2013 Informatica

a Universidade de Aveiro Departamento de Eletrénica, Telecomunicagdes e

Oscar Narciso DACA: Arquitetura para Implementacao de
Mortagua Pereira Mecanismos Dinamicos de Controlo
de Acesso em Camadas de Negocio

DACA: Architecture to Implement Dynamic
Access Control Mechanisms
on Business Tier Components

Programa de Doutoramento em Informatica
das Universidades do Minho, Aveiro e Porto

Oscar Narciso
Mortagua Pereira

Universidade de Aveiro Departamento de Eletrénica, Telecomunicagdes e
Ano 2013 Informatica

DACA: Arquitetura para Implementacdo de
Mecanismos Dinamicos de Controlo de Acesso em
Camadas de Negocio.

Tese apresentada a Universidade de Aveiro para cumprimento dos requisitos
necessarios a obtengéo do grau de Doutor em Ciéncias da Computacdo (MAP-
i), realizada sob a orientagéo cientifica do Prof. Doutor Rui L. Aguiar, Professor
Associado com Agregacao, do Departamento de Eletrénica, Telecomunicacdes
e Informaética da Universidade de Aveiro em co-orientacdo com a Prof. Doutora
Maribel Yasmina Santos, Professora Associada com Agregacdo, do
Departamento de Sistemas de Informacéo da Universidade do Minho.

Dedico este trabalho:
e a0 meu pai, a minha mae
e a minha familia: Lygia, Lia e Nuno

o juari

presidente

Prof. Doutor Carlos Alberto Diogo Soares Borrego
Professor Catedratico da Universidade de Aveiro

Prof. Doutor Arnaldo Carvalho Martins
Professor Catedratico da Universidade de Aveiro

Prof. Doutor Marco Paulo Amorim Vieira
Professor Auxiliar da Faculdade de Ciéncias e Tecnologia da Universidade de Coimbra

Prof. Doutor Jodo Costa Seco
Professor Auxiliar da Faculdade de Ciéncias e Tecnologia da Universidade de Lishoa

Prof. Doutor Rui Luis Andrade Aguiar (orientador)
Professor Associado com Agregacdo da Universidade de Aveiro

Prof. Doutora Maribel Yasmina Campos Alves Santos (co-orientadora)
Professora Associada com Agregacdo da Escola de Engenharia da Universidade do
Minho.

agradecimentos

O modo como se desenvolveu e se concluiu este trabalho deve muito ao apoio
cientifico prestado e também as condic¢des criadas e proporcionadas pelo Prof.
Doutor Rui Luis Aguiar. Sem a sua colaboracdo e compreenséo, o resultado
seria inevitavelmente diferente. A ele 0 meu sincero obrigado.

Realco a disponibilidade total, constante e pronta da Prof. Doutora Maribel
Yasmina Santos na colaboragdo cientifica que prestou. A ela o meu sincero
obrigado.

Finalmente, real¢o a contribuigdo de todos os elementos do grupo ATNoG que
de alguma forma também colaboraram para o sucesso deste meu trabalho.
N&o posso deixar de destacar o Prof. Doutor. Diogo Gomes, o Prof. Doutor
Jodo Paulo Barraca e o técnico André Rainho. A todos também o meu sincero
obrigado.

palavras-chave

resumo

Controlo de acesso, componentes, arquitecturas de
software, sistemas adaptativos, base de dados
relacionais, camadas de negdcio.

Controlo de acesso é um desafio para a engenharia de software nas
aplicacbes de bases de dados. Atualmente, ndo h4d uma solucdo satisfatéria
para a implementa¢é@o dindmica de mecanismos finos e evolutivos de controlo
de acesso (FGACM) ao nivel das camadas de negdcio de aplicacdes de bases
de dados relacionais. Para solucionar esta lacuna, propomos uma arquitetura,
aqui referida como Arquitetura Dindmica de Controlo de Acesso (DACA).
DACA permite que FGACM sejam dinamicamente construidos e atualizados
em tempo de execugdo de acordo com as politicas finas de controlo de acesso
(FGACP) estabelecidas. DACA explora e utiliza as caracteristicas das Call
Level Interfaces (CLI) para implementar FGACM ao nivel das camadas de
negoécio. De entre as caracteristicas das CLI, destacamos o seu desempenho
e os diversos modos para acesso a dados armazenados em bases de dados
relacionais. Na DACA, os diversos modos de acesso das CLI sdo envolvidos
por objetos tipados derivados de FGACM, que séo construidos e atualizados
em tempo de execugcdo. Os programadores prescindem dos modos
tradicionais de acesso das CLI e passam a utilizar os dinamicamente
construidos e atualizados. DACA compreende trés componentes principais:
Policy Server (repositério de meta-data dos FGACM), Dynamic Access Control
Component (componente da camada de negdlcio que € responsavel pela
implementacdo dos FGACM) e Policy Manager (broker entre DACC e Policy
Server). Ao contrario das solugdes atuais, DACA nao é dependente de
qualquer modelo de controlo de acesso ou de qualquer politica de controlo de
acesso, promovendo assim a sua aplicabilidade a muitas e diversificadas
situacdes. Com o intuito de validar DACA, foi concebida e desenvolvida uma
solucdo baseada em Java, Java Database Connectivity (JDBC) e SQL Server.
Foram efetuadas duas avaliacdes. A primeira avalia DACA quanto a sua
capacidade para dinamicamente, em tempo de execucdo, implementar e
atualizar FGACM e, a segunda, avalia o desempenho de DACA contra uma
solugdo sem FGACM que utiliza o JDBC normalizado. Os resultados
recolhidos mostram que DACA é uma solucdo vélida para implementar
FGACM evolutivos em camadas de negécio baseadas em CLI.

keywords

abstract

Access control, business tiers, software architecture,
components, adaptive systems, relational databases,
business tiers.

Access control is a software engineering challenge in database applications.
Currently, there is no satisfactory solution to dynamically implement evolving
fine-grained access control mechanisms (FGACM) on business tiers of
relational database applications. To tackle this access control gap, we propose
an architecture, herein referred to as Dynamic Access Control Architecture
(DACA). DACA allows FGACM to be dynamically built and updated at runtime
in accordance with the established fine-grained access control policies
(FGACP). DACA explores and makes use of Call Level Interfaces (CLI)
features to implement FGACM on business tiers. Among the features, we
emphasize their performance and their multiple access modes to data residing
on relational databases. The different access modes of CLI are wrapped by
typed objects driven by FGACM, which are built and updated at runtime.
Programmers prescind of traditional access modes of CLI and start using the
ones dynamically implemented and updated. DACA comprises three main
components: Policy Server (repository of metadata for FGACM), Dynamic
Access Control Component (DACC) (business tier component responsible for
implementing FGACM) and Policy Manager (broker between DACC and Policy
Server). Unlike current approaches, DACA is not dependent on any particular
access control model or on any access control policy, this way promoting its
applicability to a wide range of different situations. In order to validate DACA, a
solution based on Java, Java Database Connectivity (JDBC) and SQL Server
was devised and implemented. Two evaluations were carried out. The first one
evaluates DACA capability to implement and update FGACM dynamically, at
runtime, and, the second one assesses DACA performance against a standard
use of JDBC without any FGACM. The collected results show that DACA is an
effective approach for implementing evolving FGACM on business tiers based
on Call Level Interfaces, in this case JDBC.

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

TABLE OF CONTENTS

O [10T [0 Tod £ o o OSSR
1.1 ProbIEm DEFINILIONeviiiiiic bbbt b et b et b bbb n et
1.2 ST (010 g (0] L T | SRS
1.3 R CTTCT: T A T U oS
1.4 CONEIIDULIONS ...t et et ettt b e bt e bt e bt b e b b e bt st et e bt e be e e b e sbe st e st st b ene et e
15 Computational TOOIS and INTrASIIUCTUIEccueiieiie e
1.6 THESIS OFGANIZALION ...ttt et bt b bt b s bbbt eb e nb et eb e b s e ebenb e e ebenneseene e

2 Background and State OF the AlT........cociiiii bbb
2.1 BasiC ACCESS CONIOI CONCEPLSveveieirieeeieiesteste st ste s e et e et e te e ste e era e e et e tesaesbesteebeeneensessesseseesnearennens

2 O R ool O 1 1 (0] I (110 PR 10
2.1.2 Architectures for Access Control MEChANISIMScoiiiiiiiiiiiere et 12
2.1.3 Dimensions of Access Control MEChaNISMSoiiiiiirieieie e sre e 16
2.2 Current tools for BUilding BUSINESS THEFScuurviiriiriiieiirieieiisie ettt bbb 19
221 O/RM t00IS AN ADO.NETcuiiieiiiieie sttt sttt sttt e st e besbesteeseeneeseeseeseesseereenes 19
2.2.2 Call LEVEI INEITACES ...veiviieiiiieiietie ettt sttt sttt e et et st et eereen e e neenbeneesneenes 21
2.2.3 Oher PrOPOSAISc.eeveitiiiieiti ittt bbb bbbt bbb bbbt b e bbb e 27
2.3 IDBC ..ottt b bt Rt R e R e Rt R e R £ Re R R R e Rt e R e Rt e R e Rt e bRt e re bt re et 29
2.3. 1 IDBC OVEIVIEW ..euviviitieiseitisteseate st e testestesesaeeesestessesesbe s eseebe st e s e e be b es e e be b eseebesben e e benbe st abesbe st ebesbe e arentns 29
2.3.2 JDBC Approach to Call Level Interfaces FUNCLIONANITIESccccvevviiiiiicececceeceee e 30
P B TN | B 1 =TGR @1 1o LT B T o [1 o PR 33
2.4 Current Approaches to Implement ACCESS CONIOLccvviieiieieece e 36
o R OV =T | A =Tl] o U= PSR 36
o £ T -V (=To VLYo o PSP 41
2.5 SUMIMEBIY ottt bt e bRt b h st e s b e e Rt AR R e b e e st e s s e s Rt n Rt e R e e bt e h e e e n e b b e b e s 52
3 From Call Level Interfaces TOWards the DACA.........o ittt sttt see e seeseenne e 53
3.1 (00 0 [o3=] o 1< T PSPPSR TR UPRRPPRTIN 53
311 CRUD SCRBMA ...t bbb b bbbttt b e bt bt bt et e b e nn bbb enes 53
312 BUSINESS SCNEIMA ...ttt ettt bttt e bbbt bt e et e bt s bt bt e bt e st e e e nb e benbesbeenes 57
313 BUSINESS ENLILY ..ttt bbbt bbbttt bbb 58
3.2 Modelization of Call LeVEl INtEITACESoveiiieiecieec e eneas 59
K T8 R |V [0 17 [59
3.2.2 Proposed Approach for the Modelization Of CLI ... 62
3.3 ComPONENIZALION OF CL ..ottt bbb bbb 66
R T R ©0] 401 o] 1 1< 0| £ TP PPR 66
KR A X o] v L o gl o 0t SR 67
34 AACCESS CONEIOL..... ettt bbbt bt e b s bt bt s bt bt e bt e bt e st et e besbesbesbeaneas 72
3.5 1011 0] 0 1LY S PSR SUP TR UPRRPRRPN 72
4 DACA: Dynamic Access CoNtrol ArChItECIUIEccveiiiiiiciece et 75
4.1 Fine-grained Access Control MEChENISIMSco.iiiiiiiiie s 75
4.2 GENEIAL ATCNITECIUIE. ... ittt bbbttt b e bbbt bt e st e e et et sbeebeebe e 76
4.2.1 Phases OF te DACA ...t bt bbbt e et e b bt bt bt bt e bt et et bbbt b enes 76
4.2.2 General Operation 0f the DACAottt e e s e e s e e steebe b e eneeenee e 79
4.3 The DACA COMPONENTS ...c.vieiieiieieiee e eeste e esteesteeste et e e sae s e e s reesteesteaseesseassesssestsesbeesteaseesreesreesseeneas 80
e T R 13T A O SO PSSOPRS 80
A.3.2 POLICY SBIVET ...ttt e bbb bttt b bbb e bt e Rt e st e b et e eb e e bt s bt eb e e b e e ne et na e benbeeneenes 88
4.3.3 POIICY MABNAGET ... ecveiiieieite ettt et b ettt b e et bbb bbbt e bt s bt et bttt e bt 89

4.4 SUIMIMBIY ottt h bttt h bbb h st e s e e bR e b e h e e h b e s b e st bt e b e e bt e b ent e e e bt b b e e b e s 90

B PIOOT OF CONCEPL ...ttt ettt e h bt s bbbt bt e b bbb e e bbb ne st 91

5.1 The DACA PIALFOMM.......oiiiii s 91
TR 0 AT o - T o OSSR RRORO 92
5.1.2 AWArENESS OF FGACMouiiiiiiie ettt bbbt b e b b e bttt e b et b sbeens 94
5.1.3 SECUNILY CONTIGUIALONoviitiitiiiitiiieie ettt bbbttt e 96
514 SECUNILY KEBEPET ...tttk bbbt b bbbttt b et et bbbt be et 98

Page i

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

ST T B | o oo) OO OO P RSP STR 99

5.2 Performance ASSESSIMENT.........c.ciiiiiiieiieiee e 100
ST N |V 111 Voo (o] [0 Y AP 101
5.2.2 COlIECEA RESUILS.ccuieiieiiee ittt ettt s te e te et e e b e s ae e s be e sbe e beesbeeseesteesbeesbeenbeenresneenreeans 105

5.3 RESUIES EVAIUALION ...ttt ettt e s te et e e at e e be e st e e sbe e beesbeeseesreesreesteennas 109
53.1 DynamiC FGACM 0N DUSINESS TIEIS.......iiiuiriiiietirieieiist ettt 109
T T U 1 OSSPSR 110
5.3.3 FGACM AWAIENESScveuiiiiiitiiiiieiiisieie st bbb bbb 110
5.3.4 Preservation OF CLI AQVANTAGESccoiiviiiiitiietiiteeeiist ettt 110

5.4 SUMIMAIY ottt ittt sttt e bt et e bt e ek e ek e e be e e abe e e b et ek e e be e e b b e e b b e e nbb e e e bt e e nbb e e e bb e e nab e e anbeennneennes 111

L T 013 Tod 1] To] o TSSO 113
6.1 OVBIVIBW ...ttt ettt ettt e et e e be e be e st e e st e et e e s teesbeeseeeneeeaseeaseebseebe e beesbeesbessaeabeesbeeabeenbeenteenrenseeses 113
6.2 (@0 0] | o TV 1[04 ISR 114
6.3 [[T oT U 1] o] o SRRSO 114
6.4 FULUIE WWOTK....ee ettt sttt et e bt e st e et e e st e e s e st e e s te e s be e beeateeaeeebseebeesbeesbeesbeeseesaeesreenteennas 117
6.4.1 Extending DACC to Support Additional ACCESS MOES........ccccvrveieiiiiiierese e 117
6.4.2 Fine-grained Access Control Policies for the DACA ... 117
6.4.3 Concurrent Approach of Call Level INterfaces. ... 117
6.4.4 Multi-fuNCLION COMPONENTSecviiie ettt e e e e s e st e st e beeste e s e e sreesreesaeeaeenreeneennee e 118
6.4.5 Extending FGACP to the Runtime Values of CRUD eXPreSSiONSccccvverveeiueiieeseeseenieereseessnenns 118
6.4.6 Orchestration Of BUSINESS ENTITIESccvoiuiiiiiiiiiiieeee st 119
6.4.7 The DACA Based 0N LINQcccviiiiiiiieiese ettt et st sne e e seesbesnesseaneens 119
RETEIENCES ... ettt ettt et et e e ae e ehe e e b e e ebe e be e beerbe et b e eheeahe e aheebeebeeAbeeateahteabe e be e be e beerbeereeaheeateeateenras 121
Annex A — Logical model for metadata Of FGACM ..ottt ae e 131
ANNEX B - CONCUITENCY ON CLI ..ottt sr e nr e 135
B.1 CTSA- The Wrapper APPIOACH.....cuiiiiie ettt ettt s e e s te et et e et e sae e s te e teete e teesaesseesneesreenteeneas 135
B.1.1 CTSA PIESENTALIONcuiiiitietieiietie ettt ettt ettt bbbttt b bbbt b e eb e b e e b e b e sb e e b e s b e eb e e b e e nb e b e b e nbesb e et e ene e 135
B.1.3 PrOOf OF CONCEPLocveiteeeieiee ettt bbbt b e bbb bbb bbbt et b e bt be bbb 138
B.1.4 CTSA PerfOrmanCe ASSESSIMENT.eiuirteiuirieiiesierteatesteatesteeteesee s e besee st e sbeabeese et ebesbeabesbeabeebeeseebenbesbesbesbesne e 140
S SN O] [od (U] [o] o PO TSSO PTR TP 146
(2 = gl o T [0 T N o o] o Tod o S STR 146
B.2. L PreESENTALIONcviiticti ettt et e bt st e et e et e et b e et e e be e sbe e s be e beebeeabeeabeehbeebe e be e be e beerbeeareeaeeeaeeabeenras 146
B.2.2 ATCNITECIUIE .. .ottt et ettt et e et e et e e tb e st e e sbe e s be e ebeeabeeabeeaseebeeebeesbeesbeesbessbesanesaeesaeesbeennas 147
B.2.2.1 INAIVIAUAT CACNE........otiiiieiitiie et et bbbt bttt b e bbbt e bt e st e e et e b sbe et e ene e 147
B.2.2.2 SNArE CaAChEc.vi ittt et ettt e st e st e e be e be e ab e e ab e e bb e e be e be e be e beerbeeaeeeaeeareeateenras 147
B.2.3 PerfOrMANCE ASSESSIMIENT.iiuiiuieiieteite ettt ettt bbbt ittt e b e b bt bt b e eb e bt e b e besbeebe s bt eb e e b e ese e b e b e sbesbe et e sne e 148
B.3 CONCIUSION.... ..ottt ittt ettt ettt ettt e bt e et e e be e be e s beetbesbeesbeesbeeabeeabeenbeeaseabseebeebeesbaesbeesbesaeesbeesreesbeennas 148
Annex C — ABTC: Multi-purpose Adaptable Business Tier COMPONENTS.........c.ccveiieiieeieeseeiresie e seesiee e esee e 149
L3 1 o1 (oo [0 £ oo OO OO URO USSP U URTURTORO 149
(O A = I I PP 149
C.2.1 AJGPLALION PIOCESSvviivveiieiieesie et ste s e st e stt e s teesba e e e saesteesteesbeesteeseanseassesssesteesteesbeastesseesseesteeseeenseenseansenseenes 149
C.2.2 ArChiteCtUIE PreSENTALIONcviiiiciictie ettt ettt ettt et s b sbe e e beebeeabeebbesbeesbeebeesbesreesraesreesbeennas 151
(ORI = (0o 0]l O] o1=T o A USSR 153
€. DISCUSSION ...ttt etttk etttk eb bbbt e b e st e b e h e b e bt e b £ e b £ e Rt e R b e eE e A H e e b e e b £ e b £ e R b e Rt e eb e ek e e b e ebeeh e e nbebennenbenbeebeeres 154
(ORS00 (o] [V [0 FOR TS ST O PO OP RO UPRPPRR 155

TABLE OF FIGURES
Figure 1. Typical USage Of CLI (JDBC).uciiiiiiieiieiiieeeie ettt bbbttt bbbttt bbb s 2
Figure 2. Simplified block diagram Of the DACA. ... bbb bbb 4

Page ii

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

Figure 3. Centralized access CONtrol MECNANISM.vcuiiiiieieiise e e e s re st naeee e e eesresresneeneas 13
Figure 4. Mixed architecture.based 0n PEP and PDP.c.ccooiiiiiiiiiciceee et 16
Figure 5. EXxample based 0N ADO.NET ...ttt st e st a et e st e besbesbesteenae e e stestesnesrenneanens 20
Figure 6. EXample Dased 0N JPA.o ettt ettt sttt et et et e e et e tentenrenreenes 20
Figure 7. Example based 0N LINQ.......coiiiiiiiiiiieiie ettt b et eb et b e et bttt sn e abenn e b e 20
Figure 8. LMS with 5 tuples (rows) and 6 attributes (a till).ccooiiiiiiii e 24
Figure 9. CLI and DACA aCCESS MECNANISITIS.eveiiiriiteieitirieieete ettt sttt sr ettt bbbt ebe e e b e sb et abenr e abenne e ebennes 26
Figure 10. Types of JDBC drivers and their dependency on other COMPONENES.cccovevereiieniesieeiesese e 29
Figure 11. Declaration Of VAITADIES.cuiiiiiiiic bbb eb e ene e 30
Figure 12. Use of forward-only and read-0nly SEAtEMENT. ..ot 31
Figure 13. Use of forward-only and read-only prepared Statement...........ccccevviieeeeieeieie e e 31
Figure 14. Use of scrollable and updatable StateMENT.coeiiiiiiiiiiec e 31
Figure 15. Insert a row using a prepared StAtEMENT.ccvieiiiieiieieie et st e e e e e e e aesresresreeneas 32
Figure 16. Examples of transaction With JDBC.ccooiiiiiiiiiieieii ettt sn e 32
Figure 17. Methods t0 SCIrOH 0N LIMIS. ...t et re e saeeteeneeeneesnee e 32
Figure 18. JDBC ClasS QIAQIaM.civiiieeieiie ettt ettt e e et e et e et e s se e s te e ta e te e s te e s tessaesreesaeesaeenseeneeaneenneenes 33
Figure 19. CONNECLION TNEEITACE.o.viiiitiiciite ettt et r et b bt ne et nr e b e 33
Figure 20. StatemeNnt INTEITACE.viiee et e e st et e et e e te e st e s e e steesreesaeenteaneesneeanee e 34
Figure 21. PrepareStatemMent INEITACE.oi ittt bbbt sbe et e 34
FIgure 22. RESUILSEE INTEITACE.iivieiee ettt et e et e st e te et e e te e st e s seesaeesteesaeeneeaneeeneenneenes 35
Figure 23. Enforcement of RBAC iNJAVA EE...........cooiiiiiiiiii ettt 51
Figure 24. Enforcement of RBAC iN ORBAC. ..ottt 51
Figure 25. Three CRUD expressions with different combinations of CRUD Schemas.cccccoeevvevv e, 55
Figure 26. TWO Sibling CRUD EXPIESSIONS.c.ciuiiieiiitiiieieiterieiesteseeieste et st sbe et bt sr et et sr e et seeseabesbeneanennes 55
Figure 27. Partial example of how to implement the permissions of Table 30N LMS.cccccc i, 58
Figure 28. Typical IDBC/CLI AraWhaCKS.cviiiiiiiiiieiiie ettt st sr et e 61
Figure 29. Business Schema for the modelization of CLI: CRUD-MOGEL.cccoeiiiiniiiiniiese e 63
Figure 30. Block diagram for the modelization process 0f CLI.ccccvoiiiii i 64
Figure 31. Partial view of a Business Entity based on the CRUD-MOGEL...........cccoccoviiiiniciinneineeeee s 64
Figure 32. Example shown in Figure 28 but based on the CRUD-MOdEL...........c.cccevveiiiiiiiiiiic e 65
Figure 33. Block diagram for the static approach: a) service composition and b) service allocation.ccc.... 69
Figure 34. Block diagram for the dynamic Service COMPOSITION.ccveiiiiieiiiiiicc e 69
Figure 35. Attributes shared by all CRUD EXPIeSSIONS.cciueiiiiiieiieiiecite e stte st e steesteesie e ae e e steesteeaeeeesneesnee e 71
Figure 36. Example of one Multiple Business Schema implementation.cccocveiireiineiienes e 71
Figure 37. General architecture 0f the DACA. ... re e te e beeeeanaeeree e 77
Figure 38. Concept of permission iN the DACAL. ..ottt et et nnes 78
Figure 39. Simplified block diagram Of DACC.cc.ociioieece e re e sre e te e e aneeeree e 80
Figure 40. Class diagram OF DACC. ..ottt ettt bbbt b e bt bese et b e st et ebene e st et e se e ebe e 81
Figure 41. BUSINESS ENtity ClasS QIAQIAIM.cviiiiiiiiiiei ettt ettt sb et 86
Figure 42. ILMS class diagram fOr LIMIS.coiiiie ettt te e te e nteenteeneeenee e 86
Figure 43. Access CONrol MELA-MOUEL.c.oiviiiiiiiiie bbbttt bt nnes 89
Figure 44. Block diagram for the proof 0f CONCEPL.oviiiiiiiie e 92
FIQUre 45, HIErarChy OF TOIES.oouiiiiieicee ettt ettt b et sb et et se et e neeseebe e 93
Figure 46. ROIE_B2 AefINITION.cviiiiieiie ettt bttt b et sb et se et sr e ebe e 96
Figure 47. Programmers awareness about FGACM for Role_B2...........cooiiiiii i 96
Figure 48. ApPlICAtion AefiNITION.ooiiiiii ettt et ne et sr e b e 97
Figure 49. R0OIE_B2 defiNItiON.cceiiiieeii ettt bbbt bttt et et et sbesbenbeeneas 97
Figure 50. Business Schema IPrd_S definition.ccooiiiiiiiiii et 97

Page iii

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components
- —

1o 0T (=TI = (=T Uo o [=) T o oSSR 97
Figure 52. Definition of all CRUD EXPIESSIONS.cvitirieiiitirieieeterieeete sttt sttt eb bt ebesr e bbb sn e abesne e enennes 98
FIQUIE 53. SECUIILY KBEPEL. ...euviieiti et cie it e st e ettt e s teete e s et et e st et e s teeseeseeneeseesa e besbeabeabeenaesae s eneententeaneeneas 98
1o U =TT I o oo) SRR 99
Figure 55. Business Schemas implemented fOr USEr USEI _A.. ..ot 99
Figure 56. LMS interfaces for Cat_s BUSINESS SCNEMALcccviviieiiiiiie e sese et sresre e 100
Figure 57. Graphics fOr SCENATIO SSi......oviiiiiieiiitiiiee ettt bbbttt bbb nnns 106
Figure 58. Graphics for sCenarios SS;, SSy AN0 SSy. c.verveiriiiiiiiiiiieie et sa e e sresrenne e 107
Figure 59. Graphic for Scenarios SI, SU and SD........ccceiiiiiiiiiieieise e 108
Figure 60. Wrapping approach to provide the getMeL...........ooiiiiiiiiee e 111
Figure 61. DbProof implemented iINADO.NET.ccoiiiiiiie et e st e e et e besresrenneens 116
Figure 62. Logical model for the proof 0f CONCEPL.........coiiiiiiiie e 131
Figure 63. CTSA MaiN PrOtOCOIS. ...c.voieieiieiiie ettt et e e et e e stesbesbesteereense e e seesteseesrenneens 137
Figure 64. CTSA ClaSS GQIAGIAM.cveiiitiiieiiteiiet ettt bt e et b e bbb bbb b e bt bbbt b e bt b e b nne e 138
T U e S T O IS AN oo 1 1 U od (o] OSSR 138
Figure 66. Partial view Of IR€ad ProtOCOL.c.oooviiiiiiec e sre e sre s 139
Figure 67. Partial view Of ISCroll ProtOCOL...........ccooiiiiiiiie e 139
Figure 68. Set and store the eXECULION CONEXL.ciiiiiiiicie ettt e e s e e e sreesreenas 140
Figure 69.CTSA from USEIS’S PEISPECLIVE. ...e.virviiririiitiiiieieie sttt sttt et sr st sb et sr bbb e e nnenreaneene s 140
Figure 70. Std_StUdENt SCHEMA.ciiiiie e ettt et e s te et e et e e teesaesreesneesreesteeneas 141
Figure 71. E(cjdocp.s) / Ec-ctsaps) CNAIT. coviiiiiiiiic 144
Figure 72. E(cjdoc,p.s) / Ec-ctsaps) QBIAIIS. coovviiiiiiiiiii 144
Figure 73. E(cjdoep,u) / Ecctsapu) CNAML woviiiiiii 145
Figure 74. E(cjdoc,p,i) /E(cctsapi) CNAIT. cooiiiiiiiii 145
Figure 75. Implemented and teSIEA SCENAIOS.c.ccviiieiieie e e st et e et e e e e e e sreesreenreenas 150
Figure 76. Class diagram OF ABTC.ooiiiiieiie ettt bbbt sb ettt bbbt b 152

TABLE OF TABLES

Table 1. Access matrix to a table with attributes @, b, € and d.c.ccooveieriir i 10
Table 2. Main ProtoColS OF LIMIS. ..ottt te e e e st e st e e be e te e beeraesraesreesneeneas 26
Table 3. Example of a table of permissions in a LMS (Indirect ACCess MOdE).ccccvevviiieiieiieiieie e 58
Table 4. Roles and the correspondent permissions for the implemented SCENANIO.ccerevviviieeieiiene e 94
Table 5. Strategy to collect and COMPULE MEASUFEMENTS.c.ccviiiiiieiierie et e e e s se e ste e ste e e e sreesraesbeeaeareeas 101
Table 6. Collected measurements for a) TBS, TBW and for b) RAM iN NS, ..o 102
Table 7. Scenarios for the Select expression: algorithms and typical component Usage.ccccveevvevevvevieseeseainens 103
Table 8. Scenarios for the Insert, Update and Delete expressions: algorithms and typical component usage. 104
Table 9. Exclusive access MOde aPPrOACRES.ciiiiiicre bbb 136
Table 10. Algorithm for Ec.jdne) 8SSESSMENT.vcviviviiiiiiiiiiiii s 142
Table 11. Algorithm for E c.jpe,py) BSSESSMENTcoviiiiiiiciiiic e 143
Table 12. CRUD expressions and Business Schemas for the implemented SCENarios.ccoovveeieieieneicniennnen 154

TABLE OF LISTINGS

Page iv

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

Listing 1. Definition of table USEr i Ur/WED.oci o e 47
Listing 2. Policy definition iN UF/WWED. ..ottt ettt ene s 47
Listing 3. POliCY defiNItioN 10 ADB. e rerreerreerieesieiirieresiesseesree et me s sse e sse e nn e r e ne e neasnesneesreenreenneennes 48
Listing 4. QUery reWritten IN T=-SQL.....ccueiiiiieiiieeireiee st e e e e e et e e st e st e s reere e e e s e eesaesbesbesbeaseeseeseeseeeeseestenreaneas 49
Listing 5. Four examples 0f CRUD EXPIESSIONS.ciirueiitirieiiiterieieateste ettt sr e sb et ebe b e b sn e abesr e ebesne e enennes 57
ACRONYMS

ABAC Attribute-Based Access Control

ABTC Adaptable Business Tier Component

ABTC_Dynamic Adaptable Business Tier Component - Dynamic

ABTC_Static Adaptable Business Tier Component - Static

ACP Access Control Policy

API Application Programming Interface

BE Business Entity

BS Business Schema

BW Business Worker

CBAC Credential Based Access Control

CLI Call Level Interfaces

CRUD Create Read Update Delete

CRUD-Model CRUD-Model

CTSA Concurrent Tuple Set Architecture

C-CTSA Component - Concurrent Tuple Set Architecture

C-JDBC Concurrent - Java Database Connectivity

DAC Discretionary Access Control

DACA Dynamic Access Control Architecture

DACC Dynamic Access Control Component

DAM Direct Access Mode

DCA Denial Category Assignment

DDL Data Definition Language

DFMAC Dynamic Fine-grained Meta-level Access Control

DRBAC Dynamic Role Based Access Control

FGAC Fine-grained Access Control

FGACM Fine-grained Access Control Mechanism

FGACP Fine-grained Access Control Policy

JDBC Java Database Connectivity

GUI Guided User Interface

1AM Indirect Access Mode

IDE Integrated Development Environment

IIS Internet Information Server

JIF Java + Information Flow

LMS Local Memory Structure

MAC Mandatory Access Control

MDE Model Driven Engineering

Page v

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

ODBC
0/RM
PAP
PCA
PDP
PEP
PEP-PDP
PIP
RBAC
RDBAC
RDBMS
SAC
SQL

TA;

TBS
TBW
TR
XACML

Open Database Connectivity
Object-o-Relational Model

Policy Administration Point

Permission Category Assignment

Policy Decision Point

Policy Enforcement Point

PEP PDP

Policy Information Point

Role Based Access Control

Reflective Database Access Control
Relational Database Management System
Semantic Access Control

Structured Query Language

Time to execute a method with 10 arguments and returning void
Time to instantiate a Business Session

Time to instantiate a Business Worker

Time to execute a method with no arguments
Extended Access Control Markup Language

Page vi

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components
- —

1 Introduction

Fine-grained access control (FGAC) is a critical security issue in many software systems, mainly
when policies evolve over time. Software systems are increasingly involved in all dimensions of our
existence as humans. When operating in critical organizations, such as airports, hospitals, banks
and power plants, they need to be available 24 hours a day and always operating under a high level
of security. They manage data from which all day decisions are taken, many of them critical. To
prevent any security violation, several security measures are taken such as user authentication,
data encryption and secure connections. Another relevant security concern is access control
[Samarati, '01b; Vimercati, '08], which “is concerned with limiting the activity of legitimate users.”
[Sandhu, '94]. Basically, access control is a process to supervise every request to access a protected
resource, in our case data residing inside relational database management systems (RDBMS), by
determining whether the permission should be granted or denied. While access control is enforced
at the table level, fine-grained access control (FGAC) is enforced at the column and row level.
Currently, there isn't any known solution to automatically build and keep updated, at runtime, fine-
grained access control mechanisms (FGACM) on business tiers of relational database applications
and in accordance with the established fine-grained access control policies (FGACP).

This chapter is organized as follows. Section 1.1 describes the problem being addressed.
Section 1.2 briefly presents a solution to overcome the identified problem. Section 1.3 states the
research questions to be addressed in this thesis. Section 1.4 enumerates and describes the
contributions of this thesis. Section 1.5 presents the tools and infra-structured used during the
thesis development process and, finally, section 1.6 presents the thesis organization.

1.1 Problem Definition

Critical data are mostly kept and managed by database management systems. Among the several
paradigms, the relational paradigm continues to be one of the most successful to manage data and,
therefore, to build database applications. To be useful, data need to be stored, updated and
retrieved from databases. To this end, software architects use software tools to ease the
development process of business tiers. Two groups of software tools are widely accepted in
commercial and academic forums: O/RM tools (Java Persistent API [Yang, '10], LINQ [Erik, '06],
Hibernate [Christian, '04] and Ruby on Rails [Vohra, '07]) and Call Level Interfaces (CLI) [ISO, '03]
(JDBC [Parsian, '05], ODBC [Microsoft, '92], ADO.NET [Mead, '11]). Unfortunately, none of these
tools addresses access control, much less when the policies evolve over time. These tools were
mainly devised and designed to tackle the impedance mismatch issue [David, '90].

l|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

We now leverage the importance of CLI as the perfect choice for building business tiers
whenever performance is considered a key requirement [Cook, '05] in detriment of other
requirements such as productivity, usability and maintainability. Some of the features that
contribute positively for a high performance of CLI are:

Fine tune control

CLI are low level API (Application Programming Interface) that provide programmers with a
fine tune control to manage and optimize the environment in which Create, Read, Update and
Delete (CRUD) expressions are executed.

Use of the native SQL language
Native SQL statements are encoded inside strings, this way keeping the performance and the
full expressiveness of the SQL language.

Multi-access mode to data

CLI support several modes to access to data residing on relational databases. In each situation
programmers are free to choose the access mode that better addresses their needs. Among the
several access modes the use of the native SQL language is the most well-known. Chapter 2
thoroughly describes the access modes used by the DACA.

4§ | | sgl="5elect * from Products p Where p.productId=?";
47| | pe=conn.prepareStatement (sgl,

43 ResultSet.TYFE FORWARD ONLY,

43 ResultSet.lONCUR UPDATAELE) ;

50| | rz=ps=s.executeluery () r

581 | if (r=z.mext()) {

52 switch({op) {

53 case read:

54 productName=rs.get5tring ("productHame") ;
55

56 break;

57 case update:

L] rz.updateString ("productName ", productName) ;
50

&80 rs.updateRow () ;

61 break;

62 case 1nsert:

(K] rs.moveToInsertRow () ;

/4 rz.updateString ("productName ", productiame) ;
65

(13 r=.insertRow () ;

a7 break:;

[tal case delete:

&9 rs.deleceRow() ;

70 break;

71 }

72

Figure 1. Typical usage of CLI (JDBC).

2|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

In spite of these key advantages, CLI (as other software tools) do not address access control.
Figure 1 presents a typical usage of CLI in this case based on JDBC. From this example we see that
there is no sign of any FGACP or any FGACM. Programmers are free to write any CRUD expression
encoded inside strings (Figure 1: line 46) and execute them (Figure 1: line 47-50). The presented
CRUD expression is a Select expression and, therefore, it returns a relation. CLI provide protocols
from which programmers read the retrieved data (Figure 1: line 54-55), update the returned data
(Figure 1:line 58-60), insert new data (Figure 1: line 63-66) and delete returned data
(Figure 1: line 69). There is no possibility to prevent programmers from writing this type of
source-code and therefore there is no possibility to guide programmers to write source code in
accordance with any established FGACP.

To overcome this lack of access control of current software tools, several approaches are
proposed by the commercial and the academic communities. Security experts, instead of exploiting
the advantages of CLI to implement FGACM, build additional security layers specially crafted to
control the access to protected data. These security layers are responsible for evaluating
authorization to perform actions on database objects and also to execute them if permission is
granted. These security layers convey several drawbacks, among them four are emphasized:

Awareness gap about the policies and about the mechanisms

Programmers of business tiers and application tiers are expected to master the established
access control policies at development time. This mastering process is very difficult to be
sustained when the complexity of access control policies increases. Programmers do only get
aware of any security violation after having written the source code. Awareness of any violation
may take place at compile time but in most of the cases it is only obtained at runtime. Before
compiling the source or running the database application, there is no possibility to statically
validate the authorized actions during the development process of business tiers.

Security gap

The SQL language is characterized by its endless expressiveness capacity and programmers of
business tiers and application tiers are not restricted to write any CRUD expression. This
freedom opens the possibility for the existence of security gaps. Current techniques can hardly
guarantee safety for all CRUD expressions [Shi, '09; Wang, '07]. Even if safety is guaranteed,
programmers are always before additional techniques with increased complexity to express the
policies to be enforced [Caires, '11; Chaudhuri, '07; Chlipala, '10; Corcoran, '09; Fischer, '09;
Gary, '07; Hicks, '10; LeFevre, '04; Rizvi, '04; Wang, '07; Yang, '12]. Additional techniques and,
above all, increased complexity frequently leads to the possibility of opening unwanted security
gaps.

Wastage of CLI features
Architecture of current security layers is not based on architecture of CLI, this way preventing
the use of their advantages by business and application tiers.

Maintenance activities

Currently, any modification in the policies implying modifications in the access control
mechanisms forces a maintenance activity on the security layers and/or on the business logic to
be carried out in advance. Currently, there is no way to translate access control policies
automatically into access control mechanisms and/or into the business logic. Maintenance is

3|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

very often a critical activity when modifications are necessary at the client-side of database
applications with a great amount and distant equipment.

1.2 Solution Proposal

To tackle the aforementioned drawbacks of current security layers, we propose a new architecture
herein referred to as Dynamic Access Control Architecture (DACA). Security layers relying on the
DACA are dynamically built at their instantiation time on the client-side of database applications
and are continuously updated to enforce any modification in the established access control policies.
The dynamic adaptation of business tiers may leverage security systems based on
models@run.time [Blair, '09] to continuously keep security layers aligned with the policies they
must enforce. To take advantage of CLI features, the implemented access control mechanisms are
closely aligned with the architecture of CLI and with the services they provide. Among the services
provided by CLI, the DACA makes use of two access modes as it will be described in chapter 4. To
overcome possible security gaps of current solutions, users are restricted to use only the
permissions provided by the FGACM. Among the restrictions, users can only use CRUD expressions
made available by the implemented FGACM. Finally, the DACA provides programmers of business
tiers with a complete awareness about the implemented FGACM this way relieving them from
mastering FGACM while writing source code.

To unveil the proposed architecture, Figure 2 presents a simplified block diagram, though

incomplete, of the DACA. The overall operation is as follows:

e A security layer (business tier relying on CLI - it is a client-side layer) is dynamically built
and kept updated (from an architectural model based on CLI and from the policies kept in a
server) to implement access control mechanisms in accordance with the established
policies. The security layer is composed by typed objects driven by FGACM;

e (lient applications access database objects through the security layer;

e Security layer uses standard CLI to interact with database objects.

DACA

Metadata of Policies

Model

Security Layer CLI
| 4
O
Client Application

Figure 2. Simplified block diagram of the DACA.

A
R

4|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

There is no reference to FGACP. The DACA is focused on FGACM only. The DACA uses metadata
derived from FGACP relying on any security model. This issue will be thoroughly addressed in
chapter 4.

In order to validate the DACA, a solution based on Java, Java Database Connectivity (JDBC) and
SQL Server was devised, designed and implemented. Two evaluations were carried out. The first
one evaluates the DACA capability to address the announced drawbacks of current solutions,
including the capacity to implement evolving FGACM dynamically, at runtime. The second
evaluation is aimed at assessing its performance against a standard use of JDBC where no policies
are enforced. The collected results show that the DACA is an effective solution to implement
evolving FGACM on business tiers, of relational database applications, based on CLI, in this case
JDBC.

1.3 Research questions

This thesis aims at answering several research questions related to the implementation of dynamic
FGACM on business tiers of relational database applications. The research questions are derived
from the issues described and emphasized in the previous sections.

The main question to be answered by this thesis is: is it possible to implement FGACM on
business tiers dynamically, at runtime, and keep them updated when the policies evolve over time?
If yes, the second level questions are:

Security
Current approaches allow users to write their own CRUD expressions freely. In an unsupervised

context this opens possibilities to security violations. Is there any possibility to supervise the
use of CRUD expressions effectively when protected data is being accessed?

Mastering of FGACP

Current security layers do not give any guidance on the established FGACP neither on the
implemented FGACM. Is it possible to overcome this difficulty by providing programmers with a
complete awareness about the established FGACM?

Use of CLI
The use of CLI to build business tiers presents several advantages. Is it possible to keep those
advantages on the proposed solution to implement FGACM?

To answer these research questions, several steps need to be taken. In a first step, an
architectural model is necessary aimed at addressing the main question of this thesis: the dynamic
implementation of FGACM at runtime. In a second step, the use of CLI needs to be analyzed in order
to implement FGACM. In a third step, a solution is necessary to convey a complete awareness to
programmers about the implemented FGACM. Finally, in a fourth step, the proposed solution is
evaluated to check its compliance with the research questions.

5|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

1.4 Contributions

The Dynamic Access Control Architecture is the main contribution of this thesis, exploiting CLI as
the main standard API to be used. CLI are fundamental for the development process of business
tiers whenever both a fine-tune control on the interactions with RDBMS and performance are
considered key requirements. However, CLI do not provide any support for several software
engineering challenges, such as how to implement dynamic FGACM on business tiers.

CLI are low level API and, as such, they convey some additional drawbacks when used for the
building process of business tiers. Two of the most relevant drawbacks are:

CLI are agnostic regarding schemas of database objects

CLI do not incorporate or provide any guidance about schemas of database objects.
Programmers need to completely master schemas of database objects to be able to use CLI. This
drawback deeply affects productivity of programmers during the development process and
during the maintenance process of database applications. This drawback also hampers the
enforcement of access control policies.

CLI do not promote the reuse of software

Inefficiency of CLI to build reusable software is complete. Every business need impels
programmers to write similar source-code to manage each CRUD expression. This drawback
also hampers the development of reusable software for security layers.

Thus, these drawbacks have also a negative impact if security layers based on CLI are needed to
enforce FGACP. FGACM control the access to database objects (formalized by schemas) and the
DACA seeks to provide FGACM continuously updated and aligned with evolving FGACP. To address
both drawbacks of CLI, some research was carried out. In a first step, the research was focused on
defining a model to integrate schemas of relational databases with object-oriented applications
using CLI. In a second step, the research was focused on defining an architecture for reusing
adaptable business tier components relying on CLI. The dynamic implementation of FGACM was
only addressed after the conclusion of these two lines of work. As such, in spite of not being
considered as main contributions, the modelization process of business tiers and the
componentization process of business tiers based on CLI are two cornerstones of the main
contribution of this thesis.

Modelization of business tiers
This research was focused on defining a model to integrate schemas of relational database
objects with object-oriented applications when CLI are used to build business tiers
[Pereira, '10b; Pereira, '11b]. The model defines typed objects aimed at managing the execution
of CRUD expressions. A tool was also presented to ease the development process of typed
objects from native CRUD expressions. Source-code of typed objects is automatically generated
to be used on business tiers. In [Gomes, '11; Pereira, '10a] some research has also been carried
out to evaluate the possibility of devising a high-performance version of the model, based on a
thread-safe implementation.

Modelization of business tiers was the continuation of an earlier research focused on easing
the development process of business tiers based on CLI but using stored procedures instead of

6|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

CRUD expressions [Oscar Mortagua Pereira, '05; Pereira, '06; Pereira, '07a; Oscar Narciso
Mortagua Pereira, '05a; Oscar Narciso Mortagua Pereira, '05b].

Componentization of business tiers

Componentization addressed a key issue of defining an architecture for developing reusable
and adaptable business tier components based on CLI. Several techniques were devised to
address reusability and adaptation of business tier components. Among them, a technique was
devised to deploy CRUD expressions at runtime which is one of the techniques used by the
DACA to address evolving access control policies. The combination between the several
techniques, next presented, led to the possibility of adopting several approaches for the
building process of business tier components.

In [Pereira, '12d; Pereira, '11c; Pereira, '13f] a proposal based on a wide typed object is
presented to support one specific business area at a time. Basically, a component is statically
customized to support a business area, such as accountability, relying on a unique wide typed
object. Then CRUD expressions are deployed at runtime in accordance with users’ needs
(eventually by access control policies). The typed object is said to be wide because it supports a
schema for:

e All foreseen attributes to be returned from the database;
e All runtime values for column lists of all Update and Insert expressions;
e All runtime values for clause conditions of all CRUD expressions.

In [Pereira, '11a; Pereira, '13a] a component is also statically customized to support a
business area but now relying on several typed objects. Each typed object addresses a specific
business need such as implementing the reading process of attributes of a database object.
CRUD expressions are also deployed at runtime in accordance with users’ needs (eventually by
access control policies). Each typed object supports all CRUD expressions whose schemas are in
accordance with its own schema.

In [Pereira, '12b] a new customization process of business tiers is proposed. Here,
customization is dynamically implemented at runtime, unlike the two previous approaches.
Typed objects are dynamically created at runtime, following any of the two previous
approaches. CRUD expressions are also deployed at runtime.

In [Pereira, '13b] an integrated perspective is given for multi-propose components based
on CLI.

