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Dissertação apresentada à Universidade de Aveiro para cumprimento dos
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Resumo Motivados por transmissões mais rápidas e mais fiáveis num canal sem fios,
os sistemas da 4G devem proporcionar processamento de dados mais rápido
a baixa complexidade, elevadas taxas de dados, assim como robustez na
performance reduzindo também, a latência e os custos de operação.
LTE apresenta, na sua camada f́ısica, tecnologias como OFDM e MIMO
que prometem alcançar elevadas taxas de dados e aumentar a eficiência
espectral. Especificamente a camada f́ısica do LTE emprega OFDMA para
downlink e SC-FDMA para uplink.
A tecnologia MIMO permite também melhorar significativamente o
desempenho dos sistemas OFDM com as vantagens de multiplexação e di-
versidade espacial diminuindo o efeito de desvanecimento de multi-percurso
no canal.
Nesta dissertação são implementados um codificador e um descodificador
com base no algoritimo de Alamouti num sistema MISO nomeadamente
para serem inclúıdos num OFDM transceiver que segue as especificações da
camada f́ısica do LTE. A codificação/descodificação de Alamouti realiza-se
no espaço e frequência e os blocos foram projetados e simulados em Matlab
através do ambiente Simulink com o aux́ılio dos blocos da Xilinx inseridos
no seu software System Generator para DSP.
Pode-se concluir que os blocos baseados no algoritimo de Alamouti foram
implementados em hardware com sucesso.





Keywords LTE, OFDM, OFDMA, SC-FDMA, MIMO, SFBC, Alamouti, Xilinx System
Generator

Abstract Motivated by faster transmissions and more reliable wireless channel, future
4G systems should provide faster data processing at low complexity, high
data rates, as well as robustness in performance while also reducing the
latency and operating costs.
LTE presents in its physical layer technologies such as OFDM and MIMO
that promise to achieve high data rates and increase spectral efficiency.
Specifically the physical layer of LTE employs OFDMA on the downlink and
SC-FDMA for uplink.
MIMO technology also allows to significantly improve the performance of
OFDM systems with the advantages of multiplexing and spatial diversity by
decreasing the effect of multipath fading in the channel.
In this thesis we implemented an encoder and a decoder based on an
Alamouti algorithm in a MISO system namely to be added to an OFDM
transceiver that follows closely the LTE physical layer specifications. Alam-
outi coding/decoding is performed in frequency and space and the blocks
were projected and simulated in Matlab using Simulink environment through
the Xilink’s blocks in the System Generator for DSP.
One can conclude that the blocks based on Alamouti algorithm were well-
implemented.
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Chapter 1

Introduction

1.1 Evolution of Mobile Systems

Since the belief of Guglielmo Marconi and his first experiments in 1890s with wireless

telegraphy that it is also possible communication without wires, researchers bodies, engineers

around the world have focused in radio communication, mainly in voice communication sys-

tems [1]. The progress in radio transmission field led an era of wireless systems, where the

traditional telegraphy service was replaced by mobile service, becoming possible to speak on

phone while moving.

During the last decade numbers are showing that the number of worldwide mobile sub-

scribers reached one million per day and in 2008, it was reached four billion users [2]. The

cellular systems are being used by half of world’s population and its fast growth explain why

the mobile phones deserve so attention in global technology.

Nowadays wireless communication is one of the most areas that have been being exploited

and the techniques deployed along the last decade in radio transmission must satisfied the

consumer’s expectations to benefit of small, powerful, multimedia applications in one single

device. The cellular wireless communication techniques are often split in Generations, each of

them is the reflex of the demands at that time bringing new specifications and assumptions.

In following, it is discussed the main technologies involved at each generation.

1.1.1 First Generation

In early 1980s emerged the first generation, known as First Generation (1G) systems. It

was mainly designed to support voice communication, with speed up to 2.4kbps [3]. The first
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systems are known as analogue systems based on Frequency Division Multiple Access (FDMA)

with limited roaming. Analogue Mobile Phone System (AMPS) was the first commercial

cellular system in North of America [4], Total Access Communication System (TACS) was

used in some parts of Europe, Nordic Mobile Telephone (NMT) in some Nordic Countries

and Japanese Total Access Communication System (J-TACS) was used in Japan and Hong

Kong) [5].

1.1.2 Second Generation

One decade later, 1G analogue systems was overcome by digital Second Generation (2G)

system. The Global System for Mobile Communications (GSM) is by far the most domi-

nant technology in the World. Its project was initiated by Conference of European Postal

and Telecommunications (CEPT) and later move to European Telecommunications Standards

Institute (ETSI) organization[6].

The original standard supports circuit-switched data at 9.6 kbps, the known, Short Mes-

sage Service (SMS) and voice service. Its air-interface is based on Time Division Multiple

Access (TDMA) scheme. Furthermore GSM technology takes advantage of Gaussian Mini-

mum Shift Keying (GMSK) modulation technique which it is a special case of Frequency Shift

Keying (FSK), providing good power and spectral efficiency.

Another 2G digital cellular systems were deployed, such as: Digital Analogue Mobile

Phone System (D-AMPS) (IS-54) used in United States of America (USA); Code Division

Multiple Access (CDMA)(Interim Standard (IS-95)) – Qualcomm in USA and Personal Digital

Cellular (PDC) in Japan.

With exception of IS-95 standard taken in USA which used CDMA as multiple access

technology, the rest of the standards adopted TDMA [7].

In a nutshell, General Packet Radio Service (GPRS) and Enhanced Data Rates for Global

Evolution (EDGE) are preceding the Third Generation (3G) systems. GSM system and its

deployment success prompted the rise of new systems able to offer faster data rates transmis-

sion. The higher data rates imposed by Internet for example, emphasizes the need of new

technology with better services and performance.

The GPRS systems are based on the same GMSK radio modulation as the GSM systems;

The system incorporates a new core network’s packet switched domain - Packet Switched (PS)

domain. In addition, the air interface can now handle with data and voice, approaching to

theoretical maximum bit rate around 20 Kb/s per radio time slot [2].
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EDGE allows theoretical peak data rate of the system is around 472 kbps. It makes use

of new modulation, 8-Phase Shift Keying (PSK), and also make use of fastest coding scheme.

1.1.3 Third Generation

The Universal Mobile Telecommunications System (UMTS) is the key technology for the

3G. It was originally developed by ETSI, as the 3G system for International Mobile Telecom-

munications (IMT)-2000 based on evolution of GSM. Also called UMTS Release 99, it is the

world’s dominant system and its first commercial deployment happened in October 2002 in

Japan[8].

UMTS technology keeps the GSM architecture, while the 3G air interface has adopted

Wideband Code Division Multiple Access (W-CDMA) introducing the CDMA scheme on

Third Generation Partnership Project (3GPP) family.

The UMTS radio access specifications provide for Frequency Division Duplex (FDD) and

Time Division Duplex (TDD) variants, so that, TDD mode for 1.6 MHz bandwidth represents

low chip rate and FDD mode for 5 MHz bandwidth, high chip rate. It also integrates a

new system Internet Protocol Multimedia Subsystem (IMS) capable to support multimedia

services. The system envisions the theoretical peak data rate of 2 Mbps.

A slightly different implementation on UMTS air interface called Time Domain Syn-

chronous Code Division Multiple Access (TD-SCDMA) was launched by 3GPP in Chinese

market essentially to reduce the dependence of Western technology[9].

UMTS technology, was extended in a set of two releases: High Speed Downlink Packet

Access (HSDPA) - Release 5 and High Speed Uplink Packet Access (HSUPA) - Release 6.

Both were launched in 2005 and are known collectively as General Packet Access (HSPA). Its

evolution came in Release 7(also known as High Speed Packet Access Evolution (HSPA+)).

HSDPA foresees to increase user throughput for packet downlink transmission presenting a

new modulation, 16-Quadrature Amplitude Modulation (QAM) (theoretically can be achieve

peak rate of 14.4 Mb/s). Moreover the technology makes use of Hybrid Automatic Repeat

reQuest (HARQ) which is basically a fast packet retransmission that allows fast adaptation

to radio transmission changes.

Once evolved downlink throughout, 3GPP launched HSUPA technology, an equivalent

HSDPA system as described above, but now for uplink packet transmission, making use of

the same techniques to reach in theory 5.7 Mb/s to a single terminal.

HSPA+ is an enhancement of HSPA technology and it has brought for cellular commu-
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nication systems Multiple Input Multiple Output (MIMO) operation, as well as, the use of

higher modulations(64-QAM in downlink as 16-QAM in uplink) for radio transmission and

reception. It is considered the bond between the current HSPA+ and Evolved UMTS be-

cause within 5 MHz bandwidth presents the same efficiency as Evolved UMTS networks. The

architecture is similar to flat architecture agreed upon for LTE as also ensures compatibility

with 3G systems offering to operators a smooth upgrade in their networks.

Figure 1.1: Mobile subscriptions by technology (source:[10])

1.1.4 Forth Generation - Beyond LTE

Worldwide Interoperability for Microwave Access (WiMAX) technology was introduced

by Institute of Electrical and Electronics Engineers (IEEE) family, together with LTE are the

mains Forth Generation (4G) technologies of the International Telecommunication Union

(ITU). In parallel, the 3GPP2 has accompanied the 3GPP evolution had launching systems

based on CDMA, mainly in USA, Korea and Japan [5]. The Ultra Mobile Broadband (UMB)

is its 4G technology given that the standard was discontinued in November 2008. 4G provides

advanced techniques processing to achieve better spectral efficiency, higher capacity and lower

latency than the previous 3G.

LTE - represents a major advance in mobile technology and it takes advantage of multi-

antenna transmission techniques known as MIMO and OFDM. In particular, the LTE Physi-

cal Layer (PHY) uses OFDMA in downlink and SC-FDMA in the uplink. These technologies
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contributed for higher data rates and robustness against multi-path environment, benefiting

the current 4G system but also paving way for future 4G systems - LTE-Advanced. The first

full 4G system considered by ITU that fills the requirements to be considered as making part

of 4G is LTE-Advanced, which is still in study phase.

This new technology termed LTE-Advanced (Release 10), should be able to include new

capabilities of IMT that go beyond those of IMT-2000, significantly enhances the Release 8

to support much higher peak rates, lower latencies resulting in better user experience. The

Figure 1.1 illustrates reported mobile subscriptions categorized by technology.

LTE is currently being deployed and will reach around 2 billion subscriptions in 2018.

1.2 Motivation and Objectives

Wireless communications play important role in overall economic development, and are

the answer for the increasing demands to provide faster and reliable services to the users.

Increasing transmission rates are required as well as a better Quality of Service (QoS). To

achieve a specific performance level, the wireless system must overcome some of the underlying

problems, such as the interference and multipath. The multi-path is the main factor that

makes wireless a real challenge when compared with other transmissions systems, such as

the fiber, cable or point-to-point radio broadcast. There are other constrains: transmission

power level and the decrease in radio spectrum availability. The MIMO technology emerges

as a solution to combat both the effects of radio channel and resource limitations. MIMO

offers increased capacity in wireless communication systems without requiring an increase

in bandwidth or transmitted power. The present wireless systems, such as LTE and LTE

advanced, already use MIMO techniques for transmission.

