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Resumo 
 

 

 
O cancro de mama é o tipo de cancro mais comumente diagnosticado entre 

as mulheres e também uma das primeiras causas de morte. Os mecanismos 
subjacentes ao desenvolvimento do cancro de mama são complexos e variam 
de individuo para individuo. Esta diversidade manifesta-se em alterações 
genéticas e/ou epigenéticas, tais como diferenças de padrões de expressão 
génica, aberrações cromossómicas, modificações de histonas e expressão 
diferencial de proteínas. 

Novos alvos e putativos biomarcadores para os tumores de mama 
invasivos são extremamente necessários e, uma vez que os padrões de 
expressão da histona H2A2C foram encontrados desregulados em células 
indiferenciadas este pode ser um bom objeto de estudo. 

 Assim sendo, foram estudadas as diferenças de expressão de mRNA da 
histona H2A2C nos diferentes estados de diferenciação da linha celular epitelial 
mamária HC11 (proliferativa/ indiferenciadas, pre-diferenciado/competente e 
diferenciada/funcional) e de expressão de proteína por imunofluorescência. 
Para analisar a expressão de histona H2A2C na diferenciação da glândula 
mamária foi utilizada a técnica imunohistoquímica Além disso, para determinar 
se a expressão da H2A2C está associada a células em proliferação, utilizou-se 
a co-imunolocalização. A sequenciação por bissulfito foi utilizada para avaliar 
se a perda de expressão H2A2C nas células mais diferenciadas da linha celular 
HC11 estaria associada à metilação do promotor da histona H2A2C. E a 
técnica de ChIP ajudou-nos a estudar a interação das modificações pos-
translaccionais das histonas (marcas activadoras: H3K36me2 e H3K79me3; 
marcas repressoras: H3K9me3 e H3K27me3) na região promotora da 
HistH2A2C. Uma vez que as células HC11 num estado mais indiferenciado são 
cultivadas em meio contendo EGF, com o intuito de verificar se as vias de 
sinalização Ras/Raf/MAPK e/ou PI3K/AKT/mTOR seriam responsáveis pela 
regulação da expressão da H2A2C, inibimos estas vias na linha celular HC11 e 
analisamos a sua expressão de mRNA e proteína por qRT-PCR e 
imunofluorescência, respectivamente. Adicionalmente, foram analisados os 
níveis de expressão da H2A2C numa série de casos de cancro da mama 
humano por qRT-PCR. Finalmente, estudou-se os efeitos fenotípicos do 
silenciamento da histona H2A2C nas linhas celulares HC11 e MC4L2 
(carcinoma da mama). 

Foi observado que a expressão da histona H2A2C está relacionada com 
as células em estado estaminal da linha celular HC11 e a um estado de 
gravidez da diferenciação da glândula mamária de ratinho. Ao mesmo tempo, 
correlacionamos a expressão da histona H2A2C com a expressão do CD44 e 
do c - myc e a uma baixa expressão de E-caderina membranar, o que sugere 
que a histona H2A2C está relacionada não só com a indução da 
estaminalidade e proliferação, mas também com a repressão da diferenciação 
epitelial em células HC11. Esta última também foi confirmada por silenciamento 
do gene HIST2H2AC nas células HC11. O mecanismo de regulação da 
expressão da H2A2C ainda está por descobrir. No entanto, deixamos de lado a 
metilação do DNA como um evento putativo que poderia regular a expressão 
do gene que codifica a histona. Também, o papel da via PI3K/AKT na 
regulação da expressão H2A2C foi estabelecido. Finalmente, a expressão de 
H2A2C nos cancros da mama humanos foi confirmada.  

Em resumo, neste estudo, foram descritos pela primeira vez, a 
expressão e o papel da histona H2A2C quer no epitélio mamário quer no 
cancro da mama. 
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Abstract 
 

 

Breast cancer is the most common type of cancer diagnosed among 
women and also a leading cause of death. The mechanisms underlying the 
development of breast cancer are complex and vary between individual 
tumours. The diversity is manifested at either genetic and/or epigenetic 
alterations, such as differences in patterns of gene expression, chromosomal 
aberrations, modifications of histones and differential expression of proteins.  

New targets and putative biomarkers for invasive breast tumours are 
extremely needed and once that the expression of H2A2C has been found 
deregulated in undifferentiated cells this is thought to be a good study object. 

Therefore, we studied the differences of H2A2C mRNA expression in 
HC11 mammary epithelial cell line throughout differentiation 
(proliferative/undifferentiated, pre-differentiated/competent and functionally 
differentiated stages) by qRT-PCR and the protein levels by 
immunofluorescence. In order to study the expression of histone H2A2C in 
mammary gland differentiation we used immunohistochemistry. Furthermore, to 
establish if H2A2C expression is associated to cells undergoing 
mitosis/proliferation, we used co-immunolocalization. Bisulphite sequencing 
PCR was used to evaluate if loss of H2A2C expression in differentiated HC11 
cells was associated to H2A2C promoter methylation. And ChIP helped us to 
study the interaction of post-translational histone modifications (activating 
marks: H3K36me2 and H3K79me3; repressive marks: H3K9me1 and 
H3K27me3) at the promoter region of HistH2A2C. Since HC11 cells in more 
undifferentiated stage are grown in medium containing EGF, with the intention 
to verify if the Ras/Raf/MAPK and/or PI3K/AKT/mTOR pathways were 
responsible for regulation of H2A2C expression we inhibited these pathways in 
HC11 cell line and analysed their mRNA and protein expression by qRT-PCR 
and immunofluorescence, respectively. In addition, we analysed the expression 
levels of H2A2C in a series of cases of human breast cancers by qRT-PCR. 
Finally, we studied the phenotypic effects of H2A2C silencing in HC11 and 
MC4L2 (mammary carcinoma) cell lines. 

Herein, we demonstrate that the histone H2A2C expression is related to 
stem-cell like stage in HC11 cells and to a pregnant state of mouse mammary 
gland differentiation. At the same time, we correlated the H2A2C expression to 
CD44 and c-myc expression and to a down-expression of membranous E-
cadherin, suggesting that the histone H2A2C is related not only to the induction 
of steamness and proliferation but also to the repression of differentiation in 
HC11 cells. Latter, this was also confirmed by silencing HIST2H2AC in HC11 
cells. The regulation of expression of H2A2C is still to be discovered. However, 
we were able to rule out DNA methylation as a putative event that could 
regulate the HIST2H2AC expression. Also, the role of PI3K/AKT pathway in 
regulating H2A2C expression was established. Finally, the expression of 
H2A2C in human breast cancers was confirmed.  

In summary, in this study, we report for the first time the expression and 
the role of the histone H2A2C in mammary epithelium and in breast cancer.  
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I. Introduction 

  

Breast cancer is a very heterogeneous disease not only at the clinical level but also 

at the histopathologic and molecular level (1-3). The mechanisms underlying the 

development of breast cancer are complex and vary between individual tumours. The 

diversity is originated from a series of genetic and/or epigenetic alterations, such genomic 

aberrations, histone modifications (4) leading to differential protein expression, occurrence 

of aberrant interactions within the microenvironment (5, 6) and alterations in the activation 

of signalling pathways and, therefore to differences in gene expression patterns in 

oncogenes and tumour suppressors (7). 

Genomic DNA in eukaryotic cells is packaged into chromatin being the 

nucleosome the smallest chromatin subunit. A nucleosome consists of 147 base pairs (bp) 

of DNA wrapped around an octamer of core histone proteins. The histone octamer usually 

includes two molecules of each of the canonical core histones: H2A, H2B, H3 and H4 (8), 

assembled in one central H3-H4 heterotetramer and two H2A-H2B heterodimers (9). 

Each nucleosome is separated by 10 to 60 bp of linker DNA. The resulting nucleosomal 

assortment constitutes a chromatin fibre of about 10 nm in diameter. This arrangement is 

folded into more condensed fibres (about 30 nm) that are stabilized by binding of a linker 

histone H1 to each nucleosome core (10) (figure 1). 

 

Figure 1 – Packaging of DNA into nucleosomes (adapted from (10)). 

 

http://www.activemotif.com/search?mvs_histone_products=Histone+H1&current=tabs-antibodies
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The role of histones and nucleosomes is not limited to the compaction of the 

chromatin. Actually, chromatin has a critical role in regulating other nuclear processes 

such as DNA replication and repair and chromosome segregation and stability (11). In 

addition, due to its dynamic modulation, chromatin plays an important role in transcription. 

Coils around structural histone proteins positioned at promoters limit DNA accessibility to 

the cellular machineries that require DNA as template for transcription. Disruption of these 

processes is intimately associated with human diseases, including cancer (12). Hence, the 

study of histones and their modifications as the principal responsible for chromatin 

remodelling is very promising. 

As well as canonical histones H1, H2A, H2B and H3, other separately encoded 

histones variants are present in eukaryotic cells. Histone variants differ from the 

corresponding histone family in their primary sequence and could replace canonical 

histones in a subset of nucleosomes. Such replacement leads to differences in the 

nucleosome stabilities and biochemical properties, altering accessibility of transcription 

factors and chromatin remodelers to DNA (13). 

Differences in expression of some histone variants have been described in cancer 

cells (14-34). In line with this findings, a mass spectrometry analysis of mammary 

epithelial cells in a proliferative compared to a differentiated state showed that histone 

H2A type 2-C (H2A2C) protein levels were higher in proliferating cells (35). Therefore, in 

this work we analysed differences in expression of H2A2C at the mRNA and protein level 

in mammary epithelial cells in different stages of the differentiation process, in breast 

cancer cell lines and in distinct types of invasive human breast tumours. Regulation of 

H2A2C gene expression and its function in cell proliferation and differentiation was also 

studied.   

  

http://www.activemotif.com/search?mvs_histone_products=Histone+H1&current=tabs-antibodies
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II. State of the art  

 

1. The mammary gland 

 Structure 1.1

The mature mammary gland consists of a main ductal network which branches into 

secondary and tertiary ducts (36). Upon hormonal stimulation during pregnancy, terminal 

ends of ducts differentiate into alveoli (37). In the human mammary gland, a group of 

alveolus form the lobules  (38) (figure 2 –A, B). Ducts and alveoli consist of a bi-layered 

epithelium of luminal epithelial cells and basal myoepithelial cells separated from 

surrounding stroma by a basement membrane (BM) (2, 39, 40). Myoepithelial cells 

contract in response to oxytocin stimulation, which results in milk release (37) (figure 2 – 

C). The luminal epithelial cells line the ducts as a single layer of epithelia (39) and form 

the apical layer that contacts the central lumen, while the basal myoepithelial cells are 

found beneath luminal cells and directly contact the BM (figure 2 – D). Luminal cells can 

also contact BM, if there are microscopic gaps in the myoepithelium, this interaction 

occurs more prevalently in the alveoli than in the ducts (40). Luminal epithelial and basal 

myoepithelial cells can be identified not only by location, but also by morphology and by 

the expression of cell-type-specific cytoskeletal markers, namely cytokeratin 8 (CK8), 

CK18 and CK19 for luminal epithelial layer, and CK5, CK6, CK14, CK17 and α-isoform 

smooth muscle actin for the basal myoepithelial layer (36). The stroma consists of adipose 

and connective fibrous tissue and a variety of cellular types including: fibroblasts, 

inflammatory and endothelial cells (figure 2 – D). The BM is rich in growth factors, 

proteins of extracellular matrix like collagens, laminin, glycoproteins and proteoglycans 

(5).  
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Figure 2 – Mammary gland structure. (A) The human breast, its lobules, alveoli, and ducts that 

constitute the mammary gland. (B) The enlargements show a lobule and (C) milk-secreting cells of 

an alveolus. (D) A schematic representation of breast tissue, indicating the luminal epithelial and 

myoepithelial cells, basement membrane and the constituents the stroma (adapted from (2, 38)). 

 

 

 Development 1.2

The mammary gland is a complex organ that unlike most other organs, it develops 

primarily after birth (37, 41, 42). It is a structurally dynamic organ that changes with age 

(43), sexual development and pregnancy/lactation. Mammary gland development is under 

the control of a number of steroid and peptide hormones, which activate a variety of local 

growth factor pathways (44, 45), cytokines (39) and respective receptors (46) or 

transcription factors, plus other co-activators (37, 47). Development occurs in distinct 

stages (37, 47, 48), defined by morphology (45), and by differential patterns of gene 

expression (45, 49). This stages can be divided into embryonic, pre-pubertal and pubertal, 

pregnancy, (these three stages are represented in figure 3), lactation and involution (36, 45, 

50).  

 
 

D 
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Figure 3 – Normal mammary gland development. In embryogenesis, development results in a 

rudimentary ductal system. In puberty, there is extension and branching of the ductal tree, in 

addition, cap cells at the upper hand of the terminal ends of the ducts exhibit signs of epithelial 

plasticity (transcription factors Snail and Twist; morphogenetic signaling molecule wingless-type 

MMTV integration site family; protein Cripto). In pregnancy, lobulo-alveolar development and 

side branching occur in preparation for lactation (adapted from (48)). 

 

Mammary gland development begins at mid-gestation (48) as a surface ectodermal 

thickening that migrates into the underlying stroma to form cohesive cords (40) 

establishing the mammary bud (48). At birth, the mammary bud starts developing along 

this structure, gradually increasing in size when the cells begin to invade the surrounding 

adipose tissue to form a primitive branched ductal structures, (36) producing a rudimentary 

mammary gland (45) that is arrested at this stage until puberty (36, 40, 48). Although the 

initial stages of mammary gland development are independent of systemic cues (49), they 

are already responsive to hormonal stimuli (51) and depends on reciprocal signalling 

between the epithelium and the surrounding stroma (49). 

It has been demonstrated that estrogens (most potent 17β-estradiol, E2), 

progesterone (P4) and placental lactogen/prolactin (Prl) initiate and drive ductal 

elongation, ductal side branching (36, 41) and alveolar development, respectively (39, 50). 

The essential hormonal factors regulating pubertal and pregnancy phases in mice have 

been established to be E2, glucorticoids and growth hormone (GH) during puberty, and E2, 

P4 and Prl during pregnancy and glucocorticoids and Prl during lactation (47). Despite the 

fact that systemic hormones act as global mediators in the mammary gland, they are 

dependent on the production of local factors through autocrine and paracrine interactions 

for the coordination of appropriate morphogenesis and differentiation (52). 
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Ligands of the human epidermal growth factor receptor family (HER) are believed 

to be particularly important downstream mediators of steroid hormone action in the 

mammary gland, acting locally, in a paracrine manner to regulate mammary gland growth 

and development via stromal-epithelial interactions. EGFR (ErbB1 or HER-1), a member 

of the ErbB/type 1 family of receptor tyrosine kinases, can form homo- or hetero-dimers 

with the other family members: ErbB2 (HER-2/neu), ErbB3 (HER-3) and ErbB4 (HER-4). 

Multiple ligands bind to the EGFR including epidermal growth factor (EGF), transforming 

growth factor-α (TGF-α), amphiregulin (AREG), betacellulin (BTC), heparinbinding EGF 

(HB-EGF), and epiregulin (49). 

On sexual maturity, and with the dramatic increase of E2 levels in plasma, there is 

significant ductal morphogenesis, that is driven by specialized structures at the tips of the 

elongating ducts, the terminal end buds (TEBs) (36, 44, 48). TEBs generate the lobular 

portions of the gland that elongate and bifurcate (40, 51, 53) to completely fill the 

mammary fat pad (45, 50), creating branches at regular intervals and forming a tree-like 

ductal structure (36, 44, 45, 48) (figure 3). As this process is regulated by ovarian 

hormones, ductal morphogenesis is a continuous process during each estrous cycle (51).  

On branching, mammary epithelial cells display a significant alteration of their interaction 

with the extracellular matrix and epithelial mesenchymal transition (EMT) occurs (figure 

4). This process is characterized, amongst other things, by disruption of epithelial 

architecture, loss of apico-basal polarity, an increase in fibroblastic morphology (54) and 

discharges of extracellular proteases, such as matrix metalloproteinase 3 (MMP3),  which 

degrades extracellular matrix components and promote invasiveness and resistance to 

apoptosis (48, 55). Once, mesenchymal cells are assumed as naturally migratory, this 

characteristic is frequently cited as the major explanation why EMT contributes to invasion 

into the surrounding microenvironment (40). Interestingly, these mesenchymal cells, once 

at their destination, may undergo the reverse process of mesenchymal-epithelial transition 

(MET). Moreover, regulators of EMT, which include Snail homolog 1 (Drosophila) 

(Snail)/ Snail homolog 2 (Drosophila) (Slug), Twist homolog 1 (Drosophila) (Twist), sine 

oculis homeobox (Drosophila) homolog 1 (Six1) and MSH homeobox 2 (Msx2)/ 

teratocarcinoma-derived growth factor 1 (Cripto-1) pathway, along with transforming 

growth factor β (TGF-β) and wingless-type murine mammary tumour virus (MMTV) 

integration site family (Wnt)/β-catenin pathways, induce epithelial plasticity within the 
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TEBs. The cell plasticity differs from EMT in the movement of collective epithelial cells, 

which are physically and functionally connected (48).   

 

Figure 4 – Epithelial mesenchymal transition and cell plasticity. During EMT, epithelial cells lose 

their apico-basal polarity. Cell surface proteins such as E-cadherin and epithelial-specific integrins 

are replaced by N-cadherin and integrins. The actin cytoskeleton is remodeled into stress fibers and 

cytokeratins are replaced by vimentin. Temporarily, the underlying basement membrane is 

corrupted and the cells move and invade into the surrounding stroma (adapted from (48)). 

 

Systemic hormonal changes, as well as localized gene expression associated with 

pregnancy, prompt ductal elongation and additional branching, respectively (45). Prl, a 

pituitary hormone, acts at late pregnancy and after parturition, in synergy with insulin and 

glucocorticoids, to induce ductal terminal differentiation and lactogenesis (56, 57). 

