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Palavras-chave 

 

Hemocromatose hereditária, sobrecarga de ferro, stress oxidativo, 

1,2:3,4- diepoxibutano, bleomicina, instabilidade cromossómica 

Resumo 

 

O ferro é um dos elementos chave para as funções celulares 
básicas. Se a sua homeostasia não for corretamente mantida, poderá 
ocorrer uma sobrecarga de ferro no organismo. Os doentes com 
Hemocromatose Hereditária (HH), com a mutação C282Y no gene HFE, 
possuem uma progressiva e severa sobrecarga de ferro que, se não for 
tratada, pode levar a dano nos tecidos, podendo mesmo culminar em 
cirrose hepática e carcinoma. Tendo em conta que o dano tecidular pode 
estar associado ao stress oxidativo (OS) causado pela sobrecarga de 
ferro, é importante perceber de que modo atua o sistema de defesa 
contra o OS nas células dos doentes HH com forma severa de 
sobrecarga de ferro. Poucos estudos foram realizados sobre o potencial 
estado oxidante nas células do sangue, onde se encontra uma das 
maiores fontes de reações oxidativas. Contudo, num estudo recente foi 
demonstrado que linfócitos de doentes com HH, quando comparados 
com linfócitos de controlos e pacientes com formas secundárias de 
hemocromatose, apresentam uma maior proteção relativamente à 
instabilidade cromossómica (CI) induzida por 1,2:3,4 diepoxibutano 
(DEB) – um agente alquilante que provoca OS. Este estudo sugere uma 
resposta adaptativa das células HH a níveis elevados de OS. No 
entanto, ainda não se sabe se esta mesma resposta pode ser observada 
com outras fontes de toxicidade do ferro, nomeadamente na presença 
de bleomicina (BLM) cuja atividade depende da formação de complexos 
com o ferro não ligado à transferrina (NTBI). 

Para compreender melhor o estado oxidante das células do 
sangue dos doentes HH e a suposta resposta adaptativa das células dos 
doentes de HH à toxicidade do ferro, foi feita a análise de dois 
parâmetros de OS selecionados: avaliação da depleção da glutationa 
reduzida (GSH) e da peroxidação lipídica (LPO). Esta análise foi 
efetuada em eritrócitos (RBC) e linfócitos (LY), tanto no tempo 0 como 
passadas 36h em cultura, com ou sem indução de OS. O segundo 
objetivo deste trabalho foi testar se a BLM promove uma resposta 
adaptativa à CI comparável à que foi observada com o DEB.  

Tanto a caracterização dos parâmetros de OS como os estudos 
de CI foram efetuados em células de 5 doentes com HH, com elevada 
sobrecarga de ferro, e em células de 6 dadores saudáveis (HD). 

Os resultados mostraram que os RBC dos doentes com HH, 
comparativamente com os dos HD, apresentam uma maior depleção de 
GSH e maior LPO, quer ao dia 0 quer após 36h em meio de cultura. 
Estes resultados sugerem um aumento de OS nos RBC dos doentes. 
Contrariamente, os LY dos doentes de HH apresentaram menor 
depleção de GSH após 36h de cultura, sendo esta mais notória nas 
culturas induzidas com DEB e BLM. Adicionalmente, os níveis de LPO 
são menores em LY dos doentes de HH, após 36h de cultura, 
comparativamente com os dos HD. Isto sugere que culturas de LY, quer 
não-tratadas quer tratadas com DEB ou BLM, têm um algum tipo de 
mecanismo de defesa contra o OS, ainda não compreendido. A 
frequência de CI induzida por BLM em LY de doentes com HH não é 
significativamente diferente da observada em LY de HD, não se 
observando assim uma diferença na capacidade de resposta à BLM, 
entre células de doentes e controlos. Pode-se então concluir que a 
toxicidade induzida por BLM não aumenta a CI em células de doentes 
com HH com forma severa de sobrecarga de ferro. 
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Abstract 

 

Iron is a key element for basic cellular functions. If iron 

homeostasis is not maintained it may lead to iron overload. Patients with 

Hereditary Hemochromatosis (HH) and with the C282Y HFE mutation 

have a progressive severe iron overload that, if it is not treated, may lead 

to tissue damage, that mostly culminate in hepatic cirrhosis and 

carcinoma. Having in mind that  tissue damage in HH may be related with 

oxidative stress (OS) caused by iron toxicity, it is important to understand 

in what way the OS defense is acting in cells from HH patients with 

severe forms of iron overload. Few studies have been performed 

concerning the eventual prooxidant state in blood cells, which bear a 

major source of OS. Nevertheless, in a recent study it was shown that 

cultured lymphocytes (LY) from HH, when compared with cultured LY 

from controls and patients with secondary forms of hemochromatosis, 

have an increased protection against chromosome instability (CI) induced 

by 1,2:3,4 diepoxybutane (DEB) – an OS-related alkylating agent. This 

suggests an adaptive response of HH cells to the high level of OS. 

However, it is not known yet if the same response can be observed with 

other sources of iron toxicity, namely in the presence of bleomycin (BLM), 

that acts forming a complex with non-transferrin bound iron (NTBI). 

In order to better understand the oxidant status of HH blood cells 

and the putative adaptive response of HH cells to iron toxicity, a study 

was performed to characterize two selected OS parameters: evaluation of 

reduced glutathione (GSH) depletion and of lipid peroxidation (LPO). The 

study was performed in red blood cells (RBC) and lymphocytes (LY), 

either basal and after 36h in culture, with and without induction of OS. 

Induction of OS was performed with DEB and with BLM. A second 

objective of the present work was to test if the previously observed 

adaptive response of HH cells to DEB-induced OS can also be observed 

after induction with BLM.  

Characterization of the OS parameters was performed in RBC 

and LY from 5 HH patients with severe iron overload and 6 healthy 

donors (HD), at day 0 and after 36h of culture, non-treated and treated 

with DEB or BLM. Studies of CI were performed in BLM-induced LY from 

the same 5 HH patients and 6 HD. 

The results show that RBC from HH patients, compared with 

those from HD, have a larger GSH depletion and more LPO, either at day 

0 and after 36h in culture medium. This suggests an increased level of 

OS in HH RBC. On the contrary, LY from HH patients present less GSH 

depletion after 36h of culture than LY from HD, being this effect more 

pronounced in DEB and BLM-treated cultures. Additionally, LPO levels 

were decreased in LY from HH patients after 36h of culture when 

compared with LY from HD. This result suggests that HH cultured LY, 

either non-treated or treated with DEB and BLM, have a still not 

completely understood mechanism of defense against OS. BLM-induced 

CI in cultured LY from HH patients was not different from the observed in 

cultured LY from HD. Therefore, we can postulate that toxicity induced by 

BLM did not increased CI in cells from HH patients with severe iron 

overload. 
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Abbreviations 

•OH – hydroxyl radical,  

BLM – bleomycin  

BMP – bone morphogenetic protein  

C/EBPα – CCAAT/enhancer-binding protein α 

CAT – catalase 

CHOP – C/EBP homologous protein 

CI – chromosome instability  

CREBH – cyclic AMP response element-binding protein H 

DCYTB – duodenal cytochrome b 

DEB – 1,2:3,4 diepoxybutane  

DMT – divalent metal transporter  

DNA – deoxyribonucleic acid
 

DTNB – 5,5-dithio-bis (2-nitrobenzoic acid)  

