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resumo 
 

 

O tributilestanho (TBT) é um composto tóxico com efeitos nefastos para o 
ambiente. Este composto foi utilizado durante vários anos como componente 
de tintas anti-vegetativas aplicadas nos cascos dos barcos sendo, por isso, 
reconhecido mundialmente como uma das fontes de contaminação de 
ambientes aquáticos. Atualmente, o uso destas tintas está proibido em alguns 
países, verificando-se uma diminuição na concentração de TBT no ambiente. 
Apesar disso, devido à estabilidade e persistência deste composto 
(principalmente nos sedimentos), a poluição por TBT continua a ser 
preocupante.  
Aeromonas molluscorum Av27 foi isolada no sedimento da Ria de Aveiro, num 
local contaminado por TBT. Esta bactéria é tolerante a concentrações 
elevadas de TBT (até 3 mM) e é capaz de degradar o composto nos seus 
derivados menos tóxicos, DBT e MBT. Com o intuito de conhecer o(s) 
mecanismo(s) molecular(es) que estão na base destas propriedades, 
procedeu-se à análise do transcriptoma desta estirpe por pirosequenciação. 
Para isso, para além da condição controlo (sem TBT), as células foram 

expostas a 5 e 50 µM de TBT até atingirem o meio da fase exponencial. A 

validação dos resultados de pirosequenciação foi feita por PCR em tempo real.  
De uma forma geral, a análise dos transcriptomas de A. molluscorum Av27 
revelou a presença de diversos genes sobre-expressos após exposição ao 
TBT. Os genes que se relacionam com a atividade enzimática e o 
transporte/ligação de compostos foram aqueles que sofreram maiores 
alterações a nível de expressão, propondo-se desta forma o seu envolvimento 
nos mecanismos de resistência e degradação de TBT. Alguns dos genes 
sobre-expressos identificados codificam para bombas de efluxo e outras 
proteínas envolvidas na resistência a antibióticos e metais pesados, 
corroborando a relação entre a resistência a estes compostos e a resistência 
ao TBT. Para além disso, foi sugerido que proteínas envolvidas na resposta ao 
stress térmico podem também desempenhar um papel importante na 
resistência ao TBT. Tendo em conta a análise feita, não foi possível encontrar 
uma proteína responsável pela degradação do TBT. No entanto, foram 
detetadas várias proteínas sobre-expressas de função desconhecida. A 
anotação destas proteínas é de grande importância, uma vez que poderá 
contribuir para a elucidação do mecanismo de degradação de TBT nesta 
bactéria. 
 
 

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Em estudos anteriores, demonstrou-se que o gene sugE está envolvido no 
mecanismo de resistência ao TBT em Av27 e que o seu nível de expressão 
está dependente da fase de crescimento das células. No presente estudo, foi 
possível confirmar que o gene sugE é sub-expresso na presença de TBT 
quando as células atingem a sua fase exponencial. 
Foi ainda possível notar que genes relacionados com a transcrição estão sub-
expressos após exposição ao TBT, indicando que este composto afeta a 
transcrição genética. 
O estudo detalhado dos genes identificados neste trabalho, potencialmente 
envolvidos no mecanismo de resistência e/ou degradação do TBT, poderá 
contribuir para a compreensão destes mecanismos em A. molluscorum Av27, 
assim como noutros organismos procariotas. 
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abstract 

 
Tributyltin (TBT) is a toxic compound with a negative impact to the 
environment. This compound was used for several years as a component of 
antifouling paints applied to ship hulls, thus contaminating several aquatic 
environments worldwide. Currently, the use of these paints is prohibited in 
several countries, and there has been a consequent decrease of TBT 
concentration in the environment. However, due to the stability and persistence 
of the compound (mainly in the sediments), TBT pollution remains a serious 
problem. 
Aeromonas molluscorum Av27 was isolated in the sediments of Ria de Aveiro, 
in a TBT contaminated site. This bacterium is tolerant to high TBT 
concentrations (up to 3 mM) and is able to degrade it into the less toxic 
compounds DBT and MBT. In order to better understand the molecular 
mechanism(s) conferring these properties, a transcriptome analysis was carried 
out. In addition to the control (without TBT), the cells were grown to the mid-log 

phase in presence of different TBT concentrations (5 and 50 µM). 

Pyrosequencing analysis was performed in each of the samples. Validation of 
the transcriptome results was performed by quantitative real-time PCR. 
The analysis of the transcriptomes of A. molluscorum Av27 revealed that 
several genes were up-regulated following exposure to TBT. Genes 
responsible for enzymatic activities and transport/binding were the most 
affected by TBT exposure and thus, those genes seem to be involved in TBT 
resistance and degradation. Some efflux pumps and other proteins involved in 
resistance to antibiotics or heavy metals were found over-expressed when 
Av27 cells were exposed to TBT, supporting the relationship between the 
resistance to these compounds and resistance to TBT. Furthermore, a possible 
role of heat-shock proteins in TBT resistance in A. molluscorum Av27 was also 
suggested. So far, the analysis of the transcriptome didn’t allow the 
identification of the protein responsible for TBT degradation in A. molluscorum 
Av27. However, several proteins of unknown function were over-expressed in 
the presence of the toxic compound. The annotation of such proteins is 
important, since it might help to elucidate the TBT degradation mechanisms in 
this bacterium. 
Previous studies demonstrated that the sugE gene is involved in TBT 
resistance in Av27 strain, and that its’ expression levels depend on the growth 
phase. Likewise, in the present study, the sugE gene was over-expressed 
when the cells were grown to the mid-log phase. 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It was also verified that several transcription-related genes were under-
expressed in A. molluscorum Av27 following exposure to TBT, suggesting that 
this compound negatively affects genetic transcription. 
Further investigation of the genes potentially involved in TBT 
resistance/degradation may contribute to a better understanding of these 
mechanisms in A. molluscorum Av27, as well as in other prokaryotes. 
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1. Organotin compounds 

 

Organotin compounds (OTs) are organometallic chemicals (with one or more carbon-

tin bounds) used in several industrial processes as fungicides, acaricides, disinfectants, 

ingredients of marine antifouling paints, among others (Cooney and Wuertz 1989; Murata, 

Takahashi et al. 2008). Besides, OTs can be used as catalysts in the preparation of silicone 

rubbers and polyurethane foams and also as components in anti-leukemia drugs (Sherman 

and Huber 1988; Cooney and Wuertz 1989). They are often discharged into the environment 

causing several problems, such as, for instance, immunotoxic, hepatotoxic and neurotoxic 

effects in fish and mammals (Hoch 2001; Murata, Takahashi et al. 2008).  

Organic derivatives of tin are represented by the general formula R3SnX4-n and are 

characterized by the presence of covalent bonds between three carbon atoms and a tin atom 

(Sn4+). In general, in the previous formula, X is an anion and it influences the 

physicochemical properties of the compound; R represents an alkyl or aryl group and n a 

number from 1 to 4. Tin compounds are toxic, and its toxicity depends on the nature of the 

alkyl radical (higher for alkyls than aryl groups). Trisubstituted organotins are usually more 

toxic than the di-, mono- or tetrasubstituted (toxicity in decreasing order: R3SnX > R2SnX2 

> RSnX3 > R4Sn) (Cooney and Wuertz 1989; Pain and Cooney 1998; Alzieu 2000).  

Inorganic forms of tin can be toxic to microorganisms, but they are apparently 

harmless to humans. Organotins, on the other hand, are more lipophilic, penetrating the 

biological membranes more easily and accumulating in lipid-rich tissues or organelles 

(Cooney and Wuertz 1989; Dubey and Roy 2003). These compounds can be toxic to aquatic 

organisms even at concentrations as low as 1-2 ng/L (White, Tobin et al. 1999; Hoch 2001). 