Proliferation and maturation of the side branches consist of terminal differentiation of 

mammary epithelial cells (42) and occurs to form alveoli clusters. Thereafter, the gland is 

fully differentiated ready to synthesize milk during lactation. Alveoli clusters are lined by 

functionally differentiated contractile myoepithelial cells that respond to the stimulation of 

suckling and secretory luminal epithelial cells (36, 40, 43, 47, 48, 51) responsible for 

secretion of milk proteins and lipids into the lumen during lactation (45), which are 

transported by the ductal system to the nipple. 

Once lactation ends (weaning) and with subsequent accumulation of milk, the 

mammary gland begins the involution process (36, 42). In this process there is a transient 

destruction of the BM by metalloproteinases and, on average, mammary epithelial cells 

that are no longer in contact with the BM undergo apoptosis (40). Thus, apoptotic cell 

death within the mammary epithelium goes ahead with a consequent collapse of the 

lobuloalveolar cells, and the mammary gland returning to a state that is morphologically, 

but not genetically, similar to the gland before the pregnancy (36, 42). Although 90% of 

lobular epithelial cells undergo apoptosis during involution, a study using extended 
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labelling of mammary epithelial cells in vivo identified that a parity-induced population of 

cells survive, representing a constant population of putative mammary stem cells (42). The 

existence of mammary stem cells was established several decades ago when DeOme and 

his colleagues observed that tissue fragments of epithelium isolated from several different 

regions of mammary gland was able - upon transplantation - to reconstitute normal 

mammary outgrowths including a ductal tree, alveolar, and myoepithelial cells (58). It is 

thought that these mammary stem cells can give rise to early bipotent progenitors which in 

turn can differentiate into either luminal or basal progenitors. The luminal progenitors can 

then give rise to cells that are either positive or negative for both estrogen receptor (ER)α 

and progesterone receptor (PR) (52), ductal and alveolar luminal cells, while the basal 

progenitor cell can gives rise to the myoepithelial lineage (43). 

The human and rodent mammary gland share structural and functional similarities. 

Thus, gene-targeting approaches such as experimental mouse genetics and surgical 

techniques, which consist on the transplantation of epithelial cells into cleared fat pads of 

receiver mice (50), have identified ever-increasing list of target specific genes involved in 

cell fate and function throughout the different phases of mammary gland development (50, 

59, 60). Thus, a non-exhaustive list of genes and respective mammary defects in knockout 

mice is summarized in Table 1. The physiological and developmental changes observed by 

genetic dissection of these genes in mice not only reflect the role of specific pathways, but 

also the activity of compensatory pathways and other secondary physiological changes (37, 

50, 60).  

 

Table 1 – Gene deletions in mice that resulted in altered mammary gland phenotypes. 

Gene Mammary phenotype Refs 

Ligands and receptors   

PRL or/and PRLR Curtailed ductal branching with arrest of mammary 

organogenesis at puberty 

(46, 51, 61, 

62) 

GH1 Retarded ductal outgrowth (46, 63) 

EGFR Very little ductal structures in fetal tissue (44, 49, 64) 

PG or/and PGR Lack of terminal end bud formation, branching (65, 66) 

ESR1 Lack of ductal growth and differentiation (60, 67, 68) 

ESR2 Altered epithelial differentiation. Compromised growth 

arrest in lactation 

(69) 

TGFBR2 Inappropriate alveolar hyperplasia and differentiation (42) 
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Inhbb Impaired mammary development (70) 

TNFSF11/TNFRSF11A  Reduced pregnancy-induced alveolar development  (71) 

DDR1 Malformation of the mammary gland and lactational failure (53) 

Csf1 Premature lobuloalveolar outgrowth with an excess of 

branch density during pregnancy 

(72) 

OXT Defects in the milk ejection (73, 74) 

PTH1R Developmental arrest of the mammary gland primordium (75) 

Epithelial IGF1 Decreased ductal branching during puberty (57) 

Stromal IGF1 Decrease in proliferation of epithelial cells during both 

pubertal growth and alveologenesis 

(57) 

ITGA1, ITGA2 and ITGB1  Decreased branching (76) 

Transcription factors   

Stat5a  Impaired differentiation of alveolar units and an 

inability to lactate 

(77, 78) 

Stat5b Reduced development (some milk production) (78, 79) 

Stat3 Decreased levels of apoptosis and delayed involution (80) 

Cebpb Defect in alveolar development (81-83) 

Id2 Reduced proliferation during early stages of pregnancy; lack 

of functional differentiation and increased rates of apoptosis 

in late pregnancy 

(84) 

Foxb1 Lactation defects (85) 

Mybl1 underdevelopment of breast tissue following pregnancy (86) 

SOCS-1 Increased development of the alveolar units during 

pregnancy 

(56) 

CCND1 Failure of mammary tissue to fully develop during 

pregnancy 

(87, 88) 

NCOA3 Retarded ductal outgrowth during puberty (89) 

NCOA1 Partial resistance to estrogen and progesterone (90) 

CTNNB1 Loss of survival signaling in alveolar progenitor cells and 

apoptosis 

(45) 

CD44 Impaired lactation (91) 

Wnt4 Inhibition of lobular development during early stages of 

pregnancy 

(92) 

GATA-3 Failure of terminal end bud formation and consequently, a 

significant reduction in ductal outgrowth 

(93, 94) 

ELF1 Impaired alveolar differentiation (95) 

LRP5 Only fewer terminal end buds and diminished side 

branching 

(96) 
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Abbreviations: CCND1 – cyclin D1; CD44 – cluster of differentiation 44; Cebpb – CCAAT/enhancer 

binding protein β (C/EBPβ); Csf1 – colony stimulating factor 1 (macrophage); CTNNB1 – β-catenin; DDR1 – 

discoidin domain receptor tyrosine kinase 1; EGFR – epidermal growth factor receptor; ELF1 – Ets domain 

transcription factor; ESR1 – estrogen receptor 1 (ERα); ESR2 – estrogen receptor 2 (ERβ); Foxb1 – forkhead 

box B1; GATA-3 – GATA binding protein 3; GH1 – growth hormone; Id2 – DNA-binding protein inhibitor 

2; IGF1 – insulin-like growth factor 1; inhbb – Inhibin β-B; ITGA1, ITGA2 and ITGB1 – Integrins α2, α3 and 

β1; LRP5 – low density lipoprotein receptor-related protein 5; Mybl1 – myeloblastosis oncongene-like 1; 

NCOA1 – nuclear receptor co-activator 1 (SRC-1); NCOA3 – nuclear receptor co-activator 3 (SRC-3); OXT – 

oxytocin/neurophysin 1 prepropeptide; PG – progesterone (P); PGR – progesterone receptor (PR); PRL – 

prolactin; PRLR – prolactin receptor; PTH1R – parathyroid hormone 1 receptor; SOCS1 – suppressor of 

cytokine signaling 1; Stat – signal transducers and activators of transcription; TGFBR2 – transforming 

growth factor β, receptor II; TNFRSF11A – tumor necrosis factor receptor superfamily, member 11a, 

NFkB (nuclear factor kB) activator (RANK); TNFSF11 – tumor necrosis factor (ligand) superfamily, member 

11 (RANKL); Wnt4 – wingless-related MMTV (murine mammary tumor virus) integration site family, 

member 4. 

Such observations will not only improve current knowledge of normal mammary 

gland development, but also could help to understand progression of tumourigenesis (50).  

 

2. Breast cancer 

 

 Basic concepts 2.1

Breast cancer is the most common type of cancer diagnosed among women, with 

more than one million of cases diagnosed per year around the world, and leading cause of 

cancer death equal to the estimated number of deaths from lung cancer (97). 

A decline in breast cancer mortality observed in last years is believed to be due to 

early diagnosis, improved screening programs (3, 98, 99) and implementation of adjuvant 

chemo and hormone therapies. However, it has been followed by increased incidence 

thought to be related to environmental factors (3). 

The diagnostic approach to suspicious breast lesions includes palpation, 

radiological images (mammography) and fine needle aspiration (FNA) biopsy. The 

majority of women over the age of 50 should undergo annual or biannual mammography 

(99). The limitations of mammography are well recognized, especially for those women 

with premenopausal breast cancer (98), women who are young, Asian, on hormone 

replacement therapy and/or have dense breasts. Mammography is also less sensitive to 
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finding small or diffuse tumours (98). The FNA provides a relatively simple, minimally 

invasive and rapid means of triaging patients to more complex diagnostic procedures. 

Nevertheless, the truthfulness of cytomorphological analysis relies mostly on the skill of 

the pathologist (100). Thus alternative approaches to breast cancer detection are urgent to 

improve screening practices (99).  

One possible procedure for early detection of breast cancer is analysing circulating 

DNA (101), once it is believed that tumour DNA is present in the circulation of people 

with cancer. The mechanism of DNA release into circulation is poorly understood, but it is 

thought that DNA is released during tumour necrosis and apoptosis (99). It is possible to 

identify microsatellite alterations, gene mutations and gene promoter hypermethylation in 

serum and plasma DNA of patients with cancer (101). 

Nowadays, the treatment used in patients with breast cancer, includes surgery 

and/or radiotherapy and treatment with chemotherapy, hormone therapy and 

immunotherapy with monoclonal antibodies (102). The molecular characteristics of 

the tumour as well as the age of the patient, among other factors like tumour size and 

metastasis (103), will determine the choice of treatment (1). Once that the molecular 

characteristics of tumours are so important, there are new approaches of personalized 

therapy making use of specific molecular signatures, biology markers and clinic-

pathological features in tumours and patients (102). 

Breast cancer can be divided according to the stage as represented in figure 5. 

Breast cancer is thought to develop through multiple stages from atypical hyperplastic 

lesions, which consist of a premalignant lesion characterized by abnormal cell layers 

within the duct or lobule (104).  Atypical ductal hyperplasia (ADH) is thought to be the 

precursor to carcinoma in situ (ductal or lobular), a non-invasive lesion that contains 

abnormal cells (2). With each stage, the risk of developing malignant or invasive breast 

cancer (IBC) increases and eventually, development of metastatic disease (104). To form 

metastases, cells must invade through the basement membrane, enter the vasculature, 

survive in the absence of adhesion, exit the vasculature and establish a new tumour in a 

foreign microenvironment. The lymph nodes are the primary site for breast cancer 

metastasis (2). 
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Figure 5 – The progression of breast cancer. The normal breast terminal ductal lobular unit 

(TDLU) contains lobules and ducts that consist of a bi-layered epithelium. This structure can 

develop to cancer characterized by the stage according to the malignancy with crescent epigenetic 

alterations and genomic instability: Atypical ductal hyperplasia (ADH) < ductal carcinoma in situ 

(DCIS) < invasive breast cancer (IBC - indicated by a blue star adjacent to a DCIS lesion). < 

metastasis (MET; indicated by a blue star) (adapted from (2)). 

 

During this multistage process, a variety of molecules important to maintain the cell 

stability become deregulated (see table 2) and aberrant tumour-stromal cell interactions 

facilitate the process of metastases, which emphasize the importance of studying multiple 

genetic and epigenetic alterations to understand the deregulation of these genes (99). 

 

Table 2 – Some of the most common molecules deregulated in breast cancer. 

Molecules Associated Process References 

CDKN2A 

control of cell cycle 

(105) 

CCNA2 (106, 107) 

CCND2 (108, 109) 

DAPK (100) 

MGMT 
proliferation, survival, 

differentiation, DNA repair 

(110) 

HMLH1 (110) 

BRCA1 (109-112) 

GSTP1 
xenobiotic 

metabolism 
(99, 109, 111, 113) 

RARβ2 

signal transduction 

(99, 105, 108, 109, 111, 113) 

APC (99, 109) 

RASSF1 (99, 108, 113) 

ER α/β (109) 

TWIST1  (108) 

CDH1 
adhesion and metastasis 

(105, 109, 111, 113) 

CD44 (114, 115) 
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Abbreviations: APC– adenomatous polyposis coli; BRCA1– breast cancer 1; CCNA2 – cyclin A2; CDH1 – 

cadherin 1, type 1, E-cadherin (epithelial); CCND2 – cyclin D2; CDKN2A – cyclin-dependent kinase 

inhibitor 2A (p16INK4A, p14ARF); CD44 – cluster differentiation 44; DAPK – death-Associated Protein 

kinase; ER – estrogen receptor; GSTP1 – glutathione S-transferase pi 1; hMLH1 – mutL homolog 1, colon 

cancer, nonpolyposis type 2 (E. coli); MGMT – O-6-methylguanine-DNA methyltransferase; RARβ2 – 

retinoic acid receptor, beta 2; RASSF1 – Ras association (RalGDS/AF-6) domain family member 1; TWIST1 

– Twist homolog 1 (Drosophila). 

 

 Epithelial-mesenchymal transition 2.2

EMT is a process tightly regulated in branching morphogenesis, but is also 

postulated that its deregulation has a critical role during tumour progression (40, 48, 54, 

55, 104). 

Some cells that undergo EMT represent intra-neoplastic dedifferentiation to a more 

embryonic state, where tumour cells have lost their wholesome epithelial attributes and 

acquire some mesenchymal properties (55). It would seem that metastatic tumour cells 

undergo EMT to invade the vasculature and then, in order to establish colonization of the 

distant sites, they rapidly return to an epithelial phenotype via MET (55). In addition to 

EMT, which results in single cell diffusion of tumour cells, the collective migration of 

groups of tumour cells, equivalent to epithelial plasticity seen in mammary gland 

development, has also been identified in the peri-tumoural tissue (48) (figure 6). 

 

 

Figure 6 – Epithelial mesenchymal transition procedure in cancer progression. During primary 

tumor formation, the genetic and epigenetic changes in the tumor cells together with alterations in 

the tumor microenvironment trigger EMT. EMT and epithelial plasticity make it possible for the 
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tumor cells to separate from their neighboring cells, invade throughout the underlying basement 

membrane and go into the surrounding tissue either as single or as clusters of cells, which precedes 

local invasion, spreads to the draining lymph nodes and presumably access of the bloodstream 

leading to development of distant metastatic disease (adapted from (48)). 

 

Spindle cells in mixed tumours express both epithelial (cytokeratins) and 

mesenchymal (vimentin, upregulation of fibronectin and collagen type I and III) markers 

(55). Moreover, specific EMT signatures on gene expression arrays are found during breast 

cancer evolution, such as genes encoding components of the extracellular matrix and 

factors implicated in matrix changes (104). As expected, many of the same signalling 

pathways and transcription factors important to physiologic occurrence of EMT are also 

activated during pathologic EMT but in a deregulated manner (48). The range of EMT 

inducers drawn in includes hypermethylation of the E-cadherin promoter (40), activation of 

signalling pathways such as hepatocyte growth factor (HGF), platelet-derived growth 

factor, TGF-β and Wnt/β-catenin, as well as up-regulation of transcriptional factor 

Snail/Slug/Twist, Cripto, Six1, ladybird homeobox 1 (Lbx1), forkhead box C2 (FOXC2) 

and zinc finger E-box binding homeobox 1 and 2 (ZEB1 and ZEB2). In addition, non-

coding RNAs, including microRNAs family which target regulation of proteins mentioned 

above, specifically, low expression of miR-200, has been shown to increase EMT (48, 54). 

Regulators of EMT induce a tumour-initiating cell phenotype and can also influence cell 

survival, specifically after treatment with chemotherapeutic agents (48). 

 
 

 Cancer stem-cells/tumour initiating cells 2.3

It has been suggested the existence of cancer stem cell (CSC) or tumour initiating 

cell (TIC), that are cells within breast cancers that possess ‘stem cell’ characteristics such 

as dormancy, self-renewal and differentiation, and give rise to different subtypes of 

tumours which display characteristic gene-expression profiles (mixed, luminal or basal 

lineage), ultimately sustaining tumour initiation, progression, distinct prognoses and 

recurrence (2, 36, 52, 116). However, it is unclear whether different target cells contribute 

to this heterogeneity and which cell types are most susceptible to oncogenesis (55). 

Mammary stem cells are speculated to be at the cellular origin of at least a subset of human 

breast cancers, since they exist quiescently over long periods of time, and the longevity of 

these cells may increase their risk to accumulate multiple mutations over the life-span, 
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making them perfect candidates for tumour initiation when stimulated to proliferate (36, 

117).  

Nevertheless, some tumour biologists argue that the CSC hypothesis is too 

simplistic and propose a more complex model of cancer development, termed clonal 

evolution. This model proposes that tumours arise from an aberrant normal cell clone 

which proliferates uncontrollably due to accumulation of genetic mutations (118). Once, 

the longevity allows stem cells to acquire multiple genetic mutations, differentiated cells 

may also gain a mutation that can increase their life-span or immortalize them so that they 

will have a chance to accumulate additional mutations and eventually evolve into cancers 

(117) or a first genetic lesion may reactivate a self-renewal pathway within these cells, 

effectively allowing them to reacquire stem cell characteristics and then generate CSCs 

(36). Unless dedifferentiation is involved, stem cell markers and non-epithelial cells are 

unlikely to be present in cancers that arise from differentiated cells. So, it appears that 

breast cancer may arise from both stem/progenitor cells and more differentiated cells. 

Cancers that do arise from stem cells may exhibit cellular heterogeneity; on the other hand, 

cancers that arise from more differentiated cells are likely to be more uniform in their 

cellular composition (117) (figure 7). 

