Universidade de Aveiro Departamento de Economia, Gestão e Engenharia 2013

Wagner Sousa de Oliveira

> Otimização Económica de Parques Eólicos em Função do Custo da Energia Produzida

Economic Optimization of Wind Farms in Function of the Cost of Energy Produced

Wagner Sousa de Oliveira

Economic Optimization of Wind Farms in Function of the Cost of Energy Produced

Tese apresentada à Universidade de Aveiro para cumprimento dos requisitos necessários à obtenção do grau de Doutor em Economia, realizada sob a orientação científica do Professor Doutor António Jorge Fernandes, Professor Auxiliar do Departamento de Economia, Gestão e Engenharia Industrial da Universidade de Aveiro e Professor Doutor Joaquim José Borges Gouveia, Professor Catedrático do Departamento de Economia, Gestão e Engenharia Industrial da Universidade de Aveiro.

Apoio financeiro da FAPEMA/SECTEC no âmbito da Bolsa de Estudo: Bolsa de Doutorado no Exterior (Processo BD-00007/08).

SECRETARIA DE ESTADO

I dedicate this thesis to my wife, Francidalva, my sons, Heron and Darah, my lovely relatives, Antonio and Ebenezer.

o júri / the jury

presidente / president
Professor Doutor Nuno Miguel Gonçalves Borges de Carvalho professor catedrático do Departamento de Electrónica, Telecomunicações e Informática da Universidade de Aveiro
vogais / examiners committee

Professor Doutor José Ramos Pires Manso
professor catedrático do Departamento de Gestão e Economia da Universidade Beira Interior

Professor Doutor Joaquim José Borges Gouveia
professor catedrático do Departamento de Economia, Gestão e Engenharia Industrial da Universidade de Aveiro (Co-orientador)

Professor Doutor João Paulo Tomé Saraiva
professor associado com agregação do Departamento de Engenharia Electrotécnica e de Computadores da Universidade do Porto

Professor Doutor António José Barbosa Samagaio
professor associado do Departamento de Ambiente e Ordenamento da Universidade de Aveiro

Professor Doutor António Jorge Fernandes
professor auxiliar do Departamento de Economia, Gestão e Engenharia Industrial da Universidade de Aveiro (Orientador)
agradecimentos / acknowledgments

To God for enlightenment and guidance throughout my life.

Throughout the execution of this work were many contributions that made possible its completion. So, first I would like to thank my advisors, Professor Antonio Jorge Fernandes (supervisor) and Joaquim Jose Borges Gouveia (cosupervisor), the availability, knowledge transmitted and valuable suggestions during the execution of this thesis.

My sincere thanks to the University of Aveiro and Department of Economics, Management and Industrial Engineering and all administrative staff, for the excellent equipments and facilities offered during the course of this research.

I extend this gratitude also to Professor António José Barbosa Samagaio for his helping hand during the execution of this Ph.D. research work that proved to be an indispensable aid in addition to sympathy, good mood and availability always present in our academic relationship in the Department of Environment and Planning.

Pursuing the Ph.D. abroad would not be possible without the financial support from Foundation for Research and Technological and Scientific Development of Maranhão (FAPEMA/Brazil), so thank you.

To my beloved parents, Antonio Barros de Oliveira and Ebenezer Sousa de Oliveira, by love, affection, encouragement, understanding, patience and support for life's challenges and to monitor my moral education and intellectual, and especially to my mom, for always supporting me and never let me give it up, for the courage that always gave me and for being my life reference.

My beloved wife Francidalva by her tireless and constant encouragement and emotional support at this stage of our lives, as well as for having made me the father of Heron and Darah, children so loving.

To all others who directly or indirectly contributed to the achievement and success of this work.
palavras-chave
resumo

Otimização económica, parques eólicos, custo de energia produzida, energia renovável, fator de competitividade.

Esta tese apresenta um estudo sobre otimização económica de parques eólicos, com o objetivo de obter um algoritmo para otimização económica de parques eólicos através do custo da energia produzida. No estudo utilizou-se uma abordagem multidisciplinar.

Inicialmente, apresentam-se as principais tecnologias e diferentes arquiteturas utilizadas nos parques eólicos. Bem como esquemas de funcionamento e gestão dos parques. São identificadas variáveis necessárias e apresenta-se um modelo dimensionamento para cálculo dos custos da energia produzida, tendo-se dado ênfase às instalações onshore e ligados a rede elétrica de distribuição.

É feita uma análise rigorosa das características das topologias dos aerogeradores disponíveis no mercado, e simula-se o funcionamento de um parque eólico para testar a validade dos modelos desenvolvidos. Também é implementado um algoritmo para a obtenção de uma resposta otimizada para o ciclo de vida económico do parque eólico em estudo.

A abordagem proposta envolve algoritmos para otimização do custo de produção com multiplas funções objetivas com base na descrição matemática da produção de eletricidade. Foram desenvolvidos modelos de otimização linear, que estabelece a ligação entre o custo económico e a produção de eletricidade, tendo em conta ainda as emissões de CO_{2} em instrumentos de política energética para energia eólica.

São propostas expressões para o cálculo do custo de energia com variáveis não convencionais, nomeadamente, para a produção variável do parque eólico, fator de funcionamento e coeficiente de eficiência geral do sistema. Para as duas últimas, também é analisado o impacto da distribuição do vento predominante no sistema de conversão de energia eólica. Verifica-se que os resultados obtidos pelos algoritmos propostos são similares às obtidas por demais métodos numéricos já publicados na comunidade científica, e que o algoritmo de otimização económica sofre influência significativa dos valores obtidos dos coeficientes em questão.

Finalmente, é demonstrado que o algoritmo proposto ($L C O E_{w s o}$) é útil para o dimensionamento e cálculo dos custos de capital e O\&M dos parques eólicos com informação incompleta ou em fase de projeto. Nesse sentido, o contributo desta tese vem ser desenvolver uma ferramenta de apoio à tomada de decisão de um gestor, investidor ou ainda agente público em fomentar a implantação de um parque eólico.

keywords

abstract

Economic optimization, wind farms, cost of energy produced, renewable energy, competitiviness factor.

This thesis presents a study on economic optimization of wind farms, with the goal of obtaining an economic optimization model for wind farms through the cost of energy produced. The study used a multidisciplinary approach.

Initially, the main technologies and different architectures used in wind farms. As well as the operating schemes and management of wind farms. Variables needed are identified and presented a sizing model for calculation of the cost of energy produced; we had focused on onshore installations and distribution power on-grid applications.

It is made a rigorous analysis of the characteristics of real and topology of aerogenerators simulating the operation of a wind farm to test the validity of models developed. Is also implemented an algorithm for obtaining an optimal response for economic life-cycle of the wind farm in the study.

The proposed approach involves algorithms for production cost optimization with multiple objective functions based on the mathematical description of the electricity production. Models have been a developed optimization linear model, which establishes the link between the production cost and CO_{2} emissions in energy policy instruments for wind power.

Expressions are proposed for calculation of the cost of energy with nonconventional, such as, for the variable production of the wind farm, capacity factor, and overall system efficiency coefficient. For the latter two, is also shown the impact of the distribution of predominant wind in wind energy conversion system. It is noticed the results achieved by the proposals are similar to those obtained by other numerical calculation already published in scientific community, and the algorithm for economic optimization significantly is influenced the values obtained for the coefficients in question.

Finally, it is shown the proposed algorithm ($L C O E_{\text {wso }}$) is useful for dimensioning and calculation of the wind farms cost of capital and O\&M, within incomplete information or in the planning phase. Accordingly, the contribution of this thesis should be a tool of support for manager/investor or a public agent in supporting the implementation of a wind farms.

TAbLE OF CONTENTS

ACKNOWLEDGMENTS v
Resumo $v i$
Abstract vii
TABLE OF CONTENTS viii
LIST OF FIGURES xiii
LIST OF TABLES $\boldsymbol{x x}$
LIST OF ACRONYMS xxviii
LIST OF SYMBOLS xxxii
CHAPTER 1 Introduction
1.1 Presentation 2
1.2 INTEREST AND SCOPE OF THE THESIS 4
1.3 THESIS OUTLINE 6
1.4 LIST OF PUBLICATIONS 8
1.4.1 PAPERS IN SCIENTIFIC JOURNALS 8
1.4.2 ORAL COMMUNICATIONS IN SCIENTIFIC MEETINGS AND CONFERENCES 9
1.5 REFERENCES 10
Chapter 2 Renewable Energy, Environment, Economy and Society
2.1 INTRODUCTION. 11
2.2 DEVELOPMENT OF SOCIETIES AND ENERGY 13
2.3 THE ENERGY AND STRUCTURE OF SOCIETIES. 15
2.4 ENERGY AND ENVIRONMENTAL IMPACTS 18
2.4.1 ENERGY AND ENVIRONMENT 19
2.4.2 IMPACTS OF ELECTRICITY PRODUCTION ACTIVITY 22
2.4.2.1 SOME IMPACTS OF HYDROELECTRIC 24
2.4.2.2 SOME IMPACTS OF BIOMASS 25
2.4.2.3 SOME IMPACTS OF WIND POWER 26
2.5 SUMMARY AND CONCLUSIONS 29
2.6 REFERENCES. 32
Chapter 3 Global Status of Wind Energy
3.1 INTRODUCTION. 37
3.2 ORGANIZATIONAL MODEL IN WIND ENERGY INDUSTRY 38
3.2.1 THE DIFFUSION MODEL OF WIND POWER 38
3.2.2 TRENDS IN R\&D FOR WIND ENERGY 44
3.2.3 STRUCTURES AND TECHNOLOGIES TO SUPPORT INNOVATION IN WIND POWER 47
3.2.4 ANALYTICAL FRAMEWORK FOR WIND POWER BUSINESS 51
3.3 WIND RESOURCES WORLDWIDE 54
3.4 WORLD WIND ENERGY MARKET OUTLOOK 58
3.4.1 GLOBAL WIND ENERGY MARKET 58
3.4.2 WIND ENERGY CONVERTERS MANUFACTURERS 66
3.4.3 ECONOMIC IMPACTS FROM WIND ENERGY INDUSTRY 71
3.5 SUMMARY AND CONCLUSIONS 75
3.6 REFERENCES 78
Chapter 4 Wind Energy Conversion System
4.1 INTRODUCTION. 86
4.2 History of Wind energy 87
4.3 WIND ENERGY TECHNOLOGY 90
4.3.1 WIND ENERGY CONVERSION SYSTEM 90
4.3.2 WIND ENERGY CONVERTERS 96
4.3.3 TECHNICAL DESIGN OF CONVERTERS 104
4.3.3.1 THE DESIGN WITH GEARBOX 104
4.3.3.2 THE DESIGN WITHOUT GEARBOX 105
4.4 PHYSICAL BASICS APPLIED TO WECS 106
4.4.1 ENERGY EXTRACTED FROM WIND. 106
4.4.2 POWER COEFFICIENTS. 107
4.4.2.1 BETZ‘ LAW AND THE POWER COEFFICIENT (C_{P}) 108
4.4.2.2 TIP SPEED RATIO. 109
4.4.2.3 POWER EFFICIENCY 110
4.5 WIND FARM PLANNING 111
4.5.1 WIND FARM LAYOUT 113
4.5.2 REQUIREMENTS FOR LAND AREA. 114
4.5.3 TYPES OF WIND FARM LAYOUT. 117
4.6 SUMMARY AND CONCLUSIONS 120
4.7 REFERENCES 125
Chapter 5 Economic Measures and Optimization Models
5.1 INTRODUCTION 133
5.2 ECONOMIC MEASURES 134
5.2.1 CLASSIFICATION OF COSTS CATEGORIES 136
5.2.1.1 COST STRUCTURE OF WIND ENERGY 136
5.3 MODELS OF PROJECTS ECONOMIC EVALUATION. 142
5.3.1 ECONOMIC BASICS OF PROJECTS EVALUATION. 142
5.3.1.1 SIMPLE PAYBACK 144
5.3.1.2 DISCOUNTED PAYBACK 146
5.3.1.3 NET PRESENT VALUE. 147
5.3.1.4 INTERNAL RATE OF RETURN. 150
5.3.1.5 REQUIRED REVENUES 152
5.3.1.6 BENEFIT-TO-COST RATIO. 153
5.3.2 PECULIARITIES IN THE INVESTMENT ANALYSIS OF WIND ENERGY PROJECTS. 156
5.4 MODELS FOR COSTS EVALUATION. 157
5.4.1 SPECIFIC MEASURES OF ECONOMIC PERFORMANCE FOR ENERGY PROJECTS 157
5.4.1.1 Levelized Cost of Energy 159
5.4.1.2 Total Life-Cycle Cost. 165
5.4.1.3 Net Present Cost 167
5.4.1.4 Levelized Electricity Production Cost. 169
5.4.1.5 Unit Present Average Cost. 171
5.4.2 PECULIARITIES IN THE COST ANALYSIS OF WIND ENERGY PROJECTS 173
5.5 OPTIMIZATION MODELS APPLIED TO WIND ENERGY PROJECT 174
5.5.1 CONCEPTS OF SIMULATION AND OPTIMIZATION 174
5.5.2 AN OVERVIEW OF SIMULATION AND OPTIMIZATION METHODS 176
5.5.3 TYPES OF OPTIMIZATION MODELS FOR ENERGY SYSTEMS 179
5.6 SUMMARY AND CONCLUSIONS 184
5.7 REFERENCES 188
Chapter 6 Research Methodology
6.1 INTRODUCTION 198
6.2 EPISTEMOLOGICAL AND METHODOLOGICAL ISSUES 199
6.3 RATIONALE OF THE STUDY 200
6.4 RESEARCH FRAMEWORK AND DESIGN 205
6.4.1 LITERATURE REVIEW 205
6.4.2 METHODOLOGICAL PROCEDURES. 207
6.4.3 THEORETICAL FRAMEWORK AND HYPOTHESES DEVELOPMENT. 211
6.4.3.1 RESEARCH OBJECTIVES 212
6.4.3.2 RESEARCH APPROACH. 213
6.4.3.3 CONCEPTS AND VARIABLES 215
6.4.3.4 RESEARCH HYPOTHESES AND LIMITATIONS 217
6.4.4 RESEARCH DESIGN 220
6.4.4.1 VARIABLES RELATIONSHIP AND RESEARCH BOUNDARY 223
6.4.4.2 MATHEMATICAL MODEL STRUCTURING 225
6.4.4.3 NUMERICAL SIMULATION AND VALIDATION PROCESS 248
6.5 SUMMARY AND CONCLUSIONS 257
6.6 REFERENCES 260
Chapter 7 | Numerical Simulation and Validation
7.1 Introduction 272
7.2 POWER SYSTEM PARAMETERS USED FOR SIMULATIONS 273
7.2.1 TECHNICAL FEATURES OF THE WIND FARM 273
7.2.1.1 ASSUMPTIONS, CONSTRAINTS, AND LIMITATIONS 274
7.2.1.2 WIND TURBINE TECHNOLOGY. 276
7.2.1.3 WIND FARM LAYOUT 277
7.2.2 CLIMATE DATA USED FOR $V_{W}(M / S), P(K P A)$ AND $T\left({ }^{\circ} C\right)$ 281
7.2.2.1 WIND SPEED (V_{W} AND $V_{W C}$) 281
7.2.2.2 ATMOSPHERIC PRESSURE (P) 282
7.2.2.3 AIR TEMPERATURE (T) 283
7.3 ECONOMIC AND FINANCIAL ASPECTS OF THE WIND PROJECT 284
7.3.1 ASSUMPTIONS, CONSTRAINTS, AND LIMITATIONS 285
7.3.2 REVENUE, CAPITAL, O\&M, AND OTHER COSTS 288
7.4 O\&M ASSUMPTIONS FOR WIND PROJECT SIMULATIONS 290
7.4.1 VARIABLES AND DATA 290
7.4.2 O\&M PROGRAMS PROPOSED 291
7.5 ENERGY POLICY ASSUMPTIONS FOR WIND PROJECT SIMULATIONS 292
7.5.1 VARIABLES AND DATA 292
7.5.2 ENERGY POLICY INSTRUMENTS PROPOSED. 293
7.6 GENERAL SIMULATIONS PROCEDURES 294
7.6.1 STEPS USED FOR SIMULATIONS. 294
7.6.2 Optimization CRITERIA. 295
7.6.3 SENSITIVITY ANALYSIS 296
7.7 SUMMARY AND CONCLUSIONS 297
7.8 REFERENCES 299
CHAPTER 8 RESULTS AND DISCUSSION
8.1 INTRODUCTION. 303
8.2 NUMERICAL TREATMENT OF WIND RESOURCES 304
8.2.1 CALCULATION PROCEDURES 304
8.2.2 DISTRIBUTION OF WIND SPEED SERIES. 305
8.2.2.1 In ARACATI (BRAZIL) 305
8.2.2.2 In CORVo ISLAND (Portugal) 306
8.2.2.3 In CAPE SAINT James (CANADA) 307
8.3 SIMULATIONS ANALYSIS RESULTS 309
8.3.1 REFERENCE CASES FOR COMPARISON ANALYSIS. 309
8.3.1.1 INITIAL RESULTS SUMMARY OF $L C O E_{\text {WSo }}$ 310
8.3.1.2 BREAKDOWN STRUCTURE OF $L C O E_{\text {WSO }}$. 311
8.3.2 ESTIMATION OF WIND POWER PRODUCTION 314
8.3.2.1 FOR ARACATI (BRAZIL) 314
8.3.2.2 FOR CORVO ISLAND (PORTUGAL). 315
8.3.2.3 For Cape Saint James (Canada) 316
8.3.3 ECONOMIC EVALUATION RESULTS. 318
8.3.3.1 FOR ARACATI (BRAZIL). 318
8.3.3.2 FOR CORVO ISLAND (PORTUGAL) 326
8.3.3.3 For Cape Saint James (Canada). 334
8.4 SENSITIVITY ANALYSIS RESULTS 342
8.4.1 INDIVIDUAL VARIABLE SENSITIVITIES. 342
8.4.1.1 IMPACT ON $L C O E_{W S O}$ OF WIND SPEED ($V_{W C}$) 342
8.4.1.2 IMPACT ON $L C O E_{\text {WSO }}$ OF O\&M MANAGEMENT ($O \& M_{\text {MANAG }}$) 343
8.4.1.3 Impact on $L C O E_{W S O}$ OF WIND TURBINES LAYOUT ($L_{W T}$). 345
8.4.1.4 IMPACT ON $L C O E_{W S O}$ OF ENERGY POLICY INSTRUMENTS $\left(E_{P I}\right)$. 347
8.4.2 MULTIPLE VARIABLE SENSITIVITIES 349
8.4.2.1 IMPACT ON $L C O E_{W S O}$ OF WIND SPEED ($V_{W C}$) AND WIND TURBINE LAYOUT ($L_{W T}$). 349
8.4.2.2 IMPACT ON $L C O E_{\text {WSO }}$ OF O\&M MANAGEMENT ($O \& M_{M A N A G}$) AND ENERGY POLICY INSTRUMENTS ($E_{P I}$) 350
8.4.3 CONCLUSIONS AND FUTURE ANALYSIS ON COST OF WIND ENERGY 352
8.5 SUMMARY AND CONCLUSIONS 356
8.6 REFERENCES 359
Chapter 9 Conclusion and Implications
9.1 Introduction 362
9.2 Main findings and contributions 363
9.2.1 Chapter 2 363
9.2.2 Chapter 3 364
9.2.3 Chapter 4 364
9.2.4 Chapter 5 365
9.2.5 Chapter 6 366
9.2.6 Chapter 7 366
9.2.7 Chapter 8 368
9.3 Recommendations for future researches 371
9.3.1 FOR $V_{w c}$ 371
9.3.2 FOR $L_{W T}$ 371
9.3.3 For $O \& M_{\text {MANAG }}$. 372
9.3.4 FOR $E_{P l}$ 372
9.3.5 FOR OTHERS 372
9.4 GENERAL SUMMARY AND CONCLUSIONS 373
9.5 References 375
ApPENDICES
APPENDIX A 378
Appendix B 381
Appendix C. 384
Appendix D 386
Appendix E 388
Appendix F 390
APPENDIX G 392
Appendix H 400
ApPENDIX I 408
Appendix J 416
Appendix K 424
Appendix L 432
ApPENDIX M 440
Appendix N 448
Appendix O 456
ApPENDIX P 464
APPENDIX Q 472
Appendix R 480
ApPENDIX S 488
APPENDIX T 486
Appendix U 504
Appendix V 512

LIST OF FIGURES

Figure 1.1 Ph.D. THESIS` STRUCTURE OVERVIEW 7
Figure 2.1 Transport of solid stone monument in 660 bC. 15
Figure 2.2 Trends in global consumption of energy and electricity, CO_{2} Emissions and CO_{2} EMISSIONS INTENSITY OF ENERGY CONSUMPTION 19
Figure 2.3 Trends in the EU-15 and ELECTRIC ENERGY CONSUMPTION, CO_{2} EMISSIONS AND INTENSITY OF CO_{2} EMISSIONS FROM ENERGY CONSUMPTION 20
Figure 2.4 PERCENTAGE OF CO_{2} Emissions of AIr POLLUTANTS BY ACTIVITY IN 2005, EU-27 AND Portugal 21
FIGURE 3.1 DIFFUSION MODEL FOR WIND POWER PRODUCTION SYSTEM 38
Figure 3.2 A DYnamic process of organizational Learning 40
Figure 3.3 WIND ENERGY INDUSTRY VALUE CHAIN 41
Figure 3.4 Europe Wind value chain positioning 43
Figure 3.5 Value chain - PRODUCTION OF WIND COMPONENTS. 43
FIGURE 3.6 WIND ENERGY TECHNOLOGICAL INNOVATION - PROJECTED 210 YEARS INDUSTRIAL TECHNOLOGY LIFE CYCLE 44
Figure 3.7 Stages of the technological process in the wind energy industry 49
Figure 3.8 TPWind ORGANIZATIONAL STRUCTURE 50
Figure 3.9 Structure of Wind power business process 52
FIGURE 3.10 COMMERCIALIZATION PROCESS OF NEW ENERGY TECHNOLOGIES 53
Figure 3.11 World wind map at 80m 56
FIGURE 3.12 GLOBAL ANNUAL INSTALLED WIND CAPACITY 1996-2011 58
Figure 3.13 Top 10 CUMULATIVE CAPACITY DEC 2011 59
Figure 3.14 Top 10 NEW InSTALLED CAPACITY JAN-DEC 2011 60
Figure 3.15 Annual installed capacity by region 2003-2011 65
Figure 3.16 Wind turbine manufacturers' Share. 66
FIGURE 3.17 MARKET SHARES OF TOP 10 WIND TURBINE MANUFACTURERS IN 2010 67
Figure 3.18 Green jobs on wind energy sector worldwide 72
Figure 3.19 Jobs in Wind power, 2009. 73
FIGURE 4.1 CONCEPT OF THE WINDMILL-DEVICE, OR ORGAN DESCRIBED BY HERON OF AleXandria 87
Figure 4.2 WIND ENERGY CONVERSION SYSTEM (WECS) 90
Figure 4.3 MAIN COMPONENTS OF A WIND TURBINE SYSTEM 91
Figure 4.4 HAWT System schematic 95
Figure 4.5 DIfferent types of WECS 96
Figure 4.6 Modern VAWT TYPES 97
Figure 4.7 Growth in size of commercial wind turbine designs 98
Figure 4.8 CATEGORIZATION OF ELECTRICAL GENERATORS APPLIED TO WECS 101
Figure 4.9 ThE CLASSIC DESIGN 104
Figure 4.10 Scheme of a nacelle without gearbox (Model Enercon 1.5 MW) 105
Figure 4.11 COMPARISON OF AVERAGE WIND SPEED AND WIND POWER CLASS TO CAPACITY FACTOR 107
Figure 4.12 Principles of aerodynamics applied to WECS 109
Figure 4.13 Flowchart of Wind power during the project lifetime 111
FIGURE 4.14 WIND FARM LAYOUT ACCORDING TO THE RULE OF THUMB 114
Figure 4.15 Effect of Spacing on Energy loss 115
Figure 4.16 COMPARISON OF SUGGESTED SPACING FOR WIND FARMS. 116
FIGURE 4.17 WIND FARM ARRAY SCHEMATIC. 117
Figure 4.18 GENERAL WIND FARM LAYOUT. 118
Figure 4.19 Typical Layout topologies applied in wind farms 119
Figure $4.20 \mathrm{CO}_{2}$ EMISSIONS SAVED BY WECS DEPLOYMENT FROM 2008-2030 124
Figure 5.1 Evaluation process and financial management of REPs 135
FIGURE 5.2 EXAMPLE OF THE MAIN COMPONENTS OF ONSHORE WIND TURBINE WITH DISTRIBUTION OF THE OVERALL COST OF THE 5 MW REPOWER 138
Figure 5.3 Scheme of the cash flows Levelizing process for REPs 158
Figure 5.4 Values in \$/KWh LCOE IN 2005 FOR VARIOUS CONVENTIONAL AND RENEWABLE TECHNOLOGIES 159
Figure 5.5 Cost categorization during the phases of LCC. 166
Figure 5.6 Flowchart for LPC Calculation 170
Figure 5.7 SIMULATION OPTIMIZATION MODEL FRAMEWORK 174
Figure 5.8 Simulation \& optimization methods. 175
Figure 5.9 Evolution of optimization algorithms solutions in RETs 180
Figure 5.10 The Layout optimization and its relationship. 183
FIGURE 6.1 GLOBAL CUMULATIVE INSTALLED WIND CAPACITY 1996-2011 200
Figure 6.2 Financial new investment (\$BN) AND GROWTH By TECHNOLOGY (2008-2009) 201
Figure 6.3 DIAGRAM OF RECOMMENDED ECONOMIC ANALYSIS APPROACH 202
FIGURE 6.4 THEMATIC AREAS IN LITERATURE REVIEW PROCESS 206
Figure 6.5 Research methodology overview 207
Figure 6.6 RETScreen Products Database information for wind energy projects MODELS 208
FIGURE 6.7 SITE REFERENCE CONDITIONS USED FOR WIND ENERGY PROJECTS MODELS 209
Figure 6.8 VARIABLES INFLUENCING ON COE IN A WIND POWER PLANT 210
FIGURE 6.9 Epistemological tree for research concepts and variables integration 215
Figure 6.10 CONTRIBUTIONS OF EACH THEMATIC AREA DURING THE LITERATURE REVIEW PROCESS 217
FIGURE 6.11 SITE CLIMATE CONDITIONS USED FOR SIMULATION/OPTIMIZATION OF THE WIND POWER PLANT IN ARACATI (BRAZIL) 221
FIGURE 6.12 SITE CLIMATE CONDITIONS USED FOR SIMULATION/OPTIMIZATION OF THE WIND POWER PLANT IN CAPE SAINT JAMES (CANADA) 222
FIGURE 6.13 SITE CLIMATE CONDITIONS USED FOR SIMULATION/OPTIMIZATION OF THE WIND POWER PLANT IN CORVO ISLAND (PORTUGAL) 222
Figure 6.14 Cost and production Frontier considered in simulations for optimized $\mathrm{LCOE}_{\text {wso }}$ 224
Figure 6.15 Modeling process Flowchart. 225
FIGURE 6.16 BLOCK DIAGRAM OF THE WIND FARM SIMULATION AND OPTIMIZATION ALGORITHM PROPOSED 226
Figure 6.17 Typology of energy policy instruments 238
FIGURE $6.18 F L H_{W F}$ (BLUE LINE) AND $H_{P R O D}$ (RED LINE) DISTRIBUTION DURING A YEAR WITH $O \& M_{M A N A G}$ EFFECT 245
Figure 6.19 Wind turbine VESTAS V90-2 MW power curve 245
Figure 6.20 PLANNING PHASE FOR SIMULATIONS STUDIES 248
Figure 6.21 OpERATIONAL PHASE FOR SIMULATIONS STUDIES 248
Figure 6.22 Relationship between real and simulation worlds through the VERIFICATION AND VALIDATION PROCESS 251
Figure 7.1 REPRESENTATION OF 5D/4D LAYOUT USED FOR SIMULATIONS 278
FIGURE 7.2 REPRESENTATION OF 5D/7D LAYOUT USED FOR SIMULATIONS 278
FIGURE 7.3 REPRESENTATION OF 5D/10D LAYOUT USED FOR SIMULATIONS 279
FIGURE 7.4 REPRESENTATION OF 6D/12D LAYOUT USED FOR SIMULATIONS 279
Figure 7.5 Representation of Local Wind Turbines Grid used for simulations 280
Figure 7.6 SimULATION STEPS OF $L C O E_{\text {WSo }}$ ALGORITHM 294
Figure 7.7 Estimated LCOE FOR WIND ENERGY BETWEEN 1980 AND 2009 FOR THE UNITED States and Europe (EXCLUDING INCENTIVES) 297
Figure 8.1 CALCULATED WIND SPEED DISTRIBUTION FOR ARACATI (BRAZIL) 304
Figure 8.2 CALCULATED WIND SPEED DISTRIBUTION FOR CORVO ISLAND (PORTUGAL) 305
Figure 8.3 Calculated wind speed distribution for Cape Saint James (Canada) 306
Figure 8.4 COMPARISON AMONG THE CALCULATED WIND SPEED BEHAVIOR OF THE THREE SITES SELECTED 307
FIGURE 8.5 WIND PROJECT INFORMATION FOR ARACATI (BRAZIL), CORVO ISLAND (PORTUGAL) and Cape Saint James (CANADA) 309
Figure 8.6 Initial results of $L C O E_{\text {wso }}$ FOR ARACATI (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada) 310
Figure 8.7 Breakdown structure of $L C O E_{\text {wso }}$ FOR Aracati (Brazil) 311
Figure 8.8 BREAKDOWN STRUCTURE OF $L C O E_{\text {wso }}$ FOR CORVO ISLAND (PORTUGAL) 312
Figure 8.9 Breakdown structure of $L C O E_{\text {WSo }}$ FOR CAPE SAINT JAMES (CANADA) 313
FIGURE $8.10 A E P_{A V A L L}$ FOR 25 YEARS OF THE WIND FARM FOR ARACATI (BRAZIL) IN STANDARD OPERATION 314
FIGURE $8.11 A E P_{\text {AVALL }}$ FOR 25 YEARS OF THE WIND FARM IN CORVO ISLAND (PORTUGAL) IN STANDARD OPERATION 315
Figure $8.12 A E P_{\text {AVall }}$ FOR 25 Years of the wind Farm in CAPE SAINT James (CANADA) In STANDARD OPERATION 316
Figure 8.13 Total $A E P_{\text {avall }}$ DURING the LIFETIME of THE $50 \mathrm{MW}_{\mathrm{E}}$ WIND FARM IN ARACATI (BRAZIL), CORVO ISLAND (PORTUGAL) AND CAPE SAINT JAMES (CANADA) 317
Figure 8.14 AAR (US\$M/YR) DURING THE LIFETIME OF THE 50MW ${ }_{\text {E }}$ WIND FARM IN ARACATI (BRAZIL) 319
Figure $8.15 O \& M_{W F C M}$ SPLITED INTO FIXED $\left(O \& M_{\text {FIXEDCM }}\right)$ AND VARIABLE $\left(O \& M_{\text {VARIABLECM }}\right)$ DURING THE LIFETIME OF THE 50MW ${ }_{\mathrm{E}}$ WIND FARM IN ARACATI (BRAZIL) 320
Figure 8.16 LRCM DURING THE 15 YEARS OF THE 50MW ${ }_{\text {E }}$ WIND FARM IN ARACATI (Brazil) 321
Figure $8.17 R C M_{W F}$ DURING THE LIFETIME OF THE 50MW ${ }_{E}$ WIND FARM IN ARACATI (BRAZIL) 322
Figure 8.18 REI $_{C M}$ FOR $50 \mathrm{MW}_{\mathrm{E}}$ WIND FARM IN ARACATI (BRAZIL) 323
FIGURE 8.19 OREP $_{C M}$ FOR 50MW E WIND FARM IN ARACATI (BRAZIL) $^{\text {F }}$ 323
FIGURE 8.20 REP $C_{C M}$ FOR $50 \mathrm{MW}_{\mathrm{E}}$ WIND FARM IN ARACATI (BRAZIL) 324
FIGURE $8.21 G H G . R_{C M}$ FOR $50 \mathrm{MW}_{\mathrm{E}}$ WIND FARM IN ARACATI (BRAZIL) 325
FIGURE 8.22 AAR (US\$M/YR) DURING THE LIFETIME OF THE 50MW ${ }_{\mathrm{E}}$ WIND FARM IN CORVO ISLAND (PORTUGAL) 327
Figure $8.23 O \& M_{W F C M}$ SPLITED INTO FIXED ($O \& M_{\text {FIXEDCM }}$) AND VARIABLE ($O \& M_{\text {VARIABLECM }}$) DURING THE LIFETIME OF THE 50MW ${ }_{\mathrm{E}}$ WIND FARM IN CORVO ISLAND (PORTUGAL) 328
Figure $8.24 L R C M$ DURING THE 15 YEARS OF THE 50MW ${ }_{\text {E }}$ WIND FARM IN CORVO ISLAND (PORTUGAL) 329
FIGURE $8.25 R^{R C M} M_{W F}$ DURING THE LIFETIME OF THE 50MW ${ }_{E}$ WIND FARM IN CORVO ISLAND (Portugal) 330
Figure 8.26 REI $_{C M}$ FOR 50MW ${ }_{\mathrm{E}}$ WIND FARM IN CORVO ISLAND (PORTUGAL) 331
Figure 8.27 OREP $_{C M}$ FOR $50 \mathrm{MW}_{\mathrm{E}}$ WIND FARM IN CORVO ISLAND (PORTUGAL) 331
Figure $8.28 R E P_{C M}$ FOR $50 \mathrm{MW}_{\mathrm{E}}$ WIND FARM IN CORVO ISLAND (PORTUGAL) 332
Figure 8.29 GHG. $R_{C M}$ FOR 50MW ${ }_{\mathrm{E}}$ WIND FARM IN CORVO ISLAND (PORTUGAL) 332
Figure 8.30 AAR (US $\$ M / Y R$) DURING THE LIFETIME OF THE 50MW ${ }_{E}$ WIND FARM IN CAPE SAINT JAMES (CANADA) 335
Figure $8.31 O \& M_{W F C M}$ SPLITED INTO FIXED $\left(O \& M_{\text {FIXEDCM }}\right)$ AND VARIABLE ($\left.O \& M_{\text {VARIABLECM }}\right)$ DURING THE LIFETIME OF THE $50 \mathrm{MW}_{\mathrm{E}}$ WIND FARM IN CAPE SAINT JAMES (CANADA) 336
Figure 8.32 LRCM DURING THE 15 YEARS OF THE 50MW ${ }_{\text {e }}$ WIND FARM IN CAPE SAINT JAMES (CANADA) 337
FIGURE $8.33 R C M_{W F}$ DURING THE LIFETIME OF THE 50MW ${ }_{E}$ WIND FARM IN CAPE SAINT JAMES (CANADA) 338
Figure $8.34 R E I_{C M}$ FOR $50 \mathrm{MW}_{\mathrm{E}}$ WIND FARM IN CAPE SAINT JAMES (CANADA) 339
FIGURE 8.35 OREP $_{C M}$ FOR $50 \mathrm{MW}_{\mathrm{E}}$ WIND FARM IN CAPE SAINT JAMES (CANADA) 339
Figure 8.36 REP $P_{C M}$ FOR 50MW ${ }_{\mathrm{E}}$ WIND FARM IN CAPE SAINT JAMES (CANADA) 340
Figure 8.37 GHG. $R_{C M}$ FOR 50MW E WIND FARM IN CAPE SAINT JAMES (CANADA) $^{\text {C }}$ 340
Figure 8.38 Impact on $L C O E_{\text {WSo }}$ OF WIND SPEED ($V_{W C}$) 342
Figure 8.39 Resume of sensitivity analysis of $L C O E_{\text {WSo }}$ AND $O \& M_{\text {MANAG }}$ FOR ARACATI (BRAZIL), CORVO ISLAND (PORTUGAL) AND CAPE SAINT JAMES (CANADA) 343
FIGURE 8.40 RESUME OF SENSITIVITY ANALYSIS OF $O \& M_{\text {MANAG }}$ AND WIND FARM AVAILABILITY FOR Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada) 344
Figure 8.41 RESUME OF SENSITIVITY ANALYSIS OF $L C O E_{W S O}$ AND $L_{W T}$ FOR ARACATI (BRAZIL), Corvo IsLand (Portugal) and Cape Saint James (CANADA) 345
Figure 8.42 Impact on $L C C C M_{W F}$ DUE TO alternative layouts ($L_{W T}$) 346
FIGURE 8.43 RESUME OF SENSITIVITY ANALYSIS OF $L C O E_{W S O}$ AND $E_{P I}$ FOR ARACATI (BRAZIL), Corvo IsLand (Portugal) and Cape Saint James (CANADA) 347
Figure 8.44 Impact on $L C C C M_{W F}$ DUE TO ALTERNATIVE ENERGY POLICY $\left(E_{P I}\right)$ 348
Figure 8.45 RESUME OF SENSITIVITY ANALYSIS OF THE IMPACT ON $L C O E_{W S O}$ OF WIND SPEED ($V_{W C}$) and wind turbine layout ($L_{W T}$) FOR Aracati (BraZil), Corvo IsLand (Portugal) and Cape Saint James (Canada) 349
Figure 8.46 Impact of $O \& M_{\text {manag }}$ ON HOURS OF PRODUCTION ($H_{\text {Prod }}$) AND WIND FARM AVAILABILITY FOR ARACATI (BRAZIL) 353
Figure 8.47 Relation of total $A E P_{\text {avall }}$ and $L C O E_{\text {wso }}$ DURING THE LIFETIME OF 50MW ${ }_{\mathrm{E}}$ WIND farm in Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (CANADA) 355
Figure 8.48 Final values of $L C O E_{w s o}$ FOR Aracati (Brazil), Corvo ISLAND (PORTUGAL) AND Cape Saint James (Canada) 357
FIGURE 9.1 COMPARISON OF PAYBACKS FOR ARACATI (BRAZIL), CORVO ISLAND (PORTUGAL) AND Cape Saint James (Canada) 373
Figure E. 1 Value creation stages for Gamesa 389
Figure F. 1 Photos of Current MW-ONSHORE WIND Farms at Aracati (Brazil), Corvo IsLand (Portugal) and Cape Saint James (Canada) 391
Figure G. 1 I-O REPRESENTATION OF $L C O E_{\text {wso }}$ ALGORITHM CALCULATIONS FOR THE HYPOTHETICAL 50MW ${ }_{\text {E }}$ WIND FARM IN ARACATI (BRAZIL) WITH REFERENCE SITUATION 393
Figure G. 2 I-O SYStem representation of LCOE wso ALGORITHM CALCULATIONS FOR THE HYPOTHETICAL 50MW ${ }_{\text {E }}$ WIND FARM IN CORVO ISLAND (PORTUGAL) WITH REFERENCE SITUATION 394
Figure G. 3 I-O SYSTEM REPRESENTATION OF LCOE WSo ALGORITHM CALCULATIONS FOR THE HYPOTHETICAL 50MW ${ }_{\mathrm{E}}$ WIND FARM IN CAPE SAINT JAMES (CANADA) WITH REFERENCE SITUATION 395
FIGURE H. 1 I-O REPRESENTATION OF LCOE ${ }_{\text {wso }}$ ALGORITHM CALCULATIONS FOR THE HYPOTHETICAL 50MW ${ }_{\text {E }}$ WIND FARM IN ARACATI (BRAZIL) WITH SENSITIVITY ANALYSIS OF $O \& M_{\text {MANAG(A) }}$. 401
FIgURE H. 2 I-O SYSTEM REPRESENTATION OF LCOE wso ALGORITHM CALCULATIONS FOR THE HYPOTHETICAL 50MW ${ }_{\mathrm{E}}$ WIND FARM IN CORVO ISLAND (PORTUGAL) WITH SENSITIVITY ANALYSIS OF $O \& M_{\text {MANAG }}$ 402
Figure H. 3 I-O SYSTEM REPRESENTATION OF LCOE $E_{\text {WSo }}$ ALGORITHM CALCULATIONS FOR THE HYPOTHETICAL 50MW ${ }_{\text {E }}$ WIND FARM IN CAPE SAINT JAMES (CANADA) WITH SENSITIVITY ANALYSIS OF $O \& M$ 403
Figure I. 1 I-O REPRESENTATION OF $L C O E_{\text {wso }}$ ALGORITHM CALCULATIONS FOR THE HYPOTHETICAL 50MW ${ }_{\text {E }}$ WIND FARM IN ARACATI (BRAZIL) WITH SENSITIVITY ANALYSIS OF $O \& M_{\operatorname{MANAG}(B)}$ 409
FIGURE I. 2 I-O REPRESENTATION OF LCOE wso ALGORITHM CALCULATIONS FOR THE HYPOTHETICAL 50MW ${ }_{\mathrm{E}}$ WIND FARM IN CORVO ISLAND (PORTUGAL) WITH SENSITIVITY ANALYSIS OF $O \& M_{\text {MANAG }(B)}$ 410
FIGURE I. 3 I-O REPRESENTATION OF $L C O E_{\text {wso }}$ ALGORITHM CALCULATIONS FOR THE HYPOTHETICAL 50MW ${ }_{\text {E }}$ WIND FARM IN CAPE SAINT JAMES (CANADA) WITH SENSITIVITY ANALYSIS OF $O \& M_{\text {MANAG }(B)}$ 411
Figure J. 1 I-O REPRESENTATION OF $L C O E_{\text {wso }}$ ALGORITHM CALCULATIONS FOR THE HYPOTHETICAL 50MW ${ }_{\mathrm{E}}$ WIND FARM IN ARACATI (BRAZIL) WITH SENSITIVITY ANALYSIS OF $L_{W T}$ (5D7D) 417
FIGURE J. 2 I-O REPRESENTATION OF $L C O E_{\text {WSo }}$ ALGORITHM CALCULATIONS FOR THE HYPOTHETICAL 50MW ${ }_{\mathrm{E}}$ WIND FARM IN CORVO ISLAND (PORTUGAL) WITH SENSITIVITY ANALYSIS OF $L_{W T}$ (5D7D) 418
Figure J. 3 I-O REPRESENTATION OF $L C O E_{\text {WSo }}$ ALGORITHM CALCULATIONS FOR THE HYPOTHETICAL 50MW ${ }_{\text {E }}$ WIND FARM IN CAPE SAINT JAMES (CANADA) WITH SENSITIVITY ANALYSIS OF $L_{W T}$ (5D7D) 419
FIGURE K. 1 I-O REPRESENTATION OF $L C O E_{\text {wso }}$ ALGORITHM CALCULATIONS FOR THE HYPOTHETICAL 50MW ${ }_{\text {E }}$ WIND FARM IN ARACATI (BRAZIL) WITH SENSITIVITY ANALYSIS OF $L_{W T}$ (5D10D) 425
Figure K. 2 I-O REPRESENTATION OF $L C O E_{\text {WSo }}$ ALGORITHM CALCULATIONS FOR THE HYPOTHETICAL 50MW ${ }_{\text {E }}$ WIND FARM IN CORVO ISLAND (PORTUGAL) WITH SENSITIVITY ANALYSIS OF $L_{W T}$ (5D10D) 426
FIGURE K. 3 I-O REPRESENTATION OF $L C O E_{\text {WSo }}$ ALGORITHM CALCULATIONS FOR THE HYPOTHETICAL 50MW ${ }_{\text {E }}$ WIND FARM IN CAPE SAINT JAMES (CANADA) WITH SENSITIVITY ANALYSIS OF $L_{W T}$ (5D10D) 427
Figure L. 1 I-O REPRESENTATION OF $L C O E_{\text {wso }}$ ALGORITHM CALCULATIONS FOR THE HYPOTHETICAL $50 \mathrm{MW}_{\mathrm{E}}$ WIND FARM IN ARACATI (BRAZIL) WITH SENSITIVITY ANALYSIS OF $L_{W T}$ (6D12D) 433
FIGURE L. 2 I-O REPRESENTATION OF LCOE wso ALGORITHM CALCULATIONS FOR THE HYPOTHETICAL 50MW ${ }_{\text {E }}$ WIND FARM IN CORVO ISLAND (PORTUGAL) WITH SENSITIVITY ANALYSIS OF $L_{W T}$ (6D12D) 434
FIGURE L. 3 I-O REPRESENTATION OF LCOE wso ALGORITHM CALCULATIONS FOR THE HYPOTHETICAL 50MW ${ }_{\text {E }}$ WIND FARM IN CAPE SAINT JAMES (CANADA) WITH SENSITIVITY ANALYSIS OF $L_{W T}(6 D 12 D)$ 435
Figure M. 1 I- O REPRESENTATION OF $L C O E_{\text {WSo }}$ ALGORITHM CALCULATIONS FOR THE HYPOTHETICAL 50MW ${ }_{\mathrm{E}}$ WIND FARM IN ARACATI (BRAZIL) WITH SENSITIVITY ANALYSIS OF $E_{P I}$ (CASE ${ }_{1}$) 44
FIGURE M. 2 I-O REPRESENTATION OF LCOE wso ALGORITHM CALCULATIONS FOR THE HYPOTHETICAL 50MW ${ }_{\text {E }}$ WIND FARM IN CORVO ISLAND (PORTUGAL) WITH SENSITIVITY ANALYSIS OF $E_{P I}\left(\right.$ CASE $\left._{1}\right)$ 442
Figure M. 3 I-O REpresentation of $L C O E_{\text {wso }}$ ALGorithm CALCULATIONS FOR THE HYPOTHETICAL 50MW ${ }_{\text {E }}$ WIND FARM IN CAPE SAINT JAMES (CANADA)WITH SENSITIVITY ANALYSIS OF $E_{P I}\left(\right.$ CASE $\left._{I}\right)$ 443
Figure N. 1 I-O REPRESENTATION OF $L C O E_{\text {WSo }}$ ALGORITHM CALCULATIONS FOR THE HYPOTHETICAL 50MW ${ }_{\text {E }}$ WIND FARM IN ARACATI (BRAZIL) WITH SENSITIVITY ANALYSIS OF $E_{P I}$ (CASE 2) 449
Figure N. 2 I-O REPRESENTATION OF LCOE wso ALGORITHM CALCULATIONS FOR THE HYPOTHETICAL 50MW ${ }_{\text {E }}$ WIND FARM IN CORVO ISLAND (PORTUGAL) WITH SENSITIVITY ANALYSIS OF $E_{P I}\left(\right.$ CASE $\left._{2}\right)$ 450
FIGURE N. 3 I-O REPRESENTATION OF $L C O E_{\text {WSo }}$ ALGORITHM CALCULATIONS FOR THE HYPOTHETICAL 50MW ${ }_{\text {E }}$ WIND FARM IN CAPE SAINT JAMES (CANADA) WITH SENSITIVITY ANALYSIS OF $E_{P I}\left(\right.$ CASE $\left._{2}\right)$ 451
FIGURE O. 1 I-O REPRESENTATION OF $L C O E_{\text {WSo }}$ ALGORITHM CALCULATIONS FOR THE HYPOTHETICAL 50MW ${ }_{\mathrm{E}}$ WIND FARM IN ARACATI (BRAZIL) WITH SENSITIVITY ANALYSIS OF $E_{P I}$ (CASE ${ }_{3}$) 457
FIGURE O. 2 I-O REPRESENTATION OF LCOE WSo ALGORITHM CALCULATIONS FOR THE HYPOTHETICAL 50MW ${ }_{\text {E }}$ WIND FARM IN CORVO ISLAND (PORTUGAL) WITH SENSITIVITY ANALYSIS OF $E_{P I}\left(\right.$ CASE $\left._{3}\right)$ 458
Figure O. 3 I-O REPRESENTATION OF LCOE $E_{\text {WSo }}$ ALGORITHM CALCULATIONS FOR THE HYPOTHETICAL 50MW ${ }_{\text {E }}$ WIND FARM IN CAPE SAINT JAMES (CANADA) WITH SENSITIVITY ANALYSIS OF $E_{P I}\left(\right.$ CASE $\left._{3}\right)$ 459
Figure P. 1 I-O REPRESENTATION OF $L C O E_{\text {wso }}$ ALGORITHM CALCULATIONS FOR THE HYPOTHETICAL 50MW ${ }_{\text {E }}$ WIND FARM IN ARACATI (BRAZIL) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(A)}$ AND $E_{P I}\left(\operatorname{CASE}_{I}\right)$ 465
FIGURE P. 2 I-O REPRESENTATION OF LCOE WSO ALGORITHM CALCULATIONS FOR THE HYPOTHETICAL 50MW ${ }_{\mathrm{E}}$ WIND FARM IN CORVO ISLAND (PORTUGAL) WITH SENSITIVITY ANALYSIS OF $O \& M_{\operatorname{MANAG}(A)} \operatorname{AND} E_{P I}\left(C A S E_{I}\right)$ 466
Figure P. 3 I-O REPRESENTATION OF LCOE WSo ALGORITHM CALCULATIONS FOR THE HYPOTHETICAL 50MW ${ }_{\text {E }}$ WIND FARM IN CAPE SAINT JAMES (CANADA) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(A)} \operatorname{AND} E_{P I}\left(C A S E_{I}\right)$ 467
Figure Q. 1 I-O REPRESENTATION OF $L C O E_{\text {WSo }}$ ALGORITHM CALCULATIONS FOR THE HYPOTHETICAL 50MW ${ }_{\text {E }}$ WIND FARM IN ARACATI (BRAZIL) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(A)}$ AND $E_{P I}\left(\right.$ CASE $\left._{2}\right)$. 473
FIGURE Q. 2 I-O REPRESENTATION OF LCOE wso ALGORITHM CALCULATIONS FOR THE HYPOTHETICAL 50MW ${ }_{E}$ WIND FARM IN CORVO ISLAND (PORTUGAL) WITH SENSITIVITY ANALYSIS OF $O \& M_{\operatorname{MANAG}(A)}$ AND $E_{P I}\left(\right.$ CASE $\left._{2}\right)$. 474
FIGURE Q. 3 I-O REPRESENTATION OF LCOE WSo ALGORITHM CALCULATIONS FOR THE HYPOTHETICAL 50MW ${ }_{\mathrm{E}}$ WIND FARM IN CAPE SAINT JAMES (CANADA) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(A)}$ AND $E_{P I}\left(C A S E_{2}\right)$ 475
FIGURE R. 1 I-O REPRESENTATION OF $L C O E_{\text {wso }}$ ALGORITHM CALCULATIONS FOR THE HYPOTHETICAL 50MW ${ }_{\text {E }}$ WIND FARM IN ARACATI (BRAZIL) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(A)} \operatorname{AND} E_{P I}\left(\mathrm{CASE}_{3}\right)$ 481
FIGURE R. 2 I-O REPRESENTATION OF $L C O E_{\text {WSo }}$ ALGORITHM CALCULATIONS FOR THE HYPOTHETICAL 50MW ${ }_{\text {E }}$ WIND FARM IN CORVO ISLAND (PORTUGAL) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(A)}$ AND $E_{P I}\left(\mathrm{CASE}_{3}\right)$ 482
FIGURE R. 3 I-O REPRESENTATION OF LCOE WSo ALGORITHM CALCULATIONS FOR THE HYPOTHETICAL 50MW ${ }_{\text {E }}$ WIND FARM IN CAPE SAINT JAMES (CANADA) WITH SENSITIVITY ANALYSIS OF $O \& M_{\operatorname{MANAG}(A)}$ AND $E_{P I}\left(\mathrm{CASE}_{3}\right)$. 483
FIGURE S. 1 I-O REPRESENTATION OF $L C O E_{\text {WSo }}$ ALGORITHM CALCULATIONS FOR THE HYPOTHETICAL 50MW ${ }_{\text {E }}$ WIND FARM IN ARACATI (BRAZIL) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(B)} \operatorname{AND} E_{P I}\left(C A S E_{I}\right)$ 489
FIGURE S. 2 I-O REPRESENTATION OF LCOE WSO ALGORITHM CALCULATIONS FOR THE HYPOTHETICAL 50MW ${ }_{\mathrm{E}}$ WIND FARM IN CORVO ISLAND (PORTUGAL) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(B)} \operatorname{AND} E_{P I}\left(C A S E_{1}\right)$ 490
FIGURE S. 3 I-O REPRESENTATION OF LCOE WSo ALGORITHM CALCULATIONS FOR THE HYPOTHETICAL 50MW ${ }_{\text {E }}$ WIND FARM IN CAPE SAINT JAMES (CANADA) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(B)}$ AND $E_{P I}\left(C A S E_{I}\right)$ 491
FIGURE T. 1 I-O REPRESENTATION OF $L C O E_{\text {WSo }}$ ALGORITHM CALCULATIONS FOR THE HYPOTHETICAL 50MW ${ }_{\text {E }}$ WIND FARM IN ARACATI (BRAZIL) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(B)}$ AND $E_{P I}\left(\operatorname{CASE}_{2}\right)$. 497
Figure T. 2 I-O REPRESENTATION OF LCOE $_{\text {wso }}$ ALGORITHM CALCULATIONS FOR THE HYPOTHETICAL 50MW ${ }_{\text {E }}$ WIND FARM IN Corvo ISLAND (Portugal) with SEnsitivity analysis of $O \& M_{M A N G G(B)} \operatorname{AND} E_{P I}\left(\right.$ CASE $\left._{2}\right)$ 498
Figure T. 3 I-O REPRESENTATION OF $L C O E_{\text {WSo }}$ ALGORITHM CALCULATIONS FOR THE HYPOTHETICAL 50MW ${ }_{\text {E }}$ WIND FARM IN CAPE SAINT JAMES (Canada) with Sensitivity analysis of $O \& M_{\text {MANAG (B) }}$ AND $E_{P I}\left(\right.$ CASE $\left._{2}\right)$ 499
Figure U. 1 I-O REPRESENTATION OF LCOE wso ALGORITHM CALCULATIONS FOR THE HYPOTHETICAL 50MW ${ }_{\mathrm{E}}$ WIND FARM IN ARACATI (BRAZIL) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(B)} \operatorname{AND} E_{P I}\left(\operatorname{CASE}_{3}\right)$. 505
Figure U. 2 I-O REPRESENTATION OF LCOE wso ALGORITHM CALCULATIONS FOR THE HYPOTHETICAL 50MW ${ }_{\mathrm{E}}$ WIND FARM IN CORVO ISLAND (PORTUGAL) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(B)}$ AND $E_{P I}\left(\operatorname{CASE}_{3}\right)$. 506
Figure U. 3 I-O REPRESENTATION OF LCOE wso ALGORITHM CALCULATIONS FOR THE HYPOTHETICAL 50MW ${ }_{\text {E }}$ WIND FARM In Cape Saint James (Canada) with Sensitivity analysis of $O \& M_{M A N A G(B)} \operatorname{AND} E_{P I}\left(C A S E_{3}\right)$ 507

LIST OF TABLES

Table 2.1 Overall results of the ExternE. 23
TABLE 3.1 THEMATIC AREAS WITH R\&D FOCUS FOR WIND ENERGY BY TPWIND 45
TABLE 3.2 GLOBAL INSTALLED WIND POWER CAPACITY (MW) - REGIONAL DISTRIBUTION 61
TABLE 3.3 TRACK RECORD BY TURBINE TYPE 69
TABLE 3.4 TOP 10 GLOBALLY WIND TURBINE MANUFACTURERS OF 2009, CURRENTLY USED GENERATOR CONCEPTS AND POWER RANGES 70
TABLE 4.1 HISTORICAL DEVELOPMENT OF WIND ENERGY CONVERSION SYSTEM 89
TABLE 4.2 GENERAL CRITERIA, CLASSIFICATION AND SOME APPLICATIONS OF WECS. 93
TABLE 4.3 ADVANTAGES AND DISADVANTAGES OF GENERATOR TYPES 102
TABLE 4.4 EXAMPLES OF TECHNOLOGICAL IMPROVEMENTS IN THE WIND INDUSTRY IN THE LAST DECADE 103
TABLE 4.5 COMPARISON BETWEEN HAWT AND VAWT CONCEPT. 121
TABLE 5.1 CLASSIFICATION OF COSTS INTO CATEGORIES FOR WIND ENERGY PROJECTS 137
TABLE 5.2 TRENDS IN THE COST OF CAPITAL ASSUMED BY PRIMES PROJECT FOR WIND ENERGY. 140
TABLE 4.3 SUMMARY OF SOME SOURCES ABOUT CAPITAL COSTS AND PRODUCTION COSTS OF WIND POWER 141
TABLE 5.4 SUMMARY OF SOME SOURCES ABOUT VARIABLE COSTS IN PRODUCING WIND ENERGY 142
TABLE 5.5 EXAMPLE OF TYPICAL CASH FLOW FOR BCR ANALYSIS 154
TABLE 5.6 EXAMPLE OF NET CASH FLOW FOR ECONOMIC PERFORMANCE IN ENERGY PROJECTS (NPV METHOD) 157
TABLE 5.7 CLASSIFICATION FOR INDEPENDENT VARIABLES FOR POWER SYSTEM OPTIMIZATION ANALYSIS 177
TABLE 5.8 ECONOMIC MODELS OF OPTIMIZATION ALGORITHMS FOR WIND AND HYBRID POWER SYSTEM 181
TABLE 5.9 ENGINEERING MODELS OF OPTIMIZATION ALGORITHMS FOR WIND AND HYBRID POWER SYSTEM 182
TABLE 5.10 OVERVIEW OF ECONOMIC MEASURES APPLYING TO SPECIFIC INVESTMENT FEATURES AND DECISION. 185
TABLE 6.1 LITERATURE REVIEW STATISTICS 205
TABLE 6.2 CONCEPTUAL AND OPERATIONAL DEFINITIONS USED FOR THE PH.D. RESEARCH WORK. 216
TABLE 6.3 RESEARCH HYPOTHESES CONSIDERING FOR THE PH.D. RESEARCH WORK 218
TABLE 6.4 LOCATIONS CHOSEN FOR SIMULATIONS PROCEDURES WITHIN CRITERIA AND REASONS. 221
TABLE 6.5 MAIN VARIABLES WITHIN EXPECTED VALUES FOR $L C O E_{\text {WSo }}$ ALGORITHM SIMULATION... 249
TABLE 6.6 INDEPENDENT VARIABLES OF EQUATIONS FOR $L C O E_{\text {wSo }}$ ALGORITHM 250
TABLE 6.7 NUMERICAL VALIDATION AND REFERENCE PARAMETERS FOR $L C O E_{W S O}$ AND $L C C C M_{W F}$ 252
TABLE 6.8 NUMERICAL VALIDATION AND REFERENCE PARAMETERS FOR $L R C M, O \& M_{W F C M}$ AND $R C M_{W F}$ 253
TABLE 6.9 NUMERICAL VALIDATION AND REFERENCE PARAMETERS FOR $R C M_{W F}(\operatorname{CONT})$ 254
TABLE 6.10 NUMERICAL VALIDATION AND REFERENCE PARAMETERS FOR REPIM 255
TABLE 6.11 NUMERICAL VALIDATION AND REFERENCE PARAMETERS FOR $L C P M_{W F}$ 256
TABLE 7.1 WIND TURBINES SYSTEMS ADDED-IN. 273
TABLE 7.2 TECHNICAL PARAMETERS OF WIND POWER PROJECT. 274
TABLE 7.3 TECHNICAL DATA OF WIND TURBINES 276
TABLE 7.4 RELATION AMONG LAYOUT, AREA AND OCCUPATION 280
TABLE 7.5 WIND SPEED SERIES AT 10M DATA AND CALCULATED AT 105M FOR ARACATI, CORVO ISLAND AND CAPE SAINT JAMES. 281
TABLE 7.6 ATMOSPHERIC PRESSURE DATA FOR ARACATI, CORVO ISLAND AND CAPE SAINT JAMES 282
Table 7.7 AIr temperature data for Aracati, Corvo Island and Cape Saint James. 283
TABLE 7.8 AIR DENSITY CALCULATED FOR ARACATI, CORVO ISLAND AND CAPE SAINT JAMES 284
TABLE 7.9 ECONOMIC AND FINANCIAL ASSUMPTIONS CONSIDERED FOR WIND PROJECT. 285
TABLE 7.10 REVENUE PARAMETERS CONSIDERED FOR SIMULATIONS. 288
TABLE 7.11 VARIABLES AND DATA FOR RUNNING $O \& M_{W F C M}$. 290
TABLE 7.12 O\&M PROGRAMS ANALYZED IN SIMULATIONS 291
TABLE 7.13 VARIABLES AND DATA FOR REPIM CALCULATIONS 292
TABLE 7.14 REPIM INSTRUMENTS ANALYZED IN SIMULATIONS 293
TABLE 7.15 VARIABLES AND HYPOTHESES CONSIDERED FOR OPTIMIZATION CRITERIA DEFINITION. 295
TABLE 7.16 VARIABLES, PARAMETERS, VARIATIONS AND INTERACTIONS OF THE SENSITIVITY ANALYSIS. 296
TABLE 8.1 CORRELATION ANALYSIS BETWEEN $A E P_{\text {AVALL }}$ AND WIND SPEED ($V_{W C}$). 317
TABLE $8.2 L C C C M_{W F}$ BREAKDOWN STRUCTURE FOR ARACATI (BRAZIL) 318
TABLE $8.3 L C C C M_{W F}$ BREAKDOWN STRUCTURE FOR CORVO ISLAND (PORTUGAL). 326
TABLE 8.4 COMPARISON OF REPIM IN RELATION TO ARACATI (BRAZIL) AND CORVO ISLAND (Portugal) 333
TABLE $8.5 L^{2} C C M_{W F}$ BREAKDOWN STRUCTURE FOR CAPE SAINT JAMES (CANADA). 334
Table 8.6 Comparison of repim in Aracati (Brazil), Corvo Island (Portugal) and CAPE SAINT JAMES (CANADA). 341
TABLE 8.7 SENSITIVITY ANALYSIS BETWEEN $L C O E_{W S O}$ AND $V_{W C}$ 342
TABLE 8.8 SENSITIVITY ANALYSIS BETWEEN $L C O E_{\text {WSO }}$ AND $O \& M_{\text {MANAG }}$. 344
TABLE 8.9 SENSITIVITY ANALYSIS BETWEEN $L C O E_{W S O}$ AND $L_{W T}$. 346
TABLE 8.10 SENSITIVITY ANALYSIS BETWEEN $L C O E_{W S O}$ AND $E_{P I}$ 348
TABLE 8.11 RESUME OF SENSITIVITY ANALYSIS OF THE IMPACT ON $L C O E_{W S O}$ OF $O \& M_{M A N A G(A)}$ AND $E_{P I}$ FOR ARACATI (BRAZIL), CORVO ISLAND (PORTUGAL) AND CAPE SAINT JAMES (CANADA). 350
TABLE 8.12 RESUME OF SENSITIVITY ANALYSIS OF THE IMPACT ON $L C O E_{W S O}$ OF $O \& M_{M A N A G(B)}$ AND $E_{P I}$ FOR ARACATI (BRAZIL), CORVO ISLAND (PORTUGAL) AND CAPE SAINT JAMES (CANADA). 350
TABLE 8.13 RESUME OF SENSITIVITY ANALYSIS OF THE IMPACT ON $L C O E_{\text {WSO }}$ OF $O \& M_{M A N A G(A-B)}$ AND $E_{P I}$ FOR ARACATI (BRAZIL), CORVO ISLAND (PORTUGAL) AND CAPE SAINT JAMES (CANADA). 351
TABLE 8.14RELATION AMONG $L C O E_{W S O}, A E P_{A V A L L}$ AND $V_{W C}$ FOR ARACATI (BRAZIL), CORVO ISLAND (Portugal) and Cape Saint James (CANADA) 352
TABLE 8.15 Variables Simulated and the impact on total AAR ($U S \$ M$) FOR Aracati (BRAZIL), CORVO ISLAND (Portugal) AND CAPE SAINT JAMES (CANADA) 354
TABLE A. 1 SUMMARY OF BASIC NOTATION OF TABLE 5.8 379
TABLE A. 2 SUMMARY OF BASIC NOTATION OF TABLE 5.8 (CONTINUATION) 380
TABLE B. 1 SUMMARY OF BASIC NOTATION OF TABLE 5.9 382
TABLE B. 2 SUMMARY OF BASIC NOTATION OF TABLE 5.9 (CONTINUATION) 383
TABLE C. 1 GLOSSARY OF TERMS 385
TABLE D. 1 ELECTRICITY EMISSION FACTORS ($E F_{E L}$) FOR DIFFERENT COUNTRIES FOR 2007-2009 387
Table E. 1 KW To MW CONVERSION TABLE 389
TABLE G. 1 ENERGY PRODUCTION $\left(A E P_{A V A L L}\right)$ MAP OF THE WIND FARM FOR ARACATI (BRAZIL) 396
TABLE G. 2 EnERGY PRODUCTION MAP OF THE WIND FARM FOR CORVO ISLAND (PORTUGAL) 396
TABLE G. 3 EnERgY PRODUCTION MAP OF THE WIND FARM FOR CAPE SAINT JAMES (CANADA). 396
TABLE G. 4 WIND SPEED SERIES SIMULATIONS FOR $A E P_{\text {AVAIL }}$ IN ARACATI (BRAZIL) 397
Table G. 5 Wind speed series simulations for $A E P_{\text {avail }}$ IN Corvo ISland (Portugal) 397
Table G. 6 WIND speed series simulations for $A E P_{\text {avall }}$ IN Cape Saint James (Canada) 397
TABLE G. 7 KWH PER $H_{\text {PROD }}$ 398
TABLE G. 8 CASHFLOW FOR 25 YEARS OF THE WIND FARM PROJECT - 50000 KW - ARACATI (BRAZIL) - REFERENCE SITUATION 398
TABLE G. 9 CASHFLOW FOR 25 YEARS OF THE WIND FARM PROJECT - 50000 KW - CORVO ISLAND (PORTUGAL) - REFERENCE SITUATION 399
TABLE G. 10 CASHFLOW FOR 25 YEARS OF THE WIND FARM PROJECT - 50000 KW - CAPE SAINT JAMES (CANADA) - REFERENCE SITUATION 399
TABLE H. 1 EnERgy PRODUCTION ($A E P_{\text {AVAIL }}$) MAP OF THE WIND FARM FOR ARACATI (BRAZIL) WITH SENSITIVITY ANALYSIS OF $O \& M_{M}$ 404
TABLE H. 2 EnERGY PRODUCTION ($A E P_{\text {avall }}$) MAP OF THE WIND FARM FOR CORVO ISLAND (PORTUGAL) WITH SENSITIVITY ANALYSIS OF $O \& M_{\text {MANAG(A) }}$ 404
TABLE H. 3 EnERGY PRODUCTION ($A E P_{\text {AVALL }}$) MAP OF THE WIND FARM FOR CAPE SAINT JAMES (CANADA) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(A)}$ 404
Table H. 4 Wind speed series simulations for $A E P_{\text {avail }}$ IN Aracati (Brazil) with SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(A)}$. 405
TABLE H. 5 WIND SPEED SERIES SIMULATIONS FOR AEP ${ }_{\text {AVAIL }}$ IN CORVO ISLAND (PORTUGAL) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(A)}$ 405
Table H. 6 Wind speed series simulations for $A E P_{\text {avail }}$ IN Cape Saint James (Canada) With SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(A)}$. 405
TABLE H. 7 KWH PER $H_{\text {PROD }}$ WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(A)}$. 406
TAble H. 8 CAShFlow for 25 Years of the wind farm project - 50000 KW - Aracati (BRAZIL) WITH SENSITIVITY ANALYSIS OF $O \& M_{\text {MANAG(A) }}$. 406
TABLE H. 9 CASHFLOW FOR 25 YEARS OF THE WIND FARM PROJECT - 50000 KW - CORVO ISLAND (PORTUGAL) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A}$ 407
TABLE H.10CASHFLOW FOR 25 YEARS OF THE WIND FARM PROJECT - 50000 KW - CAPE SAINT JAMES (CANADA) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(A)}$. 407
TABLE I. 1 ENERGY PRODUCTION ($A E P_{\text {AVAIL }}$) MAP OF THE WIND FARM FOR ARACATI (BRAZIL) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(B)}$. 412
TABLE I. 2 ENERGY PRODUCTION ($A E P_{\text {AVALL }}$) MAP OF THE WIND FARM FOR CORVO ISLAND (PORTUGAL) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(B)}$ 412
TABLE I. 3 ENERGY PRODUCTION ($A E P_{\text {AVALL }}$) MAP OF THE WIND FARM FOR CAPE SAINT JAMES (CANADA) WITH SENSITIVITY ANALYSIS OF $O \& M_{\text {MANAG }(B)}$ 412
Table I. 4 Wind speed series simulations for $A E P_{\text {avall }}$ IN Aracati (BraZil) With SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(B)}$ 413
TAble I. 5 Wind speed series simulations for $A E P_{\text {avall }}$ In Corvo Island (Portugal) With SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(B) .}$. 413
Table I. 6 WInd speed series simulations for $A E P_{\text {avail }}$ IN Cape Saint James (Canada) With SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(B)}$ 413
TABLE I. 7 KWH PER $H_{\text {PROD }}$ WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(B)}$ 414
TABLE I. 8 CASHFLOW FOR 25 YEARS OF THE WIND FARM PROJECT - 50000 KW - ARACATI (BRAZIL) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(B)}$ 414
TABLE I. 9 CASHFLOW FOR 25 YEARS OF THE WIND FARM PROJECT - 50000 KW - CORVO ISLAND (PORTUGAL) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(B)}$. 415
TABLE I. 10 CASHFLOW FOR 25 YEARS OF THE WIND FARM PROJECT - 50000 KW - CAPE SAINT JAMES (CANADA) WITH SENSITIVITY ANALYSIS OF $O \& M$ 415
TABLE J. 1 ENERGY PRODUCTION ($A E P_{\text {AVAIL }}$) MAP OF THE WIND FARM FOR ARACATI (BRAZIL) WITH SENSITIVITY ANALYSIS OF $L_{W T}$ (5D7D) 420
TABLE J. 2 ENERGY PRODUCTION ($A E P_{\text {AVAIL }}$) MAP OF THE WIND FARM FOR CORVO ISLAND (PORTUGAL) WITH SENSITIVITY ANALYSIS OF $L_{W T}$ (5D7D) 420
TABLE J. 3 ENERGY PRODUCTION $\left(A E P_{\text {AVALL }}\right)$ MAP OF THE WIND FARM FOR CAPE SAINT JAMES (CANADA) WITH SENSITIVITY ANALYSIS OF $L_{W T}$ (5D7D) 420
Table J. 4 Wind speed series simulations for $A E P_{\text {avail }}$ IN Aracati (Brazil) with SENSITIVITY ANALYSIS OF $L_{W T}$ (5D7D) 421
TAble J. 5 Wind speed series simulations for $A E P_{\text {avail }}$ In Corvo Island (Portugal) With SENSITIVITY ANALYSIS OF $L_{W T}$ (5D7D) 421
Table J. 6 Wind speed series simulations for $A E P_{\text {avall }}$ IN Cape Saint James (Canada) with SENSITIVITY ANALYSIS OF $L_{W T}$ (5D7D) 421
TABLE J. 7 KWH PER $H_{P R O D}$ WITH SENSITIVITY ANALYSIS OF $L_{W T}$ (5D7D) 422
TABLE J. 8 CASHFLOW FOR 25 YEARS OF THE WIND FARM PROJECT - 50000 KW - ARACATI (BRAZIL) WITH SENSITIVITY ANALYSIS OF $L_{W T}$ (5D7D) 422
TABLE J. 9 CASHFLOW FOR 25 YEARS OF THE WIND FARM PROJECT - 50000 KW - CORVO ISLAND (PORTUGAL) WITH SENSITIVITY ANALYSIS OF $L_{W T}$ (5D7D) 423
TABLE J. 10 CASHFLOW FOR 25 YEARS OF THE WIND FARM PROJECT - 50000 KW - CAPE SAINT JAMES (CANADA) WITH SENSITIVITY ANALYSIS OF $L_{W T}$ (5D7D) 423
TABLE K. 1 ENERGY PRODUCTION ($A E P_{\text {AVAIL }}$) MAP OF THE WIND FARM FOR ARACATI (BRAZIL) WITH SENSITIVITY ANALYSIS OF $L_{W T}$ (5D10D) 428
TABLE K. 2 EnERgY PRODUCTION ($A E P_{\text {AVALL }}$) MAP OF THE WIND FARM FOR CORVO ISLAND (PORTUGAL) WITH SENSITIVITY ANALYSIS OF $L_{W T}$ (5D10D) 428
TABLE K. 3 ENERGY PRODUCTION ($A E P_{\text {AVALL }}$) MAP OF THE WIND FARM FOR CAPE SAINT JAMES (CANADA) WITH SENSITIVITY ANALYSIS OF $L_{W T}$ (5D10D) 428
Table K. 4 Wind speed series simulations for $A E P_{\text {avall }}$ IN Aracati (BraZil) with SENSITIVITY ANALYSIS OF $L_{W T}$ (5D10D) 429
TAble K. 5 Wind speed series simulations for $A E P_{\text {avail }}$ In Corvo ISland (Portugal) With SENSITIVITY ANALYSIS OF $L_{W T}$ (5D10D) 429
Table K. 6 Wind speed series simulations for $A E P_{\text {avail }}$ IN Cape Saint James (Canada) with SENSITIVITY ANALYSIS OF $L_{W T}$ (5D10D) 429
TABLE K. 7 KWH PER $H_{P R O D}$ WITH SENSITIVITY ANALYSIS OF $L_{W T}$ (5D10D) 430
TABLE K. 8 CASHFLOW FOR 25 YEARS OF THE WIND FARM PROJECT - 50000 KW - ARACATI (BRAZIL) WITH SENSITIVITY ANALYSIS OF $L_{W T}$ (5D10D) 430
TABLE K. 9 CASHFLOW FOR 25 YEARS OF THE WIND FARM PROJECT - 50000 KW - CORVO ISLAND (PORTUGAL) WITH SENSITIVITY ANALYSIS OF $L_{W T}$ (5D10D) 431
TABLE K. 10CASHFLOW FOR 25 YEARS OF THE WIND FARM PROJECT - 50000 KW - CAPE SAINT JAMES (CANADA) WITH SENSITIVITY ANALYSIS OF $L_{W T}$ (5D10D) 431
TABLE L. 1 ENERGY PRODUCTION ($A E P_{\text {AVAIL }}$) MAP OF THE WIND FARM FOR ARACATI (BRAZIL) WITH SENSITIVITY ANALYSIS OF $L_{W T}$ (6D12D) 436
TABLE L. 2 ENERGY PRODUCTION ($A E P_{\text {AVAIL }}$) MAP OF THE WIND FARM FOR CORVO ISLAND (PORTUGAL) WITH SENSITIVITY ANALYSIS OF $L_{W T}$ (6D12D) 436
TABLE L. 3 ENERGY PRODUCTION ($A E P_{A V A L L}$) MAP OF THE WIND FARM FOR CAPE SAINT JAMES (CANADA) WITH SENSITIVITY ANALYSIS OF $L_{W T}$ (6D12D) 436
Table L. 4 Wind speed series simulations for $A E P_{\text {avall }}$ IN ARACATI (BRAZIL) WITH SENSITIVITY ANALYSIS OF $L_{W T}$ (6D12D) 437
TAble L. 5 Wind speed series simulations for $A E P_{\text {avail }}$ In Corvo ISLand (Portugal) With SENSITIVITY ANALYSIS OF $L_{W T}$ (6D12D) 437
Table L. 6 Wind speed series simulations for $A E P_{\text {avail }}$ IN Cape Saint James (Canada) With SENSITIVITY ANALYSIS OF $L_{W T}$ (6D12D) 437
TABLE L. 7 KWH PER $H_{\text {PRod }}$ WITH SENSITIVITY ANALYSIS OF $L_{W T}$ (6D12D) 438
TABLE L. 8 CASHFLOW FOR 25 YEARS OF THE WIND FARM PROJECT - 50000 KW - ARACATI (BRAZIL) WITH SENSITIVITY ANALYSIS OF $L_{W T}$ (6D12D) 438
TABLE L. 9 CASHFLOW FOR 25 YEARS OF THE WIND FARM PROJECT - 50000 KW - CORVO ISLAND (PORTUGAL) WITH SENSITIVITY ANALYSIS OF $L_{W T}$ (6D12D) 439
TABLE L. 10 CASHFLOW FOR 25 YEARS OF THE WIND FARM PROJECT - 50000 KW - CAPE SAINT JAMES (CANADA) WITH SENSITIVITY ANALYSIS OF $L_{W T}$ (6D12D). 439
TABLE M. 1 EnERGY PRODUCTION ($A E P_{\text {AVAIL }}$) MAP OF THE WIND FARM FOR ARACATI (BRAZIL) WITH SENSITIVITY ANALYSIS OF $E_{P I}\left(C A S E{ }_{1}\right)$ 444
TABLE M. 2 ENERGY PRODUCTION ($A E P_{\text {AVALL }}$) MAP OF THE WIND FARM FOR CORVO ISLAND (Portugal) WITH SENSITIVITY ANALYSIS OF $E_{P I}\left(C A S E_{1}\right)$ 444
TABLE M. 3 EnERGY PRODUCTION ($A E P_{\text {AVALL }}$) MAP OF THE WIND FARM FOR CAPE SAINT JAMES (CANADA) WITH SENSITIVITY ANALYSIS OF $E_{P I}\left(C A S E_{1}\right)$. 444
Table M. 4 Wind speed series simulations for $A E P_{\text {avail }}$ IN Aracati (Brazil) with SENSITIVITY ANALYSIS OF $E_{P I}\left(\right.$ CASE $\left._{1}\right)$. 445
Table M. 5 Wind speed series simulations for $A E P_{\text {avail }}$ In Corvo ISland (Portugal) With SENSITIVITY ANALYSIS OF $E_{P I}\left(\right.$ CASE $\left._{1}\right)$. 445
Table M. 6 Wind speed series simulations for $A E P_{\text {avall }}$ IN Cape Saint James (Canada) With SENSITIVITY ANALYSIS OF $E_{P I}\left(C A S E{ }_{l}\right)$ 445
TABLE M. 7 KWH PER $H_{\text {PRod }}$ WITH SENSITIVITY ANALYSIS OF $E_{P I}\left(\right.$ CASE $\left._{1}\right)$ 446
TABLE M. 8 CASHFLOW FOR 25 YEARS OF THE WIND FARM PROJECT - 50000 KW - ARACATI (BRAZIL) WITH SENSITIVITY ANALYSIS OF $E_{P I}\left(\right.$ CASE $\left._{1}\right)$... 446
TABLE M. 9 CASHFLOW FOR 25 YEARS OF THE WIND FARM PROJECT - 50000 KW - CORVO ISLAND (PORTUGAL) WITH SENSITIVITY ANALYSIS OF $E_{P I}\left(C A S E_{1}\right)$. 447
TABLE M. 10 CASHFLOW FOR 25 YEARS OF THE WIND FARM PROJECT - 50000 KW - CAPE SAINT JAMES (CANADA) WITH SENSITIVITY ANALYSIS OF $E_{P I}\left(C A S E{ }_{1}\right)$ 447
TAbLE N. 1 EnERgy PRODUCTION ($A E P_{\text {AVAIL }}$) MAP OF THE WIND FARM FOR ARACATI (BRAZIL) WITH SENSITIVITY ANALYSIS OF $E_{P I}\left(\right.$ CASE $\left._{2}\right)$ 452
TABLE N. 2 ENERGY PRODUCTION ($A E P_{\text {AVAIL }}$) MAP OF THE WIND FARM FOR CORVO ISLAND (PORTUGAL) WITH SENSITIVITY ANALYSIS OF $E_{P I}\left(C A S E_{2}\right)$ 452
TABLE N. 3 EnERGY PRODUCTION $\left(A E P_{\text {AVALL }}\right)$ MAP OF THE WIND FARM FOR CAPE SAINT JAMES (CANADA) WITH SENSITIVITY ANALYSIS OF $E_{P I}\left(C A S E{ }_{2}\right)$ 452
Table N. 4 Wind speed series simulations for $A E P_{\text {avall }}$ IN Aracati (BraZil) with SENSITIVITY ANALYSIS OF $E_{P I}\left(\right.$ CASE $\left._{2}\right)$ 453
TAble N. 5 Wind speed series simulations for $A E P_{\text {avail }}$ In Corvo ISLand (Portugal) With SENSITIVITY ANALYSIS OF $E_{P I}\left(C A S E_{2}\right)$ 453
Table N. 6 Wind speed series simulations for $A E P_{\text {avall }}$ IN Cape Saint James (Canada) With SENSITIVITY ANALYSIS OF $E_{P I}\left(C A S E{ }_{2}\right)$ 453
TABLE N. 7 KWH PER $H_{\text {PRod }}$ WITH SENSITIVITY ANALYSIS OF $E_{P I}\left(C A S E{ }_{2}\right)$ 454
TABLE N. 8 CASHFLOW FOR 25 YEARS OF THE WIND FARM PROJECT - 50000 KW - ARACATI (BRAZIL) WITH SENSITIVITY ANALYSIS OF $E_{P I}\left(C A S E{ }_{2}\right)$. 454
TABLE N. 9 CASHFLOW FOR 25 YEARS OF THE WIND FARM PROJECT - 50000 KW - CORVO ISLAND (PORTUGAL) WITH SENSITIVITY ANALYSIS OF $E_{P I}\left(C A S E{ }_{2}\right)$ 455
TABLE N. 10 CASHFLOW FOR 25 YEARS OF THE WIND FARM PROJECT - 50000 KW - CAPE SAINT JAMES (CANADA) WITH SENSITIVITY ANALYSIS OF $E_{P I}\left(C A S E{ }_{2}\right)$ 455
Table O.1 EnERgy production ($A E P_{\text {avail }}$) MAP of the Wind Farm for Aracati (Brazil) With SENSITIVITY ANALYSIS OF $E_{P I}\left(\right.$ CASE $\left._{3}\right)$ 460
TABLE O. 2 ENERGY PRODUCTION ($A E P_{\text {AVAIL }}$) MAP OF THE WIND FARM FOR CORVO ISLAND (Portugal) WITH SENSITIVITY ANALYSIS OF $E_{P I}\left(C A S E{ }_{3}\right)$ 460
TABLE O. 3 ENERGY PRODUCTION $\left(A E P_{\text {AVALL }}\right)$ MAP OF THE WIND FARM FOR CAPE SAINT JAMES (CANADA) WITH SENSITIVITY ANALYSIS OF $E_{P I}\left(C A S E{ }_{3}\right)$. 460
Table O. 4 Wind speed series simulations for $A E P_{\text {avall }}$ IN Aracati (Brazil) with SENSITIVITY ANALYSIS OF $E_{P I}\left(\right.$ CASE $\left._{3}\right)$. 461
TABLE O. 5 WIND SPEED SERIES SIMULATIONS FOR $A E P_{\text {AVAIL }}$ IN CORVO ISLAND (PORTUGAL) WITH SENSITIVITY ANALYSIS OF $E_{P I}\left(\right.$ CASE $\left._{3}\right)$. 461
Table O. 6 Wind speed series simulations for $A E P_{\text {avail }}$ IN Cape Saint James (Canada) With SENSITIVITY ANALYSIS OF $E_{P I}\left(\right.$ CASE $\left._{3}\right)$ 461
TABLE O. 7 KWH PER $H_{P R O D}$ WITH SENSITIVITY ANALYSIS OF $E_{P I}\left(C A S E{ }_{3}\right)$ 462
TABLE O. 8 CASHFLOW FOR 25 YEARS OF THE WIND FARM PROJECT - 50000 KW - ARACATI (BRAZIL) WITH SENSITIVITY ANALYSIS OF $E_{P I}\left(\right.$ CASE $\left._{3}\right)$. 462
TABLE O. 9 CASHFLOW FOR 25 YEARS OF THE WIND FARM PROJECT - 50000 KW - CORVO ISLAND (PORTUGAL) WITH SENSITIVITY ANALYSIS OF $E_{P I}\left(C A S E{ }_{3}\right)$. 463
TABLE O. 10 CASHFLOW FOR 25 YEARS OF THE WIND FARM PROJECT - 50000 KW - CAPE SAINT JAMES (CANADA) WITH SENSITIVITY ANALYSIS OF $E_{P I}\left(C A S E 3_{3}\right)$. 463
Table P. 1 EnERgY PRODUCTION ($A E P_{\text {AVAIL }}$) MAP OF THE WIND FARM FOR ARACATI (BRAZIL) WITH SENSITIVITY ANALYSIS OF $O \& M_{\text {MANAG(A) }}$ AND $E_{P I}\left(C A S E_{1}\right)$ 468
TABLE P. 2 EnERGY PRODUCTION ($A E P_{\text {AVAIL }}$) MAP OF THE WIND FARM FOR CORVO ISLAND (PORTUGAL) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(A)}$ AND $E_{P I}\left(C A S E{ }_{1}\right)$. 468
TABLE P. 3 ENERGY PRODUCTION ($A E P_{\text {AVALL }}$) MAP OF THE WIND FARM FOR CAPE SAINT JAMES (CANADA) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(A)}$ AND $E_{P I}\left(C A S E_{1}\right)$. 468
Table P. 4 Wind speed series simulations for $A E P_{\text {avail }}$ IN Aracati (Brazil) With SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(A)} A N D E_{P I}\left(C A S E_{l}\right)$. 469
Table P. 5 Wind speed series simulations for $A E P_{\text {avall }}$ In Corvo Island (Portugal) With SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(A)}$ AND $E_{P I}\left(C A S E{ }_{1}\right)$. 469
Table P. 6 Wind speed series simulations for $A E P_{\text {avail }}$ IN Cape Saint James (Canada) With SENSITIVITY ANALYSIS OF $O \& M_{\text {MANAG(A) }}$ AND $E_{P I}\left(C A S E_{1}\right)$. 469
TABLE P. 7 KWH PER $H_{\text {PROD }}$ WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(A)}$ AND $E_{P I}\left(C A S E{ }_{1}\right)$. 470
TABLE P. 8 CASHFLOW FOR 25 YEARS OF THE WIND FARM PROJECT - 50000 KW - ARACATI (BRAZIL) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(A)}$ AND $E_{P I}\left(C A S E_{1}\right)$. 470
TABLE P. 9 CASHFLOW FOR 25 YEARS OF THE WIND FARM PROJECT - 50000 KW - CORVO ISLAND (PORTUGAL) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(A)}$ AND $E_{P I}\left(C A S E E_{1}\right)$ 471
TABLE P. 10 CASHFLOW FOR 25 YEARS OF THE WIND FARM PROJECT - 50000 KW - CAPE SAINT JAMES (CANADA) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(A)}$ AND $E_{P I}\left(C A S E_{1}\right)$. 471
TABLE Q. 1 EnERGY PRODUCTION ($A E P_{\text {AVAIL }}$) MAP OF THE WIND FARM FOR ARACATI (BRAZIL) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(A)}$ AND $E_{P I}\left(\right.$ CASE $\left._{2}\right)$. 476
TABLE Q. 2 EnERgY PRODUCTION ($A E P_{\text {AVALL }}$) MAP OF THE WIND FARM FOR CORVO ISLAND (PORTUGAL) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(A)}$ AND $E_{P I}\left(C A S E_{2}\right)$... 476
TABLE Q. 3 ENERGY PRODUCTION ($A E P_{\text {AVALL }}$) MAP OF THE WIND FARM FOR CAPE SAINT JAMES (CANADA) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(A)}$ AND $E_{P I}\left(C A S E E_{2}\right)$. 476
Table Q. 4 Wind speed series simulations for $A E P_{\text {avall }}$ IN Aracati (BRAZIL) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(A)}$ AND $E_{P I}\left(C A S E E_{2}\right)$. 477
TABLE Q. 5 Wind speed series simulations for $A E P_{\text {avail }}$ In Corvo ISland (Portugal) With SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(A)}$ AND $E_{P I}\left(C A S E 2_{2}\right)$. 477
Table Q. 6 Wind speed series simulations for $A E P_{\text {avail }}$ IN Cape Saint James (Canada) With SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(A)}$ AND $E_{P I}\left(C A S E{ }_{2}\right)$ 477
TABLE Q. 7 KWH PER $H_{\text {PROD }}$ WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(A)}$ AND $E_{P I}\left(C A S E 2_{2}\right)$... 478
TABLE Q. 8 CASHFLOW FOR 25 YEARS OF THE WIND FARM PROJECT - 50000 KW - ARACATI (BRAZIL) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(A)}$ AND $E_{P I}\left(C A S E_{2}\right)$ 478
TABLE Q. 9 CASHFLOW FOR 25 YEARS OF THE WIND FARM PROJECT - 50000 KW - CORVO ISLAND (PORTUGAL) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(A)}$ AND $E_{P I}\left(C A S E E_{2}\right)$.... 479
TABLE Q. 10 CASHFLOW FOR 25 YEARS OF THE WIND FARM PROJECT - 50000 KW - CAPE SAINT JAMES (CANADA) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(A)}$ AND $E_{P I}\left(\right.$ CASE $\left._{3}\right)$. 479
TABLE R. 1 EnERgy PRODUCTION ($A E P_{\text {AVaIL }}$) MAP OF THE WIND FARM FOR ARACATI (BRAZIL) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(A)}$ AND $E_{P I}\left(\right.$ CASE $\left._{3}\right)$.... 484
TABLE R. 2 ENERGY PRODUCTION ($A E P_{\text {AVAIL }}$) MAP OF THE WIND FARM FOR CORVO ISLAND (PORTUGAL) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(A)}$ AND $E_{P I}\left(C A S E{ }_{3}\right)$.... 484
TABLE R. 3 EnERGY PRODUCTION ($A E P_{\text {AVALL }}$) MAP OF THE WIND FARM FOR CAPE SAINT JAMES (CANADA) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(A)}$ AND $E_{P I}\left(C A S E{ }_{3}\right)$. 484
Table R. 4 Wind speed series simulations for $A E P_{\text {avall }}$ IN Aracati (BraZil) with SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(A)}$ AND $E_{P I}\left(\right.$ CASE $\left._{3}\right)$ 485
TABLE R. 5 WInd speed series simulations for $A E P_{\text {avail }}$ In Corvo Island (Portugal) With SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(A)}$ AND $E_{P I}\left(C A S E ~_{3}\right)$. 485
Table R. 6 Wind speed series simulations for $A E P_{\text {avall }}$ IN Cape Saint James (Canada) With SENSITIVITY ANALYSIS OF $O \& M_{\text {MANAG(A) }}$ AND $E_{P I}\left(\right.$ CASE $\left._{3}\right)$. 485
TABLE R. 7 KWH PER $H_{P R O D}$ WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(A)}$ AND $E_{P I}\left(C A S E{ }_{3}\right)$. 486
TABLE R. 8 CASHFLOW FOR 25 YEARS OF THE WIND FARM PROJECT - 50000 KW - ARACATI (BRAZIL) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(A)}$ AND $E_{P I}\left(C A S E{ }_{3}\right)$ 486
TABLE R. 9 CASHFLOW FOR 25 YEARS OF THE WIND FARM PROJECT - 50000 KW - CORVO ISLAND (PORTUGAL) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(A)}$ AND $E_{P I}\left(\right.$ CASE $\left._{3}\right)$... 487
TABLE R. 10 CASHFLOW FOR 25 YEARS OF THE WIND FARM PROJECT - 50000 KW - CAPE SAINT JAMES (CANADA) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(A)}$ AND $E_{P I}\left(C A S E 3_{3}\right)$. 487
TABLE S. 1 ENERGY PRODUCTION ($A E P_{\text {AVAIL }}$) MAP OF THE WIND FARM FOR ARACATI (BRAZIL) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(B)}$ AND $E_{P I}\left(\right.$ CASE $\left._{1}\right)$ 492
TABLE S. 2 EnERgY PRODUCTION ($A E P_{\text {AVAIL }}$) MAP OF THE WIND FARM FOR CORVO ISLAND (PORTUGAL) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(B)}$ AND $E_{P I}\left(C A S E{ }_{1}\right)$.. 492
TABLE S. 3 EnERGY PRODUCTION ($A E P_{\text {AVALL }}$) MAP OF THE WIND FARM FOR CAPE SAINT JAMES (CANADA) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(B)}$ AND $E_{P I}\left(C A S E{ }_{1}\right)$ 492
Table S. 4 Wind speed series simulations for $A E P_{\text {avall }}$ IN Aracati (Brazil) With SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(B)}$ AND $E_{P I}\left(\right.$ CASE $\left._{l}\right)$. 493
Table S. 5 Wind speed series simulations for $A E P_{\text {avall }}$ IN Corvo Island (Portugal) with SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(B)}$ AND $E_{P I}\left(\right.$ CASE $\left._{1}\right)$. 493
Table S. 6 Wind speed series simulations for $A E P_{\text {avail }}$ IN Cape Saint James (Canada) With SENSITIVITY ANALYSIS OF $O \& M_{\text {MANAG }(B)}$ AND $E_{P I}\left(C A S E_{1}\right)$. 494
TABLE S. 7 KWH PER $H_{P R O D}$ WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(B)}$ AND $E_{P I}\left(C A S E E_{1}\right)$. 494
TABLE S. 8 CASHFLOW FOR 25 YEARS OF THE WIND FARM PROJECT - 50000 KW - ARACATI (BRAZIL) WITH SENSITIVITY ANALYSIS OF $O \& M_{\text {MANAG }(B)}$ AND $E_{P I}\left(C A S E_{l}\right)$. 494
TABLE S. 9 CASHFLOW FOR 25 YEARS OF THE WIND FARM PROJECT - 50000 KW - CORVO ISLAND (PORTUGAL) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(B)}$ AND $E_{P I}\left(C A S E_{1}\right)$.... 495
TABLE S. 10 CASHFLOW FOR 25 YEARS OF THE WIND FARM PROJECT - 50000 KW - CAPE SAINT JAMES (CANADA) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(B)}$ AND $E_{P I}\left(C A S E_{1}\right)$ 495
TABLE T. 1 ENERGY PRODUCTION ($A E P_{\text {AVALL }}$) MAP OF THE WIND FARM FOR ARACATI (BRAZIL) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(B)}$ AND $E_{P I}\left(\right.$ CASE $\left._{2}\right)$ 500
TABLE T. 2 ENERGY PRODUCTION ($A E P_{\text {AVALL }}$) MAP OF THE WIND FARM FOR CORVO ISLAND (PORTUGAL) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(B)}$ AND $E_{P I}\left(C A S E{ }_{2}\right)$ 500
TABLE T. 3 EnERGY PRODUCTION ($A E P_{\text {AVALL }}$) MAP OF THE WIND FARM FOR CAPE SAINT JAMES (CANADA) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(B)}$ AND $E_{P I}\left(C A S E E_{2}\right)$. 500
Table T. 4 Wind speed series simulations for $A E P_{\text {avail }}$ IN Aracati (BraZil) With SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(B)}$ AND $E_{P I}\left(C A S E E_{2}\right)$. 501
Table T. 5 Wind speed series simulations for $A E P_{\text {avall }}$ IN Corvo Island (Portugal) with SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(B)}$ AND $E_{P I}\left(C A S E{ }_{2}\right)$... 501
Table T. 6 Wind speed series simulations for $A E P_{\text {avall }}$ IN Cape Saint James (Canada) with SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(B)}$ AND $E_{P I}\left(C A S E E_{2}\right)$. 501
TABLE T. 7 KWH PER $H_{P R O D}$ WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(B)}$ AND $E_{P I}\left(C A S E 2_{2}\right)$. 502
TABLE T. 8 CASHFLOW FOR 25 YEARS OF THE WIND FARM PROJECT - 50000 KW - ARACATI (BRAZIL) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(B)}$ AND $E_{P I}\left(C A S E_{2}\right)$. 502
TABLE T. 9 CASHFLOW FOR 25 YEARS OF THE WIND FARM PROJECT - 50000 KW - CORVO ISLAND (PORTUGAL) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(B)}$ AND $E_{P I}\left(C A S E{ }_{2}\right)$ 503
TABLE T. 10 CASHFLOW FOR 25 YEARS OF THE WIND FARM PROJECT - 50000 KW - CAPE SAINT JAMES (CANADA) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(B)}$ AND $E_{P I}\left(C A S E 2_{2}\right)$. 503
TABLE U. 1 ENERGY PRODUCTION ($A E P_{\text {AVAIL }}$) MAP OF THE WIND FARM FOR ARACATI (BRAZIL) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(B)}$ AND $E_{P I}\left(C A S E{ }_{3}\right)$. 508
TABLE U. 2 EnERGY PRODUCTION ($A E P_{\text {AVALL }}$) MAP OF THE WIND FARM FOR CORVO ISLAND (PORTUGAL) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(B)}$ AND $E_{P I}\left(C A S E{ }_{3}\right)$... 508
TABLE U. 3 ENERGY PRODUCTION ($A E P_{\text {AVALL }}$) MAP OF THE WIND FARM FOR CAPE SAINT JAMES (CANADA) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(B)}$ AND $E_{P I}\left(C A S E{ }_{3}\right)$ 508
Table U. 4 Wind speed series simulations for $A E P_{\text {avail }}$ IN Aracati (BraZil) with SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(B)}$ AND $E_{P I}\left(C A S E{ }_{3}\right)$. 509
TABLE U. 5 WInd Speed series Simulations for $A E P_{\text {avail }}$ IN Corvo ISland (Portugal) With SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(B)}$ AND $E_{P I}\left(C A S E{ }_{3}\right)$. 509
Table U. 6 Wind speed series simulations for $A E P_{\text {avall }}$ IN Cape Saint James (Canada) With SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(B)}$ AND $E_{P I}\left(C A S E{ }_{3}\right)$ 509
TABLE U. 7 KWH PER $H_{P R O D}$ WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(B)}$ AND $E_{P I}\left(C A S E{ }_{3}\right)$. 510
TABLE U. 8 CASHFLOW FOR 25 YEARS OF THE WIND FARM PROJECT - 50000 KW - ARACATI (BRAZIL) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(B)}$ AND $E_{P I}\left(C A S E_{3}\right)$ 510
TABLE U. 9 CASHFLOW FOR 25 YEARS OF THE WIND FARM PROJECT - 50000 KW - CORVO ISLAND (PORTUGAL) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(B)}$ AND $E_{P I}\left(C A S E{ }_{3}\right) \ldots$ 511
TABLE U. 10 CASHFLOW FOR 25 YEARS OF THE WIND FARM PROJECT - 50000 KW - CAPE SAINT JAMES (CANADA) WITH SENSITIVITY ANALYSIS OF $O \& M_{M A N A G(B)}$ AND $E_{P I}\left(C A S E 3_{3}\right)$. 511
Table V. 1 Relation $V_{W C}$ and $L C O E_{w s o}$. 513
TAbLE V. 2 Impact of O\&M PROGRAMS ON $L C O E_{\text {wso }}$ 513
Table V. 3 Impact of O\&M PROGRAMS ON WIND FARM availability. 513
Table V. 4 Impact of $L_{W T}$ ON $L C O E_{W S o}$ 514
TABLE V. 5 IMPACT OF $E_{P I}$ ON $L C C C M_{W F}$ 514
TABLE V. 6 Impact of $L_{W T}$ ON $L C C C M_{W F}$ 514
TABLE V. 7 RELATION AMONG $L C O E_{W S O}, O \& M_{M A N A G(A)}$ AND $E_{P I}$ 515
Table V. 8 Relation among $L C O E_{W S O}, O \& M_{M A N A G(B)}$ AND $E_{P I}$ 515
Table V. 9 Impact of $E_{P I}$ ON $L C O E_{W S}$ 515
Table V. 10 RELATION BETWEEN $L C C C M_{W F}$ AND $L C O E_{W}$ 516
TABLE V. 11 RELATION BETWEEN $V_{W C}$ AND $L_{W T}$. 516
Table V. 12 Percentual variations of $V_{W C}, L_{W T}, O \& M_{M A N A G}$ and $E_{P I}$ 517

LIST OF ACRONYMS

Notation	Description
AAE	Asociación Empresarial Eólica
AG	Asynchronous Generator
APERC	Asia Pacific Energy Research Centre
AWEA	American Wind Energy Association
BWEA	British Wind Energy Association
BNDES	The Brazilian Development Bank (Banco Nacional de Desenvolvimento Econômico e Social)
BOP	Balance Of the Plant
CanWEA	Canadian Wind Energy Association
CAPM	Capital Asset Pricing Model
CEC	Clean Energy Council
CERs	Certified Emission Reductions
CoPS	Complex Product System
CSCF	Constant Speed Constant Frequency
DCF	Discounted Cash Flows
DD	Direct-Drive
DDSG	Direct-Drive Synchronous Generator
DFIG	Doubly-Fed Induction Generator
DG	Distributed Generation
DGGE	Directorate General for Geology and Energy (Direcção Geral de Geologia e Energia)
DSO	Distribution System Operator
DTI	Department of Trade and Industry
ECOA	Economic Optimization Algorithm
EDP	Energias de Portugal (Energies of Portugal)
EEA	European Environment Agency
EER	Emerging Energy Research
EIA	Energy Information Administration
$\mathrm{EMP}_{\mathrm{yr}}$	Expected market price
ENOA	Engineering Optimization Algorithm
EPC	Engineering Procurement Construction
ERSE	The Energy Services Regulatory Authority (Entidade Reguladora dos Serviços Energéticos)

ES Evolutionary Strategies
EU European Union
EWEA European Wind Energy Association
FDE Frequency Domain Experiments
FESG Field-Excited Synchronous Generators
FinDE Finite Difference Estimation
GA Genetic Algorithms
GBSM Gradient Based Search Methods
GST General System Theory
GWEC Global Wind Energy Council
HAWT Horizontal Axis Wind Turbines
HM Heuristic Methods
HVAC-HVDC High Voltage Alternative And Direct Current
IEA International Energy Agency
IEC International Electrotechnical Commission
IG Induction Generators
IMF International Monetary Fund
IP Index of Performance
IPPs Independent Power Producers
IS Importance Sampling
ITC Investment Tax Credit
LIDAR Light Detection And Ranging
LR Likelihood Ratio Estimators
LWST Low Speed Wind Turbine Program
MACRS Modified Accelerated Cost Recovery System
NASA National Aeronautics and Space Administration
MC Multiple Comparison
MPPT Maximum Power Point Tracking Technique
NEA Nuclear Energy Agency
$\mathrm{NO}_{\mathrm{x}} \quad$ Nitrogen Oxides
NREL National Renewable Energy Laboratory
NS Net Savings
NWCC National Wind Coordinating Collaborative
NWF Nearshore Wind Farm
NZWEA New Zealand Wind Energy Association
O\&M Operations and Maintenance
OECD Organization for Economic Cooperation and Development
OEMs Original Equipment Manufacturers

OFWF	Offshore Wind Farm
OOR	Overall Rate-of-Return
OWF	Onshore Wind Farm
OWFLO	Offshore Wind Farm Layout Optimization
PA	Perturbation Analysis
PC	Performance Criteria
PCC	Point of Common Connection
PI	Performance Index
PMSG	Permanent Magnet Synchronous Generators
PPA	Power Purchase Agreement
R\&D	Research and Development
RD\&D	Research, Development and Demonstration
RE	Renewable Energy
REN	National Electric Grid (Rede Eléctrica Nacional)
REPs	Renewable Energy Projects
RES	Renewable Energy System
RETs	Renewable Energy Technologies
RSM	Response Surface Methodology
RH_{n}	Research Hypothese " n "
RS	Ranking and Selection
SA	Simulated Annealing
SCADA	Supervisory Control And Data Acquisition
SCIG	Squirrel-Cage Induction Generator
SIR	Savings-to-Investment Ratio
SM	Statistical Methods
SO	Stochastic Optimization
SO_{2}	Sulfur dioxide
SS	Simplex Search
TPWind	The European Technology Platform for Wind Energy
TS	Tabu Search
TSO	Transmission System Operator
UKERC	United Kingdom Energy Research Centre
UNDP	United Nations Development Program
UNFCCC	United Nations Framework Convention on Climate Change
US DOE	United States Department of Energy
VAWT	Vertical Axis Wind Turbines
VSCF	Variable Speed Constant Frequency
VSVF	Variable Speed Variable Frequency

WCD	World Commission on Dams
WECS	Wind Energy Conversion System
WECs	Wind Energy Converters
WEO	World Energy Outlook
WPU	Wind Power Unit
WT	Wind Turbine
WWEA	World Wind Energy Association

LIST OF SYMBOLS

Symbol	Description	Unit
α	Inverse of URCF	[-]
ρ	Air density ($1.255 \mathrm{~kg} / \mathrm{m}^{3}$)	$\left[\mathrm{kg} / \mathrm{m}^{3}\right]$
β	Equivalent to UCRF	[-]
ς	Unit cost per $W F_{\text {cap }}$ for $C P_{C M}$ calculation	[\$/MWe]
κ	Percentage of capital costs for contingencies	[\%]
ε	Final value paid by government	[\$/kWeh]
ε_{c}	Government credit given for each $\mathrm{MWh}_{\mathrm{e}}$ of $L C E R_{\text {CO }}$	[\$/MWeh]
ε_{0}	Initial value paid by government	[\$/kW e]
∇	Gradient function	[-]
ϖ	Percentage of $L C C C M_{\text {WF }}$ for $O \& M_{\text {fixed }}{ }_{c M}$ cost calculation	[\%]
$\psi_{\text {total }}$	Final value of subsidies for $R E I_{C M}$ calculation	[\$/kWe]
ψ_{0}	Initial value of subsidies for $R E I_{C M}$ calculation	[\$/kWe]
ξ_{n}	Percentage for each energy policy instrument for REPIM	[\%]
r	Coefficient of skewness	[-]
v_{w}	Wind speed	[m/s]
$\eta_{\text {e }}$	Electrical transmission efficiency	[-]
η_{m}	Mechanical transmission efficiency	[-]
$\eta_{\text {wecs }}$	Wind power plant efficiency	[-]
$\eta_{\text {wecs }_{\text {(en) }}}$	Wind power plant efficiency reference	[-]
η	System electro-mechanic efficiency	[-]
a_{i}	Equality constraint functions	[-]
A	Swept turbine area	$\left[\mathrm{m}^{2}\right]$
AAR	Average Annual Revenue	[\$M]
$A A R^{y r_{n}}$	Average Annual Revenue in year " n "	[M \$/yr]
$A_{\text {WT }}$	Area per wind turbine for $S \& R V$ calculation	[$\mathrm{m}^{2} / \mathrm{wt}$]
$A E P_{\text {avail }}$	Annual Energy Production Available	[$\mathrm{KW}_{\mathrm{e}} \mathrm{h}$]
$A E P_{\text {gross }}$	Annual Energy Gross Production	[kWh]
$A E P_{\text {net }}$	Annual Energy Net Production	[kWh]
$A E P_{\text {rated }}$	Annual Energy Rated Production	[kWh]

$A E P_{s}$	Cumulated Annual Energy Production	[kWh]
AFF	Annual Failure Frequency	[-]
Amort	Amortization	[\$M]
$A R_{C M}$	Annual Replacement Cost Model	[\$/kW]
b	Learning parameter	[-]
BCR	Benefit-to-Cost Ratio	[-]
b_{k}	Inequality constraint functions	[-]
$B l d_{\text {area }}$	Building area for $S I_{C M}$ calculation	[m^{2}]
Bld ${ }_{\text {cost }}$	Building cost for $S I_{C M}$ calculation	[\$/m ${ }^{2}$]
BOP	Balance Of Plant	[\$M]
c	Current costs for TI calculation	[\$/kW]
C	Constant in Eqn 5.11, 5.12 and 5.13	[-]
c_{0}	Initial costs for $T I$ calculation	[\$/kW]
$C A B_{\text {cost }}$	Cables costs including skilled labor	[\$/m]
C_{F}	Capacity factor	[\%]
$C F_{w f}$	Wind farm capacity factor	[\%]
C_{i}	Cash inflows	[\$M]
$C_{M h r_{R M_{W T}}}$	Cost of man-hour for $R M_{W T}$	[\$/m-h]
$C_{M h r}$	Cost of man-hour	[\$/m-h]
C_{o}	Cash outflows	[\$M]
$C_{\text {O\&M }}$	Cost of Operations and Maintenance	[\$M]
Co_{0}	Initial Investment	[\$M]
COE	Cost Of Energy	[\$/kWh]
COP	Coefficient Of Performance	[-]
$\mathrm{Co}_{\text {t }}$	Cash outflows in period t	[\$M]
$C_{M h r_{R M C T}}$	Cost of man-hour for $R M_{C T}$	[\$/m-h]
$C_{M h r_{\text {SeRV }}}$	Cost of man-hour for $S \& R V$	[\$/m-h]
$C_{m d_{R M_{W T}}}$	Cost per day for $R M_{W T}$	[\$/day]
$C_{m d}{ }_{\text {SeRV }}$	Cost per day for $S \& R V$	[\$/day]
$D_{m^{R M_{W T}}}$	Time of utilization for machines/equipment for $R M_{W T}$	[day]
$D_{m_{\text {S\&RV }}}$	Time of utilization for machines/equipment for $S \& R V$	[day]
$D e p r_{W T_{\text {inst }}}$	Depreciation of wind turbines with towers	[\$/kW]
$D e p r_{Y_{R C}}$	Depreciation in the year of major review	[\$/kW]
$C_{k W}$	Cost of kW installed for $C M_{W T}$ calculation	[\$/kW]
$C_{m d}$	Cost per day for $D C M_{W F}$ calculation	[\$/day]
$C M_{W T}$	Cost of wind turbine for manufacturer	[\$/kW]
C_{P}	Coefficient of dynamics performance	[\%]
$C_{\text {PBetz }}$	Betz Limit's coefficient of performance ($C_{\text {PBetz }}=16 / 27$)	[\%]

$C P_{C M}$	Collecting Point Cost Model	[\$/kW]
CRF	Capital Recovery Factor	[-]
$C_{\text {steel }}$	Cost of steel	[\$/kg]
D	Rotor diameter	[m]
$D C M_{W F}$	Wind Farm Decommissioning Cost Model	[\$/kW]
D_{m}	Time of utilization for machines/equipment	[day]
$D P B$	Discounted Payback	[years]
DT	Development	[\$/kW]
D_{v}	Disinvestment value	[\$M]
E_{A}	Annual energy of the array	[kWh]
$E_{\text {avail }}$	Available electrical energy	[$\mathrm{KW}_{\mathrm{e}} \mathrm{h}$]
$E F_{c}$	Electrical facilities for wind farm substation	[\$/kW]
$E F_{e l}$	Electricity Emission Factors	[$\left.\mathrm{tCO}_{2} / \mathrm{MW}_{\mathrm{e}} \mathrm{h}\right]$
$E G$	Engineering	[\$/kW]
EOAP	Economic Optimization Algorithm Proposed	[-]
$E_{p i}$	Energy policy instruments	[-]
$E_{\text {theo }}$ (park)	Theoretical electrical energy	[$\mathrm{KW}_{\mathrm{e}} \mathrm{h}$]
E_{T}	Annual energy of one isolated turbine	[kWh]
$F C R$	Fixed Charge Rate	[-]
F_{t}	Fuel expenditures in the year t	[\$M]
$F_{C M}$	Financing Cost Model	[\$/kW]
$F L H_{w f}$	Full load hours of production for a wind farm	[h]
FS	Feasibility Studies	[\$/kW]
$G H G_{E M_{f f} c_{2}}$	GreenHouse Gas Emission of CO_{2} from fossil fuel	[$\left.\mathrm{tCO}_{2} / \mathrm{MW}_{\mathrm{e}} \mathrm{h}\right]$
$G H G_{E M_{\text {wese } o_{2}}}$	GreenHouse Gas Emission of CO_{2} from WECS	[$\left.\mathrm{tCO}_{2} / \mathrm{MW}_{\mathrm{e}} \mathrm{h}\right]$
g	Annuity	[-]
$G_{b d}$	Hours for grid breakdown	[h]
$G_{\text {main }}$	Hours for grid maintenance	[h]
GW	Gigawatt	[-]
GWh	Gigawatt-hour	[-]
$H_{\text {prod }}$	Hours of production	[h]
H_{h}	Hub height	[m]
i	Discount rate	[\%/yr]
$i f_{r}$	Inflation rate	[\%/yr]
$I P T$	Industrialized Product Taxes	[\%]
IRR	Internal Rate of Return	[\%]
I_{t}	Investment expenditures in the year t	[\$M]
K_{0}	Present value	[\$M]

$k_{\text {col }}$	Coefficient for number of wind turbines in a column	[-]
KE	Kinetic energy	[J]
kg	Kilogram	[-]
kPa	Kilopascal	[-]
$k_{\text {row }}$	Coefficient for number of wind turbines in a row	[-]
K_{t}	Payment value	[\$M]
kV	Kilovolt	[-]
kW	Kilowatt	[-]
$\mathrm{kW}_{\text {e }}$	Kilowatt electric	[-]
kWh	Kilowatt hour	[-]
$L^{\text {LCER }} \mathrm{CO}_{2}$	Life-Cycle Emission Reduction of CO_{2}	[$\left.\mathrm{tCO}_{2} / \mathrm{MW}_{\mathrm{e}} \mathrm{h}\right]$
$L^{\text {LCCCM }}{ }_{W F}$	Wind Farm Life-Cycle Capital Cost Model	[\$/kW]
LCOE	Levelized Cost Of Energy	[\$/kWh]
$L^{\text {LPP }} M_{W F}$	Wind Farm Life-Cycle Production Model	[$\mathrm{kWh} / \mathrm{yr}$]
$L_{w_{a_{v}}}$	Average losses of WECS	[-]
$L C O E_{\text {wso }}$	Levelized Cost Of Energy proposed by WSO	[\$/kWh]
LEPC	Levelized Electricity Production Cost	[\$/kWh]
LF	Layout Factor	[$\mathrm{kW}_{\mathrm{e}} \mathrm{h}$]
L_{g}	Local grid length	[m]
LLC	Land Lease Cost	[\$/kWh]
LRC	Levelized Replacement Cost	[\$/kW]
LRCM	Levelized Replacement Cost Model	[\$/kW]
L_{t}	Transmission line length	[m]
$L_{w t}$	Wind turbines layout	[-]
$L^{W} \mathrm{TG}_{C M}$	Local Wind Turbines Grid Cost Model	[\$/m/kW]
$L_{x_{\text {row }}}$	Area with length (for row)	[m^{2}]
$L_{x_{\text {col }}}$	Area with length (for column)	[m^{2}]
m	Mass	[kg]
M_{t}	Operations and maintenance expenditures in the year t	[\$M]
$M_{h r_{R M_{W T}}}$	Man-hour for $R M_{W T}$	[m-h]
$M_{h r^{\text {RU }}{ }_{C T}}$	Man-hour for $R M_{C T}$	[m-h]
$M_{h r_{\text {SeRV }}}$	Man-hour for $S \& R V$	[m-h]
$M C_{A}$	Market Cost Adjustment	[\$/kW]
$M_{h r}$	Man-hour	[m-h]
MLC	Maintenance Labor Cost	[\$/m-h]
MR	Machine Rating	[kW]
MW	Megawatt	[-]
$\mathrm{MW}_{\text {e }}$	Megawatt electric	[-]

MWh	Megawatt hour	[-]
$N_{\text {row }}$	Number of wind turbines rows in the wind farm	[-]
$N_{\text {col }}$	Number of wind turbines columns in the wind farm	[-]
n_{ε}	Time of policy energy instrument for ε calculation	[yr]
NB	Net Benefits	[\$M]
$n_{\text {fin }}$	Duration of pre-operational phase	[yr]
n_{ψ}	Time of policy energy instrument for ψ calculation	[yr]
N	Lifetime of wind farm/Number of periods	[yr]
$n_{\text {mlh }}$	Number of maintenance labor hours	[h]
$n_{\text {th }}$	Number of technical labor hours	[h]
N_{m}	Number of machines/equipment	[-]
$N_{m_{\text {RVV }}}$	Number of machines/equipment for $R N_{W T}$	[-]
$N_{m_{\text {serkv }}}$	Number of machines/equipment for $S \& R V$	[-]
NPC	Net Present Cost	[\$M]
NPV	Net Present Value	[\$M]
$N_{r s}$	Rotor speed	[rpm]
n_{t}	Number of towers	[-]
n_{w}	Period of warranty for O\&M costs	[yr]
$N_{W T}$	Number of turbines in the wind farm	[-]
$O \& M_{\text {ccm }}$	Costs covered by manufacturer	[\%]
$O \& M_{\text {fived }}$ cu	Fixed costs of operations and maintenance	[\$/kWh]
$O \& M_{\text {manag }}$	Operations and Maintenance management of wind farm	[-]
$O \& M_{\text {variabl }_{\text {ch }}}$	Variable costs of operations and maintenance	[\$/kWh]
$O \& M_{\text {WFCM }}$	Wind Farm O\&M Cost Model	[\$/kWh]
P	Air pressure	[Pa or $\mathrm{N} / \mathrm{m}^{2}$]
$P \& D_{L M \text { factor }}$	P\&D Losses Model factor	[-]
$P_{w_{a v}}$	Average power production by WECS	[kWh]
$P_{w_{\text {arail }}}$	Electrical power output available	[W_{e}]
$P_{w_{(e)}}$	Electrical power output	$\left[\mathrm{W}_{\mathrm{e}} / \mathrm{m}^{2}\right]$
$P_{\text {A }}$	Available power density	[W/m²]
P_{D}	Power delivered	[kWh]
$P O_{C M}$	Pre-operational Cost Model	[\$/kWh]
PPAR	Power Purchase Agreement	[\$/kWh]
PR	Progress Ratio	[-]
PTC	Production Tax Credit	[\$/kWh]
$P V_{c i}$	Present value of cash inflows	[\$M]
$P V_{c o}$	Present value of cash outflows	[\$M]
$P V_{S A E P}$	Present value of cumulated annual energy production	[kWh]

$P_{\text {w }}$	Wind turbine power	[W/m ${ }^{2}$]
$P_{w_{\text {out }}}$	Power extracted by rotor	[W/m ${ }^{2}$]
R	Specific gas constant for air ($287 \mathrm{~J} / \mathrm{kg} \mathrm{K}$)	[J/kg K]
r	Discount rate	[\%/yr]
RC	Repair Costs	[\$/kWh]
RCM ${ }_{\text {WF }}$	Wind Farm Removal Cost Model	[\$/kW]
$R_{C T}$	Removal of concrete	[\$/kW]
$R C_{\text {WT }}$	Percentage cost for the wind turbine component	[\%]
$R C_{T}$	Percentage cost for the wind tower component	[\%]
r_{D}	Debt cost before tax	[\$M]
$r_{\text {debt }}$	Debt interest rate	[\%/yr]
r_{E}	Equity cost	[\$M]
$R E I_{C M}$	Renewable Energy Investment Credit Mode	[\$/kW ${ }_{\text {e }}$]
$\mathrm{REP}_{C M}$	Renewable Energy Production Credit Mode	[$\left.\$ / \mathrm{kW}_{\mathrm{eh}} \mathrm{l}\right]$
REPIM	Renewable Energy Public Incentive Mode	[\$/proj]
$R M_{W T}$	Removal of wind turbines	[\$/kW]
RR	Required Revenues	[\$M]
$R_{\text {taxes }}$	Revenue taxes	[\%]
$R V M_{W F}$	Wind Farm Residual Value Model	[\$/kW]
$r_{\text {WACC }}$	Tax of Weighted Average Cost of Capital	[\%/yr]
$S \& R V$	Seeding and re-vegetation	[\$/kW]
$S B_{c}$	Substation cost of transmitting	[\$/kWh]
$S C_{O \& M}$	Scheduled maintenance	[\$/kWh]
$S D_{x}$	Separation distances between wind turbines	[m]
$S D_{x_{\text {row }}}$	Separation distances between wind turbines (for row)	[m]
$S D_{\text {xcol }}$	Separation distances between wind turbines (for column)	[m]
$S I_{C M}$	Supporting Infra-structure Cost Model	[$\left.\$ / \mathrm{m}^{2} / \mathrm{kW}\right]$
SPB	Simple Payback	[\$M]
T	Air temperature in Kelvin (${ }^{\circ} \mathrm{C}+273$)	[K]
$T_{\text {mass }}$	Mass of each tower	[kg]
t_{x}	Taxes for WACC	[\%]
t,	Linear approximation for SPB	[yr]
t	Number of periods for Eqn 5.14	[-]
TAC	Total Annualized Cost	[\$M]
T\&D losses	Transmission and Distribution losses	[\%]
$T_{\text {CM }}$	Towers Cost Model	[\$/kW]
TI	Technology improvements	[\$/kW]
TLC	Technical Labor Cost	[\$/m-h]

$T L_{c}$	Transmission line cost	$[\$ / \mathrm{m}]$
$T L C C$	Total Life-Cycle Cost	$[\$ \mathrm{M}]$
$T L_{r}$	Transmission line thermal rating	$[1 / \mathrm{kW}]$
$T O_{C M}$	Technological Obsolescence Cost Model	$[\$ / \mathrm{kW}]$
$T S_{C M}$	Transmission System Cost Model	$[\$ / \mathrm{kW}]$
$T S R$	Tip Speed Ratio	$[-]$
$T S_{V M}$	Tower Scrap Value Model	$[\$ / \mathrm{kW}]$
$T W \mathrm{~h}$	Terawatt hour	$[-]$
$U C R F$	Uniform Capital Recovery Factor	$[-]$
$U P A C$	Unitary Present Average Cost	$[\$ / \mathrm{kW}]$
$U S C_{O \& M}$	Unscheduled maintenance	$[\$ / \mathrm{kWh}]$
V	Current cumulative volume for $T I$ calculation	$[\mathrm{kW}]$
V_{0}	Initial cumulative volume for $T I$ calculation	$[\mathrm{kW}]$
W	Watt	$[-]$
$W A C C$	Weighted Average Cost of Capital	$[\% / \mathrm{yr}]$
$W A C C_{p r o j}$	Weighted Average Cost of Capital for the project	$[\%]$
$W_{F_{C M}}$	Percentage of WACC ${ }_{p r o j}$ for $F_{C M}$ cost calculation	$[\%]$
W_{D}	Capital Structure	$[\%]$
$W F_{P E}$	Wind Farm Production Efficiency	$[\%]$
$W F_{C M}$	Wind Farm Capacity Model	$[\mathrm{kWe} / \mathrm{yr}]$
$W T_{\text {main }}$	Hours for wind turbine maintenance	$[\mathrm{h}]$
$W T_{b d}$	Hours for wind turbine breakdown	$[\mathrm{h}]$
$W F_{\text {cap }}$	Wind farm electric installed capacity	$[\mathrm{kW}]$
$W T_{\text {inst }}$	Wind turbines installations	$[\$ / \mathrm{kW}]$
$W T_{\text {weight }}$	Weight of a wind turbine	$[\mathrm{kg}]$
$W T_{C M}$	Wind Turbines Cost Model	$[\$ / \mathrm{kW}]$
$W T_{\text {rated }}$	Wind Turbine rated capacity	$[\mathrm{kW}]$
$W T S_{V M}$	Wind Turbine Scrap Value Model	$[\$ / \mathrm{kW}]$
x	Set of all the independent variables	$[-]$
$Y_{R C}$	Year of the replacement or overhaul	$[-]$

Chapter 1

INTRODUCTION

1.1 Presentation
1.2 Interest and scope of the thesis
1.3 Thesis outline
1.4 List of publications
1.4.1 Papers in scientific journals
1.4.2 Oral communications in scientific meetings and conferences
1.5 References

This chapter starts by describing the context of the Ph.D. research work. The interest and scope of this thesis is briefly explained. The main objective of this research is also presented. The scientific publications and communications resulted from this research is listed. In the end is added a short description of the chapters with the respective references.

1.1 Presentation

Interest in the use of renewable energy sources has grown dramatically during the last decade, largely as a reaction to concerns about the environment impact of the use of fossil and nuclear fuel. However, the subject of renewable energy is of far wider interest than to environmental issues alone. The use of fossil and nuclear fuels is so central to industrialized societies that any examination of the difficulties they cause or their potential solutions raises a wide range of issues: of technology and design, politics, social structure, economics, planning and even history. This is an area in which there are many views, of varying degrees of insight and expertise, but little certainly.

One of the most exciting aspects of the study of renewable energy is that it is inherently positive. It is an area which offers the possibility of solutions to some of society's most difficult problem. Again, this appears most clearly when a broad approach is taken. Thus the study of renewable energy involves much more than the technical possibilities of replacement of fossil and nuclear fuels. Some of the major scientific areas of interest are:
i. Environmental science - the comparative impact of fossil, nuclear and renewable energy sources on the atmosphere, waterways, and the plant and animal life on the earth. This includes considerations of the greenhouse gases effect, acid rain and pollution of the seas. Related issues include the dynamics of climate ant its relationship to the biosphere.
ii. Earth sciences - the origins of and physical principles underlying the various forms of renewable energy.
iii. Technology - the design and implementation of renewable energy based technologies, and their integration with existing technologies and distribution systems. Related issues include the technical possibilities for improving the efficiency of present energy use, in buildings, machinery, appliances, power plants, etc.
iv. Social sciences - the technological/economical/social/philosophical issue of large-scale systems versus small-scale local systems. The difference between the relatively concentrated reserves of fossil fuels in some countries and the wider distribution of renewable energy resources has major political implications and may influence patterns of industrialization and economic development. Changing fuels prices have a dramatic effect upon the world's economies.
v. Planning - the sitting of power stations, transmission lines, wind farms, tidal barrages, biomass plantations or hydroelectric plant, which has a major planning impact, with legal and social implications. Transport planning, too, is intimately related to the mix of fuels and other energy sources available.
vi. Architecture, building and design - the design of buildings and neighborhoods for energy efficiency and to incorporate integrated energy supply systems which mix renewable and others sources.

As can be noticed, for studying renewable energy sources and technologies it is necessary a multidisciplinary understanding, so the way these projects can be measure or optimized take us to a body of knowledge for a complete and more comprehensive analysis of a power station planning and management, case of wind farms, at a microeconomics view.

To optimize a wind farm, each aspect and typical assumption must be challenged and carefully evaluated. The challenge in the evaluation has been determining the life-cycle economic implications of aspects such as lost availability, losses at full load, and no-load losses so they can be included in the design process.\therefore Three economic factors condense the complexities of the wind farm business model into a form that can be conveniently used in simple spreadsheet calculations to optimize techno-economic power plant for maximized profitability (Maddaloni, 2005). These factors can be determined from the unique economic characteristics of a specific project, including wind regime, cost of money, tax treatment, and expected project return on investment.

Wind energy investment decisions are driven by economics, not necessity. The wind farm must have the lowest possible total life-cycle cost for the project to maximize its economic potential. A specific design choice may have a complex effect on the project financial performance, affecting capital costs, taxes, insurance, energy revenue, maintenance costs, and government subsidies. A method is required to simplify the calculations so that alternate design proposals may be compared and an optimal solution chosen based on the specific economic and engineering factors of the particular wind farm project.

An optimal solution is a result of an optimization process. Optimization is an important tool in decision science and in the analysis of physical systems. To use it, we must first identify some objective, a quantitative measure of the performance of the system under study. This objective could be profit, time, potential energy, or any quantity or combination of quantities that can be represented by a single number. The objective depends on certain characteristics of the system, called variables or unknowns. Our goal is to find values of the variables that optimize the objective. Often the variables are restricted, or constrained, in some way (Nocedal \& Wright, 1999).

The process of identifying objective, variables, and constraints for a given problem is known as modeling. Construction of an appropriate model is the first step - sometimes the most important step - in the optimization process. If the model is too simplistic, it will not give useful insights into the practical problem, but if it is too complex, it may become too difficult to solve. Once the model has been formulated, an optimization algorithm can be used to find its solution. Usually, the algorithm and model are complicated enough that a computer is needed to implement this process. There is no universal optimization algorithm. Rather, there are numerous algorithms, each of which is made to a particular type of optimization problem. It is often the user's responsibility to choose an algorithm which would be more appropriate for their specific application.

This research aims to develop an algorithm for Economic Optimization of Wind Farms in Function of the Cost of Energy Produced. The cost of energy produced that has to be minimized by changing the design variables and others parameter influence cost of energy such as wind speed, wind farm layout, wind production losses, O\&M cost parameters and control parameters. The optimization must maximize the profit obtained during the useful lifetime of the wind farm studied.

1.2 Interest and scope of the research

There is not a single price and cost of energy for wind farms. Both depend on the location, size and number of turbines, in addition to being influenced by political incentives or subsidies granted by governments. The initial investment costs - cost of equipment, feasibility study, installation, and O\&M are essential to determine the final cost of the technology. In general, the main variables that make up the production cost of wind energy are the investment costs of fuel and operations and maintenance (Morthorst \& Chandler, 2004; Wizelius, 2007).

In the case of wind power there is no dependence of the cost of fuel, but the investment cost is still higher than that of conventional sources. However, the costs of wind farms are decreasing, indicating that this trend is likely to continue due to several factors such as the development of larger turbines and more efficient, technological advancement, reduction in the cost of O\&M, among others. An extremely important factor that contributes to raise the cost of wind power is its capacity factor, generally around 30% to a maximum of 40%, while conventional plants varies between 40% and 80%. The cost of electricity production by wind in Europe declined in the last 15 years approximately 80%. At the same time, the installed capacity has increased exponentially in scale, from less than 100 MW to $34,400 \mathrm{MW}$ in 2004. During the past ten years the price of wind turbines decreased by 5% each year, while at the same time revenue increased by 30% (Zervos \& Kjaer, 2008).

Despite the reduction on the costs in recent years, some problems still there are hindering investments in wind energy projects. When connecting a wind farm to the electricity grid transmission, it is needed to check the power factor, voltage and final production of harmonics caused by the turbines, and investment costs are still higher than the conventional power plants of oil and natural gas. Moreover, the presence of wind turbines may threaten birds and cause visual and noise impact (Gipe, 1995; Heier, 1998).

With regard to wind energy production, economic optimization and evaluation of projects in renewable energy, it is also needed on other factors, such as potential exposure from this source in the energy world, especially in regions where wind speeds are expressive. As the output power is extremely sensitive to wind speed, variability significantly impacts on financial investments and O\&M costs. Given to this, it is highlighted the importance of developing evaluation methodologies for economic and financial evaluation and management for energy projects considering the uncertainties associated with this type of technology (EWEA, 2009).

Both onshore and offshore wind energy minimizing the cost per kWh produced it is necessary because when it is going to be sold to the grid, the high and variable cost of wind energy represents a real risk to the investor or wind farm promoter. So when a wind farm is evaluated by deterministic indicator such as NPV, IRR, SPB, DPB and others economic and financial indicator usually applied for it, but such evaluation reflects a set of parameters adjusted and assumptions considered in order to show the results for a unchangeable market situation. In Economics Sciences it's called "coeteris paribus".

On the other hand, the wind energy system and green energy markets have some inherent features that should be taken into consideration \therefore As renewable energies have been receiving supports by
government's incentives such as production tax credits (PTCs), modified accelerated cost recovery system (MACRS) and others finance supports which become wind energy technology competitive comparing to conventional ones and other renewable energies technologies. However, given the fast growth of wind power during the last decade and the expectations for the future, wind power penetration levels may increase to levels where engineering and economic optimization for this kind of system starts to be more and more necessary. Note that in this thesis, the optimization model is defined as a suggested methodology able to evaluate a wind farm in both economical and engineering aspects.

According to Benatiallah, Kadia, and Dakyob (2010) the main objectives of the optimization design are power reliability and cost. Minimizing the total cost, we can achieve an inexpensive and clean electric power system. In addition, the proposed method can adjust the variation in the data of load, location. Various modeling techniques are developed by researchers to model components of Wind system. Performance of individual component is either modeled by deterministic or probabilistic approaches. The economic study should be made while attempting to optimize the size of integrated power production systems favoring an affordable unit price of power produced. The economic analysis of the wind system has been made and the cost aspects have also been taken into account for optimization of the size of the systems. The total cost of system takes into account the initial capital investment, the present value of operation and maintenance cost, the inverter replacement cost and the wind system replacement cost.

The key objectives of the researches have been to find the lowest cost and highest reliability design of a wind farm. Developing methodologies with approaches for structural and economic optimization of onshore and offshore wind farms are still a challenge due to its multivariable nature and its nonlinear behavior. The importance of using new optimization techniques for short-term energy planning is due to the existence of multiple uncertainties (Fleten, Maribu, \& Wangensteen, 2007).

For Baños et al. (2011) the investment decision on production capacity of a wind farm is difficult when wind studies or data are neither available nor sufficient to provide adequate information for developing a wind power project. Some researchers have analyzed in detail how to determine the probable wind power availability at a given site according to historical wind speed data, and its capacity to meet a target demand. At the start of this research project, the primary concern was about the correlation between wind speed and cost of energy produced at a specific site, but after an extensive literature review it became clearly that an economic evaluation by classical economic engineering approach considering deterministic methodologies such as Discounted Cash Flow (DCF) analysis would not be sufficient. It is a multivariable problem and engineering aspects must be taken into consideration. The central research question of this thesis is:

> What is the minimum difference between maximum power production and minimal total costs based on LCOE/NREL methodology proposed for a wind farm? If any, which possible strategies could be followed?

1.3 THESIS OUTLINE

The Ph.D. thesis is composed of three parts. The first one, which includes five chapters has been shown the interest and scope of the thesis, research objective and approach; the relationship among energy, economy and society; global status of wind energy; wind energy conversion system with the theoretical foundation of the research work, providing a framework on wind energy, economic measurements for wind energy and physics relations. The second part of this thesis, which includes two chapters, the methodological aspects with its details, mathematical model developed and numerical simulations and validation of theoretical framework developed for optimization process. The last part, third one, of this thesis, which also includes two chapters, has been shown the results and discussions with conclusions and impactions for theoretical contributions and managerial implications, limitations and suggestions for future research.

Chapter 2 has presented an historical overview of the humanity in the energy resources context. This chapter has been addressed the evolution and revolution of changing human societies in the History in order to establish a framework for men's relation within himself and the environment. It was explored the development of societies and energy resources; the influence from energy resources in the structure of societies; energy and environmental impacts of some renewable energy resources and some impacts of electricity production activities (hydroelectric, biomass and wind).

Chapter 3 has presented an overview of the global status of wind energy market. This chapter addresses wind energy situation worldwide in order to establish a context for understanding the contemporary wind energy industry. It explores the global character of wind energy sector, describing its R\&D trends, technological evolution and diffusion process, investment focus, wind energy policy, global market share and the global drivers for the expansion of this renewable technology, both in terms of demand and supply, giving a special focus on the onshore wind energy projects.

Chapter 4 has reviewed the relevant literature concerning the wind energy conversion system (WECS), aiming to introduce the history and its evolution \therefore It examines the wind energy converters types, physics basics, describes how energy is extracted from the wind, explain about power coefficients and its limitations on wind power systems. It also demonstrates the design of converters, which factors determine the conversion process and what problems must be considered. In addition, it presents specificities of the wind farms designs (layouts), with a special focus on onshore wind energy conversion system.

Chapter 5 has reviewed the relevant literature concerning the economic measures and optimization models applied for renewable power systems, aiming to introduce and confront the different techniques of economic evaluation, in a microeconomic view. It is also reviewed optimization models applied to wind energy projects in different application: design of wind farm layout for maximum wind energy capture, electrical system design, O\&M cost reduction, maximize the NPV, etc. This chapter also examines the importance and limitations of the different approaches and methods studied. It also demonstrates how to process an economic evaluation of power projects, what steps should be taken, which variables determine a significant impact on results and what problems or limitation to face. In addition, it presents specificities of wind energy projects, with a special focus on the onshore wind energy projects.

Chapter 6 has discussed the way in which the research process was carried out. It introduces the rationale of the study and the research framework, providing the main objectives and research questions, and describing the theoretical framework, including the hypotheses. The research design, focusing on the relation of variables and research boundary, mathematical model structuring and numerical simulation and validation process, is also presented. After discussing and justifying the methodological choices for the research, the Chapter 7 describes in details the numerical simulation and validation of the optimization model proposed for economic evaluation of wind farms and Chapter 8 has presented the results and discussion of the model proposed too.

Chapter 7 has shown the simulations of a hypothetical wind farm. It starts by presenting the full description of mathematical model developed and power system features, both economic and technical issues.

Chapter 8 has demonstrated and interpreted the results of the simulations carried out in Chapter 7. It starts with the analysis of the behavior of the wind farm performance, relationships among variables studied.

Finally, in the last chapter, the main findings and the overall conclusions of the thesis are discussed. It also provides a review of the theoretical and managerial implications of the study, and finishes with a discussion about its limitations and suggestions for future research.

Figure 1.1 Ph.D. thesis` structure overview. Source: Own elaboration

1.4 LIST OF PUBLICATIONS

The major results obtained during this work were submitted to the scientific international community through the following papers.

1.4.1 PAPERS IN SCIENTIFIC JOURNALS

1. Oliveira, W.S. and Fernandes, A.J. (2012). "A Review of Wind Energy Conversion System", Engineering Journal (EJ), Vol ? (?) "Accepted - in Reviewing"
2. Oliveira, W.S. and Fernandes, A.J. (2012). "Economic feasibility analysis of a wind farm in Caldas da Rainha, Portugal", International Journal of Energy and Environment (IJEE), Vol 3 (3), 333-346.
3. Oliveira, W.S. and Fernandes, A.J. (2012). "Global Wind Energy Market, Industry and Economic Impacts", Energy and Environment Research (EER), Vol 2 (1), 79-97. doi: 10.5539/eer.v2n1p79
4. Oliveira, W.S. and Fernandes, A.J. (2012). "Cost analysis of the material composition of the wind turbine blades for Wobben Windpower/ENERCON GmbH model E-82", Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Renewable Energy (JRSE), Vol 3, No. 1 January Edition.
5. Oliveira, W.S. and Fernandes, A.J. (2012). "Optimization model for economic evaluation of wind farms - how to optimize a wind energy project economically and technically", International Journal of Energy Economics and Policy (IJEEP), Vol 2 (1), 10-20.
6. Oliveira, W.S. and Fernandes, A.J. (2012). "Cost-effectiveness analysis for wind energy projects", International Journal of Energy Science (IJES), Vol 2 (1), 15-22.
7. Oliveira, W.S. and Fernandes, A.J. (2011). "Renewable energy: impacts upon the environment, economy and society", Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Renewable Energy (JRSE), Vol 2, No. 11 November Edition..
8. Oliveira, W.S. and Fernandes, A.J. (2011). "Innovation and technology management in wind energy cluster", Energy and Environment Research (EER), Vol 1 (1), 175-192. doi: 10.5539/eer.v1n1p175.
9. Oliveira, W.S. and Fernandes, A.J. (2011). "Economic feasibility applied to wind energy projects", International Journal of Emerging Sciences (IJES), Vol 1 (4), 659-681.
10. Oliveira, W.S. and Fernandes, A.J. (2011). "Economic evaluation applied to wind energy projects", Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Renewable Energy (JRSE), Vol 2, No. 9 September Edition.
11. Oliveira, W.S., Fernandes, A.J. and Gouveia, J.B. (2011). "Economic metrics for wind energy projects", International Journal of Energy and Environment (IJEE), Vol 3 (6), 1013-1038.

1.4.2 ORAL COMMUNICATIONS IN SCIENTIFIC MEETINGS AND CONFERENCES

1. Oliveira, W.S. and Oliveira, F.V. (2012). "Energy citizenship: educational and behavioral aspects in energy consumption". Proceedings of the 3rd International Conference on Financial Education, Aveiro, Portugal, 3rd to 4th July (Available on http://pmate4.ua.pt/conferencias/edufin2012)
2. Oliveira, W.S., Fernandes, A.J. \& Pereira, E.T. (2010). "Emissions of Greenhouse Gases: Case of Aveiro". Proceedings of the Earth Summit: global heating, society and biodiversity/International Forum of Environment, Vol 1:37-47, ISBN: 978-85-7745-5324, Olinda, Brazil, 26 to 29 May.
3. Oliveira, W.S., Fernandes, A.J. \& Pereira, E.T. (2009). "Analysis of Alternative Scenarios of GHG Emissions to Av. Dr. Lourenço Peixinho in Aveiro - Portugal". Proceedings of the $5^{\text {th }}$ Conference of Engineering "Engineering 2009 - Innovation and Development", Covilhã, Portugal, $25^{\text {th }}$ to $27^{\text {th }}$ November.
4. Oliveira, W.S., Fernandes, A.J. \& Gouveia, J.B. (2009). "Methodological review of unit cost calculation by life-cycle cost and RETScreen ${ }^{\circledR}$ for wind energy". Proceedings of the 1° Congresso Lusófono sobre Ambiente e Energia/3 ${ }^{\text {a }}$ Jornadas de Energia de Cascais, Estoril, Portugal, $20^{\text {th }}$ to $22^{\text {th }}$ September.
5. Oliveira, W.S., Fernandes, A.J. \& Pereira, E.T. (2009). "Trends of Electricity Price at Global Wind Industry to 2050". Proceedings of the $1^{\text {st }}$ Cape Verde Congress of Regional Development, the $15^{\text {th }}$ Congress of the Portuguese Association for Regional Development and the $3^{\text {rd }}$ Congress of Nature Management and Conservation, Cape Verde, $6^{\text {th }}$ to $11^{\text {th }}$ July.

1.5 REFERENCES

Baños, R., Manzano-Agugliaro, F., Montoya, F. G., Gil, C., Alcayde, A., \& Gómez, J. (2011). Optimization methods applied to renewable and sustainable energy: A review. Renewable and Sustainable Energy Reviews, 15(4), 1753-1766. doi: 10.1016/j.rser.2010.12.008

Benatiallah, A., Kadia, L., \& Dakyob, B. (2010). Modelling and Optimisation of Wind Energy Systems. Jordan Journal of Mechanical and Industrial Engineering, 4(1), 143-150.

EWEA. (2009). The Economics of Wind Energy. Retrieved November 3, 2009, from http://www.ewea.org.

Fleten, S. E., Maribu, K. M., \& Wangensteen, I. (2007). Optimal investment strategies in decentralized renewable power generation under uncertainty. Energy, 32(5), 803-815. doi: 10.1016/j.energy.2006.04.015

Gipe, P. (1995). Wind energy comes of age. New York: John Wiley.
Heier, S. (1998). Grid Integration of Wind Energy Conversion Systems: John Wiley \& Sons.
Maddaloni, J. D. (2005). Techno-economic Optimization of Integrating Wind Power into Constrained Electric Networks. Master of Applied Science, University of Victoria, Victoria, BC.

Morthorst, P. E., \& Chandler, H. (2004). The Cost of Wind Power. Renewable energy world.
Nocedal, J., \& Wright, S. J. (1999). Numerical Optimization. New York: Springer.
Wizelius, T. (2007). Developing Wind Power Projects: Theory and Practice Earthscan Publications Ltd.

Zervos, A., \& Kjaer, C. (2008, November 27). Wind Energy Scenarios up to 2030. Pure Power.

CHAPTER 2

RENEWABLE ENERGY, ENVIRONMENT, ECONOMY AND SOCIETY

2.1 Introduction
2.2 Development of societies and energy
2.3 The energy and structure of societies
2.4 Energy and environmental impacts
2.4.1 Energy and environment
2.4.2 Impacts of electricity production activity
2.4.2.1 Some impacts of hydroelectric
2.4.2.2 Some impacts of biomass
2.4.2.3 Some impacts of wind power
2.5 Summary and conclusions
2.6 References

This chapter has presented the relationship among energy, economy and society. It discusses about the development of societies and energy; energy and structure of societies. It is discussed the environmental impacts from energy production and utilization, contribution to greenhouse gases and other pollutants emissions. Summary and conclusions are presented at the end, with the respective references.

2.1 INTRODUCTION

Over the centuries, mankind has used energy from many sources to meet their food needs, housing, transportation, health and improve their living conditions. The two main sources of energy, the sun and nuclear fission, and their relative abundances, influenced and still do in the current human activities. As alternating forms of social grouping of men, so too would be changing the use of energy resources. The primitive savages who hunted and collectively, their food in nature depended primarily on their own energy. Today in much of the world population is able to resort to fossil fuels, but also in developing countries makes the use of animal power, human strength and wood fuel (Cook, 1976). Whatever type of energy used, the man always had to expend energy to meet their survival needs. Vast supplies of fossil energy allowed countering the increase in population. Birth rates remain high while the reserves of energy, especially fossil fuels are declining \therefore That's how we look to the future, when the world population to be served has nearly doubled compared to the present day. We are concerned to know what strategies can be applied to meet a demand for energy increased so tremendously.

Before we can draw up plans to introduce greater efficiency and renewable energies in the current energy matrix, it becomes necessary to gather much information about the costs of energy used in different processing systems for the production and distribution of goods essential for survival of mankind. Such costs must be brought into confrontation with the energy supplies that would be available. Accordingly, this chapter is to explore the interdependencies between energy, economy and their impacts on society \therefore It is my hope that such analysis as a basis for understanding the context and that in fact the economic process in any society defines the profile of energy production and consumption, as well as its impact on society as a whole. For Akella, Saini, and Sharma (2009) renewable energy technologies can have dramatically reduced as well as widely dispersed environmental impacts, rather than larger, more centralized impacts that in some cases are serious contributors to ambient air pollution, acid rain, and global climate change. Keeping in mind, the social, economic and environmental effects of renewable energy system could also mean a way to start changing the modern humankind energy behavior.

This chapter has characterized the environmental impacts from the use of energy sources derived from fossil and renewable resources. Man evolution is closely linked to energy, since the beginning of time man has to know it and seeking it ever more on the environment. He began to enjoy and benefit from its potential fossil and renewable resources. The use of more efficient technologies, along with the application of sustainable energy policies has contributed to a general reduction in the intensity of CO_{2} emissions by energy production and consumption \therefore It begins with a contextualization of the development of societies and energy (section 2.2), and briefly presents the energy resources the influence on structuring of societies (section 2.3). Section 2.4 has discussed about energy resources and environmental impacts in demand and supply side, the relation of energy and environment (section 2.4.1) in the point of view of consumption and emissions of CO_{2}. The impacts of electricity production was also discussed in section 2.4.2, especially with renewable technologies such as hydroelectric (section 2.4.2.1), biomass (section 2.4.2.2) and wind power (section 2.4.2.3). Finally, section 2.5 presents the summary and conclusions of the whole chapter. Section 2.6 presents the references used.

2.2 DEVELOPMENT OF SOCIETIES AND ENERGY

Societies throughout history of mankind in order to ensure their basic survival needs - food and health, housing and safety - always found itself closely linked to energy supply, so the energy in all its forms is part of their own nature of man. Along this route, man has used energy from many sources. Starting with your own energy and sunlight (solar energy), then passed to the wood fuel, animal traction, force of water and wind. Later it was developed into power of machines powered by wood, coal, oil and nuclear energy \therefore The man power used to modify or manipulate the land, water, plants and animals in order to provide himself food, clothing and shelter materials. Discover, control and use power forward took the man's primitive life to a stable civilized. Man is the only animal capable of thinking creatively and using science and technology, getting benefits from energy and other environmental resources.

Energy is also used to control disease organisms; to obtain and purify and store water, to produce antibiotics and other chemical drugs, and to implement various public health measures. Although public health is an aspect of security, is both to stability are also associated with the protection of men among themselves, a group of people against the actions of other rival groups. Social harmony depends not only on the rules set by governments but also the efficiency of police and military forces used to enforce the law. Both governments and police forces and military spend enormous amounts of energy. In so-called "civilized societies" of developed nations in the world today, the amount of energy used by the government and police and military forces is significantly higher than that used to grow food for the population governed (Cottrell, 1955).

The availability of surplus energy enables the man creates more complex structures that the first hunter-gatherers \therefore The present state of utilization of energy resources represents a dramatic change in relation to that one of a recent past in the search for adequate food was the main concern of the man and ran their activities. According to White (1943) the evolution of man can be broken down into three main stages: (1) population "wild" in the hunter-gatherers who lived from natural feeding, (2) population "barbaric", primitive agricultural and pastoral societies and (3) "civilization", the development of machines and intensive use of fossil energy to produce food and other useful items. These steps are all related to changes in supplies of energy used by man \therefore White [3] considered that "this would have stayed indefinitely at the level of savagery if I had not learned the amount of power under his control". This includes the total amount of energy controlled by man and the surplus energy that he has higher than necessary to meet the essential needs of food, clothing, shelter and health.

Energy use has accommodated the modern society in such way that societies with little access to energy resources present consequently lower evolutions than for other societies that have increased access to energy. Countries located in continents like Africa, have very low rates of energy consumption, but the poverty rate is high due to lack of technology supported by strong energy sources. With the lack of energy the Government weakens and impoverishes society. Given the continued dependence of man on energy, and knowing perfectly fits an overall historical society constantly seek new outlets for production, without which you cannot get a strong, competitive economy (Willrich, 1978).

It may be noted that currently, at what humankind has done and continues to do in pursuit of energy kind. We highlight here the oil, which continues to keep wars. Countries seek power over that coveted energy potential, which is able to influence society in such way that moves a country and makes the mankind drives through essential principles for harmony between peoples. It is also evident that so-called developed countries are those with greater energy consumption, this because they need energy to keep all their energy potential and technology, it can be noted by observing that countries like the United States and much of Europe where energy consumption is very high, thus causing pollution indexes thunderous. \therefore However, we can highlight concerns about the relentless pursuit of energy, a quest that will surely come to an end.

The government assumes leading role in the development of each society, and must provide access for the whole society to energy resources, acting as a valve which regulates how much and how to use energy resources, which cannot be neglected, governments can fulfill its role of accessibility to all energy forms becomes a major factor for the evolution of a society, but that does not fulfill that role will eventually contain the development of its population in addition to harming the environment (Hinrichs \& Kleinbach, 2004). \therefore Energy is essential for the development of any society. Given the constantly evolving experience that is in modern society and knowing that it is highly linked with this indestructible goods called energy, should be imposed on society information about the rational use and respect the environment, from which it is extracted, so that we do not achieve results in the formation of a harmful at all, thus implying the reverse evolution (Hammond, 1972).

Modern economies have been depending on incessant and increasing amount of fossil fuels and electricity, but the relationship between economic growth and energy resources use has been both dynamic and complex: It changes with developmental stages, and although it displays some predictable regularity, a closer analysis reveals many specificities that drive any normative conclusions about desirable rates of energy supply and consumption. High-energy civilization is now really and factual global - but millions of people still has no access to electricity and its benefits remain far away. Although the huge international differences in the use of commercial energy have narrowed considerably since the 1960s, an order-of-magnitude difference in per capita consumption of fuels still separates most poor from rich nations, and the gap in the use of electricity remains even wider. There are also large disparities among different socio-economic groups within both high and low-income nations (Smil, 2000).

2.3 THE ENERGY AND STRUCTURE OF SOCIETIES

The hunting-gathering societies were small, rarely more than 500 individuals and were simple. As the demand for food and shelter was time consuming and a lot of energy, almost there were no other individual and collective activities \therefore However, with the development of agriculture, became available larger amounts of food, fiber and energy surplus. Concurrently, there are, in human societies, the greater interdependence among people and more incentives to increase productivity (Bews, 1973; Lee. R.B. \& DeVORE. I., 1976; Service, 1962). This factor was also important the fact that, as they increase their output of food, also increased the stability of food supplies. Companies once forced to be nomads to monitor their food supply has improved with regard to safety and permanence \therefore Even in primitive agricultural societies, food production was still the principal activity of man and as a consequence, their social interaction remained relatively narrow. The introduction of animal draft power in crop production released greater amounts of time and energy of man \therefore This surplus of energy and more time allowed the man to participate in several new activities, which led to making more complex social systems.

The water wheel and windmill added new forms of energy to those who initially has used the man in their production processes, particularly in the food production system. Now, instead of using draft animals whose feed and care require energy, man resorted to force of the water and wind. With this change, the man was to have more power at less cost (calculated in terms of human energy expenditure) than in the past. Thus, the amount of surplus energy available to the society was largely increased. The transportation of goods and similar things were done by the direct utilization of human force, as has been shown in Figure 2.1.

Figure 2.1 Transport of solid stone monument in 660 bC. Source: Loftness (1984)

The invention of the steam engine was a highly significant milestone in energy use, as marking the beginning of the use of fossil fuels as primary energy source. This machine, and later those who used coal and liquid fuels, has given the man an immense power to control their environment and change the whole economic structure, political and social society, while there is greater stability and expertise of work.

The society's structure of the first hunter-gatherers was minimal. At most, a boss or a group of elderly people ran the camping or village. Most of these leaders were forced to hunt and collect together with other members, because they were scarce surplus food and other vital resources to allow it work at all times a chief or a village council. The agricultural development has altered this pattern of work monotypic. The primitive family farm could reap 30 to 10 kg of grain per kg sown. Part of this surplus food/energy was returned to the community and ensured the maintenance of non-farmers, such as chiefs or village councils, doctors, priests and even warriors. \therefore The nonfarmers in those primitive societies assumed the government and ensured the stability and security to the farmer population, so that could increase the surplus of food production/energy (Cottrell, 1955; Fakhry, 1969). Under favorable conditions in agriculture and improving agricultural technology began to obtain considerable energy surplus and as a result, there have been major population groups or even cities. With the population concentration in larger cities, appeared the specialization of tasks \therefore Specialists such as masons, carpenters, blacksmiths, merchants, traders and sailors, proved more efficient than the non-experts. Goods and services provided by artisanstechnologists have determined an improved quality of life, a higher standard of living and, for most societies, an increased stability.

Egypt, during the reign of the Pharaohs, is a striking example of a primitive society that has environmental resources in favor of establishing a stable agriculture, which created an efficient agricultural technology. The Nile brought water to the cultivated land and valuable nutrients, which replaced those crops of cereals and other products taken from the soil. Thanks to its periodic flooding, the Nile deposited nutrient-rich sludge to arable land, which thus remained productive. He was also a source of water for irrigation trustworthy \therefore Furthermore, and with equal importance, had to consider the hot climate of Egypt is highly conducive to agricultural production. This productive agricultural system sustains 95% of Egypt's population directly involved in agriculture, and provided enough surplus food/energy to keep 5% of population that does not worked in agriculture. To sustain the small ruling class, a relatively small quantity of food energy was enough. The naturally isolated location of Egypt ensured protection against intrusions without requiring large expenditures to sustain a military class. Consequently, the 5% of the population engaged in agriculture were not used by the Pharaohs as slave labor to build pyramids and storing these goods and materials for a life that, according to the Egyptians believed would follow the life on Earth (Cottrell, 1955).

Throughout this period, the Egyptian population has remained relatively constant because of demand made by the heads. \therefore Once the men were in excess sufficiently capable to work were used to build the pyramids. These men were forced to perform many hours of hard work and were literally "used until death" during a period of a few years of slave labor. When they died, were replaced by new elements selected from among the redundant workers. All this was done without
compromising the fundamental agricultural system that required the efforts of almost all the Egyptian people. During the age of the Pharaohs, which occupied the years from 2780 to 1625 b.C., Egypt had a population of about 3 million, far less than the 38 million nowadays. An excess energy of 5% in about 3 million people is not much. In per capita basis of $100-150 \mathrm{kcal}^{1}$ per day, equivalent to $10-15 \mathrm{~kg}$ of wheat per person per year. In relation to 3 million, the total reaches 30-40 x 106 kg of wheat per year surplus (Cottrell, 1955; Fakhry, 1969).

The construction of the pyramid of Cheops over 20 years has used an amount of energy that equaled the surplus energy produced during the life of about 3 million Egyptians. \therefore During the construction period, the labor force was applied to some 100,000 slaves per year. Assigning each slave 300 to 400 kg of food per year, the total cost would have been $30-45 \times 106 \mathrm{~kg}$, or the whole of the surplus food/energy from agriculture in Egypt. In later periods of Egyptian history, similar levels were used to maintain large military forces that won some of the neighboring countries of Egypt.. These military operations have provided some additional land and food and often conquered peoples were brought to Egypt as slaves. However, long distances in desert regions that the Egyptian troops were forced to travel and limited supply of these military operations. It was necessary to spend large amounts of energy only to protect the roads and transport military supplies.

On other occasions, when the population increased greatly in relation to land resources and agriculture, there is no longer in Egypt surplus agricultural resources. Under these conditions on overcrowding and failure instead of surpluses, the Egyptian society was only able to sustain itself. Sometimes, under these pressure conditions, there were civil wars and social problems. Such conditions often led to declines in effective population size, since those societies were not productive either unstable in agriculture and in other essential activities.

Thus, the primitive history of Egypt is an excellent example of the role that energy, measured in surplus food/energy, played in the structure and activities of a primitive society. Although the structures of the societies of today are much more complex, the energy continues to be an important factor in the development of mankind \therefore Humanity will have to adapt and find new energy potential, as it did throughout its history. New energies come exhaustible or not, clean or not, but they will be distributed equally? It does not help the vast energy production if the same will not be distributed and enjoyed by all people equally.

[^0]
2.4 ENERGY AND ENVIRONMENTAL IMPACTS

The production and use of energy have environmental and social consequences locally, regionally and globally. These impacts are spread over the lifetime of a system of energy based on fossil resources and can manifest itself in a shorter time scale, medium or long term. Proper assessment of these impacts and their inclusion in decision-making process on energy is a key to ensuring a sustainable energy sector (UNDP, 2000) \therefore Local impacts, although affecting a small group of people can be extremely important, especially if involving occupational diseases and accidents affecting workers or members of the public. Local impacts are also more relevant to renewable technologies. For example, concern over the development of wind farms typically refers to visual intrusion on landscape and noise emissions (European Commission., 1995).

However, large thermal power plants or renewable energy or fossil fuels also can have adverse effects on local resources related to excessive consumption of water, soil and groundwater pollution, or deforestation. The sustainable energy strategies of the plan of the United Nations Development Program (UNDP) presented some examples of regional impacts related to energy production, such as acid deposition, habitat destruction, large-scale displacement of people due to construction and operation of projects large hydroelectric or radiation due to accidents at nuclear power plants (UNDP, 2000). Globally, the link between energy and the effects of global warming around the world is documented \therefore Other relevant global impacts include loss of biodiversity and land degradation.

European Commission. (1998) states that impacts should be evaluated over their lifetimes. Although EC presents uncertainties for the long term impacts such as global warming or high level radioactive waste disposal. Likewise, Weisser (2007) recalls that in economies where the carbon has a fixed price or emissions of greenhouse gases (GHGs), embarrassed, do not respond adequately to GHG emissions in the life cycle in the production of electricity, can be advantage for transnational technologies, which makes the accounting for significant emissions within the lifecycle of a project outside the boundaries of laws and policies to mitigate greenhouse gases.

This section examines the impacts of different electricity production technologies based on literature review. Section 2.4.1 focuses on the close relationship between energy and environment, detailing trends in CO^{2} emissions from the consumption of primary energy and electricity production activities, outlined in the Kyoto Protocol and European Union regulatory in promoting environmental performance in the energy sector \therefore The impacts of the activity of electricity production are described in section 2.4 .2 for both fossil fuels and the main renewable energy technologies. This section discusses in detail the environmental and social impacts of hydroelectric, biomass and wind energy technologies, discusses the effects of integration on the electrical system and discusses the social acceptance of these technologies.

[^1]
2.4.1 ENERGY AND ENVIRONMENT

Energy production and consumption is strongly associated with the environmental pressure on the planet. For example, emissions of SO_{2} (sulfur dioxide), greenhouse gases and other CO_{2} and NO_{x} (nitrogen oxides) for a certain period, depends on the amount of electricity produced and the technological mix of plants operating in each electrical system for some period \therefore The actions of each of the fossil fuels, nuclear and renewable operate with the efficiency of each production center represent the key mechanisms available to assess the environmental performance of the electricity system of a country.

According to the report of the EEA (2007) for the EU- 15^{3}, the main factors responsible for reduction of CO_{2} emissions from the system for producing electricity and heat are the improvement in efficiency, fuel substitution derived from coal to gas and to a lesser extent, increasing the share of renewable energies. Portugal is a particular case in which CO_{2} emissions are heavily dependent on rainfall conditions \therefore The emission level shows significant variations in relation to fluctuations accentuated hydropower production, which is heavily dependent on annual rainfall. However, the close relationship between energy consumption and CO_{2} emissions from the energy sector is evident.

Figure 2.2 has shown the close relationship between energy consumption and CO_{2} emissions worldwide. World consumption of primary energy is increasing and between 1990 and 2004 grew $29 \% . \mathrm{CO}_{2}$ emissions showed a similar trend in 2004 also has increased about 27% compared to $1990 \therefore$ The small difference between the rates of increase allows a small reduction in CO_{2} emissions per unit of energy consumed.

Figure 2.2 Trends in global consumption of energy and electricity, CO_{2} emissions and CO_{2} emissions intensity of energy consumption. Source: EIA (2007)

[^2]At EU-15 there is a general trend of increasing consumption of energy, as shown in Figure 2.3. However, the use of more efficient technologies and renewable energy, along with some structural changes that occur in members of the EU and the introduction of specific policies and measures, contribute to a less significant increase in CO_{2} emissions. \therefore As a result, between 1990 and 2005, CO_{2} emissions per unit of energy consumption dropped by 12%.

Figure 2.3 Trends in the EU-15 and electric energy consumption, CO_{2} emissions and intensity of CO_{2} emissions from energy consumption. Source: EEA (2007); EIA (2007)

Demand for electricity is growing fast and, to some extent, offset the increase in consumption of the environmental benefits achieved through technological advances and fuel switching \therefore A similar effect occurs in the transport sector \therefore Transport emissions in the EU-15 increased significantly during the same period as a result of a continued increase in demand for road transport. This has offset much of the decline in other sectors (EEA, 2006). In general, the CO_{2} emissions associated with energy consumption and real electricity showed a downward trend between 1990 and 2005, indicating movement toward the mix of less carbon intensive fuels in Europe.

Energy production and consumption are the major emission sources of GHGs in the EU. Figure 2.4 has shown that in 2005 the CO_{2} emissions produced by industry in Portugal and the EU- 27^{4}. About 90% of total CO_{2} emissions in Portugal are related to energy, which means they are a result of the activities of energy consumption. This figure rises to 94% in EU- $27 . \therefore$ Particularly relevant is the

[^3]role of the sector of electricity and heat. About a third of CO_{2} emissions deriving from fossil fuels to generate electricity, with each core are able to send millions of tons of CO_{2} annually.

Limit the concentration of CO_{2} in the atmosphere requires a reduction in CO_{2} emissions across the economy. The electricity production sector has some special characteristics that makes it an important target for reducing CO_{2}, as have pointed out by Johnson and Keith (2004) in relation to emission sources distributed in the sector of transportation, electricity production plants can achieve reductions depth with minimal impact on energy infrastructure, property and centralized management of the power industry regulation and facilitates the producers have gained considerable experience in recent years with increasingly tight controls on conventional pollutants, and it is unlikely that producers of electricity movement for the least-regulated as could happen for the industry.

Figure 2.4 Percentage of CO_{2} emissions of air pollutants by activity in 2005, EU-27 and Portugal. Source: EEA (2007); EIA (2007)

In Portugal, in 2005, CO^{2} emissions from the operation of a coal were about $844 \mathrm{~g} / \mathrm{kWh}$ (EDP, 2006). Whereas from the operation of central CCGT^{5} this value was about $375 \mathrm{~g} / \mathrm{kWh}$ (Turbogas, 2006). The results of Hondo (2005) have indicated that, even nuclear power plants emit approximately $24 \mathrm{~g} \mathrm{CO}_{2} / \mathrm{kWh}$ during its life cycle, particularly uranium enrichment. The wind power plants are responsible for $29 \mathrm{~g} \mathrm{CO}_{2} / \mathrm{kWh}$ mainly released during the construction and

[^4]installation. Renewable energies have generally low CO_{2} emissions and are heavily favored by environmental regulations for the energy sector.

An important factor in future development of energy sector and the definition of current and future energy policy is the Kyoto Protocol. Under the Kyoto Protocol, the EU pledged to reduce emissions of greenhouse gases to 8% during the first commitment period, from 2008 to 2012. This objective is shared between the Member States under a legally binding burden-sharing, which sets emission targets for each individual Member State. In particular, Portugal could increase the average emissions of 27% of 1990 emissions level. Growth reduction in electricity consumption will be crucial in the environmental point of view, especially in relation to consumption of electricity produced by fossil fuels.

The renewable energies sources do not generate CO_{2} (or very little), do not throw radioactive waste, and generally have significantly lower levels of other pollutants. Improving the environmental performance of fossil fuel plants is also essential and can be reached with the increasing use of abatement technologies effectively and improve efficiency. The need to reduce the pressures imposed on the environment through the use of energy worldwide and in the continuing effort to promote and utilize renewable energies sources and supplemented by changes in consumer of energy behavior.

2.4.2 IMPACTS OF ELECTRICITY PRODUCTION ACTIVITY

There is growing recognition of the importance of social and environmental impacts of the production of electricity. As described in the previous section, the energy production process involves, in which the shares of producers of electricity cannot be adequately reflected in market prices of product. EIA (1995) has classified the externalities attributable to electricity production in four categories: air pollutants, greenhouse gases, quantity and water quality and land use values.

Clarifying the full costs of energy production for regulators and policy makers is particularly critical because of the non-price differentiation between suppliers of electricity produced from different sources with emissions of pollutants potentially very different. The basic purpose of social accounting is to make explicit the full magnitude of the direct costs and environmental costs of electricity derived and supported by society in order to influence decision makers in making investment decisions in the energy sector to improve the welfare social (Venema \& Barg, 2003).

Develop defensible estimates of externalities are a complex and costly exercise (Rowe, Lang, \& Chestnut, 1996). Externality values for the production of electricity have been developed in the U.S. and Europe. Freeman III (1996) and the EIA (1995) have presented some key studies on estimates of external environmental costs that result from adding the ability of a system for producing electricity.

The European Commission, together with the Department of Energy launched a joint research project to assess the environmental externalities of energy use in 1991. During the project, an accounting framework for the operational assessment of external costs of energy technologies,
called ExternE (Externalities of Energy) was developed. The U.S. suspended its participation in the project at the end of the first phase. The methodology and results are widely accepted and have been used to support other studies and projects, some relating to different sectors or regions as APERC (2005), Venema and Barg (2003), NEA (2003), HEATCO (2006) among many others ${ }^{6}$.

Table 2.1 Overall results of the ExternE

Technologies models	Air pollution impacts $\left(\mathrm{PM}_{10}\right)$ and other impacts	Greenhouse gas impacts
Biomass technologies	High	Low
\# Existing coal technologies (no gas cleaning)	High	High
\# Natural gas technologies	Low	High
New coal technologies	Low	High
Nuclear	Low	Low
Wind	Low	Low

Source: adapted from European Commission. (2003)

In general, as shown in Table 2.1, wind power technologies are environmentally friendly with respect to emissions of pollutants, including emissions of greenhouse gases. However, the results also indicate some variation of external costs attributed to wind due to noise impacts or other utility, mainly depending on local conditions of each park studied. Nuclear technologies have low emission levels and generate low external costs, even considering the low probability of accidents with high consequences. As for biomass, due to the large number of technologies, changes in external costs are high, although in general they generate greenhouse gas emissions very low in their life cycle. The gas technologies are clean with respect to conventional pollutant (not including greenhouse gases), but depending on the efficiency of the technology can impact on climate change due to CO_{2} emissions. Coal technologies generate high emissions of CO_{2}, even for new, more efficient technologies. Old coal plants are highly polluting units for each type of pollutant considered (European Commission., 2003).

For fossil fuels, global climate change is very fundamental question that dominates the current energy policy. For nuclear fuel, potentially large consequences of an accident, and long-term impacts of radioactive waste are the key to the major decision. The expansion of renewable energy technologies has resulted in a growing opposition in certain portions of affected local population on account of the impacts of increasing usefulness. Potential impacts on the local ecosystem by, for example, hydro, offshore wind farms or biomass plantations in particular have raised objections from interest groups that traditionally consider green renewable energy technologies as a viable alternative instead of nuclear energy (Krewitt, 2002). The calculations of Mirasgedis, Diakoulaki, Papagiannakis, and Zervos (2000) have indicated that mortality associated with the effects of air

[^5]pollution and the effects of global warming are the major components of externalities attributed to conventional power plants.

For biomass power plants, the external costs associated with global warming are considered void and the impacts of high priority are close to those identified for the plants to conventional oil. As for wind farms and hydroelectric plants, the main external cost refers to the noise and accidents. Although renewable energy sources are generally associated with lower external impacts on the power plants that use fossil fuels, particularly coal, are not entirely free of impact. In fact, significant negative impacts were studied for the most common renewable energy technologies used. The potential of renewable energy sources is enormous as they can in principle meet many times the world's energy demand. Renewable energy sources such as small hydropower, wind, solar, biomass, and geothermal can provide sustainable energy services, based on the use of routinely available, indigenous resources (Akella et al., 2009).

2.4.2.1 Some impacts of hydroelectric

As for the hydroelectric sector, a large number of benefits or positive impacts can be described in Almeida, Moura, Marques, and de Almeida (2005), U.S. Department of Energy ${ }^{7}$ and World Bank ${ }^{8}$:

* Energy impacts associated with: the economic value of electricity and energy supply, economic benefits of potential reserves, drive dynamic response of these technologies and emissions avoided. Furthermore, it is a source of domestic energy and renewable. REN (2006) notes that high levels of availability and production flexibility are two major advantages of hydropower.
* Impacts of water resources, associated with the contribution to irrigation, water supply and minimum in stream flows during the dry season.
* Socio-economic development impacts associated with the creation of new activities or sports-related tourism, producing new jobs and diversifying the economy. Agricultural activities can also benefit from flood control and water availability. Most hydropower installations are required to provide public access to the reservoir to allow him opportunities to exploit.

However, some important disadvantages or negative impacts are also reported in the literature as Almeida et al. (2005), U.S. Department of Energy, World Bank, International Rivers Network ${ }^{9}$):

* Environmental impacts associated with loss of habitat and biodiversity, loss of fish stock, landscape changes or obstruction of movement of migratory fish. Dams also change the pattern of river flow, reducing its overall volume and seasonal variations. All parts of the ecology of a river may be affected by changes in their flow.

[^6]* Energy impacts. The capacity of electricity production is heavily dependent on rainfall conditions.
* Socioeconomic impacts. New hydro can compete with other land uses that may be more valued than electricity production. Local people could lose their homes and lands. Local cultures and historic sites can be invaded.
* Loss of local convenience. Noise and vibration due to construction activities can disturb the local wildlife and human populations nearby.

A detailed description of the impacts of hydropower can be found at the World Bank, along with a description of possible mitigation measures.

The WCD (2001) supports the idea that the dams have been promoted as an important means for meeting water and energy needs and long term strategic investment with the ability to deliver multiple benefits. Regional development, job creation and promotion of an industry base with export potential are often cited as benefits. However, these benefits must be weighed against the environmental and social impacts of large dams. The huge investment required to build large dams, and its enormous impact social, environmental and economic projects makes them highly controversial.

2.4.2.2 Some impacts of biomass

Bioenergy is a heterogeneous aggregation of different feed materials, conversion technologies and use of energy resources thin. In the European context, the biomass is taken to include agricultural and industrial waste as a potential source of fuel for heating and electricity (McKay, 2006). The main positive and negative impacts of biomass technologies in the literature are listed below:
\# Environmental impacts. As with other forms of combustion, burning wood emits air pollutants. The amount and type of pollutants depend on both the specific combustion process involved and the extent of controlled burning. Compared with fossil fuel combustion plants fed with forest residues emit similar levels of nitrogen oxides, but significantly less sulfur dioxide (Miranda \& Hale, 2001).
\# Energy impacts. Among renewable energy sources, biomass is one of the few resources whose availability is not dependent on weather conditions, seasonal and diurnal and can be stored for use on demand (Thornley, 2006). This represents an important advantage, allowing the production of electricity more predictable. Moreover, a source of domestic energy, contributing to the diversification of the fuel mix and supply security.
\& Socioeconomic impacts. The bioenergy projects involving energy crops could have significant contribution to rural incomes, or increased employment. Energy crops can lead to changes in patterns of agricultural work and make positive contributions to diversify the rural economy (Thornley, 2006). Results of surveys on local public opinion of a biomass
gasifier proposed in the UK indicate that the potential impact on employment was further confirmed the benefit (Upham \& Shackley, 2007).

Emissions from transport and infrastructure requirements and associated the new capacity of biomass can result in adverse reaction from segments of the local community (Thornley, 2006). Upreti (2004) has given some examples to show that the major obstacle to the promotion of biomass energy is the opposition of local people. In general, biomass technologies have fewer environmental impacts compared to conventional sources. Moreover, important benefits for rural populations and contribute to the security of electricity supply. However, there are significant local impacts that may raise questions and generate opposition to the development of biomass power stations. The effects of pollutant emissions are a major concern with the loss of quality of life caused by increased traffic and the installation of the plant.

2.4.2.3 Some impacts of wind energy

Studies have been published concerning the impact of wind energy development on the environment, economic development, on the functioning and security of the electricity system as well as the final cost of delivered energy. Manwell, McGowan, and Rogers (2002) have noted that the development of wind energy has positive and negative impacts. On the positive side, the authors point out that wind energy is generally considered environmentally friendly compared to conventional power plants for electricity on a large scale. However, the more wind turbines are installed; the importance of their negative impacts becomes more noticeable. The problems most often cited for the wind farms are the sound and visual impacts of wind turbines on the landscape of public opinion. Other concerns cited include the impact on birds and wildlife and issues regarding the integration of wind energy into electricity grids linked to perceived insecurity, high cost and low efficiency. Other effects are less frequently reported electromagnetic interference and land use (Devine-Wright, 2005; Wolsink, 2007).

* Avian interactions with wind turbines:

The development of wind farms can adversely affect the birds due to collision and electrocution of birds foraging habits change, reducing the available habitat and change in breeding and nesting. Positive aspects of this technology can also arise, such as protection areas, land supply, hunting and protection of nesting birds or indiscriminate hunting (Manwell et al., 2002). There is no consensus among experts about the importance of the impacts of wind farms on birds. According to Travassos et al. (2005) and Fielding, Whitfield, and McLeod (2006) have indicated that studies in this field are far from homogeneous. The results depend on issues such as the location of wind farms; the type of birds analyzed, or weather conditions. The ExternE report on wind energy (European Commission., 1995) assigns a medium priority for this impact and concludes that the existence of European studies and experience provide no evidence of significant impact for collisions of birds in the turbines. In contrast, Drewitt and Langston. (2006) have concluded that although many of the studies are either inconclusive or indicate that the effects are not significant for a particular kind of place and season, this should not be used as justification
for failure or bad rating future developments. According to these authors, there are relatively few studies that indicate significant impact that the improper location of wind farms can adversely affect wild bird populations.

* Visual impact of wind turbines:

Wind power installations have been heavily criticized for being a new element and they are sometimes located in highly visible locations in order to exploit the wind conditions (Kaldellis, Kavadias K., \& Paliatsos A., 2003). The impacts of landscape are sometimes aggravated by the fact that sites with good wind resources are precisely the areas that are exposed upland valued for their scenic qualities, so they are environmentally sensitive (Moran \& Sherrington, 2007).

Authors such as Bishop and Miller (2007), Manwell et al. (2002) and Kaldellis et al. (2003) have agreed that a major public concern and an important factor in determining public opposition to wind farms is the visual impact. The ExternE project considers the visual intrusion of turbines and related equipment, such as an impact that high on wind energy projects (European Commission., 1995). Regarding the visual impact of wind turbines are not well established and evaluation of the landscape is quite subjective (Manwell et al., 2002). Bergmann, Hanley, and Wright (2006) have studied on attitudes of people in relation to renewable energy indicates that the aesthetic pleasure of proposed wind energy is a controversial issue. Some people feel that wind farms are enjoyable to watch and represent renewable energy, while others consider them intrusive and a visual damage to the landscape.

Wolsink (2007) has examined some works on public attitudes in favor of wind power, concluding that the visual impact of wind on the landscape is by far the dominant factor to explain why some oppose the use of wind power, while other support. Devine-Wright (2005) presents the view that despite the predominant emphasis of the literature on the visual impacts of turbines, there is little evidence that wind turbines are universally perceived as ugly. The view on the visual impact of wind on the landscape varies between different countries and so the emphasis on aesthetics of a wind farm varies from country to country. Moreover, studies in the UK reveal that the preservation of valued landscape motivates most of the opposition (see, e.g. TNS (2003) and Warren, Lumsden, O'Dowd, and Birnie (2005)).

* Noise from wind turbines:

Noise levels can be measured, but the public's perception of the noise impact of wind turbines is very subjective. The ExternE project gives high priority to the impact and supports the idea that, while technical adjustments can be expected to reduce the problem, public awareness of the effects of noise of the wind turbine can still be significant (European Commission., 1995). Wind farms can be built without significant injury to the convenience, since the turbines are placed at a sufficient distance from homes. Appropriate planning requirements are essential to minimize this impact, but as Manwell et al. (2002) have noted, because of the wide variation in individual tolerance to noise, there is no completely satisfactory way to predict the adverse reactions.

Both mechanical and aerodynamic noise produced by wind turbines decrease with improved technology (Manwell et al., 2002; Moran \& Sherrington, 2007). According to Kaldellis et al. (2003) due to the current output at low speed. However, studies such as Van den Berg G. (2004) have shown that there is not an insignificant issue. This author studied the noise of a wind farm in Germany, where residents of more than 500 meters from the park reacted strongly to the noise, as residents up to 1900 meters distance expressed annoyance. The main conclusions were that the actual noise levels were considerably higher than expected, and that wind turbines can produce sound with an impulsive character, further increasing the discomfort.

The economic, social and environmental perspectives are all included in the key elements of a sustainable energy system: sufficient growth of energy supplies to face human needs, energy efficiency and conservation measures, addressing public health and safety issues and protection of the biosphere. Thus, the sustainable development and sustainable energy planning are based on the same three dimensions, we mean, economic, environmental and social (Jefferson, 2006).

Energy resources have driven humanity life and history is still fundamental for continued human development and evolution. Throughout the course of history, with the evolution of civilizations, the human demand for energy has continuously risen up. The global demand for energy is rapidly increasing with human population growth, urbanization and modernization into societies. The growth in global energy demand is projected to rise exponentially over the next years. The world heavily relies on fossil fuels resources to meet its energy needs - fossil fuels such as oil, gas and coal are providing almost 80% of the global energy demands. On the other hand presently renewable energy and nuclear power are, respectively, only contributing 13.5% and 6.5% of the total energy needs (Asif \& Muneer, 2007). The enormous amount of energy resources being consumed across the globe is having adverse implications and complications on the ecosystem of the planet.

2.5 SUMMARY AND CONCLUSIONS

Humankind evolution is closely linked to energy, since the beginning of time man has to know it and seeking it ever more on the environment. He began to enjoy and benefit from their potential. Thus obtained, greater adaptation to the environment that was often hostile and consequently sparsely inhabited. Respecting the means and knowledge of each period of evolution, man became sovereign in the environment, acquired with so much more responsibility, while that on the environment imposed serious changes to meet its development. As it evolved, the company acquired powers stemming from the nature and gradually increased his power over her, needing to preserve the environment in order to continue its development in a healthy way.

The primitive man first discovered, the potential energy contained in his body, received power to feed itself and the rest was consumed in the transportation and protecting other animals. Primitive man learned to use the energy contained in your body and thus dominate other species and survive in poorly relevant to the human race. Started to use the energy contained in the animals that could tame and over time learned to use this trick to get around, from horses and wagons to trains and aircraft. Moreover, he discovered the fire and according to Loftness (1984) the first discovery of man using fire as energy for cooking was their food and keep warm. With the discovery of fire and of course, the mastery over it began to prepare their best food, and not rely solely on the sun for lighting. Still used the fire to defend themselves against other animals or dangerous places that used to live. Thus, there is clearly a capability that the man had since primary season to adapt to the environment in which they live. According to the conditions that were exposed, he learned to manage them so that you could take greater advantage to them and to the society. From the moment we learned to take advantage of the benefits the fire, such as energy, brought to him, the man managed to improve their living conditions, therefore, enabled him to enjoy greater comfort in their day-to-day living day best in their community.

Over time, different energy sources were being explored allowing the evolution of man and society, with this development and from the moment the man was able to provide energy in a comprehensive manner the entire society. Currently available are several potential energy and have as main sources of energy, petroleum, coal, essential for society to evolve until the present time, however, there is great concern about the indiscriminate use, since attitudes yesterday are already reflected in many of the conditions in which we find ourselves. Energy production and use have unquestionable environmental impacts, contributing significantly to greenhouse gases and other pollutants. The use of more efficient technologies, together with the implementation of sustainable energy policies has contributed to an overall reduction in the intensity of CO_{2} emissions from energy consumption, particularly evident in Europe. However, the overall increase in energy consumption often outweighs the environmental benefits achieved as described for the particular case of Portugal. The need for renewable energy called for the implementation of environmental legislation, where the environmental performance of electricity production is a priority line of action. Important steps include ratification of the Kyoto Protocol ${ }^{10}$ and a large set of European

[^7]directives: the promotion of electricity produced from renewable sources, creating the Emissions Trading Scheme and limiting emissions from large combustion plants.

Renewable energies have generally lower emissions than conventional power stations, making them strongly favored by the environmental regulations for the energy sector. However, renewable energy technologies are not free of negative impacts, although the public attitude in relation to renewable energy is generally positive, local people may react negatively to specific projects. In the particular case of wind energy impacts on the ecosystem, noise pollution (noise) and negative impacts on the landscape have been reported. By using variable production technologies such as wind power to generate electricity differs from electricity production by conventional power plants. Fluctuations in wind energy production occur in random pattern and must be compensated by the scalable production capacity compared to conventional production system (Rosen, TietzeStockinger, \& Rentz, 2007). Because of this, wind power does not work as simple fuel savings because it cannot be controlled easily and accurately predicted (Olsina, Roscher, Larisson, \& Garcés, 2007).

To properly assess the potential effects of wind on the system cost of electricity compared to other existing production systems should take into account the fuel savings and emissions avoided. Both the amount of CO_{2} reduction and additional costs attributed to the system depends on the characteristics of the electricity system under analysis. As the report stresses the EWEA (2005) the size and flexibility inherent in the power system are crucial aspects that determine the system's ability to accommodate large amounts of wind. Obviously, there are various environmental, social and economic benefits of emission reductions. However, calculating these benefits requires totally different modeling framework that have been considered beyond the scope of econometric and engineering approaches used for this kind of analysis.

Holttinen and Hirvonen (2005) have concluded that wind energy contributes to the reduction of end use of fossil fuel emissions, but in high levels of penetration, an ideal system may require changes in the mix of conventional capacity. Also Rosen et al. (2007) have noted that a growing range of fluctuations is a challenging phenomenon and the resulting effects cannot be ignored, nor the operation of the power system, or in long term planning for the expansion of wind energy. Variations of wind power will affect the scheduling of conventional power plants to an extent that depends on forecasting, as well as the flexibility of conventional energy producers in the geographic area of the system under consideration (EWEA, 2005). Although the possible impacts of wind energy should not be overlooked, it is important to recognize that the systems without the wind energy also have significant variability (Dragoon \& Milligan, 2003). So EWEA (2005) has pointed out that both supply and demand of electricity are variable and the variability of wind power can be provided in large measure. Regarding possible negative impacts associated with the irritation of noise intrusion and disturbance of the landscape ecosystem, its magnitude is specific to the local aspect. The installation of wind turbines is a critical issue in determining the level of impact (European Commission., 1995; Manwell et al., 2002).

In general, renewable energy technologies, named the wind power can provide an important contribution to reducing fossil fuel consumption and meet international environmental commitments. However, interconnection capacity, the combination of the existing capacity of
production and characteristics of the wind power system to have a significant effect on how the variable production is assimilated by the system and on the extent of their contribution to meet the needs of modern society. The extent of this contribution deserves to be evaluated in economic terms via methods of economic and financial evaluation for these projects and their costs in order to ensure proper integration of wind power to meet current and future energy needs.

As has stated Khatib (2011) in a world in which the majority of us take the absolute availability of electricity and commercial fuels for granted, there are still 1.4 billion people that lack access to electricity. Also 2.7 billion people today still rely on biomass, and likely to increase to 2.8 billion in 2030 according to WEO 2010. This energy poverty is one of the big tragedies of our universe. Till today more than 40% of the world's population relies on non-commercial fuels in the form of biomass, waste, trees, dung, etc. to provide them with the necessary energy for cooking and heating.

2.6 REFERENCES

Akella, A. K., Saini, R. P., \& Sharma, M. P. (2009). Social, economical and environmental impacts of renewable energy systems. Renewable Energy, 34(2), 390-396. doi: 10.1016/j.renene.2008.05.002

Almeida, A. T., Moura, P. S., Marques, A. S., \& de Almeida, J. L. (2005). Multi-impact evaluation of new medium and large hydropower plants in Portugal centre region. Renewable and Sustainable Energy Reviews, 9(2), 149-167. doi: 10.1016/j.rser.2004.01.015

APERC. (2005). Renewable electricity in the APEC region. Internalising externalities in the cost of power generation. Retrieved November 27, 2009, from http://www.ieej.or.jp/aperc/.

Asif, M., \& Muneer, T. (2007). Energy supply, its demand and security issues for developed and emerging economies. Renewable and Sustainable Energy Reviews, 11(7), 1388-1413. doi: 10.1016/j.rser.2005.12.004

Bergmann, A., Hanley, N., \& Wright, R. (2006). Valuing the attributes of renewable energy investments. Energy Policy, 34(9), 1004-1014. doi: 10.1016/j.enpol.2004.08.035

Bews, J. W. (1973). Human Ecology. New York: Russel and Russel.
Bishop, I., \& Miller, D. (2007). Visual assessment of offshore wind turbines: The influence of distance, contrast, movement and social variables. Renewable Energy, 32(5), 814-831. doi: 10.1016/j.renene.2006.03.009

Cook, E. (1976). Man, Energy, Society. San Francisco: W.H. Freeman.
Cottrell, F. (1955). Energy and Society. Westport, Connecticut.: Greenwood Press.
Devine-Wright, P. (2005). Beyond NIMYism: towards an integrated framework for understanding public perceptions of wind energy. Wind Energy, 8, 125-139. doi: 10.1002/we. 124

Dragoon, K., \& Milligan, M. (2003). Assessing Wind Integration Costs with Dispatch Models: A Case Study of PacifiCorp. (NREL/CP-500-34022). National Renewable Energy Laboratory.

Drewitt, A., \& Langston. (2006). Assessing the impacts of wind farms on birds. Ibis, 148(s1), 2942.

EDP. (2006). Report and Accounts, 2005. Notebook sustainability. Retrieved Oct 8th, 2009, from www.edp.pt.

EEA. (2006). Tracking progress towards integration. Energy and Environment in the European Union. Retrieved June 14, 2009, from http://reports.eea.europa.eu/eea_report_2006_8/en

EEA. (2007). Annual European Community greenhouse gas inventory 1990-2005 and inventory report 2007, from http://reports.eea.europa.eu/technical_report_2007_7/en

EIA. (1995). Electricity Generation and Environmental Externalities: Case Studies September 1995. Retrieved June 22, 2010, from http://www.eia.doe.gov/cneaf/electricity/external/external sum.html.

EIA. (2007). Independent Statistics and Analysis. Forecasts \& Analysis. Retrieved October 22, 2008, from http://www.eia.doe.gov/

European Commission. (1995). ExternE. Externalities of Energy. Wind and Hydro. Retrieved October 15, 2009, from http://ec.europa.eu/energy/index_en.htm

European Commission. (1998). Non-nuclear energy programme 1990-94 JOULE II individual assessment of completed projects. Retrieved October 15, 2009, from http://ec.europa.eu/energy/index_en.htm

European Commission. (2003). External Costs. Research results on socio-environmental damages due to electricity and transport. Retrieved October 15, 2009, from http://www.externe.info/externpr.pdf

EWEA. (2005). Large scale integration of wind energy in the European power supply: analysis, issues and recommendations. Retrieved May 13, 2009, from http://www.ewea.org

Fakhry, A. (1969). The Pyramids. Chicago: University of Chicago Press.
Fielding, A. H., Whitfield, D. P., \& McLeod, D. R. A. (2006). Spatial association as an indicator of the potential for future interactions between wind energy developments and golden eagles<i> Aquila chrysaetos</i> in Scotland. Biological conservation, 131(3), 359-369.

Freeman III, A. (1996). Estimating the environmental cost of electricity: an overview and review of the issues. Resource and Energy Economics, 18(4), 347-362.

Greiner, S., \& Michaelowa, A. (2003). Defining Investment Additionality for CDM projectspractical approaches. Energy Policy, 31(10), 1007-1015. doi: 10.1016/s0301-4215(02)00142-8

Hammond, A. L. (1972). Energy options: challenge for the future Science, 177, 875-876.
HEATCO. (2006). Developing Harmonised European Approaches for Transport Costing and Project Assessment. Retrieved September 24, 2010, from http://heatco.ier.uni-stuttgart.de/

Hinrichs, R. A., \& Kleinbach, M. (2004). Energia e meio ambiente. São Paulo: Thomson.
Holttinen, H., \& Hirvonen, R. (2005). Power system requirements for wind power. Wind power in power systems.

Hondo, H. (2005). Life cycle GHG emission analysis of power generation systems: Japanese case. Energy, 30(11-12), 2042-2056. doi: 10.1016/j.energy.2004.07.020

Jefferson, M. (2006). Sustainable energy development: performance and prospects. Renewable Energy, 31(5), 571-582.

Johnson, T., \& Keith, D. (2004). Fossil electricity and CO2 sequestration: how natural gas prices, initial conditions and retrofits determine the cost of controlling CO2 emissions. Energy Policy, 32(3), 367-382. doi: 10.1016/S0301-4215(02)00298-7

Kaldellis, J. K., Kavadias K., \& Paliatsos A. (2003). Environmental Impacts of Wind Energy Applications: 'Myth or Reality? Fresenius Environmental Bulletin, 12(4), 326-333.

Khatib, H. (2011). IEA World Energy Outlook 2010--A comment. Energy Policy, 39(5), 25072511. doi: 10.1016/j.enpol.2011.02.017

Krewitt, W. (2002). External costs of energy-do the answers match the questions?: Looking back at 10 years of ExternE. Energy Policy, 30(10), 839-848.

Lee. R.B., \& DeVORE. I. (1976). Kalahari Hunter-Gatherers. Cambridge: Havard University Press.

Loftness, R. L. (1984). Energy handbook (2.ed ed.). New York: Van Nostrand Reinhold.
Manwell, J., McGowan, J., \& Rogers, A. (2002). Wind energy explained: Theory, design and application. England: John Willey \& Sons.

McKay, H. (2006). Environmental, economic, social and political drivers for increasing use of woodfuel as a renewable resource in Britain. Biomass and Bioenergy, 30 (4), 308-315. doi: 10.1016/j.biombioe.2005.07.008

Miranda, M., \& Hale, B. (2001). Protecting the forest from the trees: the social costs of energy production in Sweden. Energy, 26(9), 869-889.

Mirasgedis, S., Diakoulaki, D., Papagiannakis, L., \& Zervos, A. (2000). Impact of social costing on the competitiveness of renewable energies: the case of Crete. Energy Policy, 28(1), 65-73.

Moran, D., \& Sherrington, C. (2007). An economic assessment of windfarm power generation in Scotland including externalities. Energy Policy, 35(5), 2811-2825. doi: 10.1016/j.enpol.2006.10.006

NEA. (2003). Nuclear Electricity Generation: What Are the External Costs? Retrieved May 16, 2009, from http://www.nea.fr/html/pub/ret.cgi?id=4372.

Olsina, F., Roscher, M., Larisson, C., \& Garcés, F. (2007). Short-term optimal wind power generation capacity in liberalized electricity markets. Energy Policy, 35(2), 1257-1273. doi: 10.1016/j.enpol.2006.03.018

REN. (2006). Potencial hidroeléctrico Nacional. Importância socio-economica e ambiental do seu desenvolvimento. Lisboa: Retrieved from http://www.ren.pt/vEN/Pages/home02.aspx.

Rosen, J., Tietze-Stockinger, I., \& Rentz, O. (2007). Model-based analysis of effects from largescale wind power production. Energy 32(4), 575-583. doi: 10.1016/j.energy.2006.06.022

Rowe, R., Lang, C., \& Chestnut, L. (1996). Critical factors in computing externalities for electricity resources. Resource and Energy Economics, 18(4), 363-394.

Service, E. R. (1962). Primitive Social Organization. New York: Random House.
Smil, V. (2000). ENERGY IN THE TWENTIETH CENTURY: Resources, Conversions, Costs, Uses, and Consequences. Annual Review of Energy and the Environment, 25(1), 21-51. doi: 10.1146/annurev.energy.25.1.21

Thornley, P. (2006). Increasing biomass based power generation in the UK. Energy Policy, 34(15), 2087-2099. doi: 10.1016/j.enpol.2005.02.006

TNS. (2003). Attitudes and Knowledge of Renewable Energy amongst the General Public from http://webarchive.nationalarchives.gov.uk/+/http://www.berr.gov.uk/files/file15478.pdf

Travassos, P., Costa, H., Saraiva, T., Tomé, R., Armelin, M., Ramirez, F., \& Neves, J. (2005). A energia eólica e aconservação da avifauna em Portugal, Lisboa.

Turbogas. (2006). Environmental performance report 2006. Retrieved Feb 13, 2010, from www.turbogas.pt.

UNDP. (2000). Sustainable Energy Strategies: Materials for Decision-Makers. Retrieved September 27, 2010, from http://www.undp.org/energy/publications/2000/2000a.htm.

Upham, P., \& Shackley, S. (2007). Local public opinion of a proposed 21.5 MW(e) biomass gasifier in Devon: Questionnaire survey results. Biomass and Bioenergy, 31(6), 433-441. doi: 10.1016/j.biombioe.2007.01.017

Upreti, B. (2004). Conflict over biomass energy development in the United Kingdom: some observations and lessons from England and Wales. Energy Policy, 32(6), 785-800. doi: 10.1016/S0301-4215(02)00342-7

Van den Berg G. (2004). Effects of the wind profile at night on wind turbine sound. Journal of Sound and Vibration, 277(4-5), 955-970. doi: 10.1016/j.jsv.2003.09.050

Venema, H., \& Barg, S. (2003). The Full Costs of Thermal Power Production in Eastern Canada July 2003. Retrieved July 18, 2009, from http://www.iisd.org/publications/pub.aspx?pno=591

Warren, C., Lumsden, C., O'Dowd, S., \& Birnie, R. (2005). 'Green On Green': Public perceptions of wind power in Scotland and Ireland. Journal of Environmental Planning and Management, $6(48), 853-875$. doi: 10.1080/09640560500294376

WCD. (2001). Dams and development: A new framework for decision making. Overview of the report by the World Commission on Dams. Retrieved September 28, 2010, from www.poptel.org.uk/iied/docs/drylands/dry_ip108eng.pdf

Weisser, D. (2007). A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies. Energy, 32(9), 1543-1559. doi: 10.1016/j.energy.2007.01.008

White, L. A. (1943). Energy and the evolution of culture. Am. Anthropol, 45, 335-354.
Willrich, M. (1978). Energia e política mundial. Rio de Janeiro: Agir.
Wolsink, M. (2007). Wind power implementation: The nature of public attitudes: Equity and fairness instead of 'backyard motive. Renewable and Sustainable Energy Review, 11(6), 1188-1207. doi: 10.1016/j.rser.2005.10.005

CHAPTER 3

Global Status of Wind Energy

3.1 Introduction
3.2 Organizational model in wind energy industry
3.2.1 The diffusion model of wind power
3.2.2 Trends in R\&D for wind energy
3.2.3 Structures and technologies to support innovation in wind power
3.2.4 Analytical framework for wind power business
3.3 Wind resources worldwide
3.4 World wind energy market outlook
3.4.1 Global wind energy market
3.4.2 Wind energy converters manufacturers
3.4.3 Economic impacts from wind energy industry
3.5 Summary and conclusions
3.6 References

This chapter presents the current situation of global wind energy industry. It is discussed about organizational model in wind energy industry within its diffusion process, R\&D trends, innovation support schemes and the analytical framework for wind power business. World wind resources available and global wind energy market outlook are also presented. Summary and conclusions are presented at the end, with the respective references.

3.1 INTRODUCTION

Humanity is facing several critical global challenges at the beginning of the 21st century. One of which includes the quest for alternative energy resources that mitigate the dependence on fossil fuels. Whereas fossil fuels are available in situ at all times, the utilization of renewal energies has to cope with large temporal fluctuations ranging from seconds to seasons. The passing shadow of a cloud over solar panels causes the fastest variability of power output followed by the gustiness of the wind, the rise and fall of the tides and the seasonal and annual variations of the availability of biological resources for energy production. Thus, the kinds of questions being asked of the research community have changed over the last decades, reflecting the increasing awareness of the finite nature and the instability of fossil fuel supply.

Capturing wind energy has been widely employed for centuries - i.e. the traditional windmills of the Netherlands being a significant landscape element for centuries. To date, the emerging market for wind power energy is experiencing remarkable global growth rates which affect not only the problem of how to technically link these into existing power systems, but also effect deeply rural landscapes and local livelihoods. In many instances, initial positive local acceptance altered to the contrary, leading to sometimes strong opposition against the installment of wind turbines and wind farms in rural landscapes \therefore Hence, solving this problem requires additional input of economists and social-political scientists. The emerging interdisciplinary research increased the understanding and helped to develop adequate solutions to many of the problems revolving around wind power energy. However, the disciplinary integration and interdisciplinary understanding must be much further advanced.

This chapter is a compilation of the different aspects of wind energy power systems. It combines several scientific disciplines to cover the multi-dimensional aspects of this yet young emerging research field. It brings together findings from natural and social science and especially from the extensive field of numerical modeling. Harvesting wind power requires the erection of towers with rotating wings in the landscape or at sea. Such artificial buildings with moving parts modify drastically the natural views of the panorama. This raises the question of what are the initial necessary societal preconditions and attitudes to erect a wind turbine.

This chapter examines the topic of global status of wind energy in order to establish a context for understanding the contemporary wind energy industry. It begins with a contextualization of the organizational model in wind energy industry currently (section 3.2), and briefly presents the diffusion model of wind power evolution (section 3.2.1), trends in R\&D for wind energy (section 3.2.2), structures and technologies to support innovation in wind power (section 3.2.3) and analytical framework for wind power business (section 3.2.4). Section 3.3 relates wind resources worldwide with the global wind distribution, while the following section presents mains concerns and how wind resources worldwide are spreaded globally. Section 3.4 is related to world wind energy market outlook, especially emphasis on global wind energy market (3.4.1), wind energy converters manufacturers (3.4.2) and economic impacts from wind energy industry (3.4.3) which devotes special attention to the job creation by wind energy industry. Finally, section 3.5 presents the summary and conclusions of the whole chapter. Section 3.6 presents the references used.

3.2 ORGANIZATIONAL MODEL IN WIND ENERGY INDUSTRY

3.2.1 THE DIFFUSION MODEL OF WIND POWER

Wind power systems are type of CoPS (Complex Product System) which are high-cost, engineering-intensive systems and never mass products for the final consumers. They are designed and produced on a project basis as one-offs for professional business. Unlike the final consumer, intermediate customers are intimately involved in the innovation process throughout the life cycle of the project. Technological accumulation is produced by the design, building and operation of the complex product system. The incremental improvement of technological improvement in complex product systems comes along as technological trajectory and they diffuse throughout the actor of best practice methods in design, manufacturing and construction (Davies \& Hobday, 2005; Hobday, 1998). Wind power system also has multiple aspects such as technological system (Hughes, 1983), which receives the influence of non-physical artifact such as institution. To evaluate the effect of technology and policy in the diffusion process and recognize the mechanism which promotes this process is also our concern. In this paper, we propose a dynamic diffusion model in which supply and demand of innovations make progress by coexisting with existing energy system (e.g. fossil power station, nuclear power station). It is supposed more rational that wind power is carried out in complementing the existing energy system rather than supplying electric energy independently.

Figure 3.1 Diffusion model for wind power production system. Source: Inoue and Miyazaki (2008)

This diffusion model of wind power is shown in Figure 3.1. To promote the diffusion of wind power, economic factor is essentially important. For example, investment costs should be collected by electricity obtained by wind power. In order to collect investment cost, equipment has to be enlarged and we should pursue raising economies of scale. While the demand level about quality and safety is high in the market for using electricity obtained from wind power, the value is relatively low. Although its electricity is now approaching to produce profits, there are several
problems in economic efficiency under the present circumstances. At first, the battle against global warming initiates the supply target of innovation (wind power), which could coexist with other existing energy system and help to reduce global warming. Government, industry and academic organizations are involved and the acts which could solve the above-mentioned problems are taken into consideration institutionally since it would not be a problem attributed only to industry.

The emphasis of technological development is put on safety, improvement in performance and reduction of manufacturing cost so as to penetrate this technology in the market by industry-government-academia collaboration. Industry raises the knowledge in connection with manufacturers to get over the critical point lying ahead. Then learning effect reduces the installation costs of wind power systems. In parallel, government could support the installation of wind power systems to get over the critical point so that the wind power systems have the competitive edge by which running cost can compete with other existing energy system on the basis of net present value \therefore Even if a wind power system is not able to link directly with the existing energy system economically, the alternative systemic measures that avoid some critical points are taken into consideration in this institution, from the stand point of a battle against global warming or energy security (Mowery \& Rosenberg, 1979, 1998).

Often, collaborative R\&D needs public support. The EU through the Sixth and Seventh Framework Programmes for research and development introduced the concept of technology platforms. These provide an opportunity for collaboration between a wide range of stakeholders, including industry, academia, politicians, the public, etc. In the present technology platforms in the renewable energy sector exist for solar photovoltaic, wind power, solar water heating and biofuels (IEA, 2010).

Rogers (1982) analyzed the diffusion problem most vigorously from a sociological standpoint and he showed the model of the innovation-decision process as a process through which an individual passes and the diffusion curve with labeling for the five adopter categories. Rogers explained the relation between the influence of communicating information and adoption decision in the earlier phase as well as the characteristics of adopters and the relative time progress of diffusion in the latter phase. However, Rogers' model is taking into consideration only for the diffusion process of the demand side. In the case of the standard concept which is unified in producing diffusion of innovations, Rosseger (1996) mentioned that standard versions of a new technology do emerge, 'bugs' are worked out by early adopters, market results are reported, and thus the quality of information which is available to later adopters improves. However this assumption is not demonstrated with the on-going phenomenon of supply and demand side (Ortt \& van der Duin, 2008).