OTs affect many eukaryotic and prokaryotic organisms, including higher-trophic level 

aquatic organisms (e.g. marine mammals) and humans (immune and endocrine systems), 

where they are usually found in the blood and the liver (Cooney and Wuertz 1989; Alzieu 

2000; Antizar-Ladislao 2008). Human exposure to organotins may occur due to the use of 

these compounds in PVC food wrappings, bottles and rigid potable water pipes (Dubey and 

Roy 2003). 
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2. Tributyltin 

 

Tributyltin (TBT) (Figure 1) is a hydrophobic and positively charged organic 

derivative of tin. It is represented by the formula C12H27Sn+ and its molecular weight is 

290.06 (Jude, Arpin et al. 2004; Antizar-Ladislao 2008).  

 

 

Figure 1 - TBT chemical structure. Adapted from Antizar-Ladislao (2008). 

 

TBT is trisubstituted, which is the most toxic form of tin derivative compounds 

(Cooney and Wuertz 1989). There are several forms of TBT, such as tributyltin oxide 

(TBTO), tributyltin chloride (TBTCl) and tributyltin fluoride (TBTF), among others. These 

compounds are a subgroup of the trialkyl organotin family (Dubey and Roy 2003).  

Tributyltin presents broad-spectrum biocidal properties, so it can be used as 

fungicide, bactericide, pesticide, wood preservative, PVC stabilizer and as a component of 

antifouling paints (Ranke and Jastorff 2000; Cruz, Caetano et al. 2007; Kingtong, 

Chitramvong et al. 2007). It can also be used as slime control in paper mills, in the 

disinfection of circulating industrial cooling waters and to prevent the attachment of 

barnacles and slime on fishing nets (Antizar-Ladislao 2008; Murata, Takahashi et al. 2008). 

The use of TBT in antifouling paints is the most economically relevant, since the growth of 

organisms in boat and ship hulls increases the friction of boat in the water, leading to a 

reduction of the speed and consequent increase in the fuel consumption (Cooney and Wuertz 

1989; Karlsson and Eklund 2004). After being introduced in the 1960s, and during the 1970s 

and early 1980s, TBT was the antifouling agent of choice due to its effectiveness and 

longevity (Bennett 1996; Pain and Cooney 1998; Dubey and Roy 2003). In these paints, 

TBT is usually chemically bonded in a copolymer resin system. The bound is based on an 

organotin-ester linkage. The release of TBT from the paints is slow and controlled, and it 

occurs because the organotin-ester link becomes hydrolysed when in contact with sea waters 

(Evans 1999).   
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Due to its applications, TBT is a common contaminant in aquatic ecosystems. It 

rapidly adsorbs to suspended particles (due to its preferential partitioning onto colloidal and 

particulate surfaces), which eventually deposit and consolidate (Batley 1996). Besides, it is 

usually absorbed by bacteria and algae, entering the food chain, and it eventually 

accumulates in higher organisms (fish, water birds and mammals) (Gadd 2000; Borghi and 

Porte 2002; Luan, Jin et al. 2006; Antizar-Ladislao 2008). In humans, TBT is probably 

ingested, since it contaminates organisms that can be included in human diet and it is not 

destroyed by common cooking practices (Short and Thrower 1986; Antizar-Ladislao 2008).  

TBT toxicity is related to its partition coefficient in octanol/water. This coefficient 

quantifies the affinity to lipids - higher coefficient means greater hydrophobicity and 

toxicity. TBT is hydrophobic, affecting negatively the integrity of biological membranes 

(Mackay 1982; Cooney and Wuertz 1989; Dubey and Roy 2003; Jude, Arpin et al. 2004). 

Thus, the physiological functions of the lipid membranes may be compromised in both 

eukaryotes and prokaryotes (Cooney and Wuertz 1989). Moreover, this compound interferes 

with the energy transduction apparatus and acts as an ionophore, facilitating halide-hydroxyl 

exchanges (Selwyn 1976; Cooney and Wuertz 1989; Dubey and Roy 2003). Malformations 

of the mitochondrial membranes are also observed, since TBT inhibits the oxidative 

phosphorylation (Alzieu 2000). Tributyltin also causes inhibition of photophosphorylation 

(affecting chloroplasts), inhibition of ion pumps including the Na+/K+ ATPase, inhibition of 

the cytochrome P450 system, disturbance of Ca2+ homeostasis and induction of apoptosis in 

thymocytes, affecting the immune system (Fent 1996; Ranke and Jastorff 2000).  

TBT is toxic even at low concentrations. In fact, approximately 10% of the species 

of several groups are affected by TBT in concentrations that range from 5 ng/L (zooplankton) 

to 2 pg/L (fish) (Halla, Scott et al. 1998). Effects on molluscs are observed when TBT is 

present at concentrations < 1 ng/L (Alzieu 2000). 

As a result of the negative impacts of TBT, the use of TBT-based paints on small 

boats (<25 m) was banned in France (1982) (Cooney and Wuertz 1989), United Kingdom 

(1987) (Barroso, Moreira et al. 2000) and USA (1988) (Murata, Takahashi et al. 2008). TBT 

restrictions are mainly focused on small boats because these vessels spend most of the time 

near shore or in the harbor, increasing the risk of tributyltin accumulation in the sediments. 

On the other hand, ships larger than 25 m are more frequently at deep sea (Cooney and 

Wuertz 1989). Later, in the 90s, TBT production, use and exportation were prohibited in 
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other developed countries. In Portugal, the Portuguese Navy banned the use of TBT from 

their ships in 1992 and in 1993 the use of TBT-containing paints on small boats was also 

forbidden (Barroso, Moreira et al. 2000). The application of TBT-containing paints on boats 

from the European Union was prohibited in 2003, and in 2008 the use of TBT was banned 

by the International Maritime Organization (Antizar-Ladislao 2008; Mimura, Sato et al. 

2008).  

Before the restrictions introduced in 1982, TBT levels in seawater generally ranged 

between 50 and 500 ng/L in North American and European marinas. In 2000, the maximum 

concentration recorded in marina waters rarely exceeded 200 ng/L (average: 42 ng/L) along 

the English Channel and Atlantic coasts. In harbor sediments, TBT concentrations ranged 

between 1 and 2 mg/Kg dry weight (Alzieu 2000). These values show that despite the 

widespread ban of the use of TBT on smaller craft, this compound still causes several 

environmental problems. This happens due to tributyltin’s slow degradation and to its 

continuous use on large vessels (Batley 1996; Matthiessen and Gibbs 1998). TBT has low 

solubility in seawater and its half-life in this environment is highly variable, depending on 

pH, temperature, turbidity and light (Alzieu 2000). In general, the half-life of TBT in 

seawater is considered to be of a few days to a few weeks and in sediments of 4-6 months. 

In the sediment core, the half-life is estimated to go up to several years (Stewart and Mora 

1990; Seligman, Maguire et al. 1996; Ranke and Jastorff 2000). In estuarine systems, TBT 

usually persists for 6-7 days (28 ºC) in the water and 1.9 to 3.8 years in deep, anoxic 

sediments (Batley 1996; Cruz 2012). Accordingly, the sediment is a reservoir of the 

organotin compound, which persists stable for long periods of time (Stewart and Mora 1990; 

Langston and Pope 1995). Organotin’s natural degradation may occur due to UV irradiation, 

chemical, biological or thermal cleavage of the Sn-C bond, but the predominant mechanism 

is biodegradation by microorganisms (Blunden, Hobbs et al. 1984; Watanabe, Sakai et al. 

1992). Besides, degradation is faster if the phytoplankton population is high (Lee 1985; 

Cooney and Wuertz 1989; Watanabe, Sakai et al. 1992). Dibutyltin (DBT) and monobutyltin 

(MBT) are the degradation products of TBT. These degradation products are less toxic than 

TBT (Pain and Cooney 1998; Cruz, Caetano et al. 2007).  
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2.1 Negative effects of TBT  

 

Exposure to TBT has negative effects in both prokaryotes and eukaryotes (Cooney 

and Wuertz 1989). In Escherichia coli, for instance, TBT affects several reactions involved 

in growth, solute transport, biosynthesis of macromolecules and activity of 

transhydrogenases (Singh and Singh 1985; Singh 1987). TBT can also interact with cytosolic 

enzymes (White, Tobin et al. 1999) and inhibit cell growth and amino acids uptake (Singh 

and Bragg 1979; Jude, Capdepuy et al. 1996). In fungi, morphological changes and increased 

melanin synthesis were observed in colonies of Penicillium funiculosum, Phoma glomerata 

and Aureobasidium pullulans (Newby and Gadd 1988). 

