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resumo 

 

 

Um objeto móvel é uma entidade cuja posição e forma se alteram 

continuamente ao longo do tempo. Tais objetos existem no mundo real 

e é possível capturar amostras discretas destes utilizando por exemplo 

imagens de satélite. Essas capturas representam estados do objeto em 

diferentes instantes de tempo. Cada amostra discreta é representada 

por um conjunto de pixels. Para representar o movimento dos objetos é 

necessário extrair uma representação vetorial dessas capturas e aplicar 

técnicas de morphing para modelar a transformação dos objetos.  

 

Nesta dissertação são apresentados dois métodos de morphing para 

representar o movimento de objetos em bases de dados espácio-

temporais. Foram ainda desenvolvidas ferramentas para automatizar o 

processo de segmentação a partir de sequências de imagens reais 

(fotos de satélite). Estas ferramentas são um primeiro passo para a 

criação de conjuntos de dados reais com uma dimensão significativa 

que possam ser utilizados para testar e validar os algoritmos de 

representação de objetos móveis em bases de dados. Os trabalhos 

nesta área têm-se focado na criação de representações de objetos 

móveis válidas e não consideram aspectos qualitativos como a 

deformação dos objetos durante as transformações. As experiências 

têm sido realizadas utilizando apenas dados sintéticos. 
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Abstract 

 

 

A moving object is an entity whose position and shape are continuously 

changing over time. Such objects exist in the real world and it is 

possible to capture discrete samples of them using for example satellite 

images. Those captures represent the characteristics of the object at 

different time instants. Since each snapshot is in raster mode, it is 

necessary to extract a vectorial representation of those captures and to 

apply morphing techniques to model the transformation of the objects 

between snapshots. 

 

In this dissertation two morphing methods are used to represent the 

movement of an object. The development of tools to improve and 

automate the process of segmentation from sequences of real images 

(satellite images) was also one of the focuses of this work. These tools 

are a first step for the generation of real world datasets with significant 

size that can be used to test and validate the algorithms to represent 

moving objects in databases. This is an important issue because 

previous works have focused on creating valid movement data 

representations at all times and do not consider qualitative features 

such as the objects’ deformation during the transformations. The 

experiments were limited to synthetic datasets. 
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 Introduction 1

There are many scenarios that originate entities with both temporal and spatial components. 

Those phenomena can be instigated by natural causes (volcanic eruptions, tsunamis, melting 

glaciers, movement of hare of animals, etc.) or by man-made actions (oil spills, deforestation, fires, 

growth of the urban areas, etc.). 

Those scenarios create objects which position and shape are continuously changing over 

time, named moving objects. A more detailed definition of moving objects is present in Chapter 2. 

In the past years some research studies have been made to deal with this kind of objects. 

Those studies led to the implementation of databases and information systems dealing with 

sequences of snapshots of moving object captured for example by satellites. 

However the acquisition of the geometries of the object from a sequence of real images and 

the simulation of the movement are still understudied subjects, since it is necessary to obtain the 

movement of the objects using static snapshots. (Tøssebro and Güting 2001) presents a solution to 

retrieve moving objects from a set of polygons, however it does not guarantees that the geometry of 

the objects is valid at all times and in (McKenney and Webb 2010) another solution is proposed to 

solve that problem. However this work focuses in the avoidance of self-intersections on the 

intermediate polygons and creates deformations, mostly when rotations and concavities are present 

in the objects. Both these solutions were tested using only synthetic datasets but no experiments 

were performed to test the quality of the movement data representation. 

More recently, (Paulo 2012) proposes the application of morphing techniques to represent 

moving objects in spatiotemporal databases. This is an exploratory work that implemented all the 

process of retrieving moving objects from a sequence of images and storing them in a database. 

This work divided the morphing into two phases: the correspondences between two consecutive 

geometric representations of the moving objects, and the linear interpolation between the 

correspondent vertices. This work was one of the few that used real data source to test the 



2 

 

algorithms and the results proved the feasibility of morphing techniques to solve some complex 

problems of spatiotemporal objects. 

However there were some issues to be solved to guarantee more accurate results. After the 

acquisition of the geometric information of the object from the images, the segmented polygons 

suffer from noise or self-intersection. In Chapter 3 of this dissertation we propose a solution for this 

problem and a method to automatize the segmentation process of a sequence of images, which tries 

to reuse parameters used in a successful segmentation of an image for the acquisition of the rest of 

the polygons in that sequence. 

In (Paulo 2012) a morphing technique is presented that can be used automatically, without 

any user intervention, however one conclusion of that work was that this algorithm could be 

improved if a first correspondence between two vertices in a source and a target polygons was 

entered manually. Chapter 4 presents solutions to automatically determine this first correspondence 

and some refinements to improve the morphing algorithm. An alternative algorithm to create the 

correspondences between polygons is also described in this chapter.  

The third problem addressed in this work is related to the path of the vertices resulting of the 

morphing techniques. In (Paulo 2012) this problem was not solved, since only linear interpolation 

was used which may originate invalid topologies during the transformation of the objects. These 

invalid topologies occur because the path of the vertices may intersect originating deformations or 

self-intersections on the intermediate polygons. Solutions to this problem are addressed in Chapter 

5. 

The chapters presented in this dissertation start by a general description of the problem 

referring the solutions in the literature, followed by a description of the solutions implemented in 

(Paulo 2012). These solutions are discussed in detail and their limitations are highlighted. Then the 

solutions implemented in this work are presented. Each chapter ends with a summary referring 

their main topics. 

Chapter 6 presents the results obtained using real world datasets for all the implemented 

algorithms. This chapter is divided in three subsections, referring each of the main problems treated 

in this dissertation. The first problem is the acquisition of the vectorial representation of the objects 

from sequences of satellite images. This subsection presents the tests and results of the algorithms 

implemented to reduce the number of vertices of the polygons and the automatized segmentation 

method. The second subsection contains the results of the correspondence method implemented 

comparing them with manual correspondences. The last subsection presents the results of the 

morphing techniques implemented using the best correspondence algorithm and the alternative 

methods implemented. In this subsection the similarity between the calculated polygon and the real 

polygons is computed. Each of these subsections ends with general conclusions of the algorithms.  
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Finally Chapter 7 presents the contributions of this work as well as some aspects to improve 

in the future. 
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 Representation of Moving objects in 2

databases 

The term moving object is an abstraction generally used to identify entities whose position 

and shape change continuously over the time. There are two different approaches to represent them. 

When the goal is to analyze the trajectories, the object may be represented just by a point in the 

space, at each time instant (Shim and Chang 2000). When it is necessary to analyze the full extent 

of the object, like the shape, the object may have a geometric representation like a polygon defining 

the boundaries of the object. Considering the detail which the data will be analyzed, those polygons 

may be the full shape of the object or approximations, such as Minimum Bounding Rectangles 

(MBR) or circles (P. Revesz 2010). 

Formally a moving object can be represented as a triple         where     
  represents 

the time,     
  denotes the geometry or location of the object and      

      
  is the 

transformation function of the object (translation, rotation and deformation) which is continuous 

both in time and space (Chomicki et al. 2003). 

2.1 Data Models 

Some strategies have been studied to represent moving objects in databases. In the Moving 

Objects Spatio-Temporal (MOST) data model described in (Sistla et al. 1997), a moving object has 

dynamic and static attributes. The former are values that change in the database without any user 

update. These values are motion vectors that represent the transformation of the object over time. 

Using these vectors it is possible to retrieve data not only from the present position of an object but 

also from its near future. When the trajectory of the object changes, it is necessary to update the 

motion vector. The updates are triggered by external events. This model can only be applied to 

objects that can be represented by a single point that moves in the space. To represent objects with 
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their geometric shape two alternatives have been studied. The constraint data model and the 

abstract data type (ADT) model, both using discrete representations of the object. 

The constraint data model presented in (Grumbach, Rigaux, and Segoufin 2001) represents a 

moving object as an infinite set of points resulting from unions and disjunctions of inequations or 

equations. One example of databases using the constraint model to deal with moving objects is the 

MLPQ/PReSTO developed at the University of Nebraska-Lincoln and available in (“MLPQ 

System (Version 5)” 2009). This database merges the MLPQ/GIS (short for Management of Linear 

Programming Queries / Geographic Information System) and the PReSTO (short for Parametric 

Rectangle Spatio-Temporal Objects) system. 

The MLPQ/GIS is described in (Kanjamala, Peter Z. Revesz, and Y. Wang 1998) and it is an 

extension of the MLPQ constraint database system defined in (P. Z. Revesz and Li 1997) that uses 

SQL extended language with linear arithmetic constraints and allows to aggregate operators. The 

MLPQ/GIS has a user graphical interface to facilitate the creation of database queries, and the 

translation of the queries is done in an independent module. 

The PReSTO system is described on (Cai, Keshwani, and Peter Z. Revesz 2000) and it 

defines parametric rectangles as a tuple                      , where    and    refer to the lower 

and upper bound of x and    and    to the lower and upper bound of y during time            . 

To retrieve the parametric rectangles from a moving object it is used the representation of the 

object in two different times, the object is decomposed into rectangles, and each rectangle from one 

representation is paired with the rectangles in the other. 

The ADT model described in (Güting et al. 2000) uses moving points and moving regions to 

represent a moving object. A single moving point is used when only the position of the object is 

important and represents a point in a plane and its motion vector. A moving region represents the 

shape of the object as a collection of moving points, where each moving point represents a different 

coordinate of the object. 

One important characteristic of the ADT representation is the sliced approach introduced on 

(Forlizzi et al. 2000), which describes a moving object as a set of slices. Each slice is a different 

geometric representation of the object in a different time instant and the changes between 

consecutive slices is translated by simple temporal functions.  

The Figure 2.1 represents a moving point. The vertical lines in the left graphic and the 

horizontal planes in the right represent different slices applied to an object moving on an 1D and a 

2D planes, respectively. With these slices it is possible to capture the position of the point at that 

time instant. 
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Figure 2.1 - Example of the sliced representation of a moving point, source (Forlizzi et al. 2000) 

 

The Figure 2.2 represents the movement of a polygon between two slices of the sliced 

representation, a motion unit. In this case the slices represent the real position and shape of an 

object captured from snapshots and the movement between slices was estimated using linear 

interpolation. 

 

 

Figure 2.2 – Example of a motion unit of a moving object 

 

This representation allows the creation of a continuous representation of an object even 

when only discrete samples are available, since the intermediate results can be calculated using the 

moving function between snapshots. 

The ADT’s are a combination of data types and operations. Then it is possible to incorporate 

ADT’s into systems that allow the integration of new data types and new operations. The 

Extensible Database Management System (DBM) is an example of this kind of systems. 
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The possibility to easily integrate the ADT’s into Extensible DBMS turns this model the 

most used in the research studies and in the implemented databases dealing with moving objects. 

The Secondo database (Güting, Behr, and Düntgen 2010) is an extensible DBMS platform 

created with the intent of teaching and researching and it was developed at University of Hagen in 

1995. This is a prototype that enables researchers to test and compare results of different data types, 

since it is possible to change and create new types or operations. The model and the types 

mentioned in (Güting et al. 2000) are already implemented in this platform; and tools to create and 

display animations of the moving objects stored are also available. 

The Hermes framework, a research prototype for efficient location-based data management 

is presented in (Pelekis et al. 2006). This framework aims to help in the modeling, construction and 

querying of moving objects databases. This framework exploits the spatial data types of the Oracle 

11g database and the temporal components introduced in (Pelekis 2002). This framework is the 

only one that allows the representation of arcs and circles. The circles can be represented using 

Moving_Polygons or Moving_Circle object type. A Moving_Circle only needs three Moving Points 

to define the object (Pelekis et al. 2010). 

In (Matos, Moreira, and Carvalho 2012) a discrete database is implemented using Oracle 

11g. The main types of this database are: the mPoint, composed by an unique identifier, a time 

interval, the position at the beginning of the time interval and a variability function describing the 

movement of the point during its time interval. The mPoint has a unique identifier and the mRegion 

is constituted by a time interval and a set of mPoint’s. The operations available in this database are: 

projections which can return a time interval, a spatial object or a scalar value, e.g., the velocity or 

the spatial footprint of the object; predicates which return a true or false values such as, results of 

intersections or unions; and clipping which is the filtering of some part of the object according to 

some rule.  

2.2 Movement data representations 

The representation of the objects’ movement has been subject for three research studies. In 

(Tøssebro and Güting 2001) is proposed an algorithm to create correspondences over two 

consecutive discrete representations of the moving object, that the authors call rotating plane. The 

simplest case is the interpolation between two convex polygons. The rotating plane algorithm fixes 

a segment of a polygon and rotates a plane around this segment until a correspondent vertex or 

segment is reached in the other polygon. But this algorithm only works using convex polygons. 

The concave polygons are divided into a tree composed by convex hull of their concavities. The 

convex hulls of the concavities of two different polygons are matched calculating the overlapped 

area between them. To the matched concavities is applied the rotated plane algorithm. 
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In (McKenney and Webb 2010) is referred that the rotating plane algorithm has a problem 

since it does not avoid the occurrence of self-intersection in the estimated polygons, so it is 

proposed another algorithm to do the correspondences of two consecutive discrete representations. 

This algorithm forces that the vertices are processed in counter-clockwise order starting in the 

leftmost and lower vertex, which is called by the authors the cyclic order. Thus the name cyclic 

order algorithm will be used in future references of this algorithm in this dissertation. 

Finally in (Paulo 2012) is proposed the use of morphing techniques to calculate the 

movement of the objects. In this master thesis the perceptually based approach (Liu et al. 2004) is 

used to determinate the correspondences between two polygons and the linear interpolation is used 

to compute the movement of the polygons. This work also proposes a segmentation tool to retrieve 

the polygons for a sequence of real world images. 

2.3 Case studies 

Two kinds of polygons are used in (Paulo 2012). The synthetic polygons are geometric 

shapes like triangles and pentagons created manually and were used to test the implemented 

methods. The Figure 2.3 shows the synthetics polygons of (Paulo 2012). 

 

 

Figure 2.3 - Example of some synthetic polygons used in (Paulo 2012) 

 

The other kind of data used were real world moving objects retrieved from a sequence of 10 

satellite images captured by the satellite Terra over the Ross Sea at Antarctica during the last two 

months of 2004. 

