from the one is already stored in

the display (fig. 4.3.5). As long as the machine is in this state, the Update (U) variable is

high, which as the name suggests, will update the display content (LineX) with the new

values stored in the control block variables LineTempX. When the Count (C) variable

reaches a pre-defined value (Stop), the IDLE state is reached again and the display is ready

for a new update. In table 4.3.3 is presented the performance metrics for the local control

block.

Slice Registers Slice LUTs Block RAMs

Abs. % Abs. % Abs. %

175 0,32 259 0,95 1 0,86

Table 4.3.3 - Estimate performance metrics for the local control block mapping

33

4.4 System Clock

One crucial part of the system is its clock lines. Different blocks in the communication

chain need different operation rates, but all the blocks need to be synchronized with each

other. In order to ensure this synchronization, the clock rates of all blocks derive from the

same major clock line (system clock). In the time diagram taken from a simulation and

presented in figure 4.4.1, are depicted the signals that take part on the clock generation

process.

Figure 4.4.1 – System Clock generation signals

First, the 50 MHz embedded system clock (‘A’ signal), will be divided so that the FIFO

block be able to store simultaneously two signals per each sample. Thus, for the system

presented in figure 4.4.1, with 8 samples per symbol, the FIFO must store 16 samples (8

per each signal). Its operation frequency, represented by the ‘B’ signal, will be the higher

one in the system after signal ‘A’. The programmed/random sequence generator is the

only block that changes its output values in a rate 16 times lower (for a sampling rate

equal to 8) than the FIFO clock signal (‘B’). T he line coding block must be able to change

their output value at half the symbol time when the user chooses return-to-zero-like

signals. Therefore, the other blocks such as filters, noise and data recover, will use the

signal ‘C’ with half the frequency of ‘B’ signal, so that they can change their output value

by the rate of 8 samples per each generated symbol. In order to the blocks have the same

clock, it must be enabled at different time instants. Therefore, the signals ‘E’ and ‘F’ were

created. The clock enable signal (‘E’) is set high at the rate of 8 samples per symbol, useful

in the sequence generator block. The line coding block will use the ‘E’ and ‘F’ clock

enabling signals besides the ‘C’. The two enable signals ‘E’ and ‘F’ are set at the falling

edge of the ‘C’ signal. This ensures that by the time a rising edge occurs in the signal ‘C’,

the enable signals ‘E’ and ‘F’ are set. In figure 4.4.2 is depicted an adapted version of

figure 3.3.4, with the clock lines for a better understanding of the text above.

34

Channel

Transmitter
Receptor

Data
Generation

Pulse
Shaping

Low Pass
Filter

+

Receptor
Matched

Filter

AWGN

Band/
High Pass

Filter

Data
Racovery

‘C’+ ‘E’

FIFO
‘B’

‘C’+ ‘E’+’F’ ‘C’‘C’‘C’ ‘C’

‘C’

Figure 4.4.2 – System blocks with clock lines

4.5 FIFO

In this project were used two Xilinx IP Cores: the FIFO [13] and the FIR filter [14]

(which will be described in section 4.8). The FIFO will allow the data to be sent to Matlab

when the system is operating in the Step-by-Step mode. The designed FIFO has 32767

positions with 32 bits each. Due to system temporal constrains, it will only be able to

store 32752 words of useful data.

The system can be configured to send to Matlab one or two channels. Each channel is

stored on alternate positions in the FIFO. If the number of channels is two, the FIFO

writing frequency will be twice the sequence generator frequency (as mentioned in the

previous 4.4 section) and the maximum number of available words for each channel will

be half the total amount of words in the FIFO (16376 words). Therefore, if some signal

needs to be analysed with more than 16376 words, the user will have to choose only one

channel to fill the FIFO. The way the user will enable each channel and therefore the FIFO

operation mode, will be described in appendix A. In the Step-by-Step mode, the clock

enable of every block in the communication chain is controlled by the FIFO write enable

signal. This way, if for any reason the FIFO stops the writing process (during FIFO filling),

no sample will be lost. The FIFO reading process is controlled by the read signal of the

FPGA microprocessor and the amount of samples stored in the FIFO, as shown in figure

4.5.1.

35

IDLE
readFlag = ’0'

 1
Read Count
Evaluation

Read
ReadFlag = ‘1’

 1

 1

Reset

Write
ReadFlag = ‘0’

RdDataCount ≥ 32759
E = ‘1’
F = ‘0’

RdDataCount = 4
E = ‘1’
F = ‘0’

Figure 4.5.1 – Read Flag Flux Diagram

This flux diagram depicts that the microprocessor will only read the samples stored in

the FIFO if it has already more than 32759 occupied positions. Furthermore, it will only

write on FIFO after a reset has been done, or the number of occupied samples decreases

to four after the reading process. These two thresholds were set with the only purpose to

avoid the full and empty states of the FIFO. The FIFO top level connections are presented

in figure 4.5.2.

36

Master FPGA

Communication Chain

FIFO

RD Enable

WR Enable

Full Flag

Empty Flag
Reset
RD Clk
WR Clk

Data In Data Out

Valid Flag

rdDataCount

wrDataCount

S1

S2

D

C ENB

MUX_0_1:2

‘A’

‘1’

‘C’

‘B’

CH2 Enable
CH1 Enable

CH2 Data

CH1 Data

‘1’ ‘1’

CH1 Data

CH2 Data

‘1’
WriteFlag

µP
Microblaze

Matlab

ReadFlag

System
Mode

Filter

 32

 32 FIFO Mode

FIFO Out Data
Register

‘E’

Sequence
Generator

Noise

FIFO Control
Register

ReadFlag

To the FIFO
in Slave

FPGA

Clock Enable

Clock Enable

S1

S2

D

C ENB

MUX_1_1:2

S1

S2

D

C ENB

MUX_2_1:2

S1

S2

D

C ENB

MUX_3_1:2

Figure 4.5.2 – FIFO top level connections

In order to the microprocessor know the FIFO current state, one register is available

to send the signals full, empty, valid and the read flag to the processor. In chapter five will

be described in more detail the mechanisms that allow the FIFO reading process.

The approach described in figure 4.5.1 is only valid to the FIFO in the master FPGA.

The slave FPGA FIFO write enable is controlled through a dedicated line from master

FPGA FIFO (fig. 4.2.1). The slave FIFO will only store values when the master FIFO store,

enabling that both FIFOs be synchronized. Therefore, the reading process will be

controlled by the complement value of this dedicated line value and the time instants the

microprocessor is available for reading. The FIFO mode in each FPGA must be the same. If

this equality is not verified by the user, it will be forced by the master FIFO mode.

The FIFO IP Core configuration parameters are presented in appendix B and the

estimate performance metrics for this block is presented in table 4.5.1.

Slice Registers Slice LUTs Block RAMs

Abs. % Abs. % Abs. %

304 0,56 379 1,39 58 50

Table 4.5.1 - Estimate performance metrics for the FIFO block mapping

37

4.6 Bit Sequence Generator
4.6.1 Pseudorandom Bit Sequence Generator (PRBS)

The PRBS must be implemented for different sequence lengths; that implies that the
number of cells needed will vary after the mapping in the FPGA. For example, if the PRBS
to be generated has a length 24-1 (n=4) and later on the user decides to switch to n=10,
the circuit must be able to make this switch without the need of creating extra hardware.

A generic model must then be created for n ϵ *3, 32+. Such a model is presented in
Fig. 4.6.1. We can see that, independently of n, the number of flip-flops is always equal to
32. The control logic, based on multiplexers, is implemented between each flip-flop (FF)
to decide the existence (or not) of feedback (XOR between the FF at the left and the less-
significant cell) or a normal right-shift.

As shown in Fig. 4.6.2, the inputs of this block will be the control signals given by the
32x32ROM, 5:32Decoder and 32bit Seed. The first block stores the polynomial accordingly
to the number of register cells selected (#Cells input). The decoder block is responsible for
marking the most significant cell in the register (this cell will be equal to the less
significant cell of the register in the next clock). As mentioned in the text above, the seed
block will be placed in the register in order to define the initial state. Table 4.6.1 shows
the truth table of the control logic block, according with the description above.

Flip
Flop D
31

...

64 Blocks: 32 CL & 32 FF_D

MSB LSB

MSB

MSB ... LSB

Decoder
5: 32

Cells

ROM
32x32

 32

 5

Seed

 32

Reset

CLK

Control
Logic
31

Control
Logic
30

Control
Logic
0

Flip
Flop D

1

Flip
Flop D

0

... LSB

 32

...

Figure 4.6.1 - PRBS Hardware Implementation

38

0

1

1

LSB Reset

S1 D

C1 ENB

MUX_1_3:8

S8

C2 C3

S1

S2
D

C ENB

MUX_0_1:2

Polynomial
Generator Bit

N
ex

t
B

it

P
re

vi
o

u
s

B
it

Decoder
Bit

Seed
Bit

Reset
bit

Decoder
bit

Polynomial
bit

Next bit

0 0 0
Keeps the

connection

0 0 1

XOR
between the
LSB and the
Previous Bit

0 1 x LSB
1 x x Seed bit

Figure 4.6.2 - Control Logic Block in a PRBS register
Table 4.6.1 - Control Logic Block Truth

Table for PRBS

4.6.2 Programmed Cyclic Sequence Generator

The programmed cyclic sequence generator, as mentioned in section 3.1.3, will be
the PRBS generator without the feedback taps in the shift register, as depicted in Fig.
4.6.3. Therefore, the control logic block (figure 4.6.4) will not consider the polynomial bit
as an input and will have the behavior described in table 4.6.2.

Flip
Flop D
31

...

64 Blocks: 32 CL & 32 FF_D

MSB LSB

MSB
Decoder

5: 32
Cells

 5

Seed

 32

Reset

CLK

Control
Logic
31

Control
Logic
30

Control
Logic
0

Flip
Flop D

1

Flip
Flop D

0

... LSB

 32

...

Figure 4.6.3 - Programmed Sequence Hardware Implementation

39

Next BitPrevious Bit

LSB

Decoder Bit Seed Bit

S1

S4

D

C2C1 ENB

Multiplexer

1

Reset

Reset Bit Decoder
Bit

Next Bit

0 0 Previous
Bit

0 1 LSB

1 x Seed Bit

Table 4.6.2 - Control Logic Block Truth table for

the Programmed Sequence

Figure 4.6.4 - Programmed Sequence Logic
Control Block

4.6.3 Performance

In the table 4.6.3 are described the FPGA resources used in the implementation of
the sequence generator and the embedded system, where Abs. stands for absolute
values.

Slice Registers Slice LUTs Block RAMs

Abs. % Abs. % Abs. %

428 0,78 1510 5,53 0 0

Table 4.6.3 - Estimate performance metrics for the sequence generator mapping

4.7 Line Coding

The data output of the cyclic generator is obtained from one of 32 memory cells of

the sequence generator register. This data will be coded and sent through the

communication chain. Since the line coding result in one of three levels, two bits must be

used to code the bit of information. According to the two’s complement, the following

codification was used:

Line Coding Voltage Level

“01” +V

“00” 0

“11” -V

Table 4.7.1 – Two bit signal codification

40

Is important to mention that these two bits go throughout the communication chain in

parallel, not increasing the bit rate at which the data is sent. In figure 4.7.1 is presented

the flux diagram that translates the algorithm for each one of the eight line codes

implemented in the system. The line coding output signal may change value by the time a

rising edge occurs in the signal clock ‘C’ (figure 4.4.1). The ‘E’ and ‘F’ signals are also

referred to figure 4.4.1. The bipolar flag will alternate each time the data bit is equal to

‘1’.