Cooney and Wuertz (1989) reported that some algae species suffered from growth 

inhibition or even death when exposed to tributyltin. The growth of Skeletonema costatum 

and Thalassiosira pseudonana, for instance, was inhibited when exposed to TBT (Walsh, 

McLaughlan et al. 1985). 

TBT interacts with mitochondria and chloroplasts in both fungi and microalgae, 

affecting the organelles’ correct function (Cooney and Wuertz 1989). 

In abalone (Horiguchi, Kojima et al. 2002), ivory shells (Horiguchi, Kojima et al. 

2005) and gastropods (Matthiessen and Gibbs 1998; Horiguchi 2006), exposure to TBT 

induces imposex, the superimposition of male characters onto female organisms, with 

possible appearance of penis and vas deferens (Smith 1971). This phenomenon is a 

consequence of endocrine disruption, since TBT probably acts as a competitive inhibitor of 

cytochrome P450-mediated aromatase or inhibits testosterone metabolism and excretion, 

leading to an increase of the hormone’s concentration levels and consequent development of 

male sex organs (Matthiessen and Gibbs 1998; Mimura, Sato et al. 2008). The degree of 

masculinization depends on the concentration of TBT; higher concentrations may lead to 

breeding inhibition, causing a population decline and eventual extinction. These changes are 

irreversible and the end-result of these masculinization processes varies according to the 

species (Alzieu 2000). A similar syndrome named intersex was observed in Littorina 

littorea, consisting on alterations in the pallial oviduct, followed by the appearance of male 

characteristics in the oviduct (Bauer, Fioroni et al. 1995). Imposex and intersex have also 

been observed in Ria de Aveiro (Portugal), affecting several species, namely Nucella 
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lapillus, Nassarius reticulatus, Hydrobia ulvae and Littorina littorea (Barroso, Moreira et 

al. 2000). 

Some oyster species are affected even by low TBT concentrations (2 ng/L), 

presenting abnormalities in shell formation and a deficient larval development (Edouard and 

Rene 1983-1985; Alzieu 2000). Bivalve reproduction is also altered by the presence of TBT 

(Thain and Waldock 1986).  

It is recognized that TBT affects several organisms. However, molluscs are known 

to be the most sensitive species to TBT exposure, since the low activities of cytochrome 

P450 and mixed function oxidases observed in these organisms lead to slow TBT 

metabolism rate and consequent bioaccumulation (Lee 1991; Alzieu 2000). 

In mammals, TBT affects different organs and causes diseases in the nervous, 

endocrine and immune systems. In humans, the toxic compound seems to cause irritations 

in eyes and skin, potentially leading to severe dermatitis (Alzieu 2000; Antizar-Ladislao 

2008; Akiyama, Iwaki et al. 2011). 

 

2.2 TBT resistance and degradation in bacteria 

 

As above mentioned, TBT is toxic to many organisms. However, some eukaryotic 

and prokaryotic species developed resistance mechanisms. Some hypotheses have been 

proposed to explain these mechanisms in bacteria (Dubey and Roy 2003): 

 degradation into DBT and MBT (less toxic organotin compounds) by dealkylation 

mechanisms (Clark, Sterritt et al. 1988; Pain and Cooney 1998); 

 transport of the compound to the exterior of the cell through efflux pumps or other 

membrane proteins (Jude, Arpin et al. 2004); 

 metabolic utilization of TBT as carbon source (Kawai, Kurokawa et al. 1998; Cruz, 

Caetano et al. 2007); 

 bioaccumulation of the biocide without cell breakdown, using metallothionein-like 

proteins (Blair, Olson et al. 1982; Fukagawa, Konno et al. 1994). 

Both Gram negative and Gram positive bacteria can be resistant to TBT. However, 

probably due to the different architecture of cell walls, Gram negative bacteria seem to be 

more resistant than the former (Cruz, Caetano et al. 2007). Since some resistant Gram 

positive bacteria have been detected, the resistance mechanism is possibly related not only 
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to the external membrane, but also to the cytoplasmic membrane and/or to the intracellular 

environment (White, Tobin et al. 1999; Mendo, Nogueira et al. 2003; Cruz, Caetano et al. 

2007). 

Miller, Wuertz et al (1995) studied the role of plasmids in the resistance of a 

bacterium to TBT. The authors isolated several strains highly resistant to TBT that didn’t 

have any plasmids, indicating that TBT resistance is not necessarily plasmid-encoded. 

However, the successful introduction of the plasmid pUM505 from Pseudomonas 

aeruginosa PAO1 (a TBT-resistant strain) into Beijerinckia sp. MC-27 (a TBT-sensitive 

strain) led to an increased TBT tolerance. Thus, these results suggest that plasmids may play 

some role in TBT resistance in some species.  

In Alteromonas sp. M-1, the gene responsible for the TBT-resistance was considered 

to be chromosomal, since no plasmids were detected in this strain. During the same study, 

an ORF was identified and its product was assumed to be part of a cluster of membrane 

proteins involved in transport (transglycosylases) (Fukagawa and Suzuki 1993). Despite 

that, it was also concluded that more than one gene is involved in the resistance mechanism 

exhibited by this strain (Fukagawa, Konno et al. 1994).  

In Pseudomonas stutzeri 5MP1, TBT resistance was found to be associated with an 

operon, tbtABM. The proteins encoded by this operon show homology with efflux pump 

proteins. Besides TBT, these efflux pumps can also export antibiotics, such as nalidixic acid, 

chloramphenicol and sulfamethoxazole (Jude, Arpin et al. 2004).  

Another efflux pump, AheABC, is involved in TBT resistance in Aeromonas 

hydrophila ATCC7966 (Hernould, Gagné et al. 2008). 

Fukushima and co-workers (2009) used Pseudomonas aeruginosa 25W, which is 

highly resistant to TBT, to perform gene expression studies. Some genes were up-regulated 

upon exposure to the toxic compound, as for instance genes that encode for two ribosomal 

proteins, a conserved hypothetical protein and cytochrome c550. Several genes were found 

to be down-regulated and these encode for a ribosomal protein, a ribosome-modulation 

factor, a cold-shock protein and the elongation factor Tu. It was shown that high TBT 

concentrations are toxic, leading to the inhibition of the transcription of those genes. The 

authors suggest that the resistance mechanism is related to the protection and increase of 

protein synthesis. Furthermore, other gene clusters containing membrane transport protein 

genes are probably involved in TBT resistance as well (Fukushima, Dubey et al. 2009).  
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In Ria de Aveiro (Portugal), a TBT-resistant estuarine bacterium, Aeromonas 

molluscorum Av27, was isolated. This bacterium degrades TBT and uses it as carbon source 

(Cruz, Caetano et al. 2007). The same authors identified a gene, sugE, that was shown to be 

involved in TBT resistance. This gene was over-expressed upon exposure to 500 µM of TBT, 

when cells were grown to the early logarithmic growth phase. On the other hand, in later 

growth phases (logarithmic and stationary), the same gene was shown to be under-expressed 

upon exposure to the toxic compound, suggesting that SugE is involved in a quick response 

to TBT (Cruz, Micaelo et al. 2013). SugE is included in the small multidrug resistance 

(SMR) family, that is shown to transport lipophilic drugs, such as TBT (Sikora and Turner 

2005). 

Several studies showed no correlation between TBT resistance patterns in organisms 

isolated from more and less polluted areas. Thus, there are probably other factors besides the 

presence of TBT that select for a TBT-resistant population (Wuertz, Miller et al. 1991; Jude, 

Capdepuy et al. 1996; Cruz, Caetano et al. 2007). 

Metal and antibiotic resistance are often associated to TBT resistance. For instance, 

some isolated TBT-resistant bacteria showed to be resistant to mercury (Fukagawa, Konno 

et al. 1994) and cadmium (Suzuki, Fukagawa et al. 1992). Besides, some efflux pumps 

related to TBT resistance are also able to extrude antibiotics (Jude, Arpin et al. 2004; 

Hernould, Gagné et al. 2008). 

