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resumo 
 

 

A imagem médica é hoje um meio complementar de diagnóstico fundamental 
nas instituições de saúde. Historicamente, estes meios têm custos muito 
significativos para as instituições, quer em aquisição de equipamentos, quer na 
manutenção da infraestrutura. Numa ótica da redução de custos operacionais 
e melhoria dos processos, as instituições médicas tem explorado os avanços 
na área das Tecnologias da Informação, com o objetivo de melhorar a 
aquisição, arquivo, distribuição e visualização dos estudos. Estes sistemas, 
denominados como PACS, começaram por se impor no interior das 
instituições. No entanto, a tendência atual é para interligar essas redes, 
criando ambientes de trabalho geograficamente distribuídos. O bom 
desempenho destas redes é fundamental para suportar a prática clínica, 
nomeadamente, no que diz respeito à latência associada às comunicações. 
Assim, é vital desenvolver tecnologias para melhorar o desempenho, 
segurança e robustez destas redes. Esta dissertação propõe e avalia um 
conjunto de soluções tecnológicas que objetivam melhorar a utilização de 
PACS em ambientes distribuídos. 
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abstract 

 
Nowadays, medical imaging is used as a primary method of diagnosis in 
healthcare institutions. Typically, those environments have huge costs related 
to acquisition equipment and infrastructure maintenance. In order to reduce 
costs and improve workflows, healthcare institutions have been exploring new 
information technologies to support the acquisition, storage, distribution and 
visualization of medical imaging studies. Those systems, denominated as 
PACS, are very used inside the institutions’ networks. However, the actual 
tendency in PACS is to interconnect multiple institutional systems, thus creating 
geographically distributed medical imaging networks. The performance of these 
architectures must not delay or deteriorate the medical processes. As a result, 
the development of new technologies is fundamental to improve the 
performance, safety and reliability of these architectures. This thesis proposes 
and assesses a set of technological approaches that aim to improve PACS 
deployment and utilization in distributed environments. 
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1. Introduction 

This chapter provides an introduction about the thesis. It gives a glimpse on the main 
issues in the medical imaging networks and how they influenced the proposed work. Finally this 
chapter references the structure and the main goals of this document. 

1.1. Overview 

Over the last few decades information and communication technologies have played a key 
role in the way society interacts with the world, such as, the way people have access to 
entertainment, food, transports, information and other commodities in their daily life. Healthcare 
industry is not an exception to this trend and have followed the general evolutionary tendencies 
in the technologies and IT systems. Health related institutions have been increasingly providing 
new IT services to patients, such as ePR (electronic Patient Record). Moreover, other non-directly 
related to health industry corporations have also been showing great interest in the health 
information field and have been offering health related services to patients and healthcare 
institutions. 

On an intra-institution level, health institutions have also been showing great interest in 
information systems to manage their business processes. Health information systems, such as, 
HIS (Hospital Information System) and RIS (Radiology Information System) have been increasingly 
used in the past decade. Medical Imaging related processes have also been spotted for digital 
information systems. According to [3, 4], in Portugal, 100% of the medical institutions use 
computers and internet connections to support  medical practice. 

PACS (Picture Archive and Communications System) manage the digital image workflow in 
institutions. The medical image workflow are associate with two major tasks, the archiving of 
images for posterior use and the distribution of images, since some physicians do not practice in 
the same department where images are acquired or archived. 

As digital medical images produce huge amounts of data, image storage and distribution 
are often associated with significant costs both monetary and time related [5, 6]. These costs are 
severely aggravated as digital imaging usage is constantly increasing, and even small institutions 
may produce and consume a great number of medical studies. PACS have to deal with these 
structural constraints, in order to keep the lowest impact on the medical workflow’s 
performance, without consuming significant institutional budget. 

A current trend in PACS is focused on the disassociation of the system from the actual 
institution facilities, i.e. outsourcing the infrastructure that may run over cloud, reducing costs to 
organizations [7, 8]. However, PACS typically manages huge amount of data, which means huge 
communication overhead and lacks of performance in distributed environments, often resulting 
in poor QoS (Quality of Service) and no customer satisfaction. 

Therefore, it is of paramount importance that medical repositories over the cloud care 
about fast communications supporting access to the medical data. This work will reflect these 
concerns as it will analyze a previously developed system at Universidade de 
Aveiro/Bioinformatics Group, i.e. the DICOM Cloud Router, searching for performance constraints 
in order to mitigate them [9]. A great effort has been made in the past years to develop a 
distributed PACS architecture to support regional environments. A distributed PACS architecture, 
as it will describe in further chapters, is a system intended to support the medical image 
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workflow across multiple institution locations. Extending these systems in a distributed manner 
means multiple PACS instances deployed at the same time probably serving more than an 
institution simultaneously. The second stage of this work will be based on top of other novel 
concerns in distributed systems, which are replication and fault tolerance, in order to increase 
the service availability in the overall system. Although this approach is rather focused in a specific 
system, the results produced by this work may be extrapolated to other systems, as constraints 
are similar.  

This thesis explores these approaches as starting points to develop strategies to improve 
the overall quality of distributed PACS, taking performance and reliability considerations in order 
to propose a refined architecture. 

1.2. Objectives and contributions 

The main goal of this thesis is to provide a fast and effective environment for the medical 
image workflows across multiple institutions. Current solutions require significant investments 
both in infrastructures and in work force for network and environment configurations. Moreover 
they often disregard previous existing infrastructures leading to waste previous investments in 
resources. Summing up, it discourages the migration to a distributed environment despite its 
clear benefits. 

DICOM Cloud Router is a software platform that requires minimal setup configurations and 
is designed to integrate previously existing resources such as PACS Archives and viewer 
applications. There are also minimal infrastructural requirements as it enables reuse of 
preexisting infrastructures, such as, Internet connection and PACS components.  

Apart from providing easy set-up environment, DICOM Router architecture must be also 
competitive in terms of performance and availability, like any other Intranet solution. This 
dissertation intends to extend DICOM Router architecture to achieve high performance and 
availability. 

Rather than focusing on specific solutions for the existent DICOM Router architecture, the 
taken approach starts by identifying the most relevant processes in a generic PACS workflow and 
then suggests solutions to mitigate found problems and correct erratic behaviors when extending 
these systems to a distributed environment. 

Performance and QoS in data access often passes to provide replication of data. Replicated 
data has two very important aspects. Firstly, data is less likely to be lost during the system life 
cycle. Secondly, multiple sources exists making it possible to be retrieve data from multiple 
locations in parallel thus sharing the load of the system and contributing to lower delays and 
better speeds in data transferences.  

In order to improve the image data handling process and boost the overall availability of 
studies, an effective cache system for medical images will be proposed. Moreover, the 
implemented approach will be integrated in the normal medical image workflow. Lastly a careful 
analysis of single points of failure (SPoF) will be conducted. The main goal is to create strategies 
in order to improve the overall availability of the system itself. 

Combining these approaches, the ultimate goal of this project will be achieved not only by 
decreasing the response time of the proposed system to services, such as Query/Retrieve or 
Storage, but also by the improvement of the overall reliability of the system. Providing a better 
service to the medical imaging workflow is of course the main concern of this thesis. 
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1.3. Outlines 

Chapter 2: Provides a valuable description of the state-of-the-art scenario in the medical 
imaging distribution, as well as in technologies related to this thesis. 

Chapter 3: Provides a description of previous efforts that have led to the proposal of this 
thesis. 

Chapter 4: Provides a detailed description of the contributions carried out in this thesis. 
Namely there are described multiple methods proposed to improve the 
performance and availability of our distributed PACS Architecture.  

Chapter 5: This chapter presents the trials conducted to validate the proposed methods. 
Along with the trials results there is also a discussion about these methods 
contributions. 

Chapter 6: This chapter resumes the overall conclusions resultant from this thesis. Moreover, 
it appoints the directions of further contributions to our distributed PACS 
architecture. 

Chapter 8: An appendix with relevant diagrams to the full understanding of the proposed 
methods. 
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2. State of the Art 

This chapter has the purpose of referencing the state of the art in systems and 
technologies related to medical imaging, such as, PACS (Picture Archive and Communication 
System) and DICOM (Digital Image Communications in Medicine). The current trends will be 
enumerated and discussed, both in industry and research in the areas of Medical Image Archives, 
Cloud Computing, among others. 

The reading of this chapter is very important to understand not only the background 
environment of this document, i.e. storage and distribution of medical images and the workflow 
itself, but also to understand the taken decisions in each step of the project as they were very 
influenced by the constrains of medical imaging processes. 

2.1. Digital medical imaging laboratory  

Medical imaging is defined as the technique and process used to acquire visual 
representation of the Human body [10]. The medical imaging field is often associated with other 
subareas, such as Radiology or Nuclear Medicine, as they are techniques used to produce the 
medical images. Medical imaging has been used for quite long time as a primary and 
complementary method for diagnosis purpose. Among the most well-known modality types are, 
X-Rays (CR), Computed Tomography (CT), Magnetic Resonance (MR) and Ultrasounds (US). 

Over the last century the medical images were printed in films, as most acquisition 
equipment were analogic. Nevertheless the Archive and Distribution of these images was 
associated with a few well know constraints. For instance, they must have been available for 
physician’s access on-demand. Being an analogic media, the costs associated to storage logistics 
and the access times were both high. These constraints were imposed by the medical practice. As 
such they still apply to the current state-of-the-art paradigm of medical image Archive and 
Distribution. 

In the developed countries it is almost impossible to find an individual who has not been 
subjected to a medical imaging examination. Frost & Sullivan [6] forecasted that 1 billion of 
medical imaging procedures will be conducted in United States of America in 2013. This 
impressive reality is only possible due to the great contribution of digital era, as PACS and digital 
acquisition equipment (i.e. modalities) started to appear in the market. The use of this 
equipment has been generalized, as prices tend to decrease, including the costs of PACS 
maintenance than are lower than analogic solutions. 

Nevertheless the digital version of these systems provides a clear benefit when compared 
to the analogic ones. The current state of the art solutions are still trying to cope with the same 
constraints that were mentioned previously for the analogic systems, namely due to the 
tremendous volumes of data produced in our days and the distributed environments 
requirements. In fact, the state of the art solutions have not only to deal with these constraints 
but also with legal and security considerations about holding sensitive patient data in digital 
repositories. 

The constraints imposed by the medical workflow itself are a key point to understand the 
importance of current research fields in the medical image archives and distribution systems. As 
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in the old approach with analogic films, the physician often requests examinations to diagnose 
patients implying that produced images must be moved from archiving system to the physician 
workstation, which might be at home. There are several medical imaging workflows that impose 
organizational constraints. For instance, it is hard to share studies with multiple organizations or 
even with different departments within the same organization. 

The advent of digital acquisition equipment and the digital communication networks, such 
as, Internet and Cloud Based Computing have opened the door to PACS distributed environments 
and services outsourcing. As these approaches tend to reduce the medical workflow delays thus 
providing better service to patients and controlled costs to organizations because the exchange 
of previously performed studies can in many cases avoid purchasing a new one. 

2.2. PACS (Picture Archive and Communication System) 

As digital technological developments had been achieved in the field of medical imaging 
acquisition devices, the price and thus the cost-benefit ratio of these digital devices surpassed 
the analogical ones. Thus, with this growth, the need to find an information system that could 
bring the medical imaging archives and the distribution networks to the digital era grew as well.  

PACS stands for Picture Archive and Communication System. It clearly defines a set of 
hardware, software and communications technologies for acquiring, storing, distributing and 
analyzing digital medical images in a distributed information system environment [8]. 

Acquisition is the process of medical images production. There are two major methods 
associated with medical image acquisition. The first method is the one that the images are 
produced by digital acquisition equipment directly through examination procedures.  

Aquisition Equipment Archiving Equipment Viewer Applications
 

Figure 2.1: Big Picture of PACS in the Medical Image Environment. Adapted from [2] 

As [1]  states,  PACS may be  spit  in  three  major  sequential  steps:  Acquisition,  Distribution 
and Visualization. Figure 2.1 illustrates these steps.  
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Although this digital equipment are now industry standard, compatibility with outdated 
equipment and previously archived studies has made scanning mechanisms. These scanners 
produce a digital image from the analogical films produced by early equipment. This method 
continues to be very used in our days. 

Distribution is the process of exchanging images or studies among the different PACS 
nodes. It is easy to understand that in most medical imaging studies need to be relocated inside 
the PACS, as in most situations physicians do not practice in the same department or center that 
acquired or archived the images. Moreover, the modalities and archive can be in distinct 
locations. The distribution process opens the possibility for the exchange of studies not only 
inside the same institution but also among different institutions as well thus creating 
opportunities to reuse of studies. 

Visualization process is the frontend of any PACS. Image visualization is of major 
importance, as physicians must have an intuitive way of searching and reviewing studies. The use 
of third-party viewer applications, such as, Osirix [11] or K-PACS [12] is required. The visualization 
process often requires prior processes of acquisition and distribution of image objects. 

After stating these three processes it becomes clear that PACS are a mix of repositories and 
information systems used to facilitate the workflows in medical imaging environments. It 
provides better integration for workflows of different stages as well as booting the overall 
performance of the medical practice. But the goods do not come without a cost. Medical images 
tend to generate a tremendous amount of data [6] which leaves the PACS Archives to deal with 
the storage of large volumes of data and the PACS Distribution Layer to keep the communication 
delays acceptable to the medical process. Moreover, the data overhead is not the only problem, 
legal issues and Human resistance to information systems also tend to delay the implementation 
of these systems. 

As stated before, dealing with huge amount of data is a complex engineering task and 
raises some real issues directly related to cost and performance, such as, Backup, Redundancy, 
Security and Crash Recovery. With the spreading of digital equipment throughout medical 
institutions [13], including the small ones, these engineering problems are affecting even more 
entities. A great part of these institutions have economic limitations to support such IT 
infrastructure, including operational staff. As a result, outsourcing of PACS Archives to external IT 
contractors has been also a rising trend in the field. 

Concrete integration of medical imaging repositories (PACS Archives) inside institutional 
workflows might vary greatly from an institution to another [1]. Although it follows some 
common stages, such as, patient registration in the HIS and RIS, the examination procedure, 
image analysis by physician and image archiving. In [8] the author proposed three general 
architectures for the workflow in a PACS, the Stand-alone, the Client-Server and the Web-based 
architectures. These workflows are actually being used in different healthcare units, described in 
sequel. 

The stand-alone architecture involves a store and forward approach, as images acquired 
during procedures are immediately sent to the image archive and then forwarded to the 
previously registered workstations. These workstations are used by physicians to analyze and 
report the examinations. This architecture, although claimed to be very prone to study loses, 
arise some security considerations as studies are transmitted without asking and prone to be 
access not only by strictly necessary personnel but virtually anyone in the PACS. 

The Client-Server Architecture is the most wide used and proven approach. Studies are 
uploaded from acquisition equipment to a central repository. Workstations retrieve studies only 
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when needed, without any pre-fetching strategies like, for instance, moving the studies before 
there are needed or during the previous night according with programmed events. This 
introduces a relative delay in the study review process as it wastes time while retrieving those 
studies, proportional to the available bandwidth for the transference. Nonetheless, it provides a 
more efficient access control to studies than the previous architecture. 

Web-based architectures are (as in many others areas) the current trend in PACS 
Architectures. Web-based PACS integrate the central archive in a datacenter and provides a 
frontend (web-based viewer) to operate with images. It is probably the most robust solution In 
terms of security, bandwidth requisites and portability. Nonetheless, web-based architectures 
lack in compatibility as users are limited to the web browser environment that as some 
limitations, such as, 3D reconstructions and may not use any third-party software [14]. Moreover, 
when deploying a web-based architecture on public cloud environments a few legal issues may 
arise related to the exploitation of sensitive patient data. 

