PAULO JORGE RORIZ DE OLIVEIRA

SENSORES EM FIBRA ÓTICA PARA O ESTUDO BIOMECÂNICO DO DISCO INTERVERTEBRAL

FIBER OPTIC SENSORS FOR THE BIOMECHANICAL STUDY OF THE INTERVERTEBRAL DISC
PAULO JORGE RORIZ DE OLIVEIRA

SENSORES EM FIBRA ÓTICA PARA O ESTUDO BIOMECÂNICO DO DISCO INTERVERTEBRAL

FIBER OPTIC SENSORS FOR THE BIOMECHANICAL STUDY OF THE INTERVERTEBRAL DISC

Tese apresentada à Universidade de Aveiro para cumprimento dos requisitos necessários à obtenção do grau de Doutor em Engenharia Mecânica, realizada sob a orientação científica do Doutor José António Oliveira Simões, Professor Associado com Agregação do Departamento de Engenharia Mecânica da Universidade de Aveiro e coorientada pelo Doutor José Luís Santos, Professor Catedrático da Faculdade de Ciências da Universidade do Porto.

A thesis presented to the University of Aveiro in fulfillment of the requirement for the degree of Doctor of Philosophy in Mechanical Engineering, under the supervision of José António Oliveira Simões, Ph.D., Associate Professor of the Department of Mechanical Engineering of the University of Aveiro and the co-supervision of José Luís Santos, Ph.D., Full Professor of the Faculty of Science of the University of Porto.

Apoio financeiro da FCT e do FSE no âmbito do III Quadro Comunitário de Apoio - SFRH/BD/45130/2008

Grant supported by the Portuguese Foundation for Science and Technology (FCT) - SFRH/BD/45130/2008
Dedico este trabalho aos meus pais, à minha esposa e aos meus filhos.
o júri

presidente

Doutor Helmuth Robert Malonek
Professor Catedrático da Universidade de Aveiro

vogais

Doutor António Torres Marques
Professor Catedrático da Faculdade de Engenharia da Universidade do Porto

Doutor José Luís Campos de Oliveira Santos
Professor Catedrático da Faculdade de Ciências da Universidade do Porto

Doutor José António de Oliveira Simões
Professor Associado com Agregação da Universidade de Aveiro

Doutor José Alberto Caeiro Potes
Professor Associado com Agregação da Universidade de Évora

Doutor Jorge Augusto Fernandes Ferreira
Professor Auxiliar da Universidade de Aveiro

Doutor Orlando José Reis Frazão
Professor Auxiliar Convidado da Faculdade de Ciências da Universidade do Porto
acknowledgments

Looking back I notice I have never been alone. Science is profoundly humanistic and in it, as in my family. I have found the best examples of solidarity, abnegation, ethics and human capacity. I must therefore highlight those who have accompanied me in the last four years and attribute all the virtues of this study to them. And, if it has not been possible to go beyond, on account of my exclusive limitation, to promise them that I will carry on working...

My deepest gratitude goes to my advisor, Professor José António Oliveira Simões, for having given me the honor and privilege of attending a PhD in Mechanical Engineering, accepting all my limitations. If in geniality and wisdom I cannot equal him, I find in his nature and determination, kindness, courage and abnegation, all the qualities of the good man I try to be.

I also thank Professor José Luís Santos for having accepted to be my co-advisor and offered me all the conditions to the discovery of the exciting and new world of fiber optic sensors. To him I have always been a good old PhD student, which shows his profound generosity and chivalry. To me Professor José Luís embodies the true master, in knowledge and human nature, which leads one to understand how he became such a reference in his field.

My gratitude also goes to Professor Ilda Abe, who was my first year co-advisor and offered me the opportunity to fabricate fiber Bragg gratings sensors at the Laboratory of Coherent Optical Systems at the Physics Department of the University of Aveiro.

My deepest gratitude to Professor António Lobo-Ribeiro. He has been, since the beginning, a source of knowledge and inspiration.

My heartfelt gratitude to Professor José Caeiro Potes, for receiving us at the Veterinary Hospital of the University of Évora and for his help conducting the surgery for implantation of a fiber optic sensor in the disc of an anaesthetized sheep.

Many thanks to Francisco Araújo, Product Development Director of FiberSensing, for his contribution to the design and discussion of some sensor configurations.

Many thanks to my colleagues and friends at INESC-Porto. Among them, special thanks to Orlando Frazão who indefatigably supported me every day. As a mentor and a friend, he continuously instilled the spirit of creative research and the willingness to “bring light to the unknown” into me. My deepest gratitude to Doctor João Ferreira, without his help it would be impossible to design and construct the interrogation unit and software that have been used to interrogate the Samba preclin sensor. Dear Marta Ferreira, I will need more than a hug to express my gratitude for your support and friendship. It is an honor to share the place of work and the optical table with you and our mutual “genius” friend Ricardo André. Many thanks to my friend Carlos Gaspar, namely for his ability to find what is needed when it is needed. I also would like to thank Luis Coelho, Katalin Balogh and Paula Tafulo for helping me conducting several exploratory experiences. I hope I never forget all the contributions, at the monthly meetings of the team, inside and outside the
cabinets, at the corridors, travels and lunches… Thus, many thanks to Paulo Marques, Manuel Marques, Pedro Jorge, Ariel Guerreiro, Serge Mendonça, Mikel Bravo, Ivo Leite, Paulo Caldas, Joel Carvalho, Carlos Gouveia, Susana Silva, Raquel Queirós, Ivo Nascimento, Manuel Marques (Jr.) and Luiz Rodriguez. Special thanks to Luísa Mendonça and Ireneu Dias, particularly for their efforts to make INESC-Porto and UOSE a place where one works with great pleasure and where administrative tasks are a light weight to carry.

I also would like to thank all teachers of the curricular units of the doctoral program of Mechanical Engineering, namely for giving me the opportunity to focus on academic work according to the needs of my PhD project. Special thanks to Professor António Ramos, Professor José Relvas and Professor Jorge Ferreira, namely for their involvement in many tasks performed at the Biomechanics Laboratory of the University of Aveiro and their contribution to the process of writing reports and papers.

My special thanks to my PhD fellows at the Biomechanics Laboratory, namely to Susana Meireles and Marco Santos. It was a pleasure to share the same concerns and expectations with them and, most of all, to benefit from their friendship.

I also would like to thank José Miguel Monteiro, technician of FiberSensing, for his help performing some pressure tests.

Words cannot express the thanks I owe to my parents, my brothers and their families, my wife and my children. Without their endless love and constant encouragement I would certainly not have had the boldness to begin this adventure and the strength to finish it.

I would also like to take this opportunity to express my gratitude to the institutions and companies that have provided financial and logistic support to my PhD.

I am thankful to ISMAI, in particular to its Board President, Professor Domingos Oliveira Silva, and the Board of Maiêutica, Doctor José Manuel Matias de Azevedo. The authorized leave they have granted me for a period of four years has been decisive to the accomplishment of this study.

I also thank University of Aveiro, and its Department of Mechanical Engineering, for having accepted me as a PhD student and provided good working conditions in its investigation unit, the Centre for Mechanical Technology and Automation (TEMA). I must as well acknowledge all the support provided by the Department of Physics of University of Aveiro and its Laboratory of Coherent Optical Systems, for allowing the use of the interferometric system to the inscribing of Bragg gratings.

My gratitude to INESC-Porto and particularly to its unit of Optoelectronics and Electronic Systems (UOSE) is immense. I appreciate them the opportunity of working in emerging areas of this field, making part of an exceptional work team in a very pleasant place of work. Furthermore, in a period of deep economic crisis, I must emphasize the financing for equipment acquisition, travels and participation in conferences.

I thank FiberSensing, Sistemas Avançados de Monitorização, SA, a spin-off from INESC-Porto based in Maia, Portugal, for having made the mechanical testing machine available and also the human resources to carry out the pressure tests with several configurations of optic fiber sensors.

I also thank the collaboration of the Department of Veterinarian Medicine of Science and Technology School of University of Évora. Without its support the making of studies in vivo would not have been possible.

I finally appreciate the financial support of the Portuguese Foundation of Science and Technology (FCT) in the last four years.
palavras-chave
Sensores em fibra ótica, biomecânica, biomédica, coluna vertebral, disco intervertebral, *ex vivo, in vivo*

resumo
O presente trabalho teve como objetivo principal estudar o comportamento mecânico do disco intervertebral recorrendo a sensores em fibra ótica. Na expectativa de efetuar o melhor enquadramento do tema foi efetuada uma revisão exaustiva das várias configurações de sensores em fibra ótica que têm vindo a ser utilizadas em aplicações biomédicas e biomecânicas, nomeadamente para medição de temperatura, deformação, força e pressão. Nesse âmbito, procurou-se destacar as potencialidades dos sensores em fibra ótica e apresentá-los como uma tecnologia alternativa ou até de substituição das tecnologias associadas a sensores convencionais. Tendo em vista a aplicação de sensores em fibra ótica no estudo do comportamento do disco intervertebral efetuou-se também uma revisão exaustiva da coluna vertebral e, particularmente, do conceito de unidade funcional. A par de uma descrição anatômica e funcional centrada no disco intervertebral, vértebras adjacentes e ligamentos espinais foram ainda destacadas as suas propriedades mecânicas e descritos os procedimentos mais usuais no estudo dessas propriedades. A componente experimental do presente trabalho descreve um conjunto de experiências efetuadas com unidades funcionais cadavéricas utilizando sensores convencionais e sensores em fibra ótica com vista à medição da deformação do disco intervertebral sob cargas compressivas uniaxiais. Inclui ainda a medição *in vivo* da pressão intradiscal num disco lombar de uma ovelha sob efeito de anestesia. Para esse efeito utilizou-se um sensor comercial em fibra ótica e desenvolveu-se a respetiva unidade de interrogação. Finalmente apresenta-se os resultados da investigação em curso que tem como objetivo propor e desenvolver protótipos de sensores em fibra ótica para aplicações biomédicas e biomecânicas. Nesse sentido, são apresentadas duas soluções de sensores interferométricos para medição da pressão em fluidos corporais.
The present work aimed to study the mechanical behavior of the intervertebral disc using fiber optic sensors. To address the theme an exhaustive review of the various configurations of fiber optic sensors that have been used in biomechanical and biomedical applications, in particular for measuring temperature, strain, force and pressure, was conducted. In this context, an effort was made to highlight the advantages of fiber optic sensors and present them as an alternative or even a substitution technology to conventional sensors. In view of the application of fiber optic sensors to study intervertebral disc behavior an exhaustive review of the spine and, particularly, of the spinal motion segment was made. Along with an anatomical and functional description of the intervertebral disc, the adjacent vertebrae and spinal ligaments, their mechanical properties were also highlighted as well as the most common procedures and guidelines followed in the study of these properties. The experimental section of the present work describes a set of tests performed with cadaveric spinal motion segments using conventional and fiber optic sensors to assess strain of the intervertebral disc under uniaxial compressive loads. This section also includes an experience reporting in vivo pressures measured in the lumbar disc of a sheep under general anesthesia. In this case, a commercial fiber optic sensor and a purpose-built interrogation unit were used. Finally, the results of ongoing research aiming to develop fiber optic sensors prototypes for biomedical and biomechanical applications are presented. Thus, the proof of concept of two possible interferometric configurations intended for pressure measurement in body fluids was presented.
Table of Contents

Part I - Introduction

Motivação / Motivation .. 3

1. Objective and Thesis Organization .. 5

2. Author Main Contributions .. 7
 2.1 Academic Work .. 7
 2.2 Posters ... 7
 2.3 Conference Papers and Oral Presentations .. 8
 2.4 Papers in Journals ... 8

Part II – Review of Literature

Chapter 1 - Fiber Optic Sensors for Biomedical and Biomechanical Applications: A Review ... 11

1. Introduction .. 13

2. Sensing Temperature .. 24

3. Sensing Strain .. 29

4. Sensing Force ... 36

5. Sensing Pressure .. 42
 5.1 Intravascular and Intracardiac Pressure .. 43
 5.2 Intramuscular or Intracompartmental Pressure .. 48
 5.3 Intra-articular Pressure .. 49
 5.4 Intracranial Pressure .. 51
 5.5 Other Pressure Applications ... 54

6. Final Remarks .. 58

Chapter 2 - The Spinal Motion Segment: A Review .. 59

1. Introduction .. 61

2. The Spine or Vertebral Column ... 62

3. The Spinal Motion Segment: Its Anatomical, Histological and Mechanical Properties 68
 3.1 The Vertebrae .. 68
 3.1.1 The Vertebral Body .. 73
 3.1.2 The Vertebral Arch .. 73
 3.1.3 The Endplates .. 75
 3.2 The Intervertebral Disc ... 75
 3.2.1 The Nucleus Pulposus ... 76
 3.2.2 The Annulus Fibrosus .. 78
 3.3 The Facet Joints ... 81
 3.4 The Ligaments .. 82

4. Guidelines for Testing .. 85
 4.1 Ex Vivo and In Vivo Specimen .. 86
 4.2 Spine Wear Simulators .. 88
 4.3 Load Protocol ... 93

5. Final Remarks ... 95
Part III – Experimental Work ... 97

Study 1 – Using Conventional Sensors to Assess Intervertebral Disc Bulging 99
1. Introduction .. 101
2. Material and Methods ... 103
 2.1 Specimen ... 103
 2.2 Specimen Holder Apparatus ... 103
 2.3 Strain Gauge Bonding ... 104
 2.4 Testing Loading Machine .. 105
 2.5 Load Protocol .. 105
 2.6 Statistical Procedures ... 106
3. Results and Discussion ... 107
4. Final Remarks .. 112

Study 2 – Using a Fiber Bragg Grating to Assess Intervertebral Disc Bulging 113
1. Introduction .. 115
2. Material and Methods ... 117
 2.1 Specimen ... 117
 2.2 Specimen Holder Apparatus ... 117
 2.3 Fiber Bragg Grating Sensor ... 118
 2.4 Testing Loading Machine .. 119
 2.5 Load Protocol .. 120
 2.6 Statistical Procedures ... 120
3. Results and Discussion ... 121
4. Final Remarks .. 123

Study 3 – Measurement of Intradiscal Pressure in Sheep under General Anesthesia 125
1. Introduction .. 127
2. Material and Methods ... 129
 2.1 Fiber Optic Sensor ... 129
 2.2 Interrogation Unit ... 130
 2.3 Sensor Calibration and Data Acquisition .. 133
 2.4 Ex Vivo Experiments ... 137
 2.5 In Vivo Experiments ... 140
3. Results and Discussion ... 144
 3.1 Calibration .. 144
 3.2 Ex Vivo Experiments ... 146
 3.3 In Vivo Experiments ... 149
4. Final Remarks .. 154

Study 4 - Fiber Optic Prototypes for Pressure Measurement .. 155
1. Introduction ... 157
2. Material and Methods ... 158
 2.1 High-pressure Fabry-Pérot sensor ... 158
 2.2 Low-pressure Fabry-Pérot Sensor ... 159
2.3 Pressure Chamber .. 160
3. Results and Discussion .. 161
4. Final Remarks .. 163
Part IV – Conclusion and Future Work ... 165
References .. 169
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D</td>
<td>two-dimensional</td>
<td></td>
</tr>
<tr>
<td>3D</td>
<td>three-dimensional</td>
<td></td>
</tr>
<tr>
<td>AAMI</td>
<td>American Association for Medical Instrumentation</td>
<td></td>
</tr>
<tr>
<td>ABS</td>
<td>acrylonitrile butadiene styrene</td>
<td></td>
</tr>
<tr>
<td>AF</td>
<td>annulus fibrosus</td>
<td></td>
</tr>
<tr>
<td>AIDS</td>
<td>acquired immunodeficiency syndrome</td>
<td></td>
</tr>
<tr>
<td>ALL</td>
<td>anterior longitudinal ligament</td>
<td></td>
</tr>
<tr>
<td>ANSI</td>
<td>American National Standards Institute</td>
<td></td>
</tr>
<tr>
<td>AP</td>
<td>Anterior/posterior</td>
<td></td>
</tr>
<tr>
<td>APCVD</td>
<td>atmospheric pressure chemical vapor deposition</td>
<td></td>
</tr>
<tr>
<td>AR</td>
<td>Axial rotation</td>
<td></td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
<td></td>
</tr>
<tr>
<td>bpm</td>
<td>beats per minute</td>
<td></td>
</tr>
<tr>
<td>BW</td>
<td>body weight</td>
<td></td>
</tr>
<tr>
<td>C1-C7</td>
<td>cervical vertebrae</td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td>California</td>
<td></td>
</tr>
<tr>
<td>CCD</td>
<td>charge-coupled device</td>
<td></td>
</tr>
<tr>
<td>CE</td>
<td>conformity marking</td>
<td></td>
</tr>
<tr>
<td>CFRP</td>
<td>carbon fiber reinforced plastic</td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>capsular ligament</td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td>cobalt</td>
<td></td>
</tr>
<tr>
<td>CPM</td>
<td>continuous passive motion</td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>chromium</td>
<td></td>
</tr>
<tr>
<td>CSF</td>
<td>cerebrospinal fluid</td>
<td></td>
</tr>
<tr>
<td>CT</td>
<td>computed tomography (tomogram)</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>distance</td>
<td></td>
</tr>
<tr>
<td>DIN</td>
<td>Deutsches Institut für Normung</td>
<td></td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
<td></td>
</tr>
<tr>
<td>DOF</td>
<td>degrees of freedom</td>
<td></td>
</tr>
<tr>
<td>DVRT</td>
<td>differential variable reluctance transducer</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Elasticity modulus or Young’s modulus (Pa)</td>
<td></td>
</tr>
<tr>
<td>e.g.</td>
<td>Latin: exempli gratia (for example)</td>
<td></td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic acid</td>
<td></td>
</tr>
<tr>
<td>EM</td>
<td>Electromagnetic</td>
<td></td>
</tr>
<tr>
<td>EPROM</td>
<td>erasable programmable read only memory</td>
<td></td>
</tr>
<tr>
<td>ETFE</td>
<td>ethylene-tetrafluoroethylene</td>
<td></td>
</tr>
<tr>
<td>FBG</td>
<td>fiber Bragg grating</td>
<td></td>
</tr>
<tr>
<td>FDA</td>
<td>US Food and Drug Administration</td>
<td></td>
</tr>
<tr>
<td>FDIS</td>
<td>Final Draft International Standard</td>
<td></td>
</tr>
<tr>
<td>FE</td>
<td>Flexion/extension</td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>Iron</td>
<td></td>
</tr>
<tr>
<td>FEA</td>
<td>finite element analysis</td>
<td></td>
</tr>
<tr>
<td>FEM</td>
<td>finite element method</td>
<td></td>
</tr>
<tr>
<td>FL</td>
<td>Florida</td>
<td></td>
</tr>
<tr>
<td>IMRI</td>
<td>functional MRI</td>
<td></td>
</tr>
<tr>
<td>FOP</td>
<td>fiber optic plethysmography</td>
<td></td>
</tr>
<tr>
<td>FOS</td>
<td>fiber optic sensor</td>
<td></td>
</tr>
<tr>
<td>F-P</td>
<td>Fabry-Perot</td>
<td></td>
</tr>
<tr>
<td>FSO</td>
<td>full-scale output</td>
<td></td>
</tr>
<tr>
<td>FSU</td>
<td>functional spinal unit</td>
<td></td>
</tr>
<tr>
<td>FWHM</td>
<td>full width at half maximum</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>shear modulus (Pa)</td>
<td></td>
</tr>
<tr>
<td>GA</td>
<td>Georgia</td>
<td></td>
</tr>
<tr>
<td>GaA</td>
<td>gallium arsenide</td>
<td></td>
</tr>
<tr>
<td>GAG</td>
<td>glicosaminoglycans</td>
<td></td>
</tr>
<tr>
<td>HEST</td>
<td>Hall effect strain transducer</td>
<td></td>
</tr>
<tr>
<td>HF</td>
<td>hydrofluoric acid</td>
<td></td>
</tr>
<tr>
<td>HiBi</td>
<td>high-birefringence</td>
<td></td>
</tr>
<tr>
<td>i.e.</td>
<td>Latin: id est (that is)</td>
<td></td>
</tr>
<tr>
<td>IAB</td>
<td>intra-aortic balloon</td>
<td></td>
</tr>
<tr>
<td>IAP</td>
<td>intra-arterial pressure</td>
<td></td>
</tr>
<tr>
<td>IASIS</td>
<td>Intelligent Adaptable Surface with Optical Fiber Sensing for Pressure-Tension Relief</td>
<td></td>
</tr>
<tr>
<td>ICP</td>
<td>intracranial pressure</td>
<td></td>
</tr>
<tr>
<td>ICS</td>
<td>International Classification for Standards</td>
<td></td>
</tr>
<tr>
<td>IFT</td>
<td>implantable force transducer</td>
<td></td>
</tr>
<tr>
<td>IMP</td>
<td>intramuscular pressure</td>
<td></td>
</tr>
<tr>
<td>ISL</td>
<td>International Standard</td>
<td></td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
<td></td>
</tr>
<tr>
<td>ITL</td>
<td>intertransverse ligament</td>
<td></td>
</tr>
<tr>
<td>IVD</td>
<td>intervertebral disc</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>bulk modulus (Pa)</td>
<td></td>
</tr>
<tr>
<td>L1-L5</td>
<td>lumbar vertebrae</td>
<td></td>
</tr>
<tr>
<td>LB</td>
<td>Lateral bending</td>
<td></td>
</tr>
<tr>
<td>LCD</td>
<td>liquid crystal display</td>
<td></td>
</tr>
<tr>
<td>LED</td>
<td>light emitting diode</td>
<td></td>
</tr>
<tr>
<td>LF</td>
<td>ligamentum flavum</td>
<td></td>
</tr>
<tr>
<td>LMSG</td>
<td>liquid metal strain gauge</td>
<td></td>
</tr>
<tr>
<td>LPG</td>
<td>long period gratings</td>
<td></td>
</tr>
<tr>
<td>LVAD</td>
<td>left ventricular assist devices</td>
<td></td>
</tr>
<tr>
<td>MA</td>
<td>Massachusetts</td>
<td></td>
</tr>
<tr>
<td>MEMS</td>
<td>microelectromechanical systems</td>
<td></td>
</tr>
<tr>
<td>MICH</td>
<td>Michigan</td>
<td></td>
</tr>
<tr>
<td>MMF</td>
<td>multimode fiber</td>
<td></td>
</tr>
<tr>
<td>Mo</td>
<td>molybdenum</td>
<td></td>
</tr>
<tr>
<td>MOPS</td>
<td>micro-optical mechanical system</td>
<td></td>
</tr>
<tr>
<td>MPT</td>
<td>modified pressure transducer</td>
<td></td>
</tr>
<tr>
<td>MRI</td>
<td>magnetic resonance imaging</td>
<td></td>
</tr>
<tr>
<td>MW</td>
<td>microwave</td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>North Carolina</td>
<td></td>
</tr>
<tr>
<td>NP</td>
<td>nucleus pulposus</td>
<td></td>
</tr>
<tr>
<td>OD</td>
<td>outer diameter</td>
<td></td>
</tr>
<tr>
<td>OEM</td>
<td>original equipment manufacturer</td>
<td></td>
</tr>
<tr>
<td>OP</td>
<td>optical fiber</td>
<td></td>
</tr>
<tr>
<td>OSA</td>
<td>optical spectrum analyzer</td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>personal computer</td>
<td></td>
</tr>
<tr>
<td>PCF</td>
<td>photonic crystal fibers</td>
<td></td>
</tr>
<tr>
<td>PDMS</td>
<td>polymethylsiloxane</td>
<td></td>
</tr>
<tr>
<td>PE</td>
<td>polyethylene</td>
<td></td>
</tr>
<tr>
<td>PEoCVS</td>
<td>plasma-enhanced chemical vapor deposition</td>
<td></td>
</tr>
<tr>
<td>PEEK</td>
<td>polyetheretherketone</td>
<td></td>
</tr>
<tr>
<td>PFBG</td>
<td>polymer coated FBG</td>
<td></td>
</tr>
<tr>
<td>PLL</td>
<td>posterior longitudinal ligament</td>
<td></td>
</tr>
<tr>
<td>PMMA</td>
<td>polymethylmethacrylate</td>
<td></td>
</tr>
<tr>
<td>PTFE</td>
<td>polytetrafluoroethylene</td>
<td></td>
</tr>
<tr>
<td>PU</td>
<td>polyurethane</td>
<td></td>
</tr>
<tr>
<td>PVC</td>
<td>polyvinyl chloride</td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>correlation coefficient</td>
<td></td>
</tr>
<tr>
<td>r²</td>
<td>coefficient of determination</td>
<td></td>
</tr>
<tr>
<td>RF</td>
<td>radio frequency</td>
<td></td>
</tr>
<tr>
<td>RIE</td>
<td>reactive-ion etching</td>
<td></td>
</tr>
<tr>
<td>RMS</td>
<td>root-mean-square</td>
<td></td>
</tr>
<tr>
<td>ROM</td>
<td>range of motion</td>
<td></td>
</tr>
<tr>
<td>RSM</td>
<td>regional spine models</td>
<td></td>
</tr>
<tr>
<td>SC</td>
<td>subcommittees</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>standard deviation</td>
<td></td>
</tr>
<tr>
<td>SG</td>
<td>strain gauge</td>
<td></td>
</tr>
<tr>
<td>SLD</td>
<td>superluminescent diode</td>
<td></td>
</tr>
<tr>
<td>SMF</td>
<td>single mode fiber</td>
<td></td>
</tr>
<tr>
<td>SMS</td>
<td>spinal motion segment</td>
<td></td>
</tr>
<tr>
<td>SSL</td>
<td>supraspinal ligament</td>
<td></td>
</tr>
<tr>
<td>T1-T12</td>
<td>thoracic vertebrae</td>
<td></td>
</tr>
<tr>
<td>TC</td>
<td>Technical Committee</td>
<td></td>
</tr>
<tr>
<td>TDM</td>
<td>time division multiplexing</td>
<td></td>
</tr>
<tr>
<td>TEMPs</td>
<td>tissue engineered medical products</td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td>titanium</td>
<td></td>
</tr>
<tr>
<td>TLS</td>
<td>tunable laser source</td>
<td></td>
</tr>
<tr>
<td>TX</td>
<td>Texas</td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
<td></td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------------</td>
<td></td>
</tr>
<tr>
<td>USP</td>
<td>United States Pharmacopeia</td>
<td></td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
<td></td>
</tr>
<tr>
<td>VA</td>
<td>Virginia</td>
<td></td>
</tr>
<tr>
<td>VT</td>
<td>Vermont</td>
<td></td>
</tr>
<tr>
<td>WA</td>
<td>Washington</td>
<td></td>
</tr>
<tr>
<td>WDM</td>
<td>Wavelength division multiplexing</td>
<td></td>
</tr>
<tr>
<td>WG</td>
<td>Working groups</td>
<td></td>
</tr>
<tr>
<td>WSM</td>
<td>Whole spine models</td>
<td></td>
</tr>
</tbody>
</table>
List of Figures

Figure 1 - Schematic drawing of a typical laboratory fiber optic system. Optical fibers provide flexible connections between the optoelectronic components of the system. In this case an optical circulator connects the source to the sensor and the sensor to the detector. Optical spectrum analyzers are commonly used as optoelectronic light detectors and analyzer devices. .. 13

Figure 2 - Schematic drawing of a typical single mode fiber. This optical fiber has two main dielectric materials: the core and the cladding. The core is the inner and center cylinder of the fiber which transports the optical information. The clad provides an optical boundary capable of reflecting light back into the core due to a slightly lower refractive index than the core. The acrylate coating is a typical additional layer that protects the fiber from physical damage. .. 15

Figure 3 - Schematic drawing of an optical fiber (OF) placed in front of a movable reflecting mirror. The back-reflected intensity decreases when the distance, d, between the OF and the mirror increases. 17

Figure 4 - Schematic drawing of two optical fibers in front of each other at a known distance (d). The intensity transmitted decreases when d increases. .. 18

Figure 5 - Schematic drawing of a differential configuration. The input light from one optical fiber (OF) is coupled by the two OF. If the distances, d1 and d2, between the longitudinal axis of the input OF and the corresponding longitudinal axes of the two output OF increase the intensity transmitted decreases. 18

Figure 6 - Schematic drawing of a typical macrobending configuration (figure-of-eight loop). A variation of elongation applied to both fiber ends is converted into a variation of curvature radius of both loops causing the macrobending light loss effect... 19

Figure 7 - Schematic drawing of a microbend configuration. The optical power leakage is a function of the microbend radius of curvature which may be induced by strain or force applied along the fiber length. 19

Figure 8 - Schematic drawing of a typical Fabry-Perot (F-P) configuration that can be used for pressure measurements. .. 20

Figure 9 - Schematic drawing of a fiber Bragg grating (FBG). The grating acts as an effective optical filter. When illuminated by a broadband optical source, whose center wavelength is close to the Bragg wavelength (λB), a narrow band loss centered in the Bragg wavelength is present in the transmitted spectrum (the missing light appears in the grating reflection spectrum). .. 21

Figure 10 - Schematic drawing of the temperature sensor proposed by Wolthus et al. [78]. 25

Figure 11 - Schematic drawing of the temperature sensor proposed by Rao and Jackson [94]. Stainless steel tube was made transparent to allow components visualization. .. 26

Figure 12 - Schematic drawing of the temperature sensor proposed by Rao et al. [57]. Nylon sleeve was made transparent to allow components visualization... 26

Figure 13 - Schematic representation of the fiber Bragg grating sensor used to measure intervertebral disc bulging under compression [138]. .. 30

Figure 14 - Schematic representation of the FBG and SG sensors used to measure bone strain at the surface of an implanted cadaveric mandible [140]. .. 31

Figure 15 - Schematic representation of the setup used to measure the setting expansion and temperature variation which occurred during the setting reaction of dental gypsum. The compensation FBG was placed freely inside a needle to isolate it from strain. The other was placed directly in contact with the dental material [144-145]... 32

Figure 16 - Schematic drawing of fiber Bragg gratings glued to a stainless steel bone plate............... 33

Figure 17 - Schematic drawing of macrobending sensor in optical fiber embedded into textile fabrics for the monitoring of respiratory movements [156]. .. 34

Figure 18 - Schematic representation of the intensity modulated force sensor proposed by Komi et al., [185] to be implanted into the human Achilles tendon [168,193,196]. .. 38

Figure 19 - Schematic drawing of the force sensor proposed by Polisgerinos et al. [209-210]............... 40

Figure 20 - Schematic drawing of the pressure sensor proposed by Lekholm and Lindström [40] and Lindström [44]... 44
Figure 21 - Schematic drawing of the pressure and oxygen saturation sensor proposed by Matsumoto et al. [261]. A side membrane was used to sense pressure and a tip configuration for measurement of oxygen saturation. ... 44

Figure 22 - Schematic drawing of earlier Camino sensors [232]. ... 45

Figure 23 - Schematic drawing of the pressure sensor proposed by Saaski et al. [93] and Wolthuis et al. [78]. ... 46

Figure 24 - Location of the spine in the human body [Adap.356]. ... 62

Figure 25 – Vertebrae organization in the spine [Adap.356]. ... 63

Figure 26 - A 3D view of a spinal motion segment (SMS) and of the intervertebral disc (IVD). Ligaments are not represented. ... 68

Figure 27 - A typical vertebra observed from different views. Left: perspective. Center: transversal view; right: sagittal view. ... 69

Figure 28 – Schematic representation of the osteon, the bone matrix and the Haversian system [Adap.356].70

Figure 29 – Midsagittal cut view of a porcine vertebra. ... 70

Figure 30 – The vertebral body of a vertebra is located anteriorly. ... 73

Figure 31 – Components of the vertebral arch. .. 74

Figure 32 – The intervertebral foramina is formed by the superior and inferior vertebral notches. 74

Figure 33 – Schematic representation of the location of the intervertebral disc in the spinal motion segment. A picture of an ex vivo porcine intervertebral disc specimen is presented. ... 76

Figure 34 – The intervertebral disc of a porcine specimen (transverse plane view). The annulus lamellae surrounding the softer nucleus pulposus are visible in the anterior portion of the disc. .. 76

Figure 35 – Location of the facet joints. .. 82

Figure 36 – Partial mid-sagittal cut view of multisegmental and intersegmental ligaments of the spine [356]. . 83

Figure 37 – Spine simulators [Adap. 562,563-569]. .. 91

Figure 38 - Top view of the specimen holder (removed the top plate and vertical jigs). 103

Figure 39 - Anterior view of the functional spinal unit and strain gauges bonded to the annulus fibrosus of the intervertebral disc. .. 104

Figure 40 - A view of the complete setup. A detail of the specimen in situ is provided. 105

Figure 41 - Schematic representation of a load cycle. .. 106

Figure 42 - Circumferential strain on the right side of the outer annulus fibrosus under compressive load. Average results of the six loading cycles are presented. Y error corresponds to one standard deviation. The adjusted coefficient of determination (r^2) was calculated ... 107

Figure 43 - Circumferential strain on the left side of the outer annulus fibrosus under compressive load. Average results of the six loading cycles are presented. Y error corresponds to one standard deviation. The adjusted coefficient of determination (r^2) was calculated ... 108

Figure 44 - Axial strain of the outer annulus fibrosus under compressive load. Average results of the six loading cycles are presented. Y error corresponds to one standard deviation. The adjusted coefficient of determination (r^2) was calculated ... 108

Figure 45 - The measuring grid and the grid carrier of the “front” strain gauge are contacting the caudal vertebra. .. 109

Figure 46 – Comparison between circumferential (mean of left and right) and axial strain. 110

Figure 47 - Top view of the specimen holder (removed the top plate and vertical jigs). 117

Figure 48 – Ventral view of the spinal motion segment. A needle was used to perforate the intervertebral disc from side to side and guide the sensor into the center of the disc. .. 118

Figure 49 – Ventral view of the optical fiber inserted into the intervertebral disc. Small cylindrical plastic tubes and cyanoacrylate adhesive were used to attach the optical fiber to the disc surface. ... 118