Unlike the 3G systems, LTE specifies multiple antennas in both terminals, Base Sta-

tion (BS) and User Equipment (UE), exploiting diversity and spatial multiplexing. The

implementation of multiple antennas Mt in the transmitter and Mr antennas in the receiver

can be used with different goals: to increase the system capacity or to improve the diver-

sity, and thus improving the Signal Interference Noise Ratio (SINR). The MIMO systems

need pre/post processing the signals from the multiple antennas, in both sides. Alamouti

encoding/decoding, appears as being part of the transmit diversity, in this way not providing

higher data rate, but conferring link robustness without increasing total transmission power

or bandwidth. For two antennas transmit antennas and one receive antenna it is achieved a

diversity gain of 2 assuming an uncorrelated channel. The code presents a remarkable spa-
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tial and time diversity by using a simple code at the transmitter and linear decoding a the

receiver, this means low complexity in the receiver.

A wireless testbed is being developed at IT by MOBNET group. Currently an OFDM

baseband transceiver has been implemented and will be the basis to include study algorithms

for MIMO wireless systems.

The objectives of this dissertation are:

• Study techniques of MIMO in wireless system and in particular one of its more relevant

technique, the diversity transmission Alamouti scheme.

• Implement the encoder and decoder in a Field Programmable Gate Array (FPGA) to

be added to a transceiver that follows closely the LTE physical layer specifications.

• Contribution to a wireless testbed.

In this dissertation we focus in the implementation of the Alamouti algorithm on a MISO

system. We used the System Generator from Xilinx to develop and test the Simulink model of

the encoder and decoder. The encoder is included in a MISO transmitter chain. The decoder

is used to demodulate the single antenna received signal.

1.3 Outline

The thesis is organized in the following way: in Chapter 1, is made an overview evolution

of cellular systems, framing LTE technology in the evolution of digital systems, from 2G until

the latest technology for cellular devices; Further it is discussed the motivation and the goals

of the thesis. In Chapter 2 is introduced the LTE system as a whole, emphasizing some of

the key technologies used by LTE, its main targets/specifications and at last is made and

overview of the network architecture. In Chapter 3 is presented the multiple access schemes

OFDMA and SC-FDMA of LTE. It is described some new technologies that LTE uses such as

OFDM, SC-FDMA as well as the MIMO technology. In Chapter 4 is introduced the MIMO

schemes and the concept of diversity. Further, it is presented and analysed transmit diversity

for Alamouti Space Time Block Code (STBC) (2 x 1). In the Chapter 5 is analysed a MISO-

OFDM system model based on Alamouti SFBC. Further on , are presented the results the

work developed as well as the results obtained. The last Chapter 6 concludes the thesis work

and guidelines for future research.
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Chapter 2

Overview of the 3GPP LTE

LTE is part of evolutionary path for mobile broadband within 3GPP family and to ensure

that the technology remains competitive in the future, in 2004 3GPP began a project to define

the long-term evolution of UMTS cellular technology to offer superior performance compared

to HSPA according 3GPP specifications, whose describes the basic performance of new, high

performance air interface providing high user data rates along with low latency based on

MIMO, OFDMA and System Architecture Evolution (SAE) as main enablers [11].

LTE was first introduced in Release 8, which was frozen in December 2008. Beyond evolv-

ing radio access technology, assuming since the beginning that all services would be packet-

switching, the new architecture labelled SAE has reduced the number of network elements

and includes Evolved Packet Core (EPC) network. The whole architecture system(LTE-

Radio Access Network (RAN) plus EPC) is known by EPS, where both the core network

and the radio access are fully packet-switched. EPS allows inter-working and mobility (han-

dover) with networks using other Radio Access Technologys (RATs) namely CDMA2000 and

WiMAX. LTE technology offers significant advantages to operators mainly due to its flat

architecture(Internet Protocol (IP)-based), reducing Capital Expenditure (CAPEX) and Op-

erational Expenditure (OPEX), and incorporate quality of service with Voice over Internet

Protocol (VoIP).

In June of 2008, the Next Generation Mobile Networks (NGMN) selected LTE as sole tech-

nology that matched its requirements successfully. Additionally a global group of equipment

vendors and operators have formed LTE/SAE Trial Initiative (LSTI) with the purpose to

coordinate activities needed to take the technology from the standards to commercial version

NGMN [12].

The E-UTRAN is similar to UMTS Terrestrial Radio Access Network (UTRAN) and
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difference comes from the fact that LTE has specified OFDMA for the air interface in the

downlink direction and SC-FDMA for uplink.

Notably, OFDM is used with advanced receiver and antennas technologies[13]. In partic-

ular, the processing of OFDMA signals provide effectively frequency flat channels and hence,

full MIMO technologies can be easily deployed in conjunction with OFDMA [14].

OFDM is the core of LTE downlink radio transmission. The use of relatively narrow-

band sub-carriers in combination with a cyclic prefix makes OFDM transmission inherently

robust to time dispersion on the radio channel, effectively eliminating the need for complex

receiver/channel equalization. As OFDM signal can adapt to a wide variety channel band-

widths by modifying the number of carriers, it enables scalable bandwidth operation; LTE

solution system supports flexible bandwidths ranging from 1.4 MHz up to 20 MHz, depending

on available spectrum.

SC-FDMA is chosen for uplink because has smaller Peak to Average Power Ratio (PAPR)

than OFDM resulting in more power efficient and less complex terminals; It also offers mul-

tipath resistance and flexible frequency allocation of OFDMA improving the cell-edge per-

formance [15]. Both of these schemes start up the frequency domain as a new dimension of

flexibility in the systems.

It is worth to mention also that LTE besides employs multiple transmit and receive an-

tennas schemes, also employs turbo coding and link adaptation in the physical layer in order

to achieve better spectral efficiency and user throughput.

Link adaptation is closely related to scheduling and deals with how to set the transmission

parameters of a radio link to handle variations of the radio-link quality. This is achieved in

LTE through adaptive channel coding and adaptive modulation. In LTE technology the

available modulations are QPSK, 16-QAM and 64-QAM. The first two modulations are

available in all devices, unlikely 64-QAM modulator in uplink, that concerns to UE capability.

LTE can switch dynamically between these different modulation schemes: it uses 64-QAM

at high SINR to give a high data rate, and 16-QAM or QPSK at lower SINR to reduce the

number of errors [16].

The channel quality measurements for link adaptation and scheduling are designed to

cater to multi-antenna transmission, enabling to optimize cell performance dynamically [17].

Furthermore, the assumption that all terminals support at least two receive antennas accord-

ing with the requirements set, it is possible that networks can be planned assuming at least

downlink-receive diversity. In LTE downlink it is supported one, two or four transmit anten-
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nas in the Evolved Node B (eNodeB) and one, two or four receive antennas in the UE. In

uplink direction it is allowed one, two or four antennas as happen in downlink direction but

despite of this only one transmitting antenna is allowed in the UE hence, multiple antennas

can be only used to obtain receive diversity. Advanced techniques, such as Transmit diversity,

spatial multiplexing and beam-forming are also supported on the system [18].

The air interface also supports both paired (downlink and uplink use different frequency

bands) and unpaired spectrum (downlink and uplink use same frequency band), using FDD

and TDD respectively, where both can share the same downlink subframe structure. Addi-

tionally, Half-duplex FDD is also possible avoiding the need for a costly duplexer in the UE.

The Table 2.1 give us a resume of the main LTE capabilities.

Table 2.1: LTE attributes

Parameter Downlink Uplink

Peak data rate

100 Mbps (1 x 1) 50 Mbps (1 x 1

173 Mbps (2 x 2)
86 Mbps (1 x 2)

326 Mbps (4 x 4 )

MIMO
(1 x 1), (2 x 2) (1 x 1), (1 x 2),

(4 x 2),(4 x 4) (1 x 4)

Multiple access OFDMA with CP SC-FDMA with CP

Duplexing FDD, TDD, half-duplex FDD

Bandwidth 1.4, 3, 5, 10, 15 and 20 MHz

Modulation
QPSK, 16-QAM and BPSK, QPSK and

64-QAM 16-QAM

Channel coding Turbo code

Mobility 350 km/h

Latency < 10 ms

Other techniques

Channel sensitive scheduling, link

adaptation, power control, ICIC

and hybrid Automatic Repeat reQuest (ARQ)

Further developments of the LTE specifications are continuing to follow the IMT-Advanced
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requirements and therefore the Release 9 includes broadcast/multicast services, location ser-

vices, an enhanced emergency-call functionality, as well as enhancements for downlink dual-

layer beam-forming. The Release 9 enhances also the self optimization capabilities of LTE. At

the end of 2010, 3GPP has concluded the work on LTE Release 10 extending the performance

and capabilities of LTE beyond Release 8/9 [19][20].

2.1 Requirements for LTE

The starting point for LTE standardization was the 3GPP RAN Evolution Workshop,

held in November 2004 in Toronto, Canada. When several companies involved in mobile

communications discussed the future evolution of the specifications to be developed in 3GPP.

A study item was started in December 2004 with the goal to develop a framework for the

evolution of the 3GPP radio access technology. The requirements for LTE were finalized in

June 2005 and are following resumed, according [21] [22]:

• Reduced cost per bit, implying improved spectral efficiency;

• Reduced delays (connection establishment and transmission latency);

• Increased cell-edge bit-rate;

• Increased service provisioning – more services at lower cost with better user experience;

• Flexible use of existing and new frequency bands;

• Flexible use of existing and new frequency bands;

• Simplified architecture and open interfaces;

• Reasonable terminal power consumption;

• Seamless mobility, including between different radio-access technologies;

Notably, the requirements and performance targets for LTE were decided when HSPA

Release 6 was still being finalized and hence, the targeted improvements are in many cases

set relative to HSPA Release 6. A key requirement set for LTE was that its performance should

be superior if compared with HSPA. The LTE key performance requirements as comparison

with HSPA is shown in Table 2.1.

The requirement for peak data rate - 100 MHz for downlink and 50 for uplink - is reached

with Single Out Single Input (SISO) within 20 MHz bandwidth delivering. Within 20 MHz

bandwidth the system can provide up to 150 Mbps downlink user data rate and 75 Mbps
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uplink peak data rate with 2 x 2 MIMO, and 300 Mbps with 4 x 4 MIMO. In the first release

of the standard the uplink peak data rates are limited to 86 Mb/s, since uplink is specified

only for SISO but at different modulation.

In terms of spectral efficiency, LTE offers 3 to 4 times than HSDPA and 2 to 3 times than

HSUPA for inter-site distances of 500 m and 1732 m, respectively.

The system offers coverage to support cell sizes of up to 100 km, being optimized for

cell sizes up to 5 km. Regarding to mobility the system affords speeds of up to 350 km/h,

and is optimized for mobile speeds up to 15 km/h) [23]. The LTE/SAE effort has reduced

the latency whereas the radio-interface and network specifications envisions less than 10 ms

latency for transmission of a packet from the network to the UE (sub-5 ms latency for small

IP packets).

LTE meets the IMT-2000 requirements and hence it is considered as making part of IMT-

2000 family of standards. Its performance has been evaluated in so called checkpoints in 3GPP

plenary sessions 2007 in South Korea and the results showed that LTE meets and exceed the

targets for peak data rates, cell edge user throughput and spectrum efficiency, as well as VoIP

and Multimedia Broadcast/Multicast Services (MBMS) performance [24]. The results of the

study are published in 3GPP Technical Report (TR) 36.912. The latest versions of the LTE

and SAE documents can be found at http://www.3gpp.org/ftp/specs/latest/Rel-8/.

