

Fig.1(a) HEVC Coding Structure

Fig.1(b) Illustration of ME Process

Fast Motion Estimation Algorithm for

HEVC Video Encoder
Purnachand Nalluri

1,2
, Luis Nero Alves

1,2
, Antonio Navarro

1,2

nalluri@av.it.pt, nero@av.it.pt, navarro@av.it.pt

1
Institudo de Telecomunicações,

Pólo-Aveiro, Campus Universitário de Santiago,

3810-193 Aveiro, Portugal

2
Departamento de Electrónica, Telecomunicações e

Informática, Universidade de Aveiro

Campus Universitário de Santiago

3810-193 Aveiro, Portugal

Abstract—Video compression is required in applications like

video network communications, video conference, broadcasting,

live streaming and video storage. H.265/HEVC is the latest video

compression standard, jointly developed by JCT-VC that

provides the highest compression efficiency without significant

loss in original video source quality. Among all the tools in

HEVC encoder, Motion Estimation (ME) is one of the most

complex tasks. The present paper analyses the ME algorithm

present in HEVC standard reference software and proposes two

improvements to the algorithm. Our results show a decrease on

the computational complexity by almost 30% with negligible loss

in the video quality.

Keywords—Video Compression; HEVC; Motion Estimation

I. INTRODUCTION

HEVC is the latest video coding standard currently under
joint development by ISO/IEC MPEG and ITU-T VCEG. The
MPEG and VCEG have established JCT-VC (Joint
Collaborative Team on Video Coding) [1]. The main goal of
HEVC is to increase compression performance compared to
existing standard H.264/AVC in a range of 50% reduction in
bitrate without affecting output video quality [2]. For doing
this, many new coding tools were implemented and upgraded
from H.264/AVC standard. One of them is the quad-tree based
coding structure. The HEVC coding structure is more
generalized into quad-tree based coding units (CUs), as shown
in Fig.1 (a). Each CU is recursively sub-divided into quad-tree
based prediction units (PUs), of either intra-type or inter-type
or skip type or merge type. Each PU is further sub-divided into
quad-tree based transform units (TUs).

For compressing a video, the encoder typically exploits
spatial redundancy (inside a frame) and temporal redundancy
(between frames). To exploit temporal redundancy, the video
encoder uses predictive encoding. In this process, each block in
a video frame searches for best matched block in past/future
frame ROI (Region of Interest, technically termed as search
window), and only the motion vector (which denotes the shift
of entire block in past/future frame) is encoded instead of
encoding the entire block. This process is called Motion
Estimation (ME) and reduces the bitrate of entire video to a
huge extent, at the cost of huge increase in computational
complexity. So, reducing the computational complexity of ME

process, without affecting rate-distortion performance is a
challenging task. The process of ME is shown in Fig.1 (b).

As shown in Fig.1(b), the task of ME is to search best
matched block of current frame in the search window. The best
matched block is the block which has minimum cost value,
defined in Eq.1.

)(. PMVMVRDJ MotionMV −+= λ (1)

where J is the lagrangian cost, D is the distortion between

current and reference block, λ denotes lagrangian multiplier,
PMV denotes the predicted motion vector, MV denotes the
estimated motion vector and R represents bitrate or bits
required to encode the motion vector difference “PMV-MV”.

(a) (b)

Fig.2.Illustration of ME Tools in (a) Typical Fast ME

Algorithm (b) TZS ME Algorithm

The distortion is measured by using the matching criteria like
SAD (Sum of Absolute Difference) or SSD (Sum of Squared
Difference) or MSE (Mean Square Error). The most commonly
used and simplest matching function is SAD defined in Eq.2.

 ∑∑
= =

++−=

M

i

N

j

jyixRyxCyxSAD

1 1

),(),(),((2)

where C represents the current block and R denotes reference
block and MxN is the size of the current block.

If the ME algorithm searches every block in search
window, then it is called full search ME algorithm. If the
algorithm, skips some of the blocks, that are less likely to be
the best matched block, then it is classified as fast search ME
algorithm. The present paper provides an improvement to
existing fast ME algorithm present in HEVC encoder of
reference software HM [3]. Section II provides detailed
explanation of ME algorithm and its tasks. Section III explains
the proposed improvements. Section IV shows the simulation
results and finally section V summarizes with concluding
remarks.