EDTA – ethylenediamine tetra-acetic acid 

Fe – iron 

GPx – glutathione peroxidase 

GR – glutathione reductase 

GSH – reduced glutathione   

GST – glutathione transferase  

H2O2 – hydrogen peroxide 

HCL – hydrochloric acid 

HD – healthy donors 

HFE – hemochromatosis gene 

HFE – hemochromatosis protein 

HH – hereditary hemochromatosis 

ICL – inter-strand cross-links  

IL – interleukin  

IRE– iron-responsive elements 

IRP – iron regulatory proteins 

KCL – potassium chloride 

LIP – labile iron pool 

LPO – lipid peroxidation 
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LY – lymphocytes 

MAP – mitogen-activated protein kinase 

MHC – major histocomptability complex 

NADPH – nicotinamide adenine dinucleotide phosphate 

NO• – nitric oxide, 

NTBI – non-transferrin bound iron  

O2•
-
 - superoxide 

ONOO
–
 – peroxynitrite 

OS – oxidative stress 

PBS – phosphate buffer sodium 

PL - plasma 

RBC – red blood cells 

ROS – reactive oxygen species  

RT – room temperature  

SEM – standard error mean 

SH – thiol group 

SLC – soluble carrier 

SMAD – Sma and Mad related family 

SOD – superoxide dismutase  

STAT – transducer and activator of transcription 

TBARS – thiobarbituric acid-reactive substance 

Tf – transferrin 

TfR – transferrin receptor  

TLR – toll-like receptor 

TS – transferrin saturation  

wb – whole blood  
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1 Iron 

Iron is a key element for basic cellular functions. It is used as a cofactor for 

fundamental biochemical activities, such as oxygen transport, energy metabolism and 

DNA synthesis. Due to flexible coordination chemistry and redox activity, iron allows 

protein binding, electrons transferring or catalytic reactions mediation (Galaris & 

Pantopoulos, 2008). However, these chemical reactions induce the production of 

reactive oxygen species (ROS), and the generation of highly reactive radicals (such as 

the hydroxyl radical (•OH)) through Fenton chemistry (Koppenol, 1993), which may 

lead to oxidative stress (OS) and cellular damage (Galaris & Pantopoulos, 2008). Iron 

levels within cells must be precisely regulated to promote essential functions and 

provide an appropriate abundance to maintain adequate stores and concomitantly 

minimize the risk of potential toxicity (Hershko, 2007; Mackenzie et al., 2008). The 

majority of body iron (at least 2.1 g) is inside the hemoglobin of red blood cells (RBC) 

used during erythroipoiesis and oxygen transport. Significant amounts are also present 

in macrophages (up to 600 mg) and in the myoglobin of muscles (∼ 300 mg), whereas 

excess body iron (∼ 1 g) is stored in the liver (Olsson & Norrby, 2008) (Figure 1).  

 

 

Figure 1 – Distribution of iron in adults (original figure) 
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There are no mechanisms for iron excretion; iron is only lost during bleeding or 

sloughing of mucosal and skin cells. Thus, balance must be maintained by a rigid 

control of dietary iron absorption.  

1.1 Metabolism of iron 

A typical human adult absorbs 1–2 mg of iron per day from the diet (Moyer et 

al., 2011). Iron is taken up from the lumen of the intestine by the duodenal villus cells 

involving reduction of Fe
3+

 by ferric reductases, such as DCYTB (duodenal cytochrome 

b). The subsequent transport of Fe
2+

 across the apical membrane of enterocytes is done 

by DMT1 (divalent metal transporter 1), a membrane-bound protein transporter 

(SLC11A2 group). Fe
2+

 is processed by the enterocytes and exported, through 

ferroportin (SLC11A3 group), across the basolateral membrane into the bloodstream. 

The ferroportin-mediated efflux of Fe
2+

 is coupled by its re-oxidation to Fe
3+

, catalysed 

by the membrane-bound hephaestin or a copper ferroxidase homologous ceruloplasmin 

present in plasma (Yeh et al., 2009). The Fe
3+ 

binds to apo-transferrin to form 

transferrin (Tf) which circulates in the blood serum and serves to transport iron to other 

organs, maintaining Fe
+3 

in a redox-inert state (Nelson et al., 2010) (Figure 2). 

 

Figure 2 – Iron import, utilization and export pathways by enterocytes (Kucukakin et al., 2011) 
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The ferroportin-mediated efflux of Fe
2+

 is negatively regulated by hepcidin, a 

liver-derived peptide hormone that binds to ferroportin and promotes its 

phosphorylation, internalization and lysosomal degradation (Nemeth & Ganz, 2009). 

Hepcidin accumulates following iron intake and under inflammatory conditions, 

resulting in decreased dietary-iron absorption and iron retention in macrophages. 

Iron activates the expression of BMP6 (bone morphogenetic protein 6) in the 

liver (Kautz et al., 2008) and intestine (Arndt et al., 2010) which leads to 

phosphorylation of SMAD1/5/8 (Sma and Mad related family) and translocation of 

SMAD4 to the nucleus (Figure 3), where it promotes hepcidin transcription upon 

binding to proximal and distal sites on its promoter (Kautz et al., 2008).  

 

 

Figure 3 – The hepcidin iron-sensing machinery (Pietrangelo, 2010) 

Furthermore, basal hepcidin transcription requires C/EBPα (CCAAT/enhancer-

binding protein α) (Courselaud et al., 2002). Ramey and co-workers (Ramey et al., 

2009) proposed that hepcidin responds to increased Tf saturation by a mechanism 

requiring a cross-talk between BMP and MAP (mitogen-activated protein kinase) 

signalling. Supplementary cofactors are needed, including the hemochromatosis protein 

(HFE), TfR2 and the BMP co-receptor hemojuvelin (Lee & Beutler, 2009). The 
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cytokine IL-6 (interleukin-6) induces hepcidin transcription via STAT3 (signal 

transducer and activator of transcription 3) phosphorylation and translocation to the 

nucleus for binding to a proximal promoter element (Fleming, 2008) while IL-1β 

activates hepcidin via the C/EBPα and BMP/SMAD pathways (Matak et al., 2009). 

Stress in endoplasmic reticulum activates hepcidin transcription via CREBH (cyclic 

AMP response element-binding protein H) (Vecchi et al., 2009) and/or CHOP (C/EBP 

homologous protein) (Oliveira et al., 2009). In macrophages lipopolysaccharide can 

also promote autocrine activation of hepcidin through TLR4 (Toll-like receptor 4) 

signalling (Peyssonnaux et al., 2006). Downregulation of hepcidin involves EPO 

(erythropoietin) signalling, which promotes the decreased binding C/EBPα to its 

promoter (Pinto et al., 2008). The cellular storage of iron mainly involves ferritin. One 

molecule of ferritin provides storage space for up to 4500 Fe
3+

 ions in the form of ferric 

oxy-hydroxide phosphate. Iron stored within ferritin is considered to be bioavailable 

and may be mobilized for metabolic purposes(Wang & Pantopoulos, 2011). 