Figure 50 – Schematic representation of the fiber Bragg grating sensor inside the intervertebral disc........ 119
Figure 51 - Schematic representation of a load cycle. ... 120
Figure 52 - Radial strain of the outer annulus fibrosus under compressive load. Average results of the four loading cycles are presented. Y error corresponds to one standard deviation. The adjusted coefficient of determination \(r^2 \) was calculated. .. 121
Figure 53 - The Samba Preclin 360 HP sensor (Serial nº.A2-1532). The sensor head (a Fabry-Pérot cavity) and the MMF were coated with a radiopaque material which allowed knowing the position of the sensor inside the body. A view of the sensor’s packaging is presented on the right. ... 129
Figure 54 – Samba 201/202 control unit [310]. .. 131
Figure 55 – The interrogation unit developed at INESC-Porto that was used for acquisition of pressure data in the nucleus pulposus of a lumbar intervertebral disc of an anesthetized sheep. .. 131
Figure 56 – Detail on the electrical and optical components of the interrogation system. The external connections to the sensor and the optical power meter were identified. .. 132
Figure 57 – Schematic representation of the connections between the optical components of INESC-Porto interrogation unit. .. 132
Figure 58 – The optical power meter (HP8153A) that was used for readings of the optical power of the source (reference) and sensor signals .. 133
Figure 59 – The pressure device used to calibrate the Samba sensor. .. 134
Figure 60 – The complete setup used in sensor calibration. A detail on the location of sensor insertion is presented. .. 134
Figure 61 – Flowchart of the LabView routine used for calibration of the sensor. .. 135
Figure 62 - Flowchart of the LabView routine used for read pressure data during in vivo experiments. 136
Figure 63 – The standard 11-gauge biopsy Jamshidi needle used to implant the Samba sensor into the nucleus pulposus of the intervertebral disc, the stylet and the 2.0 mm Kirschner-wire. .. 137
Figure 64 – Insertion of the Samba sensor into the needle lumen. ... 138
Figure 65 – Location of the suture to prevent slippage of the sensor .. 138
Figure 66 – An example of the conditions under which the spinal maneuvers were accomplished. 139
Figure 67 – An example of an X-ray used to confirm Samba sensor position into the intervertebral space. Ventral and lateral X-ray images were taken to confirm sensor location in the anterior and sagittal planes. In the present example the sensor seems to occupy a central but slightly posterior position. ... 139
Figure 68 – Animal preparation at the operating room. After anesthesia the animal was moved to a radiolucent table and maintained in a lateral right recumbence position. .. 140
Figure 69 – The anesthesia was maintained through isoflurane (2-3%) in oxygen with spontaneous ventilation and vital parameters were controlled. .. 141
Figure 70 – The lumbar region was prepared a solution of povidone-iodine in 70% ethanol. 141
Figure 71 – Insertion of the standard 11-gauge biopsy Jamshidi needle percutaneously in the dorsolateral intervertebral disc space. ... 142
Figure 72 – Fluoroscopic control of needle position ... 142
Figure 73 – Implantation of the Samba sensor into the nucleus pulposus of the intervertebral disc. 143
Figure 74 – The animal going to recovery .. 143
Figure 75 – Average values of increasing and decreasing parts of the three pressure cycles performed during calibration of the Samba sensor. A detail on the average of the differences between increasing and decreasing values at each step of calibration is shown. Y-error bars represent one standard deviation. 144
Figure 76 - Average values of the three pressure cycles performed during calibration of the Samba sensor. A detail on the average of the differences between consecutive steps of calibration was shown. Y-error bars represent one standard deviation. .. 145
Figure 77 – Pressures measured during sensor insertion into the catheter lumen, while contacting the squeezed lumen and during its removal (raw data). .. 146
Figure 78 – Pressure raw data resulting from flexion/extension maneuvers. .. 148
Figure 79 – Pressure raw data resulting from lateral flexion maneuvers. ... 148
Figure 80 – Pressure raw data resulting from axial rotation maneuvers. .. 149
Figure 81 – Intradiscal pressure pattern in the 5th lumbar disc. Results were obtained with the animal in a lateral right recumbence position under general anesthesia. Average pressure and time were detailed as well as maximum and minimum pressures. ... 151
Figure 82 – Sensor failure occurred during removal of the sensor from the 5th lumbar intervertebral disc. On top a picture of the broken sensor.. 153
Figure 83 - Schematic drawing of a high-pressure Fabry-Pérot (F-P) prototype.................................... 158
Figure 84 – An image of the cleaver that was used to cleave the fiber tips. .. 158
Figure 85 - Schematic drawing of a low-pressure Fabry-Pérot (F-P) prototype 159
Figure 86 – An image of the result of splicing the single mode fiber to the photonic crystal fiber using the Arc Fusion Splicer. ... 160
Figure 87 - Wavelength shift of sensor 1 under pressure. ... 161
Figure 88 - Wavelength shift of sensor 2 under pressure. ... 161
List of Tables

Table 1 - Companies commercializing fiber optic sensors for biomechanical and biomedical applications. 22
Table 2 – Cobb angles measured in the sagital plane ... 65
Table 3 – Cobb angle measured in the frontal plane [392] .. 66
Table 4 – Mechanical properties of vertebrae bones ... 72
Table 5 - Mechanical properties of the endplates ... 72
Table 6 – Mechanical properties of the nucleus pulposus .. 78
Table 7 – Mechanical properties of the annulus fibrosus .. 81
Table 8 – Geometric properties of spinal ligaments at the spinal motion segment level 84
Table 9 – Mechanical properties of spinal ligaments .. 84
Table 10 – Comparison between ISO 1892-1 and ASTM F2423-05 ... 89
Table 11 – Comparison of basic features of some loading simulators* ... 92
Table 12 – Handling and cleaning instructions applied to Samba sensor 130
List of Equations

Equation 1 – Coefficient of variation CV_{SDi} is the average standard deviation at step i of the loading cycle and Xi is the mean at step i of the loading cycle. N is the number of steps... 106
Part I - Introduction
Motivação / Motivation

O homem é talvez o único ser vivo capaz de se interrogar. E nessa busca interior, das razões da sua existência, do seu comportamento e da sua relação, sustentada pela intrincada rede do instinto e do pensamento, pela matéria e pelo corpo, pela cultura e pela técnica, tem sido capaz de conquistar, ainda que reconhecendo retrocessos, desvios e limites.

Assiste-o nessa conquista a dúvida e por isso é inesgotável o que há para saber. A dúvida é o limite do conhecimento e por essa razão o conhecimento não tem início nem fim, somente a expectativa de se alargar. A dúvida é a motivação para a construção de um intervalo do saber maior, a voz da consciência, apelando ao que há para saber sobre o passado, no presente e para o futuro.

E é comungando dessa inquietação pelo saber, fecundada pela dúvida, que o autor do presente trabalho, com vestes de explorador e “equipamento limitado”, se precipita sobre as fronteiras do desconhecido. Interessa-o o corpo, matéria por excelência, manifestação palpável da existência. Interessa-o, sobretudo, o estudo das forças que nele atuam e que determinam o seu estado de repouso ou de movimento. E nessa ascese newtoniana, que o conduz à compreensão mais elementar das leis que regem a partícula, o corpo rígido ou deformável, tem encontrado novas questões e a motivação para explorar um pouco mais.

Surgiu assim este programa doutoral, da voz da consciência.

Alguns anos depois de ter tido aulas de Biomecânica com o Professor José António Oliveira Simões, num curso de pós-graduação em Engenharia Biomédica na Faculdade de Engenharia da Universidade do Porto, quis o destino que o voltasse a procurar. Preocupava-me o estudo da coluna vertebral, particularmente o das cargas a que está submetido o disco intervertebral. E se lhe soube expor o problema devo-o a quem me ensinou quase tudo, o Professor José Luís de Castro Gonçalves, meu professor de Biomecânica no Instituto Superior de Educação Física (atual Faculdade de Desporto da Universidade do Porto). Assim, e na condição de submeter e ver aprovado um projeto de investigação pela Fundação para a Ciência e Tecnologia pude contar com a supervisão do Professor José Simões no programa doutoral em Engenharia Mecânica da Universidade de Aveiro. Quis ainda o destino que os esforços para compreender o comportamento do disco intervertebral se centrassem na utilização de sensores minimamente invasivos apontando-se os sensores em fibra ótica como um recurso incontornável. Desse modo, e após uma primeira incursão pelo Laboratório de Sistemas Òticos Coerentes do Departamento de Física da Universidade de Aveiro, foi no INESC-Porto, e contando com a coorientação do Professor José Luís Santos, que encontrei as melhores condições para desenvolver e testar algumas configurações de sensores em fibra ótica com vista a aplicações biomecânicas e biomédicas. O processo culminou com a medição da pressão intradiscal in vivo num disco lombar de uma ovelha sob anestesia geral e a oportunidade de desenvolver sensores em fibra ótica para aplicações biomédicas e biomecânicas.
Man is perhaps the only living being capable of questioning himself. And in this inner search for the reasons for his existence, his behavior and his relationship, underpinned by the intricate network of instinct and thought, by matter and body, by culture and technology, he has been able to conquer, though acknowledging setbacks, detours and limits.

In that quest doubt is always present and therefore what there is to know is inexhaustible. Doubt is the limit of knowledge and that is why knowledge has no beginning and no end, only the expectation of extending itself. Doubt is the motivation for building a greater range of knowledge, the voice of consciousness appealing to what there is to know about the past, present and future.

Sharing this restlessness for knowledge, fertilized by doubt, the author of present work, with robes of explorer and "limited equipment", rushes on the borders of the unknown. Interested in the body, subject matter par excellence, tangible manifestation of existence. Interested especially in the study of forces that act on it and that determine its state of rest or motion. And in that Newtonian asceticism, which leads to the most basic understanding of the laws governing the particle, rigid or deformable body, he finds new issues and motivation to explore a little more.

Thus emerged this doctoral program, from the voice of consciousness.

Some years after having Biomechanics classes with Professor José António Oliveira Simões, in a postgraduate course in Biomedical Engineering in the Faculty of Engineering of University of Porto, Fate determined to contact him once more. I was worried about the study of the spine, particularly the loads to which the intervertebral disc is subjected. And if I knew how to present him the problem, I owe it to the one who taught me almost everything, Professor José Luís Gonçalves de Castro, my professor at the Institute of Biomechanics of Physical Education (now the Faculty of Sport, University of Porto). Thus, on condition of submitting and see a research project approved by the Foundation for Science and Technology, I could rely on the supervision of Professor José Simões, from the University of Aveiro, in the doctoral program in Mechanical Engineering. Fate still wanted that efforts to understand the behavior of the intervertebral disc should be focused on the use of minimally invasive sensors, mainly the optical fiber sensors, as an indispensable resource. Thus, after an initial foray by Coherent Optical Systems Laboratory, Department of Physics, University of Aveiro, it was at INESC-Porto, and relying on the co-supervision by Professor José Luis Santos, that I found the best conditions to develop and test some configurations of fiber optic sensors bearing in mind biomechanics and biomedical applications. The process resulted in the measurement of in vivo intradiscal pressure in the lumbar disc of a sheep under general anesthesia and the opportunity to develop optical fiber sensors for biomedical and biomechanical applications.
1. Objective and Thesis Organization

The present thesis aimed to study the mechanical behavior of the intervertebral disc using fiber optic sensors.

It is organized in four main parts. In Part I the author describes the motivation that led him to start the doctoral process and how he found the partners that supported his journey. Author main contributions are also described in Part I, namely those focusing on main academic contributions, in full fulfillment of the requirements of the doctoral syllabus in Mechanical Engineering at the University of Aveiro, and a list of posters, oral presentations and published papers.

Part II is devoted to the review of literature and was organized in two chapters. In chapter 1 an extensive review of fiber optic sensors that have been used in biomedical and biomechanical applications, in particular those measuring temperature, strain, force and pressure, was conducted. In chapter 2 a review focused on the spinal motion segment was made. This chapter seeks to describe the anatomical structures that have been the object of study during experimental work: the spinal motion segment and, particularly, the intervertebral disc.

Part III represents author main contributions in terms of experimental work. Four studies were described. The purpose of study 1 is to demonstrate that strain gauges can be successfully glued to the outer surface of the intervertebral disc (IVD) and provide readings of circumferential and axial strain under compressive load. In study 2 a fiber Bragg grating is used to measure radial strain. In study 3, in vivo intradiscal pressures were measured using a fiber optic sensor implanted in the lumbar disc of an anesthetized sheep. Finally, in study 4 the results of ongoing research aiming to develop fiber optic sensors prototypes for biomedical and biomechanical applications are presented.

In Part IV some conclusions are drawn regarding the work that was done, its limitations, potentialities and, particularly the need for future work that could enhance the contribution of fiber optic sensors in biomedical and biomechanical applications.
2. **Author Main Contributions**

2.1 **Academic Work**

The doctoral program in Mechanical Engineering of the University of Aveiro presumes an individual syllabus with specific curricular units directed to the training for investigation. The author took this opportunity to get a more profound knowledge on the research methods used in mechanical engineering to conduct biomechanical studies (e.g., finite element analysis and mechanical testing of materials) and the techniques used on optoelectronics to fabricate and test fiber optics sensors. This work was accomplished at the facilities of the Biomechanics Laboratory of the Department of Mechanical Engineering of the University of Aveiro, the Laboratory of Coherent Optical Systems of the Physics Department of the University of Aveiro and at the Optoelectronics and Electronic Systems Unit (UOSE) of the Institute for Systems and Computer Engineering of Porto (INESC Porto). Along with the previous learning process and having in mind to create future lines of research, the state of the art about specific topics on spine biomechanics and about fiber optic sensors that are being used in biomechanical and biomedical applications was described. The most relevant reports that resulted from this process were:

- Finite element analysis of a lumbar vertebra under compression;
- Intelligent and bio-inspired products: Spinal implants and prostheses;
- Fiber Bragg grating sensors: A product and market overview;
- Fiber Bragg grating sensor for intradiscal pressure measurement in vivo: A technological surveillance study;
- Using MATLAB to visualize, filter and build neural networks with experimental data obtained from disc bulging under compression;
- Fiber optic sensors for biomechanical and biomedical applications.

2.2 **Posters**

1 Full access to these reports can be obtained from the thesis CD ROM or under request (paulroriz@ua.pt)
2.3 Conference Papers and Oral Presentations

2.4 Papers in Journals

Part II – Review of Literature
Chapter 1 - Fiber Optic Sensors for Biomedical and Biomechanical Applications: A Review

1. Introduction

In the coming years in vivo biomedical and biomechanical applications will benefit from a wide range of fiber optic sensor (FOS) turnkey systems for sensing and measuring almost any physical quantity. These systems have four basic components: the light source, the optical fiber (OF), the sensor element, and the light detector (figure 1).

![Figure 1 - Schematic drawing of a typical laboratory fiber optic system. Optical fibers provide flexible connections between the optoelectronic components of the system. In this case an optical circulator connects the source to the sensor and the sensor to the detector. Optical spectrum analyzers are commonly used as optoelectronic light detectors and analyzer devices.](image)

The light source provides the electromagnetic (EM) radiation whose energy is transmitted through the OF to the sensor element, in general, under the principle of total internal reflection. The fiber optic sensor or transducer is the light modulator, i.e., the entity that causes a light property to change (e.g., amplitude or optical power, phase, polarization, and wavelength or optical frequency) under the influence of a certain physical quantity. Thus, a physical quantity (e.g., temperature) can change the physical properties of the sensing element, which in turn leads to a change in the light properties. The light detector is necessary to read and analyze a light property variation. Since the four light properties can be considered in most circumstances independent parameters they offer a wide range of solutions to sense several physical quantities.

Fiber optic sensing technology is about forty years old and presents substantial advantages compared to conventional electric sensing systems. Conventional sensors applied in biomedical and biomechanical applications are based on piezoresistive, strain gauge (SG) or other solid-state sensing technologies. They represent a highly tested, mature and overspread technology, offering good sensitivity, precise measurements and competitive price. However, their miniaturization, typically requiring sensor head diameters below 0.5 mm, such as for minimally invasive procedures, presents some drawbacks. Mignani et al. [1] have pointed some of them, including fragility, long term instability, inconsistency and excessive drift. Additionally, their output is
restricted to a small sensing area making it necessary to use more sensors to sense larger regions (e.g., a temperature profile along a tissue), but only at the expense of increased dimensions and loss of flexibility [2]. These disadvantages combined with poor biocompatibility of metallic components and large sensitivity to EM interference, can compromise some in vivo applications and their use in clinical practice. A good example is their application in magnetic resonance imaging (MRI) environment. As pointed by Ladd et al. [3] ferromagnetic based sensors should not be used because they will act as an antenna and generate significant heating effects, which might cause image artifacts.

While OFs guide light, the majority of conventional sensors guide electricity through metallic wires (e.g., copper-nickel alloys). This fundamental difference of carrying information, along with the following properties, makes OF the ideal tool in an increasingly number of sensing environments:

- **Inertness and biocompatibility:** A typical OF is made of amorphous silica glass, also known as silicon dioxide (SiO$_2$), fused silica or fused quartz. This compound is almost chemically inert and biocompatible [4]. Only hydrofluoric acid (HF) and some alkaline substances are capable of chemically attacking it [5-6]. Thus, an OF has the potential to neither adversely affect the physiological environment nor be adversely affected by it [7]. Under sterile conditions, OF will minimize contamination and the risk of infection associated to invasive procedures. Even so, there is a need of special care to glass debris that can be generated along with fiber breakage. Sharpened glass pieces can easily lacerate the skin, enter into the circulatory system or damage internal body cells and tissues. One should remember that some materials are biocompatible in their bulk form but wear debris can incite adverse reactions from the body cells. To avoid it the OF is usually embedded into biocompatible sterilizable protective layers, such as coatings, buffers, jackets and cables (figure 2). Materials such as polyimide, polydimethylsiloxane (PDMS), ethylene-tetrafluoroethylene (ETFE) or Tefzel®, and polytetrafluoroethylene (PTFE) or Teflon® are being used in biomedical and biomechanical applications [8-13]. The strength, fatigue and biocompatibility of silica fibers with several polymeric (e.g., UV-cured acrylate, silicone, and polyimide), metallic (e.g., aluminum, indium, tin, and gold) and inorganic (e.g., oxides, carbides, nitrides, and carbon) coatings were also studied by Biswas [9]. The UV-curable dual acrylate coating used in standard OF may be inappropriate for biomedical and biomechanical applications requiring heating procedures, because it cannot withstand temperatures above 85 °C [14]. Some manufacturers, like Ocean Optics (Dunedin, FL, USA; www.oceanoptics.com) and OFS (Norcross, GA, USA; www.ofsoptics.com), are producing nontoxic and biocompatible fibers, cables and assemblies, with materials used in implants and/or approved by the United States Pharmacopeia (USP Class VI Biological Test for Plastics). Some examples of these materials are
polyetheretherketone (PEEK), fluoroacrylates, Poly(p-xylylene) or parylene, and polyimide. The OF can also be enclosed or encapsulated into surgical instruments, catheters, metallic tubes or needles. These objects can play several cumulative functions such as guide the FOS to the target during invasive procedures, protect the sensor or the host from direct contact, allow exposure of the sensing head only, minimize the risk of sensor breakage and the release of debris, or incorporate additional sensors and devices [10,15-21]. While almost all needles and metallic tubes are made of stainless steel, catheters can be made from a wide variety of materials, such as silicone rubber, latex, PTFE, polyethylene (PE), polyurethane (PU) and polyvinyl chloride (PVC);

Figure 2 - Schematic drawing of a typical single mode fiber. This optical fiber has two main dielectric materials: the core and the cladding. The core is the inner and center cylinder of the fiber which transports the optical information. The clad provides an optical boundary capable of reflecting light back into the core due to a slightly lower refractive index than the core. The acrylate coating is a typical additional layer that protects the fiber from physical damage.

- Low coefficient of thermal expansion and thermal conductivity. The coefficient of thermal expansion of an OF is 1/34 of copper [22]. This low sensitivity minimizes cross sensitivity in the sensor probe. The operating temperature of a silica fiber can go up to ~900 °C, above which the core and the cladding material begin to migrate. Thus, an OF will not lose its integrity with body temperature monitoring, especially during hyperthermia or cryotherapy treatments. In fact, the critical issue relies on the selection of high temperature resistant layers for coating, buffering and cabling. Some recommended high temperature resistant polymers are Teflon/PTFE (230 °C), polyimide (220 °C) and silicone rubber (200 °C) [16]. Other materials with higher
melting points, such as sapphire (2040 °C) and silicon carbide (2700 °C), can even replace silica based OF [22];

- No electrical conductivity: An OF has excellent electrical insulation, up to approximately 1000 °C [22-24]. Thus, it is intrinsically safer to be used in animals or patients without the risk of electrical shock or explosion;

- Immunity to EM interference [23,25]: The dielectric properties offered by OF will maximize the signal-to-noise ratio and the sensitivity of any FOS system. Of particular importance is the possibility of using the OF in MRI rooms;

- Remote operation and sensing: An OF is capable of transmitting a large amount of data over long distances (several kilometers) at the speed of light without significant signal loss (typically <0.4 dB km⁻¹) [23,25];

- Small dimensions and lightweight: The OF is very thin, no thicker than a standard surgical suture [26]. A typical single mode fiber (SMF) has an outer diameter (OD) of only 125 μm. Supplementary protective layers will increase dimensions, but to no more than 500 μm OD if minimally invasive procedures are pursued. The OF is also lightweight. Silicon dioxide density (2200 kg m⁻³) is approximately four times smaller than that of copper [22], which also facilitates miniaturization;

- Adhesion to biological tissues: An OF can easily adhere to bone by use of the US Food and Drug Administration (FDA) approved polymethyl-methacrylate (PMMA) as bonding adhesive [26]. This is of particular importance for ex vivo biomechanical experiments where bone strains need to be assessed;

- Geometrical versatility: An OF can bend within the host structure to radii of 10 mm [23] making it suitable to adapt to complex surfaces, such as skin, teeth, joint and bone surfaces [27];

Particularly important is that OF itself can be used as the sensor element, without the necessity of adding any other element. These intrinsic sensors are clearly a step forward into development of miniaturized and minimally invasive sensors.

An OF is only a component of FOS systems but its unique properties definitely contribute to enhance the performance of the whole system and to claim FOSs as a standard for sensing and capable of providing reliable solutions for those applications where conventional sensors are not suitable.

FOSs were introduced in the 1960s, mainly for endoscopic, intravascular and cardiac applications [28-42]. In the last years, their expansion has been benefiting from the development of telecommunications and OF communications, in particular, which are offering high quality, miniaturized and affordable optoelectronic components at competitive prices.
The most common working principles applied to FOSs for biomedical and biomechanical applications are based on intensity, phase and wavelength modulation, the latter associated with the operation of fiber Bragg gratings (FBGs).

Intensity modulated sensors were introduced in the early 1960s [29-42]. Their working principle is based on the variation of the light intensity or amplitude. Some possible configurations have been described [43]:

- An OF placed in front of a movable reflecting mirror (figure 3). The fiber guides the light to the mirror. The measurand varies the original mirror distance to the fiber tip and changes the intensity of the reflected light that is coupled by the same fiber or another fiber parallel to the first one. As will be described, initial studies made use of similar configurations. However, instead of a single OF, bundles of OF were used as waveguides due to the difficulties in light coupling [29-42,44];

![Schematic drawing of an optical fiber (OF) placed in front of a movable reflecting mirror. The back-reflected intensity decreases when the distance, d, between the OF and the mirror increases.](image)

- Two OF in front of each other at a known distance (figure 4). The measurand will change the distance between the two fibers and, consequently, the intensity transmitted. Differential configurations, with two or more fibers in front of the OF connected to the light source, can compensate changes in light source intensity or losses in the OF (figure 5);
Figure 4 - Schematic drawing of two optical fibers in front of each other at a known distance (d). The intensity transmitted decreases when d increases.

Figure 5 - Schematic drawing of a differential configuration. The input light from one optical fiber (OF) is coupled by the two OF. If the distances, d₁ and d₂, between the longitudinal axis of the input OF and the corresponding longitudinal axes of the two output OF increase the intensity transmitted decreases.
An OF submitted to macrobending (figure 6) or microbending (figure 7). These actions will result in light loss and decrease the light intensity output [45].

Figure 6 - Schematic drawing of a typical macrobending configuration (figure-of-eight loop). A variation of elongation applied to both fiber ends is converted into a variation of curvature radius of both loops causing the macrobending light loss effect.

Figure 7 - Schematic drawing of a microbend configuration. The optical power leakage is a function of the microbend radius of curvature which may be induced by strain or force applied along the fiber length.

Interferometric based sensors also made several configurations possible (e.g., Sagnac interferometer, Michelson interferometer, Mach-Zehnder interferometer), but the Fabry-Pérot (F-P) interferometer [46] has been the most applied in minimally invasive sensors. F-P interferometer sensors were introduced in the early 1980’s and solved many drawbacks of intensity modulated
sensors. Instead of measuring a change in light intensity, these sensors aim at phase differences in the light beams. Their most common configuration includes a small-size sensing element bonded to the tip of the fiber. This element is an optical cavity formed by two parallel reflecting surfaces where multiple reflections will occur (figure 8). One of the reflecting surfaces is a diaphragm that changes the optical cavity depth (i.e., the distance between the mirrors) under the action of the measurand and, consequently, the characteristics of the signal that reaches the photodetector. Compared to intensity modulated schemes and FBG sensors, F-P interferometers are capable to achieve high sensitivities and resolutions, but at the expense of relatively complex interrogation/detection techniques [47].

![Figure 8 - Schematic drawing of a typical Fabry-Pérot (F-P) configuration that can be used for pressure measurements.](image)

Wavelength modulation is typically achieved through use of FBG sensors which are probably the simplest and most interesting type of FOSs, particularly, for temperature and strain measurements. A Bragg grating can be defined as a periodic perturbation of the refractive index of the fiber core (figure 9). Several disruptive discoveries have to occur to make their use as sensors possible. The first one in 1978 was the discovery of photosensitivity in OF by Hill et al. [48-49]. In 1987 it was followed by the invention of the externally UV photowriting technique, by Meltz et al. [50]. In fact, it was this new transverse holographic UV photowriting technique of inscribing Bragg gratings into the core of OF with high concentration of core Ge-doping that contributed to the growth of FBG devices in the R&D telecom and sensing communities [51]. Their working principle is based on the reflection of light, at the Bragg wavelength, when the OF is illuminated by a broadband source whose center wavelength is close to the Bragg wavelength. When the fiber is stretched or compressed along its axis, the spacing between the grating lines (i.e. the grating period or grating pitch) will change. Because the Bragg wavelength is directly proportional to the grating period a shift in the Bragg wavelength will be observed making possible to monitor the
induced strain [52]. The sensitivities for strain and temperature of a FBG recorded at 1550 nm are approximately 1.2 pm \(\mu \varepsilon \) and 13.7 pm \(^\circ \)C, respectively [52].

The possibility of multiplexing these structures is also revolutionizing the world of sensing. With time division multiplexing (TDM) and wavelength division multiplexing (WDM) or switching, hundreds in-line FBG sensors can be read with a single decoder unit [25,53-55]. As an example, considering strain, about 33 FBG sensors can be accommodated in a 50 nm spectrum using a Bragg wavelength spacing between 2-4 nm and taking into account each FBG is allowed an independent strain range of ±500 \(\mu \varepsilon \) and a 250 \(\mu \varepsilon \) guard band [56]. Additionally, multiplexing will also contribute to reduce the cost per sensor and of the whole system making FBG competitive with conventional sensors [57]. Compared to conventional sensors, namely the foil SG, FBG sensors are capable to provide absolute strain measurements with easier instrumentation [52]. They also offer an excellent measurand-type range and can be used as a generic sensing element to quantify other physical quantities (e.g., force, acceleration, pressure, vibration, EM field, etc.) and certain chemical quantities [58-59].

Some of the ideas just presented seem to be apppellative. However, FOSs remains unknown to many engineers, clinicians and researchers. Most probably, because engineering courses and research are focused on conventional sensors and nonoptical technologies. On the other hand, there is a relatively small number of turnkey solutions as well as companies and retailers commercializing these devices, which may justify their limited wide spreading. Even so, some companies are offering customer specified or plug-and-play sensing solutions specifically for biomedical and biomechanical applications (table 1).
Table 1 - Companies commercializing fiber optic sensors for biomechanical and biomedical applications.

<table>
<thead>
<tr>
<th>Company</th>
<th>Local, Country</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrow International, Inc</td>
<td>Teleflex Medical, NC, USA</td>
<td>www.arrownl.com</td>
</tr>
<tr>
<td>BioTechPlex</td>
<td>Escondido, CA, USA</td>
<td>www.biotechplex.com</td>
</tr>
<tr>
<td>Camino Laboratories<sup>4</sup></td>
<td>San Diego, CA</td>
<td>www.integrallife.com</td>
</tr>
<tr>
<td>Endosense, SA</td>
<td>Geneva, Switzerland</td>
<td>www.endosense.com</td>
</tr>
<tr>
<td>FISO Technologies, Inc.</td>
<td>Québec, Canada</td>
<td>www.fiso.com</td>
</tr>
<tr>
<td>InnerSpace Medical, Inc.</td>
<td>Tustin, CA, USA</td>
<td>www.innerspacemedical.com</td>
</tr>
<tr>
<td>InvivoSense</td>
<td>Trondheim, Norway;</td>
<td>www.invivosense.co.uk</td>
</tr>
<tr>
<td>LumaSense Technologies</td>
<td>Santa Clara, CA, USA</td>
<td>www.lumasenseinc.com</td>
</tr>
<tr>
<td>Luna Innovations</td>
<td>Blacksburg, VA, USA</td>
<td>www.lunainnovations.com</td>
</tr>
<tr>
<td>MAQUET Getinge Group</td>
<td>Rastatt, Germany</td>
<td>http://ca.maquet.com</td>
</tr>
<tr>
<td>Neoptix Inc.</td>
<td>Québec, Canada</td>
<td>www.neoptix.com</td>
</tr>
<tr>
<td>Opsens</td>
<td>Québec, Canada</td>
<td>www.opsens.com</td>
</tr>
<tr>
<td>Radi Medical Systems<sup>5</sup></td>
<td>Uppsala, Sweden</td>
<td>www.radi.se</td>
</tr>
<tr>
<td>RJC Enterprises, LLC</td>
<td>Bothell, WA, USA</td>
<td>www.rjcenterprises.net</td>
</tr>
<tr>
<td>Samba Sensors<sup>6</sup></td>
<td>Västra Frölunda, Sweden</td>
<td>www.sambasensors.com</td>
</tr>
</tbody>
</table>

Some companies will benefit from small or hand held interrogators, capable of minimizing patient discomfort during continuous day-to-day monitoring [60]. Others will require more comparative studies, particularly in vivo experiments and clinical trials to clearly state their potentialities. In fact, an important drawback of some FOSs is the lack of scientific information (e.g., peer reviewed papers) reporting their use in clinical practice. Probably, they are being used but without the necessity of writing a paper or putting the brand name on it. The absence of detailed technical specifications (e.g., pressure range, accuracy, resolution, and response time) was also detected in some published papers that report use of commercial solutions, particularly from non original equipment manufacturer (OEM) or reseller companies. Those benefiting from approvals of the American Association for Medical Instrumentation (AAMI), International Organization for Standardization (ISO), US FDA or similar regional/country organizations will probably lead the market. Cost is also a critical issue. In fact, the high cost associated to some optoelectronic (e.g., integrated source and detector devices) and miniaturized solutions, developed to achieve the resolutions required for biomedical and biomechanical applications can compromise their

⁴ acquired by FISO Technologies, Inc., a wholly owned subsidiary of Nova Metrix LLC (MA, USA).
⁵ operates as a subsidiary of St. Jude Medical Systems AB
⁶ FISO Technologies, Inc., a wholly owned subsidiary of Nova Metrix LLC, has acquired certain assets, including intellectual property assets, of Samba Sensors AB
acquisition. A shared problem with almost sensors is that FOSs also suffer from interference of multiple effects or cross sensitivity. A good example is that of FBG sensors, presenting dual sensitivity to strain and temperature. Nevertheless, currently used compensation techniques are capable of minimizing erroneous readings or uncertainties from non-desirable effects [61]. To enable secure readings these techniques should always be implemented instead of assuming negligible effects under apparently controlled situations.

Finally, FOSs are also competing with mature nonoptical technologies that seem capable of overcoming some of their traditional limitations. The most promising are microelectromechanical systems (MEMS) whose technology, along with examples and applications, is well described in the work of Polla et al. [62] and Voldman et al. [63]. The Neurovent microchip SG catheter (Raumedic AG, Münchberg, Germany; www.raumedic.com) is a good example of a commercially available solution offering zero drift and MRI compatibility [64-66]. Semiconductor SG, such as piezoresistive-based silicon devices, are also becoming competitive, particularly for micro-strain measurements. This powerful technology is offering linear mechanical and electrical response with negligible hysteresis and a relatively low temperature effect [67].

In the following sections, a review effort has been done to present the most relevant contributions of FOSs in biomedical and biomechanical applications. Some of the most pertinent physical parameters, such as temperature, strain, force and pressure were addressed. Other interesting chemical or physiological parameters, such as glucose, PH, gases or vapors, and deoxyribonucleic acid (DNA) were not and can be found elsewhere [60,68-75]. Our approach to FOSs has been carried out after a brief mention to conventional sensors and their limitations. Emphasis was given to description of in vivo experiments and clinical applications. Thus, we hope to have contributed for a better framework of FOSs, pointing their advantages and triggering new ideas for those engaged in their development and application in the biomedical and biomechanical fields.
2. Sensing Temperature

In clinical practice, patient temperature is a basic diagnostic procedure and often a critical control parameter as in hyperthermia therapy [76]. Almost all chemical processes and reactions are temperature dependent justifying temperature sensors as the largest class of commercially available FOSs. Nevertheless, they are quite few compared to the large amount of schemes that have been proposed but never reached commercialization [77].

Thermocouple and thermistor devices have been extensively used for temperature measurements in clinical practice. However, due to the presence of metallic conductors, they are inappropriate for clinical procedures involving incident radio frequency (RF), EM or microwave (MW) fields [57,78-79]. To overcome these limitations fiber optic fluorescent techniques have been proposed.

The fluoroptic technology uses fluorescent materials, such as the rare-earth phosphors or the gallium arsenide (GaAs), and an adequate light source to excite them. Temperature can be determined by measuring fluorescence emission decay times in the fluoroptic probes [80-83]. Solid state materials can also be used for fluorescence thermometry and some schemes have been presented for biomedical purposes, using the ruby [80,84] and the trivalent-chromium ion doped material [85]. An excellent review of fluorescent intensity, the first technique being proposed, and fluorescence lifetime based systems was published by Grattan and Zhang [77].

The Luxtron m3300 is a current available fluoroptic system that can be used in biomechanical and biomedical laboratory setting (LumaSense Technologies, Santa Clara, CA, USA). Its non-metallic probe has a phosphorescent sensor localized at the probe tip and is capable of providing real-time temperature measurements, ranging from 0 ºC to 120 ºC, with an accuracy of ±0.2 ºC and 2 ºC, respectively [86]. The probe has 0.5 mm OD and is protected with a Tefzel® ETFE fluoropolymer jacket allowing its use in MRI, RF, or MW environments and during ablation procedures [11,87]. A reported limitation of the Luxtron fluoroptic probe is its propensity to record higher temperatures than reference thermocouples sensors [88]. This was observed under localized heating at distances less than 4 mm from the laser source [88].