Symbol Period Half Symbol Period

F=’1' ?

Start
Reset=’1’

False

E=’1' ?

True

Data Bit =’1' ?

True False

Unipolar NRZ = “01”
Unipolar RZ = “01”
Polar NRZ = “01”
Polar RZ = “01”

Manchester = “01”
Bipolar Flag = not (Bipolar Flag)

True

Data Bit =’1' ?

Unipolar NRZ = “00”
Unipolar RZ = “00”
Polar NRZ = “11”
Polar RZ = “11”

Manchester = “11”
Bipolar NRZ = “00”
Bipolar RZ = “00”

CMI = ”11”

False

Bipolar Flag =’1' ?

Bipolar NRZ = “11”
Bipolar RZ = “11”

CMI = “11”

True

Bipolar NRZ = “01”
Bipolar RZ = “01”

CMI = “01”
False

Unipolar RZ = “00”
Polar RZ = “00”

Manchester = “11”
Bipolar RZ = “00”

Bipolar Flag =’1' ?

CMI = “11”

True

True

False

Unipolar RZ = “00”
Polar RZ = “00”

Manchester = “01”
Bipolar RZ = “00”

CMI = “01”

False

CMI = “01”

Figure 4.7.1 – Line coding flux diagram

The performance metrics for the line coding block are shown in table 4.7.2

Slice Registers Slice LUTs Block RAMs

Abs. % Abs. % Abs. %

15 0,03 13 0,04 0 0

Table 4.7.2 - Estimate performance metrics for the line coding block mapping

41

4.8 Filters

As mentioned in chapter three, all the filters used in this project will need to load

their coefficients into the FPGA. In order to do that, a Xilinx Fir Compiler IP Core was used,

which provides a common interface to generate highly parameterizable, area-efficient

high-performance FIR filters [14].

a)

b)

Figure 4.8.1 – FIR Filter data and control signals. Time diagram to (a) and from (b) 5,5 ms

In figure 4.8.1 is shown a simulation time diagram which presents the control and

data signals from the FIR filter. For a better understanding of the description below,

please refer to the figure B.3a in appendix B, that depicts the filter inputs and outputs.

The FIR clock signal, as seen in chapter 4.4, is equal to the symbol clock rate multiplied by

the sampling frequency. In time diagram is presented a simulation for a symbol clock rate

of 1 kHz and a FIR filter clock equal to 8 kHz (sampling rate equal to eight samples per

symbol). The filter output Reload_Ready signal will indicate when the filter is ready for

loading the coefficients, by setting their value to the logic ‘1’. However, in order to the

filter accept the coefficients into the filter, the signal ‘Reload_Valid’ must also be high and

the signal Config_Valid must be at a logic low.

The coefficients are presented in figure 4.8.1 as the Reload_Data signal. The filter

store 23 signed coefficients 16 bit each and with 12 bits of useful data. To test the filter

impulse response, the following random non-symmetric set of 23 coefficients was used: -

3, 0, -7, 17, 20, 25, 30, 40, 53, 69, 76, 80, 83, 90, 101, 97, 71, 52, 43, 39, 27, 22, -10, being

sent in the reverse order. By the time the last coefficient is sent, the Reload_Last signal

must be set high only during a filter clock period.

42

As mentioned in section 4.7, previously to the rised cosine filter (in the transmitter)

the data signal is coded, having 2 bits instead of one. After the line coding, this signal

(LC_Out) will be interpolated, being extracted only one sample, represented here by the

Sdata_Data signal. The data filter input is signed and have 16 bits with 12 bits of useful

information.

The filtered output (signal Mdata_Data) will have a valid value, 29 clock cycles after

the Mdata_Valid signal is high. Due to the coefficient multiplication with the input signal,

the Mdata_Data signal has 32 bits with 29 useful bits. Since not all the bits are of interest,

it was chosen the 12 bit range that best fits the project specifications.

The Estimate performance metrics for each filter created in the system is shown in

table 4.8.1

Slice Registers Slice LUTs Block RAMs

Abs. % Abs. % Abs. %

1,467 2,69 782 2,87 0 0

Table 4.8.1 – Estimate performance metrics for each filter mapping

In the FIR Filter section, in appendix B, is possible to find more information about the

configuration parameters of this IP Core.

4.9 AWGN

In this project, the model with K=5 ROM’s, was analyzed, as depicted in figure 4.9.1.

Each ROM will contain 512 sub-segments of the same length at each level of the partition

and each ROM word is composed by 11 bits, in which b=8 bits are from the fractional

part.

43

ROM F1

ROM F2

ROM F3

ROM F4

ROM F5

LSFR1
(19 bits)

LSFR2
(18 bits)

LSFR3
(17 bits)

LSFR4
(16 bits)

LSFR5
(15 bits)

9
9

9
9

9

LSFR5
(20 bits)

Zero
Comparator
In Out

S1

S2
DC

MUX
1:2

Zero
Comparator
In Out

S1

S2
DC

MUX
1:2

Zero
Comparator
In Out

S1

S2
DC

MUX
1:2

Zero
Comparator
In Out

S1

S2
DC

MUX
1:2

2's Complement
Conversion

Input Out
Enable

11
11

11
11

12

1

1
1

1

Figure 4.9.1 – AWGN generator schematics

Each ROM will be indexed by different LSFRs with different lengths to ensure that the

process is as random as possible. Since each ROM as a length of 512, a minimum of 9 bits

must be generated in each LSFR. After each ROM is indexed, their outputs must be

prioritized, according to the partitioning level, mentioned in section 3.3.2. For example,

the first ROM, containing the values with a low level of partitioning in the interval 0 to 1,

will be the first one to be chosen as the output of the system. However, the samples

created so far are unsigned. Since we need to run code in FPGA, the arithmetic operations

are done in two’s – complement, which will reduce the complexity in the design. This last

process will add one more bit after the word was chosen. The AWGN generator

periodicity will be greatly affected by the periodicity of the signal. This was the reason to

use a bigger number of registers in the LSFR for the sign generator (despite only one is

used), as depicted in figure 4.9.1.

The estimate performance metrics for the AWGN block is shown in table 4.9.1

Slice Registers Slice LUTs Block RAMs

Abs. % Abs. % Abs. %

137 0,25 241 0,88 6 5,17

Table 4.9.1 – Estimate performance metrics for the AWGN block mapping

4.10 Data Recover

In figure 4.10.1 is depicted a more detailed version of the receptor chain shown in figure
3.4.1.

44

Receptor

CRC

Receptor
Filter

Edge
Detection

Sampling
A

C

D

Level
Decision B

Level
decision

Line
Decoding

E F

Phase

Figure 4.10.1 – Receptor Chain Diagram Block

Figure 4.10.2 – Temporal diagram of several test points in the receptor chain. The “U” symbol
denotes a non-initialized signal

In fig. 4.10.2 is depicted the result of a test bench simulation for a simple data signal

with CMI line coding (point A). The sequence simulated is “01001” with 8 samples

per/symbol and an 8 kHz period clock. Some signals used in the VHDL implementation

were omitted for reading convenience. Since the ‘A’ signal tested here has only two levels

(V+ and V-), the level decision output (B) will result in the same (A) signal. This would not

happen if for example the A signal is from the filter output, which can have 4096 levels.

The signal in C1 represents the edge detection extracted through XOR logic between

the B signal and a clock period delay of this same signal. This C1 signal was set to be able

to change value in each clock falling-edge so that the count (C2) could change in the next

clock rising-edge. The maximum count of signal C2 is a function of the C1 transitions, the

pre-defined sampling rate and the previous count values stored in memory. In fig. 4.10.3

flux diagram is shown the dependency between signals C1, C2, C3 and C4. These four

signals are clock dependent.

45

Start (Reset=”1")
MemoryArray = (SF/2)-1

MemoryPointer = “0”
C2 = “0”

Positive Edge
Detection
(C1 = “1")?

False

C2 < (SF/2)?

True

False

C2 < ((SF/2)-2)?

C3 < (SF/2)?

True

False C3 = C2

True

-> C4 = MemoryArray Average

-> MemoryPointer Update

C3++True

C3=(SF/2)False

C2 >= C4

True

False

-> MemoryArray(MemoryPointer) = C3
-> C2= 0

C2 ++ C2 = 0

Figure 4.10.3 – C point flux diagram – rising-edge clock dependent

This algorithm must be able to detect two transitions per symbol, as happens in

return to zero signals, and to accommodate data signal variations due to jitter and due to

bad level decision. Therefore, the count must take one of the three following values:

𝑆𝐹

2
− 2,

𝑆𝐹

2
− 1,

𝑆𝐹

2
 , where SF denotes the sampling factor. In this case, where SF=8, the

ideal count limit is
𝑆𝐹

2
− 1 = 3, since the count start on the 0 value. In order to achieve a

better resistance to noise, an average value will be calculated between the most recent

count and the previous ones. A new count value will be stored in the next position (given

by memory pointer) of the memory array, only when occurs an edge detection (C1). The

memory pointer will then be updated. This memory array stores the values used in the

average and can take the sizes 1, 2, 4, 8, 16 and 32, which is chosen by the user. In fig.

4.10.2, C3 is the most recent value placed in a memory array with 8 positions. C4 is the

average of all the eight values placed in memory array. Due to design restrictions, at least

half clock period delay occurs between the instant changes of the signals C3 and C4.

46

The sample instant is obtained adding the Phase parameter to the C2 signal. This

parameter is set by the user and can take any value between 0 and
𝑆𝐹

2
− 1. In the example

that we are analyzing, the sampling instant was set to 1, this is, Phase=1. Signal D1 is the

sampled signal and D2 is D1 delayed half symbol period. This two signals will allow to

obtain the D3 signal, which is another edge detection, but now, after sampling and

repeated when C2=Phase. On the other hand, the clock signal (D4) will need to analyze

three signals: D1, D2 and D3, in order to know when the clock takes the “1” or “0” level.

For example, in the case of the CMI signal, if D3=1 and D1 and D2 are different, we are

sure that the clock will be equal to ‘1’. Otherwise, if D3=1 and D1 and D2 are equal, the

clock will change value independently of D1 and D2 (as it happens in a “1” transmission).

D3 is delayed one clock cycle in comparison with the actual sampling instant given by

C2=Phase.

Signal D5 is taken before the decision is made, and represents the A signal sampled

according to the instants given by D3. D5 is delayed (SF/2) +1 clock cycles from the

sampling instant, in order to be compared directly, by the user, with the decoded F signal.

The signal E1 is the result of the second level decision made in the receptor chain. This

decision uses the same upper and lower thresholds as the first level decision made in the

CRC block. The difference is that in this second case, the input signal is the sampled signal

(D1) instead of the receptor filter output signal (A). E1 signal will be delayed one clock

cycle from D1. E2 will be delayed one clock cycle from D2.