The process of cellular iron uptake and storage is regulated by iron regulatory 

proteins (IRP), cytosolic trans regulators able to bind to specific RNA stem-loop 

structures called iron-responsive elements. The first binding mechanism is an iron–

sulphur cluster [4Fe–4S] converting IRP1 to the cytosolic isoform of aconitase. A 

second mechanism depends on chelatable labile iron pool (LIP) mediated degradation of 

the IRP1 apoprotein (reviewed in (Wang & Pantopoulos, 2011)). The iron regulates the 

level of the ubiquitin ligase that is responsible for IRP2 degradation (Nicolas et al., 

2003). 

LIP is defined as a low-molecular weight pool of weakly chelated iron that 

rapidly passes through the cell. LIP represents only a minor fraction of the total cellular 

iron (3–5%). For instance, citrate, phosphate and other organic ions, carbohydrates and 

carboxylates, nucleotides and nucleosides, polypeptides and phospholipids are some of 

the ligands with low affinity to iron ions (Marcin, 2003). 

 

If one or more components of the blood iron-sensing machinery fail, iron 

homeostasis is not maintained, which may lead to an iron overload in some tissues. 
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1.2 Iron overload and OS 

ROS and reactive nitrogen species, such as •OH, H2O2, superoxide (O2•
–
), nitric 

oxide (NO•), peroxynitrite (ONOO
–
), and others, are major sources of OS in cells 

(Orrenius et al., 2007). When reactive species are present as a result of OS, redox active 

metal ions localized or bound to the DNA react to form highly reactive •OH in 

immediate proximity to deoxyribonucleic acid (DNA). •OH then abstracts the 4’ 

hydrogen atom from the deoxyribose sugar backbone, leaving a DNA radical adduct 

that rearranges, ultimately cleaving the phosphodiester backbone and resulting in strand 

scission (Perron & Brumaghim, 2009). DNA damage of both types (strand breakage or 

base damage) can ultimately result in genetic mutations, cancer, or cell death (Jomova 

& Valko, 2011).  

 

Iron-mediated DNA damage is primarily thought to originate from solvated iron 

that is not bound to proteins (such as hemoglobin, Tf, or ferritin (Andrews, 2004)). In an 

iron-overload situation the levels of plasma iron exceed the saturation capacity of Tf, 

promoting the accumulation of the non-transferrin-bound iron (NTBI). NTBI was 

shown to promote the formation of free •OH and to accelerate the peroxidation of 

membrane lipids in vitro, consequently leading to OS followed by DNA damage.  

Cells contain a large number of protective agents and defense mechanisms to 

prevent or repair the damage caused by ROS, and also to regulate redox-sensitive 

signaling pathways. Antioxidants are typically categorized in the following categories: 

Small molecule antioxidants – including both water-soluble compounds, such as 

Vitamin C or glutathione, and lipid soluble compounds, such as Vitamin E, carotenes, 

lipoic acid, and Coenzyme Q10; Large molecule “enzyme” antioxidants – such as 

superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) (Sies, 

1991); Preventive antioxidants – including albumin, metallothionine, Tf, ceruloplasmin, 

myoglobin, and ferritin which delay the formation of new ROS, protecting the essential 

proteins (Anikó et al., 2007).  

SOD is an important endogenous antioxidant enzyme acting as the first line 

defense system against ROS, catalyzing the dismutation of O2•
-
 in to H2O2. CAT is 

usually located in the peroxisome and decomposes H2O2 into H2O and molecular 

oxygen. GPx is present in the cytoplasm of the cells, and catalyses the reduction of 

H2O2 to H2O, with the simultaneous oxidation of reduced glutathione (GSH). GSH is a 
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tripeptide and a powerful antioxidant present within the cytosol of cells and is the major 

intracellular non-protein thiol (SH) compound. SH groups of GSH react with H2O2 and 

•OH, preventing tissue damage. Glutathione reductase (GR) is a flavoprotein enzyme 

that regenerates GSH from oxidized glutathione in the presence of NADPH 

(Nicotinamide adenine dinucleotide phosphate). Vitamins C and E are non-enzymatic 

endogenous antioxidant present within normal cells that react with free radicals to form 

less reactive radicals (Siems et al., 2000; Pandey & Rizvi, 2011). Glutathione 

transferase (GST) is one of the most important antioxidants present in blood cells, 

which catalyzes the conjugation of GSH with electrophiles (carbon, oxygen, nitrogen). 

Isoenzymes expression of GST in tissues is very different and sometimes their depletion 

is associated with various pathologies.  

 

In an iron-overload situation defense mechanisms against OS are essential to 

prevent the consequences of DNA damage in tissues. Therefore, in disorders presenting 

very severe forms of iron overload, where tissue damage already occurs, it is important 

to understand in what way the OS defense is acting.  

2 Hemochromatosis  

2.1 Disorders of iron overload 

Iron storage/overload disorder was first described in 1865 by the French 

physician Armand Trousseau, from an autopsy of a patient with diabetes presented with 

“bronze-like appearance”. The liver was “granular, of a uniform greyish-yellow colour, 

and very dense”(Trousseau, 1865). In 1889 the German pathologist Friedrich Daniel 

Von Recklinghausen proposed the term “hemochromatosis” (Von Recklinghausen, 

1889), which was associated to iron metabolism for the first time in 1935 by Joseph H. 

Sheldon (Sheldon, 1935). 

Currently, hemochromatosis is defined as iron overload with a primary or 

secondary cause. Primary iron overload is associated to hereditary iron overload 

disorder. The term secondary iron overload is used to describe additional mechanisms 

which origin an iron overload with no genetic basis: metabolic problems that improve 

the continuous iron uptake by enterocytes may lead to a high storage into body; a 

combination of excess iron absorption and red cell transfusions, as well as iatrogenic 
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iron therapy, can facilitate a secondary iron overload; the end-stage liver disease (Cotler 

et al., 1998) caused by excess alcohol consumption (Fletcher et al., 2003) and/or 

chronic hepatitis C (Ludwig et al., 1997) may also cause secondary iron overload . A 

differential diagnosis of iron overload in Human is shown in Table 1. 