The T1™ Fiber Optic Temperature Sensor (Neoptix Inc., Québec, Canada) is also a commercial available FOS based on a GaAs semiconductor crystal located in the tip of the sensor. Sensor specifications include a temperature range from -272 ºC to +250 ºC, an accuracy of ±0.2 ºC, a resolution of 0.1 ºC and a response time of 500 ms [89]. The outer protective jacket is made out of PTFE Teflon™ with 1.15 mm OD. It has been used to monitor temperature during cryogenic [90] and laser ablation procedures [13,91] as well as in non-incineration methods for sterilizing hospital infectious wastes [92]. Unfortunately, fluorescent materials are relatively bulky and expensive, which rises the cost of these systems [78].
The interferometric technology was explored by Wolthuis et al. [78] who presented a F-P temperature sensor based on a LED-microshift method (figure 10). It consisted of a light emitting diode (LED) light source, used to interrogate changes in the optical cavity depth occurring between two reflectance peaks, and of a dichroic ratio technique used to analyze the returned signal [93]. Authors argued that the method was more sophisticated than others involving F-P sensors, such as incremental, intensity, white-light and LED-deep cavity. The optical cavity consisted of a thin layer of silicon packed between two pieces of glass. Temperature variations cause the silicon refractive index to change and, consequently, the light being reflected. Sensor performance fulfilled AAMI specifications presenting a span linearity of 1% and sensitivity of 0.1% ratio change per °C. Temperature resolution and accuracy were 0.2 °C (0.02 °C with averaging) and 0.1 °C, respectively, for a measurement range from ~15 °C to ~55 °C. Sensor was able to reach 90% of its final value for a temperature change from ice to boiling water in about 200 ms [78]. RJC Enterprises, LLC (Bothell, WA, USA) is commercializing this type of sensor with some possibilities of customization (e.g., total assembly length and capillary pedestal length).

Figure 10 - Schematic drawing of the temperature sensor proposed by Wolthuis et al. [78].

An interferometric configuration was also applied by Rao and Jackson [94] to propose a high resolution temperature sensor (figure 11). It consisted of a miniature extrinsic fiber optic based Fizeau temperature sensor, with a cavity length of several hundred microns and a dual-wavelength pseudo-heterodyne phase detection scheme. A measurement resolution of 0.006 °C, a 1% span linearity over a temperature range of 27.3 °C to 62.5 °C and a bandwidth of 30 Hz were achieved. To get temperature independent measurements, two FBG sensors located in a bimetallic beam were monitored interferometrically. Sensor performance meets or exceeds medical requirements but, to our best knowledge, it is not being marketed.
Previously mentioned sensors are point sensors, *i.e.*, they provide information only at the site they are placed, and may be insufficient for a more complete clinical assessment. Multiplexing techniques using FBG sensors can contribute to overcome this spatial constraint. First configurations for medical use were proposed by Rao *et al.* [57] and Rao [95], consisting of an array of four in-line FBG (4mm length each and 10 mm spaced) and a simple monochromator for demultiplexing the wavelength encoded signals (figure 12). Wavelength-shifts induced by temperature variations were measured using a high-resolution drift-compensated interferometric detection scheme, based on a bulk unbalanced Michelson interferometer. To minimize strain effects the probe end was sealed with a nylon sleeve of 1mm OD. A resolution of 0.1 ºC and an accuracy of ±0.2 ºC over a temperature range of 30 ºC to 60 ºC were achieved in bench tests [96].
The above sensor was proposed for *in vivo* temperature monitoring during tumor therapy and *in vivo* trials occurred later using a similar configuration, that was proposed by the same research group (Applied Optics Group, The University Canterbury, Kent, United Kingdom) [15]. A portable sensing unit with five in-line FBG was used. The source was a super luminescent diode (SLD) and the detector a miniature charge-coupled device (CCD) based spectrometer. Sensor resolution was 0.2 °C. This type of sensor was used to monitor hyperthermia treatments of the kidney and liver on rabbits [15,97]. Nevertheless, it was not applied in clinical setting because a nonlinear response of some FBG sensors and an initial system calibration drift exceeding 10 °C was reported [98]. To overcome these limitations a polymer coated FBG (PFBG) probe was proposed [98]. It consisted of a 0.5 mm OD prototype with ten FBG sensors at 5 mm intervals and 50 mm length. The PFBG sensor closely followed the behavior of well-established commercial hyperthermia thermometry probes. A swept wavelength laser based readout system was capable to achieve 0.1 °C precision while maintaining a better than 0.5 °C stability over ten hours and an absolute measurement accuracy of ±0.25 °C [98]. The sensor was tested only under simulated MW hyperthermia treatment to a tissue equivalent phantom.

The potentialities of other coating materials were explored in both MRI environment and cryoablation procedures. Samset et al. [10] were capable of observing the dynamics of the freezing process during *in vivo* cryoablation of a porcine liver in a MRI room. Two multiplexed FBG array probes were used, one coated with polyimide (1.25 OD), the other with titanium (1.40 mm OD). Materials were considered biocompatible, sterilizable and immune to EM interference. Probes exhibited an excellent mechanical stability under cooling (-195.8 °C), hitting over a sharp edge, and bending to a radius of 20 mm at body temperature. The sensor, with ten in-line FBG, was calibrated for temperature through immersion into liquid nitrogen (-195.8 °C), ice slush (0 °C) and boiling water (100 °C). A reference platinum thermo-resistance (Pt-100) was used to obtain the wavelength to temperature conversion parameters.

Temperature measurements performed during prostate cancer cryosurgery confirmed FBG sensor thermometry potentialities for clinical applications [99-100]. A commercial reusable multiplexed FBG temperature monitor system was used (TMS, MultitempTM 1601, InvivoSense, Trondheim, Norway). Ultrafine 17 gauge needles were used to guide the sensor to the target tissue and temperatures were measured in four and eight FBG sensors with 10 mm and 5 mm distance intervals, respectively. Temperatures of about -40 °C or -60 °C are attained during cryosurgery treatments, which are in the range (-100 °C and +130 °C) of these FBG multiplexed sensors.

Use of FBG sensors and spatially distributed sensing techniques (e.g., modal modulation techniques) is also assuming particular relevance for non-intrusive monitoring of temperature and other clinically relevant parameters (e.g., pressure, heart rate, and respiration rate). These sensors are being developed for in bed-ridden and wheelchair patients, seeming to provide more automation and safety in patient care [101-102].
FBG sensors also prove to be useful in the field of prosthesis design and testing, namely, to measure polymerization temperature profiles of cemented hip mantles [103]. Peak temperatures of 110 °C reached within 300 s and stabilized to room temperature after 3600 s were measured with a resolution of 1 με and a precision of ±5 με.
3. Sensing Strain

At least three categories of sensors can be identified for strain measurements of body tissues. Those with variation of electrical resistance, such as the liquid metal strain gauge (LMSG) or other electrical output SG sensors. Those measuring a variation of magnetic field, such as the Hall effect strain transducer (HEST) and the differential variable reluctance transducer (DVRT), and those based on light modulation, such as FOSs.

The LMSG transducer, introduced by Whitney in 1953 [104], also known as the implanted mercury-in-silastic SG, has been extensively used to assess strain in soft tissues. The sensor is well described in the work of Ravary et al. [105]. It was widely applied for ex vivo studies of knee ligaments [104,106-111]. To the best of our knowledge, in vivo studies were performed with animal specimens only, namely in soft tissues [112-115] and bone [116]. The possibility of disruption of the silastic tube and release of toxic liquid, such as mercury, suggests caution for human in vivo procedures [105]. Mercury is also classified as a hazardous substance by the European Union Directive 2002/95/EC and shall not be used in electrical and electronic equipment. Other important limitations include a relatively small service life due to the porosity of the silastic tube, failure of wire connections [105,112], and inflammatory reactions [112,115].

Besides the LMSG a wide variety of electrical SG sensors were used to assess strain in body tissues, mainly in bone [117-124]. In fact, the SG was considered to be the gold standard for measuring deformation in bone [26]. Some of them have been used parallel to FOSs to study their correlation and will be mentioned later in this section. A large number, such as buckle transducers, have been applied to measure ligament and tendon forces and will be mentioned in the next section. For the moment, two in vivo studies making use of SG will be highlighted. The first one is the original study of Barnes and Pinder [117], carried out in 1974. Strain was measured in the metacarpal bone of the horse and results related to tendon action, weight bearing and locomotion. From comparison of large and small foil resistance SG sensors, valid results were possible to obtain with those covering 1 mm² of bone surface [117]. The second study is a human in vivo application. Following earlier in vivo studies [118,125], tibial strains were measured with micro SG (Measurements Group Inc, Raleigh, NC, USA; www.vishaypg.com/micro-measurements) [122,126]. No pre or post-surgery complications were reported, but the implantation technique seems too complicated to be applied on a routine basis. It included a 20-30 mm skin incision under local anesthesia. Moreover, one subject reported a deep sensation of pain due to drilling through the cortical bone into the bone marrow [126]. Others had to be excluded due to problems in the attachment of the transducer [126]. In fact, these evidences are sufficient enough to justify improvements in developing new minimally invasive sensors and techniques to assess in vivo data.

Looking to the category of magnetic field based sensors, the HEST (MicroStrain Inc., Burlington, VT, USA; www.microstrain.com) and the DVRT (MicroStrain Inc., Burlington, VT, USA) have been used to assess strain on ligaments and tendons either ex vivo [127-128] and in vivo
More recent than HEST, the DVRT exhibits a better performance [131]. Their implantation requires intra-articular anesthesia [130,134]. No significant patient adverse reactions due to surgical or experimental procedures have been reported [130,134]. Providing only localized measurements of strain they make it difficult to correlate strain with the total force in the ligament or tendon [135]. Theoretically, it is possible to map strain distribution in soft tissues using multiple DVRT but it requires further miniaturization [134]. Additionally, in the specific case of the DVRT and despite being classified as a miniature displacement sensor, it shall not be used in activities where the knee joint is near full extension, such as gait and jumping, due to impinging against the roof of the intercondylar notch [134].

FOSs, namely FBG sensors, seem to be in good position to substitute the above strain sensors. Compared to them, they are smaller, easier to implement, minimally invasive, with lower risk of infection, highly accurate, well correlated, inexpensive and multiplexable [57,136]. Moreover, FBG sensors have a linear response to axial strain and provide direct and absolute measurements [26,52]. Nevertheless, few applications with FBG sensors are known to assess strain in soft tissues. Ren et al. [137] proposed a displacement sensor based on a FBG and shape memory alloy technology to monitor cadaveric tendon and ligament strains. Recently, Roriz et al. [138] embedded a FBG sensor into the intervertebral disc (IVD) of a cadaveric porcine spine and measured disc bulging under axial compression (figure 13).

FBG sensors can also contribute to map strain along the entire tissue using multiplexing techniques. This work still has to be done, but it will ensure more reliable comparisons. In fact, conventional sensors are only capable of providing an average strain output between the ligament
insertion sites or between known points within the ligament mid-substance [134]. Results from both techniques cannot be compared because strain varies along the ligament [139]. Because FBG can be multiplexed, strain can be mapped along the entire length or throughout the cross section of tendons or ligaments, giving a more complete picture of the whole structure.

While few applications for soft tissues are known, many can be found for hard tissues and materials, such as skeletal bone, cartilages and dental implants. The study of Fresvig et al. [26], was an important contribution to appreciate the agreement between FBG sensors and SG sensors. An acrylic and bone sample were instrumented with eight sensors each (four FBG sensors and four SG) and loaded. Both type of sensors exhibited similar behavior without significant differences. The standard deviation (SD) of the measurements varied the same for both types of sensors ranging from 1.0 to 5.2%, in the acrylic sample, and from 3.1 to 31.5% in the bone sample evidencing the effect of its anisotropy. The Pearson correlation coefficient, \(r \), between the sensors was significant at the 0.01 level (two-tailed) ranging from 0.986 to 1.0 in the acrylic sample, and from 0.629 to 0.999 in the bone sample. Strain-load linearity in the acrylic was excellent for both types of sensors because the lowest linearity was 0.996 as expressed by the coefficient of determination \((r^2) \). In the bone sample linearity was better than 0.998 for five of the eight sensors. Two SG sensors showed less linearity \((r^2 = 0.75 \text{ and } 0.97) \) and the value for the FBG sensors was \(r^2 = 0.98 \). It was argued that this lack of linearity could reflect a genuine bone nonlinearity [26].

Study of dental implants and supporting tissues is a major topic in biomechanics and clinical dentistry. Carvalho et al. [140] tried to understand how the mandible behaves under static and impact loads acting on dental implants. Uncoated FBG sensors and standard SG were glued directly to the surface of a human cadaveric mandible (figure 14). Besides an excellent correlation between both types of sensors, the FBG sensor was considered to be more precise in predicting load transfer from the implant to the bone [140].

Figure 14 - Schematic representation of the FBG and SG sensors used to measure bone strain at the surface of an implanted cadaveric mandible [140].
The loading effect of several dental implant materials, such as steel alloy, acrylonitrile butadiene styrene (ABS) and a combination of both, on the stress-strain patterns of different supporting structures (bovine cancellous bone and silicone) was also studied by the same research groups [141]. A good agreement was obtained for experimental and numerical results and contributed to a better comprehension of bone physiological response to load.

A potential advantage of FOSs over conventional sensors is the possibility to embed the sensor in the material taking advantage of its small dimensions (typically 125 µm OD). Several studies have reported use of FBG sensors to monitor the curing process of dental resin cements [142-144]. To compensate temperature effects and get precise strain measurements, read-outs from two FBG sensors are usually necessary [61,137]. One of the sensors needs to be placed on a location of the specimen with zero mechanical strain in order to sense temperature only whereas the active FBG will sense both quantities. Strain can be obtained by subtracting the signal of the compensation FBG from the active one. This technique was applied to measure polymerization contraction and setting expansion of several dental materials [144-145]. The compensation FBG was placed freely inside a needle to isolate it from strain and the other was placed directly in contact with the dental material (figure 15).

Figure 15 - Schematic representation of the setup used to measure the setting expansion and temperature variation which occurred during the setting reaction of dental gypsum. The compensation FBG was placed freely inside a needle to isolate it from strain. The other was placed directly in contact with the dental material [144-145].
Bone cements play an important role in the fixation of implants or prostheses and their long-term stability is a critical issue in joint biomechanics. *In vitro* strain and temperature characterization of PMMA based bone cements of femoral prostheses was studied by Frias *et al.* [146] at different temperatures and load conditions, namely, those expected to occur inside the human body during locomotion. FBG sensors prove to be an interesting *in situ* measuring tool for characterization of these biomaterials. A similar study has contributed to confirm that FBG sensors are easier to implement and are less time consuming than standard SG, making them suitable for use in pre-clinical tests of prostheses and implants [103].

A large number of implants and prostheses are metallic or incorporate metallic components, such as iron (Fe), titanium (Ti), cobalt (Co), chromium (Cr), molybdenum (Mo) or their alloys. As non-conductive devices, FBG sensors can offer new possibilities of measurement because it is technically complex to use SG in conductive metals. In the original work of Talaia *et al.* [147] seven FBG sensors were glued to stainless steel bone plates making it possible to study the effect of these fracture fixation plates in synthetic femurs (figure 16).

![Figure 16 - Schematic drawing of fiber Bragg gratings glued to a stainless steel bone plate](image)

Fractures may be caused by traumatic injuries or metabolic diseases, such as osteoporosis. This silent disease is the most common type of bone illness affecting two hundred million individuals worldwide [148]. FBG sensors can contribute to classify the stage of bone decalcification. First steps were taken in the *in vitro* experiment of Mishra *et al.* [149]. The strain response of bone under loading at a particular site gave a direct indication of the degree of calcium present in the bone. Further studies are needed to characterize the global response of bone and to apply the technique *in vivo*.

Other interesting studies made use of FBG sensors to quantify the ventilatory movements of the chest. Wehrle *et al.* [24] used a fixed optical filter reference scheme with full width at half maximum (FWHM) of 1.5 nm to detect respiratory movements with frequencies up to 10 Hz. Besides FBG sensors, intensity modulated schemes were also applied to monitor the respiratory and cardiac function. That was the case of the fiber optic plethysmography (FOP) technique. Based on macrobending losses it consists of an expandable belt encircling the chest and a fiber optic loop...
that changes its radius of curvature as a function of the chest perimeter [150-153]. Other FOP configurations may include long period gratings (LPG) arrays, which are more sensitive to bending [154-155]. Ensuring that LPG high sensitivity to the ambient refractive index is compensated, namely using multilayered fibers embedded into a flexible platform, the technique can be applied to obtain a three dimensional geometric profile of the chest and abdomen during respiratory movements [155].

Of particular interest is the possibility of embedding FOSs into technical textiles to create smart wearable clothes and monitor some vital functions such as the respiratory rate (figure 17) [156]. A €2.3million European Project (Optical Fiber Sensors Embedded into Technical Textile for Healthcare - OFSETH) gave the first contributions in this promising field [157]. Commercial available products are still to apply.

Figure 17 - Schematic drawing of macrobending sensor in optical fiber embedded into textile fabrics for the monitoring of respiratory movements [156].

FBG sensors were also embedded into MRI compatible needles to study their deflection [158]. Assuring temperature compensation, these preliminary investigations can contribute to improve MRI-guided percutaneous needle biopsy and brachytherapy procedures. The applications described to measure the heartbeat sound [159] and blood pressure [160] from non-invasive strain measurements are also interesting examples of the FBG technology versatility.

Finally, we would like to highlight a recent application in sports and clinical biomechanics. Traumatic head and dental injuries can be avoided through the use of protective devices, such as helmets and mouthguards. Mouthguards are particularly useful for athletes because they reduce the risk of injury caused by impacts resulting from many sports activities (e.g., boxing). Studying
their absorption capability like in the experiment of Tiwari et al. [161] can contribute for new designs and material improvements. In this study, pairs of FBG sensors were bonded parallel on the mouthguard and jaw model. The mouthguard was submitted to several impact loads and the corresponding absorbed impact energy was calculated by subtracting the strain in the mouthguard from that of the jaw. Results encourage use of mouthguards as effective protective devices.
4. Sensing Force

The study of ligament or tendon/muscle forces is a main topic in medicine and sports. Ligaments connect bone to bone. They resist stretch (tension) to assure the stability and congruency of a joint or a group of joints. Ligaments act like joint controllers of the range of motion (ROM). Tendons connect muscle to bone transferring to them the force generated during muscle contraction. Thus, studying the forces acting in these soft tissues will contribute to understand some of their main functions. Usually, *in situ* forces are measured with SG based transducers. They can be inserted in the ends of insertion sites or within the mid-substance. Most of them have been designed to measure strain as the result of a compressive action on the ligament or tendon when it is stretched. Therefore, to obtain force, strain has to be converted, meaning that the calibration protocol requires special attention. There is no single or universal calibration protocol for this type of studies. Those applied before implantation of the transducer should be avoided because re-implantation leads to different results [162]. Those applied after the experiment are restricted to animal experiments because they have to be sacrificed [163]. There is general agreement on the fact that calibration has to be made after implantation and the sensor must not be removed from the site where it was calibrated [134,164-165]. In addition, results comparison is possible only between similar implantation sites because it has been demonstrated the force varies along the tendon or ligament [134]. Even so, it should be taken into account that there is considerable variability between specimens making it difficult to compare results [166]. The calibration procedure also depends on the specific characteristics of the study. In fact, only this justifies a wide variety of technical resources that are being applied such as mechanical loading machines, analytical equations from cadavers, ergometer devices, equilibrium conditions from mechanics and use of pre-calibrated transducers [163-164,167-170].

Looking to conventional sensors used to measure ligament or tendon forces, the buckle transducer, introduced in 1969 by Salmons [171], has been the most used. The frame (*i.e.*, buckle) where the SG is attached may present several different forms, such as a rectangular or oval form [117,164,172-177], a C-form [178-179], an E-form [180-182], an I-form [166,183], or an S-form [184]. Some of the previous frames and the corresponding working principles were described in the paper of Ravary et al. [105]. Despite wide spreading, these transducers have large dimensions compromising minimally invasive procedures. As an example, the size (length x width) of the implantable E-form buckle transducer for animal studies is about 9×5 mm [180] and about 34×20 mm for human studies [105]. Hence, far from being minimally invasive their use is typically restricted to large tissues, such as the Achilles tendon, the anterior cruciate ligament or the patellar tendon [105,134]. Long recovery times (two to three weeks) seem to be necessary for complete healing of the implantation wound [175,177,182,185]. They can also modify the natural biomechanical behavior of the tissue because the frame usually diminishes its length [135]. *In vivo* studies require surgery under local intra-articular anesthesia [164]. Their sensitivity can vary with joint angle, sensor placement and orientation [134,174].
Besides buckle transducers, two other types of SG based transducers can be used to sense force in ligaments and tendons, namely the implantable force transducer (IFT) [127,162,167,169-170,186-192] and the modified pressure transducer (MPT) [163,165]. The IFT was introduced in 1992 by Xu et al. [187]. Some IFT configurations (e.g., two point, three point) and the corresponding working principles were described in the paper of Ravary et al. [105]. The IFT is smaller than buckle transducers but the MPT is the smallest. Typical dimensions of the MPT are 3.5-4 mm OD and 0.5-1.5 mm thick [105]. Even so, all of them are much larger than FOSs. Like buckle transducers IFT sensitivity may vary with joint angle, sensor placement and orientation [165,167,169,187]. Depending on the calibration protocol results can vary significantly [167]. More repeatable results can be obtained using the in situ calibration method proposed by Herzog et al. [167]. Another important constraint is a nonlinear relationship between the compressive load acting on the sensor and the tensile load applied to the tissue [162,165,169,188].

The first contribution of FOSs in measuring the force of ligaments and tendons was an attempt to reduce the errors associated to the large geometry of conventional sensors and to minimize subject’s complaints. This was pursued in the ex vivo experiment of Komi et al. [185] through the use of an intensity modulated sensor. A guiding needle was used to insert the OF (Toray Industries Inc., PG-series, 265μm or 500μm OD) in the rabbit common calcaneal tendon mid-substance. It was expected that the tensile load applied to the tendon would produce a compressive load on tendon fibers and bend the OF. The fiber was illuminated by an infrared LED with central wavelength at 820 nm and the detector was an integrated IC photodiode. Strain to force calibration was done using the moment equilibrium condition of a rigid body. Under static conditions a good linear fit ($r = 0.999$) was registered between the sensor output and the applied loads. Hysteresis was considered negligible. Under dynamic loading conditions (using load drops) the OF followed the response of a reference SG transducer, despite a time delay of 6.5 + 2.6 ms that was measured for the OF response [185].

In vivo studies followed that of Komi et al. [185]. The first, was probably that of Finni et al. [193] who used the same optical system, with telemetry incorporated, to measure the Achilles tendon force during locomotion. Instead of intra-articular anesthesia, an anesthetic cream was applied to the skin surrounding the tendon. Sensor calibration was made in situ, after implantation (figure 18), using an ankle ergometer to perform isometric plantar flexions (from 10 to 40% of maximum voluntary muscle contraction) [185]. Similar intensity modulated FOSs were used to carry out more in vivo experiments, namely to study the individual muscle contributions to the Achilles tendon force [168], leg muscles contributions to perform standardized jumps [194], muscle behavior during jump skills [195], the interaction between the lower leg muscles and the Achilles tendon in walking [196] and the influence of tendon’s creep in sensor behavior [197].
Figure 18 - Schematic representation of the intensity modulated force sensor proposed by Komi et al., [185] to be implanted into the human Achilles tendon [168,193,196].

The validity of previous studies can be questioned in the absence of efforts to identify possible sources of error in estimating tendon forces. In fact and contradicting the original findings of Komi et al. [185] a nonlinear relationship was observed between the OF output and the tendon force, requiring use of 3^{rd} order polynomials for adequate curve fitting [136]. Hysteresis, cable migration, loading rate, joint angle and skin movement were also pointed as possible sources of error in force prediction. Root-mean-square (RMS) errors due to hysteresis were estimated to be less than 5% of maximum load [136]. RMS errors due to migration of the OF were less than 27% [136]. Differences in the loading rate led to RMS errors less than 17% [198]. RMS errors due to the combined effects of loading rate and cable migration were less than 32% [198]. Compared to the C-form transducer the FOS previously described by Komi et al. [185] seems to exhibit lower errors in force prediction but larger errors in hysteresis and loading rate [136,191]. Tendon creep [197] and skin movement artifacts [198] can also affect the output of the optical signal. In particular, ex vivo experiments should be conducted without skin, because RMS errors in estimating tendon force decreased from 24-81% of maximum force to 10-33% after skin removal [198]. Finally, the applied calibration procedures required assumptions concerning the location of joint axes and the length of moment arms, another possible source of error [134]. Trying to diminish these sources of error is, in fact, a challenge because soft tissues are complex structures with nonlinear, visco or poroelastic properties requiring the most accurate sensors and techniques to get precise measurements.

FBG sensors could represent a step forward in the way of sensing these soft tissue forces. We have found three ex vivo studies using them, meaning there is much to be done [199-201]. In the study of Vilimek [199] the force of porcine leg tendons was successfully estimated under loads
applied by a tensile machine. It has been argued that FBG measurements are more accurate than those obtained with intensity modulated sensors. Even so, accurate measurements will require a technique capable of avoiding migration of the OF and give the exact location of the grating within the tendon. FBG sensors were also used in the original study of Goh et al. [200] with the purpose of measuring the axial load within the menisci of porcine knee joints. A transverse load was applied and to relate it better with the measured axial load, the FBG sensor was placed between uneven layers of carbon-epoxy composites using a buckle configuration [56,200]. A tunable laser source (TLS) and an optical spectrum analyzer (OSA) were used. Calibration was accomplished with a mechanical testing machine and suggested a wavelength/load linear relationship. However, the overall dimensions of the probe (5×5 mm) compromise its use as a minimally invasive device [200].

A novel sensor was also proposed by Behrmann et al. [201] for tendon force measurements. The sensor incorporates FBG and microfabricated stainless steel housings that were used to convert radial forces applied to the housing into axial forces that could be sensed by the FBG. The housings were fabricated by several methods including laser micromachining, swaging, and hydroforming. Several designs allowing simultaneous temperature and force measurements and simultaneous resolution of multi-axis forces were presented. In vitro experiments were performed with success in excised tendon and in a dynamic gait simulator [201].

Dental biomechanics seems to be a promising field for FOSs. One of the first applications was a mouthpiece system capable of measuring the biting forces [202]. The mouthpiece, made of two stainless steel plates, had a microbending sensor placed between them. The sensor was able to measure forces ranging from 0 to 1000 N with a resolution of 10 N [202]. Force magnitude was also quantified in dental splints, which are orthodontic devices designed to address dental problems such as loose teeth and bruxism in addition to problems with snoring and apnea. In the original study of Tjin et al. [203] FBG sensors were applied to measure strain and temperature during positioning of a splint within the mouth and after its placement. The strain sensor was calibrated to measure force using a previously described protocol [56]. Temperature effects were compensated and the accuracy for force and temperature measurement was 0.5 N and 0.1 ºC, respectively [56,203]. More applications in dentistry biomechanics include use of high-birefringence (HiBi) FBG sensors to measure in vitro orthodontic forces [204], and use of bracket polymer photonic crystal fibers (PCF) sensors to measure the forces applied in the tooth during realistic orthodontic treatments [205-206].

Specific applications for sports and robotic surgery have been also proposed, such as in the case of handgrip devices that were used to measure strength and to evaluate fitness condition. An alternative to conventional dynamometric devices was presented by Paul et al. [207], incorporating the advantage of assessing individual finger participation in force production. Five FBG sensors were sandwiched between rubber bushings in a cylindrical grip holder. Wavelength shifts were related to the pressure applied by fingers onto the rubber bushing [207].
Park *et al.* [208] took first steps in the creation of force sensing robot fingers to be used in the presence of large magnetic fields. Fingers were made of urethane polymer with embedded FBG sensors and a copper mesh has been applied to reduce creep and provide thermal shielding. Controlled grasp force during manipulation tasks of small weights (0.1 kgf) was possible to obtain.

Efforts are being made to develop sensors capable of providing force feedback during robotic assisted minimally invasive surgeries and catheter based operations, such as cardiac catheterization and ablation procedures. Intensity modulated sensors [209-210] and FBG sensors have already been proposed [211-214]. A good example of a novel application of light intensity-modulated sensors supported by reflective membranes is the RF ablation catheter with force feedback, presented by Polygerinos *et al.* [209-210]. Three plastic OFs were aligned inside a plastic catheter in a circular pattern to provide a three axes force sensing system (figure 19). The sensor was tested in an artificial blood artery showing a working range of 0 to 1.1 N, a resolution of 0.04 N and good dynamic response.

![Figure 19 - Schematic drawing of the force sensor proposed by Polygerinos *et al.* [209-210].](image)

TactiCath™ is a commercially available solution from Endosense SA (Geneva, Switzerland). This sensor is one of few sensors that have been submitted to prospective, randomized, multi-center interventional studies [214]. It is composed of three FBG capable of measuring strain of the catheter tip (3.5 mm OD) in contact with tissue [211,215-216]. Contact forces along three different directions can be measured with a 10 Hz frequency and a resolution better than 0.001 kgf. Monitoring these forces during catheter based ablation procedures is an important task because it was demonstrated that the incidence of lesions increases with the catheter force applied to the tissue [211,215-216]. This is of particular importance in robotic surgery because it contributes to
minimize the lack of haptic feeling from the surgeon [212,217]. Also for surgery procedures requiring extremely subtle maneuvers and forces, usually lower than human perception [213].

Some advanced clinical procedures requiring MRI environment will benefit from the immunity of FOS systems to MW interference. As in the case of brain function, studied through functional MRI (fMRI), FOSs can be implemented to assess other related functions such as the motor function [218-220]. Additionally, the possibility of combining haptic sensing and optical trackers, developed to trace curves of pertinent anatomical structures [221], seems a promising field in medicine.
5. Sensing Pressure

Following some original works in the first half of the last century [222-225], it was in the 1960s that interstitial fluid pressure monitoring became a relevant procedure in biomedical and biomechanical applications [32,39,226-229]. In the early 1970s Millar Instruments Inc. (Houston, TX, USA; www.millarinstruments.com) made significant efforts to develop miniaturized piezoresistive pressure sensors and to integrate them into catheters for clinical practice [230]. These are currently known as the Millar Mikro-Tip® pressure transducer catheters. Their accuracy is ~0.2% but they are also fragile, expensive and affected by EM interference [78,231].

Fluid-filled catheters attached to external pressure transducers can be used as an alternative to the previous solid-state sensors [78,224,232]. Early configurations, such as a simple needle connected to a mercury pressure manometer [225], gave place to more advanced configurations, such as the wick catheter [229,233], the slit catheter [234] or the side-ported needle [235]. Nevertheless, besides low-cost, their performance seems to be lower than that of Millar catheters. According to the review of Kaufman et al. [236] the accuracy of fluid-filled systems ranges between 1% and 18% and their linearity between 2% and 15%. They also suffer from hydrostatic artifacts caused by body movements, limiting their use to static positions or movements in the horizontal plane [232,237]. Furthermore, they require flushing or infusion to maintain accuracy, particularly during long-term measurements (i.e., more than one hour) [238]. Meanwhile, other fluid-filled catheter-transducers, such as the Spiegelberg intracranial pressure monitoring system (Spiegelberg KG, Hamburg, Germany; www.spiegelberg.de) and the AirPulse™ Air Management System (InnerSpace, Tustin, CA), have been developed to overcome the previous problems [239].

FOSs are intrinsically free from hydrostatic artifacts and flushing, making them attractive for interstitial fluid pressure measurements. Intensity modulated schemes were initially proposed, namely for in vivo blood pressure measurement, such as in the original work of Lekholm and Lindström [40,44] and other similar configurations [39,240-241]. The previous work was also the basis for development of Camino pressure sensors (Camino Laboratories, San Diego, CA, USA; acquired by Integra LifeSciences; Plainsboro, NJ, USA), probably the most widespread dual-beam referencing intensity-modulated based sensors [242]. Camino sensors became popular in the 1980s, and since that time they have been extensively used for pressure measurement in different sites of the body, as in the brain, muscles and joints. In 1996, Keck reported that the company was producing around 60000 devices/year [51]. These sensors also underwent extensive scrutiny leading to identification of several drawbacks and questioning their routine use, particularly in clinical practice [64,243-255].

To overcome some of the drawbacks of intensity modulated sensors alternative configurations have been presented. In the early 1980s, F-P interferometer based sensors were introduced. An earlier configuration of a F-P sensor was presented in 1983 by Cox and Jones [256], but large size and complex signal analysis limited further applications [78]. MetriCor Inc. (acquired by
Photonetics, Inc.; at present part of GN Nettest, Copenhagen, Denmark; www.gnnettest.com) developed a compact version, based on anodic bonding of a silicon membrane to the fiber tip and use of two wavelengths to monitor the interferometer [51,257]. The same technology was adapted by Sira, Ltd. (Kent, UK; www.siraeo.co.uk) to measure temperature and the refractive index [51]. Innovation also came from miniaturized forms, namely those using all-fused-silica designs and clean room microfabrication techniques [78,236,258].

Recently, FBG sensors have also been proposed to assess pressure, namely in the nucleus pulposus (NP) of the IVD of the spine [19-20,59,259]. However, these apply only to ex vivo experiments. Thus, innovative solutions are mandatory for in vivo and clinical studies, namely to be integrated into specific diagnostic procedures of the spine (e.g., discometry) and surgical procedures (e.g., arthrodesis and arthroplasty).

Considering the wide variety of pressure FOSs and their applications, a better framework can be obtained by looking at the specific pressure applications that have been developed. We expect to contribute to them in the following subsections.

5.1 Intravascular and Intracardiac Pressure

Among several experiments that started in the mid 1960s [32,39-40,44] the original work of Lekholm et al. [40] and Lindström [44] deserves to be highlighted. A sensor intended for in vivo blood pressure measurement with sensor heads of only 0.85 mm (unshielded) and 1.5 mm OD was proposed (figure 20). It consisted of an air-filled chamber covered by a 6 μm pressure sensitive beryllium-copper membrane. As in similar works of that period [29,39], the guiding system was made of two independent OF bundles due to problems in light coupling. One bundle was used to guide the light from a gallium-arsenide LED source to the sensor head, the other to guide the reflected light into a photodetector [44]. First fabricated probes had a flat frequency response from static pressure to about 200 Hz [40], but it increased to 15 kHz in the following experiments [44]. Zero drift was observed under temperature variation from 20 °C to 37 °C, recovering the baseline after ~40s [44]. The above sensor was also extensively described, covering the theoretical topics of fiber optics properties, membrane reflection, operation modes, number of fibers and their distribution, membrane mechanics, volume displacement, frequency dependence and limitations [44]. Error sources, sensitivity and miniaturization, failure and redundancy were also addressed [44]. Another interesting feature of the sensor was its low sensitivity to mechanical vibrations, shocks, and movements due to a light and stiff membrane. After successful tests on one dog and one human [40], clinical tests have followed [44].
Fiber Optic Sensors for Biomedical and Biomechanical Applications: A Review
Sensing Pressure

In the following years, similar sensors with vibrating membranes located at the tip [39,240-241] or at the side of a catheter have been proposed [260-261]. Side membranes contribute to reduce pressure artifacts due to tip collisions with the blood vessels or the ventricular walls (the so-called wall or piston effect) [210,261-262] and to avoid clot formation occurring for long periods of monitoring [260-261]. An earlier application of a pressure sensor incorporating a side membrane was proposed by Matsumoto et al. [261] (figure 21). Nevertheless, tip and side-hole configurations have been adopted up to today. In fact, the most important achievement in the following years was implementation of microfabrication techniques [263-267].