At point F we will have the decoded data, which must resemble as much as possible

with the original data transmitted in the chain (by the sequence generator at the

transmitter). The delay between the point A and point F will depend on the selected line

code on the transmitter. For a CMI line coding, the delay between this two points will be

half symbol period bigger that the other codes, because in the design used, the decoding

(F) will need to get the information from the next half period (E1) in order to decode the

actual signal (E2), which may resemble like a non-casual process. The flux diagram in fig.

4.10.4 shows the algorithm used to decode the data for each one of the 8 codes used.

The estimate performance metrics for all the data recover block is shown in table

4.10.1

Slice Registers Slice LUTs Block RAMs

Abs. % Abs. % Abs. %

209 0,38 330 1,20 0 0

Table 4.10.1 – Estimate performance metrics for data recovery mapping

47

E1=V+ ?

F = 1True

F = 0False

Line Coding = unipolar NRZ?
||

Line Coding = Polar NRZ?
True

Line Coding = unipolar RZ?
||

Line Coding = Polar RZ?
E1=V+ ?

D4 =”1” ?True

True

True

F = 0

F = 1

D4 =”1” ?False

True F = 0

E2=V+ ?False

F = 1True

F = 0False

False

False

Line Coding =
Manchester ? E1=V+ ?

D4 =”1” ?True

True

False F = 0

F = 1

True

E1=V- ?False

D4 =”1” ?

False

True F = 0

F = 1

True

False
False

F = 0

Line Coding =
Bipolar NRZ ?

E1=V+ ?
||

E1 = V- ?
True

F = 1

True

F = 0

False

False

Line Coding =
Bipolar RZ ?

E1=V+ ?
||

E1 = V- ?

F = 1

True

True

D4 =”1” ?

F = 0

False

True

E2 = V+ ?
||

E2 = V- ?
False

F = 1True

False F = 0

False

E2 = V+ ?

E1 = V+ ?True

D4 =”1” ?True

F = 1True

False F = 0

F =”1” ?False

F = 1True

F = 0False
Line Coding = CMI

E1 = V+ ?False

D4 =”1” ?True

F = 0True

F = 1False

F = 1False

False

Figure 4.10.4 – Line decoding flux diagram - Clock independent behavioral model

48

5. Software

The MicroBlaze® microprocessor is an important part of the embedded system, since

it will be the bridge between the PC and the communication chain, as it can be seen in

figure 4.2.1. In this chapter, will be described the mechanisms that rule the data exchange

between these two entities.

5.1 Block Initialization

As mentioned in chapter four, all blocks in the chain have a group of parameters that

need to be set before they can generate or process data. The data of these parameters

come from the PC in the form of commands. The master FPGA processor will first receive

the commands and route them (or not) to the slave FPGA. The commands (or part of

them) will return back to the source as an echo, so that the user may know if they were

correctly sent to both FPGAs, as depicted in figure 5.1.1 temporal diagram. Is important to

mention that in the case when the command is sent to the slave FPGA, the echo to the PC

(Matlab analyzer) will only be done when the terminator ‘\r’ is received from this slave

FPGA.

“:”

Load Command 0

Matlab Master FPGA

Command 0 echo

...

Slave FPGA

Terminator ‘\r’ echo

Load Command 0

Store
and/or
Send

Command 0 echo

...
...

Load Command 30

Command 30 echo

Terminator ‘\r’ echo

Load Command 30

Store
and/or
Send

Command 30 echo

Figure 5.1.1 – Block initialization temporal diagram

A command is composed by the following structure: “>ABC.DE.Data\r” where ABC

corresponds to the block place in the chain and DE corresponds to the parameter of that

49

block, being each letter a byte. The “Data” component size will depend on the type of

parameter and will be in most cases, digits from 0 to 9. In order to processor know when

the command is ended, a terminator ‘\r’ (Enter) is the last command component. More

info about the command structure can be found in appendix A of this document. Figure

5.1.2 presents the flux diagram of each command load in the master FPGA.

 The “Valid command” confirmation is just a state machine in which the several

command components are consecutively tested to check if it corresponds to one of the

existing parameters in the system. After validation the command can be either stored in

the master FPGA registers and/or sent to the slave FPGA so that this last one component

can do the same procedure. This choice depends on the type of parameter that the given

command comprehends. In table A.1.1 is possible to see which commands exist in the

system and to which FPGAs they belong. For example, the system clock parameter will

Byte = ‘>’?

Start
Ncommands=0

True

Byte = ‘\r’?

1
False

True

Valid
command?

1

Receive Byte

1

Store command
bytes in temporary

variable

Command
temporary

variable decode

Error Detected

False

Store and/or send
command to slave

FPGA

True

Ncommand++

False

Figure 5.1.2 – Command Load flux diagram in master FPGA

50

have to be sent to both FPGAs while the transmitter filter coefficients only concern to the

master FPGA.

All IP Cores created in Embedded Development Kit (EDK), like the communication

chain, have a fixed set of registers that can be used to communicate to/from the

processor. However, if the project needs more registers, a new IP core needs to be

created to accommodate this change and the previous code must be transferred to the

newly created IP Core. Therefore, this system limitation in numbers of registers becomes

non practical. To avoid it, RAM memories were designed in VHDL, with a size of 320 and

448 positions in the master and slave FPGA, respectively. The communication chain IP

core was created with 32 registers. The data that comes from the processor will be first

stored in register 31 and its position in the RAM will be stored in register 30. On the other

hand, the information that goes to the processor will be stored directly in the IP core

registers, so the access to the information by the processor will be faster. All the

communication chain registers and RAM words are presented in figure 5.1.3, having 32

bits each and being the right bit, the least significant bit (LSB).

51

S
e

q
u

e
n

ce

G
e

n
e

ra
to

r
F

IF
O

 &
 D

A
C

P
u

ls
e

S

h
a

p
in

g
F

il
te

rs
N

o
is

e
Le

ve
l

D
e

ci
si

o
n

S
a

m
p

li
n

g

0 (30 bits) Tfilter_out_valid (1 bit)

0 (20 bits) Sampling Factor (8 bits)

FIFO Output (32 bits)

0 (26 bits) Read uP (1 bit) FIFO Valid (1 bit) FIFO Empty (1 bit)

0 (31 bits) nCells (5 bits)

Seed (32 bits)

0

0

Clk Divider (32 bits)

0 (29 bits) Mode (1 bit) Sel (1 bit) Reset Seed (1 bit) Reset Clock (1 bit)

Sequence Generator Output (32 bits)

5
FIFO Full (1 bit) 6

CH2 (16 bits) CH1 (16 bits) 64

1280 (27 bits) Line Coding (5 bits)

192

2560 (27 bits) Standard Deviation (12 bits)

193
218

229

0 (20 bits) Signal Multiplication Factor (12 bits) 129

219

3

Tfilter_config_valid (1 bit) 4

320Lower Threshold (16 bits) Upper Threshold (16 bits)

LSBMSB

385

Enable CH2 FIFO (1 bit) Enable CH1 FIFO (1 bit) 65

0 (27 bits) 130Duty Cycle (8 bits) DutyCycleEnable (1 bit)

0 (20 bits) Enable RecepFilter (1 bit) Reset Filter (1 bit)

Receptor Filter – C1 (16 bits) Receptor Filter – C0 (16 bits)

Receptor Filter – C3 (16 bits) Receptor Filter – C2 (16 bits)

Receptor Filter – C... (16 bits) Receptor Filter – C... (16 bits)

Receptor Filter – C21 (16 bits) Receptor Filter – C20 (16 bits)

0 (16 bits) Receptor Filter – C22 (16 bits)

192
193
194

205

Channel Filter – C1 (16 bits) Channel Filter – C0 (16 bits) 206

195

Channel Filter – C3 (16 bits) Channel Filter – C2 (16 bits)

Channel Filter – C... (16 bits) Channel Filter – C... (16 bits)

Channel Filter – C21 (16 bits) Channel Filter – C20 (16 bits)

0 (16 bits) Channel Filter – C22 (16 bits)

207

217

2

0 (30 bits) Tfilter_out_valid (1 bit) Tfilter_config_valid (1 bit) 3

0 (20 bits) Sampling Factor (8 bits)

0 (27 bits) Enable ChanFilter (1 bit) Enable TransFilter (1 bit) Reset Filter (1 bit)

0 (30 bits) Tfilter_out_valid (1 bit)

Transmitter Filter – C1 (16 bits) Transmitter Filter – C0 (16 bits)

Transmitter Filter – C3 (16 bits) Transmitter Filter – C2 (16 bits)

Tfilter_config_valid (1 bit)

0 (24 bits) Phase (8 bits)

0 (24 bits) memSize (8 bits)

384

In

Out

In
In
In

Out
Out

In
In

In
In
In

In
In
In
In
In
In
In

Transmitter Filter – C... (16 bits) Transmitter Filter – C... (16 bits)

Transmitter Filter – C21 (16 bits)

0 (16 bits)

Transmitter Filter – C20 (16 bits)

Transmitter Filter – C22 (16 bits)

Out

In
In
In
In
In

Out

In
In
In
In
In
In
In

Out

In

In

In

In

1
2

...

204

...

216

...

228

Figure 5.1.3 – Communication Chain Data words

52

The green filled boxes represent words common to both FPGAs, the white color

correspond only to master FPGA and the orange color to the salve FPGA. The words that

will be sent to the processor are represented by the Out label and data that comes from

the processor and will be stored in the RAM is represented by the In label. For each type

of data word division, such as the sequence generator, pulse shaping, etc, there is an

addresses jump of 64 positions, in order to address more words in those divisions in the

future.

5.2 Data Sending

After all the blocks in the system are initialized, they can start to generate/process

data. As mentioned in section 4.2, in order to read that data, is possible to use either a

FIFO or a DAC. If the DAC is selected (Continuous mode) a probe must be plugged into the

system, like an oscilloscope. But if the user wants to analyze the data in the PC in a more

accurate way, the Step-by-Step mode must be selected. The FIFO is used in this last mode,

requiring an interaction algorithm between both FPGAs and the PC. This algorithm is

shown in figure 5.1.4. The number of words that the user specifies in the command is the

number of words for two channels. Therefore, both FPGAs will send the double number

of words specified by the user, being this number the stop condition in the flux diagram in

figure 5.1.4. The data from each FPGA will be sent to the PC in an alternated way. A

handshake must be done between the master and the slave FPGA in order to know if the

information that the slave is sending, corresponds to the data word. This handshake is

done with the bytes ‘>’ and ‘<’ that limit the start and the end of the data word. Due to

software constrains, in the slave to the master FPGA communication, it can only be sent

one byte at a time. Since the data word has 32 bits, it must be splitted in four pieces in

the slave FPGA and reconstructed in the master FPGA. This process is represented in the

box “Data Word Receive” in figure 5.1.4.

In figure 5.1.5 is represented the flux diagram of the algorithm used to send the data

stored in the slave FPGA FIFO to the master FPGA. This last diagram is a soft version of the

master FPGA flux diagram.

53

False

False

1

Start
DataWordCount=0

DiscardCount=0

WordCount ≥
2×Nwords ?

ValidFlag=1?
&

 ReadFlag=1?

False

False

DiscardCount=
SampFactor?

True

DiscardCount++False

Send Data Word
(to PC)

True

WordCount++

1

WordCount ≥
2×Nwords ?

