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palavras  chave Matrix de Aluminio SiC Nanoparticulas Compositos, Mechanismos de Encruamento, Relacão de 
HallPetch.

resumo Neste trabalho foram produzidos nanocompósitos de AlSiC misturando alumínio puro com 
nano partículas de SiC com diâmetro de 45 – 55 nm, usando, de forma sequencial, a técnica da 
metalurgia do pó e a compactação por “ Spark Plasma Sintering”. O compósito obtido 
apresentava grãos com 100 nm de diâmetro, encontrandose as partículas de SiC localizadas, 
principalmente, nas fronteiras de grão. O nanocompósito sob a forma de provetes cilíndricos foi 
submetido a testes de compressão uniaxial e a testes de nanoindentação para analisar a 
influência das nanopartículas de SiC, da fração volúmica de ácido esteárico e do tempo de 
moagem, nas propriedades mecânicas do material. Para efeitos de comparação, utilizouse o 
comportamento mecânico do Al puro processado em condições similares e da liga de alumínio 
AA1050O. A tensão limite de elasticidade do nanocompósito com 1% Vol./Vol. de SiC é dez 
vezes superior à do AA1050. O refinamento de grão à escala nano constitui o principal 
mecanismo de aumento de resistência mecânica. Na realidade, o Al nanocristalino sem reforço 
de partículas de SiC, apresenta uma tensão limite de elasticidade sete vezes superior à da liga 
AA1050O. A adição de 0,5 % Vol./Vol. e de 1 % Vol./Vol. de SiC conduzem, respetivamente, ao 
aumento da tensão limite de elasticidade em 47 % e 50%. O aumento do tempo de moagem e a 
adição de ácido esteárico ao pó durante a moagem conduzem apenas a um pequeno aumento 
da tensão de escoamento. A dureza do material medida através de testes de nanoindentação 
confirmaram os dados anteriores. A estabilidade das microestruturas do alumínio puro e do 
nanocompósito Al SiC, foi testada através de recozimento de restauração realizado às 
temperaturas de 150 °C e 250 °C durante 2 horas. Aparentemente, o tratamento térmico não 
influenciou as propriedades mecânicas dos materiais, excepto do nanocompósito com 1 % 
Vol./Vol. de SiC restaurado à temperatura de 250 °C, para o qual se observou uma redução da 
tensão limite de elasticidade na ordem dos 13 %. No alumínio nanocristalino, a tensão de 
escoamento é controlada pelo efeito de HallPetch. As partículas de SiC, são segregadas pelas 
fronteiras do grão e não contribuem para o aumento de resistência mecânica segundo o 
mecanismo de Orowan. Alternativamente, as nanopartículas de SiC constituem um reforço das 
fronteiras do grão, impedindo o seu escorregamento e estabilizando a nanoestrutura. Deste 
modo, as propriedades mecânicas do alumínio nanocristalino e do nanocompósito de AlSiC 
poderão estar relacionadas com a facilidade ou dificuldade do escorregamento das fronteiras de 
grão, embora não seja apresentada prova explícita deste mecanismo à temperatura ambiente.



keywords Aluminum Matrix SiC Nanoparticle Composite, Strengthening Mechanisms, HallPetch 
Relationship.

abstract AlSiC nano composites were prepared by mixing pure Al and 50 nm diameter SiC nanoparticles 
using a powder metallurgy technique, followed by compression and spark plasma sintering. The 
final composites had grains of approximately 100 nm dimensions, with SiC particles located 
mostly at grain boundaries. The samples were tested in uniaxial compression and by 
nanoindentation in order to establish the effect of the SiC and stearic acid volume fraction, and 
the milling time on the mechanical properties. The results are compared with those obtained for 
pure Al processed under similar conditions and for AA1050 aluminum. The yield stress of the 
nano composite with 1 Vol. % SiC is more than ten times larger than that of AA1050. The largest 
increase is due to grain size reduction; nanocrystalline Al without SiC and processed by the 
same method has a yield stress 7 times larger than AA1050. Adding 0.5 Vol. % SiC increases 
the yield stress by an additional 47 %, while the addition of 1 Vol. % SiC leads to 50 % increase 
relative to the nanocrystalline Al without SiC. Increasing the milling time and adding stearic acid 
to the powder during milling lead to relatively small increases of the flow stress. The hardness 
measured in nanoindentation experiments confirms these trends, although the numerical values 
of the gains are different. The stability of the microstructure was tested by annealing samples to 
150 oC and 250 oC for 2 h, in separate experiments. The heat treatment had no effect on the 
mechanical properties of all samples, except when treating the material with 1 Vol. % SiC at 
250 oC, which led to a reduction of the yield stress by 13 %. In nanocrystalline Al, the flow stress 
is controlled by the HallPetch effect. As observed in this work, the added SiC particles 
segregate at grain boundaries and do not contribute to strengthening through the Orowan 
mechanism, rather pin the grain boundaries helping to stabilize the nanostructure of the material. 
Grain boundary sliding is expected to be important in both nanocrystalline Al and AlSiC, 
although we do not present explicit proof for the operation of this mechanism at room 
temperature.
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                                                                 Introduction                                                          

1. Introduction

1.1 Application of Aluminum Alloys

Aluminum alloys  with  its  remarkable  combination  of  mechanical  and 

physical properties make it the preferred choice as structural material 

for  a  wide  range  of  applications  in  the  aerospace,  automotive, 

passenger railway and military industry. Increased market demand for 

crash and impact resistant light weight structures is nowadays growing 

also  due to the  emerging need to protect  transport  systems against 

terrorism. 

Aluminum is applied for aircraft body structural design. The airframe of 

a typical current commercial transport aircraft is 80 percent aluminum 

by weight. Aircraft manufacturers use high-strength alloys, e.g. alloys 

series  7075  (see  Appendix  7.4),  with  high  ultimate  strength,  and 

optimized machinability [1].

The  European  automotive  industry,  in  close  co-operation  with  the 

European aluminum industry, has developed and introduced numerous 

innovative light-weight solutions based on aluminum alloys in order to 

reduce CO2 emissions. In general a  100 kg reduction of  the mass of a 

car  is  equivalent  to  a  reduction  of  9  grams  of  CO2 per  kilometer. 

Aluminum is easy to recycle and saves 95 % of the energy necessary to 

produce primary aluminum. Industry is working on reducing the cost of 

other aluminum applications, in particular in the body structure and for 

chassis and suspension parts, presently used in sports and luxury cars, 

so that they can also find their place in smaller cars. As a long term 

vision,  an “aluminum-maximized” small  family  car  could be 30-35 % 

lighter after primary and maximum secondary weight savings [2].

1



                                                                 Introduction                                                          

Aluminum  made  considerable  progress  in  passenger  railway  cars, 

where,  from  trams  to  trains,  many  aluminum  components  were 

introduced, like window frames and interior partition walls. For the high 

speed trains, the choice of aluminum proved to be almost a must, as 

these  trains  needed to  travel  at  more  than  300  km/h  on  traditional 

railway tracks. A good example of aluminum's benefits in the public rail 

transport sector is the TGV-Duplex, developed by Alstom by order of the 

SNCF,  it  weighs 12 % less than the traditional  TGV, transports 40 % 

more passengers, and offers superior passive safety. 

Also in the military sector there is the growing necessity to improve the 

aluminum  alloys  properties  to  ensure  maximum  ballistic  protection 

against  high  velocity  projectiles.  The  5xxx  series  strain-harden  able 

alloys have been used in  all  aluminum military vehicles  produced to 

date.  The 7xxx series heat treatable alloys provide improved protection 

at all angles. Because minimum weight for a given level of protection is 

essential to mobility,  aluminum armor,  is  used extensively in combat 

vehicles.  The  ultimate  selection  of  armor  material  depends  also  on 

requirements  other  than  ballistic  criteria,  like  weld  ability,  water 

tightness,  machinability,  formability  and  extreme  conditions  of 

temperature  (-62  to  74  °C),  movements  through  corrosive  waters. 

Strength must be adequate to resist service stresses, including shocks 

encountered in airdrops and cross-country operation [3]. 

Additional advantages by aluminum over steel are freedom from  low-

temperature embrittlement and greater rigidity, resulting from thicker 

sections, for equal protection. Increased rigidity, up to nine times that of 

steel,  usually  eliminates  the  need  for  secondary  structural  support. 

Production forms of aluminum alloy armor are rolled plate, extrusions, 

and  forgings.  For  alloys  with  ballistic  properties  developed  by  strain 

hardening, use primarily is in the form of rolled plate. Heat treatable 

2
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aluminum alloys that can be welded effectively are being developed as 

weld  able  armor,  making  it  possible  to  employ  more  forged  and 

extruded armor components [4].

In  summary aluminum alloys  are  attractive  due to their  low density, 

their capability to be strengthened by precipitation, their good corrosion 

resistance,  high  thermal  and  electrical  conductivity,  and  their  high 

damping  capacity.  The  necessity  of  improving  toughness,  increased 

resistance  to  fatigue  and  corrosion  resistance  is  driving  the  future 

development of advanced aluminum alloys. 

One promising approach is to reinforce the aluminum alloy matrix by 

particles.  Aluminum  matrix  composites  are  very  attractive  for  their 

isotropic mechanical properties that are higher than their not reinforced 

alloys. Aluminum matrix composites offer a large variety of mechanical 

properties  depending  on  the  chemical  composition  of  the  aluminum 

matrix. They are usually reinforced by Al2O3, SiC, C, but SiO2, B, BN, B4C, 

AlN may also be considered. The aluminum matrices are in general Al-Si, 

Al-Cu, 2xxx or 6xxx series alloys. A successful development of aluminum 

matrix composites is used for brake rotors for German high speed train 

ICE-1  and  ICE-2  developed  by  Knorr  Bremse  AG  and  made  from  a 

particulate  reinforced  aluminum  alloy  (AlSi7Mg+SiC  particulates) 

supplied by Duralcan. Compared to conventional parts made out of cast 

iron with 120 kg / piece, the 76 kg of the aluminum matrix composites 

rotor offers an attractive weight saving potential. 

Aluminum matrix  composites  now  used  either  in  sporting  goods, 

electronic packaging, armors and automotive industries [5].

3
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1.2 Motivation

The development of metal matrix composites  has attracted attention 

over the last decades for the purpose of improving fatigue behavior, and 

strength and creep response as well  as impact resistance. Aluminum 

matrix  nano  composites  are  a  newer  addition  to  the  list  of  studied 

materials.  These  are  usually  mixtures  of  ceramic  or  carbide 

nanoparticles into an alloy base.  The particles are supposed to act as 

obstacles to dislocation motion and to effectively pin grain boundaries, 

conferring  therefore  microstructural  stability  to  the  composite.  The 

fillers have very good thermal stability as their melting point is usually 

much  higher  than  that  of  the  matrix.  The  matrix  may  have  regular 

grains of micron of larger dimensions, or nanograins. In the second case, 

the large density of grain boundaries contributes to strengthening.