Those images are actually available in (“RossSea Subsets” n.d.) and it is possible to observe 

the movement of the icebergs B15a and B15j during those months. The B15a iceberg is around 120 

kilometres long, with an area exceeding 2500 square kilometres and it was the largest free-floating 
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object for five years until it broke into smaller icebergs. The B15j iceberg is around 45 kilometres 

long, with an area of almost 650 square kilometres. The movement of the B15a is mainly 

translational while the B15j is principally rotational. The icebergs belonging to this dataset will be 

referred using their names with the prefix ice. The Figure 2.4 is the satellite picture capture on 

December 4
th
 of this dataset.  

 

 

Figure 2.4 - Image of the icebergs B15a and B15j in 04-12-2004 

 

In this thesis two more datasets were used. A video composed by 7 satellite images captured 

by the Envisat satellite over the Atka Bay during October of 2009. In those pictures it is possible to 

observe the movement of the C19c iceberg. This iceberg is 37 by 24 kilometres and it was a part of 

the iceberg C19 which calved from the Ross Ice Shelf on May 2002. The movement of this iceberg 

is mainly rotational with some translation. The movie with this iceberg is actually available in 

(Münster and Wesche 2009). Figure 2.5 is one frame of the movie capturing the scene on 

November 11
th
 2009. 
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Figure 2.5 - Image of the C19c iceberg at 24-11-2009 

 

The last iceberg dataset was retrieved from the a low resolution video available in (“Ross 

movie” 2007). This movie is 30 seconds long and depicts the evolution of the iceberg B15 from its 

formation in      April of 2000 until      October of the same year. In this video it is possible to 

observe the split of this iceberg into smaller pieces like the B15a, B15b and B15d. Originally the 

B15 iceberg was the nearly 300 kilometres length and 40 kilometres width, and it was one of the 

largest ever seen at the time of its formation in March 2000. 

The Figure 2.6 shows one frame of the movie with the B15 iceberg captured on April 13
th

 

2000. 

 

 

Figure 2.6 - Original B15 iceberg at April 13, 2000 

 

After forming the B15d, the B15a fragment is the origin of the icebergs used in Luis Paulo’s 

dissertation (Paulo 2012), described in this section. 

Since this dataset has an iceberg with the same name the dataset used in (Paulo 2012), to 

refer icebergs from this dataset the prefix ross is added to the icebergs name, while the prefix ice is 

used in the other dataset. 



12 

 

The Figure 2.7 shows the fragmentation of the iceberg B15a forming the B15d.  

 

 

Figure 2.7 – Split of icebergs, a) B15 broke into B15a and B15b at 23-05-2000 and b) B15a formed the B15d 

at 12-08-2000 

 

The Table 2.1 shows the main properties of the datasets and the icebergs used. 

 

 ross_b15a and 

ross_b15b 
ice_B15a ice_B15j C19c 

Number of 

images 
30 10 10 8 

Time interval irregular: 1 to 29 

days 
2-10 days 2-10 days 1-2 days 

Movement type Translation and 

Rotation (occasional 

but significant) 

Translation Rotation 

dynamic movement: 

Translation and  

Rotation are significant 

Table 2.1 – Datasets properties 

 

In Table 2.1, the first row indicates the name of icebergs used; the second row gives the 

number of images in the sequence; the third row indicates the average time interval between 

observations and the last row indicates the predominant type of movement of the icebergs.  

Some additional tests were done using datasets containing fire spread sequences. The 

datasets description and some preliminary results are presented in Annex A. 
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2.4 Summary 

This chapter gives the context of this work and puts in evidence some of the current 

challenges to create data representations for moving object databases. It presents the description of 

moving objects as well as the main data models used to represent the moving objects: the ADT and 

the constraints databases approaches.   

Some examples of systems using those data models are presented like the MLPQ/PReSTO, a 

constraint database and the Secondo a database that uses Extensible DBMS integrated with an ADT 

of moving objects. 

The problem covered in this work is the creation of data representations for moving object 

databases. This chapter presents three works addressing this problem. The main challenges are: the 

implementation of semi-automatic procedures to extract the polygons representing the shape of the 

moving objects in a sequence of snapshots; to define a correspondence between the vertices of the 

polygons extracted from consecutive snapshots; and to define the vertex paths to model the 

transformation of the moving objects. It also presents the datasets used in the remainder of this 

work. 
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 Extracting objects from images 3

In the datasets described in Section 2.3, each snapshot contains the objects represented in 

raster mode, i.e. sets of pixels. However the data models from Section 2.1 use the vector 

representation of those objects. To retrieve the vector representation of an object from its raster 

representation it is necessary to apply a segmentation algorithm.  

3.1 Segmentation 

The simplest approach to obtain the shape of an object from a scene is manually defining the 

contours of each object for each scene. The result is directly related with the user’s ability to define 

the boundaries of the objects. Other option is to apply algorithms of segmentation on scenes so that 

the user could more easily get the shapes of the objects. An example of such an algorithm is the 

AB-Snake described in (Andrey and Boudier 2006). 

The AB-Snake algorithm uses a starting point to define the point from where the snake will 

start the search for the edges of an object. In the Figure 3.1 the start point is the centre of the ellipse 

in the top left image. The rest of the images demonstrate the growing of the snake in the search for 

the edges. 
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Figure 3.1 – Example of the AB-Snake algorithm segmentation, source (Andrey and Boudier 2006) 

 

The different colours and noise on the scenes difficult the definition of the edges. To 

improve the results of those algorithms, image simplification can be used as a processing step 

previous to the segmentation. Thresholding algorithms, e.g., Otsu Thresholding algorithm, can 

simplify the pixel values of the images using a threshold and a histogram. The Otsu Thresholding 

converts a grey scaled image into a binary image, dividing the grey scaled pixels of an image into 

background and foreground and determining the variance of each one. 

Figure 3.2 depicts the image (in centre) resulting from the application of the Otsu 

Thresholding algorithm on the image on the left. The image in the right show the maximum and 

minimum values used in the simplification. 

 

 

Figure 3.2 – Example of the of Otsu Thresholding algorithm  
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A more complex solution to simplify the image is presented in (Adamek, O’Connor, and 

Murphy 2005), where the image is divided into various sections of different colors. The sections 

are defined mapping the image into a weighted graph, where the links represent the cost of merging 

different regions. The regions linked with the minimum cost are merged and the algorithm 

continues until a minimum cost is reached and the image is divided into simple sections. Figure 3.3 

shows the results of this algorithm (image on right) applied to the image on the left. 

 

 

Figure 3.3 - Example of the algorithm (Adamek, O’Connor, and Murphy 2005), source (Adamek, 

O’Connor, and Murphy 2005) 

 

(Paulo 2012) used the application described in (Oliveira 2011) to retrieve polygons from 

images. This application was implemented in JAVA using the ImageJ library. With this application 

it is possible to open a sequence of images and obtain a polygon per image of the sequence. There 

are two options to segment an image, manually, and automatically. With the manual method the 

user has to select each vertex of the polygons. The automatic option uses the AB-Snake algorithm 

of the ImageJ library combined with a thresholding algorithm that filters the pixels values by a 

threshold selected by the user. The ImageJ library has available various thresholding algorithms 

enumerated in (Landini 2013), and a user can opt which one to use. Two new features were added 

in (Paulo 2012): the possibility to simplify the number of vertices of the polygons using the Ramer-

Douglas-Peucker algorithm (Douglas and Peucker 1973), where the user inputs the threshold value 

and the option to save the polygons to text files. 

In this dissertation a new application was created to perform the segmentation. This 

application was based in (Paulo 2012) and (Oliveira 2011) with extra tools to improve the polygons 

and to automatize the process. To improve the polygons a tool to manually adjust the polygons 

obtained by the segmentation was created. To automatize the process a simplification algorithm 

based in the Douglas-Peucker algorithm already implemented in (Paulo 2012) and a technique to 

automatically segment a set of images without the interaction of the user were used.  

The Douglas-Peucker algorithm was implemented in (Paulo 2012), and it was created to 

reduce the number of vertices of a curve, but the same idea can be applicable to polygons. This 
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algorithm starts with a line connecting two vertices of a polygon and iteratively adds the other 

vertices in descending order of the perpendicular distance with the segment. 

Figure 3.4 shows the perpendicular distance of the point 3 to the segment formed by the 

point 1 and 2. This distance is presented by the dashed segment. 

 

 

Figure 3.4 - Perpendicular distance of the point 3 to the segment 12, source (Paulo 2012) 

 

The algorithm stops when all the vertices have been added or until the perpendicular 

distances of all the vertices to be added is greater than a threshold given by the user. The Figure 3.5 

shows the results of applying different thresholds on the Douglas-Peucker algorithm to a polyline. 

In this image it is possible to verify the number of vertices is smaller with higher thresholds. 

 

 

Figure 3.5 - Example of the Douglas-Peucker algorithm with different thresholds, source (Paulo 2012) 

 

3.2 Post Processing 

The Douglas-Peucker algorithm implemented in (Paulo 2012) was a tool that allowed the 

reduction of the vertices of a polygon, turning it simpler. However the user had to choose the 

threshold to be applied. The method to determinate this value automatically was implemented in 

this dissertation and it is presented in this section as well as some other tools to adjust the resultant 

polygons. 

𝒅𝒑𝒆𝒓𝒑𝒆𝒏𝒅𝒊𝒄𝒖𝒍𝒂𝒓 
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3.2.1 Iteratively detect the threshold to the Douglas-Peucker algorithm 

The results of the Douglas-Peucker algorithm are limited by the threshold used to simplify 

the polygons and it may be any real number. 

(Zhao, Sheng, and H. Guo 2009) introduces a way to determine the threshold value so the 

simplified polygon is not too different from the original one. To measure the similarity between the 

original polygon and the simplified one it is used the formula      
  

 
∏    

  

 
  

   , where   is 

the Minimum Bounding Rectangle (MBR) of the original polygon,    represents the MBR of the 

simplified polygon and    the MBR of the part surrounded by the edge i of the simplified polygon 

and the correspondent set of edges on the original polygon.  

The authors of the original work have used MBR’s since they are faster to compute, however 

in this dissertation the real polygons were used.  

Figure 3.6 represents an original polyline in black and in red the same polyline simplified. 

The yellow areas are the     used in this dissertation to calculate the similarity. The threshold t was 

determined iterativelly, firstly finding the t more similar to the similarity coefficient such that 

                                   . The next iteration will test a decimal threshold value. To 

do that it is added to the previous t a new decimal case in each iteration. This is repeated until the 

similarity coefficient is found or the t has 10 decimal cases. 

 

 

Figure 3.6 – A original and simplified polylines overlapped 

 

3.2.2 Edition 

Even after filtering an image it is possible that some noise still remains in the polygon 

originating deformation. The noise may be smaller fragments of the icebergs or clouds that cover 

some part of the object as in left image from Figure 3.7.  

To solve this problem a tool was implemented to remove sets of vertices from a polygon. 

This tool removed all the vertices that belonged to a rectangle manually defined by the user. The 

right image from Figure 3.7 depicts the segmentation result containing noise, in this case a cloud. 
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The image on the right shows the resulting polygon after the deletion of the vertices limiting the 

cloud. 

 

 

Figure 3.7 - Deformation originated by a cloud and the result obtained only removing vertices 

 

Using the simplification algorithm it is possible that this algorithm removes too many 

vertices, provoking a loss of detail in the images. To solve this problem two other options were 

added to the application: add and move vertices. Figure 3.8 shows in the left, a polygon resulting 

from automatic simplification and where some vertices were misplaced. With the tools to move and 

add vertices it was possible to adjust the polygon. The resultant polygon is presented in the right 

image. 

 

 

Figure 3.8 Polygon after simplification (left) and after addition and shift of vertices (right) 
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Besides the edition options implemented, the new segmentation application allows opening a 

sequence of images that had already been segmented and reedit the polygons if required. So a 

sequence of images with their polygons may be reopened, the saving of the data must meet some 

rules. The polygons have a specific file type and the name of this file must contain the 

identification of the image that originated the polygon and the identification of the polygon in the 

image. These identifications are usually the order of the images and polygons. 

3.3 Semi-Automatic Segmentation 

The methods described until now aim to improve the polygons obtained using the AB-Snake 

algorithm. This section describes a method to automate the segmentation process of sequence of 

images. 

The idea of this method is to reuse the values used on the segmentation of one image to all 

the remaining sequence. In this process the user starts by segmenting one image using the AB-

Snake algorithm. Then the algorithm will reapply the same values used in the segmentation of this 

first image to the subsequent images of the sequence. For each subsequent image the resulting 

polygons will be tested using a similarity algorithm. 

The starting point of the AB-Snake algorithm is one of the key points shared between 

different images. Other key points are the maximum and minimum thresholds values used as well 

as the thresholding algorithm. The last key variable is a flag informing if the polygon was 

simplified by the user. If one polygon A has this flag active, this polygon was simplified and all the 

polygons that use the key variables of it will also be simplified. All these values will be the same to 

all posterior images. 

This method will try to find the new polygons in all remaining images until the last image. If 

some error occurs, the application shows the image and the polygon where the error was detected 

accompanied by an error message. The user can ignore the error and proceed with the segmentation 

process, or remove the image from the sequence where the error occurred and continue or stop the 

semi-automatic segmentation. 

An error occurs when the polygon on the previous image is too different from the polygon 

on the actual image. This difference is calculated by determining the matching distance between 

the two polygons using the algorithm of (Arkin et al. 1991). In (Arkin et al. 1991) is mentioned that 

two polygons are similar if their matching distance is smaller than 0.5. This method is detailed in 

Section 4.1.2 along with its implementation. 

There are other options to determinate if two polygons are similar in (Veltkamp and 

Hagedoorn 2000) are resumed some of those options. The area of symmetric difference and the    
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distances are two examples of metric that can be used to match polygons mentioned in (Veltkamp 

and Hagedoorn 2000). The area of symmetric difference of two shapes A and B is            

       , that forms the areas of the two shapes not overlapping and the    distances is defined 

by the function:     ∑        
  

            , if p=2 this formula returns the Euclidean 

Distance.  

The algorithm implemented was the method mentioned in (Arkin et al. 1991) since this same 

method with some adjustments may be used to determine the correspondences between the vertices 

of the polygons (Zhao, Sheng, and H. Guo 2009). This algorithm does not take into account the 

scale of the polygons, so it is necessary to compare the areas of the polygons. If the difference 

between the area of the previous polygon and the new one is greater than a percentage of the area 

of the previous polygon, an error is also generated.  

To find the polygons on the next image the AB-Snake algorithm is used with the same 

threshold applied in the previous image. The starting point of the edge detector algorithm used first 

the starting point used in the prior image or, in case of error the centre of the polygon on the 

previous image. 

