

Universidade de Aveiro

2013

Departamento de Eletrónica, Telecomunicações e

Informática

TIAGO
MARQUES GODINHO

DISTRIBUTED PACS: PERFORMANCE AND
AVAILABILITY

ASPETOS DE DESEMPENHO E DISPONIBILIDADE
EM AMBIENTES PACS DISTRIBUÍDOS

 Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia de
Computadores e Telemática, realizada sob a orientação científica do Dr. Carlos
Manuel Azevedo Costa, Professor Auxiliar do Departamento de Eletrónica do
Departamento de Eletrónica Telecomunicações e Informática da Universidade
de Aveiro

Este trabalho é dedicado à minha irmã, por todo o carinho, compreensão e
amizade incondicional que fazem com que a próxima etapa seja apenas mais
uma.

o júri

presidente Prof. Dr. António Manuel Melo de Sousa Pereira
professor Catedratico, Universidade de Aveiro

 Prof. Dr. Rui Pedro Sanches de Castro Lopes
professor Coordenador, Dep. Informatica e Comunicacoes da Estg do Instituto Politecnico de
Braganca

 Prof. Dr. Carlos Manuel Azevedo Costa
professor Auxiliar, Universidade de Aveiro

agradecimentos

Um agradecimento muito especial à minha família, por me terem sempre
proporcionado alcançar mais esta etapa.

Aos meus amigos, que me acompanharam ao longo destes cinco anos, um
muito obrigada, este documento também era impossível sem eles.

A todos os membros do grupo de bioinformática, pelo espetacular ambiente de
cooperação. Em particular ao Luís Bastião, sem ele a qualidade e a pertinência
deste trabalho não eram as mesmas.

Um agradecimento a todos os professores, que durante toda a minha vida
contribuíram para o meu crescimento enquanto pessoa. Em particular ao
professor Carlos Costa e ao professor José Luís Oliveira por terem aberto as
portas à realização deste trabalho.

palavras-chave

Imagem Médica; PACS; Distributido; Web-based PACS; DICOM;
Telemedicina; DICOM Router; Performance.

resumo

A imagem médica é hoje um meio complementar de diagnóstico fundamental
nas instituições de saúde. Historicamente, estes meios têm custos muito
significativos para as instituições, quer em aquisição de equipamentos, quer na
manutenção da infraestrutura. Numa ótica da redução de custos operacionais
e melhoria dos processos, as instituições médicas tem explorado os avanços
na área das Tecnologias da Informação, com o objetivo de melhorar a
aquisição, arquivo, distribuição e visualização dos estudos. Estes sistemas,
denominados como PACS, começaram por se impor no interior das
instituições. No entanto, a tendência atual é para interligar essas redes,
criando ambientes de trabalho geograficamente distribuídos. O bom
desempenho destas redes é fundamental para suportar a prática clínica,
nomeadamente, no que diz respeito à latência associada às comunicações.
Assim, é vital desenvolver tecnologias para melhorar o desempenho,
segurança e robustez destas redes. Esta dissertação propõe e avalia um
conjunto de soluções tecnológicas que objetivam melhorar a utilização de
PACS em ambientes distribuídos.

keywords

Medical Images; PACS; Distributed PACS; Web-based PACS; DICOM; Tele-
medicine; DICOM Router; Performance.

abstract

Nowadays, medical imaging is used as a primary method of diagnosis in
healthcare institutions. Typically, those environments have huge costs related
to acquisition equipment and infrastructure maintenance. In order to reduce
costs and improve workflows, healthcare institutions have been exploring new
information technologies to support the acquisition, storage, distribution and
visualization of medical imaging studies. Those systems, denominated as
PACS, are very used inside the institutions’ networks. However, the actual
tendency in PACS is to interconnect multiple institutional systems, thus creating
geographically distributed medical imaging networks. The performance of these
architectures must not delay or deteriorate the medical processes. As a result,
the development of new technologies is fundamental to improve the
performance, safety and reliability of these architectures. This thesis proposes
and assesses a set of technological approaches that aim to improve PACS
deployment and utilization in distributed environments.

i

Index

Index ... i

Figure Index .. iii

Table List ... iii

Acronyms .. iv

1. Introduction ... 1

1.1. Overview .. 1

1.2. Objectives and contributions ... 2

1.3. Outlines .. 3

2. State of the Art .. 5

2.1. Digital medical imaging laboratory .. 5

2.2. PACS (Picture Archive and Communication System) ... 6

2.3. DICOM (Digital Image Communications in Medicine) ... 8

2.3.1. DICOM Data ... 8

2.3.2. DICOM Data Dictionary .. 9

2.3.3. DICOM Object Identification and Hierarchy .. 9

2.3.4. DICOM Upper Layer – Services and Commands .. 10

2.3.5. Storage Service Class ... 11

2.3.6. Query / Retrieve Service Class ... 11

2.3.7. DICOM WADO .. 12

2.4. Cache Systems ... 13

2.4.1. Java Caching System .. 14

2.4.2. MapDB ... 15

2.5. Communication protocols ... 15

2.5.1. UDT: UDT Based Data Transference. ... 15

2.5.2. ICE: Interactive Connectivity Establishment .. 16

2.6. Related Work ... 16

3. Case Study Assumptions .. 19

3.1. DICOM Cloud Router ... 19

3.2. Current scenario .. 19

3.2.1. Main Architecture .. 20

3.2.2. DICOM Bridge Router .. 21

3.2.3. DICOM Service Discovery and Registration ... 21

ii

3.2.4. DICOM Routers .. 22

3.2.5. Final Considerations ... 24

4. Enhanced Performance and Reliability .. 27

4.1. Overview .. 27

4.2. Improvements in image transference procedures .. 29

4.2.1. Data profile of medical imaging studies .. 29

4.2.2. Controlled Channels ... 30

4.3. Caching DICOM Objects ... 35

4.3.1. Cache System Architecture .. 37

4.3.2. Technical implementation specifications .. 39

4.3.3. Multi-level cache to support multi-source Query/Retrieve Services 40

4.4. Bridge Replication .. 44

4.4.1. Proposed Approach ... 45

4.4.2. Routers working with multiple Bridges ... 45

4.5. Security Model ... 46

4.5.1. Handling sensitive meta-data on unsafely deployed components 47

5. Results and Discussion ... 51

5.1. Controlled Channels ... 51

5.2. Cache Module .. 52

6. Conclusions and future work ... 55

6.1. Conclusions .. 55

6.2. Future work.. 56

7. References ... 59

8. Appendix .. 61

8.1. Controlled Channels automatic reconfiguration agent architecture 61

8.2. Cache System API Functionality Table ... 62

8.3. Cache System Class Diagram ... 64

8.3.1. Module interfaces diagram .. 64

8.3.2. Storage management modules .. 65

8.3.3. Service Layer modules ... 66

8.3.4. Cache System class diagram .. 67

iii

Figure Index

Figure 2.1: Big Picture of PACS in the Medical Image Environment. Adapted from [2] 6
Figure 2.2: DICOM Data Elements. Adapted from [1]. .. 9
Figure 2.3: DICOM Hierarchic Data Structure. Adapted from [2].. 10
Figure 2.4: DICOM Storage Service procedures. Adapted from [1]. 11
Figure 2.5: DICOM Query Service (C-FIND) procedures. Adapted from [1]. 12
Figure 2.6: DICOM Retrieve Service (C-MOVE) procedures. Adapted from [1]. 13
Figure 3.1: Case Study general Architecture ... 21
Figure 3.2: Simplified Model of the Distributed PACS Environment. 22
Figure 3.3: DICOM Router incoming C-Store workflow ... 23
Figure 3.4: DICOM Router incoming file workflow.. 24
Figure 4.1: Purposed architecture ... 28
Figure 4.2: Image spliting example .. 31
Figure 4.3: Controlled Channels Representation .. 32
Figure 4.4: Controlled Channels Architecture ... 33
Figure 4.5: Controlled Channels flow control signalling .. 34
Figure 4.6: Retrieving an available channel workflow ... 35
Figure 4.7: Controlled Channels Workflow integration ... 36
Figure 4.8: Cache System Architecture ... 37
Figure 4.9: Simplified meta-data management module class diagram 38
Figure 4.10: Cache System Frameworks .. 39
Figure 4.11: Multi-Source Query Service ... 42
Figure 4.12: Multi-Source Retrieve Service workflow ... 44
Figure 4.13: Indexing Meta-data on unsafely deployed routers. .. 48
Figure 4.14: Queries over unsafely deployed routers. .. 49
Figure 5.1: Comparison of cache module average speed-ups in different scenarios. 54

Table List

Table 5.1: Study Dataset Table .. 51
Table 5.2: Controlled Channels trial results .. 52
Table 5.3: Cache Module trial results .. 53

file:///C:/Users/Tiago/Dropbox/Dissertacao/Tese/tese-provisoria-final.docx%23_Toc362304702
file:///C:/Users/Tiago/Dropbox/Dissertacao/Tese/tese-provisoria-final.docx%23_Toc362304703
file:///C:/Users/Tiago/Dropbox/Dissertacao/Tese/tese-provisoria-final.docx%23_Toc362304704
file:///C:/Users/Tiago/Dropbox/Dissertacao/Tese/tese-provisoria-final.docx%23_Toc362304705
file:///C:/Users/Tiago/Dropbox/Dissertacao/Tese/tese-provisoria-final.docx%23_Toc362304706
file:///C:/Users/Tiago/Dropbox/Dissertacao/Tese/tese-provisoria-final.docx%23_Toc362304707
file:///C:/Users/Tiago/Dropbox/Dissertacao/Tese/tese-provisoria-final.docx%23_Toc362304708
file:///C:/Users/Tiago/Dropbox/Dissertacao/Tese/tese-provisoria-final.docx%23_Toc362304709
file:///C:/Users/Tiago/Dropbox/Dissertacao/Tese/tese-provisoria-final.docx%23_Toc362304710
file:///C:/Users/Tiago/Dropbox/Dissertacao/Tese/tese-provisoria-final.docx%23_Toc362304711
file:///C:/Users/Tiago/Dropbox/Dissertacao/Tese/tese-provisoria-final.docx%23_Toc362304712
file:///C:/Users/Tiago/Dropbox/Dissertacao/Tese/tese-provisoria-final.docx%23_Toc362304713
file:///C:/Users/Tiago/Dropbox/Dissertacao/Tese/tese-provisoria-final.docx%23_Toc362304714
file:///C:/Users/Tiago/Dropbox/Dissertacao/Tese/tese-provisoria-final.docx%23_Toc362304715
file:///C:/Users/Tiago/Dropbox/Dissertacao/Tese/tese-provisoria-final.docx%23_Toc362304716
file:///C:/Users/Tiago/Dropbox/Dissertacao/Tese/tese-provisoria-final.docx%23_Toc362304717
file:///C:/Users/Tiago/Dropbox/Dissertacao/Tese/tese-provisoria-final.docx%23_Toc362304718
file:///C:/Users/Tiago/Dropbox/Dissertacao/Tese/tese-provisoria-final.docx%23_Toc362304719
file:///C:/Users/Tiago/Dropbox/Dissertacao/Tese/tese-provisoria-final.docx%23_Toc362304720
file:///C:/Users/Tiago/Dropbox/Dissertacao/Tese/tese-provisoria-final.docx%23_Toc362304721
file:///C:/Users/Tiago/Dropbox/Dissertacao/Tese/tese-provisoria-final.docx%23_Toc362304722
file:///C:/Users/Tiago/Dropbox/Dissertacao/Tese/tese-provisoria-final.docx%23_Toc362304723
file:///C:/Users/Tiago/Dropbox/Dissertacao/Tese/tese-provisoria-final.docx%23_Toc362304724
file:///C:/Users/Tiago/Dropbox/Dissertacao/Tese/tese-provisoria-final.docx%23_Toc362304725
file:///C:/Users/Tiago/Dropbox/Dissertacao/Tese/tese-provisoria-final.docx%23_Toc362304726
file:///C:/Users/Tiago/Dropbox/Dissertacao/Tese/tese-provisoria-final.docx%23_Toc362304727
file:///C:/Users/Tiago/Dropbox/Dissertacao/Tese/tese-provisoria-final.docx%23_Toc362304728
file:///C:/Users/Tiago/Dropbox/Dissertacao/Tese/tese-provisoria-final.docx%23_Toc362304729

iv

Acronyms

Term Description

ACL Access List

API Application Programming Interface

CR X-Rays

CT Computed Tomography

DICOM Digital Image Communications in Medicine

DIMSE DICOM Message Service Elements

ePR Electronic Patient Record

HIS Hospital Information System

ICE Interactive Connectivity Establishment

IT Information Technologies

MR Magnetic Resonance

NAT Network Address Translation

PACS Picture Archive and Communications System

PPSE Posterior Playfair Searchable Encryption

QoS Quality of Service

RIS Radiology Information System

SCP Service Class Provider

SCU Service Class User

SE Searchable Encryption

SIP Session Initiation Protocol

SPoF Single Points of Failure

TLV Tag Length Value

US Ultrasounds

WADO Web Access to Data Objects

1

1. Introduction

This chapter provides an introduction about the thesis. It gives a glimpse on the main
issues in the medical imaging networks and how they influenced the proposed work. Finally this
chapter references the structure and the main goals of this document.

1.1. Overview

Over the last few decades information and communication technologies have played a key
role in the way society interacts with the world, such as, the way people have access to
entertainment, food, transports, information and other commodities in their daily life. Healthcare
industry is not an exception to this trend and have followed the general evolutionary tendencies
in the technologies and IT systems. Health related institutions have been increasingly providing
new IT services to patients, such as ePR (electronic Patient Record). Moreover, other non-directly
related to health industry corporations have also been showing great interest in the health
information field and have been offering health related services to patients and healthcare
institutions.

On an intra-institution level, health institutions have also been showing great interest in
information systems to manage their business processes. Health information systems, such as,
HIS (Hospital Information System) and RIS (Radiology Information System) have been increasingly
used in the past decade. Medical Imaging related processes have also been spotted for digital
information systems. According to [3, 4], in Portugal, 100% of the medical institutions use
computers and internet connections to support medical practice.

PACS (Picture Archive and Communications System) manage the digital image workflow in
institutions. The medical image workflow are associate with two major tasks, the archiving of
images for posterior use and the distribution of images, since some physicians do not practice in
the same department where images are acquired or archived.

As digital medical images produce huge amounts of data, image storage and distribution
are often associated with significant costs both monetary and time related [5, 6]. These costs are
severely aggravated as digital imaging usage is constantly increasing, and even small institutions
may produce and consume a great number of medical studies. PACS have to deal with these
structural constraints, in order to keep the lowest impact on the medical workflow’s
performance, without consuming significant institutional budget.

A current trend in PACS is focused on the disassociation of the system from the actual
institution facilities, i.e. outsourcing the infrastructure that may run over cloud, reducing costs to
organizations [7, 8]. However, PACS typically manages huge amount of data, which means huge
communication overhead and lacks of performance in distributed environments, often resulting
in poor QoS (Quality of Service) and no customer satisfaction.

Therefore, it is of paramount importance that medical repositories over the cloud care
about fast communications supporting access to the medical data. This work will reflect these
concerns as it will analyze a previously developed system at Universidade de
Aveiro/Bioinformatics Group, i.e. the DICOM Cloud Router, searching for performance constraints
in order to mitigate them [9]. A great effort has been made in the past years to develop a
distributed PACS architecture to support regional environments. A distributed PACS architecture,
as it will describe in further chapters, is a system intended to support the medical image

2

workflow across multiple institution locations. Extending these systems in a distributed manner
means multiple PACS instances deployed at the same time probably serving more than an
institution simultaneously. The second stage of this work will be based on top of other novel
concerns in distributed systems, which are replication and fault tolerance, in order to increase
the service availability in the overall system. Although this approach is rather focused in a specific
system, the results produced by this work may be extrapolated to other systems, as constraints
are similar.

This thesis explores these approaches as starting points to develop strategies to improve
the overall quality of distributed PACS, taking performance and reliability considerations in order
to propose a refined architecture.

1.2. Objectives and contributions

The main goal of this thesis is to provide a fast and effective environment for the medical
image workflows across multiple institutions. Current solutions require significant investments
both in infrastructures and in work force for network and environment configurations. Moreover
they often disregard previous existing infrastructures leading to waste previous investments in
resources. Summing up, it discourages the migration to a distributed environment despite its
clear benefits.

DICOM Cloud Router is a software platform that requires minimal setup configurations and
is designed to integrate previously existing resources such as PACS Archives and viewer
applications. There are also minimal infrastructural requirements as it enables reuse of
preexisting infrastructures, such as, Internet connection and PACS components.

Apart from providing easy set-up environment, DICOM Router architecture must be also
competitive in terms of performance and availability, like any other Intranet solution. This
dissertation intends to extend DICOM Router architecture to achieve high performance and
availability.

Rather than focusing on specific solutions for the existent DICOM Router architecture, the
taken approach starts by identifying the most relevant processes in a generic PACS workflow and
then suggests solutions to mitigate found problems and correct erratic behaviors when extending
these systems to a distributed environment.

Performance and QoS in data access often passes to provide replication of data. Replicated
data has two very important aspects. Firstly, data is less likely to be lost during the system life
cycle. Secondly, multiple sources exists making it possible to be retrieve data from multiple
locations in parallel thus sharing the load of the system and contributing to lower delays and
better speeds in data transferences.

In order to improve the image data handling process and boost the overall availability of
studies, an effective cache system for medical images will be proposed. Moreover, the
implemented approach will be integrated in the normal medical image workflow. Lastly a careful
analysis of single points of failure (SPoF) will be conducted. The main goal is to create strategies
in order to improve the overall availability of the system itself.

Combining these approaches, the ultimate goal of this project will be achieved not only by
decreasing the response time of the proposed system to services, such as Query/Retrieve or
Storage, but also by the improvement of the overall reliability of the system. Providing a better
service to the medical imaging workflow is of course the main concern of this thesis.

3

1.3. Outlines

Chapter 2: Provides a valuable description of the state-of-the-art scenario in the medical
imaging distribution, as well as in technologies related to this thesis.

Chapter 3: Provides a description of previous efforts that have led to the proposal of this
thesis.

Chapter 4: Provides a detailed description of the contributions carried out in this thesis.
Namely there are described multiple methods proposed to improve the
performance and availability of our distributed PACS Architecture.

Chapter 5: This chapter presents the trials conducted to validate the proposed methods.
Along with the trials results there is also a discussion about these methods
contributions.

Chapter 6: This chapter resumes the overall conclusions resultant from this thesis. Moreover,
it appoints the directions of further contributions to our distributed PACS
architecture.

Chapter 8: An appendix with relevant diagrams to the full understanding of the proposed
methods.

4

5

2. State of the Art

This chapter has the purpose of referencing the state of the art in systems and
technologies related to medical imaging, such as, PACS (Picture Archive and Communication
System) and DICOM (Digital Image Communications in Medicine). The current trends will be
enumerated and discussed, both in industry and research in the areas of Medical Image Archives,
Cloud Computing, among others.

The reading of this chapter is very important to understand not only the background
environment of this document, i.e. storage and distribution of medical images and the workflow
itself, but also to understand the taken decisions in each step of the project as they were very
influenced by the constrains of medical imaging processes.

2.1. Digital medical imaging laboratory

Medical imaging is defined as the technique and process used to acquire visual
representation of the Human body [10]. The medical imaging field is often associated with other
subareas, such as Radiology or Nuclear Medicine, as they are techniques used to produce the
medical images. Medical imaging has been used for quite long time as a primary and
complementary method for diagnosis purpose. Among the most well-known modality types are,
X-Rays (CR), Computed Tomography (CT), Magnetic Resonance (MR) and Ultrasounds (US).

Over the last century the medical images were printed in films, as most acquisition
equipment were analogic. Nevertheless the Archive and Distribution of these images was
associated with a few well know constraints. For instance, they must have been available for
physician’s access on-demand. Being an analogic media, the costs associated to storage logistics
and the access times were both high. These constraints were imposed by the medical practice. As
such they still apply to the current state-of-the-art paradigm of medical image Archive and
Distribution.

In the developed countries it is almost impossible to find an individual who has not been
subjected to a medical imaging examination. Frost & Sullivan [6] forecasted that 1 billion of
medical imaging procedures will be conducted in United States of America in 2013. This
impressive reality is only possible due to the great contribution of digital era, as PACS and digital
acquisition equipment (i.e. modalities) started to appear in the market. The use of this
equipment has been generalized, as prices tend to decrease, including the costs of PACS
maintenance than are lower than analogic solutions.