4
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The motivation for the thesis is to enhance the mechanical properties of 

applying  the  metal  physical  strengthening  mechanism  in  order  to 

increase the resistance to mechanical loads for aluminum, see Figure 1.

1.3 Objective

The  objective  of  the  thesis  is  the  investigation  of  the  strengthening 

effect  of  the  dispersion  of  nano-SiC  particles  in  pure  aluminum, 

produced  by  ball  milling  of  the  powders  and  consolidation  by  Spark 

Plasma Sintering (SPS). 

In  the present  work the aim goal  is  to produce reinforced aluminum 

composites  with  SiC  nanoparticles  by  using  a  powder  metallurgy 

method, which have been studied to achieve a homogeneous dispersion 

without  agglomerations  or  clustering  within  a  minimum  equivalent 

distance of the reinforced particles in the matrix, believing that such a 

reinforced  material  has  a  high-energy  absorption  capability  and 

durability.  Based  on  this  the  presented  dissertation  includes  a 

manufacturing material composites, defining main parameters as milling 

methods,  milling time,  influenced by additional  reaction elements,  to 

achieve a  multiscale behavior composite material. Experiments made 

with  ball  milled  material  compacted  by  Spark  Plasma  Sintering. 

Analytical  methods  have  been  applied   for  more  understanding  of 

strengthening  mechanism.  The  need  of  utilization  of  reinforced 

aluminum  with  silicon  carbide  composites  in  different  structural 

applications  has  motivated  to  find  a  cost  effective  technological 

production  method  for  these  composites.  These  composites  are 

characterized  for  having  an  enormous  complexity  in  kind  of 

homogeneity, manufacturing and interfacial reaction of the constituents.

5
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1.4 Approach of the thesis

Aluminum matrix nano composites are produced by milling SiC

nanoparticles into a pure aluminum matrix. A homogeneous dispersion 

of  the  reinforcement  particles  in  the  matrix  should  be  achieved.  To 

realize this, a powder metallurgy technique involving high-energy ball 

milling was applied. The milled power was compacted by Spark Plasma 

Sintering  (SPS).  The  mechanical  behavior  of  the  nano  composites  is 

probed by performing uniaxial  compression and nanoindentation,  see 

workflow in Figure 2.

6
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2. State of the Art

2.1 Strengthening Mechanisms 

Nano  composites  containing  nanoscale  reinforcement  particles  have 

been  found  considerable  attention  specially  because  their  superior 

mechanical  properties  and  higher  thermal  stability  [6],  [7],  [8],  [9]. 

Although in precipitation hardened alloys nanoscale dispersoids interact 

with  mobile  dislocations  at  room temperature,  they  suffer  from low 

thermal stability.  As a result,  precipitate coarsening and dissolving at 

high  temperatures  deteriorate  the  mechanical  properties  at  high 

temperatures [10]. 

It is generally recognized that two types of strengthening may occur in 

metal  matrix  composites:  direct  and  indirect.  Direct  strengthening 

results from load transfer from the metal matrix to the reinforcement 

particles, whereas indirect strengthening results from the influence of 

reinforcement on matrix microstructure or deformation mode  [11]. For 

instance, the increase in the dislocation density in the composite matrix 

due to the mismatch between coefficient of thermal expansion of metal 

matrix and ceramic reinforcement is assumed to enhance yield strength. 

However, when the size of ceramic particles goes down to nanometer 

range there are many doubts about operation of different mechanisms 

[12], [13], [14], [15], [16], [17]. 

2.1.1 Load-bearing effect

It is well known that the microstructure and properties of the composite 

matrix  may  be  significantly  different  from those  of  the  unreinforced 

matrix alloy. The presence of hard particles induces an inhomogeneous 

7



State of the Art

deformation  pattern  even  if  the  composite  is  subjected  to  uniform 

loading. Additionally, higher dislocation density in the composite matrix 

is assumed to be mainly due to the elastic modulus mismatch.

The idea of the addition of a non-deformable hard phase to a soft metal 

matrix derives from the load bearing by the second phase with higher 

elastic  modulus.  Considering a  modified  shear  lag  model  (continuum 

mechanics approach)  the contribution of  load bearing effect  on yield 

strength is ~ 0.5 Vf (Vf = volume fraction of the second phase)  [18]. 

There is a critical volume fraction below which not only no strengthening 

would be achieved but also the second phase acts as a defect leading to 

weakening of the material. Therefore, it is common practice to add a 

high volume fraction ( > 10 %) of the second phase to metals as the 

reinforcement.  However,  when  the  nanoparticles  are  used  as  the 

reinforcement,  a  much  lower  amount  (  <  5  %)  is  added  [19],  [20]. 

Accordingly, the increase in yield strength of pure Al, for instance, with 

yield strength of σys  ~ 70 MPa due to load bearing effect of 5 Vol. % of 

the nanoparticles would be about 1.75 MPa which is negligible. 

2.1.2 Orowan Strengthening

8

Figure 3: Orowan mechanism for dispersion hardening (Source: James Matsci,  

Europa Lehrmittel, Werkstofftechnik Maschinenbau, p. 50)
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Due  to  nanoparticle-dislocation  interaction  by  means  of  the  Orowan 

bowing mechanism, a significant increase in strength of  metal matrix 

nano composites  is  expected  (Figure  3).  However,  there  are  several 

investigations showing that just “effective nanoparticles” can contribute 

in Orowan strengthening mechanism [8],  [19],  [21]. The agglomerated 

nanoparticles should be excluded in the calculation. Furthermore, since 

the reinforcement is often found to lie on the grain boundaries of the 

matrix, it is unclear weather the Orowan mechanism can operate. Kang 

and  Chan  [19] used  quantitative  metallography  to  determine 

interparticle spacing of effective nanoparticles. They showed that with 

this  modification  the  predicted  yield  strengths  became closer  to  the 

experimental ones. However, there is still a gap between experimental 

and  calculated  results  and  it  is  more  highlighted  at  higher  volume 

fractions. 

Furthermore, depending on the relative size of nanoparticles to matrix 

grains, the contribution of nanoparticles in Orowan mechanisms could 

be changed [22]. When the grain size of the matrix is in the nanometer 

range most of the nanoparticles would be located at grain boundaries 

forming triple junctions and most probably do not participate in Orowan 

mechanism. There are several investigations showing when the amount 

of nanoparticles exceeds a certain value, depending on the size, Orowan 

island  could  be  formed  in  which  the  mobile  dislocations  would  not 

interact with individual nanoparticles [23], [24]. It was also reported that 

Orowan strengthening effect reaches its maximum at a critical particle 

size below which the breakdown of Orowan strengthening occurs. Zhang 

and  Chen  [25] calculated  the  critical  particle  size  for  Mg/Al2O3 and 

Ti/Al2O3 nano  composites  by  considering  relative  contribution  of 

improvement  factor  of  Orowan  mechanism  with  respect  to  that  of 

dislocation. The critical size of nanoparticles is found to be 5.44 times 

9
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the  Burger’s  vector  or  atomic  diameter  of  the  matrix.  Considering 

Burgers vector of Mg (bMg  = 0.32 nm), the critical particle size of  Al2O3 

will  be smaller  than 2 nm. In conclusion,  the contribution of  Orowan 

mechanism in strengthening of metal matrix nano composites strongly 

depends on the matrix microstructure and the location of nanoparticles. 

2.1.3 Thermal expansion mismatch strengthening

Higher dislocation density in the composite matrix is assumed to be also 

due to the coefficient of thermal expansion (CTE) mismatch between the 

matrix and the reinforcement. 

When the material is quenched from processing temperature to room 

temperature, resulting in a temperature change, mismatch strain due to 

different coefficient of thermal expansions of the matrix and ceramic 

particles will be induced. 

In order to accommodate this thermal mismatch deformation, Dai et al. 

[11] considered that geometrically necessary dislocation loops will  be 

imposed around the surfaces of particles. 

The  increase  in  yield  strength  due  to  the  coefficient  of  thermal 

expansion has been calculated and reported as a main strengthening 

mechanism for  different  nano composite  systems.  At  a fixed volume 

fraction as the particle size decreases the number of dislocations around 

an individual particle decrease, while considering the overall number of 

nanoparticles  the   dislocation  density  is  higher  rather  than  those  in 

microcomposites.  Zhang  and  Chen  [25] reported  for  example  in 

Mg/Al2O3 system,  a  remarkable  increase  in  strengthening  would  be 

achieved  with  decreasing  the  particle  size  from  1000  to  10  nm. 

Considering the increased dislocation density due to the CTE mismatch, 

one  can  calculate  enhancement  in  yield  strength  by  the  Taylor 

dislocation strengthening relation [11].

10
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Most  often,  considering  average  particle  size  and volume fraction  of 

nanoparticles  the increase in  yield  strength due to the  coefficient  of 

thermal  expansion  has  been  calculated  and  reported  as  a  main 

strengthening mechanism for different nano composite systems. 

Accordingly, there is a critical particle size below which strengthening 

due  to  CTE  mismatch  cannot  intervene  any  more.  For  instance,  the 

critical size of nanoparticles for aforementioned system is as ~30 nm. 

However  experimentally  it  is  not  proved  if  there  is  any  dislocation 

around nanoparticles as a function of particle size and cooling condition. 

Very  recently,  Vogt  et  al.  [26] reported  the  absence  of  thermal 

expansion  mismatch  strengthening  in  nanostructured  metal–matrix 

composites.

2.1.4 Grain boundary strengthening

Large increase in strength and hardness is frequently documented for 

ultrafine structures, a phenomenon that is explained in part by small 

grain sizes using the well-known Hall-Petch relationship. However, there 

are  many  reports  showing  the  occurrence  of  inverse  Hall-Petch 

phenomena in nanometer range  [27],  [28],  [29],  [30]. Grain boundary 

sliding, Coble creep and triple junction diffusional creep are considered 

as the main reasons for  this  phenomenon.  Based on the well-known 

pileup  model,  Hall-Petch  equation,  as  the  grain  size  decreases  the 

number  of  dislocations  that  pile  up  behind  the  grain  boundaries 

decreases and consequently stress concentration would be decreased. 

Under this condition higher stress level is required for initiation of plastic 

deformation, by dislocation motion. At the other extreme for very small 

grain sizes,  it  is  assumed that  Coble  creep is  active.  However  when 

nanoparticles  are  added  to  the  matrix,  pining  course  of  action 

suppresses grain boundary sliding and diffusional creep. Higher creep 

11
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resistance  of  super  alloys  and  dispersion  strengthened  matrices  are 

frequently  reported.  Formation  of  smaller  grains  and  suppression  of 

grain  growth  in  oxide  dispersion  alloys  and  nano  composites  are 

resulted from the pining of grain boundaries by nanoparticles. Kang and 

Chan [19] reported that in Al/Al2O3 nano composites the grain size of the 

aluminum  matrix  is  decreased  by  of  the  addition  of  nanoparticles. 