Figure 20 - Schematic drawing of the pressure sensor proposed by Lekholm and Lindström [40] and Lindström [44].

Figure 21 - Schematic drawing of the pressure and oxygen saturation sensor proposed by Matsumoto et al. [261]. A side membrane was used to sense pressure and a tip configuration for measurement of oxygen saturation.
The configuration proposed by Lekholm et al. [40] and Lindström [44] was also the basis for the development of Camino pressure sensors (San Diego, CA, USA). This transducer-tipped catheter consisted of a 1.35 mm OD tip enclosed in a saline-filled sheath (2.1 mm OD) with side holes (figure 22). A pressure sensitive diaphragm caused the mirror distance from the fiber tip to vary, changing the intensity of the reflected light. As will be seen, identical designs were also applied to measure intramuscular [232], intraarticular [268-271] and intracranial pressures [272]. These transducers are interrogated by the intensity modulation technique with dual-beam referencing, recommended for single use and should not be resterilized or reused [242]. They are also relatively large (1.35 mm OD) and require special handling because of potential for fiber breakage [243,245].

![Schematic drawing of earlier Camino sensors](image)

Figure 22 - Schematic drawing of earlier Camino sensors [232].

Several alternative configurations to the above sensors were presented, namely those based on the photo-elastic effect [273]. It was, however, the introduction of F-P sensors that made it possible to incorporate important features [256]. The LED-microshift sensor proposed by Saaski et al. [93] and Wolthuis et al. [78] is a good example (figure 23). It consisted of a glass cube (300×300×275 μm) containing a thin F-P cavity (1.4-1.7 μm depth; 200 μm OD) covered by a pressure sensitive single crystal silicon diaphragm anodically bonded to the glass cube. A LED, with emission bandwidth of ~60 nm, was used to interrogate the cavity operating within a single reflectance cycle. A dichroic ratio technique was applied to analyze the reflected light. A linear pressure working range from ~250 to ~1250 mmHg was achieved. Sensor’s resolution (1 mmHg) and accuracy (±1 mmHg) fulfilled AAMI medical standards. It was validated using a Millar micro-tip catheter and proposed for absolute pressure measurements of the left heart chamber and systemic arterial pressures. The system was also low cost and easy to fabricate [78]. Wolthuis et al. [274] also have proposed a dual function sensor system for simultaneous measurement of pressure and temperature. RJC Enterprises, LLC (Bothell, WA, USA) is commercializing these type of sensors,
namely for resellers. For example, the pressure sensor has been integrated in the intra-aortic balloon (IAB) catheter of Arrow International, Inc. (Teleflex Medical, Research Triangle Park, NC, USA) [275].

![Schematic drawing of the pressure sensor proposed by Saaski et al. [93] and Wolthuis et al. [78].](image)

Recently, another F-P sensor was successfully tested *in vitro* and proposed for continuous flow left ventricular assist devices (LVAD) [276]. The F-P cavity consisted of a biocompatible parylene diaphragm and a silicon mirror fabricated directly on the inlet shell of the LVAD device. Sensor sensitivity (1 mmHg achieved by fringe counting; less than 0.1 mmHg with interpolation), linear range (up to 100 mmHg) and response time (1 ms; limited by the response time of the optical detector and the self-resonance frequency of the parylene-C membrane) meet the requirements of LVAD pressure sensing systems [277]. Nevertheless, as mentioned, further improvements are mandatory for animal and human testing. In this case, however, authors have pointed the necessary steps to accomplish it [277].

Several companies, like FISO Technologies (Québec, Canada), Arrow International, Inc. and MAQUET Getinge Group (Rastatt, Germany), are providing F-P based sensors to monitor the arterial pressure during IAB pump therapy. FISO Technologies is recommending the FOP-MIV sensor (550 μm OD) [278]. According to manufacturers’ specifications, it has a measurement range from -300 to 300 mmHg, an accuracy of 1.5 % (or ±1 mmHg) of full-scale output (FSO), a resolution better than 0.3 mmHg, a thermal effect sensitivity of −0.05% °C⁻¹ and a zero drift thermal effect of -0.4 mmHg °C⁻¹ [21]. It was also demonstrated that *in situ* pressure monitoring with these sensors is more accurate and safer than external pressure monitoring through fluid-filled catheters [79]. Yet, to our best knowledge, FOP-MIV has been used to measure the left ventricular pressure uniquely in animals [279]. Other applications of the same sensor, still with animals, included measurement of intracranial [280-281], intraocular [282] and intramedullary pressures [283].
human in vivo application was reported for deglutition analysis assessed by measurement of pharyngeal pressure [284]. Arrow International, Inc. commercializes the FiberOptix™ IAB Catheter, used in clinical practice to monitor arterial pressure [275, 285]. MAQUET Getinge Group is commercializing two IAB catheters (Sensation Plus™ 8Fr. 50cc IAB Catheter and Sensation® 7Fr. IAB Catheter), both allowing in vivo calibration and recalibration [286]. Unfortunately, we were unable to found further scientific or technical data (e.g., pressure range, accuracy, resolution, and response time) for the above sensors.

Frequently, the F-P cavity is bonded to the OF tip [284, 287]. Typically, with this type of extrinsic configuration the tip diameter is larger than that of the OF which may represent a limitation concerning further miniaturization. Yet, new approaches are contributing to enhance the potential of miniaturization offered by FOSs [258, 288-291]. Totsu et al. [258, 288] have presented a sensor of only 127 µm OD to monitor pressure in the heart and aorta of a goat. The F-P cavity (≥ 2 µm depth) was composed of two mirrors, a chromium half-mirror located at the tip of a multimode fiber (MMF) and an aluminum mirror in the head of the sensor. The head of the sensor was made of a thin silicon dioxide diaphragm with a mesa (to support the mirror) and a polyimide spacer that was bonded to the MMF. Cleanroom microfabrication techniques were applied to produce the probe, in particular plasma-enhanced chemical vapor deposition (PECVS), atmospheric pressure chemical vapor deposition (APCVD), evaporation in vacuum, spin-coating, and deep reactive-ion etching (RIE). The all system included a white light source, a fiber coupler and a spectrometer. White light interferometry was used to avoid error and noise caused by bending of the OF and fluctuation of the light source. Sensor exhibited a pressure working range from -100 to 400 mmHg and a resolution of 4 mmHg [258, 288]. A slightly different vacuum sealed F-P cavity technique was proposed for temperature compensation [288].

Cibula et al. [290-291] were also capable of presenting a similar but slightly smaller sensor (125 µm OD). In this case the diaphragm was designed to be a part of the OF, because the bonding process used in the work of Totsu et al. [258, 288] limited the temperature range and sensor long-term stability [291]. The F-P cavity was created at the tip of the fiber by chemical etching. The diaphragm, made of polymer, was laid over the tip cavity by a "dip and evaporate" technique [290]. Several prototypes were presented with resolution of 10 Pa and pressures ranging from 0 to 40 kPa and from 0 to 1200 kPa. An all-fused-silica design, based on the replacement of the polymer diaphragm by a silica one, was also proposed [289]. This approach changed resolution to 300 Pa.

The advantage of all-fused-silica fabrication techniques (e.g., splicing, cleaving, and wet etching) is their low-cost. However, mass production may be compromised due to a large number of production steps, including fusion splices, precision cleaves, and micrometer length adjustments of the spliced fiber segments [291]. Significant efforts are being made to reduce some of these critical and time-consuming steps. That is the case of time-controlled chemical etching which eliminates precision length adjustments of critical sensor constituents and improves sensor
Future applications will certainly include biomechanical and biomedical applications. Meanwhile, FISO Technologies (Québec, Canada) has already claimed the smallest (125 μm OD) all-glass commercially available sensor (FOP-F125) for human body fluid pressure measurements [292-293]. Depending on the pressure range, the accuracy of the sensor varies from ±5 mmHg [-25 to +125 mmHg] to ±8 mmHg [-300 to +300 mmHg]. Its resolution is better than 0.4 mmHg. The sensitivity thermal effect is of 0.1% °C⁻¹ and the zero thermal effect of 0.4 mmHg °C⁻¹. Proof pressure is of 600 mmHg and the operating temperature is between 10 °C and 50°C [293].

5.2 Intramuscular or Intracompartmental Pressure

Intramuscular pressure (IMP) is defined as the hydrostatic fluid pressure within a muscle [294]. Its measurement is of particularly importance for diagnosis of acute and chronic (muscle) compartment syndromes [232,237-238]. IMP is directly correlated with the force output of the muscle [294-295]. Therefore, by measuring IMP, the contribution of an individual muscle group to the force measured over a joint can be assessed.

Crenshaw et al. [232,238] were the first to use fiber optic transducer-tipped catheters (Camino Laboratories, San Diego, CA, USA) to measure IMP. The accuracy and reliability of the system were validated through a comparison with a slit catheter [238]. Preliminary tests also indicated their ability to continuously measure pressures ranging from 0 to 250 mmHg for a three day period. Experiments were made in animal and human volunteers [238]. These sensors prove to be insensitive to hydrostatic artifacts caused by body movements and capable of long-term measurements (≥ 2.5h) without the necessity of flushing to maintain accuracy. Conversely, long-term measurements were also associated with patient discomfort, probably due to the size and rigidity of the polyethylene sheath enclosing the sensor [238]. Even so, these sensors were extensively used for IMP measurements, such as for isometric and concentric exercises [238], to demonstrate that IMP varies with muscle depth [296], to study compartment syndrome following prolonged pelvic surgery [297], and to analyze muscles contribution during gait [237].

To accomplish the requirements of miniaturization for minimally invasive procedures Kaufman et al. [236] proposed a new fiber optical microsensor with 360 μm OD (Luna Innovations, Blacksburg, VA, USA). Previous diameter represents about 5 to 6 times the diameter of muscle fibers diameters (ranging from 57 to 73 μm) [298]. The sensor consisted of an extrinsic F-P air cavity in-between a polished end fiber and a reflective membrane [236,299]. It was calibrated inside an air pressure chamber under slowly dynamic pressures ranging from 0 to 250 mmHg back to 0 mmHg, over a period of 120s. The output was compared with that of a reference sensor (Model PX5500, Omega Engineering Inc., Stanford, CT, USA; www.omega.com). Sensor’s accuracy, repeatability and linearity were better than 2% FSO, hysteresis of 4.5% FSO and sampling frequency of 66 Hz (~10 Hz with 8 channels). Its accuracy was better than most of the fluid-filled systems (between 1 and 18%), but smaller than electronic transducer-tipped catheters.
Fiber Optic Sensors for Biomedical and Biomechanical Applications: A Review
Sensing Pressure

(0.2% accuracy) [300]. Despite that, the small diameter and immunity to EM fields prevailed [236]. Following functional characterization, sensor was evaluated for biocompatibility using ISO standard 10993-6:2007 (Tests for Local Effects After Implantation) [301]. In vivo experiments took place to measure swine intra-myocardial pressure under calibration procedures resembling body physiological conditions [302]. In this case, a fluid pressure chamber was used to calibrate the sensor under sinusoidal pressure variation around a static pressure of ~60 mmHg. Reproducibility was possible only with degassed water but unpredictable results were obtained with tap water. Calibration frequencies varied from 0.5 to 10 Hz and the output was compared with that of a reference sensor (Millar Instruments, Inc., Houston, TX, USA). Hysteresis was not significant. Sensor sensitivity was 8.78 mV mmHg⁻¹ remaining flat at 6 Hz and presenting a slightly decrease from 6 to 10 Hz. A slightly lower sensitivity was registered at 23°C than at 37°C suggesting a possible, but smaller, temperature effect. A constant time delay of 0.13 s was also registered probably due to post-processing electronics. Phase delay was independent of temperature and increased linearly with frequency. Sensor also demonstrated excellent reproducibility during tests of two consecutive days [302].

A second generation sensor (Luna Innovations, Blacksburg, Virginia) with smaller OD (250 to 280 μm), similar accuracy (1.45 ± 0.32%) and repeatability (1.5 ± 0.81%), but lower hysteresis (0.60% FSO) and higher sampling frequency (960 Hz, ~240 Hz with four channels), was used to study IMP in anesthetized rabbits [303-304]. Fatigue effects have also been studied contributing to 0.25% FSO after over 10,000 pressure cycles [287]. It was used to study IMP in anesthetized rabbits [304].

5.3 Intra-articular Pressure

Intra-articular pressure (IAP) is associated with joint and capsule loading [305]. It is a complex function of volume, time, joint angle, joint history, pathology, fluid distribution, and muscle action [306]. In the first study using FOSs, IAP was monitored during continuous passive motion (CPM) of the knee joint, a common post-surgery therapeutic procedure [268]. The FOS system consisted of a pressure transducer-tipped catheter (Camino Laboratories, San Diego, CA, USA) similar to those intended for intravascular and IMP measurements. Similar sensors were used to measure IAP in cadaveric glenohumeral joints [269] and during in vivo studies of the elbow joint in patients suffering from cubital tunnel syndrome [270-271].

The potentialities of FBG for joint pressure mapping were explored by Mohanty et al. [27]. A FBG array was developed to map stresses across the tibio-femoral interface during total knee arthroplasty. The array was embedded into a stack of unidirectional fiber-reinforced composite (PMMA) and molded to adapt to the femur condyles surface. Embedding is important to enhance FBG sensitivity to transverse loading [27,56,200]. Each OF was composed of sampled chirped FBG sensors capable of detecting force magnitude and its application point. Ex vivo experiments
were carried out to sense prosthetic misalignments through the analysis of contact stress distribution during knee flexion/extension [27].

Dennison et al. [19-20,259] used minimally invasive FBG sensors to assess the pressure in the NP of the IVD. It was recognized that large diameters of previously used nonoptical sensors (e.g., 1.5 mm OD) [307] could interfere with the normal behavior of the joint and induce degenerative effects [307-309]. Dennison’s first proposal consisted of a bare FBG sensor (125 μm OD, 10 mm length, Bragg wavelength 1550 nm) that was left directly in contact with the NP [259]. After that, a configuration with increased spatial resolution and less affected by the inhomogeneity of the nucleus material was presented [19-20]. This new sensor was housed within a stainless steel hypodermic tube allowing only just the tip to sense the external pressure. The sensing area, with 0.4 mm OD, consisted of exposed surfaces of silicone sealant (Dow Corning 3140 RTV, Midland, MI) and of the OF. Under pressure, the area was compressed inducing a shift in the Bragg wavelength. Sensor’s mean sensitivity to pressure was $-2.7 \pm 1.5 \times 10^{-5} \text{ mV MPa}^{-1}$. Data from ex vivo porcine compression tests suggested a linear relation between intradiscal pressure and compressive load ($r^2 = 0.97$). A good agreement was obtained with SG sensors. Yet, the mean relative difference in disc response to load between the FBG sensors and the SG sensor was 9.39% and ranged from 0.424 to 33.2% [20]. Dennison et al. [19] compared the sensor’s sensitivity obtained from strain-optic relationships used in finite element analysis (FEA) with that obtained from experimental results. FEA sensitivity was $-23.9 \text{ pm MPa}^{-1} (r^2 = 1)$ and experimental sensitivity was $-21.5 \pm 0.07 \text{ pm MPa}^{-1} (r^2 = 0.99)$. Using experimental sensitivity as reference the relative difference between these sensitivities was 11.1% [19].

The above FBG sensors have not been tested in vivo and will require further efforts to be available as commercial plug-and-play devices. Meanwhile, F-P sensors from Samba Sensors (Västra Frölunda, Sweden) and Radi Medical Systems (Uppsala, Sweden) are already available to measure intradiscal pressure. Samba Preclin 360 transducer is a micromachined silicon sensor (photolithographic and wet etching techniques were applied) with 0.36 mm OD and a pressure range from -0.1 to 17 bar [310]. Depending on the pressure range its accuracy is of ±20 mbar and ±2.5% of reading (from -0.1 to 10 bar) or ±20 mbar and ±3% of reading (from 10 to 17 bar) [310]. Temperature coefficient is less than 14 mbar °C$^{-1}$ for a temperature range between 20 °C and 45 °C [310]. Additionally, it can be coated with radiopaque material to be used in X-ray studies [310]. Some studies reported the use of a similar version (420 μm OD) in pigs [311-312], rabbits [313] and human cadaveric spines [314]. In the case of the Radi Medical Systems sensor, it was used to monitor intradiscal pressure in sedated pigs [315] and patients suffering from lumbar back pain [316]. With 0.55 mm OD this sensor exhibits a pressure range from 0 to 800 kPa, a combined nonlinearity and hysteresis of <0.5% FSO and a time response of less than 0.2 s [316]. Despite their small size, these sensors can still damage the IVD, namely those from small animals (e.g., rats). Meanwhile, Hsieh et al. [317] and Nesson et al. [18,318] were encouraged to overcome this limitation. They presented a low-coherence interferometric-based optical interrogation system with
a sensor probe of 366 μm OD. The glass tube F-P cavity (15.2 μm length) was composed of two mirrors, a biocompatible polymer-metal composite diaphragm and a well-cleaved end face of a SMF. It was fabricated by simple batch-fabrication methods without necessity of a cleanroom environment. The sensor exhibited a linear response to the applied pressure over the range of 0 to 70 kPa, a sensitivity of 0.0206 μm kPa⁻¹ and a resolution of 0.17 kPa. Despite being attractive for in vivo and clinical practice, due to its biocompatible diaphragm and small size, it was used only for in vitro measurements of rodent tail discs [18,317-319].

5.4 Intracranial Pressure

Intracranial pressure (ICP) is the pressure inside the skull, namely in the brain tissue and the cerebrospinal fluid (CSF). Following the original works of Adson and Lillie [222], Guillaume and Janny [223] and Lundberg [226], continuous monitoring of ICP became a routine method in neurosurgery. Depending on the location of the sensor inside the skull the techniques to measure ICP may be classified as intraventricular, subdural/subarachnoid, or epidural technique [320]. The intraventricular catheter is placed directly at the ventricle and allows the most accurate ICP measurements [320]. However, this deep location in the brain also presents the highest risk of infection [249,321]. The subarachnoid catheter projects through the Dura into the subarachnoid space [320,322]. The epidural technique is the less invasive as it avoids introduction of the catheter through the brain parenchyma restricting the risk of infection to the extradural space [321]. Unfortunately, with this technique ICP results are usually overestimated making it not recommended for neurocritical care patients [323-324]. The technique is useful in patients requiring ICP monitoring for long periods (> 5 days) because in these patients the most important information is provided by analysis of the frequency and amplitude of slow ICP waves [324].

First ICP measurements [272,325-326] resulted from the adaptation of the intravascular Camino sensor (Camino Laboratories, San Diego, CA, USA) originally proposed by Lekholm and Lindström [40] and Lindström [44]. Camino model 110-4B was considered to be accurate and reliable for ICP monitoring, presenting high-quality readings under laboratory and clinical conditions, a good correlation with SG sensors and fluid-filled systems, less drift and improved waveform resolution, insensitivity to hydrostatic artifacts and no flushing or infusion requirements [244-245,247,255,327-328]. On the other hand, they also underwent extensive scrutiny leading to identification of several drawbacks and questioning their routine use, particularly in clinical practice. Transducer failures (e.g., breakage, cable kinking, probe dislocation, abnormal readings, etc) may range from 10% to 25% [250]. In the study of Yablon et al. [245], 12% of sensors failures were caused by breakage of its components. Moreover, contamination of the probes is frequent and long term monitoring seems to be associated with higher rates of infection [249]. Yet, clinically significant infections were considered to be rare [249]. To minimize infections and zero drift of the transducer the manufacturer recommends placement of a new system under sterile conditions if monitoring is continued for more than five days [242]. Several studies have addressed the drift characteristics of
the transducer either in laboratory [247] and clinical practice [244,249-250]. Zero drift is an important feature because this type of transducers cannot be re-zeroed after implantation, meaning that cumulative significant errors may occur in long term monitoring [244,249]. Electrical calibration of external monitors is possible but it cannot correct for inherent zero drift of the catheter once it is implanted [250]. Manufacturers’ specifications for model 110-4B indicate a maximum zero drift during the first 24 hours from 0 to ±2 mmHg and less than ±1 mmHg per day on subsequent days [242]. Thus, a continuous five-day monitoring can introduce a maximum error of 6 mmHg. This is not satisfactory because normal values for ICP usually range from 7 to 15 mmHg in adults and from 3 to 7 mmHg in children [252]. Furthermore, values exceeding 20 mmHg require immediate treatment [329]. Laboratory tests have indicated the transducer complied with manufacturers’ zero drift specifications, while results from clinical practice have suggested zero drift can be greater than reference values. As an example, Crutchfield et al. [244] found a larger maximum daily drift of ±2.5 mmHg, a lesser average daily drift of ±0.6 mmHg and an average drift over a 5-day period of ±2.1 mmHg. Münch et al. [248] reported an average daily drift within reference values but after being removed from the patient it was 3.2 ± 17.2 mmHg for 50% of the probes. This value was normalized to the number of days of monitoring and decreased to only 6% [248]. Martinez-Manas et al. [249] reported only six of 56 implanted probes exhibited no zero drift while the other readings ranged from a minimum of -24 mmHg and a maximum of +35 mmHg. After comparing their results with manufacturer’s specifications, they conclude that 61% of the probes performed according to the expected values. It is interesting to note that no correlation was found between zero drift and the duration of monitoring [249-250]. Sensitivity to temperature remains a problem. A maximum of 3 mmHg over a temperature range of 22 °C to 38 °C is reported by the manufacturer [242]. However, in the study of Czosnyka et al. [247] temperature drift was ~0.3 mmHg °C^{-1} leading to a maximum of 4.8 mmHg for the same temperature range.

The insertion method of 110-4B Camino transducer requires a drill hole through the skull of 2.71 mm OD [242]. Thus, innovation with FOSs may arise from smaller sensors and less invasive procedures. Some recommendations were provided to those interested in developing new sensors for this purpose. According to Mignani and Baldini [70], new sensors should meet a working range from -50 to 300 mmHg, a sensitivity of at least 0.1 mmHg, an accuracy of at least 1% and a flat frequency response up to 1 KHz. The American National Standards Institute (ANSI) for ICP monitoring, published by the AAMI [330-331], includes minimum performance requirements that are clearly less demanding than those of Mignano and Baldini [70]. In fact, AAMI requisites are a pressure range between 1 and 100 mmHg, an accuracy of ±2 mmHg in the range of 0 to 20 mmHg, and a maximum error of 10% in the range of 20 to 100 mmHg [330].

A good example of innovation effort was accomplished by Dennison and Wild [59]. They developed an FBG sensor with 200 μm OD, a sensitivity of 58.7 pm MPa^{-1} and a sensing area of only 0.02 mm^2. Calibration results have demonstrated its ability to measure pressure with ±2.7 mmHg repeatability over a range of 105 mmHg. This FBG sensor was proposed for ICP and blood-
pressure measurements but is far away from clinical applications because \textit{ex vivo} and \textit{in vivo} tests remain undone.

It is interesting to note that commercially available FOSs are becoming competitive with each other. The Ventrix® ICP monitoring catheter (Integra LifeSciences, Plainsboro, NJ, USA), the OPX100 transducer (InnerSpace, Tustin, CA, USA), the FOP-MIV (FISO Technologies, Québec, Canada) and the OPP-M series (OPP-M250 and OPP-M400; Opsens, Québec, Canada) pressure sensors are some possible candidates to compete with the most popular ICP Camino 110-4B transducer. The Ventrix® ICP monitoring catheter and the Camino 110-4B are from the same company, but the F-P OPX100 transducer is not and claims for new features, such as \textit{in situ} re-zeroing and multimodal monitoring. In a comparative study the OPX-100 transducer presented a lower 24-hour zero drift and temperature drift than the Camino 110-4B transducer [247]. On the other hand, the OPX-100 exhibited a static error (<8 mmHg) higher than that of 110-4B (<0.3 mm Hg). Furthermore, its bandwidth is lower (20Hz) than that of 110-4B (33-120 Hz) [247] and it presents a high incidence (17\%) of hematoma formation [332]. Few clinical data is available about this sensor and, to our best knowledge, it is no longer available. The FOP-MIV sensor is a versatile micro-optical mechanical system (MOMS) that can be used for many physiologic pressure measurements. It consists of a F-P vacuum cavity made of a micromachined silicon diaphragm membrane that is bonded on a cup-shaped glass base (550 μm OD). The F-P cavity is connected to a MMF and interrogated with white light [79,280]. According to manufacturers’ specifications, FOP-MIV exhibits a measurement range from -300 to 300 mmHg, an accuracy equal to 1.5 \% FSO (or ±1 mmHg), a resolution better than 0.3 mmHg, a thermal effect sensitivity of -0.05\% °C\(^{-1}\) and a zero drift thermal effect of -0.4 mmHg °C\(^{-1}\) [21]. The sensor allows for absolute external pressure measurements because vacuum inside cavity prevents pressure errors caused by gas thermal expansion [79]. Manufacturing technologies derived from the semiconductor industry (e.g., photolithography processes and automated assembly) allow their production in large quantities for a competitive price [79]. For ICP measurements the FOP-MIV can be introduced into catheters with diameters smaller than 1.2 mm [79]. However, to our best knowledge, ICP measurements with the FOP-MIV were made only in rats [280-281]. Both OPP-M250 (0.25 mm OD) and OPP-M400 (0.40 mm OD) have similar specifications (-50 to +300 mmHg pressure range; ±1 mmHg precision; 0.2 mmHg accuracy; 4000 mmHg proof pressure; 10 to 50 °C operating temperature; 0\% to 100\% operating humidity range). They were specifically designed for physiological pressure measurements in preclinical environment and for OEM integration [333]. Besides ICP other possible applications of these F-P sensors include intra vascular blood pressure, urodynamic pressure, intra uterine pressure, intraocular pressure and IAB pump therapy [333]. Nevertheless, almost all applications need to be supported by scientific publications.
5.5 Other Pressure Applications

Previously mentioned applications are probably the most common. Nevertheless, more contributions can be found concerning the use of FOSs to sense pressure in other sites of the human body, such as the trachea [334-335], the gastrointestinal tract [2,55,336], and the intravaginal [17], intraocular [282] and intramedullary spaces [283]. We will explore some of them in the following lines.

Respiratory monitoring in pediatric or neonatal intensive care requires minimally invasive sensors for direct measurements of tracheal pressure. This was achieved for the first time using the Samba Resp. 420 transducer (Samba Sensors, Västra Frölunda, Sweden) [334-335]. This F-P sensor has an OD of 420 μm contrasting with larger FOSs, such as the Camino XP400 (1mm OD) (Camino Laboratories, San Diego, CA, USA), that have been used only in adults patients [337]. Samba Resp. 420 transducer is also a certified CE class IIb Medical Device approved for use in human patients within the European Union [338]. It exhibits a measurement range from -50 to +350 cmH₂O, an accuracy of ±2.5 % of reading (between -50 cmH₂O and +250 cmH₂O) or ±4 % of reading (between +250 to +350 cmH₂O), a temperature drift less than 0.2 cmH₂O °C⁻¹ (between 20°C and 45°C) and a response time of 1.3 ms [334,338].

The possibility of measuring peristalsis, i.e., the rhythmic contraction of smooth muscles through the digestive tract, can help diagnosis of several gastrointestinal motility disorders. While this is possible using manometric techniques, particularly high resolution solid-state and water-perfusion pressure sensors, the ability to present smaller, flexible and higher spatial resolution sensors remains a challenge. To give an example, an increase in the number of solid-state or water perfusion sensors into the same catheter is followed by increased complexity in signal processing, less flexibility and larger catheter diameter [2]. For that reason the number of sensors per catheter is limited to ~36 for the solid-state technology and ~20 for the water perfused technology [2]. Such limitations can be overcome by exploring the potentialities of real time WDM to interrogate several in-line FBG. In fact, this feature was accomplished by Arkwright et al. [55] using 32 in-line FBG sensors (written between 815 and 850 nm; 3 mm length; 10 mm spaced) to measure the pressure along the esophagus of a subject [2]. To sense pressure each FBG was fixed to a rigid metallic substrate and a flexible diaphragm. Afterwards, the multiplexed FBG array was inserted into a catheter of silicone rubber (3mm OD) which was sealed at one of the extremities and the other connected to the data acquisition system. The excellent and significant correlation (r ≥0.992) between the FBG based catheter and a reference solid-state catheter (Gaeltec, Dunvegan, Scotland; www.gaeltec.com) suggested one could substitute the other. Meanwhile, further studies have been published confirming FBG potentialities as multipoint or multiparameter sensors [336,339] and their ability to incorporate new features, such as the measurement of longitudinal and circumferential muscular activity in the gastrointestinal tract [336].
An interesting example of the versatility and applicability of FBG sensors was given by Ferreira et al. [17] who proposed a complete system for dynamic evaluation of the women pelvic floor muscle strength. The lack of muscle action seems to play an important role in development of several pelvic dysfunctions, such as urinary incontinence and genital prolapses. The system consisted of a silicone ergonomic intravaginal probe (100 mm length and 25 mm OD) with two inline FBG sensors and an autonomous optoelectronic measurement unit. One FBG transduced radial muscle pressure into axial load, the other used for temperature referentiation. A mean sensitivity of ~120 pm N\(^{-1}\) was calculated for a measurement range of ~20 N. With temperature compensation, maximum estimated error (0.0075 N °C\(^{-1}\)) was considered negligible. Additionally, clinical trials were conducted in patients with pelvic floor disorders. Further improvements will include the substitution of silicone to eliminate some hysteretic behavior due to material’s viscoelasticity and reduction of cross-sensitivity to axial induced load, torsion and bending [17].

The possibility of using FOSs to construct pressure-mapping devices to be placed in-between the body parts and supporting surfaces (e.g., floor, seat, mattress, cushion and backrest) is an exciting opportunity to enlarge the spectrum of FOSs applications, namely in the fields of medicine and rehabilitation, sports, ergonomics, automotive industry, etc. However, to accomplish it FOS systems must compete with many recognized companies, such as Tekscan Inc. (South Boston, MA, USA; www.tekscan.com) and Novel GmbH (Munich, Germany; http://novel.de) that are offering powerful accurate electronic based systems at relatively low cost. Nevertheless, some limitations can be pointed to the technology mentioned above. Tekscan sensors are based in conductive elastomers, which may exhibit nonlinear response, hysteresis, and gradual voltage drift [340]. Novel uses capacitive-based transducers, which can be affected by electrical interference and suffer from low spatial resolution, drift, and high sensitivity to temperature [340]. Moreover, with both technologies only normal loads and pressures can be measured. Thus, a window of opportunity is open to FOSs capable of overcoming these limitations and introducing new features, namely the ability to measure normal and shear loads. A possible configuration was explored by Pleros et al. [12] by embedding multiplexed FBG arrays into PDMS silicon-polymer to built a pressure mat made of smaller scale blocks, each block consisting of four FBG sensors distributed to form a 2×2 matrix array with a square sensing area of 400 mm\(^2\) and 25 mm thickness. Authors were also engaged in the FP7 project IASIS (Intelligent Adaptable Surface with Optical Fiber Sensing for Pressure-Tension Relief) that finished in 2011 [341]. IASIS project aimed at presenting intelligent rehabilitation systems based on multiplexed FBG arrays capable of sensing pressure in therapy beds or wheelchair seats and provide feedback information to prevent onset and evolution of pressure ulcers [342]. Same concept was extended to knee-socket interfaces to sense pressure in amputees [343-344].

The possibility of using FOSs to create smart systems and provide feedback about patient condition was also explored by Hao et al. [345]. Bed surface mounted FBG arrays were proposed to monitor several clinical signals, namely body pressure, respiratory rate, heart rate and body
temperature. Security alerts to prevent patients from maintaining prolonged static positions or falling out of the bed were also addressed. Sensor consisted of twelve in-line FBG sensors (5 mm length each) organized to form a 3×4 matrix array that was mounted beneath the mattress surface of the bed. To sense pressure, each FBG was previously embedded into an arc-shaped elastic bending beam (40 mm length, 0.625 mm thick and 2.2 mm height) using uneven layers of carbon fiber reinforced plastic (CFRP). Calibration results suggested an excellent coefficient of determination \(r^2=0.9985 \) between the wavelength shift and the applied load. Sensitivity obtained from the linear regression equation of calibrated data was equal to 0.1121 nm N\(^{-1}\). Authors failed to present the algorithms used for pressure calculation. Vital signs, such as the respiratory rate and heart rate, were assessed by signal processing techniques. Temperature sensor consisted of a FBG (10 mm length) isolated from strain by insertion into a glass/copper tube, which ends were encapsulated with a resin/epoxy system [345].

Pressure mats are often used in biomechanical studies, namely to analyze foot pressure distribution in static postures or dynamic activities, such as gait, jumping, running or load carrying. This assessment has particular importance in diabetic insensitive feet because excessive pressure can lead to their ulceration, necrosis and subsequent amputation [346]. The pedobarograph was probably the first device using optical techniques applied in clinical practice to study foot condition. The upper glass surface of a pedobarograph is covered with a thin opaque material, usually a plastic sheet, which in contact with the feet changes the refractive index [347-348]. This action leads to light attenuation in the glass plate, making possible to obtain a footprint and to calculate the applied pressure by means of light intensity variation [349]. More recently, OF and FBG sensors were also introduced to sense foot pressure [56, 350]. Multiplexed FBG arrays were positioned accordingly to the foot anatomy, embedded into uneven layers of carbon/epoxy laminates and cut into a shape of a footpad [350]. Calibration results suggested an excellent linear relationship \(r=0.99927 \) between the applied perpendicular load and wavelength shift. Wavelength sensitivity to load and pressure was \(~5.44\) pm N\(^{-1}\) and \(~700\) pm MPa\(^{-1}\), respectively. A clinical experiment was conducted to evaluate pressure distribution under normal and abnormal standing [350].