II. MOTION ESTIMATION TOOLS AND ALGORITHMS

There are numerously many fast ME algorithms, that were
developed for fast video encoding. The MPEG based standards
including MPEG-2, H.264/AVC and HEVC use hybrid fast
ME algorithms to estimate the best Motion Vector (MV). All
these fast ME algorithms have four common tools to find the
minimum cost block, as explained in the following section.

A. Fast ME Coding Tools

The most common tools for fast ME algorithms are 1)
Initial Search point Prediction (ISP) Algorithm 2) Global
Search Pattern (GSP) 3) Early Termination (ET) Algorithm 4)

Fine Refinement Algorithm. The ISP algorithm aims at
predicting the starting point of the ME process, by using the
MVs of previously coded neighboring blocks. The GSP
algorithm searches a global estimate of the motion vector by
using grid patterns and reduces the possibility of the MV in
getting trapped to local minima. The ET algorithm terminates
the ME algorithm to save the computation time, if the current
cost of MV falls below a predefined threshold (fixed or
adaptive threshold). Finally, if the ET condition is not satisfied,
the fine refinement algorithm converges to local minima, using
fixed search patterns. The coding tools for a typical fast ME
algorithm is shown in Fig.2 (a).

B. Fast ME Algorithms

The H.264/AVC introduces 3 fast ME algorithms - EPZS
(Enhanced Predictive Zonal Search), UMHexS
(Unsymmetrical-cross Multi-Hexagonal grid Search), and
SUMHexS (Simple UMHexS) algorithms [4-5]. The EPZS
algorithm uses four prediction algorithms for ISP stage and
finds the best starting point. It does not use any global search
pattern. The UMHexS and SUMHexS algorithms use basic
prediction algorithms for ISP stage but focus more on global
search patterns. They use two patterns – unsymmetrical cross
pattern and multi-hexagonal grid patterns for finding the global
minima. The HEVC uses TZS (Test Zone Search) algorithm
for ME [6-7]. It has two global search patterns – exponential
diamond grid patterns and search window sub-sampled pattern.
The detailed flow of TZS ME algorithm is shown in Fig.2 (b).

C. The TZS ME Algorithm

As shown in flowchart of Fig.2 (b), in the initial step, the
TZS ME algorithm uses spatial up, left, up-right, median
predictors to predict initial search point. After ISP stage, the
TZS algorithm uses diamond grid pattern and sub-sampled
search window pattern to find the global minimal cost search
point, as shown in Fig. 3(a), and Fig.4(a). The grid pattern,
shown in Fig.3 (a) is an exponentially increasing grid pattern.
The initial diamond close to starting search point (center point)
has a stride-length (distance between center point and vertices
of pattern) of 1. The stride-length continues to increase from
starting point by a factor of 2 until the search range, i.e.
2,4,8,16,32 and so on. The sub-sampled search window
samples the entire search window uniformly, and finds the
minimum cost MV. Then the minimum cost point in both the
search patterns is taken as the global minimal point. In the fine
refinement stage, the TZS algorithm performs diamond grid
pattern search with the new minimal point as search center.
The refinement process continues, until the new search is the
center point of the diamond grid pattern.

III. PROPOSED IMPROVEMENTS TO HEVC FAST ME

ALGORITHM

The present paper proposes two improvements to the TZS
fast ME algorithm present in the HEVC reference software.
The first improvement is at global search pattern stage, and the
second improvement is at fine refinement stage. Each of these
improvements is explained in the following sub-sections.

 RND 2log85 += (3)

 RNH 2log65 += (4)

A. Rotating Hexagon Pattern For Global Search

As seen in Fig.3 (a), the diamond grid pattern has 8 search
points per each grid. If we replace the diamond pattern with
hexagonal pattern as shown in Fig 3 (b), then each grid has
only 6 points. For a search range of 64, there will be 6 grids in
diamond or hexagonal patterns, and hence there will be 53
points (8x6+4+1) for diamond and 41 points (6x6+4+1) for
hexagonal pattern. The number of search points for diamond
(ND) and hexagonal (NH) pattern, for a given search range ‘R’
are shown in Eq.3 and Eq.4. Hence, there will be

computational complexity reduction of around 20% for each
current block. However, the horizontal hexagon shown in
Fig.3(b) is the most appropriate for estimating horizontal
motion and less appropriate for estimating horizontal motion
since it has more horizontal search points than vertical points,
and for estimating vertical motion the horizontal hexagons
performs more loops in fine refinement stage. On the other
hand, the vertical hexagons shown in Fig.3(c) are good for
vertical motion and lose performance for estimating horizontal
motion. Hence the present paper proposes a rotating hexagonal
pattern as shown in Fig.3 (d) for balancing the motion
estimation in both horizontal and vertical directions.