However, the minimum grain size was obtained for Al - 5 Vol. % Al2O3 

nano composite in which further increase in the amount of nanoparticles 

did not lead to smaller grain size. Therefore, there is a critical volume 

fraction  dependence  on  size  and  type  of  nanoparticles  to  pin  grain 

boundaries. 

However,  different  models  have  been  developed  to  predict  the  final 

grain size of the matrix as a function of nanoparticles size and volume 

fraction.  According to the Zener model [31], the grain size of aluminum 

matrix  nano  composite  containing  5  Vol.  %  nanoparticles  with  an 

average  diameter  of  50  nm  is  calculated  to  be  ~  650  nm.  Using 

Gladman model [32] the minimum grain size in nano composite could be 

predicted  by 338  nm.  Free  of  agglomerates  and  more  homogenous 

distribution  of  nanoparticles  in  mechanically  milled  nano  composite 

powder resulted in formation of smaller grain size at the end. In terms of 

energy, Kamrani et al.  [33] showed that the grain size of Al – 5 Vol. % 

SiC nano composite is 173 nm while Kang and Chan  [19] reported the 

grain size of 1.1 μm for Al – 5 Vol. % Al2O3 nano composite. The former 

was fabricated by mechanical milling followed by double press double 

sintering while the latter was fabricated by mixing/HIP/hot extrusion. 

Although, theoretically the final grain size is dictated by the size and 

volume  fraction  of  nanoparticles  the  fabrication  method  significantly 

affects the final microstructure. Kang and Chan [19] reported that in Al – 

5 Vol. % Al2O3 grain boundaries are saturated by nanoparticles. A more 

12
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precise investigation of microstructure revealed the presence  of large 

agglomerates (100 - 400 nm) reducing the efficiency of nanoparticles in 

hindering grain growth. Thus, just the addition of nanoparticles does not 

guarantee the formation of smaller grain size. 

When second particles lie at the grain boundary, the interface energy 

reduces because a part of boundary area is occupied. If this part of the 

grain  boundary  moves  away  from the  second  particle,  the  interface 

energy will  increase due to the increase of the grain boundary area. 

Only if  the reduction of the free  energy of the system resulting from 

microstructural  evolution exceeds the increased interface energy can 

the part of grain boundary continue to move, otherwise the part of the 

grain boundary  is  pinned by the  second particle  [34].  As  for  second 

particle with larger size, there is stronger interaction between second 

particle and the grain boundary because the interface energy may be 

more decreased when the larger second particle occupies part of the 

grain boundary. However,  at a fixed volume fraction, the smaller the 

second particles size, the larger the number of second particles, and the 

greater the second particles dissipating degree in the space. 

Accordingly one can conclude that there is a critical second particle size 

with the maximum ‘unpinning’ tendency of  grain boundary while  the 

second particle  dissipating degree in  3  dimensional  space should be 

considered. However, Durisin et al. [35] showed abnormal grain growth 

in Cu-3 Vol. % MgO nano composites leading to formation of a structure 

with  a  bimodal  grain  size  distribution:  micrometre-sized  grains 

embedded inside a matrix of nanocrystalline/ultrafine grains. Due to the 

weak coherency of  Cu – MgO interface,  the matrix  is  not sufficiently 

controlled  by  the  MgO during  heating.  MgO agglomeration  does  not 

strengthen grain boundaries. 

In summary, the grain size of the matrix is directly dependent on the 

13



                                                                 State of the Art                                                          

nanoparticles type, size, volume fraction and distribution. Regarding this 

fact,  to  predict  the  contribution  of  grain  boundary  strengthening  at 

higher  volume  fraction  the  grain  size  should  be  considered  smaller. 

Zhang  and  Chen  [36] did  not  consider  this  effect  in  their  model. 

Moreover,  nanoparticles  located  at  grain  boundaries  cannot  interact 

with mobile dislocations via Orowan  mechanism. Very recently, Razavi 

et al.  [37] modified Zener model  [31], in nanostructures obtained by 

evaluating a non-random distribution of incoherent ceramic particles. On 

the basis of the new analysis,  the grain size of aluminum matrix nano 

composites containing 5 Vol. % nanoparticles with an average diameter 

of 50 nm would be ~244 nm.

During processing of  the nano composite,  grain boundary movement 

leads to decoration of grain boundaries with nanoparticles. Ferkel et al. 

[8] showed  formation  of  a  nanoalumina  dispersed  zone  along  grain 

boundaries in Mg/Al2O3 nano composite surrounding alumina depleted 

zone.  Referring  to  this  obtained  structure  one  can  conclude  that 

nanoparticles are mobile and can move along grain boundaries at high 

temperatures.  Pinning  of  grain  boundaries  by  sufficient  number  of 

nanoparticles  led  to  termination  of  grain  growth  course  of  action. 

Srinivasan and Chattopadhyay  [38], showed that in ternary aluminum 

alloys precipitation of nanodispersoids on grain boundaries resulted in a 

significant increase in the slope of Hall-Petch equation which is referring 

to an increase in strength caused by the grain boundaries. 

Srinivasan et al. [39] reported vastly different Hall-Petch constant values 

(ky) in nanocrystalline NiCr with nanoscaled  Y2O3 and Al2O3   dispersoids. 

They  attributed  this  phenomenon  to  grain  boundaries  whether  are 

decorated with particles  or have any preferential  orientation,  namely 

texture. Very recently Cao et al.  [40] reported that segregation of Mg 

solute atoms along grain boundaries of Al resulted to larger ky value. 

14
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Seemingly, nanoparticles located on grain boundaries play dual roles: 

decreasing the grain size and increasing the grain  boundary strength 

(ky) while they cannot contribute to Orowan mechanisms. Probably due 

to the fact that they are located at grain boundaries, a disordered region 

in  crystalline  structure  one  can  conclude  that  to  compensate  CTE 

mismatch  between  ceramic  and  metal  matrix  no  geometrically 

necessary dislocations would be generated at the grain boundaries. As a 

consequence they will not lead to increase of yield strength by increase 

in dislocation density. Therefore, strengthening mechanisms should be 

weighted as a function of  effective volume fractions of  nanoparticles 

playing different roles. 

To have a better insight on the effect of nanoparticles on grain boundary 

strength, the slope of Hall-Petch equation, data reported in reference 

[19] was reanalysed by considering possible strengthening mechanisms. 

Yield strength of  Al/Al2O3   nano composite as a function of  grain size 

extracted from reference [19]. As seen, with the increase in the volume 

fraction of Al2O3 nanoparticles, grain size decreases while yield strength 

increases.  In  general,  yield  strength  can  be  predicted  by 

superimposition  of  different  mechanism.  Since  the  maximum volume 

fraction  of  Al2O3  nanoparticles  is  <  6  %,  this  effect  is  negligible.  As 

specimens have been fully annealed, quench strengthening due to CTE 

mismatch can be excluded as authors reported before in Reference [19]. 

If we assume that all nanoparticles are located at grain boundaries will 

become zero. Under this condition grain boundary strengthening should 

be the main strengthening mechanism. 

As reported in [19], grain boundaries are decorated with nanoparticles. 

As  mentioned  before,  decorated  grain  boundaries  with  nanoparticles 

exhibit  higher  ky value in comparison with unreinforced alloy.  If  one 

assumes that nanoparticles on grain boundaries just strengthen grain 

15
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boundaries, an increase in the slope of Hall-Petch equation should be 

expected. The slope of Hall-Petch line is 0.178 MPam-0.5 which is much 

higher than 0.07 MPam-0.5 for  pure Al  [19].  The obtained ky value is 

similar to that in Al2Mg2Li alloy containing Al3Li precipitates [41]. Since 

a part of nanoparticles are introduced inside the grains, the effect of 

Orowan  strengthening  mechanism  should  be  taken  into  account. 

However, the enhancement in ky value decreases and reaches the value 

for  unreinforced  aluminum  while  no  particle  is  located  at  the  grain 

boundaries. 

On the basis of a simple assumption, ky value can be changed in the 

range  of  dependent  on the  location  of  nanoparticles  with  respect  to 

grain  boundaries.  Although,  Kang  and  Chan  [19] used  quantitative 

metallography  to  determine  the  effective   interparticle  spacing  and 

calculate  more  reliable  Orowan  stress,  there  is  a  big  gap  between 

experimental and theoretical results. One can use reverse calculation to 

find interparticle spacing and effective volume fractions of nanoparticles 

on the basis of experimental results.   

Considering grain size and yield strength mentioned above, the effective 

volume  fraction  of  nanoparticles  contributing  to  Orowan  mechanism 

were calculated and drawn as function of the slope ky. Interestingly, ky 

for  unreinforced  Al  0.07  MPam-0.5,  the  calculated  effective  volume 

fraction is more than 8 % while the total volume fraction of nano-Al
2
O

3
 is 

4  %.  With  the  increase of  ky  value,  the  calculated effective  volume 

fraction  decreases  and at  ky  = 0.13  MPam-0.5 it  reaches  to  ~2.4  %, 

which  is  acceptable.  The  same  trend  can  be  observed  for  nano 

composites with different amount of nanoparticles.

16
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2.1.5 Summary of strengthening mechanisms

In  the  present  study,  a  new  perspective  is  presented  to  relate  the 

contribution  of  different  strengthening  mechanisms  as  a  function  of 

effective  volume  fraction  of  nanoparticles.  Based  on  the  distribution 

pattern  of  nanoparticles  and  their  location  with  respect  to  grain 

boundaries  three  different  nanoparticles  were  considered:  1) 

nanoparticles distributed inside the grains, 2) nanoparticles located at 

grain boundaries or triple junctions and 3) clustered nanoparticles.  The 

first  group  of  nanoparticles  can  interact  with  mobile  dislocation  and 

strengthen nano composite via Orowan bypassing mechanism, as shown 

in  Figure 3. The second group which is nanoparticles located on grain 

boundaries  pins  grain  boundaries  and  enhances  grain  boundary 

strengthening  by  changing  the  slope  of  the  Hall-Petch  equation. 

Nanoparticle larger than a critical size can contribute in strengthening 

by CTE mismatch. On the base of dislocation theory, the critical particle 

size  was  found  the  size  that  smaller  than  that  no  geometrically 

dislocation can be generated around nanoparticles.