3.4 Summary 

This chapter describes the main steps to obtain the vector representation of objects from 

images in raster mode. It describes the segmentation algorithm used in this work, the AB-Snake 

algorithm together with a simplification algorithm the Otsu thresholding algorithm. These 

algorithms were already used in (Paulo 2012), that added the Douglas-Peucker algorithm to reduce 

the number of vertices of the resulting polygons. However this algorithm needs a threshold value to 

define how much the polygons will be simplified. In this dissertation a method to determine this 

threshold automatically is implemented and presented in Section 3.2.1. In addition to this method, 

tools to edit the retrieved polygons were implemented (Section 3.2.2). In the end of this chapter a 

method to automatize all the process of segmenting sets of images is presented (Section 3.3). 

The segmentation of images is only a small but important step to represent moving objects. 

With the conclusion of this step the moving objects have their geometric representation in fixed 

time instants. After this it is necessary to determinate the morphing between the retrieved instants. 

The morphing has two main problems to be solved, the vertex correspondence problem 

(VCP) and the vertex path problem (VPP). The next two chapters address these two points. 
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 Polygons Matching 4

After obtaining the vector representation of the objects it is necessary to apply some 

techniques to represent their movements. In (Paulo 2012) morphing techniques were applied to the 

objects. A morphing technique consists in the solving of two main problems, the vertex 

correspondence problem (VCP) and the vertex path problem (VPP). 

This section will focus in solving the first problem, the VCP. 

4.1 Vertex Correspondence Problem 

To define the movement of an object and represent it with linear functions it is necessary to 

find a matching between the vertices from one polygon with the vertices in the other. 

For humans, choosing correspondences between vertices of two polygons is a simple and 

intuitive task, however to find an algorithm to perform this task is not so trivial. This problem is 

usually known as the VCP. 

The Figure 4.1 shows the correspondences between two polygons, S and T. In this example 

some vertex correspondences are not correct, since the path of the vertices will intersect (red). 

 

 

Figure 4.1 – Self-intersection duo to bad correspondences, source (Paulo 2012) 
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To solve this problem, some solutions have already been proposed. The Perceptually-based 

approach, described in (Liu et al. 2004), finds the vertices that best define the shape of the 

polygons, determines a descriptor for each of those vertices and computes the correspondences 

using those descriptors.  

Other approach is presented in (Sederberg and Greenwood 1992). In this method the shapes 

of the objects are considered as set of wires that stretch and bend. The stretch and bend of the wires 

have costs. The minimum total cost to transform one shape to the other is calculated and it defines 

the correspondences. 

The use of turning functions of the polygons, that are graphical representations of the 

polygons using their edges length and angles, is proposed in (Zhao, Sheng, and H. Guo 2009). In 

this case the correspondences are formed finding the minimum difference between the turning 

functions of two different objects, choosing different referential vertices. A referential vertex is the 

vertex that defines the beginning of the turning functions. 

Figure 4.2 shows a polygonal curve and its respective turning function. 

 

 

Figure 4.2 - Polygonal curve and respective turning function, source (Veltkamp and Hagedoorn 2000) 

 

The first solution presented in this dissertation is based on (Paulo 2012) where the 

Perceptually-based approach from (Liu et al. 2004) was implemented. 

4.1.1 Perceptually based approach 

This method uses the option referred on (Chetverikov 2003) to select the points that best 

define the shape of the polygons, called feature points. The first step to determinate the feature 

points, is to search for the candidate points. A vertex p is a candidate if there is a vertex before and 

other after p,    and     respectively, such that the distances between p and    and the distance 

between p and     are inside a pre-defined interval, greater than      and lower than     , and 

the angle formed by these three vertices, α is smaller than a maximum angle. Figure 4.3(a) shows a 

candidate point p. 
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The second step is to choose the feature points from all the candidates. All candidates 

belonging to different curves are considered feature points. When one curve has more than one 

candidate point, the candidate with greater sharpness is selected as feature point and the rest of the 

candidates in this curve are discarded. The Figure 4.3(b) shows a curve with two candidate points, 

and their sharpness is represented as α.  

 

 

Figure 4.3 – Detecting feature points, source (Chetverikov 2003) 

 

After determining the feature points the correspondences were calculated following the 

algorithm described in (Liu et al. 2004). This algorithm uses regions of support to calculate the 

similarity between feature points. A region of support is formed by the feature point before,    and 

the feature point after it,   , or if the next and previous feature points distances are greater than a 

maximum, by the vertices at those distances. Each region of support contains several descriptors. A 

descriptor describes the statistical and topological properties of a region using algebraic principles. 

In the figure above the descriptors of    and   are represented by       and     , repectively, 

and   represents the angles of the points. 

Figure 4.4 depicts a polygon with its feature points numbered and with different colours. For 

each feature point it is possible to observe its region of support marked by two dashed arrows with 

the same colour as its source feature point. 
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Figure 4.4 – Polygon with its feature points and respective regions of support  

 

The correspondences between feature points are calculated using a dynamic programing 

algorithm based on a similarity function. 

The vertices that are not feature points are matched using sections of the polygons limited by 

two corresponding feature points. Figure 4.5 shows two sections of two polygons, where one 

section is limited by the feature points S(i) and S(i+1) and the other by the feature points T(i) and 

T(i+1). In this same image is possible to observe that the feature point S(i) corresponds to the 

feature point T(i) and S(i+1) corresponds to the feature point T(i+1). The intermediate vertices are 

matched using the index of the vertices in each section. 

 

 

Figure 4.5 - Example of correspondences on a section, source (Paulo 2012) 
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For example the number of vertices between S(i) and S(i+1) is 6, while between T(i) and 

T(i+1) there are only 4 vertices. If both sections had the same number of vertices then the vertices 

would be matched according to their indexes one to one. However since this is not the case the 

section formed by T(i) to T(i+1) has vertices with more than one corresponding vertex from the 

section S(i) to S(i+1) what may cause intersections or deformations. In Section 4.3.2 is presented a 

solution to solve this problem. 

4.1.2 Calculating correspondences using turning functions 

The algorithm described in (Zhao, Sheng, and H. Guo 2009) is an alternative to the 

perceptually based algorithm. This algorithm was implemented in this work to compare the results 

with those obtained using the solution implemented in (Paulo 2012) and, if possible, to merge them 

to improve the results. 

The approach mentioned in (Zhao, Sheng, and H. Guo 2009) uses turning functions to 

represent the polygons. A turning function of a polygon is defined by the angle of a counter-

clockwise tangent and the sum up of the length of the edges starting on some referential vertex. 

Figure 4.6 shows a polygon and its respective turning function. The X axis of the turning 

functions represents the sum of the edges length starting in a referential vertex. 

 

 

Figure 4.6 – A polygon and its respective turning function, source (Zhao, Sheng, and H. Guo 2009) 

 

In this implementation the length of the edges is scaled so the total perimeter of the polygon 

is 1. This allows the comparison of polygons when the scale of the images is different. The Y axis 

is the summed up values of the turning angle at each vertex. The turning angle of the referential 

vertex is the counter-clockwise angle formed by X axis and the edge formed by the referential 

vertex and the next vertex in a counter-clockwise order. The rest of the turning angles are 

calculated summing the previous turning angle to the counter-clockwise external angle of each 

vertex. This representation is invariant under translation, and the rotation of the polygons is 

represented by a shift in the Y axis, as it is showed in Figure 4.7. In this figure it is possible to 

observe a source polygon A and a target polygon B. The polygon B is the polygon A rotated by 
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180º and below the polygons it is possible to observe the turning functions of both polygons using 

the points marked as 0 as referential points. The only difference between the A and B turning 

functions is that B is shifted 180 units in the Y axis. 

 

 

Figure 4.7 - Turning functions of two polygons; A the original polygon; B the polygon A rotated αº  

 

The matching distance of two polygons represented by their turning function      and      

respectively, is {           ∫               
 

 
             }

 

 
, where s represents the distance 

of a point belonging to the edges of the polygon to the referential vertex of that polygon divided by 

the total perimeter of the polygon; t is the amount by which the initial referential vertex is shifted 

along the edges of the polygon,       is the best value by which the f(s) polygon rotates and 

      ∫       
 

 
  ∫           

 

 
. 

The Figure 4.8 shows the turning function of f(s) and g(s), and according to (Zhao, Sheng, 

and H. Guo 2009) the calculation of the matching distance is just the sum of the width values of 

each strip multiplied by the square of its height for all strips. 
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Figure 4.8 - Strips formed by the turning functions f(s) and g(s), source (Zhao, Sheng, and H. Guo 2009) 

 

For each referential vertex there is a different turning function, so a polygon with m vertices 

has m turning functions,                   and for a polygon with n vertices         

         , n turning functions. Fixing the vertex p            as referential point of       and 

fixing the point q            as referential point of       , two vertices match only if the 

following two rules are respected: 

Rule 1: only if      then 

∫ [             [∫         
 

 

 ∫        
 

 

]]

 

      
 

 

                     

 

Rule 2: only if      then 

∫ [             [∫         
 

 

 ∫        
 

 

]]

 

      
 

 

                     

 

Following the Rule 1 it is necessary to determine the j values of       , that return the 

minimum values to the formula  on Rule 1. Each p            of       has a minimum value. 

In the Rule 2 it is necessary to determine the i values of      , that return the minimum 

values to the formula (Min) on Rule 2. In this rule each q            of       has a minimum 

value. 

Two vertices match when the minimums in each rule are returned by the same pair of 

referential vertices,     and    . 

To verify the resultant correspondences, (Zhao, Sheng, and H. Guo 2009) proposes to 

evaluate the average distance between the points from one polygon to the other and only if 

|    ̅|    , the points are corresponding points.    represents the distance of one coordinate of 

the points (x or y), in f to the corresponding point in g,  ̅ the average difference between 

coordinates and s the standard error of the coordinates. With this formula it is possible to remove 
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the correspondences with greater distance than the average distance of all the other 

correspondences that usually are bad correspondences. However the authors of (Zhao, Sheng, and 

H. Guo 2009) refer that this method is not fault prove and the only way to really verify the 

correspondences is using visual judgment. 

4.1.3 Implementation 

The algorithm described above was implemented in Java and it is divided into three classes.  

The class Strip has the scaled dimension of each edge and the turning angle of each vertex as 

attributes. 

The class TurningPolygon has a constructor that receives a MyPolygon2D and an integer 

representing the index of the referential vertex. This class has as attribute an array of Strips, and it 

is responsible to calculate the turning angles and scaled length. 

Finally the class TurningCorrespondence is where the correspondences between the 

polygons are calculated. To do that, this class stores two arrays of TurningPolygon’s representing 

the       and        The method named rule receives the indexes of the referential vertices of both 

polygons and it calculates the matching distance between the turning functions of the polygons 

using the referential vertices selected. The next step is to travel for all the strips in both functions 

and to find the discontinuity values, zones on the graphics where the Y values changes. The 

difference between the heights at these points of discontinuity (h) and their locations (s) are stored 

in an array. The final step is to multiply each s by the square of the h stored at the same index. 

To implement the rule 1, a referential vertex from the polygon A is fixed, which generates a 

unique turning function. Then the minimum matching distance between the turning function of the 

polygon A and all the turning functions of the polygon B generated by changing the referential 

vertices of B is calculated. The vertex identity of B that generates the minimum matching distance 

is stored in an array, with the index equals to the index of the referential vertex of A. This is 

repeated until all vertices of the polygon A were referential vertices. 

The calculation of the rule 2 is similar to the rule 1, but polygons A and B invert their roles, 

and a new array is used to store the identities of the referential vertices. 

At the end, the values of the arrays are compared and only if the value j stored in the index i 

of one array is equals to the index of the value i stored in the index j of the other array those 

vertices are possible matches.  

Figure 4.9 shows two polygons with the correspondences resulting of this algorithm. In these 

pictures the vertex with number 0 on the left polygon matches the vertex with the same number in 

the right polygon. The vertices marked with green circles are vertices where the calculated 

correspondences are visually wrong. To verify if the vertices are good correspondences we used the 

test described previously comparing the distance of each matched vertices and the average distance 
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between the matched vertices. The results using the verification are showed in the Figure 4.10 in 

this case the three problematic correspondences were removed. 

 

 

Figure 4.9 – Example of correspondences using this algorithm without verifying the vertices 

 

However in some cases, where there is some rotation involved, this method proved not to be 

precise and removed more correspondences than it should. 

 

 

Figure 4.10 – Correspondences after hypothesis test 

  

Figure 4.11 shows the potential correspondences between the polygons A1 and B1. In this 

case all the matches were acceptable however after the hypothesis test all the correspondences 
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except one were removed. The polygons A2 and B2 show the remaining correspondence after the 

test. 

 

 

Figure 4.11 – Corresponding points after and before the hypothesis test 

 

To minimize this problem instead of using the coordinates x and y separately, the distance 

between the points is used. In the case that all correspondences are removed, the option used is the 

one described in Section 4.3.1.2. 

Figure 4.12 shows the results of the improved test. 
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Figure 4.12 - Correspondent points after and before the new hypothesis test 

 

With this test there were some good matches removed, however more than half of the 

matches remained comparing to the original hypothesis test. In this example not remove vertices 

would be the best solution but as it was mentioned before this is a necessary step.  

4.2 Polygon Alignment  

The alignment of two polygons can be used in many different tasks. In this dissertation it is 

used to edit the polygons, find a first vertex correspondence between two polygons and to calculate 

the rotation angle of the polygons. 

4.2.1 Overview 

To align two polygons it is necessary to determinate the transformation that changes a 

polygon into the other. The most used methods to calculate this transformation are the Iterative 

Closest Point (ICP) (Besl and McKay 1992) and the Procrustes Analysis (Ross 2004). 

The ICP algorithm is an algorithm that does not need any correspondences. As it is explained 

in (Ju 2012), the ICP algorithm firstly calculates an initial orientation of the two different shapes 

using the Principal Component Analysis (PCA) (Shlens 2005) and then iteratively improves the 

alignment using an SVD algorithm. 
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The PCA gives the axes that represent the variation of the points which are the eigenvectors 

of a covariance matrix M. So to obtain the axes of a polygon it is necessary to determinate the 

matrix M for each polygon, where       and P has in its columns the distance between each 

point of the polygon and its centroid. 

The eigenvectors that interest to do the alignment are the eigenvector representing the 

greatest variation between points and the eigenvector that represents the smallest, this variation is 

called eigenvalues. Figure 4.13 shows the eigenvectors of interest for the mesh of points. 