Access control

The security perspective is centered on access control and it is closely linked to the previous
researches. In reality, the process to support evolving access control policies also includes the
reusability and adaptability perspectives of business tiers components, which, by their side,
include models.

[Pereira, '12d] presents an approach to address static implementation of FGACM based on
CLL In [Pereira, '12c] the previous approach was improved to address runtime adaptation of
business tiers to implement FGACM. In [Pereira, '12a; Pereira, '13d] a complete and final
perspective is given for an architecture to implement and keep FGACM updated on business
tiers based on CLI. Additionally, to evaluate the impact of the enforcement mechanisms at the
client side, a performance assessment was carried out. A scenario was defined and
implemented to validate the approach. It is available through the Windows “Remote Desktop

7|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

Connection” at: url: ned.av.it.pt, username: DACA; password: guest (only one user at a time is
allowed to login).

1.5 Computational Tools and Infrastructure

Several computational tools and infrastructures were used since the first research on using stored
procedures and CLI. Publications involving stored procedures, between 2005 and 2007, were based
on the .NET framework and the following tools/technologies were used: Visual Studio 2005 (C#,
ADO.NET, ASP.NET, Web Services), IIS (Internet Information Server) and SQL Server 2005.
Publications since 2010 were based on the NetBeans (Java SE, Java EE, JPA, JDBC), Visual Studio
2010 (C#, ADO.NET, LINQ) and SQL Server 2008. Microsoft Northwind database was used in
several works including the proof of concept of the DACA.

1.6 Thesis Organization

The remainder of this thesis is organized as follows.

Chapter 2 is divided in four main sections. The first, second and third sections provide the
necessary background for a complete understanding of the technical aspects herein addressed. The
fourth section is focused on the state of the art and presents some of the current approaches,
commercial and academic, used to support access control.

Chapter 3 describes the evolution from CLI till the final DACA. It presents the modelization and
the componentization approaches for CLI as key steps towards the DACA. Access control is also
superficially addressed and a very concise presentation is made for the approach that has been
followed.

Chapter 4 is dedicated to the DACA. It presents the methodology followed in this thesis to
devise and design the DACA. It thoroughly presents and describes how the research was conducted.
Beyond the information to convey the believability of the obtained results, this chapter provides the
necessary information to allow other researchers replicate and design accurately solutions based
on the DACA.

In Chapter 5, a scenario based on the DACA is defined and implemented to evaluate the DACA
against the announced research questions. This chapter is divided in three sections. The first
section is aimed at implementing a scenario based on the DACA. The second section is aimed at
assessing the DACA performance against a standard use of CLI but without any FGACM. The third
section is aimed at analyzing the collected results to evaluate if the DACA answers the research
questions of this thesis positively.

Chapter 6, the final chapter, is organized in four sections. The first section is focused on
presenting an overview of this work. The second section is focused on presenting the contributions
of this work. The third section concisely discusses some important issues closely related to this
thesis but out of its scope. Finally, the fourth section presents the future work to be conducted to
continue the work here presented.

8|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components
- —

2 Background and State of the Art

This chapter is focused on presenting the necessary background and the state of the art in the area
of access control to promote a good understanding on this thesis contents and to make it a self-
contained document for most of the readers. It comprises five sections each one addressing a
particular subject: section 1 presents the basic access control concepts; section 2 presents current
tools for building relational business tiers; section 3 presents JDBC; section 4 presents current
approaches to access control, general techniques and related work and, final, section 5 summarizes
to contents of this chapter.

This chapter is organized as follows. Section 2.1 presents the basic access control concepts.
Section 2.2 presents the current tools that are used for building business tiers. Section 2.3
introduces the JDBC which is the a key API of the DACA. Section 2.4 presents the state of the art and,
finally, section 2.5 summarizes the content of this chapter.

2.1 Basic Access Control Concepts

This section provides the required background to completely understand the fundamental concepts
and techniques of access control and also the one used on the DACA.

Access control is a concept used in several applications and several contexts. It is focused on
preventing unauthorized accesses to protected resources. Access control is enforced by security
layers, which mediates every attempt to access to protected resources. Access control has been
used on several situations, such as to control the access to: XML documents [Bertino, '00; Damiani,
'02; Fundulaki, '04; Iwaihara, '05; Luo, '04], Web Services [Bhatti, '05; Koshutanski, '03; Mecella,
'06; Paci, '11; Sharifi, '09; Wonohoesodo, '04], publish/subscribe systems [Belokosztolszki, '03],
social networks [Anwar, '12; Carminati, '09a; Carminati, '06; Carminati, '09b], pervasive computing
systems [José, '09; Kim, '09; Kulkarni, '08; Vagts, '11; Zhang, '03], content shared in the web
[Tootoonchian, '08], collaborative environments [He, '09; Hildmann, '99; Raje, '12; Tolone, '05], grid
computing system [Oo, '07; Wang, '06; Zhang, '03], cloud computing systems [Zhu, '12], sensor
networks [Garcia-Morchon, '10; Hur, '11; Liu, '10; Vuran, '06; Ye, '04] and mobile communications
[Lawson, '12]. In this thesis we are focused on protecting data residing inside and managed by
RDBMS. In this context, access control is aimed at limiting the activities of legitimate users
(legitimate at the database level) to access sensitive data residing in RDBMS. Authentication and
access control concepts must not be confused. The authentication process is responsible for
identifying database users while access control assumes that a previous authentication of users has
been accomplished before enforcing any security policy. Access control has a specialized branch
dedicated to privacy protection [Shi, '09; Wang, '07], which is generally known as fine-grained
access control (FGAC). Unlike general access control, which is concerned on providing protection to

9|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

data at the table and view level, FGAC is concerned with providing ways to control the access to
protected data at the row and even at the cell level.

2.1.1 Access Control Strategies

Security policies define rules through which access control is governed. Three of the main
strategies for regulating access control policies are [Samarati, '01a; Vimercati, '08]: discretionary
access control (DAC) [Sandhu, '94], mandatory access control (MAC) and Role-based access control
(RBAC) [Ferraiolo, '01; Sandhu, '00]. There are other strategies for regulating access control, such
as attribute-based access control (ABAC) [Kuhn, '10], credential-based access control (CBAC) [Li,
'05; Yu, '03], content driven [Moffett, '91; Staddon, '08], location driven [Decker, '08], public key
driven [Wang, '11] and certificate driven [Samarati, '01b]. Each one addresses specific security
needs for the system under protection. Next follows a description for the three main policies: DAC,
MAC and RBAC.

2.1.1.1 Discretionary Access Control Policies

DAC [Vimercati, '08] is based on the identity of users and on the access rules stating what users are
and are not allowed to do when they request access to a protected resource. DAC is based on a set
of rules, known as authorizations, which state which user can perform which action on which
resource. In the most basic form, an authorization is a triple (S, a, r), stating that subject (user) s can
execute action a on a resource r. The first discretionary access control model proposed in the
literature is the access matrix model [Graham, '72; Harrison, '76; Lampson, '74]. Table 1 shows an
adaptation of the standard access matrix concept assigning an access matrix to two users to access
a database table. This access matrix defines granted and denied permissions for two users (A and
B) to execute actions (Read, Update, Insert and Delete) on a database table with attributes a, b, ¢
and d. This access matrix defines, for each table attribute (resource) and for each user, which
actions (read, update and insert) each user is authorized and is denied to perform. Delete action is
authorized in a tuple basis and, therefore, it is executed as an atomic action on all attributes as
shown in Table 1.

User | Action a b c d
Read yes | no | yes | yes
Update | no | yes | no | yes

A
Insert | yes | yes | no | no
Delete yes
Read no | no | yes | yes
B Update | yes | yes | no | yes

Insert yes | yes | no | no
Delete no

Table 1. Access matrix to a table with attributes a, b, ¢ and d.

DAC presents several security vulnerabilities. DAC does not separate the concept of User from
the concept of Subject. When using DAC policies, Users are actors authorized to run a system and to
whom permissions are granted. To run any system, processes (subjects) are created on behalf of

10|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

users. As DAC policies do not consider the distinction between Users and Subjects, DAC policies
evaluate permissions of subjects according to permissions of their users. This security gap is used
by malicious programs to exploit the legitimate permissions of users, as it happens with Trojan
Horses [Samarati, '01b].

2.1.1.2 Mandatory Access Control Policies

MAC [Samarati, '01b; Vimercati, '08] enforces access control on the basis of regulations mandated
by a central authority. The access to protected resources is governed on the basis of classification of
subjects and resources on the system where each one has an assigned security level. The security
level assigned to a resource measures its sensitivity. The security level assigned to a user, called
clearance, measures its reliability to access protected resources. The most common form of
mandatory policy is the multilevel security policy. Unlike DAC, MAC policies distinguish users from
subjects and the access control is enforced on processes operating on behalf of users. Each subject
and resource is associated with an access class, usually composed of a security level and a set of
categories. Security levels in the system are characterized by a total order relation, while categories
form an unordered set. As a consequence, the set of access classes is characterized by a partial
order relation, denoted = and called dominance. Given two access classes c1 and c2, class cl
dominates class c2, denoted c1 = c2, if and only if the security level of class c1 is greater than or
equal to the security level of class c2 and the set of categories of class cl includes the set of
categories of class c2. Access classes together with their partial order dominance relationship form
a lattice [Sandhu, '93].

2.1.1.3 Role-Based Access Control Policies

RBAC is the most popular access control policy to protect data residing in relational databases. As
such, RBAC is described in more detail than DAC and MAC.

RBAC [Ferraiolo, '92; Sandhu, '96] decisions are based on the roles that individual users play on
an organization such as hospital administrator, doctor and nurse. RBAC is attracting increasing
interest particularly of vendors of database management systems, and a standardization was
proposed by NIST (National Institute of Standards and Technology) [Sandhu, '00]. A role is defined
as a set of permissions associated with the subjects (users) playing that role. When accessing the
system, each subject has to specify the role he/she wishes to play and, if he/she is granted to play
that role, he/she can exploit the corresponding permissions. A permission is an authorization to
execute an operation in a protected resource. Thus, permissions are assigned to roles and roles are
assigned to subjects. The access control policy is then defined through two different steps: firstly,
the administrator defines roles and the permissions related to each of them; secondly, each subject
is assigned with the set of roles he/she can play. Roles can be hierarchically organized to exploit the
propagation of access control privileges along the hierarchy. This approach is a natural means for
organizing roles to reflect lines of responsibilities in organizations. Each user may be allowed to
play more than one role simultaneously and more users may play the same role simultaneously,
even if restrictions on their number may be imposed by the security administrator. It is important
to note that roles and groups of users are two different concepts. A group is a named collection of
users and possibly other groups. A role is both a named collection of users on one side and
collection of permissions on the other side. Roles serve as linking entities to bring permissions and

11|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

users together. Furthermore, while roles can be activated and deactivated directly by users at their
discretion, the membership in a group cannot be deactivated. The main advantage of RBAC,
regarding to DAC and MAC, is that it better suits commercial environments. In fact, in a company,
the identity of a person is not important for his/her access to the system, but his/her
responsibilities are. Also, the role-based policy tries to organize privileges mapping the
organization’s structure on the roles hierarchy used for access control.

RBAC is commonly ruled by three security principles: least privilege, separation of duties and
data abstraction. Next follows a description for each security principle.

Least Privilege
The least privilege principle requires that a subject be given no more privilege than

necessary.
Least privilege is used to ensure that only those permissions required to accomplish a task
carried out by subjects of a role are effectively assigned to that role.

Separation of Duties

The separation of duties principle requires that mutually exclusive roles must not be granted to
the same subjects to complete sensitive tasks. For example, the authorization to complete a
task should not be given by who is requesting the authorization to complete the requested task.
Separation of duties is accomplished statically or dynamically. Static separation of duties is
enforced through constraints on the assignment of users to roles. Dynamic separation of duties
is enforced by placing constraints on the roles that can be activated within a user’s session.

Data Abstraction

The data abstraction principle is supported by means of abstract permissions such as credit
and debit for an account rather than the usual low level permissions such as read and write
permissions.

In spite of its importance, RBAC does not solve all access control issues. In situations where
access control is required to deal with sequences of operations, additional access control
mechanisms are often required. For example a purchase requisition may require several
intermediate steps before being a purchase order.

Some of the vendors offering RBAC security environments on their products are: Microsoft,
Cisco Systems, IBM, Siemens, Symantec, Sybase and Oracle.

2.1.2 Architectures for Access Control Mechanisms

Access control is usually implemented in a three phase approach [Samarati, '01b]: security policy
definition, security model to be followed and security enforcement mechanisms. This thesis is
focused on access control mechanisms and, therefore, an overview of the architectures for their
implementation is presented and described in this sub-section.

Access control mechanisms implement the security policy formalized by the security model. In
this thesis we are focused on providing access control to data residing in RDBMS and specially
FGAC. Several architectural approaches are available to implement FGACM to protect data in
RDBMS. Some are provided by the vendors of RDBMS and others have been proposed by the

12|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

research community. Very often, access control mechanisms comprise a runtime procedure, known
as decision evaluation, to evaluate if permissions are granted or denied. Basically there are three
main architectural approaches:

Centralized approach
In the centralized approach decisions about granting or denying access, and access control
mechanisms are both managed by centralized entities. This is the approach used by vendors of

RDBMS.

Distributed approach
In the distributed approach decisions about granting or denying access, and access control
mechanisms are both locally managed on the client-side applications. The DACA is based on

this approach.

Mixed approach

In the mixed approach decisions about granting or denying access are managed by a
centralized entity but the access control mechanisms are managed on the client-side
applications. The most well-known example is the eXtensible Access Control MarkUp Language
(XACML) [OASIS, '12] where policies are enforced in the client-side by Policy Enforcement
Points (PEP) of database applications but the decision whether to grant or deny access is taken
by centralized Policy Decision Points (PDP).

The following sub-sections present a more detailed description for each architectural approach
just described.

2.1.2.1 Centralized Approach

The centralized approach is based on a security layer developed by security experts and usually
using RDBMS tools and based on RBAC policies. Access control policies vary from RDBMS to RDBMS
but comprise several entities, such as users, roles, database schemas and permissions. They are
directly managed by RDBMS and are completely transparent for software applications. Their
presence is only noticed if some unauthorized access is detected by the security layer. Figure 3
presents a simplified block diagram for the centralized approach. Basically, SQL statements are sent
to the RDBMS (Figure 3: 1) and before being executed they are evaluated by a security layer to
check their compliance with the established access control policies. If any violation is detected, SQL
statements are rejected and an exception is raised, otherwise they are executed (Figure 3: 2).

Business Logic RDBMS

Security P
Layer

executeCRUD - P

Figure 3. Centralized access control mechanism.

13|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

The centralized approach presents advantages and disadvantages. Among the advantages, the
following are emphasized:

Maintenance

Whenever a maintenance activity is necessary, itis restricted to the entity responsible for the
decisions and the mechanisms. The centralized approach clearly avoids the need to carry out
maintenance activities in several equipment.

Reliable security
If security is correctly defined and implemented, any attempt to violate the system security is
always evaluated against the enforced access control policies.

Among the disadvantages [Lopez, '02b; Valle, '02], the following are emphasized:

Scalabilit
Access control always conveys an additional processing overhead and, in case of complex

decisions and mechanisms, there may be scalability problems.

Increased latency

Requests to access to data, and the decisions and mechanisms to control those accesses reside
in different computer devices leading to an increased latency when the access is not granted. On
the distributed architectures, decisions and mechanisms are local and, therefore, the latency is

minimized.

Single point of failure
As any centralized architecture the single point of failure may lead to undesirable security
failures. In this unwanted security failure, every request to access protected data may exploit

the security gap.

2.1.2.2 Distributed Architecture

A distributed approach can be characterized by the distributed character of the decisions making
and also on the distributed character of the enforcement mechanisms. Decisions and mechanisms
are implemented and placed in each running client-side application. Not only the mechanisms are
distributed but also the decisions are locally taken. Such distributed architecture approach conveys
some advantages and some disadvantages. Among them, the following advantages are to be
emphasized:

Scalability
The rational to decide upon granting or denying access and the mechanisms are deployed in

each client-side application. This approach clearly delegates in each client the total
responsibility to ensure and to comply with the established access control policies. When the
number of client-side applications increase, there is no effect on the performance and on the
responsiveness of the extended system. If complexity of the decisions and/or mechanisms
increases, the additional power computation that is needed is not cumulative in any centralized
equipment but distributed in each client-side equipment. Therefore, each client-side equipment

1l4|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components
- —

has the responsibility to provide the eventual necessary additional computational power to
avoid any security violation. This issue has an increased relevancy because very often database
servers are bottlenecks in intensive database applications. If beyond the access to data they are
also required to provide access control, then very probably the bottleneck will be more
noticeable. The distributed architecture clearly relieves database servers from the
responsibility of providing access control.

Minimum latency
In the distributed architecture decisions and mechanism are deployed in each client application

and, therefore, the latency for any request to access protected data is minimized. In non-
distributed architectures, latency may be significant when requests to access to data are denied.
While in distributed architectures the decision is made locally, in non-distributed architectures
there is the unavoidable latency for the communication process between client applications and
the centralized security equipment.

Among the disadvantages the following are next emphasized:

Maintainability

Whenever a maintenance activity is carried out on the access control policies, it is potentially
necessary to extend the maintenance activities to all equipment running client-side
applications. If the maintenance activity is not automated then it may convey a huge effort in
systems comprising many and faraway client equipment. However, this potential disadvantage
is not applicable to the DACA as it has already been mentioned. The DACA has an automated
process to keep FGACM updated in all client-side equipment.

Security gap
If policies are not coordinated from a central point, the probability of deploying security gaps is

increased. This potential disadvantage is not applicable to the DACA because the DACA
comprises central systems responsible for ensuring that the implementation of FGACM in all
client-side equipment is in accordance with the established FGACP.

2.1.2.3 Mixed Architecture

A mixed approach splits the responsibilities for the access control between a centralized server and
client-side equipment. The best well-known standard is the XACML. XACML is an access control
language based on XML and defined by the Organization for the Advancement of Structured
Information Standards (OASIS). The basic design of an XACML system has four main components:
PAP (Policy Administration Point), PEP (Policy Enforcement Point), PIP (Policy Information Point)
and PDP (Policy Decision Point). We will be mainly focused on the PEP and PDP components but
PAP and PIP will also be described.

The XACML approach consists in a security software layer with two main functionalities: the
PDP and the PEP, as defined in XACML [OASIS, '12] and used in [Corcoran, '09], see Figure 4. The
PEP are locally inserted in-line with the client-side source code to intercept users requests for
accessing a resource protected by an access control policy (Figure 4: 1) and enforces the decision to
be evaluated by a remote PDP on this access authorization. PDP evaluates requests to access a
resource against the access control policies to decide whether to grant or to deny the access

15|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

(Figure 4: 2). If authorization is granted, PEP uses business logic to perform the authorized action
(Figure 4: 3) and, if no other restriction exists, the action is executed by the RDBMS (Figure 4: 4).
PEP are intentionally inserted in key points of the source code to enforce PDP decisions. PEP-PDP
approach is a mixed approach involving the centralized approach and the distributed
approach. Beyond PEP and PDP components, the basic design of an XACML system has two more
main components: PAP and PIP. PAP is where administration of policies is carried out. PIP is where
information is collected for the PDP to make up decisions. The advantages and disadvantages of the
mixed architecture emanates from the advantages and disadvantages of the centralized and
distributed architectures. Anyway, latency deserves a closer attention. In the centralized approach,
when compared with the distributed approach, the latency is only noticeable if permission to access
the protected resource is not granted. In the mixed approach, the latency is permanent and
independent from the decision process. This means that every request to a protected resource
entails a latency to evaluate if permission is or is not granted.

accessGranted = «g—pp»| PEP P PDP

If (accessGranted) {

Business Logic

RDBMS
3 Optional

A RDBMS 4

Security
Layer

Figure 4. Mixed architecture.based on PEP and PDP.

2.1.3 Dimensions of Access Control Mechanisms

In this sub-section a survey is made about the main dimensions that may influence the
implementation of access control mechanisms.

The enforcement of access control policies comprises five orthogonal dimensions: architecture,
granularity, awareability, contextuality and adaptability. The architectural dimension, because of its
visibility and notoriety, has been already presented separately in sub-section 2.1.2. The remaining
four dimensions are now jointly presented and described in this sub-section. Granularity is focused
on characterizing the granularity of the data to be disclosed and also the authorized actions on it.
Awareability is focused on evaluating if access control mechanisms are or are not made available to
programmers while they write source code for client-side applications. Contextuality is focused on
evaluating if access control uses runtime context to decide upon the data to be made available and
the authorized actions. Adaptability is focused on evaluating if access control mechanisms are or
are not automatically updated when access control policies evolve over time. Next follows a
detailed description for each dimension.

16|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

2.1.3.1 Granularity

Currently, most of the RDBMS provide access control mechanisms driven by fixed relations
between users, operations and tables leading to a maximum protection of resources at the column-
level [Caires, '11]. This level of protection may be satisfactory in many situations but in many
others it is far from being satisfactory. In situations where the access to data is not controlled at the
column level but is also controlled at the row level, it is considered as being a FGACP. Some RDBMS
vendors support FGACP using different approaches, such as query rewriting in INGRES, Virtual
Private Database [Oracle] in Oracle and label-based in DB2 [Bond, '07]. Very often these features of
RDBMS are not enough and there is the need to provide an increased level of protection. This need
for an increased level of protection has been the motivation for the researches that have been
conducted and also one of the key motivations of this thesis.

2.1.3.2 Awarability

Programmers of client applications can hardly master established access control policies in
database applications with many and complex policies. As such, it is convenient to follow an
approach where the policies are statically checked at development time or at compile time of
applications tiers. This awarability relieves programmers from mastering FGACP and, additionally,
conveys a swift feedback about any policy violation. This approach conveys two important
advantages:

Productivity
The obligation to evaluate the correctness of source-code at runtime induces and additional

overhead at the development process, this way leading to a decrease in productivity. Therefore,
productivity is improved if programmers are relieved from running applications to become
aware of any disconformity with the established access control policies;

Security
Due to the endless SQL expressiveness, difficulties arise to ensure a complete secure access

control. To overcome this fragility, a possible approach is by implementing a fine control on the
set of CRUD expressions that are allowed to be executed to improve the overall security.
Ultimately, CRUD expressions are provided by database administrators and are statically made
available to programmers, this way avoiding the free writing process of CRUD expressions by
programmers of business tiers and application tiers.

The awareness of access control policies follows two approaches, the typed approach and the
untyped approach:

Typed approach
The typed approach is based on typed objects to enforce access control policies so that

programmers become aware of their existence at development time. The awareness at
development time is the approach that improves productivity more. Programmers become
aware of any disconformity while writing the source code, this way avoiding the waste of time
for writing erroneous source code and the waste of time for compiling and re-writing the
source code.

17|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

Untyped approach
The untyped approach is based on data structures used by the compiler to check if the accesses
to data are in conformity with the established access control policies. Programmers become

aware of any unconformity only after writing and compiling the source code, which, obviously,
leads to a lower productivity than the typed approach.

The typed approach has the enormous advantage of guiding programmers in the correct
direction while editing source-code. This guidance is automatically provided in current Integrated
Development Environments (IDE), such as NetBeans [Oracle, '12¢], Eclipse [Eclipse, '12] and Visual
Studio [Microsoft, '10], through the auto-completion facility. Awareness at compile-time does not
guide programmers during the editing process and postpones the feedback about any unconformity
until the compilation process of source-code is completed.

2.1.3.3 Contextuality

There are situations where access control is governed by contextual information. In these
situations, there is no possibility to know at development time or even at compile time the values to
be used to protect the access to sensitive data. Typical situations are health care organizations and
social networks. In health care organizations, patient data is disclosed only to the people who need
them and have the correspondent authorization. For example, a doctor can access the data only of
those patients he is treating. In social networks, only current friends have access to some data. In
such cases, before being executed, CRUD expressions must comprise the required predicates to
avoid the access to unauthorized data. The predicates may be originally written with CRUD
expressions or later added using any query rewriting technique. The query rewriting technique is
presented and described in sub-section 2.4.1. A concrete case of this approach is the Reflective
Access Control [Olson, '08]. A “...a policy is defined as reflective when it depends on data contained in
other parts of the database” [Olson, '09].

2.1.3.4 Adaptability

Access control policies define which actions each user is authorized to execute on database objects.
Nothing prevents the policies established during a certain period to evolve to a different state.
When this happens, users are allowed to do things they were not allowed to do before, or users are
not allowed to do anymore things they were allowed to do before or users are allowed to do what
they were allowed to do before but in a different way. To guarantee that this process of evolving
policies is supported, it is necessary to guarantee that the associated mechanisms and decisions are
also updated. If we recall the architectural dimension we can see that very probably some
difficulties arise. The centralized architecture requires maintenance activity in the central system,
which does not raise any special concern in a first glance. But the distributed and mixed
architectures entail a maintenance activity in all client equipment where the policies are enforced,
which may raise justified concerns. Two approaches are followed to implement access control
mechanisms, the static approach and the dynamic approach.

Static approach
In the static approach, mechanisms and/or decisions are hard coded and there is no way to

18|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components
- —

automatically modify them in accordance with new policies. Therefore, whenever modifications
are needed, they have to be edited, compiled and manually deployed. This updating process is
not scalable leading to a huge effort when database applications have many client-side
equipment.

Dynamic approach

In the dynamic approach, mechanisms and/or decisions have the ability to be adapted to
evolving policies. While mechanisms are traditionally hard coded, the decisions may also resort
to a database to become adapted more easily. The adaptation process of hard coded components
of mechanisms and decisions may rely on different strategies but always entails two automated
procedures: building/adaptation of source-code and a deployment process. The combination of
these two procedures opens the possibility to opt for two different implementations: 1) policies
are deployed and adapted in each server (decisions) and each client-side system (decisions
and/or mechanisms) or 2) mechanisms and decisions are adapted and then deployed into each
security sever (decisions) and each client-side system (decisions and/or mechanisms). Unlike
the static approach, the dynamic approach follows an automated process for adapting policies,
this way promoting scalability, maintainability and productivity.

2.2 Current tools for Building Business Tiers

Several tools have been devised to improve the development process of business tiers mainly for
tackling the impedance mismatch issue [David, '90]. From them, two categories have had a wide
acceptance in the academic and commercial forums: Object-to-Relational Mapping tools (0/RM)
and CLI. Other solutions, such as embedded SQL [Moore, '91] (SQL] [Eisenberg, '99]), have
achieved some acceptance in the past but failed to be generally accepted by the research and
commercial communities. Others were proposed but without any general known acceptance: Safe
Query Objects [William, '05] and SQL DOM [Russell, '05]. These tools were all devised mainly to
tackle the impedance mismatch issue not addressing the concept of access control at all. Access
control, whenever implemented, is based on additional security layers. Some examples based on
current tools are shown to demonstrate their inability to deal with access control. Firstly, 0/RM
tools are presented because of their importance and their wide acceptance. Then, CLI will be
presented and described because of their undeniable relevance in the DACA.

2.2.1 O/RM tools and ADO.NET

0/RM tools [Keller, '97; Lammel, '06], such as LINQ [Erik, '06], Hibernate [Christian, '04], Java
Persistent API (JPA) [Yang, '10], Oracle TopLink [Oracle], CRUD on Rails [Vohra, '07], and ADO.NET
were designed to create, in the object-oriented paradigm, static representation models of relational
database schemas. The static model is built in a first stage, eventually by a database administrator,
and then programmers start the development process. The basic artifacts of the static
representation models are classes (entities), each one representing a database table. Through these
entities programmers may read data from tables, update data, insert new data and, finally, delete
existing data. To support explicit CRUD expressions, O/RM tools provide proprietary SQL
languages. Despite these advantages, O/RM do not address access control at any level. Additionally,
O/RM tools lead to some drawbacks, such as: 1) they induce an additional overhead when

19|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components
- —

6[i]private volid usedDO ()
Tl A
B String sgl = "Select * from Products where productId=107;
9 SEglDataldapter da = new SglDataldapter():
0 da.SelectCommand = new SglCommand (=2gl, conn);
SglCommandBuilder cb = new SglCommandBuilder {da)
DataSet ds = new DataSet();

W k=

da.Fill (d=s, "Products"):;
DataBow dr = ds.Tables["Products"] .Rows[0]:

1

5 productName = (String) dr["productHame™]:
& more code
7 dr["productHame™] = productWHame;

ch.GetlUpdateCommand () ;
da.Update (d=, "Products=");
Fi more code

LIWE T L T 'S T A T % T S T T S T 'S Y L T L D % B % |

[T

f1:9

19
[
T

Figure 5. Example based on ADO.NET.

33 |Eprivate wvoid useJdPA() {

34 TypedQuery<Products> g= em.createNamedQuery("Froducts.id 10", Products.class);
35 List<Products> prd = g.getResultli=st():

36 for (Products p: prd)} {

37 productlame=p.getProductName () ;

38 more code

39 p.setProductName (productilame) ;

40 em.persist (p):

41 more code

42|}

Figure 6. Example based on JPA.

f—] private wvoid u=seLINQ()
{

1 oy n

Product prd = de.Products.S5ingle(p => p.CategoryID == 10},
productName = prd.ProductName;
f more code

prd. ProductName = productMName;
dc. SubmitChanges () ;
f more code

TR T = =

[T S T % R % R L% B S
Ld R}

1%

Figure 7. Example based on LINQ.

compared to CLI; 2) they were not devised having in mind the frequent use of complex CRUD
expressions and, finally, 3) they rely on static models, this way not promoting an easy process for a
dynamic adaptation at runtime. Moreover, O/RM tools do not promote a clear separation of
application tier developer role from business tier developer role. For example, programmers
may use embedded language extensions and other embedded functionalities to extend pre-built
static models, this way opening possible security gaps. Figure 5, Figure 6 and Figure 7 present a
simplified version of the example presented in Figure 1 but written in ADO.NET, JPA and LINQ,
respectively. Akin to JDBC, programmers are free to write any CRUD expression (Figure 5: line 28,
Figure 6: line 34, Figure 7: line 17) and to execute them. Then, they have no
restrictions to read the attribute productName (Figure 5: line 35, Figure 6: line 37, Figure 7: line 20)

20|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

not even to update it (Figure 5: line 37-39, Figure 6: line 39-40, Figure 7: line 20-21). Beyond
reading and updating the attribute productName, it is also possible to read and update all the
remaining attributes, even to insert new rows and delete existent rows. There is no possibility to
prevent programmers from issuing these accesses. This example clearly shows the unpreparedness
of current O/RM tools to deal with access control policies at any security level.

2.2.2 Call Level Interfaces

CLI are the main API to model one of the most important components of the DACA. The component
is responsible for the implementation of the dynamic FGACM at the client-side of database
applications. As such, a detailed knowledge about the architecture and features of CLI is considered
essential to understand the DACA and also the options made for the implementation of FGACM.

2.2.2.1 Overview of Call Level Interfaces

CLI are an ISO/IEC standard [ISO, '03] for the interaction between RDBMS and client applications.
Two API were initially devised for the C and COBOL programming languages. The most well-known
implementation of CLI is the Open Database Connectivity (ODBC) [Microsoft, '92] specification.
ODBC is a C programming language interface providing a standard for client applications access
data from a variety of RDBMS. “ODBC is a low-level, high-performance interface that is designed
specifically for relational data stores.” [Microsoft, '92]. In this document, the term CLI is used with a
wider scope that the one defined by ISO/IEC. Herein, CLI are used to refer to any API/standard with
identical features and characteristics to the standard emanated from ISO/IEC. In this context, other
related CLI have also been devised, such as JDBC. Other tools/frameworks have also been devised
to ease the development process of business tiers, which, in most of the situations, use CLI as the
underlying technology to interact with RDBMS, such as ADO.NET [Mead, '11], JPA [Yang, '10] and
Hibernate [Bauer, '07]. Some of the main features of CLI that are important for the DACA are now
briefly described:

Building process of CRUD expressions

CRUD expressions are the main entities used by programmers to interact with data residing in
RDBMS. Thus, the key issue of any tool devised to develop business tiers is the definition of how
client applications build and use CRUD expressions. CLI allow CRUD expressions to be written
in the native SQL language and encoded inside strings. There is no layer between the native SQL
language and the services provided by CLI.

Access Modes
CLI provide several access modes to data residing in RDBMS. Programmers are free to select at
any moment the access modes that more effectively address their needs.

Results of CRUD expressions

From the application’s perspective, every CRUD expression has a final result. Insert, Update and
Delete expressions modify the state of databases by affecting a certain number of rows. Select
expressions create a set of rows that must be made available to client applications.

21|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components
- —

Performance optimization
CLI provide several performance contexts in which CRUD expressions may be executed. Client

applications are called to choose in each situation the context most appropriated.

2.2.2.2 Functionalities

CLI are considered important options for building business tiers whenever a fine tune control on
the interactions with RDBMS is necessary and also when performance is considered a key
requirement [Cook, '05]. This is confirmed in several functionalities of CLI, being the diversity of
access modes just one example. CLI provide several access modes to data residing on RDBMS
among them the possibility to encode CRUD expressions inside strings, this way easily
incorporating the power and the full expressiveness of the SQL language. JDBC [Parsian, '05], for
Java environments, and ODBC [Microsoft, '92], for Windows environments, are two representatives
of CLI. CRUD expressions are executed against the host database and the possible results they
produce (only for Select expressions) are locally managed by local memory structures (LMS) -
(ResultSet [Oracle, '13] for JDBC, RecordSet [Microsoft, '13] for ODBC). CLI provide two main and
key functionalities to access data:

Use of the native SQL language

This functionality has been already described. CLI are suited to the use of the native SQL
language. This way, they are prepared to exploit the performance and the full expressiveness of
the SQL language.

Use of LMS

LMS are containers prepared to help client application to interact with data returned by Select
expressions. They provide services to allow applications to read, insert, update and delete data
from the LMS.

Only services of CLI directly related to the execution of CRUD expressions will be addressed in
this thesis. Services such as those for managing connections to host databases are not here
addressed. Main services of CLI are organized in four main categories: execution, scrollability,
updatability and transactions.

Execution

Execution comprises services related to the execution of native CRUD expressions. Native CRUD
expressions are executed as compiled-on-the-fly or pre-compiled (when they are to be reused).
Pre-compiled CRUD expressions are stored in the database by RDBMS while being used and,
therefore, very often provide a much better performance execution than those compiled-on-
the-fly. Additionally, CLI deal differently with Select expressions from the other three types of
CRUD expressions. Select expressions instantiate LMS, while the other types do not. These latter
types (Insert, Update and Delete) generate a value indicating the number of affected rows in the
database.

Scrollabili

Scrollability comprises services related to the scrolling process on LMS. There are several

22|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

different implementations but two are emphasized. They are mutual-exclusive and are herein
known as forward-only and scrollable.

Forward-only
Forward-only LMS restrict the possibility to move cursors one row forward at a time.

Forward-only LMS are used when rows are accessed in a sequential way, one by one, from
the first one till the last one.

Scrollable

Scrollable LMS do not restrict the movement of cursors. Unlike the forward-only LMS,
programmers are free to select rows not placed next and after the active selected row.
Programmers are free to write source code to jump several rows at a time and in any
direction, forward or backward.

The choice between forward-only and scrollable LMS not only affects the functionalities of LMS
but also their performance. This issue will be addressed during the performance assessment.

Updatability
Updatability comprises services organized in protocols to interact with data contained in LMS.

There are several implementations but two are herein emphasized. They are mutual-exclusive
and are known as read-only and updatable LMS.

Read-only LMS
Read-only LMS restrict the access to their in-memory data to read operations only.

Applications are prevented from inserting new rows, from updating existent rows and also
from deleting existent rows on LMS.

Updatable LMS
Updatable LMS do not restrict any operation on their in-memory data. Applications are

allowed to read existent rows, insert new rows, update existent rows and to delete existent
rows. The important aspect in these actions is that CLI, internally, create CRUD expressions
to execute the actions performed at the LMS level. Thus, when an update protocol is
committed, CLI create an Update expression to update the updated attributes. Similarly,
when a row is inserted or deleted at the LMS level, CLI create Insert and Delete expressions
to materialize the requested actions, respectively. These additional actions at the LMS level
avoid the need to write native CRUD expressions to perform the equivalent actions on host
databases.

The choice between read-only and updatable LMS not only affects the functionalities of LMS
but also their performance as it will be shown.

Transactions

Transactions comprise a set of services to manage database transactions such as save points,
rollback transactions and commit transactions. CLI provide two mutual-exclusive modes to
manage database transactions: auto-commit mode and normal mode.

23|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

Auto-commit mode

The auto-commit mode is used when there is the need to execute each CRUD expression
atomically and, as such, ruled by an individual transaction. This mode avoids the need to
precede and follow each CRUD expression by a transaction initiation process and by a
transaction commit process.

Normal mode

The normal mode is used when there is the need to process several CRUD expressions as a
single transaction. In this case, the first CRUD expression is preceded by the beginning of a
transaction and the last CRUD expression is followed by the correspondent transaction
commit.

By default, the work mode is the auto-commit mode on which each CRUD expression is
automatically committed when it is completed successfully. Therefore, in this mode, no other
transaction management functions are required. In the normal mode there are functions to deal
with traditional transaction actions, such as begin transactions, commit transactions and
rollback transactions.

2.2.2.3 Local Memory Structures

LMS have been loosely presented and some properties have also been already described. Next
follows a more detailed description about the operation of LMS.

LMS are instantiated to manage the data returned by Select expressions. As such, at this point it
is advisable to discuss some LMS features that are relevant to this research. Figure 8 presents a
general LMS containing 5 tuples (rows, 1 to 5) and 6 attributes (a, b, ¢, d, e, f). This LMS could have
been instantiated to manage the data returned by the following CRUD expression: Select a, b, ¢, d, e, f
from Table Where ... In this case, the CRUD expression has returned 5 tuples and the current
selected tuple is tuple number 2. Two representatives of LMS are ResultSet [Oracle, '13] (JDBC) and
RecordSet [Microsoft, '13] (ODBC).

<):| Selected tuple

u A W NP

Figure 8. LMS with 5 tuples (rows) and 6 attributes (a till f).

The access to LMS attributes is accomplished by selecting a tuple and then, through an index or
through a label (usually the attribute name), by selecting one attribute at a time. For example, to
execute an action action (read, insert or update) on attribute c of tuple 2:

e Select tuple 2;

e Execute action(index of attribute c) or action(label of attribute c).

24|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

CLI are responsible for providing services to allow applications to scroll on LMS, to read their
contents and to modify (insert, update, delete) their internal contents (other services are also
available but they are not relevant at this point). Services may be split in two categories: basic
services and advanced services. Basic services comprise two groups of protocols: the scrolling
protocols are aimed at scrolling on tuples and the read protocol is aimed at reading the tuples’
attributes. Advanced services are available only if LMS are updatable. In this case applications are
allowed to change the internal state of LMS. Advanced services comprise three protocols: insert
protocol to add new tuples, update protocol to update an existent in-memory tuples and, finally,
delete protocol to delete existent tuples. After being committed, new LMS states are automatically
committed in the host database. To execute any of the previous services it is necessary to know that
the access to LMS is simultaneously tuple oriented and protocol oriented. This has two main
implications. First, at any time only one tuple may be selected as the target tuple. Second, if a
protocol is being executed, applications should not start any other protocol. If this rule is not
fulfilled, LMS may lose their previous states. For example, if an advanced service is being executed
and another protocol is triggered, LMS discard all changes made during the first protocol. Table 2
concisely presents four of the five main LMS protocols. Scroll is not presented because only the
presented protocols are used to interact with data managed by LMS and, therefore, managed by
RDBMS. Additionally, the scroll protocol is orthogonal to the remaining four protocols.

Read Protocol

During the read action, attributes are individually read one by one and always from the current
selected tuple. If a different tuple is selected, the next attribute value will be retrieved from the
new selected tuple.

Update Protocol

During the update action, attributes are individually updated one by one on the current selected
tuple. The protocol may or may not be triggered by invoking a specific method. It ends when a
specific method is invoked to commit the updated attributes. If another tuple or protocol
(except the read protocol) is selected while it is being executed, all previous changes will be
discarded.

Insert Protocol

The insert protocol is triggered by invoking a specific method. Then, each attribute is
individually inserted one by one. After all attributes have been inserted, the protocol ends when
a specific method is invoked to commit the inserted tuple. If another tuple or protocol (except
the read protocol) is selected while it is being executed, all previous changes will be discarded.

Delete Protocol
The delete protocol comprises a single method that removes the current selected tuple from the
LMS. The delete action is also committed in accordance with the established policy.

Table 2 presents the main protocols of LMS and the logic associated with each one.

25|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components
- —

1D Protocol Id Protocol
Point to a tuple Point to a tuple
1 Read attributes 5 Start update protocol
Update attributes

Commit update

Start insert protocol Point to a tuple
3 | Insert attributes 4 Delete tuple
Commit insert

Table 2. Main protocols of LMS.

2.2.2.4 Access Modes of CLI to RDBMS

CLI are used, among other purposes, to access data residing in RDBMS. From the descriptions
previously presented in 2.2.2.2 and 2.2.2.3, it is possible to infer that CLI provide two different
modes to access data residing in RDBMS, which are herein referred to as the Direct Access Mode
and the Indirect Access Mode.

Direct Access Mode

The Direct Access Mode is useful when programmers use native SQL to write CRUD expressions
encoded inside strings and then delegate the remaining process to CLI to execute them against
the RDBMS. CRUD expressions are of any type (Insert, Read, Update and Delete).

Indirect Access Mode

The Indirect Access Mode is only available after the execution of a Select expression (using the
Direct Access Mode). CLI instantiate LMS and provide protocols (read, update, insert and
delete) through which programmers are allowed to interact with the in-memory data of LMS.
These protocols belong and constitute the Indirect Access Mode. Whenever an update, insert or
delete protocol is committed, CLI internally create the correspondent CRUD expression to
commit the changes. The read protocol is also included in the Indirect Access Mode.

Current approaches to enforce access control are only based on the Direct Access Mode. But,
unlike current approaches, the DACA implements FGACM at the level of CLI and, as such, it must
implement FGACM not only on the Direct Access Mode but also on the Indirect Access Mode for all

T DACA FGACM

T Direct Access Mode

CLI —CO Indirect Access Mode

Figure 9. CLI and DACA access mechanisms.

26|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

protocols (read, update, insert and delete). Figure 9 shows a simplified block diagram to slightly
unveil the approach to be followed by the DACA to implement FGACM on CLI. The diagram shows
that the two access modes of CLI are wrapped and hidden by the DACA to support data access ruled
by FGACM only.

2.2.2.5 Performance

Very often, performance is a key requirement and frequently a bottleneck of database applications
when scalability limitations arise. As such, an overview about the issues that influence performance
is an unavoidable aspect of CLI and it must comprise the two described access modes of CLI.

Direct Access Mode

Native CRUD expressions are edited and executed through the Direct Access Mode. The
execution context has two mutual-exclusive possibilities: CRUD expressions are compiled-on-
the-fly or CRUD expressions are pre-compiled. As already explained the pre-compiled approach
compiles and stores CRUD expressions on the RDBMS. Whenever needed, CRUD expressions are
already compiled and their execution plans have been already evaluated. The performance
improvement is mostly noticeable when CRUD expressions use complex execution plans.

Indirect Access Mode

The Indirect Access Mode is available whenever a Select expression is executed. When a Select
expression is executed using a scrollable or an updatable LMS, RDBMS create a server cursor
with all the selected tuples. These tuples are dynamically transferred in blocks, from the server,
to the LMS whenever necessary. This means that at any time LMS may not have all the tuples
but only a sub-set of all selected tuples. When users point to a tuple that is not present in the
LMS, the current content of LMS is discarded and a new set of tuples containing the desired
tuple is transferred to the LMS. This has a deep implication. If threads are always requesting
tuples that are not present in the LMS, RDBMS have to transfer the correspondent block for
each request. In an extreme scenario, each individual action over the LMS could imply a new
transference of tuples. From the previous statements, it is expected that the number of blocks to
be transferred will increase when the number of tuples (inside server cursors) increases and
also when the dispersion of the used policy to select tuples (contained by LMS) increases. Thus,
to optimize the performance two strategies need to be followed [Pereira, '10b; Pereira, '11b;
Pereira, '13c]. The first one and simplest one is to avoid the use of scrollable and/or updatable
LMS. If it is not possible to avoid the use of scrollable or updatable LMS, then access to LMS
should follow a policy aimed at minimizing the transferences of block of tuples.

2.2.3 Other proposals

Beyond O/RM and CLI, several other tools have been launched by the research community and the
commercial community. In his sub-section an overview of the most relevant tools is made.
Embedded SQL [Moore, '91] is a method for writing CRUD expressions in-line with regular
source code of the host programming language inside source files. The CRUD expressions provide
the database interface while the host programming language provides the remaining support
needed for the application to execute. The files are then pre-processed (pre-compiled) in order to

27|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

check the correctness of CRUD expressions namely against the database schema, host language data
type and SQL data type checking, and finally syntax checking of the SQL constructions. SQL]
[Eisenberg, '99] is an example of an Embedded SQL standard, which provides language extensions
for embedding CRUD expressions in regular Java source files. Some SQL] disadvantages, which are
common to most Embedded SQL technologies: 1) SQL]J relies on an extra standard; 2) SQLJ does not
decouple CRUD expressions from regular source code; 3) SQL] does not provide a clean object-
oriented interface to the assisted application; 4) SQL] does not provide assistance regarding the
maintenance of CRUD expressions; 5) SQL] requires a JVM (Java Virtual Machine) built in the
database. In practice, embedded SQL has never been widely adopted by end users. Examples of
other languages that support embedded SQL are: C, C++, COBOL and Fortran. Despite the
aforementioned general disadvantages, some embedded SQL features may be considered as
advantages such as: it is based on a single development environment with a strong interconnection
between the two paradigms; unlike other solutions, embedded SQL does not need to be executed to
check the correctness of the SQL syntax. This task is executed by the pre-compiler.

Safe Query Objects [William, '05] combine object-relational mapping with object-oriented
languages to specify queries using strongly-typed objects and methods. They rely on Java Data
Objects to provide strongly-typed objects and also to provide data persistence. Safe Query Objects
are a promising technique to express queries but share most of the aforementioned drawbacks of
0/RM, namely regarding performance and SQL expressiveness.

SQL DOM [Russell, '05] generates a Dynamic Link Library containing classes that are strongly-
typed to a database schema. These classes are used to construct dynamic CRUD expressions
without manipulating any strings. As Safe Query Objects, SQL DOM does not take the full advantage
of SQL expressiveness and also exhibits very poor results regarding its performance.