Institutions are broadly defined by economists and innovation theorists as social, political, and economic organizations that determine the working environment for systems to develop within. Institutional economists emphasize the role that institutions play on the outcomes of economic operations more than their neoclassical-school counterparts. How important an industry's working environment is when examining technology development and cycles. For instance, the direction of domestic technology innovation can be influenced by knowledge spillovers due to international trade, the flexibility and ease of information flow from the university system, and the structure and patent making ability of the legal system. These institutional dynamics can vary widely across
countries, both within and across different development levels. As such, global rates of technology development do not always imply similar rates of technology diffusion in particular domestic markets (Kobos, Erickson, \& Drennen, 2006).

The types of institutions influencing innovation, and ultimately technology diffusion, have been categorized as horizontal, nonmarket, and vertical. Horizontal institutions include those in which large technical interdependencies exist between products or organizations. Positive feedbacks can emerge between horizontal institutions as, for instance, RD\&D in one industry can lead to innovation or increased market potential in the other. In renewable energy technology, horizontal manufacturing structures may be necessary to successfully penetrate the market. For example, energy efficient home construction would benefit from well-designed solar thermal water heating systems. Nonmarket institutions are designed for goals not explicitly focused on short-run profits. These include professional societies, governmental agencies, and university-level research centers. These institutions often provide the necessary basic research and generic market promotion for incubating new technologies \therefore They are often designed as subsidies to industry development and their effectiveness is often dependent on political goals and agendas when "society has found it necessary to supplement the usual market mechanism by additional institutions" (Mohan Reddy, Aram, \& Lynn, 1991).

Government and other organizing entities can often work to administer a coordination system. Figure 3.2 illustrates a conceptual framework for learning between individuals (e.g. workers and groups of workers) and the organization as a whole. The solid arrows represent flows of knowledge spillovers; the dashed arrows represent knowledge feedbacks. These feedbacks reinforce the role of knowledge stock solidarity (standardization) and quality control. For example, a knowledge spillover or 'feed forward' from the organizational level to the individual level can include implicit on-the-job training. While a feedback from this knowledge transfer (production) would include suggestions and discussions, these individuals have with the management directing the organizational training programs and work environments.

Figure 3.2 A dynamic process of organizational learning. Source: Kobos et al. (2006)

Today, wind power is often subsidized, but it is approaching a cost level that makes it economically attractive compared to established energy production methods, assuming good wind conditions. As the experience curve of electricity produced by wind turbines is not entirely flat - a proposed ratio of 0.91 according to Neij (1997).

Cost reduction effects are specified as a three-parameter functional form, which by design permits the determination of optimized levels of R\&D support for a given technology (Miketa \& Schrattenholzer, 2004). The experience curves and bottom-up evaluations of wind turbines indicate that further cost reductions will be possible in the future. (However, these cost reductions cannot be seen in the price development path of wind turbines at present). In general, the results show incremental cost reductions for both on-shore and off-shore wind turbines, and the reduction in the cost of wind-produced electricity will be greater than the reduction in the cost of wind turbines. Bottom-up evaluations support an incremental development path of wind turbines - which may be reflected in an extrapolation of the experience curve - i.e. using a learning rate of approximately 10% for both on-shore and offshore wind turbines. To illustrate the greater cost reduction identified for producing electricity (including efficiency improvements and reduction of operating and maintenance costs), a higher learning rate should be used, e.g. a learning rate of 15% for wind turbines placed in less windy areas and a learning rate of 20% for off-shore wind turbines and wind turbines placed in windier areas (Neij, 1997).

A restriction on further cost reductions in wind produced electricity will arise due to the limitation of favorable sites, as many of the best sites for wind turbines have already have been used. However, this will be a greater problem in countries that have already invested in large numbers of wind turbines. Due to the consensus on incremental improvement of wind power, a sensitivity range of 72% of the learning rate is suggested (Neij, 2008). Wind energy has grown a lot over the last years and this spectacular growth has attracted a broad range of players from across the industry value chain - from local, site-focused engineering enterprises to global, verticallyintegrated utilities (see Figure 3.3).

Figure 3.3 Wind energy industry value chain. Source: EER (2007)

Since Europe's surge in 2005 to an annual market of over 6.5 GW of new capacity, the industry's value chain has become increasingly competitive as a multitude of enterprises seek the most profitable balance between vertical integration and specialization (EWEA, 2009). More and more utilities take position on the wind energy value chain to comply with national renewable targets, and/or to take the initiative of seeking international expansion with this newer production technology. Large-scale utilities have thus started to build sizeable project pipelines with long-term investment plans what lead to an overall scaling up of the sector. To maximize profitability, utilities have steadily migrated from risk-averse turnkey project acquisition, to greater vertical
integration with in-house teams for development and operations and maintenance (O\&M). Strategies devised by these players for meeting their objectives have largely depended on their experience in the sector as well as on their desire to expand geographically. At the same time a market remains for independent players able to contribute development skills, capital and asset management experience.

As a result, Europe's wind energy value chain is currently shifting as asset ownership is redistributed, growth is sought in maturing markets and players seek to maximize scale on an increasingly pan-European stage. Utilities build up GW-size portfolios, through their own strategy initiatives or government prompting. IPPs seek to compete for asset ownership in booming Western European markets. In general, development activity continues to shift towards new regions in the east. The proliferation of players looking to develop, own or operate wind farms has pushed competition to a new level, underlining the key elements of local market knowledge, technical expertise and financial capacity as crucial to positioning on the value chain. Before utilities began adopting wind energy, vertically-integrated independent power producers (IPPs) started aggressively exploiting wind turbine technology to improve their positioning. There are two main types of IPP in Europe (EWEA, 2009):

- integrated IPPs, which have capabilities across the project development value chain and exploit these for maximum control and returns on their project portfolio,
- wind project buyers, which tend not to play a direct role in the development of wind plants in their portfolio as these enterprises are often financial investors, rather than energy players.

The number of these players that are active has continuously increased as utilities have sought acquisitions among this field of asset and pipeline holding competitors, though those that are already a significant size may be positioned for long-term growth. In terms of development, integrated IPPs are continuing to expand internationally, through green field project development and acquisitions, in order to compete with utilities \therefore Players with strong holds in Spain, France or Germany consistently look for growth in Eastern Europe, while some are also taking the plunge offshore. More risk-averse IPPs are seeing the number of quality projects available for acquisition in mature markets continues to dwindle.

As wind power owners, IPPs are facing harder competition from utilities as several project portfolios have been acquired in markets such as Spain, Germany, France and the UK. IPPs generally have higher capital costs than utilities and those that can create assets organically through development on their own are generally better positioned to enlarge their portfolio. As asset managers on the value chain, integrated wind IPPs and project purchases are distinctly different, with integrated players increasingly focusing on O\&M to maximize asset values. The boom in MW additions in the last years means many turbines are coming out of their warranty periods, requiring IPPs to make key strategic decisions on how to manage their installations.

Figure 3.4 Europe wind value chain positioning. Source: adapted from EER (2007)

In the USA, utilities have been, from the beginning on, the main players in the wind energy market. The value chain of a component producer like the China Wind Energy Inc. looks as the following in Figure 3.5.

Figure 3.5 Value chain - production of wind components. Source: EER (2007)

A less well understood feature of innovation processes is the intermediate stage between demonstration and diffusion that can be considered a market formation or 'early' deployment stage (often referred to as niche markets) (Anadon \& Holdren, 2009). Governments can play a crucial role creating initial markets; in doing this, governments can encourage reductions in costs, improvements in quality and functionality, and overall a better definition of the product for the customer (Gallagher, Anadon, Kempener, \& Wilson, 2011).

The innovation literature highlights other important findings. Innovation is a product of complex systems, in which feedbacks from the different stages of the innovation chain and the ability to learn from market experience are crucial. Also, major innovations involve co-evolution of technologies and institutions that support them. There may be several reasons for this low inherent innovation-intensity. Processing large amounts of energy may inherently involve big capital investment and long timescales, which naturally increases risk and deters private finance; each stage in the innovation chain can take a decade, and diffusion is equally slow (Grubb, 2004).

3.2.2 TRENDS IN R\&D FOR WIND ENERGY

The beginning of the process is the Research and Development (R\&D), followed by demonstration and pilot production. This leads to early market introduction and finally, market diffusion. While different RETs are at different phases of market development, the research in diffusion analysis in renewable energy sector points towards the following approaches (Rao \& Kishore, 2010). Empirical analysis of the historical development, current status, and future expectations for wind energy electrical power production (i.e. onshore power production) can be summarized as a 3 -stage empirical industry life cycle illustrated in Figure 3.6, featuring three generic Stages of Exploration (or Development), Acceleration (or Dominant Design), and Maturation.

Figure 3.6 Wind energy technological innovation - projected 210 years industrial technology life cycle. Source: Dismukes, Miller, and Bers (2009)

The change in policy to support private research - as opposed to collaborative research in the public domain - is likely to increase the influence of market forces on the choice of the project and therefore the choice of technology. While this may be beneficial in terms of short-term deployment of new renewable technologies (RETs) alone, this may mean less opportunity that might exist to regulate the support given to specific technologies \therefore If the trend appears in the field of renewable energy, it is likely that brings a short-term perspective, possibly reducing the support for RD\&D in technologies that are considered to have a great potential long-term, but are still relatively distant from the market, compared with more mature alternative (IEA, 2008).

The European Technology Platform for Wind Energy (TPWind) identified as thematic areas for R\&D in wind energy for the next 30 years, the following aspects (IEA, 2010; TPWind, 2010b) as shown in Table 3.1.

Table 3.1 Thematic areas with R\&D focus for wind energy by TPWind

Thematic areas	Focus
Wind conditions	Develop more efficient methods for determining wind resources and identifying regions rich in poorly-exploited wind resources, in order to enable increased and more cost-effective wind farm assets. Key areas in this thematic may include: advanced sitting and wind characterization models. Wind resource mapping, advanced wind power forecasting techniques. Advanced measurements techniques including remote sensing.
Wind power systems	Aspects of wind turbine technology, both offshore and onshore, which have the potential to increase the competitiveness of wind energy, and to minimize the lifetime cost of electricity produced by wind power systems. Key areas in this thematic may include: Materials, Drive-trains, Blades, $O \& M$ and Wind turbine design and efficiency increase.
Wind energy integration	Large-scale integration of wind power (300 GW), by enabling high penetration levels ($>20 \%$) with low integration costs, while maintaining system reliability (security of electricity supply). Key areas in this thematic may include: Grid codes/communication standards, Grid structure and planning, Grid operation and energy management (prediction tools, probabilistic capacity planning, and storage facilities), Energy market integration (converting stochastic wind energy production into energy market products, providing additional grid services to TSO's and DSO's).
Offshore deployment and operations	Environmental impact, social acceptance, spatial planning and the economic impact of R\&D and innovation for offshore wind energy. Key areas in this thematic may include: safety and access to offshore turbines, new and improved concepts for offshore wind turbines, design and fabrication of offshore substructures, new concepts for assembly installation and hookup of large scale developments, offshore cables and connectors, operations and maintenance, spatial planning and decommissioning.

Source: Strategic Research Agenda/TPWind (2010b)

It is noteworthy that efforts RD\&D already have excellent results, such as core R\&D engineering at the University of Risoe, Denmark, successfully completed the first practical tests of a new wind turbine - the gigantic fan responsible for energy production wind - that can anticipate and react to changes in the wind by optimizing the production of electricity. The results show that this system can predict the wind direction, wind intensity and even turbulence. With this, it is estimated that a future production of wind turbines may increase energy production and at the same, reduce extreme loads that impact on their lifetime.

The system added to the wind turbine is a kind of laser anemometer, which scientists call "LIDAR of wind". LIDAR (Light Detection And Ranging) is a kind of "radar light", which uses a laser beam to detect the spatial distribution of temperature and humidity in the atmosphere. It likes a radar sends radio waves and measure their reflections, a LIDAR sends light waves. The "eco" in this case, this wave is the reflection of light by different layers of the atmosphere. The incorporation of LIDAR means that wind turbines are now able to "see" the wind through the detection of variations in air mass. In predicting the wind to reach the next moment, the turbine can optimize their position and adjust the pitch of its blades for wind to be used more efficiently and last longer than the turbine. The engineers say the laser technology increases energy production by up to 5%, mainly because it allows the use of longer blades \therefore For a wind turbine with capacity of 4 MW, this represents a financial gain of $\$ 200,000$ per year (DTU, 2010). LIDAR system can be used to enhance the durability of the blades by allowing them better cope with the irregularities in the wind. In a second step, it becomes possible to manufacture blades longer. This will increase the production of energy and make wind electricity competitive. The wind turbine industry is booming, it is expected to grow tremendously in coming years, thanks to the global focus on renewable energy and in response to climate changes (IEA, 2010).

Finally, it is necessary that all countries have access to technologies that enable them to build the most efficient new power plants and industrial facilities and install energy efficient equipment. Much of the development of this technology is currently being undertaken within the OECD countries, but most of its deployment will need to be elsewhere (Clark, 1985). As example of a network which can help in technology development deployment is the IEA Implementing Agreements (in which both member and non-member countries work and co-operate), which provide a framework for joint research projects, discussion of specific technology issues and information exchange. ${ }^{11}$

According to Wagner and Epe (2009) to promote wind energy, the research needs need to be identified and the research work carried out. Initially, there are such environmental and social challenges as integration into the landscape, noise impact, bird flight paths, life cycle analysis and sustainability. And of course, wind turbine and component design have to be improved continually, i.e. basic research in aerodynamics, structural dynamics, dynamic forces, new materials, feasibility studies into new systems, generators using permanent magnets, gear boxes, etc. For planning and building wind turbines and wind farms, commonly accepted certification procedures must be formulated and standardized.

Governments, industry, research institutions and the wider energy sector will need to work together to achieve this goal. Best technology and policy practice must be identified and exchanged with emerging economy partners, to enable the most cost-effective and beneficial development. The technology road map for some of the most important technologies (wind energy) developed by the IEA (2009). At the industry level, two methods to track the diffusion of wind turbine technology provide some insight. If technological change is occurring in wind turbines, we would expect that the cost of electricity from these turbines is decreasing, since cost is the performance characteristic about which users care most. Additional insight is gained from further exploring the trend of

[^8]decreasing cost of electricity. The three primary means of reducing the cost of electricity from wind turbines are (1) reducing the capital cost of the turbine, (2) reducing operations and maintenance (O\&M) costs, and (3) producing more electricity without an offsetting increase in either capital or O\&M costs (Loiter \& Norberg-Bohm, 1999).

3.2.3 STRUCTURES AND TECHNOLOGIES TO SUPPORT INNOVATION IN WIND POWER

As currently understood, then, technological innovation is characterized by multiple dynamic feedbacks between different stages of the process; as Fri (2003) states, "the process of innovation is typically incremental, cumulative, and assimilative." It is nonetheless often useful for analytical and prescriptive purposes to treat the stages separately, and we frequently do so in this article. The stages of energy technology innovation to be considered comprise fundamental research, applied research, development, demonstration, pre-commercial and niche deployment, and widespread deployment (often also called diffusion). Technology transfer between countries is often envisioned as a part of diffusion, but it can also occur at earlier stages (Gallagher, Holdren, \& Sagar, 2006).

The wind energy market surpasses its own record every year. The market growth rates are in the same range of technologies such as high technology (internet, phone and so on). Europe leads the world in terms of facilities and production, with most of the ten largest manufacturers of being European. A popular misconception is to consider wind power as a mature technology, where R\&D efforts are not necessarily needed \therefore As a result, there is a risk of progressive loss of European leadership, as demonstrated by recent developments in wind energy sector: (i) High demand has increased the time of delivery of wind turbines and the prices of raw materials like steel and copper have increased in recent years, which means that the cost of wind turbines has increased and (ii) Although most manufacturers of wind turbines is still Europeans, two Chinese companies (Goldwind, Sinovel) and an Indian company (Suzlon) entered the market (IEA, 2010).

The private sector in funding research is significant, but exact figures are hard to find. Many companies can invest in the region of $3-5 \%$ of revenues in research. In some cases, the $\mathrm{RD} \& \mathrm{D}$ intensity is even greater. In Europe, after the start of the Technology Platforms for individuals and groups of technologies, the private sector is being encouraged to interact with the public sector, especially in long-term research; the intention is that private companies can share the investment with the public sector. The TPWind is the indispensable forum for the crystallization of political and technological research and development paths for the wind energy sector, as well as a new opportunity for informal collaboration between the Member States, including the least developed in terms of wind energy. The aim is to identify areas of TPWind greater innovation, research new and existing development tasks. These, then, to be prioritized based on urgency of the technology sector; the main objective being global (social, environmental and technological) is cost savings \therefore This will help achieve the objectives of the EU in terms of renewable energy production. The platform is to develop coherent recommendations, detailing specific tasks, approaches, participants and the necessary infrastructure within the private investment in R\&D as well as Member State and EU programs, such as FP7. TPWind will also assess the overall funding available for this work, from public and private sources (TPWind, 2010a).

Wind power is the technology leader in renewable energy. Having regard to the right support could provide up to 28% of EU electricity by 2030 . However, this target will be achieved if the sector and policy makers continue to think in the short term. Long-term, strategic technology and policy research are fundamental: TPWind facilitates the development of effective and complementary national and EU policy to build markets, and a collaborative strategy for the development of technology. Your ultimate goal is to reduce costs to parity with cheaper technologies for alternative production of electricity (TPWind, 2010a).

TPWind is composed of stakeholders from industry, government, civil society, R\&D institutions, financial organizations and most of the energy sector in the Member State and EU. It is unique: the only body with sufficient representation or "critical mass" of knowledge wind and specific experience to be able to fully understand and map the paths and realistic priorities for policy and technology R\&D, taking into account the wide range of needs the sector. In parallel, the European target of 20 percent of energy production from renewable sources poses new challenges. In its recently published Strategic Research Agenda, the European platform for wind energy, TPWind proposed an ambitious vision for Europe and viable. In this view, 300 GW of wind power capacity would be delivered in 2030, representing up to 28 percent of EU electricity consumption. To implement this vision, an average of 10 to 15 GW of additional capacity will be manufactured, delivered and deployed in Europe each year. This is equivalent to more than 20 turbines of 3 MW to be installed on each day (GWEC, 2010; TPWind, 2010a). Moreover, the vision TPWind includes a sub-goal of wind power represents about 10 percent of EU electricity consumption by 2030. They propose an intermediate step of the execution of 40 GW by 2020, compared to 1 GW today. In this sense, $R \& D$ is needed on two fronts:

1. An efficient implementation of TPWind vision for wind energy, supporting the implementation of european goals and,
2. Ensuring European leadership in the long term through technological leadership.

According to Xu, He, and Zhao (2010) recently, along with the establishment of market economy system and wind power market, the wind power industry has achieved "market-oriented operation, industrial management" and now it has stepped into a fast development stage.

The high degree of complexity for wind energy industry with respect to each of the four generic radical innovation challenges and resultant hurdles ${ }^{12}$ has exerted a significant influence on life cycle development time. From a science and technology standpoint, the multidisciplinary knowledge needed for successful wind energy electrical systems spanned a number of fields that only came into being progressively during the entire 20th Century. These include: fundamental aerodynamics of converting wind power to electrical power, power electronics, electrical control systems, development and manufacture of large, cost effective composite wind turbine designs, computing, communication and information technology, and reliable and cost effective linking to

[^9]the electric utility grid.

Demonstration stage the technology is demonstrated in practice. Costs are high. External (including government) funding may be needed to finance part or all of the costs of the demonstration.

Deployment stage the technology is operated successfully, but may still be in need of support to overcome cost or non-cost barriers. With increasing deployment, technology learning will progressively decrease costs.

Diffusion/Commercialization stage the technology is cost competitive in some or all markets, either on its own terms or, where necessary, supported by government intervention (e.g. to value externalities such as the costs of pollution).

Figure 3.7 Stages of the technological process in the wind energy industry. Source: Adapted from IEA (2010)/R\&D Trends Worldwide

According to Figure 3.1 and Figure 3.2 energy policy can influence the development of technology and capturing market (marketing), through the interaction of three main types of policies that target families or subsets of these technologies in progressive stages of technological maturity:

- Policy Research, Development and Demonstration (RD\&D);
- Policy deployment market (also called policy of support or promotion), and
- General Policies of the energy market.

As featured in Figure 3.8 the structure of TPWind, where the issues raised by themes, are concentrated in areas where improved technology leads to significant cost reductions.

Figure 3.8 TPWind organizational structure. Source: TPWind (2010a)

Through a strategic research agenda, TPWind encourages Member States, EU institutions and the wind industry to intensify research efforts in accordance with market needs, in view of medium and long term. TPWind encourage research results in the long term, taking into account that new prototypes for wind energy are being developed.

For Kaldellis and Zafirakis (2011) what is important to consider is that for the aforementioned goals to be realized, R\&D targets set must be put forward by the wind energy industry, with the main directions and actions to be taken including the following:

- New wind turbines need to reduce their overall costs
- Large scale turbines of 10-20 MW going offshore (R\&D programs for prototypes already initiated)
- Improved design and reliability of components (Testing facilities to assess efficiency and reliability of wind turbines)
- Development of innovative logistics (Cross industrial programs)
- Deeper waters and larger turbines for offshore
- Development and industrialization of support structures for sea installations, both fixed and floating (Structure concepts to be developed and tested at different depths and under different conditions)
- Achieve grid integration for even greater wind energy penetration
- Introduction of large-scale energy storage systems and high voltage ${ }^{13}$ alternative and direct current (HVAC-HVDC) interconnections (Offshore farms connected with more than one grid, long distance HVDC, R\&D of energy storage systems)
- Resource assessment and spatial planning
- More sophisticated assessment of wind resources (High quality measurements and databases for wind data as well as short-term wind speed forecasting with the use of neural networks)
- Spatial planning through social and environmental considerations (Development of planning tools and methodologies)

It is necessary to clarify the energy sector, in others words, wind energy industry is a technology cluster. Another aspect of importance is the concept of technology clusters. This is based on the fact that a technology does not develop alone but is related to and depends on other technologies as well as infrastructures, institutions, networks of actors, etc. Multiple interrelated diffusion processes contribute to the evolution. Adoption and diffusion of technology occurs as a collective evolutionary process \therefore The complex interactions where technologies mutually reinforce and crossenhance each other drive to the conformation of technological clusters, that is, families of technologies evolving and diffusing together, and the constitution of associated networks of economic and social actors. The members of a cluster are related by multiple links that contribute to magnify their economic, social and environmental impacts. These multiple relations contribute to make progress in one of them relevant, directly or indirectly, to other members of the cluster, as it helps to reinforce their own position in the marketplace (Barreto \& Kemp, 2008).

3.2.4 ANALYTICAL FRAMEWORK FOR WIND POWER BUSINESS

In a business that aims to create value, the diffusion of a technology may be the key to its success. To that end, one should increase the availability through technological innovation, to ensure use by many people and create economic value for the business owners, who are the principal actors.

[^10]

Figure 3.9 Structure of wind power business process. Source: Inoue and Miyazaki (2008)

As shown in Figure 3.9 the initial verification of the business process of wind power production might be worthwhile. The business process of wind power production can be broken down into the development phase, involving 1) wind survey and an environmental evaluation at the point of wind power production, 2) financing phase in which construction funds are raised, 3) system design and procurement phase in which wind turbines and system interface for electrical facilities are designed and constructors are selected, 4) equipment manufacturing phase in which wind turbines and system interface for electrical facilities are built, 5) testing phase in which transportation, installation and testing are carried out, 6) operation and maintenance phase and power distribution phase.

No problem can be envisaged because the business process of wind power is designed to allow economic value to be obtained by the competitive strategies of the electric companies, wind power proprietors, EPC (Engineering Procurement Construction) builders, and equipment manufacturers, all of whom participate. This business process seems free of any potential obstacle to the successful acquisition of economic value for four reasons \therefore Firstly, the power company would gain from the margin between the prices paid by the power company to purchase power from the wind power producer and the power charges paid by consumers. Secondly, the wind power owner would benefit from saving on its costs of power production with wind turbines located under good wind conditions. Thirdly, the EPC builder would benefit from savings made by man-hours, derived from a reduced procurement cost and efficient construction scheduling. Fourthly, the equipment manufacturer would benefit from saving costs from the experience effect.

For Lund $(2007,2009)$ the commercialization process of new technologies can analytically be explained through so-called learning curves that effectively integrate policies and associated learning investments into a unit cost curve that decrease with cumulative volume. At the breakeven point, the new energy technology becomes cost-effective over the traditional energy. The policy measures supporting commercialization can be split into two main categories namely technology push such as R\&D that improve the innovations and market pull measures such as market deployment support that increase demand for the new technology. These main categories are further elaborated in Figure 3.10 into more specific measures. A market breakthrough often requires optimal mastering of the whole process and a right balance of different measures over time. In addition to the traditional energy policy measures, more renewable energy
technology/product specific support may be very important to enhance industry growth. An important market pull policy measure in several countries is induced demand, such as feed-intariffs, green certificates, investment grants, RES quotas, etc. (Arentsen et al., 2007).

Figure 3.10 Commercialization process of new energy technologies. Source: Lund (2009, p. 54)

Hence, in order to interact, enterprises and other actors need to identify themselves as part of a system, see the common problems and opportunities they face and the value of collective action for framework of wind power business work as a perfect chain. In essence, therefore, network formation reflects the consciousness and practical realization of parts of the collective dimension of the innovation and diffusion process for wind energy business. Without such a consciousness, user-supplier relationships will be arms-length, university-industry relationships may not develop and political networks will not be formed (Bergek, Jacobsson, \& Sandén, 2008).

3.3 WIND RESOURCES WORLDWIDE

The development of wind energy in many regions of the world faces the lack of reliable and detailed wind resource data in that site. Availability of these data is necessary for public authorities and other economic agents involved to identify wind power production potential and to promote rightly actions on that information. To overcome this difficulty, the National Renewable Energy Laboratory (NREL) and other organizations have, since the last five years developed new methods and approaches to more accurately assess the wind resource and produce detailed high-resolution (l-km) wind maps for essentially anywhere in the globe \therefore The NREL methodology for creating large-area wind resource maps is force-task for unifying global terrain and climatic data sets, Geographical Information Systems (GIS) technology, and analytical and computational techniques (Elliott, 2002). The modeling and wind resource predictions that do not need to rely on countrysupplied data were permitted by the global data sets and analytical tools at NREL. In many regions of the globe, reliable surface wind data are sparse and often not available for areas of interest for producing electricity by wind technology. However, the use of weather balloon and satellitederived wind data with computer mapping system enables NREL to create wind resource maps with reliable information even if high-quality surface wind data are not available yet. Wherever available, reliable surface wind data are useful in providing field truth verification of the model predictions.

When we analyze different technologies of power production including fossil fuel or renewable energies the main concern the fuel consumed or avoided. What is the best technology of power production (of electricity or heating)? Are the power plants in the right places? How much is it available for electricity demand? What is the production cost for each kWh of electricity produced? What emissions does it have for each kWh of electricity produced? How much residue does it leave? For wind power technology, the wind resource is "free of fuel" and "free of charge" and these questions are as relevant as they are for any other source. As wind is "free" and "green" so the concern about fuel makes no sense \therefore Questions about wind resources, however, are very important and essential for wind technology development. When we talk on a global scale, it is not difficult to find many studies about the enormity of the wind resource, and how it could be theoretically used for facing the global electricity demand in several times over. For example the collaboration by researchers at Harvard University in the United States and VTT in Finland that concluded that "a network of land-based, 2.5 MW turbines, restricted to non-forested, ice-free and nonurban areas, operating at as little as 20% of their rated capacity could supply more than 40 times current worldwide consumption of electricity" (Lu, McElroy, \& Kiviluoma, 2008).

A comprehensive study by researchers from Stanford University's Global Climate and Energy Project focuses its conclusions on five years of data from the US National Climatic Data Center. Using an extensive set of surface and balloon measurements, they concluded that 13% of the sites tested had a good wind resource (Class ${ }^{14} 3$) at 80 meters off the ground, and using one in five of these sites for power production would allow wind energy to meet the world's electricity demand

[^11](considering the data of year 2000) seven times over (Archer \& Jacobson, 2005). In the same objective, an earlier study in 2003 by the German Advisory Council on Global Change calculated that the global technical potential for electricity production from both onshore and offshore wind technologies was 270,000 TWh per year. Considering 10% to 15% of this was executable in a sustainable manner, the resulting $39,000 \mathrm{TWh}$ would meet more than double the current global electricity demand. A literature search shows up numerous similar studies with broadly similar conclusions (GACGC, 2004). According to Rosa (2009, p. 5) " 30% of the 173,000 TW of solar radiation incident on Earth is reflected back into space as the planetary albedo ${ }^{15}$. Of the $121,000 T W$ that reach the surface, $3 \%(36007 W)$ are converted into wind energy, and 35% of this is dissipated in the lower 1 km of the atmosphere. This corresponds to 1200 TW . Since humanity at present uses only some 15TW, it would appear that wind energy alone would be ample to satisfy all of our energy needs".

The studies have different results, because it depends on its assumptions used. For estimation of wind power potential is necessary to make assumptions about the size, capacity factor and rated power of the turbines used, which varies from study to study. We must highlight the higher the wind turbine is working, the better the wind resource is. Further, higher wind turbines or wind farms are less to be affected by turbulence caused by natural topography, surface roughness or other effects of orography ${ }^{16}$. Even more, the technology evolution can not only increase the capacity factor of wind turbines, but also the range of wind speeds in which they can work, thus broadening the range of sites at which they can be installed.

Another variable concerns assumptions about the land areas on which wind turbines can be deployed. While most studies will focus on conservation areas, forests and urban sites, some types of agricultural land such are easily compatible with wind farms installations without constraining the overall wind potential of a region \therefore In the case of offshore wind resources the methodologies for evaluation of its availability also differ in terms of assumptions used. An assumption needs to made concerning the areas in which wind farms can be built, both for technical reasons (maximum technical/economical distance to shore, water depth etc.), as well as taking into account environmental and regulatory limitations (nature reserve areas, shipping lanes, minimum distance to shore, etc.). Some new configurations that deploy turbines on floating structures and are thus suitable for use in deep water are at a preliminary stage of test deployment (Bilgili, Yasar, \& Simsek, 2011). These could dramatically increase the technically usable fraction of the offshore wind potential. Evidence from a large number of studies into the world's wind resources suggests that there is no shortage of suitable sites for wind power development. However, it is worth noting that the rate of deployment of wind power in each county has largely been dependent on political will rather than resource criteria. Germany has a lower wind potential than many other European countries, yet its favorable political climate has led to fast and large-scale deployment of wind power. On the other hand, there are several parts of the globe with a good wind resource - places such as Argentina, Russia and South Africa - where development of wind power has barely started (GWEC, 2011a).

[^12]The wind resources are spread globally, as we know the wind is fundamentally a form of solar energy. Wind is the result of simple air motion. It is caused by the unequal heating of the earth surface by the sun heat. Since the earth surface is made of different kinds of continents and oceans, it absorbs the sun heat at different rates, and the different temperature could cause the different pressure. The heat is distributed to the poles by ocean currents and atmospheric circulation (Maddaloni, 2005). As we can see in Figure 3.11, world wind map at 80 m high, into a wind speed scale from $3-9 \mathrm{~m} / \mathrm{s}$, there are some regions on the globe (RETScreen® International Clean Energy Decision Support Centre, 2009). When it is necessary take into account the wind resources as an initial input or datum for wind farms economic evaluation, researchers as Marafia and Ashour (2003), Archer and Jacobson (2005), Arslan (2010), Ahmed (2011), Oliveira (2010), Gökçek and Genç (2009) show that a wind speed range starting from $3 \mathrm{~m} / \mathrm{s}$ as a minimum wind speed for wind power project gives economic returns to the investor. Wind energy projects are generally as more as financially viable in "windy" sites. This is due to the fact that the theoretical power output in the current wind technology is equal to the cube of the wind speed. However, the power production profile of a wind turbine is typically more proportional to the square of the average wind speed (Manwell, McGowan, \& Rogers, 2002).

Copyright © 20103 TIER Inc: All Rights Reserved.
5 km Wind Map at 80 m

Figure 3.11 World wind map at 80 m . Source: 3TIER, Inc/REmapping the World Initiative/ RETScreen® International Clean Energy Decision Support Centre (2009)

North America and Antarctica are the best locations for electricity production by wind energy technology. But they are also very favorable to electricity production by wind energy technology in the northern Europe, especially along the North Sea, the southern tip of South America (Tierra del

Fuego or Fireland) and Tasmania, in Oceania \therefore According to Herbert, Iniyan, Sreevalsan, and Rajapandian (2007) the theoretical potential of wind energy onshore is very large - $20,000 \times 10^{9}$ to $50,000 \times 10^{9} \mathrm{kWh}$ per year in comparison with the current total annual global electricity consumption of approximately $15,000 \times 10^{9} \mathrm{kWh}$, in 2005. Archer and Jacobson (2005) concludes that:

1. About 13% of all stations worldwide belong to class 3 or greater (i.e., annual mean wind speed $\geq 6.9 \mathrm{~m} / \mathrm{s}$ at 80 m) and they are indicated for electricity production by wind energy technology. In addition, wind power potential in these areas studied was underestimated in comparison to other studies.
2. The wind speed average calculated at 80 m was $4.59 \mathrm{~m} / \mathrm{s}$ (class 1) when including all stations; if only stations in class 3 or higher are considered, the average was $8.44 \mathrm{~m} / \mathrm{s}$ (class 5). For comparison, the wind speed average observed at 10 m from all stations was $3.31 \mathrm{~m} / \mathrm{s}$ (class1) and from class ≥ 3 stations was $6.53 \mathrm{~m} / \mathrm{s}$ (class 6).
3. The greatest numbers of stations in class ≥ 3 are in Europe and North America, whereas the greatest percentages are Oceania and Antarctica, 21% and 60%, respectively. Northern Europe along the North Sea, the southern tip of the South American Continent, the island of Tasmania in Australia, the Great Lakes region, the northeastern and western coasts of Canada and the United State have a strong wind power potential.
4. The wind speed was global-averaged at 80 m was higher during the day $(4.96 \mathrm{~m} / \mathrm{s})$ than night $(4.85 \mathrm{~m} / \mathrm{s})$. The average nocturnal wind speed at above $\sim 120 \mathrm{~m}$ was higher than the diurnal average.

The European Wind Energy Association (EWEA) and Greenpeace with their action for evaluation of global wind resources called "Wind Force 12 " has concluded that the world's electricity production by wind energy technology considering only 10% of the Earth's land area would be available for development, which figures the double of projected world electricity demand in 2020. Addition, a larger share of the land area could be used for electricity production by wind energy technology in sparsely populated and wind-rich regions in the globe as e.g. the Great Plains of North America, northwest China, eastern Siberia, and the Patagonian region of Argentina (Brown, 2003).

For a successful application of wind turbines is necessary the study of geographical distribution of wind resources, speeds profiles, topography and local wind flow and measurement of the wind speed are very essential in a complete and robust wind resource evaluation. The main and most direct mechanism by which global climate change could impact directly in the wind energy industry is by changing the geographic distribution due to its inter-and intra-annual variability of the wind resource available \therefore For Pryor and Barthelmie (2010) the global climate change may change the geographic distribution of wind resources in order to the variability of wind resource in a inter or intra yearly basis and it could change as result other the conditions for wind developments. As in a traditional industry sitting, the production and distribution of its process depending on the place where the vital resources can be found, in the case of the wind energy industry, the wind resources.

3.4 WORLD WIND ENERGY MARKET OUTLOOK

3.4.1 GLOBAL WIND ENERGY MARKET

For Wiser and Hand (2010) the global wind power capacity is growing fast in the last ten year, as a result, wind power has quickly become part of the mainstream in the global electricity industry. In 2007, roughly 20 GW of new wind capacity was increased globally, yielding a cumulative total of 94 GW (see Figure 3.12). Since 2000, cumulative wind capacity has grown at an average annual rhythm of 27%. The vast majority of this capacity has been located on land; offshore wind capacity surpassed 1 GW at the end of 2007, with accelerated growth expected in the future, especially in Europe. The expectations for wind power market growth in 2011 were mixed, as the low level of orders seen during the financial crisis worked their way through the system. The results of this were felt much more strongly in 2010 than in the previous year, and the overall annual market shrunk by 7% to 35.8 GW , down from 38.6 GW in 2009. The new capacity added in 2011 is equivalent in direct investments worth EUR 47.3 billion (USD 65 billion) (GWEC, 2011b, 2012).

Figure 3.12 Global annual installed wind capacity 1996-2011. Source: GWEC (2012)

As shown in Figure 6.1 the global cumulative installed wind capacity in 1996-2011, in the year 2011, the wind capacity reached worldwide 237,669 MW, after 197,637 MW in 2010, 158,738 MW in 2009, 120,291 MW in 2008, and 93,820 MW in 2007. New wind turbines investment has declined in many parts of the globe. For the first time in more than twenty years, the market for new wind turbines was smaller in comparison with the last year and totalized an overall size of 40,564 MW in 2011, 38,828 MW in 2010 and after $38,610 \mathrm{MW}$ in $2009 \therefore$ The recovering of the wind industry worldwide totalized 40 billion (55 billion US\$) in 2010, after 50 billion (70 billion US\$) in the year 2009. The decrease is impact of lower prices for wind turbines and a shift towards China. The US market installed almost 50% less than in 2009. In the European market, new installed capacity in 2010 was 7.5% down on 2009, despite a 50% growth of the offshore market in countries like the UK, Denmark and Belgium, otherwise Romania, Bulgaria and Poland had a fast growth (WWEA, 2011). In December 2011, the ten biggest countries in cumulative capacity installed of wind power were distributed as shown in Figure 3.13.

Figure 3.13 Top 10 cumulative capacity Dec 2011. Source: GWEC (2012)
${ }^{(* *)}$ Provisional figure

The main markets driving growth are Europe and Asia, which installed 96.6 GW and 82 GW respectively in the end of 2011. However, emerging markets in Latin America are beginning more competitive, led by Argentina and Brazil. In cumulative terms, the Latin America and Caribbean market grew by more than 58% in 2011. China, USA, Germany and Spain lead the global wind market with a share of 67.2% which has a great impact in the global energy matrix and in their domestic economies. We could see that 50% of all new wind power was increased outside of the traditional markets of Europe and North America in 2011(GWEC, 2012). In the case of Asia, what pushes this continent forward is the continuing boom in China, with 17.6 GW of new installations in $2011 \therefore$ China had at the end of 201042.3 GW of wind power, which represents an increase of 39% in relation to the end of the year 2010 and has surpassed the USA in wind power capacity (see Table 3.2).

Figure 3.14 Top 10 new installed capacity Jan-Dec 2011. Source: GWEC (2012)

The growing Chinese wind power market has pushed forward domestic production of wind turbines and components, because of this the Chinese manufacturing industry has been increasingly mature and this fact reflects over the whole supply chain. China has become the world's largest producer of wind energy equipment and components made inside the country (see Figures 3.16 and 3.17). China started to not only satisfy domestic demand, but also meet international market. Sinovel and Goldwind have given a step ahead for entering into international markets, which is justified the world's top five wind turbine manufacturers in 2009 (GWEC, 2011c).

Table 3.2 Global installed wind power capacity (MW) - Regional Distribution

		End 2010	New 2011	End 2011	
Africa \& Middle East	Cabo Verde	2	23	24	
	Morocco	286	5	291	
	Iran	90	3	91	
	Egypt	550		550	
	Other ${ }^{1}$	137	-	137	
	Total	1,065	31	1,093	
Asia	PR China	44,733	17,631	62,364	
	India	13,065	3,019	16,084	
	Japan	2,334	168	2,501	
	Taiwan	519	45	564	
	South Korea	379	28	407	
	Vietnam	8	29	30	
	Other ${ }^{2}$	69	9	79	
	Total	61,106	20,929	82,029	
Europe	Germany	27,191	2,089	29,060	1) South Africa, Israel, Lebanon, Nigeria, Jordan, Kenya and Libya
	Spain	20,623	1,050	21,674	
	France**	5,970	830	6,800	
	Italy	5,797	950	6,737	2) Bangladesh, Indonesia, Philippines,Sri Lanka, Thailand
	UK	5,248	1,293	6,540	
	Portugal	3,706	377	4,083	
	Denmark	3,749	178	3,871	3) Romania, Norway, Bulgaria, Hungary, Czech Republic, Finland, Lithuania, Estonia, Croatia, Ukraine, Cyprus, Luxembourg, Switzerland, Latvia, Russia, Faroe Islands, Slovakia, Slovenia, FYROM, Iceland, Liechtenstein, Malta
	Sweden	2,163	763	2,970	
	Netherlands	2,269	68	2,328	
	Turkey	1,329	470	1,799	
	Ireland	1,392	239	1,631	
	Greece	1,323	311	1,629	
	Poland	1,180	436	1,616	
	Austria	1,014	73	1,084	4) Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, UK
	Belgium	886	192	1,078	
	Rest of Europe ${ }^{3}$	2,807	966	3,708	
	Total	86,647	10,281	96,606	
	of which EU-27 ${ }^{4}$	84,650	9,616	93,947	
Latin America \& Caribbean	Brazil	927	583	1,509	
	Chile	172	33	205	5) Carribean: Jamaica, Cuba, Dominica, Guadalupe, Curacao, Aruba, Martinica, Bonaire
	Argentina	50	79	130	
	Costa Rica	119	13	132	
	Honduras	-	102	102	6) Colombia, Ecuador, Nicaragua, Peru, Uruguay
	Dominician Republic	-	33	33	
	Carribean ${ }^{5}$	91	-	91	** Provisional Figure
	Other ${ }^{6}$	118	10	128	
	Total	1,478	852	2,330	
North America	USA	40,298	6,810	46,919	Please note: Project decommissioning of approximately 528 MW and rounding affect the final sums
	Canada	4,008	1,267	5,265	
	Mexico	519	50	569	
	Total	44,825	8,127	52,753	
Pacific Region	Australia	1,990	234	2,224	
	New Zealand	514	109	623	
	Pacific Islands	12	-	12	
	Total	2,516	343	2,859	
	World total	197,637	40,564	237,669	

Source: GWEC (2012)

Africa \& Middle East

Wind energy could help African continent to face the lack of electricity. About a quarter of the world's population has no access to electricity, and the problem is especially acute in peri-urban and rural areas in Sub-Saharan Africa. Although Africa and Middle East has shown a great development of wind power technology, especially in wind power capacity in MW. We highlight Cabo Verde and Morocco. \therefore When it is considered the end of 2010 and the end of 2011, these countries has an increase in wind power capacity of $1,100 \%, 2 \%$ respectively. At the end of 2011 Cabo Verde had installed 24 MW and Morocco 291 MW (GWEC, 2012). Africa and Middle East have increased 3%, in the same period and had as wind power capacity installed about 1 GW .

Asia

Asia in terms of wind energy has been surprising globally. According to the Global Wind Energy Council (GWEC) (GWEC, 2012). Asia at the end of 2011 had installed almost 82 GW (82,029 MW). China was the world's largest market in 2011 with 17.6 GW of new capacity installed and goes ahead of the USA and India and became the global leading wind power country (see Figure 3.14). However, there are indications that only about half of the turbines in China are really in operation. Many of the wind farms are not connected to the grid because of quality problems or grid weakness, and appear to have been constructed to allow large utility companies to gain incentives in order to expand their coal-fired operations. The whole market is still heavily dominated by onshore projects. Of the total cumulative capacity only 2.1 GW is offshore of which about 689 MW was installed last year. Of special significance are the 209 MW wind farm project Horns Rev II and Germany's first offshore wind farm Alpha Ventus, with a capacity of 60 MW (Markard \& Petersen, 2009). The Chinese market had increased its capacity from 44.7 GW in 2010 to 62.3 GW at the end of 2011 ; it is an increase of 39% in the same period. In the case of India, the Indian wind power market awaked and increased its capacity from 13 GW in 2010 to 16.0 GW at the end of 2011 ; it is an increase of 23% in the same period. In terms of new installed capacity during 2011 and comes in third position behind China and the USA (see Figure 2.14). Wind power accounts for 70% of this renewable installed capacity. In 2010 the official wind power potential estimates for India were revised upwards from 45 GW to 49.1 GW by the Centre for Wind Energy Technology (C-WET). Other Asian countries with new capacity additions in 2011 include Japan ($2,3 \mathrm{GW}$, for a total of 2.5 GW), Taiwan (519 MW for a total of 564 MW) and South Korea (379 MW for a total of 407 MW). The Chinese market, in particular, now has three manufacturers among the top 10 global players and has shown potential for more new businesses. The acceptance of new wind turbines on the market depends on their suitability for international trade and the successful operation of their first projects \therefore Most of the new players still have to prove this, particularly regarding the quality and long-term stability of turbine operations. In mid-2009, the South Korean firm Daewoo Shipbuilding \& Marine Engineering (DSME), the world's second largest shipbuilder, announced its entry into the wind energy market by acquiring DeWind for around US $\$ 50$ million. DeWind is a medium-sized wind turbine manufacturer that has installed around 570 wind turbines in the 500 kW to 2 MW range (Wiese, Kleineidam, Schallenberg, Ulrich, \& Kaltschmitt, 2010). Asia has increased 34, in the same period and had as wind power capacity installed about 82 GW .

Europe

The Europe continent has been facing serious economics and financial problems in its EU Members States. The EU Member States have tried to reduce unemployment situation, low productivity, in other words, come back to growth road and stop economic recession. Related to wind power, reflected investment in RE technologies since decades ago, the wind power installed across Europe in the end of 2011 reached 96.6 GW. This represents an increase only of 11% compared to 2010. According to EWEA (2012) the annual onshore market increased by over 13% compared to 2009, while the annual offshore market grew by 51%, and accounted for 9.5% of all capacity additions. In terms of total capacity installed, we must highlight Germany and Spain, at the end of 2011 , with 29 GW and 21.6 GW , respectively. In terms of new installations German was the largest market in 2011, installing 2 GW followed by UK with 1.2 GW and Spain. For Spain 2010 was a good year for wind power, and the country's wind farms produced 42.7 TWh of electricity, which figures 16.6% of total Spanish power consumption. Five out of Spain's 17 regions now host 1 GW or more of wind power (AEE, 2006, 2011).

France, Italy and Portugal had a total wind power capacity installed by the end of 2011 with 6.8 GW, 6.7 GW and 4 GW , respectively. This same European country has increased their wind power capacity in $20 \%, 24 \%$ and 23% compared with the end of 2010 . The French government set a target to achieve 25 GW of installed wind energy capacity by 2020, including 6 GW of offshore wind. The Italian wind power sector now employs more than 28,000 people, of which some 10,000 directly. For Portugal the total wind power capacity installed by the end of 2011 was $4 \mathrm{GW} \therefore$ An interesting situation happened - Portugal went ahead of Denmark with wind power capacity installed, 4,083 MW and Denmark with 3,871 MW at the end of 2011. According to GWEC (2011b, p. 11) Turkey, Belgium, Poland and Sweden had presented in 2010 the biggest rates of growth in wind power capacity installed, with $66 \%, 62 \%, 53 \%$ and 39%, respectively. In the United Kingdom, around 40 new wind farms were opened in 2010, totaling 962 MW of additional capacity and taking the country's total installed wind power capacity to 5.2 GW . With 1.3 GW of installed capacity, the UK continues to be the world's leading offshore wind market. The majority of wind farms in the UK are located in Scotland (2.3 GW), in the North West (1 GW) and in Wales (0.5 GW). Only Scotland installed a third of all new wind power capacity in 2010 (0.4 GW) (GWEC, 2011c). Europe has increased 11%, in the same period and had as wind power capacity installed more than 96.6 GW.

Latin America \& Caribbean

Latin America and Caribbean is a region of the globe with best wind resources (see Figure 3.11). The rest of the world has putted the eyes in Latin America because it is considered prime territory for the deployment of wind power. In the beginning the development of RE technologies have been modest, but nowadays there are no doubts that the region is an opportunity for an exponential developing of wind power industry to complement its rich hydro and biomass (and potential solar) resources, most notably in Brazil and Mexico. Brazil is the country where wind power is making the most progress; it is also the largest economy of the region. This country has many areas with tremendous potential for wind energy technology, combined with a growing electricity demand and solid industrial and grid infrastructure (GWEC, 2011c). We must highlight Argentina and Brazil. These main latin countries have increased the wind power capacity installed by 160% and 60%
respectively. Brazil had 1.5 GW and Argentina had 0.13 GW at the end of 2011. Brazil and Argentina are in top positions in terms of wind power capacity installed at Latin America. Chile, Costa Rica and Caribbean these countries almost reach 0.4 GW of wind power capacity installed. An interesting country is Chile, which had nearly 0.2 GW (205 MW) of wind power in operation at the end of 2011. The total wind power capacity installed in the Latin America and Caribbean grew by 58% during 2011 , and more than 2 GW of wind power capacity were installed.

North America

The USA wind energy market installed 6.8 GW in 2011, only about half of the 2010 market. The country now has 46.9 GW of wind power capacity (up from 40.2 GW at the end of 2011), thereby conceding its global leadership to China. By 76% of the American states now have utility-scale wind installations and 28% of those had more than 1 GW installed. The leading state was Texas with more than 10 GW of total installed capacity and wind power now generates 7.8% of the state's electricity demands. Iowa is in second place with 3.6 GW , and now receives close to 20% of its electricity from wind power, followed by California, Minnesota and Washington State (AWEA, 2011). The American manufacturing sector, meanwhile, appears to view 2010's slowdown as short-term. New component suppliers continued to enter the wind energy industry last year, and over 400 US manufacturing plants now serve the industry \therefore Around half of the wind production equipment deployed in the USA is now manufactured domestically. In addition, the construction pipeline for wind power is healthy, with 5.6 GW currently under construction. Given such indicators, the industry finished 2011 well ahead of 2010 numbers (GWEC, 2011c). Canada's wind energy industry took a step ahead in 2011 with the addition of $1,267 \mathrm{MW}$ of installed wind energy capacity, ranking Canada in $9^{\text {th }}$ position globally in terms of new installed capacity and $6^{\text {th }}$ for overall cumulative installed capacity (see Figure 3.13 and 3.14). Canadian wind energy industry had done a record year in 2011 with approximately 1.2 GW of new wind energy capacity; reflect of an investment of $\$ 3.1$ billion and creating 13,000 person-years of employment in the Canadian wind energy industry. Canada has increased the wind power capacity installed by 11% and 5.2 GW of wind energy installed capacity. For the end of 2011, Canada had shown a total of wind energy installed capacity around 5.2 GW. In 2011, new wind energy projects were built and commissioned in British Columbia, Alberta, Saskatchewan, Manitoba, Ontario, Quebec, New Brunswick, and Nova Scotia (CanWEA, 2012; GWEC, 2011b). The total wind power capacity installed in the North America grew by 18% during 2011, and more than 52.7 GW of wind power capacity were installed.

Pacific Region

Australia wind power market at the end of 2011 had installed 2.2 GW , an increase of 12% in relation to the end of 2010. There were 52 operating wind farms in the country, mostly located in South Australia (907 MW) and Victoria (428 MW). Australia's expanded Renewable Energy Target (RET) Scheme, which entered into force in January 2010, mandates that 45 TWh or 20% of Australia's electricity supply will be sourced from renewable energy in 2020 (CEC, 2012; GWEC, 2011c). The initial goal was 12.5 TWh , and this could be gradually increased until 2020. After a good year in 2009, the rate of development in New Zealand dropped with just 8.8 MW of new wind capacity added, taking the total up to close to 506 MW , representing an increase by 2% at the end of 2010. Wind energy currently supplies just over 3\% of New Zealand's annual electricity demand.

The world energy scenario has changed and it is important to highlight some its aspects. First of all, wind energy technology is more nature than ten years ago due to heavily $\mathrm{R} \& \mathrm{D}$ investments and renewable energies penetration has increased (NZWEA, 2012). For the Pacific Islands had only 12 MW as total wind power capacity installed at the end of 2011, and no increase was register in the period. The total wind power capacity installed in the Pacific Region grew by 14\% during 2011, and more than 2.8 GW of wind power capacity were installed.

The total wind power capacity installed worldwide grew by 20% during 2011, and more than 237 GW of wind power capacity were installed. In global terms, we can say that wind market is continuing to attract new players and a significant number of new companies in Europe and Asia are developing new wind turbines to enter the market in the coming years. It is necessary to give emphasis the increasing trend of professionalism in the market. One example of this is continuous flow production; it is the need of increase output and quality and to reduce costs. Many manufacturers, including GE, REpower, Vestas and Enercon, began this process between 2003 and 2006 but had little success due to the many different wind turbine types needed to satisfy customer demands \therefore Currently the products of the wind energy industry are more standardized; this kind of production is becoming more effective; examples of successful factories include Siemens and GE. Apart from Europe, the USA and Asia, other markets for wind energy they are still with a small market share. We must highlight, there are notable wind farm projects being planned and startingup in the developing world. In South America, the growing markets are specially concentrated in Brazil, Chile and Argentina, while the African market is still dominated by Egypt and Morocco.

Figure 3.15 Annual installed capacity by region 2003-2011. Source: GWEC (2012)

According to GWEC (2012) the six regions worldwide has shown as annual installed capacity an interesting behavior (see Figure 3.15). In Latin America \& Caribbean, Asia and North America had demonstrated highest growth with, 58% of increase and 2.3 GW (2011), 34% of increase and 82

GW (2011) and 18% of increase and 52.7 GW (2011), respectively. Also in Figure 3.15 we could conclude that the lowest growth was represented by Pacific Region, Latin America \& Caribbean and Africa \& Middle East with 2.8 GW (2011), 2.3 GW (2011) and 1 GW (2011), respectively. For Saidur, Islam, Rahim, and Solangi (2010) there have been a remarkable increase in any type of energy demand due to the economic and technological developments worldwide. The global economy has grown 3.3% per year over the last 30 years and in the same period energy demand has increased 3.6%. It is noticed that energy policy could help increasing wind energy industry. Oliveira and Fernandes (2011) conclude that human evolution is closely linked to energy, since the beginning of time man has to know it and seeking it ever more on the environment.

3.4.2 WIND ENERGY CONVERTERS MANUFACTURERS

In the wind energy industry, there is intense competition between the wind energy converters (WECs). Vestas and GE Energy have the largest market shares but no company controls more than 20% of the market (see Figure 3.16) \therefore However, there are distinct regional differences. Enercon, for example, dominates the German market with a share of 60%, but at the same time the company might have difficulties maintaining its global market share if the German market slows down. The situation for GE Energy in the US and Gamesa in Spain is similar. At any rate, since there is a trend towards ever-larger models that is accompanied by increasing capital requirements, larger companies will benefit on long-term (Green Rhino Energy, 2009).

Figure 3.16 Wind turbine manufacturers' share. Source: Green Rhino Energy (2009)
When we take a look at turbine manufacturing features, Vestas one more time got the largest share (19.0%) of the global wind market, with approximately 37 GW (see Table 3.3). However, the enterprise has lost market share since 2008 and is near followed by GE Wind, whose market share
was almost 18.0% in 2010. Amazingly for the first time there are also two Chinese enterprises in the top five suppliers list: Sinovel ranks sixth with 5.0% and Goldwind is seventh with 4.0% (see Figure 3.16). Although the wind power industry saw manufacturing volumes remain constant at their 2009 levels, manufacturing capacity increased substantially during 2010^{17}. Project developers were challenged by competition with natural gas prices at three-year lows (leading to reduced sales), the continued challenge of obtaining project finance, and access to transmission. Industry leaders Vestas, Gamesa, Hansen Transmissions, and GE Wind all lowered sales forecasts during $2010 \therefore$ Growth opportunities were focused mainly on China and other emerging markets as GE Wind supplied turbines to Brazil; Gamesa planned to triple investments in China by 2012; and Repower and Suzlon signed contracts in Turkey and Bulgaria ${ }^{18}$. Among the top 10 global manufacturing enterprises, Vestas of Denmark easily retained its number-one ranking, but Sinovel of China edged ahead of GE Wind in 2010 to take second place ${ }^{19}$ (see Figure 3.17).

Figure 3.17 Market shares of top 10 wind turbine manufacturers in 2010. Source: REN21 (2011)

In China, enterprises Sinovel, Goldwind, Dongfang, and United Power saw strong growth driven by continued political and regulatory support and lower labor and manufacturing costs. Continued technology development at these enterprises also meant a smaller and closing gap in technological

[^13]parity with overseas enterprises. Sinovel, for example, launched a 5 MW turbine model in 2010^{20}. It appeared that industry consolidation might be on the horizon in China as a draft government policy called for narrowing the industry to far fewer than the existing 100 -plus enterprises. The major developers of wind projects in China remained predominately state-owned enterprises: Longyuan, Datang, Huaneng, Huadian, CPI, and Guohua ${ }^{21}$. In Europe, industry activity focused increasingly on offshore technologies and on project development in Eastern Europe. The largest turbine to be financed so far, RePower's 6 MW model, was deployed in C-Power's 300 MW Thornton Bank project in Belgium, one of nine offshore wind farms developed in 2010. ${ }^{22}$ And Transpower's high-voltage cable transmission infrastructure is being installed in the North Sea, laying the base for German offshore connectivity by 2013. Project developers became more aggressive in Eastern Europe, for example in Ukraine, where at least 10 project developers were active in 2010 due to a new feed-in tariff. ${ }^{23}$

In the United States, 14 new turbine manufacturing plants were established in $2010 .{ }^{24}$ The U.S. industry was hampered, however, by late extension by the U.S. Congress of the Investment Tax Credit (ITC), low natural gas and electricity prices, and transmission access issues; so that project developers managed only half the number of projects they did in $2009 \therefore$ Leading owners of wind power projects in the United States include NextEra, Iberdrola Renewables, Horizon-EDPR, MidAmerican/PacifiCorp, and E.ON Climate \& Renewables. ${ }^{25}$

According to Markard and Petersen (2009) it is possible to differentiate the value chain of wind energy industry into five distinct parts. The first one is the turbine manufacturing which might include the development and production of wind turbines and auxiliary equipment. The second one is the project development with its sub-tasks such as planning, licensing, leasing of the land (onshore) and wind farm construction. The third is the investment operation that is about the provision of funds for a wind farm and forth is operation that concerns about managing the business including metering and billing of electricity production and maintenance of the technical components. And finally the fifth is load management and power distribution that is always combined tasks related to balance the intermittent power supply of wind farms and distributing and selling the electricity to end consumers. It is easy to notice when the sectorial value chain is simplified as there are further tasks (e.g. environmental impact evaluation, wind farm insurance or provision of meteorological services) that also need to be taken care of.

Direct-drive turbine designs captured 18% of the global market, led by Enercon (Germany), Goldwind (China), and Hara XEMC (China). Preferred turbine sizes were 2.5 MW in the U.K., 1.4 MW in China, and 1.2 MW in India. Globally, the average turbine size increased to 1.6 MW , up from 1.4 MW in 2007. Vestas launched the largest commercial turbine thus far, the dedicated

[^14]offshore V164 7 MW turbine, targeting North Sea opportunities. ${ }^{26}$ Li and Chen (2008) made a comparison with geared-drive wind generator systems and concluded that most important advantages of direct-drive wind generator systems were the higher overall efficiency, reliability and availability due to no gearbox is necessary. The direct-drive generators usually have larger size, but it could not be disadvantage for the offshore wind energy applications.

Table 3.3 Track record by turbine type

	Installed in 2010		Accumulated installed	
	Number	MW	Number	MW
V52-850 kW	340	289	3,764	3,199
V60-850 kW	15	13	15	13
V80-1.8 MW	0	0	1,016	1,829
V80-2.0 MW	267	534	2,981	5,962
V82-1.5 MW	0	0	213	320
V82-1.65 MW	273	450	2,883	4,757
V90-1.8 MW	269	484	572	1,029
V90-2.0 MW	763	1,527	3,286	6,544
V90-3.0 MW	834	2,502	2,170	6,510
V100-1.8 MW	20	36	20	36
V112-3.0 MW	2	6	2	6
Other	1	1	26,511	6,729
Total	2,784	5,842	43,433	36,934

Source: Vestas (2011)

The search for more productivity in the power output what forward trends for larger wind turbines, about 82% of all wind turbines installed in 2009 falling into the range of 1.5 MW to 2.5 MW , but the growth is still slow. Wind turbines in onshore wind farms generally have a range between 2 MW to 3 MW in countries with a good infrastructure \therefore Although, larger wind farms with smaller turbines (up to 1.5 MW) are under development or have been installed in areas with poorer infrastructure. The REpower 6M and the Enercon E-126 are particularly well-known. The 6M has a rated capacity of 6.15 MW while the Enercon E-126 is available with 6 MW of rated capacity (Wiese et al., 2010).

The power output of a wind turbine is roughly proportional to the rotor area, so fewer larger rotors at higher towers use the wind resources more efficiently than more numerous, smaller wind turbines. The biggest commercial wind turbines today are 5-6 MW units with a rotor diameter of up to 126 m . Every five years wind turbines have doubled in size approximately, but this rate seems to be slow for onshore turbines, due to operational and installation constraints. The expected lifetime of a commercial wind turbine currently is 20-25 years. Lifetime spans may stretch as the technology continues to mature. However, due to the youth of the industry, as we know today, and the re-powering of wind farms with the updated turbine technology, few turbines have been around long enough to test this consideration. Due to extensive testing and certification, the reliability of

[^15]wind turbines - the proportion of the time they are technically available for operation - is approximately 99% (Furkan, 2011). During the last ten years power electronics have represented a key factor in the evolution of wind turbines towards more efficient wind energy capture, better quality of voltage output, better grid integration, etc. Efficiency is an important issue for wind turbines when comparing different systems because losses reduce the average power produced by the wind energy converter and, so on, they reduce incomes (Amirat \& Benbouzid, 2007, p. 28). The Table 3.4, it is shown a list of top 10 globally wind turbine manufacturers in 2009 with its currently used generator concepts and power ranges.

Table 3.4 Top 10 globally wind turbine manufacturers of 2009, currently used generator concepts and power ranges

Manufacturer	Concept	Rotor diameter	Power range
Vestas (Denmark)	DFIG	$52-90 \mathrm{~m}$	$850 \mathrm{~kW}-3 \mathrm{MW}$
	GFC PM	112 m	3 MW
General Electric (US)	DFIG	$70.5-82.5 \mathrm{~m}$	1.5 MW
	GFC PM	100 m	2.5 MW
Sinovel (China)	DD PM	110 m	4.0 MW
Enercon (Germany)	DFIG	$60-113 \mathrm{~m}$	$1.5-3 \mathrm{MW}$
Goldwind (China)	DD EE	$33-126 \mathrm{~m}$	$300 \mathrm{~kW}-7.5 \mathrm{MW}$
Gamesa (Spain)	DD PM	$70-100 \mathrm{~m}$	$1.5 \mathrm{MW}-2.5 \mathrm{MW}$
	DFIG	$52-97 \mathrm{~m}$	$850 \mathrm{~kW}-2 \mathrm{MW}$
Dongfang (China)	GFC PM	128 m	4.5 MW
Suzlon (India)	DFIG	-	$1-2.5 \mathrm{MW}$
Siemens (Germany)	CS	$52-88 \mathrm{~m}$	$600 \mathrm{~kW}-2.1 \mathrm{MW}$
	GFC IG	$82-107 \mathrm{~m}$	$2.3-3.6 \mathrm{MW}$
Repower (Germany)	DD	101 m	3 MW
DFIG	$82-126 \mathrm{~m}$	$2-6 \mathrm{MW}$	

Source: Polinder (2011). CS: constant speed with gearbox and induction generator, possibly with extended slip or two speeds; DFIG: variable speed with gearbox, doubly-fed induction generator and partly rated converter; DD EE: variable speed direct-drive synchronous generator with electrical excitation and full converter; DD PM: variable speed direct-drive permanent-magnet generator and full converter; GFC PM: variable speed with gearbox, permanent-magnet generator and full converter; GFC IG: variable speed with gearbox, induction generator and full converter.

Table 3.4 starts with describing the most commonly used generator systems in wind turbines manufacturers' leader worldwide. Each manufacturer is market-oriented and size and concept differ during the period of time \therefore The most important trend in the marketplace is the progressive increase in the size of commercial wind turbines as a result of a bigger power output search. The average wind turbine size has thus increased by about 12% per year over the last decade (Hansen \& Hansen, 2007). In chapter 4, it is discussed technical aspects of each concept and other important issues about wind energy conversion systems. Subsequently, some of the most important developments in wind turbine generator systems are discussed. Finally, some conclusions are drawn.

3.4.3 ECONOMIC IMPACTS FROM WIND ENERGY INDUSTRY

Wind power plants installations can create jobs in a country where local economies are often dependent on local business activities. Local jobs refer to construction-related activities; operation and maintenance of the facility after it is constructed, and jobs induced by the money addition in the local economy by the temporary workers. Lantz and Tegen (2008) made some studies about the variables affecting in an economic development process by wind energy activities. Lantz and Tegen (2008) state that "creating policies to ensure maintenance materials are supplied by in-state business and that the local labor force is trained to perform wind turbine maintenance is also likely to have a large impact for wind power plants operating for 20 or more years". The maximization of economic benefits by wind energy development is linked to the improvement of related in-state businesses and trained labor force.

Greater energy independence, improved environmental benefits from reduced greenhouse gas emissions and positive economic impacts have been appointed as the main three main reasons for investing on wind energy industry. When we have to face our climate responsibilities and the opportunity to build a low-carbon economic base, job creation is an especially question to discuss about. The development of indigenous sources of renewable energy technology, as wind power, will forward the creation of more jobs locally than 'business as usual' fossil-fuel economies of the last century (Engel \& Kammen, 2009). The focus on finding solutions for mitigating global warming has resulted in renewable energy technologies gaining importance. Improvements accomplished in technology resulted in a fast growth in wind power worldwide \therefore Among the renewable energy technologies, wind power is one of the fastest growing technologies globally at an average annual growth rate of more than 26% since 1990 (Resch et al., 2008).

According to WWEA (2011) by the end of the year 2010, about 670,000 people were employed worldwide directly and indirectly in the many areas in the wind industry. During the last five years, the number of jobs almost tripled, from 235,000 in 2005. There is an increasing demand for a very broad range of jobs, from engineers, skilled workers to managers, financial, environmental and legal experts. One of the positive aspects of the wind energy industry is the impact on employs, but few studies have systematically dealt with this matter (Blanco \& Rodrigues, 2009). The development of renewable energy industry has become a way to accomplish environmental objectives and a long way of increasing energy self-sufficiency and employment in general (Connor, 2003; Dincer, 2000; Hillebrand, Buttermann, Behringer, \& Bleuel, 2006; Laitner, Bernow, \& DeCicco, 1998; Moreno \& López, 2008; Thothathri, 1999). The adoption of renewable energies technologies represent an opportunity to reduce energy dependence, reduce the emission of CO_{2} and create new employs and revenues. The engagement of local economic agents is extreme necessary for the future development of RE technologies, especially in regions whose industrial activity mix was based on traditional energy sources. Wind energy industry in Europe is a predominantly male business with 78% employment, where men represent the majority of the labor force in fields of construction, production and engineering (Moreno \& López, 2008).

The development of wind power can create new opportunities for more domestic jobs per currency invested and/or per kilowatt-hour produced than fossil fuel power production. Manufacturing of wind power utilities and equipment, constructing and installing the wind projects, and operating
and maintaining the projects over their lifetime usually create direct jobs (Lewis \& Wiser, 2007). The wind energy industry has become a major job generator globally: within only three years, the wind industry worldwide almost doubled the number of jobs from 235,000 in 2005 to 440,000 in the year 2008 (see Figure 3.18). These 440,000 employees in the wind energy industry worldwide, most of them highly skilled jobs, have been contributing to the production of 260 TWh of electricity (WWEA, 2011).

Figure 3.18 Green jobs on wind energy sector worldwide. Source: WWEA (2011)

Wind energy industry represents an attractive source of employment worldwide. Activities as construction, $\mathrm{O} \& M$, legal and environmental studies are best driven at local level; we can notice a positive correlation between the location of the wind farm and the number of jobs it creates. The location of a wind farm determine where can be located large manufacturing centers, however, microeconomic factors such as, skilled labor force, easy access roads, grids infrastructure and regional and municipal authorities have a role to play \therefore Another relevant issue is that wind energy employment is following the opposite trend to the general energy industry, particularly coal extraction and electricity production, and measures that encourage the transfer of workers from general energy industry to wind energy activities could be highly beneficial from both social and economic aspects (Blanco \& Rodrigues, 2009; Thothathri, 1999).

According Hamilton and Liming (2010) the process of getting energy from the wind into the home is so complex, in business terms, that is why it involves many players simultaneously. A modern and commercial wind turbine consists of an estimated 8,000 parts. Turbines must be designed,
built, transported, and erected before they can start producing energy \therefore As we have said the chain of wind industry can be classified into three major phases: manufacturing, project development, and operation and maintenance. A wind energy successful project, each of these phases overlap and there is substantial communication among players in all these three phases. The manufacturing sector hosts most of the jobs, followed by construction, and operation and maintenance. However, in the case of new wind farms forward the repower process, for manufacturers can take advantage of returns to scale. Figure 3.19 shows the distribution of jobs in American wind power industry in 2010.

Figure 3.19 Jobs in wind power, 2009. Source: Hamilton and Liming (2010)
${ }^{(1)}$ "Other jobs" includes the following: some manufacturing, parts-related services, financial and consultant services, developers and development services, contracting and engineering services, and transportation and logistics.

Large wind turbines are made of complex pieces of machinery designed and built by companies known as Original Equipment Manufacturers (OEMs). Most of OEMs are large transnational corporations for which wind turbine manufacturing phase is only a small piece of their global business. Wind farm development is a challenging process that usually takes several years from conception to construction. The beginning of this process is the selection of an appropriate site. This step involves a great number of factors, such as wind speed and frequency, availability of area, ground constitution for supporting the weight - often more than $1,000 \mathrm{t}$ - of turbine structures, environmental concerns - such as local avian populations and the feasibility of transporting large turbine components to the site chosen. In the phase of project development also has many legal and financial issues such as contract development and financing. All of this work representing the pre-operational phase of the wind energy project. \therefore The self-running of wind energy projects is a way it works by itself with little need for human supervision (remote controlling). Energy companies employ monitors, either locally or remotely, to observe energy flows and report technicians of any problems. All wind farms employ local workers, but remote monitoring of wind turbines can allow for a cost-effective way to ensure that the wind turbine (wind farm) is working most efficiently as possible and that local technicians are alerted to any potential problems advised (Ayee, Lowe, \& Gereffi, 2009).

The initial spending on the construction and operation phases of the wind farm has a second and economic effect, usually referred as "indirect impacts". Indirect impacts during the construction phase representing the changes on relations inter-industry from the direct final demand changes
which includes construction spending on materials, wind farm equipment; other purchases of related-goods and offsite services \therefore And increase in some final product represent an also increase in its components to produce it as well as an increase in the economic activity at local site (Goldberg, Sinclair, \& Milligan, 2005). Indirect impacts reflect on all supply chain component impacts/manufacturing-related activities; therefore, the final phase of turbine assembly process, which includes gearbox assembly, blade production, and steel rolling are all included under the construction period indirect impacts category. Also the manufacturers of turbine parts such as bearing producers, steel producers, and gear producers are also in this same category. Indirect impacts during operating years refer to the changes in inter-industry purchases resulting from the direct final demand changes (Lantz \& Tegen, 2008).

Landowners who lease their land to wind developers benefit from having a stable source of revenues. This option is usually greater than that from ranching or farming if we compare on a per acre basis, the revenue receive from leasing their land by wind developers. Landowners can be compensated in a variety of ways: option payments, construction disturbance or installation payments, land leases, and/or royalties. While royalty is a percentage of gross revenues received by the wind farm owner from the sale of power (Pedden, 2006).

According to Goldberg et al. (2005) it is possible to classify the total effect of developing a wind power plant into three types of impacts. They can be defined as direct effect, indirect effect, and induced effect:

1. Direct effect: they are general on-site or immediate effects created by expenditures. In constructing a wind power plant, it refers to the on-site jobs of the contractors and crews hired to construct the plant. It also includes the jobs at the turbine manufacturing plants and the jobs at the tower and blade factories.
2. Indirect effect: It refers to the increase in local economic activity that happens when a contractor, vendor or manufacturer receives payment for goods or services and in turn is able to pay others who support their business - economy cycle. For instance, this impact includes the banker who finances the contractor; the accountant who keeps the contractor's books; and the steel mills and electrical manufacturers and other suppliers that provide the necessary materials on-site.
3. Induced effect: It is a reflect effect and usually refers to the change in wealth and income that is induced by the spending of those economic agents (workers, companies, public services, etc.) directly and indirectly employed by the wind project. This would include spending on food, clothing, or day care by those directly or indirectly employed by the project, retail services, public transit, utilities, cars, oil, property \& income taxes, medical services, and insurance, for example.

3.5 SUMMARY AND CONCLUSIONS

Now is the time to reform the energy system, since it was created during the growth phase in a highly industrialized society. Our society is on the verge of an energy crisis and various global environmental problems. These are influences that our society presents great opportunities for technological innovation. To implement this effectively, it is important to conduct and promote energy conservation policies, recognizing the negative effects on the external economy. Wind power has advantages over current systems of high efficiency power production used today. The great advantage of wind power is the fact that energy can be produced from natural resources that are available and plentiful. However, the electrical energy produced wind power is influenced by natural conditions, which can disturb the stability and reliability. Any escape from this problem of root development cannot be expected. The relationship between the owners of independent wind energy business and its external environment is very difficult. Therefore, it is safe to assume that wind power cannot remain competitive in isolation, as individual business entity with less financial support from consumers of electricity at present. For this question, initially, the government policy and electricity consumers should share the additional costs associated with all aspects of wind energy. As wind production becomes more widespread, the cost will be reduced through "learning by doing." The more traders contribute to the production of wind energy that will reduce some of the main disadvantages of the interaction between technology and markets. The advantages that accrue to the consumer as a result of greater penetration of wind power far outweigh the disadvantages of the initial costs.

The analysis of diffusion in the wind energy industry in terms of efficiency, effectiveness and development criteria reveals the following:

1) Internal technological innovation has solved the technological imbalance between the subsystems that constitute a system, thus increasing the performance of wind turbines. These technologies were used in large equipment, improving the efficiency of wind turbines and ensuring economies of scale of this type of equipment in large scale wind farms or wind farms.
2) For the system of energy businesses, this analysis demonstrated that there is no balance between incentives and contributions from business owners of wind energy, electric energy companies, and consumers. The system is therefore not effective enough now.
3) The system began to evolve in order to complement each other, with systems of other technological products (solar, photovoltaic, etc.) as well as micro-networks.

To highlight these three aspects can be divided into technological trajectory and interaction between technology and markets. \therefore Analysis of the criteria of efficiency and technological development shows the trajectory, as described below, in technological innovation. In the first phase, innovations occurred in the subsystems of a product system. Pitch control was adopted in the original draft of Denmark, who became the dominant design. An approach permits the performance of a generator with increasing conversion efficiency of the turbine blades in a complementary relationship. In other words, in a complex product system consisting of interrelated
subsystems, it is necessary to increase the integrated action with the parties taking into account the interdependencies with the system, when there is an innovation in a product system. The internal logic of the technology itself defines technological innovation, as stated in the model of Rosenberg's technological imbalance. This case study indicates that not only increases the performance of technological equipment for the imbalance itself, but also creates new technological opportunities to make projects more wind turbines (Rosseger, 1996; TPWind, 2010b).

In the second stage, the innovation has occurred at the unit level of a modular product system by adopting a function of change of speed. When a product system has nonlinear characteristics with respect to the external environment, each party within the modular unit is quite capable of improving the technological imbalances in the face of nonlinear characteristics. For this reason, researchers have turned interference from the external environment in non-interference, which cannot be performed alone, but only through cooperation within the product system with which there was a mutual relationship. Near linear characteristics were obtained, resulting in an increase in the overall performance of the product. In other words, there was awareness of the range in which the imbalance was resolved technological expanded from working out in the modular unit, in search of mutual cooperation and integration has improved the performance of the whole technology (Hobday, 1998; Inoue \& Miyazaki, 2008).

In the third stage, the innovation has occurred at the system level and micro-emerging networks. When a disturbance occurs as a frequency shift of power in the electrical system, there are limits that govern the performance improvement, improving the relationship because of the mutual dependence of modular units. For further performance improvement, an alternative means or other technology option is necessary (Heier, 1998). One such measure is to continue with the system decomposition approach in an attempt to stabilize the networks in small groups, ensuring a balance between supply and demand at connection points, and avoid disruptions that occur on the grid in general. It is interesting to note that the evolutionary trajectory of this technology tends to lead to higher levels of the hierarchy of the system for stability (Tidd, Bessant, \& Pavitt, 2005). This is the reverse, and in contrast to the process by which cars in general and other industries are going to lower levels, apparently due to the fact that the wind carries the full burden of social charges, while production technologies existing power are not subject to external economic factors. Micro-grids can be expected to affect the diffusion of wind power \therefore If the demand for wind energy grows, the opportunities for technological innovation will emerge as well, which make it possible to eliminate factors that inhibit the rate of technological evolution of wind power (Clark, 1985).

Related to wind resources worldwide, many studies deal with wind speeds geographical distribution and most of them converge that characteristic parameters of the wind profile, orography, topography and local wind flow and measurement of the wind speed are very necessary in wind resource evaluation for a successful and safe application of wind turbines (de Castro, Mediavilla, Miguel, \& Frechoso, 2011). The potential availability of wind power can change over time and among locations. This variation is not only caused by the resource characteristics (wind regime and profile, soil, humidity, etc.) but also by geographical (land use and land cover), technoeconomic (scale, labor cost, inflation, time horizon, etc.) and institutional (policy regime,
legislation specialized) factors. Some of these factors cannot or can only approximately be quantified or estimated.

In respect to global wind energy situation we can say about 2011 was a tough year for wind energy industry, and although cumulative market growth was around 20%, the annual market decreased for the first time in the last twenty year. The financial crisis in medium term brought some consequences and the global economy had to slowdown, and very low orders in OECD countries at the end of 2008 and the beginning of 2009 made themselves felt in the 2010 installation totals, particularly in the USA. Amazingly approximately 40.5 GW of new wind power capacity was added around the world last year, and for once the majority of that new capacity was in developing countries and emerging economies; driven mainly by the booming wind sectors in China and India, but also with strong growth in Latin America, where we believe that macroeconomic situation and wind resource-rich will make the wind energy industry jumps much forward in those regions which we have been waiting for and expecting for so many years (GWEC, 2012).

The growth of wind power outside of the OECD has been essential driven by the continuing boom in China, which is now the top country in installed wind power capacity in the world (see Figures 3.13, 3.14 and Table 3.2). There is also a great change of attitude by government towards wind power in many countries. First of all wind technology was considered too expensive by many developing country energy planners just a couple of years ago, the progressive success of the technology in much more countries have changed that attitude to one of dramatically increased knowledge about wind energy and how could wind energy technology improve the country's power mix.

Economic impacts from wind energy industry are clearly positive in a macroeconomic terms, because its impacts on employment, incomes and taxes and production of goods and services in general. First of all, it is necessary to emphasize that wind energy industry represent an important source of employment in many countries in the globe. There are some activities like operation and maintenance ($\mathrm{O} \& M$), research and development (R\&D), manufacturing and construction which are able to create jobs in wind industries. The electric power industry is a strongly regulated industry and, in the case of RE technologies, the role of governments' incentive to bring these young technologies (related to fossil fuel technologies) to market adds to the importance of politics. Looking at the growth of wind turbine capacity over the past ten years, some conclusions can be taken. Among all renewable energies, wind energy is certainly the one that is closest to making the transition from niche to mass market. It is strongly linked with long-term prosperity. For Pablo (2008) investment explains the productive capacity of an economy. Investments made in the renewable energy industry have in addition a strong influence on the degree of dependence among economies, their competitiveness, sustainability, and on all kinds of environmental issues including climate change.

Wind power technology must be understood with its nature, working principle of WECS, innovation and technology trends, in summary, the Chapter 4 is made a compilation of WECS in order to establish a context for better understanding the current wind energy conversion systems, for a comprehensive cost production analyzes of a wind farm.

3.6 References

AEE. (2006). Análisis y Diagnóstico de la Situación de la Energía Eólica en Espanã. Datos Básicos de la Eólica en España. Retrieved November 27, 2009, from http://www.aeeolica.es/contenidos.php?c pub=101.

AEE. (2011). Datos básicos de la eólica en España. Retrieved March 14, 2011, from http://www.aeeolica.es/contenidos.php?c_pub=101

Ahmed, A. S. (2011). Analysis of electrical power form the wind farm sitting on the Nile River of Aswan, Egypt. Renewable \& Sustainable Energy Reviews, 15(3), 1637-1645. doi: 10.1016/j.rser.2010.11.024

Amirat, Y., \& Benbouzid, M. E. H. (2007). Survey paper Generators for Wind Energy Conversion Systems: State of the Art and Coming Attractions. J. Electrical Systems, 3(1), 26-38.

Anadon, L. D., \& Holdren, J. P. (2009). Policy for Energy-Technology Innovation. Acting in Time on Energy Policy.

Archer, C. L., \& Jacobson, M. Z. (2005). Evaluation of global wind power. J. Geophys. Res, 110, 1-20.

Arentsen, M., Bechberger, M., Di Nucci, M., Midttun, A., Casale, C., \& Klemenc, A. (2007). Renewable energy and liberalisation in selected electricity markets - Forum Final Report CSTM Studies and Reports. (pp. 318:393).

Arslan, O. (2010). Technoeconomic analysis of electricity generation from wind energy in Kutahya, Turkey. Energy, 35(1), 120-131. doi: 10.1016/j.energy.2009.09.002

AWEA. (2011). U.S. Wind Industry Market Reports. Retrieved November 15, 2011, from http://www.awea.org/learnabout/publications/reports/AWEA-US-Wind-Industry-MarketReports.cfm

Ayee, G., Lowe, M., \& Gereffi, G. (2009). Wind Power: generating electricity and employment in Manufacturing climate solutions: carbon-reducing technologies and US jobs. Durham, NC: Duke University. Center on Globalization Governance and Competitiveness.

Barreto, L., \& Kemp, R. (2008). Inclusion of technology diffusion in energy-systems models: some gaps and needs. Journal of Cleaner Production, 16(1, Supplement 1), S95-S101. doi: 10.1016/j.jclepro.2007.10.008

Bergek, A., Jacobsson, S., \& Sandén, B. A. (2008). 'Legitimation' and 'development of positive externalities': two key processes in the formation phase of technological innovation systems'. Technology Analysis \& Strategic Management, 20(5), 575 - 592. doi: 10.1080/09537320802292768

Bilgili, M., Yasar, A., \& Simsek, E. (2011). Offshore wind power development in Europe and its comparison with onshore counterpart. Renewable \& Sustainable Energy Reviews, 15(2), 905915. doi: 10.1016/j.rser.2010.11.006

Blanco, M. I., \& Rodrigues, G. (2009). Direct employment in the wind energy sector: An EU study. Energy Policy, 37(8), 2847-2857. doi: 10.1016/j.enpol.2009.02.049

Brown, L. R. (2003). Wind Power Is Set to Become World's Leading Energy Source. HUMANIST-BUFFALO-, 63(5), 5-5.

CanWEA. (2012). Canada moves to 6th place globally for new installed wind energy capacity in 2011. Retrieved March 5th, 2012, from http://www.canwea.ca

CEC. (2012). Clean Energy Australia 2010. Retrieved January 16, 2012, from http://www.cleanenergycouncil.org.au

Clark, K. B. (1985). The interaction of design hierarchies and market concepts in technological evolution. Research Policy, 14(5), 235-251. doi: 10.1016/0048-7333(85)90007-1

Connor, P. M. (2003). UK renewable energy policy: a review. Renewable and Sustainable Energy Reviews, 7(1), 65-82. doi: 10.1016/s1364-0321(02)00054-0

Davies, A., \& Hobday, M. (2005). The Business of Projects. London: Cambridge University Press.
de Castro, C., Mediavilla, M., Miguel, L. J., \& Frechoso, F. (2011). Global wind power potential: Physical and technological limits. Energy Policy, 39(10), 6677-6682. doi: 10.1016/j.enpol.2011.06.027

Dincer, I. (2000). Renewable energy and sustainable development: a crucial review. Renewable and Sustainable Energy Reviews, 4(2), 157-175. doi: 10.1016/s1364-0321(99)00011-8

Dismukes, J. P., Miller, L. K., \& Bers, J. A. (2009). The industrial life cycle of wind energy electrical power generation: ARI methodology modeling of life cycle dynamics. Technological Forecasting and Social Change, 76(1), 178-191. doi: 10.1016/j.techfore.2008.08.011

DTU. (2010). Innovation and Sustainability. Retrieved January 29, 2010, from http://www.man.dtu.dk/English.aspx.

EER. (2007). Wind power is competitive. Retrieved January 10, 2010, from http://www.vestas.com/files//Filer/EN/Press releases/VWS/2007/070110PMUK01EER.pdf

Elliott, D. (2002). Assessing the world's wind resources. Paper presented at the Power Engineering Society Winter Meeting, 2002. IEEE.

Engel, D., \& Kammen, D. M. (2009). Green jobs and the clean energy economy. Copenhagen: Retrieved from http://us-cdn.creamermedia.co.za/assets/articles/attachments/21589 greenjobs.pdf.

European Commission. (2001). Wind Turbine Grid Connection and Interaction. Retrieved October 15, 2011, from http://ec.europa.eu/energy/technology/projects/doc/2001_fp5_brochure_energy_env.pdf

EWEA. (2009). Wind Energy; The Facts: Part IV Industry and Markets. Retrieved November 3, 2009, from http://wind-energy-the-facts.org/documents/download/Chapter4.pdf

EWEA. (2012). Wind in power. 2011 European statistics. Retrieved February 13, 2012, from http://www.ewea.org/fileadmin/ewea_documents/documents/publications/statistics/Stats_2011 .pdf

Fri, R. W. (2003). The role of knowledge: technological innovation in the energy system. The Energy Journal, 24(4), 51-74.

Furkan, D. (2011). The analysis on wind energy electricity generation status, potential and policies in the world. Renewable and Sustainable Energy Reviews, 15(9), 5135-5142. doi: 10.1016/j.rser.2011.07.042

GACGC. (2004). World in Transition - Towards Sustainable Energy Systems. Retrieved October 14, 2009, from http://www.wbgu.de/wbgu_jg2003_engl.pdf

Gallagher, K. S., Anadon, L. D., Kempener, R., \& Wilson, C. (2011). Trends in investments in global energy research, development, and demonstration. [Review]. Wiley Interdisciplinary Reviews-Climate Change, 2(3), 373-396. doi: 10.1002/wcc. 112

Gallagher, K. S., Holdren, J. P., \& Sagar, A. D. (2006). Energy-Technology Innovation. Annual Review of Environment and Resources, 31(1), 193-237. doi: 10.1146/annurev.energy.30.050504.144321

Gökçek, M., \& Genç, M. S. (2009). Evaluation of electricity generation and energy cost of wind energy conversion systems (WECSs) in Central Turkey. Applied Energy, 86(12), 2731-2739. doi: 10.1016/j.apenergy.2009.03.025

Goldberg, M., Sinclair, K., \& Milligan, M. (2005). Job and economic development impact (JEDI) model: A user-friendly tool to calculate economic impacts from wind projects. Paper presented at the 2004 Global WINDPOWER Conference, Chicago, Illinois.

Goode, P. R., Qiu, J., Yurchyshyn, V., Hickey, J., Chu, M. C., Kolbe, E., . . . Koonin, S. E. (2001). Earthshine observations of the Earth's reflectance. Geophys. Res. Lett., 28(9), 1671-1674. doi: 10.1029/2000gl012580

Green Rhino Energy. (2009). Wind Energy Market and Industry. Retrieved November 14, 2010, from http://www.greenrhinoenergy.com/renewable/wind/wind_market.php

Grubb, M. (2004). Technology Innovation and Climate Change Policy: an overview of issues and options. Keio economic studies, 41(2), 103.

GWEC. (2010). Global Wind 2009 Report First. Retrieved April 04, 2010, from http://www.gwec.net

GWEC. (2011a). Global Wind Energy Outlook 2010. Retrieved February 26, 2011, from http://www.gwec.net

GWEC. (2011b). Global Wind Report: Annual market update 2010. Retrieved April 10, 2011, from http://www.gwec.net

GWEC. (2011c). Global Wind Statistics 2010. Retrieved February 2nd, 2011, from http://www.gwec.net

GWEC. (2012). Global Wind Report: Annual market update 2011. Retrieved September 13, 2012, from http://www.gwec.net

Hamilton, J., \& Liming, D. (2010). Careers in Wind Energy: Bureau of Labor Statistics.
Hansen, A. D., \& Hansen, L. H. (2007). Wind turbine concept market penetration over 10 years (1995-2004). Wind Energy, 10(1), 81-97. doi: 10.1002/we. 210

Heier, S. (1998). Grid Integration of Wind Energy Conversion Systems: John Wiley \& Sons.
Herbert, G. M. J., Iniyan, S., Sreevalsan, E., \& Rajapandian, S. (2007). A review of wind energy technologies. Renewable and Sustainable Energy Reviews, 11(6), 1117-1145. doi: 10.1016/j.rser.2005.08.004

Hillebrand, B., Buttermann, H. G., Behringer, J. M., \& Bleuel, M. (2006). The expansion of renewable energies and employment effects in Germany. Energy Policy, 34(18), 3484-3494. doi: 10.1016/j.enpol.2005.06.017

Hobday, M. (1998). Product complexity, innovation and industrial organization. Policy, 26, 689710.

Hughes, T. P. (1983). Networks of Power Electrification in Western Society: Johns Hopkins University Press.

IEA. (2008). Deploying Renewables: Principles for Effective Policies. Retrieved March 15, 2010, from http://www.iea.org.

IEA. (2009). Technology Roadmap: Wind Energy. Retrieved March 20, 2010, from www.iea.org
IEA. (2010). R\&D Trends Worldwide. Retrieved February 2, 2010, from http://www.iea.org.
Inoue, Y., \& Miyazaki, K. (2008). Technological innovation and diffusion of wind power in Japan. Technological Forecasting \& Social Change., 75, 1303-1323. doi: 10.1016/j.techfore.2008.01.001

Kaldellis, J. K., \& Zafirakis, D. (2011). The wind energy (r)evolution: A short review of a long history. Renewable Energy, 36(7), 1887-1901. doi: 10.1016/j.renene.2011.01.002

Kobos, P. H., Erickson, J. D., \& Drennen, T. E. (2006). Technological learning and renewable energy costs: implications for US renewable energy policy. Energy Policy, 34(13), 1645-1658. doi: 10.1016/j.enpol.2004.12.008

Laitner, S., Bernow, S., \& DeCicco, J. (1998). Employment and other macroeconomic benefits of an innovation-led climate strategy for the United States. Energy Policy, 26(5), 425-432. doi: 10.1016/s0301-4215(97)00160-2

Lantz, E., \& Tegen, S. (2008, June 1-4). Variables affecting economic development of wind energy. Paper presented at the WINDPOWER 2008, Houston, Texas.

Lewis, J. I., \& Wiser, R. H. (2007). Fostering a renewable energy technology industry: An international comparison of wind industry policy support mechanisms. Energy Policy, 35(3), 1844-1857. doi: 10.1016/j.enpol.2006.06.005

Li, H., \& Chen, Z. (2008). Overview of different wind generator systems and their comparisons. Renewable Power Generation, IET, 2(2), 123-138. doi: 10.1049/iet-rpg:20070044

Loiter, J. M., \& Norberg-Bohm, V. (1999). Technology policy and renewable energy: public roles in the development of new energy technologies. Energy Policy, 27(2), 85-97. doi: 10.1016/s0301-4215(99)00013-0

Lu, X., McElroy, M. B., \& Kiviluoma, J. (2008). Global potential for wind-generated electricity. Paper presented at the the National Academy of Sciences.

Lund, P. D. (2007). Effectiveness of policy measures in transforming the energy system. Energy Policy, 35(1), 627-639. doi: 10.1016/j.enpol.2006.01.008

Lund, P. D. (2009). Effects of energy policies on industry expansion in renewable energy. Renewable Energy, 34(1), 53-64. doi: 10.1016/j.renene.2008.03.018

Maddaloni, J. D. (2005). Techno-economic Optimization of Integrating Wind Power into Constrained Electric Networks. Master of Applied Science, University of Victoria, Victoria, BC.

Manwell, J., McGowan, J., \& Rogers, A. (2002). Wind energy explained: Theory, design and application. England: John Willey \& Sons.

Marafia, A. H., \& Ashour, H. A. (2003). Economics of off-shore/on-shore wind energy systems in Qatar. Renewable Energy, 28(12), 1953-1963. doi: 10.1016/s0960-1481(03)00060-0

Markard, J., \& Petersen, R. (2009). The offshore trend: Structural changes in the wind power sector. Energy Policy, 37(9), 3545-3556. doi: 10.1016/j.enpol.2009.04.015

Miketa, A., \& Schrattenholzer, L. (2004). Experiments with a methodology to model the role of R\&D expenditures in energy technology learning processes; first results. Energy Policy, 32(15), 1679-1692. doi: 10.1016/s0301-4215(03)00159-9

Mohan Reddy, N., Aram, J. D., \& Lynn, L. H. (1991). The institutional domain of technology diffusion. Journal of Product Innovation Management, 8(4), 295-304. doi: 10.1016/0737-6782(91)90050-9

Moreno, B., \& López, A. J. (2008). The effect of renewable energy on employment. The case of Asturias (Spain). Renewable and Sustainable Energy Reviews, 12(3), 732-751. doi: 10.1016/j.rser.2006.10.011

Mowery, D., \& Rosenberg, N. (1979). The influence of market demand upon innovation: a critical review of some recent empirical studies. Research Policy, 8(2), 102-153. doi: 10.1016/0048-7333(79)90019-2

Mowery, D., \& Rosenberg, N. (1998). Path of Innovation: Cambridge University Press.
Neij, L. (1997, May 28-29). Experience curves and the di!usion of solar cells and wind power. Paper presented at the Technological and Industrial Renewal of the Energy Sector, Sweden.

Neij, L. (2008). Cost development of future technologies for power generation-A study based on experience curves and complementary bottom-up assessments. Energy Policy, 36(6), 22002211. doi: 10.1016/j.enpol.2008.02.029

NZWEA. (2012). Wind generation in New Zealand. Retrieved January 15, 2012, from http://windenergy.org.nz

Oliveira, W. S. (2010). Avaliação e gestão de projectos de energia eólica onshore. Master in Sustainable Energy Systems, University of Aveiro, Aveiro. Retrieved from http://hdl.handle.net/10773/5007

Oliveira, W. S., \& Fernandes, A. J. (2011). Renewable Energy: Impacts upon the Environment, Economy and Society. [Review]. Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Renewable Energy (JRSE), 2(11), 7-17.

Ortt, J. R., \& van der Duin, P. A. (2008). The evolution of innovation management towards contextual innovation. European Journal of Innovation Management, 11(4), 522-538.

Pablo, F. (2008). Renewable energy in a market-based economy: How to estimate its potential and choose the right incentives. Renewable Energy, 33(8), 1768-1774. doi: 10.1016/j.renene.2007.09.017

Pedden, M. (2006). Analysis: Economic impacts of wind applications in rural communities. Colorado: National Renewable Energy Laboratory. Retrieved from http://www.osti.gov/bridge.

Petersen, E. L., Mortensen, N. G., Landberg, L., Højstrup, J., \& Frank, H. P. (1998). Wind power meteorology. Part II: siting and models. Wind Energy, 1(2), 55-72.

Polinder, H. (2011, 24-29 July 2011). Overview of and trends in wind turbine generator systems. Paper presented at the Power and Energy Society General Meeting, 2011 IEEE.

Pryor, S. C., \& Barthelmie, R. J. (2010). Climate change impacts on wind energy: A review. Renewable and Sustainable Energy Reviews, 14(1), 430-437. doi: 10.1016/j.rser.2009.07.028

Rao, K. U., \& Kishore, V. V. N. (2010). A review of technology diffusion models with special reference to renewable energy technologies. Renewable and Sustainable Energy Reviews, 14(3), 1070-1078. doi: 10.1016/j.rser.2009.11.007

REN21. (2011). Renewables 2011 Global Status Report. Paris: Retrieved from http://www.ren21.net/Portals/97/documents/GSR/REN21_GSR2011.pdf.

Resch, G., Held, A., Faber, T., Panzer, C., Toro, F., \& Haas, R. (2008). Potentials and prospects for renewable energies at global scale. Energy Policy, 36(11), 4048-4056. doi: 10.1016/j.enpol.2008.06.029

RETScreen® International Clean Energy Decision Support Centre. (2009). Wind energy project analysis. Software manual, Chapter 2. Retrieved June 12, 2009, from www.retscreen.net.

Rogers, E. (1982). Diffusion of Innovation: The Free Press.
Rosa, A. V. (2009). Fundamentals of Renewable Energy Processes (2nd ed.). UK: Elsevier.
Rosseger, G. (1996). The economics of production and innovation: an industrial perspective: Pergamon Press.

Saidur, R., Islam, M. R., Rahim, N. A., \& Solangi, K. H. (2010). A review on global wind energy policy. Renewable \& Sustainable Energy Reviews, 14(7), 1744-1762. doi: 10.1016/j.rser.2010.03.007

Thothathri, R. (1999). The wind brought jobs and prosperity. New Energy, 4, 28-30.
Tidd, J., Bessant, J., \& Pavitt, K. (2005). Managing Innovation Integrating Technological, Market and Organizational Change.: John Wiley \& Sons.

TPWind. (2010a). European Technology Platform for Wind Energy. Retrieved April 20, 2010, from http://www.windplatform.eu/

TPWind. (2010b). Strategic Research Agenda. Retrieved April 20, 2010, from http://www.windplatform.eu/

Vestas. (2011). Annual report 2010 (pp. 152). Copenhagen: Vestas Wind Systems A/S.
Wagner, H. J., \& Epe, A. (2009). Energy from wind - perspectives and research needs. The European Physical Journal, 176, 107-114. doi: 10.1140/epjst/e2009-01151-2

Wiese, A., Kleineidam, P., Schallenberg, K., Ulrich, A. J., \& Kaltschmitt, M. (2010). Renewable power generation - a status report. Renewable Energy Focus, 11(4), 34-39, 42-45. doi: 10.1016/s1755-0084(10)70090-9

Wiser, R. H., \& Hand, M. (2010). Wind Power: How Much, How Soon, and At What Cost?
WWEA. (2011). World Wind Energy Report 2010. Retrieved April 11, 2011, from http://www.wwindea.org/home/images/stories/pdfs/worldwindenergyreport2010 s.pdf

Xu, J., He, D., \& Zhao, X. (2010). Status and prospects of Chinese wind energy. Energy, 35(11), 4439-4444. doi: 10.1016/j.energy.2009.06.058

CHAPTER 4

Wind Energy Conversion System

4.1 Introduction
4.2 History of wind energy
4.3 Wind energy technology
4.3.1 Wind energy conversion system
4.3.2 Wind energy converters
4.3.3 Technical design of converters
4.3.3.1 The design with gearbox
4.3.3.2 The design without gearbox
4.4 Physical basics applied to WECS
4.4.1 Energy extracted from wind
4.4.2 Power coefficients
4.4.2.1 Betz' law and the power coefficient $\left(\mathrm{C}_{\mathrm{p}}\right)$
4.4.2.2 Tip speed ratio
4.4.2.3 Power efficiency
4.5 Wind farm planning
4.5.1 Wind farm layout
4.5.2 Requirements for land area
4.5.3 Types of wind farm layout
4.6 Summary and conclusions
4.7 References

This chapter discusses about wind energy conversion system (WECS). It is discussed about wind energy history, technological aspects; types of wind energy converters are also presented. There is a summary of physics basics applied to WECS. Wind farms layouts with their own aspects are shown. Summary and conclusions are shown with respective references at the end.

4.1 Introduction

Wind energy systems have a multidisciplinary aspect and various perspectives to be analyzed. Any perspective approached, regardless of its background, will feel large gaps in its knowledge, areas where it does not even know what the question is, let alone where to go look for the answer. For Herbert, Iniyan, Sreevalsan, and Rajapandian (2007) wind energy system has a unique technical identity and unique demands in terms of the methods used for design. Remarkable advances in the wind power design have been achieved due to modern technological developments. Wind energy systems convert the kinetic energy ${ }^{27}$ of moving air into electricity or mechanical power. Wind turbines are commercially available in a vast range of sizes. The kinetic energy in the wind is a promising source of renewable energy with significant potential in many parts of the world (see Figure 3.11).

The energy that can be captured by wind turbines is highly dependent on the local average wind speed. Regions that normally present the most attractive potential are located near coasts, inland areas with open terrain or on the edge of bodies of water. Some mountainous areas also have good potential. In spite of these geographical limitations for wind energy project sitting, there is ample terrain in most areas of the world to provide a significant portion of the local electricity needs with wind energy projects. Wind turbines are getting larger because of the desire to increase the power output and the associated economy of scale.\therefore The power output is directly proportional to the swept area of the rotor (larger blades equal larger swept area, which results in higher power output). Costs are also decreased when using larger turbines because fewer turbines are needed to make up the wind farm, which means that; less roads to the turbines are required, less cabling between wind turbines is required, less maintenance (fewer turbines) is required, and there is less interference with agriculture (when compared to having several smaller wind turbine units in the same area producing the same power).

This chapter makes a compilation of wind energy conversion systems (WECS) in order to establish a context for better understanding the current wind energy conversion systems. It begins with a bit of history about wind energy and its milestones and application by human civilization until nowadays time (section 4.2). Section 4.3 refers to the technological aspects of wind energy technology by describing system parts or elements (section 4.3.1) within its conversion processes and types of wind energy converters (section 4.3.2) and the design of converters (section 4.3.3) used in actual power energy market. Section 4.4 is related to physical basics applied to wind energy conversion system, especially emphasis on energy extracted from wind (section 4.4.1); power coefficients (section 4.4.2). It this particular issue, we discuss about Betz'law and the power coefficient (sub-section 4.4.2.1), tip speed ratio (sub-section 4.4.2.2) and power efficiency (subsection 4.4.2.3). For a question of economy scale, wind power is more and more presented as an aggregated form, in a wind farm configuration, that is why we discuss about wind farms layout (section 4.5). Finally, the summary and conclusions of the whole chapter (section 4.6) and all references used are present at the end of this chapter.

[^16]
4.2 History of wind energy

The power of the wind has been utilized for at least 3,000 years. Wind energy first used for boat navigation on the Nile River $5,000 \mathrm{BC}$. During the same period, windmills pumped water in China. The first written information on wind turbines is based on a simple structural horizontal axis wind turbine during the region of Alexander the Great. It is known that the Persians used vertical axis wind turbines during 700 BC . Windmills are introduced to the western world at the beginning of the 12th century from Islamic world. Until the early 20th century wind power is used to provide mechanical power to pump water or to grind cereals (Şahin, 2004). According to Kaldellis and Zafirakis (2011) it was centuries ago when the technology of wind energy made its first actual steps - although simpler wind devices date back thousands of years ago - with the vertical axis windmills found at the Persian-Afghan borders around 200 BC and the horizontal-axis windmills of the Netherlands and the Mediterranean following much later (1300-1875 AD).

The wind has been used to power sailing ships for many centuries. Many countries owed their prosperity to their skill in sailing. The New World was explored by wind powered ships. Indeed, wind was almost the only source of power for ships until Watt invented the steam engine in the 18th Century. On land, wind turbines date back many centuries. It has been reported that the Babylonian emperor Hammurabi planned to use wind turbines for irrigation in the seventeenth century B.C. Heron of Alexandria ${ }^{28}$, who lived in the third century B.C., described a simple horizontal axis wind turbine with four sails which was used to blow an organ (see Figure 4.1). The Persians were using wind turbines extensively by the middle of the seventh century A.D. Theirs was a vertical axis machine with a number of radially-mounted sails (Johnson, 2001).

Figure 4.1 Concept of the windmill-device, or organ described by Heron of Alexandria. Source: Shepherd (1990, p. 5)

[^17]For Johnson (2001) these early machines were rightly simple and mechanically inefficient, but they served their purpose well for many centuries. Maintenance was probably a problem which served to keep many people at work. Their size was probably determined by the materials available. A need for more power was met by building more wind turbines rather than larger ones. The earliest recorded English wind turbine is dated at 1191. The first corn-grinding wind turbine was built in Holland in 1439. There were a number of technological developments through the centuries, and by 1600 the most common wind turbine was the tower mill. This application was so common that all wind turbines were often called windmills ${ }^{29}$ even when they actually pumped water or performed some other function. The tower mill had a fixed supporting tower with a rotatable cap which carried the wind rotor. The tower was usually built of brick in a cylindrical shape, but was sometimes built of wood, and polygonal in cross section. In one style, the cap had a support or tail extending out and down to ground level. A circle of posts surrounded the tower where the support touched the ground. The miller would check the direction of the prevailing wind and rotate the cap and rotor into the wind with a winch attached between the tail and one of the posts. The tail would then be tied to a post to hold the rotor in the proper direction. This process would be repeated when the wind direction changed. Protection from high winds was accomplished by turning the rotor out of the wind or by removing the canvas covering the rotor latticework (Sorensen, 1995).

The optimization of the rotor shape probably took a long time to accomplish. It is interesting to note that the rotors on many of the Dutch mills are twisted and tapered in the same way as modern rotors and appear to have nearly optimized the aerodynamic parameters necessary for maximum efficiency. The rotors presently on the tower mills probably do not date back to the original construction of the tower, but still indicate high quality aerodynamic engineering of a period much earlier than the present. Dutch settlers brought this type of wind turbine to America in the mid1700 's. A number were built but not in the quantity seen in Europe. Then in the mid-1800's a need developed for a smaller wind turbine for pumping water. The American West was being settled and there were wide areas of good grazing lands with no surface water but with ample ground water only a few meters under the surface. With this in mind, a distinctive wind turbine was developed, called the American Multibladed wind turbine. It had high starting torque and adequate efficiency, and suited the desired water pumping objective very well. If the wind did not blow for several days, the pump would be operated by hand. Since this is a reasonably good wind regime, hand pumping was a relatively rare occurrence (Bellarmine \& Urquhart, 1996).

An estimated 6.5 million units were built in the United States between 1880 and 1930 by a variety of companies. Many of these are still operating satisfactorily. By providing water for livestock, these machines played an important role in settling the American West (Kaldellis \& Zafirakis, 2011). For Brown (2003) the energy future belongs to wind. The world energy economy became progressively more global during the twentieth century as the world turned to fossil fuels. It promises to reverse direction and become more local during the twenty-first century as the world turns to wind.

[^18]Wind power will shape not only the energy sector of the global economy but the global economy itself. Some milestones in the history of wind machines are summary up in Table 4.1.

Table 4.1 Historical development of wind energy conversion system

Period	Machine	Application
640 AD	Persian wind mills	Grinding, etc.
Before 1200 AD	Chinese sail type wind mill	Grinding, water pumping, etc.
12th century AD	Dutch wind mills	Grinding, water pumping, etc.
1700 AD	Dutch wind mill to America	
1850 to 1930 AD	American Multi-bladed	Water pumping, 35 VDC power
1888 AD	Brush wind turbine; dia. 17 m , Tower 18.3 m	12 kW Electric power
1925 AD	Jacob's 3 bladed propeller; Dia.5m, 10$20 \mathrm{~m} / \mathrm{h}, 125$ to 225 rpm	0.8 to 2.5 kW at 32 VDC
1931 AD	Yalta Propeller, Russia; 2 bladed, dia. 100 ft .	100 kW
1941 AD	Smith-Putnam Propeller	1250 kW
	2 bladed, dia. $175 \mathrm{ft}, 30 \mathrm{~m} / \mathrm{h}, 28 \mathrm{rpm}$	
1925 AD	Savonius Machine	Mechanical or Electrical power
1931 AD	Darrius	Electrical power
1980s AD	2 bladed propeller (Commercially available)	225 kW
2000 AD	HAWT, VAWT	400-625kW, 1.2-3.2 MW

Source: adapted from Spera (1994) and Sorensen (1995)

Over more than 2,000 years, water and windmills powered the world's first industries with new technology and materials. Modern wind turbines are used to generate the clean electricity needed for lighting, heating, refrigeration and other uses. Wind energy is a rather young industry, but one which already makes good economic sense. It is a proven success and its use is increasing and the downward trend in its costs is expected to continue (Şahin, 2004). According to Leung and Yang (2012) currently, wind energy is a mature renewable energy source that has high potential to become a major primary source of energy in the future. Over the last decade, wind energy has developed by leaps and bounds \therefore During this period, the world wind power producing capacity has grown rapidly, with an average annual growth of 29%. The history of wind energy has grown from humble sails and simple mills, to become one of the most important renewable energy sources in the energy markets. While the history of wind energy is already a long one, we believe the biggest part is not written yet! The history of wind energy is still in its childhood, and we will see many changes over the coming decades.

4.3 Wind energy technology

4.3.1 WIND ENERGY CONVERSION SYSTEM

The wind energy technology is a system (called "Wind Energy Conversion System" - WECS) developed to capture the power in the wind (see section 4.4.1). The working principle of a wind turbine involves two main conversion processes, which are carried out by its main components: the rotor, which extracts kinetic energy from the wind and converts it into a mechanical torque, and the producing system, which converts this torque into electricity. This general working principle is depicted in Figure 4.2. Although this sounds rather straightforward, a wind turbine is a complex system in which knowledge or expertise from the areas of aerodynamics, mechanical, civil, electrical and control engineering comes together. Depending on the focus given to the WECS it can be includes economics and management sciences (e.g. wind farm management, economic evaluation of wind farms, etc.).

Figure 4.2 Wind energy conversion system (WECS). Source: Kim and Lu (2010, p. 120)

Susman and Glasmeier (2009) has divided wind energy systems into four major components. Each major component contains several sub-components, some of which are mentioned in the paragraphs below and in Figures 4.2 and 4.3.

1. Nacelles. The nacelle ${ }^{30}$ is the external shell or structure that houses all of the producing components, i.e., gearbox, shaft, generator, etc. Turbine size ranges from 1 kW to 7 MW . A rotor aerodynamically converts wind energy into mechanical energy on a slowly turning shaft. A gearbox increases the rotor-shaft speed for the generator, which converts shaft speed into electrical energy. Most turbines have gearboxes, but generators can run at rotor-shaft speed and not require a gearbox (e.g., Enercon). The yaw drive ${ }^{31}$ turns the turbine horizontally on its tower toward angles that maximize advantage of wind direction.

[^19]2. Rotors/Blades. Rotors typically have three blades that are secured to a hub by extenders. The dominant design for large wind turbines (above 100 kW) is variable speed and variable pitch ${ }^{32}$ control. Also, the, rotor is located on the wind side (upwind) of the tower. In such systems, a pitch drive turns the blades to optimal angles for wind speed and desired rotation speed, e.g., perpendicular to the wind at low speeds and parallel at high speeds. Rotor diameter generally increases with turbine size for application in low and medium wind locations.
3. Towers. For lighter wind power classes ${ }^{33}$, turbines need to be raised to heights where the average wind speed is greater and the effects of local obstructions are fewer. Utility scale towers are $60-100$ meters in height. Towers can be made of rolled tubular or latticestructured steel or cement. Most towers in the current world are made of rolled steel tube sections that are bolted together (Paredes, Barbat, \& Oller, 2011).
4. Balance of System Components. These components include transformers to step up voltage for transmission to electrical grids, underground cables, circuit breakers, power substations, supervisory control and data acquisition (SCADA ${ }^{34}$), fiber optic cables, a control station, crane pad, access roads, and maintenance buildings. It can also include miscellaneous items such as training, interest during construction and contingencies (Magoha, 2001).

According to Cheng, Lin, Bao, and Xue (2009) generally, a wind turbine producing system can be divided into two parts: mechanical section and electrical section (see Figure 4.3). Early development is focused on mechanical section with multistage gearbox; then it changed to more electrical part and less mechanical part, such as direct-drive and one-stage gearbox (see Figure 4.10). The trend is due to reduce the system mass and cost, mechanical loss and potential to wear out; increase the aerodynamic efficiency and control flexibility, then enhance the power quality. When we consider the WECS into these two main parts, it really makes sense to measure its working by the electromechanical efficiency, so it express a reduce way to analyze its electrical and mechanical power.

Figure 4.3 Main components of a wind turbine system. Source: Zhe, Guerrero, and Blaabjerg (2009, p. 1860)

[^20]The main components of a wind turbine system are illustrated in Figure 4.3, including a turbine rotor, a gearbox, a generator, a power electronic system, and a transformer for grid connection. Wind turbines capture the power from wind by means of turbine blades and convert it to mechanical power. It is important to be able to control and limit the converted mechanical power during higher wind speeds. The power limitation may be done either by stall control ${ }^{35}$, active stall 36, or pitch control (Blaabjerg, Chen, \& Kjaer, 2004).

For Hoffman and Molinski (2009) wind turbines are getting larger because of the desire to increase the power output and the associated economy of scale. The power output is directly proportional to the swept area of the rotor (larger blades equal larger swept area, which results in higher power output). Costs are also decreased when using larger turbines because fewer turbines are needed to make up the wind farm, which means that; less roads to the turbines are required, less cabling between wind turbines is required, less maintenance (fewer turbines) is required, and there is less interference with agriculture (when compared to having several smaller wind turbine units in the same area producing the same power).

Wind turbines are large structure and so weight is very important. Blade weight is especially important, as savings in rotor weights allow related reductions in the weight of the hub, nacelle and tower structure. A wide range of blade materials have been used for blade manufacture, including aluminum, steel, wood epoxy and glass-reinforced plastic (E-glass) (Griffin, 2002; Griffin \& Ashwill, 2003). The two last materials are now most common as they have the best combination of strength, weight and cost. It is essential to keep weights to the minimum, as the weight of a wind turbine has a strong influence on its overall cost (Oliveira \& Fernandes, 2012; Şahin, 2004). Dalili, Edrisy, and Carriveau (2009) studied about ice, insects, and erosion and conclude that these issues represent significant economic impact for commercial wind turbine operation, as they can decrease the aerodynamic efficiency of wind turbine blades, make happen shutdowns, and contribute to unscheduled maintenance requirements.

Towers are the other main component of WECS. They are as integral to the performance of the wind system as the wind turbine itself. The tower must be strong enough to withstand the thrust on the wind turbine and the thrust on the tower \therefore The tower must also support the weight of the wind turbine. Tall towers are preferred as they minimize the turbulence induced. Tall towers allow more flexibility in sitting. The most important factor is the ability of a tower to withstand the forces acting on it in high winds. Towers are rated by the thrust load they can endure without buckling. The thrust on the tower at high speeds depends on the rotor diameter of the wind turbine and its mode of operation under such conditions (Jenkins, 2001; Söder, 2001).

WECS can be classified is many aspects, so we consider broadly criteria used for wind energy conversion system technology (size of electrical power output; rotational speed of wind turbines and orientation of wind turbines). Table 4.2 presents the current classification of WECS.

[^21]Table 4.2 General criteria, classification and some applications of WECS

Source: based on Bansal, Bhatti, and Kothari (2002); Bansal, Zobaa, and Saket (2005), Haggett (2008) and RETScreen® International Clean Energy Decision Support Centre $(2008,2009)$

As we could see in Table 4.2 it is possible to classify WECS into broadly criteria categories, so, that is, (1) Size of useful electrical power output; (2) Rotational speed of wind turbines; (3) Orientation of wind turbines; (4) Location of wind turbines and (5) Distribution of electrical power output. The first category, size of useful electrical power output, the small, medium and large size, there is a range from 2 kW to 100 kW per turbine. This classification is usually applied to wind turbine alone, not to wind turbine cluster together (wind farms).

The second category, rotational speed of wind turbines, the wind turbines has developed since its first conception. The technological evolution has been pushing forward by nature of innovation process. The wind turbines typologies represent phases of wind industry evolution, in the beginning the CSCF machines were used for the implantation phase, after we can notice such a technological evolution in electronics aspects of wind turbines as VSCF and VSVF. These concepts have been improved in function, essentially, to avoid harmonics 37 and flicker 38 emissions on the grids (Chen \& Blaabjerg, 2009; Georgilakis, 2008) \therefore It is important to say that each of these typologies depending on grids requirements or connection, in case of on-grids applications. Most of the current grid connections are still in constant frequency situations. According to Polinder (2011) wind turbines are mostly connected to a 50 or 60 Hz grid.

The third category is usually when it is considered the direction of the axis of wind turbines in relation to the air flow; they can be classified as Horizontal Axis Wind Turbines (HAWT) and Vertical Axis Wind Turbines (VAWT). We must highlight into the history of wind energy technology the first steps were done with VAWT principle by the Persian people. During the technology evolution special emphasis was given to HAWT due to its applicability in different and better windy sites for this kind of technology.

The fourth category is related to the location of wind turbines, it is clear to understand the difference among onshore, nearshore and offshore. According to Mathew (2006) when a wind farm is about three kilometers away from the nearest shoreline it is regarded as an onshore wind farm. They are normally installed in the mountainous areas as the higher you go the faster the wind blows. The cliffs and mountains also contribute to speeding up the wind. Before setting up a wind farm much research has to be done because the smallest difference of placement could even double the turbines' output (Petersen, Mortensen, Landberg, Højstrup, \& Frank, 1998). If a wind farm lies on land within three kilometers to the nearest shore line or staying on the water within ten kilometers from the shore it is considered as nearshore wind farm. Sea shores tend to be very windy as the land and sea heat up and cool down at different rates, creating strong winds. The wind from the sea is also denser and therefore carries more energy than the same speed wind in mountainous terrain (Söder, 2001). If a wind farm is more than ten kilometers into the sea form a shore then it is considered to be offshore. Offshore turbines are found in deep sea waters and are usually much larger than their land-based siblings. The wind over the open sea is considerably faster and stronger than that of land because they have no obstacles in their way such as trees and

[^22]buildings to affect the wind speed. Their distance from land allows companies to create larger ones and they do not need to worry about any noise factors as they are a considerable distance from the shore (Haggett, 2008). The offshore wind farms are the most expensive to build as they need to be set in the open ocean where they are subjected to all the earth's elements, therefore raising the maintenance cost of offshore wind farms \therefore The cost involved in transferring the electricity from the turbine to the land could be large as there is a large distance to be covered (Beurskens, Andersen, Petersen, \& Garrad, 1996). Offshore wind farms are much larger than the onshore counterparts as there is much more space in the open sea as opposed to land.

The fifth category, distribution of electrical power output, it is related to the distribution of the electrical production by wind turbine or wind farm. The main criterion is the grid connection of the power system. If the WECS is not connected to any grid, it is named off-grid applications. This has been applied to remote sites when the connection to an electrical grid is too much expensive to the whole system, considering the power output of this same power system. But if the wind power system must be connected into a grid for power distribution, it can be classified into isolated-grid and central-grid. The main differences between isolated-grid and central-grid applications

We must clarify that these categories of WECS classification can be expanded due to its evolutive nature and applications. It is not a rigid classification and it is far of being concluded. More categories can be added, it depends on the way we want to analyze the power system as a whole or as its parts. So what it is shown in Table 4.2 is the most common and useful classification of current WECS, as we know it. Some aspects of WECS configuration must be known as essential technical aspects of the power system, as swept area of blades, rotor diameter, rotor blade (2 or 3 blades) and hub height (see Figure 4.4).

Figure 4.4 HAWT system schematic. Source: RETScreen ${ }^{\circledR}$ International Clean Energy Decision Support Centre (2009, p. 8)

4.3.2 WIND ENERGY CONVERTERS

A wind turbine is a rotating machine which converts the kinetic energy in wind into mechanical energy. If the mechanical energy is then converted to electricity, the machine is called a wind generator, wind turbine, wind power unit (WPU), wind energy converter (WEC), or aerogenerator. Today there are various types of wind energy converters in operation as shown in Figure 4.5. The most common device is the horizontal axis wind energy converter, also named as Horizontal Axis Wind Turbine (HAWT). The main aspect of this type of system is the rotor blades optimized by few aerodynamics controls, which its function is primary make the regulation of the position of their long axis (pitch-regulation). Another less expensive way to control and regulate it is related to the design of the blades in such manner that the air streaming along the blades surface will go into turbulence at a certain speed (stall-regulation). Therefore, it is only applied for electricity production projects purpose which needs "high speed engines" to keep the gear transmission and the generator small and cheap (Hau, 2006, p. 102; Mathew, 2006, p. 34).

Figure 4.5 Different types of WECS. Source: Wagner and Tryfonidou (2005, p. 192)

The multiblade wind energy converter is another type of horizontal axis rotor. As windmills in the beginning of wind power history utilization have a high starting torque which makes them suitable for driving mechanical water pumps. The number of rotations is low, and the blades are made from simple sheets with an easy geometry. For pumping water, a rotation regulating system is not necessary, but there is a mechanical safety system installed to protect the converter against storm damage. In order to increase the number of rotations, this type of converter had been equipped with aerodynamically more efficient blades facilitating the production of electricity, where the area of a blade is smaller. The mechanical stability of such "slow speed converters" is very high; some have had operation periods of more than fifty years (Shepherd, 1990).

A third type of converter is known as Darrieus, they are a type of vertical axis rotor engines. Their main advantage is that they do not depend on the direction of the wind. To start working, they need the help of a generator working as a motor or the help of a Savonius rotor installed on top of the vertical axis. In the 80 s and 90's years, a reasonable number of Darrieus-converters had been installed in US, especially in California, but in the rest of the world does not happen the same. One possible reason could be the noise produced when they were working in comparison with horizontal axis converters. It is important to highlight the disadvantage about the increasing nature of wind speed with height, which possible makes horizontal axis rotors on towers more attractive at economical point of view. Amazingly this type of rotor is extensively applied for R\&D activities, pumping water, and other related purpose for conversion of kinetic power into mechanical ones (Eriksson, Bernhoff, \& Leijon, 2008).

The Savonius rotor is used only for research activities, e.g. as a measurement device especially for wind speed, it is not used for power production. In fact, the Savonius rotors can be said to be high productivity and low technicality wind machines . \therefore It is probably the reason why they are often used for water pumping, especially in poor countries and in isolated sites (Menet, 2004). Therefore it will not be discussed in detail here. There have been many designs of vertical axis windmills over the centuries and currently the vertical axis wind turbines can be broadly divided into three basic types, namely (1) Savonius type, (2) Darrieus type, and (3) H-Rotor type. Take a look in Figure 4.6 below.

Figure 4.6 Modern VAWT types. Source: Islam, Ting, and Fartaj (2008, pp. 1091-1095) (a) Savonius-type VAWT; (b) Curved-blade (or 'Egg-beater' type) Darrieus VAWT; (c) Straight-bladed Darrieus VAWT; (d) H-Rotor-type VAWT.

The last technique is known as up-stream power station. The up-stream power station's principle working is a scheme of sequential power conversion inter-connected. The air is heated by solar radiation under a low circular transparent or translucent roof open at the periphery; the roof and the
natural ground below it form a solar air collector. In the middle of the roof is a vertical tower with large air inlets at its base. The joint between the roof and the tower base is airtight. As hot air is lighter than cold air it rises up the tower. Suction from the tower then draws in more hot air from the collector, and cold air comes in from the outer perimeter. Continuous 24 hours-operation can be achieved by placing tight water-filled tubes or bags under the roof. The water heats up during daytime and releases its heat at night. These tubes are filled only once, no further water is needed. Thus solar radiation causes a constant updraft in the tower. The energy contained in the updraft is converted into mechanical energy by pressure-staged turbines at the base of the tower, and into electrical conventional generators (Schlaich, Bergermann, Schiel, \& Weinrebe, 2003).

Two major technological developments have recently occurred in the field of wind energy. First, a substantial extension which in turn made further reducing the cost of wind energy turbine: individually become bigger and so has typical dimensions. For modern wind turbines of multi-MW class, both the height of the rotor diameter and nacelle are on the order of 100 m . Hence, upright, the tip of the blade can reach heights of up to 150 m . development of scale of individual wind turbines placed on the market is represented in Figure 4.7.

Figure 4.7 Growth in size of commercial wind turbine designs. Source: Morthorst and Shimon Awerbuch (2009, p. 39)

The second important development in wind turbine technology is the change of production constant speed for a variable speed system of production. Of course, the difference in wind speed constant turbine, the rotor rotates at a constant speed while in a variable speed wind turbine; the rotor rotation speed can vary and be controlled, of course within a certain limit projected. In recent years,
many manufacturers have the concept of conventional speed constant to the variable speed concept. Variable speed systems are technically more advanced than the constant-speed systems. Consist of more components require additional control systems and, therefore, a higher cost. However, also have several advantages compared to systems of constant speed, as greater energy efficiency, a reduction in noise emission and mechanical loads and better controllability of active and reactive power (Jenkins, 2001; Manwell et al., 2002).

According to Amirat and Benbouzid (2007) the fixed and variable speed for WECS has its own peculiarities. In a fixed speed WECS, the turbine speed is determined by the grid frequency, the generator pole pairs number, the machine slip, and the gearbox ratio. A change in wind speed will not affect the turbine speed to a large extent, but has effects on the electromagnetic torque and hence, also on the electrical output power. With a fixed speed WECS, it may be necessary to use aerodynamic control of the blades to optimize the whole system performance, thus introducing additional control systems, complexities, and costs \therefore As for the producing system, nearly all wind turbines installed at present use either one of the following systems: squirrel-cage induction generator 39 (SCIG), doubly-fed (wound rotor) induction generator ${ }^{40}$ (DFIG), direct-drive synchronous generator ${ }^{41}$ ($D D S G$). The variable speed production system is able to store the varying incoming wind power as rotational energy, by changing the speed of the wind turbine, in this way the stress on the mechanical structure is reduced, which also leads to that the delivered electrical power becomes smoother. The control system maintains the mechanical power at its rated value by using the Maximum Power Point Tracking Technique ${ }^{42}$ (MPPT). These WECS are generally divided into two categories: systems with partially rated power electronics and systems with full-scale power electronics interfacing wind turbines.

For Li and Chen (2008) WECS can be classified considering the rotation speed, into fixed speed, limited variable speed and variable speed. For variable speed wind turbines, based on the rating of power converter related to the generator capacity, they can be further classified into wind generator systems with a partial-scale and a full-scale power electronic converter. In addition, considering the drive train components, the wind turbine concepts can be classified into geared-drive and directdrive wind turbines. In geared-drive wind turbines, one conventional configuration is a multiplestage gear with a high-speed generator; the other one is the multibrid concept which has a singlestage gear and a low-speed generator. In the last decade, many power converter techniques have been developed for integrating with the electric grid. The use of power electronic converters allows for variable speed operation of the wind turbine, and enhanced power extraction. In variable speed operation, a control method designed to extract maximum power from the turbine and provide constant grid voltage and frequency is required. A wide range of control schemes, varying in cost

[^23]and complexity, have been investigated for all the previously considered conversion systems. All control schemes integrated with the power electronic converter are designed to maximize power output at all possible wind speeds (El-helw, Tennakon, \& Shammas, 2006). The wind speeds range from the cut-in speed ${ }^{43}$ to the rated wind speed ${ }^{44}$, both of which are specific to the size and type of generator used in the WECS. There is a continuing effort to make converter and control schemes more efficient and cost effective in hopes of an economically viable solution to increasing environmental issues (Hau, 2006; Li \& Chen, 2008).

The wind turbine generators can be classified into four categories well known by the electronics market. These categories are: Induction Generators (IG), Doubly-Fed Induction Generators (DFIG), Field-Excited Synchronous Generators (FESG) and Permanent Magnet Synchronous Generators (PMSG). It is not the focus of this thesis explains each one in details, but we try to explain broadly the main differences of each category. We start with the Induction Generator. It can be called Asynchronous Generator (AG), is a type of alternating current electrical generator. The generator's rotor is placed within a rotating magnetic field, and the rotor is then spun by an external source of mechanical energy so that it rotates more rapidly than the magnetic field. Induction generators are less complex and more rugged than other types of generators and can continue effectively producing power if their rotor speed changes. An induction generator needs an external supply of electricity to create its rotating magnetic field and start operating, but once it has started producing power it can continue running on its own provided it has a source of mechanical energy (Cheng et al., 2009; de Freitas, Menegaz, \& Simonetti, 2011).

Meanwhile, the DFIG are electric motors that have windings on both stationary and rotating parts, where both windings transfer significant power between shaft and electrical system. Doubly-fed machines are used in applications that require varying speed of the machine's shaft for a fixed power system frequency. The DFIG producing principle is widely used in wind turbines. It is based on an induction generator with a multiphase wound-rotor and a multiphase slip-ring assembly with brushes for access to the rotor windings. It is possible to avoid the multiphase slip-ring assembly (e.g. with brushless doubly-fed electric machines), but there are problems with efficiency, cost and size \therefore A better alternative is a brushless wound-rotor doubly fed electric machine (Muller, Deicke, \& De Doncker, 2002).

The FESG are able to effectively convert mechanical energy applied to its axis, but it is necessary that the field winding located in the rotor of the machine is powered by a voltage source so that by rotating the magnetic field produced by the rotor poles can move on to the drivers of the stator windings. The electric current used to power the field is called the excitation current. When the generator is operating in isolation from an electrical system (i.e., off-grid applications), the excitement of the field will control the voltage produced.

[^24]In the case of PMSG, they are electrical generators where the excitation field is provided by a permanent magnet instead of a coil ${ }^{45}$. In a PMSG, the magnetic field of the rotor is produced by permanent magnets. Other types of generators use electromagnets to generate a magnetic field in a rotor winding. The direct current in the rotor field winding is fed through a slip-ring assembly or provided by a brushless exciter on the same shaft.

Figure 4.8 Categorization of electrical generators applied to WECS. Source: based on Hansen, Helle, et al. (2001); Hansen, Madsen, et al. (2001) and Yao and Harley (2009)

Due to the nature of technology`s evolution, the future is difficult to predict. However, one issue is certain; the demand of renewable energy technologies keep growing vertically and WECS is an important RETS in any energy portfolio. Innovations are the results of market needs, push demand nature \therefore Many concepts and protypes will be considered and even applied but only those that fulfill market demand and show significant performance will survive. There have been great developments in WECS, but this has not finished yet.

Many WECS with different generators and power electronic converters have to be analyzed in function of the lowest cost of energy produced and best electromechanical efficiency reached. Different types of WECS have quite different performances and controllability, which theoretically results into different costs per kWh produced, which is the main priority. Table 4.3 shows the advantages and disadvantages of generator types studied.

[^25]Table 4.3 Advantages and disadvantages of generator types

Types	Advantages	Disadvantages
	* Eliminates the need for separate excitation or cooling systems. * Flexibility in design allows for smaller and lighter designs. * Generator speed can be regulated without the need for gears or gearbox. * Higher output level may be achieved without the need to increase generator size * Lower maintenance cost and operating costs, bearings last longer. * No significant losses produced in the rotor * Very high torque can be achieved at low speeds.	* High temperatures and sever overloading and short circuit conditions can demagnetize permanent magnets. * Higher initial cost due to high price of magnets used. * Permanent magnet costs restrict production of such generators for large scale grid connected turbine designs. * Use of diode rectifier in initial stage of power conversion reduces the controllability of overall system.
	* Excellent damping of torque pulsation caused by sudden wind gusts. * Higher availability especially for large scale grid connected designs. * Known as rugged machines that have a very simple design. * Lower capital cost for construction of the generator. * Relatively low contribution to system fault levels.	* Generator requires reactive power and therefore increases cost of initial AC-DC conversion stage of converter. * Increased control complexity due to increased number of switches in converter. * Increased converter cost since converter must be rated at the full system power. * May experience a large in-rush current when first connected to the grid. * Results in increased losses through converter due to large converter size needed for IG.
	* Allows converter to generator or absorb reactive power due to DFIG used. * Control may be applied at a lower cost due to reduced converter power rating. * Improved efficiency due to reduced losses in the power electronic converter. * Reduced converter cost, converter rating is typically 25% of total system power. * Suitable for high power applications including recent advances in offshore installation.	* Increased capital cost and need for periodic slip ring maintenance. Increased control complexity due to increased number of switches in converter Increased slip ring sensitivity and maintenance in offshore installations. * Is not direct drive and therefore requires a maintenance intensive gearbox for connection to wind turbine. * Stator winding is directly connected to the grid and susceptible to grid disturbances.
	* Allow for independent control of both real and reactive power. * Allow for reactive power control as they are self-excited machines that do not require reactive power injection. * Direct drive applicable further reducing cost since gearbox not needed. * Minimum mechanical wear due to slow machine rotation. * Readily accepted by electrically isolated systems for grid connection.	* Magnet tends to become demagnetized while working in the powerful magnetic fields inside the generator. * Magnet used which is necessary for synchronization is expensive. * Requires synchronizing relay in order to properly synchronize with the grid. * Typically have higher maintenance costs again in comparison to that of an IG.

[^26]Hansen and Hansen (2007) the wind turbine technology has matured during the last ten years. Wind turbine technology objectives have changed the drives philosophy from convention to optimization issues, and taking into consideration the operating regime and market environment. In addition to wind turbines are increasing their sizes (see Figure 4.7). Wind turbine design concepts are progressing from fixed speed, stall control and drive trains with gearboxes to variable speed, pitch control and drive trains with or without gearboxes.\therefore The present general availability of lowcost power electronics increasingly supports the trend towards variable speed wind turbines. Table 4.4 is a list of some technology improvements and the implementation of best practices from related products and industry sectors that have helped to reduce the cost of wind energy during the last decade.

Table 4.4 Examples of technological improvements in the wind industry in the last decade

Feature	Comments
Advanced airfoils	Driven by the wind industry to meet its special needs. A key accomplishment for the industry.
Direct electrical drive	Adapted initially from the hydro electric industry (large low speed multi-pole generators) and advanced electric rail technology (linear inductive) with significant wind industry innovation and commercialization to meet large and small turbine requirements.
Fiber glass RTM methods	Advances driven by wind power needs.
Full span pitch control	Adapted from the helicopter industry.
Large diameter pitch bearings	Adaptation of commercial bearings driven by specific wind turbine needs.
Large scale manufacture	Large HAWTs are a multi-billion \$ industry and must use modern manufacturing techniques.
Numerical simulation techniques	Significant wind industry advances and adaptations of commercial software for other rotating structures.
Power electronics	Adapted from the variable speed drive product sector with some wind industry innovation. The power electronics sector is a vital industry sector and the wind industry continues to benefit from technology improvements and cost reductions.
Spherical cast hubs	Adopted for all large HAWT rotors.
Steel welding quality control	Adoption of high quality steel fabricating industry "best practices". Important for fatigue strength.
Tower feedback in controls	Part of a system approach to controls. Software and hardware costs for sophisticated controls are now more affordable.
Variable speed	Wind industry driven. Reliable operation of turbines at variable speed with full-span pitch control to limit power output is a major accomplishment for the industry.

Source: adapted from Malcolm (2003) and Oliveira and Fernandes (2011a)

The wind turbine generators can be also distinguished by whether there is a gear box between the turbine and the generator. These aspects are present at section related to technical design of converters.

4.3.3 TECHNICAL DESIGN OF CONVERTERS

4.3.3.1 THE DESIGN WITH GEARBOX

The wind energy conversion systems have changed so much since the beginning of the utilization on wind power as a way to substitute man power in humankind activities. So gearbox had to walk together its (r)evolution. The design was adapted according to its necessity. The efficiency and safety are the main drive of converter`s design. The first to be shown in general aspects is the design with gearbox (see Figure 4.9), also called the Danish design as this is where the history most developed.

Figure 4.9 The classic design. Source: Wagner and Tryfonidou (2005, p. 197)

This design is characterized by the split shaft system. A wind turbine gearbox must be robust enough to handle the frequent changes in torque caused by changes in the wind speed. The gearbox requires a lubrication system to minimize wear. The gearbox converts slow rotating into high torque power which gets from the wind turbine rotor - and high speed, low torque power, which is use for the electric generator (Ragheb \& Ragheb, 2010). The transmission of torque to the generator is shut off by means of a large disk brake on the main shaft. A mechanical system controls the pitch of the blades which can also be used to stop the operation of the wind turbine. There is a hydraulic system for pitch mechanism control \therefore This system requires a yearly basis maintenance and constant pressure monitoring, along with the gearbox which is lubricated with oil (Arabian-Hoseynabadi, Tavner, \& Oraee, 2010). A small electric motor is used for each blade pitch angle controlled in the case of applications without a main brake disk. Wind speed and direction measuring devices are located at the back of the hub head. The Danish concept is well-known design in the wind power industry worldwide (Tavner, Xiang, \& Spinato, 2007).

4.3.3.2 THE DESIGN WITHOUT GEARBOX

In wind power industry is more and more necessary to reduce weight and cost for wind turbine components - so a right way is develop another working mechanism to WECS as a producing system. The design without gearbox, usually called gearless wind turbine. This design has just one stationary shaft. It is important to say that rotor blades and the electric generator are mounted on the same shaft. The electric generator is in the shape of a large spoked wheel with a certain number of pole pairs ${ }^{46}$, around the outer circumference and stators fixed on a stationary arm around the wheel. The wheel is fixed to the blade support, so it rotates slowly with the blades (Gandy, 2009). So, it becomes unnecessary a gearbox, rotating shafts or a disk brake. These omissions of mechanical parts simplify and reduce the cost of the maintenance and production of the WECS as a whole. This design as a typical minimized converter system (compared to others) needs to be automated, in this exact case; a central computer controls the pitch control and hub direction, which operates the small directional motors. \therefore DD wind turbine is an answer by Enercon manufacturer, which adopts an annular multiple poles generator. This type of generator significantly reduces the number of moving parts, lowering the amount of maintenance work/cost and associated turbine downtime, which increases the availability in general (Hansen, Helle, et al., 2001; Ragheb \& Ragheb, 2010).

Figure 4.10 Scheme of a nacelle without gearbox (Model Enercon 1.5 MW). Source: Ackermann and Söder (2002, p. 93)

As we can see in Figure 4.10 the rotor shaft is directly connected to the generator stator, which can reduce the electromechanical losses, or in other words, increases the overall efficiency of the WECS.

[^27]
4.4 Physical basics applied to WECS

4.4.1 ENERGY EXTRACTED FROM WIND

The quantity of power captured from a wind turbine is specific to each technical features of wind energy conversion system but we can generalize by:

$$
\begin{equation*}
P_{w}=\frac{1}{2} \rho \mathrm{~A} v_{w}^{3} \quad\left[\mathrm{~W} / \mathrm{m}^{2}\right] \tag{4.1}
\end{equation*}
$$

Where P_{w} is the turbine power, ρ^{47} is the air density, A is the swept turbine area and v_{w} is the wind speed. The air density (ρ) is calculated by the formula (Rehman \& Al-Abbadi, 2005):

$$
\begin{equation*}
\rho=\frac{P}{R \times T} \quad\left[\mathrm{~kg} / \mathrm{m}^{3}\right] \tag{4.2}
\end{equation*}
$$

Where P is the air pressure (Pa or $\mathrm{N} / \mathrm{m}^{2}$); R is the specific gas constant for air $(287 \mathrm{~J} / \mathrm{kg} \mathrm{K})$; and T is the air temperature in Kelvin $\left({ }^{\circ} \mathrm{C}+273\right)$.

As we can notice in Eqn 4.1 the output power is directly proportional swept area by rotor and the air density. Regarding to wind speed, the output power is just the cube of it!!! So we can sure highlight the importance of wind resource. Currently, to be cost-competitive, wind farms must be sited in high quality wind regimes, normally a wind power class of 4 or higher, preferably 5 or higher. Figure 4.11 shows a graph with the comparison of wind speed/power classes to capacity factor.

The capacity factor of a wind power plant is the percentage of a year it would need to run at rated power to generate its annual output. As power output, and therefore production, is related to the cube of the wind speed, slightly higher average wind speeds, or wind regimes with a higher variability in the high speed range, can generate significantly more power. The very best wind sites tend to be class 6 , according to Figure $3.11 \therefore$ A class 4 site is considered marginal by economic point of view, especially when the wake effects of other wind turbines within a wind farm are taken into account. The cost of wind-produced electricity is driven by several factors. The cost of wind power changes as assumptions regarding to capacity factor, capital cost, financing terms, and operation and maintenance routines. Therefore, in today's market, a capacity factor of about 25% can be considered a lower bound, unless the combined capital and operating costs of wind turbines drop down (Khatib, 2003).

[^28]

Figure 4.11 Comparison of average wind speed and wind power class to capacity factor. Source: McGowan and Conners (2000, p. 152)

Wind speed and power class where the WECS is installed have a great influence on the system overall. That is why the wind resources analysis is so important for a better or lowest cost of energy produced by a wind power plant. According to Georgilakis (2008) wind power plants generate electricity when the wind is blowing, and the plant output depends on the wind speed. Wind speeds cannot be predicted with high accuracy over daily periods, and the wind often fluctuates from minute to minute and hour to hour. \therefore Consequently, electric utility system planners and operators are concerned that variations in wind power plants output may increase the operating costs of the electrical system as a whole (taking into consideration on-grid applications). The energy production from WECS is highly dependent on the wind speed at hub height. Usually, the wind speed measurements are made at heights much lower than the hub heights of modern wind machines. For energy production from such machines, the wind speed at hub height is calculated using the $1 / 7^{\text {th }}$ wind power law that may underestimate or overestimate the wind speed, which ultimately will provide wrong estimates of energy production (Rehman \& Al-Abbadi, 2005).

4.4.2 Power coefficients

As we understand, the WECS is a conversion chain processes by a wind mechanical and electrical parts. The power coefficients are so important in order to analyze the WECS performance as a whole. It is necessary for wind farms management and ensures a safety and profitable range for cost of energy produced by the power plant. So we easily can conclude that during this process we have to face its limitations (electromechanical and Physics` laws). The next sub-sections (4.4.2.1, 4.4.2.2 and 4.4.2.3) discuss about these key issues.

4.4.2.1 BETZ' LAW AND THE POWER COEFFICIENT (C_{P})

A German physicist called Albert Betz concluded in 1919 that no WECS can convert more than 16/27 (59.3\%) of the kinetic energy of the wind into mechanical energy turning a rotor. Nowadays this is known as the Betz Limit or Betz' Law 48. The theoretical maximum power efficiency of any design of wind turbine is 0.59 (i.e. no more than 59% of the energy carried by the wind can be extracted by a wind turbine). This is called the "maximum power coefficient" and is defined as:

$$
\begin{equation*}
C_{p_{\max }}=\frac{16}{27} P_{w} \cong 0.593 P_{w} \quad\left[\mathrm{~W} / \mathrm{m}^{2}\right] \tag{4.3}
\end{equation*}
$$

The power coefficient $\left(C_{p}\right)$ is defined as the power extracted by rotor $\left(P_{w_{\text {out }}}\right)$ to power available in the wind $\left(P_{w}\right)$ is given by:

$$
C_{p}=\frac{P_{w_{o u t}}}{\frac{1}{2} \rho \mathrm{~A} v_{w}^{3}}
$$

The power coefficient must consider the mechanical (η_{m}) and electrical (η_{e}) transmission efficiency. So the electrical power output is defined by Yao, Bansal, Dong, Saket, and Shakya (2011):

$$
\begin{equation*}
P_{w_{(e)}}=C_{p} \eta_{m} \eta_{e} P_{w} \quad\left[\mathrm{~W}_{(\mathrm{e})} / \mathrm{m}^{2}\right] \tag{Eqn}
\end{equation*}
$$

Also, wind turbines cannot operate at this maximum limit or nominate rated power in term aerodynamically. There is only one C_{p} value to each turbine type and it is a function of wind speed that the turbine is operating in. When are inputted many as often engineering requirements of a wind turbine - strength and durability in particular - the real world limit reached is much less than the Betz Limit with values in the range of $0.35-0.45$ common even in the best designed wind turbines (Mathew, 2006). Whereas other factors in a complete WECS - e.g. the gearbox, bearings, generator and so on - only $10-30 \%$ of the power of the wind is ever actually converted into usable electricity. Hence, the power coefficient needs to be factored in Eqn 4.1 and the extractable power from the wind is given by:

$$
\begin{equation*}
P_{w_{\text {avail }}}=\frac{1}{2} \rho C_{p_{\text {max }}} \mathrm{A} v_{w}^{3} \eta_{m} \eta_{e} \quad\left[\mathrm{~W}_{(\mathrm{e})} / \mathrm{m}^{2}\right] \tag{4.6}
\end{equation*}
$$

[^29]If we consider the mechanical $\left(\eta_{m}\right)$ and electrical $\left(\eta_{e}\right)$ transmission efficiency into the overall efficiency of WECS ($\eta_{\text {wecs }}$) and rewriting the Eqn 4.6, we must have:

$$
\begin{equation*}
P_{w_{\text {avail }}}=\frac{1}{2} \rho C_{p_{\max }} \mathrm{A} v_{w}^{3} \eta_{\text {wecs }} \quad\left[\mathrm{W}_{(\mathrm{e})}\right] \tag{4.7}
\end{equation*}
$$

Rosa (2009) explains the difference among power density $\left(P_{w}\right)$, available power density $\left(P_{A}\right)$ and power delivered $\left(P_{D}\right)$. When it is necessary to analyze the performance of WECS these aspects must be well-defined (see Figure 4.12).

The symbol, P, in this chapter stands for both power and power den-sity-that is, power per unit area, depending on the context. The lower case, p, is reserved for pressure.

The following subscripts are used:

$$
\begin{array}{ll}
P_{W}=\frac{1}{2} \rho v^{3} & \begin{array}{l}
\text { "Power density in the wind." This is the } \\
\text { amount of energy transported across a } \\
\text { unit area in unit time. }
\end{array} \\
P_{A}=\frac{16}{27} \frac{1}{2} \rho v^{3} & \begin{array}{l}
\text { "Available power density." This is the } \\
\text { theoretical maximum amount of power } \\
\text { that can be extracted from the wind. }
\end{array} \\
P_{D}=\frac{16}{27} \frac{1}{2} \rho v^{3} A \eta & \begin{array}{l}
\text { "Power delivered." This is the power that } \\
\text { a wind turbine delivers to its load. }
\end{array}
\end{array}
$$

Figure 4.12 Principles of aerodynamics applied to WECS. Source: Rosa (2009, p. 730)

It is not the focus of this sub-section discusses about aerodynamics issues ${ }^{49}$, but when we talk about wind energy conversion system it becomes impossible not to discuss about something related to. Wind is the air in motion and it is a type of energy (kinetic energy), and rotational movement is Physics Applied, which means Aerodynamics.

4.4.2.2 TIP SPEED RATIO

The rotor is a rotate part of WECS, so the rotor efficiency is a function of the rotor turning rate. The tip speed ratio $(T S R)$ is given by dividing the speed of the tips of the turbine blades ($\pi D N_{r s}$) by

[^30]the speed of the wind $\left(v_{w}\right)$. If the rotor turns too slowly, the efficiency drops off because too much wind unaffected by the wind turbine blades. However, if the rotor turns too fast, efficiency will reduce as the turbulence caused by one blade increasingly affects the following blades. The TSR can be calculated by Yao et al. (2011):
\[

$$
\begin{equation*}
\operatorname{TSR}(\lambda)=\frac{\pi D N_{r s}}{60 v_{w}} \quad[-] \tag{4.8}
\end{equation*}
$$

\]

Where $\left(N_{r s}\right)$ is rotor speed in $\mathrm{rpm},(D)$ is the rotor diameter (m); and $\left(v_{w}\right)$ is the wind speed $(\mathrm{m} / \mathrm{s})$ upwind of the turbine.

4.4.2.3 POWER EFFICIENCY

In a power plant is an important factor to be analyzed is the power efficiency of the entire system. A classical way to take this measure is through the power input into comparison with power output. In WECS, obviously, the wind farm efficiency is a function of the turbine type employed, the wind farm configuration and wind speed \therefore Estimation of the overall efficiency of a wind farms of crucial importance to a wind farm design procedure since due to its explicit relation to total annual power converted; it is considered a vital trade-off between performance and cost analysis (Kiranoudis, Voros, \& Maroulis, 2001).

According to Krokoszinski (2003) the efficiency and effectiveness of wind farms must be evaluated based on the losses which can be classified into downtime losses, speed losses and quality losses. Each of these losses affects the wind power plant in terms of power efficiency. In downtime is related to the availability of wind turbines' working or producing electricity. As much as downtime losses less electricity are produced. In the case of speed losses are linked to power curve of wind turbines and wind site profile. The quality losses are linked to electricity actual produced and useful. It is a relation of the valuable production time and net operation time. Grauers (1996) suggests a calculation method to find the power efficiency applied to wind power plants.

$$
\begin{equation*}
\eta_{\text {wecs }}=1-\frac{P_{w_{a v}}}{L_{w_{a_{v}}}} \tag{4.9}
\end{equation*}
$$

where ($P_{w_{a v}}$) is average power production by WECS and ($L_{w_{a_{v}}}$) is the average losses of WECS.

4.5 Wind farm Planning

The wind farm planning is a long term process and involves several economic agents ${ }^{50}$ during the lifetime of the power plant. The planning process can be classified into five phases. These phases are: (1) Pilot study, (2) Site evaluation, (3) Planning, (4) Realization and (5) Operation (see Figure 4.13). The phases 1 and 2 can happen simultaneously what makes wind farm developers save time in the planning process as a whole. In the pilot study phase begins with site selection. The most important issues for this step are wind resources and access to the right site chosen. Due to these two drivers, the legal aspects and initial economics analysis within WEC technology are performance. In this phase is also suggested to be done a pre-feasibility study for economic evaluation.

Figure 4.13 Flowchart of wind power during the project lifetime. Source: WWEA (2011)

In the site evaluation phase the estimation of local wind conditions are especially crucial in the selection of the site. In addition to an evaluation of the wind speed based on general meteorological data, wind prediction also requires an analysis of the orography of the site selected, i.e. the structure of the terrain, the roughness of the surface, and the type and size of the terrain's

[^31]boundaries. Furthermore, any individual obstacles - such as rows of trees, buildings, and any other wind turbines - must be registered accurately (Meah \& Ula, 2008). In this stage it is necessary to determine accurately the potential of local wind energy production. Several methods are commonly used to measure, simulate, and evaluate wind conditions \therefore Depending on local conditions and the quality of any wind and data available for the region - such as from measuring stations - a methodology will be chosen, and a decision will be made as to whether additional wind measurements are required to confirm the initial findings (Al-Yahyai, Charabi, \& Gastli, 2010).

For the planning phase a more in-depth analysis of the project's prospects is done which is driven by the feasibility study. The feasibility study must provide information about the physical characteristics, financial viability, and environmental, social, or other impacts of the wind power project, such that the proponent can come to a decision about whether or not to proceed with the project. It is characterized by the collection of refined site, wind resources, costs and equipment's data. It typically involves site visits, resource monitoring, energy audits, more detailed computer simulations, and the solicitation of price information from equipment suppliers. Also in this phase is defined the type of company to run the wind project related about financing operations and grid access, in case of on-grid applications.

In the realization phase all administrative aspects are carried out. First of all, it is given emphasis to the Financing contract, Construction permit or licenses, Feed-in ${ }^{51}$ contracts and Purchase Contract. The Financing and Feed-in contracts are directly influenced by Financing terms and WEC/Grid conditions. The erection and commissioning steps will only be done when the legal and economics items are concluded. This step usually requires another or additional studies for installing and testing the wind farm as a new power plant. If it is a repowering ${ }^{52}$ action it is necessary to check the last years of operation of the wind farm in order to notice how WEC/Grid conditions and what are possible impacts on the economic feasibility of the project, so the modifications, if it is possible, in the Financing and Purchase contracts.

Finally in the operation phase is the last of planning stage but the first and longest phase in a wind power project, a wind farm. The operation objective for a wind power plant (WPP) is to ensure that the system achieves the best energy yield from the prevailing wind conditions at the respective location. In addition to these commercial requirements, the operation of the WPP must also ensure that dangerous operating conditions are recognized early enough and that the WPP control system acts appropriately to avoid dangers to the environment and the WECS that could arise from malfunctions. If necessary, the system behavior can be continuously monitored via remote data and on-site monitoring and interventions implemented in the WPP control system. A wind farm is usually designed for 20 to 25 years of operation, which is planned for 175,200 to 219,000 full hours, excluding the downtimes for maintenance or repairs. After 20-25 years-operation it is time to decide to removal ${ }^{53}$ or repower the power plant.

[^32]
4.5.1 WIND FARM LAYOUT

Lundberg (2003, 2006a) a wind farm is a set of elements, such as wind turbines (WT), local wind turbine grid, collecting point, transmission system and wind farm interface to the point of common connection (PCC). The energy is then transmitted to the wind farm grid interface over the transmission system. So to discuss about wind farms layout is a complex issue and exciting due to its nature and importance for a better performance of the whole power plant. The wind farm layout can be so different from wind farm to wind farm, from site to site and from type of wind turbine used.

As stated in the specialized literature "rule of thumb" is applied $10 \mathrm{ha} / \mathrm{MW}$ for land requirement of wind farms, including infrastructure (Bansal et al., 2002). The spacing of a cluster of wind turbines in a wind farm depends on the terrain, the predominant wind direction and speed, and the turbine size. According to Patel (1999), the optimal spacing is found in rows $8-12$ rotor diameters apart in the windward direction, and 1.5-3 rotor diameters apart in the crosswind direction \therefore According to Ammara, Leclerc, and Masson (2002) and Grady, Hussaini, and Abdullah (2005) discussed about this intuitive spacing scheme resulted in sparse wind farms that were inefficiently using the wind energy potential of the site. A dense, staggered sitting scheme was proposed that would yield production similar to the sparse scheme, but would use less land. While this approach successfully reduced the land mass required for a given amount of wind turbines, the method of placement was still intuitive.

According to Samorani (2010) the way or criteria used to choose the number and the model of the wind turbines to install depends on a variety of factors. First, it is important to note that a more powerful wind turbine is usually preferred to a less powerful one since both the cost of a turbine and the energy it generates is usually proportional to its nominal power. So when we in the phase of project development there is a trend to choose a more powerful wind turbine in order to have a lowest cost per wind power installed and consequently a lowest cost of energy produced. But it is also such a "trick" because as bigger as the size of wind turbines as more expensive are the initial investment cost formed by civil works, electrical works and the rest of the installations and maintenance costs impacted by the size of the wind turbine.

The actual consultancy market practice is design a preliminary layout used for discussions with the relevant local economic agents and other affected parties. This process is iterative due to its nature because this preliminary layout is a tool for engineering, economics, environmental studies and common can be changed in function of the results reached. As many researcher states the most factors that usually affect wind turbines location are: (1) optimization of energy production output; (2) turbines loads; (3) noise emissions and (4) visual impact (Gonzalez, Rodriguez, Mora, Santos, \& Payan, 2009; Payan, Gonzalez, Rodriguez, Mora, \& Santos, 2011; Zhang, Chowdhury, Messac, \& Castillo, 2012). In the wind power industry we frequently identify as "Balance of Plant (BOP)" the civil and electrical works and are generally have been done by a contractor or contractors separate from the wind turbine supplier. The major influence on the economic success of a wind farm is the energy production, which is principally determined by the wind regime at the chosen site, the wind farm layout and the choice of wind turbine technology applied.

4.5.2 REQUIREMENTS FOR LAND AREA

The utilization of the land depends on several aspects but one of most important is wind turbine model to be used in the power plant. If the wind power plant is the type of on-grid application, the area must be design to the access roads, buildings support and the power station. When we have useful (in terms of electricity production) wind resources and land enough, the wind farm design process begins. The central objective is to maximize energy production, minimize capital cost and operating costs, take into account the constraints imposed by the site. The constraints and costs are all subject to some level of uncertainty in terms of a project conception; the optimization process also seeks to minimize risk.

The land area required for wind power projects varies significantly from project to project. The goal of a project plan is to distribute the wind turbines in order to maximize power production. Wind turbines are usually distributed in lines perpendicular to the prevailing wind direction. The direction of the prevailing winds and the complexity of the terrain are two of the most important aspects that guide the placement of turbines in a project. The distance between the wind turbines (between lines and between the wind turbines in a same line) is commonly described in terms of the diameter of the rotor \therefore For example, if a plant is described as having a spacing 3×10, this means that the turbines are distributed with an equivalent spacing for three rotor diameters within the same row, and the lines have a spacing equivalent to 10 rotor diameters. For a project that uses a rotor with 60 meters in diameter, this means spacing between the turbines of a same line of 180 meters, and 600 meters between the rows. Figure 4.14 shows a typical wind farm layout and so the land area changes according to its layout defined.

Figure 4.14 Wind farm layout according to the rule of thumb. Source: Samorani (2010, p. 12)

The interference of a turbine on another positioned towards the wind turbine is called interference effect (wake effect or array effect) ${ }^{54}$. The turbines are positioned too close to each other will suffer a loss of greater energy-induced effect of interference. As a large spacing between turbines usually

[^33]maximizes power production output, but increases the need for infrastructure (e.g., land area, network and roads), the cost must be parsed before defining the location of the turbines. For example, there is a replacement of the costs between the optimization of layout of turbines for power production (increasing the spacing) while trying to keep a compact design to have reasonable costs with network and roads, which tend to grow with increased spacing between turbines (Samorani, 2010). A wake effect of one wind turbine on another decides the spacing between the wind turbines in a wind farm. Typical spacing between the machines in a wind farm is shown in Figure 4.13 and effect of spacing on energy loss is shown in Figure 4.15. Grid connectivity, accessibility are important considerations in selection and design of wind turbines site. Other considerations are reducing noise, transmission disturbance and visual disturbance (Hau, 2006).

Figure 4.15 Effect of spacing on energy loss. Source: Hau (2006).

The distance between lines in a complex terrain is typically determined by the characteristics of the terrain (e.g., the turbines will be arranged linearly in a mountainous relief to take advantage of better exposure to the wind, and the layout is determined by the location of mountain ranges). In a relief plane, the rows are spaced turbines depending on the spacing between the turbines of a same line. The goal is to optimize the balance between the increased interference effect and the lower cost associated with a narrow spacing. Regard to the lines, the spacing is determined by the direction of the wind. Unidirectional environments (mostly wind power production comes from the same direction), the turbines can be placed closer together in a same line. In the case of multidirectional winds (ex., half the time it comes from the North and the other half he comes from East), you need a larger spacing (Ozturk \& Norman, 2004; Petersen et al., 1998).

The typical spacing for wind uni-directional or a location with strong winds in two opposite directions predominant $\left(180^{\circ}\right)$ is three rotor diameters between the turbines in a same line and 10 diameters between rows. The typical spacing for omni-directional wind or wind with two predominant directions of 90° is five to six diameters between turbines and seven to eight diameters between the lines. The turbine manufacturer may require or allow a narrower spacing depending on the characteristics of the turbine and wind characteristics of local.

Figure 4.16 Comparison of suggested spacing for wind farms. Source: based on Hau (2006, p. 586) and Yao et al. (2011, p. 14)

As we can notice the distances change from author to author (see Figures 4.14 and 4.16), but all of them have as the main concern the optimization of the wind power plant, in other words, the wind farm electricity output production. For example, Emami and Noghreh (2010) have studied the optimum wind turbines distances in flat terrains. Hau (2006) and Yao et al. (2011) have studied the best positions for maximizing wind power capture by the wind farms reducing the wake effect. The great question is not what size are the precise distance among turbines and the rest of facilities in the power station because it is so variable. This variability is due the technical features of the wind farm in general. That is why it is necessary to analyze the wind farm array in terms of production, called the array efficiency, given by Pao and Johnson (2009):

$$
\eta_{A}=\frac{E_{A}}{E_{T} N_{W T}}
$$

Where $\left(E_{A}\right)$ is the annual energy of the array, $\left(E_{T}\right)$ is the annual energy of one isolated turbine and ($N_{W T}$) is the number of turbines in the wind farm. Array efficiencies of greater than 90% have been shown to be achievable when downwind distances of 8-10 rotor diameters and crosswind distances of 5 rotor diameters are used (Lissaman, Zaday, \& Gyatt, 1982).

4.5.3 TYPES OF WIND FARM LAYOUT

A wind farm is an industry in essence with special aspects related to its configuration. We called "power plant" because it is a unit that produces something, electricity, in this case. An industry only produces if there is raw material, in other words, wind resources available in economic terms. As an industry it must be the machinery to transform raw materials in products, similarly we mean, electricity energy sold. The arrangement of this power producer machinery in the wind power plant is the layout of the wind farm.

Figure 4.17 Wind farm array schematic. Source: Asif and Muneer (2007, p. 1411)

Figure 4.17 shows a general schematic of the layout of a wind power plant that may be situated either onshore or offshore applications related to the most important thing in a wind farm, the wind turbines sites. Many authors have shown that for turbines that have downward and crosswind spacing of up to 10 - and 5 -rotor diameters, respectively, the array losses are typically less than 10% (Manwell et al., 2002). According to Lundberg (2003, 2006a) a wind farm is usually composed by:

* Wind turbines
* Local wind turbine grid
- Collecting points
* Electrical transmission system and
* Wind farm interface to the point of common connection

All these elements reflects on the wind farm layout and performance, so it must be evaluated and optimized as we could notice in most of studied done in order to optimize the wind farms performance and cost of energy produced. We cannot forget the investment cost is impacted
directly by the type of layout used, so it is necessary to run an economic analysis and always try to reduce the amount of capital invested in the wind farm. For a better visualization we can see Figure 4.18 and understand that we must face technical and economical challengers for optimizing a wind farm and get the most competitive cost of energy.

Figure 4.18 General wind farm layout. Source: Lundberg (2003, p. 5)

In Figure 4.18, the layout is formulated considering such aspects: (1) the wind turbines (WT) are in linear configuration, each row is composed by four WT inter-connected; (2) the collecting point is the same to all WT which can represent a risk for the wind farm, because if there is some problem with a single WT, it is necessary to stop the whole wind power plant. Although it has an advantage in initial investment, usually lower than other configurations which require more than one or central collecting point \therefore According to Lundberg (2006b, p. 27) "in the collecting point, the voltage is increased to a level suitable for transmission. The energy is then transmitted to the wind farm grid interface over the transmission system. The wind farm grid interface adapts the voltage, frequency and the reactive power of the transmission system to the voltage level, frequency and reactive power demand of the grid in the PCC'.

The distance to the nearest road access and the complexity of the terrain will substantially influence the capital cost of the project. It is important to say, the layout configuration of a wind farm must be analyzed considering each project is a unique project. It can change so much its analysis in function of the site, legal aspects, economic feasibility, WECS technology installed, and other aspects related to wind farm direct and indirectly, such as renewable energy policy.

When we discuss about wind farm layout, in other words, it is related to the position of wind turbines, providing the overall form or configuration of the wind energy development and its perceived density or complexity. In Figure 4.19 is shown some typical layout topologies applied in wind farms, both onshore and offshore applications, excepting the Figures $4.19(f)$ and (g) because they are especially designed for onshore and nearshore applications. Generally, wind farm layout should be of a uniform type, whether a single line, staggered line, splayed line, random or grid, rather than a mixture. The creation of a "visual stacking" effect from a sensitive viewpoint should be avoided.

Figure 4.19 Typical layout topologies applied in wind farms. Source: adapted from Farrell Farrell (2006, p. 44). (a) Plan and view of single line layout; (b) Plan and view of staggered line layout; (c) Plan and view of splayed linear layout; (d) Plan and view of random layout; (e) Plan and view of grid layout; (f) View of linear layout on a peak and (g) View of linear layout in response to a road, shoreline or cliff.

All layout options are usually acceptable. However, the best solutions would either be a random layout, and clustered where located on hills and ridges (Figure 4.19 (f)), or a grid layout on sweeping and continuously even areas of moorland or plateau (Figure 4.19 (c) and (d)). Where a wind energy development is close to a linear element, such as a river, road or long escarpment, a corresponding linear layout (Figure 4.19 (a), (g)) or staggered line (Figure 4.19 (b)) might be most desirable.

It is important to empathize that terrain conditions, so the topography ${ }^{55}$, impact directly on wind farm layout and performance in general, not only related to wind turbines, but in the rest of wind farm`s facilities and operation. That is the case of the access roads, supporting buildings, electricity collecting points, and so on. The final arrangement also impacts on costs of installations or capital costs, operation \& maintenance costs, other costs and expenses which will reflect on the cost of energy produced by the power plant as a whole.

[^34]
4.6 SUMMARY AND CONCLUSIONS

Humankind evolution is closely linked to energy resources, since the beginning of time man has to know it and seeking it ever more on the environment. He began to enjoy and benefit from their potential. Thus obtained a better and continuing adaptation to the environment questions and needs, which was often hostile and consequently sparsely inhabited. Respecting the means and knowledge of each period of evolution, man became sovereign in the environment, acquired with so much more responsibility, while that on the environment imposed serious changes to meet its development. In general, wind power can provide an important contribution to reducing fossil fuel consumption and meet international environmental commitments. However, interconnection capacity, the combination of the existing capacity of production and characteristics of the wind power system to have a significant effect on how the variable production is assimilated by the system and on the extent of their contribution to meet the needs of modern society.

A WECS is a rotary system that extracts the energy from the wind. The mechanical energy from the wind turbine is converted to electricity (wind turbine generator) \therefore The wind turbine can rotate through a horizontal (HAWT) or vertical (VAWT) axis. Most of the modern wind turbines fall in these two basic groups: HAWT and VAWT. For the HAWT, the position of the turbine can be either upwind or downwind. For the horizontal upwind turbine, the wind hits the turbine blade before it hits the tower. Significant differences between wind turbines depending on the direction of their axis of rotation have been presented in this chapter. Many comparative studies have shown that VAWTs are advantageous to HAWTs in several aspects. Furthermore, common misjudgments about VAWTs have been discussed in the wind power literature.

The tower shadow has a great importance in HAWTs due to the tower interference. This problem is not as big for upwind turbines as for downwind turbines. The turbine dynamics is affected by the tower shadow gives power fluctuations and increases noise production. VAWTs do not experience tower interference as the distance between blades and tower is much larger in comparison to HAWT (Eriksson et al., 2008). It is important to say that these two types of WECS must be analyzed considering its application. Generally, the green investors try to maximize its return of capital invested, which is one of the reasons the HAWT has developed more than VAWT in the last decades. Table 4.5 makes a comparison between HAWT and VAWT.

Table 4.5 Comparison between HAWT and VAWT concept

Source: Malcolm (2003) and Dang (2009)

Because VAWTs are not commonly deployed due mainly to the serious disadvantages, they appear novel to those not familiar with the wind industry. This has often made them the subject of wild claims and investment scams over the last 50 years. The development of a wind energy system requires the integration of many disciplines and resources. The necessary elements in the development of a wind power plant include wind resource evaluation and sitting, project development and financing, engineering, manufacturing and construction, and operations and maintenance. All these elements must be balanced in order to get the most competitive performance and cost of energy produced.

The wind power technology has achieved the maturity in 2000 years, as we could notice at Table 4.4, but this history and such evolution keep going forward, in function of new application and the improvement of efficiency and reliability of wind energy conversion systems. For McGowan and Conners (2000) the advances in wind energy system technology during the 1990s have produced major successes in the following three areas:

1. Cost of delivered energy. This success has occurred as a result of continued technology improvements, increased size and number of sales, and increased financial confidence.
2. Flexibility of wind technology. Because wind energy systems represent a modular technology, it can be added in relatively small steps, making it easier to speed up or slow down introductions to meet immediate economic circumstances. Also, wind technology is relatively easy to transfer, making it attractive to developers in expanding international markets.
3. Availability. The availability, or fraction of time that a wind turbine is available to generate power has increased to the point where values of 98% to 99% are typical for established wind farms. This high level of availability represents values that are higher than many conventional utility scale power production systems.

The working principle of a wind turbine encompasses two main conversion processes, which are carried out by its main components: the rotor that extracts kinetic energy from the wind and converts it into generator torque and the generator that converts this torque into electricity and feeds it into the electrical grids (Slootweg \& Kling, 2003). The power in the wind is proportional to the air density (ρ), the intercepting or rotor swept area (A) and the wind speed $\left(v_{w}\right)$ to the third power relation, as shown in Eqn 4.1. The air density is a function of air pressure and air temperature, which both are functions of the height above sea level (Ackermann \& Söder, 2002).

The calculation of the annual theoretical production of electrical power from a wind farm is resulting from the product of electrical power installed, total hours of production for one year and capacity factor of the wind farm. The capacity factor is due to production losses, stops for maintenance and periods where the wind speed is not suitable for the production of electricity by wind turbines. The capacity factor is also referred to as system utilization factor of production (Kreith \& West, 1997; NREL, 1995).

The wind farm planning is a long and complex process which each phase is remarkable for the whole wind power plant lifetime. A major issue in the planning of a wind farm is to identify the optimal rating and design of the installation. Several phenomena will limit the maximum possible capacity of wind farms. According to Oliveira and Fernandes (2011b) renewable energies have generally lower emissions than conventional power stations, making them strongly favored by the environmental regulations for the energy sector. However, renewable energy technologies are not free of negative impacts, although the public attitude in relation to renewable energy is generally positive, local people may react negatively to specific projects. In the particular case of wind energy impacts on the ecosystem, noise pollution (noise) and negative impacts on the landscape have been reported.

As we can see at Figure 4.13 the planning process of a wind farm has been made by four stages or phases: (1) Pilot study, (2) Planning, (3) Realization or Execution and (4) Operation. In the Pilot study are checked legal and economic aspects, site selection and type of WEC/grid technology will be used for the project. All the licenses necessary for the project goes are taken in this phase. This first step usually takes from 1 to 2 years to be concluded.

The Planning phase is longer than the first one. This stage can take from 2 to 3 years of duration. This phase several and important aspects related to the project economic feasibility are done such as financing planning and WEC chosen to be installed in the power plant. \therefore A quick and initial examination by the pre-feasibility analysis determines whether the proposed project has a good chance of satisfying the proponent's requirements for profitability or cost-effectiveness, and therefore merits the more serious investment of time and resources required by a feasibility analysis. It is also analyzed the type of company and building application and environmental impact review to complete a the final feasibility analysis that is a more in-depth analysis of the project's prospects, the feasibility study must provide information about the physical characteristics, financial viability, and environmental, social, or other impacts of the project. The Planning phase is done in order to be used as decision tool about whether or not to proceed with the project by the developer.

In the Realization or Execution phase, the project get out from papers and computers and starts be materialized. This phase can take from 1 to 2 years to be done. The Financing, Feed-in and Purchase contracts are concluded. If the feasibility study is positive, then engineering and development will be the next step. Engineering includes the design and planning of the physical aspects of the wind power plant.\therefore Development involves the contracts and other regulatory aspects of the project. Even following significant investments in engineering and development, the project may be halted prior to construction because financing cannot be arranged, environmental approvals cannot be obtained, the pre-feasibility and feasibility studies "estimates" important cost items, or for other reasons.

Finally, the project is built and put into service in the Operation phase. This phase represent the longest part of the project lifetime and start from the year $5^{\text {th }}$ to $25^{\text {th }}$ of the wind power project. This phase includes control, monitoring and maintenance activities that must be performed precisely to keep downtime to a minimum. The main objective for a wind farm is to ensure that the system achieves the best energy yield from the prevailing wind conditions at the respective location. In addition to these commercial requirements, the operation of the wind farm must also ensure that dangerous operating conditions are recognized early enough and that the wind farm control system acts appropriately to avoid dangers to the environment and the WECS that could arise from malfunctions.

At the end of the Operation phase a great decision must be taken: removing or repowering the wind power plant. Removing or Decommissioning is a process of inactivating a wind power plant and trying to remove the most the environmental impacts caused by the previous power plant existence. The purpose of the removing plan is to identify the methodology to be used to mitigate potential impacts resulting from the cessation of operation of the facility at the end of the project's useful
life. The removal action-plan identifies the specific project components that will be removed; the nature of the costs associated with the removal of the components and associated scrap value.

In the other hand, if the power plant will going on, improved its efficiency it is necessary to make a repowering process. Also known as replanting, Repowering is the process we go through to replace older first-production wind turbines with modern, more efficient wind turbines \therefore The process is carried out in a timeframe that allows us to replace an older wind farm, by the time it comes to end of its typical 20-25 year lifetime. Many wind farms have permission to operate for up to 25 years. If a site has proved to be a good and efficient site, we consider whether there is merit in continuing to operate a wind farm at this location.

It is important to say about WECS in relation to GHG emissions, especially CO_{2} considering wind power be market-ready (mature technology), and the price of power is broadly competitive to other types of RETs production, depending on the location. In terms of energy and carbon balance, about 3-7 months of turbine operation are required to recover the energy spent in the full life cycle of the wind power plant (including removal and disposal), and the technology can avoid CO_{2} emissions ranging from 391 to $828 \mathrm{~g} \mathrm{CO}_{2} / \mathrm{kWh}$ (GWEC, 2010).

Figure $4.20 \mathrm{CO}_{2}$ emissions saved by WECS deployment from 2008-2030. Source: GWEC (2010)

The success of wind power as a renewable energy sources is obviously a direct function of the economics of production of WECS. In this regard, the role of improved power output through the development of better aerodynamic performance offers some potential return; however, the focus is on the cost of the entire system. For this reason in the Chapter 5 is discussed about economic measures and optimization models applied to renewable energy technology with emphasis on wind energy technology.

4.7 References

Ackermann, T., \& Söder, L. (2002). An overview of wind energy-status 2002. Renewable and Sustainable Energy Reviews, 6(1-2), 67-127. doi: 10.1016/s1364-0321(02)00008-4

Al-Yahyai, S., Charabi, Y., \& Gastli, A. (2010). Review of the use of Numerical Weather Prediction (NWP) Models for wind energy assessment. Renewable and Sustainable Energy Reviews, 14(9), 3192-3198. doi: 10.1016/j.rser.2010.07.001

Amirat, Y., \& Benbouzid, M. E. H. (2007). Survey paper Generators for Wind Energy Conversion Systems: State of the Art and Coming Attractions. J. Electrical Systems, 3(1), 26-38.

Ammara, I., Leclerc, C., \& Masson, C. (2002). A viscous three-dimensional differential/actuatordisk method for the aerodynamic analysis of wind farms. Journal of solar energy engineering, 124(4), 345-356.

Arabian-Hoseynabadi, H., Tavner, P. J., \& Oraee, H. (2010). Reliability comparison of direct-drive and geared-drive wind turbine concepts. Wind Energy, 13(1), 62-73. doi: 10.1002/we. 357

Asif, M., \& Muneer, T. (2007). Energy supply, its demand and security issues for developed and emerging economies. Renewable and Sustainable Energy Reviews, 11(7), 1388-1413. doi: 10.1016/j.rser.2005.12.004

Badrzadeh, B., Bradt, M., Castillo, N., Janakiraman, R., Kennedy, R., Klein, S., . . . Vargas, L. (2011, 24-29 July 2011). Wind power plant SCADA and controls. Paper presented at the Power and Energy Society General Meeting, 2011 IEEE.

Bang, D., Polinder, H., Shrestha, G., \& Ferreira, J. (2008). Review of generator systems for directdrive wind turbines. Paper presented at the European Wind Energy Conference \& Exhibition, Milan.

Bansal, R. C., Bhatti, T. S., \& Kothari, D. P. (2002). On some of the design aspects of wind energy conversion systems. Energy Conversion and Management, 43(16), 2175-2187. doi: 10.1016/s0196-8904(01)00166-2

Bansal, R. C., Zobaa, A. F., \& Saket, R. K. (2005). Some Issues Related to Power Generation Using Wind Energy Conversion Systems: An Overview. International Journal of Emerging Electric Power Systems, 3(2), 1070. doi: 10.2202/1553-779X. 1070

Baroudi, J. A., Dinavahi, V., \& Knight, A. M. (2007). A review of power converter topologies for wind generators. Renewable Energy, 32(14), 2369-2385. doi: 10.1016/j.renene.2006.12.002

Bellarmine, G. T., \& Urquhart, J. (1996). Wind energy for the 1990s and beyond. Energy Conversion and Management, 37(12), 1741-1752. doi: 10.1016/0196-8904(96)00009-x

Beurskens, J., Andersen, P., Petersen, E. L., \& Garrad, A. (1996, 16-19 September). Wind Energy. Paper presented at the Eurosun '96 Conference, Freiburg (D).

Blaabjerg, F., Chen, Z., \& Kjaer, S. B. (2004). Power electronics as efficient interface in dispersed power generation systems. IEEE Trans. Power Electron, 19(5), 1184-1194.

Brown, L. R. (2003). Wind Power Is Set to Become World's Leading Energy Source. HUMANIST-BUFFALO-, 63(5), 5-5.

Chen, Z., \& Blaabjerg, F. (2009). Wind farm - A power source in future power systems. Renewable and Sustainable Energy Reviews, 13(6-7), 1288-1300. doi: 10.1016/j.rser.2008.09.010

Cheng, K. W. E., Lin, J. K., Bao, Y. J., \& Xue, X. D. (2009, 8-11 Nov. 2009). Review of the wind energy generating system. Paper presented at the 8th International Conference on Advances in Power System Control, Operation and Management (APSCOM 2009)

Couture, T., \& Gagnon, Y. (2010). An analysis of feed-in tariff remuneration models: Implications for renewable energy investment. Energy Policy, 38(2), 955-965. doi: 10.1016/j.enpol.2009.10.047

Dalili, N., Edrisy, A., \& Carriveau, R. (2009). A review of surface engineering issues critical to wind turbine performance. Renewable \& Sustainable Energy Reviews, 13(2), 428-438. doi: 10.1016/j.rser.2007.11.009

Dang, T. (2009, 4-6 Oct. 2009). Introduction, history, and theory of wind power. Paper presented at the North American Power Symposium (NAPS), 2009.
de Freitas, T. R. S., Menegaz, P. J. M., \& Simonetti, D. S. L. (2011, 11-15 Sept. 2011). Converter topologies for permanent magnetic synchronous generator on wind energy conversion system. Paper presented at the Power Electronics Conference (COBEP), 2011 Brazilian.

El-helw, H., Tennakon, S., \& Shammas, N. (2006, 6-8 Sept. 2006). Compensation Methods in Wind Energy Systems. Paper presented at the Universities Power Engineering Conference, 2006. UPEC '06. Proceedings of the 41st International.

Emami, A., \& Noghreh, P. (2010). New approach on optimization in placement of wind turbines within wind farm by genetic algorithms. Renewable Energy, 35(7), 1559-1564. doi: 10.1016/j.renene.2009.11.026

Eriksson, S., Bernhoff, H., \& Leijon, M. (2008). Evaluation of different turbine concepts for wind power. Renewable and Sustainable Energy Reviews, 12(5), 1419-1434. doi: 10.1016/j.rser.2006.05.017

Farrell, E. R. (2006). Planning Guide. Dublin: SEAI. Retrieved from http://www.environ.ie.
Gandy, C. R. (2009). US2009224606-A1; WO2009111355-A2.
Georgilakis, P. S. (2008). Technical challenges associated with the integration of wind power into power systems. Renewable and Sustainable Energy Reviews, 12(3), 852-863. doi: 10.1016/j.rser.2006.10.007

Gonzalez, J. S., Rodriguez, A. G. G., Mora, J. C., Santos, J. R., \& Payan, M. B. (2009, June 28 2009-July 2 2009). A new tool for wind farm optimal design. Paper presented at the PowerTech, 2009 IEEE Bucharest.

Grady, S. A., Hussaini, M. Y., \& Abdullah, M. M. (2005). Placement of wind turbines using genetic algorithms. Renewable Energy, 30(2), 259-270. doi: 10.1016/j.renene.2004.05.007

Grauers, A. (1996). Efficiency of three wind energy generator systems. Energy Conversion, IEEE Transactions on, 11(3), 650-657. doi: 10.1109/60.537038

Griffin, D. A. (2002). Blade System Design Studies Volume I: Composite Technologies for Large Wind Turbine Blades. Retrieved November 15, 2011, from http://windpower.sandia.gov/other/021879.pdf

Griffin, D. A., \& Ashwill, T. D. (2003). Alternative composite materials for megawatt-scale wind turbine blades: design considerations and recommended testing. Journal of solar energy engineering, 125, 515 .

GWEC. (2010). Global Wind 2009 Report First. Retrieved April 04, 2010, from http://www.gwec.net

Haggett, C. (2008). Over the Sea and Far Away? A Consideration of the Planning, Politics and Public Perception of Offshore Wind Farms. Journal of Environmental Policy \& Planning, 10(3), 289-306. doi: 10.1080/15239080802242787

Hansen, A. D., \& Hansen, L. H. (2007). Wind turbine concept market penetration over 10 years (1995-2004). Wind Energy, 10(1), 81-97. doi: 10.1002/we. 210

Hansen, L. H., Helle, L., Blaabjerg, F., Ritchie, E., Munk-Nielsen, S., Bindner, H., . . . Bak-Jensen, B. (2001). Conceptual survey of generators and power electronics for wind turbines. Roskilde, Denmark.

Hansen, L. H., Madsen, P. H., Blaabjerg, F., Christensen, H. C., Lindhard, U., \& Eskildsen, K. (2001, 2001). Generators and power electronics technology for wind turbines. Paper presented at the Industrial Electronics Society, 2001. IECON '01. The 27th Annual Conference of the IEEE.

Hau, E. (2006). Wind turbines: fundamentals, technologies, application, economics (2nd ed.). Heidelberg: Springer Verlag.

Herbert, G. M. J., Iniyan, S., Sreevalsan, E., \& Rajapandian, S. (2007). A review of wind energy technologies. Renewable and Sustainable Energy Reviews, 11(6), 1117-1145. doi: 10.1016/j.rser.2005.08.004

Hills, R. L. (1996). Power from wind: a history of windmill technology: Cambridge University Press.

Hoffman, D. L., \& Molinski, T. S. (2009). How New Technology Developments Will Lower Wind Energy Costs. 2009 Cigre/IEEE Pes Joint Symposium Integration of Wide-Scale Renewable Resources into the Power Delivery System, 524-530.

Islam, M., Ting, D. S. K., \& Fartaj, A. (2008). Aerodynamic models for Darrieus-type straightbladed vertical axis wind turbines. Renewable and Sustainable Energy Reviews, 12(4), 10871109. doi: 10.1016/j.rser.2006.10.023

Jenkins, N. B., T. Sharpe, D. Bossanyi, E. . (2001). Handbook of Wind Energy: John Wiley \& Sons.

Johnson, G. L. (2001). Wind energy systems: Prentice-Hall Englewood Cliffs (NJ).
Kaldellis, J. K., \& Zafirakis, D. (2011). The wind energy (r)evolution: A short review of a long history. Renewable Energy, 36(7), 1887-1901. doi: 10.1016/j.renene.2011.01.002

Khatib, H. (2003). Economic evaluation of projects in the electricity supply industry: Peter Peregrinus Ltd.

Kim, H. S., \& Lu, D. (2010). Wind Energy Conversion System from Electrical Perspective-A Survey. Smart Grid and Renewable Energy, 1, 119-131.

Kiranoudis, C. T., Voros, N. G., \& Maroulis, Z. B. (2001). Short-cut design of wind farms. Energy Policy, 29(7), 567-578. doi: 10.1016/s0301-4215(00)00150-6

Kreith, F., \& West, R. E. (1997). CRC Handbook of Energy Efficiency. USA: CRC Press.
Krokoszinski, H. J. (2003). Efficiency and effectiveness of wind farms - keys to cost optimized operation and maintenance. Renewable Energy, 28(14), 2165-2178. doi: 10.1016/S0960-1481(03)00100-9

Leung, D. Y. C., \& Yang, Y. (2012). Wind energy development and its environmental impact: A review. Renewable and Sustainable Energy Reviews, 16(1), 1031-1039. doi: 10.1016/j.rser.2011.09.024

Li, H., \& Chen, Z. (2008). Overview of different wind generator systems and their comparisons. Renewable Power Generation, IET, 2(2), 123-138. doi: 10.1049/iet-rpg:20070044

Lissaman, P., Zaday, A., \& Gyatt, G. (1982). Critical issues in the design and assessment of wind turbine arrays. Paper presented at the 4th International Symposium on Wind Energy Systems, Stockholm, Sweden.

Lundberg, S. (2003). Configuration study of large wind parks. Licentiate of Engineering, Chalmers University of Technology, Goteborg.

Lundberg, S. (2006a). Evaluation of wind farm layouts. EPE Journal, 16(1), 14.
Lundberg, S. (2006b). Wind farm configuration and energy efficiency studies-series DC versus AC layouts. Doctor of Philosophy, Chalmers University of Technology, Goteborg. Retrieved from http://webfiles.portal.chalmers.se/et/PhD/LundbergStefanPhD.pdf

Magoha, P. W. (2001). Wind power Industry: Issues in Development and Implementation. Paper presented at the ISES 2001 Solar World Congress, Adelaide: Australia.

Malcolm, D. J. (2003). Market, cost, and technical analysis of vertical and horizontal axis wind turbines. Task\# 2: VAWT vs. HAWT technology (pp. 23). Washington: DC.: Global Energy Concepts, LLC.

Manwell, J., McGowan, J., \& Rogers, A. (2002). Wind energy explained: Theory, design and application. England: John Willey \& Sons.

Mathew, S. (2006). Wind energy: fundamentals, resource analysis and economics: Springer Verlag.

McGowan, J. G., \& Conners, S. R. (2000). Windpower: A turn of the century review. Annual Review of Energy and the Environment, 25, 147-197.

Meah, K., \& Ula, A. H. M. S. (2008). On-site wind energy measurement and preliminary transmission assessment: Case studies in Wyoming. 2008 IEEE Region 5 Conference, 186191.

Menet, J. L. (2004). A double-step Savonius rotor for local production of electricity: a design study. Renewable Energy, 29(11), 1843-1862. doi: 10.1016/j.renene.2004.02.011

Morthorst, P. E., \& Shimon Awerbuch. (2009). The Economics of Wind Energy. Brussels: The European Wind Energy Association.

Muller, S., Deicke, M., \& De Doncker, R. W. (2002). Doubly fed induction generator systems for wind turbines. Industry Applications Magazine, IEEE, 8(3), 26-33. doi: 10.1109/2943.999610

Munteanu, I., Cutululis, N.-A., Bratcu, A. I., \& CeangĂ, E. (2008). Design Methods for WECS Optimal Control with Energy Efficiency Criterion
Optimal Control of Wind Energy Systems (pp. 109-168): Springer London.
NREL. (1995). A Manual for the Economic Evaluation of Energy Efficiency and Renewable Energy Technologies. (NREL/TP-462-5173). Springfield: National Renewable Energy Laboratory. Retrieved from http://www.nrel.gov/csp/troughnet/pdfs/5173.pdf.

Ohsaki, H., Terao, Y., \& Sekino, M. (2010). Wind turbine generators using superconducting coils and bulks. Journal of Physics: Conference Series, 234(3), 32043.

Oliveira, W. S., \& Fernandes, A. J. (2011a). Innovation and Technology Management in Wind Energy Cluster. [Review]. Energy and Environment Research, 1(1), 175-192. doi: 10.5539/eer.v1n1p175

Oliveira, W. S., \& Fernandes, A. J. (2011b). Renewable Energy: Impacts upon the Environment, Economy and Society. [Review]. Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Renewable Energy (JRSE), 2(11), 7-17.

Oliveira, W. S., \& Fernandes, A. J. (2012). Cost analysis of the material composition of the wind turbine blades for Wobben Windpower/ENERCON GmbH model E-82. [Review]. Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Renewable Energy (JRSE), 3(1), 1-7.

Ozturk, U. A., \& Norman, B. A. (2004). Heuristic methods for wind energy conversion system positioning. Electric Power Systems Research, 70(3), 179-185. doi: 10.1016/j.epsr.2003.12.006

Pao, L. Y., \& Johnson, K. E. (2009, 10-12 June 2009). A tutorial on the dynamics and control of wind turbines and wind farms. Paper presented at the American Control Conference, 2009. ACC '09.

Papadopoulos, E. (2007). Heron of Alexandria (c. 10-85 AD). Distinguished Figures in Mechanism and Machine Science, 217-245.

Paredes, J. A., Barbat, A. H., \& Oller, S. (2011). A compression-tension concrete damage model, applied to a wind turbine reinforced concrete tower. Engineering Structures, 33(12), 35593569. doi: 10.1016/j.engstruct.2011.07.020

Patel, M. (1999). Wind and power solar systems: Boca Raton, FL: CRC Press.

Payan, M. B., Gonzalez, J. S., Rodriguez, A. G. G., Mora, J. C., \& Santos, J. R. (2011). Overall design optimization of wind farms. Renewable Energy, 36(7), 1973-1982. doi: 10.1016/j.renene.2010.10.034

Petersen, E. L., Mortensen, N. G., Landberg, L., Højstrup, J., \& Frank, H. P. (1998). Wind power meteorology. Part II: siting and models. Wind Energy, 1(2), 55-72.

Polinder, H. (2011, 24-29 July 2011). Overview of and trends in wind turbine generator systems. Paper presented at the Power and Energy Society General Meeting, 2011 IEEE.

Ragheb, A., \& Ragheb, M. (2010, 21-24 March 2010). Wind turbine gearbox technologies. Paper presented at the Nuclear \& Renewable Energy Conference (INREC), 2010 1st International, Amman.

Rehman, S., \& Al-Abbadi, N. M. (2005). Wind shear coefficients and their effect on energy production. Energy Conversion and Management, 46(15-16), 2578-2591. doi: 10.1016/j.enconman.2004.12.005

RETScreen® International Clean Energy Decision Support Centre. (2008). Clean Energy Project Analysis: RETScreen Engineering \& Cases Texbook. Retrieved January 10, 2009, from www.retscreen.net.

RETScreen ${ }^{\circledR}$ International Clean Energy Decision Support Centre. (2009). Wind energy project analysis. Software manual, Chapter 2. Retrieved June 12, 2009, from www.retscreen.net.

Rosa, A. V. (2009). Fundamentals of Renewable Energy Processes (2nd ed.). UK: Elsevier.
Şahin, A. D. (2004). Progress and recent trends in wind energy. Progress in Energy and Combustion Science, 30(5), 501-543. doi: 10.1016/j.pecs.2004.04.001

Samorani, M. (2010). The Wind Farm Layout Optimization Problem. Leeds School of Business Research Paper Series, University of Colorado at Boulder.

Schlaich, J., Bergermann, R., Schiel, W., \& Weinrebe, G. (2003). Design of Commercial Solar Tower Systems: Utilization of Solar Induced Convective Flows for Power Generation.

Shepherd, D. G. (1990). Historical development of the windmill (Vol. 4337). New York: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division.

Slootweg, J. G., \& Kling, W. L. (2003). Is the answer blowing in the wind? Power and Energy Magazine, IEEE, 1(6), 26-33.

Snel, H. (2003). Review of Aerodynamics for Wind Turbines. Wind Energy, 6(3), 203-211. doi: 10.1002/we. 97

Söder, L. (2001). Wind Power Systems. In A. M. Robert (Ed.), Encyclopedia of Physical Science and Technology (pp. 837-849). New York: Academic Press.

Solyali, D., \& Redfern, M. A. (2009). Have Wind Turbines Stop Maturing? Paper presented at the Upec: 2009 44th International Universities Power Engineering Conference.

Sorensen, B. (1995). History of, and recent progress in, wind-energy utilization. Annual Review of Energy and the Environment, 20(1), 387-424.

Spera, D. A. (1994). Wind Turbine Technology: Fundamental Concepts of Wind Turbine Engineering. New York: ASME Press.

Susman, G. I., \& Glasmeier, A. K. (2009). Industry Structure and Company Strategies of Major Domestic and Foreign Wind and Solar Energy Manufacturers: Opportunities for Supply Chain Development in Appalachia. (ARC Project Number CO-15810-07).

Tavner, P. J., Xiang, J., \& Spinato, F. (2007). Reliability analysis for wind turbines. Wind Energy, 10(1), 1-18. doi: 10.1002/we. 204

Wagner, H. J., \& Tryfonidou, R. (2005). AIII-6 Wind Energy - Status and R\&D Activities. Annex A III - Renewable Energy. Retrieved October 12, 2011, from http://www.iupap.org/wg/energy/annex-1c.pdf\#page=133

WWEA. (2011). Planning of Wind Farms - An Overview. Retrieved June 11, 2011, from http://www.wwindea.org/technology/ch02/estructura-en.htm

Yao, D., \& Harley, R. G. (2009, 24-26 June 2009). Present and future trends in wind turbine generator designs. Paper presented at the Power Electronics and Machines in Wind Applications, IEEE. PEMWA 2009.

Yao, F., Bansal, R. C., Dong, Z. Y., Saket, R. K., \& Shakya, J. S. (2011). Wind Energy Resources: Theory, Design and Applications. In A. F. Z. R. Bansal (Ed.), Handbook of Renewable Energy Technology (Vol. 1, pp. 851). New Jersey: World Scientific Publishing.

Zhang, J., Chowdhury, S., Messac, A., \& Castillo, L. (2012). Unrestricted wind farm layout optimization (UWFLO): Investigating key factors influencing the maximum power generation. Renewable Energy, 38(1), 16-30. doi: 10.1016/j.renene.2011.06.033

Zhe, C., Guerrero, J. M., \& Blaabjerg, F. (2009). A Review of the State of the Art of Power Electronics for Wind Turbines. Power Electronics, IEEE Transactions on, 24(8), 1859-1875.

Chapter 5

ECONOMIC MEASURES AND Optimization Models

5.1 Introduction

5.2 Economic measures

5.2.1 Classification of costs categories
5.2.1.1 Cost structure of wind energy projects
5.3 Models of projects economic evaluation
5.3.1 Economic basics of projects evaluation
5.3.1.1 Simple payback
5.3.1.2 Discounted payback
5.3.1.3 Net present value
5.3.1.4 Internal rate of return
5.3.1.5 Required revenues
5.3.1.6 Benefit-to-cost ratio
5.3.2 Peculiarities in the investment analysis of wind energy projects
5.4 Models for costs evaluation
5.4.1 Specific measures of economic performance for energy projects
5.4.1.1 Levelized Cost of Energy
5.4.1.2 Total Life-Cycle Cost
5.4.1.3 Net Present Cost
5.4.1.4 Levelized Electricity Production Cost
5.4.1.5 Unit Present Average Cost
5.4.2 Peculiarities in the cost analysis of wind energy projects
5.5 Optimization models applied to REPs
5.5.1 Concepts of simulation and optimization
5.5.2 An overview of simulation and optimization methods
5.5.3 Types of optimization models for energy systems
5.6 Summary and conclusions
5.7 References

This chapter discusses about economic measures and optimization models applied to RETs, with focus on wind power technology in order to establish a framework for a better utilization in economic engineering evaluation at a microeconomic view. Summary and conclusions are presented at the end, with the respective references.

4.1 INTRODUCTION

The objective of economic measures is to provide the information needed to make a judgment or a decision in economic issues related to a certain project. The most complete analysis of an economic measure of a renewable technology project requires the analysis of each year of the lifetime of the same project, taking into account relevant aspects, such as direct costs, indirect and overhead costs, taxes, and returns on investment, plus related externalities, such as environmental impacts, that are relevant to the decision to be made \therefore However, it is important to consider the purpose and scope of the particular economic measures used in economic analyzes because this will drive the course to follow. The perspective of the analysis is important, often dictating the approach to be used. Also, the ultimate use of the results of an economic measure will influence the level of detail undertaken.

The modern world is moved by ways to generate and consume energy, especially into electricity form. Electricity is accepted as one of the driving forces of the economic development of all the nations. The challenge of continuously producing electricity and meeting the growing demands is great concern for both developed and developing countries. The high costs of delivered electricity can be attributed to strong dependence on centralized energy systems which operate mostly on fossil fuels basis and require huge investments for establishing transmission and distribution grids that can be available anywhere for everybody. Furthermore, the fossil fuel utilization results in the emission of greenhouses gases rising concerns about the climate change and other health hazards (Oliveira \& Fernandes, 2011c).

In order to face these problems there is a strong need for renewable energy systems of power producing and distribution. Unlike the centralized energy systems, on the other hand, decentralized energy systems, the case of WECS, both in the presence and absence of grids, and easily accessible to remote locations because of production and consume of power can happen in the same place, considering the demand site. The Renewable Energy Technologies (RETs) must be optimized in function of its own nature capital-intensive and its production output is expectable not plannable due to the forces of nature, in terms of intensity, frequency, availability of the natural resources.

This chapter discusses about economic measures and optimization models applied to RETs, with focus on wind power technology in order to establish a framework for a much better utilization in economic engineering evaluation of a project in a microeconomic view. It starts presenting economic measures principles and costs categorization to be considering into analysis (section 5.2). Section 5.3 refers to the models of projects economic evaluation by describing the most used economic measures indicators (section 5.3.1) within its particularities and hurdles. Section 5.4 is related to models for costs evaluation applied to energy power projects, especially emphasis on monetary costs indicators for wind power projects (section 5.4.1); Peculiarities in the cost analysis of wind energy projects (section 5.4.2). Section 5.5 discusses about optimization models applied to REPs, in this particular issue, we show some algorithms applied to technical-economic analyses of power plant. It is important to say that our purposed model of optimization (Chapter 6) is built considering these models extensively studied. Finally, the summary and conclusions of this chapter (section 5.6) and all references (section 5.7) used are present at the end of this chapter.

5.2 ECONOMIC MEASURES

The success of a project finance transaction depends on the project's capacity to generate sufficient cash during its operating phase so that it matches the cash needed for debt service (interest and principal repayment) and dividends paid to the project sponsors. Project finance is usually associated with large capital-intensive ventures (for example, power plants, transportation infrastructure, telecom projects) with low ratability values and limited recovery values in case of project defaults (Borgonovo, Gatti, \& Peccati, 2010). Under these circumstances, lenders pay particular attention to project performance on a going concern basis because the possibility to repay principal and interest depends on the project's ability to generate sufficient cash flows.

Opportunities to use sun, wind, water, wood as energy sources are numerous. Renewable energy sources are naturally replenished energy in a relatively short period and produced by natural processes. While conventional sources of energy are finite (in human dimensions of time). Each case must be evaluated is the project economically \therefore If the present high cost of energy produced compared to classical sources, the use of new technology is discredited by final consumers (and public opinion behind it). When there are different technical solutions, or when you offer multiple investment opportunities is necessary to evaluate the projects to decide what or who should be executed. This chapter focuses on the economic and financial evaluations for renewable energy projects (REPs). The REPs can be of different sizes and can extend over different time horizons. But always involve technical, financial and human resources that must be combined to create the expected result. The REPs share the typical characteristics of all other projects (Cleland, 1991):

1. The project begins and ends that determine the "project's life" that differentiates it from other activities of a permanent nature in existing organizations or companies (who may be involved in the project).
2. The financial and human resources available for project implementation are limited (usually pre-determined at the beginning of the project).
3. The project is a set of tasks and activities that are separate from other activities undertaken by the parties involved in a repeating basis ("the day-to-day").

When we use economic measures for cost analysis of the electricity supplied by wind energy conversion systems (WECS) is a rather difficult task requiring the estimation of output power production as well as the cost of the WECS, in addition to the analysis of the wind distribution parameters. Power production of the WECSs is closely related not only to the system's performance but also to operating conditions, which means the wind characteristics of the site, as well as (Gökçek \& Genç, 2009). The economic-financial models comprise many more factors influencing these key variables, such as macro-economic variables (inflation rates, interest rates, economic growth rates, etc.), market variables (overall demand, development of input and output prices) or technology variables (price developments due to technological change). Setting up the economic and financial model is typically done by applying standard investment appraisal techniques (discounting future cash flows, computing net present value (NPV), etc.) (Oliveira \& Fernandes, 2011a).

Efficient planning and resource management is the key to the success of an energy project. The REPs require a specific organization that unites all parties together, regardless of other (existing permanent) organizational ties or relational boundaries between the parties involved, as shown in Figure 5.1.

Figure 5.1 Evaluation process and financial management of REPs. Source: adapted from NREL (1995)

As we can see Figure 5.1, evaluation and economic management applied for RETs projects, is a process or a cycle. In order to differentiate the project and project management it is necessary to develop distinct definitions for the two terms. A project can be considered to be the achievement of a specific objective, which involves a series of activities and tasks which consume resources (Project identification, Project evaluation and Project planning). It has to be completed within a set specification, having definite start and end dates \therefore In the other hand, project management can be defined as the process of controlling the achievement of the project objectives (Project control). Utilizing the existing organizational structures and resources, it seeks to manage the project by applying a collection of tools and techniques (Management accounting, cost control), without adversely disturbing the routine operation of the company (Munns \& Bjeirmi, 1996), in the case of wind power, the wind farm manager.

The evaluation measures the investment attractiveness of investment or potential project (here more specifically: a REP, wind onshore) for the investor and/or manager. A project is attractive, the consequences of that lead to the expected result of attractive economically, financially by the investor (Lapponi, 2000). This chapter discusses the main methods of economic evaluation applied to the energy industry with a discussion of the topics of greatest interest to economists, engineers and other professionals related to analysis of economic and financial viability of investments in power of decentralized production of electricity. However the issue is important: the economic and financial viability of the enterprises is a necessary condition for the gradual deployment of new energy technologies to do so solid and convincing.

5.2.1 CLASSIFICATION OF COSTS CATEGORIES

5.2.1.1 COST STRUCTURE OF WIND ENERGY PROJECTS

Although we have not made any distinction between different technologies in renewable energy, the cost structure of a REP is dependent on the technology used. The "Renewable Energy" covers a diverse set of technologies ranging from small photovoltaic solutions for roofs of individual houses to large wind farms onshore and offshore \therefore Most of the costs parameters and definitions used in this sub-section are characterized costs related to the onshore wind power made the analysis from production to the mains distribution.

The following are the major cost components for onshore wind power are presented and briefly described (see Table 5.1). The emphasis is on description of these elements are not in exact figures. The cost values are dependent on circumstances of individual projects and are altered at a rapid pace due to technological advances and economies of scale. The main cost elements are proving to be quite stable in the technological nature of particular projects to generate electricity from wind, so you should be familiar with them, to make a complete and consistent assessment of attractiveness of the project (Harrison \& Jenkins, 1993; Kaltschmitt, Streicher, \& Wiese, 2007).