Nevertheless the digital version of these systems provides a clear benefit when compared
to the analogic ones. The current state of the art solutions are still trying to cope with the same
constraints that were mentioned previously for the analogic systems, namely due to the
tremendous volumes of data produced in our days and the distributed environments
requirements. In fact, the state of the art solutions have not only to deal with these constraints
but also with legal and security considerations about holding sensitive patient data in digital
repositories.

The constraints imposed by the medical workflow itself are a key point to understand the
importance of current research fields in the medical image archives and distribution systems. As

6

in the old approach with analogic films, the physician often requests examinations to diagnose
patients implying that produced images must be moved from archiving system to the physician
workstation, which might be at home. There are several medical imaging workflows that impose
organizational constraints. For instance, it is hard to share studies with multiple organizations or
even with different departments within the same organization.

The advent of digital acquisition equipment and the digital communication networks, such
as, Internet and Cloud Based Computing have opened the door to PACS distributed environments
and services outsourcing. As these approaches tend to reduce the medical workflow delays thus
providing better service to patients and controlled costs to organizations because the exchange
of previously performed studies can in many cases avoid purchasing a new one.

2.2. PACS (Picture Archive and Communication System)

As digital technological developments had been achieved in the field of medical imaging
acquisition devices, the price and thus the cost-benefit ratio of these digital devices surpassed
the analogical ones. Thus, with this growth, the need to find an information system that could
bring the medical imaging archives and the distribution networks to the digital era grew as well.

PACS stands for Picture Archive and Communication System. It clearly defines a set of
hardware, software and communications technologies for acquiring, storing, distributing and
analyzing digital medical images in a distributed information system environment [8].

Acquisition is the process of medical images production. There are two major methods
associated with medical image acquisition. The first method is the one that the images are
produced by digital acquisition equipment directly through examination procedures.

Aquisition Equipment Archiving Equipment Viewer Applications

Figure 2.1: Big Picture of PACS in the Medical Image Environment. Adapted from [2]

As [1] states, PACS may be spit in three major sequential steps: Acquisition, Distribution
and Visualization. Figure 2.1 illustrates these steps.

7

Although this digital equipment are now industry standard, compatibility with outdated
equipment and previously archived studies has made scanning mechanisms. These scanners
produce a digital image from the analogical films produced by early equipment. This method
continues to be very used in our days.

Distribution is the process of exchanging images or studies among the different PACS
nodes. It is easy to understand that in most medical imaging studies need to be relocated inside
the PACS, as in most situations physicians do not practice in the same department or center that
acquired or archived the images. Moreover, the modalities and archive can be in distinct
locations. The distribution process opens the possibility for the exchange of studies not only
inside the same institution but also among different institutions as well thus creating
opportunities to reuse of studies.

Visualization process is the frontend of any PACS. Image visualization is of major
importance, as physicians must have an intuitive way of searching and reviewing studies. The use
of third-party viewer applications, such as, Osirix [11] or K-PACS [12] is required. The visualization
process often requires prior processes of acquisition and distribution of image objects.

After stating these three processes it becomes clear that PACS are a mix of repositories and
information systems used to facilitate the workflows in medical imaging environments. It
provides better integration for workflows of different stages as well as booting the overall
performance of the medical practice. But the goods do not come without a cost. Medical images
tend to generate a tremendous amount of data [6] which leaves the PACS Archives to deal with
the storage of large volumes of data and the PACS Distribution Layer to keep the communication
delays acceptable to the medical process. Moreover, the data overhead is not the only problem,
legal issues and Human resistance to information systems also tend to delay the implementation
of these systems.

As stated before, dealing with huge amount of data is a complex engineering task and
raises some real issues directly related to cost and performance, such as, Backup, Redundancy,
Security and Crash Recovery. With the spreading of digital equipment throughout medical
institutions [13], including the small ones, these engineering problems are affecting even more
entities. A great part of these institutions have economic limitations to support such IT
infrastructure, including operational staff. As a result, outsourcing of PACS Archives to external IT
contractors has been also a rising trend in the field.

Concrete integration of medical imaging repositories (PACS Archives) inside institutional
workflows might vary greatly from an institution to another [1]. Although it follows some
common stages, such as, patient registration in the HIS and RIS, the examination procedure,
image analysis by physician and image archiving. In [8] the author proposed three general
architectures for the workflow in a PACS, the Stand-alone, the Client-Server and the Web-based
architectures. These workflows are actually being used in different healthcare units, described in
sequel.

The stand-alone architecture involves a store and forward approach, as images acquired
during procedures are immediately sent to the image archive and then forwarded to the
previously registered workstations. These workstations are used by physicians to analyze and
report the examinations. This architecture, although claimed to be very prone to study loses,
arise some security considerations as studies are transmitted without asking and prone to be
access not only by strictly necessary personnel but virtually anyone in the PACS.

The Client-Server Architecture is the most wide used and proven approach. Studies are
uploaded from acquisition equipment to a central repository. Workstations retrieve studies only

8

when needed, without any pre-fetching strategies like, for instance, moving the studies before
there are needed or during the previous night according with programmed events. This
introduces a relative delay in the study review process as it wastes time while retrieving those
studies, proportional to the available bandwidth for the transference. Nonetheless, it provides a
more efficient access control to studies than the previous architecture.

Web-based architectures are (as in many others areas) the current trend in PACS
Architectures. Web-based PACS integrate the central archive in a datacenter and provides a
frontend (web-based viewer) to operate with images. It is probably the most robust solution In
terms of security, bandwidth requisites and portability. Nonetheless, web-based architectures
lack in compatibility as users are limited to the web browser environment that as some
limitations, such as, 3D reconstructions and may not use any third-party software [14]. Moreover,
when deploying a web-based architecture on public cloud environments a few legal issues may
arise related to the exploitation of sensitive patient data.

2.3. DICOM (Digital Image Communications in Medicine)

In the early years of digital medical imaging, manufacturers of medical imaging equipment
had developed their own communications protocol and image file formats. So exchanging images
between different vendors equipment was a real issue and, in many cases, it was even
impossible. Portability and studies exchange was then very hard to achieve. To solve this issue, in
the mid-80s, a consortium formed by NEMA (National Electrical Manufacturers Association) and
ACR (American College of Radiology) proposed the creation of standardization in file format,
directory structure and communication’s protocols for digital medical imaging equipment. The
first draft of the standard was named ACR-NEMA 300 and is considered of major importance for
PACS proliferation. Nonetheless this primary version had some issues and omissions that were
rectified by latter versions of the standard [2].

The third version of this standard was named DICOM 3.0 [15] and its full version was
presented in 93. Nowadays, it is the most important standard in medical imaging and PACS.
DICOM 3.0 is constantly improved with the addiction of supplements to face the most recent
issues in the medical imaging field despite always keeping compatibility with previous versions of
the standard.

The proliferation of DICOM compliant1 equipment has enabled the exchange of digital
medical images among different equipment thus providing the possibility of implementing
systems (PACS), such as, mentioned previously in this document. The importance of DICOM is
recognized by not only IT personal but also medical personal as shown in [2] where a Professor of
Radiology states “it has become the driving force behind the entire imaging workflow”.2

2.3.1. DICOM Data

DICOM standard is able to represent all real world data based on the definition of DICOM
objects. DICOM Objects are sets of Data Elements. These data elements are the actual
representations of real world attributes. DICOM Objects follow the well know Object-Oriented
approach and may enclose other objects thus providing extensibility and open-endness.

1
 DICOM Compliant or DICOM Ready is the common designation of equipment or software that

support the DICOM Standard.
2
 Vassilios Raptopoulos, M.D, in [2].

9

DICOM Data Elements [16] are formed by three mandatory fields that seemingly follow a
TLV (Tag Length Value) structure. The first field is a tag identifying unequivocally the DICOM Data
Element. The second field is the length (in bytes) of the value field. Lastly, the value field encloses
the binary data of the element. Encoding of the value field may be done using 27 different
codifications called VR (Value Representation). VRs are previously defined in the standard (Part
PS3.5 [16]) and are the primary data types in the DICOM standard. Figure 2.2 illustrates the
DICOM data elements.

The Data Element tags are composed by two fields, the group identifier and the element
identifier (within the group). Both fields are 16-bit unsigned values. The group field identifier
identifies the group of the DICOM Data Element. In DICOM, Elements are grouped by similarity as
[2] states. Groups often reflect a relation between DICOM Data Elements and real world Object,
such as, Patients (0x0010) or Studies (0x0008). An illustrative example of DICOM Data Element
Tags is the Patient ID (0x0010, 0x0020) that has the group identifier of the patients group and the
0x0020 as the identifier within the group. See Figure 2.3.

2.3.2. DICOM Data Dictionary

There are two possible ways of matching a DICOM Data Element to its VR type. The most
common is using the DICOM Data Dictionary. The DICOM Data Dictionary, as its name indicates is
an associative memory that matches DICOM Data Elements (by its tag) to a set of attributes
including the Element VR, the name of the Element, its multiplicity and element data type. An
example of a DICOM Data Dictionary is shown in [2].The second way is by setting an optional field
in the Data Element called the VR Field with the identifier of the VR used. As illustrated in Figure
2.2.

As [2] states, the DICOM Standard has a standard Data Dictionary of around 2000
Elements. However a statically predefined Data Dictionary is of no use if vendors ever need a new
Data Element to map new attributes introduced by their newest equipment, so private Data
Elements can be inserted in order to meet the needs for new Elements.

2.3.3. DICOM Object Identification and Hierarchy

Following an Object-Oriented hierarchical approach DICOM Objects are abstract models
for real world objects. A representation of a real world object is called an Instance, for example a
DICOM Image instance is a DICOM Image Object with real values and attributes that exists in a
concrete context (for example in a file system). A corollary of this definition is that the same real
world image may have multiple instances in different contexts [2].

Figure 2.2: DICOM Data Elements. Adapted from [1].

LA

Inh orderh toh identifyh everyh instanceh unequivocallyh DICOMh usesh UIDsPh UIDsh areh uniqueh
identificationh keysh xnumerical[h assignedh toh eachh DICOMh ObjectPh UIDsh areh formattedh inh
<org_root>.<suffix>F where theh org_root ish anh organizationh uniqueh identifierh andh theh suffix

representsh theh actualh DICOMh ObjectPh Theh suffixh normallyh hash attributesh thath actuallyh easeh theh
processhofhidentifyinghthehobjecthinhthehrealhwordPhThishishwellhexplainedhinh[-] wherehishalsohgivenh
anhexamplehofhahgoodhidentifierhforhahDICOMhObjectFhbasedhonhthehpatienthIDFhstudyhIDFhdatehandh
timeP

Theh identificationh ofh DICOMh Filesh opensh theh doorh toh explainh howh DICOMh organizesh
informationhabouthrealhworldhobjectshassociatedhwithhthehmedicalhpracticeFhsuchhasFhpatientshandh
studiesPh OPS Pianykh [-] statesh thath DICOMh Objectsh areh organizedh hierarchicallyh byh patientsFh
followedhbyhstudieshthenhserieshofhimageshandheventuallyhahsinglehimageFheveryhnodehrepresentingh
ah DICOMh Object xash shownh inh Figureh -P/[Ph Thish hierarchyh representsh veryh wellh theh realh worldh
constraintsh whereh ah patienth mighth haveh multipleh studiesh andh theh singleh imagesh areh eventuallyh
relatedhtohstudieshandhthushpatientsP

2.3.4.DICOM Upper Layer – Services and Commands

DICOMh Communicationsh betweenh DICOMh complianth applicationsh ish ofh paramounth
importancehtohdigitalhmedicalhimaginghandhthereforehtohPACSPhCurrenthDICOMhstandardhspecifiesh
thaththehDICOMhULhxDICOMhUpperhLayerhProtocol[h ish located inhthehapplicationhLayerhofhthehOSIh
ModelPhThereforehithhashtohusehahtransporthprotocolhwhichhinhthishcasehishthehwellSknownhTCP3IPPh
TCP3IPhcommunicationhprovideshmajorhcompatibilityhnothonlyhbetweenhallhsortshofhequipmenthbuth
alsohwithhexistinghcommunicationshinfrastructureshbothhinsidehandhouthofhmedicalhinstitutionsPh

DICOMh ULh identifiesh applicationsh throughh theh useh ofh AETittlesPh Thereforeh applicationsh areh
identifiedh withh theh tripleth IP Address, Port and AETitle whichh makesh possibleh runningh multipleh
DICOMh Applicationsh inh theh sameh hosth machinePh Theh DICOMh ULh alsoh definesh theh concepth ofh
associations betweenh pairsh ofh DICOMh ApplicationsPh Associationsh areh boundh withh connectionh
parametersFhsuchhasFh imagehcompressionhcodecsh thatharehnegotiatedhbetweenhbothhapplicationsh
[L7]P

Figure 2.3: DICOM Hierarchic Data Structure. Adapted from [2].

Patient
Patitent ID (0010;0020)

Patient Name (0010;0010)

Study
Study Instance UID (0020;000D)

Series
Series Instance UID (0020;000E)

Image
Image SOP Instance UID

(0080;0018)

Patients

Study
Study Instance UID (0020;000D)

Series
Series Instance UID (0020;000E)

Studies

Series

Images
Image

Image SOP Instance UID
(0080;0018)

Image
Image SOP Instance UID

(0080;0018)
DICOM

DICOM

//

DICOMPServicesParePpreviouslyPdefinedPinPIODsPandParePmorePeasilyPdefinedPasPsequencesPofP
DICOMPCommandsQPDICOMPdefinesPaPwidePrangePofPservicesyPsuchPasPStorageyPQueryyPorPPrintingQP
AlthoughP forP theP sakeP ofP simplicityP thisP documentP willP majorlyP referP theP QuerykRetrieveP andP
StorageP servicesP asP theyP areP theP primaryP scopeP ofP theP PACSP ImageP DistributionP LayeryP andP
thereforePtheyPimposePperformancePconstraintsPtoPthePsystemQ

2.3.5.Storage Service Class

ThePStoragePServiceP isPtypicallyPprovidedPbyPPACSParchivesQPAsPthePnamePsuggestsPStorageP
ServicesP goalP isP toP storeP anP imageP inP theP repositoryQP AP typicalP useP caseP ofP thisP serviceP isP whenP
acquisitionPequipmentPneedsPtoPsendPthePrecentlyPacquiredPimagePtoPthePcentralPrepositoryQPThusP
StoragePServicePClassPisPofPmajorPimportancePinPPACSQ

StorageP ServiceP isP composedP byP aP singleP CqSTOREP commandP perP imageQP ThePworkflowPofP
StoragePServicesPisPeasyPtoPexplainQPFirstlyPthePSCUPsendsPthePCqStoreqRequestPmessagePtoPthePSCPP
,possiblyPthePPACSPArchivebPcontainingPthePDICOMPObjectPtoPbePtransferredyPuponPreceptionPtheP
SCPP repliesP withP aP CqStoreqResponseP messageP acknowledgingP theP receptionP ofP theP dataQ AnP
illustrativePexamplePisPshownPinPFigurePRQxQ

2.3.6.Query / Retrieve Service Class

ThePQueryqRetrievePServicePisPoftenPusedPbyPphysician’sPviewerPapplicationsPtoPsearchPandP
downloadPstudiesP fromPthePPACSPArchiveP toPperformPrevisionsQPThePQueryPServiceP supportsP theP
searchP ofP objectsP ,PatientyP StudiesyP SeriesP andP ImagesbP insideP aP repositoryQP TheyP mightP beP
searchedPbasedPonPvariousPDICOMPDataPelementsyPsuchPasyPpatientPnameyPstudyPdateyPmodalityyP
accessionPnumberPandPfewPothersQPThePRetrievePservicePisPoftenPexecutedPafterPaPQueryPServiceQPItP
aimsPtoPretrievePthePdesiredPobjectsP fromPthePrepositoryPbasedPonPaPqueryyPnormallyPbyPobjectsP
UIDsQP

QueryPRetrievePServicePclassPisPcomposedPbyPtwoPcommandsyPthePCqFindPandPthePCqMoveQPAP
CqFindP CommandyP asP theP purposeP ofP queryP theP archiveP ,SCPbP aboutP theP existenceP ofP studies orP

Figure 2.4: DICOM Storage Service procedures. Adapted from [1].

1:PC-STOREPRQ

2:PC-STOREPRsp

DICOMPObjectP
data

Acknowledge

PACSPArchive

AquisitionP
Device

SCU SCP

DICOMPstandardPfollowsPaPclientqserverParchitectureQPItPdefinesPaPsetPofPhighPlevelPservicesP
messagesP namedP DIMSEP ,DICOMP MessageP ServiceP Elementsb ,PartP PSLQF [/2]bQP DICOMP
ApplicationsPcanPhavePonePorPtwoProlesyPwhichPinPDICOMPbothParePdefinedPasPServicePClassesQPTheP
ServiceP ClassP ProviderP ,SCPbP isP inherentP fromP theP clientqserverP ArchitectureP SCPP ,serversbQP The
SCP provides a set of predefined services to other client applications. In its turn, the client
applications are called Service Class Users (SCU).

Iz

imagesP withP theP desiredP propertiesP specifiedP byP aP C5Find5RequestP commandTP likeP forP instanceP
“PatientName=Aj”PforPallPpatientsPthatPstartsPbyPthePAPcharacterMPOnePorPmorePC5Find5ResponseP
wouldPbePsentPbackPtoPthePSCUPforPeachPmatchedPobjectMPFinallyPaPC5Find5ResponsePsignalingPtheP
terminationP ofP theP C5FindP serviceP willP beP sentP inP theP endM ThisP workflowP isP wellP representedP inP
FigurePzMLM

ThePretrievalPofPstudiesPusesPthePC5MovePcommandMPAPC5Move5RequestPmessagePisPsentPtoP
thePSCPPidentifyingPthePdesiredPobjectsMPThenTPthePSCPPissuesPaPC5StorePcommandPforPeachPobjectP
thatP needsP toP beP transferredP toP theP SCUMP AP C5Move5ResponseP isP sentP whenP theP lastP objectP isP
transferredP signaling theP terminationP ofP theP processTP asP shownP inP FigureP zMDM FurthermoreP theP
RetrievePServicePSCUPtypicallyPprovidesPaPStoragePServicePinPorderPtoPreceivePthePobjectsPviaPthePC5
StoreMPHoweverTPthePC5MovePRequestPcanPalsoPmovePaPstudyPtoPthirdPpartyPmachineTPiMeMPdifferentP
machineP thatP requestedP theP studyMP ItP isP importantP toP keepP inP mindP thatP aP C5StoreP commandP isP
issuedPforPeachPimagePtoPbePtransferredMPAsPitPwillPbePshownPfurtherPinPthisPdocumentPthisPmightP
notPbePthePmostPeffectivePwayPofPtransferringPstudiesPwithPaPgreatPnumberPofPimagesM

NotePthatPforPthePpurposePofPperformancePoptimizationPinPaPPACSPenvironmentPthePC5MoveP
andPthusPC5StorePcommandsPhavePcrucialPimportanceMPQuery6RetrievePisPnotPonlyPonePofPthePmostP
usedP servicesP inP aP PACSP environmentP butP alsoP isP normallyP includedP inP middleP ofP theP medicalP
practicePworkflowPwherePthePdelaysPshouldPbePthePlowestPasPpossibleM

2.3.7.DICOM WADO

LatestP versionsP ofP DICOMP StandardP haveP introducedP WADOP SWebP AccessP toP DICOMP
ObjectsU [ID]MPWADOPisPthePmostPrecentPinitiativePtoPtakePDICOMPStandardPtoPthePwebMPAsPstatedP
previouslyPstatedTPDICOMPCommunicationsPProtocolPisPonPthePapplicationPlayerPofPthePOSIPmodelP
asP suchP fullP connectivityP canP onlyP beP achievedP ifP theP networkP environmentP recognizesP DICOMP
protocolPasPaPlegitPapplicationPandPthusPprovidePfullPaccessPtoPthePnetworkM

UnfortunatelyTPmostPprivatePnetworkPadministratorsP tendPtoPapplyPsecurityPmeasuresPdueP
toPthePpolicyPrestrictionsTPsuchPasTPfirewallsPtoPbetterPsecurePtheirPnetworkPassetsMPDICOMPProtocolP
isPoftenPnotPrecognizedPandPthusPblockedPinPmostPprivatePnetworkPenvironmentsM

Figuret2.5: DICOMtQuerytServicet(C-FIND)tprocedures.tAdaptedtfromt[1].