2.2 Network Architecture

The first version of GSM system and its enhancements defined beyond voice services, data

services. The GSM simplified architecture, compose by Mobile Station (MS), RAN and Core

Network (CN) suffered some modifications and the CN was split in two domains: Circuit

Switched (CS) domain and PS domain. The packet switched component was introduced by

GPRS standard.

W-CDMA followed up the continuous evolution of the technologies and acquired a new

RAN alongside of a new sub-domain called IMS in the CN was also introduced.

As discussed before, LTE is accompanied by a new architecture called SAE. The SAE

initiative defines an all-IP, packet-only core network called the EPC, along with radio access

technology recognized as LTE. This new architecture was designed to optimize network

performance, improve cost-efficiency and support mass-market IP-based services as high data

transmission rates. In addition, supports interworking with circuit-switched systems [24].

LTE core network ensures that mobile devices are efficiently connected to the network but
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also their communication with service platforms as IMS and Internet [25].

The combination of LTE and SAE comprise the EPS, term given to whole system. The

architecture represents an evolution from hierarchical to flat network reducing the number of

nodes in order to minimize latency in the network, as pictured in the Figure 2.1. Nevertheless,

the user plane encompasses only two nodes instead of four while control plane is separated with

Mobility Management Entity (MME). The 3GPP Release 8 has standardized QoS concept of

the EPS at which the bearer is the basic level of granularity for QoS control. EPS routes the

IP packet with a given QoS, called an EPS bearer, from the Packet Data Network Gateway

(P-GW) to UE. Notably the EPS bearer is able to transport both native IPv4 and native

IPv6 packets [26].

HA/GGSN

PDSN/SGSN

BSC/RNC

BTS/NodeB

S-GW/P-GW

eNodeB

MME

LTECDMA/GSM/UMTS

CONTROL 
PLANE

USER 
PLANE

CONTROL 
PLANE

USER 
PLANE

Figure 2.1: Flat EPS network (Source: Adapt from [27])

2.2.1 Core Network

The core network, called EPC in SAE does not involve support for circuit switched domain.

The CN manages the control of the UE and establishes the bearers through the logical nodes.

Figure 2.2 shows a simple architecture of the EPS. As it can be seen, the UE is connected

to the EPC over E-UTRAN - the LTE access network. The EPC, in this turn is attached to

external networks as IMS and is composed by several functional entities: Serving Gateway

(S-GW), P-GW, MME, Home Subscriber Server (HSS) and the Policy Control and Charging
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Rules Function (PCRF) that are following described.

• S-GW is logically connected to the other gateway, the P-GW. As its name indicates,

S-GW is the anchor point for handover between eNodeBs and other 3GPP accesses.

Specifically it is responsible to deal with data bearers when the UE moves between

eNodeBs. By routing the incoming and outgoing IP packets this particularly gateway

also retains the information about the bearers when the UE is in idle state and tem-

porarily buffers downlink data while the MME initiates paging of the UE to re-establish

the bearers. Additional administrative tasks are carry, as the volume of data sent to or

received from the use and legal interception.

• P-GW is the point of interconnect between the EPC and the external IP networks,

serving also as mobility anchor for non-3GPP access networks. Notably, it is in charge

of IP address allocation for the UE, QoS enforcement for Guaranteed Bit Rate (GBR)

bearers (settle for VoIP which has stringent requirements for QoS than for example

browsing) besides also, filtering of downlink user IP packets into the different QoS

based bearers.

• MME is responsible for the control plane functions related to subscriber and session

management between the UE and the CN in the Non-Access Stratum (NAS) protocol

layer. The mains functions supported by MME are bearer management and connection

management. The establishment, maintenance and release of the bearers are related

to bearer management while connection management assumes the establishment of the

connection and security functions between the network and UE.

• HSS is based on the 3GPP Release 4 in particular the Home Location Register (HLR)

and Authentication Centre (AuC). The HSS is faced as a database that contains

user/subscriber information, namely users SAE subscription data such as QoS profile

and any access restrictions for roaming. Further, retains information about the Packet

Data Networks (PDNs) to which the user can connect and to which user is currently

registered or attached.

• The PCRF provides functions for determining the QoS and charging policy to be applied

to data packets sent and received by the user. Determining a QoS value, it passes

through to the P-GW, S-GW until reach the eNodeB that will perform QoS control on

data packets conform to that value.
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Figure 2.2: The EPS network elements (source: Adapt from [21])

2.2.2 Radio Access Network

The flat architecture of LTE RAN presented in the Figure 2.3 is due to the fact that

E-UTRAN does not support macro-diversity or soft handover, in this way allowed that

Radio Network Controller (RNC) could be eliminated and consequently there is no need of

centralized controller. Its functions were assumed by the single node, known as eNodeB.

The base stations - eNodeB are interconnected to each other through the X2 interface and

to the EPC through the S1 interface, specifically to the MME by means of S1-MME interface

and to the S-GW by means of the S1-U interface. The mobile terminal is denoted as UE in

which is not depicted. The protocols that run between them (eNodeB and UE) are known as

”AS protocols”.

The functions of E-UTRAN are [28] [5]:

• Radio Resource Management (RRM) - Ensure that radio resources are efficiently utilized

to serve users according to their QoS attributes. This encompasses radio mobility

and admission control, dynamic allocation of uplink/downlink traffic and data packet

scheduling according to QoS policies.

• Header Compression - Answer to the requirements to maintain privacy over the radio

interface and ensures that IP packets are transmitted in the most efficient way, by
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compressing IP packet headers avoiding overhead for small packets as VoIP.

• Security - Encrypts the data exchanged in the network mainly due to the sensitivity of

the signalling messages.

• Connectivity to the EPC

Figure 2.3: LTE architecture with E-UTRAN (source: [5])

The eNodeB combines the earlier functions leading a tight interaction between the pro-

tocols layers of the RAN, reducing latency and improving the efficiency. One consequences

of the absence of a centralized controller node is that when the UE moves, the network must

transfer all the information from one eNodeB to the another may loss data thus, the handovers

are handled through packet forwarding over the X2 interface to support loss-less mobility.

The S1 interface, allows more flexibility in the inter-connection between access and core

nodes. Known as S1-flex, enable that an eNodeB to be connected to more than one MME/S-GW

node(noted that the terminal is only associated to one MME at a time). From S1-flex char-

acteristics, stand-out the common area referred as pool area - a predefined set of eNodeB at

which the terminal may move without need to change its CN node may be shared by more

than one CNs, making possible load share and remove single points of failure for the CN

nodes.
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Comparison relative to HSPA

Metric Requirement

Peak data rates
100 Mbit/s for downlink

50 Mbit/s for uplink

Average user throughput per MHz
3–4 times higher for downlink

2–3 times higher for uplink

Spectrum efficiency in bit/s/Hz/cell
3–4 times higher for downlink

2–3 times higher for uplink

Mobility

0–15 km/h (optimized for this range)

15–120 km/h (high performance guaranteed)

120–350 km/h (connection maintained)

Supported bandwidths < 5 MHz, 5 MHz, 10 MHz, 15 MHz and 20 MHz

Spectrum allocation
Operation in paired spectrum (FDD) and

unpaired spectrum (TDD) should be supported

Latency

5 ms user-plane latency at IP layer, for one-way

100 ms control-plane latency from idle to

active state km/h (connection maintained)

Number of users per cell
At least 200 at 5 MHz bandwidth

At least 400 at bandwidth higher than 5 MHz

Support for interworking with existing 3G systems and non-3GPP specified systems

Table 2.2: Requirements for LTE
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Chapter 3

Multiple Access Schemes of LTE

The 3GPP LTE (Release 8) and its enhancements adopted the multi-carrier modulation

system OFDM which is an attractive downlink transmission scheme due to the relatively long

OFDM symbol time with a cyclic prefix since it provides high robustness against channel

frequency selectivity, it means that in time domain there is corruption of the transmitted

signal due to time dispersion on the radio channel. Furthermore, it is well suited to meet

requirements for high data rates (with correspondingly large transmission bandwidths), and

for MIMO processing [29].

Additional benefits are following resumed:

• OFDM provides access to the frequency domain, enabling an additional degree of free-

dom to the channel-dependent scheduler.

• Flexible transmission bandwidth to operate in different spectrum allocations(1.4, 3, 5,

10, 15, and 20 MHz).

• Broadcast/multicast transmission is facilitated with OFDM once the same information

is transmitted from multiple base stations.

LTE uplink scheme contains a frequency-domain multiple-access component, hence is

commonly referred as SC-FDMA. It is based on orthogonal separation of uplink transmis-

sions in the time and/or frequency domain which avoids intra-cell interference. The use of

single-carrier transmission in uplink is motivated by the lower peak-to-average ratio of the

transmitted signal compared to multi-carrier transmission - OFDM. In this way the power

amplifier is efficiently used, increasing coverage and reducing the terminal power consumption.

To handle with the corruption of the single-carrier signal due to frequency-selective fading,

17



the equalization is less of an issue once there is more powerful signal processing resources at

the base station side, compared to the mobile terminal.

Figure 3.1: Comparison of OFDMA and SC-FDMA transmitting a series of QPSK data

symbols (Source: [30])

The graphical 3.1 above compares the differences between both modulation schemes where

are considered four (M) sub-carriers over two symbol periods using QPSK modulation. The

obvious difference between the two schemes is that OFDMA transmits the four QPSK data

symbols in parallel (one data symbol per sub-carrier) while SC-FDMA transmits the four

QPSK data symbols in series at four times the rate.

3.1 OFDM

In the past century, OFDM technology was considered a crucial application against mul-

tipath channels. Such channels are characterized by a non-flat frequency response, which

includes deep holes known as selective fading. OFDM is a special form of multi-carrier trans-

mission and hence presents robustness in frequency selective fading channels, emphasizing

the reduced signal processing complexity by equalization in the frequency domain. The basic

idea of OFDM is shown in the Figure 3.2. It consists to spread the information over an

amount of sub-carriers to create very narrow band channels referred to as sub-carriers and

transmit information on these parallel channels at a reduced signalling rate, so that in each
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of them a frequency response that can be considered as uniform or flat, avoiding Inter-Symbol

Interference (ISI). Moreover, different reference frequencies used in transmitter and receiver

can cause Inter-Carrier Interference (ICI) that contributes to lose OFDM orthogonality [11].

Figure 3.2: OFDM with Nc = 4 sub-carriers (source: Adapt from [18])

Ideally, these narrow band channels or sub-channels are overlapping by finding frequencies

that are orthogonal (mathematically perpendicular) allowing the spectrum of each sub-carrier

to overlap other sub-carriers without interference, avoiding the need to separate sub-carriers

by guard-bands and therefore makes OFDM highly spectrally efficient.

This overlapping produces a particular spectral bandwidth significant savings in relation

to traditional FDM technique, as shown in Figure 3.3. It is obtained bandwidth savings of

approximately 50% [21].

Figure 3.3: Spectral efficiency of OFDM: (a) Classical multi-carrier system spectrum - FDM;

(b) OFDM system spectrum (Source: [31])

The orthogonality of OFDM sub-carriers can be lost when the signal passes through a
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time-dispersive radio channel due to inter-OFDM symbol interference. To reverse this, a

cyclic extension of the OFDM signal can be performed to avoid this interference [32]. CP

consists on a copy of the last part of the OFDM signal, adding it in the beginning of the

OFDM signal.

A generic communication system based OFDM modulation is illustrated in the Figure

3.5. As regards to the transmitter it is notable that the sequence paralleled is moved to time

domain by Inverse Fast Fourier Transform (IFFT) block and further it is added CP. In the

receiver side, happen the inverse processed, i.e. still in the time dimension it is removed CP

and then Fast Fourier Transform (FFT) processing is performed.