Depending on the nature and reflects the behavior of the final cost of power produced by wind farm, the typical elements of cost are grouped by cost category. The listing does not tend to be exhaustive, as wind power, by experience and technological maturity has become easier to identify these costs. It is important that classification of the cost structure to facilitate financial and economic analysis of projects (EWEA, 2009) \therefore A plant for producing electricity from wind energy uses the principle of conversion of kinetic energy ${ }^{56}$ contained in flowing air masses (wind) into electrical energy. The wind turbine consists of tower equipped with rotor blades and (the concept of "windmill") connected to the electrical generator that converts rotational mechanical energy into electrical energy. Wind power can be used for both connected to the mains system (usually "wind farms"), as well as for applications independent of electrical grids (Heier, 1998).

According to IEA (1991), NREL (1995) and RETScreen® International Clean Energy Decision Support Centre (2008), the individual elements of project costs of wind power for electricity production can be grouped into four distinct categories of costs (investment costs, operational costs, maintenance cost and financial cost). This classification is used for monetary costs evaluation and excludes other types of cost, such as, the invisible costs usually present in sustainable renewable energy systems (wind energy conversion systems, wave energy, solar power systems, biomass, nuclear power, geothermal power systems, and others), like externalities costs, social costs and environmental costs.

[^35]Table 5.1 Classification of costs into categories for wind energy projects

	Refers to the cost elements that occur during regular operation mode of the system after being put into production. The operating cost can be cost of raw materials or operating personnel, as well tax payments and insurance, land lease, or cost to supply energy to the public network (access fee). Part of the cost of operations is independent of capacity utilization of the production system, so, they are fixed. Other operating costs vary with the load supplied to the grid. The split between fixed and variable operating costs differ among renewable energy technologies. The ratio of fixed operating costs to revenue (per period) is called "project selffinanced". In a system with self-finance the project uses a greater proportion of revenue on systems with low self-financing. The self-finance the project reduces the flexibility of the cost of the system during operation.
	It includes all cost elements that occur in order to maintain or ensure the production capacity (system operational availability). Can be achieved through preventive maintenance (system check before being damaged) or repair (arranged in the system after it was damaged). Maintenance measures may be small and frequent (replacement of small parts such as lamps and air filters, periodic verification procedures), or large and infrequent (unscheduled repair of significant damage, change of principal components).
	This category of costs is included in all financial expenditures caused by financing transactions within the lifetime of the project. The most important element of cost is the interest payment to lenders of the project. Other elements are typical costs resulting from

Source: IEA (1991)

It is important to differentiate the wind farm costs in terms of installed capacity (total capital costs and variable costs) and cost of wind energy per kWh produced. Fuel costs for wind farm cost is zero. This is the fundamental difference between electricity produced by wind power and other options of conventional power production. For example, in a power plant to natural gas has been 40 to 60% of the costs related to fuel and O\&M, compared with about 10% for onshore wind farm. Moreover, the fact that wind energy projects require substantial capital investment affects the financial viability of projects \therefore Become essential to the investor or manager to have most of the funds needed at the time that the wind farm is built. To have access to the rest of the capital financed in good condition for a refund. Some projects cannot be executed due to the necessary funding process during this initial phase, although, over time, may become a less expensive option (Blanco, 2009).

The great advantage of wind power after the installation process and wind measurements calculated correctly, the production cost of this technology is predictable, which reduces the overall risk to the power company. The cost of capital projects for offshore wind power is higher than for onshore wind energy projects (Neij, 1999). The higher cost is due to increased investments (foundations of
the tower under the sea) and transport costs, on the other hand the need for high reliability and low maintenance routine (accessibility of the wind farm). The additional protection to physical facilities more effectively against corrosion and accumulation of harmful materials is necessary for marine offshore installations. All these factors orientates the initial investment (Bergmann, Hanley, \& Wright, 2006).

Wind energy is a capital intensive technology, so that majority of cash outflows occur in this phase. The cost of capital can reach 80% of the total cost of the project during its lifetime, with variations between models, and local markets \therefore The wind turbine is the major cost component, followed by the network. Even after more than two decades of consistent reductions, the capital cost of proposed wind energy has increased by 20% over the past three years. The results show that in the range of $1100-1400 € / \mathrm{kW}$ for new projects in Europe. The costs are smaller in some emerging markets, especially in China and the United States of America. There are also variations in the European Union (Milborrow, 2008).

Figure 5.2 illustrates the complexity of sub-components that make up a wind turbine, and helps explain why these elements are higher costs of initial investment. Note that the value refers to the exceptionally large size in the current market (5 MW , as opposed to 2-3 MW machines being installed in most onshore wind farms). The relative weight of sub-components varies depending on model. Other elements of cost, besides the wind turbine, are needed at the beginning of the project and represent about 18 to 32% of the total capital cost for onshore wind energy projects.

Figure 5.2 Example of the main components of onshore wind turbine with distribution of the overall cost of the 5 MW Repower. Source: Blanco (2009).

Variable costs of production in wind energy projects are directly related to the cost of annual operations and maintenance $(O \& M)$ that are relatively high, accounting for $5-8 \%$ of initial
investment (capital cost). The cost of O\&M is particularly high in offshore systems. A distinctive feature of wind energy is the importance of the cost of insurance due to increased risk of equipment damage, downtime and damage to third parties. Wind energy (offshore wind farms in particular) can also involve considerable repair costs \therefore Although the overall lifetime of the project could be 20-25 years, major repairs may be needed after 10 years of operational wind farm (Milborrow, 2008). Currently, one of the priorities for wind turbine manufacturers is to reduce variable costs, especially those related to operations and maintenance (O\&M) through the development of new projects for wind turbines, which require less service visits, resulting in higher productivity of the turbine. It is important to note that the downtime of the turbines is less than 2% per year (George \& Schweizer, 2008).

According to BWEA (2006), AEE (2006); Morthorst (2007); Milborrow (2008), DTI (2007a), a prudent level of variable costs would be between $1-2 \mathrm{c} € / \mathrm{kWh}$ over the life span of the wind turbine. This would mean 10 to 20% of total costs (about 10% in O\&M activities). As with other cost categories, the percentages are only indicative.

Finally, the future development of variable costs should be careful when interpreting the results presented previously. First, wind turbines have economies of scale in terms of reducing the investment per kW with an increase in turbine capacity, economies of scale similar may happen with O\&M. Secondly, new and larger wind turbines have reduced the requirements for O\&M in relation to older turbines and smaller \therefore Other costs, including replacement of components, monitoring and insurance may increase due to increases in material costs and risks associated with certain models of large capacity wind turbines (Blanco, 2009).

The local wind resource is the most important factor affecting the profitability of investments in wind and also explains most of the differences in cost per kWh between countries and projects. Wind turbines are useless without adequate wind resource. The correct location of each individual wind turbine is crucial to the economy of any proposed wind energy. In fact, it is widely recognized that during the initial phase of the modern wind industry (1975-1985), the development of the European Wind Atlas Methodology ${ }^{57}$ was more important to productivity gains that advances in design in wind turbines (Troen \& Petersen, 1989).

The size and characteristics of the turbines are adapted according to wind patterns observed, being located after careful computer modeling, based on local topography and meteorological measurements. The average number of hours of full load varies from place to place and from country to country ${ }^{58}$. The range of facilities for onshore wind farms ranges from 1700-3000 hours/ year (average of 2342 in Spain, 2300 in Denmark and in 2600 in the UK, to name a few in Europe). In general, good sites are first to be exploited, although they may be located in areas of difficult access (European Commission., 2007).

[^36]The theoretical energy production, based on the power curves of wind turbines and wind regime estimates is reduced by a number of factors, including losses in matrix production (occurring due to wind turbines shadowed each other within the wind farm), losses due to dirt or freeze in spades, mechanical friction losses, losses in transformers and electrical cabling and downtime of wind turbines for scheduled maintenance or technical failure \therefore The net energy output is usually estimated at $10-15 \%$ below the energy calculation based on power curves of wind turbines (Welch \& Venkateswaran, 2009).

Wind turbines are designed to generate maximum power at certain wind speed. This power is known as the rated power and wind speed at which it is reached is called the rated speed of the wind. The speed is adjusted according to the local wind regime, with values common to find between 12 to $15 \mathrm{~m} / \mathrm{s}$. For the same reason, to values above the rated wind speed is not increasing economic power, it would require the largest of all equipment with a corresponding increase in initial investment, which would draw only a few hours during the year, thus turbine is set at above nominal wind speed and operate at constant power, leading to artificially decrease the efficiency of conversion (Marafia \& Ashour, 2003) \therefore When the wind speed becomes dangerously high (above about $25-30 \mathrm{~m} / \mathrm{s}$), the turbine is switched off for safety reasons (the aerodynamic loads increase with the square of wind speed). Today's turbines in the adaptation of the system of production to wind speed at each instant it is set by adjusting the angle of attack of the blades (pitch control) and solution set through mechanical or electrical that has in some cases associated solutions for electronic power control, as well as for controlling the rotation speed. However, in certain situations, is limited to the operating power of the wind turbine (Jenkins, 2001).

A variety of models that analyze the trend of long-term costs of wind and other renewable, have been developed over the last decade, many supported by the European Union ${ }^{59}$. The European Commission. (2007) in the 2007 Strategic Energy Review presents a set of key results, as part of the assessment of impact on renewable energies. This shows that the capital cost of wind power will drop to around $826 € / \mathrm{kW}$ in 2020, $788 € / \mathrm{kW}$ in 2030 and $762 € / \mathrm{kW}$ in 2050 . A similar pattern is expected for offshore wind energy, as shown in Table 5.2.

Table 5.2 Trends in the cost of capital assumed by PRIMES project for wind energy

	$€ / \mathrm{kW}$ in2020	$€ / \mathrm{kW}$ in 2030	$€ / \mathrm{kW}$ in 2040	$€ / \mathrm{kW}$ in 2050
Onshore	826	788	770	762
Offshore	1274	1206	1175	1161

Source: European Commission. (2007)

Likewise, the British Department for Business, Enterprise and Regulatory Reform (DTI, 2007b) commissioned a study by Ernst \& Young to examine current and future costs of renewable

[^37]technologies. Wind energy onshore and offshore provide upward trend until 2010. This will be followed by a decrease, since bottlenecks in the supply chain are addressed. Using specific costs of energy as the basis (cost per kWh produced), the estimated rates of progress in specialized publications are from 0.83 to 0.91 , corresponding to learning rates from 0.17 to $0.09 \therefore$ Then, when the total installed capacity of wind energy doubles, the cost per kWh for new turbines decrease between $9-17 \%$. The recent study by the DTI (2007b) estimates the cost savings of 10% when the total installed capacity doubles. Tables 5.3 and 5.4 , have been short of capital costs, energy production and variable costs with their studies and values.

Table 5.3 Summary of some sources about capital costs and production costs of wind power

Study	Capital cost per kW installed	Cost per kWh
Morthorst (2007); Morthorst and Chandler (2004)	$900 € / \mathrm{kW}$ to $1,175 € / \mathrm{kW}$	n.a
Milborrow (2006)	$869 € / \mathrm{kW}$ to $1,559 € / \mathrm{kW}$	n.a
AEE (2006)	$971.67 € / \mathrm{kW}$ to $1,175.10 € / \mathrm{kW}$	n.a
EER for Vestas (EER, 2007)	$1,050 € / \mathrm{kW}$ to $1,350 € / \mathrm{kW}$	n.a
BWEA (2006)	1,520€/kW	n.a
IEA (2005) projected costs of producing electricity, 2005 update, IEA publications	$1,000-1,600 \mathrm{US} \$$ onshore ($850-1,360 €$) and 1,600-2,600 US\$ offshore.	n.a.
IEA (2007) annual report, draft-data provided by Governments	$1,365 € / \mathrm{kW}$ in Canada; $979 € / \mathrm{kW}$ in Denmark; $1,289 € / \mathrm{kW}$ in Germany; $1,050 € / \mathrm{kW}$ in Greece; $1,200 € / \mathrm{kW}$ in Italy; $1,209 € / \mathrm{kW}$ in Japan; $1,088 € / \mathrm{kW}$ in Mexico; $1100 € / \mathrm{kW}$ in the Netherlands; $1,216 € / \mathrm{kW}$ in Norway; $1,170 € / \mathrm{kW}$ in Portugal; $1,220 € / \mathrm{kW}$ in Spain; $1,242 € / \mathrm{kW}$ in Switzerland; $1,261 € / \mathrm{kW}$ in the UK; $1,121 € / \mathrm{kW}$ in the U.S.	n.a.
UKERC (2006)	n.a.	$5.9 \mathrm{c} € / \mathrm{kWh}$ with a standard deviation of $2.5 \mathrm{c} € / \mathrm{kWh}$
DTI (2007a)	$1,633 € / \mathrm{kW}$ (medium scenario); $1,850 € / \mathrm{kW}$ (in the high scenario); $1,422 € / \mathrm{kW}$ (in the low scenario).	$\begin{aligned} & 9.3- \\ & 11.5 \mathrm{c} € / \mathrm{kWh} \\ & \text { (high and low) } \end{aligned}$
DTI (2007b)	n.a.	$8.1 \mathrm{c} \in / \mathrm{kWh}$ to $15.9 \mathrm{c} \in / \mathrm{kWh}$
Bano, Lorenzoni for APER (Blanco, 2009)	1,400 €/kW	$9.4 \mathrm{c€} / \mathrm{kWh}$
Wiser, Bolinger for US DOE (Blanco, 2009)	1,480 US\$/kW (1,200 €/kW approximately) projects in 2006; 1680 US\$/kW $(1,428 € / \mathrm{kW})$ for proposed in 2007.	n.a.

Table 5.4 Summary of some sources about variable costs in producing wind energy

Study	O\&M costs	Other variable costs
Morthorst (2007); Morthorst and Chandler (2004)	1.2 to $1.5 \mathrm{c} € / \mathrm{kWh}$	n.a. (not clear)
Milborrow (2006)	15 to $40 \mathrm{c} € / \mathrm{kW} ; 1$ to $1.5 \mathrm{c} € / \mathrm{kWh}$	n.a. (not clear)
AEE (2006)	$1.02 \mathrm{c} € / \mathrm{kWh}$	$1.03 \mathrm{c} € / \mathrm{kWh}$
EER for Vestas (EER, 2007)	2.5 to $4 \mathrm{c} € / \mathrm{kWh} ; 0.25$ to $0.40 \mathrm{c} € / \mathrm{kWh}$	n.a
BWEA (2006)	$23.25 \mathrm{c} € / \mathrm{MWh}$	(check)
IEA (2005)	12.50 to $33.8 \mathrm{c} € / \mathrm{kW}$	n.a.
DTI (2007b)	$61.5 \mathrm{c} € / \mathrm{kW}$	n.a.
Bano, Lorenzoni for APER (Blanco, $1.8 \mathrm{c} € / \mathrm{kWh}$ 2009) Partial data; $0.68 \mathrm{c} € / \mathrm{kWh}$ for the most recent projects; $1.7 \mathrm{c} € / \mathrm{kWh}$ for older projects.	n.a.	
Wiser, Bolinger for US DOE (Blanco, n.a. 2009)		

5.3 MODELS OF PROJECTS ECONOMIC EVALUATION

5.3.1 ECONOMIC BASICS OF PROJECTS EVALUATION

An "investment" in the broadest sense is any occasion where financial resources (capital) are put to productive purposes. This money could then be invested in new product development, acquisition of a competitor or to build new plant to generate electricity. In a narrower sense, an investment is limited to cases where financial resources are applied to acquire or build tangible capital assets ("capital cost"). The purchase of government securities (investments) or project financing to develop new products (intangible investment) is not characterized as an investment in this sense. REPs are typically capital-intensive investments, as mentioned earlier (Damodaran, 2001).

The investments have important consequences for the investor, because a considerable amount of capital is needed and is linked to long and not available for other purposes, equally attractive, if applied (time of operation or life of the project). The consequences of a wrong investment decision can be large, and endangering the investor \therefore It is natural that investment decisions are preceded by long and extensive analysis of the potential attractiveness of investment. The analysis of investment attractiveness are called "economic evaluation of investment" (Dixit \& Pindyck, 1995).

Appropriate setting for the opportunity cost of investment (discount rate or cost of capital), the cost of capital is an appropriate discount rate to be applied in the economic evaluation of projects. Note that in business practice, often we use the average cost of capital (measured in all forms of capital currently used). The most appropriate measure would be the marginal cost of capital (cost of additional capital investment in employee analysis). The marginal cost and average cost are not
equal. However, the most common is the "Weighted Average Cost of Capital" (WACC). It is calculated using the following formula (Damodaran, 2001):

$$
\begin{equation*}
r_{\text {WACC }}=\left(1-W_{D}\right) r_{E}+W_{D} r_{D}\left(1-t_{x}\right) \quad[\% / \mathrm{yr}] \tag{5.1}
\end{equation*}
$$

where $r_{\text {WACC }}=$ Weighted Average Cost of Capital; $W_{D}=$ Capital Structure; $r_{E}=$ Equity cost, $r_{D}=$ Debt cost before tax and $t_{x}=$ taxes.

The assets of a project are financed by debt and equity. The WACC allows calculation of weighted average cost of funding sources, in which the weight of each is considered in each funding position. This weight is defined as the ratio:

$$
W_{D}=\frac{\text { Equity }}{(\text { Equity }+ \text { Debt })}
$$

The interest rate for working capital loan is simple (since it is known from the interest payment to creditors). The interest rate to be applied to equity is less obvious. In finance theory suggests alternative methods for estimating the cost of equity, the most prominent are the opportunity cost methods, methods based on Discounted Cash Flow (DCF) and methods based on Capital Asset Pricing Model (CAPM). Both approaches have a disadvantage because they are applicable in open capital markets (sale of shares through stock exchanges) \therefore In these cases, the opportunity cost approach must be taken when the investor is evaluating alternative investment options with equity and/or obvious to the expected return on investment as "cost of capital" for the planned project.

An analysis or economic evaluation of investment involves activities undertaken before an investment decision in order to assess the potential of attracting investment by the investor. These evaluations may be limited to purely monetary parameters, which in most cases also include nonmonetary parameters (NREL, 1995). This section discusses about economic evaluations methods for REPs, especially wind farms in order to accomplish the objectives of this same section.

5.3.1.1 SIMPLE PAYBACK

The Simple Payback (SPB) is defined as the time (number of periods) required for the project's cash flow ${ }^{60}$ refinance the initial investment. In other words, the SPB is required to recover the initial investment through positive cash flows of the project. Before that moment, the project has recovered all the initial investment or at least part of the invested capital is still at risk (if the project fails).

The SPB is used as a measure of project risk: the higher the return time, the greater the risk for investors, because (in part) the invested capital cannot be recovered. In a typical project, the negative cash flow early in the project (initial investment) is followed by positive cash flows (return) in subsequent periods. Mathematically, SPB can be expressed as the smallest t that satisfies the condition:

$$
\begin{equation*}
(\mathrm{Ci}-\mathrm{Co})_{1+}(\mathrm{Ci}-\mathrm{Co})_{2+\ldots .+}(\mathrm{Ci}-\mathrm{Co})_{t}=\sum(\mathrm{Ci}-\mathrm{Co})_{t} \geq \mathrm{Co}_{0} \quad[\mathrm{yrs}] \tag{5.3}
\end{equation*}
$$

where $C_{i}=$ Cash inflows; $C_{o}=$ Cash outflows; $C_{o 0}=$ Initial Investment and $t=$ Number of periods.

Since t is an integer, the sum (Eqn 5.5) is likely to be lower or higher than the initial investment $\left(\mathrm{C}_{00}\right)$, but not exactly equal to $C_{o 0}$. The value (decimal) exactly the SPB (where the sum corresponds exactly to the initial investment) can be calculated by linear approximation by using the following formula (Brealey \& Myers, 1997):

$$
\begin{equation*}
t^{\prime}=t-\Sigma(\mathrm{Ci}-\mathrm{Co})_{t} \times \frac{1}{\sum(\mathrm{Ci}-\mathrm{Co})_{t+1}-\Sigma(\mathrm{Ci}-\mathrm{Co})_{t}} \quad \text { [yrs] } \tag{5.4}
\end{equation*}
$$

with

$$
\begin{equation*}
\Sigma(\mathrm{Ci}-\mathrm{Co})_{t}<\mathrm{Co}_{0} \text { and } \Sigma(\mathrm{Ci}-\mathrm{Co})_{t}>\mathrm{Co}_{0} \quad \text { [yrs] } \tag{Eqn}
\end{equation*}
$$

[^38]For investment projects in renewable energy, wind energy onshore case, to determine the best project is necessary to consider the cash inflows or revenues uniform (which actually does not happen) during the lifetime of the project. For energy projects, the $S P B$ must be calculated using the following equation (Fingersh, Hand, \& Laxson, 2006):

$$
\begin{equation*}
S P B=\frac{I C C}{A A R} \tag{5.6}
\end{equation*}
$$

where $I C C=$ Initial Capital Cost and $A A R=$ Average Annual Revenue based on hourly production.

Importantly, this model assumes that the wind farm (project) will generate the same amount of electricity per year to the same sales price during the years of operation under review. As a result, this analysis assumes constant revenue stream. This method does not consider the discount rate or life of the project, so, the analysis of the Simple Payback is not dependent on these values. The SPB is often preferred as a measure of investment merit due to its simplicity. However, there are several other aspects of economic merit. $:$ These methods are discussed and compared below; the discussion is in relation to the needs of this particular study. There is a general discussion on the economic values of merit.

Before the occurrence of the $S P B$, the project has not recovered all the initial investment, or at least part of the capital invested is still at risk (if the project fails). The $S P B$ has disadvantages that limit its use in business practice in renewable energy:

1. SPB ignores the value of economic resources over time. The positive net cash flows for subsequent periods are treated as if they were carried out at present. Future cash flows are as overweight which leads to SPBs too optimistic.
2. SPB ignores cash flows that occur after the recovery period. It may be that a project has shorter payback, but smaller NPV (Net Present Value) over the life of the entire project. Decide based solely on the SPB, the investor chooses the wrong alternative.

The $S P B$ represents the length of time that it takes for an investment project to recover its own initial cost, from the cash receipts it generates \therefore A shorter payback period means a desirable investment. In the case of implementation of a wind energy project, a negative payback period would be an indication that the annual costs incurred are higher than the annual savings produced (Rehman, 2005). For this situation it is necessary try to reduce the production cost by renegotiation with the wind farm`s suppliers. That is why cost control and management accounting stages as shown in Figure 5.1 is part of the evaluation process of RETs.

5.3.1.2 DISCOUNTED PAYBACK

The Discounted Payback ($D P B$) considers the value of capital over time by discounting net cash flows of each period before sum them and compare them with the initial investment. $B D P$, therefore, can be expressed by the following formula (Brealey \& Myers, 1997):

$$
\begin{equation*}
\frac{(C i-C o)_{1}}{(1+i)^{1}}+\frac{(C i-C o)_{2}}{(1+i)^{2}}+\ldots .+\frac{(C i-C o)^{2}}{(1+i)^{t}}=\Sigma\left(\frac{(C i-C o) t}{(1+i)^{t}}\right) \geq C o_{0} \quad[\mathrm{yrs}] \tag{5.7}
\end{equation*}
$$

where $C_{i}=$ Cash inflows; $C_{o}=$ Cash outflows; $C_{o 0}=$ Initial Investment and $i=$ Discount rate.

When investment projects relate to renewable energy, e.g. wind energy power projects, to determine the time of return on investment of the project is necessary to consider the cash inflows or revenues uniform (which actually does not happen) during the period project life. For energy projects, the DPB should be calculated using the following equation (Fingersh et al., 2006):

$$
\begin{equation*}
D P B=\frac{I C C}{[A A R-(O \& M+L L C)]} \quad[y r s] \tag{5.8}
\end{equation*}
$$

where ICC = Initial Capital Cost; AAR = Average Annual Revenue based on hourly production; $O \& M=$ Operations and Maintenance cost and LLC $=$ Land Lease Cost.

As $D P B$ is discounting the future cash flows (positive), this takes longer periods of recovery that the $S P B$. For any project will exceed the typical $S P B$. Linear interpolation can be used to determine the exact decimal value of $B D P$. According to Eqns 5.4 and 5.5. Unlike $P B S$, which is simplified, the $B D P$ believes the discount rate (interest rate) and the fact that not always the expected flows are constant.

The electricity production project from renewable primary energy sources, wind energy project case highlights the importance given to the costs of operations and maintenance as well as lease
cost of the land where the wind farm is deployed, if leased. Thus the analysis of investment risk is minimal considering the changing market. This method reveals some weaknesses among other models of investment appraisal. The main limitations of this method are:

1. It has total focus on the variable time, not worrying about possible cash flows after the payback time.
2. Does not discount cash flows properly, because it considers "surplus" of investment.
3. Determine the payback period is somewhat arbitrary, because the $D P B$ can be expected to take interest or discount rates that are not practiced by the financial market.

For Bhandari (2009) in a project with normal or conventional cash flows the $D P B$ is a unique number. The $D P B$ based decision rule also provides an objective rule for decision making because accepting project if $D P B$ is less than expected life of a project involves no subjectivity. In many instances the lifetime of a project itself is uncertain due to change in technology (case of repowering in wind power industry, consumer preference, competing products, regulatory environment etc.

5.3.1.3 Net Present Value

The Net Present Value ($N P V$) is a method of economic evaluation of projects very well-known also. $N P V$ takes into account the capital value over time. The value of capital in time refers to the fact that this value is now worth more than the present in time future. This is because an amount placed in time may be invested and getting a return above the rate of inflation. Therefore, future earnings should be discounted. $N P V$ has become more widespread and accepted as a measure of financial performance of the project (Brealey \& Myers, 1997).
$N P V$ is the direct application of the concept of present value ${ }^{61}$ and the difference of present value of cash inflows (inflows) between the present values of cash outflows (outflows). NPV is the sum of all discounted cash flows associated with the project. The general equation can be written as (Kaltschmitt et al., 2007):

$$
\begin{equation*}
N P V=\left(C i_{0}-C o_{0}\right)+\frac{\left(C i_{1}-C o_{1}\right)}{(1+i)}+. \frac{\left(C i_{2}-C o_{2}\right)}{(1+i)^{2}}+\ldots .+\frac{\left(C i_{t}-C o_{t}\right)}{(1+i)^{T}}=\Sigma\left(\frac{\left(C i_{t}-C o_{t}\right)}{(1+i)^{T}}\right) \tag{5.9}
\end{equation*}
$$

[^39] payment K_{t}. (Brealey \& Myers, 1997)
where $C_{i}=$ Cash inflows; $C_{o}=$ Cash outflows; $C_{o 0}=$ Initial Investment, $i=$ Discount rate and $T=$ Number of periods.

When investment projects refer to wind projects, to determine the time for return on investment of the project is necessary to consider the entries of cash receipts as uniforms (which actually does not happen) during the lifetime of the project.

For energy projects, the $N P V$ is defined as the present value of benefits less the present value of costs. The present value of costs is the cost of initial capital, ICC. It is assumed that the distribution of wind speed remains constant from year to year, resulting in uniform amount of electricity produced from year to year (Kaltschmitt et al., 2007). It is assumed that the annual revenue would be uniform. This uniform cash flow must be discounted, since it occurs in the future. The NPV of a uniform cash flow is given by Eqn 5.10.

$$
N P V=A A R\left[\frac{(1+i)^{N}-1}{i(1+i)^{N}}\right]-I C C
$$

where $A A R=$ Average Annual Revenue based on hourly production; $i=$ Discount rate; $N=$ Lifetime of wind farm and ICC $=$ Initial Capital Cost.

For independent projects, the investment decision occurs when $N P V$ is greater than zero. If the investor decides between two mutually exclusive projects, then the project with higher $N P V$ should be chosen. In optimization analysis, the choice is mutually exclusive. It is important to remember that, unlike the Simple Payback, the financial assumptions that count in determining the discount rate and lifetime for $N P V$ of the investment can change engineering aspects of the wind farm under consideration.

Once the rotor diameter is the single parameter of the project to be variable, AAR and ICC can be generalized as functions of rotor diameter, i and N are chosen, the value of the term $\left[\frac{(1+i)^{N}-1}{i(1+1)^{N}}\right]$ will remain constant and then Eqn 5.10 can be generalized as:

$$
N P V=C \times A A R(D)-I C C(D)
$$

Eqn (5.11)

Where C is a constant. The maximum NPV is found by differentiating Eqn 5.11 with respect to the rotor diameter, D, and equating to zero, as shown below.

$$
\frac{d N P V}{d D}=C \frac{d A A R(D)}{d D}-\frac{d \operatorname{ICC}(D)}{d D}=0
$$

Rearranging the Eqn 5.12, we have:

$$
\frac{d N P V}{d D}=C \frac{d A A R(D)}{d D}-\frac{d I C C(D)}{d D}=0
$$

Eqn 5.13 shows that the constant, C, has no effect on the rotor diameter that maximizes the $N P V$. The financial assumptions that go into determining the discount rate and lifetime of the investment will change the optimal design of engineering of the wind farm.
$N P V$ approach involves assigning a rate of return that is reasonable for, and specific to, the project and then computing the present value of the expected stream of payments. Since the investment is initially expended, it is counted as negative revenue. An appropriate rate of return must be identified (Khatib, 1996). The rate of return is a problem, mostly because of risk associated with the payoffs to the investment, but also because of the incentives of project managers to inflate the payoffs and minimize the costs to make the project look more attractive to upper management (Khatib, 2003).
$N P V$ has disadvantages that may limit the use in the evaluation and management of projects in renewable energy, particularly in wind energy projects:

1. The need to know the actual capital cost of the project. As the interest rate that measures the cost of capital for an investment should include the risk of the project, the task of defining the real value of capital cost is not always easy to accomplish.
2. The discount rate or cost of capital remains unchanged throughout the period under review the project, which is not as fixed as well as the cost of capital depends on financial market behavior and risk of new developments in the analysis.
3. The type of response in money instead of being a percentage, for the assessment of monetary values incurs no assessment of the real purchasing power, if it were in percentage terms; it would make it easier to compare projects in different currencies.

5.3.1.4 Internal Rate of RETURN

The method of Internal Rate of Return (IRR) is to calculate the rate that cancels the net present value of cash flow in investment analysis. Investment which will be attractive internal rate of return is greater than or equal to the rate expected by the investor attractiveness. In comparison of investment, the best is one that has the highest internal rate of return (Kreith \& West, 1997).

According to Newnan and Lavelle (1998) the rate is not easily calculated, since it must be determined by trial and error or the least squares method. We try to rate a likely value and thereafter to make successive approximations. The level of precision in the result of IRR is 0.01%, and should be obtained for a maximum of 10000 interactions. As the calculations of present value, IRR is used to bring the current date all the cash flows of the project, according to Eqn 5.14.

$$
N P V=\Sigma\left(\frac{\left(C i_{t}-C o_{t}\right)}{(1+i)^{t}}\right)=0 \Rightarrow i=?=\operatorname{IRR}
$$

where $C_{i t}=$ Cash inflows in period $t ; C_{o t}=$ Cash outflows in period $t ; i=$ Discount rate and $t=$ Number of periods.

In most cases, this equation is a polynomial of degree t that cannot be solved in closed form. Instead, different types of successive approximation should be applied to solve i. The software (MS Excel and RETScreen) offer this functionality as a modern tool inserted in their functions.
$I R R$ is expressed as a percentage ("return") and is easily interpreted as "return of a project". The $I R R$ represents the maximum rate of interest that i can still take the project to create the NPV equals zero. If $N P V$ is zero means that the project finances the capital invested, plus interest, an IRR of 10% means that the project could re-finance the capital invested, plus interest at a maximum of 10% of this capital. At any rate above 10%, the same project creates surplus value ($N P V>0$) for the investor. At any interest rate below 10%, the project would not be able to refinance the capital invested and pay interest. The investor would have to add extra capital to pay the amount invested, plus interest, and thus reduces your assets. Only 10% would be indifferent to the investor, and neither gain nor loses from the project (Dixit \& Pindyck, 1995).
$I R R$ is the discount rate that sets the $N P V$ equal to zero (Newnan \& Lavelle, 1998). IRR of a wind energy project, with uniform revenue is found by solving the equation for the $I R R$. The project $I R R$ is greater chosen as best. If $I R R$ is maximized, the financial assumptions required to determine the duration of the project, N, have no effect on the ideal project. Maximize $I R R$ result in the same design when $S P B$ is minimized. This is shown below (Kaltschmitt et al., 2007).

$$
\begin{equation*}
N P V=A A R\left[\frac{(1+I R R)^{N}-1}{\operatorname{IRR}(1+\operatorname{IRR})^{N}}\right]-I C C=0 \tag{5.15}
\end{equation*}
$$

where $A A R=$ Average Annual Revenue based on hourly production; $N=$ Lifetime of wind farm and ICC = Initial Capital Cost.

The Eqn 5.15 can be rearranged to:

$$
\begin{equation*}
\left[\frac{(1+I R R)^{N}-1}{\operatorname{IRR}(1+I R R)^{N}}\right]=\frac{I C C}{A A R}=S P B \tag{5.16}
\end{equation*}
$$

By increasing $I R R$, the left side of the Eqn 5.16 decreases for any N value. The relationship $I C C / A A R$, which is equivalent to $S P B$, it must also decrease with the increase in IRR. This proves that maximize the IRR have the same effect of minimizing $S P B$, no matter what is assumed for the lifetime of the project. Despite its intuitive nature, IRR has some drawbacks, therefore, must be applied with care:

1. Depending on the structure of cash flows of the project, a project can have more than one $I R R$. The equation to be solved generates multiple solutions (for example, depending on the value from the iterative approach). So, no clear decision can be made.
2. The IRR implicitly assumes that all cash flows can be reinvested at the IRR. NPV does not have this disadvantage, since it assumes that cash flows are reinvested in the i defined as the discount rate (which is the average cost of capital and represents a more realistic assumption for reinvestment).
3. $I R R$ does not take into account the different sizes of investment. An alternative could provide an internal rate of return, but with a smaller initial investment. The absolute gain in wealth for the investor may still be more different with $I R R$ that offers a slightly lower $I R R$. $N P V$ does not have this limitation.

It is important to highlight that Certified Emission Reductions (CERs) ${ }^{62}$ can impact directly on IRR results, due to extra revenues made by the wind power project. It is supposed to performance the $I R R$ analysis with and without CERs impact.

[^40]
5.3.1.5 Required Revenues

Required Revenues ($R R$) is the appropriate concept and applies only to regulated sectors (consumers and producers of electricity are regulated by specific taxes or burdens of government action). The REPs can fit into this profile, because the market power electrical distribution system in a certain region (for large wind farms), which access to the public grids is regulated by tariffs (Tahvanainen, 2010). The method $R R$ is the analysis of total revenues (cash inflows), the project received from clients to compensate for all costs associated with the project during its lifetime (NREL, 1995).

$$
R R=T L C C=\Sigma\left(\frac{C o_{t}}{(1+i)^{t}}\right)
$$

where TLCC $=$ Total Life-Cycle Cost; $C_{o t}=$ Cash outflows in period $t ; i=$ Discount rate and $t=$ Number of outflows periods.

This comparison is not made with absolute (nominal), but with discounted values. The method determines the level annual returns required to cover the cost of the entire project (with discount) (Finnerty, 2007):

$$
\text { Levelized } R R=T L C C \times U C R F=\sum \frac{C o_{t}}{(1+i)^{t}} \times \frac{i(1+i)^{n}}{(1+i)^{n}-1}
$$

where $U C R F=$ Uniform Capital Recovery Factor and $n=$ Number of periods.

The $U C R F$ converts the current value in the flow of equal annual payments over a specified period of time t, i the rate specified discount (interest). The Eqn 5.19 shows UCRF calculation, where $i=$ discount rate and $t=$ number of periods in years.

$$
\begin{equation*}
U C R F=\left[\frac{i(1+i)^{t}}{(1+i)^{t}-1}\right] \tag{-}
\end{equation*}
$$

The main purpose of economic regulation is to achieve competitive results in an environment where competition is (for various reasons) not feasible, case of wind power industry. Traditional tariff setting is based on RR that should allow a company to cover its expenses and have a reasonable rate of return on its invested capital (Lesser \& Su, 2008).

This is an inverse measure: the lower level $R R$ is the project more attractive because it can cover costs of the project (including interest), with lower revenues. When revenues are fixed (i.e., defined by the regulator), the investor or manager of the project (i.e., wind farm manager) will chose an alternative that can maximize the difference between $R R$ level per unit of energy and administered prices per unit produced and marketed the electrical distribution network needed to ensure the smallest level of revenues required (Phung, 1980). $R R$ has disadvantages that limit their application in the evaluation and management of projects in renewable energy, particularly in wind energy projects:

1. The capacity factor is considered constant throughout the life of the project. In wind energy projects this may fluctuate resulting in annual electricity production variable, so revenue and costs also vary.
2. The financial indicators considered over the life of the project (inflation, discount rate, taxes) also remain constant throughout the analysis period of life of the project.
3. Costs are projected to lifetime of the project, which makes the financial cycle equal to the operational cycle of investment, a fact that the classical rules of accounting does not always coincide.

5.3.1.6 Benefit-to-Cost Ratio

The Benefit-to-Cost Ratio $(B C R)$ of a project is another application of the principle of the capital in time. BCR analyzes the discounted cash flows. Unlike the NPV, cash flows are positive ("benefits" of the project) and negative cash flows (cost of the project) are discounted and accumulated separately. The sum of the discounted cash flow positive is placed over the sum of all negative cash flows discounted (NREL, 1995):
if

$$
P V_{c i}=\sum \frac{C i_{t}}{(1+i)^{t}}
$$

Eqn (5.20)
and

$$
P V_{c o}=\sum \frac{C o_{t}}{(1+i)^{t}}
$$

$$
B / C=\sum \frac{\sum \frac{C i_{t}}{(1+i)^{t}}}{\sum \frac{C o_{t}}{(1+i)^{t}}}
$$

then,

Eqn (5.22)
where $P V_{c i}=$ Present Value of Cash Inflows and $P V_{c o}=$ Present Value of Cash Outflows.

In order to better illustrate the application of this method, using a discount rate of 8% per year returns the discounted cash flow or updated, according to Table 5.5.

Table 5.5 Example of typical cash flow for BCR analysis

In "000 USD", interest rate $=8 \% / y e a r$	Period (years)				
	0	1	2	3	Total
Cash outflows (-)	$-100,0$	$-30,0$	$-30,0$	$-30,0$	
Cash inflows (+)	0,0	80,0	80,0	80,0	
Discounted cash outflows	-100	$-27,8$	$-25,7$	$-23,8$	$-177,3$
Discounted cash inflows	0,0	74,1	68,6	63,5	206,2

Source: NREL (1995)
$B C R$ analysis is $206.2 / 177.3=1.16$. Each currency (at current values) generates returns of 1.16 currency units (at current values). The relation B / C above 1 represents attractive investment options in absolute terms $\therefore B C R$ analysis is not a useful measure to compare mutually exclusive alternatives; since the ratio does not measure the relative attractiveness can be misleading the decision maker. Not necessarily lead to the same result when assessing the attractiveness of a project because the $N P V$ is not a widely used measure.
$B C R$ analysis is the ratio of current value of the sum of benefits divided by present value of the sum of costs. It is used as a selection criterion for all eligible projects that have independent cost-benefit ratio, calculated the relevant discount rate (opportunity cost of capital) equal to or greater than
unity. Cannot be used to choose between mutually exclusive alternatives (Boardman, Greenberg, Vining, \& Weimer, 1996).
$B C R$ compares benefits to costs and is a dimensionless number that indicates how many money of benefit are returned per monetary unit invested beyond the required rate of return expressed by the discount rate. It is computed by dividing total discounted benefits by total discounted costs. A ratio greater than one means that benefits exceed costs. A ratio of 10 to 1 , for example, means that, on average, $\$ 10$ in benefits are produced for every monetary unity of costs incurred, after adjusting for the time-value of money. (Generally, investment costs for the denominator and other costs are deducted from benefits in the numerator) (Prasad \& Bansal, 2011).
$B C R$ has disadvantages that limit its application in the evaluation and management of projects in renewable energy, particularly in wind energy projects:

1. The main disadvantage of ratings based on $B C R$ is that ignoring non-monetary impacts. Attempts were made to mitigate these limitations through a combination of $B C R$ with information regarding these impacts are not likely to denomination, as the approach proposed by the New Approach to Appraisal, used in the UK ${ }^{63}$.
2. Another difficulty refers to the $B C R$ precise definition of benefits and costs, due to variability in the criteria for more realistic analysis is required a distinction between perfect and total operating costs and investment.
3. The pre-operational wind energy project, (studies, construction and equipment installation, testing and technical adjustments) and the fact considers the costs of O\&M constant over the lifetime of the project makes the phase of exploration / production project is different from the life of the project. This interferes with the production time and consequently the entrances and exits of cash flow, which makes the analysis imprecise $B C R$ in terms of monetary values.

There are many other microeconomic methods for measuring investment in REPs derived from the ones studied on this chapter, such as Life-Cycle Cost ($L C C$), Net Benefits ($N B$) or Net Savings (NS), Savings-to-Investment Ratio (SIR), Overall Rate-of-Return (OOR). The variety of methods to evaluate the economic performance of (renewable) energy systems serves as a "tool" to be chosen by the analyst. A good start point for the evaluation process is to define the problem and the objective of the evaluation (Kreith \& West, 1997).

For Ramakumar, Butler, Rodriguez, and Venkata (1993) economic considerations are among the primary factors that influence the evolution of energy systems. Unless the "cost of energy" obtained using a particular technology is competitive with the alternatives, that technology will not be viable. However, the "cost" considerations should be comprehensive and should include prospecting, collection, conversion, transportation, distribution, storage and reconversion, end use, and the management of power system analyzed.

[^41]
5.3.2 PECULIARITIES IN THE INVESTMENT ANALYSIS OF WIND ENERGY PROJECTS

The investment analysis can be considered as a set of techniques that allow the comparison between the results of making decisions regarding the different alternatives in a scientific manner. In this comparison, the differences that mark the alternatives should be expressed in quantitative terms. To express in quantitative terms the differences between the alternatives for decisionmaking uses economic engineering principles.
$I R R$ and $N P V$ based on the same principles of equity capital ${ }^{64}$ and lead to the same decision. The key difference among the two techniques is that the $N P V$ assumes reinvestment at the same cost of capital (discount rate), while the IRR assumes reinvestment will be the actual internal rate of return of the project.

In the case of wind energy projects $N P V$ is a function of $A A R$ and the $I C C$. As a result, to maximize $N P V$ also maximizes the absolute wealth created by investment. Because of this, NPV is biased toward larger investments. While on return is greater than the discount rate. The analysis of the $N P V$ will push the decision to bigger projects, even if the relative profitability is smaller.

The $S P B, D P B$ and $I R R$ are functions of $I C C / A A R$. Minimizing ICC/AAR will maximize the wealth of the equity invested. For the optimization of wind farm, should be determined to maximize the wealth obtained from the absolute wind farm or to maximize the relative wealth produced by the project. As the wind turbine is modular, it is more convenient to choose the size of the rotor, which maximizes the relative ability of the wind turbine to generate wealth \therefore In case you decide to minimize the $S P B$ because of the method is simpler as shown before, to minimize $S P B$ will result in the same optimal design to maximize the $I R R$. An example is when you want to maximize absolute wealth would be if the land available for development of wind farms were limited. In this case, the absolute wealth produced by the wind farm can be maximized by selecting a turbine capable of producing greater.

It is worth being aware of some of the other methods of investment analysis and expresses a wind power project in economic terms. The preferred indicator depends on the exact nature of the project being evaluated, the cash flow profiles and the requirements of the investment analysis to be done (Boyle, 1997). These methods and techniques can be used to decide whether or not to invest in a given wind farm; to determine which system design or size is economically efficient; find the combination of components and systems that are expected to be cost-effective; to estimate how long before a project will break even; and to decide which WECS-related investments are likely to provide the highest rate of return to the investor.

[^42]
5.4. Models for costs evaluation

5.4.1 SPECIFIC MEASURES OF ECONOMIC PERFORMANCE FOR ENERGY PROJECTS

The costs levelized (or revenue \rightarrow revenues levelized) is a technique to compare investment alternatives (such as REPs), involving different amounts of capital (i.e., different sizes) and/or different time periods with different life-cycles. Applying NPV method is done implicitly on assumptions necessary reinvestment in REPs. These implicit assumptions can be avoided by smoothing of cash flows: even involves the calculation of steady cash flow, net present value ($N P V$) is equal to a given cash flow variable (NWCC, 1997). Suppose that two investment alternatives for REPs have the following net cash flow per period, as shown in Table 5.6.

Table 5.6 Example of net cash flow for economic performance in energy projects (NPV method)

Cash Flows	Period (years)							
	0	1	2	3	4	5		$N P V_{\text {years }}$
Alternative 1								
Net Cash Flow	-100	20	40	30	50	10	14,1	
Alternative 2								
Net Cash Flow	-50	20	25	30	-	-	11,4	

Source: NREL (1995)

The alternative 1 implies a higher initial investment (capital requirements) and provides higher absolute return than alternative 2 . Alternative 2 has only a small initial investment, but also shorter lifetime (3 versus 5 years). It is difficult to make a direct comparison between the two projects. In calculating $N P V$ of the project (with a discount rate of 10%) results in $N P V=14.1$ for an alternative 1 and $N P V=11.4$ to alternative 2 . For $N P V$ rule suggests that an alternative 1 is chosen. The levelizing of cash flows (net) is to find a constant amount g during the life of the project $N P V$ with this flow in equal amounts g to become equal to $N P V$ of the original project, as shown in Figure 5.3.

Carrying out a $N P V$ analysis essentially requires two things. First, investment and revenues must be estimated. This is a challenge, especially for new products where there is no direct way of estimating demand, or with uncertain outcomes like wind power projects. Second, an appropriate rate of return must be identified \therefore The rate of return is a problem, mostly because of risk associated with the payoffs to the investment, but also because of the incentives of project managers to inflate the payoffs and minimize the costs to make the project look more attractive to upper management (Salles, Melo, \& Legey, 2004).

Figure 5.3 Scheme of the cash flows levelizing process for REPs. Source: IEA (1991)

This amount g (also called "annuity") is calculated using the Eqn 5.23 below:

$$
\begin{equation*}
g=N P V \times U C R F=N P V \times\left[\frac{i(1+i)^{n}}{(1+i)^{n}-1}\right] \tag{-}
\end{equation*}
$$

The Uniform Capital Recovery Factor ($U C R F$), is the factor by which $N P V$ must be multiplied to reach the constant value g given discount rate i for a series of n periods. In the example in Table 5.6 , the alternative creates an annuity of 3.73 (in monetary units). The five cash inflows of 3.73 are equal to a $N P V$ of 14.1, exactly equal to $N P V$ of cash flows of the project plan (including initial investment). Alternative 2 generates annuity of 4.58 (in monetary units). By comparing the potential of their projects to generate stable cash flows, the alternative 2 should be higher than the alternative 1 .

Annuities are not specific to REPs. The concept $L C O E$ is used to compare the different alternatives of energy production. Revenues are fixed and equal between these alternatives (e.g., because the price is set by the regulator and does not depend on the technology used to generate energy, then the alternatives differ only in their costs (cash flows of revenues are equal to all alternatives) (NREL, 1995).

The above concept is applied only to cash outflows (costs). The sum of all costs involved in the project during its full life cycle - Total Life Cycle Cost (TLCC) are discounted to present value and converted into a stream of equal cash outflows for each year of the project ("annuity
negative"). If the value is divided by the annual amount of energy produced, the result is called the Levelized Cost of Energy (LCOE). LCOE is assigned each unit of energy produced (or saved) by the project during the analysis period is equal to the $T L C C$ when discounted to the base year (period 0). $L C O E$ can be used to rank different alternatives for production (or consumption) of energy, as shown in Figure 5.4.

Figure 5.4 Values in $\$ / \mathrm{kWh}$ LCOE in 2005 for various conventional and renewable technologies. Source: NREL (1995)

5.4.1.1 Levelized Cost of Energy

The Levelized Cost of Energy ($L C O E$) is the real cost of production of kilowatt-hours (kWh) of electricity. This measure includes the total construction phase costs, central production costs of the power station during its economic lifetime, financing costs, return on capital and depreciation. Costs are levelized in current monetary values, or adjusted to eliminate the impact of inflation (Friedman, 2010).
$L C O E$ is what it would cost the owner of the facility to generate one kWh of energy. Most of the wind power projects have a lifetime for 20-25 years, a long period, so the inflation impact can sufficiently change and economic evaluation of the same project, which is why to take into consideration the inflation during the lifetime of the project (Sevilgen, Erdem, Akkaya, \& Dağdaş, 2005). For electricity production, $L C O E$ is a method to compare renewable energy technologies adopted to generate electricity. The model $L C O E$ most known and used in energy projects by the National Renewable Energy Laboratory (Cohen, 1989). The calculation method is defined below.

$$
\begin{equation*}
L C O E=\frac{F C R \times I C C+L R C}{A E P_{n e t}}+O \& M+P T C \quad[\$ / \mathrm{kWh}] \tag{5.24}
\end{equation*}
$$

where $F C R=$ Fixed Charge Rate; ICC $=$ Initial Capital Cost; $L R C=$ Levelized Replacement Cost; $O \& M=$ Operations and Maintenance; PTC $=$ Production Tax Credit and $A E P_{\text {net }}=$ Net Annual Energy Production.

The calculation of $L R C$ can be accomplished with the Eqn 5.25 , where $M R=$ Machine Rating (NREL, 1995).

$$
L R C=\frac{\$}{k W} M R
$$

Eqn (5.25)

For correct analysis of the levelized cost of energy, the net annual energy production of the wind farm is given by Eqn 5.26. The availability is defined as the ratio of hours the wind system is capable of producing energy relative to the number of hours during the study period and losses represent loss of matrix, dirt on the blades and ice formation, the central production downtime for maintenance and miscellaneous system losses in production and distribution of energy to the electric grid (RETScreen® International Clean Energy Decision Support Centre, 2008).

$$
A E P_{\text {net }}=A E P_{\text {gross }} \times \text { Availability } \times(1-\text { losses }) \quad[\mathrm{kWh}]
$$

Eqn (5.26)
where $A E P_{\text {gross }}=$ Gross Annual Energy Production.

LCOE was adopted by the United States Department of Energy in the Low Speed Wind Turbine Program (LWST) and makes reasonable approximation of the Cost of Energy (COE), which is estimated by the potential investor to consider the reliability of the equipment to determine $A E P$, $O \& M$ and $L R C . A E P$ is affected by the availability of equipment due to the shutdown of wind turbines due to scheduled and unscheduled maintenance. The costs of $O \& M$ consist of programmed costs (preventive) and costs unscheduled (repair) maintenance, including costs for replacement parts, supplies, manpower, leases (royalties) of land, among other expenses arising from the operation of a wind farm.

Fixed Charge Rate

The capital cost component of $C O E$ is determined by the spread of installed capital cost over the lifetime of the project done in a linear basis over the years through $F C R . F C R$ is a percentage of the cost of installed capital costs including debt service (financing costs) allocated to each year of the project (for more analytical detailed, see Tegen et al. (2012)). The component of the cost of capital is analogous to a payment of fixed rate mortgage of a house, or fixed amount per pay period during the term of the debt. The analysis period may be the life of a physical plant for the production or lifetime for accounting purposes. The lifetime of a wind farm ranges from 20 to 30 years, while lifetime used for financial accounting purposes may be smaller (Harper, Karcher, \& Bolinger, 2007; NREL, 1995). FCR is the annual value for each monetary unit of initial capital cost needed to fully cover the initial capital cost, return on equity and debt, and other overheads. The fee is charged from a hypothetical project, spread over cash flow. The current base model, FCR must include funding for construction, financing rates, return on equity and debt, amortization of equipment and facilities, tax revenue and profits all on an annual basis (Cohen, 1989).

Initial Capital Cost

The Initial Capital Cost (ICC) is the sum of the cost of wind power system and the cost structure of the wind farm. Not included is cost of financing the construction or financing rates, as they are calculated and added separately through $F C R$. Nor does it include the costs of the reserve fund for debt service (charges for financing costs). This cost measure includes all the planning, equipment acquisition, construction and installation costs of the wind system, leaving the wind farm ready to operate. This cost includes wind turbine towers and delivered and installed on site along with all maintenance, electrical system and other infrastructure support. For a wind farm, the cost of installed capital should include the system of collection of electricity which extends from each wind turbine to the substation and point of interconnection with the grid. Depending on the policy and practice of grid administrator and distributor, the electrical system may or may not be included in the cost of capital (NREL, 1995). ICC includes costs for buildings to support the operation and maintenance, the initial stock of spare parts and maintenance of diagnostic equipment. Other costs should be included as costs of pre-construction planning, including assessment and analysis of wind resources, surveying, and consultancy for obtaining financing. The installed capital cost of a wind farm includes the following elements (NWCC, 1997):

1. Assessment and analysis of wind resources;
2. Construction of service roads;
3. Construction of foundations for wind turbines, infrastructure to mount transformers and substations;
4. Purchase of wind turbines and towers with local delivery and installation;
5. Construction and installation of wind sensors, able to communicate wind turbine units for controls;
6. Construction of the power reception system, including wiring of each wind turbine for the mounting of the transformer and deck mount transformers for the substation;
7. Construction of facilities needed for operations and maintenance during the regular operation of the wind farm;
8. Construction and installation of the communication system of wind farms to support the command and control data flow from each wind turbine to a central facility operations;
9. Integration and verification of all systems for proper operation of the wind farm;
10. Commissioning for wind farm period of decommissioning.

Levelized Replacement Cost

The Levelized Replacement Cost (LRC) is a cost component used as a saving account for the wind power project. Depending on the details of the project, the major review of the wind turbine occurs every 5,10 or 15 years. The review focuses on the large gears, bearings, seals and other moving parts. Usually the nacelle and its machinery are removed from the tower and transported to the plant maintenance garage of the wind farm. Often, removal of the nacelle and equipment is replaced immediately by all already rebuilt (NREL, 1995). The replacement of the blades of wind turbines is an example of this category of frequent replacement of subsystems. Since these costs occur at intervals of several years and infrequent during each year, correct accounting for these costs requires annual exercise of funds (working capital). The aim is to make funds available when needed to repair or total replacement of occurrence. The exercise involves calculating the net present value or even to allocate costs for review and replacement on an annualized basis consistent with other cost elements (NWCC, 1997).

Operations and Maintenance Cost

The costs of Operations and Maintenance ($O \& M$) include costs normally associated with recurrent routine operation of the plant installed. $O \& M$ costs do not include overtime worked or infrequently, such as major repairs of wind turbines and other systems. These costs are included in the cost component $L R C$. Most of $O \& M$ costs is associated with maintenance and generally grouped into three categories (Christopher, 2003):

1. Cost of unscheduled visits, but statistically predictable, routine maintenance visits to troubleshoot the operation of wind turbines;
2. Scheduled preventive maintenance costs for wind turbines and energy collection system;
3. Costs of major repairs and replacements scheduled subsystems of wind turbines.

The first two costs occur during the course of a year in operation and are included in the cost component of $O \& M$. The third occurs at intervals of 5,10 or 15 years and involves financial year over the next few years, therefore, is included in the cost component LRC. The purpose of preventive maintenance is to replace components and reform systems that have finite lifetime, generally smaller than the projected life of the turbine. Tasks include periodic inspections of equipment, lubricating oil and filter changes, calibration and adjustment of sensors and controllers, replacement of consumables such as brake pads. The cleaning of the blades in general, fits into this category. The specific tasks and frequency are usually explicitly defined in the maintenance manuals provided by the manufacturer of the turbine. The costs associated with planned
maintenance can be estimated with reasonable accuracy, but may vary according to labor costs location, location and accessibility. The scheduled maintenance costs also depend on the type and cost of consumables used (IEA, 2005). The unscheduled maintenance should be anticipated in any proposed wind energy production. Commercial wind turbines contain a variety of complex systems that must function correctly for the turbine work and get best possible performance. Failure or malfunction of the smaller component (subsystem), it often shuts down the turbine and require the attention of maintenance professionals. Unplanned costs can be separated into direct and indirect costs. Direct costs associated with labor and equipment needed for repair or replacement and consumables used in the process. The result of the indirect costs associated with the revenue lost due to stop the turbine. Depending on the details of ownership and location of the wind farm, there may also be costs associated with negotiating land use agreements, contracts, power purchase agreements and access to transmission and distribution of energy produced (Blanco, 2009). Besides the cost of operations and maintenance, spare parts and other maintenance items in the cost element of O\&M may also include:

1. Taxes on property where the wind farm operates;
2. Payment of land use;
3. Miscellaneous insurance;
4. Access to transmission and distribution rates;
5. Management fees and general and administrative expenses.

The values of cost of operations vary with the situation. The tax structure is where the wind farm contract, land use, insurance rates and other fees vary from location to location and installation of wind farms to another. In comparison to maintenance costs, operating costs are typically very small relative to the cost of production of a central power production (Christopher, 2003).

Production Tax Credit

The Production Tax Credit (PTC) is a type of public incentive, usually granted by the Governments for the renewable energy sector. This incentive is offered in the form of tax credits for producing energy for a certain period of operation of the central production of energy. PTC is adjusted for inflation rate prevailing in the country concerned, within 10 to 15 years, falling on each MWh of renewable energy produced and sold to the distribution grid. For the production of wind power in Portugal, Decree-Law No. $33-\mathrm{A} / 2005^{65}$ stipulates that farms that have already obtained permission to establish the date of entry into force of the law or they may obtain the license for establishment within one year after the entry into force, maintaining the current tariff of $88.20 € / \mathrm{MWh}$ from 2005, progressing at the rate of inflation, for a period of 15 years from the date of entry into force of that legislation. At the end of this period, the rate will converge to market price plus the premium for the sale of green certificates.

[^43]The cost of energy produced by a wind farm represents an indicator for economic efficiency of the wind power plant. The LCOE/NREL methodology is assumed as one of the most complete ways to calculate and compare the monetary production cost by renewable energy technologies. The levelized cost of electricity $(L C O E)$ is one of the most important indicators for evaluating fiscal performance of power supply systems such as WECS. LCOE is a technique applied by the technocommercial analysts to calculate the unit cost throughout the economic life of the project. The levelized cost for WECS can be describe as the ratio of the total annualized cost of the WECS to the annual electricity produced by the system.

According to Roth and Ambs (2004, p. 2127) LCOE can be interpreted as "a constant level of revenue necessary each year to recover all expenses over the life of a power plant', So it is useful for wind power plant management and economic evaluation process. We must remember that wind power plant is a non-conventional industrial unit, in case of production output, it only can be expected not programmable, it means, the level of revenues is function of the production and sales levels. The capacity factor of the power plant will vary during the project's lifetime.

The calculation of $L C O E$ provides a common way to compare the cost of energy across renewable technologies because it takes into account the installed system costs and other associated costs such as financing, land, insurance, transmission, operation and maintenance, and depreciation, among other expenses. Carbon emission costs and wind farm efficiency can also be taken into account.

The Levelized Cost of Energy method has drawbacks that limit its application in the assessment and management of projects in renewable energy, particularly in wind energy projects:

1. The technical and economic parameters directly impact the method $L C O E$ and should be carefully considered in the analysis of the final cost of energy produced. The dramatic reductions in $L C O E$ occur when the wind farm wind resource is above average, or when we obtain improvements in capacity factor. This suggests that the increase in capacity factor from values below the levels of average capacity factor can lead mainly to large reductions in LCOE (Cory \& Schwabe, 2009).
2. $L R C$ that matches the costs for equipment replacement in the long term, it has been reported to be increasingly significant component to the annual cost of wind power and if it is overvalued, can inflate the cost of energy currently produced. The technological improvement in wind power can make the cost of capital is smaller in the coming years.
3. LCOE is a methodology for determining and analyzing the cost of energy production restricted to certain period of time. The fact that the analysis is for one year of production (a single unit of time) ignores gains economies of scale throughout the project life.

We can see one difficulty in evaluation of the cost of wind power - the average cost depends on the scale, and can vary greatly, and the marginal cost is very low. Presumably we want to compare average costs, and for this we need a sense of scale. The usual cost measure in the power industry is LCOE. This is defined as the constant cost at which electricity would have to be sold for the production facility to break even over its lifetime, assuming that it operates at certain capacity factor.

5.4.1.2 Total LIFE-CyCLE COST

The evaluation method Total Life-Cycle Cost (TLCC) method is derived from NPV, as it takes into account only items of costs (cash outflows). TLCC evaluates the differences in cost (and time of occurrence of costs) between project alternatives over the life cycle. Cash outflows associated with the project (alternatives) are evaluated for each period and are then discounted to present value using a discount rate as defined in NPV approach (Kreith \& West, 1997). TLCC calculate the present value of all cash outflows (cost items), but no cash inflows (revenues). This only makes sense if:

1. There is no revenue produced by the project (Note that the cost saved are recorded as revenue) or,
2. Revenues are independent of the investment decision (e.g., because revenues are fixed, no matter what the investment decision is chosen).

The analysis may focus only on cash outflows. Soon TLCC takes no account of the project incomes, which makes this indicator not adequate to evaluate absolute attractiveness of an investment alternative. It can be used to evaluate the relative attractiveness of alternative investments when considering the cost per unit of output as a factor of choice. By definition, the calculation of $T L C C$ is defined by the following Eqn 5.27 (Cory \& Schwabe, 2009):

$$
T L C C=\frac{C o_{1}}{(1+i)}+. \frac{C o_{2}}{(1+i)^{2}}+\ldots .+\frac{C o_{t}}{(1+i)^{t}}=\sum\left(\frac{C o_{t}}{(1+i)^{t}}\right)
$$

Eqn (5.27)
where $C_{o t}=$ Cash outflows in period $t ; i=$ Discount rate and $t=$ Number of periods.

According to Lu et al. (2010) life cycle cost estimate of power system planning, provides a new idea and effective way to enhance the cost management business for the enterprises. However, it is worth noting that the accuracy of $L C C$ model is dependent on the data for calculation and the uncertainties. $T L C C$ is a derivation of $L C C$ and have to be distinguishing as well as possible. For Asiedu and Gu (1998) it is necessary separate the cost of the production components and the production cost of a plant. These are different things, in the case of the wind power plants the costs of machines and other facilities/equipment are summer up into Initial Capital Costs (ICC), described in sub-section 5.4.1.1. The rest of the costs (operation and maintenance, financial, taxes, interests, etc.) are incorporated into $F C R, L L C$ and $O \& M$, as follow as LCOE/NREL methodology.

LCC is an economic method to get the whole cost of production. It is a special approach that examines all the parts of the cost. It is used to produce a spend profile of the goods or service over
its all lifetime. The results of $L C C$ analysis are used to help managers in the decision-making process. $L C C$ analysis sees projects further into the future. It is very valuable as a comparative tool when long term investment in some goods is considered (Lee, An, Cha, \& Hur, 2010).

For Woodward (1997) the costs can be classified or considered into different categories during the lifetime of a project. These costs can be divided into the three categories of: engineering and development; production and implementation; and operation (see Figure 5.5).

Figure 5.5 Cost categorization during the phases of LCC. Source: Woodward (1997)

We have to pay attention to the external factors for a better economic evaluation of wind farm which mainly include electricity price, taxes, repayment load and time of wind power plant. All these factors can influence directly on the cost of the wind power project (Tai \& Wen-rui, 2009).
$T L C C$ has disadvantages that limit its application in assessing and managing projects in wind energy projects:

1. The need to know the actual capital cost of the project. As the interest rate that measures the cost of capital for an investment should include the risk of the project, the task of defining the real value of capital cost is not always easy to accomplish.
2. The failure to consider the project's revenues, there is interference by the revenue costs, because there are costs that are directly influenced by income, as is the case of taxes on income in energy projects that may or may not be supported by incentive programs governments on renewable energy.
3. Costs are projected for the life of the project, which makes the financial cycle equal to the operating cycle of the investment, which by classical rules of accounting does not always match.

5.4.1.3 Net Present Cost

The Net Present Cost (NPC) of a REP is the sum of the current value of all costs during the project's interest period (generally considered its lifetime), including residual values ${ }^{66}$ as costs. The net present cost of a project is the sum of all cost components, including (Blackler \& Iqbal, 2006):

1. The investment of capital or initial capital cost;
2. O\&M costs, excluding fuel (in case of wind);
3. Costs of major replacements;
4. Energy costs (fuel costs, including other associated costs);
5. Any other costs such as fees and legal fees, among others.

If a series of projects or investment options are being considered, the lowest net present cost will be the best option. By definition, the formula for calculating NPC is defined as Eqn 5.28 (George \& Schweizer, 2008; NREL, 1995):

$$
N P C=\frac{C o_{1}}{(1+i)}+. \frac{C o_{2}}{(1+i)^{2}}+\ldots .+\frac{C o_{t}}{(1+i)^{t}}+\frac{D_{v}}{(1+i)^{N}}=\Sigma\left(\frac{C o_{t}}{(1+i)^{t}}+\frac{D_{v}}{(1+i)^{N}}\right)
$$

where $C_{o t}=$ Cash outflows in period $t ; i=$ Discount rate; $t=$ Number of periods of outflows; $N=$ Lifetime of wind farm and $D_{v}=$ disinvestment value.
$N P C$ is one of the principal economic indicators for the cost-benefit analysis. All quantities and costs are expressed as present worth cost. There are many ways to calculate the economic cost of production, distribution of renewable energy and/or efficiency projects. The capital and replacement costs, the operation and maintenance costs must be combined in some manner so that a comparison may be made with the costs of not doing the project (Hakimi \& Moghaddas-Tafreshi, 2009).

We must highlight the conception of "costs" considered for this method. It is the private conception, but there are other conceptions that we could include in this method, such as environmental and social costs. Costs of industrial activity are always included in the price paid by the consumers and the unpaid costs also called "external environmental and costs" (Frangopoulos \& Caralis, 1997).

[^44]For Dekker, Nthontho, Chowdhury, and Chowdhury (2012) NPC can be calculated within HOMER ${ }^{67}$ using Eqn 5.29:

$$
N P C(\$)=\frac{T A C}{C R F}
$$

where $T A C=$ total annualized cost (which is the sum of all annualized costs of each system component). The Capital Recovery Factor (CRF) is the same Uniform Capital Recovery Factor (UCRF), so is given by Eqn 5.19, already described.

It is assumed that all prices escalate at the same rate, and uses "annual real interest rate" rather than the "nominal interest rate", which makes the inflation effect be factored out of the analysis. That is a way to reduce to performance and economic analysis within the most real values as possible.

It is also important to explain the difference between price and cost. The price includes all costs and expected return by investor or producer. The cost only includes the outflows (expenses) related to the product/service production/supply (Tai \& Wen-rui, 2009).

NPC has disadvantages that limit their application in the evaluation and management of wind energy projects:

1. The discount rate or cost of capital remains unchanged throughout the period under review the project because the cost of capital depends on the behavior of the risk of the activity that tends to be decreasing with the years of operation and technological maturity.
2. The financial indicators considered over the life of the project (inflation, discount rate, insurance, taxes, among others) also remain constant throughout the period analyzed what makes the NPC not to be influenced by the uncertainties of the economic scenario where the projects are inserted.
3. The fact of considering the value of disinvestment, especially for wind energy projects, because it is capital intensive project, makes the value of the divestment is high compared to other renewable technologies. In the case of wind energy projects return higher net present cost.
[^45]
5.4.1.4 Levelized Electricity Production Cost

The Levelized Electricity Production Cost (LEPC) per kW is the proportion of the total cost over the lifetime of the project from anticipated results expressed in equivalent terms by the current value. This cost is equivalent to the average cost being paid by consumers to cover production costs included capital costs, operations and maintenance, fuel, rate of return equivalent to the discount rate. The Eqn 5.30 is used for calculating $L E P C$ for one unit of electricity production is defined by IEA (1991):

$$
\begin{equation*}
L E P C=\frac{\sum\left\lfloor\left(I_{t}+M_{t}+F_{f}\right)(1+r)^{-t}\right]}{\sum\left[\operatorname{AAR}(1+r)^{-t}\right]} \quad[\$ / \mathrm{kWh}] \tag{5.30}
\end{equation*}
$$

where $I_{t}=$ Investment expenditures in the year $t ; M_{t}=$ Operations and maintenance expenditures in the year $t ; F_{t}=$ Fuel expenditures in the year $t ; A A R=$ Average Annual Revenue based on hourly production and $r=$ Discount rate; $t=$ Number of outflows periods.

By comparing LEPC for wind energy projects in different sites, it is important to define the limits of "production system" and costs that are included in it. For example, transmission lines and distribution systems should be included in the cost? Usually only connection costs to the production source for the transmission system is included as cost of production. One must be careful to delimit the border of cost analysis, what should or should not be included in the cost of energy (IEA, 2005).

According to Elkinton, Manwell, and McGowan (2008); Elkinton, Manwell, and McGowan (2005); Elkinton, Manwell, and McGowan (2006) to analyze the cost of one unit of electricity produced by a renewable power system is a great challenge. First of all we have to collect accurate and current data. In the case of wind power projects, for onshore applications, there are many researches done and real data are available for this kind of analyzes. For a broader understanding of the WECS Elkinton et al. (2008; 2005; 2006) studied the impact of Offshore Wind Farm Layout Optimization (OWFLO) on the cost per kW using Levelized Production Cost (LPC).

LPC is a similar method of $L E P C$, but the last one has a structure routine for OWFLO which is analyzed with the following criteria: (1) as lower as the LPC as better as OWFLO and (2) as higher as the LPC as worst as OWFLO. So it is an inverse economic measure. We must consider the fact that is not useful with excluding or different projects. This analyzes must be undertaken with the same project in different options or configurations. This assumption is also applied to LEPC method, remember that different wind power projects, different results we get it from it!

Figure 5.6 Flowchart for LPC Calculation. Source: Elkinton et al. (2008; 2005; 2006)

LEPC has disadvantages that limit application in the evaluation and management of projects in wind energy projects:

1. The discount rate or cost of capital remains unchanged throughout the period under review the project because the cost of capital depends on the behavior of the risk of the activity that tends to be decreasing with the years of operation and technological maturity
2. Capital costs are regarded as a lump sum at the beginning of the analysis; however there are other capital costs as major equipment installations and replacements that occur in other periods of the plant's lifetime production.
3. All recurrent costs begin to accumulate from the first period and are grouped together and considered to occur at the end of the current period. By using the discount rate to update and add costs in different periods, one runs the risk of this rate is different from the rate at which raise costs and other current expenditure over the life of the project.

5.4.1.5 Unit Present Average cost

The Unit Present Average Cost (UPAC) is significant for each year. However it is less meaningful if the evaluation period extends from the investment decision until the end of the lifetime of the plant production. The average annual cost per unit calculated for the two solutions, both technically and financially different, may be the same and be different than the interest of such solutions. To obtain the average unit cost updated, update separately charges (investment, operations and maintenance, fuel, and others) and total output during the lifetime of the plant production. Assigning charges generally updated by $P V_{C o}$ and annual accumulated and updated by $P V_{S A E P}$, UPAC $(\$ / \mathrm{kW})$, is given by (NREL, 1995):

$$
U P A C=\frac{\sum P V_{C o}}{P V s_{A E P}}
$$

Eqn (5.31)
where $P V_{C o}=$ Present value of cash outflows and $P V_{s_{A E P}}=$ Present value of cumulated annual energy production.

The update is to calculate the amount as payments and receipts made on various dates if made at time $t=0$. To set the model to consider is necessary to establish precisely what is expected escalation for the exits and entries for cash. A fairly general model can admit that both the inputs (energy sales) and cash outflows (investment, operating costs) are irregularly spread over a period of n years of life. Although payments and receipts are distributed more or less irregularity over time, can be assumed:

1. Expenditure is done on the first day of the year during which it is paid;
2. Revenues go into the last day of the year in which they actually receive it.

The interest and depreciation depend on the conditions of financing, accepted the same for all projects being compared. The following calculation is the average cost to date, considers itself neither interest nor amortization. Invested capital and its depreciation could never be considered simultaneously, it would be a duplication (Damodaran, 2001). In this model of assessment of costs, cash outflows are classified as investment costs and operating expenses. The investment costs include all cash outflows arising from the physical structure of the central production (machinery and equipment, civil works, roads and access, control systems, among other things of that nature). As operating costs we should include $O \& M$ costs, fuel and other charges related to the regular operation of the power plant. The calculation of $U P A C$, starting of the Eqns 5.31 and 5.32, it is assumed the following parameters:

1. Investment (ICC) focuses on the initial moment of the project $(t=0)$.
2. The annual use of power (capacity factor for wind projects) installed is constant throughout the lifetime of the project.
3. $O \& M$ costs are constant over the useful lifetime and equal to $C_{O \& M}$.
4. There are no charges for fuel, will be the case of small hydroelectric plants, wind farms and photovoltaic cells.
5. The various charges are void or may be included in the $O \& M$ costs.

Accordingly, $U P A C$ is defined by Eqn 5.32:

$$
\begin{equation*}
U P A C=\frac{I C C\left(1+\alpha C_{O \& M}\right)}{(\alpha A E P)}=\frac{I C C\left(\beta+C_{O \& M}\right)}{A E P_{s}} \quad[\$ / \mathrm{kW}] \tag{5.32}
\end{equation*}
$$

where $I C C=$ Initial Capital Cost $; \mathrm{C}_{\mathrm{O} \mathrm{\& M}}=$ Operations and Maintenance costs and $A E P_{s}=$ Cumulated annual energy production.

For those factors $\alpha=\left[\frac{(1+i)^{t}-1}{i(1+i)^{t}}\right]$ and $\beta=U C R F=\left[\frac{i(1+i)^{t}}{(1+i)^{t}-1}\right]$, where: $i=$ interest rate and $t=$ number of outflows or lifetime of the project.
$U P A C$ has disadvantages that limit its use in evaluating and managing projects in wind energy:

1. Capital costs (ICC) are considered as a fixed sum at the beginning of the project; however there are other capital costs as major equipment installations and replacements that occur in other periods of the plant's lifetime production.
2. The capacity factor is not fixed throughout the period of operation of the project (lifetime), which makes the wind production variable over the years. By oscillating energy production, there is also fluctuation in wind energy revenues and costs.
3. $O \& M$ costs are not fixed over the lifetime of the project. The maintenance contracts for wind farms are defined according to the warranty period given by equipment manufacturers. The duration of maintenance contract outside the manufacturer's warranty is 5 to 12 years, yet the life of the wind farms are for at least 20 years.

5.4.2 PECULIARITIES IN THE COST ANALYSIS OF WIND ENERGY PROJECTS

The adoption of standardized methodology for calculating the cost of wind energy projects is necessary in the efficient management of a wind farm. Some approaches can be used for economic assessment in various contexts, to reflect the criteria and priorities of different economic agents involved in the venture. The choice of wind power system has the greatest impact on the cost of wind power produced. The link between wind turbine production capacity and production cost stems partly from technical economies of scale. In addition to technical economies of scale, there are production economies of scale that reduce the cost of wind power. However, this does not guarantee that a specific wind project will generate power at a competitive cost level. The capacity to optimize production costs depends on a number of other factors (Valentine, 2011).

According to Dicorato, Forte, Pisani, and Trovato (2011) the cost analysis of a wind power plant must be done by cost centers, classified into wind turbines cost center, electrical system cost center and grid interface cost center. These cost centers change its costs and sub-divisions depending on the kind of application of wind power plant. If it is related to an Offshore Wind Farm (OFWF), the costs of foundations and electrical system and grid interface are higher. In the case of a Nearshore Wind Farm (NWF) the same costs are less than the OFWF, especially, the costs with electrical system and grid interface. Then, for an Onshore Wind Farm (OWF), most of the costs are less expensive, but the wind resources are also less intense, so this fact requires a much better efficiency in wind turbine technology. In the power industry in general, the more efficient more costly, that is why in OWF applications, most of the costs are for wind turbines cost center (Milligan, 2004).

For the correct definition and calculation of the cost of one unit of energy produced by a central production is essential to characterize the boundaries of the project under study. It is important to compare the power plants meet the cost of energy produced in isolation, but may not reflect the total economic impact of new power when connected to the network within an existing electrical system. It is important from the standpoint of the producer to estimate the cost of producing one unit of energy for the management and evaluation of the project as a business unit must ensure that economic return for the investor/manager (Johasson, 1993).

The average cash cost methodology for the series of costs to present values at a given base year by applying the discount rate. The discount rate considered appropriate for the energy sector may differ from country to country, and in the same country, from technology to technology. Applying the discount rate takes into account the time value of money, or an amount earned or spent in the past or future, has the same value as the same amount (in real terms) gained or spent on this. The discount rate may be related to rates of returns that can be earned on typical investments, which may be a fee required by regulators incorporating the provision for financial risks and /or derived from national macroeconomic analysis.. Despite the investment option not to depend entirely on how it is financed, as it should be profitable by itself, funding may influence the attractiveness of the project. This is especially true for REPs. How often it is very capital intensive and require large amount of initial debt and equity. The financial conditions for such a loan, becoming an important factor in the project evaluation (Harper et al., 2007).

5.5 OPTIMIZATION MODELS APPLIED TO REPS

5.5.1 CONCEPTS OF SIMULATION AND OPTIMIZATION

In a wide variety of economic, political, scientific, and social situations often arise in that if you want to maximize or minimize a certain amount that is a measure of the efficiency of the activity. This amount can be, for example, the total production in a certain period of time, or the cost of the operation, these problems are optimization problems that are known as mathematical programming problems. The mathematical optimization models find an optimum expansion plan by using a calculation procedure that solves a mathematical formulation of the problem (Latorre, Cruz, Areiza, \& Villegas, 2003) \therefore Specific classes of these problems are those involving only linear equations and inequalities. And, the most popular method to solve linear programming problems is the simplex method (Nocedal \& Wright, 1999).

The objective of simulation optimization process is minimizing the resources spent while maximizing the information obtained in a simulation experiment (Carson \& Maria, 1997). In mathematics, the term optimization, or mathematical programming, refers to the study of problems in that search minimizing or maximizing a function (mathematical model) through systematic choice of whole or real variable values within a set feasible (optimization strategy). In engineering, administration, logistics, transport, economy, biology or other sciences, when it manages to build mathematical models quite representative of their dynamic systems under study, it is possible to apply the mathematical techniques of optimization to maximize or minimize a function previously defined as performance index (PI), or index of performance (IP), in order to find an optimal solution of the problem, that is, that results in the best possible performance of the system, according to this previously defined performance criteria (PC) (Christodoulos \& Panos, 2009).

Figure 5.7 Simulation optimization model framework. Source: based on Carson and Maria (1997)

According to Figure 5.7 we can discuss about inputs, simulation process (mathematical model and optimization strategy) and outputs. In the systemic theoretical ${ }^{68}$ approach, the broadest conception, a "system" may be described as a complex of interacting components together with the relationships among them that permit the identification of a boundary-maintaining entity or process. The inputs-process-outputs relation must work as an organism. \therefore The optimization strategy can be understood as a continuum interaction for improving the whole system, which can be a power plant.

So the concept of optimization can be taken as a way or technique to improve the efficiency of a system in general (for an optimal condition). For this precise and complex duty the optimization process have to be measure anyway. The method adopted for measuring the optimization process depends on the nature of inputs-process-outputs relation. In the Figure 5.8 is displayed the six major categories of simulation optimization methods. In the literature on energy systems, the word optimization is often used in cases where the proper word is improvement. The two words do not have the same meaning and care should be exercised in their use.

Figure 5.8 Simulation \& optimization methods. Source: Nocedal and Wright (1999) and Christodoulos and Panos (2009)

[^46]
5.5.2 AN OVERVIEW OF SIMULATION AND OPTIMIZATION METHODS

The simulation is one of the most powerful tools available to decision makers responsible for the design and operation of complex systems and processes. Throughout the study on this topic, prior to work, met some definitions found in articles of authors with research in the area. Then are given two of these settings found, so the "simulation":

1. According to Banks (1999) is "the imitation of the functioning of a real-world system or process over time. Involves the creation and observation of an artificial history so the system can draw conclusions about the nature of the real system represents."
2. For Shannon (1992) is "the process of designing a model of a real system, conduct experiments using this same model with the purpose of understanding the behavior of the system and/or evaluate various strategies for its functioning. Thus, it is crucial that the template is designed so that its behavior mimics the behavior of the real system events that occur over time."

These two definitions it is concluded that both authors agree that simulate is the act of imitating the behavior of a model of a real system. This conclusion leads to the need to define the terms "model" and "system". Also for these two terms there are in the literature various definitions \therefore For Carson and Maria (1997), a model is a representation of a system or process, and a simulation model is a representation that changes within time and a system is a group of interconnected elements that cooperate in order to achieve a defined objective.

The optimization is process the improvement of a system functioning in its best outputs as possible. The simulation and optimization models can be classified as continuous or discrete, static or dynamic and stochastic or deterministic (Andradóttir, 2007):

1. Continuous - the simulation time progresses continuously at intervals of equal times;
2. Discrete - the simulation time is based on the occurrence of events, namely advances in event;
3. Static - the state of the system is described only to given time and usually the time variable is not important;
4. Dynamic - the state of the system is described based on a time variable, this evolves over time.
5. Deterministic - the values entered in the simulation are constant;
6. Stochastic - the values entered in the simulation are constant; for stochastic models, the entered values are random.

The simulation and optimization problems are often driven by maximization or minimization expected values of the objective function designed to represent the system behavior. \therefore This, however, does not have to be always the objective of the simulation and optimization problems. On other situations, one might be interested in minimizing the dispersion of the values rather than its expected values (Azadivar, 1999).

The simulation and optimization problems consist of a determination of the extreme (minimum or maximum) of an objective function under certain constraints or restrictions. \therefore It is usually mathematically shown as follows:

$$
\begin{equation*}
\text { Minimize } f(x) \tag{-}
\end{equation*}
$$

considering

$$
\begin{equation*}
x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \tag{5.34}
\end{equation*}
$$

$$
\begin{array}{ll}
a_{i}(x)=0 & i=1,2, \ldots, m \\
b_{k}(x) \leq 0 & k=1,2, \ldots, n \tag{5.36}
\end{array}
$$

where $x=$ set of all the independent variables; $a_{i}=$ equality constraint functions ("strong constraints"), which constitute the simulation model of the system and are derived by an ansis of the system (energetic, exergetic, economic, etc.); $b_{k}=$ inequality constraint functions ("weak constraints") corresponding to design and operation limits, state regulations, safety requirements, etc.

When we refer to power systems analysis, independent of the type of power system, it is usually helpful to classify the independent variables into three categories (described in Table 5.7):

$$
\begin{equation*}
x \equiv(o, d, s) \tag{5.37}
\end{equation*}
$$

Table 5.7 Classification for independent variables for power system optimization analysis

Variable	Category	Meaning
o	Operation	Load factors components, mass flow rates, pressures and temperatures of streams, etc.
d	Design	Nominal capacities of components, mass flow rates, pressures and temperatures of streams, etc.
s	Synthesis	There is only one variable of this type for each component, indicating whether the component exists in the optimal configuration or not; it may be a binary (0 or 1), an integer, or a continuous variable such as the rated power of a component, with a zero value indicating the non-existence of a component in the final configuration.

[^47]As we could understand about the definitions of the terms "simulation" and "optimization" adopted in this research, it is also necessary to discuss about the most common methods used in simulation and optimization process for power systems evaluations. In Figure 5.8 are shown the six most used methods of simulation and optimization.

The Gradient Based Search Methods (GBSM) estimate the response of the gradient function (∇f) to assess the shape of the objective function and employ deterministic mathematical programming techniques. The most used gradient techniques are (1) Finite Difference Estimation (FinDE); (2) Likelihood Ratio Estimators (LR); (3) Perturbation Analysis (PA) and (4) Frequency Domain Experiments (FDE) (Fu, 1994).

The Stochastic Optimization (SO) methods are optimization methods that generate and use random variables. For stochastic problems, the random variables appear in the formulation of the optimization problem itself, which involve random objective functions or random constraints, for example. Stochastic optimization methods also include methods with random iterates. Some stochastic optimization methods use random iterates to solve stochastic problems, combining both meanings of stochastic optimization. Stochastic optimization methods generalize deterministic methods for deterministic problems (Spall, 2003).

For Kleijnen (2008) the Response Surface Methodology (RSM) explores the relationships between several explanatory variables ${ }^{69}$ and one or more response variables ${ }^{70}$. The method was introduced by G.E.P. Box and K.B. Wilson in $1951 \therefore$ The main idea of RSM is to use a sequence of designed experiments ${ }^{71}$ to obtain an optimal response. Box and Wilson suggest using a second-degree polynomial ${ }^{72}$ model to do this. They acknowledge that this model is only an approximation, but use it because such a model is easy to estimate and apply, even when little is known about the process.

An Asynchronous Team (A-Team) is a scale efficient network of distributed computer agents working together to solve a difficult problem. An A-team is a process that involves combining various problem solving strategies so that they can interact synergistically. A-Teams, which are biologically inspired, are characterized by autonomous agents and cyclic data flow (Carson \& Maria, 1997).

The Statistical Methods for simulations and optimization procedures related to power systems reflect the deterministic optimization models via statistical frequency analysis, probability distributions, multiple regression and inference analysis (Frangopoulos, 2003). The statistical methods and techniques aim to find existing relations between the historical data production, explanatory variables and information collected in real time \therefore These models have the advantage that they do not need physical modeling. However, for the process of parameters estimation is necessary to possess a wide range of historical data and measurements in real time. The most used statistical techniques are (1) Importance Sampling (IS); (2) Ranking and Selection (RS) and (3) Multiple Comparison (MC).

[^48]
5.5.3 TYPES OF OPTIMIZATION MODELS FOR ENERGY SYSTEMS

In the last 20 years we could see a great improvement of renewable energy technologies, especially wind and solar energy technologies worldwide that can also be seen as an answer to several energy related environmental problems. \therefore The renewable energy systems (power plants and individual applications) are complex systems (Oliveira \& Fernandes, 2011b) and one of the most important issues is the efficiency of the systems or coefficient of performance (COP). So this hard duty to make the energy systems work in the best COP as possible, which is a complex problem to solve.

Energy systems have been evoluting jointly with energy demand of humankind, so these systems have to generate more and more energy \therefore This necessity brings up the concept of system optimization in energy systems. In a conventional design procedure (in the earlier times), the objective is to reach an opertationable system (system had to work), i.e. a system that performs as was designed within the imposed constraints or technical limitations. However, in general, there will be more than one operationable design; and, in fact, there may be any number of improved designs that the conventional procedure may not identify. The role of optimization is to reveal the best (under certain criteria and constraints) design and the best operational point of the system automatically, with no need for the designer to study and evaluate one by one among several others possible designs.

The objective of the optimization can change depending on the objective of the designer or analyst. The optimization process of an energy system can be considered at three levels (Frangopoulos, 2003):

1. Design optimization. The word design here is used to synonym of technical features of the systems components and the working properties of each component at the nominal load of the system. The design point of the system is nominal load or operational conditions of the energy system. However in order to distinguish the various levels of optimization and due to the lack of a better term, the word design will be used with the particular meaning given here.
2. Synthesis optimization. The term synthesis refers the components that work in a power system and their interconnections or relations. After the synthesis of an energy system has been successfully composed, the flow diagram of the system can be drawn.
3. Operation optimization. For a given energy system (i.e. one in which the synthesis and design are known) under specified conditions, the optimal operating point can be known, as it is defined by the operating properties and interconnections of components in the system (speed of revolution, power output, mass flow rates, pressures, temperatures, composition of fluids, etc.).

Of course if complete optimization is the objective, each level cannot be considered separately from the others. So, afterwards, the complete optimization problem can be stated by the following question: What is the synthesis of the system, the design features of the components and the operating strategy that lead to an overall optimum situation of the whole power system?

The following aspects show the necessity of applying optimization procedures in the design and operation of energy systems: (1) Increasing the quality and capacity of the power plants while reducing costs in order to be competitive, case of wind power; (2) Fulfilling ever increasing specification as well as considering reliability and safety conditions, observing strict pollution regulations, and saving energy and material resources and (3) Saving time and spending less money in the initial power plant's lifetime.

As we can notice, optimization algorithms fit as a suitable tool for solving complex problems in the field of renewable energy systems. Figure 5.9 shows an exponential evolution in the number of optimization algorithms using for solving complex problems in renewable energy systems. Some authors have reviewed different types of models such as renewable energy models, emission reduction models, energy planning models, energy supply-demand models, forecasting models, and control models using optimization methods (Jebaraj \& Iniyan, 2006), but many researchers are continuously proposing and applying new or hybrid methods applied into different renewable energy technologies simultaneously (Castronuovo \& Lopes, 2004; Deshmukh \& Deshmukh, 2008).

Figure 5.9 Evolution of optimization algorithms solutions in RETs. Source: Baños et al. (2011)

The great expansion and diffusion of optimization algorithms for solving complex problems in RETs is a clear response for the "boom" of renewable energy industry globally. When we match the global annual installed capacity for wind power (see Figure 3.12) with the utilization of optimization algorithms as shown in Figure 5.9, there is clear positive evidence between them. We must remember that renewable energy technologies and sources have as a central common aspect, the uncontrollability, and the outputs are expectable, case of electricity produced by a wind farm or a solar central power or still some other RETs.

In order to classify in groups of optimization, taking into consideration the objective of the algorithm, we can organize them into two big groups (see Tables 5.8 and 5.9) \therefore The first one is EConomic Optimization Algorithm (ECOA) and the second is ENgineering Optimization Algorithm $(E N O A)$. Both groups are inter-linked because any effect in each of them will reflect in the other, consequently.

Table 5.8 Economic models of optimization algorithms for wind and hybrid power system

[^49]Table 5.9 Engineering models of optimization algorithms for wind and hybrid power system

Group	Subgroup	Algorithm
	2.1 Engineering Models 2.1.1 Rašuo and Bengin (2010)	$f\left(x_{1}\right)=\frac{P_{\text {total }}}{P_{\max }} \quad f\left(x_{2}\right)=\frac{\cos t s}{P_{\text {total }}}$
	2.1.2 Marmidis, Lazarou, and Pyrgioti (2008)	$O b j=\frac{\cos t}{P_{\text {tot }}} u_{i}=u_{0}\left[1-\sqrt{\sum_{i=1}^{N}\left(1-\frac{u}{u_{0}}\right)^{2}}\right]$
	2.1.3 Gonzalez, Rodriguez, Mora, Santos, and Payan (2010)	$E_{W F}=T \sum_{j=1}^{N_{t}} \int_{v_{c i}}^{v_{c o}} P_{g e n} j(v) p_{j}(v) d_{v}$
	2.1.4 Mustakerov and Borissova (2010)	$\begin{aligned} & P=h_{y} \eta N P_{w t}, N=N_{\text {row }} N_{c o l}, N_{\text {row }}=\frac{L_{x}}{S D_{x}}+1, \\ & S D_{x}=k_{\text {row }} D \text { and } \quad N_{c o l}=\frac{L_{y}}{k_{c o l} D}+1 \end{aligned}$
	2.1.5 Diaf, Diaf, Belhamel, Haddadi, and Louche (2007)	$P_{t o t}(t)=P_{P V}(t)+P_{W D}(t)$
	2.1.6 Ashok (2007)	$P_{t o t}(t)=\sum_{h=1}^{N_{h}} P_{h}+\sum_{w=1}^{N_{w}} P_{w}+\sum_{s=1}^{N_{s}} P_{s}$
$\begin{aligned} & \mathbb{O} \\ & \underset{\sim}{4} \\ & \hline \end{aligned}$	2.1.7 RETScreen® International Clean Energy Decision Support Centre (2008)	$e_{\text {base }}=\left(e_{\mathrm{CO}_{2}} G W P_{\mathrm{CO}_{2}}+e_{\mathrm{CH} 4} G W P_{\mathrm{CH} 4}+e_{\mathrm{N}_{2} \mathrm{O}} G W P_{\mathrm{N}_{2} \mathrm{O}}\right) \frac{1}{\eta} \frac{1}{1-\lambda}$
N	2.1.8 Huang (2007)	$P_{t o t}=\sum_{i=1}^{N} P_{i}$
	2.1.9 Moran and Sherrington (2007)	$E_{\text {windfarm }}=I C \times C F \times h_{\text {year }}$
	2.1.10 Diveux, Sebastian, Bernard, Puiggali, and Grandidier (2001)	$E_{A P}=\frac{8760}{1000} \frac{\rho_{\text {air }}}{2} \times S_{R} \times \int_{V_{i}}^{V_{f}} V^{3} f(V) C_{P}(V) \eta_{G B}(V) \eta_{G}(V) d V$
	2.1.11 Flores, Tapia, and Tapia (2005)	$P_{o p t}=k \omega_{r}^{3}$
	2.1.12 Vallée, Lobry, and Deblecker (2011)	$M A W P C=\left(1-F O R_{t}\right) \cdot I W P C$
	2.1.13 McWilliam, Van Kooten, and Crawford (2012)	$N=\frac{4 n \pi \pi^{2}}{\sqrt{3 X_{p}^{2}}}$
	2.1.14 Maki, Sbragio, and Vlahopoulos (2012)	$V=V_{r e f}\left(\frac{H u b_{H t}}{H_{r e f}}\right)^{0.34}$
	2.1.15 Szafron (2010)	$E_{y}=\left[\left(E_{i}-\left(w_{\text {ake }}\right)_{i}-\left(\text { coll }_{\text {ection }}\right)_{i}\right) \cdot\left(a_{\text {vail }}\right)_{i}\right\rfloor-\left(\text { trans }_{\text {mission }}\right)$
	2.1.16 Habib et al. (1999)	$P_{i, j}=P_{s j} X_{i}+P_{w j}\left(1-X_{i}\right)$
	2.1.17 Kiranoudis, Voros, and Maroulis (2001)	$C_{p}=C_{p r} \exp \left[\frac{\left(\ln u-\ln u_{r}\right)^{2}}{2(\ln s)^{2}}\right]$

Source: own construction. Note: The nomenclature of these formulas is in Appendix B.

The optimization models applied to wind power system in the last decade started to increase in the same rhythm as wind power industry has increased. According to Yin and Wang (2012) the most common three types of WECS problem can be categorized into: (1) Integrate power conversion; (2) Structural system design and (3) Wind turbine placement.

The integrate power conversion refers to technical issues such as wind intermittency and grid reliability. The conventional management of transmission and distribution operation is challenged by electricity market restructuring, security of supply concerns and the integration of newer production technologies such as wind power.

The WECS transform kinetic energy of the air motion into mechanical and electrical. It is a chain conversion process which starts by wind turbines. So, the structural system design of a WECS must include the blades, engines, and the tower structure \therefore All these elements represent a critical factor for maximizing energy production. To maximize the power production per unit of cost, the number of installed turbines and the spacing between them should be optimized. As we can see in Figure 5.10 , there is an obvious correlation between the layout optimization and energy production cost.

Figure 5.10 The layout optimization and its relationship. Source: adapted from Lundberg (2006)

The cost per kWh from a power plant, a wind farm, must be understood as a result from a systemic components interlinked. A wind farm depends on directly the physical and environmental conditions. The physical refer to the system configuration (layout, technology employed, local terrain configuration, etc.) and environmental conditions refer to the local weather such as wind intensity and speed, air humidity, flora and fauna aspects (specially flying animals as bats, birds, etc.). The system configuration has impacts on investment and $O \& M$ costs, which reflects on energy production cost by a wind farm \therefore Also, we can see the system configuration has influence on loss model and power performance model, we mean, the energy produced by the same wind farm. The relation of energy production cost and (net or available) energy production is finally the cost per kWh.

5.6. SUMMARY AND CONCLUSIONS

As far as investment decisions when dealing with uncertainty of future events that may not be totally avoided. The decision is based on estimates and assumptions about future developments and future states (prices, volumes, market sizes, regulations, etc.). The reality may eventually be less favorable than the original estimate of project. It is not a productive strategy for evaluating investments working hypotheses, very negative \therefore The objective of the investment should not be too pessimistic, but to evaluate adequately the uncertainties involved in analyzing and quantifying this uncertainty in some analytical way \therefore One rule applies to all methods of economic evaluation of projects and costs for the private view, if two projects generate the same results in the future, but are associated with different degrees of uncertainty, the more uncertain project will be considered less attractive. There is an inverse relationship between uncertainty and attractiveness of the project. Like any other project, the REPs should ensure financial returns to investors and managers. The evaluation is not limited to assessment of financial attractiveness, but should include several other factors.

As we explained in this chapter, the attractiveness of an investment project should be quantified in an analytical way. Methodologically, to arrive at this result it is necessary to sort and organize items in the project cost. In the case of wind energy projects, the costs are classified and structured investment costs, operating costs, maintenance costs and financial costs \therefore All these classes and cost structure have their own characteristics depending on the location, size, types of financing and regulations. These costs behave differently from project to project, from country to country (region), from author to author, in summary, we present estimates for these costs, as shown in Tables 5.3 and 5.4.

Although the crucial important aspect for classifying and structuring the cost of wind energy projects used to the proper application of existing models for economic evaluation of projects, considering the objectives of the evaluation itself \therefore For this research, the purpose and scope of the theme, we studied the main methods of economic evaluation of projects and their applicability in wind energy projects. The indicators studied were $S P B, D P B, N P V, I R R, R R$ and $B C R$.
$S P B$ and $D P B$ measure the return time of investment, although $B D P$ discounting project costs (usually operating costs). NPV analysis measures the level of wealth that the investor receives the bet on any one project with its own capital and/or others. In $I R R$ analysis, which refers specifically rate the investment can pay for the capital (the higher the rate, the better the project) \therefore For models of economic evaluation of projects studied were identified limitations or weaknesses of each.

However, for sectors where there is strong government regulation of economic activity, if the renewable energy sector, we need to analyze, also what level of minimum income that the project in question needs. This response is given by $R R$ analysis. For a $R R$ analysis, the smaller the need for revenue, better the project is. The analysis of $B C R$ is the ratio of the current value of the sum of the project benefits divided by present value of the sum of project costs. $B C R$ analysis is used as a criterion for selection of independent projects that have benefit-cost ratio greater than or equal to
unity．It cannot be used to choose between mutually exclusive alternatives．For wind energy projects，methodologies were also analyzed with emphasis on analysis of the cost production per MWh \therefore Among the indicators studied were $L C O E, T L C C, N P C, L E P C$ and $U P A C$ ．These indicators of attractiveness and cost of projects are for specific REPs．Together with other indicators of financial attractiveness of the project is a set of tools that can be used selectively to evaluate and project management．They were also pointed out factors that limit each type of cost analysis．It is comparative analysis of methodologies studied in Table 5．10，considering the main aspects that impact on economic assessment of wind energy projects and their costs．

Table 5．10 Overview of economic measures applying to specific investment features and decision

	Methods of economic evaluation of projects and costs								
	NPV	IRR	TLCC	SPB	$D P B$	$B C R$	LCOE	$R R$	UPAC
Significant investments （negative net cash flow） after first return	$\begin{aligned} & \cong \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \stackrel{0}{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{0}{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \frac{0}{0} \\ & \vec{\nabla} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	
Investment subject to regulation	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 己 } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
Project－specific debt－ financing needed	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	"	$\stackrel{\rightharpoonup}{\bar{\circ}}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \frac{0}{0} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \frac{0}{0} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\underset{\sim}{0}} \\ & \dot{\sim} \\ & \end{aligned}$
Social costs（externalities）		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{0}{0} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \ddot{0} \\ & \stackrel{0}{0} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{0}{0} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
Taxes	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{0}{0} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{0}{0} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \text { Z } \\ & =0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \frac{0}{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
Select from mutually exclusive alternatives	$\begin{aligned} & \ddot{0} \\ & 0.0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\rightharpoonup}{\bar{z}}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	"产旁	$\begin{aligned} & \overline{0} \underset{\sim}{3} \\ & \text { Z } \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \text { Z } \\ & =0 \end{aligned}$	$\stackrel{\rightharpoonup}{\bar{z}}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
Ranking （Limited budget）	$\begin{aligned} & \stackrel{0}{0} \\ & 0 . \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{0}{0} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \text { Z } \\ & \mathscr{O} \end{aligned}$		$\begin{aligned} & \ddot{0} \\ & \stackrel{0}{0} \\ & 0 \\ & 0 \\ & \hline 0 . \end{aligned}$	$\begin{gathered} \tilde{0} \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{0}{0} \\ & 0.0 \\ & 0 \\ & 0 \end{aligned}$
Risks	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \ddot{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \ddot{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{0}{0} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$

[^50]The methodologies for economic evaluation of projects and costs are summarized in Table 5.10. Economic measures are suggested which better suited for each specific analysis \therefore Different economic measures apply to different situations and it is believed to be preferable to use several methodologies to evaluate an investment project in the energy area. Sometimes the objective of economic evaluation is to find the most appropriate combination of each method available in engineering economics.

After analysis of these economic models applied to wind energy projects, we highlight that:

1. The attractiveness of the proposed wind energy can vary considerably between evaluation of the private and public sector. The public sector takes into account additional factors such as externalities, public authorities for tax purposes or long-term effects that are beyond the horizon of private investors.
2. The financing structure is very important influencing factor for the attractiveness of wind energy project. In many cases, economic agents practice their actions by means of financing the project in order to earn sufficient income to meet the demands from investors and other economic agents involved.
3. The project's economic attractiveness of wind energy is influenced by government intervention through regulatory actions. Common tools of public intervention are tax incentives, direct subsidies, regulated tariffs (revenue) or subsidized loans (low interest loans).

The REPs can be analyzed using essentially the "tool kit", presented in this chapter. The financial attractiveness is an integral part of any project. The economic agents involved must offer sufficient guarantees to the financial return in order to make it attractive. There are a number of other factors and peculiarities that make the evaluation of REPs little more difficult than in "normal" projects. So far, possible investments in REPs have been treated as if the consequences were entirely predictable. In reality, the consequences are still very uncertain. This situation applies to projects of all types and especially for wind energy projects (Gottschalk, 1996).

In order to improve the reliability of projected and REPs already in operation the key players of renewable energy industry, case of wind energy sector, more and more adopt simulation and optimization methods. The simulation and optimization methods since the end of nineties decade, as shown in Figure 5.9 have increased exponentially \therefore This growth as an answer for complex problems that has appeared related to renewable energy systems design and operation. It is a way to explain and understand system behavior and improves it as a whole, so consequently, spent less money and until lower the cost of energy produced. For a wind farm that the occupies a given land area, if the wake effect ${ }^{73}$ of wind turbines is ignored, more wind turbines lower the unit average cost, and the better the economic efficiency of the whole wind farm.

[^51]Techniques for simulation and optimization of RETs vary greatly depending on the exact problem setting. The case of RE projects the local conditions such as orography, (micro) climate, local population and government must be taken into consideration. Many systems simulation and optimization in areas such as manufacturing, distribution, financial evaluations, are too complex to be analyzed discretely. Discrete event simulation and optimization has long been a useful tool for evaluating the performance of such systems. However, a simple evaluation of performance is often insufficient and a more exploratory process may be needed in the manner of simulation and optimization situations. Simulation and optimization is the process of finding the best values expected of some decision variables for a system where the performance is evaluated based on the output of a simulation model of this system (Olafsson \& Jumi, 2002).

There has been many work on simulation and optimization procedures (techniques) in the specialized literature, and more recently optimization routines has been incorporated into several commercial simulation package and softwares ${ }^{74}$. The choice of the procedures (software) to use in the simulation and optimization study depends on the analyst or researcher and the problem itself to be solved.

The success expansion of WECs worldwide is obviously a direct response of economic scale phase this industry has entered during the last decade. From now and on, the great challenger is maintain this rhythm of growth by improving the power output through the development of better aerodynamic performance offers some potential economic return; however, the focus is on the cost of energy produced of the entire system. The main objective of this Chapter has been discuss about economic measures and optimization models applied to RETs, with focus on wind power technology in order to establish a framework for a much better utilization in economic engineering evaluation of a project in a microeconomic view.

In Table 5.8 and 5.9 are summarized the economic and engineering models of optimization algorithms for WECS and hybrid power systems. We could conclude that the economic view is given an emphasis on cost and profit produced by the system, however in engineering view the emphasis is addressed to cost/production, electricity production and wind farm capacity. There is a question we try to understand as how these two aspects are linked and which is more important in determine the cost of energy produced. That's why is necessary to do simulation and optimization procedures through a new reread of the economic measures and optimization models applied to wind energy projects.

For this reason in the Chapter 6 is discussed and presented the methodology proposed by this Ph.D. research work related to the scientific field of Economics developed in the Department of Economics, Management and Industrial Engineering of the University of Aveiro, applied to Renewable Energy, case of WECS. The simulation and validation of the proposed methodology is performance in Chapter 7 and the results and discussions with conclusions and implications are presented in Chapters 8 and 9.

[^52]
5.7 References

AEE. (2006). Análisis y Diagnóstico de la Situación de la Energía Eólica en Espanã. Datos Básicos de la Eólica en España. Retrieved November 27, 2009, from http://www.aeeolica.es/contenidos.php?c_pub=101.

Andradóttir, S. (2007). Simulation Optimization Handbook of Simulation (pp. 307-333): John Wiley \& Sons, Inc.

Ashok, S. (2007). Optimised model for community-based hybrid energy system. Renewable Energy, 32(7), 1155-1164. doi: 10.1016/j.renene.2006.04.008

Asiedu, Y., \& Gu, P. (1998). Product life cycle cost analysis: State of the art review. International Journal of Production Research, 36(4), 883-908. doi: 10.1080/002075498193444

Azadivar, F. (1999). Simulation optimization methodologies.
Banks, J. (1999). Introduction to simulation. Paper presented at the Proceedings of the 31st conference on Winter simulation: Simulation - a bridge to the future Phoenix, Arizona, United States.

Baños, R., Manzano-Agugliaro, F., Montoya, F. G., Gil, C., Alcayde, A., \& Gómez, J. (2011). Optimization methods applied to renewable and sustainable energy: A review. Renewable and Sustainable Energy Reviews, 15(4), 1753-1766. doi: 10.1016/j.rser.2010.12.008

Benitez, L. E., Benitez, P. C., \& van Kooten, G. C. (2008). The economics of wind power with energy storage. Energy Economics, 30(4), 1973-1989. doi: 10.1016/j.eneco.2007.01.017

Bergmann, A., Hanley, N., \& Wright, R. (2006). Valuing the attributes of renewable energy investments. Energy Policy, 34(9), 1004-1014. doi: 10.1016/j.enpol.2004.08.035

Bhandari, S. B. (2009). Discounted Payback Period - Some Extensions. Paper presented at the ASBBS Annual Conference, Las Vegas.

Blackler, T., \& Iqbal, M. T. (2006). Pre-feasibility study of wind power generation in holyrood, newfoundland. Renewable Energy, 31(4), 489-502. doi: 10.1016/j.renene.2005.04.009

Blanco, M. I. (2009). The economics of wind energy. Renewable \& Sustainable Energy Reviews, 13(6-7), 1372-1382. doi: 10.1016/j.rser.2008.09.004

Boardman, A. E., Greenberg, D. H., Vining, A. R., \& Weimer, D. L. (1996). Cost-Benefit Analysis. Concepts and Practice: Prentice-Hall.

Bode, S., \& Michaelowa, A. (2003). Avoiding perverse effects of baseline and investment additionality determination in the case of renewable energy projects. Energy Policy, 31(6), 505-517. doi: 10.1016/s0301-4215(02)00076-9

Borgonovo, E., Gatti, S., \& Peccati, L. (2010). What drives value creation in investment projects? An application of sensitivity analysis to project finance transactions. European Journal of Operational Research, 205(1), 227-236. doi: 10.1016/j.ejor.2009.12.006

Boyle, G. (1997). Renewable Energy - Power for a Sustainable Future. UK: Oxford Universty Press in association with the Open University.

Brealey, R. A., \& Myers, S. C. (1997). Princípios de Finanças Empresariais (5a ed.). Lisboa: McGraw-Hill.

BWEA. (2006). Reform of the Renewables Obligation. (Preliminary consultation). Retrieved July 5, 2010, from http://www.bwear.com/ref/consultation-responses.html.

Carson, Y., \& Maria, A. (1997). Simulation optimization: methods and applications. Paper presented at the 29th Conference on Winter Simulation, Washington, DC, USA

Castronuovo, E. D., \& Lopes, J. A. P. (2004). On the optimization of the daily operation of a windhydro power plant. Power Systems, IEEE Transactions on, 19(3), 1599-1606. doi: 10.1109/tpwrs. 2004.831707

Christodoulos, A. F., \& Panos, M. P. (2009). Encyclopedia of Optimization (2nd ed.). New York: Springer.

Christopher, A. W. (2003). Wind Turbine Reliability: Understanding and Minimizing Wind Turbine Operation and Maintenance Costs. Retrieved 2010, March 13, from http://prod.sandia.gov/techlib/access-control.cgi/2006/061100.pdf.

Cleland, D. I. (1991). The Age of Project Management. Project Management Journal, XXII(1), 1924.

Cohen, J. M. (1989). A Methodology for Computing Wind Turbine Cost of Electricity Using Utility Economic Assumptions. Paper presented at the Windpower '89 San Francisco, California.

Connolly, D., Lund, H., Mathiesen, B. V., \& Leahy, M. (2010). A review of computer tools for analysing the integration of renewable energy into various energy systems. Applied Energy, 87(4), 1059-1082. doi: 10.1016/j.apenergy.2009.09.026

Cory, K., \& Schwabe, P. (2009). Wind Levelized Cost of Energy: A Comparison of Technical and Financing Input Variables. Colorado: NREL. Retrieved from www.nrel.gov/docs/fy10osti/46671.pdf.

Damodaran, A. (2001). Corporate Finance: Theory and Practice (2nd ed.): John Wiley and Sons Ltd,.

Dekker, J., Nthontho, M., Chowdhury, S., \& Chowdhury, S. P. (2012). Economic analysis of $\mathrm{PV} /$ diesel hybrid power systems in different climatic zones of South Africa. International Journal of Electrical Power \& Energy Systems, 4O(1), 104-112. doi: 10.1016/j.ijepes.2012.02.010

Deshmukh, M. K., \& Deshmukh, S. S. (2008). Modeling of hybrid renewable energy systems. Renewable and Sustainable Energy Reviews, 12(1), 235-249. doi: 10.1016/j.rser.2006.07.011

Diaf, S., Diaf, D., Belhamel, M., Haddadi, M., \& Louche, A. (2007). A methodology for optimal sizing of autonomous hybrid PV/wind system. Energy Policy, 35(11), 5708-5718. doi: 10.1016/j.enpol.2007.06.020

Dicorato, M., Forte, G., Pisani, M., \& Trovato, M. (2011). Guidelines for assessment of investment cost for offshore wind generation. Renewable Energy, 36(8), 2043-2051. doi: 10.1016/j.renene.2011.01.003

Diveux, T., Sebastian, P., Bernard, D., Puiggali, J. R., \& Grandidier, J. Y. (2001). Horizontal axis wind turbine systems: optimization using genetic algorithms. Wind Energy, 4(4), 151-171. doi: 10.1002/we. 51

Dixit, A. K., \& Pindyck, R. S. (1995). The options approach to capital investment. Cambridge: Harvard Business Review.

DTI. (2007a). Impact of banding the Renewables Obligation and Costs of electricity production.
DTI. (2007b). Study of the costs of offshore and onshore wind generation. (URN Number 07/779). Renewables Advisory Board (RAB) \& DTI.

EER. (2007). Wind power is competitive. Retrieved January 10, 2010, from http://www.vestas.com/files//Filer/EN/Press_releases/VWS/2007/070110PMUK01EER.pdf

Elkinton, C. N., Manwell, J. E., \& McGowan, J. G. (2008). Optimizing the layout of offshore wind energy systems. Marine Technology Society Journal, 42(2), 19-27.

Elkinton, C. N., Manwell, J. F., \& McGowan, J. G. (2005). Offshore wind farm layout optimization (OWFLO) project: an introduction. Copenhagen Offshore Wind.

Elkinton, C. N., Manwell, J. F., \& McGowan, J. G. (2006). Offshore wind farm layout optimization (OWFLO) project: Preliminary results. University of Massachusetts.

Emami, A., \& Noghreh, P. (2010). New approach on optimization in placement of wind turbines within wind farm by genetic algorithms. Renewable Energy, 35(7), 1559-1564. doi: 10.1016/j.renene.2009.11.026

European Commission. (2007). Renewable Energies in the 21st century: building a more sustainable future. Communication from the Commission to the Council and the European Parliament: Renewable Energy Roadmap. Retrieved October 15, 2009, from http://ec.europa.eu/energy/energy policy/doc/05 renewable energy roadmap full impact as sessment en.pdf

EWEA. (2009). The Economics of Wind Energy. Retrieved November 3, 2009, from http://www.ewea.org.

Fingersh, L., Hand, M., \& Laxson, A. (2006). Wind Turbine Design Cost and Scaling Model. Colorado: NREL - National Renewable Energy Laboratory. Retrieved from http://www.nrel.gov/wind/pdfs/40566.pdf

Finnerty, J. D. (2007). Project financing: asset-based financial engineering: Wiley.
Flores, P., Tapia, A., \& Tapia, G. (2005). Application of a control algorithm for wind speed prediction and active power generation. Renewable Energy, 30(4), 523-536. doi: 10.1016/j.renene.2004.07.015

Frangopoulos, C. A. (2003). Methods of energy systems optimization. OPTI_ENERGY Summer School: Optimization of Energy Systems and Processes, . National Technical University of Athens. Gwice, Poland.

Frangopoulos, C. A., \& Caralis, Y. C. (1997). A method for taking into account environmental impacts in the economic evaluation of energy systems. Energy Conversion and Management, 38(15-17), 1751-1763. doi: 10.1016/s0196-8904(96)00187-2

Friedman, P. D. (2010). Evaluating economic uncertainty of municipal wind turbine projects. Renewable Energy, 35(2), 484-489. doi: 10.1016/j.renene.2009.07.012

Fu, M. (1994). Optimization via simulation: A review. Annals of Operations Research, 53(1), 199247. doi: 10.1007/bf02136830

Fuglsang, P., \& Madsen, H. A. (1999). Optimization method for wind turbine rotors. Journal of Wind Engineering and Industrial Aerodynamics, 80(1-2), 191-206. doi: 10.1016/s0167-6105(98)00191-3

Fuglsang, P., \& Thomsen, K. (1998). Cost Optimization of Wind Turbines for Large-scale Offshore Wind Farms. (Risø-R-1000).

George, K., \& Schweizer, T. (2008). Primer: The DOE Wind Energy Program's Approach to Calculating Cost of Energy. Rockville/Maryland: NREL. Retrieved from http://www.nrel.gov/docs/fy08osti/37653.pdf.

Gökçek, M., \& Genç, M. S. (2009). Evaluation of electricity generation and energy cost of wind energy conversion systems (WECSs) in Central Turkey. Applied Energy, 86(12), 2731-2739. doi: 10.1016/j.apenergy.2009.03.025

Gonzalez, J. S., Rodriguez, A. G. G., Mora, J. C., Santos, J. R., \& Payan, M. B. (2010). Optimization of wind farm turbines layout using an evolutive algorithm. Renewable Energy, 35(8), 1671-1681. doi: 10.1016/j.renene.2010.01.010

Gottschalk, C. M. (1996). Industrial Energy Conservation. England: John Wiley \& Sons.
Habib, M. A., Said, S. A. M., El-Hadidy, M. A., \& Al-Zaharna, I. (1999). Optimization procedure of a hybrid photovoltaic wind energy system. Energy, 24(11), 919-929. doi: 10.1016/s0360-5442(99)00042-0

Hakimi, S. M., \& Moghaddas-Tafreshi, S. M. (2009). Optimal sizing of a stand-alone hybrid power system via particle swarm optimization for Kahnouj area in south-east of Iran. Renewable Energy, 34(7), 1855-1862. doi: 10.1016/j.renene.2008.11.022

Harper, J., Karcher, M., \& Bolinger, M. (2007). Wind Project Financing Structures: A Review \& Comparative Analysis: Lawrence Berkeley National Laboratory. Retrieved from http://eetd.lbl.gov/ea/ems/reports/63434.pdf.

Harrison, R., \& Jenkins, G. (1993). Cost Modeling of Horizontal Axis Wind Turbines. In University of Sunderland (Ed.), School of Environment (Vol. ETSU W/34/00170/REP).

Heier, S. (1998). Grid Integration of Wind Energy Conversion Systems: John Wiley \& Sons.

Hetzer, J., Yu, D. C., \& Bhattarai, K. (2008). An Economic Dispatch Model Incorporating Wind Power. Energy Conversion, IEEE Transactions on, 23(2), 603-611.

Huang, H. S. (2007). Distributed genetic algorithm for optimization of wind farm annual profits. 2007 International Conference on Intelligent Systems Applications to Power Systems, 1-2, 405-410.

Huang, L. L., Fu, Y., \& Guo, X. M. (2009). Optimization of Electrical Connection Scheme for Large Offshore Wind Farm with Genetic Algorithm. 2009 International Conference on Sustainable Power Generation and Supply 1-4, 1003-1006.

IEA. (1991). Guidelines for the Economic Analysis of Renewable Energy Technology Applications. Retrieved March 23, 2010, from http://www.iea.org/textbase/nppdf/free/1990/renew_tech1991.pdf

IEA. (2005). Projected Costs of Generating Electricity. Retrieved March 27, 2010, from http://www.iea.org/textbase/nppdf/free/2005/ElecCost.PDF

IEA. (2007). IEA Annual Report 2007 - IEA WIND ENERGY Annual Report 2007. Retrieved May 12, 2010, from http://www.ieawind.org/AnnualReports PDF/2007/2007\%20IEA\%20Wind\%20AR.pdf

Jebaraj, S., \& Iniyan, S. (2006). A review of energy models. Renewable and Sustainable Energy Reviews, $10(4)$, 281-311. doi: 10.1016/j.rser.2004.09.004

Jenkins, N. B., T. Sharpe, D. Bossanyi, E. . (2001). Handbook of Wind Energy: John Wiley \& Sons.

Jiang, W., Yan, Z., \& Feng, D. H. (2009). A review on reliability assessment for wind power. Renewable \& Sustainable Energy Reviews, 13(9), 2485-2494. doi: 10.1016/j.rser.2009.06.006

Johasson, T. B. (1993). Renewable Energy: Sources for Fuels and Electricity. London: Earthscan Publications.

Jong-Bae, P., Ki-Song, L., Joong-Rin, S., \& Lee, K. Y. (2005). A particle swarm optimization for economic dispatch with nonsmooth cost functions. Power Systems, IEEE Transactions on, 20(1), 34-42. doi: 10.1109/TPWRS.2004.831275

Kaltschmitt, M., Streicher, W., \& Wiese, A. (2007,). Renewable Energy - Technology, Economics and Environment. Retrieved June 20, 2010, from www.intechopen.com/download/pdf/pdfs id/9334

Khatib, H. (1996). Financial and economic evaluation of projects with special reference to the electrical power industry. Power Engineering Journal, 10(1), 42-54.

Khatib, H. (2003). Economic evaluation of projects in the electricity supply industry: Peter Peregrinus Ltd.

Kiranoudis, C. T., Voros, N. G., \& Maroulis, Z. B. (2001). Short-cut design of wind farms. Energy Policy, 29(7), 567-578. doi: 10.1016/s0301-4215(00)00150-6

Kleijnen, J. P. C. (2008). Response surface methodology for constrained simulation optimization: An overview. Simulation Modelling Practice and Theory, 16(1), 50-64. doi: 10.1016/j.simpat.2007.10.001

Koutroulis, E., Kolokotsa, D., Potirakis, A., \& Kalaitzakis, K. (2006). Methodology for optimal sizing of stand-alone photovoltaic/wind-generator systems using genetic algorithms. Solar Energy, 80(9), 1072-1088. doi: 10.1016/j.solener.2005.11.002

Kreith, F., \& West, R. E. (1997). CRC Handbook of Energy Efficiency. USA: CRC Press.
Lapponi, J. C. (2000). Projetos de Investimento: construção e avaliação do fluxo de caixa. São Paulo: Lapponi Treinamento e Editora.

Latorre, G., Cruz, R. D., Areiza, J. M., \& Villegas, A. (2003). Classification of publications and models on transmission expansion planning. Power Systems, IEEE Transactions on, 18(2), 938-946. doi: 10.1109/tpwrs.2003.811168

Lee, J.-Y., An, S., Cha, K., \& Hur, T. (2010). Life cycle environmental and economic analyses of a hydrogen station with wind energy. International Journal of Hydrogen Energy, 35(6), 22132225. doi: 10.1016/j.ijhydene.2009.12.082

Lesser, J. A., \& Su, X. (2008). Design of an economically efficient feed-in tariff structure for renewable energy development. Energy Policy, 36(3), 981-990.

Lu, L., Haozhong, C., Zeliang, M., Zhonglie, Z., Jianping, Z., \& Liangzhong, Y. (2010, $24-28$ Oct. 2010). Life Cycle Cost estimate of power system planning. Paper presented at the Power System Technology (POWERCON), 2010 International Conference on.

Lundberg, S. (2006). Evaluation of wind farm layouts. EPE Journal, 16(1), 14.
Maki, K., Sbragio, R., \& Vlahopoulos, N. (2012). System design of a wind turbine using a multilevel optimization approach. Renewable Energy, 43, 101-110. doi: 10.1016/j.renene.2011.11.027

Marafia, A. H., \& Ashour, H. A. (2003). Economics of off-shore/on-shore wind energy systems in Qatar. Renewable Energy, 28(12), 1953-1963. doi: 10.1016/s0960-1481(03)00060-0

Marmidis, G., Lazarou, S., \& Pyrgioti, E. (2008). Optimal placement of wind turbines in a wind park using Monte Carlo simulation. Renewable Energy, 33(7), 1455-1460. doi: 10.1016/j.renene.2007.09.004

McWilliam, M. K., Van Kooten, G. C., \& Crawford, C. (2012). A method for optimizing the location of wind farms. Renewable Energy, 48, 287-299. doi: 10.1016/j.renene.2012.05.006

Milborrow, D. J. (2006). Winding up. Power Engineer, 20(1), 44-45.
Milborrow, D. J. (2008). Generation Costs Rise across the Board. Wind Power Monthly.
Milligan, M. (2004). Wind Energy Economics. In J. C. Cutler (Ed.), Encyclopedia of Energy (pp. 409-418). New York: Elsevier.

Montgomery, D. C. (2008). Design and analysis of experiments: John Wiley \& Sons Inc.
Moran, D., \& Sherrington, C. (2007). An economic assessment of windfarm power generation in Scotland including externalities. Energy Policy, 35(5), 2811-2825. doi: 10.1016/j.enpol.2006.10.006

Morthorst, P. E. (2007). Economics of wind power. Paper presented at the European Wind Energy Conference, Milan, Italy.

Morthorst, P. E., \& Chandler, H. (2004). The Cost of Wind Power. Renewable energy world.
Munns, A., \& Bjeirmi, B. F. (1996). The role of project management in achieving project success. International Journal of Project Management, 14(2), 81-87.

Mustakerov, I., \& Borissova, D. (2010). Wind turbines type and number choice using combinatorial optimization. Renewable Energy, 35(9), 1887-1894.

Neij, L. (1999). Cost dynamics of wind power. Energy, 24(5), 375-389. doi: 10.1016/s0360-5442(99)00010-9

Newnan, D. G., \& Lavelle, J. P. (1998). Engineering Economic Analysis. Austin, TX.: Engineering Press.

Nocedal, J., \& Wright, S. J. (1999). Numerical Optimization. New York: Springer.
NREL. (1995). A Manual for the Economic Evaluation of Energy Efficiency and Renewable Energy Technologies. (NREL/TP-462-5173). Springfield: National Renewable Energy Laboratory. Retrieved from http://www.nrel.gov/csp/troughnet/pdfs/5173.pdf.

NWCC. (1997). Wind Energy Costs NWCC Wind Energy Series. No.11. Retrieved February 2, 2009, from http://www.nationalwind.org

Olafsson, S., \& Jumi, K. (2002, 8-11 Dec. 2002). Simulation optimization. Paper presented at the 2002 Winter Simulation Conference.

Oliveira, W. S., \& Fernandes, A. J. (2011a). Economic Feasibility Applied to Wind Energy Projects. [Review]. Int. J. Emerg. Sci, 1(4), 659-681.

Oliveira, W. S., \& Fernandes, A. J. (2011b). Innovation and Technology Management in Wind Energy Cluster. [Review]. Energy and Environment Research, 1(1), 175-192. doi: 10.5539/eer.v1n1p175

Oliveira, W. S., \& Fernandes, A. J. (2011c). Renewable Energy: Impacts upon the Environment, Economy and Society. [Review]. Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Renewable Energy (JRSE), 2(11), 7-17.

Ozturk, U. A., \& Norman, B. A. (2004). Heuristic methods for wind energy conversion system positioning. Electric Power Systems Research, 70(3), 179-185. doi: 10.1016/j.epsr.2003.12.006

Phung, D. L. (1980). Cost comparison of energy projects: Discounted cash flow and revenue requirement methods. Energy, 5(10), 1053-1072. doi: 10.1016/0360-5442(80)90029-8

Prasad, R., \& Bansal, R. C. (2011). Economic Analysis of Wind Systems: World Scientific.
Quaschning, V., Ortmanns, W., Kistner, R., \& Geyer, M. (2001). Greenius: A New Simulation Environment for Technical and Economical Analysis of Renewable Independent Power Projects. Paper presented at the Solar Forum 2001, Washington, DC.

Ramakumar, R., Butler, N. G., Rodriguez, A. P., \& Venkata, S. S. (1993). Economic aspects of advanced energy technologies. Proceedings of the IEEE, 81(3), 318-332.

Rašuo, B. P., \& Bengin, A. Č. (2010). Optimization of wind farm layout. FME Transactions, 38(3), 107-114.

Rehman, S. (2005). Prospects of wind farm development in Saudi Arabia. Renewable Energy, 30(3), 447-463.

RETScreen® International Clean Energy Decision Support Centre. (2008). Clean Energy Project Analysis: RETScreen Engineering \& Cases Texbook. Retrieved January 10, 2009, from www.retscreen.net.

RETScreen® International Clean Energy Decision Support Centre. (2009). Wind energy project analysis. Software manual, Chapter 2. Retrieved June 12, 2009, from www.retscreen.net.

Rosa, A. V. (2009). Fundamentals of Renewable Energy Processes (2nd ed.). UK: Elsevier.
Roth, I. F., \& Ambs, L. L. (2004). Incorporating externalities into a full cost approach to electric power generation life-cycle costing. Energy, 29(12-15), 2125-2144. doi: 10.1016/j.energy.2004.03.016

Salcedo-Sanz, S., Saavedra-Moreno, B., Paniagua-Tineo, A., Prieto, L., \& Portilla-Figueras, A. (2011). A review of recent evolutionary computation-based techniques in wind turbines layout optimization problems. Central European Journal of Computer Science, 1(1), 101-107. doi: 10.2478/s13537-011-0004-2

Salles, A. C. N., Melo, A. C. G., \& Legey, L. F. L. (2004, 12-16 Sept. 2004). Risk analysis methodologies for financial evaluation of wind energy power generation projects in the Brazilian system. Paper presented at the Probabilistic Methods Applied to Power Systems, 2004 International Conference

Sevilgen, S. H., Erdem, H. H., Akkaya, B. C. A. V., \& Dağdaş, A. (2005). Effect of economic parameters on power generation expansion planning. Energy Conversion \& Management, 46, 1780-1789. doi: 10.1016/j.enconman.2004.09.006

Shannon, R. E. (1992). Introduction to simulation. Paper presented at the Proceedings of the 24th conference on Winter simulation, Arlington, Virginia, United States.

Sisbot, S., Turgut, O., Tunc, M., \& Camdali, U. (2010). Optimal positioning of wind turbines on Gokceada using multi-objective genetic algorithm. Wind Energy, 13(4), 297-306. doi: 10.1002/we. 339

Spall, J. C. (2003). Introduction to stochastic search and optimization: estimation, simulation, and control (Vol. 64): John Wiley and Sons.

Szafron, C. (2010, 16-19 May 2010). Offshore windfarm layout optimization. Paper presented at the Environment and Electrical Engineering (EEEIC), 2010 9th International Conference on.

Tahvanainen, K. (2010). Managing regulatory risks when outsourcing network-related services in the electricity distribution sector. Doctor of Science (Technology), Lappeenranta University of Technology, Finland. (621.316)

Tai, L., \& Wen-rui, W. (2009, 27-31 March 2009). Life Cycle Analysis on Economic Operation of Wind Farm. Paper presented at the Power and Energy Engineering Conference, 2009. APPEEC 2009. Asia-Pacific.

Tegen, S., Hand, M., Maples, B., Lantz, E., Schwabe, P., \& Smith, A. (2012). 2010 Cost of Wind Energy - Review. (NREL/TP-5000-52920). Springfield: National Renewable Energy Laboratory. Retrieved from http://www.nrel.gov/docs/fy12osti/52920.pdf.

Troen, \& Petersen, E. L. (1989). European Wind Atlas. Roskilde, Denmark: Risø National Laboratory.

UKERC. (2006, May 2007). A Review of Electricity Unit Cost Estimates. Retrieved October 21, 2010, from http://www.ukerc.ac.uk/Downloads/PDF/07/0706_TPA A Review_of Electricity.pdf

Valentine, S. V. (2011). Understanding the variability of wind power costs. Renewable and Sustainable Energy Reviews, 15(8), 3632-3639. doi: 10.1016/j.rser.2011.06.002

Vallée, F., Lobry, J., \& Deblecker, O. (2011). Wind generation modelling to help the managerial process of modern transmission systems. Renewable Energy, 36(5), 1632-1638. doi: 10.1016/j.renene.2010.10.010

Von Bertalanffy, L. (1972). The history and status of general systems theory. The Academy of Management Journal, 15(4), 407-426.

Welch, J. B., \& Venkateswaran, A. (2009). The dual sustainability of wind energy. Renewable \& Sustainable Energy Reviews, 13(5), 1121-1126. doi: 10.1016/j.rser.2008.05.001

Woodward, D. G. (1997). Life cycle costing -Theory, information acquisition and application. International Journal of Project Management, 15(6), 335-344. doi: 10.1016/s0263-7863(96)00089-0

Yang, H., Lu, L., \& Zhou, W. (2007). A novel optimization sizing model for hybrid solar-wind power generation system. Solar Energy, 81(1), 76-84. doi: 10.1016/j.solener.2006.06.010

Yang, H., Wei, Z., \& Chengzhi, L. (2009). Optimal design and techno-economic analysis of a hybrid solar-wind power generation system. Applied Energy, 86(2), 163-169. doi: 10.1016/j.apenergy.2008.03.008

Yin, P. Y., \& Wang, T. Y. (2012). A GRASP-VNS algorithm for optimal wind-turbine placement in wind farms. Renewable Energy, 48(2), 489-498. doi: 10.1016/j.renene.2012.05.020

Zhang, J., Chowdhury, S., Messac, A., \& Castillo, L. (2010, 13 - 15 September 2010). Economic Evaluation of Wind Farms Based on Cost of Energy Optimization. Paper presented at the 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference Fort Worth, Texas.

Zhang, J., Chowdhury, S., Messac, A., \& Castillo, L. (2012). Unrestricted wind farm layout optimization (UWFLO): Investigating key factors influencing the maximum power generation. Renewable Energy, 38(1), 16-30. doi: 10.1016/j.renene.2011.06.033

Zhao, M., Chen, Z., \& Hjerrild, J. (2006). Analysis of the behaviour of genetic algorithm applied in optimization of electrical system design for offshore wind farms. IECON 2006-32nd Annual Conference on IEEE Industrial Electronics, 1-11, 304-309.

Chapter 6

Research Methodology

6.1 Introduction
6.2 Epistemological and methodological research issues
6.3 Rationale of the study
6.4 Research framework and design
6.4.1 Literature review
6.4.2 Methodological procedures
6.4.3 Theoretical framework and hypotheses development
6.4.3.1 Research objectives
6.4.3.2 Research approach
6.4.3.3 Concepts and variables
6.4.3.4 Research hypotheses and limitations
6.4.4 Research design
6.4.4.1 Relation of variables and research boundary
6.4.4.2 Mathematical model structuring
6.4.4.3 Numerical simulation and validation process
6.5 Summary and conclusions
6.6 References

This chapter explains about the research methodology aspects used in this Ph.D. research work. The epistemological and methodological research issues, rationale of the study, research framework and design are explained in details. Summary and conclusions are presented at the end, with the respective references.

6.1 Introduction

Humanity has always tried to understand and solve the questions and challenges that have emerged over time, not only to overcome his own reason, but also for the sake of survival \therefore And the extent to which these challenges were getting increasingly complex tools to address them failed to follow the same rhythm, until the mathematics began to be developed as an aid to science and used to understand observations in nature and solve their problems.

Finally, in the process of creating a model, we have, as a first step the definition of objective(s), we can start with the following question: what we want to achieve with this model? Then define what will be the model decision variables: cost, size or quantity? And so how these variables are related to each other and with the constraints of the problem (often "resources") or method used to do the modeling, which gets its name from its restrictions.

In wind energy conversion systems, as it is expressed in its name, productive process occurs in a system operative conception and engineering and economic architectures \therefore So it is possible to be reduced to a mathematical model by formula within its variables and relationships. In other words, we can simulate it as in a real world situation \therefore We have to follow some criteria related to its own scientific nature, that is why in Chapter 4 was reviewed the Wind Energy Conversion Systems (WECS) in details and Chapter 5 also reviewed issues about economic measures and optimization/simulation models for better understanding the economic variables and relations of this interesting production system.

In this chapter we present the mathematical model that was developed and used in the economic optimization model for wind farms in function of the cost of energy produced. First, it is explained the development of each of the variables and constraints that make up the model and the objective function, after this, the ratings used are presented, and so the model is presented.

This chapter discusses and summarizes the way in which the research process was performance. It begins with an epistemological and methodological conceptualization (section 6.2) and introduces a brief overview about operational research and optimization methods \therefore The rationale of the study is discussed with current data about wind power worldwide, is also shortly discussed some researches about economic analysis approach and our motivation for this research. The research framework and design is detailed (section 6.4), some literature statistics is shown in Table 6.1 where is explained thematic areas present in literature review process (see Figure 6.4) and the relationship within this research. Methodology procedures and phases of this research (section 6.1.2) are discussed and present some difficult found during the elaboration of this study. The theoretical framework and hypotheses development steps are justified in section 6.4.3, which results in the objectives (section 6.4.3.1), approach adopted (section 6.4.3.2), concepts and variables analyzed (section 6.4.3.3) and hypotheses and limitations (section 6.4.3.4) considered for this Ph.D. research work. In the research design (6.4.4) we can see the relation of variables and research boundary (6.4.4.1), mathematical model structuring (6.4.4.2) and the numerical simulation and validation process (6.4.4.1) are detailed and justified. Finally, in the section 6.5 presents the summary and conclusions of the whole chapter as well as section 6.6 the references used.

6.2 EPISTEMOLOGICAL AND METHODOLOGICAL RESEARCH ISSUES

Epistemology concerns what constitutes acceptable knowledge in a field of study. The central problem of epistemology is to decide how we can acquire knowledge which Plato and others following him have defined as "justified true belief". This definition of knowledge creates three substantive issues: the nature of belief, the basis of truth and the problem of justification Phillips (1974). \therefore This definition of knowledge is widely accepted, but the definition brings us some implications such as "what is the source of our belief", "how we determine what is true" and "how we justify our belief"? These weighty issues each have their own branch of philosophical enquiry.

The implications about "what is the source of our belief", "how we determine what is true" and "how we justify our belief" are driven by the research process. Research is a process of intellectual discovery, which has the potential to transform our knowledge and understanding of the world around us. The word research is composed of two syllables, "re" and "search". The "re" is a prefix meaning again, a new or over again and "search" is a verb meaning to examine closely and carefully, to test and try, or to probe. Together they form a noun "describing a careful, systematic, patient study and investigation in some field of knowledge, undertaken to establish facts or principles" (Kothari, 2009).

The research philosophy is a belief about the way in which data about a phenomenon should be gathered, analyzed and used. The term epistemology (what is known to be true) as opposed to doxology (what is believed to be true) encompasses the various philosophies of research approach. The purpose of science, then, is the process of transforming things believed into things known: doxa to episteme. Two major research philosophies have been identified in the Western tradition of science, namely positivist (sometimes called scientific) and interpretivist (also known as antipositivist) \therefore The research problem should determine the choice of methods - not the researcher's knowledge or experiences of different research methods. The nature of our research is interdisciplinary as we could notice during the literature review phase explained in section 6.4.

This Ph.D. research work needed to be driven methodologically (section 6.4.3.2) by an interdisciplinary branch of applied mathematics and social applied science that uses mathematical modeling methods and algorithms to arrive at optimal or near optimal solutions to complex practical problems, known as "operations research". Operations research helps the manager/investor to achieve its goals using scientific methods and can be used in particular for wind farm design decisions. It is often concerned with optimizing of some objectives (maximum of profit, performance, etc. or minimum of loss, risk, cost, etc.) at limited resources. The majority of real-world optimization problems are multiobjective by nature - they have more than one and usually conflicting objectives that must be satisfied simultaneously. Instead of aiming at a single solution finding, the multiobjective optimization methods try to generate a set of good trade-off solutions (Pareto-optimal solutions) from which the decision maker could select \therefore Nevertheless, there exist some practical problems where the single criterion optimization would be able to get an optimal solution with less calculation difficulties. One of the questions that should be answered when using optimization methods for the wind farm design is the effectiveness and advisability of single or multicriteria optimization application (Mustakerov \& Borissova, 2010).

6.3 RATIONALE OF THE STUDY

The availability of electrical energy is a precondition for the functioning of modern societies. It is used to provide the energy needed for operating information and communication technology, transportation, lighting, food processing and storage as well as a great variety of industrial processes, all of which are characteristics of a modern society \therefore Because the energy for many of the technologies, systems and possibilities that are a property of the developed world is provided as electricity, it can be presumed that there is a link between the level of penetration and consumption of electricity on the one hand and various properties of a society on the other. The relation between economic and societal development and electricity consumption is bidirectional. The availability of electricity greatly facilitates industrialization, because electricity is a convenient way to replace human power by other sources of energy, which are converted into electricity for transmission, distribution and consumption (Slootweg, 2003).

There are other electricity production technologies using renewable primary energy sources that do hence not involve the disadvantages of nuclear and thermal production. Examples are wave and tidal power, solar power and wind power. \therefore In wave and tidal power plants, energy are extracted from the waves and from the water flows caused by the tide. In solar power plants, consisting of solar panels, sunlight is converted into electricity, whereas in wind turbines, the energy contained in flowing air is converted into electricity (Rosa, 2009).

One technology to generate electricity in a renewable way is to use wind turbines that convert the energy contained in the wind into electricity. The wind is an infinite primary energy source. Further, other environmental impacts of wind power are limited as well. Although they affect the landscape visually and emit some noise, the consequences of this are small and ecosystems seem hardly to be affected \therefore Further, once removed, their noise and visual impact disappear immediately and no permanent changes to the environment have occurred. A wind turbine generates the energy used to generate and install it in a few months so that the energy balance over the life cycle is definitely positive (Kennedy, 2005; Oliveira, 2010). According to Global Wind Energy Council (2012) the growth of wind power during the last decade in the world. The global cumulative installed of wind power capacity is growing approximately exponential over the past five years, annual growth has been above 30%.

Figure 6.1 Global cumulative installed wind capacity 1996-2011. Source: Global Wind Report 2011 (GWEC, 2012)

Wind was even more dominant as a destination for investment in 2009 than in the previous year. In 2008, it accounted for $\$ 59$ billion or 45% of all financial investment in sustainable energy, but in 2009, its share rose to $56 \% \therefore$ Total financial investment in wind last year was $\$ 67$ billion, compared with $\$ 119$ billion for all sustainable energy technologies (SEFI, 2010).

Figure 6.2 Financial new investment (\$bn) and growth by technology (2008-2009). Source: SEFI (2010)

The strength of wind reflected several developments. One was the financial go-ahead for a number of large offshore wind farms in the North Sea, notably the 1GW London Array, the 317 MW Sheringham Shoal project and the first, 165 MW phase of Belwind \therefore Another was that, in uncertain economic and financial circumstances, wind was seen as a relatively mature and therefore lower risk, sub-sector of clean energy than some others (SEFI, 2010).

According to Wagner and Epe (2009) to promote wind energy, the research needs must be identified and the research work carried out. Initially, there are such environmental and social challenges as integration into the landscape, noise impact, bird flight paths, life cycle analysis and sustainability \therefore And of course, wind turbine and component design have to be improved continually, i.e. basic research in aerodynamics, structural dynamics, dynamic forces, new materials, feasibility studies into new systems, generators using permanent magnets, gear boxes, etc. For planning and building wind turbines and wind farms, commonly accepted certification procedures must be formulated and standardized \therefore For an optimized grid integration of wind energy, especially in great quantities, power quality can be supported by better forecasts of wind resources and by the use of storage sites.

El-Kordy, Badr, Abed, and Ibrahim (2002) the evaluation of the economics of energy systems strongly depends on the four cost factors: capital cost; maintenance cost; fuel cost; and external cost, when considered. Fuel and external costs are sensitive to fuel type and efficiency of the used system. Economic parameters such as discount, inflation and escalation rates, deeply affects the evaluation. Future sums of money must be discounted because of the inherent risk of future events
not turning out as planned, the present worth method being considered as a suitable tool for comparing the different alternatives. The IEA (1991) developed a guidelines for the economic analysis of renewable energy technology applications that can be summarized as in the Figure 6.3.

Figure 6.3 Diagram of recommended economic analysis approach. Source: IEA/Guidelines for the economic analysis of renewable energy technology applications IEA (1991, p. 12)

The IEA's recommended methodology represents a consistent, structured, generalized approach which is appropriated for feasibility analysis for both public and private sector. \therefore The Figure 6.3 shows the relationship between the inputs, costs, performance formats and sector analysis models. The entire economic indicator will be discussed ahead.

For Gökçek and Genç (2009) the calculation of the electrical energy production cost, all payments required for the installation of the power plant must be known \therefore The cash flow for the project includes the expenditures such as land, construction, fuel and operating and maintenance. In general, in power plants, cost per unit energy is calculated by dividing the amount of energy produced to the total expenditures made along the certain time interval. The levelized cost of electricity ($L C O E$) is one of the most important indicators for evaluating fiscal performance of power supply systems such as wind energy conversion system (WECS). LCOE is a technique applied by the techno-commercial analysts to calculate the unit cost throughout the economic life
of the project. The levelized cost for WECS can be describe as the ratio of the total annualized cost of the WECS to the annual electricity produced from the system.

A techno-economic analysis of electricity production from wind energy made by Arslan (2010) discuss about Life-Cycle Cost analysis for onshore wind farm connected to a grid which essentially includes two main components, which are the investment and operations and maintenance ($O \& M$) costs \therefore The investment cost includes the costs of the turbine, foundation, grid connection, and civil work. The environmentalist economists maintain that the real cost of a process must be calculated by adding to the investment and operational costs the cost of the damages to both human health and nature.

Zhang, Chowdhury, Messac, and Castillo (2010) introduce a new concept for economic evaluation of wind farms. Its formulation is based on cost of energy (COE) optimization. The result showed that (i) the profitability is particularly sensitive to changes in the capital cost, the capacity factor, the electricity escalation rate, and the initial installation cost; (ii) the profitability is slightly less sensitive to changes in the $O \& M$ cost; and (iii) the impact of the turbine rated power and the inflation rate is limited.

Nouni, Mullick, and Kandpal (2007) developed the levelized unit cost of electricity (LUCE). LUCE is one of the commonly used indicators for financial performance evaluation of renewable energy based decentralized power supply systems. \therefore Total annualized cost is calculated by taking into consideration the capital costs of the different sub-systems of the SWEG project and its annual operation and maintenance cost.

The NREL (1995) compiled a Manual for the Economic Evaluation of Energy Efficiency and Renewable Energy Technologies that provides guidance on economic evaluation approaches, economic measures, while offering a consistent basis on which analysts can perform analyses using standard assumptions for each case \therefore It not only provides information on the primary economic measures used in economic analyses and the fundamentals of finance but also provides guidance focused on the special considerations required in the economic evaluation of renewable energy projects.

Oliveira (2010) makes an overview about the indicators of attractiveness and risks like simple payback (SPB), discounted payback (DPB), net present value (NPV), internal rate of return (IRR), benefit-to-cost ratio ($B C R$) and required revenues $(R R)$. Also are discussed about some indicator of cost analysis in energy projects just like LCOE, total life-cycle cost (TLCC), net present cost (NPC), levelized electricity production cost (LEPC) and unit present average cost (UPAC). A simulation studied with these indicators concludes that they must be used as tool kit for wind energy project economic evaluation \therefore The indicator studied is not recommended to be applied alone, better combine the indicators in function of the evaluation objective.

There are many software available in the market that can be possible to make a sophisticated economic evaluation of an energy project for both renewable and efficiency application. We can cite the RETScreen ${ }^{\circledR}$ International Clean Energy Project Analysis used as an investment tool decision, the HOMER energy software applied to determinate the size of a power system with all
its features for the system works as it must be \therefore It is possible to make a list of software used professionally by engineers, designers, economists and related professions.

The cost of the renewable technology can be evaluated by its cumulative production, research, development aspects. Many authors such Kobos, Erickson, and Drennen (2006), Ibenholt (2002), Lund (2006), Neij (1999, 2008), Pan and Köhler (2007) and Sorensen, Org Econ, Dev, and Dev (1997). For onshore and offshore wind energy technological aspect and its improvements have a great impact on cost reduction of wind energy project analysis \therefore It is an important aspect to be considered.

Efficiency planning and resource management is the key to the success of an energy project. Wind is one of the most potent alternative energy resources; however the economics of wind energy is not yet universally favorable to place wind at a competitive platform with conventional energy (fossil fuels) (Zhang et al., 2010). The optimization model for economic evaluation of wind farms, developed in this research, would allow investors and managers to better plan their projects, as well as provide valuable insights into the areas that require further development to improve the overall economics of wind energy.

As we can notice there is an exhaustive list of authors, institutions about economic evaluation methodologies and approaches applied to energy projects \therefore Each methodology and approach has its own objective, although they usually highlight economic merits only - in an energy project it is also interesting engineering and physics variables. In economics view it is necessary that the project could remunerate its costs and create profits for investor as well as any other economic agent involved. In the other hand, in engineering aspects, the project must be size according to its equipment, utilities and machinery used in the power station. How is it possible to optimize a wind farm, in a project conception or in a real system, in both economical and engineering point of view?

Both onshore and offshore wind energy has a growth during the last decade in the world and the importance of renewable energies technologies is more and more emphasized by public authorities because climate change and global warming is a concern for modern world, so methodologies which could become investment in this kind of technology more safe with simulation and optimization analysis will be welcome \therefore Wind energy is one of the renewable technologies that is becoming more and more competitive at the global level, but has not received enough attention on optimization process for economic evaluation of wind farms by the researchers in both economic and engineering aspects. Indeed, most of the optimization models reflects aspects of Engineering and Physics sciences, but in the economic view has not been analyzed in the depth that it deserves.

So, try to develop an economic optimization procedure of wind farms in function of the cost of energy produced using algorithm is a step ahead for economic evaluation methodologies, and I hope to apply it my professional life as Project Finance and Management Consultant in a few years for better decisions and make the alternative investment in renewable energy projects rightly and securely way to explore the resources from nature, help the economy growth and the environment protection. It is a way to join my professional experience and background with the new knowledge acquired during my Ph.D. in Economics in a specialized and scientific area, Energy Economics.

6.4 RESEARCH FRAMEWORK AND DESIGN

6.4.1 LITERATURE REVIEW

During the research, the literature review ($1^{\text {st }}$ phase of the research work) was undertaken from primary, secondary and tertiary sources comprising books, websites, and reports from companies operating in the wind energy sector and public organizations and papers published in scientific journals. The objective was to gain an understanding of the problem and possible approaches, building up a theoretical framework of this research work. In the Table 6.1 details a summary of literature review main sources.

Table 6.1 Literature review statistics

Type of source	Number	Percentage (\%)	
	Books or books sections	100	11.0
Conference proceedings	83	9.1	
Government documents	34	3.7	
Journal articles	558	61.3	
Magazine articles	10	1.2	
Others		21	2.3
Thesis	21	2.3	
Web pages		83	9.1
		910	100.0

Source: Own elaboration
${ }^{(*)}$ Pamphlet, patents and reports.

It is important to highlight that most of journal articles reviewed is related to energy economics scientific field, such as, Energy, Renewable and Sustainable Energy Reviews, Energy Conversion and Management, Energy Policy, Wind Energy Conversion, Energy Economics, Renewable Energy, Renewable \& Sustainable Energy Reviews, Renewable Energy, Wind Energy, Electric Power Systems Research, Journal of Wind Engineering and Industrial Aerodynamics, Journal of Energy and Development, Applied Energy, Energy Problems and Environmental Engineering, Resource and Energy Economics, Global Journal of Researches in Engineering, Energy and the Environment, Energy Sources, Power Systems, Wind Engineering, Ecological Economics, Climate Policy and others.

The work also included an extensive wind turbine data analysis, which focused mainly on the maximum power curve available on Product Database of RETScreen Software. The technical characteristics of the existing wind farms were obtained from official reports of specialized public and private organizations related to wind energy technology (sources as government documents, magazines articles and web pages) \therefore It is relevant to emphasize the self-constructed approach taken during the research project, because research on renewable power system optimization is encouraged by R\&D priorities.

Figure 6.4 Thematic areas in literature review process. Source: Own elaboration

There are five main thematic areas in which this research is related to (see Figure 6.4), which detailed discussions were done in previous chapters. An analysis of literature on economic measures applied for renewable power systems, aiming to introduce and confront the different techniques of economic evaluation, in a microeconomic view. Also, a review on WECS was important to undertake, specially the identification of the rule and routine of wind energy systems operate \therefore In WECS thematic was examined the wind energy converters types, physics basics, describes how energy is extracted from the wind, explain about power coefficients and its limitations on wind power systems and what problems must be considered.

The energy policy and renewable energy thematic areas were analyzed altogether into the global status of wind energy market. The energy policy and renewable energy thematic areas address the wind energy situation worldwide in order to establish a context for understanding the contemporary wind energy industry \therefore It was explored the global character of wind energy sector, describing its R\&D trends, technological evolution and diffusion process, investment focus, global market share and the global drivers for the expansion of this renewable technology.

The simulation/optimization thematic area was involved in this research due to its nature and the research object requires an interdisciplinary approach. In this thematic was introduced the concept of simulation and optimization, the objective of this process, model framework, main methods and techniques currently used \therefore During the literature review in this thematic we could classify the most used economic and engineering models of optimization algorithms for wind and hybrid power system (Tables 5.8 and 5.9). The costs of energy produced from RETs/WECS could be understood as a combination of components interlinked. A wind farm depends on directly the physical and environmental conditions. As shown in Figure 5.10 the system configuration has impacts on investment and $O \& M$ costs, which reflects on energy production cost by a wind farm \therefore Also, we can see the system configuration has influence on loss model and power performance model.

6.4.2 METHODOLOGICAL PROCEDURES

The research problem should determine the choice of methods - not the researcher's knowledge or experiences of different research methods. As we established in Chapter 1, the research was driven by the central research question:

What is the minimum difference between maximum power production and minimal total costs based on LCOE/NREL methodology proposed for a wind farm? If any, which possible strategies could be followed?

This question led us to a research trajectory which should be classified in phases. Each phase of the research is shown in Figure 6.5. The research methodology is structured in three phases: 1) Literature Review; 2) Database Analysis and 3) Simulation and Optimization.

Figure 6.5 Research methodology overview. Source: Own elaboration

In the first phase of this research, literature review was undertaken on economic measures for Renewable Energy projects and optimization models (studies) for wind energy projects and the research question and objectives formulation. It was necessary to engage in different approaches, but complementary, microeconomic project evaluation methods and optimization methods applied to engineering solutions in renewable power systems, as detailed in Chapter 5. For this reason, and considering the objectives of each study, different approaches were followed in order to understand what could be complemented for an optimization model, both in economic and technical issues, as detailed in Chapters 4 and 5.

For the second phase of this research, database analysis, the choice of RETScreen Product and Climate Database was made by the worldwide recognition and scientific application in renewable energy projects economics analysis. \therefore The key items checked in RETScreen Product Database were
capacity per unit, hub height, rotor diameter per turbine, swept area per turbine and power curve. For RETScreen Climate Database were "annual wind speed", "air temperature" and "atmosphere pressure", because both technical and climate aspects influence directly on wind energy production (see Figure 6.7). In RETScreen Software it is possible to choose and change these inputs, so for simulations analysis it is useful (Himri, Stambouli, \& Draoui, 2009; RETScreen® International Clean Energy Decision Support Centre, 2008). According to Connolly, Lund, Mathiesen, and Leahy (2010) RETScreen Software can be applied for scenario and investment optimization/simulation analysis, but not for operation optimization of power plants.

According to RETScreen® International Clean Energy Decision Support Centre (2008) "the product data incorporated directly into the RETScreen Software provides access to over 6,000 pertinent product performance and specification data needed to describe the performance of the proposed clean energy system in the first step of the RETScreen analysis", as the research is focused in WECS due to the objective, the technology chosen to be analyzed is wind turbine.

Figure 6.6 RETScreen Products Database information for wind energy projects models. Source: RETScreen® International Clean Energy Decision Support Centre (2009)

The power curve ${ }^{75}$ of a wind turbine is one of the most important aspects to be check in this technology when the objective is optimizing the power system. We must notice that each turbine

[^53]has each own features and will condicionate the technical operation of the power plant at all \therefore Apply the best equipment is crucial for a lower cost of electricity produced from a wind farm!

The last phase of this research, simulation and optimization, it was firstly necessary develop an energy model ${ }^{76}$ with technical features as the best performance as possible. It is possible only because the RETScreen Product and Climate Database analysis and chosen the optimized conditions. For developing the economic model it was necessary an exhausted analysis of feasibility and evaluation indicator for renewable energy projects. The optimization model was based on the combination of two fundamental methods: i) maximize the total power output and ii) minimize the cost per unit power produced. The mathematical formulation is based on the block diagram of the wind farm simulation and optimization algorithm developed during this research (see Figure 6.16). The models were then implemented in a computational language and solved using MS Excel-MATLAB ${ }^{\circledR 77}$, as detailed in section 6.4.4 and Chapter 7.

The energy model definition has to take into consideration the variables shown in Figure 6.8, reflecting technical and local climate features of wind farm location. The optimization model developed is going to maximize the equipment used (wind turbines) with the actual climate site conditions (wind speed, air temperature and atmosphere pressure). Figure 6.7 shows the meteorological site information available at RETScreen Software databases fed by NASA's satellite.

Figure 6.7 Site reference conditions used for wind energy projects models. Source: RETScreen® International Clean Energy Decision Support Centre (2009)

[^54]The economic model definition also has to take into consideration the variables shown in Figure 6.8, reflecting economic and financial features of a typical wind farm project. \therefore The cost optimization algorithm developed is going to minimize the cost of energy produced from the power plant (wind farm).

Figure 6.8 Variables influencing on COE in a wind power plant. Source: based on Morthorst and Shimon Awerbuch (2009)

As we can see, the lifetime of the project, cost of capital, price of wind turbines (with foundations and others auxiliaries infrastructure) reflect directly on capital cost per year in a wind power project. According to Milborrow (2008) the cost of capital can reach 80% of the total cost of the project during its lifetime, with variations between models, and local markets $\therefore O \& M$ costs depend on technical features of the wind power plant (e.g. rotor diameter, hub high and other physical features of the BOP^{78}). The configuration of the wind farm and climatic conditions (see Figures 6.7 and 6.8) determine the expected wind farm production and also the annual emissions of greenhouse gases ${ }^{79}$ (GHG). The cost of energy (COE) per kWh is a result from total cost per year in relation to annual energy production of a wind power plant. That is why in the economic model definition we must consider the variables and their relationship and influence ones each other.

[^55]
6.4.3 THEORETICAL FRAMEWORK AND HYPOTHESES DEVELOPMENT

Many issues related to renewable energy project analysis are truly interdisciplinary in their nature. Therefore, research within the field should reflect that fact and should; if possible, it is used more than one scientific discipline or method. Thus, model results and insights become supported by not just one but several scientific disciplines. The optimization model for economic evaluation of wind farms can be as an efficient planning and resource management, which is the key to the success of an energy project \therefore Wind energy is one of the most potent alternative energy resources; however the economics of wind energy is not yet universally favorable to place wind at a competitive platform with coal and natural gas (fossil fuels) \therefore Economic evaluation models of wind projects developed would allow investors to better plan their projects, as well as provide valuable insight into the areas that require further development to improve the overall economics of wind energy projects.

According to Benatiallah, Kadia, and Dakyob (2010) the economic model should be made while attempting to optimize the size of integrated power production systems favoring an affordable unit price of power produced \therefore The economic analysis of the wind system has been made and the cost aspects have also been taken into account for optimization of the size of the systems. For Baños et al. (2011) some of these optimization methods are based on traditional approaches, such as MixedInteger and Interval Linear-Programming ${ }^{80}$, Lagrangian Relaxation ${ }^{81}$, Quadratic Programming ${ }^{82}$, and Nelder-Mead Simplex Search ${ }^{83}$, while a growing number of research papers tackle these problems using heuristic optimization methods ${ }^{84}$, especially Genetic Algorithms ${ }^{85}$ and Particle Swarm Optimization ${ }^{86}$. Besides purposes and approaches of models used, the models can also be distinguished according to their structure, more specific the assumptions on which the structure is based. For each type of model, a decision has to be made on which assumptions will be embedded in the model structure (the internal assumptions) and which are left to be determined by the user (i.e., external assumptions). In this research, the model proposed followed by the research objectives and approach which influence directly on internal and external assumptions considering in the analytical model resulted from this Ph.D. research work.

[^56]
6.4.3.1 Research objectives

As discussed before in this chapter the main objective of this thesis is to verify how concepts derived from the Theory of Simulation and Optimization can be helpful to develop an algorithm for Economic Optimization of Wind Farms in Function of the Cost of Energy Produced. Particularly, it intends to maximize wind farm's production, mainly in terms of power delivered and the lowest production cost, and what its relationships. More specifically it aims to:

1. Apply a combination of methodologies and approaches of optimization procedures according to a microeconomic point of view for economic evaluation applied on wind farms, in an investment and management context, determining the best option that results in the best decision-make for an optimization model.
2. Review and systematize methods and techniques of economic evaluation applied to renewable energy projects, specific to wind energy projects \therefore Both project and cost methodologies of economic evaluation are reviewed for a model optimization construction for a proposed optimization model with its objective function most appropriated.
3. Propose a methodology based on assumptions of Theory of Simulation and Optimization that could develop the best solution for investment and management decisions with a different approach, non-deterministic nature, for validating the new concepts of economic project evaluation, supported by the analysis process, design and objective function developed with its constraints.

The overall model must recognize the multiple and conflicting objectives involved in energy decisions, dealing with the large economic and engineering costs involved and also eliciting the priorities variables. \therefore The process must combine simultaneously efficiency with investment planning, assessing whether incremental investment should be met through existing economic advantage or through the addition of new production capacity, in order to maximize its production.

Based on accomplishing of these three objectives, it is expected as contribution of this thesis:

1. Development of a new methodology able to inform the investor or manager of a wind energy project what its size, initial investment, $O \& M$ costs (including frequency of maintenance routines), replacement cost, annual energy production, maximum losses expected, how many turbines, high hub, minimum wind speed, as well as its maximum variation;
2. Make an integration of methods applied to economics and engineering sciences in function to the multivariable problem and create a planning and managing tool for energy projects, special to onshore wind energy that could be used in the future for new methodologies and approaches of economic evaluation for renewable energy projects.
3. Create a tool applied to competitiveness ranking for wind farms in a place, region and district considering the cost of energy produced. It is important to classify economically the land or areas and gives an idea of competitiveness' measurement.

6.4.3.2 RESEARCH APPROACH

The overall approach taken to reach the research objective was to investigate the formulation and logics of the various evaluation models/indicators, each model has its own variables and relations to explain the results and objectives for each model studied \therefore At first, it checks only the economic models and then engineering evaluation models are analyzed with its objectives too. According to the central question or this research, it is an industrial problem and the steps to follow might be considered as follows (Hillier, Lieberman, \& Hillier, 1995):

1. Define the problem of interest and gather relevant data - why is there dissatisfaction with the present operations and what alternative courses of action appear to hold most promise of being effective solutions to the problem, relative to a set of pertinent objectives. The size of a wind farm project and the size of the wind turbine itself will vary depending on the amount of electricity the developer intends to produce \therefore Costs of components per unit size tend to decrease as size increases, and through economies of scale, the construction costs per unit manufactured decreases as more wind turbines are manufactured (at least to the point where equipment and personnel are adequate). However, because the mass of the wind turbines' materials increases at a cubic rate to its rotor diameter, and the power rating increases with the square of its rotor diameter, there will be a critical size that increases the cost per kW of maximum power (Johnson, 2001). As wind energy is an intermittent source of power, this fact gives rise to extra costs in production, distribution and transmission, as well as the cost associated with the intermittency of wind.
2. Determine a suitable "measure of effectiveness" (often called the "objective function") to be optimized - the wind energy industry is capital intensive, so wind farms' investment must be returned at an expected rate at investor point of view. Usually, the wind farm promoter (manager) needs to overcome some technical and economic issues about sub operation which has to be maximized or certain costs minimized. Thus, most optimizations are economic optimizations.
3. Elaborate a model to represent the system whose optimization is desired - a model may be defined as a device, physical or symbolic. Models are almost always necessary in industrial work since experimentation with full-sized industrial equipment disrupts production and is very costly in money and time. And sometimes industrial equipment is only contemplated in design or as replacements. Usually, the most desirable model is the mathematical model, which employs mathematical statements to represent the system and enables responses to be calculated rather than be measured. The measure of effectiveness is expressed as a function of a set of variables at least one of which is subject to control. (The variables involved are often functionally interrelated so that they behave similarly to the active variables in the realistic system simulated) \therefore As the variables are manipulated; their effectiveness in optimizing the objective is changed. Often there are restrictions imposed on the values of the independent variables, or functional restraints involving these variables, and such restraints are expressed by supplementary equations and/or inequations.
4. Solve the problem - determine the values of the independent (controllable) variables which optimize the objective (i.e., maximize the effectiveness of the system) subject to any restraints imposed on the system (equipment limitations, rigid management policy, operating limitations, minimum quality characteristics, market restrictions, legal limitations, etc.).
5. Test the model and calculated solution obtained from it - if adjustment is indicated, readjust the model, determine a new solution, and check again. A carefully chosen initial model may eliminate difficulties here.
6. Establish controls - the lack of effective control over certain variables might seriously invalidate the appropriateness of the original model \therefore The need for a change in the original controllable variables to offset changes in uncontrollable variables must be recognized and a new optimum solution found.
7. Implement the suggested solution through appropriate organizational channels, and establish a set of operating procedures so that those concerned with control of the operation can attain the optimum as easily as possible.

It proved necessary to investigate the various aspects of a microeconomics view, as a power station unit, because when it is studied separately, it is necessary to understand the wind system conversion, its electro-mechanical, layout and economical restrictions. As it has been said about wind farms, the intermittency must be considered into economic evaluation methodologies, fundamental difference can be found when the intermittency is not considered. \therefore It was hence impossible to draw conclusions with respect to the isolated impact of the intermittency effect, because it was made simulation and the conclusions had to be qualified for the minimum cost of energy and other economic indicators being used.

The widely used RETScreen software, version 4, a tool for analyzing the technical and financial viability of potential renewable energy projects is now being used by more than 35,000 people in over 196 countries around the globe (RETScreen® International Clean Energy Decision Support Centre, 2008) was also used for the research \therefore At the start of the research project, it was quickly found that there was not a unique methodology or optimization procedure model included in the standard libraries (products and projects database) of this software. Further study showed that at that time, this also needed to other simulation packages, and that wind technologies available are based only on manufactures' information \therefore It was therefore inevitable to adopt another methodology for optimization process and try simulation by nonlinear algorithms.

Finally we studied extensively the Theory of Simulation and Optimization and take advantage of practical aspects of the simulation approach, as well as the manipulation of variables and its results. Then, we developed an optimized technology and calculated the best economics results for a hypothetical wind energy project \therefore A preliminary validation of the developed model was carried out using different combinations of wind technologies available in the RETScreen Products Database. It is important to say again, the software does not make simulations, only deterministic and probabilistic calculations.

6.4.3.3 CONCEPTS AND VARIABLES

As we already discussed about philosophical, epistemological, methodological issues and paradigms of research in function of the research object - economical optimization of a wind farm via cost of electricity produced - the next step is determine the concepts and variables to be analyzed through a research. Figure 6.9 shows the inter-relations of these aspects in the research process.

Figure 6.9 Epistemological tree for research concepts and variables integration. Source: adapted from Smyth and Morris (2007)

As we can notice in Figure 6.9, concepts, variables and hypotheses constitute the links between theory and practical (empirical) analysis. Concepts are terms that refer to the characteristics of events, situations and individuals that are studied \therefore In order to apply the theory or preposition; we make the operationalization of the main definitions adopted for this research (see Table 6.2) through quantification of them. According to Magoha (2001) for economic analysis of wind energy, a variety of methods can be adopted: their accuracy is strictly related to the type of the WECS technology and its application for each power plant (e.g. whether it is for remote autonomous use or for grid connection).

The conceptualization is based on the LCOE/NREL methodology ${ }^{87}$ presented and explained in Chapter 5, through the Eqn (5.24), with the following formula:

$$
L C O E=\frac{F C R \times I C C+L R C}{A E P_{n e t}}+O \& M+P T C
$$

We understand that this equation can be analyzed into two aspects: the one is "economics" and the other is "engineering". The economic nature of the formula is related to FCR, ICC, LRC, O\&M and PTC elements. $A E P_{\text {net }}$ represents the power output (production), so the "engineering" part.

[^57]We must highlight that PTC element add to this economic part the public influence on cost of energy produced from RETs \therefore In other words, LCOE/NREL methodology is a comprehensive economic metric for cost of energy production and also can be applied to WECS. We possible compare different technologies or the same technology in different places.

Table 6.2 Conceptual and operational definitions used for the Ph.D. research work

Conceptual definition	Operational definition
	In economics, the term economic optimization means that
resources are being used in the best possible way to meet	It was run the algorithm developed
during this Ph.D. research for economic	
the needs of people's desires. In other words, the existence	
optimization of wind farms (see Eqn 6.2).	
of optimization is synonymous with absence or minimal	

[^58][^59]
6.4.3.4 RESEARCH HYPOTHESES AND LIMITATIONS

According to Figure 6.9, from the epistemological aspects of the research, research approach (paradigm) and conceptual and operational definitions already done the research hypotheses can be developed in order to check whether the new theory formulated (Economic Optimization Algorithm Proposed) is valid ${ }^{89}$ or not. For Jensen and Bard (2003) the research hypotheses are fundamental and necessary and a scientific "piece" in a research work. One another important aspect is the relationships between the variables analyzed in a research work, these variables can be classified into univariate (related to a single variable), bivariate (the relationship between two variables, one dependent and other independent) and multivariate (relate more than two variables) (Kothari, 2009). In this research there were used multivariate variables and the systemic approach in an operational research context.

During the literature review ($1^{\text {st }}$ phase of the research work) we could map five thematic areas (see Figure 6.4) for a better and comprehensive understanding about the cost of energy produced from a wind farm, in economic terms, considering manufacturing nature of the WECS \therefore It has been necessary to study the inter-relations among the variables which influence on COE, as shown in Figure 6.8. For resuming these thematic areas in Figure 6.10 is shown how was studied the cost of energy during the Ph.D. research work.

COE $=$ Economics + WECS + EnergyPolicy + RenewableEnergy + Simulation/Optimization Eqn (6.1)

Figure 6.10 Contributions of each thematic area during the literature review process. Source: Own elaboration

COE can be analyzed in many ways, but we focus on the producer point of view, in other words, what is the real minimum cost for the power producer in a wind farm? It is necessary to understand how the WECS works, what king of relation the wind power producer has within the electricity market and what renewable energy policies can influence on the power production cost. WE could see during the extensive literature review, the lifetime of the REPs is around 15 to 25 years, case of wind energy projects. \therefore Gökçek and Genç (2009) have made an economic analysis for long term (more than ten years), it is better consider the whole lifetime for the same analysis.

[^60]The research work was driven by $C O E$ minimization during the wind farm's lifetime that is why we consider LCOE more appropriate to our research objectives. The cost is the most important pledge for economic operation of wind farm. There are two theories for minimum of wind power cost: economy of scale ${ }^{90}$ and square-cube theorem ${ }^{91}$. Many authors suggest we should develop great unit, and it emphasizes wind speed is proportionate to altitude; while other scholars consider the captured energy is proportionate to diameter of wind turbine, meantime, mass of wind turbine (i.e. cost) is proportionate to square of diameter (Tai \& Wen-rui, 2009). It is assertive to use the two theories, however, cost of energy produced will not be totally proportionate to the production in a yearly basis, it must include other factors, and the cost function ($L C O E_{\text {wso }}$) for the Ph.D. research work was developed considering the following hypotheses as shown in Table 6.3.

Table 6.3 Research hypotheses considering for the Ph.D. research work

Hypotheses	Statement	Basis
RH_{1}	The WECS is dependent on the local wind resources. The better the local wind resources more electricity production.	The theoretical power output in the current wind technology is equal to the cube of the wind speed. However, the power production profile of a wind turbine is typically more proportional to the square of the average wind speed (Manwell, McGowan, \& Rogers, 2002).

RH_{2} The higher the production of the wind farm, the less will be the unit cost of electricity, is an inverse relationship.
$\mathrm{RH}_{3} \quad$ It is possible to determine the break-even-point of a wind farm from the wind speed and the minimum $L C O E$.

Considering the ratio between costs of the wind farm and power output (production), and if we keep constant the costs and increase the production, the cost per unit falls, taking into consideration some proportions (Fuglsang \& Madsen, 1999; Fuglsang \& Thomsen, 1998).

Wind power plants generate electricity when wind blows and the plant output depends on the wind speed (Georgilakis, 2008).
$\mathrm{RH}_{4} \quad$ The layout of wind turbines has impact directly on $L C O E$. It can increase or decrease $L C O E$, depends on the design used.

The wind farm layout possible can lead to lower than expected wind power production, increased or decreased $O \& M$ costs, investment costs and in general the cost of energy produced (Kusiak \& Song, 2010).
$\mathrm{RH}_{5} \quad$ The smaller $L C O E$, more optimized is the wind farm, in economic terms.

The increasing in capacity factor from values below the levels of average capacity factor can lead mainly to large reductions in $L C O E$ (Cory \& Schwabe, 2009).

[^61]Table 6.3 Research hypotheses considering for the Ph.D. research work (continuation)

Hypotheses	Statement	Basis
RH_{6}	The maintenance program can be used as a strategy of optimization of the wind farm, in technical and economic terms.	Maintenance management for wind power production systems aims at reducing the overall maintenance cost and improving the availability of the systems. Since the operation and maintenance costs represent a substantial portion of the total life cycle costs of wind power production systems (Ding \& Tian, 2012; Tian, Jin, Wu, \& Ding, 2011).
RH_{7}	The type of energy policy (EP) can influence directly on $L C O E$. It depends on the focus of the EP instrument adopted.	The renewables support instruments can be applied quite differently. Many of the available instruments can essentially be classified in grants about investment costs and operation (production). As well as investment incentives, incentives for operational costs are subsidies to reduce the cost of energy produced (Wohlgemuth \& Madlener, 2000).

Source: Own elaboration

According to the objectives and hypotheses research developed for this Ph.D. research work, we have to face some limitations. These limitations of this work should be mentioned \therefore The studies included in this research focus on cost of energy (electricity) produced from a wind farm. So we can list the most important limitations of this research work:

1. There is no standard LCOE to be reference for this kind of research. There is not a single price and cost of energy for wind farms. Both depend on the location, size and number of turbines, in addition to being influenced by political incentives or subsidies granted by governments. These facts will affect the generalization done in the simulations which criterion is the minimum $L C O E$ reached from the results in the studies done.
2. It is not possible to harmonize all input assumptions. A large number of assumptions have to be made before model simulations/optimization is carried out. Even though the input assumptions have been harmonized to an extensive degree in all sub-models, it has not been possible to reach full harmonization. The reason is that the sub-models are designed differently. Some of these differences make it impractical to fully harmonize model input without impacts the functionality of the sub-models inter-linked, and some of these differences significantly affect model results in general.
3. Recognize the "locational" differences for the model proposed as universal methodology for economic optimization of wind farms. As for "locational" differences may involve e.g. how are considered and practiced some rules, e.g. energy markets, policy instruments and taxation. This is strongly influenced by the "energy history" of a certain place. Models based on countries where a certain technology to the existing date has played an important role tend to look generously on the prospects for technology also in the future.

6.4.4 RESEARCH DESIGN

The research design is the conceptual structure and way within which the research work would be conducted. The function of research design is to provide for the collection of relevant scientific and valid information with intention to give an answer to the problem of the research work (Kothari, 2009). The research design was developed during the Ph.D. research work and adapted to its interdisciplinary nature, among the simulation and optimization theory, economic measures applied to RETs, WECS and energy policy.

We can summarize that a problem of optimization is formed by choosing variables, objective function and group of answers viable. The problem is choosing the best viable alternative. In General, the theory of simulation and optimization allows the representation of the problem in a search for the maximum or minimum of objective function in respect to the variables of choice and subject to restrictions. \therefore For this research work we have been considered the clusters of variables to be analyzed in the new LCOE methodology proposed:

1. Wind speed $\left(\nu_{w}\right)$ — the energy production cost is strongly dependent on the average wind speed. As an example, the energy production cost at an average wind speed of $6.5 \mathrm{~m} / \mathrm{s}$ was twice as high as the cost for an average wind speed of $10 \mathrm{~m} / \mathrm{s}$. It was also found that the energy production cost decreases when the power output of the wind farm increases (Lundberg, 2006). There is clear evidence about the effect of the wind speed at the cost of energy produced in WECS.
2. Wind turbines layout ($L_{w t}$) - the wind turbines layout has direct impact on wind farm production and costs. As we have already discussed in Chapter 4, sections 4.5.1, 4.5.2 and 4.5.3 by many researcher the most factors that usually affect wind turbines location are: (1) optimization of energy production and COE output; (2) turbines loads; (3) noise emissions and (4) visual impact (Gonzalez, Rodriguez, Mora, Santos, \& Payan, 2009; Payan, Gonzalez, Rodriguez, Mora, \& Santos, 2011; Zhang, Chowdhury, Messac, \& Castillo, 2012b). The Ph.D. research work has focused only on optimization of energy cost.
3. Operations and Maintenance management $\left(O \& M_{\text {manag }}\right)-O \& M$ management aims at improving the availability of the systems and reducing the overall maintenance cost (Ding \& Tian, 2012). This variable can be also classified into scheduled maintenance and unscheduled maintenance, as already explained in Chapter 5, section 5.4.1.1.
4. Energy policy instruments $\left(E_{p i}\right)$ - a strong focus on capacity installations might result in the construction of projects with little productive efficiency. Production incentives, in contrast, help to specially stimulate the development of efficient projects, resulting in a higher output of renewable energy per supporting capital involved (Enzensberger, Wietschel, \& Rentz, 2002).

In order to test and understand the impact of these clusters of variables on $L C O E_{\text {wso }}$ we have made several simulations. We have done 900 interactions within the cluster of variables, considering 3 different sites for a hypothetical wind farm, as detailed in Table 7.16.

One of the reasons for these sites (Brazil, Canada and Portugal) was based on installed capacity of wind energy at the end of 2011 of 1509 MW, MW 5265 and 4083 MW, respectively, according to the GWEC (2012). The annual mean of wind speed was the determinant factor to choose the best site in these countries with geographies, climates, and structure, politics, technological development and different public perception about RETs. \therefore Table 6.4 shows these locations used for the simulations and optimization procedures.

Table 6.4 Locations chosen for simulations procedures within criteria and reasons

Location	Criteria	Reason
1. Aracati, Ceara, Brazil	Local wind resources; Energy policy	The annual calculated mean of wind speed is $7.4 \mathrm{~m} / \mathrm{s}$
2. Cape Saint James, British	Local wind resources; Columbia, Canada	The annual calculated mean of Energy policy
wind speed is $12.5 \mathrm{~m} / \mathrm{s}$		
Corvo Island, Açores, Portugal	Local wind resources; Energy policy	The annual mean of wind speed is $9.1 \mathrm{~m} / \mathrm{s}$

Source: RETScreen® International Clean Energy Decision Support Centre (2009)

For each site selected in the RETScreen Climate Database ($2^{\text {nd }}$ phase of the research work) we have gotten the following information about, as shown in Figures 6.11, 6.12 and 6.13.

Figure 6.11 Site climate conditions used for simulation/optimization of the wind power plant in Aracati (Brazil). Source: RETScreen® International Clean Energy Decision Support Centre (2009)

Figure 6.12 Site climate conditions used for simulation/optimization of the wind power plant in Cape Saint James (Canada). Source: RETScreen® International Clean Energy Decision Support Centre (2009)

Figure 6.13 Site climate conditions used for simulation/optimization of the wind power plant in Corvo Island (Portugal). Source: RETScreen® International Clean Energy Decision Support Centre (2009)

6.4.4.1 VARIABLES RELATIONSHIP AND RESEARCH BOUNDARY

The variables influencing on cost of energy produced from a wind farm are present at Figure 6.8, which for this Ph.D. research work were analyzed in certain conditions and relationships:

1. The lifetime of the project is the period of working of the power plant. We have been considered 25 years of operation \therefore The lifetime of the wind farm is driven by wind turbines 'lifetime. If it is chosen a wind turbine for 20 years of operation, so the lifetime of the wind farm will be the same period;
2. The cost of capital reflects how much the project finance operation is. It is also called "financial cost" of the project, as we have already explained in Table 5.1. Usually the cost of capital of a power plant is affected by the lifetime, the initial investment that is driven directly by the power system configuration;
3. The price of wind turbines, access roads, foundations and other facilities can be analyzed as "capital cost" or "initial investment". The wind turbines chosen are driven by the local wind resources and terrain conditions \therefore As higher the wind power class, more powerful and bigger the wind turbines have to be adopted;
4. For power system configuration (rotor diameter, hub high and other physical features) has been considered the data shown at Figure 6.6. The power system configuration is used to be conditioned to how capital the investor has available, the local wind resources profile and the cost of energy produced;
5. For mean wind speed and site characteristics have been considered the data shown at Figures $6.11,6.12$ and 6.13 . We easily find a direct relation among wind speed, initial investment, and annual energy production. As higher as wind speed, much as initial investment and the annual production;
6. $O \& M$ costs were classified into $O \& M$ costs fixed $\left(O \& M_{\text {fixed }}\right)$ and $O \& M$ variable $\left(O \& M_{\text {variable }}\right) . O \& M_{f \text { fixed }}$ was determined by a number of fixed hours of work during the operation years of the power plant; however $O \& M_{\text {variable }}$ was fit to the annual energy production of the power plant;
7. Annual Energy Production (AEP) has been calculated for each year by the $L C P M_{W F}$, which the capacity factor $\left(C_{F}\right)$ variable per year of power plant operation \therefore It seems to be more realistic to the nature of operational aspect for the WECS;
8. For the annual emissions of GHG , we consider only CO_{2} emissions and it was compared with the same amount of electricity produced from fossil fuel technology considering the fuel type, region and $\mathrm{P} \& D$ losses. The GHG emission of $\mathrm{CO}_{2}\left(G H G_{E F_{f_{f c_{2}}}}\right)$ was calculated for Brazil, Canada and Portugal.

When these variables have been considered for all lifetime of the power project how is the case of present Ph.D. research work (25 years), we could get $L C O E$ of the power plant. The methodology
proposed for simulation and optimization of WECS projects was developed during this research work considering these variables and their relationships. It is important to understand in the new methodology proposed ($L C O E_{\text {wso }}$) which is the most influencing variable(s) on cost of energy produced from the wind farm \therefore It was also of great importance to define the research boundaries in order to make the results more measureable and transparent, in economic terms.

Economic optimization of wind farm via LCOE methodology is a combination of many different disciplines including operational research, economics, accounting, industrial engineering, production management, maintenance costs and others related to. In the present Ph.D. research work we have to consider as WECS boundaries for LCOE calculations and evaluations as shown in Figure 6.14.

Figure 6.14 Cost and production frontier considered in simulations for optimized $L C O E_{w s o}$. Source: Own elaboration

For reasons of system delimitation for the research work, economic evaluation and annual energy production, all analysis done was related to the production and transmission phases ${ }^{92}$ of the WECS. The power plant, including the land, local wind turbines grid, collecting point ${ }^{93}$ and transmission system (to the grid of distribution) were included for costs and production analysis.\therefore This implies that the costs and other charges for distribution and commercialization of the electricity produced to the final consumer are not part of the proposed methodology of this Ph.D. research work.

[^62]
6.4.4.2 MATHEMATICAL MODEL STRUCTURING

As we have already discussed before, a "model" is a representation of a system or process of the real world into a theoretical manner (Carson \& Maria, 1997). For the present research work, methodologically adopted and approach of operational research, because it is related to a real problem industrializing activity, case of wind power. So the WECS studied has to be analytical analyzed through the "mathematical modeling". Mathematical modeling is to establish a set of mathematical tools that allow making a theoretical analysis of a given situation \therefore For Banks (1999) the real-world system under investigation is abstracted by a conceptual model, a series of mathematical and logical relationships concerning the components (variables) and the structure of the system.

Our conceptual model was based on LCOE/NREL, considering the conceptual and operational definitions explained in Table 6.2. The conceptualization of this Ph.D. research work was also driven by the hypotheses formulation (see Table 6.3), which variables were grouped in clusters (see section 6.4.4) to be better studied and mathematically formulated \therefore The most important relationships were briefly described in section 6.4.4.1 and the size or structure of the system (see Figure 6.14) to be modeling.

Figure 6.15 Modeling process flowchart. Source: Own elaboration

As we can see in the Figure 6.15 the modeling process is dynamic. The present research modeling process was built since the first and second phases of this research due to the nature of the present Ph.D. research work \therefore It is related to engineering economic analysis of wind power, so the mathematical model ${ }^{94}$ was developed through the block diagram structure for wind farm economic optimization (see Figure 6.16) considering these two aspects, the economic and engineering one.

[^63]The Economic Optimization Algorithm Proposed ($E O A P=>L C O E_{\text {wso }}$) developed during this research work was built in models. There are six main modules: Wind Farm Life-Cycle Capital Cost Model (LCCCM ${ }_{W F}$); Wind Farm O\&M Cost Model ($O \& M_{W F C M}$); Levelized Replacement Cost Model (LRCM); Wind Farm Removal Cost Model (RCM $_{W F}$); Renewable Energy Public Incentive Model (REPIM) and Wind Farm Life-Cycle Production Model (LCPM $W_{W F}$). Each of them was integrated into sub-models, as shown in Figure 6.16.

Figure 6.16 Block diagram of the wind farm simulation and optimization algorithm proposed. Source: Own elaboration

Now we have detailed our proposed methodology and new approach for LCOE calculations. The following Eqn 6.2 has shown the Ph.D. research algorithm:

[^64]\[

$$
\begin{equation*}
L C O E_{w s o}=\frac{L C C C M_{W F}+L R C M}{L C P M_{W F}}+O \& M_{W F C M}+R C M_{W F}-R E P I M \quad[\$ / \mathrm{kWh}] \tag{6.2}
\end{equation*}
$$

\]

where $L^{2} C C M_{W F}=$ Wind Farm Life-Cycle Capital Cost Model; LRCM $=$ Levelized Replacement Cost Model; $O \& M_{W F C M}=$ Wind Farm $O \& M$ Cost Model; $R C M_{W F}=$ Wind Farm Removal Cost Model; REPIM $=$ Renewable Energy Public Incentive Model and LCPM $M_{W F}=$ Wind Farm LifeCycle Production Model.

Wind Farm Life-Cycle Capital Cost Model (LCCCM ${ }_{\text {WF }}$)

$L C C C M_{W F}$ is an important aspect for the formulation of the initial investment (capital cost) of the wind power project, even for onshore or offshore installations. As we already discussed before, these projects are capital-intensive and a great part of the costs were driven to this term \therefore This item represents the sum of the cost of wind power system and the cost structure of the wind farm. This cost measure includes all the planning, equipment acquisition, construction and installation costs of the wind system which makes the wind farm ready to operate. For our proposal methodology, $L^{2} C C M_{W F}$ was built considering the wind turbines, towers, local wind turbines grid, transmission system, collecting point ${ }^{97}$, supporting infrastructure (builds and other facilities), pre-operational costs (consulting, surveys, permitting, etc.), financing costs and other contingencies capital costs. The wind turbines and towers have been delivered and installed on site of the wind farm with all maintenance, electrical system and other infrastructure support for the whole wind farm installations. We also emphasize the utilization of Uniform Capital Recovery Factor ${ }^{98}$ $U C R F=\left[\frac{W A C C_{\text {pro }}\left(1+W A C C_{p r o j}\right)^{N}}{\left(1+W A C C_{\text {proj }}\right)^{N}-1}\right]$ for cost items which represents the power system (equipment and facilities) of the proposed methodology. $L C C C M_{W F}$ is shown in Eqn 6.2.1.
$L C C C M_{W F}=W T_{C M}+T_{C M}+L W T G_{C M}+C P_{C M}+T S_{C M}+S I_{C M}+P O_{C M}+F_{C M}+C C C_{C M} \quad[\$ / \mathrm{kW}]$ Eqn (6.2.1)
where $W T_{C M}=$ Wind Turbines Cost Model; $T_{C M}=$ Towers Cost Model; $L W T G_{C M}=$ Local Wind Turbines Grid Cost Model; $C P_{C M}=$ Collecting Point Cost Model; $T S_{C M}=$ Transmission System Cost Model; $S_{C M}=$ Supporting Infra-structure Cost Model; $P O_{C M}=$ Pre-operational Cost Model; $F_{C M}=$ Financing Cost Model and $C C C_{C M}=$ Capital Costs Contingencies Cost Model.

[^65]The wind turbines investment costs $\left(W T_{C M}\right)$ were developed considering the wind turbine cost for manufacturer $\left(C M_{W T}\right)$, number of turbines in the wind farm $\left(N_{W T}\right)$, market cost adjustment $\left(M C_{A}\right)$ and uniform capital recovery factor (UCRF) \therefore For George and Schweizer (2008) market cost adjustment "reflects a number of factors, which are not believed to be fundamentally technologyrelated to the turbine cost estimate". Then, $W T_{C M}$ can be calculated with the Eqn 6.2.1.1:

$$
W T_{C M}=\left[N_{W T}\left(C M_{W T}+M C_{A}\right)\right] U C R F
$$

where $C M_{W T}$ can be calculated within the percentage cost for the wind turbine component, with the total relative cost $\left(R C_{W T}\right)$, cost of $k W$ installed ($C_{k W}$) and industrialized product taxes (IPT). This formulation was shown in Eqn 6.2.1.1.1 as follows:

$$
C M_{W T}=\left(R C_{W T} C_{k W}\right)(1-I P T)
$$

[\$/kW] Eqn (6.2.1.1.1)

Another important element of capital cost for wind projects is the wind turbine tower. We called "Towers Cost Model". According to Oliveira and Fernandes (2012a) towers figure 30-65\% of WECS weight and $10-25 \%$ of the costs. $T_{C M}$ model was based on Fingersh, Hand, and Laxson (2006) which have been considered the scalar relation among, rotor diameter (D), swept area (A) and hub height $\left(H_{h}\right) \therefore$.For a given wind farm, the total towers cost is also the product of the percentage cost for the wind tower component $\left(R C_{T}\right)$, with the wind turbines investment costs $\left(W T_{C M}\right)$, mass of each tower $\left(T_{\text {mass }}\right)$, cost of steel $\left(C_{\text {steel }}\right)$ and uniform capital recovery factor $(U C R F)$. The cost of the towers often depends on fluctuations in the cost of steel, which is the main production material for the modern towers (Jamieson, 2011). $T_{C M}$ was written in Eqn. 6.2.1.2:

$$
T_{C M}=\left[R C_{T}\left(T_{\text {mass }} C_{\text {steel }}\right)\right] U C R F
$$

The cost of connections for a wind farm is an important initial cost item which has been considered as "Local Wind Turbines Grid Cost Model" "99 ($L W T G_{C M}$). The internal electrical grid installation of the wind farm comprises the medium voltage grid in the wind farm up to a common point and the necessary medium voltage switch gear at that point. The total costs for this item ranges from 3 to 10% of the total costs of the complete wind farm. It depends on local equipment prices, technical requirements, soil conditions, the distance between the turbines, the size of the wind farm and

[^66]hence the voltage level for the line to the connecting point of existing grid (European Commission, 2001). $L W T G_{C M}$ proposed was formulated as shown in Eqn 6.2.1.3:
\[

$$
\begin{equation*}
L W T G_{C M}=\frac{\left\lfloor\left(L_{g} C A B_{\text {cost }}\right)+M C_{A}\right\rfloor U C R F}{W F_{\text {cap }}} \quad[\$ / \mathrm{m} / \mathrm{kW}] \tag{6.2.1.3}
\end{equation*}
$$

\]

Then $L W T G_{C M}$ could be understood as a product of the local grid length (L_{g}) and cables cost $\left(C A B_{\text {cost }}\right)$ including skilled labor. It was also considered the market cost adjustment ($M C_{A}$) for the cables materials` life-cycle and uniform capital recovery factor (UCRF) per wind farm electric installed capacity $\left(W F_{\text {cap }}\right)$. The length of the grid is affected by the wind farm and grid layouts, type of cables, orography and other electrical configurations of the power plant.

The Collecting Point Cost Model $\left(C P_{C M}\right)$ was developed considering the function of this investment item for the wind farm as a whole to the wind farm, as an electrical substation (already explained in footnote 93$) \therefore$ The "collecting point" also called "integration system" manages the voltage from high to low, or the reverse, or performs any of several other important functions for the output power quality. That is why for our $C P_{C M}$ proposed has been considered a fixed part for transformers, and other electrical facilities $\left(E F_{c}\right)$ added the cost (ς) per wind farm electric installed capacity ($W F_{\text {cap }}$) and uniform capital recovery factor (UCRF). $C P_{C M}$ was formulated within Eqn 6.2.1.4:

$$
C P_{C M}=\left(E F_{c}+\varsigma W F_{c a p}\right) U C R F
$$

The present methodology also has taken into consideration the transmission system. We have called "Transmission System Cost Model". TS ${ }_{C M}$ proposed was based on DeCarolis and Keith (2006) when have been considered the transmission line cost $\left(T L_{c}\right)$, transmission line thermal rating ${ }^{100}\left(T L_{r}\right)$, transmission line length $\left(L_{t}\right)$ and substation cost of transmitting $\left(S B_{c}\right)$. It also has been considered the market cost adjustment $\left(M C_{A}\right)$ for the cables materials` life-cycle and uniform capital recovery factor (UCRF). The following Eqn 6.2.1.5 represents $T S_{C M}{ }^{101}$:

$$
\begin{equation*}
T S_{C M}=\left[\left(\frac{T L_{c}}{T L_{r}} L_{t}\right)+S B_{c}+M C_{A}\right] U C R F \quad\left[\$ / \mathrm{kW}_{\mathrm{e}}\right] \tag{6.2.1.5}
\end{equation*}
$$

[^67]A large and medium wind power plant will require a maintenance facility for storing trucks, service equipment, spare parts, lubricants, and other supplies. The maintenance facility may be located onor off-site. Some wind farms combine control and maintenance functions in one building (see Figure 4.16) \therefore The model developed during this research called "Supporting Infra-structure Cost Model" $\left(S I_{C M}\right)$ was based on building cost $\left(B l d_{\text {cost }}\right)$, building area $\left(B l d_{\text {area }}\right)$, per wind farm electric installed capacity $\left(W F_{\text {cap }}\right)$ for contingencies and uniform capital recovery factor (UCRF). We have also considered the wind turbine installation ($W T_{\text {inst }}$) as the cost of $R M_{W T}$ added the $R M_{C T}{ }^{102}$. The variables ${ }^{103}$ used for $S I_{C M}$ were organized as shown in Eqn 6.2.1.6:

$$
\begin{equation*}
S I_{C M}=\left[\frac{\left(B l d_{\text {cost }} B l d_{\text {area }}\right)}{W F_{\text {cap }}} U C R F+W T_{\text {inst }}\right] \quad\left[\$ / \mathrm{m}^{2} / \mathrm{kW}\right] \tag{6.2.1.6}
\end{equation*}
$$

The pre-operational phase ${ }^{104}$ of the power plant is an important part for life-cycle cost analysis, especially in the case of wind projects. As we have discussed in section 4.6 of this $\mathrm{Ph} . \mathrm{D}$. research work, this phase could reach 4 years of activities and resources (see Figures 4.13 and 5.1) and obvious costs associated to the same period \therefore We have developed the "Pre-operational Cost Model" ($P O_{C M}$). $P O_{C M}$ was based on the Feasibility Studies (FS), Development (DT) and Engineering (EG) per wind farm electric installed capacity ($W F_{\text {cap }}$) and uniform capital recovery factor (UCRF). The variables used for $P O_{C M}$ were organized as shown in Eqn 6.2.1.7:

$$
P O_{C M}=[(F S+D T+E G) U C R F]
$$

[\$/kW]
Eqn (6.2.1.7)

Wind projects with its capital-intensive nature, in general, are implemented with project financing operations in the beginning of project's lifetime. The capital structure of an analyzed wind power project has influenced on the finance cost. Capital structure refers to the mix of debt and equity in the power project. The "Financing Cost Model" $\left(F_{C M}\right)$ proposed was based on Damodaran (2001) which has been considered the percentage ($w_{F_{C M}}$) of Weighted Average Cost of Capital calculation of weighted average cost of funding sources, in which the weight of each one is considered for each funding position during the pre-operational phase ($n_{\text {fin }}$) of the wind project $\therefore F_{C M}$ was formulated as the product of $w_{F_{C M}}, W A C C_{\text {proj }}$ and the sum of capital investment cost $\left(W T_{C M}, T_{C M}, L W T G_{C M}\right.$, $C P_{C M}, T S_{C M}, S I_{C M}$ and $P O_{C M}$). The following Eqn 6.2.1.8 represents $F_{C M}$:

$$
F_{C M}=w_{F_{C M}}\left(1+W A C C_{p r o j}\right)^{n_{n ⿰ 亻}}\left[\sum\left(W T_{C M}+T_{C M}+L W T G_{C M}+C P_{C M}+T S_{C M}+S I_{C M}+P O_{C M}\right)\right] \quad[\$ / \mathrm{kW}] \quad \text { Eqn (6.2.1.8) }
$$

[^68]The balance of system and miscellaneous costs typically includes a number of items such as building and yard construction, spare parts, transportation, training \& commissioning, contingencies and interest during construction (RETScreen® International Clean Energy Decision Support Centre, 2009) \therefore "Capital Costs Contingencies Cost Model" ($C_{C C} C_{C M}$) proposed was formulated with a percentage (κ) of capital costs for contingencies of the power project. The following Eqn 6.2.1.9 represents $C C C_{C M}$:

$$
\begin{equation*}
C C C_{C M}=\kappa\left[\sum L W T G_{C M}+C P_{C M}+T S_{C M}+S I_{C M}+P O_{C M}+F_{C M}\right] \quad[\$ / \mathrm{kW}] \tag{6.2.1.9}
\end{equation*}
$$

Levelized Replacement Cost Model (LRCM)

According to NREL (1995) the Levelized Replacement Cost (LRC) is a cost component used as a saving account for the wind power project. Depending on the technical details of the power plant, the major review of the power system occurs every 5,10 or 15 years \therefore The proposed "Levelized Replacement Cost Model" (LRCM) was formulated considering the "Annual Replacement Cost Model" $\left(A R_{C M}\right)$ and "Technological Obsolescence Cost Model" (TO $\left.{ }_{C M}\right)$.

$$
L R C M=A R_{C M}+T O_{C M}
$$

Eqn (6.2.2)
"Annual Replacement Cost Model" ($A R_{C M}$) was developed within the principles: (a) as an economic reserve for future expendures; (b) the money cost is influenced by the time and (c) $A R_{C M}$ is also affected by $O \& M_{W F C M}$. We have been considered for $A R_{C M}$ wind turbines $\left(W T_{C M}\right)$ and towers ($T_{C M}$) costs. It was also adopted the inflation rate ($i f_{r}$) to ensure the effect of time on investments and available funds within the present value of annual stream of reserve for major replacements and overhauls over the life of the wind power system when payments for event occurring in year needed $\left(Y_{R C}\right)^{105}$ have to be made \therefore When we refer to depreciation ${ }^{106}$ of the equipment and installations, the proposed $A R_{C M}$ has been considered the difference of depreciation of wind turbines with towers ($D e p r_{W T_{i n s t}}$) and the depreciation in the year ($D e p r_{Y_{R C}}$) when the major review of the power system was programmed.

$$
A R_{C M}=D e p r_{W T_{i n s t}}-D e p r_{Y_{R C}}
$$

[^69]where $D e p r_{W T_{\text {wast }}}$ can be calculated by the Eqn 6.2.2.1.1 as follows:
$$
D e p r_{W T_{\text {inst }}}=\left[\left(\frac{W T_{C M}+T_{C M}}{N}\right)\right]\left[\left(1+i f_{r}\right)^{N}\right]
$$
and Depr $_{Y_{\text {RC }}}$ can be calculated by the Eqn 6.2.2.1.2 as follows:
$$
D e p r_{Y_{R C}}=\left[\left(\frac{W T_{C M}+T_{C M}}{N}\right)\right]\left[\left(1+i f_{r}\right)^{Y_{R C}}\right]
$$

We also analyzed the technological obsolescence effect for the power system as a cost (view of investor), considering during the lifetime of the wind project, the technological option chosen for that specific power plant could not be changed easily, even when the investor decides to repower the system in the end of its lifetime, if it is worth it!! That is why we have aggregated the effect of technological obsolescence to LRCM \therefore The technological obsolescence and improvement can be understood as an inverse relation, so, LRCM was formulated within the inverse of technology improvements (TI) ${ }^{107}$ described by Lund (2006).

$$
\begin{equation*}
T O_{C M}=\left[\left(\frac{W T_{C M}+T_{C M}}{N}\right)\right]\left[\left(\frac{1}{T I}\right)\left(1+i f_{r}\right)^{r_{\text {rC }}}\right] \quad[\$ / \mathrm{kW}] \tag{6.2.2.2}
\end{equation*}
$$

where $T I$ can be calculated by the Eqn 6.2.2.2.1 as follows:

$$
T I \Rightarrow c v=c_{0}\left[\frac{V_{0}}{V}\right]^{b}
$$

[\$/kW]
Eqn (6.2.2.2.1)
where " c " and " c_{0} " are the current and initial costs ($\$ / \mathrm{kW}$); V and V_{0} the current and initial cumulative volume ($\mathrm{kW)} \mathrm{;} \mathrm{"} \mathrm{b} \mathrm{"} \mathrm{is} \mathrm{the} \mathrm{learning} \mathrm{parameter}. \mathrm{Moreover}, \mathrm{b=} \mathrm{\frac{} \mathrm { \operatorname {ln } 2 }{\ln P R}$, where $P R$ is the ${ }^{\text {a }}$, } progress ratio ${ }^{108}$.

[^70]As discussed by Pan and Köhler (2007) the learning effect (technology improvements) as described by a learning curve combines the effects of both real price and technological change. If a learning curve is measured at constant prices, the price effect is cancelled out and the curve reflects technological change only \therefore This situation justified the adoption of inflation effect ($i f_{r}$) on the $T O_{C M}$ which usually both effects of real price change and technological change are included in the cost reduction - both effects imply or reflect the technology cost reductions as the number of physical installations has increased.

Wind Farm O\&M Cost Model (O\& $\left.M_{W F C M}\right)$

The operations and maintenance $(O \& M)$ of a wind farm is driven by its size, model of turbines, location and other technical and economic conditions. The objective of $O \& M$ is to enable desired component performance by maintaining or returning the component's ability to function correctly (Nilsson \& Bertling, 2007). The Wind Farm O\&M Cost Model ($O \& M_{W F C M}$) has been developed considering a fixed $\left(O \& M_{\text {fixed }_{C M}}\right)$ and variable ($O \& M_{\text {variable }_{C M}}$) part, as shown in Eqn 6.2.3:

$$
\begin{equation*}
O \& M_{W F C M}=O \& M_{\text {fived }_{C M}}+O \& M_{\text {variable }_{C M}} \quad[\$ / \mathrm{kWh}] \tag{6.2.3}
\end{equation*}
$$

$O \& M_{\text {fixed }_{c M}}$ was oriented to those costs incurred during the operation phase of the project and are constant at all scales of production, even when the wind farm is stopped \therefore We have proposed a percentage (ϖ) of wind farm life-cycle capital cost model $\left(L C C C M_{W F}\right)$ and land lease cost (LLC) per kWh . We also have considered the effect (rate) of inflation (if f_{r}) during the lifetime of the wind farm (N). $O \& M_{\text {fixed }_{C M}}$ was written in Eqn 6.2.3.1:

$$
\begin{equation*}
O \& M_{\text {fixed }_{C M}}=\varpi L C C C M_{W F}+L L C\left(1+i f_{r}\right)^{N} \quad[\$ / \mathrm{kWh}] \tag{6.2.3.1}
\end{equation*}
$$

Meanwhile $O \& M_{\text {variable }_{C M}}$ was driven to those costs incurred during the production phase and varies according to the scale of production. This part of $O \& M_{W F C M}$ includes staffing, operations, planned (predictive) unplanned maintenance ${ }^{109}$, materials and other consumables, operation services, revenues taxes, and unforeseen expenses. $O \& M_{\text {variable }_{C M}}$ was formulated based on Zhang et al. (2010), have been considered the costs covered by manufacturer ($O \& M_{c c m}$), period of warranty $\left(n_{w}\right)$, maintenance labor cost (MLC) per hour, number of hours for maintenance labor ($n_{m i h}$), number of hours for technical labor $\left(n_{t h}\right)$, technical labor cost (TLC) per hour and revenue taxes

[^71]($R_{\text {taxes }}$). We also have considered the effect (rate) of inflation (if $_{r}$) during lifetime of the wind farm (N), as shown in Eqn 6.2.3.2:
$$
O \& M_{\text {variable } c M}=\left(\left(\frac{\left(M L C \times n_{\text {mlh }}\right)+\left(T L C \times n_{\text {thh }}\right)\left(1+i f_{r}\right)^{N-n_{n}}}{A E P_{\text {avail }}}\right)\left(1-O \& M_{c c m}\right)+R_{\text {taxes }}\left(\frac{A A R}{A E P_{\text {avail }}}\right)\right)[\$ / \mathrm{kWh}] \quad \operatorname{Eqn}(6.2 .3 .2)
$$

For Schreck and Laxson (2005) $O \& M$ costs for wind power plants shall include, and be supported by, a tabular listing of the following annual costs:

* Labor, parts and supplies for scheduled maintenance;
* Labor, parts and supplies for unscheduled maintenance;
* Parts and supplies for equipment and facilities maintenance;
* Labor for administration and support.