1:AC2FINDARQ

Nq1:AC2STOREARsp

QueryAParameters:
exUAPatientName=Av

Acknowledge

PACSAArchive

AquisitionA
Device

SCU SCP

2:AC2FINDARSP

3:AC2FINDARSP

N:AC2FINDARSP
333

AAResponseAperA
MatchAItem

6q

Ink spitek ofk usingk standardk DICOMk Communicationk Protocol]k WADOk usesk thek wellFknownk
HTTPk protocolk tok providek accessk tok DICOMk Objectsk andk ServicesRk HTTPk Traffick isk normallyk
acceptedk ink everyk networkk sok DICOMk informationk usingk HTTPk protocolk cank effectivelyk cross
organizationskboundariesR

Ask [6L] states] WADOkdoesknotkprovidekallk thekstandardkDICOMkServices]knamelykcontentk
discoverykanalogousktokCFFindkstandardkcommandRkMoreover]kWADOkimplementskotherkservicesk
relatedk tok thek transformationk andk renderingkofk imagesk whichk clearlyk indicatesk thatk WADOkwask
notkintendedktokbekservedkaskakwebkinterfacektokaccesskPACSkRepositorieskbutkratherkankextensionk
tok providek morek functionalitiesk fork teleFradiologyk applicationsRk Thek Relatedk Work 9R(sectionk
provideskakbriefkdescriptionkofkWADAk[69] whichkintendedktokextendkthekWADOkenablingkCFFindk
likekqueriesktokarchivesR

2.4. Cache Systems

Cachesk arek widelyk usedk acrossk everyk IT systemRk Cache consistsk ink creatingk ak temporaryk
memoryktokstorekcertainkobjects thatkhavekakhighkprobabilitykofkbeingkaccesskinkakshortkperiodkofk
timekcomparedkwithktheknormalkrepositoryRkThekideakiskbasedkonkthekassumptionkof retrievingkank
objectkfromkthisktemporarykmemorykshould beksignificantlykfasterkthankretrievingktheksamekobjectk
fromkitskoriginalksourceRkCacheskhavekbeenkusedkforkinkmanykscenarios] evenkbeforekthekWebk9R2k
technologiesk tookk placek overk thek ITk fieldRk Thesek systemsk havek beenk largelyk used namelyk ink
computerkarchitecturesR

CachekSystems are oftenkassociatedkwithkmultiplekhierarchicalk levels]kaskdifferentkstoragek
devices oftenkhavekdifferentkspecificationsRkNamelykstoragekcapacity]kpersistence]kretrievalkspeedk
andk latency]kask itk iskwellk representedk ink [92]Rk Forkexample] hardkdiskkbased cachekhavekgreaterk
capacitykbutkseverelyklackkperformancekwhenkcomparedktokmemorykyRAMzkbasedkcacheR

Distributedk systemsk havek takenk thek usek ofk cachingk technologiesk veryk seriouslyRk Sincek
communicationskinsidekakcomputationalksystemkarekmuchkfasterkthankinkLANkenvironmentsRkAlso

Figurea2.6: DICOMaRetrieveaServicea(C-MOVE)aprocedures.aAdaptedafroma[1].

1:lC-MovelRQ

2:lC-STORElRsp

StudylInstancel
UID

Acknowledge

PACSlArchive

Aquisitionl
Device

SCU SCP

ImagelN:lC-STORElRSP

ImagelN:lC-STORElRQ

Imagel
Tranference

usinglmultiplel
C-STOREl

Commands

14

much faster compared with the WAN environments, and so, further cache levels were introduced
combining cache instances deployed at different nodes of the system.

Distributed systems can be split in two major groups: client caches and distributed caches.
Client caches (or local caches) are deployed locally to in each distributed system user. They
provide extreme acceleration for retrieval of objects although they are often very limited
considering the storage volume. Thus, they are only able to cache a very small portion of the
distributed system data. Distributed Caches are deployed on the distributed infrastructure
instead of its end users. Although they do not provide as much acceleration compared with local
caches but they often cache more volume of content.

Nevertheless, Cache Systems are not only associated with benefits. Actually the
exploration of caches involves difficult engineering problems. These problems are associated with
the integrity of cached objects in the different hierarchical levels of the system and with
strategies associated with the population and eviction of those objects.

According to [20] there are two major trends for data management in hierarchical multi-
level caches. The inclusive management, where higher levels, with greater capacity, enclose the
cached objects in lower levels. The exclusive management were cached objects are generally only
present in a single level, providing better usage of cache capacity at the expense of harder
population/eviction strategies.

Cache population strategies are associated with the insertion of objects into the cache.
Cache population can be done expressly, resorting to pre-fetching techniques, or it can be
executed along with the life-time of the cache, taking advantage of the client’s work-flow. In its
turn, Cache eviction is associated with the removal of less important objects, making room for
more important ones. It is normally associated with eviction policies although users can perform
it expressly. These policies are used to select the less important objects and therefore can be
evicted. A Cache eviction policy example is the LRU (Least recently used) that evicts the least
used objects.

The following subsections provide a brief description of caching technologies that can be
used to fulfill the needs of the distributed system proposed on this thesis.

2.4.1. Java Caching System

JCS (Java Caching System [21]) is a caching system written in Java that provides the
deployment of multi-level hierarchical caches in Java applications. As stated in [21] “It is intended
to speed up applications by providing a means to manage cached data of various dynamic
natures”. JCS is highly configurable and therefore can be deployed with a wide variety of caches
configurations. It supports the most common caches architectures for local and distributed
caches.

JCS uses a concept of regions that can be seen as cache instances. Each region can be
deployed with different combinations of plugins adding different levels with specific behaviors to
the instance. The plugins are divided in four major groups Memory, Disk, Lateral and Remote.
Memory and Disk plugins provide multi-level local cache support with common eviction
techniques such as Least-Recently-Used (LRU) or First In First Out (FIFO). There is a JDBC [22]
plugin in the disk group that provides persistent caching resorting to an ODBC [23] database,
along with a specific plugin for Oracle’s Berkeley DB (a key-value database for java).

The Lateral and Remote plugins provide connectivity across multiple cache instances (both
local and remote) with distributed caching capabilities. There are multiple plugins which makes

15

the system highly tunable. Remote and Lateral plugins are often implemented on top of the
TCP/IP transport protocol.

This framework is possibly the most complete caching solution for Java. There are other
similar solutions for cache development, such as, Infinispan and Ehcache [24, 25]. The provided
functionalities are more or less similar to JCS. However [21] claim JCS to be faster than Ehcache
so that’s the reason Ehcache description has neglected in this document. As for Infinispan,
through the analysis of [24] it is driven to distributed caches than JCS as it makes almost no
reference to local cache deployment.

2.4.2. MapDB

MapDB is an open source project with a few years, at the current date. It is an embedded
key-value database for Java. Although it has some very particular features that make MapDB a
unique database engine, suitable for storing data blobs persistently.

As [26] MapDB offers a set of concurrent associative memories (Maps and TreeMaps) to
store serialized objects in both disk and memory devices. By using a key-value approach,
query/retrieval of objects can be executed more efficiently than in other database engines (SQL
or Document based).

Moreover, MapDB database engines offer encryption, transactions, caching and custom
object serialization that may be used optionally to enhance the engine performance. MapDB is a
memory cache designed for temporary storage of objects. Operations such as, read and write
may not be performed directly to the disk. It can be configured with the Least-Recently-Used
(LRU) eviction strategy, as well as with the desired in memory capacity. Management of cached
objects is completely delegated to the database engine.

Compared to Java Caching System, MapDB is not a specialized cache provider.
Nevertheless it offers a level of persistent disk storage and a level of memory cache that fits
perfectly for our needs. As storage of binary data in common ODBC databases have poor
performance, MapDB presents itself as better alternative than JCS as it is less complex, portable
and faster for this kind of data.

2.5. Communication protocols

When aiming to achieve the best performance possible, sticking with the same transport
protocol might not always be the best idea. Especially, if on top of the transference protocol we
use a totally non-related application protocol to achieve a specific goal, such as, in our case to
achieve connectivity across multiple private networks.

This section provides a brief description of techniques used to provide connectivity across
multiple private network environments as well as a very efficient transport protocol that may be
used to optimize communications in those cases.

2.5.1. UDT: UDT Based Data Transference.

UDT is a transport protocol aiming to mitigate the limitations of TCP algorithms on high-
speed networks. In [27] the authors claimed that TCP congestion control, flow control and
window control algorithms do not work well for high-speed networks with high latency. Actually
in [27] it is given an example for an high-speed link of 10Gbps where the TCP could only achieve
around 100Mbps effective bandwidth usage. It is certain that most medical institution do not

16

have such high-speed Internet connections. Nonetheless, UDT approaches data transference uses
some good assumptions.

Firstly, congestion control, flow control and window control algorithms are tunable by the
user application using a well-defined interface. Secondly, the protocol itself has enhanced
bandwidth detection and uses a much optimized approach to acknowledgement of messages as
described in [27]. Summing up, they might be configurable to our environment constraints.

Lastly, besides the client-server connection establishment, the UDT has a mode called
Rendezvous Connection Setup. It takes advantage of the UDP protocol to setup the connection
either by the server or the client. In the rendezvous setup mode, both hosts attempted to
connect and listen for connections at the same time, making the connection possible even if one
of the hosts is behind a firewall protected environment. Moreover this rendezvous mode
promotes firewall hole punching. Firewall hole punching technique is used by some well-known
peer-to-peer applications (such as Skype) to provide connectivity between works behind firewalls
and NAT environments. It consists in connecting to an accessible host in order to open
“breaches” in the firewall or NAT. As the UDP protocol supports various data streams per port
these breaches can then be used to communicate with the desired host.

2.5.2. ICE: Interactive Connectivity Establishment

ICE (Internet Connectivity Establishment) is the latest effort of IETF (Internet Engineering
Task Force) in NAT transversal [28]. NAT transversal is the concept of creating a communication
channel between two hosts even if they stand behind a NAT system. It is a hot topic for IETF
because of its interest in multimedia communications.

Multimedia communications in Internet often use out of band control protocols with
rendezvous capabilities such as SIP (Session Initiation Protocol) [29]. ICE is very well enclosed in
the SIP/VoIP environment and in multimedia communications in general. Its main goal is to find a
direct communication path between two remote hosts using existent techniques, such as, TURN
and STUN. STUN and TURN are two techniques previously used to transverse NAT. Their
effectiveness varies according to the type of NAT implemented in both networks. Moreover, ICE
evaluates all the found paths and orders them in terms of efficiency.

There are multiple libraries supporting ICE Protocol including one for Java, although it is
not completely implemented and lacks of reviews. There are multiple stable releases of ICE
libraries written in C language. There are no records of attempts made in order to use the ICE
protocol in data transference situations but in the multimedia environment (VOIP and other SIP
based Communications) it is frequently used.

2.6. Related Work

The typical implementations of DICOM Storage and Retrieve processes are not very
efficient. The main propose of a DICOM network is to support exchange of medical image data
between different nodes of the network. File download and upload are therefore two major
processes. Nonetheless, creating strategies to improve this process is challenging due to few
conceptual problems associated. Firstly there is no way of knowing how many images, nor its
size, does a study have prior to its retrieval. The downloader will not be able to estimate the
study download length, neither in terms of time nor in number of missing images. Secondly,
there is no control in the transference procedure, in the downloader point of view, that allows it

17

to pause study retrievals. Lastly, storage requests are issued in sequence without any parallelism,
leading to poor performance in high latency networks. These issues are well represented in [2].

In [30] a study was conducted with a miscellaneous of medical imaging studies. It revealed
that standard DICOM transference syntax (without any kind of compression) only used around
75% of the available bandwidth in LAN environments. It was also identified a problem with the
agreement of transference syntax in DICOM UL associations. Citing [30] although DICOM
supports various transference syntaxes with different levels of compression (both lossy and
lossless) applications very often do not support the same syntaxes. Consequently leading to
massive usage of the default transference syntax.

In order to mitigate this problem, the usage of interfaces between the DICOM applications
to mediate the transference was proposed in [30, 31]. The interfaces would act as proxies
between the two applications supporting the best transference syntax possible. Moreover, they
provide parallel transference of images.

Conducted trials revealed the optimum number of parallel transferences as well as the
most efficient compression codec for the transference syntax. With the proposed method Maani
et. al. claim to have achieved 90% of network usage in LAN communications. The trials consisted
in the transference of multiple studies at the same time with a significant data volume of 157MB.
The proposed method managed to achieve considerable improvements both in LAN and WAN
scenarios. The performance improvement in a WAN scenario was even better, as parallel
transferences proved to be more effective.

Although this case study scenario is only focused in point-to-point connections the analysis
of DICOM Protocol weaknesses proved to be very similar to the problem stated in this thesis.
Compared to our proposed architecture, this technique cannot guarantee, “anytime anywhere
access” as communications between interfaces use the normal DICOM protocol. Moreover they
do not provide any security extensions to the standard protocol.

In [32] Bastião et al, proposes a PACS architecture that takes advantage of the cloud
computing capabilities. Cloud providers offer huge amounts of storage space as well as optimal
availability of data which makes them a very attractive platform for storing large volumes of data,
key features of any PACS Archive. Costa et al [6, 33] claim that costs of storing large volumes of
data on cloud providers tend to be smaller than regular in-house storage as it does not require
any upgrades over time to keep-up with the amount of data. Furthermore cloud based PACS
Archives can be effectively shared among different institutions and thus, effectively promoting
study exchange and cost reductions [34].

Bastião et al, states that a PACS Archive might be divided into two different components,
DICOM Object repository (storage) intended to store the actual objects and a indexer database
for meta-data. Indexed meta-data enable faster responses to find requests. The proposed
architecture intends to move both these components to cloud providers while keeping a secured
master index inside the medical institution with the confidential patient meta-data. A gateway
was also proposed. It works as a proxy for DICOM-Commands, translating them to web services
requests. This approach provides compatibility with DICOM equipment way for both the master
index and the cloud providers.

Performance tests were conducted on two different cloud providers Amazon S3 and
Google Storage [35, 36]. They showed that this cloud-based PACS Architecture is significantly
slower than regular PACS approaches (with archives inside the institution). However, even with
poor performance, the proposed PACS-Cloud architecture opened the doors for the distributed
DICOM network that will be mentioned further in this document. Its main ideas of sharing studies

18

among institutions and studies distribution based on web technologies were very helpful in
following studies.

As expressed, cache systems are a hot topic in distributed systems. As such, previous works
related to medical imaging and distributed PACS architectures have somehow incorporated cache
components in order to improve their workflow. Nevertheless, there seems to be no proposal for
generic software cache architecture for medical imaging repositories. Related works seems to
focus either on pre-fetching techniques or very specific cache specifications.

In [37] was proposed a pre-fetching technique for medical imaging information systems
(PACS, RIS, HIS). Its intention is to minimize the delay in operations associated with the retrieval
of data from those systems by retrieving those objects prior to its request. This technique is
focused on an institutional level rather than a distributed environment.

In [38] was presented a caching technique for a web-based PACS. The cache system was
associated with a pre-fetching technique based on windows of interest. The method involved the
calculus of a window of interest for each user. Cache population and eviction would then reflect
the changes to the user window of interest. However great results were achieved, direct
implementation in our architecture is infeasible as it is very specific for this use case scenario.
Although we acknowledge that splitting images into smaller portions may help to improve the
PACS users experience.

Another possible solution is the deployment of hardware caches. Essentially they are
replicas of the actual image repository. Integration of these replicas within the PACS environment
is often achieved by specific hardware or software. For example, in [39] Gutiérrez-Martínez, J. at
al describes a cache architecture for a single hospital PACS. The proposed solution required
specific hardware and infrastructure to be deployed. As the result system is impossible to be
embeddable in a single software solution.

Steve Langer [40] presents a clever approach for improving the QoS of a PACS with an
outsourced PACS Archive. His approach involved the deployment of a small intermediate cache
archive, as such, the performance constraints introduced by the outsourced archive were
reduced. In this thesis, we keep in mind this approach in order to propose our own cache strategy
for reducing the footprint of foreign PACS Archives.

19

3. Case Study Assumptions

This chapter provides the assumptions and specifications about the current state of tow
background projects for this thesis, namely the DICOM Router [9]. Firstly, it will be presented a
general description about both projects followed by a complete description of current
architecture.

3.1. DICOM Cloud Router

DICOM Cloud Relay is a relay service over the cloud that was proposed by Bastião et al in
[9]. It was intended to provide DICOM Query/Retrieve and Storage services between remote
locations over the Internet. The suggested approach enhances study exchange among institutions
and tele-radiology by promoting seamless communication between DICOM compliant
applications, both inside and outside institutions boundaries.

The proposed solution involved the deployment of two main components. The DICOM
Routers, which are in charge of relaying communications between applications in different
networks. Therefore, they are intended to be deployed in every DICOM island3. They are
essentially DICOM nodes, providing DICOM Services to other applications, working as server
unities and also as consumers. Provided services are essentially virtual because they are
mediators to real services provided by applications over the distributed environment. They also
have the responsibility of advertising the distributed environment about the services provided by
appended applications. DICOM Routers act as proxies for these services enabling DICOM-
compliant applications to access to remote applications (via router) and thus inter-connecting
distributed environments.

The second component is DICOM Bridge Router. It works as a network coordinator storing
centralized information about DICOM Router, services provided in the network and their
location, also called routing tables in the paper. Moreover, DICOM Bridge Router provides also
some security features, such as, user authentication.

The proposed solution also involved cloud providers in data transference processes. Cloud
provider was used as middleware between routers. The studies are uploaded first to the Cloud
providers and then downloaded by the receiving router. This was done in order to free the
central DICOM Bridge Router of data flows keeping bandwidth needs and associated costs as
reduced as possible.

3.2. Current scenario

The current scenario of DICOM communications environment in our research lab is derived
from the [9] approach. However, some modifications have been made in order to make this
distributed PACS more compliant with real-world deployments.

3
 DICOM island means a DICOM network without connectivity to other DICOM networks

20

The deployment scenario also involves the creation of a distributed PACS system
supported over the Internet with DICOM-Ready communications. DICOM Communications
(Services) are provided by a similar approach to [9] using DICOM Routers to inter-connect every
DICOM island. DICOM islands are denoted to be networks were full DICOM Connectivity can be
achieved, typically inside institutions or other private LAN environments. As DICOM routers are
typically inside firewall protected networks, direct communication between routers may not
always be achievable.

Apart from previous works (namely [9, 32]) the actual instantiations of the Cloud Router
architecture does not rely completely on public cloud Services, neither for communications as [9]
nor for storage (Image Archives). Rather, the platform relies on private repositories and the
common Internet infrastructure for inter-institutional communication. More accurately it uses
the well-known HTTP protocol. As the result of keeping the system’s communication protocol
fully web 2.0 compliant, DICOM Routers can effetely achieve connectivity in most private LAN
environments.

There are two main reasons for PACS Archives not to be completely resident on cloud
providers. The first reason, is that despite several attempts to secure the PACS Archive located in
the cloud, legal constraints, namely in Portugal, France or Italy, tends not to make this migration
pacific. Moreover, medical personnel have shown some resistance in relocating the whole Image
Repository to a private contractor, again due to privacy and security considerations. The scenario
where a PACS Archive would still reside in the medical organization boundaries has generally a
better acceptance among the medical staff.

Taking into account both the legal aspects and the medical personnel valuable opinion, the
current state of the art architecture preserves PACS Archives inside the institutions boundaries as
in general PACS.

3.2.1. Main Architecture

The main architecture reflects the medical institutions needs to access medical image
repositories from outside their institution boundaries. By not only making use of tele-radiology
features but also in sharing studies resources across affiliated institutions. Figure 3.1 shows both
these aspects inter-connecting a private institution with a physician at home and an affiliated
institution. Both these DICOM islands representations are metaphors for real world use case
scenarios.

The physician at home is a use case where the DICOM application residing on its own
DICOM Island needs to access the PACS Archive (inside the private institution boundaries)
normally for revision of studies. Multiple instances of these use case are supported, supported in
its turn by the accounting system in the DICOM Bridge Router, which encloses the access to the
distributed system to authorized personnel.

The Affiliated institution with its own local PACS Archive is the metaphor for remote access
to the distributed PACS by physical locations not directly connected to the main institution
facilities. Thus this use case encloses many possible scenarios including sharing of resources
across multiple institutions, aggregation of facilities from the same institution etc. Again the
access to the distributed PACS is subjected to the authorization given to the DICOM Router by the
DICOM Bridge Router when it logs-in in the system.