OFDM systems take advantage from the fact that multi-carrier modulation can be im-

plemented in the discrete domain by using an Inverse Discrete Fourier Transform (IDFT)

or a more computationally efficient IFFT. In addition, the number of OFDM sub-carriers is

generally selected as power of 2, such as 512, 1024, etc, which allows using more efficient FFT

and IFFT algorithms.

Figure 3.4: Useful bandwidth by using Virtual sub-carriers (Source: [33])

Notably in case of the number of FFT points is higher than that required for data trans-

mission, a simple filtering can be achieved by putting at both sides of the spectrum null

sub-carriers (guard bands), called virtual sub-carriers as shown in the Figure 3.4. Addition-

ally, to avoid the direct current (DC) problem, a null sub-carrier can be put in the middle of

the spectrum (the DC sub-carrier is not used).

In the OFDM system model depicted above, initially, takes place a conversion series-

parallel where sets of S words of k bits are mapped into Sn sub-symbols complex Xk, which

determine the constellation points of each sub-carrier according to the type of modulation

employed. The complex modulations symbols Xk are mapped to the input of IFFT. A cyclic
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Figure 3.5: Digital multi-carrier transmission system applying OFDM (Source: [33])

prefix is added after IFFT operation at Parallel-to-Serial (P/S) converter and the resulting

sequence is up-converted to Radio Frequency (RF), amplified and transmitted through the

frequency-selective channel.

In the receiver side, the received signal is filtered, amplified and down-converted. The

cyclic prefix is removed and FFT operation is performed on the received samples sequence.

Under the assumptions that ICI is avoided due to the guard interval/CP insertion (each

sub-channel can be considered separately), ISI is removed and at last that the fading on

each sub-channel is flat, a multi-carrier system can be simulated in frequency domain since

it is more efficient than in time domain. Consequently the OFDM modulation system can

be assumed as a simple multiplication of the complex data symbols with frequency channel

response. The received signal can be represented in frequency domain by,

Rn = HnSn +Nn (3.1)

where Hn is the flat fading factor and Nn represents the noise of the n sub-channel. The

transmitted signal over a multipath channel is converted into a transmission of parallel flat-

fading channels. As a result of that, the equalization operation is simplest once only one

complex multiplication per sub-carrier is made [21].

Considering then a frequency-domain channel, frequency-domain equalization (FDE) op-
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eration can be performed using channel estimates obtained from received pilots or reference

signals to obtain estimates of the transmitted complex modulation symbols [18][21].

3.1.1 Orthogonality

The main concept in OFDM is the orthogonality of the sub-carriers. This orthogonality

allows simultaneous transmission on a lot of sub-carriers in a tight frequency space without

interference between them increasing the spectral efficiency.

The aim of OFDM is modulate the Nc data symbols in Nc sub-carriers under the assump-

tion that the spacing between the different sub-carriers is given by,

∆fc =
1

TOFDM
(3.2)

guaranteeing the signals at different sub-carrier are orthogonal, for an rectangular pulse.

The TOFDM is the duration of an OFDM symbol.

Figure 3.6: OFDM sub-carrier spacing (Source: [31])

The frequency spectrum of an OFDM transmission is illustrated in the Figure 3.6 and

it can be seen all sub-carriers overlap. The orthogonality principle between each sinc, (a

sinusoidal carrier modulated by a rectangular waveform) is easily notice since the frequency

spectrum of one carrier exhibits zero-crossing at central frequencies corresponding to all other

carriers. Another aspect of orthogonal signals is that they can be separated at the receiver

by correlation techniques.
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3.1.2 Cyclic Prefix

OFDM takes advantage from the principle of multi-carrier transmission where the symbol

rate on each sub-carrier is much less than the initial serial data symbol rate and hence the

OFDM symbol duration Ts becomes large compared to the duration of the impulse response

τmax of the channel, i. e. due to multipath delay spread. In this way ISI decreases significantly

and therefore the complexity of the equalizers is also reduced.

It is expect that the requirement for the OFDM sub-carrier orthogonality, after the trans-

mitted signal has propagated over the radio channel, that the instantaneous channel does not

vary during the demodulator correlation interval Ts.

In case of a time-dispersive channel the orthogonality between the sub-carriers may be

lost. Since the integration interval for demodulation is applied to overlap symbols. The

modulation symbols may differ between consecutive symbol intervals and there will be ISI

within a sub-carrier but also ICI.

However, to completely avoid the effects of ISI and thus, to maintain the orthogonality

between the signals on the sub-carriers, i.e. to also avoid ICI, a guard interval of duration,

Tg ≥ τmax (3.3)

has to be inserted between adjacent OFDM symbols. The guard interval is no less than a

cyclic extension of each OFDM symbol, by extending the duration of an OFDM symbol.

T
′
s = Tg + Ts (3.4)

The cyclic prefix length is generally chosen to accommodate the maximum delay spread

of the wireless channel implying the need for a longer CP. A longer CP for a given OFDM

symbol duration corresponds to a larger overhead in terms of energy per transmitted bit.

This reduction in bandwidth efficiency can be expressed as as a function of the CP duration,

TCP .

βoverhead =
TCP

Ts + TCP
(3.5)

In summary, the CP insertion implies a reduction in transmission rate and consequently

it reduces the spectral efficiency. So, its length has to be designed in order to minimized the

reduction of spectral efficiency but also taking into account the maximum delay channel to

ensure the absence of ISI.
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Figure 3.7: OFDM symbol with CP insertion

Generally, the CP is dimensioned to be less than 20% to 25% of the duration of the OFDM

symbol [34].

3.2 Physical Layer Parameters for LTE

Data transmission through the radio interface is organized into radio frames, with two pos-

sible structures: for FDD, uplink and downlink transmissions are separated in the frequency

domain. For TDD, a subframe is allocated either to downlink or uplink transmission. LTE

parameters have been chosen such that FFT lengths and sampling rates are easily obtained

for all operation modes with a common clock reference.

Each radio frame has 10 ms long, being composed by 20 slots of length, each one has

0.5ms long (Tslot = 15360 × Ts), numbered from 0 to 19. The basic time unit for LTE,

Ts is determined by sub-carrier spacing ∆f = 15kHz and also by the maximum FFT size

(2048 points used with 20 MHz system bandwidth) what corresponds to Ts =
1

15000× 2048

=
1

30720000
seconds. Each subframe is defined as two consecutive slots of 0.5ms (Tsubframe

= 30720 × Ts), equal to 1ms as illustrated in the Figure 3.8. Slots consist of either 6 or 7

OFDM symbols, depending on whether the long or short CP is employed, respectively.

Notably the structure of OFDM symbol differs for short CP and long CP, according to

the delay spread of channel. In the Figure 3.9 can be seen the differences between short CP

and long CP so that, apart to the CP, the useful OFDM symbol along the slot (0.5ms) is
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#0 #1 #2 #3 - - - - - - #10 #11 - - - - - - #19

1 Frame (10 ms)

1 Slot 
(0.5 ms)

1  Sub-frame 
(1 ms)

Figure 3.8: LTE Generic Frame Structure

equal in both modes (short and long CP) corresponding to 66.7µs. The structure presented

below corresponds to only one OFDM symbol within each slot that may have 6 or 7 symbols.

CP CP #4CP#1 #2 #3 CPCP #5 #6CP CP#0

1 Slot with Long CP (6 symbols)

CP

1 Slot with Short CP (7 symbols)

#0 #1 #2 #3 #4 #5CP CP CP CP CP CP

5.2μs 4.7μs

66.7μs16.7μs

4.7μs

16.7μs16.7μs

66.7μs

Figure 3.9: Structure of slot for both modes, short and long CP

Regard to short CP(7 symbols) the first symbol has a cyclic prefix of length 5.2µs so that

the remaining six symbols have 4.7µs of length, in this way the purpose of having different

length of cyclic prefix in the first symbol is to make the overall slot length of 0.5ms ⇒

((7×66.7µ)+(6×4.7µ)+5.2µ = 500.3µs ) as naturally happen for long CP where along each

slot composed now by six symbols, the CP length is assumed as being 16.7µs for all OFDM
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symbols and the overall slot length is 0.5ms ⇒ ((6× 66.7µ) + (6× 16.7µ = 500.4µs ).

The transmitted signal in each slot is described by a resource grid of sub-carriers and

OFDM symbols as follows in Figure 3.10. This resource grid called Physical Resource Block

(PRB) is the smallest element of resource allocation assigned by the base station scheduler

and consists of 12 consecutive sub-carriers for one slot (0.5ms) or 180 kHz. It is defined

also a Resource Element (RE), as the unit of the resource grid that consists of one OFDM

sub-carrier during one OFDM symbol interval. In MIMO applications there is a resource grid

for each transmitting antenna [35].

Figure 3.10: Resource Grid of LTE

Pilots signals are embedded in the PRBs as shown in Figure 3.11 for a single antenna

transmitter in order to estimate the channel response and synchronization as examples. For

time domain when short cyclic prefix is used they are inserted during the first and fifth OFDM

symbols of each slot, in case of long cyclic prefix they are inserted in the first and fourth

OFDM symbols. Further in frequency domain, it is transmitted a pilot signal in every sixth

sub-carrier. Since the pilots signals are staggered in both time and frequency it is possible to
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perform interpolation on the remaining sub-carriers to estimate the channel response within

the slot time interval.

Figure 3.11: LTE Reference Signals for a single antenna transmitter (Source: [35])

When multi-antenna scheme is applied, the pilot signals corresponding to each antenna

are transmitted on different sub-carriers so that they do not interfere with each other. For

pilot symbol allocation and in case of two antennas transmission, i.e. two resource grids, the

transmitting pilot signals on a specific antenna are not reused on other antennas for data

transmission as illustrated in the next figure 3.12 [36].

The flexibility provided by OFDMA, i.e. several bandwidths are supported(1.4 MHz to

20 MHz) in downlink , it is also verified in the SC-FDMA uplink. The parameters common

for downlink and uplink are given in Table 3.1.

Figure 3.12: Pilot symbol allocation for two-antenna transmission (Source: [37])
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3.3 OFDMA

The basis for OFDM consists in split data in two dimensions: time dimension (OFDM

symbols) and frequency dimension(sub-carriers). In OFDM, all frequencies or sub-carriers

are allocated for a single user so that, for each OFDM symbol only one user can be served.

OFDMA goes further and it enables to share each time symbol between multiple users, as it

can be seen in the Figure 3.13. At each OFDM symbol there is allocation for several sub-

carriers, enabling better use of the radio resources. The result is a more robust system with

increased capacity.

By dividing in frequency domain between multiple users, higher granularity can be achieved

and radio resources can be used more effectively[38].

Figure 3.13: OFDM and OFDMA sub-carrier allocation (Source: [30])

The LTE downlink is based OFDMA which offers good flexibility in resource allocation

and performance for a reasonable complexity [39]. OFDMA allows fast allocation of radio

resources and orthogonal multi-user multiplexing in the frequency domain.

The allocation of the sub-carriers in response to changes in the fading parameters, reduce

the impact of time/frequency dependent fading. The bandwidth is divided into orthogonal

sub-carriers and hence it is possible to schedule different users at the same time on different

frequency bands, enabling an extension of the multi-user diversity concept to include beside

temporal fading, but also fading in the frequency domain [8]. This means that frequency-

domain channel will consist of orthogonal parts from different users [40].