The study of Wang et al. [351] is of particular interest because it represents the first attempt to create in-shoe shear sensors. Instead of using a wavelength modulation design, sensor development was based on bend-loss technique. A 2×2 array of MMF, embedded into high-compliance material and forming four orthogonal intersection points (each with a sensing area of 100 mm\(^2\)), was used as a basic sensing sheet. Under compressive loading, light attenuation caused by physical deformation of the fibers at the intersection points was used to calculate the \(x \) and \(y \) coordinates of the pressure point and the corresponding normal stress. To obtain shear stress two layers of the basic sensing sheet, placed between gel/polymeric shoe insole pads, were used. This way, the relative difference between the corresponding pressure points could be used to calculate the amount of shear. The entire system consisted of a LED source, an eight-element
photodetector array and a data-acquisition system (National Instrument 16-input, 500 kb s$^{-1}$, 12-bit multifunction input/output data-acquisition card; Lab-VIEW software; and a laptop computer). Repeatable results were obtained under bench mechanical loading tests consisting of vertical forces up to 6.5 N and displacements of 6 mm, and shear forces up to 13.8N. The minimum detectable vertical and shear forces were 0.4 N and 2.2 N (at 60 pitch angle), respectively. To address some limitations of the previous configuration (e.g., low spatial resolution, consistent and accurate manufacturing of the sensor, cost and noise) a batch process to fabricate PDMS-based waveguide sensor, and a neural network technique to provide an accurate description of the force distribution, were proposed in further studies [340,352-353]. After successful bench tests, the same group has recently presented a full-scale foot pressure/shear sensor, capable of measuring normal forces ranging from 19.09 to 1000 kPa [354].
6. Final Remarks

The state of the art of FOSs intended for biomedical and biomechanics applications has been reviewed. Our approach to FOSs was made after introducing conventional sensors and pointing some of their limitations. FOSs seem particularly suitable for use in minimally invasive procedures, allowing precise and accurate point, multipoint or distributed measurements without necessity of increasing sensor's dimensions and with easier instrumentation. Minimum dimensions are achieved when the OF itself is used as the sensing element, such as with FBG sensors and all-fused-silica designs. Nevertheless, small dimensions are also related to mechanical fragility. FOSs without protective layers require special handling. They can be suitable for in vitro or ex vivo biomechanical experiments, but will fail during in vivo trials and clinical practice. Thus, use of biocompatible and sterilizable layers, both capable of maintaining the minimally invasive function and providing mechanical stability, is mandatory.

FOS technology has about forty years of history and most underlying working principles are sufficiently mature to provide accurate solutions for sensing almost any physical and chemical quantity. Despite that, few companies are exploring FOSs potential and offering turnkey solutions for biomedical and biomechanical sensing. Even fewer, have supported their products with peer reviewed papers, standardized testing protocols or approvals from regulatory/standardization entities. These are, indeed, the greatest challenges for those wishing to develop FOSs for biomechanical and biomedical applications, especially for the medical market.
Chapter 2 - The Spinal Motion Segment: A Review
1. Introduction

The process of developing or applying fiber optic sensors (FOSs) to measure a physical quantity of an object requires an extensive knowledge of both the sensor and the object. In the previous chapter a review effort was made to describe FOSs potentialities, configurations and applications in biomechanical and biomedical fields. This chapter seeks to describe the anatomical structures that have been the object of study during experimental work: the spinal motion segment (SMS) or the functional spinal unit (FSU) and, particularly, the intervertebral disc (IVD).

The SMS consists of two adjacent vertebrae with the intervening IVD and ligaments intact. The most important reason to consider the SMS in the study of the IVD mechanical behavior is that it is defined as the functional unit of the spine. In other words, the whole spine is like a composition of several SMS, each of them with its own singularities, but all of them with the same anatomical and functional components. Thus, in a certain way, studying the biomechanics of the SMS is equivalent to study the whole spine. As an example, if a compressive load is applied to a single SMS the IVD will bulge, a typical behavior that will be observed in all SMS. Naturally, the validity of the extrapolation depends on the observed phenomenon or quantity under analysis. Therefore, if the range of motion (ROM) is studied for each SMS the differences will be noticeable, particularly between those belonging to distinct regions of the spine. For example, a SMS of the lumbar region has a limited axial rotation whereas a SMS of the cervical region does not.

To better understand the SMS behavior, its limitations and potentialities, a generic description of the whole spine and of its main regions was included in the manuscript. Spine kinematics was also addressed because the main biomechanical differences between SMS are related to the degrees of freedom (DOF) and ROM each SMS is capable of offering.

Along with the anatomical description of the main components of the SMS, some histological, physical and mechanical properties were also addressed. The guidelines for spinal testing have been described in order to contribute for a better framework of the experimental work and, particularly, to point out its limitations and contribute to further and improved approaches. All issues were addressed bearing in mind the human spines although experiments have been conducted with animal specimens. Considerations concerning comparison between animal and human specimens have been attended in the experimental part.
2. The Spine or Vertebral Column

The spine or vertebral column (Columna Vertebralis, Spinal Columnis) is located at the center and posterior region of the trunk (figure 24). It is a complex multi-segment functional structure with an average length of 75 cm [355], made up of rigid (the vertebrae) and elastic elements (the IVD and the ligaments), that extends from the skull to the pelvis. The skull, the vertebral column and the thoracic cage form the axial skeleton.

![Figure 24 - Location of the spine in the human body](Adap.356)

The spine accomplishes several functions. The foremost is the protection of the spinal cord, the spinal nerves roots and meninges [355]. It also acts as a support structure of the upper body, being capable of transferring its weight and forces to the lower extremities through the sacroiliac joints [355,357-358]. If the mass of both the upper arms, forearms and hands is calculated, the lumbar structures of spine have to support about 67.8% of body weight [359]. The trunk along with the neck and head accounts for about 57.8% of the total body weight [359]. The lower body also interacts with the spine through the same sacroiliac joints. Therefore the ground reaction forces acting at the feet along with muscle forces, acting during standing or locomotion activities (e.g., walking, running and jumping), will also be transmitted to the spine through the sacroiliac joints [307,360].
Each subject has a unique spine which is modeled by genetic and environmental factors [361]. That is why normal spines can differ, particularly in dimension and shape, in the number of elements, composition, physical and mechanical properties [362-365]. There is however several common attributes that can be described.

Spine vertebrae are stacked on top of each other forming four main regions: the cervical, thoracic, lumbar, and sacral-coccygeal regions (figure 25).

The first three regions of the spine (cervical, thoracic and lumbar) are movable and comprise a total of 24 vertebrae [356]. Cervical spine is located at the neck and consists of seven vertebrae (Vertebrae Cervicales), which are abbreviated C1 through C7 (figure 25). Thoracic spine is located beneath the cervical region, at chest level, and consists of twelve vertebrae (Vertebrae Thoracales), abbreviated T1 through T12 (figure 25). Lumbar spine is located at the low back region of the trunk and is made up of five vertebrae (Vertebrae Lumbales), abbreviated L1 through L5 (figure 25).

In general vertebrae increase in size from above downward and the lumbar vertebrae are the largest segments of the movable part of the spine [356]. Thus, cervical vertebrae are smaller when
compared with thoracic vertebrae, and these are smaller than lumbar vertebrae. This geometry seems to be a structural adaptation to the increase of body weight from the head to the pelvis [366].

The last lumbar vertebra (L5) articulates with the sacral-coccygeal region which is located behind the pelvis (figure 25). The sacrum connects the spine to the pelvis and consists of five fused bones abbreviated S1 through S5 (figure 25). Immediately below the sacrum four fused additional bones represent the coccyx (figure 25). Vertebrae of the sacrum and coccyx are termed false or fixed [356].

The total number of vertebrae is sometimes increased by an additional vertebra in one region, or it may be diminished. This congenital malformation is rarely observed in cervical vertebrae [356,367]. However it is often related to the lumbosacral region where the 1st sacral vertebra can develop as a lumbar vertebra (lumbarization), or the 5th lumbar vertebra can be bilaterally fused with the sacrum (sacralization) [362,368-370]. These lumbosacral transitional vertebrae have a prevalence in the general population of 4% to 30% [370]. Lumbarization seems to be more frequent in males than females [362].

Ligaments are responsible for stabilizing the spine and are capable of limiting and controlling the movements produced by muscle contraction [371]. The IVD is a fibrocartilaginous structure found between each adjacent vertebra of the spine [372]. As it occurs for ligaments the IVD also participates in the control of the spine movement. However, whereas the main function of most ligaments is to resist tensile forces generated during joint movement, the IVD function is to resist compressive loads acting as a load bearing element. As described for vertebrae they also seem to increase in size from above downward [373]. Both, the ligaments and the IVD will be described more deeply in a later section (see p.68).

Spine curvatures have great importance on the maintenance of the upright posture and the efficacy of bipedal walking [374-377]. From behind, the normal spine appears to be straight (figure 25). However, viewed from the side the spine presents four normal curvatures either kyphotic or lordotic (figure 25). The kyphotic curve is concave anteriorly and convex posteriorly, while the lordotic curve is convex anteriorly and concave posteriorly. Cervical and lumbar regions present a lordotic curve, while thoracic and sacral-coccygeal exhibit a kyphotic one (figure 25).

The IVD play an important role in the formation of the spinal curves. In the cervical and lumbar regions the discs, apart from the disc at the L4/L5 level, are slightly wedge-shaped and thicker ventrally, exhibiting an elliptical cross-sectional shape [367,373,378]. Cervical discs are entirely responsible for the formation of the cervical lordosis [367]. Lumbar discs are responsible for the lumbar lordosis in the upper part of the lumbar spine and for the formation of the lumbosacral angle [367]. In the thoracic region the discs are dorsally thicker but less wedge-shaped than those in the cervical and lumbar regions [373]. They present a more circular cross-sectional shape and seem to slightly contribute to the kyphotic curve [367,373].
The degree of curvature of the regions of the spine is an important topic in postural evaluation. It can be measured using X-ray images and the standard Cobb method [379-381] or other alternative techniques [382-386]. For its assessment the subject should adopt a position similar to the anatomical position i.e., the body erect with feet slightly apart and palms facing forward. Observing the subject from the sagittal plane the curvatures of the spine contribute to a normal standing posture in such a way that the line of gravity should pass through the mastoid process, just in front of the shoulder joint, through or just behind the hip joint, through the knee joint and just in front of the ankle joint [381,387].

It should be mentioned that precise measurements from radiographic images are difficult to obtain, particularly due to image distortion in central projection, off-center position, deviations from true sagital projection (introduced by axial rotation and lateral tilt of the spine) and lack of information such as the factor of radiographic magnification and the subject’s stature [388]. On the other hand the ideal conditions are difficult to accomplish in clinical context.

In the sagital plane several Cobb angles can be measured, such as the cervical, thoracic, lumbar, sacral, lumbosacral and pelvic tilt [387]. The guidelines for their correct measurement are provided in table 2 [387].

<table>
<thead>
<tr>
<th>Angle</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cervical</td>
<td>Intersection between lines drawn parallel to the superior endplate of C1 and inferior endplate of C7</td>
</tr>
<tr>
<td>Thoracic</td>
<td>Intersection between lines drawn parallel to the superior endplate of T1 and inferior endplate of T12</td>
</tr>
<tr>
<td>Lumbar</td>
<td>Intersection between lines drawn parallel to the superior endplate of L1 and inferior endplate of L5.</td>
</tr>
<tr>
<td>Sacral</td>
<td>Intersection between lines drawn parallel to the superior endplate of S1 and horizontal</td>
</tr>
<tr>
<td>Lumbosacral</td>
<td>Intersection between lines drawn through the geometric centers of the endplates of L5 and S1</td>
</tr>
<tr>
<td>Pelvic tilt</td>
<td>Intersection between lines drawn through the promontory of the sacrum and the anterior superior border of the pubic symphysis</td>
</tr>
</tbody>
</table>

In the frontal plane the angle of scoliosis, which is an abnormal curvature of the spine, can also be measured using the classical Cobb method (table 3) or several other alternative methods [381,386,389-391]. These alternative methods represent an effort to measure the degree of scoliosis more accurately than the Cobb method, which cannot account for the influenced of vertebrae rotations. For that reason the Scoliosis Research Society has defined scoliosis as a lateral curvature of the spine greater than 10° as measured using the Cobb method (table 3) on a standing radiograph [392]. A Cobb angle of less than 10° is considered to be within the normal range [387]. Meanwhile, new techniques based on photogrammetry are being developed to avoid repeated exposure to radiation [393]. Scoliosis prevalence seems to be higher and more severe in adolescent females than males [394].
The Spinal Motion Segment: A Review
The Spine or Vertebral Column

Table 3 – Cobb angle measured in the frontal plane [392]

<table>
<thead>
<tr>
<th>Angle</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scoliotic</td>
<td>The apical vertebra is first identified (the most likely displaced and rotated vertebra with the least tilted endplate). Then end vertebrae above and below the curve are identified. The end vertebrae are the least displaced and rotated and have the maximally tilted endplate. A line is drawn along the superior endplate of the superior end vertebra and a second line drawn along the inferior endplate of the inferior end vertebra. If the endplates are indistinct the line may be drawn through the pedicles. The angle between these two lines (or the lines drawn perpendicular to them) is the Cobb angle. In S-shaped scoliosis where there are two contiguous curves the lower end vertebra of the upper curve will represent the upper end vertebra of the lower curve.</td>
</tr>
</tbody>
</table>

The relationship among spine angles and the correct upright posture has not been clearly established [395-396]. It seems a broad range of combinations is possible to ensure a normal posture [377,387].

Spine kinematics is the geometric description of spinal movements. In such a view, the spine is considered flexible and capable of all kinds of anatomical and combined movements. In fact, each SMS has six DOF, three for translation and three for rotation. Thus, the spatial movement of the spine can be defined as the expression, or contribution of twenty-three synchronized SMS, each of them offering six DOF. Translation movements are in the order of the millimeter and more difficult to measure than rotational movements.

Three anatomical planes are used to describe the major anatomical angular displacements, such as flexion/extension (the angular displacement parallel to the median/sagittal plane), lateral bending (parallel to frontal plane), and axial internal/external rotation (parallel to transverse plane) [397]. Knowing the ROM for each angular displacement is critical for many activities. In fact, many studies and techniques have been published trying to report ROM normal values of the spine and of the SMS [398-406]. As an example, normal ROM for trunk flexion is between 110° and 140°, for lateral bending ROM between 75° and 85° and for axial rotation is about 90° [406]. However, in the case of trunk flexion it seems the ROM is not exclusively produced by the spine elements. For a certain degree of flexion (between 50 to 60°) the increase of flexion is produced by an anterior pelvic tilt [407-408].

The most critical anatomical constraint that seems to affect the DOF and ROM of each SMS is the spatial orientation of the articular processes at different spinal levels [409-412]. The cervical spine is the most movable region of the spine. In this region (C3-C7), the facets angle of 45° to the transverse plane and 0° (parallel) to the frontal plane allows all three DOF for rotation (flexion/extension; lateral bending and axial rotation). The orientation of the thoracic facets (60° to the transverse plane and 20° to the frontal plane) gives no axial rotational restriction for each SMS. However the presence of the ribs prevents rotation making this region the least mobile of the spine. In the lumbar region (facets oriented 90° to the transverse plane and 45° to the frontal plane), flexion is the freest movement and lateral flexion, as well as axial rotation, is quite limited. While the
previous results are the most cited more recent studies have indicated they seem to present some inconsistencies [412].

The role of spinal complications is large. They can be caused by congenital malformations, trauma, degenerative disorders, inflammatory disorders, tumors, vascular disorders, postoperative disorders and metabolic disorders [369].
3. The Spinal Motion Segment: Its Anatomical, Histological and Mechanical Properties

The SMS is considered the smallest functional unit representing the general mechanical behavior of a given region of the spine [413-414] (figure 26). It consists of two adjacent vertebrae with the intervening disc and ligaments intact [414-423]. Nevertheless, depending on the purpose of the study, the ligaments may not be included, the IVD may be replaced by an artificial disc or the vertebrae may be fused [424-426].

![3D view of a spinal motion segment (SMS) and of the intervertebral disc (IVD). Ligaments are not represented.](image)

There are usually twenty-three complete SMS segments along the spine [371]. Details about the components of the SMS (vertebrae, IVD, the facet joints and the ligaments) will be provided in the following subsections. Emphasis will be given to their gross anatomy, some histological findings and biomechanical behavior.

3.1 The Vertebrae

Typical or true vertebrae have the same general structure, despite slight modifications due to their position and function [356]. With exception to the first two cervical vertebrae (C1 and C2) all other movable vertebrae share some common features that will be described. Slight but important characteristics in the vertebrae structure, responsible for their arrangement into the three movable regions, will not be attended. Moreover, the description of special attributes of some vertebrae (e.g., C6, C7, T1, T10, T11, T12 and L5) as well as the structure of highly modified vertebrae (e.g., C1 and C2) is also beyond the scope of this study.
All vertebrae comprise an anterior region and a posterior region. The first one is the vertebral body and the second one the vertebral or neural arch. These two regions enclose the vertebral foramen (figure 27).

![Figure 27 - A typical vertebra observed from different views. Left: perspective. Center: transversal view; right: sagital view.](image)

The human vertebra is made of bone. Bone has unique structural and mechanical properties. It is one of hardest structures of the body, it is highly vascularised and has an excellent self repair capacity being able to change its properties in response to mechanical demands [427].

Bone consists of cells (osteocytes) and an organic extracellular matrix. The matrix is composed of mineralized collagen fibers (≈95%) surrounded by gelatinous ground substance (≈5%) that works as a cementing substance between the layers of collagen fibers [407]. The high content of inorganic or mineral material is embedded in the collagen fibers. The composition of the inorganic material is an amorphous form of hydroxyapatite [427].

Due to the previous configuration bone tissue can be modeled as a two-phase or biphasic composite material, made of collagen and hydroxyapatite [407,427]. The collagen and ground substance represents one phase, the mineral and inorganic component the other [427]. A non biologic example of this kind of composite is fiberglass. The collagen fibers are capable to resist stretch but have little extensibility [407]. The minerals, mainly calcium and phosphate, give bone its consistency, hardness and rigidity [407]. In fact, the Young modulus of single-crystals of hydroxyapatite ranges between 54 and 79 GPa, a very stiff and strong material [428-429]. The Young modulus of bone may range between 16 and 22 GPa [430] which represents about 30% of that of single-crystals of hydroxyapatite.

Water represents about 25% of the bone total weight: about 85% in the bone’s ground substance and the remaining 15% in canals and cavities that house bone cells [407].
At the microscopic level the fundamental structure of cortical bone is the osteon (figure 28). The osteon is composed of a bone matrix organized in concentric series of layers surrounding a central canal (osteonic or Haversian canal) [407]. These layers, called lamellae, present small cavities (lacunae) at their boundaries, each containing one bone cell or osteocyte.

Figure 28 – Schematic representation of the osteon, the bone matrix and the Haversian system [Adapt.356].

At the macroscopic level bone is composed of two types of osseous tissue: the cortical or compact tissue, and the cancellous, trabecular or spongy tissue (figure 29).

Figure 29 – Midsagital cut view of a porcine vertebra.
Cortical tissue forms the cortex or the outer shell of the vertebra and has a supportive and protective function [431]. Cancellous bone is located inside the vertebra and is composed of thin plates, or trabeculae, in a loose mesh structure filled by red marrow [431]. Its function is mainly related to mineral homeostasis, but also supportive [431]. As mentioned, both tissues are arranged in concentric layers called lamellae (figure 28). However, the main anatomic difference between cortical and cancellous tissues is that the last does not contain the haversian canals [427].

The distribution of cortical and cancellous bone varies greatly between individual bones [431]. For example, a typical vertebra consists of 62% cortical and 38% of cancellous bone while the ulna is 92% cortical and 8% cancellous [431].

Cortical bone is denser than cancellous bone. At the macroscopic level, cortical bone porosity, or apparent density, varies from 5% to 30% and in cancellous bone from 30% to more than 90% [407]. The porosity of cancellous bone gives it a large capacity of storing energy and resisting strain before failure [407]. Both cortical and cancellous bone densities may vary substantially, from 1000 to 2000 kg m\(^{-3}\) [431-432] and from 300 to 1300 kg m\(^{-3}\) [431,433-434], respectively. In fact, cancellous bone can even be classified as a high density tissue if its density is equal or higher than 1180 kg m\(^{-3}\) [434]. The higher density of cortical bone makes it stiffer than cancellous bone. Its stiffness is more than ten times greater than that of cancellous bone [435]. The yield strength of cortical bone is about 140 MPa, while for cancellous bone is approximately 5 MPa [431]. Nevertheless, while it is capable of withstanding greater stress its strain tolerance is lower [427]. Its plastic deformation for ultimate strength is about 1% while for cancellous bone it is about 22% [431]. In fact, cortical bone will fail if strain exceeds 2% and cancellous only after 75% [436].

The mechanical properties of bone depend not only on bone density or composition, but also on bone structure (e.g., geometric shape, bond between fibers and matrix, and bonds at points of contact of the collagen fibers), sex, age, location of bone, load orientation, strain rate and specimen condition (e.g., wet or dry bone) [427].

The Young’s modulus is useful to quantify bone stiffness. While it should be measured in the linear portion of a stress/strain curve it was suggested that the elastic portion of the previous curve is not a straight line for cortical bone but it is slightly curved yielding somewhat during loading in the elastic region [437]. This is probably due to the collagen component of the bone, which has a tangent modulus of about 1.24 GPa [427].

Due to its macro and microstructure bone exhibits an anisotropic behavior, with mechanical properties that vary according to load direction [427,437-439]. Its strength and stiffness seems to be higher in the longitudinal direction than the transverse direction and, particularly, in the directions of the applied loads [438]. It was sustained that bone yields under tension due to the failure (debonding) of osteons at the cement lines (the boundary of an osteon) [407].

To consider the extent of deformation of bone before failure it is important to classify it as a brittle or a ductile material. However, bone tissue seems to exhibit both properties depending on its
The Spinal Motion Segment: A Review
The Spinal Motion Segment: Its Anatomical, Histological and Mechanical Properties

Age and load rate. Mature bone is less ductile and higher loading speeds make the bone more brittle [407]. Dry bone also seems also to be more brittle than wet bone. It fails at a strain of 0.4% while wet bone fails at 1.2% [440]. The effect of strain rate seems to be especially significant [427]. Higher ultimate strength was obtained at higher strain rate [427]. In table 4 and table 5 the Young modulus along with other mechanical properties of vertebrae bones and of the endplates are presented. These values have been implemented in several FEA studies.

Table 4 – Mechanical properties of vertebrae bones

<table>
<thead>
<tr>
<th>Material</th>
<th>Properties</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cortical bone</td>
<td>Exx = Eyy = 11.3 GPa ; Ezz = 22.0 GPa</td>
<td>[439,441]</td>
</tr>
<tr>
<td></td>
<td>Gxy = 3.8 GPa ; Gyz = Gxz = 5.4 GPa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vxy = 0.484 ; vyz = vxz = 0.203</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E = 12 GPa ; v = 0.3</td>
<td>[415,418,426,442-444]</td>
</tr>
<tr>
<td>Cancellous bone</td>
<td>Exx = Eyy = 0.14 GPa ; Ezz = 0.2 GPa</td>
<td>[439,441]</td>
</tr>
<tr>
<td></td>
<td>Gxy = Gyz = Gxz = 0.0483 GPa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vxy = 0.450 ; vyz = vxz = 0.315</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E = 0.1 GPa ; v = 0.2</td>
<td>[415,424,426,443-447]</td>
</tr>
<tr>
<td>Posterior bony elements</td>
<td>E = 3.5 GPa; v = 0.25</td>
<td>[439,448]</td>
</tr>
<tr>
<td></td>
<td>E = 3.0 GPa ; v = 0.3</td>
<td>[329,426]</td>
</tr>
</tbody>
</table>

E: Young’s modulus; G: Shear modulus; v: Poisson’s ratio

Table 5 - Mechanical properties of the endplates

<table>
<thead>
<tr>
<th>Material</th>
<th>Properties</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bony endplates</td>
<td>E = 4.0 to 12.0 GPa ; v = 0.3</td>
<td>[439]</td>
</tr>
<tr>
<td>Outer portion</td>
<td>E = 12.0 GPa ; v = 0.3</td>
<td>[426,449]</td>
</tr>
<tr>
<td>Intermediate portion</td>
<td>E = 6.0 GPa ; v = 0.3</td>
<td></td>
</tr>
<tr>
<td>Center (inner)</td>
<td>E = 2.0 GPa ; v = 0.3</td>
<td></td>
</tr>
<tr>
<td>Cartilaginous endplates</td>
<td>Isotropic: E=23.8 MPa; v=0.4</td>
<td>[421,439,441]</td>
</tr>
<tr>
<td>Endplates</td>
<td>E=2.5 GPa; v=0.3 (=PMMA)</td>
<td>[450]</td>
</tr>
</tbody>
</table>

E: Young’s modulus; G: Shear modulus; v: Poisson’s ratio; PMMA: Polymethylmethacrylate
3.1.1 The Vertebral Body

The vertebral body (corpus vertebrae) or centrum is the largest part of a vertebra and is located anteriorly (figure 30).

The upper and lower surfaces of the body are approximately cylindrical in shape and present a cortical rim (epiphyseal ring) around their external contour (figure 30) [356].

The anterior surface of the vertebral body is convex viewed from the transverse plane and concave in the sagittal plane (figure 30). The posterior surface is moderately concave from the transverse plane and approximately flat in the sagittal plane (figure 30).

![Diagram of vertebral body](image)

Figure 30 – The vertebral body of a vertebra is located anteriorly.

The vertebral body is composed of cortical bone on the outside and cancellous bone on the inside (figure 29). Based on direct and CT observations it was suggested that the thickness of the cortical bone of the vertebral endplates (≈0.5 mm) is greater than that of the vertebral wall (≈0.35 mm) [451].

3.1.2 The Vertebral Arch

The vertebral arch is made up of paired pedicles, paired laminae and seven spinal processes (the spinous process, two pairs of articular processes, and two transverse processes) (figure 31).
The previous anatomical components can be described as follows [356]:

- Pedicles (radices arci vertebrae) are two short and thick processes projected backward, one on either side, from the upper part of the body, at the junction of its posterior and lateral surfaces (figure 31). The concavities above and below the pedicles are named the vertebral notches forming the intervertebral foramina in the SMS. The intervertebral foramina gives passage to the spinal nerves and vessels (figure 32);
Laminae are two large plates directed backward and medially from the pedicles to complete the vertebral arch and fuse at the spinous process (figure 31);

The four articular processes, two superior and two inferior, on either side of the vertebra, are also formed at the junction of the pedicles and laminae and possess articular surfaces (articular facets) that participate in the facet joints (zygapophyseal or apophyseal joints). The two superior articular processes project upward and face dorsally. The two inferior articular processes project downward and face ventrally (figure 31). Their spatial orientation defines the DOF and ROM of each SMS and of the entire spine;

The two transverse processes (processus transversi) are formed at the junction of the pedicles and laminae, one on either side, between the superior and inferior articular processes and project laterally (figure 31);

The spinous process (processus spinosus) is the most posterior part of the vertebra having a central location and being directed backward and downward from the junction of the laminae (figure 31).

3.1.3 The Endplates

At the top and bottom of each vertebral body there is a thin cartilaginous plate, the endplates, sometimes regarded as part of the body sometimes as part of the IVD [367]. The endplates form the junction between the vertebral body and the IVD and are made of two distinct components: the hyaline cartilage and the osseous component [452-453]. The endplates are responsible for the nutrition of the disc through diffusion of fluids and nutrients since the blood vessels surrounding the disc disappear during the early phases of development [454]. Their thickness is about 0.35 mm in lumbar elements [451].

3.2 The Intervertebral Disc

The IVD is a fibrocartilaginous structure found between adjacent vertebrae of the spine [372] (figure 33). It represents the anterior joint of the SMS, a symphysis cartilaginous joint [455]. It is the largest avascular and aneural structure in the body [456].

There are twenty-three IVD in the normal spine and they represent approximately 20 to 33% of the spine length above the sacrum [367,457-458]. On average IVD thickness is about 3.5 mm in the cervical region, 5 mm in the thoracic region, and 9 mm in the lumbar region [355,459]. In the lumbar region the discs are thicker than elsewhere and they account for 30 to 36 % of the height of the lumbar spine [367].
The Spinal Motion Segment: A Review
The Spinal Motion Segment: Its Anatomical, Histological and Mechanical Properties

Despise variations in geometry the structure of the IVD is almost the same for all discs of the spine. Basically, it has two main components, the nucleus pulposus (NP) and the annulus fibrosus (AF) (figure 34). Yet, at the top and bottom of each vertebral body there is a thin cartilaginous plate, the endplates, sometimes regarded as part of the vertebral body sometimes of the IVD [367].

3.2.1 The Nucleus Pulposus
The NP is defined as a semi-fluid, amorphous, highly hydrated and proteoglycan-rich region located in the center of the IVD and surrounded by the AF [19,452,460-461] (figure 34). It can also
be located in a somewhat eccentric position, slightly posterior, as it seems to occur for cervical and lumbar discs [462-464].

The NP occupies a significant volume of the IVD. In the case of lumbar specimens, on average, it represents 43% of the disc volume [462] and 60% of the cross-sectional area of lumbar discs [465]. In cervical IVD the NP seems to occupy a smaller area since its diameter represents on average about 38% of the disc diameter [463].

The NP consists of a dense and random three dimensional (3D) network of collagen fibers enmeshed in an extracellular matrix rich in proteoglycans and water [466-469]. Thus, the main components of the NP are water, proteoglycans and collagen.

Between 80% of the NP weight is due to water molecules [467]. Water content varies with age [467,470], health state [471] and the loads applied to the spine [472-473]. It also suffers diurnal changes loosing water during the active day and recovering it during the resting night. Lumbar discs, for example, lose and regain approximately 20% of water every day [474] and most of the loss occurs during the first hour of the morning [475]. Interestingly a permanent loss of 20% of water seems to occur with aging [467]. Water loss can be simulated in vitro submitting the IVD to a compressive load of 150N during a period of two to six hours [463,476]. It was confirmed that a reduction of about 0.50 mm in the height of a cervical SMS under a compressive load of 150N corresponds to a loss of 10% in the height of the IVD [463].

Proteoglycans contribute to about 50% of the NP dry weight [456]. They present a core protein to which glicosaminoglycans (GAG), or mucopolysaccharides, are linked [452,454,466]. These GAG are heteropolysaccharides with highly negatively charged molecules that are capable of absorbing sodium and water (the NP hydrophilic property) [454]. This protein polysaccharide complex is often called a mucoprotein gel [466] and is responsible for the hydrostatic and viscous nature of the IVD [469].

Collagen accounts for about 15 to 20% of the dry weight of the NP [456]. Predominant collagen is of type II while type I collagen seems to be absent [372]. Spherical chondrocyte-like cells that synthesize the type II collagen and similar to those seen in articular cartilage are also present in the NP [477-480]. Collagen type II is thought to resist compressive load [478].

In the mechanical view the NP is considered to be incompressible [421,426,439,481-482] or a pure Newtonian fluid with a bulk modulus [443]. It seems to exhibit an isotropic and hydrostatic behavior [421,439,463], well designed to act as a cushion, increasing the intradiscal pressure linearly under compressive load [259,465,478,483].

In the anatomic position the IVD is already submitted to a continuous pressure caused by the weight of the body above the disc level and the residual muscle tension or tonus. This pressure is measured in the NP and seems to depend on the applied load relative to disc area. Both parameters increase in the cephalocaudal direction, particularly from one region to another,
suggesting the increase in disc area compensates the increase in load. Moreover, IVD stresses seem to be inversely proportional to disc size [463] suggesting the increase in area is the most relevant factor and contributes effectively to a reduction of pressure. In fact, the pressures in the cervical discs seem to be higher than those in lumbar discs [483]. In the cervical region of cadaveric specimens, the corresponding average pressure (from C2-C3 to C7-T1) in neutral position was about 1.09 MPa for a load of 200N representing the combined effects of head weight and muscle tension [463]. Higher loads lead to higher pressures as observed in the study of Cripton et al. [483]. In this study pressure increased linearly with compressive loading up to 800N, while depending on the disc level. At the maximum load of 800N disc pressure was about 2.4 MPa for C4-C5 level and 3.5 MPa for C3-C4 level [483]. In the lumbar discs, in vivo studies reported a disc pressure of 0.5 MPa at the level L4-L5, with the subject in the anatomical reference position [307,484]. The same pressure was observed for a compressive load of 500N [485]. For compressive loads of 800N lumbar disc pressures did not exceeded 1 MPa [486]. In FEA lumbar pressures usually do not exceed 2 MP [421,482]. As a “gross” rule it was proposed that a load of 1 kN leads to a pressure of 1.0 MPa in lumbar IVD and 3.75 MPa in cervical IVD [483]. Finally, in the thoracic region the in vivo average pressures found in upright standing for the upper region (T6-T7 and T7-T10) and lower region (T9-T10 and T10-T11) were of 1.01 and 0.86 MPa, respectively [487].

In table 6 some physical and mechanical properties of the NP that have been implemented in FEA studies of lumbar discs are presented.

<table>
<thead>
<tr>
<th>Properties</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isotropic, incompressible, hyperelastic Mooney-Rivlin formulation.</td>
<td>[439]</td>
</tr>
<tr>
<td>(C_1 = 0.12; C_2 = 0.03; \nu = 0.4999)</td>
<td></td>
</tr>
<tr>
<td>Incompressible, fluid-filled cavity</td>
<td>[421]</td>
</tr>
<tr>
<td>(\rho = 1.0 \times 10^{-6} \text{ kg/mm}^3)</td>
<td></td>
</tr>
<tr>
<td>(E = 0.1 \text{ MPa} ; \nu = 0.499)</td>
<td>[329,418,426,442,446-447]</td>
</tr>
<tr>
<td>(K = 2.5 \text{ MPa})</td>
<td>[443]</td>
</tr>
</tbody>
</table>

E: Young’s modulus; \(C_1\) and \(C_2\): material constants; \(K\): bulk modulus; \(\nu\): Poisson’s ratio; \(\rho\): density

3.2.2 The Annulus Fibrosus

The AF is a solid elastic ring that forms the main mass of the disc and encloses the NP [452]. It attaches above and below to the central portions of the endplates, to the cortical ring and to the sides of the vertebral bodies [460]. Its peripheral portion also fuses to the anterior and posterior longitudinal ligaments, making them inseparable [460].
Water is the main component of the AF and represents on average 70% of the AF weight [467,488]. Collagen fibers represent about 65 to 70% of the dry weight of the AF [456]. Proteoglycans account for about 10 to 20% of the dry weight of the AF [456].

For mechanical and modeling purposes the AF can be considered as a composite material with a homogeneous ground substance (matrix) reinforced by a collagen fiber network.

The homogeneous ground substance or matrix (mesenchyme) fills the space between the collagen fibers and is described as an amorphous proteoglycan-rich gel [461].