 

 

Figure 4.13 – Polygon with the respective eigenvectors, source (Ju 2012) 

 

Having the axes calculated for each polygon, using the PCA, the next step is to calculate a 

rotation matrix R that will align the eigenvectors of both polygons,      , where A and B are 

two matrices containing the orthogonal and normalized axes as columns for each polygon. Figure 

4.14 shows two meshes of points overlapped and their respective eigenvectors of interest. In this 

image is easily observed that the alignment of the eigenvectors of both meshes of point will align 

the meshes. This alignment is obtained using the R matrix. 

 

 

Figure 4.14 – Two polygons with their PCA axes unaligned, source (Ju 2012) 

  

Each iteration of the SVD needs the correspondences between points of both meshes. These 

correspondences are in the simplest implementation defined by the nearest point on the other 

polygon. The iterations continue until a termination criterion is reached. This criterion may be 

defined by the user limiting the number of iterations or limiting the minimum improvement per 

iteration. The improvement is calculated using the difference between the Root Mean Square 

Distances in consecutive iterations. 
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The Root Mean Square distance is calculated using the formula 

R     √
 ∑        ̅         ̅    

   

  
 . 

There are many variants of ICP algorithms, mainly in the choice of the correspondent points. 

The article (Rusinkiewicz and Levoy 2001) refers some of those variants. 

4.2.2 Methods Implemented  

The methods to align two polygons implemented are described in this section. 

4.2.2.1 Maximize Overlap Area 

This is a simple method that aligns the centroids of both polygons and measures the overlap 

area resulting from the continuous rotation of one of the polygons until the rotation angle reached 

360 degrees. The angle returned is the angle from which the overlap area has the greatest value. 

The Figure 4.13 depicts the relationship between the overlap area and the rotation angle. In 

this figure the blue polygon is fixed and the yellow polygon is rotated. The green area is the 

overlap area of the polygons. It is important to note that the polygons were translated so that their 

centroids can have the same coordinates. 

 

 

Figure 4.15 – Example of the maximize overlap area 

 

This method was implemented in the class MaximizeOverlapArea that has a method that 

receives a source and a target MyPolygon2D objects and returns an angle in radians. The target 

polygon is translated so its centroid is aligned with the centroid of the source polygon. The rotation 

angle starts in 1 and ends with 360 and it is incremented in each iteration. The rotation is applied to 

the target polygon to all its vertices using the rotation method implement in (Paulo 2012) and the 

method getOverlapArea implemented in the MyPolygon2D class calculates the overlap area from 

the two polygons. This method converts the polygons to objects of the type Area from the 

java.awt.geom package. This conversion happens because this is the only object in the default java 

libraries that allows operations between shapes like intersections and unions.  

After having the intersection resultant from both Areas, using the intersect method of the 

Area class that returns another Area object, it is necessary to associate a value to that object. Since 

the Area object does not have a method that returns the numeric value for the area, this is 
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accomplished converting the Area object into a ShapeRoi from the ImageJ  library and then 

converting it into an array of MyPolygon2D’s, that is the object with a method to calculate the 

double value of the area, implemented in (Paulo 2012). An intersected Area may return various 

MyPolygons2D the overlapped area is the sum of the areas of all MyPolygon’s returned. 

Each overlap area is compared to the greatest overlap area stored in previous iterations or to 

-1 if it is the first one. If the newest area is larger than the previous one it replaces the previously 

stored, nothing changes otherwise.  

The angle that originates the greatest overlap area is returned from this method. 

It is important to note that this method only works when the two polygons are in the same 

scale. 

4.2.2.2 Iterative Closest Point 

In this dissertation the ICP algorithm used is the one described in (Ju 2012).  

To represent the matrices the library JMat available in (“JMAT | Free Science & Engineering 

software downloads at SourceForge.net” n.d.) was used. This library has methods to calculate the 

SVD, and an implementation of the PCA is available in (“JMAT to compute the Principal 

Component Analysis” n.d.).  

The ICP algorithm is implemented in the ICP class and has a method to calculate the 

iterative SVD receiving two MyPolygon2D’s, the maximum number of iterations and the minimum 

difference in the improvement of each iteration. The method icp is responsible to calculate the ICP 

alignment and it receives a source and a target MyPolygon2D’s, the number of maximum iterations 

and the minimum difference between consecutive iterations. This method calls the pcaAlignemt 

method in the PCA class that receives the source and target MyPolygon2D’s and returns the target 

polygon rotated using the PCA algorithm. 

However since the PCA algorithm sometimes returns matrices with determinant equals -1, 

that represent reflections, instead of matrices with determinant equals 1, rotations, when the 

determinant of the returned matrix is different than 1, the angle is calculated using the method 

described in Section 4.2.2.1. 

The correspondences between vertices are chosen using the findNearestPoint method present 

in the class MyPolygon2D. This method receives a Point2D and returns the vertex in the polygon 

nearest to this point. This search is done measuring the distance between this point and all the 

vertices of the polygon returning the vertex with smaller distance. 

Figure 4.16 depicts the alignment using the ICP algorithm. In this case the starting polygons 

on the left do not need to be translated, since this is integrated in the PCA algorithm. The centre 

image is the resulting polygons after the PCA alignment. And the last image is the result of the 

iterative SVD algorithm. 
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Figure 4.16 – Example of alignment using the ICP algorithm 

 

4.3 Optimizations of the Perceptually-based algorithm 

The algorithm implemented in (Paulo 2012) can be optimized not only improving the 

vertices correspondences between two polygons, but also in the computation time to obtain the 

results.  

The computation time and results of the algorithm can be reduced by sending the first 

correspondence to the algorithm, methods to determine this first correspondence are described in 

the following section Having the starting correspondence the algorithm does not need to test all 

possible combinations between feature points to choose the one that costs less, and if this 

correspondence is correct, the errors that would arise from a wrong first correspondence are 

avoided. Other way to improve the correspondence results is to match the vertices number and their 

distribution along the polygons. 

4.3.1 Getting the first correspondence 

This dissertation  explores two methods to determine the first correspondence to be used in 

the correspondence algorithm of (Paulo 2012), using the alignment of the polygons and choosing 

the nearest feature points of two different polygons or using the turning correspondence algorithm. 

4.3.1.1 Using polygon alignment 

Having two polygons aligned it is possible to obtain a correspondence between the vertices 

of the polygons using the distances between the vertices in one polygon to the vertices in the other 

polygon. 

The feature points of the polygons are calculated using the method implemented in (Paulo 

2012). The first correspondence is formed by the feature points with the smallest distance in the 

aligned polygons. The rest of the correspondences is determined using the algorithm of (Paulo 

2012).  
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The method getNearestFeaturePoint was implemented in the MyPolygon2D class to 

determinate which feature points were the nearest. Its behavior is similar to the findNearestVertex 

used in the ICP algorithm and described in Section 4.2.2.2, which unlike the findNearestVertex 

only verifies the distance of vertices that are feature points in both polygons. 

4.3.1.2 Using the Turning Correspondences  

Another way to obtain the first correspondence between two polygons is to use the best 

correspondence obtained using the algorithm described in Section 4.1.2. Using the turning 

correspondences, a correspondence is the best one if it has the minimum matching distance. 

This method reduces the time needed by the perceptually based algorithm to determinate the 

correspondences, however it is necessary to account with the time needed by the turning algorithm 

to calculate the first correspondences. 

4.3.2 Match Vertices Number 

In the method used in (Paulo 2012), two polygons with different number of feature points, or 

with different distribution of vertices may originate incorrect correspondences, that will generate 

deformations during the morphing. 

Figure 4.17 depicts two polygons and the feature points calculated using the method 

implemented by Luis Paulo. The resulting feature point correspondences using this algorithm were 

from the polygon on the left to the polygon on the right: 

4 → 7; 5 → 8; 0 → 0; 1 → 2; 2 → 3; 3 → 4. 

 

 

Figure 4.17 – Two polygons with different feature points distribution 

 

This set of correspondences will originate a deformation during the morphing from one 

polygon to the other. Figure 4.18 shows the intermediate polygons using linear interpolation of 
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those correspondences. In this figure it is possible to see the deformations that occur using the 

correspondences presented previously. 

 

 

Figure 4.18 – Intermediate polygon resultant from the linear interpolation 

 

To minimize this problem, the number of feature points of two different polygons is matched 

in a way that their distribution along the boundaries of the polygons is similar in both. 

4.3.2.1 Match feature points number 

To match the feature points number between a polygon A and a polygon B, the method 

implemented has four steps. 

Firstly both polygons are aligned. This was achieved using the algorithm described in the 

section 4.2.2.2. 

Secondly the feature points of each polygon are calculated, using the algorithm implemented 

in (Paulo 2012).  

The third step is to process all feature points of the polygon A and associate them with the 

corresponding vertices in the polygon B. If no association is possible, a feature point is added in 

the polygon B or it is removed from A if no addition is possible. A feature point is marked for 

removal if there is no vertex available in B at the scaled distance of the previously associated 

feature points or if it is not possible to add a new vertex at that distance on B because a vertex is 

already there. A vertex is unavailable if it is already associated with other feature point. 

The fourth step is to process the feature points of the polygon B following the same rules of 

the step 3. 

The first feature point of the polygon A analyzed in step 3 is matched with the nearest point 

belonging to the edges of the polygon B, if such point is not a vertex of the polygon, a vertex is 
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added to the polygon in those coordinates and it is considered as a new feature point of the polygon 

B.  

The processed feature points and their matches are stored into two arrays donePolA and 

donePolB to the polygon A and B respectively. These arrays are used by the remaining feature 

points to find their nearest neighbours. These neighbours are used to limit the distances where new 

feature points may be added.  

Figure 4.19 shows two polygons with different number of feature points, in this case the 

feature points 1 and 0 from the polygon A had already been processed and their matches are the 

feature point 2 and 0 on the polygon B. If the next feature point to be analysed is the feature point 

1 of the polygon B, that it is between two other vertices (2 and 0), the matching vertex in polygon 

A must be between the matching boundary feature points (1 and 0). This is assured using the 

donePolA and donePolB arrays and will result in the addition of a new feature point in polygon A. 

 

 

Figure 4.19 – Example of neighbours’ boundaries 

 

The Figure 4.20 shows a possible configuration when adding new feature points. The feature 

points 0 and 1 of both polygons had already been processed and the feature point 2 on polygon B is 

missing a matching point in the other polygon. In this case the distance between the feature point 1 

and 2 is calculated and used to maintain the distance between the feature point 1 and the feature 

point to be added on the polygon A. Since the perimeters of the polygons are different the distance 

is scaled, multiplying it by the perimeter of the polygon A and dividing it by its own perimeter. The 

first vertex on the polygon A to be tested is the nearest vertex of the feature point 2 of the polygon 

B after the alignment. 

 

A 
B 
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Figure 4.20 – Example of initial configuration 

 

In the case depicted in the Figure 4.21, where the feature point 0 and 1 from polygon A 

match the feature points 0 and 2 in the other polygon and the next vertex to be analysed is the 

feature point 1 of the polygon B, the search for the nearest vertex will not work since there is no 

vertex between the bounding matching feature points in the other polygon. The solution 

implemented will search for the nearest point from the feature point 1of the polygon B in the edges 

of the polygon A, after alignment. In this example a point in the edge formed by the feature point 0 

and 1 on the polygon A. However it is necessary to verify the bounds and the scaled distance to 

assure that the vertex is inside the bounds. 

  

 

Figure 4.21 – Example of no vertex between feature points 

  

The last option implemented was to insert vertices directly at the scaled distance from the 

previous feature point, and since the scaled distance is used it is assured that the vertex will be 

inside the boundaries. If this fails then the feature point is removed, because there is no position 

available in the other polygon. 

The Figure 4.22 shows the result of the application of this algorithm to the polygons A1 and 

B1. Initially the polygons A1 and B1 had 2 feature points and 3 feature points respectively. After 

the application of the algorithm the resulting feature points are 4 feature points on each one, two 

were added to the polygon A1 and one was added to the polygon B1. 

 

A B 

A 
B 
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Figure 4.22 – Two polygons before (up) and after (down) feature points matching 

 

4.3.2.2 Match non feature points number 

After having the feature point numbers matched, and their correspondences, the matches of 

the number of the rest of the vertices can be divided in the match of each section limited by each 

consecutive feature point. 

The two polygons in the last row of the Figure 4.22 have 4 different sections. And in each 

section is necessary to add vertex to match the vertices number but also to distribute them in a 

similar way in both polygon. This is done using scaled distances between the vertices on each 

matching section. 

The Figure 4.23 shows the polygons of Figure 4.22 with their vertices number matched. The 

added vertices are presented in green in Figure 4.23. 

 

 

Figure 4.23 – Result of matching vertices 
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4.4 Summary 

This chapter is dedicated to the vertex correspondence problem of the morphing algorithms. 

It described the perceptually based algorithm implemented in (Paulo 2012) and presented an 

alternative algorithm to calculate the correspondence between two polygons. This alternative uses 

turning functions of the polygons. A turning function is a type of representation of a polygon that 

uses distances between their vertices and their angles. 

 Some methods to align polygons are also discussed in this chapter. These methods are used 

to improve the results of the perceptually based algorithm, matching the number of vertices 

between polygons and getting a first correspondence. 

Having the VCP solved the next step to represent the movement of a moving object is to 

solve the VPP. The next chapter is dedicated to solve this problem. 
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 Vertex Path Problem 5

In this chapter two solutions for the VPP problem will be discussed. The Cyclic Order 

algorithm created to avoid intersections on polygons (McKenney and Webb 2010), and an 

alternative solution decomposing the movement of the objects into two different steps: an 

alignment followed by an interpolation. 

5.1 Overview 

In the literature there are many algorithms to apply the morphing between two polygons. The 

linear interpolation is the simplest of those algorithms. This method connects two points using a 

straight line. Applying this concept into matched vertices of two polygons it is possible to obtain a 

linear function to each pair of matched vertices to represent their movement. However this 

algorithm may originate invalid topologies, when the movement of the polygon is not exclusively 

linear, because some vertex paths may intersect and will originate deformations or self-

intersections on the representation of the moving object. This problem is commonly known as 

Vertex Path Intersection (VPI) problem, and it is the main problem from the (VPP). Figure 5.1 

shows the vertex paths between two polygons (dashed lines) using linear interpolation. It is 

possible to observe that the path will intersect and the polygon would degenerate to a point during 

the morphing. 
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Figure 5.1 - Vertex Path Intersection using linear paths 

 

To solve the problem of VPI, there are many different approaches referred in the literature. 

