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Abstract

Endoscope is commonly used in Laparoscopic surgery. It allows to the doctor to perform
the surgery without opening a cavity. Therefore, it allows the surgeon to perform smaller
incisions and consequently diminish the risk of infection. An investigation regarding
the reconstruction of the liver surface from a sequence of images obtained from an
endoscope video has been done by the Vision Institute of TUHH, in cooperation with
the Medical Center Hamburg-Eppendorf. The goal of this paper is to optimize that
reconstruction. Previous works in the institute allowed, using matlab functions, to obtain
a first reconstruction. Having the matrices of the transformations between cameras and
the reconstructed points in 3D, the goal is to optimize that using a patch based 3D
reconstruction. The method consists of the construction of a patch for every point and
trying to find a good normal for the patch. Some tools are used for the optimization
like normal cross correlation that is the similarity function used for obtaining the match
of the corresponded 2D windows in different cameras, and a nonlinear optimization
method to look for the best normal who gives the best match between the windows.
The main objective is to evaluate this method and draw conclusions about its utility and
viability: can this method be used for the optimization in the case of the endoscope
video of a liver surface.
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Chapter 1

Introduction

1.1 Foreword
This thesis is included in a continuous research of the PhD of MSc. Jan Marek Marcinczak
at Vision Systems Institute of the Hamburg University of Technology. This paper refers
continuously to the paper of Yasutaka Furukawa and Jean Ponce [1] and to the book
Multi View Geometry by Hartley and Zisserman [2]. A CD is attached with all matlab
m.files of the method and all m.files used during the research.

1.2 Motivation
This project is also a part of a study that is being developed in partnership with the
University Medical Center Hamburg-Eppendorf. This medical center treats 400 patients
a year, through laparoscopic surgery. During each procedure the abdomen, with the goal
of having work volume, is insufflated with CO2. Trough much smaller incisions than
those needed for classic procedures, a system of cannulae and trocars are inserted. These
trocars seal and fix the abdomen, while the cannulae allow the access of the insufflators
and operation devises. This procedure is used for some medical conditions, but in this
project in particular the data is refers to liver cirrhosis. It is a very important disease that
basically consists of scarring of the liver and poor liver function. It is the final phase of
chronic liver disease. It’s etiology is various, between bile duct disorders, nonalcoholic
fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH), the causes than
can lead to a cirrhosis are countless. However, the most common are hepatitis (B or
C) and alcohol abuse. Considering this large etiology, the types of cirrhosis also vary
accordingly. Pathogenically, what happens is that this disease changes the structure of
the liver and the blood vessels that nourish it. Therefore, it reduces the liver’s ability to
manufacture proteins and process hormones, nutrients, medications, and poisons. As a
chronicle disease, cirrhosis gets worse over time, and has serious complications, such as

1
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Figure 1.1: Cirrhosis liver obtain by a laparoscopic video in University Medical Center
Hamburg-Eppendorf

portal hypertension (and consequently variceal bleeding), kidney failure, increased risk
of infections, hepatic encephalopathy among many others. Even though some patients
are able to embrace a relatively normal life with this kind of condition, most of them
suffer a lot of complications and need the only long term solution that Medicine can
provide nowadays: a liver transplant. Considering all of this information, the most
important message that needs to be spread is to prevent this kind of pathology: to avoid
certain risk conducts (such as unprotected intercourse) and limit the consumption of
alcohol. The main goal of this project is to help the doctors to understand the evolution
of this disease. With a good 3D reconstruction will be possible to measure if the nodules
are growing or not.
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1.3 Overview
This thesis is organized in 8 main chapters. The first is a brief introduction to the project
containing the foreword a brief motivation and an overview of the thesis. In the second
chapter the theoretical background is presented. Therefore, there are briefly explained
the followed points , camera models , transformations in 3D , normalized cross cor-
relation and unconstrained optimization. The third chapter contains the state of the art
worldwide; in this chapter, other methods of reconstruction will be presented. The prob-
lem statement and objectives are presented in chapter four. In chapter five, the method
is explained. The initialization of the patch, discrepancy function, optimization of the
normal, and the expansion are the topics of this chapter. The sixth chapter introduces
the implementation; therefore, it is possible to understand how the method was im-
plemented in Matlab. In the seventh chapter the results and evaluations are presented.
Results of the evaluations that had to be made are presented and explained. In chapter
8 the conclusion of the work is presented. Finally in the last chapter some ideas for
improving are referred.



Chapter 2

Theoretical Background

2.1 Introduction
In the present chapter, I approach the theoretical background needed for the understand-
ing of the present work, such as the camera models, focusing on the one used in this
work, pinhole camera model. However the ideas are presented in this chapter in a re-
sumed version. If the reader wants to learn more the used of the follow sources can be
useful [2] [3] .Transformations in 3D is presented with a table and a small explanation.
For the last 2 useful tools used in this work are explained, normalized cross correlation
and unconstrained optimization, both tools were used as matlab functions that already
exist in the Matlab library.

2.2 Laparoscopic Evolution
The great pioneer of laparoscopic was Georg Kelling of Dresden Germany, in fact he
performed the first laparoscopic procedure in 1902 on a dog. The first reported la- paro-
scopic operation performed in humans was in 1910 by Hans Jacobaeus of Sweden, [4].
The computer chip television camera boosted the field. This technology allowed the vi-
sualization in a magnified view. Before this, Laparoscopic was a surgical approach with
few applications. Laparoscopic had a huge increase during the war in fact comparing
to the open cavity surgery this technique allowed smaller incisions , reducing the exter-
nal contaminants , faster post-surgery recovery and less cost and time for the hospital.
In 1924 the swiss Richard Zollikofer [5] recommend the use of CO2 to insufflate the
abdomen. This practice allowed an enormous evolution in this field. Then, in the 80s,
the invention of CCD (charged couple device image sensor) put the laparoscopic as a
gold standard in general surgery.