43

3.2.2.DICOM Bridge Router

DICOMABridgeARouterAservesAaAfewAnobleApurposesSAOneAofA itsAmostA importantAfeaturesA isA
userA authenticationSA AsA inA anyA distributedA systemA environmentHA userA authenticationA priorA toA
entranceA isA crucialA toA provideA secureA andA armlessA servicesSA UserA authenticationA isA basedA onA
DICOMA RoutersA credentialsSA EveryA routerA hasA toA supplyA itsA credentialsA inA orderA toA accessA theA
systemSATheseAcredentialsAareAalsoAusedAtoA identifyAtheADICOMARouterA inAtheAdistributedAsystemA
environmentSA

AlthoughA securityA isA veryA importantH itA isA notA theA mainA functionA ofA theA DICOMA Bridge
RouterSATheAmainA functionA ofA theADICOMA BridgeARouterA isHA asA itsA nameA suggestsHA establishingA aA
bridgeA betweenA theA DICOMA RoutersSA ItA isA usedA asA aA “manA inA theA middle”A forA communicationA
betweenA pairsA ofA DICOMA RoutersSA ForA instanceHA routerA AA wantsA toA sendA some dataA FDICOMA
images(A toA routerA BSA MindingA theA realA worldA constraintsA imposedA byA firewallsA andA generalA NATA
systemsHArouterAAAmayAnotAhaveAdirectAconnectivityAtoArouterABSAInAorderAtoAovercomeAthisAinabilityA
theArouterAAAsendsAtheAmessagesAtoAtheADICOMABridgeARouterHAratherAthanAdirectlyAtoAtheArouterA
BSATheADICOMABridgeARouterAactsAasAaArelayAtoAretransmitAtheAmessagesAtoAitsAproperAdestinationS

TheA DICOMA BridgeA RouterA achievesA totalA connectivityHA asA itA isA actuallyA anA HTTPA ServerA
listeningA forA newA HTTPA ConnectionsSAEachAestablishedA connectionA isA usedA toA theA welfare ofA theA
distributedAsystemSAEveryADICOMARouterAhasAatAleastAoneAactiveAconnectionAthatAisAestablishedAatA
theA timeA ofA itsA registrationA inA theA BridgeSA ThisA everlastingA connectionA canA beA seenA asA aA serviceA
channelHA inAorderA toAopenAnewAchannelsA thatAmayAbeA requestedSANoteA thatA thisA channelA isA veryA
importantA becauseA theA DICOMA BridgeA RouterA cannotA openA newA communicationsA channelsA byA
itselfHA asA itAwouldAeventuallyA fallA inA theA firewallA constraintsA thatA wereA mentionedA aboveSA AsA theA
resultAtheADICOMABridgeARouterAusesAtheAserviceAchannelAtoAsendAaAcommandAtoAtheArouterAaskingA
theArouterAtoAopenAaAnewAHTTPAConnectionAtoAtheAserverSA

3.2.3.DICOM Service Discovery and Registration

DICOMA CommunicationsA areA veryA similarA withA theA SOAA FServiceA OrientedA Architecture(A
patternAwhereAthereAareAserviceAprovidersAwhichAsupplyApreviouslyAcontractedAservicesAtoAclientsS
AsAstatedApreviouslyAinAthisAdocumentAFsection 4S3S4(HADICOMAcompliantAapplicationsAmayAprovideA
certainA predefinedA servicesA toAothersHA suchA asHA storageA orA printingSA InA theADICOMAstandardHA theA
serviceA providersA areA calledA SCPA FServiceA ClassA Provider(SA InA ourA currentA architectureHA DICOMA
RoutersA haveA theA responsibilityA ofA makingA theA virtualA DICOMA ServicesA fromA appendedA DICOMA
ApplicationsHAiSeSAapplicationsAregisteredAinAtheArouterHAavailableAtoAtheAentireAdistributeAPACSSAThisA

Figure 3.1: Case Study general Architecture

LocalTPacsTArchiveDICOMTRouter

DICOMTApplication

DICOMTBridgeTRouter

DICOMTRouter

PrivateTInstitution

PhysicianTatTHome

LocalTPacsT
Archive

DICOMTRouter

AffiliatedT
Institution

OtherTDICOMTApplications

TCP/DICOMT
Communications
TCP/HTTP
Communications

[[

isyachievedyadvertisingyroutesyofythoseyservicesHyinytheydistributedyenvironmentHywhichyareysimilary
toynetworkyrouters protocolsL

Iny orderHy toy becomey availableHy DICOMy Servicesy havey toy bey previouslyy registeredy iny they
DICOMy Routersy configurationsHy iLeLy similary toy ay routingy entryy iny networky protocolsLy Routingy
entriesyareycomposedybyytheyaddressyofytheyDICOMyapplicationyUAETitle, IP Address, Portqyandythey
providedy servicey classLy ThusHy DICOMy Routersy arey capabley ofy advertisingy theiry servicesy toy they
distributedyPACSL

Routesy arey advertisedy viay DICOMy Bridgey Router toy everyy DICOMy Routery iny they systemLy
Usingy thisy informationHy ay routingy tabley isy constructedy iny eachy routerLy Thisy enablesy they correcty
associationybetweenySCUyrequestsyandyitsySCPL

InyadditionytoyuploadingyitsyroutingytableytoytheyDICOMyBridgeyRouterHyeveryyDICOMyRoutery
alsoy downloadsy they distributedy routingy tabley ofy they systemLy Byy doingy soHy DICOMy Routersy arey
capableyofynotyonlyyadvertisingyprovidedyservicesybutyalsoyofyeffectivelyyroutingySCUyUServiceyClassy
UserqyDIMSEycommandsytoyremoteySCPLyTheseytechniquesyeffectivelyyallowyremoteyservicesyusagey
inytheydistributedysystemL

3.2.4.DICOM Routers

DICOMy Routersy communicatey viay they well/knowny HTTPxSSLy ProtocolLy They choicey ofy this
protocolyisyeasilyyexplainedybyyitsybroadyusageythatyhasyconductedynetworkysecurityymanagersytoy
allowy thisy trafficy toy crossy firewallsLy Althoughy HTTPy protocoly hasy they abilityy toy passy throughy they
majorityy ofy firewally configurationsHy HTTPy protocoly isy inherentlyy clienty servery orientedy whichy
makesyitydifficultytoyachieveypeer/to/peerycommunicationsLyMoreoverH theymajorityyofyinstitutionsy
connectedy toy Internety ofteny usey NATy Unetworky addressy translationqHy disablingy nodesy Userversqy
insidey they privatey networksy toy bey reachedy byy outsidey clientsLy Asy they resultH achievingy totaly
connectivityy betweeny routersy Uiny generalqy requiresy they usagey ofy othery connectiony techniquesy
namely theyuseyofyayrelay bridgeL

Asy iny [9]H DICOMy Routersy havey they purposey ofy representingy ally they DICOMy applicationsy
insideyofyayDICOMyislandLyInyorderytoyperformythisyfeatureHyroutersyofferytheysameyservicesyasythey
DICOMy applicationsy supplyLy CurrentlyHy they DICOMy Cloudy Routery onlyy supportsy DICOMy
QueryxRetrievey andy Storagey servicesL Figurey 9L[showsy any exampley ofy they mainy functionsy ofy
DICOMyRouteryinyofferingyCloudyBasedyDICOMyServicesyUDICOMyRetrieveyServiceqyacrossydifferenty
institutionsLy Althoughy router A doesy noty havey anyy directlyy appendedy QueryxRetrievey serviceHy ity
actsylikeyayproxyyforytheymedicalyinstitutionyarchiveylocatedyinytheyotheryDICOMyIslandL

Figure 3.2: Simplified Model of the Distributed PACS Environment.

Internet

1:lC-MOVE-RQ

4:lC-MOVE-RSP

1lStoragel
Requestl

perlImage

3:lC-MOVE-RSP

2:lC-MOVE-RQ

DICOMl
Application

PACSlArchive

Physycianslexternalloffice MedicallinstitutionNolMenfslland

ActualldatalTransference

1lStoragel
Requestl

perlImage

RouterlA RouterlB

23

Data Transference: Uploading

Data transference is a direct consequence of DICOM application calling a C-Store
Command. In order to transfer DICOM Object over the cloud, firstly they need to be transferred
from a repository application to the Router using the DICOM Retrieve service. Because this
process occurs in a LAN environment, the transference is realized at a relatively fast pace.

Usually a medical image study has multiple images. DICOM Standard transfers them
sequentially using multiple C-Store commands. Each C-Store Command, as it was previously
described, has a C-Store-Request and a C-Store-Response which is sent for acknowledgement. No
multiple C-Store commands are established in parallel and the images are transferred in
sequential order with no overlapping.

Although in LAN environment this issue does not constitute a great problem for network
usage. In WAN environment, bandwidth constraints and latency in communications makes the
sequential transference of objects an inefficient approach. As in [30] the DICOM Routers make
use of parallel transferences to boost the network usage and improves the transference
performance in general. However, this process could still be to be improved, as it will be explored
further in this thesis.

Figure 3.3 shows the workflow associated to a C-Store Command received by a DICOM
Router. It is clear that upon receiving the file, the DICOM Router immediately compresses the file
and opens a new connection channel to the destination router. The transmission starts
immediately after the channel establishment. Since data transmission over LAN is much faster
than in WAN (and specially with the overhead of establishing the connection) the rate of arrival
of files is much higher than the rate of dispatched files which leads to a bottle neck effect on the
Router, which in its turn leads to file gathering in the router. In order to keep the Router scalable
the maximum number of opened connection channels was limited to 10. Channel limitations
proved to be as dangerous as necessary, as it lead to some starvation problems, i.e. for two users
using the service at the same time.

Data Transference: Downloading

In order to accurately perform the DICOM Retrieve Service, it is mandatory that the DICOM
Routers can exchange information correctly, namely DICOM Objects. As it is presented previously
in this document, DICOM Standard uses a single major command to exchange DICOM Object
between applications, the C-Storage command.

In DICOM environment, it is clear how transferences are performed. However, in an inter-
institution level (communication between DICOM islands) DICOM must not be used for the sake

Figure 3.3: DICOM Router incoming C-Store workflow

Receive File from
DICOM Application

Compress File
Create new

Connection to
destination Router

Transmite file
Wait for

acknowledgment
Close Connection

24

of performance. The transference method in this architecture implied the creation of parallel
communication channels between both DICOM Routers. The uploading Router is responsible to
open these channels. An acknowledgement message needs to be sent by the downloading
routers signaling the correct reception of each file. After the reception of this message, both
routers may close the channel as it becomes futile.

Since data comes compressed from the up loader Router, decompression needs to be
performed prior to sending the DICOM Object to the DICOM destination application. The DICOM
Storage Service is used to send those objects. This workflow is shown in Figure 3.4.

DICOM Associations must be established between routers. They are created in the DICOM
Standard whenever a DICOM Service/Commands need to be exchange between DICOM
applications. In DICOM Router architecture, DICOM applications AETitles need to be unique not
only in the DICOM island scope but also in the global distributed network. Moreover,
associations are also identified by unique identifiers. These way DICOM Routers can match
incoming DICOM Objects to its original DICOM Association and therefore its destination.

3.2.5. Final Considerations

The architecture described in this section is actually deployed, and capable of providing
significant integration features as described above. Nonetheless a real word distributed PACS
needs to provide not only features but also good quality of service.

As explained in the chapter 1, quality of service in a distributed PACS environment means:
good performance and good reliability. The performance of the previous architecture was
constrained by some architectural decisions namely the creation of a new channel for each image
to be transferred. This adds a channel establishment delay for each image transference time,
which scales up linearly with the number of images. As some study modalities may enclose
hundreds of images [41] having an overhead in image transference is not an acceptable option.

Apart from those performance constraints, this architecture has two more problems.
Firstly, the Bridge Cloud Router is a single point of failure. This means that, if the DICOM Bridge
Router for some reason stops to operate, the whole system is compromised, as DICOM Routers
cannot operate by themselves. Besides being a single point of failure, the DICOM Bridge Router is
also a bottleneck as every communication channel between two DICOM Routers uses the DICOM
Bridge Router. Its network bandwidth is shared by all the distributed system information
workflows, both image data and control. This imposes a performance constraint and an
infrastructural requirement, as the network connection of the Bridge Router needs to be able to
support all the workflows.

Figure 3.4: DICOM Router incoming file workflow

Open the requested
Communication

Channel
Receive File Data

Send
Acknowledgement

Decompress File

Use C-Store to
transmite Object to

the DICOM
Application

25

Lastly a major reliability issue occurs when the overall system fails to provide connectivity
to its appended applications either if a DICOM Router or the DICOM Bridge Router fails. For
instance, imagine that an application is trying to store a given image in an offshore archive and a
failure of this type occurs. If there is no connectivity, the distributed PACS cannot provide the
desired storage service nor a temporary storage service for the image. Thus if the application
cannot provide this temporary storage herself this image would be lost.

In the next chapter it will be presented an extended architecture to mitigate these
performance and reliability issues, as it is the main scope of this thesis.

26

27

4. Enhanced Performance and Reliability

This chapter provides an overview of this thesis proposed architecture. It describes the
used techniques to achieve better performance and availability in the previously existing
distributed PACS system (introduced in 3.2).

4.1. Overview

What does performance considerations mean in a distributed PACS? As it has been stated
throughout this document, performance considerations mean reducing the footprint introduced
by our system in the pre-existing medical workflow to the reasonable bare minimum. In this
context, the term footprint refers to the modifications on previously existing workflow, imposed
by an information system. For example, the raising of digital medical images and viewer
applications changed the existing paradigm, i.e. where physicians analyzed image films, to one
where physicians analyze images on computer screen.

In performance terms, the main footprint introduced by a distributed PACS architecture
has its main component in the image retrieval. The retrieval of medical image studies using a
PACS is usually more efficient compared to analogical competitors. Nevertheless, it does not
mean that delays introduced to the medical practice are completely inexistent. Especially, in a
distributed environment where communication delays are introduced not only by the potentially
gigantic data flows (4.2.1), but also by the distributed communication infrastructure itself.
Resuming, the performance footprint of a distributed PACS can be measured by the studies
loading time in the different use case scenarios supported by the system. This automatically gives
extreme importance to data transference and to architectural options that could improve data
exchange processes.

Availability in a distributed environment is the capacity of the system to make services
accessible. In a distributed PACS, such capacity is related not only to the system’s performance
footprint but also to the provided quality of service (QoS). Also, it reflects the system reliability,
which can be looked as the ability of the system to make regular medical processes keep
functioning, disregarding external conditions, especially IT related issues. In this proposed
architecture, it is mainly offered remote DICOM Services (Query/Retrieve, Storage) which means
that the distributed PACS environment should be always accessible, otherwise the medical
practice may be severely compromised. The availability of imaging studies is a working subject of
fault tolerance and replication areas of the information technology. In this chapter, it will be
proposed a method for PACS Archives replication, as a similar approach was taken in other non-
related distributed systems.

The proposed architecture derives from the previous distributed PACS architecture
introduced in section 3.2. In order to explain our proposal, Figure 4.1 will be used as an
illustrative example. The proposed architecture places the DICOM Bridge Router in the same
network as the PACS archive, i.e. inside the private institution network boundaries, in order to
improve the overall system performance. Thus, the communications between the Bridge and the
DICOM Router associated to the PACS Archive are performed in a LAN environment, having
typically a better performance, when compared to the deployment of the bridge in an external

28

environment.h Inh ah LANh environmentS ith willh beh possibleh toh benefith fromhminorh roundh triph timesh
ORTTzhashinternethconnectionsharehassociatedhwithhhigherhlatency.

Inh orderh toh improveh theh overallh studyh retrievalh performanceS theh Controlledh Channelsh
methodhishproposedhinhsection 4.2.hThehControlledhChannelsharehhighhlevelhcontrolhmechanismhforh
routerBtoBrouterh transferences.h Thish controlh mechanismh reflectsh manyh novelh performanceh
considerationshabouththehprevioush implementationhwhichhmakehthehenhancementhpossible.hThish
thesishalsohproposeshtohincludehahCachehModulehtohthehDICOMhRouter (section 4.3).hThishmoduleh
providesh cachingh capabilitiesh forh DICOMh imagesSh eitherh completeh orh splith inh chunks.h Ith alsoh
providesh directh supporth for imageh retrieval ash otherh workflowsh mayh use itsh synchronizationh
capabilities.h

Thehcachehmodulehwillhprovideh localhandhdistributedhpersistenthcaching.hLocalhcachinghwillh
beh implementedh onh regularh routersS inh orderh toh avoidh repeatedh transferencesh ofh images.h
WheneverhahDICOMhRouterhishpresentedhwithhthehneedhtohdownloadhODICOMhCBMovezhanhimageSh
theh localh cacheh moduleh willh beh askedh ifh theh imageh ish available.h Ifh datah ish inh theh localh cacheSh itsh
transferencehwillhbehavoidedhandh thehDICOMhRouterhautomaticallyh respondsh toh thehapplicationSh
achievinghahveryhhighhtransferhratehgain. Thehdistributedhcachinghmechanismhishourharchitecturalh
solutionh toh provide bothh higherh availabilityh andh betterh transferenceh performance.h Theyh shouldh
holdhahOstatisticallyzhrepresentativehsethofh imageshfromhahPACShArchiveShcreatinghmultipleh localesh
wherehstudieshwouldhreside.hMultiplehdatahsourceshwillheasehdatahflowhoverheadhonhbothhDICOMh
Routersh andh DICOMh Bridgeh Routersh ash datah retrievalh operationsh mayh beh balancedh betweenh
multiplehcomponentsh(section 4.3.3).

Inh previoush architectureSh DICOMh Bridgeh Routerh wash identifiedh ash ah singleh pointh ofh failureh
thath mighth compromiseh theh wholeh system.h Inh orderh toh eliminateh thish effectS theh proposedh
architecturehopenshthehpossibilityhtohinstantiatehmultiplehbridgeshinhthehdistributedhenvironment.h
DICOMhRoutershmayhconnecthtohashmanyhbridgeshashdesiredS favoringhalsoh loadhbalancinghofhtheh
distributedh system.h Severalh changesh haveh beenh madeh toh theh DICOMh Bridgeh Routerh
communicationshlayerhto incorporatehthehmultiplehbridgehparadigmsShdescribedhfurtherhinhsection

4.4.

Figure 4.1: Purposed architecture

LocalwPacswArchive

DICOMwApplication

PrivatewInstitution

PhysicianwatwHome

LocalwPacsw
Archive

AffiliatedwInstitution

OtherwDICOMwApplications

TCP/DICOMw
Communications
TCP/HTTP
Communications

DICOMwRouterww/w
BuiltwinwCache
Un-safelywDeployed

DICOMwRouterww/w
BuiltwinwCache
SafelywDeployedDICOMwBridgewRouter

SafelywDeployed

DICOMwBridgewRouter
Un-safelywDeployed

PublicwCloud
PublicwCloud

29

Finally in section 4.5, we propose that some DICOM Bridge Routers may act as Security
Managers protecting sensitive data in public locales. Moreover, distributed cache routers
instances are intended to be deployed inside private institutions boundaries but also on public
cloud infrastructures. So, it is crucial to protect sensitive data, such as, patient identification.
Therefore the concept of safely deployed components was introduced. The unsafely deployed
components mark the instances that should protect these sensitive data. Both DICOM Routers
and DICOM Bridge Routers may be deployed unsafely on public providers.

4.2. Improvements in image transference procedures

Chapter 3.2.4 provided a small introduction on how image transference was handled by
our proposed distributed system, more specifically on how images are transferred from a DICOM
Router to another.

A few problems were identified regarding not only the performance of the communication
channels used in image transference, but also with their management. The creation of a new
communication channel for each image proved to be an inefficient approach. Each channel
creation has a fixed establishment delay associated. As the result, the transference’s overall
channel establishment delay scaled linearly with the number of images to be transferred.
Moreover, the synchronization of multiple active channels, in both downloader and uploader
routers, required a bothersome algorithm that imposed performance constraints on its own, as
described in 3.2.4.

In order to solve previous issues, we propose a technique that re-uses communication
channels. Moreover, the actual performance of the image transference channels also needed to
be improved. Taking into consideration the distinct data profiles of medical imaging modalities
transferred (4.2.1), we present a proposal to boost the overall performance of study retrieval.
Both these efforts culminate in the proposal and implementation of the Controlled Channels
method, aiming to decrease the study retrieval time by combining channel re-usage with a file
splitting technique, described in sequel.

4.2.1. Data profile of medical imaging studies

In order to improve the performance of any data transference, it is essential to understand
beforehand which are the profiles associated with the data to be transferred. For instance, the
average volume of data, whether or not it is divided in smaller pieces (files or chunks), the
average size of each piece, among others. Different data profiles may benefit differently from
different flow control algorithms. The performance requirements for each profile may also vary.
For example, for small files, latency in communications is more important than raw transference
throughput.