Most of the published studies show that resistance mechanisms are efflux-related. 

However, many marine bacteria and some algae species are capable of degrading organotin 

compounds, as for instance, TBT (Cooney and Wuertz 1989; Dubey and Roy 2003). For 

example, Pseudomonas aeruginosa, Alcaligenes faecalis (Gram negative bacteria), Tramatis 

versicolor and Chaetomium globosum (fungi) are able to degrade tributyltin oxide (TBTO) 

via a dealkylation process (Barug 1981). Furthermore, Aeromonas molluscorum Av27 is also 

able to degrade TBT into less toxic compounds (DBT and MBT) (Cruz, Caetano et al. 2007). 

Nevertheless, little is known about the mechanisms behind the biodegradation process. 
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3. Ria de Aveiro, a TBT contaminated estuarine system 

 

Ria de Aveiro is a shallow estuarine system (area at low tide: 43 Km2; area at high 

tide: 47 Km2) located on the north-west coast of Portugal (40º38’N, 8º41’W), with muddy 

bottom sediments. Ria de Aveiro exchanges water with the sea through the mouth, from 

which radiate three main channels (S. Jacinto-Ovar, Mira and Ílhavo). The River Vouga 

accounts for 2/3 of the total mean river input, being the most important river discharging 

into the Ria de Aveiro (Moreira, Queiroga et al. 1993; Silva 1994; Barroso, Moreira et al. 

2000).    

The ports, dockyards (located along the main navigation channel) and marinas are 

important sources of organotin pollution (Figure 2). The naval construction shipyard (ships 

of up to 2000 t) located on the western bank of the initial part of the S. Jacinto-Ovar channel 

is also a TBT source (Barroso, Moreira et al. 2000).  

In Ria de Aveiro, TBT levels range from <0.6 to 38.5 ng Sn/L in the water (Galante-

Oliveira, Oliveira et al. 2009) and about 66 ng Sn/g dry weight in sediments (Laranjeiro, 

Sousa et al. 2010). Near the ports, dockyards and marinas, TBT levels are higher (water: 28 

to 42 ng Sn/L; sediments: 65 to 88 ng Sn/g dry weight) (Barroso, Moreira et al. 2000). Hence, 

this estuarine system can be considered a moderately TBT-contaminated site. These values 

are concerning, since the normal functioning of estuarine ecosystems can be severely 

affected by TBT pollution. As referred above, the negative impacts of the toxic compound 

can be detected even in low to moderate contaminated sites (Mendo, Nogueira et al. 2003). 

As mentioned before, the use of TBT-containing paints was banned in 2008 (Antizar-

Ladislao 2008). However, since TBT is stable, it persists in the environment for long periods 

of time. Hence, TBT pollution in Ria de Aveiro is still a problem of concern (Laranjeiro, 

Sousa et al. 2010). 
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Figure 2 - Location of Ria de Aveiro and main TBT contamination sources (Barroso, Moreira et al. 2000). 

 

4. Aeromonas molluscorum Av27 

 

The genus Aeromonas (Aeromonadaceae family, γ-Proteobacteria) is constituted by 

Gram negative, rod-shaped, oxidase- and catalase-positive, non-spore forming, glucose-

fermenting and facultative anaerobic bacteria. Most species belonging to this genus are 

motile through the presence of polar flagella and are autochthonous in aquatic environments 

(Holt, Bergey et al. 1984; Popoff 1984). These bacteria can grow in common culture media, 

such as TSA (tryptic soy agar), at an optimal temperature of 30ºC (Holt, Bergey et al. 1984). 
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Aeromonas molluscorum Av27 is an estuarine bacterium isolated from Ria de Aveiro 

(Portugal). This bacterium is resistant to high concentrations of TBT (up to 3 mM), it is able 

to degrade it into DBT and MBT and it is also capable of using it as a carbon source (Cruz, 

Caetano et al. 2007).  

It was shown that DBT and MBT (products of TBT degradation) are extruded from 

the cell and released to the culture media. Possibly, this mechanism involves the capture of 

TBT into siderophore-like structures, degradation and gradual extrusion from the cell as 

DBT (Cruz, Caetano et al. 2007). 

Aeromonas molluscorum Av27 is resistant to the antibiotics penicillin (10 μg/mL), 

amoxicillin/clavulanic acid (30 μg/mL) and cephalothin (30 μg/mL). It is also resistant to 

the vibriostatic agent O/129 (Cruz, Areias et al. 2013).  

As far as mobile elements are concerned, five plasmids of 4 Kb, 7 Kb, 10 Kb, 100 Kb 

and >100 Kb were detected. No class I or class II integrons were detected (Cruz, Areias et 

al. 2013). 

Aeromonas molluscorum Av27 is considered to be safe, since in vitro cytotoxic 

studies revealed no apparent cythopathic effects against mammalian cells (Vero cells) (Cruz, 

Areias et al. 2013). 

As previously mentioned, Aeromonas molluscorum Av27 is resistant to TBT and has 

the ability to degrade it into less toxic compounds. These characteristics increase the interest 

on this strain for bioremediation, a process utilizing the metabolic potential of 

microorganisms that is employed to decontaminate polluted environments (Watanabe 2001). 

Bioremediation processes present several advantages when compared to conventional 

remediation techniques, such as the reduced costs, it is a non-invasive technique and efficient 

even when low concentrations of the pollutant is present. Most importantly, it is a permanent 

solution. However, the application of bioremediation is still limited by the long time required 

in this process and the fact that it is less predictable than the conventional methods (Perelo 

2010).  

The identification of genes involved in TBT resistance allowed the construction of a 

bioreporter to detect TBT in the environment (Cruz 2012). This monitoring method is more 

effective, quicker, easier and cheaper than the traditional analytical analysis (Durand, 

Thouand et al. 2003), and  also allow to evaluate the bioavailability of the compounds and 

to assess its biological effects (Hynninen and Virta 2010). In the case of TBT, biomonitoring 
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also allows to overcome some difficulties encountered when using the chemical 

measurement, such as the variations observed in the concentration levels at fixed locations 

over time and the detection of concentrations bellow the detection limit (Barroso, Moreira 

et al. 2000).  

 

5. Transcriptome analysis 

 

The transcriptome is the total set of transcripts (RNAs) in a cell at a given time. It 

can be evaluated qualitatively and quantitatively. The amount of transcript is not constant 

and depends on the environmental conditions (Wang, Gerstein et al. 2009). The study of the 

transcriptome can provide information about the functional elements of the genome 

(promoters, transcription start sites, open reading frames, regulatory noncoding regions, 

untranslated regions and transcription units). Besides, some regulatory mechanisms can be 

elucidated (Sorek and Cossart 2010; Vliet 2010; Febrer, McLay et al. 2011). 

In order to better understand the TBT resistance and degradation mechanisms, it 

seemed important to identify the genes and gene products involved in these mechanisms, as 

well as their respective functions. Thus, the transcriptome of A. molluscorum Av27 was 

sequenced using second generation technologies. 

 

5.1 RNA-Sequencing 

 

Transcriptome analysis of non-model organisms used to involve construction of a 

cDNA library, repeated rounds of normalization/subtraction and Sanger sequencing. cDNA 

microarrays were also commonly used for transcriptome analysis (Whitfield, Band et al. 

2002; Mita, Morimyo et al. 2003; Paschall, Oleksiak et al. 2004; Papanicolaou, Joron et al. 

2005; Beldade, Rudd et al. 2006). However, these methods had some disadvantages, such as 

errors related to clone mishandling and the fact that some transcripts are unstable when 

cloned into bacteria, affecting the results and downstream analysis (Weber, Weber et al. 

2007).   

RNA-Sequencing (RNA-Seq) is a method that allows the study of the transcriptome, 

providing information about gene expression (Febrer, McLay et al. 2011). This is possible 

because cDNA is sequenced through second-generation sequencing technologies, such as 
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Illumina’s Genome Analyzer, Applied Biosystem’s SOLiD, and Roche-454 GS FLX 

platforms (Febrer, McLay et al. 2011; Mäder, Nicolas et al. 2011). The use of these platforms 

reduces the costs and laborious analysis of the transcriptome, overcoming the problems 

associated with the previous techniques (Weber, Weber et al. 2007).  