4
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Figure 2.1: pinhole model - example of a projection.Figure taken from [Hartley 04]

2.3 Cameras Models
A camera is the one who maps 3D world points to 2D image. There are quite a few
camera models that are basically the matrices that permit the mapping. The models are
divided in 2 major classes the ones that the center of projection is finite and the others
with the center in infinity. One of the simplest models is the pinhole model that is used
in this work. The pinhole model is an example of a finite camera.

2.3.1 Pinhole Camera Model
In figure 2.1 is possible to see a projection of 3D points onto a 2D image points. Consid-
ering center of projection to be the center of a Euclidean coordinates system the points
in real world are projected in the direction of C (center of the camera) and this projection
intercepts the plane in Z or f (focal distance) where the plane (focal plane) is located. So

as equation (2.1) shows the 3D point (X ,Y,Z)T is mapped to image point
(

f X
Z , fY

Z

)T
.

(X ,Y,Z)T 7−→
(

f X
Z

,
fY
Z

)T

(2.1)

This transform of equation (2.1) maps points in Euclidean R3 to Euclidean R2. The
axis Z that is the line perpendicular to the image and passing through camera center is
called principal axis or ray of the camera. p that is visible in figure (2.1) that lays in the
center of the Euclidean space R2 is called principal point. Is quite simple to represent
the transformation between 3D and 2D as is possible to see in equation (2.2).

X
Y
Z
1

 7−→
 f X

fY
Z

=

 f 0
f 0

1 0




X
Y
Z
1

 (2.2)
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Figure 2.2: Rotation transform.Figure taken from [hartley2000multiple]

We can simplify and say that x = PX being P the camera projection matrix. In equation
(2.2) we assume that the origin of the image coordinates lays in the image center which
is not always true so another factor as to be considered as is possible to observe in
equation (2.3). 

X
Y
Z
1

 7−→
 f X +Zpx

fY ++Zpy
Z

=

 f px 0
f py 0

1 0




X
Y
Z
1

 (2.3)

Being K the camera calibration matrix.

K =

 f px 0
f py 0

1 0

 (2.4)

x = K [I|O]xcam (2.5)

xcam is the coordinates in real world but transform to lay in the ray of the camera as is
presented in Fig.2.2.

2.4 Transform of 3D
Considering point X in 3D space is possible to represent X in homogeneous coordinates
as X=(X1,X2,X3,X4) with X4 6= 0, if X4 = 0 the point lays in infinity. The homogeneous
coordinates above referred represent the 3D point (X,Y,Z) so X=X1

X4
, Y=X2

X4
, Z=X3

X4
.

X ′ = HX (2.6)

Equation (2.6) represents a projective transformation in P3 the matrix H is the transfor-
mation of X to X’ and has 16 dof.
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Group Matrix Additional Invariants of P3

Projective
15dof

[
A t
vT υ

]
Affine
12dof

[
A t
0T 1

]
Parallelism of planes, Plane at infinity

Similarity
7dof

[
sR t
0T 1

]
Relative volume

Euclidean
6dof

[
R t
0T 1

]
Volume

Table 2.1: Transformation of P3

In this work the only used transformation is the Euclidean that has 6 dof 3 in the rotation
matrix and 3 in translation matrix. The transformations between cameras are already
obtained in previous works in Vision Systems department of TUHH.

2.5 Normalized Cross Correlation
Template matching that is a technique for finding small parts of an image witch match
a template, can be used for feature detection. Assuming one window of points in the
reference image as the template and then find that template in other images is possible to
detect features and is that principle that will be used in this work as it would be explain
in chapter 5. For doing the feature detection normalized cross correlation is very used.
The used of this function is based on the distance measure.

d2
f,t(u,v) = ∑

x,y
[ f (x,y)− t(x−u,y− v)]2 (2.7)

Being f the image and t the feature positioned at u,v.

d2
f,t(u,v) = ∑

x,y

[
f 2(x,y)−2 f (x,y)t(x−u,y− v)+ t2(x−u,y− v))

]
(2.8)

As t2(x−u,y− v) is constant:

C(u,v) = ∑
u,v

[ f (x,y)t(x−u,y− v)] (2.9)



2.6 Unconstrained Optimization 8

Being equation (2.9) the measure of similarity. To overcome some difficulties , like
variations of energy ∑ f 2(x,y) with position normalization is used so:

γ(u,v) =
∑x,y

[
f (x,y)− fu,v

]
[t(x−u,y− v)− t]√

∑x,y
[

f (x,y)− fu,v
]2

∑x,y [t(x−u,y− v)− t]2
(2.10)

Being γ(u,v) the normalized cross correlation t the mean of the feature and fu,v the
mean of f(x,y).

2.6 Unconstrained Optimization

2.6.1 Introduction
In this section a few unconstrained algorithms will be presented. For many engineer-
ing applications the use of unconstrained optimization is really useful. Multivariable
problems are always constrained yet the optimum is sometimes unconstrained. Uncon-
strained optimization is common used to extremize nonlinear functions of single, mul-
tiple variables subjects to no constraints. Considering a scalar real objective function
with n variables, f(x):Rn→ R.

min
x∈Rn

f (x) (2.11)

Being equivalent to,
max
x∈Rn
− f (x) (2.12)

Obtaining the relation of objective function values,

−max
x∈Rn
− f (x) = min

x∈Rn
f (x) (2.13)

2.6.2 Direct search Methods
The class of optimization methods that does not require derivative information is named
direct search methods. The biggest advantage is the easy implementation. There are
some strategies of direct search methods like classical direct search methods devel-
oped in the 1996s and 1970s, simulated annealing and genetic algorithms. Nelder-Mead
Derivate-Free search was proposed by Nelder and Mead [6]. This method starts with a
input of a set of ordered points x1, ...,xn. The method is based in the principle of away
from the worst. First the best centroid has to be obtained,

xc ∆
=

1
n

n

∑
i=1

xi (2.14)
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Unconstrained Optimization