1

Send ‘.’ byte

(to slave FPGA)

False

1

Byte Read = ‘>’ ?
(from slave FPGA)

Data Word Receive
(from slave FPGA)

1

1

Byte Read = ‘<’ ?
(from slave FPGA)

Send Data Word
(to PC)

WordCount++

True

1

1

Stop True

True

54

Figure 5.1.4 – Master FPGA data sending flux diagram

False

1

Start
DataWordCount=0

DiscardCount=0

WordCount <
Nwords ?

ValidFlag=1?
&

 ReadFlag=1?

True

False

DiscardCount=
SampFactor?

True

DiscardCount++False

Send Data Word
(to master FPGA)

True

WordCount++

1

1

Stop False

Send ‘>’ byte
(to master FPGA)

1

Byte Read = ‘.’ ?
(from master FPGA)

1

1

Send ‘<’ byte
(to master FPGA)

Figure 5.1.5 – Slave FPGA data sending flux diagram

55

6. Experimental Results

6.1 Sequence Data Generator

As mentioned in section 4.6, the sequence data generator enters data into the

system in the form of a programmed sequence or a random sequence. The system will

work at 𝑅𝑠 = 10𝑘 𝑠𝑦𝑚𝑏𝑜𝑙𝑠/𝑠 and a sampling factor of 𝐹𝑠 = 8 𝑠𝑎𝑚𝑝𝑙𝑒𝑠/𝑠𝑦𝑚𝑏𝑜𝑙𝑠. In

order to test the performance of this block, it was generated 56 samples of 32 bits each,

through a random sequence of length 23 − 1 = 7. The results of the created Matlab

analyser are shown in figure 6.1.1.

a)

b)

Figure 6.1.1 – PRBS generator output experiment. a) histogram and b) time domain plot

It is possible to observe from this example that each generated symbol was sampled 8

times since 56 samples correspond exactly to 8 𝑠𝑎𝑚𝑝𝑙𝑒𝑠/𝑠𝑦𝑚𝑏𝑜𝑙 × 7𝑠𝑦𝑚𝑏𝑜𝑙𝑠.

Now changing the PRBS to the programmed sequence generator and maintaining the

rest of the previous parameters, the figure 6.1.2 is obtained. The chosen seed has now as

important role, since it will define the values which the generator can take through its

shifting process. In both generators the seed was set to five. For a generator with three

cells, it can take the values ,5,6,3- since the three initial bits “101” will suffer a right shift

for each symbol clock period, 𝑇𝑠. The sequence will then repeat itself after 3 symbols (or

18 samples).

a) b)

56

Figure 6.1.2 – Programmed generator output experiment. a) histogram and b) time domain plot

6.2 Pulse Shaping

From this point on, only the least significant bit (from the 32 bits) of the sequence

generator output will be considered. Therefore, if the generated data word with 32 bits is

an odd number (in decimal base), the transmitted bit in the chain will be equal to one.

Otherwise, for an even number, the bit will be zero. Like in the case of the sequence

generator, in order to test the designed pulse shaping blocks, will be used a symbol (bit)

rate of 𝑅𝑠 = 10𝑘 𝑠𝑦𝑚𝑏𝑜𝑙𝑠/𝑠 and a sampling factor of 8 𝑠𝑎𝑚𝑝𝑙𝑒𝑠/𝑠𝑦𝑚𝑏𝑜𝑙.

6.2.1 Line coding

The line coding transforms the binary signal into a 2 bit signal that will be then

extended to a 12 bit signal in which the highest level is 𝑉+ = 2047 and the lowest level

is 𝑉− = −2047. Therefore, each data signal sample after the line coding block can have

4096 levels. However, before the PSD generation, each data sample was normalized

to 𝑉+ = 2047.

6.2.1.1 Deterministic Sequence

Considering the generation of a programmed sequence with 15 bits, in which the first

5 bits are set to ‘1’ and the other 10 bits are set to ‘0’. The correspondent seed is equal to

the decimal translation of the binary word 111110000000000𝐵 = 3174410 .

Considering first the unipolar NRZ signal, the resulting PSD for the conditions mentioned

above is presented in figure 6.2.1.

57

Figure 6.2.1 – Theoretical (black) and experimental (blue) unipolar NRZ PSD obtained by the programmed sequence

111110000000000𝐵

The generated time signal, 𝑦(𝑡), is composed by a sequence of elementary impulses

with the same shape (𝑝(𝑡)) and amplitude given by 𝑥(𝑡) (delta Dirac impulses with

amplitude 𝑎𝑘), as presented in equation (6.2.1). Knowing that 𝑝(𝑡) is a rectangular wave

with width C, equation (6.2.2) is obtained.

𝑥 𝑡 = 𝑎𝑘 . 𝛿(𝑡 − 𝑘. 𝑡)

+∞

𝑘=−∞

 (6.2.1)

𝑝(𝑡) = 𝑟𝑒𝑐𝑡
𝑡

𝐶
 (6.2.2)

, 𝑦(𝑡) is then translated into (6.2.3).

𝑦 𝑡 = 𝑝 𝑡 ∗ 𝑥 𝑡 = 𝑟𝑒𝑐𝑡
𝑡

𝐶
 ∗ 𝑎𝑘 . 𝛿(𝑡 − 𝑘. 𝑡)

+∞

𝑘=−∞

 (6.2.3)

In the frequency domain:

58

𝑌 𝑓 = 𝐶. 𝑠𝑖𝑛𝑐 𝑓. 𝐶 ×
𝑎𝑘

𝑇
. . 𝛿 𝑓 −

𝑛

𝑇

+∞

𝑛=−∞

 (6.2.4)

In this experiment, the generated sequence with NRZ coding resembles to the

transmission of rectangular pulses with period 𝑇 = 15. 𝑇𝑠 and width equal to 𝐶 = 5. 𝑇𝑠,

where 𝑇𝑠 is the period of each original symbol. Replacing 𝐶 and 𝑇 in equation (6.2.4), is

obtained:

𝑌 𝑓 =
1

3
. 𝑠𝑖𝑛𝑐 𝑓. 5. 𝑇𝑠 × 𝑎𝑘 . . 𝛿 𝑓 −

𝑛

15. 𝑇𝑠

+∞

𝑛=−∞

 (6.2.5)

The spectral power density is therefore given by:

𝑆𝑦 𝑓 = 𝑌 𝑓 2 =
1

9
. 𝑠𝑖𝑛𝑐2 𝑓. 5. 𝑇𝑠 × 𝑎𝑘

2 . . 𝛿 𝑓 −
𝑛

15. 𝑇𝑠

+∞

𝑛=−∞

= 𝛼 × 𝛽

(6.2.6)

The picks of the PSD occur when 𝛽 = 𝑎𝑘
2 and 𝛼 ≠ 0:

𝑓 =
𝑛

15. 𝑇𝑠
, 𝑛 𝜖 ℕ, ≠ 3,6,9, … (6.2.7)

, and the minimum values occur when 𝛽 = 𝑎𝑘
2 and 𝛼 = 0:

𝑓 =
𝑛

15. 𝑇𝑠
, 𝑛 𝜖 ℕ, 𝑛 = 3,6,9, … (6.2.8)

Is possible to observe that the obtained PSD depicted in figure 6.2.1 verifies the equations

(6.2.7) and (6.2.8).

The DC component of a unipolar NRZ signal can be measured analytically through the

area underneath the time domain graphic. As the number of words in the generated

sequence increases, the DC component will take the value corresponding to the average

of one pulse, as presented in equation (6.2.9)

𝑥 =
1

15. 𝑇𝑠
 𝑉+

5.𝑇𝑠

0

𝑑𝑡 + 0
15.𝑇𝑠

5.𝑇𝑠

𝑑𝑡 (6.2.9)

59

Since 𝑉+ = 2047, the DC component of the unipolar NRZ signal is equal to

approximately the level 682. The value obtained in the experiment mentioned before was

681,55, which is close to the expected value.

6.2.1.2 Random Sequence

In order to test a random generator with 16k samples, the sequence length must be

set to at least 212 − 1, so that no symbol is repeated. In this experiment, was used a seed

equal to five. The obtained PSD is presented in the figure 6.2.2.

Figure 6.2.2 – Theoretical (black) and experimental (blue) unipolar NRZ PSD obtained by a random sequence

From [15], the PSD of a random delta Dirac impulse sequence is equal to (6.2.10),

where 𝑅𝑛 is the autocorrelation function (equal to (6.2.11)) and 𝐸 . is the sequence

average.

𝑆𝑥 𝑓 =
1

𝑇𝑠
. 𝑅𝑛𝑒−𝑗𝑛𝑤 𝑇𝑠

+∞

𝑛=−∞

 (6.2.10)

𝑅𝑛 = 𝐸 𝑎𝑘 𝑎𝑘+𝑛 (6.2.11)

60

Therefore, the PSD of the data signal sequence, 𝑦(𝑡), is equal to (6.2.12). For an on-

off signaling, 𝑎𝑘 can take a 0 or 𝑉+ value, being 𝑅0 = 𝐸 𝑎𝑘
2 = 𝑉+ 2𝑃(𝑎𝑘 = 𝑉+) +

 0 2𝑃(𝑎𝑘 = 0) =
 𝑉+

2

2
 and 𝑅𝑛 = 𝐸 𝑎𝑘 𝑎𝑘+𝑛 =

 𝑉+
2

4
, for equiprobable 𝑎𝑘 levels.

𝑆𝑦 𝑓 = 𝑃 𝑓 2𝑆𝑥 𝑓 =
 𝑃 𝑓 2

𝑇𝑠
. 𝑅𝑛𝑒−𝑗𝑛𝑤 𝑇𝑠

+∞

𝑛=−∞

 (6.2.12)

Replacing 𝑅0 and 𝑅𝑛 into the equation (6.2.12), and with some mathematical

manipulation the data signal sequence PSD is obtained as shown in equation (6.2.13).

𝑆𝑦 𝑓 =
 𝑃 𝑓 2

4. 𝑇𝑠
. 𝑉+ 2. 1 +

1

𝑇𝑠
 𝛿 𝑓 −

𝑛

𝑇𝑠

+∞

𝑛=−∞

 (6.2.13)

,where
 𝑃 𝑓 2 . 𝑉+

2

4.𝑇𝑠
 defines the PSD outer shape and

 𝑃 𝑓 2 . 𝑉+
2

4.𝑇𝑠
2 . 𝛿 𝑓 −

𝑛

𝑇𝑠
 +∞

𝑛=−∞

defines their peaks.

For the NRZ unipolar signal, 𝑃 𝑓 = 𝑇𝑠 . 𝑠𝑖𝑛𝑐 𝑓. 𝑇𝑠

and
 𝑃 𝑓 2 . 𝑉+

2

4.𝑇𝑠
=

 𝑉+
2

.𝑇𝑠 .𝑠𝑖𝑛𝑐2 𝑓 .𝑇𝑠

4
 . Therefore, (6.2.13) results in a zero value when 𝑓 =

𝑛

𝑇𝑠
, 𝑛 ∈ ℕ, which corresponds to multiples of the symbol rate, as seen in figure 3.2.1a. The

peak value is obtained only at the null frequency, since is the only moment when the

functions sinc(.) and Dirac have simultaneously an non-null value.

The experimental result shown in figure 6.2.2 verifies the conditions mentioned

above: have only one discrete component in the DC component and the minimum values

are presented at integer multiples of the symbol rate (𝑅𝑠 = 10kHz).