RNA-Seq is a useful method that can help improving the knowledge about bacterial 

gene regulation and expression. Many bacterial genomes are actually being re-annotated 

based on the information provided by RNA-Seq, and functions of previously unknown 

and/or unidentified genes are determined (Febrer, McLay et al. 2011). Transcriptomes of 

several eukaryotic and prokaryotic organisms have already been studied using this approach, 

revealing a high degree of concordance with established gene annotations (Liu, Livny et al. 

2009; Oliver, Orsi et al. 2009; Jima, Zhang et al. 2010). This approach is particularly useful 

when there is no prior genomics information available on the species in study and when 

budgets are limited, since only the expressed parts of the genome are sequenced (Emrich, 

Barbazuk et al. 2007; Vera, Wheat et al. 2008; Ekblom, Slate et al. 2012).  

RNA-Seq can also be used to study differential expression (changes in transcript 

abundance related to different conditions); this application is generally of major interest, 

since it helps to better understand gene function, development, phenotypic plasticity, local 

adaptation and speciation (Barakat, DiLoreto et al. 2009; Kristiansson, Asker et al. 2009; 

Wolf, Bayer et al. 2010; Mäder, Nicolas et al. 2011; Ekblom, Slate et al. 2012). The gene 

expression can be estimated through the number of reads of a particular gene generated by 

the cDNA sequencing (RNA-Seq), by analysing the available databases of expressed 

sequence tags (ESTs) for the genes of interest or by performing microarrays studies (Murray, 

Doran et al. 2007; Hoen, Ariyurek et al. 2008; Ekblom, Balakrishnan et al. 2010). This type 

of study usually requires a normalization step and the definition of the criteria that 

differentiate significant changes from those expected by chance alone (Mäder, Nicolas et al. 

2011).  

In Figure 3, a flow diagram is presented, showing the major steps of RNA-Seq when 

applied to bacterial transcriptomes. After extraction of high quality-RNA from the organism 

of interest, noncoding RNA (rRNA and tRNA) must be separated and discarded. Then, 

coding RNA is fragmented and a cDNA library is constructed. Finally, the library is 

sequenced using a second-generation sequencing platform. The sequence is then analysed 

using in silico tools (Febrer, McLay et al. 2011; Mäder, Nicolas et al. 2011). If the genome 
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of the organism under study has already been sequenced, the reads are mapped to the 

reference genome (Pinto, Melo-Barbosa et al. 2011). When the genome of the specie has not 

been sequenced yet, the annotation of the whole-transcriptome sequence datasets and the 

identification of the specific genes of interest can be achieved using data from related species 

(genomic reference species) (Ekblom, Slate et al. 2012). This process (new transcript 

annotation) requires substantial pipeline and/or manual post processing, essentially when the 

Figure 3 - Strategies used in RNA-Seq experiments for assessing different elements of the bacterial transcriptome. 

Adapted from Febrer, McLay et al. (2011). 



Transcriptome analysis of A. molluscorum Av27 following TBT exposure 

Introduction 

 

23 

 

experiment involves comparison between different conditions. In this case, one of the 

conditions can be taken as a reference and the transcribed regions can be subdivided 

according to other data sets (Güell, Noort et al. 2009; Xu, Wei et al. 2009; Mäder, Nicolas 

et al. 2011).  

RNA-Seq presents some advantages: high reproducibility, high sensitivity, almost no 

noise and no prior annotation is required (Febrer, McLay et al. 2011; Mäder, Nicolas et al. 

2011; Pinto, Melo-Barbosa et al. 2011). The use of second-generation sequencing 

technology is also advantageous, since the elimination of the cloning step minimizes errors 

and simplifies sample preparation. Besides, this method provides good coverage and allows 

characterization of the entire transcriptome of an organism, discovering new transcripts, 

identifying mutations, deletions, insertions and splicing alternatives and providing 

information about gene expression levels (Wang, Gerstein et al. 2009; Pinto, Melo-Barbosa 

et al. 2011; Park, Park et al. 2012). 

Nevertheless, there are some problems associated with the use of this technology. 

For instance, the size of the transcripts can influence its detection (larger transcripts are 

detected more easily than small ones). Furthermore, there are some RNA-Seq steps that can 

introduce biases, such as fragmentation, synthesis of cDNA and mRNA enrichment (this last 

step is not always applied). The amount of information generated can also be considered a 

disadvantage, since it requires robust analysis, involving high bioinformatics knowledge and 

the use of powerful servers (Pinto, Melo-Barbosa et al. 2011). 

 

5.2 cDNA library construction 

 

Within a cell, the expressed genes are represented by the mRNA. Hence, the analysis 

of the transcriptome must be performed using the information contained in that mRNA. 

However, since RNA is a single-stranded molecule, it cannot be cloned directly. The solution 

is to use a specialized enzyme, the reverse transcriptase, to produce double-stranded (ds) 

cDNA, which can then be cloned. Using this cDNA, it is possible to construct libraries 

representing the set of transcripts of a cell, tissue or organism (Nagaraj, Gasser et al. 2007). 

There are several methods for cDNA libraries construction; however, the 

conventional methods present several limitations. For instance, the synthesis of full-length 

cDNA clones is a major obstacle, especially for larger mRNAs (longer than 2 Kb) (Zhu, 



Transcriptome analysis of A. molluscorum Av27 following TBT exposure 

Introduction 

 

24 

 

Machleder et al. 2001). Besides, since the construction of the library usually involves the 

use of adaptors, it leads to libraries with up to 20% of undesirable ligation by-products 

(chimeras), as well as inserts derived from non-mRNA origins (genomic or mitochondrial 

DNA, ribosomal RNA, adaptor dimers) (Sambrook, Fritsch et al. 1989; Sudo, Chinen et al. 

1994). The fact that these methods rely on methylation is also a constraint, since the 

methylation process is inefficient for cloning and does not provide complete protection for 

the internal restriction sites (McClelland, Nelson et al. 1994). Beyond these limitations, the 

conventional cDNA library construction methods involve complicated, multi-step 

manipulations of mRNA and cDNA intermediates, increasing the risk for mRNA or cDNA-

RNA duplexes degradation (Zhu, Machleder et al. 2001).  

The SMARTTM (Switching Mechanism at the 5’ end of the RNA Transcript) 

approach has been recently used to construct cDNA libraries (Pascoal, Carvalho et al. 2012; 

Sadr-Shirazi, Shayan et al. 2012; Zhou, Zhang et al. 2012). This method takes advantage of 

two intrinsic properties of Moloney murine leukemia virus (MMLV) reverse transcriptase: 

reverse transcription and template switching (Zhu, Machleder et al. 2001). The simultaneous 

employment of these two properties allows the synthesis of cDNA clones with greater length 

and directional cloning. In this method, both ends of the first-strand cDNA are anchored 

through the addition of a distinct SfiI site to each end during reverse transcription:  

 5’end: SfiIB restriction site on a modified oligo(dT) primer  

 3’end: SfiIA restriction site on a template-switching oligonucleotide that serves as 

an extended template when the reverse transcriptase reaches the end of the RNA 

molecule (Zhu, Machleder et al. 2001). 

The template-switching phenomenon presents higher efficiency when the reverse 

transcriptase has reached the end of the RNA template (Chenchik, Zhu et al. 1998). Hence, 

the prematurely terminated cDNAs are eliminated during the cloning process, since they 

lack the SfiIA restriction site (Zhu, Machleder et al. 2001).  

This process ensures that the constructed cDNA libraries present higher yields of 

representative, full-length clones (even when the starting concentration of RNA is low) and 

a higher proportion of clones with intact ORFs (about 77%, which is 2-3 times higher than 

the proportion obtained with the conventional methods). Besides, the SMARTTM approach 

is simpler and faster than other full-length cDNA library construction methods (Zhu, 

Machleder et al. 2001). 