Numerical Solution Methods

Derivate-Free

1st Order Derivative-Based

2nd Order Derivate-Based

Analytic Solution Methods

Figure 2.3: Unconstrained optimization methods

Now the direction has to be found for that ∆x should move away from the worst,

∆x ∆
= xc− xn+1 (2.15)

Now is important to defined the step size, for that we need to consider possible solutions,
first lets admit a step of 1 so, xc +∆x. If this is the new best the step should be increase
to 2 , xc + 2∆x and the expansion should be accepted if there were improvements. In
case of xc+∆x is not the new best we should attempt contraction so step α = 1

2 . In case
of f(xc +∆x) better than f(xn+1) attempt with α = −1

2 . Only accept the contraction if
xc +±1

2∆x if there is improvement. If there were any improvement with expansion and
contraction shrink the whole arrays toward current best x1,

xi
new

∆
=

1
2
[
x1 + xi] , for all i=2,...,n+1 (2.16)

For the last years the used of more computation power allowed a great improvement
of the researches considering the classical direct search approaxes. Dennis and Torc-
zon [7] improved the method of Nelder and Mead [6]. They realize that the method
was failing with the increase of variables even in simpler problems.For overcoming
they combine the multidimensional pattern search approach with reflection, expansion
and contration step. Because this kind of methods are not based on gradients a global
minimum is more likely to be found rather then a locally.

2.6.3 1st-order Derivate-based
For unconstrained optimization there are quite a few available derivative based methods.
Both 1st and 2nd order methods calculate the direction ∆x using derivatives. The steep-
est descent algorithm starts with a chosen x0, and a define stopping tolerance ε > 0. Is
needed to set k← 0. Having x0 compute the gradient ∇(xk). If ∇(xk)< ε stop because xk
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is an approximate solution if not continue and calculate the direction, ∆xk+1← ∇ f (xk)
, with this proceed to linesearch,

minα l(α)
∆
= f

(
xk +α∆xk+1

)
(2.17)

Being αk+1 the step. Then update xk+1 ← xk +αk+1∆xk+1. Incrementing k← k + 1
compute again the gradient with new k value and repeat all the procedure. There are
some pros and cons of this algorithm. This approach is robust and appealingly straight-
foward in other hand the approach can converge to a saddle point, the convergence is
slow and the approach is sensitive to numerical errors.

2.6.4 2nd- order Derivate-based
In this subsection it will be presented 1 method of second-order, Newton step . This
method has the goal of incorporate 2nd order information to enhance the convergence.
In Newton-step a quadratic approximation p2 of f passing through xk is obtained and
then optimize,

p2(xk +∆x) ∆
= f (xk)+∇ f (xk)T

∆x+
1
2

∆xT H(xk)∆x (2.18)

For any xk with ∇ f (xk) 6= 0 (Newton step) ∆xk+1 is obtain by solving the linear system,

H(xk)∆x =−∇ f (xk) (2.19)

Comparing to 1st order methods this one is less sensitive to numerical errors and better
performance close to the optimum. By other side this method is very sinsitive to the
starting point x0 if this point is far from the local optimum the method can fail to con-
verge, and arduous task because the Hessian matrix and the solution of linear system
are needed each iteration.

2.6.5 Quasi-Newton
The idea is conjugate 1st order with second order , to guarantee convergence use only
1st partial derivatives like in steepest descent search, then speed-up the converge with
some 2nd order information. The question is how to do that. Deflection matrix allows
to obtain a modified gradient search direction,

∆xk+1 =−D∇ f (∇xk) (2.20)

Steepest descendant and Newton step are special instances of deflection matrix Dk ∆
= l

and Dk ∆
= H(xk)−1.
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Initialization Choose initial x0 and a stopping tolerance ε > 0
Derivatives Compute gradient ∇ f (xk) and Hessien matrix H(xk)

Stopping if
∥∥∇ f (xk)

∥∥< ε stop xk is an approximated solution
Newton step Calculate xk+1 direction by solving the linear system

H(xk)∆x = −∇ f (xk) , to compute the step αk+1 solve 1-D

line-search problem minα l(α)
∆
= f

(
xk +α∆xk+1). update

xk+1 ← xk +αk+1∆xk+1 and increment k← k+ 1 after re-
turn to the step of derivatives

Table 2.2: Resume of the Newton step algorithm

Initialization Choose initial x0, a initial deflection D0 = l and a stopping
tolerance ε > 0

Stopping if
∥∥∇ f (xk)

∥∥< ε stop xk is an approximated solution
Quasi-Newton step Obtain move direction ∆xk+1 ← −Dk∇ f (xk) solve 1-

D line-search problem minα l(α)
∆
= f

(
xk +α∆xk+1), ob-

tain deflection matrix Dk+1 ← Dk +
(

1+ gT Dkg
dT g

)
ddT

dT g −
DkgdT+dgT dk

dT g , with d = xk+1 − xk and g = ∇ f (xk+1) −
∇ f (xk) , update xk+1 ← xk + αk+1∆xk+1 and increment
k← k+1 after return to the step of stopping

Table 2.3: Quasi-Newton method

In table 2.3 the Quasi-Newton method is presented.



Chapter 3

State of the Art

This chapter describes some methods of 3D Reconstruction of surfaces. Some Scientific
papers where used to provide information to the state of art in this particular area of
studies. The 3D reconstruction from calibrated images is an important problem and has
been extensively studied by people in Computer Vision Science. The 3D reconstruction
of some object can be obtained by 2 ways, Acquisition of high quality 3D models and
Image-based modeling. The last one is actually a very low cost option of the system,
basically the only input is a set of images possibly calibrated. Off course with this
we will get a less quality 3D model. There is a really huge amount of literature about
methods of 3D reconstruction. The 3 major techniques are Pure image-based rendering
techniques and Hybrid methods,having this 2 methods the goal of getting a coherent
view of the real world not to get real world measurements. With the last major technique
is possible to try to recovery full 3D and for that there are 2 ways Active(control of the
source of light) lasers are used to get all surface , and Passive- method that only use
information present in 2D images of the object. Depending on the information used
is possible to obtain different results , Silhouettes- Obtain visual Hull , but the result
is only good if the object is very simple , Shading it needs a really control of light
environment and for the last Color info that allows to get a really nice model if there is
no light source variations.