In the proposed $O \& M_{W F C M}$ was done a separation of $O \& M$ costs because we believe that the costs for $O \& M$ could have two types of behavior, one related to the power plant itself (size, land area, and other administrative expenses) and other related to the production of the wind farm. Christopher (2003) has highlighted the effort to minimize wind turbine $O \& M$ costs must start with a better understanding of the current costs and other factors that drive these costs. This first step could allow development of a sound cost model for evaluating the performance of existing wind farms and enable estimating the cost of proposed projects with reasonable certainty \therefore Some of the factors that have been driven the costs would be common to wind power projects in general, but other factors would be site specific. Detailed information about specific failure types, along with the operating conditions, would allow for an accurate model that could be adapted to different machine types and environments.

The maintenance and technical labor costs (MLC and TLC) could be determined considering the relation of Annual Failure Frequency (AFF) and Repair Costs $(R C)$. Determining the maintenance costs of a wind farm could be similar to the approach for asset management and risk analyses have been used in many branches of industry in general \therefore For Obdam, Braam, Rademakers, and Eecen (2007) this approach ${ }^{110}$ could be written as:

Annual $O \& M \cos t s=A F F \times R C$
[\$/kWh]
Eqn (6.2.3.3)

[^72]
Wind Farm Removal Cost Model (RCM $_{\text {WF }}$)

As we have already stated a wind farm as a project there must have an end of its economic lifetime of operation. The removal phase of WECS, when it was decided to repower the wind farm, is as important as the installation phase \therefore There is not too much literature about uninstalling phase of WECS within its costs associated.

The wind farm removal costs depend a great deal on permit requirements and turbine and sitespecific aspects such as how deep the foundations are poured, capacity, and other. For wind developers the cost to remove a wind farm is usually an estimation during the planning stages, but rather assume that salvage value of the wind farm, specific the turbines, would really cover those expenses when the time comes at the end of the project operation phase ${ }^{111}$. The most common way to estimate removing costs is to assume that the future residual value of the turbines will be 5-10\% of the initial equipment cost, or to guess what the value of steel and copper and the other metals in the turbine would be in 20-25 years (Botterud, 2003).
"Wind Farm Removal Cost Model" $\left(R C M_{W F}\right)$ was developed within the main principles: (a) assure funds enough at the end of operational phase to remove or repower the power plant and (b) reduce as most as possible the local microenvironment impact caused by the wind farm. We have been considered for $R C M_{W F}$ the Wind Farm Decommissioning Cost Model ($D C M_{W F}$) and Wind Farm Residual Value Model $\left(R V M_{W F}\right) \therefore$ For both sub-models were also adopted the inflation rate (ifr) and $U C R F$ to ensure the effect of time on investments and available funds within the present value of annual stream of monetary reserve. $R C M_{W F}$ could be formulated by Eqn 6.2.4:

$$
\begin{equation*}
R C M_{W F}=D C M_{W F}-R V M_{W F} \quad[\$ / \mathrm{kW}] \tag{6.2.4}
\end{equation*}
$$

$D C M_{W F}$ was formulated per wind turbine, considering man-hour $\left(M_{h r}\right)$, cost of man-hour ($C_{M h r}$), number of machines/equipment $\left(N_{m}\right)$, time of utilization for machines/equipment in days (D_{m}), cost per day $\left(C_{m d}\right)$ and wind farm electric installed capacity $\left(W F_{\text {cap }}\right) \therefore$ We have also considered the following activities: (1) Removal of wind turbines ($R M_{W T}$); (2) Removal of concrete ($R M_{C T}$) and (3) Seeding and re-vegetation $(S \& R V)^{112} . R C M_{W F}$ could be calculated by Eqn 6.2.4.1:

$$
\begin{equation*}
D C M_{W F}=R M_{W T}+R M_{C T}+S \& R V \quad[\$ / \mathrm{kW}] \tag{6.2.4.1}
\end{equation*}
$$

then,

[^73]\[

$$
\begin{equation*}
R M_{W T}=\frac{N_{W T}\left[\left(M_{h_{R W W T}} C_{M h r_{R W_{W T}}}\right)+\left(N_{m_{R U W T}} D_{m_{R V_{W T}}} C_{m d_{R U W T}}\right)\right\rfloor}{W F_{c a p}}\left(1+i f_{r}\right)^{N+1} \tag{6.2.4.1.1}
\end{equation*}
$$

\]

where $M_{h r_{R N_{W T}}}$ is the man-hour for $R M_{W T} ; C_{M h r_{R V_{W T}}}$ is the cost of man-hour for $R M_{W T} ; N_{m_{R V_{W T}}}$ the number of machines/equipment for $R M_{W T} ; D_{m_{R V_{W T}}}$ time (days) of utilization for machines/equipment for $R M_{W T}$ and $C_{m d_{R W W T}}$ cost per day for $R M_{W T}$.
and,

$$
\begin{equation*}
R M_{C T}=\frac{N_{W T}\left[\left(M_{h r_{\text {RMCT }}} C_{M l r_{\text {RNCT }}}\right)+\left(N_{m_{\text {RMCT }}} D_{m_{\text {RUCT }}} C_{m d_{R M C T}}\right)\right]}{W F_{\text {cap }}}\left(1+i f_{r}\right)^{N+1} \quad[\$ / \mathrm{kW}] \tag{6.2.4.1.2}
\end{equation*}
$$

where $M_{h r_{\text {RUCT }}}$ is the man-hour for $R M_{C T} ; C_{M h r_{\text {RCT }}}$ is the cost of man-hour for $R M_{C T} ; N_{m_{\text {RUCT }}}$ the number of machines/equipment for $R_{C T} ; D_{m_{\text {RUCT }}}$ time (days) of utilization for machines/equipment for $R M_{C T}$ and $C_{m d}^{{ }_{k u_{C T}}}{ }$ cost per day for $R M_{C T}$.
and,
where $A_{W T}$ is the area per wind turbine; $M_{h r_{\text {ssev }}}$ is the man-hour for $S \& R V ; C_{M h r_{\text {serv }}}$ is the cost of man-hour for $S \& R V ; N_{m_{\text {ss\&V }}}$ the number of machines/equipment for $S \& R V ; D_{m_{\text {satav }}}$ time (days) of utilization for machines/equipment for $S \& R V$ and $C_{m d} d_{\text {sekv }}$ cost per day for $S \& R V$.

Wind Farm Residual Value Model ($R V M_{W F}$) was formulated within the main considerations: (a) scrap value of wind turbine and (b) scrap value of steel tower. . We have considered for $R F M_{W F}$ the Wind Turbine Scrap Value Model ($W T S_{V M}$) and Tower Scrap Value Model ($T S_{V M}$). $R V M_{W F}$ could be formulated by Eqn 6.2.4.2:

$$
R V M_{W F}=N_{W T}\left(W T S_{V M}+T S_{V M}\right)
$$

[\$/kW]
Eqn (6.2.4.2)
where $W T S_{V M}$ was formulated taking into consideration the weight of a wind turbine ($W T_{\text {weight }}$) and the cost of steel $\left(C_{\text {steel }}\right) \therefore$ As we have thought about the wind farm lifetime, for $R C M_{W F}$ was considered one more year for total removal process for the wind farm in question. It was also adopted the inflation rate ($i f_{r}$) during this period. $W T S_{V M}$ can be written as Eqn 6.2.4.2.1:

$$
W T S_{V M}=\left[\frac{\left(W T_{\text {weight }} C_{\text {steel }}\right)}{W F_{\text {cap }}}\right]\left(1+i f_{r}\right)^{N+1}
$$

and $T S_{V M}$ was also formulated taking into consideration the mass ${ }^{113}$ of each tower ($T_{\text {mass }}$) and the cost of steel $\left(C_{\text {steel }}\right) \therefore$ As we have thought about the wind farm lifetime, for $R C M_{W F}$ was considered one more year for total removal process for the wind farm in question. It was also adopted the inflation rate ($i f_{r}$) during this period. $T S_{V M}$ can be written as Eqn 6.2.4.2.2:

$$
T S_{V M}=\left[\frac{\left(T_{\text {mass }} C_{\text {steel }}\right)}{W F_{\text {cap }}}\right]\left(1+i f_{r}\right)^{N+1}
$$

If the wind farm was built with different wind turbines and towers in relation to the sizes, weights (both wind turbines and towers) and technologies, it will be necessary consider individually \therefore We have to make the calculations for $W T S_{V M}$ and $T S_{V M}$ one-by-one and sum all for finding $R V M_{W F}$. Eqn 6.2.4.3 has expressed it:

$$
\begin{equation*}
R V M_{W F}=\sum\left(W T S_{V M_{a}}+\ldots+W T S_{V M_{n}}+T S_{V M_{a}}+\ldots+T S_{V M_{n}}\right) \quad[\$ / \mathrm{kW}] \tag{6.2.4.3}
\end{equation*}
$$

But the most common situation is the wind farm has been settled-up with a homogeneous technology, both for wind turbines and towers, so the Eqn 6.2.4.2 can easily find $R V M_{W F}$ for a specific wind farm.

[^74]
Renewable Energy Public Incentive Model (REPIM)

Globally, governments tend to appreciate the advantages of renewable energy production more than conventional energy production \therefore Therefore, the support for expansion of production capacity of renewable energy in many ways, which basically aim to reduce the disadvantages of most technologies for renewable energy production: the cost and the lack of controllability. The disadvantage of the cost is in most cases decreased through the socialization of the burden by some form of subsidy or incentive. An example is forcing electricity companies to buy energy from renewable sources at a price that is not based on the actual cost of this energy, but it is calculated in such a way that the renewable energy project become profitable for the investor (Oliveira, 2010). In Figure 6.17 are briefly the main policy instruments for the promotion of renewable energy.

Figure 6.17 Typology of energy policy instruments. Source: Enzensberger et al. (2002)

We has followed the classification of Enzensberger et al. (2002) for Renewable Energy Public Incentive Model (REPIM) when we have considered the market-based (economic) instruments conception (see Figure 6.17). We have taken a look into the current market status and trends, e.g. electricity market liberalized ${ }^{114}$ as result REPIM was orientated by supply and demand-push approach ${ }^{115}$ into the following sub-models: (1) Renewable Energy Investment Credit Mode ($R E I_{C M}$); (2) Renewable Energy Production Credit Mode (EEP $_{C M}$); (3) Other REPs Credit Mode (O REP $P_{C M}$) and (4) GHG Reduction Credit Model (GHG. $R_{C M}$). So, REPIM could be formulated as shown in Eqn 6.2.5:

[^75]\[

$$
\begin{equation*}
R E P I M=R E I_{C M}+R E P_{C M}+O R E P_{C M}+G H G . R_{C M} \quad[\$ / \mathrm{proj}] \tag{6.2.5}
\end{equation*}
$$

\]

Then, as we have said REPIM and sub-models as $R E I_{C M}$ were also orientated by supply-push approach for initial investments in order to reduce the huge amount of capital in the initial life of the project, and consequently, reduce de final cost of energy produced from the wind power plant. $R E I_{C M}$ has been impacted on investments ($L C C C M_{W F}$) and overhaul expenses (LRCM). Mathematically, Eqn 6.2.5.1 is shown this relation:

$$
\begin{equation*}
R E I_{C M}=\frac{\psi_{\text {total }}\left(L C C C M_{W F}+L R C M\right)}{n_{\Psi}}(1+i f r)^{n_{\mu}} \quad\left[\$ / \mathrm{kW}_{\mathrm{e}}\right] \tag{6.2.5.1}
\end{equation*}
$$

where $\left(\psi_{\text {totall }}\right)$ is the total investment tax credit given by government during the time of policy energy instrument (n_{ψ}) and also considering the inflation rate ($i f_{r}$) for the same time of instrument effect. It also must be calculated year by year, until be concluded the whole period of n_{y}.

For $R E P_{C M}$ were also orientated by demand-push approach for wind farm production in order to reduce the final $L C O E . R E P_{C M}$ have been impacted on $A E P_{\text {avail }} / H_{\text {prod }}$ sold to the distribution grids per wind farm electric installed capacity $\left(W F_{\text {cap }}\right) \therefore$ Eqn 6.2 .5 .2 has been shown this instrument:

$$
R E P_{C M}=\varepsilon\left(\frac{A E P_{\text {avail }}}{H_{\text {prod }}} W F_{\text {cap }}\right) \quad\left[\$ / \mathrm{kW}_{\mathrm{eh}}\right] \quad \text { Eqn (6.2.5.2) }
$$

where (ε) must be calculated considering initial value paid by government (ε_{0}), time of policy energy instrument (n_{ε}) and inflation rate (i_{r}) for the same time of instrument effect. So, the final value paid by government (ε) can be found by Eqn 6.2.5.2.1:

$$
\begin{equation*}
\varepsilon=\varepsilon_{0}(1+i f r)^{n_{\varepsilon}} \tag{e}
\end{equation*}
$$

Many types of energy policy instruments can be adopted by governments worldwide, but fundamentally these instruments are divided into investment focused and production based (Haas et
al., 2004) \therefore The Other REPs Credit Model $\left(\right.$ OREP $\left._{C M}\right)$ was developed considering a cover risk factor $\left(C R_{f}\right)^{116}$, time of policy energy instrument $\left(n_{\psi}\right)$ and discount given by the government $\left(\psi_{\text {total }}\right)$ for capital cost of the project $\left(W A C C_{p r o j}\right)$. Eqn 6.2 .5 .3 has shown $L C C C M_{W F_{\text {OREGM }_{\mathrm{CM}}}}$ calculation:

$$
\begin{equation*}
L C C C M_{W F_{\mathrm{OREPCM}}}=\left[\frac{\left(L C C C M_{W F} W A C C_{p r o j} \psi_{\text {total }}\right)\left(1-C R_{f}\right)}{(1+i f r)^{n_{\psi}}}\right]\left[\$ / \mathrm{kW}_{\mathrm{e}}\right] \tag{6.2.5.3}
\end{equation*}
$$

where $\left(C R_{f}\right)$ is the financing risk ${ }^{117}$ for a given wind power project, $\left(\psi_{\text {total }}\right)$ is the total investment tax credit given by government during the time of policy energy instrument (n_{ψ}) and also considering the inflation rate ($i f_{r}$) for the same time of instrument effect. It also can be calculated year by year, until be concluded the whole period of n_{ψ}.
$O R E P_{C M}$ was developed to show how much the government incentive for this energy instrument is, we also could find it by the relation among the initial $L C C C M_{W F}, L C C C M_{W F_{\text {OREPCM }}}$ and $A E P_{\text {avail }} / H_{\text {prod }}$, so the equation can be written as Eqn 6.2.5.3.1:

$$
\begin{equation*}
\text { OREP }_{C M}=\left[\left(\frac{L C C C M_{W F_{\text {oresp }_{C M}}}}{L C C C M_{W F}}\right)\left(\frac{A E P_{\text {vvail }}}{H_{\text {prod }}}\right)\right] \quad\left[\$ / \mathrm{kW}_{\mathrm{e}}\right] \tag{6.2.5.3.1}
\end{equation*}
$$

Finally, to complete REPIM was developed GHG. R $_{C M}$ or $G H G$ Reduction Credit Model for also associate the effect of GHG reduction in function of RET for producing green electricity. According to El-Kordy et al. (2002) external cost for electricity production are expressed by emissions from electric power plants which are generally evaluated based on the plant specifications, although, it could be hard to estimate a "typical" set of emissions for any resource type.

GHG. $R_{C M}$ was developed considering Life-Cycle Emission Reduction for $\mathrm{CO}_{2}\left(\mathrm{LCER}_{\mathrm{CO}_{2}}\right)$ which can be found by the difference of GreenHouse Gas Emission of CO_{2} from fossil fuel ($G H G_{E M_{f f} \mathrm{co}_{2}}$) and GreenHouse Gas Emission of CO_{2} from $\operatorname{WECS}\left(\mathrm{GHG}_{E M_{\text {wescos }_{2}}}\right)$.

[^76]We have also considered the product from the difference from these CO_{2} emissions ${ }^{118}$ and the sum of the whole lifetime of the wind farm production ($\sum A E P_{\text {avail }_{y_{1}+\ldots .+y_{n}}}$). Eqn 6.2.5.4 has shown how $L C E R_{C O_{2}}$ was written mathematically:

$$
L C E R_{C O_{2}}=\left(G H G_{E M_{f f} c_{2}}-G H G_{E M_{w_{\text {wes co co }}^{2}}}\right) \sum A E P_{\text {avail }_{y_{1}+\ldots, y_{y_{n}}}} \quad\left[\mathrm{tCO}_{2} / \mathrm{MW}_{\mathrm{e}} \mathrm{~h}\right] \quad \mathrm{Eqn}(6.2 .5 .4)
$$

so GHG. $R_{C M}$ was created considering a carbon credit (ε_{c}) for each $\mathrm{MW}_{\mathrm{e}} \mathrm{h}$ of $L C E R_{\mathrm{Co}_{2}}$ given to the producer within an annual basis.. This credit must be updated within the same formula as shown in Eqn 6.2.5.2.1. GHG. $R_{C M}$ was formulated as Eqn 6.2.5.4.1:

$$
\begin{equation*}
G H G . R_{C M}=\varepsilon_{c} L C E R_{C O_{2}} \quad\left[\$ / \mathrm{tCO}_{2}\right] \tag{6.2.5.4.1}
\end{equation*}
$$

It is important to highlight each of these energy policy instruments suggested by REPIM could be adopted more than one type for the same wind power project. In $L C O E_{w s o}$ we have considered four types of wind energy policy instruments $\left(R E I_{C M} ;\right.$ REP $_{C M} ;$ OREP $_{C M}$ and $\left.G H G . R_{C M}\right) \therefore$ Depend on specific legislation where wind farm is located or will be located, is crucial to understand what is acceptable, due to one of the fundamental condition is the public and local authorities to approve the wind farm operation and licenses. So, if we adopt more than one instrument for the same project, we could possible suggest a percentage ${ }^{119}\left(\xi_{n}\right)$ for each one, as shown in Eqn 6.2.5.5:

$$
\begin{equation*}
R E P I M=\xi_{1} R E I_{C M}+\xi_{2} R E P_{C M}+\xi_{3} O R E P_{C M}+\xi_{4} G H G . R_{C M}[\$ / \mathrm{proj}] \tag{6.2.5.5}
\end{equation*}
$$

[^77]
Wind Farm Life-Cycle Production Model (LCPM ${ }_{W F}$)

When we have proposed to develop a different approach to calculate and simulate the electricity production of a wind farm, first of all it was necessary understand how a wind farm works. In other words, how WECS works, so we have understood according to what was discussed in Chapter 4 that wind has presents power in itself, so WECS extracts its kinetic energy into mechanical and finally into electricity. Therefore, Wind Farm Life-Cycle Production Model ($L C P M_{W F}$) was based on Moran and Sherrington (2007) when were also considered the wind farm installed capacity which was called Wind Farm Capacity Model ($W F_{C M}$); wind turbines layout effect to be analyzed by Wind Turbines Layout Model ($W T_{L M}$); Power Curve Production Model ($P C_{P M}$) in function of the full load hours of Production $\left(F L H_{w f}\right)$ and hours of effective Production ($H_{p r o d}$) in a year and $P \& D^{120}$ Losses Model $\left(P \& D_{L M}\right)$ for determination of wind farm capacity factor $\left(C F_{w f}\right) . L C P M_{W F}$ could be mathematically written by Eqn 6.2.6:

$$
\begin{equation*}
L C P M_{W F}=f\left(W F_{C M} ; P C_{P M} ; W T_{L M} ; P \& D_{L M}\right) \quad[\mathrm{kWh} / \mathrm{yr}] \tag{6.2.6}
\end{equation*}
$$

The Wind Farm Capacity Model ($W F_{C M}$) was developed considering the electrical installed capacity of a wind farm $\left(W F_{\text {cap }}\right)$. We can find $W F_{\text {cap }}$ through the relation between the number of wind turbines ${ }^{121}\left(N_{W T}\right)$ and wind turbine rated capacity $\left(W T_{\text {rated }}\right) \therefore$ In other words, for a certain year a wind farm could be expressed its installed capacity as shown in Eqn 6.2.6.1:

$$
W F_{C M} \Rightarrow W F_{\text {cap }}=N_{W T} W T_{\text {rated }} \quad\left[\mathrm{kW}_{\mathrm{e}} / \mathrm{yr}\right] \quad \text { Eqn (6.2.6.1) }
$$

We have also considered the effect of layout for $L C P M_{W F}$ development as a sub-model the Turbines Layout Model ($W T_{L M}$) in a linear configuration as have already explained in Chapter 4, section 4.5.1. So we have determined $N_{W T}$ based on Mustakerov and Borissova (2010) when was taken into consideration the total number of turbines $N_{W T}$ as the result from a multiplication of rows $\left(N_{\text {row }}\right)$ and columns ($N_{\text {col }}$) turbines number ${ }^{122}$. Mathematically, $N_{W T}$ can be written as Eqn 6.2.6.1.1:

$$
\begin{equation*}
W T_{L M} \Rightarrow N_{W T}=N_{\text {row }} N_{\text {col }} \tag{6.2.6.1.1}
\end{equation*}
$$

[^78]As we could notice $N_{\text {row }}$ and $N_{\text {col }}$ must be calculated in function of the land area ${ }^{123}$ available, land lease cost (LLC) and depending on orography of specific project \therefore The predominant wind direction also has to be taken into consideration when positioning wind turbines. For $W T_{L M}$ we have already considered wind-oriented turbines. For Johnson (2001) $N_{\text {row }}$ can be found as Eqn 6.2.6.1.2:

$$
\begin{equation*}
N_{\text {row }}=\frac{L_{x_{\text {row }}}}{S D_{x_{\text {row }}}}+1 \tag{-}
\end{equation*}
$$

where $L_{x_{\text {row }}}$ is the area with length (for row) and $S D_{x_{\text {row }}}$ the separation distances between wind turbines. $S D_{x}$ can be calculated by the turbine rotor diameter \therefore Then, $S D_{x_{\text {row }}}$ can also be a result from the coefficients ($k_{\text {row }}$ and $k_{\text {col }}$) and rotor diameter (D). Eqn 6.2.6.1.2 has expressed this relation:

$$
\begin{equation*}
S D_{x}=k_{\text {row }} D \tag{-}
\end{equation*}
$$

therefore, Eqn 6.2.6.1.2 can be rewritten as:

$$
\begin{equation*}
N_{\text {row }}=\frac{L_{x_{\text {row }}}}{k_{\text {row }} D}+1 \tag{-}
\end{equation*}
$$

and then the same analogy can be taken into the number of wind turbines in a column with the $\left(S D_{x_{c o l}}=k_{c o l} D\right)$, as written in Eqn 6.2.6.1.4:

$$
\begin{equation*}
N_{c o l}=\frac{L_{x_{c o l}}}{S D_{x c o l}}+1 \tag{-}
\end{equation*}
$$

Another important aspect for wind farm production is the hours of production in a year ($H_{\text {prod }}$). The hours of production for a wind farm depend on several factors \therefore First of all, as Krokoszinski (2003) has introduced the concept of Layout Factor $(L F)$ as the difference between theoretical electrical energy $\left(E_{\text {theo }}(p a r k)\right.$) and available electrical energy ($E_{\text {avail }}$). $E_{\text {theo }}($ park $)$ is result from full load hours of production which is the same of theoretical production time. Full load hours of production for a wind farm $\left(F L H_{w f}\right)$ are the total hours available for wind farm generate electricity. In general, $F L H_{w f}$ can be found by:

$$
\begin{equation*}
F L H_{w f}=24_{\text {hours }} \times 365_{\text {days }} \Rightarrow 8760_{\text {hours } / \text { year }} \quad[\mathrm{h} / \mathrm{yr}] \tag{6.2.6.2}
\end{equation*}
$$

[^79]So we have considered the difference between $E_{\text {theo }}($ park $)$ and $E_{\text {avail }}$ as Wind Farm Production Efficiency $\left(W F_{P E}\right)$ which is affected by human, climate and technological factor. Then, human factor refers how operations and maintenance of wind farm are ($O \& M_{\text {manag }}$). $O \& M_{\text {manag }}$ symbolized the frequency for scheduled maintenance ($S C_{\text {о\& }}$) and unscheduled maintenance ($U S C_{\text {о\& }}$); within each repair duration (hours) and costs ($\$ / k W h$) associated. In other hand, the climate factor is associated to wind direction, intensity and speed; relative humidity, air pressure, site orography. So as we have considered the hours of effective production in a year ($H_{p r o d}$) for wind farm production, we could write it as Eqn 6.2.6.2.1:

$$
\begin{equation*}
H_{p r o d}=F L H_{W F}-\sum S C_{O \& M}+U S C_{O \& M} \quad[\mathrm{~h} / \mathrm{yr}] \tag{6.2.6.2.1}
\end{equation*}
$$

$S C_{\text {O\&M }}$ and $U S C_{O \& M}{ }^{124}$ were developed based on Mabel and Fernandez (2008) when were considered the inclusion of hours for wind turbine maintenance ($W T_{\text {main }}$), turbine breakdown $\left(W T_{b d}\right)$, grid maintenance ($G_{\text {main }}$) and grid breakdown $\left(G_{b d}\right)$ to determine the effective hours of production of a wind farm. For $L C P M_{W F}$ we have also taken into consideration the full (see Figure 6.18, blue line) and available load hours of production per month (see Figure 6.18, red line); different wind speed per period $\left(v_{w_{p}}\right)$, air density (ρ), which resulted into the Power Curve Production Model ($P C_{P M}$). It was necessary to understand how the production could be fit to the wind turbine power curve. We have taken into consideration the hours of production per period (month) for determining the best period for $O \& M_{\text {manag }}$ as:

* the frequency for scheduled maintenance ($S C_{\text {о\&м }}$) to be adopted in the wind farm (we have considered the period with less hours of production (february, april, june, september and november);
\# the wind speed for each period ($v_{w_{p}}$) was the main criteria for determining the period for $S C_{\text {о\&м }}$ activities. If the mouth mean speed is lower than the annual mean wind speed, the loss of production would be reduced, in a contrary situation, the availability of the wind farm could be decreased;
* if both situation occurs, we have possible optimized the power curve of the wind farm in relation to $O \& M$ activities and $F L H_{w f}$.

For WECS the local wind resources can determine the technical and economic viability for a power plant, although for any wind project, theoretically, we have the same time distribution for electricity production. If we have considered in a monthly basis, the wind resources could be represented by a graph as shown in Figure 6.18. The effect of $O \& M_{\text {manag }}$ has influenced directly on wind farm availability (see Figure 6.18, red line).

[^80]

Figure 6.18 $F L H_{w f}$ (blue line) and $H_{\text {prod }}$ (red line) distribution during a year with $O \& M_{\text {manag }}$ effect. Source: Own elaboration

For example, if we have considered an $O \& M_{\text {manag }}$ for $S C_{\text {O\&M }}$ and $U S C_{\text {о\&M }}$. For $S C_{\text {O\&M }}$ we have programmed 3 work days of downtime in february, june and november which resulted in 72 hours of downtime for the wind farm. And for $U S C_{\text {о\&м }}$. was considered a failure frequency of 1.5 per year, with 3 hours/wind turbine, which resulted into 112.5 hours and a total 184.5 hours of downtime per year. The availability has resulted into 97.9%, in other words, approximately 8 days/year of downtime. We must remember that the availability represents the hours able to be used for electricity production by WECS. As we could see the $O \& M_{\text {manag }}$ is an important factor for wind farm electricity production. Technological factors are related to machinery and equipment for electricity production by WECS, e.g. power curve of wind turbines, cut-in and cut-off speeds (see Figure 6.19).

Figure 6.19 Wind turbine VESTAS V90-2 MW power curve. Source: RETScreen® International Clean Energy Decision Support Centre (2009)

The production and distribution of electricity produced from WECS has influence due to the natural losses during the production and distribution of electricity. We have taken into consideration the same methodology adopted by RETScreen® International Clean Energy Decision Support Centre (2009) for losses categorization: array losses (λ_{a}), airfoil soiling and icing losses ($\lambda_{s \&_{i}}$), downtime losses (λ_{d}) and miscellaneous losses $\left(\lambda_{m}\right)^{125}$. We have also taken into consideration the $\eta_{\left.\text {wecs }_{\text {facaror }}\right)}$ as the basis for losses calculation. So, $P \& D$ Losses Model factor $\left(P \& D_{L M_{\text {facaro }}}\right)$ could be written as Eqn 6.2.6.3:

$$
P \& D_{L M_{\text {factor }}}=\eta_{\text {wees serf }}\left[\left(1-\lambda_{a}\right)\left(1-\lambda_{s \& i}\right)\left(1-\lambda_{d}\right)\left(1-\lambda_{m}\right)\right] \quad[-] \quad \operatorname{Eqn}(6.2 .6 .3)
$$

then, the relation between $A E P_{\text {gross }}$ and $P \& D_{L M_{\text {facoro }}}$ is $L C P M_{W F}$ was developed for analyzing the wind farm production during the lifetime of the wind power plant. As we have developed for the whole lifetime of the wind farm, it was needed to calculate the $A E P$ per year of operation. According to Albadi, El-Saadany, and Albadi (2009) capacity factor of a wind farm ($C F_{w f} f$, in general, is defined as the ratio of the average output power to the rated output power. As we can notice in Eqn 6.2.6.4:

$$
\begin{equation*}
C F_{w f}=\frac{A E P_{\text {avail }}}{W F_{\text {cap }} \times 8760} \Rightarrow \frac{A E P_{\text {avail }}}{A E P_{\text {rated }}} \tag{6.2.6.4}
\end{equation*}
$$

the Annual Energy Production Available (AEP $_{\text {avail }}$). Downtime losses are influenced directly by the $O \& M_{\text {manag }}$ program adopted by the wind farm manager. For $L C P M_{W F}$ was considered the $A E P_{\text {avail }}$ $\left(A E P_{\text {avail }}=W F_{\text {cap }}\left(1-\sum \lambda_{\text {a;ski;id;m }}\right) H_{\text {prod }}\right.$), so we have taken into account $H_{\text {prod }}$ for $C F_{w f}$, and possible rewrite the Eqn 6.2.6.4.1 as follows:

$$
\begin{equation*}
C F_{w f}=\frac{W F_{c a p} H_{\text {prod }}\left(1-\sum \lambda_{a ; s \& i ; d ; m}\right)}{W F_{c a p} \times 8760} \tag{6.2.6.4.1}
\end{equation*}
$$

then, if $W F_{\text {cap }}$ is the same and constant during wind farm lifetime, Eqn 6.2.6.4.1 could be expressed mathematically as shown in Eqn 6.2.6.4.2:

[^81]\[

$$
\begin{equation*}
C F_{w f}=W F_{\text {cap }} H_{p r o d}\left(1-\sum \lambda_{a ; s \& i ; d ; m}\right) \frac{1}{8760} \quad[-] \tag{6.2.6.4.2}
\end{equation*}
$$

\]

As we have shown in Eqn 6.2.6.4, the product of $W F_{c a p}$ and $F L H_{w f}$ is the maximum annual energy production $\left(A E P_{\text {rated }}\right)$. The relation between $A E P_{\text {avail }}$ and $A E P_{\text {rated }}$ can be understood as Wind Farm Production Efficiency $\left(W F_{P E}\right)$. We finally can obtain from Eqn 6.2.6.4, 6.2.6.4.1 and 6.2.6.4.2 an equivalent term related to $C F_{w f}$ which was named as Wind Farm Production Efficiency $\left(W F_{P E}\right)$, considering the Betz Limit's coefficient of performance ($C_{P B e r t}$). This generator indicator as closer to Betz Limit ($\frac{16}{27}$ or 59.3%), better wind farm production efficiency the power plant is. $W F_{P E}$ was formulated as shown in Eqn 6.2.6.5:

$$
\begin{equation*}
W F_{P E}=\frac{A E P_{\text {avail }}}{A E P_{\text {rated }}} \tag{-}
\end{equation*}
$$

$L C P M_{W F}$ can be rewritten from Eqn 6.2.6 into two parts when we have taken into consideration $A E P_{\text {rated }}$ and $W F_{P E}$.

$$
\begin{equation*}
L C P M_{W F}=A E P_{\text {rated }} W F_{P E} \quad[\mathrm{~kW} \mathrm{eh} / \mathrm{yr}] \tag{6.2.6.6}
\end{equation*}
$$

In order to make $L C P M_{W F}$ more realistic we have decided to adopt the principles of aerodynamics applied to WECS from Eqn 4.7 and Figure 4.12 to calculate $A E P_{\text {avail }}$ and consequently $W F_{P E}$. We have considered $A E P_{\text {avail }}$ equivalent to Power Delivered (P_{D}). So, if we have added the effective hours of production for each year $\left(H_{\text {prod }}\right)$ of wind farm lifetime, then, we found the Eqn 6.2.6.6.1:

$$
\begin{equation*}
A E P_{\text {avail }} \Leftrightarrow C_{P_{\text {Betz }}} W F_{\text {cap }} H_{\text {prod }}=\left[\frac{16}{27} \frac{1}{2} 10^{-3} \rho v_{w}^{3} A N_{W T} \eta_{\text {wecs }}\right] H_{\text {prod }_{y_{1}+\ldots+v_{n}}} \quad\left[\mathrm{~kW}_{\mathrm{e}} \mathrm{~h} / \mathrm{yr}\right] \tag{6.2.6.6.1}
\end{equation*}
$$

As we could noticed $A E P_{\text {avail }}$ for each year of the wind farm lifetime is variable due to annual mean wind speed (v_{w}), air density (ρ), wind power plant efficiency ($\eta_{\text {wecs }}$) and hours of effective production ($H_{\text {prod }}$). The overall efficiency ${ }^{126}$ for the power plant (equivalent to $W F_{P E}$) can also be understood as a result from electrical transmission efficiency $\left(\eta_{e}\right)$ and mechanical transmission efficiency (η_{m}).

$$
\eta_{\text {wecs }}=\eta_{e}+\eta_{m}
$$

Eqn (6.2.6.6.1.1)

[^82]
6.4.4.3 NUMERICAL SIMULATION AND VALIDATION PROCESS

A simulation is a technique applied to systematic studies in order to understand complex system ${ }^{127}$ and its interactions. The simulation process should follow some standard steps. For numerical simulation process we have found some common steps in the specialized literature (Andradóttir, 2007; Axelrod, 2003; Azadivar, 1999; Banks, 1999; Billinton, Hua, \& Ghajar, 1996; Carson \& Maria, 1997; Chang \& Yu, 2009; Davis \& Bingham, 2007; Delarue, Bouscayrol, Tounzi, Guillaud, \& Lancigu, 2003; Fu, 1994; Fu, 2002; Hobbs, 2008; Law \& Kelton, 2007; Olafsson \& Jumi, 2002; Roberts, Andersen, Deal, Garet, \& Shaffer, 1983; Shannon, 1992; Wang, Liu, \& Zeng, 2009), for general proposals and applied to power systems, case of WECS. These steps are shown in Figure 6.20 .

Figure 6.20 Planning phase for simulations studies. Source: adapted from Shannon (1992) and Banks (1999)

[^83]For some researchers in simulation studies we must include more phases or steps, as the case of "INPUT DATA PREPARATION" (if the model to be simulated required several data) and "FINAL EXPERIMENTAL DESIGN". Meanwhile, we understand a simulation process possible never is totally concluded in function of its nature and the process could be in evolutive stages of improving. For Shannon (1992) the process for simulation studies could be classified into planning and operational phase, and the operational one must include the following steps (see Figure 6.21):

```
EXPERIMENTATION/OPERATIONALIZATION
Execution of the simulation to produce the desired data and to perform
sensitivity analysis.
ANALYSIS \& INTERPRETATION
Drawing inferences from the data produced from the simulation. Interpretation of inter-relations among variables.
```

OPERATIONAL PHASE

IMPLEMENTATION \& DOCUMENTATION

Publishing the results, recording the findings as well as documenting
the model and its use.
Figure 6.21 Operational phase for simulations studies. Source: adapted from Shannon (1992) and Banks (1999)

The numerical simulation was run considering the variables and the impacts on the values of $L C O E_{\text {wso }}$ found. Remember that there is no standard $L C O E$ value for WECS, both onshore and offshore applications. Table 6.5 has summarized the variables and their variations expected in the numerical simulation done.

Table 6.5 Main variables within expected values for $L C O E_{\text {wso }}$ algorithm simulation

Variables	Variations
Annual mean wind speed calculated $\left(v_{w c}\right)$	$7.4 \mathrm{~m} / \mathrm{s} ; 9.1 \mathrm{~m} / \mathrm{s} ; 12.5 \mathrm{~m} / \mathrm{s}$
Operations and Maintenance management $\left(O \& M_{\text {manag }}\right)$	$O \& M_{\text {manag }(S T D)} ; O \& M_{\text {manag }(A) ;} O \& M_{\text {manag }_{g}(B)}$
Wind turbines layout $\left(L_{w t}\right)$	$5 D / 4 D ; 5 D / 7 D ; 5 D / 10 D ; 6 D / 12 D$
Energy policy instruments $\left(E_{p i}\right)$	REPIM (all instruments)
Source: Own elaboration	

As we could noticed the model proposed by this Ph.D. research work ($L C O E_{\text {wso }}$) were needed many independent variables for running the algorithm developed. We have divided these variables into two large groups. The first group we reserve for economic variables and the second group is driven to engineering variables of the model (see Table 6.6).

Table 6.6 Independent variables of equations for $L C O E_{\text {wso }}$ algorithm

Equations	Variables		
	Economic	Engineering	
Eqn 6.2.1.1; Eqn 6.2.1.1.1	$M C_{A} ; R C_{W T} ; C_{k W} ;$	$N_{W T}$	George and Schweizer (2008);
	$I P T$		

Eqn 6.2.1.2; Eqn 6.2.1.3 $\quad C_{\text {steel }} ; C A B_{\text {cost }} \quad A ; H_{h} ; L_{g} \quad$ Nandigam and Dhali (2008);
Dicorato, Forte, Pisani, and Trovato (2011); Jamieson (2011); RETScreen® International Clean Energy Decision Support Centre (2009); Bolinger (2012); Bolinger and Wiser (2012)
Eqn 6.2.1.4; Eqn 6.2.1.5 $\quad E F_{c} ; \varsigma ; S B_{c} \quad T L_{r} ; L_{t}$;

Eqn 6.2.1.6; Eqn 6.2.1.7 $\quad B l d_{\text {cost }} ; W T_{\text {inst }} ; F S ; \quad B l d_{\text {area }}$
$D T ; E G$

Eqn 6.2.1.9; Eqn $\quad i f_{r} ; Y_{R C} \quad N$
6.2.2.1.1; Eqn 6.2.2.1.2

Eqn 6.2.3.1; Eqn 6.2.3.2; $\quad M L C$; $T L C$;
Eqn 6.2.4.1; Eqn 6.2.4.1.1
$R_{\text {taxes }} ; C_{M h r_{R M_{W T}}}$;
$C_{m d_{{ }_{M M_{W T}}}}$
$M_{h r_{R M_{W T}}} ; N_{m_{R M_{W T}}} ; \quad$ Nilsson and Bertling (2007);
DeCarolis and Keith (2006);
Hrayshat (2009); Alam, Rehman, Meyer, and Al-Hadhrami (2011)
Alam et al. (2011); Rehman, Ahmad, and Al-Hadhrami (2011); Himria, Boudghene, and Draouic (2009); Oliveira and Fernandes (2012b); Ozerdem, Ozer, and Tosun (2006)
RETScreen® International Clean Energy Decision Support Centre (2009); Nilsson and Bertling (2007); Saidur, Islam, Rahim, and Solangi (2010)
$D_{m_{R U_{W T}}}$
Rademakers, Braam, and Verbruggen (2003); MartinTretton, Reha, Drunsic, and Keim (2012); Bolinger (2012); Bolinger and Wiser (2012)
Eqn 6.2.4.1.2; Eqn 6.2.4.1.3 $C_{M h r_{R M_{C T}}} ; \quad \quad M_{h r_{R V_{C T}}} ; N_{m_{R U} \text { 位 }} ; \quad$ Zhang, Chowdhury, Messac, and $C_{m d_{R U}{ }_{C T}} ; \quad D_{m_{R M_{C T}}} ; A_{W T} ; \quad$ et al. (2012); Rehman et al.
$C_{M h r_{S X R V}} ; \quad M_{h r_{S A R V}} ; N_{m_{\text {S\&RV }}}$;
$C_{m d_{\text {seRV }}}$
$D_{m_{\text {SeRV }}}$
Eqn 6.2.4.2.1;
Eqn 6.2.4.2.2; Eqn 6.2.5.1;
$\psi_{\text {total }} ; n_{\Psi} ; \varepsilon ; n_{\varepsilon} \quad T_{\text {mass }}$
Eqn 6.2.5.2; Eqn 6.2.5.2.1 (2011)

Eqn 6.2.5.3; Eqn
6.2.5.4.1; Eqn 6.2.5.5
$C R_{f} ; \varepsilon_{c} ; \xi_{n}$
Eqn 6.2.6.1.2; Eqn
6.2.6.1.4

Eqn 6.2.6.1; Eqn 6.2.6.3;

$\lambda_{a} ; \lambda_{s \& i} ; \lambda_{d} ; \lambda_{m}$	RETScreen® International Clean
$\rho ; v_{w} ; A ; \eta_{\text {wecs }(\text { ref })}$	Energy Decision Support Centre (2009); IEA (2010)

Source: Own construction

For Kleindorfer et al. (1998) the fundamental difficulty in warranting simulation models and scientific methodologies has to do with the problem of induction. Since a researcher has direct access only to his or her own peculiar and limited set of experiences and knowledge, how can be justified the generalizations beyond the particular and personal empirical domain? The same situation arises in simulations researches. How can we infer from our observations (experience) of a system that the model we have idealized captures its essential structure and parameters?

As we could see, the validation process could be a hard way to find it and be adequate to the model itself. First of all, the system to be simulated must be modeled, so, a conceptual model has to be formulated and applied by a computerized model. As shown in Figure 6.22 the real and simulation worlds are linked by system theories through the hypothesizing and modeling process. Create hypotheses about what is studied is the same as create conceptions about relation among things (parts) of a system functioning phenomena (Sargent, 2009). For WECS, as a system, was already discussed in Chapter 4, is a chain of energy conversion that results in a final product, electricity. So the conceptual model was developed considering WECS mechanism and laws.

Figure 6.22 Relationship between real and simulation worlds through the verification and validation process. Source: Sargent (2009)

The experimenting and specifying process were done by adding the conceptual model (simulation model), which includes programming the conceptual model whose specifications are contained in the simulation model specification. The results obtained are compared within the data of the real world, taking into consideration "mutatis mutandis" condition in the comparison process done in the validation process.

For this Ph.D. research work we have chosen as validation technique the "Comparison to Other Models" and the other model to be compared with was LCOE/NREL. We also have considered the following possible equivalence for each part of the algorithm, as shown in Tables 6.7, 6.8, 6.9, 6.10 and 6.11.

Table 6.7 Numerical validation and reference parameters for $L C O E_{W s o}$ and $L C C C M_{W F}$

Terms	Equivalent to	Values range	Sources/Notes
$L C O E_{\text {wso }}$	LCOE/NREL	$\begin{aligned} & \$ 50 / \mathrm{MWh}^{(\mathrm{a})} \text { to } \$ 150 / \mathrm{MWh}^{(\mathrm{b})} \\ & \$ 71 / \mathrm{MWh} \text { (mean) } \end{aligned}$	Lantz, Wiser, and Hand (2012); ${ }^{\text {(a) }}$ Wind class 5; ${ }^{(b)}$ Wind class 2; IEA (2005, 2010)
$L^{\text {LCCCM }}{ }_{W F}$	ICC	$869 € / \mathrm{kW}$ to $1,559 € / \mathrm{kW}$	Milborrow (2006); IEA (2007); Ertürk (2012); See Table 5.3
$W T_{C M}$		\$780,000 to \$ 1,326,600 ${ }^{\text {(c) }}$ 700 to 1,600 cost/kW	Rehman et al. (2011); ${ }^{(\mathrm{c})}$ Wind turbine cost represents 73.7% of wind turbine overall cost (Blanco, 2009);
$T_{C M}$		\$ 205,000 to \$ 473,400 ${ }^{\text {(d) }}$	Adaramola, Paul, and Oyedepo (2011) Keith (2004); Rehman et al. (2011); ${ }^{\text {(d) }}$ Tower cost represents 26.3% of wind turbine overall cost (Blanco, 2009)
$L W T G_{C M}$		3 to 10% of the total costs of the complete wind farm $\$ 80,000 / \mathrm{km}$ to $\$ 133,000 / \mathrm{km}$	European Commission (2001)
$C P_{C M}$	CAB ${ }_{\text {cost }}$	$\$ 608 / \mathrm{kW}^{(\mathrm{c})}$	Rehman et al. (2011); ${ }^{\text {(c) }}$ This approximation was done excluding underground cable (4.5 km) and overhead line (5 km)
	$E F_{c}$	\$ 400/kW to \$ 500/kW	Rehman et al. (2011); IEA (2005, 2010)
$T S_{C M}$			
	$T L_{c}$	\$ 0.04 to \$ 0.07/kWh	Delucchi and Jacobson (2011)
	$S b_{c}$	\$ 113/kW to \$ $200 / \mathrm{kW}$	Keith (2004); IEA $(2005,2010)$
$S I_{C M}$	Bld $d_{\text {cost }}$	\$ 500/m ${ }^{2}$	Rehman et al. (2011)
	$B l d_{\text {area }}$	300 to $700 \mathrm{~m}^{2}$	
$P O_{C M}$			
	FS	$15 € / \mathrm{kW}$ to \$ 97.60/kW	Himria et al. (2009); Oliveira and
	$D T$	\$ 87.22/kW to \$ $385.25 / \mathrm{kW}$ $\$ 305.25 / \mathrm{kW}$	Fernandes (2012b); Ozerdem et al. (2006)
$F_{C M}$	$F C R$	calculated estimated	Depending on capital structure and project finance conditions
	$w_{c c}$		
${ }^{\text {CCC }}{ }_{\text {CM }}$	Miscellaneous	3 to 5\% of ICC	Harper, Karcher, and Bolinger (2007) figure based on industry review
	κ	estimated	The estimation was done considering the final range from 3 to 5% of ICC

[^84]Table 6.8 Numerical validation and reference parameters for $L R C M, O \& M_{W F C M}$ and $R C M_{W F}$

[^85][^86]Table 6.9 Numerical validation and reference parameters for $R C M_{W F}$ (cont)

Terms	Equivalent to	Values range	Sources/Notes
$R M_{C T}$			
	$M_{h r^{R U} C_{C T}}$	100 to 150 man-hour	Doyle (2008); LVI Environmental Services (2009); Zhang et al. (2012a); Martin-Tretton et al. (2012); Rehman et al. (2011)
	$C_{M h r_{\text {RU }}{ }_{\text {CT }}}$	\$ 85/h to \$ 90/h	
	$N_{m_{\text {RM }}}$	3 Equipment	
	$D_{m^{R M_{C T}}}$	2 to 3 days	
	$C_{m d}{ }_{\text {RU }}^{C T}$	\$ 2,500/day	
$S \& R V$			
	$A_{W T}$	43 to $60 \mathrm{~m}^{2} / \mathrm{wt}$	Doyle (2008); LVI Environmental Services (2009); Zhang et al. (2012a); Martin-Tretton et al. (2012); Rehman et al. (2011)
	$M_{h r_{\text {S\&RV }}}$	3 to 5 man-hour	
	$C_{M h r_{\text {SRRV }}}$	\$ 85/h to \$ 90/h	
	$N_{m_{\text {serv }}}$	3 Equipment	
	$D_{m_{\text {S<RV }}}$	2 days	
	$C_{m d}^{\text {SeRV }}$	\$ 3,500/day	
$R V M_{W F}$	$W T_{\text {weight }}$	200 to $273 \mathrm{t}^{(\mathrm{a})}$	Doyle (2008); LVI Environmental Services (2009); ${ }^{(a)}$ We considered the proportional relation $(\mathrm{kg} / \mathrm{kW})$ as used by Bolinger (2012); Bolinger and Wiser (2012) for 2 MW wind turbine.
	$C_{\text {steel }}$	\$190 to \$ 220/t	LVI Environmental Services (2009); Doyle (2008)
$T S_{V M}$	$T_{\text {mass }}$	138 to 143 t	LVI Environmental Services (2009); Martinez et al. (2009a, 2009b); Three sections

Source: Own construction

We have adopted general values for simulation and validation procedures. We have in mind that real values were obtained from specialized literature. A different methodology proposed for LCOE/NREL calculation only make sense for comparison reasons, if credible sources of data have be used for input and parameters for this different methodology ($L C O E_{\text {wso }}$). All data related to monetary values in the model were considered the following aspects:

1. The effect of time on money, "the inflation", that is why all the values which mean "money" for the $L C O E_{\text {wso }}$ were updated considering the inflation of the period until 2012 year.
2. As we have different currencies (US\$, CAD \$ and Euro), a standardization of currencies was applied through the exchange rates taking into consideration the published year and converted to year 2010. The currencies standardization was done for monetary values considered and shown in Chapter 7 and 8.

Table 6.10 Numerical validation and reference parameters for REPIM

Terms	Equivalent to	Values range	Sources/Notes
REPIM			
REI	ITC		
	$\psi_{\text {total }}$	$30 \%{ }^{(a)}$ of initial capital cost;	${ }^{(a)}$ According to Bolinger (2009) and Kung (2012)
	n_{Y}	6 years (5\%/year)	
$R E P_{C M}$	PTC		
	ε_{0}	$\begin{aligned} & 88.20 € / \mathrm{MWh}^{(\mathrm{b})} ; \\ & \$ 75.00 / \mathrm{MWh}^{(\mathrm{c})} ; \\ & \text { CAD } \$ 10 / \mathrm{MWh}^{(\mathrm{d})} \end{aligned}$	${ }^{(b)}$ For Portugal (DRE, 2012); ${ }^{(c)}$ For Brazil (Azuela \& Barroso, 2012); ${ }^{\text {(d }}$ For Canada (Saidur et al., 2010; Valentine, 2010)
	${ }_{\varepsilon}$	$\begin{aligned} & 10-15 \text { years }^{(\mathrm{b})} ; 15-20 \text { years }^{(\mathrm{c})} ; \\ & 10-15 \text { years }^{(\mathrm{d})} \end{aligned}$	
OREP ${ }_{C M}$			
	$C R_{f}$	20 to 80%	BNDES (2012)
GHG. $R_{C M}$	$G H G_{E F_{f f} o_{2}}$	16 to $410 \mathrm{~g} / \mathrm{kWh} ; 689$ to 890 $\mathrm{g} / \mathrm{kWh} ; 460$ to $1234 \mathrm{~g} / \mathrm{kWh}^{(\mathrm{e})}$	${ }^{(e)}$ Hydraulic, fuel oil and natural gas for Şahin (2004);
	$G H G_{E F_{\text {wees } c_{2}}}$	$\begin{aligned} & 11 \text { to } 75 \mathrm{~g} / \mathrm{kWh}^{2} ; 48 \mathrm{~g} / \mathrm{kWh}^{(\mathrm{f}) ;} \\ & 12 \text { to } 83 \mathrm{~g} / \mathrm{kWh}^{\mathrm{g})} \end{aligned}$	${ }^{(f)}$ Interpolation considering the lifetime effect (25 years) as Hondo (2005) has discussed; ${ }^{(g)}$ Dolan and Heath (2012)
	\mathcal{E}_{c}	$\begin{aligned} & 35 € / \mathrm{tCO}_{2}{ }^{(\mathrm{h})} ; \$ 13.00 / \mathrm{tCO}_{2}{ }^{(\mathrm{i})} ; \\ & \$ 30.00 / \mathrm{CO}_{2}{ }^{(\mathrm{j})} \end{aligned}$	${ }^{(h)}$ For Portugal (Valles, Reneses, \& Campos, 2012); ${ }^{\text {(i) }}$ For Brazil (Pereira, Reis, de Araujo, \& Gongalves, 2006); ${ }^{(j)}$ For Canada (Monahan \& van Kooten, 2010)
	ξ_{n}	0 to 100\% (if applicable)	The distribution depends on specific legislation, in case of the same wind project receives more than one incentive or subsidies by government.

Source: Own construction

The REPIM was developed to represent the energy policy effect on wind power plant cost, but as Barradale (2010) has discussed about some other policy instruments used to encourage renewable energy investment include:

* Pricing or tariff mechanisms: Guaranteed prices for renewable energy. Favorable tariff mechanisms have been used to promote wind energy development in Germany and Denmark.
* Production cash subsidies: These can be provided at the national, state, and local levels.
* Depreciation rules: Accelerated depreciation for capacity investment can reduce a company's tax expense during early years, providing a time-value-of-money benefit.
* Renewable portfolio standards (RPS): These require electricity suppliers to meet a certain percentage of their load from renewable energy sources.

Table 6.11 Numerical validation and reference parameters for $L C P M_{W F}$

Terms	Equivalent to	Values range	Sources/Notes
$L^{\text {LCPM }}{ }_{\text {WF }}$	$A E P_{\text {avail }}$	kW $\mathrm{e}^{\mathrm{h} / \mathrm{yr}}$	
$W F_{C M}$			
	$W T_{\text {rated }}$	2,000 kW	RETScreen® International Clean
			Energy Decision Support Centre (2009)
$W T_{L M}$	Wind farm geometry	$\begin{aligned} & 5 D / 4 D ; 5 D / 7 D ; 5 D / 10 D \\ & 6 D / 12 D \end{aligned}$	See Table 6.5
	$L_{x_{\text {row }}}$	1800 to 4680 m	Nandigam and Dhali (2008); Emami and Noghreh (2010)
	$L_{x_{\text {col }}}$	2430 to 2790 m	
	$S D_{x_{\text {row }}}$	calculated	Wind farm geometry impacts direct on
	$S D_{x_{\text {col }}}$	calculated	
	$k_{\text {row }}$ and $k_{\text {col }}$	estimated	
	D	90 m	RETScreen ${ }^{\circledR}$ International Clean Energy Decision Support Centre (2009)
$P C_{P M}$	Cut-in	$4 \mathrm{~m} / \mathrm{s}$	Vestas Wind Systems A/S (2013)
	Cut-out	$25 \mathrm{~m} / \mathrm{s}$	
	ρ	calculated	It was calculated for Brazil, Canada and Portugal according to Eqn 4.2 within data shown in Figures 6.11, 6.12 and 6.13.
	v_{w}	$5.3 \mathrm{~m} / \mathrm{s}$ (Brazil); $9.0 \mathrm{~m} / \mathrm{s}$	RETScreen® International Clean
		(Canada) and $6.6 \mathrm{~m} / \mathrm{s}$	Energy Decision Support Centre
			(2009); See Table 6.4 and Figures 6.11, 6.12 and 6.13
	A	6,720.1 $\mathrm{m}^{2} /$ turbine	RETScreen® International Clean
			Energy Decision Support Centre (2009); See Figure 6.6
	$S C_{O \& M}$		$O \& M_{\text {manag }(S T D)} ; O \& M_{\text {manag }(A)} ; O \& M_{\text {manag }(B)}$
	Days/month	$5 d ; 2 d ; 3 d$	Ding and Tian (2012)
	Months	Feb; Jun; Nov	See Figure 6.18
	USC O\&M $^{\text {m }}$		
	Freq. failure	1.5/yr; 1.0/yr; 1.8/yr	Rademakers et al. (2003)
	Duration	3 h repair; 4 h repair;	
		2 h /repair	
	$N_{W T}$	calculated	See Eqn 6.2.6.1.1
	$H_{\text {prod }}$	calculated	See Eqn 6.2.6.2.1
$P \& D_{L M}$	λ_{a}	0 to 20% of $A E P_{\text {gross }}$	RETScreen® International Clean
	$\lambda_{s \& i}$	1 to 10% of $A E P_{\text {gross }}$	Energy Decision Support Centre
	λ_{d}	2 to 10% of $A E P_{\text {gross }}$	(2009)
	λ_{m}	2 to 6% of $A E P_{\text {gross }}$	
	$\eta_{\text {wees (ref) }}$	25\%	Hansen, Bower, and Studies (2003)
$C F_{w f}{ }^{129}$		21 to 41\% (onshore)	IEA (2010)

Source: Own construction

All the variables from Tables 6.5 and 6.6 and data from Tables 6.7 to 6.11 were used for parameterization of the proposed $\operatorname{LCOE}_{w s o}$ through the simulations procedures shown and explained in Chapters 7 and 8.

[^87]
6.5 SUMMARY AND CONCLUSIONS

This chapter started by briefly presenting some considerations on epistemological and methodological research issues in general, and focused on operational research and optimization concerning. The rationale of the study and the research framework was also discussed, followed by the outline of the research design, focusing on the main steps related to methodological procedures (section 6.4.2), theoretical framework and hypotheses development (section 6.4.3), research objectives (6.4.3.1), research approach (section 6.4.3.2).

The research design was build considered the LCOE/NREL methodology and the variables were grouped into four categories: (1) Wind speed (v_{w}); (2) Wind turbines layouts ($L_{w t}$); (3) Operations and Maintenance management ($O \& M_{\text {manag }}$) and (4) Energy policy instruments ($E_{p i}$). The reason for grouping these variables into these categories was based on research hypotheses presented at Table 6.3. The variables relationship and research boundary (see Figure 6.14) were explained in section 6.4.4.1 which driven the simulation procedures done and shown in Chapter 7.

During this Ph.D. research work a conceptual model was developed based on conceptual and operational definitions explained at Table 6.2. We defined the Economic Optimization, a Simulation Model, LCOE, AEP and COE. For this research work we considered as "model" the representation of a system or process of the real world into a theoretical manner (Carson \& Maria, 1997). LCOE analyses, therefore, provide important insights into the main cost factors of alternative technologies for producing electricity, in our case, WECS. Since various cost components can vary considerably from place to place and from wind project to wind project, sensitivity analysis was adopted as the key in determining the impacts of changes in costs on the costs of producing electricity (Angevine, Murillo, \& Pencheva, 2012).

For the mathematical model structuring we started by building a Block Diagram of the algorithm proposed. In Figure 6.16 is shown the six big groups of equations used for Economic Optimization Algorithm Proposed (EOAP), which is equivalent to $L C O E_{\text {wso }}$. As we could notice, as wind power technology is capital-intensive, most of equations of this model figure that. So the first one is the Wind Farm Life-Cycle Capital Cost Model $\left(L C C C M_{W F}\right)$ with the sub-models as Wind Turbines Cost Model ($W T_{C M}$), Towers Cost Model ($T_{C M}$), Local Wind Turbines Grid Cost Model (LWTG ${ }_{C M}$), Collecting Point Cost Model ($C P_{C M}$), Transmission System Cost Model ($T S_{C M}$), Supporting Infrastructure Cost Model (SI $I_{C M}$), Pre-operational Cost Model ($P O_{C M}$), Financing Cost Model ($F_{C M}$) and Capital Costs Contingencies Cost Model (CCC $_{\text {CM }}$).

For Tegen et al. (2012) $O \& M$ variables must be focused on understanding current and historical operation and maintenance ($O \& M$) costs, including major component replacement costs (LRCM). A better understanding and more precisely analysis $\mathrm{O} \& \mathrm{M}$ costs trends and behavior go through the following aspects:

* Analysis to estimate the impact of anticipated improvements to $O \& M$ for both land-based and offshore wind projects on LCOE. Simulation models can be improved and optimization procedures must be applied.
* Development of models to better represent non-turbine driven project costs, e.g., foundations, electrical cabling, and installation, for a range of turbine and project sizes for both land-based and offshore wind technology.
* Analysis to quantify the impact of potential technology advances and obsolescence on wind power system reflect into LCOE for land-based and/or offshore wind technology pathways.

The model ($L C O E_{w s o}$) also took into consideration the LRCM or Levelized Replacement Cost Model, related to a cost item treated as "saving account" for the wind power project. It was designed two sub-models: the Annual Replacement Cost Model ($A R_{C M}$) (see Eqn 6.2.2.1) and Technological Obsolescence Cost Model ($T_{C M}$) (see Eqn 6.2.2.2). This model was developed in order to guarantee at a certain period (5,10 and 15 years) funds enough to make the necessary review in the producing power system.

The operation of a wind farm also needs funds to run the machinery and other facilities, so, we have included a model related to $O \& M$ named Wind Farm $O \& M$ Cost Model ($O \& M_{W F C M}$). $O \& M_{W F C M}$ was designed into two part, one is fixed $\left(O \& M_{\text {fixed }}^{c M}\right.$) and the other variable $\left(O \& M_{\text {variable }_{C M}}\right) . O \& M_{\text {fixed }_{c M}}$ considered a percentage of initial capital cost $\left(L C C C M_{W F}\right)$ and the Land Lease Cost (LLC) within the inflation effect for the lifetime of the power plant (see Eqn 6.2.3.1). The variable part of O\&M ($O \& M_{\text {variable }_{C M}}$) was developed based on Zhang et al. (2010) and we took into consideration the number of wind turbines, annual energy rated production per turbine, labor cost and revenues taxes (see Eqn 6.2.3.2).

As $L C O E_{\text {wso }}$ was designed for lifetime of the wind power project, we thought about the removal phase of the project (project shutdown, removal or repowering) as shown in Figure 4.13 and Figure 5.1. The Wind Farm Removal Cost Model $\left(R C M_{W F}\right)$ and sub-models Wind Farm Decommissioning Cost Model ($D C M_{W F}$) Model and Wind Farm Residual Value Model ($R V M_{W F}$) were developed in order to cover the main costs for decommissioning process and the residual value of a wind farm at the end of its lifetime (see Eqn 6.2.4.1; 6.2.4.1.1; 6.2.4.1.2; 6.2.4.1.3; 6.2.4.2; 6.2.4.2.1; 6.2.4.2.2; 6.2.4.2.3).

According to GWEC (2012) the wind power worldwide has increased exponentially as shown in Figures 3.12 and 6.1, this fact can be explained by the great attention the governments, enterprises and consumers in general put on RETs, case of wind energy. The hand of government in the renewable energy projects could be seen through the incentives given to the investors in this kind of project. That is why we have developed the REPIM for $L C O E_{\text {wso }}$ for introduce the public incentives forms in order to reduce the cost of this technology. The Renewable Energy Public Incentive Model (REPIM) was created within the following sub-models: (1) Renewable Energy Investment Credit Mode (REI $_{C M}$); (2) Renewable Energy Production Credit Mode ($R E P_{C M}$); (3) Other REPs Credit Mode $\left(\right.$ OREP $\left._{C M}\right)$ and (4) GHG Reduction Credit Model (GHG. $R_{C M}$).

Each REPIM sub-model was explained and respective equation was developed as shown in Eqn 6.2.5.1, 6.2.5.2, 6.2.5.3, 6.2.5.5 and 6.2.5.5. The Eqn 6.2.5.5 could be used for the balance of the
incentive given to the same wind power project. The public inventive must consider that costs differ by geographic region to another. The incentive could be tailored to reflect differing costs to encourage locating wind farms throughout the region, according to the wind resources available, both onshore and offshore, so that wind energy is not just be concentrated in a few windy areas.

According to the research question and LCOE/NREL methodology used as the basis for the methodology proposed by this Ph.D. research work, the power production of the wind farm, in better words, Annual Energy Production (AEP) should be considered in our $L C O E_{\text {wso }}$ developed and validated. We also called Wind Farm Life-Cycle Production Model ($L C P M_{W F}$). This model was developed with four sub-models: (1) Wind Farm Capacity Model (WF ${ }_{C M}$); (2) Wind Turbines Layout Model ($W T_{L M}$); (3) Power Curve Production Model ($P_{P M}$) and (4) $P \& D$ Losses Model $\left(P \& D_{L M}\right)$, as shown in Eqn 6.2.6.

During the elaboration of $L C O E_{\text {wso }}$ methodology we notice the necessity to verify if the model and sub-models would be a real response to the research question and objectives designed for this research work, so we have to make the parameterization ${ }^{130}$ of the data for the inputs to feed the $L C O E_{\text {wso }}$ calculations. As shown in Figure 6.22 we could compare the real world to the simulation world for validation if a conceptual model, in fact, represents a real system. In the case of this Ph.D. research work, could be able to calculate the nearest values for the cost of energy produced from $50 \mathrm{MW}_{\mathrm{e}}$ onshore wind farm.

The parameterization process was done considering the data from Figure 6.6 (wind turbine technology used), Figure 6.11 (climate conditions for Aracati, Brazil), Figure 6.12 (climate conditions for Cape Saint James, Canada), Figure 6.13 (climate conditions for Corvo Island, Portugal), Table 6.4 (locations chosen with criteria and reasons), Table 6.5 (main variables), Table 6.6 (independent variables), Table 6.7 (parameters for $L C O E_{\text {wso }}$ and $L C C C M_{W F}$), Table 6.8 (parameters for $L R C M, O \& M_{W F C M}$ and $R C M_{W F}$), Table 6.9 (parameters for $R C M_{W F}$), Table 6.10 (parameters for REPIM) and Table 6.11 (parameters for $L C P M_{W F}$). All data used as inputs for each independent variable are from a variety of credible industry sources, as scientific journals and proceedings of the global wind energy industry.

The algorithm developed during this Ph.D. research work $\left(L C O E_{\text {wso }}\right)$ was solved in an environment MS Excel-Matlab ${ }^{\circledR}$, with Matlab ${ }^{\circledR}$ we have retrieved data from Excel and have made the simulations considering the main variables, such as wind speed ($v_{\text {wc }}$), operations and maintenance management ($O \& M_{\text {manag }}$), wind turbines layout ($L_{w t}$) and energy policy instruments ($E_{p i}$). The $L C O E_{\text {wso }}$ proposed in this research can embody influences of WECS, financing and human factors on COE from the wind farm operation, and can be used to evaluate economic operation of wind farms with different wind resources, investing situations, installed capacities, maintenance situations and so on.

After discussing and justifying the methodological choices for this Ph.D. research work, the next two chapters present the numerical simulation and validation procedures (Chapter 7) with results and discussion (Chapter 8).

[^88]
6.6 REFERENCES

Adaramola, M. S., Paul, S. S., \& Oyedepo, S. O. (2011). Assessment of electricity generation and energy cost of wind energy conversion systems in north-central Nigeria. Energy Conversion and Management, 52(12), 3363-3368. doi: 10.1016/j.enconman.2011.07.007

Alam, M. M., Rehman, S., Meyer, J. P., \& Al-Hadhrami, L. M. (2011). Review of 600-2500kW sized wind turbines and optimization of hub height for maximum wind energy yield realization. Renewable and Sustainable Energy Reviews, 15(8), 3839-3849. doi: 10.1016/j.rser.2011.07.004

Albadi, M. H., El-Saadany, E. F., \& Albadi, H. A. (2009). Wind to power a new city in Oman. Energy, 34(10), 1579-1586. doi: 10.1016/j.energy.2009.07.003

Andradóttir, S. (2007). Simulation Optimization Handbook of Simulation (pp. 307-333): John Wiley \& Sons, Inc.

Angevine, G., Murillo, C. A., \& Pencheva, N. (2012). A Sensible Strategy for Renewable Electrical Energy in North America. Studies in Energy Policy. (pp. 104). Vancouver: Fraser Institute.

Arslan, O. (2010). Technoeconomic analysis of electricity generation from wind energy in Kutahya, Turkey. Energy, 35(1), 120-131. doi: 10.1016/j.energy.2009.09.002

Axelrod, R. (2003). Advancing the Art of Simulation in the Social Sciences. Special Issue on Agent-Based Modeling. Japanese Journal for Management Information System, 12(3), 1-19.

Azadivar, F. (1999). Simulation optimization methodologies.
Azuela, G. E., \& Barroso, L. A. (2012). Design and Performance of Policy Instruments to Promote the Development of Renewable Energy: Emerging Experience in Selected Developing Countries: World Bank Publications.

Banks, J. (1999). Introduction to simulation. Paper presented at the Proceedings of the 31st conference on Winter simulation: Simulation - a bridge to the future Phoenix, Arizona, United States.

Baños, R., Manzano-Agugliaro, F., Montoya, F. G., Gil, C., Alcayde, A., \& Gómez, J. (2011). Optimization methods applied to renewable and sustainable energy: A review. Renewable and Sustainable Energy Reviews, 15(4), 1753-1766. doi: 10.1016/j.rser.2010.12.008

Bansal, R. C., Bhatti, T. S., \& Kothari, D. P. (2002). On some of the design aspects of wind energy conversion systems. Energy Conversion and Management, 43(16), 2175-2187. doi: 10.1016/s0196-8904(01)00166-2

Barradale, M. J. (2010). Impact of public policy uncertainty on renewable energy investment: Wind power and the production tax credit. Energy Policy, 38(12), 7698-7709. doi: 10.1016/j.enpol.2010.08.021

Benatiallah, A., Kadia, L., \& Dakyob, B. (2010). Modelling and Optimisation of Wind Energy Systems. Jordan Journal of Mechanical and Industrial Engineering, 4(1), 143-150.

Billinton, R., Hua, C., \& Ghajar, R. (1996). A sequential simulation technique for adequacy evaluation of generating systems including wind energy. Energy Conversion, IEEE Transactions on, 11(4), 728-734.

Blanco, M. I. (2009). The economics of wind energy. Renewable \& Sustainable Energy Reviews, 13(6-7), 1372-1382. doi: 10.1016/j.rser.2008.09.004

BNDES. (2012). Anexo I/Circular no 64/2012. Brasília, DF: BNDES. Retrieved from http://www.bndes.gov.br/SiteBNDES/bndes/bndes en/.

Bolinger, M. (2009). PTC, ITC, or Cash Grant? An Analysis of the Choice Facing Renewable Power Projects in the United States. (DE-AC02-05CH11231). Lawrence Berkeley National Laboratory. Retrieved from http://escholarship.org/uc/item/5xf361wm.

Bolinger, M. (2012). Understanding trends in wind turbine prices over the past decade. (LBNL5119E). Lawrence Berkeley National Laboratory. Retrieved from http://eetd.lbl.gov/ea/ems/reports/lbnl-5119e.pdf.

Bolinger, M., \& Wiser, R. (2012). Understanding wind turbine price trends in the U.S. over the past decade. Energy Policy, 42(0), 628-641. doi: http://dx.doi.org/10.1016/j.enpol.2011.12.036

Botterud, A. (2003). Long Term Planning in Restructured power Systems: Dynamic Modelling of Investments on New Power Generation under Uncertainty. Norwegian University of Science and Technology.

Carson, Y., \& Maria, A. (1997). Simulation optimization: methods and applications. Paper presented at the 29th Conference on Winter Simulation, Washington, DC, USA

Chang, Y. J., \& Yu, J. L. (2009). Long Term Dynamic Simulation for Power System Including Wind Farms. 2009 International Conference on Sustainable Power Generation and Supply, 14, 1375-1380.

Christopher, A. W. (2003). Wind Turbine Reliability: Understanding and Minimizing Wind Turbine Operation and Maintenance Costs. Retrieved 2010, March 13, from http://prod.sandia.gov/techlib/access-control.cgi/2006/061100.pdf.

Cohen, J. M. (1989). A Methodology for Computing Wind Turbine Cost of Electricity Using Utility Economic Assumptions. Paper presented at the Windpower '89 San Francisco, California.

Connolly, D., Lund, H., Mathiesen, B. V., \& Leahy, M. (2010). A review of computer tools for analysing the integration of renewable energy into various energy systems. Applied Energy, 87(4), 1059-1082. doi: 10.1016/j.apenergy.2009.09.026

Cory, K., \& Schwabe, P. (2009). Wind Levelized Cost of Energy: A Comparison of Technical and Financing Input Variables. Colorado: NREL. Retrieved from www.nrel.gov/docs/fy10osti/46671.pdf.

Damodaran, A. (2001). Corporate Finance: Theory and Practice (2nd ed.): John Wiley and Sons Ltd,.

Davis, J. P., \& Bingham, C. B. (2007). Developing theory through simulation methods. Academy of Management Review, 32(2), 480-499.

DeCarolis, J. F., \& Keith, D. W. (2006). The economics of large-scale wind power in a carbon constrained world. Energy Policy, 34(4), 395-410. doi: 10.1016/j.enpol.2004.06.007

Delarue, P., Bouscayrol, A., Tounzi, A., Guillaud, X., \& Lancigu, G. (2003). Modelling, control and simulation of an overall wind energy conversion system. Renewable Energy, 28(8), 11691185. doi: 10.1016/s0960-1481(02)00221-5

Delucchi, M. A., \& Jacobson, M. Z. (2011). Providing all global energy with wind, water, and solar power, Part II: Reliability, system and transmission costs, and policies. Energy Policy, 39(3), 1170-1190.

Dicorato, M., Forte, G., Pisani, M., \& Trovato, M. (2011). Guidelines for assessment of investment cost for offshore wind generation. Renewable Energy, 36(8), 2043-2051. doi: 10.1016/j.renene.2011.01.003

Ding, F., \& Tian, Z. (2012). Opportunistic maintenance for wind farms considering multi-level imperfect maintenance thresholds. Renewable Energy, 45(0), 175-182. doi: 10.1016/j.renene.2012.02.030

Dolan, S. L., \& Heath, G. A. (2012). Life Cycle Greenhouse Gas Emissions of Utility-Scale Wind Power. Journal of Industrial Ecology, 16, S136-S154. doi: 10.1111/j.1530-9290.2012.00464.x

Doyle, P. (2008). Exhibit 9 - Decommissioning Plan. Estimated Cost of Decommissioning per Turbine. Retrieved December 11, 2012, from http://www.horizonwindfarms.com/northeast-region/documents/under-dev/arkwright/Exhibit9 DecomissioningPlan.pdf

DRE. (2012). Decreto-Lei n. 33-A/2005. Lisboa: DRE. Retrieved from http://www.dre.pt/pdf1sdip/2005/02/033A01/00020009.PDF.

El-Kordy, M. N., Badr, M. A., Abed, K. A., \& Ibrahim, S. M. A. (2002). Economical evaluation of electricity generation considering externalities. Renewable Energy, 25(2), 317-328.

Emami, A., \& Noghreh, P. (2010). New approach on optimization in placement of wind turbines within wind farm by genetic algorithms. Renewable Energy, 35(7), 1559-1564. doi: 10.1016/j.renene.2009.11.026

Endrenyi, J., Aboresheid, S., Allan, R., Anders, G., Asgarpoor, S., Billinton, R., . . . Fletcher, R. (2001). The present status of maintenance strategies and the impact of maintenance on reliability. Power Systems, IEEE Transactions on, 16(4), 638-646.

Enzensberger, N., Wietschel, M., \& Rentz, O. (2002). Policy instruments fostering wind energy projects--a multi-perspective evaluation approach. Energy Policy, 30(9), 793-801. doi: 10.1016/s0301-4215(01)00139-2

Ertürk, M. (2012). The evaluation of feed-in tariff regulation of Turkey for onshore wind energy based on the economic analysis. Energy Policy, 45(0), 359-367. doi: http://dx.doi.org/10.1016/j.enpol.2012.02.044

European Commission. (2001). Wind Turbine Grid Connection and Interaction. Retrieved October 15, 2011, from http://ec.europa.eu/energy/technology/projects/doc/2001_fp5_brochure_energy_env.pdf

Evans, A., Strezov, V., \& Evans, T. J. (2009). Assessment of sustainability indicators for renewable energy technologies. Renewable and Sustainable Energy Reviews, 13(5), 1082-1088. doi: 10.1016/j.rser.2008.03.008

Ferrell, S. L., \& DeVuyst, E. A. (2012). Decommissioning wind energy projects: An economic and political analysis. Energy Policy(0). doi: http://dx.doi.org/10.1016/j.enpol.2012.10.017

Fingersh, L., Hand, M., \& Laxson, A. (2006). Wind Turbine Design Cost and Scaling Model. Colorado: NREL - National Renewable Energy Laboratory. Retrieved from http://www.nrel.gov/wind/pdfs/40566.pdf

Fisher, M. L. (2004). The Lagrangian relaxation method for solving integer programming problems. Management science, 50(12 supplement), 1861-1871. doi: 10.1287/mnsc.1040.0263

Fu, M. (1994). Optimization via simulation: A review. Annals of Operations Research, 53(1), 199247. doi: 10.1007/bf02136830

Fu, M. C. (2002). Optimization for simulation: Theory vs. practice. INFORMS Journal on Computing, 14(3), 192-215.

Fueyo, N., Sanz, Y., Rodrigues, M., Montanes, C., \& Dopazo, C. (2011). The use of costgeneration curves for the analysis of wind electricity costs in Spain. Applied Energy, 88(3), 733-740. doi: 10.1016/j.apenergy.2010.09.008

Fuglsang, P., \& Madsen, H. A. (1999). Optimization method for wind turbine rotors. Journal of Wind Engineering and Industrial Aerodynamics, 80(1-2), 191-206. doi: 10.1016/s0167-6105(98)00191-3

Fuglsang, P., \& Thomsen, K. (1998). Cost Optimization of Wind Turbines for Large-scale Offshore Wind Farms. (Risø-R-1000).

George, K., \& Schweizer, T. (2008). Primer: The DOE Wind Energy Program's Approach to Calculating Cost of Energy. Rockville/Maryland: NREL. Retrieved from http://www.nrel.gov/docs/fy08osti/37653.pdf.

Georgilakis, P. S. (2008). Technical challenges associated with the integration of wind power into power systems. Renewable and Sustainable Energy Reviews, 12(3), 852-863. doi: 10.1016/j.rser.2006.10.007

Gökçek, M., \& Genç, M. S. (2009). Evaluation of electricity generation and energy cost of wind energy conversion systems (WECSs) in Central Turkey. Applied Energy, 86(12), 2731-2739. doi: 10.1016/j.apenergy.2009.03.025

Gonzalez, J. S., Rodriguez, A. G. G., Mora, J. C., Santos, J. R., \& Payan, M. B. (2009, June 28 2009-July 2 2009). A new tool for wind farm optimal design. Paper presented at the PowerTech, 2009 IEEE Bucharest.

Green, J., \& Schellstede, H. (2007). Electrical collection and transmission systems for offshore wind power. Paper presented at the 2007 Offshore Technology Conference, Texas.

Griffiths, A., \& Wall, S. (2000). Intermediate microeconomics: theory and applications: AddisonWesley Longman Limited.

Gross, R., Blyth, W., \& Heptonstall, P. (2010). Risks, revenues and investment in electricity generation: Why policy needs to look beyond costs. Energy Economics, 32(4), 796-804. doi: 10.1016/j.eneco.2009.09.017

Gross, R., Heptonstall, P., \& Blyth, W. (2007). Investment in electricity generation: the role of costs, incentives and risks. London: UK Energy Research Centre.

Grubb, M. (2004). Technology Innovation and Climate Change Policy: an overview of issues and options. Keio economic studies, 41(2), 103.

GWEC. (2012). Global Wind Report: Annual market update 2011. Retrieved September 13, 2012, from http://www.gwec.net

Haas, R., Eichhammer, W., Huber, C., Langniss, O., Lorenzoni, A., Madlener, R., . . . Verbruggen, A. (2004). How to promote renewable energy systems successfully and effectively. Energy Policy, 32(6), 833-839. doi: 10.1016/s0301-4215(02)00337-3

Hansen, C. J., Bower, J., \& Studies, O. I. f. E. (2003). An economic evaluation of small-scale distributed electricity generation technologies. Oxford: Citeseer.

Harper, J., Karcher, M., \& Bolinger, M. (2007). Wind Project Financing Structures: A Review \& Comparative Analysis.: Lawrence Berkeley National Laboratory. Retrieved from http://eetd.lbl.gov/ea/ems/reports/63434.pdf.

Hillier, F. S., Lieberman, G. J., \& Hillier, M. (1995). Introduction to Operations Research (6th ed.): McGRAW-HILL.

Himri, Y., Stambouli, A. B., \& Draoui, B. (2009). Prospects of wind farm development in Algeria. [Article]. Desalination, 239(1-3), 130-138. doi: 10.1016/j.desal.2008.03.013

Himria, Y., Boudghene, S. A., \& Draouic, B. (2009). Prospects of wind farm development in Algeria. Desalination, 239, 130-138. doi: 10.1016/j.desal.2008.03.013

Hobbs, W. B. (2008). Simulation of Major Aspects of Wind Energy Generation. Proceedings of the Asme Power Conference 2008, 657-671.

Hondo, H. (2005). Life cycle GHG emission analysis of power generation systems: Japanese case. Energy, 30(11-12), 2042-2056. doi: 10.1016/j.energy.2004.07.020

Hrayshat, E. S. (2009). Techno-economic Analysis of Electricity Generation by Means of a Proposed 50 MW Grid-connected Wind Power Plant for Jordan. Energy Sources Part BEconomics Planning and Policy, 4(3), 247-260. doi: 10.1080/15567240802534235

Ibenholt, K. (2002). Explaining learning curves for wind power. Energy Policy, 30(13), 1181-1189. doi: 10.1016/s0301-4215(02)00014-9

IEA. (1991). Guidelines for the Economic Analysis of Renewable Energy Technology Applications. Retrieved March 23, 2010, from http://www.iea.org/textbase/nppdf/free/1990/renew tech1991.pdf

IEA. (2005). Projected Costs of Generating Electricity. Retrieved March 27, 2010, from http://www.iea.org/textbase/nppdf/free/2005/ElecCost.PDF

IEA. (2007). IEA Annual Report 2007 - IEA WIND ENERGY Annual Report 2007. Retrieved May 12, 2010, from http://www.ieawind.org/AnnualReports_PDF/2007/2007\ IEA\ Wind\ AR.pdf

IEA. (2010). Projected Costs of Generating Electricity. 2010 Edition. Retrieved February 24, 2012, from http://www.iea.org

IEA. (2011). CO2 emissions from fuel combustion. Highlights 2011. Retrieved September 10, 2012, from http://www.iea.org/co2highlights/co2highlights.pdf

IMF. (2012). World Economic Outlook. World Economic and Financial Surveys. Retrieved December 16, 2012, from http://www.imf.org/external/pubs/ft/weo/2012/02/pdf/text.pdf

IRENA. (2012). Renewable Energy Technologies. Costs Analysis Series. June 2012. Retrieved September 20, 2012, from http://irena.org/DocumentDownloads/Publications/RE Technologies Cost AnalysisWIND_POWER.pdf

Jamasb, T. (2007). Technical change theory and learning curves: patterns of progress in electricity generation technologies. The Energy Journal, 28(3), 51-72.

Jamieson, P. (2011). Innovation in wind turbine design: John Wiley \& Sons.
Jensen, P., \& Bard, J. (2003). Operations research models and methods: John Wiley \& Sons Press.
Johnson, G. L. (2001). Wind energy systems: Prentice-Hall Englewood Cliffs (NJ).
Jong-Bae, P., Ki-Song, L., Joong-Rin, S., \& Lee, K. Y. (2005). A particle swarm optimization for economic dispatch with nonsmooth cost functions. Power Systems, IEEE Transactions on, 20(1), 34-42. doi: 10.1109/TPWRS.2004.831275

Junginger, M., Faaij, A., \& Turkenburg, W. C. (2005). Global experience curves for wind farms. Energy Policy, 33(2), 133-150. doi: 10.1016/s0301-4215(03)00205-2

Keith, M. S. (2004). Utility-scale wind on islands: an economic feasibility study of Ilio Point, Hawai'i. Renewable Energy, 29(6), 949-960. doi: 10.1016/j.renene.2003.09.015

Kennedy, S. (2005). Wind power planning: assessing long-term costs and benefits. Energy Policy, 33, 1661-1675. doi: 10.1016/j.enpol.2004.02.004

Kleindorfer, G. B., O'Neill, L., \& Ganeshan, R. (1998). Validation in simulation: Various positions in the philosophy of science. Management science, 44(8), 1087-1099.

Kobos, P. H., Erickson, J. D., \& Drennen, T. E. (2006). Technological learning and renewable energy costs: implications for US renewable energy policy. Energy Policy, 34(13), 1645-1658. doi: 10.1016/j.enpol.2004.12.008

Kothari, C. (2009). Research methodology: methods and techniques (2nd ed.): New Age International.

Krokoszinski, H. J. (2003). Efficiency and effectiveness of wind farms - keys to cost optimized operation and maintenance. Renewable Energy, 28(14), 2165-2178. doi: 10.1016/S0960-1481(03)00100-9

Kung, H. H. (2012). Impact of deployment of renewable portfolio standard on the electricity price in the State of Illinois and implications on policies. Energy Policy, 44(0), 425-430. doi: http://dx.doi.org/10.1016/j.enpol.2012.02.013

Kusiak, A., \& Song, Z. (2010). Design of wind farm layout for maximum wind energy capture. Renewable Energy, 35(3), 685-694. doi: 10.1016/j.renene.2009.08.019

Lantz, E., Wiser, R., \& Hand, M. (2012, May 13-17). The Past and Future Cost of Wind Energy. Paper presented at the 2012 World Renewable Energy Forum, Denver.

Law, A., \& Kelton, W. (2007). Simulation modeling and analysis. New York: McGraw-Hill.
Lund, P. D. (2006). Analysis of energy technology changes and associated costs. International Journal of Energy Research, 30(12), 967-984. doi: 10.1002/er. 1198

Lundberg, S. (2006). Evaluation of wind farm layouts. EPE Journal, 16(1), 14.
LVI Environmental Services. (2009). Decommissioning Plan. Retrieved December 11, 2012, from http://www.invenergyllc.com/stonycreek/pdf/1/03_DEIS/DEIS_Appendices/I_5_Decommissi oning_Plan.pdf

Mabel, M. C., \& Fernandez, E. (2008). Analysis of wind power generation and prediction using ANN: A case study. Renewable Energy, 33(5), 986-992. doi: 10.1016/j.renene.2007.06.013

Magoha, P. W. (2001). Wind power Industry: Issues in Development and Implementation. Paper presented at the ISES 2001 Solar World Congress, Adelaide: Australia.

Manwell, J., McGowan, J., \& Rogers, A. (2002). Wind energy explained: Theory, design and application. England: John Willey \& Sons.

Martin-Tretton, M., Reha, M., Drunsic, M., \& Keim, M. (2012). Data Collection for Current US Wind Energy Projects: Component Costs, Financing, Operations, and Maintenance. (NREL/SR-5000-52707). Colorado: NREL. Retrieved from http://www.nrel.gov/docs/fy12osti/52707.pdf.

Martinez, E., Sanz, F., Pellegrini, S., Jimenez, E., \& Blanco, J. (2009a). Life-cycle assessment of a 2-MW rated power wind turbine: CML method. International Journal of Life Cycle Assessment, 14(1), 52-63. doi: 10.1007/s11367-008-0033-9

Martinez, E., Sanz, F., Pellegrini, S., Jimenez, E., \& Blanco, J. (2009b). Life cycle assessment of a multi-megawatt wind turbine. Renewable Energy, 34(3), 667-673. doi: 10.1016/j.renene.2008.05.020

Menz, F. C., \& Vachon, S. (2006). The effectiveness of different policy regimes for promoting wind power: Experiences from the states. Energy Policy, 34(14), 1786-1796. doi: 10.1016/j.enpol.2004.12.018

Milborrow, D. J. (2006). Winding up. Power Engineer, 20(1), 44-45.
Milborrow, D. J. (2008). Generation Costs Rise across the Board. Wind Power Monthly.
Milligan, M. R., \& Graham, M. S. (1997, 21-25 September, 1997). An Enumerative Technique for Modeling Wind Power Variations in Production Costing. Paper presented at the International

Conference on Probabilistic Methods Applied to Power Systems, Vancouver, British Columbia, Canada.

Monahan, K., \& van Kooten, G. C. (2010). The economics of tidal stream and wind power: an application to generating mixes in Canada. Environmental Economics, 1(1), 92-101.

Moran, D., \& Sherrington, C. (2007). An economic assessment of windfarm power generation in Scotland including externalities. Energy Policy, 35(5), 2811-2825. doi: 10.1016/j.enpol.2006.10.006

Morthorst, P. E., \& Shimon Awerbuch. (2009). The Economics of Wind Energy. Brussels: The European Wind Energy Association.

Mustakerov, I., \& Borissova, D. (2010). Wind turbines type and number choice using combinatorial optimization. Renewable Energy, 35(9), 1887-1894.

Nandigam, M., \& Dhali, S. K. (2008). Optimal Design of an Offshore Wind Farm Layout. 2008 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, l(3), 1470-1474.

Neij, L. (1999). Cost dynamics of wind power. Energy, 24(5), 375-389. doi: 10.1016/s0360-5442(99)00010-9

Neij, L. (2008). Cost development of future technologies for power generation-A study based on experience curves and complementary bottom-up assessments. Energy Policy, 36(6), 22002211. doi: $10.1016 / \mathrm{j}$. .enpol.2008.02.029

Nilsson, J., \& Bertling, L. (2007). Maintenance Management of Wind Power Systems Using Condition Monitoring Systems\—Life Cycle Cost Analysis for Two Case Studies. Energy Conversion, IEEE Transactions on, 22(1), 223-229.

Nocedal, J., \& Wright, S. J. (1999). Numerical Optimization. New York: Springer.
Nouni, M. R., Mullick, S. C., \& Kandpal, T. C. (2007). Techno-economics of small wind electric generator projects for decentralized power supply in India. Energy Policy, 35(4), 2491-2506. doi: 10.1016/j.enpol.2006.08.011

NREL. (1995). A Manual for the Economic Evaluation of Energy Efficiency and Renewable Energy Technologies. (NREL/TP-462-5173). Springfield: National Renewable Energy Laboratory. Retrieved from http://www.nrel.gov/csp/troughnet/pdfs/5173.pdf.

Obdam, T., Braam, H., Rademakers, L., \& Eecen, P. (2007). Estimating costs of operation \& maintenance for offshore wind farms. Paper presented at the Proceedings of European Offshore Wind Energy Conference, Berlin.

Olafsson, S., \& Jumi, K. (2002, 8-11 Dec. 2002). Simulation optimization. Paper presented at the 2002 Winter Simulation Conference.

Oliveira, W. S. (2010). Avaliação e gestão de projectos de energia eólica onshore. Master in Sustainable Energy Systems, University of Aveiro, Aveiro. Retrieved from http://hdl.handle.net/10773/5007

Oliveira, W. S., \& Fernandes, A. J. (2012a). Cost analysis of the material composition of the wind turbine blades for Wobben Windpower/ENERCON GmbH model E-82. [Review]. Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Renewable Energy (JRSE), 3(1), 1-7.

Oliveira, W. S., \& Fernandes, A. J. (2012b). Economic feasibility analysis of a wind farm in Caldas da Rainha, Portugal. [Research]. International Journal of Energy and Environment, 3(3), 333346.

Oliveira, W. S., Fernandes, A. J., \& Gouveia, J. J. B. (2011). Economic metrics for wind energy projects. [Review]. International Journal of Energy and Environment, 3(6), 1013-1038.

Ozerdem, B., Ozer, S., \& Tosun, M. (2006). Feasibility study of wind farms: A case study for Izmir, Turkey. Journal of Wind Engineering and Industrial Aerodynamics, 94(10), 725-743. doi: 10.1016/j.jweia.2006.02.004

Ozturk, U. A., \& Norman, B. A. (2004). Heuristic methods for wind energy conversion system positioning. Electric Power Systems Research, 70(3), 179-185. doi: 10.1016/j.epsr.2003.12.006

Pan, H., \& Köhler, J. (2007). Technological change in energy systems: Learning curves, logistic curves and input-output coefficients. Ecological Economics, 63(4), 749-758. doi: 10.1016/j.ecolecon.2007.01.013

Payan, M. B., Gonzalez, J. S., Rodriguez, A. G. G., Mora, J. C., \& Santos, J. R. (2011). Overall design optimization of wind farms. Renewable Energy, 36(7), 1973-1982. doi: 10.1016/j.renene.2010.10.034

Pereira, O. S., Reis, T. M., de Araujo, R. G. B., \& Gongalves, F. F. (2006, 10-12 May 2006). Renewable Energy as a Tool to Assure Continuity of Low Emissions in the Brazilian Electric Power Sector. Paper presented at the EIC Climate Change Technology, 2006 IEEE.

Phillips, D. L. (1974). Epistemology and the sociology of knowledge: The contributions of mannheim, mills, and merton. Theory and Society, l(1), 59-88. doi: 10.1007/bf00208223

Rademakers, L., Braam, H., \& Verbruggen, T. (2003). R\&D needs for O\&M of wind turbines. ECN Wind Energy, Tech. Rep. ECN-RX-03-045. Retrieved January 12, 2012, from http://www.ecn.nl

Rehman, S., Ahmad, A., \& Al-Hadhrami, L. M. (2011). Development and economic assessment of a grid connected 20 MW installed capacity wind farm. Renewable and Sustainable Energy Reviews, 15(1), 833-838. doi: 10.1016/j.rser.2010.09.005

RETScreen® International Clean Energy Decision Support Centre. (2008). Clean Energy Project Analysis: RETScreen Engineering \& Cases Texbook. Retrieved January 10, 2009, from www.retscreen.net.

RETScreen ${ }^{\circledR}$ International Clean Energy Decision Support Centre. (2009). Wind energy project analysis. Software manual, Chapter 2. Retrieved June 12, 2009, from www.retscreen.net.

Roberts, N., Andersen, D. F., Deal, R. M., Garet, M. S., \& Shaffer, W. A. (1983). Introduction to computer simulation: the system dynamics approach: Addison-Wesley Publishing Company.

Rosa, A. V. (2009). Fundamentals of Renewable Energy Processes (2nd ed.). UK: Elsevier.
Şahin, A. D. (2004). Progress and recent trends in wind energy. Progress in Energy and Combustion Science, 30(5), 501-543. doi: 10.1016/j.pecs.2004.04.001

Saidur, R., Islam, M. R., Rahim, N. A., \& Solangi, K. H. (2010). A review on global wind energy policy. Renewable \& Sustainable Energy Reviews, 14(7), 1744-1762. doi: 10.1016/j.rser.2010.03.007

Sargent, R. G. (2009, 13-16 Dec. 2009). Verification and validation of simulation models. Paper presented at the Simulation Conference (WSC), Proceedings of the 2009 Winter.

Schreck, S., \& Laxson, A. S. (2005). Low Wind Speed Technologies Annual Turbine Technology Update (ATTU) Process for Land-Based, Utility-Class Technologies. (NREL/TP-500-37505). Colorado: National Renewable Energy Laboratory. Retrieved from http://www.nrel.gov/docs/fy05osti/37505.pdf.

SEFI. (2010). Global Trends in Sustainable Energy Investment 2010 - Analysis of Trends and Issues in the Financing of Renewable Energy and Energy Efficiency. Retrieved July 4, 2010, from http://sefi.unep.org/english/globaltrends2010.html.

Shannon, R. E. (1992). Introduction to simulation. Paper presented at the Proceedings of the 24th conference on Winter simulation, Arlington, Virginia, United States.

Slootweg, J. G. (2003). Wind Power: Modelling and Impact on Power System Dynamics. PhD in Electrical Power Systems, Technische Universiteit Delft, Utrecht.

Smyth, H. J., \& Morris, P. W. G. (2007). An epistemological evaluation of research into projects and their management: Methodological issues. International Journal of Project Management, 25(4), 423-436. doi: 10.1016/j.ijproman.2007.01.006

Sorensen, M. P., Org Econ, C., Dev, O. E. C., \& Dev. (1997, Jun 16). Learning curve - How are new energy technology costs reduced over time? Paper presented at the Workshop on Energy Technology Availability to Mitigate Future Greenhouse Gas Emissions, Paris, France.

Tai, L., \& Wen-rui, W. (2009, 27-31 March 2009). Life Cycle Analysis on Economic Operation of Wind Farm. Paper presented at the Power and Energy Engineering Conference, 2009. APPEEC 2009. Asia-Pacific.

Tegen, S., Hand, M., Maples, B., Lantz, E., Schwabe, P., \& Smith, A. (2012). 2010 Cost of Wind Energy - Review. (NREL/TP-5000-52920). Springfield: National Renewable Energy Laboratory. Retrieved from http://www.nrel.gov/docs/fy12osti/52920.pdf.

Tian, Z. G., Jin, T. D., Wu, B. R., \& Ding, F. F. (2011). Condition based maintenance optimization for wind power generation systems under continuous monitoring. Renewable Energy, 36(5), 1502-1509. doi: 10.1016/j.renene.2010.10.028

Tidball, R., Bluestein, J., Rodriguez, N., \& Knoke, S. (2010). Cost and performance assumptions for modeling electricity generation technologies. (NREL/SR-6A20-48595). Virginia: NREL Retrieved from http://www.nrel.gov/docs/fy11osti/48595.pdf.

Valentine, S. V. (2010). Canada's constitutional separation of (wind) power. Energy Policy, 38(4), 1918-1930. doi: 10.1016/j.enpol.2009.11.072

Valentine, S. V. (2011). Understanding the variability of wind power costs. Renewable and Sustainable Energy Reviews, 15(8), 3632-3639. doi: 10.1016/j.rser.2011.06.002

Valles, M., Reneses, J., \& Campos, F. A. (2012, 10-12 May 2012). Impact of the EU ETS on the European electricity sector. Paper presented at the 9th International Conference on the European Energy Market (EEM), Florence.

Van Beeck, N. (1999). Classification of energy models: Citeseer.
Vestas Wind Systems A/S. (2013). Vestas V90-2MW. Retrieved January 12, 2013, from http://www.vestas.com/

Wagner, H. J., \& Epe, A. (2009). Energy from wind - perspectives and research needs. The European Physical Journal, 176, 107-114. doi: 10.1140/epjst/e2009-01151-2

Wang, F., Liu, D., \& Zeng, L. (2009). Modeling and simulation of optimal wind turbine configurations in wind farms, Nanjing.

WindFacts. (2010). Growth in Size of Commercial Wind Turbine Designs. Wind Energy. Retrieved April 11, 2010, from http://www.wind-energy-the-facts.org/

Wiser, R. H. (1997). Renewable energy finance and project ownership - The impact of alternative development structures on the cost of wind power. Energy Policy, 25(1), 15-27.

Wohlgemuth, N., \& Madlener, R. (2000). Financial support of renewable energy systems: investment vs operating cost subsidies. Paper presented at the Norwegian Association for Energy Economics (NAEE) Conference, Bergen/Norway.

World Bank, UNDP, \& ESMAP. (1991). Assessment of Personal Computer Models for Energy Planning in Developing Countries. Washington D.C.

Zhang, J., Chowdhury, S., Messac, A., \& Castillo, L. (2010, 13-15 September 2010). Economic Evaluation of Wind Farms Based on Cost of Energy Optimization. Paper presented at the 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference Fort Worth, Texas.

Zhang, J., Chowdhury, S., Messac, A., \& Castillo, L. (2012a). A Response Surface-Based Cost Model for Wind Farm Design. Energy Policy, 42(0), 538-550. doi: 10.1016/j.enpol.2011.12.021

Zhang, J., Chowdhury, S., Messac, A., \& Castillo, L. (2012b). Unrestricted wind farm layout optimization (UWFLO): Investigating key factors influencing the maximum power generation. Renewable Energy, 38(1), 16-30. doi: 10.1016/j.renene.2011.06.033

CHAPTER 7

Numerical Simulation and VALIDATION

7.1 Introduction
7.2 Power system parameters used for simulations
7.2.1 Technical features of WECS
7.2.1.1 Assumptions, constraints, and limitations
7.2.1.2 Wind turbine technology
7.2.1.3 Wind farm layout
7.2.2 Climate data used for $v_{w}(m / s), P(k P a)$ and $T\left({ }^{\circ} \mathrm{C}\right)$
7.2.2.1 Wind speed (v_{w} and $v_{w c}$)
7.2.2.2 Atmospheric pressure (P)
7.2.2.3 Air temperature (T)
7.3 Economic and financial aspects of the wind project
7.3.1 Assumptions, constraints, and limitations
7.3.2 Revenue, capital, O\&M, and other costs
7.4 O\&M assumptions for wind project simulations
7.4.1 Variables and data
7.4.2 O\&M programs proposed
7.5 Energy policy assumptions for wind project simulations
7.5.1 Variables and data
7.5.2 Energy policy instruments proposed
7.6 General simulations procedures
7.6.1 Steps used for simulations
7.6.2 Optimization criteria
7.6.3 Sensitivity analysis
7.7 Summary and conclusions
7.8 References

This chapter details the WECS and climate numerical parameters considered for simulations procedures. Economic and financial issues to a wind project are also analyzed, within O\&M inputs, variables and strategies proposed. General simulations procedures within optimization criteria and sensitivity analysis. Summary and conclusions are presented at the end, with the respective references.

7.1 INTRODUCTION

After developing the $L C O E_{\text {wso }}$ model for wind power and presented in Chapter 6, it is necessary to perform its testing. This is important as it will allow validating the $L C O E_{\text {wso }}$ model and at the same time carrying out a comparison with other methodologies of basic wind power cost calculations \therefore This chapter presents the test all tools developed and presented previously. In order to perform the numerical modeling and simulations we had used a set of real data, during the period of one year (see Figures $6.11,6.12$ and 6.13), for wind power energy production in three different sites.

Numerical modeling is an important phase of a simulation research work for designing, evaluation and implementation analysis of power systems. Several models for various types of WECS have been the subject of several studies (see Tables 5.8 and 5.9). We notice that improved analysis techniques are needed in two main areas: (1) evaluation of operational characteristics of a proposed WECS (technical performance), and (2) determination of the real economic cost of electricity production of a given power system at a right given site (economic performance) (Ibrahim, Lefebvre, Methot, \& Deschenes, 2011) \therefore Numerical model is used as a strategy for validating the algorithm developed for representation of a real system.

As has stated Molenaar (2003, p. 111) validation is "the process of determining whether or not a computer simulation model is consistent with the underlying mathematical model to a specified accuracy level". We understand the validation in a research like this; it is a necessary procedure for a better comprehension of the relations among the set of variables used for the model proposed. We have checked the variable relations that affect each other simultaneously, which can be used for future research needs.

This chapter explains and shows the numerical simulation and validation process utilized in this Ph.D. research work, focused on wind power technology in order to be applied directly on economic evaluation of wind energy cost researches. \therefore Power system parameters used for simulations are shown in section 7.2. In this section, detailed technical features of WECS (section 7.2.1), within assumptions, constraints, and limitations (section 7.2.1.1) considered; wind turbine technology (section 7.2.1.2) and wind farm layout studied (section 7.2.1.3) are shown. The climate data considered for simulations are explained in section 7.2.2, focused on wind speed (section 7.2.2.1); atmospheric pressure (section 7.2.2.2) and air temperature (section 7.2.2.3) for three sites chosen.

Section 7.3 refers to the economic and financial aspects of the wind project by describing the assumptions, constraints, and limitations (section 7.3.1) and expected revenue, capital, $O \& M$, and other costs (section 7.3.2) \therefore In section $7.4 O \& M$ assumptions for wind project simulations are shown and inputs and variables (section 7.4.1) and $O \& M$ programs proposed (section 7.4.2). Section 7.6 is related to general simulations procedures within its steps fallowed (section 7.6.1), optimization criteria (section 7.6.2) and sensitivity analysis carried out (section 7.6.3). Finally, the summary and conclusions of this chapter (section 7.7) and all references (section 7.8) used are present at the end of this chapter.

7.2 POWER SYSTEM PARAMETERS USED FOR SIMULATIONS

7.2.1 TECHNICAL FEATURES OF THE WIND FARM

The hypothetical wind farm will consist of up to 25 wind turbines with 2 MW rated power (see Table 7.3) which will be connected to the national electricity grid through electrical cables ${ }^{131}$. The operation of the wind farm will be closely monitored remotely through a sophisticated supervisory control and data acquisition (SCADA) system. \therefore A network of underground electrical cables will transmit the power from the individual turbines to the point of common connection (PCC).The principal components of the onshore wind farm considered for simulations:

- 25 Vestas V90-2MW wind turbines;
* Access roads;
* Power cables between the turbines and from the wind farm to the connection point of the transmission public electricity grid;
* A substation required to house systems to control and monitor the operation of the wind farm as whole and electrical equipment needed to connect the wind farm to the electrical transmission grid.

The wind turbines chosen to be installed at power plant will be technologically updated and economically proposed \therefore The turbines have minimum maintenance requirements and include the following features as shown in Table 7.1.

Table 7.1 Wind turbines systems added-in
$\left.\begin{array}{ll}\text { * Long term corrosion } \\ \text { protection }\end{array} \begin{array}{l}\text { High quality paints are used to protect the turbine components } \\ \text { from the corrosive environment experienced in sites close to the } \\ \text { sea } \\ \text { \&erodynamic blade and mechanical component design minimize }\end{array}\right\}$

Source: Own elaboration

[^89]
7.2.1.1 ASSUMPTIONS, CONSTRAINTS, AND LIMITATIONS

We have considered for numerical simulation and validation process of $L C O E_{w s o}$ methodology, the following aspects:

7.2.1.1.1 Assumptions

Table 7.2 Technical parameters of wind power project

* Project name	FireStar Wind Farm
* Project type	Power (electricity)
* Grid type	Central grid
* Life time (N)	25 yrs
* Sites	Araripe (Brazil); Corvo Island (Portugal) and Cape Saint James (Canada)
* Number of wind turbines ($N_{W T}$)	25
* Wind farm capacity ($W F_{\text {cap }}$)	50 MW
* Wind turbine technology	See Table 7.3
* Wind speed measured at (H_{0})	10 m
* Hub height (H)	105 m
* Terrain rugosity factor (a)	0.14
* Annual mean wind speed ($v_{w c}$)	$7.4 \mathrm{~m} / \mathrm{s} ; 9.1 \mathrm{~m} / \mathrm{s}$ and $12.5 \mathrm{~m} / \mathrm{s}$

Source: Own elaboration
a) Sites with suitable mean annual wind speed (e.g. greater than $4 \mathrm{~m} / \mathrm{s}$) at the hub-height of the WEC system analyzed;
b) We have considered sites are further away from residential settlements than other areas. Therefore any possible impacts that the wind farm might have on such settlements are expected to be small;
c) Annual constant mean wind speed and direction: the annual mean wind speed is constant throughout the simulations and the wind speed direction is fixed with respect to the farm layout. : If another wind direction is wanted, a new simulation model must be produced with a rotated layout;
d) The wind distribution and frequency are variable during the whole lifetime of the power plant;
e) Climate data used for simulations, such as, wind speed, atmospheric pressure and air temperature are constant during the lifetime of the wind farm for the three different sites chosen;
f) The wind turbines are considered to be spaced in a way to minimize turbine-to-turbine interference in the wind flow (wake and array effects);
g) We have considered the same wind turbine technology during 25 years of lifetime of the wind farm operation and for each site chosen the availability of the same product (wind power plant equipment);
h) Proximity of the site to the electric grid should preferably not exceed 3 km ; and accessibility of the site, in order to avoid expensive road construction etc., must be guaranteed;
i) For each year of operation, different capacity factors are expected, due to the dynamic nature of WECS, and in particular, a wind farm analyzed in three different sites, during the simulations procedures;
j) The wind farm production are defined in Wind Farm Life-Cycle Production Model (LCPM ${ }_{W F}$) and information/data are based on Table 6.11;
k) The Power Delivered $\left(P_{\underline{D}}\right)$ is exported (sold) to the grid, so $A E P_{\text {avail }}$ (Annual Energy Production available) is the total power output from the hypothetical wind farm simulated;

1) Wind farm losses (for production phase) changes linearly with power level output ($A E P_{\text {avail }}$);
m) We considered the environmental impacts as minimal as possible for the wind farm projected, specially related to the local fauna and flora.

7.2.1.1.2 Constraints

a) We have considered constant the annual mean wind speed for all simulations at each chosen site during this Ph.D. research work;
b) As we have considered only the production and transmission phases of the power plant (see Chapter 6, section 6.4.4.1; Figure 6.14), the distribution costs and investment infrastructure are not included in the $L C O E_{\text {wso }}$ methodology;
c) The wind farm production is analyzed annually, but monthly production variation is considered for wind farm production management;
d) The effect of technology innovation for this power plant is not considered for cost of energy reduction, because the model consider the same wind turbine technology for entire lifetime of the wind project;
e) We have considered only linear wind turbines layouts, in order to simplify the $L C O E_{w s o}$, other possible wind turbines layouts are not considered which in such way, limits this proposed methodology for other cases of layouts;
f) For WECS, we have taken into consideration an autonomous system, which exclude any kind of energy production planning, so the variability can easily possible be more intense than done in the simulations studies.

7.2.1.1.3 Limitations

a) The suitable mean annual wind speed and direction are considered fixed during 25 years of lifetime of the wind farm operation, so the effect of variation due to climate change are not considered;
b) Due to the lack of availability of data, in particular sites with wind data at Canada, Brazil and Portugal for high elevations above the ground (at least 50 m above ground level), it is presently difficult to establish an accurate estimate for the wind energy production as supposed to be this hypothetical wind farm (105m);
c) When we have considered the same technology (wind turbine) for the power plant, we have discard the possibility the effect of updating the machineries and lower much more the cost of production;
d) As we have consider the availability of wind turbines 'suppliers (Vestas V90-2MW) for the sites analyzed, it was not considered the cost of transportation in these three different sites used for simulations;
e) The cost of transmission reflects the cost for a maximum distance of 3 km (from wind farm to the distribution point), so the $L C O E_{\text {wso }}$ calculated is applicable for this distance only, when this indicator is used for comparison among different wind farms.

7.2.1.2 WIND TURBINE TECHNOLOGY

Table 7.3 Technical data of wind turbines

* Model/type	Vestas V90-2MW	
* Rated power	2000 kW	
* Cut-in speed	$4.0 \mathrm{~m} / \mathrm{s}$	
* Rated wind speed	$12.0 \mathrm{~m} / \mathrm{s}$	
* Cut-out speed	$25.0 \mathrm{~m} / \mathrm{s}$	
* Type class	IEC IIIA	
* Diameter	90.0 m	
* Rotor swept area	$6361.7 \mathrm{~m}^{2}$	
* Rated rotor speed	14.9 rpm	
* Rotor speed range		$9.0-14.9 \mathrm{rpm}$
* Generator type	Double-fed asynchronous generator	
* Controls	Pitch regulated with variable speed	
* Tower type		Tubular steel tower

Source: Vestas Wind Systems A/S (2013) and RETScreen® International Clean Energy Decision Support Centre (2009)

According to Vestas Wind Systems A/S (2013) this wind turbine is designed for operating at certain conditions:

1. Ambient temperatures ranging from $-20^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$. Special precautions must be taken outside these temperatures;
2. The placement of wind turbines have to operate at a distance of at least 5 rotor diameters $(5 \mathrm{D}=450 \mathrm{~m})$ between the wind turbines themselves. If the wind turbines are placed in one row, perpendicular of the predominant wind direction, the distance between the wind turbines must be at least 4 rotor diameters $(4 D=360 \mathrm{~m})$.

Vestas V90-2MW model uses gearboxes with one planetary and two parallel stages from which the torque is transmitted to the generator through a composite coupling \therefore This model also contains a 4 pole Doubly-Fed Asynchronous Generator (DFIG) with wound rotor (see Chapter 4, Figure 4.8 and Table 4.3). A partially rated converter controls the current in the rotor circuit of the generator, which allows control of the reactive power ${ }^{132}$ and serves for smooth connection to the electric power grid.

7.2.1.3 WIND FARM LAYOUT

In the present Ph.D. research work, a flat area was considered for the development of hypothetical wind farm in sites in Brazil, Canada and Portugal. A total of $15 \mathrm{~km}^{2}$ area is considered for the development of wind farm of $50 \mathrm{MW}_{\mathrm{e}}$ capacity.\therefore The wind farm is designed using 2000 kW size wind machines by Vestas at a maximum hub-height of 105 m high (see Table 7.3).

Different wind farm layout conditions are defined and considered for simulations:

1. The 5D/4D layout (see Figure 7.1): the default wind farm layout with 5 rotor diameters (5D) distance $(450 \mathrm{~m})$ between the turbines and 4 D between the rows $(360 \mathrm{~m})$;
2. The 5D/7D layout (see Figure 7.2): an alternative wind farm layout with 5 rotor diameters (5D) distance $(450 \mathrm{~m})$ between the turbines and 7D between the rows $(630 \mathrm{~m})$;
3. The $5 \mathrm{D} / 10 \mathrm{D}$ layout (see Figure 7.3): another alternative wind farm layout with 5 rotor diameters (5D) distance (450 m) between the turbines and 10D between the rows $(900 \mathrm{~m})$;
4. The 6D/12D layout (see Figure 7.4): the final alternative wind farm layout with 6 rotor diameters (6D) distance (540 m) between the turbines and 12D between the rows $(1080 \mathrm{~m})$.

The wind turbines will be spaced in a way to minimize turbine-to-turbine interference in the wind flow \therefore The exact spacing required depends on the size of the turbine selected, with increased spacing used for the larger turbines.

[^90]In an onshore wind farm, interspacing between individual turbines is around 6 to 10 times the rotor diameter in the prevailing wind direction \therefore The interspacing distance in the cross prevailing wind direction is around 2 to 5 diameters. The exact spacing will be determined after a detailed micrositing flow analysis. The micro-sitting analysis leads to an acceptable balance between yield maximization and making efficient use of the limited space available (Rehman, Ahmad, \& AlHadhrami, 2011). The schema (5D/4D) is used as base-case for wind farm layout simulations.

Figure 7.1 Representation of 5D/4D layout used for simulations. Source: Own elaboration

The scheme of 5D/4D requires $4374 \mathrm{~km}^{2}$ and represents 29.2% of the total area available for the wind farm (see Figure 7.1).

Figure 7.2 Representation of 5D/7D layout used for simulations. Source: Own elaboration

This alternative scheme of 5D/7D requires $6998 \mathrm{~km}^{2}$ and represents 46.7% of the total area available for the wind farm (see Figure 7.2).

Figure 7.3 Representation of 5D/10D layout used for simulations. Source: Own elaboration

This alternative scheme of $5 \mathrm{D} / 10 \mathrm{D}$ requires $9623 \mathrm{~km}^{2}$ and represents 64.2% of the total area available for the wind farm (see Figure 7.3).

Figure 7.4 Representation of 6D/12D layout used for simulations. Source: Own elaboration
This alternative scheme of $6 \mathrm{D} / 12 \mathrm{D}$ requires $13057 \mathrm{~km}^{2}$ and represents 87.0% of the total area available for the wind farm (see Figure 7.4).

According to Li and Chen (2008) the penetration of wind power into the existing power system continues to increase, which implies the situation of the large wind farms is changing from being simple energy sources to having power plant status with grid support characteristics \therefore They declare that one major challenge in the present and coming years is the connection and optimized integration of large wind farms into electrical grids.

In $L C O E_{\text {wso }}$ methodology the local wind turbines grid is considered a capital expenses during the initial lifetime of a wind power project \therefore As it has been connected to the wind turbines sites, the Local Wind Turbines Grid (LWTG) of any wind farm depends on the scheme of wind turbines sitting used, for simplification of electrical grid`s types we have considered a linear configuration for $L W T G$, according to Figure 7.5.

Figure 7.5 Representation of Local Wind Turbines Grid used for simulations. Source: Own elaboration

The different type of wind farm layout also impacts on land area required for implementation of the power plant, as shown in Table 7.4.

Table 7.4 Relation among layout, area and occupation

Layout type	Area $\left(\mathrm{km}^{2}\right)$	Total area occupation (\%)
5D/4D	4374	29.2
5D/7D	6998	46.7
5D/10D	9623	64.2
6D/12D	13057	87.0

[^91]
7.2.2 CLIMATE DATA USED FOR $V_{W}(M / S), P(K P A)$ AND $T\left({ }^{\circ} C\right)$

7.2.2.1 WIND SPEED (V_{W} AND $V_{W C}$)

Table 7.5 Wind speed series at 10 m data and calculated ${ }^{133}$ at 105 m for Aracati, Corvo Island and Cape Saint James

Period	Aracati $($ Brazil $)$		Corvo Island $($ Portugal)		Cape Saint James (Canada)	
	$v_{w}(\mathrm{~m} / \mathrm{s})$	$v_{w c}{ }^{\left({ }^{*)}\right.}(\mathrm{m} / \mathrm{s})$	$v_{w}(\mathrm{~m} / \mathrm{s})$	$v_{w c}{ }^{\left({ }^{(2)}(\mathrm{m} / \mathrm{s})\right.}$	$v_{w}(\mathrm{~m} / \mathrm{s})$	$v_{w c}{ }^{\left({ }^{*)}(\mathrm{m} / \mathrm{s})\right.}$
January	4.2	5.8	8.4	11.7	11.1	15.4
February	3.5	4.9	8.3	11.5	10.6	14.7
March	2.9	4.0	7.6	10.5	9.2	12.7
April	3.4	4.7	6.8	9.5	8.9	12.4
May	4.3	6.0	5.9	8.2	8.1	11.2
June	5.7	7.9	5.1	7.1	7.5	10.4
July	6.2	8.6	4.4	6.1	7.2	10.0
August	6.9	9.6	4.6	6.4	7.0	9.7
September	7.3	10.1	5.4	7.6	7.5	10.4
October	7.0	9.7	6.4	8.9	9.5	13.1
November	6.6	9.2	7.7	10.6	10.3	14.3
December	5.5	7.6	8.3	11.5	10.8	15.1
Annual Average	5.3	7.4	6.6	9.1	9.0	12.5

Source: RETScreen® International Clean Energy Decision Support Centre (2009)
${ }^{(*)}$ Wind speed series for 105 m calculated $\left(v_{w c}\right)$ by Petersen, Mortensen, Landberg, Højstrup, and Frank (1998).

Some findings about wind speed are:

1. In Aracati (Brazil) the windiest period is clearly June, July, August, September, October, November and December. During this period we can notice wind speed higher than annual average wind speed $(7.4 \mathrm{~m} / \mathrm{s}) \therefore$ When we calculate for hub height $(H=105 \mathrm{~m})$, it was found the same situation, but also an increase of 39.0% in initial wind speed ($H=10 \mathrm{~m}$).
2. In Corvo Island (Portugal) the windiest period is clearly January, February, March, April; November and December. During this period we can notice wind speed higher than annual average wind speed $(9.1 \mathrm{~m} / \mathrm{s}) \therefore$ When we calculate for hub height ($H=105 \mathrm{~m}$), it was found the same situation, but also an increase of 39.0% in initial wind speed ($H=10 \mathrm{~m}$).
3. In Cape Saint James (Canada) the windiest period is clearly January, February, March; October, November and December. During this period we can notice wind speed higher than annual average wind speed $(12.5 \mathrm{~m} / \mathrm{s}) \therefore$ When we calculate for hub height $(H=105 \mathrm{~m})$, it was found the same situation, but also an increase of 39.0% in initial wind speed ($H=10 \mathrm{~m}$).
[^92]
7.2.2.2 ATMOSPHERIC PRESSURE (P)

Table 7.6 Atmospheric pressure data for Aracati, Corvo Island and Cape Saint James

Period	Aracati $($ Brazil $)$	Corvo Island $($ Portugal $)$	Cape Saint James (Canada)
	$P(\mathrm{kPa})$	$P(\mathrm{kPa})$	$P(\mathrm{kPa})$
January	100.4	102.0	100.1
February	100.4	102.1	100.0
March	100.4	101.9	100.0
April	100.4	102.0	100.4
May	100.5	102.1	100.5
June	100.6	102.3	100.7
July	100.7	102.5	100.8
August	100.7	102.2	100.7
September	100.6	102.0	100.5
October	100.5	101.9	100.2
November	100.4	101.9	99.9
December	100.4	101.7	100.1
Annual Average	100.5	102.1	100.3

Source: RETScreen® International Clean Energy Decision Support Centre (2009)

Some findings about atmospheric pressure are:

1. In Aracati (Brazil) the highest atmospheric pressure period is clearly June, July, August and September. During this period we can notice that atmospheric pressure is higher than annual average atmospheric pressure (100.5 kPa) \therefore The atmospheric pressure data series has presented a $\mathrm{SD}^{134}=0.1 \mathrm{kPa}, 100.4 \mathrm{kPa}$ and 100.7 kPa as minimum and maximum values, respectively, for the same period.
2. In Corvo Island (Portugal) the highest atmospheric pressure period is clearly June, July and August. During this period we can notice that atmospheric pressure is higher than annual average atmospheric pressure (102.1 kPa) \therefore The atmospheric pressure data series has presented a $\mathrm{SD}=0.2 \mathrm{kPa}, 101.7 \mathrm{kPa}$ and 102.5 kPa as minimum and maximum values, respectively, for the same period.
3. In Cape Saint James (Canada) the highest atmospheric pressure period is clearly April, May, June, July, August and September. During this period we can notice that atmospheric pressure is higher than annual average atmospheric pressure $(100.3 \mathrm{kPa}) \therefore$ The atmospheric pressure data series has presented a $\mathrm{SD}=0.3 \mathrm{kPa}, 99.9 \mathrm{kPa}$ and 100.8 kPa as minimum and maximum values, respectively, for the same period.
[^93]
7.2.2.3 AIR TEMPERATURE (T)

Table 7.7 Air temperature data for Aracati, Corvo Island and Cape Saint James

	Aracati $($ Brazil $)$	Corvo Island (Portugal)	Cape Saint James (Canada)
	$T\left({ }^{\circ} \mathrm{C}\right)$	$T\left({ }^{\circ} \mathrm{C}\right)$	$T\left({ }^{\circ} \mathrm{C}\right)$
January	26.8	15.6	4.6
February	26.8	15.0	5.2
March	26.6	15.0	5.7
April	26.7	15.4	6.8
May	26.9	16.5	8.8
June	26.9	18.4	10.8
July	26.8	20.7	13.0
August	27.3	21.9	14.1
September	27.5	21.4	13.2
October	27.5	19.7	10.1
November	27.4	18.0	6.9
December	27.1	16.6	5.2
Annual Average	27.0	17.8	8.7

Source: RETScreen® International Clean Energy Decision Support Centre (2009)

Some findings about air temperature are:

1. In Aracati (Brazil) the hottest period is clearly August, September, October, November and December. During this period we can notice that air temperature is higher than annual average air temperature $\left(27.0^{\circ} \mathrm{C}\right) \therefore$ The air temperature data series has presented a $\mathrm{SD}=0.3^{\circ} \mathrm{C}, 26.6^{\circ} \mathrm{C}$ and $27.5^{\circ} \mathrm{C}$ as minimum and maximum values, respectively, for the same period.
2. In Corvo Island (Portugal) the hottest period is clearly June, July, August, September, October, and November. During this period we can notice that air temperature is higher than annual average air temperature $\left(17.8^{\circ} \mathrm{C}\right) \therefore$ The air temperature data series has presented a $\mathrm{SD}=2.5^{\circ} \mathrm{C}$, $15.0^{\circ} \mathrm{C}$ and $21.9^{\circ} \mathrm{C}$ as minimum and maximum values, respectively, for the same period.
3. In Cape Saint James (Canada) the hottest period is clearly May, June, July, August, September and October. During this period we can notice that air temperature is higher than annual average air temperature $\left(8.7^{\circ} \mathrm{C}\right) \therefore$ The air temperature data series has presented a $\mathrm{SD}=3.3^{\circ} \mathrm{C}$, $4.6^{\circ} \mathrm{C}$ and $14.1^{\circ} \mathrm{C}$ as minimum and maximum values, respectively, for the same period.

Table 7.8 Air density calculated for Aracati, Corvo Island and Cape Saint James

Period	Aracati $($ Brazil $)$	Corvo Island $($ Portugal $)$	Cape Saint James (Canada)
	$\rho\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	$\rho\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	$\rho\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
January	1.1665	1.2313	1.2561
February	1.1666	1.2345	1.2522
March	1.1671	1.2329	1.2495
April	1.1667	1.2317	1.2490
May	1.1670	1.2282	1.2425
June	1.1686	1.2224	1.2351
July	1.1698	1.2154	1.2275
August	1.1677	1.2075	1.2216
September	1.1657	1.2064	1.2234
October	1.1645	1.2126	1.2327
November	1.1638	1.2194	1.2429
December	1.1651	1.2237	1.2528
Annual Average	1.1666	1.2222	1.2404

Source: Own elaboration

Some findings about air density are:

1. In Aracati (Brazil) the highest air density period is clearly March, April, May, June, July and August. During this period we can notice that air density is higher than annual average air density $\left(1.1666 \mathrm{~kg} / \mathrm{m}^{3}\right) \therefore$ The air density calculated has presented a $\mathrm{SD}=0.0016 \mathrm{~kg} / \mathrm{m}^{3}, 1.1638$ $\mathrm{kg} / \mathrm{m}^{3}$ and $1.1698 \mathrm{~kg} / \mathrm{m}^{3}$ as minimum and maximum values, respectively, for the same period.
2. In Corvo Island (Portugal) the highest air density period is clearly January, February, March, April, May, June and December. During this period we can notice that air density is higher than annual average air density $\left(1.2222 \mathrm{~kg} / \mathrm{m}^{3}\right) \therefore$ The air density calculated has presented a $\mathrm{SD}=0.0095 \mathrm{~kg} / \mathrm{m}^{3}, 1.2064 \mathrm{~kg} / \mathrm{m}^{3}$ and $1.2345 \mathrm{~kg} / \mathrm{m}^{3}$ as minimum and maximum values, respectively, for the same period.
3. In Cape Saint James (Canada) the highest air density period is clearly January, February, March, April, May; November and December. During this period we can notice that air density is higher than annual average air density $\left(1.2404 \mathrm{~kg} / \mathrm{m}^{3}\right) \therefore$ The air density calculated has presented a $\mathrm{SD}=0.0116 \mathrm{~kg} / \mathrm{m}^{3}, 1.2216 \mathrm{~kg} / \mathrm{m}^{3}$ and $1.2561 \mathrm{~kg} / \mathrm{m}^{3}$ as minimum and maximum values, respectively, for the same period.

7.3 ECONOMIC AND FINANCIAL ASPECTS OF THE WIND PROJECT

7.3.1 ASSUMPTIONS, CONSTRAINTS, AND LIMITATIONS

For simplicity, the economic and financial issues of the wind project to be simulated the assumptions, constraints and limitations are related to $O \& M$ costs and project/turbine availability and other losses; financing structure and costs; project lifetime, income taxes, decommissioning rates and asset depreciation.

7.3.1.1 Assumptions

Table 7.9 Economic and financial assumptions considered for wind project

\# Life time (N)	25 yrs
\# Debt interest rate	$5 \% / \mathrm{yr}$
\# Debt ratio	$50 \%{ }^{135}$
\# Debt term	14 yrs
\# Depreciation method	Straight-line ${ }^{136}$
\# Depreciation rate	$4 \% / \mathrm{yr}$
\# Discount rate	$9 \% / \mathrm{yr}$
\# Revenue taxes $\left(R_{\text {taxes }}\right)$	30%
\# Inflation rate $(i f r)$	$2.5 \% / \mathrm{yr}$
* Period of O\&M warranty	From 1 to 5 yr

Source: Own elaboration
a) The Power Purchase Agreement Rate $(P P A R)^{137}$ is considered different for each site, according to the energy policy by the country (Brazil, Portugal and Canada) $\therefore P P A R$ is defined in $\$ / \mathrm{kWh}$;
b) We have considered the 25 -year assumed project/economic life in all scenarios used in simulations;
c) The interest, inflation, debt and discount rates within debt ratio are constant during the economic lifetime of the wind project;
d) The financing structure of the wind project is constant during the economic lifetime of the wind project too;
e) $\mathrm{O} \& \mathrm{M}$ costs and wind farm availability are also conditioned to Operations and Maintenance management ($O \& M_{\text {manag }}$) proposed as described in section 7.4.2;

[^94]f) O\&M costs ${ }^{138}$ are accounted in in Wind Farm $O \& M$ Cost Model ($O \& M_{\text {WFCM }}$) and information/data are also based on Table 6.8;
g) The cash flow model adopted for economic analysis by simulations is based on Welch and Venkateswaran (2009) \therefore We have also considered the items described in $L C O E_{\text {wso }}$ proposed in Chapter 6;
h) All monetary values used to calculate $L C O E_{w s o}$ are converted ${ }^{139}$ to 2010 US $\$$ and updated with the inflation rate defined, in order to uniform the input-output values presented in this Ph.D. research work;
i) Initial capital costs of the wind project (yr=0) are accounted in Wind Farm Life-Cycle Capital Cost Model (LCCCM $_{\text {WF }}$) and information/data are based on Table 6.7;
j) Capital costs related to major review of the wind power system are accounted in Levelized Replacement Cost Model (LRCM) and information/data are based on Table 6.8;
k) Decommissioning costs are included in Wind Farm Removal Cost Model ($R C M_{W F}$) and information/data are also based on Table 6.8 and Table 6.9;

1) The policy instruments that impacts on COE are defined in Renewable Energy Public Incentive Model (REPIM) and information/data are also based on Table 6.10.

7.3.1.2 Constraints

a) We have considered PPAR constant during the lifetime of the wind project for all simulations, that avoid any change in energy policy during the period of instrument analyzed;
b) As we have considered only one lifetime for the wind project, we cannot analyzed the effect of lifetime flexibility in the cost of energy produced by the power plant;
c) As stated in section 7.3.1.1, item c), we cannot measure the effect of variation on macroeconomic indicators (e.g.: interest rate and inflation) for the different sites chosen for simulations;
d) The wind project is capital-intensive and the financing structure ${ }^{140}$ can be adequate to each project; in our case we have considered a constant financing structure for the wind project simulated;
e) The energy market has changed and the competition through the economic agents raised up during the last decade, but we have considered the market and consumer able enough to buy

[^95](clean) green energy for the next 25 years \therefore The renewable energy market can change and we have considered it is favorable;
f) The distribution grid of these selected sites to install a new power plant, in other words, a new wind power plant, is ready enough to receive one more producer with variable electricity generation, which cannot be so true like that!;

7.3.1.3 Limitations

a) The wind project has an only price of electricity sold, although, this price ($P P A$) has to be updated by the inflation rate adopted \therefore It can be analyzed as weakness due to the variation of the wind power plant;
b) The annualized economic variables can change during the year, but we have considered constant during the entire year, and the possible change can occurs inter-years (from one year to another), what can not reflect the real volatile nature of these variables;
c) The wind profile (distribution) at a site determines the $C O E$ and the revenue to a wind farm operator by determining the number of kWh sold \therefore Since WECS scales with the cube of wind velocity, the velocity of the wind is likely to be the most important single factor in determining the placement of wind farms and their profitability; we have considered these three sites in function of the highest annual mean wind speed available in RETScreen Climate Database;
d) COE can be also affect by availability of the wind farm, in our analysis we have considered only $O \& M_{\operatorname{manag}(S T D)} ; O \& M_{\operatorname{manag}(A) ;} O \& M_{\operatorname{manag}(B)}$ described in section 7.4.2, in literature is possible to find another factor (e.g.: load demanded; earthquakes or other natural disasters) \therefore In order to simplify the $L C O E_{\text {wso }}$ we have not considered catastrophic events such as hurricanes, tornados, and lightning;
e) The three different wind farms are analyzed and compare each other in order to notice the influence of technical and economic variables simulated; This analyzes can be more than comparison, but as we have stated in the objectives of this Ph.D. research work only make economic evaluation of a candidate wind project through the LCOE optimization;
f) According to Ngala, Alkali, and Aji (2007) researches concerning about economic evaluation of WECS have shown a lack of common economic analysis technique, and elemental cost data for validation, the $L C O E_{w s o}$ calculated and named as the "optimized cost" cannot reflect the real minimum (optimized) cost of electricity produced by a wind farm;
g) The investment analysis done are not for exclusion reason, due to we have not considered $\underline{\text { limited funds for investment alternative, even less we know it is an important aspect to be }}$ checked in this kind of analysis.

7.3.2 Revenue, capital, O\&M, and other costs

Considering the variability of the wind resources, estimating the average annual revenue ($A A R_{y r_{n}}$) of a wind farm may be challenging when the amount of information available is limited or when the idea is still in project phase \therefore In this Ph.D. research work, we have considered revenues from the wind farm designed to be originated by product from $A E P_{\text {avail }}$ and electricity price sold (PPAR) and the expected market price $(E M P)(\text { year } n)^{141}$. Eqn 7.1 shows the algorithm developed to calculate $A A R_{y r_{n}}$.

So the Table 7.10 is shown the parameters used for calculating the average annual revenue of the hypothetical wind farm in simulations procedures.

Table 7.10 Revenue parameters considered for simulations

Source: Own elaboration. Note: ${ }^{(\mathrm{a})} P P A R$ for Brazil (Chade, Juliana, \& Sauer, 2013); ${ }^{(\mathrm{b})}$ PPAR for Portugal (ERSE, 2013) and ${ }^{(\mathrm{c})}$ PPAR for Canada (CanWEA, 2012).

Regarding to capital costs (investment costs) ${ }^{142}$ of the hypothetical wind farm, we have considered the same classification presents in Chapter 5, Table $5.1 \therefore$ The referenced inputs for determining the capital costs for the simulations are based on Tables 6.7 and 6.8.

O\&M costs are considered into two parts. One is the fixed O\&M (see Eqn 6.2.3.1). \therefore This named $O \& M_{\text {fixed }_{C M}}$, based on percentage (ϖ) of capital cost $\left(L C C C M_{W F}\right)$ and land lease cost (LLC) per kWh (for cover costs such as interconnect fees and royalties including land costs) \therefore We have also considered the relation between wind farm layout and land area (see Table 7.4). The other part of $\mathrm{O} \& \mathrm{M}$ costs are considered variable ($O \& M_{\text {variable }_{C M}}$). This variable part of O\&M cost are based on

[^96]warranty conditions, labor costs, revenue taxes, inflation and lifetime of the wind farm (see Eqn 6.2.3.2).

Wind farm reliability is a critical factor in the success of a wind energy project. Poor reliability directly affects both the project's revenue stream through increased O\&M costs and reduced availability to power due to turbine downtime \therefore Many researches has confirmed that condition, although we must consider the effect of the O\&M warranty contracts, such as period, frequency, items supported and other aspect which can contribute to reduce or maintain constant (compatible with the level of production).

Figure 7.5 Estimated O\&M cost per unit of energy production. Source: Christopher (2003)

As we can notice in Figure 7.5 higher $O \& M$ costs are accompanied by more frequent downtime of the wind turbines during the years of operation \therefore This will imply a lower number of production hours and a substantial negative impact on the cost per $\mathrm{kWh} \therefore$ For Blanco (2009) O\&M costs make up around 10% of the expenditure, although there is substantial uncertainty around this category due to the fact that few wind turbines have reached the end of their lifetime.

The "other costs" of the wind power plant are difficult to be accounted analytically in a 100% included manner, and it could be an unnecessary effort due to the relative participation of "other costs" in the COE \therefore The institutional setting, particularly spatial planning and public permitting practices, can make a significant impact on costs of energy produced by a wind farm.

The electricity market and industry influence directly on the $C O E$, when we considered the price and costs of fossil-fuel technologies, price of steel, crude, labor, and others which can increase or decrease in function of the international economic scenario \therefore For these variables, we consider the "Market Cost Adjustment" $\left(M C_{A}\right)$ in some items of the capital cost for a wind power plant.

7.4 O\&M ASSUMPTIONS FOR WIND PROJECT SIMULATIONS

7.4.1 VARIABLES AND DATA

The Wind Farm $O \& M$ Cost Model $\left(O \& M_{W F C M}\right)$ considers the typical costs associated with ongoing operations, including scheduled maintenance, unscheduled repairs, site management, and support personnel, of a facility that comprises any number of conventional wind turbines. \therefore We have summarized in Table 7.11 the variables and data for $O \& M_{W F C M}$ calculations.

Table 7.11 Variables and data for running $O \& M_{W F C M}$

Variables	Data
$O \& M_{\text {fixed }}^{\text {cm }}$	calculated
$L^{\text {LCCCM }}{ }_{W F}$	calculated
LLC	based on Table 6.8
ϖ	based on Table 6.8
$i f_{r}$	based on Table 7.9
N	based on Table 7.2
$O \& M_{\text {variable }_{\text {CM }}}$	calculated
$N_{W T}$	calculated
$\left(\frac{A A R}{A E P_{\text {avail }}}\right)$	calculated
$n_{m l h}$ and $n_{t h}$	based on Tables 6.11 and 7.12
MLC	based on Table 6.8
TLC	based on Table 6.8
$R_{\text {taxes }}$	based on Table 7.9

Source: Own elaboration

For Poore and Walford (2008) most importantly, there are no complete and consistent data for any project over the entire useful lifetime of the wind turbines. \therefore Without exception, the older turbines (those reaching the end of their lifetime) are smaller and simpler versions of the machines installed in the last five years.

Data for simulations have come from a variety of sources, including manufacturer publications, published case studies and scientific journals. The quality (consistency) and quantity of the available data can best be described as demonstrative \therefore In some cases general estimates of overall maintenance costs for specific projects for periods of one or two years were available; in other cases detailed information on actual expenditures for a variety of turbines (but only for a limited period of its entire lifetime) was provided \therefore As expected, the data are not in an only one consistent format ($\$ / \mathrm{kW}, \$ /$ wind turbine, $\$ /$ hour, etc.) and are broken down into a surprising variety of categories for parts, labor, and downtime.

7.4.2 O\&M PROGRAMS PROPOSED

The Operations and Maintenance management ($O \& M_{\text {manag }}$) proposed to the simulations are defined in $O \& M_{\text {manag }(S T D)} ; O \& M_{\operatorname{manag}(A) ;} O \& M_{\text {manag }(B)}$ (see Table 6.5) \therefore Data used for each $O \& M$ program are based on the information available in Table 6.11.

Table 7.12 O\&M programs analyzed in simulations

Variables	$O \& M_{\text {manag }(S T D)}$	$O \& M_{\text {manag(A) }}$	$O \& M_{\text {manag }(B)}$
$S C_{O \& M}$			
\quad Number of days	5	2	3
\quad Period ${ }^{143}$	$\mathrm{Feb} / \mathrm{Jun} / \mathrm{Nov}$	$\mathrm{Feb} / \mathrm{Jun} / \mathrm{Nov}$	$\mathrm{Feb} / \mathrm{Jun} / \mathrm{Nov}$
USC $_{\text {O\&M }}$			
\quad Frequency	$1.5 / \mathrm{yr}$	$1.0 / \mathrm{yr}$	$1.8 / \mathrm{yr}$
\quad Repair time	$3 \mathrm{~h} / \mathrm{repair}$	$4 \mathrm{~h} / \mathrm{repair}$	$2 \mathrm{~h} / \mathrm{repair}$
Source: Own elaboration			

Source: Own elaboration

Some assumptions are considered for O\&M programs:
a) The $O \& M_{\text {manag }(S T D)}$ is defined as the base-case. So the two more options $\left(O \& M_{\text {manag(A) }}\right.$ and $\left.O \& M_{\operatorname{manag}(B)}\right)$ are $\mathrm{O} \& \mathrm{M}$ programs 'variations;
b) A work day considered is 8 work hours, so the hours required in each program must be calculated as for $S_{\text {o\&m: }}$ number of work days x period $x 8$ work hours/day;
c) The hours required for $U S C_{O \& M}$ is related to product from the number of wind turbines, frequency failure rate and repair time for each turbine.
d) The total hours of $O \& \mathrm{M}$ required is the correspondent relation ($S C_{O \& M+} U S C_{\text {O\&M }}$) per year. Each alternative is simulated for each site to be installed the hypothetical wind farm. \therefore The objective is finding the best option (we must remember the less hours required better is the program proposed. It is an inverse relation);
e) For labor costs of O\&M, we have considered $M L C$ for $S C_{O \& M}$ and $T L C$ for $U S C_{O \& M}$ and the data are based on Table 6.8;
f) The availability of the wind farm is the relation of hours of production ($H_{\text {prod }}$) and full load hour ($F L H_{w f}$).

[^97]
7.5 ENERGY POLICY ASSUMPTIONS FOR WIND PROJECT SIMULATIONS

7.5.1 VARIABLES AND DATA

The Renewable Energy Public Incentive Model (REPIM) was developed in order to measure the effect of the public incentive on COE produced by RETs, in our case, WECS technology. We have focused on investment and production phase of the wind power project. \therefore As we already said, we handle with capital-intensive and variable production energy project that is why the cost of energy produced is strongly influenced by capital costs and production. \therefore Many studies indicate this relation (Barradale, 2010; Bolinger, 2009; Butler \& Neuhoff, 2008; Ertürk, 2012; Lantz, Wiser, \& Hand, 2012; Wiser \& Pickle, 1998).

We have summarized in Table 7.13 the variables and data for REPIM calculations.

Table 7.13 Variables and data for REPIM calculations

Variables	Data
$R E I_{C M}$	calculated
$\psi_{\text {total }}$	based on Table 6.10
n_{H}	based on Table 6.10
$\mathrm{REP}_{\text {CM }}$	calculated
ε_{0}	based on Table 6.10
n_{ε}	based on Table 6.10
OREP $_{\text {CM }}$	calculated
$C R_{f}$	based on Table 6.10
GHG. $R_{\text {CM }}$	calculated
$G H G_{E F_{f f_{\text {co }}}}$	based on Table 6.10
$G H G_{E F_{\text {wesc }}{ }_{\text {co }}}$	based on Table 6.10
ε_{0}	based on Table 6.10
ξ_{n}	based on Table 6.10

Source: Own elaboration

The REPIM variable of $L C O E_{\text {wso }}$ methodology is designed to represent a reduction of COE that is why we consider a negative sign in Eqn 6.2 , in Chapter $6 \therefore$ Although, we have not considered the effect on $L C O E_{w s o}$ as a "credit" for the wind project.

We also can notice in the entire model proposed an excessive data requirement, because for each variable of the $L C O E_{w s o}\left(L C C C M_{W F}, L R C M, O \& M_{W F C M}, R C M_{W F}, R E P I M\right.$ and $\left.L C P M_{W F}\right)$ needs several parameters for several subcomponents of the WECS and wind project, at a technical and economical point of view.

7.5.2 ENERGY POLICY INSTRUMENTS PROPOSED

All the energy policy instruments are used for simulations as we have defined in Table 6.5. Data used for each REPIM instrument are based on the information available in Table $6.10 \therefore$ Each alternative is simulated for each site to be installed the hypothetical wind farm.

Table 7.14 REPIM instruments analyzed in simulations

Instrument	Base-case	Case ${ }_{1}$	Case 2	Case 3
$R E I_{C M}$				
$\psi_{\text {total }}$	30\%	25\%	20\%	15\%
n_{Ψ}	6 yrs	5 yrs	4 yrs	3 yrs
$R E P_{C M}$				
ε_{0}	$\begin{aligned} & 88.20 € / \mathrm{MWh}^{(\mathrm{a})} ; \\ & \$ 75.00 / \mathrm{MWh}^{\mathrm{b})} ; \\ & \text { CAD } \$ 10 / \mathrm{MWh}^{(\mathrm{c})} \end{aligned}$	decreased 10\%	decreased 15\%	decreased 20\%
n_{ε}	$\begin{aligned} & 10 \mathrm{yrs}^{(\mathrm{a})} ; 15 \mathrm{yrs}^{(\mathrm{b})} ; \\ & 10 \mathrm{yrs}^{\mathrm{c})} \end{aligned}$	$\begin{aligned} & 12 \mathrm{yrs}^{(\mathrm{a})} ; 17 \mathrm{yrs}^{(\mathrm{b})} ; \\ & 12 \mathrm{yrs}^{\mathrm{c})} \end{aligned}$	$\begin{aligned} & 14 \mathrm{yrs}^{(\mathrm{a})} ; 18 \mathrm{yrs}^{(\mathrm{b})} ; \\ & 14 \mathrm{yrs}^{\mathrm{c})} \end{aligned}$	$\begin{aligned} & 15 \mathrm{yrs}^{(\mathrm{a})} ; 15 \mathrm{yrs}^{(\mathrm{b})} ; \\ & 20 \mathrm{yrs}^{\mathrm{c})} \end{aligned}$
OREP $_{\text {CM }}$				
$C R_{f}$	80\%	60\%	40\%	25\%
GHG. $\mathrm{R}_{C M}$				
$G H G_{E F_{f f} \mathrm{co}_{2}}$	$410 \mathrm{~g} / \mathrm{kWh}$	$690 \mathrm{~g} / \mathrm{kWh}$	$890 \mathrm{~g} / \mathrm{kWh}$	$1234 \mathrm{~g} / \mathrm{kWh}$
$G H G_{E F_{\text {wesc } \mathrm{co}_{2}}}$	$30 \mathrm{~g} / \mathrm{kWh}$	$48 \mathrm{~g} / \mathrm{kWh}$	$75 \mathrm{~g} / \mathrm{kWh}$	$83 \mathrm{~g} / \mathrm{kWh}$
ε_{c}	$\begin{aligned} & 35 € / \mathrm{tCO}_{2}{ }^{(\mathrm{a})} ; \\ & \$ 13.00 / \mathrm{tCO}_{2}{ }^{(\mathrm{b})} ; \\ & \$ 30.00 / \mathrm{tCO}_{2}{ }^{\mathrm{c})} \text {; } \end{aligned}$	decreased 10\%	decreased 15\%	decreased 20\%
ξ_{n}	25\%;25\%;25\%;25\%	50\%;25\%;25\%;0\%	10\%;50\%;20\%;20\%	0\%;0\%;50\%;50\%

Source: Own elaboration. Note: ${ }^{(\mathrm{a})}$ Brazil; ${ }^{\text {(b) }}$ Portugal and ${ }^{(\mathrm{c})}$ Canada.

Some assumptions are considered for REPIM cases:
a) We have considered a moderate decreasing interest of governments ${ }^{144}$ in supporting RETs, reason why we consider decreasing trends for ε_{0} in cases 1,2 and 3 ;
b) The carbon credits $\left(\varepsilon_{c}\right)$ also follows the same trends of governments supporting for RETs, because the carbon credit market shows in the last 5 years;
c) The time of policy energy instrument (n_{ε}) is defined due to the current legislation of each country selected for simulations.

[^98]
7.6 GENERAL SIMULATIONS PROCEDURES

7.6.1 STEPS USED FOR SIMULATIONS

As we have discussed in Chapter 6, section 6.4.4.3 the simulation process should follow some standard steps \therefore During the simulations procedures we have followed the steps as shown in Figure 7.6:

1. Problem Definition	Explained in section 1.2 (Interest and scope of the research) and section 6.4.3.1 (Research objectives)

2. Overall Project Plan \quad Explained in section 6.4 .2 (Methodological procedures)

3. System Definition	Explained in section 6.4.4.1 (Variables relationship and research boundary)
4. Conceptual Model	Explained in section 6.4.4.2 (Mathematical model structuring; Shown in Figure 6.16

5. Experimental Design	Explained in section 6.4.4(Research design)
6. Model Translation	The equations of LCOE wso spreadsheet and imported to Matlab for sitten in MS Excel sprens

7. Verification \& Validation	Explained in section 6.4.4.3 (Numerical simulation and validation process)

8. Input Data Preparation	Explained in section 6.4.4.3 (Numerical simulation and validation process); See Tables 6.5, 6.6, 6.7, 6.8, 6.9.6,10 and 6.11
9. Operationalization	Explained in section 7.6 (General simulations procedures)

10.Analysis \& Interpretation	Explained in Chapter 8 (Results and Discussion)

11.Implementation \& Documentation \quad Explained in Chapter 9 (Conclusions and Implications)

Figure 7.6 Steps of simulation of $L C O E_{\text {wso }}$ algorithm. Source: adapted from Shannon (1992) and Banks (1999)

7.6.2 Optimization criteria

We have considered some hypotheses for developing $L C O E_{\text {wso }}$ methodology as shown in Table 6.3. The optimization criteria are defined considering the relations among variables ($v_{w c}, L_{w}, O \& M_{\text {manag }}$ and $E_{p i}$) and hypotheses ($R H_{1,}, R H_{2}, R H_{4}, R H_{5}, R H_{6}$ and $R H_{7}$) of this Ph.D. research work. \therefore We have summarized in Table 7.15 the variables and hypotheses considered for optimization criteria definition.

Table 7.15 Variables and hypotheses considered for optimization criteria definition

Variables	Relation with	Impact expected on $L C O E_{w s o}$
1. Wind speed $\left(v_{w c}\right)$	hypotheses $R H_{l,} R H_{2}$ and $R H_{5}$	down $(-)$ and or up (+)
2. Wind turbines layout $\left(L_{w t}\right)$	hypotheses $R H_{4}$ and $R H_{5}$	down $(-)$ and or up (+)
3. O\&M management $\left(O \& M_{\text {manag }}\right)$	hypotheses $R H_{5}$ and $R H_{6}$	down $(-)$ and or up (+)
4. Energy policy instruments $\left(E_{p i}\right)$	hypotheses $R H_{5}$ and $R H_{7}$	down $(-)$ and or up (+)

Source: Own elaboration

We also try to answer two fundamentals questions through the optimization criteria:

1. Which variables are expected to have the largest effect on $L C O E_{\text {wso }}$?
2. Which of these variables affect more than one component of the $L C O E_{\text {wso }}$ decomposition?

As we have stated at section 6.4.3.4 (Research hypotheses and limitations), there is no standard LCOE to be reference for this kind of research, it is not possible to harmonize all input/data assumptions and the site of the power plant becomes each wind project as unique \therefore Consequently, for simulation and validating the proposed algorithm ($L C O E_{\text {wso }}$) we have considered as the main optimization criteria, when conditions can be confirmed simultaneously:

1. As minimum as possible $L C O E_{\text {wso }}$ calculated in the simulations for each site selected for the hypothetical wind farm;
2. For the same wind farm, the lowest $L C O E_{\text {wso }}$ calculated in the simulations, considering the whole lifetime of the hypothetical wind farm and;
3. As maximum as possible $A E P_{\text {avail }}$ calculated in the simulations for each site selected for the hypothetical wind farm.

As Ozerdem, Ozer, and Tosun (2006) have discussed about cost-effective solution means the most suitable alternative, technically and economically \therefore The $L C O E_{\text {wso }}$ methodology may lead to safe conclusions with respect to the best performance of a wind project, in a technical and economical point of view. Power projects in the electricity supply market live for long a period that is the case of wind farms last for about 20-30 years.

7.6.3 SEnSItivity analysis

The sensitivity analysis is a technique for finding out how the result from the reliability analysis varies, when changing the values of the input parameters \therefore Thus, a sensitivity analysis is appropriate to use when input data suffer from a high degree of uncertainty, just as the case for the reliability data in this Ph.D. research work.

It is important to define the central point of the proposed sensitivity analysis \therefore The sensitivity analysis done in the simulations is in order to understand the influence of the governing parameters on the $L C O E_{\text {wso }}$ and the economic efficiency of the wind power plant analyzed. These values should be representative for the techno-economic situation of the wind farm \therefore After extensive research data review, the following values are selected for the main parameters (data) for the wind project conditions and details (see Tables 6.5 to 6.11).

We have also considered the minimum value for each parameter (datum) used, in function of the orientation to find the minimum $L C O E_{\text {wso }}{ }^{145}$ calculated as possible in the simulations done \therefore Variables, parameters/data, variations and interactions for the sensitivity analysis are presented in Table 7.16.

Table 7.16 Variables, parameters, variations and interactions of the sensitivity analysis

Variables	Variations	Interactions (int=900) with $N=25 \mathrm{yrs}$
1. Wind speed ${ }^{146}\left(v_{w c}\right)$	according to Table 7.5	$1 v_{w} x 3$ different sites $x N=75$ int
2. Wind turbines layout $\left(L_{w t}\right)$	according to Table 7.4	$4 L_{w t} x 3$ different sites $x N=300$ int
3. O\&M management $\left(O \& M_{\text {manag }}\right)$	according to Table 7.12	$3 O \& M_{\text {manag }} x 3$ different sites $x N=225$ int
4. Energy policy instruments $\left(E_{p i}\right)$	according to Table 7.14	$4 E_{p i} x 3$ different sites $x N=300$ int

Source: Own elaboration

The sensitivity analysis is organized in two parts. The first part the variables are analyzed individually (see section 8.4.1). In this part is analyzes the impact of wind speed ($v_{w c}$), O\&M management ($O \& M_{\text {manag }}$), wind turbines layout $\left(L_{w t}\right)$ and energy policy instruments ($E_{p i}$) on $L C O E_{\text {wso. }}$ The second part of the sensitivity analysis a multiple variable analysis is made (see section 8.4 .2) \therefore We have analyzed the impact of wind speed $\left(v_{w c}\right)$ and wind turbines layout $\left(L_{w t}\right)$ and $O \& M$ management $\left(O \& M_{\text {manag }}\right)$ and energy policy instruments $\left(E_{p i}\right)$ on $L C O E_{w s o}$.

The sensitivity analysis was conducted for gaining an insight about the impact of the variables selected to the cost of energy produced from the wind farm \therefore The results are discussed and shown in graphs and tables in Chapter 8.

[^99]
7.7 SUMMARY AND CONCLUSIONS

The objective of this chapter is to implement numerical simulation and validation of the $L C O E_{\text {wso }}$ methodology proposed in Chapter 6 of this Ph.D. research work \therefore Model verification and validation are critical in the development of a simulation model. Unfortunately, there is no set of specific tests that can easily be applied to determine the "correctness" of a new model \therefore Furthermore, no algorithm exists to determine what techniques or procedures to use to validate it. Every simulation study represents a new and unique challenge to the author(s) of the model.

We have designed the $L C O E_{w s o}$ to be applied in WECS technology which has driven us to develop a power system definition as we do in section $7.2 \therefore$ Furthermore, as the goal is to find the minimum COE using the $L C O E_{w s o}$ methodology, it is necessary to discriminate analytically the algorithm into sub-models as shown in Chapter 6, section 6.4.4.2 \therefore To performance the numerical simulation and validation of this model so many input/data were needed, as summarized in Tables 7.2, 7.3, 7.4, $7.5,7.6,7.7,7.7,7.8,7.9,7.10,7.11,7.12,7.13$ and 7.14.

The calculations are done and the final results are compared with referenced values. We have considered a range for the $\operatorname{LCOE}_{w s o}$ calculated in order to be numerically validated the methodology proposed and the technical and economic aspects of the power plant (wind farm) and institutional conditions (current energy policy) and climate conditions give us a large range \therefore The NREL ${ }^{147}$ has estimated the LCOE for onshore wind energy for US and Europe, excluding incentives, an average $L C O E_{2010}$ of $U S D ~ 71 / M W h$, as we can see in Figure 7.7.

Figure 7.7 Estimated LCOE for wind energy between 1980 and 2009 for the United States and Europe (excluding incentives). Source: Lantz et al. (2012)

[^100]An analysis of the fundamentals of $L C O E_{\text {wso }}$ methodology has resulted in a well-considered approach of cost modeling within the LCOE/NREL methodology that is worldwide used for costanalysis of RETs. $L C O E_{\text {wso }}$ as a cost method analysis has been developed that can simulate the major technical and economic aspects of an onshore wind farm to a degree sufficient to be of use in pilot and other preliminary studies and possible other RETS (e.g. solar power, hydropower, etc.).

Costs and performance of an onshore wind farm closely relate to the $L C O E_{\text {wso }}$ variables simulated as defined in Tables 7.15 and $7.16 \therefore$ Particularly the $L C O E_{\text {wso }}$ that is used to assess differences between various concepts must acknowledge this fundamental connection with the data to feed the model and its impacts on the $C O E$ of the wind farm analyzed \therefore In this Ph.D. research work is considered the operational research approach, being an engineering and economical model simultaneously. A breakdown of costs into a summation of sub-models can lead to a straightforward accumulation of inaccuracies and every level of precision can be obtained with precise input data.
$L C O E_{\text {wso }}$ has been applied for the economic analysis of the wind farm in three different sites (Brazil, Portugal and Canada). Although the simulation and validation of a model just represents a "single concept", the results of this cost model are unique for each site simulated. $L C O E_{\text {wso }}$ proved a good basis to compare the effect of data (parameters) considered and to assess the effect of variations that affect both $A E P_{\text {avail }}$ and LCOE \therefore We should consider as "critical" when interpreting the trend of levelized production costs in a parameter variation analysis for making a decision about the power plant (project) analyzed.

As we said in the last paragraph, the effect of the parameters/data variations impact on $L C O E_{\text {wso }}$ that is why we need to run (900 interactions) within a sensitivity analysis for numerical simulation and validation process, as detailed in section $7.6 \therefore$ The sensitivity analysis was defined and undertaken as explained in sections 7.6.1, 7.6.2 and 7.6.3. Two groups of analysis are done; one for individual variable ($v_{w c}, O \& M_{\text {manag }}, L_{w t}$ and $E_{p i}$) and other for multiple variables ($v_{w c}$ and $L_{w t}$; $O \& M_{\text {manag }}$ and $\left.E_{p i}\right)$ in order to analyzed the size of impact on $L C O E_{\text {wso }}$.

This Ph.D. research work has demonstrated the importance of cost of energy produced optimization from WECS \therefore The results of the numerical simulations, validation and sensitivity analysis carried out in the present Ph.D. research work are presented and discussed deeply \therefore Also the results of the individual and multiple variable sensitivity analysis indicate that among the parameters/data tested effectively have impacts on the estimated $L C O E_{\text {wso }}$, as demonstrated in Chapter 8.

7.8 References

Ackermann, T. (2005). Wind power in power systems: Wiley Online Library.
Albadi, M. H., El-Saadany, E. F., \& Albadi, H. A. (2009). Wind to power a new city in Oman. Energy, 34(10), 1579-1586. doi: 10.1016/j.energy.2009.07.003

Banks, J. (1999). Introduction to simulation. Paper presented at the Proceedings of the 31st conference on Winter simulation: Simulation - a bridge to the future Phoenix, Arizona, United States.

Barradale, M. J. (2010). Impact of public policy uncertainty on renewable energy investment: Wind power and the production tax credit. Energy Policy, 38(12), 7698-7709. doi: 10.1016/j.enpol.2010.08.021

Blanco, M. I. (2009). The economics of wind energy. Renewable \& Sustainable Energy Reviews, 13(6-7), 1372-1382. doi: 10.1016/j.rser.2008.09.004

Bolinger, M. (2009). PTC, ITC, or Cash Grant? An Analysis of the Choice Facing Renewable Power Projects in the United States. (DE-AC02-05CH11231). Lawrence Berkeley National Laboratory. Retrieved from http://escholarship.org/uc/item/5xf361wm.

Butler, L., \& Neuhoff, K. (2008). Comparison of feed-in tariff, quota and auction mechanisms to support wind power development. Renewable Energy, 33(8), 1854-1867. doi: 10.1016/j.renene.2007.10.008

CanWEA. (2012). Canada moves to 6th place globally for new installed wind energy capacity in 2011. Retrieved March 5th, 2012, from http://www.canwea.ca

Chade, R., Juliana, F., \& Sauer, I. L. (2013). An assessment of wind power prospects in the Brazilian hydrothermal system. Renewable and Sustainable Energy Reviews, 19(0), 742-753. doi: http://dx.doi.org/10.1016/j.rser.2012.11.010

Christopher, A. W. (2003). Wind Turbine Reliability: Understanding and Minimizing Wind Turbine Operation and Maintenance Costs. Retrieved 2010, March 13, from http://prod.sandia.gov/techlib/access-control.cgi/2006/061100.pdf.

ERSE. (2013). Tariffs and Prices. Retrieved February 13, 2013, from http://www.erse.pt/eng/electricity/tariffs/Paginas/default.aspx

Ertürk, M. (2012). The evaluation of feed-in tariff regulation of Turkey for onshore wind energy based on the economic analysis. Energy Policy, 45(0), 359-367. doi: http://dx.doi.org/10.1016/j.enpol.2012.02.044

Harper, J., Karcher, M., \& Bolinger, M. (2007). Wind Project Financing Structures: A Review \& Comparative Analysis.: Lawrence Berkeley National Laboratory. Retrieved from http://eetd.lbl.gov/ea/ems/reports/63434.pdf.

Ibrahim, H., Lefebvre, J., Methot, J. F., \& Deschenes, J. S. (2011, 3-5 Oct. 2011). Numerical modeling wind-diesel hybrid system: Overview of the requirements, models and software tools. Paper presented at the Electrical Power and Energy Conference (EPEC), 2011 IEEE.

IEA. (2005). Projected Costs of Generating Electricity. Retrieved March 27, 2010, from http://www.iea.org/textbase/nppdf/free/2005/ElecCost.PDF

IEA. (2010). Projected Costs of Generating Electricity. 2010 Edition. Retrieved February 24, 2012, from http://www.iea.org

Lantz, E., Wiser, R., \& Hand, M. (2012, May 13-17). The Past and Future Cost of Wind Energy. Paper presented at the 2012 World Renewable Energy Forum, Denver.

Li, H., \& Chen, Z. (2008). Overview of different wind generator systems and their comparisons. Renewable Power Generation, IET, 2(2), 123-138. doi: 10.1049/iet-rpg:20070044

Molenaar, D. P. (2003). Cost-effective design and operation of variable speed wind turbines. PhD in Engineering, Technische Universiteit Delft, Netherlands. Retrieved from http://www.narcis.nl/publication/RecordID/oai:tudelf.nl:uuid:f1d1bec2-1064-4ab6-87b4fc78779d6404

Newell, R. G., Pizer, W. A., \& Raimi, D. (2013). Carbon Markets 15 Years after Kyoto: Lessons Learned, New Challenges. The Journal of Economic Perspectives, 27(1), 123-146. doi: 10.1257/jep.27.1.123

Ngala, G. M., Alkali, B., \& Aji, M. A. (2007). Viability of wind energy as a power generation source in Maiduguri, Borno state, Nigeria. Renewable Energy, 32(13), 2242-2246. doi: 10.1016/j.renene.2006.12.016

Ozerdem, B., Ozer, S., \& Tosun, M. (2006). Feasibility study of wind farms: A case study for Izmir, Turkey. Journal of Wind Engineering and Industrial Aerodynamics, 94(10), 725-743. doi: 10.1016/j.jweia.2006.02.004

Petersen, E. L., Mortensen, N. G., Landberg, L., Højstrup, J., \& Frank, H. P. (1998). Wind power meteorology. Part I: climate and turbulence. Wind Energy, 1(1), 2-22.

Poore, R., \& Walford, C. (2008). Development of an operations and maintenance cost model to identify cost of energy savings for low wind speed turbines. (NREL/SR-500-40581). Colorado: NREL. Retrieved from http://www.nrel.gov/docs/fy08osti/40581.pdf.

Rehman, S., Ahmad, A., \& Al-Hadhrami, L. M. (2011). Development and economic assessment of a grid connected 20 MW installed capacity wind farm. Renewable and Sustainable Energy Reviews, 15(1), 833-838. doi: 10.1016/j.rser.2010.09.005

RETScreen® International Clean Energy Decision Support Centre. (2009). Wind energy project analysis. Software manual, Chapter 2. Retrieved June 12, 2009, from www.retscreen.net.

Shannon, R. E. (1992). Introduction to simulation. Paper presented at the Proceedings of the 24th conference on Winter simulation, Arlington, Virginia, United States.

Vestas Wind Systems A/S. (2013). Vestas V90-2MW. Retrieved January 12, 2013, from http://www.vestas.com/

Welch, J. B., \& Venkateswaran, A. (2009). The dual sustainability of wind energy. Renewable \& Sustainable Energy Reviews, 13(5), 1121-1126. doi: 10.1016/j.rser.2008.05.001

Wiser, R. H. (1997). Renewable energy finance and project ownership - The impact of alternative development structures on the cost of wind power. Energy Policy, 25(1), 15-27.

Wiser, R. H., \& Pickle, S. J. (1998). Financing investments in renewable energy: the impacts of policy design. Renewable and Sustainable Energy Reviews, 2(4), 361-386. doi: 10.1016/s1364-0321(98)00007-0

CHAPTER 8

RESULTS AND DISCUSSION

8.1 Introduction
8.2 Numerical treatment of wind resources
8.2.1 Calculation procedures
8.2.2 Distribution of wind speed series
8.2.2.1 In Aracati (Brazil)
8.2.2.2 In Corvo Island (Portugal)
8.2.2.3 In Cape Saint James (Canada)
8.3 Simulations analysis results
8.3.1 Reference cases for comparison analysis
8.3.1.1 Initial results summary of $L C O E_{w s o}$
8.3.1.2 Breakdown structure of $L C O E_{\text {wso }}$
8.3.2 Estimation of wind power production
8.3.2.1 For Aracati (Brazil)
8.3.2.2 For Corvo Island (Portugal)
8.3.2.3 For Cape Saint James (Canada)
8.3.3 Economic evaluation results
8.3.3.1 For Aracati (Brazil)
8.3.3.2 For Corvo Island (Portugal)
8.3.3.3 For Cape Saint James (Canada)
8.4 Sensitivity analysis results
8.4.1 Individual variable sensitivities
8.4.1.1 Impact on $L C O E_{w s o}$ of wind speed ($v_{w c}$)
8.4.1.2 Impact on $L C O E_{\text {wso }}$ of operations and maintenance management ($O \& M_{\text {manag }}$)
8.4.1.3 Impact on $L C O E_{\text {wso }}$ of wind turbines layout ($L_{w t}$)
8.4.1.4 Impact on $L C O E_{w s o}$ of energy policy instruments ($E_{p i}$)
8.4.2 Multiple variable sensitivities
8.4.2.1 Impact on $L C O E_{w s o}$ of wind speed ($v_{w c}$) and wind turbine layout ($L_{w t}$)
8.4.2.2 Impact on $L C O E_{w s o}$ of $\mathrm{O} \& \mathrm{M}$ management ($O \& M_{\text {manag }}$) and energy policy instruments ($E_{p i}$)
8.4.3 Conclusions and future analysis on cost of wind energy
8.5 Summary and conclusions
8.6 References

This chapter demonstrates and discusses the results of the simulations carried out in the present Ph.D. research work. It is discussed the numerical treatment of wind resources (calculation procedures and distribution of wind speed series), simulations analysis results (reference case for comparison analysis, estimation of wind power production and economic evaluation results), sensitivity analysis results (individual and multiple variable sensitivities and conclusions and future analysis on cost of wind energy) and summary and conclusions are presented at the end, with the respective references.

8.1 Introduction

This chapter presents the results of the implementation of the of $L C O E_{\text {wso }}$ methodology already detailed in Chapters 6 and 7 for wind power technology (WECS) in a computer program, which allowed analyzing relational data, such as the impact of the variations in some groups of variables on the cost of energy produced and the estimate of annual production \therefore Sensitivity analyses were made to the variables selected $\left(v_{w c}, O \& M_{\text {managg }}, L_{w t}\right.$ and $\left.E_{p i}\right) \therefore$ In addition, a comparison was made between the estimates of the annual energy production at three different sites, using the $L C P M_{W F}$ methodology described in section 6.4.4.2.

The results and discussions about the $L C O E_{\text {wso }}$ methodology go from the most general to the most detailed issues, taking into consideration the key assumptions and data \therefore It started with numerical treatment of wind resources (section 8.2) where is explained the calculation procedures (section 8.2.1) and distribution wind speed series (section 8.2.2) for Aracati (section 8.2.2.1), Corvo Island (section 8.2.2.2) and Cape Saint James (section 8.2.2.3).

The simulations analysis results (section 8.3) are organized in reference case for comparison analysis (section 8.3.1) based on initial results summary of $L C O E_{\text {wso }}$ as referenced values (section 8.3.1.1) and the breakdown structure of $L C O E_{w s o}$ (section 8.3.1.2) \therefore In the section 8.3 .2 is presented the estimation of wind power production for each site chosen (see sections 8.3.2.1, 8.3.2.2 and 8.3.2.3). Section 8.3.3 is related about economic evaluation results also for each site (see sections 8.3.3.1, 8.3.3.2 and 8.3.3.3).

The sensitivity analysis results (section 8.4) was carried out based on Table 7.16 and the results were separated into two groups \therefore The individual variable sensitivities (section 8.4.1), where we made some variations considering the impact on $L C O E_{w s o}$ of wind speed ($v_{w c}$) (section 8.4.1.1), operations and maintenance management (section 8.4.1.2), wind turbines layout (section 8.4.1.3) and energy policy instruments (section 8.4.1.4) \therefore The multiple variable sensitivities (section 8.4.2) was also made, but we tested the impact on $L C O E_{w s o}$ of wind speed and wind turbine layout (section 8.4.2.1) and O\&M management and energy policy instruments (section 8.4.2.2). Some conclusions and future analysis on cost of wind energy are presented in section 8.4.3. Finally, the summary and conclusions of this chapter are summarized in section 8.5 and all references (section 8.6) used are shown at the end of this chapter.

8.2 NUMERICAL TREATMENT OF WIND SPEED SERIES

8.2.1 CALCULATION PROCEDURES

The wind measurements are usually made at a height different than the hub height of the wind turbine. The wind speed is extrapolated to the hub height by using the well-known " $1 / 7^{\text {th }}$ wind power law".:The wind speeds for simulations procedures at hub-height of 105 m was also done considering the $1 / 7^{\text {th }}$ wind power law, as described by Petersen, Mortensen, Landberg, Højstrup, and Frank (1998). We have considered some procedures for calculation of the numerical treatment of wind speed series, as follows:

1. Determine the calculated wind speed ($v_{w c}$) per month based on wind speed (v_{w}) at 10 m high for Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada);
2. We consider the Eqn. 8.1 as $U(z)=U_{r}\left(\frac{z}{z_{r}}\right)^{a}$, where, where $\left(U_{r}\right)$ is the wind speed at a reference height (typically 10 m), and $(U(z)$) is the wind speed at height (z) above ground, is commonly used in the wind energy community to estimate the wind speed and (a) is the terrain rugosity factor;
3. Calculate the annual wind speed at hub-high (105 m) for Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada) (see Table 7.5 and Figures 8.1, 8.2 and 8.3).

Some assumptions were considered for wind speed series calculations:

1. Wind speeds for all calculations are considered in m / s in order we have the same metric for comparison purpose;
2. The wind speed calculated ($v_{w c}$) is based on Table 7.5 for all simulations done for Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada);
3. The terrain rugosity factor (a) for the three sites simulated is considered constant within the same value ($a=\frac{1}{7} ; a=0.14$); In order to simplify the simulations with $A E P_{\text {avail }}$ and $L C O E_{\text {wso }}$ model calculations we simulated the hypothetical wind farm at a macro site point of view for Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada) as well;
4. We have considered for wind speed calculated the same scale for the three sites chosen. The values range from $2 \mathrm{~m} / \mathrm{s}$ (minimum) to $25 \mathrm{~m} / \mathrm{s}$ (maximum). In order to differentiate the wind trends profile, for each site we use a type of line (see Figure 8.4);
5. Temperature, humidity, and atmospheric pressure data were are also based on Tables 7.6, 7.7 and 7.8 All these data were used in the calculations of air density (ρ) in Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada).

8.2.2 DISTRIBUTION OF WIND SPEED SERIES

8.2.2.1 In Aracati (Brazil)

Figure 8.1 Calculated wind speed distribution for Aracati (Brazil). Source: based on RETScreen® International Clean Energy Decision Support Centre (2009)

Figure 8.1 shows the wind speed behavior in Aracati (Brazil) for one year and some considerations we can take from it:

1. In the beginning of the year the monthly wind speed calculated for 105 m hub-high is possible lower than in the rest of this same year. \therefore This initial wind profile is changed in fourth month in the year (April) and keep it up until the end of the year;
2. As we already said in section 7.2.2.1 the windiest period is clearly June, July, August, September, October, November and December \therefore The highest wind speed is in September $(10.1 \mathrm{~m} / \mathrm{s})$ and in the same period (from June to December) the monthly wind speed is higher than annual average wind speed ($7.4 \mathrm{~m} / \mathrm{s}$);
3. Statistically, during one year the wind speed series in Aracati (Brazil) has presented a $\mathrm{SD}=2.1 \mathrm{~m} / \mathrm{s}, 4.0 \mathrm{~m} / \mathrm{s}$ and $10.1 \mathrm{~m} / \mathrm{s}$ as minimum and maximum wind speeds, respectively, for the same period.

8.2.2.2 In CORVO ISLAND (PORTUGAL)

Figure 8.2 Calculated wind speed distribution for Corvo Island (Portugal). Source: based on RETScreen® International Clean Energy Decision Support Centre (2009)

Figure 8.2 shows the wind speed behavior in Corvo Island (Portugal) for one year and some considerations we can take from it:

1. Differently from Aracati (Brazil), as shown in Figure 8.2, in the beginning of the year the monthly wind speed calculated for 105 m hub-high is possible highest than in the rest of this same year ($11.7 \mathrm{~m} / \mathrm{s}$ in January) at Corvo Island (Portugal) \therefore This initial wind profile is changed in third month in the year (March) and there is an increasing trend since from July until the end of the year with a monthly wind speed calculated in December of $11.5 \mathrm{~m} / \mathrm{s}$;
2. As we already said in section 7.2 .2 .1 the windiest period are clearly January, February, March, April; November and December \therefore The lowest wind speed is in July ($6.1 \mathrm{~m} / \mathrm{s}$), where this initial wind profile changes to an increasing trend until the rest of the year;
3. Statistically, during one year the wind speed series in Corvo Island (Portugal) has presented a $S D=2.0 \mathrm{~m} / \mathrm{s}, 6.1 \mathrm{~m} / \mathrm{s}$ and $11.7 \mathrm{~m} / \mathrm{s}$ as minimum and maximum wind speeds, respectively, for the same period.

8.2.2.3 In CAPE Saint James (Canada)

Figure 8.3 Calculated wind speed distribution for Cape Saint James (Canada). Source: based on RETScreen® International Clean Energy Decision Support Centre (2009)

Figure 8.3 shows the wind speed behavior in Cape Saint James (Canada) for one year and some considerations we can take from it:

1. Likely Corvo Island (Portugal), as shown in Figure 8.3, in the beginning of the year the monthly wind speed calculated for 105 m hub-high is possible highest than in the rest of this same year ($15.4 \mathrm{~m} / \mathrm{s}$ in January) \therefore This initial wind profile is changed in eighth month in the year (August) and there is an increasing trend since September until the end of the year with a monthly wind speed calculated in December of $15.1 \mathrm{~m} / \mathrm{s}$;
2. As we already said in section 7.2.2.1 the windiest period is clearly January, February, March; October, November and December. The highest wind speed is in January (15.4 m / s) and in the same period (January, February, March; October, November and December) the monthly wind speed is higher than annual average wind speed ($12,7 \mathrm{~m} / \mathrm{s}$);
3. Statistically, during one year the wind speed series in Cape Saint James (Canada) has presented a $\mathrm{SD}=2.0 \mathrm{~m} / \mathrm{s}, 9.7 \mathrm{~m} / \mathrm{s}$ and $15.4 \mathrm{~m} / \mathrm{s}$ as minimum and maximum wind speeds, respectively, for the same period.

Figure 8.4 Comparison among the calculated wind speed behavior of the three sites selected. Source: Own elaboration

When we made the comparison of the wind profile during one year, according to the data shown in Figure $6.11,6.12,6.13$ and Table 7.5, some evidences must be taken in relation the wind speed behavior in an a yearly basis \therefore Figure 8.3 shows the annual wind speed behavior in Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada) and we highlight the following aspects:

1. Both Corvo Island (Portugal) and Cape Saint James (Canada) present a similar wind speed behavior during the year analyzed;
2. Wind speed series of Aracati (Brazil) and Cape Saint James (Canada) make interception in August and September \therefore The wind speeds are $9.6 \mathrm{~m} / \mathrm{s}$ and $9.7 \mathrm{~m} / \mathrm{s}$ in August for Aracati (Brazil) and Cape Saint James (Canada), respectively \therefore The same situation happens in September the wind speed of $10.1 \mathrm{~m} / \mathrm{s}$ and $10.4 \mathrm{~m} / \mathrm{s}$ for Aracati (Brazil) and Cape Saint James (Canada), respectively;
3. The behavior of wind speed in Aracati (Brazil) and Corvo Island (Portugal) present similarities \therefore In June and October we can notice a monthly wind speed of $7.9 \mathrm{~m} / \mathrm{s}$ and 7.1 m / s and $9.7 \mathrm{~m} / \mathrm{s}$ and $8.9 \mathrm{~m} / \mathrm{s}$, respectively.

8.3 SIMULATION ANALYSIS RESULTS

8.3.1 REFERENCE CASES FOR COMPARISON ANALYSIS

Wind Project Information		Notes			
Project Name	Firestar Wind Farm				
Project Location	Aracati (Brazil)				
Turbine Model	Vestas V90-2M				
Number of Wind Turbines $\left(N_{W T}\right)$	25	$[-]$			
Turbine Size	2000	$[\mathrm{~kW}]$			
Wind Farm Capacity $\left(W F_{\text {cap }}\right)$	50000	$[\mathrm{~kW}]$			
Rotor Diamenter (D)	90.0	$[\mathrm{~m}]$			
Swept Area per Turbine (A)	6361.7	$\left[\mathrm{~m}^{2}\right]$			
Hub height (H)	105.0	$[\mathrm{~m}]$			
Wind speed measured at $\left(H_{0}\right)$	10.0	$[\mathrm{~m}]$			
Terrain rugosity factor (a)	0.14	$[-]$			
BetzLimits coefficient $\left(C_{P B e t z}\right)$	0.5926	$[-]$			
Lifetime of Wind Farm (N)	25	$[\mathrm{yr}]$			
Production Efficiency $\left(W F_{P E}\right)$	11.2%	$[\%]$			
Availability	97.9%	$[\%]$			
				357	$[\mathrm{~d} / \mathrm{yr}]$

Wind Project Information		Notes		
Project Name	Firestar Wind Farm			
Project Location	Corvo Island (Portugal)			
Turbine Model	Vestas V90-2MW			
Number of Wind Turbines $\left(N_{W T}\right)$	25	$[-]$		
Turbine Size	2000	$[\mathrm{~kW}]$		
Wind Farm Capacity $\left(W F_{\text {cap }}\right)$	50000	$[\mathrm{~kW}]$		
Rotor Diamenter (D)	90.0	$[\mathrm{~m}]$		
Swept Area per Turbine (A)	6361.7	$\left[\mathrm{~m}^{2}\right]$		
Hub height (H)	105.0	$[\mathrm{~m}]$		
Wind speed measured at $\left(H_{0}\right)$	10.0	$[\mathrm{~m}]$		
Terrain rugosity factor (a)	0.14	$[-]$		
Betz Limit`s coefficient \(\left(C_{P B e t z}\right)\) & 0.5926 & {\([-]\)} \\ Lifetime of Wind Farm \((N)\) & 25 & {\([\mathrm{yr}]\)} \\ Production Efficiency \(\left(W F_{P E}\right)\) & \(20.5 \%\) & {\([\%]\)} \\ Availability & \(97.9 \%\) & {\([\%]\)} \\ \hline \end{tabular} \begin{tabular}{l} \multicolumn{1}{l\|}{ Wind Project Information } \\ \cline { 2 - 3 } \\ \begin{tabular}{	lrl	} \hline Project Name & Notes \\ Project Location & Firestar Wind Farm & \\ Turbine Model & Cestas V900-2MW & \\ Number of Wind Turbines \(\left(N_{W T}\right)\) & 25 & {\([-]\)} \\ Turbine Size & 2000 & {\([\mathrm{~kW}]\)} \\ Wind Farm Capacity \(\left(W F_{\text {cap }}\right)\) & 50000 & {\([\mathrm{~kW}]\)} \\ Rotor Diamenter \((D)\) & 90.0 & {\([\mathrm{~m}]\)} \\ Swept Area per Turbine \((A)\) & 6361.7 & {\(\left[\mathrm{~m}^{2}\right]\)} \\ Hub height \((H)\) & 105.0 & {\([\mathrm{~m}]\)} \\ Wind speed measured at \(\left(H_{0}\right)\) & 10.0 & {\([\mathrm{~m}]\)} \\ Terrain rugosity factor \((a)\) & 0.14 & {\([-]\)} \\ Betz Limit`s coefficient $\left(C_{P B e t z}\right)$	0.5926	$[-]$
Lifetime of Wind Farm (N)	25	$[\mathrm{yr}]$		
Production Efficiency $\left(W F_{P E}\right)$	48.5%	$[\%]$		
Availability	97.9%	$[\%]$		
	357	$[\mathrm{~d} / \mathrm{yr}]$		

\end{tabular}

Figure 8.5 Wind project information for Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada). Source: Own elaboration. Note: numbers in gray represent results from $L C O E_{\text {wso }}$ methodology calculations

8.3.1.1 InITIAL RESULTS SUMMARY OF $L C O E_{\text {WSo }}$

Initial Results Summary of LCOE wso			Notes $y r_{15}$	Initial Results Summary of LCOE wso			Notes
67.6603	$y r_{1}$	70.7762		73.0793	$y r_{1}$	78.4116	$y r_{15}$
67.8118	$y r_{2}$	69.8077	$y r_{15}$	73.4776	$y r_{2}$	77.5903	$y r_{15}$
68.0210	$y r_{3}$	69.9988	$y r_{16}$	73.7436	$y r_{3}$	78.1098	$y r_{16}$
68.1822	y_{4}	70.1987	$y r_{17}$	74.0885	$y r_{4}$	78.5637	y_{17}
68.4349	$y r_{5}$	70.3955	$y r_{18}$	74.4286	$y r_{5}$	79.0704	$y r_{18}$
68.6241	$y r_{6}$	70.7564	$y r_{19}$	74.8887	$y r_{6}$	79.5598	$y r_{19}$
68.8710	$y r_{7}$	70.3686	$y r_{20}$	75.1794	$y r_{7}$	77.6767	$y r_{20}$
69.0863	$y r_{8}$	70.5514	$y r_{21}$	75.4693	$y r_{8}$	78.1898	$y r_{21}$
69.2587	$y r_{9}$	70.8222	$y r_{22}$	75.9694	$y r_{9}$	78.6500	$y r_{22}$
69.4873	$y r_{10}$	71.1051	$y r_{23}$	76.3656	$y r_{10}$	78.9953	$y r_{23}$
69.7236	$y r_{11}$	71.3664	$y r_{25}$	76.6792	$y r_{11}$	79.3896	$y r_{25}$
70.0026	$y r_{12}$	69.6792	Mean	77.1795	$y r_{12}$	76.8138	Mean
70.2282	$y r_{13}$	1.0823	SD	77.5814	$y r_{13}$	2.0085	SD
70.4423	$y r_{14}$	-0.4514	r (skewness)	78.0080	$y r_{14}$	-0.4651	r (skewness)
LCOE ${ }_{\text {wso }}$	69.6792	US \$/MWh	valid!	LCOE	76.8138	US\$/MWh	valid!
	0.069679	US \$/kWh			0.076814	US\$/kWh	

Initial Results Summary of LCOE wso			Notes
84.2996	$y r_{1}$	94.3718	$y r_{15}$
84.9743	$y r_{2}$	94.0482	$y r_{15}$
85.6626	$y r r 3$	94.8532	$y r_{16}$
86.1247	y_{4}	95.7496	$y r_{17}$
86.8183	$y r_{5}$	96.6483	$y r_{18}$
87.5429	$y r_{6}$	97.4272	$y r_{19}$
88.1156	$y r_{7}$	93.9167	$y r_{20}$
88.8127	$y r_{8}$	94.6168	$y^{2}{ }_{21}$
89.7238	$y r_{9}$	95.6632	$y r_{22}$
90.3120	$y r_{10}$	96.4289	y_{23}
91.1318	$y r_{11}$	97.4427	$y r_{25}$
91.8409	$y r_{12}$	91.7081	Mean
92.5685	$y r_{13}$	4.1890	$S D$
93.6087	y_{14}	-0.3343	r (skewness)
LCOE	91.7081	US \$/MWh	valid!
	0.091708	US \$/kWh	

Figure 8.6 Initial results of $L C O E_{\text {wso }}$ for Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada). Source: Own elaboration. Note: numbers in gray represent results from $L C O E_{w s o}$ methodology calculations

8.3.1.2 BREAKDOWN STRUCTURE OF $L C O E_{\text {WSO }}$

LCOE $_{w s o}{ }^{148}=67,6603$ US $\$ / M W h\left(y r_{1}\right) ; 69,6792$ US $\$ / M W h$	
(Mean); $S D=1.0823$ US $\$ / M W h ; ~$	
$=$	$=-0,4514$ (skewness)

$\begin{gathered} W T_{C M} \\ 553.7256 \$ / k W \end{gathered}$	$\begin{gathered} T_{C M} \\ 484.3859 \$ / \mathrm{kW} \end{gathered}$	$\begin{gathered} L W T G_{C M} \\ 39.1957 \text { \$/m/kW } \end{gathered}$
$\begin{gathered} C P_{C M} \\ 30.9069 \$ / k W \end{gathered}$	$\begin{gathered} T S_{C M} \\ 11.4566 \$ / k W_{e} \end{gathered}$	$\begin{gathered} S I_{C M} \\ 42.7345 \$ / \mathrm{m}^{2} / \mathrm{kW} \end{gathered}$
$\begin{gathered} P O_{C M} \\ 35.9374 \$ / k W \end{gathered}$	$\begin{gathered} F_{C M} \\ 3.7712 \$ / k W \end{gathered}$	$\begin{gathered} C C C_{C M} \\ 2.4042 \$ / k W \end{gathered}$

$\boldsymbol{L C P M}_{W F}$
48856319 kW
e $h / y r$

O\& $\boldsymbol{M}_{\text {WFCM }}$
$0.124133 \$ / k W h / y r$

$\begin{gathered} W F_{C M} \\ 50.000 k W_{e} / y r \end{gathered}$	$\begin{aligned} & W T_{L M} \\ & 5 D 4 D \end{aligned}$	$\begin{gathered} O \& M_{f \text { fived }}^{c h} \\ 0.098275 \$ / k W h \end{gathered}$
$P C_{P M}$ 97.9% (availability)	$P \& D_{L M_{\text {facor }}}$ 0.839325	$\begin{gathered} O \& M_{\text {variable }}^{\text {Cu }} \\ 0.025858 \$ / k W h \end{gathered}$

$$
\boldsymbol{L R C M}=16.8443 \$ / \mathrm{kW}
$$

$A R_{C M}$	$T O_{C M}$
$16.8442 \$ / \mathrm{kW}$	$0.000033 \$ / \mathrm{kW}$

$\boldsymbol{R C M} \boldsymbol{M}_{\text {WF }}=1278.8970 \$ / \mathrm{kW}$

| $D C M_{W F}$ |
| :---: | :---: |
| $1339.9154 \$ / k W$ |

REPIM $^{149}=420.0830$ \$/proj

$R E P_{C M}$
$0.00002627 \$ / k W_{e} h$
GHG.R $R_{C M}$
1 596.4321 \$/tCO

Figure 8.7 Breakdown structure of $L C O E_{\text {wso }}$ for Aracati (Brazil). Source: Own elaboration

[^101]$\boldsymbol{L C O E}_{\text {wso }}{ }^{150}=73.0793$ US\$/MWh $\left(y r_{1}\right) ; 76.8138$ US\$/MWh
(Mean); $S D=2.0085$ US\$/MWh; $\gamma=-0,4651$ (skewness)
$\boldsymbol{L C C C M}_{\boldsymbol{W F}}=1204.5180 \$ / \mathrm{kW}$

$W T_{C M}$ $553.7256 \$ / k W$	$T_{C M}$ $484.3859 \$ / k W$	$L W T G_{C M}$ $39.1957 \$ / \mathrm{m} / \mathrm{kW}$
$C P_{C M}$ $30.9069 \$ / \mathrm{kW}$	$T S_{C M}$ $11.4566 \$ / \mathrm{kW}$	
$P O_{C M}$ $35.9374 \$ / \mathrm{kW}$	$S I_{C M}$ $42.7345 \$ / \mathrm{m}^{2} / \mathrm{kW}$	
	$F_{C M}$ $3.7712 \$ / \mathrm{kW}$	$C C C_{C M}$ $2.4042 \$ / \mathrm{kW}$

$\begin{aligned} & \boldsymbol{L C P M}_{W F} \\ & 89657257 \mathrm{~kW} h / y r \end{aligned}$		$\begin{aligned} & \text { O\& } \boldsymbol{\boldsymbol { M } _ { \text { WFCM } }} \\ & 0.147210 \$ / k W h / y r \end{aligned}$
$\begin{gathered} W F_{C M} \\ 50.000 \mathrm{kWe} / y r \end{gathered}$	$\begin{aligned} & W T_{L M} \\ & 5 D 4 D \end{aligned}$	$\begin{gathered} O \& M_{\text {fixed }{ }_{c u}} \\ 0.098275 \$ / k W h \end{gathered}$
$P C_{P M}$ 97.9% (availability)	$\begin{aligned} & P \& D_{L M_{\text {facor }}} \\ & 0.839325 \end{aligned}$	$\begin{gathered} O \& M_{\text {variable }_{\text {Cu }}} \\ 0.048935 \$ \$ / \mathrm{WWh} \end{gathered}$

$\boldsymbol{L R C M}=16.8443 \quad \$ / \mathrm{kW}$

$A R_{C M}$	
$16.8442 \$ / k W$	$T O_{C M}$
$0.000033 \$ / k W$	

$\boldsymbol{R C M} \boldsymbol{M}_{\boldsymbol{W F}}=1278.8970 \$ / \mathrm{kW}$

Figure 8.8 Breakdown structure of $L C O E_{\text {wso }}$ for Corvo Island (Portugal). Source: Own elaboration

[^102]$\boldsymbol{L C O E}_{\boldsymbol{w s o}}{ }^{152}=84.2996$ US\$/MWh $\left(\mathrm{yr}_{1}\right) ; 91.7091$ US\$/MWh
(Mean); SD=4.1890 US\$/MWh; $\gamma=-0,3343$ (skewness)
$\boldsymbol{L C C C M}_{W F}=1204.5180 \$ / \mathrm{kW}$

$W T_{C M}$ $553.7256 \$ / k W$	$T_{C M}$ $484.3859 \$ / k W$	$L W T G_{C M}$ $39.1957 \$ / \mathrm{m} / \mathrm{kW}$
$C P_{C M}$ $30.9069 \$ / k W$	$T S_{C M}$ $11.4566 \$ / \mathrm{kW}$	$S I_{C M}$ $42.7345 \$ / \mathrm{m}^{2} / \mathrm{kW}$
$P O_{C M}$ $35.9374 \$ / \mathrm{kW}$	$F_{C M}$ $3.7712 \$ / k W$	$C C C_{C M}$ $2.4042 \$ / \mathrm{kW}$

$\begin{aligned} & \boldsymbol{L C P M}_{W F} \\ & 212467325 \mathrm{~kW} W_{e} \mathrm{~h} / \mathrm{yr} \end{aligned}$		O\& $\boldsymbol{M}_{\text {WFCM }}$ 0.139806 \$/kWh/yr
$\begin{gathered} W F_{C M} \\ 50.000 \mathrm{kWe} / y r \end{gathered}$	$\begin{gathered} W T_{L M} \\ 5 D 4 D \end{gathered}$	$\begin{gathered} O \& M_{\text {fived }}^{\text {ou }} \\ 0.098275 \$ / k W h \end{gathered}$
$\begin{gathered} P C_{P M} \\ 97.9 \% \\ \text { (availability) } \\ \hline \end{gathered}$	$\begin{aligned} & P \& D_{L M_{\text {pacor }}} \\ & 0.814145 \end{aligned}$	$\begin{gathered} O \& M_{\text {variabl }_{\text {Cu }}} \\ 0.041531 \$ / k W h \end{gathered}$

$$
\boldsymbol{L R C M}=16.8443 \$ / \mathrm{kW}
$$

$A R_{C M}$	
$16.8442 \$ / k W$	$T O_{C M}$
$0.000033 \$ / k W$	

$$
\boldsymbol{R C M} \boldsymbol{M}_{W F}=1278.8970 \$ / \mathrm{kW}
$$

$\begin{gathered} D C M_{W F} \\ 1339.9154 \$ / k W \end{gathered}$	$\begin{gathered} R V M_{W F} \\ 61.0184 \$ / k W \end{gathered}$
REPIM $^{153}=1154.5477$ \$/proj	
$\begin{gathered} \text { REI }_{C M} \\ 70.8203 \$ / k W_{e} \end{gathered}$	$\begin{gathered} R E P_{C M} \\ 0.00000052 \$ / k W_{e} h \end{gathered}$
$\begin{gathered} \text { OREP }_{C M} \\ 56.8814 \$ / k W_{e} \end{gathered}$	$\begin{gathered} G H G . R_{C M} \\ 4490.4890 \$ / t \mathrm{CO}_{2} \\ \hline \end{gathered}$

Figure 8.9 Breakdown structure of $L C O E_{\text {wso }}$ for Cape Saint James (Canada). Source: Own elaboration

[^103]
8.3.2 ESTIMATION OF WIND POWER PRODUCTION

8.3.2.1 FOR ARACATI (BRAZIL)

Figure 8.10 $A E P_{\text {avail }}$ for 25 years of the wind farm for Aracati (Brazil) in standard operation. Source: Own elaboration

As we can see in Figure 8.10, the $A E P_{\text {avail }}$ of the wind farm in Aracati (Brazil) varies from 48055 $M W h / y r$ to $49213 M W h / y r$ with $S D=288$ MWh, $48594 M W h$ (Mean) and 48444 MWh (Mode). The $A E P_{\text {avail }}$ has shown a positive moderate asymmetric ${ }^{154}$ distribution ($\gamma=0.2056$) during the wind farm lifetime ($N=25 y r s$).

In the years $16\left(y r_{16}\right)$ and $19\left(y r_{19}\right)$, we can notice the highest and lowest level of production, respectively \therefore This wind power plant expects to produce as $A E P_{\text {avail }}$ about $1214852 M W h(1215$ $G W h$) during the operational phase (see Figure 8.13).

[^104]
8.3.2.2 FOR CORvo ISLAND (Portugal)

Figure 8.11 $A E P_{\text {avail }}$ for 25 years of the wind farm in Corvo Island (Portugal) in standard operation. Source: Own elaboration

As we can see in Figure 8.11, the $A E P_{\text {avail }}$ of the wind farm in Corvo Island (Portugal) also varies from $89154 \mathrm{MWh} / y r$ to $90682 \mathrm{MWh} / \mathrm{yr}$ with $S D=390 \mathrm{MWh}, 90035 \mathrm{MWh}$ (Mean) and 90318 $M W h$ (Mode) \therefore The $A E P_{\text {avail }}$ has shown a negative moderate asymmetric distribution ($\gamma=-0.2882$) during the wind farm lifetime ($N=25 y r s$).

In the years $6\left(y r_{6}\right)$ and $25\left(y r_{25}\right)$, we can notice the highest and lowest level of production, respectively \therefore This wind power plant expects to produce as $A E P_{\text {avail }}$ about 2250871 MWh (2 251 $G W h$) during the operational phase (see Figure 8.13).

8.3.2.3 For Cape Saint James (Canada)

Figure $8.12 A E P_{\text {avail }}$ for 25 years of the wind farm in Cape Saint James (Canada) in standard operation. Source: Own elaboration

As we can see in Figure 8.12, the $A E P_{\text {avail }}$ of the wind farm in Cape Saint James (Canada) also varies from $212224 \mathrm{MWh} / \mathrm{yr}$ to $213959 \mathrm{MWh} / \mathrm{yr}$ with $S D=626 \mathrm{MWh}, 213114 \mathrm{MWh}$ (Mean) and 212224 MWh (Mode).\therefore The $A E P_{\text {avail }}$ has shown a negative symmetric distribution ($Y=-0.1060$) during the wind farm lifetime ($N=25 y r s$).

In the years $7\left(y r_{7}\right)$ and $16\left(y r_{16}\right)$, we can notice the highest and lowest level of production, respectively \therefore This wind power plant expects to produce as $A E P_{\text {avail }}$ about 5327844 MWh (5 328 $G W h$) during the operational phase (see Figure 8.13).

Figure 8.13 Total $A E P_{\text {avail }}$ during the lifetime of $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada). Source: Own elaboration

The $A E P_{\text {avail }}$ and wind speed $\left(v_{w c}\right)$ have a direct as specific relation - the power output is the cube of wind speed - and in those three different wind speeds (wind resources) impacts on wind farm production as well as the wind speed increases \therefore We can see this strong relation when we have done the correlation analysis between $A E P_{\text {avail }}$ and wind speed ($v_{w c}$) for Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada), as shown in Table 8.1:

Table 8.1 Correlation analysis between $A E P_{\text {avail }}$ and wind speed ($v_{w c}$)

Items	Aracati (Brazil)	Corvo Island (Portugal)	Cape Saint James (Canada)
$A E P_{\text {avail }}(G W h)$	1215	2251	5328
$v_{w c}(\mathrm{~m} / \mathrm{s})$	7.4	9.1	12.5
Correlation Coeff. 0.994			

[^105]
8.3.3 ECONOMIC EVALUATION RESULTS

The economic evaluation results organized considering the same structure of the projected cash flow analysis (Appendix G) \therefore For Aracati (Brazil) (section 8.3.3.1), Corvo Island (Portugal) (section 8.3.3.2) and Cape Saint James (Canada) (section 8.3.3.3) the results have started with $L^{L C C C M} M_{W F}, A A R, O \& M_{W F C M}, L R C M, R C M_{W F}$ and REPIM.

8.3.3.1 For Aracati (BraZil)

The $L C O E_{\text {wso }}$ methodology organizes the investment costs without any kind of public incentive effect (REPIM) in $L C C C M_{W F}$. For the standard (base-case) situation the $L C C C M_{W F}$ has shown the following structure, as represented by Table 8.2:

Table 8.2 $L C C C M_{W F}$ breakdown structure for Aracati (Brazil)

Investment cost	$U S \$$	$\%$
$W T_{C M}$	27686278	46.0%
$T_{C M}$	24219295	40.2%
$L W T G_{C M}$	1959783	3.3%
$C P_{C M}$	1545346	2.6%
$T S_{C M}$	572832	1.0%
$S I_{C M}$	2136726	3.5%
$P O_{C M}$	1796870	3.0%
$F_{C M}$	188559	0.3%
$C C C_{C M}$	120211	0.1%
$L C C C M_{W F}$	60225901	100.0%
Source: Own elaboration		

The capital cost per kW installed is about $1204.52 \mathrm{US} \$ / \mathrm{kW}$ and the most part is centralized in wind turbines $\left(46.0 \%\right.$ for $\left.W T_{C M}\right)$ and towers $\left(40.2 \%\right.$ for $\left.T_{C M}\right) \therefore$ It is also important to highlight the local wind turbines grid $\left(L W T G_{C M}\right)$, collecting point $\left(C P_{C M}\right)$ and transmission system $\left(T S_{C M}\right)$ that represents about 7.0% of the total capital costs (6.9%).

When we consider the effect of public incentive (REPIM) on initial investments in multimegawatts wind farm $\left(50 \mathrm{MW}_{\mathrm{e}}\right)$ we notice a reduction around $0.64 \%^{155}$ and the $L C C C M_{W F}$ can reach the cost per kW about 1196.82 US $\$ / \mathrm{kW}$.

[^106]The $A A R$ of the hypothetical wind farm is shown in Figure 8.14 within its particularities and behavior \therefore We have calculated the $A A R$ per year according to Eqn. 7.1 with the conditions defined in Table 7.10.

Figure 8.14 $A A R(U S \$ M / y r)$ during the lifetime of the $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Aracati (Brazil). Source: Own elaboration

According to Figure 8.14, the $A A R$ of the wind farm in Aracati (Brazil) varies from 4297170 $U S \$ M / y r$ to 6873465 US\$M/yr with $S D=713406$ US\$M and 5398391 US\$M/yr (Mean) \therefore The $A A R$ has shown a positive moderate asymmetry distribution ($\gamma=0.4437$) during the wind farm lifetime ($N=25 y r s$).

In the years $1\left(y r_{1}\right)$ and $20\left(y r_{20}\right)$, we can notice the lowest and highest level of revenue, respectively \therefore This wind power plant expects to receive as total $A A R$ about 134959772 US\$M during the operational phase. The relation between the total $A A R$ and $L C P M_{W F}$ is 0.111092 US\$ per kWh produced. We have to remember the effect of the inflation rate $(2.5 \%$ per year) on revenues.

For Gross, Blyth, and Heptonstall (2010) the returns of a wind power project depends on revenues as well as cost, so the price of electricity becomes an important risk factor in the investment decision.

The $O \& M_{\text {WFCM }}$ of the hypothetical wind farm is shown in Figure 8.15 within its particularities and behavior. \therefore We have calculated the $O \& M_{\text {WFCM }}$ per year according to Eqns 6.2.3, 6.2.3.1 and 6.2.3.2 with the conditions defined in Tables 7.11 and 7.12.

Figure $8.15 O \& M_{W F C M}$ splited into fixed ($O \& M_{\text {fived }}^{\text {cu }}$) and variable ($O \& M_{\text {variable }_{\text {cu }}}$) during the lifetime of the $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Aracati (Brazil). Source: Own elaboration

As we can see in Figure 8.15, the $O \& M_{W F C M}$ of the wind farm in Aracati (Brazil) varies from $0.0808 U S \$ k W h / y r$ to 0.1323 US\$ $k W h / y r$ with $S D=0.0161 U S \$ k W h$ and 0.1081 US\$ $k W h / y r$
(Mean) \therefore The $O \& M_{W F C M}$ has shown a negative moderate asymmetry distribution ($\gamma=-0.1745$) during the wind farm lifetime ($N=25 y r s$).

In the years $1\left(y r_{l}\right)$ and $25\left(y r_{25}\right)$, we can notice the lowest and highest level of $O \& M_{W F C M}$, respectively \therefore This wind power plant expects to spend as total $O \& M_{W F C M}$ about 131300872 US $\$ M$ during the operational phase. The relation between the total $O \& M_{W F C M}$ and $L C P M_{W F}$ is 0.108080 US\$ per kWh produced. \therefore We also have to remember the effect of the inflation rate (2.5% per year) on O\&M costs.