Table 1 – Human diseases associated with iron overload (adapted from (Janssen & Swinkels, 2009)) 

Hereditary iron overload Acquired iron overload Other 

 HFE-associated HH (type 1) 

 C282Y homozygosity 

 Or C282Y/H63D compound heterozygosity 

 Non-HFE-associated HH 

 Type 2A hemojuvelin mutations 

 Type 2B hepcidin mutations 

 Type 3 TfR2 mutations 

 Type 4 ferroportin mutations 

 Other 

 H-ferritin IRE 

 Hemoxygenase deficiency 

 Neonatal iron overload 

 Aceruloplasminemia 

 Congenital atransferrinemia or 

hypotransferrinemia 

 DMT1 mutations 

 Iron loading anemias 

 Ineffective erythropoiesis 

 Thalassemic syndromes 

 Sideroblastic anemia 

 Myelodysplastic syndrome 

 Congenital dyserythropoiesis 

 Increased erythropoiesis 

 Chronic hemolytic anemia 

 Parenteral iron overload 

(including multiple blood 

transfusions) 

 Metabolic syndrome 

 Obesitas 

 Hypertension 

 Insulin resistance 

 Chronic liver disease 

 Hepatitis 

 Alcohol abuse  

 Non-alcoholic 

steatohepatitis 

 Porphyria cutanea tarda 

 Iron overload in sub-

Saharan Africa 

2.2 Hereditary hemochromatosis 

Hemochromatosis, as familiar disorder, was first described by Boulin & Bamberger 

in 1953 (Boulin, 1953); twenty years later Simon et al (Simon et al., 1975; Simon et al., 

1976; Simon et al., 1977) confirmed that hemochromatosis is linked to the major 

histocompatibility complex (MHC) on chromosome 6. The identification of the 

Hereditary Hemochromatosis (HH) gene came only in 1996, and was located in the 

short arm of chromosome 6 (Feder et al., 1996), firstly called HLA-H and then renamed 

HFE (to avoid confusion with an HLA pseudo-gene already called HLA-H) (Bodmer et 

al., 1997). Nowadays it is known that hemochromatosis gene (HFE) encodes an HLA-A 

class 1-like protein and is located on 6p21.3, (Figure 4) with 4 megabases (Mb) 

telomeric in the human leukocyte antigen region (HLA).  
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Figure 4 – Chromosome 6, an approximate location of HFE (original figure) 

The HFE mutation C282Y is the most commonly found in hemochromatosis, 

being present in homozygosity in 90 to 95% of all cases, with a prevalence among white 

subjects of 1:200 to 1:300 (Merryweather-Clarke et al., 1997). It is a single mutation of 

G to A at nucleotide 845, resulting in the substitution of tyrosine for cysteine at amino 

acid 282, known as the Cys282Tyr (Feder et al., 1996). This mutation disrupts a 

disulfide bond that is required for HFE to bind β2-microglobulin and is transported to 

the cell surface and endosomal membranes, where it interacts with TfR1, forming a 

complex which is affected by intracellular levels of iron (Schmidt et al., 2008). In the 

presence of increased saturation of serum Tf, HFE dissociates from TfR1 and is free to 

bind TfR2. HFE interacts also with TfR2 forming an iron-sensing complex that 

modulates hepcidin expression in response to blood levels of diferric Tf (Goswami & 

Andrews, 2006). 

Currently, HFE related HH is defined by the presence of C282Y in 

homozygosity, together with the presence of liver iron overload. In spite of the 

progressive and severe iron overload, the clinical presentation may be variable, ranging 

from simple biochemical abnormalities to severe organ damage. Several studies aimed 

to understand the cause of this variability. In a recent paper it was shown that the setting 

of CD8
+
 T-lymphocytes numbers can be a relevant modifier of the phenotypic 

expression in HH. In fact, in a previous study it was already shown that a large 

proportion of HH patients have consistently low CD8
+
 T-lymphocyte numbers 

correlating with a more severe expression of iron overload (Reimao et al., 1991; Porto 
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et al., 1994; Porto et al., 1997; de Sousa & Porto, 1998). Low total lymphocyte counts, 

reflective of low CD8
+
 T-cell counts, were also shown in HH patients from the north of 

Portugal (Porto et al., 2001) and from Alabama (United States) (Barton et al., 2005). 

The first diagnostic phase of HH is the measurement of serum iron, Tf and 

ferritin; serum ferritin levels > 200 µg/L in women or > 300 µg/L in men, and 

transferrin saturation (TS) > 45% in women or > 55% in men, are the criteria for case-

finding (Pietrangelo, 2010). TS is the most sensitive parameter for identification of 

susceptibility for HH (Janssen & Swinkels, 2009). If the TS is increased a genetic 

evaluation should be done. When HFE test is positive, iron overload can be followed by 

magnetic resonance imaging evaluation – a non-invasive technique useful for 

identification and management of these disorders. However a negative HFE test does 

not exclude the possibility of a subject developing phenotypic disease. Therefore 

hyperferritinemia unrelated to iron overload must be excluded as well as secondary iron 

overload or other disorders such as hepatocyte injury, alcoholic or viral hepatitis, or 

systemic inflammatory disorders. In these cases, it would be important a liver biopsy 

histological evaluation. 

2.2.1 OS and cancer in HH patients 

The most common complications of non-treated HH are hepatic cirrhosis, 

cardiomyopathy, diabetes mellitus and arthropathy. They may have increased 

predisposition to malignancy, particularly liver cancer. Up to 30 percent of patients who 

develop cirrhosis will develop liver cancer, which is the leading cause of death. In 

addition, some studies have linked HH to nonhepatic malignancies, including 

esophageal cancer, colorectal cancer, malignant melanoma and lung cancer, although 

with conflicting evidence. Nevertheless, HH is not associated with an increased 

predisposition to hematologic malignancies.  

It is well established that tissue damage and cancer development in HH is related 

with OS caused by excessive iron overload. Free iron is a potent promoter of •OH 

formation that can cause increased lipid peroxidation (LPO) and depletion of chain-

breaking antioxidants (e.g. GSH). In fact, iron overload in HH has recently been 

demonstrated to inflict OS, measured as high levels of the LPO product 8 -

isoprostaglandin F2α in urine (Broedbaek et al., 2009). The result can be free radical 

damage to tissues such as liver (Crawford et al., 2012), pancreas (Cooksey et al., 2004), 
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heart (Shizukuda et al., 2011), joints (Lynch & Soslau, 2011), and skin. Such oxidative 

damage in tissues may contribute to the clinical manifestations seen in HH (Franchini, 

2006). Antioxidant enzymes such as GSH are a primary defence mechanism for 

preventing damage by ROS being also important for detoxification of drugs and 

environmental toxins (Schafer & Buettner, 2001). In iron overload situations, if activity 

of GSH is reduced, it can result in an increase of OS and hence influence progression of 

the disease. Therefore, LPO and GSH evaluations may be valuable parameters for the 

study of OS in cells from HH patients. At present, few studies have been performed 

concerning the eventual prooxidant state in blood cells, namely in red blood cells 

(RBC), which bear a major source of iron and in lymphocytes (LY) where the presence 

of NTBI can be a source of OS. 

2.2.2 Chromosome instability in cells from HH patients 

Chromosome instability (CI) is defined as a persistently high rate of numerical 

and structural alterations in chromosomes. It can occur when somatic mutations are not 

repaired, either by excess of mutagens, mainly ROS, or deficiencies in DNA repair. In 

HH, iron overload enhances the formation of ROS, and consequently may increase CI, 

which can culminate in a higher predisposition to cancer development. Most human 

cancers are characterized by CI. Indeed, when CI involves genes related with 

chromosome condensation, sister chromatid cohesion, kinetochore structure and 

function, microtubule formation and dynamics as well as checkpoints that monitor the 

progress of cell cycle, the regulation of cell proliferation will be affected (Nasmyth, 

2002). 