Transcriptome analysis of A. molluscorum Av27 following TBT exposure 

Introduction 

 

25 

 

5.3 Normalization 

 

Normalization involves the construction of a depletion library. This process consists 

on the elimination of non-coding RNAs and leveling of the concentrations of the different 

transcripts, in order to reduce the frequency of highly expressed genes. 

Normalization is useful because more than 95% of the total RNA in a cell is 

constituted by the rRNA/tRNA fraction, which makes it harder to analyse the useful 

transcripts (Mäder, Nicolas et al. 2011). Besides, the cellular mRNA mass is usually 

constituted by: 

 20 % of 10-20 abundant genes (several thousand mRNA copies per cell); 

 40-60 % of several hundred genes of medium abundance (several hundred mRNA 

copies per cell); 

 20-40% of several thousand rare genes (<10 mRNA copies per cell) (Carninci, 

Shibata et al. 2000). 

This uneven distribution makes the discovery and analysis of rare genes very difficult and 

inefficient (Zhulidov, Bogdanova et al. 2004). Besides, without the normalization step some 

transcripts would be redundant and analysed several times, leading to a waste of time and 

money (Bogdanova, Shagina et al. 2009; Ekblom, Slate et al. 2012).  

The distinction between mRNA and other noncoding RNAs is usually made using 

the polyA tail. However, contrary to what is observed in eukaryotes, bacteria do not present 

polyadenylated RNA. Hence, only recently it was reported the application of RNA-Seq to 

bacterial genomes (Febrer, McLay et al. 2011). An approach to overcome this problem is the 

introduction of a mRNA enrichment step (Yoder-Himes, Chain et al. 2009). However, other 

methods can be applied in prokaryotes, such as hybridization capture of rRNAs by antisense 

oligonucleotides followed by pull down through binding to magnetic beads and degradation 

of processed RNAs such as mature rRNAs and tRNAs by a 5’–3’ exonuclease that 

specifically digests RNA species with a 5’-monophosphate end (Mäder, Nicolas et al. 2011).  

The depletion library can be constructed using a duplex-specific nuclease (DSN) 

isolated from the Kamchatka crab (Paralithodes camtschaticus). This nuclease is 

thermostable and specific for double-stranded DNA or DNA-RNA hybrids (Shagin, 

Rebrikov et al. 2002; Zhulidov, Bogdanova et al. 2004; Bogdanova, Shagina et al. 2009). 

DSN-depletion is the most common normalization method, since it is simple and allows the 
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efficient removal of several known sequences prior to library cloning, thus eliminating the 

need for laborious physical separation (Zhulidov, Bogdanova et al. 2004; Bogdanova, 

Shagina et al. 2009; Ekblom, Slate et al. 2012). Besides, this method is also efficient when 

full-length-enriched cDNA (prepared from total RNA) is used, unlike the previous 

techniques that involved separation of single-stranded and double-stranded cDNA using 

hydroxylapatite columns or magnetic beads, digestion of the double-stranded cDNA by 

restriction endonucleases and amplification of single-stranded cDNA using suppression 

PCR (Zhulidov, Bogdanova et al. 2004; Bogdanova, Shagina et al. 2009).  

 

Figure 4 - Schematic representation of the DSN depletion method applied to cDNA.  

Black line: transcript of interest; gray line: transcripts to be eliminated (Bogdanova, Shagina et al. 2009). 
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As can be seen in Figure 4, the first step of the DSN depletion method involves the 

mixture of the double stranded cDNA with driver DNA, which represents the fragments of 

genes to be eliminated. Since DSN requires a perfect DNA-DNA duplex of at least 10 bp in 

length, the driver DNA must respect that minimum size; besides, it must be provided in 

excess. The next step is denaturation, followed by hybridization between the driver 

fragments and the sequences to be eliminated. The result is that the transcripts of interest 

become single-stranded cDNA, while the fragments to be removed remain as double-

stranded cDNA, being hydrolyzed by DSN (Bogdanova, Shagina et al. 2009). Since the DSN 

depletion method is based on the second-order solution hybridization kinetics, the depletion 

process is accompanied by cDNA normalization (Young and Anderson 1985). Highly 

abundant transcripts have time to pass into the ds form, so they become substrate for DSN 

(Zhulidov, Bogdanova et al. 2004; Bogdanova, Shagina et al. 2009). 

RNA-Seq studies involving gene expression analysis require that the sequenced 

reads’ relative abundance is as little biased as possible. Hence, these studies mostly use 

unnormalised cDNA libraries. However, it has been demonstrated that there is a positive 

correlation between the expression levels on both normalised and unnormalised data, which 

confirms the validity of the use of normalised cDNA libraries in gene expression analysis. 

This is possible because the cDNA levels present enough variation even after normalization 

(Ekblom, Slate et al. 2012). In fact, several authors report the application of cDNA 

normalization when studying the differential expression of some genes through the RNA-

Seq method (Kristiansson, Asker et al. 2009; Schwarz, Robertson et al. 2009; Ekblom, Slate 

et al. 2012). 

 

5.4 Second-generation technologies 

 

DNA sequencing used to be performed by the Sanger method, which was expensive, 

time consuming and laborious. Nowadays, second-generation sequencing technologies are 

preferred, since they allow massive parallel sequencing of the whole genome, are cheaper, 

and do not require large automated facilities (Hudson 2007; Metzker 2010). Hence, 

sequencing of genomes and transcriptomes is now easier and more frequent. There are 

several second generation sequencing methods developed by different companies (Solexa, 

Illumina, SOLiD), but all of them use nanotechnology and generate hundreds of thousands 
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of small sequence reads at one time (Hudson 2007; Metzker 2010; Febrer, McLay et al. 

2011).  

454 Life Sciences (Roche) developed a sequencing technology based on 

pyrosequencing (Hudson 2007). In this method, the base incorporation is detected in real 

time by pyrophosphate release (Ronaghi, Karamohamed et al. 1996; Ronaghi, Uhlén et al. 

1998). Hence, no gels or capillaries are required to separate the extension products by size, 

as in the Sanger method (Hudson 2007). In the Sanger method, DNA amplification required 

sub-cloning in bacteria (Sanger, Nicklen et al. 1977). However, in the 454 method this step 

is not required, since the sheared DNA fragments are linked to beads and emulsion-phase 

PCR is used to amplify those fragments (Hudson 2007). This emulsion-based method 

(Figure 5) involves several steps: (1) random fragmentation of the entire genome; (2) 

addition of specialized common adapters to the fragments and immobilization of each 

individual fragment in its own bead through adapter sequence complementarity; (3) 

capturing of each bead in an emulsion droplet and amplification of the individual fragment 

(emulsion-phase PCR) (Margulies, Egholm et al. 2005).  

 

 

Figure 5 - DNA amplification through emulsion-phase PCR. Adapted from Hudson (2007). 

 

Then, the beads containing the amplified DNA are immobilized in a picolitre-sized 

well plate containing 1.6 million wells, where a polymerase-mediated elongation occurs 

(Figure 6) (Margulies, Egholm et al. 2005; Hudson 2007). The presence of the template-

containing beads in each well is detected through the presence of a known four-nucleotide 

sequence at the beginning of the reads (Margulies, Egholm et al. 2005). In this process, a 
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flow of nucleotides is passed through the plate (each nucleotide at a time) followed by a 

nuclease-containing wash to ensure that no nucleotide remains in any well before the next 

nucleotide flow. When a nucleotide is incorporated, it triggers the release of pyrophosphate 

Figure 6- Schematic representation of the Roche 454 pyrosequencing method. Adapted from Hudson (2007). 
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(PPi) and the generation of photons, producing a flash of chemiluminescence (Margulies, 

Egholm et al. 2005). After the sequencing of the fragments, the sequences must be aligned. 

In this method, the optimal alignment is determined by using the signal strengths at each 

nucleotide flow instead of individual base calls. The high oversampling obtained with the 

454 technology increases the quality of the consensus sequence (Margulies, Egholm et al. 

2005).  

The 454 sequences are distributed evenly across the cDNA of a given gene, which 

helps to obtain blast alignments (Weber, Weber et al. 2007; Vera, Wheat et al. 2008). 