The relative maximum values that appear in the experimental spectrum are given by

the sinc function maximum values, which occur when:

𝑓 =

2𝑛 + 1

2𝑇𝑠
 𝐻𝑧 , 𝑛 𝜖 ℕ

𝑓 = 0 𝐻𝑧

(6.2.14)

In accordance with (6.2.14) and the current experiment, the first, second and third

maximum values appear at 𝑓 = 0, 𝑓 = 15𝑘𝐻𝑧 and 𝑓 = 25𝑘𝐻𝑧, as shown in figure 6.2.2.

The RZ unipolar elementary pulse, 𝑝(𝑡), has half the width of the unipolar NRZ

elementary pulse, therefore: 𝐶 =
𝑇𝑆

2
.

61

𝑝 𝑡 = 𝑟𝑒𝑐𝑡
𝑡

𝑇𝑆

2

𝐹
 𝑃 𝑓 =

𝑇𝑆

2
𝑠𝑖𝑛𝑐 𝑓.

𝑇𝑆

2

(6.2.15)

Substituting (6.2.15) into (6.2.13), results in:

𝑆𝑦 𝑓 =
𝑇𝑠

16
. 𝑉+ 2. 𝑠𝑖𝑛𝑐2 𝑓.

𝑇𝑠

2
 . 1 +

1

𝑇𝑠
 𝛿 𝑓 −

𝑛

𝑇𝑠

+∞

𝑛=−∞

 (6.2.16)

As previously seen, the first parcel of (6.3.16), that contains only the sinc(.) function,

defines the envelope of the PSD. Therefore, the PSD null values occur when 𝑓 =
2.𝑛

𝑇𝑠
, 𝑛 ∈

ℕ. In figure 6.2.3 is presented the PSD of a random sequence with a unipolar RZ coding,

where it is possible to observe the first minimum values at 𝑓 = 20𝐾𝐻𝑧 and 𝑓 = 40𝐾𝐻𝑧.

Figure 6.2.3 – Theoretical (black) and experimental (blue) unipolar RZ PSD obtained by a random sequence

The second component defines the spectrum lines, which occur when the sinc

function and the delta Dirac functions are different from zero simultaneously, namely,

when 𝑓 =
𝑛

𝑇𝑠
, 𝑛 𝑜𝑑𝑑 𝑛 = 0 . Once more the experimental results are in accordance

with the theoretical expectations: the first three discrete lines occur at 𝑓 = 0𝐻𝑧,

𝑓 = 10𝑘𝐻𝑧 and 𝑓 = 30𝑘𝐻𝑧. The relative maximum values are more restrict than the

peaks of the PSD, happening when 𝑓 =
2.𝑛+1

𝑇𝑠
, 𝑛 ∈ ℕ.

62

In the case of the Manchester coding, the area of the elementary pulse is zero, which

leads to the form depicted in figure 6.2.4 and the equation 6.2.17. An average of 0,61 was

obtained for an experiment with 16k samples, that approximates the area of the

Manchester elementary pulse.

𝑝 𝑡 = 𝑟𝑒𝑐𝑡
𝑡 +

𝑇𝑆

4
𝑇𝑆

2

 − 𝑟𝑒𝑐𝑡
𝑡 −

𝑇𝑆

4
𝑇𝑆

2

𝐹

𝑃 𝑓 = 𝑗 𝑇𝑆 . 𝑠𝑖𝑛𝑐 𝑓.
𝑇𝑆

2
 . 𝑠𝑖𝑛

𝑤. 𝑇𝑆

4

Figure 6.2.4 – Elementary Manchester Pulse (6.2.17)

The highest level and the lowest level take now all the 12 bit range, with 𝑉+ = 2047

and 𝑉− = −2047, respectively. As a result, the autocorrelation take the values:

𝑅0 = 𝐸 𝑎𝑘
2 = 𝑉+ 2𝑃(𝑎𝑘 = 𝑉+) + 𝑉− 2𝑃(𝑎𝑘 = 𝑉−) = 𝑉 2 and 𝑅𝑛 = 𝐸 𝑎𝑘 𝑎𝑘+𝑛 =

0. Replacing these autocorrelation values and the pulse shape form (6.2.17) into equation

(6.2.12), results into the sequence PSD in (6.2.18)

𝑆𝑦 𝑓 =
 𝑃 𝑓 2

𝑇𝑠
. 𝑅𝑛𝑒−𝑗𝑛𝑤 𝑇𝑠

+∞

𝑛=−∞

=
 𝑃 𝑓 2

𝑇𝑠
. 𝑉

= 𝑉 2. 𝑇𝑠 . 𝑠𝑖𝑛𝑐2 𝑓.
𝑇𝑠

2
 . sin2

𝜋. 𝑓. 𝑇𝑆

2

(6.2.18)

Through the mathematical manipulation of (6.2.18), is possible to determine the

frequencies at which the null values are localized, as shown in equation (6.2.19).

𝑆𝑦 𝑓 = 0 ⟹ 𝑠𝑖𝑛𝑐 𝑓.
𝑇𝑠

2
 = 0 ⋁ sin

𝜋 .𝑓 .𝑇𝑆

2
 = 0 ⟹ 𝑓 =

2𝑛

𝑇𝑆
, 𝑛 ∈ ℕ0 (6.2.19)

𝑆𝑦 𝑓 will take the maximum value when the sine function is maximum, as shows

equation (6.2.20).

63

sin
𝜋 .𝑓.𝑇𝑆

2
 = 1 ⟹

𝜋 .𝑓 .𝑇𝑆

2
=

𝜋

2
 2𝑛 + 1 ⟹ 𝑓 =

 2𝑛+1

𝑇𝑆
, 𝑛 ∈ ℕ0 (6.2.20)

Figure 6.2.5 – Theoretical (black) and experimental (blue) Manchester PSD obtained by a random sequence

The experimental PSD presented in figure 6.2.5, corroborates the expected minimum

values (𝑆𝑦 𝑓 = 0) for 0, 20 and 40 kHz (separation of 20 kHz) and the relative maximums

at 10 and 30 KHz (also with a separation of 20 kHz). Since no delta Dirac function exists in

the Manchester PSD, no peaks are observed in it.

The following plots in figure 6.2.6 presents the PSD of the remaining signals that the

system can also generate. By their careful analysis and comparing with the plots in figure

3.2.1 and the theoretical graphs, is possible to infer that the line coding block processes

correctly the data generated. Is important to mention that the graphics presented in

figure 3.2.1 have linear amplitudes in the y axis, whereas the plots presented through

simulation have a decibel scale.

64

a) Polar NRZ b) Polar RZ

c) Bipolar NRZ

(AMI NRZ)

d) Bipolar RZ

(AMI RZ)

65

e) CMI

Figure 6.2.6 – Theoretical (black) and experimental (blue) PSDs for different line codes

The theoretical graphs presented in this section were obtained through the Matlab,

by pseudorandom values drawn from the standard uniform distribution on the open

interval (0,1).

6.2.2 Raised Cosine

After the signal has been processed by the line coding block, it can go through the

raised cosine block. This block will only allow non-return-to-zero signals at its input. This

condition will enable interpolation emulation, by letting only one sample of each symbol

be different than zero, and the rest of the samples are set to zero. An interpolated signal

example for a sampling factor of 8, is presented in figure 6.2.7a, being a result of an

unipolar NRZ coding of a signal reduced by four in amplitude. That is, the original unipolar

NRZ signal with amplitude of 𝑉+ = 2047 is first reduced to 𝑉+ = 511 and next

interpolated. As expected, due to ISI, the resultant filtered signal will increase the

impulses amplitude when several bits at level ‘1’ are transmitted (fig. 6.2.7b). This

maximum amplitude increase will lead to a filter response higher than 0 dB. If the 23 filter

taps aren’t divided by the sample factor upon its creation and there are 8

samples/symbol, the maximum filter response amplitude is equal to 20. log 8 =

18,06𝑑𝐵. However, for the example mentioned in figure 6.2.8b the filter response taps

were divided by the sampling factor upon the graph creation, which has resulted into a

maximum 0 dBm for 0 Hz.

66

The data signal was normalized by 𝑉+ = 2047 and has a maximum equal to 511,

therefore, the maximum PDS will be 10𝑙𝑜𝑔10(4) = 6,02 dB lower than zero. Despite the

filter taps were divided by the sampling factor upon the graphics representation, the

18,06 dB is still present when the signal ‘D’ and ‘E’ are compared at 0 Hz.

(a)

(b)

Figure 6.2.7 – Time domain unipolar NRZ signal after a) interpolation and b) after the raised

cosine filter for r=1.

(a)

67

(b)

Figure 6.2.8 – a) Interpolated signal PSD before and b) after the raised cosine filter (Blue) and the filter

response (Red) for r=100%

The previous experiment was done with a roll-off of 100% (r=1), which means that

the bandwidth of the first lobe is delimited by 𝐵𝑇 =
(1+𝑟).𝑅𝑠

2
= 𝑅𝑠 = 10𝐾𝐻𝑧, as shown in

figure 6.2.8b. On the other hand, the 50% roll-off, shown in figure 6.2.9b as smaller

bandwidth, given by approximately: 𝐵𝑇 =
(1+𝑟).𝑅𝑠

2
= 0,75. 𝑅𝑠 = 7,5𝐾𝐻𝑧. Since the

bandwidth is smaller in the last case, the pulse width will be wider and will decay less

rapidly with more signal ringing. These oscillations will lead to a larger ISI outside the

sampling instants, resulting in pulse amplitude increase when several “1” bits are sent

together, as represented in figure 6.2.10b.

(a)

68

(b)

Figure 6.2.9 – a) Interpolated signal PSD before and b) after the raised cosine filter (Blue) and the

filter response (Red) for r=50%

In either case, the delay between the interpolated input and the filtered output

maintains equal to 0,56 ms and the instants in which the time signal passes through zero.

69

Figure 6.2.10 – Time domain unipolar NRZ signal after a) interpolation and b) after the raised

cosine filter for r = 0.5

Another way of analyzing the signal characteristics is through their eye diagram. In

Figure 6.2.11 is depicted the eye diagram plot for both the experimented signals. Is

possible to see the ISI influence on both eye plots. Despite the jitter being approximately

the same, the noise margin is lower in the signal with 50% roll-off factor, which results in

a higher ISI outside the sampling instants, than the case with a roll-off equal to 100%. As

expected, the optimum decision points are located at half the symbol period in both

experiments.

(a)

(b)

Figure 6.2.11 – Eye diagram for the signal after the raised cosine filter with a) r=0.5 and b) r=1

The plots presented here, were obtained by analyzing a signal with 16000 samples,

due to the system restrictions when two signals are plotted simultaneous in the same

70

FPGA. In order to decrease the computation time, only 256 symbols are used for

representing the eye diagram. Is important to mention that the eye diagram can only be

drawn if the data signal has more than 256 symbols, since this is a predefined value in the

system.

If we run the same test, but know with just 4 samples/symbol (fewer than before), is

possible to observe that the jitter is higher if the data signal is filtered by a 50% raised

cosine filter. This effect is known as telegraphic distortion and is depicted in the eye

diagrams of figures 6.2.12a and 6.2.12b.