Static Checking of Dynamically Generated Queries [Gary, '07] presents a solution based on
static string analysis of Java programs to find out where CRUD expressions are being constructed.
The main idea is to find out all possible combinations of distinct CRUD expressions and then
analyze them regarding their syntax and their type mismatch errors. This approach does not affect
system performance but exhibits some drawbacks as: 1) all source code is hand written from string
concatenation till JDBC execution context; 2) it does not provide any object-oriented view of the
CRUD expression execution context.

In [Schmoelzer, '06] Schmoelzer et al. do not present a tool but present a concept for model-
typed interfaces relying on generic interface parameters that may be used to transfer data. The
parameters are characterized as Model-defined Types whose schema is defined by a Data Model.
The authors claim that by this way, complex data structures (based on Data Models) may be
transferred between components in a single method invocation avoiding successive calls to
accomplish the same task. This methodology is very useful when two conditions occur
simultaneously: 1) the involved components do not share the same working address space; 2) the
component playing the client role has full control and knowledge about the amount of data being
transferred. In our case, Business tiers based on the DACA and client applications share the same
address space. Then, the best access method to the returned data (from Select expressions) is
implemented in attribute by attribute and tuple by tuple basis. The DACA could profit from
[Schmoelzer, '06] if systems based on the DACA and client applications ran in different address
spaces.

Data Transfer Objects [Flower, '02] is another concept for the transference of data. It proposes
a design pattern to be used whenever an entity gathers a group of attributes that must be accessed
in a swift way. Accessing those attributes one by one through a remote interface raises several

28|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

disadvantages such as the increase of the network traffic, latency is increased, performance is
negatively affected, demand on server and client processing is increased. Data Transfer Objects are
tailored to address these situations. They are organized in serializable classes gathering the related
attributes and forming a composite value. An entire instance of the serialized object is transferred
from the server to the client. This approach, in its essence, is quite similar to the previous conveying
the same advantages and disadvantages.

Aspect-oriented programming [Gregor Kiczales, '97] community considers persistence as a
crosscutting concern [Laddad, '03]. Several works have been presented but none addresses the
point here under consideration. The following works are emphasized: [Fabry, '06] is focused on
separating scattered and tangled code in advanced transaction management; [Laddad, '03]
addresses persistence relying on Aspect]; [Dinkelaker, '11] presents A04Sql as an aspect-oriented
extension for SQL aimed at addressing logging, profiling and runtime schema evolution. It would be
interesting to see an aspect-oriented approach for the points herein under discussion.

2.3 JDBC

JDBC is the CLI used in the DACA proof of concept. To provide the necessary background to
completely understand the DACA, JDBC is now presented and described as the representative of
CLIL

2.3.1 JDBC Overview

JDBC is a CLI version for a standard Java specification for database-independent connectivity. There
are four styles of drivers, see Figure 10:

e]DBC-ODBC Bridge plus ODBC Driver - type 1

e native API partly Java technology-enabled driver - type 2

e Pure Java driver for database middleware - type 3;

e Direct-to-database pure Java driver - type 4.

Type 1 Type 2 Type 3 Type 4

JDBC API JDBC API JDBC API JDBC API

JDBC Driver Manager JDBC Driver Manager JDBC Driver Manager JDBC Driver Manager

Or Or Or Or
Databsource object Databsource object Databsource object Databsource object
JDBC-ODBC Bridge Partial JDBC Driver Pure JDBC Driver Pure JDBC Driver

ODBC Driver DB Client library DB Middleware

DB Client library

Figure 10. Types of JDBC drivers and their dependency on other components.

29|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

JDBC Type 1 driver uses ODBC driver to connect to the database. A database client library is
also necessary if ODBC is not a native driver to the RDBMS.

JDBC Type 2 driver converts JDBC calls into calls on the client side vendor’s API to connect to
the database.

JDBC Type 3 driver converts JDBC calls directly or indirectly into the middleware client side
libraries of the database.

JDBC Type 4 driver converts JDBC calls into the network protocol used to connect to the
database and, as such, is considered the best choice when performance is considered a key
requirement. The proof of concept of DACA uses a Type 4 driver for SQL Server: sqljdbc4.jar.

2.3.2 JDBC Approach to Call Level Interfaces Functionalities

As previously explained, main functionalities of CLI are organized in four main categories:
execution, scrollability, updatability and transactions. Figure 11, Figure 12, Figure 13, Figure 14,
Figure 15 and Figure 16 present typical]DBC usage of the four main functionalities. These figures
will be referred during the next explanations. Figure 11 presents the declaration of the main
variables used in these examples: Statement is an object aimed at executing compiled-on-the-fly
CRUD expressions, PreparedStatement is an object aimed at executing pre-compiled CRUD
expressions and ResultSet is an object responsible for managing LMS. The line numbers in all
figures are not repeated between them, thus, whenever dispensable we will not refer the figures
being used in this sub-section.

Execution

Execution comprises services related to the execution of CRUD expressions. JDBC uses
PreparedStatement [Oracle, '12b] and Statement [Oracle, '12c] for pre-compiled and compiled-
on-the-fly SQL statements, respectively.

Pre-compiled CRUD expressions

Figure 13 and Figure 15 show the usage of pre-compiled CRUD expressions
(PreparedStatement ps). CRUD expressions are written (line 49, 84) and compiled (line 50-
52, 85). This is done only once and then CRUD expressions are re-executed whenever
necessary (line 56, 90).

CRUD expressions compiled-on-the-fly

Figure 12 and Figure 14 show the usage of compiled-on-the-fly CRUD expressions
(Statement st). CRUD expressions are written (line 36, 66), then the context is prepared
(line 37, 67) and finally CRUD expressions are executed (line 39, 69). This process is
repeated from the very beginning whenever any of the CRUD expressions is required to be
executed.

31| priwvate Statement s=t;
32 private PreparedStatement ps;
33| priwvate ResultSet rs;

Figure 11. Declaration of variables.

30|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

35 [Clprivate wvoid readSt(int productId) throws SQLException {

36 sql="5elect * from Products p Where p.ProductId=" + productld;
37 st=conn.createStatement (Result3et.TYFE FORWARD CONLY,
38 ResultSet.CONCUR _READ ONLY)
39 rs=st.executefuery(sgl) ;

an if (rz.mexti()) {

41 productName=rs.get5tring ("productHame™) 7

42 supplierId=r=.getInt ("suppli Ld™} ;

43 categoryld=r=.getInt ("categoryIld™})

44 f/f read other attributes

45 }

46| -}

Figure 12. Use of forward-only and read-only statement.

48 |[Flprivate woid prepareStatement foRo() throws SQLException {

49 sqgql="5Select * from Products p Where p.ProductId=?";
50 ps=conn.prepareStatement (sgl,

51 EesultSet. T¥YFE FORWARD ONLY,

52 ResultSet.CONCUR READ ONLY):

53| -}

54 [Flprivate woid readPS (int productld) throws SQLException {
55 ps.setInt (1, productld):

56 rs=ps.executeQuerv () ;

57 if (rs.next()) {

LT} productName=rs.getString ("productName"} ;

59 supplierlId=r=]

&0 categoryld=rs

8l [/ read other attributes

62 ¥

63 -}

Figure 13. Use of forward-only and read-only prepared statement.

65 [Clprivate void readSt(List<Integer> id, List<Integer» us) throws S0LException {

L1 agl="5elect * from Products p";

&7 st=conn.createStatement (ResultSet.T¥YPE SCROLL SENSITIVE,
[iti] ResultSet.lONCUR _UPDATAELE) ;
£9 rs=st.executefuery(sgl):;

70 while (rs.next()) £

71 produccId=r=.getInt {("productId™} ;

72 int idx=id.indexOf (productId);

73 if (id=!=-1) {

T4 unitsInStock=us.get (idx) ;

75 rz.updateInt ("unitsInStock",unitsInS5tock) ;

T& rz.updateRow () ;

77 }

78 ¥

74 rs.beforeFirst():

&0 /{ more code

81| -}

Figure 14. Use of scrollable and updatable statement.

31|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

83 private void prepareStatement insert() throws SQLException {
B4 sgl="insert into products values LA e e
85 ps=conn.prepareStatement (sgl)

g6 -}

g7 Elprivate int insert (0Cbject([] wvalues) throws SQLException {

g8 ps.8etString (1, (String)values[0])

g9

1] int n=ps.executelpdate ()

91 return n;

92| -

Figure 15. Insert a row using a prepared statement.

1049 Flprivate woid transaction() throws SQLException {

110 conn.setAutoCommit (false)
111 try {

112

113 conn.commit ()

114 } catch(SQLException ex) {
115 conn.rollback ()

116 }

117 conn.setiuntoCommit (true) ;
11a| -}

Figure 16. Examples of transaction with JDBC.

Additionally, CLI deal differently with Select expressions from the other three types of
CRUD expressions. Select statements instantiate an LMS (line 39, 56, 69), while the other types
do not. These latter types generate a value indicating the number of affected rows in the
database (line 90).

Scrollablity
Scrollability comprises services related to the scrolling process on LMS. There are two mutual-

exclusive possibilities: forward-only (line 37, 51) - in this case it is only possible to move
forward one row at a time, (line 40, 57); scrollable (line 67) - in this case it is possible to move
in any direction and jump several rows at a time (line 79). There are several other methods as
shown in Figure 17. Additional detail can be found in [Oracle, '12c].

«interface» «interface»
ForwardOnly Scrollable
+isAfterLast() : bool +absolute(in position : int) : bool
+isBeforeFirst() : bool | |+afterLast()

+isFirst() : bool +beforefFirst()
+isLast() : bool +first() : bool
+next() : bool +isAfterLast() : bool

+isBeforeFirst() : bool
+isFirst() : bool

+isLast() : bool

+last() : bool

+next() : bool

+previous() : bool
+relative(in rows : int) : bool

Figure 17. Methods to scroll on LMS.

32|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

Updatability
Updatability comprises services organized in protocols to interact with data contained in LMS.

There are two mutual-exclusive possibilities: read-only (line 38, 52) - the content of the LMS is
read-only and no changes are allowed; updatable (line 68) - changes may be performed on LMS
(insert new rows, update rows (line 75-76) and delete rows). CLI commit these changes into the
host database. The important aspect in these actions is that CLI, internally, create CRUD
expressions to execute the actions performed at the LMS level. Thus, when line 76 is executed
JDBC creates an Update expression to update the modified attribute. Similarly, when a tuple is
inserted or deleted at the LMS level, JDBC creates Insert and Delete expressions to materialize
the requested actions.

Transactions

Transactions comprise a set of services to manage database transactions such as save points,
rollbacks and commits. Figure 16 presents a scenario where the auto-commit mode is changed
into the normal mode (line 110), some CRUD expressions are executed (line 112) and
committed (line 113). If an SQLException is caught, the transaction is rolled back (line 115).
Finally, the auto-commit mode is replaced (line 117).

2.3.3 JDBC Class Diagram

Main functionalities of JDBC are organized around four interfaces: Connection [Oracle, '12a],
Statement [Oracle, '12c], PreparedStatement [Oracle, '12b] and ResultSet [Oracle, '13] as shown in
Figure 18.

- * 1 -
«interface» «interface»
Statement Connection
* *
1 1
«::terliasci» «interface» 1 * «interface»
esult>e PrepareStatement ResultSet

Figure 18. JDBC class diagram.

Connection
The root interface is the Connection interface which manages a connection to a database.

«interface»
Connection

+createStatement() : Statement

+createStatement(in scrollability : int, in updatability : int) : Statement
+prepareStatement(in sql : string) : PreparedStatement

+prepareStatement(in sql, in scrollability : int, in updatability : int) : PreparedStatement
+commit()

+rollBack()

+setAutoCommit(in autoCommit : bool) : bool

Figure 19. Connection interface.

33|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

Among others, it provides services for transactions management and for creating Statement
and PreparedStatement objects, see Figure 19. Additional detail about the Connection interface
is here provided [Oracle, '12a]

Statement
The Statement interface manages the execution of compiled-on-the-fly CRUD expressions, see
Figure 20. Among others, it provides the following two main services:
o executeQuery: to execute Select expressions, which returns a ResultSet (LMS in JDBC);
e executeUpdate: to execute Update, Insert and Delete expressions, which returns an
integer to indicate the number of affected rows.

«interface»
Statement

+executeQuery(in sql : string) : ResultSet
+executeUpdate(in sql : string) : int

Figure 20. Statement interface.

Additional details about the Statement interface can be found in [Oracle, '12c].

PrepareStatement
The PreparedStatement interface manages the execution of pre-compiled CRUD expressions,
see Figure 21. Among others, it provides the following services:
o executeQuery and executeUpdate: same as in Statement interface;
e others: the remaining services are used to set the runtime values for the parameters of
CRUD expressions. There is one method for each data type.

«interface»
PrepareStatement

+executeQuery() : ResultSet

+executeUpdate() : int

+setint(in parameterindex : int, in value : int)
+setLong(in parameterindex : int, in value : long)

+...()

+setString(in parameterindex : int, in value : string)

Figure 21. PrepareStatement interface.

Additional details about the PreparedStatement interface is here provided [Oracle, '12b].

ResultSet

The ResultSet interface is the J]DBC implementation of LMS, see Figure 22. ResultSet is a plane
interface comprising all services independently from its instantiation context: forward only or
scrollable and, read-only or updatable. This means that programmers must remember the
context in which a ResultSet was instantiated to only use the valid and active services.
Otherwise, exceptions will be raised. One important aspect, as it will be shown, is that
programmers need to master the schema of the returned relation to be able to access the data

34|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

managed by ResultSet. This does not happen with O/RM tools, such as Hibernate, JPA and LINQ.
This is indeed a drawback of CLI regarding their usability. The DACA overcomes this CLI
drawback by providing type safe and database schema-driven methods. Among others,
ResultSet interface provides the following methods, as shown in Figure 22:

«interface»
ResultSet

+getint(in collndex : int) : int
+getint(in colLabel : string) : int
+...()
+updatelnt(in colindex : int, in value : int)
+updatelnt(in colLabel : string, in value : int)
+...()
+updateRow()
+insertRow()
+moveTolnsertRow()
+moveToCurrentRow()
+deleteRow()
+next() : bool
+absolute(in position : int) : bool
+previous() : bool
+isFirst() : bool

()

Figure 22. ResultSet interface.

getlnt
The getInt method is used to read data of type integer returned by Select expressions. There

are two methods for each data type. One method uses the column index and the other uses
the column label (example - Figure 12: line 42, 43) to read the data. Only the methods for
the

integer data type are here presented and described. As previously mentioned, programmers
need to master the schema of the returned relation.

updatelnt
The updatelnt method is used to update columns of data type integer and also to insert

values in columns of data type integer. There are two methods for each data type. One
method uses the column index and the other uses the column label (example - Figure 14:
line 75). Only the methods for the integer data type are here presented. As previously
mentioned, programmers need to master the schema of the returned relation.

updateRow
The updateRow method is used to confirm previously updated values; if operating in auto-

commit mode, the updated columns are committed.
insertRow
The insertRow method is used to confirm previous inserted values; if operating in auto-

commit mode, the updated columns are committed.

moveTolnsertRow

The moveTolnsertRow method is used to set the cursor used by ResultSet to point to the

35|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components
- —

tuple where new tuples are inserted. Thus, this method has to be invoked to start the insert
protocol.

moveToCurrentRow
The moveToCurrentRow method is used to restore set the previous cursor position (before

moveTolnsertRow).
deleteRow
The deleteRow method deletes the current selected tuple; if operating in auto-commit

mode, the deleted tuples are committed;

remaining nethods

The remaining methods are used to scroll on the ResultSet to select one of the tuples.

Additional detail about the ResultSet interface can be found in [Oracle, '13].

2.4 Current Approaches to Implement Access Control

In the context of RDBMS, access control is focused on protecting sensitive data managed by RDBMS
from legitimate users. Legitimate users are entities identified with username and password to
access databases. In order to control the access to data, several approaches have been presented
each one with its own characteristics and goals. The diversity of the approaches does not ease their
classification in major groups even if the classification follows the previous presented and
described dimensions of access control: architecture, granularity, awareability, contextuality and
adaptability. As such, the presentation of current approaches is split in two sub-sections. In the first
sub-section current approaches are organized and presented by technological aspects and in the
second sub-section the major research approaches are individually described and presented, and
not grouped under any classification.

As far as we know, no previous work has addressed the key aspects of this thesis. Two of those
key aspects are 1) the implementation of FGACM at the business tier level, built at runtime, and
kept updated when policies evolve and 2) business tiers driven by FGACM and based and exploiting
CLI features such as their multi-access mode: Direct Access Mode and Indirect Access Mode. The
only aspect that has been addressed by some researches is awareness about the established FGACP.

2.4.1 Current Techniques

Several techniques have been devised and used to implement access control. This sub-section
presents and describes some of the most used technical solutions for access control.

Views

Database views may be used as the basis for FGAC. Views are standard database entities that
aggregate selected and filtered data. Then, these data are used to evaluate the disclosing policy
to legitimate users in accordance with the established FGACP. Next follows an example of a view
restricting the access to rows of a table with ids < 100.

36|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components
——

Create view myTable as
Select * from table
Where id < 100

From now on, authorization is evaluated against the view and not against the original table. The
most usual implementations prohibits users from issuing the CRUD expression

Select * from table where id < 100

and, instead, they issue the following CRUD expression

Select * from myTable

Albeit being an easy technique, the use of views presents some disadvantages. For example, the
use of views is not scalable. The number of views increases with the number of policies.
Moreover, users accessing the same table but with different authorizations need different
views. While from the database schema point of view this means an unbounded number of
views, from the business tier point of view this means an unbounded number of CRUD
expressions. These disadvantages may be unsustainable in large databases with complex
schemas and many and complex access control policies. In order to minimize this scalability
drawback, [Rizvi, '04] proposes an approach where users always issue CRUD expressions
against the original tables but the authorizations are evaluated against security views.

Anyway, views also present one significant advantage. Views are relational entities
supported by the standard SQL language this way avoiding the need to additional tools or
additional techniques. As relational entities, they are kept together with database tables this
way conveying a single point for their development, deployment and maintenance.

Parameterized Views
A parameterized view is an SQL view definition which makes use of runtime parameters like
user-id, time and user-location. The next example shows a simple parameterized view.

Create view myTable as
Select * from table
Where id=SYSTEM_USER

This parameterized view lets the legitimate user to see all rows from table Table where the id
matches his/her user identification. Parameterized views are used to create different
authorization accesses based on a single view and a single CRUD expression, which is a different
and more efficient than the traditional views just presented. Thus, parameterized views convey
the same advantages and disadvantages as traditional views, but positively contribute to
minimize the lack of scalability of traditional views.

Parameterized views is also the approach proposed in [Roichman, '07] to implement FGAC
in Web databases. Basically, each user is identified as belonging to a group to which a set of
parameterized views is assigned.

37|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

Query Rewriting

Query rewriting is a technique used to rewrite CRUD expressions before their execution to
avoid unauthorized access to protected data. The rewriting process is usually conducted in a
central server and several techniques have been proposed. Next follows the presentation of
some of the most used techniques.

Addition of predicates
Appending predicates to where clauses is one of the used techniques to rewrite CRUD

expressions. Predicates are used to filter the data to be disclosed, in accordance with the
established FGACP. For example, the CRUD expression

Select * from table

is replaced by the CRUD expression at runtime

Select * from table
Where (some condition)

Tables replaced by views

This technique is used to replace names of tables by names of views representing the
authorized data. For example, the CRUD expression

Select * from table

is replaced by

Select * from myTable

where myTable is a view of table Table containing the authorized data.

Masking cells
Masking cells technique rewrites CRUD expressions to mask protected data that is returned

by Select expressions. For example, the CRUD expression

Select column from ..

is replaced by the CRUD expression

Select column = CASE somePolicy
When hide
Then HiddedValue
Else column

The rewritten CRUD expression uses at runtime a policy, somePolicy, to decide upon
disclosing attitude for the protected column. There are two main approaches to mask cells.
One uses named variables to represent protected data. The other uses the standard SQL
NULL values. Named variable are by far the best choice but named variables are not

38|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

supported by all RDBMS. The NULL value is the alternative and it is easily implemented. The
drawback is that the use of NULL values to protect data prevents the distinction between
real SQL NULL values and a hidden protected value.

Column removal

The column removal technique removes all protected columns from the select list
(projected attributes). For example, if the data contained in column col B of CRUD
expression

Select col A, col B, col C from table

is not authorized to be disclosed, the CRUD expression is rewritten as
Select col A, col C from table

This technique effectively hides the protected data but exceptions are raised if client-side
applications try to use the hidden column col_B. Moreover, the same CRUD expression when
used by users with different authorizations returns relations with different schemas. This
situation inevitably raises several difficulties not only during the development process of
client-applications but also during maintenance activities, which are both significantly
hampered.

Query rewriting technique has advantages and disadvantages. Among them, the following
advantages are emphasized:

Transparency
Query rewriting has the advantage of being transparent to database users. Database users

write CRUD expressions as if no security policy is implemented. Then, CRUD expressions
are rewritten in accordance with the established policies.

Scalabilit
From application tiers point of view there is no need to extend the number of CRUD

expressions to conform with the established FGACP. CRUD expressions are written as if no
policy was defined and then, at runtime, they are automatically rewritten.

Thus, query rewriting overcomes the main disadvantages of views and parameterized
views. Meanwhile, query rewriting conveys some disadvantages and threats. Among them the
following are emphasized:

Unawareness

The query rewriting process is an independent process out of the scope of database users.
Queries violating any security policy are rejected and users are pushed to deal with
corrective activities, very often with no feedback about the causes of the rejection.

Performance decay
The query rewriting process is usually processed by a centralized system and requires a

certain amount of computational resources. In spite of not being mandatory, in most of the

39|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

cases the systems responsible for the query rewriting process are the RDBMS themselves.
Additionally, after being rewritten, the performance of original CRUD expressions very
probably has decay in performance.

Dead lock

Dead locks may occur if policies use data from the tables being queried. These undesirable

situations are caused by non-terminating loops when policies recursively invoke

themselves when the table is queried. To prevent such dead locks additional expressive

power is needed [Olson, '08].

The query rewriting technique is widely used and proposed as solution to address FGACP.
Among them, the following proposals are emphasized: Oracle [Oracle], [LeFevre, '04], [Rizvi,
'04], [Wang, '07] and [Barker, '08].

Extensions to SQL

Currently, the standard SQL only permits limited forms of access control. Some of the forms are
the GRANT, REVOKE and DENY commands. These commands are far from coping with current
security needs. Extensions to the standard SQL have been proposed by several authors to tackle
the current security gap of the standard SQL language. Some contributions have been proposed
to extend the SQL standard, such as in [Chlipala, '10] through the known predicate and
[Chaudhuri, '07] by the generalization for the current SQL authorization mechanisms. Even if
the SQL standard was extended to deal with all security requirements, it would rely in a
centralized architecture conveying all the described advantages and disadvantages.

Language extensions, security languages and tools
Language extensions, security programming languages and tools have been proposed to

address FGACP. Current programming languages are extended and specialized functionalities
are included to address access control. Several researches have been conducted in this
direction. Among them the following are emphasized: SELiNks [Corcoran, '09] extends LINKS to
build secure multi-tier web applications; Jif [Zhang, '12] is a Java extension which uses labels in-
line with the source code to express access control policies; [Fischer, '09] introduces objects-
sensitive types driven by RBAC policies to overcome Java EE @RolesAllowed annotation
approach to RBAC. New programming languages have also been devised. In [Caires, '11], Caires
et al. present a new programming language named as Apg for verifying and for expressing
FGACP. In [Ribeiro, '01], Ribeiro et al. present a security programming language aimed at
integrating heterogeneous security policies. Some tools have also been devised. In [Chlipala,
'10], Chlipala et al. present a tool, Ur/Web, that allows programmers to write statically-
checkable FGACP as SQL queries.

PEP-PDP

Solutions based on PEP-PDP approach are based on the mixed architecture. Basically, PEPs are
included in-line with the source code of client applications to enforce the policies decided by a
PDP placed in a remote server. If authorization is granted, PEP executes the requested action
otherwise the requested action is refused. The best well-known proposal is the XACML [OASIS,

40|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

'12] standard from OASIS but other research proposals have also been presented and based on
this architecture. SELINKS [Corcoran, '09] has also proposed a PEP-PDP approach for multi-tier
web database applications.

Semantic Access Control

Semantic access control (SAC) uses Semantic Web [Berners-Lee, '01] concepts to the access
control area. The main difference to the remainder approaches is that decisions are based on
the semantic of attributes, such as resources and users, and not on stored or hard coded
information. It has been used in several domains such as: to integrate access control between
heterogeneous data repositories [Hu, '11; Pan, '06; Warner, '07], to provide secure content
access and distribution [Lopez, '02a; Valle, '02] and to extend semantic web concepts to RBAC
models [Ao, '04; Kim, '10].

RDBMS Vendors

Access control has been a permanent worry of RDBMS vendors. RDBMS vendors have been
providing embedded tools from which security experts build and maintain access control to the
data to be protected. Granularity of access control in RDBMS started to be at the database object
(tables and views) level. This granularity became inadequate when the claim for more security
increased. To cope with this increased demanding, RDBMS vendors started to support finer-grained
access control. Different approaches were followed. INGRES and Oracle uses a query rewriting
technique while DB2 [Bond, '07] uses a label-based technique. In spite of the diversity of policies,
RDBMS vendors have elected the RBAC as the preferred choice. Each RDBMS vendor provides its
proprietary approach leading to a situation where access control is far from being standardized.
Very often the security features of RDBMS are not enough and there is the need to provide a
different approach to access control. This need has been the motivation for the researches that have
been conducted and also one of the motivations of this thesis. A radical approach is the one
provided by Hippocratic databases [Agrawal, '02; LeFevre, '04].

2.4.2 Related Work

In this sub-section follows the presentation of work related with the enforcement of ACP (Access
Control Policies) and FGACP.

Virtual Private Database

Oracle addressed FGACP by introducing the Virtual Private Database [Oracle] technology. This
technology is based on rewriting CRUD expressions before their execution and in accordance
with the established FGACP. The authorization policy is encoded into functions defined for each
relation, which are used to return where clauses predicates to be appended to CRUD
expressions to limit data access at the row level. This approach provides a per-user view of each
database object (called Truman model in [Rizvi, '04]). Next follows an example based on two
tables:

Doc_Doctor {doc_id doc_name,...}

41|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components
- —

Pat_Patient {Pat_id,PatDoc_id,Pat_name,...}.

If doctors are restricted to see only their patients, if the following CRUD expression is issued by
a doctor

Select * from Pat_Patient
it will be automatically rewritten to
Select * from Pat_Patient where PatDoc_id=<id of the doctor logged in>

To set-up the access control, a function is written to compute the predicate to be added to
the CRUD expression and a policy is placed on the table Pat_Patient. The function needs to
select Doc_id from Doc_Doctor for the doctor logged in and then constructs the predicate
automatically.

It is also possible to use Virtual Private Database at the column level to prevent disclosure
of protected data. There are two alternatives: column removal (default behavior) - all cells
containing sensitive data are removed; cell masking - content of cells containing sensitive data
is replaced by NULL value.

Virtual Privacy Database is an alternative to views by avoiding some of their drawbacks
such as the need for an additional view for each policy. With the Virtual Private Database
technique, the same CRUD expression is shared by all users and automatically modified in
accordance with the permission of each user.

Hippocratic databases
In 1974 the United States Privacy Act defined a set of rules for limiting the collection, use and

dissemination of personal data held by Federal Agencies [Agrawal, '02]. The defined concepts
are generally known as Fair Information Practices [Systems, '73] and have been used to develop
important international guidelines for privacy protection [Agrawal, '02]. From these guidelines,
[Agrawal, '02] announces ten principles to characterize Hippocratic databases. Hippocratic
databases aim at integrating privacy policies into database architectures. The ten principles are:
purpose specification (for which the information has been collected), consent (purpose must be
consented by the donor), limited collection (minimum necessary for accomplishing the
specified purpose), limited use (run only those queries that are consistent with the purpose for
which the information has been collected), limited disclosure (information shall not be
communicated outside the RDBMS for purposes other than those consented), limited retention
(only until the fulfillment of the purpose), accuracy (information must be accurate and up-to-
date), safety (information must be protected by security mechanisms), openness (a donor is
able to access to its own information) and compliance (a donor is able to verify compliance with
the principles) [Agrawal, '02; Kirchberg, '10; LeFevre, '04]. Some efforts have been made to
bring those principles into practice, among which the ones of IBM [IBM, '07] and PostgreSQL
[Padma, '09] are emphasized. The following example is based on Hippocratic PostgreSQL

Select p.productName, p.unitsinStock, p.unitsOnOrder, p.reorderLevel
From Products p

42|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

Purpose stockControl
Recipient stockManager

The result of this Select will be restricted to include only the columns that the combination of
purpose and recipient is allowed to access according to the policy specification. It will be
further restricted to include only data of products to be shared with stockControl. From this
simple example it is clearly seen that databases addressing Hippocratic principles diverge from
traditional RDBMS. Additionally, Hippocratic databases also address data privacy which is a
distinct form of access control. While privacy is concerned with the right of individuals to
determine for themselves when, how and to what extent information about them is
communicated to others, access control is concerned with controlling which legitimate users
are allowed to access protected data.

[LeFevre, '04]

In [LeFevre, '04] LeFevre et al. propose a technique to control the disclosing data process in
Hippocratic databases. The disclosing process is based on the premise that the subject has
control over who is allowed to see its protected data and for what purpose. It is based on the
query rewriting technique. Policies are defined using P3P [W3(, '02] or EPAL [W3C, '03] and
comprise a set of rules that describe to whom the data may be disclosed and how the data may
be used. Two disclosure models are supported for cells: at the table level - each purpose-
recipient pair is assigned a view over each table in the database and prohibited cells are
replaced with null values; at the CRUD expressions level - protected data are removed from the
returned relations of Select expressions, in accordance with the purpose-recipient constraints.
Rules are stored as meta-data in the database. CRUD expressions must be associated with a
purpose and a recipient, and are rewritten to reflect the ACP.

SESAME [Zhang, '03

SESAME [Zhang, '03] is a dynamic context-aware access control mechanism for pervasive GRID
applications. It relies on a dynamic role based access control model (DRBAC) which extends the
classic RBAC model. Basically, DRBAC assigns default role hierarchies when subjects log in.
Afterwards, context of subjects are monitored and roles are dynamically delegated. SESAME
and DRBAC model have been implemented as part of the Discover [Bhat, '03; Mann, '01]
computational laboratory. Two types of context are considered: object context and subject
context. Object context is concerned about things related to users such as user’s location, time,
local resource and link state. Subject context is concerned with things related to systems, such
as the current load, availability and connectivity for a resource.

An experimental evaluation was carried out in the Discover [Mann, '01; Mann, '02]
computational laboratory to measure the induced overheads. SESAME follows a traditional
approach to enforce access control policies in a central system, conveying all the drawbacks
previously presented.

SELINKS [Corcoran, '09

43|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

SELiNks [Corcoran, '09] is a programming language in the type of LINQ and Ruby on Rails which
extends LINKS [Cooper, '07] to build secure multi-tier web applications. LINKS aims to reduce the
impedance mismatch between the three tiers. The programmer writes a single LINKS program
and the compiler creates the byte-code for each tier and also for the security policies (coded as
user-defined functions on RDBMS). Through a type system object named as Fable [Swamy, '08],
it is assured that sensitive data is never accessed directly without first consulting the
appropriate policy enforcement function. Policy functions, running in a remote server, check at
runtime what type of actions users are granted to perform. Programmers define security
metadata (termed labels) using algebraic and structured types and then write enforcement
policy functions that applications call explicitly to mediate the access to labeled data. Some of
the security strengths of SELiNks are:

Security
SELINKS is a cross-tier security technique this way ensuring an integrated security context

for the three tiers. Additionally, it uses Fable to ensure that security policies cannot be
avoided, to ensure that security policies are correctly enforced and correctly called
whenever a user tries to access protected data.

Integrated environment

SELiINksis cross-tier security technique relying on a single tool. This environment clearly
eases the development process of database applications based on multi-tier architectures.
Programmers do not need to master several tools and, above all, ensure their integration
and coordination to reach a high level of security.

Optimized latency
User defined functions run on database servers and not on web servers, avoiding the

overhead of needlessly transferring data between the web server and the database server.

Flexibility
Beyond access control, SELiNks allows other variety of security policies to be expressed:
information flow [Denning, '76], provenance [Buneman, '06] and automaton-based policies.

Some of the security weaknesses of SELINKs are:
Additional technique

In spite of its advantage of relying on a single tool, programmers need to master a new tool,
SELINKs, to develop secure applications.

Scope
Security labels specify a group-based access control policy, with separate access restrictions

only for readers and writers of a record. There is no way to separate access restrictions by
identifying inserts, updates and delete operations.

Jif [Zhang, '12]

Jif [Zhang, '12] is a security-typed programming language that extends Java with support for

44|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

information access control and also for information flow control [Denning, '76]. The access
control is assured by adding labels in-line with the Java source code to express access control
policies. The policy language supports: principals and labels, principal hierarchy, confidentiality
and integrity constraints, robust declassification and endorsement and some language features
such as polymorphism. Jif addresses some relevant aspects such as the enforcement of security
policies at compile time and at runtime. Anyway, at development time, programmers will only
be aware of inconsistencies after running the Jif compiler. In spite of its valuable contribution,
Jif is not tailored to be an end-to-end access control tool to data residing in databases. It is
mostly used to enforce security policies at the application level. As such, whenever used, JIF
needs to be complemented with other techniques to manage the access control to data residing
in RDBMS.

Olson, '08

In [Olson, '08], Olson et al. describe a model for Reflective Database Access Control (RDBAC)
based on the semantics of Transaction Datalog [Bonner, '97]. Privileges in the RDBAC model are
expressed as CRUD expressions rather than as static privileges contained in access control lists.
CRUD expressions use current state of databases to decide upon the accesses to be carried out.
In [Olson, '09] a concrete implementation is provided. At the present moment, there is a model
to define RDBAC policies and the CRUD expressions emanated from the policies. This result may
be used as an input to the Direct Access Mode.

[Rizvi, '04]

Rizvi et al. [Rizvi, '04] present a query rewriting technique to determine if a CRUD expression is
authorized but without changing the CRUD expression. It uses security views to filter contents
of tables and simultaneously to infer and check at runtime the appropriate authorization to
execute any CRUD expression issued against the unfiltered table. The user is responsible to
formulate the CRUD expression properly. They call this approach the Non-Truman model. Non-
Truman models, unlike Truman models, do not change the original CRUD expression. The
process is transparent for users and CRUD expressions are rejected if they do not have the
appropriate authorization. The transparency of this technique is not always desirable
particularly when it is important to understand why authorization is not granted so that
programmers can revise their CRUD expressions more easily. This approach has some
disadvantages:

Performance
The inference rules to check at runtime the appropriate authorization are complex and time
consuming.

Productivity

Authorizations are checked against security views and not against original data. The
process is transparent, so programmers do not know that their CRUD expressions are
running against security views. If any syntax error or security violation occurs, the
transparent process turns the debugging process more difficult.

45|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

Awareness

Programmers cannot statically check the correctness of CRUD expressions because the
policies and the mechanisms are centralized in a server. Programmers need to write,
compile and run the source code to become aware of any security violation.

Incompleteness
The inference rules are complex and their completeness is not assured by the authors.

[Dwork, '08]

Differential-privacy [Dwork, '08] has had significant attention from the research community. It
is mainly focused on preserving privacy from statistical databases. It really it does not directly
address the point here under discussion. The interesting aspect is Frank McSherry’s [McSherry,
'10] approach to address differential-privacy: PINQ - a LINQ extension. The key aspect is that
the privacy guarantees are provided by PINQ itself not requiring any expertise to enforce
privacy policies. PINQ provides the integrated declarative language (SQL like, from LINQ) and
simultaneously provides native support for differential-privacy for the queries being
written.

Morin, '10

Morin et al. [Morin, '10] use a security-driven model-based dynamic adaptation process to
address access control and software evolution simultaneously. The approach begins by
composing security meta-models (to describe access control policies) and architecture meta-
models (to describe the application architecture). They also show how to map (statically and
dynamically) security concepts into architectural concepts. This approach is mainly focused on
how to dynamically establish bindings between components from different layers to enforce
security policies. They did not address the key issue of how to statically implement dynamic
security mechanisms in software artifacts, in our case business tiers based on CLI.

Roichman, '07

[Roichman, '07] argues that Web databases are particularly vulnerable to SQL injection attacks
[Gregory, '05]. To overcome this security gap, authors propose an access control based on
databases’ built-in access control mechanisms: parameterized views [Eder, '96]. To address
users’ identification, a Parameter method is presented. Basically, users’ identities are known (or
automatically assigned using one of the proposed methods) and used to dynamically create
parameterized views which gather the relevant data to the user, this way avoiding the access to
unauthorized data. This approach is mainly focused on tackling SQL injection attacks and also
on preventing users of Web databases to access databases without being previously identified.
Users’ identification may be considered a key aspect of access control but insufficient to address
all aspects of access control. The authors themselves recognize that the proposed methodology
is restrictive because it does not address every situations: “The proposed access control
mechanism is capable to prevent many kinds of attacks...”.

46|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

[Chlipala, '10]

[Chlipala, '10] presents a tool, Ur/Web, that allows programmers to write statically-checkable
ACP as SQL queries. Basically, each policy determines which data is accessible. Then, programs
are written and checked to assure that data involved in queries is accessible through some
policy. To allow policies to vary by user, queries use actual data and a new extension to the
standard SQL to capture ‘which secrets the user knows’. This extension is based on a predicate
referred to as ‘known’ used to model which information users are already aware of to decide
upon the information to be disclosed.

Listing 1 presents a table user and its definition in Ur/Web. The policy expressed in Listing
2, named as sendClient, prevents users from reading data from other users. The predicate
known models the information the user is already aware of. In this case, the user may read data
about any row whose password he knows.

Ur/Web is a promising solution, but beyond introducing a new programming technique, it
presents a key drawback of not checking access control to data of where clauses, allowing
queries to implicitly leak protected data.

Table user: { Id: Int, Name: string, Pass: string }

Listing 1. Definition of table user in Ur/Web.

policy sendClient ({
Select *
From user
Where
known (user.pass)

}

Listing 2. Policy definition in Ur/Web.

Caires, '11
[Caires, '11] presents a programming language, known as Apg, for expressing and verifying ACP
by means of static type checking. Apg introduces programming structures known as entities
which define database tables and the associated ACP. Then CRUD expressions are validated
against the established ACP (at compile time) and also taking into account contextual
information. Each permission is composed by:

e The granted action (either read or write);

o The list of attributes (entity fields);

e A condition expressed as a logical formula.

Listing 3 shows an entity named as Person. It comprises four attributes. Then ACP are defined
for each attribute:
e Public: is readable in any condition as its associated condition (true) always hold;
e Secret: the content of this attribute in a row is readable only if the current user is the
user identified in that row (userid) and the user is authenticated in the system;
e The write permission applies to all fields.

47|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components
- —

entity Person [userid: string; public: string; photo: picture; secret:
string]
read public where true;

read secret where Auth (uid) and uid=userid;

write where Auth (userid);

Listing 3. Policy definition in Apg.

Beyond introducing a new programming technique this approach provides a unique action
(write) to authorize update, insert and delete operations on attributes. This limitation clearly
prevents a FGAC at the type of actions being executed. Unlike [Chlipala, '10], this approach
provides access control to data of where clauses.

Wang, '07

In [Wang, '07] three criteria are defined for enforcing FGACP. The algorithm should be sound,
secure and maximum. “An algorithm is sound if the answer returned by it is consistent with the
answer when there is no fine-grained access control policy. The algorithm is secure if the returned
answer does not leak information not allowed by the policy. The algorithm is maximum if it
returns as much information as possible, while satisfying the first two properties.” The rational is
presented and the work presented in [LeFevre, '04] is evaluated to conclude that it fails to
satisfy the correctness criteria for FGACP. Authors use a labeling mechanism for cell-level
disclosure policies to specify FGACP. Basically a policy determines whether a cell is viewable or
not. This approach has also been used to work on privacy-centered database systems [Emilin
Shyni, '10; LeFevre, '04]. Additionally, Wang argues that when one conceptual entity is split in
two or more relations linked through foreign keys then the attributes involved in the linking
process should be allowed even if the values of the keys cannot be released for privacy concern.
In order to preserve useful information for query evaluation, two types of variables are defined
to label unauthorized cells, this way avoiding the use of NULL value for protected cells. To prove
the soundness of the algorithm, a query rewriting approach is presented to modify CRUD
expressions in accordance with the established policies. Listing 4 presents a simple case to
demonstrate the approach. The first CRUD expression is ruled by a policy where for each tuple
in Employees, the value of attributes FirstName and HomePhone can be disclosed only when
the disclosure conditions DCrirstName and DChomephone do not return 0 (zero), respectively. The
rewritten CRUD expression employs the Case-Statement modification to mask unauthorized
cells. Authors claim the soundness of the technique but some aspects need a further attention:

Applicability
The technique was applied to Select expressions. There is no evidence of its applicability to
the three types of expressions: Insert, Update and Delete.

Performance
Authors conducted a performance evaluation with simple Select expressions and the

48|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

collected results suggest that scalability is compromised when the number of tuples is not
small and efficiency is not a major concern.

-- original CRUD expression
Select FirstName, HomePhone
from Employees

-- rewritten CRUD expression
Select FirstName =
case DCFirstName
when 0
then NULL
else FirstName
end,
HomePhone =
case DCHomePhone
when 0
then NULL
else HomePhone
end
From Employees

Listing 4. Query rewritten in T-SQL.

Barker, '08

In [Barker, '08], Barker et al. provide support for representing, in SQL (DDL), dynamic fine-
grained meta-level access control (DFMAC) policies. Meta-level policy is used to define different
facts of ACP such as open and closed access control. DFMAC policies are presented as being
important when goal-oriented access control requirements need to be represented. In goal-
oriented access control, organizational and individual roles change as a consequence of the
occurrence of events. Policies are represented in four tables:

e (ategory - to define to which categories users are assigned to;

e Policy - to store meta-level access control to be used by the query rewrite procedure;

e PCA - for permission category assignment and DCA - for denial category assignment.

From the data contained in these tables, and also from users’ identification, queries are
rewritten to enforce the established ACP.

This approach has the advantage of relying on SQL. Nevertheless, the work lacks of a deep
performance evaluation because the presented examples suggest that the added predicates may
have a significant impact on performance. Authors conducted some performance evaluations
(not sufficiently described) and the collected results have shown an additional overhead of 10-
15%, up to 26% and even “pushed towards a bound of unacceptability”.

[Chaudhuri, '07]

In [Chaudhuri, '07], Chaudhuri et al. propose a generalization for the current SQL authorization
mechanism. The model is based on adding predicates to authorization grants and also on
extending current SQL authorization model to support fine-grained authorization. Next follows
a simple example

49|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components
- —

grant select on Employees
where (employeelD=userld())
to public

This authorization specifies that each employee is granted access to its own employee record.
The model also supports nullification to control access at the cell level as shown in next
example

grant select on Employees (address)
where (some predicate)
else nullify to public

This authorization specifies that access to the address attribute of Employees is granted only if
the predicate is satisfied, otherwise a null value is returned.

The model also incorporates other features such as query for user groups and
authorization groups to simplify administration activities.

The model addresses the following aspects:
e Predicates can be applied on any form of grant: CRUD expressions, functions and stored
procedures;
e Nullification of values based on predicates to allow cell-level security [LeFevre, '04];
e Authorization on aggregates while limiting the access to raw data;
e Mechanisms to ease the administration of large number of application users.

To avoid large number of database users, the notion of user is defined at the application
user level. As such, users of applications must be authenticated and their identity made
available to the database.

Java EE
Java EE supports the enforcement of RBAC policies through the @RolesAllowed annotations

which are placed on methods definitions to control who has permission to invoke them, as
shown in the example presented in Figure 23. In this example only users with either the Seller
or Director roles are allowed to call the method getCustomer. Java EE enforces RBAC
dynamically at runtime by checking if users indeed play one of the specified roles.

This approach conveys some relevant limitations:

Users identification
There is no control neither on the identification of who is invoking protected methods nor

on the identification of who is being instantiated. This means that any Seller and any
Director are allowed to get access to any Customer.

Awareness
The checking process is only dynamically verified at runtime. This means that programmers
cannot statically verify if application code in fact respects the enforced RBAC policies.

50|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

15 BRolesAllowed ({"Sellexr™, "Director™})

18 public static Customer getCustomer(int customerId) {
17 Customer o = null;

18

15 return c;

20

21

Figure 23. Enforcement of RBAC in Java EE.

[Fischer, '09]
In [Fischer, '09], Fisher et al. introduce Object-sensitive RBAC (ORBAC), an extension of RBAC to

be used with object-oriented programming languages. The goal is to address limitations of
current RBAC model and associated frameworks as the one provided by Java EE. Instead of
controlling access at the class level, ORBAC supports access control at the level of individual
objects, allowing a finer-grained access control than Java EE. Additionally, ORBAC provides a
type system that statically ensures that a program is in accordance with a specified ORBAC
policy, preventing programmers from writing application code not aligned with the established
policies. ORBAC addresses these limitations by allowing roles and privileged operations to be
parameterized by a set of index values which are used to distinguish users of the same role.
Figure 24 presents the case of Figure 23 but now based on ORBAC. The RoleParam annotation
on the cld variable (customer Id) indicates that cld will be used as an index in role annotations
within the class. Requires annotation is equivalent to Java EE @RolesAllowed annotation but
uses additional meta-data to statically allow Seller<customerld> or Director<customerld> to
invoke getCustomer only. @Returns annotation is similar to a post condition asserting that the
returned Customer object has a cld role parameter variable which is equal in value to the
customer identification passed to the method.

25 BRoleParam public final int cId;

28 BRequires(roles={"Sellex","Director"}, param={"customerId", "customerId"})
27 EReturns (roleParams="cId",vals="customsxId")

28 public static Customer getCustomer (ERoleParam final int customerId) {

29 Customer o = null;

30

31 return c;

32]

33

Figure 24. Enforcement of RBAC in ORBAC.

[OASIS, '12]

XACML [OASIS, '12], as previously described, comprises two main components, PEP and PDP.
PEP is responsible for enforcing the decisions of PDP. Basically, every PEP comprises some logic
to communicate with PDP and then uses some business logic to accomplish its task whenever
authorization is granted. Therefore, whenever a modification in a policy implies a modification
on the business logic, there is no other solution than update the business logic in advance.

51|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

XACML does not give any guidance about any aspect of business logics. Not about how to keep
them updated, not about how to promote the awareness of the implemented mechanisms, etc.

2.5 Summary

This chapter is focused on the required background to easy the reading and the understanding of
this thesis and also on the state of the art. It is organized in four sub-sections, each one addressing a
different issue.