Among others aspects, the choice of OFDMA for LTE DL basis on the following points

[41][11]:
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• Better performance in frequency selective fading channels;

• Better spectral properties and usage of so many bandwidths.

• Link adaptation and frequency domain scheduling

• Well suited with MIMO. OFDM can transform a frequency-selective MIMO channel

into a set of parallel frequency-flat MIMO channels, decreasing receiver complexity.

• Low complexity of base-band receiver. The OFDM channel equalizers are much simpler,

OFDM can be considered resistant to multi-path delay spread by using a appropriate

CP length and assuming that the received signal is correctly sampling.

Table 3.1: Supported bandwidths and common DL and UL parameters for LTE

System channel bandwidth (MHz) 1.4 3 5 10 15 20

Slot duration (ms) 0.5

Sub-carrier frequency spacing, ∆f (kHz) 15

Useful symbol time, Tu (µs) 66.67

Cyclic prefix/guard time, TCP (µs) Normal CP: 5.21 / 4.69; Extended CP: 16.67

OFDMA symbol duration, Tsym = Tu + TCP (µs) Normal CP: 71.88 / 71.36; Extended CP: 83.33

Guard time overhead, TCP /(TCP+Tu) (%) Normal CP: 6.67; Extended CP: 20

Resource block BW 180 kHz / 12 sub-carriers

Number of resource blocks (NRB) 6 15 25 50 75 100

Sampling frequency, (15 000·NFFT (MHz) 1.92 3.84 7.68 15.36 23.04 30.72

FFT size, (NFFT) 128 256 512 1024 1536 2048

Occupied sub-carriers 72 180 300 600 900 1200

Resource mapping Blockwise contiguous

Samples per slot 960 1920 3840 7680 11520 15360
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Figure 3.14: Block diagram of OFDMA and SC-FDMA

The SC-FDMA can be seen as a special pre-coding process of the OFDMA symbol, in

which each frequency is initially spread by an Discrete Fourier Transform (DFT) prior to

being sent to the OFDM modulator. It is a hybrid solution that tries to combine the benefits

of OFDMA - multipath resistance and flexible frequency allocation, with the good relationship

between the peak power and average power of the signal (PAPR) of the single carrier systems.

Power consumption is a key consideration for UE terminals, thereby SC-FDMA is well

suited to the LTE uplink requirements since the sub-carriers are not independently modulated

as happen in OFDM and hence PAPR is lower. This feature is important once allows less

complex and higher-power terminals.

SC-FDMA principle is the same as for OFDM. Although there is a significant commonality

between the uplink and downlink signal chains [35], there is still one remarkable block not

used in OFDMA chain, N-point DFT, as shown in the Figure 3.14. Basically, its function

consists in to spread information on the frequency of the modulated symbols in single-carrier.

DFT spreading allows that the frequency selectivity of the channel could be exploited,
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since all symbols are present in all sub-carriers. Therefore, in case of some sub-carriers suffer

deep fade, the information can still be recovered from other sub-carriers experiencing better

channel conditions.

Once converted data symbols to the frequency domain by using a DFT, they are mapped

to the desired location in the overall channel bandwidth. In SC-FDMA sub-carriers can be

mapped in two ways: localized or distributed. LTE uses localized sub-carrier mapping due

to the fact that it is possible to exploit frequency selective gain through channel dependent

scheduling. The Figure 3.15 illustrates the SC-FDMA sub-carrier mapping.

A drawback of DFT despreading in the receiver side is that the noise is spread over

all the sub-carriers yielding noise enhancement, which will require the use of more complex

equalization based on Minimum MSE (MMSE) receiver since, it degrades the single-carrier

frequency-division multiplexing (SC-FDM) performance [34].

SC-FDMA can lose performance in case of deviations in frequency sub-carriers, typically

generated by instability of the local oscillator or Doppler. These effects destroy the orthogo-

nality of OFDM, generating interference between carriers and also multiple access interference

what brings a major issue for uplink because these interferences occur differently for each user,

making synchronization harder[42].

Figure 3.15: SC-FDMA sub-carriers mapped in Localized (a) and Distributed Mode (b)

(Source: [35])
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Chapter 4

Multiple Antenna Technology

Multiple antenna technology is the center-piece for delivering improved data rates and

communication link robustness, exploiting spatial-domain as another new dimension by using

multiple, spatially distributed antennas in both sides of the system. It is also considered as

part necessary to achieve the initial LTE requirements in terms of coverage, QoS, and targeted

data rates.

As the radio link is typically affected by the multipath phenomenon, which produces

constructive and destructive interferences (or signal fading) at the receiver, the multiple radio

paths or channels established will ideally experience uncorrelated fading whether the distance

between antennas or by applying different polarization directions to the transmit antennas

[43]. These different paths may be exploited in different ways in order to obtain spatial

diversity from the ideally uncorrelated fading or to transmit multiple streams simultaneously.

Thus, generally speaking the MIMO channels can be utilized in different ways that lies

on three fundamental principles:

• Diversity gain - The basic principle of multi-antenna diversity is to provide at the

receiver multiple copies with uncorrelated fading of the transmitted signal, in order to

combat fading on the radio channel, improving the reliability and error performance

in the receiver through diversity gain. Spatial diversity may be achieved by having

multiple antennas at either the transmitter or the receiver side, namely receive diversity

can be used in Single-Input Multiple-Output (SIMO) channels thus obtaining diversity

order equals to the number of receive antennas. On the other hand transmit diversity

can be apply to MISO channels, so that extracting diversity in such channels is possible

with or without channel knowledge at the transmitter. The so-called Space Time (ST)
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diversity coding is a transmit diversity technique that can extract diversity in absence

of channel knowledge at the transmitter. The diversity order is equal to the number of

transmit antennas.

• Array gain - One practical way to realize diversity gains is to beam-form a message

across multiple transmit antennas. The beam-forming procedure utilizes limited in-

formation about the channel state information, being employed to shape the overall

antenna radiation in a way that maximizes the transmitter or receiver beam in a de-

sired direction increasing the received signal strength or suppressing (”nulled”) major

interfering signals by avoiding directions of significant interference. In general, beam-

forming can be interpreted as linear filtering in the spatial domain improve the Signal

to Noise Ratio (SNR) at the receiver that arises from coherent combining effect of the

multiples antennas at the receiver or transmitter or both.

• Spatial multiplexing gain - The principle of Spatial Multiplexing (SM) techniques is to

transmit multiple data streams simultaneously by having multiple antennas at both the

transmitter and the receiver sides, exploiting the capacity of MIMO channel. Thereby

increasing the transmission rate for the same bandwidth and with no additional power

expenditure. The maximum number of data symbols that can be transmitted in parallel

in a MIMO system is Ns = min(Mt,Mr). Since multiplexing spatial does not involve

pre-coding for simultaneous transmissions may suffers from interference problems in the

multiplexed signals. These issues can be minimized by using complex detectors at the

receiver. The most known spatial multiplexing architecture is Bell-Labs Layered Space

Time (BLAST).

It may be stated that the above families of multiple-antenna techniques are quite different

but, there are also composite transmission schemes that aim at a combination of the different

gains[44]. For a given fixed number of antennas, there are certain trade-offs between multi-

plexing gain, diversity gain, and array gain. In this way, spatial multiplexing techniques can

also accomplish a diversity gain by employing an optimum receiver with Maximum Likeli-

hood (ML) detection and spatial diversity techniques can also be used to increase the bit rate

of a system when employed together with an adaptive modulation/channel coding scheme.

Transmission and reception techniques for multiple-antenna systems can also be catego-

rized in SIMO, MISO, and MIMO techniques that will be discuss in the next section.
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(”SU-MIMO”) for higher data rates

in a given bandwidth

Figure 4.1: Multiple-antenna techniques in LTE

They can also be considered as Open-Loop (OL), Closed-Loop (CL) techniques and be dis-

tinguish between single-user and multi-user MIMO techniques, either for broadcast scenarios

or for multiple-access scenarios.

Regard to LTE standard Release 8, the so-called Single-User MIMO (SU-MIMO) is

adopted - a point-to-point multiple antenna link between base station and one UE. Its

basic idea is to transmit independently coded data stream to the same user in the same radio

resource in order to increase user peak data rates, hence it is suitable for users experiencing

good channel conditions. Remarkably, with SU-MIMO spatial multiplexing, the LTE system

provides a peak rate of 150 Mbps for two transmit antennas and 300 Mbps for four transmit

antennas and throughput is increased in the center of the cell/near the eNodeB[45]. The

Multi-User MIMO (MU-MIMO) scheme is not making part of the Release 8 despite its po-

tencial. This scheme allows several UEs communicating simultaneously with a common base

station using the same radio resource(frequency and time domain) allowing to increase the

system capacity by supporting a larger number of users per cell.

The LTE standard also foresees different MIMO transmission modes as mentioned before,

where the knowledge of the channel at the transmitter decides whether we are in presence
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of OL scheme or CL scheme. In particular, Closed-loop MIMO relies on signal processing,

weighting the transmitted signals by considering the channel conditions experienced at each

antenna, prior to transmission in order to optimize data reception. In contrast, the Open-loop

MIMO transmission mode does not need any feedback of the channel information and has

lower complexity and signalling overhead than CL as well as lower performance.

In a nutshell, the baseline antenna configuration in LTE consists of two antennas at

eNodeB and two antennas at the UE, utilizing open loop and closed loop MIMO featuring both

diversity and spatial multiplexing modes. The networks are planned with at least two receive

antennas at terminals, in this way ensuring downlink-receive diversity. Other configurations,

up to a maximum of four transmit and four receive antennas are supported as well, such

as: transmit diversity, spatial multiplexing (including SU-MIMO and MU-MIMO) and beam-

forming, where it is possible to use which of the scheme or combination of schemes depending

of the scenario as illustrated in the next Figure 4.1.

4.1 Antenna Configurations

LTE standard besides MIMO, supports other schemes, as SISO,SIMO and MISO based

on the availability of antennas at the transmitter and/or receiver. The techniques mentioned

in the previous section 4 can be configured according to the Figure 4.2.

In the following it is described each MIMO configuration:

• SISO - Traditional wireless communications makes use of this configuration exploiting

time or frequency-domain pre-processing and decoding of the transmitted and received

data. It is considered as baseline for others configurations and consists only one transmit

antenna and one receive antenna.

• SIMO - This mode assumes one transmit antenna at the terminal and two or more

receive at base station. Usually SIMO is refereed to as receive diversity for 1 x 2

configuration and it is commonly exploited by using Maximum Ratio Combining (MRC),

being suitable for low SNR conditions where only one data stream is transmitted.

• MISO - It is characterized by having two or more transmitters (base station) and one

receiver (UE). Following the same line of thought as the SIMO, it is referred to as

transmit diversity (2 x 1 configuration) and can be enhanced with closed loop feedback

from the receiver.

• MIMO - This term is also used in general to refer transmission scheme with multiple
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antennas at both sides. MIMO increases spectral capacity by transmitting multiple

data streams simultaneously in the same frequency and time, taking full advantage of

the different paths in the radio channel.

Tx Rx

Rx

Tx

Rx0

Rx1

Tx0

Tx1

Rx0

Rx1

Tx0

Tx1

SISO MISO

SIMO MIMO

Figure 4.2: Multiple antenna configurations

4.2 MIMO Scenarios

Multi-antenna schemes can be applied independently to each frequency sub-band (set of

OFDM sub-carriers) thus making it possible to have different transmission schemes for differ-

ent frequency scheduled users, in another words, it is possible to have different configurations

applied for different scheduled users within the same time slot, as shown in the next figure

4.3.