The solution proposed in (Sederberg et al. 1993) uses a solution similar to a turning function since 

it relates the angle and length of each corresponding edge to determinate the intermediate polygon. 

According to (Málková et al. 2009), this method returns good results when both the source and the 

target polygons are similar, but it fails to polygons highly dissimilar. Another disadvantage of this 

method is that it does not address the self-intersections problem. 

In (Iben, O’Brien, and Demaine 2006) it is presented an algorithm that uses energies to 

determinate which polygon should move. In this algorithm both polygons must have the same 

number of vertices, otherwise, vertices are added to one of them. The energies of each polygon are 

calculated using Euclidean distances and the polygon with greater energy is moved towards the one 

with a lower one. The necessity to have polygons with the same number of vertices and to calculate 

the energies of the polygons, in each time instant create extra complexity to this method. 

Other option is to use triangulations as in  (Gotsman and Surazhsky 2001). This is according 

to the authors the only technique that guarantees a simple intermediate polygon from a simple 

source and target polygons. The problem is basically to determinate the planar triangulation and do 

the morphing between corresponding points, that is achieved interpolating the barycentric 

coordinates of the vertices. The Figure 5.2 depicts the morphing of a triangle inside a quadrilateral. 

The image in the right shows the movement of the triangle during the morph. A problem from this 

method is that it needs to triangulate the polygons and to assure that those triangulations are 

compatible with each other which are not always simple tasks. 
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Figure 5.2 – Example of morphing simple quadrilaterals using triangulations, source (Gotsman and 

Surazhsky 2001) 

 

The start skeleton method introduced in (Shapira and Rappoport 1995) decomposes the 

polygon into a star set and a skeleton. The star set is composed by a set of star shaped polygons, 

each one possessing a different star origin. A star origin is the point where all the other vertices of 

the star polygon are visible. The visible vertices are represented as polar coordinates relative to star 

origin. The skeleton is a tree composed of the star origin points and the midpoint sharing edges 

between two different star polygons. Each vertex of the skeleton has a direction. To the root this 

direction is the x axis, to the others it is the vector from the vertex to his parent. The morphing is 

accomplished doing the linear interpolation of the root skeleton on cartesian coordinates and all the 

other points on polar coordinates which implies the interpolation of distances and angles. (Málková 

et al. 2009) detects a problem for this method. When the polygons are dissimilar, it may be difficult 

to calculate compatible skeletons for the polygons. 

The Figure 5.3 shows two polygons with their star skeletons. 

 

 

Figure 5.3 – Example of two polygons with compatible star-skeletons, source (Shapira and Rappoport 1995) 

 

(Málková et al. 2009) describes a method where a source and a target polygon are 

overlapped. The morphing occurs by absorption and growing of the areas that did not overlap. The 

overlapping area of a source polygon A and target polygon B are named the core, the section C in 
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the Figure 5.4 and the parts of the source polygon not belonging to the core (P1, P2 and P3 from 

the Figure 5.4), are absorbed by the core and the parts of the target polygon not belonging to the 

core (Q1, Q2, Q3 from the Figure 5.4) grow from there.  

 

 

Figure 5.4 – Example of morphing of polygon A and polygon B, source (Málková et al. 2009) 

 

The morphing of the growth or abortion can be determined by a perimeter growing method, 

where the vertices will travel by the boundaries of the polygon until they reach their matches. The 

matches are calculated using the distances that are symmetric in both polygons. 

The Figure 5.5 shows the distances of the vertices for the section P3 of Figure 5.4 during the 

absorption process, in this case the vertices will be moving by the edges of the polygon until the 

vertex with symmetric distance is reached. 

 

 

Figure 5.5 – Example of the vertex correspondence on P3 absorption, source (Málková et al. 2009) 

 

One problem to this method is that it does not take into account the orientation of the 

polygons. If one target polygon is rotated in relation to a source one, the non-overlapped areas of 

the polygons will shrink and expand even if they are similar but in different positions causing 

deformations. 
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The Cyclic order algorithm presented in (McKenney and Webb 2010) uses a strategy where 

one edge in one polygon is reduced to a vertex on the other and a vertex in one polygon is extended 

to an edge. This algorithm only uses convex hull to determinate the transformation and so one 

concavity is always converted into a vertex. This algorithm requires that the vertices are processed 

in counter-clockwise order, starting in the left most vertex of each polygon. However this process 

does not consider the orientation of the polygons and it will not maintain the shape of the polygon 

when some rotation exists between the polygons. 

Figure 5.6 shows the path of the vertices of the light grey polygon to the dark grey one using 

this algorithm. 

 

 

Figure 5.6 – Example of the morphing correspondence using the Cyclic Order algorithm, source (McKenney 

and Webb 2010) 

 

In the dissertation (Paulo 2012), the only method to do the morph presented is the linear 

interpolation. 

5.2 VPI Solutions Implemented 

5.2.1 Cyclic Order Algorithm  

To avoid vertex path intersections the algorithm (McKenney and Webb 2010) was 

implemented. This article proposes a morphing algorithm that given a valid input region a valid 

region will always be generated during the transformations. A valid region is a spatial region 

without self-intersections. 

This algorithm has a very different data model than the one implemented in (Paulo 2012), 

since it needs not only the coordinates of the vertices but also the angles. The moving segment is 

composed by a segment and a point forming what they call a delta triangle. Since a concavity will 

be morphed into a single point, it is necessary to calculate the convex hulls of the polygons. 
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The correspondences between two polygons are calculated using the cyclic order, and 

progress angles.  

The cyclic order defines the order from which each vertex must be visited. It is counter-

clockwise starting in the least most point in the least most segment. The least most segment is the 

edge that contains the smaller least point or the smallest angle from two segments containing the 

same least point. The angle is measured counter-clockwise between the edge and a segment 

emanating up from its least point. The least point of a segment is the point (x, y), that has the 

smallest x or if there are two vertices with the same coordinate x the one with smallest y coordinate. 

To choose from which polygon the next segment will be processed the progress angles of the two 

selected edges are compared. The edge with the smaller progress angle is morphed to the primary 

point of the selected edge in the other polygon. 

A progress angle measures how much a polygon has been processed. This angle is the 

counter-clockwise angle formed by a vertical line extending down from the primary point of each 

edge and the edge itself. The primary point is the first point from the segment when traversing it in 

the cyclic order. 

However if concavities exist, the comparison between progress angles does not translates 

the progress on the polygon, since the values of the progress angle would not be exclusively in 

ascending order. The Figure 5.7 depicts a concave polygon and the progress angles of each edge. 

In this picture is possible to verify that inside the concavity the angle decreases, the angle in E is 

smaller than the angle of F. To solve this problem only convex polygons or convex hulls of 

concave polygons are used. 

 

 

Figure 5.7 – A concave polygon with respective progress angles 
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A concavity is handled as a simple segment and it is totally morphed into a vertex on the 

other polygon. In the Figure 5.7, the edges FE and ED would morph into the same vertex in the 

other polygon. 

However there are some concavities that must be dealt with before performing the 

correspondences because their shape may cause self-intersections. In (McKenney and Webb 2010) 

they are called intersecting concavities. Intersecting concavities are sets of two or more concavities 

where one point in one concavity is completely surrounded by a second concavity. An example of 

such polygon is showed in Figure 5.8. 

 

Figure 5.8 – An Example of a polygon with intersecting concavities 

 

To treat these kinds of polygons it is proposed to use OBBTree interference detection 

algorithm to detect when the delta triangles of a concavity intersect triangles of other concavity 

without sharing the same end point. The end point is the matched vertex on the other polygon for 

an edge. 

When intersecting concavities are detected two additional transformations must occur, an 

evaporation before the morphing algorithm and a condensation after. Evaporation is the collapse of 

the triangles of a triangulated concavity towards an interior point on the source polygon and 

evaporation is the inverse to the target region. 

However such shapes are unusual in nature, so this case was not implemented in this thesis. 

5.2.1.1 Convex Hull 

To use this solution it was necessary to implement an algorithm to calculate the convex hull 

of a polygon. The algorithm chosen to do this task was the Melkman Convex Hull algorithm 

(Melkman 1987) that has a linear time complexity and it is an online algorithm that uses a 

Dequeue. A Dequeue is a queue that can be accessed both from the top and the bottom. 

This algorithm starts with any three consecutive vertices of the polygon that form the 

triangle showed in the Figure 5.9. These vertices are stored in the Dequeue from bottom to top as 
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{3, 1, 2, 3}. When they are read from the dequeue in top to bottom order, a clockwise hull is 

returned. If the dequeue is read from bottom to top then the convex hull will be in counter-

clockwise order. 

 

Figure 5.9 – Melkman Convex Hull algorithm, source (Aloupis n.d.) 

 

This algorithm is applied to simple polygons. The next vertex will belong to one of the 

coloured regions on the Figure 5.9. If a vertex falls into the yellow region, it is ignored, since it 

belongs to a concavity, otherwise it is added to both the top and the bottom of the dequeue. If a 

vertex belongs to the red region, the vertices in the top of the dequeue are deleted until a convex 

turn is found, else if it falls into the green region the vertices from the bottom of the dequeue are 

deleted until a convex turn is found. Finally if the vertex belongs to the blue region both steps from 

the red and green regions are done. 

The implementation  of the algorithm was based in the code presented in (Shahriyar n.d.), 

using an ArrayList to simulate the Dequeue and the class of Point2D from the Java library. 

Figure 5.10 presents the result of the convex hull algorithm implemented. 

 

 

Figure 5.10 – A result from the implemented algorithm 
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5.2.1.2 Class Edge 

The class Edge attributes are: two Point2D, representing the endpoints, its length, the 

progress angle and the angle.  

The angle and progress angle are calculated using trigonometric functions. Another method 

implemented in this class is the compareEdges that is responsible to compare two edges following 

the algorithm rules, firstly verifying which one has the smaller least point and if the least points are 

equal comparing the angles. 

5.2.1.3 Class MovingSegment 

The attributes of the MovingSegment class are: an Edge; a Point2D; and a Boolean flag to 

distinguish if a point expands to a segment or an edge converges into a point. 

5.2.1.4 Class MorphNoVPI 

This class contains the method responsible to determinate the morphing between two 

polygons.  

This method receives two MyPolygons and returns an ArrayList of Correspondences. The 

class Correspondence was implemented in (Paulo 2012). 

The first step of the algorithm is to calculate the convex hulls of the polygons and to store 

them in arrays of Point2D. Then the edges of the polygons are ordered using the cyclic order. 

Figure 5.11 represents a source and a target polygon that have in yellow and orange the 

angles of the edges. The left and right polygons are the source and target polygons respectively. 

The vertex A is the leftmost vertex, whose X coordinate is the smallest, so the least segment is one 

of the edges that have this vertex as least point, edges [AB] or [AE]. From those two the edge with 

smaller angle is the least segment. The least segment for the source polygon is [AE] and so it is the 

last edge to be processed from this polygon. In the other polygon the edge formed by the vertices 1 

and 4 is the least segment of that polygon.  

 

 

Figure 5.11 – A source and target polygon with the edges angles 
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In the first iteration the edges containing the least point as their primary point are the edges 

to be processed, the processing edges. 

The moving segment between A, the primary point of the processing edge of the source 

polygon and the processing edge of the other polygon, [12] is created. 

If the processing edge of the square was part of a concavity all the edges until a vertex 

belonging to the convex hull of this polygon would be added to moving segments mapping the 

same vertex, A. 

Then a moving segment is created using the processing edge of the pentagon, [AB] and the 

secondary point of the processing edge, vertex 2. If the processing edge of the pentagon is part of a 

concavity, all edges belonging to that concavity are mapped to the secondary point of the selected 

edge (vertex 2). 

The next step is to calculate the progress angles of the next edges in cyclic order of the 

convex hulls of both polygons. The polygon with the smaller progress angle and with non-

processed edges remaining, repeats the process described using the next segment in cyclic order not 

yet mapped into a vertex.as its processing edge. This is repeated until all edges of both polygons 

had been mapped. 

5.2.2 Separate rotation from the rest of the morphing 

The rotation of the polygons is one of the main reasons of the occurrence of VPI and 

deformations during the morphing of two polygons. This section presents a solution to minimize 

those problems. The proposed solution is two divide the transformations of a polygon into three 

components: translation, rotation and deformation. As it is showed in Figure 5.12, this method 

receives a source polygon S and a target polygon T and using the methods described in Section 

4.2.2.2 translates and rotates polygon T until both polygons are aligned, creating the rotated 

polygon O over the polygon S. This polygon is then translated to its original position, creating the 

polygon T1 from Figure 5.12.  
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Figure 5.12 – Source and target polygon in aligned and returned to the original positions 

 

 To measure the angle it is chosen a vertex from T and the vertex with the same index from 

T1 those vertices are connected to the centroid of both polygons, forming two vectors. 

The Figure 5.13 shows a polygon T in red and a polygon T1 in green after its translation to 

the original position. The point 0 is the centroid of both polygons and the dashed lines represent the 

vectors used to measure the angles. And at yellow is the rotation angle retrieved. This angle is the 

counter-clockwise angle between the vector u and v. 
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Figure 5.13 Two polygons translated after alignment 

 

The book (Anton and Rorres 2010) explains that angle between two vectors u and v can be 

calculated using the formula        
   

‖ ‖‖ ‖
 , where u.v is the dot product between the two 

vectors and is calculated using the formula                  where  ‖ ‖ determines the 

magnitude of the vectors and is defined by ‖ ‖  √  
    

 . However these formulas do not 

return negative angles since               . To overcome this problem the cross product of the 

vectors is computed since it is negative when the angle is negative and positive otherwise. The 

formula to calculate the cross product between the vectors u and v is                 . 

After having the S and the T1 polygons and the rotation angle, the morphing technique is 

applied between these two polygons that do not contain rotations. The rotation is applied to the 

polygon retrieved by the morphing technique at each time instant using a parcel of the angle 

proportional to the time instants simulated. 

This method can be used to different types of morphing techniques. 

5.3 Tools implemented 

Some tools were created during the development of this project, to evaluate and tests the 

algorithms. 

One of those tools is the FeaturePointsEditor that enables a user to add and remove feature 

points manually from two polygons. This tool uses the scroll of the mouse to do the zoom in and 

zoom out of the window, and moving the mouse while pressing the right mouse button will drag 

the origin of the plane in the same direction than the mouse. 