2.3. DICOM (Digital Image Communications in Medicine) 

In the early years of digital medical imaging, manufacturers of medical imaging equipment 
had developed their own communications protocol and image file formats. So exchanging images 
between different vendors equipment was a real issue and, in many cases, it was even 
impossible. Portability and studies exchange was then very hard to achieve. To solve this issue, in 
the mid-80s, a consortium formed by NEMA (National Electrical Manufacturers Association) and 
ACR (American College of Radiology) proposed the creation of standardization in file format, 
directory structure and communication’s protocols for digital medical imaging equipment. The 
first draft of the standard was named ACR-NEMA 300 and is considered of major importance for 
PACS proliferation. Nonetheless this primary version had some issues and omissions that were 
rectified by latter versions of the standard [2]. 

The third version of this standard was named DICOM 3.0 [15] and its full version was 
presented in 93. Nowadays, it is the most important standard in medical imaging and PACS. 
DICOM 3.0 is constantly improved with the addiction of supplements to face the most recent 
issues in the medical imaging field despite always keeping compatibility with previous versions of 
the standard.  

The proliferation of DICOM compliant1 equipment has enabled the exchange of digital 
medical images among different equipment thus providing the possibility of implementing 
systems (PACS), such as, mentioned previously in this document. The importance of DICOM is 
recognized by not only IT personal but also medical personal as shown in [2] where a Professor of 
Radiology states “it has become the driving force behind the entire imaging workflow”.2 

2.3.1. DICOM Data 

DICOM standard is able to represent all real world data based on the definition of DICOM 
objects. DICOM Objects are sets of Data Elements. These data elements are the actual 
representations of real world attributes. DICOM Objects follow the well know Object-Oriented 
approach and may enclose other objects thus providing extensibility and open-endness.  

                                                           
1
 DICOM Compliant or DICOM Ready is the common designation of equipment or software that 

support the DICOM Standard. 
2
 Vassilios Raptopoulos, M.D, in [2].  
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DICOM Data Elements [16] are formed by three mandatory fields that seemingly follow a 
TLV (Tag Length Value) structure. The first field is a tag identifying unequivocally the DICOM Data 
Element. The second field is the length (in bytes) of the value field. Lastly, the value field encloses 
the binary data of the element. Encoding of the value field may be done using 27 different 
codifications called VR (Value Representation). VRs are previously defined in the standard (Part 
PS3.5 [16]) and are the primary data types in the DICOM standard. Figure 2.2 illustrates the 
DICOM data elements. 

The Data Element tags are composed by two fields, the group identifier and the element 
identifier (within the group). Both fields are 16-bit unsigned values. The group field identifier 
identifies the group of the DICOM Data Element. In DICOM, Elements are grouped by similarity as 
[2] states. Groups often reflect a relation between DICOM Data Elements and real world Object, 
such as, Patients (0x0010) or Studies (0x0008). An illustrative example of DICOM Data Element 
Tags is the Patient ID (0x0010, 0x0020) that has the group identifier of the patients group and the 
0x0020 as the identifier within the group. See Figure 2.3. 

2.3.2. DICOM Data Dictionary 

There are two possible ways of matching a DICOM Data Element to its VR type. The most 
common is using the DICOM Data Dictionary. The DICOM Data Dictionary, as its name indicates is 
an associative memory that matches DICOM Data Elements (by its tag) to a set of attributes 
including the Element VR, the name of the Element, its multiplicity and element data type. An 
example of a DICOM Data Dictionary is shown in [2].The second way is by setting an optional field 
in the Data Element called the VR Field with the identifier of the VR used. As illustrated in Figure 
2.2. 

As [2] states, the DICOM Standard has a standard Data Dictionary of around 2000 
Elements. However a statically predefined Data Dictionary is of no use if vendors ever need a new 
Data Element to map new attributes introduced by their newest equipment, so private Data 
Elements can be inserted in order to meet the needs for new Elements. 

2.3.3. DICOM Object Identification and Hierarchy 

Following an Object-Oriented hierarchical approach DICOM Objects are abstract models 
for real world objects. A representation of a real world object is called an Instance, for example a 
DICOM Image instance is a DICOM Image Object with real values and attributes that exists in a 
concrete context (for example in a file system). A corollary of this definition is that the same real 
world image may have multiple instances in different contexts [2].  

 

Figure 2.2: DICOM Data Elements. Adapted from [1]. 
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Figure 2.3: DICOM Hierarchic Data Structure. Adapted from [2].
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DICOMPServicesParePpreviouslyPdefinedPinPIODsPandParePmorePeasilyPdefinedPasPsequencesPofP
DICOMPCommandsQPDICOMPdefinesPaPwidePrangePofPservicesyPsuchPasPStorageyPQueryyPorPPrintingQP
AlthoughP forP theP sakeP ofP simplicityP thisP documentP willP majorlyP referP theP QuerykRetrieveP andP
StorageP servicesP asP theyP areP theP primaryP scopeP ofP theP PACSP ImageP DistributionP LayeryP andP
thereforePtheyPimposePperformancePconstraintsPtoPthePsystemQ

2.3.5.Storage Service Class

ThePStoragePServiceP isPtypicallyPprovidedPbyPPACSParchivesQPAsPthePnamePsuggestsPStorageP
ServicesP goalP isP toP storeP anP imageP inP theP repositoryQP AP typicalP useP caseP ofP thisP serviceP isP whenP
acquisitionPequipmentPneedsPtoPsendPthePrecentlyPacquiredPimagePtoPthePcentralPrepositoryQPThusP
StoragePServicePClassPisPofPmajorPimportancePinPPACSQ

StorageP ServiceP isP composedP byP aP singleP CqSTOREP commandP perP imageQP ThePworkflowPofP
StoragePServicesPisPeasyPtoPexplainQPFirstlyPthePSCUPsendsPthePCqStoreqRequestPmessagePtoPthePSCPP
,possiblyPthePPACSPArchivebPcontainingPthePDICOMPObjectPtoPbePtransferredyPuponPreceptionPtheP
SCPP repliesP withP aP CqStoreqResponseP messageP acknowledgingP theP receptionP ofP theP dataQ AnP
illustrativePexamplePisPshownPinPFigurePRQxQ

2.3.6.Query / Retrieve Service Class

ThePQueryqRetrievePServicePisPoftenPusedPbyPphysician’sPviewerPapplicationsPtoPsearchPandP
downloadPstudiesP fromPthePPACSPArchiveP toPperformPrevisionsQPThePQueryPServiceP supportsP theP
searchP ofP objectsP ,PatientyP StudiesyP SeriesP andP ImagesbP insideP aP repositoryQP TheyP mightP beP
searchedPbasedPonPvariousPDICOMPDataPelementsyPsuchPasyPpatientPnameyPstudyPdateyPmodalityyP
accessionPnumberPandPfewPothersQPThePRetrievePservicePisPoftenPexecutedPafterPaPQueryPServiceQPItP
aimsPtoPretrievePthePdesiredPobjectsP fromPthePrepositoryPbasedPonPaPqueryyPnormallyPbyPobjectsP
UIDsQP

QueryPRetrievePServicePclassPisPcomposedPbyPtwoPcommandsyPthePCqFindPandPthePCqMoveQPAP
CqFindP CommandyP asP theP purposeP ofP queryP theP archiveP ,SCPbP aboutP theP existenceP ofP studies orP

Figure 2.4: DICOM Storage Service procedures. Adapted from [1].
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SCP  provides  a  set  of  predefined  services  to  other  client  applications.  In  its  turn,  the  client 
applications are called Service Class Users (SCU).
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imagesP withP theP desiredP propertiesP specifiedP byP aP C5Find5RequestP commandTP likeP forP instanceP
“PatientName=Aj”PforPallPpatientsPthatPstartsPbyPthePAPcharacterMPOnePorPmorePC5Find5ResponseP
wouldPbePsentPbackPtoPthePSCUPforPeachPmatchedPobjectMPFinallyPaPC5Find5ResponsePsignalingPtheP
terminationP ofP theP C5FindP serviceP willP beP sentP inP theP endM ThisP workflowP isP wellP representedP inP
FigurePzMLM

ThePretrievalPofPstudiesPusesPthePC5MovePcommandMPAPC5Move5RequestPmessagePisPsentPtoP
thePSCPPidentifyingPthePdesiredPobjectsMPThenTPthePSCPPissuesPaPC5StorePcommandPforPeachPobjectP
thatP needsP toP beP transferredP toP theP SCUMP AP C5Move5ResponseP isP sentP whenP theP lastP objectP isP
transferredP signaling theP terminationP ofP theP processTP asP shownP inP FigureP zMDM FurthermoreP theP
RetrievePServicePSCUPtypicallyPprovidesPaPStoragePServicePinPorderPtoPreceivePthePobjectsPviaPthePC5
StoreMPHoweverTPthePC5MovePRequestPcanPalsoPmovePaPstudyPtoPthirdPpartyPmachineTPiMeMPdifferentP
machineP thatP requestedP theP studyMP ItP isP importantP toP keepP inP mindP thatP aP C5StoreP commandP isP
issuedPforPeachPimagePtoPbePtransferredMPAsPitPwillPbePshownPfurtherPinPthisPdocumentPthisPmightP
notPbePthePmostPeffectivePwayPofPtransferringPstudiesPwithPaPgreatPnumberPofPimagesM

NotePthatPforPthePpurposePofPperformancePoptimizationPinPaPPACSPenvironmentPthePC5MoveP
andPthusPC5StorePcommandsPhavePcrucialPimportanceMPQuery6RetrievePisPnotPonlyPonePofPthePmostP
usedP servicesP inP aP PACSP environmentP butP alsoP isP normallyP includedP inP middleP ofP theP medicalP
practicePworkflowPwherePthePdelaysPshouldPbePthePlowestPasPpossibleM

2.3.7.DICOM WADO

LatestP versionsP ofP DICOMP StandardP haveP introducedP WADOP SWebP AccessP toP DICOMP
ObjectsU [ID]MPWADOPisPthePmostPrecentPinitiativePtoPtakePDICOMPStandardPtoPthePwebMPAsPstatedP
previouslyPstatedTPDICOMPCommunicationsPProtocolPisPonPthePapplicationPlayerPofPthePOSIPmodelP
asP suchP fullP connectivityP canP onlyP beP achievedP ifP theP networkP environmentP recognizesP DICOMP
protocolPasPaPlegitPapplicationPandPthusPprovidePfullPaccessPtoPthePnetworkM

UnfortunatelyTPmostPprivatePnetworkPadministratorsP tendPtoPapplyPsecurityPmeasuresPdueP
toPthePpolicyPrestrictionsTPsuchPasTPfirewallsPtoPbetterPsecurePtheirPnetworkPassetsMPDICOMPProtocolP
isPoftenPnotPrecognizedPandPthusPblockedPinPmostPprivatePnetworkPenvironmentsM

Figuret2.5: DICOMtQuerytServicet(C-FIND)tprocedures.tAdaptedtfromt[1].
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Ink spitek ofk usingk standardk DICOMk Communicationk Protocol]k WADOk usesk thek wellFknownk
HTTPk protocolk tok providek accessk tok DICOMk Objectsk andk ServicesRk HTTPk Traffick isk normallyk
acceptedk ink everyk networkk sok DICOMk informationk usingk HTTPk protocolk cank effectivelyk cross
organizationskboundariesR

Ask [6L] states] WADOkdoesknotkprovidekallk thekstandardkDICOMkServices]knamelykcontentk
discoverykanalogousktokCFFindkstandardkcommandRkMoreover]kWADOkimplementskotherkservicesk
relatedk tok thek transformationk andk renderingkofk imagesk whichk clearlyk indicatesk thatk WADOkwask
notkintendedktokbekservedkaskakwebkinterfacektokaccesskPACSkRepositorieskbutkratherkankextensionk
tok providek morek functionalitiesk fork teleFradiologyk applicationsRk Thek Relatedk Work 9R( sectionk
provideskakbriefkdescriptionkofkWADAk[69] whichkintendedktokextendkthekWADOkenablingkCFFindk
likekqueriesktokarchivesR

2.4. Cache Systems

Cachesk arek widelyk usedk acrossk everyk IT systemRk Cache consistsk ink creatingk ak temporaryk
memoryktokstorekcertainkobjects thatkhavekakhighkprobabilitykofkbeingkaccesskinkakshortkperiodkofk
timekcomparedkwithktheknormalkrepositoryRkThekideakiskbasedkonkthekassumptionkof retrievingkank
objectkfromkthisktemporarykmemorykshould beksignificantlykfasterkthankretrievingktheksamekobjectk
fromkitskoriginalksourceRkCacheskhavekbeenkusedkforkinkmanykscenarios] evenkbeforekthekWebk9R2k
technologiesk tookk placek overk thek ITk fieldRk Thesek systemsk havek beenk largelyk used namelyk ink
computerkarchitecturesR

CachekSystems are oftenkassociatedkwithkmultiplekhierarchicalk levels]kaskdifferentkstoragek
devices oftenkhavekdifferentkspecificationsRkNamelykstoragekcapacity]kpersistence]kretrievalkspeedk
andk latency]kask itk iskwellk representedk ink [92]Rk Forkexample] hardkdiskkbased cachekhavekgreaterk
capacitykbutkseverelyklackkperformancekwhenkcomparedktokmemorykyRAMzkbasedkcacheR

Distributedk systemsk havek takenk thek usek ofk cachingk technologiesk veryk seriouslyRk Sincek
communicationskinsidekakcomputationalksystemkarekmuchkfasterkthankinkLANkenvironmentsRkAlso

Figurea2.6: DICOMaRetrieveaServicea(C-MOVE)aprocedures.aAdaptedafroma[1].
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much faster compared with the WAN environments, and so, further cache levels were introduced 
combining cache instances deployed at different nodes of the system. 

Distributed systems can be split in two major groups: client caches and distributed caches. 
Client caches (or local caches) are deployed locally to in each distributed system user. They 
provide extreme acceleration for retrieval of objects although they are often very limited 
considering the storage volume. Thus, they are only able to cache a very small portion of the 
distributed system data. Distributed Caches are deployed on the distributed infrastructure 
instead of its end users. Although they do not provide as much acceleration compared with local 
caches but they often cache more volume of content. 

Nevertheless, Cache Systems are not only associated with benefits. Actually the 
exploration of caches involves difficult engineering problems. These problems are associated with 
the integrity of cached objects in the different hierarchical levels of the system and with 
strategies associated with the population and eviction of those objects. 

According to [20] there are two major trends for data management in hierarchical multi-
level caches. The inclusive management, where higher levels, with greater capacity, enclose the 
cached objects in lower levels. The exclusive management were cached objects are generally only 
present in a single level, providing better usage of cache capacity at the expense of harder 
population/eviction strategies.  

Cache population strategies are associated with the insertion of objects into the cache. 
Cache population can be done expressly, resorting to pre-fetching techniques, or it can be 
executed along with the life-time of the cache, taking advantage of the client’s work-flow. In its 
turn, Cache eviction is associated with the removal of less important objects, making room for 
more important ones. It is normally associated with eviction policies although users can perform 
it expressly. These policies are used to select the less important objects and therefore can be 
evicted. A Cache eviction policy example is the LRU (Least recently used) that evicts the least 
used objects. 

The following subsections provide a brief description of caching technologies that can be 
used to fulfill the needs of the distributed system proposed on this thesis.  

2.4.1. Java Caching System  

JCS (Java Caching System [21]) is a caching system written in Java that provides the 
deployment of multi-level hierarchical caches in Java applications. As stated in [21] “It is intended 
to speed up applications by providing a means to manage cached data of various dynamic 
natures”. JCS is highly configurable and therefore can be deployed with a wide variety of caches 
configurations. It supports the most common caches architectures for local and distributed 
caches. 

JCS uses a concept of regions that can be seen as cache instances. Each region can be 
deployed with different combinations of plugins adding different levels with specific behaviors to 
the instance. The plugins are divided in four major groups Memory, Disk, Lateral and Remote. 
Memory and Disk plugins provide multi-level local cache support with common eviction 
techniques such as Least-Recently-Used (LRU) or First In First Out (FIFO). There is a JDBC [22] 
plugin in the disk group that provides persistent caching resorting to an ODBC [23] database, 
along with a specific plugin for Oracle’s Berkeley DB (a key-value database for java). 

The Lateral and Remote plugins provide connectivity across multiple cache instances (both 
local and remote) with distributed caching capabilities. There are multiple plugins which makes 
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the system highly tunable. Remote and Lateral plugins are often implemented on top of the 
TCP/IP transport protocol.  