Nordenson and co-workers observed for the first time an increase in spontaneous 

CI in lymphocytes from hemochromatosis patients (Nordenson et al., 1992). At time, 

the genetic basis of hemochromatosis was not known, so the study population was not 

HFE genotyped. Almost 20 years later, Porto and co-workers observed in lymphocytes 

from HH patients with C282Y HFE mutation also an increase of CI when compared 

with lymphocytes from HD (Porto et al., 2009).  

For the study of pathologic situations associated with increased susceptibility to 

CI, two approaches can be performed: 1. detection of spontaneous chromosome breaks; 

2. detection of chromosome breaks induced by specific genotoxic agents. At present, 

two agents are used in cytogenetic assays for the study of situations with 
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hypersensitivity to OS: the antibiotic bleomycin (BLM) and the alkylating agent 1,2:3,4 

diepoxybutane (DEB).  

BLM is a glycopeptide antibiotic with anticancer properties produced by 

Streptomyces verticillus. It was identified in 1966 (Umezawa et al., 1966), and one of 

its mechanisms of action is breaking the DNA double helix by the production of free 

radicals, a process that is oxygen and iron dependent. High concentrations of BLM 

arrest cells in the G2/M phase of cell cycle, leading to cell death. However, recent 

studies showed that lower concentrations of BLM induce over-replication (Nakayama et 

al., 2009). It is commonly used in cytogenetic assays as a radiomimetic agent that 

causes CI. It is also used for measuring non-transferrin bound iron (NTBI); in the BLM 

assay, the BLM reacts with NTBI forming BLM-iron complex which releases OH⋅ and 

promotes DNA damage. 

DEB is a genotoxic metabolite of 1,3-butadiene produced by further epoxidation 

of 1,2-epoxybutane (Vlachodimitropoulos et al., 1997). It is also a bifunctional 

alkylating agent, being capable of inducing the formation of monoalkylated DNA 

adducts, DNA cross-links, mainly inter-strand cross-links (ICL) and DNA–protein 

cross-links. DEB-induced cytotoxicity has been related to oxidative damage. Korkina 

and co-workers (Korkina et al., 2000) identified, for the first time, the redox-dependent 

toxicity of DEB. In fact, DEB-induced DNA-DNA and DNA-protein cross-links are a 

characteristic feature of ROS-mediated damage (Michaelson-Richie et al., 2010). 

Therefore, DEB is routinely used in CI studies related with prooxidant situations. 

In a recent work Porto (Porto et al., 2009) reported that cultured lymphocytes 

from HH patients have lower CI induced by DEB when compared with both controls 

and patients with secondary forms of hemochromatosis. This suggests a still not 

completely understood adaptive response of HH cells to the high level of OS. Adaptive 

response has already been observed in other situations, in response to a high dose of a 

cytotoxic agent after repeated low-dose exposure. In order to better explore the adaptive 

response hypothesis in HH cells, further studies are needed, involving OS-related agents 

other than DEB. BLM is a good candidate, own to its affinity to NTBI in lymphocytes. 
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As previously discussed, tissue damage in HH is described to be related with OS 

caused by excessive iron overload. Thus, it is important to understand how the OS 

defense mechanisms are acting in cells of HH patients with severe forms of iron 

overload. Few studies have been performed concerning the eventual prooxidant state in 

blood cells. Therefore, the first aim of the present study was to evaluate the OS though 

measurement of OS parameters in LY and RBC, which bear various sources of OS, 

from HH patients with severe iron overload. For this purpose: two selected OS 

parameters (GSH levels and LPO) were determined in RBC and LY from HH patients 

and healthy donors, at day 0 (basal level) and after 36 hours in culture (non-treated and 

treated with DEB or BLM). 

 

It has already been described that cultured LY from HH patients have an 

increased capacity to respond to the genotoxic effect of DEB, which suggests an 

adaptive response of HH cells to the high level of OS. The second objective of the 

present study was to test the effect of BLM in LY from HH patients, and compare with 

the previously observed effect of DEB. For this purpose: CI in BLM-induced LY 

cultures from HH patients and healthy donors were evaluated. Cultures of 48 and 96 

hours were performed, with BLM induction 6 hours before culture harvesting.  
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1 Subjects 

This study includes 5 HH patients (2 males and 3 females with a mean age of 59 

years, ranging from 53 to 70 years), all homozygous for the C282Y HFE mutation and 

regularly followed up at the Hemochromatosis Outpatient Clinic of Santo António 

Hospital, Porto. Patients had, at the time of the study, severe iron overload. A total of 6 

healthy donors (HD) (5 female and 1 male with a mean age of 24 years, ranging from 19 

to 29 years) were used as controls. In each experiment, control subjects were studied in 

parallel with patients. The study was submitted and approved by the ethical committee 

of Santo António Hospital, Porto. An informed consent was obtained from each 

participant.  

For each experiment, 35 mL of blood was collected by venipuncture into 

vacuum tubes with lithium heparin, from each patient or control. 

2 Cells 

2.1 Isolation of LY and RBC 

LY and RBC were isolated from peripheral blood by a gradient density 

centrifugation method, using Histopaque solution 1077 in polypropylene centrifuge 

tubes. Briefly, 3 mL of collected blood was carefully layered on top of 3 mL of 

Histopaque 1077 in each 15 mL polypropylene tube. The tube was centrifuged at 890 × 

g for 30 min at room temperature (RT). The LY layer was carefully removed for another 

tube, using a glass Pasteur pipette, and the remaining RBC layer was removed to 

another tube. The LY layer was gently mixed with 10 mL of PBS (phosphate buffer 

sodium) 1X and then centrifuged at 840 × g for 10 min at RT to remove platelets. The 

supernatant was dispensed and 10 mL of RBC lysis solution (1 M Tris-base HCL (pH 

7.2), 5 M NaCl and 1 M MgCl2
.
6H2O) was added to LY pellet, during 10 min, to lyse 

any remaining RBC. This suspension was centrifuged at 840 × g for 10 min at RT, after 

which the supernatant was dispensed. LY pellet was resuspended with 1 mL of PBS. 

2.2 Cell preparation for the study of basal OS parameters 

In an aliquot with 250 µL of isolated RBC it was added 1 mL of RBC lysis 

solution during 15 min. This suspension was centrifuged at 180 × g for 5 min at RT. 
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The RBC pellet was dispensed and the supernatant (hemolysate) was transferred to 

another aliquot. The hemolysate and isolated LY were immediately stored at -80 ºC for 

posterior measurement of basal enzymatic antioxidant activities and LPO. 

3 Cell cultures 

Samples of whole blood (wb) and samples of plasma (PL), where RBC were 

depleted by gravity sedimentation, were used in the present study. Cultures were set 

up in RPMI 1640 (Sigma) complete medium supplemented with 15 % fetal calf serum 

(GIBCO), antibiotics (10,000 units/mL of penicillin and 10,000 μg/mL of 

streptomycin) (GIBCO) and 29 mg/mL of L-glutamine (Sigma). LY were stimulated 

with 5 μg/mL of phytohemagglutinin (GIBCO) and placed in an incubator at 37°C 

with 5 % CO2 atmosphere, for 36, 48 or 96 h.  