3.1 Related Work

3.1.1 Silhouette and Stereo Fusion for 3D Object Modeling
One interesting method was purposed in [8]. Silhouettes, Shadings and features are
some of the most important information present in an image. To use shading a very
controlled calibration of light is needed. For silhouettes is important to extract the im-
age from the background to get only silhouettes of the object. For last the features that

12
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are texture, points, contours). As the use of shading required a very controlled cali-
bration of light in [8] only features and silhouettes are used. The question is how to
use both information together. Deformation models allow that to happen. There are
two techniques to do it, Classical Snake and Level set Methods. In the classical snake
approach is possible to obtain a optimal surface with the minimization of global Energy.

E(S) = Etexture(S)+Esilhouettes +Eregularization(S) (3.1)

• Etexture(S)→ Energy term related to texture of the object.

• Esilhouettes(S)→ Energy term related to silhouettes.

• Eregularization(S)→ Surface model regularization term.

To minimize the Energy, the sum of the gradients of the energy of optimize surface
should be 0 and each gradient represents one force that drives the snake. Therefore, the
forces that drive the snake of the optimize surface should cancel each other.

Snake initialization: First step is finding the initial surface, that should be close
enough to the real surface to guarantee the conversion of the algorithm. The lower
the distance of the surface to the object surface, the lower is the number of iterations. A
really good initialization is the visual hull that intercept the cones containing the object.

Texture driven force: This force uses the texture of the object to help reconstruct the
3D object shape. This force has to maximize the image coherence of all cameras for that
the following projective geometry property is used: If a surface is visible in 2 different
cameras then the 2 images are related by a transformation depending only in the 3D
geometry of the object. This last property is only valid in perfect projective cameras,
perfect lambertian surface and same lightning conditions. The chosen method for mea-
sure the image coherence was the normalized cross-correlation. For the optimization
in [8] were proposed 2 methods, Proposed Voting Approach and Octree-based Gradient
Vector flow.

Silhouette Driven Force: With this force is possible to match the snake with the initial
silhouettes. When used alone the force makes the model to approach to the visual hull,
but the force depend in the self-occlusion of the snake. If the snake matches already a
particular silhouette , that one will be discarded by the rest of the snake because that
silhouette has already been matched. Comparing the visual hull with the real object is
possible to see that the object matches the silhouettes but not all points. The big problem
is to obtain and differentiate the points that have to obey or not the silhouette. For that
the force is decomposed in 2 parameters one that measure the fitting and other calculates
how strong the force should be applied.
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3.1.2 Accurate Multi-view Reconstruction
Accurate Multi-view Reconstruction , [9] is other reconstruction method. Having as
an input a set of calibrated images and being the segmentation of the object from the
background provided, that allows visual hull to be represented by silhouettes images,
reconstruction can be obtained in 2 steps. Binocular Stereo on images pairs and for
last surface reconstruction. The binocular stereo creates depth maps. Stereo matching
is used to obtain the depth maps. Having a primary and a reference image first the
images are rectified for the scanlines of both images lay in the epipolar lines. Then
assuming brightness to be constant normalized cross correlation is used for obtaining
the best match. The bad matches are ignored by the thresholding of the NCC metric.
To compensate distortions, the use of a scaled-window matching technique is needed.
This technique in the present of high curvature regions allows a large improvement in
that regions. The binocular stereo pair is then converted to a single cloud of 3D points.
After this first step, the goal is to obtain the triangular mesh from the point cloud. This
reconstruction of a triangular mesh consists of 3 different steps: dowsampling , cleaning
and meshing. In downsampling, and because generally the cloud is more dense then the
actual density of points needed , hierarchical vertex clustering is used. In cleaning the
remain noise is removed and for the last in meshing the triangular mesh is generated.

3.1.3 Poisson Surface Reconstruction
This method proposed in [10] by Michael Kazhdan, Matthew Bolitho, and Hugues
Hoppe. A set of samples s ∈ S containing the points s.P and the inward facing nor-
mal s.~N as the input data and assuming that the normal lay in that is the model. With s
the goal is to obtain a reconstruction of a waterlight, for that the approximation of the
indicator function to the model is needed. The indicator function is the interception of
the plane trough the object with the object s.~N. The question is how to compute this
indicator function out from the samples. In this work [10] a relation between gradient
of indicator function and integral of the surface normal field is obtained. With a sum-
mation of the integral of the surface over the sample points the integral of the surface
is approximated and for last from the gradient field created , is possible to reconstruct
the indicator function. The indicator function is a piecewise constant function and from
the explicit computation of the gradient field results a vector field having , in the surface
boundary, unbounded values. A way to change it is to convolve the indicator function
with a smooth filter. Because the surface geometry is not known the surface integral
cannot be evaluated. However with the input of orientated points is possible to approx-
imate the integral. For that discrete summation is used. For the implementation the
assumption of that all points are uniformly distributed has to be done.



Chapter 4

Problem Description

4.1 Problem Statement
The goal of this work is to optimize the 3D reconstruction of a liver surface. The input
is a set of calibrated images obtained by the endoscope. The environment of the records
is not the best for obtaining good quality images, and this brings a huge challenge re-
garding the reconstruction. All illumination comes from the endoscope and with that
shadows and artificial features appear. The noise present in the set of images depends of
the quality of the sensor. Other important factor is the movement of fluid and organs dur-
ing the recording, which increases substantially the possibility of error. Consequently,
the obtained reconstruction loses quality. In this work and , because features are used
to optimize the reconstruction, the artificial features and shadows created by the poor
illumination that comes from the endoscope have a huge impact in the results. The
used of normalized cross correlation, that is explained in chapter 5, needs an uniform
intensity of the colors in the record so shadows and artificial features are a big obstacle.
This can appear in different places in different images resulting from this bad matches
of NCC. With all that was stated above, the big challenge is to recover as much tracked
points as possible to use our method. As will be possible to observe in chapter five not
all the points will lead to a patch because some could result after the optimization in a
bad match of NCC. All bad matches will be ignore in other words the patches with bad
matches will be not saved.