B. Hexagonal Based Fine Refinement

The TZS ME algorithm uses the same diamond grid pattern
for performing the fine refinement of MV. Once the global
minimum point is estimated, it is most likely that the optimal
point lies in the vicinity of the global MV and the distortion

function in the local refinement stage is a monotonically
decreasing function. Hence a gradient descent based algorithm
using hexagonal pattern is implemented for refining the MV.
The algorithmic steps are shown in Fig.4 (b). In the first step,
the refinement algorithm forms a small hexagon with 6 search
points, around the global minimum point. The minimal point in
the hexagon is taken as the new center point to form a new
hexagon. The search continues until the minimum point in the
hexagon is the center point. Then the algorithm checks for the
remaining unchecked 10 points around the center point, as
shown in Fig.4 (b).

IV. SIMULATION RESULTS

The simulations have been carried out on HEVC reference
software HM 9.0 [3]. Table 1 shows the comparison results for
ME time and number of ME search points. TZSD and TZSRH
indicate the results for TZS algorithm with diamond and
rotating hexagonal pattern. TZSRHFR denotes the results for
rotating hexagonal pattern with hexagonal fine refinement.
Fig.4 shows the RD (Rate Distortion - bitrate vs. PSNR) curves
for all the three patterns TZSD, TZSRH, TZSRHFR with QPs
(Quantization Parameters) 22, 27, 32 and 37. The PSNR
represents the video quality and is measured using the Eq.5.

 







=

MSE
dBPSNR

2

10

255
log.10)((5)

where MSE represents mean square error and 255 is the
maximum value of a 8-bit pixel (luminance component).

The simulation results show that the rotating hexagonal
pattern gains 15% of ME speed or 16% reduction of total
number of search points, compared to diamond pattern.
Further, modification of fine refinement stage gains 30% of
ME complexity which means that the total number of search
points is reduced by 30%. The RD curves in Fig.4 and the
Bjontegaard-delta [8] results in Table 2 also show that there is
negligible loss in rate-distortion performance.

V. CONCLUSION

The fast ME algorithm present in HEVC reference software
is analyzed and improved. Simulation results show that
computational complexity was reduced by 30% without
affecting rate-distortion performance. The algorithm can be
further improved by adding more initial search point prediction
algorithms.

4. (a). Sub-sampled

Search Window

4. (b). Fine Refinement

Algorithm

(a) Diamond Pattern
(b) Horizontal Hexagonal

Pattern

(c) Vertical Hexagonal

Pattern
(d) Rotating Hexagon Pattern

Fig.3. Grid Search Patterns for Motion Estimation with Stride Length 8.

ACKNOWLEDGEMENTS
This work is supported by “Fundação para a Ciência e a

Tecnologia (FCT)” Portugal grant Ref. SFRH/BD/73266/2010.

REFERENCES

[1] B. Bross, W.-J. Han, G. J. Sullivan, J.-R. Ohm, and T. Wiegand, “High
efficiency video coding (HEVC) text specification draft 8,”ITU-
T/ISO/IEC Joint Collaborative Team on Video Coding (JCT-VC)
document JCTVC-J1003, July 2012.

[2] Gary J. Sullivan, Jens-Rainer Ohm, Woo-Jin Han, Thomas Wiegand,
“Overview of the High Efficiency Video Coding (HEVC) Standard”
IEEE Transactions on Circuits and Systems for Video Technology, vol.
pre-pub, Issue-99, Dec 2012.

[3] HM Reference Software 9.0 [Online]. Available:
https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware.

[4] A.M. Tourapis, H.-Y. Yeon, P. Topiwala, “Fast ME in the JM reference
software” ITU-T/ISO/IEC Joint Video Team (JVT) document JVT-
P026, July 2005.