The FIR filter that runs in the FPGA, work with 23 taps, which are taken from the

raised cosine infinite impulse response. Considering the case where the user sets the

sampling factor to 32, the 23 filter taps will not allow any ISI or jitter, since the last 9

samples of each symbol are zero after it has been filtered. If the number of

samples/symbol is lower than 23, the ISI occurs. The jitter will only appear when there is

4 samples/symbol since the number of overlaps into the same symbol is large enough to

allow this effect. This effect should be observed also in the 8 and 16 samples/symbol

cases, however, due to the FPGA filter design, is not possible to achieve such results.

(a)

(b)

Figure 6.2.12 – Eye diagram for the signal (with 4 samples/symbol) after the raised cosine filter with a) r=0.5 and b)
r=1

6.3 Low Pass Filter

The laboratorial module provides the alternative of using a pulse shaping filter based

on a low-pass Butterworth filter instead of using a raised cosine filter. The Butterworth

filter was implemented using a Matlab pre-conceived function which restricts the filter

cut-off frequency between [0,113 × 𝐹𝑠/2, 0,789 × 𝐹𝑠/2] Hz,

71

where 𝐹𝑠 = 𝑅𝑠 . 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝐹𝑎𝑐𝑡𝑜𝑟. The signal that enters the low-pass Butterworth filter

is the original (none interpolated) line coding output, as shown in figure 6.3.1a example.

Once more, the experiment will be conducted with 16000 samples of a unipolar NRZ

coded signal. The filter cut-off frequency was set to 7,5kHz, as seen in figure 6.3.2b. At

the 3 dB filter response, the experiment shows that the difference between the original

signal and the filtered signal was equal to 2,94 dB. This discrepancy occurs due to the

truncation into three decimal digits of the filter coefficients before going to the FPGA FIR

filter and due to the filter order.

(a)

(b)

Figure 6.3.1 – Time domain unipolar NRZ signal a) before and b) after the low-pass Butterworth

filter

(a)

(b)

72

Figure 6.3.2 – Unipolar NRZ PSD a) before and b) after the low-pass Butterworth filter

6.4 Channel Filter

Like in the case of the previous blocks, in order to test the designed channel filter

block, the samples will be generated at a symbol (bit) rate of 𝑅𝑠 = 10𝐾 𝑠𝑦𝑚𝑏𝑜𝑙𝑠/𝑠 and a

sampling factor of 8 𝑠𝑎𝑚𝑝𝑙𝑒𝑠/𝑠𝑦𝑚𝑏𝑜𝑙.

6.4.1 High-Pass

The channel can be emulated using one of two filters: a high pass filter and a filter

that resembles the effect of a coaxial cable. The high-pass filter is implemented with a

linear-phase normalized FIR filter that has a magnitude response equal to 0 dB at the

center frequency of the pass-band.

To this experiment, the 16000 generated samples were formatted with a unipolar

NRZ code, being the direct input of the channel filter. This way, only the channel filter is

tested. The data signal have a maximum of 𝑉+ = 511 which is then normalized by

𝑉+ = 2047, as in previous experiments upon the graphic creation .The 6dB cut-off

frequency was set to 7,5kHz, as seen in figure 6.4.1b. As expected, at the stop-band, the

filter response decreases and the data signal becomes attenuated. The phase in the pass-

band has a linear decay as depicted in figure 6.4.2.

73

(a)

(b)

Figure 6.4.1 – Unipolar NRZ PSD a) before and b) after the channel high-pass filter

Figure 6.4.2 – High-Pass Filter Phase

74

6.4.2 Coaxial Cable

The parameters used to obtain the coaxial filter impulse response were taken from

[16], a semi-rigid coaxial cable produced by Micro-Coax, which are described in the table

6.4.1.

Parameter Value

Inner conductor diameter 0,511.10−3 𝑚

Outer conductor diameter 3,581.10−3 𝑚

Relative dielectric permittivity 2.1 (𝑃𝑇𝐹𝐸/𝑇𝑒𝑓𝑙𝑜𝑛)

Relative dielectric permeability 1

Inner conductor conductivity 5,8.107 𝑆/𝑚 (𝐶𝑜𝑝𝑝𝑒𝑟)

Outer conductor conductivity 5,8.107 𝑆/𝑚 (𝐶𝑜𝑝𝑝𝑒𝑟)

Table 6.4.1 – Coaxial Cable Parameters

The user can only define the cable length in the Matlab analyzer. In figure 6.4.3 is

presented the filter response at -3dB for a cable with length ranging from 200 to 2000

meters, working at the sampling frequency 𝐹𝑠 = 80𝑘𝐻𝑧. It was taken 200 points to build

that plot.

Figure 6.4.3 – Coaxial cable filter response at -3dB for several cable lengths

75

6.4.3 AWGN

The experiments conducted in this section will focus only on the noise generator

itself. In figure 6.4.4a and 6.4.4b is presented the logarithmic histogram with 100 class

intervals for two situations: a standard deviation of 0.5 and 1, respectively. The bilateral

noise PSD (in dBm/Hz) used in each experiment is given in equation (6.4.1).

𝜎 =
𝜂

2
. 𝐹𝑠 ⟹

𝜎 = 0,5 ⟹
𝜂

2
=

 0,5 2

80.103
= 3,125.10−6 𝑤/𝐻𝑧 = −25 (𝑑𝐵𝑚/𝐻𝑧)

𝜎 = 1 ⟹
𝜂

2
=

1

80.103
= 3,125.10−6 𝑤/𝐻𝑧 = −19 (𝑑𝐵𝑚/𝐻𝑧)

 (6.4.1)

(a)

(b)

Figure 6.4.4 – Noise generator logarithmic histogram for a) 𝜎 = 0,5 and b) 𝜎 = 1

d
B

d

B

𝜎

𝜎

76

As expected, in both cases, the generated samples have a Gaussian distribution,

centered in approximately zero value. In each experiment were analyzed 32000 samples

and as the number of generated samples increases, they tend to a zero average. The

standard deviation stands for the deviation in order to the highest level in the system:

2047. Therefore, to a normalized standard deviation of 0.5, the noise samples set must

have a standard deviation approximately equal to 1024.

In figure 6.4.5 is presented the comparison between the expected and the

experimental unilateral PSD for both experiments. The unilateral noise power is obtained

by doubling the bilateral noise power. In the decibel scale it corresponds to add 3 dB to

the bilateral DEP, which results into (6.4.2).

𝜎 = 0,5 ⟹ 𝜂 = −22 (𝑑𝐵𝑚/𝐻𝑧)
𝜎 = 1 ⟹ 𝜂 = −16 (𝑑𝐵𝑚/𝐻𝑧)

 (6.4.2)

(a)

(b)

77

Figure 6.4.5 – Noise generator PSD for a) 𝜎 = 0,5 and b) 𝜎 = 1

Since the noise that is generated is white, the PSD in both cases will have an

approximately uniform distribution for the given frequency range.

Despite only two cases were presented, the user can choose between the bilateral

PSDs that verify the condition: 𝜎 𝜖 [0,1].

6.5 Peripherals
6.5.1 DAC

As mentioned in section 4.3.1, the chosen DAC can operate ideally until 1.47 MHz. In

order to know what the real operation rate is, a random sequence with a bit rate of 1MHz

and a sequence length of 212 − 1 was generated. This stream was then formatted with

the polar NRZ line coding (presented in figure 6.5.1 as the blue signal). In the experiments

done so far, the signal was generated through the Step-by-Step mode, since only a given

set of samples needs to be analysed. However, since the DAC response needs to be

analysed in real time using an oscilloscope, the Continuous mode was used. The DAC

output is shown in figure 6.5.1 red plot. In order to achieve a better accuracy when

comparing these two signals, instead of presenting them in an oscilloscope, they were

sampled through the Tektronix OpenChoice Desktop software with 1024 samples. The

original (blue) signal was obtained through a dedicated digital output in the FPGA, which

was connected to the oscilloscope channel 1.

In order to determine the DAC response, the gathered data was sent to Matlab to

perform the difference between the two PSDs (blue and red plots). However, since this

78

difference has a lot of fluctuations, an average with consecutive 5 samples, was

determined. From this average, the black plot in figure 6.5.1 was obtained. It is important

to mention that this average will lead to a delay of 5 samples, therefore, the actual 3dB

frequency occurs at 322 kHz, instead at the 334 kHz. This experimental result shows that

the DAC frequency operation limit is less than the theoretical value (1,47MHz).

Figure 6.5.1 – DAC input (CH1), output (CH2) and response PSDs

In figure 6.5.2 is presented the comparison between a time domain periodic polar

NRZ signal with 100kHz (fig.6.5.2a) and 500kHz (fig.6.5.2b). As expected, the last signal is

heavily corrupted due to the signal integration and high jitter.

79

Figure 6.5.2 – Time plots for a periodic signal with a) 100kHz and b) 500 kHz at the DAC

output

6.5.2 ADC

In this section only a qualitative ADC tests will be done by the eye diagram analysis.

The eye diagrams were obtained with 256 symbols with 16 samples each. The eye

diagram depicted in figure 6.5.3a) is the eye diagram at the ADC input. The eye diagrams

b), c) and d) were obtained at the ADC output for a random signal generated at 100kHz,

250kHz and 400kHz, respectively. As in the case of the DAC analysis, the signal was

formatted with the polar NRZ line coding and sent over a dedicated digital port in the

master FPGA before being connected to the ADC input. Despite the signal at 400kHz is

below the expected frequency limit for the ADC (735 kHz to Digilent PmodAD1™), it is

highly corrupted, due to jitter. Therefore, is advised to use the tested ADC only for signals

operating below 300kHz, or replace the ADC by a higher speed one.

(a)

(b)

80

(c)

(d)

Figure 6.5.3 – Eye diagrams at the a) ADC input and ADC output for signals generated at b) 100kHz, c) 250kHz and d)
400kHz.

6.6 Receiver Filter

For the receiver filter, the user can set the cut-off frequency of a Butterworth low-

pass filter with the same proprieties of the one mentioned in section 6.3 of this text. To

test the performance of this filter, some other blocks in the system will be used. A

random unipolar NRZ signal with 𝑅𝑠 = 10𝐾𝐻𝑧 was generated and was formatted with a

raised cosine filter (with r=0.5) in the transmitter. The resultant signal has a bandwidth

equal to 𝐵𝑇 =
(1+𝑟).𝑅𝑠

2
= 7,5𝐾𝐻𝑧 and was presented in section 6.2.2. In the channel, will

be also used the AWGN generator with a standard deviation of 0.25 (bilateral PSD

of −31,07 𝑑𝐵𝑚/𝐻𝑧). The receiver filter was set to a -3dB cut-off frequency of 7,5 𝐾𝐻𝑧.

The diagrams in these points are presented in figure 6.6.1. The DAC and ADC used were

the ones tested in section 6.5.1 and 6.5.2, respectively.

81

(a)

(b)

(c)

(d)

Figure 6.6.1 – Unipolar NRZ eye diagram after a) raised cosine filter b) AWGN c) receiver ADC d) receiver filter.

As expected, the DAC and the ADC influenced the signal. It can be observed the noise

reduction at eye diagram due to the receiver filter (fig. 6.6.1d). The filtered signal in the

receiver has also a high jitter and a delay in comparison with the transmitted signal (fig.

6.6.1a), which can lead to decision errors. However, it has an acceptable ISI and noise

margin.