As have discussed Poore and Walford (2008) the facility costs are linked to the size of the facility and are assumed to remain constant over the life of the project. \therefore This implies that the infrastructure is maintained in good condition for the project's life and that no improvements or expansions are made \therefore For this reason we have also considered in $L C O E_{\text {wso }}$ methodology the $L R C M$ and $R C M_{W F}$ for capital costs during the lifetime of the wind project (applied to specific cost for revisions or substitution of parts of WECS, such as, nacelles, wind turbines, rotor, blades, generators and
other) that usually can occur during the lifetime of the power project) and when at the end of lifetime of the wind project (removing or repowering situation).

The $L R C M$ of the hypothetical wind farm is shown in Figure 8.16 within its particularities and behavior \therefore We have calculated the LRCM per year according to Eqns 6.2.2, 6.2.2.1, 6.2.2.1.1, 6.2.2.1.2, 6.2.2.2, and 6.2.2.2.1 with the conditions defined in Table 6.8.

Figure 8.16 $L R C M$ during the 15 years of the $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Aracati (Brazil). Source: Own elaboration

As shown in Figure 8.16, the $L R C M$ of the wind farm in Aracati (Brazil) varies from 863268 US\$ $k W / y r$ to 1219776 US\$ kW/yr with SD=109 970 US\$ kW and 1032004 US\$ kW/yr (Mean). The LRCM has shown a positive symmetric distribution ($\gamma=0.1407$) during the wind farm lifetime ($N=25 y r s$).

In the years $1\left(y r_{1}\right)$ and $15\left(y r_{15}\right)$, we can notice the lowest and highest level of LRCM savings, respectively. This wind power plant expects to save as total LRCM about 15480065 US\$ during 15 years of the operational phase \therefore The relation between the total LRCM and $k W$ produced in 15 years is $182.0645 U S \$$ per kW produced. We also have to remember the effect of the inflation rate (2.5\% per year) on LRCM.

As have stated Oliveira and Fernandes (2012) the aim of $L R C M$ (equivalent to $L R C$) is to make funds available when needed to repair or total replacement of occurrence \therefore The exercise involves calculating the net present value or even to allocate costs for review and replacement on an annualized basis consistent with other cost elements \therefore That is why we have also considered the costs for removing the wind farm at the end of its lifetime, if the investor desires to stop operations
or repower it for a new phase. This mechanism works as a saving account, an "economic reserve". It has been calculated year by year and named $R C M_{W F}$.

The $R C M_{W F}$ of the hypothetical wind farm is shown in Figure 8.17 within its particularities and behavior \therefore We have calculated the $R C M_{W F}$ per year according to Eqns 6.2.4, 6.2.4.1, 6.2.4.1.1, 6.2.4.1.2, $6.2 .4 .1 .3,6.2 .4 .2,6.2 .4 .2 .1,6.2 .4 .2 .2$ and 6.2 .4 .3 with the conditions defined in Tables 6.8 and 6.9.

Figure 8.17 $R C M_{W F}$ during the lifetime of the $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Aracati (Brazil). Source: Own elaboration

According to Figure 8.17, the $R C M_{W F}$ of the wind farm in Aracati (Brazil) varies from 2621739 US\$ kW/yr to 4742007 US\$ kW/yr with SD=635 804 US\$ kW and 3582109 US\$ kW/yr (Mean). The $R C M_{W F}$ has shown a positive moderate asymmetry distribution ($\gamma=0.2259$) during the wind farm lifetime ($N=25 y r s$).

In the years $1\left(y r_{1}\right)$ and $25\left(y r_{25}\right)$, we can notice the lowest and highest level of $R C M_{W F}$ savings, respectively \therefore This wind power plant expects to save as total $R C M_{W F}$ about $89552736 U S \$$ during the operational phase. The relation between the total $R C M_{W F}$ and $k W$ produced in 25 years is 1053 $U S \$$ per kW produced. We also have to remember the effect of the inflation rate (2.5% per year) on $R C M_{W F}$.

The $R C M_{W F}$ was developed in order to cover the costs of removing the wind farm and "rebuild" the local environment conditions, so when we get a value equal or equivalent amount of funds for cover the costs of decommissioning the wind farm, which is the purpose of this indicator! In the case of the hypothetical wind farm in Aracati (Brazil) if we have consider the total $L C C C M_{W F}$
(60 225901 US\$) added to $L R C M$ (15 $480065 U S \$$), the $R C M_{W F}$ about 89552736 US\$ really covers it (75705966 US\$ < 89552736 US\$).

The REPIM or Renewable Energy Public Incentive Model is a part of our proposed LCOE wso methodology that measures the impact of some and most common kinds of energy policy instruments applied to RETs \therefore We have proposed four different types of instruments: two of them are related to investment incentive $\left(R E I_{C M}\right.$ and $\left.O R E P_{C M}\right)$ and the others are related to energy production $\left(R E P_{C M}\right.$ and $\left.G H G . R_{C M}\right)$.

The $R E I_{C M}$ of the hypothetical wind farm is shown in Figure 8.18 within its particularities and behavior \therefore We have calculated the $R E I_{C M}$ for initial year of the wind project ($y r=0$) according to Eqns 6.2.5.1with the conditions defined in Tables 6.10 and 7.14.

Figure 8.18 $R E I_{C M}$ for $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Aracati (Brazil). Source: Own elaboration

The total $R E I_{C M}$ received by the hypothetical wind farm was calculated with the following Eqn 8.2:

$$
\begin{equation*}
\text { Total }_{R E I_{C M}}=R E I_{C M} W F_{c a p} \xi_{R E I_{C M}} \quad\left[\$ / \mathrm{kW}_{\mathrm{e}}\right] \tag{8.2}
\end{equation*}
$$

When we made the calculations according to data shown in Figure 8.18 and Tables 6.10 and 7.14, the expected value received from the government is 221313 US\$ \therefore An analogous situation occurs to $O R E P_{C M}$ although according to Eqn 6.2.5.3.1 with the conditions defined in Tables 6.10, 7.13 and 7.14.

OREP $_{C M}$	13.0797	[\$/kW ${ }_{\text {e }}$]
	2.7664	[\$/kW]
$L^{\text {LCCCM }}{ }_{W}$	1204.5180	[\$/kW]
$W^{\prime} C_{\text {proj }}$	4.9000\%	[\%/yr]
$\psi_{\text {total }}$	30.0\%	[\%]
ifr	2.5\%	[\%/yr]
$n_{\text {Y }}$	10	[yr]
$C R_{f}$	80.0\%	[\%]

Figure 8.19 OREP $_{C M}$ for $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Aracati (Brazil). Source: Own elaboration
The total $O R E P_{C M}$ received by the hypothetical wind farm was calculated with the Eqn 8.3:

$$
\begin{equation*}
\text { Total }_{\text {OREP }_{C M}}=\text { OREP }_{C M} W F_{\text {cap }} \xi_{O R E P_{C M}} \quad\left[\$ / \mathrm{kW}_{\mathrm{e}}\right] \tag{8.3}
\end{equation*}
$$

When we made the calculations according to data shown in Figure 8.19, the expected value received from the government is 163497 US\$.

We have also considered the side of production, in other words, the $A E P_{\text {avail }}$ from the wind project analyzed \therefore The $R E P_{C M}$ was developed according to Eqns 6.2.5.3 and 6.2.5.3.1 with the conditions defined in Tables 6.10, 7.13 and 7.14.

$R E P_{C M}$	0.00002627	$\left[\$ / \mathrm{kW}_{\mathrm{e} h}\right]$
AEP avail $^{\text {a }} H_{\text {prod }}$	5695	$[\mathrm{~kW} / \mathrm{yr}]$
ifr	2.50%	$[\% / \mathrm{yr}]$
ε	0.1496	$\left[\$ / \mathrm{kW}_{\mathrm{e} h}\right]$
ε_{0}	0.116883	$\left[\$ / \mathrm{kW} \mathrm{hh}^{2}\right]$
n_{ε}	10	$[\mathrm{yr}]$

Figure 8.20 $R E P_{C M}$ for $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Aracati (Brazil). Source: Own elaboration

According to Table G.8, the $R E P_{C M}$ of the wind farm in Aracati (Brazil) varies from 1447 US\$ $k W_{e} h / y r$ to $1825 U S \$ k W_{e} h / y r$ with $S D=117 U S \$ k W_{e} h$ and $1629 U S \$ k W_{e} h / y r$ (Mean) \therefore The $R E P_{C M}$ has shown a positive symmetry distribution ($\gamma=0.0838$) during the period of energy policy instrument.

In the years $10\left(y r_{10}\right)$ and $l\left(y r_{1}\right)$, we can notice the lowest and highest level of $R E P_{C M}$, respectively. When we made the calculations according to data shown in Figure 8.20, the expected value
received from the government during the period of the energy policy instrument is 16285 US\$. We also have to remember the effect of the inflation rate (2.5% per year) on $R E P_{C M}$.

The total $R E P_{C M}$ received by the hypothetical wind farm was calculated with the Eqn 8.4:

$$
\begin{equation*}
\operatorname{Total}_{R E P_{C M}}=\sum R E P_{C M / y r} \xi_{R E P_{C M}} \quad\left[\$ / \mathrm{kW}_{\mathrm{e}} \mathrm{~h}\right] \tag{8.4}
\end{equation*}
$$

Finally we development among the energy policy instruments analyzed, one regard to CO_{2} nonemissions, defined as GHG. $R_{C M} \therefore$ According to Eqns 6.2 .5 .4 and 6.2.5.4.1 with the conditions defined in Tables 6.10, 7.13 and 7.14.

Figure 8.21 GHG. $R_{C M}$ for $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Aracati (Brazil). Source: Own elaboration

According to Table G.8, the GHG. $R_{C M}$ of the wind farm in Aracati (Brazil) varies from 221 $U S \$ / t C O_{2}$ to $395 U S \$ / t C_{2}$ with $S D=53 U S \$ / t C O_{2}$ and $300 U S \$ / t C O_{2}$ (Mean) \therefore The GHG. $R_{C M}$ has shown a positive moderate asymmetry distribution ($\gamma=0.1961$) during the period of energy policy instrument.

In the years $1\left(y r_{1}\right)$ and $25\left(y r_{25}\right)$, we can notice the lowest and highest level of $G H G . R_{C M}$, respectively \therefore When we made the calculations according to data shown in Figure 8.21, the expected value received from the government during the period of the energy policy instrument is 7495 $U S \$$. We also have to remember the effect of the inflation rate (2.5% per year) on $G H G \cdot R_{C M}$.

The total GHG. $R_{C M}$ received by the hypothetical wind farm was calculated the following Eqn 8.5:

$$
\text { Total }_{\mathrm{GHG} . \mathrm{R}_{\mathrm{CM}}}=\sum \mathrm{GHG} \cdot \mathrm{R}_{\mathrm{CM} / y r} \xi_{\mathrm{GHG} . \mathrm{R}_{\mathrm{CM}}} \quad\left[\mathrm{US} \$ / \mathrm{tCO}_{2}\right] \quad \text { Eqn (8.5) }
$$

8.3.3.2 FOR Corvo IsLand (Portugal)

The $L C O E_{\text {wso }}$ methodology organizes the investment costs without any kind of public incentive effect (REPIM) in $L C C C M_{W F} \therefore$ For the standard (base-case) situation the $L C C C M_{W F}$ has shown the following structure, as represented by Table 8.3:

Table 8.3 $L C C C M_{W F}$ breakdown structure for Corvo Island (Portugal)

Investment cost	USS	$\%$
$W T_{C M}$	27686278	46.0%
$T_{C M}$	24219295	40.2%
$L W T G_{C M}$	1959783	3.3%
$C P_{C M}$	1545346	2.6%
$T S_{C M}$	572832	1.0%
$S I_{C M}$	2136726	3.5%
$P O_{C M}$	1796870	3.0%
$F_{C M}$	188559	0.3%
$C C C_{C M}$	120211	0.1%
$L C C C M_{W F}$	60225901	100.0%
Source: Own elaboration		

The capital cost per kW installed is about $1204.52 \mathrm{US} \$ / \mathrm{kW}$ and the most part is centralized in wind turbines $\left(46.0 \%\right.$ for $\left.W T_{C M}\right)$ and towers $\left(40.2 \%\right.$ for $\left.T_{C M}\right) \therefore$ It is also important to highlight the local wind turbines grid ($L W T G_{C M}$), collecting point $\left(C P_{C M}\right)$ and transmission system ($T S_{C M}$) that represents about 7.0% of the total capital costs (6.9%).

When we consider the effect of public incentive (REPIM) on initial investments in multimegawatts wind farm $\left(50 \mathrm{MW}_{\mathrm{e}}\right)$ we notice a reduction around $0.81 \%^{156}$ and the $L^{1} C C M_{W F}$ can reach the cost per kW about 1194.79 US $\$ / \mathrm{kW}$.

When we make the comparison between Corvo Island (Portugal) and Aracati (Brazil) considering the different periods of $O R E P_{C M}$ (Brazil=10 yrs and Portugal=15 yrs) the impact on $L C C C M_{W F}$ (initial investment) reduce in a few more \therefore An increasing of 26.4% is noticed on initial investment (from 0.64% to 0.81%) \therefore The reduction on $L C C C M_{W F}$ changes from $7.6962 U S \$ / k W$ to 9.7300 US $\$ / k W$. We can probably confirm that the period on the energy policy instrument makes a sensible difference on the results of competitiveness of RETs.

[^107]The $A A R$ of the hypothetical wind farm is shown in Figure 8.22 within its particularities and behavior \therefore We have calculated the $A A R$ per year according to Eqn. 7.1 with the conditions defined in Table 7.10.

Figure 8.22 $A A R(U S \$ M / y r)$ during the lifetime of the $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Corvo Island (Portugal). Source: Own elaboration

According to Figure 8.22, the $A A R$ of the wind farm in Corvo Island (Portugal) varies from 14970 $925 U S \$ M / y r$ to $24203932 U S \$ M / y r$ with $S D=2524373$ US\$M and 18990481 US\$M/yr
(Mean) \therefore The $A A R$ has shown a positive moderate asymmetry distribution ($\gamma=0.4655$) during the wind farm lifetime ($N=25 y r s$).

In the years $1\left(y r_{1}\right)$ and $20\left(y r_{20}\right)$, we can notice the lowest and highest level of revenue, respectively \therefore This wind power plant expects to receive as total AAR about 474762014 US\$M during the operational phase \therefore The relation between the total $A A R$ and $L C P M_{W F}$ is $0.210924 U S \$$ per kWh produced \therefore We have to remember the effect of the inflation rate (2.5% per year) on revenues.

When we compare $A A R$ of Corvo Island (Portugal) and Aracati (Brazil) considering the different annual wind speed (Brazil=7.4 m/s and Portugal=9.1 m/s) (see Table 8.1) and PPARs (Brazil=0.08581 US\$/kWh and Portugal=0.16291 US\$/kWh) (see Table 7.10) the impact on AAR is tremendous \therefore An increasing is noticed on total AAR (from 134959772 US\$M to 474762014 $U S \$ M) \therefore$ The increasing of 23% and 89.8% in wind speed and PPAR, respectively, reflects in an increasing of 251.8% on total AAR.

The $O \& M_{W F C M}$ of the hypothetical wind farm is shown in Figure 8.23 within its particularities and behavior \therefore We have calculated the $O \& M_{W F C M}$ per year according to Eqns 6.2.3, 6.2.3.1 and 6.2.3.2 with the conditions defined in Tables 7.11 and 7.12.

Figure $8.23 O \& M_{W F C M}$ splited into fixed $\left(O \& M_{f_{\text {fixed }}{ }_{\text {Cи }}}\right)$ and variable $\left(O \& M_{\text {variable }}^{C M}\right.$ $)$ during the lifetime of the $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Corvo Island (Portugal). Source: Own elaboration

As we can see in Figure 8.23 , the $O \& M_{W F C M}$ of the wind farm in Corvo Island (Portugal) varies from 0.0969 US\$ $k W h / y r$ to 0.1549 US\$ $k W h / y r$ with $S D=0.0180 U S \$ k W h$ and $0.1280 U S \$ k W h / y r$ (Mean) \therefore The $O \& M_{W F C M}$ has shown a negative moderate asymmetry distribution ($\gamma=-0.2251$) during the wind farm lifetime ($N=25 y r s$).

In the years $1\left(y r_{1}\right)$ and $20\left(y r_{20}\right)$, we can notice the lowest and highest level of $O \& M_{W F C M}$, respectively \therefore This wind power plant expects to spend as total $O \& M_{W F C M}$ about 309664717 US\$M during the operational phase \therefore The relation between the total $O \& M_{W F C M}$ and $L C P M_{W F}$ is 0.137576 $U S \$$ per kWh produced. We also have to remember the effect of the inflation rate (2.5% per year) on O\&M costs.

The $O \& M_{W F C M}$ in Corvo Island (Portugal) and Aracati (Brazil) shows some particularities \therefore The cost per kWh produced as not high as the increasing of $L C P M_{W F}$ (see Figure 8.13 and Table 8.1). Within the level of total energy production (1215 GWh for Aracati and 2251 for Portugal) and the average of $O \& M_{W F C M}(0.108080$ US\$/kWh for Aracati and 0.137576 US\$/kWh), which represents an increasing of 27.3% on $O \& M_{W F C M}$.

The $L R C M$ of the hypothetical wind farm is shown in Figure 8.24 within its particularities and behavior \therefore We have calculated the LRCM per year according to Eqns 6.2.2, 6.2.2.1, 6.2.2.1.1, 6.2.2.1.2, 6.2.2.2, and 6.2.2.2.1 with the conditions defined in Table 6.8.

Figure 8.24 $L R C M$ during the 15 years of the $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Corvo Island (Portugal). Source: Own elaboration

As shown in Figure 8.24, the LRCM of the wind farm in Corvo Island (Portugal) varies from 863 268 US\$ kW/yr to 1219776 US\$ kW/yr with SD=109 970 US\$ kW and 1032004 US\$ kW/yr (Mean) \therefore The LRCM has shown a positive symmetric distribution ($\gamma=0.1407$) during the wind farm lifetime ($N=25 y r s$).

In the years $1\left(y r_{1}\right)$ and $15\left(y r_{15}\right)$, we can notice the lowest and highest level of LRCM savings, respectively \therefore This wind power plant expects to save as total LRCM about 15480065 US\$ during 15 years of the operational phase \therefore The relation between the total $L R C M$ and $k W$ produced in 15 years is 182.0645 US\$ per kW produced \therefore We also have to remember the effect of the inflation rate (2.5\% per year) on LRCM.

We have notice the same figure for $L R C M$ both to Aracati (Brazil) and Corvo Island (Portugal) which seems to be the way this sub model was developed \therefore We can find the same value per $k W$ installed (16.8443 US\$/kW) and some initial aspects of this part of $L C O E_{\text {wso }}$ methodology:

1. The $L R C M$ can work as an economic reserve, independent of $A A R$ and $L C P M_{W F}$;
2. The $L R C M$ is not driven by the price of electricity sold (PPAR) - the wind farm developer or manager can create the "best cost strategy" independent of the price and the level of production of the wind farm.

The $R C M_{W F}$ of the hypothetical wind farm is shown in Figure 8.25 within its particularities and behavior \therefore We have calculated the $R C M_{W F}$ per year according to Eqns 6.2.4, 6.2.4.1, 6.2.4.1.1, 6.2.4.1.2, 6.2.4.1.3, 6.2.4.2, 6.2.4.2.1, 6.2.4.2.2 and 6.2.4.3 with the conditions defined in Tables 6.8 and 6.9.

Figure 8.25 $R C M_{W F}$ during the lifetime of the $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Corvo Island (Portugal). Source: Own elaboration

According to Figure 8.25, the $R C M_{W F}$ of the wind farm in Corvo Island (Portugal) varies from 2621739 US\$ kW/yr to 4742007 US\$ kW/yr with $S D=635804$ US\$ kW and 3582 109 US\$ $k W / y r$ (Mean) \therefore The $R C M_{W F}$ has shown a positive moderate asymmetry distribution $(\gamma=0.2259)$ during the wind farm lifetime ($N=25 y r s$).

In the years $1\left(y r_{1}\right)$ and $25\left(y r_{25}\right)$, we can notice the lowest and highest level of $R C M_{W F}$ savings, respectively \therefore his wind power plant expects to save as total $R C M_{W F}$ about $89552736 U S \$$ during the operational phase \therefore he relation between the total $R C M_{W F}$ and $k W$ produced in 25 years is 1053 $U S \$$ per kW produced \therefore We also have to remember the effect of the inflation rate (2.5% per year) on $R C M_{W F}$.

The $R C M_{W F}$ was developed in order to cover the costs of removing the wind farm and "rebuild" the local environment conditions, so when we get a value equal or equivalent amount of funds for cover the costs of decommissioning the wind farm, which is the purpose of this indicator! In the case of the hypothetical wind farm in Corvo Island (Portugal) if we have consider the total $L_{C C C M}^{W F}$ (60 225901 US\$) added to LRCM (15 480065 US\$), the $R C M_{W F}$ about 89552736 US\$ really covers it (75705966 US\$ < 89552736 US\$).

For $R C M_{W F}$ we have noticed the same conditions and conclusions of $L R C M$ that is why we do not comment again (see page 329 of this Chapter).

As we have already said the REPIM or Renewable Energy Public Incentive Model is a part of the proposed $L C O E_{\text {wso }}$ methodology that measures the impact of some and most common kinds of energy policy instruments applied to RETs \therefore We have proposed four different types of instruments: two of them are related to investment incentive ($R E I_{C M}$ and $O R E P_{C M}$) and the others are related to energy production (REP $_{C M}$ and GHG. $R_{C M}$).

The $R E I_{C M}$ of the hypothetical wind farm is shown in Figure 8.26 within its particularities and behavior. \therefore We have calculated the $R E I_{C M}$ for initial year of the wind project ($y r=0$) according to Eqns 6.2.5.1 with the conditions defined in Tables 6.10 and 7.14.

Figure 8.26 REI $_{C M}$ for $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Corvo Island (Portugal). Source: Own elaboration

The total $R E I_{C M}$ received by the hypothetical wind farm was also calculated with the Eqn 8.2. When we made the calculations according to data shown in Figure 8.26 and Tables 6.10 and 7.14, the expected value received from the government is 221313 US $\$ \therefore$ An analogous situation occurs to $O R E P_{C M}$ although according to Eqn 6.2.5.3.1 with the conditions defined in Tables 6.10, 7.13 and 7.14.

Figure 8.27 OREP $_{C M}$ for $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Corvo Island (Portugal). Source: Own elaboration

The total $O R E P_{C M}$ received by the hypothetical wind farm was also calculated with the Eqn 8.3. When we made the calculations according to data shown in Figure 8.27, the expected value received from the government is 265188 US\$.

As we already said the side of production is considered, in other words, the $A E P_{\text {avail }}$ from the wind project analyzed \therefore The $R E P_{C M}$ was developed according to Eqns 6.2.5.3 and 6.2.5.3.1 with the conditions defined in Tables 6.10, 7.13 and 7.14.

Figure $8.28 R E P_{C M}$ for $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Corvo Island (Portugal). Source: Own elaboration

According to Table G.9, the $R E P_{C M}$ of the wind farm in Corvo Island (Portugal) varies from 939 $U S \$ k W_{e} h / y r$ to $1325 U S \$ k W_{e} h / y r$ with $S D=119 U S \$ k W_{e} h$ and $1125 U S \$ k W_{e} h / y r$ (Mean) \therefore The $R E P_{C M}$ has shown a positive symmetry distribution ($\gamma=0.1260$) during the period of energy policy instrument.

In the years $15\left(y r_{15}\right)$ and $1\left(y r_{1}\right)$, we can notice the lowest and highest level of $R E P_{C M}$, respectively \therefore When we made the calculations according to data shown in Figure 8.28, the total expected value received from the government during the period of the energy policy instrument is 16879 US $\$$ (calculated with Eqn 8.4) \therefore We also have to remember the effect of the inflation rate (2.5\% per year) on $R E P_{C M}$.

Finally we also development among the energy policy instruments analyzed, one regard to CO_{2} non-emissions, defined as GHG. $R_{C M}$. According to Eqns 6.2.5.4 and 6.2.5.4.1 with the conditions defined in Tables 6.10, 7.13 and 7.14.

Figure 8.29 GHG. $R_{C M}$ for $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Corvo Island (Portugal). Source: Own elaboration

According to Table G.9, the GHG. $R_{C M}$ of the wind farm in Corvo Island (Portugal) varies from 113 $U S \$ / t C O_{2}$ to $204 U S \$ / t C O_{2}$ with $S D=28 U S \$ / t C O_{2}$ and $156 U S \$ / t C O_{2}$ (Mean) \therefore The GHG. $R_{C M}$ has shown a positive moderate asymmetry distribution ($\gamma=0.1985$) during the period of energy policy instrument.

In the years $1\left(y r_{1}\right)$ and $25\left(y r_{25}\right)$, we can notice the lowest and highest level of $G H G \cdot R_{C M}$, respectively \therefore When we made the calculations according to data shown in Figure 8.29 , the total expected value received from the government during the period of the energy policy instrument is 3893 US\$ (calculated with Eqn 8.5) \therefore We also have to remember the effect of the inflation rate (2.5\% per year) on GHG. $R_{C M}$.

In order to compare the REPIM results between Aracati (Brazil) and Corvo Island (Portugal) we have resumed in Table 8.4.

Table 8.4 Comparison of REPIM in relation to Aracati (Brazil) and Corvo Island (Portugal)

Instrument	Unit	Aracati (Brazil)	Corvo Island (Portugal)
$R E I_{C M}$	$U S \$ / k W_{e}$	221313	221313
$R E P_{C M}$	$U S \$ / k W_{e} h$	16285	16879
OREP $_{C M}$	$U S \$ / k W_{e}$	163497	265188
$G H G . R_{C M}$	$U S \$ / t C O_{2}$	7495	3893

Source: Own elaboration

A brief analysis can be taken from the results shown in Table 8.4:

1. Some of most interesting is the GHG. $R_{C M}$ that is strongly influenced by the price of $t \mathrm{CO}_{2}$ paid by government per kWh produced in the wind farm \therefore For example the price in US\$ for Aracati (Brazil) considered was $46.3820 U S \$ / t C_{2}$ and Corvo Island (Portugal) was 13 $U S \$ / t C_{2} \therefore$ The difference of $33.3820 \mathrm{US} \$ / \mathrm{tCO} \mathrm{CO}_{2}$ was big enough to overcome the higher level of energy production and better local wind resources (see Table 8.1);
2. In the case of $O R E P_{C M}$ another important aspect must be explained, the period considering for the energy policy instrument applied to the energy project (Aracati-Brazil=10 yrs and Corvo Island-Portugal=15 yrs);
3. Energy policy maker have to take into consideration the price of CO_{2}, the periodicity of the instrument analyzed and the wind resources, geographically defined in the legislation proposed to the renewable energy producers.

8.3.3.3 For Cape Saint James (Canada)

As we have said yet the $L C O E_{\text {wso }}$ methodology organizes the investment costs without any kind of public incentive effect (REPIM) in $L^{2} C C M_{W F} \therefore$ For the standard (base-case) situation the $L C C C M_{W F}$ has shown the following structure, as represented by Table 8.5:

Table 8.5 $L C C C M_{W F}$ breakdown structure for Cape Saint James (Canada)

Investment cost	$U S \$$	$\%$
$W T_{C M}$	27686278	46.0%
$T_{C M}$	24219295	40.2%
$L W T G_{C M}$	1959783	3.3%
$C P_{C M}$	1545346	2.6%
$T S_{C M}$	572832	1.0%
$S I_{C M}$	2136726	3.5%
$P O_{C M}$	1796870	3.0%
$F_{C M}$	188559	0.3%
$C C C_{C M}$	120211	0.1%
$L C C C M_{W F}$	60225901	100.0%
Source: Own elaboration		

In the same conditions of investment as Aracati (Brazil), Corvo Island (Portugal) the capital cost per kW installed for Cape Saint James (Canada) is about 1204.52 US\$/kW and the most part is centralized in wind turbines (46.0% for $W T_{C M}$) and towers (40.2% for $T_{C M}$). It is also important to highlight the local wind turbines grid ($L W T G_{C M}$), collecting point ($C P_{C M}$) and transmission system $\left(T S_{C M}\right)$ that represents about 7.0% of the total capital costs (6.9%).

Analogous to the two other sites when we consider the effect of public incentive (REPIM) on initial investments in multi-megawatts wind farm $\left(50 \mathrm{MW}_{\mathrm{e}}\right)$ we notice a reduction around $1.55 \%{ }^{157}$ and the $L C C C M_{W F}$ can reach the cost per kW about 1185.87 US $\$ / \mathrm{kW}$.

In comparison to Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada) and the different periods of OREP $_{C M}$ (Brazil and Canada=10 yrs; Portugal=15 yrs) the impact on $L C C C M_{W F}$ (initial investment) for the wind farm in Cape Saint James (Canada) reduce more than the other two cited \therefore In relation to Corvo Island (Portugal) there is an increasing of 91.6% and 142.3% to Aracati (Brazil), respecfully \therefore The reduction on $L^{2} C C M_{W F}$ changes from 7.6962 US\$/kW to 18.6466 US\$/kW.

[^108]The $A A R$ of the hypothetical wind farm is shown in Figure 8.30 within its particularities and behavior \therefore We have calculated the $A A R$ per year according to Eqn. 7.1 with the conditions defined in Table 7.10.

Figure 8.30 $A A R(U S \$ M / y r)$ during the lifetime of the $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Cape Saint James (Canada). Source: Own elaboration

According to Figure 8.30, the $A A R$ of the wind farm in Cape Saint James (Canada) varies from 30 $129143 \mathrm{US} \$ M / y r$ to $48311614 \mathrm{US} \$ M / y r$ with $S D=5069795 \mathrm{US} \$ \mathrm{M}$ and $38174169 \mathrm{US} \$ \mathrm{M} / \mathrm{yr}$ (Mean). The $A A R$ has shown a positive moderate asymmetry distribution ($\gamma=0.4408$) during the wind farm lifetime ($N=25 y r s$).

In the years $1\left(y r_{1}\right)$ and $20\left(y r_{20}\right)$, we can notice the lowest and highest level of revenue, respectively. This wind power plant expects to receive as total AAR about 954354217 US\$M during the operational phase. The relation between the total $A A R$ and $L C P M_{W F}$ is 0.179126 US\$ per kWh produced. We have to remember the effect of the inflation rate (2.5% per year) on revenues.

When we compare $A A R$ of Cape Saint James (Canada) with Corvo Island (Portugal) and Aracati (Brazil) considering the different annual wind speed (Brazil=7.4 m/s, Portugal=9.1 m/s and Canada $=12.5 \mathrm{~m} / \mathrm{s}$) (see Table 8.1) and PPARs (Brazil=0.08581 US\$/kWh, Portugal=0.16291 $U S \$ / k W h$ and Canada=0.13835 US\$/kWh) (see Table 7.10) the impact on $A A R$ is tremendous. An increasing is noticed on total AAR (from 134959772 US\$M to 954354217 US\$M). The increasing of 69.3% and 61.2% in wind speed and PPAR, respectively, reflects in an increasing of 607.1% on total AAR.

The $O \& M_{W F C M}$ of the hypothetical wind farm is shown in Figure 8.31 within its particularities and behavior \therefore We have calculated the $O \& M_{W F C M}$ per year according to Eqns 6.2.3, 6.2.3.1 and 6.2.3.2 with the conditions defined in Tables 7.11 and 7.12.

Figure $8.31 O \& M_{W F C M}$ splited into fixed $\left(O \& M_{\text {fixed }}^{c и}{ }_{\text {cu }}\right)$ and variable $\left(O \& M_{\text {variable }}^{C M}\right.$ $)$ during the lifetime of the $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Cape Saint James (Canada). Source: Own elaboration

As we can see in Figure 8.31, the $O \& M_{W F C M}$ of the wind farm in Cape Saint James (Canada) varies from 0.0969 US\$ $k W h / y r$ to 0.1549 US\$ $k W h / y r$ with $S D=0.0180 U S \$ k W h$ and $0.1280 U S \$ k W h / y r$ (Mean) \therefore The $O \& M_{W F C M}$ has shown a negative symmetric distribution $(Y=0.1280)$ during the wind farm lifetime ($N=25 y r s$).

In the years $1\left(y r_{1}\right)$ and $20\left(y r_{20}\right)$, we can notice the lowest and highest level of $O \& M_{W F C M}$, respectively \therefore This wind power plant expects to spend as total $O \& M_{W F C M}$ about 682022915 US\$M during the operational phase \therefore The relation between the total $O \& M_{W F C M}$ and $L C P M_{W F}$ is 0.128011 US\$ per kWh produced. We also have to remember the effect of the inflation rate (2.5% per year) on O\&M costs.

The $O \& M_{W F C M}$ in Cape Saint James (Canada), Corvo Island (Portugal) and Aracati (Brazil) shows some particularities \therefore The cost per kWh produced as not high as the increasing of $L C P M_{W F}$ (see Figure 8.13 and Table 8.1). Within the level of total energy production (1 215 GWh for Aracati, 2251 for Portugal and 5328 GWh for Canada) and the average of $O \& M_{W F C M}(0.108080$ US\$/kWh for Aracati, 0.137576 US\$/kWh for Portugal and 0.128011 US\$/kWh for Canada), which represents an increasing of 18.4% on $O \& M_{W F C M}$ (in relation to Aracati-Brazil).

The $L R C M$ of the hypothetical wind farm is shown in Figure 8.32 within its particularities and behavior \therefore We have calculated the LRCM per year according to Eqns 6.2.2, 6.2.2.1, 6.2.2.1.1, 6.2.2.1.2, 6.2.2.2, and 6.2.2.2.1 with the conditions defined in Table 6.8.

Figure 8.32 $L R C M$ during the 15 years of the $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Cape Saint James (Canada). Source: Own elaboration

As shown in Figure 8.32, the $L R C M$ of the wind farm in Cape Saint James (Canada) varies from 863268 US\$ kW/yr to 1219776 US\$ kW/yr with SD=109 970 US\$ kW and 1032004 US\$ kW/yr (Mean) \therefore The LRCM has shown a positive symmetric distribution ($\gamma=0.1407$) during the wind farm lifetime ($N=25 y r s$).

In the years $1\left(y r_{1}\right)$ and $15\left(y r_{15}\right)$, we can notice the lowest and highest level of LRCM savings, respectively \therefore This wind power plant expects to save as total $L R C M$ about $15480065 U S \$$ during 15 years of the operational phase. The relation between the total LRCM and $k W$ produced in 15 years is 182.0645 US\$ per kW produced \therefore We also have to remember the effect of the inflation rate (2.5\% per year) on LRCM.

We have notice the same figure for $L R C M$ in Cape Saint James (Canada), Aracati (Brazil) and Corvo Island (Portugal) which seems to be the way this sub model was developed \therefore We can find the same value per $k W$ installed ($16.8443 U S \$ / k W$) which can be understood as an economic reserve, independent of $A A R$ and $L C P M_{W F}$ and it is not driven by the price of electricity sold (PPAR), so wind farm developer or manager can create the "best cost strategy" independent of the price and the level of production of the wind farm, as we have already said before.

The $R C M_{W F}$ of the hypothetical wind farm is shown in Figure 8.33 within its particularities and behavior \therefore We have calculated the $R C M_{W F}$ per year according to Eqns 6.2.4, 6.2.4.1, 6.2.4.1.1, $6.2 .4 .1 .2,6.2 .4 .1 .3,6.2 .4 .2,6.2 .4 .2 .1,6.2 .4 .2 .2$ and 6.2 .4 .3 with the conditions defined in Tables 6.8 and 6.9.

Figure 8.33 $R C M_{W F}$ during the lifetime of the $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Cape Saint James (Canada). Source: Own elaboration

According to Figure 8.33, the $R C M_{W F}$ of the wind farm in Cape Saint James (Canada) varies from 2621739 US\$ kW/yr to 4742007 US\$ kW/yr with $S D=635804$ US\$ kW and 3582109 US\$ $k W / y r$ (Mean) \therefore The $R C M_{W F}$ has shown a positive moderate asymmetry distribution $(\gamma=0.2259)$ during the wind farm lifetime ($N=25 y r s$).

In the years $1\left(y r_{1}\right)$ and $25\left(y r_{25}\right)$, we can notice the lowest and highest level of $R C M_{W F}$ savings, respectively \therefore This wind power plant expects to save as total $R C M_{W F}$ about 89552736 US\$ during the operational phase \therefore The relation between the total $R C M_{W F}$ and $k W$ produced in 25 years is 1053 US\$ per kW produced. We also have to remember the effect of the inflation rate (2.5% per year) on $R C M_{W F}$.

As we have discussed yet the $R C M_{W F}$ was developed in order to cover the costs of removing the wind farm and "rebuild" the local environment conditions, so when we get a value equal or equivalent amount of funds for cover the costs of decommissioning the wind farm, which is the purpose of this indicator! In the case of the hypothetical wind farm in Cape Saint James (Canada) if we have consider the total $L C C C M_{W F}(60225901$ US\$) added to $\operatorname{LRCM}(15480065$ US\$), the $R C M_{W F}$ about 89552736 US\$ really covers it (75 705966 US\$ < 89552736 US\$).

For $R C M_{W F}$ in Cape Saint James (Canada) we have noticed the same conditions and conclusions of $L R C M$ that is why we do not comment again (see page 329 of this Chapter).

For REPIM model we have also applied four different types of instruments to the wind farm in Cape Saint James (Canada): two of them are related to investment incentive ($R E I_{C M}$ and $O R E P_{C M}$) and the others are related to energy production $\left(R E P_{C M}\right.$ and $\left.G H G . R_{C M}\right)$.

The $R E I_{C M}$ of the hypothetical wind farm is shown in Figure 8.34 within its particularities and behavior \therefore We have calculated the $R E I_{C M}$ for initial year of the wind project $(y r=0)$ according to Eqns 6.2.5.1with the conditions defined in Tables 6.10 and 7.14.

Figure 8.34 $R E I_{C M}$ for $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Cape Saint James (Canada). Source: Own elaboration

The total $R E I_{C M}$ received by the hypothetical wind farm was also calculated with the Eqn 8.2. When we made the calculations according to data shown in Figure 8.34 and Tables 6.10 and 7.14, the expected value received from the government is 221313 US $\$ \therefore$ An analogous situation occurs to $O R E P_{C M}$ although according to Eqn 6.2.5.3.1 with the conditions defined in Tables 6.10, 7.13 and 7.14.

OREP $_{C M}$	56.8814	$\left[\$ / \mathrm{kW}_{\mathrm{e}}\right]$
LCCCM $_{W F_{\text {OREG }}^{\text {CM }}}$	2.7664	$[\$ / \mathrm{kW}]$
LCCCM $_{W F}$	1204.5180	$[\$ / \mathrm{kW}]$
WACC $_{\text {proj }}$	4.9000%	$[\% / \mathrm{yr}]$
$\psi_{\text {total }}$	30.0%	$[\%]$
$i f r$	2.5%	$[\% / \mathrm{yr}]$
n_{ψ}	10	$[\mathrm{yr}]$
$C R_{f}$	80.0%	$[\%]$

Figure 8.35 $O R E P_{C M}$ for $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Cape Saint James (Canada). Source: Own elaboration

The total $O R E P_{C M}$ received by the hypothetical wind farm was also calculated with the Eqn 8.3. When we made the calculations according to data shown in Figure 8.35, the expected value received from the government is 711018 US\$.

As we already said the side of production is considered, in other words, the $A E P_{\text {avail }}$ from the wind project analyzed \therefore The $R E P_{C M}$ was developed according to Eqns 6.2.5.3 and 6.2.5.3.1 with the conditions defined in Tables 6.10, 7.13 and 7.14.

Figure $8.36 R E P_{C M}$ for $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Cape Saint James (Canada). Source: Own elaboration

According to Table G.10, the $R E P_{C M}$ of the wind farm in Cape Saint James (Canada) varies from $125 U S \$ k W_{e} h / y r$ to $156 U S \$ k W_{e} h / y r$ with $S D=10 U S \$ k W_{e} h$ and $140 U S \$ k W_{e} h / y r$ (Mean) \therefore The $R E P_{C M}$ has shown a positive symmetry distribution ($\gamma=0.1048$) during the period of energy policy instrument.

In the years $10\left(y r_{10}\right)$ and $1\left(y r_{1}\right)$, we can notice the lowest and highest level of $R E P_{C M}$, respectively \therefore When we made the calculations according to data shown in Figure 8.36, the total expected value received from the government during the period of the energy policy instrument is 1403 US\$ (calculated with Eqn 8.4) \therefore We also have to remember the effect of the inflation rate (2.5\% per year) on $R E P_{C M}$.

Finally we also development among the energy policy instruments analyzed, one regard to CO_{2} non-emissions, defined as GHG. $R_{C M} \therefore$ According to Eqns 6.2.5.4 and 6.2.5.4.1 with the conditions defined in Tables 6.10, 7.13 and 7.14.

Figure 8.37 GHG. $R_{C M}$ for $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Cape Saint James (Canada). Source: Own elaboration

According to Table G.10, the GHG. $R_{C M}$ of the wind farm in Cape Saint James (Canada) varies from $621 \mathrm{US} \$ / t \mathrm{CO}_{2}$ to $1128 \mathrm{US} \$ / t C O_{2}$ with $S D=152 \mathrm{US} \$ / t \mathrm{CO}_{2}$ and $851 \mathrm{US} \$ / t C O_{2}$ (Mean). The GHG. $R_{C M}$ has shown a positive moderate asymmetry distribution ($\gamma=0.2159$) during the period of energy policy instrument.

In the years $1\left(y r_{l}\right)$ and $25\left(y r_{25}\right)$, we can notice the lowest and highest level of GHG.R $R_{C M}$, respectively. When we made the calculations according to data shown in Figure 8.37, the total expected value received from the government during the period of the energy policy instrument is 21268 US $\$$ (calculated with Eqn 8.5) \therefore We also have to remember the effect of the inflation rate (2.5\% per year) on GHG. $R_{C M}$.

In order to better comprehension about REPIM mode through the results among Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada) we have resumed the main values in the Table 8.6.

Table 8.6 Comparison of REPIM in Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada)

Instrument	Unit	Aracati (Brazil)	Corvo Island (Portugal)	Cape Saint James (Canada)
$R E I_{C M}$	$U S \$ / k W_{e}$	221313	221313	221313
$R E P_{C M}$	$U S \$ / k W_{e} h$	16285	16879	1403
OREP $_{C M}$	$U S \$ / k W_{e}$	163497	265188	711018
$G H G . R_{C M}$	$U S \$ / t C O_{2}$	7495	3893	21268

Source: Own elaboration

A conclusive analysis can be taken from the results shown in Table 8.6:

1. The $R E I_{C M}$ is not dependent of the level of production ($L C P M_{W F}$), local wind speed at a constant percentage ($\psi_{\text {totala }}$) and period of the energy policy instrument (n_{Ψ});
2. On $R E P_{C M}$ the impact is more effective in function of the value paid by government $\left(\varepsilon_{0}\right)$ than the time of policy energy instrument $\left(n_{\varepsilon}\right) \therefore$ Although the wind farm in Cape Saint James (Canada) presents much more potential production ($L C P M_{W F}$) (see Figure 8.13 and Table 8.1) but the value paid is the lowest (see Table 7.14);
3. The OREP $_{C M}$ is driven by the period of the energy policy instrument (n_{ψ}) and $A E P_{\text {avail }}$ what can be justified the highest value paid to the wind far in Cape Saint James (Canada), even this government adopts the lowest value paid;
4. For GHG. $R_{C M}$ we can see analogous situation, but the lowest value paid is in Corvo Island (Portugal).

8.4 SENSITIVITY ANALYSIS RESULTS

8.4.1 INDIVIDUAL VARIABLE SENSITIVITIES

8.4.1.1 IMPACT ON $L C O E_{\text {wSo }}$ OF WIND SPEED ($V_{\text {wc }}$)

Figure 8.38 Impact on $L C O E_{\text {wso }}$ of wind speed $\left(v_{w c}\right)$. Source: Own elaboration

The relation between $L C O E_{w s o}$ and wind speed ($v_{w c}$) as we can understand from the Figure 8.38 seems to present a partial inverse relation \therefore We can state that it works like the same principle of economy of scale. As has said Rosa (2009) the AEP from WECS is the cube of wind speed, that is why the local wind resources where the wind farm will be installed is a fundamental question for this type of RETs.

For these three different sites, we have noticed that when wind speed ($v_{w c}$) increases in 23.0%, we get 10.2% of increasing on $\operatorname{LCOE}_{\text {wso }}$ (from Aracati-Brazil to Corvo Island-Portugal) \therefore The same situation occurs in relation to Corvo Island (Portugal) and Cape Saint James (Canada) when the wind speed increases 37.4% reflects and increases 19.4% on $L C O E_{\text {wso }}$ (see Table 8.7).

Table 8.7 Sensitivity analysis between $L C O E_{w s o}$ and $v_{w c}$

Items	Aracati (Brazil)	Corvo Island (Portugal)	Cape Saint James (Canada)
LCOE $_{\text {wso }}$	69.6792	76.8138	91.7081
$\nu_{w c}(\mathrm{~m} / \mathrm{s})$	7.4	9.1	12.5

[^109]
8.4.1.2 IMPACT ON $L C O E_{W S O}$ OF OPERATIONS AND MAINTENANCE MANAGEMENT ($O \& M_{M A N A G}$)

According to Obdam, Braam, Rademakers, and Eecen (2007) O\&M costs of wind farms contribute significantly to the energy production costs \therefore Reliable estimates of these costs are required during planning and operation of the wind farm at several stages. Such estimates however have a large spread and are uncertain.

These $O \& M$ costs and strategies can oscillate during the lifetime of the wind farm and the impact on LCOE assumes a similar behavior \therefore In our methodology the $O \& M_{\text {MANAG }}$ has also impact on $L C O E_{\text {wso }}$ and wind farm availability \therefore Figure 8.39 shows the results of $L C O E_{\text {wso }}$ due to the strategy simulated in the sensibility analysis done according to Table 7.12.

Figure 8.39 Resume of sensitivity analysis of $L C O E_{\text {wso }}$ and $O \& M_{\text {manag }}$ for Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada). Source: Own elaboration

We focused our Ph.D. research work on $L C O E_{\text {wso }}$ impact when is considered different strategies for $O \& M$ management in the wind farms analyzed \therefore As we have defined in Chapter 7, section 7.6.2 (optimization criteria), the optimization moment is related finding (calculating) the lowest $L C O E_{\text {wso }}$ as possible.

Table 8.8 shows the results and effects on $L C O E_{\text {wso }}$ due to the $O \& M_{\text {manag }}$ programs (strategies) tested by the sensitivity analysis done \therefore We also highlight the "best option" to choose about O\&M strategy to follow.

The wind farm availability increases in 0.44% for $O \& M_{\operatorname{manag}(A)}$ and 0.24% for $O \& M_{\operatorname{manag}(B)}$ in Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada). Figure 8.40 shows the availability for each site and strategy considered.

Table 8.8 Sensitivity analysis between $L C O E_{w s o}$ and $O \& M_{\text {manag }}$

	Strategies	Aracati (Brazil)	Corvo Island (Portugal)	Cape Saint James (Canada)
$\begin{aligned} & \text { 这 } \\ & 0 \\ & 0 \end{aligned}$	$O \& M_{\text {manag (STD) }}$	69.6873 US\$/MWh	76.8138 US\$/MWh	91.7081 US\$/MWh
	$O \& M_{\text {manag }(A)}$	69.6991 US\$/MWh	76.8666 US\$/MWh	91.8264 US\$/MWh
	$O \& M_{\text {manag }{ }^{(B)}}$	69.6873 US\$/MWh	76.8666 US\$/MWh	91.7691 US\$/MWh

Source: Own elaboration

When we analyze the effect of $O \& M_{\text {manag }}$ on $L C O E_{\text {wso }}$ for each site, we get some interesting aspects to be understood \therefore Fisrt of all, we have considered as base for comparison the $O \& M_{\text {manag(STD) }} \therefore$ We possible conclude about $O \& M_{\text {manag }}$ such considerations:

1. In the case of Aracati (Brazil) the option $O \& M_{\operatorname{manag}(B)}$ can be adopted, because there is no effect on the $L C O E_{w s o}$, but if we get the $O \& M_{\operatorname{manag}(A)}$ the cost of electricity produced increases in 0.02%;
2. For Corvo Island (Portugal) both $O \& M_{\operatorname{manag}(A)}$ and $O \& M_{\operatorname{manag}(B)}$ increase the $L C O E_{\text {wso }}$ in 0.07%. The $O \& M_{\operatorname{manag}(S T D)}$ is the optimized strategy for $\mathrm{O} \& \mathrm{M}$ costs;
3. In Cape Saint James (Canada) occurs the same situation of Corvo Island (Portugal), but we get an increasing of 0.13% for $O \& M_{\operatorname{manag}(A)}$ and 0.07% for $O \& M_{\operatorname{manag}(B)}$. Also the $O \& M_{\text {manag(STD) }}$ is the optimized strategy for $\mathrm{O} \& \mathrm{M}$ costs.

Figure 8.40 Resume of sensitivity analysis of $O \& M_{\text {manag }}$ and wind farm availability for Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada). Source: Own elaboration

8.4.1.3 IMPACT ON $L C O E_{W S O}$ OF WIND TURBINES LAYOUT ($L_{W T}$)

As has discussed by Eriksson (2008) is important to look at different wind farm layouts and compare the reliability and the investment between the alternatives, since it is hard to interpret the result from a reliability calculation for a single layout without comparing it to alternatives.

In $L C O E_{w s o}$ methodology the $L_{w t}$ has also impact on the costs of the wind farm as a whole. Figure 8.41 shows the results of $L C O E_{\text {wso }}$ due to the alternative wind farm layouts $(5 D 4 D, 5 D 7 D, 5 D 10 D$ and 6 D 12 D) simulated in the sensibility analysis done according to Table 6.5.

Figure 8.41 Resume of sensitivity analysis of $L C O E_{w s o}$ and $L_{w t}$ for Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada). Source: Own elaboration

We focused our Ph.D. research work on $L C O E_{\text {wso }}$ impact when is considered alternative layouts for $L_{w t}$ variable in the wind farms analyzed \therefore As we have defined in Chapter 7, section 7.6.2 (optimization criteria), the optimization moment is related finding (calculating) the lowest LCOE ${ }_{\text {wso }}$ as possible \therefore Table 8.9 shows the results and effects on $L C O E_{w s o}$ due to $L_{w t}$ alternatives tested by the sensitivity analysis done \therefore We also highlight the "best option" to choose of $L_{w t}$ to be implemented.

As we can see at Figure 8.42 the wind turbines layout impacts on $L C C C M_{W F}$ because the distances between the wind turbines, dimension of local wind turbines grid (LWTG) and correlated capital costs influenced by $L_{w t}$ for Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada) \therefore The $5 D 7 D, 5 D 10 D$ and $6 D 12 D$ layouts can increase the $L C C C M_{W F}$ in $0.25 \%, 0.51 \%$ and 1.10%, respectively.

Table 8.9 Sensitivity analysis between $L C O E_{w s o}$ and $L_{w t}$

Source: Own elaboration

When we analyze the effect of $L_{w t}$ on $L C O E_{w s o}$ for each site, we get some interesting aspects to be understood \therefore Fisrt of all, we have considered as base for comparison the layout $5 D 4 D \therefore$ We possible conclude about $L_{w t}$ such considerations:

1. In the case of Aracati (Brazil) the option $5 D 4 D$ can be adopted, because it is cheapest alternative (effect on $L C O E_{\text {wso }}$), but if we get the $5 D 7 D, 5 D 10 D$ or $6 D 12 D$ the cost of electricity produced increases in $0.22 \%, 0.44 \%$ and 0.95%, respectively;
2. For Corvo Island (Portugal) both we can see a similar situation with Aracati (Brazil) with the cost of electricity produced increases in $0.20 \%, 0.40 \%$ and 0.86%, respectively;
3. In Cape Saint James (Canada) occurs the same situation of Corvo Island (Portugal) and Aracati (Brazil) with the cost of electricity produced increases in $0.17 \%, 0.33 \%$ and 0.72%, respectively;
4. We can confirm, mutatis mutandis, among the layouts alternatives analyzed that $5 D 4 D$ is the optimized solution for Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada) \therefore This layout is pointed by many researchers (Dicorato, Forte, Pisani, \& Trovato, 2011; Lundberg, 2003, 2006a, 2006b) as one possible optimized onshore wind turbines.

Figure 8.42 Impact on $L C C C M_{W F}$ due to alternative layouts $\left(L_{w t}\right)$. Source: Own elaboration

8.4.1.4 IMPACT ON $L C O E_{W S O}$ OF ENERGY POLICY INSTRUMENTS ($E_{P I}$)

Globally, governments tend to appreciate the advantages of renewable energy production more than conventional energy production. Therefore, to support the expansion of production capacity of renewable energy in many ways that basically aims to reduce the disadvantages of most technologies for renewable energy production: the cost and the lack of controllability.

The cost (investment and/or production) can reduce with the RETs project receive some support from government for construction or investment incentives such as accelerated depreciation, tax advantages or subsidies may lead to the construction of a significant number of new renewable power plants (Enzensberger, Wietschel, \& Rentz, 2002) \therefore The energy policy instruments are represented in $L C O E_{\text {wso }}$ methodology by $R E P I M$ model within its sub-models $R E I_{C M}, R E P_{C M}$, OREP $P_{C M}$ and GHG. $R_{C M}$ (see Chapter 6, pp. 238-241).

The sensitivity analysis in REPIM was done according to Table 7.14 and optimization criteria defined in section 7.6.2.

Figure 8.43 Resume of sensitivity analysis of $L C O E_{w s o}$ and $E_{p i}$ for Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada). Source: Own elaboration

We focused our Ph.D. research work on $L C O E_{\text {wso }}$ impact of alternative public incentives for $E_{p i}$ variable in the wind farms analyzed \therefore As we have defined in Chapter 7 , section 7.6 .2 (optimization criteria), the optimization moment is related finding (calculating) the lowest $L C O E_{\text {wso }}$ as possible \therefore Table 8.10 shows the results and effects on $L C O E_{w s o}$ due to $E_{p i}$ alternatives tested by the sensitivity analysis done \therefore We also highlight the "best option" to choose of case for $E_{p i}$ to be implemented.

In $L C O E_{w s o}$ methodology the $E_{p i}$ has also impact on $L C C C M_{W F}$. Figure 8.44 shows the results of $L^{2} C C M_{W F}$ due to the alternative $E_{p i}$ (Base-case, Case ${ }_{1}$, Case 2_{2} and Case ${ }_{3}$) simulated in the sensibility analysis done according to Table 6.5.

Table 8.10 Sensitivity analysis between $L C O E_{w s o}$ and $E_{p i}$

Situations	Aracati (Brazil)	Corvo Island (Portugal)	Cape Saint James (Canada)
Base-case	69.6792 US\$/MWh	76.8138 US\$/MWh	91.7081 US\$/MWh
Case ${ }_{1}$	69.6792 US\$/MWh	76.8138 US\$/MWh	91.7081 US\$/MWh
Case 2	76.8138 US\$/MWh	76.8138 US\$/MWh	91.7081 US\$/MWh
Case 3	69.6792 US\$/MWh	76.8138 US\$/MWh	91.7081 US\$/MWh

Source: Own elaboration

According to Table 8.10 it is possible to take some conclusions about the effect of $E_{p i}$ on $L C O E_{w s o}$:

1. In the case of Aracati (Brazil) only the Case ${ }_{2}$ makes the cost of electricity produced increases in 10.24%;
2. For Corvo Island (Portugal) and Cape Saint James (Canada) the cost of electricity produced remains in the same level as the base-case;
3. We also can say that base-case situation is the optimized solution for Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada).

Figure 8.44 shows the impacts of $E_{p i}$ on $L C C C M_{W F}$ for Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada). Both Case ${ }_{1}$ and Case ${ }_{3}$ decrease the LCCCM ${ }_{W F}$ in $1.23 \%, 1.34 \%$ and 1.79%, respectively. In Case ${ }_{3}$ there is an increasing of 0.19% and 0.10% for Aracati (Brazil), and Corvo Island (Portugal) and decreases 0.22% for Cape Saint James (Canada) (see Table V.5).

Figure 8.44 Impact on $L C C C M_{W F}$ due to alternative energy policy $\left(E_{p i}\right)$. Source: Own elaboration

8.4.2 MULTIPLE VARIABLE SENSITIVITIES

8.4.2.1 IMPACT ON $L C O E_{\text {WSO }}$ OF WIND SPEED ($V_{W C}$) AND WIND TURBINE LAYOUT ($L_{W T}$)

Figure 8.45 Resume of sensitivity analysis of the impact on $L C O E_{w s o}$ of wind speed $\left(v_{w c}\right)$ and wind turbine layout ($L_{w t}$) for Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada). Source: Own elaboration

When we analyzed the sensibility studies considering multiple variables, case of this section, when it is crossed $L C O E_{w s o}, v_{w c}$ and $L_{w t}$ a wider conclusion can be made. First of all, we also confirm the same ideas from individual analysis of these variables, such as, (a) the lowest $L C O E_{w s o}$ is $5 D 7 D$ layout for $L_{w t}$, (b) $L C O E_{w s o}$ as higher as the $v_{w c}$ is, but not in the same proportion and (c) the $v_{w c}$ has stronger impact on $L C O E_{w s o}$ than $L_{w t}$ (see Figure 8.45).

As we considered the $5 D 4 D$ as the reference layout and optimized one, due to find the lowest $L C O E_{\text {wso }}$ among Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada). The mean calculated of them is 79.4004 US $\$ / M W h$. For the other layouts simulated in sensitivity analysis we found $79.5529 U S \$ / M W h, 79.7054 U S \$ / M W h$ and $80.0613 U S \$ / M W h$ for $5 D 7 D$, $5 D 10 D$ and $6 D 12 D$, respectively.

According to Table V. 4 the $L C O E_{\text {wso }}$ increases $0.19 \%, 0.38 \%$ and 0.83% considering the $5 D 4 D$ layout as reference, as we already said before, for 5D7D, 5D10D and 6D12D, respectively.

8.4.2.2 IMPACT ON $L C O E_{W S O}$ OF O\&M MANAGEMENT ($O \& M_{M A N A G}$) AND ENERGY POLICY INSTRUMENTS ($E_{P I}$)

The $O \& M_{\text {manag }}$ and $E_{p i}$ as supposed to have different impacts on $L C O E_{w s o}$. In the case of the possible combinations of $O \& M_{\operatorname{manag}(A),} O \& M_{\text {manag(B) }}$ and $E_{p i}\left(\right.$ Case $_{1}$, Case 2_{2} and Case ${ }_{3}$) we found some interesting situations (see Tables 8.11, 8.12 and 8.13).

Table 8.11 Resume of sensitivity analysis of the impact on $L C O E_{w s o}$ of $O \& M_{\text {managg }(A)}$ and $E_{p i}$ for Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada)

	Item	Aracati (Brazil)	Corvo Island (Portugal)	Cape Saint James (Canada)
			\% $M_{\text {manag(A) }}$	
	Reference	69.6792	76.8138	91.7081
	Case ${ }_{1}$	69.6991	76.8666	91.8264
	Case $_{2}$	69.6991	76.8666	91.8264
	Case $_{3}$	69.6991	76.8666	91.8264

Source: Own elaboration
$O \& M_{\operatorname{manag}(A)}$ and $E_{p i}$ (Case 1, 2 and 3) for Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada) we found an increasing of $0.03 \%, 0.07 \%$ and 0.13%, respectively, in relation to reference situation.

Table 8.12 Resume of sensitivity analysis of the impact on $L C O E_{\text {wso }}$ of $O \& M_{\text {manag }(B)}$ and $E_{p i}$ for Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada)

	Item	Aracati (Brazil)	Corvo Island (Portugal)	Cape Saint James (Canada)
			$O \& M_{\operatorname{manag}(B)}$	
$\begin{aligned} & \text { eny } \\ & 0 \\ & 0 \\ & \hline 1 \end{aligned}$	Reference	69.6792	76.8138	91.7081
	Case ${ }_{1}$	69.6873	76.8666	91.7691
	Case 2	69.6873	76.8666	91.7691
	Case $_{3}$	69.6873	76.8666	91.7691

Source: Own elaboration
$O \& M_{\operatorname{manag}(B)}$ and $E_{p i}$ (Case 1, 2 and 3) for Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada) we found an increasing of $0.01 \%, 0.07 \%$ and 0.07%, respectively, in relation to reference situation.

In Table 8.13 shows the difference of $O \& M$ programs and $E_{p i}$ simulated in the sensitivity analysis done for understanding the optimized option for $O \& M$ proposed programs.

Table 8.13 Resume of sensitivity analysis of the impact on $L C O E_{\text {wso }}$ of $O \& M_{\text {manag(A-B) }}$ and $E_{p i}$ for Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada)

	Item	Aracati (Brazil)	Corvo Island (Portugal)	Cape Saint James (Canada)
		$O \& M_{\text {manag(A) }}-O \& M_{\text {manag }(\text { B }}$		
$\begin{aligned} & \text { ồ } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Reference	69.6792	76.8138	91.7081
	Case ${ }_{1}$	0.0117	nihill	0.0574
	Case_{2}	0.0117	nihill	0.0574
	Case ${ }_{3}$	0.0117	nihill	0.0574

Source: Own elaboration

Some conclusions can be taken by the results obtained for Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada):

1. The optimized situation is the reference one. As we have already discussed the mean of $L C O E_{\text {wso }}$ is 79.4004 US $\$ / M W h$;
2. The relation between the $L C O E_{w s o}$ for each site and the mean of $L C O E_{w s o}$ is $-14.0 \%, 10.2 \%$ and 31.6% for Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada), respectively;
3. For $O \& M$ programs $\left(O \& M_{\text {manag }(A)}\right.$ and $\left.O \& M_{\operatorname{manag}(B)}\right)$ and $E_{p i}\left(\right.$ Cases $_{1}, 2$ and $\left.{ }_{3}\right)$, in Aracati (Brazil) and Cape Saint James (Canada) increase 0.0117 US $\$ / M W h$ and 0.0574 US $\$ / M W h$, respectively;
4. In Corvo Island (Portugal) shows no variation between $O \& M_{\text {manag(A) }}$ and $O \& M_{\text {manag(B) }}$, but as we already said, increases 0.0528 US\$/MWh in relation to reference situation;
5. We can possible conclude that $O \& M$ management $\left(O \& M_{\text {manag }}\right)$ and energy policy instruments ($E_{p i}$) combined have a positive impact on $L C O E_{w s o}$. We have to remember that the optimized solution for these variables analyzes is the reference situation.

As have stated Barradale (2010) about energy policy when discuss that alongside cost-effectiveness and other dimensions that are usually considered in the choice of policy incentives, therefore, stability should be added to the list of criteria to be explicitly considered. This stability refers to the macroeconomic situation of the government that subsidizes the renewable energy technologies from the supporting programs practice.

8.4.3 CONCLUSIONS AND FUTURE ANALYSIS ON COST OF WIND ENERGY

The cost of the electricity produced depends on, apart from the initial capital investment costs, on the general wind conditions at the site ($v_{w c}$), $O \& M$ expenses and on the financing mechanism adopted for the wind power project.

The results of simulations done according to Table 7.15 within the variables selected ($v_{w c}, L_{w}$, $O \& M_{\text {manag }}$ and $E_{p i}$) for validation the $L C O E_{w s o}$ methodology confirm the impact expected on the cost of energy produced by the hypothetical wind farms at Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada). As expected, changes in wind speed ($v_{w c}$) have such a significant impact on the $L C O E_{\text {wso }}$ in function of the $A E P_{\text {avail }}$. Table 8.14 shows the main results from the simulations, but the strong correlation confirm the expected impact of this variable.

Table 8.14 Relation among $L C O E_{\text {wso }}, A E P_{\text {avail }}$ and $v_{w c}$ for Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada)

Item	Aracati $($ Brazil $)$	Corvo Island (Portugal)	Cape Saint James (Canada)
$L C O E_{w s o}(U S \$ / M W h)$	69.6792	76.8138	91.7081
$A E P_{\text {avail }}(G W h)$	1215	2251	5328
$v_{w c}(\mathrm{~m} / \mathrm{s})$	7.4	9.1	12.5

Correlation Coeff. 0.9969
Source: Own elaboration

In relation to the energy production cost, there is a strong evidence of direct dependence of the average wind speed $\left(v_{w c}\right)$. As an example, the energy production cost at an average wind speed of $7.4 \mathrm{~m} / \mathrm{s}$ was increased in 10.2% as the cost for an average wind speed of $9.1 \mathrm{~m} / \mathrm{s}$. It was also found that the energy production cost decreases when the power of the wind farm increases.

The layout effect ($L_{w t}$) was analyzed and some aspects can be highlighted. In the hand of investment costs $\left(L C C C M_{W F}\right)$ there is a direct relation as we can see at Figure 8.42. As more as spaced as the wind turbines layout, more is the investment needed to be done. Afterword, this increasing of $\operatorname{LCCCM}_{\text {WF }}$ impacts on $L C O E_{\text {wso }}$. We also remember that Table 7.4 shows the relation of layout, area $\left(\mathrm{km}^{2}\right)$ and occupation rate (\%). It could be an interesting analysis takes into consideration two options for land costs: one the land area is rented and the other is part of initial investment $\left(L C C C M_{\text {WF }}\right)$. In our $L C O E_{\text {wso }}$ methodology we considered only the rent option, so it was included into $O \& M_{\text {variable }_{C M}}$ (see Eqn. 6.2.3.1).

Another aspect analyzed was the $O \& M_{\text {MANGG }}$. The $O \& M_{\text {MANAG }}$ impacts on $A E P_{\text {avail }}\left(L C P M_{\text {WF }}\right)$ because is connected directly to period of electricity production $\left(H_{\text {prod }}\right)$ by the wind farm. This effect sensible reflects on others aspects of the $L C O E_{\text {wso }}$ methodology, such as $O \& M$ costs, total $A A R$,
wind farm availability. For illustration, Figure 8.46 shows the impact on $H_{p r o d}$ and availability of the wind farm in Aracati (Brazil).

Figure 8.46 Impact of $O \& M_{\text {MANAG }}$ on hours of production $\left(H_{p r o d}\right)$ and wind farm availability for Aracati (Brazil). Source: Own elaboration

The total AAR of wind farms for 25 years is affected by $v_{w c}, O \& M_{\text {manag }}$, and $O \& M_{\text {manag }}$ combined with $E_{p i}$. The $L_{w t}$ has not impacted on total $A A R$ due to the objective of the alternatives layouts simulated (constant $W F_{\text {cap }}$ and cost impacts driven to $\operatorname{LCCCM}_{W F}$), otherwise the different layouts impacts direct on total AAR. Table 8.15 summarize the variables simulated and the impact on total AAR (US\$M) for Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada).

In the simple variable analysis the $O \& M_{\text {manag }}$ impacted on total $A A R$ differently for each wind farm and program analyzed. In the case of $O \& M_{\text {manag(A) }}$ increases the total $A A R$ in $0.45 \%, 0.43 \%$ and 0.44%, respectively for Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada). $O \& M_{\text {manag }(B)}$ also increases the total $A A R$ in $0.24 \%, 0.43 \%$ and 0.23%, respectively for Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada).

In the multiples variables analyzes when we consider the combination of $O \& M_{\operatorname{manag}_{(A)},} O \& M_{\text {managag }_{(B)},}$, $E_{p i}\left(\right.$ Cases $_{1}, 2$ and $\left._{3}\right)$. For the first group of variables $\left(O \& M_{\text {manag }(A)}+\right.$ Case $\left._{1,2,3}\right)$ we can notice an increasing on total $A A R$ of $0.45 \%, 0.43 \%$ and 0.44%, respectively for Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada). Although in second group of variables $\left(O \& M_{\text {manag }(B)}+\right.$ Case $\left._{1,2,3}\right)$ we also have an increasing on total AAR of $0.24 \%, 0.43 \%$ and 0.23%, respectively, for Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada) (see Table 8.15).

Table 8.15 Variables simulated and the impact on total AAR (US\$M) for Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada)

Variables	Aracati (Brazil)	Corvo Island (Portugal)	Cape Saint James (Canada)
Simple variable	$7.4 \mathrm{~m} / \mathrm{s}$	$9.1 \mathrm{~m} / \mathrm{s}$	$12.5 \mathrm{~m} / \mathrm{s}$
$v_{w c}$	134959772	474762014	954354217
$L_{w t}$			
5D7D	134959772	474762014	954354217
5D10D	134959772	474762014	954354217
6 D 12 D	134959772	474762014	954354217
$O \& M_{\text {manag }}$			
$O \& M_{\text {manag(STD) }}$	134959772	474762014	954354217
$O \& M_{\text {manag }(A)}$	135567821	476812536	958516231
$O \& M_{\text {manag }{ }^{(B)}}$	135279734	476812536	956513783
Epi			
Case ${ }_{1}$	134959772	474762014	954354217
Case 2	134959772	474762014	954354217
Case $_{3}$	134959772	474762014	954354217
Multiples variables			
O\& $M_{\text {manag }(A)}+$ Case $_{1}$	135567821	476812536	958516231
O\& $M_{\text {manag }(4)}+$ Case $_{2}$	135567821	476812536	958516.231
$O \& M_{\text {manag }(4)}+$ Case $_{3}$	135567821	476812536	958516231
$O \& M_{\text {manag }(B)}+$ Case $_{1}$	135279734	476812536	956513783
O\& $M_{\text {manag }(B)}+$ Case $_{2}$	135279734	476812536	956513783
$O \& M_{\text {manag }(B)}+$ Case $_{3}$	135279734	476812536	956513783

Source: Own elaboration

For future analyzes we recommend explaining some more relations and behavior for $L C O E_{\text {wso }}$ methodology proposed, such as:

* $L C O E_{w s o} / A A R$: develop correlations with cost of energy produced and the revenues of the wind farm in order to measure the elasticity between them. It is important to define the level of $A A R$ for certain $L C O E_{\text {wso }}$ desired or constrained by the energy policy instrument, for example.
* $L C O E_{\text {wso }} / D P B$: define the influence of the cost of electricity produced and the payback period of the wind project. As we have not the objective to analyze it, but we know it is important the payback for the investor/financer of the project.
* $L C O E_{\text {wso }}$ /ifr: what size of the influence of inflation on $L C O E_{\text {wso }}$ because this kind of analysis is applied for long term ($N=25 \mathrm{yrs}$). The inflation effect on the values must be carefully analyzed, if can change the type of decision made (during the Ph.D. research work, all analyzes done the inflation rate was constant).
* $L C O E_{W s} / L C P M_{W F}:$ in $L C O E_{\text {wso }}$ methodology the production of the wind farm is determined by the $L C P M_{W F}$. It could be a great indicator some variable that make the correlation and influence of production on $L C O E_{w s o}$. The wind farm output (production) can be analyzed by the $P \& D_{L M \text { factor }}$, but we do not make any analysis with this variable and LCOE $_{\text {ws }}$.
* $L C O E_{w s d} / O \& M$ warranty conditions: as we have defined the $O \& M$ contracts influence on the O\&M costs, so, try to develop some algorithm for calculating these variations would be important for O\&M effect on $L C O E_{\text {wso }}$ at all.
* LCOE ${ }_{w s d} / P P A R$-EMP: define the correlation and sensibility between the cost of energy produced and the price of electricity sold. For this Ph.D. research work we have considered the PPAR/EMP constant for all simulations done. Meanwhile we recognize price is a keyparameter for the success of a wind project (Blanco, 2009; Chapman, 1974; Gross et al., 2010; Ibenholt, 2002; Lee, Chen, \& Kang, 2009; Levitt, Kempton, Smith, Musial, \& Firestone, 2011; Milborrow, 1995; Robert S, 1993; Strbac, Jenkins, \& Allan, 1997).

So we suggest many "roads" to follow in future analysis on cost of wind energy both onshore and offshore, the challenge of wind energy Ph.D. research lies in developing alternative methodologies that make the optimization with respect to both cost and production. One of the prerequisite to overcome this challenge for the cost-effective analysis is the availability of a systematic group of equations that generates accurate and reliable results according the official data published in the scientific renewable energy community.

Figure 8.47 Relation of total $A E P_{\text {avail }}$ and $L C O E_{\text {wso }}$ during the lifetime of $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada). Source: Own elaboration. Source: Own elaboration

As we can notice in Figure 8.47 the simulations and sensitivity analysis show that increasing $A E P_{\text {avail }}$ leads to increasing $L C O E_{\text {wso }} . A E P_{\text {avail }}$ and related variables must be considered together, and they have a strong influence on $L C O E_{\text {wso }}$.

8.5 SUMMARY AND CONCLUSIONS

This chapter shows the results from the simulations and sensitivity analysis in $v_{w c}, L_{w,} O \& M_{\text {manag }}$ and $E_{p i}$ to a $50 \mathrm{MW}_{\mathrm{e}}$ onshore wind farm located at Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada), operating for 25 years. We start by simulation a standard situation (reference simulation) and developed 900 interactions for $L C O E_{\text {wso }}$ calculations according to Table 7.16.

We show the results expected to $L C C C M_{W F}, A A R, O \& M_{W F C M}, L R C M, R C M_{W F}$ and REPIM (see section 8.3.3) for each site analyzed. The investment costs (measured by $L C C C M_{W F}$) calculated about 1205 USD/kW for Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada), but in the sensitivity analysis the $L C C C M_{W F}$ oscillates as shown in Figure 8.42 in function of the alternatives wind farm layouts ($L_{w i}$).
The total AAR for Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada) varies from 134959772 US\$M to 958516231 US\$M. We can resume the main results of AAR for each site analyzed, as:

1. In Aracati (Brazil) varies from 4297170 US $\$ M / y r$ to 6873465 US $\$ M / y r$ with SD=713 406 US\$M and 5398391 US\$M/yr (Mean);
2. In Corvo Island (Portugal) varies from 14970925 US\$M/yr to 24203932 US\$M/yr with SD=2 524373 US\$M and 18990481 US\$M/yr (Mean);
3. In Cape Saint James (Canada) varies from 30129143 US\$M/yr to 48311614 US\$M/yr with SD=5 069795 US\$M and 38174169 US\$M/yr (Mean).

The operation costs of the wind farm also have shown a peculiar behavior. $O \& M_{W F C M}$ in the $L C O E_{\text {wso }}$ methodology analyzed the operational costs and we get the final results:

1. In Aracati (Brazil) varies from 0.0808 US\$ $k W h / y r$ to 0.1323 US $\$ k W h / y r$ with $S D=0.0161$ US\$ kWh and 0.1081 US\$ kWhyr (Mean);
2. In Corvo Island (Portugal) varies from 0.0969 US\$ $k W h / y r$ to 0.1549 US\$ $k W h / y r$ with $S D=0.0180$ US\$ $k W h$ and 0.1280 US\$ $k W h / y r$ (Mean);
3. In Cape Saint James (Canada) varies from 0.0969 US\$ $k W h / y r$ to 0.1549 US $\$ k W h / y r$ with $S D=0.0180$ US $\$ k W h$ and 0.1280 US\$ $k W h / y r$ (Mean).

In the case of the techno-economic reserves, case of $L R C M$ and $R C M_{W F}$. These models shown different results. For $L R C M$ we obtain some interesting values, as detailed:

1. In Aracati (Brazil) varies from 863268 US\$ $k W / y r$ to 1219776 US\$ $k W / y r$ with $S D=109$ 970 US\$ kW and 1032004 US\$ kW/yr (Mean);
2. In Corvo Island (Portugal) varies from 863268 US\$ $k W / y r$ to 1219776 US\$ $k W / y r$ with $S D=109970$ US\$ kW and 1032004 US\$ kW/yr (Mean);
3. In Cape Saint James (Canada) varies from 863268 US\$ kW/yr to 1219776 US\$ kW/yr with $S D=109970$ US\$ $k W$ and 1032004 US\$ $k W / y r$ (Mean).

For $R C M_{W F}$, the main results are:

1. In Aracati (Brazil) varies from 2621739 US\$ $k W / y r$ to 4742007 US $\$ k W / y r$ with $S D=635804$ US\$ kW and 3582109 US\$ kW/yr (Mean);
2. In Corvo Island (Portugal) varies from 2621739 US\$ $k W / y r$ to 4742007 US $\$ \mathrm{~kW} / \mathrm{yr}$ with $S D=635804$ US\$ kW and 3582109 US\$ kW/yr (Mean);
3. In Cape Saint James (Canada) varies from 2621739 US\$ $k W / y r$ to 4742007 US\$ $k W / y r$ with $S D=635804 U S \$ k W$ and 3582109 US\$ kW/yr (Mean).

The government support to RETs in the $L C O E_{\text {wso }}$ methodology is represented by REPIM model. According to Table 8.6 the sub-models of REPIM have the main results:

1. For Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada) the $R E I_{C M}$ is about $221313 U S \$ / k W_{e}$;
2. $R E P_{C M}$ is about $16285 U S \$ / k W_{e} h$ (for Aracati (Brazil)), $16879 U S \$ / k W_{e} h$ (for Corvo Island (Portugal)) and $1403 \mathrm{US} \$ / k W_{e} h$ (Cape Saint James (Canada));
3. $O R E P_{C M}$ is about $163497 U S \$ / k W_{e}$ (for Aracati (Brazil)), $265188 U S \$ / k W_{e}$ (for Corvo Island (Portugal)) and 711018 US $\$ / k W_{e}$ (Cape Saint James (Canada));
4. GHG. $R_{C M}$ is about $7495 \mathrm{US} \$ / t \mathrm{CO}_{2}$ (for Aracati (Brazil)), 3893 US $\$ / t \mathrm{CO}_{2}$ (for Corvo Island (Portugal)) and $21268 \mathrm{US} \$ / \mathrm{tCO}_{2}$ (Cape Saint James (Canada)).

Figure 8.48 shows the final $L C O E_{\text {wso }}$ results for the sites selected for the hypothetical $50 \mathrm{MW}_{\mathrm{e}}$ onshore wind farm.

Figure 8.48 Final values of $L C O E_{\text {wso }}$ for Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada). Source: Own elaboration. Source: Own elaboration

In general, the results from the $L C O E_{\text {wso }}$ model show that the necessity and importance of methodologies for cost-effective analysis in the Renewable Energy Technologies (RETs), case of wind power and we can confirm, mutatis mutandis, that $L C O E_{\text {wso }}$ is equivalent to $L C O E / N R E L$ and the results are similar according to Figure 7.7.

An analysis of the fundamental variables of the $L C O E_{\text {wso }}$ cost model has resulted in a wellconsidered approach of cost modeling within the wind power project, both onshore and offshore. A breakdown of costs into a summation of components can lead to a straightforward accumulation of inaccuracies and every level of precision can be obtained with precise input data (so the data considered must be from a secure source). A breakdown of energy production in a multiplication of efficiencies has an inherent error, associated with the correlation between contributions to energy loss (in this numerical simulation and validation was considered constant).

The core of the $L C O E_{\text {wso }}$ model can be simplified and does not need to specify the cost breakdown. However, this simplification must be done considering the historical data applied to that submodel. Furthermore, each data-component must be specified clearly to ensure a comprehensive and consistent breakdown of costs and performance of the power system analyzed.

For this Ph.D. research work a generic fixed breakdown has been defined and the cost models have been implemented while some corrections were done in equations developed. The final definition of the sub-model and the results that are generated for each component has not been applied without comparing within the official data, in order not increases risk of inconsistency. Future implementations or corrections should reduce the possibility to incorporate inconsistent data due to the several inputs needed. Costs of energy levelized are calculated according to the suggested algorithm (Eqn. 6.2) and with the input parameter.

According to Botterud (2003) the models can be applied by individual power plants in the power system to evaluate investment projects for new power generation capacity. The models can also serve as a decision support tool on a regulatory level, providing analyses of the long-term performance of the power system under different regulations and market designs into the different energy policy instruments.

8.6 References

Barradale, M. J. (2010). Impact of public policy uncertainty on renewable energy investment: Wind power and the production tax credit. Energy Policy, 38(12), 7698-7709. doi: 10.1016/j.enpol.2010.08.021

Blanco, M. I. (2009). The economics of wind energy. Renewable \& Sustainable Energy Reviews, 13(6-7), 1372-1382. doi: 10.1016/j.rser.2008.09.004

Botterud, A. (2003). Long Term Planning in Restructured power Systems: Dynamic Modelling of Investments on New Power Generation under Uncertainty. Norwegian University of Science and Technology.

Chapman, P. F. (1974). Energy costs: a review of methods. Energy Policy, 2(2), 91-103. doi: 10.1016/0301-4215(74)90002-0

Dicorato, M., Forte, G., Pisani, M., \& Trovato, M. (2011). Guidelines for assessment of investment cost for offshore wind generation. Renewable Energy, 36(8), 2043-2051. doi: 10.1016/j.renene.2011.01.003

Enzensberger, N., Wietschel, M., \& Rentz, O. (2002). Policy instruments fostering wind energy projects--a multi-perspective evaluation approach. Energy Policy, 30(9), 793-801. doi: 10.1016/s0301-4215(01)00139-2

Eriksson, E. (2008). Wind farm layout - a reliability and investment analysis. Master in Energy Science and Technology, Uppsala University Uppsala. (UPTEC ES08013)

Groeneveld, R. A., \& Meeden, G. (1984). Measuring Skewness and Kurtosis. Journal of the Royal Statistical Society. Series D (The Statistician), 33(4), 391-399. doi: 10.2307/2987742

Gross, R., Blyth, W., \& Heptonstall, P. (2010). Risks, revenues and investment in electricity generation: Why policy needs to look beyond costs. Energy Economics, 32(4), 796-804. doi: 10.1016/j.eneco.2009.09.017

Ibenholt, K. (2002). Explaining learning curves for wind power. Energy Policy, 30(13), 1181-1189. doi: 10.1016/s0301-4215(02)00014-9

Lee, A. H. I., Chen, H. H., \& Kang, H.-Y. (2009). Multi-criteria decision making on strategic selection of wind farms. Renewable Energy, 34(1), 120-126. doi: 10.1016/j.renene.2008.04.013

Levitt, A. C., Kempton, W., Smith, A. P., Musial, W., \& Firestone, J. (2011). Pricing offshore wind power. Energy Policy, 39(10), 6408-6421. doi: http://dx.doi.org/10.1016/j.enpol.2011.07.044

Lundberg, S. (2003). Configuration study of large wind parks. Licentiate of Engineering, Chalmers University of Technology, Goteborg.

Lundberg, S. (2006a). Evaluation of wind farm layouts. EPE Journal, 16(1), 14.
Lundberg, S. (2006b). Wind farm configuration and energy efficiency studies-series DC versus AC layouts. Doctor of Philosophy, Chalmers University of Technology, Goteborg. Retrieved from http://webfiles.portal.chalmers.se/et/PhD/LundbergStefanPhD.pdf

Milborrow, D. J. (1995). Wind Farm Economics. Proceedings of the Institution of Mechanical Engineers Part a-Journal of Power and Energy, 209(3), 179-184.

Obdam, T., Braam, H., Rademakers, L., \& Eecen, P. (2007). Estimating costs of operation \& maintenance for offshore wind farms. Paper presented at the Proceedings of European Offshore Wind Energy Conference, Berlin.

Oliveira, W. S., \& Fernandes, A. J. (2012). Cost-effectiveness Analysis for Wind Energy Projects. [Review]. International Journal of Energy Science, 2(1), 15-22.

Petersen, E. L., Mortensen, N. G., Landberg, L., Højstrup, J., \& Frank, H. P. (1998). Wind power meteorology. Part I: climate and turbulence. Wind Energy, 1(1), 2-22.

Poore, R., \& Walford, C. (2008). Development of an operations and maintenance cost model to identify cost of energy savings for low wind speed turbines. (NREL/SR-500-40581). Colorado: NREL. Retrieved from http://www.nrel.gov/docs/fy08osti/40581.pdf.

RETScreen ${ }^{\circledR}$ International Clean Energy Decision Support Centre. (2009). Wind energy project analysis. Software manual, Chapter 2. Retrieved June 12, 2009, from www.retscreen.net.

Robert S, P. (1993). Investments of uncertain cost. Journal of Financial Economics, 34(1), 53-76. doi: 10.1016/0304-405x(93)90040-i

Rosa, A. V. (2009). Fundamentals of Renewable Energy Processes (2nd ed.). UK: Elsevier.
Strbac, G., Jenkins, N., \& Allan, R. (1997). Value of wind generated electricity. Wind Energy Conversion 1996, 43-47.
"By three methods we may learn wisdom: First, by reflection, which is noblest; second, by imitation, which is easiest; and third by experience, which is the bitterest."

Confucius

ChAPTER 9

Conclusions and Implications

9.1 Introduction
9.2 Main findings and contributions
9.2.1 Chapter 2
9.2.2 Chapter 3
9.2.3 Chapter 4
9.2.4 Chapter 5
9.2.5 Chapter 6
9.2.6 Chapter 7
9.2.7 Chapter 8
9.3 Recommendations for future researches
9.3.1 For $v_{w c}$
9.3.2 For $L_{w t}$
9.3.3 For $O \& M_{\text {manag }}$
9.3.4 For $E_{p i}$
9.3.5 For others
9.4 General summary and conclusions
9.5 References

This final chapter presents a brief introduction about the research work design. Main findings and contributions of this Ph.D. research work are discussed within some recommendations for future researches and a general summary and conclusions of the whole thesis is summarized. The references used in this chapter are also presented in the end.

9.1 Introduction

The increased use of wind power requires modifications in methodologies of cost analysis for planning and management purposes, because it includes more a component of uncertainty that need to be properly studied in RETs. \therefore However, many studies that evaluate the COE of WECS in reliability still represent it as conventional power plants. As discussed in this Ph.D. work, due to wind speed variations, intermittent nature, and its specificities should be considered. This research had as objective the development of an algorithm for Economic Optimization of Wind Farms in Function of the Cost of Energy for representation in reliability and feasibility studies of implementation of wind power plants.

Currently there is a high investment in the production of energy through renewable resources \therefore Thus, high investment in wind power plants, either in Europe or in the United States of America, as shown in Chapter 3. Essentially, the production of electrical energy-electricity through wind resources due to the maturity of their technology and resources available.

The wind energy conversion systems (WECS) were studied extensively in Chapter 4, due the necessity of understanding the multiple conversion chain performance by this technology \therefore As we have to detail the WECS and how this mechanism can transform kinetic energy into electrical energy form, so, how we can get the final energy production ($A E P_{\text {avail }}$) of a power plant.

During the extensive literature review, we have defined the thematic areas of this research work (see Figure 6.4), and go forward in the economic measures and optimization models discussed in Chapter 5. After that we could be able to understand what kind of economic metric could fit to the objective of this research work, the LCOE methodology, developed by NREL (1995) \therefore As deeper we analyze the $L C O E / N R E L$ we notice that we possible could modify it or adapt it to the objective of this research work.

In Chapter 6, we discussed about the theoretical framework and hypotheses development (section 6.4.3) and research design (section 6.4.4) within the mathematical model structuring (section 6.4.4.2) \therefore The $L C O E_{\text {wso }}$ was developed in order to maximize the wind farm production ($A E P_{\text {avail }}$) and minimize the cost of energy produced (COE), in the context of the lifetime of the power plant. We have to explain that is not a question of exchanging methodologies, even, it is an equivalence question! That is why it was necessary to make a numerical simulation and validation of the $L C O E_{\text {wso }}$ methodology.

The numerical simulation and validation process designed in Chapter 7 considering the details and conditions in order to be more objective and realist and try to "imitate a real wind power plant and its costs reliability and operation". The results of $L C O E_{\text {wso }}$ simulations shown in Chapter 8 were used to validate de alternative methodology, in other words, we took this "road" because we could not test this methodology in a real wind farm. This final chapter is organized in five sections \therefore It starts with the introduction (section 9.1), main findings and contributions are shown in section 9.2, some recommendations for future researches are also shown in section 9.3 and we finalize this Ph.D. research work with general summary and conclusions (section 9.4) and the references used in this chapter (section 9.5).

9.2 MAIN FINDINGS AND CONTRIBUTIONS

According to Figure 1.1, the Ph.D. research work is organized in 9 chapters, so we decided to declare the main findings and contributions in the same way \therefore The introduction part of this research work is set to Chapter 1, so we started from Chapter 2.

9.2.1 CHAPTER 2

1. Humankind evolution is closely linked to energy - the primitive history of Egypt is an excellent example of the role that energy, measured in surplus food/energy, played in the structure and activities of a primitive society \therefore Although the structures of the societies of today are much more complex, the energy continues to be an important factor in the development of mankind;
2. Energy production and consumption is strongly associated with the environmental pressure on the planet - For example, emissions of SO_{2} (sulfur dioxide), greenhouse gases and other CO_{2} and NO_{x} (nitrogen oxides) for a certain period, depends on the amount of electricity produced and the technological mix of plants operating in each electrical system for some period;
3. Renewable energies have generally lower emissions than conventional power stations - properly assess the potential effects of wind on the system cost of electricity compared to other existing production systems should take into account the fuel savings and emissions avoided \therefore Both the amount of CO_{2} reduction and additional costs attributed to the system depends on the characteristics of the electricity system under analysis.

In general, renewable energy technologies, named the wind power can provide an important contribution to reducing fossil fuel consumption and meet international environmental commitments. \therefore However, interconnection capacity, the combination of the existing capacity of production and characteristics of the wind power system to have a significant effect on how the variable production is assimilated by the system and on the extent of their contribution to meet the needs of modern society.

9.2.2 Chapter 3

1. Organizational model in wind energy industry - WECS are type of CoPS (Complex Product System), high-cost, engineering-intensive systems. \therefore Today, wind power is often subsidized, but it is approaching a cost level that makes it economically attractive compared to established energy production methods, assuming good wind conditions. \therefore The technology development stages of wind energy industry are $R \& D$, Demonstration, Deployment and Diffusion/Commercialization;
2. Wind resources worldwide - North America and Antarctica are the best locations for electricity production by wind energy technology \therefore But they are also very favorable to electricity production by wind energy technology in the northern Europe, especially along the North Sea, the southern tip of South America (Tierra del Fuego or Fireland) and Tasmania, in Oceania;
3. Trends in wind power technology - the main markets driving growth are Europe and Asia, which installed 96.6 GW and 82 GW respectively in the end of $2011 \therefore$ Vestas and GE Energy have the largest market shares of wind energy converters (wind turbines). According to WWEA (2011) by the end of the year 2010, about 670000 people were employed worldwide directly and indirectly in the many areas in the wind industry. During the last five years, the number of jobs almost tripled, from 235000 in 2005.

In comparison to other RETs, wind energy is certainly the one that is closest to making the transition from niche to mass market \therefore It is strongly linked with long-term prosperity \therefore For Pablo (2008) investment explains the productive capacity of an economy. Investments made in the renewable energy industry have in addition a strong influence on the degree of dependence among economies, their competitiveness, sustainability, and on all kinds of environmental issues including climate change.

9.2.3 Chapter 4

1. Wind energy technology - the power of the wind has been utilized for at least 3000 years and this energy captured by wind turbines is highly dependent on the local average wind speed \therefore The concept of the windmill-device was described by Heron of Alexandria. The working principle of WECS involves two main conversion processes, which are carried out by its main components: the rotor, which extracts kinetic energy from the wind and converts it into a mechanical torque, and the producing system (generator), which converts this torque into electricity;
2. Wind farm planning - the wind farm planning is a long and complex process which each phase is remarkable for the whole wind power plant lifetime \therefore A major issue in the planning of a wind farm is to identify the optimal rating and design of the installation. Several phenomena limits the maximum possible capacity of wind farms;
3. Wind energy production - the calculation of the annual theoretical production of electrical power from a wind farm is resulting from the product of electrical power installed, total hours of production for one year and capacity factor of the wind farm \therefore The capacity factor is due to production losses, stops for maintenance and periods where the wind speed is not suitable for the production of electricity by wind turbines.

The success of wind power as a renewable energy sources is obviously a direct function of the economics of production of WECS \therefore In this regard, the role of improved power output through the
development of better aerodynamic performance offers some potential return; however, the focus is on the cost of the entire system. However, WECS is not free of negative impacts, although the public attitude in relation to wind energy is generally positive, local people may react negatively to specific projects. In the particular case of wind energy impacts on the ecosystem, noise pollution (noise) and negative impacts on the landscape have been reported.

9.2.4 Chapter 5

1. Wind energy cost identification for economic evaluations - for wind energy projects, the costs are classified and structured investment costs, operating costs, maintenance costs and financial costs \therefore All these classes and cost structure have their own characteristics depending on the location, size, types of financing and regulations;
2. Investment analysis of wind energy projects - wind energy projects $N P V$ is a function of $A A R$ and the ICC. As a result, to maximize $N P V$ also maximizes the absolute wealth created by investment. Because of this, $N P V$ is biased toward larger investments. While on return is greater than the discount rate. The analysis of the $N P V$ will push the decision to bigger projects, even if the relative profitability is smaller. The $S P B, D P B$ and $I R R$ are functions of ICC/AAR;
3. Cost analysis of wind energy projects - the cost analysis of a wind power plant must be done by cost centers, classified into wind turbines cost center, electrical system cost center and grid interface cost center. These cost centers change its costs and subdivisions depending on the kind of application of wind power plant (Dicorato, Forte, Pisani, \& Trovato, 2011). Characterization of the boundaries of wind projects under study has impact and different values for LCOE.
4. Optimization models for energy systems - the optimization process of an energy system can be considered at three levels (Design optimization, Synthesis optimization and Operation optimization) (Frangopoulos, 2003). The cost per kWh from a power plant, a wind farm, must be understood as a result from a systemic components interlinked.

In order to improve the reliability of projected and REPs already in operation the key players of renewable energy industry, case of wind energy sector, more and more adopt simulation and optimization methods. The simulation and optimization methods since the end of nineties decade, as shown in Figure 5.9 have increased exponentially. Techniques for simulation and optimization of RETs vary greatly depending on the exact problem setting. The case of RE projects the local conditions such as orography, (micro) climate, local population and government must be taken into consideration. Many systems simulation and optimization in areas such as manufacturing, distribution, financial evaluations, are too complex to be analyzed discretely.

9.2.5 Chapter 6

1. Nature of the research for wind power systems - this Ph.D. research work fits to this kind of research. Operations research helps the manager/investor to achieve its goals using scientific methods and can be used in particular for wind farm design decisions. It is often concerned with optimizing of some objectives (maximum of profit, performance, etc. or minimum of loss, risk, cost, etc.) at limited resources;
2. LCOE driven-variables influence - based on LCOE/NREL methodology the variables were grouped into four categories: (1) Wind speed ($v_{w c}$); (2) Wind turbines layouts ($L_{w t}$); (3) Operations and Maintenance management ($O \& M_{\text {manag }}$) and (4) Energy policy instruments $\left(E_{p i}\right)$. The reason for grouping these variables into these categories was based on research hypotheses presented at Table 6.3. The variables relationship and research boundary (see Figure 6.14) were explained in section 6.4.4.1 which driven the simulation procedures done and shown in Chapter 7;
3. $L C O E_{\text {wso }}$ development and constitution - the $L C O E_{w s o}$ methodology was developed with six main modules: Wind Farm Life-Cycle Capital Cost Model (LCCCM ${ }_{\text {wF }}$); Wind Farm O\&M Cost Model ($O \& M_{\text {WFCM }}$); Levelized Replacement Cost Model (LRCM); Wind Farm Removal Cost Model ($R C M_{W F}$); Renewable Energy Public Incentive Model (REPIM) and Wind Farm Life-Cycle Production Model (LCPM ${ }_{\text {wF }}$). Each of them was integrated into sub-models, as shown in Figure 6.16;
4. Main difference between $L C O E_{\text {wso }}$ and LCOE/NREL - LCOE wso takes into consideration the LRCM or Levelized Replacement Cost Model, related to a cost item treated as "saving account" for the wind power project as the LCOE/NREL, but not obsolescence cost effect. LCOE $_{\text {wso }}$ designed with two sub-models: the Annual Replacement Cost Model ($A R_{C M}$) (see Eqn 6.2.2.1) and Technological Obsolescence Cost Model $\left(T O_{C M}\right)$ (see Eqn 6.2.2.2). This model was developed in order to guarantee at a certain period (5,10 and 15 years) funds enough to make the necessary review in the producing power system.

During the elaboration of $L C O E_{\text {wso }}$ methodology we notice the necessity to verify if the model and sub-models would be a real response to the research question and objectives designed for this research work, so we have to make the parameterization of the data for the inputs to feed the $L C O E_{\text {wso }}$ calculations.

9.2.6 Chapter 7

1. Power system parameters used for simulations - a $50 \mathrm{MW}_{\mathrm{e}}$ onshore wind farm with 25 wind turbines (Vestas V90-2MW). The electrical generators of wind turbines contain 4pole Doubly-Fed Asynchronous Generator (DFIG) with wound rotor (see Chapter 4, Figure 4.8 and Table 4.3). The numerical simulation and validation of $L C O E_{\text {wso }}$ performanced according to Tables 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.7, 7.8, 7.9, 7.10, 7.11,
7.12, 7.13 and 7.14. We have also considered the total of $15 \mathrm{~km}^{2}$ for wind farm installations. The types of layouts simulated were $5 D 4 D, 5 D 7 D, 5 D 10 D$ and $6 D 12 D$;
2. Economic and financial aspects of the wind project - even the economic and financial assumptions considered constant in the simulations done, the variables chosen ($v_{w c}, L_{w t}$, $O \& M_{\text {manag }}$ and $\left.E_{p i}\right)$ promote an oscillation on the final value of $L C O E_{\text {wso }}$ in Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada). Many researchers (Cory \& Schwabe, 2009; George \& Schweizer, 2008; Lantz \& Tegen, 2008; Lantz, Wiser, \& Hand, 2012; Milligan \& Graham, 1997; Tegen et al., 2012; Tidball, Bluestein, Rodriguez, \& Knoke, 2010) agree that economic classical variables impacts directly the cost of electricity produced from a wind farm (e.g. inflation rate, discount rate, debt rate, debt ratio, price of electricity sold, capital structure, and others);
3. $O \& M$ assumptions for wind project simulations - the O\&M costs were associated to $O \& M_{W F C M}$ with two alternatives of O\&M programs (see Table 7.12). In the proposed $O \& M_{W F C M}$ was done a separation of $O \& M$ costs because we believe that the costs for $O \& M$ could have two types of behavior, one related to the power plant itself (size, land area, and other administrative expenses) and other related to the production of the wind farm. Christopher (2003) has highlighted the effort to minimize wind turbine $O \& M$ costs must start with a better understanding of the current costs and other factors that drive these costs;
4. Energy policy assumptions for wind project simulations - in $L C O E_{w s o}$ methodology the energy policy instruments are computed in REPIM model. This model includes the following sub-models: (1) Renewable Energy Investment Credit Mode (REI $_{C M}$); (2) Renewable Energy Production Credit Mode (REP $_{C M}$); (3) Other REPs Credit Mode $\left(\right.$ OREP $\left._{C M}\right)$ and (4) GHG Reduction Credit Model (GHG. $R_{C M}$). Strong focus on capacity installations might result in the construction of projects with little productive efficiency. Production incentives, in contrast, help to specially stimulate the development of efficient projects, resulting in a higher output of renewable energy per supporting capital involved (Enzensberger, Wietschel, \& Rentz, 2002);
5. General simulations procedures - the simulations were done for 25 years of wind farm operation. The sensitivity analysis was organized in two parts. The first part the variables are analyzed individually (see section 8.4.1). In this part is analyzes the impact of $v_{w c}, O \& M_{\text {manag }}, L_{w t}$ and $E_{p i}$ on $L C O E_{w s o}$. The second part of the sensitivity analysis a multiple variable analysis is made (see section 8.4.2) \therefore We have analyzed the impact of $v_{w c}$ and $L_{w t} ; O \&_{\text {Mmanag }}$ and $\left.E_{p i}\right)$ on $L C O E_{w s o}$.

The effect of the parameters/data variations impact on $L C O E_{w s o}$ that is why we need to run (900 interactions) within a sensitivity analysis for numerical simulation and validation process, as detailed in section $7.6 \therefore$ The sensitivity analysis was defined and undertaken as explained in sections 7.6.1, 7.6.2 and 7.6.3.

9.2.7 CHAPTER 8

1. Distribution of wind speed series - the wind profile during one year, according to the data shown in Figure 6.11, 6.12, 6.13 and Table 7.5 shows some evidences in relation the wind speed behavior. \therefore Figure 8.3 shows the annual wind speed behavior in Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada). Corvo Island (Portugal) and Cape Saint James (Canada) present a similar wind speed behavior during the year analyzed. Wind speed series of Aracati (Brazil) and Cape Saint James (Canada) make interception in August and September.. The wind speeds are $9.6 \mathrm{~m} / \mathrm{s}$ and $9.7 \mathrm{~m} / \mathrm{s}$ in August for Aracati (Brazil) and Cape Saint James (Canada). In September occurs the same as in August and September, the wind speed of $10.1 \mathrm{~m} / \mathrm{s}$ and $10.4 \mathrm{~m} / \mathrm{s}$ for Aracati (Brazil) and Cape Saint James (Canada), respectively. The behavior of wind speed in Aracati (Brazil) and Corvo Island (Portugal) present similarities . : In June and October the monthly wind speed is $7.9 \mathrm{~m} / \mathrm{s}$ and $7.1 \mathrm{~m} / \mathrm{s}$ and $9.7 \mathrm{~m} / \mathrm{s}$ and $8.9 \mathrm{~m} / \mathrm{s}$, respectively;
2. Simulations analysis results - the total $A A R$ for Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada) varies from 134959772 US\$M to 958516 231 US $\$ M$. We can resume the main results of $A A R$ for each site analyzed, as: (1) in Aracati (Brazil) varies from 4297170 US\$M/yr to 6873465 US\$M/yr with $S D=713406$ US\$M and 5398391 US\$M/yr (Mean); (2) in Corvo Island (Portugal) varies from 14970925 US\$M/yr to 24203932 US\$M/yr with SD=2 524373 US\$M and 18990481 US\$M/yr (Mean); (3) in Cape Saint James (Canada) varies from 30129 143 US\$M/yr to 48311614 US\$M/yr with SD=5 069795 US\$M and 38174169 US\$M/yr (Mean); for O\& $M_{\text {WFCM: }}$: (1) in Aracati (Brazil) varies from 0.0808 US\$ $k W h / y r$ to 0.1323 US\$ $k W h / y r$ with $S D=0.0161$ US\$ $k W h$ and 0.1081 US $\$ k W h / y r$ (Mean); (2) in Corvo Island (Portugal) varies from 0.0969 US $\$ k W h / y r$ to 0.1549 US\$ $k W h / y r$ with $S D=0.0180$ US $\$ k W h$ and 0.1280 US $\$ k W h / y r$ (Mean);(3) in Cape Saint James (Canada) varies from 0.0969 US\$ $k W h / y r$ to 0.1549 US $\$ k W h / y r$ with $S D=0.0180$ US\$ $k W h$ and 0.1280 US\$ kWh/yr (Mean); for LRCM: (1) in Aracati (Brazil) varies from 863268 US\$ kW/yr to 1219776 US\$ kW/yr with SD=109 970 US\$ kW and 1032004 US\$ kW/yr (Mean);(2) in Corvo Island (Portugal) varies from 863268 US\$ kW/yr to 1219776 US\$ kW/yr with SD=109 970 US\$ $k W$ and 1032004 US\$ $k W / y r$ (Mean); (3) in Cape Saint James (Canada) varies from 863268 US\$ kW/yr to 1219776 US\$ kW/yr with SD=109 970 US\$ kW and 1032004 US\$ kW/yr (Mean); for RCM ${ }_{W F}$: (1) in Aracati (Brazil) varies from 2621739 US\$ kW/yr to 4742007 US\$ $k W / y r$ with $S D=635804$ US\$ kW and 3582109 US\$ $k W / y r$ (Mean); (2) in Corvo Island (Portugal) varies from 2 621739 US\$ kW/yr to 4742007 US\$ $k W / y r$ with SD=635 804 US\$ kW and 3582109 US\$ kW/yr (Mean); (3) in Cape Saint James (Canada) varies from 2621739 US\$ kW/yr to 4742007 US $\$ k W / y r$ with $S D=635804$ US\$ $k W$ and 3582109 US\$ kW/yr (Mean); for REPIM: Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada) the $R E I_{C M}$ is about 221313 US\$/kW $W_{e} ; R E P_{C M}$ is about $16285 U S \$ / k W_{e} h$ (for Aracati (Brazil)), 16879 US $\$ / k W_{e} h$ (for Corvo Island (Portugal)) and 1403 US\$/kW h (Cape
 188 US\$/kWe (for Corvo Island (Portugal)) and 711018 US\$/kWe (Cape Saint James
 (for Corvo Island (Portugal)) and 21268 US $\$ / t \mathrm{CO}_{2}$ (Cape Saint James (Canada));
3. Sensitivity analysis results - For these three different sites, we have noticed that when wind speed $\left(v_{w c}\right)$ increases in 23.0%, we get 10.2% of increasing on $L C O E_{w s o}$ (from Aracati-Brazil to Corvo Island-Portugal) \therefore The same situation occurs in relation to Corvo Island (Portugal) and Cape Saint James (Canada) when the wind speed increases 37.4% reflects and increases 19.4% on $L C O E_{\text {wso }}$; The wind farm availability increases in 0.44% for $O \& M_{m a n a g(A)}$ and 0.24% for $O \& M_{\operatorname{manag}(B)}$ in Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada); For $O \& M_{\text {manag }}$: In the case of Aracati (Brazil) the option $O \& M_{\operatorname{manag}(B)}$ can be adopted, because there is no effect on the $L C O E_{w s o}$, but if we get the $O \& M_{\operatorname{manag}(A)}$ the cost of electricity produced increases in 0.02%; For Corvo Island (Portugal) both $O \& M_{\operatorname{manag}(A)}$ and $O \& M_{\operatorname{manag}(B)}$ increase the $L C O E_{\text {wso }}$ in 0.07%. The $O \& M_{\operatorname{manag}(S T D)}$ is the optimized strategy for $\mathrm{O} \& \mathrm{M}$ costs; In Cape Saint James (Canada) occurs the same situation of Corvo Island (Portugal), but we get an increasing of 0.13% for $O \& M_{\operatorname{manag}(A)}$ and 0.07% for $O \& M_{\operatorname{manag}(B)}$. Also the $O \& M_{\operatorname{manag}(S T D)}$ is the optimized strategy for $\mathrm{O} \& \mathrm{M}$ costs; For $L_{w t}$: in Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada). The 5D7D, 5D10D and $6 D 12 D$ layouts can increase the $L C C C M_{W F}$ in $0.25 \%, 0.51 \%$ and 1.10%, respectively; In the case of Aracati (Brazil) the option $5 D 4 D$ can be adopted, because it is cheapest alternative (effect on $L C O E_{\text {wso }}$), but if we get the $5 D 7 D, 5 D 10 D$ or $6 D 12 D$ the cost of electricity produced increases in $0.22 \%, 0.44 \%$ and 0.95%, respectively; For Corvo Island (Portugal) both we can see a similar situation with Aracati (Brazil) with the cost of electricity produced increases in $0.20 \%, 0.40 \%$ and 0.86%, respectively; In Cape Saint James (Canada) occurs the same situation of Corvo Island (Portugal) and Aracati (Brazil) with the cost of electricity produced increases in $0.17 \%, 0.33 \%$ and 0.72%, respectively; We can confirm, mutatis mutandis, among the layouts alternatives analyzed that $5 D 4 D$ is the optimized solution for Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada) and the other alternative layouts; For $E_{p i}$: in the case of Aracati (Brazil) only the Case 2 makes the cost of electricity produced increases in 10.24%; For Corvo Island (Portugal) and Cape Saint James (Canada) the cost of electricity produced remains in the same level as the base-case; The base-case situation is the optimized solution for Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada); for $v_{w c}$ and $L_{w t}$: the $L C O E_{w s o}$ mean is 79.5529 US\$/MWh, 79.7054 US\$/MWh and 80.0613 US\$/MWh for $5 D 7 D, 5 D 10 D$ and $6 D 12 D$, respectively; $L C O E_{\text {wso }}$ increases $0.19 \%, 0.38 \%$ and 0.83% considering the $5 D 4 D$ layout as reference, as we already said before, for $5 D 7 D, 5 D 10 D$ and $6 D 12 D$, respectively; $O \& M_{\text {manag }}$ and $E_{p i}: O \& M_{\operatorname{manag}(A)}$ and $E_{p i}($ Case 1, 2 and 3) for Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada) we found an increasing of $0.03 \%, 0.07 \%$ and 0.13%, respectively, in relation to reference situation; $O \& M_{\operatorname{manag}(B)}$ and $E_{p i}$ (Case 1, 2 and 3) for Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada) we found an increasing of $0.01 \%, 0.07 \%$ and 0.07%, respectively, in relation to reference situation; $O \& M_{\operatorname{manag}(A-B)}$: the relation between the $L C O E_{\text {wso }}$ for each site and the mean of $L C O E_{\text {wso }}$ is $-14.0 \%, 10.2 \%$ and 31.6% for Aracati (Brazil), Corvo Island (Portugal) and Cape

Saint James (Canada), respectively; For $O \& M$ programs $\left(O \& M_{\operatorname{manag}(A)}\right.$ and $\left.O \& M_{\operatorname{manag}(B)}\right)$ and $E_{p i}\left(\right.$ Cases $_{1}, 2$ and $\left._{3}\right)$, in Aracati (Brazil) and Cape Saint James (Canada) increase 0.0117 US $\$ / M W h$ and 0.0574 US $\$ / M W h$, respectively; in Corvo Island (Portugal) shows no variation between $O \& M_{\operatorname{manag}(A)}$ and $O \& M_{\operatorname{manag}(B)}$, but as we already said, increases $0.0528 U S \$ / M W h$ in relation to reference situation; $O \& M$ management $\left(O \& M_{\text {manag }}\right)$ and energy policy instruments $\left(E_{p i}\right)$ combined have a positive impact on $L C O E_{w s o}$. We have to remember that the optimized solution for these variables analyzes is the reference situation;
4. Conclusions and future analysis on cost of wind energy - in relation to the energy production cost, there is a strong evidence of direct dependence of the average wind speed ($v_{w c}$). As an example, the energy production cost at an average wind speed of $7.4 \mathrm{~m} / \mathrm{s}$ was increased in 10.2% as the cost for an average wind speed of $9.1 \mathrm{~m} / \mathrm{s}$. It was also found that the energy production cost decreases when the power of the wind farm increases; $O \& M_{\text {MANAG }}$ impacts on $A E P_{\text {avail }}\left(L C P M_{W F}\right)$ because is connected directly to period of electricity production $\left(H_{p r o d}\right)$ by the wind farm; in the simple variable analysis the $O \& M_{\text {manag }}$ impacted on total $A A R$ differently for each wind farm and program analyzed. In the case of $O \& M_{\operatorname{manag}(A)}$ increases the total $A A R$ in $0.45 \%, 0.43 \%$ and 0.44%, respectively for Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada). $O \& M_{\operatorname{manag}(B)}$ also increases the total $A A R$ in $0.24 \%, 0.43 \%$ and 0.23%, respectively for Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada); In the multiples variables analyzes when we consider the combination of $O \& M_{\operatorname{manag}(A)}, O \& M_{\operatorname{manag}(B)}, E_{p i}$ (Cases ${ }_{1}, 2_{2}$ and $\left.{ }_{3}\right)$. For the first group of variables $\left(O \& M_{\operatorname{manag}(A)}+\right.$ Case $\left._{1,2,3}\right)$ there is an increasing on total $A A R$ of $0.45 \%, 0.43 \%$ and 0.44%, respectively for Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada). Although in second group of variables $\left(O \& M_{\operatorname{manag}(B)}+\right.$ Case $\left._{1,2,3}\right)$ we also have an increasing on total $A A R$ of $0.24 \%, 0.43 \%$ and 0.23%, respectively, for Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada).

An analysis of the fundamental variables of the $L C O E_{\text {wso }}$ cost model has resulted in a wellconsidered approach of cost modeling within the wind power project, both onshore and offshore. A breakdown of costs into a summation of components can lead to a straightforward accumulation of inaccuracies and every level of precision can be obtained with precise input data (so the data considered must be from a secure source). A breakdown of energy production in a multiplication of efficiencies has an inherent error, associated with the correlation between contributions to energy loss (in this numerical simulation and validation was considered constant).

9.3 RECOMMENDATIONS FOR FUTURE RESEARCHES

9.3.1 FOR $V_{W C}$

The wind speed behavior analyzed at any particular time and site is one measure of the elements of the current weather conditions. If we keep analyzing the same wind behavior during years, now get its climatology. We have considered the same and generally accepted definitions of weather and climate according to Petersen, Mortensen, Landberg, Højstrup, and Frank (1998):

* Weather is the totality of instantaneous atmospheric conditions at any particular site and time. The elements of the weather are such as temperature, atmospheric pressure, wind, humidity, cloudiness, rain; sunshine and visibility make the difference from a place to another, and
* Climate is the sum of the weather experienced at a site in the course of the year and over the years. Because the average conditions of the weather elements change from year to year, climate can only be defined in terms of some period of time. Some chosen run of years, a particular decade or some decades.

After defined the concept of weather and climate, we suggest as wind speed research focus:

1. Develop more efficient methods for determining wind resources and identifying regions rich in poorly-exploited wind resources, in order to enable increased and more costeffective wind farm assets by energy policy instruments;
2. Add in the $L C O E_{\text {wso }}$ methodology the wind speed variability as the "elasticity wind speed-cost" in function of the production variation ($\$ / \mathrm{m} \cdot \mathrm{s}^{-1}$);
3. Determine the impact on $L C O E_{\text {wso }}$ of wind speeds higher than the rated wind speed of the wind turbine and high production hours.

9.3.2 FOR $L_{W T}$

4. Studying of the impact on $L C O E_{\text {wso }}$ from different wind turbines sizes and hub heights in a same wind farm;
5. A potential field of further studies, though not one examined in detail in this Ph.D. research work may be the building of more sustainable wind power plants in function of the alternative wind turbines layouts;
6. Developing and linking a decision making model for a wind power plant to the $L C O E_{\text {wso }}$ predictions and verifying it with the real $\$ / \mathrm{kWh}$ produced;
7. Developing layout efficiency indicator based on $L C O E_{\text {wso }}$ results for different wind farms according to the installed capacity;
8. Designed and optimized wind turbines layouts can be analyzed with $L C O E_{w s o}$ as analysis tool for better predictions of initial investment reduction;

9.3.3 FOR $O \& M_{\text {MANAG }}$

9. Developing a wind farm index from $O \& M_{\text {MANAG }}$ and $L C O E_{\text {WSO }}$ data for sites with good wind resources that are also predictable;
10. Developing an economic safety index for wind farms of O\&M programs and $L C O E_{\text {wso }}$ during the operational phase;
11. Developing a component reliability model for predict the unscheduled maintenance and efforts the scheduled maintenance for reducing the downtime of onshore and offshore wind turbines, so, reduce the LCOE;
12. Quantifying the impact of different $O \& M_{M A N A G}$ on $O \& M_{\text {WFCM }}$ over the time by a standard reporting scheme among organizations, and many of the historical records may be viewed from the wind power industry associations;

9.3.4 FOR $E_{P I}$

13. Developing a social tax incentive in $L C O E_{\text {wso }}$ methodology in function of the number of direct employs created where the wind farm operates;
14. Analysis of the impact of inflation rate on $E_{p i}$, and how the macroeconomic environment can change the quantitative variables of the energy policy instrument analyzed ($R E I_{C M}, R E P_{C M}, O R E P_{C M}$ and $\left.G H G . R_{C M}\right)$;
15. Measurement of transmission, tax, environmental, and other policies that also affect the economics of wind power in the $L C O E_{\text {wso }}$ methodology context;

9.3.5 FOR others

16. Applying the $L C O E_{\text {wso }}$ in a real case, in other words, in a wind farm for consolidation of the methodology and corrections, if needed, and compare with other types of economic controls currently used in the wind market sector;
17. Analysis of elasticity of $L C O E_{w s o}$ in function of the cost of financing variations in the financing period for the same wind farm;
18. Studying the size effect of wind farms on LCOEwso, as many studies suggest that a large wind farm is more economical than a small one;
19. In $L C O E_{w s o}$ only internal costs were considered, as externalities (environmental \& social impacts) are analytically different from internal costs, would be interesting modify the proposed methodology and compare the final values of LCOE (Simas \& Pacca, 2013);
20. Studying the lifetime effect on $L C O E_{\text {wso }}$ for determining the optimized lifetime of a certain wind farm as have been studied by Ohunakin, Oyewola, and Adaramola (2013).

9.4 GENERAL SUMMARY AND CONCLUSIONS

In summary, the proposed methodology for LCOE, life-cycle cost of energy for wind power system planning and management, provides a new methodology and effective way to evaluate the cost of a project, a wind project, in the private point of view. However, it is worth noting that the accuracy of $L C O E_{w s o}$ model is totaly dependent on the data/inputs for calculation and the uncertainties, which might be discussed in the future research about cost-effectiveness analysis.

The success of developing a wind project will be unique to the macroeconomic environment and renewable energy policies it is subject to. We noticed that the price of electricity sold is a fundamental question (PPAR and EMP), due to this approach is also depending on $A A R$ of the wind project. These will include government subsidies (REPIM) that help the installation and running of the wind farm as well as the site location and terrain that influence the investment costs $\left(L C C C M_{W F}\right)$. However different each project might be (understood when we compare AracatiBrazil, Corvo Island-Portugal and Cape Saint James-Canada), it is important to have a general method for evaluating them.

Before the installation of a wind farm begins, agreements need to be formulated to remove or reduce some uncertainties. These agreements include a connection and power purchasing agreement (PPA) with a utility company, a loan agreement from a financial institution, an operation and maintenance agreement ($O \& M_{c c m}$ and n_{w}), site and construction agreements, as well as insurance agreements. Investors will hire financial analysts to value the wind projects feasibility and worth, and to help set the benchmarks when contracting agreements. Apart from the total revenues (total $A A R$) and cost projections, the financial analyst will want to perform standard risk measures (DPB, IRR, NPV and others). This will be subject to the investors risk tolerance, and should be thought about carefully when making the decision to invest or not.

Figure 9.1 Comparison of paybacks for Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada). Source: Own elaboration

Figure 9.1 shows the payback period for the same wind project but installed in Aracati (Brazil), Corvo Island (Portugal) and Cape Saint James (Canada), within the respectively PPARs. The DPB found is 12,9 and 9 years, respectively for the same sites. What wind project should we invest, if we have to exclude some of the alternatives? Curiously the wind farms in Corvo Island (Portugal) and Cape Saint James (Canada) expected to have a production totally different (see Figure 8.13).

Simulating the electricity production costs by the $L C O E_{\text {wso }}$ was the most challenging when forecasting the wind farm revenues. It is possible to leave out the simulation effort and assume a set price of electricity over the horizon of the wind project and consider the renewable market trends. However, this is a highly simplified methodology and does not take into consideration the volatility of energy markets prices and costs.

In this Ph.D. thesis we consider as limitations for this methodology proposed some aspects after the simulations and general conclusions:

1. The $L C O E_{w s o}$ methodology does not adequately reflect the market realities characterized by uncertainties and dynamic pricing;
2. The $L C O E_{\text {wso }}$ methodology provides production costs at the power plant level and does not include the distribution costs of the production (AEP);
3. The $L C O E_{\text {wso }}$ methodology reveals little information on the contribution of a given technology to addressing energy security and environmental sustainability;
4. The $L C O E_{\text {wso }}$ methodology does not indicate the relative likely stability of production costs over a plant's lifetime, and therefore the potential contribution to cost and possibly price stability.

During this Ph.D. research work, in other words, it was a long trip, we arrived at a number of crossings which forced us to choose how to move on, without knowing very well where each of the possibilities would lead us. The light always arrived in the right moment and were discovered different ways to continue the walking in order to help evaluation their merits for selecting the most promising option to follow. Furthermore, the hard and extensive review of the literature until the end of this research work, in fact, this behavior and felling, "constant search for the best way to go" gave me more power to help me healing the psychical and psychological pains obtained during my journey for getting the knowledge as one day I had dreamt about it. So now it is finished the research work, but never the search for the true light, the wisdom!

9.5 References

Christopher, A. W. (2003). Wind Turbine Reliability: Understanding and Minimizing Wind Turbine Operation and Maintenance Costs. Retrieved 2010, March 13, from http://prod.sandia.gov/techlib/access-control.cgi/2006/061100.pdf.

Cory, K., \& Schwabe, P. (2009). Wind Levelized Cost of Energy: A Comparison of Technical and Financing Input Variables. Colorado: NREL. Retrieved from www.nrel.gov/docs/fy10osti/46671.pdf.

Dicorato, M., Forte, G., Pisani, M., \& Trovato, M. (2011). Guidelines for assessment of investment cost for offshore wind generation. Renewable Energy, 36(8), 2043-2051. doi: 10.1016/j.renene.2011.01.003

Enzensberger, N., Wietschel, M., \& Rentz, O. (2002). Policy instruments fostering wind energy projects--a multi-perspective evaluation approach. Energy Policy, 30(9), 793-801. doi: 10.1016/s0301-4215(01)00139-2

Frangopoulos, C. A. (2003). Methods of energy systems optimization. OPTI_ENERGY Summer School: Optimization of Energy Systems and Processes, . National Technical University of Athens. Gwice, Poland.

George, K., \& Schweizer, T. (2008). Primer: The DOE Wind Energy Program's Approach to Calculating Cost of Energy. Rockville/Maryland: NREL. Retrieved from http://www.nrel.gov/docs/fy08osti/37653.pdf.

Lantz, E., \& Tegen, S. (2008, June 1-4). Variables affecting economic development of wind energy. Paper presented at the WINDPOWER 2008, Houston, Texas.

Lantz, E., Wiser, R., \& Hand, M. (2012, May 13-17). The Past and Future Cost of Wind Energy. Paper presented at the 2012 World Renewable Energy Forum, Denver.

Milligan, M. R., \& Graham, M. S. (1997, 21-25 September, 1997). An Enumerative Technique for Modeling Wind Power Variations in Production Costing. Paper presented at the International Conference on Probabilistic Methods Applied to Power Systems, Vancouver, British Columbia, Canada.

NREL. (1995). A Manual for the Economic Evaluation of Energy Efficiency and Renewable Energy Technologies. (NREL/TP-462-5173). Springfield: National Renewable Energy Laboratory. Retrieved from http://www.nrel.gov/csp/troughnet/pdfs/5173.pdf.

Ohunakin, O., Oyewola, O., \& Adaramola, M. (2013). Economic analysis of wind energy conversion systems using levelized cost of electricity and present value cost methods in Nigeria. International Journal of Energy and Environmental Engineering, 4(1), 1-8. doi: 10.1186/2251-6832-4-2

Pablo, F. (2008). Renewable energy in a market-based economy: How to estimate its potential and choose the right incentives. Renewable Energy, 33(8), 1768-1774. doi: 10.1016/j.renene.2007.09.017

Petersen, E. L., Mortensen, N. G., Landberg, L., Højstrup, J., \& Frank, H. P. (1998). Wind power meteorology. Part I: climate and turbulence. Wind Energy, 1(1), 2-22.

Simas, M., \& Pacca, S. (2013). Socio-economic Benefits of Wind Power in Brazil. Journal of Sustainable Development of Energy, Water and Environment Systems, 1(1), 27-40.

Tegen, S., Hand, M., Maples, B., Lantz, E., Schwabe, P., \& Smith, A. (2012). 2010 Cost of Wind Energy - Review. (NREL/TP-5000-52920). Springfield: National Renewable Energy Laboratory. Retrieved from http://www.nrel.gov/docs/fy12osti/52920.pdf.

Tidball, R., Bluestein, J., Rodriguez, N., \& Knoke, S. (2010). Cost and performance assumptions for modeling electricity generation technologies. (NREL/SR-6A20-48595). Virginia: NREL Retrieved from http://www.nrel.gov/docs/fy11osti/48595.pdf.

WWEA. (2011). World Wind Energy Report 2010. Retrieved April 11, 2011, from http://www.wwindea.org/home/images/stories/pdfs/worldwindenergyreport2010_s.pdf

APPENDICES

From Appendix A to V

APPENDIX A

Table A. 1 Summary of basic notation of Table 5.8
Item Nomenclature

1.1.1	cost $_{\text {tot }}=$ cost total; cost $_{g y}=$ cost per generator per year; $N=$ total number of turbines; $e=2.718282$ (Euler number); $s=$ estimated selling price for a $k W h ; E_{\text {tot }}=$ total expected energy output [kWh$]$ of the wind farm per year.
1.1.2	$E_{\text {coss }}=$ energy production cost [EUR/kWh]; Invest $=$ investment [EUR]; $\mathrm{P}_{\text {out }, \mathrm{AVG}}{ }^{\mathrm{T}}=$ average output power [kW]; $r=$ interest rate [-]; $N=$ lifetime of the wind farm [years]; $P R=$ profit in \%; $K=$ constant
1.1.3	$\mathrm{C}_{\mathrm{w}, \mathrm{i}}\left(\mathrm{w}_{\mathrm{i}}\right)=$ cost of wind-generated power; $\mathrm{d}_{\mathrm{i}}=$ direct cost coefficient for the w_{i} wind generator
1.1.4	cost $=$ total cost/year for the entire wind farm; $N=$ total number of turbines; $e=$ 2.718282 (Euler number)
1.1	$\mathrm{C}_{\mathrm{t}}=$ total annual cost per kilowatt installed; $\mathrm{n}=$ the lifetime of a wind turbine; $\mathrm{C}_{\mathrm{in}}=$ annual installation cost; $\mathrm{C}_{\mathrm{O} \mathrm{\& M}}=$ annual $O \& M$ cost
1.1.6	$\begin{aligned} & \mathrm{C}=\text { total cost; } \mathrm{C}_{\mathrm{i}}=\text { contributions from the different wind turbine main componentes; } \\ & \mathrm{R}_{\mathrm{i}}=\text { percentage cost for the ith component; } \mathrm{b}_{\mathrm{i}}=\text { cost fixed part contribution; } \\ & \mathrm{m}_{\mathrm{i}}=\text { design loads factor } \end{aligned}$
1.1.7	$\mathrm{C}_{\mathrm{cp}}=$ installation cost; $\mathrm{C}_{\mathrm{op}}=$ operational cost; $N=$ number of turbines; $\ell=$ cost constant calculation
1.1.8	LPC = levelized production cost; CC = Capital Cost; $\mathrm{C}_{\mathrm{O} \mathrm{\& M}, \mathrm{a}}=$ annual operation and maintenance; $a=$ annuity factor; $\mathrm{E}_{\mathrm{a}}=$ annual energy production
1.1.9	$\begin{aligned} & g=\text { objective function; } \operatorname{cost}_{\mathrm{m}}=\text { per unit value of cost/year of the whole wind farm; } \mathrm{P}_{\text {total }} \\ & =\text { total energy produced in one year }(M \text { Watt }) ; \mathrm{w}_{1} \text { and } \mathrm{w}_{2}=\text { arbitrarily chosen weights } \end{aligned}$
1.1.10	$\mathrm{C}_{\mathrm{i}, \mathrm{t}}=$ total cost of the hybrid system; $\mathrm{C}_{\mathrm{i}, \mathrm{PV}}=$ capital costs of PV solar array ; $\mathrm{C}_{\mathrm{i}, \mathrm{w}}=$ capital cost of wind machines; $\mathrm{C}_{\mathrm{i}, \mathrm{Q}}=$ capital cost of battery storage system; $A=$ area $\left(m^{2}\right) ; C=$ number of cloudy days; $\mathrm{A}_{\mathrm{PV}}=$ area of the PV array $\left(m^{2}\right) ; \mathrm{X}_{\mathrm{i}}=$ solar/wind power ratio; $W C=$ capital cost of the wind machine $; B C=$ cost of energy storage capacity; $Q=$ total energy storage requirement
1.	$\begin{aligned} & \text { profit }_{\mathrm{max}}=\text { maximaze profite; } k=\text { estimated selling price for a kilowatt-hour of } \\ & \text { electricity in a given market; } \operatorname{cost}_{\mathrm{tot}}=\text { total cost } ; \mathrm{P}_{\mathrm{tot}}=\text { total power output } \end{aligned}$

1.1.12 $L C E=$ levelized cost of energy; $C O_{P V}=$ sum of capital cost and maintenance cost in the lifespan of the whole PV system; $C O_{W}=$ sum of capital cost and replacement or maintenance cost in the lifespan of the whole wind power generation system; $C O_{\text {Bat }}=$ sum of capital cost and the lifespan maintenance cost of baterry bank; $\mathrm{Y}_{\mathrm{PV}}=$ lifetime year of PV system; $Y_{W}=$ lifetime year of wind system; $Y_{\text {Bat }}=$ the lifetime year of battery bank; $\mathrm{E}_{\mathrm{an}}(\gamma, \beta, \mathrm{h})=$ annual energy supplied from the hybrid solar-wind system; $\beta=$ slope angle of the plane (radians); $\gamma=$ azimuth angle of the plane (radians) and $h=$ hour of production

[^110]Table A. 2 Summary of basic notation of Table 5.8 (Continuation)
Item Nomenclature
1.1.13 ACS $=$ annualized cost of system; $C_{\text {acap }}=$ annualized capital cost; $C_{\text {arep }}=$ annualized replacement cost; $C_{\text {amain }}=$ annualized maintenance cost; $P_{V}=P V$ array; $W_{\text {ind }}=$ wind turbine; $B_{\text {at }}=$ battery; $T_{\text {ower }}=$ wind turbine tower
1.1.14 OBJ = Objective optimization function; LPC = levelized production cost; $\beta=$ weight factor for reliability; $R_{s}=$ system reliability of the wind farm
1.1.15 $\quad c_{s}=P V$ cost per unit area $\left(\$ / m^{2}\right) ; \alpha_{s}=P V$ size $\left(m^{2}\right) ; c_{w}=W G$ cost per unit area $\left(\$ / m^{2}\right)$; $\alpha_{w}=W G$ size (m^{2})
1.1.16 $T C=$ total cost $; \mathrm{F}_{\mathrm{i}}=$ fixed cost $(\$) ; C_{i}=$ nameplate capacity of generator $i ; p f_{i}=$ price of fuel ($\$ /$ GJ) used by generator $i ; E_{t, i}=$ fuel consumption (GJ) of generator i at time t; $\mathrm{c}_{\mathrm{i}}=$ non-fuel variable (or operating and maintenance, $O \& M$) costs of generator i ($\$ / M W h$); $Q_{t, i}=$ electricity output (MW) delivered by generator (power plant) i at time t
1.1.17 $C=$ total generation cost; $F_{j}=$ cost function of generator $j ; P_{j}=$ electrical output of generator $j ; a_{j}, b_{j}$ e $c_{j}=$ cost coefficients of generator $j ; J=$ set for all generators
Source: Own elaboration

APPENDIX B

Table B. 1 Summary of basic notation of Table 5.9

Item	Nomenclature
2.1.1	$f\left(x_{1}\right)=$ fitness function 1; $\mathrm{P}_{\text {total }}=$ total energy from the wind farm; $\mathrm{P}_{\max }=$ energy sum of the isolated wind turbine for the same wind conditions at the flat terrain; $\mathrm{f}\left(\mathrm{x}_{2}\right)=$ fitness function 2; costs = annual total costs of the wind farm
2.1.2	Obj = objective function; cost $=$ total cost $; \mathrm{P}_{\mathrm{tot}}=$ total power production; $N=$ number of wind turbines; $\mathrm{u}=$ initial wind speed; $\mathrm{u}_{0}=$ mean wind speed; $\mathrm{u}_{\mathrm{i}}=$ final wind speed;
2.1.3	$\mathrm{E}_{\mathrm{WF}}=$ electric energy generated by a wind farm; $T=$ number of hours in a year ($T=8760$ h); $N_{t}=$ number of turbines; $V_{c i}=$ cut-in wind speed; $V_{c o}=$ cut-out wind speed; $\mathrm{P}_{\mathrm{gen}} \mathrm{j}(\mathrm{v})=$ wind generator type considered in the wind farm
2.1.4	$P=$ wind park power production per year; $\mathrm{h}_{\mathrm{y}}=$ number of the hours over the year; $\eta=$ nominal power utilization coefficient; $N=$ number of wind park turbines; $\mathrm{P}_{\mathrm{wt}}=$ wind turbine power rating; $\mathrm{N}_{\mathrm{row}}=$ rows turbines numbers; $\mathrm{N}_{\mathrm{col}}=$ columns turbines numbers; $\mathrm{L}_{\mathrm{x}}=$ area with length (for row); $\mathrm{SD}_{\mathrm{x}}=; \mathrm{k}_{\mathrm{row}}$ and $\mathrm{k}_{\mathrm{col}}=$ coefficients for wind turbines placement in rows and columns, respectively; $D=$ wind turbine rotor diameter; $\mathrm{L}_{\mathrm{y}}=$ area with length (for column)
2.1.5	$\mathrm{P}_{\mathrm{tot}}(\mathrm{t})=$ total power of the system; $\mathrm{P}_{\mathrm{PV}}(\mathrm{t})=$ power generated by the PV generator; $\mathrm{P}_{\mathrm{wD}}(\mathrm{t})=$ power generated by the wind turbine; $t=$ hour t
2.1.6	$\mathrm{P}_{\text {tot }}(\mathrm{t})=$ total power of the system; N_{b}, N_{w} and $N_{s}=$ total no. of micro-hydro, wind, solar $P V$, respectively; P_{h}, P_{w} and $P_{s}=$ electrical power generated by the micro-hydro, wind and solar $P V$ unit, respectively;
2.1.7	$\mathrm{e}_{\mathrm{CO}_{2}} ; \mathrm{e}_{\mathrm{CH} 4}$ and $\mathrm{e}_{\mathrm{N}_{2} \mathrm{O}}=$ emissions factors for the fuele/source considered for $\mathrm{CO}_{2}, \mathrm{CH}_{4}$ and $\mathrm{N}_{2} \mathrm{O}$, respectvely; $\mathrm{GWP}_{\mathrm{CO}_{2}}, \mathrm{GWP}_{\mathrm{CH} 4}$ and $\mathrm{GWP}_{\mathrm{N}_{2} \mathrm{O}}=$ global warming potentials for $\mathrm{CO}_{2}, \mathrm{CH}_{4}$ and $\mathrm{N}_{2} \mathrm{O}$, respectvely; $\eta=$ is the fuel conversion efficiency; $\lambda=$ fraction of electricity lost in transmission and distribution
2.1.8	$\mathrm{P}_{\text {tot }}=$ total power generation for all the turbines in the wind farm; $N=$ total number of turbines placed in the wind farm; $\mathrm{P}_{\mathrm{i}}=$ turbine i power rating
2.1.9	$\begin{aligned} & \mathrm{E}_{\text {windfarm }}=\text { Amount of electricity produced by the windfarm; } I C=\text { installed capacity; } C F \\ & =\text { capacity factor; } h_{\text {vear }}=\text { number of hours in a year } \end{aligned}$
2.1.10	$E_{A P}=$ annual electrical energy output $(k W h) ; S_{R}=$ swept area of the rotor $\left(m^{2}\right) ; f(V)=$ Weibull probability density function of wind speed; $C_{P}(V)=$ coefficient of performance; $\eta_{\mathrm{GB}}=$ gearbox efficiency; $\eta_{\mathrm{G}}=$ generator efficiency; $\rho_{\text {air }}=$ air density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
2.1.11	$\mathrm{P}_{\mathrm{opt}}=$ target (optimum) power; $k=$ mechanical and electrical restrictions; $\omega_{r}=$ rotation speed
2.1.12	MAWPC = Maximal Available Wind Park Capacity; FOR $t_{t}=$ Forced Outage Rate, interpreted as a probability of unavailability; IWPC = Installed Wind Park Capacity

[^111]Table B. 2 Summary of basic notation of Table 5.9 (Continuation)

Nomenclature

2.1.13 $N=$ total number of wind turbines; $n=$ unit cell solution; $R=$ wind farm radius; $X_{p}=$ receptor density for the wind farm
2.1.14 $V=$ wind speed at the hub; $V_{r e f}=$ reference wind speed at the reference hub height; $H u b_{H t}=$ hub height; $H_{\text {ref }}=$ reference hub height $(70 \mathrm{~m})$
2.1.15 $\quad E_{y}=$ annual energy production of the wind farm; $E_{i}=$ gross energy production; $W_{a k e}=$ wake effect of wind farm; coll $l_{\text {ection }}=$ production collection; $a_{\text {vail }}=$ availability of the wind farm; trans mission $=$ production transmission
2.1.16 $\quad \mathrm{P}_{\mathrm{i}, \mathrm{j}}=$ monthly solar/wind hybrid power production; $P_{s j}=$ hourly-calculated solar power in the month $J ; X_{i}=$ monthly basis solar energy percentage; $P_{w j}=$ wind power in the month J
2.1.17 $C_{p}=$ power curve of wind turbines; $C_{p r}=$ nominal power coefficient; $u=$ wind speed $(\mathrm{m} / \mathrm{s}) ; u_{r}=$ nominal wind speed $(\mathrm{m} / \mathrm{s}) ; s=$ operating range of wind speed $(\mathrm{m} / \mathrm{s})$
Source: Own elaboration

Appendix C

Table C. 1 Glossary of terms

Capacity factor (C_{f})	The term "capacity factor" refers to the capability of a wind turbine to produce energy in a year. It is defined as the ratio of the actual energy output to the energy that would be produced if it is operated at rated power $\text { throughout the year. } \mathrm{C}_{\mathrm{f}}=\frac{\text { Annual energy output }}{\text { rated power } \times \text { time in a years }} \quad \text { Eqn }\left(A C_{I}\right)$
Gearbox	To convert the kinetic energy of the rotor into electrical energy, for conventional converters equipped with common four or six-pole synchronous or asynchronous generators, generally revolutions of 1,000 or 1,500 r/min are required when adhering as much as possible to grid specifications (50 Hz). Current rotor revolutions of 10 to $50 \mathrm{r} / \mathrm{min}$ with wind energy converters of installed capacities ranging from several 100 $k W$ up to the multi-megawatt range thus require a transmission gear if no specific generators are applied (Ragheb \& Ragheb, 2010).
Generator	The generator converts the mechanical rotation energy of the power train into electrical energy. For this purpose slightly adapted commercially available generators are used for conventional converters while especially designed three-phase alternators are applied for gearless converters. The main commonly applied generator types are synchronous and asynchronous generators (Bang, Polinder, Shrestha, \& Ferreira, 2008).
Rotor	The system component of a modern wind energy converter that transforms the energy contained in the wind into mechanical rotations is referred to as rotor. It consists of one or several rotor blades and the rotor hub. The rotor blades extract part of the kinetic energy from the moving air masses according to the lift principle. The current maximum efficiency of the kinetic energy of the free flow in relation to the rotor surface amounts to 50%; usually, the so-called aerodynamic efficiency of state-of-the-art rotors amounts to between 42 and 48% at the turbine design point (Barlas \& van Kuik, 2010; Fuglsang \& Madsen, 1999; Tangler, 2000).
$1 / 7^{\text {th }}$ wind power law	The wind speed and power available in the wind increases with increasing elevation. The relationship is commonly referred to as the one seventh power law (Rehman \& Al-Abbadi, 2005).

Source: Own elaboration

ApPENDIX D

Table D. 1 Electricity emission factors $\left(E F_{e l}\right)$ for different countries for 2007-2009

Region/Country	tCO2/MWh	Region/Country	tCO2/MWh	Region/Country	tCO2/MWh	Region/Country	tCO2/MWh
OECD Americas	0.485	Armenia	0.145	Singapore	0.523	Marocco	0.690
USA (average)	0.531	Azerbaijan	0.462	Sri Lanka	0.425	Mozambique	0.000
Canada	0.184	Belarus	0.300	Thailand	0.530	Namibiae	0.253
Mexico	0.455	Bosnia-Herzegovina	0.908	Vietnam	0.409	Nigeria	0.396
Chile	0.398	Bulgaria	0.492	Other Asia	0.274	Senegal	0.594
OECD Europe	0.341	Croatie	0.337	Middle East	0.687	South Africa	0.900
Austria	0.183	Estonia	0.735	Bahrain	0.718	Sudan	0.470
Belgium	0.239	FYR of Macedonia	0.753	Cyprus	0.755	Togo	0.271
Czech Republic	0.534	Georgia	0.127	Iraq	0.731	Tunisia	0.547
Denmark	0.311	Gibraltar	0.756	Islamic Rep. Of Iran	0.609	United Rep. Of Tanzaniz	0.257
Finland	0.207	Kazakhstan	0.485	Israel	0.721	Zambia	0.003
France	0.089	Kyrgyzstan	0.087	Jordan	0.586	Zimbabwe	0.619
Germany	0.447	Latvia	0.160	Kuwait	0.810	Other Africa	0.489
Greece	0.739	Lithuania	0.116	Lebanon	0.698	America	0.178
Hungary	0.326	Malta	0.904	Oman	0.859	Argentina	0.358
Iceland	0.001	Republic of Moldova	0.513	Qatar	0.496	Bolivia	0.368
Ireland	0.482	Romania	0.436	Saudi Arabia	0.740	Brazil	0.075
Italy	0.416	Russia	0.322	Syria	0.649	Colombia	0.136
Luxembourg	0.382	Serbia	0.662	United Arab Emirates	0.694	Costa Rica	0.058
Netherlands	0.389	Slovenia	0.337	Yemen	0.649	Cuba	0.735
Norway	0.010	Tajikistan	0.031	Africa	0.641	Dominican Republic	0.633
Poland	0.652	Turkmenistan	0.810	Algeria	0.590	Ecuador	0.301
Portugal	0.379	Ukraine	0.373	Angola	0.220	El Salvador	0.304
Slovak Republic	0.223	Uzbekistan	0.462	Benine	0.695	Guatemala	0.354
Spain	0.337	Bangladesh	0.575	Botswanae	1.916	Haiti	0.513
Sweden	0.041	Brunei Darussalam	0.738	Cameroon	0.228	Honduras	0.391
Switzerland	0.040	China (incl. Hong Kong)	0.765	Congoe	0.139	Jamaica	0.478
Turkey	0.484	Chinese Taipei	0.647	Côte d'Ivoire	0.428	Netherlands Antilles	0.707
United Kingdom	0.480	DPR of Korea	0.483	DR of Congo	0.003	Nicaragua	0.506
OECD Asia	0.503	India	0.950	Egypt	0.459	Panama	0.297
Australia	0.862	Indonesia	0.757	Eritrea	0.665	Paraguay	0.000
Japan	0.435	Malaysia	0.638	Ethiopia	0.094	Peru	0.225
Korea	0.471	Myanmar	0.249	Gabon	0.366	Trinidad and Tobago	0.725
New Zealand	0.191	Nepal	0.004	Ghana	0.254	Uruguay	0.221
Non-OECD	0.503	Pakistan	0.447	Kenya	0.321	Venezuela	0.203
Albania	0.023	Philippines	0.471	Libya	0.868	Other Latin America	0.242

Source: IEA (2011)

ApPENDIX E

Figure E. 1 Value creation stages for Gamesa. Source: Gamesa (2012)

Table E. 1 KW to MW conversion table

Power (kilowatts)	Power (megawatts)
0 kW	0 MW
1 kW	0.001 MW
10 kW	0.01 MW
100 kW	0.1 MW
1000 kW	1 MW
10000 kW	10 MW
100000 kW	100 MW
1000000 kW	1000 MW
Source• SI	

Source: SI

APPENDIX F

Figure F. 1 Photos of current MW-onshore wind farms at Aracati (Brazil) ${ }^{(a)}$, Corvo Island (Portugal) ${ }^{(b)}$ and Cape Saint James (Canada) ${ }^{(c)}$. Sources: Grupo Servtec (2013); DGGE (2009) and CanWEA (2012)

ApPENDIX G

nital Results Summary of LCOE wso			Notes
67,6603	yr_{1}	70.7762	yr/s
67,8118	yr_{2}	69.8077	$y_{\text {r }}^{\text {Is }}$
68,0210	y_{3}	69,9988	$\mathrm{y}_{1 / 6}$
68,1822	yrs	70.1987	y_{17}
68,4349	yrs	70.3955	$y_{\text {r } / 8}$
68,6241	yr_{6}	70,7564	$y_{r i 9}$
68.8710	${ }^{\text {r }}$	70.3686	$y_{2}{ }^{2}$
69,0863	yrs	70.5514	$y_{2 i}$
69,2587	yrg	70.8222	y_{22}
69,4873	$y^{\prime} r_{0}$	71.1051	${ }^{1}{ }_{23}$
${ }^{69,7236}$	yrı	71.364	r_{25}
70,0226	$y_{r 12}$	69.6792	Mean
70,2282	$y_{1 / 3}$	1,0823	$s D$
70.423	yr ${ }_{\text {/ }}$	-0,4514	$r_{\text {sitemeses }}$
LCOE wo	$\begin{array}{r} 69,6792 \\ 0,069679 \\ \hline \end{array}$	$\begin{gathered} \hline \text { LSS } / \mathrm{MWh} \\ \mathrm{Lss} / \mathrm{kWh} \\ \hline \end{gathered}$	valid!

Figure G. 1 I-O representation of $L C O E_{\text {wso }}$ algorithm calculations for the hypothetical $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Aracati (Brazil) with reference situation. Source: Own elaboration

Figure G. 2 I- O system representation of $L C O E_{\text {wso }}$ algorithm calculations for the hypothetical $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Corvo Island (Portugal) with reference situation. Source: Own elaboration

$L^{\text {LCOE }}$ wso Model Inputs		
Legend		
Green cells indicate information and are updaredautom atically based on user input into yellow cells.		
Gray cells are not wed.		
		Notes
Project Name	${ }_{\text {Finfar }}$ Wiale fumm	
Project Location	cre cimmmexam	
Turbine Model	Vetas 590-2Mw	
Number of Wind Turbines ($N_{W 7}$)	25	H^{-1}
Turbine Size	2000	${ }_{\text {[kW] }}$
Wind Fam Capacity (WF cap)	50.000	${ }_{\text {[kw] }}$
Rotor Diamenter (D)	90.0	${ }^{[m]}$
Swept Area per Turbine (A)	$6.361,7$	${ }_{\left[\mathrm{m}^{2}\right]}$
Hub height (H)	${ }^{105,0}$	[m]
Wind speed measured at (H_{o})	10.0	[m]
Termin rugosity factor (a)	0.14	${ }^{\text {H- }}$
Betz Limit's coefficient ($C_{P_{\text {Berz }}}$) Lifetime of Wind Farm (N) Production Efficiency ($W F_{P E}$) Avålability	${ }_{0} 0.5926$	${ }^{\text {H-] }}$
	25	[yr]
	48,5\%\%	[\%]
	97,956	[\%]
	357	[d/yr]

Wind Farm Life-Cycle Capital Cost Model		Notes
${ }^{W} \mathrm{~T}_{\text {cu }}$	553,726	[s/kw]
${ }^{\text {CM }}{ }_{\text {wT }}$	265,32	[s/kw]
${ }^{R C}{ }_{W}{ }^{\text {r }}$	73,70\%	[\%/skw]
$c_{\text {sw }}$	400,00	[s/kw]
${ }_{\text {IPT }}$	10.00\%	[\%]
$T_{\text {cur }}$	484.3859	[s/kw]
$T_{\text {mass }}$	138.000	[kg]
${ }_{R C}$	26,30\%	[\%/skw]
$c_{\text {semel }}$	0.1900	15/kg1
${ }^{\text {LWTG }}{ }_{\text {cu }}$	39,1957	[$5 \mathrm{~s} \mathrm{~m} / \mathrm{kW}]$
wF $_{\text {cap }}$	$50.000^{\prime \prime}$	${ }_{\text {[kw] }}$
L_{s}	13.950	[m]
$C A B ~_{\text {cout }}$	2.000,00	${ }^{\text {[5 }} \mathrm{sm]}$
${ }^{\text {cPau }}$	30,9669	[s/kw]
${ }_{\text {EF }}$ c	400,00	[s/kw]
ς	0,08\%	[\%]
${ }^{\text {TS }} \mathrm{Cu}$	11,4566	$\left[5 / k w_{\text {c }}{ }^{\text {d }}\right.$
${ }_{T} L_{c}$	0.0400	${ }^{\text {[}}$ / mm$]$
$\pi L_{\text {, }}$	1.200	${ }^{[1 / k W]}$
$L_{\text {t }}$	3.000	[m]
$S_{\text {c }}$	113,00	[s/kWh]
${ }^{\text {Stcm }}$	42,7345	
${ }_{\text {w }}^{\text {cap }}$ p	50.000°	${ }^{[k W]}$
$w T_{\text {nax }}$	42.5238	${ }_{\text {[} 5 / \mathrm{kW]}]}$
${ }^{\text {Bld }}$ cous	500.00	${ }^{\left.18 / \mathrm{m}^{2}\right]}$
${ }^{\text {Bld maxe }}$	300.0	$\left[\mathrm{m}^{2}\right]$
${ }^{P O}{ }_{C u}$	35.9374	[s/kw]
${ }_{\text {FS }}$	19.88	[5/kw]
${ }^{\text {DT }}$	87.22	[5/kw]
${ }_{\text {eG }}$	404.52	[s/kw]
${ }^{\mathrm{Fars}}$	3,7712	[s/kw]
wacc $_{\text {prof }}$	$4,9006^{\prime}$	[\%/yr]
$n_{\text {fin }}$	1,0	[yr]
$w_{F_{\text {cu }}}$	0.305	[\%]
${ }^{\text {cccau }}$	2.402	[s/kw]
κ	0.20%	[\%]
$L_{\text {LCCCM }}^{\text {wF }}$	1.204,5180	[$\mathrm{s} / \mathrm{k} / \mathrm{W}]$

nitial Results Summary of LCOE ${ }_{\text {wso }}$			Notes
${ }_{84,2996}$	yri	94.3718	$y^{\text {r } / 5}$
${ }^{84,9743}$	y^{2}	94,0482	yris
85.6226	yrs	94.8532	yris
86.1247	$y_{\text {d }}$	95,7496	yr,
86.8183	yrs	96.6483	yris
87.5429	$y r_{6}$	97,4272	yri,
${ }^{88.1156}$	y_{7}	${ }^{93,9167}$	${ }^{\text {y } 20}$
88.8127	yr_{8}	94.6168	$y_{2 i}$
89,7238	yr,	95,6632	y_{22}
90.3120	$y_{r} r_{10}$	96,4289	y_{23}
91,1318	${ }^{\text {r }}$ u	97,427	${ }^{2} 25$
91.8409	$y r / 2$	91,7881	Mean
92.5685	$y_{1 / 3}$	4.1890	SD
93.0087	rr_{1}	-0,3343	$r_{\text {(seemeses }}$
$L^{\text {LCOE woo }}$	$91,781$	US\$/MWh LS\$/kWh	valid!

Figure G. 3 I-O system representation of $L C O E_{w s o}$ algorithm calculations for the hypothetical $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Cape Saint James (Canada) with reference situation. Source: Own elaboration
Table G.1. Enerey production ($\left.A E P_{\text {anail }}\right)$ mpp of the wind farmfor Aracati (Brail)

Months	$v_{w}\left(m s s_{c}\right.$	$\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	$\begin{gathered} H_{\text {prod }} \\ (h) \\ \hline \end{gathered}$	${ }^{\text {A }}$ A $P_{\text {avil }}(k W h)$																								
				yr ${ }_{1}$	$y r_{2}$	yr_{3}	yr ${ }_{4}$	yrs	yr_{6}	${ }^{\text {y }} 7_{7}$	yr_{8}	yr,	yr_{10}	y $r_{\text {II }}$	yr ${ }_{12}$	yr ${ }_{13}$	$y r_{14}$	$y r_{15}$	$y r_{16}$	y_{17}	yr_{18}	yr ${ }_{19}$	yr 20	y_{21}	$y r_{22}$	yr_{23}	yr_{24}	y_{25}
January	5,8	1,1665	738	1.693.132	8.890. 198	3.802 .165	7.507.410	557.361	8.890.198	557.361	557.361	4.232.212	8.890.198	8.890.198	557.361	3.802 .165	7.507.410	4.232.212	8.890.198	8.890.198	557.361	3.802 .165	7.507.410	557.361	3.802 .165	7.507.410	4.232.212	4.232.212
February	4,9	1,1666	639	847.940	6.783 .520	3.662 .567	6.788 .520	777.316	6.783 .520	777.316	777.316	4.713 .419	6.783.520	6.783.520	777.316	3.662 .567	6.783.520	482.342	482.342	3.290.403	4.713 .419	7.693.599	1.572 .412	1.572 .412	7.693.599	6.783.520	4.713 .419	4.713.419
March	4,0	1,1671	735	555.090	7.476.817	5.424.310	8.853.970	975.829	7.476.817	975.829	975.829	6.543.367	7.476 .817	7.476.817	975.829	5.424.310	8.853.970	894.553	894.553	1.80.568	4.214.966	1.809.568	1.686 .232	1.886.232	7.806.630	8.853.970	3.786.671	6.743.367
April	4,7	1,1667	711	865.098	6.327 .908	6.327.908	4.076.176	1.630.708	6.327 .908	1.630.708	1.630 .708	7.230.621	6.327.908	6.327.908	1.749983	6.327 .908	4.076.176	943.697	943.697	1.630.708	6.327 .908	1.630.708	3.661.984	943.697	7.230.621	6.327 .908	1.749 .983	7.230.621
May	6,0	1,1670	735	1.809 .500	5.424.109	7.476.539	5.424.109	1.809.500	5.424.109	1.809.500	1.809.500	7.806.340	5.424.109	5.424.109	1.888.169	7.476.539	6.543.124	1.680.169	1.680.169	975.792	8.853.641	975.792	555.069	894.520	6.543.124	4.214.809	1.688.169	7.806.340
June	7,9	1,1686	687	3.944.904	3.944.904	7.306.444	6.124.120	3.544 .051	3.944.904	3.544 .051	3.544 .051	8.286 .679	3.944 .904	3.944,904	3.544 .051	7.306 .444	5.076.764	1.693.625	1.693.625	837.237	7.306.444	837.237	837.237	3.544 .051	5.076.764	5.076.764	913.305	8.286 .679
July	8,6	1,1698	735	5.437.072	3.795.580	8.874 .801	1.690.199	4.224.882	3.795.580	4.224.882	4.224.882	556.396	556.396	3.795.580	5.437.072	8.874 .801	1.813.825	3.799.580	3.795.580	556.396	7.494.407	556.396	978.125	4.224.882	4.224 .882	1.690.199	896.658	556.396
August	9,6	1,1677	735	7.480.994	1.810.506	1.810 .506	1.810 .506	8.858.561	1.810.506	5.427.123	5.427.123	895.017	895.017	1.810 .506	4.217.151	1.810 .506	1.687.106	5.427.123	7.810.678	7.810.678	895.017	4.217.151	7.810.678	5.427.123	1.810.506	1.810.506	555.378	895.017
September	10,1	1,1657	711	8.554.384	1.629.176	1.629.176	3.658.543	7.542.482	1.629.176	6.321.963	6.321 .963	942.810	942.810	1.629.176	6.321 .963	1.629.176	3.658.543	6.321.963	7.223 .828	7.223 .828	942.810	5.240 .771	8.554.384	6.321 .963	1.629 .176	3.658.543	6.321 .963	942.810
October	9,7	1,1645	735	7.789.201	973.650	973.650	553.851	7.460.125	973.650	7.460.125	7.460.125	1.682 .467	1.682 .467	973.650	8.834.203	973.650	553.851	7.460.125	6.528 .759	6.528.759	1.805.528	6.528 .759	4.205 .556	7.460.125	973.650	973.650	8.834.203	1.682 .467
November	9,2	1,1638	687	6.098 .939	833.795	833.795	833.795	6.998 .939	833.795	7.276.401	7.276.401	1.686.661	1.686 .661	833.795	7.276 .401	833.795	833.795	7.276.401	5.055.889	5.055.889	1.571 .703	6.968 .989	6.998 .939	7.276.401	833.795	833.795	7.276 .401	1.688 .661
December	7,6	1,1651	735	3.780.365	554.166	554.166	974.204	5.415 .277	554.166	8.839.226	8.839.226	3.780 .365	3.780 .365	554.166	7.464.366	554.166	974.204	8.839.226	4.207 .946	4.207946	3.780 .365	7.793.630	5.415.277	8.839.226	554.166	554.166	7.464.366	3.780.365
Annual	7,4	1,1666	8.579	48.856 .319	48.44, 328	48.670 .026	48.290.403	48.895.032	48.44.328	48.84 .485	48.84,485	48.356,354	48.391 .173	48.444.328	48.841.866	48.7670 .26	48.322288	490.03.015	49.213.265	48.817 .403	48.46.568	48.054.765	48.883 .303	48.747.993	48.179.078	48.28.240	48.430.728	48.356.354

Table G. 2 Energy production map of the wind farm for Corvo Island (Portugal)

Months	$\begin{gathered} v_{w c} \\ (m s) \end{gathered}$	$\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	$\begin{gathered} H_{\text {prod }} \\ (h) \\ \hline \end{gathered}$	${ }_{\text {AEP }}{ }_{\text {avail }}(k W h)$																								
				yr_{1}	yr_{2}	yr_{3}	y_{4}	yr_{5}	yr_{6}	y_{7}	yr_{8}	yr,	rr_{10}	$y_{\text {II }}$	y r_{12}	${ }_{\text {y }}^{1 / 3}$	${ }^{2} r_{1+}$	$y r_{15}$	y_{16}	${ }^{2 r} r_{17}$	$y r_{18}$	r_{19}	20	$y r_{21}$	$y r^{22}$	23	24	${ }^{12} 2$
January	11,7	1,2313	738	14.451.298	${ }^{14.451 .298}$	${ }^{14.451 .298}$	14.451.298	14.451.298	14.451.298	14.451.298	10.82 .202	10.842 .226	14.451.298	10.842 .226	10.842 .226	10.822 .226	14.451.298	10.82 .202	10.842 .206	14.451.298	10.842 .206	10.842 .2026	10.822 .226	10.882 .226	10.882 .226	10.842 .226	1.8422026	10.842 .0
February	11,5	1,2345	639	11.923 .902	4.233 .203	11.923 .902	11.923 .902	.902	3.369 .392	11.923 .902	12.588268	1.770.714	3.369.392	12.538268	1.770.714	9.115.121	11.923 .902	6.580.443	12.588268	4.233.203	5.499.699	3.369.392	2.776 .293	11.923.902	2.077 .293	6.580.843	11.923 .92	12.588268
March	10,5	1,2329	735	10.47 .138	3.189.384	13.098.087	13.69.087	13.68.087	6.214.620	13.698.087	13.98.087	2.386 .378	3.189.384	13.98.087	2.386 .378	087	13.69.087	6.214.620	13.998.087	3.870.731	7.560.022	4.863.071	13.98.08	14.413.865	2.034.182	10.471.3	14.403 .865	3.189.384
April	9,5	1,2317	711	7.305 .887	7.305.887	10.43 .175	10.433.175	10.433 .175	7.305.887	10.443 .175	4.699.596	3.082 .171	7.305.887	13.237.618	3.082 .171	13.237 .618	4.699.596	4.69.5996	13.237.618	3.082 .171	10.19 .379	3.082 .171	13.919.671	13.237 .618	3.082 .171	3.082 .171	3.237.618	3.740.614
May	8,2	1,2282	735	4.844 .807	10.432.053	10.432 .053	10.432.053	6.191.280	10.432.053	10.432 .053	10.432 .053	3.856.194	6.191.280	10.422053	3.856.194	14.349.768	10.422.053	3.856.194	10.432 .053	2.377.416	13.646 .640	6.191.280	2.377 .416	10.432 .053	3.856.194	14.3997	10.42 .053	4.844.807
June	7,1	1,2224	687	2.955.541	12.693.755	7.005.728	7.005.728	7.005.728	10.014.121	4.506 .515	12.693.755	4.506.515	10.014 .121	7.00.728	4.506 .515	7.005.728	2.211.411	2.95 .541	7.005.728	1.885 .038	12.698755	7.005.728	1.885 .038	7.005.728	4.506.515	12.693,755	7.005.728	5.758.970
July	6,1	1,2154	735	2.005 .275	13.503.424	4.793 .962	6.126 .305	10.322 .572	13.503.224	7.452.587	3.144.060	6.126.305	2.005 .275	6.126.305	6.126.305	6.126 .305	2.005.275	2.352.466	6.126.305	6.126.305	14.199 .172	10.322 .572	3.815.724	6.126.305	6.126.305	13.503.424	3.815.724	7.452.587
August	6,4	1,2075	735	2.337.182	10.58 .661	3.790 .935	3.790 .935	3.790.935	${ }^{13.415 .96 \%}$	6.086.504	3.790.935	7.404.169	2.337.182	4.7628817	7.404 .169	4.762 .817	10.588 .661	1.992 .247	4.762 .817	13.415.996	1.992 .247	13.415 .64	4.762 .817	4.762 .817	7.404.169	4.762 .817	3.123.634	10.255 .509
September	7,6	1,2064	711	3.663.832	1.925.451	5.882.434	4.603 .129	4.603.129	4.603 .129	1.925.451	5.882.434	9.911 .660	9.911 .660	3.663.832	9.911.660	3.663 .832	5.882.434	9.911 .660	3.663.832	12.965 .92	2.258 .821	12.965 .89	5.882.434	3.663.832	9.911.660	3.663 .832	2.258 .821	1.925.451
October	8,9	1,2126	735	6.112.412	6.112.412	3.136.930	2.000 .727	3.136.330	2.000 .727	2.347.131	7.43.686	801	13.472.801	3.136.130	801	3.136 .930	7.435.686	13.472801	3.136 .930	71	3.136.930	2.000 .727	7.435.686	3.136.930	13.472.801	2.347 .131	2.000 .727	2.347.131
November	10,6	1,2194	687	9.990.034	3.578.305	2.206 .092	2.206 .092	2.206.092	2.206.092	2.948 .433	2.2060092	12.663 .223	4.495.676	2.206 .092	${ }^{12.6692223}$	2.206.092	2.948 .433	12.663 .23	2.206 .092	9.680.288	3.578.305	2.206 .092	9.680 .288	2.206.092	12.663 .23	1.880 .504	5.745.118	12.663.223
December	11,5	1,2237	735	13.595 .706	2.368 .542	2.018 .979	3.165 .547	2.018.979	3.165.547	3.841 .801	2.018 .979	14.29.210	13.599.706	2.018 .979	14.296.210	2.018.979	3.841 .801	14.296.210	2.018 .979	7.503.518	4.826.724	14.298.210	13.99.706	2.018.979	14.298.210	6.168 .172	4.826.724	13.959.706
Annual	9,1	1,2222	8.579	89.657.257	90.377.375	89,78.574	89.846976	89,729.106	90.681.985	90.056.335	89,381.970	90.318 .367	90.339.663	89.688733	90.3188.367	90.163 .301	90.113.636	89,837.428	89.688733	90.220.267	90.266.721	90.560.886	90.671 .187	89,70.146	90.272.750	90.34 .5823	89.615 .440	89.153

Months	$\left(\begin{array}{l} v_{w c} \\ (m s) \end{array}\right.$	$\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	$\begin{gathered} \hline H_{\text {prod }} \\ (h) \\ \hline \end{gathered}$	$A^{\text {E }}$ avail $(k W h)$																								
				r_{1}	yr_{2}	yr_{3}	yr_{4}	yrs	yr6	${ }_{\text {yr }}$	yr_{8}	yr9	yr_{10}	yr ${ }_{\text {l }}$	yr ${ }_{12}$	$y^{1 / 3}$	yr_{1}	yr 15	r_{16}	y^{17}	yr 18	yr 19	yr_{20}	$y r_{21}$	$y r^{22}$	$y_{2} 23$	y^{24}	${ }^{2} 25$
January	15,4	2561	738	32734.798	32734.798	32.734.798	32734.798	32734.798	32.734 .788	32733.798	32273,798	32.734 .798	32734.798	327734798	8.013.494	${ }^{32} 2734.798$	32.734.798	32734.798	32.734 .798	32734.798	32734.798	32734.7919	40.754.809	32.73 .798	32.734 .798	28.019 .94	8.013.494	7.100
Februa	14,7	1,2522	639	24.24	14.467×24	6.912.583	26.228.520	14.467	1467.72	26.228.520	26.228520	6.912 .583	14.467.24	14.467 .24	7.749 .925	26.228.520	6.912 .583	17.37.2.22	6.912 .583	6.912.583	6.912.583	6.912.583	22.46 .574	26.228 .520	26.228.520	28.959.584	7.749.925	17.351.256
March	12,7	2495	735	18.226.532	18.226 .532	8.8	27.	12.376 .594	18.226.532	27883479	79	896.263	${ }^{12.376 .544}$	18226.532	9.971.944	27.834779	6.26	30.108.137	8.896.263	8.896.263	8.896.263	8.896 .263	22.991 .460	27.83,77	27,83477	31.414 .830	9.971.944	18.821.332
April	12,4	1,2490	711	16.057 .711	19.287404	9.641 .890	24.888.913	9.641 .8	19.287404	82891	24.828.913	9.641 .890	9.641 .890	19.287404	9.641 .890	24.8289913	9.641 .89	26.913 .498	9.641 .890	29.111.60	9.641 .890	9.641 .890	22.185 .389	19.971 .999	24.828913	24,919,931	9.641 .890	18.139.032
May	11,2	1,2425	735	12.306 .614	25.53.644	9.915.560	19.834.848	9.915.560	25.53.644	19.834.848	848	9.915.560	915.560	533.64	12.	848	9.915.560	25.53.644	9.915.560	7.677.3	9.915.560	9.915.560	20.889 .216	19.834.8.	19.834888	19.089.277	12.306 .614	16.168320
June	10,4	1,2351	687	9.212.474	25.714.865	11.433.985	16.838.388	8.218.718	714.865	388	16.88, 388	11.433 .985	8.218.718	25.714.865	${ }_{15} 15.34 .558$	16.88, 388	${ }^{11.433 .855}$	16.838 .388	${ }^{11.433 .885}$	23.723.122	11.433.885	${ }^{11.433 .855}$	16.95.390	16.838 .388	16.88,388	16.700 .685	15.32.258	14.94.9503
July	10,0	2275	735	8.739.531	29.577 .99	16.314 .80	16.314 .803	7.799.266	29.577 .699	314.803	16.314 .803	16.314 .803	7.795.266	7.699	17905.422	6.314.803	16.314 .883	7.795.266	16.314.803	19.5962	16.314 .803	16.314 .883	15.330.715	16.046466	16.314 .803	16.760.185	17.905 .41	.625.1
August	9,7	1,2216	735	7.757.712	12.099 .972	17.899 .161	12.099972	17.899.61	12.099 .972	12.099972	12.099 .972	17.819 .161	19.16	0999.972	1798	972	819.16	8.697.428	17.819.6161	s19.10.	1789, 19	819.16	2.903 .119	377.	12.099 .9	12.5889 .985	19.5017 .78	.111.908
September	10,4	1,2234	711	9.444.238	7.515.148	89.228	9.444.238	26.361.791	7.515.148	9.444.238	9.444.238	18.892 .028	26.361.791	7.515 .148	24.319.40	9.444.238	18.892 .028	9.444.238	18.892 .028	15.728.541	18.892 .228	18.892 .028	12.321 .085	13.275 .521	9.444.238	8.842.059	24.319.40	19.029.793
October	13,1	327	735	19.679.010	8.776.461	29.702 .682	9.837.656	25.33.032	8.776.461	9.837.656	9.837.656	29.70.682	25.333.032	8.776.461	27.499.40	9.837.656	25.33.032	9.837.656	25.33.032	12209.924	29.720.682	25.33.032	12.242 .414	8.858.686	9.887.656	8.122 .639	27.459.40	21.596.003
November	14,3	1,2429	687	4.256	9.271.165	25.878 .888	8.271.078	27.992.285	9.271.165	8.271.078	8.271.078	25.878 .688	27.992 .285	9.271.165	27.992885	8.271.078	25.878 .688	11.506 .828	25.878 .888	9.277.165	25.878.888	25.878 .688	7.423.013	8.271.078	8.271.078	8.870.902	27.92285	21.951.058
December	15,1	1,2528	735	30.186.350	9.997.8	745.54	7.955.677	19999.46	9.997.848	7.955.677	7.95.677	25.74.5.45	19.999.466	9.997 .848	32.498.621	7.95.677	30.180 .350	16.60 .529	30.186.30	9.997.848	25.745.45	30.180 .350	6.350.393	7.955.677	7.95.677	9.163 .644	32.988 .621	42.45.11
Annual	12,5	1,2404	8.579	212.466 .325	213.202961	213.887 .985	212223.670	212.035.974	213,2029.961	212.223.670	212.23.670	213.887.985	212.65.974	213.202.961	212.704.429	212.223 .670	213.599.139	213.437.670	213.959.139	23.688 .613	213.887 .985	213.59.139	213.109.827	213.228 .30	212.223.670		22,	

Table G． 4 Wind speed series simulations for $A E P_{\text {avait }}$ in Aracati（Brazil）

Months	$\begin{gathered} \hline v_{w c} \\ (m / s) \end{gathered}$	Wind speed data series for simulations（ m / s ）																								
		$y r_{1}$	$y r_{2}$	yr_{3}	yr_{4}	$r_{\text {S }}$	$y r_{6}$	$y r_{7}$	yr_{8}	yrg	$y r_{10}$	y_{11}	yr_{12}	yr_{13}	$\mathrm{rr}_{1 / 4}$	$y_{1 / 5}$	$y r_{16}$	$y r_{17}$	yr_{18}	y_{19}	y_{20}	y_{21}	y_{22}	y_{23}	y_{24}	${ }^{2} r_{25}$
January	5，8	5，8	10，1	7，6	9，6	4,0	10，1	4,0	4，0	7，9	10，1	10,1	4，0	7，6	9，6	7，9	10，1	10，1	4，0	7，6	9，6	4，0	7，6	9，6	7，9	7，9
February	4.9	4.9	9，7	7，9	9，7	4,7	9，7	4,7	4，7	8，6	9，7	9，7	4，7	7，9	9，7	4，0	4，0	7，6	8，6	10，1	6，0	6，0	10，1	9，7	8，6	8,6
March	4，0	4，0	9，6	8，6	10，1	4，9	9，6	4,9	4，9	9，2	9，6	9，6	4,9	8，6	10，1	4，7	4，7	6，0	7，9	6，0	5，8	5，8	9，7	10，1	7，6	9，2
April	4,7	4，7	9，2	9，2	7，9	5，8	9，2	5，8	5，8	9，6	9，2	9，2	6，0	9，2	7，9	4，9	4，9	5，8	9，2	5，8	7，6	4，9	9，6	9，2	6，0	9，6
May	6，0	6，0	8，6	9，6	8，6	6，0	8，6	6，0	6，0	9，7	8，6	8，6	5，8	9，6	9，2	5，8	5，8	4，9	10，1	4.9	4，0	4，7	9，2	7，9	5，8	9，7
June	7，9	7，9	7，9	9，7	9，2	7，6	7，9	7，6	7，6	10，1	7，9	7，9	7，6	9，7	8，6	6，0	6，0	4，7	9，7	4,7	4，7	7，6	8，6	8，6	4，9	10，1
July	8，6	8，6	7，6	10，1	5，8	7，9	7，6	7，9	7，9	4，0	4，0	7，6	8，6	10，1	6，0	7，6	7，6	4，0	9，6	4，0	4，9	7，9	7，9	5，8	4，7	4，0
August	9，6	9，6	6，0	6，0	6,0	10，1	6，0	8，6	8,6	4，7	4,7	6，0	7，9	6，0	5，8	8，6	9，7	9，7	4,7	7，9	9，7	8，6	6，0	6，0	4，0	4,7
September	10，1	10，1	5，8	5，8	7，6	9，7	5，8	9，2	9，2	4,9	4,9	5，8	9，2	5，8	7，6	9，2	9，6	9，6	4.9	8，6	10，1	9，2	5，8	7，6	9，2	4，9
October	9，7	9，7	4，9	4，9	4，0	9，6	4,9	9，6	9，6	5，8	5，8	4，9	10，1	4，9	4，0	9，6	9，2	9，2	6，0	9，2	7，9	9，6	4，9	4，9	10，1	5，8
November	9，2	9，2	4，7	4，7	4,7	9，2	4，7	9，7	9，7	6，0	6，0	4，7	9，7	4，7	4，7	9，7	8，6	8，6	5，8	9，6	9，2	9，7	4，7	4，7	9，7	6，0
December	7，6	7，6	4，0	4，0	4，9	8，6	4，0	10，1	10，1	7，6	7，6	4，0	9，6	4，0	4，9	10，1	7，9	7，9	7，6	9，7	8,6	10，1	4，0	4，0	9，6	7，6
Annual	7，4	7，4	7，4	7，4	7，4	7，4	7，4	7，4	7，4	7，4	7，4	7，4	7，4	7，4	7，4	7，4	7，4	7，4	7，4	7，4	7，4	7，4	7，4	7，4	7，4	7，4

Months	$\begin{gathered} v_{w c} \\ (m / s) \end{gathered}$	Wind speed data series for simulations（ m s ）																								
		${ }^{\prime \prime} r_{1}$	$y r_{2}$	$y r 3$	$y r_{4}$	$y r s_{5}$	$y r_{6}$	$y r_{7}$	y_{8}	$y r_{9}$	$y r_{10}$	$y_{1 / 1}$	$y r_{12}$	${ }_{\text {y }}^{1 / 3}$	$y_{1 / 4}$	${ }^{\text {r }}{ }_{1 / 5}$	$y r_{16}$	y_{17}	$y_{1 / 8}$	${ }^{\prime 2} r_{19}$	$y r_{20}$	${ }^{2} r_{21}$	$y r_{22}$	${ }^{2} r_{23}$	$y r_{24}$	y_{25}
January	11，7	11,7	11,7	11,7	11,7	11,7	11,7	11,7	10，6	10，6	11，7	10，6	10，6	10，6	11,7	10，6	10，6	11,7	10，6	10，6	10，6	10，6	10，6	10，6	10，6	10，6
February	11，5	11，5	8，2	11，5	11，5	11，5	7，6	11，5	11，7	6,1	7，6	11，7	6,1	10，5	11，5	9，5	11,7	8，2	8,9	7，6	7，1	11，5	6，4	9，5	11，5	11，7
March	10，5	10，5	7，1	11，5	11，5	11，5	8，9	11，5	11，5	6，4	7，1	11，5	6，4	11，5	11，5	8，9	11，5	7，6	9，5	8，2	11，5	11，7	6,1	10，5	11，7	7，1
April	9，5	9，5	9，5	10，6	10，6	10，6	9，5	10，6	8，2	7，1	9，5	11，5	7，1	11，5	8，2	8，2	11，5	7，1	10，5	7，1	11，7	11，5	7，1	7，1	11，5	7，6
May	8，2	8，2	10，5	10，5	10，5	8，9	10，5	10，5	10，5	7，6	8，9	10，5	7，6	11，7	10，5	7，6	10，5	6，4	11，5	8，9	6，4	10，5	7，6	11，7	10，5	8，2
June	7，1	7，1	11，5	9，5	9，5	9，5	10，6	8,2	11，5	8，2	10，6	9，5	8，2	9，5	6，4	7，1	9，5	6，1	11，5	9，5	6,1	9，5	8，2	11，5	9，5	8,9
July	6,1	6，1	11，5	8，2	8，9	10，5	11，5	9，5	7，1	8,9	6，1	8,9	8,9	8.9	6,1	6，4	8,9	8，9	11，7	10，5	7，6	8.9	8，9	11，5	7，6	9，5
August	6，4	6，4	10，6	7，6	7，6	7，6	11，5	8，9	7，6	9，5	6，4	8，2	9，5	8，2	10，6	6,1	8，2	11，5	6,1	11，5	8，2	8，2	9，5	8，2	7，1	10，5
September	7，6	7，6	6，1	8，9	8，2	8，2	8，2	6，1	8,9	10，5	10，5	7，6	10，5	7，6	8，9	10，5	7，6	11，5	6，4	11，5	8，9	7，6	10，5	7，6	6，4	6,1
October	8，9	8，9	8，9	7，1	6,1	7，1	6,1	6，4	9，5	11，5	11，5	7，1	11，5	7，1	9，5	11，5	7，1	10，6	7，1	6，1	9，5	7，1	11，5	6，4	6,1	6，4
November	10，6	10，6	7，6	6，4	6，4	6，4	6，4	7，1	6，4	11，5	8，2	6，4	11，5	6，4	7，1	11，5	6，4	10，5	7，6	6，4	10，5	6，4	11，5	6，1	8,9	11，5
December	11，5	11,5	6，4	6,1	7，1	6,1	7，1	7,6	6,1	11，7	11，5	6，1	11，7	6，1	7，6	11，7	6,1	9，5	8,2	11，7	11，5	6，1	11，7	8,9	8，2	11，5
Annual	9，1	9，1	9，1	9，1	9，1	9，1	9，1	9，1	9，1	9，1	9，1	9，1	9，1	9，1	9，1	9，1	9，1	9，1	9，1	9，1	9，1	9，1	9，1	9，1	9，1	9，1

$s^{\prime} z I$	s＇zi	s＇zl	s＇zl	s＇zl	s＇zi	s＇zi	s＇zi	s＇zl	$s^{\prime} z /$	s＇zI	s^{\prime}＇$/ 1$	s＇zI	s＇zI	$s^{\prime} z I$	$s^{\prime} z I$	s＇zI	$s^{\prime} z 1$	s＇zl	s＇zI	s＇zl	s^{\prime}＇zI	s＇zl	s＇zi	$s^{\prime} z I$	s＇zi	${ }^{\text {pmuu }}$	
$6{ }^{61}$	t＇SI	I＇OI $^{\text {a }}$	L＇6	L＇6	0%	I＇SI	ع＇tI	t＇0I	I＇SI	t $^{\prime}$ II	I^{\prime}＇SI	L＇6	$t^{\prime} S I$	t＇or	$I^{\prime} \varepsilon I$	\＆＇tI	L＇6	＜＇6	t＇01	$I^{\prime} \varepsilon I$	L＇6	ع＇t1	t＇ol $^{\text {a }}$	I^{\prime} SI	I＇SI		
$6^{\prime} \varepsilon 1$	I＇SI	ع＇ol	O＇0\％	O＇01	L＇6	L＇HI	L＇t	tois	L＇tı	$\tau^{\prime} \\|$	L＇tı	0＇0i	I＇SI	tor	I＇sI	C＇t	0＇0I	O＇0I	t＇or	$I_{\text {＇S }} I$	0＇0I	C＇tI	toi	$\varepsilon{ }^{\prime}+1$	E＇t 1	．атихло ${ }_{\text {N }}$	
$s^{\prime \prime} \varepsilon$	L＇tI	$8{ }^{\prime \prime}$	tor		2＇II	$\varepsilon^{\prime}+1$	I＇sI	z＇II	$\varepsilon^{\prime \prime}+1$	tor	$\varepsilon^{\prime}+1$	tor	L＇t	O＇01	$\varepsilon{ }^{\prime \prime}+1$	I^{\prime}＇s	tor	toi	$0^{\circ} \mathrm{O} 1$	$\varepsilon{ }^{\prime}+1$	tol	I＇SI	$0^{\circ} \mathrm{O}$	$I^{\prime} \varepsilon I^{\prime}$	$I^{\prime} \varepsilon 1$	129010	
$\tau^{\prime} \varepsilon I$	E＇tI	z＇or	t＇or	L＇II	t＇II	$I^{\prime} \varepsilon I$	$I^{\prime} \varepsilon I$	ťı	$I^{\prime} \varepsilon I$	tor	$I^{\prime} \varepsilon I$	tois	$\varepsilon \varepsilon^{\prime}+1$	L＇6	L＇tI	$I^{\prime} \varepsilon I$	t＇ol	t＇ol	L＇6	く＇tI	tool	$I_{\text {＇}}(\underline{ }$	L＇6	t＇ol	tool	12quardas	
t＇6	$I_{\text {＇}}$ I 1	t＇II	て＇ıI	I＇zi	t＇II	L＇zı	L＇zI	く̌ı	L＇zI	o＇or	＜＇zı	$\tau^{\prime \prime}$	$I^{\prime} \varepsilon I^{\prime}$	z＇II	く＇zI	＜＇zı	z^{\prime} II	z＇II	z^{\prime} II	く＇zı	z^{\prime} II	く＇zI	z^{\prime} II	$L^{\prime \prime} 6$	L＇6	$14 n 8 n \downarrow$	
0＇0I	く＇zı	s＇zı	ャ̌ı	\＆＇zı	z＇zı	tıı	ṫı	$I^{\prime} \varepsilon I^{\prime}$	ṫて	L＇6	t＇zI	がてI	く＇zI	I^{\prime}＇SI	L＇6	ャ゙て！	カ̊てı	ガてI	$I_{\text {＇S }}$ I	＜＇6	t＇zı	ガてI	I＇SI	0＇01	0＇01	$\kappa_{1} n_{1}$	
z＇zı	tı	く＇ıI	く̌ı	くıı	s＇z	$z^{\prime}+I$	$z^{\prime}!I$	$\varepsilon+1$	$z^{\prime}!I$	＜＇zI	z^{\prime} / I	＜＇zI	ャ゙て！	L＇tI	0＇01	τ^{\prime} II	く‘ıI	く＇zı	く＇t	O＇OI	く＇zı	τ^{\prime} II	L＇tI	t＇ol	tor	วun／	
ع＇zı	$\tau^{\prime} I I$	${ }^{\text {¢ }}$ ¢ 1	$I_{\text {＇} ~}^{\text {I }}$	$I_{\text {＇}}(1$	t＇sI	tor	tor	く＇tI	tool	$\varepsilon \varepsilon^{\prime}+1$	tool	$I^{\prime} \varepsilon I$	$z^{\prime} I I$	$\varepsilon^{\prime \prime}+1$	t＇ol	tor	$I^{\prime} \varepsilon I$	$I^{\prime} \varepsilon I^{\prime}$	$\varepsilon \varepsilon^{\prime} t=$	t＇or	I^{\prime}＇I	t＇or	$\varepsilon^{\prime}+1$	z^{\prime}＇II	$z^{t}+I$	${ }^{n}{ }^{W} W$	
6^{\prime} I	tol	$\varepsilon \cdot t 1$	E＇tI	$\varepsilon \varepsilon^{\prime} \varepsilon$	8 8 1	tois	tois	I＇SI	tor	＜＇tI	tol	$\varepsilon^{\prime}+1$	tor	$I^{\prime} \varepsilon I$	tor	tor	ε E＇t	$\varepsilon{ }^{\prime}+1$	$I_{\text {＇}}(1$	toil	E＇tI	toi	$I^{\prime} \varepsilon 1$	t＇zI	ṫzI	${ }^{1.4 d_{V}}$	
6^{\prime} I	tor	$\varepsilon^{\prime \prime} s I$	L＇tI	L＇tI	8 8 1	00°	0\％os	O＇01	0＇01	$I_{\text {＇S }}$ I	0＇01	L＇t 1	tor	L＇zI	z^{\prime} II	0＇01	L＇t	L＇tI	く＇zI	z＇II	L＇tI	osor	く＇zI	く＇zI	L＇zI	${ }^{\text {youp }}$ W	
$I^{\prime} \varepsilon I$	0\％os	9＇SI	$I_{\text {＇S }}$ I	I＇SI	E＇t 1	L＇6	＜＇6	L＇6	L＇6	$I^{\prime} \varepsilon I$	L＇6	$I^{\prime} S I$	0＇01	${ }_{\text {t }}$＇	カ̊てı	L＇6	$I^{\prime} S I$	I＇SI	ガて！	カ＇て！	I＇SI	＜＇6	t＇zı	く＇tI	く＇tı		
$\varepsilon^{\prime \prime}$	L\％	く＇tI	t＇SI	t＇SI	992	$t ' S I$	$t^{\prime} S I$	$t^{\prime} S I$	$t^{\prime} S I$	$t^{\prime} S I$	$t ' s I$	$t^{\prime} S I$	L＇6	$t^{\prime} S I$	$t^{\prime} S I$	t＇SI	$t^{\prime} S I$	$t^{\prime} S I$	$t^{\prime} S I$	$t^{\prime} S I$	$t ' s I$	t＇SI	$t^{\prime} S I$	t＇sI	$t^{\prime} S I$	сıриир	
	${ }_{\text {¢ } 2, \ldots}$	${ }_{82} / 1 /$	${ }_{2 z, 1 i}$	${ }_{1 z, 1 i}$	${ }_{0 \text { or }, \ldots}$	${ }^{61} / .1 /$	${ }^{8 L} / . / \mathrm{K}$		$9{ }_{\text {ILIK }}$		${ }^{+\prime, / i}$		${ }_{\text {IL }}^{1 / i}$	${ }_{\text {IL，}}$	${ }_{0}^{0 /, i /}$	${ }_{6.1}$	${ }_{8,1 \mathrm{C}}$	${ }_{\text {L }}^{\text {LIA }}$	${ }_{9,1 \mathrm{~K}}$	${ }_{5}$ S／i	${ }_{+1 /}$	$\varepsilon_{\text {，}}$	${ }_{2,1 /}$	${ }_{\text {I，}}^{\text {IT }}$	（smu）		
																									${ }^{30}{ }_{4}$		

Table G.7 KWh per $\mathrm{H}_{\text {pod }}$

Sites	$k W / y r$																								
	$y r_{1}$	$y r_{2}$	yr_{3}	$y r r 4_{4}$	$y r_{5}$	$y r_{6}$	$y r_{7}$	$y^{\prime}{ }_{8}$	$y{ }_{9}$	y_{10}	y_{11}	$y r_{12}$	$y r_{13}$	$y_{1 / 4}$	y_{15}	$y r_{16}$	y_{17}	yr_{18}	yr_{19}	$y r_{20}$	y_{21}	y_{22}	$y_{2} 2$	$y r_{24}$	$y r_{25}$
Aracari (Brazil)	5.695	5.647	5.674	5.629	5.699	5.647	5.694	5.694	5.637	5.641	5.647	5.693	5.674	5.637	5.718	5.737	5.690	5.649	5.602	5.698	5.682	5.616	5.628	5.645	5.637
Corvo Island (Portugal)	10.451	10.535	10.466	10.473	10.467	10.570	10.498	10.419	10.528	10.530	10.452	10.528	10.510	10.504	10.472	10.452	10.517	10.522	10.556	10.569	10.463	10.523	10.531	10.446	10.392
Cape Saint James (Canada)	24.766	24.852	24.932	24.738	24.788	24.852	24.738	24.738	24.932	24.788	24.852	24.794	24.738	24.940	24.879	24.940	24.908	24.932	24.940	24.841	24.855	24.738	24.888	24.794	24.877

Table G 9 Cashtiow for 25 years oft	wind farmp	project	50.000 k		Corvo Island	d (Porusal)		reference siu	suation																	
Item	0		2		4	5	${ }_{6}$	7	8	9	10	11	Years	${ }^{13}$	14	15	16	17	18	19	20	21	22	23	${ }^{24}$	25
$\stackrel{\text { ¢ }}{ }$ LCCCM w ${ }_{\text {w }}$	60.25 .901																									
${ }^{W} \mathrm{~T}_{\text {cu }}$	27.686.278	-		-				-			-		-		.		-					-		-		
$T_{\text {cu }}$	24.219.295	-	-	-	-		-	-		-	-			-			-			-			:	-	-	
${ }^{L W T G C M}$	1.959.783	-	-	-	-	-		-	-	-	-		-	-			-			-					-	
${ }_{\text {cpon }}^{\text {ctan }}$	1.545.346	-	-		-	-	-	-		-	-			-			-			-						
	-572.832	-	-	-	-	-	-	-		-	-		$:$:			:									
$\mathrm{PO}_{\mathrm{Cu}}$	1.796 .870	-	-		-		-	-	-	-	-			-		-	-	-	-	-	-	-	-		-	
${ }_{\text {cour }}$	188.559																-									
	120.211	89.657.257						90.056 .935				89.66 .733	90.318 .367	90.163.301												
${ }_{\text {(}}$) $A A R$ (SM (srr)		14970.925	15.468.449	15.750.988	16.156 .163	16.549.954	17.131.821	17.439.078	17.741.084	18.375.119	18.839,939	19.166.502	19787.994	20.24 .871	20.742 .636	21.196.034	21.685.138	22366.982	22.934 .122	23.54.858	24.209.932	17.191.828	17.72258	18.180.019	18.483,975	18.848.346
${ }_{\text {PPAR }}$		14970.925	15.468.44	15.750988	16.156 .163	16.549.954	17.131.821	17.439.078	177.71.084	18.375 .119	18.838939	19.166.502	19.787.994	20.247 .871	20.742 .636	21.196.034	21.685 .138	22363.982	22.934 .122	23.54.858	24.203.932					
EMP																						17.191.828	17.722 .258	18.180.019	18.483 .975	848.346
$\xrightarrow{\text { c) }}$ O\& $M_{\text {wrcm }}$		9.368374	9.679.566	9.856.225	10.109.621	10355.890	10.719.839	10.11 .955	11.100.782	11.497 .361	1.7877429	11.992 .241	956	12.668 .548		13.261 .497	13.567.366	3991.943	4.348.504	14.755 .487			13.560.43	13.910.592	14.143.024	
	-	${ }_{4}^{4.877969014}$	5.033.363	5.125 .297 4.730927	${ }_{\text {5 }}^{5.257 .117}$	${ }_{\text {5 }}^{5385.272}$	${ }_{5}^{5.1574 .606}$	${ }_{\text {5 }}^{5.674 .583}$	5.772.851	${ }_{5}^{5.979 .160}$	${ }_{\text {che }}^{6.130 .081}$	6.236 .666 5.755 .575	${ }^{6.438 .893}$	6.588532 6.080 .016	${ }_{6}^{6.7929 .522}$	6.8.87.052	${ }_{\text {7.056.201 }}^{6.1165}$	7.77 .090 6.714 .853	${ }^{7.46858 .607}$	7.674 .49 7.081 .137	7.875 .789 7.266 .866	7.991 .568 5.163 .178	8.238 .134 532239	8.450.920 5.459 .672	8.592210 5.550 .813	8.761 .584 5.660 .095
(+) LRCM		863268	884.850	906971	929.46	952.887	97.709	1.001.127	1.026.155	1.051.809	1.078.104	1.105.057	1.132 .683	1.161.000	1.190.025	1.219 .776										
(+) Depreciation		2.449315	2.510 .548	2573.312	2.637 .645	2709.586	2.771 .176	2.840 .455	2.911 .466	2.984 .253	3.058.859	3.135.331	3.213.714	3.294.057	3.376.408	3.460.818	3.447.339	3.636022	3.726 .923	3.82.096	3.915 .598	4.013.488	4.113 .826	4.216.671	4.322.088	4.430.40
(\&) Profit before tax		8.915 .134	9.184281	9375.046	9.613.833	9.850.537	10.159 .866	10.368 .705	10.577923	10.913 .820	11.188473	11.414.649	11.733.435	12.034.380	12.331 .104	12.615.131	11.665 .110	12.008 .061	12.312 .540	12.699.468	12.976 .875	8.050 .570	8275.610	8.486.098	8.663.040	8.856.807
${ }^{(-)}$Revenue tax		4.491 .277	4.640 .535	4.725296	4.846.849	4.964 .986	5.139.546	5.231 .723	5322325	5.512 .536	5.651.682	5.749951	5.936,398	6.074.361	6.222791	6.3588 .810	6.505.541	6.709 .195	${ }^{6.880 .237}$	${ }^{7} 7.075 .458$	${ }^{7} 2.261 .179$	5.157.549	5.316 .677	5.454.006	55455.193	5.654.504
${ }^{(+)} \underset{\text { REPIM }}{\text { REI }}$	${ }^{486.502}$		1.420	1.382	1.355	1.327	14	1.280	1.245	${ }^{1.235}$	1.212	${ }^{1.1880}$	1.167	1.144	1.123	${ }^{1.100}$	164	170	174			186				
$\underbrace{\text { REPCum }}_{\text {REICM }}$	221.113																									
		${ }^{1.325}$	1.303	${ }^{1.263}$	${ }^{1.233}$	1.202	1.184	1.147	I.II	1.095	1.069	1.035	1.017	991	966	939										
GHG:R co						125						145		153	157	161	164	170	174	179	183	186	192	197	200	204
\Leftrightarrow Profit afer tax w/out ineress	-	4.425 .295	4.545 .166	4.651 .132	4.768 .339	4.886 .878	5.021 .63	5.1382261	5.256 .843	5.402 .519	5538.003	5.665 .878	5.818 .204	5961.163	6.109 .437	6.257.421	5.159.734	5299.037	5.432.478	5.574.189	5.715 .879	2.893.208	2959.125	3.032289	3.118.047	3.202 .507
			${ }_{\text {3, }}^{\substack{170.319 \\ 2.687 .282}}$			3.414 .87 2893909	3.499 .439 2.966 .25	3.588925 3.040 .413	${ }^{3}$3.67 .988 3.116 .424	${ }_{\text {3 }}^{3.768513}$ 3.19434	${ }_{\text {3, }}^{3.862726}$	${ }_{\substack{3.959294 \\ 3,356047}}^{\substack{\text { a }}}$		${ }_{\substack{4.159 .734 \\ 3.52594}}^{\substack{\text { a }}}$		${ }_{\text {4, }}^{4.3707304048}$		3.891.986	3.9892.286		4.191243	4.296.024	4.403 .425	4.513.511		
${ }_{(+) \text {Depreciation }}$		2.449315	2.510 .548	2573.312	2.637.645	2703.586	2.771 .176	2.890 .455	2.11 .466	2.984-253	3.058.899	3.135.331	3.213.714	3.294.057	3.376.408	3.460.818	7.339	3.636.022	726.923	3.820.096	3.915.598	013.488	4.113 .826	4.216.671	4.322 .088	4.430. 140
($)$ Free net cashflow	-59.739.399	196.349	72.677	729331	6.898 .493	7.070.286	7.259.627	7.432.204	7.608 .134	7.812 .593	8.008328	8.197.962	8.413.589	8.621.433	8.836.214	9.052367	12.504 .132	12.827.045	13.14.886	13.48.303	13.822.721	11.202721	11.476 .375	11.762 .471	12.066 .484	
$\Sigma_{\text {trem }}$		-50.243.050	-43.670.372	-36941.041	-30.022.549 -	-22972.263-1	-15.712.636	-8.280.432	-67297	7.140 .296	15.148 .62	23.346.586	31.760.175	40.381.608	49.217.822	58.270 .189	70.74 .321	83.601.366	96.750.053	10.233356	124.56 .076	135.25897	46,75.173	SS.97, 64	170.56,127	182.988 .88

Table G.10 Cashfow for 25 years	ewind fa	ject	50.000		Cape Saint	James (Canad		references situ	tuation																	
Item	0					5	6	7		9	10	11	$\frac{\text { Yeal }}{}$	${ }_{13}$	14	15	16	17	18	19	20	21				
$\stackrel{\text { ¢ }}{\text { LCCCM }}$ w ${ }_{\text {F }}$	60.225 .901																									
${ }_{\text {w }}^{\text {cm }}$	27.686 .278	-	-		-	-			-			-														
$T_{\text {cm }}$	24.219 .295	-		-			-		-		-															
${ }_{\text {LWTG }}^{\text {cm }}$	1.959 .783	-		-	-		-		\checkmark		\checkmark		-		-			-								
${ }^{\text {cPacm }}$	1.545 .346	-	-	-	-	-			-		-	-			-											
${ }_{\text {c }}^{\text {cu }}$	572.832	-	-	-	-	-			-		-	-														
${ }_{\text {Stcm }}$	2.136 .726	-	-	-		-			-			-			-											
${ }^{\text {POCu }}$	${ }^{1.796 .887}$	-	-	-	-	-			-		-	-			-											
${ }_{\text {char }}^{\text {cci }}$	188.559	-	-	-	-	-		-	-		-	\checkmark			-											
	120.211	212.467 .325	213.202961	213.887 .885	212233.60	212.55 .974																				
${ }^{(+) A A R(S M M r r)}$	-	30.129.143	30.989.297	31.86 .088	32.408 .583	33.286465	34.206.386	34900.500	35.733.012	36954.893	37.600.880	38.701 .386	39.576.163	40.47.880	41.824 .978	42.766 .117	43,942368	44.981 .873	46.151 .597	47.321.124	48.311 .614	34.682891	35382431	36.487 .277	37257.877	38.317.64
${ }_{\text {PPAR }}$	-	30.129.143	30.988.297	31.866.088	32.408 .583	332.284645	34.200.386	34900.500	35.773.012	36.94 .893	37.600.580	38.701 .386	39.576.163	40.473.880	41.824 .978	42766.117	43.922 .368	44.981 .873	46.151 .597	47.321 .124	48.31 .614					
EMP	-																					34.682891	35382431	36.487 .277	37.257 .877	38.317.64
	-	20.588.652	${ }^{21.176 .288}$	21.775.288	${ }^{22.145 .848}$	22.745587	23.374 .047	${ }^{238488205}$	24.444 .263	${ }^{25.2517 .713}$	25.733 .770	26.444 .813	27.042405	27.65.668	28.578 .721	29.221.647	30.052220	30.735.351	31.534456	32.33.422	33.010.054	29,394775	29987.509	30.923.746	31557.700	32.474.765
o\& $M_{\text {fukd }}$	-	11.544286	11.877.856	12.209 .801	12.417.656	12.754.019	13.106.489	13.3727387	13.7067733	14.159584	14.429.968	14.828.755	15.163927	15.507.888	${ }^{16.025 .565}$	16.386.164	16.836.647	17.235.134	17.683316 13851110	18.131.422	18510929 14499125	18.984 .265 1040511	19.367 .163	19.971.913	20.3937 .707 11182993	20.97.309 11500957
$O \& M_{\text {verab }}$	-	9.044 .366	9.302.432	9.565 .487	9.728.192	9.991 .568	10.267.558	10.475.767	10.737 .520	11.092.129	11.303 .802	11.616 .058	11.878 .488	12.147 .781	12.553 .156	12.835.484	13.188.373	13.500 .217	13.851 .140	14.202000	14.499 .125	10.410 .511	10.620 .346	10.951 .834	11.182 .993	11.500 .95
(+) LRCM		866.268	${ }^{88.850}$	906.971	929.646	952887	976.709	1.001 .127	1.026.155	${ }^{1.051 .809}$	1.078.104	1.105 .057	${ }^{1.1132 .683}$	1.161.000	1.1190 .225	${ }^{1.219 .776}$										
${ }^{(+)}$Depreciation		2.431 .036	2.491 .812	2.554.108	2.617 .960	2.683.409	2.750 .494	28192.257	28889.738	2961.982	3.036.031	3.111 .932	3.189 .730	3.269.474	3.351.210	3.434.991	3.52 .865	3.608 .887	3.699.109	3.791 .587	3.886377	3.983 .536	4.083 .125	4.185 .203	4.288 .883	4.397 .079
($=$ Proffit before tax		12.834 .796	13.189.672	13.51 .879	13.810 .341	14.177 .175	14.559 .542	14.872 .678	15.244 .642	15.716970	16.040.945	16.473.561	16.856.171	17.24.685	17.787.492	18.1992.236	17.438014	17.85.409	18.316250	18.799.289	19.187937	9.271.652	9.478.046	9.788.733	9977.010	10.240.007
${ }^{(-)}$Revenue tax		9.038.743	9.296.789	9.559 .826	9.722 .575	9.985940	10.261.916	10.40 .150	10.731 .904	11.0864688	11.298 .174	${ }^{11.610 .416}$	${ }^{11.872 .849}$				13.182710	13.494 .562	13.8454.49	${ }^{14.196 .337}$	14,493.484	${ }^{10.40 .867}$	10.614729	10.946 .183	11.177 .363	${ }^{11.4953 .388}$
${ }^{(+)}$REPM	932331	77	791	806	812	827					901			834	862	881	905	927	951	975	995	1.021	1.041	1.074	1.096	${ }^{1.128}$
REICM	221.313																									
${ }^{\text {REF } P_{c m}}$		156	${ }^{153}$	${ }^{150}$	${ }^{145}$	${ }^{42}$	${ }^{138}$	${ }^{34}$	${ }^{131}$	129	125				-							\checkmark				
${ }_{\text {OREP }}^{\text {OHM }}$	71.018																									
GhG.R cm		621	638	${ }_{656}$	668	686	705	719	737	761	776	797	815		862	881	905	927	951	975	995	1.021	1.041	1.074	1.096	1.128
(=) Profit after tax wout interest	-	3.796.830	3.893.674	${ }^{3.992 .859}$	4.088.578	4.192062	4.298.470		4.513.607	${ }_{\substack{4.631 .393 \\ 372039}}^{4}$	${ }_{\text {cose }}^{4.743 .672}$	4.863992	${ }^{4.984 .138}$	${ }^{5} .107 .355$	5.240.860		4.256.209	${ }^{4.361 .773}$	4.471.722	4.883.226	4.695.448	-1.132.195	-1.135.642	196.376	-1.205.236	-1.254.173
			${ }_{\text {l }}^{3.146 .660}$			3.388 .688 2.893909		3.560 .156 3.040413	3.499 .160 3.116 .424	${ }_{\text {3 }}^{3.770 .389}$ 3.19434	${ }_{\substack{3.833 .899 \\ 3.774 .193}}$	${ }_{\substack{3,29974 \\ 3,356047}}$	${ }_{\text {4, }}^{\substack{\text { 3.273999949 }}}$	4.128.590 3.52.947	${ }_{\text {4, }}^{\text {4.231.97 }}$ 3.14.096	${ }_{\text {4, }}^{\text {3,777.09 }}$										
																	${ }^{3.797 .060}$			4.089.018	${ }_{4}^{4.1981243}$	4.2960224		4.513.511	4.626 .348	
	-59293.669		2.4992.812	${ }^{2.554 .108}$	2.623,90500	2.683 .49 6.38077	2.5751.898	${ }_{\text {6,702895 }}^{281925}$							3,3121210 7974259											
$\Sigma_{\text {frener momesedestriow }}$		-50.43964	-44.517.855	5-38.411.751	-32217.845	-25.837.073	-19.295.175	-12592280	-5.721.672	1.325 .488	8.545.64	15.947 .820	23.533.646	31.307 .732	39.281 .991	47.454.007	59.028.140	70.890 .787	83.050.904	95.515.435	108.885.593	115.43 .858	122786776	1302859.13	1388.000 .388	14.8 .884 .580
	$L_{\text {LOE }}^{\text {wo }}$	${ }^{8,3,30}$	84,97	85,66	86,12	${ }_{86,82}$	87.54	88,12	88, 81	89,72	90.31	${ }^{9,13}$	91,84	${ }^{2,57}$	93,61	94,37	94,05	94,85	95,75	96.65	97,43	93,92	${ }^{94.62}$	95.66	${ }_{96,43}$	97,44

ApPENDIX H

Itial Resuls	Summary	of LCOE wios	Notes
67,6756	yr_{1}	70,7229	$y^{2} / 5$
67.8295	y_{2}	69.822	yr $/ 5$
${ }^{68,0385}$	yr_{3}	70,0172	${ }^{\text {y } / 6}$
68,2028	rr_{4}	70.2229	yr 1_{17}
${ }^{68,4513}$	yrs	70,4241	yr $/ 8$
68.6399	yr_{6}	70,751	r_{19}
68.8858	yr_{7}	70.3899	yr 20
69.1016	yr_{8}	70.5764	${ }^{21}$
69,2789	yr	70.8470	y_{22}
${ }^{69.5063}$	yrı	71,1302	yr 23
69.7421	$y^{\prime \prime}$	71.3951	${ }^{2} 25$
70.0200	$y_{r}{ }_{12}$	69,6991	Mean
70,2471	$y_{r / s}$	1,044	$s D$
70.4639	yris	-0.4478	$r_{\text {iscomess }}$
$L^{\text {LOEE woo }}$	$\begin{gathered} 69,6991 \\ 0.069699 \end{gathered}$	$\mathrm{LSS} / \mathrm{MWh}$	valid!