3.1 Exposure to DEB  

DEB ((±)-1,2:3,4-diepoxybutane, [298-18-0], D-7019 Lot 34 H3683, Sigma), 

prepared in RPMI 1640, was added to appropriate cell cultures 24 h after their initiation, 

thus exposing cells to the chemical for 12 h. DEB was added at the final concentration 

of 0,1 μg/mL. Since DEB is a genotoxic agent specific precautions were taken. All 

culture procedures were handled using appropriate gloves and in a vertical laminar flow 

hood. 

3.2 Exposure to BLM 

BLM (Bleomicina TEVA, 15000U/mL) was prepared in RPMI 1640 complete 

medium. In the appropriate experiments, BLM was added 24 h after the initiation of cell 

culture at the final concentration of 10 µg/mL. In another set of experiments, BLM was 

added 6 h before harvesting, at the final concentration of 15 µg/mL.  

3.3 Cell preparation for the study of OS parameters after 36 hours 

of culture  

After 36 h of spontaneous and BLM and DEB-induced cultures (either wb and 

PL), cells were harvested and centrifuged at 180 × g, 5 min, RT. The supernatant of PL-

cultures was dispensed. LY pellets were resuspended with 1 mL of PBS. The 
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supernatant of wb-culture was dispensed. RBC pellets were resuspended with RBC lysis 

solution (4,5 mL each tube), during 15 min at RT. This suspension was centrifuged at 

180 × g for 5 min at RT. The supernatant of RBC was stored in aliquots (1 mL of RBC 

hemolysate each). Both cell suspensions (LY and RBC) were immediately stored at -80 

ºC. OS evaluation was also performed in RBC that were put in culture medium during 

36 hours, either with and without induction with BLM and DEB. 

4 Characterization of OS parameters 

4.1 Sample processing for GSH and LPO quantification 

Cell suspension aliquots were de-frozen and spinned at 13 000 × g for 10 s at 

4ºC and the supernatants rejected. The pellet was then treated with HClO4 10 %. After a 

brief vortexing, the homogenates were centrifuged 13 000 × g for 10 min at 4 ºC. 

Aliquots of the resulting supernatants (the hemolyse were diluted 20x with HClO4 5 %) 

were used for the measurement of LPO and GSH. The pellet of LY was dissolved in 

NaOH 0,3 M and stored at -20º C for posterior protein quantification. 

4.2 GSH quantification 

GSH quantification was performed by the DTNB-GR recycling assay, based on 

the oxidation of GSH by 5,5-dithio-bis (2-nitrobenzoic acid) (DTNB), as described by 

Vandeputte and coworkers (Vandeputte et al., 1994) with some modifications (Carvalho 

et al., 2004). KHCO3 0,76 M (200 µL) was added to the supernatant (200 µL) and 

centrifuged 13,000 × g, 1 min at 4 ºC. Standard GSH corresponding to concentrations 

ranging between 0,5 and 15 nmol were also prepared. Freshly prepared reagent solution 

(DTNB 0,7 mM and NADPH 0,24 mM in sodium phosphate-EDTA buffer, pH 7,5) 

was added and incubated at 30 ºC during 15 min, in the dark. GR was added 

immediately before measuring the plate at 412 nm by spectrophotometry. The 

concentration of total GSH was calculated using a standard curve. GSH levels were 

measured as µmol of GSH per mg of protein present in LY. In RBC, GSH levels were 

measured as µmol of GSH per g of hemoglobin.  
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4.3 Protein quantification 

Protein quantification was performed according to the method of Lowry and co-

workers (Lowry et al., 1951), using bovine serum albumin as standard. 

4.4 LPO quantification 

LPO was evaluated by the thiobarbituric acid-reactive substance (TBARS) 

methodology (Buege & Aust, 1978). Results are expressed as nmol of malondialdehyde 

(MDA) equivalents per mg of protein using an extinction coefficient (ε) of 1.56 × 10
5 

M
-1

cm
-1

. 

5 Evaluation of CI in LY from BLM induced cultures 

After 48 and 96 h days of culture, cells were harvested after a 1 h incubation 

with 100 μL colcemid® (GIBCO) followed by hypotonic treatment with 75 mM KCl 

and fixation in 1:3 solution of acetic acid:methanol. Chromosome preparations were 

made by the standard air drying method. 

Cytogenetic analysis was performed on coded slides and an average of 91 

Giemsa-stained metaphases (mode = 100, range = 22-100) was observed. To avoid bias 

in cell selection, consecutive metaphases, which appeared intact with sufficient well-

defined chromosome morphology, were selected for the study. Each cell was scored for 

chromosome number and structural abnormalities. Achromatic areas less than a 

chromatid in width were scored as gaps; achromatic areas more than a chromatid in 

width were scored as breaks. Tri-radial and quadri-radial configurations and dicentric 

and ring chromosomes were scored as rearrangements (Figure 5). Gaps were excluded 

in the selection of chromosome aberrations and rearrangements were scored as two 

breaks. As CI parameters, percentage of aberrant cell and nº of breaks per cell were 

used. 
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Figure 5 – Examples of chromosomal aberrations in induced chromosomal breakage:[A] 

Chromatid gap; [B] chromatid break; [C] tri-radial configuration; [D] quadri-radial 

configuration; [E] others figures configurations; [F] ring chromosome. 

6 Statistical analysis 

Graph results were expressed as mean ± SEM. Statistical comparison among 

groups was estimated using two-way ANOVA, followed by the Bonferroni post hoc 

test, and comparison between two groups was estimated using unpaired t-test, both with 

GraphPad Prism, version 5.0 software. P values lower than 0,05 were considered as 

statistically significant. 
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1 Evaluation of the OS parameters 

Evaluation of OS in LY and RBC from HH patients was performed, in 

comparison with LY and RBC from HD, using two selected OS parameters: GSH and 

LPO levels. These parameters were measured at day 0 (basal) and after 36 h of culture, 

with and without induction with DEB and BLM. For OS evaluation of RBC after 36 h, 

these cells were put in culture medium and in wb-culture. For OS evaluation in LY, PL-

culture was performed. The results are shown in figures 6-9. 

1.1 GSH levels 

In both groups (HH patients and HD),a highly significant (P<0,0001) depletion 

of GSH was observed in RBC after 36 h either in culture medium and in wb-culture, 

when compared with GSH levels at day 0 (Figure 6A). 

 
 

Figure 6 – Changes in GSH levels of RBC [A] – at day 0 and after 36 h in culture medium and in 

wb-culture; 
***

P<0,001 HH patients RBC at day 0 vs RBC in culture medium and in wb-culture; 

P<0,001 HD RBC at day 0 vs RBC in culture medium and in wb-culture [B] – after 36 h in culture 

medium with and without induction with DEB and BLM; [C] – after 36 h in wb-culture with and 

without induction with DEB and BLM. Results are expressed as the mean ± SEM in the seven 

experiments. 