Distinct medical imaging modalities produce studies with different data profiles [40, 41].
They vary from small studies, with one or two images, to studies that enclosed several hundreds.
Moreover, images itself vary from a few hundred KBs (Kilobyte) to a GB (Gigabyte) per object file.
This diversity is well represented in our study dataset (see Table 5.1 on chapter 5). In our use case
scenario, different data profiles are even more relevant than in usual point-to-point
transferences. Due to the fact that transferring images from router-to-router often requires its
previous transference from the PACS Archive to its appended router. This transference is
completely serialized (non-parallel), as a result, images will arrive to the router at different rates,
therefore severely shaping the posterior router-to-router transference.

30

Achieving the best performance in every circumstance is tricky. As such, our flow control
algorithm needed to be adaptable. The next sections will describe our proposal to reduce the
effect of such a diversity of data profiles, by using an adaptable flow control mechanism along
with a data normalization technique.

4.2.2. Controlled Channels

Controlled Channels method is the primary contribution of this thesis for enhancing
medical imaging transference performance in distributed PACS using the DICOM Router platform.
The main concern in Controlled Channels is to provide a very high-level communication channel
for router-to-router image transference. There are a few specifications that make Controlled
Channels a unique proposal.

Firstly, they implement an application layer flow-control algorithm that is intended to
accelerate performance regardless of the transport protocol beneath it. Some transport
protocols, such as, TCP/IP, may also have flow-control algorithms incorporated. However, in our
case, router-to-router communications cannot rely on them, as they are connection oriented and
router-to-router communications are relayed by the DICOM Bridge Router (i.e. they are not
direct connections). For example, TCP/IP’s flow-control algorithm can only guarantee the delivery
of messages from DICOM Routers to the DICOM Bridge Router and not from router to router.
This was also performed by previously implemented channels through the use of acknowledge
messages. However, its impact on the channels performance was not taken into account.

Secondly, Controlled Channels are not bound exclusively to DICOM data. In fact, they are
completely generic regarding the type of transferred data and its usage. This makes them actually
usable in other systems. In our particular use case, it allows the re-usage of a channel for multiple
images transfer. Moreover, the use of the Controlled Channels method allows the data
transference channels to be oriented to its origin-destination pair of routers, as opposed of being
oriented to the image as the previously approach.

Lastly, the Controlled Channels are adaptable and flexible. They are bound to three
transference parameters making possible to tune the channels behavior according to the data
profiles of studies being transferred and the channel congestion rate. This enables improvements
of performance regardless of these factors.

In order to develop this method, we carefully analyzed which metrics associated with the
data transference channels would have a higher impact on the overall study retrieval
performance. We identified the transference delay, the communication channel throughput and
the channel establishment delay (previously referred in this document). The transference delay is
the total time needed to download a study from one router to another. It very well reflects how
long it takes to issue all the storage requests from a C-Move call, in our distributed environment.
The communication channel throughput is the relevant data transference rate of the
communication channel, discarding the channel’s overhead, such as, acknowledges and other
notification messages. This reflects how much of the channel is wasted with non-relevant data.

As previously referred, transference of medical images has to deal with huge amounts of
data but also with different data profiles. This produces different combinations of study size,
number of images and average image size, which severely shape the conditions imposed by the
previously described metrics. For instance, studies with many small images will generate several
control traffic and benefit of a small transference delay. On the other hand, in big files the
connection establishment delays is meaningless and thus maximum throughput is desirable even
if it means higher establishment delays.

31

As a result, Controlled Channels implements a data normalization procedure. It is intended
to provide an abstraction to the studies data profile. Thus, the communication channel can
optimize the transference performance based only on its own parameters (described next).

Study data profile normalization

In order to normalize the data profiles, two approaches were taken. The first approach is to
split image data into chunks. The process of splitting is easy both conceptually and
computationally. It consists of dividing the binary data of file into portions called chunks. In order
to ease the chunk handling with a minimum data overhead, along with each chunk, it is also
produced a chunk descriptor containing information to identify the chunk unequivocally. It
includes the chunk size, chunk number (indication the position of the chunk in the original file)
and the total number of chunks produced from the file. Holding both the chunk data and the
chunk descriptor, any application (local or remote) can recombine the data and reproduce the
original file. Figure 4.2 shows an example of this technique.

Chunk splitting is implemented in the DICOM Router prior to data transference. In addition
to chunk splitting, the Controlled Channels implement the concept of Bulk transference where a
predefined number of files (bulk size) are transferred sequentially, without acknowledging each
file, but rather the whole group. In order to accomplish this, Controlled Channels have an inner
queue where files wait for its turn to be transferred. When the inner queue reaches the required
number of files, a new bulk containing those files is dispatched. However, there is a maximum
waiting time in which an incomplete bulk will be sent in order to prevent long waiting times to
files that are in the queue of an available channel.

In Figure 4.3, it is represented a Controlled Channel associated with the length of time
needed to establish the communication channel, i.e. the channel establishment delay. It is also
represented two bulks, one with three chunks (representing a full bulk) and an incomplete bulk
with just one chunk. Along with the Controlled Channels representation, there is also a
representation of the previous transference paradigm in order to give contrast to differences
between both.

Using Controlled Channel with File Splitting technique, it is possible to normalize the data

Figure 4.2: Image spliting example

Image Data
[0 – 140] Bytes

Chunk 0
[0 – 49]

Chunk 1
[50 – 99]

Chunk 2
[100 - 140]

Chunk Number: 0
Chunk Size: 50
Total Chunk Number: 3

Chunk Number: 2
Chunk Size: 41
Total Chunk Number: 3

32

profile, as files are primarily split with a maximum size, i.e. the chunk size. Then, from study to
study, the average chunk size would not differ, only the number of chunks is different. This will
make Controlled Channel queues to fill at different rates. On one hand, studies with large average
file size will produce large number of chunks at slow rates (as images take more time to
sequentially arrive from the DICOM application). On the other hand, studies with low average
image size and high file count will produce a constant stream of few chunks.

The solution, to cope effectively with both scenarios, resides on the configuration of the
Controlled Channels parameters, i.e. the Bulk Size and Maximum Pool Time. Increasing Bulk Size
will reduce acknowledge overhead and, theoretically, increases the throughput of the channel.
This should be performed when the channel has a high chunk count in the queue. However, there
is a cutoff point where the throughput of the channel cannot be increased further. Then, the
solution is to open another parallel channel. Decreasing Maximum Pool Time and Bulk Size will
reduce latency between bulk transferences, and thus it will provide more response to small
studies and images (see section 8.1).

Controlled Channels provide two interfaces which main goal is to audit channel
performance and reconfigure its parameters on the fly. Performance Probes takes into account
major factors of the channel operation, such as, the amount of data transferred by the channel
since its creation, a time stamp denoting how long the channel have been active and, lastly, the
channel throughput. The configuration of the Controlled Channels can be performed via a well-
defined interface aiming channel reconfiguration over time. Ideally, each channel would be
automatically configured taking into account study modalities characteristics and the channel
probe information, such as, the queue length or average waiting time.

Figure 4.3: Controlled Channels Representation

33

Implementation

The Controlled Channels were developed along with the DICOM Router Project. It used a
previously developed component denominated as Communication Manager which core
functionality is to manage of the establishment of communication channels (router-to-router). As
the result, communications are still performed using the same set of messages and channel
creation and deletion is accomplished through the same procedures.

Apart from the Communication Manager, the Controlled Channels have essentially other two
key components, as illustrated in Figure 4.4. The Stream Controller is used to provide a flow-
control algorithm on top of the transport layer in order to support reliable connections between
two points that are connected through a Bridge. There are two kinds of Stream Controllers, an
Input Stream Controller used in outgoing channels (upload) and an Output Stream Controller used in
incoming channels (download). These controllers are responsible by the enhancement of
transference performance, namely the implementation of the bulk transference capabilities
described above.

The flow-control algorithm makes use of three distinct messages. The header message is
used to transmit all the bulk chunk descriptors in a single message. Its correct reception is
signaled by an acknowledge message. It does not carry with any information at all, although it is
crucial for the maintenance of channel. The absence of these messages will cause the channel to
fault and become useless to the system. The chunk data is handled by chunk messages that are
transferred in sequence (similar to its descriptors). The bulk transference is finished with an
acknowledge message that makes the channels available to issue another bulk. This procedure is
described in Figure 4.5.

Stream Controllers provide blocking read/write operations. Thus, each stream needs to be
associated with a driver to be used in a concurrent environment. Stream drivers are essentially
threads that manage the queue of the channel and perform account operations. They also
provide an abstraction from the blocking nature of the stream to a non-blocking approach more
suited for concurrent environments. There are two kinds of drivers for incoming and outgoing
channels. BlockingBuffer is a very important component inside upload drivers. It manages the
minimum waiting time of the channel by scheduling a maximum time for the channel queue to be
flushed upon the entrance of a new chunk in an empty queue. This scheduled operation may be
canceled if the queue reaches the bulk size in the meantime.

Figure 4.4: Controlled Channels Architecture

34

Integration	in	the	DICOM	Router

The. integration of. Controlled. Channels. in. DICOM. Router. involved. certain adjustmentsx
mainly.in.communication control.proceduresA.Firstlyx.a.manager.module.had.to.be.implementedx
in. order. to. manage. the. creationx. deletion. and. performance. of. the. channelsA. With. Controlled.
Channelsx.before the.transfer of each.filex.a.channel.needs.to.be.retrieved.from.this.moduleA.The.
possible.creation.of.new.channels.will.be.performed if.neededx. iAeA.only. if.the.channels.are.too.
busy.or.there. is.no.channel.established.to.the.destination.routerA. Comparing.with.the.previous.
approachx. this. is. somehow. analogousx. because a. new.channel. is always. created. to. transfer. an.
imageA

In.order.to.balance.the.load.of.each.channelx.a round.robin.algorithm was.implementedA.It.
works.by.changing. the. selected.channel.whenever. it.has. its. inner.queue. full Bhas.more.chunks.
than. its. Bulk. SizeSA In. case. every. previously. established. channel. has. its. inner. queue. fullx. the.
algorithm. tries. to. open. another. if. the. maximum. number. of. active. channels. had. not. been.
previously.metA This.workflow.is.represented.in.Figure.4A6A

On.the.receiving.routerx the.application.has.to.wait.for.all. the.chunks.of.the.same.file.to.
become.availablex.otherwise. the. image. file.will.not.be.valid. to.enter. in. the.DICOM.streamx. iAeA.
DICOM. streams.can.only. send. complete. imagesA. As.chunks. from. the. same. file. can. arrive. from.
multiple.channelsx.it.is.crucial.to.have.a.centralized.waiting.module.to.all.the.channelsA.Further.in.
this. documentx it. is. proposed. a. Cache. System. Architecture. thatx along. with. the. faculties. of.
caching.DICOM.Objectsx provides.the.resources.for.the.channel.synchronizationA

The. complete. integration. of. the. Controlled. Channels. in. the. DICOM. Routers. workflow. is.
represented.in.Figure.4A7A.Along.with.the.processes.described.abovex.it.is.important.to.refer.that.
images.are.compressed.before.being.splitA.This.assures.an.optimal.compression.ratioA.Of6course.
this.requires.images.to.be.decompressed.in.the.downloading.routerA

Figure 4.5: Controlled Channels flow control signalling

1:qHeaderqMessage

4:qAcknowledgeqMessage

StudyqInstanceq
UID

PACSqArchive

Aquisitionq
Device

Outgoingq
Controlledq
Channel

Incomingq
Controlledq
Channel

2:qAcknowledgeqMessage

3:q1ºqChunkqMessage

3:q2ºqChunkqMessage

3:qNºqChunkqMessage

35

4.3. Caching DICOM Objects

ThereC areC twoC main motivationsC forC developingC aC cacheC systemC toC supportC distributedC
workflowsC inCmedicalC imagingCrepositoriesWCFirstlyI theChighCavailability ofCanyCPACSC is extremely
importantCinCtheCmedicalCworkflowWCEven smallCdataCaccessCinterruptions mayCseverelyCaffectCtheC
medicalC practiceC [42]WC ForC thisC reasonIC inC aC distributedC PACSC environmentC highC availabilityC isC
crucialWC Therefore theC deploymentC ofC contentC acrossC multipleC nodesC minimizesC theC effectsC ofC
connectivityClossesWCForCinstanceICifCtheCmedicalCinstitutionClosesCtheCconnectionCtoCaCremoteCPACSC
repositoryICaClocalCcacheCmayCcontainCtheCexamsCforCtheClastCmonthsICwhichCareCoftenCrequestedC
byC theC physiciansW SecondlyI thereC isC theC possibilityC ofC usingC dataC redundancyC toC increaseC theC
performance of theC distributedC PACSWC HenceIC loadC balancingC techniquesC andC multijsourcedC
servicesCwillCbeCexploitedCinCfurtherCsectionsWC

ThisCsectionCproposes aCnovelCCacheCSystemCArchitectureCforCmedicalCimagingCrepositoriesIC
purelyC softwareC basedWC ItC aimsC toC beC aC standalone moduleC usableI embeddableC inC anyC javaC
applicationICasCaCcacheCofCanyCPACSCarchiveWCWeCwillCalsoCexplainChowCtoCtakeCadvantageCofCdataC
redundancyCprovidedCbyCcachesCinstancesCinCourCdistributedCPACSW

After analyzingC theC functionalC requirementsC ofC aC CacheC SystemC ArchitectureC forC aC PACSC
ArchiveI weCnoticedCthatCtwoCbasicCfunctionalitiesCwereCrequired: theCqueryCandCretrieveWCAsCtheC
namesC suggestIC theC queryC functionalityC allows externalC usersC toC queryC forC specificC contentC thatC
existsC amongC the cachedC objects zstudiesIC imagesIC etcqWC InC itsC turnIC theC retrieveC functionalityC

Figure 4.6: Retrieving an available channel workflow

SelectdPreviousd
Channel

Return

Isd
Channeld
Queued
Full?

SelectdCurrentd
Channel

Storedqueued
length

Hasdmored
channeld
slots?

Opendnewd
Channel

Selectdcreatedd
Channel

Selectdnextd
channel

Hasdmored
opend

channels

Selectdchanneld
withdlowerdqueued

length

No

Yes

Yes

No

No

Yes

G6

allows their retrievalI fromI theI cachedI objectsI andI alsoI fromI theI overallI systemA TheseI
functionalitiesI enableI theI cacheI systemI integrationI inI an externalI workflowA BothI interfacesI
namesIwhereIcarefullyI selectedI toI reflectI theI wellPknownI DICOMIQueryHRetrieveI ServiceI ClassI
(describedI inI chapter 1AGA6pAI InI fact, aI cacheI systemI hasI toI provideI aI similarI interfaceI toI theI
DICOMI QueryHRetrieveI Service, commonlyI availableI in PACSI archivesA ThisI meansI thatI aI basicI
cacheIsystemImayIbe viewedIasIaIPACSIArchiveIcontainingIonlyIaIsubsetIofIstudiesIandIhaving a
specific populationIstrategyAI

However, toIsupportIproductionIrequirementsImanyIotherIaspectsImustIbeIworkedAICacheI
SystemsIneedItoIprovideIextendedIfeaturesItoIsupportIintelligentIcacheIpopulationIandIeviction,
asIdescribedIinIchapter 1AWAITheIideaIof the proposedIarchitectureIisItoIprovideIaIsetIofIservicesI
thatI allowsI theI creationI ofI efficientI modulesI toI manageI theI cachedI data,I improvingI theI
performanceIofIexamsIretrievalIwhileIdoingIaIsmartImanagementIofIcacheIstorageIvolumeA

Moreover,I CacheI populationI doesI notI oftenI involveI storingI wholeI objectsI butI ratherI
representativeIportionsIofIthem,IforIinstance, store onlyIoneIimageIperIstudyAIInIfact,IinIourIcaseI
studyIstoringIwholeIstudiesIisInotItheIsmartestIoptionAIItIhasIadvantagesIrelatedIwithIavailabilityI
ofIallIstudyIbutIitImightIneedItoIstoreIseveralIhundredsIofIimagesI(asIdescribedIinIsection WA1A4pA
Moreover, withIsomeImodalities,IsuchIas,ICTIproducingI4GBIimageIfilesIstoringIwholeIimagesIisI
notI alsoI aI recommended optionAI BothI ofI theseI approachesI mightI quicklyI drainI theI cacheI
capacityAITheI fileIsplittingItechniqueIdescribedIaboveIresolvesIthisIproblem, althoughI itIcreatesI
theIneedItoIhandleIbothIimagesIand image chunksIinItheIsystemA

CacheIevictionIisIalsoIaImajorIchallengeIforIcacheIsystems, asIdescribedIinIchapterI1AWAIThisI
functionalityI isI notI availableI inI commonI PACSI archivesAI CacheI evictionI policiesI oftenI requireI
metaPdataI toI beI collectedI duringI theI cacheI lifetime, suchI as, hitPratio,I examsI accessI statistics,I
andI objectsI lifetimeAI ThisI requirementI variesI withI the implementedI policy ofI distributedI
environmentAIWeInoticedIthatIdifferentIclientsIwouldIexpectIdifferentIbehaviorsIfromItheirIcacheI
systemAITherefore, ourIarchitectureIisIintendedItoIsupportImultipleIevictionIstrategies,IincludingI
thirdPpartyA

Figure 4.7: Controlled Channels Workflow integration

Up l o a d i n g
D ICO M Ro u t e r

Receive image
from the DICOM

Applicaiton

Streamy
Managery
Module

Retrieved
Outgoingy
Controlled
Channel

Sendychunk

Compress
image Data

Splityimageyiny
chunks

For
eachy

Chunk
Incomingy
Controlled
Channel

Wait for every
chunkytoybecomey

available

Sendyimageytoy
DICOM

Applicaiton

Decompress
image Data

Mergeychunksy
intoyoriginalyfile

Do w n l o a d i n g
D ICO M Ro u t e r

Get an available
Controlled
Channel

E7

4.3.1.Cache System Architecture

TakingPintoPaccountPthePpreviouslyPdefined specificationsj wePproposePan agile andPmodularP
architecture(P ItP aimsP toP provideP anP easyP moduleP replacement andP supportingP flexibleP policyP
implementations(P Moreoverj itP isP expectedP toP beP easilyP deployableP inP anyP PACSBDICOMP
environment(P OurP cacheP systemP architectureP decouplesP theP variousP aspectsP ofP aP cacheP systemP
intoPmodules(PItPisPdividedPinPthreePlayersPofPfunctionalPmodules: storagePmanagementjPmetaBdataP
management and theP serviceP layerP modulesjP asP illustratedP inP FigureP [(8(AP descriptionP of eachP
module willPbePprovidedPinPsequel(

Storage	management

TheP storageP managementP modulesP areP responsibleP forP theP directP storageP ofP objectsP inP aP
persistentPmediumjPsuchPasjPfileBsystemPorPaPdatabase(PMoreoverjP itPprovidesPlowBlevelPmethodsP
forPqueryingPaboutPthePexistencePofPspecificPobjectsjPimagesPorPimagePchunksjPmainlyPtoPperformP
integrityP checks(P ThisP layerP enclosesP twoP modulesjP namelyP theP CacheP PersistenceP andP theP BigP
MemoryP Manager(P TheP CacheP PersistenceP moduleP isP theP lowestP levelP functionalP moduleP inP theP
system(P ItP onlyP providesP simpleP FputjP getjP removejP contains4P methodsP forP objectsP inP theP
persistenceP medium(P ActuallyjP inP spiteP of handlingP DICOMP ObjectsP directlyjP itP handlesP dataP
followingP aPKeyBValueP patternjP whereP keysP productionP isP delegatedP toP anotherPmoduleP andP theP
valuePisPbinaryPdata(PThePKeyBValuePpatternPusagePisPveryPimportantPinPorderPtoPsupportPseamlessP
storagePofPimages andPimagePchunks(

InP itsP turnjP thePBigPMemoryPManagerPmodulePprovidesPan abstractionP forPDICOMPObjectsP
FimagesP andP imageP chunks4P onP topP ofP theP simpleP CacheP PersistenceP module(P TheP CacheP KeyP
TranslatorP moduleP FServiceP Layer4P isP usedP toP translateP objectsP intoP keysP priorP toP storageP orP
retrieval(P EventsPexecutedP inP thisP modulePmayP beP recordedP inPorderP toP collectP importantP cacheP
usageP metaBdata(P ThisP isP accomplishedP byP triggeringP eventsP fromP theP CacheP PluginP InterfaceP
modulePFServicePLayer4(P

Meta-data	management

TheP metaBdataP managementP modulesP areP responsibleP forP coping with theP metaBdataP ofP
cachedP objects(P ThereP areP twoP majorP tasksP associatedP withP thisP purpose(P Firstlyj theP DICOM
Objects metaBdataPhasP toPbeP stored separatelyP fromPthePobject(P IndexingPDICOMPobjectsPmetaB
data isP increasinglyP commonP inPnowadaysParchivesjP sinceP itPenablesP fasterP responsesP toPqueriesP
andP betterP informationP extractionP capabilitiesP [[E](MoreoverjP sinceP weP mightP notP haveP wholeP

Figure 4.8: Cache System Architecture

CachexSystemxInterface

CachexKeyx
Translator

CachexPluginx
Interface

CachexDatabases

BigxMemoryxManager

CachexPersistence
Servicex
Layer Storagex

Management

Metadatax
Management

ExternalxPlugin

38

objects cached we must manage this data independently.