The first section presents some basic concepts such as the most relevant access control
policies, architectures of FGACM and dimensions of FGACM. There are several types of policies but
RBAC is the most used policy to protect sensitive data of relational database applications. The
architecture of FGACM may follow one of three possible approaches: centralized, distributed or
mixed. Each approach presents advantages and disadvantages. Independently from the followed
architecture, FGACM present four additional dimensions, each one with its implications:
granularity, awareability, contextuality and adaptability.

The second section presents current tools that are used to build business tiers. Several tools
have been devised to develop business tiers but none of them addresses access control. Two types
of tools were emphasized: O/RM tools and CLI. From these tools, CLI were chosen as the underlying
middleware to interact with RDBMS. CLI provide powerful features if correctly exploited lead also
to powerful implementations of FGACM. Performance and several access modes to data are two of
the most important features of CLI.

The third section presents JDBC.]DBC is the selected CLI to be used in the proof of concept of
the DACA.

The fourth section describes current approaches addressing FGACP. Several approaches are
presented aimed at providing access control to data residing on RDBMS. Some are provided by
vendors of RDBMS, others have been provided by the academic community and other has been
proposed through a standard emanated from OASIS, XACML. The diversity of needs and the
diversity of possible solutions lead to the current situation where system architects are frequently
pushed to devise their own and specific security solutions. From the presented background and
state of the art, there is the evidence that current approaches to deal with access control are based
on: tools provided by vendors of RDBMS, query rewriting techniques, extensions to the SQL
standard, new programming languages, language extensions and XACML approach. None of the
approaches address the dynamic adaptation of FGACM deployed at the client-side applications. As
previously mentioned, the adaptation of mechanisms is an avoidable activity to be performed in
advance when mechanisms evolve. Moreover, the current research approaches deal mostly with
native CRUD expressions only (do not take advantage of other access modes such the ones provided
by CLI) and some of them do not support other types of CRUD expressions but Select expressions.
Additionally, the freedom provided by current approaches to use any CRUD expression opens the
possibility of leaking security gaps.

The next chapter describes the path that has been followed from the CLI until the DACA.

52|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components
- —

3 From Call Level Interfaces Towards the DACA

This chapter explains the research that has been conducted to design the DACA from CLI. Basically
three steps were taken. In the first step, the architecture of CLI has been redesigned to define a
model able to incorporate schemas of database objects to tackle the impedance mismatch between
the relational and the object-oriented paradigms [Pereira, '10b; Pereira, '11b]. In the second step,
the model has been adapted to promote the development of reusable business tier components.
Finally, in the third step, the outcome of the previous work was used to link access control on
business tier components. The main outcome of this third step is the Dynamic Access Control
Architecture. The DACA has been devised to implement dynamic FGACM on business tiers based on
CLI. Some concepts are common to the three steps and, therefore, they will be presented
beforehand to avoid unnecessary repetitions of text and descriptions.

The chapter is organized as follows. Section 3.1 introduces some fundamental concepts for the
DACA. Section 3.2 presents the model used to integrate CLI and schemas of relational databases.
Section 3.3 presents the model used for building reusable business tier components form CLI.
Section 3.4 briefly describes the approach that has been followed to enforce dynamic access control
policies at the level of business tiers relying on CLI and, finally, section 3.5 summarizes the present
chapter.

3.1 Concepts

CRUD expressions and LMS are two key entities of CLI. Both are the entities used to access
databases and, therefore, the entities on which FGACM may rely on. To this end, we introduce three
concepts to formalize the execution of CRUD expressions: CRUD Schema to formalize CRUD
expressions, Business Schema to formalize the necessary services to manage the access to data for
the two access modes (Direct Access Mode and Indirect Access Mode) and, finally Business Entity to
formalize the software artifact responsible for implementing a Business Schema to execute CRUD
expressions. These concepts were devised and developed during the two last steps [Pereira, '12d;
Pereira, '11a; Pereira, '11c; Pereira, '12c; Pereira, '12b; Pereira, '13a; Pereira, '13b; Pereira, '13d;
Pereira, '13e].

3.1.1 CRUD Schema

There are four types of CRUD expressions (Select, Update, Insert and Delete) each one with its own
characteristics. Some characteristics are shared among two or more types but others are not
shared. These observations led to question whether it would be possible to formalize an abstract
representation for CRUD expressions. To start the process, we present the main characteristics of

53|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

CRUD expressions:

Types of CRUD expressions

There are four types of CRUD expressions conveying different properties. Analyzing their
properties, we see that they may be organized in two major groups. One group, known as
Reading, comprises the Select expression type only and the other group, known as Updating,
comprises the remaining three types of CRUD expressions. This organization is mainly derived

from the fact that Select expressions return relations and the other CRUD expressions do not.
Thus, there is a clear difference on the services to be provided for each group.

Runtime values
Beyond their types and the syntax of the SQL language, applications use other entities during
the building process of CRUD expressions. These entities are a sort of variables whose values

are set at runtime and are used by applications to exchange data with RDBMS. There are three
types of variables: attribute list, column list and clause list.

Attribute set

The attribute set is characteristic only of CRUD expressions of type Select. The attribute set
represents returned values by Select expressions. Attribute set is commonly known as the
attribute list. Attribute sets are not optional on CRUD expressions of type Select. Every
Select expression has one attribute set.

Column set

The column set is characteristic of CRUD expressions of type Insert and Update. They are
used to dynamically define runtime values for column lists. Column lists contain the values
to be inserted or updated on database columns. Columns sets are not mandatory.

Clause set

The clause set is characteristic of CRUD expressions of type Select, Update and Delete. They
are used to dynamically set runtime values of clause conditions. Clause sets are not
mandatory.

Result

Unlike the Select expression, the remaining three types of CRUD expressions modify the state of
databases. Delete expressions delete rows, Update expressions update rows and Insert
expressions insert new rows. After being executed and the database state modified, client
applications are informed about the number of modified rows.

From these characteristics, a simplified formalization for CRUD expressions is now presented.
There are two types of CRUD expressions. The type Reading is formalized by the attribute set and
the clause conditions set. The type Updating is formalized by the column set, the clause condition
set and the number of affected rows, as follows

Type = {Reading, Updataing}

Reading = {Att, CC}
Updating = {Col, CC, Result}

54|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components
- —

Figure 25 shows three CRUD expressions representing the two types of CRUD expressions and
representing different combinations of runtime values. The first CRUD expression is of type
Reading and the correspondent CRUD Schema comprises all attributes of table Categories, one
runtime value for clause conditions. The second CRUD expression is of type Updating and the
correspondent CRUD Schema comprises three runtime values for the attribute set. The third CRUD
expression is of type Updating and the correspondent CRUD Schema comprises one runtime value
for the attribute set and one runtime value for the where clause condition. The relevancy of CRUD
Schema concept is not restricted on being a formalization method of CRUD expressions. Another
relevant aspect derives from the fact that the relationship between CRUD Schemas and CRUD
expressions is 1 to many. An indeterminate number of CRUD expressions may share the same CRUD
Schema. Figure 26 shows an example of two CRUD expressions: both are Select expressions, both
share the same attribute set and both have no values defined at runtime. CRUD expressions sharing
the same CRUD Schema are herein known as sibling CRUD expressions.

Select =
From Categories c
Where c.CategoryID=7;

Insert into Categories
Value=s (?, ?, ?):

OTpdace Categories
Set categoryMName=7
Where CategorvID=7;

Figure 25. Three CRUD expressions with different combinations of CRUD Schemas.

--CRUD expression 1
Select =
From Categories:;

—— CRUD expression 2
Select =
From Categories c
Where c.CategoryId=10;

Figure 26. Two sibling CRUD expressions.

The presented concept of CRUD schema confines the scope of CRUD expressions to sibling
CRUD expressions only. This restriction is acceptable and adequate when a tight binding between
services to be provided and CRUD expressions is a requirement. In situations in which this tight
biding is not a key requirement, the CRUD Schema concept is too restrictive preventing the
grouping of similar CRUD expressions that are not siblings. To overcome this situation, the concept
of CRUD Schema is extended to support not one but one or more CRUD Schemas. This approach
may be used in any situation whenever there is the need to optimize the number of CRUD Schemas.
Jayapandian and Jagadish [Jayapandian, '08] have concluded that a large number of CRUD
expressions “can potentially be composed from a given set of related schema elements”. Beyond not

55|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

being CRUD Schemas, Schema elements [Yu, '06] are neither concerned about access control.
Anyway, their approach may be used to optimize the number of CRUD Schemas. Returning to the
main point, depending on the needs and requirements, there are two approaches to formalize
CRUD Schemas, which are herein known as closed approach and open approach.

3.1.1.1.1 Closed approach

In the closed approach, CRUD Schemas are only used to formalize sibling CRUD expressions. The
closed CRUD Schema approach has the advantage of conveying a complete schema awareness of
each CRUD expression. As a disadvantage, each CRUD Schema is not flexible to accommodate CRUD
expressions with different CRUD Schemas. If a CRUD expression is formalized through a different
CRUD Schema a new CRUD Schema is needed.

3.1.1.2 Open approach

Unlike the closed approach, the open approach is designed for managing several CRUD Schemas.
CRUD Schemas supported by the same open CRUD Schema are herein known as sibling CRUD
Schemas. Sibling CRUD Schemas are characterized by sharing their types of CRUD expressions and
their attributes sets. Only runtime parameters may vary from CRUD Schema to CRUD Schema. This
means that the variations between CRUD Schemas are limited to the parameters whose values are
defined at runtime: column set and clause set. The open approach has more flexibility than the
closed approach, this way leading to advantages during the development process of business tiers
and also after their deployment (at runtime). Next follows a description for each advantage.

Development
The flexibility of the open approach increases the opportunity to reuse existent CRUD schemas

when a new CRUD expression is needed. Therefore, the open approach minimizes the number
of the needed CRUD schemas to support a set of CRUD expressions.

Runtime
If the architecture of business tiers supports the deployment of CRUD expressions at runtime,
then the open approach will minimize the maintenance activities at the business tiers level.

In spite of these significant advantages, the open approach also conveys some drawbacks. Among
them, two are emphasized:

Awareness

The flexibility of the open approach is obtained by providing services able to support any
number and any type of runtime parameters. This flexibility requires programmers to master
schemas of runtime parameters. This need is not necessary if the closed approach is used
because the schemas for the runtime parameters are tailored to one CRUD schema only.

Security

The flexibility of the open approach conveys more freedom to use more CRUD expressions.

56|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

Whenever security is considered a key aspect, a greater supervision is needed to know which
CRUD expressions are being used.

Listing 5 shows four CRUD expressions none of which is sibling. When using the closed
approach, four CRUD Schemas are required: one for each CRUD expression. When using the open
approach, two CRUD Schemas are required: one for the two first CRUD expressions and another for
the two remaining CRUD expressions.

-- CRUD expression 1
Select *
from Categories;

-- CRUD expression 2
Select *
from Categories
where CategoryId=?;

-- CRUD expression 3
Insert into Categories
values (?, ?);

-—- CRUD expression 4
Insert into Categories
values (2, 2, 2, ?2);

Listing 5. Four examples of CRUD expressions.

Summarizing, a CRUD Schema comprises five independent parts:

¢ amandatory type schema - the CRUD type (Reading or Updating);

e the attribute set (only for Select expressions);

e an optional clause set (open or closed approach) - for setting the runtime values for the
conditions used inside SQL clauses, such as the “where” and “having” clauses;

e an optional column set (open or closed approach) - for setting the runtime values for
the column list of Insert and Update CRUD expressions;

e amandatory result schema for Insert, Update and Delete CRUD expressions - to retrieve
the number of affected rows whenever CRUD expressions are executed.

3.1.2 Business Schema

Business Schema (BS) leverages the CRUD Schema concept to formalize the set of necessary
services to be provided to manage the execution of CRUD expressions organized by CRUD Schemas.
It comprises several services among which are emphasized: 1) access to data through the direct
and indirect access modes and 2) services to manage the scrolling process on LMS. These services
are customized to address specific requirements needs. For example, when dealing with access
control, Business Schemas are driven by access control and, therefore, have to be arranged in order
to be in accordance with the established FGACP.

When dealing with access control, the Direct Access Mode is concerned with the authorized
CRUD expressions written in the native SQL language and the Indirect Access Mode is concerned
about the actions on LMS. Table 3 shows a possible definition for the permissions on an LMS
derived from the CRUD expression Select a, b, ¢, d from table. This access matrix [Lampson, '74] like

57|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

representation defines for each attribute of this LMS, which actions (read, update, insert, delete) are

authorized. delete action is authorized in a tuple basis and, therefore, it is executed as an atomic

action on all attributes. In situations where access control is not provided, and when LMS are

updatable, all actions on LMS are available to be used by programmers of application tiers. This

example is access control oriented but the concept of Business Schema is not tied with any specific

purpose. The only purpose of Business Schema is to provide a formalization process to reorganize
the services provided by CLI to access data residing on LMS.

a b c d
Read yes | no | yes | yes
Update | no | yes | no | yes
Insert | yes | yes | no | no
delete yes

Table 3. Example of a table of permissions in a LMS (Indirect Access Mode).

3.1.3 Business Entity

Business Entities (BE) are software artifacts (classes) responsible for managing the execution of

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

Flpublic int
return

TA()
rz.getInc("a");
Fpublic int
return

rC{)
rz.getInt ("c");

Flpublic int
return

D)
rz.getInt ("d");

vold wB(int walue) throws

.updateInt ("b", walue):;
vold wD(int walues) throws
.updateInt ("d", walue):;

vold i1A(int walue) throws

updatelnt ("a", walus);
vold iB(int walue) throws
.updatelInt {("bE", walue):

public
ra.

wold delete ()
deleceRow ()

throws SQLException {

throws SQLException {

throws SQLException {

SQLException {

SQLExRception {

SQLException {

S5QLException {

throws SQLException {

Figure 27. Partial example of how to implement the permissions of Table 3 on LMS.

58|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

CRUD expressions through the implementation of Business Schemas. Therefore, Business Entity is a
general concept to be used for the building process of software classes. As Business Schemas,
Business Entities are not oriented to address any specific requirement, such as access control. In
each particular context, Business Entities, as Business Schemas, are customized to address the
required needs. Instances of Business Entities are herein referred to as Business Workers (BW).
Figure 27 partially presents an example based on JDBC to show a Business Entity that wraps a
ResultSet (rs - LMS) and enforces the permissions defined in Table 3. Only attributes a, c and d are
readable (line 20-28). Only attributes b and d are updatable (line 31-36). Only attributes a and b are
insertable (line 39-44). Rows are deletable (line 48).

3.2 Modelization of Call Level Interfaces

In spite of their individual successes, the object-oriented and the relational paradigms are simply
too different to bridge seamlessly, leading to difficulties informally known as impedance mismatch
[David, '90]. The diverse foundations of the object-oriented and the relational paradigms are a
major hindrance for their integration, being an open challenge for more than 45 years [Cook, '05].
The challenge derives from the multiplicity of aspects that need to be bridged across both
paradigms: imperative languages versus declarative languages; compilation and execution
performance versus search performance; classes, algorithms and data structures versus relations
and indexes; transactions versus threads; null pointers versus null for the absence of value [Cook,
'05], and finally, inheritance versus specialization. The impedance mismatch thus presents several
challenges for developers of database applications, where often both paradigms are found. These
challenges are especially noticeable in environments where production code is under strict
development deadlines, and where (timely) code development efficiency is a major concern. In
order to cope with the impedance mismatch issue, several solutions have emerged, among them CLI
are herein emphasized. In spite of their relevancy, CLI present several drawbacks as previously
described. The modelization of CLI was the first step to overcome some of the drawbacks and it
was addressed in the following papers [Pereira, '10a; Pereira, '10b; Pereira, '11b; Pereira, '06; Oscar
Narciso Mortagua Pereira, '05a; Oscar Narciso Mortagua Pereira, '05b].

3.2.1 Motivation

This section aims to emphasize common drawbacks regarding the utilization of CLI. The
modelization process is not concerned with access control but mainly with the integration process
of the relational and the object-oriented paradigms. In this context, the main drawbacks of CLI are
organized in four categories [Pereira, '10b; Pereira, '11b]:

e 1- The process for editing CRUD expressions;

e 2- The process for reading data from returned relations;

e 3- The process of updating databases through updatable LMS;

e 4- Protocols of LMS regarding their usability.

One again, JDBC is used as a representative of CLI. Figure 28 presents a simple example, which

comprises some of the drawbacks related to categories 1), 2) and 3). This example is used in the
following paragraphs to describe]DBC drawbacks:

59|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

Linkage
There is no easy way to link CRUD expressions and their results to the application they assist.

JDBC provides services to ease the integration of object-oriented applications and relational
databases but relevant issues are not overcome such as string concatenation (Figure 28: line
22-24) and the conversion between relational and object-oriented paradigms (Figure 28: lines
27,28, 30).

Edit
The editing process of CRUD expressions and access to their results is tricky and error-prone.

CRUD expressions are constructed by concatenating strings and access to their results is
achieved by reading attribute by attribute in a row by row basis. Some of the most usual errors
are:
Concatenation errors
Whenever CRUD expressions are built from concatenated strings there are several types of
errors that are easily made. The most common and very often very difficult to detect are
missing spaces between lines (Figure 28: lines 22, 23) and missing spaces between
substrings as the missing before “and” (Figure 28: line 23).

Type mismatch

Programmers need to master CRUD Schemas to be able to use the correct data type when
accessing attributes of LMS. Any type mismatch error is only detected at runtime leading to
an increased effort to deploy business tiers error free.

Misspelled attribute name

Programmers need to master CRUD Schemas to be able to use the correct attribute name
when accessing attributes of LMS. Any type misspelled name is only detected at runtime
leading to an increased effort to deploy business tiers error free.

Debug
Previous errors cannot be checked for correctness at compile time, addressed in [Gary, '07].

None of the previous errors can be caught at compile time demanding great accuracy while
editing the source code to prevent additional time on testing, debugging and future
maintenance.

Maintenance
CRUD expressions are awkward regarding their maintenance, addressed in [Andy, '08]. CRUD
expressions (building process and execution) depend on many different entities grouped in
three classes: SQL syntax, services of CLI and database schemas. While SQL syntax and services
of CLI can be considered stable, database schemas are dynamic entities. Database schemas
change for many reasons. Some of the most common reasons are:
e An initial error on conceptual model or logical model;
o The emerging of new requirements, which usually happens several times during the
development process and even also after the deployment process of database
applications.

60|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

Any simple change in a database schema may involve a huge work on updating not only the
strings that encode the affected CRUD expressions but also the schema of the retuned relations
and, therefore, the name of attributes that are used in the indirect access mode.

SQL injection attacks
CRUD expressions are vulnerable to SQL injection attacks, addressed in [Gregory, '05]. This
issue is not addressed in this thesis.

LMS usability
LMS have dozens of states, dealing with different combinations of LMS instantiations,

directions, accesses, updates, etc. The developer is before a huge task to become aware of how
to use LMS. LMS comprise several distinct protocols not organized in distinct interfaces,
conveying the idea that everything is possible in anytime. For example, ResultSet interface is
composed by more than 200 methods and 10 attributes. Each ResultSet state has its own usage
protocol gathering a subgroup of all methods of the ResultSet interface. While Read and Delete
protocols do not comprise a start and an end instruction, Update and Insert protocols always
have a start instruction (implicitly for Update and explicitly for Insert) and an end instruction.
Besides the starting and the ending instructions, the main issue for Update and Insert protocols
is that the cursor cannot be moved from the current selected row while the protocol is being
executed. If the cursor is moved from the selected row while the protocol is being executed, the
protocol will be aborted and previous changes are discarded from the in-memory of LMS. In
order to overcome some of these difficulties we will present an approach where each protocol
is executed through a dedicated interface this way improving ResultSet usability.

21 |Flwvoid produoct (int categorvId, float unitsInStock) throws SQLException {
22 sgql="zelect * from Products" +

23 wher yId=" + categoryld + "and "+

24 "unitInStock<™ + unitsInStock +";";

25 ra=st.executefuery(sgl) ;

26 while (r=.next()) {

27 productId=r=s.getInt ("productId™);
28 productName=rs.get5tring ("produtlame™) ;

29

30 rs.updateInt ("unitsOnCrder" ,unitsOnOrder (productId)) :
3
32 ra.updateRow () 7
33
34
35|}

Figure 28. Typical JDBC/CLI drawbacks.

Some of the aforementioned drawbacks have already been individually addressed by other
authors as previously cited. The modelization of CLI proposal in this work constitutes an integrated
and unified alternative to overcome all the aforementioned drawbacks, except for the SQL injection
attack.

6l|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

3.2.2 Proposed Approach for the Modelization of CLI

The modelization process does not cover all functionalities of CLI but only those directly related
with the execution of CRUD expressions such as those related to the access modes of CLI: the Direct
Access Mode and the Indirect Access Mode. The modelization process aims at tackling the
aforementioned drawbacks of CLI. The approach is based on a model and on a tool from which
Business Entities are automatically built. Figure 29 presents the model to represent CLI, herein
referred to as the CRUD-Model. This model clearly identifies the main sub-functionalities of CLI and
aggregates them in independent interfaces: IExecute, ILMS, IResult and ISet. Next follows a
description for each interface:

IExecute

[Execute interface comprises services to execute CRUD expressions using the Direct Access
Mode. Beyond the execution of CRUD expressions, this interface is responsible for setting the
runtime values of clause conditions for all types of CRUD expressions.

ILMS

ILMS interface is used to access to functionalities of LMS and it is available only when CRUD
expressions are of type Reading. One of its main functionality is the management of the Indirect
Access Mode. ILMS comprises several interfaces:

[Readability
[Readability interface comprises one interface, IRead, to read data from LMS. This interface

is used for read-only and updatable LMS. Methods of IRead are driven by the schema of the
returned relation and, as such, are semantically oriented and type-safe.

[Updatability
[Updatability interface comprises several interfaces to manage updatable LMS:

[Delete: comprises all methods associated with the delete protocol;

[Insert: comprises all methods that are needed to control the insert protocol;
[Update: comprises all methods that are needed to control the update
protocol;

[Write: comprises all the methods associated with the write protocol. These
methods are driven by the schema of the returned relation and, as such, are
semantically oriented and type-safe;

[Read: comprises all methods associated with the read protocol. These methods are
driven by the schema of the returned relation and, as such, are semantically
oriented and type-safe.

IScrollability
[Scrollability interface comprises two interfaces to manage the two possibilities for scrolling

policies:

[Scrollable: comprises all methods associated with scrollable LMS. The methods are
only present if the LMS is scrollable;

[ForwardOnly: comprises all methods associated with forward-only LMS. The
methods are only present if the LMS is forward-only.

62|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components
- —

[Set
[Set interface is used to set the runtime values for the column set of Insert and Update
expressions.

[Result
[Result interface is used to retrieve the number of affected rows when a CRUD expression of
type Updating is executed.

Figure 30 presents a block diagram for the modelization process of CLI. Basically, the architectural
CRUD-Model accepts as input CRUD expressions and some additional metadata to build
Business Entities responsible for managing CRUD expressions. This implementation is very similar
to the one presented in [Pereira, '10b; Pereira, '11b]. From CRUD expressions and from
complementary metadata (for example, Scrollability policy and the Updatability policy to be used),
the architectural model is responsible for validating the correctness of CRUD expressions, for
inferring the CRUD Schemas and also for building automatically the source code for Business
Entities in accordance with the CRUD-Model.

Only if CRUD expression - -
is of type Insert, «interface» «interface» Used to set the attribute list.
Update or Delete T IResult ISet — T 7| Only if CRUD expression is
of type Insert or Update
User to execute CRUD Zﬁ Only of CRUD expression
expressions and to set «interface» CRUD-Model | | is of type Select
the runtime values of ——~ IExecute <]— -
clause conditions. +CRUD-Model() //
/s
. 4 «interface»
7 IRead
Only if LMS is //
read-only 7 «interface»
_[> IUpdate

Only if LMS is
updatable

«interface»

\\ V \ _,_[> linsert
«interface» \ «interface» \ «interface»
IReadability |<}——— IMs |——\——T IUpdatability

«interface»
J7 47 47 _|_[> IWrite

«interface» «interface» «interface»
IRead IScrollability IDelete

Only if LMS is
scrollable

Only if LMS is

«interface» «interface»
forward-only

= —] IForwardOnly IScrollable |-

Figure 29. Business Schema for the modelization of CLI: CRUD-Model.

63|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

g
9
10
11
12
16
@
12 =]
19
20
21
22| L

24
25
26 -
@
28|
29
30

32 1
33
34 L
35
@

37
38
39

40
@

42
43
44

@

48
47
48

49

Architectural CRUD-Model

- CRUD expression
- Complementary metadata

Business Entity

Figure 30. Block diagram for the modelization process of CLI.

public class Product implements IExecute,

private String =sgl; priwvate ResultSet rs;
private Statement sty private Connection conng

public Product()

@0verride

public wvold execute (int categoryId, int unitsInStock)
sgql="zelect * f Froducts where cate I

unitsInStock<™ + unitsInStock +™:";

rs=st.executeluery(=sqgl) ;

}
BOverride

IScrollability,

d=" 4+ ecategorvId +

v

throws SQLException {

public boolean moveNext () throws SQLException {
recurn rs.next();

}

@Cverride

public int produoctId() throws S0LException {
return rs.getInt {("productId™);

}

@0verride

pubklic Scring prodoctName () throws SQLException {
return rs.getitring ("productlame™) 2

H

BOverride

public vold unitszOnOrder (int unitsCnlOrder)
ra.updateInt ("unitzCnlrder”, units0nlrder) ;

}

@0verride

public volid updateRow () throws SQLException {

r=z.updateRow () ;

}

@0verride

pubklic wvolid ecancelUpdate ()
rz.cancelRowlpdates () ;

throws SQLException

{

Figure 31. Partial view of a Business Entity based on the CRUD-Model.

IUpdatability {

throws SQLException {

and "+

64|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

Next follows an example to show a real case to implement a Business Entity. Figure 31 presents
a partial view of a Business Entity aimed at managing the CRUD expression

Select * from Products
Where categoryld=? and unitsInStock<?

The CRUD expression is compiled-on-the-fly (complementary metadata) and LMS is forward-
only and updatable (complementary metadata). To accomplish these requirements, the presented
Business Entity implements the following interfaces: [Execute, IScrollability (IForwardOnly) and
[Updatability (IRead, IUpdate, IInsert and IDelete).

Now that a Business Entity has been presented, we show, from the application tier point of
view, the use of that Business Entity (see Figure 32). The drawbacks presented in this section for
CLI are clearly overcome by CRUD-Model. The following aspects are emphasized:

CRUD expressions

CRUD expressions are now automatically encoded inside strings after being validated by the
CRUD-Model (Figure 31: line 19-20). Previous errors associated with CRUD expressions are no
longer a concern.

Source code
There is no need to write any source code. From CRUD expressions and from selected metadata,
source code of Business Entities is automatically built in accordance with the CRUD-Model
(Figure 31).

22 =] public wvoid product() throws SQLException {

23 Product p = new Product():

24 p.execute (categoryld, unitsInStock):

25 IRead r=p:

26 ITpdate u=p:

27 IWrite w=p;

28 while (p.moveMext()) {

29 productId=r.productId().

30 productName=r.productName () 2

31 nther attributes

3z w.unitaOnOrder (unitaOnOrder (productId)) ;

33 update other attributes

34 u.

33 H () cancelUpdate () woid

34 0 equals (Object obi) boolean

37 0 getClass () Class<?>

=) O hashCode () int

i

40 O notifvall () wvoid
@O toString() String
0 updateRow () void
Dwait() wvoid
O wait(long timeout) woid
@ wait (long timeout, int nanos) void

Figure 32. Example shown in Figure 28 but based on the CRUD-Model.

65|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

LMS usability
Functionalities of LMS are now organized around interfaces (Figure 32: lines 25-27) and

the access methods are semantically driven and type safe (Figure 32: line 29-32). From the
open pop-up window on line 34 we see that interface [Update provides two methods:
updateRow and cancelUpdate.

To achieve these results, there is the need to devise a tool similar to the one used in [Pereira, '10b;
Pereira, '11b]. With this tool, programmers need only to write CRUD expressions and define some
additional metadata to overcome all the presented drawbacks of CLI. Then, the tool automatically
builds Business Entities to manage the execution of CRUD expressions. Each Business

Entity manages its own CRUD expression.

3.3 Componentization of CLI

The componentization process of CLI is mainly concerned with the building process of reusable and
adaptable business tier components. Componentization of CLI was addressed in the following
papers [Pereira, '11a; Pereira, '11c; Pereira, '12b; Pereira, '13a; Pereira, '13b; Pereira, '13e]. Good
programming practices advise the development of database applications relying on a multi-tier
architecture. The three tier architecture is the most widespread one comprising the application tier,
the database tier and the middle tier known as the business tier. The business tier may provide a
clear separation (technological, administrative and organizational) between host databases and
client applications. Database applications of some complexity may comprise hundreds of CRUD
expressions to deal with business requirements. Very often they cannot be inferred from any data
model that may eventually be available (database schema). This leads to situations where the
development and maintenance processes of business tiers are very tedious and exhaustive.
Programmers are pushed to write similar source code for each CRUD expression, mainly for Select
expressions with a long attribute list. There should exist a methodology to relieve programmers
from these tedious, exhaustive and error-prone processes. To address these gaps, a research has
been conducted to devise reusable business tier components based on CLI.

3.3.1 Components

Component-based development is a key topic in software engineering [Bachmann, '00; Heineman,
'01; Szyperky, '02]. Component-based development aims to compose software artifacts from other
pre-built software artifacts [Heineman, '01]. At the end, a final system is not built as a unique block
but as a composite of software artifacts known as components [Kung-Kiu, '07]. A key aspect for the
success of any component is its capability of being reused and adapted [Bracciali, '05]. In reality,
despite the relevancy of the postulates, reutilization and adaptation of components raise several
technological difficulties and, maybe not least important, easily gathers voices against their
adoption. For example, component replacement has some disadvantages conveying an impact on
the overall system. Some of the disadvantages are [Costa, '07]:

Loss state lost
When a component is replaced, its state may be lost. To avoid this situation, the new

66|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components
- —

component must be initialized in the state of the replaced component.

System availability
During the replacement process, the component or even system availability may be affected. To

avoid component unavailability, components need to be decoupled from client components,
eventually by using proxies.

Performance decay
Performance decay usually occurs during the replacement process. Components being replaced

need to be deactivated and substituent components need to be activated and initialized.
Performance decay seems to be an unavoidable consequence of the replacement process. An
effort is necessary to minimize the negative interference of the replacement process of
components.

In order to avoid component and system unavailability, several approaches may be followed to
dynamically adapt them at run-time, which is one of the crucial aspects of Component Based
Software Engineering (CBSE) [Bracciali, '05]. The adaptation of components should comprise not
only the configuration process but mainly the replacement of old services and also the definition of
new services in a seamlessly way. Another key issue is the reuse of computation [Elizondo, '10],
which maximizes the reuse of computation to address different computational needs. Among the
several proposed approaches, models@run.time [Blair, '09] is emphasized. Models@run.time are
playing an increased role in software systems of organizations from which critical decisions are
taken, such as airports, power plants and hospitals. These systems have to be available 24 hours a
day and 7 days a week and are expected to safely adapt to varying runtime contexts. Software
models@run.time give the answer to this requirement. In [Blair, '09] says: “Runtime adaptation
mechanisms that leverages software models extend the applicability of model-driven engineering
techniques to the runtime environment.”. In Model Driven Engineering models are used to formalize
and render complex systems in a manageable way for humans and for computers. Software
models@run.time keep these important features and step forward by incorporating the
specification of the systems they formalize, Bran Selic in [Blair, '09]. Through the specification and
through the runtime context software models@run.time support dynamic adaptation. Software
models@run.time may be seen as an important contribution to the field of autonomic computing
[Kephart, '03].

3.3.2 Adaptation Process

The adopted adaptation process uses the same model as the one presented for the modelization
process, CRUD-Model, but with a slight difference. Now CRUD expressions are not statically
compiled on Business Entities but are dynamically deployed and passed to them through their
constructors. This will be explained during the next paragraphs. Thus, the similarity between the
two class diagrams eliminates the need to present a new class diagram. Another difference exists in
the process used to automatically build source code for Business Entities. While in the modelization
process, the source code for each Business Entity was built from one CRUD expression and from
some additional metadata, in the componentization process, the source code for Business Entities is

67|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

automatically built from metadata only. CRUD expressions are dynamically deployed in a later
stage, at runtime.

The differences between the two processes have been described, and now the focus is on the
componentization process of CLI. The adaptation process of business tier components is basically
focused on the capability to support new CRUD expressions. To achieve this goal there are basically
three dimensions to be addressed, which are herein referred to as the Service Allocation, Service
Composition and Service Scope. Service Allocation is mainly concerned with deploying CRUD
expressions at runtime to address new business needs. Service Composition is mainly concerned
about creating Business Entities to address new business needs. Service Scope is mainly concerned
about the extent of the services to be provided by each Business Entity.

3.3.2.1 Service Allocation

Service Allocation proposes the deployment process of CRUD expressions to be accomplished at
runtime. Unlike the approach used for the modelization process, where CRUD expressions are
statically allocated to Business Entities at compile time, the Service Allocation allows the
deployment process of CRUD expressions to be accomplished at runtime this way introducing a
new dimension in the adaptation process: Service Allocation promotes the deployment of CRUD
expressions based on policies. Policies may be used to deploy CRUD expressions driven by
countless possibilities such as users profiles, driven by security policies and driven by the runtime
context.

3.3.2.2 Service Composition

Service Composition is mainly concerned on the building process of Business Entities. Services of
Business Entities are formalized by Business Schemas, which are mainly based on the CRUD-Model
presented for the modelization process. Service Composition may be accomplished following two
different approaches: static approach [Pereira, '11a; Pereira, '11c; Pereira, '13a; Pereira, '13e] and
the dynamic approach [Pereira, '12b].

Static Service Composition

When using the Static Service Composition, Business Entities are statically built before the
deployment process of business tier components. Business tier components built from the
Static Service Composition address a business area, such as accountability or sales. Then, at
runtime, CRUD expressions are deployed following any established policy. Figure 33 presents a
block diagram for the Static Service Composition. In a) business tier components are
statically built from Business Schemas and in accordance with an architectural model based on
the CRUD-Model. In b), after being deployed, the component accepts CRUD expressions in
accordance with any established policy. To be effective, components relying on the Static
Service Composition must provide a variety of Business Entities able to manage all the needed
CRUD expressions in order to minimize or even prevent future maintenance activities.

Dynamic Service Composition
When using the Dynamic Service Composition, Business Entities are dynamically built at

runtime to address any runtime business needs. Similarly to the Static Service Composition,

68|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

CRUD expressions are also deployed at runtime following any established policy. Figure 34
presents a block diagram for the Dynamic Service Composition. Business Engine is the entity
responsible for building Business Entities dynamically at runtime from Business Schemas
deployed by a Monitoring Framework or any other entity skilled to achieve the same result.

Architectural
Model

a)

Reusable Component

Business
Schema

|4

Reusable Component

Running database application

— — Components are statically
built from architectural
model and from scheama data.

CRUD expressions are
deployed at runtime

e

CRUD
Expressions

*

Monitoring
Framework

Running Platform

Figure 33. Block diagram for the static approach: a) service composition and b) service allocation.

Business Entities are
built at runtime

N

Reusable Component

v

\| Business
Engine

CRUD expressions and
Business schemas are
deployedSat runtime

/
/

Business
Schemas

CRUD
Expressions

!

!

Running database application

Monitoring Framework

Running Platform

Figure 34. Block diagram for the dynamic service composition.

69|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

3.3.2.3 Service Scope

Service scope concept is based on the CRUD Schema concept to promote two different approaches
for the scope of Business Schemas: Unique Business Schema (based on the open approach of CRUD
Schemas) and Multiple Business Schemas (based on the closed approach of CRUD Schemas). The
Unique Business Schema [Pereira, '11c; Pereira, '13e] is used whenever there is the need to
minimize the number of CRUD Schemas and the Multiple Business Schema [Pereira, '11a; Pereira,
'13a] is used when there is the need to keep CRUD Schemas closely aligned with CRUD expressions.

Unique Business Schema
Business tier components based on the Unique Business Schema approach provide a unique

and fixed set of Business Entities responsible for managing all the necessary CRUD expressions
The Unique Business Schema approach is specially effective when CRUD Schemas are only
known at runtime and the Dynamic Service Composition is not recommended. To address these
constraints, the Static Service Composition process needs to build three unique Business
Entities each one wide enough, based on the open CRUD Schema approach, to support any
foreseen CRUD expression. The three Business Entities to be made available are one for all
Select expressions, one for all Update and Insert expressions and, finally, one for all Delete
expressions.

Select expressions

Each business tier component has its own Business Entity for managing all Select
expressions. The Business Entity is built to address one or more business areas, such as
accountability or sales. IRead and [Write must comprise all the needed attributes to support
the addressed business area. Thus, the attributes are not proprietary of any Select
expression but in reality they are shared by all CRUD expressions. Each CRUD expression
makes use of the attributes formalized by its CRUD schema. Figure 35 schematically shows
a set of CRUD expressions, each one requesting a subset of the attributes that are made
available through the IRead and IWrite interfaces. Additionally, to support any number and
any type of runtime parameters, the open approach is used for the CRUD schema. Thus, the
method to set the runtime values for clause conditions (IExecute interface) must have as
argument object[] of type Object to support values of any data type and in any quantity.

Insert and Update expressions

Unlike the previous Business Entity, the Business Entity responsible for managing all insert
and update expressions is shared by all business tier components. The CRUD Schema
follows the open approach and is characterized by two main methods. One method to set
the runtime values for clause sets (IExecute interface) having as argument object[] of type
Object to support values of any data type and in any quantity. And another method to set the
runtime values for column sets of Insert and Update expressions (ISet interface) having

object[] as argument to support values of any data type and in any quantity.

Delete expressions

Similarly to the previous Business Entity, the Business Entity responsible for managing all
delete expressions is shared by all business tier components. The CRUD Schema follows the
open approach and is characterized by one main method. To set the runtime values for

70|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components
- —

clause conditions (IExecute interface). Similarly to the previous methods, it also has object[]
of type Object as argument to support values of any data type and in any quantity.

IRead/IWrite
. Ly attrib 1
A attrib 2
attrib 3
CRUD attrib 4
° attrib 5

§ attrib (n-2)
@ attrib (n-1)
> attribn

Figure 35. Attributes shared by all CRUD expressions.

Multiple Business Schemas

The Multiple Business Schema approach is specially effective when CRUD Schemas are known
at development time for the Static Service Composition, or at runtime for the Dynamic Service
Composition. There will be as many Business Schemas as necessary. Each Business Schema
generates one Business Entity able to manage any CRUD expression whose schema is contained
by the implemented Business Schema. Figure 36 shows an example similar to the one shown in
Figure 35 but following the multiple business schema. Here there are several CRUD Schemas for
Select expressions where each CRUD Schema owns its particular Business Entity. Some CRUD

Schema

attrib 8
attrib 15
attrib16)

attrib 17

IRead/IWrite A
CRUD
Schema
A .
IRead/IWrite B
CRUD
CRUD
IRead/IWrite ?

Figure 36. Example of one Multiple Business Schema implementation.

71|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

Schemas may share some attributes, as CRUD Schema A does with CRUD Schema B, but each one
has its own IRead and IWrite interfaces. The Multiple Business Schema approach may also be used
to differentiate other properties of CRUD Schemas, such as runtime values for clause conditions and
runtime values for column lists avoiding this way the need to use Object[] as argument.

3.3.2.4 Business Schema

Business Entities are built from Business Schemas only. As such, Business Schemas need some
additional attention for the componentization process of CLI. Business Schemas comprise several
interfaces as shown in Figure 29. In spite of their complexity, Business Schemas are very easy to be
defined because most of the interfaces are written only once or comprise one method only. For
example, IScroll, IForwardOnly, [Result, IInsert, I[Update and [Delete are unique and shared by all
Business Schemas. Regarding [Execute and ISet, each one contains one method only. The only
interfaces entailing some complexity are [Read and IWrite. The effort for their definition is required
during the Service Composition phase. These interfaces comprise the getter and setter methods for
the attributes of LMS. But the effort is actually significantly less than it might seemed, because the
methods belonging to each IWrite interface are automatically inferred by the Business Engine from
the correspondent IRead interface. For example, if an IRead interface comprises methods Integer
a() and String b() then the correspondent [Write interface comprises the methods void a(Integer
value) and void b(String value). Thus, Business Engine relives programmers from the need to write
the IWrite interface.

3.4 Access Control

Modelization and componentization overcome important drawbacks of CLI. Nevertheless, they are
not enough to address access control let alone the implementation of evolving FGACM. FGACM need
a fine tune control on the access to data residing on RDBMS. CLI provide two distinct modes to
access data: the Direct Access Mode and the Indirect Access Mode. Both access modes need to be
governed by FGACM. Access control on the Direct Access Mode is about controlling the authorized
CRUD expressions. Access control on the Indirect Access Mode is about controlling the authorized
actions at the cell level (row - column) of LMS. Access control was mainly addressed in [Pereira,
'"12d; Pereira, '12c; Pereira, '13d]. Basically, the access modes of CLI were wrapped by services
driven by FGACM. These issues are thoroughly described in the next chapter.

3.5 Summary

The evolution from CLI concept till the DACA was presented in a three step approach. Initially, the
fundamental concepts were introduced: CRUD Schema, Business Schema and Business Entity.
These concepts are used since the very start till the final definition of the DACA. They define the
basic entities from which drawbacks of CLI are overcome. Regarding the three step approach
towards the DACA, during the first step, a model has been defined to bridge the gap between the
object-oriented and the relational paradigm. During the second step, an architecture has been
defined for the building process of reusable business tier components. These components are built
combining three concepts: Service Allocation, Service Composition and Service Scope. These
concepts, when combined with each other, open several possibilities for the development and

72|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

adaptation processes of business tier components. Another relevant aspect is that IRead and [Write
interfaces are the only interfaces requiring some effort during the Service Composition phase. They
comprise the getter and setter methods for the attributes of LMS. But the effort is actually
minimized because the methods belonging to each IWrite interface are automatically inferred by
the Business Engine from the correspondent IRead interface. A brief introduction was done to the
access control approach on CLI. Now, the DACA will be main topic of the next chapter.

73|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components
- —

74|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

4 DACA: Dynamic Access Control Architecture

In this chapter a new architecture, herein known as the DACA, is proposed for building business
tiers, based on Call Level Interface, embedded with FGACM and driven by dynamic adaptation. The
DACA is only focused on FGACM and it does not address policies or even models. The DACA is an
architecture for the implementation of dynamic FGACM, which is completely decoupled from
policies and models. We first introduce an overview of the approach to be followed to implement
FGACM, then follows the general architecture and finally details are given for each main component
of the DACA. The DACA leverages all previous researches conducted around CLI, models and
components, to provide a solution relying on CLI to enforce evolving FGACM on business tier
components. The DACA also leverages and deeply relies on other previous researches [Pereira,
'12d; Pereira, '12¢; Pereira, '13d].

This chapter is organized as follows. Section 4.1 introduces the approach followed to
implement FGACM at the level of business tiers. Section 4.2 presents the general architecture of the
DACA. Section 4.3 presents the main components of the DACA and, finally, section 4.4 summarizes
this chapter.

4.1 Fine-grained Access Control Mechanisms

The DACA relies on CLI and, as such, FGACM are implemented at the level of CLI on business tier
components. Hence, the implementation of FGACM on business tier components based on CLI
cannot be disconnected from the services provided by CLI to access data residing in RDBMS. As
previously presented and described, CLI provide several modes to interact with data residing on
RDBMS. Among them, two were emphasized and hereafter recalled:

e Direct Access Mode - through this mode, CLI provide services to allow CRUD expressions to
be encoded inside strings using the native SQL language or eventually the RDBMS SQL
language;

e Indirect Access Mode - through this mode, CLI provide services to allow the execution of
any of the provided protocols at the level of LMS of CLI: read, update, insert and delete
protocol.

These two access modes are the key points from which FGACM are defined and implemented.
FGACM use Business Schemas as the key entities to control the access to data. Business Schemas
wrap and exploit the access modes of CLI to expose a set of access modes driven by FGACM.
Therefore, the concept of Business Schema is redefined to address requirements of FGACM.

75|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

4.2 General Architecture

FGACM in the DACA are implemented at the client-side level and specifically at the level of business
tiers based on CLI. The implementation process of FGACM need to cope with one main research
question and three second level research questions previously announced: dynamicity of FGACM,
security, awareness of FGACM and preservation of CLI advantages.

Dynamicity

FGACM need to be dynamically adapted at runtime to address evolving FGACP. This requires
that the client-side systems have the ability to be locally adapted in accordance with the
established FGACP. Moreover, as the FGACM are deployed in each client-system, there is no
other way but provide a central system from which the directive for the FGACM to be
implemented on the client-side systems are issued.

Security
Current tools allow users to write any CRUD expression. Due to the endless expressiveness of

the SQL language this freedom may lead to security violations. Thus, the DACA needs to ensure
that all issued CRUD expressions are in accordance with the established FGACP.

Awareness

FGACM need to be implemented in a way to convey a complete awareness about the established
FGACM during the development process of application tiers. This awareness relives
programmers from mastering the established FGACP and the correspondent FGACM.

Preservation of CLI advantages

To keep CLI advantages, the DACA needs to ensure two aspects. The first one is that the services
of CLI must be kept and provided by the DACA. The second one is that performance of CLI must
also be kept. To cope with these requirements services of the DACA need to be closely aligned
with the services of CLI and, additionally, they must induce a minimum processing overhead.

These requirements will be all addressed in this chapter.

4.2.1 Phases of the DACA

The DACA needs to cope with several requirements, among which the awareness of FGACM at
development time of application tiers and the dynamic implementation of FGACM at runtime are
emphasized. To address these requirements, the DACA operation is split at least in two phases: one
responsible for the static representation of FGACM and the other one for the dynamic adaptation
process of FGACM. The first phase takes place while application tiers are being developed, while the
second phase takes places at runtime. From these two phases a third phase is inferred, which is
concurrent and independent from the other two, during which metadata of FGACM are defined and
updated.

The general architecture of the DACA is presented as a block diagram in Figure 37. Lines
connecting components with small circles on their edges represent socket connections and the
ending arrows identify the components playing the server role. The general architecture may be

76|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components
- —

organized and presented using several distinct perspectives. The perspective presented in Figure
37 is based on the three main phases just presented:

Configuration phase

The configuration phase of the DACA is responsible for keeping metadata of FGACM updated in
accordance with the established FGACP. The metadata of FGACM are the source from which
FGACM are automatically built and kept updated.