4.2 Objectives
The principal objective of this work is to optimize the reconstruction of a liver surface.
For that it is needed to check the method in other sequences like the book sequence that
will be possible to observe in chapter 7. The main point would be having the obtained
patches look for the true normal. Chapter 5 will explain how this search is done. The

15
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goal in the end is to obtain the best possible normal of parts of the surface and if a good
cloud of points is obtained a robust model of the surface can be obtained.



Chapter 5

Patch Based 3D Reconstruction

5.1 Initialization of the Patch
Having a group of tracked points in all frames and choosing one starting frame and
one tracked point initialize the patch is poissble. The first step is ,having a point in a
frame , obtain the plane with a initial normal represented by the normal calculated with
the result of the point in real world and the camera center. Having this, construct a
rectangle R(x,y) with n×n point in the neighborhood of p(image point). After this and
being K the intrinsic matrix:

L = K−1R(x,y) (5.1)

L is the matrix of vectors representing the lines passing through the camera center
and the points of R(x,y). Having L , and having ~n as the normal to initialize ~p0 as the
chosen 3d point and ~r0 as camera center, is possible to obtain the equation of a plain:

~n(~X− ~p0) = 0 (5.2)

And with λ as an unknown:

~X = λ~L+~r0 (5.3)

Then obtain the equation to calculate the variable lambda to each point of R(x,y)
that intercept the plane replace 2.3 in 2.2:

λ =−〈~n,~r0− ~p0〉
〈~n,~L〉

(5.4)

17
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5.2 Discrepancy Function
After obtain the 3d patch the goal is optimize the normal to do that we first calculate the
discrepancy function d(p) :

d(p) =
1

I(p)\I(0)∑d(p, I1, In) (5.5)

Being I(p) a set of images with the chosen point visible and I(0) the image of the
initialization of the patch and d(p, I1, In) one minus the cross correlation between the
interpolated values of I1 and I2. I(p) in this work is a set of images where the point
was visible and that the rotation was bigger than some threshold value. To get the
grey interpolated values of an image the projection is needed so we have to used the
inverse transformation T that is the transformation between the camera and the world
coordinates. So the pixels values of a frame are obtain by this follow equations:

x = K×T−1X (5.6)

Being x the pixels coordinates K the intrinsic matrix and X the patch in world coor-
dinates.

5.3 Optimization of the Normal
The discrepancy function will then be used to optimize the normal of the patch. In the
initialization is assumed that the normal is the direction to the camera , but after to get
good results , a minimization of the discrepancy function will provide a more accured
normal of the liver surface in that specific patch. In this work and because Matlab is the
used tool is possible to use a function of the Matlab library “Fminunc”. This function
looks for a x that minimize F(x) so for that to happen F(x) should be created and in
this case x should be the normal and F(x) should be the resulting discrepancy function.
Basically the function will by a gradient look for a normal that minimize the discrepancy
function. To simplify computation in this work the normal was parameterized to Euler
angles ( yaw and pitch ) so x will have 2 parameters only instead of 3.

5.3.1 F(x)
This function will rotate the patch and project to the images(Ip) and will calculate again
the discrepancy function. For doing the rotation the follow matrix is used: As is possible
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Figure 5.1: normal of the initial patch

to see in figure 5.1 and 5.2 the patch rotates to the optimum solution.

R(α,β ) =

cos(α)cos(β ) −sin(α) cos(α)sin(β )

sin(α)cos(β ) cos(α) sin(α)sin(β )

−sin(β ) 0 cos(β )

 (5.7)

Being α the yaw and β the pitch. After each rotation this function will compute the
equations(5.6) and (5.5).

5.3.2 Minimization function
Having F(x) defined the optimization function is needed to obtain the minimum dis-
crepancy function possible as we can see figure 5.4 that represents a cost function ,
“fminunc” will change x by a gradient of F(x) to obtain the minimum of F(x). Figure
5.4 show a contour cost function for the optimization. Is possible to observe that in this
case that between point [0,0] and the dark circle, that represents the minimum, the cost
function is decreasing so no local minimums. In this case the global minimum will be
obtained. In Figure 5.5 is poissble to understand the behavior of “fminunc”, the dis-
crepancy function is decreasing until getting almost flat and that is a local minimum so
in that case that minimum should represent the correct normal of the surface.
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Figure 5.2: normal of the optimize patch

Only the patches with discrepancy bellow a certain threshold will be considered:

P(X) =

{
X ∈ I,

1
I(p)\I(0)∑d(p, I1, In)< α

}
(5.8)

As is possible to see only when d(p) is bellow α ,being d(p) the last discrepancy function
obtain in the optimization and α the threshold value, the patch will considered. Figure
5.3 shows a diagram of this minimization function this function will be called by the
non linear optimization function “fminunc”.