The collagen fiber network was observed for the first time in 1932 by Beedle [489] and it is made of lamellae, a series of discontinuous concentric layers [460,490] that may range between 10 to 25 [372,490-491]. Some layers can merge into each other [492-493]. The posterior AF seems to present fewer distinct lamellae, and subsequently a greater number of incomplete lamellae as compared to the anterior AF [493].

Intra and inter-lamellar matrices of ground substance can be distinguished [469]. The intra-lamellar matrix is the connective tissue found between parallel collagen fibers. It functions to keep collagen fibers tightly bound together. The inter-lamellar matrix is comprised of similar components but is located between adjacent layers of the annulus, and helps to prevent delamination between these layers.

The relative volume content of the collagen fibers with respect to the surrounding ground substance may vary. An average value of 19% was proposed [415,426,446]. However it may vary accordingly to the fibers location, for example, from 23% at the outer layer to 5% at the inner fiber layer [441].

Within each lamella the collagen fibers are arranged parallel to each other, making approximately a 30° angle to the transverse plane [461,490-491,494]. In consecutive lamellae slope orientation alternates from positive (counterclockwise) to negative (clockwise) [490]. Nevertheless, this slope seems to vary according to the region of interest as it was observed for the outer AF fibers, varying from 23° anteriorly to 47° posteriorly [495-496].

The highly orientated and layered structure of the collagen fibers of the AF suggests that its behavior is nonlinear and anisotropic [443]. Thus, for FEA purposes it is usually modeled as an anisotropic material with hyper elastic properties [421,443,497]. These hyper elastic properties are probably due to the elastic fibers that run parallel to type I collagen fibers in the intralamellar space and have a less isotropic arrangement in the interlamellar space [461]. These fibers are responsible for the resilience and low strain stiffness of the AF, complementing the role of collagen fibers [461]. Their density in lumbar disc is significantly higher in the posterolateral region than the anterolateral one as well as in the outer regions, rather than the inner regions of the AF [461].

Equally, the morphology of the collagen fibers seems to vary according to the region of interest. The inner AF is more similar to the NP in its composition, presenting more type II collagen than
type I [372,477-478,480]. At the extreme portions of the outer AF only type I collagen seems to exist [461]. The thickness of each lamella in the inner annulus is approximately 300 µm while it is of approximately 130 µm in the outer [490-491].

The outer AF is composed primarily of collagen type I, which is more elastic than type II [372,467,491] and gives the AF the ability to deform and restrain the NP content when the IVD is loaded. These loads can occur parallel, perpendicular or circumferentially to the collagen fibers [498-499] affecting the mechanical properties of single or multiple layers of the AF. Collagen type I is considered to resist tensile rather than compressive forces [478]. Type I collagen is synthesized by the fibrochondrocyte-like disc cells. These cells are elongated and fusiform, with long processes radiating from the cell bodies and parallel to the collagen fibers, and are thought to act as mechanoreceptors [477,480].

Maximal physiologic circumferential strains observed along the outer AF are about 4% in compression or torsion, and about 6% when in flexion or extension [500]. A FEA study suggested the maximal strains of the AF are about 10 and 20% during symmetric and non-symmetric lifting activities, respectively [501]. They seem to be higher in the innermost AF layer at the posterolateral location [501].

The Young’s modulus and tensile strength seem to be higher in the direction parallel to the collagen fibers [502]. In the case of single lamella specimens the Young’s modulus ranged from 28 to 78 MPa [495]. It was of 0.22 MPa when load was applied perpendicular to the collagen fibers [495]. Failure stress was also calculated for single lamella of lumbar discs and results suggested a dependence on their location on the AF [498]. In the AF anterior outer portion the results were of 10.3 ± 8.4 MPa and higher than those observed for the anterior inner portion (3.6 ± 2.0 MPa) [498]. Those of the posterior outer portion (5.6 ± 3.2 MPa) were slightly lower than the observed for the posterior inner portion (5.8 ± 2.9 MPa). Nevertheless, adjacent single lamellae seem to have similar tensile strength, suggesting local uniformity in the AF mechanical behavior [498].

The collagen fibers are also capable of changing their orientation with tension forces [469]. During axial compression and circumferential tension the fibers become closer to horizontal [503-504]. During flexion the anterior fibers also become closer to the horizontal but the posterior fibers become closer to vertical [503-504]. Under torsion the fibers in every second layer become slack and their angle closer to the vertical, while the fibers in the alternating layers become more tense and horizontal [503].

The contribution of inter-lamellar cohesion to the strength of the outer lamellae seems to be low [505-506]. In fact if stretched perpendicularly to the direction of the fibers, the adjacent lamellae are easily pulled apart [505-506]. This delamination phenomenon was proposed to explain the mechanism of herniation progression [507] in which the NP squeezes through the AF pushing through weak inter-lamellar bonds rather than rupturing the AF fibers [469].
Shear mechanical properties of human lumbar annulus were also analyzed. Results suggested that, in thin transverse slices of the anterior AF, shear modulus increase with strain rates and decreases with strain magnitude [508]. It was also observed that shear modulus was higher in the axial than in the circumferential direction; the outer higher than the inner [506].

In table 7 some mechanical properties of the AF that have been implemented in FEA studies are presented.

<table>
<thead>
<tr>
<th>Material</th>
<th>Properties</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground substance</td>
<td>isotropic, incompressible, hyperelastic Mooney-Rivlin formulation.</td>
<td>[439]</td>
</tr>
<tr>
<td>(ground matrix)</td>
<td>C1 = 0.18 ; C2 = 0.045 ; v = 0.45</td>
<td></td>
</tr>
<tr>
<td>Isotropic.</td>
<td>E = 4.0 MPa ; v = 0.4</td>
<td>[421]</td>
</tr>
<tr>
<td>E = 4.2 MPa ; v = 0.45</td>
<td>[329,415,418,426,442,446-447]</td>
<td></td>
</tr>
<tr>
<td>Collagen fibers</td>
<td>nonlinear function obtained from stress strain curve</td>
<td>[439,448]</td>
</tr>
<tr>
<td>Isotropic, no compression</td>
<td>E = 45 MPa</td>
<td>[421]</td>
</tr>
<tr>
<td>nonlinear behavior</td>
<td>Outermost fiber layers E = 550 MPa ; v = 0.3</td>
<td></td>
</tr>
<tr>
<td>Intermediate fiber layers</td>
<td>E = 485 MPa ; v = 0.3</td>
<td>[329,426,442,509]</td>
</tr>
<tr>
<td>Intermediate fiber layers</td>
<td>E = 420 MPa ; v = 0.3</td>
<td></td>
</tr>
<tr>
<td>Innermost fiber layers</td>
<td>E = 360 MPa ; v = 0.3</td>
<td></td>
</tr>
</tbody>
</table>

E: Young’s modulus; C1 and C2: material constants; v: Poisson’s ratio

3.3 The Facet Joints

The articular processes of adjacent vertebrae create a joint which is called the facet joint (zygapophyseal or apophyseal joints) (figure 35). There is a facet joint on each side of the SMS, typically behind the spinal nerves as they emerge from the central spinal canal. The surfaces of the facet joint are capped with cartilage and the joint is contained in a capsule lined by synovium.
The Spinal Motion Segment: A Review
The Spinal Motion Segment: Its Anatomical, Histological and Mechanical Properties

Figure 35 – Location of the facet joints.

The facet joints are gliding synovial joints and contribute to support the weight above them and to control movement between individual vertebrae of the spine [455]. In fact, these joints are capable of accomplishing two important functions: give kinematic constraints to the movement of the SMS and to withstand the loads applied to the SMS [409].

The two facet joints together with the IVD form the SMS joint complex. Usually, abnormalities of any one of the three affects the other two [510]. However, it is also possible that degenerative changes in the disc may reach a marked degree without severe changes in the facet joints or vice-versa [510].

In several studies the facet cartilage was assumed to be multilinear elastic in compression [439,446]. The facet joints can be modeled as planar surfaces interacting with a frictionless exponential pressure-over-closure relationship reflecting frictionless nonlinear contact properties [417,426,446,511-512]. In the case of compressive forces, the facet joints seem to be capable of sustaining up to approximately 30% of the load, particularly when the spine is in hyperextension [513].

3.4 The Ligaments

The ligaments of the spine can be classified as multisegmental or intersegmental. Multisegmental ligaments run along the entire spine and intersegmental are attached between the spinal processes of adjacent vertebrae. The major ligaments of the spine are distinguished as follows [460] (figure 36):
- The anterior longitudinal ligament (ALL): a multisegmental vertical band of fibrous tissue. It has uniform width and is very strong, being firmly attached to the whole anterior and medial surface of each vertebral body;
- The posterior longitudinal ligament (PLL): a multisegmental vertical band of fibrous tissue, which is attached to the IVD and to the superior and inferior margins of the vertebral bodies;
- Supraspinous ligament (SSL): a multisegmental ligament that runs on top of spinous process from the cervical region to the sacrum;
- Interspinous ligament (ISL): an intersegmental ligament connecting the spinous processes of adjacent vertebrae, namely, the inferior edge of the superior spinous process to the superior edge of the inferior spinous process;
- Ligamentum flavum (LF): an intersegmental ligament connecting the laminae of adjacent vertebrae;
- Intervertebral ligament (ITL): an intersegmental ligament connecting the transverse processes of adjacent vertebrae;
- Capsular ligament (CL): an intersegmental ligament which is part of the articular capsule of the facets joint.

Figure 36 – Partial mid-sagittal cut view of multisegmental and intersegmental ligaments of the spine [356].
In table 8 some geometric properties of the spinal ligaments of a lumbar SMS are presented.

<table>
<thead>
<tr>
<th></th>
<th>ALL</th>
<th>PLL</th>
<th>LF</th>
<th>ISL</th>
<th>SSL</th>
<th>CL</th>
<th>ITL</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (mm)</td>
<td>10</td>
<td>10</td>
<td>16.5</td>
<td>14.25</td>
<td>13</td>
<td>4.8</td>
<td>4.8</td>
<td>[426]</td>
</tr>
<tr>
<td>Cross-sectional area (mm²)</td>
<td>63.7</td>
<td>20</td>
<td>40</td>
<td>30</td>
<td>40</td>
<td>30</td>
<td>30</td>
<td>[418,442,447]</td>
</tr>
</tbody>
</table>

A natural ligament exhibits strong nonlinear load/deformation behavior [481].

In table 9 some mechanical properties of the spinal ligaments that have been implemented in FEA studies are presented.

<table>
<thead>
<tr>
<th>Ligament properties</th>
<th>ALL</th>
<th>PLL</th>
<th>LF</th>
<th>ITL</th>
<th>CL</th>
<th>ISL</th>
<th>SSL</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small strain Young’s modulus (MPa)</td>
<td>7.8</td>
<td>10</td>
<td>15</td>
<td>10</td>
<td>7.5</td>
<td>8</td>
<td>10</td>
<td>[418,442,447]</td>
</tr>
<tr>
<td>Young Modulus (MPa)</td>
<td></td>
<td>Isotropic E = 6 to12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[418,442,447]</td>
</tr>
<tr>
<td>Transition strain (%)</td>
<td>12</td>
<td>11</td>
<td>6.2</td>
<td>25</td>
<td>25</td>
<td>20</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Large strain Young’s modulus (MPa)</td>
<td>20</td>
<td>50</td>
<td>19</td>
<td>33</td>
<td>33</td>
<td>15</td>
<td>12</td>
<td>[418,442,447]</td>
</tr>
<tr>
<td>Max. failure load (N)</td>
<td>510</td>
<td>384</td>
<td>340</td>
<td>284</td>
<td>284</td>
<td>130</td>
<td>200</td>
<td>[481]</td>
</tr>
</tbody>
</table>

ALL: anterior longitudinal ligament; PLL: posterior longitudinal ligament; LF: ligamentum flavum; ISL: inter spinous ligament; SSL: supra spinous ligament ITL: intertransverse ligament; CL: Capsular Ligament;
4. Guidelines for Testing

Some standardization exists concerning the study of the spine. The majority of standards have been published by ISO and the American Society for Testing and Materials (ASTM International) to regulate the design and implantation of spinal implants or prostheses and ensure good implantation results. Spinal implants are foreign bodies which are used to replace degenerated spinal components functioning below an acceptable level, for example a degenerated and painful IVD. Nevertheless, whenever applicable or possible, the same standards can be followed or adapted to perform experimental studies with other purposes. In fact, the best and effective way to compare results from different sources is to apply the same standardized test protocols.

The ISO category that regulates spinal implants has the International Classification for Standards (ICS) number 11.040.40. These standards have been published by the ISO Technical Committee (TC) 150, named “Implants for surgery”, which was created in 1971. The Deutsches Institut für Normung (DIN) is the TC150 secretariat. Presently, ISO TC150 is formed by seven subcommittees (SC) and three working groups (WG). The complete reference where spinal implants standards can be found is the ISO TC150/SC5. This reference can be found in the ISO catalogue along with other important standards related with the process of testing medical devices.

The ASTM Committee F04 (Medical and surgical materials and devices), particularly the subcommittee 025 are the appropriate ones to find standards concerning spinal implants and prostheses. Besides F04.025 subcommittee, significant information can be also found in standards published by subcommittees, F04.11 (Polymeric materials), F04.12 (Metallurgical materials), F04.13 (Ceramic materials), F04.15 (Material test methods), F04.16 (Biocompatibility test methods), F04.21 (Osteosynthesis), F04.22 (Arthroplasty), F04.41 [Classification and terminology for tissue engineered medical products (TEMPs)], F04.42 (Biomaterials and biomolecules for TEMPs), F04.43 (Cells and tissue engineered constructs for TEMPs) F04.44 (Assessment for TEMPs), and F04.97 (Editorial and terminology).

The papers published by Panjabi et al. [515-517], Ashman et al. [518], Adams [519-520], Wilke et al. [414,521-524], and Goel et al. [525] are also among the most valuable resources addressing spinal testing protocols.
The Spinal Motion Segment: A Review
Guidelines for Testing

Usually, a complete set of standards for testing implantable spinal devices includes the topics of biocompatibility, materials requirements, mechanical testing, FEA, in vivo animal testing, and clinical trials [525]. For the purpose of the present work the topics of mechanical testing and in vivo animal testing are the most relevant and will be addressed.

The mechanical testing of SMS requires ex vivo specimens and loading machines. These experiments are of major importance in the case of spinal implants since they represent the step before in vivo animal testing and clinical trials. They are also important to test new sensors and surgical techniques, or to validate the results obtained from FEA studies.

4.1 Ex Vivo and In Vivo Specimen

Ideally, healthy human cadaveric and fresh specimens are preferred. In the fresh state specimens should be tested few hours after death and dissection [526-527]. Formalin-fixed specimens have their biomechanical properties affected and are not recommended for biomechanical and clinical testing [521,528-529]. Degenerated and osteoporotic spines as well as those with significant injury or tumors should not be used as well, particularly for testing spinal implants [414]. Nevertheless, several recommendations exist to implant spinal devices in osteoporotic spines [530-532]. The quality of the IVD and bone should be assessed from quantitative measures obtained with CT, MRI or other methods [414,533]. Several factors can affect the vertebral bone density such as race, age, sex, menopause, nutrition and physical exercise [534-538].

More than one specimen has to be tested to allow statistical analysis, particularly for repeatability and reproducibility. In the case of spinal implants six specimens are recommended [414], and groups should be formed accordingly to sex, age, cause of death, bone mineral density and length [414,525].

Specimens should be sealed in double or triple plastic bags. If it is not possible to test them fresh, they have to be stored frozen at -20 to -30 °C and thawed out several hours before testing [259,414,539-540]. Freezing and thawing out at room temperature seems to have little effect on the biomechanical behavior of the bone and soft tissues [515,541-543]. Even so, the time spent in the thawed condition at room temperature should be reported, because the properties of the specimens after twenty hours will begin to change [414,419]. Moreover, freezing seems to modify the ultimate compressive load of the SMS and its creep behavior [544-545]. Tests should be performed between 20° and 30 °C [414]. Higher temperatures can accelerate the cellular autolytic process and compromise the biomechanical properties of the specimen [414].

Mechanical tests on soft tissues are usually performed with the specimen immersed in a physiological solution at constant temperature. In some studies the SMS specimen was kept in a

7 A more complete description of spinal implants, standards and testing protocols can be obtained from the report of Intelligent and Bio-inspired Products: Spinal implants and Prostheses (see Academic Work, p.7).
Ringer’s solution before and during the tests [546]. Nevertheless full immersion of the specimen can introduce artifacts during mechanical testing [419,547-549]. Swelling can either be reversed or prevented by axial compression in the physiologic range or with iso-osmotic solutions [547-548].

Specimens also need to be protected against drying. A 100% humidity chamber should be used for that purpose [414]. Alternatively, dehydration can also be prevented wrapping the specimens loosely in plastic, a food-packaging wrap or in gauze tissue moistened with saline [414,540]. Spraying the specimen intermittently with 0.9% saline further assures its moist condition [414] and has a negligible effect on the mechanical behavior of the specimen [419]. Hydrophilic samples should be pre-soaked prior to testing and then the initial weights should be recorded accordingly.

Extrapolations from experiments with ex vivo or even in vivo animal specimens to human purposes may be controversial [414,516,525]. In fact, there are substantial anatomical differences between humans and animal specimens that may compromise the validity of the results [550]. Most reliable data is obtained when tests are performed directly on living subjects or on human cadaveric specimens [414,551]. Even so, a cadaveric model will not accurately represent the response of the spine or the SMS to loading in vivo [551]. For example, the muscle forces are usually neglected because muscles are dissected from the specimen. Nevertheless, animal specimens must not be underestimated. In the case of spinal implants, for example, ex vivo and in vivo animal experiments are mandatory before clinical trials. Some animal specimens such as the calf and sheep are considered to be valid for specific purposes, such as for ROM measurements, study of the stabilization capacity of spinal implants, and disc hydration [414,522,524,550,552-553]. Furthermore, in the case of spinal implants, there is a strong basis to compare the output data of new implants to those that were tested before and approved for human use [414]. The use of other animal species should also not be neglected. It has been useful to test new approaches, methodologies and techniques with potential to be explored in veterinary or human applications [20,552]. Still, in such cases and taking the ideas just presented into account, the results should not be extrapolated to human purposes, particularly if no human data is available.

Major risk concerning use of cadaveric specimens is infection (AIDS, hepatitis and others) [414].

In vivo animal testing is performed to assess the structure, function, histology, and the biomechanics of the device in situ, a final and decisive step before clinical trials [525]. Use of comparable surgical techniques and approaches as in humans is strongly recommended [525].

Animal welfare requirements are standardized (ISO 10993-2:2006).

Several species have been used, from rats to rabbits, sheep [524,554], goats, dogs [555], pigs and baboons [525,556]. The sheep and the baboon are often used for the cervical and lumbar regions, respectively, and to evaluate interbody devices [525,554]. Smaller primates can be used to...
approximate load modes, but larger primates, such as baboons, are required to simulate both load magnitude and direction [525].

Animals are particularly suitable to evaluate both implant and implant-tissue interface behavior, such as resorption (for instance with polylactic acid and/or polyglycolic acid devices), static compressive strength, wear, cracking, and deterioration [525]. The interface may be investigated for subsidence (endplate deterioration), fixation (migration of the device), ingrowth (into osteoconductive coatings), and possible wear debris effects on neural elements and surrounding tissues [525].

In most animal studies, a systemic analysis is also commonly performed, including the histopathologic response in local and systemic tissues to device material and possibly wear debris generated in non-failure and failure modes [525]. Pathologic assessment for all tissues should include but not be limited to comments on the architecture of the tissues and the presence of wear debris, as well as any signs of foreign-body giant-cell and/or granuloma inflammatory reactions, degenerative changes, or autolysis [525]. For motion preservation devices, the segmental stiffness properties through the normal ROM may be investigated [525].

Limitations of animal studies, as was already mentioned for ex vivo research, include dissimilarities between human and animal spines with respect to the spinal loads, spinal motions, anatomy, and the difficulties in adjusting a spinal device (or sensor) to properly fit the animal spine [525].

4.2 Spine Wear Simulators

A loading device or a spine loading simulator is a special test apparatus in which spinal specimens can be mounted and tested under defined loading conditions [414]. These simulators are mandatory to characterize the in vitro or ex vivo mechanical behavior (e.g., wear) of new spinal devices and compare them with those clinically accepted [557-558]. They have been designed to replicate the static and dynamic loading conditions, motion patterns and lubrication/physiologic conditions that are observed in vivo. To accomplish the previous purpose, a spine loading simulator should fulfill ISO standards, namely the ISO 18192-1 (Loading and displacement parameters for wear testing and corresponding environmental conditions for tests) [414,557-558]. Some general guidelines of ISO 18192-1 include:

- Test specimens from all spine regions;
- Test single SMS, multiple SMS and entire spines;
- Allow the specimen to move freely in all six DOF;
- Apply all the six loading components separately, in both directions, and without manipulation;
- Provide all loading combinations;
• Allow application of loads in a continuously or in stepwise mode.

ISO 18192-1 also defines the loading and motion profiles for cervical and lumbar SMS as well as the lubrication requisites. In table 10 these parameters are compared to the ASTM F2423-05 (Standard guide for functional, kinematic, and wear assessment of total disc prostheses) [559].

Table 10 – Comparison between ISO 1892-1 and ASTM F2423-05

<table>
<thead>
<tr>
<th>Test parameters</th>
<th>ISO 1892-1</th>
<th>ASTM F2423-05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loading profile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cervical Load limit (N)</td>
<td>50-150</td>
<td>100</td>
</tr>
<tr>
<td>Lumbar Load limit (N)</td>
<td>600-2000</td>
<td>1200</td>
</tr>
<tr>
<td>Frequency (Hz)</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Tolerance (%)</td>
<td>±5</td>
<td>±5</td>
</tr>
<tr>
<td>Motion profile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flexion/extension (FE)</td>
<td>±7.5°</td>
<td>±7.5°</td>
</tr>
<tr>
<td>Lateral bending (LB)</td>
<td>±6.0°</td>
<td>±6.0°</td>
</tr>
<tr>
<td>Axial rotation (AR)</td>
<td>±4.0°</td>
<td>±4.0°</td>
</tr>
<tr>
<td>Phase angles</td>
<td>LB phased by 90° from FE; AR and LB phased by 180°</td>
<td>User defined</td>
</tr>
<tr>
<td>Frequency (Hz)</td>
<td>1.0 (up to 2.0)</td>
<td>2.0</td>
</tr>
<tr>
<td>Tolerance</td>
<td>± 0.5° at the peaks</td>
<td>± 0.5° at the peaks</td>
</tr>
<tr>
<td>Lubrication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>37±2 °C</td>
<td>37±3 °C</td>
</tr>
<tr>
<td>Protein additives</td>
<td>Sodium Azide or other anti-bacterial/antimycotic and ethylenediaminetetraacetic acid (EDTA)</td>
<td></td>
</tr>
<tr>
<td>Protein concentration</td>
<td>30g/l</td>
<td>20g/l</td>
</tr>
<tr>
<td>PH monitoring</td>
<td>optional</td>
<td>Not mentioned</td>
</tr>
<tr>
<td>Fluid collection</td>
<td>0.5 million cycles</td>
<td>1.0 million cycles</td>
</tr>
</tbody>
</table>

Regardless of the loading protocol that can be used, a “free-end model” approach is recommended in the construction of spine simulators [557]. In this approach loads are applied to the cranial vertebra, while the caudal vertebra is fixed and reacts to the forces. A six-component load cell is fixed into the base of the loading machine to measure the net reaction forces applied to the caudal vertebra [414]. Thus, fixing the specimen to the holder of the spinal loading simulator is a critical step. The caudal vertebra should also have an orientation approximating that in situ and matching the global coordinate system of the test apparatus [414]. If compression loads are the only to be applied, depending on the SMS that is used, it may be necessary to partially cut the
cranial and caudal vertebral bodies to maintain them parallel and ensure one DOF in load application [138]. Both, the cranial and caudal segments, should be potted in a suitable polymeric or low-melting-point alloy, such as PMMA [414,557]. Anchoring the specimen in the potting medium may be improved with screws set partly into the specimen and several thread-pitches and the screw head jutting into the potting [138,414].

Wilke et al. [414] have also presented a set of procedures to accomplish during testing of spinal implants:

- The project title and number;
- Specimen data, including sex, age, weight, cause of death;
- Preparation methods;
- Test series order;
- Moment and distraction magnitudes for screws, clamps, and hooks;
- Test apparatus drawings and functional description;
- Preconditioning of specimens;
- Environmental conditions (temperature, humidity);
- Control parameters (loading magnitude and speed);
- Test duration.

These procedures can be followed or adapted to many other experiments and will contribute for the reproducibility of the results and better data comparison. To follow the previous guidelines seems a relatively easy task if research centers possess a well-designed spinal loading simulator. Nevertheless, those commercially available are quite expensive (their price may exceed €250,000.00) and for that reason many research centers have to customize their loading simulators and protocols, which may difficult data comparison [560-561].

Some of the current commercially available spine simulators are (figure 37):

- the PROSIM Hip & Spine Implant Wear Simulator (Simulation Solutions Ltd, UK; www.prosim.co.uk);
- the Bionix® Spine Wear Simulator (MTS, MN, USA; www.mts.com);
- the EndoLab® Spine Simulator (EndoLab® Mechanical Engineering GmbH, Thansau, Deutschland; www.endolab.org);
- AMTI simulators (AMTI, MA, USA; www.amti.biz), such as the ADL Hip Simulator, ADL Force 5, and the VIVO™ simulator;
- the BioPuls™ Multi-axial Spine Testing System (Instron, MA, USA; www.instron.us);
- Bose simulators (Bose Corporation ElectroForce Systems Group, MN, USA; http://worldwide.bose.com/electroforce), such as the multi-axial Kinematic Spine Simulator, the ElectroForce Spinal Disc Fatigue/Wear system, and the Multi-specimen ElectroForce® BioDynamic® test instrument.

Figure 37 - Spine simulators [Adap. 562,563-569].

A comparative description of some of these simulators is listed in table 11.
Table 11 – Comparison of basic features of some loading simulators

<table>
<thead>
<tr>
<th>Features/Simulator</th>
<th>PROSIM</th>
<th>Bionix</th>
<th>EndoLab</th>
<th>ADL Hip Simulator</th>
<th>ADL Force5</th>
<th>VIVO</th>
<th>Bose*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. axial load (kN)</td>
<td>Up to 5</td>
<td>4</td>
<td>5</td>
<td>4.5</td>
<td>±4.5</td>
<td>±4.5</td>
<td>±5.6</td>
</tr>
<tr>
<td>Max. axial Displacement (mm)</td>
<td>--</td>
<td>+12.7/-3.2</td>
<td>--</td>
<td>±25</td>
<td>±25</td>
<td>--</td>
<td>±50</td>
</tr>
<tr>
<td>Max. flexion/extension:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROM (º)</td>
<td>±60°</td>
<td>±10°</td>
<td>30°/25°</td>
<td>±55°</td>
<td>±100°</td>
<td>±100°</td>
<td>120°/60°</td>
</tr>
<tr>
<td>Torque (Nm)</td>
<td>--</td>
<td>15</td>
<td>--</td>
<td>20</td>
<td>45</td>
<td>--</td>
<td>±15</td>
</tr>
<tr>
<td>Max. lateral bending:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROM (º)</td>
<td>±20°</td>
<td>±10°</td>
<td>20°/15°</td>
<td>±20°</td>
<td>--</td>
<td>±30°</td>
<td>±60°</td>
</tr>
<tr>
<td>Torque (Nm)</td>
<td>--</td>
<td>15</td>
<td>--</td>
<td>20</td>
<td>--</td>
<td>--</td>
<td>±15</td>
</tr>
<tr>
<td>Max. int./ext. rotation:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROM (º)</td>
<td>±30°</td>
<td>±7.5°</td>
<td>9°/9°</td>
<td>±20°</td>
<td>±100°</td>
<td>±40°</td>
<td>±50°</td>
</tr>
<tr>
<td>Torque (Nm)</td>
<td>--</td>
<td>10</td>
<td>--</td>
<td>8</td>
<td>45</td>
<td>--</td>
<td>0.074</td>
</tr>
<tr>
<td>Max. ant./post</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load (N)</td>
<td>--</td>
<td>zero to fully locked</td>
<td>--</td>
<td>--</td>
<td>±4500</td>
<td>--</td>
<td>±1000</td>
</tr>
<tr>
<td>Displacement (mm)</td>
<td>--</td>
<td>±4.5</td>
<td>±20</td>
<td>--</td>
<td>25</td>
<td>±25</td>
<td>±50</td>
</tr>
<tr>
<td>Max. left/right</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load (N)</td>
<td>--</td>
<td>zero to fully locked</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>±1000</td>
</tr>
<tr>
<td>Displacement (mm)</td>
<td>--</td>
<td>±4.5</td>
<td>±20</td>
<td>--</td>
<td>25</td>
<td>±25</td>
<td>±50</td>
</tr>
<tr>
<td>ISO standards</td>
<td>18192-1</td>
<td>18192</td>
<td>18192-1</td>
<td>12189</td>
<td>12189</td>
<td>16402</td>
<td>--</td>
</tr>
<tr>
<td>ASTM standards</td>
<td>--</td>
<td>F2624</td>
<td>--</td>
<td>F1717-04</td>
<td>F1717-04</td>
<td>F2790-10</td>
<td>--</td>
</tr>
<tr>
<td>References</td>
<td>[562,570-572]</td>
<td>[573-577]</td>
<td>[576,578-581]</td>
<td>[576]</td>
<td>[568]</td>
<td>[569]</td>
<td>[582]</td>
</tr>
</tbody>
</table>

* BioPuls and other Bose simulators were not described due to lack of information
4.3 **Load Protocol**

Precondition loads and the load protocol are among the most critical issues in spine testing since both can affect the mechanical behavior of the specimen [583-586].

Translational and rotational preloads in clinically relevant loading modes may simulate the effect of spinal muscles [525]. In the lumbar region, a preload of 400 N (about 60% of the body weight above L3-L4 disc level of an average person) with a maximum of 1000 N is recommended to test spinal implants [525]. For the cervical region the preload may range from 50 to 100 N (about one or two times the weight of the head) [525]. In both cases a progressive increase of compressive load should be used [586].

Loading precycles should also be applied in the three primary test directions, in both positive and negative directions, to minimize the viscoelastic behavior of the specimen and ensure reproducibility [414]. The first two cycles of at least three cycles shall be used as precycles [414]. In fact, the load displacement behavior of the first two cycles can be clearly distinguished, while the difference between the 2nd and 3rd cycles is considerably reduced [414]. The 3rd cycle in many cases is nearly identical to all subsequent cycles [414]. For this reason the 3rd cycle is usually recommended for analysis [414,525]. If this is not the case the cycles should be repeated until a reproducible result is achieved [414]. In any case, the rate of loading and the number of preconditioning cycles should be reported [414].

There is however some controversy considering the application of preloads. Their effect on the results seems to be dependent on its location with respect to the segment center of rotation producing satisfactory results only in flexion and extension [586]. Others have concluded that the quality of the measured data with and without preloads is similar [525]. Thus, tests without preload may also be acceptable for comparative evaluation of spinal instrumentation.

Loads can be applied using two basic protocols, the displacement control or stiffness protocol and the load control or flexibility protocol [525]. In the first a known displacement is applied at the free end of the specimen and the resulting loads and motions across various segments are quantified. In the second, motion is measured in response to a known load.

As previously mentioned the reaction loads and moments are usually measured at the caudal end of the specimen [414]. Their directions have also been normalized [414,525,587].

Spinal simulators can present several possible combinations. In the case of EndoLab simulators, for example, motions are applied in the caudal end and loads are applied in the cranial end [559]. In the case of Bionix simulators, flexion/extension and lateral bending motions are applied in the cranial end while the axial load and the axial rotation is applied in the caudal end of the station [559].
Loads should be applied within the elastic range of the specimens [414]. As a general rule the load should be at least as high as that needed to achieve the normal ROM for the given specimens [414].

Loading protocols may vary according to the region of the spine and the condition of the specimen [414]. Standard loading is defined as the three pure moments (flexion/extension, axial rotation, and lateral bending) without preload [414]. Moments of ±7.5 Nm [414] or ranging from 6 to 10 Nm [525] have been suggested for the lumbar region. For the thoracic region ±5 Nm [414]. For the cervical region of ±1 Nm at C1-2 levels and of ±2.5 Nm from C2 to C7 [414], or ranging from 1.5 to 3 Nm [525]. If osteoporotic spines are tested the magnitude of the corresponding moments should be reduced by one-half [414]. All spine simulators that have been described meet or exceed these recommendations.

Moments should be applied in a quasistatic manner with three load-unload cycles and data recorded on the 3rd load cycle [525]. Hybrid protocols (ISO/AWI 13077-1) intended to measure the effects of the spinal implant in the adjacent levels were also proposed [516,588-589]. The idea underlying hybrid approach is to produce an overall rotation of the implant model equal to the intact case [588].

Load combinations are recommended because they are capable of simulating in vivo condition. All combinations should be reported as well as the strategies used to apply them [414].

The loading rate seems to affect the stiffness of the specimen and should be controlled [419]. Moments of ±7.5Nm over the range of 0.6 to 5.1 °s⁻¹ are recommended [419]. Much slower rates may introduce creep effects and much faster rates may amplify the effect of the mechanical system inertia [414]. If loading is applied stepwise, the time between load stepping and motion measurement at each interval should be reported [414].
5. Final Remarks

The SMS is the functional unit of the spine and it usually represents the general mechanical behavior of a given region of the spine. Its comprehension requires a global understanding of the spine, its regions, major anatomical components and curvatures. In the present review, special emphasis was given to the vertebrae and the intervertebral discs, focusing on their anatomical structure, histological and biomechanical properties. The guidelines for testing the SMS were also addressed. These guidelines are usually part of ISO or ASTM standards and should be followed because they represent an effective way to compare results from different sources. They also represent a strong contribute for those research centers interested in spine research, allowing them to understand their present limitations and define future investment and research lines.
Part III – Experimental Work
Study 1 – Using Conventional Sensors to Assess Intervertebral Disc Bulging
1. Introduction

A wide variety of strain gauges (SG) have been used to assess strain in body tissues, mostly in bone [117-125]. In fact, they are considered the gold standard measuring bone strain [26,120,590-592].

Technically, the surface for bonding a SG should be chemically clean (i.e., free of oil, greases, organic contaminants and soluble chemical residues), water proof and sufficiently rough [592]. Whereas this is relatively easy to perform with cadaveric bone [590] it seems more difficult to accomplish in soft tissues due to their high water content (between 65% to 80%) and strong elastic behavior [105,593]. Thus it may be hypothesized that in such kind of tissues the risk of debonding or faulty adhesion is increased and it can lead to underestimation or erroneous readings of strain [592]. Nevertheless, to our best knowledge, few studies have reported the use of SG glued directly to soft tissues [216]. Alternatively, SG can be fixed to special frames (buckles) which, in turn, are attached to the soft tissue [134,164-165]. Ravary et al. [105] provided an excellent review of these and other transducers that have been used to sense strain and force in soft tissues. The major problem of buckle transducers is their large dimensions restricting their use to large structures, such as the Achilles tendon, the anterior cruciate ligament or the patellar tendon [105,134]. For example, the dimensions of the implantable E-form buckle transducer may range between 9×5 mm and 34×20 mm, for animal [105] or human [180] applications, respectively.