When clicking with the right mouse over a vertex of the polygon this vertex may become a 

feature point or if it was already a feature point it ceases to be a feature point. 
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Since the feature points are stored in an ArrayList the removal and addiction of feature 

points coincides with the removal and addiction in the array, however it is necessary that the order 

of the feature points respect the vertices order. In the removal there is no problem since the array 

itself shifts the feature points with an index superior to the one removed. To add feature points it is 

necessary to find the index where to add it.  

Figure 5.14 represents a polygon with the vertices order in a counter-clockwise order 

represented by the blue arrow. The point marked in green is the vertex to be added as feature point. 

The index to attribute to this new feature point is found following the orange arrows until a feature 

point is reached, in this case the feature point 0. These arrows must start in the vertex to be added 

as feature point and follow the clockwise order. When this point is found the index of the new 

feature point must be the index of the feature point found incremented by one, or 0 if no feature 

point were found. 

 

 

Figure 5.14 – Polygon to add feature points 

 

This same tool allows the user to define the first correspondence between two polygons and 

if it is necessary it is possible to save the feature points to a file so they can be reopened by this 

same application, A file containing the correspondences is also created. 

The morphingDemo is a tool to visualize the result of any of the morphing algorithms 

implemented with the image from where the polygon was retrieved in background. With this tool it 

is possible to evaluate and compare the results, and at the same time verify if the problem is of the 

morphing or of the segmentation. 

The Figure 5.15 shows a sequence of frames captured using this tool. In this figure is 

possible to observe the movement of the polygon during the sequence of the images. 
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Figure 5.15 – Sequence of morphing 

 

5.4 Summary 

This chapter presents solutions for the Vertex Path Problem. This is the second problem of 

the morphing. Two main approaches are explored to solve this problem. The solution from 

(McKenney and Webb 2010) and the application of rotation angles.  

The first is an algorithm that defines the order from which vertex is processed.  

The second solution divides the movement of a source object to a target one into translation, 

rotation and deformation. A rotation angle is calculated using an alignment method of Section 4.2. 

This angle is used to rotate the target polygon and a morphing technique is applied to the rotated 

polygon and the source one. The resulting polygon is rotated using fractions of the rotation angle. 

Since this is the last step to calculate the morphing the missing stage is to test the implemented 

algorithms. 



59 

 

 

 Results 6

This chapter presents the results obtained using the algorithms and the tools described in the 

previous chapters. The aim is to evaluate and compare those algorithms. Section 6.1 presents the 

results on the extraction of polygons from image sequences. The main focuses of this section are 

the simplification algorithm presented in Section 3.2.1 and the semi-automatic segmentation 

procedure described in Section 3.3. Section 6.2 shows the results obtained using the 

correspondence algorithms described in the Chapter 4. The results of the different morphing 

algorithms are presented in Section 6.3. 

6.1 Extracting objects from images 

The extraction aims the conversion from raster to vector representations of the objects. The 

vector representation must be the most approximate possible from the original object. The 

simplification reduces the number of points needed to represent the shape of the object and it can 

be important in some aspects like the performance of the algorithms. 

6.1.1 Polygon Simplification 

As mentioned in Section 3.2.1, the implemented algorithm uses a similarity coefficient to 

calculate the threshold for the Douglas-Peucker algorithm. This coefficient defines how similar are 

the simplified polygon with the original one, comparing the polygon areas. The coefficient 

recommended in  the paper (Zhao, Sheng, and H. Guo 2009) was 0.9 but as it is showed by the 

icebergs C on Figure 6.1, Figure 6.2 and Figure 6.3, this coefficient returns polygons that do not 

have enough vertices to define the entire shape of the icebergs. Tests using a greater similarity 

coefficient, 0.95, returned polygons with more vertices and better definition of their shapes. In the 

case of Figure 6.4, a similarity coefficient of 0.97 was used (B polygon) since the value 0.95 

represented by the polygon C in the figure do not have enough vertices to represent the full extent 

of the polygon. This is due to the lack of resolution of the images of this dataset. 
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Figure 6.1 – Simplification of polygon A in the c19c dataset 

 

 

Figure 6.2 - Simplification polygon A in the ice_b15a dataset 

 

 

Figure 6.3 – Simplification polygon A in the ice_b15j dataset 
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Figure 6.4 - Simplification polygon A in the ross_b15a dataset 

 

Table 6.1 shows the final results with the simplification algorithm used. For each iceberg the 

table indicates the average number of the vertices before applying the simplification algorithm 

(column 2), the average number of vertices after the algorithm is applied (column 4) the average of 

the Douglas-Peucker algorithm threshold determined (Section 3.2.1) and used in the simplification 

method (column 3) and the average perimeters of the polygons (column 5). As it was mentioned in 

Section 3.2.1 the threshold is calculated iteratively, testing different values until a similarity 

coefficient is reached. The coefficient 0.97 could be used in all the cases, returning polygons with 

more vertices that the ones represented by the B polygons on Figure 6.1, Figure 6.2 and Figure 6.3. 

However in the following tests reported in this work, the values that returned the smaller number of 

vertices without deforming the polygons, the coefficient 0.97 in the ross dataset and 0.95 to the rest 

of the datasets were used. 

 

Iceberg 

Vertice Number 

before 

Simplification 

Douglas-Peucker 

Threshold 

Calculated 

Vertice Number 

after 

Simplification 

Average 

perimeter 

(pixels) 

ice_b15a 1319 7.67 21 1347,82 

ice_b15j 665 6.0 17 727,32 

ross_b15a 166 1.25 25 143,97 

ross_b15b 91 1.50 17 120,76 

c19c 1424 7.54 21 1053,91 

Table 6.1 – Average number of vertices after and before the simplification 

  

6.1.2 Semi-Automatic Segmentation 

The goal of the semi-automatic segmentation is to reduce the interaction of the users during 

the segmentation process. This process tries to reuse the values used in the segmentation of one 
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image in the rest the images of this sequence. The first polygon must be determined by the user and 

the others are automatically determined. However some problems may occur during this process. 

To detect those problems the determined polygon is compared with the previous one and when they 

differ significantly an error is prompted to the user which may ignore it and the process continues, 

or the user may correct the result of the segmentation manually. 

Figure 6.5 shows the errors returned when using the semi-automatic segmentation to retrieve 

the ice_b15a iceberg.  

 

 

Figure 6.5 – Semi-Automatic Segmentation false negatives 

 

The image 1 represents the first segmentation of the images, when the AB_Snake algorithm 

is applied to the point chosen by the user. The images from 1 to 7 are automatically segmented 

without problems and the user does not need to interect with the system. In the image 7 the semi-

automatic-segmentation located the iceberg, however since there is a cloud in the image the iceberg 

is cutted almost in half. In this case the user can choose if he wants to continue the segmentation 

1 7 

8 9 

A 

B 
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ignoring this error (false negative), stop the process and edit the polygon, or removing the image 

from the sequence if no segmentation is possible (options presented by the B menu). In this case 

the ignore option was chosen and the algorithm returned the error in the image 8. This is clearly a 

false negative that occur because the polygon from 7 has deformations that had been ignored, so it 

is ignored. The polygon returned in image 9 has many deformations. These deformations occur 

because there is a cloud overlapping part of the polygon. In this case only the manual segmentation 

would return the exact shape of the iceberg, so this image is removed. The last frame of the 

sequence was segmented successfully. The polygon from 7 was posteriorly adjusted. 

The results obtained are described in Table 6.2. 

Column 2 represents the number of false negatives detected by the algorithm. These are the 

errors that the user may opt to ignore since the segmentation is correct but the similarity algorithm 

returned error. In these cases it is possible to continue the process without segment again the image, 

keeping the returned polygon and continuing the semi-automatic segmentation. The column 3 

shows the total errors detected, including the false negatives. The last column indicates the number 

of images of each sequence.  

 

Icebergs False Negatives Total errors Total Images 

ice_b15a  1  3 10 

ice_b15j 2 4 10 

c19c 3 6 7 

Table 6.2 - Errors detected for each iceberg 

 

For the icebergs ice_b15a and ice_b15j this method proved to be good, since the user only 

has to segment 2 polygons and the others were automatically detected. The false negatives are 

errors were some deformation happens on the polygons and the similarity algorithm returned error 

that may be ignored. The rest of the errors happened because the images contain noise, like clouds 

that overlap part of the icebergs, and even after adjusting the threshold or the start positions from 

the AB-Snake algorithm would return errors that would need future corrections of the user. 

On the c19c dataset, the semi-automatic segmentation returned errors for almost all the 

images of the sequence. The ignored errors happened when the image detected the polygon with 

some noise, like waves or near fragments of other icebergs. In those cases the user can easily edit 

the polygon doing the necessary adjustments, typically removal of vertices. The rest of the errors 

on this dataset happened because the position of the iceberg is completely different, between 

consecutive images leading to the need of specifying a different starting point for the Snake 
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detector algorithm. A possible improvement to this algorithm is to calculate a movement vector for 

the objects, using its position in different images and apply this vector to the next images. 

In the case of the ross dataset the results were bad because of the low resolution of the 

images, noise and differences in the luminosity. The low resolution and the noise turn difficult to 

detect the boundaries of the polygons even in a manual segmentation. The differences on 

luminosity need different threshold values to return the boundaries of the icebergs, so its results 

were removed from the table. 

In Figure 6.6 are present two different frames from the ross dataset. In these frames is 

possible to verify the difference on the luminosity occurring in the frames.   

 

 

Figure 6.6 – Ross dataset frames 

 

After this step had been concluded, some polygons were manually adjusted, removing and 

moving some vertices using the methods described in Section 3.2.2. In order to obtain sets of good 

quality objects to test the morphing algorithms 

6.2 VCP 

This section will deal with the evaluation of the various methods to determine 

correspondences. In (Zhao, Sheng, and H. Guo 2009) it is mentioned that the most reliable way to 

verify correspondences is visually. In this work we use correspondences selected manually between 

all consecutive polygons. Then the resultant correspondences of the methods described in Chapter 

5 were compared with the manual correspondences. 

The results of the comparisons between the manual correspondences and the 

correspondences obtained by the algorithms are presented in this section. The tables containing the 

results (Table 6.3, Table 6.4, Table 6.5, Table 6.6, Table 6.7, Table 6.8 and Table 6.9) have 4 

columns. Column 1 identifies the icebergs and datasets; Column 2 represents the average 

percentage of correspondences that matched exactly the manual selection; Column 3 depicts the 

average distances between the correspondent point using this algorithm and the correspondent point 
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of the manual correspondences; Column 4 shows the relation between the non-matching distances 

and the perimeters. 

In Figure 6.7 it is possible to observe, on left, the manual correspondences determined to two 

polygons of the ice_b15a iceberg and on right, the correspondences obtained using the turning 

algorithm described in Section 4.1.2.  

 

Figure 6.7 - Example of correspondences 

 

In red are the correspondences that do not match with the manual ones. For those 

correspondences it is calculated the matched distance d, as it is depicted in Figure 6.8. 

 

 

Figure 6.8 – Distance between non-matching correspondences 
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6.2.1 Turning algorithm 

Table 6.3 and Table 6.4 show the results of the correspondences using the turning algorithm 

described in Section 4.1.2. As it is mentioned in that section this algorithm represents the polygons 

by their turning function, which creates a relation between the angle and the length of the edges 

using a referential vertex in each polygons. The correspondence is calculated by finding the 

minimum areas formed by the functions of two polygons using different referential points. 

 

Iceberg 

without 

simplification 

Matched 

correspondences 

(%) 

Average 

distance 

(pixels) 

Distance / 

Perimeter 

ice_b15a  2 213,62 0,159 

ice_b15j 14 93,90 0,129 

ross_b15a 11 50,14 0,348 

ross_b15b 18 17,04  0,141 

c19c 1 76.36 0,072 

Table 6.3 - Results of correspondences using the turning algorithm with original polygons 

 

Iceberg 

simplified 

Matched 

correspondences 

(%) 

Average 

distance 

(pixels) 

Distance / 

Perimeter 

ice_b15a  89 88,93 0,066 

ice_b15j 74 50,91 0,070 

ross_b15a 79 11,28 0,078 

ross_b15b 85 8,44 0,070 

c19c 81 71,27 0,068 

Table 6.4 - Results of correspondences using the turning algorithm with simplified polygons 

 

Comparing the values of the two tables, it is possible to conclude that the results with the 

simplified polygons are better than the results of the original polygons.  

The results of Table 6.4 show that this method retrieves correspondences very similar to the 

manual approach. The percentages of matched correspondences are all above 70% and the 

relationship between the distances of non-matched correspondences and its equivalent match are all 

below 0.08 (4
th
 column). With these results it seems that this method is a good method to obtain 

correspondences between polygons. 
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6.2.2 Perceptually based algorithm 

The algorithm tested in this section was the perceptually based algorithm implemented in 

(Paulo 2012) , described in Section 4.1.1. This algorithm uses vertices that better define the shape 

of the polygons, feature points and using sections formed by those vertices compares the feature 

points from one polygon to the feature points in the other. 

Table 6.5 and Table 6.6 show the results correspondence results obtained using original and 

simplified polygons respectively. 

 

Iceberg 

without 

simplification 

Matched 

correspondences 

(%) 

Average distance 

(pixel) 

Distance / 

Perimeter 

ice_b15a  4 186,74 0,139 

ice_b15j 2 107,62 0,148 

ross_b15a 10 23,10 0,160 

ross_b15b 14 19,06 0,158 

c19c 0 281,36 0,267 

Table 6.5 - Results of correspondences using perceptually based algorithm in the original polygons 

 

Iceberg 

simplified 

Matched 

correspondences 

(%) 

Average distance 

(pixel) 

Distance / 

Perimeter 

ice_b15a  37 196,49 0,146 

ice_b15j 27 137,75 0,189 

ross_b15a 17 32,19 0,224 

ross_b15b 36 21,56 0,179 

c19c 8 240,36 0,228 

Table 6.6 – Results of correspondences using perceptually based algorithm in the simplified polygons 

 

Comparing the values of the Table 6.5 and Table 6.6 it is possible to conclude that the 

percentages of the matched correspondences were bigger in the simplified polygons and the 

averages distances are similar in both cases, the difference between the matched correspondences 

happens because there are more vertices in the original polygons, creating more different 

correspondences. However since the average distance remained similar, the correspondences 

obtained were not too far from the ones using the simplified polygons.  
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The percentages of correspondences that matched the manual method are all below 40% 

(column 2) and the relation between their perimeter and the distance between correspondences are 

all above 0.14 (column 4). Comparing these results with the results obtained using the turning 

algorithm (Table 6.3) it is possible to conclude that this algorithm alone does not assure good 

correspondences between the polygons. 