 

 

Figure 7 – Cancer stem cells/tumour initiating cells. Epigenetic and genetic alterations occur in 

different stem or progenitor cells, including the long term (LT), short term (ST) and luminal or 

basal (myoepithelial) progenitors, and give rise to different subtypes of tumours that consist of 

different cell types (mixed, luminal or basal lineage) (adapted from (2)). 
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The breast CSCs/TICs were most commonly associated with a CD44
+
/CD24

–/low
 

signature (119). Expression of these cell surface molecules is affected by numerous genetic 

and epigenetic factors; however, new markers are regularly being linked to self-

renewability. For example, an increase of aldehyde dehydrogenase 1 (ALDH 1) activity 

was associated with augmented stem cell properties in human mammary epithelial cells 

(39, 116) and the genes breakpoint cluster region pseudogene 1 (BCRP1), Spinocerebellar 

Ataxia Type 1 Protein (Sca1), and K6 also have provided useful markers for mammary 

stem/progenitor cell isolation and characterization (117). Also cytokines such as stromal 

derived factor-1, interleukin-6 (IL-6) and interleukin-8 (IL-8) are important in regulating 

CSC activity (118). Deletion of BRCA1 in mammary epithelial cells, which has well-

established roles in DNA repair, chromosome stability and a mediator of mammary cell 

fate specification, also resulted in the expansion of stem cell populations (39). Also a 

relation between mammary stem-like cell stage and regulation of skeletal and development 

genes (including osteoblastic stem cell markers, Spark, secreted phosphoprotein 1 (Spp1), 

IL-6, runt-related transcription factor 2 (Runx2), C-type lectin domain family 2, member D 

(Ocil), follistatin (Fst), dual specificity phosphatase 1 (Dusp1) and ADAM 

metallopeptidase with thrombospondin type 1 motif, 1 (Adamts1)); and for lung 

angiopoietin-like 4 has been documented. This finding may indicate why breast tumours 

have a preference for skeletal and lung metastases, and the potential of these genes as 

metastasis markers (35). 

Also, several signalling pathways are implicated in regulating mammary stem cells 

and altered in breast cancer. Examples of these pathways are Wnt, Notch, Sonic Hedgehog, 

β-catenin and TGF-β (117, 118).  Signalling via Hedgehog or Notch can promote self-

renewal of cultured human mammary stem cells, the presence of TGF-β increases CSC 

motility and invasiveness (116), β-catenin signalling may function through an anti-

apoptotic mechanism, maintaining mammary stem/progenitor cells (45) and transgenic 

activation of Wnt signalling in the mammary gland induces tumours comprised of 

epithelial and myoepithelial cells harbouring the same genetic defect implying that the 

tumour arose from transformation of a bipotent progenitor cell. Thus, the heterogeneity of 

different breast cancers may reflect the activation of different oncogenic pathways and/or 

different cellular targets in which these genetic changes occur (117). So, CSCs in each 
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patient will vary dramatically and will be dependent on the type of breast cancer, the 

dominant mutations, gene amplifications and deletions (118). 

Several lines of evidence support the link between EMT, loss of epithelial 

properties and increase in CSC-like properties in breast cancer (48, 54, 55, 116). This is 

corroborated by the evidence that the activation of the mitogen activated protein kinase 

(MAPK) pathway as well as over-expression of Snail and Twist, key regulators of EMT, 

made the human mammary epithelial cells more mesenchymal in nature with stem cell 

properties (54, 55), including an increased ability to self-renew (48, 55) and an increased 

expression of CD44
+
/CD24

–/low
 genotype, CSC markers. An increase in EMT markers has 

thus been linked with aggressiveness of metastatic disease (54). 

In spite of CSCs having a more mesenchymal phenotype, they actually can exist in 

two alternative epithelial and mesenchymal states, the balance of which is regulated by 

microRNAs (miRNAs) including mir-93 (116). This miRNA is capable of modulating 

breast CSC populations by regulating their proliferation and differentiation states. There 

are twenty-four genes known to be involved in stem cell self-renewal including janus kinas 

1 (JAK1), SRY (sex determining region Y) box 4 (SOX4), signal transducers and 

activators of transcription 3 (STAT3), v-akt murine thymoma viral oncogene homolog 1 

(AKT), enhancer of zeste homolog 1 (EZH1), high mobility group AT-hook 2 (HMGA2), 

with are targeted by mir-93. This miRNA targets two important regulators of TGFβ 

signalling, TGFβR2 and SMAD5. Furthermore, miRNAs Let7 and mir-200c also regulate 

self-renewal of breast CSCs mediated by stem cell regulatory genes such as BMI-1 and 

HMGA2 (116).  

The existence of alternative CSC states, associated with expression of different 

protein markers has an important implication in the understanding of the plasticity of CSCs 

and also reveals the urgency for developing new therapeutic strategies capable of 

effectively targeting CSCs properties in all of these states. This urgency is due to the fact 

that these cells may mediate local recurrence invasion, distant metastases, can resist to 

chemotherapy and radiotherapy and repopulate the tumour following treatment (116, 118). 

Although cancer stem cells may be resistant to conventional therapies that commonly 

target only the bulk tumour (54), possibly as a consequence of the increased expression of 

members of the ABC family of drug transporters (116), a better understanding of the role 

of EMT and CSCs together in breast cancer and all the molecular mechanisms that control 
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their self-renewal and differentiation may actually enable them to be eliminated (36, 54). 

There are several ways to fight CSC activity, these include induction of apoptosis, 

inhibition of stem cell self-renewal to either stop their division or to promote their 

differentiation, or target the CSC niche that supports them. The use of traditional therapies 

along with these techniques should reduce breast cancer recurrence (118). 

 

 Subtypes of invasive breast cancer 2.4

The presence ER and PR is of major importance in cancer classification. These are 

intracellular receptors, with ligand-activated transcription factor activity, that operate 

directly at the nucleus but may also have an effect on several signalling pathways 

independently of transcription. It is recognized the existence of two isoforms for ERs, α 

and β. The ERα has an important role in the proliferation and progression of breast cancer, 

while the function of ERβ has not been clearly established, but it is believed that inhibits 

the proliferation, migration and invasion of mammary cancer cells, and as such cancers 

that express ERβ have a better prognosis (120). In addition, the presence or absence of 

other cell surface proteins such as HER family of receptors is also a crucial factor to 

characterize the type of cancer (7, 121, 122). EGFR and HER-2 are expressed in 

approximately 16-48% and 25-30% of tumors, respectively, and their expression are 

correlated with a more aggressive disease course, shorter survival and higher risk for 

resistance to endocrine therapies. The expression of HER-3 is observed in approximately 

18% of the tumours and also correlates with reduced overall survival. Interestingly, the 

expression of HER-4 (found in 12% of tumours) has been associated with more favourable 

tumour characteristics and improved survival (7). Contrary to what is observed for other 

receptors there is no natural ligand for HER-2. So, the evidence suggests that HER-2 is the 

preferred dimerization partner for the activation of other receptors, including the HER-3, 

which lacks intracellular tyrosine kinase activity (7, 121).  

Therefore breast cancer may be designated as ER, and usually PR positive or 

negative, HER-2 positive or negative, and ER, PR, HER-2 negative (triple negative breast 

cancer - TNBC) (123). Jointly to this information numerous genomic studies have been 

carried out to establish microarray profile of different gene expression patterns to have a 

correlation to phenotypic diversity of breast cancer (124-126). 
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Initially, four major genetically distinct breast cancer subtypes have been 

established that is, ER
+
/luminal-like (which can be subdivided into luminal A and B), 

HER-2
+
, basal-like and normal breast-like group that show significant differences in 

incidence, survival and response to therapy. 

ER
+
 tumours are ERα expressing tumours with gene expression characteristics 

typical of luminal epithelial cells; it has been characterized as more differentiated and less 

malignant than basal cells and corresponds to the majority of human breast cancers (70%). 

ER
+
 tumours can be divided into at least two distinctive groups with characteristic gene 

expression profiles and different prognosis – luminal A and luminal B. Luminal A subtype 

have a relatively favourable prognosis and demonstrated the highest expression of the ERα 

gene, GATA binding protein 3 (GATA-3), X-box binding protein 1 (XBP1), estrogen-

induced gene trefoil factor 1 (TFF1), trefoil factor 3 (TF 3), transcription factors 

hepatocyte nuclear factor 3 α (HNF3A), and estrogen-regulated protein solute carrier 

family 39 (zinc transporter), member 6 (LIV-1), whereas luminal subtype B demonstrated 

a low to moderate expression of the luminal specific genes including the ER cluster and the 

high expression of a novel set of genes such as gamma-glutamyl hydrolase (conjugase, 

folylpolygammaglutamyl hydrolase) (GGH), Y box binding protein 1 (NSEP1) and cyclin 

E1 (CCNE1). This last one might represent a clinically distinct group with a different and 

worse disease course, in particular with respect to relapse (124, 125, 127). 

The HER-2
+
 subtype was characterized by high expression of several genes in the 

HER-2 amplicon at 17q22.24 including HER-2, mediator complex subunit 24 (TRAP100) 

and growth factor receptor-bound protein 7 (GRB7) oncogenes, being over-expression of 

the HER-2 oncoprotein a well-known prognostic factor associated with poor survival in 

breast cancer. The basal-like group of tumours is characterized based on gene expression 

characteristics typical of basal-like (myoepithelial) cells (predominantly ER
-
) such as basal 

keratins, annexin 8, chemokine (C-X3-C motif) ligand 1 (CX3CL1), tripartite motif 

containing 29 (TRIM29), integrinβ4, laminin gama 2 (LAMC2) and lamin B receptor 

(LBR), the transcription factor p63, desmocollin 2 (DSC2), MRAS, a well-known 

oncoprotein of the RAS superfamily whose mutant forms may transform mammary 

epithelial cells, cell division cycle associated 7 (CDCA7), a direct target of the MYC 

oncogene (124, 125, 128), and over-representation in BRCA1 mutation carriers. Basal-like 
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tumours have, normally, less frequency than the other ones, but it has most aggressive 

behaviour, including invasion and purported cancer stem cell activity (39).  

The normal breast-like group of tumours showed a gene expression pattern typified 

by the high expression of genes characteristic of basal epithelial cells and adipose cells, 

and the low expression of genes characteristic of luminal epithelial cells. 

The TNBC, are correlated with aggressive behaviour of the tumour, poor prognosis 

and present lack of targeted therapies, once will not be able to respond to hormone 

therapies, chemotherapy is the only form of alternative treatment. Triple negativity is often 

used to identify basal-like tumours, but these types of tumours are different, having 

additional markers (mostly cytokeratins) has superior prognostic value as described above 

(102). 

More recently a new molecular subtype called claudin-low was identified (129). 

This is characterized by the low gene expression of tight junction proteins claudin 3, 4 and 

7 (130) and E-cadherin, a calcium-dependent cell-cell adhesion glycoprotein and which 

displays (2) EMT-like properties (48). 

In summary, classification based on gene expression profile captures the molecular 

complexity of breast tumours. This does not only reveal similarities and differences among 

the tumours, but in many cases points to a biological interpretation. Variation in growth 

rate, in the activity of specific signalling pathways, and in the cellular composition of the 

tumours was all reflected in the corresponding variation in the expression of specific 

subsets of genes (figure 8). These findings have several implications for the understanding 

of human breast cancer biology and a major impact on treatment paradigms in both 

curative and palliative settings. 
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Figure 8 – Breast cancer subtypes. Schematic representation of different subtypes of breast cancer 

and their relations: normal-like, Luminal A and B, HER-2, claudin-low, TNBC and Basal like. 

Notice that this last three are frequently associated to each other. 

 

 Ras/Raf/MEK/ERK and PI3K/AKT pathways 2.5

Members of the family of MAPK and phosphatidylinositol 3-kinase (PI3K) are 

involved in signaling pathways which are carefully coordinated (figure 9). These pathways 

are generally activated by hormones, growth factors and cytokines that induce activation of 

both tyrosine kinase (such as EGFRs) (131). Ligand could bind to the extracellular domain 

of the tyrosine kinase receptor that result in receptor dimerization and phosphorylation of 

the intracellular domains, leading to activation of v-Ki-ras2 Kirsten rat sarcoma viral 

oncogene homolog (Ras - KRAS), and PI3K. Ras protein activates v-raf murine sarcoma 

viral oncogene homolog B1 (Raf -BRAF) that phosphorylate mitogen-activated protein 

kinase kinase (MEK), and mitogen-activated protein kinase (MAPK /ERK), which leads to 

expression of growth-promoting genes. In addition, PI3K phosphorylates 

phosphatidylinositol-2-phosphate (PIP2) to phosphatidylinositol-3-phosphate (PIP3), 

which in turn activates AKT and several downstream effectors including mammalian target 

Subtypes 

ER+ Luminal 

A 

(ER/PR+ HER-2-) 

B  

(ER/PR+ HER-2+) 

ER- 

Basal -like 

(↑ expression of K5, 
K6, K14 and K17) 

TNBC  

(ER/PR/HER2-) 

HER-2  

(ER/PR- HER2+) 

Claudin low 

(↓ expression of tight 
junction proteins claudin 

3, 4 and 7 and E-cadherin) 

Normal -like 

(↑ expression of genes 
characteristic of basal 
cells and adipose cells, 
and ↓ expression of 
genes characteristic of 
luminal cells) 

http://www.discoverymedicine.com/tag/protein-kinase/
http://www.discoverymedicine.com/tag/protein-kinase/
http://www.discoverymedicine.com/tag/mapk/


Fátima 
Monteiro 

Expression and functionality of histone H2A2C in the mammary epithelium 

 

22 
 

of rapamycin (mTOR) that can regulate directly translation of regulatory elements that 

participate in protein synthesis, cell growth and survival, proliferation, migration, and 

angiogenesis (131, 132).  

In breast cancer, the proliferative cells directly depend of both Ras/Raf/MEK/ERK 

and PI3K/AKT/mTOR pathways, which are upregulated. Regulation of these pathways is 

mediated by a series of kinases, phosphatases and various exchange proteins. Genetic and 

epigenetic alterations can occur in many of these pathway elements (e.g. KRAS, BRAF, 

AKT, PI3K, catalytic subunit alpha (PI3KCA) and phosphatase and tensin  homolog on 

chromosome 10 (PTEN)) leading to uncontrolled regulation and aberrant signalling a 

different levels including transcription (7), which results in inhibition of apoptosis (133-

135), cell cycle regulation (133, 136, 137), angiogenesis and cell migration, metastasis 

(138-140), cell proliferation and survival of cancer cells  (141-145) (figure 9).  

 

Figure 9 – Schematic overview of Ras/Raf/MEK/ERK and PI3K/AKT pathways, including the 

transcription factors regulated by them. Abbreviations: AP-1 – activator protein 1 – composed by jun 

proto-oncogene (c-jun), FBJ murine osteosarcoma viral oncogene homolog (c-Fos), activation transcription 

factor (ATF) and Jun dimerization protein (JDP); CREB – cAMP response element-binding protein; c-myc – 

http://www.discoverymedicine.com/tag/angiogenesis/
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V-myc myelocytomatosis viral oncogene homolog (avian); EMT – epithelial mesenchymal transition; Ets – 

E-twenty six transcription factors family; E2Fs – E2F family of transcription factors; FOXO-3 – forkhead 

box O3; HIFs – hypoxia-inducible factors; NFkB – nuclear factor of kappa light polypeptide gene enhancer 

in B-cells 1; STAT – signal transducer and activator of transcription 1/3; p53 – tumour protein p53. 

 

 Epigenetics 2.6

Gene expression regulation is critical for the normal growth and development, and 

alterations may result in a variety of pathological processes including cancer. It is believed 

that phenotype of most, if not all, cancers, including breast cancers, is probably due to an 

amalgamation of some mutated genes and some genes functionally modified by epigenetic 

changes (146). 

Differentially to genetic mutations that are a result of alterations in the primary 

nucleotide sequence of DNA (146), the term epigenetics is described as heritable and 

reversible changes in transcription of DNA to RNA and gene expression, without change 

in the DNA sequence (147-149). Epigenetic mechanisms that modify chromatin structure 

can be divided into four main categories: DNA methylation, post-translational 

modifications (PTMs) of histones, incorporation of non-canonical histones and non-coding 

RNAs, such as microRNAs (150).  

 

2.6.1 DNA methylation 

DNA methylation refers to the addition of a methyl group (-CH3) to the pyrimidine 

ring of cytosine via covalent bond to form methyl cytosine (5-MeC). This is achieved 

through the actions of DNA methyltransferase enzymes (DNMTs). DNMTs use S-

adenosyl-methionine (SAM) as the methyl group donor. Five DNMT proteins have been 

discovered in mammals, but only DNMT1, DNMT3a, and DNMT3b have catalytic 

methyltransferase activity. DNMT1 has a preference for hemi-methylated DNA as a 

substrate and is responsible for the maintenance of methylation during DNA replication, 

whereas DNMT3a and 3b enzymes target unmethylated DNA. Process of DNA 

methylation occurs only to cytosines that precede a guanine in the DNA sequence, known 

as the CpG dinucleotide. CpG dinucleotides are found at increased frequency in the 

promoter region of many genes and/or intronic sequences, and are usually heavily 

methylated (4, 98). Where a number of these CpG dinucleotides are found at the promoter 

regions of genes they are known as CpG islands (149). CpG islands were initially defined 
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as regions >200 bp in length with an observed ratio of the occurrence of CpG >0.6. This 

definition may be modified to a more selective GC content to exclude unrelated regions of 

naturally high GC content. CpG islands typically span the promoter region and first exon 

of approximately 60% of all genes and sometimes they are also found toward the 3’ ends 

of genes (151). The methylation of CpG islands is a normal event that occurs in cells to 

regulate gene expression (99) such as in genomic imprinting, in which the maternal or 

paternal allele of a gene, or chromosome, is modified by methylation and is inactivated. 

The reverse phenomenon that is demethylation of an imprinted gene leading to its bi-allelic 

expression (loss of imprinting) can also occur in tumor cells (148).  

However, alterations in the methylation pattern of DNA at the promoter region of 

genes are amongst the most frequent molecular changes associated with human cancers. 

Global hypomethylation and gene-specific hypermethylation lead respectively to abnormal 

activation of individual genes, chromosomal instability through disruption of chromosome 

replication control and aberrant silencing of tumor suppressor genes (148). The aberrant 

methylation of genes that suppress tumourigenesis, such as developmental transcription 

factors, tissue remodeling genes, DNA repair genes, cell cycle control genes, anti-apoptotic 

genes, and genes that prevent abnormal activity of developmental pathways in tumors, 

appear to occur early in tumor development (99, 152, 153). Moreover, each cancer type 

seems to display a particular epigenetic signature, which might be used as a cancer 

molecular marker. Even though, hypermethylation of CpG islands is more prevalent than 

hypomethylation across the entire genome in breast carcinogenesis, global DNA 

hypomethylation is far more prevalent in breast cancer compared to that observed in other 

tumor types. This global hypomethylation has been associated with poor prognostic factors 

such as tumor size, stage and grade (146). Some genes previously reported to have 

alterations in methylated pattern in breast cancer are shown in table 3.  