Secondly, this module has to ensure a persistent mapping between images, image chunks
and chunk descriptors (Figure 4.9). Image chunks have also to be linked to the DICOM Objects
meta-data. Moreover, this information is crucial to know if the image is completely stored on
cache or not.

Service Layer Modules

The service layer modules provide extended functionalities to other modules, namely
object-key translation and external plug-in support. The Cache Key Translator module provides
object-Key translation. Translation works similarly to a hash function creating a link between a
given object and its key. As described above, translation is used to keep the implementation of
Storage Management modules as simple as possible by removing the need to work with both
images and image chunks.

As described in chapter 4.3, the implementation of cache eviction policies is often
associated with the maintenance of different meta-data. Cache eviction policies are supported
via an external plugin system. Cache plugins are responsible for managing the meta-data
associated with its policies. Furthermore, most policies also need meta-data associated with the
cache usage, such as the cache hit-ratio or the least recently used object. Plugins may collect this
data using the Cache Plugin Interface module through its event listener interface. Notifications
are not only related to Storage and Retrieval operations but also with storage capacity
limitations. Plugins are also encouraged to acquire meta-data from other external sources.

As a result of using an external plug-in system, our architecture is free of the burden of
supporting meta-data management for multiple policies. Consequently more policies are
supported and the system is more flexible. External plugins are encouraged to take actions upon
the system via its public API, described below.

Cache System API

We propose a modular architecture and so, a single API (Application Interface) is offered to
its users. It acts as a wrapper bundling all the modules together. By using a single API the usage of
our cache system is much more simplified. Moreover, it is easier for developers to implement
and deploy their own version of the system as it is less likely to create inconsistencies between

Figure 4.9: Simplified meta-data management module class diagram

Study

-Study Instance UID

-NumberOfCachedImages() : int
-TotalNumberOfImages

Image

-SOPInstanceUID
-IsSplit : bool

+IsCompleted() : bool
-SampleChunkDescriptor : ChunkDescriptor

ChunkDescriptor

-ChunkSize
-TotalNumberOfChunks
-ChunkNumber

V/

theMdifferentMmodulesF The APIMalsoMprovidesManMabstractMimplementationMofMtheMsystemMincludingM
theM correctM linkageM ofM allM modulesFM AsM such2 developersM canM concentrateM onM buildingM theirM ownM
modulesMwithoutMworryMabout theirMintegrationFMMoreover2 itMencouragesMtheMusageMofMthirdxpartyM
modulesF SectionM HFV providesM theM classM diagramM ofM ourM cacheM systemM architectureM whereM itM isM
clearlyMdescribedMtheMabstractMmodulesMthatMshouldMbeMoverriddenFM

The cacheM systemM APIM providesM essentiallyM twoM setsM ofM functionalityFM LowerM levelM
functionalitiesM moreM relatedM toM theM Storage2M QueryM andM RetrievalM ofM specificM objectsM andM higherM
levelM functionalitiesM relatedM toM queryM ofM DICOMM ObjectsF TheseM functionalitiesM areM thoroughlyM
describedMinMsectionMHFKFM

4.3.2.Technical implementation specifications

ThisMsection explainsMhowMtheMpreviouslyMdescribedMmodulesMwereMimplementedFMMoreover2
itM providesM aM briefM descriptionM ofM theM technologiesM usedFM FigureM JF01 showsM theM frameworkM
perspectiveMofMourMcacheMimplementationF

TheMstorageMmanagementMmoduleMisMbackedMbyMaMKeyxValueMembeddableMdatabaseMforMJavaF
Typically2 a KeyxValueMdatabaseMprovidesMquickerM responsesM toMqueriesM comparedMwith standardM
relationalM databases2M becauseM theyM doM notM haveM toM performM extensiveM joinM operationsM [JJ]FM
Moreover2 theyM areM moreM suitableM forM ourM dataM profiles2M iFeFM binaryM blobsFM StoringM ourM data2M iFeFM
imageM andM imageM chunks2 directlyM inM theM filexsystemM wasM anotherM optionFM InM fact2 itM isM theM mostM
commonM approachM toM storeM dataM blobsFM WeM alsoM triedM thisM optionM and2M inclusively2M wasM
implementedMaMsolutionFMHowever2 it presentedMtwoMmajorM flawsM inMourMscenarioFMFirstly2M storingM
eachMimageMchunkMseparatelyMwouldM leadMtoMmajorMoverheadMinMfileMcreationFMTheMdeploymentMofM
thisM approachM provedM toM have intolerableM performanceM constraintsFM Secondly2M ifM theM optionM isM
basedMonMtheMstorageMofMeachMchunkMinMitsMfinalMpositionMwithinMaMsingleMfileMimage2MthisMinvolved theM
usageMofMrandomMaccessMread4writeMoperationsMtoMmaximizeMitsMperformanceF AlthoughMitMavoidedM
theMoverheadMofM fileMcreation2 itM raisedManotherM issueMwithMtheMstorageMcapacityMutilizationFMSince
chunkM evictionM didM not always ledM to actualM releaseM ofM storageM space2 dueM toM fileM systemsM
specificationsF TakingMtheseMissuesMintoMaccountMweMhaveMdecidedMtoMuseMtheMMapDBMframeworkMasM
itM offeredM embeddableM KeyxValueM storage2ManM integratedM cacheM systemM forM storedM objectsM andMaM
customMobjectMserialization2MasMdescribedMin KFJFKF

TheMmetaxdataMmanagementMmodulesMwereMdevelopedMusingMtwoMdistinctMtechnologiesFMForM
indexingM DICOMM objectsM metaxdata2M aM DocumentxOrientedM databaseM wasM used2M namedM Lucene
[J[]FMTheMoptionsMisMbasedMonMreportsMofMsuccessMstoryMinMotherMprojects2MsuchMasMDicoogle [JV]FMInM
orderMtoMensureMpersistentMmappingMbetweenMimagesMandMimageMchunks2 theMDBJOjectsMdatabaseM

Figure 4.10: Cache System Frameworks

CacheOSystemOInterface

MapDB

ServiceO
Layer StorageO

Management

MetadataO
Management

ExternalOPlugin
Lucene

DB4Objects

JSPF

DICOMOSDKO
)DCM4CHE)

40

was used. DB4O [46] permitted a quick migration of our previously developed data module into
the database. As opposed to the usage of a SQL database, that required its migration to a
relational paradigm. Nevertheless, in terms of performance the usage of DB4O proved to have no
relevant impact on the performance of image population (around 300ms for our study dataset).
Compared to the previously used Sqlite4java [47] database wrapper, the DB4O proved to be
faster. In our opinion, this had to do with the fact that DB4O's engine also provides some caching
functionality for objects. It somehow seems not to be present is most embeddable SQL
databases.

The plugins support was achieved easily through the usage of the JSPF framework [48]. It
provides a very fast and seamless integration of third-party plugins in Java applications.
Moreover, this framework also simplifies the development of plugins, as developers only have to
follow the defined interface.

The integration of proposed cache system architecture in the DICOM Router was easily
achieved. Although it involved some modifications since the previously images were stored
exclusively on the file-system. Using our cache system, objects (images or image chunks) are
imitatively stored in the router local cache, independently of its origin, i.e. they can come from an
external application or from another DICOM Router (via a Controlled Channel). If there is meta-
data available, chunk descriptor or DICOM meta-data, it is also cached in the system.

4.3.3. Multi-level cache to support multi-source Query/Retrieve Services

The proposed cache system allows the deployment of a hierarchical multi-level caching
system in the DICOM Router environment. To support a distributed PACS environment, we
propose the deployment of two major levels, local and distributed.

The local cache is deployed along with each DICOM Router. Its configuration in terms of
capacity is subjected to the routers user computational system. Therefore its primary function is
not to cache PACS archives contents, but rather support the routers workflow. Whenever a C-
FIND or C-Move request is issued by an appended application, the Router forwards it to its local
cache primarily. The images cached inside the system are immediately forwarded to the client’s
application consequently avoiding loading them from a remote location.

The local caches population is intended to be done along with the routers life-time, taking
advantage of information collected from previous C-Store-Requests. This favors the application of
pre-fetching techniques either by external cache plugins or external entities, such as, other
Routers or Caches in the distributed system. As a result, contents can be cached through the
normal Storage Service.

Distributed caches are intended to favor the distributed system as a whole, providing
extended availability for archives and content replication. Distributed Caches are not intended to
be populated along the life-time of the DICOM Routers but rather with pre-fetching techniques
appointed by system administrators. The Distributed caches present a great asset to the
distributed PACS, not only by increasing overall study availability but also by enabling the
deployment of replicated archives on public cloud locations. This extends the features of the
distributed system increasing its appealing to medical institutions. An example of usage of the
distributed caching capabilities would be to deploy a cache on a public cloud provider containing
the studies conducted in the previous week or month. This would enable a better performance
and availability for study retrieval, external to the institutions archive local network.

The implementation of distributed caches is similar to the local caches, as it involves the
deployment of a DICOM Router that advertises a specified PACS archive. The router does not

41

have to be connected to the archive, as it was initially intended. Nevertheless, it is able to handle
all requests that will be answered by its cache system. Routing requests to these DICOM Routers
is exactly the same as for normal routers (with appended archives). As such, these routers need
to advertise the desired archives AETitles even though they are not appended to them. These
routes are configured normally through the routers configuration interface. Although it is not
strictly required, these routes should be marked as Cache Routes for better handling of Query
Requests.

The existence of multiple DICOM Routers advertising the same PACS archive required a few
changes on how the DICOM Query and Retrieve Services are issued by the distributed system.
Previously, these services were supported in a very unicast manner, with communication
essentially between a pair of DICOM Routers as shown in [17]. Now, the distributed PACS can
include several temporary repositories (caches) and, potentially, many replicas of the same
information. The main PACS archive has always all studies. As a result of having seemingly
multiple instances of the same archive across, the communications paradigm changed from
unicast to multicast. As the communications are intermediated by the DICOM Bridge Router, this
change of paradigm will be abstracted from the router's point of view and the modifications have
been performed in the DICOM Bridge Router, explained bellow.

Query Service

DICOM Query Service with multiple instances of to the same archive is supported relying
on a hierarchical approach. The main idea is to forward the C-Find-Request iteratively to each
instance until a positive match is returned. Therefore, the routes should be organized in a priority
queue. The first route would lead to the actual PACS archive router, if available. These workflows
are illustrated in Figure 4.11.

C-Find-Request arrives to the SCU application router and, if local cache is available, it is
forwarded to this entity. In parallel, the request is also forwarded to the distributed system. As it
eventually arrives to the DICOM Bridge Router, a small C-Find session is created. The bridge then
starts the forwarding procedure. Iteratively, it forwards the request to each route in the queue
described above. The bridge analyses each response from the inquired DICOM Router. In case it
could not be fulfilled, the bridge iterates and forwards the request to the next Router. When a
fulfilled response is returned, the C-Find session terminates. The response is then re-routed to
the original router. After receiving the response, the router forwards it to the requester DICOM
application.

All this extra-work is preferable to responding directly from the DICOM Routers cache.
Because DICOM studies can have new series inserted after the study creation. By doing this, we
are giving the chance to DICOM Routers to check if their cache meta-data is updated, enabling
more accurate responses if the actual distributed system becomes unavailable.

42

Retrieve	Service

TheDsupport forDtheDCqMoveDCommandDinDtheDdistributedDenvironmentDcouldDbeDdone inDaD
similar wayDasDtheDCqFindDCommandNDHoweverU theDdeploymentDofDcachesDinDtheDDICOMDRoutersD
permitsU notDonlyDto increase the overallDavailabilityDofDPACSDArchivesDbutDalsoDtheDperformanceDofD
studyDretrievalUDexploringDtheDpossibilityDofDdownloading DICOMDObjects fromDmultipleDsourcesN

InDorderDtoDtakeDadvantageDofDthisDmultipleDsourcesU itDis proposed thatDtheDDICOMDRetrievalD
ServiceDcouldDbeDissued byDmoreDthanDoneDproviderDinDparallelUDincludingDtheDDICOMDRoutersDlocalD
cacheND TheD mainD ideaD isD toD splitD theD objectsD toD beD retrievedD byD multipleD providersD so that eachD
providerDwouldDonlyDhaveDtoDuploadDaDsubsetDofDtheDstudyDandDnotDtheDwholeDstudyND InDorderDtoD
achieveDthisU weDhadDtoDperformDaDhugeDrefactoringD inDtheDpreviousD implementationsDof CqMoveD
commandsU asDshownDin FigureD4N12N

FirstlyUD the SCUD applicationD RouterD receivesD theD CqMoveqRequestND NextU theD requestD isD
forwardedUD inDparallelU toDtheDrouterxsD localDcache (1.1) andDtoDtheDdistributedDenvironment (1.3)N

Figure 4.11: Multi-Source Query Service

C-FINDQRqQReception

ForwardQC-
FindQtoQBridge

ReceiveQnewQ
C-FindQRq

GenerateQRoutesQtoQ
destinationQAETitle

ForwardQC-FindQtoQ
NextQRoute

ReceiveQnewQ
C-FindQRq

QueryQPACSQ
Archive

QueryQlocalQ
Cache

RespondQtoQ
Bridge

Error
?

PositiveQ
MatchQ?

RespondQtoQ
Router

QueryQlocalQ
Cache

UpdateQCache

RespondQtoQDICOMQ
Application

MergeQ
Responses

Yes

No

Yes

No

SCUQDICOMQRouter DICOMQBridgeQ
Router

SCPQDICOMQRouter

43

The objects presented in the router's local cache (1.2) do not need to be retrieved from
distributed environment. Thus, a “prune work-list” containing those objects is transmitted along
with the request message to the DICOM Bridge Router. These objects are immediately forwarded
to the application.

In order to manage the multi-source retrieve process, the bridge router creates a small
retrieve session upon the reception of the C-Move-Request along with the “prune work-list”. This
session will enclose the work-flow described further. After creating the session, the request
message, along with the “prune work-list” is broadcasted to every DICOM Router advertising the
given SCP (archive) (2). As such, in order to be illegible to issue C-Move requests, DICOM Routers
have to advertise the PACS Archive AETitle, as if they have the archive appended.

Then locally, each router follows the same procedure in order to answer the request.
Firstly, it forwards the request to the archive. If the archive proves to be unreachable, the request
is forwarded to the routers local cache. This allows distributed cache Routers (which are not
appended to the archive) to respond to C-Move-Requests. In order to respond to the bridge
router, each DICOM Router has to merge the “prune work-list” with its own response. The idea is
to produce a list of DICOM Objects that are not presented in the SCU router local cache. The
merged response is then sent to the DICOM Bridge Router (3).

Meanwhile, in the bridge router, the retrieve session is waiting to receive the responses
from all routers. When that happens, it will perform the scheduling of the upload process. For
each DICOM Router, a list containing the objects (images or image chunks) that the DICOM
Router has to upload to the C-Move SCU router is created, also known as “upload work-list”. The
“upload work-list” is sent back to every router in the session (4.1 – Router B and C). Along with the
“upload work-list”, a list of the Image SOP Instance UIDs involved in the transference is also
produced. This list is sent back to the SCU application router (4.2). It serves as a close
acknowledgement message, as well as enabling the router to know beforehand which images will
be involved in the transference.

Upon receiving the “upload work-list”, each router starts uploading the objects to the SCU
Router, as described in section 4.2. In case the objects are not presented in the routers local
cache, a C-Move-Request is issued to the PACS Archive in order to make them available in the
Routers local cache.

The algorithm for producing the “upload work-lists” uses a greedy approach, i.e., it
calculates every list for every router at once, based on the current state of the system. It tries to
balance the load of the distributed system by counting how many objects each router has to
upload. In larger studies, the complexity has to be taken into account as it scales linearly with the
number of objects.

For this reason, the most used approach for scheduling is described in [42]. It uses
centralized “upload work-lists” instead of a distributed, which are our case. Uploading nodes poll
a new item from the list each time they complete their last task. As such, the scheduling is
performed along the transference time minimizing the computational requirements at the
expense of some communications overhead. However, in our scenario this communication
overhead would lead to worse performance, as communications latency between DICOM Router
and the DICOM Bridge Router tend to be significantly high (in an internet scenario).

44

4.4. Bridge Replication

The)replication)of)DICOM Bridge)Router)is)fundamental to)reduce)its)single)point)of)failure)
effect) vSPoF[3) In) fact]) bridge) replication) represents) the) creation) of) multiple) points) of) failure3)
Multiple) points) do) not) mean) that) problems) will) cease) to) exist]) but) it) will) be) reduced) the)
probability) that) those) failures) compromise)the)entire) system3)Generally]) public)cloud)providers)
have) extremely) high) availability ratios]) bigger) than) private) datacenters) [5]) 49]3) Therefore]) the)
deployment) of) components) on) public) cloud) providers) will) benefit) from) almost) total)
infrastructural)availability3)The)combination)of)both)replication)and)cloud)deployment)results) in)
an)almost)flawless)system3)

In) this) distributed) PACS) architecture]) the) DICOM) Bridge) Router) supports all) distributed)
communications vas)described)in)33235[3)It)not)only)represents)a)single)point)of failure] but)also)a)
possible) performance) bottleneck3) Consequently]) the) DICOM) Bridge) Router) is) a) good) candidate)
for)replication)along)with)the)implementation)of)load)balancing)techniques3)This)section)proposes)
the)integration)of)these)methods)in)our)distributed)PACS)environment3

Figure 4.12: Multi-Source Retrieve Service workflow

PkP:MQueryMCache

SCUMRouter LocalMCache ROUTERMBBridgeMRouter

Pk0:MNewMC"MoveMRequest NewMSession

ROUTERMC

f:MC"MoveMRequests

0:MAvailableMObjects

4kP:MUploadMLists

4kf:MCloseMAssociation

Query:MStudyM
InstanceMUID

Pkf:MCachedMObjects

qprune"work"listq

startMsendingMcompletedMimages

RequestM
IMqprune"work"listq

RequestM
IMqprune"work"listq

MergedM
Responses

Scheduling

qUpload"work"listsq

QueryMPACSM
orMCacheMifM
unreachable

StartMuploadingM
process

+:MC"MoveM
RequestM
fromM
Application

45

4.4.1. Proposed Approach

As described previously, DICOM Bridge Router is a single point of failure, but also a
bottleneck on PACS distributed system. Although the Bridge Router replication was pointed as a
solution, it raises some issues regarding their deployment, described in sequel.

Each DICOM Bridge Router requires a good network bandwidth, both upstream and
downstream, in order to relay communications efficiently. This requirement is usually not
compatible with institutions private networks, as they support a great number of workflows with
non-specialized network infrastructures. However, this solution is preferable taking into account
the security concerns, as these components are deployed in trusted environments. These security
considerations will be presented and discussed in chapter 4.5, along with the concept of safely
deployed components.

The proposed architecture is based on multiple DICOM Bridge Routers that may be
deployed in multiple locations, private or public. According to its deployment location, system
administrators may configure each bridge router to be a safely deployed entity or not. To support
this feature, a configuration interface for the DICOM Bridge Router was developed. This interface
uses common XML configurations files. As multiple DICOM Bridge Routers are deployed in the
system, administrators might want to identify each bridge router. This is supported via the
definition of bridge identifiers (Bridge ID), also configured in the previous interface.

The replication of bridges can be used to increase the performance of the distributed
system. It was introduced a concept of load factor to take advantage of Bridge replication
mechanism. It is a metric associated to every DICOM Bridge that represents how many services a
given bridge is issuing at the moment. So, it will be easy to know which bridge is the best to issue
the service, when the router requires it. This metric is based on the number of active
communication channels (control and data) in the bridge. In order to better represent the bridges
load, each channel may, as well, be associated with a weight factor. For example, data channels
(such as controlled channels) may have twice the weight factor of control channels, as they
require more resources, due to the data transfer requirements. Moreover, a base load factor
might be defined to statically tune each bridge priority.