6.7 Data Recover

In order to avoid signal distortions from the DAC and ADC peripherals, a unipolar

signal of 𝑅𝑏 = 10 k bits/s was generated in the transmitter (in master FPGA), formatted

82

by the raised cosine filter and sent to the slave FPGA (receptor block). The maximum level

that the signal can take is equal to 𝑉+ = 2047 (signal factor equal to one). Noise was

added at the formatted raised cosine signal and filtered by the receptor filter block. Each

error probability value is determined through the analysis of 32000 samples, and by their

comparison with the original generated data. Therefore, the user must select

simultaneously the original data signal (channel ‘A’) at the master FPGA and the

recovered data signal (channel ‘O’) at the slave FPGA. In the common user manual

presented in appendix A is shown a graphic presentation of the user interface, for further

guidance on the ‘A’ and ‘O’ nomenclature.

6.7.1 Receptor filter cut-off frequency influence

For this first experiment, the raised cosine filter has a roll-off of 50% and the noise

has a bilateral P.S.D equal to -31.07 dBm/Hz. The receptor filter cut-off frequency will

change between 4,6kHz and 31kHz, as represented in figure 6.7.1. The decision threshold

was set to the middle of the signal range (0.5), which for the studied case is the optimum

threshold. The sampling phase was set to 2 and the clock recovery block was working

with a memory of 8 positions.

Figure 6.7.1 – Error probability dependency with receptor filter cut-off frequency

As depicted in figure 6.7.1, the minimum error probability occurs for a cut-off

frequency equal to 6kHz, which is close to the signal bandwidth (7.5kHz) defined by the

raised cosine filter at 50%. The receptor filter does not introduce significant ISI for a cut-

83

off frequency of 6kHz, neither it will allow an excessive amount of noise at the decision

circuit input.

6.7.2 Sampling Phase influence

The receiver performance with the sampling instant was tested for a unipolar RZ line

coding and a post detection filter cut-off frequency of 10kHz. The sampling factor will be

changed to 16 and sampling instant will vary from 1 to 7, allowing a best analysis of their

effect into the error probability. In figure 6.7.2 is presented the effect of the sampling

instant into the error probability, where the sampling instant is normalized at the symbol

period. Is possible to observe that the minimum error probability occurs when the phase

is equal to 1 (0,071.𝑇𝑏). It is important to mention that the sampling process introduces

significant errors for a phase equal to 0 and it was not considered in plot. The error

probability increase verified in this graphic (in comparison with the one presented in

figure 6.7.1) was due in part to the sampling frequency increase from 80kHz to 160kHz,

which in consequence increases the DAC – ADC attenuation effect into the data signal.

Figure 6.7.2 – Error probability dependency with the sampling instant normalized at the bit period

6.7.3 CRC Memory size influence

Through the measurements taken from an unipolar NRZ signal (table 6.7.1) with the

system conditions presented in section 6.7.1. is possible to infer that the memory size will

not strongly influence the recovered data signal error probability. However, for larger

memory sizes, the recovered data signal will be less vulnerable to unexpected width

84

changes (due for example to noise), but it will take more time to adapt to expected signal

increase or decrease.

Memory Size Error Probability

2 0,0426

4 0,0429

8 0,043

16 0,0426

32 0,0428

Table 6.7.1 – Error probability dependency with the memory size

6.7.4 Decision thresholds influence

In equation 3.4.3 was presented the optimum threshold voltage for a Gaussian noise

with a mean value, 𝜇, that adds to the symbol voltages 𝑉1 and 𝑉0. In this experiment the

signal has a normalized high level 𝑉1 = 1 and a lower level 𝑉0 = 0. The optimum

threshold is determined in equation 6.7.1 for these conditions, which results into 0.5.

vth =
(𝑉1+𝜇)2 − (𝑉0+𝜇)2

2(𝑉1 − 𝑉0)
= 0,5 (6.7.1)

The plot presented in figure 6.7.3 corroborates the theoretical value, since it is for

this voltage threshold that the error probability is minimum. Since the noise applied to

the data signal can be constructive or destructive, for decision thresholds higher or lower

than 0.5, will lead to a bigger error probability.

Figure 6.7.3 – Error probability dependency with the decision level threshold

85

7. Conclusions and Future Work

During this work were analyzed different functional blocks of a baseband digital

communications kit for training and research purposes. This kit is based on two FPGAs

which communicate via PC for initialization and data analysis proposes. A Matlab

interface was developed, which allows the common user to interact with the system in an

intuitive way, as presented in appendix A.

This system is made out of separated blocks, which will allow an easy communication

between them and the development of new functionalities oriented for new

components, simulation methods and control mechanisms. Other advantage of this

system is its ability to simulate, within the same physical components, a large variety of

configurations. However, as concluded in chapter 6, the communication chain

performance is severely attenuated due to the usage of a pair DAC and ADC to make the

communication between both FPGAs. Therefore, one of the major modifications that

must occur in this system goes through the replacement of the current ADC and DAC for

new devices with a higher bandwidth.

In the future, the band pass signal modulation, can be implemented in the current

communication chain framework, comprising the basic digital transmission systems based

on ASK, FSK and PSK modulation formats to more complex transmission systems based on

M-ary Orthogonal Signals and coherent detection. The FIR filters should be redesigned so

that they meet the real digital communications filters, as mentioned in the end of chapter

6.2.2. New filters types can also be added to the system, such as the optical cable and

free space in the channel filter. This increase in complexity may require the usage of

FPGAs with more logic resources, namely more DSP slices, which are used in the filters

IPcores.

As seen in appendix C, the kit developed has a fragile layout, which makes it

unsuitable for class usage as it is. Therefore, a cover case must be used to protect the

system from unwanted usage.

86

Appendix A - User Manuals

Programmer Manual

Commands List

In order to the user interact with the system in a lower level than the Matlab guide interface, are presented in the table A.1.1 the

commands that are needed to initialize it. All commands have the following structure “>ABC.DE.Data\r”, where each letter represents a byte.

Each set of letters is separated by a dot for reading convenience. The first three letters translate the block in the system (for example the

sequence generator, FIFO, DAC, etc) and the second set of two letters represent the specific parameter of that block (for example the number

of cells in the sequence generator block). The data field size depends on the type of parameter, and can have decimal digits and/or commas

and signal bytes (‘-’, ‘+’ – represented by the ‘S’ letter in table A.1.1). The digits are represented by the letters D2 and D1 which can take the

sets {0,1} and {0,1,2,3,4,5,6,7,8,9}, respectively. The orange commands are “pseudo-commands” since they can only be found inside the

Matlab guide programming being then translated to the black or green commands by Matlab. The green commands, on the other hand can

only be found the PC – master FPGA communication. The black commands are present in all system chain, from the Matlab guide environment

until the FPGAs.

Chain
Position

Block Description
Parameter
Description

Digit
Format

Initialization
character

Module
Identifier

Separation
character

Parameter
Identifier

Separation
character

Number
of digits

Terminator

(1)Transmitter Sequence Generator Number of Cells D1 > TSG . NC . 2 \r
(2)Transmitter Sequence Generator Seed D1 > TSG . SD . 10 \r
(3)Transmitter Sequence Generator Clock D1 > TSG . CL . 8 \r
(4)Transmitter Sequence Generator Select D1 > TSG . SL . 1 \r
(5)Transmitter Sequence Generator Mode D1 > TSG . MD . 1 \r
(6)Transmitter Sequence Generator Number of Words D1 > TSG . NW . 6 \r
(1)Transmitter FIFO & DAC Input selection Channel 1 D1 > TDC . C1 . 5 \r
(2)Transmitter FIFO & DAC Input selection Channel 2 D1 > TDC . C2 . 5 \r

Transmitter FIFO Input Enable Channel 1 D1 > TFF . C1 . 1 \r
Transmitter FIFO Input Enable Channel 2 D1 > TFF . C2 . 1 \r

(1)Transmitter Pulse Shaping Line coding D1 > TPS . LC . 2 \r
(2)Transmitter Pulse Shaping Signal Factor S D2 , D1 D1 D1 > TPS . SF . 6 \r
(3)Transmitter Pulse Shaping Duty Cycle Enable D1 > TPS . DE . 1 \r

87

(4)Transmitter Pulse Shaping Duty Cycle D1 > TPS . DC . 3 \r
(1)Transmitter Filter Sampling Factor D1 > TFL . SF . 3 \r
(2)Transmitter Filter Type D1 > TFL . TP . 1 \r
(3)Transmitter Filter Roll-Off (%) D1 > TFL . RO . 3 \r
(4)Transmitter Filter Cutt-Off Frequency D1 > TFL . CO . 8 \r

Transmitter Filter Coefficients S D2 , D1 D1 D1 > TFL . CF . 6×23=138 \r
(1) Channel Filter Type D1 > CFL . TP . 1 \r
(2) Channel Filter Cutt-Off Frequency D1 > CFL . CO . 8 \r

Channel Filter Coefficients S D2 , D1 D1 D1 > CFL . CF . 6×23=138 \r
(1) Channel Noise Standard Deviation S D2 , D1 D1 D1 > CNS . SD . 6 \r
(1) Receptor FIFO & DAC Input selection Channel 1 D1 > RDC . C1 . 5 \r
(2) Receptor FIFO & DAC Input selection Channel 2 D1 > RDC . C2 . 5 \r

Receptor FIFO Input Enable Channel 1 D1 > RFF . C1 . 1 \r
Receptor FIFO Input Enable Channel 2 D1 > RFF . C2 . 1 \r
Receptor Filter Coefficients S D2 , D1 D1 D1 > RFL . CF . 6×23=138 \r

(1) Receptor Filter Type D1 > RFL . TP . 1 \r
(2) Receptor Filter Cutt-Off Frequency D1 > RFL . CO . 8 \r
(1) Receptor Decision Upper threshold S D2 , D1 D1 D1 > RDS . UP . 6 \r
(2) Receptor Decision Lower threshold S D2 , D1 D1 D1 > RDS . LO . 6 \r
(1) Receptor CRC Memory Size D1 > RCR . MS . 3 \r
(1) Receptor Sampling Phase D1 > RSP . PH . 3 \r
(1) System Plots Time D2 > SPS . TM . 4 \r
(2) System Plots Frequency D2 > SPS . FR . 4 \r
(3) System Plots Eye Diagram D2 > SPS . ED . 4 \r

Table A.1.1 – System Commands

88

Add new command

This command based system allows the user to add blocks more easily in the communication

chain. After name the new command based on the type of block and parameters, it must be sent

first for the microprocessor in master FPGA. In order to do it, is possible to use the Matlab in the

PC. However, to the processor accept the command as a valid one and their data value be witted in

the block data word, the following actions must be done:

1. Access the SDK workspace of MFPGA, more precisely the file “MFPGA.c”;

2. Increase the variable NMaxCommands to accommodate the number of the newly

added commands;

3. Still in the .c file, add to the LOAD COMMANDS section the “if” conditions required to

the processor accept that command;

4. In the newly “if” condition created, store the command data in a new array variable.

The size of this variable will depend on the number of digits/signal characters in this

field. For example the command “TSG.NC” will only carry 2 digits of data, since the

maximum number of cells in the sequence generator is 32. Therefore, the array variable

“TSG” only need to have 2 positions;

5. Still in the “if” condition, the function COMMANDLOOP or COMMANDSENT needs to be

added if the given command is only for initialize the block data word in master FPGA or

it will be sent also to slave FPGA, respectively;

6. In the BLOCKS INITIALIZATION section transform the data that was stored in the array

variable so that it can be used to initialize the respective block in the FPGA. For

example, if the command “TSG.NC” brings the data “12”, the first digit needs to be

multiplied by 10 and added with the second digit, before writing the value in the data

word 0.