5.4 Expansion
After having a Cell containing all patches we need to expand the patches meaning that
we need to extend our patches with the goal of obtaining a better smooth surface. For
that we need to get in count 2 essential rules if a cell has already a patch that cell
can not be expanded by a neighborhood cell. The second rule is if after expanding the
discrepancy function of the new create patch is too big the patch should not be expanded.
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Figure 5.3: Diagram of minimization Function

In the figure 5.6 is possible to see how the expansion works in the neighborhood of:{
x,y ∈ Image|

〈
∆x2 +∆y2 = 1

〉}
(5.9)
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Chapter 6

Implementation

6.1 Experimental Setup
The endoscope used in the experiment is “Adrolook USB Scope”. In table 6.1 the
technical characteristics are presented. In figure (6.1) and (6.2) is possible to see the
control unit and the rod of the endoscope. This endoscope works as a normal camera
with the usb connection is possible to record the videos an easily transfer them to the
computer. The calibration matrix was estimated by the Caltechzs Camera Calibration
Toolbox for Matlab [11], and the result matrix is presented in equation (6.1).716.6 0 328.2

0 639.2 226.5
0 0 1

 (6.1)

The experiment of the book was recorded with an outside light source. The videos of the
liver were given to the institute by the Medical Center Hamburg-Eppendorf. Another
sequence tested was the model liver and the record was obtain inside a box with no
outside light source using only the one of the endoscope. The box is totally black to
avoid the light to enter inside where the liver model was positioned.

6.2 Implementation of the method
In table 6.2 is possible to see a quick resume of the method in this chapter the code will
be explained and the m.file function will be presented. All code was obtain is Matlab
and some functions were used that were created in previews works in the department.

24
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Figure 6.1: unitcontrol. Figure taken from [http://www.adrolook.de]

Figure 6.2: Endoscope Rod. Figure taken from [http://www.adrolook.de]

In function create_3dpatch.m the patch will be created. The first function called
is Matrix_initlzpxl.m, this function, having a chosen 3D point transform this point to
2D first with TCW(transformation camera world) and then with the intrinsic matrix.
Having the corresponded 2D point the function Points_R_2D.m creates the window of
points with a neighborhood defined in patch_paramfunct.m. After the use of function
isInsideImage.m allows to check if this window is inside reference image. The final step
comes with function project_patch.m. In this step the initial normal will be obtain and
calling function project_P2_P3.m the window is projected until the plane defined by the
normal having then the initial patch.
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Diameter cabel 2.7/3.9/4.3/5.5/5.8/8/20/25 mm
Cable protection IP57 waterproof/Dustproof
Light source 10mm cable 6 white LED(850lux/8cm)
Light source 5mm cable 6white LED(350lux/1.5-4cm)
Image sensor CMOS
Lenght of cable 1/2/3/5/10/20/30 meters
White balance tight
Resolution 720 x 480
Storage video format AVI-Format
Storage image format JPG-FOrmat
USB connection Mini USB 1.1/2.0
Frame rate 30fps
Line of sight 0◦

Field of view/angle 67◦

Depth of field 1cm/8cm
Side view adapter yes/accessory
Bending radius 10mm
Waterproof/oil resistance yes/yes
Software XP/Vista/Windows7

Table 6.1: Technical caracteristics of the endoscope obtained in
http://www.adrolook.de/

In function optimization_patch.m the patch created before will be optimize. The first
step is using Cameras_2project.m obtain the cameras to be used in the optimization.
This function looks for cameras and check , with the functions isInsideImage.m and
getcamerarotationangle.m, if the patch is visible in the camera and the angle with the
reference camera. The first camera to be chosen will be one with bigger angle with
the reference camera and one that patch is visible. Having the first one it will look
for other one that the patch is visible too and the angle with reference and with the
first chosen camera bigger than a threshold value in our case 4◦. It will stop trying
to find more cameras when is not possible to obtain other camera with angle of 4◦

in relation to the others. Having the cameras The next step is obtain the discrepancy
function using the m.file Discrepancy_func. This function will rotate the patch using
Rotation_Y_P.m with pitch and yaw. After it will call function optm_funt.m to calculate
the discrepancy function that is 1 minus the cross correlation of the grey levels of the
chosen cameras. For doing that is needed to obtain the corresponded 2D windows of
the patch in the chosen cameras using project_secondC.m. Having the corresponded
windows interpolation of the grey levels is needed allowing then to calculate the normal
cross correlation between the windows. Now in the final step the use of fminunc.m allow
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1. Pick a 3d point p(x)

2. Project to 2D to a chosen frame and Create a R(x,y)

3. Project points of R(x,y) to space with the direction represented by c(P),R(x,y) cen-
tral of camera and point , to the plane defined by the normal ~n represented by
c(P),R(x,y) central of camera and point , to the plane defined by the normal~n

4. Calculate frames that p(x) is visible and that have a bigger angle than some α value

5. Rotate the patch P(X) with R(yaw,pitch)

6. Having the frames [F] project all the points to each frame

7. Interpolate the Grey values for the project points of each frame

8. Calculate then the one minus normal cross correlation between the initial frame and
F

9. Repeat points 5 , 6 , 7 and 8 until the Matlab function “Fminunc” finds a minimum
to the discrepancy function d(f)

10. if d(f)<α → Patch is saved in P(cell)

11. Repeat all last points for all tracked points

12. Having all saved patches expand to the neighborhood obeying some rules

13. Having the expand patch repeat points 6 , 7 and 8 to get d(f) of the new expanded
patch

14. if d(f)<α and P(cell) isempty→new patch is saved

15. Repeat points 12 , 13 and 14 until no more chances of expansion

Table 6.2: Implementation of the method

patch_paramfunct.m This m.file produce the input of initial reference image
neighborhood size spacing size.

create_3dpatch.m This m.file produce the patch of a point
optimization_patch This m.file looks for the best match patch
expand_patch.m This m.file expands the optimize patches obtained

Table 6.3: first class m.files used
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Matrix_initlzpxl.m This m.file transforms a 3D point in 2D and call function
Points_R_2D.m

Points_R_2D.m This m.file produce a window of 2D points
project_patch.m This m.file calculates the initial normal and call function

project_P2_P3.m
project_P2_P3.m This m.file projects the window obtaining the initial patch
project_P2_P3.m This m.file compute with the optimize yaw and pith the op-

timize patch

Table 6.4: Functions called by create_3dpatch.m

Cameras_2project.m This m.file Computes the cameras to be used in the opti-
mization

Discrepancy_func This m.file calls function Rotation_Y_P.m and optm_funt.m
Rotation_Y_P.m This m.file computes the rotation of the patch with yaw and

pitch
optm_funt.m This m.file calls function project_secondC.m and computes

the normalized cross correlation
project_secondC.m This m.file calculates the corresponded window of the patch

in the cameras of Cameras_2project.m

Table 6.5: Functions called by optimization_patch.m

the method to find the best yaw and pitch for getting the best match of the windows.
Only if the discrepancy function is lower that a certain threshold that this optimization
will matter or in other words that this patch will be saved. Assuming that the discrepancy
was lower than the threshold value and having the optimize yaw and pitch is possible
using function opt_patch_3d.m to get the optimize patch.