The repressive effects of DNA methylation on gene expression are also mediated 

by methyl-CpG binding proteins (MCBP). Methyl cytosine binding domain protein 2 

(MBD2), a member of the MCBP family, has emerged in the context of cancer for several 

reasons. MBD2 binds densely methylated DNA with higher affinity than other known 

MCBPs and has been shown to act upon numerous tumors suppressor gene targets (152). 
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Table 3 – Hallmarks of cancer and different types of genes silenced and/or highly expressed by 

aberrant DNA methylation in breast cancer. 

 

DNA methylation Gene function Hallmark 

 (acquired capability) 

References 

Hypermethylation 

(gene silencing) 

   

BRCA1 Repair DNA damage Genome instability (112) 

GSTP1 Xenobiotics detoxification Susceptibility to the action of 

electrophilic carcinogens and 

resistance to chemotherapeutic 

agents 

(111, 113, 

154) 

CDKN2A Cell cycle G1 control 

CDK inhibitors 

Unscheduled proliferation and 

genomic instability 

(155) 

CCND2 Cell cycle regulation, 

differentiation 

Unscheduled cell division (100, 101, 

108, 156) 

S100A2 Cell cycle progression and 

differentiation 

Uncontrolled growth (157) 

CDH1 Cell adhesion Increased proliferation, 

invasion and/or metastasis 

(111, 113, 

158) 

TNFRSF10C Anti-apoptotic Apoptosis-inducing activity of 

TRAIL 

(159) 

ESR1 Hormone receptor mediated 

cell signalimg 

Hormone resistance (160-162) 

PGR Hormone receptor mediated 

cell signalimg 

Hormone resistance (161) 

SYK Cell proliferation and 

differentiation 

Tumor growth and metastasis (163) 

RARB Mediates cellular signaling, 

growth and differentiation 

Limitless replicative potential (101, 108, 

113, 164) 

THRB Growth, development, 

differentiation and tissue 

homeostasis 

Carcinogenic 

pathway-dependent 

(165) 

HOX5A Upregulates p53, apoptosis Evading apoptosis (166) 

RASSF1A Regulation Ras phatway Inhibits apoptosis (100, 108, 

113, 167) 

SFN DNA damage Impairing the G(2) cell cycle 

checkpoint function 

(168) 
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TWIST1 Implicated in lineage-specific 

cellular differentiation and 

survival 

Inhibits apoptosis (101, 108) 

PITX2 Acts as a transcriptional 

Regulator involved in basal 

and hormone-regulated 

activity of prolactin 

Correlation with distant 

recurrence 

(169) 

APC Antagonist of the Wnt 

signaling pathway 

Tissue invasion and metastasis (100, 170) 

SCGB3A1 Putative cytokine, inhibits cell 

growth 

Insensitivity to anti-growth 

signals 

(101, 108) 

H2AFX Double strand breaking 

signaling 

Genomic instability (171) 

miRNA200a Regulates sirtuin 1 (class III 

HDAC) 

Tumor progression and 

metastasis; induction of EMT 

(172) 

Hypomethylation 

(high gene 

expression) 

   

CDH3 Cell adhesion Invasiveness phenotype (173) 

LINE-1 Repetitive 

transposable element 

High risk of distant recurrence (174) 

ESR1 Hormone receptor mediated 

cell signalimg 

Self-sufficiency in growth 

signals 

(160, 161) 

SNCG Member of the synuclein 

family of proteins 

More aggressive and invasive 

phenotype 

(175) 

CAV1 and 2 Integrate and regulate cellular 

signalling pathways including 

GTPases (Ras and RhoA). 

Invasiveness, angiogenesis 

and metastases 

(176) 

NAT1 Drug-metabolizing enzyme Augments breast cancer risk 

due to acetylation of most 

exogenous arylamine, 

heterocyclic amine and 

hydrazine compounds 

(177) 

 

Abbreviations: BRCA1 – breast cancer 1, early onset; GSTP1 – glutathione S-transferase pi 1; CDKN2A –
 
 

cyclin-dependent kinase inhibitor 2A (p16
INK4A

, p14
ARF

); CCND2 – Cyclin D2; S100A2 – S100 calcium 

binding protein A2; CDH1 – cadherin 1, type 1, E-cadherin (epithelial); TNFRSF10C – tumor necrosis factor 

receptor superfamily, member 10c, decoy without an intracellular domain (DcR1); ESR1 – estrogen receptor 

1 (ERα); PGR – progesterone receptor (PR); SYK – spleen tyrosine kinase; RARB – retinoic acid receptor, 
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beta (RAR-β); THRB – thyroid hormone recptor, beta; HOX5A – homeo box A5; RASSF1 – Ras association 

domain family 1A; SFN – stratifin  (14-3-3 δ); TWIST1 – Twist homolog 1 (Drosophila);  PITX2 – paired-

like homeodomain; APC – adenomatous polyposis coli; SCGB3A1 – secretoglobin, family 3A, member 1 

(HIN-1);  H2AFX – H2A histone family, member X; miRNA200a – micro RNA 200a; CDH3 – cadherin 3, 

type 1, P-cadherin (placental); LINE-1 – long interspersed element 1; SNCG – synuclein, gamma (breast 

cancer-specific protein 1); Cav1 – caveolin 1, caveolae protein, 22kDa; Cav2 – caveolin 2, caveolae protein, 

22kDa; NAT1 – N-acetyltransferase 1 (arylamine N-acetyltransferase). 

 

Since tumor suppressor genes have two alleles, both alleles have to be inactivated 

prior to tumor formation. However, the inactivation of the second allele was not always 

understood, until recent research demonstrated that this inactivation can occur by aberrant 

DNA methylation (146). Until now, many tumor suppressor genes in breast cancer have 

been identified by chromosomal analysis that showed frequent loss of heterozygosis 

(LOH), such as PTRPJ (178).  

 

2.6.2 Non-coding RNAs 

Many genes in eukaryotic cells are transcribed into mRNA that never gets 

translated to a protein, which result into a small non-coding RNAs (sncRNAs) (179) that 

are, nonetheless, involved in many biological processes such as mRNA degradation, 

translational repression, or both, therefore regulating gene expression (180). In most cases, 

these molecules have complex and precise patterns of expression during differentiation, 

development and tissue specificity, that if deregulated might be involved in 

pathophysiological states (181) like human breast cancer (182, 183). There are three main 

classes of sncRNAs described until now, namely short interfering RNAs (siRNAs) 

or interference RNA, miRNAs or antisense RNA, and PIWI-interacting RNAs (piRNAs). 

The expressions of piRNAs in tumour tissue were rarely reported (179). But, a recent study 

discovered some piRNAs deregulated in breast tumours, more specifically, 4 piRNAs: piR-

4987, piR-20365, piR-20485 and piR-20582 were confirmed to be up-regulated (184). 

miRNAs are the type of sncRNAs most described as deregulated in cancer disease 

including breast cancer. miRNAs, a small single-stranded RNAs with 18-25 nucleotides of 

length, play important roles in post-transcriptional gene expression regulation by 

negatively regulating the stability or translational efficiency of their target mRNAs by 

binding to the 3’ UTR (untranslated region) (180, 185). A large amount of miRNAs are 
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involved in tumorigenesis either by increasing expression of oncogenes or by reducing the 

expression of tumor suppressor genes and this way acting like onco- or tumor suppressor- 

miRNA (183, 185). miRNA controls cell growth, differentiation, proliferation, 

metabolism, apoptosis (181) and stem cell biology by targeting one or multiple pathways 

simultaneously (186). For example, miRNAs Let7 and mic-200c regulate self-renewal of 

breast cancer stem cells as well as mic-93 (116) (see table 4). 

 
Table 4 – Function of miRNAs in breast carcinogenesis, potential targets, expression and 

references. 

 

sncRNA Function Potential target(s) Expression References 

miR-132 Inhibit cell  proliferation  _ _ _ down-regulated (187) 

miR-485  Suppress cell proliferation and 

migration 
_ _ _ 

down-regulated (185) 

miR-10b Promote cells migration and 

invasion 
HOXD10 

up-regulated (114, 188) 

miR-10b* Inhibitor of the cell cycle BUB1, PLK1, CCNA2 down-regulated (106) 

miR-129 Inhibit the cell mobility and 

migration 
_ _ _ 

down-regulated (189) 

 miR-19a-3p 
Inhibits breast 

cancer progression and 

metastasis 

FOSL1 

 down-regulated (190) 

miR-15a 
Inhibits the cell cycle CCNE1 down-regulated (191) 

miR-21 
Promotes invasion, migration 

and metastasis 

ANKRD46, EIF4A2, 

BCL2, TPM1, PDCD4, 

PTEN, Maspin 

up-regulated (192) 

miR-193b 
Inhibits tumour progression and 

cell invasion 
uPA 

down-regulated  

miR-133a 
Regulates the cell cycle and 

proliferation in tumourigenesis 
EGFR 

down-regulated (193) 

miR-26a 
inhibit tumour growth MCL1 down-regulated (194) 

miR-34a Inhibits proliferation and 

migration of breast cancer  
BCL2, SIRT1 

down-regulated (195) 

miR-101 
Inhibits cell proliferation, 

migration and invasion, and 

promoted cell apoptosis 

STMN1 

down-regulated (196) 



Fátima 
Monteiro 

Expression and functionality of histone H2A2C in the mammary epithelium 

 

29 
 

miR-122 Inhibits cell proliferation and tu

mourigenesis of breast cancer 
IGF1R 

down-regulated (197) 

miR-155 
Supresses apoptosis and 

promotes cell growth 
FOXO3 

up-regulated (198, 199) 

miR-200 

family 

Inhibits EMT ZEB1/2, SUZ-12, E-

cadherin, EphA2 

down-regulated (186, 200) 

miR-205 
Inhibits cell proliferation and 

induces apoptosis 
ERBB3 

down-regulated (198, 201) 

miR-206 Inhibits cell proliferation 

 
CCNA2 

down-regulated (107) 

Let-7 

Family 

Inhibits breast cancer cell 

motility and affects actin 

dynamics 

PAK1, DIAPH2, RDX, 

ITGB8 

down-regulated (202) 

miR-373 Stimulates cancer cell migration 

and invasion 
CD44 

up-regulated (114, 115) 

miR-520c Stimulates cancer cell migration 

and invasion 
CD44 

up-regulated (115) 

miR-125a Inhibits proliferation and cell 

migration and promote 

apoptosis  

HuR 

down-regulated (182) 

miR-125b Inhibits metastasis STARD13 down-regulated (180) 

mir-93 Maintains normal breast stem 

cells in an epithelial state, 

prevents tumour growth and 

metastasis 

JAK1, SOX4, STAT3, 

AKT, EZH1, HMGA2, 

TGFBR2, SMAD5 

down-regulated (116) 

miR-9 Inhibits cell proliferation 

 

MTHFD2 

down-regulated (203) 

miR-31 Inhibits breast cancer metastasis 
FZD3, ITGA5, M-RIP, 

MMP16, RDX, RHOA 

down-regulated (204) 

miR-7 Decreases migration/invasion PAK1 down-regulated (205) 

miR-146a/b Inhibits metastasis NF-kB down-regulated (206) 

miR-148a Inhibits angiogenesis ERBB3 down-regulated (207) 

 

Abbreviations:  AKT – v-akt murine thymoma viral oncogene homolog 1; ANKRD46 – ankyrin repeat 

domain 46; BCL2 – B-Cell CLL/Lymphoma 2; BUB1 – budding uninhibited by benzimidazoles 1 (yeast 

homolog); CCNA2 – cyclin A2; CCNE1 – cyclin E1; EGFR – epidermal growth factor; CD44 – cluster of 

differentiation 44; DIAPH2 – Diaphanous Homolog 2 (Drosophila); EIF4A2 – Eukaryotic initiation factor 

4A-II; ERBB3 – V-Erb-B2 Erythroblastic Leukemia Viral Oncogene Homolog 3 (HER3); EphA2 – ephrin 
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receptor A2; EZH1 – Enhancer Of Zeste Homolog 1 (Drosophila); FOSL1 – FOS-like antigen 1; FOXO3 – 

forkhead box O3; FZD3 – Frizzled Family Receptor 3; HMGA2 – High Mobility Group AT-Hook 2; 

HOXD10 – homeobox D10; HuR – mRNA-binding protein human antigen R; IGF1R – insulin-like growth 

factor; ITGA5 – Integrin, Alpha 5 (Fibronectin Receptor, Alpha Polypeptide); ITGB8 – integrin, beta 8; JAK1 

– janus kinase 1; MMP16 – Matrix Metallopeptidase 16 (Membrane-Inserted; M-RIP – Myosin Phosphatase 

Rho Interacting Protein; Maspin – mammary serine portease inhibitor; MCL1 – Myeloid Cell Leukemia 

Sequence 1 (Bcl-2-Related); MTHFD2 – Methylenetetrahydrofolate Dehydrogenase (NADP+ Dependent) 2, 

Methenyltetrahydrofolate Cyclohydrolase; miR – mature micro-RNA; NF-kB – nuclear factor of kappa light 

polypeptide gene enhancer in B-Cells; PAK1 – p21 protein (Cdc42/Rac)-activated kinase 1; PLK1 – polo-like 

kinase 1; PTEN – phosphatse and tensin homolog; RHOA – Ras Homolog Family Member A; RDX – radixin; 

SIRT1 – sirtuin 1; SMAD5 – SMAD family member 5; SOX1 – SRY (Sex Determining Region Y)-Box 4; 

STARD13 – StAR-related lipid transfer domain containing 13; STAT3 – signal transducer and activator of 

transcription 3 (acute-phase response factor); STMN1 – Stathmin1; SUZ-12 – Suppressor Of Zeste 12 

Homolog (Drosophila); TGFBR2 – Transforming Growth Factor, Beta Receptor II (70/80kDa); TPM1 – 

tropmyiosin1; uPA – urokinase-type plasminogen activator; ZEB1/2 – zinc finger E-box binding homeobox 

1/2. 

 

2.6.3 Post-translation modifications of histones 

A number of PTMs can occur at the amino acid tail of histone proteins which result 

in a conformational change in the chromatin and therefore in the transcription of genes 

with important roles in cellular processes such as replication and DNA repair. These 

alterations include lysine acetylation, lysine and arginine methylation, serine and threonine 

phosporylation (149), glutamic acid ADP-ribosylation and lysine ubiquitination (4, 153).  

The methylation (mono-, di-, and tri-methylation) of lysine in histones by specific 

histone methylases is also implicated in changes in chromatin structure and gene regulation 

(4, 146). Core histones can be methylated, either on lysine or arginine residues. Histone 

lysine methylation is a reversible process, dynamically regulated by both histone 

methyltransferases (HMTs) and demethylases (HDMTs) (4). In general, trimethylation of 

lysine (K) 4 in histone 3 (H3K4me3), or H3K36, or H3K79 in nucleosomes is associated 

with an open chromatin configuration and gene expression, whereas methylation of 

H3K9me3, H3K27me3, or H4K20me3 is associated with gene silencing (146, 208). 

Histone methylation is regulated in breast cancer via a large number of chromosomal 

remodeling regulatory complexes (208) including over-expression of EZH2, a 

methyltransferase and component of the polycomb repressive complex 2 (PRC2) (148, 

209). EZH2
 
plays an essential role in the epigenetic maintenance of the H3K27me3 

repressive chromatin mark. PRCs are required for the maintenance of stem cells, as well as 

to silence lineage-specific transcription factors until the proper cues signal differentiation. 
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So, inappropriate expression of such genes could give cancer cells a stem cell–like, 

undifferentiated quality (209). 

Modification of the N-terminal group of lysine in histones by acetylation or 

deacetylation changes the configuration of nucleosomes, which is controlled by a balance 

in activity between histone acetyltransferase (HAT) and histone deacetylase (HDAC), 

respectively. Acetylation of lysine residues in histone tails by a HAT3 weakens the 

interaction between histones and DNA, resulting in an uncoiling or open chromatin 

structure into eucromatin, which facilitates gene transcription. Increased acetylation of 

histones often results in enhanced transcription, presumably because this weakening 

increases the accessibility of nucleosomal DNA to transcriptional regulatory proteins. On 

the other hand, the recruitment of multiprotein repressor complexes containing HDAC 

activity to gene promoters removes acetyl groups from the histones leading to 

transcriptional repression into heterocromatin. The positive charge on non-acetylated 

lysines in the histones is attracted to the negatively charged DNA producing a chromatin 

condensation and subsequent coiling or “closing” of chromatin (4, 146, 149). Aberrant 

deacetylation of histones in nucleosomes is probably due to deregulation of the specificity 

of HDAC (146) or high HDAC expression and subsequently, histone hypoacetylation. The 

involvement of HDAC has been associated with neoplastic transformation, providing an 

underlying principle for the investigation of HDAC inhibitors in cancer therapeutics (149). 

 

2.6.4 Histone variants 

The histones are among the most highly conserved proteins in terms of either 

sequence or structure. But, in higher organisms, replacement histone variants have been 

described for each subtype of core histones H2A, H2B, H3 and H1 that are equally 

conserved. The only histone for which variants have not been discovered is histone H4. 

The somatic variants differ in their expression patterns during development and 

differentiation. Non-canonical variants can contribute to distinct or unique nucleosomal 

architectures, which could potentially be subjugated to regulate nuclear functions such as 

transcription, gene silencing, replication or recombination, DNA repair, chromosome 

segregation, sex chromosome condensation and sperm chromatin packaging (13).  There 

are several examples of highly divergent replacement variants and evidence that these 

histones have specialized functions (210) that when deregulated can contribute to cancer 
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development, including breast cancer. Interestingly, among core histones, the H2A 

family has the largest number of identified specialized variants, such as H2A.Z, 

MacroH2A, H2A-BbD, and H2A.X, suggesting that these variants may have a unique role 

in regulating several biological pathways (table 5). 