Considering as example fading for two users that can equivalently represent the signals

received by a single user from two different transmit antennas, transmit diversity can avoids

the deep fading that occur per antenna over a single radio link.

In lightly loaded or small cell deployments, multi-stream transmission yields very high

data rates and makes more efficient use of radio resources. In this case, the multiple transmit

antennas are best used for single stream beam-forming in order to enhance the quality of the

signal.

In summary, LTE provides an adaptive multi-stream transmission scheme, in which the
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Figure 4.3: Different transmission schemes for different frequency scheduled users (Source:

[37])

number of parallel streams can be continuously adjusted to match the channel conditions.

• For good channel conditions, spatial multiplexing scheme (up to four streams in parallel)

is suitable yielding data rates up to 300Mbps in a 20MHz bandwidth.

• For less favourable channel conditions multiple antennas are instead partly used in a

beam-forming transmission scheme improving overall reception quality.

• In large cells or to support higher data rates at cell borders, single stream beam-forming

transmission as well as transmit diversity for common channels are indispensable to

achieve good coverage.

4.3 MIMO System and Channel Models

Considering MIMO system with Mt transmit antennas and Mr receive antennas, there is

Mt data streams which are emitted simultaneously at the same frequency through the Mt

antennas as shown in the figure 4.4.

In each of the Mr receiving antennas the signal is under the effect of flat channel (invariant

over T symbol durations or sub-carriers in case of frequency-domain) which is added from the

mixture of the Mt transmitted signals from the transmitting antennas and also the additive

noise.
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Figure 4.4: Channel response between base station and terminal

Let r be a vector of Mt received signals as follows,

r = Hs + n (4.1)

in which H denote the Mt × Mr channel matrix modelling the propagation effects from

each of the Mt transmit antennas and n is the additive noise with the same size of s. Notably

in the equation above the index are omitted for simplicity, thus nth row of s corresponds to

the signal of nth transmit antenna. The MIMO channel can be represented by

H =


h1,1 ... h1,mr

... ... ...

hmt,1 ... hmt,mr


where hmt,mr represents the response of the existing channel between Mt transmit antenna

and Mr receive antenna. By applying pilot signals it is possible to estimate the characteristics

of the channel in the receiver formed by the factors of the channel.

It may be stated also that the capacity of the SU-MIMO system, assuming M streams

uncorrelated with equal power, can be expressed in terms of eigenvalues as follows,

C =

m∑
i=1

log2(1 +
ρ

M
λi) (4.2)
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where λi represent the non-zero eigenvalues of HH H (Mt ≥ Mr and Mt < Mr) and m =

min (Mt, Mr). H
H corresponds to the hermitian of the matrix H.

In this way can be concluded that MIMO systems achieve greater capacity as compared to

SISO system by transmitting on the spatial eigen-modes of the MIMO channel. The capacity

of a MIMO system grows approximately linearly with the minimum of Mt and Mr without

requiring extra bandwidth or extra transmission power. On the other hand for single-antenna

systems for a given fixed bandwidth, capacity can only be increased logarithmically with the

SNR, by increasing the transmit power [46].

4.4 Transmit diversity

As multiple antennas at the base station allow for uplink receive diversity, transmit di-

versity can be realized by using multiple antennas at the transmitter side. Thus, multiple

copies in the receiver of the transmitted signal are a means to combat fading, resulting in a

significant gain in SNR and to achieve reliability. The suit scenario is for low mobility and

low correlation between channels of the different antennas, make it possible to reduce receiver

complexity while improving the detection performance. Moreover, it becomes interesting for

downlink, since it is easier to install multiple antennas at the base station.

Associated with OFDM, transmit diversity can be further sub-divided into: block codes

based, Cyclic Delay Diversity (CDD), FSTD, and Time Shift Transmit Diversity (TSTD)

where CDD and TSTD are not used in LTE as a diversity scheme [21].

In LTE transmit diversity is defined for two and four transmit antennas based on SFBC

complemented with FSTD in case of four transmit antennas, once the original Alamouti

scheme uses two transmitting antennas and one receiving antenna. As mentioned before

LTE provides both OL and CL schemes to achieve spatial diversity, in particular transmit

diversity can be enhanced with closed loop feedback. Open loop transmit diversity will be

further discussed in more detail.

4.4.1 Space-Time Coding

Coding a data stream across transmit antennas (space) and time by introducing redun-

dancy in a way that the receiver can obtain the original data stream is called Space-Time

Coded (STC). This redundancy is used to combat fading channel in order to minimize de-

tection errors in the receiver. At least one receive antenna and no channel knowledge at the
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transmit side is needed while multiple antennas are considered at the transmitter. Within

transmit diversity, the term space-time coding refers for all spatial diversity techniques (irre-

spective of the presence of any additional coding gain). Namely STBC can achieve maximum

diversity gain for two transmit and one receive antennas while also providing linear decoding

and equalization; Similar to the previous one, SFBC can be seen as a frequency domain ver-

sion thereby the pairs of adjacent sub-carriers are coded together instead of two adjacent time

slots (OFDM symbol) as both are based on Alamouti code; Space-Time Trellis Code (STTC)

can provide both diversity and coding gains but at the cost of increase complexity since

channel coding, modulation, transmit, and receive diversity operations are realized together;

Unlike previous codes which envisions to combat deep fades, Layered Space-Time Codes aims

to improve multiplexing gain by transmitting Mt independent data streams.

It is worth noting that in OFDM systems, a STBC has to be applied under the assumption

that the channel coefficients remain constant for two subsequent symbol durations in order

to guarantee the diversity gain. This is a tough condition since OFDM symbol duration Ts is

Nc the duration of a serial data symbol Td. On the other hand the coding can be performed

over two adjacent sub-carriers and thus the feature of OFDM can be exploited. In this way a

SFBC requires only the reception of one OFDM symbol for detection, reducing delay in the

detection process. In the scope of this work, only block codes based on SFBC and STBC are

considered. In the following section we discuss Alamouti STBC.

4.4.2 STBC and Alamouti concept

One way to combat channel fading (channel frequency selective fading) is to transmit

several replicas of the same information through each antenna, introducing redundancy in

time through channel coding and also in space. By doing this the probability of loosing the

information decreases exponentially. The diversity gain of a MIMO system is defined as the

number of independent receptions of the same signal thereby, by using STBC it is possible

to reach a maximum order of spatial diversity, equals the number of transmit antennas using

a simple and linear processing on the decoding. This technique provides low complexity in

channel coding/decoding. A well-known type of STBC scheme is the Alamouti scheme.

The original Alamouti scheme is a transmit diversity technique using two transmitting

antennas and one receiving antenna, as depicted in the table 4.1. The Alamouti code is

the first STBC that provide full diversity at full data rate for two transmit antennas, i.e., a

code rate of 1 since it transmit two symbols every two time intervals. The scheme can be
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generalized for Mr receive antennas and can accomplish a maximum diversity order of 2Mr

[47].

Time/Frequency Antenna 1 Antenna 2

n s1 s2

n+ 1 −s∗2 s∗1

Table 4.1: Alamouti Space-Time Block Code for MISO, where n represents time/frequency

A block diagram of the Alamouti space-time scheme is illustrated in figure 4.5 which will

be used as reference to shown encoding/decoding process along space and time.

+ ST decoder Demodulator

Ant. 1

Ant. 2

Ant. 1

h1

h2

n1

n2
h1 h2

s1

s2

y bits

^

^

*[s1   -s2]

*[s2    s1]

Figure 4.5: MISO scheme

The information bits are first modulated using a digital modulation scheme, then the

encoder takes the block of two modulated symbols s1 and s2 in each encoding operation and

forwards it to the transmit antennas. Taken from the table 4.1, the symbols mapped can be

written in following code matrix,

S =

 s1 s2

−s∗2 s∗1

 (4.3)

where the first row represents the first transmission period, in this step, the symbols s1 and
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s2 are transmitted from antennas one and two, respectively and the second row represents the

second transmission period, in which antenna one transmits−s∗2 and antenna two transmits s∗1.

The mark (.)∗ means the complex conjugate. The two rows and columns of S are orthogonal

to each other as happen also for the channel matrix. This property enables the receiver to

detect s1 and s2 by a simple linear signal processing operation.

Assuming only one receive antenna and also that the fading is constant over two consec-

utive transmit periods, the received signals for each transmission period, can be expressed

as r1 = h1s1 + h2s2 + n1

r2 = −h1s∗2 + h2s
∗
1 + n2

(4.4)

Lets consider h1 the channel response between the first transmitting antenna and the

receiver, and h2 the channel response between the second transmitting antenna and the

receiver and also n1 and n2 complex noise and interference of the channel.

Note that the fading coefficients h1(n) and h2(n) defined at time n are constant across

two consecutive symbol transmission periods, i.e.,h1(n) = h1(n+ T ) = h1

h2(n) = h2(n+ T ) = h2

(4.5)

where T is the symbol duration. The received vector r can be assumed from (4.4) formed by

two consecutive received data samples r = [r1, r2]
T in time, results in

r = Hs + n (4.6)

where h = [h0, h1]
T is the complex channel vector and n is the noise vector at the receiver.

In order to be able to estimate the transmitted symbols the equation (4.4) can be explicitly

rewritten as, r1 = h1s1 + h2s2 + n1

r∗2 = −h∗2s1 + h∗1s2 + n2

(4.7)

Thus, the vector equation(4.6) can be written in matrix format,

 r1

r2∗

 =

 h1 h2

−h∗2 h∗1

s1
s2

 +

n1
n∗2

 (4.8)
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Note that the channel coefficients are constant across two consecutive symbol transmission

periods, we obtain, H1 = or in short notation,

r = Hvs + n (4.9)

where the vector r = [r0, r
∗
1]T and Hv a orthogonal virtual channel matrix , i.e,

HH
v Hv = HvH

H
v = h2I2 (4.10)

From(4.10), wherein I2 is the (2 × 2) identity matrix and h2 is the power gain of the

channel with h2 = |h1|2 + |h2|2 can be realized that the orthogonality provided by Alamouti

scheme allows to separate the MISO channel gain into two virtually independent channels with

channel gain h2 and diversity d = 2. In addition, the assumption in 4.10 ensures interference

free.

By using the equation (4.9) and multiplying it by the hermitian of the matrix HH
v , can

be estimate the symbols according,

s̃ = HHr = h2s + HHn (4.11)
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Chapter 5

Alamouti Encoder/Decoder

Hardware Implementation

Diversity by means of space-frequency coding SFBC is similar to space-time coding STBC,

in which the encoding is performed in frequency domain rather than in the time domain. In

LTE for two transmit antennas is used SFBC while in case of four transmit antennas is used

SFBC but combined with FSTD, since the orthogonality provided by the family of codes

(SFBC/STBC) through Alamouti coding is lost to more than two transmit antennas. There

are several reasons to leave behind the STBC in LTE, namely the odd number of OFDM

symbols in a subframe (STBC operates on pairs of adjacent symbols while Alamouti SFBC

performs over two adjacent sub-carriers in OFDM symbol). Furthermore, in a frequency-flat

fading channel for a high-speed UE, the SFBC scheme outperforms the STBC scheme [16].