Figure H. 1 I-O representation of $L C O E_{\text {wso }}$ algorithm calculations for the hypothetical $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Aracati (Brazil) with sensitivity analysis of $O \& M_{\operatorname{manag}(A)}$. Source: Own elaboration

Figure H. 2 I-O system representation of $L C O E_{\text {wso }}$ algorithm calculations for the hypothetical $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Corvo Island (Portugal) with sensitivity analysis of $O \& M_{\operatorname{manag}(A)}$. Source: Own elaboration

Figure H. 3 I-O system representation of $L C O E_{\text {wso }}$ algorithm calculations for the hypothetical $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Cape Saint James (Canada) with sensitivity analysis of $O \& M_{\operatorname{manag}(A)}$. Source: Own elaboration

Tabe H3 Eneryy production napo of the wind fam for Cape S Sint Janes (Canada)

Months	$\begin{gathered} v_{w c} \\ (m / s) \end{gathered}$	$\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	$H_{\text {prod }}$ (h)													${ }_{\text {anail }}(k)$												
				yr_{1}	yr ${ }_{2}$	yr_{3}	yr_{4}	yrs	yr 6	y_{7}	y_{8}	yr,	yr ${ }_{10}$	yr ${ }_{\text {II }}$	$y r_{12}$	$y_{1 / 3}$	yrit	yr 15	$y^{1 / 6}$	y_{17}	$\mathrm{y}_{1 / 8}$	yr 19	yr 20	${ }^{2} r_{21}$	yr 22	y_{23}	${ }^{2} r_{24}$	yr 25
January	15,4	1,2561	740	32.8	32.823.5	${ }^{32.823}$	${ }^{32.823 .510}$	32.82	${ }^{32.823 .510}$	${ }^{32.823 .5}$	${ }_{32823.515}$	${ }^{32.833 .5}$	${ }^{32} 2823.510$	32.823.510	8.035.210	${ }^{32} 282.510$	${ }^{32} .823 .510$	${ }^{32.823 .510}$	32.82,510	${ }^{32} 823.510$	${ }^{32} .823 .510$	${ }^{32} 28.83 .510$	40.865 .255	32.82.510	${ }^{32} 2823.510$	28.095.229	8.035.210	7.120.177
February	14,7	1,25	648	24.591.404	14.62 .254	7.010.451	26.599.864	14.672 .254	14.672 .254	26.599 .864	26.599.864	7.010.451	14.672 .254	14.672 .254	7.859.649	26.599 .864	7.010.451	17.623.200	7.010.451	7.010 .451	7.010.451	7.010.451	22.780 .600	26.599.864	26.599 .864	29.36.594	7.859.649	17.59.9916
March	12,7	1,2495	736	18.252 .376	18.252 .376	8.9	27.874.248	12.394.144	18.252 .376	27.874.248	27.874.248	8.90	12.394.144	18.2523 .376	9.986.084	27.872.248	8.908.8	30.150.829	8.908.	8.908.	08.878	8.90	23.024.061	874	27.872.248	31.499.374	986.084	18.988162
April	12,4	1,2490	712	16.0812.49	19.3	9.656.023	24.865.308	9.656.023	19.315.677	24.865.308	24.865 .308	9.656.023	9.656.023	19.315.67	9.656.023	24.865 .3	9.656.023	26.925	9.656.023	29,154.21	9.656.023	9.656.023	22.21810	20.001 .184	24.865.308	24.956	9.656.023	18.15 .5621
May	11,2	1,2425	736	12324.064	25.569.850	9.92	19.820.973	9.929.620	25.569850	19.862973	19.828 .973	9.929.620	9.929.620	25.56	12324.064	19.829973	9.929.620	25.569.8	9.929.620	27776.641	929.620	9.929.62	1.01	9.862	19.882 .8	116.	12.	16.191.245
June	10,4	1,2351	696	9.333.7	26.053 .485	11.584 .551	17.060.120	8.32	26.053 .885	17.60.120	17.760.120	11.584 .51	326.9	26.053885	15.544.593	17.0	11.584 .551	17.06 .120	11.54.551	24.035	11.54.551	11.584 .55	17.178.664	106	17.60. 120	16.981 .395	15.544 .593	${ }^{15.146 .363}$
July	10,0	1,2275	736	8.751.923	29.	16.337.	16.377936	7.806.320	29.619.639	16.377.936	16.377936	16.377.936	7.806.320	29.619.639	17.930.811	16.337.936	16.337.936	7.806.320	16.377 .936	19.623.991	16.337.936	16.337.936	15.552737	15.069219	16.377.936	16.783 .93	17.93.8.811	8.637.391
August	9,7	1,2216	736	7.768 .712	12.117	17.844.428	12.117 .129	17.844.428	12.11	12.117.129	12.117 .129	17.84.428	17.844.428	12.117.129	19.529.451	12.117 .129	17.844.428	8.79.760	17.84.428	17.84.428	17.844.28	17.844.428	12.921.415	15.39 .660	12.117 .129	12.606 .836	19.529.451	7.121.992
September	10,4	1,2234	712	9.4	7.526.165	189999721	9.458.082	20.400.433	7.526.165	9.458.082	9.458.082	18.999 .721	26.400.433	7.526.165	24.355.89	9.458.082	18.999.721	082	18.9999721	15.751 .596	18.9	18.9	12.339 .146	13.24.981	9.458.082	8.855.020	24.355.589	19.057.888
October	13,1	327	736	19.760.914	8.788 .905	297	9.851.605	25.368993	8.788 .905	9.851.605	9.851.605	29.74	25.3	8.788.905	27.49	9.851 .605	25.368993	9.851.605	25.368983	12.22	29.74/799	25.368993	12.2	8.871 .247	9.851.605	8.134.157	27.998.87	21.
November	3	1,2429	696	24.188.39	9.393.250	26.219.466	8.379.993	28.360.895	9.393.250	8.379.993	8.379.993	26.219.466	28.300.995	9.393.250	28.300.995	8.379.993	26.219.466	11.65833	26.219.466	9.393.250	26.219.466	26.219.468	7.520.762	8.379.993	8.379.993	8.987.716	28.30.8995	22.240 .116
December	15,1	1,2528	736	30.299.153	10.01.025	25.782051	7.966.958	20.027.814	10.012025	7.966.958	7.966.958	25.782.051	20.027.814	10.012025	32.54.702	7.966.958	30.299.153	16.674 .139	30.29, 133	10.012.025	25.7820.51	30.229.133	6.359.397	7.966.958	7.966.958	9.176.637	32.54.702	42.535 .373
Annual	12,5	1,2404	8.616	28.50983	24.44226	24.761434	218.977728	218.611337	214.144.266	197728	213.197728	${ }^{214.761 .434}$	213.611 .37	214.14.266	948	213.197.728	.832.	214.338 .805	822.689	214.501 .803	761.434	. 832	038947	214.23:964	197.72	214.532.412	213.625 .448	

Table H. 4 Wind speed series simulations for $A E P_{\text {anail }}$ in Aracati (Brazil)

Table H. 4 Win	1 speed	es simu	s for	vail in	i (B)				sensitit	analysi	O\& M															
Months	${ }_{\text {wc }}$											Wind	ed data	ies fors	ations											
	$(\mathrm{m} / \mathrm{s})$	rr_{1}	yr_{2}	y^{3}	yr_{4}	yr_{5}	rr_{6}	y_{7}	yr_{8}	yr,	$y r_{10}$	r_{11}	$y r_{12}$	yr_{13}	yr ${ }_{1 /}$	$y_{1 / 5}$	yr ${ }_{16}$	yr ${ }_{17}$	$\mathrm{yr}_{1 / 8}$	yr ${ }_{19}$	$y r_{20}$	yr ${ }_{21}$	$y r_{22}$	yr 23	yr ${ }_{24}$	r^{25}
January	5,8	5,8	10,1	7,6	9,6	4,0	10,1	4,0	4,0	7,9	10,1	10,1	4,0	7,6	9,6	7,9	10,1	10,1	4,0	7,6	9,6	4,0	7,6	9,6	7.9	7,9
February	4.9	4.9	9,7	7,9	9,7	4,7	9,7	4,7	4.7	8,6	9,7	9,7	4,7	7,9	9,7	4,0	4,0	7,6	8,6	10,1	6,0	6,0	10,1	9,7	8,6	8,6
March	4,0	4,0	9,6	8,6	10,1	4,9	9,6	4,9	4.9	9,2	9,6	9,6	4.9	8,6	10,1	4,7	4,7	6,0	7,9	6,0	5,8	5,8	9,7	10,1	7,6	9,2
April	4,7	4,7	9,2	9,2	7,9	5,8	9,2	5,8	5,8	9,6	9,2	9,2	6,0	9,2	7,9	4,9	4,9	5,8	9,2	5,8	7,6	4,9	9,6	9,2	6,0	9,6
May	6,0	6,0	8,6	9,6	8,6	6,0	8,6	6,0	6,0	9,7	8,6	8,6	5,8	9,6	9,2	5,8	5,8	4,9	10,1	4,9	4,0	4,7	9,2	7,9	5,8	9,7
June	7,9	7,9	7,9	9,7	9,2	7,6	7,9	7,6	7,6	10,1	7,9	7,9	7,6	9,7	8,6	6,0	6,0	4,7	9,7	4,7	4,7	7,6	8,6	8,6	4,9	10,1
July	8,6	8,6	7,6	10,1	5,8	7,9	7,6	7,9	7,9	4,0	4,0	7,6	8,6	10,1	6,0	7,6	7,6	4,0	9,6	4,0	4,9	7,9	7,9	5,8	4,7	4,0
August	9,6	9,6	6,0	6,0	6,0	10,1	6,0	8,6	8,6	4,7	4,7	6,0	7,9	6,0	5,8	8,6	9,7	9,7	4,7	7,9	9,7	8,6	6,0	6,0	4,0	4.7
September	10,1	10,1	5,8	5,8	7,6	9,7	5,8	9,2	9,2	4,9	4,9	5,8	9,2	5,8	7,6	9,2	9,6	9,6	4.9	8,6	10,1	9,2	5,8	7,6	9,2	4,9
October	9,7	9,7	4.9	4,9	4,0	9,6	4.9	9,6	9,6	5,8	5,8	4,9	10,1	4.9	4,0	9,6	9,2	9,2	6,0	9,2	7,9	9,6	4.9	4.9	10,1	5,8
November	9,2	9,2	4,7	4,7	4,7	9,2	4,7	9,7	9,7	6,0	6,0	4,7	9,7	4,7	4,7	9,7	8,6	8,6	5,8	9,6	9,2	9,7	4,7	4,7	9,7	6,0
December	7,6	7,6	4,0	4,0	4.9	8,6	4,0	10,1	10,1	7,6	7,6	4,0	9,6	4,0	4,9	10,1	7,9	7,9	7,6	9,7	8,6	10,1	4,0	4,0	9,6	7,6
Annual	7,4	7,4	7,4	7,4	7,4	7,4	7,4	7,4	7,4	7,4	7,4	7,4	7,4	7,4	7,4	7,4	7,4	7,4	7,4	7,4	7,4	7,4	7,4	7,4	7,4	7,4

Table H .5 Wind speed series simulations for $A E P_{\text {avaii }}$ in Corvo Island (Portugal) with sensitivity analys is of $O \& M_{\text {manags }(A)}$ Wind speed data series for simulations (m / s)

Months	$\begin{gathered} v_{w c} \\ (m s) \\ (m s) \\ \hline \end{gathered}$	Wind speed data series for simulations (m /)																								
		y_{1}	yr_{2}	y^{3}	$y r_{4}$	$y_{\text {r }}$	$y r_{6}$	$y r_{7}$	$y^{\prime} r_{8}$	yr9	$y r_{10}$	y_{11}	$y r_{12}$	$y r l_{13}$	$y_{1 / 4}$	$y_{1 /}$	y_{16}	${ }_{17} r_{17}$	$y_{1 / 8}$	yr_{19}	$y r_{20}$	$y r_{21}$	$y r_{22}$	$y_{2}{ }_{23}$	y_{24}	y^{25}
January	11,7	11,7	11,7	11,7	11,7	11,7	11,7	11,7	10,6	10,6	11,7	10,6	10,6	10,6	11,7	10,6	10,6	11,7	10,6	10,6	10,6	10,6	10,6	10,6	10,6	10,6
February	11,5	11,5	8,2	11,5	11,5	11,5	7,6	11,5	11,7	6,1	7,6	11,7	6,1	10,5	11,5	9,5	11,7	8,2	8,9	7,6	7,1	11,5	6,4	9,5	11,5	11,7
March	10,5	10,5	7,1	11,5	11,5	11,5	8,9	11,5	11,5	6,4	7,1	11,5	6,4	11,5	11,5	8,9	11,5	7,6	9,5	8,2	11,5	11,7	6,1	10,5	11,7	7,1
April	9,5	9,5	9,5	10,6	10,6	10,6	9,5	10,6	8,2	7,1	9,5	11,5	7,1	11,5	8,2	8,2	11,5	7,1	10,5	7,1	11,7	11,5	7,1	7,1	11,5	7,6
May	8,2	8,2	10,5	10,5	10,5	8,9	10,5	10,5	10,5	7,6	8,9	10,5	7,6	11,7	10,5	7,6	10,5	6,4	11,5	8,9	6,4	10,5	7,6	11,7	10,5	8,2
June	7,1	7,1	11,5	9,5	9,5	9,5	10,6	8,2	11,5	8,2	10,6	9,5	8,2	9,5	6,4	7,1	9,5	6,1	11,5	9,5	6,1	9,5	8,2	11,5	9,5	8,9
July	6,1	6,1	11,5	8,2	8,9	10,5	11,5	9,5	7,1	8,9	6,1	8,9	8,9	8,9	6,1	6,4	8,9	8,9	11,7	10,5	7,6	8,9	8,9	11,5	7,6	9,5
August	6,4	6,4	10,6	7,6	7,6	7,6	11,5	8,9	7,6	9,5	6,4	8,2	9,5	8,2	10,6	6,1	8,2	11,5	6,1	11,5	8,2	8,2	9,5	8,2	7,1	10,5
September	7,6	7,6	6,1	8,9	8,2	8,2	8,2	6,1	8,9	10,5	10,5	7,6	10,5	7,6	8,9	10,5	7,6	11,5	6,4	11,5	8,9	7,6	10,5	7,6	6,4	6,1
October	8,9	8,9	8,9	7,1	6,1	7,1	6,1	6,4	9,5	11,5	11,5	7,1	11,5	7,1	9,5	11,5	7,1	10,6	7,1	6,1	9,5	7,1	11,5	6,4	6,1	6,4
November	10,6	10,6	7,6	6,4	6,4	6,4	6,4	7,1	6,4	11,5	8,2	6,4	11,5	6,4	7,1	11,5	6,4	10,5	7,6	6,4	10,5	6,4	11,5	6,1	8,9	11,5
December	11,5	11,5	6,4	6,1	7,1	6,1	7,1	7,6	6,1	11,7	11,5	6,1	11,7	6,1	7,6	11,7	6,1	9,5	8,2	11,7	11,5	6,1	11,7	8,9	8,2	11,5
Annual	9,1	9,1	9,1	9,1	9,1	9,1	9,1	9,1	9,1	9,1	9,1	9,1	9,1	9,1	9,1	9,1	9,1	9,1	9,1	9,1	9,1	9,1	9,1	9,1	9,1	9,1

Months	$\begin{aligned} & v_{w c} \\ & (m / s) \end{aligned}$	Wind speed data series for simulations (m s)																								
		r_{1}	y_{2}	yr_{3}	yr_{4}	y_{5}	$y r_{6}$	$y r_{7}$	$y^{\prime}{ }_{8}$	$y r^{\prime}$	${ }^{\prime} r_{10}$	yr_{11}	$y r_{12}$	$y r_{13}$	$y r_{14}$	$y_{1 / 5}$	y_{16}	y_{17}	$y_{1 / 8}$	yr_{19}	$y r_{20}$	$y r_{21}$	$y r_{22}$	$y_{2} 23$	${ }_{\text {r }}^{24}$ 2	y_{25}
January	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	9,7	15,4	15,4	15,4	15,4	15,4	15,4	15,4	16,6	15,4	15,4	14,7	9,7	9,3
February	14,7	14,7	12,4	9,7	15,1	12,4	12,4	15,1	15,1	9,7	12,4	12,4	10,0	15,1	9,7	13,1	9,7	9,7	9,7	9,7	14,3	15,1	15,1	15,6	10,0	13,1
March	12,7	12,7	12,7	10,0	14,7	11,2	12,7	14,7	14,7	10,0	11,2	12,7	10,4	14,7	10,0	15,1	10,0	10,0	10,0	10,0	13,8	14,7	14,7	15,3	10,4	12,9
April	12,4	12,4	13,1	10,4	14,3	10,4	13,1	14,3	14,3	10,4	10,4	13,1	10,4	14,3	10,4	14,7	10,4	15,1	10,4	10,4	13,8	13,3	14,3	14,3	10,4	12,9
May	11,2	11,2	14,3	10,4	13,1	10,4	14,3	13,1	13,1	10,4	10,4	14,3	11,2	13,1	10,4	14,3	10,4	14,7	10,4	10,4	13,4	13,1	13,1	13,0	11,2	12,3
June	10,4	10,4	14,7	11,2	12,7	10,0	14,7	12,7	12,7	11,2	10,0	14,7	12,4	12,7	11,2	12,7	11,2	14,3	11,2	11,2	12,8	12,7	12,7	12,7	12,4	12,2
July	10,0	10,0	15,1	12,4	12,4	9,7	15,1	12,4	12,4	12,4	9,7	15,1	12,7	12,4	12,4	9,7	12,4	13,1	12,4	12,4	12,2	12,3	12,4	12,5	12,7	10,0
August	9,7	9,7	11,2	12,7	11,2	12,7	11,2	11,2	11,2	12,7	12,7	11,2	13,1	11,2	12,7	10,0	12,7	12,7	12,7	12,7	11,4	12,1	11,2	11,4	13,1	9,4
September	10,4	10,4	9,7	13,1	10,4	14,7	9,7	10,4	10,4	13,1	14,7	9,7	14,3	10,4	13,1	10,4	13,1	12,4	13,1	13,1	11,4	11,7	10,4	10,2	14,3	13,2
October	13,1	13,1	10,0	15,1	10,4	14,3	10,0	10,4	10,4	15,1	14,3	10,0	14,7	10,4	14,3	10,4	14,3	11,2	15,1	14,3	11,2	10,1	10,4	9,8	14,7	13,5
November	14,3	14,3	10,4	14,7	10,0	15,1	10,4	10,0	10,0	14,7	15,1	10,4	15,1	10,0	14,7	11,2	14,7	10,4	14,7	14,7	9,7	10,0	10,0	10,3	15,1	13,9
December	15,1	15,1	10,4	14,3	9,7	13,1	10,4	9,7	9,7	14,3	13,1	10,4	15,4	9,7	15,1	12,4	15,1	10,4	14,3	15,1	9,0	9,7	9,7	10,1	15,4	16,9
Annual	12,5	12,5	12,5	12,5	12,5	12,5	12,5	12,5	12,5	12,5	12,5	12,5	12,5	12,5	12,5	12,5	12,5	12,5	12,5	12,5	12,5	12,5	12,5	12,5	12,5	12,5

Table H. 7 kWh per $\mathrm{H}_{\text {prod }}$

Sites	$k W$ \%r																								
	yr	yr	y_{3}	y_{4}	yrs	yro	yr_{7}	yrs	yr,	$y r_{10}$	$y r_{1}$	$y^{1} r_{12}$	$y_{1 / 3}$	${ }_{\text {y }}^{14}$	$y^{\prime} / 5$	${ }^{\text {r }}$ I6	yr_{17}	${ }^{\text {y } 1 / 8}$	${ }_{\text {r }}^{19}$	yr20	yr_{21}	${ }^{2} 22$	${ }_{\text {r } 23}$	y_{24}	${ }^{4} 25$
Aracari (Brazi)	5693	5648	5674	5633	5697	5648	5693	5693	5641	5643	5648	5693	5674	5640	5715	5731	5688	5652	5608	5694	5683	5620	5631	564	5641
$\begin{gathered} \text { Corvo Island } \\ (\text { Portugal) }) \end{gathered}$	10458	10535	10467	10475	10468	10563	10497	10429	10525	10527	10454	10525	10507	10500	10474	10454	10510	10523	10545	10560	10464	10520	10532	10452	10407
Cape Saint James	24780	24853	24925	24743	24791	24853	24743	24743	24925	24791	24853	24793	24743	24933	24876	24933	24895	24925	24933	24841	24860	24743	24897	24793	24882

			5000 k		Ancal								Yars													
lem	0	1	2	3	4	5	6	7	8	9	10	11		${ }^{13}$	14	15	16	17	18	19	20	21	22	23	${ }^{24}$	25
(-) LCCCM we	6025901																									
${ }_{\text {w }}^{\text {cu }}$	2768678	-																								
$\mathrm{T}_{\text {ch }}$	2421929							.					.													
${ }^{\text {LWTG }}$ cu	${ }^{1959783}$												-													
${ }^{\text {cPan }}$	1545346							-					-					-								
	572832							-																		
${ }_{\substack{\text { Slour } \\ \text { POM }}}^{\text {cour }}$	2136726							-																		
${ }_{\text {Pr }}^{\text {Po cu }}$	1798880																									
	$\begin{aligned} & 188595951 \\ & 120211 \end{aligned}$																									
LCPM wf (kWhyrs)		49057055	6742	析				(8)										4909701				S00	92	48519758	4861530	
(+) AAR (SMyr)		${ }^{4314826}$	4387573	4518071	459749	476836	4883059	503348	512842	5209075	5341081	547947	5660527	578313	589231	611943	620234	6399200	6517427	662236	6898935	4939980	5007115	514244	5286820	541331
$\underbrace{\text { Eup }}_{\text {PPAR }}$		431482	4387573	4518071	459739	476836	4843059	500338	5128432	520975	5341081	547947	560522	578313	589231	611946		6399200	6.517427							
		3964703	403127	4151213	423384	43786	4471031	461833		4806805	428061	5055095	521459	533243	543885	566274							${ }_{5477062}^{500715}$	512845 6107615		
		265488	271024	2791038	284010	294091	299795	300812	3168881	321799	329941	334934	346775	357278	363997	378827	388885	395381	4266113	409456	4261785	4359507	441874	4538523	465578	477697
о\&M wnatale		1292217	1321003	1360175	1383923	1434523	1479236	157731	1565056	158909	168820	1670162	172483	176149	1793950	186247	1913886	196264	198153	2014606	208214	158877	1583319	156902	1612361	1650196
(+) LRCM		863268	84880	906971	29964	952887	97679	100127	1026155	1058809	107104	110505	113268	1161000	1190025	1219776										
(+) Depreciation		2453886	251482	25769	262137	278190	277895	2845292	291624	2989335	3064068	3140670	3219187	322966	3382158	3468712	3553380	3612214	3733270	3826601	392267	402323	420831	422382	43948	447685
($)$ Profit beforetax		366887	3755819	381524	345197	4048298	4124632	423122	4337875	443314	4555193	4670118	479038	499937	530358	5162206	404079	414290	424320	4345675	4463202	302329	3180884	325988	338339	3423563
().) Reverume tax		129448	1316272	135542	${ }^{1397205}$	142975	1452918	1501004	1538830	156223	160232	1643843	1698158	1773054	176769	183589	1887102	1919760	195528	198847	2069880	1481997	1502134	154285	1588046	162399
(+) REPM	${ }^{384788}$	2046	1991	1963	1912	1899	1849	1830	1798	1751	172	281	291	297	333	314	32	329	335	340	354	362	367	37	388	${ }^{397}$
${ }_{\text {REI }}^{\text {ch }}$	221313																									
${ }^{\text {REP } P_{\text {cu }}}$		1825	1766	1731	1676	1654	1600	1573	1535	1484	1448															
${ }^{\text {OREP } P_{\text {cu }}}$	163455																									
GHG:R $_{\text {cu }}$		22	225		236												323	329	${ }^{335}$	${ }^{340}$	${ }^{354}$	362	367	37	${ }^{388}$	
		2374476	241153	249806	2567905	262046	2673562 3.053929	272250	2801143	2882342	2954591	3026547 3966037	309307	3175180	326191	3327682	215330	2222639	2288127	2357538	2338876	161094	169116	17606	1752671	880051
		262179	317578 2687282	${ }_{3}^{3255111}$		${ }^{348989}$	${ }_{\substack{3.50339 \\ 29625}}^{2}$	35993 300041 	388280 311624	${ }_{\substack{374931 \\ 319434 \\ \hline}}$	388939 377193	386037 336047	4×51188 343949	${ }_{3}^{4168588}$	${ }_{3}^{42014098}$	${ }_{3}^{4} 70448$	379700	389196	398986	4089018	41924	426624	4003225	4513511	4623848	4742007
(+) Deprececition		245348	2514824	257794	262137	278190	275895	2845292	296424	298933	306968	3140670	3219187	329966	3382158	3466712	3553380	362214	3733270	3826601	${ }_{392267}$	402323	420831	423882	439448	
(E) Free ne casastlow	-59841132	7449701	446929	4575113	496889	48264	4910315	504922	5151132	5291188	542354	555722	5687018	5883976	5988457	6121079	9507740	975689	1001068	10273158	10507388	9927042	10203373	10453988	10788467	1099772
		.52391431	47923505	4348382	.38615 514-1	. 38818870	2898855	$5-23913633-1$	-1872202	-13471421	-804784	249647	3196371	9030347	1501880	2113884	30677624	4040463	5041545	6068332	71195688	8122730	91326103	101880071	112.4858	$\underline{23468881}$

Corvo Island (Portugal) with sensitivity analysis of O\& $M_{\text {manesat }}$ Years																										
Hem	0		2	3	4	5	6	7	8	9	10	11	12	${ }^{13}$	14	15	16	17	18	19	20	21	22	23	24	25
(-) LCCCM $_{\text {w }}$	60225901			-									-													
${ }^{W} T_{\text {cu }}$	27686278			-		-						-	-													
$T_{\text {cu }}$	24219295	-	-	-	-	-	-	-	-			-														
${ }_{\text {LWTG }}^{\text {cu }}$	1959783		-	-		-	-	-		-	-	-	-	-	-		-	-	-	-	-			-	-	
${ }^{\text {cPacm }}$	1545346	-	-	-	-	-	-	-	-	-		-	-			-										
${ }_{\text {TS }}^{\text {cu }}$	572832			.		-																				
${ }_{\text {Stcm }}$	2136726	-	-	-	-	-			-	-		-	-			\cdot										
POCn	1796870	-		-		-	-	-		-	-	-	-	-			-	-	-	-	-			-	-	
${ }_{\text {cham }}$	188559																								-	
$\stackrel{C C C a m}{\text { cma }}$	120211							904305		9065374	90700678															
	-	15046124	15535609	15822374	16229340	16624945	17194985	17513916	17835578	18449787	18914223	19254127	19868402	20330295	20825386	21292641	21784277	22447567	2303644	23661518	24289963	17268871	90643998 17995063	90743354 1826013	90059500 18574463	89670577 18957626
PPAR		15046124	15535609	15822374	16229340	1662445	17194985	17513916	17835578	18449787	18914223	19254127	19868402	20330295	20825386	21292641	2178427	2244756	23036443	23661518	24289963					
EMP	-																					17268871	1779063	18260013	18575463	18957626
(-) $0 \& \mathrm{M}_{\text {wFCM }}$	-	9414550	9720704	9900012	10154527	10401931	10758472	10957897	1115929	11543192	11833646	12046185	12433378	1271932	1302885	13321057	13628511	14043351	1441633	14802558	15194336	13212815	13615294	13970912	1421214	14504416
$O_{\&} M_{p_{\text {tad }}}$		4895943	5055217	5148526	528048	540967	5595159	5698935	5803599	6003456	6154579	6265179	6465057	6615352	677649	6928488	7088460	7304288	7495901	769929	7903132	802781	8271977	8488105	8634738	8812382
$\bigcirc ¢ M_{\text {werrable }}$	-	4518607	${ }_{4}^{465487}$	4751486	4873579	4992258	516313	5258962	${ }^{5} 355430$	5539736	5679068	5781006	5963521	61103880	${ }^{6} 252405$	${ }^{6325959}$	6540051	6739063	6915732	7103264	7291205	5185434	5343317	5482807	5577406	5692034
(+) LRCM	-	863268	88485	906971	929646	952887	976709	1001127	1026155	1051809	1078104	1105057	1132683	1161000	1190025	1219776										
(+) Depreciation		249308	2510541	2573304	2637637	2703578	2771167	2840447	2911458	298424	3058850	3135322	3213705	3294047	3376398	3460808	3547329	3636002	3726912	382085	3915587	401347	4113814	4216659	4322075	4430127
() Profit before tax	-	894151	9210296	9402638	9662095	9879479	10184390	10397593	10614162	10942647	11217531	1148320	11784412	12066110	12362956	12652168	11703095	12040228	12351722	12679045	1300213	806953	8293583	8505760	8685395	8883337
(-) Revenue tax		4513837	4660683	4746712	4868802	4987884	5158496	5254175	5350673	5534336	567426	5776238	5960521	6099089	6247616	6387792	6535283	6734270	6910933	7098455	7286389	5180661	5338519	5478004	5572639	
(+) REPIM	486675	1439	1420	1382	1355	1327	1313	1279	1247	1234	1211	1180	1167	1144	1123	1100	165	170	175	179	184	187	193	198	201	205
REICM	221313																									
${ }_{\text {REP cu }}^{\text {Rem }}$		1325	1302	1262	1232	201	1183	1147	1111	1094	1068	1034	1016	990	965	939	-	-	-	-	-	-	-	-	-	
$\underset{\text { OREPCM }}{\text { GHG. } \mathrm{Cu}}$	265362																									
	-		${ }_{118}^{118}$	${ }_{4657307}^{120}$	${ }_{4}^{123}$	${ }_{489332}^{126}$	${ }_{502700}^{130}$	133 514697	135 5264735	${ }^{140} 5$	${ }_{5544475}^{143}$						${ }_{5165976}^{169}$		${ }_{5440964}^{175}$	179 580769	184 572309	187 288959	${ }_{2955257}^{193}$	${ }_{3028}^{1984}$	${ }^{201}$	
			3170310	3249568	33388807	3414077	3499429	35869915	3676 s88	3768503	3862715	3995283	4 ¢058265	415972	4263715	4370308										
	-	2621739	2687282	2754464	2823326	289399	2966257	3040413	3116424	319433	3274193	3356047	343949	3525947	3614096	3704448	3797060	3891986	3989286	4089018	4191243	4296024	440325	4513511	4626348	4742007
${ }^{(+)}$Depreciation		249308	2510541	2573304	2637637	2703578	2771167	2840447	2911458	298424	3058850	3135322	3213705	3294047	3376398	3460808	3547329	3636012	3726912	382085	391558	401347	4113814	4216559	4322075	4430127
($)$ Free net cashflow	-59739225		6578546	6735508	6904804	707673	7265202	743864	7616029	781921	8014803	8205349	842046	862838	8843243	906022	12512365	12834126	13157162	13489872	1382839	11198560	1142495	11758123		
$\Sigma_{\text {trene }}$ ammat costhow		. 50236426	43657880	0-36922371	-30017567	-22940835	-1567563	-823990	-62092	7198060	15212862	23418211	31888657	40467095	49310338	58370764	70883128	83717254	9687416	110364287	124194126	135329886	1468855181	158623305	1200884885	183053074
	${ }_{\text {LCOE }}^{\text {wom }}$	${ }_{73.13}$	${ }_{73,52}$	${ }^{3} .79$	${ }^{4.13}$	${ }^{4.47}$	${ }^{74.93}$	5.23	75.53	${ }^{6} .02$	${ }^{6.41}$	${ }_{7} 6.73$	${ }_{7.23}$	${ }^{77.63}$	${ }^{8.06}$	78.47	${ }^{77.65}$	${ }^{78.16}$	${ }^{8.63}$	79.12	79.61	77.73	78.24	${ }^{78.71}$	79.06	79.47

Table H .10 Cashflow for 25 years	the wind far	roject	50000		Cape Sain Ja	Janes Cana				with sensitivi	ity analy	¢														
Item				3	4	5		7			10	11	${ }_{12}{ }^{\text {Year }}$	${ }_{13}$	14	15	16	17	18	19	20	${ }^{21}$				
$\stackrel{\text { ¢ }}{\text { LCCCM }}$ w ${ }_{\text {F }}$	6022901																									
$w_{\text {cou }}$	2768678	-	-	-	-	-		-			-	-														
$T_{\text {cm }}$	24219295	-	-		-				-																	
${ }_{\text {LWTG }} \mathrm{c}$	1959783	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-					-		
${ }^{\text {cPacm }}$	1545346	-	-	-	-	-	-	-	-		-	-		-	-			-	-							
${ }^{\text {T5 }} \mathrm{cm}$	572832	-	-		-	-																				
${ }_{\text {Stom }}$	2136726	-	-	-	-	-	-	-	-		-	-		-	-			-	-			-		-		
$\mathrm{PO}_{\text {cu }}$	1796870	-	-	-		-	-	-			-	-		-	-		-	-	-	-	-	-	-	-		
${ }_{\text {chuc }}$	188559	-	-	-		\checkmark	\checkmark	\checkmark		-	\checkmark	-			-			-	-					-		
${ }^{\text {ccC }} \mathrm{cm}$	120211	-																								
		213509813			213197728	21361337			20																	
${ }^{(+)}$AAR (SM/yr)		30276974	31126117	31996219	32557331	33436006	634357409	35060685	35937202	37105804	37829772	38872255	39747622	2026599646	41995741	42946676	44121775	45155164	46340065	47514326	4852224	34841551	3554828	36659995	37419293	38491531
${ }_{\text {PPAR }}$	-	30276974	31126117	31996219	3257331	${ }^{33436006}$	634357409	35060685	35937202	37105804	37829772	38872255	39747622	20659646	41995741	42946676	44121775	45155164	46340065	47514326	48522244					
EMP																						34841551 29528360	35544828 3012265	36659995 3106924	37419293 31712621	38491531 32221209
	-	20688790	${ }_{21268898}$	818263324	${ }_{22}^{2246612}$	22846890	O23476361	23956782 13438215	2455557	25353946	25848498 1449795	26566855 1489295	27158681	27871721	28694515	2934137 1645534	30146999 1605588	30852873 1730152 13	${ }^{31662346} 177559$	32464546 1820549	33153088 1859 1894	29528360 19071110	30124265 19456054	31069244 2006453	31712621 20482061	32621209 21068961
	-	11600229	11926280	1225961	12474651	12811317	713164355	13433815	13779654	14217407	14494795	1489225	15229623	15579065	16009994	16455346	16905588	17301532	17755529	18205449	18591634	19071110	19456054	20066453	20482061	21068961 11552248
оষ $M_{\text {maraic }}$	-	9087862	9342619	9603663	9771962	10035573	310312006	10522968	10785923	11116539	11353703	11666460	11929059	12202656	12603521	12888791	13241331	13551341	13906817	14259997	14561454	10457250	10668211	11002791	11230560	1155248
${ }^{\text {(+) }}$ LRCM	-	863268	884850	906971	229646	958887	7976709	1001127	1026155	1051809	11078104	1105057	${ }_{1}^{1132683}$	3116000	1190025 135129											
${ }^{(+)}$Depreciation		2431021	2491796	2554091	2617943	2683392	2275047	2819239	2889720	2961963	${ }^{3036012}$	311912 1652588	3188710	3269453	3351189 178243 12989	3434969	3520843 1740569	${ }^{3608864}$	18379085	3791563	3886352 1025508	3983510	4083098 950361	4185176 975927	4289805 9996478	${ }^{4397050}$
($=$) Proffit before tax	-	12882473	13238865	13593957	13858308	14225394	414608234	14924268	15297500	15765630	16095389	16528538	1691334	17308377	17842439	18257283	17495699	17911155	18376804	18841343	19255508	9296701	9503661	9775927	9996778	10267372
(-) Revenue tax		9083092	9337835	5998866	976199	10030802	210307223	10518205	10781161	11131741	11348931	11661677	11924287	1219784	12598722	12884003	13236533	13546549	13920019	14254298	14556673	10452465	1066348	10997999	11225788	11547459
${ }^{(+)}$REPIM	932714	780	794	809	815	830	846	857	871	${ }^{893}$	904	801	819	838	865	885	909	930	955	979	1000	1025	1046	1079	1101	
REICM	221313											-				-										
REPcu		56	${ }^{53}$	49	${ }^{145}$	141	${ }^{38}$	134	131	129	125				-	-	-		-	-		-	\checkmark			
${ }_{\text {OREPan }}^{\text {OHC Recm }}$	711400																									
ghg.rcm					671		708	722	740	764	779	801	819	838		885		930	955	979	1000	1025	1046	1079	1101	
\Leftrightarrow Profit afer rax wout interest		3800161	389682	3995900	4091924	4195423	430185	4406919	4517211	4634782	4747362	4887663	498786	5111321	524582	537165	4260075	4365536	4475740	4588024	469883	-1154739	-1 158741	-1220922	-1228209	-1278955
(-) Debt payments			3146639	3225305	3305938	${ }^{3} 388856$	3473301	3550134	364137	3740365	3833874	329221	402796	4128663	4231888	433767										
(+) RCM ${ }_{\text {w }}$		2621739	2687282	2754464	2823326	2893909	2966257	3040413	3116424	3194334	3274193	3356047	343994	3525947	3614096	370444	3797060	3891986	3989286	4089018	4191243	4296024	440325	4513511	4626348	
${ }^{(+)}$Depreceiation		2431021	2491796	6554091	2617943	2683392	2275047	2819239	2888720	2961963	${ }^{3036012}$	3111912	3189710 75956) 3264453	3351189 97799	3434969	3520843	${ }^{3608864}$	1269885	3791563	3887352	3983510	4083098	4185176	4289805	4397050
\Leftrightarrow Free net cashflow	-59293187	8852920	5929263	6079150	6227255	6384138	8545290	6706437	687217	7050713	7223692	7405901	7589560	7778057	7977987	8175905	${ }_{1157977}$	11866386	12164111	12468804	12777429	7124796	7327782	747769	768794	7860102
$\sum_{\text {freenctam }}$		-50440267	44511004	--38431854	-32204 599 -	-25820461	-19275 171	12568734	-564516	1356197	8579888	15985789	23575349	31353406	39331393	47507298	59085275	70951661	83115772	95584376	108361805	15486001	122814383			

APPENDIX I

Figure I.1 I-O representation of $L C O E_{\text {wso }}$ algorithm calculations for the hypothetical $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Aracati (Brazil) with sensitivity analysis of $O \& M_{\operatorname{manag}(B)}$. Source: Own elaboration

Figure I. 2 I- O system representation of $L C O E_{\text {wso }}$ algorithm calculations for the hypothetical $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Corvo Island (Portugal) with sensitivity analysis of $O \& M_{\operatorname{manag}(B)}$. Source: Own elaboration

Wind Farm Life-Cycle Capital Cost Model		Notes
${ }^{W} T_{\text {cu }}$	553.726	[s/kw]
${ }_{C M}{ }_{\text {wT }}$	26.53	[s/kw]
${ }^{R C_{W T}}$	73.70\%	${ }_{\text {[\%/skw] }}$
$c_{\text {kw }}$	400.00	[s/kw]
IPT	10.00\%	[\%]
${ }_{\text {cur }}$	484.3859	[s/kw]
$T_{\text {masa }}$	138000	[kg]
${ }_{R C}{ }_{T}$	26.30%	[\%/s/kw]
$c_{\text {seed }}$	0.1900	[s/kg]
${ }^{\text {LWTG }}{ }_{\text {cu }}$	39.1957	${ }_{\text {[\$ }}^{\text {m/kW] }}$
${ }^{W} F_{\text {app }}$	50000	${ }^{\text {[kW] }}$
L_{8}	13950	${ }^{[\mathrm{m}]}$
$C A B B_{\text {cous }}$	2000.00	[5/m]
${ }^{\text {cPaw }}$	30.9069	[s/kw]
${ }^{E F}{ }_{\text {c }}$	40000	[s/kw]
ς	0.08\%	[\%]
${ }^{\text {TS }} \mathrm{cu}$	11.4566	[SkWd
${ }_{T} L_{\text {c }}$	0.0440	[5/m]
${ }_{T} L_{r}$	1200	[1/kW]
$L_{\text {, }}$	3000	[m]
${ }_{S B}$	113.00	[5/WWh]
${ }^{\text {Stcu }}$	427345	
$W_{\text {cap }}$	50000	[kw]
$W_{\text {tarat }}$	42.2388	[s/kw]
${ }^{B 1 / d o w n}$	500.00	$\left[5^{5} \mathrm{~m}^{2}\right]$
${ }^{B / d} d_{\text {area }}$	300.0	$\left[\mathrm{m}^{2}\right]$
${ }^{P O_{C u}}$	359374	[5/kW]
${ }_{\text {FS }}$	19.88	[s/kw]
${ }^{\text {dT }}$	87.22	[s/kw]
${ }_{\text {eG }}$	40.52	[s/kw]
$\mathrm{Fcw}_{\text {cu }}$	3.772	[s/kw]
wacc prof	4.900%	[\%/ys]
$n_{\text {fin }}$	1.0	[yr]
	${ }^{0.30 \% \%}$	[\%]
${ }^{\text {ccc }}{ }_{\text {cu }}$	2.4042	[s/kW]
κ	0.20%	[$\%$]
LCCCM $_{\text {wF }}$	1204.5180	$[\mathrm{s} / \mathrm{kW]}$

Figure H. 3 I- O system representation of $L C O E_{\text {wso }}$ algorithm calculations for the hypothetical $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Cape Saint James (Canada) with sensitivity analysis of $O \& M_{\operatorname{manag}(B)}$. Source: Own elaboration
Table I.1 Energy production ($A E P_{\text {avail }}$) map of the wind farm for Aracati (Brazil)

Months	$\begin{aligned} & v_{1 w} \\ & (m s) \\ & \hline(m s) \end{aligned}$	$\left(\left(\mathrm{kg} / \mathrm{m}^{3}\right)\right.$	$\overline{H_{\text {prod }}}$(h)	$y r_{1}$	yr_{2}	yr_{3}	${ }_{\text {r }}{ }_{4}$	yr_{5}	yr	y_{7}	$y^{\text {y }}$		$y_{1} r_{10}$	y_{r}					yri6	yri7	$y^{\text {r } 18}$	yrı	${ }^{1} 20$	yr 21	y^{22}	yr_{23}	$y_{2}{ }_{2}$	
															${ }_{\text {y } r_{12}}$	$y_{1 / 3}$	yr ${ }_{\text {d }}$											
, January	5.8	${ }^{1.1665}$	738	1693132	8890198	382165	7507410	557361	880198	557361	557361	4232212	889198	8890198	557361	3802165	7507410	4232212	8890198	8890198	557361	3802165	7507410	557361	3882165	7507410	4232212	4232212
February	4.9	1.1666	641	850430	6883436	367332	6883436	77959	${ }^{683} 336$	779598	779598	472258	6883436	6883336	779598	367320	${ }^{683} 336$	483758	483758	330063	472258	771688	157702	1577029	771688	6803336	472728	4722
March	4.0	1.1671	737	556507	749590	548815	8876568	978319	745900	978319	978319	6560068	749590	7495900	978319	5438155	8875688	898836	896836	1814186	422572	1814186	1690.536	1690336	782655	887568	3796335	${ }^{6560068}$
April	4.7	1.1667	713	867380	634404	634460	408631	1635011	${ }^{634604}$	1635011	1635011	7249700	634460	6344604	1754600	6344604	4086931	946187	946187	1635011	6344604	1635011	3671646	946187	7249700	6344604	1754600	7249700
May	6.0	1.1670	737	1814119	5447953	749621	5437953	1814119	5437953	1814119	1814119	782264	5437953	5437953	1690473	7495621	6559824	1690473	1690473	97828	8876238	978283	55688	896803	6559824	4225566	1690473	7826264
June	7.9	1.1686	689	3955677	395567	7326396	6140844	${ }^{3} 553729$	399567	3553729	3553729	8309307	395567	3955677	3553729	7326396	509627	1698250	1698250	839524	${ }^{7326396}$	839524	839524	3553729	5090627	5090627	915799	8309307
July	8.6	1698	737	5450949	3805267	8897452	1694513	423566	3805267	423566	423566	557816	557816	3805267	545049	889745	1818455	38052	3805267	557816	7513336	557816	980621	423565	4235665	1694513	898946	557816
August	9.6	1.1677	737	7499787	1815127	1815127	1815127	8881717	1815127	5440975	544975	897302	897302	1815127	4227915	1815127	1691413	544075	7830614	783014	897302	4227915	783014	5440975	1815127	1815127	556795	897302
Septenber	10.1	1.1657	713	8576955	163347	1633475	3668197	756238	1634775	633864	6338844	945298	945298	1633475	6338644	1633775	3668197	633864	7242889	7242889	945298	5254599	8576955	633864	1633475	3668197	633864	945298
October	9.7	1.1645	737	780988	976135	976135	555264	749165	976135	749165	749165	1686762	168876	976135	8856751	976135	555264	7479165	6.54542	6.54542	1810136	6545422	4216289	749165	976135	976135	8885751	1688762
Novenber	9.2	1.1638	68	611594	836072	83672	836072	611594	836072	7296271	7296271	1691267	169267	836072	7296271	836072	836072	7296271	506996	506969	1575994	6988019	611559	7296271	83672	836072	7296271	1691267
December	7.6	1.1651	737	379014	55588	555880	976990	5429099	555580	8881786	8861786	3790014	3790014	555580	7883417	555580	976690	8861786	4218687	4218887	3790014	7813521	5429099	8881786	55588	55588	748347	379001
,	7.4	1.1666	8600		48.54924	4874102	48.399000	19021215	${ }_{48} 8.4984$	4897064	1889704	${ }_{48} 87366$	8889622	48.4924	4888808	4874102	4878887	${ }_{49} 9688$	49.18276	4882388	${ }_{48} 888880$	4817264	4899180	4887451	4829712	48.39886	48.47503	8847326

\footnotetext{
Table 1.2 Enereyy production map of the wind farmfor Corvo Isand (Portugal)

Months	$\begin{aligned} & \hline v_{\text {we }} \\ & (m / s) \end{aligned}$	$\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	$\begin{gathered} H_{\text {prod }} \\ (h) \\ \hline \end{gathered}$	$A E P_{\text {anail }}(k W h)$																								
				$y r_{1}$	$y r_{2}$	y_{3}	$y r_{4}$	y_{5}	y_{6}	y_{7}	yr ${ }_{8}$	yr,	yr ${ }_{10}$	$y r_{l}$	y_{12}	y_{13}	${ }^{2} r_{14}$	$y_{1} 15$	y_{16}	y_{17}	$y_{1}{ }_{18}$	${ }^{1} r_{19}$	20	21	22	23	${ }^{2} r_{24}$	${ }_{25}$
January	11.7	1.2313	740	14490462	14490462	14490462	144040	14490462	14490462	14490462	10871408	10871408	14490462	10871408	10871408	10871408	14490462	10871008	10871408	1449462	10871408	10871408	10871408	10871408	10871408	871408	81408	10871408
February	11.5	1.2345	648	12092721	4293137	12092721	12092	12092721	3417096	12092721	1271578	1795784	3417096	12715785	1795784	9244173	12092721	6674015	1271578	4293137	5486290	3417096	2815600	12092721	2106703	6674015	092721	1275785
March	10.5	329	736	1048628	3193907	13717510	13717510	13717510	6223433	13717	13775	2389762	3193907	13717510	2389762	13717510	13717510	6223433	1377510	3876220	7570742	4869967	13717510	14424289	2037067	104862	14242889	193
April	9.5	1.2317	712	7316597	7316597	10458483	10458483	10458483	7316597	10458483	4706485	3086689	7316597	13257022	3086689	13257022	4706485	4706485	13257022	3086689	10134212	3086689	1394075	13257022	3086689	3086689	13257022	374609
May	8.2	1.2282	736	4851676	1044684	104	104488	6200059	10446845	10446885	10446845	3861662	6200059	1044684	3861662	14370115	10446845	3861662	1044685	2380787	13665991	6200059	2380787	1046845	3861662	143701	046	485167
June	7.1	1.2224	696	2994461	12800970	7097981	7097981	7097981	10145990	4565858	12880910	4565858	101	7097981	4565858	7097981	2240532	2994461	7097981	1909861	12880910	7097981	1909861	7097981	4565858	12880910	7097981	34806
July	6.1	1.2154	736	2008118	13522571	4800760	6134992	103	13.5	7463154	3148518	6134992	2008118	6134992	6134992	6134992	2008118	2355801	6134992	6134992	14219306	10337209	3821135	6134992	6134992	1352571	3821135	54
August	6.4	1.2075	736	2340496	10598608	3796310	3796310	3796310	13434719	6095134	3796310	7414668	2340496	4769571	7414668	4769571	10598688	1995072	4769571	13434719	1995072	13834719	476957	4769571	7414668	4769571	3128063	10270051
September	7.6	1.2064	712	3669202	1928273	5891057	4009876	4609876	4609876	1928273	5891057	9926189	9926189	3669202	9926189	3669202	5891057	9926189	3669202	1298488	2262132	12984898	5891057	3669202	9926189	3669202	2262132	1928273
October	8.9	1.2126	736	6121079	6121079	3141378	2003564	3141378	2003564	2350459	7446229	13491905	1349995	3141378	1349995	3141378	7446229	1349995	3141378	10663782	3141378	2003564	7446229	3141378	1349905	2350459	2003564	2350459
November	10.6	1.2194	696	10121586	3625425	2235143	2235143	2235143	2235143	2987258	2235143	12829776	4554876	2235143	1282976	2235143	2987258	12829976	2235143	9807761	3625425	2235143	9807761	2235143	12829976	1905267	5820771	12829
December	11.5	1.2237	736	${ }_{13614984}$	2371901	2021842	3170035	2021842	3170035	3847249	2021842	14316481	13614984	2021842	14316481	2021842	3847249	14316481	2021842	7514158	4833568	14316481	13614984	2021842	14316481	6176918	4833568	136149
Annual	9.1	1.222	8616	90107610	90769774	90190491	90253921	90198973	91016328	90443405	89858042	90685374	90700678	9007867	9068537	90530336	90473134	90246888	9007867	90.55764	90666434	90855213	90985978	90162393	90643598	90743354	90059500	

Table I.3 Energy production map of the wind farmfor Cape Saint James (Canada)

Months	$\begin{gathered} \hline v_{w c} \\ (m s) \end{gathered}$	$\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	$\begin{gathered} H_{\text {prod }} \\ (h) \\ \hline \end{gathered}$	yr_{1}	$y r_{2}$	yr_{3}	yr_{4}	yrs	$y r_{6}$	yr_{7}	yr_{8}	yr,	$y_{10} 10$	$y_{1 / 1}$	${ }_{\text {AE }} \mathrm{P}_{\text {axiil }}(k W h)$				$y r_{16}$	r_{17}	r_{18}	yr_{19}	y_{20}	$y r_{21}$	22	23	r_{24}	25
															yr ${ }_{12}$	yr ${ }_{13}$	${ }_{\text {y }} 14$	$y_{15} 15$										
January	15.4	1.2561	738	${ }^{3273479}$	32734798	32734798	32734798	32734798	32734798	32734798	32734798	32734798	32734798	32734798	8013494	32734798	32734798	32738798	32738798	34798	323798	323798	40754809	32734798	32734798	2801999	8013494	710093
ebruary	14.7	1.2522	41	24319291	14509901	6932878	26355	145099	145099	26355	26355	6932878	14509901	14559901	7772679	26305527	6932878	1742282	6932878	6932878	6932878	6932878	225285	263052	263055	290460	772679	17402199
March	12.7	293	737	18273052	18273052	8918969	27905823	12408183	18273052	27905823	27905823	8918969	12488183	18273052	9997395	27905823	8918969	30184982	8918969	8918969	8918969	8918969	23550141	27905823	27905823	31495010	9997395	189696
April	12.4	1.2490	713	16100880	193382	9667330	2489425	9667330	338295	2489422	84425	9667330	9667330	1338295	9667330	2489422	9667330	26984508	9667330	29188421	9667330	9667330	2224176	20024605	2489442	2498568	9667330	18186
May	11.2	1.2425	737	12338025	25598814	9940868	1988847	9940868	598814	19885473	19885473	9940868	9940868	25598814	12338225	19885473	9940868	25598814	9940868	2774837	9940868	9940868	21042787	19885473	19885473	19137999	12388025	6209
June	10.4	1.2351	689	923	25785080	11465208	84	411	885	84	843	46520	41161	785986	38445	1888369	1465208	1688439	1465208	3787904	1465208	1146508	170016	168843	168843	168064	3844	14990
July	10.0	1.2275	737	8761837	29653191	1635643	1635643	7815162	653191	1635643	16.35643	1635643	7815162	29653191	17951122	1635643	1635643	7815162	1635643	1964621	1635643	1635643	1557035	16087422	16.35643	16802962	17951122	647
August	9.7	2216	737	7777512	1213085	17864641	12130885	178846	1308	12130885	1213085	17864641	1786461	1213085	1955573	1213885	1786461	8719626	17864641	1786641	1786461	1786461	12936052	15417110	12138855	12621116	19551573	130
September	10.4	2234	713	9469157	753497	18941875	94691.5	264313	34977	169157	169157	18941875	26433347	34977	24384108	469157	18941875	9469157	18941875	1577041	1894878	18941875	1235394	13310548	9469157	8865389	24.384108	080
October	13.1	1.2327	737	1972923	8798861	2977899	9862764	39760	8798861	9862764	9862764	2977843	25397990	8798861	2753026	9862764	25397690	9862764	25939790	12241087	2978493	25.397690	12273661	8881296	9862764	8143371	27530026	651
November	14.3	1.2429	689	23939450	9296482	25949336	8293664	28068725	9296482	8293664	8293664	25949356	2806872	9296482	28068725	8293664	25949356	11538250	25949356	9296482	25949336	25949336	7443284	8293664	8293664	8895126	28068725	2011
December	15.1	1.2528	737	30263395	10023366	2581256	7975983	20050501	10023366	7975983	7975983	25811256	20050501	10023366	32581568	7975983	30263935	16693026	30268395	10023366	25812256	30263395	6366601	7975983	7975983	9187032	32581568	42583
Annua	12.5	1.2404	8600						21367678		212699281	214362116																

Table I.4 Wind speed series simulations for $A E P_{\text {avail }}$ in Aracati (Brazil)

Months	$\begin{gathered} v_{w c} \\ (m / s) \end{gathered}$	Wind speed data series for simulations (m /s)																								
		yr ${ }_{1}$	$y r_{2}$	$y r 3^{3}$	$y r_{4}$	$y r_{5}$	$y r_{6}$	$y r_{7}$	$y^{\prime}{ }_{8}$	yr,	$y_{10}{ }_{10}$	$r_{1 / 1}$	$y r_{12}$	$y r_{13}$	$y r_{14}$	${ }^{\text {r }}{ }_{15}$	$y r_{16}$	$y r_{17}$	yr_{18}	${ }^{1} r_{19}$	$y r_{20}$	$y r_{21}$	y_{22}	y_{23}	${ }^{2} r_{24}$	${ }_{7 r_{25}}$
January	5.8	5.8	10.1	7.6	9.6	4.0	10.1	4.0	4.0	7.9	10.1	10.1	4.0	7.6	9.6	7.9	10.1	10.1	4.0	7.6	9.6	4.0	7.6	9.6	7.9	7.9
February	4.9	4.9	9.7	7.9	9.7	4.7	9.7	4.7	4.7	8.6	9.7	9.7	4.7	7.9	9.7	4.0	4.0	7.6	8.6	10.1	${ }_{6} 6.0$	6.0	10.1	9.7	8.6	8.6
March	4.0	4.0	9.6	8.6	10.1	4.9	9.6	4.9	4.9	9.2	9.6	9.6	4.9	8.6	10.1	4.7	4.7	6.0	7.9	6.0	5.8	5.8	9.7	10.1	7.6	9.2
April	4.7	4.7	9.2	9.2	7.9	5.8	9.2	5.8	5.8	9.6	9.2	9.2	6.0	9.2	7.9	4.9	4.9	5.8	9.2	5.8	7.6	4.9	9.6	9.2	6.0	9.6
May	6.0	6.0	8.6	9.6	8.6	6.0	8.6	6.0	6.0	9.7	8.6	8.6	5.8	9.6	9.2	5.8	5.8	4.9	10.1	4.9	4.0	4.7	9.2	7.9	5.8	9.7
June	7.9	7.9	7.9	9.7	9.2	7.6	7.9	7.6	7.6	10.1	7.9	7.9	7.6	9.7	8.6	6.0	6.0	4.7	9.7	4.7	4.7	7.6	8.6	8.6	4.9	10.1
July	8.6	8.6	7.6	10.1	5.8	7.9	7.6	7.9	7.9	4.0	4.0	7.6	8.6	10.1	6.0	7.6	7.6	4.0	9.6	4.0	4.9	7.9	7.9	5.8	4.7	4.0
August	9.6	9.6	6.0	6.0	6.0	10.1	6.0	8.6	8.6	4.7	4.7	6.0	7.9	6.0	5.8	8.6	9.7	9.7	4.7	7.9	9.7	8.6	6.0	6.0	4.0	4.7
September	10.1	10.1	5.8	5.8	7.6	9.7	5.8	9.2	9.2	4.9	4.9	5.8	9.2	5.8	7.6	9.2	9.6	9.6	4.9	8.6	10.1	9.2	5.8	7.6	9.2	4.9
October	9.7	9.7	4.9	4.9	4.0	9.6	4.9	9.6	9.6	5.8	5.8	4.9	10.1	4.9	4.0	9.6	9.2	9.2	6.0	9.2	7.9	9.6	4.9	4.9	10.1	5.8
November	9.2	9.2	4.7	4.7	4.7	9.2	4.7	9.7	9.7	6.0	6.0	4.7	9.7	4.7	4.7	9.7	8.6	8.6	5.8	9.6	9.2	9.7	4.7	4.7	9.7	6.0
December	7.6	7.6	4.0	4.0	4.9	8.6	4.0	10.1	10.1	7.6	7.6	4.0	9.6	4.0	4.9	10.1	7.9	7.9	7.6	9.7	8.6	10.1	4.0	4.0	9.6	7.6
Annual	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4

Months	$\begin{gathered} v_{w c} \\ (m / s) \end{gathered}$	Wind speed data series for simulations (m s)																								
		$y r_{1}$	$y r_{2}$	$y r 3$	$y r_{4}$	$y r_{\text {s }}$	$y r_{6}$	$y r_{7}$	$y r_{8}$	$y r_{9}$	$y r_{10}$	$\mathrm{rr}_{1 /}$	$y r_{12}$	$y r l_{13}$	$y_{1 / 4}$	$y_{1 / 5}$	y_{16}	y_{17}	yr_{18}	yr_{19}	$y r_{20}$	$y r_{21}$	y_{22}	$y r_{23}$	y_{24}	y^{25}
January	11.7	11.7	11.7	11.7	11.7	11.7	11.7	11.7	10.6	10.6	11.7	10.6	10.6	10.6	11.7	10.6	10.6	11.7	10.6	10.6	10.6	10.6	10.6	10.6	10.6	10.6
February	11.5	11.5	8.2	11.5	11.5	11.5	7.6	11.5	11.7	6.1	7.6	11.7	6.1	10.5	11.5	9.5	11.7	8.2	8.9	7.6	7.1	11.5	6.4	9.5	11.5	11.7
March	10.5	10.5	7.1	11.5	11.5	11.5	8.9	11.5	11.5	6.4	7.1	11.5	6.4	11.5	11.5	8.9	11.5	7.6	9.5	8.2	11.5	11.7	6.1	10.5	11.7	7.1
April	9.5	9.5	9.5	10.6	10.6	10.6	9.5	10.6	8.2	7.1	9.5	11.5	7.1	11.5	8.2	8.2	11.5	7.1	10.5	7.1	11.7	11.5	7.1	7.1	11.5	7.6
May	8.2	8.2	10.5	10.5	10.5	8.9	10.5	10.5	10.5	7.6	8.9	10.5	7.6	11.7	10.5	7.6	10.5	6.4	11.5	8.9	6.4	10.5	7.6	11.7	10.5	8.2
June	7.1	7.1	11.5	9.5	9.5	9.5	10.6	8.2	11.5	8.2	10.6	9.5	8.2	9.5	6.4	7.1	9.5	6.1	11.5	9.5	6.1	9.5	8.2	11.5	9.5	8.9
July	6.1	6.1	11.5	8.2	8.9	10.5	11.5	9.5	7.1	8.9	6.1	8.9	8.9	8.9	6.1	6.4	8.9	8.9	11.7	10.5	7.6	8.9	8.9	11.5	7.6	9.5
August	6.4	6.4	10.6	7.6	7.6	7.6	11.5	8.9	7.6	9.5	6.4	8.2	9.5	8.2	10.6	6.1	8.2	11.5	6.1	11.5	8.2	8.2	9.5	8.2	7.1	10.5
September	7.6	7.6	6.1	8.9	8.2	8.2	8.2	6.1	8.9	10.5	10.5	7.6	10.5	7.6	8.9	10.5	7.6	11.5	6.4	11.5	8.9	7.6	10.5	7.6	6.4	6.1
October	8.9	8.9	8.9	7.1	6.1	7.1	6.1	6.4	9.5	11.5	11.5	7.1	11.5	7.1	9.5	11.5	7.1	10.6	7.1	6.1	9.5	7.1	11.5	6.4	6.1	6.4
November	10.6	10.6	7.6	6.4	6.4	6.4	6.4	7.1	6.4	11.5	8.2	6.4	11.5	6.4	7.1	11.5	6.4	10.5	7.6	6.4	10.5	6.4	11.5	6.1	8.9	11.5
December	11.5	11.5	6.4	6.1	7.1	6.1	7.1	7.6	6.1	11.7	11.5	6.1	11.7	6.1	7.6	11.7	6.1	9.5	8.2	11.7	11.5	6.1	11.7	8.9	8.2	11.5
Annual	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1

Months	$\begin{gathered} v_{w c} \\ (m / s) \end{gathered}$	Wind speed data series for simulations (m / s)																								
		yr ${ }_{1}$	$y r_{2}$	yr_{3}	y_{4}	y_{5}	$y r_{6}$	yr_{7}	y_{8}	yr,	$y r_{10}$	$y r_{11}$	$y r_{12}$	$y_{13}{ }_{13}$	yr_{14}	${ }^{15}{ }_{15}$	$y r_{16}$	$y r_{17}$	yr_{18}	yr_{19}	$y r_{20}$	$y r_{21}$	$y r_{22}$	yr ${ }_{23}$	y^{24}	y^{25}
January	15.4	15.4	15.4	15.4	15.4	15.4	15.4	15.4	15.4	15.4	15.4	15.4	9.7	15.4	15.4	15.4	15.4	15.4	15.4	15.4	16.6	15.4	15.4	14.7	9.7	9.3
February	14.7	14.7	12.4	9.7	15.1	12.4	12.4	15.1	15.1	9.7	12.4	12.4	10.0	15.1	9.7	13.1	9.7	9.7	9.7	9.7	14.3	15.1	15.1	15.6	10.0	13.1
March	12.7	12.7	12.7	10.0	14.7	11.2	12.7	14.7	14.7	10.0	11.2	12.7	10.4	14.7	10.0	15.1	10.0	10.0	10.0	10.0	13.8	14.7	14.7	15.3	10.4	12.9
April	12.4	12.4	13.1	10.4	14.3	10.4	13.1	14.3	14.3	10.4	10.4	13.1	10.4	14.3	10.4	14.7	10.4	15.1	10.4	10.4	13.8	13.3	14.3	14.3	10.4	12.9
May	11.2	11.2	14.3	10.4	13.1	10.4	14.3	13.1	13.1	10.4	10.4	14.3	11.2	13.1	10.4	14.3	10.4	14.7	10.4	10.4	13.4	13.1	13.1	13.0	11.2	12.3
June	10.4	10.4	14.7	11.2	12.7	10.0	14.7	12.7	12.7	11.2	10.0	14.7	12.4	12.7	11.2	12.7	11.2	14.3	11.2	11.2	12.8	12.7	12.7	12.7	12.4	12.2
July	10.0	10.0	15.1	12.4	12.4	9.7	15.1	12.4	12.4	12.4	9.7	15.1	12.7	12.4	12.4	9.7	12.4	13.1	12.4	12.4	12.2	12.3	12.4	12.5	12.7	10.0
August	9.7	9.7	11.2	12.7	11.2	12.7	11.2	11.2	11.2	12.7	12.7	11.2	13.1	11.2	12.7	10.0	12.7	12.7	12.7	12.7	11.4	12.1	11.2	11.4	13.1	9.4
September	10.4	10.4	9.7	13.1	10.4	14.7	9.7	10.4	10.4	13.1	14.7	9.7	14.3	10.4	13.1	10.4	13.1	12.4	13.1	13.1	11.4	11.7	10.4	10.2	14.3	13.2
October	13.1	13.1	10.0	15.1	10.4	14.3	10.0	10.4	10.4	15.1	14.3	10.0	14.7	10.4	14.3	10.4	14.3	11.2	15.1	14.3	11.2	10.1	10.4	9.8	14.7	13.5
November	14.3	14.3	10.4	14.7	10.0	15.1	10.4	10.0	10.0	14.7	15.1	10.4	15.1	10.0	14.7	11.2	14.7	10.4	14.7	14.7	9.7	10.0	10.0	10.3	15.1	13.9
December	15.1	15.1	10.4	14.3	9.7	13.1	10.4	9.7	9.7	14.3	13.1	10.4	15.4	9.7	15.1	12.4	15.1	10.4	14.3	15.1	9.0	9.7	9.7	10.1	15.4	16.9
Annual	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5

Table L. 7 kWh per $\mathrm{H}_{\text {prod }}$

Sites	$k W y r$																								
	$y r_{1}$	yr_{2}	yr_{3}	$y r_{4}$	rr_{5}	${ }^{\text {r }} 6$	r_{7}	yr	yr9	rr_{10}	$r_{1 /}$	r_{12}	yr ${ }_{13}$	yr ${ }_{14}$	yr $/ 5$	yr 16	y_{17}	yr 18	yr 19	yr 20	yr 21	yr 22	yr 23	yr_{24}	y_{25}
Aracari (Brazil)	5696	5646	5674	5628	5700	5646	5695	5695	5637	5639	5646	5694	5674	5636	5718	5735	5689	5650	5602	5697	5683	561	5628	5645	5637
Corvo Island (Portugal)	10458	10535	10467	10475	10468	10563	10497	10429	10525	10527	10454	10525	10507	10500	10474	10454	10510	10523	10545	10560	10464	10520	10532	10452	10407
Cape Saint James	24762	24848	24927	24734	24784	24848	24734	24734	24927	2484	24848	24797	24734	24936	24875	24936	24903	24927	24936	24835	24851	24734	24886	24797	24881

ApPENDIX J

Figure J. 1 I-O representation of $L C O E_{\text {wso }}$ algorithm calculations for the hypothetical $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Aracati (Brazil) with sensitivity analysis of $L_{w t}(5 D 7 D)$. Source: Own elaboration

Figure J. 2 I-O system representation of $L C O E_{\text {wso }}$ algorithm calculations for the hypothetical $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Corvo Island (Portugal) with sensitivity analysis of $L_{w t}(5 D 7 D)$. Source: Own elaboration

Figure J. 3 I-O system representation of $L C O E_{\text {wso }}$ algorithm calculations for the hypothetical $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Cape Saint James (Canada) with sensitivity analysis of $L_{w t}(5 D 7 D)$. Source: Own elaboration
Table J.1 Energy production ($A E P_{\text {anail }}$) map of the wind farm for Aracati (Brazil)

Mont	$\begin{gathered} v_{\text {we }} \\ (m s) \end{gathered}$	$\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	$\begin{gathered} H_{\text {prod }} \\ (h) \\ \hline \end{gathered}$	${ }_{\text {AEP }}^{\text {avail }}$ (kWh $)$																								
				yr ${ }_{\text {I }}$	$y r_{2}$	yr_{3}	yr_{4}	yrs	yr6	y_{7}	yr	yr,	y_{10}	yr ${ }^{\text {II }}$	y_{12}	${ }^{\text {y } r_{13}}$	$y_{1 / 4}$	$y r_{15}$	$y^{1 / 6}$	y_{17}	$y_{1 / 8}$	y_{19}	$y r_{20}$	${ }_{1} r_{21}$	y^{22}	${ }^{1} r_{23}$	$y_{1}{ }_{24}$	$y r_{25}$
January	5.8	1.1665	738	16931.3	8890198	3802165	7507410	557361	8890198	557361	557361	4232212	8890198	8890198	557361	3802165	7507410	4232212	8890198	8890198	557361	3802165	7507410	557361	3802165	7507410	4232212	4232212
February	4.9	1.1666	639	847940	783520	3662567	6783520	777316	6783520	777316	777316	4713419	6783520	6783520	777316	3662567	6783520	482342	482342	3290403	4713419	7693599	1572412	1572412	7693599	6783520	4713419	4713419
Mar	4.0	. 671	735	555090	817	310	8853970	975829	7476817	975829	975829	6543367	7476817	7476817	975829	5424310	8853970	894553	894553	1809568	4214966	1809568	168623	168623	7806630	8853970	3786671	6543367
April	4.7	1.1667	711	865098	6327908	6327908	4076176	1630708	6327908	30708	3070	, 0621	637	6327908	1749983	6327908	40761	943697	943697	16307	6327908	16307	36619	436	72306	63279	499	30621
May	6.0	1.1670	735	1809500	5424109	7476539	5424109	1809500	5424109	1809500	1809500	7806340	5424109	5424109	1688169	7476539	6543124	16	168	975792	8853641	975792	555069	894520	6543124	4214809	1686169	7806340
Јиne	7.9	1.1686	687	3944904	3944904	7306444	6124120	3544051	3944904	3544051	3544051	8286679	3944904	3944904	3544051	06	76	936	936	837237	7306444	837237	837237	3544051	5076	5076764	305	828
July	8.6	169	735	5437072	3795580	8874801	1690199	4224882	3795580	4224882	42248	556396	639	3795	5437072	8874	18138	95580	95 5	556396	74944	556396	97812	42248	4224	169019	896658	556396
August	9.6	1.167	735	7480694	1810506	1810506	1810506	85	1810506	542712	5427123	5017	895017	1810506	4217151	1810506	1687106	5427123	7810678	7810678	895017	421715	78106	542712	1810506	1810506	555378	89501
September	10.1	165	71	8554384	1629176	1629176	3658543	7542482	629176	63219	6321963	942810	942810	1629176	6321963	1629176	3658543	6321963	7223828	7223828	942810	5240771	85543	63219	1629176	3658543	6321963	94281
tober	9.7	1.164	735	7789201	973650	973650	553851	7460125	973650	7460	7460	16824	16824	973650	8834203	973650	553851	7460125	6528759	6528759	1805528	65287	4205	746012	973650	973650	8834203	16824
November	9.2	1.16	687	6098939	833795	833795	833795	60989	379	72764	72764	16866	1686661	33795	72764	833795	833795	7276401	5055889	055889	1571703	6968	6098	7276	8337	833795	7276401	16866
December	7.6	1.1651	735	3780365	554166	554166	974204	5415277	554166	8839226	8839226	378036	3780365	554166	7464366	554166	974204	8839226	4207946	4207946	3780365	7793630	5415277	8839226	554166	554166	7464366	378036
ппис	7.4	1.166	857																									

Months	$\begin{gathered} v_{w c} \\ (m s) \end{gathered}$	$\left(\left(\mathrm{kg} / \mathrm{m}^{3}\right)\right.$	$H_{\text {prod }}$ (h)	$A_{\text {A }} \mathrm{P}_{\text {aviel }}(k W h)$																								
				yr ${ }_{1}$	yr ${ }_{2}$	yr_{3}	yr_{4}	yr ${ }_{5}$	$y r_{6}$	yr7	yrs	yr,	yr ${ }_{10}$	yr ${ }_{1}$	yr ${ }_{12}$	yr ${ }_{13}$	${ }^{\text {r }} r_{14}$	$\mathrm{yr}_{1 / 5}$	${ }^{1} r_{16}$	y_{17}	${ }^{2} r_{18}$	yr_{19}	y_{20}	y^{21}	y^{22}	${ }^{1} r^{23}$	yr_{24}	
January	11.7	1.2313	738	14451298	14451298	14451298	14451298	14451298	${ }_{14} 451298$	14451298	10882026	1082026	${ }^{14} 451298$	10822026	10882026	1082026	14451298	1082026	10882026	1445298	10882026	10882026	10882026	10882026	10882226	10882026	10882226	108820
February	11.5	1.2345	639	1193902	4233203	1193992	1193902	1193992	3369392	1193992	12538268	1770714	3369392	12538268	1770714	9115121	1193992	6580843	12538268	4233203	5409699	3369392	2776293	1192392	2077293	6580843	1192392	
March	10.5	1.2329	735	10471380	3189384	1369887	1369888	13698887	6214620	13098887	13698087	2386378	3189384	13698887	2386378	1369888	13698887	6214620	11398888	3870731	7560022	4863071	13698887	1440885	2034182	10471380	1440385	3189
April	9.5	1.2317	711	7305887	7305887	1043175	1043175	1043175	7305887	1043175	4699596	3082171	7305887	13237618	3082171	13237618	4699596	4699596	1323718	3082171	10119379	3082171	13919671	13237618	3082171	3082171	13237618	37406
May	8.2	1.2282	735	4848807	10432053	10432053	10432053	6191280	10482053	10432053	10432053	3856194	6191280	10482538	3856194	14.397768	10432053	3856194	10482533	2377416	1346640	6191280	2377416	10482553	3856194	14349768	10432053	4848
Ju	7.1	1.2224	687	2955541	1269735	7005728	7005728	7005728	10014121	4506515	12693755	4506515	10014121	7005728	4506515	7005728	2211411	2955541	7005728	1885038	1269775	7005728	1885038	7005728	4506515	1269775	7005728	
July	6.1	1.2154	735	2005275	13.50324	479396	6126305	10322572	13503424	7452587	3144060	6126305	2005275	6126305	6126305	6126305	2005275	2352466	6126305	6126305	14199172	1032572	3815724	6126305	6126305	13503824	3815724	7452
August	6.4	1.2075	735	2337182	10583661	3790935	3790935	3790935	13415996	6086504	3790935	7404169	2337182	4762817	7404169	4762817	10883661	1992247	4762817	13415996	1992247	13415996	4762817	4762817	7404169	4762817	3123634	
September	7.6	1.2064	711	3663832	1925451	5882434	4603129	4603129	4603129	1925451	5882434	9911660	9911660	366882	9911660	3663832	5882434	9911600	366882	1295892	2258821	1296899	5882434	3663832	9911660	3663832	2258821	1925
October	8.9	1.2126	735	6112412	6112412	3136930	2000727	3136930	2000727	2347131	7435686	13428801	13428801	3136930	13478801	3136930	7435686	1342881	3136930	10628711	3136930	2000727	7435686	3136930	1342801	2347131	2000727	2347
November	10.6	1.2194	687	9990034	3578305	2206092	2006092	2206092	2206092	2948433	2206092	1268223	4495676	2206092	1266323	2006092	2948433	1268223	2206092	9680288	3578305	2206092	9680288	2206092	1268323	1880504	5745118	
December	11.5	1.2237	735	13995706	2368542	2018979	3165547	2018979	3165547	3841801	2018979	14296210	13.95706	2018979	14296210	2018979	3841801	14282210	2018979	7503518	4826724	14286210	13959706	2018979	14292210	6168172	4826724	
Annual	9.1	1.2222	8579	89657257	90377375	89783574	89846976	89792106	9068985	90056935	89381970	90318367	${ }^{0} 3,39663$	8968733	${ }^{20} 318387$	90163301	90113636	8983728	8968733	9022267	90268721	9050886	90671187	8970146	90272750	${ }^{90} 345823$	8961540	89153

[^112]| Months | $\begin{gathered} v_{w c} \\ (m s) \end{gathered}$ | $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$ | $H_{\text {prod }}$
 (h) | ${ }_{\text {AEP }}^{\text {avail }}$ (k Wh) | |
| :---: |
| | | | | y_{1} | ${ }^{\text {r }}$ | r | | r | r | r_{7} | r_{s} | yr | yrio | | yr_{12} | yr_{13} | ${ }_{\text {y }} r_{14}$ | | | | | | | | | | | |
| January | 15.4 | 1.2561 | 738 | ${ }^{32734798}$ | 32737988 | 32737988 | 32737988 | 32737998 | ${ }^{32734798}$ | 32734798 | 32737988 | ${ }^{32734798}$ | 3273498 | 3273498 | 801394 | 32737988 | 32737988 | 32737998 | 32734798 | 32737988 | 32737998 | 3273798 | 4074889 | 32734798 | 32734798 | 28019994 | 8013494 | 710093 |
| February | 14.7 | 1.2522 | 639 | 24248999 | 14467424 | 6912583 | 2628820 | 14467224 | 14467424 | 26228520 | 26228520 | 6912583 | 1446724 | 1446724 | 774925 | 26228520 | 6912583 | 17377262 | 6912583 | 6912583 | 6912583 | 6912583 | 22462574 | 2628852 | 2628850 | 2895958 | 7749225 | 17351256 |
| March | 12.7 | 1.2495 | 735 | 18226532 | 18226532 | 8896263 | 2783479 | 1237594 | 18226532 | 2783479 | 2783479 | 8896263 | 12376594 | 18226532 | 719 | 2783479 | 88962 | 30108137 | 896263 | 896263 | 896 | 896 | 22991460 | 2783479 | 2783479 | 31414830 | 44 | 1892133 |
| April | 12.4 | 1.2490 | 711 | 1605771 | 19287404 | 9641890 | 24828913 | 9641890 | 19287404 | 24888913 | 24888913 | 9641890 | 9641890 | 19287404 | 9641890 | 24882913 | 9641890 | 26913496 | 9641890 | 29111609 | 9641890 | 9641890 | 22185639 | 19971909 | 24828913 | 24919331 | 890 | 1813938 |
| May | 11.2 | 1.2425 | 735 | 12306614 | 25.33644 | 9915560 | 19834488 | 9915560 | 25.33644 | 19834848 | 19834848 | 9915560 | 9915560 | 2553364 | 12306614 | 19884848 | 9915560 | 2553364 | 9915560 | 2767395 | 9915560 | 9915560 | 20889216 | 19834848 | 19834488 | 1908927 | 1236614 | 1616832 |
| June | 10.4 | 1.2351 | 687 | 9212474 | | 11433985 | 16838388 | 8218718 | 25714865 | 16838388 | 16838388 | 11433985 | 8218718 | 25714865 | 15322558 | 16888388 | 11433985 | 16888388 | 1143985 | 23723122 | 11433985 | 1143985 | 16955390 | 168383888 | 16838388 | 16760685 | 15342588 | |
| July | 10.0 | 1.2275 | 735 | 8739531 | 29577699 | 16314883 | 16314803 | 7795266 | 29577699 | 16314803 | 16314803 | 16314803 | 7795266 | 2957709 | 17905422 | 16314803 | 16314803 | 7795266 | 16314883 | 1996205 | 16314803 | 16344803 | 15330715 | 16046460 | 16314803 | 16760185 | 17995422 | 8625161 |
| Augu | 9.7 | 1.2216 | 735 | | | | | 17819161 | 12099972 | 12099972 | 12099972 | 819 | 819 | 099 | 19.501788 | 120 | 17819191 | 8697 | 17819161 | 17819 | 17819161 | 17819161 | 129 | ${ }_{537}$ | 12098 | 12588985 | 19501 | 711 |
| September | 10.4 | 1.223 | 711 | | 15 | 18892028 | 9444238 | 3617 | 7515148 | 238 | 944238 | 18892028 | 36179 | 15148 | 24319440 | 9444238 | 1889202 | 944238 | 8920 | 728 | 18892 | 8892 | 321 | 275 | 44423 | 842059 | 24319440 | , |
| October | 13.1 | 1.2327 | 735 | 19679010 | 776 | 29702682 | | 25333032 | 8776461 | 837656 | 9837656 | 7206 | ${ }^{333}$ | 8776461 | 45940 | 9837656 | ${ }^{33} 3$ | 9837656 | 25333032 | 1220 | 29702 | 25.33032 | 1224 | 88586 | 983766 | 8122639 | 2745940 | 2159600 |
| November | 14.3 | 2429 | 687 | 256 | 71165 | 8688 | 71078 | 92285 | 271165 | 271078 | 271078 | 878688 | 2992 285 | 9271165 | 992 | 271078 | 878688 | 11506828 | 878 | 9271165 | 2587868 | 258788 | 7423013 | 8271078 | 8271078 | 887092 | 2799 | 1951058 |
| December | 15.1 | 1.2528 | 735 | 30186350 | 9997848 | 25745445 | 7955677 | 19999456 | 9997848 | 7955677 | 7955677 | 2574545 | 19999456 | 9997848 | 32498621 | 7955677 | 30188350 | 1655052 | 30186350 | 9997848 | 25745445 | 30188.350 | 6350393 | 7955677 | 7955677 | 9163644 | 32498 | 42775115 |
| Annual | 12.5 | 1.2404 | 8579 | 212467325 | 213202961 | 213887985 | 2 | 2 | 213202961 | 21223670 | 21223670 | 213887985 | 21265974 | 213202961 | 21270429 | - | 213959139 | 213437670 | 213959139 | 213678613 | 213887885 | | 213109827 | 0 | 12223670 | 213512714 | 212704429 | |

Table J. 4 Wind speed series simulations for $A E P_{\text {avait }}$ in Aracati (Brazil)

Months	$\begin{gathered} v_{w c} \\ (m / s) \end{gathered}$	Wind speed data series for simulations (m s)																								
		$y r_{1}$	$y r_{2}$	yr_{3}	$y r_{4}$	yr_{5}	$y r_{6}$	$y r_{7}$	yr_{8}	yr9	$y r_{10}$	$y r_{\text {II }}$	$y r_{12}$	$y_{1 / 3}$	yr_{14}	$y_{1 / 5}$	yr_{16}	$y r_{17}$	$\mathrm{r}_{1 / 8}$	y_{19}	$y r_{20}$	y_{21}	$y r_{22}$	$y_{2}{ }^{3}$	$y r_{24}$	y^{25}
January	5.8	5.8	10.1	7.6	9.6	4.0	10.1	4.0	4.0	7.9	10.1	10.1	4.0	7.6	9.6	7.9	10.1	10.1	4.0	7.6	9.6	4.0	7.6	9.6	7.9	7.9
February	4.9	4.9	9.7	7.9	9.7	4.7	9.7	4.7	4.7	8.6	9.7	9.7	4.7	7.9	9.7	4.0	4.0	7.6	8.6	10.1	6.0	6.0	10.1	9.7	8.6	8.6
March	4.0	4.0	9.6	8.6	10.1	4.9	9.6	4.9	4.9	9.2	9.6	9.6	4.9	8.6	10.1	4.7	4.7	6.0	7.9	6.0	5.8	5.8	9.7	10.1	7.6	9.2
April	4.7	4.7	9.2	9.2	7.9	5.8	9.2	5.8	5.8	9.6	9.2	9.2	6.0	9.2	7.9	4.9	4.9	5.8	9.2	5.8	7.6	4.9	9.6	9.2	6.0	9.6
May	6.0	6.0	8.6	9.6	8.6	6.0	8.6	6.0	6.0	9.7	8.6	8.6	5.8	9.6	9.2	5.8	5.8	4.9	10.1	4.9	4.0	4.7	9.2	7.9	5.8	9.7
June	7.9	7.9	7.9	9.7	9.2	7.6	7.9	7.6	7.6	10.1	7.9	7.9	7.6	9.7	8.6	6.0	6.0	4.7	9.7	4.7	4.7	7.6	8.6	8.6	4.9	10.1
July	8.6	8.6	7.6	10.1	5.8	7.9	7.6	7.9	7.9	4.0	4.0	7.6	8.6	10.1	6.0	7.6	7.6	4.0	9.6	4.0	4.9	7.9	7.9	5.8	4.7	4.0
August	9.6	9.6	6.0	6.0	6.0	10.1	6.0	8.6	8.6	4.7	4.7	${ }_{6} 6$	7.9	6.0	5.8	8.6	9.7	9.7	4.7	7.9	9.7	8.6	6.0	6.0	4.0	4.7
September	10.1	10.1	5.8	5.8	7.6	9.7	5.8	9.2	9.2	4.9	4.9	5.8	9.2	5.8	7.6	9.2	9.6	9.6	4.9	8.6	10.1	9.2	5.8	7.6	9.2	4.9
October	9.7	9.7	4.9	4.9	4.0	9.6	4.9	9.6	9.6	5.8	5.8	4.9	10.1	4.9	4.0	9.6	9.2	9.2	6.0	9.2	7.9	9.6	4.9	4.9	10.1	5.8
November	9.2	9.2	4.7	4.7	4.7	9.2	4.7	9.7	9.7	${ }_{6} .0$	6.0	4.7	9.7	4.7	4.7	9.7	8.6	8.6	5.8	9.6	9.2	9.7	4.7	4.7	9.7	6.0
December	7.6	7.6	4.0	4.0	4.9	8.6	4.0	10.1	10.1	7.6	7.6	4.0	9.6	4.0	4.9	10.1	7.9	7.9	7.6	9.7	8.6	10.1	4.0	4.0	9.6	7.6
Annual	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4

Table J.5 Wind speed series simulations for $A E P_{\text {avaii }}$ in Corvo Island (Portugal)

Months	$\begin{gathered} \hline v_{w c} \\ (m / s) \\ \hline \end{gathered}$	Wind speed data series for simulations (m /s)																								
		$y r_{1}$	$y r_{2}$	y_{3}	$y r_{4}$	yr_{5}	$y r_{6}$	$y r_{7}$	$y r g_{8}$	yr,	$y r_{10}$	${ }^{\prime} r_{1 /}$	$y r_{12}$	${ }_{\text {l }}^{1 / 3}$	$y_{1 / 4}$	$y_{1 / 5}$	y_{16}	y_{17}	${ }^{1} r_{18}$	y_{19}	y_{20}	$y r_{21}$	$y r_{22}$	${ }_{12}{ }_{23}$	$y r_{24}$	${ }^{9} r_{25}$
January	11.7	11.7	11.7	11.7	11.7	11.7	11.7	11.7	10.6	10.6	11.7	10.6	10.6	10.6	11.7	10.6	10.6	11.7	10.6	10.6	10.6	10.6	10.6	10.6	10.6	10.6
February	11.5	11.5	8.2	11.5	11.5	11.5	7.6	11.5	11.7	6.1	7.6	11.7	6.1	10.5	11.5	9.5	11.7	8.2	8.9	7.6	7.1	11.5	6.4	9.5	11.5	11.7
March	10.5	10.5	7.1	11.5	11.5	11.5	8.9	11.5	11.5	6.4	7.1	11.5	6.4	11.5	11.5	8.9	11.5	7.6	9.5	8.2	11.5	11.7	6.1	10.5	11.7	7.1
April	9.5	9.5	9.5	10.6	10.6	10.6	9.5	10.6	8.2	7.1	9.5	11.5	7.1	11.5	8.2	8.2	11.5	7.1	10.5	7.1	11.7	11.5	7.1	7.1	11.5	7.6
May	8.2	8.2	10.5	10.5	10.5	8.9	10.5	10.5	10.5	7.6	8.9	10.5	7.6	11.7	10.5	7.6	10.5	6.4	11.5	8.9	6.4	10.5	7.6	11.7	10.5	8.2
June	7.1	7.1	11.5	9.5	9.5	9.5	10.6	8.2	11.5	8.2	10.6	9.5	8.2	9.5	6.4	7.1	9.5	6.1	11.5	9.5	6.1	9.5	8.2	11.5	9.5	8.9
July	6.1	6.1	11.5	8.2	8.9	10.5	11.5	9.5	7.1	8.9	6.1	8.9	8.9	8.9	6.1	6.4	8.9	8.9	11.7	10.5	7.6	8.9	8.9	11.5	7.6	9.5
August	6.4	6.4	10.6	7.6	7.6	7.6	11.5	8.9	7.6	9.5	6.4	8.2	9.5	8.2	10.6	6.1	8.2	11.5	6.1	11.5	8.2	8.2	9.5	8.2	7.1	10.5
September	7.6	7.6	6.1	8.9	8.2	8.2	8.2	6.1	8.9	10.5	10.5	7.6	10.5	7.6	8.9	10.5	7.6	11.5	6.4	11.5	8.9	7.6	10.5	7.6	6.4	6.1
October	8.9	8.9	8.9	7.1	6.1	7.1	6.1	6.4	9.5	11.5	11.5	7.1	11.5	7.1	9.5	11.5	7.1	10.6	7.1	6.1	9.5	7.1	11.5	6.4	6.1	6.4
November	10.6	10.6	7.6	6.4	6.4	6.4	6.4	7.1	6.4	11.5	8.2	6.4	11.5	6.4	7.1	11.5	6.4	10.5	7.6	6.4	10.5	6.4	11.5	6.1	8.9	11.5
December	11.5	11.5	6.4	6.1	7.1	6.1	7.1	7.6	6.1	11.7	11.5	6.1	11.7	6.1	7.6	11.7	6.1	9.5	8.2	11.7	11.5	6.1	11.7	8.9	8.2	11.5
Annual	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1

Months	$\begin{gathered} v_{w c} \\ (m / s) \end{gathered}$	Wind speed data series for simulations (m /s)																								
		y_{1}	yr_{2}	y_{3}	$y r_{4}$	yr_{5}	$y r_{6}$	$y r_{7}$	yr_{8}	yr9	$y r_{10}$	$y_{1 / 1}$	y_{12}	yr_{13}	$y_{1 / 4}$	${ }^{2} r_{15}$	y_{16}	$y r_{17}$	$y_{1 / 8}$	y_{19}	y_{20}	r^{21}	$y r_{22}$	rr_{23}	y_{24}	${ }^{\text {r } 25}$
January	15.4	15.4	15.4	15.4	15.4	15.4	15.4	15.4	15.4	15.4	15.4	15.4	9.7	15.4	15.4	15.4	15.4	15.4	15.4	15.4	16.6	15.4	15.4	14.7	9.7	9.3
February	14.7	14.7	12.4	9.7	15.1	12.4	12.4	15.1	15.1	9.7	12.4	12.4	10.0	15.1	9.7	13.1	9.7	9.7	9.7	9.7	14.3	15.1	15.1	15.6	10.0	13.1
March	12.7	12.7	12.7	10.0	14.7	11.2	12.7	14.7	14.7	10.0	11.2	12.7	10.4	14.7	10.0	15.1	10.0	10.0	10.0	10.0	13.8	14.7	14.7	15.3	10.4	12.9
April	12.4	12.4	13.1	10.4	14.3	10.4	13.1	14.3	14.3	10.4	10.4	13.1	10.4	14.3	10.4	14.7	10.4	15.1	10.4	10.4	13.8	13.3	14.3	14.3	10.4	12.9
May	11.2	11.2	14.3	10.4	13.1	10.4	14.3	13.1	13.1	10.4	10.4	14.3	11.2	13.1	10.4	14.3	10.4	14.7	10.4	10.4	13.4	13.1	13.1	13.0	11.2	12.3
June	10.4	10.4	14.7	11.2	12.7	10.0	14.7	12.7	12.7	11.2	10.0	14.7	12.4	12.7	11.2	12.7	11.2	14.3	11.2	11.2	12.8	12.7	12.7	12.7	12.4	12.2
July	10.0	10.0	15.1	12.4	12.4	9.7	15.1	12.4	12.4	12.4	9.7	15.1	12.7	12.4	12.4	9.7	12.4	13.1	12.4	12.4	12.2	12.3	12.4	12.5	12.7	10.0
August	9.7	9.7	11.2	12.7	11.2	12.7	11.2	11.2	11.2	12.7	12.7	11.2	13.1	11.2	12.7	10.0	12.7	12.7	12.7	12.7	11.4	12.1	11.2	11.4	13.1	9.4
September	10.4	10.4	9.7	13.1	10.4	14.7	9.7	10.4	10.4	13.1	14.7	9.7	14.3	10.4	13.1	10.4	13.1	12.4	13.1	13.1	11.4	11.7	10.4	10.2	14.3	13.2
October	13.1	13.1	10.0	15.1	10.4	14.3	10.0	10.4	10.4	15.1	14.3	10.0	14.7	10.4	14.3	10.4	14.3	11.2	15.1	14.3	11.2	10.1	10.4	9.8	14.7	13.5
November	14.3	14.3	10.4	14.7	10.0	15.1	10.4	10.0	10.0	14.7	15.1	10.4	15.1	10.0	14.7	11.2	14.7	10.4	14.7	14.7	9.7	10.0	10.0	10.3	15.1	13.9
December	15.1	15.1	10.4	14.3	9.7	13.1	10.4	9.7	9.7	14.3	13.1	10.4	15.4	9.7	15.1	12.4	15.1	10.4	14.3	15.1	9.0	9.7	9.7	10.1	15.4	16.9
Annual	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5

Table J. 7 kWh per $\mathrm{H}_{\text {prod }}$

Sites	${ }_{k W} /{ }^{\text {r }}$																								
	rr_{1}	$y r 2$	yr_{3}	yr_{4}	yr ${ }_{5}$	yro	yr_{7}	yr_{8}	yrg	yr r_{10}	y_{r}	y_{12}	$y r_{13}$	${ }^{\text {y }}{ }_{1 / 4}$	$r_{1 / 5}$	$y r_{16}$	${ }^{\text {r }}{ }_{17}$	${ }^{4} 1_{18}$	yr_{19}	yr 20	yr_{21}	yr ${ }_{22}$	yr_{2}	${ }_{\text {y } 24}$	${ }^{4} 2.5$
Aracari (Brazil)	5695	5647	5674	5629	5699	5647	5694	5694	5637	5641	5647	5693	5674	5637	5718	5737	5690	5649	5602	5698	5682	5616	5628	5645	7
Corvo Island (Portugal)	10451	10535	10466	10473	10467	10570	10498	10419	10528	10530	10452	10528	10510	10504	10472	10452	10517	10522	10556	10569	10463	10523	10531	10446	103
Cape Saint James (Canada)	24766	24852	24932	24738	24788	24852	24738	24738	24932	24788	24852	24794	24738	24940	24879	24940	24908	24932	24940	24841	24855	24738	24888	24794	24877

Table .8 Cashlow for 25 years of the	e wind farmprie	roject	000		Aracai (Braa)					with senstitin	ivity analysi	is of $L_{w i}$ (5	D)													
Item	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
(-) LCCCM $_{\text {wF }}$	603784																									
${ }^{T} T_{c u}$	27686278	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-		-	-
$T_{\text {cu }}$	24219295	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-							-	
$L_{\text {LWTG }}^{\text {cm }}$	2111508	-	-	.	-	-	-	-	-	-	-	-	-	-	-	-	-	-								
${ }^{\text {cP }} \mathrm{ccm}$	1545346	-	-	-	-	-	-	-	-	-	-	-	-	-	-											
${ }_{T S}{ }_{\text {cu }}$	572832	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-						-	-
Stcu	2136726	-	-				-	-	-	-	-	-	-	-	-	-										
$\mathrm{PO}_{C M}$	1796870	-	-	.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-		-	
$F_{\text {cm }}$	189037	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-								
CCC $_{\text {cи }}$	120516						-	-	-	-		-		-	-	-									-	
$L^{\text {LPP }} \mathrm{MFF}^{(k W h / r r)}$	-	48856319	48443228	48676026	48200403	48895032	48443328	4884485	4884485	48356354	4839173	48444328	48841866	48676026	48362288	4905015	49213265	48817403	48463568	48054765	4888303	4874993	48179078	48285240	48430728	48356354
${ }^{(+)}$AAR (SMyr)	-	4297170	4367456	4498053	4573979	4747030	482085	4982192	5106747	5182105	5315483	5454354	5636591	5757889	5863796	6096233	626953	6374091	6486088	6592161	687365	4918060	4982181	5117988	526174	5385005
PPAR	-	4297170	4367456	4498053	4573979	4747030	482085	4982192	5106747	5182105	5315483	5454354	5636591	5757889	586797	6096233	626953	6374091	6486088	6592161	687365					
EMP	-											-		-								4918060	4982181	5117988	526174	5385005
(-) $0 \& M_{\text {WFCM }}$	-	3949353	4013810	4133691	4203326	4362211	4455205	4603527	471783	4786682	4999110	5036592	5204091	5315304	5412299	562056	5784761	5880906	5983464	6080550	6339242	5846637	5922095	6082752	6252834	6398541
$O_{\&} M_{\text {ficed }}$	-	2654579	269997	2778672	282574	293247	2978078	307774	3154685	3201236	3283628	3369414	3481989	3556919	3622341	3765927	3872684	3937570	4006754	4072279	4246052	4340155	4396739	4516586	4643449	4752224
O\& $M_{\text {wariale }}$		129477	1315813	1355018	1377752	1429737	1477127	1525784	1563150	1585447	1625482	1667177	1722102	1758885	1789558	1860129	1912077	1943336	1976710	2008271	2003190	1506483	1525356	1566166	1609385	1646316
(+) LRCM	-	863268	88480	906971	929646	952887	976709	1001127	1026155	1051809	1078104	1105057	1132683	1161000	1190025	1219776										
(+) Depreciation		2459715	2521208	2584238	264884	2715065	2782942	2852515	2923828	299692	3071847	3148643	3227359	3308043	339074	3475513	3562400	3651460	3742747	3836316	3932224	4030529	413129	4234575	4340439	4448950
$(=)$ Profit before tax	-	3670800	3759704	3855572	394914	4052771	4125300	4232308	433895	444155	4556323	467146	4792542	4911628	5032266	5165465	4046992	414646	4245371	434927	4466447	3101952	3191378	3269810	334349	3435414
$(-)$ Revenue tax		1289151	1310237	1349416	1372194	1424109	1446256	144465	1532024	1554632	1594645	1636306	1690977	1727367	1759139	1828870	1880716	1912227	1945827	1977648	2062040	1475418	1494654	1535396	1578523	1615502
(+) REPIM	385363	2045	1989	1961	1910	1898	1847	1829	1797	1748	1720	280	289	296	301	313	322	327	333	339	353	361	365	375	386	395
REICM	221866						-	-	-	-	-	.	.	.	-	.	.	.		-	-	.	-	-	-	
${ }_{\text {REP } P_{\text {cm }}}$		1825	1765	1730	1675	1654	1599	1573	1535	1482	1447	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
OREP cu	163497											-		-	-	-	-	\checkmark	-	-	-		-		-	
GHG.R cu		221	224	231	235	244	248	256	262	266	273	280	289	296	301	313	322	327	333	339	353	361	365	375	386	395
($=$ Profit afer tax wour interest	-	238364	245145	2508117	257885	263056	2680890	2739479	2808668	2891272	2963399	3035436	3101854	3184557	3273429	3336908	2166298	2232745	2299878	2370617	2404760	1626895	1697089	1734789	1771212	1820308
	-		3118780	326375	334459	3428583	3514298	3602155	3692209	${ }^{3784514}$	387927	396105	407508	417395	4281830	4388876										
	-	2621739	2687282	2754464	282326	2893909	2966257	3040413	3116424	319433	3274193	3356047	343944	3525947	3614096	370448	3797060	3891986	3989286	4089018	419243	4296024	4403425	4513511	4626348	4742007
(+) Depreciation		2459715	2521208	2584238	264884	2715065	2782942	2852515	292382	2996924	3071847	314864	3227359	3308043	339074	3475513	3562400	3651460	3742747	3836316	393222	4030529	4131292	4234575	4340439	4448950
(=) Free net cashflow	-59993045	7465148	4476167	458345	4706070	4810951	4915791	5030252	5156710	5298016	5430311	5564021	569365	5841151	5996438	6127993	9525758	9776192	10031910	10295950	10528227	995348	10231806	10482874	10737999	11011265
$\Sigma_{\text {freene e amual casthlow }}$	-	-52527897	-48051730	-43468285	-38762216-1	-33951265	-29035474	-24005222	-18848512	-1350496	-8120185	-2556164	3137490	8978642	14975080	21103073	30628832	40405023	50436934	60772884	7126111	81214559	91446366	10129240	11266239	123678504

Hem			\%000		,	兂				mensit	隹	L_{w}	Yea													
	0	1	2	3	4	5	6	7	8	9	10	1	12	13	14	15	16	17	18	19	20	21	22	23	${ }^{24}$	25
(-) LCCCM w ${ }_{\text {w }}$	60378407			-																						
${ }^{W T} \mathrm{~cm}$	27686278	-	-	-	:	-	:	-	:	-		,	$:$:					-					-	-	
${ }_{\text {LWIG }}$	2111508	-	-	-	-	-	-	-	-			-	-													
${ }_{\text {cP }}^{\text {ch }}$ cm	1545346	-	-			-	-							-												
${ }_{\text {TS }}^{\text {Trum }}$	572832	-		-		:						:		-												
${ }^{\text {POCu }}$	1796870																									
${ }_{\text {com }}^{\text {ccicm }}$	189037 120516					-													-	-		-	-	-	-	
LCPM we (kWhyr)		89657257	375	574	6976	206	985	9056935	1970	8367	${ }^{0} 339663$	6873	1367	6301	90113636			2026	263721							
(+) AAR (SM/yr)	.	14970925	15488449	15750988	16156163	16549954	17131821	17439078	17741084	18375119	18838939	19166502	19787994	20247871	20722636	21196034	21685138	22363982	22934122	23584858	24203932	17191828	1772258	18180019	18483975	18888346
${ }_{\text {EMP }}^{\text {PPAR }}$:	14970925	1548849	15750988	16156163	1654954		17439078	17741084	18375119	18883939	19166502	1978994	2024887								17191828	1772258	18180019	18483975	18888346
(-) O\&M wrcu	-	9368374	967956	9856225	10109621	10355890	10719839	1091955	11100783	1197361	11787429	1199241	12380956	12668548	1297965	13261497	13567367	13991993	14348505	14755487	15142655	13154747	13550474	13910592	14143024	14421680
O¢M	-	4871474 4496901	5033863 4646203	5125298	5257137 4852484	5385272 4970618	${ }_{514593606}^{5146}$	56745837	57728511	5979160 518200	6130082 5657348	623666 575575	${ }_{5942063}^{643893}$	6588532 6080016	${ }_{6}^{6749523} 6$	68897053 636445	7056201 6511165	7277000 6714853	7462607 688598	7674349 7081137	7875789 726866	7991569 5163178	8238134 532239	8450920 5459	8592211 550813	8761584 566095
(+) LRCM	-	863268	884850	906971	929646	952887	976709	1001127	1026155	1051809	1078104	1105057	1132683	1161000	1190025	1219776										
(+) Depreciation		2455545	2516934	257985	2644354	2710463	277822	2847680	2918872	2991844	3066640	3143306	3221888	3302436	3384997	3469621	3556362	3645271	3736403	3829813	392558	4023697	4124290	4227397	4333082	4441409
$(\Leftrightarrow$) Profit before tax		8921364	919066	9381592	9620542	9857414	10166914	10375930	10585328	10921411	11196253	11422624	11761609	12042759	12339692	12623933	11674133	12017310	12322020	12659184	12988835	8060779	8286074	8496823	867433	
(-) Reverue tax		449127	4640535	4725296	4846849	4964986	5139546	5231723	5322325	5512536	5651682	5749951	5936398	6074361	6222791	6358810	6.505541	6709195	${ }^{6880237}$	${ }^{7075458}$	7261179	5157549	531667	${ }_{5454006}^{197}$	5545193 200	$\underset{\text { 564 }}{204}$
${ }^{(+)} \underset{\text { REFIM }}{\text { REICu }}$	487054	1438	1420	1382	1355	1327	1314	1280	1245	1235	1212	1180	1167	1144	1123	1100	164	170	174	179	183	186	192			
${ }_{\text {REFPus }}^{\text {RELCM }}$		1325	1303	1263	1233	1202		1147	1111	1095	1069	1035	017	991	966	39			-	-	-	-	-	-	-	
OREP cu																										
${ }_{\text {chG }}$ cm														153		161	164	170	174	179	183		192	197		${ }_{213}^{204}$
${ }_{(\rightarrow) \text { Debt payments }}$	-		3178383	325743	3339295	342271	3508341	3596049	5204248	377809	${ }_{3} 582552$	5969365	${ }_{4} 5888800$	4170314	${ }_{4277572}$	${ }_{4}^{431} 1437$										
${ }^{(+)}$RCM we		21739	2687282	2754464	2823326	2893909	2966257	3040413	3116424			3356047		3525947	3614096	370444	3797060	3891986	3989286	4089018	4191243	4296024	4403425	4513511	4626348	4742007
$\xrightarrow[\substack{+(+) \text { Depreciation } \\ \text { Free netcashfow }}]{\text { a }}$	-59891353	2455545 9508809	2516934 657735	156	2644 6903	2710	2778224 7264823	28	2918872 761359	88	306640 8014064	3143306 8203841	3221888 8419615	3302436 8627610	3384997 8842545	3469621 905857	${ }^{3556362}$	${ }^{3645271}$	3736403 13167046	3829813 1350276	${ }^{3925558}$		4124290		${ }^{4333082}$	${ }_{1}^{4241409}$
		- 90.8882544	${ }_{438505159}^{659}$	67701100	6903439 3016754	2075355	7264823 1582736	7437530	-7175262	7818188	150559900	8203847	3169446	802760 403056	8842545	9058857 $\$ 820845$	${ }_{10}^{12522178}$	1285542 835717	${ }_{96743823}^{131766}$	11024 s99	13842640	135312387	(146sex 8 40	${ }_{158939562}^{1178322}$	(120682033	${ }_{\substack{12397191 \\ 183 \\ \hline 99224}}^{1}$
	(75.62												79.71					79.54

Hem	wind farm	ject	50000 k		Cape Saint	James (Cana				with sensitiv	a analys	is of L_{w} (7D)													
	0	1	2	3	4	5	6	7	8	9	10	11	${ }_{12}$	${ }^{13}$	14	15	16	17	18	19	20	21	22	23	24	25
(-) LCCCM $^{\text {w }}$ F	60378407																									
${ }_{\text {w }}^{\text {cm }}$ m	27686278	-	-	-	-	-	\checkmark																			
${ }_{\text {cou }}$	24219295	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
${ }^{L W T G ~ c u}$	2111508	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-								
${ }^{\text {CP }{ }_{\text {cm }}}$	1545346	-	-	-	-	-	-	-	-	-	-	-		\checkmark	-	-	-	-	-	-						
${ }^{\text {TS }} \mathrm{can}^{\text {a }}$	572832	-	-		-	-	-	-	-	-		-		-	-	-	-									
Stcm	2136726	-	-	-	-	-	-	-	-	-	-						-	-								
$\mathrm{PO}_{\mathrm{CM}}$	1796870	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
$F_{\text {cm }}$	189037	-	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	-		-	-	-		\checkmark	\checkmark		\checkmark	-	-			\checkmark		
${ }^{\text {čCC }}{ }_{\text {cm }}$	120516					--																				
$L^{\text {LPP } M_{\text {wF }}(k W h / y r)}$.	21246735	213229261	213887985	212223670	4	213202961	21223670	21223670	213887	212555974	213											21223870			
${ }^{(+)}$AAR (SM/yr)	-	30129143	30989297	31860088	32408583	33286465	534206386	34900500	35773012	36954893	37600580	38701386	39576163	4047888	41824978	42766117	43943368	49881873	46151597	47321124	48311614	3468891	35382431	3648727	37257877	38317994
${ }^{\text {PPAR }}$		30129143	30989297	31866088	32408583	33286465	534206386	634900500	35773012	36954893	37660580	38701386	39576163	40473880	41824978	42766117	4392368	44981873	46151597	47321124	48311614					
EMP	-			-	-					-				-	-						-	34682891	35382431	3648727	37257877	38317694
(-) O\& $M_{\text {WFCM }}$	-	20.588652	21176288	2175288	22145849	22745587	7 23374048	23848205	2444264	25251713	25733771	26444814	27042406	27655669	28578722	29221648	30225220	30735352	3153445	32333423	33010055	2934476	29887510	3093747	31576700	3247476
${ }_{\text {O\& }} M_{\text {fuxed }}$	-	1154286	11878857	12209801	12417657	12754220	011106489	13372439	117706743	14159585	14429969	14828756	15163927	15507888	16025566	16386164	16836847	17235135	17683317	18131223	18510930	18984265	19367164	19971913	20393708	20973809
$\bigcirc \& M_{\text {varable }}$	-	904366	9302432	9565487	9728192	9991568	8810267558	10475767	10737520	11092129	11303802	11616058	11878478	12147781	12553156	12835484	13188373	13500217	1385140	14202000	14499125	10410511	10620346	10951834	11182993	11500957
(+) LRCM	-	863268	884850	906971	229646	952887	8787809	1001127	1026155	1051809	1078104	1105057	1132683	31161000	119025	1219776										
${ }^{(+)}$Depreciation		2437266	2498198	256065	262469	2690286	62757543	2826482	289714	2969573	3043812	311997	3197905	5327882	3359799	343794	3529889	3618136	3708589	3801304	3896336	${ }^{3993745}$	409359	4195928	4300826	4408347
($=$ P Profit before lax	-	12841026	13196057	13558424	13817050	14184051	114566590	14879903	15252047	15724560	16048725	16481535	16864345	517257063	17796080	18208038	17447036	17864657	18325729	18789005	19197896	9281860	9488510	9759458	9982003	10251275
$\stackrel{\text { (-) Revenue tax }}{ }$		9038743	9296789	9559826	9722575	9985940	110261916	610470150	1073194	11086468	11298174	11610416	11872849	12142164	12547493	12829835	13182710	13494562	13845479	14196337	14493484	10404867	10614729	10946183	11177363	11493308
${ }^{(+)}$REPM	932884	77	791	806	812	827	843	853	868	890	901	797	815	834	862	881	905	927	951	975	995	1021	1041	1074	1096	1128
${ }^{\text {REI }} \mathrm{CM}$	221866											-	-	-	-	.	.	.	-	-	-					
${ }_{\text {REP } P_{\text {cm }}}$		156	153	150	145	142	138	134	${ }^{131}$	129	125	-	-	-	-	-	-	-	-	-	-	\checkmark	-	-	-	
${ }_{\text {OREP cm }}$	711018																									
ghg.rom		621	638	656	668	686	705	719	737	761	776	797	815	834	862	881	905	927	951	975	995	1021	1041	1074	1096	1128
($=$ Profit affer lax w/out interest	-	3803059	3900059	3999404	4095287	4198939	94305518	4410606	4521012	4638983	4751452	4871917	4992311	5115733	5249448	5379084	4265231	4371021	4481201	4593643	4705407	1121987	-1125178	-1185651	-194263	
(-) Debt payments	-		3154724	3233929	3314432	3397292	3.48225	3569280	3658512	374975	${ }^{383} 724$	${ }^{3939818}$	40.38313	4139271	4222753	4348821				-		-	-			-
(+) RCM WF	-	2621739	2687282	2754464	2823326	2893909	2966257	3040413	3116424	3194334	3274193	3356047	343994	3525947	3614096	3704448	3797060	3891986	3989286	4089018	4191243	4296024	4403425	4513511	4626348	4742007
(+) Depreciation		2437266	2498198	- 2560653	2624669	2690286	62757543	2826482	289714	2969573	3043812	3119907	3197905	5 327785	3359799	344794	3529889	3618136	3708589	3801304	3896336	3993745	4093589	4195928	4300826	4408347
Free net cashfow	-59445523	8882065	5935816	608029	6228851	6385842	26547093	3678221	6870067	7052915	7225732	7408054	7591852	27780262	7980590	8178505	11592179	11881143	12179076	12483964	1279297	7167783	7371835	7523787	7732911	790749
$\Sigma_{\text {trecent ammal a costhow }}$		-50583459	-4462643	-38571713	-32 342863	-25957021	-19409928	-12701707	-5825640	1227275	8453007	15861060	23452912	231233174	39213764	47392269	58984448	70865991	8304667	95528631	10832618	115489401	122861236	130385023	138117935	146025383
	${ }^{\text {COEF }}$..	84.45	${ }^{85} .13$	${ }^{85} .82$	86.28	86.97	87.70	88.27	88.97	89.88	90.46	91.28	91.99	92.72	93.76	94.52	94.20	95.01	95.90	96.80	97.58	94.07	94.77	95.82	96.58	

ApPENDIX K

$\mathrm{LCOE}_{\text {wso }}$ Model Inputs		
Legend		
Yellow cells are for use input ifformation atoust he project		
Gray cells are not ued.		
Wind Project Information		Notes
Project Name	${ }_{\text {Finctar }}$ Wiad faum	
Project Location	Aracail (Brail)	
Turbine Model	Vetas 900-2Mw	
Number of Wind Turbines ($N_{\text {W7 }}$)	25	${ }^{[-1}$
Turbine Size	2000	${ }_{\text {[kw] }}$
Wind Farm Capacity (WF ${ }_{\text {app }}$)	50000	${ }^{\text {[kw] }}$
Rotor Diamenter (D)	90.0	[m]
Swept Area per Turbine (A)	6361.7	${ }^{\left[\mathrm{m}^{2}\right]}$
Hub height (H)	105.0	${ }^{\text {[m] }}$
Wind speed measured at (H_{o})	10.0	${ }^{[m]}$
Termin nugosity factor (a)	0.14	${ }^{\text {H/- }}$
Betz Linits soefficient ($C_{\text {Pamare }}$)	0.5926	${ }^{\text {H }}$
Lifetine of Wind Farm (N)	25	[yr]
Production Efficiency ($W F_{P E}$)	11.2\%	[\%]
Availabiliy	9.9\%	[\%]
	357	${ }_{\text {[d/yr] }}$
Wind Farm Life-Cycle Capial Cost Model		Notes
${ }^{W} T_{\text {cur }}$	553.725	[s/kw]
${ }_{\text {c }}$ w $^{\text {w }}$	26532	[s/w]
${ }^{R C}{ }_{W}{ }^{\text {r }}$	73.70\%	${ }_{[6 / 5 / 5 \mathrm{~kW}}$
$c_{k w}$	400.00	${ }_{\text {[s/kw] }}$
IPT	10.00\%	[\%]
${ }_{\text {cum }}$	484.359	[s/kw]
$T_{\text {max }}$	138000	[kg]
${ }^{R C} C_{T}$	$26.30 \% 8$	
$c_{\text {neel }}$	0.1900	[s/kg]
${ }^{\text {LWTG cw }}$	45.2647	[5/nkw]
${ }^{W} F_{\text {cap }}$	50000	${ }^{[k W]}$
$L^{L_{8}}$	16110	${ }^{[\mathrm{m}]}$
$C A B_{\text {coen }}$	2000.00	${ }^{[5 / m]}$
${ }^{\text {cPach }}$	30.969	[s/kw]
${ }^{E F}{ }_{\text {c }}$	40.00	${ }^{[5 / k W]}$
ς	0.08%	[\%]
${ }^{7 T_{c u}}$	11.4566	${ }_{\text {lskw }}{ }_{\text {d }}$
${ }_{T} L_{c}$	0.0400	[5/m]
${ }_{L} L_{r}$	1200	${ }_{[1 / \mathrm{kw}}{ }^{\text {d }}$
L_{*}	3000	[m]
${ }^{S B_{e}}$	113.00	[s/kWh]
$S_{\text {cum }}$	427345	$\left[5 \mathrm{~m}^{2} / \mathrm{kw]}\right.$
${ }^{W} F_{\text {app }}$	50000	${ }^{[k W]}$
$\mathrm{W}_{\text {max }}$	42.5338	[s/kw]
${ }^{B 1 / d}$ coses	500.00	${ }^{\left[s \mathrm{~m}^{2}\right]}$
${ }^{B 1 / d e r e a}$	300.0	$\left[\mathrm{m}^{2}\right]$
${ }^{P O_{C u}}$	359374	[s/kw]
FS	19.88	[s/kw]
${ }^{\text {dT }}$	87.22	[s/kw]
${ }_{\text {eG }}$	404.52	[s/kw]
$\mathrm{Fcu}_{\mathrm{cu}}$	3.7903	[s/kw]
$W^{\text {WaC }}$ prof	Oors	
$n_{\text {fn }}$	1.0	[yr]
$w_{\text {fow }}$	0.30\%	[\%]
${ }^{\text {ccc }} \mathrm{cu}$	24164	[\$skw]
κ	0.205	[\%]
LCCCM $_{\text {wF }}$	1210.6183	${ }_{[8 / \mathrm{sW]}}$

Figure K. 1 I-O representation of $L C O E_{\text {wso }}$ algorithm calculations for the hypothetical $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Aracati (Brazil) with sensitivity analysis of $L_{w t}$ (5D10D). Source: Own elaboration

Wind Farm Life-Cycle Capital Cost Model		Notes
${ }^{W} \mathrm{~T}_{\text {cu }}$	553.725	[s/kw]
${ }_{C M}{ }_{w T}$	26.53	[s/kw]
${ }_{R C}{ }_{w T}$	73.70\%	${ }^{[\% / s k w]}$
$C_{\text {kw }}$	400.00	[s/kw]
IPT	10.00\%	[\%]
$T_{\text {cu }}$	48.3859	[s/kw]
$T_{\text {mass }}$	138000	[kg1
${ }^{R C} C_{T}$	26.30%	[\%/skw]
$c_{\text {seal }}$	0.1990	[5/kg]
${ }^{\text {LWTG }}{ }_{\text {cu }}$	45.2647	[\$/mkw]
WF ${ }_{\text {cap }}$	50000	${ }^{\text {knW] }}$
L_{s}	16110	${ }^{[\mathrm{m}]}$
$C A B_{\text {cost }}$	2000.00	[\$/m]
${ }^{\text {cP }} \mathrm{Cu}$	30.9669	[s/kw]
$E F F_{\text {c }}$	400.00	[s/kw]
ς	0.08%	[\%]
${ }^{\text {TS }} \mathrm{cu}$	11.4566	${ }_{\left[s / 2 W_{c}\right]}$
$T_{\text {c }}$	0.0460	[5 m$]$
${ }_{\text {m, }}$	1200	[/LKW]
$L_{\text {, }}$	3000	[m]
${ }_{S B}$	113.00	[SkWh]
${ }^{\text {St }} \mathrm{cu}$	42.745	$\left.{ }_{15} \mathrm{~m}^{2} / \mathrm{kw}\right]$
WF cap	50000	${ }^{\text {[kW] }}$
W $T_{\text {mue }}$	42.5238	[s/kw]
${ }^{\text {Bld }}$ coen	500.00	${ }^{\left(51 / m^{2}\right]}$
${ }^{B l d} d_{\text {crea }}$	300.0	$\left[^{\left[\mathrm{m}^{2}\right]}\right.$
${ }^{\text {PO }} \mathrm{Cu}$	35.9374	[s/kw]
${ }_{\text {FS }}$	19.88	[s/kw]
${ }^{\text {DT }}$	87.22	[s/kw]
${ }_{\text {eG }}$	40.52	[s/kw]
$\mathrm{Fcu}_{\text {cu }}$	${ }^{3.7903}$	[s/kw]
$W_{\text {WACC }}^{\text {prof }}$	4.90%	[\%/yr]
$n_{\text {fn }}$	1.0	[yr]
$w_{\text {Fow }}$	${ }^{0.30 \%}$	[\%]
${ }^{\text {ccc }}{ }_{\text {cu }}$	2.4164	[s/kw]
κ	0.20\%	[\%]
$L_{\text {LCCCM }}{ }_{\text {wF }}$	1210.6183	$[\mathrm{s} / \mathrm{kW}]$

Figure K. 2 I-O system representation of $L C O E_{\text {wso }}$ algorithm calculations for the hypothetical $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Corvo Island (Portugal) with sensitivity analysis of $L_{w t}(5 D 10 D)$. Source: Own elaboration

Wind Farm Life-Cycle Capial Cost Model		Notes
${ }^{W} T_{\text {cu }}$	5537256	[SkW]
${ }_{C M}{ }_{\text {wT }}$	26.532	[s/kw]
${ }^{R C}{ }_{W}{ }_{T}$	73.70\%	[F/s/kw]
$c_{k v}$	400.00	[s/kw]
${ }_{\text {IPT }}$	10.09\%	[\%]
$T_{\text {cu }}$	484.389	[s/kw]
$T_{\text {maxs }}$	138000	[kg]
${ }_{R C} C_{T}$	26.308	[$5 / 5 / \mathrm{kw}$]
$c_{\text {nel }}$	0.1900	[s/kg]
${ }^{\text {LWTG cw }}$	45.2647	[\$/wkw]
${ }^{W} F_{\text {app }}$	50000	${ }^{\text {[kW] }}$
L_{k}	16110	[m]
$C A B$ coes	2000.00	[5/m]
${ }^{\text {cPaw }}$	30.966	[skw]
$E_{\text {c }}$ c	40.00	[s/kw]
ς	0.08\%	[\%]
${ }^{75}{ }_{\text {cu }}$	11.4566	${ }_{\text {Lskw }}{ }_{\text {d }}$
${ }_{T} L_{\text {c }}$	0.0400	[5 mm$]$
${ }_{T} L_{r}$	1200	[1/kW]
L_{*}	3000	[m]
${ }^{S B_{e}}$	113.00	[s/kWh]
${ }^{\text {Stcu }}$	427345	$\left[\mathrm{sm}^{2} / \mathrm{kw]}\right.$
$W_{\text {cap }}$	50000	${ }^{\text {[kw] }}$
$\mathrm{w}_{\text {maxt }}$	42.5238	[s/kw]
${ }^{\text {Bld }}$ cost	50.00	${ }^{\left[s \mathrm{sm}^{2}\right]}$
${ }^{\text {Bld }}$ erea	300.0	$\left[\mathrm{m}^{2}\right]$
${ }^{P O} \mathrm{Cu}^{\text {u }}$	35.9374	[s/kw]
FS	19.88	[s/kw]
${ }^{\text {DT }}$	87.22	[s/kw]
eg	40.52	[s/kw]
$\mathrm{FCu}_{\text {cu }}$	3.7903	[skw]
WACC ${ }_{\text {prof }}$	4.900%	[\%/yr]
${ }^{n}{ }_{\text {fn }}$	1.0	[y]
$w_{\text {faw }}$	0.30\%	[\%]
${ }^{\text {ccc }}{ }_{\text {cu }}$	24164	[s/kw]
κ	0.20\%	[$\%$]
LCCCM ${ }_{\text {wr }}$	1210.6183	$[\mathrm{s} / \mathrm{kW}]$

Figure K. 3 I- O system representation of $L C O E_{\text {wso }}$ algorithm calculations for the hypothetical $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Cape Saint James (Canada) with sensitivity analysis of $L_{w t}(5 D 10 D)$. Source: Own elaboration

Months	$\begin{gathered} v_{\mathrm{wc}} \\ (m / s) \end{gathered}$	$\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	$H_{\text {prod }}$	y_{1}	y_{2}	y_{3}	yr_{4}	y_{5}	$y r_{6}$	y_{7}	y_{8}	yr9	yrio	$y r_{l \mid}$	${A E P P_{\text {avail }}(k W h)}^{\text {W }}$				yr ${ }_{16}$	y_{17}								
															$y_{1 / 2}$	$y_{1 / 3}$	${ }^{\text {r }} r_{\text {l }}$	${ }^{2} r_{15}$										
January	5.8	1.1665	738	1693132	8890198	3802165	7507410	557361	8890198	557361	557361	4232212	8890198	8890198	557361	3802165	7507410	4232212	8890198	8890198	557361	3802165	7507410	557361	3802165	7507410	4232212	4232212
February	4.9	1.1666	639	847940	6783520	3662567	6783520	777316	6783520	777316	777316	4713419	6783520	6783520	777316	3662567	6783520	482342	482342	3290403	4713419	7693599	1572412	1572412	7693599	6783520	4713419	4713419
March	4.0	1.1671	735	555090	7476817	5424310	8853970	975829	7476817	975829	975829	6543367	7476817	7476817	975829	5424310	8853970	894553	894553	1809568	4214966	1809568	1686232	1686232	7806630	8853970	3786671	6543367
April	4.7	1.1667	711	865098	6327908	6327908	4076176	1630708	6327908	1630708	1630708	7230621	6327908	6327908	1749983	6327908	4076176	943697	943697	1630708	6327908	1630708	3661984	943697	7230621	6327908	1749983	7230621
May	6.0	1.1670	735	1809500	542410	7476539	5424109	1809500	5424109	1809500	1809500	7806340	5424109	5424109	1688169	7476539	6543124	1686169	1686169	975792	8853641	975792	555069	894520	6543124	4214809	1686169	7806340
June	7.9	1.1686	687	3949904	3944904	7306444	6124120	3544051	3944904	3544051	3544051	8286679	3944904	3949904	3544051	730644	5076764	1693625	1693625	837237	7306444	837237	837237	3544051	5076764	5076764	913305	8286679
${ }^{\text {July }}$	8.6	1.1698	735	5437072	3795580	8874801	1690199	4224882	3795580	4224882	4224882	556396	556396	3795580	5437072	8874801	1813825	3795580	3795580	556396	7494407	556396	978125	4224882	4224882	1690199	896658	556396
August	9.6	1.1677	735	7480694	1810506	1810506	1810506	8858561	1810506	5427123	5427123	895017	895017	1810506	4217151	1810506	1687106	5427123	7810678	7810678	895017	4217151	7810678	5427123	1810506	1810506	555378	895017
September	10.1	1.1657	711	8554384	1629176	1629176	3658543	7542482	1629176	6321963	6321963	942810	942810	1629176	6321963	1629176	3658543	6321963	7223828	7223828	942810	5240771	8554384	6321963	1629176	3658543	6321963	942810
October	9.7	1.1645	735	7789	973650	973650	553851	7460125	973650	7460125	7460125	1682467	1682467	973650	8832203	973650	553851	7460125	6528759	6528759	1805528	6528759	4205556	7460125	973650	973650	8834203	1682467
November	9.2	1.1638	687	6098939	833795	833795	833795	6098939	833795	7276401	7276401	1686661	1686661	833795	7276401	833795	833795	7276401	5055889	5055889	1571703	6968989	6098939	7276401	833795	833795	7276401	1686661
December	7.6	1.1651	735	3780365	554166	554166	974204	5415277	554166	8839226	8839226	3780365	3780365	554166	7464366	554166	974204	8839226	4207946	4209946	3780365	7793630	5415277	8839226	554166	554166	7464366	3780365
Annual	7.4	1.1666	8579	4885319	4844328	48870026	48290403	48895032	48443228	48844485	4884485	48356354	4839173	4844328	48841866	4877026	4836288	49053015	49213265	48817403	4846358	48054765	4888303	4874993	48179078	4828240	4843028	48356

Table K2 Energy production mpo of the wind farm for Corvo Island (Portugal) with sensitivity analysis of $L_{w t}$ (SD10D)

Months	$\begin{gathered} v_{w c} \\ (m / s) \end{gathered}$	$\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	$H_{\text {prod }}$ (h)													${ }_{\text {E }}^{\text {avait }}$ (Wh$)$												
				$y r_{1}$	yr_{2}	y_{3}	y_{4}	yr_{5}	yr6	y_{7}	yrs	yr,	yr ${ }_{10}$	y^{\prime}	y_{12}	$y r$	${ }^{2} r_{14}$	${ }^{2} r_{15}$	yr ${ }_{16}$	$y r_{17}$	${ }^{2} r_{18}$	${ }^{\text {y }}{ }_{19}$	20	21	22	yr ${ }_{23}$	${ }^{2} r_{24}$	
January	15.	1.2561	738	${ }^{32} 73$	${ }_{32} 73$	327347	${ }^{32} 27479$	32734798	32734798	32737798	32734798	3273798	32734788	32734788	8013494	32734798	32734798	32734798	32734798	32734798	32734798	32734798	40754899	32734798	12734798	2801994	8013494	7100933
February	14.7	1.252	639	24248099	1440	6912583	2628820	1446724	14467424	2628520	2628820	6912583	1446724	1446724	774922	26228520	6912583	17377262	6912583	6912583	6912583	6912583	2246274	2622852	2622852	28959884	7749225	17351256
March	12.7	1.2495	735	1822	1822	8896263	2783479	1237654	18226532	2783479	2783479	8896263	1237694	18226532	9971944	27834779	8896263	30108137	8896263	8896263	8896263	8896263	22991460	27834779	27834779	3141483	9971944	
April	12.4	1.2490	711	16057711	19287404	9641890	24888913	9641890	19287404	2482913	24828913	9641890	9641890	1928704	9641890	24828913	9641890	26913496	9641890	29111609	9641890	9641890	22185639	19971999	24828913	24919931	9641890	
May	1.2	1.242	735	12306614	25533644	9915560	19834848	9915560	2553364	1983448	19834848	9915560	9915560	2553364	12306614	19834848	9915560	25336	9915560	27673	9915560	9915560	20988216	19834848	19834848	1988277	12306614	
June	10.4	1.235	687	9212474	25714865	11433985	16883838	8218718	25714865	16838388	16838388	1143985	8218718	25714865	15342558	16883388	11433985	16838388	11433985	23723122	11433985	11433985	16955390	16838388	16838388	16700885	1534258	
July	10.0	1.2275	735	8739531	2957699	16314803	16314803	7795266	2957699	16314803	16314883	16314883	7795266	2957699	17905422	16314803	16314803	7795266	16.514883	19996205	16314883	16.514883	15530715	16046466	16.51483	16780185	17905422	86
August	9.7	1.2216	735	7757712	12099972	17819161	12099972	1781961	12099972	12099972	12099972	1781961	1781961	12099972	19501798	12099972	17819161	8697428	17819161	17891961	17819161	17819161	1298319	15377881	12099972	1258888	19501798	7111
September	10.4	1.2234	711	9444238	7515148	18892028	944238	26.361991	7515148	9444238	9444238	1889202	26.361991	7515148	24319440	9444238	18892028	9444238	18892028	15728541	18892028	1889028	12321085	13275521	9444238	8842059	2431940	
October	13	1.2327	735	19679010	8776461	2972682	9837656	2533032	8776461	9837656	9837656	2970882	25333032	8776461	2745940	9837656	2533032	9837656	25333032	12209924	29702882	25333032	12242444	8858686	9837556	8122639	2745940	2159
November	14.3	1.2429	687	23874256	9271165	25878688	8271078	2799288	9271165	8271078	8271078	25878888	2799285	9271165	2799285	8271078	25878688	11506828	25878888	9271165	25878688	25878888	7423013	8271078	8271078	8870902	2799288	
December	15.1	1.2528	735	301883.30	9997848	2574545	7955677	19999456	9997848	7955677	7955677	2574545	1999956	9997848	32488621	7955677	30186350	16650529	30186350	9997848	2574545	30186350	6350393	7955677	7955677	9163644	3298821	42473
Annual	12.5	1.2404	8579	212467325	213202961	213887985	212232670	74	213202961	212238670	212233670	21388788	212	213202961	212704	212223670	213959	213487670	213959139		21388788	213959139	213109827	21322830	212223670			

Table K4 Wind speed series sinulations for $A E P_{\text {crati in Ar Aracai（Brail）}}$

Monhs	$\begin{aligned} & v_{\text {mw }} \\ & (\mathrm{mss}) \end{aligned}$	Wind speed data series for simulations（ m （s）																								
		yri	y_{2}	y_{3}	y_{4}	$y_{\text {r }}$	$y r_{6}$	y_{7}	${ }^{\text {r }}$ 8	yr，	${ }^{\text {r }} r_{10}$	yrı	${ }^{\text {r }}{ }_{12}$	${ }^{\text {r }} 1_{13}$	${ }_{\text {r }}^{1 / 4}$	${ }^{2} r_{15}$	${ }^{\text {r }} 16$	${ }^{1} r_{17}$	${ }^{\text {r } / 1 s}$	${ }^{\text {r }} 19$	yr 20	${ }^{\text {r } 21}$	${ }^{1} 22$	${ }^{\text {yr } 23}$	${ }^{1} 24$	${ }_{\text {yr } 25}$
January	5.8	5.8	10.1	${ }^{7.6}$	9.6	4.0	10.1	4.0	4.0	7.9	10.1	10.1	4.0	7.6	${ }^{9.6}$	7.9	10.1	10.1	${ }^{4.0}$	${ }^{7.6}$	${ }^{9.6}$	${ }^{4.0}$	${ }^{7.6}$	${ }^{9.6}$	7.9	7.9
February	4.9	4.9	9.7	7.9	9.7	4.7	9.7	4.7	4.7	8.6	9.7	9.7	4.7	7.9	9.7	4.0	4.0	7.6	8.6	10.1	${ }^{6.0}$	${ }_{6} .0$	10.1	9.7	8.6	8.6
March	4.0	4.0	9.6	8.6	10.1	4.9	9.6	4.9	4.9	9.2	9.6	9.6	4.9	8.6	10.1	4.7	4.7	${ }_{6} .0$	7.9	${ }_{6} .0$	5.8	5.8	9.7	10.1	7.6	9.2
April	4.7	4.7	9.2	9.2	7.9	5.8	9.2	5.8	5.8	9.6	9.2	9.2	6.0	9.2	7.9	4.9	4.9	5.8	9.2	5.8	7.6	4.9	9.6	9.2	${ }^{6.0}$	9.6
may	6.0	6.0	${ }_{8.6}$	9.6	8.6	6.0	8.6	6.0	6.0	9.7	8.6	8.6	5.8	9.6	9.2	5.8	5.8	4.9	10.1	4.9	4.0	4.7	9.2	7.9	5.8	9.7
Јиие	7.9	7.9	7.9	9.7	9.2	7.6	7.9	7.6	7.6	10.1	7.9	7.9	7.6	9.7	${ }^{8.6}$	6.0	${ }_{6} .0$	4.7	9.7	4.7	4.7	7.6	8.6	8.6	4.9	10.1
July	8.6	${ }^{8.6}$	7.6	10.1	5.8	7.9	7.6	7.9	7.9	4.0	4.0	7.6	${ }^{8.6}$	10.1	${ }^{6.0}$	7.6	7.6	4.0	9.6	4.0	4.9	7.9	7.9	5.8	4.7	4.0
August	9.6	9.6	${ }_{6} .0$	${ }_{6} .0$	6.0	10.1	6.0	8.6	8.6	4.7	4.7	${ }^{6.0}$	7.9	6.0	5.8	8.6	9.7	9.7	4.7	7.9	9.7	${ }^{8.6}$	${ }^{6.0}$	${ }^{6.0}$	4.0	4.7
September	10.1	10.1	5.8	5.8	7.6	9.7	5.8	9.2	9.2	4.9	4.9	5.8	9.2	5.8	7.6	9.2	9.6	9.6	4.9	${ }^{8.6}$	10.1	9.2	5.8	7.6	9.2	4.9
October	9.7	9.7	4.9	4.9	4.0	9.6	4.9	9.6	9.6	5.8	5.8	4.9	10.1	4.9	4.0	9.6	9.2	9.2	${ }^{6.0}$	9.2	7.9	9.6	4.9	4.9	10.1	5.8
November	9.2	9.2	4.7	4.7	4.7	9.2	4.7	9.7	9.7	${ }_{6} .0$	6.0	4.7	9.7	4.7	4.7	9.7	8.6	8.6	5.8	9.6	9.2	9.7	4.7	4.7	9.7	${ }_{6} .0$
December	7.6	7.6	4.0	4.0	4.9	8.6	4.0	10.1	10.1	7.6	7.6	4.0	9.6	4.0	4.9	10.1	7.9	7.9	7.6	9.7	8.6	10.1	4.0	4.0	9.6	7.6
Annual	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4

Table K．5 Wind speed series s simulations for AEP arai in Corvo Is land（Portugal）																										
Months	$\left.\begin{array}{l} v_{w w} \\ (m(\mathrm{~ms}) \end{array}\right)$	y_{1}	y_{2}	$y r_{3}$	${ }^{\text {r }}$ f		y_{6}	${ }_{\text {y }}^{7}$	${ }^{\text {r }}{ }_{8}$	yr9	${ }^{\text {y }}$ Io	Wind speed data series for simulations（ m s）					${ }^{2} 16$	${ }^{2} r_{17}$	${ }^{\text {r }}$／s	yr 19	y_{20}	${ }^{\text {r }} 21$	y^{122}	${ }^{12} 2$	${ }^{\text {y } 2+~}$	${ }^{\text {y } 25}$
												yr ${ }^{\prime}$	${ }^{\text {r }} 12$	$y_{1 / 3}$	$\mathrm{rl}_{1 /}$	${ }^{\text {r } / \text {／}}$										
January	11.7	${ }^{11.7}$	11.7	11.7	11.7	11.7	11.7	11.7	10.6	10.6	11.7	10.6	10.6	10.6	11.7	10.6	10.6	11.7	10.6	10.6	10.6	10.6	10.6	10.6	10.6	10.6
February	11.5	11.5	8.2	11.5	11.5	11.5	7.6	11.5	11.7	6.1	7.6	11.7	6.1	10.5	11.5	9.5	11.7	8.2	8.9	7.6	7.1	11.5	6.4	9.5	11.5	11.7
March	10.5	10.5	7.1	11.5	11.5	11.5	8.9	11.5	11.5	6.4	7.1	11.5	${ }^{6} .4$	11.5	11.5	8.9	11.5	7.6	9.5	8.2	11.5	11.7	6.1	10.5	11.7	7.1
April	9.5	9.5	9.5	10.6	10.6	10.6	9.5	10.6	8.2	7.1	9.5	11.5	7.1	11.5	8.2	8.2	11.5	7.1	10.5	7.1	11.7	11.5	7.1	7.1	11.5	7.6
May	8.2	8.2	10.5	10.5	10.5	8.9	10.5	10.5	10.5	7.6	8.9	10.5	7.6	11.7	10.5	7.6	10.5	6.4	11.5	8.9	6.4	10.5	7.6	11.7	10.5	8.2
June	7.1	7.1	11.5	9.5	9.5	9.5	10.6	8.2	11.5	8.2	10.6	9.5	8.2	9.5	6.4	7.1	9.5	6.1	11.5	9.5	6.1	9.5	8.2	11.5	9.5	8.9
July	6.1	${ }_{6} .1$	11.5	8.2	8.9	10.5	11.5	9.5	7.1	8.9	6.1	8.9	8.9	8.9	6.1	${ }_{6} .4$	8.9	8.9	11.7	10.5	7.6	8.9	8.9	11.5	7.6	9.5
August	6.4	${ }_{6} 6.4$	10.6	7.6	7.6	7.6	11.5	8.9	7.6	9.5	6.4	8.2	9.5	8.2	10.6	6.1	8.2	11.5	${ }_{6} .1$	11.5	8.2	8.2	9.5	8.2	7.1	10.5
September	7.6	7.6	6.1	8.9	8.2	8.2	8.2	6.1	8.9	10.5	10.5	7.6	10.5	7.6	8.9	10.5	7.6	11.5	6.4	11.5	8.9	7.6	10.5	7.6	${ }_{6} 6.4$	${ }_{6.1}$
October	8.9	8.9	8.9	7.1	${ }_{6} 6.1$	7.1	${ }_{6} .1$	6.4	9.5	11.5	11.5	7.1	11.5	7.1	9.5	11.5	7.1	10.6	${ }^{7.1}$	${ }_{6} .1$	9.5	7.1	11.5	${ }_{6} 6$	${ }^{6.1}$	${ }_{6} 6.4$
November	10.6	10.6	7.6	6.4	6.4	6.4	6.4	7.1	6.4	11.5	8.2	6.4	11.5	${ }_{6} .4$	7.1	11.5	6.4	10.5	7.6	6.4	10.5	6.4	11.5	6.1	8.9	11.5
December	11.5	11.5	6.4	6.1	7.1	6.1	7.1	7.6	6.1	11.7	11.5	6.1	11.7	6.1	7.6	11.7	6.1	9.5	8.2	11.7	11.5	6.1	11.7	8.9	8.2	11.5
Annual	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1

szi	szi	s ${ }^{\text {d }}$	szi	szi	szi	szl	szı	szl	szi	szi	szı	szi	szl	szı	szl	szi	szi	szi	szl	szi	szi	szl	s 21	szl	szı	${ }_{\text {ponu }}$
691	$t \stackrel{s}{ }$	Iol	L＇6	L＇6	${ }^{0} 6$	r＇$/$	$\varepsilon \nmid I$	toor	ISI	tzI	$r^{\text {S }}$ I	$\stackrel{1}{6}$	$t ' s I$	tor	İI	عヶl	$\stackrel{1}{ }$	$\stackrel{\circ}{ }$	toor	İI	$\stackrel{1}{6}$	हौI	tool	TSI	ISI	
$6 \varepsilon I$	$r s$	¢о	oor	oor	$\stackrel{\circ}{6}$	＜tı	＜tı	tor	＜${ }^{\text {ct }}$	İI	＜tı	oor	I＇s	tor	rsi	くıt	o＇ol	o＇or	tor	$r s$	oor	＜t＇t	tol	$\varepsilon \nmid l$	¢＊I	．ариало
¢єı	＜t ${ }^{\text {c }}$	86	toi	roi	İII	E $\dagger 1$	rsi	$\tau!$	EtI	tol	$\varepsilon \nmid I$	tor	ctor	oor	¢ヵI	r＇si	tor	tor	oor	\＆$\dagger 1$	tol	rsi	oor	İI	İI	129010
г¢ı	¢†t	zoo	tor	L＇II	t＇II	İI	reı	tıI	İI	tol	rıı	tol	と $\dagger 1$	$\stackrel{\circ}{6}$	＜tı	זধI	tol	tor	46	＜t ${ }^{\text {ct }}$	tor	r $¢$	$\stackrel{\circ}{6}$	tor	tor	1．apuads
t＇6	reI	t＇II	til	rıI		くıı	くzı	くzı	くzı	oor	＜zı	İI	İI	İII	くてı	くıı	İII	でı	til	くzı	でII	くıı	$\tau \cdot I$	${ }^{\circ} 6$	$\stackrel{\circ}{6}$	$\operatorname{snn}^{\text {n }} \mathrm{n}$
oor	くıı	szi	tıI	ย \downarrow	zzı	¢ ¢	ャัı	r $¢$	tıI	$\stackrel{6}{ }$	tiz	tıI	くıı	$r s I$	$\stackrel{6}{6}$	tıl	tıI	tıI	ISI	4	tıı	tıi	rst	oor	oor	${ }_{s} n^{\prime}$
zzı	tiz	くzı	くıı	くıı	szı	ztil	r＇ıl	EtI	z＇H	くzı	$\tau \cdot I$	くzı	tıI	＜tı	oot	z＇H	くıı	くzı	ctı	oor	くıI	2＇H	＜tı	tool	tol	วun¢
¢zı	でı	өधI	r\＆	İI	$t \varepsilon I$	tor	tor	＜t＇t	toi	$\varepsilon \nmid I$	tor	r\＆I	z＇II	$\varepsilon \nmid l$	tol	tor	r $\varepsilon 1$	r\＆I	¢ $\dagger 1$	tor	r\＆I	tol	$\varepsilon+t$	z＇H	z＇II	${ }_{\text {Sow }}$
6.21	toot	¢tI	$\varepsilon \nmid I$	ยєI	$8 \varepsilon I$	tor	tol	rsi	tol	＜t ${ }^{\text {ct }}$	tor	$\varepsilon \nmid I$	tor	r $¢ 1$	tor	tool	$\varepsilon \nmid t$	$\varepsilon \nmid I$	İI	tor	$\varepsilon \nmid I$	toot	İI	tıI	tzı	${ }^{\mu d v}$
6 zi	tor	$\varepsilon s I$	く＊t	くtı	s\＆I	oor	oor	o＇or	oor	rsi	oor	＜th	tor	＜zı	t＇II	o．or	＜t＇t	＜tht	くzi	t＇II	＜th	o＇or	＜al	くıI	くzı	ypuw
İI	oor	9si	rsi	$t S I$	$\varepsilon \nmid I$	¢＇6	$\stackrel{6}{6}$	－6	－6	ret	$\stackrel{\circ}{6}$	$r s t$	oor	tiz	tıı	$\stackrel{\circ}{6}$	rst	rsi	tıI	tıI	rss	$\stackrel{1}{6}$	tiz	＜tıl	＜tı	корияp．a
$\varepsilon \%$	$\stackrel{6}{ }$	＜til	$t \leqslant I$	$t \cdot s I$	991	$t \cdot s$	$t \leqslant I$	$t \leqslant I$	$t \leq I$	$t \leqslant I$	t＇SI	$t s i$	16	$t \leqslant s$	$t \leqslant I$	$t \cdot s I$	tst	tst	$t \cdot s$	$t \leqslant I$	$t \leqslant I$	$t \leqslant I$	t＇st	$t \cdot s I$	t＇st	кориит
szel	t2，ic	${ }_{\text {82，／K }}$	${ }^{22,1 i}$	${ }_{12,1 /}$	${ }_{02,1 /}$	${ }^{61,1 i}$	${ }^{8 / 1.1}$	${ }^{41,1 i}$	${ }^{\text {9，}}$ ，	st， 1.	${ }^{\text {H／，}}$	${ }_{\text {El／，}}$	${ }^{21,1 i}$	${ }^{\prime \prime}, 1 /$	${ }^{0}$ I， 1 I	${ }_{6.1}$	${ }_{8,1}$	${ }_{4}{ }_{\text {L }}$	9，1	${ }_{\text {s，i }}$	${ }_{\text {t，ik }}$	$\varepsilon_{1 / 1}$	${ }_{\text {z，／i }}$	${ }_{\text {I A }}$	（sum）	

[^113]Table K. 7 kWh per $\mathrm{H}_{\text {prod }}$

Sites	$k W y r$																								
	$y r_{1}$	yr_{2}	yr_{3}	rr_{4}	rr_{5}	$y r_{6}$	$y r 7_{7}$	yr_{8}	yrg	yr r_{10}	$y r_{1 I}$	$y r_{12}$	y_{13}	$y_{1 / 4}$	rl_{15}	yr ${ }_{16}$	yr_{17}	y 1_{18}	yr_{19}	y_{20}	yr 21	yr_{22}	yr_{23}	${ }^{2} r_{24}$	y_{25}
Aracari (Brazil)	5695	5647	5674	5629	5699	5647	5694	5694	5637	5641	5647	5693	5674	5637	5718	5737	5690	5649	5602	5698	5682	5616	5628	5645	5637
Corvo Island (Portugal)	10451	10535	10466	10473	10467	10570	10498	10419	10528	10530	10452	10528	10510	10504	10472	10452	10517	10522	10556	10569	10463	10523	10531	10446	10392
Cape Saint James (Canada)	24766	24852	24932	24738	24788	24852	24738	24738	24932	24788	24852	24794	24738	24940	24879	24940	24908	24932	24940	24841	24855	24738	24888	24794	24877

Item	0		2		4	5	6	7	8	9	10	11	12	13	14	15					20	21	22	23	24	25
(-) LCCCM $_{\text {wF }}$	60530914	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
$W_{\text {cm }}{ }_{\text {cm }}$	27686278	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
$T_{C M}$	24219295	-	-	-	-	-	-	-				-														-
$L_{\text {LWTG }}^{\text {ch }}$ (2263233	-	-	-	.	.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
${ }_{C P}{ }_{\text {cm }}$	1545346	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
${ }_{T S} \mathrm{CM}^{\text {M }}$	572832	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-			
$S_{\text {cu }}$	2136726	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			
$P_{\text {CM }}^{C M}$	1796870	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-			
$F_{C M}$	189514	-	-	-	-		-				-	-				-										
$C L C C_{C M}$	120820	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
$L_{\text {LCPM }}^{\text {WF }}$ (${ }^{\text {(kWh/rr }}$)	-	48856319	48444328	48676026	48290403	48895032	48444328	48844485	48844485	48356354	48391173	4844328	48841866	48676026	48362288	49053015	49213265	48817403	48463568	48054765	48883303	48747993	48179078	48285240	48430728	48356354
(+)AAR (SM/yr)	-	4297170	4367456	4498053	4573979	4747030	4820855	4982192	5106747	5182105	5315483	5454354	5636591	5757889	5863796	6096233	6269053	6374091	6486088	6592161	6873465	4918060	4982181	5117988	5261744	5385005
PPAR	-	4297170	4367456	4498053	4573979	4747030	482085	4982192	5106747	5182105	5315483	5454354	5636591	5757889	5863796	6096233	6269053	6374091	6486088	6592161	6873465	-	-	-	-	-
EMP	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	4918060	4982181	5117988	5261744	5385005
(-) O\& $\mathrm{M}_{\text {WFCM }}$	-	3949353	4013810	4133691	4203326	4362211	4455206	4603527	4717835	4786883	4909110	5036592	5204091	5315304	5412299	5626056	5784761	5880906	5983464	6080550	6339242	5846638	5922095	6082753	6252834	6398541
$O \& M_{\text {fixed }}$	-	2654579	2697997	2778672	2825574	2932475	2978078	3077743	3154685	3201236	3283628	3369414	3481989	3556919	3622341	3765928	3872685	3937570	4006755	4072279	4246052	4340155	4396739	4516587	464344	4752225
$O \& M_{\text {variable }}$	-	1294774	1315813	1355018	1377752	1429737	1477127	1525784	1563150	1585447	1625482	1667177	1722102	1758385	1789958	1860129	1912077	1943336	1976710	2008271	2093190	1506483	1525356	1566166	1609385	1646316
(+) LRCM	-	863268	884850	906971	929646	952887	976709	1001127	1026155	1051809	1078104	1105057	1132683	1161000	1190025	1219776	-	-	-	-	-	-	-	-	-	-
(+) Depreciation		2465945	2527594	2590783	2655553	2721942	2789990	2859740	2931234	3004514	3079627	3156618	3235533	3316422	3399332	3484316	3571424	3660709	3752227	3846033	3942183	4040738	4141756	4245300	4351433	4460219
(\Rightarrow Profit before tax	-	3677030	3766090	3862117	3955852	4059647	4132348	4239532	4346300	4451746	4564104	4679437	4800717	4920006	5040854	5174268	4055715	415389	4254851	4357643	4476406	3112161	3201842	3280536	3360342	344688
(-) Revenue tax	-	1289151	1310237	1349416	1372194	1424109	1446256	1494658	1532024	1554632	1594645	1636306	1690977	1727367	1759139	1828870	1880716	1912227	1945827	1977648	2062040	1475418	1494654	1535396	1578523	1615502
(+) REPIM	385916	2045	1989	1961	1910	1898	1847	1829	1797	1748	1720	280	289	296	301	313	322	327	333	339	353	361	365	375	386	395
${ }_{\text {REI }}^{\text {ch }}$	222419		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
${ }_{\text {REP }}^{\text {cı }}$	-	1825	1765	1730	1675	1654	1599	1573	1535	1482	1447	.	-	-	-	-	-	-	-	-	-	-	-	-	-	-
OREP ${ }_{\text {CM }}$	163497	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GHG. $\mathrm{R}_{\text {CM }}$	-	221	224	231	235	24	248	256	262	266	273	280	289	296	301	313	322	327	333	339	353	361	365	375	386	395
\Leftrightarrow Profit after tax w/out interest	-	2389924	2457842	2514663	2585568	2637436	2687939	2746704	2816073	2898863	2971179	3043411	3110029	3192935	3282017	3345711	2175321	224194	2309357	2380334	2414720	1637103	1707553	1745515	1782205	1831576
(-) Debt payments	-	-	31984	3271640	3353431	3437267	3523199	3611279	3701561	3794100	3888952	3986176	4085830	4187976	4292676	4399992	-	-	-	-	-	-	-	-	-	-
(+) R $_{\text {CM }}^{\text {wF }}$	-	2621739	2687282	2754464	2823326	2893909	2966257	3040413	3116424	3194334	3274193	3356047	3439949	3525947	3614096	3704448	3797060	3891986	3989286	4089018	4191243	4296024	4403425	4513511	4626348	4742007
(+) Depreciation		2465945	2527594	2590783	2655553	2721942	2789990	2859740	2931234	3004514	3079627	3156618	3235533	3316422	3399332	3484316	3571424	3660709	3752227	3846033	3942183	4040738	4141756	4245300	4351433	4460219
\Leftrightarrow (Free net cashflow	-6014999	7477608	4480874	4588270	4711015	4816020	4920987	5035578	5162170	5303612	5436047	5569900	5699680	5847328	6002769	6134483	9543804	9794689	10050870	10315384	10548146	9973866	10252734	10504325	10759986	11033802
$\Sigma_{\text {freenet annual cashfow }}$	-	- 52667391	-48186517	4359824	-38887231	-34071211	-29150224	-24114646	-18952476	-13648865	-8212818	-2642918	3056763	8904091	14906860	21041343	30585147	40379836	50430706	60746090	71294236	81268102	91520836	102025162	112785148	123818950

[^114]

Table K. 10 Cashlow for 25 years of	he wind farm	project	50000 k		${ }_{\text {e Sain }}$	(Canad				with sensiti	nal	is of $L_{\text {w }}$ (5	${ }^{\text {D } 10 \mathrm{D})}$													
Item	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	2	23	24	25
(-) LCCCM_{w}	6053094		-	-	-																					
${ }_{\text {w }}^{\text {cu }}$ \%	27686278	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-		-	-	-	-	-	-	-
$T_{\text {cm }}$	24219295	-	-	-	-	-	-	-	-		-		-	.	-	-		-	-	-	-			-		
${ }_{L W T G}{ }_{c u}$	2263233	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-		
${ }^{\text {cP }}$ cM	1545346	.		.	-	-	-		-		-		-			.		.								
${ }_{\text {TS }}^{\text {cm }}$	572832	-	-	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-	-			-	
$\mathrm{SICM}_{\text {cm }}$	2136726	.	-	-	.		.		-		-	.		.						-		
$\mathrm{PO}_{\mathrm{cm}}$	1796870	-	-	-	-	-	-	-	-	-	-		-		-	-	-	-	-		-			-		
$F_{C M}$	189514	-	-	-	-	-	.	-	.		.		-		-	-		.			-					
ccc $_{\text {cu }}$	120820			-	-	-	-	-	-		-		-	-	-	-		-			-			-		
LCPM $M_{W F}(k W h / y r)$.	212467325	21322961	21388798	212223670	212655974	213202661	21223870	21223850	21387985	212655974	21322961	21270429	21222360	213595139	21387600		21367813			213109827	21328853	21223670	21351271	2442	
${ }^{(+)}$AAR (SM $/$(y)	.	3012143	3098929	3186088	3240888	33286465	34206386	3490500	35773012	3694893	37660580	38701386	39576163	4047880	41824978	42766117	43942368	44981873	46151597	4732124	483116	3468891	35382431	3648727	3725877	3817694
PPAR	-	3012143	3098929	3186088	3240888	32286465	34206386	3490500	35773012	3694893	3760580	38701386	39576163	4047880	41824978	42766117	4392368	44981873	46151597	4732124	483116					
EMP	-													-				-			-	34682891	35382431	36487277	3725787	38317694
$\xrightarrow{-})$	-	20.58653	21176289	21775289	22145849	2274558	23374048	23848206	2444264	25251714	25733772	26444815	27042406	27655670	28578723	29221649	30025221	3073353	3153445		33010055	2934777	2988710	3092778	31576701	3247467
	-	1154287	1187885	12209802	1241765	12754220	13106490	1337239	1370674	14159585	1442969	1482875	1516392	15507889	1602567	16386165	1683848	17235136	1768317	1813122	18510931	18984266	1936764	19971914	20393708	20973810
O\& M werathe	-	904366	9302432	9565487	9728192	9991568	1026755	10475767	10737520	11092129	11338802	11616058	11878478	12147781	12553156	1283584	13188373	13500217	1385140	14202000	14499125	10410511	1062346	1095183	1118293	11500957
${ }^{(+)}$LRCM	-	863268	888850	90971	92946	95288	976709	1001127	1026155	1051809	108104	1105057	1132683	1161000	119025	1219776		-			-					
(+) Depreciation		244397	2504584	2567199	2631379	2697163	276459	2833707	2904550	297163	3051592	3127882	3206079	3286231	3368387	3452597	3538912	3627384	3718069	3811021	3906296	400395	4104053	420664	4311820	4419616
($=$ Profit before tax	-	12847255	1322042	13569969	13823758	14190927	14577639	14887127	15259452	15732151	16056505	16489510	16872519	17265441	1784667	18216840	1745058	17873905	18335209	18798721	1920885	922006	9498973	9770183	999296	10262543
(-) Revenue tax	-	9038743	9298789	9559826	9725575	9985940	10261916	10470150	10731994	11086468	11298174	11610416	11872849	12142164	12547493	1282835	13182710	1344562	13845479	1419637	1449384	1044886	10614729	10946183	1117363	1495308
(+) REPM	933437	77	791	806	812	827	843	853	868	890	901	797	815	834	862	881	905	927	951	975	995	1021	1041	1074	1096	1128
${ }_{\text {REI }}^{\text {cu }}$	22449															
${ }_{\text {REP } P_{\text {cu }}}$		156	153	150	145	142	138	134	131	129	125	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
${ }_{\text {OREP }}^{\text {cu }}$	71018											-	-	\checkmark		-	-	-		-	-	-			-	
GHG. $\mathrm{com}^{\text {cm }}$		621	638	656	668	686	705	719	737	761	776	797	815	834	862	881	905	927	951	975	995	1021	1041	1074	1096	1128
(=) Profit afer rax w/out interest		3809289	390644	4005949	4101995	4205815	4312566	4417831	452841	4646573	4799232	4879891	5000485	5124111	5258336	5387886	4274253	4380269	449068	460335	4715366	-111779	-114715	-117926	-1183270	-123167
(-) Debt payments			316278	324185	332904	346976	349126	3578404	3807864	379596	${ }^{385350}$	3 399888	404888	414988	423598	439998										
${ }^{+}$) CM $_{\text {wF }}$	-	2621739	2687282	2754464	2823326	2893909	2966257	3040413	3116424	319433	327193	3356047	3439949	3525947	3614096	3704448	3797060	3891986	3989286	4089018	4191243	428002	4403425	4513511	422348	4742007
${ }^{+}$) Depreciation		244397	2504584	2567199	2631379	267163	2764592	2833707	2904550	2977163	301592	3127882	3206079	3286231	3368387	3452597	3538912	3627384	3718069	3811021	3906296	4003954	4104053	4206654	4311820	4419616
$(\mathcal{)}$ Free net cashflow	-5959747	8874524	5935523	6085754	6233796	6399911	6552289	671547	6881526	7058510	7231467	7413932	759787	7786438	7986921	8184994	11610225	11899640	12198035	12503397	12812906	7188199	7392762	7545238	774898	792985
		. 50722953	4478730	-38701676	-32467800	-26076969	-19524880	-12811134	-592960	1128902	8360369	1577401	23372179	3158617	39145537	4733531	58940756	70840395	83038430	95541827	108354733	115542933	12293695	13048993	138238831	146168817

ApPENDIX L

$\mathrm{LCOE}_{\text {wso }}$ Model Inputs		
Legend		
Yellow cells are for wese input itformatoon about the project.		
Gray cells are not ueed.		
Wind Project Information		Notes
Project Name	$F_{\text {Firatar Wial faum }}$	
Project Location	Aracail (Brail)	
Turbine Model	Vetas 590-2Mw	
Number of Wind Turbines ($\left.N_{W T}\right)$	25	${ }^{[} \mathrm{H}$
Turbine Size	2000	${ }_{\text {[kw] }}$
Wind Farm Capacity (WF copp $^{\text {) }}$	50000	[kw]
Rotor Diamenter (D)	90.0	[m]
Swep A Area per Turbine (A)	6361.7	${ }^{\left[\mathrm{m}^{2}\right]}$
Hub height (H)	105.0	[m]
Wind speed measured at (H_{0})	10.0	[m]
Termin rugosity factor (a)	0.14	${ }^{\text {H }}$
BerzLinits soefficient ($C_{\text {Pamat }}$)	0.5926	${ }^{\text {H }}$
Lifetine of Wind Farm(N)	25	[yr]
Production Efficiency (WF ${ }_{P E}$)	11.2%	[\%]
Availabiliy	97.9\%	[\%]
	357	[d/yr]
Wind Farm Life-Cycle Capital Cost Model		Notes
${ }^{W} \mathrm{c}_{\mathrm{cu}}$	553.725	[s/kw]
${ }_{\text {c M }}^{\text {wT }}$	26.532	[s/kw]
${ }^{R} C_{\text {w }}$	73.70\%	[F/5/5k]
$c_{k w}$	400.00	[s/kw]
${ }^{\text {P }}$ T	10.00\%	[\%]
${ }_{\text {cum }}$	4843859	[s/kw]
$T_{\text {max }}$	138000	[kg]
${ }_{R C} C_{T}$	26.30%	${ }_{[6 / 5 / s k]}$
$C_{\text {seel }}$	0.1900	[s/kg]
${ }^{\text {LW }}$ ch cu	52.452	[\$/wkw]
${ }^{W} F_{\text {cap }}$	50000	${ }^{[k W]}$
${ }_{L_{8}}$	18630	${ }_{\left[{ }^{[m]}\right.}^{[s / m]}$
${ }^{\text {CAB }}$ cous	2000.00	${ }^{[5 / m]}$
${ }^{\text {cP }{ }_{\text {cur }}}$	30.9669	[s/kw]
${ }^{E F_{c}}$	400.00	[s/kw]
ς	0.08%	[\%]
${ }^{7 T_{C N}}$	11.4566	
${ }_{T} L_{\text {c }}$	0.0400	[5/m]
${ }_{T} L_{\text {r }}$	1200	[1/kw]
L_{*}	3000	[m]
${ }_{S B}{ }_{c}$	113.00	[\$/kWh]
${ }^{\text {Stam }}$	427345	[s/m²/kw]
${ }^{W} F_{\text {app }}$	50000	${ }^{[k W]}$
$\mathrm{W}_{\text {mant }}$	42.5238	[s/kw]
${ }^{B l d} d_{\text {cost }}$	500.00	${ }^{\left[s \mathrm{sm}^{2}\right]}$
${ }^{\text {Bld }}$ deam	300.0	$\left[^{\left[m^{2}\right]}\right.$
${ }^{\text {PO }} \mathrm{CH}$	35.9374	[skw]
FS	19.88	[skw]
${ }^{\text {dT }}$	87.22	[s/kw]
${ }_{\text {EG }}$	404.52	[5/kw]
$\mathrm{Fcu}_{\mathrm{cu}}$	3.8126	[s/kw]
$W^{\prime C C} C_{\text {prof }}$	20\%\%	[\%/yr]
$n_{\text {fn }}$	1.0	${ }^{\text {[y }]}$
$w_{\text {fax }}$	0.30\%	[\%]
${ }^{\text {cCC }}{ }_{\text {cur }}$	24306	${ }_{[5 / 5 \mathrm{k}]}$
κ	0.206	[\%]
$L_{\text {LCCCM }}{ }_{\text {wr }}$	1217.7353	[$\$ / \mathrm{kW} /{ }^{\text {c }}$

68.3211	yri	714370	
${ }^{68.4727}$	yr_{2}	${ }^{70.4686}$	${ }^{\text {r }}$ /s
${ }^{68.68819}$	yr_{3}	70.6597	${ }_{16}$
68.8431	yrs	70.8595	$v_{r 17}$
69.0958	yrs	71.0563	$r_{\text {r }}$
69.2849	yr6	71.472	${ }^{\text {r } / 9}$
69.5318	yrz	71.1024	$y_{2} 2$
69.742	$y^{\text {r }}$	71.2123	y^{21}
69.196	yrg	71.4830	y_{22}
70.1482	yrı	71.7659	y^{23}
70.384	yrı	72.1273	${ }^{25}$
70.6635	yrı	70.3401	Mean
70.8880	$y^{\prime} / 3$	1.0823	SD
71.1032	yris	0.4514	$r_{\text {sta }}$
$L_{\text {COE }}^{\text {wo }}$	70.3401	S/MWh	valid

Figure L. 1 I-O representation of $L C O E_{\text {wso }}$ algorithm calculations for the hypothetical $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Aracati (Brazil) with sensitivity analysis of $L_{w t}(6 D 12 D)$. Source: Own elaboration

$L C O E ~_{\text {wso }}$ Model Inputs		
Legend		
Green cells indicate information and are updatedautomarically based on user input into yellow cells.		
Gray cells are not ueed.		
Wind Project Information		Notes
Project Name	$F_{\text {Firatar Winder faum }}$	
Project Location	,	
Turbine Model	Vetas v90-2Mw	
Number of Wind Turbines (N_{w})	25	${ }^{[-1}$
Turbine Size	2000	[kw1
Wind Farm Capacity (WF ${ }_{\text {cop }}$)	50000	[kw]
Rotor Diamenter (D)	90.0	[m]
Swept Area per Turbine (A)	6361.7	${ }^{\left[\mathrm{m}^{2}\right]}$
Hub height (H)	105.0	${ }^{\text {[m] }}$
Wind speed measured at (H_{o})	10.0	${ }^{[m]}$
Termin nugosity factor (a)	0.14	${ }^{\text {H/- }}$
Bezz Linitis coefficient ($C_{\text {Pamex }}$)	${ }_{0} 0.926$	${ }^{\text {H }}$ -
Lifetine of Wind Farm(N)	25	[yr]
Production Efficiency (WF $P_{\text {P }}$)	20.5%	[\%]
Avâlabiliy	97.987	[\%]
	357	${ }_{\text {[/ } / \mathrm{yr}]}$
Wind Farm Life-Cycle Capial Cost Model		Notes
${ }^{W} \mathrm{c}_{\mathrm{cu}}$	553.7256	[s/kw]
${ }_{C M}{ }_{\text {wT }}$	26532	[s/kw]
${ }^{R C}{ }_{W}{ }_{\text {T }}$	73.70%	[ซ/5kw]
$c_{k w}$	400.00	[s/kw]
${ }^{\text {P }}$ T	10.00\%	[\%]
${ }_{\text {cum }}$	484.3859	[skw]
$T_{\text {max }}$	138000	[kg]
${ }_{R C} C_{T}$	26.30\%	[${ }_{\text {c/s/sw] }}$
$c_{\text {seel }}$	0.1900	[5/kg]
${ }^{\text {LWTG cu }}$	52.352	[\$/wkw]
$W^{\text {Fap }}$	50000	[kw]
$L_{L_{8}}$	18630	${ }^{[\mathrm{m}]}$
$C^{\text {CAB }}$ cous	2000.00	${ }^{[5 / m]}$
${ }^{\text {cPaw }}$	30.966	[s/kw]
${ }^{E F_{c}}$	400.00	[s/kw]
ς	0.08\%	[\%]
${ }^{73_{\text {cm }}}$	11.4566	${ }_{\text {[skwel }}$
${ }_{T} L_{\text {c }}$	${ }^{0.0400}$	[5/m]
${ }_{T} L_{r}$	1200	[1/kw]
$L_{\text {, }}$	3000	[m]
S_{B}	113.00	[\$/2Wh]
${ }^{\text {Stam }}$	427345	${ }_{[5 \mathrm{sm} / \mathrm{kw}]}$
${ }^{W} F_{\text {app }}$	50000	${ }^{\text {[kw] }}$
$\mathrm{W}_{\text {maxt }}$	42.5238	[s/kw]
${ }^{\text {Bld }}$ cost	500.00	$\left[\mathrm{s}^{\text {m }}{ }^{2}\right]$
${ }^{\text {Bld }}$ deam	300.0	$\left[^{\left[m^{2}\right]}\right.$
${ }^{P O_{C H}}$	35.937	[s/kw]
Fs	19.88	[s/kw]
${ }^{\text {DT }}$	87.22	[s/kw]
${ }_{\text {EG }}$	40.52	[s/kw]
$\mathrm{Fcu}_{\text {cu }}$	3.8126	[s/kw]
$W^{\text {acc }}$ prof	\% ${ }^{\text {are }}$	${ }^{[/ 7 / y \times 1}$
$n_{\text {fn }}$	1.0	${ }^{\text {[yr] }}$
$w_{\text {faw }}$	0.30\%	[\%]
${ }^{\text {ccc }}{ }_{\text {cu }}$	24306	[s/kw]
,	0.205%	[\%]
$L_{\text {LCCCM }}{ }_{\text {w }}$	1217.7353	[$\mathrm{s} / \mathrm{kW}]$

Figure L. 2 I-O system representation of $L C O E_{\text {wso }}$ algorithm calculations for the hypothetical $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Corvo Island (Portugal) with sensitivity analysis of $L_{w t}$ (6D12D). Source: Own elaboration

Wind Farm Life-Cycle Capial Cost Model		Notes
${ }^{W} T_{\text {cum }}$	553.726	${ }_{\text {[} 5 / \mathrm{kW]}}$
${ }_{C M}{ }_{w T}$	265.32	[s/kw]
${ }_{R C}{ }_{w T}$	73.70\%	${ }_{[\% / s / k w]}$
$c_{\text {kw }}$	400.00	[s/kw]
IPT	10.00\%	[6]
$T_{\text {cur }}$	484.3859	[s/kw]
$T_{\text {maxa }}$	138000	[kg]
${ }^{R C}{ }_{T}$	26.30%	[$\% / 5 / 5 \mathrm{~kW}]$
$c_{\text {saced }}$	0.1900	${ }^{\text {[} 5 \mathrm{~kg}]}$
${ }^{\text {LWTG }} \mathrm{cu}$	523452	
$W_{\text {cap }}$	50000	${ }^{\text {[kW] }}$
L_{k}	18630	[m]
$C A B{ }_{\text {cost }}$	2000.00	[$5 \mathrm{~s} / \mathrm{m}]$
${ }^{\text {cPaw }}$	30.9069	[s/kw]
$E F F_{\text {c }}$	400.00	[s/kw]
ς	0.08\%	[\%]
${ }^{T s}{ }_{c u}$	11.4566	${ }_{1 s / k W e}$
${ }_{T}{ }_{c}$	0.0400	$\left.{ }^{[5} \mathrm{mm}\right]$
${ }_{L} r_{r}$	1200	[1/kw]
$L_{\text {, }}$	3000	${ }^{[m]}$
${ }_{S B}$	113.00	${ }_{[5 / \mathrm{WWh}]}$
${ }^{\text {Stu }}$	42.734	${ }_{\left[5 / m^{2} / \mathrm{kw}\right]}$
$W_{\text {cap }}$	50000	${ }_{\text {[kw] }}$
$W_{T \text { maxt }}$	42.2388	[s/kw]
${ }^{B 1 / d}$ out	500.00	${ }^{\left[5 \mathrm{sm}^{2}\right]}$
${ }^{B 1 / d a r e n}$	300.0	${\left[m^{2}\right]}$
${ }^{P O_{C u}}$	35.9374	[s/kw]
FS	19.88	[s/kw]
${ }^{\text {DT }}$	87.22	[s/kw]
${ }_{\text {EG }}$	40.52	[s/kw]
$F_{\text {cuw }}$	3.8126	[s/kw]
$\mathrm{WaCc}_{\text {prej }}$	4.900%	[[\%/y]
$n_{\text {fin }}$	1.0	[yr]
$w_{\text {For }}$	0.30\%	[\%]
${ }_{\text {ccC }}^{\text {cu }}$	2.4306	[s/kw]
κ	0.20%	[\%]
LCCCM $_{\text {wF }}$	1217.7353	[s/kW]

Figure L. 3 I-O system representation of $L C O E_{\text {wso }}$ algorithm calculations for the hypothetical $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Cape Saint James (Canada) with sensitivity analysis of $L_{w t}(6 D 12 D)$. Source: Own elaboration
Table L.1 Energy production (AEP avail) map of the wind farm for Aracati (Brazi)
Months $\quad v_{\text {wc }} \quad H_{\text {prod }}$

Months	$\begin{gathered} v_{w c} \\ (m / s) \end{gathered}$	$\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	$\begin{gathered} H_{\text {prod }} \\ (h) \\ \hline \end{gathered}$	${ }_{\text {AEP }}{ }_{\text {avail }}(k W h)$																								
				rr_{1}	yr ${ }_{2}$	yr_{3}	rr_{4}	yrs	yr_{6}	yr7	yr ${ }_{8}$	yr9	yr 10	${ }^{\text {y }}{ }_{\text {II }}$	yr_{12}	yr_{13}	${ }^{\text {y }} r_{14}$	yr ${ }_{15}$	yr 16	y^{17}	yr 18	yr ${ }_{19}$	$y r_{20}$	$y_{2 l}$	$y r_{22}$	y_{23}	y_{24}	$y r_{25}$
January	5.8	1.1665	738	${ }^{132}$	8890198	3802165	7507410	557361	8890198	557361	557361	4232212	8890198	8890198	557361	3802165	7507410	4232212	8890198	8890198	557361	3802165	7507410	557361	22165	410	212	4232212
February	4.9	1.1666	639	847940	6783520	3662567	6783520	777316	6783520	777316	777316	4713419	6783520	6783520	777316	3662567	6783520	482342	482342	3290403	4713419	7693599	1572412	1572412	7693599	6783520	4713419	4713419
March	4.0	1.1671	735	555090	7476817	5424310	8853970	975829	7476817	975829	975829	6543367	7476817	7476817	975829	5424310	8853970	894553	894553	1809568	4214966	1809568	1686232	1686232	7806630	8853970	3786671	6543367
${ }^{\text {Ap }}$	4.7	1.1667	711	865098	6327908	6327908	4076176	1630708	6327908	1630708	1630708	7230621	6327908	6327908	1749983	6327908	4076176	943697	943697	1630708	6327908	1630708	3661984	943697	7230621	6327908	1749983	7230621
May	6.0	70	735	1809500	5424109	7476539	5424109	1809500	5424109	1809500	1809500	7806340	5424109	5424109	1686169	7476539	6543124	1688169	1686169	975792	8853641	975792	555069	894520	6543124	4214809	1686169	7806340
Ju	7.9	1.1686	687	39	394	73064	6124	3544051	3944904	3544051	3544051	8286679	3949004	3949004	3544051	7306444	5076764	1693625	1693625	837237	7306444	837237	837237	3544051	5076764	5076764	913305	8286679
July	8.6	1.1698	735	5437072	3795580	8874801	1690199	4224882	379558	4224882	4224882	556396	556396	3795580	5437072	8874801	1813825	3795580	3795580	556396	7494407	556396	978125	4224882	4224882	1690199	896658	556396
August	9.6	1.1677	735	7480694	1810506	1810506	1810506	8858561	1810506	5427123	5427123	895017	895017	1810506	4217151	1810506	1687106	5427123	7810678	7810678	895017	4217151	7810678	5427123	1810506	1810506	555378	895017
September	10.1	, 657	711	85	1629	162917	365854	75424	1629176	6321963	6321963	942810	942810	1629176	6321963	1629176	3658543	6321963	7223828	7223828	942810	5240771	8554384	6321963	1629176	3658543	6321963	942810
October	9.7	1.1645	735	7789201	973650	973650	553851	7460125	973650	7460125	7460125	1682467	1682467	973650	8834203	973650	553851	7460125	6528759	6528759	1805528	6528759	4205556	7460125	973650	973650	8834203	1682467
November	9.2	1.1638	687	6098939	833795	833795	833795	6098939	833795	7276401	7276401	1686661	1686661	833795	7276401	833795	833795	7276401	5055889	5055889	1571703	6968989	6098939	7276401	833795	833795	7276401	1686661
December	7.6	1.1651	735	3780365	554166	554166	974204	5415277	554166	8839226	8839226	3780365	3780365	554166	7464366	554166	974204	8839226	4207946	4207946	3780365	7793630	5415277	8839226	554166	554166	7464366	3780365
Annual	7.4	1.1666	8579	48856319	48444328	4867026	48209403	48899532	48	48844485	48844	483563	48391	4844328	48841	48676026	48362288	49053015	49213265	48817403	48463	48054765	4888303	48777	48779078	48285	48	48356354

Table L2 Energy production map of the wind farm for Corvo Island (Portugal) with sensitivity analysis of $L_{w t}$ (6D12D)

Months	$\begin{gathered} v_{w c} \\ (m / s) \end{gathered}$	$\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	$H_{\text {prod }}$ (h)													$A^{\text {E }} \mathrm{P}_{\text {avail }}(k W h)$												
				yr_{1}	yr_{2}	yr_{3}	y_{4}	yr_{5}	yr_{6}	$y_{7}{ }_{7}$	yr_{8}	yr,	y^{10}	$y^{\prime 2}$	r_{12}	y^{13}	$y^{1 / 4}$	y_{15}	yr_{16}	yr_{17}	yr_{18}	yr ${ }_{19}$	yr 20	yr_{21}	r_{22}	r_{23}	${ }^{2} r_{24}$	
ary	15.4	1.2561	738	32734798	32	32737798	32	32	32	32	32	32734798	32	32734798	494	32734788	4798	3273479	${ }^{32} 73478$	734798	32734798	32734798	407548	${ }^{32734789}$	33479	199	01349	710093
February	14.7	252	639	24248	1440	6912583	2622	144	144	2628820	26228520	6912583	144	144	774925	2622852	6912583	17377262	6912583	6912583	6912583	6912583	22462574	26228520	2628550	2895958	7749925	173512
March	12.7	1.2495	735	18226532	18226532	8896263	27834779	1237654	18226532	2783479	2783479	8896263	12376594	1822633	9971944	27834779	8896263	30108137	8896263	8896263	8896263	8896263	22991460	2783479	2783479	31414830	9971944	189213
April	12.4	1.2490	711	16057711	19287004	9641890	24828913	964890	19287404	24828913	24828913	9641890	964890	19287404	9641890	24828913	9641890	2691346	9641890	29111609	9641890	9641890	22185639	19971909	24828913	24919931	9641890	18139
May	11.2	1.2425	735	12306614	2553364	9915560	19834848	9915560	2553644	19834848	19838848	9915560	9915560	25.53664	12306614	19834848	9915560	25.33644	9915560	2767739	9915560	9915560	20988216	19834848	1984848	1908977	1236614	16168
Ju	10.4	331	687	9212474	25714865	11433885	16833388	8218718	25714885	16838388	16838388	1143985	8218718	25714885	15.34558	16833388	11433985	16883838	11433985	23723122	11433985	1143988	16955390	16838388	16883838	16700685	15342558	14949
July	10.0	1.2275	735	87	29	16314803	16314803	7795266	578	16	163148	163148	77952	577	905422	503	6314803	795266	163514803	9596205	16314803	16314803	1530715	16046466	514803	16760185	17905422	862516
August	9.7	2216	735	7757	120999	17819161	12	1781961	120999	120999	12	8191	819161	1099972	501798	12099972	1819	697428	17819161	17819161	17819161	81916	1299311	5778	120999	12588	19501798	711
September	10.4	1.2234	711	9444238	7515148	18892028	9444238	26.361791	7515148	9444238	9444238	18892028	26361791	7515148	24319940	9444238	1889228	944238	18892028	1572854	18892028	18892028	12321085	13275521	9444238	8842059	24319440	1929
October	13.1	1.2327	735	19679010	8776461	29702682	9837656	25333032	8776461	9837656	9837656	29702882	25333032	8776461	2745940	9837656	25333032	9837656	25333032	1220992	29702682	25333032	12242414	8858886	9837656	8122639	2745940	2159
November	14.3	1.2429	687	23874256	927165	25878688	8271078	27992285	9271165	8271078	8271078	25878888	2799285	9271165	2799288	8271078	25878688	11506828	25878888	9271165	25878688	25878688	7423013	8271078	8271078	8870902	2799285	21951
December	15.1	1.2528	735	30186350	9997848	2574545	7955677	19999456	9997848	7955677	7955677	2574545	19999456	9997848	3248821	7955677	30188350	16650529	30188350	9997848	2574545	31186350	6350393	7955677	7955677	9163644	32988621	42475115
Annual	12.5	1.2404	8579	212467325	213202961	21388788	212223670	212655974	211222961	21223670	212223670	213887985	212655974	213202961	212704429	212223670	213959139	213437670	213559139	213678613	213887985	213959139	213109827	213228530	212238670	213512714	212704429	213419

Table L.4 Wind speed series simulations for $A E P_{\text {axaiit in }}$ Aracati (Brazil)

ble L. 4 Wind	speed	sensitivity analysis of $L_{w \prime}$ (6D																								
Months	$\begin{gathered} \hline v_{w c} \\ (m / s) \\ \hline \end{gathered}$	Wind speed data series for simulations (m / s)																								
		rr_{1}	yr_{2}	$y r 3$	$y r_{4}$	yr_{5}	$y r_{6}$	$y r_{7}$	y_{8}	yrg	$y r_{10}$	$y_{1 / 1}$	$y r_{12}$	$y_{1 / 3}$	$y_{1 / 4}$	$r_{1 / 5}$	yr_{16}	y_{17}	yr_{18}	$y r_{19}$	$y r_{20}$	yr_{21}	$y r_{22}$	$y_{2}{ }_{23}$	$y r_{24}$	r^{25}
January	5.8	5.8	10.1	7.6	9.6	4.0	10.1	4.0	4.0	7.9	10.1	10.1	4.0	7.6	9.6	7.9	10.1	10.1	4.0	7.6	9.6	4.0	7.6	9.6	7.9	7.9
February	4.9	4.9	9.7	7.9	9.7	4.7	9.7	4.7	4.7	8.6	9.7	9.7	4.7	7.9	9.7	4.0	4.0	7.6	8.6	10.1	6.0	6.0	10.1	9.7	8.6	8.6
March	4.0	4.0	9.6	8.6	10.1	4.9	9.6	4.9	4.9	9.2	9.6	9.6	4.9	8.6	10.1	4.7	4.7	6.0	7.9	6.0	5.8	5.8	9.7	10.1	7.6	9.2
April	4.7	4.7	9.2	9.2	7.9	5.8	9.2	5.8	5.8	9.6	9.2	9.2	6.0	9.2	7.9	4.9	4.9	5.8	9.2	5.8	7.6	4.9	9.6	9.2	6.0	9.6
May	6.0	6.0	8.6	9.6	8.6	6.0	8.6	6.0	6.0	9.7	8.6	8.6	5.8	9.6	9.2	5.8	5.8	4.9	10.1	4.9	4.0	4.7	9.2	7.9	5.8	9.7
June	7.9	7.9	7.9	9.7	9.2	7.6	7.9	7.6	7.6	10.1	7.9	7.9	7.6	9.7	8.6	6.0	6.0	4.7	9.7	4.7	4.7	7.6	8.6	8.6	4.9	10.1
July	8.6	8.6	7.6	10.1	5.8	7.9	7.6	7.9	7.9	4.0	4.0	7.6	8.6	10.1	6.0	7.6	7.6	4.0	9.6	4.0	4.9	7.9	7.9	5.8	4.7	4.0
August	9.6	9.6	6.0	6.0	6.0	10.1	6.0	8.6	8.6	4.7	4.7	6.0	7.9	6.0	5.8	8.6	9.7	9.7	4.7	7.9	9.7	8.6	6.0	6.0	4.0	4.7
September	10.1	10.1	5.8	5.8	7.6	9.7	5.8	9.2	9.2	4.9	4.9	5.8	9.2	5.8	7.6	9.2	9.6	9.6	4.9	8.6	10.1	9.2	5.8	7.6	9.2	4.9
October	9.7	9.7	4.9	4.9	4.0	9.6	4.9	9.6	9.6	5.8	5.8	4.9	10.1	4.9	4.0	9.6	9.2	9.2	6.0	9.2	7.9	9.6	4.9	4.9	10.1	5.8
November	9.2	9.2	4.7	4.7	4.7	9.2	4.7	9.7	9.7	6.0	6.0	4.7	9.7	4.7	4.7	9.7	8.6	8.6	5.8	9.6	9.2	9.7	4.7	4.7	9.7	6.0
December	7.6	7.6	4.0	4.0	4.9	8.6	4.0	10.1	10.1	7.6	7.6	4.0	9.6	4.0	4.9	10.1	7.9	7.9	7.6	9.7	8.6	10.1	4.0	4.0	9.6	7.6
Annual	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4

Table L. 7 kWh per $\mathrm{H}_{\text {prod }}$

Sites	kW/r																								
	$y r_{1}$	yr_{2}	yr_{3}	yr_{4}	yrs	$y r_{6}$	yr_{7}	yr_{8}	yrg	rl_{10}	yr ${ }_{1 /}$	yr r_{12}	${ }^{2} r_{13}$	yr_{14}	${ }^{2} r_{15}$	yr 1_{16}	yr 1_{17}	${ }^{2} r_{18}$	${ }^{2} r_{19}$	yr 20	yr 21	yr 22	yr_{23}	yr_{24}	yr_{25}
Aracari (Brail)	5695	5647	5674	5629	5699	5647	5694	5694	5637	5641	5647	5693	5674	5637	5718	5737	5690	5649	5602	5698	5682	5616	5628	5645	5637
Corvo Island (Portugal)	10451	10535	10466	10473	10467	10570	10498	10419	10528	10530	10452	10528	10510	10504	10472	10452	10517	10522	10556	10569	10463	10523	10531	10446	10392
$\begin{array}{r} \text { Cape Saint James } \\ \text { (Canada) } \\ \hline \end{array}$	24766	24852	24932	24738	24788	24852	24738	24738	24932	24788	24852	24794	24738	24940	24879	24940	24908	24932	24440	24841	24855	24738	24888	24794	24877

Hem	0		2	3	4	5	6	7	8	9	10	11	析	ars	14	15	16	17	18	19	20	21	22	23		
(-) LCCCM $_{\text {wr }}$	${ }_{60} 886763$																									
${ }^{\text {W }}$ cur	27686278																									
$T_{\text {cu }}$	24219295		-	-			-																			
${ }_{\text {LWTG }}$	2617258		-	-			-																			
${ }^{\text {cPa }}$ cor	1545346		-					-																		
${ }_{\text {TS cu }}$	572832		-	-			-																			
${ }_{\substack{\text { STCu } \\ \text { POCu }}}$	$\begin{array}{r}2136726 \\ \hline\end{array}$																									
$F_{c r u}$	190628																									
${ }^{\text {ccc }} \mathrm{cor}$	121530																									
LCPM we (kWhs		89657257	0337375	8978357	89846	897	90681	90056935	89	90318367	90	89		90163301		89837428		90220267	90		90671187				89615940	89153675 1884836
		14970925		15750988	16156163	16549954	17131821	17439078	17741084	18375119	188388339	191165502	19787994	20247871	20742636	21196034		22363982	22934122	23584858	24203932					
${ }_{\text {EMPAR }}^{\text {PPAR }}$																						17191828	17722258	18180019	18483975	18888346
(-) $0 \times M_{\text {w }}$		368375	967957	9856226	10109622	591	840	956		362			957		966							13154748	13560475			14421680
${ }_{\text {ox }}^{\text {funed }}$	-	4871475	5033364	512	5257138	73	5574607	5674584	577252	5979161	6130083	623666	643889	6588533	6749523	6897054	7056202	7277091	7462608	7674350	7875790	7991569	8238135	8450921	8592212	${ }^{8761585}$
оем		4496901	4646203	4730927	4852484	4970618	5145234		5327931	5518200	5657348		5942063				6511165	6714833	6885898	7081137	7268866	5163178	532239	5459672		566099
(+) LRCM		863268	884850	906971	92946	952887	976709	100127	1026155	1051809	1078104	1105057	1132683	116000	1190025	121976										
${ }^{(+)}$Depreciation		2476313	2538220	2601676	2666718	2733386	2801720	2871763	2943557	3017146	3092575	3169889	3241137 178856	3330365	3413624	3498965	358649	3676100 1204138	3768002 12353010	3862202	3958757	405722	4159170 832093	4263149	4369728	4478971
(\#) Profit before tax		8942130	9211952	9403409	9642905	9880336	10190410	10400013	10610013	10946713	11222187	11449206	11788856	12070687	12368319	${ }^{2653276}$	1704299	2048138	12353619	2691573	${ }^{13200033}$	809807	${ }_{8}^{820953}$	8532574	8710678	
$(-)$ Revenue tax		449127	4640535	2926	4846849	4964986	5139546	5231223	5322325	5512536	5651682	5749951	5936398	6074361	6222791	6358810	6505541			7075458	7261179	5157549	531667		5545193	
${ }_{\text {(}}\left(\begin{array}{r}\text { REPIM } \\ \text { REICM }\end{array}\right.$	488897	1438	1420	182	1355	1327	1314	1280	1245	1235	1212	1180	1167	1144	123	1100	164	170	174	179	183	186				
${ }_{\text {Rel }}^{\text {REP }}$	223708																									
${ }_{\text {OREP }} \mathrm{CM}$	265188							,	,					9												
ghg.rcm								132								161	164	170	174	179	183	186	192	197	200	204
Profit afer tax wout interest			45728	${ }_{4}^{4} 8299495$		${ }_{39}^{4966671}$	${ }_{\substack{5052177}}^{505801}$	5169569	5288933	543541		5700436	5853625	5997470	${ }^{6} 146651$	6295566	5198832	5339113	5473556	5616294	5759037	293745	3004468	3078766	3165686	
$\xrightarrow{(-) \text { Debt payments }}$			${ }^{3} 205$				${ }_{3}^{3388011}$		377123	${ }^{3} 810051$	3005 3 3															
		${ }_{2476313}^{262739}$	2687282 25820	2601676	282326 260718	283393896	298027 2801720	380471763 281	${ }_{293557}^{3116424}$	3191334 30176	3292575	3368979 3198989	3439949 3294 1	3350365	3413624 34624	3709498 34985	3,5880639	3897986 367600	3989286002 378802	488802028 38202	49988757 19	${ }_{4}^{42957} 722$	4403425 41790	4263149	${ }_{4}^{4626978}$	${ }_{4478971}^{4}$
\Leftrightarrow Free net cashfow	-60 397866	9550342	6593076	6750240	691924	7092253	7282143	7455284	7631791	7836841	8033182	8223437	8439702	8648198	8863648	9080488	12582331	12907199	13230844	13567515	1390938	11291196	11567062	11855425	12161761	12472314
$\Sigma_{\text {fronerammat astrow }}$		-50847524	4425448	-37504208	-30584284	-23492031	16209888	8754604	-112813	6714027	14747210	22970647	31410349	40058547	48922195	58002683	70585014	83492212	96723056	110290951	124199809	135498804	14705886	158913291	171075053	183547367

Appendix M

67.6013	yrı	70.7762	${ }^{\text {y } r_{1 / 5}}$
67.8	y_{2}	69.8077	${ }^{\text {r } / 5}$
68.02	y_{3}	69.988	$y^{\text {r } / 6}$
66.1822	yrs	70.1987	yriz
68.4349	yrs	70.3955	yr /s $^{\text {d }}$
241	$y_{6} 6$	70.7564	yr 19
68.8710	y^{2}	${ }^{70.3686}$	yr 20
69.8863	$y_{r s}$	70.5514	y^{21}
69.2887	yre	70.822	y^{22}
69.4873	yrio	71.1051	${ }_{\text {y } 23}$
69.7336	yru	71.364	y^{25}
70.0026	yrı	69.6792	Mean
70.282	$y_{r, s}$	1.0823	SD
70.423	yris	-0.4514	r (stemnes)
$L_{\text {COE }}^{\text {mo }}$	69.6792	S5/MWh	

Figure M. 1 I-O representation of $L C O E_{w s o}$ algorithm calculations for the hypothetical $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Aracati (Brazil) with sensitivity analysis of $E_{p i}$ (Case ${ }_{1}$). Source: Own elaboration

Wind Farm Life-Cycle Capial Cost Model		Notes
${ }^{W} T_{\text {cu }}$	5537256	[SkW]
${ }_{C M}{ }_{\text {wT }}$	26.532	[s/kw]
${ }^{R C}{ }_{W}{ }_{T}$	73.70\%	[F/s/kw]
$c_{k v}$	400.00	[s/kw]
${ }_{\text {IPT }}$	10.09\%	[\%]
$T_{\text {cu }}$	484.389	[s/kw]
$T_{\text {maxs }}$	138000	[kg]
${ }_{R C} C_{T}$	26.308	[$5 / 5 / \mathrm{kw}$]
$c_{\text {nel }}$	0.1900	[s/kg]
${ }^{\text {LWTG cw }}$	39.1957	${ }_{[5 / \mathrm{mkw}}$]
${ }^{W} F_{\text {app }}$	50000	${ }^{\text {[kw] }}$
L_{k}	13950	[m]
$C A B$ coes	2000.00	[5/m]
${ }^{\text {cPaw }}$	30.966	[skw]
$E_{\text {c }}$ c	40.00	[s/kw]
ς	0.08\%	[\%]
${ }^{75}{ }_{\text {cu }}$	11.4566	${ }_{\text {Lskw }}{ }_{\text {d }}$
${ }_{T} L_{\text {c }}$	0.0400	[5 mm$]$
${ }_{T} L_{r}$	1200	[1/kW]
L_{*}	3000	[m]
${ }^{S B_{e}}$	113.00	[s/kWh]
${ }^{\text {Stcu }}$	427345	$\left[\mathrm{sm}^{2} / \mathrm{kw]}\right.$
$W_{\text {cap }}$	50000	${ }^{\text {[kw] }}$
$\mathrm{w}_{\text {maxt }}$	42.5238	[s/kw]
${ }^{\text {Bld }}$ cost	50.00	${ }^{\left[s \mathrm{sm}^{2}\right]}$
${ }^{\text {Bld }}$ erea	300.0	$\left[\mathrm{m}^{2}\right]$
${ }^{P O} \mathrm{Cu}^{\text {u }}$	35.9374	[s/kw]
FS	19.88	[s/kw]
${ }^{\text {DT }}$	87.22	[s/kw]
eg	40.52	[s/kw]
$\mathrm{FCu}_{\text {cu }}$	3.7712	[skw]
WACC ${ }_{\text {prof }}$	4.900%	[\%/yr]
$n_{p n}$	1.0	[yr]
$w_{\text {faw }}$	0.30\%	[\%]
${ }^{\text {ccc }}{ }_{\text {cu }}$	24442	[s/kw]
κ	0.20\%	[$\%$]
LCCCM ${ }_{\text {wr }}$	1204.5180	$[\mathrm{s} / \mathrm{kW}]$

Figure M. 2 I-O system representation of $L C O E_{\text {wso }}$ algorithm calculations for the hypothetical $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Corvo Island (Portugal) with sensitivity analysis of $E_{p i}\left(\right.$ Case $\left._{1}\right)$. Source: Own elaboration

$\mathrm{LCOE}_{\text {wso }}$ Model Inputs		
Legend		
Green cells indicate information and are updatedautomarically based on user input into yellow cells.		
Yellow cells are for use input hiomation atoout he project.		
Gray cells are not ued.		
Wind Project Information		Notes
Project Name	Fivarar Wiad famm	
Project Location	mimmen	
Turbine Model	Vetas v90-2Mw	
Number of Wind Turbines ($N_{W T}$)	25	${ }^{\text {H }}$ -
Turbine Size	2000	${ }_{\text {[kw] }}$
Wind FarmCapacity (WF ${ }_{\text {cop }}$)	50000	[kw]
Rotor Diamenter (D)	90.0	${ }^{[m]}$
Swept Area per Turine (A)	6361.7	${ }^{\left[\mathrm{m}^{2}\right]}$
Hub height (H)	105.0	[m]
Wind speed measured at (H_{0})	10.0	${ }^{\text {[m] }}$
Termin rugosity factor (a)	0.14	${ }^{\text {H/- }}$
BetzLinits soefficient ($C_{\text {Pract }}$)	${ }_{0} 0.5926$	$\mathrm{H}^{\text {H }}$
Lifetine of Wind Farm(N)	25	[yr]
Production Efficiency ($W F_{P E}$)	485\%	[\%]
Avâlabilily	97.9\%	[\%]
	357	[dyry]
Wind Farm Life-Cycle Capital Cost Model		Notes
${ }^{W} T_{c u}$	53.7256	[s/kw]
${ }_{\text {c M }}^{\text {wT }}$	26.532	[5/3w1
${ }^{R C}{ }_{W}{ }_{T}$	73.70%	${ }_{[6 / 5 / 5 \mathrm{WW}]}$
$c_{k w}$	400.00	[skw]
${ }_{\text {IPT }}$	10.00\%	[\%]
${ }^{\text {cun }}$	484.3859	[shw]
$T_{\text {max }}$	138000	${ }^{\text {[kg] }}$
${ }_{R C} C_{T}$	26.30\%	${ }_{[6 / 5 / 5 k]}$
$c_{\text {seel }}$	0.1900	[5/kg]
${ }^{\text {LWTG cw }}$	39.1957	${ }_{[5 / \mathrm{m} k \mathrm{w}]}$
${ }^{W} F_{\text {cap }}$	50000	${ }_{\text {[kw] }}$
$L_{\text {c }}$	13950	${ }^{[m]}$
$C^{\text {cis }}$ cous	2000.00	[5/m]
${ }^{\text {cP }{ }_{\text {cur }}}$	30.969	[5kW]
${ }^{E F}{ }_{\text {c }}$	400.00	${ }_{\text {[5kW] }}$
ς	0.08\%	[\%]
${ }^{75} \mathrm{~cm}$	11.4566	${ }_{\text {[s/kwel }}$
${ }_{T} L_{\text {c }}$	0.0400	[5/m]
${ }_{T} L_{r}$	1200	[1/kw]
$L_{\text {c }}$	3000	[m]
${ }_{\text {SBe }}$	113.00	[s/kWh]
${ }^{\text {Stcu }}$	427345	${ }_{\left[s / \mathrm{m}^{2} / \mathrm{kw]}\right.}$
${ }^{W} F_{\text {app }}$	50000	${ }^{\text {[kw] }}$
$\mathrm{W}_{\text {max }}$	42.2238	[5/3W1
${ }^{\text {Bld }}$ cost	50.00	${ }^{\left[5 / m^{2}\right]}$
${ }^{\text {Bld }}$ deam	330.0	${\left[m^{2}\right]}$
${ }^{P O_{C W}}$	35.937	[skw]
${ }^{\text {FS }}$	19.88	[s/ww\|
${ }^{\text {dT }}$	87.22	[s/kw]
EG	404.52	[skw]
${ }^{\text {cuu }}$	3.7712	[skw]
$\mathrm{waCc}_{\text {prof }}$	Wrs	${ }^{[/ 7 / y \mathrm{y}]}$
${ }^{\text {fin }}$	1.0	[yr]
${ }^{\operatorname{CCC}_{\text {Faw }}}$	${ }^{0.306 \%}$	[\%]
${ }^{\text {cCC }}{ }_{\text {cus }}$	24442	${ }_{\text {[} 5 \text { kw] }}{ }^{\text {a }}$
κ	0.206	[\%]
$L_{\text {LCCCM }}{ }_{\text {w }}$	1204.5180	${ }_{[8 / \mathrm{sW]}}$

Figure M. 3 I-O system representation of $L C O E_{\text {wso }}$ algorithm calculations for the hypothetical $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Cape Saint James (Canada) with sensitivity analysis of $E_{p i}\left(\right.$ Case $\left._{1}\right)$. Source: Own elaboration

$\frac{\text { Table M.3 Energy production map of the wind farm for Cape Saint James (Canada) }}{v_{w c}} H_{p o d} \quad$ with sensitivity analys sis of $E_{p i}\left(\right.$ Case $\left._{1}\right)$