Extraction phase
During the extraction phase, the DACA creates data structures, which are used to convey to
programmers of application tiers a complete awareness of the established FGACM. These data

structures need to be statically represented while programmers write source code to access
data residing on RDBMS to prevent them from writing source code not aligned with the
established FGACM.

Running phase
During the running phase, metadata of FGACM is used to build the correspondent FGACM

dynamically. Any modification in the metadata leads to an automatic updating process on the
implemented FGACM. Moreover, CRUD expressions are also deployed at runtime in accordance
with the established FGACP. This deployment process is important because it will be used to
relieve programmers from writing CRUD expressions and, therefore, prevent any security

violation.
Running phase Extraction phase
Client Side
DACC 3 Server Side //L Policy Extractor
ACP Business [—
Awareness Logic Policy Server
7“ 45 ACP Awareness
1 o 2 ;
R . Polic
Appll_catlon Business Managyer Policy RDBMVS Configuration phase
Tier 6| .| Manager Watcher \\
g 4 ™~

™ Policy Configurator

Figure 37. General architecture of the DACA.

4.2.1.1 Configuration Phase

The configuration phase is focused on the configuration and maintenance processes of
metadata of FGACM, which are stored in a server, in our case in a RDBMS. This RDBMS may or may
not be the same where the protected data reside. The configuration process may occur at any time
even when database applications are running, after their deployment. The only constraint is that
the definition of FGACM needed during the development and maintenance phases of application
tiers, have to be defined before they are requested and therefore, before the occurrence of the

77|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

Extraction Phase. Then, during the Runtime Phase metadata of FGACM may evolve to address new
security needs.

The configuration process is carried out by using a component herein referred to as the Policy
Configurator. Policy Configurator is used to define and keep metadata of FGACM updated, at any
time, independently from the other two phases. The metadata is stored in the Policy Server and has
its origin on the used policy model (not addressed by this thesis) and on the granted permissions
organized as Business Schemas and the associated CRUD expressions. Figure 38 represents the
permission concept in the DACA. Permission is the authorization to use a Business Schema and a set
of CRUD expressions to be managed by that Business Schema.

Metada
(Business Schema)

Set of
CRUD expressions

Figure 38. Concept of permission in the DACA.

4.2.1.2 Extraction Phase

The extraction phase is focused on formalizing FGACM as programming data structures so that they
can be statically represented by IDE and then used during the development process of application
tiers. These data structures restrict application tier programmers to only use authorized accesses
to RDBMS. This way, programmers become aware of FGACM at development time of application
tiers and not at compilation time or at runtime. Basically, the data structures comprise roles (if a
RBAC policy is used) and the associated permissions. To successfully accomplish this phase,
metadata of FGACM need to be previously defined in the configuration phase.

The extraction phase is carried out by using a component herein referred to as the Policy
Extractor. Policy Extractor is used only during the development process and also on the
maintenance process of application tiers.

4.2.1.3 Running Phase

The running phase is focused on adapting the client-side FGACM in accordance with the established
FGACP. Any modification in the FGACP during the running phase needs to be translated into
metadata of FGACM to be then automatically enforced in the client-side components.

During the running phase, database applications are running. There are two main blocks: a
client side block and a server side block, see Figure 37.

Client side block

The client side block comprises a unique component herein known as the Dynamic Access
Control Component (DACC). The DACC is responsible for providing application tiers with all the
services they need to access data residing in RDBMS and based on the two following principles:

78|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

1) the provided services to access to data are driven by FGACM and 2) the provided services are
closely aligned with the standard services of CLI.

Server side block

The server side block comprises two main components, herein known as the Policy Manager
and the Policy Server. The server side block is mainly focused on managing the metadata of
FGACM and also on making them available to the client side block.

4.2.2 General Operation of the DACA

The DACA comprises three main components: the DACC, the Policy Server and the Policy Manager,
see Figure 37. The DACC is responsible for the adaptation process of business tiers to implement
FGACM, the Policy Manager is a broker between the Policy Server and the DACC and th Policy
Server stores metadata of FGACM and keeps the Policy Manager informed (through the Policy
Watcher) about any modification in the metadata of FGACM. The DACA general operation is as
follows:

The Policy Server and the Policy Watcher are started. The Policy Server and the Policy
Watcher play server roles and are responsible for managing metadata of the FGACM to be
enforced.

The Policy Manager is started. It establishes a connection with the Policy Server (Figure 37:
3) and registers itself in the Policy Server. This way, the Policy Server becomes aware of all
running instances of Policy Managers. This is important because in case the Policy Server
goes down and after restarting up, there is the need to know the running instances of Policy
Managers and how to connect to them (see two next points).

The Policy Manager closes the connection and waits for a connection to be established by
the Policy Watcher.

The Policy Watcher establishes a connection with the Policy Manager (Figure 37: 9).
Application tiers create instances of the DACC (Figure 37: 1) and authentication is provided:
username, password and application identification.

The DACC establishes a connection with the Policy Manager (Figure 37: 2) to become
registered and closes the connection.

The DACC waits for a connection from Policy Manager.

The Policy Manager registers the DACC in the Policy Server (Figure 37: 3).

The Policy Manager establishes a connection with the Business Manager (Figure 37: 4).

The Policy Manager identifies and selects the metadata of FGACM (Figure 37-3) to be
implemented by the DACC and send them to the DACC (Figure 37: 4).

The DACC automatically builds a Business Logic (Figure 37: 5).

Application tiers ask the DACC to manage the execution of CRUD expressions on their behalf
(Figure 37: 6).

The Business Manager contacts the Business Logic (Figure 37: 7) to manage application
tiers requests. The Business Logic sends CRUD expressions to a RDBMS (Figure 37: 8),
which may be shared or not with the Policy Server, and returns to application tiers the
results of their execution (Figure 37: 7,6).

Any modification in the established metadata of FGACM is internally managed by the Policy
Server. The Policy Watcher sends them to the Policy Manager (Figure 37: 9) which then

79|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

sends them to the Business Manager (Figure 37: 5) which, finally, adapts the Business Logic
to new FGACM (Figure 37: 5).

4.3 The DACA Components

In this section a more detailed explanation is given for each constituent component of the DACA.

4.3.1 The DACC

To keep advantages of CLI, the DACC relies on and is closely aligned with CLI. It is responsible for
building and maintaining business tiers driven by evolving FGACP. In reality, the DACC are
realizations of business tiers and are the only components of the DACA that application tiers use to
access data residing in RDBMS. As such, the DACC architecture was designed to address two main
requirements:
e The DACC provide an environment to developers of application tiers as similar as possible
to those provided by CLI;
e The DACC are dynamically and continuously adapted at runtime to be kept aligned with
evolving FGACP.

These requirements led to an architecture of the DACC based on two entities loosely coupled:
the Business Manager and the Business Logic. While Business Manager ensures the implementation
of all services shared by all DACC (it is a static component as all the remaining components of
DACA, except Business Logic), the Business Logic is dynamically, at runtime, adapted to build
business tiers driven by FGACP. Basically, the Business Logic comprises a set of Business Entities
built at runtime and on a set of authorized CRUD expressions to be used on Business Entities.
Figure 39 presents a simplified block diagram of the DACC. The main characteristics to be
emphasized are:

7

DACC |

Business Manager

BusinessSchema_n

|
BusinessSchema_1 (?BusinessSchema_Z

BusinessEntity_1 BusinessEntity_2 BusinessEntity_n

—O)

i
!

’

Business Logic

Figure 39. Simplified block diagram of DACC.

Access to services

The DACC provides an interface through which applications tiers access its services. The

80|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

Business Manager

«interface»

|IAdaptation
+addCRUD(in crudld : int, in crud : string, in bs : IBusinessSchema_i)
+removeCRUD(in crudld : int, in bs : IBusinessSchema_i)
+addBusinessSchema(in bs : IBusinessSchema_i)
+removeBusinessSchemal(in bs : IBusinessSchema_i)

«interface» «interface»

IManager 4|> |User L
+getBusinessSession() : ISession 1

Manager

-Manager()
+getinstance(in un : string, in pw : string, in urlDB : string, in urlPolicyManager : string, in rebuiltBL : bool) : IManager

Session

-conn : DbConn

+Session(in un : string, in pwd : string, in url : string)

BusinessEngine «interface»

ISession
+businessEntity(in bs : T, in crudld : int) : T
+releaseBusinessSession()

—O ITransaction

Business Logic T IBusinessSchema_1

BusinessEntity_1

#BusinessEntity_1(in conn : DbConn, in crud : string)

BusinessEntity_n

#BusinessEntity_n(in conn : DbConn, in crud : string)

i IBusinessSchema_n
CRUD expressions us! -

Figure 40. Class diagram of DACC.

services include the ones related to the access modes and also the ones related to
complementary services such as instantiation of Business Entities.

8l|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

Access to Business Logic

Business Logic is not directly accessed from the DACC outside. The access to entities contained
in the Business Logic, such as Business Entities, is managed by an entity herein known as
Manager.

Business Logic
The Business Logic is a container where Business Entities and CRUD expressions are kept and

maintained in the client-side of the DACA. Business Entities and CRUD expressions are
dynamically inserted and removed from Business Logic in accordance with the established
permissions and, therefore, in accordance with the FGACP. In association with each Business
Entity there is a set of CRUD expressions that are made available to be executed using the Direct
Access Mode of CLI.

Figure 40 presents the class diagram of the DACC. The Business Manager is the top component
and the Business Logic is the bottom component. These components, as we will show, are loosely
coupled to allow a seamless dynamic adaption process of Business Logic at runtime without raising
any runtime exception. Hereafter, each component is described.

4.3.1.1 Business Manager

The Business Manager, see Figure 40, is a component responsible for providing several services
organized in two main types of functionalities:
e a functionality to implement the adaptation process of Business Logic to implement the
FGACM;
e a functionality to allow application tiers to order the execution of CRUD expressions on
their behalf.

Next follows a thoroughly description for each entity of the Business Manager.

Manager
From application tiers perspective, the Manager is the entry point of the DACC. The DACC is

instantiated through the getinstance method. This method has as arguments the user
authentication, the url to the host RDBMS (Figure 37: 8), the url to the Policy Manager (Figure
37: 2) and a condition to evaluate if Business Logic is to be rebuilt. This last argument is
important mainly during the development process of application tiers to avoid unnecessary
rebuilding processes of the Business Logic. After the initiation of the instantiation process, the
sequence to be followed is the one described in4.2.2. Manager implements IManager interface,
which implements the IAdapation and the IUser interfaces

[Adaptation
The IAdaptation interface provides services for the adaptation process of DACC or, in other

words, the interface provides services to keep Business Logic aligned with the established
metadata of FGACM. This interface is implemented as a socket (Figure 37: 4) to allow the
adaptation process to be carried out by system processes running in different space memories
even in other computers as shown in Figure 37. addCrud and removeCRUD are used to grant and

82|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

deny permissions to execute CRUD expressions on Business Entities. addBusinessSchema and
removeBusinessSchema are used to build and remove typed objects (Business Entities
implementing Business Schemas) responsible for enabling the execution of CRUD expressions
on Business Schemas.

[User

The IUser interface provides a single method, getBusinessSession, to create a new session. A
session is mainly characterized by owning a private database connection represented by the
Connection interface described in 2.3.3. Then, through sessions, Business Entities may be

instantiated and CRUD expressions are executed.

ISession
The ISession interface provides two methods - businessEntity and releaseBusinessSession.

businessEntity

The businessEntity is a generic method used to create new instances of any Business Entity.
It is defined as a generic method to promote two important aspects: first, with the
implemented approach, only one method is needed to instantiate any Business Entity;
second, the instantiation process is type-safe. These two aspects are important because
Business Entities are not defined at compile time. businessEntity accepts a Business
Schema and a CRUD expression identification as arguments and returns an instance of a
Business Entity that implements the Business Schema provided as argument. Basically, the
businessEntity operation follows the sequence next described:
e Business Logic is searched to find if there is a Business Entity implementing the
requested Business Schema;
o If it there is not, an exception is raised. It means that the user is not authorized to
use the requested Business Schema;
e Otherwise;
o Itis checked if the user has permission to use the requested CRUD expression on
that Business Entity;
If it has no permission, an exception is raised;
Otherwise:
= The Business Entity (class) is loaded into memory;
= Through reflection, an instance of Business Entity is created;
= Aninstance is returned to the application tier.

This strategy clearly implements a loosely coupled dependency between Business Manager
and Business Logic which is an essential issue to allow the dynamic adaptation of Business
Logic. This approach was used for the first time in [Pereira, '12b] and then reused in
[Pereira, '13b; Pereira, '13d]. Beyond the dynamic adaptation, this loosely coupled
dependency also allows the development process of application tiers to be independent
from the implementation of Business Entities. All programmers need are the data structures
built from the metadata of FGACM extracted during the Extraction phase.

releaseBusinessSession
The second method, releaseBusinessSession, is used to release a session being used. There is

83|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

no guide to what to do with the connection object. Anyway, the establishment of
connections with RDBMS is widely known as being non-negligent regarding the time
consuming and the CPU consuming. As such, it is recommended to use a pool of connections
to avoid the overhead induced by the waste of resources when connections are activated
and deactivated. In case of not being possible to develop a manager for the pool of
connections, there are some API providing this type of service, such as [Oracle, '12d;
Waldman, '12].

ITransaction

ITransaction interface provides all the required services to manage database transactions. The
interface is defined at the Session level because transactions are managed at the connection
level. This means that each connection, at any time, may only have one active transaction.

BusinessEngine

The Business Engine is another key component in the DACC. The Business Engine is responsible
for managing the contents of Business Logic: Business Entities and CRUD expressions. For
example, regarding the Business Entities, Business Engine automatically creates the source
code for them from Business Schemas, compiles the source code and stores them inside the
Business Logic. The Business Engine is the entity responsible for keeping Business Logic
updated and in accordance with the established metadata for the FGACM

4.3.1.2 Business Logic

The Business Logic is mainly composed by two types of entities: CRUD expressions to be made
available to application tiers and Business Entities to be made available to application tiers to
manage the execution of CRUD expressions on their behalf. CRUD expressions and Business Entities
are dynamically inserted and removed from the Business Logic at runtime to address evolving
FGACP. The dynamic adaptation and the implementation of FGACM are two fundamental
dimensions of the DACA each one appealing to different needs. While CRUD expressions are
basically Strings, Business Entities are classes and, therefore, are more complex entities. Next
follows a more detailed description of the Business Logic implementation.

4.3.1.2.1 General Approach for the Business Logic

In chapter 2 a description is given for CLI and also for the functionalities of JDBC. JDBC class
diagrams are presented in Figure 18, Figure 19, Figure 20, Figure 21 and Figure 22. Architecture of
JDBC, and CLI in general, clearly does not promote the development of business tiers driven by
dynamic FGACP. Next follows a detailed explanation for the approach that has been used on the
Business Logic sub-component to implement dynamic FGACM

Dynamic Adaptation

When the focus is the implementation of FGACM, dynamic adaptation is about the continuous
updating process of FGACM in accordance with the established metadata of FGACM for each
user. This means that the Business Logic is dynamically built from scratch and thereafter
continuously updated in accordance with the defined FGACM for each user. One of the
possibilities to address this requirement is the use of complementary components addressing

84|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

models@run.time. Components based on models@run.time have the ability to be continuously
adapted at runtime to address evolving needs.

Access modes of CLI
CLI ar not tailored to address any kind of access control. They have a fixed set of services

allowing programmers to freely access data in RDBMS. To tackle this gap, the only possibility to
implement FGACM on CLI is by wrapping and adapting the two access modes of CLI in
accordance with the FGACP.

Thus, the dynamic adaptation of the access modes provided by CLI is the key aspect to be
addressed to promote the implementation of dynamic FGACM.

4.3.1.2.2 Architecture

Architecture of the Business Logic is now described. It is represented by a model and it and some
services are configurable to address FGACM. Figure 41 shows the class diagram for Business
Entities driven by FGACM and Figure 42 shows the class diagram for LMS also driven by FGACM.
These diagrams are clearly derived from the CRUD-Model previously presented. Some adaptations
were enforced to allow the implementation of FGACM.

BusinessEntity
Business Entity is the fundamental software artifact of the Business Logic. Business Entities are

programming classes responsible for the execution of CRUD expressions. They are formalized
through a model represented in Figure 41 and are the entities dynamically built at runtime to
implement FGACM. A Business Entity accepts at instantiation time a connection to the host
database (DbConn) and the CRUD expression to be executed. Each Business Entity implements
one Business Schema. Business Schemas are represented by programming interfaces and are
herein referred to as IBusinessSchema interface.

[BusinessSchema
[BusinessSchema characterizes the services to be provided by Business Entities. There are

three facets:
e one for Select expressions: comprises [Execute and ILMS interfaces;
e one for Insert and Update expressions: comprises [Execute, ISet (optional) and IResult
interfaces;
e one for Delete expressions: comprises I[Execute and IResult interfaces.

[Execute
[Execute has two facets:
e one for the closed CRUD Schema approach (only one execute method is implemented
except the last one)
e another for the open CRUD Schema approach (any number of overloaded execute
methods).

The execute methods are responsible for the execution of CRUD expressions and therefore to
control the use of the Direct Access Mode of CLI. The arguments are used for setting the runtime

85|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

values for clause conditions of all types of CRUD expressions. The last method cannot be used in
the closed CRUD Schema approach because it behaves as an unbounded overloaded method. A
method with the signature execute(in params[]: object) allows the caller to pass any number of
parameters and of any data type, this way being in disagreement with the closed CRUD Schema

concept.

IResult

The IResult interface provides a method for retrieving the number of affected rows as a direct
consequence of an Insert, Update or Delete expression execution through the Direct Access

Mode.

closed approach: only one method except the last one.
open approach: any number of overloaded methods.

«interface»
|Execute

«interface»
I1Set

+execute()

+..()
+execute(in param_1,...,param_n)
+execute(in params[] : object)

+set()

+..()
+set(in param_1,...,param_n)
+set(in params[] : object)

Only if Select

~ «interface»

ILMS ~~O——] IBusinessSchema

—O~.IResult

T

Only if Insert
or Update

BusinessEntity

Only if not Select

#BusinessEntity(in conn : DbConn, in crud : string)

Figure 41. Business Entity class diagram.

Only if LMS
is deletable

Only if LMS is

Only if LMS is updatable and
only updatable attributes

forward-only / -

{ IDelete -
\ ““1Update
L
\

IForwardonly \o— «interface»
ILMS O _IRead

IScrollable O—| .

/
/ IL
° lInsert

Only if LMS

Only if LMS is readable and
only readable attributes

\

is scrollable

Only if LMS is insertable and
only insertable attributes

Figure 42. ILMS class diagram for LMS.

86|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components
- —

1Set
[Set has two facets:
e one for the closed approach (only one set method is implemented except the last one);
e one for the open approach (any number of overloaded set methods).
The set methods are used to set the runtime time values for column sets of Insert and Update

expressions.

ILMS

ILMS interface is used to implement FGACM on the Indirect Access Mode of CLI and also to

define the scrolling policy, see Figure 42. Unlike the approach followed in the modelization
process and in the componentization process of CLI, each action (read, update, insert and
delete) is individually configured in accordance with the established access control policies, as
the example shown in Table 3. ILMS comprises 6 sub-interfaces, IRead, IUpdate, [Insert, IDelete,
[ForwardOnly and IScrollable. Next follows a description for each sub-interface.

IRead
The [Read interface provides methods to only read the authorized attributes. The attributes
that are not authorized to be read cannot belong to the IRead interface.

[Update
The IUpdate interface is present only if the update protocol is authorized. [Update interface

provides methods to only update the authorized attributes. The attributes that are not
authorized to be updated cannot belong to the IUpdate interface. Additionally, IUpdate
interface comprises the required methods for managing the update protocol - start and
commit updates.

IInsert

The IInsert interface is present only if the insert protocol is authorized. IInsert interface
provides methods to only insert the authorized attributes. The attributes that are not
authorized to be inserted cannot belong to the IInsert interface Additionally, it comprises
the required methods for managing the insert protocol - start and commit insertions.

[Delete
The IDelete interface is present only if the delete protocol is authorized. IDelete interface
provides methods to delete rows of LMS.

[FowardOnly
The IForwardOnly interface comprises all the methods associated with forward-only LMS.

IScrollable
The IScrollable interface comprises all the methods associated with scrollable LMS.

This presentation of ILMS and its sub-interfaces clearly shows that the implemented FGACM is
clearly defined at the attribute level and by each type of operation (read, update, insert and

87|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

delete). Therefore, the authorization is controlled attribute by attribute and operation by
operation on each attribute. This is the finest granularity that could be provided at the level of
LMS. Delete is the only operation that cannot be executed on attribute basis but executed as an
atomic action on all attributes.

4.3.1.2.3 Adaptation process

The architecture of Business Schemas is flexible to allow the implementation of customizable
FGACM. The FGACM to be implemented in each Business Entity are inferred by the Business
Engine from Business Schemas, following the next rules:

LMS

If any of IForwardOnly, IScrollable, IRead, IUpdate, IInsert or IDelete interface is implemented,
then an LMS must be instantiated. If [Result or ISet is implemented, then LMS cannot be
instantiated.

Updatability
If any of IUpdate, IInsert IDelete or IResult is implemented, then LMS are instantiated as

updatable. Otherwise, LMS are instantiated as read-only.

Scrollability
If the IForwardOnly interface is implemented, then LMS are instantiated as forward-only. If

[Scrollable is implementd, then LMS are instantiated as scrollable.

The adaptation process is accomplished using reflection on Business Schemas to analyze the
implemented interfaces and the methods to be made available to be used in the Indirect Access
Mode of CLI.

4.3.2 Policy Server

The Policy Server is responsible for storing metadata for FGACM and for informing other
components about any modification. From DACC description, we see that there is no imposition to
use any specific security policy. The only imposition is a security policy able to create permissions
based on CRUD expressions executed on Business Schemas. From the main strategies for regulating
access control policies, the use of RBAC to manage access control policies in a centralized way is
widely accepted by RDBMS vendors, such as, for example, Microsoft SQL Server, Oracle and
PostgreSQL. Thus, the choice for a security policy fell on an approach based on a RBAC policy. To
that end, a basic security model was devised and is presented in Figure 43. This security model was
devised to provide the basic mechanisms to support metadata of evolving FGACM. Thereby,
important security issues for real applications, such as separation of duties and data abstraction are
not addressed by this model. It may be used in real applications but that is not its goal. The main
entities are: subjects (Sub_Subiject), sessions (Ses_Session), client applications
(App_Application), roles (Rol_Role),

Business Schemas (Bus_BusinesSchema), CRUD expressions (Crd_Crud), authorizations
(Aut_Authorization) and delegations (Del_Delegation). The correspondent logic model is presented
in Annex A where a detailed description about the logic model is provided. Basically, a subject
starts an application and a session is created. Then, the subject’s roles are identified and the

88|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

correspondent granted permissions are identified and metadata of FGACM are sent to DACC. DACC
dynamically built the FGACM. A role is activated if and only if:
o therole is assigned to an application that is also assigned to the subject;
e the subject has authorization to play the role or the role has been delegated to him. Roles
are organized in general hierarchies to support the concept of multiple inheritance which
promotes the ability to inherit permissions from several roles.

Del_Delegation Sub_Subject

IS

Aut_Authorization

Ses_Session

*

[u

1

*

Crd_Crud Bus_BusinessSchema

Figure 43. Access control Meta-model.

4.3.3 Policy Manager

The Policy Manager is a broker between the DACC and the Policy Server. Basically, the Policy
Manager is responsible for sending to the DACC all the required metadata of FGACM to keep
enforcement mechanisms aligned with the established FGACP. Now we discuss and present the
methodology used to keep enforcing mechanisms updated with the established metadata, even
when they evolve. The explanation is mainly based on Figure 37. Basically, the adaptation process
has two moments: initialization and modification.

Initialization

Initialization is triggered when DACC start running. When DACC start running Business Logics
are empty of Business Entities and CRUD expressions. Hence, in a first step, metadata of FGACM

89|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

need to be deployed to DACC. From them FGACM are automatically built, implemented and kept
in Business Logic.

Modification

Modification is related to any modification in the metadata of FGACM kept by Policy Servers.
Modifications in the metadata are captured by database triggers, which notify the Policy
Watcher about the occurrence. The Policy Watcher becomes aware of the new state of the
stored metadata and informs the Policy Manager. The Policy Manager checks all sessions
(DACC) to be updated and, for each one, sends the correspondent metadata through the
[Adaptation interface, see Figure 40. As a final note, DACC are dynamically adapted when
modifications occur on delegations and on authorizations, which are the most frequent cases. If
modifications occur in Business Schemas or CRUD expressions, they will only be reflected
thereafter when their roles are assigned again.

4.4 Summary

The DACA was presented and described in this chapter. The DACA comprises three main
components: the Policy Server, the Policy Manager and the DACC. The Policy Server stores
metadata of FGACM; the DACC is responsible for the dynamic implementation of FGACM in the
client-side applications and the Policy Manager is a kind of proxy placed between the DACC and the
Policy Server. Whenever the metadata of FGACM is updated, the DACA ensures that the
correspondent mechanisms are automatically implemented in all running client-side systems. The
DACA operation is split in three phases: the configuration phase to keep metadata of FGACM
updated, the extraction phase to convey to programmers of application tiers a complete awareness
about the implemented FGACM and, finally, the runtime phase where FGACM are dynamically built
and kept updated in accordance with the established policies. Additionally, the services provided by
the DACC are aligned with those provided by CLI conveying this way a similar user experience
when compared with the CLI one. Another relevant aspect is the deployment process of CRUD
expressions at runtime to DACC. This deployment process prevents programmers from writing
CRUD expressions, which is in accordance with the previously announced security preoccupation.

The next chapter presents a proof of concept for the DACA, based on Java, J]DBC, a RBAC model
and a database relying on SQL Server.

0|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components
- —

5 Proof of Concept

This chapter presents a proof of concept based on Java,]DBC (sqljdbc4), Microsoft Northwind!
database and using a RBAC policy. The proof of concept is available from here 2 and it is based on a
scenario which intends to evaluate DACA against the research questions, identified in section 1.3.
The main research question to be answered is: does DACA dynamically, at runtime, implement
FGACM on business tiers and keep them updated when the policies evolve over time? If the answer
is yes, then there are three additional second level research questions to be answered. The first one
is related to security issues and stresses the need to evaluate if the DACA effectively controls the
CRUD expressions being used. The second one is related to the possibility of providing a complete
awareness about the established FGACM while programmers are writing source code for the
application tiers of database applications. The third one is related to the possibility of keeping the
advantages of CLI when they are used to enforce dynamic FGACM.

To answer these research questions some steps need to be accomplished. In a first step, it is
necessary to build a platform based on DACA. The platform comprises all the basic components of
the DACA and it is used to develop database applications based on DACA. Then, a database
application based on the DACA is built. At this stage it is possible to answer the main research
question and the first and second research questions of the second level. The third research
question of the second level is partially answered but an additional step is needed to evaluate the
decay of performance as consequence of the use of FGACM. To accomplish this task, a performance
assessment is necessary to compare the responsiveness of solutions without access control and the
responsiveness of the same solutions but now with access control based on the DACA. Both
solutions must use standard CLI.

This chapter is organized as follows. In section 5.1 a platform based on the DACA is presented
an the correspondent evaluation is made regarding the main question, the first second level
question and part of the second question of the second level. In section 5.2, a performance
assessment is carried out.

5.1 The DACA Platform

This section presents a platform based on the DACA. It is organized as follows: a scenario is
presented to frame the context in which the proof of concept runs, then a proposal is presented for

! http://www.microsoft.com/en-us/download/details.aspx?id=23654
2 Windows remote desktop connection - url: ned.av.it.pt; username: DACA; password: guest

91|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

the awarability of FGACM, then a proposal is presented for Policy Configurator (divided in two sub-
sections) and then a database application based on the DACA is also presented.

5.1.1 Scenario

A scenario based on the DACA, beyond the constituent the DACA components, needs to provide a
context from which the answers to research questions arise. Thus, beyond the constituent DACA
components, the scenario also includes a database application. Some configuration is also defined,
as seen in Figure 44.

DbProof (User_A)

DACC A—ﬁ // Security Configurator

Policy Server
DbProof (User_B) .
Policy N "
—P M - Security Keeper
DACC anager Policy

Watcher Policy Configurator
DbProof (User_C) 4/4

DACC ACP Policy Extractor

Awareness

Figure 44. Block diagram for the proof of concept.

Next follows the description of the implemented scenario.

Policy Configurator

A simple Policy Configurator was built. It is responsible for defining the initial metadata for
FGACM and also to enforce modifications in the metadata of FGACM while database applications
are running. These aspects are essential to evaluate the DACA against the main research
question and against the first research question of the second level. Two components were
built: Security Configurator, to set the initial metadata, and Security Keeper to enforce
modifications on metadata of FGACM.

Policy Extractor

A Policy Extractor was built to extract the necessary metadata for the building process of data
structures responsible for the awareness context of the implemented FGACM. The collected
results will answer the second research question of the second level.

Database application

A database application, herein known as DbProof, relying on Microsoft Northwind database,
was built. DbProof uses a component based on the DACC to dynamically implement the
established FGACM. Users are allowed to ask for the execution of CRUD expressions on Business
Schemas. Whenever a permission is granted, CRUD expressions are executed, otherwise an
error is raised. In order to visualize the granted permissions, an image similar to Figure 45 is

92|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

provided. Basically, whenever a modification in the metadata of FGACM is carried out through
Security Keeper, the image will reflect the new set of permissions.

There are two points from which the main research question may be evaluated:
interactively and through direct observation.

Interactively
Users can modify metadata of FGACM and then evaluate if their permissions have been

updated in the DbProof. The feedback may be obtained by visualizing the state of
permissions graphically presented on DbProof or users may try to execute CRUD
expressions on Business Entity.

Direct observation

Users can modify metadata of FGACM and then visualize the contents of Business Logic.
When the metadata is modified, the contents of Business Logic need to be in accordance
with the established metadata.

A scenario was defined and built. It comprises several entities aimed at creating an
environment where the DACA is evaluated. The main entities are:

Roles

Five roles were defined and organized in an hierarchical structure, as shown in Figure 45.
The hierarchical structure is not essential for the thesis but it will provide feedback about
propagation of permissions. A set of permissions is initially given to each role. This topic is
described in the next paragraph.

Role_A

Role_B1

Figure 45. Hierarchy of roles.

Permissions

Permissions were defined and assigned to roles as shown in Table 4. A permission
comprises a Business Entity that implements a Business Schema and the associated CRUD
expressions. From Table 4 we see that there are five permissions each one identified by its
Business Shema, ICat_i, IPrd_s, IPrdCat_s, ICat_s and ISup_s, and the associated CRUD
expressions. Each CRUD expression is identified by a unique identification (id) and also by a
reference (Ref). These references are used to create the data structures for the awareness

93|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

environment about the implemented FGACM. All LMS, except ICat_s, are read-only. ICat_s is
readable, insertable, updatable and deletable on all attributes.

Users

Three users were defined (user_A, user_B and user_C) to evaluate if FGACM are built and
kept updated by user. As each user may play different roles, FGACM need to be built and
kept updated by the roles assigned to each user. By default, user_A and user_B play Role_B2,
Role_C21 and Role_C22. By default, user_C play Role_B1l. Moreover, Role_.B1 may be
assigned and unassigned by delegation to User_A and User_B, and may be assigned and
unassigned to User_C by authorization. Role_B2, Role_C21 and Role_C22 may be assigned
and unsigned to User_A and User_B by authorization and assigned and unassigned to User_C

by delegation.
CRUD
Role BS Id Ref Expression
Role B1 | ICat i 1 |all Insert into Categories
values(?,?,?
Role B2 | IPrd s 2 |all Select * from Products
3 | byld Select *
from Products
where productld=?
4 | bySupplierld | Select *
from Products
where supplierld=?
IPrdCat s | 5 | byCategoryld | Select p.*, c.categoryName,
c.Description
from Products p, Categories ¢
where p.CategorylD=c.CategorylD
Role C21 | ICat_s 6 | all Select *
from Categories
7 | byld Select *
from Categories
where categoryld=?
Role C22 | ISup s 8 |all Select *
from Suppliers
Role: Role reference.
BS: Business Schema reference.
Id: CRUD identification.
Ref: CRUD reference.
Expression: CRUD expression.

Table 4. Roles and the correspondent permissions for the implemented scenario.

5.1.2 Awareness of FGACM

In this subsection we discuss and present a solution to create in the Integrated Development
Environment (IDE - NetBeans in our case) the data structures to convey a complete awareness of
FGACM to programmers of applications tiers during the development process. The importance of
this aspect is that programmers of application tiers can hardly master access control policies when
schemas of databases and access control policies increase in complexity. This knowledge, when

94|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

integrated in the IDE, eases the development process of application tiers. In a first approach this
stage seems useless because the DACC could eventually be automatically adapted to support all
permissions and, therefore, to support all roles. Unfortunately, this approach cannot be followed
because the DACC is agnostic regarding the adopted access control policy. DACC does not recognize
the concept of roles. To overcome this difficulty, a tool, herein known as the Policy Extractor (see
Figure 44), was designed to automatically extract and create data structures organized by roles and
their permissions for the application under development. There were several options to formalize
the data structures. Among them two were the favorite candidates: XML representation and object-
oriented model representation. In spite of XML advantages, mainly for its technology independence,
we chose to use the second option because it is much easier and faster to implement. The meta-data
is built from the following data retrieved from Policy Servers:

e The supported roles from Rol_Roles;

e The granted permissions for each role from Bus_BusinessSchema and Crd_Crud.

Figure 46 shows the data structures for Role_B2. The data structures for Business Schemas are
not shown but they are pure java interfaces easily inferred from Figure 41 and Figure 42. Basically,
Role_B2 explicitly provides permissions to use two Business Schemas, [Prd_s and IPrdCat_s and to
execute CRUD expressions identified by 2, 3 and 4 on IPrd_s and the CRUD expression identified by
5 on IPrdCat_s. The names used to name roles, Business Schemas and identifications of CRUD
expressions are retrieved from Rol_Role, Bus_BusinessService and Crd_Crud, respectively.
Moreover, inheritance is supported by supporting role hierarchies as foreseen by the RBAC. In case
of Role_B2, it inherits all permissions from Role_C21 and Role_C22 (Figure 46: line 11 - extends
Role_C21, Role_C22). Additionally, programmers of business tiers do not have access to CRUD
expressions, which is a key issue when the schemas of databases are themselves a part of the
information to be protected.

The meta-data defined in Figure 46, in association with the architecture of the DACC, conveys
to programmers of application tiers a complete awareness about the granted permissions for each
role. As an example, Figure 47 shows the source-code for a subject playing the Role_B2. From the
selected role (Figure 47: line 41 - Role_B2), programmers are statically driven to select one of the
supported Business Schemas of Role_B2 (Figure 47: line 41 - RoleB2.icat_s). Then, programmers
are semantically oriented to select one of the CRUD expressions supported by the selected Business
Schema (Figure 47: line 41 - Role_BZ2.icat_s_byld). Any security violation at the level of Business
Schemas is checked at development time and source-code will not compile if some security
violation is detected. After being deployed, FGACP may evolve and an exception is raised if, for
some security reason, this role is not assigned anymore. The selected CRUD expression is executed
and one runtime parameter is used (Figure 47: line 43). If a row has been selected (Figure 47: line
44), programmers can choose any action supported by the Business Schema to access the contents
of LMS (pop-up window partially shows all actions, from Figure 47: line 45). This pop-up window
also conveys to programmers complete and type-safe awareness about the actions supported on
LMS of ICat_s, independently from the CRUD expression being executed. The pop-window shows
that subjects playing Role_B2 can read, update and insert all attributes of table Categories. To
completely separate methods from IRead, IUpdate and IInsert, we suggest the use of a unique
u’ and 7, respectively, for each method.

(35 IS

prefix: r’,

95|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

Tl public interface Role B2 extends Role C21, Role C22 {

12 public static final Class<IPrd s> i rd s=IPrd s.class;

13 public static final int iprd 5 all=2;

14 public static final int iprd_s_'sy:d=3,:

15 public static final int iprd s bySupplisrld=4:

16 public static final Class<IPFrdCat_s> iprd:&t_s=IPrdCat_s.class;
17 public =static final int iprdc.—:t_s_byf:':E;.':-rj:d=5:

1z

Figure 46. Role_B2 definition.

33 ICat_= c=null;
40 tryvi
41 c=gegzion.businessEnticy (Role B2, ica £ =, Role E2Z. ica £t 5 byld):
42 t catch(DARCAR Exception ex) { H
43 Cc.exXecute (categoryld);
44 if (c.moveMext()) {
45 c.
46 } (0 iCategory (int v1) void |-
47 ¥ () iCategoryName (String v1) wvolid
48 0 iDescription (String v1) vold
43 O iPicture (File +1) void
50 () insertRow () void
. O moveNext () boolean —
gg QO notify() void
ca| L O notifyall () void
55 0 rCategoryId() int
56) rCategorylame () String |z
7| 1 () rDescription() String
5a 0 rPicture () File
@ toString () String
O uCategoryId(int v1) void
(O nCategoryName (String v1) void
(JoDe=scription (String v1) wvoid
O nPicture (File 1) void | =

Figure 47. Programmers awareness about FGACM for Role_B2.

5.1.3 Security Configurator

In this implementation, the Security Configurator has no GUL It is a component that reads meta-
data from software artifacts (classes and interfaces) to partially fill the Policy Server with the
needed metadata for one database application. We have not addressed the configuration process of
subjects because we consider that the new key concept introduced by the DACA, that deserves
more attention, is the concept of permission which is based on Business Schemas and on CRUD
expressions. Next follows the main software artifacts that were developed for the implemented
scenario.

[Application
[Application, see Figure 48, defines the application name and the implemented root roles. In

this scenario there is only one root role: Role_A.

9% |Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

13| pubklic interface IApplication {

14 String app = "app":

15 Cla=z=[] roles = new Clas=s[] {
16 IRole A.class}:

17 1}

Figure 48. Application definition.

Role B2

[Role_B2, see Figure 49, defines all Business Schemas supported by Role_B2: IPrd_s and
[PrdCat_s. Additionally, Role_B2 extends Role_C21 (IRole_C21) and Role_C22 (IRole_C22).
The definition of the remaining roles follows a similar approach.

@ public interface TRole B2 extends IRole C21, TRole C22 {

12 Cla==[] rols bZ=new Class[] { IPrd =.class,
13 IPrdCat s.class };
14| 1}

Figure 49. Role_B2 definition.

IPrd s

[Prd_s, see Figure 50, defines the Business Schema IPrd_s in terms of the implemented
interfaces and in terms of the supported CRUD expressions. IPrd_s implements LMS
(IExecute, IScrollable and IRead) and supports CRUD expressions 2, 3 and 4. The definition
of the remaining Business Schemas follows a similar approach.

11| public interface IPrd s extends IExecute, IScrollable, IRead {

12 String cruds[] = new String[] {ICrud.sPFrd =11,

13 ICrud.sPFrd byId,

14 ICrud.sFrd byfuppliserlid}:
15| 1}

Figure 50. Business Schema IPrd_s definition.

IRead
IRead, see Figure 51, defines the getter methods to read data from the LMS in accordance
with the established FGACP for IPrds_s. In this case all attributes are readable.

13| public interface IRead {

14 int rProductId() throws SQLException;

15 String rProductName () throws S5QLException;
16 int rSupplierlId() throws SQLExXception;

17 int rCategoryId() throws SQLExXception;

18 String rOumantityPerlnit () throws S0QLException;
19 float rUnitPrice() throws S5QLException;

20 int rUnitesInStock() throws SQLException;

21 int rUnit=s0nOrder () throws SQLException;

22 int rRecorderlLewvel () throws SQLException;

23 boolean rhiscontinued|() throws SQLException;
24

Figure 51. IRead definition.

97|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

ICrud

[Crud, see Figure 52, defines the CRUD expressions to be supported by all Business
Schemas. Each CRUD expression is identified by its name (String variable), which has been
defined in Table 4 as being the references of CRUD expressions.

11| public interface ICrmd {

1z String 1lat s11="Ins
13 String sPrd all="

14 S5tring sPrd byId="
15 String sPrd bySuppl
18 String sPrdlat byCa e
17

18

19 String sCat all="

20 String slat byIg="
21 S5tring sSup 311="Z
22| 1}

Figure 52. Definition of all CRUD expressions.

Based on this information, Security Configurator automatically fills: App_Application, AppRol,
Rol_Role, RolBus, Bus_BusinessSchema, BusCrd, Crd_Crud and also Aut_Authorization (set to yes by
default). AppRol, RolBus, BusCrd are not represented in Figure 43. These tables are used to
decompose M:N relationships between tables identified by their prefixes.

5.1.4 Security Keeper

The Security Keeper (part of Policy Configurator, see Figure 44) was designed to ease the process of
modifying, at runtime, the granted roles to users which are stored in the Policy Server. To change
role assignment for each one of the three users, a simple GUI application is used, see Figure 53.
Basically roles are automatically granted and denied by checking and unchecking, respectively, the
shown check boxes for each user, in accordance with the established scenario.

i B

(£ Security Keeper = | (Sl e -

Roles From User A Database

|w Authorize Role_B2 s =
[Delegate Role_B1 . url: 127.0.0.1:1433
| Authorize Role_C21 e |sa

|v Authorize Role C22

Password: |pass-;._-urds

Database: W

Roles From User B Roles From User C
[Delegate Role_B1 [Authorize Role_B2 [~ Delegate Role_B2 [Authorize Role_B1
[~ Authorize Role_C21 [~ Delegate Role_C21
|v Authorize Role_C22 | Delegate Raole_C22
. —

Figure 53. Security keeper.

98|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

5.1.5 DbProof

The final component is DbProof, see Figure 54. DbProof is a database application based on the
DACA. The business logic is dynamically built and updated at runtime from established metadata of
FGACM. The DbProof and the Security Keeper are simultaneously used to assess if database
applications based on the DACA effectively, in real situations, keep FGACM aligned with evolving
FGACP. From the DbProof, we may choose one of the three supported users. Then Business
Schemas and CRUD expressions are selected to be executed one at a time. If permission is granted,
the CRUD expression is executed, otherwise an error message is shown. Figure 54 is the default
context of user A. Green circles (lighter gray for black and white prints) are for granted roles and
red circles (darker gray for black and white prints) are for denied roles. The colors are updated
whenever the assignment state of roles is modified. It also shows that Business Schema ICat_s and
CRUD expression (allFromCategories) are selected and have been already executed. ILMS of ICat_s

Interface And Crud Selection Cannection Autharizations
ol Laite e url; 127.0.0.1:1433 ServerlP fiocalhost
|C21j |ICat_s j |aIIFrnmCategories ﬂ Port 9000
Username: |sa . /
Subject || jcerp
Password: |passwords -
Runtime Parameters Edit |
Database: |P-Jc:rth'f\'ind
Refresh |
CategoryID CategoryMame Description Image
=
1 Beverages Soft drinks, coffees, teas, beers, ...
hd|
Preview
Category Mame: Description: Picture: BeginUpdate Insert
- UpdateRow DeleteRow

Figure 54. DbProof.

C:\Documents and Settings\DACA . NED\DesktopADACALibAUserh. jar\Config\Businessinterfacest

File Edit Wiew Favorites Tools Help

d o= v o o= X A

Add Extract Test Copy Move Delete Info

? |E| CADocuments and SetkingsiDACA, MED Deskiop) DACAYIDY Users, jar ConfiglBusinessInterfaces! b
Marme Size Packed Size | Modified Created AcCcess
CEICat s 6 541 2975 2012-08-31 17:46

)IPrdcCat_s 4299 2024 2012-03-31 17:46

I5up_s 27 1752 2012-08-31 1746

aPrd_s 4 021 1914 2012-08-31 17:46

< >

0 object{s) selected

Figure 55. Business Schemas implemented for user User_A.

99|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

7B C:iDocuments and Settings\DACA. NEDADeskio pADACAMibA\Userd. jariConfigiBusinessInterfacesiiC. .. Q@E|

File Edit Wiew Fawvorites Tools Help
=]
b om v o ow X A
Add Extract Test Copw Move Delete Info
¥ (0 CADocuments and Sebbings\DaCa NED Deskhop DaCallibt User A, jart ConfigiBusinessInterf aces\TCak_s) hd
Marme Size Packed Size | Modified Created AcCcess
li:at_:'-.l:|-5:'-:'- 4 651 18§20 2012-05-31 17:46
ICat_s.u:Iass a0 200 2012-03-31 1746
IExecute.cIass 229 176 2012-08-31 17:46
IInsert.cIass 456 275 Z012-058-31 17:46
IRead.class 337 232 2012-03-31 17:46
IUpdatE.class 4449 272 2012-03-31 17:46
< >
1 object{s) selected 4 681 4 631 2012-08-31 17;46

Figure 56. LMS interfaces for Cat_s Business Schema.

is also updatable, insertable and deletable and, therefore, some additional actions are available at
the bottom of the GUI. The dynamic enforcement of FGACM is directly observable using a common
unzip tool to analyze the contents of the files (Business Logic - Jar file) containing the Business
Entities. Business Entities are inserted and removed in accordance with the granted and denied
roles to users. Figure 55 partially presents the contents for the Business Logic belonging to User_A
when roles Role_B2, Role_C21 and Role_C22 are granted. Business Logic contains four folders, each
one for each Business Schema: ICat_s, IPrdCat_s, ISup_s and IPrd_s. Figure 56 presents the LMS
interfaces of Business Schema ICat_s and also the correspondent Business Entity, Cat_s. The
remaining interface, IScrollable, is used from a pool shared by all Business Schemas and, as such, it
is not present in this folder.

5.2 Performance Assessment

The performance assessment is focused on evaluating and comparing the performance of the DACC
based on the DACA and the performance of solutions based on a standard CLI API and without any
access control mechanism. Java, JDBC and SQL Server 2008 have been chosen as the basic core
technologies to support the assessment. The test-bed relies on a PC Asus-P5K-VM, Intel Duo Core
E6550 @2.33 GHz, 4.00 GB RAM, Windows XP Professional Service Pack 3, Java SE 7 (1.7.0_22-b13),
JDBC(sqljdbc4) and SQL Server 2008. In order to promote an ideal environment, the following
actions were taken:
e The running threads were given the highest priority;
e All non-essential processes/services were cancelled;
e A new database was created for the running tests;
e For each individual measurement a new table with a different name is created from scratch
to avoid SQL Server to take advantage of any optimization process;
e Some default SQL Server database properties were changed, such as Auto Update Statistics
= false and Recovery Model = Simple, to minimize its overhead.