Furthermore, DICOM Bridge Routers can be linked together. The inter-bridge
communication channels were created to support this feature. These channels use the same
communication module as normal communication channels, and they have the same properties,
such as, encryption. Bridge Links may be configured through the previously defined interface. The
Inter-bridge communication protocol was thought to enable the creation of groups of bridges,
with functionalities shared among them, such as, user authorization. Moreover, this protocol was
intended to support redirection of messages between bridges, thus supporting services
redirection. However, this approach was abandoned as it consumes more DICOM Bridge Routers
resources than concurrent techniques (see 4.4.2.

Although we specified an inter-bridge communication protocol, our replication technique
does not necessary involve the multiplexing of a single service between a set of bridges. Our
technique proposes to balance the load of the distributed system, instead of balancing the
number of services being issued by each DICOM Bridge Router. Moreover, this allows complete
compliance with the previous versions of our architecture.

4.4.2. Routers working with multiple Bridges

In order to support multiple DICOM Bridge Routers, we changed the architecture
presented in previous sections. Our major commitment was to minimize its performance

46

footprint in the system. Additionally, as also described above, we tried to keep compatibility
between this version and previous ones. Thus, we realized that it was better to take this
management overhead off the DICOM Bridge Routers and put it into the DICOM Routers.

Firstly, DICOM Routers are responsible for connecting to multiple bridge routers. These
DICOM Bridge Router addresses are configured via the DICOM Router configuration XML. DICOM
Routers connect to every bridge router simultaneously. There were other possible approaches,
such as, making the router to be connected to one bridge at a time. However, this required
DICOM Bridge Routers to manage the service connections across multiple bridges. This could be
achieved by resorting the redirection messages, although it imposed more performance
constraints by requiring more Bridge resources and message exchange. So, it was decided to
adopt the simultaneous approach. Even though having multiple control channels connected to
different bridges also wastes some resources, we consider it minimal. Moreover, being
connected to multiple bridges at the same time provides better service in case of a bridge failure,
as other bridge router may be used without prior processes.

An important issue is to detect which is the best bridge to use. In fact, DICOM Routers are
the responsible for balancing the load of DICOM Bridge Routers. As expressed, load balancing is
achieved resorting to the DICOM Bridges load factor that is announced in Keep-Alive messages.
DICOM Routers keep track of the most recent load factor for each bridge, creating an “extended
routing table”. When a new channel needs to be established, the router selects the bridge with
the lowest load factor. Using this technique, we can achieve load balancing without any
significant computational requirement.

4.5. Security Model

Healthcare information systems tend to be associated with very tight security
considerations. They often manage sensitive patient data, such as, patient names, contacts,
diseases and many others. If these kinds of systems are deployed on public cloud providers, the
security considerations need to be even tighter, as sensitive patient data might be stored,
processed or even consumed by untrustworthy computational nodes. In fact, public cloud
providers are known to follow an “honest-but-curious” approach regarding their client’s data.
They comply integrally with the contracted service, SLA (Service Level Agreement), although any
guarantees are given that they won’t misuse their client’s data, either by selling it directly or by
applying data mining techniques [42].

Zhang et al [50] identifies the common issues associated with the deployment of
Healthcare information systems on cloud environments. The most important for our scenario are
information ownership, authenticity and authentication, patient consent and authorization, and
data integrity and confidentiality. The distributed PACS environment proposes to support DICOM
connectivity across multiple locales. So, the ownership of information and patient authorization is
out of the scope. It is therefore delegated to other institutional application the management of
both these issues. DICOM Bridge Routers provide user authentication in our system. Authenticity
of those users is also guaranteed through the usage of the HTTPS protocol in communications
and a credentials system based on username and password. These features are migrated
peacefully to unsafely deployed components.

The problems associated with the deployment of components on untrustworthy locations
reside, essentially, on data confidentiality and integrity. Data confidentiality means that sensitive
patient data is stored safely, therefore only visible to trustworthy entities. In our architecture it
means that unsafely deployed DICOM Routers must not store any sensitive DICOM meta-data.

47

Thus, unsafely deployed DICOM Routers may not index objects meta-data, at least in clear text.
Further in section, it will be presented a technique for supporting the cache Meta-data
management modules of unsafely deployed routers.

DICOM Objects meta-data can also be retrieved from the actual objects itself. Therefore,
the storage of these objects is also a critical process in terms of security. We propose to use the
MapDB encryption capabilities to securely store these objects. The cached objects cannot be
retrieved by a third-party workflow without the right pass-phrase.

4.5.1. Handling sensitive meta-data on unsafely deployed components

As stated in section 4.4, our cache system indexes the DICOM Objects meta-data in order
to respond to the queries. In its turn, the cache query interface enables DICOM Routers to
answer to DICOM Query Services (C-FIND commands) without requiring direct connectivity to the
PACS archive. This is a crucial feature to proposed architecture, as it allows distributed cache
routers to operate with complete autonomy, i.e. they are able to support DICOM Query/Retrieve
Service by themselves.

In order to support this feature on unsafely deployed DICOM Routers we used a novel
Searchable Encryption (SE) technique, named Posterior Playfair Searchable Encryption (PPSE)
[51]. SE techniques provide query capabilities over ciphered data. Therefore, it is possible to have
indexes encrypted in untrustworthy repositories. However, those indexes continue to be used in
search operations. In our scenario, we will have indexes of DICOM Objects meta-data.

Other approaches were identified. In [32] decouples the meta-data index from the actual
object storage. However, it requires the deployment of two components on distinct locations
because the meta-data index must be stored in a trustable place. In our case, it would reduce the
DICOM Routers autonomy, which is not desirable, due to requirements to tackle with failures of
network links.

The proposed distributed PACS architecture provides enough components to deploy the
PPSE algorithm. The PPSE algorithm works by ciphering content using a secure key and an unsafe
provider may index this codified data. In order to query contents in this provider, the query
phrase also has to be firstly ciphered. As a result of having ciphered data indexed, the query
response has to be deciphered itself, in order to retrieve the plain text data. Therefore, the PPSE
algorithm requires a secure location for encryption and decryption operation to be performed.
With this approach, it was possible to implement the concept of safely deployed DICOM Bridge
Routers.

Untrusted meta-data index

Our proposal is not to handle sensitive patient meta-data on unsafely deployed
components. Instead, we aimed to handle this data on safely deployed components and let
unsafely deployed components handle only ciphered data, through the usage of the PPSE
algorithm. Figure 4.13 illustrates how unsafely deployed DICOM Routers index this data.

Images arrive to DICOM Routers via a controlled channel (described in section 4.3). They
arrive compressed and split in chunks, as a result no meta-data can be extracted from each
chunk. However, chunk descriptors carry the needed information to assemble the multiple
chunks back to one piece. This information is not critical, as it does not enclose any patient data.
When the complete image is available, DICOM Routers assemble the multiple chunks into the
DICOM Object in order to extract and index its meta-data. Unsafely deployed routers should not
perform this action, as it would expose the meta-data in memory. In fact, they never try to

Q8

assembleP anyP image(P EachP timeP anP imageP chunkP arrivesP fromP aP controlledP channeljP theP routerP
immediatelyP checks if itPhasPcached the metaAdataPof thatP image(PThisP isPdonePusingP theP ImageP
SOPPInstancePUIDPfromPthePchunkPdescriptor(PIfPtherePisPnoPcachedPmetaAdataPforPthatPimagejPtheP
routerPrequestsPitPviaPaPsafelyPdeployedPDICOMPBridgePRouter(P

SafelyP deployedP DICOMP BridgeP RoutersP provideP encryption3decryptionP ofP metaAdataP butP
theyPdoPnotPindexPit(P ItPwouldPbePaPveryPcomplexPtaskPtoPindexPeveryPDICOMPObjectsPmetaAdatajP
dueP toP performanceP componentsP constrains(P InP ourP distributedP PACSP architecturejP theP imageP
metaAdataP isP indexedP atP theP DICOMP RoutersP cacheP modulesP RasP describedP inP section Q(N/(P AsP a
resultj DICOMPBridgePRoutersPcreatePaPMetaAdataPRequestPSession(

ThePmetaAdataPrequestPsessionPisPveryPsimilarPtoPthePCAFindPSessionPdescribedPinPQ(Q(N(PTheP
DICOMPBridgePRouterPforwardsPaPMetaAdataPRequestPmessagePtoPeachPDICOMPRouterPiterativelyP
untilPaPpositivePanswer isP returned(PHoweverjPDICOMPRoutersPdoPnotP respondPtoPthePMetaAdataP
RequestP messageP withP multipleP DICOMP Objects(P Insteadj theyP respondP withP aP MetaAdataP
ResponseP messagejP holdingP theP indexedP metaAdataP forP thatP image(P UnsafelyP deployedP routersP
cannotP cacheP plainP DICOMP metaAdata(P ThereforejP theP DICOMP BridgeP RouterP usesP theP PPSEP
algorithmPtoPproducedPsearchablePcipheredPdata(PThisPdataP isP thenPforwardedPtoPthePrequestingP
routerjP makingP theP sessionP termination(P NoteP dataP someP DICOMP metaAdataP isP notP cipheredjP
mainlyP theP identificationP fieldsP suchP asP StudyP UIDP orP ImageP SOPP UID(P ThisP informationP isP notP
consideredPsensitivePasPitPdoesPnot exposePanyPpatientPinformation(

Query/Retrieve	on	unsafely	deployed	Routers

ThePDICOMPQueryPServicePisP issuedPseamlesslyPonPunsafelyPdeployedProutersjPasPthePPPSEP
algorithmP enablesP queriesP onP cipheredP data(AsP queries alsoP needP toP beP cipheredj theP DICOMP
QueryPservice canPonlyPbePissued byPsafelyPdeployedPDICOMPBridges(ThePprocedure toPissuePtheP
queriesP isP similarP toP thePdescribedP in Q(N(N(ThePonlyPdifferenceP isP thatP thePbridgeP routerPhasP toP
knowPbeforehandPifPeachProuterPisPsafelyPdeployedPorPnot(PThisPisPdonePthroughPthePusagePofPkeepA
alivePmessages betweenPDICOMPRoutersPandPDICOMPBridgePRouters(PKeepAAlivePmessagesParePnotP
onlyPusedPasPdescribedPin section Q(Q(Hj theyPalsoPenclosePaPflagPindicatingPwhetherPtheProuterPisP
safelyP deployedPorPnot(PByPusingP thisP informationjP thePDICOMPBridgePRouterPknowsPwhetherPorP

Figure 4.13: Indexing Meta-data on unsafely deployed routers.

1:BMeta-dataBRequestBMessage

4:BMeta-dataBResponseBMessage

ImageBSOPB
InstanceBUID

UnsafelyBDeployedB
DICOMBRouter

SafelyBDeployedB
DICOMBBridgeBRouter

EveryBmeta-dataB
forBImage

SafelyBDeployedB
DICOMBRouter

0:BNewBChunksBArrived

NewBSession

2:BMeta-dataBRequestBMessage

3:BMeta-dataBRequestBResponse

ImageBSOPB
InstanceBUID

CipheredBImageB
Meta-dataB

'9

notx itx needsx tox cipherx thex queryx andx decipherx thex respondedx metaEdata/ Thisx workflowx isx
illustratedxinxFigurex'/U'/

ConcludingSxencryptedxindexxofxunsafelyxdeployedxDICOMxRouters arexonlyxaccessiblex)i/e/x
searchableBx through a safelyx deployed DICOMx Bridgex becausex theyx havex thex PPSEx keysx tox
encryptHdecryptx queries/x HoweverSx unsafelyx deployedx DICOMx Routersx mayx answerx tox CEMovex
Requestsxnormally/xDICOMxRetrievexServicesxusuallyxrelyxonxobjectsxuniquexidentifiers)e/g/xStudyx
InstancexUIDsBxthatxarexnotxcipheredxinxthexroutersxcache/

Assessment	

Thextechniquexadoptedxtoxsupportxsecurexdeploymentxofxcomponentsxisxrobust/xMoreoverS
itx doesx notx compromisex thex performancex ofx thex distributedx systemS because safelyx deployedx
componentsxhavextheirxworkflows favored/

HoweverSxtherexisxaxminimalxpossibilityxforxaccessingxDICOMxObjectsxonxunsafelyxdeployedx
components/x Itx involvesx dumpingx thex Javax virtualx machinex memoryx inx orderx tox collectx everyx
imagex chunkx beforex theyx arex cachedx securely/x Wex dox notx givex toox muchx importancex tox thisx
minimalxleakxasxitxinvolvesxtakingxmassivexmemoryxdumpsSxidentifyingxeachximagexchunkxandxthenx
usexthexcorrectxdecompressionxmethod/xMoreoverxwextookxaxmajorxcautionxtoxevictxthosexobjectsx
fromxmemoryS asxsoonxasxpossible/xThereforeS manyxdumpsxwouldxbexnecessaryxtoxcatchxaxwholex
image/

Therex isx alsox thex possibilityx ofx ax thirdx partyx guessingx eitherx thex MapDB(sx databasex passE
phraseS orx thex PPSEx algorithmx key/x Ifx suchx ax thingx happensSx eitherx thex passEphraseS orx thex keyx
shouldxbexreplaced asxsoonxasxpossible/xThexMapDBsxdatabasesxwouldxhavextoxbextotallyxwiped
andxthexcachexmodulexmetaEdatax indexxwouldxhavextoxbexcipheredxwithxanotherxkey/xThexPPSEx
algorithmxkeyxneedsxtoxbexshippedxwithxeveryxsafelyxdeployedxDICOMxBridgexRouter/xThisxkeyxisx
uniquex and everyx DICOMx Bridgex Routerx shouldx havex thex samex keyx tox achievex maximumx
compatibility/x InxourxpointxofxviewSxthisx isx inx factx thexonlyx limitationxofxthexPPSExalgorithmxasx itx
discouragesxitsxusagexinxscenariosxwherextherexarexnotxonlyxmultiplexconsumersxbutxalsoxmultiplex
producers/

Figure 4.14: Queries over unsafely deployed routers.

2:ICipheredIC-FindIMessage

3:ICipheredIC-FindIResponse

PlainITextIQueryI
Response

UnsafelyIDeployedI
DICOMIRouter

SafelyIDeployedI
DICOMIBridgeIRouter

SafelyIDeployedI
DICOMIRouter

1:IC-FINDIRQIMessage

QueryIParameters:
ex,IPatientName=A*ICipheredIQueryI

Parameters:I

CipheredI
Response

4:IC-FindIResponseIMessage

50

51

5. Results and Discussion

This chapter presents performance trials conducted with the different proposed
techniques. It aims to show their effectiveness, comparing different approaches to achieve the
same goal, measuring and assess the benefit of each solution.

The used dataset was carefully selected to represent multiple studies and data profiles. It
encloses 7 medical imaging studies from 4 different modalities, summing a total of 863 images
with a volume of 682 MB. In Table 5.1 is represented the multiple studies with its volume
(expressed in MB) and the average image size. By analyzing this table, it is possible to verify the
impact of the different modalities in the data profiles. It is easily to check the difference in the
average image size, even within the same modality.

5.1. Controlled Channels

This section provides a description of our performance trials for the controlled channels
method. We deployed a test bed scenario, involving a distributed PACS environment with a PACS
Archive and a remote storage application (simulating a viewer application). Dcm4che was used to
deploy both applications. The applications were deployed in a remote Internet environment. The
PACS Archive was served by a 10 Mbps upstream connection, while the application had 30 Mbps
downstream bandwidth. This simulation represents carefully a real world use-case scenario of a
distributed PACS.

Trials were performed with three transference methods. Firstly, using a VPN connection to
link directly both networks as suggested in [9]. The second method used normal communication
channels in our distributed PACS as explained in chapter 3.2. Lastly, the Controlled Channels
method was tested in the distributed PACS architecture (see chapter 4.2.1), as proposed in this
thesis. The controlled channels were configure to use a maximum of 3 parallel channels, 10
chunks per bulk (bulk size), each chunk with 50KB (chunk size) and 1 second of maximum waiting

Table 5.1: Study Dataset Table

Study
Modality

Number of
images

Volume (MB)
Average image

Size (KB)

NM 1 1 1.000

NM 5 2 400

NM 6 8,2 1.367

PT 244 16,3 67

MR 223 47,1 211

MR 369 206,1 559

XA 15 401,6 26.773

Total 863 682,3 791

52

time.

 Our distributed PACS was supported by a DICOM Router along with each application. The
DICOM Bridge Router was deployed in the PACS Archive machine. This configuration is based on a
common deployment scenario also used as a case study. The Controlled Channels deployment
required a few changes to the image handling process, i.e. the process that deals with the image
in the transference (as described in 4.2.1). We tried to minimize the performance effects of this
change. Therefore, every DICOM Router version involved in the test had its image handling
process changed. In the introduced process, images were handled completely in memory. As the
memory offers almost real-time performance, fewer differences in performance were introduced
by each different approach. Consequently, more accurate results were produced regarding the
Controlled Channel efficiency.

The time needed for the system to issue each study storage request was registered by the
dcm4che application (see Table 5.2). Analyzing the results, it is easily to verify that the Controlled
Channels provide a clear performance improvement compared to the concurrent methods.
Moreover, better improvements are achieved for studies with higher average image size which
are normally associated with higher transference times. For smaller studies the archived
improvements are not significant when the system is only supporting a single user.

5.2. Cache Module

The benefits of our cache module are unquestionable because it provides major features to
our distributed PACS architecture, such as, supporting an offline archive without any transference
over the network. Despite of the clear benefit, it also introduces a disadvantage, i.e. the DICOM
Router needs to have a predefined storage space to support the cache, which is customizable in
our case. The performance benefits of caching PACS Archives content will be demonstrated
supported on controlled trials. To achieve this goal, we deployed a PACS Archive and a storage
provider in our distributed PACS architecture. Once again Dcm4che [52] was used in both
applications.

In order to account the benefits of the usage of our cache module under different network

Table 5.2: Controlled Channels trial results

Modality
Number of

images
Volume

(MB)
VPN (s)

DICOM
Router with

normal
channels (s)

DICOM
Router with
Controlled

Channels (s)

NM 1 1 2,9 2,4 2,6

NM 5 2 5,7 5,2 3,6

NM 6 8,2 12,2 6,5 5,5

PT 244 16,3 27,4 137,6 33,5

MR 223 47,1 59,0 126,7 32,8

MR 369 206,1 264,4 210,0 82,4

XA 15 401,6 622,8 549,3 350,4

53

configuration, two distinct network scenarios were produced. In the first scenario the c-move
application host was served by a 30 Mbps downstream bandwidth. While in the second scenario
this bandwidth was reduced to 5 Mbps4, simulating a more restrictive environment. In both
scenarios the PACS Archive host was served by a 30 Mbps upstream bandwidth.

The final version of our distributed PACS architecture was deployed, using all methods
proposed in this document. A DICOM Router was deployed along with each application, ensuring
connectivity between both environments with the controlled streams. A DICOM Bridge Router
was also deployed along with the PACS Archive and its router (similar to 5.1). The Controlled
Channels configuration was the same used in the previous trial, 3 parallel channels, 10 chunks per
bulk (bulk size), each chunk with 50KB (chunk size) and 1 second of maximum waiting time.

The trials aimed to show the performance speed up achieved by combining multiple cache
population scenarios in both DICOM Routers. The external location router was populated with
25%, 50%, 75% and 100% of each study. Meanwhile, the PACS Archive Router had the entire
study or no images cached at all. In this case testing intermediate scenarios is pointless, as they
all require a C-Move Request to the archive. Thus they not create any real advantage to an
institution. Each study retrieval time, without any image cached in both routers, was taken into
reference to calculate the speed-up. The reference times are presented in Table 5.3.

The speed-ups were calculated independently for each study of our dataset in each of the
cache scenarios. In Figure 5.1 are presented the average speed-ups for each scenario, i.e. the
mean speed-up of all studies for the given percentage of the study in cache. The results show
consistent improvement of the transference performance for all scenarios. Even with little study
portions cached the speed-up is considerable. The effect of the PACS archive router local cache
on the transference time is even more incredible. Studies cached in both routers benefit from a
speed-up, as the C-Move Request to the Archive is avoided.

These trials represent a real-world scenario, where an institution might want to cache
content of foreign repositories to improve the quality of service of their users. Moreover, they
justify the adoption of study pre-fetching techniques by institutions as a mean of getting the

4
 The 5 Mbps connection is considered the average connection speed in Portugal by Akamai [53].

Table 5.3: Cache Module trial results

Modality
Number of

Files
Volume (MB)

Completely non-cached
study (S)

30 Mbps 5 Mbps

NM 1 1 3,45 5,43

NM 5 2 4,23 7,24

NM 6 8,2 5,57 11,63

PT 244 16,3 13,81 35,94

MR 223 47,1 19,09 52,22

MR 369 206,1 45,96 144,80

XA 15 401,6 200,75 670,73

54

maximum potential of their cache routers. It is proved that caches may have an outstanding role
in the overall performance of the system.