           HD                         HH patients 
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Addition of DEB or BLM had no effect on the level of GSH in RBC from both 

groups, HH patients and HD. Interestingly, GSH levels were consistently lower in RBC 

from HH patients when compared with RBC from HD, in all conditions tested: at day 0 

(Figure 6A), after 36 h in culture medium, with and without induction with DEB and 

BLM (Figure 6B), and after 36 h in wb-culture with and without induction with DEB 

and BLM (Figure 6C). These results are not statistically significant, probably due to the 

low number of samples tested.  

In LY from both HH patients and HD a highly significant (P<0,0001) depletion 

of GSH was observed at 36 h when compared with GSH levels at day 0, as shown in 

Figure 7A. Addition of DEB or BLM had no effect on the level of GSH in cultured LY 

from HD (Figure 7B), but an effect was observed in LY from HH patients, although the 

results are not statistically significant. Interestingly, GSH levels were consistently 

higher in LY from HH patients when compared with LY from HD, in all conditions 

tested: at day 0 (Figure 7A) and after 36 h in PL-culture with and without induction 

with DEB and BLM. These results are not statistically significant, probably due to the 

low number of samples tested. 

 
 

Figure 7 – Changes in GSH levels of LY [A] – at day 0 and after 36 h of PL-culture;  
***

P<0,001 [B] 

– after 36 h of PL-culture  with and without induction with DEB and BLM. Results are expressed as 

the mean ± SEM in the four experiments. 

           HD                         HH patients 
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1.2 LPO content 

As shown in Figure 8A, HH patients exhibited a significant decrease of LPO in 

RBC after 36 h in culture when compared with the basal level (P<0,05) . This 

significant decrease was not observed in RBC from HD.  

After 36 h in culture medium (Figure 8B), LPO levels in non-treated RBC from 

HH patients were significantly higher than those from HD (P=0,0225). The addition of 

DEB or BLM had no effect on the level of LPO, both in RBC from HH patients and 

HD. 

 
 

 

Figure 8 – Changes in LPO of RBC. [A] – at day 0 and after 36 h of culture (in culture medium and 

wb-culture);
 *

P<0,05 HH patients RBC at day 0 vs RBC in culture medium and in wb-culture [B] – 

after 36h in culture medium with and without induction with DEB and BLM; 

 P=0,0225 HH 

patients RBC vs HD RBC in control culture [C] – after 36 h in wb-culture with and without 

induction with DEB and BLM;  P=0,0130 HH patients RBC vs HD RBC in wb-culture induced 

with BLM. Results are expressed as the mean ± SEMin the seven experiments.  

After 36 h in wb-culture (Figure 8C), the addition of DEB or BLM had also no 

significant effect on the levels of LPO, in RBC from both HH patients and HD, except 

for a significantly higher value observed in BLM-treated RBC from HH patients in 

comparison to the levels found in HD (P=0,0130). 

           HD                         HH patients 



PART IV – Results 

34 

 

 

In LY from both HH patients and HD a decrease in LPO level was observed at 

36 h when compared with LPO levels at day 0, as shown in Figure 9A. However, this 

decrease was only significant in LY from HH patients. After 36 h in PL-culture (Figure 

9), the addition of DEB or BLM had no significant effect on the levels of LPO, in LY 

from both HH patients and HD. 

 
 

 

Figure 9 – Changes in LPO levels of LY [A] – at day 0 and after 36 h of PL-culture;
 *

P<0,05 HH 

patients LY at day 0 vs after 36 h [B] – after 36 h of PL-culture with and without induction with DEB 

and BLM. Results are expressed as the mean ± SEM in the four experiments. 

  

           HD                         HH patients 
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2 Evaluation of CI in LY from BLM induced cultures 

Induced CI in LY cultured in the presence of BLM was measured by two 

parameters: percentage of aberrant cells and number of breaks per cell. The results are 

shown in Table 2. 

 

Table 2 – BLM- induced CI in LY from HH patients and HD. 48 h and 96 h cultures were 

performed with BLM induction during the last 6 h of culture. 

48h 96h 

Code 

No. 
n 

% Aberrant 

Cells 

Nº Breaks  

per cell 
n 

% Aberrant 

Cells 

Nº Breaks  

per cell 

HD 

110 - - - 100 11 0,26 

117 100 15 0,29 100 5 0,06 

124 45 4,44 0,07 100 13 0,16 

133 100 6 0,10 100 17 0,33 

135 100 12 0,25 100 7 0,07 

136 100 10 0,25 100 6 0,14 

Mean 
  

9,49 0,19 
 

9,83 0,17 

Standard derviation 
  

4,32 0,10 
 

4,67 0,11 

Coefficient of variation 
  

45,52 51,87 
 

47,45 62,70 

Variance 
  

18,65 0,01 
 

21,77 0,01 

HH patients 

1 100 12 0,19 100 3 0,03 

2 22 13,64 0,14 50 10 0,12 

3 - - - 100 10 0,16 

4 100 16 0,26 100 15 0,18 

5 100 9 0,10 100 4 0,06 

Mean 
  

12,66 0,17 
 

8,40 0,11 

Standard derviation 
  

2,94 0,07 
 

4,93 0,06 

Coefficient of variation 
  

23,23 39,99 
 

58,68 58,21 

Variance 
  

8,65 0,00 
 

24,30 0,00 

 

The first set of experiments was performed with cells from 4 HH patients and 5 

HD at 48 h of cultured LY. No significant differences were observed in number of 

chromosome breaks per cell or in percentage of aberrant cells between HD and HH 

patients (P>0,05 and P>0,05, respectively). The second set of experiments was 

performed with cells from 5 HH patients and 6 HD at 96 h of cultured LY. Similarly to 

the previous cultures, no significant differences were observed in number of 

chromosome breaks per cell or in percentage of aberrant cells between HD and HH 

patients (P>0,05 and P>0,05, respectively). 
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HH is a recessive disorder, characterized by systemic iron overload with 

consequent tissue damage. The vast majority of HH patients are homozygous for the 

C282Y mutation in HFE, a non-classical MHC class-I gene located in chromosome 6. 

The mutated protein HFE is unable to bind to the β2-microglobulin present in the 

plasma membrane of almost cells. This loss of function allows the entry of iron into 

cell, leading to iron overload. 

It is known that iron overload enhances the formation of ROS, with increasing 

risk of DNA damage as well as increased LPO and protein modifications. The oxidative 

damage in tissues contributes to the clinical manifestations seen in HH such as fibrosis 

and later, cirrhosis (Franchini, 2006). Antioxidant enzymes, such as GSH, are a primary 

defence mechanism for preventing damage by ROS. In iron overload situations, the 

reduction of GSH activity can result in an increase of OS and hence influence 

progression of the disease. The relation between GSH depletion and iron homeostasis is 

not clearly understood so far. 

In the present work, selected OS parameters were evaluated in RBC and LY 

from HH patients and a comparative study was performed with RBC and LY from 

healthy donors (HD). The two selected OS parameters were GSH and LPO.  