2.2 Nano composite manufacturing processes

2.2.1 Melting Technology 

It is known that the distribution of hard particles throughout the matrix 

has  a  vital  influence  on  the  mechanical  properties  of  composite 

materials  [42].  When  nanoscaled  reinforcements  are  used, 

agglomeration and clustering of the particles are critical issues which 

affect mechanical properties significantly  [19]. Ultrasonic dispersion of 

nanoscaled ceramic particles in molten Al  [43] and Mg  [44] has been 

employed  to  distribute  nanoparticles  throughout  the  matrix  but  no 

significant increase in mechanical properties was obtained (Figure 4).

17
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The most important challenge is the poor wettability of the particles by 

the melt  [21],  [22]. This limits the concentration of  fillers that can be 

properly dispersed to approximately 4 %  [23]. In addition, due to the 

high  temperature  of  the  melt,  chemical  reactions  take  place  at  the 

interface between fillers and the matrix, leading to the formation of a 

brittle interphase whose presence reduces the material performance. An 

investigation on the structure of an ultrasonically cast nano composite 

of Al with 2 Wt. % nano-sized Al2O3 dispersoids showed that the nano 

composite  consisted of nearly continuous nanoalumina dispersed zones 

in  the  vicinity  of  the  grain  boundaries  encapsulating  Al2O3 depleted 

zones [6].

Production methods like casting have these advantages of problems of 

18

Figure 4: Schematic diagram showing the experimental setup of ultrasonic  

method (Source: Hao Yu, (2010), Thesis submitted to the Faculty of the 

Worcester Polytechnic Institut ).
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reinforcement segregation and clustering, interfacial chemical reactions, 

high  localized  residual  porosity  and  poor  interfacial  bonding.  Other 

production methods such as spray deposition are not applicable because 

of it expensive costs.

2.2.2 Powder Metallurgy

Powder  metallurgy  technique  such  as  mechanical  milling  is  another 

procedure  to  distribute  nanoparticles  throughout  metal  matrix.  A 

conventional powder process is shown in Figure 5. Naser et al. [6] have 

shown that this method is a novel approach for dispersion strengthening 

of  metals  by  nanoparticles.  Tang  et  al.   [45] reported  a  relatively 

homogenous distribution of SiC nanoparticles in Al-5083, see Appendix 

19

Figure 5: Conventional powder metallurgy process 
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7.4, matrix by the milling process.

Although mechanical milling helps to distribute nanoparticles throughout 

the matrix, structural investigations show formation of decorated grain 

boundaries.  For  instance,  Ferkel  and Mordike  [9] showed that  in  the 

case  of  hot  extruded  milled  powders  a  sub  micrometer  grained  Mg 

structure was developed with the  nanoscaled SiC particles decorating 

the shear band near grain boundaries. 

The  most  promising  industrialized  fabrication  technology  is  powder 

metallurgy-based  [9],  [10],  [42]. This method requires mixing the two 

materials  in  the  powder  form,  mechanical  alloying  by  ball  milling, 

followed by pressing, sintering and/or hot processing like extrusion. 

This method allows avoiding issues with miscibility and generally leads 

to  sharp,  mechanically  strong  interfaces  between  nanoparticles  and 

matrix. An important drawback of the method is the fact that samples 

are  porous  and  achieving  full  density  requires  increasing  the 

temperature, i.e. performing a hot processing step. This leads to some 

grain  growth,  although  enhanced  stability  of  the  composite 

microstructure  to  microstructural  coarsening has  been reported  [19], 

[43]. 

It is interesting to note that compaction of powder containing grains of 

nanometer  dimensions,  and  especially  when  ceramic  or  carbide 

nanoparticles are incorporated, is more difficult than the compaction of 

micron-sized  powder  of  the  same  metal  or  alloy  [44],  [45].  This  is 

because  plasticity  in  nanocrystalline  samples  requires  order  of 

magnitude  larger  stresses  and  spring  back  is  more  pronounced. 

Therefore, nanostructured samples are likely to be more porous. Milling 

is also affected by the presence of nanoparticles [44], [45]. 

During  this  operation,  the  initial  particles  are  welded  together  and 

fractured  repeatedly.  The  powder  size  in  a  milling  operation  may 

20
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increase initially,  before decreasing.  A steady state results  when the 

welding and fracturing rates become equal.  Powder particles become 

equiaxed when this regime is reached. If hard nanoparticles are present, 

the rate of  milling increases and the steady state regime is  reached 

faster. This is attributed to the stress concentration effect of particles 

and their contribution to dislocation nucleation and plastic deformation.

Milling leads to uniform distribution of fillers and induces a strong grain 

size  reduction,  both  effects  being  beneficial  to  strength  properties. 

Powder  metallurgy  has  the  advantage  of  producing  net-shape 

components minimizing machining process which is a great problem in 

case of aluminum silicon carbide composite as a result of high tool wear 

due to  the  inherent  abrasiveness  of  the  hard SiC  particles.  Also  the 

machining  process  causes  cracking  of  SiC  particles  and  debonded 

matrix-reinforcement underneath the machined surface. 

However the aluminum silicon carbide composite produced by powder 

metallurgy  in  addition  to  an  acid-stearic  increases  the strength 

relatively. The acid-stearic film surrounding the nano-Sic nanoparticles 

protects it reinforcement and homogeneous distribution and movement 

of  dislocations  at  the  boundary  or  through  them and produces  high 

strength,  brittle,  and  insensitivity  to  high  temperature  exposure 

composite. 

In most works to date, aluminum was mixed with either silicon carbide 

(SiC) [12],  [11],  [13],  [14],  [15],  [16] or alumina (Al2O3) nanoparticles 

[17]. Filler concentrations up to 20 % have been considered, while the 

base metal was either pure Al or one of the commercial Al alloys. In 

most works, the nanoparticles are embedded in a nanocrystalline metal 

[16], although this is not always the case [13]. Significant increases of 

the yield and flow  stress, and of hardness have been reported for some 

of these materials [13]. 
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The Spark Plasma Sintering (SPS) is a promising sintering technology to 

produce  dense  bulk  pre-compacts  from  micro-  or  nano-structured 

aluminum alloys at lower temperatures and shorter sintering times. 

Spark Plasma Sintering is one of the most recent techniques [41], [46], 

[47]. Regardless the controversy to the presence/absence of sparking 

[48],  important  technological  benefits  such as short  processing time, 

fewer processing steps, elimination of the need for sintering aids, and 

near net shape capability are unchallenged. In addition, the use of high 

heating rates and short dwell times can minimize grain growth, which 

often  leads  to  improved  material  properties.  Several  experimental 

studies   [49], [50] on  the  effect  of  pulsed  current  sintering  on 

microstructure and mechanical behaviour of pure and alloyed aluminum 

powders demonstrated the capability of SPS in maintaining a very fine 

microstructures  for  a  excellent  mechanical  performance  of  the  bulk 

material. The breakdown of the oxide layers on the aluminum powder 

particles is one of the challenges for successful sintering of aluminum. 

The  available  experimental  results  suggest,  the  SPS  process  can 

promote  the  elimination  of  the  closed  oxide  layers  and  therefore 

promote  the  sintering  by  localised  heating  at  the  contact  areas  in 

combination with a sufficient pressure on the powder. In addition, the 

necessary degassing step for aluminum powder should be also feasible 

in a short time by employing the sintering cycle to remove the adsorbed 

gas on the particles effectively. But, the measured tensile mechanical 

properties of aluminum compacts consolidated by SPS scatter between 

lower and comparable with that of a corresponding wrought or extruded 

compact [51],  [52],  [53],  [54].  Therefore,  it  seems,  that  no 

comprehensive  understanding  regarding  the  influence  of  the  SPS 

sintering process parameters and material characteristics exists today 

[55]. 
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Experiments

3. Experiments

3.1 Manufacturing of Specimen Materials 

3.1.1 Powder Materials

The materials used in this work are 99.99 % pure Al powder and 97.5 % 

pure SiC. The Al powder had spherical particles of rather polydisperse 

diameter < 50 nm. The SiC particles were more facetted than the Al 

ones and have nominal dimensions of 50 nm, as shown in Figure 6.
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Figure 6: (a) and (b)Al99,99 <50µm of ECKA Granulates, Germany,(c) and (d) beta SiC,  

97.5 %, 45-55 nm, NanoAmor, USA, 



Experiments

3.1.2 Milling Process

The proper amounts of Al and nanoparticles were weighted to prepare 

Al-xSiC (x= 0 / 0.5 / 1 Vol. %) nano composite mixtures. The powders 

were blended in a Turbula mixer.

Then, the mixtures were milled in the high-energy planetary ball-mill 

Pulverisette P5 of Fritsch, Germany ( Figure 7). 
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Figure 7: High energy ball milling with Pulverisette P5 (Fritsch, Germany), steel  

container (250 ml) filled with 100 balls (100 Cr6, 10mm diameter, 100 balls)  

stearic acid (0,5 or 1,0 Wt.%) rotation speed varied between 150 and 250 rpm 

10 gram powder per milling vessel
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Small amounts (0.5 and 1 Wt. %) of stearic acid were added as process 

control agent (PCA) to prevent detrimental welding effects to the milling 

containers and balls. The steel ball to powder weight ratio was 10:1. The 

rotational speed was 250 rpm and milling was performed under a high 

purity argon atmosphere. The high energy milling time was 4.5 h and 

13.5 h for the different materials.

The summary of  the milling parameters and Samples is  listed in the 

Table  2,  see  Appendix  7.5.  In  order  to  study  the  effects  of  varying 

milling parameters this work has been realized in three steps. At first 

the main influencing parameters were analyzed very carefully. Secondly 

the speed and time of milling were evaluated. Finally the quantity of 

milling balls and the quantity of PCA as well as the milling time were 

varied.

25



                                                                 Experiments                                                          

3.1.3 Spark Plasma Sintering Process

Cylindrical  samples  of  8  mm  diameter  and  10  mm  height  were 

consolidated using the Spark Plasma Sintering system HP D 5 of FCT 

Systeme GmbH, Germany. The Spark Plasma Sintering Process can be 

understood as a modified hot pressing technique. 

Figure  8 shows  the  equipment  where  the  samples  has  been 

consolidated using Spark Plasma Sintering. 

The  sample  is  heated  by  a  pulsed  electric  current  (1)  which  flows 

through the punch-die-sample-assembly using a high current and low 

voltage. In contrast to other sintering techniques a special preparation 
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Figure 8: Spark Plasma Sintering system HP D 5 of FCT Systeme GmbH, Ø8 mm 

steel die, 450 °C/ 5min/ vacuum/200 MPa [IFAM Dresden ]
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of  the  sample,  i.e.  by  cold  pressing,  is  not  necessary,  because  the 

powder is filled directly in the mold, Figure 9. Six types of materials are 

discussed in  this  work  and are  listed in  Table  2,  see  Appendix  7.5., 

Material 1 is commercially pure aluminum AA1050, obtained from Alcoa 

Inc.. This material is not produced by powder metallurgy and has large 

grains of approximately 200 nm. It is taken as reference in this work.