Months	$\begin{array}{r} v_{w c} \\ (m s) \\ (m s) \\ \hline \end{array}$	$\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	$\begin{gathered} \hline H_{\text {prod }} \\ (h) \\ \hline \end{gathered}$	$A^{\text {E }} \mathrm{P}_{\text {aviil }}(k W h)$																								
				y_{1}	y_{2}	y_{3}	yr_{4}	rr_{5}	r_{6}	y_{7}	yr_{8}	yr,	r_{10}	$y_{\text {II }}$	y_{12}	$y r_{13}$	y_{14}	y_{15}	yr ${ }_{16}$	y_{17}	$y^{1}{ }_{18}$	y_{19}	yr 20	y_{21}	yr 22	${ }_{\text {r } 23}$	${ }_{\text {y }}^{24} 2$	y^{25}
nuary	15.4	1.2561	738	327347	32734798	32734798	32734798	32734798	32734798	32734798	32734798	32734798	32734798	32734798	801349	32734798	32734798	32734798	32734798	32734798	32734798	32734798	40754899	32734798	32734798	2801994	8013494	710093.
bruar	14.7	1.522	639	242	1446724	69125	2622	1446724	1446724	26228	2628520	6912	1446	14	7749	26285	6912583	17377	69125	69125	6912583	6912	2246574	2628852	2622882	28959	7499	17351256
March	12.7	1.2495	735	18226532	18226532	8896263	834	12376	18226532	2783479	83479	8896263	12376594	26532	9971944	2783479	8896263	3010813	8896263	8896263	8896263	889263	2991400	27834779	834	1414	9971944	18921332
April	12.4	249	711	16057711	19287	964890	828913	9641890	287404	24828913	2488913	9641890	9641890	19287404	9641890	24828913	9641890	26913496	9641890	29111609	9641890	964890	2218639	19971999	24888913	2491931	9641890	18130032
May	11.2	425	735	1230	2553364	9915560	8388	15560	3364	838488	834 888	9915560	9915560	2553364	${ }_{12306614}$	1983488	9915560	25533	9915560	2767395	9915560	9915560	20989216	1983848	19838488	19882	1230614	16168320
June	10.4	1.2351	687	9212	25714885	11433985	16883838	187	25714865	16888388	16888	11433	8218718	2571485	1534258	16838	1433	16838	11433	723122	11433	11433	16955300	16883	16883888	16700885	15.32558	14
July	10.0	1.2275	735	8739531	2957769	16314883	16314883	7795266	29577699	314803	148	16314883	7795266	7769	1790542	13148	3148	952	631488	5962	314803	31480,	155307	1646468	163148	5760	17905422	8625161
August	9.7	2216	735	7757712	12099972	17819161	109997	17819161	099972	12099972	12099972	17819161	17819161	12099972	19501798	12099972	1781961	8697428	1781961	17819161	17819161	17819161	12903119	15377861	12099972	12588985	19501798	7111908
September	10	234	711	9444238	7515148	18	44238	26361791	7515148	9444238	9444238	18892028	26361791	7515148	24319940	9444238	18892028	9444238	1889028	15728541	18892228	1889028	12321085	13275521	444238	8842059	24319940	19029793
October	13.1	2327	735	19679010	8776461	29702682	37656	25333032	876461	37656	9837656	70268	25333032	8776461	27459940	9837556	25333032	9837556	25333032	1220924	2970268	25333032	12242414	885888	987656	8122639	27459940	21596003
November	14.3	1.2429	687		9271165		271078	2799228.	9271165	8271078	8271078	878688	27992285	9271165	2799285	8271078	25878688	11506828	25878888	9271165	25878688	2587888	7423013	8271078	8271078	8870902	2799285	21951058
December	15.1	1.2528	735	31186350	9997848	2574545	7955677	19999456	9997848	7955677	7955677	2574545	19999456	9997848	3248862	7955677	30188350	16650529	30186350	9997448	2574545	30186350	6350393	7955677	7955677	9163644	3298862	42475115
nua	12.5	1.2404	8579	212467325	213202961	213887985	212223670	212655974	213202961	212223670	21223670	213887985	21265974	213202961	212704229	212223670	213959139	213437670	213959139	213678613	21388788	213959139	213199827	213228330	21223670	213512714	212704429	

\footnotetext{
$\frac{\text { Table M. } 2 \text { Energy production map of the wind farm for Corvo Island (Portugal) }}{v_{\text {wc }}}$

Months	$\begin{aligned} & v_{w c}{ }^{v_{c c}} \\ & (m s) \end{aligned}$	$\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	$H_{\text {prod }}$ (h)	${ }_{\text {AEP }} \mathrm{Pavail}^{(k W h)}$																								
				yr ${ }_{1}$	yr ${ }_{2}$	yr_{3}	rr_{4}	yrs	yr6	y_{7}	yr ${ }_{8}$	yr,	yr_{10}	${ }^{\text {r }}$ II	yr_{12}	$y r_{13}$	$y_{r i 4}$	15	$y_{1}{ }_{16}$	y_{17}	$y_{1 / 8}$	19	22	21	22	${ }_{23}$	${ }_{24}$	${ }^{2} 25$
January	11.7	1.2313	738	1445129	1445129	45129	14451298	14451298	14451298	14451298	1082026	10842226	1445129	1082026	10882202	10842226	14451298	10842026	10842026	144512	10842226	1088202	1088220	10842226	1082020	1084222	1082026	10842202
February	11.5	1.2345	639	1193902	4233203	1192392	1193992	11923902	3369392	1192992	12588268	1770714	3369392	1238268	1770714	9115121	1192992	6580843	12538268	4233203	5409699	3369392	2776293	11923902	2077293	6580843	11923902	1238
March	10.5	329	735	10471380	3189384	087	1368887	087	6214620	1369888	13698087	2386378	3189384	1369887	2386378	13698887	13698887	6214620	13698887	3870731	7560022	4863071	13698087	40386	2034182	10471380	1440	3189384
Apr	9.5	1.2317	711	73058	7305887	1044317	10443775	1044375	7305887	10431	4699596	308217	7305887	1323761	3082171	12337618	4699596	4699596	1323718	3082171	10119379	3082171	13919671	13237618	3082171	3082171	3237718	3740614
May	8.2	1.2282	735	4844807	10	10432053	10432053	1280	10432053	432	320	356194	6191280	10432053	3856194	14349768	10432053	3856194	10432	237741	13646	19128	2377	10432053	3856194	14349768	10432053	807
Ju	7.1	1.2224	687	295554	1299375	7005728	70057	7005728	10014121	4506515	12693755	4506515	100141	7005728	4506515	7005728	2211411	2955541	7005728	1885038	1269775	7005728	1885038	7005728	4506515	1269375	005728	5758970
July	6.1	2154	735	2005275	1350	4793962	6126305	1032572	13503824	745258	3144060	6126305	2005275	6126305	6126305	6126305	2005275	2352466	6126305	6126305	14199172	1032572	3815724	6126305	6126305	13503224	3815724	7452587
August	6.4	1.2075	735	2337182	10583661	3790935	3790935	3790935	13415996	865	3790935	7404169	2337182	4762	7404	4762	588	992	762	13415996	1992247	13415996	4762	762817	740418	4762	3123634	10255509
September	7.6	1.2064	711	3663832	19	5882434	4603129	4603129	3129	45	434	9911660	9911660	3663832	9911660	3663832	5882434	99116	36638	1965	22588	12968	58824.3	3663832	9911660	6638	258	1925451
October	8.9	1.2126	735	611241	611241	3136930	2000727	136930	2000727	47131	56	801	13472801	3136930	1347881	3136930	7435686	1472	3136930	10628711	31369	20007	43	3136930	428	3471	00072	2347131
November	10.6	1.2194	687	9990034	3578305	2206092	2206092	2206092	2006092	2948433	2206092	${ }^{1268323}$	4495676	2206092	1266323	2206092	2948433	1268323	2206092	9680288	3578305	2006092	9680288	2206092	1266323	1880504	745118	${ }^{1266323}$
December	11.5	1.2237	735	13995776	2368542	2018979	3165547	2018979	3165547	3841801	2018979	14296210	13595706	2018979	14286210	2018979	3841801	14286210	2018979	7503518	4826724	14296210	135957706	2018979	14296210	6168172	4826724	13959706
Annual	9.1	1.2222	857	8965725	90.37737	897885	898	89	90681985	90056	89381970	${ }_{903183}$	903396	89688	90318387	90163301	90113636	89887428	8968773	90220267	90263721	90560886	90671187	89700146	90272750	90335823	89615940	8915

Table M． 4 Wind speed series simulations for $A E P_{\text {avail }}$ in Aracati（Brazil）

Months	$\begin{gathered} v_{w c} \\ (m s) \end{gathered}$	Wind speed data series for simulations（ m / s ）																								
		$y r l_{1}$	$y r_{2}$	y^{3}	$y r_{4}$	$y r s_{5}$	$y r_{6}$	$y r_{7}$	$y r_{8}$	yr9	y_{10}	$y_{1 / 1}$	$y r_{12}$	${ }^{1} r_{13}$	${ }^{\text {y }}{ }_{1 / 4}$	$y_{1 / 5}$	${ }^{2} r_{16}$	y_{17}	${ }^{2} r_{18}$	yr_{19}	$y r_{20}$	${ }^{2} r_{21}$	y^{22}	$y_{2}{ }^{3}$	$y r_{24}$	$y r^{25}$
January	5.8	5.8	10.1	7.6	9.6	4.0	10.1	4.0	4.0	7.9	10.1	10.1	4.0	7.6	9.6	7.9	10.1	10.1	4.0	7.6	9.6	4.0	7.6	9.6	7.9	7.9
February	4.9	4.9	9.7	7.9	9.7	4.7	9.7	4.7	4.7	8.6	9.7	9.7	4.7	7.9	9.7	4.0	4.0	7.6	8.6	10.1	6.0	6.0	10.1	9.7	8.6	8.6
March	4.0	4.0	9.6	8.6	10.1	4.9	9.6	4.9	4.9	9.2	9.6	9.6	4.9	8.6	10.1	4.7	4.7	6.0	7.9	6.0	5.8	5.8	9.7	10.1	7.6	9.2
April	4.7	4.7	9.2	9.2	7.9	5.8	9.2	5.8	5.8	9.6	9.2	9.2	6.0	9.2	7.9	4.9	4.9	5.8	9.2	5.8	7.6	4.9	9.6	9.2	6.0	9.6
May	6.0	6.0	8.6	9.6	8.6	6.0	8.6	6.0	6.0	9.7	8.6	8.6	5.8	9.6	9.2	5.8	5.8	4.9	10.1	4.9	4.0	4.7	9.2	7.9	5.8	9.7
June	7.9	7.9	7.9	9.7	9.2	7.6	7.9	7.6	7.6	10.1	7.9	7.9	7.6	9.7	8.6	6.0	6.0	4.7	9.7	4.7	4.7	7.6	8.6	8.6	4.9	10.1
July	8.6	8.6	7.6	10.1	5.8	7.9	7.6	7.9	7.9	4.0	4.0	7.6	8.6	10.1	6.0	7.6	7.6	4.0	9.6	4.0	4.9	7.9	7.9	5.8	4.7	4.0
August	9.6	9.6	6.0	6.0	6.0	10.1	6.0	8.6	8.6	4.7	4.7	6.0	7.9	6.0	5.8	8.6	9.7	9.7	4.7	7.9	9.7	8.6	6.0	6.0	4.0	4.7
September	10.1	10.1	5.8	5.8	7.6	9.7	5.8	9.2	9.2	4.9	4.9	5.8	9.2	5.8	7.6	9.2	9.6	9.6	4.9	8.6	10.1	9.2	5.8	7.6	9.2	4.9
October	9.7	9.7	4.9	4.9	4.0	9.6	4.9	9.6	9.6	5.8	5.8	4.9	10.1	4.9	4.0	9.6	9.2	9.2	6.0	9.2	7.9	9.6	4.9	4.9	10.1	5.8
November	9.2	9.2	4.7	4.7	4.7	9.2	4.7	9.7	9.7	6.0	6.0	4.7	9.7	4.7	4.7	9.7	8.6	8.6	5.8	9.6	9.2	9.7	4.7	4.7	9.7	6.0
December	7.6	7.6	4.0	4.0	4.9	8.6	4.0	10.1	10.1	7.6	7.6	4.0	9.6	4.0	4.9	10.1	7.9	7.9	7.6	9.7	8.6	10.1	4.0	4.0	9.6	7.6
Annual	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4

[^115]\)

\hline \& \& ¢ \& cti \& $\varepsilon \varepsilon!$ \& ${ }_{8 \varepsilon 1}$ \& + \& 801 \& \& tol \& 4 + \& \%ol \& cti \& for \& \% \& tor \& tor \& ¢ \dagger \& ¢ \dagger \& car \& tor \& ct \& 碞 \& ${ }_{\text {İI }}$ \& tzi \& + \& ${ }_{\mu \text { uad }}$

\hline 621 \& tor \& cst \& \& cti \& s $\varepsilon 1$ \& oor \& oor \& oor \& vor \& \& oor \& cti \& \& \& ${ }^{2 \prime \prime}$ \& oor \& \& \& czi \& zill \& \& oor \& くzı \& czi \& \&

\hline ${ }_{\text {I }}^{18}$ \& $\underset{\substack{001 \\ \hline 6 \\ \hline}}{ }$ \& \& \& \& ${ }_{9}^{\varepsilon+1}$ \& \& \& \& \& ${ }_{\substack{t s t \\ t \leqslant t}}$ \& $\xrightarrow{46}$ \& \& ${ }_{6} 0$ \& \& \& \& \[

$$
\begin{gathered}
I s I \\
t \leqslant 1
\end{gathered}
$$
\] \& \& \& $\stackrel{\text { tr }}{\substack{\text { trct }}}$ \& \& \& $\stackrel{\text { trit }}{\substack{\text { trct }}}$ \& ${ }_{\substack{c \\ t \times t}}^{\text {cti }}$ \& \& ${ }_{\text {a }}$

\hline \& \& \& \& \& \& ${ }_{\text {O/K }}$ \& \& \& \& suc \& \& \& \& \& \& \& \& \& \& ${ }_{\text {s,k }}$ \& \& \& \& \& \&

\hline
\end{tabular}

Table P. 7 kWh per $\mathrm{H}_{\text {prod }}$

Sites	$k W / r$																								
	$y r_{1}$	yr_{2}	yr_{3}	yr_{4}	yrs	rr_{6}	yr_{7}	yr_{8}	yr,	${ }^{2} r_{10}$	y r_{1}	yr ${ }_{12}$	${ }_{\text {r }}^{13}$	$\mathrm{yr}_{1 /}$	$y_{1 / 5}$	${ }^{\text {r }} 16$	y_{17}	yr 18	yr ${ }_{19}$	yr_{20}	yr_{2}	$y_{r 22}$	$y_{2} 2$	y_{24}	yr 25
Aracari(Brazil)	5693	5648	5674	5633	5697	5648	5693	5693	5641	5643	5648	5693	5674	5640	5715	5731	5688	5652	5608	5694	5683	5620	5631	5648	5641
Corvo Island (Portugal)	10458	10535	10467	10475	10468	10563	10497	10429	10525	10527	10454	10525	10507	10500	10474	10454	10510	10523	10545	10560	10464	10520	10532	10452	10407
Cape Saint James (Canada)	24780	24853	24925	24743	24791	24853	24743	24743	24925	24791	24853	24793	24743	24933	24876	24933	24895	24925	24933	24841	24800	24743	24897	24793	24882

Hem						(${ }^{\text {a }}$				mand																
	0	1	2	3	4	5	6	7	8	9	10	11	12	${ }^{13}$	14	15	16	17	18	19	${ }^{20}$	21	22	23	24	25
(-) LCCCM WF $_{\text {WF }}$	6025901 27886278	:	:	:	:							-														
${ }_{T}^{\text {WTcu }}$	${ }_{\text {cher }}^{276862788}$:	-	-			-	.				-		-	-				-							
	24219295 1959783	:	\because	:	:	:		-		-		-									:		\vdots	:	:	
${ }^{\text {PP } \mathrm{cm}}$	1545346	-						-		-																
${ }^{\text {TS }} \mathrm{cm}$	572832		-																							
	2136726 179687	-	:		:							$:$:							
$F_{c u}$	188559		\checkmark				\checkmark	-		-		\checkmark														
${ }^{\text {Cccan }}$	120211	01070																								
		15046124	15535609	15823374	16229340	16624945	517194985	17513916	17835578	18449787	18914223	19254127	19868402	20330295	20825386	21292641	21784277	22447567	2303643	23661518	24289963	17268871	17795063	18260013	18575463	8967597 18957626
${ }_{\text {PPAR }}$.	15046124	15535609	1582374	16229340	16624945	51719485	17513916	17835578	1844978	18914223	19254127	19868402	20330295	20825386	21292641	21784277	22447567	2303643	23661518	24287963					
EMP	-																					17268871	17795063	18260013	18575463	1895726
	:	9414550 489594	9720704 505217	${ }_{5}^{9900012}$	52080948	10401931 5409674	+1 10758842	10957897 568935 8	11159028 580359	${ }_{6}^{11543192}$	${ }_{6}^{11833646}$	1204185 6265179	12430378 6465057	12779232 6615352	13028853 677649	13321057 6928488	13628511 7088460	${ }_{7}^{140433288}$	${ }_{7}^{14495901}$	${ }_{7}^{148025929}$	15194336 7003112	${ }_{1}^{13212815} 8$	13615294 8271977		${ }_{8634738}^{142144}$	14504416 8812382
о๕M Merabal	-	4518607	466548	4751486	4873579	499258	85163313	525896	5355430	5539736	5679068	5781006	5965321	6103880	6252405	6332569	6540051	673963	6915732	7103264	7291205	5185434	5343317	5482807	5577406	${ }_{5}^{8812382} 5$
${ }_{(+)}$LRCM	-	3268	88850	96971	929646	95288	¢ 976709	1001127	1026155	1051809	1078104	1105057	1132683	1161000	1190025	1219776										
(+) Depreceiation		2416592	2477007	2538932	2602406	2667466	62734153	2802506	2872569	2943838	${ }^{3017993}$	3093443	3170779	3250948	${ }^{3} 332299$	${ }^{3414582}$	${ }^{34999946}$	358744	367131	3769060	${ }^{3863286}$	3959868	${ }^{4058865}$	4160336	4264345	4370954
(=) Profit before tax	\checkmark	8911435	9176763	9368266	9608864	9843367	567 10147375	10359653	10575273	10992786	11176673	11406441	${ }^{11741486}$	12022111	12317857	${ }^{12605929}$	11655772	11991661	12301941	${ }^{12628019}$	${ }^{12956912}$	8015924	${ }^{8238854}$	${ }^{8449937}$	${ }^{8627664}$	${ }^{8824163}$
$(-)$ Revenue tax		4513837	466068	4746712	4868802	4987484	45158996	5254175		5534936	5674267		5960521	609988	${ }^{2} 247616$	6387792	${ }_{6} 635283$	6734270		7098455	7286389	5180661	5338519	5478004	5572639	5687288
${ }^{(+)}{ }_{\text {REFPM }}^{\text {REI }}$ (${ }_{\text {cu }}$	1284621	1253	1231	1193	1165	1136	1118	1084	1051	1035	1010	978	961			888										
${ }_{\text {REP } P_{\text {cu }}}$		1253	1231	193	1165	136	1118	1084	1051	1035	1010	978	961	936	912	888	865	848								
${ }_{\text {OREP cu }}^{\text {GHC }}$	420959												-													
(E) Profit affer tax wout interest		4398850	4517311	462747	473927	4857019											5121294	2329	5391008	54	5670523	2835263	2900115	434	S025	3136875
$(-)$ Debt payments			${ }^{3127964}$	${ }^{32080} 163$	3286817	475	3452887	3539004	3 367 479	3718168	${ }^{3} 811120$			410460												
		2416592	2477007	${ }_{2}^{27389392}$	2602406	(2893909	6296257	2040413	2872569	294483	3017993	3353443	3439949 317079	325094	361096 3331299	${ }_{3}^{3704448}$	3499946	3587445	${ }_{3}^{36671131}$	4769660	3863286	${ }_{3} 4959868$	4058865	4513511 416036	${ }_{42663445}^{46348}$	4742007 470954
(\Leftrightarrow) Free net cashflow	-58941280	9437182	6553636		1687862	7049919	7237220	741047	7587164	7789436	7984881	8174273	8388595	崖	\%	135	12413300	12737770	1305725	41	1372053	155	1362405	281	18	
$\Sigma_{\text {trenerat }}$		-49	4295	2-36 240481	-293661839-1	-2231	-15074200	-7663723	-76599	7712878	15697359	23871632	32260227	40856021	49665807	58691941	71110241	183847911	96905336	978	124018831	186	14647159	872	2590	${ }_{122312426}$

Table P.10 Cashflow for 25 years	nd fa	ect	50000 k		Cape Saint	James (Canad				with sensitivi	aly	\&	+ E_{p}	(Case ,)												
Hem	0	1	2	3	4	5	6	7	8	9	10	11	12	${ }^{13}$	14	15	16	17	18	19	20	${ }^{21}$	22	23	${ }^{24}$	25
(-) LCCCM $_{\text {wF }}$	60225901		.																							
WT cm	27686278	-		-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-				-
${ }_{T}^{\text {cm }}$	24219295		-	-	-		-				-	-	-	-	.	-		-		.		-		-		-
${ }_{\text {LwTG }}^{\text {cm }}$	1959783	-	-	-	-	-	-	-	-	-	-	-		-												
${ }^{\text {cPacm }}$	1545346		-		-		-				-		-	-		-		\checkmark				-		-		-
${ }^{\text {TS }} \mathrm{cm}$	572832		-		-		-		-	-	-	-	-	-		-		-		-						
${ }_{\text {Stcm }}$	2136726	-	-	-	-	-	-		-		-	-		-		-		\checkmark		-	-	-		-		-
$\mathrm{PO}_{\mathrm{Cu}}$	1796870		-		-						-		-	-		-						-		-		
$F_{\text {cu }}$	188559	-		-	-	-		-	-		\checkmark	-		-												
${ }^{\text {cCC }} \mathrm{cm}$	120211		-		-						-	-	$3 \times$	-		233895				-		-		-		
LCPM wF (kWhrr)	-	213508813	266	21471434	21319728	21361137	214142266	21319728		214761434	213611337	214144266	21362548													
${ }^{(+)}$AAR (SMMry)	-	30276974	31126117	31992219	32557331	33436006	634357409	35060685	35937202	37105804	3782972	3887255	3974762	20659646	41995741	42946676	44121775	45155164	46340065	47514326	4852244	34841551	3554828	3665995	37419293	38491531
${ }^{\text {PPAR }}$	-	30276974	31126117	31996219	32557331	33436006	634357409	35060685	35937202	37105804	3782772	3887255	39747622	40659646	41995741	42946676	44121775	45155164	46340065	47514326	4852244					
EMP	-		-		-						-	-										34841551	3554828	36659995	37419293	38491531
(-) O\& M ${ }_{\text {wrcm }}$	-	20688790	21268898	21863324	2246612	22846890	O23476361	23956782	2455557	25353946	25848498	26560685	27158881	27781721	28694515	29344137	30146919	30852873	31662346	32465446	33153088	29528360	30124265	3106924	31712621	32621209
O\&M $\mathrm{m}_{\text {ficed }}$	-	11600929	11926280	12259661	12474651	12811317	13164355	13433815	1376965	14217407	14494795	1489425	15229623	15579065	1609094	16455346	16905588	17301532	17755529	1825549	1859616	19071110	1945658	2006453	20482061	21068961
O\& $M_{\text {veriable }}$	-	9087862	9342619	9603663	977196	10035573	310312006	10522968	10785923	11136539	11353703	11666460	11929059	12202656	${ }^{12603521}$	12888791	13241331	13551341	13906817	14259997	14561454	10457250	10668211	11002791	11230560	11552248
${ }^{(+)}$LRCM	-	863268	884850	906971	929646	952887	976709	1001127	1026155	1051809	1078104	1105057	1132683	1161000	1190025	1219776										
${ }^{+}$) Depreciation		2387582	2447271	2508453	2571165	263544	4 2701330	2768863	283888	2999037	2981763	3056307	3132714	3211032	3291308	3373591	3457930	3544379	3632988	3723813	3816908	3912331	4010139	4110393	4213152	4318481
($=$ Proffit before tax	\checkmark	12839034	13189340	13548319	13811529	14177446	11455988	14873892	15245865	15712704	1604140	1647933	16854338	17249956	17782558	18195905	17432786	17846670	18310707	1873993	19186064	922522	9430702	970114	9919825	10188803
(-) Revenue tax		9083092	9337835	9598866	9767199	10030802	10307223	10518205	10781161	11131741	11348931	1166167	11924287	12197894	1259872	12884003	13236533	13546549	13902019	14254298	14556673	10452465	1066348	10997999	11225788	1154745
(+) REPM	1992197	148	144	141	137	134	131	127	124	122	118	116	113	-		-		-		-	-	-	-	-	-	
REICM	863662													-		-	-	-	-	-	-	-	-		-	
${ }_{\text {REP }}^{\text {cm }}$		148	144	141	137	134	${ }^{131}$	127	124	122	118	116	113	-	-	-	-	-		-	-	-	-	-		
${ }_{\text {OREP }}^{\text {cu }}$	1128535	-	-	-	-	-	-	-	-	-				-	-	-		-		-		-				
GHG: cm																										
$(\mathcal{)}$ Proff affer rax wout interest	-	3756090	3851649	394999	404466	4146778	84251995	4355814	4464828	4581084	469327	4811372	4930164	5052063	5188836	5311903	4196254	4300121	4408688	4519295	4629391	-122694	-1232746	-1296854	-1305963	-1358656
$(-)$ Debt payments	-		3090413	${ }^{316674}$	${ }^{32488866}$	${ }^{3} 328037$	${ }^{3411288}$	${ }^{3496519}$	3883332	3677353																
${ }^{+}$) CM $^{\text {w }}{ }_{\text {F }}$	-	2621739	2687282	2754464	2823326	2893909	2966257	3040413	3116424	3194334	3274193	3356047	3439949	3525947	3614096	3704448	3797060	3891986	3989286	4089018	4191243	4296024	4403425	4513511	4626348	4742007
${ }^{(+)}$Depreciation		2387582	2447271	2508453	2571165	263544	42701330	276886	2888085	2909037	2981763	3056307	3132714	3211032	3291308	3373591	3457930	3544379	3632988	3723813	3816908	3912331	4010139	4110393	4213152	4318481
\Leftrightarrow Free net cashfow	-5823703	8765410	5895790	- 6048838	6192091	6348094	46508343	6668571	6835404	7010925	7182913	7364223	7546836	7734152	7932977	812973	11451244	11736485		12332126	12637542	6981412	7180818	732749	7533538	7701832
		-49468293	43572504	-37 527665		-24987480	-18479 137	-11810566	-4975162	2035763	9218676		24129736	3186888	39798865	47926638	5937881	7114367	83145328	9547454	-108114996	115996408	12227272	129604275	137137813	144839645
	${ }_{\text {COEF }}^{\text {wo }}$	84.40	85.07	85.75	86.23	86.92	87.05	88.22	88.92	89.83		9.25	9.96	92.69	93.72		$9+17$									

APPENDIX Q

Figure Q. 1 I-O representation of $L C O E_{\text {wso }}$ algorithm calculations for the hypothetical $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Aracati (Brazil) with sensitivity analysis of $O \& M_{\operatorname{manag}(A)}$ and $E_{p i}\left(\right.$ Case $\left._{2}\right)$. Source: Own elaboration

Figure Q. 2 I-O system representation of $L C O E_{\text {wso }}$ algorithm calculations for the hypothetical $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Corvo Island (Portugal) with sensitivity analysis of $O \& M_{\operatorname{manag}(A)}$ and $E_{p i}$ (Case ${ }_{2}$). Source: Own elaboration

$\mathrm{LCOE}_{\text {wso }}$ Model Inputs		
Legend		
Green cells indicate information and are updatedautomarically based on user input into yellow cells.		
Yellow cells are for use input htomation about the ppject.		
Gray cells are not ueed.		
Wind Project Information		Notes
Project Name	Fivarar Wiad famm	
Project Location	mimmen	
Turbine Model	Vetas v90-2Mw	
Number of Wind Turbines ($N_{W T}$)	25	${ }^{\text {H }}$ -
Turbine Size	2000	${ }_{\text {[kw] }}$
Wind FarmCapacity (WF ${ }_{\text {cop }}$)	50000	[kw]
Rotor Diamenter (D)	90.0	${ }^{[m]}$
Swept Area per Turine (A)	6361.7	${ }^{\left[\mathrm{m}^{2}\right]}$
Hub height (H)	105.0	[m]
Wind speed measured at (H_{0})	10.0	${ }^{\text {[m] }}$
Termin rugosity factor (a)	0.14	${ }^{\text {H/- }}$
BetzLinits soefficient ($C_{\text {Pract }}$)	${ }_{0} 0.5926$	$\mathrm{H}^{\text {H }}$
Lifetine of Wind Farm(N)	25	[yr]
Production Efficiency ($W F_{P E}$)	48.7\%	[\%]
Avâlabilily	98.4	[\%]
	359	[dyry]
Wind Farm Life-Cycle Capital Cost Model		Notes
${ }^{W} T_{c u}$	53.7256	[s/kw]
${ }^{\text {c }}{ }_{\text {wi }}$	26.532	[5/3w1
${ }^{R C}{ }_{W}{ }_{T}$	73.70%	${ }_{[6 / 5 / 5 \mathrm{WW}]}$
$c_{k w}$	400.00	[skw]
${ }_{\text {IPT }}$	10.00\%	[\%]
${ }_{\text {cum }}$	4843859	[skw]
$T_{\text {max }}$	138000	${ }^{\text {[kg] }}$
${ }_{R C} C_{T}$	26.30\%	${ }_{[6 / 5 / 5 k]}$
$c_{\text {seel }}$	0.1900	[5/kg]
${ }^{\text {LWTG cw }}$	39.1957	${ }_{[5 / \mathrm{m} k \mathrm{w}]}$
${ }^{W} F_{\text {cap }}$	50000	${ }_{\text {[kw] }}$
$L_{L_{k}}$	13950	${ }_{\left[{ }^{[m]}\right]}$
${ }^{\text {CAB }}$ cous	2000.00	${ }^{[5 / m]}$
${ }^{\text {cP }{ }_{\text {cur }}}$	30.969	[5kW]
${ }^{E F}{ }_{\text {c }}$	400.00	[s/kwl
ς	0.08\%	[\%]
${ }^{75} \mathrm{~cm}$	11.4566	${ }_{\text {[s/kwel }}$
${ }_{T} L_{\text {c }}$	0.0400	[5/m]
${ }_{T} L_{r}$	1200	[1/kw]
$L_{\text {c }}$	3000	[m]
${ }_{\text {SBe }}$	113.00	[s/kWh]
${ }^{\text {Stcu }}$	427345	${ }_{\left[s / \mathrm{m}^{2} / \mathrm{kw]}\right.}$
${ }^{W} F_{\text {app }}$	50000	${ }^{\text {[kw] }}$
$\mathrm{W}_{\text {max }}$	42.2238	[5/3W1
${ }^{\text {Bld }}$ cost	50.00	${ }^{\left[5 / m^{2}\right]}$
${ }^{\text {Bld }}$ deam	330.0	${\left[m^{2}\right]}$
${ }^{P O_{C W}}$	35.937	[skw]
${ }^{\text {FS }}$	19.88	[s/ww\|
${ }^{\text {dT }}$	87.22	[s/kw]
EG	404.52	[skw]
${ }^{\text {cuu }}$	3.7712	[skw]
$\mathrm{waCc}_{\text {prof }}$	Wrs	${ }^{[/ 7 / y \mathrm{y}]}$
${ }^{\text {fin }}$	1.0	[yr]
${ }^{\operatorname{CCC}_{\text {Faw }}}$	${ }^{0.306 \%}$	[\%]
${ }^{\text {cCC }}{ }_{\text {cus }}$	24442	${ }_{\text {[} 5 \text { kw] }}{ }^{\text {a }}$
κ	0.206	[\%]
$L_{\text {LCCCM }}{ }_{\text {w }}$	1204.5180	${ }_{[8 / \mathrm{sW]}}$

Figure Q. 3 I-O system representation of $L C O E_{w s o}$ algorithm calculations for the hypothetical $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Cape Saint James (Canada) with sensitivity analysis of $O \& M_{\text {manag(A) }}$ and $E_{p i}$ (Case 2 2. Source: Own elaboration

Table Q．2 Energy production map of the wind farm for Corvo Island（Portugal）

Months	$\begin{gathered} v_{w c} \\ (m / s) \end{gathered}$	$\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	$H_{\text {prod }}$$(h)$	yr_{1}	y_{2}	y_{3}	yr_{4}	yr_{5}	$y r_{6}$	y_{7}	yr_{8}	yr9	yr ${ }_{10}$	${ }^{2} r_{1}$	${ }_{\text {AE }} \mathrm{P}_{\text {axiil }}(k W h)$				yr ${ }_{16}$	yr_{17}	$y_{1 / 8}$	yr 19	yr 20	$y^{2} 2$	y^{22}	23	y_{24}	yr_{25}
															yr ${ }_{12}$	yr_{13}	yr_{14}	yr 15										
January	11.7	1.2313	740	14490462	14490462	14490462	${ }^{14} 490462$	14490462	14490462	14490462	10871408	10871088	14490462	1087408	1087408	1087408	1440462	1087408	1087408	1440462	1087408	1087408	1087408	10871408	10871408	10871408	10871408	1087408
February	11.5	1.2345	648	12092721	4293137	12092721	12092721	12092721	3417096	12092721	12715785	1795784	3417096	1271585	1795784	9244173	1209721	6674015	12715785	4293137	5486290	3417096	2815600	1209272	2106703	6674015	12092721	127
March	10.5	1.2329	736	10482	31939	13715	137175	137175	622343	13717510	13717510	2389762	3193907	13717510	2389762	13717510	13717510	6223433	13717510	3876220	7570742	4869967	13717510	1442289	2037067	10488228	14424289	3193
April	9.5	2317	712	7316597	7316597	10458483	10488483	10458483	7316597	1045883	4706485	3086689	7316597	13257	3086689	13257022	4706485	4706485	${ }_{13} 25$	3086689	10134212	3086689	1394075	13257022	3086689	3086689	1325702	3746098
May	8.2	1.2282	736	4851676	1044685	44884	46845	6200059	10468845	10446845	104684	3861662	6200059	1044684	3861662	14370115	10446	3861662	10446	2380787	136699	6200059	238078	104688	3861662	143701	1046845	4851676
J_{u}	7.1	1.2224	696	2994461	88090	7097981	7097981	7097981	145990	4565858	12880990	4565858	10145980	7097981	4565858	7097981	2240532	2994461	7097981	1909861	1280910	7097981	1909801	7097981	4565858	12880990	7097981	5838806
July	6.1	1.2154	736	2008118	13522571	4800760	6134992	10337209	1352571	7463154	3148518	6134992	2008118	6134992	6134992	6134992	2008118	2355801	6134992	6134992	14219306	10337209	3821135	6134992	6134992	1352571	3821135	7463154
August	6.4	2075	736	2344996	10598668	37963	37963	3796310	13434719	6095134	37963	7414668	2340496	4769571	7414668	4769571	10998688	1995072	4769571	13434719	1995072	13434719	4769571	4769571	7414668	4769571	3128063	10270
September	7.6	1.2064	712	3669202	192827	589105	460987	4609876	46098	1928273	5891057	9926189	992618	3669202	9926189	3669202	5891057	9926	3669202	1294888	2262132	1294898	5891057	3669202	9926189	3669202	2262132	1928273
October	8.9	1.2126	736	6121079	6121079	3141378	2003564	3141378	2003564	2350459	7446229	1349905	13491905	3141378	13491905	3141378	7446229	1349905	3141378	10643782	3141378	2003564	7446229	3141378	1349995	2350459	2003564	2350459
November	10.6	1.2194	696	10121588	3625425	2235143	2235143	2235143	2235143	2987258	2235143	1282976	4554876	2235143	12829976	2235143	2987258	1282976	2235143	9807761	3625425	2235143	9807761	2235143	12829976	1905267	5820771	12829976
December	11.5	1.2237	736	13614984	2371901	2021842	3170035	2021842	3170035	3847249	2021842	14316481	13614984	2021842	14316481	2021842	3847249	14316481	2021842	7514158	4833568	14316481	13614984	2021842	14316481	6176918	4833568	136149
Annual	9.1	1.2222	8616	901076	907697	9019049	982539	901989	91016328	904384	898880	90685	907006	90078	96685	90535336	904731	90246	90078	90557	90666	90855	90985	90162	90633	9074	9055	89670577

$69988 \pm 1 /$	8t6 699 elz	zlt	szL L6t glz	t96 $607+1 /$	$468880+12$	689788712	$t s t \mid c t / z$	cos los triz	68978812	5088 se $+1 /$	69978812	872 L61 $1 / 2$	8 8t6 529 glz	99\％toltiz	Leq II Elz	$t s t 19+$ tiz	$8 z 4611$ Elz	$8 z 461$ glz	992＋tt tiz	L¢¢ 119 ¢ 12	$8 z L 619$ glz	$t+8192+1 z$	992 tit tiz	ع18605 $\varepsilon 12$	9198	totでI	siz	${ }^{\text {pmuü }}$
Ets css zt	zob tos 28	¢9 9 LI 6	S6996	856996	L68 65	ESI6 6	150784	szo zio	ssI 6 zz	$6 \varepsilon t+t 9$	¢sI 6 zz	856996	zoLtts 28	szo zio	t18820 oc	150	856996	85699	szo	tst zzo	856	1508845	szoziool	\＆stiozos	¢	8zsz＇I	I＇SI	${ }^{\text {a }}$
¢11 ozzz	S680988	9IL 2868	£66 6 ¢8 8	ع66 6LE8	z9Lozs 4	996612	994612	osz 8686	99861	esc8s9 II	612	\＆666L88	568098	0st 8686	56898	9966	E660LE8	$\varepsilon 666688$	0sz 8686	\＄68 9888	ع66 6288	994	osz 6686	$669881+z$	969	てtz	$\varepsilon \neq 1$	дилоо
9	＜ 8860 Lz	LSI tels	509 IS8 6	Lt ILL88	sll $63 z 1$	¢56998s	$662+266$	Lezzzzı	E66898 sz	509 IS86	E68998 52	S09 1586	L4880t 2	5068828	856998 52	664 HLL 62	S09 1586	5091586	5068848	¢56988	5091586	662 thl 62	5068848	71690661	9\＆L	zez	$I^{\prime \prime}{ }^{\prime}$	${ }^{199010} 0$
61	685	020 S588	280 SSt 6	186	9t1	12	12661681	965 ISLSI	12261681	2808St 6	12661681	6	68S Ssctz	S919zs 1	cctoot 92	12661681	2808856	288	S91	ect oot gr	280 8546	12461681	s91 res L	2808St 6	IIL	ャ¢zz＇I	tor	${ }_{\text {ıquuədas }}$
Iz1	Ist6z5 61	98899921	621LIIz	99968	Slt 76 zl	H8	82t tos 41	87t \＃8 41	8zt tfoll	0926048	szt t＋ 41	6zılızı	$15+6564$	bzlılızı	sit＋ts 21	87t＋n84	brılıza	bzlılizl	brıluza	8it＋t8 41	6z1 clizl	8z7＋48 41	brılıza	zIL	9EL	9ıžI	L＇6	${ }^{1 s n 8 n}{ }^{\text {n }}$
168 ＜998	H8086 4	0568	98668594	6126991	LEL LSs st	986 ＜E 91	$986 \ll E 9$ 9t	96	986 Lec 9t	oze 908 L	$986 / 889$	$986<8 \varepsilon 94$	1180664	65961962	ozeges \angle	986 c88 91	986 çe 91	986 ce 91	65961962	ozz908L	$986<8 ¢ 97$	$986 \ll \varepsilon 91$	689619	¢z6 IS8	$9 E L$	slzz＇I	0．or	$\alpha_{1 n}$
E99 9tI SI	¢6S thl SI	S68 18691	021 090 LI	1271000 L1	t998414	ISS 585 II	ISS 88 II	t／s	ISS +85 II	0z1090 LI	ISStss II	021000 LI	c6s trs St	¢87 ¢509	69 ¢	ISS fss II	0z1090 11	02100041	s8＞\＆50 9 r	${ }_{\text {tto } 9 \text { IE }}$	0ztose al	ISS 88511		$\angle 84$	969	Isez＇I	toor	วun／
stz 16191	tootzz zl	Ste 91／	\＆L6298 61	ع6629861	866810 Iz	0z96766	oz9626 6	It9914Lz	9676	0588958	oz9 626	EL6298	orza	958095	0z9666	0z96666	867986	\＆66 28	¢88	029676	\＆L6288	oz9 6z6	0586	tootc	9\＆L	sztで	z＇II	${ }^{10} W^{\prime}$
Iz9 ¢9\％ 81	¢zo	6st 956＋2	soE S98＋z	t81 1000 z	99181272	\＆z09s96	\＆zos	z82tSI6z	\＆z0 959 6	Lt6 25698	Ez0 959 6	808	\＆zo 9	Ll9 Sll 61	szo	દzo	808	808	u9s	Ezo9s	80C 598 tz	Ezas9 6	LussIE6I	6tr	IIL	06	tiz	${ }^{\mu} d_{V}$
299 86681	t80986 6		srてt＜ls	8ヶて 4848	190 ＋20 52	8288068	818	$8 / 88068$	8288068	6z8 os 108	$8 / 88068$	stz L\＆\＆ 2 I	t80	9LE Š781	HI	818	strtls Lz	8tてt＜8＜2	9\％	tot 16627	8れてt＜ctz	828	9＜Ezs8 81	928zz81	$9 E L$	S6t	く̌I	yวıpW
9654	$6+96584$	t65 6986	t986	t98 66592	0090842 27	ISt 010 L	IStoio \angle	IStolo	IStolo 4	067 z9 ¢1	IStolo 4	＋9866592	$6+96584$	sczuetl	tszzestl	IStolo	19866592	\％80	szzict	stzuet	t9866592	IStolo＜	Sczu9	tor 165	8t9	zzs	く＇tI	
LLI ozi	oit sco 8	62656082	ols czz ze	ols czz ze	Scz 598 or	ols 888 ze	ois czz ze	ols czz ze	ois czz ze	ois czz ze	ols szz 28	ols $¢ 888$	orz Sc0 8	Is czzz	ols 888 ze	oıs zzz ze	ors $¢ 8828$	ols czz ze	ols czz 28	ols ¢zze	ols czz ze	ors ¢zzz	015 82828	ots $\frac{18 z}{\text { ze }}$	OtL	Igsz＇I	t＇s	cıomup
，	${ }^{2,1 /}$	${ }^{2,1 i}$	${ }^{2 z, 1 i}$	${ }^{12, \ldots}$	${ }^{0 z_{1}, 1}$	${ }^{61}$ ， 1	${ }^{81, \lambda}$	${ }^{41,1}$	${ }^{9}, \ldots$	${ }^{s_{1}, \ldots}$	${ }^{+1,1}$	${ }^{\text {E／，i¢ }}$	${ }^{21,1,}$	${ }_{\text {＂，}}$	${ }^{0} 1,1 \times$	${ }^{6,1}$	${ }_{8,1}$	${ }^{4,1}$	${ }_{9,1}$	$s_{\text {s，i }}$	${ }_{\text {t，}}^{\text {／}}$	$\varepsilon_{\text {AK }}$	${ }^{2,1 /}$	${ }_{\text {I }}^{1 / 1}$	4）	${ }_{\varepsilon}{ }_{\varepsilon}^{\text {u／／}}$	（s，$/$ ）	

Table Q.4 Wind speed series simulations for $A E P_{\text {anail }}$ in Aracati (Brazil)

Months	$\begin{gathered} v_{w c} \\ (m s) \\ (m) \\ \hline \end{gathered}$	Wind speed data series for simulations ($m s$)																								
		yr_{1}	$y r_{2}$	y^{2}	$y r_{4}$	y_{5}	$y r_{6}$	$y r_{7}$	y_{8}	yr9	y_{10}	$y_{1 / 1}$	$y r_{12}$	$y_{1 / 3}$	y_{14}	${ }^{\text {y }} 1_{15}$	yr_{16}	${ }^{1} r_{17}$	$y_{1}{ }_{18}$	yr_{19}	y_{20}	y_{21}	$y r_{22}$	y_{23}	y_{24}	y^{25}
January	5.8	5.8	10.1	7.6	9.6	4.0	10.1	4.0	4.0	7.9	10.1	10.1	4.0	7.6	9.6	7.9	10.1	10.1	4.0	7.6	9.6	4.0	7.6	9.6	7.9	7.9
February	4.9	4.9	9.7	7.9	9.7	4.7	9.7	4.7	4.7	8.6	9.7	9.7	4.7	7.9	9.7	4.0	4.0	7.6	8.6	10.1	6.0	6.0	10.1	9.7	8.6	8.6
March	4.0	4.0	9.6	8.6	10.1	4.9	9.6	4.9	4.9	9.2	9.6	9.6	4.9	8.6	10.1	4.7	4.7	6.0	7.9	6.0	5.8	5.8	9.7	10.1	7.6	9.2
April	4.7	4.7	9.2	9.2	7.9	5.8	9.2	5.8	5.8	9.6	9.2	9.2	6.0	9.2	7.9	4.9	4.9	5.8	9.2	5.8	7.6	4.9	9.6	9.2	6.0	9.6
May	6.0	6.0	8.6	9.6	8.6	6.0	8.6	6.0	6.0	9.7	8.6	8.6	5.8	9.6	9.2	5.8	5.8	4.9	10.1	4.9	4.0	4.7	9.2	7.9	5.8	9.7
June	7.9	7.9	7.9	9.7	9.2	7.6	7.9	7.6	7.6	10.1	7.9	7.9	7.6	9.7	8.6	6.0	6.0	4.7	9.7	4.7	4.7	7.6	8.6	8.6	4.9	10.1
July	8.6	8.6	7.6	10.1	5.8	7.9	7.6	7.9	7.9	4.0	4.0	7.6	8.6	10.1	6.0	7.6	7.6	4.0	9.6	4.0	4.9	7.9	7.9	5.8	4.7	4.0
August	9.6	9.6	6.0	6.0	6.0	10.1	6.0	8.6	8.6	4.7	4.7	6.0	7.9	6.0	5.8	8.6	9.7	9.7	4.7	7.9	9.7	8.6	6.0	6.0	4.0	4.7
September	10.1	10.1	5.8	5.8	7.6	9.7	5.8	9.2	9.2	4.9	4.9	5.8	9.2	5.8	7.6	9.2	9.6	9.6	4.9	8.6	10.1	9.2	5.8	7.6	9.2	4.9
October	9.7	9.7	4.9	4.9	4.0	9.6	4.9	9.6	9.6	5.8	5.8	4.9	10.1	4.9	4.0	9.6	9.2	9.2	6.0	9.2	7.9	9.6	4.9	4.9	10.1	5.8
November	9.2	9.2	4.7	4.7	4.7	9.2	4.7	9.7	9.7	6.0	6.0	4.7	9.7	4.7	4.7	9.7	8.6	8.6	5.8	9.6	9.2	9.7	4.7	4.7	9.7	6.0
December	7.6	7.6	4.0	4.0	4.9	8.6	4.0	10.1	10.1	7.6	7.6	4.0	9.6	4.0	4.9	10.1	7.9	7.9	7.6	9.7	8.6	10.1	4.0	4.0	9.6	7.6
Annual	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4

Months	$\begin{gathered} \hline v_{w c} \\ (m s) \\ \hline \end{gathered}$	Wind speed data series for simulations (m s s)																								
		$y r_{1}$	$y r_{2}$	$y r_{3}$	$y r_{4}$	$y r_{\text {s }}$	$y r_{6}$	$y r_{7}$	yr ${ }_{8}$	yrg	$y r_{10}$	$y_{1 / 1}$	yr_{12}	$y r_{13}$	$y r_{1 / 4}$	$y_{1 / 5}$	y_{16}	y_{17}	$y_{1 / 8}$	$y_{1}{ }_{19}$	$y r_{20}$	y_{21}	$y r_{22}$	y_{23}	${ }^{2} r_{24}$	${ }^{\text {y } r_{25}}$
January	11.7	11.7	11.7	11.7	11.7	11.7	11.7	11.7	10.6	10.6	11.7	10.6	10.6	10.6	11.7	10.6	10.6	11.7	10.6	10.6	10.6	10.6	10.6	10.6	10.6	10.6
February	11.5	11.5	8.2	11.5	11.5	11.5	7.6	11.5	11.7	6.1	7.6	11.7	6.1	10.5	11.5	9.5	11.7	8.2	8.9	7.6	7.1	11.5	6.4	9.5	11.5	11.7
March	10.5	10.5	7.1	11.5	11.5	11.5	8.9	11.5	11.5	6.4	7.1	11.5	6.4	11.5	11.5	8.9	11.5	7.6	9.5	8.2	11.5	11.7	6.1	10.5	11.7	7.1
April	9.5	9.5	9.5	10.6	10.6	10.6	9.5	10.6	8.2	7.1	9.5	11.5	7.1	11.5	8.2	8.2	11.5	7.1	10.5	7.1	11.7	11.5	7.1	7.1	11.5	7.6
May	8.2	8.2	10.5	10.5	10.5	8.9	10.5	10.5	10.5	7.6	8.9	10.5	7.6	11.7	10.5	7.6	10.5	6.4	11.5	8.9	6.4	10.5	7.6	11.7	10.5	8.2
June	7.1	7.1	11.5	9.5	9.5	9.5	10.6	8.2	11.5	8.2	10.6	9.5	8.2	9.5	6.4	7.1	9.5	6.1	11.5	9.5	6.1	9.5	8.2	11.5	9.5	8.9
July	6.1	6.1	11.5	8.2	8.9	10.5	11.5	9.5	7.1	8.9	6.1	8.9	8.9	8.9	6.1	6.4	8.9	8.9	11.7	10.5	7.6	8.9	8.9	11.5	7.6	9.5
August	6.4	6.4	10.6	7.6	7.6	7.6	11.5	8.9	7.6	9.5	6.4	8.2	9.5	8.2	10.6	6.1	8.2	11.5	6.1	11.5	8.2	8.2	9.5	8.2	7.1	10.5
September	7.6	7.6	6.1	8.9	8.2	8.2	8.2	6.1	8.9	10.5	10.5	7.6	10.5	7.6	8.9	10.5	7.6	11.5	6.4	11.5	8.9	7.6	10.5	7.6	6.4	6.1
October	8.9	8.9	8.9	7.1	6.1	7.1	6.1	6.4	9.5	11.5	11.5	7.1	11.5	7.1	9.5	11.5	7.1	10.6	7.1	6.1	9.5	7.1	11.5	6.4	6.1	6.4
November	10.6	10.6	7.6	6.4	6.4	6.4	6.4	7.1	6.4	11.5	8.2	6.4	11.5	6.4	7.1	11.5	6.4	10.5	7.6	6.4	10.5	6.4	11.5	6.1	8.9	11.5
December	11.5	11.5	6.4	6.1	7.1	6.1	7.1	7.6	6.1	11.7	11.5	6.1	11.7	6.1	7.6	11.7	6.1	9.5	8.2	11.7	11.5	6.1	11.7	8.9	8.2	11.5
Annual	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1

Sites	$k W / y r$																								
	$y r_{1}$	yr_{2}	y_{3}	$y r_{4}$	y_{5}	yr_{6}	$y r_{7}$	y_{8}	$y r_{9}$	$y r_{10}$	$y_{1 / 1}$	$y r_{12}$	yr ${ }_{13}$	yr_{14}	$y r_{15}$	$y r_{16}$	y_{17}	yr_{18}	yr_{19}	$y r_{20}$	$y r_{21}$	$y r_{22}$	$y r_{23}$	yr 24	${ }^{4 r_{25}}$
Aracari (Brazil)	5693	5648	5674	5633	5697	5648	5693	5693	5641	5643	5648	5693	5674	5640	5715	5731	5688	5652	5608	5694	5683	5620	5631	5648	5641
Corvo Island (Portugal)	10458	10535	10467	10475	10468	10563	10497	10429	10525	10527	10454	10525	10507	10500	10474	10454	10510	10523	10545	10560	10464	10520	10532	10452	10407
Cape Saint James (Canada)	24780	24853	24925	24743	24791	24853	24743	24743	24925	24791	24853	24793	24743	24933	24876	24933	24895	24925	24933	24841	24860	24743	24897	24793	24882

Table Q. 8 Cashflow for 25 years of the wind farmproject $50000 \mathrm{~kW} \quad$ Aracait (Brazil)

	Years																									
lem	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
(-) LCCCM $_{\text {WF }}$	60225901	-	-	-	-	-	-	-		-	-		-	-	-	-	-	-	-	-	-	-	-			-
$\mathrm{wT}_{\text {cu }}$	27686278	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-					-
$T_{C u}$	24219295	.	-	-	-		-	-			-					,	-									-
$L_{\text {LWTG }}^{\text {cM }}$	195978		-	-			-	-			-				-	-	-			-			-		-	-
${ }^{\text {cP }} \mathrm{cu}^{\text {u }}$	1545346		-	-	-		-	-			-	-			-	-	-			-	-		-	-	-	-
${ }_{\text {TS }}^{\text {cm }}$	572832	-	-	-	-	-	-	-		-	-	-			-	-	-				-			-	-	
$S t c m_{\text {cm }}$	2136726	-	-	-	-	-	-	-		-	-	-			-	-				-		-			-	
$P O_{c u}$	1796870	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-		-	-	-	-	-	-	-	-
$F_{C M}$	188559	-	-	-	-	-	-	-		-	-	-	-		-	-	-		-	-	-	-	-	-	-	-
${ }_{\text {c CC }}^{\text {cn }}$	120211		-	-	-		-													-	\cdot	-		-		-
$L_{\text {CPM }}^{W F}$ ($(\mathrm{WWh} / \mathrm{rr})$	-	49057055	48667462	48892652	48537127	4988873	4866742	49051893	49051893	48008021	48624219	4866762	49049275	48892652	48596807	4923932	49380379	49009701	48697726	48317889	49064437	48965360	48420199	48519758	48661536	48608021
(+) AAR (SM/yr)	-	4314826	4387573	4518071	459734	4765836	4843059	5003348	5128432	5209075	5341081	5479477	5660527	5783513	5892231	6119463	6290341	6399200	6517427	6628256	6898935	493999	5007115	5142845	5286820	5413031
PPAR	-	4314826	4387573	4518071	459734	4765836	4843059	5003348	5128432	5209075	5341081	547977	5660527	5783513	5892231	6119463	6290341	6399200	6517427	662256	6899935	-	-	-	-	-
EMP	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	4939990	5007115	5142845	5286820	5413031
(-) $0 \& \mathrm{M} \mathrm{WFCM}^{\text {W }}$	-	3964703	4031427	4151213	4223934	4378615	4471031	4618343	4733137	4806905	4928061	5055095	5221459	533243	5433856	5642744	579964	589934	6007676	6109183	6357999	5867984	5947062	6107615	6277939	6427153
$O_{\&} M_{\text {fixed }}$	-	2665486	2710424	2791038	2840010	2944091	2991795	3090812	3168081	3217896	3299441	3384934	3496775	3572748	363990	3780277	3885835	3953081	4026113	404576	4261785	4359507	4418743	4538523	4665578	477695
O\& M variale	-	1299217	1321003	1360175	1383923	1434523	1479236	1527531	1565056	1589009	1628220	1670162	1724683	176149	1793950	186467	1913806	1946264	1981563	2014606	2096214	1508477	1528319	1569092	1612361	1650196
(+) LRCM	-	863268	88480	906971	929646	952887	976709	1001127	1026155	1051809	1078104	1105057	1132683	1161000	1190025	1219776				-		-	-	-		
(+) Depreciation		2423221	2483801	2545896	260954	2674782	2741652	2810193	2880448	2952459	3026270	3101927	3179475	3258962	3340436	342347	3509546	3597285	3687217	377939	3878882	3970729	4069997	4171747	4276041	438242
() Profit before tax	-	363612	3724797	3819726	3912604	4014890	4090389	4196325	4301898	4406438	4517395	4631365	475127	4869233	4988836	5120442	4000245	4097140	419696	4298471	4414818	3042735	3130050	3206977	3284921	3368820
(-) Revenue tax	-	129448	1316272	1355421	1379205	1429751	1452918	1501004	1538530	1562723	1602324	1643843	1698158	1735054	176769	183839	1887102	1919760	1955228	1988477	206988	1481997	1502134	1542854	1586046	1623909
(+) REPM	1122960	1725	1670	1637	1585	1564	1513	1488	1451	1403	1369	1337	1315	-	-	-	-	-	-	-	-	-	-	-	-	-
REICM	86362						-							-	-	-	-	-	-	-	-	-	-	-	-	-
REP cu		1725	1670	1637	1585	1564	1513	1488	1451	1403	1369	1337	1315	-	-	-	-	-	-	-	-	-	-	-	-	-
OREP $_{\text {cm }}$	259298	.	-	-	-	.	-	-	-	.	.	-	.	-	-	-	-	-	-	-	-	.	-	-	-	-
GHG.Ran	.		-	-	-	-	-	-	-	\checkmark	-	-	-	-	-	-	-	-	-	-	\cdot	-	\checkmark	\cdot	-	\cdot
(=) Profit ffer tax wout interest	-	2343889	24109	246594	2534985	2586703	2638984	269880	2764820	2845118	2916440	298885	3054383	3134179	3221167	3284603	2113143	2177380	2241739	2309994	2345137	1560738	1627915	1664124	1698875	174911
(-) Debtpayments	-		${ }^{3116543}$	3214957	3295331	337771	346157	3548711	367428	372836	3821573	397112	401540	415416	4218302	432759				-		-	-	-	-	-
${ }^{(+)}$RCM ${ }_{\text {WF }}$	-	2621739	2687282	2754464	2823326	2893909	2966257	3040413	3116424	3194334	3274193	3356047	343949	3525947	3614096	370448	3797060	3891986	3989286	4089018	4191243	429602	4403425	4513511	4626348	4742007
(+) Depreciation		242322	2483801	2545896	260954	2674782	2741652	2810193	2880448	2952459	3026270	3101927	3179475	3258962	3340436	342947	3509546	3597285	3687217	3779397	3878882	3970729	4069997	4171747	4276041	4382942
(\Rightarrow) Free net cashflow	-59 102941	7388849	4447735	4551345	4672224	477681	4884735	4998704	5124263	5263547	5395329	5529722	5658767	5803672	5957397	6089239	9419749	9666551	9918241	10178409	1041026	9827491	10101337	10349381	10601265	10868860
$\Sigma_{\text {freene a manal a ariflow }}$	-	- 51714092	-47269357	-42718012	-38045489	-33267808	-28383073	-23384369	-18260 106	-12996559	-760122	-2071508	3587259	9390931	15348328	21437567	30857316	40523967	5042208	60620617	71030879	80858371	90959708	101309090	111910354	122780214

Table Q.9 Cashfow for 2	ind farm	ject	50000		rvo Island	d (Porugal)				with sensitiv	viriy analysis	of O\& $\mathrm{m}_{\text {ma }}$		${ }^{\text {se } 2)}$												
Hem	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	${ }^{23}$	24	25
	6025901																									
${ }^{W} T_{\text {cu }}$	27686278	-	-	-	-	-																				
$T_{\text {cm }}$	24219295	-		-		-	-	-	-	-	-	-		-	-		-		-	-	-					
${ }_{\text {LWTG }}$	1959783		-		-									-	-	-										
	1545346	-	-	-	-	-		-		-					.				.							
${ }_{\text {St }{ }_{\text {cu }}}$	2136726	-	:	:	:	:	-	:	:	:	:	:			:	-	.		?							
POCM	1796870	-	-	-	-	-	-	-			-															
$\mathrm{F}_{\text {cum }}$	188559	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-			\checkmark	-		\checkmark	-	-	-	\checkmark	\checkmark	\checkmark			-			
$\mathrm{CCCO}_{\text {cu }}$	120211																									
	-	90107610 15046124	9076974 15535699	90190491 1582374	${ }^{90253921} 1629340$	90198973	91016328	9043405 17513916	89888042 1783578	90685374 1849787	${ }_{18}^{90700678}$	90078677 19254127	90685374 19868402	90530336 2033295	90473134 2082586		9007867 21784277	${ }_{22} 95477567$	${ }_{23}^{906663443}$		90985978 24287963	90162333 1726871	9064398 17995063	90743354 18260013	90059500 18575463	89670577 18957626
${ }_{\text {PPAR }}$		15046124	15535609	1582374	16229340	16624945	17194985	17513916	17835578	18449787	18914223	19254127	19868402	20330295	20825386	21292641	21784277	2247567	2303643	23661518	24287963					
-			9720704		10154527						11833646	12061185	12430378	12719232	13	13321057		1403351	1441633					13970912	1421214	${ }_{1}^{18957626}$
${ }_{\text {¢\& M }}^{\text {juad }}$	-	4895943	5055217	5148526	5280948	540967	5595159	5698935	5803599	6003456	6154579	6265179	6465057	6615352	677649	698488	7088460	730288	7495901	769294	7903132	8027381	8271977	8488105	8634738	8812382
$\bigcirc ¢ M_{\text {verrabe }}$	-	4518607	4665487	4751486	4873579	4992258	516313	5258962	5355430	5539736	5679068	5781006	5965321	6103880	6252405	6332569	6540051	673906	6915732	7103264	729205	5185434	5343317	5482807	5577406	5692034
${ }^{(+)}$LRCM	-	863268	884850	906971	929646	95287	976709	1001127	1026155	1051809	1078104	1105057	1132683	1161000	119025	1219776										
(+) Depreceiation		2416592	2477007	2538932	2602406	2667466	2734153	2802506	2872569	2944383	3017993	3093443	3170779	325048	3331299	3414582	3499946	3587445	67131	3769060	386388	3959868	4058865	4160336	4264345	4370954
($=$ Profit before tax		8911435	9176763	9368266	9608864	9843367	10147375	10359653	10575273	10902786	11176673	11406441	11741486	12022111	12317857	12605942	1165572	1199661	12301941	12628019	12956912	801592	823863	849437	862764	8824163
${ }^{(-)}$Reverue tax			466068	4746712	8802	4987484	15496	5254175	5350673	4936		5776238	5960521	6099089	6247616	6387792	6535283	673270	6910933	7098455	7286389	5180661	5388519	5478004	5572639	5687288
(+) REPIM	1284621	253	1231	1193	1165	1136	1118	1084	1051	1035	1010	978	961	936	912	888	865	848								
${ }_{\substack{\text { REICM } \\ \text { REPCM }}}$	863662																		-							
${ }_{\text {REPCu }}^{\text {OREP }}$		1253	1231	1193	1165	1136	1118	1084	1051	1035	1010	978	96	936	912	888	865	848	-	-						
OREP $_{C M}$																										
($)$ Profit afer rax w/out interest		4398850	4517311	462747	4739227	4857019	4989997	5106562	5225651	5368885	5503416	5631182	5781926	5923958	6071154	6219037	5121294	5258239	008	552954	5670523	2835263	2900115	2971434	3055025	3136875
			3127964	3206163	${ }^{3288517}$	${ }^{3368475}$	${ }^{3} 452687$	3353904	3627479	3718166	381120	${ }^{3906} 3988$	404058	410460	420674											
		2621739	2687282	275464	2823326	2893909	2966257	3040413	3116224	3194334	3274193	3356047	3439949	3525947	3614096	3704448	3797060	3891986		4089018		024		513511	4623348	4742007
${ }^{(+)}$Deprecriation		2416592	2477007	2538932	2602406	2667468	2734153	2802506	2872569	2944383	3017993	309344	3170779	325048	3331299	3414582	349946	358745	3671131	3769060	386386	3959888	4058865	4160336	4264345	${ }^{4370954}$
\Leftrightarrow free net cashffow	41280	$\begin{array}{r}9437182 \\ \hline 49500988\end{array}$	553636	709881	18642	919	3720	7410477	7587164	7789436	984481	273	8388595		8809785 49658507	${ }_{580961941}^{9065}$	12418300 7111024	12737670 83847911	1305725	13387641	1372053		11362405	11645281	11945718	(1229836

ApPENDIX R

Wind Farm Lije-Cycle Capital Cost Model		Notes
${ }_{\text {WTour }}$	553.726	[s/kw]
${ }_{\text {CM }}^{\text {wi }}$ (26.32	[s/kw]
${ }^{R C_{w T}}$	73.70\%	[\%/skw]
$c_{\text {sur }}$	400.00	[s/kw]
${ }_{\text {IPT }}$	10.00\%	[\%]
$T_{\text {cur }}$	484.385	[s/kw]
$T_{\text {masas }}$	138000	[kg]
${ }_{R C}{ }_{T}$	26.30%	[\%/skw]
$c_{\text {sed }}$	0.1900	[s/kg]
${ }^{\text {LWTG }}$ cu	${ }^{39.1957}$	[\$/mkW]
WF app	50000	${ }^{\text {[kW] }}$
L_{s}	13950	[m]
$C A B$ cosm	2000.00	${ }^{[5 / \mathrm{m}}$]
${ }^{\text {cPaum }}$	30.966	[s/kw]
${ }_{\text {EF }}$ c	400.00	[s/kw]
ς	0.08%	[\%]
${ }^{T s \mathrm{~cm}}$	11.4566	${ }_{\text {lskw }}{ }_{\text {c }}$
$T_{\text {c }}$	0.040	[5/m]
${ }_{\text {TL, }}$	1200	[1/kw]
L_{r}	3000	[m]
$S_{B c}$	113.00	[s/kWh]
${ }_{\text {Staw }}$	427345	$\left.{ }_{\text {[s/m²}} / \mathrm{kW}\right]$
${ }^{W} F_{\text {cap }}$	50000	${ }^{[k W]}$
$W_{\text {wase }}$	425238	[s/kw]
${ }^{\text {Bld }}$ cout	500.00	${ }^{\left[5 / m^{2}\right]}$
${ }^{B l l_{\text {uecea }}}$	30.0 359374	$\underbrace{}_{\left[\mathrm{m}^{\left[\mathrm{m}^{2}\right]}\right]}$
${ }^{\text {PO }}{ }_{c u}$	35.9374	[s/kw]
${ }_{\text {FS }}$	19.88	[s/kw]
${ }^{\text {dT }}$	87.22	[s/kw]
EG	404.52	[s/kw]
${ }^{\text {crum }}$	3.772	[s/kw]
WACC $p_{\text {mo }}$	4.90080	[F/yry
${ }^{\text {fin }}$	1.0	$\stackrel{\text { ly] }}{\substack{\text { y/ }}}$
$\boldsymbol{w}_{\text {Fow }}$	${ }^{0.30 \%}$	[\%]
${ }_{\text {cccou }}$	24042	[s/kw]
κ	0.20\%	${ }^{[6]}$
$L^{\text {LCCCM }}$ WF	1204.5180	${ }_{\text {[} / \mathrm{skW}}$]

Figure R. 1 I-O representation of $L C O E_{\text {wso }}$ algorithm calculations for the hypothetical $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Aracati (Brazil) with sensitivity analysis of $O \& M_{\operatorname{manag}(A)}$ and $E_{p i}$ (Case ${ }_{3}$). Source: Own elaboration

Figure R. 2 I- O system representation of $L C O E_{\text {wso }}$ algorithm calculations for the hypothetical $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Corvo Island (Portugal) with sensitivity analysis of $O \& M_{\operatorname{manag}(A)}$ and $E_{p i}$ (Case ${ }_{3}$). Source: Own elaboration

$$
\sqrt{2}_{v^{2}}^{w_{i n}}
$$

nitial Results Summary of LCOE wro			Notes
${ }^{84} 3997$	\%	94.493	yr ${ }^{\text {c }}$
85.0669	yr_{2}	94.169	${ }^{\text {r }}$ / $/ 5$
85.7507	yr_{3}	949708	${ }^{\text {y }} 16$
86.225	$y_{\text {r }}$	95.875	yr ${ }^{\prime}$
86.9196	yrs	96.7795	yt/s
${ }^{87.6452}$	yr6	97.5702	r_{19}
88.242	$y{ }^{\text {r }}$	94.5053	yr 20
88.241	yrs	94.7336	$y^{2} 21$
89.8260	yr9	95.8087	y^{22}
90.4267	${ }^{10}$	96.5649	$y^{\text {y } 23}$
91.247	yrı	97.5891	yr 25
91.5772	yr/2	91.8264	Mean
92.6946	$y_{r}{ }^{\text {a }}$	4.2043	$s D$
93.7245	yr_{4}	-0.333	$r_{\text {(semmest }}$
$L^{\text {LCOE mo }}$	$\begin{aligned} & 91.8264 \\ & 0.091826 \\ & 0.09 \end{aligned}$	$\begin{aligned} & \text { Ss/MWh } \\ & \hline 5 / k W h \end{aligned}$	valid!

Figure R. 3 I- O system representation of $L C O E_{\text {wso }}$ algorithm calculations for the hypothetical $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Cape Saint James (Canada) with sensitivity analysis of $O \& M_{\operatorname{manag}(A)}$ and $E_{p i}$ (Case ${ }_{3}$). Source: Own elaboration
Table R.1 Energy production ($A E P_{\text {araii }}$) map of the wind farmfor Aracati (Brail)

Months	$\begin{array}{r} v_{w c} \\ (m / s) \\ \hline \end{array}$	$\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	$\begin{gathered} H_{\text {prod }} \\ (h) \\ \hline \end{gathered}$													$E P_{\text {avail }}(\mathrm{kW}$ W												
				yr ${ }_{1}$	yr_{2}	y_{3}	yr_{4}	yrs	yr6	y_{7}	yr_{8}	yr,	$y r_{10}$	$y^{\prime} r_{1 I}$	$y r_{12}$	$y r_{13}$	yr ${ }_{14}$	yr 15	$y{ }_{16}$	y_{17}	yr 18	yr 19	$y r^{20}$	yr 21	$y{ }_{22}$	y^{23}	y^{24}	r_{25}
January	5.8	1.1665	740	1697720	8914291	3812469	7527755	558872	8914291	558872	558872	4243681	8914291	8914291	558872	3812469	7527755	4243681	291	8914291	558872	3812469	752	558872	3812	7527	42	4243681
February	9	1.1666	648	859945	6879561	371421	6879561	788321	6879561	788321	788321	152	6879561	6879561	788321	3714421	87956	489171	489171	336988	52	22	1594674	1594674	526	879561	780152	4780152
March	4.0	1.1671	736	555877	7487419	5432002	8866525	977212	7487419	977212	977212	6552645	7487419	7487419	977212	5432002	8866525	895822	895822	1812134	4220942	1812134	1688623	1688623	7817699	8866525	3792040	6552645
April	4.7	. 1667	712	866366	6337184	6337184	4082151	1633098	6337184	1633098	1633098	7241220	6337184	6337184	1752548	6337184	4082151	945080	945080	1633098	6337184	163098	3667352	945080	7241220	6337184	1752548	7241220
May	6.0	1.1670	736	18120	5431800	748	5431	18120	54318	1812066	181200	78174	5431800	54318	1688560	74871	65524	168850	168850	771	8866195	9771	5585	895788	6552401	4220785	1688560	7817409
Ju	7.9	. 686	69	3996	3996852	7402657	6204764	3590720	3996852	3590720	3590720	8395800	3996852	3996852	3590720	7402657	5143616	1715927	1715927	848262	7402657	848262	848262	3590720	5143616	5143616	925332	8395800
July	8.6	169	736	5444782	3800962	8887385	1692596	4230873	3800962	4230873	4230873	557185	557185	3800962	5444782	8887385	1816397	3800962	3800962	557185	7505034	557185	979511	4230873	4230873	1692596	897929	557185
August	9.6	1.1677	736	74	181307	181307	181307	112	181307	54348	54348	896286	86286	1813073	4223131	1813073	168949	43481	782	782	8962	4223	7821753	434	1813	1813073	556165	86
September	10.1	1.1657	712	8566923	1631564	163	3663	755	131	230	6331230	192	192	1631564	6331230	1631564	3663906	6331230	7234417	7234417	944192	5248454	8566923	6331230	1631564	3669906	6331230	944192
October	9.7	1.1645	736	7800246	975031	975031	554636	7470703	975031	7470703	7470703	1684853	1684853	975031	8846730	975031	554636	7470703	6538016	6538016	1808088	6538016	4211519	7470703	975031	975031	8846730	1684853
November	9.2	1.1638	69	6179252	844775	844775	844775	6179252	844775	7372218	7372218	1708872	1708872	844775	7372218	844775	844775	7372218	5122467	5122467	1592399	7060758	6179252	7372218	844775	844775	7372218	1708872
December	7.6	1.1651	736	3785725	554951	554951	975585	5422956	554951	8851759	8851759	3785725	3785725	554951	7474950	554951	975585	8851759	4213913	4213913	3785725	7804681	5422956	8851759	554951	554951	7474950	3785725
Annual	7.4	1.1666	8616	7055	4866762	48892652	48537127	4908873	4866742	49051893	49051893	48608021	48624219	48667462	4904975	48892652	4899887	49239932	49380379	49009701	4869772	48317889	49064437	48965360	48420199	48519788	48661936	4868

Table R.2 Energy production map of the wind fam for Corvo Island (Portugal) with sensitivity analysis of $O \& M_{\text {mangs }(A)}+E_{p i}\left(\right.$ Case $\left._{3}\right)$

Months	$\begin{aligned} & v_{w c}^{v_{w}}\left(\mathrm{~kg} / \mathrm{m}^{3}\right) \\ & (\mathrm{m}) \end{aligned}$		$\begin{gathered} \hline H_{\text {prod }} \\ (h) \\ \hline \end{gathered}$													$A^{E E P_{\text {avail }}(k W h)}$													
			yr_{1}	$y r_{2}$	yr_{3}	yr_{4}	yrs	yr,	y_{7}	$y^{2} 8$	yr,	10	yr ${ }^{\prime}$	yr ${ }_{12}$	yr ${ }_{13}$	${ }^{1} r_{14}$	yr 15	y_{176}	$y_{17}{ }_{17}$	$y_{1}{ }_{18}$	yr 19	20	r_{21}	$y{ }_{22}$	$y{ }_{23}$	${ }_{24}$	$y_{2} 25$		
January	15.4			740	32823510	23510	32823510	32823510	32823510	32823510	32823510	32823510	32823510	${ }^{2} 2823510$	${ }^{2} 2823510$	8035210	32823510	${ }^{32} 283510$	32823510	32823510	32823510	32823510	32823510	40865255	32823510	32823510	2809592	8035210	7120177
February	14.7	1.2522	648	245	1467254	7010451	26599864	254	54	26599884	26599884	7010451	254	254	7859649	26599864	7010451	17623280	7010451	7010451	7010451	7010451	22788000	26599864	26599864	29369594	7859649	916	
March	12.7	2495	736	18252376	18252376	890	27874248	123414	18252376	27874248	48	8908878	1234144	376	9986084	248	8908778	30150829	8908878	8908878	8908878	8908878	23024061	27874248	27874248	31459374	9986084	18948162	
April	12.4	2490	712	16081249	19315677	9656023	24865308	9656023	87	308	308	9656023	9656023	19315677	9656023	24853308	9656023	26952947	9656023	29154282	9656023	9656023	22218160	2000184	24865308	24956459	9656023	,	
May	11.2	2425	736	$1232406+$	25569850	9929620	1980973	9929620	25569880	1986973	1986973	9929620	9929620	25568850	12324064	1982973	9929620	25569850	9929620	27716641	9929620	9929620	21018978	1982973	1982973	19116345	12324064	16191245	
June	10.4	1.2351	696	9333787	260	11584551	170	832694	26053885	17800120	17000120	115	832694	26053485	15544593	1706020	11584551	17060120	11584551	24035514	1158451	1158451	1778664	17800120	17800120	16981395	15544593	15146363	
July	10.0	1.2275	736	875	29619639	16	16	7806320	29	16337936	16	16.339936	7806320	29619639	17938811	16.3	16.379936	7806320	16.337936	19623991	16337936	16337936	15552737	160	1633	1678950	17938811	9	
August	9.7	1.2216	736	77687	12	1784428	12117129	1784428	12117129	12117129	12117129	1784428	1784428	12117129	1929451	1211729	17844428	8709760	17844428	17844228	1784428	1784428	12921415	15399666	1211729	12668836	1952451	7121992	
September	10	2234	712	9458082	7526165	18999721	9458082	26400433	7526165	9458082	9458082	18919721	26400433	7526165	24.355889	9458082	18919721	9458082	18919	15751	18919721	18919	12339146	13294981	9458082	8855020	24.355589	19057688	
October	13.1	1.2327	736	19706914	8788905	2974799	9851605	25368993	8788905	9851605	9851605	2974799	25.389933	8788905	2799887	9851605	25368993	9851605	25368993	12227237	2974799	25368953	12259773	8871247	9851605	8134157	2749887	21026625	
November	14.3	1.2429	696	24188639	9393250	26219466	8379993	28300895	9393250	8379993	8379993	26294966	28360895	9393250	28360895	8379993	26219466	11658333	26219468	9393250	26219466	26219466	7520762	8379993	8379993	8987716	28380895	22401116	
December	15.1	1.2528	736	30291153	10012025	25782051	7966958	20027814	10012025	7966958	7966958	25782051	20027814	10012025	32544702	7966958	30229153	16674139	30229153	10012025	25782051	30229153	6359397	7966958	7966958	9176637	32544702	12 235343	
Annua	12.5	1.2404	861	2135	21414	214761434	213197728	21361137	21414266	213197728	213197728	214761434	213611337	214144266	213	213197728	214822689	214338805	214822689	214501803	214761434	832	038	2038	21319772	214538412	213629948	214387839	

Table R． 4 Wind speed series simulations for $A E P_{\text {avaii }}$ in Aracati（Brazil）

Table R． 4 Win	d speed	simu	ns for	（eail in	i（B）				sensiti	analysi	O\＆M_{m}	（1）$+E$	（Case ${ }_{3}$ ）													
Months	$v_{w c}$											Wind	ed data	esfor si	ations											
Months	（m／s）	yr_{1}	$y r_{2}$	$y r_{3}$	$y r_{4}$	$y r s_{5}$	$y r_{6}$	$y r 7_{7}$	$y r g_{8}$	yr，	y_{10}	$y r_{1 /}$	$y r_{12}$	$y_{1 / 3}$	$y_{1 / 4}$	${ }^{\text {r }} r_{15}$	$y r_{16}$	${ }^{2} r_{17}$	${ }^{\prime 2} r_{18}$	yr_{19}	$y r_{20}$	y_{21}	$y r_{22}$	${ }^{4} r_{23}$	rr_{24}	
January	5.8	5.8	10.1	7.6	9.6	4.0	10.1	4.0	4.0	7.9	10.1	10.1	4.0	7.6	9.6	7.9	10.1	10.1	4.0	7.6	9.6	4.0	7.6	9.6	7.9	7.9
February	4.9	4.9	9.7	7.9	9.7	4.7	9.7	4.7	4.7	8.6	9.7	9.7	4.7	7.9	9.7	4.0	4.0	7.6	8.6	10.1	6.0	6.0	10.1	9.7	8.6	8.6
March	4.0	4.0	9.6	8.6	10.1	4.9	9.6	4.9	4.9	9.2	9.6	9.6	4.9	8.6	10.1	4.7	4.7	${ }_{6} .0$	7.9	6.0	5.8	5.8	9.7	10.1	7.6	9.2
April	4.7	4.7	9.2	9.2	7.9	5.8	9.2	5.8	5.8	9.6	9.2	9.2	6.0	9.2	7.9	4.9	4.9	5.8	9.2	5.8	7.6	4.9	9.6	9.2	6.0	9.6
May	6.0	6.0	8.6	9.6	8.6	6.0	8.6	6.0	6.0	9.7	8.6	8.6	5.8	9.6	9.2	5.8	5.8	4.9	10.1	4.9	4.0	4.7	9.2	7.9	5.8	9.7
June	7.9	7.9	7.9	9.7	9.2	7.6	7.9	7.6	7.6	10.1	7.9	7.9	7.6	9.7	8.6	${ }_{6} .0$	6.0	4.7	9.7	4.7	4.7	7.6	8.6	8.6	4.9	10.1
July	8.6	8.6	7.6	10.1	5.8	7.9	7.6	7.9	7.9	4.0	4.0	7.6	8.6	10.1	${ }_{6} .0$	7.6	7.6	4.0	9.6	4.0	4.9	7.9	7.9	5.8	4.7	4.0
August	9.6	9.6	6.0	6.0	6.0	10.1	6.0	8.6	8.6	4.7	4.7	6.0	7.9	6.0	5.8	8.6	9.7	9.7	4.7	7.9	9.7	8.6	6.0	6.0	4.0	4.7
September	10.1	10.1	5.8	5.8	7.6	9.7	5.8	9.2	9.2	4.9	4.9	5.8	9.2	5.8	7.6	9.2	9.6	9.6	4.9	8.6	10.1	9.2	5.8	7.6	9.2	4.9
October	9.7	9.7	4.9	4.9	4.0	9.6	4.9	9.6	9.6	5.8	5.8	4.9	10.1	4.9	4.0	9.6	9.2	9.2	6.0	9.2	7.9	9.6	4.9	4.9	10.1	5.8
November	9.2	9.2	4.7	4.7	4.7	9.2	4.7	9.7	9.7	6.0	6.0	4.7	9.7	4.7	4.7	9.7	8.6	8.6	5.8	9.6	9.2	9.7	4.7	4.7	9.7	6.0
December	7.6	7.6	4.0	4.0	4.9	8.6	4.0	10.1	10.1	7.6	7.6	4.0	9.6	4.0	4.9	10.1	7.9	7.9	7.6	9.7	8.6	10.1	4.0	4.0	9.6	7.6
Annual	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4

Months	$\begin{gathered} v_{w c} \\ (m / s) \\ (m) \end{gathered}$	Wind speed data series for simulations（ m s ）																								
		$y r_{1}$	$y r_{2}$	y_{3}	$y r_{4}$	$y_{\text {S }}$	$y^{\prime}{ }_{6}$	${ }_{\text {y }}^{7}$	$y^{\prime}{ }_{8}$	$y{ }^{\text {g }}$	y_{10}	$y_{1 / 1}$	yr_{12}	y_{13}	${ }_{17} r_{14}$	$y_{1 / 5}$	$y r_{16}$	${ }_{17}{ }_{17}$	y_{18}	$y r_{19}$	y_{20}	y_{21}	y_{22}	y_{23}	$y r 2^{24}$	y_{25}
January	11.7	11.7	11.7	11.7	11.7	11.7	11.7	11.7	10.6	10.6	11.7	10.6	10.6	10.6	11.7	10.6	10.6	11.7	10.6	10.6	10.6	10.6	10.6	10.6	10.6	10.6
February	11.5	11.5	8.2	11.5	11.5	11.5	7.6	11.5	11.7	6.1	7.6	11.7	6.1	10.5	11.5	9.5	11.7	8.2	8.9	7.6	7.1	11.5	6.4	9.5	11.5	11.7
March	10.5	10.5	7.1	11.5	11.5	11.5	8.9	11.5	11.5	6.4	7.1	11.5	6.4	11.5	11.5	8.9	11.5	7.6	9.5	8.2	11.5	11.7	6.1	10.5	11.7	7.1
April	9.5	9.5	9.5	10.6	10.6	10.6	9.5	10.6	8.2	7.1	9.5	11.5	7.1	11.5	8.2	8.2	11.5	7.1	10.5	7.1	11.7	11.5	7.1	7.1	11.5	7.6
May	8.2	8.2	10.5	10.5	10.5	8.9	10.5	10.5	10.5	7.6	8.9	10.5	7.6	11.7	10.5	7.6	10.5	6.4	11.5	8.9	6.4	10.5	7.6	11.7	10.5	8.2
June	7.1	7.1	11.5	9.5	9.5	9.5	10.6	8.2	11.5	8.2	10.6	9.5	8.2	9.5	6.4	7.1	9.5	6.1	11.5	9.5	6.1	9.5	8.2	11.5	9.5	8.9
July	6.1	6.1	11.5	8.2	8.9	10.5	11.5	9.5	7.1	8.9	6.1	8.9	8.9	8.9	6.1	6.4	8.9	8.9	11.7	10.5	7.6	8.9	8.9	11.5	7.6	9.5
August	6.4	6.4	10.6	7.6	7.6	7.6	11.5	8.9	7.6	9.5	6.4	8.2	9.5	8.2	10.6	${ }_{6} .1$	8.2	11.5	6.1	11.5	8.2	8.2	9.5	8.2	7.1	10.5
September	7.6	7.6	6.1	8.9	8.2	8.2	8.2	6.1	8.9	10.5	10.5	7.6	10.5	7.6	8.9	10.5	7.6	11.5	6.4	11.5	8.9	7.6	10.5	7.6	6.4	6.1
October	8.9	8.9	8.9	7.1	6.1	7.1	6.1	6.4	9.5	11.5	11.5	7.1	11.5	7.1	9.5	11.5	7.1	10.6	7.1	6.1	9.5	7.1	11.5	6.4	6.1	6.4
November	10.6	10.6	7.6	6.4	6.4	6.4	6.4	7.1	6.4	11.5	8.2	6.4	11.5	6.4	7.1	11.5	6.4	10.5	7.6	6.4	10.5	6.4	11.5	6.1	8.9	11.5
December	11.5	11.5	6.4	6.1	7.1	6.1	7.1	7.6	6.1	11.7	11.5	6.1	11.7	6.1	7.6	11.7	6.1	9.5	8.2	11.7	11.5	6.1	11.7	8.9	8.2	11.5
Annual	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1

Table R． 6 Wind speed series simulations for $A E P_{\text {avail }}$ in Cape Saint James（Canada）

sal							sat		st	st		st				st	st			sat							
691	tst	rot	${ }^{2} 6$	${ }^{2} 6$	${ }^{06}$	rst	stl	tol	${ }^{\text {r }}$ It	tzi	${ }^{\text {r }}$ It	${ }^{6}$	$t s t$	tol	${ }^{18 t}$	${ }^{\text {cti }}$	${ }^{6}$	46	tol	${ }^{18 t}$	${ }^{4} 6$	sti	tol	${ }^{\text {r }}$ t	${ }^{\text {r }}$ tr		
$6 \varepsilon 1$	rst	cor	oot	oot	46	${ }_{4}^{4}+$	cti	tor	cti	zti	cti	oor	rst	tot	rst	cti	oot	oor	for	tst	oor	$\stackrel{+1}{ }$	tol	ct	cti	Laqumosos	
s\％	${ }^{\text {ct }}$ l	${ }^{86}$	tol	${ }_{\text {roit }}^{1}$	${ }^{2} 11$	${ }^{\text {ctil }}$	${ }_{\text {ISI }}^{\text {ISt }}$	$\stackrel{\text { rill }}{ }$	${ }_{6}^{*}+1$	\％ol	cti	\％ol	${ }_{4}^{4}+$	oot	${ }_{\text {ct }}$	${ }_{\text {ISt }}$	toi	＊or	${ }^{\text {oor }}$	cth	\％ol	${ }_{\text {rst }}$	${ }^{\text {oor }}$	${ }_{\text {I }}^{18}$	${ }_{\text {tel }}^{\text {tel }}$	Leqapo	
$2 \% 1$	cti	zot	tor	cit	til	${ }_{\text {I }}^{\text {It }}$	${ }_{\text {r }}^{\text {ItI }}$	${ }^{\text {tziz }}$	${ }_{\text {I }}^{\text {It }}$	\％ol	Iti	tor	ct	$\stackrel{L}{6}$	${ }_{4}^{c+t}$	${ }_{\text {I }}^{18}$	tor	tor	$\stackrel{4}{6}$	${ }_{4}^{4 t}$	tor	${ }_{\text {t }}$ It	${ }^{26}$	tor	tor	Lequenas	
${ }^{\text {\％}}$	${ }_{\text {r }}$ ！ 1	till	żI	${ }^{\text {r }} 1$	til	czi	cal	czi	＜zı	oor	czi	2II	${ }_{\text {r }}$	$\tau \\|$	czı	cal	zil	2II	zill	¢zı	İII	czı	zil	¢6	${ }_{6} 6$	ยmnv	
oor	¢zı	szi	＋zi	czi	zz1	tzi	tzi	ret	tzi	$\stackrel{\circ}{6}$	tzi	＋21	くzı	rst	$\angle 6$	tzi	＋zı	＊$\downarrow 1$	$r_{\text {r }}$	$\stackrel{\square}{6}$	$\stackrel{\text { tr }}{ }$	tzi	${ }_{\text {r s }}$	oor	oor	${ }_{\text {spr }}$	
zzi	tzi	くzı	くzı	くzı	${ }^{\text {s } 21}$	2II	2II	$s+1$	zil	czi	zil	¢z	＋zı	${ }_{4}+1$	oor	2il	くzı	czi	$\stackrel{+1}{ }$	oor	czi	I\＃	$\stackrel{4}{4}$	\％or	tor	nur	
cz	זı	${ }_{\text {osi }}$	tst	tet	ter	tor	tor	${ }_{4}+1$	tot	¢t	tol	r $\varepsilon 1$	zil	$\varepsilon+1$	\％ot	tor	tst	tes	st	tot	rst	tor	cti	zil	zil	sow	
671	＋or	¢\％	¢ +1	¢ $¢$	se	tor	tor	rst	＊ot	cti	tor	ct	tot	tst	tot	tor	ct	cti	${ }_{\text {r }}^{\text {ct }}$	tor	¢ +1	\％or	ret	tz	$t z 1$	${ }_{\mu d d_{v}}$	
671	tor	¢st	$\stackrel{+}{ }+$	$\stackrel{+}{\text { ct }}$	s ε	oror	oor	oor	oor	tst	oor	cti	for	czi	til	oor	$\stackrel{4}{4}$	cti	czi	zil	${ }_{\text {cti }}$	oor	czi	czi			
${ }_{\text {r }}$ I	oor	$9 s t$	rst	$t s t$	$\varepsilon+1$	${ }^{6} 6$	46	$\angle 6$	${ }^{6}$	${ }_{\text {r }}$ \％	46	rst	oor	tzi	tzt	${ }^{6} 6$	$t s t$	${ }_{\text {r }}$ I	tzi	tzi	rst	${ }_{6} 6$	tzi	$\stackrel{\text { ¢ } / 1}{ }$	$\stackrel{\text { ct }}{ }$	${ }_{\text {couqup }}$	
${ }_{6}^{6}$	46	L＋t	$t s t$	$t \leqslant t$	991	$t s t$	$t s t$	$t s t$	$t s t$	$t s t$	$t s i$	$t s t$	46	$t s t$	$t \leqslant t$	$t s t$	$t s t$	$t s t$	$t s t$	$t \leqslant t$	$t s t$	$t \leqslant t$	$t s i$	$t \leqslant$	$t s t$	comurer	

Table R. 7 kWh per $\mathrm{H}_{\text {prod }}$

Sites	kW/yr																								
	rr_{1}	yr_{2}	y_{3}	yr_{4}	yrs	yr ${ }_{6}$	y_{7}	y_{8}	yr,	$y_{10}{ }_{10}$	$y_{1 / 1}$	$y r_{12}$	$y r_{13}$	${ }^{2} r_{14}$	${ }^{2} r_{15}$	yr ${ }_{16}$	y_{17}	y_{178}	$y_{19}{ }_{19}$	$y r_{20}$	$y r_{21}$	$y r_{22}$	${ }^{12} 23$	${ }^{2} r_{24}$	yr_{2}
Aracari (Brazil)	5693	5648	5674	5633	5697	5648	5693	5693	5641	5643	5648	5693	5674	5640	5715	5731	5688	5652	5608	5694	5683	5620	5631	5648	5641
Corvo Island (Portugal)	10458	10535	10467	10475	10468	10563	10497	10429	10525	10527	10454	10525	10507	10500	10474	10454	10510	10523	10545	10560	10464	10520	10532	10452	10407
Cape Saint James (Canada)	24780	24853	24925	24743	24791	24853	24743	24743	24925	24791	24853	24793	24743	24933	24876	24933	24895	24925	24933	24841	24860	24743	24897	24793	24882

APPENDIX S

Figure S. 1 I-O representation of $L C O E_{\text {wso }}$ algorithm calculations for the hypothetical $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Aracati (Brazil) with sensitivity analysis of $O \& M_{\operatorname{manag}(B)}$ and $E_{p i}$ (Case ${ }_{1}$). Source: Own elaboration

Wind Farm Life-Cycle Capital Cost Model		Notes
${ }^{W} T_{\text {cu }}$	553.7256	[s/kw]
${ }_{C M}{ }_{w \tau}$	26.532	[s/kw]
${ }_{R C}{ }_{w T}$	73.70\%	${ }_{[\% / s / k w]}$
$c_{\text {kw }}$	400.00	[s/kw]
IPT	10.00\%	[\%]
$T_{\text {cu }}$	484.3859	[s/kw]
$T_{\text {maxa }}$	138000	[kg]
${ }_{R C}$	26.30%	[\%/skw]
$c_{\text {seed }}$	0.1900	[s/kg]
	39.1957	[\$ mk mW$]$
$W_{\text {cap }}$	50000	${ }^{\text {k WW] }}$
L_{k}	13950	[m]
$C A B_{\text {cast }}$	2000.00	$\left.{ }^{\text {[5 }} \mathrm{m} / \mathrm{m}\right]$
${ }^{\text {cPaw }}$	30.9069	[s/kw]
${ }^{E F}{ }_{\text {c }}$	40000	[s/kw]
ς	0.08\%	[\%]
${ }^{\text {TS }}$ cu	11.4566	${ }_{\left[s / W_{c}\right]}$
${ }_{T}{ }_{c}$	0.0440	$\left.{ }^{\text {[5 }} \mathrm{m} / \mathrm{m}\right]$
${ }_{L} L_{r}$	1200	${ }^{[1 / k W]}$
$L_{\text {, }}$	3000	[m]
${ }_{S B}$	113.00	[5/WWh]
${ }^{\text {St }} \mathrm{Cu}$	427345	
$W_{\text {cap }}$	50000	${ }^{\text {[kw] }}$
$W_{T \text { maxt }}$	42.238	[s/kw]
${ }^{B 1 / d o w n}$	500.00	${ }^{\left[5 / \mathrm{m}^{2}\right]}$
${ }^{B / d} d_{\text {area }}$	300.0	$\left[\mathrm{m}^{2}\right]$
${ }^{P O}{ }_{C u}$	359374	[5/kW]
Fs	19.88	[s/kw]
${ }^{\text {dT }}$	87.22	[5/kw]
${ }_{\text {eG }}$	40.52	[s/kw]
${ }^{\text {cuw }}$	3.7712	[s/kw]
wacc prof	4.900%	[\%/yr]
$n_{\text {fin }}$	1.0	[yr]
$w_{\text {Fow }}$	${ }^{0.30 \%}$	[\%]
${ }^{\text {ccC }}{ }_{\text {cu }}$	2.4042	[s/kw]
κ	0.20%	[\%]
LCCCM $_{\text {wF }}$	1204.5180	[$\mathrm{s} / \mathrm{kW]}$]

Figure S. 2 I-O system representation of $L C O E_{\text {wso }}$ algorithm calculations for the hypothetical $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Corvo Island (Portugal) with sensitivity analysis of $O \& M_{\operatorname{manag}(B)}$ and $E_{p i}$ (Case ${ }_{1}$). Source: Own elaboration

$L C O E E_{\text {wso }}$ Model Inputs		
Legend		
Gray cells are not used.		
Wind Project Information		Notes
Project Name	${ }_{\text {Fingar Wior famm }}$	
Project Location		
Turbine Model	Vetas vop-2Mw	
Number of Wind Turbines ($N_{W T}$)	25	$\mathrm{H}^{\text {H/ }}$
Turbine Size	2000	[kw]
Wind Farm Capacity (WF copp $^{\text {) }}$	50000	${ }_{\text {[kW] }}$
Rotor Diamenter (D)	90.0	[m]
Swept Area per Turbine (A)	6361.7	${ }^{\left[\mathrm{m}^{2}\right]}$
Hub height (H)	105.0	${ }^{[m]}$
Wind speed measured at (H_{0})	10.0	${ }^{[\mathrm{m}]}$
Termin nugosity factor (a)	0.14	${ }^{\text {H }}$ -
Betz Linits coefficient ($C_{\text {Pracz }}$)	${ }_{0}^{0.5926}$	${ }^{\text {H }}$ -
Lifetine of Wind Farm (N)	25	[yt]
Production Efficiency (WF $P_{P E}$)	48.6\%	[\%]
Avâlability	${ }^{98.2 \%}$	[\%]
	358	${ }_{\text {[d } / \mathrm{yr}]}$
Wind Farm Life-Cycle Capial Cost Model		Notes
${ }^{W} T_{\text {cu }}$	553.726	[s/kw]
$C_{M}{ }_{\text {w }}$	26532	[s/kw]
${ }^{R} C_{\text {w }}$	73.70\%	[\%/skw]
$c_{\text {kw }}$	400.00	[s/kw]
IPT	10.09\%	[\%]
${ }^{\text {cu }}$	4843859	[s/kw]
$T_{\text {maxs }}$	138000	[kg]
${ }^{R C} C_{T}$	26.30%	[\%/skw]
$c_{\text {sel }}$	0.1900	[s/kg]
${ }^{\text {LWTG cw }}$	39.1957	[\$/mkw]
$W_{\text {cap }}$	50000	${ }^{\text {[kw] }}$
L_{s}	13950	${ }^{[m]}$
$C A B$ coen	2000.00	[5/m]
${ }^{\text {cPaw }}$	30.9669	[s/kw]
$E F F_{\text {c }}$	400.00	[s/kw]
ς	0.08%	[\%]
${ }^{75} \mathrm{cu}$	11.4566	
${ }_{T} L_{\text {c }}$	0.0400	[5/m]
${ }_{T L}$	1200	[1/kw]
$L_{\text {c }}$	3000	${ }^{[m]}$
${ }_{S B}$	113.00	[SkWh]
${ }^{\text {S }} \mathrm{Cu}$	427345	$\left.{ }_{[5 \mathrm{~m}} / 2 \mathrm{kw}\right]$
${ }^{W} F_{\text {app }}$	50000	${ }^{[k W]}$
$\mathrm{w}_{\text {maxt }}$	42.5238	[s/kw]
${ }^{\text {Bld }}$ cost	500.00	$\left[\mathrm{s}^{2} \mathrm{~m}^{2}\right]$
${ }^{B / d}$ erea	3000	${ }^{\left[m^{2}\right]}$
${ }^{P O_{C H}}$	35.9374	[s/kw]
${ }_{\text {FS }}$	19.88	[s/kw]
${ }^{\text {DT }}$	87.22	[s/kw]
${ }_{\text {eG }}$	404.52	[s/kw]
$\mathrm{Fcu}_{\text {cu }}$	3.7712	[s/kw]
$\mathrm{waCc}_{\text {prof }}$	490056	[\%/yr]
${ }^{n}{ }_{\text {fon }}$	1.0	${ }_{\text {\|yr] }}$
$w_{\text {faw }}$	0.30\%	[\%]
${ }_{\text {ccc }}^{\text {cu }}$	24042	[s/kw]
κ	0.20\%	[\%]
LCCCM $_{\text {wr }}$	1204.5180	[\$/kW]

Figure S. 3 I-O system representation of $L C O E_{\text {wso }}$ algorithm calculations for the hypothetical $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Cape Saint James (Canada) with sensitivity analysis of $O \& M_{\operatorname{manag}(B)}$ and $E_{p i}$ (Case ${ }_{1}$). Source: Own elaboration

Table S. 2 Energy production map of the wind farm for Corvo Island (Portugal)

Months	$\begin{gathered} v_{\mathrm{wc}} \\ (\mathrm{~m} / \mathrm{s}) \end{gathered}$	$\left(k g / m^{3}\right)$	$H_{\text {prod }}$ (h)	y_{1}	$y r_{2}$	y_{3}	yr_{4}	$y^{\prime}{ }_{5}$	$y r_{6}$	y_{7}	y_{8}	$y{ }^{\text {r }}$	y^{10}	yr ${ }_{11}$	${ }_{\text {AEP }}{ }_{\text {auid }}(k W h)$				$y^{1 / 6}$	yr ${ }_{17}$	Y/18	yr 19	y_{20}	y_{21}	${ }^{1} 22$	$y r_{23}$	yr 24	$y_{2} 2$
															$y r_{12}$	$y_{1 / 3}$	yr_{14}	$y_{1 / 5}$										
January	11.7	1.2313	740	14490	${ }^{14490462}$	14490	14490	144904	14490462	14490462	10871408	10871008	1440462	10871408	10871408	10871408	1449462	10874408	10871408	1449462	10871408	10871408	10871408	10871408	10871408	10871408	10871408	1087
February	11.5	1.2345	648	12092721	4293137	1209721	12092721	12092721	3417096	1209721	12715785	1795784	3417096	12715785	1795784	9244173	12092721	6674015	1271588	4293137	5486290	3417096	2815600	12092721	2106703	6674015	1209721	12715785
March	10.5	1.2329	736	10486228	3193907	13777510	13777510	13777510	6223433	13717510	13777510	2389762	3193907	13777510	2389762	1377510	1377510	6223433	1377510	3876220	7570742	4869967	13717510	14422889	2037067	1048628	14242889	3193907
April	9.5	2317	12	7316597	7316597	10458883	10458488	10458483	7316597	1045888	4706485	3086689	7316597	11255702	3086689	13257022	4706485	4706485	13257022	3086689	10134212	3086689	13940075	13257022	3086689	3086689	13257022	3746998
May	8.2	82	736	4851676	10468845	10446845	10	6200059	10468845	1046845	10468845	3861662	6200059	1046845	3861662	14370115	10446845	3861662	1046845	2380787	1365999	6200059	2380787	10446885	3861662	14370115	10468845	4851676
June	7.1	1.2224	696	2994	128	7097	7097	7097981	10145990	4565858	128	4565858	10145990	7097981	4565858	7097981	2240532	2994461	7097981	1909861	12860910	7097981	1909801	70979	4565858	12860910	709	5834806
July	6.1	1.2154	736	200811	13	48007	61349	1037209	13522571	746315	3148518	6134992	2008118	6134992	6134992	6134992	2008118	2355801	6134992	6134992	14219336	103372	3821135	6134992	6134992	13.	3821135	7463154
August	6.4	1.2075	736	234496	105	3796310	3796310	37963	13434719	6095134	3796310	7414668	2340496	4769571	7414668	4769571	1059868	1995072	4769571	13434719	1995072	13834719	4769571	4769571	7414668	4769571	3128063	102
September	7.6	1.2064	712	3669202	1928273	5891057	4609876	4609876	4609876	1928273	5891057	9926189	9926189	3669202	9226189	3669202	5891057	9926189	3669202	12988898	2262132	12988898	5891057	3669202	9226189	3669202	2262132	1928273
October	8.9	1.2126	736	6121079	6121079	3141378	2003564	3141378	2003564	2350459	7446229	1349995	1349995	3141378	13491905	3141378	7446229	13491905	3141378	10683782	3141378	2003564	7446229	3141378	1349905	2350459	2003564	2350459
November	10.6	1.2194	696	10121588	3625425	2235143	2235143	2235143	2235143	2987258	2235143	1282976	4554876	2235143	12829976	2235143	2987258	12829976	2235143	9807761	3625425	2235143	9807761	2235143	1282976	1905267	5820771	12829976
December	11.5	1.2237	336	13619984	2371901	2021842	3170035	2021842	3170035	3847249	2021842	14336881	13619884	2021842	14316881	2021842	3847249	14316481	2021842	7514158	4833568	14316881	13614984	2021842	14316881	6176918	4833568	1361998
Annual	9.1	1.2222	8616	90107610	9076977	90190491	90253921	90198973	91016328	9043405	$898580+2$	9068374	9070678	9007867	9068374	90530336	90473134	90246888	9077877	90557464	9066643	90855213	9098978	90162393	90643988	90743354	90595500	${ }^{89670577}$

Months	$\begin{gathered} v_{\text {we }} \\ (m / s) \end{gathered}$	$\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	$H_{\text {prod }}$ (h)	y_{1}	yr_{2}	y_{3}	yr_{4}	$y^{\prime}{ }_{5}$	$y^{\prime}{ }_{6}$	y_{7}	y_{8}	$y{ }^{\text {r }}$	$y r_{10}$	yr ${ }_{11}$	$A^{\text {E }}$ avait $(k W h)$			$y^{1 / 5}$	y^{16}									
															$y r_{12}$	${ }^{2} r_{13}$	$y^{1 / 4}$											
January	15.4	2561	738	${ }^{32} 274798$	32734798	327377	${ }^{32} 27378$	3273478	327377	32734798	3273798	32734798	3273798	32734798	8013494	32734798	32734798	32734798	32737798	32734798	32734798	32737798	40758809	32734798	32734798	2801999	8013494	100
February	14.7	1.2522	641	24319291	14509901	6932878	26305527	14509901	14509901	26.305527	26305527	6932878	14509901	14509901	7772679	26305527	6932878	1748282	6932878	6932878	6932878	6932878	22528524	26305527	26355527	2904609	7772679	17402199
March	12.7	1.2495	737	18273052	18273052	8918969	27905823	12408183	1827052	27905823	2790583	8918969	12408183	18273052	9997395	27905823	8918969	3018988	8918969	8918969	8918969	8918969	23.500141	27905823	2795823	31495010	9997395	18969625
April	2.4	1.2490	713	16100080	19338295	9667330	2489422	9667330	19388295	2489425	2489425	9667330	9667330	19338295	9667330	24894425	9667330	2698508	9667330	29188221	9667330	9667330	2224176	20024005	2489425	24985682	9667330	18188882
May	11.2	2425	737	123380	25598814	9940868	19885473	9940868	25998814	885473	888473	9940868	9940868	25.598814	12338225	19885473	9940868	25598814	9940868	27748037	9940868	9940868	2102787	19888473	1988473	19137999	1238825	16209586
June	10.4	1.2351	689	9237631	25788588	1145208	16884369	8241161	2578588	16884369	16884369	11465208	8241161	25785886	15.38445	16884369	11465208	1688439	1145208	23789004	11465208	11465208	17001691	1688439	1688439	1680645	1538455	14990327
July	10.0	1.2275	737	8761837	29653191	1633643	16.35643	7815162	29653191	16356443	16.35443	16.35643	7815162	29653191	17951122	16.35643	16356443	7815162	1635643	1964621	16.35643	16.35643	15570355	1608722	1635643	16802962	17951122	864775
August	9.7	1.2216	737	7777512	12138885	$178846+1$	12138885	17866461	12138855	12138855	12138885	17864641	17864641	1213885	19551573	12138855	1786641	8719626	$178866+1$	17866461	17886641	17886641	12936052	15417110	12138855	12621116	19551573	7130060
September	10.4	234	713	9469157	7534977	18941875	9469157	26431347	7534977	9469157	9469157	18941875	26433347	7534977	24.384108	9469157	18941875	9469157	18941875	15770041	18941875	18941875	12335394	13310548	9469157	8865389	24.384108	19988004
October	13.1	27	737	1972937	8798861	2978493	9862764	25397690	8798861	9862764	9862764	29778493	25.397690	8798861	27530026	9862764	25.397690	9862764	25397990	12241087	2977843	25.597590	12273661	8881296	9862764	8143371	27 73020	21651123
November	14.3	1.2429	689	23939450	9296482	25949356	8293664	28068725	9296482	829366	8293664	25949356	2806872	9298482	28068725	8293664	25949356	11538250	25949356	9296482	25949366	25949356	7443284	8293664	8293664	8895126	28088725	22011001
December	15.1	1.2528	737	3026395	10023366	25811256	7975983	20050501	10023366	7975983	7975983	25811256	20050501	10023366	32581568	7975983	3026395	1669326	30263395	10023366	25812256	30263395	6366601	7975983	7975983	9187032	32881568	${ }_{42} 883.326$
Annual	12.5	1.2404	8600	212943465	213677678	21	21269988	213130306	213677678	81	212699281	214,362116	6		,	212699281	21443845	213913741	21443351	21415284	362116	21443345	565675	7	1	析	213240500	2139624

Table S.4 Wind speed series simulations for $A E P_{\text {avaii }}$ in Aracati (Brail)

Months	$\begin{gathered} v_{w c} \\ (m s s) \end{gathered}$	Wind speed data series for simulations (m s)																								
		y_{1}	$y r_{2}$	$y r 3$	$y r_{4}$	$y_{\text {r }}$	$y r_{6}$	y_{7}	y_{8}	yr,	$y r_{10}$	$y_{1 / 1}$	$y r_{12}$	$y_{1 / 3}$	$y_{1 / 4}$	${ }^{\text {r } / 15}$	y_{16}	y_{17}	${ }^{\text {y }} 18$	${ }^{\text {r }} 19$	y_{20}	y_{21}	y_{22}	${ }^{\text {y } 23}$	${ }_{\text {y }} 24$	${ }^{\text {y } r_{2 S}}$
January	5.8	5.8	10.1	7.6	9.6	4.0	10.1	4.0	4.0	7.9	10.1	10.1	4.0	7.6	9.6	7.9	10.1	10.1	4.0	7.6	9.6	4.0	7.6	9.6	7.9	7.9
February	4.9	4.9	9.7	7.9	9.7	4.7	9.7	4.7	4.7	8.6	9.7	9.7	4.7	7.9	9.7	4.0	4.0	7.6	8.6	10.1	6.0	6.0	10.1	9.7	8.6	8.6
March	4.0	4.0	9.6	8.6	10.1	4.9	9.6	4.9	4.9	9.2	9.6	9.6	4.9	8.6	10.1	4.7	4.7	6.0	7.9	6.0	5.8	5.8	9.7	10.1	7.6	9.2
April	4.7	4.7	9.2	9.2	7.9	5.8	9.2	5.8	5.8	9.6	9.2	9.2	6.0	9.2	7.9	4.9	4.9	5.8	9.2	5.8	7.6	4.9	9.6	9.2	6.0	9.6
May	6.0	6.0	8.6	9.6	8.6	6.0	8.6	6.0	6.0	9.7	8.6	8.6	5.8	9.6	9.2	5.8	5.8	4.9	10.1	4.9	4.0	4.7	9.2	7.9	5.8	9.7
Јиne	7.9	7.9	7.9	9.7	9.2	7.6	7.9	7.6	7.6	10.1	7.9	7.9	7.6	9.7	8.6	6.0	6.0	4.7	9.7	4.7	4.7	7.6	8.6	8.6	4.9	10.1
July	8.6	8.6	7.6	10.1	5.8	7.9	7.6	7.9	7.9	4.0	4.0	7.6	8.6	10.1	6.0	7.6	7.6	4.0	9.6	4.0	4.9	7.9	7.9	5.8	4.7	4.0
August	9.6	9.6	6.0	6.0	6.0	10.1	${ }_{6} .0$	8.6	8.6	4.7	4.7	6.0	7.9	6.0	5.8	8.6	9.7	9.7	4.7	7.9	9.7	8.6	6.0	6.0	4.0	4.7
September	10.1	10.1	5.8	5.8	7.6	9.7	5.8	9.2	9.2	4.9	4.9	5.8	9.2	5.8	7.6	9.2	9.6	9.6	4.9	8.6	10.1	9.2	5.8	7.6	9.2	4.9
October	9.7	9.7	4.9	4.9	4.0	9.6	4.9	9.6	9.6	5.8	5.8	4.9	10.1	4.9	4.0	9.6	9.2	9.2	${ }_{6} .0$	9.2	7.9	9.6	4.9	4.9	10.1	5.8
November	9.2	9.2	4.7	4.7	4.7	9.2	4.7	9.7	9.7	6.0	6.0	4.7	9.7	4.7	4.7	9.7	8.6	8.6	5.8	9.6	9.2	9.7	4.7	4.7	9.7	6.0
December	7.6	7.6	4.0	4.0	4.9	8.6	4.0	10.1	10.1	7.6	7.6	4.0	9.6	4.0	4.9	10.1	7.9	7.9	7.6	9.7	8.6	10.1	4.0	4.0	9.6	7.6
Annual	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4

$\underline{16}$	16	16	${ }^{1} 6$	16	I'6	$1 \cdot 6$	16	I'6	$1 / 6$	1/6	16	1%	16	16	1%	$1 / 6$	1%	16	1%	1%	16	$I^{\prime} 6$	1%	16	${ }^{1} 6$	${ }^{\text {pпии }}$
S'II	28	68	L'II	19	$S^{\prime \prime} /$	L'II	28	$s^{6} 6$	${ }^{1} 9$	L'II	$9 / 2$	19	L'II	I'9	S'II	L'II	I'9	$9 /$	IL	['9	IL	[9	t'9	S'II	$S^{\prime \prime} / I$	${ }^{\text {12quиวза }}$
StI	68	19	S'II	t'9	Sol	t'9	$9 / 2$	Sol	t'9	S'II	IL	$t \cdot 9$	S'II	t'9	28	S'II	t'9	IL	t'9	$t \cdot 9$	t9	t'9	94	9.01	9.01	raquano ${ }^{\text {a }}$
t'9	19	t'9	S'l	IL	5%	19	IL	9.01	IL	S'II	5%	IL	S'II	IL	Sti	S'II	56	t9	19	IL	19	IL	68	68	68	129010
19	t'9	$9<$	soi	$9 \cdot 2$	68	S'II	t'9	S'II	$9 /$	soor	68	92	soi	$9 / 2$	Sol	Sol	68	19	28	28	28	68	19	$9 / 2$	$9 \cdot /$.12qu๐ədos
soi	IL	28	56	28	28	S'II	19	S'II	28	19	9.01	28	56	28	$t 9$	56	9%	68	S'II	9%	$9<$	94	9.01	$t \cdot 9$	t'9	$1 s n 8 n^{\prime}$
56	9.2	$S^{\prime \prime} /$	68	68	9.2	sol	L'ıI	68	68	t'9	I'9	68	68	68	19	68	IL	56	StI	soi	68	28	S'ti	19	19	${ }_{\text {cinf }}$
68	s\%	S'II	28	S6	19	s'6	Sti	19	5%	ILL	t's	5%	28	s\%	9.01	2'8	Sti	28	9.01	5%	56	$s^{6} 6$	S't	IL	IL	эun/
28	sol	L'II	9.2	soi	t's	68	StI	t's	Sol	$9 \cdot L$	sol	L'II	9%	Sol	68	9%	Sol	Sol	Sor	6.8	soi	sol	sol	28	28	${ }^{k}{ }^{6} W$
9.2	S'II	IL	IL	$S^{\prime \prime} /$	<'II	IL	Sol	IL	S'II	28	28	s'ti	IL	S'll	56	IL	28	9.01	56	9.01	9.01	9.01	5%	56	$s^{\prime \prime}$	${ }^{1 / 2 d_{V}}$
I $1 /$	L'II	soi	19	L'II	S'II	28	56	9.2	StI	68	S'II	S'ti	t9	S'II	IL	t9	S'II	S'II	68	S'ti	S'II	S'II	IL	soi	soi	
L'II	S'I	S\%	t9	S'I	IL	9.2	68	2'8	L'II	5%	s'li	soi	19	L'II	$9 / 2$	19	L'II	S'II	92	S'II	S'II	S'II	2'8	SII	S'II	
9.0I	9.01	90I	901	9.01	901	90I	9.01	L'II	9.01	9.01	L'II	9.01	9.01	9.01	L'II	9.01	9.01	L'II	L'II	L'II	L'II	L'II	L'II	L'II	L'II	<ıpmupf
${ }_{\text {sz, }}^{1 / \mathrm{K}}$	b2.1K	${ }_{8,1 \mathrm{~K}}$	${ }^{27}$, 1 K	12.1 K	02,1/	${ }^{61} 1.1 \%$	${ }^{8 t} 1.1 \mathrm{~K}$	${ }_{4,1 /}$	91.14	${ }_{\text {St }}^{1 / \mathrm{I}}$	${ }_{\text {tlaid }}$	ध1, $1 i$	${ }^{21,1 i}$	${ }^{1 / 1 /}$	${ }_{0}^{01 / 1}$	6.1%	8.1%	1.1%	9.1%	S.İ	${ }_{\text {t, } 1 /}$	E/K	$\tau_{\text {İ }}$	${ }_{1} / 1 /$	(sul)	

Table S .7 kWh per $\mathrm{H}_{\text {prod }}$

Sites	$k W_{\text {/ }} r$																								
	yr_{1}	yr_{2}	yr_{3}	yr_{4}	yr_{5}	yr_{6}	yr_{7}	yr_{8}	yr9	yrio	yr ${ }_{\text {II }}$	yr ${ }_{12}$	$y_{1 / 3}$	yr ${ }_{\text {c }}$	${ }_{\text {y } r_{1 / 5}}$	${ }^{\text {r }} 16$	${ }_{\text {r }}^{17}$	${ }_{y r 1 s}$	$y_{r 19}$	${ }_{y r 20}$	$y_{2} 2$	${ }_{y 22}$	y_{23}	${ }_{\text {y } 24}$	y_{265}
Aracari(Brazil)	5696	5646	5674	5628	5700	5646	5695	5695	5637	5639	5646	5694	5674	5636	5718	5735	5689	5650	5602	5697	5683	5616	5628	5645	563
Corvo Island (Portual)	104	10535	10467	475	104	10563	497	429	10525	10527	10454	10525	10507	10500	10474	10454	10510	10523	10545	560	10464	10520	10532	10452	10407
$\begin{aligned} & \begin{array}{c} \text { Cape Saint James } \\ \text { (Cananda) } \end{array} \end{aligned}$	24762	2484	24927	24734	24784	24848	24734	24734	24927	24784	24848	24797	24734	24936	24875	24936	24903	24927	24936	24835	24851	24734	24886	24797	24

es. 9 Cashflow for 25 years	ind far	ect	50000		Orvo Island	d (Portugal)				with sens	naly	¢	+	(Case , $)$												
Hem	0	1	2	3	4	5	6	7	8	9	10	11	$\frac{\text { Year }}{}$	${ }_{13}$	14	15	16	17	18	19	20	21	22	${ }^{23}$	${ }^{24}$	25
(-) LCCCM wr	60225901																									
${ }_{\text {w }}^{\text {cu }}$ m	27686278	-	-	-	-	-				-		-		-		-		-								
$T_{\text {cm }}$	24219295	-		-	-	-	-	-		-		-		-	-	-		-		-					-	
${ }^{L W T G C W}$	1959783	-	-	-				-				-		-		-										
${ }^{\text {cPacn }}$	1545346	-	-	-	-									-												
${ }_{\text {TS cu }}$	${ }^{572832}$	-	-	-	-	-		-		-		-		-		-										
	$\begin{array}{r}2136726 \\ \hline\end{array}$	-	-			-								-		-										
${ }_{\text {Pram }}^{\text {Pr }}$	1798870	-		-				:		-		-		:		-		:					:		:	
	188559		\cdots																							
		90107610	9076974	90190491	90253921	90198973	91016328	9043405	8985804	90685374	90700678	907867	90685374	90530336		90246888		90557464			90985978		9064359	43354	so05950	8967057
${ }^{(+)}$AAR (SM/yr)		15046124	15535009	1582237	16293340	1662445	17194985	17513916	17835578	1849787	1891422	19254127	19868402	2033029	2082386	21292641	2178427	22417567	2303643	23661518	2428996	17268871	17795063	18260013	18575463	18957626
${ }_{\text {PPAR }}^{\text {EMP }}$:	15046124	15535009	1582337	16223340	1662445	17194985	17513916	17835578	1849787	1891422	19254127	19868402	20330295	20825386	21292641	21784277	22477567	2303643	23661518	24287963					
$\stackrel{\text { ¢ }}{\text { ¢ }} \mathrm{M}_{\text {wfon }}$		9414550	9720704	9900012	10154527	10401931	10758472	10957897	11159202	11543192	1833646	12046185	12430378	12719232	1302885	13321057	1362551	14043351	14411633	1480258	15194336	13212815	13615294	13970912	1421214	14594416
O\&M $\mathrm{frum}^{\text {a }}$	-	4895943	5055217	5148526	528048	540967	5595159	5698935	5803599	6003456	6154579	6265179	6465057	661535	677449	692888	7088460	730288	7495901	7699294	7903132	8027881	8271977	8488105	8634738	8812382
	-	4518607 863268	4665487 88485	${ }^{4751486}$	$\begin{array}{r}4873579 \\ 99964 \\ \hline\end{array}$	4992258 92887	${ }_{\substack{16313 \\ 976709}}$	5258962 1001127	${ }_{5}^{5355430} 1006$	553976 1051809	5679068 1078104	5781006 105057	5965321	6103880	6252405	6392569	6540051	673963	6915732	7103264	7291205	5185434	5343317	5482807	5577406	
(+) Depreciation		2416592	2477007	2538932	2602406	2667468	2734153	2802506	2872569	294383	3017993	3093443		325048	3331299		3499946	358744	3671131	3769060	3863286	3959868	4058865	4160336	4264345	
(\Leftrightarrow) Profit before tax	-	8911435	9176763	9368266	9606864	9843367	10147375	10359653	10575273	1092788	11176673	11406441	1174188	12022111	12317857	12605942	11655712	11991661	12301941	1268019	12956912	8015924	823863	844943	8627664	8824163
$($ (). Revenue tax		4513837	466068	4746712	4868802	498784	5158496	5254175	5350673	5534936	567267	5776238	5960521	609989	6247616	6387792	6535283	673270	6910933	709845	7286389	5180661	5338519	5478004	57269	5687288
${ }^{(+)}{ }_{\text {REPIM }}^{\text {REICu }}$	1284621	1253	1231	1193	1165	1136	1118	1084	1051	1035	1010	978	961	936	912	888			-			-				
		125	1231	193	1165	1136	1118	084	1051	1035	1010	978	961	936	91	888										
${ }_{\text {OREP }}^{\text {cu }}$	420959																									
ghg.Rom																										
($=$ Profit Pafer rax w/out interest		4398850	4517311	462274	4739227	4857019	4989997	5106562	522651	5368885	5503416	5631182	5781926	592958	6071154	6219037	5120429	5257391	5391008	552956	567053	2835263	2900115	2971434	3055025	31368
(-) Debt payments			${ }^{3127964}$	${ }^{3206163}$	${ }^{3288317}$	${ }^{3368475}$	${ }^{3} 425857$	${ }^{3539004}$		3718166																
		2621739 241692	2687828 2477007	2754464 253893	2823326 260206	2893909 266746	${ }_{2}^{2963257} 153$	3040413 2802506	311624 287259	319434 294438	3274193 301993	335647 309343	343949 317079	3525947 325048	3614096 3331299	3704448	3797960 349946	3891986 358745	3989286 367111	4089018 376960	419243 3863286		4403425 405865	4115311 416036	4623388 426435	
(E) Free net cashfow	. 58941280		6553636	679981	687864	7049919	7237720	741047	7587164	7789436	798481	8174273	8388595	8595794	8889785	9026135	12417435	12736822	13057425	13387641	13725053	11091155	11362405	1645281	11945718	12249836
		98	462	10481	61839	311920	5074200	7663723	-76599	7712878	569735	3871632	226027	0856021	4966807	5869941	7109377	63846199	96903624	110292295	124016318	13510747	146469878	158115159	17006887	182310713

APPENDIX T

Figure T. 1 I-O representation of $L C O E_{\text {wso }}$ algorithm calculations for the hypothetical $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Aracati (Brazil) with sensitivity analysis of $O \& M_{\operatorname{manag}(B)}$ and $E_{p i}\left(\right.$ Case $\left._{2}\right)$. Source: Own elaboration

Figure T. 2 I-O system representation of $L C O E_{\text {wso }}$ algorithm calculations for the hypothetical $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Corvo Island (Portugal) with sensitivity analysis of $O \& M_{\operatorname{manag}(B)}$ and $E_{p i}$ (Case ${ }_{2}$). Source: Own elaboration

Wind Farm Life-Cycle Capial Cost Model		Note
${ }^{W} T_{\text {cu }}$	553.7256	[s/kw]
CM wT	265.32	[s/kw]
${ }_{R C}{ }_{W T}$	73.70\%	${ }_{\text {[\%/skw] }}$
$c_{\text {av }}$	400.00	[s/kw]
${ }^{\text {PT }}$ T	10.00\%	[\%]
${ }_{\text {car }}$	484.3859	[skw]
$T_{\text {mass }}$	138000	[kg1
${ }_{R C}$	26.30%	[\%/s/kw]
$c_{\text {seret }}$	0.1900	[s/kg]
${ }^{\text {LWTG }}{ }_{\text {cu }}$	39.1957	[\$ $\mathrm{mkN} \times 1$
$W_{\text {cap }}$	50000	${ }^{[k w]}$
L_{s}	13950	${ }^{[m]}$
$C A B$ ast	2000.00	${ }^{[5 / m]}$
${ }^{\text {cPau }}$	30.966	[s/w]
$E F F^{\text {c }}$	40.00	[s/kw]
ς	0.08%	[\%]
${ }^{75} \mathrm{cu}$	11.4556	${ }_{\left[S / 2 W_{\text {c }}\right]}$
$T_{\text {c }}$	0.040	[5/m]
${ }_{\text {TL, }}$	1200	${ }_{[1 / \mathrm{kw}}$
L_{T}	3000	${ }^{[\mathrm{m}]}$
${ }_{S B}$	113.00	[skwh]
${ }^{\text {S }} \mathrm{Cu}$	427345	[\$/ $\left.\mathrm{m}^{2} / \mathrm{kW}\right]$
$W_{\text {cap }}$	50000	${ }^{[k W]}$
$W_{T \text { max }}$	42.5238	[skw]
${ }^{\text {Bld }}$ coit	50000	$\left[\mathrm{sm}^{2}\right]$
${ }^{\text {Bld }}$ araca	300.0	${ }^{\left[m^{2}\right]}$
${ }^{P O} O_{C u}$	35.9374	[s/kw]
${ }_{\text {FS }}$	19.88	[s/kw]
DT	87.22	[s/kw]
${ }_{\text {eg }}$	40.52	[skw]
${ }^{\text {Fur }}$	3.7712	[s/w]
wacc $_{\text {prof }}$	4.900%	[\%/yr]
$n_{\text {fin }}$	1.0	[yrl
$w_{\text {Fow }}$	0.30\%	[\%]
${ }^{\text {ccc }} \mathrm{cum}^{\text {u }}$	2.4042	[s/w]
κ	0.20\%	[\%]
$L^{\text {LCCCM }}{ }_{\text {WF }}$	1204.5180	[$\mathrm{s} / \mathrm{k} / \mathrm{W}]$

Figure T. 3 I-O system representation of $L C O E_{\text {wso }}$ algorithm calculations for the hypothetical $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Cape Saint James (Canada) with sensitivity analysis of $O \& M_{\operatorname{manag}(B)}$ and $E_{p i}$ (Case 2). Source: Own elaboration

Table T． 2 Energy production map of the wind farm for Corvo Island（Portugal）

LS50498	00S 65006	tS¢ ¢tL06	865 ct906	8682906	84688606	EI2 588 0	tct 99906	tot LSS 06	L998006	888 ¢t20	tEl $\varepsilon \mid+06$	9¢80 0506	t＜258906	L988006	8900206	tLE58906	27088868	sot ¢tt 06	87891016	\＆6680106	Iz6 8506	$16+06106$	tLL60406	01920006	9198	zzzで1	${ }^{1} 6$	${ }^{\text {pmu }}$ \％
＋866198	899 E88 ${ }^{\text {＋}}$	8169219	$18+9$ gt	zts 120\％	＋86＋19：	$18+918$ tl	895 E¢8 ${ }^{\text {t }}$	8SI tIS 4	zts 1zoz	$18+9 / 8+1$	$6+2 / 88 \varepsilon$	2t8 Izoz	$18+9 \mid E+1$	て＋8 120 ح	${ }_{\text {tr86 } 19 \varepsilon!}$	$18+9 / E t+1$	2t8 IzO	6tてLt8 \＆	¢¢0 0LI ε	zts Izoz	¢¢0 0LIE	2t8 Izoz	1061 LEて	t86619 \＆l	$9 \varepsilon /$	$\angle E z{ }^{\prime}$	S＇II	${ }^{\square}$
92668871	ILlozs	$\angle 92506 \mathrm{I}$	9268871	EtI sezz	192086	EtI ¢ezz	szt sza ε	192086	¢tI şzz	9668821	852886	¢tı sezz	881	¢HI sczz	928 tsst	821	¢tI sezz	852886 て	¢z	¢zz	szz	¢z	szt sc9 \＆	gss rzi ot	969	ャ6IでI	9.01	เячихло ${ }_{\text {N }}$
6Stoss	tos soor	6Stosez	506	$8 \angle E I t I E$	62 L	tgs	$8<8$	z88 ct90 0	$8 L E I t I \varepsilon$	S0616tEl	6ž9t＋ 1	8LEItIE	S06 160 \＆l	8LE ItIE	S06 16t \＆1	S06 16t Et	6za 9tt	6stosez	tgs gooz	$8 L E I t I E$	tgs gooz	8LE ItI E	6LO IzI 9	6LOIzI 9	$9 \varepsilon<$	9 gizl	68	1гqого
¢ız8z6I	z¢ı	20z6998	6819266	20z 699 \＆	$\angle 50168$ S	868 ＋86 zl	2¢1 29 z	868 f86 21	2026998	6819766	LSO 168	zoz6998	6819766	2076998	6819766	6819766	LSO 168 S	¢Lz	928609	228609t	928609 ¢	LSO 1685	¢zz8z6 I	20z6998	ZIL	t90でI	92	
1s0oczoo	¢908z1 ε	ILS	899 tlt \angle	ILS 694 ＋	ILS694	$61 /$ tct El	zLO S66 I	$61 /$ tetet	ILS 69L	zLO 5661	89986501	ILS69L	899 tlt L	ILS 69L	96t 0t\＆	899 tlt \llcorner	O1¢96L \＆	＋EI 6609	$61 /$ tct $\varepsilon 1$	O1¢96LE	018962 \＆	018964 \＆	8998650	96tote	9\＆L	sloz	t＇9	${ }^{1 s n 8 n \%}$
tSI get 4	¢ $¢ 1$	us zusal	$266+\varepsilon!9$	$266+819$	selt	602 LE8 Ot	908	$266+\varepsilon!9$	z66tel9	108 Ssez	8II 800 乙	19	9	$266+\varepsilon!9$	8II 800 乙	266	8IS $8+1$ E	tSI E9t L	zasel	608	266	0920	us zus st	811800	$9 \varepsilon L$	tsizit	19	$<_{1} n^{\prime}$
$908+88 \mathrm{~s}$	186660 L	01609871	$858595+$	186	198606 I	186 L	01609821	198606 I	186	$19 t+66$ r	z	I86L60 L	＋	186 L	Stiol	858595 t	0160988	8585	0665410	186660 L	186660 L	186660 L	O98	$19+666$ て	96	ャัz兀	IL	วun
929	strg gtol	sIl ocstl	29	str 9ttot	$\angle 84$	6500029	166599 st	L8L08Ez	str 9trot	299198	St89ttot	SII $0<4$ tl	299198 \＆	Strott 01	6500029	299198	str 9ttor	str94to ot	sts gttor	6500029	str 9trol	Sts 9ttol	Sts 9th ot	929158 ＋	$9 \varepsilon \angle$	z8zでI	28	W
860	zzo sz	689	689	zzo ss	slo oto	6898	212	68998	zzo	¢8t 904 ¢	S 8 900 +	zzo	689	zzo＜s $¢ 1$	$\angle 69915 \angle$	689	58	88	L6S91EL	¢8t	¢8t	${ }_{8} 8$	4659	4659	IIL	Lİ	s6	${ }^{\mu} u^{\prime} d_{V}$
406861 E	688ztzt＋1	98tol	$\angle 90 \angle 80 \mathrm{z}$	688ztz＋＋1	olsclusl	296698 t	Itlols 1	948\＆	ois cusel	E¢t Ezz 9	olsclusl	ols LIL $\varepsilon 1$	296688	ols 414ε	206861ε	296688	oisclust	oisclust	¢ct czz 9	ols 41	ols 14 \＆	ols 11 e	206861	zzo		zeと	sol	Han
S8LSILzi	ILZ 60 zı	sIotl99	col 901 Z	z60 zI	009sisz	$960<17 \varepsilon$	060984 s	LEl \＆6てt	s84 silzi	sIotl99	1z2z60 zl	\＆LIttr 6	t8L S6L I	S84 sILzı	960 LIt ε	t8L S6L I	s8¢ sIL zi	1z2zoo zl	$960<1+\varepsilon$	Iz z60zI	IZ z60 zi	1z2 760 z1	LEI \＆6で	12z80	$8 t 9$	Stezt	StI	
sot lı or	80\％ 18801	80t 18801	80t 18801	sot 188	sot l88 ol	sot l48 ol	80t 18801	zot $060+1$	80t 18801	sot l280I	29＋ $06+$＋1	sot IL8 OI	sot 18801	sot 18801	29\％ $06+$＋1	s0t 18801	sot LIS OI	29\％ $06+$＋1	$29+06+t 1$	29\％ $06+$＋1	29t $06+t$	29＋ $06+t$	29＋ $06+$ tr	29＋ $060+1$	O＋L	ย1ĖI	L＇II	＜ionup
sz，a	${ }^{\text {r2，AK }}$	${ }_{\text {R，A }}$	${ }_{\text {zz，}}$	${ }_{12,1}$	${ }^{\text {oz，A }}$	${ }_{\text {I，}, ~}^{\text {a }}$	${ }^{1 /, A}$	${ }_{\text {I } 1,1}$	， 1	${ }^{\text {st，}}$ ，	${ }^{\text {th，}}$ ，	${ }^{\text {¢ } 1, \Lambda}$	${ }^{\text {E／，A}}$	${ }_{\text {I }, \text { İ }}$	${ }_{0}^{\text {ofici }}$	${ }^{\text {¢，}}$／	${ }_{8,1}$	${ }_{\text {L，}}^{1 /}$	9.1%	${ }_{\text {s．iK }}$	${ }_{\text {t，} / 1}$	$\varepsilon_{\text {¢ }}$	${ }_{\text {z，AK }}$	${ }_{\text {I，}}^{1 /}$	（4）	$l_{\text {c }}{ }^{\text {m／／} /}$	u）	

Table T. 4 Wind speed series simulations for $A E P_{\text {avail }}$ in Aracati (Brazi)
Months $\quad v_{\text {we }}$

Months	$\begin{gathered} v_{w c} \\ (m s) \end{gathered}$	Wind speed data series for simulations (m / s)																								
		y_{1}	$y r_{2}$	yr_{3}	$y r_{4}$	y_{5}	$y r_{6}$	$y r 7_{7}$	y_{8}	yr,	y_{10}	$y r_{11}$	y_{12}	$y r 213^{1.6}$	$y r_{14}$	${ }^{\text {r }}{ }_{1 / 5}$	y_{16}	y_{17}	yr_{18}	y_{19}	$y r_{20}$	$y r_{21}$	y_{22}	y_{23}	y^{24}	y_{25}
January	5.8	5.8	10.1	7.6	9.6	4.0	10.1	4.0	4.0	7.9	10.1	10.1	4.0	7.6	9.6	7.9	10.1	10.1	4.0	7.6	9.6	4.0	7.6	9.6	7.9	7.9
February	4.9	4.9	9.7	7.9	9.7	4.7	9.7	4.7	4.7	8.6	9.7	9.7	4.7	7.9	9.7	4.0	4.0	7.6	8.6	10.1	6.0	6.0	10.1	9.7	8.6	8.6
March	4.0	4.0	9.6	8.6	10.1	4.9	9.6	4.9	4.9	9.2	9.6	9.6	4.9	8.6	10.1	4.7	4.7	6.0	7.9	6.0	5.8	5.8	9.7	10.1	7.6	9.2
April	4.7	4.7	9.2	9.2	7.9	5.8	9.2	5.8	5.8	9.6	9.2	9.2	6.0	9.2	7.9	4.9	4.9	5.8	9.2	5.8	7.6	4.9	9.6	9.2	6.0	9.6
May	6.0	6.0	8.6	9.6	8.6	6.0	8.6	6.0	6.0	9.7	8.6	8.6	5.8	9.6	9.2	5.8	5.8	4.9	10.1	4.9	4.0	4.7	9.2	7.9	5.8	9.7
June	7.9	7.9	7.9	9.7	9.2	7.6	7.9	7.6	7.6	10.1	7.9	7.9	7.6	9.7	8.6	6.0	6.0	4.7	9.7	4.7	4.7	7.6	8.6	8.6	4.9	10.1
July	8.6	8.6	7.6	10.1	5.8	7.9	7.6	7.9	7.9	4.0	4.0	7.6	8.6	10.1	6.0	7.6	7.6	4.0	9.6	4.0	4.9	7.9	7.9	5.8	4.7	4.0
August	9.6	9.6	6.0	6.0	6.0	10.1	6.0	8.6	8.6	4.7	4.7	6.0	7.9	6.0	5.8	8.6	9.7	9.7	4.7	7.9	9.7	8.6	6.0	6.0	4.0	4.7
September	10.1	10.1	5.8	5.8	7.6	9.7	5.8	9.2	9.2	4.9	4.9	5.8	9.2	5.8	7.6	9.2	9.6	9.6	4.9	8.6	10.1	9.2	5.8	7.6	9.2	4.9
October	9.7	9.7	4.9	4.9	4.0	9.6	4.9	9.6	9.6	5.8	5.8	4.9	10.1	4.9	4.0	9.6	9.2	9.2	6.0	9.2	7.9	9.6	4.9	4.9	10.1	5.8
November	9.2	9.2	4.7	4.7	4.7	9.2	4.7	9.7	9.7	6.0	6.0	4.7	9.7	4.7	4.7	9.7	8.6	8.6	5.8	9.6	9.2	9.7	4.7	4.7	9.7	6.0
December	7.6	7.6	4.0	4.0	4.9	8.6	4.0	10.1	10.1	7.6	7.6	4.0	9.6	4.0	4.9	10.1	7.9	7.9	7.6	9.7	8.6	10.1	4.0	4.0	9.6	7.6
Annual	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4

Table T. 5 Wind speed series simulations for $A E P_{\text {avail }}$ in Corvo Island (Portugal)																										
Months	$\begin{gathered} v_{w c} \\ (m / s) \end{gathered}$	Wind speed data series for simulations (m (s)																								
		$y r_{1}$	$y r_{2}$	$y r_{3}$	$y r_{4}$	$y r_{5}$	yr ${ }_{6}$	y_{7}	$y^{\prime}{ }_{8}$	yr,	${ }^{\prime 2} r_{10}$	rr_{11}	$y r_{12}$	yr_{13}	$y_{1 / 4}$	$y_{1 / 5}$	y_{16}	y_{17}	yr_{18}	yr ${ }_{19}$	$y r_{20}$	$y r_{21}$	$y r_{22}$	y_{23}	$y r_{24}$	${ }^{\text {y } r_{25}}$
January	11.7	11.7	11.7	11.7	11.7	11.7	11.7	11.7	10.6	10.6	11.7	10.6	10.6	10.6	11.7	10.6	10.6	11.7	10.6	10.6	10.6	10.6	10.6	10.6	10.6	10.6
February	11.5	11.5	8.2	11.5	11.5	11.5	7.6	11.5	11.7	6.1	7.6	11.7	6.1	10.5	11.5	9.5	11.7	8.2	8.9	7.6	7.1	11.5	6.4	9.5	11.5	11.7
March	10.5	10.5	7.1	11.5	11.5	11.5	8.9	11.5	11.5	6.4	7.1	11.5	6.4	11.5	11.5	8.9	11.5	7.6	9.5	8.2	11.5	11.7	6.1	10.5	11.7	7.1
April	9.5	9.5	9.5	10.6	10.6	10.6	9.5	10.6	8.2	7.1	9.5	11.5	7.1	11.5	8.2	8.2	11.5	7.1	10.5	7.1	11.7	11.5	7.1	7.1	11.5	7.6
May	8.2	8.2	10.5	10.5	10.5	8.9	10.5	10.5	10.5	7.6	8.9	10.5	7.6	11.7	10.5	7.6	10.5	6.4	11.5	8.9	6.4	10.5	7.6	11.7	10.5	8.2
June	7.1	7.1	11.5	9.5	9.5	9.5	10.6	8.2	11.5	8.2	10.6	9.5	8.2	9.5	6.4	7.1	9.5	6.1	11.5	9.5	6.1	9.5	8.2	11.5	9.5	8.9
July	6.1	6.1	11.5	8.2	8.9	10.5	11.5	9.5	7.1	8.9	6.1	8.9	8.9	8.9	6.1	6.4	8.9	8.9	11.7	10.5	7.6	8.9	8.9	11.5	7.6	9.5
August	6.4	6.4	10.6	7.6	7.6	7.6	11.5	8.9	7.6	9.5	6.4	8.2	9.5	8.2	10.6	6.1	8.2	11.5	6.1	11.5	8.2	8.2	9.5	8.2	7.1	10.5
September	7.6	7.6	6.1	8.9	8.2	8.2	8.2	6.1	8.9	10.5	10.5	7.6	10.5	7.6	8.9	10.5	7.6	11.5	6.4	11.5	8.9	7.6	10.5	7.6	6.4	6.1
October	8.9	8.9	8.9	7.1	6.1	7.1	6.1	6.4	9.5	11.5	11.5	7.1	11.5	7.1	9.5	11.5	7.1	10.6	7.1	6.1	9.5	7.1	11.5	6.4	6.1	6.4
November	10.6	10.6	7.6	6.4	6.4	6.4	6.4	7.1	6.4	11.5	8.2	6.4	11.5	6.4	7.1	11.5	6.4	10.5	7.6	6.4	10.5	6.4	11.5	6.1	8.9	11.5
December	11.5	11.5	6.4	6.1	7.1	6.1	7.1	7.6	6.1	11.7	11.5	6.1	11.7	6.1	7.6	11.7	6.1	9.5	8.2	11.7	11.5	6.1	11.7	8.9	8.2	11.5
Annual	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1

Table T. 6 Wind speed series simulations for $A E P_{\text {avail }}$ in Cape Saint James (Canada)

Table T .7 kWh per $\mathrm{H}_{\text {prod }}$

Sites	kW/yr																								
	$y r_{1}$	$y r_{2}$	y_{3}	yr_{4}	yr_{5}	$y r_{6}$	$y r_{7}$	$y r_{8}$	$y r_{9}$	$y r_{10}$	$y r_{l l}$	yr_{12}	yr_{13}	$y r_{14}$	$y r_{15}$	$y r_{16}$	yr_{17}	$y r_{18}$	yr_{19}	$y r_{20}$	$y r_{2 l}$	$y r_{22}$	${ }^{2} r_{23}$	$y r_{24}$	${ }^{\text {y } r_{25}}$
Aracari(Brazil)	5696	5646	5674	5628	5700	5646	5695	5695	5637	5639	5646	5694	5674	5636	5718	5735	5689	5650	5602	5697	5683	5616	5628	5645	5637
Corvo Island (Portugal)	10458	10535	10467	10475	10468	10563	10497	10429	10525	10527	10454	10525	10507	10500	10474	10454	10510	10523	10545	10560	10464	10520	10532	10452	10407
Cape Saint James (Canada)	24762	24848	24927	24734	24784	24848	24734	24734	24927	24784	24848	24797	24734	24936	24875	24936	24903	24927	24936	24835	24851	24734	24886	24797	24881

Table T. 9 Cashfow for 2	vind fan		50000		Corvo Island	d (Portugal)				wibl sensitivi		\&ッ	${ }_{\text {si }}+$ Epi i	2)												
Hem	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
(-) LCCCM $_{\text {wF }}$	6025901																									
$w_{\text {cm }}$	27686278	-	-	-	-	-	-		-	-	-	-		-	-	-							-			
${ }_{\text {com }}$	24219295	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
${ }_{\text {LWTG }}$	1959783	-	-	-	-	-		-	-	-	-			-	-	-										
${ }^{\text {cP cm }}$	1545346		-			-					-															
${ }_{\text {TS }}^{\text {cu }}$	-572832	-	-	-	-	-	-			-	-			-	-	-										
${ }_{\substack{\text { Stcu } \\ \text { POcu }}}$	2136726 1796870	:	$:$:	:		-	-	-	-				-	:					-		-				
${ }_{\text {Pr }}^{\text {PM }}$	$\begin{array}{r}1796870 \\ \\ \hline 18559\end{array}$	-	\checkmark	-	-	-	-	-	-	-	-	-		-	\because	\bigcirc	-			-	-		-	-		
${ }_{\text {c CC }}^{\text {cu }}$	120211			-												-				-		-				
LCPM ${ }_{\text {wf }}(\mathrm{k}$ Wh/rr)	-	90107610	976977	90190491	9025392	9973	328		89858042	5374	90700678	007867	90685374			9024688	9078677	90557464				9016239	906439	1335	5950	89670577
(+) AAR (SM/rr)		15046124	15535609	15822374	16229340	1662445	17194985	17513916	17835578	18449787	18914223	19254127	19868402	20330295	20825386	21292641	2178427	22447567	23036443	23661518	24287963	17268871	17995063	18260013	18575463	18957626
$\underbrace{\text { EMP }}_{\text {PPAR }}$		15046124	15535609	15822374	16229340	16624945	17194985	17513916	17835578	18449787	18914223	19254127	19868402	20330295	20825386	21292641		22447567	23036443	23661518						
		9414550	9720704	9980012		1040	10758472	10957897	1115902		3646	12046185	12430378	12719232	13028853	13321057	13628511				15194336			18260013 13970912	${ }_{1}^{18575463} 14$	
		4895943	5055217	5148526	5280948	540967	5595159	5698935	5803599	6003456	6154579	6265179	6465057	6615352	677649	6928488	7088460	7304288	7495901	7699294	7903132	8027381	8271977	8488105	8634738	8812382
о๕м		4518607	4665487	4751486	4873579	499258	5163313	5258962	5355430	5539736	5679068	5781006	5965321	6103880	6252405	${ }^{6} 392569$	6540051	673906	6915732	7103264	7291205	5185434	5343317	5482807	5577406	569233
${ }_{\text {() }}^{\text {() LRCM }}$	-	863268 2451715	${ }^{884850}$	906971	229646	952887	976709	1001127	1026155	1051809	1077104 3061856	1105057 3138403	1132683 3216893	3116000	1190025 379977	1219776 3464209										
		2451715 8946588	2513008 9212763	2575833 9405167	2640229 964687	${ }_{9}^{2706235}$	2773891 10187113	2843238 1040384	2914319 10617023	${ }_{10945580}^{2987}$	3061856 11220537	3138403 1145142	3216863 1178757	3297284 1209934	${ }_{\substack{3379717 \\ 1266274}}$	3464209 1255569	3550815 11706581	363958 12043801	3730575 1235385	3828839 1268799	3919435 13013061	4017421 807347	4117856 8297625	422803 8509904	${ }_{8689692}^{4323}$	4434481 8887990
$\xrightarrow[(\rightarrow)]{\text { () Revenue tax }}$		${ }_{4513837}$	4660683	4746712	4888802	4987484	5158496	${ }_{5254175}$	5350673	5534936	5674267	5776238	5960521	6099089	${ }_{6} 6247616$	${ }_{6387792}$	6535283	6734270	6910933	7098455	7286389	5180661	${ }_{5388519}$	5478004		
(+) REPIM	427968	2591	2555	2485	2435	2383	2355	2293	2332	2207	2164	2107	2080	2036	1997	1954	1915	1890	1858	262	269	273	281	288	293	299
${ }^{\text {REICM }}$	33704																									
${ }_{\text {Resem }}^{\text {Rew }}$		2425	383	310	2256	2199	2165	2099	2034	2003	955	1894	1860	1812	1766	1719	1674	1642	1604			-				
${ }_{\text {GHEP }}^{\text {ORM }}$				175				194	197	204	209	213				235		248	255	262	269					
($)$ Profit afer rax wout interest	-	4435312	4554636	4660940	477832	4897035	5030973	5148502	5268581	5412851	5548434	567270	5829129	597295	6120655	6269731	5173212	5311421	5446310	5584605	5726941	2893089	2959388	3032188	3117296	3200702
			3173826	${ }^{3252761}$	${ }^{3,344880}$	3417432	3502868	359040		3772206	${ }^{3} 886511$	396774	4062233	4168810	4207009											
${ }_{\text {(}}\left(+\right.$ RCM ${ }_{\text {w }}$	-	2621	2687282	2754464	2823326	2893909	2966257	3040413	3116424	3194334	3274193	3356047	3439949	3525947	3614096	3704448	3797060		3989286	4089018	4191243		4403425	4513511	4626348	
		2451715	2513008	25778383	2640229	2706235	277891	2843238	2914319	298717	3061856	3138403	3216863	3297284	3379717	3464209 063787	3550815	3639585	3730575	3828339	${ }^{3919435}$	401721	4117856	420803	432323	4434481 1237190
Free net cashfow	-59797933	9508766 .50289167			- 69007795	7079747 -2298169	7268252 -1571397	7441713 -827163	7619123 65250	782156 716959 1029	8017972 15187568	8208547 2399614	8423687 31819802	8631717 40451519	8846503 4998082	9063787 58361868	12521086 7088295	12842992 8372947	13166170 9689217	13497462 11039599	13887619 12427 199	${ }_{\substack{1206534 \\ 1353373}}^{1720}$	11488669 14694402	11766502	12069988 17075081	12377190 183285061

Appendix U

Figure U. 1 I-O representation of $L C O E_{\text {wso }}$ algorithm calculations for the hypothetical $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Aracati (Brazil) with sensitivity analysis of $O \& M_{\operatorname{manag}(B)}$ and $E_{p i}$ (Case ${ }_{3}$). Source: Own elaboration

Figure U. 2 I- O system representation of $L C O E_{\text {wso }}$ algorithm calculations for the hypothetical $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Corvo Island (Portugal) with sensitivity analysis of $O \& M_{\operatorname{manag}(B)}$ and $E_{p i}$ (Case ${ }_{3}$). Source: Own elaboration

Wind Farm Life-Cycle Capial Cost Model		Notes
${ }^{W} T_{\text {cum }}$	553.726	${ }_{\text {[} 5 / \mathrm{kW]}}$
${ }_{C M}{ }_{w T}$	265.32	[s/kw]
${ }_{R C}{ }_{w T}$	73.70\%	${ }_{[\% / s / k w]}$
$c_{\text {kw }}$	400.00	[s/kw]
IPT	10.00\%	[6]
$T_{\text {cur }}$	484.3859	[s/kw]
$T_{\text {maxa }}$	138000	[kg]
${ }^{R C}{ }_{T}$	26.30%	[$\% / 5 / 5 \mathrm{~kW}]$
$c_{\text {saced }}$	0.1900	${ }^{\text {[} 5 \mathrm{~kg}]}$
${ }^{\text {LWTG }} \mathrm{cu}$	39.1957	
$W_{\text {cap }}$	50000	${ }^{\text {kww] }}$
L_{k}	13950	[m]
$C A B{ }_{\text {cost }}$	2000.00	[$5 \mathrm{~s} / \mathrm{m}]$
${ }^{\text {cPaw }}$	30.9069	[s/kw]
$E F F_{\text {c }}$	400.00	[s/kw]
ς	0.08%	[\%]
${ }^{T s}{ }_{\text {cu }}$	11.4566	${ }_{[s / k w e}{ }^{\text {c }}$
${ }_{T}{ }_{c}$	0.0400	$\left.{ }^{[5} \mathrm{mm}\right]$
${ }_{L} r_{r}$	1200	[1/kw]
$L_{\text {, }}$	3000	${ }^{[m]}$
${ }_{S B}$	113.00	${ }_{[5 / \mathrm{WWh}]}$
${ }^{\text {Stu }}$	42.734	${ }^{\left[5 / m^{2} / \mathrm{kw}\right]}$
$W_{\text {cap }}$	50000	${ }_{\text {[kW] }}$
$W_{T \text { maxt }}$	42.2388	[s/kw]
${ }^{B 1 / d}$ cout	500.00	${ }^{\left[5 / \mathrm{m}^{2}\right]}$
${ }^{B 1 / d a r e n}$	300.0	${\left[m^{2}\right]}$
${ }^{P O_{C u}}$	35.9374	[s/kw]
FS	19.88	[s/kw]
${ }^{\text {DT }}$	87.22	[s/kw]
${ }_{\text {EG }}$	40.52	[s/kw]
$F_{\text {cuw }}$	3.712	[s/kw]
$\mathrm{WaCc}_{\text {prej }}$	4.90\%	[[\%/y]
$n_{\text {fin }}$	1.0	[yr]
$w_{\text {For }}$	0.30\%	[\%]
${ }_{\text {ccC }}^{\text {cu }}$	2.4042	[s/kw]
κ	0.20	[\%]
LCCCM $_{\text {wF }}$	1204.5180	[s/kW]

Figure U. 3 I- O system representation of $L C O E_{\text {wso }}$ algorithm calculations for the hypothetical $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Cape Saint James (Canada) with sensitivity analysis of $O \& M_{\operatorname{manag}(B)}$ and $E_{p i}$ (Case 3). Source: Own elaboration
Table U. 1 Energy production $\left(A E P_{\text {avail }}\right)$ map of the wind farm for Aracati((Brazil) with sensitivity analys is of $O \& M_{\text {manags }(B)}+E_{p i}($ Case 3)

Months	$(m s)$	$\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	$H_{\text {prod }}$$(h)$	${ }_{\text {AE }} \mathrm{Paxail}^{\text {a }}$ WWh $)$																								
				$y r_{1}$	$y r_{2}$	y^{3}	yr ${ }_{+}$	yrs	$y r_{6}$	yr7	yrs	yr,	yr ${ }_{10}$	$y_{\text {II }}$	yr ${ }_{12}$	$y r l_{13}$	${ }^{\text {y }}{ }_{1+4}$	$y_{1 / 5}$	${ }^{\text {r }}{ }_{16}$	y_{17}	yr ${ }_{18}$	19	20	yr ${ }_{21}$	y^{22}	r_{23}	yr_{2}	25
January	5.8	1.1665	738	16931	8890198	3802165	7507410	557361	8890198	557361	557361	4232212	8890198	8890198	557361	3802165	7507410	4232212	8890198	8890198	557361	3802165	7507410	557361	3802165	7507410	4232212	4232212
February	4.9	1.1666	641	850430	6803436	3673320	6803436	779598	6803436	779598	779598	4727258	6803436	6803436	779598	3673320	6803436	483758	483758	3300063	4727258	7716188	1577029	1577029	7716188	6803436	4727258	4727258
March	4.0	1.1671	737	556507	7495900	5438155	8876568	978319	7495900	978319	978319	6560068	7495900	7495900	978319	5438155	8876568	896836	896836	1814186	4225724	1814186	1690536	1690536	7826555	8876568	3796335	6560068
April	4.7	1.1667	713	867380	6344604	6344604	4086931	1635011	6344604	1635011	1635011	7249700	6344604	6344604	1754600	6344604	4086931	946187	946187	1635011	6344604	1635011	3671646	946187	7249700	6344604	1754600	7249700
May	6.0	1.1670	737	18141	543795	7495621	5437953	1814119	5437953	1814119	1814119	7826264	5437953	5437953	1690473	7495621	6559824	1690473	1690473	78283	8876238	978283	556486	896803	6559824	4225566	1690473	7826264
June	7.9	1.1686	689	3955677	3955677	7326396	6140844	3553729	3955677	3553729	3553729	8309307	3955677	3955677	3553729	7326396	5090627	1698250	1698250	839524	7326396	839524	839524	3553729	5090627	5090627	915799	8309307
${ }^{\text {July }}$	8.6	1.1698	737	5450949	3805267	8897452	1694513	4235665	3805267	4235665	4235665	557816	557816	3805267	5450949	8897452	1818455	3805267	3805267	557816	7513536	557816	980621	4235665	4235665	1694513	898946	557816
August	9.6	1.1677	737	7499787	1815127	1815127	1815127	8881171	1815127	5440975	5440975	897302	897302	1815127	4227915	1815127	1691413	5440975	7830614	7830614	897302	4227915	7830614	5440975	1815127	1815127	556795	897302
September	10.1	1.1657	713	8576955	1633475	1633475	3668197	7562383	1633475	6338644	633864	945298	945298	1633475	633864	1633475	3668197	633864	7242889	7242889	945298	5254599	8576955	6338644	1633475	3668197	6338644	945298
October	9.7	1.1645	737	7809082	976135	976135	555264	7479165	976135	7479165	7479165	1688762	1688762	976135	8856751	976135	555264	7479165	6545422	6545422	1810136	6545422	4216289	7479165	976135	976135	8856751	1686762
November	9.2	1.1638	689	6115594	836072	836072	836072	611594	836072	7296271	7296271	1691267	1691267	836072	7296271	836072	836072	7296271	5069696	5069696	1575994	6988019	6115594	7296271	836072	836072	7296271	1691267
December	7.6	1.1651	737	3790014	555580	555580	976690	5429099	555580	8861786	8861786	3790014	3790014	555580	7483417	555580	976690	8861786	4218687	4218687	3790014	7813521	5429099	8861786	555580	555580	7483417	3790014
Annual	7.4	1.1660	8600	48979624	4854924	48794102	48399005	4902215	48549424	4897064	4897044	48473266	48498226	48549224	48988028	48794102	4847887	49169824	49318276	48923888	48889800	48172649	48991802	48874151	48297112	48938836	48547502	48473

Months	$\begin{gathered} v_{w c} \\ (m / s) \end{gathered}$	$\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	$H_{\text {prod }} .$$(h)$	$\begin{array}{llll} & y r_{1} & y r_{2} & y r_{3}\end{array}$			y_{4}	yrs	yr ${ }_{6}$	y_{7}	y^{8}	yr,	yr ${ }_{10}$	yr ${ }_{H}$	${ }^{\text {AE }}$ (${ }_{\text {axiil }}(k W h)$				y_{16}	y_{17}	yr ${ }_{18}$	yr ${ }_{19}$	$y r_{20}$	yr 21	yr 22	y_{23}	${ }_{1} r_{24}$	25	
							yr ${ }_{12}$								yr ${ }_{13}$	yr_{14}	$y_{1 / 5}$												
January	11.7	1.2313	740	962	2462	14490462		46	14490462	462	14490462	10871408	10871408	14490462	10871408	10871408	10877408	O62	874	14	${ }^{14490462}$	108714	114	1087408	1087408	1087408	10871408	10871408	1087408
February	11.5	1.2345	648	1202721	4293137	1209721	1209721	12092721	3417096	12092721	12715785	1795784	3417096	1271578	1795784	9244173	1209721	6674015	1271588	4293137	290	3417096	2815600	12092721	2106703	015	1209721	1275785	
March	10.5	1.2329	736	10486228	3193907	13717510	13717510	13717510	6223433	13717510	13717510	2389762	3193907	13717510	2389762	13717510	717	6223433	510	3876220	7570742	4869967	1377510	1424288	2037067	1048	289	319	
Apri	9.5	2317	712	7316597	7316597	10458483	10458883	10458483	7316597	10458483	4706485	3086689	7316597	13257022	3086689	13257022	4706485	4706485	13257022	3086689	10134212	3086689	1340075	1325702	3086689	3086689	13257022	3746098	
M	8.2	82	736	4851676	10446845	10	10	6200059	84	10446845	1044685	3861662	6200059	104468	3861662	14370115	10446845	3861662	1046845	2380787	1365991	6200059	2380787	1046845	3861662	14370115	1044685	4851676	
June	7.1	1.2224	696	29944	12809910	70	709	70	10145990	4565858	12880910	4565	10145990	7097981	4565	7097	224	299	709	1909861	128	7097	19098	7097	4565858	1280	7097	5834806	
${ }^{\text {Jul }}$	6.1	154	736	2008118	13525571	4800760	6134992	10337209	1352571	7463154	3148518	992	2008118	4992	6134992	6134992	2008118	2355801	6134992	6134992	14219306	103	3821	6134	61349	13522571	3821135	7463154	
August	6.4	1.2075	736	2340496	10598668	3796310	3796310	3796310	13834719	6095134	3796310	7414668	2340496	476957	7414668	4769571	10598668	1995072	4769571	13834719	1995072	13834719	4769571	4769571	7414668	4769571	3128063		
September	7.6	1.2064	712	3669202	1928273	5891057	4609876	4609876	4609876	1928273	5891057	9926189	9226189	3669202	9926189	3669202	5891057	9926189	3669202	12984898	2262132	12988898	5891057	3669202	9926189	3669202	2262132	19282	
October	8.9	1.2126	736	6121079	6121079	3141378	2003564	3141378	2003564	2350459	744229	13999005	13491905	3141378	1349995	3141378	7446229	13491905	3141378	1064378	3141378	2003564	7446229	3141378	13491905	2350459	2003564	350	
November	10.6	1.2194	696	10121588	3625425	2235143	2235143	2235143	2235143	2987258	2235143	12829976	4554876	2235143	1282976	2235143	2987258	12829976	2235143	9807761	3625425	2235143	9807761	2235143	12829976	1905267	5820771	12829976	
December	11.5	1.2237	736	13614984	2371901	2021842	3170035	2021842	3170035	3847249	2021842	14316881	13614984	2021842	14336881	2021842	3847249	14316481	2021842	7514158	4833568	14316881	13619884	2021842	14.316481	6176918	4833568	136	
Annual	9.1	1.2222	8616	9	90	9	902	901	910	90443	898	906	907	90	90685	90.530336	9047	90246	90078	99557464	90660	9085	90985	90162	9068	90743354	90559500		

\footnotetext{
Table U. 3 Energy production map of the wind farm for Cape Saint Janes (Canada)

szi	szi	szi	szi	szi	szi	szi	szı	szi	szi	szı	szi	szi	siz	szi	szi	szi	szi	szı	szi	szi	szi	szi	szi	szi	szi	${ }^{\text {ppnulv }}$
$\frac{691}{}$	$t \stackrel{\text { ct }}{ }$	IOI	${ }^{6} 6$	$\stackrel{6}{ }$	${ }^{06}$	ISI	$\varepsilon \nmid I$	tol	rsI	ṫI	r＇sI	$\stackrel{\circ}{6}$	$t ' s I$	tol	I $¢ 1$	\＆əI	L＇6	$\stackrel{\circ}{6}$	tol	İI	L＇6	$\varepsilon \nmid I$	tol	I＇s		．1яииวэа
$6 \varepsilon!$	$r s I$	\＆ol	oor	oor	¢＇6	＜th	＜tı	tol	＜t＇l		＜tı	001	ISI	tol	$r s /$	＜t＇t	o＇ol	oor	tool	rsi	0．01	＜t＇t	tol	¢ $\dagger 1$	$\varepsilon \nmid l$	．яяиало
¢ $\varepsilon!$	L 4 t	${ }^{8 \%}$	tot	tol	${ }^{\text {r }}$	$\varepsilon \nmid t$	$r s t$	でı	¢ $\dagger 1$	tol	$\varepsilon \nmid t$	tol	cıt	oor	¢ $\dagger 1$	ISI	tol	tol	oor	$\varepsilon \nmid I$	tor	ISI	oor	İI	זধı	1290130
$\tau \varepsilon!$	Ėt	zoor	tor	L＇II	t＇II	rer	ret	tzi	reI	tor	［ยı	tor	\＆$¢ 1$	$\stackrel{\circ}{6}$	くtı	гя	tor	tor	$\stackrel{\circ}{6}$	ctit	tor	reI	$\stackrel{6}{6}$	tor	tol	．qqueddos
46	İI	t＇til	でI	IzI	t＇li	くzı	¢zı	くzı	くzı	001	cıl	でI	İI	z＇I	cıl	くzı	でI	でI	でı	LzI	z＇H	くzı	z＇H	L＇6	$\stackrel{\circ}{6}$	${ }_{\text {snn }}{ }^{\text {n }}$
OOI	くzı	sıı	tiz	¢ ${ }^{\text {I }}$	z 21	tir	til	${ }_{\text {r }}$ ¢ 1	til	$\stackrel{\circ}{6}$	tit	tzı	¢ ¢ ¢	ISI	$\stackrel{1}{6}$	til	tiz	ャı	ISI	46	¢ ¢	tir	ISI	OOI	0.01	${ }_{\text {sinf }}$
žı	tzi	くıI	くzi	くzı	8 zI	İII	İII	$\varepsilon \nmid I$	İII	＜zı	$\tau \cdot I$	＜zı	tiz	＜th	oor	İI	くzi	＜zı	cti	oor	くıı	I＇II	ctor	tor	tol	ounf
\＆\downarrow	2HI	¢ $\% 1$	reI	İI		tol	tor	cti	tol	$\varepsilon \nmid I$	tol	İI	でı	\＆̇I	tor	tol	r\＆	İI	\＆$\dagger 1$	tor	İI	tol	¢ $\dagger 1$	でı	でI	${ }^{\text {ion }}$
6 \％	tol	$\varepsilon \neq 1$	$\varepsilon \nmid I$	$\varepsilon \varepsilon!$	8 $¢$	tol	tor	$r^{\text {r }}$ I	tol	＜tı	tor	¢ $\dagger 1$	tor	I¢	tor	tor	$\varepsilon \nmid I$	$\varepsilon \nmid t$	İI	tol	$\varepsilon \neq 1$	tol	זя	tıI	ャてI	${ }^{\mu d d_{V}}$
$6{ }^{6}$	tor	$\varepsilon s I$	＜th	＜th	8＇I	oor	oor	oor	oor	rst	oor		tor	くzi	$\tau \cdot I$	oor			くzi	İII	ぐt	oor	くzı	くıI	くzı	ypun
t $¢ 1$	0.01	9＇sI	rsi	$r s t$	\＆$\ddagger 1$	$\angle 6$	4.6	［6	$\angle 6$	！$¢ 1$	cob	rst	oor	tiz	tiz	$\stackrel{\circ}{6}$	$r s i$	rst	tiz	tzi	ISI	$\angle 6$	tiz	＜ıt	＜tı	
$\varepsilon 6$	$\angle 6$	Ltıl	$t s I$	$t \leqslant s$	9.91	$t s i$	$t \leqslant s$	$t \leqslant s$	$t \leqslant s$	$t \leqslant s$	$t \leqslant s$	$t \leqslant s$	$4 \cdot 6$	$t \leq s$	$t \leqslant s$	$t \leqslant l$	$t s t$	$t \leqslant t$	$t \leqslant I$	$t \leq I$	$t \cdot s 1$	$t s i$	$t \leq s$	$t \leq s$	$t \leqslant s$	ciomur
$\frac{5}{52, K}$	${ }^{\text {r2，ik }}$	${ }_{\text {R } 2, \ldots}$	${ }^{2 z, i k}$	${ }^{12,4}$	${ }_{0 \times 1 /}$	${ }^{61.1 .1}$	${ }^{8,1 / 4}$	${ }^{4 \prime, K}$	9,14	st，k	${ }_{\text {tlik }}$	$\varepsilon_{1,1 /}$	${ }^{2 \prime}, \ldots$		${ }_{0,1,1}$	6，K	s，k	${ }_{4} / .1$	9.14	s．／i	${ }_{\text {t，}}^{\text {\％}}$	$\varepsilon_{\text {\％}}$	${ }_{2,1 /}$		（sum）	

Table U. $7 \mathrm{kWh}^{\text {per }} \mathrm{H}_{\text {prod }}$

Sites	$k W / y r$																								
	y_{1}	$y r_{2}$	y_{3}	y_{4}	yr_{5}	$y r_{6}$	$y r 7_{7}$	$y^{\prime}{ }_{8}$	yr9	$y r_{10}$	$y r_{11}$	$y r_{12}$	yr ${ }_{13}$	$y_{1 / 4}$	$y_{1 / 5}$	yr ${ }_{16}$	y_{17}	$y_{1 / 8}$	yr ${ }_{19}$	$y r_{20}$	yr 21	$y r_{22}$	$y r_{23}$	y_{24}	${ }^{1} r_{25}$
Aracari (Brazil)	5696	5646	5674	5628	5700	5646	5695	5695	5637	5639	5646	5694	5674	5636	5718	5735	5689	5650	5602	5697	5683	5616	5628	5645	5637
Corvo Island (Portugal)	10458	10535	10467	10475	10468	10563	10497	10429	10525	10527	10454	10525	10507	10500	10474	10454	10510	10523	10545	10560	10464	10520	10532	10452	10407
Cape Saint James	24762	24848	24927	24734	24784	24848	24734	24734	24927	24784	24848	24797	24734	24936	24875	24936	24903	24927	24936	24835	24851	24734	24886	24797	24881

Table U. 8 Cashflow for 25 years of the wind farmproject $\quad 50000 \mathrm{~kW} \quad$ Aracati (Brail)

Item	Years																									
Hem	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	${ }^{23}$	${ }^{24}$	
(-) LCCCM $_{\text {wF }}$	60225901	-	-	-		-	-		-	-			-	-		-	-	-	-	-	-	-	-	-	-	
${ }_{\text {w }}^{\text {cu }}$	27686278	-	-	-	-	.	-	-	-	-			,	,	-			-	-	-	-	-	-	-		
$T_{\text {cm }}$	24219295	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-
$L_{\text {LWTG }}^{\text {cu }}$	195978	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
${ }^{\text {cPacn }}$	1545346	-	-	-	-	-	-	.	-	-	-		-	-		-	-	-	-	.	.	-	-	-	.	
${ }_{\text {TS }}^{\text {cM }}$	57283	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	
$S_{c o m}$	2136726	-	\cdot	-		-	\cdot		-	-			-	-			-	-				-	-		-	
PO cn	1796870	-	-	-	-	-		-	-	-			-	-		-	-	-	-		-	-		-	-	
F_{CM}	188559	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-		-	
${ }_{\text {ccC }}^{\text {cn }}$	120211		-	-		-	-	-	-	-	-		-	-	-	-	-	-	-	(1)	-	-	-			
$L_{\text {LPM }}{ }_{\text {WF }}(\mathrm{kWh} / \mathrm{rr})$	-	4897962	48549424	48794102	48399005	49221215	48549424	4897064	4897064	4847266	4849622	4854924	48988028	48794102	4847087	49169824	49318276	48922388	48589860	48172649	48991802	4887151	48297112	48398336	48547502	484736
(+) AAR (SMAr)	-	4308015	4376331	450896	4584266	4759280	4831313	4995061	511993	5194634	5327022	5466187	5651151	577185	587963	6110750	6282430	6387799	6502991	6608332	6888721	4930788	4994386	5129498	5274331	5398025
PPAR	-	4308015	437631	4508965	4584266	4759280	4831313	4995061	5119937	5194634	5327022	5466187	5651151	5771856	587963	6110750	6282430	6387799	6502991	6608332	6888721	-	-	-	-	
EMP	-																					4930788	4994386	5129498	5274431	539802
(-) $O_{\text {¢ }} \mathrm{M}_{\text {WFCM }}$	-	3958388	4021593	4142789	4211857	4372535	4459642	4610143	4724747	479335	491454	504290	5212260	5322943	5419232	5634158	5791793	5888285	599382	6090278	6348036	5856505	5931402	6091221	6262682	6408790
O\& $M_{\text {fived }}$	-	2661279	2703850	2785412	2831928	2940042	2984539	3085692	3162833	3208975	3290756	3376724	3400983	3565547	3630475	377895	388048	3946038	4017195	4082268	4255476	4351387	4407510	452674	4654645	476371
$O_{\chi} M_{\text {variable }}$	-	1297109	1317743	1357376	1379929	143243	1475103	1524451	1561914	1584059	1623788	1665566	1721276	1757396	1788757	1859263	1910846	194247	1976628	2008010	2092560	1505118	1523892	1564477	1608038	164507
(+) LRCM	-	863268	88485	906971	929646	952887	976709	1001127	1026155	1051809	1078104	1105057	1132683	1161000	1190025	1219776										
(+) Depreciation		2447041	2508217	2570923	2635196	2701076	2768603	2837818	2908763	2981482	3056019	3132420	3210730	3290998	3773273	3457605	3544045	3632647	3723463	3816549	3911963	4009762	4110006	4212756	4318075	442602
(\Leftrightarrow) Proff before tax	-	3659937	3748406	3844070	3937250	4040708	4116983	4223862	4330109	443890	4546601	4661374	4782304	4900912	5021030	5153973	4034682	4132161	4232630	4334603	4452648	3084045	3172990	3251034	3329824	3415261
(-) Revenue tax		1292405	1313079	1352689	1375280	1427784	144939	1498518	1535981	1558390	1598107	1639856	1695345	173155	1763089	1833225	1884729	1916340	1950897	1982500	2066616	1479236	1498316	1538850	1582329	1619407
(+) REPIM	541967	1072	1089	1122	1141	1184	1202	1243	1274	1293	1326	1360	1406	1436	1463	1521	1563	1590	1618	1645	1714	1753	1776	1824	1875	1919
${ }_{\text {REI }}^{\text {cu }}$	-	-	-	-	-	.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	.	-	-	-		
${ }_{\text {REP }}^{\text {cu }}$	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	
${ }_{\text {OREP }}^{\text {cM }}$	541967						-						-			-		-	-		-	-	-	-	-	
ghG.Rcm	-	1072	1089	1122	1141	1184	1202	1243	1274	1293	1326	1360	1406	1436	1463	1521	1563	1590	1618	1645	1714	1753	1776	1824	1875	1919
() Proft afer tax w/out interest	-	2368604	2436416	2492503	2563111	2614108	2668791	2726587	2795401	287793	2949820	3022878	3088365	3170791	3259403	332269	2151516	2217411	2283351	2357748	2387746	1606562	1676450	1714008	1749369	17977
(-) Debt payments	-		3167376	3246560	332724	3410917	3496190	3583995	3673185	375015	388940	395618	4044509	4155872	4259768	${ }_{436263}$			-		-	-				
${ }^{(+)} R \mathrm{CM}_{\text {WF }}$	-	2621739	2687282	2754464	2823326	2893909	2966257	3040413	3116424	3194334	3274193	3356047	3439494	3525947	3614096	3704448	3797060	389986	3989286	4089018	4191243	4296024	4403425	4513511	4626348	474200
$\xrightarrow[\substack{(+) \text { Depreciation } \\(\Leftrightarrow) \text { Free netcashflow }}]{\substack{\text { a }}}$		2447041 747385	2508217 446459	2570923 4571330	2635196 4693909	2701076 4798176	2768603 4907460	2837818 5021223	2908763 5147403	2981482 528859	3056019 542892	3132420 555727	3210730 568535	3220998 5831865	3377273 5987004	3457605	3544045	3632647 972043	3723463	3816549	391963	4009772	4110006	4212756	4318075	442602
(\quad Free net cashflow	-59683934	7437385 -527659	4464539	4571330	-4693999	${ }^{4798176}$	4907460 -8811135	${ }^{5021223}$	5147403	5288594	5420892	5555727	5685335	5831865	5987004	6118060	9422621	9742043	9996099	10259315	10409595	9912348	10189881	10440275	10693793	10965807
$\Sigma_{\text {frenere mamal casthow }}$	-	-52246549	47782010	-43210680-	-38516771	-33718595-280	-28811135	-23789912	-18642509 -	-13353915	-7933023	-2377296	3307239	9139104	15126109	21244168	30736789	4047883	5047932	6073247	71225200	81137548	91327429	101767703	11246196	12342730

													Yeart													
lem	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
(-) LCCCM $_{\text {w }}$	60225901																									
${ }_{\text {W cun }}$	27686278	-	-	-	-	-	-	\bigcirc	-		-	-	-		-	-	-									
${ }_{\text {T }}^{\text {cu }}$	${ }^{242192995}$	-	-	-	-	-	-	-	-		-	-	-		-	-	-			-	-	-	-			
${ }_{\text {CPCMM }}^{\text {LWTG }}$	1959783	-	-	-								-					-			-	-					
${ }_{\text {TP }}^{\text {cum }}$	1544346 572832	-	\because	:	\because	-	-	:			-	-	-	:	-	-	:	-	-	-	:	-	-	-	\because	
$\mathrm{Sl}_{\mathrm{cm}}$	2136726	-	-	-	-		-	-			-	-														
$\mathrm{PO}_{\mathrm{cm}}$	1796870			-				-				-				-	-				-					
${ }_{\text {F }}^{\text {cu }}$	188559	-	\bigcirc	\checkmark	\checkmark		\checkmark	\checkmark	-		\checkmark	\checkmark		\checkmark	\checkmark	-							-	-		
	120211	43465	21367678				7678		209281	214322116	213130368	21367678	213205500		13341	21391374			214362116	21433451	213565975					
${ }^{+}$) ARR (SM/yr)	-	30196663	31058298	31936726	32481214	33360711	34282550	34978715	35853182	37036811	3774583	38787558	3967505	40564885	4191769	42861506	44039781	45081704	4625392	47426027	48414954	34700655	35461726	36571360	37351777	38415192
$\begin{aligned} & \text { EPAR } \\ & \text { EMP } \end{aligned}$	-	30196663	31058298	31936726	32481214	33360711	34282550	34978715	35853182	37036811	3774483	3878758	3967595	40564585	4197697	42861506	44039781	45081704	4625392	47426027	48414954	34700655	35461726			
(-) $0 \in M_{\text {wfou }}$	-	20633860	2122504	21822620	2219454	22795389	23425157	23900721	24498115	25306751	25790238	26502761	27109626	27716717	28641138	29285891	30090843	30802628	31603422	32404162	33099730	29459748	30053783	30994073	31655349	32556460
о¢ g $_{\text {jued }}$		11570156	11900294	12238866	1244585	12782467	13135671	1342407	13737461	14199972	14462154	14861773	15202144	15542642	16061091	16422713	16874171	1727338	17722515	18171617	18550525	19026830	19410567	20017937	20445105	21027176
O\& M wratiole	-	9063703	9322210	9585754	974963	10012922	10289486	10498314	10760654	11115779	11328884	11640988	1190788	12174075	12580047	12863178	13216672	13529243	13880907	14232546	14529205	10432918	10643217	10976136	1121024	1152985
(+) LRCM	-	863268	884850	906971	929646	95288	976709	1001127	1026155	1051809	1078104	1105057	1132683	1161000	1190025	1219776										
${ }^{+}$) Depreciation		2383876	244373	2504560	2567174	2631353	2697137	276456	2833679	2904521	2977134	305156	3127852	3206048	3286199	3368354	3452563	3538877	3627349	3718033	3810984	3906258	4003915	4104013	4206613	431178
($¢$) Profit before tax	-	$\begin{array}{r}12809947 \\ \hline 905899\end{array}$	13164117 9317489 180	${ }_{\substack{13525637 \\ 9881018}}^{1}$	13783484 974364	14149562	14531238	14843886 10493614	15214902 1075955	15686390 1111043	16009583 11232375	16441417 11636207 1	16828813 1190272	17214916 12169376	17752784 12575309 cher	18163746 1285845	17401501 1321034 1	${ }_{17817953}^{1324511}$	18278830 13876171	18739888 1427888	19146209	9207165 10288196 188	9411857 1063518	9681300 10971408	9903041	
$\underset{\substack{\text { (-) Revenue tax } \\ \text { (+) REPIM }}}{ }$	2082583	9058999 3015	9317489 3101	9581018 3188 1	974364 3243	10008213 3331 3	10284765 3423	${ }_{\substack{10493614 \\ 3492}}$	$\underset{\substack{10755955 \\ 3579}}{ }$	${ }_{\substack{1111093 \\ 3698}}$	${ }_{\substack{1132375 \\ 3768}}$	1163267 3872	${ }_{\substack{1992772 \\ 3961}}$	12169376 4050	$\underset{\substack{12573309 \\ 4185}}{ }$	$\underset{4279}{1285852}$	$\underset{4397}{1321934}$	13524511 4501	13876171 4618	14278808 4735	${ }_{4854}^{145486}$	10428196 4958	5058	0971408 5216	11205533 5327	1152458 5479
REICM																										
REPcm		-			-			-	-		-	-	-	-	-	-	-			-	-		-	-		
	2082583	315							3579			392			4185	4279	4397									
		3753963	3849728	3947808	${ }_{4024}^{3243}$	4144679	4249896	4353564	4462527	457904	468997	4809021	4928003	5099591	5181659	5309573	4193964	4297943	440627	4516824	4626556	${ }_{-1216073}$	-1221603	${ }_{-1288992}$	${ }_{-1297165}^{532}$	5479 -134859
$\stackrel{(\rightarrow)}{ }$ Debt payments			3085617	3162757	3241826	3328872	340594	3491092	3578369	${ }^{3667829}$	${ }^{3759524}$	3883512	3949850	4088996	149811	425357										
$\underset{\substack{\text { (+) RCM wr } \\(+1) \text { Deprecaiation }}}{ }$		2621739	2687282	2754464 25046	2823326 597	2893909	296225	3040413	3116424	3194334	${ }^{3274193}$	335047 306156	3439949 312785	3525947	3614096 3285190	370448 33634	3797060 352563	3891986 353887	3989286	4089018	${ }_{4}^{4191243}$	4296024 396258	440325	4513511	4626348	
	-58 143317	2383876 8759578	243473 584866	2504560 604075	256174 6191037	2631353 6347070	2697137 650746	2764565 666740	28384290 6834	2904521 7010071	2971134 718179	3051563 7363119	3127852 7545953	3200048 773290	3286199 7932143	3368354 8128819	3452563 1143586	3538877 11728806	3627349 1202912	3718033 1232885	3810984 1262883	3900258 698629	4003915 7185737	4104013 732631	4206613 75359	4311778 7705217
$\Sigma_{\text {frecere momeat aserflow }}$		-49383739	-43488873	-3744798	-31253761	-24906922	-18399345	-11731895	-4897634	2112437	9294216	16657336	24203289	31936278	39868422	47997241	5940827	71169633	8319245	95516420	1288145203	${ }_{115131412}$	122317149	129497980	13718557	144880793

Appendix V

Table V. 1 Relation $v_{w c}$ and $L C O E_{w s o}$

Variables	Aracati (Brazil)	Corvo Island (Portugal)	Cape Saint James (Canada)
$L C O E_{w s o}$	69.6991	76.8666	91.8264
$v_{w c}(\mathrm{~m} / \mathrm{s})$	7.4	9.1	12.5

Source: Own elaboration. Note: Correlation Coeff. $=0.9996$

Variations:	24.2%	36.4%
	10.3%	19.5%

Table V. 2 Impact of O\&M programs on $L C O E_{\text {wso }}$

Table V. 3 Impact of O\&M programs on wind farm availability

O\&M programs	Aracati (Brazil)	Corvo Island (Portugal)	Cape Saint James (Canada)
$O \& M_{\text {manag(STD) }}$	0.9793	0.9793	0.9793
$O \& M_{\text {manag(A) }}$	0.9836	0.9836	0.9836
$O \& M_{\text {manag }(B)}$	0.9817	0.9836	0.9817
Source: Own elaboration			
Variations:			
0	0.44%	0.44%	
	0.24%	0.44%	0.24%

Table V. 4 Impact of $L_{w t}$ on $L C O E_{\text {wso }}$

Layouts $\left(L_{w t}\right)$	Aracati $($ Brazil)	Corvo Island (Portugal)	Cape Saint James (Canada)
$5 D 4 D$	69.6792	76.8138	91.7081
$5 D 7 D$	69.8318	76.9663	91.8606
$5 D 10 D$	69.9843	77.1188	92.0131
6D12D	70.3401	77.4747	92.3690
Source: Own elaboration			
	0.22%	0.20%	0.17%
	Variations:	0.44%	0.40%
	0.95%	0.86%	0.33%
			0.72%

Table V. 5 Impact of $E_{p i}$ on $L C C C M_{W F}$

	Item	Aracati (Brazil)	Corvo Island (Portugal)	Cape Saint James (Canada)
$$	Base-case	1196.8218	1194.7880	1185.8714
	Case ${ }_{1}$	1182.0575	1178.8311	1164.6862
	Case 2	1199.1041	1195.9638	1183.2312
	Case 3	1193.6800	1184.6289	1162.8596
Source: Own elaboration				
		-1.23\%	-1.34\%	-1.79\%
	Variations:	0.19\%	0.10\%	-0.22\%
		-0.26\%	-0.85\%	-1.94\%

Table V. 6 Impact of $L_{w t}$ on $L C C C M_{W F}$

Variables		Aracati (Brazil)	Corvo Island (Portugal)	Cape Saint James (Canada)
$\begin{aligned} & \text { S } \\ & 0 \\ & U \\ & 0 \end{aligned}$	5D4D	1204.5180	1204.5180	1204.5180
	5D7D	1207.5681	1207.5681	1207.5681
	5D10D	1210.6183	1210.6183	1210.6183
	6D12D	1217.7353	1217.7353	1217.7353
Source: Own elaboration				
		0.25\%	0.25\%	0.25\%
	Var	0.51\%	0.51\%	0.51\%
		1.10\%	1.10\%	1.10\%

$\underline{\text { Table V. } 7 \text { Relation among } L C O E_{w s o}, O \& M_{M A N A G(A)} \text { and } E_{p i}}$

Item	Aracati (Brazil)	Corvo Island (Portugal)	Cape Saint James (Canada)	
		O\&M $_{\text {manag(A) }}$		

Table V. 8 Relation among $L C O E_{w s o}, O \& M_{M A N A G(B)}$ and $E_{p i}$

		Aracati (Brazil)	Corvo Island (Portugal)	Cape Saint James (Canada)
		O\&M $_{\text {manag }(B)}$		

Table V. 9 Impact of $E_{p i}$ on $L C O E_{\text {wso }}$

Item		Aracati (Brazil)	Corvo Island (Portugal)	Cape Saint James (Canada)
$\begin{aligned} & \text { ờ } \\ & \stackrel{y}{1} \\ & 8 \\ & \hline \end{aligned}$	Base-case	69.6792	76.8138	91.7081
	Case ${ }_{1}$	69.6792	76.8138	91.7081
	Case 2	76.8138	76.8138	91.7081
	Case $_{3}$	69.6792	76.8138	91.7081
Source: Own elaboration				
		0.00\%	0.00\%	0.00\%
		10.24\%	0.00\%	0.00\%
		0.00\%	0.00\%	0.00\%

Table V. 10 Relation between $L C C C M_{W F}$ and $L C O E_{w s o}$

Items	Aracati (Brazil)	Corvo Island (Portugal)	Cape Saint James (Canada)
LCCCM $_{\text {WF }}$	1204.52	1204.52	1204.52
LCOE $_{\text {wso }}$	69.68	76.81	91.71
Source: Own elaboration			

Source: Own elaboration

Table V. 11 Relation between $v_{w c}$ and $L_{w t}$

Variables	Aracati (Brazil)	Corvo Island (Portugal)	Cape Saint James (Canada)
$v_{w c}(\mathrm{~m} / \mathrm{s})$	7.4	9.1	12.5
$5 D 7 D$	69.8318	76.9663	91.8606
$5 D 10 D$	69.9843	77.1188	92.0131
$6 D 12 D$	70.3401	77.4747	92.3690

Source: Own elaboration

Table V. 12 Percentual variations of $v_{w c}, L_{w i}, O \& M_{\text {manag }}$ and $E_{p i}$

Variables	Aracati (Brazil)	Corvo Island (Portugal)	Cape Saint James (Canada)
Simple variable	$7.4 \mathrm{~m} / \mathrm{s}$	$9.1 \mathrm{~m} / \mathrm{s}$	$12.5 \mathrm{~m} / \mathrm{s}$
$v_{w c}$	100.00\%	100.00\%	100.00\%
$L_{w t}$			
5D7D	0.00\%	0.00\%	0.00\%
5D10D	0.00\%	0.00\%	0.00\%
6D12D	0.00\%	0.00\%	0.00\%
$O \& M_{\text {manag }}$			
$O \& M_{\text {manag }(A)}$	0.45\%	0.43\%	0.44\%
$O \& M_{\text {manag }(B)}$	0.24\%	0.43\%	0.23\%
Epi			
Case 1	0.00\%	0.00\%	0.00\%
Case 2	0.00\%	0.00\%	0.00\%
Case 3	0.00\%	0.00\%	0.00\%
Multiples variables			
O\& $M_{\text {manag }(A)}+$ Case $_{1}$	0.45\%	0.43\%	0.44\%
O\& $M_{\text {manag }(A)}+$ Case $_{2}$	0.45\%	0.43\%	0.44\%
O\& $M_{\text {manag }(A)}+$ Case $_{3}$	0.45\%	0.43\%	0.44\%
$O \& M_{\text {manag }(B)}+$ Case $_{1}$	0.24\%	0.43\%	0.23\%
$O \& M_{\text {manag }(B)}+$ Case $_{2}$	0.24\%	0.43\%	0.23\%
O\& $M_{\text {manag }(B)}+$ Case $_{3}$	0.24\%	0.43\%	0.23\%

[^116]
[^0]: ${ }^{1}$ Historically, the definition of a calorie was a quantity of heat required to increase by 1 degree Celsius temperature of 1 gram of water. With the development of measurement technique, it was found that the specific heat was not constant with temperature. So we tried to standardize it to a narrow range and calorie was then redefined as the heat exchanged when the mass of one gram of water from $14.5^{\circ} \mathrm{C}$ to $15.5^{\circ} \mathrm{C}$. A kcal is the amount of energy required to increase up by 1 degree Celsius temperature of 1 kilogram (kg) (equivalent to 1 litter) of water. Thermodynamics: An Engineering Approach, 5th edition by Yunus A. Çengel and Michael A. Boles.

[^1]: ${ }^{2}$ There are six greenhouse gases recognized under the Kyoto Protocol. The analysis focuses principally on CO_{2}. This is the most important anthropogenic greenhouse gas accounting for 82% of total emissions greenhouse gas emissions in EU- 27 and 79% of emissions of greenhouse gases in Portugal in 2005.

[^2]: ${ }^{3}$ Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, Netherlands, Spain, Portugal, Sweden and United Kingdom.

[^3]: ${ }^{4}$ Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden and United Kingdom.

[^4]: ${ }^{5}$ Combined Cycle Gas Turbine. A production plant uses a combined cycle gas turbines and associated steam in a single center, both producing electricity from the burning of same fuel. The heat in the exhaust gases of gas turbines is recovered to generate steam necessary to drive the steam turbine. Thermodynamics: An Engineering Approach, 5th edition by Yunus A. Cengel and Michael A. Boles.

[^5]: ${ }^{6}$ A list of related projects can be found in ExternE at http://www.externe.info/.

[^6]: ${ }^{7}$ For more details, check on http://www1.eere.energy.gov/windandhydro/hydro ad.html.
 ${ }^{8}$ For more details, check on http://www.worldbank.org/html/fpd/em/hydro/ihd.stm.
 ${ }^{9}$ For more details, check on http://www.irn.org/index.php?id=basics/impacts.html.

[^7]: ${ }^{10}$ The Kyoto Protocol is an international agreement linked to the United Nations Framework Convention on Climate Change. The major feature of the Kyoto Protocol is that it sets binding targets for 37 industrialized countries and the European community for reducing greenhouse gas (GHG) emissions.These amount to an average of five per cent against 1990 levels over the five-year period 2008-2012 (Greiner \& Michaelowa, 2003).

[^8]: ${ }^{11}$ IEA (2007), Energy Technologies at the Cutting Edge.

[^9]: ${ }^{12}$ According to Dismukes et al. (2009) "hurdles "can be understood as Scientific and Technological Challenges, Business and Organizational Challenges, Market and Societal Challenges, and Cluster and Network Challenges. The authors developed a new ARI model for providing a holistic approach to understanding the dynamics of the industrial technology life cycle for a wide variety of radical innovations as well as wind electrical power. For more information read Dismukes, J. P., Miller, L. K., \& Bers, J. A. (2009). The industrial life cycle of wind energy electrical power production: ARI methodology modeling of life cycle dynamics. Technological Forecasting and Social Change, 76(1), 178-191. doi: 10.1016/j.techfore.2008.08.011

[^10]: ${ }^{13}$ The power supply system is divided into: a) low voltage (LV) system (nominal voltage up to 1 kV); b) medium voltage (MV) system (nominal voltage above 1 kV up to 35 kV) and c) high voltage (HV) system (nominal voltage above 35 kV). For more details, please see at (European Commission, 2001)

[^11]: ${ }^{14}$ Wind classes determine which turbine is suitable for the normal wind conditions of a particular site. They are mainly defined by the average annual wind speed (measured at the turbine's hub height), the speed of extreme gusts that could occur over 50 years, and how much turbulence there is at the wind site. The three wind classes for wind turbines are defined by an International Electrotechnical Commission standard (IEC), and correspond to high, medium and low wind. For more information, please see http://www.iec.ch/.

[^12]: ${ }^{15}$ The amount of energy reflected by a surface is called albedo. Albedo is measured on a scale from zero to one (or sometimes as a percent). For more explanation, please see Goode et al. (2001).
 ${ }^{16}$ It is the study of the formation and relief of mountains and can more broadly include hills, and any part of a region's elevated terrain. For more information, please see Petersen, Mortensen, Landberg, Højstrup, and Frank (1998).

[^13]: ${ }^{17}$ For more details, please see Steve Sawyer, Global Wind Energy Council (GWEC), personal communication with REN21, 19 April 2011.

 18 According to Rikki Stancich, "2010 in Review: Peaks and Troughs for the International Wind Energy Sector," WindEnergyUpdate.com, 6 December 2010.
 ${ }^{19}$ Note that Suzlon Energy (IND) and Repower (GE) are listed as a Suzlon Group for the first time in BTM Consult's World Market Update. Rankings and data in Figure 13 from BTM Consult - A Part of Navigant Consulting, World Market Update 2010 (Ringkøbing, Denmark: 2011), provided by Birger Madsen, BTM Consult, personal communication with REN21, March and June 2011. Note that the total quantity of capacity supplied exceeds 100% of the global market because some capacity was in transit or under construction and not yet commissioned at year-end. Data were adjusted for Figure 3.17 such that the sum of shares supplied totals 100%.

[^14]: ${ }^{20}$ Sinovel, "SL5000," www.sinovel.com/en/procducts.aspx?ID=148, viewed 19 April 2011.
 ${ }^{21}$ Shi Pengfei, Chinese Wind Energy Association and GWEC, personal communication with REN21, April 2011.
 22 Repower Corporation, "REpower: 295 MW Contract Signed for Thornton Bank Offshore Wind Farm," press release (Hamburg/Antwerp: 25 November 2010).
 ${ }^{23}$ Vanya Drogomanovich, "Can Wind Turn Ukraine's Orange Revolution Green?" Bloomberg New Energy Finance Monthly Briefing, October 2010, p. 12.
 ${ }^{24}$ American Wind Energy Association (AWEA), Wind Energy Weekly, 8 April 2011.
 ${ }^{25}$ Emerging Energy Research, North America Wind Plant Ownership Rankings 2010: Trends and Review (Cambridge, MA: 31 March 2011).

[^15]: ${ }^{26}$ See Chris Red, "Wind Turbine Blades: Getting Bigger and Bigger", CompositesWorld.com, viewed 20 June 2011.

[^16]: ${ }^{27}$ According to Rosa (2009) wind is a kind of simple air motion. It is caused by the unequal heating of the earth surface. Since the earth surface is made of different kinds of continents and oceans, it absorbs the sun heat at different rate, and the different temperature could cause the different pressure. The wind's kinetic energy can be converted into other forms of energy, either mechanical energy and/or electrical energy.

[^17]: ${ }^{28}$ Heron of Alexandria was a mathematician, a physicist and an engineer who wrote many books on Mathematics, Geometry and Engineering, in use till the medieval times. His devices were powered by single humans, water, steam or the wind, and contained many simple mechanisms (Papadopoulos, 2007, p. 23).

[^18]: ${ }^{29}$ The word mill refers to the operation of grinding or milling grain. The study of wind machines is called molinology. It is related to several fields including Meteorology, Aerodynamics, Machine Design, Structural Design, Materials Technology, Power Engineering, Reliability Engineering, Instrumentation and Controls Engineering (Hills, 1996).

[^19]: ${ }^{30}$ Term derived from old French nacelle which means small boat or dinghy, which is derived from the Latin navicella. The term is used generally in aviation project, nautical and space. In the case of wind power, the nacelle is the part that houses the main components of the wind turbine, gear box, electric generator, gearbox, controllers, cooling system, among others (Jenkins, 2001).
 ${ }^{31}$ The yaw drive is a mechanism used to keep the rotor facing into the wind as the wind direction changes. The yaw system has a motor, which turns the wind turbine to align it with the wind, is nearly always included on large turbines, resulting in active yaw control (Hau, 2006, p. 146).

[^20]: ${ }^{32}$ Pitch control is the active regulation of the rotor blades' angle by a machine control system (pitch control mechanism). Turbine blade pitch control has a significant impact on the dynamic behavior of the system. This type of control only exists in horizontal axis machines. Variable pitch turbines operate efficiently over a wider range of wind speeds than fixed pitch machines (Şahin, 2004).
 ${ }^{33}$ For more details, please see page 54, Chapter 3, footnote 14 of this Ph.D. research work.
 ${ }^{34}$ The SCADA system typically provides the ability to manage the wind plant remotely and locally. SCADA system also consists of databases to manage both real-time and historical information updated from the turbines typically done once every second, while the SCADA system aggregates and compiles the raw data into meaningful information (Badrzadeh et al., 2011).

[^21]: ${ }^{35}$ Stall control is a passive system that reacts to wind speed. The rotor blades are fixed in their pitch angle and cannot rotate around its longitudinal axis. The pitch angle is chosen so that wind speeds higher than the rated speed; the flow around the rotor blade profile takes off from the surface of the shovel (stall), reducing the support forces and increasing the drag forces. Under all conditions of winds in excess of rated speed, the disposal around the profiles of rotor blades is, at least partially, taken off the surface, producing a minors lift forces and high drag forces (Jenkins, 2001).
 ${ }^{36}$ According to Manwell, McGowan, and Rogers (2002) active stall is the combination of stall and pitch control options. This kind of control is being used on an increasing number of large wind turbines usually greater than 1 MW .

[^22]: ${ }^{37}$ Harmonic emission is another crucial issue for grid connected wind turbines cause it may result in voltage distortion and torque pulsations, which consequently causes overheating in the generator and other problems (Kim \& Lu, 2010, p. 127).
 ${ }^{38}$ Fluctuations in the system voltage (in terms of rms value) may cause perceptible light flicker depending on the magnitude and frequency of the fluctuation. Fast variations in the power output from a wind turbine, such as generator switching and capacitor switching, can also result in variations in the rms value of the voltage. At certain rate and magnitude, the variations cause flickering of the electric light. Thus, this type of disturbance is called voltage flicker (Zhe et al., 2009).

[^23]: ${ }^{39}$ According to Solyali and Redfern (2009) a squirrel-cage rotor is the rotating part used in the most common form of AC induction motor. In overall shape, it is a cylinder mounted on a shaft. Internally it contains longitudinal conductive bars (usually made of aluminum or copper) set into grooves and connected at both ends by shorting rings forming a cage-like shape.
 ${ }^{40}$ Doubly fed electric generators are electric motors that have windings on both stationary and rotating parts, where both windings transfer significant power between shaft and electrical system. Doubly fed machines are used in applications that require varying speed of the machine's shaft for a fixed power system frequency (Baroudi, Dinavahi, \& Knight, 2007).
 ${ }^{41}$ The rotor of direct-drive generator for wind turbine is directly connected to the rotor hub. The synchronous machines have as a work principle to operate at synchronous speed (speed of rotor always matches supply frequency). One of the most important types of electrical rotating machines is the synchronous generator, this machine is capable of converting mechanical energy into electricity when operated as a generator and power mechanics when operated as a motor (Bang, Polinder, Shrestha, \& Ferreira, 2008; Cheng et al., 2009).

[^24]: ${ }^{42}$ This technique is encountered in the literature under its acronym, MPPT. Its goal is to operate the WECS around the maximum power (within safety limits), using information from the static power characteristic and a minimum of information from the system (Munteanu, Cutululis, Bratcu, \& CeangĂ, 2008, p. 110).
 ${ }^{43}$ Cut-in speed is the minimum wind speed at which the wind turbine will generate usable power. For more information, please see Johnson (2001, p. 155).
 ${ }^{44}$ The rated (nominal) wind speed is the lowest wind speed at which a wind turbine can generate its nominal output power. The rated wind speed usually corresponds to the point at which the conversion efficiency is near its maximum. At wind speeds between cut-in and rated, the power output from a wind turbine increases as the wind increases. The output of most machines levels off above the rated speed. Most manufacturers provide graphs, called "power curves", showing how their wind turbine output varies with wind speed. Please see Manwell et al. (2002) and/or Rosa (2009).

[^25]: ${ }^{45}$ The simplest coil is an electrical wire wrapped in. As usual in electricity the wire has to be the electrical conductor, but must have an electrical insulation to clothe it (for example, an insulating varnish or a plastic coating). If not, it won't work as expected and may even burn. A coin (or an "electromagnetic coil") is formed when a conductor (usually an insulated solid copper wire) is wound around a core or form to create an inductor or electromagnet (Ohsaki, Terao, \& Sekino, 2010).

[^26]: Source: adapted from Baroudi et al. (2007, p. 2382)

[^27]: ${ }^{46}$ The number of pole pairs determines the synchronous speed of the three phases motor.

[^28]: ${ }^{47}$ It is important to know that " P " and " T " change according the site analyzed.

[^29]: ${ }^{48}$ The energy conversion systems in general are driven by the First Law of Thermodynamics (Conservation) which states that "energy can be changed from one form to another, but it cannot be created or destroyed. The total amount of energy and matter in the Universe remains constant, merely changing from one form to another. For more explanations related to Physics applied to WECS, please read the chapter about Physical Principles of Wind Energy Conversion in Hau (2006, p. 81).

[^30]: ${ }^{49}$ For more details, please see Snel (2003). Review of Aerodynamics for Wind Turbines. Wind Energy, 6(3), 203-211. doi: 10.1002/we. 97 .

[^31]: ${ }^{50}$ An institution, single person, company etc. that has an effect on the economy of a place (city, region and country), for example by buying, selling, or investing.

[^32]: ${ }^{51}$ The central principle of feed-in tariff policies is to offer guaranteed prices for fixed periods of time for electricity produced from Renewable Energy Sources (RES) (Couture \& Gagnon, 2010).
 ${ }^{52}$ The expression "repowering" refers to power plant in general and includes all measures which improve the efficiency and capacity by ${ }_{53}$ means of retrofit to the latest technology.
 ${ }^{53}$ The expression "removal" is used when a wind power plant shutdown the operation definitely.

[^33]: ${ }^{54}$ Whereas a wind turbine generates electricity from wind energy, the wind flow after passing through the turbine must contain a lower potential energy than the wind flow reaching turbine first.

[^34]: ${ }^{55}$ The wind close to the earth's surface is strongly influenced by the nature of the terrain surface, the detailed description of which is called topography (Petersen et al., 1998).

[^35]: ${ }^{56}$ In Physics, the principle of converting kinetic energy is the amount of work that must make an object to change its speed (either from the rest - zero speed - either from an initial speed). For an object of mass m speed v kinetic energy in an instant of time, is calculated as $K E=\frac{m v^{2}}{2}$ (Rosa, 2009).

[^36]: ${ }^{57}$ The European Wind Atlas Methodology developed by Erik Petersen and Troen Lundtang Erik which was later formalized in the WAsP software for wind resource assessment by Ris \varnothing National Laboratory, Denmark. For more information, see http://www.wasp.dk/.
 ${ }^{58}$ The full load hours are calculated as average annual production of wind turbine, divided by the nominal power.

[^37]: ${ }^{59}$ For example, TEEM, SAPIENT, SAPIENTIA, CASCADE-MINTS, co-funded by DG Research.

[^38]: ${ }^{60}$ In finance, cash flow (known in English as "cash flow"), refers to the amount of cash received and spent by a company during a period, sometimes linked to a specific project. There are two types of streams: - outflow exit, which represents cash outflows, underlying the investment costs - inflow of entry, which is the result of the investment. The value that balances with the outputs and translates into increased sales or represents a reduction of production costs, among others (Brealey \& Myers, 1997).