This framework is possibly the most complete caching solution for Java. There are other 
similar solutions for cache development, such as, Infinispan and Ehcache [24, 25]. The provided 
functionalities are more or less similar to JCS. However [21] claim JCS to be faster than Ehcache 
so that’s the reason Ehcache description has neglected in this document. As for Infinispan, 
through the analysis of [24] it is driven to distributed caches than JCS as it makes almost no 
reference to local cache deployment. 

2.4.2. MapDB 

MapDB is an open source project with a few years, at the current date. It is an embedded 
key-value database for Java. Although it has some very particular features that make MapDB a 
unique database engine, suitable for storing data blobs persistently.  

As [26] MapDB offers a set of concurrent associative memories (Maps and TreeMaps) to 
store serialized objects in both disk and memory devices. By using a key-value approach, 
query/retrieval of objects can be executed more efficiently than in other database engines (SQL 
or Document based).  

Moreover, MapDB database engines offer encryption, transactions, caching and custom 
object serialization that may be used optionally to enhance the engine performance. MapDB is a 
memory cache designed for temporary storage of objects. Operations such as, read and write 
may not be performed directly to the disk. It can be configured with the Least-Recently-Used 
(LRU) eviction strategy, as well as with the desired in memory capacity. Management of cached 
objects is completely delegated to the database engine. 

Compared to Java Caching System, MapDB is not a specialized cache provider. 
Nevertheless it offers a level of persistent disk storage and a level of memory cache that fits 
perfectly for our needs. As storage of binary data in common ODBC databases have poor 
performance, MapDB presents itself as better alternative than JCS as it is less complex, portable 
and faster for this kind of data. 

2.5. Communication protocols 

When aiming to achieve the best performance possible, sticking with the same transport 
protocol might not always be the best idea. Especially, if on top of the transference protocol we 
use a totally non-related application protocol to achieve a specific goal, such as, in our case to 
achieve connectivity across multiple private networks. 

This section provides a brief description of techniques used to provide connectivity across 
multiple private network environments as well as a very efficient transport protocol that may be 
used to optimize communications in those cases. 

2.5.1.  UDT: UDT Based Data Transference. 

UDT is a transport protocol aiming to mitigate the limitations of TCP algorithms on high-
speed networks. In [27] the authors claimed that TCP congestion control, flow control and 
window control algorithms do not work well for high-speed networks with high latency. Actually 
in [27] it is given an example for an high-speed link of 10Gbps where the TCP could only achieve 
around 100Mbps effective bandwidth usage. It is certain that most medical institution do not 
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have such high-speed Internet connections. Nonetheless, UDT approaches data transference uses 
some good assumptions. 

Firstly, congestion control, flow control and window control algorithms are tunable by the 
user application using a well-defined interface. Secondly, the protocol itself has enhanced 
bandwidth detection and uses a much optimized approach to acknowledgement of messages as 
described in [27]. Summing up, they might be configurable to our environment constraints. 

Lastly, besides the client-server connection establishment, the UDT has a mode called 
Rendezvous Connection Setup. It takes advantage of the UDP protocol to setup the connection 
either by the server or the client. In the rendezvous setup mode, both hosts attempted to 
connect and listen for connections at the same time, making the connection possible even if one 
of the hosts is behind a firewall protected environment. Moreover this rendezvous mode 
promotes firewall hole punching. Firewall hole punching technique is used by some well-known 
peer-to-peer applications (such as Skype) to provide connectivity between works behind firewalls 
and NAT environments. It consists in connecting to an accessible host in order to open 
“breaches” in the firewall or NAT. As the UDP protocol supports various data streams per port 
these breaches can then be used to communicate with the desired host. 

2.5.2.  ICE: Interactive Connectivity Establishment 

ICE (Internet Connectivity Establishment) is the latest effort of IETF (Internet Engineering 
Task Force) in NAT transversal [28]. NAT transversal is the concept of creating a communication 
channel between two hosts even if they stand behind a NAT system. It is a hot topic for IETF 
because of its interest in multimedia communications.  

Multimedia communications in Internet often use out of band control protocols with 
rendezvous capabilities such as SIP (Session Initiation Protocol) [29]. ICE is very well enclosed in 
the SIP/VoIP environment and in multimedia communications in general. Its main goal is to find a 
direct communication path between two remote hosts using existent techniques, such as, TURN 
and STUN. STUN and TURN are two techniques previously used to transverse NAT. Their 
effectiveness varies according to the type of NAT implemented in both networks. Moreover, ICE 
evaluates all the found paths and orders them in terms of efficiency. 

There are multiple libraries supporting ICE Protocol including one for Java, although it is 
not completely implemented and lacks of reviews. There are multiple stable releases of ICE 
libraries written in C language. There are no records of attempts made in order to use the ICE 
protocol in data transference situations but in the multimedia environment (VOIP and other SIP 
based Communications) it is frequently used.    

2.6. Related Work 

The typical implementations of DICOM Storage and Retrieve processes are not very 
efficient. The main propose of a DICOM network is to support exchange of medical image data 
between different nodes of the network. File download and upload are therefore two major 
processes. Nonetheless, creating strategies to improve this process is challenging due to few 
conceptual problems associated. Firstly there is no way of knowing how many images, nor its 
size, does a study have prior to its retrieval. The downloader will not be able to estimate the 
study download length, neither in terms of time nor in number of missing images. Secondly, 
there is no control in the transference procedure, in the downloader point of view, that allows it 
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to pause study retrievals. Lastly, storage requests are issued in sequence without any parallelism, 
leading to poor performance in high latency networks. These issues are well represented in [2].  

In [30] a study was conducted with a miscellaneous of medical imaging studies. It revealed 
that standard DICOM transference syntax (without any kind of compression) only used around 
75% of the available bandwidth in LAN environments. It was also identified a problem with the 
agreement of transference syntax in DICOM UL associations. Citing [30] although DICOM 
supports various transference syntaxes with different levels of compression (both lossy and 
lossless) applications very often do not support the same syntaxes. Consequently leading to 
massive usage of the default transference syntax.  

In order to mitigate this problem, the usage of interfaces between the DICOM applications 
to mediate the transference was proposed in [30, 31]. The interfaces would act as proxies 
between the two applications supporting the best transference syntax possible. Moreover, they 
provide parallel transference of images. 

Conducted trials revealed the optimum number of parallel transferences as well as the 
most efficient compression codec for the transference syntax. With the proposed method Maani 
et. al. claim to have achieved 90% of network usage in LAN communications. The trials consisted 
in the transference of multiple studies at the same time with a significant data volume of 157MB. 
The proposed method managed to achieve considerable improvements both in LAN and WAN 
scenarios. The performance improvement in a WAN scenario was even better, as parallel 
transferences proved to be more effective. 

Although this case study scenario is only focused in point-to-point connections the analysis 
of DICOM Protocol weaknesses proved to be very similar to the problem stated in this thesis. 
Compared to our proposed architecture, this technique cannot guarantee, “anytime anywhere 
access” as communications between interfaces use the normal DICOM protocol. Moreover they 
do not provide any security extensions to the standard protocol.  

In [32] Bastião et al, proposes a PACS architecture that takes advantage of the cloud 
computing capabilities. Cloud providers offer huge amounts of storage space as well as optimal 
availability of data which makes them a very attractive platform for storing large volumes of data, 
key features of any PACS Archive. Costa et al [6, 33] claim that costs of storing large volumes of 
data on cloud providers tend to be smaller than regular in-house storage as it does not require 
any upgrades over time to keep-up with the amount of data. Furthermore cloud based PACS 
Archives can be effectively shared among different institutions and thus, effectively promoting 
study exchange and cost reductions [34]. 

Bastião et al, states that a PACS Archive might be divided into two different components, 
DICOM Object repository (storage) intended to store the actual objects and a indexer database 
for meta-data. Indexed meta-data enable faster responses to find requests. The proposed 
architecture intends to move both these components to cloud providers while keeping a secured 
master index inside the medical institution with the confidential patient meta-data. A gateway 
was also proposed. It works as a proxy for DICOM-Commands, translating them to web services 
requests. This approach provides compatibility with DICOM equipment way for both the master 
index and the cloud providers. 

Performance tests were conducted on two different cloud providers Amazon S3 and 
Google Storage [35, 36]. They showed that this cloud-based PACS Architecture is significantly 
slower than regular PACS approaches (with archives inside the institution). However, even with 
poor performance, the proposed PACS-Cloud architecture opened the doors for the distributed 
DICOM network that will be mentioned further in this document. Its main ideas of sharing studies 
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among institutions and studies distribution based on web technologies were very helpful in 
following studies. 

As expressed, cache systems are a hot topic in distributed systems. As such, previous works 
related to medical imaging and distributed PACS architectures have somehow incorporated cache 
components in order to improve their workflow. Nevertheless, there seems to be no proposal for 
generic software cache architecture for medical imaging repositories. Related works seems to 
focus either on pre-fetching techniques or very specific cache specifications. 

In [37] was proposed a pre-fetching technique for medical imaging information systems 
(PACS, RIS, HIS). Its intention is to minimize the delay in operations associated with the retrieval 
of data from those systems by retrieving those objects prior to its request. This technique is 
focused on an institutional level rather than a distributed environment.  

In [38] was presented a caching technique for a web-based PACS. The cache system was 
associated with a pre-fetching technique based on windows of interest. The method involved the 
calculus of a window of interest for each user. Cache population and eviction would then reflect 
the changes to the user window of interest. However great results were achieved, direct 
implementation in our architecture is infeasible as it is very specific for this use case scenario. 
Although we acknowledge that splitting images into smaller portions may help to improve the 
PACS users experience. 

Another possible solution is the deployment of hardware caches. Essentially they are 
replicas of the actual image repository. Integration of these replicas within the PACS environment 
is often achieved by specific hardware or software. For example, in [39] Gutiérrez-Martínez, J. at 
al describes a cache architecture for a single hospital PACS. The proposed solution required 
specific hardware and infrastructure to be deployed. As the result system is impossible to be 
embeddable in a single software solution. 

Steve Langer [40] presents a clever approach for improving the QoS of a PACS with an 
outsourced PACS Archive. His approach involved the deployment of a small intermediate cache 
archive, as such, the performance constraints introduced by the outsourced archive were 
reduced. In this thesis, we keep in mind this approach in order to propose our own cache strategy 
for reducing the footprint of foreign PACS Archives. 
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3. Case Study Assumptions 

This chapter provides the assumptions and specifications about the current state of tow 
background projects for this thesis, namely the DICOM Router [9]. Firstly, it will be presented a 
general description about both projects followed by a complete description of current 
architecture. 

3.1. DICOM Cloud Router 

DICOM Cloud Relay is a relay service over the cloud that was proposed by Bastião et al in 
[9]. It was intended to provide DICOM Query/Retrieve and Storage services between remote 
locations over the Internet. The suggested approach enhances study exchange among institutions 
and tele-radiology by promoting seamless communication between DICOM compliant 
applications, both inside and outside institutions boundaries. 

The proposed solution involved the deployment of two main components. The DICOM 
Routers, which are in charge of relaying communications between applications in different 
networks. Therefore, they are intended to be deployed in every DICOM island3. They are 
essentially DICOM nodes, providing DICOM Services to other applications, working as server 
unities and also as consumers. Provided services are essentially virtual because they are 
mediators to real services provided by applications over the distributed environment. They also 
have the responsibility of advertising the distributed environment about the services provided by 
appended applications. DICOM Routers act as proxies for these services enabling DICOM-
compliant applications to access to remote applications (via router) and thus inter-connecting 
distributed environments.  

The second component is DICOM Bridge Router. It works as a network coordinator storing 
centralized information about DICOM Router, services provided in the network and their 
location, also called routing tables in the paper. Moreover, DICOM Bridge Router provides also 
some security features, such as, user authentication. 

The proposed solution also involved cloud providers in data transference processes. Cloud 
provider was used as middleware between routers. The studies are uploaded first to the Cloud 
providers and then downloaded by the receiving router. This was done in order to free the 
central DICOM Bridge Router of data flows keeping bandwidth needs and associated costs as 
reduced as possible.  

3.2. Current scenario 

The current scenario of DICOM communications environment in our research lab is derived 
from the [9] approach. However, some modifications have been made in order to make this 
distributed PACS more compliant with real-world deployments.  

                                                           
3
 DICOM island means a DICOM network without connectivity to other DICOM networks 
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The deployment scenario also involves the creation of a distributed PACS system 
supported over the Internet with DICOM-Ready communications. DICOM Communications 
(Services) are provided by a similar approach to [9] using DICOM Routers to inter-connect every 
DICOM island. DICOM islands are denoted to be networks were full DICOM Connectivity can be 
achieved, typically inside institutions or other private LAN environments. As DICOM routers are 
typically inside firewall protected networks, direct communication between routers may not 
always be achievable.   

Apart from previous works (namely [9, 32]) the actual instantiations of the Cloud Router 
architecture does not rely completely on public cloud Services, neither for communications as [9] 
nor for storage (Image Archives). Rather, the platform relies on private repositories and the 
common Internet infrastructure for inter-institutional communication. More accurately it uses 
the well-known HTTP protocol. As the result of keeping the system’s communication protocol 
fully web 2.0 compliant, DICOM Routers can effetely achieve connectivity in most private LAN 
environments.  

There are two main reasons for PACS Archives not to be completely resident on cloud 
providers. The first reason, is that despite several attempts to secure the PACS Archive located in 
the cloud, legal constraints, namely in Portugal, France or Italy, tends not to make this migration 
pacific. Moreover, medical personnel have shown some resistance in relocating the whole Image 
Repository to a private contractor, again due to privacy and security considerations. The scenario 
where a PACS Archive would still reside in the medical organization boundaries has generally a 
better acceptance among the medical staff.  

Taking into account both the legal aspects and the medical personnel valuable opinion, the 
current state of the art architecture preserves PACS Archives inside the institutions boundaries as 
in general PACS.  

3.2.1. Main Architecture 

The main architecture reflects the medical institutions needs to access medical image 
repositories from outside their institution boundaries. By not only making use of tele-radiology 
features but also in sharing studies resources across affiliated institutions. Figure 3.1 shows both 
these aspects inter-connecting a private institution with a physician at home and an affiliated 
institution. Both these DICOM islands representations are metaphors for real world use case 
scenarios. 

The physician at home is a use case where the DICOM application residing on its own 
DICOM Island needs to access the PACS Archive (inside the private institution boundaries) 
normally for revision of studies. Multiple instances of these use case are supported, supported in 
its turn by the accounting system in the DICOM Bridge Router, which encloses the access to the 
distributed system to authorized personnel. 