Material 2 does not contain SiC nanoparticles and is obtained by powder 

metallurgy process following the method described above. The powder 

was mixed with 1 Wt. % stearic acid and milled for 13.5 h.

Material 3 is processes under similar conditions, except that 1 Vol. % SiC 

powder was added. Materials 4, 5 and 6 differ from material 3 by the SiC 

and stearic acid concentration and by the milling time see Appendix 7.5
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 Table 2.

The overview of SPS materials samples is listed in Table 2, see Appendix 

7.5 and Figure 10 shows as example the SPS samples material 5 and 6.

28

Figure 10: SPS materials samples (a) Material 5, (b) Material 6

(a)

(b)
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3.1.4 Annealing Treatment

The  microstructural  stability  of  these  materials  is  essential  in 

applications.  In  aluminum  in  particular,  grain  growth  at  ambient 

temperature is expected to take place leading to flow stress reduction 

and ductility  improvement.  To investigate  this  issue we selected the 

material  leading  to  the  highest  yield  stress,  material  3,  and  its 

equivalent without SiC, material 2, and subjected them to accelerated 

aging by annealing at 150 oC and at 250 oC, in separate experiments, for 

2h. The samples were fully characterized by TEM, macroscopic uniaxial 

testing  and  nanoindentation  after  each  annealing  sequence.  The 

annealed materials 2 are denoted as 2HT150 and 2HT250,  while  the 

annealed materials 3 are labeled as 3HT150 and 3HT250. 

For  all  materials  studied  the  density was  measured  using  the 

gravitational technique by measuring the weight in de-ionized water and 

70% isopropyl  alcohol.  The results  of  the  density  measurements  are 

shown in the Appendix 7.5 Table 1.
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3.2 Microstructural and Microanalytical  
Investigations

3.2.1 Metallographic Investigations

30

Figure 11: Material 4 (a) milled powder particles, (b) metallographic section of 

milled powder particle, (c) (b) at higher magnification showing impurities ( circled)

(b)

(c)

(a)



                                                                 Experiments                                                          

The surface of the metallographic specimen was prepared by  standard 

grinding,  polishing and  etching procedures used for aluminum alloys. 

These  investigations  were  performed  at  Fraunhofer  Institute  for 

Manufacturing  and  Advanced  Materials,  IFAM,  Dresden.  After 

preparation,  the  specimens  were  analyzed  by  optical and  electron 

microscopy. For optical microscopy a stereo microscope was used.

More or less round balls with millimeter size, without welding, have been 

obtained (Figure 11). Increasing the PCA, acid stearic from 0,5 Vol. % to 

1  Vol.  %  the  size  of  the  milled  powder  particles   is  relatively 

homogeneous.  Smaller  particles  can  be  observed  but  with  a 

homogeneous  size.  In  the  different  cross  sections  of  the  powder 

particles some pores and inclusions were observed.

The  results  were  obviously  dependent  on  the  used  quantity  of  the 

process  the  process  control  agent,  PCA,  stearic  acid,  there  was  no 

sticking of aluminum on the inner wall of the container and the balls. 
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3.2.2 Scanning Electron Microscopic Investigations

For higher magnification, scanning electron microscope (SEM), has been 

32

Figure 12: Material 4, EDS analysis of impurities of the milling experiment 

Figure 13: Material 4, detection of impurities
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used.  The  chemical  composition  of  the  microstructural  features  was 

determined by energy dispersive spectrometer (EDS). By EDS analysis 

impurities were detected in the milled powder material containing the 

elements O, F, Al, Si, Ca, Cr, Fe and Ni (Figure 13, Figure 12).Fe and Cr 

rich impurities  have their  origin from wear of  the milling equipment. 

Impurity  of  Ca can be caused by the cleaning process of  the milling 

device. F contamination is caused by the HF - etching of the polished 

sample.

Impurity of Ni can be caused by remains at the milling equipment during 

a previous milling experiment.

3.3 Mechanical Testing

The  mechanical  behavior  of  the  nano  composites  is  probed  by 

performing uniaxial compression and indentation. The results of these 

tests are presented in this section. Compression tests were performed 

at the Department of Mechanical Engineering, University Aveiro. 

3.3.1 Compression Tests

A  compression  test  is  a  method  for  determining  the  behavior  of 

materials under a compressive load. The specimens are compressed, 

and deformation at various loads is recorded. Compressive stress and 

strain are  calculated and plotted as  a stress-strain diagram which is 

used to determine the elastic limit, proportional limit, yield point, yield 

strength and  the compressive strength. Stress - strain diagrams have 

been constructed from data obtained in the compression test where its 

load is applied   material 1 - 6, and continuous measurements of stress 

and strain are made simultaneously. 

Compression tests with material 1 – 6 were performed using a Shimadzu 

AG-50 kN testing machine and the deformation was measured with a 
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Messphysik ME46 video-extensometer, Figure 14. The strain rate used in 

all  tests was 2 x 10-3 s-1.  The lubricant Molykote was used to reduce 

friction with the loading plates in compression.

The test procedure involves  placing the test specimen in the testing 

machine and applying compression until a maximum stress of about 970 

- 990 MPa.  Figure 15 shows test Material  3 before compression,  and 

Figure 16 shows Material 3 after compression.  45 KN has been applied 

to each testing sample a circular cylinder with flat ends. The elongation 

measurement is used to calculate the engineering strain,  ε, using the 

following equation:

34

Figure 14: Compression Test Machine at University Aveiro
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ϵ=
Δ L
L0

=
L−Lo
Lo

where ΔL is the change in length,  L0 is the initial length, and  L is the 

final  length  of  the  cylindrical  material  test  sample.  The  force 

measurement is used to calculate the  engineering stress, σ, using the 

following equation:

σ=
F n
A

, 

where  F n  is the force normal to the cross-section  A of the cylindrical 

specimen section. 

Figure 15 shows  Material 3, before testing:
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Figure 15: Material 3,  before compression

(1)

(2)
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Figure 16 shows  Material 3, after testing:

Samples are deformed as depicted in Figure 17:

36

Figure 17: Sample before test performance

After 
compression

  D
0

D

L

Before compressionL0

Fn

Figure 16: Material 3,  after compression
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On compression, the specimen will  shorten. The material will  tend to 

spread in the lateral direction and hence increase the cross sectional 

area A as follows:

A=
π∗D ²

4

The results of the compression tests are shown in Table 3, in Appendix 

7.5.

3.3.2 Indentation Tests

Indentation was performed to characterize the mechanical behavior at 

the nanoscale.  The test was performed with a Berkovich tip. As well-

known,  the  measured  hardness  varies  with  the  indentation  depth  if 

indents  are  relatively  shallow  [18],  and  becomes  insensitive  to  this 

parameter beyond a certain indentation depth.

In indentation small loads and tip sizes are used, so the indentation area 

may  only  be  a  few  square  micrometers or  even  nanometres.  This 

presents problems in determining the hardness, as the contact area is 

not  easily  found.  Atomic  force  microscopy or  scanning  electron 

microscopy techniques may be utilized to image the indentation,  but 

can be quite cumbersome. Instead, an indenter with a geometry known 

to high precision,  a  Berkovich tip which has a three -  sided pyramid 

geometry  is  employed.  During  the  course  of  the  instrumented 

indentation process, a record of the depth of penetration is made, and 

then the area of the indent is determined using the known geometry of 

the indentation tip. While indenting, various parameters such as load 

and depth of penetration can be measured. A record of these values 

plotted on a graph to create a  load-displacement curve. These curves 
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can be used to extract mechanical properties of the material.

Indentation tests have been performed using a Nano Test 550 machine 

from Micromaterials Inc., UK, and a Berkovich tip. The indentation and 

retraction rates were equal and set at 27 °C. The tests are performed in 

load control and the displacement of the tip is measured with below 1 % 

error.

The  Berkovich  tip  has  the  same  projected  area  to  depth  ratio  as  a 

Vickers indentation as shown Figure 18.
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H=
P max

26,43∗h2

Pmax is  the maximum load,   h is  the penetration  depth and H is  the 

hardness.

The results of the hardness tests are shown in Table 4, in Appendix 7.5.

3.4 Transmission Electron Microscopy    
Investigations

The dislocation structure of the material before and after compression 

testing observed with a Hitachi H-9000 (300 kV) transmission electron 

microscope  (TEM).  The  TEM  samples  were  taken  from  the  plane 

perpendicular  to  the  cylindrical  sample  axis  at  the  mid-thickness 

location of the specimen. The samples were mechanically polished on 

both surfaces and were electro polished using a double-jet thinner with 

a dilute solution of HNO
3
 and methanol under 12 V tension at 20 °C. 

Figure 19 shows a TEM micrograph of material 3, containing 1 Vol. % SiC 

before (Figure 19a) and after (Figure 19b) the compression test. Most 

grains  are  equiaxed  and  of  approximate  size  100  nm.  In  addition, 

elongated grains, with the smaller dimension of approximately 50 nm 

and the  larger  dimension  of  about  500  nm were  observed  in  some 

regions of the sample. For the samples tested in uniaxial compression 

the grains present a high and roughly uniform dislocation density.
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40

Figure 19: TEM micrographs of material 3 (a) after SPS processing  and (b) 

after SPS processing and compression testing.
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Figure  20 presents  the  dark  field  TEM  image  of  the  same  sample 

showing  well-defined  SiC  nanoparticles  which  are  observed  to  be 

located predominantly at grain boundaries. An excellent distribution of 

SiC was also observed by fracturing one of these samples followed by 

performing scanning electron microscopy of the fracture surface.  The 

SiC  particles  were  identified  visually  and  then  their  chemical 

composition was confirmed with EDS.

For further details  analysis Scanning Transmission Electron Microscope 

(STEM)  was  applied  in  order  to  investigate  the  location  of  SiC 

nanoparticles in the aluminum matrix. 

For these investigations material 3 after SPS processing  containing 1 

Vol. % SiC, was used. The samples were cut in two pieces.  For STEM 
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Figure 20: Dark field TEM micrographs of SiC nanoparticles located at grain 

boundaries (dashed line) in material 3



                                                                 Experiments                                                          

analysis thin lamellae were prepared using the Focus Ion Beam (FIB) 

method.  For  this  purpose  the  fracture  surface  of  the  specimen  was 

polished and the FIB lamellae were extracted of this polished surface. 

Figure 21 shows location of the  two extraction points whereas Figure 22 

is a schematic presentation of the lamellae location in the as-received 

material.