 

Table 5 - Proposed function of H2A histone variants and its involvement in cancer. 

 

H2A variant (gene/s) Proposed function Altered in cancer 

mH2A.1, H2A.y (H2AFY) X-chromosome inactivation; gene 

expression (211-214) 

Breast cancer (14), colon cancer 

(15) 

mH2A.2 (H2AFY2) X-chromosome inactivation? (213, 215) Melanoma (16) 

H2A1, H2A/p (HIST1H2AI; 

HIST1H2AK; HIST1H2AL; 

HIST1H2AM; HIST1H2AG) 

N/A Colon cancer (17), lung 

carcinomas (18), hepatocelular 

cancer (19) 

H2A1A, H2A/r 

(HIST1H2AA) 

N/A N/A 

H2A1B, H2A.2, H2A/a, 

H2A/m (HIST1H2AE; 

HIST1H2AB) 

N/A Colon cancer (17) 

H2A1C, H2A/I 

(HIST1H2AC) 

N/A Breast cancer (20), lymphocytic 

leukemia (21) 

H2A1D, H2A.3, H2A/g 

(HIST1H2AD) 

Chromatin integrity (216) N/A 

H2A1H, H2A/s 

(HIST1H2AH) 

N/A N/A 

H2A1J, H2A/e 

(HIST1H2AJ) 

N/A N/A 

H2A2A, H2A.2, H2A/o 

(HIST2H2AA4; 

HIST2H2AA3) 

Chromatin integrity (216) Colon cancer (17), 

Hepatocellular carcinoma (19), 

akute myeloid leukemia (22) 

H2A2B (HIST2H2AB) N/A N/A 

H2A2C,  H2A-GL101, 

H2A/q, H2AFQ 

(HIST2H2AC) 

N/A N/A 

H2A3 (HIST3H2A) N/A N/A 

H2AB1, H2A.Bbd 

(H2AFB1) 

Transcriptional activation (217-219) N/A 
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H2AB2, H2A.Bbd 

(H2AFB2; H2AFB3) 

Transcriptional activation (217-219) N/A 

H2AJ (H2AFJ) N/A Melanoma (24), breast cancer 

(23) 

H2A.V, H2A.F/Z (H2AFV) N/A  N/A 

H2A.x (H2AFX) Prevents DNA from double-strand 

damage (220) 

Lymphocytic leukemia (25), 

breast cancer (27), lung cancer 

(28), hepatocellular carcinoma 

(29) 

H2A.Z (H2AFZ) Altered higher-order chromatin structure 

(221) 

Hepatocellular carcinoma (26), 

breast cancer (32-34), prostate 

cancer (30), B-cell lymphomas 

(31) 

Abbreviations:  Bbd – Barr body deficient; N/A – not available. 

 

Histone macroH2A (mH2A) is a histone variant that has a unique C-terminal 

domain (the macro domain) in addition to the histone-like region. mH2A is associated with 

repression of transcription (212), including the inactive mammalian female X chromosome 

(211, 214) and senescence-associated heterochromatin foci (213). Furthermore, it has been 

shown that macroH2A plays an important role in gene silencing by interfering with 

transcription factor binding and nucleosome remodelling by SWI/SNF complexes (212), is 

enriched for a facultative heterochromatin mark (H3K27) and depleted for marks of active 

transcription (RNA polymerase II, H3K4me1, and histone H3 acetylation) and was found 

near transcription start site (TSS) and CTCF-binding sites, which is associated with 

transcriptional repression (222). However, the function of macroH2A1 histones is not 

restricted to gene silencing but also is a positive regulator of a subset of specific genes 

(222, 223). Alternative splicing of H2FY gene gives rise to the two isoforms mH2A1.1 and 

mH2A1.2 (224) that have different functions. In case of breast cancer, mH2A1.2, but not 

mH2A1.1, interacts with HER2 in nucleus cancer cells inducing ERBB2 transcription and 

so contributing to tumorigenicity (14). 

However, among the H2A histones variants deregulated in breast cancer, 

histone H2A.Z (H2AZ, H2AFZ) stands out, whose intensity of expression was correlated 

with presence of metastasis and decreased survival. H2A.Z was found bound to c-myc 

protein after E2 stimulus leading to increase gene and protein expression in MCF7 cells 

(E2-dependent breast cancer cell model) (33). Furthermore, H2A.Z is recruited at the TFF1 

http://www.activemotif.com/catalog/details/39113/histone-h2a-z-antibody-pab-h2az
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promoter, one of the major E2-dependent protein, altering the nucleosome position pattern 

and, consequently, facilitates the recruitment of FOXA1 (34).  

An association between phosphorylated H2A family, member X (γ-H2AX) 

expression and TNBC progression was found (27). Histone H2AX is required for 

checkpoint-mediated arrest of cell cycle progression in response to low doses of ionizing 

radiation, and for efficient repair of DNA double-strand breaks (DSBs), specifically when 

modified by C-terminal phosphorylation on serine 139 on each side of the break, yielding 

γ-H2AX foci (225, 226). At the same way, the H2AFJ gene that encodes H2A.J histone 

was also overexpressed in invasive breast tumours (23). However nothing about function 

and/or regulation of H2A.J histone is known. Histone variants could be a useful biomarker 

in various cancers. But, first of all, studies about histone variants functions and their roles 

in cancer are still necessary. 
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III. Aim of the study 

Previously, we used a mouse model of mammary epithelial cell differentiation 

(HC11 cell line) to identify histone classes and their posttranscriptional modifications 

(PTMs) in undifferentiated/ proliferating cells (stimulated with EGF) and in functionally 

differentiated cells (stimulated with lactogenic hormones). The methodology used was 

mass spectrometry (MS). We found that histone H2A2C was only detected in proliferating 

cells. HC11 cells share gene expression signatures with Luminal B and basal-like breast 

cancer (35) and to our knowledge, there is no information regarding H2A2C expression or 

alteration in any cancer. Therefore, the main goal of this work was to study histone H2A2C 

expression and its potential as a new biomarker and/or target in breast cancer. 

Specifically, the aims of this study were to: 

 Study expression of histone H2A2C in HC11 mammary epithelial cell line 

throughout differentiation (proliferative/undifferentiated, pre-

differentiated/competent and functionally differentiated stages); 

 Confirm the H2A2C expression in the mammary gland in vivo; 

 Establish if H2A2C expression is associated to cells undergoing 

proliferation; 

 Determine how the expression of histone H2A2C is regulated in distinct 

stages of HC11 differentiation; 

 Evaluate the expression levels of H2A2C in different types of human breast 

cancers 

 Analyze the phenotypic effects of H2A2C silencing in HC11 mammary 

epithelial cell line and in a mammary carcinoma cell line (MC4-L2). 
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IV. Methodology 

 

1. Experimental models 

To study breast cancer, and most cancers, it is necessary to use models to 

understand how proliferation, apoptosis and migration become deregulated during 

progression of the disease. 

 

 Cell lines 1.1

Cell lines are generally used, once these are easily propagated leading to 

homogeneous cell populations. Cell lines generally yield reproducible and quantifiable 

results, relatively tractable to genetic manipulation and under well-defined experimental 

conditions. In this work we used the following cell lines: 

 

1.1.1 HC11 cell line  

HC11 cell line is an undifferentiated, non-tumorigenic mouse mammary epithelial 

cell line that was cloned from COMMA-1D mouse mammary epithelial cell line obtained 

from mammary glands of mid-pregnant BALB/c mice (227) (a period of mammary 

stem/progenitor cell expansion (228)). So, HC11 cell line is a well-established model to 

study mammary stem cells, their differentiation and their relationship to breast cancer (35). 

HC11 cells have no requirement for complex, exogenously added, extracellular matrix or 

co-cultivation with other cell types (227). This cell line, can be cultured for an unlimited 

number of passages in a proliferating stem cell-like phase and can be differentiated in vitro 

by manipulating the growth factor and hormone conditions (figure 10). In vivo, HC11 cells 

reconstitute the ductal epithelium of a cleared mammary fat pad with myoepithelial, 

alveolar and ductal luminal cells and can functionally differentiate and express milk 

proteins (229). Furthermore, there are numerous correlations between the in vitro HC11 

differentiation and in vivo differentiation and similarities in gene expression between 

HC11 cells in proliferating/undifferentiated stage with human breast cancer, with poor 

prognosis signature (luminal B and basal-like) (35). 

Once, genes highly expressed in the stem-like stage are downregulated during 

differentiation (35), and characterized markers are highly needed for the study of 
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aggressive breast tumors; the study of regulation of histone H2A2C in HC11 cell line 

seems to be a suitable choice. 

 

Figure 10 – Cell culture of HC11 mammary epithelial cells. Abbreviations: Dex – dexamethasone; 

EGF – epidermal growth factor; FBS – fetal bovine serum; INS – insulin; oPrl – ovin prolactin.  

 

1.1.2 MC4L2 cell line 

This cell line was obtained from a primary culture of a hormone-dependent mouse 

mammary carcinoma. In vitro, the cells have a fibroblastic appearance. In vivo they give 

origin to a biphasic carcinoma, metastatic to lymph nodes and lung. Both, in vivo and in 

vitro, the cells express ERα, ERβ and PR. The parental tumors have amplification of c-erb2 

and not express EGFR (230).  

 

1.1.3 MDA-MB-231 cell line 

This is a human breast cancer cell line derived from a mammary adenocarcinoma. 

They express EGFR, have a fibroblastic morphology. In vivo they give rise to poorly 

differentiated adenocarcinoma (grade III) (ATCC® HTB-26™, Virginia, USA). This cell 

line has a gene expression signature of basal-like breast cancer. 

 

 

1.1.4 Cell culture 

HC11 cells were routinely grown in complete medium (RPMI 1640, 10% fetal 

bovine serum (FBS), 2 mM L-glutamine, 5 μg/ml insulin (INS), 10 ng/ml EGF, and 50 

μg/ml gentamicin) to obtain proliferating/ undifferentiated cells. From now onwards, cells 

Undifferentiated 
(stem-cell like) 

 

•+EGF 

•↑FBS 

•+INS 

Pre-
difeferentiated 

 

•-EGF 

•↓FBS 

•+INS 

Differentiated 

 

•-EGF 

•+oPrl 

•+Dex 
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grown in this conditions will be referred to as stem cell-like (SC-L). When cells reached 

confluence, the medium was changed to medium without EGF (RPMI 1640, 2% FBS, 5 

μg/ml insulin, and 50μg/ml gentamicin) and competent (pre-differentiated) cells were 

obtained. To induce differentiation of competent cells, they were treated with medium 

without EGF containing 100nM dexamethasone and 1μg/ml ovine prolactin (oPRL) (35). 

MC4-L2 cells were cultured in DMEM/F12 medium with 10% FBS and 50 μg/ml 

gentamicin. In survival and cell counting experiments, 5 μg/ml insulin (INS) were also 

added. MDA-MB-231 cells were cultured in Leibowitz medium with 10 % FBS and 50 

μg/ml gentamicin. 

The MEK ½ inhibitor and PI3K inhibitor were dissolved in DMSO in a 1000X 

stock solution and used in a final concentration 1µM and 3µM, respectively. 

 

 Mammary mouse tissues  1.2

Mammary gland tissue is the same as described in Williams et al. (35). Mammary 

glands from 2-month old virgin, 10-day pregnant and 6-day lactation mice were excised 

and the tissues were kept in paraffin blocks which we used for this study. All animal 

experimentation was approved by the Ethical Committee for use of laboratory animals. 

 

 Human tumour samples 1.3

A series of cases of human breast cancers were provided by the Portuguese 

Oncology Institute of Porto (IPOP). The samples consisted of paraffin slides with 

correspondent RNA that we identified according to the ER, PR and HER-2 phenotypes. All 

samples were obtained following the declaration of Helsinki on use of human patient 

material. 

 

2. Quantitative mRNA expression analysis  

To evaluate the levels of histone H2A2C mRNA expression in cell lines and 

tumours the following procedure was carried out.  

 

 RNA extraction and quantification 2.1

Total RNA extraction was performed using Trizol® Reagent (Invitrogen, Carlsbad, 

CA, USA) according to manufacturer’s instructions. Cell pellets were thawed on ice and 
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re-suspended in 1ml of Trizol® reagent using a syringe with a 0.9 mm needle. The 

homogenized samples were incubated for 5 minutes at room temperature to allow the 

complete dissociation of nucleoprotein complexes. Then, 200 µl of chloroform (Merck 

Millipore, MA, USA) were added, the tubes were vortexed for 15 sec. and incubated for 3 

min. at RT followed by a centrifugation at 10.600 rpm for 15 min. at 4°C. RNA in the 

aqueous phase was collected into a fresh RNAse-free tube and placed on ice. After that, 

500 µl of 100% isopropanol were added to the aqueous phase, the tubes were vigorously 

inverted by hand and placed at room temperature for 10 minutes, to allow the RNA 

precipitation. Then, tubes were centrifuged at 10,600rpm for 10 minutes, at 4ºC, and the 

supernatant was discarded without disturbing the pellet. Finally, 1ml of 75% (v/v) ethanol 

was added to wash RNA pellets by vortexing, followed by a centrifugation at 8,400rpm for 

10 minutes, at 4ºC. The supernatant was carefully discarded and RNA pellets were air-

dried for 15-20 minutes. RNA pellets were eluted in a variable volume (30-200 µl) of RNA 

storage solution (1 mm sodium citrate, pH 6.4) (Ambion®, Applied Biosystems, Foster 

City, CA, USA) according to pellet size and placed on ice for at least 30 minutes before 

evaluation of RNA concentration and quality using a Nano Drop ND-1000 

spectrophotometer (NanoDrop technologies, USA). RNA was stored at -80ºc until further 

use. 

 

 DNAse treatment 2.2

In order to remove any genomic DNA present in our samples after RNA extraction, 

a treatment with DNAse was performed, using turbo DNA-free™ (Ambion®) according to 

the protocol suggested by manufacturer. In short, 10 μg of our previously extracted RNA 

were aliquoted into fresh-RNAse free 500μl tubes and DEPC-treated water (MP 

Biomedicals, OH, USA) was added until a final volume of 50 μl was reached. Thereafter, 

5μl of 10x turbo DNAse I buffer and 1μl of turbo DNAse were added and incubation 

proceeds for 30 minutes at 37ºC took. Five μl of DNAse inactivation reagent were added, 

tubes were vigorously mixed, incubated at room temperature for 2 minutes and centrifuged 

at 10,000 x g for 90 seconds. Supernatant was carefully removed and stored into fresh, 

RNAse-free tubes. 
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 cDNA synthesis  2.3

For gene expression analysis, cDNA was synthesized by reverse transcription using 

the high capacity cDNA reverse transcription kit (Applied Biosystems, Foster City, CA, 

USA), according to manufacturer’s protocol. In each RNAse-free PCR tube, on ice, 1000 

ng of template RNA were added, 1x RT random primers, 1x RT buffer, 1x dNTP mix 

(4mM), 1μl of RNAse inhibitor, 1μl of Multiscribe™ Reverse Transcriptase and DEPC-

treated water (MP Biomedicals) to complete a total volume of 20μl. All the components 

were gently mixed and the mixture was incubated at 25ºC for 10 minutes, followed by 

37ºC for 120 minutes and, finally, 85ºC for 5 minutes. The incubation period was 

performed in a Veriti® thermal cycler (Applied Biosystems). Tubes were chilled on ice 

and 200μl of DEPC-treated water were used to dilute newly synthetized cDNA. All this 

procedure was also applied to human total RNA (Applied Biosystems), that was used as a 

positive control for qRT-PCR assay further described. In this case, cDNA was diluted in 

100μl of DEPC-treated water. All samples were stored at - 20ºC until further use. 

 

 Quantitative Real Time PCR  2.4

HIST2H2AC transcripts were quantified by real time quantitative PCR (qRT-PCR). 

The assays were performed using gene expression assays for HIST2H2AC 

(hs00543838_s1, Applied Biosystems) and the endogenous control GUSB 

(Hs99999908_m1, Applied Biosystems) for human samples, and HIST2H2AC assay 

(Mm04214950_gH, Applied Biosystems) and the primers for the endogenous control 

G6PDH (DNA Technology A/S, Risskov, Denmark) for mouse samples, being GUSB and 

G6PDH used to normalize cDNA input. The expression assays were performed separately 

in 96-well plates in 7500 real time PCR system (Applied Biosystems), according to the 

recommended protocol. 

In brief for the Taqman assays, in each well 9μl of previously synthesized cDNA, 

1μl of Taqman® gene expression assay and 10μl of Taqman® universal PCR master mix 

(Applied Biosystems) were added. PCR conditions: 50ºC for 2 minutes, 95ºC for 10 

minutes, 45 cycles at 95ºC for 15 seconds and 60ºC for 1 minute. 

For SYBR® Green (Applied Biosystems) experiment, in each well were added 2 μl 

of previously synthesized cDNA, 10 μl of Power SYBR® green PCR master mix (Applied 

Biosystems), 1μl of each G6PDH primers solution (forward + reverse) (10 mM) and 7μl 
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DEPC-treated water (MP Biomedicals) were added. PCR conditions: 50ºC for 2 minutes, 

95ºC for 10 minutes, 45 cycles at 95ºC for 15 seconds and 60ºC for 1 minute, 95ºC for 15 

seconds, 60/62ºC for 20 seconds and, finally, 95ºC for 15 seconds. 

All cDNA samples were run in triplicate. cDNA synthesized from human brain RNA 

(Applied Biosystems) and one sample of HC11 SC-L stage were used to prepare five 

consecutive cDNA dilutions (dilution factor of 10x) that were used as standards on each plate, 

allowing the construction of a standard curve for relative quantification and PCR efficiency 

assessment. Furthermore, multiple water blanks were added to each plate as negative controls. 