[5] X. Xu, Y. He, “Comments on Motion Estimation Algorithms in Current
JM Software” ITU-T/ISO/IEC Joint Video Team (JVT) document JVT-
Q089, Oct 2005.

[6] N. Purnachand, L. N. Alves, A. Navarro, "Improvements to TZ search
motion estimation algorithm for multiview video coding." IEEE -
International Conference on Systems, Signals and Image Processing
(IWSSIP-2012), pp. 388-391, April 2012.

[7] N. Purnachand, L. N. Alves, A. Navarro, "Fast Motion Estimation
Algorithm for HEVC." IEEE International Conference on Consumer
Electronics-Berlin (ICCE-Berlin 2012), pp. 34-37, September 2012

[8] Bjontegaard, G, “Calculation of average PSNR difference between RD
curves”,VCEG-M33, 2001.

Table 1. ME Time Comparison Results between Diamond and Rotating Hexagon Patterns

Sequence QP

ME Time (sec) ∆ ∆ ∆ ∆ ME Time (%) No. of Search Points ‘N’ (x 109) ∆∆∆∆N (%)

TZSD TZSRH TZSRHFR
TZSD vs.

TZSRH

TZSD vs.

TZSRHFR
TZSD TZSRH TZSRHFR

TZSD vs.

TZSRH

TZSD vs.

TZSRHFR

BasketballPass

(416x240 @ 50fps)

22 71 58 44 18.31 38.03 0.676 0.549 0.437 18.76 35.31

27 60 50 41 16.67 31.67 0.558 0.453 0.364 18.76 34.79

32 50 41 34 18.00 32.00 0.433 0.353 0.289 18.41 33.29

37 42 34 27 19.05 35.71 0.333 0.272 0.225 18.49 32.40

RaceHorses (416x240

@ 30fps)

22 130 118 92 9.23 29.23 1.297 1.141 0.918 12.02 29.18

27 119 105 85 11.76 28.57 1.133 0.990 0.795 12.59 29.83

32 101 91 72 9.90 28.71 0.915 0.784 0.633 14.31 30.82

37 84 73 59 13.10 29.76 0.688 0.583 0.474 15.28 31.14

BQMall (832x480 @

60fps)

22 284 246 198 13.38 30.28 2.734 2.370 1.929 13.31 29.44

27 252 218 176 13.49 30.16 2.315 1.985 1.621 14.25 29.96

32 217 185 148 14.75 31.80 1.856 1.566 1.295 15.64 30.23

37 180 154 129 14.44 28.33 1.458 1.227 1.021 15.81 29.95

PartyScene (832x480

@ 50fps)

22 245 210 174 14.29 28.98 2.401 2.058 1.703 14.30 29.09

27 224 187 157 16.52 29.91 2.093 1.776 1.471 15.14 29.74

32 195 160 137 17.95 29.74 1.717 1.433 1.197 16.52 30.29

37 163 133 115 18.40 29.45 1.353 1.114 0.939 17.70 30.62

FourPeople

(1280x720 @ 60fps)

22 176 145 120 17.61 31.82 1.642 1.367 1.184 16.75 27.90

27 161 130 110 19.25 31.68 1.469 1.223 1.079 16.77 26.60

32 147 120 102 18.37 30.61 1.328 1.095 0.987 17.48 25.67

37 134 112 97 16.42 27.61 1.209 0.990 0.911 18.14 24.68

Average 15.54 30.70 16.02 30.05

Table 2. Bjontegaard Delta Results.

Sequence

BD-PSNR-Y (dB) BD-BitRate (%)

TZSD

vs.

TZSRH

TZSD vs.

TZSRHFR

TZSD

vs.

TZSRH

TZSD vs.

TZSRHFR

BasketballPass -0.011 -0.014 0.208 0.296

RaceHorses -0.027 -0.045 0.561 0.933

BQMall -0.004 -0.045 0.104 0.564

PartyScene -0.007 -0.011 0.153 0.257

FourPeople -0.006 -0.011 0.234 0.382

Average -0.011 -0.025 0.252 0.487

Fig.4. RD Curves for Video Sequences with QP=37,32,27,22.