[^39]: ${ }^{61}$ It denotes the number of periods elapsing between now and when the payment occurs i denotes interest rate or discount period, then the general formula to discount future cash flow is given as: $K_{0}=\frac{K_{t}}{(1+i)^{1}}=K_{t} \times(1+i)^{-t}$, and K_{0} is called "present value" of future

[^40]: ${ }^{62}$ According to Bode and Michaelowa (2003) the credited emission reductions are commodities that can be sold and thus provide additional revenues and increase the economic attractiveness of a REPs.

[^41]: ${ }^{63}$ For further information, see on www.environment-agency.gov.uk.

[^42]: ${ }^{64}$ The principle of equity capital is the financial situation at that given rate of return of capital or update makes a series of future values, regardless of their nominal values and terms, when the current values are equal. Thus, to effect any transactions involving securities held in the future you need to know how much currently worth, or what are the current values (Damodaran, 2001)

[^43]: ${ }^{65}$ Available in http://www.edpdistribuicao.pt/pt/produtor/renovaveis/EDP\%20Documents/DL33A-2005.pdf.

[^44]: ${ }^{66}$ It is understood by residual values, the difference between the book value of the commercial value of a fixed asset after the project lifetime. (Newnan \& Lavelle, 1998)

[^45]: ${ }^{67}$ HOMER is a software developed by NREL that simplifies the task of designing distributed generation (DG) systems - both on and offgrid. HOMER's optimization and sensitivity analysis algorithms allow to evaluate the economic and technical feasibility of a large number of renewable energy technologies options and to account for variations in technology costs and energy resource availability. For more details, please check on https://analysis.nrel.gov/homer.

[^46]: ${ }^{68}$ The General Systems Theory (GST) was developed by biologist Von Bertalanffy, to search for an explanatory scientific model of the behavior of a living organism. A system is defined as a whole organized consisting of interdependent elements, which is surrounded by an external environment; If the system interacts with the outside environment is called open system; System relations with the exterior render themselves through exchanges of information and energy which is called input or output; the channels that convey the inputoutput information or energy called communication channels (Von Bertalanffy, 1972).

[^47]: Source: Frangopoulos (2003)

[^48]: ${ }^{69}$ This categogy is also classified as "independent variables" represents those ones that intentionally are introduced (by the researcher) to verify the relationship between their variations and the behavior of other variables, it corresponds to what in function of which to achieve what was predicted and/or get results (Montgomery, 2008).
 ${ }^{70}$ Response variables or dependent variables are those whose behavior if you want to check in function of the oscillations of the independent variables, it corresponds to what you want to predict and/or get as a result. It happens depending on the completion of the experiment in a research (Montgomery, 2008).
 ${ }^{71}$ For Montgomery (2008)"a designed experiment is a test in which some purposeful changes are made to the input variables of a process or system so that we may observe and identify the reasons for changes in the output response. Experimental design methods play an important role in process development and process improvement."
 ${ }^{72}$ A second-degree polynomial model should be formulated by an equation in which one or more of the terms is squared but raised to no higher power, having the general form $a x^{2}+b x+c=0$, where a, b, and c are constants.

[^49]: Source: own construction. Note: The nomenclature of these formulas is in Appendix A.

[^50]: Source：adapted from IEA（1991）．

[^51]: ${ }^{73}$ Wind energy converster systems produce electricity by extracting the energy in the wind. Consequently, the air mass leaving the turbine must have lower energy content and by implication lower speed than the air arriving in front of the turbine. In other words, the turbine positioned upstream in the wind direction influences the wind speed at turbine locations on its downwind (Jiang, Yan, \& Feng, 2009).

[^52]: ${ }^{74}$ For more details, please see Connolly, Lund, Mathiesen, and Leahy (2010); Quaschning, Ortmanns, Kistner, and Geyer (2001); RETScreen ${ }^{\circledR}$ International Clean Energy Decision Support Centre $(2008,2009)$.

[^53]: ${ }^{75}$ The power curve is a graph that indicates what the electric power output available in the wind turbine at different wind speeds.

[^54]: ${ }^{76}$ In this case, the energy model means features or specific parameters describing the location of the energy project, the type of system used, the type of technology for the power plant, the loads demanded, and the renewable energy resource (for RETs).
 ${ }^{77}$ For more information, please see at http://www.mathworks.com/products/matlab.

[^55]: ${ }^{78}$ The BOP is the acronym of "Balance Of the Plant" and refers to the infrastructure of a wind farm project, in other words all elements of the wind farm, excluding the turbines. It includes civil works, SCADA and internal electrical system. It may also include elements of the grid connection. For more details, please see WindFacts (2010).
 ${ }^{79}$ The gases whose absorption of solar radiation is responsible for the greenhouse effect, including carbon dioxide, methane, ozone, and the fluorocarbons.

[^56]: ${ }^{80}$ Mixed Integer Programming (MIP) is actually an extension of Linear Programming which allows for greater detail in formulating technical properties and relations in modeling energy systems. Decisions such as Yes/No or $(0 / 1)$ are admitted as well as nonconvex relations for discrete decision problems. MIP can be used when addressing questions such as whether or not to include a particular energy conversion plant in a system. By using MIP, variables that cannot reasonably assume any arbitrary (e.g., small) value - such as unit sizes of power plants - can be properly reflected in an otherwise linear model (World Bank, UNDP, \& ESMAP., 1991).
 ${ }^{81}$ Lagrangian Relaxation consists in removing some of the restrictions of the original formulation, but attempts to embed these inequalities in the objective function. The idea is to penalize the objective function when the restrictions removed are violated. The "weight" of these penalties is controlled by coefficients called Lagrangian multipliers (Fisher, 2004).
 ${ }^{82}$ It is the problem of optimizing (minimizing or maximizing) a quadratic function of several variables subject to linear constraints on these variables (Nocedal \& Wright, 1999).
 ${ }^{83}$ It is also called "Simplex Search" which uses the concept of a simplex, which is a special polytope of $N+1$ vertices in N dimensions. Examples of simplices include a line segment on a line, a triangle on a plane, a tetrahedron in three-dimensional space and so forth. The method approximates a local optimum of a problem when the objective function varies smoothly (Carson \& Maria, 1997).
 ${ }^{84}$ Heuristic optimization is the process that adopts methods beginning with an initial solution and utilizes types of operations to modify this solution. This gives these methods the flexibility to move to another solution and continue the improvement process (Ozturk \& Norman, 2004).
 ${ }^{85}$ Genetic Algorithms (GAs) are computer imitation of a simplified and idealized evolution. DNA is represented as a string where each position in the string may take on one of finite sets of values. The fitness of the organism is determined by a fitness function; the function decodes the string and returns a real scalar value (Carson \& Maria, 1997).
 ${ }^{86}$ Particle Swarm Optimization (PSO) mimics the behavior of individuals in a swarm to maximize the survival of the species. In PSO, each individual makes his decision using his own experience together with other individuals' experiences. It is the representation of a metaphor of social interaction, searches a space by adjusting the trajectories of moving points in a multidimensional space (Jong-Bae, Ki-Song, Joong-Rin, \& Lee, 2005).

[^57]: ${ }^{87}$ NREL/LCOE is the acronym of National Renewable Energy Laboratory/Levelized Cost Of Energy. For more details about this methodology, please see Cohen (1989); Cory and Schwabe (2009); George and Schweizer (2008); Milligan and Graham (1997); NREL (1995); Tidball, Bluestein, Rodriguez, and Knoke (2010).

[^58]: Source: Own elaboration

[^59]: ${ }^{88}$ Some authors consider 365.25 days/year for annual production estimation by the wind power plant, so is added more six hours of production per year, in other words, 8766 hours per year. In our research we consider what is the most hours of production used for wind power production estimation (8760 hours per year).

[^60]: ${ }^{89}$ The term "valid" derives from "validation" that conveys a sense that a scientific effort must be justified in some logical, objective, and algorithmic way (Kleindorfer, O'Neill, \& Ganeshan, 1998).

[^61]: ${ }^{90}$ The economy of scale is a reduction in cost per unit resulting from increased production, realized through operational efficiencies. Economies of scale can be accomplished because as production increases, the cost of producing each additional unit reduces (Griffiths \& Wall, 2000).
 ${ }^{91}$ Discovered in the $16^{\text {th }}$ century by Galileo, this theorem explains that no biological organism can suffer a change of size (consequently, in scale) without changing its shape or conformation: the volume of this organism will grow in a cubic reason, but the surface which contains itself increases into a square ratio only. In WECS, the output power is just the cube of wind speed (see Chapter 4, section 4.4.1).

[^62]: ${ }^{92}$ When we refer to energy production in form of electricity, it is used to be analyzed as, production, transmission, distribution and commercialization phases. Each of these phases present its aspects and costs associated.
 ${ }^{93}$ The collecting point for a wind farm is the same as an electrical substation. An electrical substation is a part of an electrical production, transmission, and distribution system. Substations transform voltage from high to low, or the reverse, or perform any of several other important functions.

[^63]: ${ }^{94}$ In this section of this Ph.D. thesis a mathematical model is defined as a mathematical description - usually in the form of a computer algorithm - of a real system and the ways that phenomena occur within that system, and an energy model is a model with its focus on energy issues, according already explained in the footnote 76 on this same Chapter.

[^64]: ${ }^{95}$ In " $O \& M_{f i x e d}$ " we have been considered all expenses about insurances, taxes not incidents of revenue, land rents and other expenses related, but not directly to $A E P$, revenue or operational nature in the wind farm.
 ${ }^{96}$ For " $O \& M_{\text {variable }}$ " we have been considered all expenses and costs related directly proportional to the hours of working and to the operational revenues of the wind farm.

[^65]: ${ }^{97}$ In case of system of transmission and collecting point of electricity which extends from each wind turbine to the substation and point of interconnection with the grid of distribution.
 ${ }^{98} U C R F$ converts the current value in the flow of equal annual payments over a specified period of time " t ", " i " the rate specified discount (interest). For $L C O E_{\text {wso }}$ model " t " is the lifetime of the wind farm $(t=N)$ and " i " is the weight average costs of capital of the project ($i=W A C C_{p r o j}$) for $U C R F$ calculation. In Eqn 5.19 shows $U C R F$ calculation, where " i " $=$ discount rate and " t " $=$ number of periods in years.

[^66]: ${ }^{99}$ According to research boundary (section 6.4.4.1) was focused only on local (internal) grid of the wind farm, but the costs for grid connection can be split up in two. The costs for the local (internal) electrical installation and the costs for connecting the wind farm to the electrical grid for distribution.

[^67]: ${ }^{100}$ The current carried by a given transmission line conductor which results in the maximum allowable conductor temperature for a particular set of weather parameters.
 ${ }^{101}$ The transmission line cost $\left(T L_{c}\right)$, transmission line thermal rating ($\left.T L_{r}\right)$, transmission line length $\left(L_{t}\right)$ and substation cost of transmitting ($S B_{c}$) are measure in $\mathrm{m} ; 1 / \mathrm{kW} ; \mathrm{km}$ and $\$ / \mathrm{kW}$, respectively.

[^68]: ${ }^{102}$ The literature confirm that the same equipment and cost are similar, but considering the effect of time, so the cost of wind turbine installation $\left(W T_{\text {inst }}\right)$ is defined as analogous as the sum of removal wind turbine $\left(R M_{W T}\right)$ and concrete $\left(R M_{C T}\right), W T_{\text {inst }}=R M_{W T}+R M_{C T}$.
 ${ }^{103}$ Bld $_{\text {cost }}\left(\$ / m^{2}\right)$ and $B_{l d} d_{\text {area }}\left(m^{2}\right)$.
 ${ }^{104}$ The pre-operational phase includes all of the activities required before production of the power plant. These activities are usually technical studies, construction and equipment installation, testing and technical adjustments.

[^69]: ${ }^{105} O \& M_{W F C M}$ possible can affect the overall turbine availability as well as the downtimes during replacements and overhauls. Economically, if $O \& M_{W F C M}>L C C C M_{W F}$ per kW we consider it is time to make the replacements and overhauls necessary to the power system becomes again economically interesting!
 ${ }^{106}$ The accounting mechanism for the reduction in value of a capitalized item (tangible assets) due to utilization or loss of usefulness by utilization, action of nature or aging. The precise definition and the schedule of reduction will vary widely, depending on the use. Frequently associated with capital cost deductions for income tax purposes (NREL, 1995).

[^70]: ${ }^{107}$ The unit cost drops by $1-P R$ for each doubling of the cumulative volume. In the case of wind power, the cumulative volume is considered the cumulative installed capacity in a region. The learning curve describes the effects of learning by doing or by using the new technology and transforms the experiences gained through manufacturing and utilization into cost reductions (Lund, 2006).
 ${ }^{108}$ According to Junginger, Faaij, and Turkenburg (2005) the progress ratio $(P R)$ is a parameter that expresses the rate at which costs decline each time the cumulative production doubles.

[^71]: ${ }^{109}$ For more details about wind farm maintenance, please see at Endrenyi et al. (2001).

[^72]: ${ }^{110}$ In the proposed $O \& M_{W F C M}$ this approach has not been considered because the focus and objective of the Ph.D. research work, therefore this approach is directly applied corrective maintenance, so in the case of wind power plants would not be enough for expressing the $O \& M$ costs totally.

[^73]: ${ }^{111}$ Many wind farms are not decommissioned, but are repowered. If a site is proven to have good wind resources, in many instances it makes more sense to replace turbines as needed rather than remove the entire facility. A decommissioning fund could be directed to repowering at the appropriate time.
 ${ }_{112}$ Average of ~ 2 acres (0.8093712844 ha)/turbine including collection system.

[^74]: ${ }^{113}$ The mass of a wind tower can be calculated by the relation $A \times H_{h}$, where A is the swept area and H_{h} the hub height. For more details, see at Fingersh et al. (2006).

[^75]: ${ }^{114}$ For Menz and Vachon (2006) if the renewable energy market continuing rise fossil fuel prices, renewable energy technologies will become more economically attractive to consumers. In that context, market-based voluntary measures might play an increasingly important role in future wind power development.
 ${ }^{115}$ For more details about supply and demand-push approaches, see at Grubb (2004); Jamasb (2007).

[^76]: ${ }^{116}$ We have considered a risk factor for $O R E P_{C M}$ energy policy instrument in order to be more realistic to the wind power market and developed an instrument which associates the importance and impact of the risk in the projects, usually supported by government's actions. The Cover Risk Factor $\left(C R_{f}\right)$ can be classified into price, technical and financial risks. $C R_{f}$ works as a project security. For more details, please see at Gross, Blyth, and Heptonstall (2010); Gross, Heptonstall, and Blyth (2007).
 ${ }^{117}$ If $r_{\text {debt }}>W A C C_{\text {prof }}$, then $C R_{f}=100 \%$; If $r_{\text {debt }} \cong W A C C_{\text {prof }}$, then $C R_{f}=50 \%$; If $r_{\text {debt }}<W A C C_{\text {prof }}$, then $C R_{f}=25 \%$.

[^77]: ${ }^{118}$ According to Hondo (2005) the life-cycle emission factor of CO_{2} for wind power could be about $30 \mathrm{~g} \mathrm{CO} 2 / \mathrm{kWh}(29.5 \mathrm{~g} \mathrm{CO} 2 / \mathrm{kWh})$ and for fossil fuel (Oil-fired) about $742 \mathrm{~g} \mathrm{CO}_{2} / \mathrm{kWh}\left(742.1 \mathrm{~g} \mathrm{CO}_{2} / \mathrm{kWh}\right)$ within both lifetimes of 30 years and capacity factor of 20% and 70%, respectively. It is also possible to calculate it through Electricity Emission Factors ($E F_{e l}$) specific by country. For more details, please see at IEA (2011).
 ${ }^{119}$ The sum ($\sum \xi_{1+. .+4}$) of ξ_{n} has to totalize 100%.

[^78]: ${ }^{120} P \& D=$ Production and Distribution
 ${ }^{121}$ The number of wind turbines for $W F_{C M}$ must be count with operationing ones, which can change from year to year, depending on $O \& M_{\text {manag }}$, natural disaster (e.g. earthquake, floods, etc.), repowering process and other. The number of wind turbines for a given wind farm could be variable during the wind power plant lifetime.
 ${ }^{122}$ It is applied to layout configuration as shown in Figure 4.19.

[^79]: ${ }^{123}$ According to Bansal, Bhatti, and Kothari (2002) $10 \mathrm{ha} / \mathrm{MW}$ is the "rule of thumb" for land area for wind power plants, including infrastructure.

[^80]: ${ }^{124}$ When necessary, a possible way for calculation the total hours and costs for both $S C_{О ๕ M}$ and $U S C_{О \& M}$. For hours calculation we just do $S C_{O \& M(h)}=$ freq. \times hours and for costs $S C_{O \& M(\$)}=S C_{O \& M(h)} \times \$ / \mathrm{kWh}$.

[^81]: ${ }^{125}$ According to RETScreen® International Clean Energy Decision Support Centre (2009) the typical values for a well designed wind farm for array losses range from 0 to 20% of $A E P_{\text {gross }}$, for airfoil soiling and icing losses range from 1 to 10% of $A E P_{\text {gross }}$, for downtime losses range from 2 to 10% of $A E P_{\text {gross }}$ and for miscellaneous losses range from 2 to 6% of $A E P_{\text {gross }}$.

[^82]: ${ }^{126}$ For Evans, Strezov, and Evans (2009) the efficiency of electricity production by WECS range from 24 to 54%.

[^83]: ${ }^{127}$ We understand as a complex system when this same system has multiple interactions and one action implies into several responses from the system. It is the case of WECS and the LCOE approach.

[^84]: Source: Own construction

[^85]: Source: Own construction

[^86]: ${ }^{128}$ Minor maintenance takes about 4h for two people and major maintenance takes about 7h for two people (Nilsson \& Bertling, 2007).

[^87]: ${ }^{129}$ According to IEA (2010), the capacity factor of wind projects range from 21% to 41% for onshore and 34% to 43% for offshore.

[^88]: ${ }^{130}$ In this research work, the "parameterization" means the range of values of each independent variable can assume during a numerical simulation.

[^89]: ${ }^{131}$ The electrical cables are used for local wind turbines grid ($L W T G_{C M}$) and transmission system $\left(T S_{C M}\right)$. The cables voltage are not detailed, due to the objective of this Ph.D. research work what discard the electrical microscopic analysis of the wind farm for simulations procedures.

[^90]: ${ }^{132}$ For Ackermann (2005) is a concept used by engineers to describe the electrical energy that circulates continuously among the various electrical and magnetic fields of alternating-current (AC) system, without producing work. These fields store energy which changes through each AC cycle.

[^91]: Source: Own elaboration

[^92]: ${ }^{133} 1 / 7^{\text {th }}$ power law scaling to calculate the hub height wind speed ($v_{w c}$): for each site (see Table 6.4) was calculated the wind speed at hub-height of 105 m used for electricity production from the hypothetical wind farm.

[^93]: ${ }^{134}$ SD $=$ Standard Deviation.

[^94]: ${ }^{135}$ As suggested by Wiser (1997) the LCOE is minimized at a capital structure of approximately 50% debt and 50% equity.
 ${ }^{136}$ For more explanation about depreciation methods, please, see Albadi, El-Saadany, and Albadi (2009).
 ${ }^{137}$ A Power Purchase Agreement (" $P P A$ ") is a long-term agreement between the seller of wind energy and the purchaser.

[^95]: ${ }^{138}$ Shipping and warehousing costs for parts are not included. Given the variability and uncertainty of parts costs, and the number of options for warehousing spares, we may reasonably assume that shipping costs are included in the parts costs.
 ${ }^{139}$ Exchange rates of 1.3252 (EUR/USD); 0.9998 (CAN/USD); 0.5986 (BRL/USD); based on rates on December 31, 2010. Available at $\frac{h t t p: / / w w w . o a n d a . c o m / c u r r e n c y / c o n v e r t e r / . ~}{140}$.
 ${ }^{140}$ For a better understanding about wind project financing structures, please see at Harper, Karcher, and Bolinger (2007).

[^96]: ${ }^{141} E M P_{y r}$ is applicable only after finish the period of $P P A$, we have not considered both, and one does not exclude another. We have considered as a parameter for $E M P_{y r}$ a ratio between $P P A R$ and $E M P_{y r}$ of $0.7(70 \%)$.
 ${ }^{142}$ Capital costs are considered equal for the three different sites simulated.

[^97]: ${ }^{143}$ We have considered the period with less hours available for production (see Figure 6.18).

[^98]: ${ }^{144}$ It can be probably due to the global economy recession. For more information, please see at Newell, Pizer, and Raimi (2013).

[^99]: ${ }^{145}$ The reference values of $L C O E / N R E L$ are USD $50 / \mathrm{MWh}$ to USD $150 / \mathrm{MWh}$ (see Table 6.7), considering the same conditions as explained in Lantz et al. (2012); and IEA $(2005,2010)$.
 ${ }^{146}$ Wind speed calculated $\left(v_{w c}\right)$ for hub height $(H=105 \mathrm{~m})$.

[^100]: ${ }^{147}$ The National Renewable Energy Laboratory (NREL) is the U.S. Department of Energy's primary national laboratory for renewable energy and energy efficiency research and development. For more information, please see at http://www.nrel.gov/.

[^101]: ${ }^{148}$ All the values calculated of $L C O E_{\text {wso }}$ for Aracati (Brazil) is based on the situation of year one (yr=1)
 ${ }^{149}$ REPIM s values are calculated by the proportional to 25% for each energy policy instrument, according to Table 7.14.

[^102]: ${ }^{150}$ All the values calculated of $L C O E_{w s o}$ for Corvo Island (Portugal) is based on the situation of year one (yr=1)
 ${ }^{151}$ REPIM s salues are calculated by the proportional to 25% for each energy policy instrument, according to Table 7.14.

[^103]: ${ }_{153}$ All the values calculated of $L C O E_{\text {wso }}$ for Cape Saint James (Canada) is based on the situation of year one (yr=1)
 ${ }^{153}$ REPIM s values are calculated by the proportional to 25% for each energy policy instrument, according to Table 7.14.

[^104]: ${ }^{154}$ The skewness can be classified into symmetric (if $\gamma<0.15$), moderate asymmetry (if $0.15 \leq|\gamma| \leq 1.0$), strong asymmetry (if $\gamma \geq 1.0$). For more explanations, please, see at Groeneveld and Meeden (1984).

[^105]: Source: Own elaboration

[^106]: ${ }^{155}$ In $L C O E_{\text {wso }}$ methodology, the REPIM instruments applied to Aracati (Brazil) are calculated considering the base-case defined in Tables 7.13 and 7.14.

[^107]: ${ }^{156}$ In LCOE ${ }_{\text {wso }}$ methodology, the REPIM instruments applied to Corvo Island (Portugal) are calculated considering the base-case defined in Tables 7.13 and 7.14.

[^108]: ${ }^{157}$ In $L C O E_{\text {wso }}$ methodology, the REPIM instruments applied to Cape Saint James (Canada) are calculated considering the base-case defined in Tables 7.13 and 7.14.

[^109]: Source: Own elaboration. Note: according to Tables 6.5 and 7.5.

[^110]: Source: Own elaboration

[^111]: Source: Own elaboration

[^112]: Table J.3 Energy production map of the wind farmfor Cape Saint Janes (Canada) \quad wiht sensitivity analysis of $L_{w 1}$ (SDTD)

[^113]: Table K．6 Wind speed series simulations for $A E P$ arati in Cape Saint James（Canada）with sensitivity analysis of $L_{w w}$（5D10D）
 $\frac{\text { Table K．6 Wind speed series simulations for } A E P_{\text {arati }} \text { in Cape Saint James（Canada）}}{v_{\text {we }}}$

[^114]: \qquad

[^115]: | s ${ }^{6}$ | s ${ }^{\text {cII }}$ | $s{ }^{\prime} z$ | s＇zI | s ${ }^{\text {c }}$ | s ${ }^{\text {c }}$ | s \quad I | s $z 1$ | szi | s \quad II | s $z /$ | s $¢$ zI | $s{ }^{\text {s }}$ | s ${ }^{\text {ci }}$ | s ${ }^{\text {c }}$ | s＇zl | s $z 1$ | s 21 | s＇zl | s ${ }^{\text {c }}$ | s $z 1$ | $s z I$ | s \quad II | s＇zI | $s{ }^{\text {s }}$ | s \quad II | ${ }^{\text {pmuu }}$ |
 | :---: |
 | 6.91 | t＇sI | ${ }^{\text {HoI }}$ | L＇6 | $4{ }^{\circ}$ | 0.6 | I＇SI | $\varepsilon \neq 1$ | tol | I＇SI | tizI | $I^{\prime} S I$ | L＇6 | t＇si | toi | İI | $\varepsilon \neq I$ | L＇6 | L＇6 | tol | İII | L＇6 | ど 1 | t．01 | I＇SI | I＇SI | |
 | $6 \varepsilon I$ | I＇SI | عol | OOI | 0.01 | 46 | L＇tı | ぐゅI | tor | L＇tl | でII | ＜＇tı | 0．01 | ISI | tol | ISI | L＇tı | 0．01 | 0．01 | tor | I＇SI | 0．01 | く＇tı | tol | $\varepsilon+1$ | ¢ +1 | |
 | $\varsigma \varepsilon!$ | L＇tı | $8{ }^{\prime \prime}$ | tor | IOI | 2＇II | | ISI | でII | | tol | $\varepsilon+1$ | tor | L＇t | O．OI | ع＇t | I＇SI | tol | tol | OOI | $\varepsilon+1$ | tor | I＇SI | 0．01 | İI | İI | 129010 |
 | ั̇ย | | 20I | tor | L＇II | ${ }^{\text {t }}$－ 1 | İI | İI | ガてI | İI | toi | ！$¢$ I | tol | $\varepsilon \pm 1$ | L6 | L＇tı | İI | toi | t．or | $\stackrel{\circ}{6}$ | ＜＇ti | tor | İI | －6 | toi | toi | ．12qurdas |
 | t\％ | ［ $\varepsilon 1$ | \pm ¢ $!$ | z＇II | IzI | t＇II | くıı | く̇ı | ＜$<$ I | く＇zı | 0．01 | ＜＇zI | $\tau \cdot I I$ | İI | て＇II | くıı | く＇zı | でII | z＇II | z＇II | く＇zı | て＇II | くıı | z＇II | 46 | L＇6 | ısn8n |
 | oor | ＜＇zı | s＇z | ゅって | \＆${ }^{\text {c }}$ | でı | tıI | ṫı | İย | tiz | ＜ 6 | がてI | ャてı | くıı | I＇SI | ＜＇6 | がてI | ャてı | ゅって | ISI | $\angle 6$ | ゅって | ャ̇ı | I＇si | 0.01 | 0．01 | ${ }_{4} n^{\prime}$ |
 | ¢̇ı | tiz | く＇zı | く＇zı | くıı | 8 \％ | て＇II | でII | $\varepsilon \nleftarrow \square$ | でII | ＜＇zı | て＇II | く＇zı | ¢ ¢ I | ＜${ }^{\text {cti }}$ | 0．0i | でII | く＇zı | く＇zı | L＇ti | 0.01 | く＇zi | z＇II | L＇ti | toi | toi | วun $^{\text {¢ }}$ |
 | | でII | $0 \varepsilon I$ | İI | İI | ¢ ¢ I | ＋0I | tol | L＇tı | tol | ¢＊I | tol | İI | て＇ıI | ¢̇t | tor | tol | İI | İI | | tol | İI | tol | $\varepsilon \pm 1$ | て＇II | でı | ${ }^{\wedge}{ }^{\text {W }}$ W |
 | 6ıı | tor | $\varepsilon \neq I$ | $\varepsilon \pm 1$ | $\varepsilon \varepsilon I$ | $8 \varepsilon I$ | tol | toi | I＇SI | tol | ＜\langle ¢ | tor | \＆゙t | tor | İII | t．or | tor | ¢ $\dagger 1$ | $\varepsilon \pm 1$ | İI | toi | $\varepsilon \not \square I$ | tol | İI | がて | がて | ${ }^{1 / 2 d v}$ |
 | 6 \％ | tor | $\varepsilon s I$ | L＇tI | L＇ti | 8 \＆ 1 | 0.01 | 0.01 | 0．01 | 0.01 | ISI | 0．01 | L＇ti | tor | く＇zi | でı | 0.01 | L＇ti | L＇tI | くıı | て＇II | L＇t 1 | 0.01 | くıI | く＇zı | く̇ı | ${ }_{\text {Y Jopw }}$ |
 | İI | 0.01 | 9 ¢ $¢$ | ISI | ISI | $\varepsilon+1$ | 46 | $\angle 6$ | $\stackrel{\circ}{6}$ | $4 \cdot 6$ | IEI | $\stackrel{6}{6}$ | ISI | 0．01 | ṫて | ゅって | L＇6 | ISI | ISI | がて | ṫI | ISI | $4 \cdot 6$ | ゅって | く＇tl | く－t | |
 | $\varepsilon 6$ | $\stackrel{6}{6}$ | L＇tı | $t \cdot s I$ | $t \cdot s$ | 9.91 | t＇SI | | $t \cdot s I$ | $t \cdot S I$ | | $t \cdot s I$ | $t \cdot s I$ | $4 \cdot 6$ | tisi | $t \cdot s I$ | tisi | t＋SI | $t \cdot s I$ | $t \cdot s$ | t＋SI | $t \cdot s I$ | $t \cdot s I$ | $t \cdot s I$ | tisi | | сиппииг |
 | 52. | tz，， | ${ }_{\text {E }}$ | ${ }^{2 z, 1}$ | ${ }_{\text {Iz，}}^{1 /}$ | ${ }^{\text {oz，}}$ ， | ${ }^{61,1 /}$ | ${ }^{81}$ IK | ${ }^{\prime \prime}$ ，／i | ${ }^{9} 1.1$ | ${ }_{\text {st，}}^{\text {cic }}$ | ${ }_{\text {tla }}$ | | ${ }^{21} 1.1$ ich | ${ }^{\text {H／iK }}$ | ${ }^{01.1 i}$ | ${ }_{6} 1 /$ | ${ }^{8.16}$ | ${ }_{4} / 1 /$ | ${ }^{9} / 1 /$ | s．ik | ${ }_{\text {t．ic }}$ | $\varepsilon_{1 /}$ | ${ }_{\text {z．A }}$ | ${ }_{\text {I Aí }}$ | （smu） | |
 | | | | | | | | | | | | suopp | s．of s？ | pp p | | | | | | | | | | | | ${ }^{\text {ana }}$ | |

 Table M. 7 kWh per $\mathrm{H}_{\text {prod }}$

 | Sites | $k W / r$ | |
 | :---: |
 | | $y r_{1}$ | yr_{2} | y_{3} | yr4 | yrs | ${ }_{\text {r }} 6$ | ${ }_{\text {y }}^{7}$ | y_{8} | yr9 | yr_{10} | yr ${ }^{\text {a }}$ | yr ${ }_{12}$ | yr_{13} | yr_{14} | yr 15 | ${ }^{\text {y }} 16$ | y_{17} | yr ${ }_{18}$ | yrı | yr_{20} | y_{21} | yr 21 | yr_{23} | $y_{2}{ }_{2}$ | ${ }^{\text {y } 25}$ |
 | Aracari(Brazil) | 5695 | 5647 | 5674 | 5629 | 5699 | 5647 | 5694 | 5694 | 5637 | 5641 | 5647 | 5693 | 5674 | 5637 | 5718 | 5737 | 5690 | 5649 | 5602 | 5698 | 5682 | 5616 | 5628 | 5645 | 563 |
 | Corvo Island (Portugal) | 10451 | 10535 | 10466 | 10473 | 10467 | 10570 | 10498 | 10419 | 10528 | 10530 | 10452 | 10528 | 10510 | 10504 | 10472 | 10452 | 10517 | 10522 | 10556 | 10569 | 10463 | 10523 | 10531 | 10446 | 103 |
 | Cape Sain James | 24766 | 24852 | 24932 | 24738 | 24788 | 24852 | 24738 | 24738 | 24932 | 24788 | 24852 | 24794 | 24738 | 24940 | 24879 | 24940 | 24908 | 24932 | 24940 | 24841 | 24855 | 24738 | 24888 | 24794 | 24877 |

 | Tabl | wind farm | ject | 50000 k | | Aracait (Braz) | | | | | with sensitiv | analy | ${ }_{\text {ni }}$ (Case | | | | | | | | | | | | | | |
 | :---: |
 | Item | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | $\frac{\text { Years }}{}$ | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
 | (-) LCCCM $_{\text {WF }}$ | 60225901 | - | - | - | - | - | | | \cdot | - | | \checkmark | - | - | - | - | - | - | - | - | . | - | - | - | - | - |
 | ${ }_{\text {w }}^{\text {cu }}$ w | 27686278 | - | - | - | - | - | | - | - | | | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
 | $T_{C M}$ | 24219295 | - | | - | - | - | - |
 | $L_{\text {LWTG }}^{\text {cm }}$ | 1959783 | - | . | . | . | - | | - | . | - | . | - | - | - | . | . | - | - | - | | . | | | | | - |
 | ${ }^{\text {cP }}$ ch $^{\text {a }}$ | 1545346 | - | | | - | - | | | | | - | | - | - | - | | - | - | - | - | - | | - | - | | - |
 | ${ }_{\text {ts }}^{\text {cm }}$ | 572832 | - | . |
 | SIcm | 2136726 | - | |
 | $\mathrm{PO}_{\mathrm{CM}}$ | 1796870 | - |
 | F_{Cu} | 188559 | . | - | \cdot |
 | $C_{\text {cCC }}^{\text {cu }}$ | 120211 | - |
 | $L^{\text {LCPM }}{ }_{\text {WF }}(k W h / y r)$ | - | 48856319 | 4844328 | 48676026 | 48200403 | 48895032 | 4844328 | 4884488 | 4884485 | 4835634 | 4839173 | 4844328 | 48841866 | 48676026 | 4836288 | 49053015 | 49213265 | 48817403 | 48463568 | 4804776 | 4883303 | 4874993 | 48179078 | 48285240 | 48430728 | 48356354 |
 | ${ }^{(+)} \operatorname{AAR}(\mathrm{SM} / \mathrm{rr})$ | - | 4297170 | 436745 | 4498053 | 4573979 | 4747030 | 482085 | 4982192 | 5106747 | 5182105 | 531583 | 5454354 | 5636591 | 575788 | 5863796 | 6096233 | 626053 | 6374091 | 6486088 | 6592161 | 687365 | 4918060 | 4982181 | 5117988 | 526174 | 5385005 |
 | PPAR | - | 4297170 | 436745 | 4498053 | 4573979 | 4747030 | 482085 | 4982192 | 5106747 | 5182105 | 5315483 | 5454354 | 5636591 | 5757889 | 5863796 | 6096233 | 626953 | 6374091 | 6486088 | 6592161 | 687365 | | | | | - |
 | EMP | - | . | | | | - | | | | | | - | - | - | - | - | - | | - | . | - | 4918060 | 4982181 | 5117988 | 526174 | 5385005 |
 | (-) $0 \& M_{\text {wfch }}$ | - | 394935 | 4013810 | 413369 | 4203326 | 4362211 | 4455205 | 4603526 | 471783 | 478688 | 4999110 | 5036591 | 5204091 | 5315304 | 541229 | 562056 | 5784761 | 5880906 | 5983464 | 6080550 | 6339242 | 584637 | 5922095 | 6082752 | 6252834 | 6398541 |
 | O\& $M_{\text {fied }}$ | - | 2654579 | 2697997 | 2778672 | 282574 | 293247 | 2978078 | 307774 | 3154685 | 3201236 | 3283628 | 3369414 | 3481989 | 3556919 | 362341 | 3765927 | 3872684 | 3937570 | 4006754 | 407279 | 4246052 | 4340155 | 4396739 | 4516586 | 464349 | 4752224 |
 | O\& $M_{\text {waribile }}$ | - | 129477 | 1315813 | 1355018 | 137752 | 1429737 | 1477127 | 1525784 | 1563150 | 158547 | 1625482 | 1667177 | 1722102 | 1758385 | 1789958 | 1860129 | 1912077 | 194333 | 1976710 | 2008271 | 2093190 | 1506483 | 152356 | 1566166 | 1609385 | 1646316 |
 | (+) LRCM | - | 863268 | 884850 | 906971 | 929646 | 952887 | 976709 | 1001127 | 1026155 | 1051809 | 1078104 | 1105057 | 1132683 | 1161000 | 1190025 | 1219776 | - | - | - | - | - | - | - | - | - | - |
 | (+) Depreciation | | 2423218 | 2483798 | 2545893 | 260954 | 2674779 | 274169 | 281190 | 288045 | 2952456 | 3026267 | 3101924 | 3179472 | 3258959 | 3340433 | 3423943 | 3509542 | 3597281 | 3687213 | 3779393 | 3878878 | 3970725 | 4069993 | 4171743 | 4276036 | 4382937 |
 | (\Rightarrow Profit before tax | - | 3634303 | 372295 | 3817228 | 3999840 | 4012485 | 4084007 | 4189982 | 4295512 | 439987 | 4510744 | 4624743 | 474655 | 4862543 | 4981955 | 5118896 | 399884 | 4090466 | 4189837 | 4291004 | 4408101 | 3042148 | 3130078 | 3206978 | 3284946 | 336901 |
 | (.) Revernue tax | - | 1289151 | 1310237 | 1349416 | 1372194 | 1424109 | 1446256 | 149465 | 1532024 | 1554632 | 1594645 | 1636306 | 169977 | 1727367 | 1759139 | 1828870 | 1880716 | 191227 | 1945827 | 1977648 | 2062040 | 1475418 | 149464 | 153396 | 1578523 | 1615502 |
 | (+) REPM | 1123026 | 1725 | 1669 | 1636 | 1584 | 1564 | 1512 | 1487 | 1451 | 1402 | 1368 | 1336 | 1315 | - | . | - | - | - | - | - | . | - | | | | - |
 | ${ }_{R E I} I_{C M}$ | 86362 | - | | | | - | | - | | - | | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
 | ${ }_{\text {REP } P_{\text {cu }}}$ | | 1725 | 1669 | 1636 | 1584 | 1564 | 1512 | 1487 | 1451 | 1402 | 1368 | 1336 | 1315 | - | - | - | - | - | - | - | - | - | - | - | - | \cdot |
 | OREP $_{\text {cu }}$ | 259364 | - | - | - | - | - | - | - | - | - | . | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
 | GHG.Rcu | - |
 | ($)$ Proffit ffer tax w/out interest | . | 234687 | 2413727 | 2469448 | 2539230 | 2589940 | 2639262 | 2698812 | 2764939 | 2846457 | 291746 | 2989773 | 3054992 | 3135177 | 322816 | 3285026 | 2113118 | 2178238 | 2244010 | 2313356 | 2346061 | 1566730 | 1635424 | 1671582 | 1706423 | 1753900 |
 | (-) Debtpayments | - | - | 3136540 | 3214953 | 329337 | 337710 | 346153 | 3548707 | 367424 | 3728360 | 382159 | 3977108 | 4015036 | 4115412 | 421829 | 432374 | - | - | - | - | . | - | - | - | | - |
 | | - | 2621739 | 2687282 | 2754464 | 282326 | 2893909 | 2966257 | 3040413 | 3116424 | 319434 | 3274193 | 3356047 | 343949 | 3525947 | 3614096 | 370448 | 3797060 | 3891986 | 3989286 | 4089018 | 4191243 | 4296024 | 4403425 | 4513511 | 4626348 | 4742007 |
 | (+) Depreciation | | 2423218 | 2483798 | 2545893 | 260954 | 267479 | 2741649 | 2819190 | 288045 | 2952456 | 302626 | 3101924 | 3179472 | 3258959 | 3340433 | 3423943 | 3509542 | 359728 | 3687213 | 377933 | 3873878 | 3970725 | 4069993 | 4171743 | 4276036 | 4382937 |
 | ($)$ Free net cashflow | -59 102874 | 7391834 | 444268 | 4554852 | 4676769 | 4780918 | 4885015 | 4998708 | 5124382 | 5264887 | 5396358 | 5530636 | 5659377 | 5804671 | 5959048 | 6089664 | 9419719 | 9667505 | 9920509 | 10181766 | 1041182 | 9833479 | 10108842 | 10356835 | 10608807 | 10878844 |
 | $\Sigma_{\text {freene a amal (asthfow }}$ | - | -51711040 | -4722772 | -42707920 | -38031 151 | -33250232-28 | -28365217-23010 | -23366509 | -18242126-129 | -12977239 | -7580881 | -2050245 | 3609132 | 9413803 | 1537281 | 21422514 | 3088223 | 40549739 | 50470247 | 60652014 | 71063196 | 80896674 | 91005516 | 101362351 | 11197158 | 12285002 |

 | Hem | 0 | | | | | | | | 8 | 9 | 10 | 11 | ${ }_{12}{ }^{\text {Vear }}$ | ${ }_{13}$ | 14 | ${ }^{15}$ | 16 | ${ }^{17}$ | ${ }_{18}$ | ${ }^{19}$ | ${ }^{20}$ | 21 | | ${ }^{23}$ | | |
 | :---: |
 | (-) LCCCM wr | 6022501 | |
 | ${ }^{W}$ Tow | ${ }_{\substack{27868788 \\ \hline 2429295}}$ | |
 | | ${ }_{\substack{24299295 \\ 1.9788}}^{2}$ | |
 | | 1545386
 57282 | |
 | ${ }_{\substack{\text { Somu } \\ \text { Pocu }}}^{\text {Som }}$ | 2137726
 179680 | |
 | ${ }_{\text {Four }}$ | 18859 | |
 | 275 | | | |
 | ${ }^{(+) A A R(S N M Y \text { Pr }}$ | | 1497029 | 46849 | 15750988 1575088 | 11956163 | ${ }^{16549954}$ | 17131821 | ${ }^{17439078}$ | ${ }^{11771084}$ | 1837519 1875119 | 18888839 1888989 | ${ }^{1916650}$ | 1977994 | ${ }_{2}^{2024787}$ | ${ }_{20}^{207472682}$ | 2119633 | 211685138
 21185138
 18 | 2363988 2363982 | ${ }_{2}^{22934122}$ | ${ }_{2238888888}^{2384888}$ | - 2420239393 | | | | | |
 | ${ }_{\substack{\text { Prat } \\ \text { EMP }}}$ | |
 | | | 9388374
 487144 | ${ }_{5}^{96793} 5$ | ${ }_{\substack{988625 \\ 512597}}$ | (illeg21 | | | ${ }_{\substack{10911955 \\ 567483 \\ \hline}}$ | ${ }_{\text {H }}^{11100782}$ 57281 | ${ }_{\substack{1497971 \\ 5971 \\ 160}}$ | | | | ${ }_{\substack{1268848 \\ 6888532}}$ | $\xrightarrow{1297965}$ | ${ }_{\substack{13261997 \\ 687052}}^{1}$ | ${ }_{\substack{1356736801}}^{705621}$ | ${ }_{\substack{13991793 \\ 72709}}$ | ${ }_{\substack{14348594 \\ 742607}}$ | | (2689 | ${ }_{\substack{11,15746 \\ 7991588}}$ | | ${ }_{\text {845 } 2 \text { 20 }}^{1391092}$ | ${ }_{8892210}^{143824}$ | ${ }_{88715158}^{1484}$ |
 | oxc inme | | ${ }_{4}^{499690}$ | ${ }_{4}^{4666823}$ | ${ }_{4}^{430927}$ | ${ }_{4}^{4852484}$ | | ${ }_{\substack{5 \\ 51423 \\ 2620}}^{2}$ | ${ }_{5}^{523737}$ | 53279315 | ${ }_{5151820}^{5180}$ | | ${ }_{5}^{5755575}$ | | (688016 | | | 6511165 | 671483 | 6888898 | 788137 | 7268886 | 516178 | 532239 | 545967 | 5588813 | 5680095 |
 | $\underset{\substack{(+) \text { LRCM } \\(+) \text { Depreceil }}}{ }$ | | ${ }_{2415044}$ | 247019 | 258894 | 202418 | 2667478 | 27741105 | ${ }_{2020519}$ | 287252 | ${ }^{294397}$ | 3018007 | ${ }_{3} 1093457$ | 3172099 3 | 3250006 | ${ }_{3} 331315$ | ${ }^{3144598}$ | | | | | | | | | | |
 | $t=P$ rofiti cefore lax | | ${ }_{888242}$ | 915075 | ${ }_{9340679}$ | | | 1012886 | | | 1083346 | | | 1710514 | | 12286011 | | | | | | | | | | | 879740 |
 | | | ${ }_{4}^{499127}$ | ${ }_{\substack{460535 \\ 123}}$ | ${ }_{\substack{422296 \\ 111}}$ | ${ }_{\substack{4848899 \\ 1168}}^{11}$ | ${ }_{\substack{4949886 \\ 1130}}^{290}$ | ${ }_{\substack{5139546 \\ 120}}$ | ${ }_{\substack{531723 \\ 105}}^{5}$ | $\underset{\substack{532325 \\ 1050}}{1}$ | ${ }_{\substack{551238 \\ 1036}}$ | cols | $\stackrel{5749951}{974}$ | ${ }_{5}^{5936388}$ | ${ }^{607436}$ | ${ }_{9}^{62279}$ | $\underset{\substack{638810 \\ \text { s88 }}}{\text { csid }}$ | | ${ }^{6709195}$ | ${ }^{6880237}$ | ${ }^{7055458}$ | 726179 | 51574.49 | ${ }_{531667}$ | | | |
 | ${ }_{\text {RHI } \mathrm{ou}}$ | 883682 | |
 | | | 1233 | 1232 | 1194 | 1166 | 1136 | 1120 | 1085 | 105 | 1036 | 1011 | 979 | 962 | ${ }^{937}$ | ${ }^{913}$ | 888 | ${ }_{865}$ | 89 | | | | | | | | |
 | chicran $^{\text {a }}$ | |
 | Profit after tax w/ou (-) Debt payments | | ${ }^{432} 238$ | 4511449 3127978 | ${ }_{\substack{4615976 \\ 3206518}}^{298}$ | ${ }_{\substack{47392 \\ 326892}}^{4}$ | | 4, 494729 | 5100131 | $\begin{gathered} 5217764 \\ 3627496 \end{gathered}$ | | 5496949 | 5623803 | 5775078 | 5916962 | 6064133 | 6210988 | | | | | | | | | | |
 | | | | 2687282 2477019 | ${ }_{2}^{2754464}$ | 283326
 200248
 18 | ${ }_{2}^{289899}$ | ${ }_{2}^{297429} 1$ | 3000413 2802519 | 311624
 282582 | 319433
 29439
 1 | ${ }_{\substack{3274193 \\ 301807}}$ | 3 356047 309357 | ${ }_{\substack{3439949 \\ 317074}}^{\substack{\text { and }}}$ | ${ }_{\substack{352547 \\ 325006}}$ | $\substack{3614096 \\ 3831315}$ | 370448
 3414598 | | | | 4689018
 376097 | ${ }_{\substack{4191243 \\ 3863 \\ \hline}}$ | ${ }_{\substack{496024 \\ 399885}}^{\substack{4 \\ \hline}}$ | ${ }_{4}^{440325}$ | | ${ }_{4}^{4626348} 4$ | |
 | Free ent castlow | 5894155 | | 65471 | | | 47 | 7232149 | 7494013 | 9927 | 7783012 | 801 | 1689 | 381743 | 8588794 | 8802761 | 9018082 | | | 1398968 | | 13717949 | 11109331 | | | | |
 | | | 49510815 | 4296043 | . 36292926 | 29386922 | .2234462 | -1511127 | -770224 | 12795 | 7.65093 | 15.63664 | 2379995 | ${ }_{32181698}$ | 4077049 | 4957325 | S899134 | 71001414 | ${ }^{87732018}$ | 9678088 | 10162097 | Seor | 13497547 | \%684 8 | 9120 | 22 28 | |

 | Hem | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | ${ }_{13}$ | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | ${ }^{23}$ | 24 | ${ }^{25}$ |
 | :---: |
 | (-) LCCCM wr | ${ }_{6022591}$ | |
 | | ${ }^{27786278}$ | |
 | | ${ }^{242192925}$ | |
 | ${ }_{\text {cPam }}$ | 1545346 | |
 | ${ }_{\text {TS cu }}^{\text {coum }}$ | 572822 | |
 | | $\begin{array}{r}2136726 \\ 1179680 \\ \hline\end{array}$ | |
 | ${ }_{\text {cour }}$ | 18859 | |
 | ${ }_{\text {crec }}^{\text {chu }}$ | ${ }^{120211}$ | |
 | | | 30129143 | 3089297 | 3186688 | 3248583 | 33388465 | ${ }^{32208386}$ | 3490550 | 3573012 | 3694888 | ${ }^{3760058}$ | 3870138 | 39576118 | 4073888 | | 4276617 | ${ }_{43923688}$ | | | | 483116 | 289 | 35382431 | 3688727 | 372587 | 迷 |
 | $\underbrace{}_{\substack{\text { PPAR } \\ \text { EMP }}}$ | | 30292143 | 3089297 | 31866888 | 3240883 | 33288665 | ${ }^{34200386}$ | 3490550 | 3573012 | 3694883 | ${ }^{37600580}$ | 38701386 | 39571163 | | | | | | | | | | | | | |
 | - ${ }_{\text {cosp }}^{\text {Eup }}$ | | | 21176288 | | 2214548 | 22745887 | 2337444 | 23888205 | 244426 | 22551713 | 2573370 | 26448813 | 27924045 | 2765568 | 2858721 | 2921647 | 3002520 | ${ }_{30} 733551$ | ${ }_{3153456}$ | 33422 | 33010054 | | 2998759 | | | 32447765 |
 | | | H11542861
 90436 | ${ }_{1}^{11878886} \begin{aligned} & 932482\end{aligned}$ | ${ }_{\substack{12298801 \\ 966487}}$ | | 5 | ${ }^{13106489} 1025$ | ${ }_{\text {l }}^{13372488} 1$ | ${ }^{1377673} 10375$ | ${ }_{1}^{141599584}$ | 14129998888 | ${ }_{11}^{148287655}$ | ${ }_{115}^{158989787}$ | ${ }_{1}^{15507888} 1$ | ${ }_{1}^{16025565} 1$ | | ${ }_{1}^{16888887}$ | ${ }_{\text {l }}^{1223513} 1$ | ${ }_{1}^{1768316} 1$ | 18131422
 1422000 | 18510929 144925 | ${ }_{\text {l }}^{18988265}$ | ${ }_{10}^{19367173836}$ | 19971913
 105184
 18 | 20393700 | 20973809 1150057 |
 | ${ }_{\text {(+) LRCM }}^{\text {OxM }}$ | | ${ }_{863268}$ | 88480 | 99697 | 92946 | 95287 | 97679 | 100127 | 1226155 | 105189 | 1078104 | 1105057 | 1132683 | 1161000 | 1190025 | 1219776 | | | | | | | | | | |
 | (+) Deprecaition | | 2387607 | 244297 | 258847 | 257191 | 263541 | 270138 | 278882 | 288311 | 299067 | 298179 | 3066388 | 313274 | 3211068 | 329132 | ${ }^{373} 226$ | 3457966 | 354416 | 363302 | 372385 | 381948 | 391237 | 4010181 | 4110435 | 421196 | 431826 |
 | $(=)$ Profit before lax | | 12791367 | | ${ }_{13506251}$ | 512 | | S10406 | 1482313 | S3018 | 15669686 | 986708 | 16417967 | | | | | | | | | 19118508 | 920088 | 405103 | (3966 | | 10161455 |
 | $\stackrel{\text { ¢) }}{ }$ Reverue | | 9038773 | 9296789 | 9986 | 972577 | 889 | 619 | 10470150 | | | | | | 122164 | 12547493 | 82983 | 13182710 | 1349452 | 1845479 | 633 | 14933884 | 94867 | 1061429 | 10966183 | 7363 | 1495308 |
 | | ${ }_{8}^{19915960}$ | | | | | ${ }^{134}$ | ${ }^{131}$ | 127 | 124 | 122 | 118 | ${ }^{116}$ | ${ }^{113}$ | | | | | | | | | | | | | |
 | ${ }_{\text {REPam }}^{\text {Rem }}$ | | 148 | ${ }^{14}$ | ${ }^{141}$ | ${ }^{137}$ | ${ }^{134}$ | ${ }^{131}$ | 127 | 124 | 12 | 118 | 116 | 113 | - | | \bigcirc | | | | | | | | | | |
 | | 7798 | |
 | Profit afer rax wout interest | | 375271 | 3848512 | 3946566 | 404134 | 4143831 | ${ }^{4248821}$ | ${ }_{4}^{432291}$ | 4461238 | 457710 | ${ }_{4}^{4} 68862$ | 480767 | 429651 | 5088113 | 5180130 | 538836 | 449 | 4296375 | 4006888 | 4515216 | 462524 | -1204380 | ${ }^{2}$ | -127217 | 1282889 | ${ }^{-133885}$ |
 | (t) Dotr paymens | | 262179 | ${ }_{\substack{3 \\ 300468 \\ 268282}}$ | ${ }_{\substack{317779 \\ 274464 \\ \hline}}$ | ${ }_{\substack{3248989326}}^{283}$ | ${ }^{338892} 283939$ | ${ }_{\substack{341274 \\ 29625 \\ \\ \\ \hline}}$ | ${ }_{\substack{396565 \\ 3090413}}^{\substack{\text { a }}}$ | $\underset{\substack{388899 \\ 3116424}}{\substack{\text { a }}}$ | ${ }_{\substack{3673 \\ 319434}}$ | 376598
 3774198 | 385958 | ${ }_{\substack{386692 \\ 339949}}$ | ${ }_{\substack{488992 \\ 352594}}^{4}$ | ${ }_{\substack{415836 \\ 361409}}$ | $\underset{\substack{4320213 \\ 370448}}{\substack{\text { a }}}$ | 3797060 | 3891986 | 3882886 | 4689018 | 4191243 | 428624 | 443325 | 4513511 | 4626388 | |
 | (+) Deprecei | | 2387007 | 2447297 | 258849 | 257119 | 263541 | 270138 | 278882 | 2888114 | 299067 | 2981794 | 3056388 | ${ }_{3132747}$ | 3211066 | 329134 | 373726 | 3457966 | 354416 | 363326 | 323882 | 381948 | 391237 | 4010181 | 410435 | 4211196 | |
 | Free eet cashlfow | 58243 | - 4942121193 | | | | 234439 | -18549292920. | -116842920 | ${ }_{\text {- } 5020246}$ | ${ }^{7} 200597$ | ${ }_{9} 7194230$ | ${ }^{16544837}$ | ${ }_{24889952}$ | ${ }^{17818145}$ | ${ }^{192927408}$ | ${ }_{47873305}$ | ${ }_{59} 1142743035$ | ${ }_{71053512}^{17}$ | 1202999 | (122808987 | ${ }_{\text {col }}^{1263215}$ | ${ }^{\text {cosentic }}$ | (1203979 | | (155655 | |

 ## ApPENDIX N

 | $\mathrm{LCOE}_{\text {wso }}$ Model Inputs | | |
 | :---: | :---: | :---: |
 | Legend | | |
 | Green cells indicate information and are updatedautomarically based on user input into yellow cells. | | |
 | | | |
 | Vellow ells a refor use input itfomation abour the project | | |
 | Gray cells sere not used. | | |
 | Wind Project Information | | Notes |
 | Project Name | Firsare Wind famm | |
 | Project Location | Aracat (Brail) | |
 | Turbine Model | Vetas v90-2Mw | |
 | Number of Wind Turbines ($N_{w T}$) | 25 | H-1 |
 | Turbine Sixe | 2000 | ${ }_{\text {[kW] }}$ |
 | Wind Farm Capacity (F $_{\text {copp }}$) | 50000 | ${ }_{\text {[kW] }}$ |
 | Rotor Diammerter (D) | 90.0 | ${ }^{[m]}$ |
 | Swept Area per Turbine (A) | 6361.7 | ${ }^{\left[m^{2}\right]}$ |
 | Hub height (H) | 105.0 | ${ }^{\text {[m] }}$ |
 | Wind speed neasured at (H_{0}) | 10.0 | ${ }^{[\mathrm{m}]}$ |
 | Termin ngosity factor (a) | 0.14 | ${ }^{\text {H/- }}$ |
 | Betz Linits coefficient ($C_{\text {pace }}$) | ${ }^{0.5926}$ | ${ }^{\text {H }}$ |
 | Lifetime of Wind Fam(N) | 25 | [yr] |
 | Production Efficiency ($W F_{\text {fe }}$) | 11.2\% | [\%] |
 | Availabiliy | 97.9\% | [\%] |
 | | 357 | ${ }_{\text {[d } / \mathrm{y}]}$ |
 | Wind Farm Life-Cycle Capial Cost Model | | Notes |
 | ${ }^{W} T_{\text {cur }}$ | 553.7256 | [s/kW] |
 | ${ }_{C M}{ }_{\text {w }}$ | 265.32 | [s/kw] |
 | ${ }^{R} C_{W T}$ | 73.70\% | ${ }_{[6 / 5 / 5 \mathrm{k}}{ }^{\text {c }}$ |
 | ${ }_{\text {ckw }}$ | 400.00 | [s/kw] |
 | IPT | 10.00\% | [\%] |
 | $T_{\text {cu }}$ | 484.3859 | [s/kw] |
 | $T_{\text {maxas }}$ | 138000 | [kg] |
 | ${ }^{R C}{ }_{r}$ | 26.30% | ${ }_{[6 / 5 / 5 \mathrm{KW}]}$ |
 | $c_{\text {seed }}$ | 0.1900 | [s/kg] |
 | ${ }^{\text {LWW }}$ cur | 39.1957 | ${ }^{15 / m k w}$] |
 | $W_{\text {cap }}$ | 50000 | ${ }^{\text {kxw] }}$ |
 | $L_{L_{k}}$ | 13950 | ${ }^{[\mathrm{m}]}$ |
 | $C A B B_{\text {cose }}$ | 2000.00 | ${ }^{[5 / \mathrm{m}]}$ |
 | ${ }^{\text {cParam }}$ | 30.969 | [5/kW] |
 | ${ }^{E F}{ }_{\text {c }}$ | 400.00 | [5/kW] |
 | ς | 0.08\% | [\%] |
 | ${ }^{\text {TS }} \mathrm{cu}$ | 11.4566 | ${ }_{\text {[skw }}{ }^{\text {d }}$ |
 | $T_{\text {c }}$ | 0.0400 | ${ }^{[5 / \mathrm{m}]}$ |
 | ${ }_{T} L_{r}$ | 1200 | ${ }_{[1 / k W 1}$ |
 | L_{*} | 3000 | [m] |
 | S_{B} | 113.00 | [5/kwh] |
 | ${ }^{\text {Stcu }}$ | 427345 | ${ }_{\left[5 / \mathrm{m}^{2} / \mathrm{kw}\right]}$ |
 | WF app | 50000 | [kW] |
 | $W_{T m a x}$ | 42.5238 | [s/kw] |
 | ${ }^{\text {Bld }}$ cout | 500.00 | ${ }^{\left[5 \mathrm{sm}^{2}\right]}$ |
 | ${ }^{B 1 / d}$ araa | 300.0 | ${ }^{\left[m^{2}\right]}$ |
 | ${ }^{P O} \mathrm{Cur}^{\text {ar }}$ | 359374 | [5/kW] |
 | ${ }_{\text {FS }}$ | 19.88 | [s/kw] |
 | DT | 87.22 | [s/kW] |
 | ${ }_{\text {EG }}$ | 40.52 | [s/ww] |
 | $\mathrm{Fcm}_{\mathrm{cu}}$ | 3.712 | [s/kw] |
 | $W_{\text {wacc }}^{\text {proj }}$ | 4.90% | [\%/yr] |
 | $n_{\text {fn }}$ | 1.0 | [yr] |
 | $w_{\text {Fow }}$ | 0.30\% | [\%] |
 | ${ }^{\text {ccca }}{ }_{\text {cu }}$ | 2.4042 | [s/kw] |
 | κ | 0.20% | [5] |
 | $L_{\text {LCCCM }}{ }_{\text {wF }}$ | 1204.5180 | [$\mathrm{s} / \mathrm{kW}]$ |

 Figure N. 1 I-O representation of $L C O E_{\text {wso }}$ algorithm calculations for the hypothetical $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Aracati (Brazil) with sensitivity analysis of $E_{p i}$ (Case ${ }_{2}$). Source: Own elaboration

 Figure N. 2 I- O system representation of $L C O E_{\text {wso }}$ algorithm calculations for the hypothetical $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Corvo Island (Portugal) with sensitivity analysis of $E_{p i}\left(\right.$ Case $\left._{2}\right)$. Source: Own elaboration

 Figure N. 3 I- O system representation of $L C O E_{\text {wso }}$ algorithm calculations for the hypothetical $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Cape Saint James (Canada) with sensitivity analysis of $E_{p i}\left(\right.$ Case $\left._{2}\right)$. Source: Own elaboration
 Table N． 1 Energy production（ $A E P_{\text {araii）}}$ ）map of the wind farm for Aracati（Brazi）

 | Months | $\begin{gathered} v_{w c} \\ (m s s) \end{gathered}$ | $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$ | $\begin{gathered} \hline H_{\text {prod }} \\ (h) \\ \hline \end{gathered}$ | ${ }_{\text {AEP }} \mathrm{maxil}^{\text {（k Wh }}$ ） | |
 | :---: |
 | | | | | $y r_{1}$ | $y r_{2}$ | rr_{3} | rr_{4} | y_{5} | $y r_{6}$ | y_{7} | yrs | yr， | y^{10} | $y_{\text {r }}$ | yr ${ }_{12}$ | $y r 13$ | ${ }^{\text {r }}{ }_{1 / 4}$ | $y^{1 / 5}$ | ${ }^{\text {r }}{ }_{16}$ | y_{17} | $y_{1 / 8}$ | y_{19} | y_{20} | y^{21} | ${ }^{2} r_{22}$ | 23 | yr_{24} | |
 | January | 5.8 | 1.1665 | 738 | 16931.3 | 8890198 | 3802165 | 7507410 | 557361 | 8890198 | 557361 | 557361 | 4232212 | 8890198 | 8890198 | 557361 | 3802165 | 7507410 | 4232212 | 8890198 | 8890198 | 557361 | 3802165 | 7507410 | 557361 | 3802165 | 7507410 | 32 212 | 4232212 |
 | February | 4.9 | 1.1666 | 9 | 847940 | 678352 | 3662567 | 6783520 | 777316 | 6783520 | 777316 | 777316 | 4713419 | 6783520 | 6783520 | 777316 | 3662567 | 6783520 | 482 | 482342 | 3290403 | 4713419 | 7693599 | 1572412 | 1572412 | 7693599 | 6783520 | 4713419 | 4713419 |
 | March | 4.0 | 1.1 | 735 | 555090 | 7476817 | 5424310 | 8853970 | 975829 | 7476817 | 975829 | 975829 | 6543367 | 7476817 | 7476817 | 975829 | 5424310 | 8853970 | 894553 | 894553 | 1809568 | 4214966 | 1809568 | 1686232 | 1686232 | 7806630 | 8853970 | 3786671 | 6543367 |
 | April | 4.7 | 1.16 | 711 | 865098 | 632790 | 632798 | 4076176 | 1630708 | 6327908 | 1630708 | 1630708 | 7230621 | 6327908 | 6327908 | 174988 | 22908 | 4076176 | 943697 | 943697 | 1630708 | 63279 | 1630708 | 3661984 | 943697 | 7230621 | 6327908 | 174988 | 7230621 |
 | May | 6.0 | 1.167 | ， | 180950 | 54 | 747 | 542 | 180950 | 542 | 180950 | 180950 | 7806340 | 24109 | 退410 | 1886169 | 7653 | 6543124 | 88610 | 168610 | 8592 | 88536 | 8579 | 555 | 89452 | 654312 | 4214809 | 1686169 | 7806340 |
 | June | 7.9 | 1.168 | 7 | 39449 | 3944 | 730644 | 6124120 | 3544051 | 3944904 | 3544051 | 3544051 | 8286679 | 44904 | 44904 | 544051 | 7306444 | 5076764 | 693625 | 1693625 | 83237 | 73064 | 37237 | 837237 | 354405 | 5076764 | 5076764 | 13305 | 8286679 |
 | July | 8.6 | 1.1698 | 735 | 5437072 | 3795580 | 8874801 | 1690199 | 4224882 | 3795580 | 4224882 | 4224882 | 556396 | 556396 | 3795580 | 5437072 | 8874801 | 1813825 | 3795580 | 3795580 | 556396 | 7494407 | 556396 | 978125 | 4224882 | 4224882 | 1690199 | 896658 | 556396 |
 | August | 9.6 | 1.1677 | 735 | 7480694 | 1810506 | 1810506 | 1810506 | 8858561 | 1810506 | 5427123 | 5427123 | 895017 | 895017 | 1810506 | 4217151 | 1810506 | 1687106 | 5427123 | 7810678 | 7810678 | 895017 | 4217151 | 7810678 | 5427123 | 1810506 | 1810506 | 555378 | 895017 |
 | September | 10.1 | 1.1657 | 711 | 8554384 | 1629176 | 1629176 | 3658543 | 7542482 | 1629776 | 6321963 | 6321963 | 942810 | 942810 | 1629176 | 6321963 | 1629176 | 3658543 | 6321963 | 7223828 | 7223828 | 942810 | 5240771 | 8554384 | 6321963 | 1629776 | 3658543 | 6321963 | 942810 |
 | October | 9.7 | 1.1645 | 735 | 7789201 | 973650 | 973650 | 553851 | 7460125 | 973650 | 7460125 | 7460125 | 1682467 | 1682467 | 973650 | 8834203 | 973650 | 553851 | 7460125 | 6528759 | 6528759 | 1805528 | 6528759 | 4205556 | 7460125 | 973650 | 973650 | 883203 | 1682467 |
 | November | 9.2 | 1.1638 | 687 | 6098939 | 833795 | 833795 | 833795 | 6098939 | 833795 | 7276401 | 7276401 | 1686661 | 1686661 | 833795 | 7276401 | 833795 | 833795 | 7276401 | 5055889 | 5055889 | 1571703 | 6968989 | 6098939 | 7276401 | 833795 | 833795 | 7276401 | 1686661 |
 | December | 7.6 | 1.1651 | 735 | 3780365 | 554166 | 554166 | 974204 | 5415277 | 554166 | 8839226 | 8839226 | 3780365 | 3780365 | 554166 | 7464366 | 554166 | 974204 | 8839226 | 4207946 | 4207946 | 3780365 | 7793630 | 5415277 | 8839226 | 554166 | 554166 | 7464366 | 3780365 |
 | nual | 7.4 | 1.1666 | 85 | 48856319 | 4844328 | 48 | 48200 | 48895032 | 4844328 | 4884485 | 4884485 | 48356354 | 4839173 | 4844328 | 48841886 | 4867026 | 4836288 | 49053015 | 49213265 | 48817403 | 48463568 | 48054765 | 48883303 | 4877993 | 48179078 | 48288240 | 48430728 | 48356 |

 $\xrightarrow[\text { Table N．2 Energy production map of the wind farm for Corvo Island（Portugal）} \quad \text { with sensitivity analysis of } E_{p i} \text {（Case }{ }_{2} \text { ）}]{\text { H }}$

 | ¢L9 ¢SI 68 | 076 S1968 | cr8 ste 06 | oszzzo os | 9710968 | L81 19906 | 9580906 | 124 9206 | L9zozzo6 | \＆88 89968 | 877 $\angle 8688$ | 999 \＆1106 | 10899106 | L9881806 | ¢8C89968 | ¢9968806 | L98 81806 | 188 | 95006 | 58618906 | 90176688 | 969 98 68 | tLS 5868 | ¢¢¢ 4806 | L52 LS9 68 | 6LS8 | zzzz＇I | 16 | ${ }^{\text {pmuur }}$ |
 | :---: |
 | ${ }^{0} 5656$ | tてL9z8t | zL18919 | olr 296 ＋ 1 | 666810 z | 902 665 | olz 962 | tzL928 | 815 ¢0s | 626810 | orz 962 | 108 It8 \＆ | 626810 z | 012986＋1 | 626810 | 904668 g1 | orz $987+1$ | 626810 z | 108 1t8 \＆ | LtS S91 ε | 626810 て | LtS S91 \％ | 626810 z | zts 998 E | 902 665 \＆ | ¢ $¢<$ | LEzz＇I | S＇II | пиววха |
 | cze c9az | 8II StLS | tos088 I | \＆zes9 zl | 260902 | 8820896 | $260902 z$ | ¢0¢8Ls \mathcal{E} | 8820896 | 260902 z | \＆ze 99 zı | ¢ct $8+6$ 亿 | z6090zz | \＆zeq9 zl | 260902 z | 929 Sot t | Ezz 9971 | 260 902z | ¢¢t8t6て | z60902 | 200902 | $260902 z$ | z60 90zz | ¢088L5 ε | t¢0 0666 | $\angle 89$ | ャ6İI | 9.01 | qиила ${ }_{\text {N }}$ |
 | LLEE | LZL 000 Z | IELLt¢ | 108 $21 /$ ¢ 1 | O¢69EI \＆ | 989 sct \angle | LZL 000 z | 0¢69¢IE | 114889 ol | $0 ¢ 6981$ \＆ | 108 zt | 989 s | 0¢69¢IE | 108zLltst | O¢69EI \＆ | 1087 | los zutst | 989 ¢ $¢$ | İI | LZL000 | 086981 \＆ | LZL 000 Z | O¢6 9¢I \＆ | zltzII 9 | zlt UII 9 | s¢ $<$ | 9 9tz＇I | 68 | 1.129010 |
 | ISt sz6 I | 12885% | ze8¢99\％ | 0991166 | ze8 999 \＆ | tctiz8s | z68 966 z1 | 12885\％ | 768596 al | z88 999 \＆ | 11 | t¢t 288 S | ze8999\％ | 0991166 | ze8 999 \＆ | 0991166 | 0991166 | tSt 288 s | Istsz6 I | 6z1 ¢09 | 621 ¢09 \dagger | 6Z1 ¢09t | tst 288 s | Istst6 I | 288 9998 | IIL | t90でI | 92 | ．rquardas |
 | 6os sszor | ＋¢9 EzIE | L18294t | 691 tot \angle | L18 $294+$ | LI8 29 ＋ | 969 SIt st | Ltz 266 I | $969 \mathrm{Sl\mid tg}$ | L18794 | Ltz 266 l | 19988501 | L18794t | 691 tot \angle | L18794 | 281 LE\＆ | 691 tot \angle | \＄8606LE | tos9809 | 969 stit ε I | 580062 | 58062 E | ¢ 50668 | 1998801 | zsl $\angle 8 \varepsilon$ Z | ¢\＆ | sloz＇I | 9 | $1{ }^{1 s n 8 n} \mathrm{~V}$ |
 | LSS $25+$ | tzests | tzt gos st | sosgzt 9 | soctzi 9 | tzLsI8\＆ | usczeol | z1166t | socgzi 9 | socrel 9 | 99t $2 ¢ ¢$ z | SLz 500 | soçzı9 | sosazt 9 | socger 9 | sLz 500 z | Sos 9 zı 9 | 090 trl | L8s SSt $^{\text {L }}$ | tzt gos st | us za | Sog ozt | $296862+$ | tzt $\operatorname{sos} \varepsilon t$ | sLz 500 | ¢\＆ | tsIz＇ | 19 | ${ }_{4} n^{n}$ |
 | 268 | 8Z | SSL 669 z1 | cIs 9ost | $872500<$ | 880 | $8 z$ | ss | 880588 I | 872 500 L | ItS SS6て | Itt IIzz | 8ZLS00 | sis90st | $872500 \sim$ | Izt tioot | sIs 90St | ssc | sisgost | 121 to or | 872500 | 872500 | $8 \mathrm{Z}_{5} 502$ | SSL 869 zi | ItS SS6て | 489 | zz＇I | IL | uns |
 | L08t＋8t | ssoztsol | 8926te +1 | ＋61998\＆ | ssozs or | 91t LLEz | 0821619 | ot99t9gI | 91tน¢ | ssozst or | t61 958 \＆ | eso zstol | S966tr tr | t61998\＆ | ssozst or | 0821619 | t6I 958E | sozstor | ssozstol | csozstor | 0821619 | eso zstor | ssozstol | ssozstol | 208t＋8t | s¢ | żzı | 28 | W |
 | 190tL ε | 819 cze $\frac{1}{}$ | ILI 280 \＆ | ILI 280 \＆ | 819＜zz \＆1 | 149616 gl | ILI 280 \＆ | $6 \varepsilon 66101$ | ILI280 \＆ | 819＜z \＆l | 965669 t | 965 669t | 819＜z ¢ 1 | ILI 280 \＆ | ${ }_{819}<8 \varepsilon 1$ | $\angle 88508 L$ | ILI 280 \＆ | 965 669 | sLl sthol | $\angle 88508 /$ | sll st ol | sul strol | s ¢ \＆tbol | L88508 2 | L88508 1 | IIL | LIEC＇I | ¢\％ | ${ }^{\mu}{ }^{\text {d }}$ V |
 | －8E681 ε | s98 800＋ 1 | oss lıtol | z81 teq | s98 sob tl | 480869 \＆1 | 120 ¢98t | zzoos \angle | IEL028 \＆ | 48889 | oz9 9 Iz 9 | $\angle 80869$ | 4888 | 8LE98E | 480 | t88 6818 | 8LE98Ez | 288898 El | 28889 \＆1 | oz9 +1 ¢ 9 | $\angle 80889$ gl | $\angle 888898$ | 18088981 | ＋88681 ε | ose 14 | S $¢$ | 6zEz＇I | OI | |
 | 892 885 21 | 20686 II | ¢f808s9 | \＆бて <0 て | 206 626 II | цг | 268 69E E | $66960+s$ | ¢0z $\varepsilon ¢$ | 897858 | ¢¢808s 9 | z06 ¢z6II | IzISII 6 | tILOLLI | 897858 z1 | 268 698 \＆ | Hocli | 89885 zi | 20682 | 26¢ 698ε | z06 ¢86 II | 206 | 206 | ¢oz | 206 ¢z6 11 | $6 \varepsilon 9$ | Stez＇I | S＇II | ${ }_{\text {cıипия }}$ |
 | zo zz8 81 | 920zt8 01 | gozts ol | gozts ol | 920 ctr ol | 920 criol | 9rozz 8 ol | groztr ol | 867 ISt +1 | 9rozts ol | 920 28801 | 8621 lst 1 | 920278 ol | gozts ol | 9zozts ol | $8671 s t+1$ | 9zo 28801 | gzo zts ol | ${ }_{862} / 5 t+1$ | 862 Ist +1 | 862 Lst +1 | 862 Ist +1 | ${ }_{8621 s t+l}$ | Ist＋l | clst ${ }_{\text {ct }}$ | $8 \varepsilon \angle$ | \＆IEC＇I | L＇II | c．umup $^{\text {d }}$ |
 | ${ }_{s z_{1 /}}$ | ${ }^{2 / 1 /}$ | ${ }_{\text {¢ } 2, \ldots}$ | ${ }^{2 \tau}, \ldots$ | ${ }^{1 z, i}$ | ${ }_{02,1 i}$ | ${ }^{61}$ ，／i | ${ }^{81 / \Lambda}$ | ${ }^{4 \prime}{ }_{\text {di }}$ | ${ }_{9}{ }_{\text {dic }}$ | ${ }_{\text {st，}}^{1 / 1}$ | ${ }^{H / \lambda}$ | ${ }^{\text {E／}}$ ，$/ \overline{1}$ | ${ }^{2} /{ }_{\text {a }}$ | ${ }^{\prime \prime}{ }_{\text {İ }}$ | ${ }^{01,1 i}$ | ${ }_{6} .1 /$ | $8.1 /$ | ${ }_{4.1}$ | 9 ¢ | ${ }_{\text {s，í }}$ | ${ }_{\text {t，}}^{1 /}$ | ${ }_{\text {¢，}}$ | ${ }_{\text {z，A }}$ | ${ }_{1,1 i}$ | 4） | | s，u） | |

 | Months | $\begin{gathered} \hline v_{\text {we }} \\ (m s) \\ \hline \end{gathered}$ | $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$ | $H_{\text {prod }}$
 （h） | ${ }_{\text {AE }} \mathrm{P}_{\text {axail }}(k W h)$ | |
 | :---: |
 | | | | | yr_{1} | yr_{2} | y_{3} | $y r_{4}$ | r_{5} | yr_{6} | yr7 | yr_{8} | yr9 | $y r_{10}$ | yr ${ }_{\text {II }}$ | yr ${ }_{12}$ | yr_{13} | yr ${ }_{14}$ | $y^{1 / 5}$ | yr ${ }_{16}$ | yr ${ }_{17}$ | yr_{18} | r_{19} | r_{20} | r_{21} | r_{22} | r_{23} | 24 | y^{25} |
 | January | 15.4 | 1.2561 | 738 | 32734798 | 32737798 | 32738798 | 32734798 | 32734798 | 32734798 | 32734798 | 32734798 | 32737798 | 32734798 | 32734798 | 8013494 | ${ }^{32} 734798$ | 32734798 | 32734798 | 32734798 | 32734798 | 32734798 | 32734798 | 40758899 | 32737798 | 32734798 | 28019994 | 8013494 | 71009 |
 | Februa | 14.7 | 1.2522 | 639 | 24248099 | 1446724 | 6912583 | 26288520 | 1446722 | 1446724 | 2622852 | 26228520 | 6912583 | 1446724 | 1446724 | 7749925 | 26228520 | 6912583 | 17377262 | 6912583 | 6912583 | 6912583 | 6912583 | 2246574 | 2628820 | 2622852 | 2895958 | 774922 | 1735123 |
 | M | 12.7 | 1.2495 | 735 | 18226532 | 18226532 | 889626 | 2783479 | 1237699 | 18226532 | 2783479 | 2783479 | 8896263 | 137694 | 2632 | 944 | 3779 | 8896263 | 30108137 | 8896263 | 8896263 | 8896263 | 8896263 | 22991460 | 2783479 | 2783479 | 31414830 | 9971944 | 1892133 |
 | April | 12.4 | 1.2490 | 11 | 16057711 | 19287404 | 9641890 | 24828913 | 9641890 | 19287404 | 24828913 | 913 | 9641890 | 9641890 | 288704 | 9641890 | 24828913 | 964890 | 26913496 | 9641890 | 29111609 | 964890 | 9641890 | 221850 | 199719 | 24888 | 24919931 | 9641890 | 181398 |
 | May | 11.2 | 225 | 735 | 12306614 | 2553364 | 9915560 | 1984448 | 9915560 | 2553364 | 19834848 | 19834848 | 9915560 | 9915560 | 25.33644 | 12306614 | 19834888 | 9915560 | 25.3364 | 9915560 | 2767395 | 9915560 | 9915560 | 20989216 | 1983848 | 19834888 | 19089277 | 12306614 | 16168 |
 | Ju | 10.4 | 351 | 687 | 474 | 25714865 | 1143985 | 16838388 | 8218718 | 25714865 | 16888388 | 16838388 | 1143985 | 8218718 | 25714865 | 15.34258 | 16838388 | 143985 | 16838388 | 1143985 | 2372322 | 11439885 | ${ }^{1143}$ | 16955390 | 16888388 | 16883388 | 16700885 | 15342558 | 1494 |
 | July | 10.0 | 1.2275 | 735 | 531 | 2957699 | 16314803 | 16314883 | 7795266 | 2957699 | 16314803 | 16314803 | 16314803 | 7795266 | 29577699 | 1790542 | 16314803 | 16314803 | 7795266 | 16314883 | 19996205 | 16314803 | 16314883 | 15530715 | 16046466 | 16314883 | 16700185 | 17905422 | 862516 |
 | August | 9.7 | 1.2216 | 735 | 7757712 | 997 | 17 | 120999 | 1789191 | 12099972 | 1299972 | 1299972 | 17819161 | 17819161 | 12099972 | 19501798 | 12099972 | 1781919 | 8697428 | 17819161 | 17819161 | 1781918 | 178191 | 129031 | 537886 | 12099972 | 12588 | 19501798 | 7111908 |
 | September | 10.4 | 2234 | 711 | 9444238 | 7515148 | 028 | 9444238 | 26361791 | 7515148 | 9444238 | 9444238 | 1882028 | 26.361791 | 7515148 | 24.319940 | 9444238 | 18892228 | 9444238 | 18890228 | 15728541 | 18892028 | 18892028 | 12321085 | 13275221 | 944238 | 8842059 | 24319940 | 192979 |
 | October | 13.1 | 1.2327 | 735 | 196990 | 8776461 | 2972682 | 9837656 | 25333032 | 8776461 | 9837556 | 9837656 | 2970682 | 25333032 | 8776461 | 27459940 | 9837656 | 25333032 | 9837656 | 25333032 | 12209224 | 29702682 | 25333032 | 12242414 | 8858686 | 9837556 | 8122639 | 27459940 | 1596 |
 | November | 14. | 1.2429 | 687 | 238742 | 9271165 | 25878688 | 8271078 | 2799285 | 9271165 | 8271078 | 8271078 | 25878688 | 2799285 | 927165 | 27992285 | 8271078 | 25878688 | 11506828 | 25878888 | 9271165 | 25878888 | 25878688 | 7423013 | 8271078 | 8271078 | 8870902 | 2799285 | 219510 |
 | December | 15.1 | 1.2528 | 735 | 30186350 | 9997848 | 2574545 | 7955677 | 1999456 | 9997848 | 7955677 | 7955677 | 2574545 | 19999456 | 9997848 | 32488621 | 7955677 | 30188350 | 16.550529 | 30186350 | 9997848 | 2574545 | 31188350 | 6350393 | 7955677 | 7955677 | 9163644 | 32488621 | 42751 |
 | Апnи | 12.5 | 1.2404 | 8579 | 212467325 | 213202961 | 213887985 | 21223670 | 21265997 | 213202961 | 21223670 | 212223670 | 213887985 | 212655974 | 213202961 | 212704229 | 212223670 | 213959139 | 213437670 | 213959139 | 213678613 | 213887985 | 213959139 | 213199827 | 21322853 | 21223670 | 213512714 | 21270429 | |

 Table N． 4 Wind speed series simulations for $A E P_{\text {avait in }}$ Aracati（Brazil）

 | Months | $\begin{gathered} v_{w c} \\ (m / s) \end{gathered}$ | Wind speed data series for simulations（ m / s ） | |
 | :---: |
 | | | ${ }^{\text {r }} r_{1}$ | yr_{2} | $y r 3$ | $y r_{4}$ | $y r s_{5}$ | $y r_{6}$ | $y r 7_{7}$ | $y r r s$ | $y{ }_{9}$ | $y r_{10}$ | $y_{1 / 1}$ | $y r_{12}$ | $y_{1 / 3}$ | $y_{1 / 4}$ | ${ }^{\prime 2} r_{15}$ | $y r_{16}$ | y_{17} | $y r_{18}$ | y_{19} | $y r_{20}$ | y_{21} | y^{22} | ${ }^{4} r_{23}$ | y^{24} | ${ }_{\text {r }}^{25}$ |
 | January | 5.8 | 5.8 | 10.1 | 7.6 | 9.6 | 4.0 | 10.1 | 4.0 | 4.0 | 7.9 | 10.1 | 10.1 | 4.0 | 7.6 | 9.6 | 7.9 | 10.1 | 10.1 | 4.0 | 7.6 | 9.6 | 4.0 | 7.6 | 9.6 | 7.9 | 7.9 |
 | February | 4.9 | 4.9 | 9.7 | 7.9 | 9.7 | 4.7 | 9.7 | 4.7 | 4.7 | 8.6 | 9.7 | 9.7 | 4.7 | 7.9 | 9.7 | 4.0 | 4.0 | 7.6 | 8.6 | 10.1 | 6.0 | 6.0 | 10.1 | 9.7 | 8.6 | 8.6 |
 | March | 4.0 | 4.0 | 9.6 | 8.6 | 10.1 | 4.9 | 9.6 | 4.9 | 4.9 | 9.2 | 9.6 | 9.6 | 4.9 | 8.6 | 10.1 | 4.7 | 4.7 | 6.0 | 7.9 | 6.0 | 5.8 | 5.8 | 9.7 | 10.1 | 7.6 | 9.2 |
 | April | 4.7 | 4.7 | 9.2 | 9.2 | 7.9 | 5.8 | 9.2 | 5.8 | 5.8 | 9.6 | 9.2 | 9.2 | 6.0 | 9.2 | 7.9 | 4.9 | 4.9 | 5.8 | 9.2 | 5.8 | 7.6 | 4.9 | 9.6 | 9.2 | 6.0 | 9.6 |
 | May | 6.0 | 6.0 | 8.6 | 9.6 | 8.6 | 6.0 | 8.6 | 6.0 | 6.0 | 9.7 | 8.6 | 8.6 | 5.8 | 9.6 | 9.2 | 5.8 | 5.8 | 4.9 | 10.1 | 4.9 | 4.0 | 4.7 | 9.2 | 7.9 | 5.8 | 9.7 |
 | June | 7.9 | 7.9 | 7.9 | 9.7 | 9.2 | 7.6 | 7.9 | 7.6 | 7.6 | 10.1 | 7.9 | 7.9 | 7.6 | 9.7 | 8.6 | 6.0 | 6.0 | 4.7 | 9.7 | 4.7 | 4.7 | 7.6 | 8.6 | 8.6 | 4.9 | 10.1 |
 | July | 8.6 | 8.6 | 7.6 | 10.1 | 5.8 | 7.9 | 7.6 | 7.9 | 7.9 | 4.0 | 4.0 | 7.6 | 8.6 | 10.1 | 6.0 | 7.6 | 7.6 | 4.0 | 9.6 | 4.0 | 4.9 | 7.9 | 7.9 | 5.8 | 4.7 | 4.0 |
 | August | 9.6 | 9.6 | 6.0 | 6.0 | 6.0 | 10.1 | 6.0 | 8.6 | 8.6 | 4.7 | 4.7 | 6.0 | 7.9 | 6.0 | 5.8 | 8.6 | 9.7 | 9.7 | 4.7 | 7.9 | 9.7 | 8.6 | 6.0 | 6.0 | 4.0 | 4.7 |
 | September | 10.1 | 10.1 | 5.8 | 5.8 | 7.6 | 9.7 | 5.8 | 9.2 | 9.2 | 4.9 | 4.9 | 5.8 | 9.2 | 5.8 | 7.6 | 9.2 | 9.6 | 9.6 | 4.9 | 8.6 | 10.1 | 9.2 | 5.8 | 7.6 | 9.2 | 4.9 |
 | October | 9.7 | 9.7 | 4.9 | 4.9 | 4.0 | 9.6 | 4.9 | 9.6 | 9.6 | 5.8 | 5.8 | 4.9 | 10.1 | 4.9 | 4.0 | 9.6 | 9.2 | 9.2 | 6.0 | 9.2 | 7.9 | 9.6 | 4.9 | 4.9 | 10.1 | 5.8 |
 | November | 9.2 | 9.2 | 4.7 | 4.7 | 4.7 | 9.2 | 4.7 | 9.7 | 9.7 | 6.0 | 6.0 | 4.7 | 9.7 | 4.7 | 4.7 | 9.7 | 8.6 | 8.6 | 5.8 | 9.6 | 9.2 | 9.7 | 4.7 | 4.7 | 9.7 | 6.0 |
 | December | 7.6 | 7.6 | 4.0 | 4.0 | 4.9 | 8.6 | 4.0 | 10.1 | 10.1 | 7.6 | 7.6 | 4.0 | 9.6 | 4.0 | 4.9 | 10.1 | 7.9 | 7.9 | 7.6 | 9.7 | 8.6 | 10.1 | 4.0 | 4.0 | 9.6 | 7.6 |
 | Annual | 7.4 |

 ． 6 Wid speed series simulations for $A E P_{\text {avaii }}$ in Cape Saint James（Canada）\quad with sensitivity analysis of $E_{p i}$（Case
 さききミ

 | mow | （mss） | | | | | | | | | | | | | | r，it | | | | | | | | | | | |
 | :---: |
 | Jamary | 15.4 | 15.4 | 15.4 | 15.4 | 15.4 | 15.4 | 15.4 | 15. | 15.4 | 15.4 | 15.4 | 15.4 | 9.7 | ${ }^{15.4}$ | 15.4 | 15.4 | ${ }^{15,4}$ | ${ }^{13.4}$ | 15.4 | 15.4 | 16.9 | ${ }^{15.4}$ | 1st | 14.7 | 9.7 | 9. |
 | Feorna | 1 | 14.7 | 12.4 | 9.7 | 15. | 12 | 12.4 | ， | 15. | 9.7 | 12. | 12.4 | 10.0 | 15.1 | 9.7 | 13. | | 9.7 | | 9．7 | | | 15. | 15.6 | 10.0 | 13. |
 | | | | | | 14.7 | | | 14.7 | 14 | | | | | | 10.0 | | 10.0 | 10. | | | ${ }^{13,8}$ | 14. | 14 | 15. | 10.4 | 12 |
 | | | | ${ }^{13.1}$ | | 14. | 10 | ${ }^{13.1}$ | 14. | 14. | 10.4 | | ${ }^{13}$ | 10.4 | 14.3 | 10.4 | 14.7 | \％ | 15. | 10. | ${ }^{\text {ofe }}$ | ${ }^{13 .}$ | ${ }^{13,3}$ | 14.3 | 14.3 | 10.4 | 12 |
 | May | 11.2 | 11.2 | 14.3 | 10.4 | ${ }^{13,2}$ | 10.4 | ${ }^{14.3}$ | ${ }_{127}^{13.1}$ | ${ }_{123}^{13,1}$ | ${ }_{10.4}^{10.4}$ | ${ }_{10.4}^{10.4}$ | ${ }_{147}^{14.3}$ | ${ }_{12}^{12.2}$ | ${ }_{1}^{13,1}$ | ${ }_{10.4}^{10.4}$ | ${ }_{12}^{14}$ | ${ }^{10.4}$ | ${ }^{14,}$ | ${ }^{10.4}$ | ${ }_{10.4}^{10.4}$ | ${ }^{13,4}$ | 13.1 | ${ }_{13,1}$ | 13.0 12.7 | 11.2 | 12 |
 | June | 10.4 | 10.4 | ${ }_{1}^{14,}$ | 11.2 | 12.7 | 10.0 | 14.7 151 118 | 12.7 | ${ }_{12.7}^{12.7}$ | ${ }_{124}^{12.2}$ | 10.0
 97 | ${ }_{1}^{14,}$ | ${ }_{127}^{12.4}$ | ${ }_{12.7}^{12.7}$ | ${ }_{12}^{12.2}$ | 12. | ${ }_{124}^{12.2}$ | 13 | ${ }_{12}^{112}$ | 124 | ${ }_{122}^{12.8}$ | ${ }_{123}^{12.7}$ | ${ }_{12.7}^{12.7}$ | ${ }_{12,7}^{12.7}$ | ${ }_{12.4}^{12.4}$ | ${ }_{10}^{12}$ |
 | Angust | ${ }_{9,7}$ | ${ }^{10.0}$ | 11.2 | 12.7 | ${ }_{12}^{12.4}$ | 12.7 | ${ }_{12.1}^{151}$ | ${ }_{12.2}^{12.4}$ | ${ }_{12}^{12.8}$ | ${ }_{12,7}^{12.7}$ | 12.7 | ${ }_{12.1}^{15.1}$ | ${ }_{13,1}^{12.7}$ | ${ }_{12}^{12.8}$ | ${ }_{12.7}^{12.7}$ | 10.0 | ${ }_{12.7}^{12.7}$ | ${ }_{12.7}^{13.7}$ | ${ }_{12,7}^{12.4}$ | ${ }_{12,7}^{12.7}$ | ${ }_{112}^{12.2}$ | ${ }_{12,1}^{12,}$ | ${ }_{12.4}^{12.4}$ | ${ }_{11.4}^{12.5}$ | ${ }_{13,1}^{12.7}$ | |
 | | 10.4 | 10.4 | | ${ }^{13.1}$ | 10.4 | 14.7 | 9.7 | 10.4 | 10.4 | ${ }^{13.1}$ | 14.7 | | 14.3 | 10.4 | ${ }^{13.1}$ | 10.4 | ${ }^{13,1}$ | 12.4 | | 13.1 | | 11.7 | 10.4 | 10.2 | 14.3 | 13 |
 | | 13.1 | 13.1 | 10.0 | 15.1 | | | 10.0 | 10.4 | | | | | | | | | | 11.2 | | | | | | | | |
 | | ${ }^{14,}$ | 14.3 | 10.4 | 14.7 | 10.0 | ${ }^{15.1}$ | 10.4 | 10.0 | 10.0 | 14.7 | ${ }_{15.1}^{15}$ | 10.4 | ${ }_{1}^{15.1}$ | 10.0 | 14.7 | 11.2 | ${ }_{14}^{147}$ | 10.4 | 14.7 | ${ }_{121}^{14,}$ | 9.7 9 | 10.0 97 | ${ }_{10.0}^{97}$ | ${ }^{10.3}$ | cis． | 13 |
 | | | | | | | | 10.4 | ${ }_{12}^{9.7}$ | | | | | ${ }_{15,5}^{12.5}$ | ${ }^{12,5}$ | ${ }_{12,5}^{12.5}$ | ${ }_{12.5}^{12.5}$ | ${ }_{12,5}^{12.5}$ | 10.4 | ${ }_{173}^{12,5}$ | ${ }_{15,1}^{12.5}$ | ${ }_{12.5}$ | $\underline{9,7}$ | 9.7 | 10.1 | ${ }^{15,4}$ | |

 Table N .7 kWh per $\mathrm{H}_{\text {prod }}$

 | Sites | kW/yr | |
 | :---: |
 | | yr_{1} | y_{2} | yr_{3} | yr_{4} | yr_{5} | $y r_{6}$ | yr_{7} | yr_{8} | yr, | y^{10} | $y_{1 / 1}$ | $y r_{12}$ | $y_{1 / 3}$ | $y r_{14}$ | yr_{15} | $y_{1}{ }_{16}$ | $y_{17}{ }^{17}$ | yr_{18} | yr_{19} | $y r_{20}$ | $y r_{21}$ | yr_{22} | $y_{23}{ }^{3}$ | ${ }^{1} r_{24}$ | ${ }^{2 r} 25$ |
 | Aracari (Brazil) | 5695 | 5647 | 5674 | 5629 | 5699 | 5647 | 5694 | 5694 | 5637 | 5641 | 5647 | 5693 | 5674 | 5637 | 5718 | 5737 | 5690 | 5649 | 5602 | 5698 | 5682 | 5616 | 5628 | 5645 | 5637 |
 | Corvo Island (Portugal) | 10451 | 10535 | 10466 | 10473 | 10467 | 10570 | 10498 | 10419 | 10528 | 10530 | 10452 | 10528 | 10510 | 10504 | 10472 | 10452 | 10517 | 10522 | 10556 | 10569 | 10463 | 10523 | 10531 | 10446 | 10392 |
 | Cape Saint James | 24766 | 24852 | 24932 | 24738 | 24788 | 24852 | 24738 | 24738 | 24932 | 24788 | 24852 | 24794 | 24738 | 24940 | 24879 | 24940 | 24908 | 24932 | 24940 | 24841 | 24855 | 24738 | 24888 | 24794 | 24877 |

 | Table N .8 Cashtlow for 25 y | nd farn | project | 50000 kV | | Aracati (Braz) | | | | | with sens | analy | $E_{n i}(C$ | Se 2$)$ | | | | | | | | | | | | | |
 | :---: |
 | Item | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | ${ }_{12}$ Year | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
 | (-) LCCCM $_{\text {w }}$ | 60225901 | - | - | |
 | ${ }_{\text {w }}^{\text {cu }}$ | 27686278 | - |
 | $T_{\text {cm }}$ | 24219295 | - | - | - | - | - | - | - | - | - | | | | | | | | | | | | | | | | - |
 | $L_{\text {LWTG }}^{\text {cm }}$ | 1959783 | - | - | - | - | - | - | - | - | - | - | - | | - | - | - | - | - | - | | | | | | - | - |
 | ${ }^{\text {CP }}$ cm | 1545346 | - | - | - | - | - | | | | | | | | | | | | | | | - | - | - | - | - | - |
 | ${ }^{T S}{ }_{\text {cu }}$ | 57832 | - | - | - | - | - | | | | | | | | | | | | | | | | - | | - | - | |
 | $S_{\text {cm }}$ | 2136726 | - |
 | $\mathrm{PO}_{\mathrm{cc}}$ | 1796870 | - | - | - | - | - | | | | | | | | | | | - | | | | - | - | | - | - | |
 | $F_{C M}$ | 188559 | - | - | - | - | - | - | - | - | - | | | | | | | | | | | | | | | | |
 | CCC $_{\text {cu }}$ | 120211 | - | - | - | - | - | - | - | - | - | - | - | - | - | \checkmark | - | \checkmark | - | - | - | - | - | - | - | - | - |
 | $L^{\text {LPP } M_{w F}(k W h / r r)}$ | - | 48556319 | 4844328 | 48776026 | 48290403 | 48995032 | 4844328 | 4884485 | 4884485 | 4835635 | 48391173 | 4844328 | 48841866 | 48676026 | 48362288 | 49053015 | 49213265 | 48817403 | 4846356 | 48054765 | 48883303 | 4874993 | 48179078 | 48285240 | 48430728 | 48356354 |
 | ${ }^{(+)}$AAR ($\mathrm{SM} / \mathrm{rr}$) | - | 4297170 | 4367456 | 4498053 | 4573979 | 4747030 | 482885 | 4982192 | 5106747 | 5182105 | 5315483 | 5454354 | 5636591 | 5757889 | 5863796 | 6096233 | 6269053 | 6374091 | 648088 | 6592161 | 687365 | 4918060 | 4982181 | 5117988 | 5261744 | 5385005 |
 | ${ }_{\text {PPAR }}$ | - | 4297170 | 4367456 | 4498053 | 4573979 | 474030 | 482885 | 4982192 | 5106747 | 5182105 | 5315483 | 5454354 | 5636591 | 5757889 | 5863796 | 6096233 | 6269053 | 6374091 | 6486088 | 6592161 | 687345 | - | - | - | - | |
 | EMP | - | | | | | | | | | - | | | | | - | | - | | | | | 4918060 | 4982181 | 511988 | 5261744 | 5385005 |
 | (-) O\& $M_{\text {WFCM }}$ | - | 3949353 | 4013810 | 4133691 | 4203326 | 436211 | 4455205 | 4603526 | 471783 | 478688 | 4999110 | 5036591 | 5204091 | 5315304 | 541229 | 5626056 | 5784761 | 5880006 | 5983464 | 6080550 | 6339242 | 5846637 | 5922095 | 6082752 | 6252834 | 6398541 |
 | O\& $M_{\text {fived }}$ | - | 2654579 | 2697997 | 2778672 | 282574 | 2932474 | 2978078 | 3077743 | 3154685 | 3201236 | 3283628 | 3369414 | 3481989 | 3556919 | 362234 | 3765927 | 3872684 | 393570 | 4006754 | 4072279 | 4246052 | 4340155 | 4396739 | 4516586 | 464344 | 4752224 |
 | O\& $M_{\text {varible }}$ | - | 129477 | 1315813 | 1355018 | 1377752 | 1429737 | 1477127 | 1525784 | 1563150 | 1585447 | 1625482 | 1667177 | 1722102 | 1758385 | 1789958 | 1860129 | 1912077 | 1943336 | 1976710 | 2008271 | 2093190 | 1506483 | 1525356 | 1566166 | 1609385 | 1646316 |
 | (+) LRCM | - | 863268 | 884850 | 906971 | 929646 | 952887 | 976709 | 1001127 | 1026155 | 1051809 | 1078104 | 1105057 | 1132683 | 1161000 | 1190025 | 1219776 | - | - | - | - | - | - | | - | - | |
 | (+) Depreciation | | 2458163 | 2519617 | 2582608 | 2647173 | 2713352 | 2781186 | 2850716 | 2921984 | 2995033 | 3069909 | 3146657 | 3225323 | 3305956 | 3388005 | 347321 | 3560154 | 3649157 | 3740386 | 383896 | 3929743 | 4027987 | 4128687 | 4231904 | 4337701 | 444614 |
 | (\Rightarrow Profit before tax | - | 3669248 | 3758114 | 385342 | 3947472 | 4051058 | 412354 | 4230509 | 4337051 | 4442265 | 4554386 | 469476 | 4790507 | 4909541 | 5030128 | 5163273 | 404445 | 4142343 | 4243011 | 4345507 | 4463967 | 3099410 | 3188772 | 3267139 | 3346611 | 3432608 |
 | (-) Revenue tax | - | 1289151 | 1310237 | 1349416 | 1372194 | 1424109 | 1446256 | 1494658 | 1532024 | 1554632 | 1594645 | 1636306 | 1690977 | 1727367 | 1759139 | 1828870 | 1880716 | 1912227 | 1945827 | 1977648 | 2062040 | 1475418 | 1444654 | 1535396 | 1578523 | 1615502 |
 | (+) REPIM | 270696 | 3746 | 3639 | 3584 | 3485 | 3460 | 3362 | 3325 | 3262 | 3169 | 3114 | 3061 | 3031 | 2968 | 2898 | 457 | 469 | 477 | 486 | 494 | 515 | 526 | 533 | 548 | 563 | 576 |
 | REIcm | 33704 | | | | | | | | | | | | | | | . | - | . | - | - | - | - | | - | - | |
 | REP cu | | 3424 | 3312 | 3247 | 3143 | 3104 | 3001 | 2952 | 2880 | 2781 | 2716 | 2652 | 2609 | 2536 | 2459 | - | - | - | - | - | - | - | - | - | - | |
 | OREP cM | 236992 | | | | | | | | | | | | | | | \checkmark | \checkmark | - | - | - | - | - | - | - | - | |
 | GHG.Ran | - | 322 | 327 | 337 | 343 | 356 | 361 | 373 | 382 | 388 | 398 | 408 | 422 | 431 | 439 | 457 | 469 | 477 | 486 | 494 | 515 | 526 | 533 | 548 | 563 | 576 |
 | ($)$ Profit after tax wout interest | - | 2383843 | 2451517 | 2508110 | 2578764 | 2630409 | 2680650 | 2739176 | 2808289 | 2890803 | 2962855 | 3036231 | 3102560 | 3185142 | 327888 | 3334860 | 2164199 | 2230593 | 229670 | 2368353 | 2402442 | 1624518 | 169465 | 173291 | 1768651 | 1817683 |
 | | - | | 3181772 | ${ }^{3261316}$ | 3342849 | 3426420 | 3512881 | 3599883 | 3668880 | 3782127 | 3876680 | 397597 | 4072937 | 4174761 | 4279130 | 43386108 | - | | - | - | | - | - | - | | - |
 | (+) R CM ${ }_{W}{ }^{\text {F }}$ | - | 2621739 | 2687282 | 275446 | 282322 | 2893909 | 2966257 | 3040413 | 3116424 | 3194334 | 3274193 | 3356047 | 3439949 | 3525947 | 3614096 | 3704448 | 3797060 | 3891986 | 3989286 | 4089018 | 4191243 | 4296024 | 4403425 | 4513511 | 4626348 | 4742007 |
 | (+) Depreciation | | 2458163 | 2519617 | 2582608 | 2647173 | 2713352 | 2781186 | 2850716 | 2921984 | 2995033 | 3069909 | 314655 | 3225323 | 3305956 | 3388005 | 347321 | 3560154 | 3649157 | 3740386 | 3883896 | 3229743 | 4027987 | 4128687 | 4231904 | 4337701 | 4446144 |
 | \& Frree net cashflow | -59955 205 | 7463745 | 447664 | 458386 | 4706414 | 4811250 | 4916012 | 5030422 | 5156816 | 5298044 | 5430276 | 5565338 | 5694895 | 584285 | 5997458 | 6126521 | 9521412 | 9771736 | 10027342 | 10291266 | 10523428 | 994852 | 10226763 | 1047705 | 10732701 | 11005834 |
 | $\Sigma_{\text {freene ammal a authow }}$ | - | . 52491459 | 48014815 | -43430449 | -38724536-1 | -33913285-280 | 28997273 | -23966852 | -18810035 | -13511992 | -8081715 | -2516378 | 3178518 | 9020803 | 15018261 | 2114482 | 30666194 | 40437930 | 5046272 | 60756539 | 71279967 | 81228496 | 91455259 | 101922964 | 11266564 | 123671498 |

 | fow | the wind farm | mprojet | 50000 k | 0 kw | Cape Sain J | James (Canad | | | | with sensiti | ivity analysis | is of $E_{i i}$ (C | Case 2) | | | | | | | | | | | | | |
 | :---: |
 | Hem | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | 10 | 11 | ${ }_{12}$ | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
 | (-) LCCCM $_{\text {w }}$ | 60225901 | | \checkmark | | | | | | \checkmark | | | | - | | | | | - | | | | | | | | |
 | ${ }_{\text {w }}^{\text {cm }}$ (| 27686278 | - | | | - | | |
 | $\mathrm{T}_{\text {cm }}$ | 24219295 | - | \checkmark | - | - | - | |
 | ${ }_{\text {LwTG }}^{\text {cm }}$ | | | | | | - | - | | | - | - | | - | - | - | . | - | - | | - | - | - | | - | | |
 | ${ }^{\text {cPacm }}$ | 1545346 | - | - | | | - | | | - | | | | - | - | - | | - | - | - | | | - | | | | |
 | ${ }^{\text {TS }}$ cm | 572832 | - | |
 | ${ }_{\text {Slcm }}$ | 2136726 | - | - | - | - | - | - | | - | - | | | - | - | | | - | | | | | | | | | |
 | ${ }_{P}^{\text {PO }} \mathrm{CW}$ | 1798870 18859 | - | | | - | - | - | | - | | - | | | - | | | - | - | | | | | | - | | |
 | $F_{\text {cu }}$ | | | | | | | | | - | | | | | | | | | | | | | | | | | |
 | $C_{\text {ccc }}^{\text {cm }}$ | 120211 | - | - | - | - | - | - | | - | - | | | - | - | | \cdots | - | - | | | - | | | - | | |
 | | | 21246373 | 213202961 | 1213887985 | 212238570 | 212 | 213202961 | 212236570 | 21223670 | 213887985 | 212655974 | 213202961 | 21270429 | 212238570 | 213559139 | | | 21367813 | | | | | | | | |
 | ${ }^{(+)}$AAR (SM/ry) | - | 30129143 | 30989297 | 731866088 | 3240858 | 33286465 | 34206386 | 34900500 | 35773012 | 36954893 | 37660580 | 38701386 | 39576163 | 4047380 | 41824978 | 42766117 | 43943368 | 44981873 | 46151597 | 47321124 | 48311614 | 34688891 | 35382431 | 36487277 | 3725877 | 38317694 |
 | ${ }_{\text {PPAR }}$ | | 30129143 | 30989297 | 731866088 | 32408583 | 33286465 | 34206386 | 34900500 | 35773012 | 36954893 | 37660580 | 38701386 | 39577163 | 4047880 | 41824978 | 42766117 | 43923688 | 44981873 | 46151597 | 47321124 | 48311614 | | | | | |
 | Emp | 34688891 | | | | |
 | $\stackrel{\text { c) }}{\text { O\& } M_{\text {wFCM }}}$ | - | 20588552 | 21176288 | 821775288 | 2214548 | 22745587 | 23374047 | 23848205 | 24444263 | 25251713 | 25733770 | 26444813 | 2702405 | 2765568 | 28578721 | 29221647 | 3002522 | 30735351 | 31534456 | 32333422 | 33010054 | 2939475 | 29987509 | 30923746 | 31576700 | 32474765 |
 | $O_{\&} M_{\text {fial }}$ | | 1154286 | 11873856 | 61209801 | 12417656 | 12744019 | 13106489 | 13372438 | 13706743 | 14159584 | 1429968 | 14828755 | 15163927 | 1550788 | 1602565 | 16386164 | 16836847 | 17235134 | 17683316 | 18131422 | 18510929 | 1894265 | 19367163 | 19971913 | 20393707 | 20973809 |
 | O\& M wratioble | - | 9043666 | 9302432 | 29565487 | 9728192 | 9991568 | 10267558 | 10475767 | -10737520 | 11092129 | 11303802 | 11616058 | 11878478 | 12147781 | 12553156 | 12835484 | 13188373 | 1350217 | 13851140 | 14202000 | 14499125 | 10410511 | 10620346 | 10951834 | 11182993 | 11500957 |
 | ${ }^{(+)}$LRCM | | 863268 | 84850 | O 906971 | 929646 | 952887 | 976709 | 1001127 | 1026155 | 1051809 | 1078104 | 1105057 | 1132683 | 1161000 | 1190025 | 1219776 | | | | | | | | | | |
 | (+) Deprreciation | | 2425624 | 2486265 | 52548421 | 2612132 | 267743 | 274371 | 2812980 | 2883305 | 2955387 | 302972 | 3105004 | 3182629 | 3262195 | 3343749 | 342734 | 3513027 | 3600852 | 3690874 | 3783146 | 387724 | 397667 | 4074034 | 4175885 | 4280282 | 4387289 |
 | (=) Profit before tax | | 12829384 | 13184124 | 113546193 | 13804513 | 14171201 | 14553419 | 1486642 | 15238209 | 15710376 | 16034186 | 16466633 | 16849070 | 17241406 | 1778031 | 18191588 | 17430175 | 17847374 | 18308015 | 18770847 | 19179285 | 9262783 | 9468956 | 9739415 | 996146 | 10230218 |
 | (-) Revenue tax | | 9038743 | 9296789 | 9959822 | 972575 | 9985940 | 10261916 | 10470150 |) 10731904 | 11086468 | 11298174 | 11610416 | ¢ 11872849 | 12142164 | 12547493 | 1282835 | 13182710 | 1344562 | 13845479 | 14196337 | 14493484 | 10408867 | 10614729 | 10946183 | 11177363 | 1149308 |
 | (+) REPM | 1064339 | 1198 | 1218 | 1238 | 1245 | 1266 | 1287 | 1301 | 1321 | 1352 | 1366 | 1392 | 1412 | 1434 | 1471 | 1285 | 1320 | 1351 | 1387 | 1422 | 1451 | 1489 | 1519 | 1566 | 1599 | 1645 |
 | ${ }_{\text {REI }}^{\text {cu }}$ | 33704 | | | | | | | | | | | | | | | | | - | | | | | | | | |
 | ${ }_{\text {REP } P_{\text {cm }}}$ | | 293 | 287 | 281 | 272 | 266 | 260 | 252 | 246 | 242 | 235 | 230 | 223 | 218 | 214 | - | - | | - | - | | - | | - | - | |
 | OREP cu | 1030635 | | | | | | | | | | | | | | | | | | | - | | | | | | |
 | ghg.ram | | 905 | 931 | 957 | 974 | 1000 | 1028 | 1049 | 1075 | 1110 | 1131 | 1163 | 1189 | 1216 | 1257 | 1285 | 1320 | 1351 | 1387 | 1422 | 1451 | 1489 | 1519 | 1566 | 1599 | 1645 |
 | ($)$ Proffit afer rax w/out interest | - | 3791839 | 3888553 | 33987605 | 4083183 | 4186527 | 4292790 | 4397553 | 4507626 | 462260 | 4737378 | 4857609 | 497633 | 5100676 | 5234008 | 5363038 | 4248785 | 4354164 | 4463922 | 4575932 | | -1 140596 | | | -1214304 | 1263446 |
 | (-) Debt payments | | | 3119654 | 3218145 | 3298599 | 3381064 | 3465991 | 3552330 | 3641183 | 3732062 | 3825364 | 3220988 | 401923 | 4119498 | 422486 | 4328 a88 | | | | | | | | | | |
 | ${ }^{+}$) $\mathrm{RCM}_{\text {W }}{ }^{\text {r }}$ | - | 2621739 | 2687282 | 2754464 | 282332 | 2893909 | 2966257 | 3040413 | 3116424 | 3194334 | 327193 | 3356047 | 343994 | 3525947 | 3614096 | 370448 | 3797060 | 3891986 | 3989286 | 4089018 | 4191243 | 4296024 | 4403425 | 4513511 | 4626348 | 4742007 |
 | (+) Depreciation | | 242562 | 2486265 | 52548421 | 2612132 | 267743 | 274371 | 2812980 | 2883305 | 2955387 | 302972 | 3105004 | 318262 | 3262195 | 3343749 | 3427343 | 3513027 | 360085 | 369087 | 3783146 | 387724 | 397667 | 4074034 | 4175885 | 4280282 | 4387289 |
 | , Free net cashfow | -59161561 | 8839202 | 592246 | 66072345 | 6220042 | 6376807 | 6537828 | 6698716 | 6866318 | 7042920 | 7215479 | 7397663 | 7581188 | 7769319 | 7969368 | 8166782 | 11558871 | 11847002 | 12144082 | 12448095 | 12756219 | 7130096 | 7333204 | 7484194 | 769326 | 7865850 |
 | | | -50 322360 | -4399914-1 | --38327569-32 | -32107 527 | -25730721 | -19 192883 - | -12444177 | -5627859 | 1415061 | 8630540 | 16028202 | 23609391 | 31378710 | 39348078 | 47514860 | 59073731 | 70202733 | 83064815 | 95512910 | +108269 130 | 115399226 | 122732438 | ${ }^{130216624}$ | 137798950 | 145774800 |
 | | $L_{\text {COE }}^{\text {wo }}$ | ${ }^{84.30}$ | 84.97 | | 80.12 | 86.82 | 87.54 | 88.12 | ${ }_{88.81}$ | 89.72 | 90.31 | ${ }^{91.13}$ | ${ }_{91.84}$ | 92.57 | 93.61 | ${ }_{9+37}$ | ${ }_{94.05}$ | ${ }_{94.85}$ | | 96.65 | 97.43 | 93.92 | | | | |

 ## APPENDIX 0

 | Legend | | |
 | :---: | :---: | :---: |
 | Green cells indicate information and are updated
 automatically based on user input into yellow cells | | |
 | Yellow cells are for use input information about the project. | | |
 | G Gry cells are not used. | | |
 | Wind Project Information | | Notes |
 | Project Name | Firestar Wind Farm | |
 | Project Location | Aracati (Brazil) | |
 | Turbine Model | Vestas v90-2Mw | |
 | Number of Wind Turbines ($N_{W T}$) | 25 | [-] |
 | Turbine Size | 2000 | [kw] |
 | Wind Farm Capacity ($W F_{\text {cap }}$) | 50000 | [kW] |
 | Rotor Diamenter (D) | 90.0 | [m] |
 | Swept Area per Turbine (A) | 6361.7 | $\left[\mathrm{m}^{2}\right]$ |
 | Hub height (H) | 105.0 | [m] |
 | Wind speed measured at (H_{0}) | 10.0 | [m] |
 | Terrain rugosity factor (a) | 0.14 | [-] |
 | Betz Limit's coefficient ($C_{\text {PBerz }}$) | 0.5926 | [-] |
 | Lifetime of Wind Farm (N) | 25 | [yr] |
 | Production Efficiency ($W F_{P E}$) | 11.2\% | [\%] |
 | Availability | 97.9\% | [\%] |
 | | 357 | [$\mathrm{d} / \mathrm{yr}]$ |

 | Conditions for LCOE ${ }_{\text {wso }}$ | | Notes |
 | :---: | :---: | :---: |
 | O\& wfcı $^{\text {w }}$ | | |
 | O\& $M_{\text {ccm }}$ | 1 | [1/0] |
 | (\%) ccm | 80.0\% | [\%] |
 | REPIM | | |
 | REPIM distribution | | |
 | $\zeta_{1} R E I_{C M}$ | 1 | [1/0] |
 | ξ_{2} REP ${ }_{\text {cu }}$ | 1 | [1/0] |
 | ξ_{3} OREP CM | 1 | [1/0] |
 | $\xi_{4}{\mathrm{GHG} . \mathrm{R}_{\mathrm{CM}}}$ | 1 | [1/0] |
 | ${ }^{\text {P\& }} \mathrm{D}_{\text {LM }}$ | | |
 | $\lambda_{\text {a }}$ | 1 | [1/0] |
 | $\lambda_{\text {sei }}$ | 0 | [1/0] |
 | $\lambda_{\text {d }}$ | 1 | [1/0] |
 | $\lambda_{\text {m }}$ | 1 | [1/0] |
 | | p.s.: $1=$ yes and $0=n o$ | |

 Figure 0.1 I-O representation of $L C O E_{\text {wso }}$ algorithm calculations for the hypothetical $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Aracati (Brazil) with sensitivity analysis of $E_{p i}$ (Case ${ }_{3}$). Source: Own elaboration

 | Wind Farm Life-Cycle Capital Cost Model | | Notes |
 | :---: | :---: | :---: |
 | ${ }^{W} T_{\text {cu }}$ | 553.726 | [s/kw] |
 | ${ }_{C M}{ }_{\text {wT }}$ | 26.53 | [s/kw] |
 | ${ }^{R C_{W T}}$ | 73.70\% | ${ }_{\text {[\%/skw] }}$ |
 | $c_{\text {kw }}$ | 400.00 | [s/kw] |
 | IPT | 10.00\% | [\%] |
 | ${ }_{\text {cur }}$ | 484.3859 | [s/kw] |
 | $T_{\text {maxs }}$ | 138000 | [kg] |
 | ${ }_{R C}{ }_{T}$ | 26.30% | [\%/s/kw] |
 | $c_{\text {seed }}$ | 0.1900 | [s/kg] |
 | ${ }^{\text {LWTG }}{ }_{\text {cu }}$ | 39.1957 | ${ }_{\text {[\$ }}^{\text {m/kW] }}$ |
 | ${ }^{W} F_{\text {app }}$ | 50000 | ${ }^{\text {[kW] }}$ |
 | L_{8} | 13950 | ${ }^{[\mathrm{m}]}$ |
 | $C A B B_{\text {cous }}$ | 2000.00 | [5/m] |
 | ${ }^{\text {cPaw }}$ | 30.9069 | [s/kw] |
 | ${ }^{E F}{ }_{\text {c }}$ | 40000 | [s/kw] |
 | ς | 0.08\% | [\%] |
 | ${ }^{\text {TS }} \mathrm{cu}$ | 11.4566 | [SkWd |
 | ${ }_{T} L_{\text {c }}$ | 0.0440 | [5/m] |
 | ${ }_{T} L_{r}$ | 1200 | [1/kW] |
 | $L_{\text {, }}$ | 3000 | [m] |
 | ${ }_{S B}$ | 113.00 | [5/WWh] |
 | ${ }^{\text {Stcu }}$ | 427345 | |
 | $W_{\text {cap }}$ | 50000 | [kw] |
 | $W_{\text {tarat }}$ | 42.2388 | [s/kw] |
 | ${ }^{B 1 / d o w n}$ | 500.00 | $\left[5^{5} \mathrm{~m}^{2}\right]$ |
 | ${ }^{B / d} d_{\text {area }}$ | 300.0 | $\left[\mathrm{m}^{2}\right]$ |
 | ${ }^{P O_{C u}}$ | 359374 | [5/kW] |
 | ${ }_{\text {FS }}$ | 19.88 | [s/kw] |
 | ${ }^{\text {dT }}$ | 87.22 | [s/kw] |
 | ${ }_{\text {eG }}$ | 40.52 | [s/kw] |
 | $\mathrm{Fcw}_{\text {cu }}$ | 3.772 | [s/kw] |
 | wacc prof | 4.900% | [\%/ys] |
 | $n_{\text {fin }}$ | 1.0 | [yr] |
 | | ${ }^{0.30 \% \%}$ | [\%] |
 | ${ }^{\text {ccc }}{ }_{\text {cu }}$ | 2.4042 | [s/kW] |
 | κ | 0.20% | [$\%$] |
 | LCCCM $_{\text {wF }}$ | 1204.5180 | $[\mathrm{s} / \mathrm{kW]}$ |

 | tial Results | ummary | $\operatorname{COE}_{\text {zow }}$ | Notes |
 | :---: | :---: | :---: | :---: |
 | 73.0793 | ${ }^{\text {r }}$, | ${ }^{78.4116}$ | ${ }^{\text {y }}$ / ${ }^{\text {s }}$ |
 | 73.4776 | y_{2} | 77.593 | ${ }^{\text {r }}$ / ${ }^{\text {a }}$ |
 | ${ }^{73.7436}$ | yr_{3} | 78.1098 | ${ }^{\text {y }}$ /6 6 |
 | 74.0885 | yrs | ${ }^{78.5637}$ | ${ }^{\text {r }} 17$ |
 | 74.4286 | yrs | 79.0704 | yr/s |
 | ${ }^{74.8887}$ | yro | 79.5598 | ${ }_{\text {y } / 19}$ |
 | 75.1794 | yr, | 77.6767 | ${ }_{\text {y } 20}$ |
 | 75.4693 | yrs | 78.1898 | y^{21} |
 | 75.664 | yr, | 78.6500 | y_{22} |
 | 7.3656 | ${ }^{\text {r }}$ ro | 78.953 | $y^{\text {y } 23}$ |
 | 7.6 .692 | ${ }^{\text {r }}$ / | 79.389 | ${ }_{\text {r } 25}$ |
 | 77.1795 | $y^{\prime 2}$ | 76.8138 | Mean |
 | 77.5 | yr, | 20085 | SD |
 | 78.0080 | $\mathrm{yr}_{\text {/ }}$ | 0.4651 | $r_{\text {scemeses }}$ |
 | $L_{\text {COE wo }}^{\text {mo }}$ | 76.8138 | \$/MWh /kWh | valid! |

 Figure O.2 I-O system representation of $L C O E_{w s o}$ algorithm calculations for the hypothetical $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Corvo Island (Portugal) with sensitivity analysis of $E_{p i}$ (Case ${ }_{3}$). Source: Own elaboration

 Figure 0.3 I-O system representation of $L C O E_{\text {wso }}$ algorithm calculations for the hypothetical $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Cape Saint James (Canada) with sensitivity analysis of $E_{p i}\left(\right.$ Case $\left._{3}\right)$. Source: Own elaboration

 会

 | Months | $\begin{aligned} & v_{w c} \\ & (m / s) \end{aligned}$ | $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$ | $H_{\text {prod }}$
 (h) | $A^{\text {E }} \mathrm{P}_{\text {avail }}(k W h)$ | |
 | :---: |
 | | | | | yr ${ }_{1}$ | $y r_{2}$ | yr_{3} | yr_{4} | yrs | $y r_{6}$ | $y r_{7}$ | yrs | yr, | y^{10} | yr ${ }_{\text {l }}$ | yr ${ }_{12}$ | $y^{1 / 3}$ | ${ }^{\text {y }}{ }_{14}$ | yr ${ }_{\text {I }}$ | ${ }^{\text {y }}{ }_{16}$ | y_{17} | yr_{18} | 19 | $y r_{20}$ | ${ }^{1} 21$ | ${ }_{\text {y }}^{22}$ | yr_{23} | r_{24} | $y r_{25}$ |
 | January | 5.8 | 1.1665 | 738 | 16931.3 | 889019 | 38021 | 7507 | 61 | 8890198 | 557361 | 557361 | 4232212 | 8890198 | 8890198 | 557361 | 3802165 | 7507410 | 4232212 | 8890198 | 8890198 | 557361 | 3802165 | 7507410 | 557361 | 3802165 | 7507410 | 4232212 | 423 |
 | February | 4.9 | 1.166 | 639 | 847940 | 6783520 | 36625 | 67835 | 777316 | 6783520 | 777316 | 777316 | 4713419 | 6783520 | 6783520 | 777316 | 3662567 | 6783520 | 482342 | 482342 | 3290403 | 4713419 | 7693599 | 1572412 | 1572412 | 7693599 | 6783520 | 4713419 | 419 |
 | March | 4.0 | 1.1671 | 735 | 555090 | 7476817 | 5424310 | 8853970 | 975829 | 7476817 | 975829 | 975829 | 6543367 | 7476817 | 7476817 | 975829 | 5424310 | 8853970 | 894553 | 894553 | 1809568 | 4214966 | 1809568 | 1686232 | 1686232 | 7806630 | 8853970 | 3786671 | 6543367 |
 | April | 4.7 | 1.166 | 711 | 865098 | 6327908 | 6327908 | 4076176 | 1630708 | 6327908 | 1630708 | 1630708 | 7230621 | 6327908 | 6327908 | 1749983 | 6327908 | 4076176 | 943697 | 943697 | 1630708 | 6327908 | 1630708 | 3661984 | 943697 | 7230621 | 6327908 | 1749983 | 7230621 |
 | May | O | 1670 | 735 | 1809500 | 5424109 | 7476539 | 5424109 | 1809500 | 5424109 | 1809500 | 1809500 | 7806340 | 5424109 | 5424109 | 1686169 | 7476539 | 6543124 | 1686169 | 1686169 | 975792 | 8853641 | 975792 | 555069 | 894520 | 654312 | 4214809 | 1686169 | 340 |
 | June | 7.9 | 1.168 | 687 | 39449 | 394490 | 7306444 | 612412 | 3544051 | 944904 | 3544051 | 3544051 | 8286679 | 3944904 | 394904 | 3544051 | 7306444 | 5076764 | 1693625 | 1693625 | 837237 | 7306444 | 837237 | 837237 | 3544051 | 5076764 | 5076764 | 913305 | 8286679 |
 | July | 8.6 | 1.1698 | 735 | 5437072 | 3795580 | 8874801 | 1690199 | 4224882 | 3795580 | 4224882 | 4224882 | 556396 | 556396 | 3795580 | 5437072 | 8874801 | 1813825 | 3795580 | 3795580 | 556396 | 7494407 | 556396 | 978125 | 4224882 | 4224882 | 1690199 | 896658 | 556396 |
 | August | 9.6 | 1.1677 | 735 | 7480694 | 1810506 | 1810506 | 1810506 | 8858561 | 1810506 | 5427123 | 5427123 | 895017 | 895017 | 1810506 | 4217151 | 1810506 | 1687106 | 5427123 | 7810678 | 7810678 | 895017 | 4217151 | 7810678 | 5427123 | 1810506 | 1810506 | 555378 | 895017 |
 | September | 10.1 | 1.1657 | 711 | 8554384 | 1629776 | 1629176 | 3658543 | 7542482 | 1629176 | 6321963 | 6321963 | 942810 | 942810 | 1629176 | 6321963 | 1629176 | 3658543 | 6321963 | 7223828 | 7223828 | 942810 | 5240771 | 8554384 | 6321963 | 1629176 | 3658543 | 6321963 | 942810 |
 | October | 9.7 | 1.1645 | , | 7789201 | 973650 | 973650 | 553851 | 7460125 | 973650 | 7460125 | 7460125 | 1682467 | 1682467 | 973650 | 8834203 | 973650 | 553851 | 7460125 | 6528759 | 6528759 | 1805528 | 6528759 | 4205556 | 7460125 | 973650 | 973650 | 8834203 | 1682467 |
 | November | 9.2 | 1.1638 | 687 | 6098939 | 833795 | 833795 | 833795 | 6098939 | 833795 | 7276401 | 7276401 | 1686661 | 1686661 | 833795 | 7276401 | 833795 | 833795 | 7276401 | 5055889 | 5055889 | 1571703 | 6968989 | 6098939 | 7276401 | 833795 | 833795 | 7276401 | 1686661 |
 | December | 7.6 | 1.1651 | 735 | 3780365 | 554166 | 554166 | 974204 | 5415277 | 554166 | 8839226 | 8839226 | 3780365 | 3780365 | 554166 | 7464366 | 554166 | 974204 | 8839226 | 4207946 | 4207946 | 3780365 | 7793630 | 5415277 | 8839226 | 554166 | 554166 | 7464366 | 3780365 |
 | | 7.4 | 1.160 | 8579 | | | 48670026 | 4829 | 48 | 4844328 | | | 4835 | 48391 | 4844 | 488 | 4867026 | 48362288 | 49053015 | 49213265 | 48817403 | 48463568 | 48054765 | 4888330 | 48747993 | 4877978 | 48285 | | |

 | Months | $\begin{gathered} v_{m c} \\ (m s) \\ (m) \end{gathered}$ | $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$ | $\begin{gathered} H_{\text {prod }} \\ (h) \end{gathered}$ | $y r_{1}$ | y_{2} | y_{3} | y_{4} | y_{5} | $y r_{6}$ | y_{7} | $y^{1} r_{8}$ | yr_{9} | $y_{1}{ }_{10}$ | yr ${ }_{\text {II }}$ | ${ }^{\text {A }} \mathrm{P}_{\text {avail }}(k$ Wh) | | | | $y_{1}{ }_{16}$ | y_{17} | $y_{1 / 2}$ | yr ${ }_{19}$ | yr 20 | y_{21} | ${ }_{1} r_{22}$ | yr 23 | y^{24} | |
 | :---: |
 | | | | | | | | | | | | | | | | yr ${ }_{12}$ | yr_{13} | yr ${ }_{1+}$ | yr ${ }_{\text {I }}$ | | | | | | | | | | |
 | January | 15.4 | 1.2561 | 738 | 32734798 | 32734798 | 32734798 | 32734798 | 32734798 | 32734798 | 32734798 | 32734798 | 32734788 | 32734788 | 32734788 | 8013494 | 32734798 | 32734798 | 32734798 | 32734798 | ${ }^{32} 737498$ | 32737798 | 32737798 | 4074889 | 32737978 | 32737798 | 28019994 | 8013494 | 7100933 |
 | February | 14.7 | 1.2522 | 639 | 24248099 | 1446724 | 6912583 | 26228520 | 1446724 | 1446724 | 2622852 | 2622852 | 6912583 | 1446724 | 1446724 | 774925 | 26228520 | 6912583 | 17377262 | 6912583 | 6912583 | 6912583 | 6912583 | 2246574 | 2628520 | 2622852 | 2895984 | 7749925 | 17351 |
 | March | 12.7 | 1.2495 | 735 | 18226532 | 18226532 | 8896263 | 2783479 | 12376594 | 18226532 | 2783479 | 2783479 | 8896263 | 12376594 | 18226532 | 9971944 | 27834779 | 8896263 | 30108137 | 8896263 | 8896263 | 8896263 | 8896263 | 22994400 | 2783479 | 2783479 | 31414830 | 9971944 | 18921 |
 | April | 12.4 | 1.2490 | 711 | 16057711 | 19287404 | 9641890 | 24828913 | 9641890 | 19287404 | 24828913 | 24828913 | 9641890 | 9641890 | 19287404 | 964890 | 24828913 | 964890 | 26913486 | 9641890 | 29111609 | 9641890 | 9641890 | 22188639 | 1997199 | 24889813 | 24919931 | 9641890 | 18139 |
 | May | 11.2 | 1.2425 | 735 | 12306614 | 25.53644 | 9915560 | 19838848 | 9915560 | 25.538644 | 19884848 | 19834848 | 9915560 | 9915560 | 25.53644 | 12306614 | 19834848 | 9915560 | 2553364 | 9915560 | 27677395 | 9915560 | 9915560 | 20989216 | 19834848 | 19834888 | 1908977 | 1236614 | 16168320 |
 | June | 10 | 1.2351 | 687 | 9212474 | 25714865 | 1143985 | 16888388 | 8218718 | 25714865 | 16838388 | 16838388 | 11439885 | 8218718 | 25714885 | 15.342558 | 16838388 | 11433985 | 16888388 | 11433985 | 23723122 | 11439885 | 11439885 | 16955390 | 168838388 | 16883838 | 16780885 | 153.32558 | 14449503 |
 | July | 10.0 | 1.2275 | 735 | 8739531 | 2957769 | 16314803 | 16314883 | 7795266 | 29577699 | 16314883 | 16314883 | 16314883 | 7795266 | 29577099 | 17905422 | 16314883 | 16.14883 | 7795266 | 16314803 | 19596205 | 16314803 | 16314883 | 15530715 | 16046466 | 16314803 | 16780185 | 1795422 | 8625161 |
 | August | 9.7 | 1.2216 | 735 | 775771 | 12099 | 17819161 | 12999 | 1781910 | 12099 | 120 | 12099 | 17819161 | 17819161 | 12099972 | 19501798 | 1209 | 1781911 | 69742 | 17819161 | 17819161 | 17819161 | 17819161 | 1293319 | 1537881 | 12099972 | 12 | 19501798 | 7111 |
 | September | 10.4 | 1.2234 | 711 | 9444238 | 751514 | 1888202 | 944238 | 26.361791 | 7515148 | 9444238 | 9444238 | 18892028 | 26.361791 | 7515148 | 24.31949 | 9442388 | 18892028 | 9444238 | 18892028 | 15728541 | 18892028 | 18889028 | 12321085 | 1327552 | 9444238 | 8842059 | 24319 | 19029793 |
 | October | 13.1 | 1.2327 | 735 | 19679010 | 8776461 | 29720682 | 9837056 | 2533032 | 8776461 | 9837056 | 9837556 | 29702682 | 25.33032 | 8776461 | 27459940 | 9887656 | 25333032 | 9837556 | 25.33032 | 1229924 | 29702682 | 25.33032 | 12242414 | 8858686 | 9837656 | 8122639 | 2745940 | 215 |
 | November | 14.3 | 1.2429 | 687 | 23874256 | 9271165 | 25878888 | 8271078 | 27992885 | 9271165 | 8271078 | 8271078 | 25878688 | 2799285 | 9271165 | 27992285 | 8271078 | 25878688 | 11506828 | 25878688 | 927165 | 25878688 | 25878888 | 7423013 | 8271078 | 8271078 | 887092 | 27992 | 21951058 |
 | December | 15.1 | 1.2528 | 735 | 30186350 | 9997848 | 25745445 | 7955677 | 19999456 | 9997848 | 7955677 | 7955677 | 2574545 | 19999456 | 9997848 | 32488621 | 7955677 | 30186350 | 16650529 | 301863.30 | 9997848 | 25745445 | 30188350 | 6350393 | 7955677 | 7955677 | 9163644 | 32488621 | 2475 |
 | Annual | 12.5 | 1.2404 | 8579 | 212467325 | 213202961 | 213887985 | 212223670 | 212659974 | 213202961 | 21223670 | 212223670 | 213887885 | 212655974 | 213202961 | 212704429 | 212223670 | 213959139 | 213437670 | 2139591 139 | 213678013 | 213887985 | 275 | 2131 | 232 | 212 | 21351274 | 21270+29 | |

 | Month | $\begin{gathered} v_{w c} \\ (m s) \\ (m s) \end{gathered}$ | Wind speed data series for simulations (m / s) | |
 | :---: |
 | | | $y r_{1}$ | $y r_{2}$ | y_{3} | yr ${ }_{4}$ | rr_{5} | yr6 | $y r_{7}$ | y_{8} | yr， | ${ }^{\text {r }} \mathrm{rlo}^{10}$ | ${ }_{\text {y }}^{1 /}$ | y_{12} | $y_{1 / 3}$ | $y_{1 / 4}$ | ${ }^{\text {r } l_{\text {Is }}}$ | $y_{1 / 6}$ | ${ }^{\text {r }} 17$ | ${ }^{\text {r }} \mathrm{l}_{18}$ | ${ }^{\text {r }} 19$ | $y^{\text {y } 20}$ | y^{21} | y^{22} | y_{23} | ${ }^{\text {r } 24}$ | 25 |
 | January | 11.7 | 11.7 | 11.7 | 11.7 | 11.7 | 11.7 | 11.7 | ${ }^{11.7}$ | 10.6 | 10.6 | 11.7 | 10.6 | 10.6 | 10.6 | 11.7 | 10.6 | 10.6 | 11.7 | 10.6 | 10.6 | 10.6 | 10.6 | 10.6 | 10.6 | 10.6 | 10.6 |
 | February | 11.5 | 11.5 | 8.2 | 11.5 | 11.5 | 11.5 | 7.6 | 11.5 | 11.7 | 6.1 | 7.6 | 11.7 | 6.1 | 10.5 | 11.5 | 9.5 | 11.7 | 8.2 | 8.9 | 7.6 | 7.1 | 11.5 | ${ }_{6} .4$ | 9.5 | 11.5 | 11.7 |
 | March | 10.5 | 10.5 | 7.1 | 11.5 | 11.5 | 11.5 | 8.9 | 11.5 | 11.5 | 6.4 | 7.1 | 11.5 | ${ }^{6.4}$ | 11.5 | 11.5 | 8.9 | 11.5 | 7.6 | 9.5 | 8.2 | 11.5 | 11.7 | ${ }_{6} .1$ | 10.5 | 11.7 | 7.1 |
 | April | 9.5 | 9.5 | 9.5 | 10.6 | 10.6 | 10.6 | 9.5 | 10.6 | 8.2 | 7.1 | 9.5 | 11.5 | 7.1 | 11.5 | 8.2 | 8.2 | 11.5 | 7.1 | 10.5 | 7.1 | 11.7 | 11.5 | 7.1 | 7.1 | 11.5 | 7.6 |
 | May | 8.2 | 8.2 | 10.5 | 10.5 | 10.5 | 8.9 | 10.5 | 10.5 | 10.5 | 7.6 | 8.9 | 10.5 | 7.6 | 11.7 | 10.5 | 7.6 | 10.5 | 6.4 | 11.5 | 8.9 | 6.4 | 10.5 | 7.6 | 11.7 | 10.5 | 8.2 |
 | June | 7.1 | 7.1 | 11.5 | 9.5 | 9.5 | 9.5 | 10.6 | ${ }_{8} .2$ | 11.5 | 8.2 | 10.6 | 9.5 | 8.2 | 9.5 | 6.4 | 7.1 | 9.5 | 6.1 | 11.5 | 9.5 | 6.1 | 9.5 | 8.2 | 11.5 | 9.5 | 8.9 |
 | July | 6.1 | 6.1 | 11.5 | 8.2 | 8.9 | 10.5 | 11.5 | 9.5 | 7.1 | 8.9 | 6.1 | 8.9 | 8.9 | 8.9 | 6.1 | 6.4 | 8.9 | 8.9 | 11.7 | 10.5 | 7.6 | 8.9 | 8.9 | 11.5 | 7.6 | 9.5 |
 | August | 6.4 | 6.4 | 10.6 | 7.6 | 7.6 | 7.6 | 11.5 | 8.9 | 7.6 | 9.5 | ${ }_{6} .4$ | 8.2 | 9.5 | 8.2 | 10.6 | 6.1 | 8.2 | 11.5 | 6.1 | 11.5 | 8.2 | 8.2 | 9.5 | 8.2 | 7.1 | 10.5 |
 | September | 7.6 | 7.6 | 6.1 | 8.9 | 8.2 | 8.2 | 8.2 | ${ }_{6} .1$ | 8.9 | 10.5 | 10.5 | 7.6 | 10.5 | 7.6 | 8.9 | 10.5 | 7.6 | 11.5 | 6.4 | 11.5 | 8.9 | 7.6 | 10.5 | 7.6 | ${ }_{6} 6.4$ | 6.1 |
 | October | 8.9 | 8.9 | 8.9 | 7.1 | 6.1 | 7.1 | 6.1 | ${ }^{6.4}$ | 9.5 | 11.5 | 11.5 | 7.1 | 11.5 | 7.1 | 9.5 | 11.5 | 7.1 | 10.6 | 7.1 | 6.1 | 9.5 | 7.1 | 11.5 | ${ }^{6} .4$ | ${ }_{6} .1$ | ${ }_{6} 6.4$ |
 | November | 10.6 | 10.6 | 7.6 | ${ }_{6} 6$ | ${ }^{6} 4$ | 6.4 | 6.4 | 7.1 | 6.4 | 11.5 | 8.2 | 6.4 | 11.5 | 6.4 | 7.1 | 11.5 | ${ }_{6} .4$ | 10.5 | 7.6 | 6.4 | 10.5 | 6.4 | 11.5 | 6.1 | 8.9 | 11.5 |
 | December | 11.5 | 11.5 | 6.4 | 6.1 | 7.1 | 6.1 | 7.1 | 7.6 | 6.1 | 11.7 | 11.5 | 6.1 | 11.7 | 6.1 | 7.6 | 11.7 | 6.1 | 9.5 | 8.2 | 11.7 | 11.5 | 6.1 | 11.7 | 8.9 | 8.2 | 11.5 |
 | Annual | 9.1 |

 | szi | szı | szi | szi | szı | szi | szi | szı | szi | szi | szi | szi | szı | $s z ı$ | szi | s 21 | szı | szi | szı | ${ }_{\text {pmuur }}$ | | | | | | | |
|---|
 | 691 | $t \stackrel{s}{ }$ | IOI | $\stackrel{1}{6}$ | $\stackrel{1}{6}$ | ${ }^{6} 6$ | ISI | हौI | tor | ISI | tzi | ISI | $\stackrel{1}{6}$ | $t \cdot s I$ | tol | İI | हौI | $\stackrel{1}{6}$ | $\stackrel{1}{6}$ | tol | İI | L＇6 | عौl | tol | ISI | TSI | |
 | $6 \% 1$ | ISI | รог | oor | oor | $\stackrel{6}{6}$ | ＜tı | くtı | tor | ＜t ${ }^{\text {c }}$ | でII | ＜tı | oor | I＇sI | tor | ISI | く＊ | oor | oor | tor | ISI | oor | ぐゅ | tor | ¢ $\dagger 1$ | $\varepsilon \nleftarrow t$ | เяриаол |
 | ¢ $\varepsilon 1$ | く＊t | 86 | tor | Ior | $\tau \cdot I$ | $\varepsilon \nmid I$ | r $¢$ | $\tau \cdot I$ | EtI | tor | $\varepsilon \nmid I$ | tor | ＜tı | oor | ¢ $\dagger 1$ | rsi | tor | tor | oor | $\varepsilon+1$ | tor | I＇SI | oor | rel | reI | 1290150 |
 | г¢1 | EヵI | zoo | tor | ¢＇II | t＇tI | ז¢I | İI | tzi | гяI | tor | זย！ | tool | Eャt | $\stackrel{6}{6}$ | ＜t +1 | r¢ | tor | tor | 46 | ＜tı | tor | İI | $\angle 6$ | too | tor | ．19иuıdos |
 | ${ }^{\text {t\％}} 6$ | İI | t＇ti | て＇II | Izi | t＇ti | くzi | ¢ ¢ | ＜zı | くzı | oor | くzı | z＇II | I $\varepsilon 1$ | 2＇I | くzı | くzi | でII | $\tau^{\text {I }}$ II | $\tau \cdot I$ | ＜zı | z＇ti | くzi | z＇II | 46 | $\stackrel{\circ}{6}$ | |
 | oor | くてı | szi | tzi | \＆${ }^{\text {c }}$ | zzı | tzi | tiz | reı | tzi | $\stackrel{\circ}{6}$ | tiz | tıl | くıı | rsi | $\stackrel{\circ}{6}$ | tiz | tzi | tiz | rst | ＜＇6 | tiz | tıI | Isı | oor | oor | ${ }_{4} n^{\prime}$ |
 | zal | tıI | czi | くzı | くıI | szi | İI | z＇II | $\varepsilon \nmid I$ | İII | cıi | İII | くzı | tıi | ctis | oor | İI | くzı | くıl | cti | oor | くıı | z＇H | ＜tit | tor | tol | วun！ |
 | ¢zı | z＇II | оєı | reI | İI | $t \varepsilon I$ | tol | tor | ＜th | tor | $\varepsilon \nmid I$ | tor | reI | z＇II | $\varepsilon \nmid t$ | tor | tor | İI | İI | $\varepsilon+t$ | tor | İI | tor | EtI | z＇II | ėII | ${ }_{\text {Sow }}$ |
 | 6.21 | tor | ¢ $\dagger 1$ | $\varepsilon \nmid I$ | $\varepsilon \varepsilon I$ | $8 \varepsilon I$ | tor | tor | rsi | tor | ＜th | tor | ¢ヵI | tor | rer | tor | toi | $\varepsilon \nmid I$ | \＆$\dagger 1$ | İI | tor | $\varepsilon \nLeftarrow 1$ | tor | İı | tıI | tir | ${ }^{\mu} d^{\prime} V_{V}$ |
 | 671 | toi | $\varepsilon s I$ | ＜th | ＜tıl | $8 \varepsilon I$ | oor | oor | oor | oor | rsi | oor | ＜t＇t | tor | くzı | z＇II | oor | ＜th | ＜tıl | くzı | z＇II | ぐゅt | oor | くzı | くıI | くıl | ฯว．0．${ }_{\text {w }}$ |
 | İI | oor | gsi | rsi | ISI | ¢ヵI | $\stackrel{6}{6}$ | 16 | $\stackrel{6}{6}$ | $\stackrel{6}{ }$ | İI | $\stackrel{6}{6}$ | rsi | o．or | ṫı | tiz | $\stackrel{6}{ }$ | rsi | ISI | tiz | tizi | ISI | $\stackrel{\circ}{6}$ | tzi | く＊ | L＇t | |
 | $\varepsilon \%$ | $\stackrel{6}{6}$ | ＜t ${ }^{\text {c }}$ | $t \leqslant I$ | $t \cdot s$ | 991 | $t \leqslant I$ | $t \cdot s$ | $t \leqslant I$ | $t+s$ | $t \leqslant I$ | $t \leqslant I$ | $t+s$ | $\stackrel{6}{6}$ | tst | $t \cdot s$ | $t \leqslant I$ | $t \leqslant I$ | $t \cdot s I$ | t＇st | $t \leqslant s$ | t＇si | $t \cdot s!$ | t＇si | $t \leqslant I$ | $t \backslash s I$ | сıomut |
 | s， | tr．ic | | ${ }^{\text {zi，kik }}$ | ${ }^{12,1 /}$ | ${ }_{0}{ }_{\text {cik }}$ | ${ }^{66,14}$ | ${ }_{\text {st，}}$ | ${ }^{4 \prime} \lambda_{\text {LK }}$ | 9，${ }_{\text {cic }}$ | st，${ }_{\text {cis }}$ | ${ }_{\text {thi，}}$ | Eluic | ${ }_{\text {ILIA }}$ | ${ }^{\text {I／，}}$ ， | ${ }_{\text {ot，}}$ | ${ }_{6.1}$ | ${ }_{\text {s，i }}$ | ${ }_{4,1 /}$ | 9，1／ | $s_{\text {s，i }}$ | ${ }_{\text {t．is }}$ | $\varepsilon_{\text {İK }}$ | ${ }_{\text {z，İ }}$ | ${ }_{\text {L }}^{1 / 1}$ | （sau） | |
 | | | | | | | | | | | | suoppl | F．ofs 5 ！ | 磳 | | | | | | | | | | | | ＂＇a | |

 Table 0.7 kWh per $\mathrm{H}_{\text {prod }}$

 | Sites | $k W / y r$ | |
 | :---: |
 | | rr_{1} | y_{2} | y^{3} | yr_{4} | yrs | $y r_{6}$ | y_{7} | r_{8} | yr9 | yr ${ }_{10}$ | yr ${ }_{\text {II }}$ | yr_{12} | yr_{13} | yr ${ }_{14}$ | $r_{1 / 5}$ | yr ${ }_{16}$ | yr_{17} | yr ${ }_{18}$ | yr ${ }_{19}$ | yr_{2} | yr_{21} | yr 22 | y^{23} | ${ }^{2} r_{24}$ | ${ }^{4} r_{25}$ |
 | Aracari (Brazil) | 5695 | 5647 | 5674 | 5629 | 5699 | 5647 | 5694 | 5694 | 5637 | 5641 | 5647 | 5693 | 5674 | 5637 | 5718 | 5737 | 5690 | 5649 | 5602 | 5698 | 5682 | 5616 | 5628 | 5645 | 563 |
 | Corvo Island (Portugal) | 10451 | 10535 | 10466 | 10473 | 10467 | 10570 | 10498 | 10419 | 10528 | 10530 | 10452 | 10528 | 10510 | 10504 | 10472 | 10452 | 10517 | 10522 | 10556 | 10569 | 10463 | 10523 | 10531 | 10446 | 10392 |
 | Cape Saint James (Canada) | 24766 | 24852 | 24932 | 24738 | 24788 | 24852 | 24738 | 24738 | 24932 | 24788 | 24852 | 24794 | 24738 | 24940 | 24879 | 24940 | 24908 | 24932 | 24940 | 24841 | 24855 | 24738 | 24888 | 24794 | 248 |

 Table 0.8 Cashlo
 Table 0.8 Cashflow for 25 years of the wind farmproject $\quad 50000 \mathrm{~kW} \quad$ Aracati (Brazil)

 | Item | Years | |
 | :---: |
 | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
 | (-) LCCCM $_{\text {WF }}$ | 60225901 | - |
 | $W_{\text {cm }}$ | 27686278 | - |
 | $T_{C M}$ | 24219295 | - |
 | $L_{\text {LWTG }}^{\text {CM }}$ | 1959783 | - |
 | ${ }^{\text {CP }}$ cm | 1545346 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | - | - | - | - | - | - | - |
 | ${ }_{T S}{ }_{C M}$ | 572832 | - | - | - | - | - | - | - | - | - | - | - | - | - | | - | - | - | - | - | - | - | - | - | - | - |
 | $S_{C M}$ | 2136726 | - | - | - | - | - | - | - | - | - | - | - | - | - | | - | - | - | - | - | - | - | - | - | - | - |
 | $\mathrm{PO}_{C M}$ | 1796870 | - | - | - | - | - | | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | - |
 | $F_{C M}$ | 188559 | - | - | - | - | - | - | | - | - | - | - | - | - | - | - | - | - | 8 | - | - | - | - | - | | - |
 | $C L C C M_{C M}$ | 120211 | - | 4 | - |
 | $L_{\text {CPM }}^{\text {wF }}$ (${ }^{\text {WWh/r }}$) | - | 48856319 | 4844328 | 48676026 | 48290403 | 48895032 | 48444328 | 4884485 | 4884485 | 48356354 | 4839173 | 4844328 | 48841866 | 48676026 | 48362288 | 49053015 | 49213265 | 48817403 | 48463568 | 48054765 | 48883303 | 4874993 | 48179078 | 48285240 | 48430728 | 48356354 |
 | (+) AAR (SM/yr) | - | 4297170 | 4367456 | 4498053 | 4573979 | 4747030 | 4820855 | 4982192 | 5106747 | 5182105 | 5315483 | 5454354 | 5636591 | 5757889 | 5863796 | 6096233 | 6269053 | 6374091 | 6486088 | 6592161 | 6873465 | 4918060 | 4982181 | 5117988 | 526174 | 5385005 |
 | PPAR | - | 4297170 | 4367456 | 4498053 | 4573979 | 4747030 | 4820855 | 4982192 | 5106747 | 5182105 | 5315483 | 5454354 | 5636591 | 5757889 | 5863796 | 6096233 | 6269053 | 6374091 | 6486088 | 6592161 | 6873465 | - | - | - | - | . |
 | EMP | - | 4918060 | 4982181 | 5117988 | 5261744 | 5385005 |
 | (-) O\& $M_{\text {WFCM }}$ | - | 3949353 | 4013810 | 4133691 | 4203326 | 4362211 | 4455205 | 4603526 | 4717835 | 4786682 | 4909110 | 5036591 | 5204091 | 5315304 | 5412299 | 5626056 | 5784761 | 5880906 | 5983464 | 6080550 | 6339242 | 5846637 | 5922095 | 6082752 | 6252834 | 6398541 |
 | $O_{\&} M_{\text {fiued }}$ | - | 2654579 | 2697997 | 2778672 | 2825574 | 2932474 | 2978078 | 3077743 | 3154685 | 3201236 | 3283628 | 3369414 | 3481989 | 3556919 | 3622341 | 3765927 | 3872684 | 3937570 | 4006754 | 4072279 | 4246052 | 4340155 | 4396739 | 4516586 | 464344 | 4752224 |
 | O\& $M_{\text {varabible }}$ | | 1294774 | 1315813 | 1355018 | 1377752 | 1429737 | 1477127 | 1525784 | 1563150 | 1585447 | 1625482 | 1667177 | 1722102 | 1758385 | 1789958 | 1860129 | 1912077 | 1943336 | 1976710 | 2008271 | 2093190 | 1506483 | 1525356 | 1566166 | 1609385 | 1646316 |
 | (+) LRCM | | 863268 | 884850 | 906971 | 929646 | 95288 | 976709 | 1001127 | 1026155 | 1051809 | 1078104 | 1105057 | 1132683 | 1161000 | 1190025 | 1219776 | - | - | - | - | - | - | - | - | - | - |
 | (+) Depreciation | | 244704 | 2508220 | 2570926 | 2635199 | 2701079 | 2768606 | 2837821 | 2908766 | 2981485 | 3056023 | 3132423 | 3210734 | 3291002 | 3373277 | 3457609 | 3544049 | 3632650 | 3723467 | 3816553 | 3911967 | 4009766 | 4110011 | 4212761 | 4318080 | 4426032 |
 | (=) Profit before tax | - | 3658129 | 3746717 | 3842260 | 3935498 | 4038784 | 4110964 | 4217613 | 4323833 | 4428717 | 4540499 | 4655243 | 4775917 | 4894587 | 5014799 | 5147562 | 4028341 | 4125836 | 4226091 | 4328165 | 4446190 | 3081189 | 3170096 | 3247996 | 3326990 | 3412496 |
 | (-) Revenue tax | - | 1289151 | 1310237 | 1349416 | 1372194 | 1424109 | 1446256 | 1494658 | 1532024 | 1554632 | 1594645 | 1636306 | 1690977 | 1727367 | 1759139 | 1828870 | 1880716 | 1912227 | 1945827 | 1977648 | 2062040 | 1475418 | 1494654 | 1535396 | 1578523 | 1615502 |
 | (+) REPIM | 541902 | 1069 | 1087 | 1119 | 1138 | 1181 | 1200 | 1240 | 1271 | 1290 | 1323 | 1357 | 1403 | 1433 | 1459 | 1517 | 1560 | 1586 | 1614 | 1640 | 1710 | 1748 | 1771 | 1819 | 1871 | 1914 |
 | ${ }_{\text {REI }}^{\text {cm }}$ | - | \% | - |
 | REP cm | - |
 | OREP CM | 541902 | - | - | - | - | - | - | - | , | - | - | Tr | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
 | GHG.RCM | - | 1069 | 1087 | 1119 | 1138 | 1181 | 1200 | 1240 | 1271 | 1290 | 1323 | 1357 | 1403 | 1433 | 1459 | 1517 | 1560 | 1586 | 1614 | 1640 | 1710 | 1748 | 1771 | 1819 | 1871 | 1914 |
 | ($=$ Profit after tax w/out interest | - | 2370047 | 2437567 | 2493963 | 2564442 | 2615857 | 2665907 | 2724195 | 2793080 | 2875375 | 2947177 | 3020294 | 3086343 | 3168653 | 3257120 | 3320209 | 2149185 | 2215195 | 2281879 | 2352157 | 2385861 | 1607520 | 1677213 | 1714420 | 1750337 | 1798909 |
 | $(-)$ Debt payments | - | - | 3167379 | 3246564 | 332728 | 3410921 | 3496194 | 3588599 | 367189 | 3765019 | 385914 | 3955623 | 4054513 | 4155876 | 4259773 | 4366267 | - | - | - | - | - | - | - | - | - | - |
 | (+) $R C M_{\text {WF }}$ | - | 2621739 | 2687282 | 2754464 | 2823326 | 2893909 | 2966257 | 3040413 | 3116424 | 3194334 | 3274193 | 3356047 | 3439949 | 3525947 | 3614096 | 3704448 | 3797060 | 3891986 | 3989286 | 4089018 | 4191243 | 4296024 | 4403425 | 4513511 | 4626348 | 4742007 |
 | (+) Depreciation | | 2447044 | 2508220 | 2570926 | 2635199 | 2701079 | 2768606 | 2837821 | 2908766 | 2981485 | 3056023 | 3132423 | 3210734 | 3291002 | 3373277 | 3457609 | 3544049 | 3632650 | 3723467 | 3816553 | 3911967 | 4009766 | 4110011 | 4212761 | 4318080 | 4426032 |
 | ($)$ Free net cashfow | -59683998 | 7438830 | 4465690 | 4572789 | 4695239 | 4799923 | 4904575 | 5018831 | 5145081 | 5286176 | 5418248 | 5553141 | 5682511 | 5829726 | 5984720 | 6115999 | 9490294 | 9739831 | 9994631 | 10257728 | 10489072 | 9913311 | 10190649 | 10440691 | 10694765 | 10966948 |
 | $\Sigma_{\text {freene }}$ anmal cashfow | - | -52245 168 | -47799478 | -43206689 | -38511450 | -33711527-2 | -28806951 | -23788121 | -18643040 | -13356863 | -7938615 | -2385474 | 3297038 | 9126764 | 15111484 | 21227483 | 30717777 | 40457608 | 50452239 | 60709967 | 711990398 | 81112349 | 91302998 | 101743689 | 112438454 | 123405402 |

 | Item | the wind farmp | aproject | 50000 k | | Cape Saint Ja | Janes (Cana | | | | with senssitivi | vity analy sis | $E_{p i}$ iCass | | | | | | | | | | | | | | |
 | :---: |
 | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
 | (-) LCCCM $_{\text {w }}$ | 6025901 | |
 | ${ }_{\text {w }}^{\text {con }}$ | 27686278 | - | - | - | - | - | - | - | | | | | | | | | | | | | | | | | | |
 | ${ }_{\text {cıu }}$ | 2421929 | - | \cdot | - | | - | \checkmark | - | | - | - | - | | \checkmark | | - | - | - | | | | | | - | | |
 | ${ }^{\text {LWTG }}$ cu | 1959783 | - | - | - | - | - | - | - | - | - | | | - | - | | | | | | | | | | | | |
 | ${ }^{\text {cP cu }}$ | 1545346 | - | - | - | - | - | - | - | | - | | | - | - | - | | - | - | | | | | | | | |
 | ${ }^{\text {TS }}$ cu | 572832 | - | - | - | - | - | - | - | - | - | - | | - | - | | | | - | | | | | | | | |
 | $\mathrm{slcm}_{\mathrm{cm}}$ | 2136726 | - | - | - | | | - | | | | | | | | | | | | | | | | | | | |
 | POCu | 1796870 | - | - | - | - | - | | - | - | - | - | | - | - | - | | - | - | - | | | | | | | |
 | $\mathrm{Fcm}_{\text {cu }}$ | 188559 | - | \checkmark | \checkmark | | | \checkmark | | | \checkmark | | | | \checkmark | | | \checkmark | - | | | | | | | | |
 | ${ }^{\text {ccCa }} \mathrm{cu}$ | 120211 | |
 | LCPM ${ }_{\text {wF }}(k W h / r r)$ | - | 21246325 | 213202961 | 213887985 | 21223870 | . 212655974 | 213202961 | 21223650 | 2122 | 21388 | 212655974 | 213202961 | \%4 | | 139 | | | | | | | | | 213512714 | | |
 | ${ }^{(+)}$AAR (SM/yr) | - | 30129143 | 30989297 | 31860088 | 3240858 | 33286465 | 34206386 | 34900500 | 35773012 | 3695893 | 37660580 | 38701386 | 39576163 | 4047888 | 41824978 | 42766117 | 43942368 | 44981873 | 46151597 | 47321124 | 48311614 | 34682891 | 35382431 | 36487277 | 3725877 | 1764 |
 | PPAR EMP | - | 30129143 | 30989297 | 31866088 | 32408583 | 33288645 | 34206386 | 34900500 | 35773012 | 36954893 | 37660580 | 38701386 | 639576163 | 4047880 | 41824978 | 42766117 | 43942368 | 44981873 | 46151597 | 47321124 | 48311614 | | | | | |
 | EMP | | | | | - | | | - | | | | | | | | | | | | | | 34682891 | 2331 | 3648727 | 5787 | |
 | (-) $0 \& M_{\text {wfon }}$ | - | 20.588652 | 21176288 | 21775288 | 22145848 | 22745587 | 23374047 | 23848205 | 2444263 | 25251713 | 25733770 | 26448813 | 32042405 | 27655668 | 28578721 | 29221647 | 3025220 | 30735351 | 3153456 | 32333422 | 33010054 | 2939475 | 29987509 | 30923746 | 31576700 | 32474765 2097809 |
 | ${ }_{\text {O }}^{\text {\& }} M_{\text {fuad }}$ | - | 1154286 | 11873856 | 12209801 | 12417656 | 12754019 | 13106489 | 13372438 | 13706743 | 14159584 | 14429968 | 14828755 | 5 15163927 | 15507888 | 16025565 | 16386164 | 16836847 | 17235134 | 17683316 | 18131422 | 18510929 | 18984265 | 19367163 | 19971913 | 20393707 | 2097389 |
 | O\& $M_{\text {werrible }}$ | - | 9044366 | 9302432 | 9565487 | 9728192 | 9991568 | 10267558 | 10475767 | 10737520 | 11092129 | 11303802 | 11616058 | 811874778 | 12147781 | 12553156 | 12835484 | 13188373 | 13500217 | 13851140 | 14202000 | 14499125 | 10410511 | 10620346 | 10951834 | 11182993 | 11500957 |
 | (+) LRCM | - | 863268 | 884850 | 906971 | 929646 | 952887 | 976709 | 1001127 | 1026155 | 1051809 | 1078104 | 1105057 | 1132683 | 1161000 | 1190025 | 1219776 | | | | | | | | | | |
 | ${ }^{(+)}$Depreciation | | 2383862 | 2443459 | 2504545 | 2567159 | 2631338 | 2697121 | 276454 | 283663 | 2904504 | 2977117 | 3051545 | 3127834 | 3206029 | 3286180 | 3368335 | 3452543 | 3538857 | 3627328 | 3718011 | 3810962 | 3906236 | 4003892 | 4103989 | 4206589 | 4311753 |
 | ($=$ Profft before tax | - | 12787622 | 13141318 | 13502317 | 13759540 | O 14125103 | 14506169 | 14817971 | 1518856 | 15659493 | 15982031 | 16413174 | 41674274 | 17185241 | 17722462 | 18132580 | 17369691 | 17785378 | 1824469 | 18705713 | 19112522 | 9194351 | 9398813 | 9667519 | 9887766 | 10154682 |
 | (-) Reverue tax | | 9038743 | 9296789 | 9559826 | 9722575 | 9985940 | 10261916 | 10470150 | 10731904 | 11086468 | 11298174 | 11610416 | 611872849 | 12142164 | 12547493 | 12829835 | 13182710 | 1344452 | 13845479 | 14196337 | 14493484 | 10404867 | 10614729 | 10946183 | 1117363 | 11495308 |
 | (+) REPM | 2082923 | 3008 | 3094 | 3181 | 3236 | 3223 | 3415 | 3484 | 3571 | 3689 | 3760 | 3864 | 3951 | 4041 | 4176 | 4270 | 4387 | 4491 | 4608 | 4724 | 4823 | 4947 | 5046 | 5204 | 5314 | 5465 |
 | REICM | - | - | - | - | . | - | - | - | | - | - | | | - | - | | - | - | | | - | | | | | |
 | REPcm | | - | - | - | - | - | \checkmark | . | - | - | - | | - | - | - | - | \checkmark | \checkmark | \checkmark | - | - | | | - | - | |
 | OREP CM | 2082923 | |
 | GHG.Rcm | | 3008 | 3094 | 3181 | 3236 | 3323 | 3415 | 3484 | 3571 | 3689 | 3760 | 3864 | 3951 | 4041 | 4176 | 4270 | 4387 | 4491 | 4608 | 4724 | 4823 | 4947 | 5046 | 5204 | 5314 | 5465 |
 | ($)$ Profft afer rax w/out interest | - | 375188 | 3847623 | 3945672 | 4040200 | 4142487 | 4247668 | 4351305 | 4460235 | 4576715 | 4687617 | 480662 | 4225377 | 5047118 | 517914 | 5307014 | 4191368 | 4295307 | 4403597 | 4514100 | 4623861 | -1205 569 | 1210870 | 1273460 | -1284283 | 1335161 |
 | (-) Debt payments | - | | 3085599 | 3162739 | ${ }^{3241807}$ | 332885 | 3405924 | 349102 | 3578348 | 3668007 | 3759502 | 3853490 | ${ }^{3949} 827$ | 4048573 | 4149787 | ${ }_{4253532}$ | | | | | | | | | | |
 | ${ }^{+}$) $\mathrm{RCM}_{\text {W }}{ }^{\text {r }}$ | - | 2621739 | 2687282 | 2754464 | 282322 | 2893909 | 2966257 | 3040413 | 3116424 | 3194334 | 3274193 | 3356047 | 3439949 | 3525947 | 3614096 | 3704448 | 3797060 | 3891986 | 3989286 | 4089018 | 4191243 | 4296024 | 4403425 | 4513511 | 4626348 | 4742007 |
 | (+) Depreciation | | 2383862 | 2443459 | 2504545 | 2567159 | 2631338 | 2697121 | 276454 | 2833663 | 2904504 | 297711 | 3051545 | 3127834 | 3206029 | 3286180 | 3368335 | 3452543 | 353885 | 3627328 | 3718011 | 3810962 | 3906236 | 4003892 | 4103989 | 4206589 | 4311753 |
 | \Leftrightarrow Free net cashflow | -58142978 | 8757488 | 5892765 | 6041943 | 6188878 | 8344881 | 6505123 | 6665196 | 6831973 | 7007746 | 717924 | 7360724 | 7543332 | 7730522 | 7929633 | 8126266 | 11440971 | 11726150 | 12020211 | 12321129 | 1262066 | 6996691 | 719644 | 734039 | 7548654 | 7718599 |
 | $\Sigma_{\text {freneramamal ashlaw }}$ | - | -49385490 | -43492725 | -37450782 | -31261905-2 | -24917023 | -18411901 | -11746705 | -4914732 | 2093014 | 9272438 | 16633163 | 32176494 | 31907016 | 39886649 | 47962915 | 59403885 | 71130035 | 83150246 | 95471376 | 10809741 | 115904132 | 122290579 | 129634618 | 1377183272 | 144901871 |
 | | LCOE wo | | | | 86.12 | |

 ## APPENDIX P

 | Wind Farm Life-Cycle Capital Cost Model | | Notes |
 | :---: | :---: | :---: |
 | ${ }^{W} \mathrm{~T}_{\mathrm{cu}}$ | 553.7256 | [\$/kW] |
 | ${ }^{\text {CM }}{ }_{W T}$ | 26532 | [skw] |
 | ${ }^{R} C_{W T}$ | 73.70\% | [$\% / 5 / \mathrm{kW}]$ |
 | $c_{\text {sw }}$ | 400.00 | [s/kw] |
 | ${ }^{\text {P }}$ T | 10.00% | [\%] |
 | ${ }_{\text {cum }}$ | 48.3859 | [s/w] |
 | $T_{\text {maxs }}$ | 138000 | ${ }^{\text {[kg] }}$ |
 | $R_{\text {R }}^{T}$ | 26.30% | [$\% / s / k w]$ |
 | $c_{\text {seed }}$ | 0.1990 | [s/kg] |
 | ${ }^{\text {LwTG }}$ cu | 39.1957 | [5 m mkw] |
 | $\mathrm{WF}_{\text {cop }}$ | 50000 | ${ }^{[k W]}$ |
 | L_{8} | 13950 | ${ }^{[m]}$ |
 | $C A B$ cort | 2000.00 | ${ }^{[5 / \mathrm{m}]}$ |
 | ${ }^{\text {cP }}{ }_{\text {cu }}$ | 30.969 | \|shw1 |
 | ${ }^{E F_{c}}$ | 40.00 | [s/w] |
 | ς | 0.08\% | [\%] |
 | ${ }^{7 s_{\mathrm{cu}}}$ | 11.4566 | ${ }_{\text {[Skwal }}$ |
 | $T_{\text {c }}$ | ${ }^{0.0400}$ | [5/m] |
 | ${ }_{\text {tL }}$ | 1200 | ${ }_{[1 / \mathrm{WW}]_{1}}$ |
 | L_{i} | 3000 | [m] |
 | $S_{\text {B }}$ | 113.00 | [skwh] |
 | ${ }^{\text {S }} \mathrm{cu}$ | 42.7345 | $\left[\mathrm{s}^{2} / \mathrm{mw]}\right.$ |
 | $W_{F_{\text {cup }}}$ | 50000 | ${ }^{\text {[kw] }}$ |
 | $W_{T \text { nast }}$ | 42.2388 | [skw] |
 | ${ }^{\text {Bld }}$ coses | 500.00 | ${ }^{\left[8 m^{2}\right]}$ |
 | ${ }^{\text {Bld }}$ crea | 300.0 | ${\left[m^{2}\right]}$ |
 | ${ }^{P O} \mathrm{cu}^{\text {w }}$ | 359374 | [s/kw] |
 | ${ }_{\text {Fs }}$ | 19.88 | [s/w] |
 | DT | 87.22 | [s/w] |
 | ${ }_{\text {EG }}$ | 40.52 | [s/w] |
 | ${ }^{\text {cur }}$ | 3.7712 | [s/w] |
 | WACC ${ }_{\text {prof }}$ | 4.900% | [$\%$ (yr] |
 | $n_{\text {fin }}$ | 1.0 | [yr] |
 | $w_{\text {fow }}$ | 0.30\% | [\%] |
 | ${ }^{\text {ccCam }}$ | 2.4042 | [skw] |
 | κ | 0.20\% | [\%] |
 | $L_{\text {LCCCM }}{ }_{\text {WF }}$ | 4.5180 | ${ }^{\text {[s/kW] }}$ |

 Figure P. 1 I-O representation of $L C O E_{w s o}$ algorithm calculations for the hypothetical $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Aracati (Brazil) with sensitivity analysis of $O \& M_{\operatorname{manag}(A)}$ and $E_{p i}\left(\right.$ Case $\left._{1}\right)$. Source: Own elaboration

 Figure P. 2 I-O system representation of $L C O E_{\text {wso }}$ algorithm calculations for the hypothetical $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Corvo Island (Portugal) with sensitivity analysis of $O \& M_{\operatorname{manag}(A)}$ and $E_{p i}$ (Case ${ }_{1}$). Source: Own elaboration

 | $\mathrm{LCOE}_{\text {wso }}$ Model Inputs | | |
 | :---: | :---: | :---: |
 | Legend | | |
 | | | |
 | Yellow cells are for wese input itformatoon about the project. | | |
 | Gray cells are not ueed. | | |
 | Wind Project Information | | Notes |
 | Project Name | ${ }_{\text {Finear Wiod }}$ fumm | |
 | Project Location | Cex simmmemame | |
 | Turbine Model | Vetas V90-2Mw | |
 | Number of Wind Turbines ($\left.N_{W T}\right)$ | 25 | ${ }^{[} \mathrm{H}$ |
 | Turbine Size | 2000 | ${ }^{\text {[kw] }}$ |
 | Wind Farm Capacity (WF copp $^{\text {) }}$ | 50000 | [kw] |
 | Rotor Diamenter (D) | 90.0 | [m] |
 | Swep A Area per Turbine (A) | 6361.7 | ${ }^{\left[\mathrm{m}^{2}\right]}$ |
 | Hub height (H) | 105.0 | [m] |
 | Wind speed measured at (H_{0}) | 10.0 | [m] |
 | Termin rugosity factor (a) | 0.14 | ${ }^{\text {H }}$ |
 | BerzLinits soefficient ($C_{\text {Pamat }}$) | 0.5926 | ${ }^{\text {H }}$ |
 | Lifetine of Wind Farm(N) | 25 | [yr] |
 | Production Efficiency (WF ${ }_{P E}$) | 48.7\% | [\%] |
 | Avâlabilily | ${ }^{98.4 \%}$ | [\%] |
 | | 359 | [d/yr] |
 | Wind Farm Life-Cycle Capial Cost Model | | Notes |
 | ${ }^{W} \mathrm{c}_{\mathrm{cu}}$ | 5537256 | [s/kw] |
 | ${ }_{\text {c M }}^{\text {wT }}$ | 26532 | [s/kw] |
 | ${ }^{R} C_{\text {w }}$ | 73.70% | [F/5/5k] |
 | $c_{k w}$ | 400.00 | [s/kw] |
 | ${ }^{\text {P }}$ T | 10.00\% | [\%] |
 | ${ }_{\text {cum }}$ | 4843859 | [s/kw] |
 | $T_{\text {max }}$ | 138000 | [kg] |
 | ${ }_{R C} C_{T}$ | 26.30\% | ${ }_{[6 / 5 / s k]}$ |
 | $C_{\text {seel }}$ | 0.1900 | [s/kg] |
 | ${ }^{\text {LW }}$ ch cu | 39.1957 | [\$/wkw] |
 | ${ }^{W} F_{\text {cap }}$ | 50000 | ${ }^{[k W]}$ |
 | ${ }_{L_{8}}$ | 13950 | ${ }_{\left[{ }^{[m]}\right.}^{[s / m]}$ |
 | ${ }_{\text {cab }}{ }_{\text {cous }}$ | 2000.00 | ${ }^{[5 / \mathrm{m}]}$ |
 | ${ }^{\text {cP }{ }_{\text {cur }}}$ | 30.969 | [s/kw] |
 | ${ }^{E F_{c}}$ | 400.00 | [s/kw] |
 | ς | 0.08% | [\%] |
 | ${ }^{7 T_{C N}}$ | 11.4566 | |
 | ${ }_{T} L_{\text {c }}$ | 0.0400 | [5/m] |
 | ${ }_{T} L_{\text {r }}$ | 1200 | ${ }_{\text {[} 1 / \mathrm{kw]}}$ |
 | L_{*} | 3000 | [m] |
 | ${ }_{S B}{ }_{c}$ | 113.00 | [\$/kWh] |
 | ${ }^{\text {Stam }}$ | 427345 | [s/m²/kw] |
 | ${ }^{W} F_{\text {app }}$ | 50000 | ${ }^{[k W]}$ |
 | $\mathrm{W}_{\text {mant }}$ | 42.5238 | [s/kw] |
 | ${ }^{B l d} d_{\text {cost }}$ | 500.00 | ${ }^{\left[s \mathrm{sm}^{2}\right]}$ |
 | ${ }^{\text {Bld }}$ deam | 30.0 | $\left[^{\left[m^{2}\right]}\right.$ |
 | ${ }^{\text {PO }} \mathrm{CH}$ | 35.9374 | [skw] |
 | FS | 19.88 | [skw] |
 | ${ }^{\text {dT }}$ | 87.22 | [s/kw] |
 | ${ }_{\text {EG }}$ | 40.52 | [5/kw] |
 | $\mathrm{Fcu}_{\mathrm{cu}}$ | 3.7712 | [skw] |
 | $W^{\prime C C} C_{\text {prof }}$ | Sors | [\%/yr] |
 | $n_{\text {fn }}$ | 1.0 | ${ }^{\text {[y }]}$ |
 | $w_{\text {fax }}$ | ${ }^{0.30 \% \%}$ | [\%] |
 | ${ }^{\text {cCC }}{ }_{\text {cur }}$ | 24442 | |
 | κ | 0.20\% | [\%] |
 | $L_{\text {LCCCM }}{ }_{\text {wr }}$ | 1204.5180 | [$\mathrm{s} / \mathrm{kW}]$ |

 | $L^{2} P M_{W F}$ | 213509813 |
 | :--- | :--- | $\mathrm{~kW} \mathrm{~Wh}^{2}$

 Figure P. 3 I-O system representation of $L C O E_{w s o}$ algorithm calculations for the hypothetical $50 \mathrm{MW}_{\mathrm{e}}$ wind farm in Cape Saint James (Canada) with sensitivity analysis of $O \& M_{\text {manag(A) }}$ and $E_{p i}$ (Case ${ }_{1}$). Source: Own elaboration
 Table P. 1 Energy production (AEP avaii) map of the wind farmfor Aracati (Brazil)

 | Months | $\begin{gathered} v_{w c} \\ (m s) \\ (m s) \end{gathered}$ | $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$ | $H_{\text {prod }}$
 (h) | $A^{\text {E }} \mathrm{P}_{\text {axil }}(\mathrm{kWh})$ | |
 | :---: |
 | | | | | yr ${ }_{1}$ | $y r_{2}$ | yr_{3} | yr ${ }_{4}$ | yrs | $y r_{6}$ | yr7 | yr ${ }_{8}$ | yr, | y_{10} | $y^{\prime}{ }_{H}$ | $y^{1 / 2}$ | $y_{1 / 3}$ | ${ }^{\text {y }} r_{14}$ | $y_{1 / 5}$ | y_{16} | y_{17} | yr_{18} | yr_{19} | $y r_{20}$ | $y r_{21}$ | $y r_{22}$ | ${ }_{12}{ }_{23}$ | r_{24} | 25 |
 | January | 8 | 1.1665 | 740 | 1697720 | 8914291 | 3812469 | 7527755 | 558872 | 8914291 | 558872 | 558872 | 4243681 | 8914291 | 8914291 | 558872 | 3812469 | 7527755 | 4243681 | 8914291 | 8914291 | 558872 | 3812469 | 7527755 | 558872 | 3812469 | 7527755 | 4243681 | 4243681 |
 | February | 4.9 | 1.1666 | 648 | 859945 | 6879561 | 3714421 | 6879561 | 788321 | 6879561 | 788321 | 788321 | 4780152 | 6879561 | 6879561 | 788321 | 3714421 | 6879561 | 489171 | 489171 | 3336988 | 4780152 | 7802526 | 1594674 | 1594674 | 7802526 | 6879561 | 4780152 | 4780152 |
 | March | 4.0 | 1.1671 | 736 | 555877 | 7487419 | 5432002 | 8866525 | 977212 | 7487419 | 977212 | 977212 | 6552645 | 7487419 | 7487419 | 977212 | 5432002 | 8866525 | 895822 | 895822 | 1812134 | 4220942 | 1812134 | 1688623 | 1688623 | 7817699 | 8866525 | 3792040 | 6552645 |
 | April | 4.7 | 1.1667 | 712 | 866366 | 6337184 | 6337184 | 4082151 | 1633098 | 6337184 | 1633098 | 1633098 | 7241220 | 6337184 | 6337184 | 1752548 | 6337184 | 4082151 | 945080 | 945080 | 1633098 | 6337184 | 1633098 | 3667352 | 945080 | 724220 | 337184 | 752548 | 7241220 |
 | May | 0 | 1.1670 | 736 | 1812066 | 5431800 | 7487140 | 5431800 | 1812066 | 5431800 | 1812066 | 1812066 | 7817409 | 5431800 | 5431800 | 1688560 | 7487140 | 6552401 | 1688560 | 168856 | 977176 | 886619 | 97717 | 55585 | 89578 | 65524 | 4220785 | 168850 | 7817409 |
 | Ju | 7.9 | 1.1686 | 696 | 3996852 | 3996852 | 7402657 | 6204764 | 3590720 | 3996852 | 3590720 | 3590720 | 8395800 | 3996852 | 3996852 | 3590720 | 7402657 | 5143616 | 1715927 | 1715927 | 848262 | 7402657 | 848262 | 848262 | 3590720 | 5143616 | 5143616 | 925332 | 8395800 |
 | ${ }^{\text {July }}$ | 8.6 | 1.1698 | 736 | 5444782 | 3800962 | 8887385 | 1692596 | 4230873 | 3800962 | 4230873 | 4230873 | 557185 | 557185 | 3800962 | 5444782 | 8887385 | 1816.397 | 3800962 | 3800962 | 557185 | 7505034 | 557185 | 979511 | 4230873 | 4230873 | 1692596 | 897929 | 557185 |
 | August | 9.6 | 1.1677 | 736 | 7491301 | 1813073 | 1813073 | 1813073 | 8871123 | 1813073 | 5434819 | 5434819 | 896286 | 896286 | 1813073 | 4223131 | 1813073 | 1689499 | 5434819 | 7821753 | 7821753 | 896286 | 4223131 | 7821753 | 5434819 | 1813073 | 1813073 | 556165 | 896286 |
 | September | 1 | 1.1657 | 712 | 8566 | 1631 | 1631564 | 3663906 | 7553538 | 1631564 | 6331230 | 6331230 | 944192 | 944192 | 1631564 | 6331230 | 1631564 | 3663906 | 6331230 | 7234417 | 7234417 | 944192 | 5248454 | 8566923 | 6331230 | 1631564 | 3663906 | 6331230 | 944192 |
 | October | 9.7 | 1.1645 | 736 | 7800246 | 975031 | 975031 | 554636 | 7470703 | 975031 | 7470703 | 7470703 | 1684853 | 1684853 | 975031 | 8846730 | 975031 | 554636 | 7470703 | 6538016 | 6538016 | 1808088 | 6538016 | 4211519 | 7470703 | 975031 | 975031 | 8846730 | 1684853 |
 | November | 9.2 | 1.1638 | 696 | 6179252 | 844775 | 844775 | 844775 | 6179252 | 844775 | 7372218 | 7372218 | 1708872 | 1708872 | 844775 | 7372218 | 844775 | 844775 | 7372218 | 5122467 | 5122467 | 1592399 | 7060758 | 6179252 | 7372218 | 844775 | 844775 | 7372218 | 1708872 |
 | December | 7.6 | 1.1651 | 736 | 3785725 | 554951 | 554951 | 975585 | 5422956 | 554951 | 8851759 | 8851759 | 3785725 | 3785725 | 554951 | 7474950 | 554951 | 975585 | 8851759 | 4213913 | 4213913 | 3785725 | 7804681 | 5422956 | 8851759 | 554951 | 554951 | 7474950 | 3785725 |
 | Annual | 7.4 | 1666 | 86 | 49057055 | 4868762 | 48892652 | 4837712 | 888 | 667 | 49051893 | 49051893 | 6080 | 48 | 48674 | 49049275 | 48826 | 48968 | 239 | 49380 | 49097 | 489773 | 83178 | ${ }_{49} 064437$ | 48965 | 48420 | 48519 | 4861 | 4860821 |

 | Months | $\begin{gathered} v_{w c} \\ (m s s) \end{gathered}$ | $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$ | $\begin{gathered} H_{\text {prod }} \\ (h) \\ \hline \end{gathered}$ | |
 | :---: |
 | | | | | $y r_{1}$ | yr_{2} | yr_{3} | yr_{4} | yrs | yr 6 | y_{7} | $y^{\prime} r_{8}$ | yr, | yr ${ }_{10}$ | $y r_{l l}$ | yr 12 | rr_{3} | y_{14} | yris | | | | | | | | | ${ }_{1} 24$ | |
 | January | . 7 | 1.2313 | 740 | 1449462 | 14490462 | 462 | 462 | 14490462 | 14490462 | 14490462 | 10871408 | 10871408 | 14490462 | 1087108 | 10871408 | 10871408 | 1449462 | 1087408 | 10871408 | 14490462 | 1087108 | 1087408 | 10871408 | 10871408 | 10871088 | 1087108 | 10871408 | 1087 |
 | February | 11.5 | 1.2345 | 648 | 12092721 | 429313 | 1209721 | 1209721 | 1209721 | 3417096 | 1209721 | 1271588 | 17957 | 341 | 1271585 | 1795784 | 9244173 | 1209721 | 66740 | 12715785 | 293137 | 62 | 3417096 | 500 | 12092721 | 106703 | 15 | 12092721 | |
 | March | 10.5 | 1.2329 | 736 | 1048828 | 3193907 | 13717510 | 13717510 | 510 | 6223433 | 137 | 1371 | 2389762 | 3193907 | 137 | 2389762 | 13717510 | 137 | 6223433 | 13717510 | 3876220 | 7570742 | 4869967 | 13717510 | 242 | 2037067 | 10486 | 1424289 | 3193907 |
 | April | 9.5 | 317 | 712 | 7316597 | 7316597 | 10458883 | 10458483 | 10458883 | 7316597 | 10458883 | 4706485 | 3086689 | 7316597 | 13257022 | 3086689 | 13257022 | 4706485 | 4706485 | 132570 | 3086689 | 101342 | 3086689 | 3400 | 13257022 | 3086689 | 3086689 | 13257922 | 3746098 |
 | May | 8.2 | 1.2282 | 736 | 4851676 | 1046845 | 1046845 | 10446845 | 6200059 | 10446 | 10446845 | 1046845 | 3861662 | 6200059 | 10468845 | 3861662 | 1437 | 104 | 3861662 | 10446845 | 23807 | 1365991 | 62000 | 238078 | 1041 | 3861662 | 14370115 | 10446845 | 4851676 |
 | Ju | 7.1 | 1.2224 | 696 | 2994461 | 1280990 | 7097981 | 7097981 | 7097981 | 10 | 4565858 | 12809910 | 4565858 | 10145990 | 7097981 | 4565858 | 7097981 | 2240532 | 2994461 | 7097981 | 1909861 | 12809910 | 7097981 | 190986 | 70979 | 4565858 | 28809 | 7097 | 5834806 |
 | July | 6.1 | 1.2154 | 736 | 2008118 | 13525571 | 4800760 | 6134992 | 1037209 | 1352571 | 7463154 | 3148518 | 6134992 | 2008118 | 6134992 | 6134992 | 6134992 | 2008118 | 2355801 | 6134992 | 6134992 | 1429306 | 10337209 | 3821135 | 6134992 | 6134992 | 1352 | 3821135 | |
 | August | 6.4 | 2075 | 736 | 2340 | 10598 | 379631 | 379631 | 3796310 | 134 | 6095134 | 37963 | 7414668 | 2340496 | 4769571 | 7414668 | 4769571 | 10598668 | 1995072 | 4769571 | 13434719 | 1995072 | 134 | 4769571 | 4769571 | 7414668 | 4769571 | 3128063 | |
 | September | 7.6 | 1.2064 | 712 | 366920 | 192827 | 58910 | 46098 | 46098 | 46098 | 192827 | 58910.5 | 9926189 | 992618 | 36692 | 9926189 | 36692 | 5891057 | 9926189 | 3669202 | 12984 | 2262132 | 12888 | 589105 | 3669202 | 992618 | 366921 | 2262 | 1928 |
 | October | 8.9 | 1.2126 | 736 | 6121079 | 6121079 | 3141378 | 2003564 | 3141378 | 2003564 | 2350459 | 7446229 | 1349995 | 1349995 | 3141378 | 13491905 | 3141378 | 7446229 | 1349995 | 3141378 | 1064782 | 3141378 | 2003564 | 7446229 | 3141378 | 13491905 | 2350459 | 2003564 | |
 | November | 10.6 | 1.2194 | 696 | 10121586 | 362542 | 2235143 | 2235143 | 2235143 | 2235143 | 2987258 | 2235143 | 12829976 | 4554876 | 2235143 | 1282976 | 2235143 | 2987258 | 12829976 | 2235143 | 9807761 | 3625425 | 2235143 | 9807761 | 2235143 | 12829976 | 905267 | 5820771 | |
 | December | 11.5 | 1.2237 | 736 | 13614984 | 2371901 | 2021842 | 3170035 | 2021842 | 3170035 | 3847249 | 2021842 | 14316881 | 13614984 | 2021842 | 14316881 | 2021842 | 3847249 | 14316481 | 2021842 | 7514158 | 4833568 | 14316481 | 13614984 | 2021842 | 14316881 | 6176918 | 4833568 | 13614 |
 | Annual | 9.1 | 1.2222 | 8616 | 90107610 | 90769774 | 90190491 | 92253921 | 90198973 | 91016328 | 9044305 | 8988042 | 9068574 | 90700678 | 90078677 | 9068374 | 90.530336 | 90473134 | 90246888 | 90078677 | 9055764 | 9066643 | 9085213 | 90985978 | 90162393 | 90643988 | 90743354 | 90059500 | |

 Table P. 4 Wind speed series simulations for $A E P_{\text {avail }}$ in Aracati (Brazil)

 | Months | $\begin{gathered} v_{w c} \\ (m / s) \\ \hline \end{gathered}$ | Wind speed data series for simulations (m / s) | |
 | :---: |
 | | | y_{1} | yr_{2} | y^{3} | $y r_{4}$ | y_{5} | y_{6} | $y r 7_{7}$ | y_{8} | ${ }^{\text {r }} 9$ | $y r_{10}$ | $y_{1 / 1}$ | y_{12} | $y r_{13}$ | y_{14} | $y_{1 / 5}$ | $y r_{16}$ | y_{17} | $y_{1 / 8}$ | y_{19} | $y r_{20}$ | y_{21} | y^{22} | y_{23} | y_{24} | ${ }^{2 r} r_{25}$ |
 | January | 5.8 | 5.8 | 10.1 | 7.6 | 9.6 | 4.0 | 10.1 | 4.0 | 4.0 | 7.9 | 10.1 | 10.1 | 4.0 | 7.6 | 9.6 | 7.9 | 10.1 | 10.1 | 4.0 | 7.6 | 9.6 | 4.0 | 7.6 | 9.6 | 7.9 | 7.9 |
 | February | 4.9 | 4.9 | 9.7 | 7.9 | 9.7 | 4.7 | 9.7 | 4.7 | 4.7 | 8.6 | 9.7 | 9.7 | 4.7 | 7.9 | 9.7 | 4.0 | 4.0 | 7.6 | 8.6 | 10.1 | 6.0 | 6.0 | 10.1 | 9.7 | 8.6 | 8.6 |
 | March | 4.0 | 4.0 | 9.6 | 8.6 | 10.1 | 4.9 | 9.6 | 4.9 | 4.9 | 9.2 | 9.6 | 9.6 | 4.9 | 8.6 | 10.1 | 4.7 | 4.7 | 6.0 | 7.9 | 6.0 | 5.8 | 5.8 | 9.7 | 10.1 | 7.6 | 9.2 |
 | April | 4.7 | 4.7 | 9.2 | 9.2 | 7.9 | 5.8 | 9.2 | 5.8 | 5.8 | 9.6 | 9.2 | 9.2 | 6.0 | 9.2 | 7.9 | 4.9 | 4.9 | 5.8 | 9.2 | 5.8 | 7.6 | 4.9 | 9.6 | 9.2 | 6.0 | 9.6 |
 | May | 6.0 | 6.0 | 8.6 | 9.6 | 8.6 | 6.0 | 8.6 | 6.0 | 6.0 | 9.7 | 8.6 | 8.6 | 5.8 | 9.6 | 9.2 | 5.8 | 5.8 | 4.9 | 10.1 | 4.9 | 4.0 | 4.7 | 9.2 | 7.9 | 5.8 | 9.7 |
 | June | 7.9 | 7.9 | 7.9 | 9.7 | 9.2 | 7.6 | 7.9 | 7.6 | 7.6 | 10.1 | 7.9 | 7.9 | 7.6 | 9.7 | 8.6 | 6.0 | 6.0 | 4.7 | 9.7 | 4.7 | 4.7 | 7.6 | 8.6 | 8.6 | 4.9 | 10.1 |
 | July | 8.6 | 8.6 | 7.6 | 10.1 | 5.8 | 7.9 | 7.6 | 7.9 | 7.9 | 4.0 | 4.0 | 7.6 | 8.6 | 10.1 | 6.0 | 7.6 | 7.6 | 4.0 | 9.6 | 4.0 | 4.9 | 7.9 | 7.9 | 5.8 | 4.7 | 4.0 |
 | August | 9.6 | 9.6 | 6.0 | 6.0 | 6.0 | 10.1 | 6.0 | 8.6 | 8.6 | 4.7 | 4.7 | 6.0 | 7.9 | 6.0 | 5.8 | 8.6 | 9.7 | 9.7 | 4.7 | 7.9 | 9.7 | 8.6 | 6.0 | 6.0 | 4.0 | 4.7 |
 | September | 10.1 | 10.1 | 5.8 | 5.8 | 7.6 | 9.7 | 5.8 | 9.2 | 9.2 | 4.9 | 4.9 | 5.8 | 9.2 | 5.8 | 7.6 | 9.2 | 9.6 | 9.6 | 4.9 | 8.6 | 10.1 | 9.2 | 5.8 | 7.6 | 9.2 | 4.9 |
 | October | 9.7 | 9.7 | 4.9 | 4.9 | 4.0 | 9.6 | 4.9 | 9.6 | 9.6 | 5.8 | 5.8 | 4.9 | 10.1 | 4.9 | 4.0 | 9.6 | 9.2 | 9.2 | 6.0 | 9.2 | 7.9 | 9.6 | 4.9 | 4.9 | 10.1 | 5.8 |
 | November | 9.2 | 9.2 | 4.7 | 4.7 | 4.7 | 9.2 | 4.7 | 9.7 | 9.7 | 6.0 | 6.0 | 4.7 | 9.7 | 4.7 | 4.7 | 9.7 | 8.6 | 8.6 | 5.8 | 9.6 | 9.2 | 9.7 | 4.7 | 4.7 | 9.7 | 6.0 |
 | December | 7.6 | 7.6 | 4.0 | 4.0 | 4.9 | 8.6 | 4.0 | 10.1 | 10.1 | 7.6 | 7.6 | 4.0 | 9.6 | 4.0 | 4.9 | 10.1 | 7.9 | 7.9 | 7.6 | 9.7 | 8.6 | 10.1 | 4.0 | 4.0 | 9.6 | 7.6 |
 | Annual | 7.4 |

 | Months | $\begin{gathered} v_{w c} \\ (m / s) \end{gathered}$ | Wind speed data series for simulations (m / s) | |
 | :---: |
 |
 | | | $y r_{1}$ | $y r_{2}$ | yr_{3} | yr_{4} | $y r_{5}$ | $y r_{6}$ | yr7 | yr_{8} | yr, | $y r_{10}$ | $y r_{1 I}$ | $y r_{12}$ | yr_{13} | $\mathrm{yr}_{1 / 4}$ | ${ }^{\text {r }} 15$ | $y r_{16}$ | ${ }_{17}{ }_{17}$ | ${ }^{1} r_{18}$ | $y r_{19}$ | $y r_{20}$ | y^{21} | y^{22} | $y_{2}{ }^{3}$ | ${ }^{\text {r } 24}$ | ${ }^{2 r} 25$ |
 | January | 11.7 | 11.7 | 11.7 | 11.7 | 11.7 | 11.7 | 11.7 | 11.7 | 10.6 | 10.6 | 11.7 | 10.6 | 10.6 | 10.6 | 11.7 | 10.6 | 10.6 | 11.7 | 10.6 | 10.6 | 10.6 | 10.6 | 10.6 | 10.6 | 10.6 | 10.6 |
 | February | 11.5 | 11.5 | 8.2 | 11.5 | 11.5 | 11.5 | 7.6 | 11.5 | 11.7 | 6.1 | 7.6 | 11.7 | 6.1 | 10.5 | 11.5 | 9.5 | 11.7 | 8.2 | 8.9 | 7.6 | 7.1 | 11.5 | 6.4 | 9.5 | 11.5 | 11.7 |
 | March | 10.5 | 10.5 | 7.1 | 11.5 | 11.5 | 11.5 | 8.9 | 11.5 | 11.5 | 6.4 | 7.1 | 11.5 | 6.4 | 11.5 | 11.5 | 8.9 | 11.5 | 7.6 | 9.5 | 8.2 | 11.5 | 11.7 | 6.1 | 10.5 | 11.7 | 7.1 |
 | April | 9.5 | 9.5 | 9.5 | 10.6 | 10.6 | 10.6 | 9.5 | 10.6 | 8.2 | 7.1 | 9.5 | 11.5 | 7.1 | 11.5 | 8.2 | 8.2 | 11.5 | 7.1 | 10.5 | 7.1 | 11.7 | 11.5 | 7.1 | 7.1 | 11.5 | 7.6 |
 | May | 8.2 | 8.2 | 10.5 | 10.5 | 10.5 | 8.9 | 10.5 | 10.5 | 10.5 | 7.6 | 8.9 | 10.5 | 7.6 | 11.7 | 10.5 | 7.6 | 10.5 | 6.4 | 11.5 | 8.9 | 6.4 | 10.5 | 7.6 | 11.7 | 10.5 | 8.2 |
 | June | 7.1 | 7.1 | 11.5 | 9.5 | 9.5 | 9.5 | 10.6 | 8.2 | 11.5 | 8.2 | 10.6 | 9.5 | 8.2 | 9.5 | 6.4 | 7.1 | 9.5 | 6.1 | 11.5 | 9.5 | 6.1 | 9.5 | 8.2 | 11.5 | 9.5 | 8.9 |
 | July | 6.1 | 6.1 | 11.5 | 8.2 | 8.9 | 10.5 | 11.5 | 9.5 | 7.1 | 8.9 | 6.1 | 8.9 | 8.9 | 8.9 | 6.1 | 6.4 | 8.9 | 8.9 | 11.7 | 10.5 | 7.6 | 8.9 | 8.9 | 11.5 | 7.6 | 9.5 |
 | August | 6.4 | 6.4 | 10.6 | 7.6 | 7.6 | 7.6 | 11.5 | 8.9 | 7.6 | 9.5 | 6.4 | 8.2 | 9.5 | 8.2 | 10.6 | 6.1 | 8.2 | 11.5 | 6.1 | 11.5 | 8.2 | 8.2 | 9.5 | 8.2 | 7.1 | 10.5 |
 | September | 7.6 | 7.6 | 6.1 | 8.9 | 8.2 | 8.2 | 8.2 | 6.1 | 8.9 | 10.5 | 10.5 | 7.6 | 10.5 | 7.6 | 8.9 | 10.5 | 7.6 | 11.5 | 6.4 | 11.5 | 8.9 | 7.6 | 10.5 | 7.6 | 6.4 | 6.1 |
 | October | 8.9 | 8.9 | 8.9 | 7.1 | 6.1 | 7.1 | 6.1 | 6.4 | 9.5 | 11.5 | 11.5 | 7.1 | 11.5 | 7.1 | 9.5 | 11.5 | 7.1 | 10.6 | 7.1 | 6.1 | 9.5 | 7.1 | 11.5 | 6.4 | 6.1 | 6.4 |
 | November | 10.6 | 10.6 | 7.6 | 6.4 | 6.4 | 6.4 | 6.4 | 7.1 | 6.4 | 11.5 | 8.2 | 6.4 | 11.5 | 6.4 | 7.1 | 11.5 | 6.4 | 10.5 | 7.6 | 6.4 | 10.5 | 6.4 | 11.5 | 6.1 | 8.9 | 11.5 |
 | December | 11.5 | 11.5 | 6.4 | 6.1 | 7.1 | 6.1 | 7.1 | 7.6 | 6.1 | 11.7 | 11.5 | 6.1 | 11.7 | 6.1 | 7.6 | 11.7 | 6.1 | 9.5 | 8.2 | 11.7 | 11.5 | 6.1 | 11.7 | 8.9 | 8.2 | 11.5 |
 | Annual | 9.1 |

 \begin{tabular}{|c|}
 \hline \(\underline{5 z 1}\) \& szi \& sz \& szi \& szi \& szi \& szi \& szl \& sul \& szl \& szi \& sz \& s2l \& szi \& szi \& szi \& szi \& szi \& szi \& szi \& szi \& szi \& szi \& szi \& szi \& szi \& , \\
 \hline \({ }_{681}\) \& \(t\) tst \& \({ }_{\text {ror }}\) \& 46 \& \({ }^{46}\) \& \({ }^{6} 6\) \& rst \& \&tl \& tol \& rst \& tzi \& tst \& \({ }^{6} 6\) \& \(t\) tst \& tol \& \({ }_{\text {I }}^{\text {I } / 1}\) \& ctl \& \({ }^{46}\) \& \({ }^{4} 6\) \& tol \& \({ }_{\text {I }}^{\text {I } / 1}\) \& 46 \& ctl \& tol \& \({ }^{\text {r }}\) t 1 \& I'st \& \\
 \hline ¢\& \& rst \& qor \& \& \({ }_{\text {ror }}^{\text {ror }}\) \& \({ }_{2}^{26}\) \& \({ }_{c+1}^{2+1}\) \& \({ }_{\text {r }}^{\text {cti }}\) \& \(\underset{\text { vill }}{\text { tol }}\) \& \({ }_{c+1}^{4+1}\) \& \(\underset{\text { tor }}{\text { til }}\) \& \({ }_{c+1}^{2+1}\) \& \(\underset{\text { oor }}{\substack{\text { or }}}\) \& \({ }_{\text {r }}^{\text {T } 41}\) \& \(\stackrel{+}{\text { tor }}\) \& \& \& \& \& \& \(\xrightarrow{T S T}\) \& \& \& \%or \& \& \& \\
 \hline \& ct \& \({ }_{\text {cor }}\) \& +or \& \({ }_{\text {coil }}^{\text {coil }}\) \& \({ }_{\text {till }}\) \& \& \& cil \& + \& \& \({ }_{\text {r }}^{\text {El }}\) \& 80 \& \({ }_{\xi+1}^{24}\) \& - \& \({ }_{c}^{2+1}\) \& Tst \& +or \& +or \& \(\stackrel{1}{10}\) \& \({ }_{c}^{2+1}\) \& \({ }_{\text {tor }}\) \& TSt \& oor \& tot \& \({ }_{\text {col }}^{178}\) \& Lequo \\
 \hline \({ }^{6}\) \& \(18!\) \& til \& zill \& rzi \& til \& czi \& ¢zı \& \({ }^{\text {czi }}\) \& czi \& 0.01 \& czi \& zill \& r \(¢ 1\) \& z'II \& ¢zı \& <zı \& zil \& zıI \& zill \& Lzi \& zill \& czi \& zil \& 46 \& 46 \& knsmv \\
 \hline \& czi \& szı \& +21 \& ¢zı \& zz \& \& tzi \& \({ }_{\text {ret }}\) \& \& \(\stackrel{\circ}{6}\) \& tzi \& tzi \& czi \& \({ }_{\text {r }}^{\text {st }}\) \& 46 \& \({ }_{\text {ter }}\) \& +zı \& tzi \& \({ }_{\text {rst }}\) \& 2 \& tzı \& +21 \& \({ }_{\text {r sit }}\) \& oor \& oor \& (tyt \\
 \hline \({ }_{\substack{z z 1 \\ \varepsilon z l}}\) \& \& \(\underset{\substack{c z i \\ 0 ¢ r}}{ }\) \& \& \& \& \({ }_{\substack{\text { col } \\ \text { roit }}}\) \& \& \& \({ }_{\substack{211 \\ \text { rool }}}\) \& \(\stackrel{c}{c z t}\) \& \({ }_{\text {ror }}^{\substack{\text { til }}}\) \& \& \(\stackrel{+}{\text { til }}\) \& \({ }_{c}^{\langle+t}\) \& \& \& \& \& \({ }_{\substack{\text { cti } \\ \varepsilon+1}}\) \& \& \(\xrightarrow[\substack{c z t \\ r \varepsilon t}]{ }\) \& \({ }_{\text {col }}^{\substack{\text { til }}}\) \& \({ }_{c}^{\text {ctil }}\) \& tor
 cill \& \begin{tabular}{l}
 tor \\
 cill \\
 \hline
 \end{tabular} \& \({ }_{\substack{\text { amp } \\{ }_{\text {amo }}}

[^116]: Source: Own elaboration