The purpose of the present study was to demonstrate that SG can be successfully glued to the outer surface of the intervertebral disc (IVD) and provide readings of strain under compressive loads.

The IVD is a fibrocartilaginous structure found between adjacent movable vertebrae of the spine. It acts as a load bearing structure preventing the vertebrae from contacting each other and protecting the nerve roots that irradiate from the spinal cord.

In the mechanical view the IVD deforms under compressive load while the majority of soft tissues, such as tendons and ligaments, deform under tension loads. To accomplish this load bearing function the IVD has two main anatomical structures: the nucleus pulposus (NP) and the annulus fibrosus (AF). The NP is a semi-fluid (gelatinous) region located in the inside of the IVD. It consists of a three dimensional network of collagen fibers (mainly type II), enmeshed in a mucoprotein gel composed of water and proteoglycans [466-469]. Under compression it exhibits an incompressible [421,426,439,481-482] and isotropic [421,439] behavior. Thus, it acts as a cushion, increasing the intradiscal pressure under compression [259,465,478]. The AF encloses the NP like a solid elastic ring [452]. It is composed of a homogeneous ground substance (the matrix or mesenchyme) reinforced by a collagen fiber network. This network is arranged in a series of discontinuous concentric layers called lamellae [460,492]. The highly orientated and layered structure of the lamellae [481,491-492,494] along with the AF elastic content (mainly collagen type I) [372,467,491] suggests a nonlinear and anisotropic behavior [421,443,497,506,594-597]. In the
mechanical view the AF seems particularly well adapted to resist tensile forces resulting from the loads encountered during compression and torsion of the spine [478,598].

Loads acting on the spine are usually followed by an increase in the NP pressure, a bulging action of the AF and a decrease of IVD height [496]. These actions will result in the increase of the strain, particularly in the outer portions of the AF and excessive load can contribute to disc disruption, degeneration and pain [599-600]. Thus, studying these actions seems an important topic.
2. Material and Methods

One healthy disc of an \textit{ex vivo} male porcine (weight: 9.2 kgf; age: 1.5 months) dorsal SMS was obtained by dissection, instrumented with SG and tested under compression using a mechanical testing machine.

2.1 Specimen

The SMS consisted of two adjacent vertebrae with the intervening disc and ligaments intact (muscles removed). The anterior longitudinal ligament was partially removed to allow SG placement on the anterior (ventral) surface of the IVD. When removing soft tissues it is important not to damage the IVD, mostly during the excision of the anterior longitudinal ligament which is firmly attached to the whole anterior and medial surface of the vertebral bodies. The whole process took about two hours. After dissection the SMS was stored in a sealed polyethylene bag, frozen to approximately $-20^\circ C$ for less than one week, and allowed to complete thaw at laboratory room temperature ($25^\circ C$) before testing. Freezing and thawing should not significantly affect specimen physical properties [515,551]. To prevent dehydration the SMS was wrapped in tissue moistened with saline. The bone and disc status were confirmed by means of X-ray, visual inspection and manipulation, before and after the experiment.

2.2 Specimen Holder Apparatus

A built-for-purpose stainless steel specimen holder, consisting of two plates with drilled metallic rings for screw attachment, was used to fix and align the SMS with the compression machine (figure 38).

![Figure 38 - Top view of the specimen holder (removed the top plate and vertical jigs).](image-url)
The cranial and caudal vertebral bodies of the SMS were partially cut, attached with screws and cemented to the plates and metal rings of the specimen holder. Bone cement also contributed to fulfill gaps and to allow a better distribution of stress during compression. Additionally, four vertical jigs were used to guide vertical motion and maintain the plates parallel to each other. The most critical issue concerning this procedure is the working time of bone cement (about 5 to 8 minutes after mixing). The whole process took about one hour.

2.3 Strain Gauge Bonding

Three previously soldered linear SGs (HBM 1-LY11-3/120) with a measuring grid of 3 X 1.4 mm and a grid carrier of 8.5 X 4.5 mm were bonded directly to the AF surface with a low viscosity cyanoacrylate adhesive (HBM Z70, Darmstadt, Germany) (figure 39).

![Figure 39 - Anterior view of the functional spinal unit and strain gauges bonded to the annulus fibrosus of the intervertebral disc.](image)

Two SGs (labeled as "left" and "right") were glued to the anterolateral wall of the AF in order to measure circumferential strain (figure 39). One SG (labeled as "front") was glued to the anterior wall of the AF in order to measure axial strain (figure 39).

Initially the bonding area was marked, cleaned and degreased with alcohol. Then the area was slightly roughened with a dental tungsten carbide abrasive bur and cleaned again with alcohol. A polyurethane-based transparent dressing for wounds (Opsite spray, Smith & Nephew, London) was applied for waterproofing of the surface. Finally, the cyanoacrylate adhesive was applied and the SG oriented to the desired measurement position on the AF surface, and pushed using thumb pressure over a Teflon foil for 1 minute. The whole process took less than one hour.
2.4 Testing Loading Machine

A customized loading machine was used to apply a uniaxial compressive load to the specimen. It consisted of a servo-pneumatic system having a double effect pneumatic cylinder (Festo CRDNGS-80-200-PPV-A), a servo-valve (Festo MPYE-5-1/8-HF-010-B), an optical linear scale (Fagor SV- B220), and a load cell (AEP TC4) with 10 kN capacity and 0.1% resolution of that value [601] (figure 40). All the control, monitor and data acquisition software were implemented using LabVIEW 8.0. The interface and the connection between the software and instrumentation devices were made using a hardware platform (National Instruments PAC CompactRIO®). A more detailed description can be found elsewhere [601-602].

![Image of the complete setup](image)

Figure 40 – A view of the complete setup. A detail of the specimen in situ is provided.

2.5 Load Protocol

A preload of 5N was slowly applied and maintained during testing to ensure permanent contact and alignment between the specimen holder and the loading machine. It also contributed to minimize zero shifts and allow more stable initial strain readings [26]. After this, two preconditioning cycles were performed before data acquisition and a set of six repeated cycles was collected for analysis.

A quasi-static compression load protocol was applied for each cycle. It consisted of a load part ranging from 0 to 200N and an unload part from 200 to 0N. Load step was of 25N. Each load was held constant for a period of 30s and load transition time was set to be linear for a period of 0.5s (figure 41).
Using Conventional Sensors to Assess Intervertebral Disc Bulging
Material and Methods

Figure 41 - Schematic representation of a load cycle.

The load protocol, including previous alignment of the sample with the loading machine and SG calibration, took less than two hours.

2.6 **Statistical Procedures**

Related Samples Wilcoxon Signed Rank Test was applied to evaluate significant differences between trials (p≤0.05). To express strain measurements variability under repeated conditions (multiple trials or loading cycles) the standard variation (SD) and the coefficient of variation (CV) were calculated. The SD gives an idea of the variability at each point of the loading cycle (for each applied load) and the CV is a relative variability measure that can be used to “summarize SD” information over the whole cycle [603]. It is calculated as the ratio between the average standard deviation (SD) and the average mean (X) of the loading cycle (equation 1)

$$CV(\%) = \frac{\sqrt{\frac{1}{N} \sum_{i=1}^{N} SD_i^2}}{\frac{1}{N} \sum_{i=1}^{N} \bar{X}_i} \times 100$$

Equation 1 – Coefficient of variation (CV). SD_i is the average standard deviation at step i of the loading cycle and \bar{X}_i is the mean at step i of the loading cycle. N is the number of steps.
3. Results and Discussion

One healthy disc was submitted to compression in order to measure strain in different locations of the AF. No signs of disc failure or tears, fissures, protrusions or prolapses were observed during and after the experiment. Moreover, no signs of debonding or faulty adhesion of the SG were detected during and after the experiment.

Circumferential strain is plotted in figure 42 and figure 43 for the right and left SGs, respectively. Axial strain, measured by the frontal SG, is plotted in figure 44.

![Graph showing strain results](image)

Figure 42 - Circumferential strain on the right side of the outer annulus fibrosus under compressive load. Average results of the six loading cycles are presented. Y error corresponds to one standard deviation. The adjusted coefficient of determination (r^2) was calculated.
Using Conventional Sensors to Assess Intervertebral Disc Bulging
Results and Discussion

Figure 43 - Circumferential strain on the left side of the outer annulus fibrosus under compressive load. Average results of the six loading cycles are presented. Y error corresponds to one standard deviation. The adjusted coefficient of determination (r^2) was calculated.

Figure 44 - Axial strain of the outer annulus fibrosus under compressive load. Average results of the six loading cycles are presented. Y error corresponds to one standard deviation. The adjusted coefficient of determination (r^2) was calculated.
Circumferential and axial strain increased during loading and decreased for unloading, suggesting that the AF collagen fibers were able to resist the tensile forces induced by the bulging action of the IVD [491,496]. Nevertheless, significant differences (p≤0.05) were found between the load and unload counterparts. The average of these differences was smaller for the right SG (-2.86±2.51 με; p=0.017) than it was for the left one (-11.59±6.18 με; p=0.012) and front SGs (-20.77±15.27 με; p=0.017). A similar behavior was observed in other studies suggesting the presence of hysteresis [138,597,604].

Hysteresis seems to be more evident in the case of axial strain. Nevertheless, its magnitude may not represent a pure physiologic behavior of the AF. In fact, disc height (5.6 ± 0.4 mm) seemed adequate to accommodate the SG grid carrier of 3mm height. However, as can be observed in figure 45, the measuring grid and the grid carrier (8.5 mm height) of the “front” SG stayed in contact with the adjacent caudal vertebra. Thus, this incorrect positioning may have affected the results of axial strain to some extent.

![Image](image.png)

Figure 45 - The measuring grid and the grid carrier of the “front” strain gauge are contacting the caudal vertebra.

In fact, the difficulties in getting precise and reproducible SG placement in spinal structures are probably a major source of error in spinal studies [605]. Thus, future studies will benefit from smaller SG, particularly to measure axial strain. Furthermore, in the present study, the excision of the anterior longitudinal ligament should have also affected the output of axial strain. As can be seen from figure 45 it led the front SG to occupy a slight concave position, explaining the negative axial strain values that were observed for loads ranging from 0 to approximately 75N (figure 44).

Disc recovery is an important topic in spine biomechanics and SGs can contribute to study it. Strain values for unload were significantly higher (p<0.05) than those observed for loading (figure 42 to 44), suggesting the elastic components of the AF were not capable of completing recovery during unloading. The difference was small but it was an expected behavior because the IVD seems to need a resting period to recover to a normal pre-load state after compression [606-607].

Another interesting behavior is the nonlinearity of the AF [540] and SGs were able to detect it (figure 42 to 44). Present results suggest that the local stiffness of the outer AF increases with load,
confirming the load bearing function of the IVD [540,597]. To express the nonlinear behavior of the AF, polynomial 2nd order fitting equations were presented, and peak loads as well as maximum strain values were estimated for circumferential strain. Peak loads (normalized to body weight (BW) and averaged for load and unload) for the right and left SG were of 3.25BW and 3.19BW, respectively. The corresponding mean maximum strains values were of 466 µε and 478 µε for the right and left side, respectively. These values could represent a physiologic limit beyond which plastic deformation may occur. Nevertheless, these are point values and the mechanical behavior of the entire AF depends on several other parameters, such as tensile properties of the lamellae, fibers orientation, and the regional variation of these quantities [495].

Another observed feature of the AF was a symmetrical behavior under compression. In fact, and despite regional variations of the AF and slight differences in SG placement and orientation, no significant differences (p>0.05) were found between the load and unload counterparts of the right and left SG. Knowing that the AF behaves asymmetrically when submitted to eccentric loads [496,540,605], the present results also confirm that the disc was submitted only to axial load.

The anisotropic behavior of the AF was assessed comparing the results of circumferential to axial strains. Despite the errors that have probably influenced axial strain results, it can be observed that the magnitude of axial strain (figure 44) was significantly lower than that of circumferential strain (figure 42 and figure 43) suggesting that the AF exhibits an anisotropic behavior (figure 46).

Figure 46 – Comparison between circumferential (mean of left and right) and axial strain.

The results of the present study should be compared with others with caution. In fact, the majority of studies differ in their purposes, specimens, methodologies and techniques, leading to
controversial data comparison. For example, Ebara et al. [499] demonstrated that the tensile behavior of the AF is dependent on the compositional and structural variations in the IVD. Controversial results in the literature regarding axial and circumferential strain were detected by Heuer et al. [496]. In an effort to summarize them a mean maximal axial and circumferential strain of approximately 20% was proposed [496]. In the present study mean circumferential and axial strain were of 0.05% and 0.008%, respectively, both for a load of 200N. These results should not be compared to the previous ones because maximal loads were not applied and different techniques have been used. A better comparison can be made with the study of Shah et al. [540] where a similar technique was used. In this study strain results for a load of 200N vary between 0.1% and 0.4%. However they have been obtained for the posterolateral region of the AF which is considered to admit higher strain than the anterolateral regions. Additionally, it should take into account that strain was measured relatively to an arbitrarily defined zero strain of the tissue [593] which, in the present study, was defined after positioning the specimen holder into the mechanical testing machine and the application of the two pre-conditioning cycles.

The technique of bonding SGs directly to the tissue is interesting because it provides direct measurements of strain [105]. However it is invasive and can produce undesirable effects, such as inflammatory responses and modification of normal tissue behavior. To minimize inflammatory responses and allow in vivo applications SGs should be encapsulated along with use of FDA approved non-toxic bonding agents, such as PMMA [26,120]. Even so, the effect of cleaning and bonding on the histological and mechanical properties of the tissue requires further investigation. In general, adhesives should be capable of firmly attaching the SG to the tissue and compliant enough to deform along with it. The research on bone adhesives [26,120,608] is more advanced than it is for soft tissues [609]. In the present study the low viscosity cyanoacrylate worked well for loads that did not exceed 200 N. Nevertheless, it could fail for higher loads and it cannot be applied in vivo since its biocompatibility has not been studied. Meanwhile, other adhesives such as PMMA and topical skin closure adhesives (e.g., 2-octyl cyanoacrylate) are FDA approved and can be explored in future studies. For example, PMMA and isobutyl 2-cyanoacrylate monomer have been used in vivo with bone [592].

Finally, SGs are point sensors meaning that only the strain at the attachment site can be measured. To get a representative strain map of the whole tissue larger sensors or more sensors need to be used. A wider transducer will be in contact with a greater portion of heterogeneous soft tissue fibers and the discriminative power in strain variation may be lost. Use of more sensors will probably lead to better outputs but at the expense of increased complexity and undesirable effects on the tissue. Micro-SGs are already available and can be explored to avoid SG contact with the vertebrae and eliminate potential sources of error. Naturally, other techniques, such as finite element analysis (FEA) [421,439,497,596,610-613], non-contacting laser or imaging techniques [500,613-615], and fiber optic sensors [26,105,138] can also be explored to map strain.
4. Final Remarks

In the present study an attempt was made to glue SGs directly to the annulus surface of the IVD and measure strain under compressive loads. The bonding area was previously marked, slightly roughened, cleaned and degreased with alcohol. A polyurethane-based transparent dressing for wounds was applied for waterproofing of the surface. Then, SGs were glued directly to the annulus surface with cyanoacrylate adhesive. A good adhesion was obtained with this procedure and SGs were able to confirm some properties of IVD behavior, such as hysteresis, nonlinearity and anisotropy. The output data seems adequate to demonstrate a potential application of SGs. Nevertheless, the technique can only be considered effective after studying the local effects of the procedures on the annulus fibers and its reproducibility using more specimens.
Study 2 – Using a Fiber Bragg Grating to Assess Intervertebral Disc Bulging 10;11;12

1. Introduction

There is strong evidence that immobilization, repetitive and high mechanical loading are environmental risk factors associated with IVD degeneration [616]. Preventing disc degeneration is an important issue because it represents gross structural disruption and it is irreversible [600]. Such disruption is more closely related to pain than to any other feature of ageing discs [600]. Measuring biomechanical parameters of the IVD such as displacement, strain, stress and pressure should contribute for better comprehension of its mechanical response to external applied forces.

Nachemson, in 1959, was the first to measure pressure in ex vivo human discs using a needle connected to an external mechano-electrical pressure transducer [465]. Nachemson et al. [227,617-618] also carried out, during the 1960s and 1970s, in vivo measurements of disc pressures for several body postures and tasks. Since that time needle-mounted SG sensors have been used to measure intradiscal pressure [307,483,619-623]. However the above sensors may interfere with the natural disc mechanics, particularly when studying small SMSs due to their rigidity and diameters over the millimeter order [20,309,483].

Advances using OFs as sensors may represent an important contribution to development of minimally invasive techniques for biomedical and biomechanical applications. Particularly, FBG sensors seem to be more appropriate for biomechanical applications than conventional resistive, piezoelectric or other solid state sensing technologies. These sensors have diameters of the order of 10^{-6} m and present considerable flexibility to adapt to complex surfaces allowing bending within the host structure to radii of 10mm [259]. FOS, in general, also present several additional advantages compared to conventional sensors such as: less weight; immunity to EM interference and RF interference making them suitable for use in magnetic resonance studies; biocompatibility, because fibers are made of silicate glass; higher temperature and pressure capability; the ability to be embedded into polymer or composite materials and used with instruments requiring sterilization; resistance to water and corrosive environments [23]. Nevertheless their relatively low strain sensitivity and signal artifacts caused by transverse loading may constitute a problem in the analysis and interpretation of tissue strain data [624].

Conventional sensors are mostly used to measure stress or strain at the body external surfaces to which they must adhere. Inner body measurements, as in the case of the IVD, require the sensor to be implanted in the needle. However, in the case of FBG sensors, as it was suggested by Dennison et al. [259], needles can be used for guiding the OF leaving the sensor in situ and making measurement less invasive.

In this study we addressed the possibility of using a needle only for guiding the sensor into the disc. The work of Nesson et al. [18] was the first successful demonstration of using a needle only for FOS guiding and positioning. In our study the needle was completely removed and the sensor let in situ to measure radial strain of the AF of a porcine disc submitted to axial compression. In fact, axial compressive loads contribute to reduce disc height, increase intradiscal pressure and
make the outer annulus to expand horizontally (disc bulging) beyond the edges of the disc space. This bulging action can interfere with the surrounding tissues, assuming particular interest when normal physiologic limits are exceeded such as the case of disc herniation.
2. Material and Methods

2.1 Specimen

An ex vivo porcine dorsal SMS was tested. An SMS consists of two vertebral bodies connected by an IVD, facet joints and ligaments. In this study the surrounding soft tissues were carefully removed to guarantee preservation of disc, facet joints and spinal ligaments. After dissection the specimen was stored in a plastic sealed bag and frozen (-20 °C). For instrumentation and testing the specimen was allowed to complete thaw inside the plastic bag to laboratory room temperature (25 °C).

2.2 Specimen Holder Apparatus

A built-for-purpose stainless steel specimen holder, consisting of two plates with drilled metallic rings for screw attachment, was used to fix and align the SMS with the compression machine (figure 47).

Figure 47 - Top view of the specimen holder (removed the top plate and vertical jigs).

The cranial and caudal vertebral bodies of the SMS were partially cut, attached with screws and cemented to the plates and metal rings of the specimen holder. Bone cement also contributed to fulfill gaps and to allow a better distribution of stress during compression. Additionally, four vertical jigs were used to guide vertical motion and maintain the plates parallel to each other. The most critical issue concerning this procedure is the working time of bone cement (about 5 to 8 minutes after mixing). The whole process took about an hour.
2.3 Fiber Bragg Grating Sensor

The FBG used in this study was recorded by illuminating a photosensitive fiber optic (Fibercore single mode PS1250/1500; ID 31007/B-00CK; Attenuation 1550 nm: 10 dB/km; Cut-off wavelength 1234 nm; Cladding diameter 124.2 μm; Mode field diameter 8.9 μm; Numerical aperture: 0.14; Operating wavelength 1550nm) with UV radiation from an interferometric setup (Spectra-physics LASER model: 2045-15; Serial number: 118-E20007) [625]. The estimated length of the grating was 2 mm.

The FBG sensor was implanted along the mediolateral (transverse) axis of the IVD. A 25-gauge hypodermic needle (0.5 mm OD, 87 mm length) was used to guide the sensor through the disc and removed after positioning the FBG in the center of the IVD (figure 48).

For correct positioning of the sensor the mediolateral disc diameter was measured with a caliper (resolution: 1/20 mm) and marked in the OF so that the FBG would stay in the middle of the IVD, where the NP is expected to be. Then, the OF was glued with cyanoacrylate adhesive to one side of the AF, slightly pre-tensioned and bonded to the opposite side of the AF (figure 49; figure 50). Additionally, small plastic tubes were used to increase the bonding area and prevent the OF from sliding.

Figure 48 – Ventral view of the spinal motion segment. A needle was used to perforate the intervertebral disc from side to side and guide the sensor into the center of the disc.

Figure 49 – Ventral view of the optical fiber inserted into the intervertebral disc. Small cylindrical plastic tubes and cyanoacrylate adhesive were used to attach the optical fiber to the disc surface.
Material and Methods

This setup allowed the disc to bulge under axial compressive force and the OF elongate in the radial direction causing a shift in the Bragg wavelength. A portable FBG interrogator (Sensing Interrogator SM 125, Micron Optics, Atlanta, GA, USA; www.micronoptics.com) was used to read the wavelength variations. The resolution of the system was in the order of 10^{-12} m. Wavelength was converted to microstrain applying the conversion factor of $1.2 \text{ pm} \mu \varepsilon^{-1}$.

2.4 Testing Loading Machine

A customized loading machine was used to apply a uniaxial compressive load to the specimen. It consisted of a servo-pneumatic system having a double effect pneumatic cylinder (Festo CRDNGS-80-200-PPV-A), a servo-valve (Festo MPYE-5-1/8-HF-010-B), an optical linear scale (Fagor SV- B220), and a load cell (AEP TC4) with 10 kN capacity and 0.1% resolution of that value [601] (figure 40). All the control, monitor and load data acquisition software were implemented using LabVIEW 8.0. The interface and the connection between the software and instrumentation devices were made using a hardware platform (National Instruments PAC CompactRIO®). A more detailed description can be found elsewhere [601-602].
2.5 Load Protocol

A preload of 5N was slowly applied and maintained during testing to ensure permanent contact and alignment between the specimen holder and the loading machine. It also contributed to minimize zero shifts and allowed more stable initial strain readings [26]. After this, two preconditioning cycles were performed before data acquisition and a set of four repeated cycles was collected for analysis.

A quasi-static compression load protocol was applied for each cycle. It consisted of a load part (UP) ranging from 0 to 150N and an unload part (DW) ranging from 150 to 0N. Load step was of 25N. Each load was held constant for a period of 60s and load transition time was set to be linear for a period of 0.5s (figure 51).

![Figure 51 - Schematic representation of a load cycle.](image)

The load protocol, including previous alignment of the sample with the loading machine and SG calibration, took less than two hours.

2.6 Statistical Procedures

Related Samples Wilcoxon Signed Rank Test was applied to evaluate significant differences between trials (p≤0.05). To express strain measurements variability under repeated conditions (multiple trials or loading cycles) the standard variation (SD) and the coefficient of variation (CV) were calculated. The SD gives an idea of the variability at each point of the loading cycle (for each applied load) and the CV is a relative variability measure that can be used to “summarize SD” information over the whole cycle [603]. It is calculated as the ratio between the average standard deviation (SD) and the average mean (X) of the loading cycle (see equation 1, p.106).
3. Results and Discussion

The IVD had an average mediolateral diameter of 33.45 ± 0.01 mm. Each load was applied for 60 seconds and data acquisition time was, on average, 24 ± 5 s.

Radial strain increased during loading and decreased during unloading, suggesting that the AF collagen fibers were able to resist the tensile forces induced by the bulging action of the IVD [491,496] (figure 52).

![Figure 52](image)

Figure 52 – Radial strain of the outer annulus fibrosus under compressive load. Average results of the four loading cycles are presented. Y error corresponds to one standard deviation. The adjusted coefficient of determination (r^2) was calculated.

Significant differences ($p \leq 0.05$) were found between the load and the unload counterparts suggesting hysteresis of the AF. The average of the differences was calculated (-48.94±35.38 με) and it seems to be higher than the differences observed for circumferential and axial strain in the previous study.

Strain values for unload were significantly higher ($p < 0.05$) than those observed for loading, suggesting that the elastic components of the AF were not capable of complete recovery during unloading. Thus, load application time as well as the recovery time may be important variables in this type of experiments. In the present study each load was maintained for about 60 seconds and there was no recovery time between load steps and between loading cycles. In fact, as suggested in the previous study, the IVD seems to need a resting period to recover to a normal pre-load state after compression [606-607].
The magnitude of radial strain was also higher than the ones observed for circumferential strain (figure 42 and figure 43) and axial strain (figure 44). Radial strain obtained for a maximal applied load of 150 N was 3.16 times greater than circumferential strain and 17.01 times greater than axial strain. These results reinforce the anisotropic behavior of the AF but more research seems mandatory to confirm the extent and the differences in strain values. Furthermore, it should be mentioned the OF is stiffer than the IVD and will resist to bulging of the disc suggesting that the radial strain force could also be measured. Thus, the technique may not be suitable for measurement of physiologic strain and more indicative of the radial force exerted by the AF.

The nonlinear behavior of the AF suggested that radial stiffness increased with load and confirmed disc ability to act as a load bearing structure [540,597]. To express the nonlinear behavior of the AF, polynomial 2nd order fitting equations were presented, and peak loads as well as maximum strain values were estimated for radial strain. Peak loads (normalized to BW) for the load and unload counterparts were of 3.25BW and 2.19BW, respectively. The corresponding mean maximum strains values were of 1258 με and 1001 με for the load and unload counterparts, respectively. These values could represent a physiologic limit beyond which plastic deformation may occur. Nevertheless, these are point values and the mechanical behavior of the entire AF depends on several other parameters, such as tensile properties of the lamellae, fibers orientation, and the regional variation of these quantities [495].

Similar concerns about results comparison and the bonding technique that were discussed in the previous study should be taken into account. On the other hand, compared to SGs, FBG can be easily multiplexed allowing multipoint measurements without increasing the dimensions of the sensor and the complexity of the acquisition system. In the near future these potentialities are expected to be explored.
4. Final Remarks

In the present study a FBG was used to measure radial strain of the AF under compressive loading. A needle was used only to guide the sensor into the NP. After removing the needle the FBG was pre-tensioned and the OF fixed to the outer AF surface. Under the previous configuration the FBG was able to measure radial strain resulting from the bulging action of the IVD. Results suggested that the disc exhibits some hysteresis and a nonlinear behavior. Radial strains were compared to circumferential and axial strains that were obtained with SGs and suggested that the disc also exhibits an anisotropic behavior.
Study 3 – Measurement of Intradiscal Pressure in Sheep under General Anesthesia

1. Introduction

The loading conditions of the spine and particularly of the IVD are of great importance in several fields such as orthopedics, physiotherapy, biomechanics, ergonomics and sports. Explaining it is the evidence that repetitive and high mechanical loading can lead to disc degeneration [626-627]. Disc degeneration represents gross structural disruption and it is irreversible. Such disruption is more closely related to pain than to any other feature of ageing discs, and it is most common in the lower lumbar human spine [628-630]. Thus, studying the loading conditions of spine and the IVD could contribute to understand the mechanisms underlying its normal or deleterious response to load. In such a field, assessing intradiscal pressures has special relevance due to the association between high pressures and disc degeneration [600,631-634].

Intradiscal pressure data from Nachemson studies formed the basis of the current knowledge about the in vivo loading conditions of the spine [539]. In 1959, Nachemson was the first to measure ex vivo intradiscal pressure in human discs [465]. Nachemson et al. [227,617-618] also carried out, during the 1960s and 1970s, in vivo measurements of intradiscal pressures for several body postures and tasks, which became a reference in the field. Since that time few in vivo studies have been published [487,620,635-636]. A possible explanation for it lies on sensor geometry, particularly large diameters (over 1 mm) that could interfere with the natural disc behavior and lead to disc degeneration [20,308-309,483]. On the other hand, relatively few pressure data is available which hampers the use of numerical models predicting intradiscal pressure [307]. Even so, several models have been used [514,610,637-638], despite general agreement on further in vivo data that could validate them and contribute for more accurate predictions [635]. Moreover, intradiscal pressures can integrate some clinical diagnostic procedures as in the case of discography that can be used when diagnostic from MRI is inconclusive [639-642].

Using minimally invasive sensors such as FOS could represent a good alternative to conventional sensors in measuring intradiscal pressure. This possibility was explored by Dennison et al. [19-20,259] who proposed a needle housed FBG sensor. Sensor OD was 0.4 mm and it was used to measure intradiscal pressures in cadaveric specimens. A commercial solution was available from Samba Sensors (Västra Frölunda, Sweden). These sensors, with 430 μm OD and a protective coating of 0.7 mm diameter were used to measure intradiscal pressure in pigs [311-312], rabbits [313] and human cadaveric spines [314]. Another commercial solution is available from Radi Medical Systems (Uppsala, Sweden). This intensity modulated sensor has an OD of 0.55 mm and was used to monitor intradiscal pressure in sedated pigs [315] and patients suffering from lumbar back pain [316]. A smaller FOS was also proposed by Hsieh et al. [317] and Nesson et al. [18,318]. It consisted of a F-P sensor with a sensor probe of 366 μm OD. To our best knowledge it was used for in vitro measurements of rodent tail discs [18,317-319]. Meanwhile, a Samba sensor (Samba Preclin 360 HP) with only 360 μm OD was available for intradiscal pressure measurements but, to our best knowledge it was not tested ex vivo or in vivo.
The purpose of the present study was to measure intradiscal pressure in the 5th lumbar IVD of an anesthetized sheep using a Samba Preclin 360 HP sensor.
2. Material and Methods

2.1 Fiber Optic Sensor

An ultra-miniature fiber optic high pressure sensor (Samba Preclin 360 HP, Västra Frölunda, Sweden) was used to measure the pressure in the NP of a lumbar IVD of an anesthetized sheep (figure 53). The sensor consisted of a silicon sensing head with 360 μm OD mounted on an optical MMF with 400 μm OD. The sensor head and the MMF were coated with a radiopaque material (about 15 cm long) which allowed knowing the position of the sensor inside the body through X-ray or fluoroscopic images.

![Fiber Optic Sensor Diagram]

Figure 53 – The Samba Preclin 360 HP sensor (Serial nº.A2-1532). The sensor head (a Fabry-Pérot cavity) and the MMF were coated with a radiopaque material which allowed knowing the position of the sensor inside the body. A view of the sensor’s packaging is presented on the right.

Samba sensor was handled in accordance to the manufacturer’s instructions which are summarized in table 12 [643].
Table 12 – Handling and cleaning instructions applied to Samba sensor.

<table>
<thead>
<tr>
<th>Handling instructions</th>
<th>Cleaning instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not touch the transducer tip. Only allow contact of the transducer tip with the measurement object.</td>
<td>Immediately submerge the transducer tip in cold distilled and de-ionized water after removing the transducer from the object (in vivo use). Keep it submerged until cleaning.</td>
</tr>
<tr>
<td>Shield the optical connectors with the protective caps when not in use.</td>
<td>Place the transducer tip in enzyme cleaner mixture and soak it for 10 to 20 minutes. CIDEZYM® Enzymatic Detergent Solution (Johnson & Johnson, Medical Inc, NJ, USA) was used in the present study</td>
</tr>
<tr>
<td>Always use the protective tube to shield the transducer tip when not in use.</td>
<td>Magnetic stirring is recommended (not followed)</td>
</tr>
<tr>
<td>Do not use tweezers or clamps with sharp edges.</td>
<td>Rinse the transducer tip afterwards in distilled and de-ionized water.</td>
</tr>
<tr>
<td>Do not use clamps with exaggerated clump pressure.</td>
<td>Disinfect the transducer with 70% alcohol.</td>
</tr>
<tr>
<td>Do not bend the transducer more than the recommended minimum radius of 10 mm.</td>
<td></td>
</tr>
</tbody>
</table>

Prior to ex vivo and in vivo experiments, the CIDEZYM® Enzymatic Detergent Solution (Johnson & Johnson, Medical Inc.) was used to clean the sensor. This solution is often used to clean medical instruments and endoscopes prior to sterilization or high level disinfection. The sensor was left at room temperature for about 10 minutes in a solution of 4% Cidezyme in water and rinsed afterwards in distilled and de-ionized water.

2.2 Interrogation Unit

Samba sensors are calibrated from factory to eliminate the need of customer’s calibration. The calibration data is stored on a small erasable programmable read only memory (EPROM) positioned on the connector and is read automatically at start up. Nevertheless, to read EPROM data a manufacturers’ control unit is required (figure 54). These units (Samba 201/202 control unit) are compact, portable (hand-held), battery operated and capable of temporary data storage and transmission to a computer. Nevertheless they are also expensive.
Material and Methods

To overcome the previous constraint, a purpose-built control unit was used to interrogate the Samba sensor by means of available electrical and optical components at INESC-Porto facilities.

The INESC-Porto interrogation unit consisted of several electrical and optical components that were housed in a stainless steel chassis; an optical power meter; and a portable computer (PC) (figure 55).

Figure 55 – The interrogation unit developed at INESC-Porto that was used for acquisition of pressure data in the nucleus pulposus of a lumbar intervertebral disc of an anesthetized sheep.

The components that were housed in the stainless steel chassis were arranged in two floors. Electrical components were housed on the 1st floor and consisted of a power supply (Traco®Power; Model: TXL 050-05S; Input: 100-240 VAC, 1.6 Amax. / 47-63 Hz; Output: 50W max., 5 VDC / 10.0 A) and a current and temperature controller (SuperLum, Ltd.; Imin. = 90mA; Imax. = 230 mA; S/N: PLT 60488) of a superluminescent diode (SLD) (figure 56). Optical components were housed on the 2nd floor and consisted of a SLD (SuperLum, Ltd.; SLD-561-DIL-3-SM; S/N: 60488) connected to an optical coupler/splitter (Newport F-CPL–M22855, 850 nm).
07022509) that provided the external connections to an optical power meter (Hewlett Packard 8153A Light Wave Multimeter) and the Samba sensor (figure 56). The coupler is for 850 nm and the light source emits at 1300 nm. Despite this discrepancy between the only available components it was assumed the performance is acceptable to 1300 nm.