6.2.3 Modified perceptually based approach with first correspondence 

The Table 6.7 shows the results of the improved perceptually based algorithm. This 

improvement was to feed the algorithm with the first correspondence. This first correspondence 

was calculated using the turning functions, as it is described in Section 4.3.1.2. In this case the 

polygons without simplification were not tested since they did not return better results to neither 

one of the algorithm individually. 

 

Iceberg 

simplified 

Matched 

correspondences 

(%) 

Average 

distance 

(pixel) 

Distance / 

Perimeter 

ice_b15a  39 200,13 0,149 

ice_b15j 49 67,30 0,093 

ross_b15a 23 26,51 0,184 

ross_b15b 42 16,77 0,139 

c19c 57 76,46 0,073 

Table 6.7 - Results of perceptually based method with first correspondence 

  

The results show that this change on the algorithm improved all the results of the 

perceptually based algorithm. In the case of the c19c iceberg, there is an improvement from 8% to 

57% for the matched correspondences and a reduction on the average distances of non-matching 

correspondences (~22% to ~7%). These results however are still worse than the results of the 

turning algorithm correspondences (Section 6.2.1). 

6.2.4 Modified perceptually based algorithm with vertex number matching 

To try to improve the results of the perceptually based algorithm another modification was 

implemented. In this case the method described in Section 4.3.2 was used to match the number of 

vertices between two polygons and their distribution along the edges. The first correspondence was 

determined using the polygons alignment. Table 6.8 and Table 6.9 display the results of this 

method. 
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Iceberg 

without 

simplification 

Matched 

correspondences 

(%) 

Average 

distance 

(pixel) 

Distance / 

Perimeter 

ice_b15a  0 52,04 0,039 

ice_b15j 2 35,70 0,049 

ross_b15a 4 5,24 0,036 

ross_b15b 3 4,82 0,040 

c19c 0 106,52 0,101 

Table 6.8 - Results using perceptually based algorithm with matched vertices number on original polygons  

 

Iceberg 

simplified 

Matched 

correspondences 

(%) 

Average 

distance 

(pixel) 

Distance / 

Perimeter 

ice_b15a  2 13,28 0,010 

ice_b15j 4 9,89 0,014 

ross_b15a 5 3,03 0,021 

ross_b15b 11 3,04 0,025 

c19c 3 12,53 0,012 

Table 6.9 - Results using perceptually based algorithm with matched vertices number on simplified polygons 

 

Comparing the data on the Table 6.8 and Table 6.9 is possible to conclude that this method 

returns better results both in the matched vertices as in distances to the simplified polygons, since 

the matched correspondences are greater and the distances between non-matching vertices smaller. 

The percentages of matched correspondences are poor because with the addition and 

removal of vertices it is possible that the manual correspondences used in the other methods may 

not still be the best ones. This factor makes impossible to compare the turning algorithm and this 

algorithm using only those values. An analysis of the average distance, however, shows that this 

algorithm returned matches very similar to the manual correspondences, since there was a great 

increase on the average distances, proving that this algorithm returned good correspondences even 

with a decrease of the matched correspondences. 

6.2.5 Discussion 

Analyzing the correspondence algorithms it is possible to conclude that the perceptually 

based algorithm alone does not return good results, see Section 6.2.2. The results on Sections 6.2.3 

and 6.2.4 proved that it is possible to improve the results of this algorithm by feeding it a first 
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correspondence or by matching the vertices number and distribution of the polygons. From these 

improvements the matching of number and distribution of the vertices proved to be the better one. 

Graphic 6.1 and Graphic 6.2 show the results of the correspondence algorithms to the 

icebergs without and with rotation in their movement. 

 

 

Graphic 6.1 – Matched Percentages to icebergs with movement mainly translational 

 

 

Graphic 6.2 – Matched Percentages to icebergs with movement mainly rotational 

 

Another method tested in this section was the turning algorithm. As it is showed in the 

Graphic 6.1and Graphic 6.2, this algorithm proved to be better than the simple perceptually based 

algorithm (Section 6.2.2) and the perceptually based algorithm fed with a first correspondence 

(Section 6.2.3). 

Graphic 6.3 and Graphic 6.4 show the averages distance of non-matching correspondences to 

polygons without and with rotation on their transformations.  
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Graphic 6.3 – Distances between non matched correspondences on icebergs with movement mainly 

rotational  

 

 

Graphic 6.4 - Distances between non matched correspondences on icebergs with movement mainly 

rotational 

 

Comparing the distance between non-matched correspondences, Graphic 6.3 and Graphic 

6.4, it is possible to conclude that the perceptually based algorithm with vertices number matched 

and the turning algorithm are the ones with better results. 

However with the data acquired it is impossible to determine which one is the best, so both 

algorithms were tested in the next section. 

6.3 Morphing  

The morphing algorithms implemented were tested using an intersperse approach. This 

approach uses three geometric representations of the same moving object extracted in three 

different time instants,   ,    and   . The movement between the snapshot    and    is calculated 
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using a selected morphing algorithm. Then the area of    is compared to the area of the morphing 

representation at     instant. The Figure 6.9 depicts this process. 

 

 

Figure 6.9 – Similarity between captured and estimated polygons 

 

The dotted polygons represent, from the left to the right, the shape of B-15j captured on 

November, 24, December 1 and 3, 2004 (  ,    and   , respectively). The polygon delimited by a 

solid line at the middle denotes the shape of the B15j on December 1 calculated using any 

morphing algorithm. 

The similarity measure is given by the formula: 

 

                
                     

          
. 

  

The methods tested in this section were the linear interpolation and the method described in 

Section 5.2.1. For those methods the similarity values were calculated using the similarity formula 

above. In the Table 6.10, Table 6.11, Table 6.12 and  Table 6.13 the Similarity columns represent 

the average similarity calculated using the positions of   and    and the Similarity (centred) 

columns the similarity values calculated using    ’s centroid and  ’s centroid aligned. This option 

is added since the movement of the polygons may not be exclusively a geometric translation 

between snapshots. With the Similarity (centred) values is possible to evaluate the transformations 

that occur in the polygons. 

Figure 6.10 shows an estimated polygon T in its original position. If the similarity is 

calculated in this position the result would be 0, although both polygons are similar. 
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Figure 6.10 – Estimated polygon T in its original position 

 

Figure 6.11 shows the same polygons, but in this case the polygon T is centred with the 

polygon   and then their similarity will be not 0 but 74% 

 

 

Figure 6.11 – Estimated polygon T centred with the real polygon 

 

6.3.1 Linear Interpolation 

As it was mentioned before, the results of the turning algorithm and the modified 

perceptually based algorithm with vertex number matching were inconclusive. So the linear 

interpolation was tested using both of those algorithms 

The Table 6.10 shows the results obtained using both methods. 
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Iceberg 

Turning Correspondences 
Improved Feature Based 

Approach 

Similarity 

(%) 

Similarity 

(centred) 

(%) 

Similarity 

(%) 

Similarity 

(centred) 

(%) 

ice_b15a  89 93 89 93 

ice_b15j 72 78 73 79 

ross_b15a 73 78 74 79 

ross_b15b 74 84 73 84 

c19c 39 57 40 60 

Table 6.10 – Morphing results of the linear interpolation 

 

Analyzing the table above it is possible to verify that this morphing algorithm returned 

similar results to all datasets. The results were better for the ice_b15a dataset, since the movement 

of this iceberg is mainly translational and the images of the dataset have good quality. The Figure 

6.12 depicts a linear interpolation of a polygon with rotation, in this case the ice_b15j. As it is 

showed in the figure by the polygon T, the polygon tends to shrink and then expand to the final 

form. This happens because the rotation of the object is modeled using linear paths. 

 

 

Figure 6.12 - Result of the linear interpolation with rotating objects 

 

As it was expected the similarity values after and before the alignment of the centroids of the 

polygons are different, increasing when their centroids are aligned, an example of this case is 

presented in Figure 6.11. The values of both algorithms returned similar similarity values, proving 

that both are good options to do the correspondences. 

𝑃  

𝑃  𝑻 
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6.3.2 Cyclic Order algorithm  

The Table 6.11 shows the results obtained using the algorithm described in Section 5.2.1. 

This table only has 3 columns because the correspondences are calculated by the algorithm itself, 

while in the previous tests, the algorithm only used linear interpolation to represent the movement 

of the polygons. This situation may cause VPI’s, since the correspondence is done comparing the 

characteristics of the vertices and there is no regard by the order of those correspondences. 

Applying the linear interpolation in those cases may originate invalid topologies on the polygons. 

The Cyclic Order algorithm avoids this kind of problems since all the vertices are visited in order. 

The results using this algorithm are presented in Table 6.11. 

 

Iceberg 
Similarity 

(%) 

Similarity 

(centred) 

(%) 

ice_b15a  88 91 

ice_b15j 76 83 

ross_b15a 75 80 

ross_b15b 73 82 

c19c 48 72 

Table 6.11 – Morphing results of the Cyclic Order algorithm 

  

The similarity values obtained using this algorithm proved to be better than the values 

retrieved using the linear interpolation. These results show that it may be a good idea to investigate 

more morphing algorithm to simulate the movement and deformation on the moving objects. 

However looking at Figure 6.13 and Figure 6.14, it is possible to observe the deformation 

that this algorithm creates when there is some rotation on the polygons (ice_b15j). The similarity 

values are greater than the values of the linear interpolation because the area of the polygon 

estimated is always proportional. 
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Figure 6.13 – Example of the Cyclic Order algorithm with objects with rotation ice_b15j 

 

 

Figure 6.14 - Example of Cyclic Order algorithm with objects with rotation c19c 

 

The Figure 6.15 shows that the behaviour of this algorithm with objects with only translation 

movements (ross_b15b) returns the expected results without deformations. 

 

 

Figure 6.15 - Example of the Cyclic Order algorithm with objects with only translation 
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6.3.3 Linear Interpolation and Rotation 

Dividing the movement of an object into translation and rotation is the other method tested. 

It is important to note that the results of this method are directly related with a good 

detection of the rotation angle between two polygons. This angle is calculated using the ICP 

algorithm described in Section 4.2.2.2. 

The Table 6.12 displays the results using this algorithm. 

 

Iceberg 

Turning Correspondences 
Improved Feature Based 

Approach 

Similarity 

(%) 

Similarity 

(centred) 

(%) 

Similarity 

(%) 

Similarity 

(centred) 

(%) 

ice_b15a  87 90 87 90 

ice_b15j 78 85 78 86 

ross_b15a 70 75 69 76 

ross_b15b 71 83 70 83 

c19c 45 75 78 74 

Table 6.12 – Morphing results linear interpolation plus rotation 

 

The Figure 6.16 shows the intermediate polygon T (ice_b15 j), calculated using the 

improved feature based approach with rotation angles. This was applied to the same polygons as in 

the Figure 6.12 and this image shows that the deformation was avoided using this method. Similar 

results occur using the turning algorithm. 

 

 

Figure 6.16 – Linear interpolation with rotation angle in polygons with rotation 

 

The Figure 6.17 shows that when no rotation exists in the polygons the algorithm does not 

generate large deformations. 
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Figure 6.17 - Linear interpolation with rotation angle in polygons without rotation 

 

As showed in the Table 6.12 and in Figure 6.16, this method improved the results to all the 

polygons that have significant rotations on their movement (c19c and ice_b15 j), for the other 

polygons there was a small decreases that may be justified by errors on calculating the rotation 

angles. 

6.3.4 Cyclic Order Algorithm with rotation 

The Table 6.13 shows the results of the Cyclic Order algorithm applied to two aligned 

polygons. 

 

Iceberg 
Similarity 

(%) 

Similarity 

(centred) 

(%) 

ice_b15a  87 89 

ice_b15j 78 85 

ross_b15a 73 78 

ross_b15b 71 82 

c19c 45 75 

Table 6.13 - Morphing results of the Cyclic Order with rotation 

 

Analyzing these results applying the rotation to this algorithm does not have a great effect in 

the results. There were only small improvements in some of the similarity values. 

Visually there were notable improvements in the polygons with rotation, Figure 6.18. But 

some deformation still happens with concavities. But when they do not exist the deformations are 

very small (Figure 6.19). 

𝑃  
𝑃  𝑻 
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Figure 6.18 – Application of the Cyclic Order algorithm with rotation angles on polygons with rotation 

  

 

Figure 6.19 - Application of the Cyclic Order algorithm with rotation angles on polygons with rotation with 

smaller concavities 

 

6.3.5 Discussion 

Analysing the results of the morphing algorithm it is possible to conclude that linear paths 

are a good choice when the movement of the objects is approximately translational, this is showed 

in the Graphic 6.5, where the results are very similar with all the algorithms. 
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Graphic 6.5 - Similarity of polygons without rotation 

 

However when some rotation exists such approach may be improved with the use of a 

rotation angle, as it is showed in the Graphic 6.6, where with rotation angles the algorithms return 

greater similarity results. 

 

 

Graphic 6.6 - Similarity of polygons with rotation 

 

The turning algorithm and the modified perceptually based approach returned similar results 

between them for all cases, what turns any of those algorithms a good choice when the linear 

interpolation is to be used. The results of the Cyclic Order algorithm are similar to the results of the 

linear interpolation with rotation angle, however the intermediate polygons of this algorithm will be 

more complex having at least the number of vertices equal to the sum of the origin and the target.  
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 Conclusions 7

7.1 Contributions 

The linear interpolation is the method implemented by current solutions to model the 

changes of an object between consecutive snapshots. In this work we present some improvements 

and some morphing alternatives to this method, comparing all of them using real-world datasets.  

The semiautomatic segmentation introduced in this dissertation aimed to the automation of 

the segmentation process of real world datasets with a great amount of images. The preliminary 

results show that the main difficulties occur when the images in the sequences do not share the 

same resolution and luminosity and the dataset does not have enough images so that the position of 

the object does not change completely in two consecutive snapshots. The automation of this 

process is important so it is possible to acquire great amounts of real world data with the minor user 

interaction, what would allow the validation of methods using real world data with great dimension 

instead of just using synthetic datasets. 