1 Evaluation of GSH levels 

The increased depletion of GSH in RBC, from both HH and HD, at 36 h, seems 

to be associated to culture stress. The presence of DEB or BLM did not appear to be 

associated with increased depletion of GSH. This GSH depletion can occur as a 

consequence of its function as a substrate in detoxification reactions catalyzed by GPx 

or GST (Mytilineou et al., 2002). The results of GSH levels showed that RBC from HH 

patients had more GSH depletion in comparison with RBC from HD. The measurement 

of GSH in LY showed that there is a significant depletion in the samples from HH 

comparing these levels at day 0 and after 36 h of LY culture. LY from HH patients seem 

to respond to the addition of the genotoxic agents DEB and BLM in different ways. 

Although no significant differences were observed between treatments at 36 h of cell 

culture, there is an indication of a decreased depletion in GSH when DEB or BLM is 

added. This may suggest that these patients an adaptive response, but further studies are 

needed with a larger population. 
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2 Evaluation of LPO levels 

The iron overload present in HH has been also associated to LPO in RBC 

membrane, composed by polyunsaturated fatty acid, which is extremely sensitive to 

oxidation (Ferreira et al., 1999). Besides, RBC has more LPO susceptibility, due to 

continuous exposure to OS (exposed to high oxygen tension, presence of hemoglobin-

bond iron). The results of the present work show that RBC and LY LPO levels did not 

differ significantly among groups. This contrasts with the previous study in HH patients 

that showed increased levels in HH patients (Niemelä et al., 1999). However, the study 

was perhaps limited by the relatively small sample size of the groups. 

3 Evaluation of CI in LY from BLM induced cultures 

Iron per se is capable of inducing a wide range of DNA lesions, from base 

modifications to strand breaks and adducts leading an increase of spontaneous CI (Prá et 

al., 2012). To test the effect of BLM in the defence against OS, comparatively with 

DEB (Porto et al., 2009), BLM-induced CI in LY cultures from HH patients and HD 

was analyzed. The results of the present study showed that both groups had a similar 

capacity to respond to the genotoxic agent. This effect may reflect the pathways of 

DNA repair promoted by the different DNA damage of these compounds. BLM is used 

as chemotherapeutical agent by enabling cell death via ATM/ATR. Whereas DEB, as 

bifunctional alkylating agent, promotes the majority of the cytotoxity by ICL which 

subsequently are repaired via Fanconi Anemia Proteins (Andreassen & Ren, 2009).  

BLM is a radiomimetic agent that uses Fe
2+ 

to attack DNA, which suggests that 

cells with iron overload may produce a higher level of CI. However, cells from HH 

patients did not present increased CI. It may be suggested that HH patients may have an 

increased activity of DNA repair, inactivating BLM, or an increased activity in BLM 

resistance proteins (Mir et al., 1996), BLM-hydrolase (Bokemeyer, 2008) and DNA 

polymerase β (Liu et al., 2011). These acting can be related with an adaptive response  

of HH cells, probably due to continuous high doses of endogenous iron, which activate 

CI inducers (Tedeschi et al., 1996). 

Conversely, the last result may also suggest that HH LY have normal doses of 

endogenous iron. This hypothesis may explain the low incidence of hemotological 

malignancies presented by HH patients. To better understand the true meaning of these 
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results, it would be useful to investigate the role of spontaneous and BLM-induced 

apoptosis as well as the quantification of proteins involved in BLM inactivation. 

4 Comparison of OS parameters and CI in HH 

Under GSH depletion, H2O2 endogenously produced enhances arachidonic acid 

release through cellular phospholipase A2 activation in membranes and furthermore, 

might be converted to •OH by metals such as iron. Excess accumulation of lipid 

hydroperoxides produced by LPO under intracellular GSH depletion may promote cell 

death, which may be dependent on the intensity of oxidative stress and lipid 

peroxidation. 

In this study, the apparent protection of GSH depletion in LY from HH patients, 

after 36 h of culture with BLM and the difference of LPO levels in LY among groups 

may indicate that LY from HH patients have not increased OS, in comparison with LY 

from HD. The results of CI induced by BLM in LY from HH patients corroborate these 

results.  

5 Major conclusions of the study  

The major findings and conclusions of this thesis are below highlighted: 

 

- No significant differences were observed in OS blood cells response 

between HH patients and healthy donors. Nevertheless, different 

responses to OS, measured by GSH levels, were observed between RBC 

and LY from HH patients. 

 

- BLM-induced LY from HH patients did not show increased CI, 

comparatively to HD. The decrease in CI obtained with DEB (Porto et 

al., 2009) was not observed with BLM. The different response of LY to 

the BLM-induced OS and the DEB-induced OS (Porto et al., 2009) may 

reflect different pathways of DNA repair, promoted by the different 

DNA damage of these compounds. 
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- The results of CI induced by BLM in LY from HH patients corroborate 

the results obtained through measurement of GSH and LPO, indicating that 

LY from HH patients have not increased OS, which may suggest normal 

doses of endogenous iron  

6 Future perspectives 

Considering all the results obtained in the present work, it is clear that some 

aspects would benefit from further investigation, in order to clarify several aspects of 

OS status in blood cells from HH patients as well as their drug metabolization, 

particularly bleomycin. 

Firstly, the size of groups must be increased and secondly, it will be important to 

evaluate other OS parameters (such as CAT, GPx, GST) to better clarify the true 

meaning of the results of the present work.  

Other challenge to overcome would be the elucidation of DNA repair status in 

LY from HH patients as well as the quantification of bleomycin hidrolase. This enzyme 

inactivates bleomycin B2 by hydrolysis of a carboxyamide bond of β-aminoalanine, 

protecting t cells from BLM toxicity. Recently, Okamura and co-workers suggested that 

bleomycin hydrolase gene is a suppressor gene in hepatocellular carcinoma (Okamura et 

al., 2011). HH is associated with an increased risk of hepatocellular carcinoma, so it 

will be important to understand if LY of HH patients have an increased bleomycin 

hydrolase activity, which may influence the bleomycin-induced damage in these cells. 

This study opened perspectives for future studies, namely regarding the 

hypothesis that LY from HH patients may have normal doses of endogenous iron. 
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Table 1 Serum iron, tranferrin, transferrin saturation and ferritin levels of HH patients with 

severe iron overload used in this study. 

 

Table 2 Normal range levels of serum iron, tranferrin, transferrin saturation and ferritin in 

males and females. 

Sex 
Iron 

(µg/dL) 

Tranferrin 

(mg/dL) 

Transferrin saturation 

(%) 

Ferritin 

(ng/mL) 

Male 53-167 200-370 15-45 12,80-454 

Female 50-150 200-370 15-45 2,20-178 

 

 

Code no. Sex 
Iron 

(µg/dL) 

Tranferrin 

(mg/dL) 

Transferrin saturation 

(%) 

Ferritin 

(ng/mL) 

01 Male 169 209 57 765 

02 Female 159 183 62 371 

03 Male 227 182 88 1561 

04 Female 165 185 63 1067 

05 Female 96 178 38 50 