From the combination of SFBC/FSTD can be said that for the sub-carriers where trans-

mission is on one pair of antennas, there is no transmission on the other pair of antennas,

operating in this way over four symbols as well as groups of four resource elements on each

antenna. Besides leaving the orthogonality intact, this combination also provides robust-

ness against the correlation between channels from different transmit antennas and easier

UE receiver implementation, with a slight coding gain[48] [21]. The next table shows the

combination of both techniques.

After an introduction of LTE transmit diversity based on SFBC, it is analysed a MISO-

OFDM system model based on Alamouti SFBC. The most popular coding technique in

MIMO-OFDM exploits the independent fading of the parallel channels hn across the frequency

sub-carriers. By coding across space and frequency, both space and frequency diversity gains
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can be extracted [49].

Frequency Antenna 1 Antenna 2 Antenna 3 Antenna 4

n sn 0 −s∗n+1 0

n+ 1 sn+1 0 s∗n 0

n+ 2 0 sn+2 0 −s∗n+3

n+ 3 0 sn+3 0 s∗n+2

Table 5.1: SFBC combined with FSTD

An Space Frequency (SF)-coded MISO-OFDM system with two transmit antennas, one

receive antenna, and N sub-carriers, is shown in Figure 5.1.
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Data 
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CHANNEL 
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Ŝn

Ŝn+1
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Figure 5.1: Transmitter (a) and Receiver (b) of an Alamouti SFBC coded MISO-OFDM

system
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The coding is performed across the antennas and OFDM sub-channels it means, by ap-

plying the Alamouti code over two adjacent sub-channels/frequencies in one OFDM block as

shown in the Table 5.2.

Frequency Antenna 1 Antenna 2

n sn −s∗n+1

n+ 1 sn+1 s∗n

Table 5.2: Alamouti coding

Let Ns be the number of sub-bands chosen to be Ns = N
q , where q is the symbol period of

SFBC system and N is the number of sub-channels. Then, all sub-bands are modulated using

MQAM or MPSK, where M is determined by the number of allocated bits. In this way the

incoming bit stream is mapped into data symbols via to the referred modulation techniques.

For two transmitter antennas, for each OFDM symbol, adjacent sub-carriers n, n+ 1 (n = 1,

..., N) are used in frequency space code.

The kth OFDM symbol vector, s(k) = [s1(k) s2(k) ... sN (k)] is provided as the input

to the SFBC encoder and then coded into two vectors s1(k) = [s1(k) s2(k) ... sN (k)] and

s2(k) = [-s∗2(k) s∗1(k) ... s∗N−1(k)] which are simultaneously transmitted by the first and the

second transmit antenna respectively.

S1 S2 S3 ... SN-1 SN

-S*2 S*1 -S*4 ... -S*N-1 -S*N

ANT 1

ANT 2

f1 f2 f3 fN-1 fN
frequency

Figure 5.2: Symbol assignment for sub-carriers in SFBC

47



The symbol assignment of the first OFDM symbol vector is illustrated in the Figure 5.2.

The mapping scheme for SFBC is chosen such that on the first antenna the original data are

transmitted without any modification, and the data symbol mapping for the second antenna

has to be modified, according to the Table 5.2.

The encoded data are passed through a serial to parallel block where data are regrouped

according to the number of the sub-carrier and frequency. After removing the cyclic prefix

at the receiver side, the FFT output as the demodulated received signal for sub-channels n,

n+ 1 can be expressed as,

rn = H1,n · sn −H2,n · s∗n+1 + nn

rn+1 = H2,n+1 · sn+1 +H2,n+1 · s∗n + nn+1

(5.1)

where nn denotes the AWGN noise in the sub-carrier n, with zero mean and variance of

σ2 and Hm,n is the flat fading coefficient of the sub-channel n assigned to the m antenna.

As OFDM systems are designed to provide flat fading per sub-channel, the fading between

adjacent sub-carriers is inherently considered also as flat. Therefore, one can considers that

adjacent sub-channels in the OFDM spectrum have the same channel transfer function, H1,n =

H1,n+1 and H2,n = H2,n+1.

The Channel State Information (CSI) is needed at the receiver, i.e., the channels H1 and

H2 are needed in order to obtain the combined signals s̃n and s̃n+1,

s̃n = H∗
1,n · rn +H2,n · r∗n+1

s̃n+1 = −H2,n · r∗n +H∗
1,n · rn+1

(5.2)

the received signals may are sent to the maximum likehood detector,

s̃n = (|H1|2 + |H2|2)sn +H∗
1nn +H2n

∗
n+1,

s̃n+1 = (|H1|2 + |H2|2)sn+1 −H2n
∗
n +H∗

1nn+1.
(5.3)

From the equations above can be concluded that the interference caused by the following

data symbol is full eliminated. A demodulator may be applied to converts the soft estimated

symbols into the original bit stream.

48



5.1 Encoder and Decoder Alamouti

The whole work is demonstrated in this chapter. In the following the characteristics of

an Alamouti Encoder/Decoder projected for a MISO system are highlighted. We used the

System Generator from Xilinx to develop and test the Simulink model of the encoder and

decoder. Notably in the first phase of the work we resorted to a test chain - MISO, and

further on, both Alamouti blocks are included in a MISO-OFDM system which it is under

development by other researchers. Both chains were built using System Generator for DSP.

These two blocks will be added to the transmitter and to the receiver sides of each chain.

Alamouti Encoder

I

Q

DV

S(n), -S*(n+1) - Antena 1(I)

S(n+1), S*(n) - Antena 2(I)

S(n), -S*(n+1) - Antena 1(Q)

S(n+1), S*(n) - Antena 2(Q)

data_v alid

Alamouti Encoder

Figure 5.3: Alamouti Encoder

The Encoder block was built having as basis the code 2 from the Table 5.3, regardless of

the code used, the block must be able to parallelize a sequence of transmission (one stream

per antenna), and to encode each stream simultaneously. This way two symbols are encoded

in two instants/frequencies according to the Table.

Code 1

Time/Frequency Antenna 1 Antenna 2

n sn −s∗n+1

n+ 1 sn+1 s∗n

Code 2

Time/Frequency Antenna 1 Antenna 2

n sn sn+1

n+ 1 −s∗n+1 s∗n

Table 5.3: Alamouti coding: Code 1 and Code 2
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By using two well-defined structures, namely a configuration to perform serial data to

the Antenna 1 and another one to swap data/symbols to the Antenna 2, the sequence of

transmission is made parallel, making it possible to encode two streams at the same time

across independent antennas. This subject is analysed later on.

Note that the Alamouti coding encompasses two codes, namely code 1 and code 2. Both

are equivalent and can be applied in frequency or time domains as shown in the tables below.

Code 1 provides the original data on the first antenna, without any modification, being

compatible with systems where the second antenna is not implemented or switched off and is

the one used in LTE. Code 2 is considered the original code.

As depicted in the Figure 5.3, the Alamouti Encoder provides two input ports, I and

Q, representing ’in-phase’ and ’quadrature’ components of the signal respectively, in other

wordsthe real and imaginary part of the symbol. In addition, in order to have knowledge

of the beginning and end of the data stream it provides a signal of valid, DV. As the input

signal is made parallel by two antennas, the output of the block is now composed of five ports,

each set of two ports are assigned to each antenna according to the Alamouti coding, also

providing a DV signal.

According to the referred table the coding for each antenna/stream is different so, two

different configurations are used, namely one to swap and another configuration to perform

serial data/symbols. From both it is worth to say that the challenge lies on swapping

two data/symbols in consecutive instants/frequencies. Its application lies on three blocks:

Counter, Multiplexer and Delay, as shown in the Figure 5.4.

Figure 5.4: Necessary blocks to swap data

As a reply to this challenge, one can assume that:

• The output of the counter block is consecutively zero or one; which is connected to the
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input of the multiplexer.

• The multiplexer only has two entries of data (d0 and d1) and they are connected to each

other. By using these two blocks we can choose the first or the second instant/frequency

(n, n+1) to accomplish additional operations such as to deny the real and/or imaginary

part of the symbol.

• The first branch of the multiplexer (d0) has the delay block, in order to swap the symbol.

The explanation is further ahead.

An inverter block may be used in this configuration in one of the multiplexer branches (d0

and d1) in order to deny the real or imaginary part of the symbol. Since the major barrier

is to swap two data, the following drawing 5.5 suggests the implemented idea through the

blocks described above.

Figure 5.5: Applied Principle

It consists in applying the same signal in both entries of the multiplexer, so that the first

sequence is delayed by 2T in relation to the second one. Assuming that the counter starts at

zero, it chooses one data /symbol from the first sequence (d0) or from the second one (d1).

As result of that, two data are swapped and the output of the multiplexer is delayed in 1T

in relation to the input sequence.

On the other hand under the same assumptions above (excluding the delay block (2T)

on the first branch of the multiplexer) a counter, multiplexer and possibly an inverter block

are used for the second configuration, i.e., to perform serial data, in this situation there is no

delay in the sequence of transmission but due to the delay imposed by the other structure a

delay block is needed on its output in order to synchronize and to parallelize both structures,

as shown in the Figure 5.6.
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Figure 5.6: Blocks used to perform serial data/symbols

In order to clarify the structure of the encoder, indicated in the Figure 5.7, it is important

to remember the table 5.4.

Time/Frequency Antenna 1 Antenna 2

n sn sn+1

n+ 1 −s∗n+1 s∗n

Table 5.4: Alamouti coding: Code 2

Thus, one can say that in both structures the sequence of transmission is made parallel

by the two antennas. Moreover, it can be said that the structure serial data adapts to the

Antenna 1. The Table 5.4 tell us that it is necessary to deny the real part or imaginary part

of the symbol. In the serial data given by the Antenna 1 it is necessary to deny the real part

of the symbol, seeing that s = −(a + (jb)∗) ⇔ s = −a + jb where a and b are the real and

imaginary part, respectively. Therefore, an inverter block is added in the second branch of

the multiplexer (d1) while on the imaginary part no extra block is added as illustrated.

On the other hand, in what concerns the Antenna 2 it is only necessary to conjugate the

imaginary part of the symbol. When applying the structure to swap data the inverter block

is placed in d0 input of the multiplexer.

To guarantee the desired performance of the system, each counter presents a port enable,

to which the valid signal is connected. As the total delay of the system is 1T, this signal will

also be delayed in 1T.
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Figure 5.7: Structure of Alamouti Encoder

Decoder

The block was set up according to the equations of Alamouti decoding, which are reviewed

here, so, aiming to align the channels, the equations were reorganized in the following manner,

s̃n = h∗1,n+1rn + h2,nr
∗
n+1

s̃n+1 = −h1,nr∗1,n+1 + h∗2,n+1rn

(5.4)

As we can see, the channels are aligned in both instants/frequencies. From the equations

above one realizes that the block needs to have knowledge of the channel coefficients (h1

and h2), thus we assume that they are recovered perfectly at the receiver. Furthermore,

the channels between two adjacent frequencies or instants are considered highly correlated

from the start, meaning that hn = hn+1. From now the notation h1 and h2 to the channel

coefficients will be used for both instants/frequencies.

Once the received signals are in serial, as shown in the simplest case of Alamouti scheme

(2 Tx and 1 Rx), in the Figure 4.5 the same principle assumed to the encoder is applied. As

result of that, the serial sequence of transmission, in this case r is made parallel and may
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obtain rn/rn+1 and rn+1 /rn over two instants/frequencies through the well-defined structures

for the Encoder as the Figure 5.8 shows. The channels are provided in terms of magnitude

and phase at the Decoder block.