Regarding the correspondences (finding matching points between consecutive polygons), 

four different algorithms were implemented and tested with the datasets introduced in Section 2.3 

from real image. Analyzing correspondences results the turning algorithm and the improved 

perceptually based algorithm with vertex distribution matched proved to be the best solutions and 

with similar results. Using their correspondences in the morph also returned similar results, 

showing that any of these algorithms is a good choice. However the improved perceptually based 

algorithm needs preprocessing of the polygons to match the vertices number and their distribution 

along the boundaries of the polygon, an extra step that may introduce some errors for example in 

the initial alignment. Due to this additional complexity, and with the results obtained, the algorithm 

that seems more suitable is the turning algorithm presented in Section 4.1.2. 

Regarding the morphing techniques, the tests with linear interpolation alone present some 

limitations, in particular when the polygons suffer rotation between snapshots. In this situation, it is 
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recommended to divide the movement of the polygons in translation plus rotation and deformation. 

This approach returned the best results for the morphing algorithm for the datasets containing 

rotation on the movements of their objects. When no rotation is present this method returned 

similar results to the simple linear approach. All the morphing algorithms tested returned similar 

results. In that case any of them may be used to compute the movement of the moving objects. 

During the correspondences evaluation, however, it was concluded that the improved 

perceptually based algorithm was more complex than the turning algorithm. So it is only necessary 

to compare the linear interpolation of the turning correspondences and the Cyclic Order algorithm. 

In that case it is possible to conclude that the turning algorithm is still the best one to create the 

morphing. This conclusion happens by the fact that the Cyclic Order algorithm introduced in 

(McKenney and Webb 2010) needs to calculate the convex hulls of the polygons and any vertex 

not belonging to a concavity will have at least two correspondent vertices in the other polygon, 

forming a triangle, which is more complex to process than only a line. 

7.2 Future Work 

This dissertation focuses in the acquisition of the geometric representations of the moving 

objects from real world datasets and compares different algorithms to represent the movement of 

those geometries. However the term moving object usually implies the integration of this kind of 

entities into databases.  

The work described in this dissertation is a preliminary step to allow the future integration of 

these objects into databases. But the actual moving objects databases and information systems only 

deal with linear interpolations of the objects. The results presented in this work show that this 

approach has limitations and it would be important to study the possibility to introduce other 

algorithms besides linear interpolations in rotating moving objects databases.  
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Annex A. Preliminary results using fire 

datasets 

 A.1 Datasets 

This annex presents some preliminary results that were obtained using new series of datasets. 

Those datasets are three movies showing the fires spread documented in several experiments 

performed to study the effects of slope on fire spread (Silvani, Morandini, and Dupuy 2012). These 

experiments were performed in a laboratory using a 3m X 9m platform. The snapshots were 

captured at regular time intervals and the predominant movement of the fire front is translation. In 

this experience three different videos were used, each one with different slopes. 

These datasets are different from the iceberg since the shapes and movement of the objects is 

different. These are an interesting sort of objects to study, since this is one of the main 

environmental problems affecting Portugal in the summer season. 

The Figure A.1 is a sequence of the fire images using the slope of 30 degrees. These three 

images are the first, the middle and the last one of a sequence of 26 frames.    

 

 

Figure A.1 – Fire sequence using 30 degree on slope 

 

The Figure A.2 depicts the first the middle and the last images on a sequence of 29 frames 

using the slope of 20 degrees.  
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Figure A.2 – Fire sequence with 20 degrees of slope 

  

Figure A.3 has the first the middle and last frames of a fire experiment using no slope. In this 

case the sequence has 37 frames. 

 

 

Figure A.3 - Fire sequence without any slope 

 

A.2 Extracting objects from images 

 Using these videos it was possible to obtain two types of moving objects: the flames and 

the burned area of the fires. 

 The flames were segmented using the segmentation tool described in Section 3.1. Since the 

flames of the fires are very irregular polygons, the simplification technique described in Section 3.2 

was used with similarity coefficient of 0.85. 

 The Table A.1 shows some properties of the flames segmented. 

 

Slope Frames number 
Average Vertices 

number 

Perimeter 

(pixels) 

0 37 37 1024 

20 29 49 1643 

30 26 59 2019 

Table A.1 - Flames properties 
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Figure A.4 shows two fire images segmented from the images with 30 degree slope in left 

and from the sequence without any slope on right. 

 

 

Figure A.4 – Segmented flames 

 

A.2.1 Burned area 

 Another type of objects that can be retrieved from these image sequences is the burned 

area. The burned area was obtained using the previous segmentation connecting the upper most and 

the down most vertices to the margins of the images. 

 The Table A.2 shows the principal properties of this kind of objects. 

 

Slope Average Vertices 
Perimeter 

(pixels) 

0 29 1623 

20 16 1689 

30 21 1680 

Table A.2 – burned area properties 

 

 Figure A.5 shows two different images with the burned area segmented, represented by the 

shadowed areas. 
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Figure A.5 – Burned area segmented 

 

A.2.2 Discussion 

The tool used to extract the polygons from the flames and the burned area of the videos 

returned the shape of the objects. However the main studies of these objects only need to use 

abstractions of them, then a MBR of the shapes or a tool to determine the skeleton of the flames 

would be more desirable methods, since they return simpler polygons easier to analyse in the 

remaining processes. 

A.3 VCP 

This section shows the results obtained using the correspondence algorithms described in 

Chapter 4. The tests are the same applied to the iceberg datasets described in Section 6.2. 

A.3.1 Turning algorithm 

Table A.3 shows the results obtained using the turning algorithm described in Section 4.1.2 

in the flames of the fires. 

 

Slope 

Matched 

correspondences 

(%) 

Distance / 

Perimeter 

0 38 0,037 

20 30 0,032 

30 28 0,036 

Table A.3 - Results of the turning algorithm correspondence on the flames 
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With the values presented in the tables above is possible to conclude that the results of this 

algorithm are not good to the flames since the matched correspondences are all below 40%. This 

happens because the shape of the flames has a lot of changes between consecutive frames. 

Table A.4 present the turning algorithm results in the burned areas.  

 

Slope 

Matched 

correspondences 

(%) 

Distance / 

Perimeter 

0 63 0,048 

20 71 0,061 

30 52 0,052 

Table A.4 - Results of the turning algorithm correspondence on the burned areas 

 

To the burned areas the results are similar to the ones obtained with the icebergs. This 

happens because only part of the polygon changes between two consecutive frames. 

A.3.2 Perceptually based algorithm 

The correspondences, obtained using the perceptually based algorithm, (Section 4.1.1) are 

presented in the next two tables. 

Table A.5 shows the results to the flames of the fires. 

 

Slope 

Matched 

correspondences 

(%) 

Distance / 

Perimeter 

0 10 0,227 

20 4 0,278 

30 9 0,199 

Table A.5 – Results using the perceptually based algorithm in the flames 

 

Table A.6 presents the results to the burned areas. 

 

 

  



A6 

 

 

Slope 

Matched 

correspondences 

(%) 

Distance / 

Perimeter 

0 38 0,103 

20 34 0,147 

30 17 0,215 

Table A.6 – Results to the perceptually based algorithm on the burned areas 

 

The matched correspondences to the flames are bad (all below 10%), to the burned areas 

these correspondences increased. 

A.3.3 Modified perceptually based approach with first correspondence 

The algorithm tested in this section is the perceptually based algorithm fed with a first 

correspondence from the turning algorithm. This algorithm is described in Section 4.3.1.2 

Table A.7 shows the results from this algorithm to the flames of the fires. 

 

Slope 

Matched 

correspondences 

(%) 

Distance / 

Perimeter 

0 11 0,156 

20 14 0,130 

30 16 0,117 

Table A.7 – Results using the perceptually based algorithm fed with a first correspondence to the flames 

 

Table A.8 presents the results to the burned areas of the fires. 

 

Slope 

Matched 

correspondences 

(%) 

Distance / 

Perimeter 

0 31 0,110 

20 36 0,133 

30 30 0,145 

Table A.8 - Results using the perceptually based algorithm fed with a first correspondence to the burned 

areas 
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The results presented in the two tables above show that in some cases the matched 

correspondences are very similar with the values of the perceptually based algorithm, (slope 0 from 

both cases and slope 20 from the burned areas). To the other cases the results improved. 

A.3.4 Modified perceptually based algorithm with vertex numbers matching 

This section presents the values, obtained using the perceptually based algorithm, in 

polygons with the same number of vertices. The algorithm is described in Section 4.3.2. 

Table A.9 shows the results using this algorithm in the flames of the fires to each slope. 

 

Slope 

Matched 

correspondences 

(%) 

Distance / 

Perimeter 

0 1 0,021 

20 1 0,048 

30 1 0,027 

Table A.9 – Results using the perceptually based algorithm in polygons with the same number of vertices in 

the flames 

 

Table A.10 presents the results to the burned areas of the fires using this algorithm. 

 

Slope 

Matched 

correspondences 

(%) 

Distance / 

Perimeter 

0 3 0,013 

20 1 0,032 

30 2 0,030 

Table A.10 - Results using the perceptually based algorithm in polygons with the same number of vertices in 

the burned areas 

 

The results of the tables above show the smaller matched correspondences, however as it 

happened in the icebergs the distances between non matched correspondences are the smaller. 

A.3.5 Discussion 

Graphic A.1 and Graphic A.2 show the matched correspondences percentages of the flames 

and the burned areas respectively. In both graphics is possible to verify the results to the VCP 

algorithm tested. With these graphics is possible to conclude that using matching correspondences 

the turning algorithm returned the best results. The graphics show that given the first 
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correspondence using the turning algorithm to the perceptually based approach improved almost all 

the results. 

 

 

Graphic A.1 - Flames Matching Correspondences 

 

 

Graphic A.2 - Burned Area Matching Correspondences 

 

Graphic A.3 and Graphic A.4 show the average distance ratio between non matching 

correspondences. It is possible to conclude that the turning algorithm and the modified perceptually 

based algorithm have similar results and are the best ones. 
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Graphic A.3 - Distances between non-matched correspondences on flames 

 

 

Graphic A.4 - Distances of non-matched correspondences on burned areas 

 

A.4 Morphing 

This section presents the results using the method described in Chapter 5. This method was 

used to both the flames and the burned areas of the fire sequences. The morphing algorithms tested 

were the linear interpolation using the correspondences of the turning algorithm and the improved 

perceptually based approach and the cyclic order algorithm. Since the datasets do not contain 

rotations the algorithms using rotation angles were not tested. 

A.4.1 Linear interpolation 

The results, obtained using the linear interpolation are presented in Table A.11 (flames) and 

Table A.12 (burned areas). 
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slope 

Turning Correspondences 
Improved Feature Based 

Approach 

Similarity 

(%) 

Similarity 

(centred) 

(%) 

Similarity 

(%) 

Similarity 

(centred) 

(%) 

0 57 54 60 58 

20 60 54 48 45 

30 63 61 66 64 

Table A.11 – Morphing results obtained using the linear interpolation in the flames 

 

slope 

Turning Correspondences 
Improved Feature Based 

Approach 

Similarity 

(%) 

Similarity 

(centred) 

(%) 

Similarity 

(%) 

Similarity 

(centred) 

(%) 

0 85  85  96 97 

20 91  91  90  90  

30 75  74 86  85  

Table A.12 - Morphing results obtained using the linear interpolation in the burned areas 

 

The results on the tables above show that the linear interpolation returned better results to the 

burned areas. This happens because in those cases the shapes of the polygons are simpler. 

Figure A.6 shows a linear interpolation between two flames. In the middle is possible to see 

the polygon interpolated in blue and the shape and position of the polygon at that instant in yellow. 

 

 

Figure A.6 – Linear interpolation of the flames 
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Figure A.7 shows the morphing between two polygons of the burned areas. The green area is 

the overlapped area between the real shape of the polygon at instant t and the estimated polygon at 

that instant determined by the linear interpolation. 

 

 

Figure A.7 – Linear interpolation of the burned areas 

 

The results to the different correspondence algorithms returned similar values. The values of 

the centred and not centred similarities are similar because the time interval and the movement of 

the objects between consecutive frames are constant. 

A.4.2 Cyclic Order algorithm  

The Table A.13 and Table A.14 show the results using the Cyclic Order algorithm. 

 

scope 
Similarity 

(%) 

Similarity 

(centred) 

(%) 

0 45 44 

20 43 40 

30 54 51 

Table A.13 – Results of the cyclic Order algorithm for the flames 

 

scope 
Similarity 

(%) 

Similarity 

(centred) 

(%) 

0 97 97 

20 95 95 

30 88 87 

Table A.14 - Results of the cyclic Order algorithm for the burned areas 
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The results using the cyclic order algorithm for the burned areas were all above 85%, 

proving to be a good option to create the morph between those objects. Using the flames the results 

were worst (between 40 and 55%), this happened because the flames have a lot of concavities. 

Figure A.8 depicts the morphing using the cyclic order algorithm. In this picture is possible 

to observe the deformation happening because the polygon has a big concavity. 

 

 

Figure A.8 – Morphing using the cyclic order algorithm on the flames 

 

Figure A.9 shows the estimated polygon using this algorithm (blue polygon). In this case 

since the concavity causing the deformation on the flame case does not exist, the resulted polygon 

is more similar to the real one. 

 

 

Figure A.9 - Morphing using the cyclic order algorithm on the burned area 

 

A.4.3 Discussion 

Graphic A.5 and Graphic A.6 shows the results of the morphing algorithm for the flames and 

the burned areas respectively. These graphics show that both algorithm returned similar results in 

case of the burned areas, but to the flames the cyclic order algorithm returned the worst results.  

The burned area results are better than the flames results to any of the algorithms tested. 
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Graphic A.5 - Morphing algorithms with flames 

 

 

Graphic A.6 - Morphing algorithms with burned area 

 

A.5 Conclusions 

This annex presents some results to the fire datasets using the same tools and methods 

applied in icebergs datasets. The results show that it is necessary some work, mainly in the 

segmentation to improve the results. It is important to define exactly what is important to extract 

from the images, since to some studies may be only necessary to use an abstraction of the objects. 

The turning correspondences algorithm and the improved perceptually based algorithm with 

polygons with the same number of vertices were the VCP algorithms with better results, but due to 

the complexity of the modified perceptually based, the algorithm that seems more suitable is the 

turning algorithm presented in Section 4.1.2. Regarding the morphing techniques used both 

algorithm of the linear interpolation returned similar results and any of them may be used to create 

the movement of the objects. However duo the concavities present in the flame sets the cyclic order 

algorithm returned the worst results of all the algorithms tested, proving that this algorithm is a 

good choice if the polygons are simple with few concavities. In the case of the burned areas any if 

these algorithms would be a good choice since they returned similar results. 
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