The Affiliated institution with its own local PACS Archive is the metaphor for remote access 
to the distributed PACS by physical locations not directly connected to the main institution 
facilities. Thus this use case encloses many possible scenarios including sharing of resources 
across multiple institutions, aggregation of facilities from the same institution etc. Again the 
access to the distributed PACS is subjected to the authorization given to the DICOM Router by the 
DICOM Bridge Router when it logs-in in the system. 
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3.2.2.DICOM Bridge Router

DICOMABridgeARouterAservesAaAfewAnobleApurposesSAOneAofA itsAmostA importantAfeaturesA isA
userA authenticationSA AsA inA anyA distributedA systemA environmentHA userA authenticationA priorA toA
entranceA isA crucialA toA provideA secureA andA armlessA servicesSA UserA authenticationA isA basedA onA
DICOMA RoutersA credentialsSA EveryA routerA hasA toA supplyA itsA credentialsA inA orderA toA accessA theA
systemSATheseAcredentialsAareAalsoAusedAtoA identifyAtheADICOMARouterA inAtheAdistributedAsystemA
environmentSA

AlthoughA securityA isA veryA importantH itA isA notA theA mainA functionA ofA theA DICOMA Bridge
RouterSATheAmainA functionA ofA theADICOMA BridgeARouterA isHA asA itsA nameA suggestsHA establishingA aA
bridgeA betweenA theA DICOMA RoutersSA ItA isA usedA asA aA “manA inA theA middle”A forA communicationA
betweenA pairsA ofA DICOMA RoutersSA ForA instanceHA routerA AA wantsA toA sendA some dataA FDICOMA
images(A toA routerA BSA MindingA theA realA worldA constraintsA imposedA byA firewallsA andA generalA NATA
systemsHArouterAAAmayAnotAhaveAdirectAconnectivityAtoArouterABSAInAorderAtoAovercomeAthisAinabilityA
theArouterAAAsendsAtheAmessagesAtoAtheADICOMABridgeARouterHAratherAthanAdirectlyAtoAtheArouterA
BSATheADICOMABridgeARouterAactsAasAaArelayAtoAretransmitAtheAmessagesAtoAitsAproperAdestinationS

TheA DICOMA BridgeA RouterA achievesA totalA connectivityHA asA itA isA actuallyA anA HTTPA ServerA
listeningA forA newA HTTPA ConnectionsSAEachAestablishedA connectionA isA usedA toA theA welfare ofA theA
distributedAsystemSAEveryADICOMARouterAhasAatAleastAoneAactiveAconnectionAthatAisAestablishedAatA
theA timeA ofA itsA registrationA inA theA BridgeSA ThisA everlastingA connectionA canA beA seenA asA aA serviceA
channelHA inAorderA toAopenAnewAchannelsA thatAmayAbeA requestedSANoteA thatA thisA channelA isA veryA
importantA becauseA theA DICOMA BridgeA RouterA cannotA openA newA communicationsA channelsA byA
itselfHA asA itAwouldAeventuallyA fallA inA theA firewallA constraintsA thatA wereA mentionedA aboveSA AsA theA
resultAtheADICOMABridgeARouterAusesAtheAserviceAchannelAtoAsendAaAcommandAtoAtheArouterAaskingA
theArouterAtoAopenAaAnewAHTTPAConnectionAtoAtheAserverSA

3.2.3.DICOM Service Discovery and Registration

DICOMA CommunicationsA areA veryA similarA withA theA SOAA FServiceA OrientedA Architecture(A
patternAwhereAthereAareAserviceAprovidersAwhichAsupplyApreviouslyAcontractedAservicesAtoAclientsS
AsAstatedApreviouslyAinAthisAdocumentAFsection 4S3S4(HADICOMAcompliantAapplicationsAmayAprovideA
certainA predefinedA servicesA toAothersHA suchA asHA storageA orA printingSA InA theADICOMAstandardHA theA
serviceA providersA areA calledA SCPA FServiceA ClassA Provider(SA InA ourA currentA architectureHA DICOMA
RoutersA haveA theA responsibilityA ofA makingA theA virtualA DICOMA ServicesA fromA appendedA DICOMA
ApplicationsHAiSeSAapplicationsAregisteredAinAtheArouterHAavailableAtoAtheAentireAdistributeAPACSSAThisA

Figure 3.1: Case Study general Architecture
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isyachievedyadvertisingyroutesyofythoseyservicesHyinytheydistributedyenvironmentHywhichyareysimilary
toynetworkyrouters protocolsL

Iny orderHy toy becomey availableHy DICOMy Servicesy havey toy bey previouslyy registeredy iny they
DICOMy Routersy configurationsHy iLeLy similary toy ay routingy entryy iny networky protocolsLy Routingy
entriesyareycomposedybyytheyaddressyofytheyDICOMyapplicationyUAETitle, IP Address, Portqyandythey
providedy servicey classLy ThusHy DICOMy Routersy arey capabley ofy advertisingy theiry servicesy toy they
distributedyPACSL

Routesy arey advertisedy viay DICOMy Bridgey Router toy everyy DICOMy Routery iny they systemLy
Usingy thisy informationHy ay routingy tabley isy constructedy iny eachy routerLy Thisy enablesy they correcty
associationybetweenySCUyrequestsyandyitsySCPL

InyadditionytoyuploadingyitsyroutingytableytoytheyDICOMyBridgeyRouterHyeveryyDICOMyRoutery
alsoy downloadsy they distributedy routingy tabley ofy they systemLy Byy doingy soHy DICOMy Routersy arey
capableyofynotyonlyyadvertisingyprovidedyservicesybutyalsoyofyeffectivelyyroutingySCUyUServiceyClassy
UserqyDIMSEycommandsytoyremoteySCPLyTheseytechniquesyeffectivelyyallowyremoteyservicesyusagey
inytheydistributedysystemL

3.2.4.DICOM Routers

DICOMy Routersy communicatey viay they well/knowny HTTPxSSLy ProtocolLy They choicey ofy this
protocolyisyeasilyyexplainedybyyitsybroadyusageythatyhasyconductedynetworkysecurityymanagersytoy
allowy thisy trafficy toy crossy firewallsLy Althoughy HTTPy protocoly hasy they abilityy toy passy throughy they
majorityy ofy firewally configurationsHy HTTPy protocoly isy inherentlyy clienty servery orientedy whichy
makesyitydifficultytoyachieveypeer/to/peerycommunicationsLyMoreoverH theymajorityyofyinstitutionsy
connectedy toy Internety ofteny usey NATy Unetworky addressy translationqHy disablingy nodesy Userversqy
insidey they privatey networksy toy bey reachedy byy outsidey clientsLy Asy they resultH achievingy totaly
connectivityy betweeny routersy Uiny generalqy requiresy they usagey ofy othery connectiony techniquesy
namely theyuseyofyayrelay bridgeL

Asy iny [9]H DICOMy Routersy havey they purposey ofy representingy ally they DICOMy applicationsy
insideyofyayDICOMyislandLyInyorderytoyperformythisyfeatureHyroutersyofferytheysameyservicesyasythey
DICOMy applicationsy supplyLy CurrentlyHy they DICOMy Cloudy Routery onlyy supportsy DICOMy
QueryxRetrievey andy Storagey servicesL Figurey 9L[ showsy any exampley ofy they mainy functionsy ofy
DICOMyRouteryinyofferingyCloudyBasedyDICOMyServicesyUDICOMyRetrieveyServiceqyacrossydifferenty
institutionsLy Althoughy router A doesy noty havey anyy directlyy appendedy QueryxRetrievey serviceHy ity
actsylikeyayproxyyforytheymedicalyinstitutionyarchiveylocatedyinytheyotheryDICOMyIslandL

Figure 3.2: Simplified Model of the Distributed PACS Environment.
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Data Transference: Uploading 

Data transference is a direct consequence of DICOM application calling a C-Store 
Command. In order to transfer DICOM Object over the cloud, firstly they need to be transferred 
from a repository application to the Router using the DICOM Retrieve service. Because this 
process occurs in a LAN environment, the transference is realized at a relatively fast pace. 

Usually a medical image study has multiple images. DICOM Standard transfers them 
sequentially using multiple C-Store commands. Each C-Store Command, as it was previously 
described, has a C-Store-Request and a C-Store-Response which is sent for acknowledgement. No 
multiple C-Store commands are established in parallel and the images are transferred in 
sequential order with no overlapping. 

Although in LAN environment this issue does not constitute a great problem for network 
usage. In WAN environment, bandwidth constraints and latency in communications makes the 
sequential transference of objects an inefficient approach. As in [30] the DICOM Routers make 
use of parallel transferences to boost the network usage and improves the transference 
performance in general. However, this process could still be to be improved, as it will be explored 
further in this thesis. 

Figure 3.3 shows the workflow associated to a C-Store Command received by a DICOM 
Router. It is clear that upon receiving the file, the DICOM Router immediately compresses the file 
and opens a new connection channel to the destination router. The transmission starts 
immediately after the channel establishment. Since data transmission over LAN is much faster 
than in WAN (and specially with the overhead of establishing the connection) the rate of arrival 
of files is much higher than the rate of dispatched files which leads to a bottle neck effect on the 
Router, which in its turn leads to file gathering in the router. In order to keep the Router scalable 
the maximum number of opened connection channels was limited to 10. Channel limitations 
proved to be as dangerous as necessary, as it lead to some starvation problems, i.e. for two users 
using the service at the same time. 

Data Transference: Downloading 

In order to accurately perform the DICOM Retrieve Service, it is mandatory that the DICOM 
Routers can exchange information correctly, namely DICOM Objects. As it is presented previously 
in this document, DICOM Standard uses a single major command to exchange DICOM Object 
between applications, the C-Storage command.  

In DICOM environment, it is clear how transferences are performed. However, in an inter-
institution level (communication between DICOM islands) DICOM must not be used for the sake 

 

Figure 3.3: DICOM Router incoming C-Store workflow 
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of performance. The transference method in this architecture implied the creation of parallel 
communication channels between both DICOM Routers. The uploading Router is responsible to 
open these channels. An acknowledgement message needs to be sent by the downloading 
routers signaling the correct reception of each file. After the reception of this message, both 
routers may close the channel as it becomes futile. 

Since data comes compressed from the up loader Router, decompression needs to be 
performed prior to sending the DICOM Object to the DICOM destination application. The DICOM 
Storage Service is used to send those objects. This workflow is shown in Figure 3.4. 

DICOM Associations must be established between routers. They are created in the DICOM 
Standard whenever a DICOM Service/Commands need to be exchange between DICOM 
applications. In DICOM Router architecture, DICOM applications AETitles need to be unique not 
only in the DICOM island scope but also in the global distributed network.  Moreover, 
associations are also identified by unique identifiers. These way DICOM Routers can match 
incoming DICOM Objects to its original DICOM Association and therefore its destination.  

3.2.5. Final Considerations 

The architecture described in this section is actually deployed, and capable of providing 
significant integration features as described above. Nonetheless a real word distributed PACS 
needs to provide not only features but also good quality of service. 

As explained in the chapter 1, quality of service in a distributed PACS environment means: 
good performance and good reliability. The performance of the previous architecture was 
constrained by some architectural decisions namely the creation of a new channel for each image 
to be transferred. This adds a channel establishment delay for each image transference time, 
which scales up linearly with the number of images. As some study modalities may enclose 
hundreds of images [41] having an overhead in image transference is not an acceptable option. 

Apart from those performance constraints, this architecture has two more problems. 
Firstly, the Bridge Cloud Router is a single point of failure. This means that, if the DICOM Bridge 
Router for some reason stops to operate, the whole system is compromised, as DICOM Routers 
cannot operate by themselves. Besides being a single point of failure, the DICOM Bridge Router is 
also a bottleneck as every communication channel between two DICOM Routers uses the DICOM 
Bridge Router. Its network bandwidth is shared by all the distributed system information 
workflows, both image data and control. This imposes a performance constraint and an 
infrastructural requirement, as the network connection of the Bridge Router needs to be able to 
support all the workflows. 

 

Figure 3.4: DICOM Router incoming file workflow 
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Lastly a major reliability issue occurs when the overall system fails to provide connectivity 
to its appended applications either if a DICOM Router or the DICOM Bridge Router fails. For 
instance, imagine that an application is trying to store a given image in an offshore archive and a 
failure of this type occurs. If there is no connectivity, the distributed PACS cannot provide the 
desired storage service nor a temporary storage service for the image. Thus if the application 
cannot provide this temporary storage herself this image would be lost. 

In the next chapter it will be presented an extended architecture to mitigate these 
performance and reliability issues, as it is the main scope of this thesis. 
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4. Enhanced Performance and Reliability 

This chapter provides an overview of this thesis proposed architecture. It describes the 
used techniques to achieve better performance and availability in the previously existing 
distributed PACS system (introduced in 3.2).  

4.1. Overview 

What does performance considerations mean in a distributed PACS? As it has been stated 
throughout this document, performance considerations mean reducing the footprint introduced 
by our system in the pre-existing medical workflow to the reasonable bare minimum. In this 
context, the term footprint refers to the modifications on previously existing workflow, imposed 
by an information system. For example, the raising of digital medical images and viewer 
applications changed the existing paradigm, i.e. where physicians analyzed image films, to one 
where physicians analyze images on computer screen. 

In performance terms, the main footprint introduced by a distributed PACS architecture 
has its main component in the image retrieval. The retrieval of medical image studies using a 
PACS is usually more efficient compared to analogical competitors. Nevertheless, it does not 
mean that delays introduced to the medical practice are completely inexistent. Especially, in a 
distributed environment where communication delays are introduced not only by the potentially 
gigantic data flows (4.2.1), but also by the distributed communication infrastructure itself. 
Resuming, the performance footprint of a distributed PACS can be measured by the studies 
loading time in the different use case scenarios supported by the system. This automatically gives 
extreme importance to data transference and to architectural options that could improve data 
exchange processes. 

Availability in a distributed environment is the capacity of the system to make services 
accessible. In a distributed PACS, such capacity is related not only to the system’s performance 
footprint but also to the provided quality of service (QoS). Also, it reflects the system reliability, 
which can be looked as the ability of the system to make regular medical processes keep 
functioning, disregarding external conditions, especially IT related issues. In this proposed 
architecture, it is mainly offered remote DICOM Services (Query/Retrieve, Storage) which means 
that the distributed PACS environment should be always accessible, otherwise the medical 
practice may be severely compromised. The availability of imaging studies is a working subject of 
fault tolerance and replication areas of the information technology. In this chapter, it will be 
proposed a method for PACS Archives replication, as a similar approach was taken in other non-
related distributed systems. 

The proposed architecture derives from the previous distributed PACS architecture 
introduced in section 3.2. In order to explain our proposal, Figure 4.1 will be used as an 
illustrative example. The proposed architecture places the DICOM Bridge Router in the same 
network as the PACS archive, i.e. inside the private institution network boundaries, in order to 
improve the overall system performance. Thus, the communications between the Bridge and the 
DICOM Router associated to the PACS Archive are performed in a LAN environment, having 
typically a better performance, when compared to the deployment of the bridge in an external 
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environment.h Inh ah LANh environmentS ith willh beh possibleh toh benefith fromhminorh roundh triph timesh
ORTTzhashinternethconnectionsharehassociatedhwithhhigherhlatency.

Inh orderh toh improveh theh overallh studyh retrievalh performanceS theh Controlledh Channelsh
methodhishproposedhinhsection 4.2.hThehControlledhChannelsharehhighhlevelhcontrolhmechanismhforh
routerBtoBrouterh transferences.h Thish controlh mechanismh reflectsh manyh novelh performanceh
considerationshabouththehprevioush implementationhwhichhmakehthehenhancementhpossible.hThish
thesishalsohproposeshtohincludehahCachehModulehtohthehDICOMhRouter (section 4.3).hThishmoduleh
providesh cachingh capabilitiesh forh DICOMh imagesSh eitherh completeh orh splith inh chunks.h Ith alsoh
providesh directh supporth for imageh retrieval ash otherh workflowsh mayh use itsh synchronizationh
capabilities.h

Thehcachehmodulehwillhprovideh localhandhdistributedhpersistenthcaching.hLocalhcachinghwillh
beh implementedh onh regularh routersS inh orderh toh avoidh repeatedh transferencesh ofh images.h
WheneverhahDICOMhRouterhishpresentedhwithhthehneedhtohdownloadhODICOMhCBMovezhanhimageSh
theh localh cacheh moduleh willh beh askedh ifh theh imageh ish available.h Ifh datah ish inh theh localh cacheSh itsh
transferencehwillhbehavoidedhandh thehDICOMhRouterhautomaticallyh respondsh toh thehapplicationSh
achievinghahveryhhighhtransferhratehgain. Thehdistributedhcachinghmechanismhishourharchitecturalh
solutionh toh provide bothh higherh availabilityh andh betterh transferenceh performance.h Theyh shouldh
holdhahOstatisticallyzhrepresentativehsethofh imageshfromhahPACShArchiveShcreatinghmultipleh localesh
wherehstudieshwouldhreside.hMultiplehdatahsourceshwillheasehdatahflowhoverheadhonhbothhDICOMh
Routersh andh DICOMh Bridgeh Routersh ash datah retrievalh operationsh mayh beh balancedh betweenh
multiplehcomponentsh(section 4.3.3).