100|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

5.2.1 Methodology

The methodology followed to collect the needed measurements was based on measuring how long
a task takes to execute. To achieve this goal, the method system.nanoTime() was used. In spite of
being a very easy methodology to collect measurements, it conveys an error during the
measurement process. To evaluate the impact of the act of measuring, the collected values showed
that the impact is always under 310ns and that the minimum clock tick is 1ns. From these values,
and in order to ensure that errors were always below 1%, all measurements associated with the
performance assessment were collected with a minimum time span of 31,000ns. In several
situations it was necessary to repeat the same code as often as necessary to get a minimum of
31,000ns. To avoid additional errors with the repeating process, the code was sequentially
repeated and not iteratively repeated. Table 5 presents the general strategy followed to collect and
compute each measurement.

repeat 5 rounds

get a new container to keep the collected measurements
prepare initial conditions

repeat: 100 cycles

.1 start timer

run scripts (must take at least 31,000ns)

stop timer

keep elapsed time if it is one of the 5 best in this cycle
release all unnecessary objects

garbage collector activation

.7 sleep 100ms (other system processes may need to run)
eep the best average time of the 5 rounds

S e e e
oUW N

2
3
4
4
4
4.
4
4
4
4
k

Table 5. Strategy to collect and compute measurements.

From the performance assessment point of view, DACC may be split into two main phases: the
creation phase and the execution phase. The creation phase is related to activities that have no
equivalent on standard CLI. The execution phase comprises the activities that are shared by
standard CLI and by DACC.

Creation phase
This creation phase comprises activities such as the instantiation of DACC, building process of

Business Entities and instantiation of Business Sessions and Business Entities. All activities,
except the instantiation of Business Sessions and Business Entities occur only once or very
sparsely and therefore their impact has not been considered to be evaluated in this research. On
the other hand, instantiation of Business Sessions and Business Entities occur very frequently
conveying an overhead the impact of which must be evaluated. The collected measurements
were obtained using a case study based on a scrollable and updatable LMS. This LMS type is the
one that comprises more methods and more data structures. IRead, [lUpdate and IInsert were
defined with 25 methods each. In spite of not being a critical aspect, it is expectable that the
complexity of this Business Schema will be above most of the real Business Schemas. The
collected time to instantiate a Business Session (TBS) and a Business Entity (TBW) is presented
in Table 6 a). Instances of Business Entities are herein known as Business Workers.

Execution phase

The execution phase is mainly focused on evaluating the overhead induced by the invocation of

101|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

Business Entities’ methods. Two main approaches may be followed to carry out the
performance assessment:
e Use a DACC and assess it against a standard JDBC component based on scenarios and
case studies;
e Develop a general environment to evaluate the overhead induced by the wrapping
process implemented by each method of each Business Entity.

After some reflection, it came clear that the latter approach would bring a significant advantage
over the former approach. Methods of Business Entities are general and not tied to any
particular use case. Moreover, their use and their functionalities are clearly stated, leading to
the possibility of developing a mathematical model to express and evaluate its impact on any
possible scenario: the overhead is only dependent on the additional time to call the wrapping
method. Thus, if the overhead is known for all methods of Business Entities in a running context
(CPU, Operating system, etc.), it will be possible to mathematically compute the induced
overhead for any Business Entity running on that context.

The activities related to the execution phase are basically the invocation of Business Entities
methods. Each Business Entity method wraps a block of code of the standard CLI. Thus, the
overhead may be measured by evaluating the time to execute the additional code when using a
Business Entity method. To this end, we introduce the concept of reduced method signature (RMS).
RMS derives from the widespread concept of method signature but it does not include the method
name. All methods of Business Entities are classified in two different groups: methods with a fixed
RMS and methods with a variable RMS. Methods with a fixed RMS are, by far, the major group. The
only method that does not have a fixed RMS is execute with parameters. In order to predict the
overhead induced by every wrapping method, it was decided to measure the finest grain overhead
induced by each possible variation in RMS. Two examples: measure the induced overhead by each
additional argument of any data type and measure the induced overhead by returning any data
type. To achieve this goal, two types of measurements were collected as shown in Table 6 b). TR;
are the collected measurements for methods with no arguments and returning the data types
shown in the column Data type. Examples: void m1() and int m2(). TA; are the collected
measurements for calling a method with 10 arguments of type Data type and returning void. The
contribution of each individual argument is computed as (collectedMeasurement-TR1)/10. This
approach was validated by carrying out some additional tests using less than 10 and more than 10
arguments and with and without a returning value. From Table 6 it is possible to compute the
absolute overhead induced by any RMS running on the same context and, therefore, of any method
of each Business Entity.

In spite of being important, the data shown in Table 6 do not give any insight about their

TBS | TBW Datatype | TRi | TAi | 1 Datatype | TRi | TAi | i
1023 | 387 void 14 1 string 27 | 98 6
a) byte 26 | 89 | 2 float 45 | 132 | 7
short 26 | 114 | 3 double 45 | 132 | 8

int 26 91 4 boolean 26 89 9

long 42 | 129 | 5 char 28 | 103 | 10

b)
Table 6. Collected measurements for a) TBS, TBW and for b) RAM in ns.

102|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

Description Algorithm Typical DACA usage Overheads
Create new table(*) [SQL: Select * from table]
Insert R rows // create business session TBS+
— | Assess SSi. All | giart timer // instantiation of business worker a | TBW+
- i .
< attributes from Select all rows a. gxecute () ; TR+
23 all rows are For each row while (a.moveNext()) { (TRo+
¢ | read from the | poaq all attributes tdl = a.idl 0 TR,
LMS. Stop ti // more attributes *nAtt)
Op timer } *nRows
//release business session
Create new table(*) [SQL: Select * from table]
= Start timer // create business session TBS+
S- ASS_E‘SS SS;. All Select all(0) rows // instantiation of business worker a | TBW+
3 attributes of all For each hew row a.gxecute () ; TR, +
% rows are s_et Insert all attributes while (a:moveNext()) | (TRo+
oS | one by one in - a.beginUpdate () ; TRy.
i Commit . :
:::‘ the LMS and Stop timer a.idl (idl); (TR, +TAy)
o | committed to P // more attributes *nAtt+
& | the database. a.updateRow () ; TR1)
o } *nRows
//release business session
Create new table(*) [SQL: Select * from table]
= Insert R rows // .create l?uSJ._ness session TBS+
S— Assess SS,. All Start timer // instantiation of business worker a | TBW+
3 attributes of all Select all rows a.execute () ; TR, +
S— rows are For each row while (a:moveNext().) | (TRo+
g upda_ted one by Update all attributes a.beg}nlnsert (); TR+
= | one in the LMS Commit a.id(id); (TR1+TA,)
g-:: and committed StOp timer //Imore attributes *nAtt+
& | to the database. a.insertRow () ; TRy
0 } *nRows
//release business session
Create new table(*) [SQL: Select * from table]
= Insert R rows // create business session TBS+
5 Assess SSq. All Start timer // instantiation of business worker a | TBW+
@ | Tows A€ Select all rows a.execute () ; TR, +
S | deleted one by For each row while (a.moveNext ()) { (TRg+
o |one from the a.deleteRow () ; TR;+)
w Delete row
;":1' LMS and Commit } *nRows
o | committed to 0_ //release business session
= Stop timer
vy | the database.
%]
Note: (*) in case of join, the second table is also created with 5 attributes and
with the same number of rows as the main table.

Table 7. Scenarios for the Select expression: algorithms and typical component usage.

relative impact on real cases. The impossibility to assess all cases led to a survey to define some
scenarios that could be representative of common situations and, above all, that could give a
perspective about DACC behaviour regarding its impact on the overall performance. To this end,
we needed to identify the relevant aspects directly related and controlled by application tiers that
could influence a business tier performance based on DACA. Based both on empirical experiences
and on knowledge about DACC, the aspects considered relevant (and confirmed in Figure 57, Figure
58 and Figure 59) were: types of CRUD expressions (Select, Insert, Update, Delete), types of LMS
(Forward-Only and Read-only (FR), Forward-only and Updatable (FU), Scrollable and Read-only

103|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

Description Algorithm Typical DACA usage Overheads

Assess Sl. | Create a new table [SQL: Insert into table values

Rows are | Start timer (att..)] ‘ ‘ TBS+

inserted one by | Create statement // create business session TBW+

one in the | for each row // instantiation of business worker b | (TR;+TA,) *

database insert all attributes b.execute (attl, att2, .., attn.); nAtt*nRows
7 - // more inserts

through the | Stop timer) ,

execution of a //release business session

parameterized

Insert

statement.

Assess SU. | Create a new table [SQL: update table set (..) where

Rows are | Insert R rows pk=7?] TBS+

updated one by | Start timer // create business session TBW+

one in the | Create statement // instantiation of business worker c | (TR{+TA,)*
5 | database For each row c.execute (pk,att2,..,attn); nAtt*nRows
D | through the | Update all attributes | 7/, MOTe updates .

. . //release business session

execution of a | Stop timer

parameterized

Update

statement.

Assess SD. | Create a new table [SQL: delete from table where pk=?]

Rows are | Insert R rows // create business session TBS+

deleted one by | Start timer // instantiation of business work d TBW+
A | one through the | Create statement d.execute (pk); (TRy+TA,)
| execution of a | For each row // more deletes .

parameterized Delete row //release business session *nRows

Delete Stop timer

statement.

Table 8. Scenarios for the Insert, Update and Delete expressions: algorithms and typical component usage.

(SR), Scrollable and Updatable (SU)), the number of rows to be processed, the number of attributes
of each row and the query complexity. Tests with pre-compiled and compiled-on-the-fly CRUD
expressions were also carried out. Only measurements relative to the pre-compiled CRUD
expressions will be presented because the collected results with compiled-on-the-fly CRUD
expressions were so close that their presentation would not bring any novelty to the final
conclusions. Exogenous aspects such as hardware architecture, hardware components, operating
systems, database servers, middleware software and communication infrastructures were not

considered because their impact is not directly or indirectly dependent on DACC. To address all the
presented aspects, seven main scenarios were defined as presented and described in Table 7: SS,,
SSi, SSu, SS4, SI, SU and SD. Then, for each main scenario, two facets were created to handle different
number of rows, R € {1, 5, 10, 25, 50, 100, 250, 500, 750, 1000, 1250, 1500, 1750, 2000}, and tables
with different number of attributes, A € {5, 10, 20}. These facets were defined from empirical
experiences that were carried out to delimit the range of values that could forecast the behaviour of
other scenarios. Additionally, to have an idea about the impact of increasing queries complexity for
the SS,, two queries were defined: one with no joins (N] - select table.* from table) and another with
a simple join (on their primary keys) comprising two tables (W] - Select table.* from table, table1
where table.id=table1.id). In this case table1 had a fixed number of 5 attributes. The attributes of all
tables were all defined as being of type integer and not null. They could be of any other data type or

104|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

any combination of several data types. There was no reason to accept or refuse any possibility. All
tables are created with a primary key on the first attribute. A formalization of a general scenario
may be expressed as S(RA,L) where S is the scenario, A the number of attributes, R the number of
rows and L the type of LMS.

For each scenario, Table 7 and Table 8 present a concise description for the algorithm used to
collect measurements, the source code for the DACC and, finally, the total absolute overhead
induced by each method (nAtt is for the number of attributes, nRows for the number of rows).
Check Table 6 to remember the meanings of acronyms used in column Overheads on Table 7 and
Table 8.

5.2.2 Collected Results

Figure 57, Figure 58 and Figure 59 present the graphics for all scenarios. Three types of
information were selected to be presented: the induced % overhead by DACC, the absolute induced
overhead by DACC (in milliseconds) and the % contribution of each component to the total %
induced overhead (CBS for TBS, CBW for TBW and CSR for the execution phase). The importance of
this information is: 1) the induced overhead cannot be completely understood if only the % values
or only the absolute values are given. They complement each other. 2) The overhead analysis in
components give an insight about its composition opening the opportunity to evaluate the
possibility of taking measures to lessen its impact. Graphics for components overheads do not
present the range 150 till 2000 rows because CSR is practically the only relevant component in that
range, as it may be easily inferred. Additionally, in these graphics, the number of rows is clustered
by the number of attributes.

To completely understand the presented results, some additional information about the

collected measurements is essential:

e Performance decreases from forward-only (Fo) to scrollable (Sc) and from read-only (Ro)
to updatable (Up) LMS. This derives from the fact that database servers create server
cursors, for other LMS than FoRo, with increased management complexity to control client
operations on LMS.

e Performance increases (number of selected rows/second) when the number of selected
rows increases.

e Performance decreases (number of selected rows/second) when the number of attributes
increases.

e Performance decreases (number of selected rows/second) when select statements include
ajoin.

Another relevant issue is the fact that the absolute overhead value has been formalized for each
scenario, see Table 7 column Overheads. It does not depend on the LMS type even not on the query
complexity: it only depends on the methods used during the execution phase.

To discuss the collected measurements for each scenario, the scenarios were aggregated in
three main groups: 1) SSi; 2) SS,, SSi SSq and 3) SI, SU and SD.

105|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

5.2.2.1 Scenario SS:

The graphics for SS, are shown in Figure 57. Figure 57 a), b), c¢) and d) show the % overhead.
Columns are for Select expressions with no join (N]) and lines are for Select expressions with a join
(W]J). Each Select expression is executed on tables with 5, 10 and 20 attributes. The behaviour
shows that the % overhead increases from ScUp->FoUp->ScRo->FoRo, when the number of rows
increases, when the number of attributes increases and when Select expressions do not include a
join. The % overhead is minimum for very few number of rows but it may rise till 7% for SS; (2000,
20, FoRo) with no join. We may conclude that the percentage impact of DACC may not be negligible
for some marginal SS;, mainly for FoRo LMS with thousands of rows, conveying the need to proceed
with a previous assessment. Figure 57 e) shows the absolute overhead. It increases with the
number of rows and with the number of attributes reaching about 1.1ms for 2,000 rows and 20
attributes.

% Overhead SS,(R,A,FoRo) - % Overheads % Overhead SS,(R,A,FoUp)- % Overheads
8,0% 4,0%
7,0% 3,5%]
6,0% — nAtt Join | 3,0% M— I+ nAtt Join
5,0% 5 NJ 2,5% S N
0%] 1 EE10N |, 0 E==10N)
20N —120N
3,0% H 1,5%
_ ’,/ -1) g ———=5 W] —m=a5 W)
2,0% {1 H H 1,0% F
A7 - - = 10w - = 10w
o - - 1 % dl
1.0% s 1 20w | 0% -7 20w
0,0% TATTREAE R B R e 0,0% e d A
— wn o wn j=] o (=] Q j=] Q j=] o j=] o o — el o) j=] o Q Q (=] Q [=3 o o o o
2 2 832 838388 838 8 8 2 2 832 8383883838 8 8
- o~) ~ o o Ll ~ o - o~ 2l ~ (=3 o W ™~ o
2 8 2 8 8 2 8 2 58 R
Number of rows Number of rows
a) b)
% Overhead SS,(R,A,ScRo) - % Overheads % Overhead SS(R,A,ScUp) - % Overheads
3,0% 2,5%
2,5% m
nAtt Join | 2/0% n nAtt Join
2,0% [5N] — Ny
1,5% b
15% =10 N E==10N)
4270 I
20N | 4 g9 Lot [20N
1,0% [===-5WJ /, -===5W]
- = 10w | 05% n . e == 10w
0,5% I -t g N
—20WI mﬁ = K+ —20WI
0,0% : 0,0% I I e e
— wn o wn o un o [=1 [=1 (=] o o o o o — el o wn o un (=3 o [=] (=3 o o (=] o o
S 2 8RR 88 818 83 818 8 S 2 8RR 88 88 83 8 & 8
— ~ wn ~ o o~ n ™~ o — o~ w ~ (=1 o~ n ™~ [=]
S 3 2 58 S 3 2 58
Number of rows Number of rows
C) d)
Overhead (ms) SS,(R,A,L) - Absolute Overheads % overhead 55(R,A,L) - Overhead Components
1,2 100%
M 90% 1
10 | 80% |
08 | 70% |
nAtt 60%
0.6 | ms 50% OCSR
04 | m10 | a0% mCBW
020 | 30% mCBS
0,2 H I 20%
0,0 — —m—r”-r”iﬂ{ SN SEN SRS SR 10%
- wn =) n Q n =) 2 o @ o o =] o o 0% . .
- 4o~ 3 2 82 R 8 & 8 R 8
~ 4 9 4 49 5 10 20
Number of rows Number of attributes (1-100 rows)
e) f)

Figure 57. Graphics for scenario SS;.

106 |Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

Figure 57 f) shows the overhead components. In critical situations, when the overhead must be
minimized, programmers may also use the individual components. The same instance of Business
Sessions and Business Workers may very often be used over and over, this way avoiding its
correspondent overhead. For example, with 5 attributes the overhead may be reduced from 90%
for 1 row till 50% for 10 rows, which may be considered very significant.

5.2.2.2 Scenarios SSi, SSu and SSq

The graphics for these scenarios are shown in Figure 58. Figure 58 a), c) and e) show the absolute
(columns) and the percentage overhead (lines). The lines represent the combination between each
LMS type (only FoUp and ScUp are allowed) and each possible number of attributes. The general

behaviour

% overhead (lines)

SS(R,A,L) - Overheads

(col \

0,25%

0,20%

0,15%

0,10%

/‘Tﬁ-*-+-_;_-¢
e
- -
i

-

b -

0,05%

0,00%

Number of rows

1750

2000

i ms

1,2

- 1,0
- 08
L 06
I8 04

[+ 02

0,0

nAtt LMS
IS
=310
—320
—5 U
=-===55U
=10 FU
==@=105U
——20FU
= =t==20SU

SS,(R,A,L) - Overhead Components

90%
80% -1
70%
60%
50% -

10 20
Number of attributes (1-100 rows)

OCSR
m CBW
@ CBS

a)

b)

% overhead (lines)

0,18%

S5,(R,A,L) - Overheads

0,16%

0,14%

0,12%

0,10%

0,08%

0,06%
0,04%

S T

0,02%

0,00% : —r ‘ﬂ“ﬂ ; i i i
w9
~ 3
=

T T T
=3
A

5
500
750

1000
1500

Number of rows

1750

2000

1,2

1,0

H o038
0,6
t o4

0,2

0,0

ms (.

nAtt LMS
I 5
=10
—/20
—5FU
—==-55U
—=—10FU
====10SU
—t— 20 FU
==t==205U

SS.(RA,L) - Overhead Components

50% 1
40% 1
30%
20% 1
10%

Number of attributes (1-100 rows)

OCSR
uCBW

@ CBS

c)

d)

% overhead (lines)

0,02%

S5,(R,A,L) - Overheads

overhead ms (columns)

0,02% -

0,01%

0,01%

0,00%
- wn o
1

-—v—“-—v—“-—v—\‘rr\ll_ﬂ‘m‘m‘lﬂ‘

w9 N 9 9 9 Q9
N B N~ © ¢ 9 |
LS B

1000
1250
1500

Number of rows

1750

2000

0,09

- 0,08
007
F 0,06
005
0,04
L 0,03
b 002
0,01

0,00

nAtt LMS
—
[10
—20
—5FU
====55U
e 10 FU
====105U
20 FU

==t==205U

% overhead

100%

S$S4(RA,L) - Overhead Components

90%

80%

70% 11
60% —H

50% 1 H
40% 1 H
30% | H
20% 1 H
10% (|

0% T

10
Number of attributes (1-100 rows)

OCSR
mCBW

@ CBS

€)

f)

Figure 58. Graphics for scenarios SS;, SS, and SSq.

107|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

shows that: 1) the percentage overhead is practically independent of the LMS type; 2) the number
of attributes is only relevant in SS; and SS,; 3) all percentage overheads tend to be stabilized when
the number of rows reaches a certain threshold; 4) the maximum percentage overhead is much
lower than in SS;: maximum 0.2%, 0.16% and 0.02% for SS;, SS. and SSq, respectively; 4) as
expected, the absolute overhead raises with the number of rows and with the number of attributes.
In spite of its low impact, programmers may still act at the level of the overhead components, see
Figure 58 b), d) and f). CBS and CBW together, for low number of rows, spend most of the overhead,
indicating that the overhead, in this range, may be practically eliminated for all SS;, SS. and SSa.

5.2.2.3 Scenarios SU, SI and SD

The graphics for these scenarios are shown in Figure 59. In these scenarios, CRUD expressions
(insert, update, delete) are not executed through an LMS but directly on the database server

% overhead (lines) SI(R,A,L) - Overheads overhead ms (columns) % overhead SI(R,A,L) - Overhead Components
0,14% 0,45 100%
L o L L [
0,12% \ _ 040 90%
O 035 nate | 80% mininin inininin
0,10% - LJH 2% L LI
‘% = [030 s N
0,08% > .~ A o 10 60% | HHE SIS
\--, il 50% Lt H OCSR
0,06% Bt " Colodi]l 9 ==
===tk =H-g1- a0% LM uCBW
0,04% AL AL &P ——s o _I_
4 ———— A [e e — H
S 010 _olgg ’ | s
0,02% | o R oos 20% *|*|7 m'nR'E i
iﬂ{ /03 20 20 PP HE
0,00% e e R e e N A N e 0,00
< »n o wnw o v o o © © © o °o o © 0% T
S 43R 8888 8% 8 3 8
s v~ 9 o9 352 5 10 20
Number of rows Number of attributes (1-100 rows)
% overhead (lines) SU(R,A,L) - Overheads head ms (col) % overhead SU(R,A,L) - Overhead Components
0,45% 0,45 100%
0,40% \ — 0,40 90% M- H HEH
0,35% \ ——|+ 035 nate | 80% MR- (B
0,30% \ = 030 s 70% ninin mininin
0,25% \ 05 m==m10 | T minininEm sinimin
op UL] I L]
0,20% \ =l 020 ——2 50% I OCSR
o DR
0,15% \) o 40% mCBW
i 30% 7777+77
0,10% ~ i 010 g 20; | X 8BS
AN 6 A
0,05% VQA—-—-W b 005 o oo LTI 7l7 A .
0,00% — e e el] WL LR WO R 0,00
s 0 9 v 9 w9 9 90 o 2 9 2 2@ 2 0% e L L
2 a3~ 8388183 83 8 3 8
I > B A 5 10
Number of rows Number of attributes (1-100 rows)
% overhead (lines) SD(R,A,L) - Overheads head ms (col) % overhead SD(R,A,L) - Overhead Components
0,08% 0,050 100%
0,07% |- 0,045 90% L
0,06%)\ 1R i 0,040 nAtt 80% T
- 0,035 S 70% M| L
0,05% - LR —
o . + 0,030 o 60% 11| . EEEE
0,04% \ _ L oos =2 s0% | [] ,I, Ll oese
L —20
0,03% \ HIH L H T 0° a0% H i H —I— - mow
| 0,015 =15 I
0.07% L L LLLUL oowo w | 22N W o
B 4 === or] AN .
0,01% n lin Uim i Oim U DX 20%
I) —— 20 10%] NN R
0,00% “"”"”mmmm LR LR 0,000 °
' 4 1w o n 9 W 9 @ @ 9 @ 9 9 9 9 . 0% . L
2 8K 88888 3 8 2 8
A =T - A 20
Number of rows Number of attributes (1-100 rows)

Figure 59. Graphic for scenarios Sl, SU and SD.

108 |Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

through parameterized CRUD expressions. Figure 59 a), c) and e) show the absolute (columns) and
the % overheads (lines). The general behaviour is not aligned with the previous ones. The %
overhead does not increase when the number of rows increases but converges to a constant value
in each scenario. Collected measurements range from 0.3% till 0.03%. In critical situations, the
maximum values may be reduced from 75% till 98% if CBS and CBW are carefully used, see Figure
59 b), d) and f).

5.3 Results Evaluation

This section is focused on evaluating the obtained results to verify how the research questions have
been fulfilled. The main research question is verified at the first place and then the second level
research questions are also verified.

5.3.1 Dynamic FGACM on business tiers

The main research question to be answered was defined as: “is it possible to dynamically, at runtime,
implement FGACM on business tiers and keep them updated when the policies evolve over time?”

To answer this question a platform was devised. It comprises two main components: a server
component where metadata of FGACM are stored and Kkept updated and a client component
deployed in every client system responsible for implementing the FGACM at runtime. To evaluate if
FGACM are dynamically implemented and updated at runtime a platform based on the DACA was
built and a scenario was defined and implemented. The scenario included three users and a set of
hierarchized roles and their associated permissions. The scenario provided a tool to allow the
dynamic modification of assigned roles to each individual user. Whenever a role was assigned or
unassigned, it was confirmed that FGACM are dynamically updated at runtime at the client side
systems. The confirmation was verified in three different ways:

1) The devised DbProof component explicitly shows for each user, through a graphic, the
hierarchized roles and their assignment state, see Figure 54. The assignment state indicates
for each role if a role is assigned or unassigned. It was confirmed that the assignment state
was updated whenever a modification was enforced at the level of the metadata of FAGCM.

2) The DbProof provides an interface where permissions (Business Entities and CRUD
expressions) are selected to be executed, see Figure 54. It was confirmed that the success to
execute any permission was always in accordance with the state assignment of each role.

3) A material verification was also conducted. The material verification consists in looking
inside the Business Logic to check its contents. The contents of Business Logic of each user
was inspected using a common unzip tool, see Figure 55 and Figure 56. The contents of
each Business Logic confirmed that it was in accordance with the assigned permissions.

Before these multi-verifications, there no is doubt that DACA positively answers the main
research question of this thesis.

109|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

5.3.2 Security

This sub-section evaluates how the first research question of the second level is answered by the
DACA. The research question is: “Is there any possibility to supervise the use of CRUD expressions
effectively when protected data is being access to protected data?’. As previously shown, current
approaches allow users to write any CRUD expression freely. The endless expressiveness of the SQL
language opens the possibility to existence of security gaps. In order to overcome this situation, the
DACA does not allow users to write any CRUD expression. Instead of writing CRUD expressions,
users are only allowed to use CRUD expressions that are defined by security experts and put at
their disposal by the DACA, see Figure 46 and Figure 47 Additionally, the DACA has the ability to
identify the permissions granted to each user and make them dynamically available to be used. This
way, users have no possibility to issue their own CRUD expressions.

5.3.3 FGACM awareness

This sub-section evaluates how the second research question of the second level is answered by the
DACA. The research question is: “Is it possible to overcome this difficulty by providing programmers
with a complete awareness about the established FGACM?”. Current approaches do not give any
guidance on the established FGACP neither on the implemented FGACM.

To answer this question, a tool was devised to specifically address this issue - Policy Extractor,
see Figure 37. Policy Extractor reads the metadata of FGACM and automatically builds static data
structures, see Figure 46, to be used during the development process of application tiers, see Figure
47. The data structures convey to programmers a clear awareness about the FGACM to be
dynamically implemented at runtime. The awareness is achieved while programmers write source
code not at compilation time as many other research alternatives do. These assertions were verified
and confirmed while source code for DbProof was being written.

5.3.4 Preservation of CLI Advantages

This sub-section evaluates how the third research question of the second level is answered by the
DACA. The research question is: “Is it possible to keep those advantages (of CLI) on the proposed
solution to implement FGACM?”. The use of CLI to build business tiers presents several advantages.
The advantages may be classified in two major groups: the set of services provided by CLI and
performance of CLL

CLI are used at the DACC level only and there is no other component between CLI and RDBMS.
Thus, the answer to the research question has to be found inside the DACC.

Preservation of CLI Services

The DACC provide a wide set of services. Some of them are geared to address the dynamicity of
FGACM but others are geared to allow application tiers to execute CRUD expressions. The latter
services are specified through DACC and are the services to be compared with those provided
by CLI. As previously mentioned, DACC ensures the two of the access modes provided by CLI.
The remaining access modes were not implemented but may easily be included in a future
version of the DACC and the DACA. The remaining main CLI services are practically mapped one
by one into the DACC: all scrolling services are available, different instantiations contexts of
LMS are available, transactions are available, etc. Services such as access to metadata of

110|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

returned relations are not addressed because in the context of the DACA they are not relevant.
If any other additional service is considered relevant it will certainly have an easy
implementation in the DACC. The simplest approach is to wrap the intended service/method as
shown in Figure 60. Figure 40, Figure 41 and Figure 42 show that relevant services for the
execution of CRUD expressions are all available in the DACA.

REesultSetMetalData getMetadata() throws SQLException {
return r=s.getMetaDatal) !

Figure 60. Wrapping approach to provide the getMet

Preservation of CLI Performance

To prove that the performance advantage of CLI is kept, a performance assessment has been
carried out. Results have shown that the DACC impact may be considered irrelevant for all
scenarios but SS,. Regarding SS;, in the worst situation (2000 rows and no join), the % overhead
is 7.0%, 3.6%, 2.5% and 2.0% for FoRo, FoUp, ScRo and ScUp, respectively. These results may
be considered significant but a closer analysis shows that the % overhead has a deep
dependency on many factors as it may be inferred from the graphics, namely on CRUD
expressions complexity. A CRUD expression with a simple join led to a decay of about 50% in
the % overhead. Thus, in real database applications, where most of the CRUD expressions are
more complex than those herein used and tables are populated with thousands of rows, the %
overhead will have an irrelevant impact on the overall performance.

When compared with other approaches, it is our opinion that the overhead induced by
DACA is very probably lower than theirs, even for those approaches that use static enforcement
mechanisms. The authors of these approaches argue that their solutions induce no overhead at
all, just because policies are directly translated into CRUD expressions. This argument should
only be used if they had compared their approaches with solutions with no access control, as it
was done in this thesis. Only comparing with solutions with no access control it is possible to
evaluate the impact of the access control on the overall performance. Moreover, the latency of
the DACA is minimum because the decisions and the mechanisms are both located at the client

application level.

5.4 Summary

This chapter was focused on presenting the DACA proof of concept and it is organized in three
sections: the presentation of the implemented platform, the performance assessment and, finally,
the results evaluation.

The implemented platform is based on the DACA and includes a database application based on

the Microsoft Northwind database. Some users and roles were defined and implemented.
Additionally, roles are assigned and unassigned at runtime to convey a context of evolving FGACM.
The Security Configurator was split in two different components to ease its development process.
All DACA components were successfully implemented.

111|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

The performance assessment compared a solution based on the DACA and an equivalent
solution but without any access control mechanisms. The collected results show that the induced
overhead for the Direct Access Mode is marginal. Even for the Indirect Access Mode, only the read
protocol induces measurable overhead values. The overheads are measurable because the running
conditions were favorable to the existence of overheads. In real situations, where databases include
thousands of rows and CRUD expressions are more complex, the induced overhead will become
residual again.

The results evaluation proved that the DACA answered all the research questions of this thesis
positively.

The next chapter presents the final conclusions.

112|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

6 Conclusion

This chapter is organized in four topics. First, a review about the work performed is presented.
Second, the main contributions are highlighted. Third, a discussion about some adjacent aspects is
taken and presented. Four, a perspective is presented for future work.

6.1 Overview

This thesis presents an architecture to enforce FGACP dynamically at the level of business tiers
based on CLI, herein known as the DACA. The evolution from CLI towards DACA followed a three
step approach: modelization of CLI, componentization of CLI and, finally, dynamic access control on
CLIL The modelization of CLI lead to an effort to devise a model based on CLI to represent schemas
of database objects [Pereira, '10b; Pereira, '11b]. The componentization of CLI lead to an effort to
devise an architecture for components based on CLI [Pereira, '11a; Pereira, '11c; Pereira, '12b;
Pereira, '13d; Pereira, '13e]. The dynamic access control on CLI leverages all previous work to
devise the DACA [Pereira, '12d; Pereira, '12c; Pereira, '13d]. This three step approach was very
important to successfully and separately overcome the distinct dimensions of CLI drawbacks.
Without a model perspective and without a component perspective of CLI, the DACA, and mainly
DACC, could hardly have been devised. The DACA comprises three main components: a server
component where metadata about FGACM are maintained, a client component responsible for the
implementation of dynamic FGACM and a proxy component placed between the server and the
client components. Basically, programmers no longer have access to CLI but instead they have
access to a component providing a similar set of services as CLI do. This component, DACC, is able
to adapt itself dynamically, at runtime, when policies evolve over time. A proof of concept was
designed and a performance assessment was carried out to evaluate the DACA against the research
questions.

Finally, the DACA was evaluated against the research questions. The results show that the
DACA answers to all the research questions positively: 1) Solutions based on the DACA are able to
implement FGACM dynamically built and updated at runtime; 2) the DACA completely controls the
CRUD expressions that users are authorized to issue this way preventing any security gap; 3) From
the metadata of FGACM it is possible to build data structures to convey a complete awareness of
FGACM to programmers of application tiers and, finally, 4) the DACC rely on and keep advantages of
CLIL

113|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

6.2 Contributions

The outcome of this thesis is divided in one main contribution and four second level contributions.
The main contribution is the DACA. The DACA is an architecture able to address and overcome
some aspects still not addressed by current commercial and academic proposals. The main aspect is
the implementation of dynamic FGACM on business tiers of relational database applications based
on CLI. Solutions based on the DACA are able to implement FGACM dynamically, at runtime, and
keep them updated even if policies evolve over time. Additionally, some other relevant aspects have
also been addressed and overcome by the DACA such as the exploitation and preservation of CLI
features, increased secure mechanisms and awareness of FGACM at development time of
application tiers. Additionally, the DACA is the result of a continuous research that started on
modelization of CLI, followed to the componentization of CLI and only then the DACA was devised
and designed. Modelization and componentization of CLI are also two second level contributions of
this thesis.

The remaining two second level contributions are also related to CLI. One is focused on a
proposal to increase the performance of CLI whenever concurrency is needed on LMS, which is
presented in the Annex B. Two approaches were designed. One based on standard JDBC [Pereira,
'07b] and the other based on a new JDBC with embedded concurrent services [Gomes, '11]. The last
contribution [Pereira, '13b], presented in the Annex C, is focused on an architecture to implement
multi-propose components from CLI. Multi-propose components are able to address different
organizational and different runtime needs .

6.3 Discussion

The DACA was evaluated against the research objectives initially defined. There are other issues
that also deserve a brief reflection, in spite of not being key aspects of this thesis. As such, a brief
description is presented about seven different aspects: FGACP, scalability of the DACA,
maintainability of the DACA, autonomic computing and the DACA, configurability of the DACA,
usability of the DACA and applicability of other technologies than CLI.

FGACP

This work is about how to implement FGACM on components relying on CLI and not about
FGACP. The DACA is independent from the policies to be applied. In practice, FGACP can be
defined using some of the approaches presented by other authors. The only constraint is that
from the established FGACP, the DACA requires Business Schemas as input and the associated
CRUD expressions.

Scalabilit
Unlike some approaches to implement access control mechanisms, such as those based on the

centralized and mixed architectures, their implementation in the DACA is completely
distributed. Each client application is responsible for two fundamental aspects: to decide upon
granting or denying the access to protected data and to enforce the decision. There is no central
system interfering in this process. It is completely distributed. Regarding the Policy Server, if
for some reason, it exceeds an established threshold of loading, the Policy Server may be
deployed using any common horizontal scalability approach.

114|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

Maintainability

Business Logic and the correspondent FGACM are automatically built and updated at runtime.
This feature clearly eliminates the need to carry out maintenance activities at the Business
Logic and at the FGACM level. Moreover, any maintenance activity, at the level of the policies, is
deployed and implemented automatically in all client applications. This is clearly different from
what happens in all implementations of other authors as presented and described in sub-
section 2.4.2.

Autonomic Computing

An autonomic system is characterized by making decisions on its own. It permanently checks
the context and, based on policies, it automatically adapts itself. The DACA is not an autonomic
system but systems based on the DACA are easily integrated in autonomic systems. An
autonomic system prepared to detect situations where FGACP need to be dynamically adapted,
can use the DACA to dynamically adapt the mechanisms.

Configurability
In this thesis we presented an approach for a partial configuration process of FGACM metadata.

The process is substantially automated if an enhanced tool similar to the one presented in
[Pereira, '11b] is used. The new tool would create Business Schemas automatically from CRUD
expressions and would also aggregate sibling CRUD schemas. Moreover, the tool could also
automate the process to obtain the basic set of Business Schemas and CRUD expressions to
access databases on a table basis as O/RM tools and LINQ do.

Usability
CLI are very poor regarding their usability. The DACA overcomes some of the most relevant
aspects of their lack of usability:

e Whenever CLI are being used, programmers need to master database schemas to deal
with each retrieved attribute of each CRUD expression. With DACA, [Read, IInsert and
[Update interfaces provide schema-driven getter and setter methods, avoiding the need
to master database schemas for each CRUD expression.

e Whenever CLI are being used, programmers need to know the instantiation context of
LMS. With the DACA, only the valid methods are available, this way avoiding runtime
exceptions.

e Whenever CLI are being used, there is no easy way to link CRUD expressions and the
applications they assist. With the DACA, the linkage is provided by schema-driven and
type safe methods.

e The DACA, unlike CLI, transform runtime errors into compile errors. If the name of an
attribute is modified, then the associated Business Schemas (IRead, I[Update and IInsert
interfaces) are also modified. Then, when the application tier is re-compiled, the
compiler will detect all errors where the source-code of application tiers was not
updated. With CLI, names of attributes are encoded inside strings, this way preventing
any disconformity from being detected at compile time.

Applicability

JDBC was the main API used to build DACC. While the Policy Server and the Policy Manager do
not rely on any specific architecture, the DACC completely relies on the architecture of CLI. In

115|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

order to evaluate the possibility of using other tools than CLI to build the DACC, a successful
attempt was achieved with ADO.NET. The implementation in ADO.NET was mainly done to
evaluate if the main architectural aspects of the DACC are flexible enough to be used with
different architectural paradigms. There were some technical aspects that needed some
adjustments, but the final result is a DACC based on ADO.NET. The adjustments were mainly
related with:

e scrolling policies on LMS - ADO.NET uses an index to choose the selected row.

o functionalities of LMS - scrollability and updatability concepts are restricted to

scrollable and updatable.

The only difference between the DACC used on the proof of concept and the one based on
ADO.NET is that it was assumed that the building process of Business Entities at runtime is also
possible in the .NET framework. Thus, the ADO.NET version defines all the Business Schemas
and CRUD expressions presented in Table 4 at development time. The behavior of the
component is dynamically updated whenever a role is assigned or unassigned but the
automatic building process of Business Entities is not implemented.

A DbProof based on ADO.NET is also available from here (url: ned.av.ia.it.pt; username:
DACA; password: guest) and the main GUI, correspondent to the DbProof, is presented in Figure
61.

Fiolex Interface Crud | | ServerlP |localhost | o

|E21 v| |IEat_s v||.&IIFr0mEategories v| Poart 3000 |
| | Subject |Usert w | @ @

CategarylD CategaryM ame Dezeription

Beverages Soft diinks. coffees. teas, beers, and ales

CategoryM ame Description

| | | :] [Beainlpdate] [L pdateR ow] [DeleteRow] [Irzert]

Figure 61. DbProof implemented inADO.NET.

From my background, I foresee that DACC may rely on any CLI or even on any technologic
paradigm used for building business tiers. Regarding O/RM tools, they should not be
considered as an option because they are mostly oriented to handle database tables as entity
classes which is too restrictive to most database applications. CRUD expressions may also be
handled by O/RM tools but that is not their focus. Additionally, O/RM tools use CLI as the
underlying middleware, this way behaving as an additional layer in the DACA. Regarding LINQ,

116|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

due to the static syntax validation of the SQL at writing time, it would be interesting to evaluate
how to adapt DACA to rely on LKINQ instead on CLI.

6.4 Future Work

Future work is organized around seven main objectives. The first one aims at extending the actual
DACC to support additional access modes of CLI. The second one aims at devising a FGACP and the
correspondent tool to validate accesses based on the access modes of CLI. The third one aims to
deepen the research already started to provide a thread-safe implementation of the DACC. The
fourth one aims at deepen the research already started to provide a multi-function propose for
components based on CLI. The fifth one is focused on extending the FGACP to the runtime values
that are used on CRUD expressions. The sixth is focused on devising a model to allow orchestration
of Business Entities. The seventh and last one is focused on re-designing to be based on LINQ
instead on CLL

6.4.1 Extending DACC to Support Additional Access Modes

The DACC supports the Direct Access Mode and the Indirect Access Mode of CLI. However, CLI
support other additional access modes, such as access to stored procedures and execution of CRUD
expression in batch mode. Thereby, extending the DACC to support the other access modes is
considered an important step to cover all the access modes provided by CLI. The batch mode uses a
buffer to store CRUD expressions. Whenever required, the stored CRUD expressions are processed
as batch job. Stored procedures are software units stored in a RDBMS and available to client
applications. Stored procedures may execute any task but are mainly used to access to stored data.

6.4.2 Fine-grained Access Control Policies for the DACA

The presented work does not cover FGACP. To address this aspect, future work can be organized in
two complementary steps: model definition and FGACP definition.

The model herein presented for the implementation of FGACM on CLI, shown in Figure 43,
needs to be improved to be usable in real database applications. Beyond the model, an improved
Security Configurator is needed to keep the configuration process as easy as possible.

Regarding the FGACP definition, DACA is not dependent on any FGACP, which is considered a
key advantage. Regarding the Direct Access Mode, this independency potentially allows the use of
any of the proposed approaches that have as output authorized CRUD expressions. Regarding the
Indirect Access Mode, current approaches do not provide any solution. Eventually, the use of the
Indirect Access Mode could also be inferred from the authorized FGACP. This is an open issue
deserving a thoroughly research to devise a complete model for FGACP to be dynamically enforced
on CLI.

6.4.3 Concurrent Approach of Call Level Interfaces

CLI do not provide any mechanism to support concurrency. This may be considered another
drawback of CLI if several threads need to access data using the same database connection. In order
to evaluate the impact of implementing a thread-safe version of CLI, two researches were carried

117|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

out, both having promising results as outcome. The first research evaluated the implementation of
thread-safe services at the level of CLI [Pereira, '10a]. The second research evaluated the
implementation of thread-safe services at the JDBC driver level (TDS - Tabular Data Stream)
[Gomes, '11] [Microsoft, '12], see Figure 10. Several threads share one LMS to execute read, update,
insert and delete actions.

The collected results show that significant performance improvement is achieved for both
approaches when compared with the traditional approach where each thread manages and
interacts with its own database connection. Annex B describes the results that have been achieved
for both approaches.

The research already undertaken needs to be continued to deepen and also to validate the
collected results. Then, the knowledge gained from the research should be used to devise a thread-
safe implementation of the DACC.

6.4.4 Multi-function Components

In [Pereira, '13b] a new architecture is presented to address a new research challenge: business
tiers components aimed at addressing different organizational and runtime needs. Organizational
needs may include separation of roles for the development processes of business tiers and
application tiers. Runtime needs may include the need to support new business requirements at
runtime. Annex C describes the results that have been achieved for both approaches.

6.4.5 Extending FGACP to the Runtime Values of CRUD expressions

The runtime values that are used on CRUD expressions are critical because they are dynamically
defined by users at runtime, this way enabling users to request the access to different data in each
execution cycle. We present three examples to justify our claims. The first one is based on a native
Select expression, the second one is based on a native Update expression and, finally, the third one
is based on modifying the contents of a record set containing data retrieved by a Select expression
(in these cases the modifications are also committed to the host database). The following example
is a simple Select expression.

Select tl.* from tablel tl, table2 t2
Where tl.id = t2.tl id and
tl.value > pValue

The parameter (runtime value) pValue plays a key role to decide which data are retrieved from
tablel. In each individual execution cycle, the parameter may have a different value, this way
retrieving a different set of records from tablel. To overcome this source of possible security gaps,
two approaches are used to implement the access control mechanisms: centralized approach and
distributed approach. Regarding the centralized approach, the most common technique is the use of
views (with [Rizvi, '04] or without query rewriting techniques). This technique conveys several
drawbacks among which the lack of scalability is emphasized [Lopez, '02b; Valle, '02]. Regarding
the distributed approach, two techniques were proposed: in [Chlipala, '10] is proposed a new
predicate, identified as known, to model which information users already know, this way covering
the points here under discussion but only superficially; in [Caires, '11] the policies are statically

118|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

enforced at the table columns level and not at the CRUD expressions level, leading to lack of
flexibility.
The following example is the second example, which is a simple Update expression:

Update tablel tl
set tl.value=pValue
Where tl.id=pId

Similarly to the Select expression, this Update expression also uses parameters. The parameter
pValue updates the attribute value of tablel of a record identified by another parameter pld. Once
again, parameters are user defined and play a key role on Update expressions to decide the data to
be updated. The current techniques and their limitations, previously described for Select
expressions, are also applied to Update expressions. The remaining types of CRUD expressions,
Insert and Delete, convey similar limitations.

The last example is a very common situation on current tools that are used to develop business
tiers, such as JDBC [Parsian, '05], Hibernate [Christian, '04], ADO.NET [Pablo, '07] and LINQ [Erik,
'06]. The example shows that beyond the use of CRUD expressions, databases are also modifiable by
executing protocols on data retrieved by Select expressions. The example shows that after
retrieving data from a database, it is kept in record sets (recordSet) and then applications are
allowed to update their content through an update protocol. In this case the attribute
attributeName was updated to value and then the modification was committed. This case is
different from the two previous ones because there is no evidence of any CRUD expression and
users are modifying data they have been previously authorized to retrieve. Even so, we cannot
despise the need to control the runtime values being used to modify the contents of those record
sets and, therefore, used to modify the contents of databases. Beyond the update protocol, current
tools also provide an insert protocol where users are also allowed to use runtime values.

recordSet=executeSelectExpression (sqgl)
recordSet.update (YattributeName”, value)
recordsSet.commit ()

Currently, there isn’t any known access control technique to enforce policies at the business
tier level and able to statically control the provenance of runtime values that are used on actions
issued against databases. To overcome this situation a first approach has been presented [Pereira,
'"13g] where parameters are statically driven by access control policies enforced at the business tier
level.

6.4.6 Orchestration of Business Entities

The DACA does support orchestration of Business Entities, this way preventing FGACM to be
implemented also at a higher level. For example, a role may comprise a specific task where the
execution of CRUD expressions must follow a specific sequence.

6.4.7 The DACA Based on LINQ

As already mentioned, the DACA may be easily based on other tools beyond the CLI. This is true if
the tool is not LINQ. LINQ is a C# language extension aimed at editing SQL statements whose syntax
is statically validated at editing time. This powerful feature cannot be removed from LINQ and, thus,

119|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

it seems to be a significant challenge to simultaneously enforce FGACP while the SQL statements
are being edited.

120|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components
- —

References

[Agrawal, '02] Agrawal, Rakesh, Kiernan, Jerry, Srikant, Ramakrishnan and Xu, Yirong: "Hippocratic
databases." 28th Int. Conf. on Very Large Data Bases, VLDB Endowment, Hong Kong, China
(2002), 143-154.