Figure 5.1 also illustrates very well the effects of cached content in different network
conditions. It is easily perceivable that for low speed bandwidths, the effect of the archive
router’s local cache does not have the same importance as in higher speed bandwidth
configurations. This is the result of a lower disparity between the router-to-router transference
throughput and the available images throughput (via PACS Archive in this case), that keeps the
Controlled Channels queues from emptying. However, for high cached percentages (>75%), its
effect may be considered of major importance. By analyzing both charts, it is also clear that
caching has major speed-up benefits, especially in lower bandwidth networks.

Figure 5.1: Comparison of cache module average speed-ups in different scenarios.

0% 25% 50% 75% 100%

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

5,5

6

6,5

7
Average Speed-ups

Complete Study cached on Archive Router - 30Mbps

No Study cached on Archive Router - 30Mbps

Complete Study cached on Archive Router - 5Mbps

No Study cached on Archive Router - 5 Mbps

55

6. Conclusions and future work

6.1. Conclusions

Nowadays medical imaging environments tend to be migrated to web-based PACS
solutions. One of its main features is the capability to integrate multiple institutions in the same
PACS providing external access to the resources [8]. Moreover, this particular type of PACS
architecture relieves medical institutions of supporting complex IT infrastructures. However, this
approach has also some challenges. Web-based PACS architectures do not usually provide
compatibility with previously existing institutional resources, such as, previous PACS Archives,
acquisition image devices or DICOM compliant applications. Besides, migration to web solution
imposes some legal constrains related to sensitive patient data exploitation. Common web-based
PACS still face strong resistance within the medical community due to some lack of functionality,
such as 3D reconstruction or other complex features that are not typically available on web
viewers. Nevertheless, they desire a solution that provides integration of multiple institutions,
including previous equipment, reduction of cost with IT infrastructures and requiring minimum
configuration efforts. Furthermore, the data sources should always be available and it is
fundamental to have access to medical imaging studies in a rapid way.

Our distributed PACS Architecture complies with this specification by interconnecting
multiple institutions with DICOM compliant communications. Moreover, it provides effective re-
usage of previous institutional resources, such as, Internet, PACS Archives and visualization
workstations. In fact, a previous version of our architecture is currently deployed and has
received good acceptance among the medical community. However, there were also some issues
associated with this version. Firstly, the performance of medical study retrieval could be
optimized. This problem is aggravated with the fact that Portuguese Internet connections usually
provide more downstream than upstream bandwidth. Secondly, this architecture relied
completely on standard institutional PACS Archives, clearly opposed to the normal web-based
PACS architecture. Lastly, the previous system had a single point of failure that compromised the
overall reliability of the system.

In order to solve these issues, this document proposes multiple improvements to previous
architecture. Namely, replication of components to increase the overall system reliability (see
section 4.4), an improved data transference protocol to better cope with the medical imaging
data specifications (see section 4.2), and techniques to support common web-based PACS
features, such as, cloud deployment of archives (see section 4). The result was an even more
versatile system. It provides a distributed web-based PACS, with optimized features and
processes, preserving the specifications mentioned above. Despite the obvious raise of
architecture complexity, it is not perceivable to PACS users. .

When analyzing the pertinence of proposed methods, we find that each solves a specific
problem. The Controlled Channels method was proposed in order to make the data transference
more compliant with medical imaging studies data profiles. As a result, section 5.1 shows that
improvements in study transference are notorious. Moreover, they require less routers resources
than the previous method. As the Controlled Channels are endpoint oriented, they also
contribute to the scalability of the system.

The proposal of our cache system for medical imaging repositories proves to be a major
contribute of this thesis. Our cache system has made possible the improvement in the DICOM

56

Routers image handling process. Combined with the proposed Controlled Channels and image
splitting technique, this cache system provides replication of PACS Archives. The result is a better
performance in image transference, through the usage of multi-source image transference, and a
better availability of studies. Moreover, our distributed PACS architecture supports the
deployment of repositories on public cloud providers, like common web-based PACS.

The proposed security model provides effective guarantees that sensitive patient data is
not exposed in cloud environments. The model has merit by itself, as it preserves the system
performance and it does not introduce any further components or excessive complexity. Better
system reliability and load balancing was achieved using the Bridge Replication technique. This
was also a major improvement, as it eliminates single points of failure existing in the previous
architecture.

Concluding, all these techniques combined provide a better quality of service to medical
institutions. The proposed system was designed to increase data availability and reduce data
access latency in distributed PACS environments. It was instantiated over a Web DICOM Routing
mechanism, demonstrating an easy integration due to its architecture and DICOM interface.
Moreover, the solution proved to be useful in other distributed medical imaging processes. For
instance, the Routing mechanism has been used to support tele-radiology sessions where
physicians are remotely reporting examinations that were produced by distinct institutions.
Compared to other low cost competitors, such as VPN connectivity, it provides much more
features with better performance. This version of our architecture should be deployed in our case
study environment in a short term.

From the scientific point of view, this thesis as produced a conference paper regarding the
usage of the Controlled Channels method. The paper was presented in CISTI 2013 [17].
Moreover, another article named “A DICOM cache mechanism to support distributed PACS
environments”, giving a special focus to our cache system architecture, was recently submitted
for revision at IEEE Journal of Biomedical and Health Informatics.

6.2. Future work

During this thesis, we completely fulfilled the objectives defined in the proposal. As such,
we opened the door for further work and research directions by taking advantage of these thesis
conclusions and also using the developed frameworks.

The Controlled Channels performance may be improved by the automatic reconfiguration
of their intrinsic parameters. The study of automatic algorithms to perform this task is possible
through the developed framework. We believe this is a very interesting area for future research
directions which may further increase the performance of Controlled Channels, eventually
leading to less resource consumption in DICOM Routers.

Two technologies were introduced in chapter 2.5. They aim to provide direct connectivity
between DICOM Routers. Since the proposal of the Controlled Channels technique, we realized
that these frameworks may be adaptable in the proposed architecture. The idea is to free the
DICOM Bridge Routers from the burden of relaying data transference channels (Controlled
Channels) whenever possible.

In terms of the overall system’s features, it is important that further contributions are
made in order to keep the attractiveness of our architecture. An example is the automated
deployment of cache routers on public cloud providers. This would enable the scalability of our
architecture in terms of storage capacity but also in performance terms. Regarding our cache

57

system, it provides a great framework for the development of a wide variety of cache strategies.
The development of new strategies also may be an interesting research field. Moreover, the use
of prediction techniques may result in further intelligent population of both local and distributed
caches, maximizing the economic efficiency of our PACS instances.

58

59

7. References

[1] L. A. B. Silva, “Medical imaging services supported on cloud,” 2011.
[2] O. S. Pianykh, Digital Imaging and Communications in Medicine (DICOM): A Practical

Introduction and Survival Guide: Springer, 2008.
[3] I. N. d. Estatística. "Proportion of hospitals using computers (%) by Geographic localization

(NUTS - 2002); Biennial 2012," February, 2013;
http://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_indicadores&indOcorrCod=0002289
&contexto=bd&selTab=tab2.

[4] I. N. d. Estatística. "Proportion of hospitals connecting to the Internet (%) by Geographic
localization (NUTS - 2002); Biennial," February, 2013;
http://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_indicadores&indOcorrCod=0002289
&contexto=bd&selTab=tab2.

[5] C.-C. Teng et al., "A medical image archive solution in the cloud." pp. 431-434.
[6] A. F. S. H. Article. "Prepare for Disasters & Tackle Terabytes When Evaluating Medical Image

Archiving.," 2008; http://www.frost.com.
[7] C. Costa, A. Silva, and J. Oliveira, "Current Perspectives on PACS and a Cardiology Case Study,"

Advanced Computational Intelligence Paradigms in Healthcare-2, Studies in Computational
Intelligence S. Vaidya, L. C. Jain and H. Yoshida, eds., pp. 79-108: Springer Berlin Heidelberg,
2007.

[8] H. Huang, PACS and imaging informatics: basic principles and applications: Wiley-Blackwell,
2011.

[9] L. B. Silva, C. Costa, and J. Oliveira, “DICOM relay over the cloud,” International Journal of
Computer Assisted Radiology and Surgery, pp. 1-11, 2012/08/01, 2012.

[10] McGraw-Hill, and S. P. Parker, McGraw-Hill Dictionary of Scientific & Technical Terms, 6E ed.:
The McGraw-Hill Companies, Inc., 2002.

[11] "Osirix DICOM Viewer.," 2013.
[12] A. Knopke. "K-PACS," 2013.
[13] S. S. Furuie et al., "Archiving and retrieving long-term cineangiographic images in a PACS." pp.

435-438.
[14] H. K. Huang, “From PACS to Web-based ePR system with image distribution for enterprise-

level filmless healthcare delivery,” Radiological physics and technology, vol. 4, no. 2, pp. 91-
108, 2011.

[15] ACR-NEMA, "Digital Imaging and Communications in Medicine (DICOM)," National Electrical
Manufacturers Association, 1993.

[16] A. C. R. Nema, "Digital imaging and communications in medicine (DICOM) Part 3: Information
object definitions," Part, 2007.

[17] T. Godinho et al., “Enhanced regional network for medical imaging repositories,” in CISTI,
2013.

[18] P. Lipton, P. Nagy, and G. Sevinc, “Leveraging Internet Technologies with DICOM WADO,”
Journal of Digital Imaging, vol. 25, no. 5, pp. 646-652, 2012/10/01, 2012.

[19] G. V. Koutelakis, and D. K. Lymberopoulos, “WADA service: an extension of DICOM WADO
service,” Trans. Info. Tech. Biomed., vol. 13, no. 1, pp. 121-130, 2009.

[20] R. Appuswamy, D. C. van Moolenbroek, and A. S. Tanenbaum, “Cache, Cache Everywhere,
Flushing All Hits Down The Sink: On Exclusivity in Multilevel, Hybrid Caches.”

[21] T. A. S. Foundation. "JCS - Java Caching System," January, 2013.
[22] G. Hamilton, and R. Cattell, “Jdbc: A java sql api,” Sun Microsystems, vol. 1, pp. 997, 1996.
[23] Microsoft. "ODBC-Open Database Connectivity Overview," february, 2013;

http://support.microsoft.com/kb/110093.
[24] JBoss. "Infinispan," February, 2013; http://www.jboss.org/infinispan.
[25] Terracota. "Ehcache," February, 2013; http://ehcache.org/.
[26] J. Kotek. "MapDB," 2013.

http://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_indicadores&indOcorrCod=0002289&contexto=bd&selTab=tab2
http://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_indicadores&indOcorrCod=0002289&contexto=bd&selTab=tab2
http://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_indicadores&indOcorrCod=0002289&contexto=bd&selTab=tab2
http://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_indicadores&indOcorrCod=0002289&contexto=bd&selTab=tab2
http://www.frost.com/
http://support.microsoft.com/kb/110093
http://www.jboss.org/infinispan
http://ehcache.org/

60

[27] Y. Gu, and R. L. Grossman, “UDT: UDP-based data transfer for high-speed wide area networks,”
Computer Networks, vol. 51, no. 7, pp. 1777-1799, 2007.

[28] I. m. group. "ICE: Internet Connectivity Establishment," February, 2013;
http://www.internetsociety.org/articles/interactive-connectivity-establishment.

[29] H. Sinnreich, and A. B. Johnston, Internet communications using SIP: Delivering VoIP and
multimedia services with Session Initiation Protocol: Wiley. com, 2006.

[30] R. Maani et al., “A practical fast method for medical imaging transmission based on the DICOM
protocol,” pp. 76280M-76280M, 2010.

[31] R. Maani, S. Camorlinga, and N. Arnason, “A Parallel Method to Improve Medical Image
Transmission,” Journal of Digital Imaging, vol. 25, no. 1, pp. 101-109, 2012/02/01, 2012.

[32] L. B. Silva, C. Costa, and J. Oliveira, “A PACS archive architecture supported on cloud services,”
International Journal of Computer Assisted Radiology and Surgery, vol. 7, no. 3, pp. 349-358,
2012/05/01, 2012.

[33] C. Costa et al., “Design, development, exploitation and assessment of a Cardiology Web PACS,”
Computer Methods and Programs in Biomedicine, vol. 93, no. 3, pp. 273-282, 2009.

[34] M. Benjamin, Y. Aradi, and R. Shreiber, “From shared data to sharing workflow: Merging PACS
and teleradiology,” European Journal of Radiology, vol. 73, no. 1, pp. 3-9, 2010.

[35] Google. "Google Cloud Storage," 2013; https://cloud.google.com/products/cloud-storage.
[36] Amazon. "Amazon Simple Storage Service (Amazon S3)," 2013; http://aws.amazon.com/s3/.
[37] A. A. Bui et al., “Problem-oriented prefetching for an integrated clinical imaging workstation,”

Journal of the American Medical Informatics Association, vol. 8, no. 3, pp. 242-253, 2001.
[38] A. Descampe et al., “Prefetching and caching strategies for remote and interactive browsing of

JPEG2000 images,” Image Processing, IEEE Transactions on, vol. 16, no. 5, pp. 1339-1354,
2007.

[39] J. Gutiérrez-Martínez et al., “A Software and Hardware Architecture for a High-Availability
PACS,” Journal of Digital Imaging, vol. 25, no. 4, pp. 471-479, 2012/08/01, 2012.

[40] S. Langer, “Issues surrounding PACS archiving to external, third-party DICOM archives,”
Journal of Digital Imaging, vol. 22, no. 1, pp. 48-52, 2009.

[41] K. J. Dreyer et al., PACS: A Guide to the Digital Revolution: Springer, 2005.
[42] L. S. Ribeiro, C. Costa, and J. L. Oliveira, “Clustering of distinct PACS archives using a

cooperative peer-to-peer network,” Computer methods and programs in biomedicine, vol. 108,
no. 3, pp. 1002-1011, 2012.

[43] C. Costa et al., “Dicoogle - an Open Source Peer-to-Peer PACS,” Journal of Digital Imaging, vol.
24, no. 5, pp. 848-856, 2011/10/01, 2011.

[44] P. J. Sadalage, and M. Fowler, NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot
Persistence: Addison-Wesley Professional, 2012.

[45] T. A. S. Foundation. "Apache Lucene," June, 2013; http://lucene.apache.org/.
[46] J. Paterson, and S. Edlich, The definitive guide to db4o: Apress, 2006.
[47] Almworkds. "Sqlite4java - Minimalistic high-performance Java wrapper for SQLite,"

December, 2012; http://code.google.com/p/sqlite4java/.
[48] R. Biedert. "JSPF: Java Simple Plugin Framework," June, 2013;

http://code.google.com/p/jspf/.
[49] M. Armbrust et al., “A view of cloud computing,” Commun. ACM, vol. 53, no. 4, pp. 50-58, 2010.
[50] R. Zhang, and L. Liu, "Security models and requirements for healthcare application clouds."

pp. 268-275.
[51] L. S. Ribeiro et al., “XDS-I outsourcing proxy: ensuring confidentiality while preserving

http://www.akamai.com/stateoftheinternet/.

interoperability,” IEEE Journal of Biomedical and Health Informatics, 2013, to be published.
[52] "dcm4che2 DICOM Toolkit," February, 2013; http://www.dcm4che.org.
[53] D. Belson, T. Leighton, and B. Rinklin. "Akamai: State of the Internet Q4 2012," June, 2013;

http://www.internetsociety.org/articles/interactive-connectivity-establishment
http://aws.amazon.com/s3/
http://lucene.apache.org/
http://code.google.com/p/sqlite4java/
http://code.google.com/p/jspf/
http://www.dcm4che.org/
http://www.akamai.com/stateoftheinternet/

61

8. Appendix

8.1. Controlled Channels automatic reconfiguration agent architecture

Based on the knowledge gathered about the modalities data profiles and the Controlled
Channels technique, we have made a sketch about a possible future implementation for a
reconfiguration module. The following diagram intends to aid possible further efforts by
representing a software agent for this module. This agent is intended to select the best
parameter to tune, in order to improve the performance of its controlled channel. It follows an
hierarchical architecture very common in reactive agents. The agent is supposed to work in time
windows with fixed size. For each time window, the agent calculates the world state which we
think that is well modulated by four event metrics (shown in diagram). Based on the world state
the appropriate behavior is selected effectively tuning the Controlled Channels parameters. This
would be a very good starting point for further improvements to our distributed PACS.

Decrease Max
Pool time

Increase Max
Pool time

Increase
BulkSize

Decrease
BulkSize

Event A Occours

A: Max Pool Time Reached > Threshold
B: Max Pool Time minimum value reached
C: Average Inner Queue Size < BulkSize
D: Average Inner Queue Size > Threshold

Event B Occours Event C Occours

Event D Occours

Window Start

Yes

No

Yes

Yes

No
No

Yes

Higher Throughput
Slightly Higher Latency

Lower Latency
Might slightly lower Max Throughput

Lower
Throughtput

Lower Latency

Higher Throuput
Higher Latency

Less sincronization
points

62

8.2. Cache System API Functionality Table

The following table thoroughly states the functionality provided by our Cache System API.
The methods are sorted by primary scope. We consider the primary scope of each method to be
the module where it is majorly issued.

Method Description Primary Scope

Query Queries the cache system about DICOM Objects with certain
attributes. These attributes are specified in the query string.
The query string is formatted according to the Lucene’s term
query format, as it is used very often across the IT field.

The response is formatted according to the C-Find response
specifications of the DICOM Standard.

Meta-data
management
modules.

Query as
String

Same as the above but it converts the responses to a Key-
Value paradigm using a hash map.

Meta-data
management
modules.

Index
DICOM
Document

Indexes in the Cache engine the supplied DICOM Object. It
can be supplied directly or by an input stream.

Meta-data
management
modules.

Index
Transformed
Document

Same as the above but indexes the DICOM Objects attributes
provided by an Key-Value paradigm with strings.

Meta-data
management
module.

Retrieve
Images for
Study

Retrieves the Image SOP UIDs of the images enclosed in the
specified study. The study is specified by its Study Instance
UID.

Meta-data
management
module.

Register
Study

Forces the registry of a new study in the cache system. It
may be useful to cache study information without supplying
an actual DICOM Object.

Meta-data
management
module.

Resolve Data
for Study

Retrieves every Descriptor of cached objects (image or
chunk) belonging to the desired study.

Meta-data
management
module.

Add Chunk Caches the given chunk data. Storage
Management and
Meta-data
management
modules.

Add Image Caches the given image data. Storage
Management and
Meta-data
management
modules.

63

Method Description Primary Scope

Register
Image In
Study

Forces the registration the specified Image SOP UID in the
given study.

Meta-data
management
module.

Retrieve
Chunk

Retrieves the chunk identified by the given Chunk Descriptor Storage
Management
modules.

Retrieve
Image

Retrieves the image identified by the given SOP Instance UID Storage
Management
modules.

Retrieve
Chunks
From
Image

Retrieves the descriptor of the cached chunks for given image. Storage
Management
modules.

Contains
Chunk

Checks if the given chunk is cached. Storage
Management and
Meta-data
management
modules.

Contains
Image

Checks if the given image is cached. Storage
Management and
Meta-data
management
modules.

Remove
Chunks

Evicts the specified chunk from the system. Storage
Management and
Meta-data
management
modules.

Remove
Image

Evicts the specified image if only it is completely cached. Storage
Management and
Meta-data
management
modules.

Remove
All Image
Chunks

Evicts the specified image completely, even if the image is not
complete.

Storage
Management and
Meta-data
management
modules.

Set Lock
on Study

Sets a new lock on a given study. Service Layer

Release
Lock on
Study

Releases the previous lock on the given study. Service Layer

64

8.3. Cache System Class Diagram

The following diagrams show the internal class structure of our proposed cache system
architecture. They present a great starting point for developers who want to embed our system
in their applications. The modular architecture is very well represented in the diagrams.
Moreover, it is easily seen the role played by the abstract modules referenced in section 4.3.1. In
every diagram pay a close attention to the class contractors and to the initialize method, as they
are used to link correctly the different modules in the abstract implementations class.

8.3.1. Module interfaces diagram

The following diagram represents the interfaces used to describe every module in our
cache system architecture.

65

8.3.2. Storage management modules

This diagram presents the BigMemoryManager class that plays a key role in the Storage
management modules.

66

8.3.3. Service Layer modules

The following diagram represents the AbstractCachePlugin class that plays a key role in the
implementations of third party plugins.

67

8.3.4. Cache System class diagram

Lastly this diagram shows the AbstractCacheSystem that should always be used as a base
for new systems implementations.

	Capa.pdf
	corpo.pdf