7. The writing process is finalized through the use of the function REGISTER_WRITE. Place

the data word writing before the resetting clock process;

8. If the commands were sent to the slave FPGA, the procedure above, except the step 5,

must be repeated.

After the block data word has been written, the information in it must be read in VHDL. The

only standard procedure that must take place in VHDL code is to create in the “user_logic.vhd” file

(“chain.xise” project) the new signal in the form “s_auxMem_x” where “x” represent the number of

the block data word. For example, to the “TSG.NC” command, the “x” equals 0.

After the procedure mentioned above, the programmer needs to adapt the data to the given

block specifications.

Common User Manual

In figure A.2.1 is presented the Matlab user interface layout. This menu pop’s up after running

the menu.m file. Each one of the blocks mentioned in this document is depicted in this interface

89

with a set of boxes, which represent their input parameters. Each numeric parameter range is

presented in table A.2.1

Figure A.2.1 – Matlab user interface layout

Parameter Range

Sequence Length [1,32]

Seed [1, 2147483647]

Signal Factor [0,1]

Duty-Cycle [0, 100]

Roll-off Factor [0, 100]

Cut-off(Hz) at -3dB
0.112704 × 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝐹𝑎𝑐𝑡𝑜𝑟 × 𝐵𝑖𝑡 𝑅𝑎𝑡𝑒

2
,
0.78927 × 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝐹𝑎𝑐𝑡𝑜𝑟 × 𝐵𝑖𝑡 𝑅𝑎𝑡𝑒

2

90

Cut-off(Hz) at -6dB]0,
𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝐹𝑎𝑐𝑡𝑜𝑟 × 𝐵𝑖𝑡 𝑅𝑎𝑡𝑒

2
[

Cable Length (m)]0,500000]

Bilateral P.S.D

(dbm/Hz)
10𝑙𝑜𝑔

𝑠𝑡𝑑𝐷𝑒𝑣 × 1000

𝐹𝑠
 , 𝑠𝑡𝑑𝐷𝑒𝑣 ∈]0,1]

Phase 0,
𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝐹𝑎𝑐𝑡𝑜𝑟

2

Upper Decision [0,1[

Lower Decision]-1,0]

Bits/s [0,3000000]

Number of

Samples
[1,65536]

Table A.2.1 – Parameters range of Matlab user interface

Initially all the boxes are empty/unset, as shown in figure A.2.1. The chain is represented in the

clockwise direction, in which the transmitter is on the top of the figure, the channel in the right side

and the receptor in the bottom. In the menu center are presented the system controls and the

probes selection, which are transversal to both FPGAs.

System Parameters

The control mode will control two input boxes: the signal factor and the sampling factor. They

will only be writable if the control mode is set to Advanced. On the other hand the Step-by-Step

operation mode will set to Bits/s box at the recommended value of 10000 bits/s.

This Matlab interface also has the ability to use a file (.txt or .dat) to load and update the

parameters set by the user. If the user presses the Update File button and the specified file does

not exist, it will be created.

After all the parameters in the menu are set, is possible to execute the system, pressing the

Execute button. However, is important to mention that the system will only run if both FPGAs are

already configured and the master FPGA UART cable is connected to the PC.

Probes

Since the transmitter and the channel are in the same FPGA, the first two probes presented at

the left side, correspond only to these two blocks. For example, for channel 1 or 2 at the

Transmitter + Channel probes, one can choose to analyze the signal at one of the points from (A) to

(H).

Each probe (also named channel) allows the user to analyze the system through a time,

frequency or eye diagram plots, which are selected through the set of the T, F and E boxes, below

each channel, as depicted in figure A.2.2. If the user selects simultaneously the time or the

frequency plots in both channels, they will appear in the same MATLAB figure. On the other hand,

the eye diagram can only be drawn if the data signal has more than 256 symbols.

91

If the user selects simultaneously the (A) probe at the master FPGA (Transmitter + Channel)

and the (O) channel at the slave FPGA (Receiver), a plot will appear, in which the error probability is

calculated, through the comparison of the data of both channels. Is important to mention that the

signal that is generated at the (A) point suffers a delay throughout the chain which will lead to

some samples be discarded to synchronize both signals and determine the error probability. The

discarded samples are presented in this plot in the green color.

When the user chooses a specific channel, it will also be selected into the probe DACs.

However, it can only be used if the operation mode is set to Continuous.

Chain

The Duty-Cycle input parameter should only be writable if the transmitter filter is not the

raised-cosine filter and the selected RZ line coding allows a variable duty cycle. If the raised cosine

filter is selected, the Roll-Off Factor input box is enabled and the Cut-Off(Hz) at -3dB input box is

disabled.

As it happens with the transmitter and the receiver filters, when the user sets the Select option

in the Type box, is not possible to write into the cut-off box. On the other hand, to save some space

in the menu layout, the Cut-Off(Hz) at -6dB box at the channel filter, is also used as the input for the

coaxial cable length. The nomenclature of this box will change when the user changes the filter type

between the coaxial and the high-pass filter. In all filters, the None option will enable to simulate as

if the filter was not there (a “short circuit” between its input and output).

The AWGN can be deactivated or activated by unsetting/setting the bilateral P.S.D check box,

as depicted in figure A.2.3.

Figure A.2.2 - Master FPGA channel 1 selection Figure A.2.3 – AWGN generation

Getting Started

In this getting started, the parameters contained in the default.dat file will be used to show

some of the Matlab user interface basic functionalities. Therefore, first off all, they must be loaded

into the system through the Insert File Name box and by pressing the Load File button. The file must

be in the same folder as the menu.m file. In figure A.3.1, is presented the Matlab user interface

layout after the file as been loaded. These parameters were already used in section 6.7 of this

document. After the file as been loaded, the master FPGA UART cable must be connected into the

PC and the FPGAs must be already running the system files. If the FPGAs are correctly running, a

Power On message will be presented in the OLED display. To run the system, the Execute button

92

must be pressed. After that button is pressed, one must enter in the Matlab command window the

com port number of the UART cable. The resulting eye diagrams (point B and J) and error

probability plots are presented in figure A.3.2. From them is possible to confirm what has been

mentioned in section 6.7: that throughout the communication chain some noise is introduced,

leading to the error probability 0,049. The green samples represent the delay that occurs between

the original and the recovered signal. From this starting point is now possible to change any

parameter or probe in the system to meet the user specifications. To see the selected signals with

the probes in the oscilloscope, the probe DACs must be placed into the FPGAs as depicted in the

complete system layout presented in appendix C.

Figure A.3.1 – Matlab user interface after loading default.dat parameters

93

(a)

(b)

(c)

Figure A.3.2 – a) Eye Diagrams and b) Error Probability plots obtained from the default.dat file

94

Appendix B – EDK and IP cores Configuration

EDK

In figure B.1 is presented the block diagram of the embedded development kit, which contains
the blocks described in the previous chapters: microblaze, communication chain, control logic and
UARTs, among others.

95

Figure B.1 – EDK Block Diagram

FIFO IP Core

In the process of creating the IP Cores FIFO and Filter, some parameters must be chosen
according to the project design. In figures B.2 and B.3 are presented the configuration pages of
those IP cores correctly filled.

a)

b)

96

c)

d)

97

e)

f)

98

g)

Figure B.2 – FIFO IP core parameters configuration. Pages a) 1, b) 2, c) 3, d) 4, e) 5, f) 6 and g) 7

99

Fir Filter IP Core

a)

100

b)

c)

101

d)

Figure B.3 – Fir Filter IP core parameters configuration. Pages a) 1, b) 2, c) 3 and d) 4.

102

Appendix C – System Layout

Figure C.1 – System Layout

103

The figure C.1 depicts the connections and the peripherals that must be present before running

the system. In table C.1 is presented the meaning of the letters shown in figure C.1, where 1 and 2
correspond to master and slave FPGA, respectively. Is important to mention that the symbol rate

(in the (I) point) has a duty-cycle equal to
1

2×𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝐹𝑎𝑐𝑡𝑜𝑟
, where the sampling factor is defined by

the user.

Letter Meaning

A Power Input

B Program Input

C UART input

D Reset button

E OLed Display

F
Chain DAC (F1) and ADC (F2);

Green wire: ground; Red wire: channel 1

G DAC Probes

H

Red wire: Master FIFO Write Enable

Yellow and Green Wires: serial communication

White wire: Ground

I

Red output (VmodMIB - C1): Symbol rate

Green output (VmodMIB – C2): Data Generator LSB

Yellow output (VmodMIB – C3): Generator Seed Detection

Blue output (VmodMIB – C4): Sampling Frequency

Table C.1.1 – Layout meanings

104

References

[[1] Ian A. Glover and Peter M. Grant, Digital Communications, 3rd ed. Harlow, England/Essex:
Pearson Education Limited, 2010, pp. 55-64; 214-220; 255-259; 238-249.

[[2] Saul A. Teukolky, William T. Vetterling and Brlan P. Flannery William H. Press, Numerical
Recipes The Art of Scientific Computing, 3rd ed. USA/New York: Cambridge University Press,
2007, pp. 380–386; 362-363.

[[3] B. P. Lathi, Modern Digital and Analog Communication Systems, 3rd ed. USA/New York:
Oxford University Press, 1998, pp. 310-316.

[[4] Ronald W. Schafer and Mark A. Yoder James H. McClellan, Signal Processing First,
International ed.: Pearson Education, 2003, pp. 101-125.

[[5] Q. Liu and S.W. Ellingson, "Effect and Correction of Unequal Cable Losses and Dispersive
Delays on Delay-and-Sum Beamforming," April 25 2012.

[[6] John F. Wakerly, Digital Design Principals and Practices, 4th ed.: Pearson Prentice Hall, 2005,
pp. 11-15.

[[7] [Online]. http://www.xilinx.com/support/documentation/user_guides/ug384.pdf

[[8] [Online]. http://www.xilinx.com/support/documentation/sw_manuals/edk10_est_rm.pdf

[[9] [Online].
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/mb_ref_guide.pdf

[[10] Digilent, Digilent PmodDA2™ Digital To Analog Module Converter Board Reference Manual,
September 25, 2006.

[[11] Digilent Romania, PmodDA2™ Reference Component, December 3, 2008.

[[12] Digilent, Digilent PmodAD1™ Analog To Digital Module Converter Board Reference Manual,
December 6, 2011.

[[13] Xilinx, LogiCORE IP FIFO Generator v7.2, September 21, 2010, Product Specification.

[[14] Xilinx, LogiCORE IP FIR Compiler v6.1, December 14, 2010, Product Specification.

[[15] Paul B. Crilly, Janet C. Rutledge A. Bruce Carlson, Communications Systems An Introduction
to Signals and Noise in Electrical Communication, 4th ed.: McGraw-Hill, 2002, pp. 437-447.

[[16] Micro-Coax. [Online]. http://www.rf-microwave.com/datasheets/2916_MICRO-COAX_UT-
141-75_01.pdf

[[17] Steve Winder, Analog and Digital Filter Design, 2nd ed.: Newnes, 2002, pag. 423.