The results were analysed using the 7500 software for 7500 and 7500 fast real time PCR 

systems version 2.0.6 (Applied Biosystems). A run was considered valid when the slope of the 

corresponding standard curve was above -3.60 (corresponding to a PCR efficiency >90%) and 

the R2
 of at least three relevant points exceeded 0.98. For each sample, the mean quantity of 

HIST2H2AC expression levels were normalized against the mean quantity of GUSB or G6PDH 

expression levels for the corresponding sample. This ratio was then multiplied by 1000 for 

easier tabulation (target gene expression level = (target gene mean quantity / housekeeping 

gene mean quantity) x 1000). Results were further presented as fold variation in comparison to 

our experimental control. 

 

3. Imunohistochemistry  

Immunohistochemistry (IHC) technique was performed with VECTASTAIN
®
 Elite 

ABC Kit (Vector Laboratories, CA, USA). 

Paraffin-embedded samples were de-waxed using a solution of toluene followed by 

xylene and rehydrated through decreasing gradient of ethanol to water. An antigen retrieval 

method was carried out by microwave treatment, in a citrate buffer pH 6.4 conc. 2.94g/L 

(30 minutes). Tissues were permeabilized using 0.05% of Triton X-100 in PBS for 30 

minutes followed by 3 washes in PBS, each of these for 5 minutes. Then, endogenous 

peroxidase was blocked with 3% of hydrogen peroxide in PBS, followed by 30 minutes of 

incubation with a blocking solution (10% FBS in PBS). The sample was then incubated 

with a primary antibody (Anti-H2A2C: AV51480, Sigma Aldrich® –diluted 1:50; 

ARP51480_T100, Aviva Systems Biology, CA, USA and GTX45852, GeneTex, CA, USA 

– both diluted 1:500) overnight. 

Biotinylated secondary antibody (anti-rabbit-horse radish peroxidase– dilution 

1/300, Vector Laboratories) was added to the sample and incubated (for 1 hour) followed 



Fátima 
Monteiro 

Expression and functionality of histone H2A2C in the mammary epithelium 

 

42 
 

by 3 washes with PBS to remove any excess secondary antibodies. Then, the samples were 

incubated with complex achieved by mixing firstly Avidin DH and then biotinylated 

horseradish peroxidase H (dilution: 1/50 in PBS), for 30 minutes. 

The antibody binding was visualized with 3,3' diaminobenzidine tetrahydrochloride 

(DAB – Sigma) substrate/hydrogen peroxide and sections were counterstained with Harris’ 

Hematoxylin or green methyl. Human tumours were developed for 4.5 minutes and mouse 

mammary glands for 1 min. 

Positive (brain, according to H2A2C expression in Human protein Atlas (231)) and 

negative controls [no primary antibody (sigma) or pre-adsorbed with blocking peptide 

(AAP51480, Aviva Systems Biology) for 2h at room temperature] were included with each 

batch of staining to ensure consistency between consecutive runs. 

 

4. Immunofluorescence 

The immunofluorescence (IF) technique was achieved to evaluate the subcellular 

localization and the expression of H2A2C protein levels in the three different stages of 

HC11 cell line, as well as for to evaluate the relationship between this expression with the 

expression of other proteins related to proliferation and steaminess. 

Cells were fixed in 4% formalin, washed with PBS and permeabilized with 0.5% 

Triton X-100 in PBS for 30 minutes followed by 3 washes in PBS, each one for 5 minutes. 

Then, cells were incubated 30 minutes in block solution (10% FBS and 0,1% Tween in 

PBS). Without washing, the primary antibody was added as follows: anti-H2A2C (Sigma 

Alrdrich® – diluted 1:50; Aviva Systems Biology and GeneTex – both diluted 1:500);  

anti-CD44 (NBP1-47386, Novus Biologicals®, CO, USA – dilution 1/200); anti-c-myc 

(NB600-302, Novus Biologicals® – dilution 1/300); anti-E-cadherin (610181, BD 

Transduction Laboratories™, ON, Canada – dilution 1/1000); anti-ZEB1 (NBP1-05987, 

Novus Biologicals® – dilution 1/500) or anti-β-catenin (610154, BD Transduction 

Laboratories™ – dilution 1/1000). Following washes with PBS, the secondary antibodies 

(anti-mouse IgG Alexa fluor 488 or anti-rabbit IgG Alexa fluor 568, Life Technologies) 

were added in block solution (dilution 1/500). Nuclei were stained with DAPI (0.1µg/ml) 

for 5 minutes, slides washed 2 times in PBS and slides mounted with Prolong Gold reagent 

(Life Technologies). Negative controls were included, in which samples were incubated 

without primary antibody to substract background staining. 



Fátima 
Monteiro 

Expression and functionality of histone H2A2C in the mammary epithelium 

 

43 
 

The nucleus from cells expressing H2A2C were delimitated using NIS elements 

software (Nikon, NY, USA) to determine the intensity of the fluorescent signal. A 

minimum of 35 measurements from each treatment were taken. 

 

5. Methylation analyses 

HIST2H2AC promoter methylation was analysed using bisulphite sequencing PCR 

(BSP). This technique gives us the most complete information about DNA methylation of a 

particular genomic region. BSP consists on a bisulphite modification technique, based on 

induced deamination of cytosines, followed by polymerase chain reaction (PCR) and 

sequencing of the modified DNA (232, 233).  

 

 DNA extraction and purification 5.1

Samples were first digested by adding 500 µL of buffer solution SE (75 mM NaCl; 

25 mM EDTA), 30 µL of 10% sodium dodecyl sulphate (SDS) and 15 µL of protease K 

(20 mg/mL) (Sigma-Aldrich®) to each sample, which were then incubated for 2 to 3 days 

in a bath at 55°C until total protein digestion. Proteinase K was added twice a day during 

this period. 

After digestion, DNA extraction was performed with 500 µL of phenol-chloroform 

solution at pH 8 (Sigma-Aldrich®; Merck, Germany) in Phase Lock Gel™ tubes (5 

PRIME, Germany). After centrifuging the samples for 15 minutes at 13.000 rpm, the upper 

aqueous phase containing DNA was transferred to a new 1.5 mL–tube. Followed by 

addition of 2 volumes of 100% cold ethanol, 1/3 volume of 7.5 M ammonium acetate and 2 

µL of glycogen (5 mg/mL) (Sigma-Aldrich®) and incubation overnight at -20°C to 

precipitate DNA. Samples were centrifuged for 20 minutes at 13.000 rpm and washed 

twice with 70% ethanol. Pellets were air dried and eluted in sterile bidistilled water (B. 

Braun, Melsungen, Germany). DNA concentration and purity was measured using a 

NanoDrop ND-1000 spectrophotometer. DNA was stored at -20°C until further use. 

 

 Sodium bisulphite treatment of DNA 5.2

After its extraction, isolated DNA was submitted to a chemical reaction with 

sodium bisulphate that converts unmethylated cytosines into uracil (U) residues (figure 

11), whereas the 5-MeC remains resistant to this chemical treatment (232, 234). The 
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chemical modification promoting by bisulphite treatment, leads to the generation of 

detectable methylation-specific sequence variation (233). 

 

Figure 11 – Stepwise of bisulphite modification. I) sulphonation of cytosine, II) irreversible 

hydrolytic deamination producing 6-sulphonateuracil, and III) desulphonation under alkaline 

conditions (adapted from (233)). 

 

Sodium bisulphite modification was performed using EZ DNA Methylation-Gold™ 

Kit (Zymo Research, Orange, CA, USA), according to the manufacturer’s instructions. 

Briefly, 1 µg of DNA (in a total volume of 20 µl obtained from DNA extraction procedure) 

was submitted to the modification process. Firstly, 130 µl of CT Conversion Reagent were 

added to DNA. This mix was then incubated in Veriti® Thermal Cycler (Applied 

Biosystems) during 10 minutes at 98°C, followed by 180min at 64°C for DNA 

denaturation and sodium bisulphite conversion. After incubation, DNA was recovered in a 

Zymo-spin™ IC Column using 600 µl of M-binding Buffer and centrifuged for 30 seconds   

at 10.0000 rpm. The column was washed with 100 µl of M-Wash Buffer and centrifuged 

once again at the same conditions as in previous step. M-Wash Buffer was discarded and 

200 µl of M-Desulphonation Buffer were added for 20 min incubation’s period at room 

temperature (RT). After discarding the liquid, two more washes were performed with M-

Wash Buffer. Finally, the column was placed in new tube and DNA was eluted by 

incubation with 30 µl of sterile bidistilled water (B.Braun) for 5min at RT, followed by 

centrifugation at 12.000 rpm for 30 sec. Last step was performed again to obtain a total 

volume of 60 µl. DNA was stored at -80°C until further use. 

 

 Sequencing PCR 5.3

The sequence of interest in bisulphite-reacted DNA is amplified by PCR in two 

separate reaction mixtures, each containing one pair of strand-specific primers. One of this 

is PCR-amplified, used to obtain sufficient analyte after bisulphite conversion, whereas the 
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other is PCR products sequenced. This type of analysis permits the identification of the 

specific positions of 5-MeC in genomic DNA (146, 232, 234). 

The most intractable aspect of this technique resides in the ability to design useful 

PCR primers, as nonspecific amplification from converted bulk genomic DNA can 

interfere with the analysis (4). The complete sequence of the target region must be known. 

Primes were designed (Methyl Primer Express program) with no CpG in the priming 

region or mismatches to CpGs and so theoretically PCR amplification is not dependent on 

methylation status. (232). The length of the primers should be at least 20 nucleotides and 

up to 25–30 nucleotides. PCR products can be directly sequenced using the forward and 

reverse amplification primers as sequencing primers. The same number of CpGs (and 

methylation state) will be present in both the sense and antisense strands due to the 

symmetry of the CpG motif, and action of methyltransferase (233). Four PCR primers 

were used (table 6), on which primer 1 is the most nearest to the TSS region and the primer 

4 is the most distance from the TSS. 

 

Table 6 – Sequences of primers used in sequencing analysis. 

Pair of Primers Sequence (5’→3’) AT (°C) Amplicon Size (bp) 

1 
F: GTATGATTAAAAGTAAATAGTGGAAA 

54 217 bp 
R: CTTTTCATTAATAATTATTTAACCCCC 

2 
F: GAGTTTATGATGTTTATGGTTTTG 

57 190 bp 
R: CTAAACTAACCAAATCTACCCC 

3 
F: GTTTTAGTTGTGTTTTGGAGTT 

52 352 bp 
R: CCTTTAATCTTTTAAAATCTCTTTTAA 

4 
F: TTGGTATTGTAGAGGTTAAAGTAAAG 

56 259 bp 
R: AAATACCAACCATCTACAACTAAA 

AT – annealing temperature; F- forward; R- reverse; bp –base pairs 

 

PCR was performed using 2µl of template DNA, 1.88 µl of dNTPs mix (2 mM), 

0.94 of each primer (forward and reverse) (10µM), 1.88 µl of 10× Maxima HotStart Taq 

Buffer, 0.15 µl of Maxima HotStart Taq DNA Polymerase (2U), 1.2 or 1.6 µl of MgCl2 

(25mM) for a final concentration of 1.5 or 2.0 mM, respectively and sterile bidistilled 

water (B. Braun) in a total volume of 18µl. PCR amplifications were performed as follows: 

95ºC for 10 minutes followed by 35 cycles at 95ºC for 30, AT for 30 seconds and 72ºC for 1 

minute. A 10 min. elongation step at 72°C completed the PCR amplification program. 
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The efficiency of PCR reaction was assessed by loading 3 µl of PCR product onto 

non-denaturing 2% agarose gel, stained with ethidium bromide and visualised under an 

ultraviolet transilluminator. To remove excess primers and dNTPs, the product was 

submitted to Illustra GFX PCR DNA and Gel Band Purification kit (GE Healthcare, UK), 

according to manufacturer’s protocol. Briefly, 500 µl of Capture Buffer type 2 were added 

to each GFX MicroSpin column previously placed in a Collection Tube. PCR product was 

then transferred into the column and mixed with buffer solution by pipetting. Collection 

Tubes were centrifuged at 12.000 rpm for 1 minute. After discarding flowthrough, 500 µl 

of Wash Buffer type 1 were added to the column and a new centrifugation at the same 

conditions was performed. The column was transferred into a new 1.5 ml-tube and 30 µl of 

Elution Buffer type 6 was added to the centre of the membrane, followed by a 5 minutes of 

incubation at RT. Then, the columns were centrifuged at 12.000 rpm for 5 minutes and the 

PCR product was recovered. 

The sequencing reaction was performed using BigDye® Terminator v1.1 Cycle 

Sequencing Kit (Applied Biosystems). The reaction was prepared using 350 nM of forward 

or reverse primers, 1 µl of BigDye® Terminator v1.1 Ready Reaction Mix, 1.9 µl of 

BigDye® Terminator v1.1 Sequencing Buffer, 1 to 3 µl of purified PCR product in a total 

volume of 10 µl completed with sterile bidistilled water (B. Braun). PCR was performed 

according to the following conditions: 96°C for 2 min. and 30 cycles of 96°C for 5 

seconds, 50°C for 15 sec. and 60°C for 4 minutes. 

Sequencing reaction products were purified prior to sequencing to remove free 

fluorescent ddNTPs using the Illustra Sephadex™ G-50 fine (GE Healthcare). After 

purification, 12 µl of Hi-Di™ Formamide (Applied Biosystems) were added to the purified 

sequencing reaction product and the mixture was then run on an ABI PRISM 310 Genetic 

Analyzer (Applied Biosystems). The electropherograms were analysed using Sequencing 

Analyses Software v5.2 (Applied Biosystems). All electropherograms were read manually. 

 

6. Chromatin Immunoprecipitation and analysis by qRT-PCR 

Chromatin Immunoprecipitation (ChIP) is an immunoprecipitation experimental 

technique used to investigate the interaction between proteins and DNA in the cell. 

Protein-DNA complexes are cross-linked, immunoprecipitated with specific antibodies, 

http://en.wikipedia.org/wiki/Immunoprecipitation
http://en.wikipedia.org/wiki/Protein
http://en.wikipedia.org/wiki/DNA
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purified, and amplified for gene- and promoter-specific analysis of known targets using 

real time PCR or sequencing (232). 

In this study ChIP were designed to detect activating (H3k36me2 and H3k79me3) 

and repressive marks (H3k9m3 and H3k27me3) in promoter region of HIST2H2AC gene. 

Chip was performed using Ez-magna ChIP™ g – one-day chromatin immunoprecipitation 

kit (Millipore, MA, USA) according to manufacturer’s instructions. 

 

 In vivo crosslinking and Lysis 6.1

The culture medium of flasks with HC11 cell line was carefully removed and PBS 

was added in order to wash the cells. After that, cells were fixed with formaldehyde, 

scrapped and resuspended into microfuge tubes containing 2ml of cold PBS and Protease 

Inhibitor Cocktail II (PIC). After centrifuged at 800 x g for 5 minutes, at 4ºc, supernatant 

was discarded and cells were suspended in Cell Lysis buffer and PIC. Incubation on ice for 

15 minutes with vortex every 5 minutes took place. Tubes were centrifuged again at the 

same conditions. Supernatant was removed and the pellet resuspended in Nuclear Lysis 

Buffer and PIC solution. 

 

 Sonication to shear DNA 6.2

Sonication was performed for 20 minutes on iced water using a Bioruptor® 

standard (Diagenode, Philadelphia, PA, USA), with cycles of 20 seconds with sonication 

on, followed by 50 seconds with sonication off. Sonicated chromatin was stored into fresh 

microfuge tubes in 50μl aliquots, at -80ºC, until further use. 

In order to test sonication, 5μl of sonicated chromatin was incubated with 10μg of 

RNAse (Sigma-Aldrich®) at 37ºC for 30 minutes, followed by an addition of 1μl of 

proteinase k and an incubation at 62ºC for 2 hours. After that, sample was loaded into a 2% 

agarose gel and run for 1 hour, at 140 V, and was observed in an ultraviolet 

transilluminator [Pharmacia Biotech Imagemaster vds (Pharmacia Biotech, Bay Area)]. 

 

 Immunoprecipitation of Crosslinked Protein/DNA 6.3

In order to guarantee identical conditions between each immunoprecipitation, all 

sonicated chromatin was primarily treated into the same 15 ml falcon tube. Hence, the 50 

μl aliquots of sonicated chromatin were diluted in the respective volume of Dilution Buffer 
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with PIC. 5 μl of this solution was reserved into a fresh tube to use as input control, being 

stored at 4ºC until elution of protein/DNA complexes and reverse crosslink of 

protein/DNA complexes to free DNA, as described below. So, 450 μl of the previously 

made solution were deposited into fresh microfuge tubes and the antibodies were added 

[anti-H3K9me3 (07-442, Upstate (Millipore), CA, USA), anti-H3K36me2 (ab9049, 

Abcam, Cambridge, UK) anti-H3H27me3 (07-449, Upstate (Millipore), CA, USA), anti-

H3K79me3 (ab2621, Abcam)]. Furthermore, 20μl of fully suspended protein G magnetic 

beads were added to the tubes. Microfuge tubes were then incubated overnight with 

rotation, at 4ºC. On the next day, protein G magnetic beads were pelleted using a magnetic 

separator (Magma Grip Rack) (Millipore, MA, USA) and the supernatant was removed. 

After that, beads were fully re-suspended and washed for 5 minutes, with constant rotation, 

with four different buffers in the following order: 

 low salt immune complex wash buffer;  

 high salt immune complex wash buffer; 

 LiCl immune complex wash buffer; 

 and TE buffer. 

 

 Elution of Protein/DNA complexes and reverse crosslink of 6.4

Protein/DNA complexes 

Beads were incubated with ChIP Elution Buffer and Proteinase K for 2 hours at 

62ºC, with permanent shaking, followed by other incubation during 10 minutes, at 95ºC, 

and they were allowed to cool until they reached room temperature. Beads were separated 

using the magnetic separator and the supernatant was reserved into fresh microfuge tubes. 