Two lamellae were produced. While mounting a lamella to the electron 

microscope holder small tilting might have occurred, therefore the exact 

orientation of the microstructural features with regards to the sample 

rotation axis is not to be deduced form the images presented.
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Figure 21: Material 3, location of 2 FIB lamellae extraction points on the polished 

fracture surface
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The results of the investigations for the first lamella are shown in Figure

23 and Figure 24.

In the Figure 23 elongated aluminum grains are shown. The longer axis 

of  the  grains  is  roughly  oriented  along  the  vertical  axis  of  the  as-

received material. The grain elongation may be due to electrical field 

assisted / augmented diffusion during sintering of the material in SPS. 
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Figure 23: Microstructure of the first lamella as observed with STEM

(a) SiC particle, (b) elongated Al-grain

(b)

(a)

Figure 22: Lamellae location in the as-received sample
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The  SiC  nanoparticles  are  uniformly  distributed  in  the  matrix,  no 

agglomeration of nanoparticles was observed.

A preferential  location  of  the  nano SiC  particles  at  the  matrix  grain 

boundaries was observed.

At  high  magnification  Figure  24 bright  or  dark  dots  are  visible, 

depending on the contrast mode of the investigation.  These dots are 

from the  FIB  preparation,  re-deposits,  mixture  of  the  milled  material 

tungsten and gallium used in FIB processing. Also tiny dark spots are 

also observed in Figure 24.

These are radiation damages, introduced by the high-energy  ions used 

for FIB milling. The EDS analyses shown that the main elements present 

in the sample were:  Al,  Si,  C  and O.  Oxygen both from oxidation of 

elementary Al powder before milling or during SPS sintering as well as 

44

Figure 24: Microstructure of the first lamella as observed in transmitted 

electrons; through-thickness projection
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surface polishing of the as-received sample for FIB processing. The EDS 

spectra show also presence of Fe, Cr and Ni . These particles are most 

probably debris of milling/mixing tools made of stainless steel.

Finally,  all  the  EDS spectra  show presence  of  Cu.  This  is  related  to 

material of sample holder and therefore copper should not be regarded 

as constituting element of the analyzed sample.

The lamella had sub areas with elongated and more equiaxed aluminum 

grains.

4. Results and Discussion

4.1 Microstructural Observations

The preferential  distribution of ceramics particles at grain boundaries 

indicates  that  these  do  not  act  as  obstacles  to  dislocations,  as  is 

generally  the  case  in  materials  with  larger  grains.  Hence,  Orowan 

looping and dislocation pinning at fillers do not operate as hardening 

mechanisms  in  these  materials.  Nevertheless,  the  large  difference 

between the thermal expansion of SiC and Al may lead to dislocation 

nucleation from the carbide particles upon temperature variation. The 

observation of the preferential location of particles at grain boundaries 

is opposite to the work reported in Poirier et al. 2010 [56], in which Al2O3 

nanoparticles  were  seen  to  be  located  predominantly  within  the  Al 

grains.  Very  few  dislocations  are  visible  in  these  samples.  This  is  a 

common observation in nano crystalline materials and is attributed to 

the trapping effect of grain boundaries.  Under deformation, the grain 

boundaries  also  play  the  role  of  dislocation  sources,  so  the  lack  of 

dislocations does not imply a lack of dislocation activity during loading. 

The chemical composition of these materials was studied with EDS. The 
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main  constituents  are,  of  course,  Al,  Si  and  C.  Traces  of  O  were 

detected; its origin is thought to be related to the presence of oxides on 

the  as-received  Al  particles.  Occasionally,  a  flake  of  stainless  steel 

resulting from the wear of milling balls or contained wall was detected. 

When AlSiC nano composites are processed by the melt procedure, the 

flowing reaction was observed to take place at the filler-matrix interface 

in Saberi et al. 2009 [57]:

 4Al + 3SiC = Al4C3 + 3Si

The presence of such phase was not detected in any of materials. 

The interfaces are  sharp and clean.  This  is  due to the  fact  that  the 

temperature reached during processing (both milling and SPS) is kept at 

low values. Perfect interfaces have been also observed for this system 

in Ye et al. 2005 [58], Cheng et al. 2008 [59], El-Eskandarany 1998 [20], 

Suryanarayana  2001  [60].  Generally,  milling  is  reported  to  produce 

strong metallurgical bonds between reinforcements and the matrix  in 

Suryanarayana  2001  [60]. A  direct  measurement  of  the  interface 

strength in these samples is not possible. Carbon may be embedded in 

the  Al  matrix  following  the  decomposition  of  the  stearic  acid  during 

milling and at temperatures as high as 450 °C in Poirier et al. 2011 [61]. 

This  leads to the  formation of  Al  carbides  which  are  not  necessarily 

located close to the SiC fillers. This reaction renders the material heat 

treatable  to  some  extent,  with  the  hardness  varying  during  heat 

treatment.  On  the  other  hand,  it  has  been  repeatedly  observed  in 

composites in which the matrix is a heat treatable Al alloy in Cheng et 

al.  2008,  [59].  Parvin  et  al.  2008  [62] that  precipitation  becomes 

sluggish when the grains reach nanoscale dimensions. This is attributed 

to the fact that solute is preferentially trapped at grain boundaries and 
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therefore the net solute concentration in the grains is smaller than the 

nominal alloy value. The materials processed by powder metallurgy are 

not  fully  compacted  and  hence  their  density  is  smaller  than  that  of 

material 1. The values do not depend on milling time, acid concentration 

or SiC content. The carbide concentration is small enough to have little 

effect on the overall composite density. The only exception is material 

3HT250 which has a density smaller than materials 3 and 3HT150. The 

heat treatment did not affect the density of material 2, as the reported 

values of materials 2, 2HT150 and 2HT250 are within the experimental 

error (±0.02). The density of material 1 is within the experimental error 

to 2.7 g/cm³, which is the value expected for bulk aluminum see Table

2.

4.2 Mechanical Tests 

4.2.1 Compression Tests

Figure  25 shows  the  stress-strain  uniaxial  compression  curves 

corresponding to materials 1, 2 and 3. Material 1 has a yield stress of 37 

MPa, as expected for pure Al with relatively large grains. The yield stress 

in  tension is  identical  to that  in  compression.  Material  2  has a yield 

stress of 276 MPa, 7.45 times larger than that of the reference material 

1. This is due entirely to the reduction in grain size. The Hall-Petch effect 

in AA1050 was reported in Scharnweber et al. 2010 [63]. The effect is 

described by the equation:

σ y [MPa ]=80+52d−1/2
[µm ]
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where d is the grain size, which holds for d < 4 µm. For a grain size of 

48

Figure 25: Nominal stress-strain curves from uniaxial compression tests of  

materials (a) 1, 2 and 3, and (b) 1, 2, 3 and 4
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200  nm, this relation predicts σy = 196 MPa, while for d = 70 nm, it 

gives σy = 276 MPa like for material 2. 

The addition of 1 Vol. % SiC leads to further increase of the flow stress. 

The curve corresponding to material 3 has a yield stress of 412 MPa, an 

increase by a factor of 11.1 relative to the reference material 1, and by 

a  factor  of  1.49  relative  to  material  2.  It  results  that  the  main 

strengthening  mechanism  is  associated  with  the  presence  of  Al 

nanograins. The fact that SiC nanoparticles are located preferentially at 

grain boundaries indicates that precipitate/particle hardening does not 

operate, however the nanofillers slow down grain boundary sliding and 

migration. The additional strength gained by adding SiC nanoparticles is 

attributed to two mechanisms. On one hand, grain boundary pinning is 

expected to increase the flow stress since, given the small grain size of 

these samples, grain boundary sliding is expected to be important even 

at  room temperature.  On the other  hand,  the  hard SiC  particles  are 

expected  to  be  stress  concentration  sites  and  to  act  as  sources  of 

dislocations. The average wall-to-wall distance between nanoparticles at 

1 Vol. % filling is 5.46 R, where R = 25 nm is the mean filler radius. This 

is equivalent to approximately 1-2 grain sizes. Hence, the confinement 

effect that the rigid fillers have on the plastic deformation of the matrix 

may also play a role in hardening. It is also interesting to observe in this 

context that the strain hardening rate is identical in all milled samples at 

given strain  and is  smaller  in  the  un-milled  material  1.  The inset  to 

Figure 25a) shows the strain hardening rate for all curves in the main 

figure. In alloys with precipitates and large grains the strain hardening 

rate is usually smaller than for the solid solution of same composition. 

Here we observe that the rate increases upon milling, and is insensitive 

to the presence of SiC particles. The increase is not surprising since the 

deformation mechanisms in materials 1 and 2 are quite different. We 
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interpret the insensitivity to the presence of  SiC as a support of  the 

conjecture made above that the nanoparticles, which are not embedded 

in the grains, do not interact with dislocations in the same way as in a 

precipitated alloys with micron-sized grains. 

Similar  conclusions have been  reached  in  Poirier  2010 [56] while 

performing  experiments  with  Al-10  Vol.  %  alumina  nano  composites 

prepared  using  a  procedure  similar  to  that  applied  here.  In  these 

experiments it  was observed that the grain size reduction associated 

with milling has the largest effect.  An increase of the yield stress by 

3.46 times relative to the pure, unmilled Al, was observed, while the 

addition of  alumina particles leads to a smaller  increase a total of  4 

times relative to the unmilled  aluminum.  Cryomilling Al-7.5 % Vol. Mg 

leads to an increase of the yield stress from 150 MPa to 575 MPa, a 3.83 

times increase, and a reduction of the tensile strain at failure by 50 %, 

from 16 % to 8 %, reported in Han et al. 2003  [64]. A strong tension-

compression asymmetry appears after milling and the strain hardening 

rate in tension is  reduced. It  is  also interesting to compare with the 

corresponding micro-composite which has not been processed by milling 

in Cheng et al. 2008 [59]. When 12 Vol. % micron-sized SiC is embedded 

in large grains of diameter 50 nm, a 40 % increase of the yield stress 

was observed relative to the Al without SiC in Cheng et al. 2008, [59]. A 

49 % increase is obtained in the tests, comparing materials 2 and 3, but 

this gain results upon the addition of only 1 % SiC. 

Figure 25b) shows the effect of the SiC concentration. 

The curves in  Figure 25a) are shown together with that for material 4. 

The yield stress of material 4 is larger than that of material 2 by a factor 

of 1.46. 
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Figure 26 shows the response of process parameters for materials 5 and 

6, compared to material 3. The yield stress of material 5, identical to 

material 3, except that its milling time was only 4.5 h, is 0.92 of the 

yield stress of material 3 and the aluminum grain size is around 150 - 

200 nm. The SiC distribution is very good, as in all samples that have 

been processed by milling. The strain hardening rate is independent of 

the milling time.