[Andy, '08] Andy, Maule, Wolfgang, Emmerich and David, S. Rosenblum: "Impact analysis of database
schema changes." 30th Int. Conf. on Software Engineering, ACM, Leipzig, Germany (2008), 451-
460.

[Anwar, '12] Anwar, Mohd and Fong, Philip W. L.: "A visualization tool for evaluating access control
policies in facebook-style social network systems." 27th Annual ACM Symposium on Applied
Computing, ACM, Trento, Italy (2012), 1443-1450.

[Ao, '04] Ao, Xuhui and Minsky, Naftaly H.: "On the role of roles: from role-based to role-sensitive access
control." Proceedings of the ninth ACM symposium on Access control models and technologies,
ACM, Yorktown Heights, New York, USA (2004), 51-60.

[Bachmann, '00] Bachmann, Felix, Bass, Len, Buhman, Charles, Comella-Dorda, Santiago, Long, fred,
Robert, John E., Seacord, Robert C. and Wallnau, Kurt C. (2000). Volume II: Technical Concepts of
Component-Based Software Engineering.
http://www.sei.cmu.edu/library/abstracts/reports/00tr008.cfm, CMU/SEI.

[Barker, '08] Barker, Steve: "Dynamic Meta-level Access Control in SQL." 22nd Annual IFIP WG 11.3
Working Conf. on Data and Applications Security, Springer-Verlag, London, UK (2008), 1-16.

[Bauer, '07] Bauer, Christian and King, Gaving: "Java Persistence with Hibernate"; Manning, (2007).

[Belokosztolszki, '03] Belokosztolszki, Andras, Eyers, David M., Pietzuch, Peter R., Bacon, Jean and
Moody, Ken: "Role-based access control for publish/subscribe middleware architectures." 2nd
Int. Workshop on Distributed Event-based Systems, ACM, San Diego, California (2003), 1-8.

[Berners-Lee, '01] Berners-Lee, Tim, Hendler, James and Lassila, Ora (2001) "The Semantic Web."
Scientific American.

[Bertino, '00] Bertino, Elisa, Castano, Silvana, Ferrari, Elena and Mesiti, Marco: "Specifying and enforcing
access control policies for XML document sources." World Wide Web, 3, 3 (2000), 139-151.

[Bhat, '03] Bhat, Viraj and Parashar, Manish (2003). A Middleware Substrate for Integrating Services on
the Grid. HiPC - High Performance Computing. T. Pinkston and V. Prasanna, Springer Berlin,
Heidelberg. 2913: 373-382.

[Bhatti, '05] Bhatti, Rafae, Bertino, Elisa and Ghafoor, Arif: "A Trust-Based Context-Aware Access Control
Model for Web-Services." Distributed and Parallel Databases, 18, 1 (2005), 83-105.

[Blair, '09] Blair, G., Bencomo, N. and France, R. B.: "Models@ run.time." Computer, 42, 10 (2009), 22-
27.

[Bond, '07] Bond, Rabecca, See, Kevin Yeung-Kuen, Wong, Carmen Ka Man and Chan, Yuk-Kuen Henry:
"Understanding DB2 9 security", (2007).

[Bonner, '97] Bonner, Anthony: "Transaction datalog: a compositional language for transaction
programming." Intl Workshop on Database Programming Languages, Springer, LNCS(1997),
373-395.

[Bracciali, '05] Bracciali, Andrea, Brogi, Antonio and Canal, Carlos: "A formal approach to component
adaptation." Journal of Systems and Software, 74, 1 (2005), 45-54.

121|Page

http://www.sei.cmu.edu/library/abstracts/reports/00tr008.cfm

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

[Buneman, '06] Buneman, Peter, Chapman, Adriane and Cheney, James: "Provenance management in
curated databases." ACM SIGMOD Int. Conf. on Management of Data, ACM, Chicago, IL, USA
(2006), 539-550.

[Caires, '11] Caires, Luis, Pérez, Jorge A., Seco, Jodo Costa, Vieira, Hugo Torres and Ferrdo, Lucio: "Type-
based access control in data-centric systems." 20th European conference on Programming
Languages and Systems: part of the joint European conferences on theory and practice of
software, Springer-Verlag, Saarbrucken, Germany (2011), 136-155.

[Carminati, '09a] Carminati, Barbara, Ferrari, Elena, Heatherly, Raymond, Kantarcioglu, Murat and
Thuraisingham, Bhavani: "A semantic web based framework for social network access control."
14th ACM Symposium on Access Control Models and Technologies, ACM, Stresa, Italy (2009a),
177-186.

[Carminati, '06] Carminati, Barbara, Ferrari, Elena and Perego, Andrea (2006). Rule-Based Access Control
for Social Networks On the Move to Meaningful Internet Systems 2006: OTM 2006 Workshops.
R. Meersman, Z. Tari and P. Herrero, Springer Berlin / Heidelberg. 4278: 1734-1744.

[Carminati, '09b] Carminati, Barbara, Ferrari, Elena and Perego, Andrea: "Enforcing access control in
Web-based social networks." ACM Trans. Inf. Syst. Secur., 13, 1 (2009b), 1-38.

[Chaudhuri, '07] Chaudhuri, S., Dutta, T. and Sudarshan, S.: "Fine Grained Authorization Through
Predicated Grants." IEEE 23rd ICDE - Int. Conf. on Data Engineering, Istanbul, Turkey (2007),
1174-1183.

[Chlipala, '10] Chlipala, Adam: "Static checking of dynamically-varying security policies in database-
backed applications." 9th USENIX Conf. on Operating Systems Design and Implementation,
USENIX Association, Vancouver, BC, Canada (2010), 1-14.

[Christian, '04] Christian, Bauer and Gavin, King: "Hibernate in Action"; Manning Publications Co., (2004).

[Cook, '05] Cook, William and lbrahim, Ali (2005) "Integrating programming languages and databases:
what is the problem?".

[Cooper, '07] Cooper, Ezra, Lindley, Sam, Wadler, Philip and Yallop, Jeremy: "Links: Web Programming
Without Tiers." 5th Intl Conf on Formal Methods for Components and Objects, Springer-Verlag,
Amsterdam, The Netherlands (2007), 266-296.

[Corcoran, '09] Corcoran, Brian J., Swamy, Nikhil and Hicks, Michael: "Cross-tier, Label-based Security
Enforcement for Web Applications." 35th SIGMOD Int. Conf. on Management of Data, ACM,
Providence, Rhode Island, USA (2009), 269-282.

[Costa, '07] Costa, Cristébal, Pérez, Jennifer and Carsi, José (2007). Dynamic Adaptation of Aspect-
Oriented Components. Component-Based Software Engineering. H. Schmidt, I. Crnkovic, G.
Heineman and J. Stafford, Springer Berlin / Heidelberg. 4608: 49-65.

[Damiani, '02] Damiani, Ernesto, Vimercati, Sabrina De Capitani di, Paraboschi, Stefano and Samarati,
Pierangela: "A fine-grained access control system for XML documents." ACM Trans. Inf. Syst.
Secur., 5, 2 (2002), 169-202.

[David, '90] David, Maier (1990). Representing database programs as objects. Advances in Database
Programming Languages. F. Bancilhon and P. Buneman. N.Y., ACM: 377-386.

[Decker, '08] Decker, Michael: "Requirements for a location-based access control model." 6th Int. Conf.
on Advances in Mobile Computing and Multimedia, ACM, Linz, Austria (2008), 346-349.

[Denning, '76] Denning, Dorothy E.: "A lattice model of secure information flow." Commun. ACM, 19, 5
(1976), 236-243.

[Dinkelaker, '11] Dinkelaker, Tom: "AO4SQL: Towards an Aspect-Oriented Extension for SQL." 8th
Workshop on Reflection, AOP and Meta-Data for Software Evolution (RAM-SE'11), Zurich,
Switzerland (2011), 1-5.

[Dwork, '08] Dwork, Cynthia: "Differential Privacy: A Survey of Results." 5th Intl. Conf. on Theory and
Applications of Models of Computation, Springer-Verlag, Xi'an, China (2008), 1-19.

[Eclipse, '12] Eclipse. (2012). "Eclipse " Retrieved 2012 Jul, from http://www.eclipse.org/.

[Eder, '96] Eder, Johann: "View Definitions with Parameters." 2nd Intl Workshop on Advances in
Databases and Information Systems, Springer-Verlag(1996), 170-184.

122|Page

http://www.eclipse.org/

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

[Eisenberg, '99] Eisenberg, Andrew and Melton, Jim (1999). Part 1: SQL Routines using the Java (TM)
Programming Language. American National Standard for Information for Technology Database
Languages - SQLJ,, International Committee for Information Technolgy.

[Elizondo, '10] Elizondo, Perla Velasco and Lau, Kung-Kiu: "A Catalogue of Component Connectors to
Support Development with Reuse." Journal of Systems and Software, 83, 7 (2010), 1165-1178.

[Emilin Shyni, '10] Emilin Shyni, C. and Swamynathan, S.: "Purpose Based Access Control for Privacy
Protection in Object Relational Database Systems." Data Storage and Data Engineering (DSDE),
2010 International Conference on, (2010), 90-94.

[Erik, '06] Erik, Meijer, Brian, Beckman and Gavin, Bierman: "LINQ: Reconciling Object, Relations and
XML in the .NET framework." ACM SIGMOD Intl Conf on Management of Data, ACM,
Chicago,IL,USA (2006), 706-706.

[Fabry, '06] Fabry, Johan and D'Hondt, Theo: "KALA: Kernel Aspect Language for Advanced
Transactions." Proceedings of the 2006 ACM Symposium on Applied Computing, ACM, Dijon,
France (2006), 1615-1620.

[Ferraiolo, '01] Ferraiolo, David F., Sandhu, Ravi, Gavrila, Serban, Kuhn, D. Richard and Chandramouli,
Ramaswamy: "Proposed NIST Standard for Role-based Access Control." ACM Trans. Inf. Syst.
Secur., 4,3 (2001), 224-274.

[Ferraiolo, '92] Ferraiolo, David, Kuhn, D. Richard and Chandramouli, Ramaswamy: "Role-based access
control." 15th National Computer Security Conference, Baltimore - Maryland - USA (1992), 554-
563.

[Fischer, '09] Fischer, Jeffrey, Marino, Daniel, Majumdar, Rupak and Millstein, Todd: "Fine-Grained
Access Control with Object-Sensitive Roles." 23rd ECOOP - European Conference on Object-
Oriented Programming, Springer-Verlag, Italy (2009), 173-194.

[Flower, '02] Flower, Martin: "Patterns of Enterprise Application Architecture"; Addison-Wesley, (2002).

[Fundulaki, '04] Fundulaki, Irini and Marx, Maarten: "Specifying access control policies for XML
documents with XPath." 9th ACM Symposium on Access Control Models and Technologies,
ACM, Yorktown Heights, New York, USA (2004), 61-69.

[Garcia-Morchon, '10] Garcia-Morchon, Oscar and Wehrle, Klaus: "Modular context-aware access
control for medical sensor networks." 15th ACM Symposium on Access Control Models and
Technologies, ACM, Pittsburgh, Pennsylvania, USA (2010), 129-138.

[Gary, '07] Gary, Wassermann, Carl, Gould, Zhendong, Su and Premkumar, Devanbu: "Static checking of
dynamically generated queries in database applications." ACM Transansactions on Software
Eng. Methodology, 16, 4 (2007), 14:01-14:27.

[Gomes, '11] Gomes, Diogo, Pereira, Oscar Mortagua and Santos, Wilson (2011). JDBC (Java DB
connectivity) concorrente. MSc Dissertation, University of Aveiro.

[Graham, '72] Graham, G. Scott and Denning, Peter J.: "Protection: Principles and Practice." Spring Joint
Computer Conference, ACM, Atlantic City, New Jersey (1972), 417-429.

[Gregor Kiczales, '97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes
Videira, Jean-Marc Loingtier, Joh Irwin: "Aspect-Oriented Programming." ECOOP,
Jyvaskyla,Finland (1997), 220-242.

[Gregory, '05] Gregory, Buehrer, Bruce, W. Weide and Paolo, A. G. Sivilotti: "Using parse tree validation
to prevent SQL injection attacks." 5th Intl. Workshop on Software Engineering and Middleware,
ACM, Lisbon, Portugal (2005), 106-113.

[Harrison, '76] Harrison, Michael A., Ruzzo, Walter L. and Ullman, Jeffrey D.: "Protection in operating
systems." Commun. ACM, 19, 8 (1976), 461-471.

[He, '09] He, Daisy Daigin, Compton, Michael, Taylor, Kerry and Yang, Jian: "Access control: what is
required in business collaboration?"; 20th Australasian Conference on Australasian Database -
Volume 92, Australian Computer Society, Inc., Wellington, New Zealand (2009), 105-114.

[Heineman, '01] Heineman, George T. and Councill, William T.: "Component-Based Software
Engineering: Putting the Pieces Together"; Addison-Wesley, (2001).

123|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

[Hicks, '10] Hicks, Boniface, Rueda, Sandra, King, Dave, Moyer, Thomas, Schiffman, Joshua, Sreenivasan,
Yogesh, McDaniel, Patrick and Jaeger, Trent: "An architecture for enforcing end-to-end access
control over web applications." 15th ACM symposium on Access Control Models and
Technologies, ACM, Pittsburgh, Pennsylvania, USA (2010), 163-172.

[Hildmann, '99] Hildmann, Thomas and Barholdt, Jorg: "Managing trust between collaborating
companies using outsourced role based access control." 4th ACM workshop on Role-based
Access Control, ACM, Fairfax, Virginia, United States (1999), 105-111.

[Hu, '11] Hu, Yuh-Jong and Yang, Jiun-Jan: "A semantic privacy-preserving model for data sharing and
integration." Proceedings of the International Conference on Web Intelligence, Mining and
Semantics, ACM, Sogndal, Norway (2011), 1-12.

[Hur, '11] Hur, Junbeom: "Fine-grained data access control for distributed sensor networks." Wirel.
Netw., 17,5 (2011), 1235-1249.

[IBM, '07] IBM (2007). Hippocratic Database (HDB) Technology Projects. IBM Research.

[ISO, '03] ISO. (2003). "ISO/IEC 9075-3:2003." Retrieved [2011 May, from
http://www.iso.org/iso/catalogue detail.htm?csnumber=34134.

[lwaihara, '05] Iwaihara, Mizuho, Chatvichienchai, Somchai, Anutariya, Chutiporn and Wuwongse, Vilas:
"Relevancy based access control of versioned XML documents." 10th ACM symposium on
Access Control Models and Technologies, ACM, Stockholm, Sweden (2005), 85-94.

[Jayapandian, '08] Jayapandian, Magesh and Jagadish, H. V.: "Automated creation of a forms-based
database query interface." Int. Conf. on Very Large Database, 1, 1 (2008), 695-709.

[José, '09] José, Filho, Bringel and Martin, Hervé: "A generalized context-based access control model for
pervasive environments." 2nd SIGSPATIAL ACM Int. Workshop on Security and Privacy in GIS
and LBS, ACM, Seattle, Washington (2009), 12-21.

[Keller, '97] Keller, Wolfgang: "Mapping Objects to Tables - A Pattern Language." European Conference
on Pattern Languages of Programming Conference (EuroPLoP), Irsse, Germany (1997), 1-26.

[Kephart, '03] Kephart, J. O. and Chess, D. M.: "The vision of autonomic computing." Computer, 36, 1
(2003), 41-50.

[Kim, '09] Kim, Kyu Il, Choi, Won Gil, Lee, Eun Ju and Kim, Ung Mo: "RBAC-based access control for
privacy protection in pervasive environments." 3rd Int. Conf. on Ubiquitous Information
Management and Communication, ACM, Suwon, Korea (2009), 255-259.

[Kim, '10] Kim, Kyu Il, Kim, Won Young, Ryu, Joon Suk, Ko, Hyuk Jin, Kim, Ung Mo and Kang, Woo Jun:
"RBAC-based access control for privacy preserving in semantic web." Proceedings of the 4th
International Conference on Uniquitous Information Management and Communication, ACM,
Suwon, Republic of Korea (2010), 1-5.

[Kirchberg, '10] Kirchberg, M. and Link, S.: "Hippocratic Databases: Extending Current Transaction
Processing Approaches to Satisfy the Limited Retention Principle." System Sciences (HICSS),
2010 43rd Hawaii International Conference on, (2010), 1-10.

[Koshutanski, '03] Koshutanski, Hristo and Massacci, Fabio: "An access control framework for business
processes for web services." ACM workshop on XML security, ACM, Fairfax, Virginia (2003), 15-
24,

[Kuhn, '10] Kuhn, D. Richard, Coyne, Edward J. and Weil, Timothy R.: "Adding Attributes to Role-Based
Access Control." Computer, 43, 6 (2010), 79-81.

[Kulkarni, '08] Kulkarni, Devdatta and Tripathi, Anand: "Context-aware role-based access control in
pervasive computing systems." 13th ACM Symposium on Access Control Models and
Technologies, ACM, Estes Park, CO, USA (2008), 113-122.

[Kung-Kiu, '07] Kung-Kiu, Lau and Zheng, Wang: "Software Component Models." IEEE Trans. on Soft.
Eng., 33,10 (2007), 709-724.

[Laddad, '03] Laddad, Ramnivas: "Aspect] in Action: Practical Aspect-Oriented Programming"; Manning
Publications, /Greenwich,CT,USA, (2003).

124|Page

http://www.iso.org/iso/catalogue_detail.htm?csnumber=34134

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

[Lammel, '06] Lammel, Ralf and Meijer, Erik: "Mappings Make data Processing Go 'Round: An Inter-
paradigmatic Mapping Tutorial." Generative and Transformation Techniques in Soft. Eng., LNCS-
Springer-Verlag, Braga, Portugal (2006), 169-218.

[Lampson, '74] Lampson, Butler W.: "Protection." SIGOPS Operating Systems Review, 8, 1 (1974), 18-24.

[Lawson, '12] Lawson, Curt and Zhu, Feng: "Sentential access control." 50th Annual Southeast Regional
Conference, ACM, Tuscaloosa, Alabama (2012), 303-308.

[LeFevre, '04] LeFevre, Kristen, Agrawal, Rakesh, Ercegovac, Vuk, Ramakrishnan, Raghu, Xu, Yirong and
DeWitt, David: "Limiting disclosure in hippocratic databases." 30th Int. Conf. on Very Large
Databases, VLDB Endowment, Toronto, Canada (2004), 108-119.

[Li, '05] Li, Jiangtao, Li, Ninghui and Winsborough, William H.: "Automated trust negotiation using
cryptographic credentials." 2th ACM Int. Conf. on Computer and Communications Security,
ACM, Alexandria, VA, USA (2005), 46-57.

[Liu, '10] Liu, Donggang: "Efficient and distributed access control for sensor networks." Wirel. Netw., 16,
8 (2010), 2151-2167.

[Lopez, '02a] Lopez, Javier, Mana, Antonio, Pimentel, Ernesto, Troya, José M. and Valle, Mariemma
Inmaculada Yague e del: "Access Control Infrastructure for Digital Objects." Proceedings of the
4th International Conference on Information and Communications Security, Springer-
Verlag(2002a), 399-410.

[Lopez, '02b] Lopez, Javier, Mana, Antonio and Valle, Mariemma Inmaculada Yague del: "XML-Based
Distributed Access Control System." Proceedings of the Third International Conference on E-
Commerce and Web Technologies, Springer-Verlag(2002b), 203-213.

[Luo, '04] Luo, Bo, Lee, Dongwon, Lee, Wang-Chien and Liu, Peng: "QFilter: fine-grained run-time XML
access control via NFA-based query rewriting." 13th ACM Int. Conf. on Information and
Knowledge Management, ACM, Washington, D.C., USA (2004), 543-552.

[Mann, '01] Mann, V., Matossian, V., Muralidhar, R. and Parashar, M.: "DISCOVER: An environment for
Web-based interaction and steering of high-performance scientific applications." Concurrency
and Computation: Practice and Experience, 13, 8-9 (2001), 737-754.

[Mann, '02] Mann, Vijay and Parashar, Manish: "Engineering an interoperable computational
collaboratory on the Grid." Concurrency and Computation: Practice and Experience, 14, 13-15
(2002), 1569-1593.

[McSherry, '10] McSherry, Frank: "Privacy Integrated Queries: An Extensible Platform for Privacy-
preserving Data Analysis." Commun. ACM, 53, 9 (2010), 89-97.

[Mead, '11] Mead, Ged and Boehm, Anne: "ADO.NET 4 Database Programming with C# 2010"; Mike
Murach & Associates, Inc., /USA, (2011).

[Mecella, '06] Mecella, Massimo, Ouzzani, Mourad, Paci, Federica and Bertino, Elisa: "Access control
enforcement for conversation-based web services." 15th Int. Conf. on World Wide Web, ACM,
Edinburgh, Scotland (2006), 257-266.

[Microsoft, '92] Microsoft. (1992). "Microsoft Open Database Connectivity." Retrieved Jul, 2012, from
http://msdn.microsoft.com/en-us/library/ms710252(VS.85).aspx.

[Microsoft, '10] Microsoft. (2010). "Visual Studio 2010." Retrieved 2012 Jul, from
http://www.microsoft.com/visualstudio/en-us.

[Microsoft, '12] Microsoft. (2012). "[MS-TDS]: Tabular Data Stream Protocol Specification." Retrieved
Jul, 2012, from http://msdn.microsoft.com/en-us/library/dd304523(v=prot.13).aspx.

[Microsoft, '13] Microsoft. (2013). "RecordSet (ODBC)." Retrieved Jun, 2012, from
http://msdn.microsoft.com/en-us/library/5sbfs6f1.aspx.

[Moffett, '91] Moffett, Jonathan D. and Sloman, Morris S.: "Content-dependent access control." SIGOPS
Oper. Syst. Rev., 25, 2 (1991), 63-70.

[Moore, '91] Moore, James W.: "The ANSI binding of SQL to ADA." Ada Letters, XI, 5 (1991), 47-61.

[Morin, '10] Morin, Brice, Mouelhi, Tejeddine, Fleurey, Franck, Traon, Yves Le, Barais, Olivier and
Jézéquel, Jean-Marc: "Security-Driven Model-based Dynamic Adaptation." IEEE/ACM Int. Conf.
on Automated Software Engineering, ACM, Antwerp, Belgium (2010), 205-214.

125|Page

http://msdn.microsoft.com/en-us/library/ms710252(VS.85).aspx
http://www.microsoft.com/visualstudio/en-us
http://msdn.microsoft.com/en-us/library/dd304523(v=prot.13).aspx
http://msdn.microsoft.com/en-us/library/5sbfs6f1.aspx

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

[OASIS, '12] OASIS. (2012). "XACML - eXtensible Access Control Markup Language." Retrieved Feb,
2012, from http://www.oasis-open.org/committees/tc_home.php?wg abbrev=xacml.

[Olson, '09] Olson, Lars E., Gunter, Carl A., Cook, William R. and Winslett, Marianne: "Implementing
Reflective Access Control in SQL." 23rd Annual IFIP WG 11.3 Working Conference on Data and
Applications Security, Springer-Verlag, Montreal, P.Q., Canada (2009), 17-32.

[Olson, '08] Olson, Lars E., Gunter, Carl A. and Madhusudan, P.: "A formal framework for reflective
database access control policies." 15th ACM Int. Conf. on Computer and Communications
Security, ACM, Alexandria, Virginia, USA (2008), 289-298.

[Oo, '07] Oo, May Phyo and Naing, Thinn Thu: "Access Control System for Grid Security Infrastructure."
IEEE/WIC/ACM Int. Conf. on Web Intelligence and Intelligent Agent Technology - Workshops,
IEEE Computer Society(2007), 299-302.

[Oracle] Oracle. "Oracle TopLink." Retrieved Oct, 2011, from
http://www.oracle.com/technetwork/middleware/toplink/overview/index.html.

[Oracle] Oracle. "Using Oracle Virtual Private Database to Control Data Access." Retrieved Mar, 2013,
from http://docs.oracle.com/cd/B28359 01/network.111/b28531/vpd.htm#CIHBAJGI.

[Oracle, '12a] Oracle. (2012a). "Connection." Retrieved 2012 Jul, from
http://docs.oracle.com/javase/6/docs/api/java/sql/Connection.html.

[Oracle, '12b] Oracle. (2012b). "Interface PreparedStatement." Retrieved 2012 Jul, from
http://docs.oracle.com/javase/6/docs/api/java/sql/PreparedStatement.html.

[Oracle, '12c] Oracle. (2012c). ‘"Interface Statement." Retrieved 2012 Jul, from
http://docs.oracle.com/javase/6/docs/api/java/sqgl/Statement.html.

[Oracle, '12d] Oracle. (2012d). "JDBCConnectionPool." Retrieved 2012 Jul, from

http://docs.oracle.com/cd/E13222 01/wls/docs81/config xml/JIDBCConnectionPool.html.

[Oracle, '12e] Oracle. (2012e). "NetBeans." Retrieved 2012 Jul, from http://netbeans.org/.

[Oracle, "13] Oracle. (2013). "ResultSet." Retrieved Jul, 2012, from
http://docs.oracle.com/javase/6/docs/api/java/sql/ResultSet.html.

[Pablo, '07] Pablo, Castro, Sergey, Melnik and Atul, Adya: "ADO.NET entity framework: raising the level
of abstraction in data programming." ACM SIGMOD International Conference on Management
of Data, ACM, Beijing,China (2007), 1070-1072.

[Paci, '11] Paci, Federica, Mecella, Massimo, Ouzzani, Mourad and Bertino, Elisa: "ACConv -- An Access
Control Model for Conversational Web Services." ACM Trans. Web, 5, 3 (2011), 1-33.

[Padma, '09] Padma, J., Silva, Y. N., Arshad, M. U. and Aref, W. G.: "Hippocratic PostgreSQL." ICDE '09.
IEEE 25th Int. Conf. on Data Engineering, (2009), 1555-1558.

[Pan, '06] Pan, Chi-Chun, Mitra, Prasenjit and Liu, Peng: "Semantic access control for information
interoperation." Proceedings of the eleventh ACM symposium on Access control models and
technologies, ACM, Lake Tahoe, California, USA (2006), 237-246.

[Parsian, '05] Parsian, Mahmoud: "JDBC Recipes: A Problem-Solution Approach"; Apress, /NY, USA,

(2005).
[Pereira, '10a] Pereira, Oscar M, Aguiar, Rui L and Santos, Maribel Yasmina: "Assessment of a Enhanced
ResultSet Component for Accessing Relational Databases." ICSTE-Int. Conf. on Software

Technology and Engineering, Puerto Rico (2010a), V1:194-201.

[Pereira, '10b] Pereira, Oscar M, Aguiar, Rui L and Santos, Maribel Yasmina: "CRUD-DOM: A Model for
Bridging the Gap Between the Object-Oriented and the Relational Paradigms." ICSEA 2010 - Int.
Conf. on Software Engineering and Applications, Nice, France (2010b), 114-122.

[Pereira, '11a] Pereira, Oscar M., Aguiar, Rui L and Santos, Maribel Yasmina: "An Adaptable Business
Component Based on Pre-defined Business Interfaces." 6th ENASE: Evaluation of Novel
Approaches to Software Engineering, Beijing, China (2011a), 92-103.

[Pereira, '11b] Pereira, Oscar M., Aguiar, Rui L and Santos, Maribel Yasmina: "CRUD-DOM: A Model for
Bridging the Gap Between the Object-Oriented and the Relational Paradigms - an Enhanced
Performance Assessment Based on a case Study." International Journal On Advances in
Software, 4, 1&2 (2011b), 158-180.

126 |Page

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://www.oracle.com/technetwork/middleware/toplink/overview/index.html
http://docs.oracle.com/cd/B28359_01/network.111/b28531/vpd.htm#CIHBAJGI
http://docs.oracle.com/javase/6/docs/api/java/sql/Connection.html
http://docs.oracle.com/javase/6/docs/api/java/sql/PreparedStatement.html
http://docs.oracle.com/javase/6/docs/api/java/sql/Statement.html
http://docs.oracle.com/cd/E13222_01/wls/docs81/config_xml/JDBCConnectionPool.html
http://netbeans.org/
http://docs.oracle.com/javase/6/docs/api/java/sql/ResultSet.html

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

[Pereira, '11c] Pereira, Oscar M., Aguiar, Rui L. and Santos, Maribel Yasmina: "A Reusable Business Tier
Component with a Single Wide Range Static Interface." ECSA: 5th European Conference on
Software Architecture, Springer Verlag - LNCS, Essen, Germany (2011c), 216-219.

[Pereira, '12a] Pereira, Oscar Mortdgua, Aguiar, Rui L. and Figueiral, Diogo Jorge Rolo (2012a).
Arquitetura Dindmica de Controlo de Acesso. Msc Dissertation, University of Aveiro.

[Pereira, '12b] Pereira, Oscar Mortagua, Aguiar, Rui L. and Santos, Maribel Yasmina: "ORCA: Architecture
for Business Tier Components Driven by Dynamic Adaptation and Based on Call Level
Interfaces." 38th Euromicro Conf. on Software Engineering and Advanced Applications, Cesme,
Izmir, Turkey (2012b), 183-191.

[Pereira, '13a] Pereira, Oscar Mortagua, Aguiar, Rui L. and Santos, Maribel Yasmina (2013a). ABC
Architecture - A New Approach to Build Reusable and Adaptable Business Tier Components
Based on Static Business Interfaces. Evaluation of Novel Approaches to Software Engineering. L.
A. Maciaszek and K. Hang, Springer-Verlag, Communications in Computer and Information
Science. 275: 114-129.

[Pereira, '13b] Pereira, Oscar Mortagua, Aguiar, Rui L. and Santos, Maribel Yasmina: "ABTC: Multi-
propose Adaptable Business Tier Components Based on Call Level Interfaces." JPRIT - Journal of
Research and Practice in Information Technology, (2013b), (submited).

[Pereira, '13c] Pereira, Oscar Mortagua, Aguiar, Rui L. and Santos, Maribel Yasmina: "A Concurrent Tuple
Set Architecture for Call Level Interfaces." ICIS - 12th IEEE/ACIS International Conference on
Computer and Information Science, Springer - Computer and Information Science Niigata,Japan
(2013c), 143-158.

[Pereira, '13d] Pereira, Oscar Mortagua, Aguiar, Rui L. and Santos, Maribel Yasmina: "DACA: Distributed
Dynamic Access Control Architecture Based on Call Level Interfaces." IET Information Security,
(2013d), (submited).

[Pereira, '13e] Pereira, Oscar Mortagua, Aguiar, Rui L. and Santos, Maribel Yasmina: "Reusable Business
Tier Architecture Driven by a Wide Typed Service." 12th IEEE/ACIS - International Conference
on Computer and Information Science, Niigata, Japan (2013e), (accepted).

[Pereira, '13f] Pereira, Oscar Mortagua, Aguiar, Rui L. and Santos, Maribel Yasmina: "Reusable Business
Tier Architecture Driven by a Wide Typed Service." ICIS 2013 - 12th IEEE/ACIS International
Conference on Computer and Information Science, Niigata,Japan (2013f), 135-141.

[Pereira, '13g] Pereira, Oscar Mortagua, Aguiar, Rui L. and Santos, Maribel Yasmina: "Runtime Values
Driven by Access Control Policies Statically Enforced at the Level of the Relational Business
Tiers." SEKE 2013 - Intl. Conf. on Software Engineering and Knowledge Engineering, Boston, USA
(2013g), (accepted).

[Pereira, '12c] Pereira, Oscar Mortagua, Aguiar, Rui L: and Santos, Maribel Yasmina: " ACADA - Access
Control-driven Architecture with Dynamic Adaptation." SEKE - 24th Intl. Conf. on Software
Engineering and Knowledge Engineering, Knowledge Systems Institute Graduate School, San
Francisco, CA, USA (2012c), 387-393.

[Pereira, '12d] Pereira, Oscar Mortagua, Aguiar, Rui and Santos, Maribel: "BTA: Architecture for
Reusable Business Tier Components with Access Control." ICCSA - 12th Int. Conf. on Computer
Systems and Applications, Springer Berlin / Heidelberg, Salvador, Bahia, Brazil (2012d), 682-697.

[Pereira, '05] Pereira, Oscar Mortagua, Pinto, Joaquim Sousa and Anjo, Antdnio Batel (2005). abcNet -
Alfabetizacdo na NET. MSc Dissertation, University of Aveiro.

[Pereira, '06] Pereira, Oscar Narciso Mortdgua and Pinto, Joaquim Manuel Henriques Sousa:
"Maintainability Assessment of an Enhanced Object-Oriented Approach for Wrapping Stored
Procedures." Int. Conf. on Databases and Applications, Innsbruck-Austria (2006), 26-31.

[Pereira, '07a] Pereira, Oscar Narciso Mortdgua and Pinto, Joaquim Manuel Henriques Sousa:
"Performance Assessment of an Enhanced Object-Oriented Approach for Wrapping Stored
Procedures." IEEE Eurocon 2007 - Internation IEEE Conference on Computer as a Tool, Warsow-
Poland (2007a), 473-477.

127|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

[Pereira, '05a] Pereira, Oscar Narciso Mortigua and Pinto, Joaquim Sousa: "Wrapping Stored
Procedures: an Enhanced Object Oriented Approach." IEEE EUROCON 2005-Int. Conf. on
“Computer as a Tool”, IEEE, Belgrade-Serbia and Montenegro (2005a), 740-743.

[Pereira, '07b] Pereira, Oscar Narciso Mortagua and Pinto, Joaquim Sousa: "Performance Assessment of
an Enhanced Object-Oriented Approach for Wrapping Stored Procedures." IEEE Eurocon - Int.
Conf. on Computer as a Tool, Warsow, Poland (2007b), 473-477.

[Pereira, '05b] Pereira, Oscar Narciso Mortagua, Pinto, Joaquim Sousa and Anjo, Antdnio José Batel:
"Object Oriented Platform to RDBMS Stored Procedure." 1ADIS- Int. Conf. on Applied
Computing, Carvoeiro-Algarve-Portugal (2005b), 99-106.

[Raje, '12] Raje, Satyajeet, Davuluri, Chowdary, Freitas, Michael, Ramnath, Rajiv and Ramanathan, Jay:
"Using ontology-based methods for implementing role-based access control in cooperative
systems." 27th Annual ACM Symposium on Applied Computing, ACM, Trento, Italy (2012), 763-
764.

[Ribeiro, '01] Ribeiro, Carlos, Zdquete, André, Ferreira, Paulo and Guedes, Paulo: "SPL: An Access Control
Language for Security Policies with Complex Constraints." Network and Distributed System
Security Symposium, San Diego,CA,USA (2001), 89-107.

[Rizvi, '04] Rizvi, Sharig, Mendelzon, Alberto, Sudarshan, S. and Roy, Prasan: "Extending Query Rewriting
Techniques for Fine-grained Access Control." ACM SIGMOD Int. Conf. on Management of Data,
ACM, Paris, France (2004), 551-562.

[Roichman, '07] Roichman, Alex and Gudes, Ehud: "Fine-grained access control to web databases." 12th
ACM symposium on Access Control Models and Technologies, ACM, Sophia Antipolis, France
(2007), 31-40.

[Russell, '05] Russell, A. McClure and Ingolf, H. Kruger: "SQL DOM: compile time checking of dynamic
SQL statements." 27th Int. Conf. on Software Engineering, ACM, St. Louis, MO, USA (2005), 88-
96.

[Samarati, '01a] Samarati, Pierangela and Vimercati, Sabrina De Capitani di: "Access Control: Policies,
Models, and Mechanisms." Revised versions of lectures given during the IFIP WG 1.7
International School on Foundations of Security Analysis and Design on Foundations of Security
Analysis and Design: Tutorial Lectures, Springer-Verlag(2001a), 137-196.

[Samarati, '01b] Samarati, Pierangela and Vimercati, Sabrina De Capitani di: "Access Control: Policies,
Models, and Mechanisms." Foundations of Security Analysis and Design (LNCS), 2171, (2001b),
137-196.

[Sandhu, '94] Sandhu, R. S. and Samarati, P.: "Access Control: Principle and Practice." Communications
Magazine, |IEEE, 32, 9 (1994), 40-48.

[Sandhu, '00] Sandhu, Ravi, Ferraiolo, David and Kuhn, Richard: "The NIST Model for Role-based Access
Control: Towards a Unified Standard." 5th ACM Workshop on Role-based Access Control, ACM,
Berlin, Germany (2000), 47-63.

[Sandhu, '93] Sandhu, Ravi S.: "Lattice-Based Access Control Models." Computer, 26, 11 (1993), 9-19.

[Sandhu, '96] Sandhu, Ravi S., Coyne, Edward J., Feinstein, Hal L. and Youman, Charles E.: "Role-Based
Access Control Models." Computer, 29, 2 (1996), 38-47.

[Schmoelzer, '06] Schmoelzer, G., Teiniker, E., Kreiner, C. and Thonhauser, M.: "Model-typed
Component Interfaces." Software Engineering and Advanced Applications, 2006. SEAA '06. 32nd
EUROMICRO Conference on, (2006), 54-63.

[Sharifi, '09] Sharifi, Mahdi, Movahednejad, Homa, Tabatabei, Sayed Gholam Hassan and lbrahim,
Suhaimi: "An effective access control approach to support web service security." 11th Int. Conf.
on Information Integration and Web-based Applications & Services, ACM, Kuala Lumpur,
Malaysia (2009), 529-535.

[Shi, '09] Shi, Jie, Zhu, Hong, Fu, Ge and Jiang, Tao: "On the Soundness Property for SQL Queries of Fine-
grained Access Control in DBMSs." 8th IEEE/ACIS Intl. Conf. on Computer and Information
Science, IEEE Computer Society(2009), 469-474.

128 |Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

[Staddon, '08] Staddon, Jessica, Golle, Philippe, Gagn, Martin and Rasmussen, Paul: "A content-driven
access control system." 7th Symposium on lIdentity and Trust on the Internet, ACM,
Gaithersburg, Maryland (2008), 26-35.

[Swamy, '08] Swamy, N., Corcoran, B. J. and Hicks, M.: "Fable: A Language for Enforcing User-defined
Security Policies." IEEE Symposium on Security and Privacy, (2008), 369-383.

[Systems, '73] Systems, Secretary’s Advisory Committee on Automated Personal Data (1973). Records,
computers and the Rights of Citizen: Report of the Secretary’s Advisory Committee on
Automated Personal Data Systems, U.S. Department of Health, Education, and Welfare.

[Szyperky, '02] Szyperky, Clemens, Gruntz, Dominik and Murer, Stephan: "Component Software -
Beyond Object-Oriented Programming"; Addison-Wesley/ACM Press, (2002).

[Tolone, '05] Tolone, William, Ahn, Gail-Joon, Pai, Tanusree and Hong, Seng-Phil: "Access control in
collaborative systems." ACM Comput. Surv., 37, 1 (2005), 29-41.

[Tootoonchian, '08] Tootoonchian, Amin, Gollu, Kiran Kumar, Saroiu, Stefan, Ganjali, Yashar and
Wolman, Alec: "Lockr: social access control for web 2.0." 1st Workshop on Online Social
Networks, ACM, Seattle, WA, USA (2008), 43-48.

[Vagts, '11] Vagts, Hauke, Krempel, Erik and Fischer, Yvonne: "Access controls for privacy protection in
pervasive environments." 4th Int. Conf. on PErvasive Technologies Related to Assistive
Environments, ACM, Heraklion, Crete, Greece (2011), 1-8.

[Valle, '02] Valle, Mariemma Inmaculada Yague del, Mana, Antonio, Lopez, Javier, Pimentel, Ernesto and
Troya, José M.: "Secure Content Distribution for Digital Libraries." Proceedings of the 5th
International Conference on Asian Digital Libraries: Digital Libraries: People, Knowledge, and
Technology, Springer-Verlag(2002), 483-494.

[Vimercati, '08] Vimercati, S. De Capitani di, Foresti, S. and Samarati, P. (2008). Recent Advances in
Access Control - Handbook of Database Security. M. Gertz and S. Jajodia, Springer US: 1-26.

[Vohra, '07] Vohra, Deepak (2007). CRUD on Rails - Ruby on Rails for PHP and Java Developers, Springer
Berlin Heidelberg: 71-106.

[Vuran, '06] Vuran, Mehmet C. and Akyildiz, lan F.: "Spatial correlation-based collaborative medium
access control in wireless sensor networks." IEEE/ACM Trans. Netw., 14, 2 (2006), 316-329.

[W3C, '02] W3C. (2002). "The Platform for Privacy Preferences 1.0 (P3P1.0) Specification." Retrieved
Aug, 2012, from http://www.w3.org/TR/P3P/.

[W3C, '03] W3C. (2003). "Enterprise Privacy Authorization Language (EPAL 1.2)." Retrieved Aug, 2012,
from http://www.w3.org/Submission/2003/SUBM-EPAL-20031110/.

[Waldman, '12] Waldman, Steve. (2012). "c3p0 - JDBC3 Connection and Statement Pooling." Retrieved
2012 Jul, from http://www.mchange.com/projects/c3p0/index.html.

[Wang, '06] Wang, Chengwei: "Dynamic Access Control Prediction for Ordered Service Sequence in Grid
Environment." IEEE/WIC/ACM Int. Conf. on Web Intelligence, IEEE Computer Society(2006), 145-
151.

[Wang, '11] Wang, Haodong, Sheng, Bo, Tan, Chiu C. and Li, Qun: "Public-key based access control in
sensornet." Wirel. Netw., 17, 5 (2011), 1217-1234.

[Wang, '07] Wang, Qihua, Yu, Ting, Li, Ninghui, Lobo, Jorge, Bertino, Elisa, Irwin, Keith and Byun, Ji-Won:
"On the correctness criteria of fine-grained access control in relational databases." 33rd Int.
Conf. on Very Large Data Bases, VLDB Endowment, Vienna, Austria (2007), 555-566.

[Warner, '07] Warner, Janice, Atluri, Vijayalakshmi, Mukkamala, Ravi and Vaidya, Jaideep: "Using
semantics for automatic enforcement of access control policies among dynamic coalitions."
Proceedings of the 12th ACM symposium on Access control models and technologies, ACM,
Sophia Antipolis, France (2007), 235-244.

[William, '05] William, R. Cook and Siddhartha, Rai: "Safe query objects: statically typed objects as
remotely executable queries." 27th Int. Conf. on Software Engineering, ACM, St. Louis, MO, USA
(2005), 97-106.

[Wonohoesodo, '04] Wonohoesodo, R. and Tari, Z.: "A role based access control for Web services." IEEE
Int. Conf. on Services Computing, (2004), 49-56.

129|Page

http://www.w3.org/TR/P3P/
http://www.w3.org/Submission/2003/SUBM-EPAL-20031110/
http://www.mchange.com/projects/c3p0/index.html

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

[Yang, '10] Yang, Daoqi: "Java Persistence with JPA"; Outskirts Press, (2010).

[Yang, '12] Yang, Jean, Yessenov, Kuat and Solar-Lezama, Armando: "A language for automatically
enforcing privacy policies." SIGPLAN Not., 47, 1 (2012), 85-96.

[Ye, '04] Ye, Wei, Heidemann, John and Estrin, Deborah: "Medium access control with coordinated
adaptive sleeping for wireless sensor networks." IEEE/ACM Trans. Netw., 12, 3 (2004), 493-506.

[Yu, '06] Yu, Cong and Jagadish, H. V.: "Schema summarization." 32nd Intl Conf on Very large data
bases, VLDB Endowment, Seoul, Korea (2006), 319-330.

[Yu, '03] Yu, Ting, Winslett, Marianne and Seamons, Kent E.: "Supporting structured credentials and
sensitive policies through interoperable strategies for automated trust negotiation." ACM Trans.
Inf. Syst. Secur., 6, 1 (2003), 1-42.

[Zhang, '12] Zhang, Danfeng, Arden, Owen, Vikram, K., Chong, Stephen and Myers, Andrew. (2012). "Jif:
Java + information flow (3.3)." Retrieved Aug, 2012, from http://www.cs.cornell.edu/jif/.

[Zhang, '03] Zhang, Guangsen and Parashar, Manish: "Dynamic Context-aware Access Control for Grid
Applications." 4th Int. Workshop on Grid Computing, IEEE Computer Society(2003), 101-108.

[Zhu, '12] Zhu, Yan, Hu, Hongxin, Ahn, Gail-Joon, Yu, Mengyang and Zhao, Hongjia: "Comparison-based
encryption for fine-grained access control in clouds." 2nd ACM Conf. on Data and Application
Security and Privacy, ACM, San Antonio, Texas, USA (2012), 105-116.

130|Page

http://www.cs.cornell.edu/jif/

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

Annex A - Logical model for metadata of FGACM

This annex presents the logical model that was used in the DACA proof of concept. This model
derives from the conceptual model presented in Figure 43.

Mgr_Manager

PK |Mgr IP | CHAR(25)
Mgr_port | INTEGER
SubApp Sub_Subject Ses_Session
PK SubApp_id INTEGER PK | Sub_id INTEGER PK | Ses_id INTEGER
o M s —
FK1,Ul | SubAppSub_id | INTEGER Ul [Sub_username | CHAR(25) FK1 [SesSubApp_id | INTEGER
FK2,U1 | SubAppApp_id | INTEGER Ul | Sub_password | CHAR(25) Ses_clientIP CHAR(16)
T Ses_clientPort | INTEGER
v
App_Application Del_Delegation Crd_Crud
PK | App_id INTEGER PK Del_id INTEGER PK |Crd_id INTEGER
Ul | App_reference CHAR(25) FK1 | DelSubApp_id | INTEGER U2 | Crd_crud VARCHAR(1000)
App_description VARCHAR(100) FK2 | DelAppRol_id | INTEGER Ul | Crd_reference | VARCHAR(100)
App_BusinessSchemas | VARBINARY(0)
AppRol
PK AppRol_id INTEGER < BusCrd
FK1,U1 | AppRolApp_id | INTEGER P —— PK |BudCrud id |INTEGER
FK2,U1 | AppRolRol_id |INTEGER =]
PK Aut id INTEGER FK1,Ul | BusCrdBus_id | INTEGER
FK2,U1 | BusCrdCrd_id | INTEGER
Aut_code INTEGER
\ 4 v FK1,U1 | AutSubApp_id | INTEGER
FK2,Ul1 | AutRol_id INTEGER
Rol_Role
PK Rol_id INTEGER v
Bus_BusinessSchema
RolBus
Ul | Rol_reference | CHAR(10) .
. . PK | Bus_id INTEGER
Rol_description | VARCHAR(100) PK RolBus_id INTEGER >
FK1 | RolRol_id INTEGER . Bus_reference | VARCHAR(100)
FK1,Ul1 | RolBusRol_id | INTEGER Bus url VARCHAR(100)
FK2,U1 | RolBusBus_id | INTEGER -

Figure 62. Logical model for the proof of concept.