Therefore the proposed Decoder block lies on three steps:

• Let us consider the channels and the received signal from the equation (5.4) first, which

are coding separately. By using across the received signals the appropriate structure,

it is possible to adapt serial data configuration to the stream rn, r
∗
n+1 and to use swap

data configuration to the stream r∗n+1, rn. In Regard to the channels, the serial data

configuration is used since there is no swap.

Rn_Rn+1_I

Rn_Rn+1_Q

Mag_CH1

Ph_CH1

Mag_CH2

Ph_CH2

Data_v alid

Rn_Rn+1_I_serial

Rn_Rn+1_Q_serial

Rn+1_Rn_I_swapped

Rn+1_Rn_Q_swapped

Mag_CH1_out

Ph_CH1_out

Mag_CH2_out

Ph_CH2_out

DV

Decoding

} Channel 1

 Channel 2}

Figure 5.8: Decoding over the received signals and channels

Besides the DV signal at the input of the block there are another three sets of two ports,

each set corresponds to the incoming sequence, to the channel 1 and to the channel 2.

Once the data stream is made parallel, the output of the block presents two more

additional ports when compared to the input. A total of nine ports or four sets of two

ports plus the DV signal are provided to the next block as shown in the Figure 5.8.

The content of the block is now discussed and it is shown in the Figure 5.9. As already

mentioned the same reasoning of the Encoder is applied to the Decoder so that the

main difference between them lies on the fact that Alamouti coding is performed over

two streams separately, i.e., sn,−s∗n+1 and sn+1, s
∗
n while the Alamouti decoding lies on

four data streams, h∗1 · rn,−h1 · r∗n+1 and h2 · r∗n+1, h
∗
2 · rn.
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Figure 5.9: Structure of Alamouti Decoder

As it can be seen besides processing the received signals it should also process the

channels, h1 and h2. As two signals are multiplied (channels and received signals)

the signalling of the resulting arithmetic product may change. We consider that the

signalization presented in the equation is done over the received signals, meaning that

there is no change in the signalling of the channels.

This way, the case that deserves more attention is the one containing signalling, −h1 ·

r∗n+1 seeing that from the outcome of these two terms, we only consider the effect of

the signalization on the received signal. Thus, in the received signal, −r∗n only the real

part is denied since −(a+ (jb)∗) ⇔ −a+ jb. The imaginary part can be performed by

using a delay block since there is no need to use any structure and thus simplifying the

whole structure of the Decoder. This is taken into consideration for similar cases. On

the other hand, the structure of the channel h1 remains ’intact’, i.e, it is only necessary

to conjugate its phase on the first instant/frequency and the magnitude can be done by
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using the referred delay block.

It may be noted that the structure to swap data over the r∗n+1, rn stream presents an

inverter block at the d1 input of the multiplexer in order to deny the second received

signal, in terms of the real part of the signal, while there is no need to process any data

for the imaginary part. As for the channel h2, there is the need to deny its phase while

the magnitude can be performed with the delay block.

• After that, at each instant/frequency the encoded channels and the encoded received

signals are multiplied yielding two parts of the sum. The next figure 5.10 illustrates

this step.

The present correction blocks are able to multiply by using the Cordic block inside.

From the Figure 5.10 it may be stated that the coding of the channels/received signal

is done in such a way that the parameters of the equation (5.4) can be sent in parallel

to the correction block, which performs the multiplication as desired, i.e, as the two

squares show.
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Figure 5.10: The encoded channels and the encoded received signals multiplied
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• Finally, once obtained the two parts of the sum, i.e., h∗1 · rn and h∗2 · r∗n+1 at the n

instant/frequency and −h1 ·r∗n+1 and h∗2 ·rn at the n+1 instant/frequency, the resulting

sum gives a symbol estimate at each instant/frequency. Then, two soft estimated data

symbols are performed. The Soft data Normalized block is in charge to normalize

the sequence of transmission and the guidelines are given by the equation (5.3). The

structure of the Normalize block is shown below.

Figure 5.11: Structure of the Normalize block

As one can observe in Figure 5.11 the channel magnitudes are being taken into con-

sideration, so as to obtain the (|H1|2 + |H2|2) factor, which is precisely the power each

channel.
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Figure 5.12: Overall Decoder
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The Figure 5.12 encompasses all steps considered so far, specifically the incoming stream from

each correction (’channel’) is summed in terms of the real and the imaginary part to perform

the symbol estimate. The next two section envisions to test the proposed Encoder/Decoder

Alamouti blocks.

5.2 MISO chain simulated in Matlab

In order to validate the analized blocks they were integrated in the following MISO chain

illustrated in the Figure 5.13, as an equivalent block diagram of the Alamouti scheme with 2

Tx and 1 Rx.
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Figure 5.13: Alamouti Encoder/Decoder for MISO(2×1) in Matlab

The encoder is added to the transmitter side while the decoder is added to the receiver

side of the test chain.

Practical considerations in the established chain

• On the transmitter the typical Modulator block is replaced by Read-Only Memorys

(ROMs), where I and Q vectors represent real and imaginary part of the symbol. More-

over a signal of valid is provided to the Encoder, so that it may be able to detect the

beginning and the end of the sequence of transmission.
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• After encoding the data, it passes through the channels, namely Channel 1 and Channel

2 and then is summed according to the real and imaginary part of the symbol, and thus

obtaining the equations described in (4.4).

• The coefficient channels h1and h2 are represented by constants, specifically they can

assume values of magnitude greater or equal than 0.5 and lower or equal than 3. These

values are accomplished by using shift blocks to divide the signal, since the Cordic 4.0

blocks accept values between -1 and 1. For this reason for higher values of magnitude

it is necessary to add more shift blocks (to the right of a house) to guarantee the range

of the Cordic 4.0. The phase may assume any value.

• At the receiver side the already analysed decoder block is guided by the equation given

in 5.4.

With the purpose of testing the developed Encoder and Decoder blocks we considered the

equation 5.3 from which it can be concluded that, noise terms apart, if varying magnitude or

phase values of the channels the soft decision of data symbol it is still valid.

5.2.1 Results

The results of the deployed MISO chain with the inclusion of the Encoder and Decoder

blocks are presented and analysed in this section. One will consider the following parameters

to run the chain:

• The simulation is performed with time-scale of 1000;

• It is necessary to load the random I, Q vectors through a m-file;

• Six plots are displayed, so that the symbols estimates are shown in the first set of plots

and the valid signal propagates through the chain. The second set shows the input

signals of the system, shifted by 116T (the total time of the chain).

• In order to obtain more comparisons between the input of the chain and its output, it

is necessary to re-load the I and Q vectors seeing that they are randomized.

• In the simulation, two different values of magnitude and phase are assumed for the

channels.

• Two two simulations are made.
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In the first simulation, which concerns Channel 1, the magnitude is equal to 1, and phase

is equal to π
2 rad while as for Channel 2 these values are equal to 3 and π

10 rad respectively.

In the second simulation each channel assumes other values of magnitude and phase, namely

for Channel 1 these values are 3 and π
2 rad respectively and 3 and π

2 rad for Channel 2.

From the plots above one can consider that the input signals, namely real and imaginary,

correspond to the signal/symbol before passing through the encoder, while the output signal

represents the decoded signal, in other words, the symbol estimate. The input signal is

presented as a means of comparison to the output signal. From the simulations above, it

can be said that by varying the values of magnitude and phase in the channels, the soft

decision data symbol remains without change. Since symbol estimate depends on the factor

(|h1|2 + |h2|2) which corresponds to the power of each channel, the simulations above allow

us to conclude that the equation (5.3) is verified. Therefore it can be concluded that the

proposals for Encoder/Decoder presented were successfully performed and also that the chain

was well implemented.

5.3 MISO-OFDM chain

After testing the encoder and decoder in the previous test chain, the created blocks are

included in an OFDM system, more specifically in a MISO type OFDM chain. So as to do

that it is necessary to double the modulation OFDM channels. Besides that we have to clear

the sequence of transmission which results from the two antennas, given that it contains not

only data but also the pilots of each antenna.

The supplied MISO chain does not follow the LTE specifications to their full extent, for

it is not necessary to be so rigid in LTE PHY for testing purposes. Thus, the bandwidth

used is close to 10 MHz (the LTE offers bandwidth options that range from 1.25 to 20 MHZ),

which results in a total of 50 PRBs per slot. The utilized frame is based only on the first

transmission slot. Note that each slot may contain 6 or 7 OFDM symbols, in this case we

used 6 OFDM symbols.

Path Delay 1 (ns) Delay 2 (ns) Relative Power (dB)

1 0.0 0.0 0.0

2 89.28 (T) 65.1 (T) -0.7

3 267.86 260.4 (4T) -0.8

Table 5.5: System parameters of the MISO chain
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The applied channels are considered to be uncorrelated, this way they are based on the

stapped delay line model in agreement to the Table 5.5. A model with 3-n tap is considered.

The next table summarizes the main characteristics of the considered MISO-OFDM sys-

tem.

Baseband sampling frequency/Bandwidth 15.36 MHz / 10 MHz

FFT size/Number of used subcarriers 1024/606

Modulation QPSK and 16-QAM

Coded bits per sub-carrier/Coded bits per symbol 2/1332 (random) and 4/2664 (random)

Useful symbol duration (µs) 66.66 (1024 T)

Prefix Cyclic (µs) 16.667 (256 T)

Overall symbol duration (µs) 83.3267 (1280 T)

Sub-carrier separation (kHz) 15

OFDM symbols per block 3

IF sampling frequency/Central frequency 61.44 MHz/7.68 MHz

Table 5.6: System parameters of the MISO chain

5.3.1 Results

With the addition of the block created in this chain, one can say that the encoder and de-

coder remain unchanged when compared with the chain used previously. Thus, only the total

delays of the chain and their respective magnitude and phase of the channels are considered,

being that these values have to be within the defined range of the Cordic block.

The next two figures, namely Figure 5.20 and Figure 5.21 illustrate the MISO chain with

the encoder and decoder included at the transmitter and receiver side, respectively and are

shown at the end of the document.

Firstly, the signal QPSK is evaluated before and after the Normalize block. Further on,

we vary the amplitude of the transmitted signal.

As far as the plot 5.16 is concerned, one can say that the ’X’ displayed in the constellation

demonstrates that the magnitude of the channels are not corrected.
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Figure 5.16: QPSK signal before the Normalize block

Figure 5.17: QPSK signal after the Normalize block

From the Figure 5.17 it can be observed that the magnitude of the QPSK is corrected.

Finally, the signal QPSK amplitude is changed to the double.
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Figure 5.18: QPSK signal before the Normalize block

Figure 5.19: QPSK signal after the Normalize block

It can be concluded that by varying the amplitude of the signal, it remains unchanged

which demonstrates that the Normalize block can correct the magnitude of the signal and

also that the equation 5.3 is verified.
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Figure 5.20: MISO chain with inclusion of the encoder

Figure 5.21: MISO chain with inclusion of the decoder
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Chapter 6

Conclusions and Future Work

In this work we proposed an Alamouti encoder/decoder that follows closely the LTE

physical layer specifications. In order to test the blocks they were included in two different

chains, given that off the obtained results in each of them, one can conclude with certainty

that the blocks work properly since they are able to encode/decode a QPSK signal. In order

to correct the magnitude of the signal, we developed a Normalize block according to the

equation (5.3).

The developed blocks will be implement in a FPGA so as to be used on a wireless tested,

specifically on a developing MISO chain.
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