In each iteration if the patch is optimize in a way that the discrepancy function is lower
than the defined threshold the patch is saved in a cell that is a n×m. Being n and m the
size of the camera divided by the neighborhood size. If a patch is optimize but there is
already a patch in the cell the patch is neglected. In the function expand_patch.m the
patches are expanded. This function try to expand in the 4 direction horizontal and verti-
cal concerning the cells. It starts calling for the m.file expansion_patch_create to create
a window of points to be reconstructed in the neighbor of the window corresponded to
the patch and this action is repleted for the 4 direction. Then is needed to check if the
patch exists already in the cell or if the patch has a good match or if will be excluded for
having a big discrepancy function. The discrepancy function is obtain after obtaining
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expansion_patch_create This m.file Computes the cameras to be used in the opti-
mization

checkpatches.m This m.file calls function Rotation_Y_P.m and optm_funt.m
Cameras_2_project_expansion This m.file computes the rotation of the patch with yaw and

pitch

Table 6.6: Functions called by expand_patch.m

the new corresponded 3D patch of the expand window. Having the expand patch and
computing the cameras to project using Cameras_2_project_expansion the discrepancy
function can be calculated. For that function checkpatches.m is called. This expansion
will only stop when no more expansion is possible.



Chapter 7

Results and Evaluation

7.1 Introduction
In this chapter some evaluations and results will be presented. For this evaluations
some sequences of data were used. A surface of a book was recorded to make an error
evaluation of the normal obtain with the method of optimization. After that a real video
of a liver surface was used to test the method. Some m.files were used only for the
evaluation of the method as is possible to see in table 7.1.

7.2 Results and Evaluation

7.2.1 Evaluation of the Minimization Function
The first evaluation needed was the minimization function. After obtaining the patch of
a tracked point the patch should be projective multiple times two the reference and the
other images until a minimum is obtained.

Rnasac.m This m.file calculates with a set of points of a book sequence
the real normal of the surface

costfunction.m This m.file plots the contour graphic of the discrepancy
function with variation of yaw and pitch

distance_point2plane_byline.m This m.file calculates the distance of a point until intercept
a plane

Table 7.1: Functions used only for the evaluation
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Figure 7.1: Cost Function iterations

In figure 7.1 is possible to conclude that for the optimization 6 iterations are enough
because as is possible to observe in figure 7.1 after 5 the value does not decrease any-
more. For checking if fminunc is working a function that plots the cost function is
needed. costfunct.m is a function that get the plot of a cost function. As is possible to
see in figure 7.3 the minimum is possible to achieve. The figure 7.3 is a counter plot
showing the variation of the discrepancy function with yaw and pitch. There are two
minimums and that is because there are 4 ways to obtain the optimize normal. Was
possible to see that the minimization works better with a first neighborhood of 21 pixels
because the cost function with small neighborhood is a flat so it finds local minimums
before the optimize value.

7.2.2 Evaluation of the Discrepancy Function
As is possible to see in figure 7.2 the error increases with the decrease of the angle
between cameras. That results happen because of the cost function associated if the
angle between cameras is low the cost function is flat and is unable to find the optimize
normal of the surface.

In figure 7.3 is possible to see a cost function of the discrepancy function with vari-
ation of pitch and yaw, in this case the global minimum can be found due to the con-
tinuous minimization until the global minimum. In figure 7.4 is not possible to find the
global minimum the optimization will give us a local one due to the flat cost function.
Until the optimization achieves the global minimum a local minimum will be found so
with low angles between cameras is not possible to get a good match.

As is possible to observe in figure 7.4 the method was succeeded in optimizing the
patch with 21 pixels of neighborhood but failed with 5 this can be explained by the lack
of information with only 5 pixels. In the case of 5 pixels the beginning discrepancy
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Figure 7.2: Cost function with 0,87◦ between the 2 cameras

is bigger and the cost function is flat not allowing the method to do the optimization.
This does not happen in every cases in some cases in fact the method works better
with 5 pixels for the liver. Due to the non flat surface of the liver this method can
lead us to obtain windows with different information for example one window can have
some points that in the other are not visible so the method in that cases will not work.
Logically as more points of neighborhood used more chances of that to happen. So is
not possible to state what is the optimum value but in my evaluation i concluded that
using 21 pixels the results were quite better.

7.2.3 Evaluation of the Book Sequence with Ransac Method
To get a good evaluation of the results was needed to calculate the true normal of the
book sequence for then compare the result values with the real normal values. For doing
that ransac function was used “Ransac_plane.m′′. Ransac (Random Sample consensus
iterative method) estimates from data containing outliers, parameters. In our case we
need to estimate the true normal of the book plane from a set of data with some large
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Figure 7.3: Cost function with 19,14◦ between the 2 cameras
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Figure 7.5: Boxplot normal angle error with different angles of the 2 used cameras for
the optimization

error( outliers). So “Ransac_plane.m′′ , iteratively calculates with 3 different random
points each iteration one normal. After that calculates the number of points that are
close to the plane at some chosen threshold distance. After some iterations the normal
that will be chosen as the true one will be the one with less percent of outliers, being
the outliers the ones further then the threshold distance. Having the true normal the next
step is to obtain for each point the result optimize normal obtain with our method. The
reference image is the same in all evaluations of the angle but the second project image
varies and the angles between the reference and principal images should be obtain.
With this we can plot the variation of the error between true and result normal with
variations of angle between cameras In figure (7.5) is possible to see a box plot of the
angle between calculated normal and real normal.