Inh previoush architectureSh DICOMh Bridgeh Routerh wash identifiedh ash ah singleh pointh ofh failureh
thath mighth compromiseh theh wholeh system.h Inh orderh toh eliminateh thish effectS theh proposedh
architecturehopenshthehpossibilityhtohinstantiatehmultiplehbridgeshinhthehdistributedhenvironment.h
DICOMhRoutershmayhconnecthtohashmanyhbridgeshashdesiredS favoringhalsoh loadhbalancinghofhtheh
distributedh system.h Severalh changesh haveh beenh madeh toh theh DICOMh Bridgeh Routerh
communicationshlayerhto incorporatehthehmultiplehbridgehparadigmsShdescribedhfurtherhinhsection 

4.4.

Figure 4.1: Purposed architecture
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Finally in section 4.5, we propose that some DICOM Bridge Routers may act as Security 
Managers protecting sensitive data in public locales. Moreover, distributed cache routers 
instances are intended to be deployed inside private institutions boundaries but also on public 
cloud infrastructures. So, it is crucial to protect sensitive data, such as, patient identification. 
Therefore the concept of safely deployed components was introduced. The unsafely deployed 
components mark the instances that should protect these sensitive data. Both DICOM Routers 
and DICOM Bridge Routers may be deployed unsafely on public providers.  

4.2. Improvements in image transference procedures 

Chapter 3.2.4 provided a small introduction on how image transference was handled by 
our proposed distributed system, more specifically on how images are transferred from a DICOM 
Router to another.  

A few problems were identified regarding not only the performance of the communication 
channels used in image transference, but also with their management. The creation of a new 
communication channel for each image proved to be an inefficient approach. Each channel 
creation has a fixed establishment delay associated. As the result, the transference’s overall 
channel establishment delay scaled linearly with the number of images to be transferred. 
Moreover, the synchronization of multiple active channels, in both downloader and uploader 
routers, required a bothersome algorithm that imposed performance constraints on its own, as 
described in 3.2.4.  

In order to solve previous issues, we propose a technique that re-uses communication 
channels. Moreover, the actual performance of the image transference channels also needed to 
be improved. Taking into consideration the distinct data profiles of medical imaging modalities 
transferred (4.2.1), we present a proposal to boost the overall performance of study retrieval. 
Both these efforts culminate in the proposal and implementation of the Controlled Channels 
method, aiming to decrease the study retrieval time by combining channel re-usage with a file 
splitting technique, described in sequel.  

4.2.1.  Data profile of medical imaging studies 

In order to improve the performance of any data transference, it is essential to understand 
beforehand which are the profiles associated with the data to be transferred. For instance, the 
average volume of data, whether or not it is divided in smaller pieces (files or chunks), the 
average size of each piece, among others. Different data profiles may benefit differently from 
different flow control algorithms. The performance requirements for each profile may also vary. 
For example, for small files, latency in communications is more important than raw transference 
throughput. 

Distinct medical imaging modalities produce studies with different data profiles [40, 41]. 
They vary from small studies, with one or two images, to studies that enclosed several hundreds. 
Moreover, images itself vary from a few hundred KBs (Kilobyte) to a GB (Gigabyte) per object file. 
This diversity is well represented in our study dataset (see Table 5.1 on chapter 5). In our use case 
scenario, different data profiles are even more relevant than in usual point-to-point 
transferences. Due to the fact that transferring images from router-to-router often requires its 
previous transference from the PACS Archive to its appended router. This transference is 
completely serialized (non-parallel), as a result, images will arrive to the router at different rates, 
therefore severely shaping the posterior router-to-router transference. 
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Achieving the best performance in every circumstance is tricky. As such, our flow control 
algorithm needed to be adaptable. The next sections will describe our proposal to reduce the 
effect of such a diversity of data profiles, by using an adaptable flow control mechanism along 
with a data normalization technique. 

4.2.2. Controlled Channels 

Controlled Channels method is the primary contribution of this thesis for enhancing 
medical imaging transference performance in distributed PACS using the DICOM Router platform. 
The main concern in Controlled Channels is to provide a very high-level communication channel 
for router-to-router image transference. There are a few specifications that make Controlled 
Channels a unique proposal. 

Firstly, they implement an application layer flow-control algorithm that is intended to 
accelerate performance regardless of the transport protocol beneath it. Some transport 
protocols, such as, TCP/IP, may also have flow-control algorithms incorporated. However, in our 
case, router-to-router communications cannot rely on them, as they are connection oriented and 
router-to-router communications are relayed by the DICOM Bridge Router (i.e. they are not 
direct connections). For example, TCP/IP’s flow-control algorithm can only guarantee the delivery 
of messages from DICOM Routers to the DICOM Bridge Router and not from router to router. 
This was also performed by previously implemented channels through the use of acknowledge 
messages. However, its impact on the channels performance was not taken into account. 

Secondly, Controlled Channels are not bound exclusively to DICOM data. In fact, they are 
completely generic regarding the type of transferred data and its usage. This makes them actually 
usable in other systems. In our particular use case, it allows the re-usage of a channel for multiple 
images transfer. Moreover, the use of the Controlled Channels method allows the data 
transference channels to be oriented to its origin-destination pair of routers, as opposed of being 
oriented to the image as the previously approach. 

Lastly, the Controlled Channels are adaptable and flexible. They are bound to three 
transference parameters making possible to tune the channels behavior according to the data 
profiles of studies being transferred and the channel congestion rate. This enables improvements 
of performance regardless of these factors. 

In order to develop this method, we carefully analyzed which metrics associated with the 
data transference channels would have a higher impact on the overall study retrieval 
performance. We identified the transference delay, the communication channel throughput and 
the channel establishment delay (previously referred in this document). The transference delay is 
the total time needed to download a study from one router to another. It very well reflects how 
long it takes to issue all the storage requests from a C-Move call, in our distributed environment. 
The communication channel throughput is the relevant data transference rate of the 
communication channel, discarding the channel’s overhead, such as, acknowledges and other 
notification messages. This reflects how much of the channel is wasted with non-relevant data. 

As previously referred, transference of medical images has to deal with huge amounts of 
data but also with different data profiles. This produces different combinations of study size, 
number of images and average image size, which severely shape the conditions imposed by the 
previously described metrics. For instance, studies with many small images will generate several 
control traffic and benefit of a small transference delay. On the other hand, in big files the 
connection establishment delays is meaningless and thus maximum throughput is desirable even 
if it means higher establishment delays. 
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As a result, Controlled Channels implements a data normalization procedure. It is intended 
to provide an abstraction to the studies data profile. Thus, the communication channel can 
optimize the transference performance based only on its own parameters (described next). 

Study data profile normalization 

In order to normalize the data profiles, two approaches were taken. The first approach is to 
split image data into chunks. The process of splitting is easy both conceptually and 
computationally. It consists of dividing the binary data of file into portions called chunks. In order 
to ease the chunk handling with a minimum data overhead, along with each chunk, it is also 
produced a chunk descriptor containing information to identify the chunk unequivocally. It 
includes the chunk size, chunk number (indication the position of the chunk in the original file) 
and the total number of chunks produced from the file. Holding both the chunk data and the 
chunk descriptor, any application (local or remote) can recombine the data and reproduce the 
original file. Figure 4.2 shows an example of this technique. 

Chunk splitting is implemented in the DICOM Router prior to data transference. In addition 
to chunk splitting, the Controlled Channels implement the concept of Bulk transference where a 
predefined number of files (bulk size) are transferred sequentially, without acknowledging each 
file, but rather the whole group. In order to accomplish this, Controlled Channels have an inner 
queue where files wait for its turn to be transferred. When the inner queue reaches the required 
number of files, a new bulk containing those files is dispatched. However, there is a maximum 
waiting time in which an incomplete bulk will be sent in order to prevent long waiting times to 
files that are in the queue of an available channel. 

In Figure 4.3, it is represented a Controlled Channel associated with the length of time 
needed to establish the communication channel, i.e. the channel establishment delay. It is also 
represented two bulks, one with three chunks (representing a full bulk) and an incomplete bulk 
with just one chunk. Along with the Controlled Channels representation, there is also a 
representation of the previous transference paradigm in order to give contrast to differences 
between both. 

Using Controlled Channel with File Splitting technique, it is possible to normalize the data 

 

Figure 4.2: Image spliting example 
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profile, as files are primarily split with a maximum size, i.e. the chunk size. Then, from study to 
study, the average chunk size would not differ, only the number of chunks is different. This will 
make Controlled Channel queues to fill at different rates. On one hand, studies with large average 
file size will produce large number of chunks at slow rates (as images take more time to 
sequentially arrive from the DICOM application). On the other hand, studies with low average 
image size and high file count will produce a constant stream of few chunks. 

The solution, to cope effectively with both scenarios, resides on the configuration of the 
Controlled Channels parameters, i.e. the Bulk Size and Maximum Pool Time. Increasing Bulk Size 
will reduce acknowledge overhead and, theoretically, increases the throughput of the channel. 
This should be performed when the channel has a high chunk count in the queue. However, there 
is a cutoff point where the throughput of the channel cannot be increased further. Then, the 
solution is to open another parallel channel. Decreasing Maximum Pool Time and Bulk Size will 
reduce latency between bulk transferences, and thus it will provide more response to small 
studies and images (see section 8.1). 

Controlled Channels provide two interfaces which main goal is to audit channel 
performance and reconfigure its parameters on the fly. Performance Probes takes into account 
major factors of the channel operation, such as, the amount of data transferred by the channel 
since its creation, a time stamp denoting how long the channel have been active and, lastly, the 
channel throughput. The configuration of the Controlled Channels can be performed via a well-
defined interface aiming channel reconfiguration over time. Ideally, each channel would be 
automatically configured taking into account study modalities characteristics and the channel 
probe information, such as, the queue length or average waiting time. 

 

Figure 4.3: Controlled Channels Representation 
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Implementation 

The Controlled Channels were developed along with the DICOM Router Project. It used a 
previously developed component denominated as Communication Manager which core 
functionality is to manage of the establishment of communication channels (router-to-router). As 
the result, communications are still performed using the same set of messages and channel 
creation and deletion is accomplished through the same procedures.  

Apart from the Communication Manager, the Controlled Channels have essentially other two 
key components, as illustrated in Figure 4.4. The Stream Controller is used to provide a flow-
control algorithm on top of the transport layer in order to support reliable connections between 
two points that are connected through a Bridge. There are two kinds of Stream Controllers, an 
Input Stream Controller used in outgoing channels (upload) and an Output Stream Controller used in 
incoming channels (download). These controllers are responsible by the enhancement of 
transference performance, namely the implementation of the bulk transference capabilities 
described above. 

The flow-control algorithm makes use of three distinct messages. The header message is 
used to transmit all the bulk chunk descriptors in a single message. Its correct reception is 
signaled by an acknowledge message. It does not carry with any information at all, although it is 
crucial for the maintenance of channel. The absence of these messages will cause the channel to 
fault and become useless to the system. The chunk data is handled by chunk messages that are 
transferred in sequence (similar to its descriptors). The bulk transference is finished with an 
acknowledge message that makes the channels available to issue another bulk. This procedure is 
described in Figure 4.5.  

Stream Controllers provide blocking read/write operations. Thus, each stream needs to be 
associated with a driver to be used in a concurrent environment. Stream drivers are essentially 
threads that manage the queue of the channel and perform account operations. They also 
provide an abstraction from the blocking nature of the stream to a non-blocking approach more 
suited for concurrent environments. There are two kinds of drivers for incoming and outgoing 
channels. BlockingBuffer is a very important component inside upload drivers. It manages the 
minimum waiting time of the channel by scheduling a maximum time for the channel queue to be 
flushed upon the entrance of a new chunk in an empty queue. This scheduled operation may be 
canceled if the queue reaches the bulk size in the meantime. 

 

Figure 4.4: Controlled Channels Architecture 
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Integration	in	the	DICOM	Router

The. integration of. Controlled. Channels. in. DICOM. Router. involved. certain adjustmentsx
mainly.in.communication control.proceduresA.Firstlyx.a.manager.module.had.to.be.implementedx
in. order. to. manage. the. creationx. deletion. and. performance. of. the. channelsA. With. Controlled.
Channelsx.before the.transfer of each.filex.a.channel.needs.to.be.retrieved.from.this.moduleA.The.
possible.creation.of.new.channels.will.be.performed if.neededx. iAeA.only. if.the.channels.are.too.
busy.or.there. is.no.channel.established.to.the.destination.routerA. Comparing.with.the.previous.
approachx. this. is. somehow. analogousx. because a. new.channel. is always. created. to. transfer. an.
imageA

In.order.to.balance.the.load.of.each.channelx.a round.robin.algorithm was.implementedA.It.
works.by.changing. the. selected.channel.whenever. it.has. its. inner.queue. full Bhas.more.chunks.
than. its. Bulk. SizeSA In. case. every. previously. established. channel. has. its. inner. queue. fullx. the.
algorithm. tries. to. open. another. if. the. maximum. number. of. active. channels. had. not. been.
previously.metA This.workflow.is.represented.in.Figure.4A6A

On.the.receiving.routerx the.application.has.to.wait.for.all. the.chunks.of.the.same.file.to.
become.availablex.otherwise. the. image. file.will.not.be.valid. to.enter. in. the.DICOM.streamx. iAeA.
DICOM. streams.can.only. send. complete. imagesA. As.chunks. from. the. same. file. can. arrive. from.
multiple.channelsx.it.is.crucial.to.have.a.centralized.waiting.module.to.all.the.channelsA.Further.in.
this. documentx it. is. proposed. a. Cache. System. Architecture. thatx along. with. the. faculties. of.
caching.DICOM.Objectsx provides.the.resources.for.the.channel.synchronizationA

The. complete. integration. of. the. Controlled. Channels. in. the. DICOM. Routers. workflow. is.
represented.in.Figure.4A7A.Along.with.the.processes.described.abovex.it.is.important.to.refer.that.
images.are.compressed.before.being.splitA.This.assures.an.optimal.compression.ratioA.Of6course.
this.requires.images.to.be.decompressed.in.the.downloading.routerA

Figure 4.5: Controlled Channels flow control signalling
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4.3. Caching DICOM Objects

ThereC areC twoC main motivationsC forC developingC aC cacheC systemC toC supportC distributedC
workflowsC inCmedicalC imagingCrepositoriesWCFirstlyI theChighCavailability ofCanyCPACSC is extremely
importantCinCtheCmedicalCworkflowWCEven smallCdataCaccessCinterruptions mayCseverelyCaffectCtheC
medicalC practiceC [42]WC ForC thisC reasonIC inC aC distributedC PACSC environmentC highC availabilityC isC
crucialWC Therefore theC deploymentC ofC contentC acrossC multipleC nodesC minimizesC theC effectsC ofC
connectivityClossesWCForCinstanceICifCtheCmedicalCinstitutionClosesCtheCconnectionCtoCaCremoteCPACSC
repositoryICaClocalCcacheCmayCcontainCtheCexamsCforCtheClastCmonthsICwhichCareCoftenCrequestedC
byC theC physiciansW SecondlyI thereC isC theC possibilityC ofC usingC dataC redundancyC toC increaseC theC
performance of theC distributedC PACSWC HenceIC loadC balancingC techniquesC andC multijsourcedC
servicesCwillCbeCexploitedCinCfurtherCsectionsWC

ThisCsectionCproposes aCnovelCCacheCSystemCArchitectureCforCmedicalCimagingCrepositoriesIC
purelyC softwareC basedWC ItC aimsC toC beC aC standalone moduleC usableI embeddableC inC anyC javaC
applicationICasCaCcacheCofCanyCPACSCarchiveWCWeCwillCalsoCexplainChowCtoCtakeCadvantageCofCdataC
redundancyCprovidedCbyCcachesCinstancesCinCourCdistributedCPACSW

After analyzingC theC functionalC requirementsC ofC aC CacheC SystemC ArchitectureC forC aC PACSC
ArchiveI weCnoticedCthatCtwoCbasicCfunctionalitiesCwereCrequired: theCqueryCandCretrieveWCAsCtheC
namesC suggestIC theC queryC functionalityC allows externalC usersC toC queryC forC specificC contentC thatC
existsC amongC the cachedC objects zstudiesIC imagesIC etcqWC InC itsC turnIC theC retrieveC functionalityC