However, it also results in multiple fragments per gene, demanding additional assessment in 

downstream analyses in order to discover the relation between these fragments. Besides, 

since the 454 sequences are derived from both the cDNA strands, the directional orientation 

of the sequencing data is unknown. Nevertheless, blast annotation can be used to infer about 

this directionality (Vera, Wheat et al. 2008).  

In summary, 454 pyrosequencing is a faster, cheaper and easier process that also 

increases sequencing depth and coverage, being the most common sequencing method when 

de novo characterization of transcriptomes of non-model organisms is intended (Ekblom, 

Slate et al. 2012). The preference for the 454 pyrosequencing in these studies derives from 

the fact that this sequencer generates long reads that provide valuable information even when 

a reference genome is not known (Novaes, Drost et al. 2008; Vera, Wheat et al. 2008).  

Nevertheless, there are some problems associated with the transcriptome analysis of 

organisms that lack a fully-sequenced genome, since it may be difficult to assess the number 

of genes expressed. This happens for various reasons: 

 some contigs remain as separate sequences after contig-joining, since they lack a 

match in public databases; 

 some fragments that would be expected to lack a match in public databases may 

match with conserved regions in known genes or even poorly-conserved regions such 

as un-translated regions; 

 some fragments may be too short, thus not being able to allow statistically 

meaningful matches; 

 a single sequencing run does not provide a sufficient level of coverage to allow the 

production of complete transcript sequences by sequence assembly alone (Meyer, 

Aglyamova et al. 2009). 
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Solving these problems is of great interest, since the quantification of gene expression is one 

of the primary questions for transcriptome sequencing (Meyer, Aglyamova et al. 2009). 

 

5.5 Expressed Sequence Tags  

 

As previously mentioned, the RNA-Seq method involves the construction of cDNA 

libraries followed by sequencing of the cDNA clones (randomly, from both directions, in a 

single-pass run). The result of this sequencing step is a set of expressed sequence tags 

(ESTs). Hence, ESTs can be described as short (100-800 bp) unedited copies of the mRNA 

itself (Nagaraj, Gasser et al. 2007).  

The traditional EST sequencing method involves the anchoring of each sequence at 

the 3’ or 5’ end of the transcript. A different approach is the use of second-generation 

technologies to sequence ESTs. This method, also known as transcriptome sequencing, 

consists in the sequencing of entire, random mRNA fragments and posterior computational 

assembly (Hudson 2007). 

Due to the fact that these short sequences are only sequenced once, they are highly 

susceptible to errors, especially at the ends (the quality of the sequence is significantly higher 

in the middle). Another problem related to EST data is the fact that they can be generated 

through various different protocols, leading to redundancy and under- or over-representation 

of selected transcripts (Nagaraj, Gasser et al. 2007). 

ESTs are very useful, as they enable gene discovery, complement genome 

annotation, aid gene structure identification, establish the viability of alternative transcripts, 

guide single nucleotide polymorphism (SNP) characterization and facilitate proteome 

analysis (Jongeneel 2000; Rudd 2003; Qunfeng, Lori et al. 2005). This is possible because 

EST sequences contain information only about coding DNA (lacking introns and intragenic 

regions), which facilitates data interpretation (Bouck and Vision 2007; Parchman, Geist et 

al. 2010). 

 

6. Quantitative Real-Time PCR 

 

When expression level studies are performed, the data resulting from the in silico 

analyses require posterior validation to confirm that the genes are in fact differentially 

expressed. Some of the methods that can be used to validate the data are the reverse-
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transcriptase polymerase chain reaction (RT-PCR), the quantitative real-time polymerase 

chain reaction (qPCR) or β-galactosidase assays (Yoder-Himes, Chain et al. 2009; Isabella 

and Clark 2011; Park, Park et al. 2012). 

Quantification methods are very useful, as they allow evaluation of gene copy 

number and mRNA expression, diagnosis of infectious diseases, investigation of the 

efficiency of gene delivery systems and verification of biological product purity (Lie and 

Petropoulos 1998). The biological response to various stimuli can also be monitored through 

the measurement of gene expression (Tan, Sun et al. 1994; Huang, Xiao et al. 1995; 

Prud'homme, Kono et al. 1995). 

Polymerase chain reaction (PCR) usually provides reaction products that can be 

separated through electrophoresis and analysed by comparison of band intensities. However, 

since this approach is not quantitative, it only allows an estimation of the relative starting 

concentrations (Lie and Petropoulos 1998).  

On the other hand, quantitative real-time PCR (qPCR) allows quantification of 

expression through the use of fluorescent DNA-binding dyes. The fluorescence of these dyes 

is detected when they are bound to double-stranded DNA and it is proportional to the DNA 

concentration (Figure 7). During amplification, the fluorescence level will rise above a 

defined baseline (Invitrogen 2008). The amplification cycle at which this happens is known 

as CT (threshold cycle), and this value is what allows the quantification: the higher the 

concentration of the target gene, the lower the number of cycles needed to raise the emission 

intensity above the pre-defined baseline (Heid, Stevens et al. 1996; Lie and Petropoulos 

1998).  

 

Figure 7 - Schematic representation of the use of fluorescent DNA-binding dyes in real-time PCR  

(http://www.bio-

rad.com/webroot/web/images/lsr/solutions/technologies/gene_expression/pcr/technology_detail/gxt28_img1.gif). 
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The “real-time” designation originates from the fact that detection occurs during each 

PCR cycle; the electrophoresis step is therefore unnecessary (Lie and Petropoulos 1998).  

The lack of post-PCR sample handling is advantageous, since the results are obtained 

faster, a higher throughput assay is achieved and possible contaminations are prevented. This 

method is also accurate and has a very large dynamic range of starting target molecule 

determination (Heid, Stevens et al. 1996).  

Depending on the objective of the experiment, the quantification can be absolute or 

relative. Absolute quantification is the most adequate when the exact number of transcript 

copies is required, since it usually relates the PCR signal to a standard curve. However, in 

some circumstances, the determination of the absolute transcript copy number may not be 

necessary. In these situations, relative quantification can be used. This relative method 

evaluates the change in the expression of the target gene in comparison with some reference 

group (untreated control, for example) (Livak and Schmittgen 2001). 

 

7. Objectives 

 

TBT is a toxic organotin compound that affects mainly aquatic environments. Despite 

the legislation that limits the use of TBT, its high persistence and the fact that it is still used in 

some countries makes TBT pollution a problem of concern.  

The molecular mechanisms of TBT resistance in various organisms have been studied 

by some authors, but little is known about these mechanisms, mainly because it seems to be 

different in the different organisms. Likewise, little is known about the TBT biodegradation. 

The full comprehension of the resistance and degradation mechanisms may allow the use of 

organisms to decontaminate polluted sites. 

In this study, a transcriptome approach was employed in order to identify genes 

involved in TBT resistance and degradation. To that end, the transcriptome of Aeromonas 

molluscorum Av27 was sequenced by the RNA-Seq method. Furthermore, quantitative real-

time PCR was performed to validate the results from the transcriptome analysis.  

This approach provides information about the genes that are differentially expressed in 

the presence of TBT. Furthermore, the study of the function of those genes might shed more 

light on the TBT resistance and degradation mechanisms in Aeromonas molluscorum Av27. 

The identified differentially expressed genes can be further investigated for their application to 

develop bioreporters for TBT. 
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8. Transcriptome analysis 

 

This study was started from the analysis of the results of the transcriptome. But, even 

so, the materials and methods used to obtain these results are also included for a better 

comprehension of all the steps involved and required prior to the transcriptome analysis. 

The main goal of the present thesis consisted in analyzing the transcriptome 

sequencing data followed by validation of the results by quantitative real-time PCR.  

 

8.1 Cellular growth 

 

Aeromonas molluscorum Av27 cells were grown, with or without TBTCl (97%) 

(Fluka), in Marine Broth medium at 26 ºC, 180 rpm, in the dark (since TBT can be photo 

degraded). Hereafter, TBTCl will be referred to as TBT.  