Previous works on planetary ball milling have shown that the character 

of ball energy depends on the impacts, the size and number of balls in 

the vial.  The same balls  have been maintained in  all  mixtures done. 

Selection of the PCA, has been observed as process control agent, in 

this case was used stearic acid, and the milling time have a significant 

effect on the powder morphology.  When stearic  acid is  used,  micron 

sized composite powders are obtained. The hardness for the materials 
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Figure 26: Nominal stress-strain curves from uniaxial compression tests of  

material  3, 5 and 6. 
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milled  with  stearic  acid  is  influenced  by  the  mixing  with  the  SiC 

nanoparticles and from the reaction of the stearic acid during milling. 

The hardness increases with the input energy. The influence of different 

processing parameters was studied for milling with the addition of 0.5 

Wt.  %  of  stearic  acid  as  the  process  control  agent.  All  parameters 

studied  in  this  work  as  speed,  time  of  milling,  mass  of  balls  and 

powders,  have  been  assumed  and  experimented  according  the 

experience  and  studies  already  done  in  this  area.  A  pronounced 

decrease in energy transfer from the balls to the powder is done with an 

increasing number of balls, when the milling is performed at low vial 

filling levels.  Our experiments have been done always with the same 

balls and its amount, 100 g, and diameter, 10mm. Increasing the time 

milling, and using 1 Vol. % stearic acid, we observed that the material 

gets more homogeneous.

Stearic acid is added to the powder as a milling additive. It prevents the 

powder  from sticking to  the  balls  and the  interior  of  the  processing 

chamber. It has been reported that this addition helps reduce the size of 

the powder, speeding up the milling process. In these experiments it is 

observed  that  the  yield  stress  increases  upon  increasing  the  acid 

concentration, when all other parameters are kept constant. This effect 

is demonstrated in Figure 26 by comparing the curves corresponding to 

materials  5  compared with  the  increase corresponding to  material  3 

relative  to material  2,  which is  a  factor  of  1.49.  The dependence of 

mechanical parameters on the SiC volume fraction is non-linear, as also 

observed in Poirier et al. 2010 [56].
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4.2.2 Indentation Test

The variation of the hardness with the depth for material 3 is shown in 

the  inset  to  Figure  27.  This  information  was  used  to  define  the 

indentation depth for all subsequent tests at 1200 nm. The main Figure

27 shows  several  force-displacement  curves  obtained  by  indenting 

material 3 at different sites. 

The rather small  variability  observed in  this  figure indicates that  the 

sample is homogeneous on this probing scale. Specifically, the probed 

volume of material in each of these tests is approximately 1 m3.  This is 

in agreement with the discussion in the experimental chapter indicating 

good distribution of nanoparticles and sub-micron grain size. 
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Figure 27: Load-displacement curves of three indentations in material 3 

performed at different locations. The inset shows the variation of the hardness 

with the indentation depth
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Figure 28 shows load-displacement curves obtained for materials 1, 2, 3 

and 4. This figure provides indentation data that complement the results 

shown in Figure 25b). 

The conclusions and their implications are similar: a large increase in 

hardness results upon grain refinement (compare curves corresponding 

to materials 1, H = 0.41±0.023 GPa, and 2, H = 0.886±0.12 GPa), with 

a smaller increase being produced by the addition of SiC nanoparticles, 

comparing curves corresponding to materials 2, H = 0.886±0.12, and 3, 

H = 1.217±0.032 GPa. 

Reducing the volume fraction of SiC leads to a small reduction of the 

hardness, material 4, H = 1.17±0.091 GPa. This represents increases 

relative to AA1050, material 1, of 2.16 times upon grain refinement, and 

of  2.75  times  when  1  Vol.  %  SiC  is  added  to  the  nanocrystalline 
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Figure 28: Load-displacement curves from indentations performed on materials 1,  

2, 3, and 4
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material.  These increases are smaller than those computed based on 

the yield stress but the trends are identical.

A similar system was studied by Kamrani et al. [33] who evaluated the 

hardness of their samples as a function of SiC filling fraction using a 

classical  micro-indenter.  They  report  the  ratio  of  the  hardness  of 

samples with 1 Vol. % SiC to the hardness of the nanocrystalline sample 

without SiC to be 1.25,  which is  comparable  with the value of  1.37, 

material 3 relative to material 2, reported here. They indicate that the 

ratio of the hardness values increases to approximately 1.82 when the 

SiC concentration increases to 7 Vol. %.  The fact that the SiC addition 

leads to a smaller increase of the hardness compared to the effect of 

milling is also reported in Parvin et al. 2008 [62], Fogagnolo et al. 2003 

[65].  The numbers reported here can be also compared with the data 

presented by Parvin et al. 2008 [62] who studied AA6061-10 Vol. % SiC 

nano composites. They report the hardness of samples milled and then 

hot  extruded,  without  SiC,  as  a  function  of  milling  time.  The  ratio 

between the hardness after 9 h of milling, maximum time of their study 

and  the  hardness  of  the  unmilled  AA6061  is  1.41,  which  may  be 

compared with the effect of milling on AA1050: the ratio of the hardness 

of materials 2 and 1 is 2.16. As a side observation, it is interesting to 

note that the age hardening alloy AA6061 loses its aging capability upon 

milling  in Parvin et al. 2008 [62].
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Figure  29 shows  the  behavior  of  materials  3,  5  and  6.  The  figure 

parallels  Figure 27 in which the uniaxial behavior of these samples is 

shown. The hardness of materials 3, 5 and 6 is H = 1.217±0.032 GPa, 

1.146±0.106 GPa and 1.048±0.07 GPa, respectively.  As before,  their 

ranking in terms of hardness is identical to that established based on 

the yield stress, however, the ratios of yield stresses are not the same 

with those of the hardness values. A more pronounced increase of the 

yield stress relative to the increase of hardness upon the addition of 

nano-Al2O3 to Al was also reported in Kang and Chan 2004 [19].
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Figure 29: Load-displacement curves from nanoindentations performed on 

materials 3,5 and 6
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4.3 Microstructural Stability to Annealing

The  microstructural  stability  of  these  materials  is  essential  in 

applications. In Al in particular, grain growth at ambient temperature is 

expected to take place  leading to flow stress  reduction and ductility 

improvement. To investigate this issue we selected the material leading 

to the highest yield stress, material 3, and its equivalent without SiC, 

material 2,  and subjected them to accelerated aging by annealing at 

150 oC and at 250 oC in separate experiments, for 2 h. 

The  samples  were  fully  characterized  by  TEM,  macroscopic  uniaxial 

testing and indentation after each annealing sequence. The annealed 

materials 2 are denoted as 2HT150 and 2HT250,  while  the annealed 

materials 3 are labeled as 3HT150 and 3HT250. 

Figure 30 shows the stress-strain curves of all samples before and after 
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Figure 30: Nominal stress-strain curves from uniaxial compression tests of materials  

2 and 3 before annealing and after heat treatment for 2 h at 150 °C and 250 °C
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annealing. The curves corresponding to the nanocrystalline material 2 

without  SiC  before  and  after  annealing  overlap  for  both  annealing 

sequences.  The  processed  and  3HT150  curves  overlap,  however 

material  3  annealed  at  250  oC  loses  some  of  its  carrying  capacity. 

Specifically,  the yield stress drops from 412 MPa before annealing to 

350 MPa after annealing at 250 oC. 

To  clarify  the  origin  of  these  observations,  TEM  analysis  has  been 

performed on annealed materials  both before  and after  deformation. 

The results  indicate that  in  all  materials  with the same stress  strain 

behavior before and after annealing there is no noticeable grain growth. 

However, the grain size of material 3, which was initially 150 nm,  see 

Figure 19a) increases during annealing to approximately 200 nm, see 
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Figure 31: Dark field TEM micrographs of grains (white areas) of material 3 after 

annealing at 250 °C
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Figure 31. The reduction of the yield stress observed for this sample is 

attributed to this change.

Similar conclusions regarding the stability of the microstructure of milled 

Al have been reported before. In Han et al. 2003 [64] it was shown that 

the annealing of cryomilled Al-7.5 Vol. % Mg at 450 °C for 2.5 h did not 

lead to significant grain growth and the yield stress was left essentially 

unchanged, although a slight  improvement in ductility  was observed. 

Relative insensitivity to annealing at 450 °C was also reported in Ye et 

al.  2005  [58] for  a  composite  containing  10  Wt.  % B
4
C  particles, 

nanocrystalline AA5083 and coarse grained AA5083 particles.

This 3-phase composite exhibited excellent yield stress (over 1 GPa) and 

excellent ductility. The stability of the milled microstructure is formally 

attributed to grain boundary pinning  in Ye et al. 2005 [58], Zhou et al. 

2001 [66], which, in our sample, should be enhanced by the presence of 

SiC particles at grain boundaries. However, a systematic study  of the 

actual mechanism leading to microstructural stability in these materials 

with rough nanoscale  features  does not  seem to be available  in  the 

literature.

Figure 32 shows indentation load-displacement curves for materials 2 

and 3 in their heat treated and non-heat treated states. Local probing 

leads to conclusions similar to those described for Figure 30 All curves 

corresponding to material 2 overlap indicating that heat treatment has 

no effect on the microstructure of this material. Indeed no grain growth 

was detected in material 2 after annealing.

Indentation  results  for  material  3  are rather  similar  before  and after 

annealing. The reduction of yield stress observed after annealing at 250 

°C  in  uniaxial  testing  is  not  reproduced  when  probing  the  material 

behavior at the nanoscale.
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4.4 Strengthening Mechanism

The  description  of  plasticity  in  metal  matrix  composites  have  been 

analysed at different scales in several publications. The work of Saraev 

and  Schmauder  published  in  2003  [67] proposed  a  simple  model 

considering an elastic silicon carbide (SiC) inclusion and elastic-plastic 

aluminum  (Al)  matrix.  The  bonding  between  the  inclusions  and  the 

matrix  was  assumed to  be  perfect.  The  plastic  constitutive  relations 

were  taken  in  the  Voce-type  form  with  parameters  fitted  to  the 

experimental data of Al 6061 alloy. 

The model proposed by  Chaboche et al. 2005  [68] was based on unit 

cell finite element analyses in the context of periodic homogenization 
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Figure 32: Load-displacement curves from indentation tests performed on materials  

2 and 3 before annealing and after heat treatment for 2 h at 150 °C and 250 °C
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and delivered reference solutions for the overall stress–strain responses 

with  various local constitutive behaviors. The particle size dependence 

for composite materials was studied by Liu and Hu 2005  [69] . In this 

scope, the authors proposed a new analytical micromechanical method 

in  the  framework of  micropolar  theory.  In  the work of  Vena and co-

workers in Vena et al. 2008) [70] a prescribed homogenized strain state 

is applied to a unit volume element of a metal–ceramic composite with 

proportional  loading in which all  components of the strain tensor are 

proportional to one scalar parameter. 