Figure 4.6: Retrieving an available channel workflow
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allows their retrievalI fromI theI cachedI objectsI andI alsoI fromI theI overallI systemA TheseI
functionalitiesI enableI theI cacheI systemI integrationI inI an externalI workflowA BothI interfacesI
namesIwhereIcarefullyI selectedI toI reflectI theI wellPknownI DICOMIQueryHRetrieveI ServiceI ClassI
(describedI inI chapter 1AGA6pAI InI fact, aI cacheI systemI hasI toI provideI aI similarI interfaceI toI theI
DICOMI QueryHRetrieveI Service, commonlyI availableI in PACSI archivesA ThisI meansI thatI aI basicI
cacheIsystemImayIbe viewedIasIaIPACSIArchiveIcontainingIonlyIaIsubsetIofIstudiesIandIhaving a
specific populationIstrategyAI

However, toIsupportIproductionIrequirementsImanyIotherIaspectsImustIbeIworkedAICacheI
SystemsIneedItoIprovideIextendedIfeaturesItoIsupportIintelligentIcacheIpopulationIandIeviction,
asIdescribedIinIchapter 1AWAITheIideaIof the proposedIarchitectureIisItoIprovideIaIsetIofIservicesI
thatI allowsI theI creationI ofI efficientI modulesI toI manageI theI cachedI data,I improvingI theI
performanceIofIexamsIretrievalIwhileIdoingIaIsmartImanagementIofIcacheIstorageIvolumeA

Moreover,I CacheI populationI doesI notI oftenI involveI storingI wholeI objectsI butI ratherI
representativeIportionsIofIthem,IforIinstance, store onlyIoneIimageIperIstudyAIInIfact,IinIourIcaseI
studyIstoringIwholeIstudiesIisInotItheIsmartestIoptionAIItIhasIadvantagesIrelatedIwithIavailabilityI
ofIallIstudyIbutIitImightIneedItoIstoreIseveralIhundredsIofIimagesI(asIdescribedIinIsection WA1A4pA
Moreover, withIsomeImodalities,IsuchIas,ICTIproducingI4GBIimageIfilesIstoringIwholeIimagesIisI
notI alsoI aI recommended optionAI BothI ofI theseI approachesI mightI quicklyI drainI theI cacheI
capacityAITheI fileIsplittingItechniqueIdescribedIaboveIresolvesIthisIproblem, althoughI itIcreatesI
theIneedItoIhandleIbothIimagesIand image chunksIinItheIsystemA

CacheIevictionIisIalsoIaImajorIchallengeIforIcacheIsystems, asIdescribedIinIchapterI1AWAIThisI
functionalityI isI notI availableI inI commonI PACSI archivesAI CacheI evictionI policiesI oftenI requireI
metaPdataI toI beI collectedI duringI theI cacheI lifetime, suchI as, hitPratio,I examsI accessI statistics,I
andI objectsI lifetimeAI ThisI requirementI variesI withI the implementedI policy ofI distributedI
environmentAIWeInoticedIthatIdifferentIclientsIwouldIexpectIdifferentIbehaviorsIfromItheirIcacheI
systemAITherefore, ourIarchitectureIisIintendedItoIsupportImultipleIevictionIstrategies,IincludingI
thirdPpartyA

Figure 4.7: Controlled Channels Workflow integration
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4.3.1.Cache System Architecture

TakingPintoPaccountPthePpreviouslyPdefined specificationsj wePproposePan agile andPmodularP
architecture(P ItP aimsP toP provideP anP easyP moduleP replacement andP supportingP flexibleP policyP
implementations(P Moreoverj itP isP expectedP toP beP easilyP deployableP inP anyP PACSBDICOMP
environment(P OurP cacheP systemP architectureP decouplesP theP variousP aspectsP ofP aP cacheP systemP
intoPmodules(PItPisPdividedPinPthreePlayersPofPfunctionalPmodules: storagePmanagementjPmetaBdataP
management and theP serviceP layerP modulesjP asP illustratedP inP FigureP [(8( AP descriptionP of eachP
module willPbePprovidedPinPsequel(

Storage	management

TheP storageP managementP modulesP areP responsibleP forP theP directP storageP ofP objectsP inP aP
persistentPmediumjPsuchPasjPfileBsystemPorPaPdatabase(PMoreoverjP itPprovidesPlowBlevelPmethodsP
forPqueryingPaboutPthePexistencePofPspecificPobjectsjPimagesPorPimagePchunksjPmainlyPtoPperformP
integrityP checks(P ThisP layerP enclosesP twoP modulesjP namelyP theP CacheP PersistenceP andP theP BigP
MemoryP Manager(P TheP CacheP PersistenceP moduleP isP theP lowestP levelP functionalP moduleP inP theP
system(P ItP onlyP providesP simpleP FputjP getjP removejP contains4P methodsP forP objectsP inP theP
persistenceP medium(P ActuallyjP inP spiteP of handlingP DICOMP ObjectsP directlyjP itP handlesP dataP
followingP aPKeyBValueP patternjP whereP keysP productionP isP delegatedP toP anotherPmoduleP andP theP
valuePisPbinaryPdata(PThePKeyBValuePpatternPusagePisPveryPimportantPinPorderPtoPsupportPseamlessP
storagePofPimages andPimagePchunks(

InP itsP turnjP thePBigPMemoryPManagerPmodulePprovidesPan abstractionP forPDICOMPObjectsP
FimagesP andP imageP chunks4P onP topP ofP theP simpleP CacheP PersistenceP module(P TheP CacheP KeyP
TranslatorP moduleP FServiceP Layer4P isP usedP toP translateP objectsP intoP keysP priorP toP storageP orP
retrieval(P EventsPexecutedP inP thisP modulePmayP beP recordedP inPorderP toP collectP importantP cacheP
usageP metaBdata(P ThisP isP accomplishedP byP triggeringP eventsP fromP theP CacheP PluginP InterfaceP
modulePFServicePLayer4(P

Meta-data	management

TheP metaBdataP managementP modulesP areP responsibleP forP coping with theP metaBdataP ofP
cachedP objects(P ThereP areP twoP majorP tasksP associatedP withP thisP purpose(P Firstlyj theP DICOM
Objects metaBdataPhasP toPbeP stored separatelyP fromPthePobject(P IndexingPDICOMPobjectsPmetaB
data isP increasinglyP commonP inPnowadaysParchivesjP sinceP itPenablesP fasterP responsesP toPqueriesP
andP betterP informationP extractionP capabilitiesP [[E]( MoreoverjP sinceP weP mightP notP haveP wholeP

Figure 4.8: Cache System Architecture
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objects cached we must manage this data independently. 

Secondly, this module has to ensure a persistent mapping between images, image chunks 
and chunk descriptors (Figure 4.9). Image chunks have also to be linked to the DICOM Objects 
meta-data. Moreover, this information is crucial to know if the image is completely stored on 
cache or not. 

Service Layer Modules 

The service layer modules provide extended functionalities to other modules, namely 
object-key translation and external plug-in support. The Cache Key Translator module provides 
object-Key translation. Translation works similarly to a hash function creating a link between a 
given object and its key. As described above, translation is used to keep the implementation of 
Storage Management modules as simple as possible by removing the need to work with both 
images and image chunks. 

As described in chapter 4.3, the implementation of cache eviction policies is often 
associated with the maintenance of different meta-data. Cache eviction policies are supported 
via an external plugin system. Cache plugins are responsible for managing the meta-data 
associated with its policies. Furthermore, most policies also need meta-data associated with the 
cache usage, such as the cache hit-ratio or the least recently used object. Plugins may collect this 
data using the Cache Plugin Interface module through its event listener interface. Notifications 
are not only related to Storage and Retrieval operations but also with storage capacity 
limitations. Plugins are also encouraged to acquire meta-data from other external sources.  

As a result of using an external plug-in system, our architecture is free of the burden of 
supporting meta-data management for multiple policies. Consequently more policies are 
supported and the system is more flexible. External plugins are encouraged to take actions upon 
the system via its public API, described below. 

Cache System API 

We propose a modular architecture and so, a single API (Application Interface) is offered to 
its users. It acts as a wrapper bundling all the modules together. By using a single API the usage of 
our cache system is much more simplified. Moreover, it is easier for developers to implement 
and deploy their own version of the system as it is less likely to create inconsistencies between 

 

Figure 4.9: Simplified meta-data management module class diagram 
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theMdifferentMmodulesF The APIMalsoMprovidesManMabstractMimplementationMofMtheMsystemMincludingM
theM correctM linkageM ofM allM modulesFM AsM such2 developersM canM concentrateM onM buildingM theirM ownM
modulesMwithoutMworryMabout theirMintegrationFMMoreover2 itMencouragesMtheMusageMofMthirdxpartyM
modulesF SectionM HFV providesM theM classM diagramM ofM ourM cacheM systemM architectureM whereM itM isM
clearlyMdescribedMtheMabstractMmodulesMthatMshouldMbeMoverriddenFM

The cacheM systemM APIM providesM essentiallyM twoM setsM ofM functionalityFM LowerM levelM
functionalitiesM moreM relatedM toM theM Storage2M QueryM andM RetrievalM ofM specificM objectsM andM higherM
levelM functionalitiesM relatedM toM queryM ofM DICOMM ObjectsF TheseM functionalitiesM areM thoroughlyM
describedMinMsectionMHFKFM

4.3.2.Technical implementation specifications

ThisMsection explainsMhowMtheMpreviouslyMdescribedMmodulesMwereMimplementedFMMoreover2
itM providesM aM briefM descriptionM ofM theM technologiesM usedFM FigureM JF01 showsM theM frameworkM
perspectiveMofMourMcacheMimplementationF

TheMstorageMmanagementMmoduleMisMbackedMbyMaMKeyxValueMembeddableMdatabaseMforMJavaF
Typically2 a KeyxValueMdatabaseMprovidesMquickerM responsesM toMqueriesM comparedMwith standardM
relationalM databases2M becauseM theyM doM notM haveM toM performM extensiveM joinM operationsM [JJ]FM
Moreover2 theyM areM moreM suitableM forM ourM dataM profiles2M iFeFM binaryM blobsFM StoringM ourM data2M iFeFM
imageM andM imageM chunks2 directlyM inM theM filexsystemM wasM anotherM optionFM InM fact2 itM isM theM mostM
commonM approachM toM storeM dataM blobsFM WeM alsoM triedM thisM optionM and2M inclusively2M wasM
implementedMaMsolutionFMHowever2 it presentedMtwoMmajorM flawsM inMourMscenarioFMFirstly2M storingM
eachMimageMchunkMseparatelyMwouldM leadMtoMmajorMoverheadMinMfileMcreationFMTheMdeploymentMofM
thisM approachM provedM toM have intolerableM performanceM constraintsFM Secondly2M ifM theM optionM isM
basedMonMtheMstorageMofMeachMchunkMinMitsMfinalMpositionMwithinMaMsingleMfileMimage2MthisMinvolved theM
usageMofMrandomMaccessMread4writeMoperationsMtoMmaximizeMitsMperformanceF AlthoughMitMavoidedM
theMoverheadMofM fileMcreation2 itM raisedManotherM issueMwithMtheMstorageMcapacityMutilizationFMSince
chunkM evictionM didM not always ledM to actualM releaseM ofM storageM space2 dueM toM fileM systemsM
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was used. DB4O [46] permitted a quick migration of our previously developed data module into 
the database. As opposed to the usage of a SQL database, that required its migration to a 
relational paradigm. Nevertheless, in terms of performance the usage of DB4O proved to have no 
relevant impact on the performance of image population (around 300ms for our study dataset). 
Compared to the previously used Sqlite4java [47] database wrapper, the DB4O proved to be 
faster. In our opinion, this had to do with the fact that DB4O's engine also provides some caching 
functionality for objects. It somehow seems not to be present is most embeddable SQL 
databases. 

The plugins support was achieved easily through the usage of the JSPF framework [48]. It 
provides a very fast and seamless integration of third-party plugins in Java applications. 
Moreover, this framework also simplifies the development of plugins, as developers only have to 
follow the defined interface. 

The integration of proposed cache system architecture in the DICOM Router was easily 
achieved. Although it involved some modifications since the previously images were stored 
exclusively on the file-system. Using our cache system, objects (images or image chunks) are 
imitatively stored in the router local cache, independently of its origin, i.e. they can come from an 
external application or from another DICOM Router (via a Controlled Channel). If there is meta-
data available, chunk descriptor or DICOM meta-data, it is also cached in the system. 

4.3.3.  Multi-level cache to support multi-source Query/Retrieve Services 

The proposed cache system allows the deployment of a hierarchical multi-level caching 
system in the DICOM Router environment. To support a distributed PACS environment, we 
propose the deployment of two major levels, local and distributed.  

The local cache is deployed along with each DICOM Router. Its configuration in terms of 
capacity is subjected to the routers user computational system. Therefore its primary function is 
not to cache PACS archives contents, but rather support the routers workflow. Whenever a C-
FIND or C-Move request is issued by an appended application, the Router forwards it to its local 
cache primarily. The images cached inside the system are immediately forwarded to the client’s 
application consequently avoiding loading them from a remote location.  

The local caches population is intended to be done along with the routers life-time, taking 
advantage of information collected from previous C-Store-Requests. This favors the application of 
pre-fetching techniques either by external cache plugins or external entities, such as, other 
Routers or Caches in the distributed system. As a result, contents can be cached through the 
normal Storage Service.  

Distributed caches are intended to favor the distributed system as a whole, providing 
extended availability for archives and content replication. Distributed Caches are not intended to 
be populated along the life-time of the DICOM Routers but rather with pre-fetching techniques 
appointed by system administrators. The Distributed caches present a great asset to the 
distributed PACS, not only by increasing overall study availability but also by enabling the 
deployment of replicated archives on public cloud locations. This extends the features of the 
distributed system increasing its appealing to medical institutions. An example of usage of the 
distributed caching capabilities would be to deploy a cache on a public cloud provider containing 
the studies conducted in the previous week or month. This would enable a better performance 
and availability for study retrieval, external to the institutions archive local network. 

The implementation of distributed caches is similar to the local caches, as it involves the 
deployment of a DICOM Router that advertises a specified PACS archive. The router does not 
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have to be connected to the archive, as it was initially intended. Nevertheless, it is able to handle 
all requests that will be answered by its cache system. Routing requests to these DICOM Routers 
is exactly the same as for normal routers (with appended archives). As such, these routers need 
to advertise the desired archives AETitles even though they are not appended to them. These 
routes are configured normally through the routers configuration interface. Although it is not 
strictly required, these routes should be marked as Cache Routes for better handling of Query 
Requests. 

The existence of multiple DICOM Routers advertising the same PACS archive required a few 
changes on how the DICOM Query and Retrieve Services are issued by the distributed system. 
Previously, these services were supported in a very unicast manner, with communication 
essentially between a pair of DICOM Routers as shown in [17]. Now, the distributed PACS can 
include several temporary repositories (caches) and, potentially, many replicas of the same 
information. The main PACS archive has always all studies. As a result of having seemingly 
multiple instances of the same archive across, the communications paradigm changed from 
unicast to multicast. As the communications are intermediated by the DICOM Bridge Router, this 
change of paradigm will be abstracted from the router's point of view and the modifications have 
been performed in the DICOM Bridge Router, explained bellow.  

Query Service 

DICOM Query Service with multiple instances of to the same archive is supported relying 
on a hierarchical approach. The main idea is to forward the C-Find-Request iteratively to each 
instance until a positive match is returned. Therefore, the routes should be organized in a priority 
queue. The first route would lead to the actual PACS archive router, if available. These workflows 
are illustrated in Figure 4.11. 

C-Find-Request arrives to the SCU application router and, if local cache is available, it is 
forwarded to this entity. In parallel, the request is also forwarded to the distributed system. As it 
eventually arrives to the DICOM Bridge Router, a small C-Find session is created. The bridge then 
starts the forwarding procedure. Iteratively, it forwards the request to each route in the queue 
described above. The bridge analyses each response from the inquired DICOM Router. In case it 
could not be fulfilled, the bridge iterates and forwards the request to the next Router. When a 
fulfilled response is returned, the C-Find session terminates.  The response is then re-routed to 
the original router. After receiving the response, the router forwards it to the requester DICOM 
application.  