![Figure 56](image1.png)

Figure 56 – Detail on the electrical and optical components of the interrogation system. The external connections to the sensor and the optical power meter were identified.

The basic functioning of the interrogation unit can be depicted in figure 57.

![Figure 57](image2.png)

Figure 57 – Schematic representation of the connections between the optical components of INESC-Porto interrogation unit.
As can be observed from the previous figure, the power of the incoming light of the SLD was split 50/50 at the optical coupler/splitter. Splitting allowed using part of the light as the signal of reference and the remaining light to interrogate the sensor. The optical power of the light source was used as the signal of reference (at approximately 1310 nm) in order to account for source power fluctuations that could affect the readings of the sensor. The remaining light was used to interrogate the Samba sensor. At the sensor head (a F-P cavity - figure 8), part of the incoming light is back reflected to the coupler/splitter and its power measured by the optical power meter. The optical power meter allows for readings of the above individual signals (in μW or dB) and of the output signal (sensor signal/reference signal) (figure 58). The sampling rate was 17 Hz.

![Optical Power Meter](image)

Figure 58 – The optical power meter (HP8153A) that was used for readings of the optical power of the source (reference) and sensor signals.

A GPIB-USB (Prologix, LLC, WA, USA) controller was used to allow communication between a PC and the optical power meter. Concomitantly, two LabVIEW routines were implemented to control data acquisition during calibration of the sensor and pressure experiments. These routines were described in the following sections.

2.3 **Sensor Calibration and Data Acquisition**

It was not possible to use the calibration data from the factory of the Samba sensor because a purpose-built interrogation unit was designed. Therefore, a new calibration protocol was implemented to express pressure as a function of the output signal.

Along with the new interrogation unit that was used to calibrate the Samba sensor, a purpose-built pressure device was also constructed (figure 59).
Measurement of Intradiscal Pressure in Sheep under General Anesthesia
Material and Methods

Figure 59 – The pressure device used to calibrate the Samba sensor.

The main components of the pressure device consisted of an acrylic compartment and a syringe, both filled with distilled water; a screw connected to the syringe plunger and used for pressure adjustment (figure 59). A manometer intended for medical applications (WIKA 111 series; EN 837-1, WIKA Instrument Corporation incorporated, GA, USA) with a pressure range from -1 to 15 bar and accuracy class of 1.6 was used for pressure readings (figure 59). On both sides of the acrylic piece a bolt and nut with passing holes were used to provide insertion of the sensor into the acrylic compartment where the pressure was measured (figure 59). The sensor was guided through the holes by means of a hypodermic needle that was removed after correct positioning of the sensor (see detail on figure 60). To seal the passing holes a septum of silicone (similar to those used with injectable drugs) located in between the bolt and nut was used (figure 59). The basic functioning of the pressure device was to manually rotate the screw pushing the water inside the syringe into the acrylic compartment. This action increases the pressure and the torque in the opposite direction and decreases the pressure.

The complete setup that was used in sensor calibration is presented in figure 60.

Figure 60 – The complete setup used in sensor calibration. A detail on the location of sensor insertion is presented.
In order to facilitate sensor calibration and to avoid errors in readings from the optical power meter display, a semiautomatic calibration process was implemented through a LabVIEW routine. In figure 61, a flowchart of the routine is presented.

Figure 61 – Flowchart of the LabView routine used for calibration of the sensor.

The pressure interval that was used in sensor calibration varied from 0 to 14 bar (1.4 MPa) which is in the range of intradiscal pressures [307]. A calibration step of 0.5 bar (0.05 MPa), depending on the pressure gauge resolution, was defined. After initializing the LabVIEW routine it goes through the previously defined pressure values asking the user to manually adjust the pressure at each calibration step. An array of optical power values for each step was stored (n=10) allowing calculation of the optical power average and the corresponding standard deviation. In order to detect hysteresis in the measuring system three increasing and decreasing pressure cycles were performed. Values were exported to OriginPro 8.5 allowing plotting of the calibration.
Measurement of Intradiscal Pressure in Sheep under General Anesthesia
Material and Methods

curves, fitting the data and calculating linear and quadratic calibration coefficients. The function with the highest r^2 was selected for pressure acquisition. These coefficients were used in another LabVIEW routine to read the pressure during *in vivo* experiments (figure 62).

![Flowchart of the LabView routine used for read pressure data during *in vivo* experiments.](image)

The user only has to control the start, pause and save acquisition buttons. During acquisition the LabVIEW routine also plots pressure values providing some feedback to the user about the acquisition process. Output data was saved in a text file and exported to OriginPro 8.5 for subsequent analysis.

The maximum error introduced by hysteresis of the sensor was calculated as a percentage of the maximum pressure used during calibration (14.0 bar). Maximum sensor drift during a measurement period of 30 minutes was also calculated for pressures of 0.0 bar, 7.0 bar and 14.0 bar.
2.4 Ex Vivo Experiments

Ex vivo experiments were conducted by a skilled veterinary prior to in vivo testing at the facilities of the Veterinary Hospital of the University of Évora. These experiments were useful to decide about the most appropriate in vivo surgical approach and to test the whole system and sensor performance under more harsh and realistic conditions.

After practicing several surgical approaches on an adult sheep cadaver it was decided to apply a percutaneous approach under fluoroscopic control (Digital C-Arm - ZEN 2090 Pro, Genoray America Inc., CA, USA) for measurement of in vivo pressures. This minimally invasive procedure requires a needle puncture on the skin instead of using an open ventral approach where inner organs and tissues have to be exposed.

A dorsolateral transforaminal approach into the center of the NP, similar to that used in discography and percutaneous nucleotomy, was followed [307,644]. After positioning a standard 11-gauge biopsy Jamshidi needle (cannula with ≈3.0 mm OD and ≈2.3 mm ID) in the intervertebral space the stylet of the needle was taken out and substituted by a 2.0 mm Kirschner-wire to make a deeper hole into the NP and prepare the disc for sensor implantation (figure 63). At this stage the Samba sensor was not used to prevent it from breaking.

![Figure 63](image)

Figure 63 – The standard 11- gauge biopsy Jamshidi needle used to implant the Samba sensor into the nucleus pulposus of the intervertebral disc, the stylet and the 2.0 mm Kirschner-wire.

To test the acquisition system and sensor performance a simpler methodology was used. The IVDs of a cadaveric lumbar spine of a sheep were exposed. The AF was punctured ventrolateraly and a 20-gauge hypodermic needle was guided by haptic sensing into the NP (figure 64). Then the
sensor was guided into the NP through the lumen of the needle. The needle was then removed from the fiber optic cable holding the sensor in situ.

Figure 64 – Insertion of the Samba sensor into the needle lumen.

To prevent sensor displacement inside the NP the cable of the sensor was sutured to the surrounding soft tissues (figure 65).

Figure 65 – Location of the suture to prevent slippage of the sensor.

In the previous conditions, several spinal maneuvers were performed by the veterinary trying to simulate the three major anatomical movements of the spine, namely flexion/extension, lateral flexion and axial rotation (figure 66). These maneuvers aimed at measuring intradiscal pressure in
the position of maximum ROM, although without controlling the magnitude of the applied force and the ROM.

Figure 66 – An example of the conditions under which the spinal maneuvers were accomplished.

Sensor location in the intervertebral space was confirmed by X-ray imaging (figure 67).

Figure 67 – An example of an X-ray used to confirm Samba sensor position into the intervertebral space. Ventral and lateral X-ray images were taken to confirm sensor location in the anterior and sagittal planes. In the present example the sensor seems to occupy a central but slightly posterior position.
2.5 In Vivo Experiments

The study was performed at the facilities of the Veterinary Hospital of the University of Évora. It was authorized by competent national authorities and conducted according to the guidelines for animal care of the Federation of Laboratory Animal Science Association (FELASA) [645-646].

The Samba sensor was implanted in the 5th lumbar intervertebral disc (IVD) of a 4-year-old female merino ewe with 45 kgf body-weight, under general anesthesia. The following major procedures were adopted:

- The lumbar region was sheared before taking the animal to the operating room and it was pre-medicated with atropine (0.7 mg kg$^{-1}$), xylazine (0.1 mg kg$^{-1}$) and butorphanol (0.01 mg kg$^{-1}$);

- At the operating room, holding the animal in the standing position, anesthesia was induced with thiopental sodium 5% (5 mg kg$^{-1}$) by intravenous injection (figure 68). Then the animal was moved to a radiolucent table and maintained in a lateral right recumbence position (figure 68);

- Endotracheal intubation was performed and the anesthesia was maintained through isoflurane (2-3%) in oxygen with spontaneous ventilation, under control of vital parameters (heart rate and respiratory rate) (figure 69);
Material and Methods

The anesthesia was maintained through isoflurane (2-3%) in oxygen with spontaneous ventilation and vital parameters were controlled.

- The lumbar region was prepared for needle puncture with a povidone-iodine solution in 70% ethanol (figure 70);

Figure 70 – The lumbar region was prepared a solution of povidone-iodine in 70% ethanol.

- A standard 11- gauge biopsy Jamshidi needle (figure 63) was inserted percutaneously in the dorsolateral intervertebral disc space (figure 71) under fluoroscopic control (figure 72);
Measurement of Intradiscal Pressure in Sheep under General Anesthesia
Material and Methods

Figure 71 – Insertion of the standard 11-gauge biopsy Jamshidi needle percutaneously in the dorsolateral intervertebral disc space.

Figure 72 - Fluoroscopic control of needle position.

- Then the stylet point was taken out and substituted by a 2.0 mm Kirschner-wire to penetrate into the NP. Leaving the cannulae in that position, the K-wire was substituted by the Samba sensor and data collection started (figure 73);
Material and Methods

Figure 73 – Implantation of the Samba sensor into the nucleus pulposus of the intervertebral disc.

- After waking up from surgery the animal was conducted to the recovery room (figure 74);

Figure 74 – The animal going to recovery.

- The height of the disc was estimated by calculating the height of the corresponding intervertebral space using fluoroscopic images. The open source ImageJ 1.46r program (National Institutes of Health, USA) was used for calculations.
3. Results and Discussion

3.1 Calibration

The pressure interval that was used in sensor calibration varied from 0 to 14 bar (1.4 MPa) and the calibration step was of 0.5 bar (0.05 MPa). In order to detect hysteresis in the measuring system three pressure cycles were performed, each including an increasing and decreasing pressure part. As can be seen from figure 75 the average values for all increasing and all decreasing parts are similar suggesting a small but significant \((p \leq 0.05)\) hysteresis effect.

![Figure 75](image)

Figure 75 – Average values of increasing and decreasing parts of the three pressure cycles performed during calibration of the Samba sensor. A detail on the average of the differences between increasing and decreasing values at each step of calibration is shown. Y-error bars represent one standard deviation.

To analyze the extent of hysteresis the differences between increasing and decreasing values were calculated for each step of calibration. The average of these differences was \((7.241 \pm 3.620) \times 10^{-5}\) (figure 75). With exception of the difference calculated for 0 bar the remaining differences were positive suggesting slightly lower values during pressure decreasing. Maximum hysteresis was 0.46%.

Despite the previous differences the calibration coefficients were calculated for the complete cycles. The average values of the three calibration cycles are presented in figure 76.
The differences between consecutive steps of calibration (0.5 bar) were calculated for the above data. On average these differences were of $(5.754±0.472)\times10^{-4}$ (figure 76). The mean standard deviation of each step of calibration was $2.022±0.262\times10^{-4}$ which represents about 35% of the average difference between consecutive steps of calibration.

The purpose of the calibration procedure was to convert variations in signal/reference signal into variations of pressure. For that purpose linear and quadratic fitting functions were applied to pressure versus signal/reference plots and the corresponding coefficients were used with a LabVIEW routine to automatically calculate pressure values during experimental measurements. In figure 76 the linear and quadratic regression models obtained are presented.

Both fitting equations can explain more than 99% of the dependent variable. Nevertheless, the adjusted coefficient of determination $(adj.r^2)$ was slightly higher for quadratic fitting, justifying the use of the quadratic coefficients for experimental procedures providing the pressures were in the range of calibration pressures.

Maximum sensor drift during a measurement period of 30 minutes for pressures of 0.0 bar, 7.0 bar and 14.0 bar was of ±0.002 bar.
3.2 **Ex Vivo Experiments**

Ex vivo experiments were performed to decide about the most appropriate surgical approach technique, to test the whole system under more realistic conditions and to test sensor performance.

Sensor performance was evaluated on a cadaveric lumbar spine of a sheep. The sensor was inserted into the NP of an IVD using a ventrolateral approach (figure 64).

A 20-gauge hypodermic needle was used to puncture the AF and guide the sensor into the NP. An experienced veterinarian is capable of feeling the sensor *in situ*. The initial resistance posed by the denser AF to needle penetration is followed by a sensation of a decrease in resistance suggesting the needle’s bevel is in the NP. Even so, sensor location in the intervertebral space was confirmed with X-ray imaging (figure 67).

It should be mentioned that before using the previous needle, some needle catheters have been tested in an attempt to guide the sensor into the NP (figure 65). Nevertheless, the majority of these attempts failed because the AF pressure acting along the catheter was enough to squeeze the lumen preventing the sensor from entering. In these cases it was decided not to force sensor entrance because it could break the sensor head. The high pressures derived of the contact of the sensor head with the catheter walls are plotted in figure 77.

![Figure 77](image)

Figure 77 – Pressures measured during sensor insertion into the catheter lumen, while contacting the squeezed lumen and during its removal (raw data).

The use of needles or more rigid catheters to guide a sensor into the NP seems mandatory [20,307]. However, in the case of the Samba sensor when the needle was removed it had to remain suspended on the sensor cable during the measurements (figure 60, figure 65).
The previous observation could be an important limitation, particularly for \textit{in vivo} measurements and requires further reflection. It was not possible to remove the needle through the opposite extremity of the Samba sensor due to the presence of the optical connector (figure 53). Therefore, future initiatives, with commercial or purpose-built sensors, could consider splicing the OFs of the connector and sensor only after sensor implantation and needle removal. However this procedure will probably require an \textit{in situ} calibration, which could be a problem, and will certainly delay data acquisition.

An easier and simpler procedure could be fixing the needle to the skin using a standard medical adhesive tape. However to do it effectively requires control on the fiber optical cable length and, particularly, its diameter. For example, the diameter of the larger protective layer of the Samba sensor was about 2 mm, starting approximately 15 cm away from the sensor tip (figure 53). Therefore, imagining a needle with less than 2 mm ID and 75 mm long14, it could not be retracted away from the site of needle puncture more than 7.5 cm. In \textit{in vivo} studies it would not be possible removing the needle from the body completely. To accomplish it a needle with a larger bore (>2mm ID) has to be used. In fact, the previous strategy had to be followed in the present \textit{in vivo} study. Consequently, the corresponding needle punctures will be more invasive and could develop a deleterious effect on disc properties and on its normal mechanical behavior [647-649].

Future developments should be capable to designing sensors with uniform and minimum diameters along the fiber length, preferably equal to the diameter of the sensing tip. This way a minimally invasive needle could be completely removed or kept fixed to the skin at a safer distance from the sensor tip.

Another interesting alternative is to keep the sensor within the needle during pressure measurements. This strategy would be very useful to protect the sensor head from physical damage. To maintain the procedure minimally invasive the needle should be as small as possible, preferably with an ID similar to that of the sensor head. To prevent the intradiscal fluid from escaping through the lumen it should be sealed with a biocompatible polymer.

\textit{Ex vivo} experiments were also useful to confirm that under spinal maneuvers the increase of intradiscal pressure causes the sensor tip to shift outwards. This behavior was described in a previous study using a nonoptical and larger sensor [307]. To prevent the sensor from sliding the sensor cable was sutured to the adjacent soft tissues (figure 65). Nevertheless, because the suture was far away from the AF the previous procedure was more effective preventing inadvertent movements on the cable than sliding of the sensor head. On the other hand, it was too risky to suture the bare fiber (black part of the sensor cable in figure 65) nearest the AF, because it was more fragile and could break.

14 The length of typical spinal needles, used for spinal anesthesia or lumbar puncture, varies between 30 mm and 150 mm and their internal diameters between 0.35 mm and 1.27 mm.
The experiments were conducted under the previous conditions, but future alternatives, keeping in mind *in vivo* experiments, were discussed. The most effective procedure is probably bonding the sensor cable at the site of needle puncture and making it to adhere to the AF. Current topical skin closure adhesives could be tested. Furthermore, these adhesives also seem also to offer many advantages over traditional wound closure devices [650-651]. Additionally, other bonding agents, such as PMMA and isobutyl 2-cyanoacrylate monomer, which are FDA approved adhesives for bone tissue, could also be tested [592,652].

Pressure data resulting from repeated spinal maneuvers, such as flexion/extension (figure 78), lateral bending (figure 79) and axial rotation (figure 80) was plotted for analysis.

![Flexion Maneuvers](image1)

Figure 78 – Pressure raw data resulting from flexion/extension maneuvers.

![Lateral Flexion Maneuvers](image2)

Figure 79 – Pressure raw data resulting from lateral flexion maneuvers.
3.3 In Vivo Experiments

The percutaneous approach under fluoroscopic control that was followed in the present study was similar to the approach used in human discography and percutaneous nucleotomy [307,644,654]. It seems the adequate technique for animal experiments and to ensure a transition to human in vivo applications. Moreover, compared to an "open" approach, where inner organs and tissues are exposed, the technique is less invasive. In fact, in the present study the animal was
able to recover and released to its natural environment in less than four hours. The complete operation from the beginning to the end of anesthesia lasted for about two hours.

A standard 11-gauge biopsy Jamshidi needle (≈3.0 mm OD and ≈2.3 mm ID) was used during percutaneous approach. The stylet of the needle was taken out and substituted by a 2.0 mm Kirschner-wire to create a passage into the NP and prepare the disc for implantation of the 360 μm OD sensing head. The previous dimensions of the needle were required because it was planned to collect the needle along the OF cable with 2 mm diameter. Nevertheless, it seems mandatory to discuss possible effects of the above procedures on disc properties.

It is well described that needle puncture can cause AF damage and alter the mechanical properties of the NP [647-649]. These effects seem to be more evident if the relative needle size (the ratio of the needle diameter to disc height) exceeds 40% [648]. In the present study disc height was estimated to be about 3.5mm. The ratio of the Jamshidi needle diameter to disc height was about 85.7% suggesting the fibers of the AF could be damaged by needle puncture. On the other hand, the ratio of the Kirschner-wire to disc height was about 57.1% suggesting a possible depressurization of the NP [648].

It is important to retain that pressure outcomes can be influenced by the previous effects and the way to minimize them is to reduce needle dimensions. However, in the present situation, it was not possible because it would require reducing the diameter of the fiber optic cable (see figure 53, p.129). Prior to in vivo experiments an attempt was made to acquire a modified Samba sensor, particularly with an optical cable with smaller diameter. Even so, it was not possible because the company (Samba Sensors) was acquired by FISO Technologies, Inc., a wholly owned subsidiary of Nova Metrix LLC (MA, USA) and sensors became unavailable. Moreover, to our best knowledge the market is not offering similar sensors, particularly for the same pressure range.

Solving the previous geometric constrain will result in a less invasive procedure and it will be possible to take full advantage of the micrometer dimensions of the sensor. Alternatively the same sensor could be housed within a typical spinal needle (e.g., those used for anesthesia or lumbar puncture). Typical diameters of spinal needles range between 0.42 mm (27G) and 1.2 mm (18G).

Pressure results obtained in the 5th lumbar IVD with the animal in a lateral right recumbence position under general anesthesia are presented in figure 81.
Results and Discussion

As can be seen in figure 81, a periodic pressure pattern was obtained during measurements. On average, the signal periodicity was 2.81 ± 0.12 s (time peak to peak), which corresponds to approximately 21.3 ± 0.12 pressure cycles per minute. The previous rate was similar to the respiratory rate under spontaneous ventilation which, on average, for the complete surgery, was ≈ 15.4 breaths per minute and during measurements about 20.5 breaths per minute. The hearth rate during the surgery was, on average, ≈ 85.5 beats per minute (bpm) and could also influence the periodicity of the observed pattern.

The effect of breathing in intradiscal pressure was also reported by Sato et al. [484] in lumbar discs (L4-L5) of human subjects and in lumbar discs of pigs [311-312,315]. Sato et al. [484], also found that the wave pattern was synchronized with the number of respirations with the subject in the prone position and existed slightly or disappeared in the standing and the sitting body positions.

The effect of breathing on the intradiscal pressure of porcine lumbar discs (L1-L2) was studied in more detail by Keller et al. [653,655]. The respiratory rate and breathing volume were controlled with a ventilator. Typical respiratory rates in sheep under general anesthesia could range between 12 an 27 breaths per minute [656-657]. Authors concluded that breathing had a significant effect on the intradiscal pressure, which seems to decrease with respiratory rate (breathing volume was left constant) and increase (1 to 2.5%) with breathing volume (keeping the respiratory rate constant) [653].
In the present study the anesthesia was maintained through isoflurane (2-3%) in oxygen with spontaneous ventilation. Thus it was not possible to control the respiration rate and the breathing volume in order to measure their influence on the variation of the intradiscal pressure. This could be an interesting issue for future research. In fact, it has been suggested that breathing can play an important role in the nutrition of the IVD [653,658]. The disc is the largest avascular tissue in the body and nutrients reach its cells by diffusing from blood vessels of the vertebral body through the cartilage endplate into the disc matrix under diffusion and osmotic gradients [659-660]. Therefore, the intradiscal pressure variation induced by breathing could help to pace the rate of diffusion and osmosis. On the other hand, high kinematic stresses (e.g., maximum ROM) and loads rise intradiscal pressures to levels that could result in impaired nutrition of the IVD [660].

In the present study pressure fluctuations ranged between 2.31 bar and 3.45 bar, with a maximum amplitude of 1.14 bar. The average pressure was 2.78 ± 0.28 bar (figure 81).

The previous values seem to be higher than those observed in other studies. In the study of Keller et al. [653] the average resting intradiscal pressure in lumbar porcine specimens was found to be 0.357 ± 0.060 bar. An average value of 0.81 ± 0.05 bar was found in another study with porcine lumbar discs [315]. In the study of Höejer et al. [311] a similar Samba sensor (430 μm OD) was used to measure intradiscal pressures in anesthetized pigs and minimum registered resting pressures were of 0.7 bar. The amplitude of breathing pressure fluctuations was less than 0.2 bar [311]. In the study of Sato et al. [484] the intradiscal pressure in the prone and lateral lying positions of human subjects was of 0.91 ± 0.27 bar and 1.51 ± 0.53 bar, respectively. These values were similar to those found by Wilke et al. [307] for L4-L5 lumbar discs of subjects in the lying supine (1.0 bar), lying on the side (1.2 bar) and lying prone (1.1 bar) positions.

On the other hand, higher values than those observed in the present study were registered by Nachemson et al. [227] in human subjects. In the reclining position pressures varied from 1.4 to 8.3 bar (mean, 5.4 ± 1.8 bar) [227]. Guehring et al. [313] implanted a similar Samba sensor (OD not specified) in rabbits and physiologic pressures ranged between 2.2 and 4.2 bar (mean 3.6 bar).

Finally, in thoracic discs of human subjects, which have the same kyphotic curvature as the lumbar spine of a sheep, intradiscal pressure values were closer to those found in the present study, ranging between 2.0 ± 0.3 bar (T9–T10, T10–T11) and 2.9 ± 0.4 bar (T6–T7, T7–T8) for the lying prone position; and between 3.0 ± 0.3 bar (T9–T10, T10–T11) and 3.4 ± 0.5 bar (T6–T7, T7–T8) for the lying on side position [487]. More recently, a similar Samba sensor (360 μm OD) was used in the study of Hebelka et al. [312] and the median baseline pressures that were registered for sedated pigs were of 2.0 bar (range, 1.2 to 3.1 bar). The breathing effect on intradiscal pressure was registered but the corresponding amplitude was not reported. Even so, observing published plotted data on pressure amplitude due to breathing seems to be lower than the amplitude observed in the present study.
Previous studies suggest a marked dispersion in the intradiscal pressure values at rest. These values appear to vary with the species and within species. The sensor may have some influence on the results, given its geometry and working principle, for example. Still, the results of the present study seem to overestimate the values of intradiscal pressure and particularly the amplitude of pressure fluctuations due to breathing. These values seem also to contradict a possible depressurization of the NP due to a large needle puncture. In fact, further research using FOS to better understand these phenomena seems essential.

The major disadvantage of FOSs is perhaps their fragility. In fact, in another attempt to measure sensor repeatability it broke (figure 82).

![Figure 82 – Sensor failure occurred during removal of the sensor from the 5th lumbar intervertebral disc. On top a picture of the broken sensor.](image)

A sensor of this type costs more than € 1,000 and despite the robustness demonstrated during calibration, ex vivo and in vivo experiments, the risk of failure can compromise their acquisition to carry out these experiences on a routine basis. Thus, the possibility of starting developing similar sensors for biomedical and biomechanical applications at INESC-Porto facilities represented an interesting opportunity and led us to the next study.
4. Final Remarks

In this study the possibility of using FOS to perform in vivo studies and measure intradiscal pressures was explored. A similar surgical protocol to the one used in humans was applied. This approach is strongly recommended if human applications are pursued [525].

Using smaller needles and/or modifying sensor geometry seem mandatory to minimize disruption of the AF and NP and preserve the minimally invasive potential of FOSs.

Studying strategies to increase FOSs robustness without compromising their micrometric dimensions also seems also a critical issue, because it will reduce the risk of adverse reactions, ensure sensor durability and diminish the cost per sensor. Probably, further improvements will require sensor encapsulation using special needles or catheters.

The interrogation unit that was developed also requires further improvement. It should be small to allow manual handling and portability. Wireless data transmission should also be considered. In such a way it could be possible to perform dynamic studies, such as locomotion studies, and collect data for longer periods without having either the human or the animal anesthetized.

Finally, further research seems mandatory to produce clinical relevant information.
Study 4 - Fiber Optic Prototypes for Pressure Measurement

1. Introduction

The main purpose of this study was to present ongoing research at INESC Porto aiming to explore FOS configurations for temperature, strain, force and pressure measurements intended for biomedical and biomechanical applications. The most common working principles applied to FOSs for biomedical and biomechanical applications are based on intensity, phase and wavelength modulation, the latter associated with the operation of FBGs.

Wavelength modulation is typically achieved through use of FBG sensors which are probably the simplest and most interesting type of FOSs, particularly for temperature and strain measurements. In fact, the majority of studies that have been conducted by Portuguese and Brazilian research groups in the field of biomedical engineering and biomechanics focused on the use of FBGs. Some major research topics included the study of dental implants and supporting tissues [140-141]; monitoring the curing process of dental resin cements [144] and of bone cements [103,146,661]; studying the possibility of osseointegration of optical fibre and FBGs [662]; and their use in orthopedic devices [147]. More recently, an FBG was used to monitor radial strain of the IVD under axial compression [138].

Intensity and phase modulation configurations are not so exploited by these research groups. Among them, interferometric based sensors, namely those based on the F-P configuration seem very attractive for biomechanical and biomedical applications. F-P interferometer sensors were introduced in the early 1980s and solved many drawbacks of intensity modulated sensors. Instead of measuring a change in light intensity, these sensors aim at phase differences in the light beams. Their most common configuration includes a small-size sensing element bonded to the tip of the fiber. This element is an optical cavity formed by two parallel reflecting surfaces where multiple reflections occur (figure 8). One of the reflecting surfaces is a diaphragm that changes the optical cavity depth (i.e., the distance between mirrors) under the action of the measurand and, consequently, the characteristics of the signal that reaches the photodetector. Compared to intensity modulated schemes and FBG sensors, F-P interferometers are capable of achieving high sensitivities and resolutions, but at the expense of relatively complex interrogation/detection techniques [47].

The present study is focused on the proof of concept of two F-P based sensors that have been developed for pressure measurements of fluids. The prototypes were tested in a purpose-built pressure chamber and with further optimization they could be used to measure the pressures of specific biological fluids.
2. Material and Methods

2.1 High-pressure Fabry-Pérot sensor

Sensor 1 consisted of a high-pressure F-P sensor with an optical cavity formed by the reflecting surfaces of the tips of two single mode fibers (Corning® SMF-28™ Single-Mode Optical Fiber, NY, USA) facing each other (figure 83).

![Schematic drawing of a high-pressure Fabry-Pérot (F-P) prototype.](image)

The acrylate coating of the OFs was mechanically stripped. Then, the OF was cleaved with a high precision cleaver (Sumitomo FC-6RS, Sumitomo Electric, Japan) (figure 84) in order to get a clear cross section reflecting tip surface. The quality of cleaving was inspected using an optical microscope.

![An image of the cleaver that was used to cleave the fiber tips.](image)
Each OF was rigidly encapsulated (using a cyanoacrylate adhesive) inside a single bore of a borosilicate glass ferrule (ID 127±3µm, OD 1.8mm±0.005mm, unit length 5.7mm; CM Scientific Ltd., Product ID: Ferrule-SB127/1.8/5.7BORO) (figure 83).

To create an optical cavity, the previous set was aligned using an alignment sleeve (ID 1815µm±10µm, OD 2780µm±30µm, length 6mm±0.1mm; CM Scientific Ltd., Product ID: TQNC18152780/6) (figure 83).

The ferrule connected to the light source was rigidly fixed to the sleeve with cyanoacrylate adhesive. After proper connections to a broadband source, an optical circulator and an optical spectrum analyzer (ADVANTEST Q8384), the output spectrum (optical power versus wavelength) was adjusted by controlling the distance between the reflecting surfaces of the two fibers (optical cavity length). Then, the other ferrule was glued to the sleeve with a silicone polymer (Silastic Medical Adhesive Silicone, Type A, Dow Corning) and allowed to move in order to sense the applied pressure. Under pressure, the optical cavity length changes and, consequently, the phase of the spectrum. The maximum outer diameter of the sensor was 2.78mm.

2.2 Low-pressure Fabry-Pérot Sensor

Sensor 2 consisted of low-pressure F-P sensor prototype with an optical cavity provided by a PCF (OD 125.5 µm, hollow core diameter 44.4 µm; Institute of Photonic Technology, Jena, Germany) and the reflecting surfaces of a single mode fiber (Corning® SMF-28™ Single-Mode Optical Fiber, NY, USA) at one end, and a biocompatible silicone polymer (Silastic Medical Adhesive Silicone, Type A, Dow Corning) at the other end (figure 85).

Both coatings of the OF and the PCF were mechanically stripped. Then, both tips were cleaved with a high precision cleaver (Sumitomo FC-6RS, Sumitomo Electric, Japan) (figure 84) in order to get a clear cross section. The quality of cleaving was inspected using an optical microscope.
The two tips were carefully fused using an Arc Fusion Splicer (Fujikura FSM-60S Arc Fusion Splicer) (figure 86). Manual alignment functions of the Arc Fusion Splicer program were used. A polymer (Silastic Medical Adhesive Silicone, Type A, Dow Corning) was applied to the cleaved tip at the opposite end of the PCF. Under pressure a silicone membrane deflection occurs varying the optical cavity length and a phase change is observed. Sensor was interrogated using a broadband source, a circulator and an optical spectrum analyzer (ADVANTEST Q8384).

2.3 **Pressure Chamber**

For the proof of concept pressure measurements were made in the purpose-built pressure device that has previously been described (figure 59, p.134). Sensors were tested in distilled water.
3. Results and Discussion

Average results for five consecutive pressure cycles are presented for sensor 1 and 2 in figure 87 and figure 88, respectively.

Figure 87 - Wavelength shift of sensor 1 under pressure.

Figure 88 - Wavelength shift of sensor 2 under pressure.
Results from sensor 1 are in the range of intradiscal pressures [307]. With further miniaturization (below 1 mm is desirable), sensor encapsulation (e.g., catheter or a spinal needle) and use of a biocompatible resin to fix the non movable part of the sensor, these type of sensors can be explored to sense these pressures either \textit{ex vivo} or \textit{in vivo}. Sensor output depended on the quality and alignment of the reflecting surfaces, the length of the optical cavity, adhesives type and their application.

Results from sensor 2 are in the range of intracranial pressures [252]. With optimization of sensor performance (namely reduction of sensor variability) and its encapsulation it can also be explored to sense these pressures either \textit{ex vivo} or \textit{in vivo}. Sensor output depends on the quality of splices, PCF length and silicone application.
4. Final Remarks

For the proof of concept, two possible configurations intended for pressure measurement have been presented. These sensors can be fabricated and tested in our facilities. Nevertheless to get precise and accurate measurements fabrication techniques should be optimized, especially if biomechanical and biomedical testing is pursued.
Part IV – Conclusion and Future Work
The present work represents an effort to better understand the mechanical behavior of the spine and, particularly, of the spinal motion segment and the intervening disc. Simultaneously, it also allowed to deepen the knowledge of fiber optic sensors and explore their potential beyond the bench tests, especially in cadaveric specimens and in vivo.

The two previous topics were explored in the review of literature. The state of the art concerning fiber optic sensors has been reviewed comprehensively looking at their major working principles and focusing on biomechanical and biomedical applications. In vivo applications were highlighted as well as the physical quantities of temperature, strain, force and pressure. Addressing the spinal motion segment, anatomical, histological and mechanical properties allowed a deep knowledge on the structure that would be explored in the experimental part. Moreover, the literature review launched the foundations for a systematic study in the field and offered the possibility of defining and exploring several research lines and projects in the near future.

The experimental part reflects author’s efforts to perform research not only on an autonomous basis but also in partnership, benefiting from and collaborating with several research teams, from mechanics to physics and medicine. The author has no doubt that the quality of research depends on multidisciplinary teams and the path to knowledge and innovation is often drawn along border lines.

Experimental work is also an unfinished task. Thus the author expects to continue spine research depending on research projects funding, human resources and the willing to accomplish them. The main objectives for the near future are:

- Creating a research group/network on spine biomechanics and the conditions to apply standards in spinal testing;
- To develop a fiber optic sensor prototype for in vivo intradiscal pressure measurements.

Finally the author must admit that if it has not been possible to go further, all responsibility lies on him and his limitations. Still, he continues to dream about the uncertainty and the unknown, always living with the pleasure the smallest of discoveries can provide.
References

32. Clark F, Schmidt E, DeLaCroix R (1965) Fiber optic blood pressure catheter with frequency response from DC into the audio range. Paper presented at the Proc Nat Elec Conf, McCormick Place, Chicago, IL, October 25-27

469. Gregory D (2009) The influence of the tensile material properties of single annulus fibrosus lamellae and the interlamellar matrix strength on disc herniation and progression. University of Waterloo, Ontario, Canada

602. Santos M (2009) Controlo de um sistema servopneumático para ensaios de fadiga (Development of a distributed control platform for real-time operation of a servo-pneumatic fatigue test machine in order to perform tests involving the control of the force and position). MSc, University of Aveiro, Aveiro