In figure 7.6 the box plot description is presented.
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7.2.4 Book Sequence Results
The evaluation of the method in the book sequence was important to understand if the
method was giving the right normal. As figure 7.7 shows, the normal of the recon-
structed patches is always approximately the same as it should be due to the flat surface
of a book. As the surface is totally flat the expansion works really nice. The prob-
lems of this evaluation were already explained in previews sections. In figure 7.7 the
reconstructed patches are presented.

7.2.5 Liver Surface Results
The liver surface optimization is quite more challenging than the book sequence the big
amount of shadows and bright spots are a big obstacle to the optimization other problem
is presented in figure 7.9. As the cameras for calculating the discrepancy function are
computed as the ones that the window in the reference camera is visible and the ones
with larger angle with reference camera, the window on the other cameras can lay in a
dark zone like in figure 7.9. With this the method, it can not obtain a good normal of
the patch so in this cases the method fail.

In figure 7.11 7.12 and 7.13 are presented 3 different reconstructed patches with the
corresponded 2D point in the image. In the first there is a slight deviation from the
camera direction, figure 7.12 shows an example of a patch that was already with the
correct normal when initiated. Is possible to see that the normal is the direction to the
center of the camera. The last example is the one with bigger deviation from the initial
normal and is quite easy to understand why looking at the 2D point in the image. In
figure 7.14 is possible to observe the reconstructed patches with the use of 5 different
reference cameras.
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Figure 7.7: Normal of reconstructed patches of a book data sequence
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Figure 7.8: Reconstructed patches in book data sequence

Figure 7.9: Correspondent window in camera 1 and 2
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Figure 7.10: Patches Reconstructed using 1 reference camera
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Figure 7.11: Normal obtained and corresponded 2D point in the image
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Figure 7.12: Normal obtained and corresponded 2D point in the image
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Figure 7.14: Patches Reconstructed with 4 different initial cameras



Chapter 8

Conclusions

8.1 Summary
As was mention in chapter 1 this project is a part of an ongoing research of the Vision
Institute of TUHH with the University Medical Center Hamburg-Eppendorf (UKE). The
goal of this entire project is to optimize the surface reconstruction of a liver having as
a input a set of images from a endoscope video sequence. For implementing this opti-
mization a set of matlab functions were conceived. This function for the method were
presented in chapter 6. As was possible to see a set of evaluations had to be performed to
insure the robustness of the method. After all the evaluations made during the research
is possible to state that the matlab function “fminunc”, that is a nonlinear optimization
method, is succeeded in finding the right normal of a 3D patch. Unfortunately that de-
pends of the noise, in noise images the results start to lose quality and the errors start
to increase. Other point is that this method only works if there is some texture, if the
surface in constant in color and has no texture this method will find good matches (low
value of discrepancy function) but wrong normal of the surface.

8.2 Conclusions

8.2.1 Minimization of Discrepancy Function
After all the evaluations made during the research is possible to state that the matlab
function “fminunc”, that is a non linear optimization method, is succeeded in finding
the right normal of a a 3D patch. Unfortunately that depends of the noise, in noise
images the results start to lose quality and the errors start to increase. Other point is that
this method only works if there is some texture, if the surface in constant in color and
has no texture this method will find good matches (low value of discrepancy function)
but wrong normal of the surface.
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8.2.2 Results in the Book Sequence
Regarding the book sequence evaluation the method presented in this thesis showed to
be able to obtain the normal of the book surface and after to be able to correctly expand
the patches in order to obtain a good cloud of points. Some difficulties were also notice
regarding the zones in the book with low or without texture. As was presented above
the method of optimization does not work without texture, so the resulting normals in
that zones were not correct.

8.2.3 Results in the Liver Sequence
Regarding the liver sequence evaluation the results were not so good. One evaluation
with a 3D real model of a liver would be interesting to visualize the real error between
the reconstructed surface and the real model. Without this evaluation was not easy to say
for sure if the final cloud and corresponded normals were correct. The noise images of
the liver made the optimization much more complicated. In other hand as was possible
to check in figures 7.11 7.12 and 7.13 the optimization found a good normal for the
surface because in that cases the condition were good and corresponded points of the
first camera did not lay in a dark zone of the image. I conclude that if is possible
to prevent that to happen the method will present us a good optimization of the 3D
reconstruction.



Chapter 9

Future Work

In this chapter is presented some ideas for future work development, that can optimize
the use of this method or even optimize the method itself.

9.1 VirtualGUI
To allow the user to have a better interaction with the reconstruction it will be nice to
develop a VirtualGUI. It will allow for the user to plot some data and chose in a more
pleasant way the input for the reconstruction. With this the user could also have a view
of the state of the reconstruction and obtained graphic data of the procedures.

9.2 Video Sequence
As was referred in the last chapters the noise is really an obstacle to the use of the
method. Would be really interesting to evaluate the method using a set of images with
noise treatment. Of course this brings some downs due to the possible lose of informa-
tion. The best option to improve would be to obtain better video sequences with less
shadows and bright points, having for example a more stable light source. Would be re-
ally important to obtain the liver image sequences with no variation of brightness. This
technology for now is not available but in the future maybe would be a possibility.

9.3 Method
As i previously mentioned in the liver sequence the images are really dark in the board-
ers due to the only endoscope source of light. Would be quite nice to exclude all images
containing the corresponded window of the template when they are in the shadow zone
of the boarders. Other improvement could be changing the neighborhood in each case
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depending in the best initial discrepancy. The method could first try to compute the
initial discrepancy function for some defined neighborhoods and then compute the op-
timization with the value with lowest initial discrepancy.
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