The mechanical response of the material was modeled by considering a 

von Mises plasticity model for the metal phase and a Drucker–Prager 

associative elastic–plastic  material  model  for the ceramic  phase.  The 

meso-mechanical constitutive model developed by Guo et. Al 2011 [71] 

proposes  a  nonlinear  kinematic  hardening  rule  to  describe  the 

ratcheting  of  metal  matrix  composites.  With  further  assumption  of 

spherical  particles,  the  proposed  meso-mechanical  cyclic  constitutive 

model was verified by comparing the predicted uniaxial ratcheting of 

SiCP/6061Al  composites  with  corresponding  experiments  obtained  at 

room  temperature.  A  more  physically  oriented  model  was  recently 

proposed  by  Azizi  et  al.  2011  [72].  In  this  work  non-conventional 

boundary  conditions  are  applied  at  material  interfaces  to  model  a 

constraint  on  plastic  flow  due  to  dislocation  blocking.  Unit  cell 

calculations are carried out under generalized plane strain conditions. 

The plastic  size effects due to dislocation pile-ups at interfaces were 

analyzed in the work of Okumura et al. 2011 [73]. 

It  was  shown  that,  strain  hardening  in  elastic–plastic  layers  arises 

depending  on  thickness  and  stiffness  of  elastic  layers;  and  the  gap 

between slip planes in adjacent elastic–plastic  layers.  A key research 

work  for  understanding the  plastic  deformation in  nanoscale  metallic 
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multilayers was recently published by Zbib and co-workers 2011  [74]. 

The authors investigated the mechanical behavior of nanoscale metallic 

multilayered  composites  which  is  governed  mainly  by  interface 

properties  of  coherent  and/or  incoherent  interfaces,  dislocation 

mechanisms  in  small  volume,  and  dislocation–interface  interaction, 

within a dislocation dynamics framework. 

One important result in the context of the present work was the recent 

publication  by  Zhu  and  Lu  2012  [75],  on  modelling  the  plastic 

deformation  of  nanostructured metals  with  bimodal  grain  size 

distribution.  The  motivation  for  the  model  was  a  key  experimental 

observation  that  nanograins  or  ultrafine  grains  contribute  to  high 

strength, while high ductility is attributed to coarse grains.

From the previous models and respective experimental data it is clear 

that  the  results  obtained  in  the  present  work  are  unique  essentially 

because  the  microstructure  of  the  Al1050-SiC  nano  composite  was 

tailored to have overall properties, very high yield stress and elongation. 

Simultaneously,  the role  of  new microstructure-operative mechanisms 

during plastic deformation are emphasized. In fact, as the grain size is 

reduced,  a  transition  is  observed  in  the  dominant  strengthening 

mechanisms.

Figure 33 provides a schematic representation of this effect. In the case 

of micron-sized Al grains, the SiC particles are embedded in the grains 

and act  as  pinning sites  for  dislocations.  The principal  strengthening 

mechanism results from this interaction, Orowan looping.

In  nanocrystalline  Al,  the  flow  stress  is  controlled  by  the  Hall-Petch 

effect. As observed in this work, the added SiC particles segregate at 

grain boundaries and do not contribute to strengthening through the 

Orowan mechanism, rather pin the grain boundaries helping to stabilize 

the nanostructure of the material. Grain boundary sliding is expected to 
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be important in both nanocrystalline Al and AlSiC, although we do not 

present  explicit  proof  for  the  operation  of  this  mechanism  at  room 

temperature.

63

Figure 33: Schematic representation of microstructure transition mechanism from micro 

to nano Al-SiC composite
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5. Conclusions

AlSiC  nano  composites  were  produced  using  a  powder  metallurgy 

technique and spark plasma sintering and their mechanical properties 

were studied on the macroscopic scale by uniaxial compression and at 

the  nanoscale  by  indentation.  The  effect  of  process  parameters,  in 

particular that of milling time and concentration of stearic acid used, 

and of the concentration of SiC has been studied. The yield stress of the 

nano composite with optimal microstructure is more than one order of 

magnitude  larger  than  that  of  the  pure  Al  base  material.  This  large 

increase is  due primarily  to the  more  than two orders  of  magnitude 

decrease of the grain size produced by milling. The addition of 1 Vol. % 

SiC  accounts  for  36  %  of  this  increase.  Increasing  the  stearic  acid 

concentration leads to a measurable increase of the yield stress.

All these conclusions are confirmed when probing the material behavior 

locally, using indentation, although the measured hardness values are 

not  always  varying  in  proportion  with  the  yield  stress.  A  transition 

mechanism from micro  to  nano AlSiC  composite  is  proposed for  the 

understanding of the extraordinary mechanical properties, opening the 

doors for more sophisticated microstructure-based models.
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Outlook

6. Outlook

The strengthening effect of the dispersion of nano-SiC particles in pure 

aluminum, produced by ball milling of the powders and consolidation by 

Spark  Plasma  Sintering  has  been  demonstrated  and  the  related 

strengthening  mechanism  have  been  discussed.  However,  the 

successful application of the nano AlSiC composite, requires on the one 

hand an upscaling of manufacturing process parameters. On the other 

hand  a  component  design  related  material  property  database,  e.g. 

tensile test data, fatigue test data, creep test data as well as impact 

resistance test data are required.
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Appendix

7. Appendix

7.1 Abbreviations

CTE – Coefficient of Thermal Expansion

EDS – Energy Dispersive Spectrometer

FIB – Focus Ion Beam

ICE – Intercity – Express

PCA – Process Control Agent

HT – Heat Treatment

SEM – Scanning Electron Microscopy

SNCF - Société Nationale des Chemins de fer français

SPS – Spark Plasma Sintering

STEM – Scanning Transmission Electron Microscopy

TEM – Transmission Electron Microscopy

TGV – Train à grande vitesse
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7.2 Chemical Symbols
Al – Aluminum

Al4C3 – Aluminum Carbide 

Al3Li – Aluminum Lithium

AlN – Aluminum Nitride

Al2O3 – Aluminum Oxide

B – Boron

BN – Boron Nitride

B4C – Boron Carbide

Ca – Calcium

Cr – Chrome

CO2 – Carbon Dioxide 

Cu – Cooper

F – Fluorine

Fe – Iron

Ga – Gallium

HF – Hydrofluoric Acid

HNO
3
 – Nitric Acid

Li – Lithium

Mg – Magnesium

MgO – Magnesium Oxide

Mn – Manganese

Ni – Nickel

O - Oxygen

Si - Silicium

SiC – Silicium Carbide 

SiO2 – Silicium Dioxide

Ti – Titanium

Y2O3 – Yttrium Oxide
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Zn – Zinc

7.3 Physical Symbols
A – cross-section

b
Mg

 – burgers vector of magnesium

c – volume percent of alloy elements

d – grain diameter

D – final cross-section diameter of material compression test sample

D0 – initial diameter of material compression test sample

dT - particle diameter

ε – strain

F – force

F
n
 – force normal to cross-section

h – penetration depth 

H – hardness

ky – Hall-Petch constant

L – final length of material compression test sample

L
0
 – initial length of material compression test sample

Pmax – maximum load

ρ - dislocation density

R
p
 – yield strength

V
f
 – volume fraction of particles

σ0   - yield stress for dislocation movement (single crystal)

σ – stress

σy   - yield stress

∆σ
GB

 – grain boundary strengthening

∆σ
SH

 – solid solution hardening

∆σ
PH

 – precipitation / dispersion hardening
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∆σ
WH

 – cold work hardening

7.4 Aluminum Alloys
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Alloy Group Composition Application

1000 99 - 99,99 Al

2000

3000 Al – Mn

5000

6000

7000

Chemical, building  and food 
industry

Al - Cu4SiMg
Automotive, aeroplane, 
mechanical engineering 

structures

Like 1000 for higher 
strengths and chemical re-

quirements

Al – Mg
4,5

Mn
0,7

Ship building structures, 
ship, industrial industry, 

vehicle structures

Al- MgSiMn

Building structures vehicle 
parts electro engineering 

parts for improved strengths 
 and corrosion resistance

Al – Zn
5
Mg

3
Cu Hight strengths applications 

( Aeronautic)
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7.5 Tables Process Parameters and    
Investigation Results
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Table 2: Overview specimen materials

Table 3: Overview compression test results

Material No.
SPS Parameters

Material 1 AA1050 - - - - - -
Material 2 10,000 - - 1,0 9,0 -
Material 2HT150 10,000 - - 1,0 9,0 150°C /2h
Material 2HT250 10,000 - - 1,0 9,0 250°C /2h
Material 3 9,880 0,118 1,0 1,0 13,5 -
Material 3HT150 9,880 0,118 1,0 1,0 13,5 150°C /2h
Material 3HT250 9,880 0,118 1,0 1,0 13,5 250°C /2h
Material 4 9,940 0,059 0,5 1,0 13,5 -
Material 5 9,880 0,118 1,0 1,0 4,5 -
Material 6 9,880 0,118 1,0 0,5 4,5 -

     Al      
     [g]

SiC 
[g]

SiC 
[Vol. %]

PCA 
[Wt. %]

Milling 
Parameters 

[h]

Heat 
Treatment

450°C/5min/200 MPa

Material 1 2 2HT150 2HT250 3 3HT150 2HT250 4 5 6

Density 

[g/cm3]

2.69 2.61 2.62 2.61 2.59 2.58 2.52 2.60 2.60 2.60

Table 1: Density values of all materials studied

Material No.
Specimen dimensions Stress-strain analysis

Material 1 9,30 5,39 6,18 15,14 37 250 0,42

Material 2 9,30 4,65 7,57 9,46 276 640 0,50

Material 3 10,22 3,37 7,63 7,65 412 987 0,67

Material 4 10,18 2,85 7,69 7,68 403 971 0,72

Material 5 10,17 3,15 7,64 7,65 379 987 0,69

Material 6 10,27 2,98 7,62 7,65 345 987 0,71

Compression 
Parameters

L
0
 

[mm]
L 

[mm]
D

0
 

[mm]
D 

[mm]
             Fn                
          [kN]

R
p
 

[MPa]
σMax 
[MPa]

εMax 
[-]

     45  at room         
   temperature,        

v = 1 mm / min 
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Table 4: Overview of indentation results

Material No.

Material 1 0.415+/-0.023
Material 2 0.886+/-0.120
Material 2HT150 0.940+/-0.054
Material 2HT250 0.934+/-0.040
Material 3 1.217+/-0.032
Material 3HT150 1.305+/-0.006
Material 3HT250 1.260+/-0.098
Material 4 1.170+/-0.091
Material 5 1.460+/-0.106
Material 6 1.048+/-0.070

Hardness, H [GPa]
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