Next follows a description of the main tables of the logical model: tables and attributes.

Mgr Manager
Table Mgr_Manager stores the required information to restore connections with Policy

Managers whenever necessary.

131|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

Mgr IP - Policy Managers IP.
Mgr port -listening port.

Sub Subject
Table Sub_Subject stores information to identify all the legitimate users.

Sub id - surrogate primary key.
Sub username - legitimate users’ username.

Sub password - legitimate users’ password.

App Application
Table App_Application stores information about the legitimate applications.

App id - surrogate primary key.

App reference - application reference.

App description - application description.

App BusinessSchemas - file containing all the Business Schemas for this application. The
value 0 (zero) should be replaced by MAX or any other adequate
value able to hold the used business schemas.

Ses Session
Table Ses_session stores information about subjects running applications and their associated
Policy Manager.

Ses id - surrogate primary key.

Ses SubApp id - subject running an application.
Ses clientIP - associated Policy Manager IP.

Ses clientPort - associated Policy Manager port.

Rol Role
Table Rol_Role stores definitions of roles. Roles are hierarchized.

Rol id - surrogate primary key.
Rol reference - role reference.
Rol description - role description.
RolRol id - parent Rol_id.

Bus BusinessSchema
Table Bus_BusinessSchema about Business Schemas.

Bus id - surrogate primary key.
Bus name - name to be used when data structures are built to convey awareness of FGACM.
Bus url - url for the Business Schema in App_BusinessSchemas.

132|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

Crd Crud
Table Crd_Crud stores information about the supported CRUD expressions.

Crd id - surrogate primary key.

Crd reference - name to be used when data structures are built to convey awareness of

FGACM.
Crd crud - CRUD expression.

Aut Authorization

Table Aut_Authorization stores the information about authorizations to subjects running

applications to play roles.

Aut id - surrogate primary key.

Aut code - authorization codes. In this case there are two possibilities: authorization

granted or denied.
AutSubApp id - assignment of applications to subjects.
AutRol id - assignment of roles to subjects running applications.

Del Delegation

Table Del_Delegation stores information about roles delegated to subjects running applications.

Del id - surrogate primary key.
DelSubApp id - assignment of applications to subjects.
DelAppRaol - assignment of roles to subjects running applications.

133|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components
- —

134|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

Annex B - Concurrency on CLI

Actions on LMS are tuple and protocol oriented and, while being executed, cannot be preempted to
start another protocol. This restriction leads to several difficulties when applications need to deal
with several tuples and several protocols at a time. The most paradigmatic case is the impossibility
to cope with concurrent environments where several threads need to access to the same LMS
instance, each one pointing to a different tuple and executing its own protocol. In order to evaluate
the possibility of implementing a thread safe version of CLI, two approaches were followed:
wrapper approach and the embedded approach.

Wrapper approach

The wrapper approach uses standard CLI with native RDBMS protocols. Basically, the wrapper
approach wraps LMS and exposes a set of services which are protocol-oriented to provide a
thread-safe access to LMS. A paper has been published with the preliminary results [Pereira,
'10a]. Some additional research has been done and published [Pereira, '13c]. The final results
are herein presented in this annex.

Embedded approach

The embedded approach is a more ambitious approach than the wrapper approach. The
embedded approach uses modified RDBMS protocols, in our case Tabular Data Stream (TDS)
[Microsoft, '12], to support concurrency on LMS. The work done in [Gomes, '11] showed that
significant improvements are achieved if concurrency is applied directly on internal LMS data
structures, even when compared with those obtained in the wrapper approach.

B.1 CTSA- The Wrapper Approach

To deepen the research initiated in [Pereira, '10a] some additional work was done. The
methodology to implement concurrency was tuned and a much more detailed performance
assessment has been carried out. The outcome is a Concurrent Tuple Set Architecture (CTSA) to
manage concurrency on LMS.

B.1.1 CTSA Presentation

CTSA wraps CLI and provides thread safe services to access LMS. CTSA takes LMS as the main input
entity hides its methods and exposes a new interface, which is thread-safe and, above all, is
designed to improve concurrency between concurrent threads. In order to characterize LMS, their
protocols may be organized in two orthogonal groups:

Scrollabili

Scrollability defines the policies to scroll on the returned tuples. There are two mutual-
exclusive possibilities: forward-only (move one tuple forward at a time) and scrollable (move

135|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

backward or forward any number of tuples).

Updatability
Updatability defines the policies to interact with the tuples kept inside LMS. There are two

mutual-exclusive possibilities: read-only (only read protocol is supported) and updatable (read,
insert, update and delete protocols are supported).

These different types of functionalities, scrollability and updatability, raise an important
question: is it necessary to provide concurrency for all types of LMS? Regarding scrollability,
forward-only LMS are very restrictive because they would oblige all threads to simultaneously
point to the same tuple which could hardly happen in real scenarios. Regarding updatability,
concurrency makes sense for both types: read-only and updatable. Read-only LMS always provide a
subset of the functionalities of updatable LMS and, hence, in order to address and assess the most
general case, we chose to implement a concurrent version for scrollable and updatable LMS. CTSA
introduces the concept of execution context as the information needed to characterize, at any time,
the interaction between a thread and a component based on the CTSA. The execution context of
each thread comprises the protocol that is being executed and the current selected tuple. This
concept is very important because it is the basis for the concurrent implementation of LMS. In
concurrent environments, each thread must have a complete control on the tuple and on the
protocol it is executing. If this is not ensured, a running thread may be preempted by another
thread that changes the execution context. The first thread will never be aware about this situation
and when it becomes the running thread it will execute its protocol in a different execution context.
In order to keep full control on the execution context, each thread needs to access the LMS in
exclusive mode and also to be able to assure that it runs on its own execution context. The former
condition ensures that other threads are not allowed to change the execution context of protocols
that are being executed. The latter condition ensures that at the beginning of any protocol, if
necessary, every thread is able to restore its execution context. To decide upon which strategy to
follow to implement both conditions, several possibilities were considered and tested. They may be
classified in two distinct groups:

e method oriented: execution context is managed method by method;
e protocol oriented: execution context is managed at the protocol level.

Table 9 briefly shows the logic associated to each approach. To evaluate the implication of each
approach, an assessment has been carried out. Results have shown that for the same scenarios,

Method oriented Protocol oriented
1. get exclusive access 1. get exclusive access
2. set execution context 2. set execution context
3. execute method 3. while protocol is not over
4, store execution context execute method
5. release exclusive access 4, store execution context
5. release exclusive access

Table 9. Exclusive access mode approaches.

136|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

performance and concurrency improvement depend on the same variable but in opposite ways.
They depend on the number of times that threads are preempted by other threads. Every time this
occurs, a change in the execution contexts must be performed. When this number increases
performance tends to decrease and concurrency tends to increase. When this number decreases,
performance tends to increase and concurrency tends to decrease. Taking this into account, it
would not be possible to carry out a detailed assessment for all scenarios. Thus, a structure was
defined that would typify real scenarios:

while there is next tuple { // method oriented action
execute a general block of code and/or a method oriented
execute a protocol oriented action
execute a general block of code and/or a method oriented action
execute a protocol oriented action

In this structure the scrolling process takes place at an outer level, which is the most common
practice, and it is performed by a single scrolling method. In the inner level, programmers are
encouraged to avoid the execution of general code and/or method oriented actions while any
protocol oriented action is being performed. General code inside protocol oriented actions extends
the locking period, this way increasing the possibility to occur a request for a switching in the
execution context. This request would not succeed and the thread would have to wait for the
protocol to end. This leads to two unwanted situations: decay in performance and decay in
concurrency, derived by the unsuccessful switching in the execution context only. Thus, the
presented structure leads to the following options for the access mode:
¢ Implemented as method oriented for all actions that could be completely and undoubtedly
accomplish with a single method;
¢ Implemented as protocol oriented for the remaining actions. Thus, access mode for Delete
and Scroll protocols were considered as method oriented and access mode for Read, Insert
and Update protocols were considered as protocol oriented.

«interface» «interface»
IRead lInsert
+beginRead() +begininsert()
+endRead() +endInsert()
+getint(in idx : long(idl)) : long(idl) +cancellnsert()
+getString(in idx : long(idl)) : string(idl) [|+setint(in idx : long(idl), in value : string(idl))
+...() +setString(in idx : long(idl), in value : string(idl))
«interface» *-0
IScroll «interface»
+moveNext() : bool IUpdate
+moveFirst() : bool +beginUpdate()
+moveAbsolute(in position : int) : bool ||+endUpdate()
+isFirst() : bool +cancelUpdate()
+...() +setint(in idx : long(idl), in value : string(idl))

+setString(in idx : long(idl), in value : string(idl))
+..0

«interface»
IDelete

+delete()

Figure 63. CTSA main protocols.

137|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components
- —

Figure 63 presents the interfaces for the five main protocols: IRead, IInsert, [lUpdate, IDelete and
IScroll. Only the main methods of IRead, IUpdate, IInsert and IScroll protocols have been
presented in order to not overcrowd the class diagrams. Exclusive access mode based on the
protocol oriented strategy needs a start event (beginRead, beginUpdate and beginlnsert) to start
the protocol and an end event (endRead, endUpdate and endInsert) to end the protocol. Exclusive
access mode based on the method oriented strategy does not need any additional event but the
methods themselves.

Figure 64 presents a simplified CTSA class diagram for a scrollable and updatable LMS. Each
thread receives a new instance of a component based on the CTSA where all instances share the
same LMS instance. Ims is for the LMS instance, currentTuple is the index of the current selected
tuple, protocol is the protocol being executed (if any) and lock is the object being used to grant the
exclusive access mode to the LMS. setExecutionContext restores the execution context for the
access mode just started and storeExecutionContext saves the current execution context just ended.

IRead

IUpdate
T (r linsert

CTSA

-lms : LMS

-currentTuple : long(idl)

-protocol : long(idl)

-lock : LOCK

+CTSA(in Ims : LMS, in lock : LOCK)
-setExecutionContext()
-storeExecutionContext()

i IDelete L I1Scroll

Figure 64. CTSA class diagram.

B.1.3 Proof of Concept

This section evaluates CTSA using a proof of concept implemented in Java and JDBC. The ResultSet
interface of JDBC API is used as a representative of LMS.

Figure 65 presents the CTSA constructor, its arguments and the initialization steps: rs is the
LMS and lock is the object used to grant the exclusive access mode. After its instantiation, the
execution context points to the tuple immediately before the first one, as happens with CLI (LMS
use before first and after last tuple positions. Immediately after the execution of a Select statement,
by default, the current selected tuple is the tuple before the first one).

CTSA (ResultSet rs, BReentrantLock lock) {
this.rs = ra;
this.lock = lock;

currentTuple = beforeFirst;

Figure 65. CTSA constructor.

138|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

Figure 66 partially presents the read protocol. beginRead gets the exclusive access mode for the
read protocol and then sets the execution context for the active thread. From now on, the thread
may read the attributes of its current selected tuple. In Figure 66 it is only shown one method
(getint) to read attributes of type Integer. The IRead interface comprises all other necessary
methods to support the additional data types. The protocol ends after the execution of endRead
method which saves the current execution context and then releases the exclusive access mode.
From now on, other protocols may be executed. The update and insert protocols, of which exclusive
access mode is also protocol oriented, may be easily inferred from the read protocol. Thus their
code will not be shown.

puklic wvoid beginRead () throws SQLException {
lock.lock():
setExecutionContext () ;

public void endRead() throws SQ0LException {
storeExecutionContext () ;
lock.unlock ()

public int getInt(int idx) throws SQLException {
return rs.getlInt (id=x):;

Figure 66. Partial view of IRead protocol.

Figure 67 shows the method moveNext which belongs to the scrolling protocol. Exclusive access
mode of Scroll protocol is method oriented and, thus, all methods execute a lock and an unlock
process. It is also necessary to set the execution context before moving the cursor one tuple
forward to ensure the correct positioning. After moving the cursor, the execution context must also
be saved. Method next() returns a boolean, indicating if in the current position it is or it is not After
Last tuple.

public boolean moveNext () throws SQLException {
lock.lock():
zetExecutionContext () ;
cry {
bool = raz.next():
t finally {
lock.unlock() ;

storeExecutionContext () ;
return bool;

Figure 67. Partial view of IScroll protocol.

Figure 68 presents the process used to set and to store the execution context. The concepts
Before First tuple and After Last tuple are used to define the position immediately before and
immediately after the first and the last tuple, respectively. These concepts are common in CLI and

139|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

need a special treatment regarding the execution context. In JDBC the first tuple is indexed by 1. In
storeExecutionContext, isBeforeFirst (equal to -1) and isAfterLast (equal to -2) say if the cursor is
pointing to the position immediately before or after the first or last tuple, respectively.

Figure 69 shows CTSA usage from users’ perspective. The thread receives a CTSA instance in
the constructor and accesses its LMS through the provided protocols. moveNext belongs to the
scrolling protocol and therefore the exclusive access is method oriented. Before reading any
attribute, it is necessary to get the exclusive access mode and set the execution context, which is
achieved through the method beginRead. After reading all the attributes, the exclusive access is
released through the method endRead.

private void =setExecntionContext () throws SQLException {
if { currentTuple > 0)

rs.beforeFirstc():;
else rs.afterLast():

private wvold storeExecmntionContext() throws SQLException {

if | r=s.isBeforeFirst({))
currentTuple = beforeFirst;

else if (rs.isAfterLast())
currentTuple = afterlLasc;

else currentTuple = rs.getRow();

Figure 68. Set and store the execution context.

User|(CISA ctsa) {

thi=s.ctsa = ctsa;
@Override
public void ron{) {
try {
while | ctza.moveNext())} {
ctsa.beginRead () :
id = ctza.getInt(1)

ctsa.endRead () ;

} catch { SQLException ex) {1}

Figure 69.CTSA from users’s perspective.

B.1.4 CTSA Performance Assessment

Performance assessment was carried out comparing two entities known as the Component CTSA

140|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

(C-CTSA) and the Concurrent JDBC (C-JDBC). C-CTSA is responsible for evaluating components
relying on the CTSA architecture and it is based on a component derived from the proof of concept
here presented. C-]JDBC is responsible for evaluating a concurrent approach based only on the
standard JDBC API. The evaluation of both entities comprises a single facade: performance. The
impossibility to assess all scenarios, led to a survey to define some scenarios that could be
representative of common situations. To this end, we needed to identify the relevant aspects
directly related and controlled by users of CTSA that could influence CTSA performance. Based both
on empirical experiences and knowledge about CTSA, the aspects considered relevant were: the
protocol being executed, the number of rows to be processed and the number of simultaneous
running threads. Thus, three scenarios were defined for the three main types of protocols for both
components: Select (s), Update (u) and Insert (i). Each scenario comprises a set of several numbers
of tuples to be processed [nr] and a set of several numbers of simultaneous running threads [nt]. In
order to formalize the entities’ representation we define E(p,) (/nt], [nr]) where o€ {c-ctsa,c-jdbc},
p is for performance facade and y € {s,u,i}. To simplify, Ewp,) ([nt], [nr]) is represented by default as
E(apy)- To get a threshold for the performance of each entity, it was decided to create a favorable
environment to C-JDBC and an unfavorable environment to C-CTSA to execute the scenarios. This
way, the minimum performance of real scenarios should be delimited by the collected
measurements. This issue will be addressed in more detail mainly after explaining the SQL Server
behavior about LMS.

The test-bed comprises two computers: PC1 - Dell Latitude E5500, Intel Duo Core P8600
@2.40GHz, 4.00 GB RAM, Windows Vista Enterprise Service Pack 2 (32bits), Java SE 6,
JDBC(sqljdbc4); PC2 - Asus-P5K-VM, Intel Duo Core E6550 @2,33 GHz, 4.00 GB RAM, Windows XP
Professional Service Pack 3, SQL Server 2008. C-JDBC and C-CTSA are executed on PC1 and SQL
Server runs on PC2. In order to promote an ideal environment the following actions were taken: the
running threads were given the highest priority and all non-essential processes/services were
cancelled in both PCs; a direct and dedicated network cable connecting PC1 and PC2 has been used
in exclusive mode and performing 100MBits of bandwidth. Transactions were not used and
auto-Commit has been always enabled (changes to LMS are automatically committed to the host
database when protocols are ended). A new database was created in conformance with the schema
presented in Figure 70 to assess both entities.

Std_Student

Column Mame Data Type
Std_id int
Std_firsthame varchar(25)
Std_lastMame warchar(23)
StdCrs_id int
Std_reg¥ear smallint
Std_applGrade float

Figure 70. Std_Student schema.

141|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

In order to avoid some overhead added by SQL Server, some default SQL Server database
properties were changed as, Auto Update Statistics = false and Recovery Model = Simple. Some
important aspects are out of the scope of this study. Aspects as database server performance,
network delays and memory consumption are not individually addressed but considered as part of
the overall environment. This has been assumed because both entities share the same
infrastructure. It is essential to recall SQL Server behavior, which is similar to most of other
relevant relational database management systems, to completely understand the collected
measurements of each scenario. When a Select statement is executed using a scrollable or an
updatable LMS, SQL Server creates a server cursor with all the selected tuples. These tuples are
dynamically transferred in blocks, from the server, to LMS whenever necessary. This means that at
any time LMS may not have all the tuples but only a sub-set of all tuples. When users point to a
tuple that is not present in the LMS, the Tabular Data Stream (TDS) [Microsoft] protocol discards
the current LMS’s content and fetches the block containing the desired tuple. This has a deep
implication. If threads are always requesting tuples that are not present in the LMS, SQL Server has
to transfer the correspondent block for each requested tuple. In an extreme scenario, each
individual action on an LMS may imply the transference of a new block of tuples. From the previous
statements, it is expected that the number of blocks to be transferred will increase when the
number of tuples increases and also when the probability of a thread to request tuples that are not
present in an LMS increases. Thus, to create different environments for both entities, the following
decisions were taken:

C-]IDBC (favorable environment): each thread has its own LMS and will always access tuples
sequentially from the first one till the last one.

C-CTSA (unfavorable environment): three conditions were implemented: 1) all threads share
the same LMS; 2) after accessing a tuple, each thread will give the opportunity to other threads to
become the running thread by voluntarily leaving the running state - this will maximize the number
of changes in the execution context; 3) each thread will have its own set of tuples, not shared with
any other thread - this will maximize the number of blocks of tuples to be transferred from server
cursors to LMS.

Table 10 shows the algorithm for the assessment of Ec.ctsap,y). The same ResultSet is shared by
all [nt] threads. Each thread executes its scenario for a group y=/nr] adjacent tuples and auto-
suspends itself after accessing each tuple. The intersection of all Yj=¢.

Table 11 shows the algorithm for the assessment of Ejapcpy). Each thread creates its own
ResultSet (LMS) containing/inserting a group of y=[nr] adjacent tuples. The intersection of all

V=0

. Delete all rows from Std_Student
. Fill Std_Student with [nr]*[nt] rows (zero rows for insert)
. Start counter
. Select all rows from Std_Student into one single ResultSet
. Create all threads.
. Each thread (y tuples)
6.1 for each tuple
6.1.1 read/update/insert (tuple)
6.1.2 suspend thread
6.2 dies
7. Wait all threads to die
8. Stop counter

o0k, WN B

Table 10. Algorithm for E(c.jusc,,,) assessment.

142|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components
- —

. Delete all rows from Std_Student
. Fill Std_Student with [nr]*[nt] rows (zero rows for insert)
. Start counter
. Create all threads.
. Each thread:
5.1 select y tuples into its own ResultSet
5.2 for each tuple
5.2.1 read/update/insert a tuple
5.3 dies
6. Wait all threads to die
7. Stop counter

a b owdNDE

Table 11. Algorithm for Ecasc,,,) assessment

To contextualize the performance assessment environment some initial measurements were
carried out to delimit the range of [nt] and [nr] to be used. In order to emphasize concurrency
mechanisms, priority was given to the range of [nt] in detriment of [nr]. Values for these metrics
were collected by empirical experimentation based on an iterative process. The idea is to gather a
set of values for [nt] and [nr] that may be used to assess and compare the performance of both
E(ap,y) entities. To accomplish this, both entities, Efc-ctsapy) and Ec.jabcpy) were executed under several
combinations of [nt] and [nr] until the collected measurements comprise a range of behaviors
considered satisfactory to accurately assess and compare the performance of both entities. After
several iterations it was decided that the execution environment should be defined as:

[nt]={1,5,10,25,50,75,100,150,200,250,350,500}
[nr]={5,10,25,50,75,100}

In accordance with the requirements, this execution environment evaluates the performance
by maximizing the number of simultaneous running threads in detriment of the number of tuples.
With 500 threads and 100 tuples it was possible to accurately assess and foresee the performance
behavior of both entities. This was the main reason for their acceptance. The intermediate collected
measurements showed to be enough to obtain well defined charts for the behaviors of both entities.
Just as a final note, some scenarios took some minutes to setup and to process the highest values of
[nt] and [nr]. This knowledge was also considered to delimit the two top values (nr=100 and
nt=500), this way avoiding any risk to successfully accomplish the collecting process of all
necessary measurements. For the assessment, 100 raw measurements were collected for each
Ewpy([nt],[nr]) leading to (2x3x12x6)x100=43,200 raw measurements. Intermediate
measurements were computed from the average of the 5 best measurements of each
E(apy([nt],[nr]) leading to a total of 2x3x12x6=432 measurements. The final measurements used in
the next charts represent the ratios between E(cjancp,y) and Efccesap,y) for each ([nt],[nr]). In all charts
the vertical axis is for the ratios and the horizontal axis is for the [nt].

Select scenario

The chart for the select scenario is shown in Figure 71. From it, it is clear that the ratios decrease
whenever the number of tuples increases and whenever the number of threads increases (for most
nt). This derives from the fact that E(.japcp,) have [nt] server cursors and each thread sequentially
reads its own tuples from the first one till the last one. Thus, the transference of block of tuples only
happens when a thread tries to read the next tuple that is after the last one contained in its own
ResultSet. The probability for this to happen increases with the number of rows. Regarding Efc-ctsapy)

143|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

there is only one server cursor shared by all threads. The implemented Read scenario significantly
increases the possibility of each thread to be requesting a tuple that is not present in the ResultSet
and, therefore, to trigger a new transference of block of tuples. With other different strategies, for
example where threads read shared sets of tuples, the block transference rate should be much
lower leading to an increase on its performance. Another relevant issue is that the Select scenario is
a light scenario mainly because the Select statement and Read protocol are very efficient when
compared with the other protocols. Thus, the overhead induced by the blocks transference have a
deeper impact in the overall performance. The impact increases with the number of tuples and the
number of threads. Figure 72 presents a detailed view of all results. The ratio is greater or equal to
1 in 35 situations and less than 1 in 37 situations. It also shows that the highest ratio is 3.44 (nr=5,
nt=10) and the lowest one is 0.8 (nr=25, nt=100). These results show that despite the unfavorable
conditions for C-CTSA, it still achieves significant results. For example, the relative highest gain in
performance (3.44) is much more significant than the relative highest lost in performance (0.8) and
the average value is 1.21.

4,00
3,50 - — Efc Ete.
3,00 _/ '\
r = — - - Stuples
2,50 L \
a v \ \ — —10tuples
t 2,00 '} v =
. ,1'\ \ N = . = 25tuples
B T N
o [ol "~ T e — 50 tuples
1,00 e T =
4 sl il s S W IRISIZLS mmmee 75 tuples
00+ 100 tuples
0,00 T T T T T T T T T T T 1
1 5 10 25 50 75 100150 200 250350 500
n? of threads

Figure 71. E(c-jdbc,p,s)/ E(c-ctsa,p,s) chart.

MR/NT| 5 10 25 50 75 100
1 | 1,03 1,04 103 1,03 1,02 1,05
5 | 261 2,38 1,90 1,41 1,22 1,07

10 | 2,44 | 2,60 1,53 1,09 0,92 096
75 | 3,38 2,63 1,51 094 0,86 097
o | 2,54 1,57 1,14 0,83 0,83 0,83
75 | 1,85 1,18 0,85 0,84 0,83 0,89
100 | 1,54 1,11 050 0,8 0,84 0,88
150 | 1,32 | 1,03 087 0,24 0,86 0,91
200 | 1,28 1,04 090 0,87 0,88 092
250 | 1,19 1,02 092 0,87 087 092
acg | 1,06 1,00 094 0,86 0,89 0,93
oo | 1,13 098 093 0,86 0,87 0,94

FigUI’E 72. E(c-jdbc,p,s)/ E(c-ctsa,p,s) details.

144|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

Update scenario
The chart for the update scenario is shown in Figure 73. The comments made to the Select scenario

are also applied to the Update scenario, regarding the transference rate of block of tuples. The most
significant differences are: 1) the update protocol is a heavy protocol and, thus, its overhead has a
deep impact on both entities and in the collected measurements; 2) the Efjacp,) entity has [nr]
server cursors each one competing with the others to update the requested values while Ef.ctsapy)
entity has only one server cursor and the competition is performed at the client side. Despite the
unfavorable conditions for C-CTSA, in this scenario, the ratio is always significantly greater than 1.
It increases in the range 1 < nt < 10 and for nt > 10 the ratios are practically stable for each
individual [nr] (except for nr=5). Another relevant issue is that the ratios decrease when [nr]
increases for every [nt].

7,00
~ E{c-jdbc,p,u/ E{c-ctsa,p,u)
6,00 — ~
5,00 !
r ' _f,\ ~.. — - - 5tuples
Y, —_—
: 4,00 /I: N — —— L — —10tuples
. 3,00 - - . = 25tuples
1 / N - - - .-
o e e 50 tuples
2,00 |, st LS e sa s T Cnesan e s
‘,-"' R 75 tuples
10 4+— .. 100 tup|es
0,00 T T T T T T T T T T T 1
1 5 10 25 50 75 100150 200 250350 500
n? of threads

Figure 73. E(c-jdbc,p,u) / E(c-clsa,p,u) chart.

Insert scenario

The chart for the insert scenario is shown in Figure 74. The most relevant aspect is the slight but

3,00
E{c-jdbc,p,i)/ E{c-ctsa,p,i)
2,50
r 2,00 - 4 — - - Stuples
a ./ — — 10tuples
t 1,50 ——
i _‘/ _— = = - = 25tuples
i — . L et = R g —pyy
el L L P e b
o 100 fD 50 tuples
----- 75 tuples
0,50
......... 100 ‘tup|e5
0,00 T T T T T T T T T T T 1
1 5 10 25 50 75 100150 200 250350 500
n2 of threads

Figure 74. E(c»jdbc,p,i) /E(c»ctsa,p,i) chart.

145|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

constant ratios increase with [nt] for each [nr], except for nr=>5. In the initial stage, ResultSets empty
and tuples are sequentially inserted and committed one by one in the host database table. In this
scenario, in opposite to the others, all E.ctsap,) threads insert adjacent tuples this way minimizing
the number of blocks to be transferred. In spite of being a very heavy scenario for both entities, the
differences between C-CSTA and C-JDBC are enough to be noticed in the ratios. It is always greater
than 1 and higher values of [nr] cause a decreasing in the ratios.

B.1.5 Conclusion

An architecture for a concurrent LMS of CLI, herein known as CTSA, has been presented. A proof of
concept has also been presented based on a standard JDBC APIL In order to assess CTSA
performance in a concurrent environment and to compare it with an equivalent environment based
on a standard JDBC solution, a test-bed has been defined and implemented with two concurrent
entities: C-JDBC and C-CTSA. The measurements were collected using 3 scenarios. The scenarios
were modeled to create favorable conditions to C-JDBC and unfavorable conditions to C-CTSA. This
approach gives a much more secure perspective about the minimum expected gain in performance
when using real scenarios. Thus, it is expected that when used in real scenarios, the gain in
performance should be higher than the ones here presented and clearly bounded at the lower level
by the ratios here presented. In spite of these adverse conditions, C-CTSA always gets better scores
for the update and for the insert scenarios. In the Select scenario, C-CTSA obtained significant
scores in the range of lower values of [nr] and [nt]. Anyway, for higher values of [nr] and [nt] the
minimum ratio did not go below 0.8 which is still a remarkable score, considering the unfavorable
conditions under which the assessment of C-CTSA took place.

The outcome of this research should encourage programmers of concurrent applications that
use LMS of CLI, to implement a CTSA to improve the overall performance. Moreover, CLI providers
should be encouraged to release CLI with embedded concurrency. Embedded concurrency should
have the advantages of accessing the LMS’s internal data structures to optimize the implementation
of the different protocols. Very probably their results should be much better than the ones obtained
through components derived on the CTSA as proved from the results obtained in [Gomes, '11].

B.2 Embedded Approach

The embedded approach herein presented is based on a re-writing process of some parts of the
original source-code of the ResultSet interface in order to make them thread-safe. The final
document is available here [Gomes, '11] and, therefore, it will not be thoroughly described here.
Only the key aspects are herein described and emphasized.

B.2.1 Presentation

Whenever a scrollable or updatable LMS is instantiated, RDBMS create a database cursor. This one
to one relationship between LMS and server cursors is not a scalable solution let alone in situations
where many threads need to share the same data of the same Select expression. Thus, the basic idea
is to transform the one to one relationship into a many to one relationship, that is, several LMS
instances use the same server cursor. Another key issue is the internal operation of LMS. LMS have

146 |Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

an internal cache with a pre-defined size where the tuples are kept in memory. Whenever a client
requests access to a tuple that is not in memory, LMS request the RDBMS to send the requested
row. The RDBMS send a set of tuples, in accordance with the cache size, containing the requested
tuple. This approach is efficient whenever the tuples are sequentially accessed but it is critical
whenever the tuples are accessed randomly. The latter case means that, in an extreme scenario,
whenever a tuple is requested, a new access to the server cursor is necessary.

B.2.2 Architecture

Two solutions were implemented to address two common situations of concurrency between
threads: each thread owns its private cache (individual cache) and all threads share the same cache
of a LMS (shared cache).

B.2.2.1 Individual Cache

The individual cache implementation provides several separated caches, each one containing a set
of tuples accessible to one thread only. From the internal implementation point of view, this
implementation does not promote concurrency butitis thread-safe.

Advantages
The individual cache presents two main advantages. Firstly, only one thread accesses the cache

and, therefore, no concurrent mechanisms are necessary. The second advantage derives from
the fact that when each thread needs no more tuples than those initially cached, the number of
accesses to the server cursor is minimized.

Disadvantages
The individual cache presents three disadvantages. The first disadvantage has its origin on the

need to copy tuples to each individual cache. The second disadvantage derives from the first
and it is related to the existence of duplicated tuples. The third disadvantage also derives from
the first and it is relevant when modifications occur in caches. The modified content is not
immediately visible in other caches.

B.2.2.2 Shared Cache

Unlike the individual cache, the shared cache implementation uses one cache only, which is shared
by all threads. The shared cache has advantages and disadvantages next described:

Advantages
There are three main advantages which are the counterpart of the disadvantages of the

individual cache implementation.

Disadvantages
Two main disadvantages are emphasized. The first one is the need to a thread-safe

implementation of shared caches. The second disadvantage is the need for a new server cursor
whenever a thread accesses a tuple not contained in the cache.

147|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

B.2.3 Performance Assessment

The performance assessment was carried out to compare:
e theindividual and shared caches;
e individual and shared caches against implementations based on a C-]DBC and also against
the previous CTSA approach.

Several contexts were defined to see their impact on the overall performance. The tested
contexts were:
e variable number or rows;
e variable number of threads;
e induced processing delays to simulate real scenarios - two scenarios were tested:
o variable induced processing delays between consecutive attribute accesses
following the next algorithm
Access attribute 1
Induced processing delay
Access attribute 2

o Variable induce processing delays between consecutive row accesses following the
next algorithm
Next row {
Access attribute 1
Access attribute 2

Induced processing delay

}

e Variable fetch size (number of fetched rows from server cursor to LMS). Were tested: 10%,
20%, 50%, 75% and 100%.

B.3 Conclusion

The collected results have shown that the embedded approach leads to better performance results
than the C-JDBC approach and the C-CTSA approach, see [Gomes, '11]. Thus, the embedded
approach is a promising approach to implement a thread-safe LMS. The collected results would be
even better if there was a deeper knowledge about the operation of server cursors at the time the
work was done. As a final remark, providers of CLI should be encouraged to deploy thread-safe
versions of their products.

148|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

Annex C - ABTC: Multi-purpose Adaptable Business Tier
Components

This research leverages previous work on Modelization, Componentization and Access Control of
business tiers based on CLI Only the relevant aspects will be detailed to avoid the repetition of
previously discussed and presented aspects.

C.1 Introduction

CLI are general low level API that do not provide any high level assistance to address organizational
and runtime needs. Three examples are provided:

Organizational needs
Some organizations decouple the development process of business tiers from the development

process of application tiers. They are developed by different actors (people playing different
roles). Unlike these organizations, others do not follow this separation of roles. The same
person may be elected to play both roles.

Runtime needs

In some database applications, business tiers need to be dynamically adapted at runtime to
address runtime needs. For example, to address evolving security needs or evolving business
needs.

This gap is mainly derived from technical aspects of CLI previously addressed:

e source-code of business and application tiers is tangled and, therefore, the roles of
programmers cannot be decoupled;

e (LIdo not provide any means to adapt software to support different business needs, even if
the CRUD expression is the same. Programmers have to re-write the same CRUD expression
and re-write similar source code for the business tier part. This situation is critical in large
database applications with many and complex CRUD expressions;

e (LI do not provide any access control mechanism.

To overcome these drawbacks of CLI, an architecture referred to as the Adaptable Business
Tier Component (ABTC) is presented.

C.2 ABTC

This section, in a first stage, presents and describes the architecture of ABTC. In a second stage, a
proof of concept is also presented.

C.2.1 Adaptation Process

The adaptation process of business tiers is basically focused on the capability to support new CRUD
expressions. It comprises two dimensions: the capacity to automatically build, when necessary, new

149|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

Business Entities and the capacity to accept and manage CRUD expressions. The first dimension is
herein known as the service composition and the second is herein known as the service allocation.
Beyond this, to address different adaptation needs, namely organizational and runtime needs, ABTC
needs to support two lines: dynamic (ABTC_Dynamic) and static (ABTC_Static) versions.
ABTC_Dynamic is used when there is the need to carry out an adaptation process. ABTC_Static is
used when the adaptation process took place at an earlier stage and, therefore, there is no need to
be carried out again. This approach conveys the need to persist the business logics involved in the
adaptation process, whenever they are required in later stages. Persisted business logics are kept in
independent components herein known as Business Logic. Thus, in this adaptation context
(ABTC_Dynamic, ABTC_Static and Business Logic), three scenarios are presented to address
organizational and runtime requirements, see Figure 75:

ADM Developer Runtime
ADM | — ABTC_Dynamic App. Tier ——> ABTC_Static App. Tier ———> ABTC_Static
i
Re]
=
©
c
(]
Q
(%]
BusinessLogic_1 BusinessLogic_1 BusinessLogic_1
App. Tier —>| ABTC_Dynamic App. Tier ——> ABTC_Static
o~
hel
c
©
C
o
O
(%]
BusinessLogic_2 BusinessLogic_2
App. Tier ——> ABTC_Dynamic App. Tier ABTC_Dynamic
(32]
R=d
T T :
c
]
(5]
(%]
BusinessLogic_3 BusinessLogic_4

Figure 75. Implemented and tested scenarios.

Scenario 1

The adaption process is carried out by database administrators (ADM), or someone on their
behalf. ABTC_Dynamic is used to build a persistent business logic (BusinesLogic_1). Then,
developers of application tiers (Developers) use the persisted business logic (BusinessLogic_1)
and ABTC_Static for the development process of application tiers and also for the database
applications to be deployed (Runtime). This approach is used when business tier developer role
(ADM) and application tier developer role (Developer) are played by different actors.

150|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

Scenario 2

The adaptation process takes place during the development process of application tiers
(Developer). It uses ABTC_Dynamic to build a persistent business logic (BusinessLogic_2). Then,
database applications are deployed with the persisted business logic (BusinessLogic_2) and
ABTC_Static. This approach is used when application tier developer role (Developer) and
business tier developer role (Developer) are played by the same actor.

Scenario 3

If necessary, business logics (BusinessLogic_3) are built during the development process of
application tiers (Developer) but are not used afterwards. Then, the adaptation process
(BusinessLogic_4) takes place after the deployment process of database applications and at
runtime. This approach is used, for example, whenever the adaptation process is dynamic,
eventually driven by security policies [Morin, '10] or eventually to accept CRUD expressions
defined at runtime and already supported by existent CRUD schemas.

C.2.2 Architecture Presentation

The architecture for ABTC is presented in this sub-section. The architecture is quite similar to the
one presented for DACC. ABTC shares many concepts of DACA such as Business Schema, Business
Entity, Service Composition and Service Allocation. Figure 76 presents the architecture for ABTC
and only the differences for DACC are described.

[ServiceAllocation

[ServiceAllocation comprises services to manage the service allocation process. The first two
methods are used to manage the deployment process of CRUD expressions, CRUD by CRUD. The
third method is used to deploy a set of CRUD expressions. While CRUD expressions deployed by
the two first methods are not persisted within business logics, CRUD expressions deployed by
the last method are persisted and replace all persisted CRUD expressions contained within the
business logic.

IService Composition

[ServiceComposition comprises services to manage the service composition. The first two
methods are used to manage the deployment process Business Schema by Business Schema.
The third method is used to deploy a set of Business Schemas. In both cases, Business Services
are persisted within Business Logics. The main difference is that Business Schemas deployed by
the last method replace all previous Business Services within the business logic.

IManager
IManager gathers services to provide one of the two supported versions: dynamic (1) or static

(2) versions, ABTC_Dynamic and ABTC_Static, respectively. The dynamic version, beyond
extending IServiceAllocation and IServiceComposition, comprises an additional method to
define the repository for the persistent Business Logic.

Manager
Manager provides two services:

151|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

«interface»
IServiceAllocation

«interface»

IServiceComposition

+addBusinessSchema(in bs : IBusinessSchema_i)

+addCRUD(in crudld : int, in crud : string)
+removeCRUD(in crudld : int)

+removeBusinessSchema(in bs : IBusinessSchema_i)

+addBusinessSchemas(in set : object)
IManager:
(1) only if dynamic version

if static version

1 (2)only

+addCRUDs(in set : object)

B «interface»
IManager (2)

«interface»

«interface»
IManager (1)
+repository(in file : string)
Manager
IUser
“Manager() +getBusinessSession() : ISession
+getinstance(in un : string, in pw : string, in urlDB : string, in rebuiltBL : bool) : IManager
* 1
1
Session
-conn : DbConn 1
+Session(in un : string, in pwd : string, in url : string)
T ITransaction

«interface»
ISession

+businessEntity(in bs : T, in crudld : int) : T

+businessEntity(in bs : T, in crudld : int, in srollability : int, in updatability : int) : T

+releaseBusinessSession()

(f IBusinessSchema_1

BusinessEntity_1

BusinessEngine

#BusinessEntity_1(in conn : DbConn, in crud : string)

Only if dynamic
version

BusinessEntity_n

#BusinessEntity_n(in conn : DbConn, in crud : string)
<g IBusinessSchema_n

CRUD expressions

Business Logic

Figure 76. Class diagram of ABTC.

ea static method (getInstance) to create instances of ABTC;
eimplements one of the two versions of IManager interface

152|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components

Business Logic
Business Logic (at the bottom of the diagram) is an independent and persistent container to

keep adapted business logics. Its content is updated through I[ServiceAllocation and
IServiceComposition (only with the ABTC_Dynamic).

[Session and Session

[Session and Session, similarly to DACC, are responsible for managing the instantiation process
of Business Entities. They provide three methods. The first two (businessEntity) instantiate
Business Entities: the first one is only for Insert, Update and Delete expressions and the second
one is only for Select expressions. They are generic methods that, among other arguments,
accept a Business Schema and return an instance of a Business Entity that implements the
requested Business Schema. To instantiate Business Entities, they need to be loaded into
memory at runtime and, then, instances are created using reflection. This process ensures that
Business Entities may be dynamically created and removed at runtime, without raising any
runtime error. The second method opens the possibility to define functionalities of LMS at
runtime (read-only or updatable and, forward-only or scrollable). This possibility cannot be in
contradiction with the functionalities provided by the Business Entities being instantiated. For
example, if a Business Entity is prepared to instantiate an updatable LMS, then the instantiated
LMS may be used as read-only. The opposite, an LMS used as updatable but instantiated as
read-only, raises a runtime exception. Sessions are released when not needed any more

(releaseBusinessSession).

C.3 Proof of Concept

This section presents the work carried out to prove that ABTC is a reliable architecture to overcome
the presented drawbacks of CLI. As mentioned before, two components were built: ABTC_Dynamic
and ABTC_Static. ABTC_Dynamic implements the dynamic version and ABTC_Static implements the
static version.

Three demos are presented, one for each scenario, Figure 75, which will be herein used as the
proof of concept. Demol is for scenario 1, Demo2 for scenario 2 and Demo3 for scenario 3. Demos
are divided in two or three steps as shown in Figure 75: ADM, Developer and Runtime. Each demo
comprises the same set of CRUD expressions and the same set of Business Schemas, presented in
Table 12 (bottom line presents additional details to understand the table contents).

Tests were carried out with the three demos to evaluate if ABTC copes with the presented
drawbacks of CLI. From the collected results, in the three demos, it is clear that ABTC completely
addresses the goals defined for the three scenarios. ABTC_Dynamic automatically builds Business
Logic from Business Schemas and CRUD expressions. The Business Logic building process may be
driven by any policy, being business needs and security policies only two different possibilities.
ABTC_Static uses Business Logic previously built with ABTC_Dynamic.

These conclusions may be confirmed by accessing the public demos through the Windows
Remote Desktop Connection (url: ned.av.it.pt; username: ABTC; password: guest).

153|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components
- —

Business Schemas
ID CRUD expressions Closed Open |LMS
IPrd_s|ICat s|ISup s|ICat i| IOpen_s
1 | Select * from Products Y N N Y Y FR
2 | Select * from Products where ProductID=10 Y N N Y Y FR
3 | Select * from Products where SupplierlD=2 Y N N Y Y FR
4 | Select * from Categories N Y N Y Y FU
5 | Select * from Categories where CategorylD=1| N Y N Y Y FR
6 | Select * from Suppliers N N Y Y Y FR
Select p.*, c.categoryName, c.Description
7 from Products p, Categories ¢ N N N Y Y FR
Where p.CategorylD=c.CategorylD
8 | Insert into Categories values (?,?,?,?) N N N Y N

ID: CRUD expression identification (1-allFromProducts, 2-fromProducts_productld,
3-fromSuppliers_supplierld, 4-allFromCategories,
5-fromCategories_categoryld, 6-allFromCategories,
6-allFromSuppliers, 7-fromProductsCategories,
8-InsertinCategories

CRUD expressions: supported CRUD expressions.

Business Schemas: supported Business Schemas.

LMS: updatability of LMS (F: forward-only, S:scrollable, R:read-only, U:updatable)

User Perm.: permission for each user to use CRUD expression.

Table 12. CRUD expressions and Business Schemas for the implemented scenarios.

A proof of concept is available through Windows Remote Desktop at: url: ned.av.it.pt,
username: ABTC, password: guest. The three scenarios based on Figure 75 were implemented and
Business Logic is defined from the contents of Table 12.

C.4 Discussion

In this section a discussion is taken on the following aspects: 1) ABTC beyond JDBC; 2) IRead
interface and 3) additional advantages of ABTC over CLI.

The proof of concept here presented is based on Java, JDBC and SQL Server 2008. An ABTC has
also been built with C#, ADO.NET and SQL Server 2008. The component was manually built. The
achieved success proved that the presented architecture is flexible enough to be used with different
technologies. From our previous experience with O/RM tools, namely Java Persistence AP], it is our
belief that the architecture may also be used. However, it is so easy to be used with CLI that it would
only bring disadvantages if used with O/RM, namely because of their induced overhead.

IRead interface is defined from schemas returned by Select expressions. Very often, these
schemas derive directly from database schemas. This situation may raise several difficulties when a
Select expression joins two or more tables having attributes with the same name, as it happens with
Northwind. In this situation it is recommended to rename one of the attributes using ALIAS. Alias
are useful, they increase the possibility of differentiating equal projected names from different
tables. To avoid or minimize the usage of ALIAS, in order to minimize maintenance activities on
[Read, we suggest the use of unique names for each attribute. If necessary, this may be achieved by
using a technique based on a unique identification prefix for each table name and, then, using the

154|Page

DACA: Architecture to Implement Dynamic Access Control Mechanisms on Business Tier Components
- —

prefix to build attributes names in order to identify the source of each attribute. Example:
Prd_Products.Prd_Productld (table Products and one attribute Productld).

In spite of not being key aspects of this research, we stress some additional CLI drawbacks

which are also partially overcome by the reference architecture:

e With CLI, programmers need to master database schemas to deal with each retrieved
attribute of each CRUD expression. With ABTC, IRead and [Write interfaces provide schema-
driven getter and setter methods, avoiding the need to master database schemas for each
CRUD expression.

e With CLI, there is no easy way to link CRUD expressions and the applications they assist.
With ABTC, the linkage is provided by schema-driven and type safe methods.

e ABTC, unlike CLI, transform runtime errors into compile errors. If the name of an attribute
is modified (IRead is modified), new Business Services are built. Then, when the application
tier is re-compiled, the compiler will detect all errors where the source-code of application
tiers was not updated. With CLI, names of attributes are encoded inside strings, this way
preventing any disconformity from being detected at compile time.

C.5 Conclusion

CLI are used to build business tier components whenever performance is a key requirement.
Regardless this advantage, they present some important drawbacks. To overcome the drawbacks, a
multi-purpose architecture for ABTC is presented. Two versions of ABTC were defined to address
different organizational and runtime needs. Three scenarios were defined and implemented as the
proof of concept. It proved, among other issues, that ABTC address different organizational and
contextual runtime needs. The adaptation process of ABTC is flexible to meet a wide set of different
needs. The adaptation process relies on a two phase approach: the service composition, which
takes place at runtime to dynamically build typed objects, and the service allocation, which also
takes place at runtime to deploy CRUD expressions. This approach promotes the definition of
different scenarios to address different needs. We have implemented three scenarios to address
some organizational and contextual runtime needs. Other scenarios could be implemented, as for
example, to address security needs. Basically, to address security needs, the deployment process of
CRUD Schemas and CRUD expressions should be driven by access control policies. To promote the
reuse of computation, Business Services manage not one but several CRUD expressions (closed and
open approach).

155|Page