All this extra-work is preferable to responding directly from the DICOM Routers cache. 
Because DICOM studies can have new series inserted after the study creation. By doing this, we 
are giving the chance to DICOM Routers to check if their cache meta-data is updated, enabling 
more accurate responses if the actual distributed system becomes unavailable. 
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The objects presented in the router's local cache (1.2) do not need to be retrieved from 
distributed environment. Thus, a “prune work-list” containing those objects is transmitted along 
with the request message to the DICOM Bridge Router. These objects are immediately forwarded 
to the application. 

In order to manage the multi-source retrieve process, the bridge router creates a small 
retrieve session upon the reception of the C-Move-Request along with the “prune work-list”. This 
session will enclose the work-flow described further. After creating the session, the request 
message, along with the “prune work-list” is broadcasted to every DICOM Router advertising the 
given SCP (archive) (2). As such, in order to be illegible to issue C-Move requests, DICOM Routers 
have to advertise the PACS Archive AETitle, as if they have the archive appended. 

Then locally, each router follows the same procedure in order to answer the request. 
Firstly, it forwards the request to the archive. If the archive proves to be unreachable, the request 
is forwarded to the routers local cache. This allows distributed cache Routers (which are not 
appended to the archive) to respond to C-Move-Requests. In order to respond to the bridge 
router, each DICOM Router has to merge the “prune work-list” with its own response. The idea is 
to produce a list of DICOM Objects that are not presented in the SCU router local cache. The 
merged response is then sent to the DICOM Bridge Router (3). 

Meanwhile, in the bridge router, the retrieve session is waiting to receive the responses 
from all routers. When that happens, it will perform the scheduling of the upload process. For 
each DICOM Router, a list containing the objects (images or image chunks) that the DICOM 
Router has to upload to the C-Move SCU router is created, also known as “upload work-list”. The 
“upload work-list” is sent back to every router in the session (4.1 – Router B and C). Along with the 
“upload work-list”, a list of the Image SOP Instance UIDs involved in the transference is also 
produced. This list is sent back to the SCU application router (4.2). It serves as a close 
acknowledgement message, as well as enabling the router to know beforehand which images will 
be involved in the transference.  

Upon receiving the “upload work-list”, each router starts uploading the objects to the SCU 
Router, as described in section 4.2. In case the objects are not presented in the routers local 
cache, a C-Move-Request is issued to the PACS Archive in order to make them available in the 
Routers local cache. 

The algorithm for producing the “upload work-lists” uses a greedy approach, i.e., it 
calculates every list for every router at once, based on the current state of the system. It tries to 
balance the load of the distributed system by counting how many objects each router has to 
upload. In larger studies, the complexity has to be taken into account as it scales linearly with the 
number of objects. 

For this reason, the most used approach for scheduling is described in [42]. It uses 
centralized “upload work-lists” instead of a distributed, which are our case. Uploading nodes poll 
a new item from the list each time they complete their last task. As such, the scheduling is 
performed along the transference time minimizing the computational requirements at the 
expense of some communications overhead. However, in our scenario this communication 
overhead would lead to worse performance, as communications latency between DICOM Router 
and the DICOM Bridge Router tend to be significantly high (in an internet scenario). 
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Figure 4.12: Multi-Source Retrieve Service workflow
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4.4.1. Proposed Approach 

As described previously, DICOM Bridge Router is a single point of failure, but also a 
bottleneck on PACS distributed system. Although the Bridge Router replication was pointed as a 
solution, it raises some issues regarding their deployment, described in sequel. 

Each DICOM Bridge Router requires a good network bandwidth, both upstream and 
downstream, in order to relay communications efficiently. This requirement is usually not 
compatible with institutions private networks, as they support a great number of workflows with 
non-specialized network infrastructures. However, this solution is preferable taking into account 
the security concerns, as these components are deployed in trusted environments. These security 
considerations will be presented and discussed in chapter 4.5, along with the concept of safely 
deployed components. 

The proposed architecture is based on multiple DICOM Bridge Routers that may be 
deployed in multiple locations, private or public. According to its deployment location, system 
administrators may configure each bridge router to be a safely deployed entity or not. To support 
this feature, a configuration interface for the DICOM Bridge Router was developed. This interface 
uses common XML configurations files. As multiple DICOM Bridge Routers are deployed in the 
system, administrators might want to identify each bridge router. This is supported via the 
definition of bridge identifiers (Bridge ID), also configured in the previous interface. 

The replication of bridges can be used to increase the performance of the distributed 
system. It was introduced a concept of load factor to take advantage of Bridge replication 
mechanism. It is a metric associated to every DICOM Bridge that represents how many services a 
given bridge is issuing at the moment. So, it will be easy to know which bridge is the best to issue 
the service, when the router requires it. This metric is based on the number of active 
communication channels (control and data) in the bridge. In order to better represent the bridges 
load, each channel may, as well, be associated with a weight factor. For example, data channels 
(such as controlled channels) may have twice the weight factor of control channels, as they 
require more resources, due to the data transfer requirements. Moreover, a base load factor 
might be defined to statically tune each bridge priority. 

Furthermore, DICOM Bridge Routers can be linked together. The inter-bridge 
communication channels were created to support this feature. These channels use the same 
communication module as normal communication channels, and they have the same properties, 
such as, encryption. Bridge Links may be configured through the previously defined interface. The 
Inter-bridge communication protocol was thought to enable the creation of groups of bridges, 
with functionalities shared among them, such as, user authorization. Moreover, this protocol was 
intended to support redirection of messages between bridges, thus supporting services 
redirection. However, this approach was abandoned as it consumes more DICOM Bridge Routers 
resources than concurrent techniques (see 4.4.2. 

Although we specified an inter-bridge communication protocol, our replication technique 
does not necessary involve the multiplexing of a single service between a set of bridges. Our 
technique proposes to balance the load of the distributed system, instead of balancing the 
number of services being issued by each DICOM Bridge Router. Moreover, this allows complete 
compliance with the previous versions of our architecture. 

4.4.2. Routers working with multiple Bridges 

In order to support multiple DICOM Bridge Routers, we changed the architecture 
presented in previous sections. Our major commitment was to minimize its performance 
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footprint in the system. Additionally, as also described above, we tried to keep compatibility 
between this version and previous ones. Thus, we realized that it was better to take this 
management overhead off the DICOM Bridge Routers and put it into the DICOM Routers. 

Firstly, DICOM Routers are responsible for connecting to multiple bridge routers. These 
DICOM Bridge Router addresses are configured via the DICOM Router configuration XML. DICOM 
Routers connect to every bridge router simultaneously. There were other possible approaches, 
such as, making the router to be connected to one bridge at a time. However, this required 
DICOM Bridge Routers to manage the service connections across multiple bridges. This could be 
achieved by resorting the redirection messages, although it imposed more performance 
constraints by requiring more Bridge resources and message exchange. So, it was decided to 
adopt the simultaneous approach. Even though having multiple control channels connected to 
different bridges also wastes some resources, we consider it minimal. Moreover, being 
connected to multiple bridges at the same time provides better service in case of a bridge failure, 
as other bridge router may be used without prior processes. 

An important issue is to detect which is the best bridge to use. In fact, DICOM Routers are 
the responsible for balancing the load of DICOM Bridge Routers. As expressed, load balancing is 
achieved resorting to the DICOM Bridges load factor that is announced in Keep-Alive messages. 
DICOM Routers keep track of the most recent load factor for each bridge, creating an “extended 
routing table”. When a new channel needs to be established, the router selects the bridge with 
the lowest load factor. Using this technique, we can achieve load balancing without any 
significant computational requirement. 

4.5. Security Model 

Healthcare information systems tend to be associated with very tight security 
considerations. They often manage sensitive patient data, such as, patient names, contacts, 
diseases and many others. If these kinds of systems are deployed on public cloud providers, the 
security considerations need to be even tighter, as sensitive patient data might be stored, 
processed or even consumed by untrustworthy computational nodes. In fact, public cloud 
providers are known to follow an “honest-but-curious” approach regarding their client’s data. 
They comply integrally with the contracted service, SLA (Service Level Agreement), although any 
guarantees are given that they won’t misuse their client’s data, either by selling it directly or by 
applying data mining techniques [42].  

Zhang et al [50] identifies the common issues associated with the deployment of 
Healthcare information systems on cloud environments. The most important for our scenario are 
information ownership, authenticity and authentication, patient consent and authorization, and 
data integrity and confidentiality. The distributed PACS environment proposes to support DICOM 
connectivity across multiple locales. So, the ownership of information and patient authorization is 
out of the scope. It is therefore delegated to other institutional application the management of 
both these issues. DICOM Bridge Routers provide user authentication in our system. Authenticity 
of those users is also guaranteed through the usage of the HTTPS protocol in communications 
and a credentials system based on username and password. These features are migrated 
peacefully to unsafely deployed components. 

The problems associated with the deployment of components on untrustworthy locations 
reside, essentially, on data confidentiality and integrity. Data confidentiality means that sensitive 
patient data is stored safely, therefore only visible to trustworthy entities. In our architecture it 
means that unsafely deployed DICOM Routers must not store any sensitive DICOM meta-data. 
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Thus, unsafely deployed DICOM Routers may not index objects meta-data, at least in clear text. 
Further in section, it will be presented a technique for supporting the cache Meta-data 
management modules of unsafely deployed routers. 

DICOM Objects meta-data can also be retrieved from the actual objects itself. Therefore, 
the storage of these objects is also a critical process in terms of security. We propose to use the 
MapDB encryption capabilities to securely store these objects. The cached objects cannot be 
retrieved by a third-party workflow without the right pass-phrase.  

4.5.1. Handling sensitive meta-data on unsafely deployed components 

As stated in section 4.4, our cache system indexes the DICOM Objects meta-data in order 
to respond to the queries. In its turn, the cache query interface enables DICOM Routers to 
answer to DICOM Query Services (C-FIND commands) without requiring direct connectivity to the 
PACS archive. This is a crucial feature to proposed architecture, as it allows distributed cache 
routers to operate with complete autonomy, i.e. they are able to support DICOM Query/Retrieve 
Service by themselves.  

In order to support this feature on unsafely deployed DICOM Routers we used a novel 
Searchable Encryption (SE) technique, named Posterior Playfair Searchable Encryption (PPSE) 
[51]. SE techniques provide query capabilities over ciphered data. Therefore, it is possible to have 
indexes encrypted in untrustworthy repositories. However, those indexes continue to be used in 
search operations. In our scenario, we will have indexes of DICOM Objects meta-data. 

Other approaches were identified. In [32] decouples the meta-data index from the actual 
object storage. However, it requires the deployment of two components on distinct locations 
because the meta-data index must be stored in a trustable place. In our case, it would reduce the 
DICOM Routers autonomy, which is not desirable, due to requirements to tackle with failures of 
network links. 

The proposed distributed PACS architecture provides enough components to deploy the 
PPSE algorithm. The PPSE algorithm works by ciphering content using a secure key and an unsafe 
provider may index this codified data. In order to query contents in this provider, the query 
phrase also has to be firstly ciphered. As a result of having ciphered data indexed, the query 
response has to be deciphered itself, in order to retrieve the plain text data. Therefore, the PPSE 
algorithm requires a secure location for encryption and decryption operation to be performed. 
With this approach, it was possible to implement the concept of safely deployed DICOM Bridge 
Routers. 

Untrusted meta-data index 

Our proposal is not to handle sensitive patient meta-data on unsafely deployed 
components. Instead, we aimed to handle this data on safely deployed components and let 
unsafely deployed components handle only ciphered data, through the usage of the PPSE 
algorithm. Figure 4.13 illustrates how unsafely deployed DICOM Routers index this data. 

Images arrive to DICOM Routers via a controlled channel (described in section 4.3). They 
arrive compressed and split in chunks, as a result no meta-data can be extracted from each 
chunk. However, chunk descriptors carry the needed information to assemble the multiple 
chunks back to one piece. This information is not critical, as it does not enclose any patient data. 
When the complete image is available, DICOM Routers assemble the multiple chunks into the 
DICOM Object in order to extract and index its meta-data. Unsafely deployed routers should not 
perform this action, as it would expose the meta-data in memory. In fact, they never try to 
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HoweverSxtherexisxaxminimalxpossibilityxforxaccessingxDICOMxObjectsxonxunsafelyxdeployedx
components/x Itx involvesx dumpingx thex Javax virtualx machinex memoryx inx orderx tox collectx everyx
imagex chunkx beforex theyx arex cachedx securely/x Wex dox notx givex toox muchx importancex tox thisx
minimalxleakxasxitxinvolvesxtakingxmassivexmemoryxdumpsSxidentifyingxeachximagexchunkxandxthenx
usexthexcorrectxdecompressionxmethod/xMoreoverxwextookxaxmajorxcautionxtoxevictxthosexobjectsx
fromxmemoryS asxsoonxasxpossible/xThereforeS manyxdumpsxwouldxbexnecessaryxtoxcatchxaxwholex
image/

Therex isx alsox thex possibilityx ofx ax thirdx partyx guessingx eitherx thex MapDB(sx databasex passE
phraseS orx thex PPSEx algorithmx key/x Ifx suchx ax thingx happensSx eitherx thex passEphraseS orx thex keyx
shouldxbexreplaced asxsoonxasxpossible/xThexMapDBsxdatabasesxwouldxhavextoxbextotallyxwiped
andxthexcachexmodulexmetaEdatax indexxwouldxhavextoxbexcipheredxwithxanotherxkey/xThexPPSEx
algorithmxkeyxneedsxtoxbexshippedxwithxeveryxsafelyxdeployedxDICOMxBridgexRouter/xThisxkeyxisx
uniquex and everyx DICOMx Bridgex Routerx shouldx havex thex samex keyx tox achievex maximumx
compatibility/x InxourxpointxofxviewSxthisx isx inx factx thexonlyx limitationxofxthexPPSExalgorithmxasx itx
discouragesxitsxusagexinxscenariosxwherextherexarexnotxonlyxmultiplexconsumersxbutxalsoxmultiplex
producers/

Figure 4.14: Queries over unsafely deployed routers.
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5. Results and Discussion 

This chapter presents performance trials conducted with the different proposed 
techniques. It aims to show their effectiveness, comparing different approaches to achieve the 
same goal, measuring and assess the benefit of each solution.  

The used dataset was carefully selected to represent multiple studies and data profiles. It 
encloses 7 medical imaging studies from 4 different modalities, summing a total of 863 images 
with a volume of 682 MB. In Table 5.1 is represented the multiple studies with its volume 
(expressed in MB) and the average image size. By analyzing this table, it is possible to verify the 
impact of the different modalities in the data profiles. It is easily to check the difference in the 
average image size, even within the same modality. 

5.1. Controlled Channels 

This section provides a description of our performance trials for the controlled channels 
method. We deployed a test bed scenario, involving a distributed PACS environment with a PACS 
Archive and a remote storage application (simulating a viewer application). Dcm4che was used to 
deploy both applications. The applications were deployed in a remote Internet environment. The 
PACS Archive was served by a 10 Mbps upstream connection, while the application had 30 Mbps 
downstream bandwidth. This simulation represents carefully a real world use-case scenario of a 
distributed PACS. 

Trials were performed with three transference methods. Firstly, using a VPN connection to 
link directly both networks as suggested in [9]. The second method used normal communication 
channels in our distributed PACS as explained in chapter 3.2. Lastly, the Controlled Channels 
method was tested in the distributed PACS architecture (see chapter 4.2.1), as proposed in this 
thesis. The controlled channels were configure to use a maximum of 3 parallel channels, 10 
chunks per bulk (bulk size), each chunk with 50KB (chunk size) and 1 second of maximum waiting 

Table 5.1: Study Dataset Table 

Study 
Modality 

Number of 
images 

Volume (MB) 
Average image 

Size (KB) 

NM 1 1 1.000 

NM 5 2 400 

NM 6 8,2 1.367 

PT 244 16,3 67 

MR 223 47,1 211 

MR 369 206,1 559 

XA 15 401,6 26.773 

Total 863 682,3 791 
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time. 