 

 DNA purification using spin columns 6.5

Each immunoprecipitation were added to a spin filter, containing Bind reagent A, 

within a collection tube. Tubes were centrifuged at 12,600 x g for 30 seconds, and the 

eluate was discarded (both filter and collection tube were saved). After that, the same 

proceed was performed with Bind reagent B. Finally, the spin filter was put into a fresh 

collection tube with Elution Buffer C added directly into the center of the white spin filter 

membrane and a centrifugation at the same conditions described above was performed. 
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Spin filter was discarded and the collection tube containing the purified DNA was stored at 

-20ºC until further use. 

  

 Quantitative real-time PCR  6.6

A qRT-PCR was performed in order to analyse the specific post-translational 

histone marks nearby HIST2H2AC gene promoter. Therefore three pairs of primers were 

designed for each gene, being the primers A those closer to the TSS and primers C those 

which were farthest from the TSS. Information about the primers used is compelled in 

table 7. 

 

Table 7 – qRT-PCR primers features: sequence, distance from TSS and annealing temperature. 

Pair of Primers Sequence (5’→3’) 
Distance from 

TSS (bp) 

AT (°C) 

A 
F: AGCCTTCTTGGAACCCTTCTT 

265 60 
R: GGGTCCCTGGTTGATTTTCTA 

B 
F: GACCCTTGGAGTAACTTTGGAA 

682 60 
R: AGTACACCAGCGCCAAGTAGA 

C 
F: GAACCATAACCGACTTCTACCA 

1105 60 
R: CCAGCCATCTACAACTGAAACC 

F- forward; R- reverse; bp –base pairs; AT – annealing temperature. 

 

The assays were performed separately in 96-well plates in 7500 real time PCR 

system (Applied Biosystems), according to the SYBR® green protocol described above in 

section 4.2.4.  

After the experiment, ChIP-qPCR needs to be normalized. Normalization was 

conducted using the input percent method, where signals obtained from the CHIP were 

divided by signals obtained from the input sample, the last one representing the amount of 

chromatin used for immunoprecipitation. 

 

7. Silencing of HIST2H2AC gene in HC11 and MC4L2 cell lines 

Two H2A2C MISSION® shRNA Plasmids from Sigma-Aldrich® (table 8) were 

introduced in HC11 and MC4L2 cells. To generate stable cells, they were seeded to 50% 

confluence in a 10 cm diameter dish incomplete medium and transfected with 1 µg plasmid 



Fátima 
Monteiro 

Expression and functionality of histone H2A2C in the mammary epithelium 

 

50 
 

using Fugene 6 (Roche). Cells were allowed to grow for 48h before starting selection in 

complete medium plus 2.5 µg/mL puromycin. Clones successfully silenced were selected 

using the same growth medium. Clones were then selected by limited dilution and 

collected for RNA and protein extraction. 

 

Table 8 – H2A2C short hairpin RNA (shRNA): Clone ID and sequences. 

Clone ID (name assigned) Sequences 

NM_175662.1-105S1C1 

(sh105) 

CCGGGCGCAAGGGCAACTACGCGGACTCGAGTCCGCGTAGTTGCC

CTTGCGCTTTTTG 

NM_175662.1-165S1C1 

(sh165) 

CCGGGCTGGAGTACCTAACGGCCGACTCGAGTCGGCCGTTAGGTA

CTCCAGCTTTTTG 

 

 

 Effects of silenced HIST2H2AC gene in HC11 and MC4L2 cell lines 7.1

7.1.1 Cell counting 

Cells were cultured in complete medium and incubated for 24 hours. After that, 

they were subjected to a different stimulus of proliferation for 48hours. HC11 cells were 

treated with 2% FBS (control), with 2% FBS + 10 ng/mL EGF or with 10% FBS alone. 

After 24 h half of the medium was replenished by new one and cells cultured for additional 

24h. All treatments were done with 4 replicates. After that cells were counted using the 

TC20™ Automated Cell Counter (BioRad).  

 

7.1.2 Presto Blue™ viability assay 

PrestoBlue™ Cell Viability Reagent (A13261 and A13262, Invitrogen™ by Life 

Technologies™, CA, USA) is a ready‐to‐use reagent that is quickly reduced by 

metabolically active cells, providing a quantitative measure of viability of cells.  

Cells were cultured in complete medium and incubated for 24 h. After that, they 

were subjected to a different stimulus of proliferation for 48hours (after 24h half of the 

medium was changed). HC11 cells were treated with 2% FBS (control), others with 2% 

FBS + 10 ng/mL EGF or with 10% FBS alone. All treatments were done with 6 replicates.  

The assay was performed according to manufacturer’s instructions. Cells were 

incubated for three hours at 37°C and absorbance, at 570 and 600 nm, was measured for 

each 20-30 minutes in a total of 3 hours. The reference wavelength values (600 nm) were 
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subtracted from the absorbance at the experimental wavelength values (570 nm) and then 

subtracts the average control well value from each experimental well. 

 

8. Statistical Analysis 

In cell lines, differences in transcript levels of H2A2C between the treatments 

performed were determined using an One-Way Analysis of Variance (one-Way ANOVA), 

followed by a multiple comparison Turekey’s test (comparing all groups of columns 

against each other) or Dunnett’s test (comparing all groups against the control), as 

appropriate. 

Differences regarding H2A2C protein levels expression by immunofluorescence 

were also evaluated using an One-Way ANOVA, followed by a multiple comparison 

Dunnett’s test, comparing all groups against the experimental control, or using the 

student’s t test, as appropriate.  

All tests were two-sided and p-values were considered significant when inferior to 

0.05. Graphs and statistical analysis was performed using GraphPad Prism version 5.0 for 

Windows (GraphPad Software, CA, USA). 
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V. Results 

1. H2A2C in  mammary epithelial cell differentiation and in the 

mouse mammary gland 

 H2A2C is expressed in different levels throughout mammary 1.1

epithelial cell differentiation 

In order to confirm previous results from a microarray study where it was seen that 

H2A2C mRNA is highly expressed in undifferentiated stages of HC11 cell line when 

compared to the differentiated stages (35), H2A2C mRNA levels were evaluated in three 

distinct stages of HC11 cell line differentiation [stem cell-like (SC-L), pre-differentiated 

(PD) and functionally differentiated (DIF)] (Figure 12). 

As it was expected, statistically significant differences between the three stages of 

HC11 cell line differentiation were observed. Indeed, H2A2C mRNA levels were highest 

in SC-L and gradually decayed as cells completed their differentiation. 
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Figure 12 – Analysis of H2A2C mRNA levels in HC11 differentiation stages. Transcription levels 

of H2A2C in stem cell-like (SC-L), pre-differentiated (PD) and differentiated (DIF) stages were 

analysed by qRT-PCR. The results are presented as mean variation normalized to the internal 

control (G6PDH). The experiment is representative of 2. One-Way ANOVA and Tukey’s post-test, 

**: p<0.01; ***: p<0.001 

 

The protein levels of H2A2C were also evaluated by immunofluorescence (Figure 

13). The H2A2C protein expression seemed to be congruent to the mRNA levels for SC-L 

and PD stages. 
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Figure 13 – Analysis of H2A2C protein subcellular localization in HC11 cell line by 

immunofluorescence. Three different commercial antibodies (A – Sigma; B – Genetex; C – Aviva) 

tested in the three differentiation stages of HC11 cell line: stem cell-like (SC-L), pre-differentiated 

(PD) and differentiated (DIF). Blue, indicates the cell nuclei stained with DAPI and red indicates 

histone H2A2C staining. Magnification: 60X. Experiment A is representative of 3, and B and C are 

representative of 2.  

 

Next, the intensity of protein expression was assessed (figure 14); however, since in 

the DIF stage the cells tend to be more closed together and overlapping, we only analysed 

intensity for SC-L and PD stages. Statistically significant reduction in H2A2C protein 

levels was detected in PD compared to SC-L stage of differentiation (***: p<0.0001). 
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Figure 14 – Analysis of H2A2C protein levels in HC11 cell line by immunofluorescence. Protein 

levels of H2A2C in three different stages of HC11 cell line: stem cell-like (SC-L), pre-

differentiated (PD) and differentiated (DIF) were determined by quantification of fluorescence 

intensity. The analysis was carried out with three commercial antibodies from distinct brands 

(Sigma, Genetex and Aviva). Experiment A is representative of 3, and B and C are representative 

of 2. student’s t test,  ***: p<0.0001 

 

 Expression of H2A2C is higher in pregnant mouse mammary glands 1.2

The protein levels of H2A2C were also evaluated by immunohistochemistry in 

three reproductive states: pregnant, virgin and lactating; which are somewhat equivalent to 

HC11 SC-L, PD and DIF stages, respectively (figure 15). 
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H2A2C proteins levels in vivo seemed to follow the same regulation as in HC11 

cell line. Certainly, H2A2C was more expressed in pregnant state that is the most 

proliferative period of these three reproductive states and where there is a dramatic 

expansion of the mammary stem and progenitor pool of cells; and less expressed in 

lactating state that is the most differentiated state. 

 

 

Figure 15 – Analysis of H2A2C protein levels in mouse mammary gland by immunohistochemistry. 

H2A2C staining in mouse mammary glands in different reproductive states (pregnant, virgin and 

lactating). (A) Sigma commercial antibody and counterstaining with methyl Green; (B) Aviva 

antibody and counterstaining with Harris’ Hematoxylin. Negative controls were incubation without 

primary antibody (Sigma) or antibody pre-adsorbed with blocking peptide (Aviva). Representative 

of 1 staining. 



Fátima 
Monteiro 

Expression and functionality of histone H2A2C in the mammary epithelium 

 

56 
 

2. Association with H2A2C expression with stem/progenitor, 

proliferation and/or epithelial differentiation markers in HC11 

cells 

 Positive association between H2A2C expression and CD44 2.1

expression  

In order to evaluate the relationship of H2A2C with the stem/progenitor 

characteristics of HC11 SC-L stage, a co-immunolocalization between H2A2C and CD44 

(a marker of mammary stem cells) was carried out in HC11 cells (figure 16). An 

association between cells that expressed more H2A2C and cells that expressed more CD44 

appeared to be present. Furthermore, a loss of CD44 expression in a less undifferentiated 

state (PD) was also noticeable.  

 

Figure 16 – Analysis of H2A2C and CD44 co-localization in HC11 cells. Immunofluorescence 

tested in HC11 stem cell-like (SC-L) and , pre-differentiated (PD) stages. In blue are the cell nuclei 

stained with DAPI, in green is CD44 staining and in red is histone H2A2C staining. Magnification: 

60X. The experience was evaluated with Aviva commercial antibody and it is representative of 1 
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experiment. However the experiment was evaluated using the others brands of antibody (Sigma – 2 

experiments; Genetex – 1 experiment) and the results were the same. 

 

 H2A2C expression is associated with c-myc expression  2.2

With the intention of evaluating the relationship of H2A2C with proliferative cells, 

a co-immunolocalization between H2A2C and c-myc (a marker of proliferation) was 

carried out in HC11 cells (figure 17). The association between the expression of the 

H2A2C and the c-myc levels in HC11 cells was evident. Moreover, the expression of c-

myc was high in SC-L stage mainly in the nucleus of the cells than in PD stage, where the 

c-myc levels are lower and more restricted to the cytoplasm.   

 

 

Figure 17 – Analysis of H2A2C and c-myc co-localization in HC11 cells. Immunofluorescence 

tested in HC11 stem cell-like (SC-L) and pre-differentiated (PD) stages. In blue are the cell nuclei 

stained with DAPI, in green is c-myc staining and in red is histone H2A2C staining. Magnification: 

60X. The experience was evaluated with sigma commercial antibody and it is representative of 2 

experiments. The experiment was also repeated using the others brands of H2A2C antibody (Aviva 

– 1 experiment; Genetex – 1 experiment) and the results were the same. 
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 E-cadherin expression in the cell membrane is associated with low 2.3

expression of H2A2C in HC11 cells 

The association of H2A2C with differentiation was assessed through a co-

immunolocalization between H2A2C and E-cadherin (a marker of differentiated cells) in 

HC11 cells (figure 18).  

The results suggest that when the expression of the histone H2A2C was more 

intense (SC-L) the E-cadherin protein was more expressed in the cytoplasm and nucleus, 

while the down-regulation of H2A2C (PD stage) seemed to be related to the expression of 

E-cadherin confined to the cell membrane. 

 

 

Figure 18 – Analysis of H2A2C and E-cadherin co-localization in HC11 cells. 

Immunofluorescence in HC11 stem cell-like (SC-L) and pre-differentiated (PD) stages. In blue are 

the cell nuclei stained with DAPI, in green is E-cadherin staining and in red is histone H2A2C 

staining. Magnification: 60X. The experience was evaluated with sigma commercial antibody and 

it is representative of 2 experiments. 
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3. Regulation of H2A2C expression 

 

As the function of H2A2C is unknown, we begun analysing different mechanisms 

that could regulate the expression of this histone.  

 

 

 DNA methylation as possible regulatory mechanism to silence 3.1

H2A2C expression in differentiated HC11 cells 

 

It is known that epigenetic events are a common mechanism of regulation of a 

variety of genes that modulate cellular differentiation. So, to evaluate if HIST2H2AC 

promoter, which is located in a CpG island, was subjected to these events and therefore 

leading to H2A2C silencing in PD and DIF stages, a DNA methylation analysis (BSP) was 

performed (figure 19). However, no differences between SC-L, PD and DIF were found in 

the methylation analysis performed. 
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Figure 19 – Characterization of the methylation status of individual CpG dinucleotides by bisulfite 

sequencing of the HIST2H2AC gene in HC11 cells. A and D – schematic representation of the CpG 

island in the area of the translational start site (ATG). In blue there is the location of individual 

CpG sites and the 2 arrows indicate a location of BSP primers. B and E – unfilled circles represent 

unmethylated CpGs, black filled circles represent methylated CpGs. The column of U 

(unmethylated) and M (methylated), at the right side, lists the methylation status of the cell line 

from BSP analysis. C and F – section of the bisulfite sequence electropherogram, where cytosines 

in CpG sites are in blue (F) and cytosines that have been converted to thymines are underlined in 

red (C). Furthermore, A, B and C are related to the primer 1 and D, E and F are related to the 

primer 4, on which primer 1 is the most nearest to the ATG region and the primer 4 is the most 

distance from the ATG. Experiment representative of 2. 
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 Differential modification of histone marks as possible regulatory 3.2

mechanism of  H2A2C expression in HC11 cells 

 

Once the regulation of H2A2C expression seemed not be by methylation, we 

hypothesized that selected histone marks which are known to activate or repress gene 

transcription could regulate HIST2H2AC expression. Chromatin from HC11 stem cell-like 

(SC-L), pre-differentiated (PD) or functionally differentiated (DIF) cells was 

immunoprecipitated for transcriptional activating histone marks (H3K36me2 and 

H3K79me3) and for repressive histone marks (H3K9me3 and H3K27me3). After ChIP, 

qRT-PCR was carried out to evaluate accumulation of marks along the HIST2H2AC 

promoter region. The experiment was repeated twice (Figure 20 – A and B). 

Interestingly, for the SC-L stage, where histone H2A2C has been found more 

expressed, although there is high variance of percentages for each primer, the values of the 

active marks were highest in the promoter region of HIST2H2AC gene than the values of 

the repressive marks in the two experiments. However, in the other differentiation stages, 

the values of active or repressive marks differ greatly, so no concrete conclusions can be 

drawn from this experiment. 
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Figure 20 – Regulation of H2A2C promoter by histone marks. ChIP assay results for HC11cell 

line: (A) experiment 1 (B) experiment 2. All of them analysed H3K9me3, H3K27me3, H3K36me2 

and H3k79me3 histones marks across HIST2H2AC promoter. Results were normalized sing the 

input of total sonicated chromatin. 
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 Effect of EGFR – MAPK/ERK and PI3K/AKT pathways – on 3.3

H2A2C expression 

HC11 cells in SCL stage are grown in medium containing EGF, while this growth 

factor is eliminated from the medium when cells are induced to differentiate. With the 

intention to verify if the MAPK/ERK ½  and PI3K/AKT pathways were responsible for 

regulation of H2A2C mRNA and protein levels, HC11 cells were treated with inhibitors of 

both pathways (UO126 – inhibitor of MEK ½; LY294002 – inhibitor of PI3K), alone and 

in combination with each other (figure 21). 

Surprisingly, the levels of H2A2C mRNA were lower only when LY294002 was 

used and the combination of both inhibitors did not enhance inhibition by LY294002 

alone. 
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Figure 21 – Analysis of H2A2C mRNA levels in HC11 cells with inhibitors. HC11 cells were 

grown with EGF alone or in combination with inhibitors of MEK ½  (UO126) or/and PI3K 

(LY294002) for 24h. The results are presented as mean variation normalized to the internal control 

(G6PDH). This experiment is representative of 3. Statistical differences were analyzed with One-

way ANOVA and Dunnett’s post-test, **: p<0.01; ***: p<0.001 vs +EGF alone. 

 

To evaluate if the protein expression followed the same behaviour an 

immunofluorescence in HC11 cells was made (figure 22). 
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Figure 22 – Analysis of H2A2C protein subcellular localization and levels in HC11 cells with 

inhibitors by immunofluorescence. Intensity and subcellular localization of H2A2C staining in 

HC11 cell line grown with EGF in 10% FBS (+EGF)which is equivalent o complete medium used 

to maintain SC-L stage, -EGF + 2% FBS (a condition similar to the used for PD stage) or +EGF + 
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10% FBS in combination with inhibitors of MEK ½  (UO126) or/and PI3K (LY294002) for 24h. In 

blue there are the cells nuclei stained with DAPI and in red histone H2A2C staining. 

Magnification: 60X. Experiment is representative of 2. 

 

Subsequently, the intensity of protein expression was quantified (figure 23). The 

decrease in intensity of H2A2C protein levels was confirmed for cells treated with 

LY294002 alone and in combination with UO126; however, and in contrast to the 

observations at the mRNA level, UO126 also slightly but significantly decreased H2A2C 

intensity (**: p<0.01).  