 Our distributed PACS was supported by a DICOM Router along with each application. The 
DICOM Bridge Router was deployed in the PACS Archive machine. This configuration is based on a 
common deployment scenario also used as a case study. The Controlled Channels deployment 
required a few changes to the image handling process, i.e. the process that deals with the image 
in the transference (as described in 4.2.1). We tried to minimize the performance effects of this 
change. Therefore, every DICOM Router version involved in the test had its image handling 
process changed. In the introduced process, images were handled completely in memory. As the 
memory offers almost real-time performance, fewer differences in performance were introduced 
by each different approach. Consequently, more accurate results were produced regarding the 
Controlled Channel efficiency. 

The time needed for the system to issue each study storage request was registered by the 
dcm4che application (see Table 5.2). Analyzing the results, it is easily to verify that the Controlled 
Channels provide a clear performance improvement compared to the concurrent methods. 
Moreover, better improvements are achieved for studies with higher average image size which 
are normally associated with higher transference times. For smaller studies the archived 
improvements are not significant when the system is only supporting a single user. 

5.2. Cache Module 

The benefits of our cache module are unquestionable because it provides major features to 
our distributed PACS architecture, such as, supporting an offline archive without any transference 
over the network. Despite of the clear benefit, it also introduces a disadvantage, i.e. the DICOM 
Router needs to have a predefined storage space to support the cache, which is customizable in 
our case. The performance benefits of caching PACS Archives content will be demonstrated 
supported on controlled trials. To achieve this goal, we deployed a PACS Archive and a storage 
provider in our distributed PACS architecture. Once again Dcm4che [52] was used in both 
applications.  

In order to account the benefits of the usage of our cache module under different network 

Table 5.2: Controlled Channels trial results 

Modality 
Number of 

images 
Volume 

(MB) 
VPN (s) 

DICOM 
Router with 

normal 
channels (s) 

DICOM 
Router with 
Controlled 

Channels (s) 

NM 1 1 2,9 2,4 2,6 

NM 5 2 5,7 5,2 3,6 

NM 6 8,2 12,2 6,5 5,5 

PT 244 16,3 27,4 137,6 33,5 

MR 223 47,1 59,0 126,7 32,8 

MR 369 206,1 264,4 210,0 82,4 

XA 15 401,6 622,8 549,3 350,4 
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configuration, two distinct network scenarios were produced. In the first scenario the c-move 
application host was served by a 30 Mbps downstream bandwidth. While in the second scenario 
this bandwidth was reduced to 5 Mbps4, simulating a more restrictive environment. In both 
scenarios the PACS Archive host was served by a 30 Mbps upstream bandwidth. 

The final version of our distributed PACS architecture was deployed, using all methods 
proposed in this document. A DICOM Router was deployed along with each application, ensuring 
connectivity between both environments with the controlled streams. A DICOM Bridge Router 
was also deployed along with the PACS Archive and its router (similar to 5.1). The Controlled 
Channels configuration was the same used in the previous trial, 3 parallel channels, 10 chunks per 
bulk (bulk size), each chunk with 50KB (chunk size) and 1 second of maximum waiting time.  

The trials aimed to show the performance speed up achieved by combining multiple cache 
population scenarios in both DICOM Routers. The external location router was populated with 
25%, 50%, 75% and 100% of each study. Meanwhile, the PACS Archive Router had the entire 
study or no images cached at all. In this case testing intermediate scenarios is pointless, as they 
all require a C-Move Request to the archive. Thus they not create any real advantage to an 
institution. Each study retrieval time, without any image cached in both routers, was taken into 
reference to calculate the speed-up. The reference times are presented in Table 5.3. 

The speed-ups were calculated independently for each study of our dataset in each of the 
cache scenarios. In Figure 5.1 are presented the average speed-ups for each scenario, i.e. the 
mean speed-up of all studies for the given percentage of the study in cache. The results show 
consistent improvement of the transference performance for all scenarios. Even with little study 
portions cached the speed-up is considerable. The effect of the PACS archive router local cache 
on the transference time is even more incredible. Studies cached in both routers benefit from a 
speed-up, as the C-Move Request to the Archive is avoided. 

These trials represent a real-world scenario, where an institution might want to cache 
content of foreign repositories to improve the quality of service of their users. Moreover, they 
justify the adoption of study pre-fetching techniques by institutions as a mean of getting the 

                                                           
4
 The 5 Mbps connection is considered the average connection speed in Portugal by Akamai [53]. 

Table 5.3: Cache Module trial results 

Modality 
Number of 

Files 
Volume (MB) 

Completely non-cached 
study (S) 

30 Mbps          5 Mbps 

NM 1 1 3,45 5,43 

NM 5 2 4,23 7,24 

NM 6 8,2 5,57 11,63 

PT 244 16,3 13,81 35,94 

MR 223 47,1 19,09 52,22 

MR 369 206,1 45,96 144,80 

XA 15 401,6 200,75 670,73 
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maximum potential of their cache routers. It is proved that caches may have an outstanding role 
in the overall performance of the system. 

Figure 5.1 also illustrates very well the effects of cached content in different network 
conditions. It is easily perceivable that for low speed bandwidths, the effect of the archive 
router’s local cache does not have the same importance as in higher speed bandwidth 
configurations. This is the result of a lower disparity between the router-to-router transference 
throughput and the available images throughput (via PACS Archive in this case), that keeps the 
Controlled Channels queues from emptying. However, for high cached percentages (>75%), its 
effect may be considered of major importance. By analyzing both charts, it is also clear that 
caching has major speed-up benefits, especially in lower bandwidth networks. 

 

Figure 5.1: Comparison of cache module average speed-ups in different scenarios. 
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6. Conclusions and future work 

6.1. Conclusions 

Nowadays medical imaging environments tend to be migrated to web-based PACS 
solutions. One of its main features is the capability to integrate multiple institutions in the same 
PACS providing external access to the resources [8]. Moreover, this particular type of PACS 
architecture relieves medical institutions of supporting complex IT infrastructures. However, this 
approach has also some challenges. Web-based PACS architectures do not usually provide 
compatibility with previously existing institutional resources, such as, previous PACS Archives, 
acquisition image devices or DICOM compliant applications. Besides, migration to web solution 
imposes some legal constrains related to sensitive patient data exploitation. Common web-based 
PACS still face strong resistance within the medical community due to some lack of functionality, 
such as 3D reconstruction or other complex features that are not typically available on web 
viewers. Nevertheless, they desire a solution that provides integration of multiple institutions, 
including previous equipment, reduction of cost with IT infrastructures and requiring minimum 
configuration efforts. Furthermore, the data sources should always be available and it is 
fundamental to have access to medical imaging studies in a rapid way. 

Our distributed PACS Architecture complies with this specification by interconnecting 
multiple institutions with DICOM compliant communications. Moreover, it provides effective re-
usage of previous institutional resources, such as, Internet, PACS Archives and visualization 
workstations. In fact, a previous version of our architecture is currently deployed and has 
received good acceptance among the medical community. However, there were also some issues 
associated with this version. Firstly, the performance of medical study retrieval could be 
optimized. This problem is aggravated with the fact that Portuguese Internet connections usually 
provide more downstream than upstream bandwidth. Secondly, this architecture relied 
completely on standard institutional PACS Archives, clearly opposed to the normal web-based 
PACS architecture. Lastly, the previous system had a single point of failure that compromised the 
overall reliability of the system. 

In order to solve these issues, this document proposes multiple improvements to previous 
architecture. Namely, replication of components to increase the overall system reliability (see 
section 4.4), an improved data transference protocol to better cope with the medical imaging 
data specifications (see section 4.2), and techniques to support common web-based PACS 
features, such as, cloud deployment of archives (see section 4). The result was an even more 
versatile system. It provides a distributed web-based PACS, with optimized features and 
processes, preserving the specifications mentioned above. Despite the obvious raise of 
architecture complexity, it is not perceivable to PACS users. . 

When analyzing the pertinence of proposed methods, we find that each solves a specific 
problem. The Controlled Channels method was proposed in order to make the data transference 
more compliant with medical imaging studies data profiles. As a result, section 5.1 shows that 
improvements in study transference are notorious. Moreover, they require less routers resources 
than the previous method. As the Controlled Channels are endpoint oriented, they also 
contribute to the scalability of the system. 

The proposal of our cache system for medical imaging repositories proves to be a major 
contribute of this thesis. Our cache system has made possible the improvement in the DICOM 
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Routers image handling process. Combined with the proposed Controlled Channels and image 
splitting technique, this cache system provides replication of PACS Archives. The result is a better 
performance in image transference, through the usage of multi-source image transference, and a 
better availability of studies. Moreover, our distributed PACS architecture supports the 
deployment of repositories on public cloud providers, like common web-based PACS.  

The proposed security model provides effective guarantees that sensitive patient data is 
not exposed in cloud environments. The model has merit by itself, as it preserves the system 
performance and it does not introduce any further components or excessive complexity. Better 
system reliability and load balancing was achieved using the Bridge Replication technique. This 
was also a major improvement, as it eliminates single points of failure existing in the previous 
architecture. 

Concluding, all these techniques combined provide a better quality of service to medical 
institutions. The proposed system was designed to increase data availability and reduce data 
access latency in distributed PACS environments. It was instantiated over a Web DICOM Routing 
mechanism, demonstrating an easy integration due to its architecture and DICOM interface. 
Moreover, the solution proved to be useful in other distributed medical imaging processes. For 
instance, the Routing mechanism has been used to support tele-radiology sessions where 
physicians are remotely reporting examinations that were produced by distinct institutions. 
Compared to other low cost competitors, such as VPN connectivity, it provides much more 
features with better performance. This version of our architecture should be deployed in our case 
study environment in a short term. 

From the scientific point of view, this thesis as produced a conference paper regarding the 
usage of the Controlled Channels method. The paper was presented in CISTI 2013 [17]. 
Moreover, another article named “A DICOM cache mechanism to support distributed PACS 
environments”, giving a special focus to our cache system architecture, was recently submitted 
for revision at IEEE Journal of Biomedical and Health Informatics. 

6.2. Future work 

During this thesis, we completely fulfilled the objectives defined in the proposal. As such, 
we opened the door for further work and research directions by taking advantage of these thesis 
conclusions and also using the developed frameworks. 

The Controlled Channels performance may be improved by the automatic reconfiguration 
of their intrinsic parameters. The study of automatic algorithms to perform this task is possible 
through the developed framework. We believe this is a very interesting area for future research 
directions which may further increase the performance of Controlled Channels, eventually 
leading to less resource consumption in DICOM Routers. 

Two technologies were introduced in chapter 2.5. They aim to provide direct connectivity 
between DICOM Routers. Since the proposal of the Controlled Channels technique, we realized 
that these frameworks may be adaptable in the proposed architecture. The idea is to free the 
DICOM Bridge Routers from the burden of relaying data transference channels (Controlled 
Channels) whenever possible. 

In terms of the overall system’s features, it is important that further contributions are 
made in order to keep the attractiveness of our architecture. An example is the automated 
deployment of cache routers on public cloud providers. This would enable the scalability of our 
architecture in terms of storage capacity but also in performance terms. Regarding our cache 



57  
 

system, it provides a great framework for the development of a wide variety of cache strategies. 
The development of new strategies also may be an interesting research field. Moreover, the use 
of prediction techniques may result in further intelligent population of both local and distributed 
caches, maximizing the economic efficiency of our PACS instances.  
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8. Appendix 

8.1. Controlled Channels automatic reconfiguration agent architecture 

Based on the knowledge gathered about the modalities data profiles and the Controlled 
Channels technique, we have made a sketch about a possible future implementation for a 
reconfiguration module. The following diagram intends to aid possible further efforts by 
representing a software agent for this module. This agent is intended to select the best 
parameter to tune, in order to improve the performance of its controlled channel. It follows an 
hierarchical architecture very common in reactive agents. The agent is supposed to work in time 
windows with fixed size. For each time window, the agent calculates the world state which we 
think that is well modulated by four event metrics (shown in diagram). Based on the world state 
the appropriate behavior is selected effectively tuning the Controlled Channels parameters. This 
would be a very good starting point for further improvements to our distributed PACS. 
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8.2. Cache System API Functionality Table 

The following table thoroughly states the functionality provided by our Cache System API. 
The methods are sorted by primary scope. We consider the primary scope of each method to be 
the module where it is majorly issued. 

Method Description Primary Scope 

Query Queries the cache system about DICOM Objects with certain 
attributes. These attributes are specified in the query string. 
The query string is formatted according to the Lucene’s term 
query format, as it is used very often across the IT field.  

The response is formatted according to the C-Find response 
specifications of the DICOM Standard. 

Meta-data 
management 
modules. 

Query as 
String 

Same as the above but it converts the responses to a Key-
Value paradigm using a hash map. 

Meta-data 
management 
modules. 

Index 
DICOM 
Document 

Indexes in the Cache engine the supplied DICOM Object. It 
can be supplied directly or by an input stream. 

Meta-data 
management 
modules. 

Index 
Transformed 
Document 

Same as the above but indexes the DICOM Objects attributes 
provided by an Key-Value paradigm with strings. 

Meta-data 
management 
module. 

Retrieve 
Images for 
Study 

Retrieves the Image SOP UIDs of the images enclosed in the 
specified study. The study is specified by its Study Instance 
UID. 

Meta-data 
management 
module. 

Register 
Study 

Forces the registry of a new study in the cache system. It 
may be useful to cache study information without supplying 
an actual DICOM Object. 

Meta-data 
management 
module. 

Resolve Data 
for Study 

Retrieves every Descriptor of cached objects (image or 
chunk) belonging to the desired study. 

Meta-data 
management 
module. 

Add Chunk Caches the given chunk data. Storage 
Management and 
Meta-data 
management 
modules. 

Add Image Caches the given image data. Storage 
Management and 
Meta-data 
management 
modules. 
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Method Description Primary Scope 

Register 
Image In 
Study 

Forces the registration the specified Image SOP UID in the 
given study. 

Meta-data 
management 
module. 

Retrieve 
Chunk 

Retrieves the chunk identified by the given Chunk Descriptor Storage 
Management 
modules. 

Retrieve 
Image 

Retrieves the image identified by the given SOP Instance UID Storage 
Management 
modules. 

Retrieve 
Chunks 
From 
Image 

Retrieves the descriptor of the cached chunks for given image. Storage 
Management 
modules. 

Contains 
Chunk 

Checks if the given chunk is cached. Storage 
Management and 
Meta-data 
management 
modules. 

Contains 
Image 

Checks if the given image is cached. Storage 
Management and 
Meta-data 
management 
modules. 

Remove 
Chunks 

Evicts the specified chunk from the system. Storage 
Management and 
Meta-data 
management 
modules. 

Remove 
Image 

Evicts the specified image if only it is completely cached. Storage 
Management and 
Meta-data 
management 
modules. 

Remove 
All Image 
Chunks 

Evicts the specified image completely, even if the image is not 
complete. 

Storage 
Management and 
Meta-data 
management 
modules. 

Set Lock 
on Study 

Sets a new lock on a given study. Service Layer 

Release 
Lock on 
Study 

Releases the previous lock on the given study. Service Layer 
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8.3. Cache System Class Diagram 

The following diagrams show the internal class structure of our proposed cache system 
architecture. They present a great starting point for developers who want to embed our system 
in their applications. The modular architecture is very well represented in the diagrams. 
Moreover, it is easily seen the role played by the abstract modules referenced in section 4.3.1. In 
every diagram pay a close attention to the class contractors and to the initialize method, as they 
are used to link correctly the different modules in the abstract implementations class. 

8.3.1.  Module interfaces diagram 

The following diagram represents the interfaces used to describe every module in our 
cache system architecture. 
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8.3.2. Storage management modules 

This diagram presents the BigMemoryManager class that plays a key role in the Storage 
management modules. 
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8.3.3. Service Layer modules 

The following diagram represents the AbstractCachePlugin class that plays a key role in the 
implementations of third party plugins. 
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8.3.4. Cache System class diagram 

Lastly this diagram shows the AbstractCacheSystem that should always be used as a base 
for new systems implementations. 
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