In summary, the intensity of H2A2C expression assessed by immunofluorescence 

in HC11 cells illustrate that both inhibitors, acting alone or in combination with each other, 

down regulate the expression of the histone when compared to the control cells which are 

grown in the conditions to keep them in SC-L stage (+EGF).  
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Figure 23 – Analysis of H2A2C protein levels in HC11 cells with inhibitors by 

immunofluorescence. Intensity of H2A2C staining in HC11 cell line treated with EGF alone or in 

combination with inhibitors of MEK ½  (UO126) or/and PI3K (LY294002) pathways for 24h. 

Experiment is representative of 2. Statistical differences were analyzed with One-way ANOVA and 

Dunnett’s post-test, **: p<0.01; ***: p<0.001 vs +EGF.  
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4. H2A2C in  breast cancer 

 Expression of H2A2C in MDA-MB-231, a human basal –like cell 4.1

line 

In order to investigate the expression of H2A2C in human breast tumors, 

immunofluorescence technique was used to evaluate H2A2C levels in a MDA-MB-231 

cell line without EGF (how the cells normally grow), with EGF and with EGF plus UO126 

or LY294002 inhibitors (figure 24). The results show that while stimulation with EGF 

increased the expression of H2A2C the inhibition of MAPK/ERK ½ and PI3K/AKT 

pathways did not affect the H2A2C levels in this breast cancer cell line. 

 

 

 

 

 

Figure 24 – Analysis of H2A2C protein subcellular localization and levels in MDA-MB-231 cell 

line by immunofluorescence. Intensity of H2A2C staining in MDA-MB-231 cell line treated with 

EGF and 10% FBS alone or in combination with inhibitors of MEK ½  (UO126) or/and PI3K 

(LY294002). The image A is related to the immunofluorescence of MDA-MB231 without EGF and 

the image B is representative of the other treatments described above. In red there is the actin 

filaments stained with phalloidin and in green the histone H2A2C. Experiment is representative of 

2. Statistical differences were analyzed with One-way ANOVA and Dunnett’s post-test, ***: 

p<0.001 vs -EGF. 
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 H2A2C expression in human breast cancer samples 4.2

To investigate if H2A2C is expressed in human breast cancer, with the putative aim 

to define a clinical usefulness of H2A2C in breast cancer, its mRNA expression was 

evaluated in 38 samples classified as ER, PR and HER2 positive and basal-like (ER, PR 

and HER2 negative and positive for any basal cytokeratin – CK4, 5 and 14) (figure 25). 

The levels of mRNA expression of HIST2H2AC were not significantly changed between 

the groups; nevertheless, loss of PR expression was associated to the lowest mRNA levels. 

However, no solid conclusions can be achieved yet, once the number of samples is very 

small. 
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Figure 25 – Analysis of H2A2C mRNA levels in human breast tumours. The results are presented 

as mean variation normalized to the internal control (GUSB). 
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5. H2A2C functionality 

 

 H2A2C knock-down changes cellular morphology 5.1

To evaluate the effects of H2A2C in mammary epithelial cells and in breast cancer, 

we chose HC11 cells and an ER
+
 mouse mammary carcinoma cell line (MC4-L2) to 

silence this histone with two shRNAs (namely sh105 and sh165). 

Following stable knock down of H2A2C the effect on morphology was evident in 

no confluent or confluent HC11 cells when compared to control cells transfected with a 

control scrambled sequence (Scrb) (figure 26). The cells with silenced H2A2C tended to be 

more grouped and less elongated and therefore appeared to have a more epithelial 

differentiated morphology. Similar effects were observed in MC4-L2 cell line (not shown). 
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No confluent cells 
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Figure 26 – Effect of H2A2C silencing on HC11 cell morphology. Phenotype differences between 

silenced HC11 (sh105) and the control (Scrb) cells under the same growth conditions. 

 



Fátima 
Monteiro 

Expression and functionality of histone H2A2C in the mammary epithelium 

 

69 
 

Subsequently, mRNA levels were analysed in silenced HC11 and MC4-L2 cell 

lines to corroborate effective H2A2C knock down (figure 27 – A and B, respectively).  

The mRNA analysis was inconclusive and did not confirm effective H2A2C 

mRNA down-regulation.  

 

HC11

Scr
b

si
10

5

si
16

5

0

5.0102

1.0103

1.5103

2.0103
***

*

R
e
la

ti
v
e
 E

x
p

re
s
s
io

n

(H
2
A

2
C

/G
6
P

D
H

)

MC4L2

S
cr

b

sh
10

5

sh
16

5

0

2.0102

4.0102

6.0102

***

A B

Figure 27 – Analysis of mRNA levels of H2A2C in silenced cells. (A) HC11 and (B) MC4L2 cell 

lines. For each cell line are presented the mRNA levels for the control (Scrb) and shRNAs 105 and 

165 to H2A2C. The results are presented as mean variation normalized to the internal control 

(G6PDH). Experiment is representative of 3. Statistical differences were analysed with One-way 

ANOVA and Dunnett’s post-test, *: p<0.05; ***: p<0.001vs Scrb. 

 

Therefore, since these measurements were carried out in cells that were selected by 

their resistance to the antibiotic in the shRNA plasmid but were their insertion could have 

occurred at different sites in the DNA, we decided to select clones from the two cell lines. 

 

5.1.1 Selection of clones 

The clones were obtained by limited dilution and were subjected to mRNA analysis 

(figure 28).  

Through the results we can see that the mixture of cells in both cell lines was very 

heterogeneous. Moreover, the silencing was successfully accomplished in sh105_clone1 

and sh105_clone3 for HC11 cells and by sh165_cloneA and sh165_cloneD for MC4-L2 

cells. 



Fátima 
Monteiro 

Expression and functionality of histone H2A2C in the mammary epithelium 

 

70 
 

HC11

Scr
b

sh
10

5_
cl

one1

sh
10

5_
cl

one2

sh
10

5_
cl

one3

0

5.0102

1.0103

1.5103

******

*

R
e
la

ti
v
e
 E

x
p

re
s
s
io

n

(H
2
A

2
C

/G
6
P

D
H

)

MC4L2

S
cr

b

sh
16

5_
cl

oneA

sh
16

5_
cl

oneD

sh
16

5_
cl

oneF

0

5.010 3

1.010 4

1.510 4

***

***

*

A B

 

Figure 28 – Analysis of H2A2C mRNA levels in selected clones. The comparison of levels of 

H2A2C in the control cells (Scrb) and clones with stably integrated shRNAs in HC11 (A) and 

MC4L2 (B) cell lines. The results are presented as mean variation normalized to the internal 

control (G6PDH). Statistical significance was measured with One-way ANOVA and Dunnett’s 

post-test, *: p<0.05; ***: p<0.001 

 

Next, the morphology of the silenced clones was evaluated (figure 29). Phenotype 

of the silenced cells of both cell lines was very different when compared to the respective 

Scrb cells. The silenced cells have a more differentiated morphology like observed earlier 

in HC11 cells with the mixture of the clones. 
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Figure 29 – Effect of H2A2C silencing on cell morphology of HC11 and MC4L2 cell lines. A – 

Phenotype differences between clones from H2A2C silenced in HC11 and the control cells (Scrb) 

under the same conditions. B – Phenotype differences between clones in silenced MC4L2 and the 

control cells under the same conditions. 

 

 Effect of H2A2C in epithelial differentiation 5.1.1.1

HC11 cells in SC-L stage are actively undergoing EMT. So, given that H2A2C 

knock-down increased cell-cell adhesion, we investigated if H2A2C had correlation with 

epithelial differentiation (inhibition of EMT), by immunofluorescence detection of E-

cadherin, its negative regulator ZEB1 (figure 30 – A) and beta-catenin (figure 30 - B).  

The immunofluorescence technique evaluated in silenced clones of HC11 cells 

demonstrates that both E-cadherin and β-catenin are more expressed in the membrane as 

part of adherents junctions when histone H2A2C is silenced. Interestingly, E-cadherin up-

regulation in cells with H2A2C knock-down did not correlate to ZEB1 (an E-cadherin 

transcriptional repressor) down-regulation. 
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Figure 30 – Analysis of protein subcellular localization and levels by immunofluorescence in 

selected clones. A – Immunofluorescence in H2A2C silenced HC11 clones and the control cells 

(Scrb). In blue are the cell nucleus stained with DAPI, in green is E-cadherin staining and in red is 

ZEB1 staining. B – Immunofluorescence in H2A2C silenced HC11 clones and the control cells 

(Scrb). In blue are the cell nucleus stained with DAPI and in green is β-catenin staining. 

Magnification: 60X. 
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 Effect of H2A2C in cell viability 5.1.1.2

As H2A2C levels were highest in proliferating cells (HC11 cells and pregnant 

epithelium). We evaluated effects of the mitogenic hormone EGF and of high 

concentrations of FBS in the viability of HC11 cells silenced for the histone H2A2C, using 

a viability assay performed with the PrestoBlue™ kit (figure 31). 

Scrb control HC11 cells responded well to the mitogenic stimulus of either 10% 

FBS or EGF, increasing the cell viability. On the other hand, in both silenced clones for the 

histone H2A2C, the HC11 cells responded well to the stimulus of 10% FBS, but did not 

respond at all to the EGF stimulus. 
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Figure 31 – HC11 cell viability assay. Cell viability evaluation by PrestoBlue™ assay in H2A2C 

silenced HC11 cells and control cells (Scrb), treated with 2% of FBS (basal growth control), 2% 

FBS + EGF or 10% FBS). The corrected absorbance increase is proportional to substrate 

metabolization rate by the cells and is shown for a period of 3 hours.  
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In order to correlate the effects in cell viability with actual differences in cell 

number, cells were treated in the same way and counted (figure 32). The results at the cell 

number level were concordant with the cell viability assay, although EGF effects were not 

as pronounced as in the viability assay in the control cells. 
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Figure 32 – HC11 cell number. Cell counting in silenced HC11 cells and control cells (Scrb), 

treated with 10% of FBS, 2% of FBS and 2% of FBS + EGF. Statistical significance was measured 

with One-way ANOVA and Dunnett’s post-test, *: p<0.05; **: p<0.01;***: p<0.001 
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VI. Discussion 

It is well known that cancer is caused by the accumulation of genetic and/or 

epigenetic alterations, a process in which cancer cells acquire a gene expression profile 

completely unique and distinct from normal cells. The identification of these profiles has 

been intensively done, and it might be useful for cancer diagnosis, prognosis and for a 

more effective therapeutic approach. The role of histone variants in cancer has already 

been studied in several tumors, including breast cancer. However, no all variants have been 

identified and there are some minor variants about which nothing has been described until 

now, such as histone H2A2C. 

Once it was demonstrated that the histone H2A2C underwent a decrease in 

expression during differentiation of HC11 cells by microarray (35), we initially, 

corroborated these results with the analyses of mRNA expression and the protein levels of 

this histone by immunofluorescence. The expression of H2A2C in mouse mammary gland 

differentiation also demonstrates that this histone is found expressed in vivo and is 

associated with the proliferating pregnant state than the more differentiated state of the 

lactation. 

Considering the fact that the histone H2A2C is expressed in most undifferentiated 

stages than in most differentiated ones, we tried to understand if this histone could be 

associated with the induction of stemness and proliferation or repression of differentiation 

by co-immunolocalization. 

CD44 is recognized as a marker of human breast CSCs once they were initially 

identified based on a CD44
+
/CD24

–/low
 signature (119). So, through the association found 

by a co-immunolocalization of the H2A2C with CD44 protein, we can suggest that H2A2C 

expression is related to the ability of cells to self-renew and differentiate into all cell types 

in a mammary gland. Moreover, a positive association between H2A2C and c-myc 

expression, a protein that simulates proliferation (142), might be an indication for the role 

of H2A2C in inducing proliferation. On the other hand, E-cadherin, a cell-cell surface 

protein, prevents cells from detaching and invading the surrounding tissue and promotes 

cell differentiation and suppresses proliferation (235). Therefore, the inverse association 

between E-cadherin expression in membrane cells and H2A2C levels suggests that the 

histone may be related to the repression of differentiation.  



Fátima 
Monteiro 

Expression and functionality of histone H2A2C in the mammary epithelium 

 

76 
 

During this work we have also tried to understand how H2A2C gene expression is 

regulated during the HC11 cells differentiation. Firstly, based on the high levels of CpGs in 

the promoter we hypothesized that this histone might be regulated by DNA methylation, 

but we soon discarded this idea because the levels of methylation in the promoter of the 

HIST2H2AC for the different stages of differentiation were the same despite of the 

analysed promoter area. So, we analysed the regulation of H2A2C through histone marks 

(active marks: H3K36me2 and H3K79me3; repressive marks: H3K9me3 and H3k27me3) 

by ChIP, but this experiment was inconclusive, possibly because the histone marks chosen 

weren´t the ones that more influence the H2A2C regulation.  

In addition, it seems that the H2A2C expression increased due to the EGF action. 

The main signalling pathways influenced by the EGF are MAPK and PI3K/AKT (131), 

therefore they could be closely related to the histone expression. Performing the same 

experiment in a human breast cancer cell line (MDA-MB-231) we verified that neither 

inhibitor used prevented H2A2C increase in EGF reached cells. Since in cancer cells 

PI3K/AKT and MAPK pathways can be over-stimulated either in magnitude and / or 

length of response, maybe the concentration of inhibitors used was not the appropriate to 

block either pathway. 

Considering the previous results that demonstrated the histone is associated not 

only to the induction of steaminess/proliferation, but also to the repression of epithelial 

differentiation we could expect that the histone H2A2C would be more expressed in the 

basal-like breast cancers. However, mRNA levels were not significantly changed between 

tumour types. Due to the reduced number of samples we cannot jump to conclusions about 

the expression of H2A2C in human breast tumours, specially related to the basal-like group 

that demonstrates an enormous inconsistency in results. But, despite the reduced number of 

samples, by mRNA expression we can observe a trend to a lower H2A2C expression in the 

PR negative tumours. Moreover, it should be highlighted the importance of PR as the 

driver of epithelial proliferation in pregnancy. Also, PR is important in predicting a 

response to hormonal therapy (236, 237) once that PR should serve as an indicator of a 

functionally intact estrogen response pathway. Actually, it has been described that there is 

a worse overall survival and disease-free survival for women with ER+/PR- tumours 

compared to women with ER+/PR+ tumours, affirming the prognostic significance of the 

PR phenotype (238). 
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To clarify the putative role of the histone H2A2C either in normal breast or in 

breast cancer we silenced it, not only in HC11 cells but also in a mouse mammary 

carcinoma cell line (MC4-L2). The differences on cell morphology between the silenced 

cells and the respective control cells (scramble) were notorious. The silenced cells of both 

cell lines were much more epithelial. So, in order to know how H2A2C knock-down 

increased cell-cell adhesion, we investigated if H2A2C had correlation with epithelial 

differentiation in HC11 cells, by immunofluorescence. Both E-cadherin and β-catenin are 

more expressed in the membrane as part of adherents junctions when histone H2A2C is 

silenced. The E-cadherin is a calcium dependent cell-cell adhesion glycoprotein that is 

involved in mechanisms regulating cell-cell adhesions, mobility and proliferation of 

epithelial cells (48). β-catenin is a dual function protein, regulating the coordination of 

cell–cell adhesion and chromatin-remodelling complexes to activate transcription in the 

nucleus. This protein is an integral component of the E-cadherin complex at intercellular 

adherents junctions necessary for the creation and maintenance of epithelial cell layers by 

regulating cell growth and adhesion between cells (239). So, the increment of both E-

cadherin and β-catenin proteins at the membrane level in H2A2C silenced cells reinforce 

the role of H2A2C in represses cell differentiation. ZEB 1 is an E-cadherin transcriptional 

repressor that represses E-cadherin promoter and induces EMT (240). But, interestingly, E-

cadherin up-regulation in cells with H2A2C knock-down did not correlate to ZEB1 down-

regulation. Therefore, H2A2C effect on cell-cell adhesion is possibly not at E-cadherin 

transcriptional regulation but further downstream, through regulation of other proteins that 

affect E-cadherin protein stability. 

The results from a viability assay performed in HC11 silenced cells demonstrate 

that H2A2C is necessary to proliferation stimulated by EGF signalling but not by a 

combination of several growth factors and high nutrient levels as in the case of 10% FBS.  
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VII. Conclusion 

In this study, we report for the first time the expression and the possible role of the 

histone H2A2C either in mammary epithelium or in breast cancer.  

Herein, we demonstrate that the histone H2A2C expression is related to stem-cell 

like stage in HC11 cells and to a pregnant state of mouse mammary gland differentiation. 

We correlated H2A2C expression to CD44 and c-myc expression and to a down-

expression of membranous E-cadherin, suggesting that the histone H2A2C is related to the 

induction of steaminess and proliferation possibly affecting many cellular programs. Latter 

this was also confirmed by silencing HIST2H2AC in HC11 and MC4L2 cells. 

The regulation of expression of H2A2C is still to be discovered. However, we put 

aside the DNA methylation as a putative event that could regulate the HIST2H2AC 

expression. But the role of histone marks in this process is still a hypothesis. On the other 

hand, the relation of PI3K/AKT pathway in regulating the H2A2C expression was evident; 

now it remains to define what transcription factors could be involved in this process. 

Finally, the expression of H2A2C in human breast cancers was confirmed. But, due 

to the reduced number of samples available, it is still too early to make conclusions.  
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VIII. Future perspectives  

 

To understand how the histone H2A2C is actually regulated, we could perform: 

 ChIP for known PI3K/AKT regulated transcription factors that could be 

associated to the HIST2H2AC promoter; 

 Additional studies searching the role of miRNAs in regulation of H2A2C 

expression, namely the miR-30b and miR-30 d, which are up-regulated 

when HC11 cells are differentiated and can potentially target the mouse 

HIST2H2AC. 

To validate the hypothesis that H2A2C have an important role in breast cancer we 

must: 

 Increase the number of human breast cancer samples; 

 Correlate the mRNA expression of H2A2C with immunohistochemistry 

results; 

 Perform the viability assay in silenced MC4L2 cell line; 

 Silence the H2A2C in human breast cancer cell lines representing different 

subtypes, such as luminal T47-D and basal-like MDA-MB-231. 
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