The following conditions were tested:  

 control (cells not exposed to TBT); 

 5 μM TBT: environmentally relevant concentration (Antizar-Ladislao 2008); 

 50 μM TBT: concentration at which Aeromonas molluscorum Av27 is known to 

degrade TBT (Cruz, Caetano et al. 2007). 

The erlenmeyers (250 mL) used for cell growth were previously immersed in 

hydrochloric acid (10 %) for at least 24 hours and then washed with distilled water, to 

remove any organic residue. 

Cell growth was monitored by a change in optical density (OD) at 600 nm (Genesys 

20 Visible Spectrophotometer, Thermo Scientific). When the cultures reached the desired 

OD (A600 nm = 0.5, exponential growth phase), the cells were precipitated by centrifugation 

and the pellets were kept at -80ºC. 

 

8.2 RNA extraction and purification 

 

RNA was extracted using TRIzol Max Bacterial Isolation Kit (Invitrogen) according 

to manufacturer’s instructions, and purified with the Turbo DNA-free Kit (Ambion). The 

protocols are described below in detail. 
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RNA Extraction - TRIzol® MaxTM Bacterial Isolation Kit (Invitrogen) 

1. Transfer 1.5 mL of bacterial culture (up to 1 × 108 cells) to a pre-chilled 

microcentrifuge tube.  

2. Centrifuge the tube at 6000 × g for 3 minutes at 4°C in a microcentrifuge.  

3. Pre-heat 200 μL Max Bacterial Enhancement Reagent to 95°C.  

4. After centrifugation, decant the supernatant and resuspend the cell pellet in pre-

heated 200 μL Max Bacterial Enhancement Reagent from the previous step. Mix 

well by pipetting up and down.  

5. Incubate the tube at 95°C for 4 minutes.  

6. Add 1 mL TRIzol® Reagent to the lysate and mix well.  

7. Incubate the tube at room temperature for 5 minutes. 

8. Add 0.2 mL cold chloroform and mix by shaking the tube vigorously by hand for 

15 seconds.  

9. Incubate the tube at room temperature for 2–3 minutes.  

10. Centrifuge the samples at 12,000 × g for 15 minutes at 4°C. After centrifugation, 

the mixture separates into a lower red, phenol-chloroform phase, an interphase, 

and a colorless aqueous phase containing RNA.  

11. Transfer ~400 μL of the colorless upper phase containing RNA to a fresh tube.  

12. Add 0.5 mL cold isopropanol to the aqueous phase to precipitate RNA. Mix by 

inverting the tube.  

13. Incubate the tube at room temperature for 15 minutes.  

14. Centrifuge at 15,000 × g for 10 minutes at 4°C.  

15. Remove the supernatant carefully without disturbing the RNA pellet (a gel-like 

pellet formed at the side and bottom of the tube).  

16. Resuspend the pellet in 1 mL 75% ethanol. Mix well by vortexing.  

17. Centrifuge at 7500 × g for 5 minutes at 4°C. Discard the supernatant.  

18. Air-dry the RNA pellet. Do not dry the RNA pellet by centrifugation under 

vacuum.  

19. Resuspend the RNA pellet in 50 μL RNase-free water by pipetting up and down, 

and incubating for 10 minutes at 60°C, if needed. 
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RNA Purification - TURBO DNA-free™ Kit (Ambion) 

1. Add 5 μL 10x TURBO DNase Buffer and 1 μL TURBO DNase to the RNA and 

mix gently.  

2. Incubate at 37ºC for 45 minutes. 

3. Add 5.5 μL resuspended DNase Inactivation Reagent and mix well. 

4. Incubate 2 minutes at room temperature, mixing occasionally. 

5. Centrifuge at 10,000 × g for 1 minute and 30 seconds. 

6. Transfer the supernatant, which contains the RNA, into a fresh tube.   

 

DNA contamination was confirmed by PCR amplification of the 16S rRNA gene. 

The thermal cycler used was the MJ Mini (Bio-Rad) and the reagents were provided by 

Promega. The primers used in this procedure were provided by ThermoElectron® and are 

shown in Table 1. 

Table 1 - Primers used to amplify the 16S rRNA gene. 

 Sequence 

16SFw 5’-AGAGTTTGATCCTGGTCAG-3’ 

16SRv 5’-AAGGAGGTGATCCAGCC-3’ 

 

The reagents and amounts used in the preparation of the amplification reaction are 

listed in Table 2. The PCR program used is shown in Table 3. Total DNA of Av27 strain 

was used as positive control. 

Table 2 - Components and respective volumes used in the amplification reaction.  

Component Volume/Reaction (μL) 

MgCl2 (25 mM) 1.5 

Buffer (5 ×) 2.5 

dNTP mix (10 mM) 0.25 

DMSO 0.63 

16SFw (10 pmol/μL) 0.38 

16SRv (10 pmol/μL) 0.38 

Taq Pol (5 U/μL) 0.06 

RNA/total DNA 1 

dH2O 6.8 

TOTAL 13.5 
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Table 3 - PCR program used for amplification of the 16S rRNA. 

 Temperature (ºC) Time (minutes) Nº Cycles 

Initialization 94 5 1 

Denaturation 94 0.5 

30 Annealing 56 0.5 

Extension/elongation 72 1.5 

Final elongation 72 10 1 

 

RNA concentration was determined using Qubit (Invitrogen) as described below, and 

also using Nanodrop (Thermo Scientific) according to manufacturer’s instructions. 

 

RNA Quantification - Qubit™ (Invitrogen) 

1. Set up the number of 0.5 mL tubes needed for standards and samples. The Qubit™ 

RNA assay requires 2 standards. 

Note: Use only thin-wall, clear 0.5 mL optical-grade real-time PCR tubes.  

2. Make the Qubit™ working solution by diluting the Qubit™ RNA reagent 1:200 in 

Qubit™ RNA buffer. Use a clean plastic tube. Do not mix the working solution in 

a glass container. 

Note: The final volume in each tube must be 200 μL. Each standard tube will 

require 190 μL of Qubit™ working solution, and each sample tube will require 

anywhere from 180 μL to 199 μL.  

3. Load 190 μL of Qubit™ working solution into each of the tubes used for standards. 

4. Add 10 μL of each Qubit™ standard to the appropriate tube and mix by vortexing 

2–3 seconds, being careful not to create bubbles.  

Note: Careful pipetting is critical to ensure that exactly 10 μL of each Qubit™ 

RNA standard is added to 190 μL of Qubit™ working solution. It is also important 

to label the lid of each standard tube correctly as calibration of the Qubit® 2.0 

Fluorometer requires that the standards be introduced to the instrument in the right 

order. 

5. Load Qubit™ working solution into individual assay tubes so that the final volume 

in each tube after adding sample is 200 μL.  
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Note: The sample can be anywhere between 1 μL and 20 μL, therefore, load each 

assay tube with a volume of Qubit™ working solution anywhere between 180 μL 

and 199 μL. 

6. Add each sample to assay tubes containing the correct volume of Qubit™ working 

solution (prepared in step 5) and mix by vortexing 2–3 seconds. The final volume 

in each tube should be 200 μL. 

7. Allow all tubes to incubate at room temperature for 2 minutes. 

8. Read samples on the Qubit® Fluorometer. 

 

8.3 cDNA library construction and normalization 

 

The total RNA obtained (≈3 μg) was sent to Evrogen company (Russia Federation), 

where cDNA was synthetized using the SMART approach (Zhu, Machleder et al. 2001).  

As mentioned in section 5.1, transcriptome analysis studies usually require a 

normalization step. Hence, a duplex-specific nuclease (DSN) normalization method 

(Zhulidov, Bogdanova et al. 2004) was performed also by Evrogen.  

 

8.4 Transcriptome sequencing and data annotation 

 

The transcriptomes were sequenced and annotated by Biocant (Portugal).  

Pyrosequencing was performed with 454 GS FLX Titanium. Then, 454 reads were 

trimmed for removal of low quality parts, reads with less than 100 nucleotides and low 

complex areas, as well as ribosomal, mitochondrial and chloroplast reads. The remaining 

reads were assembled into contigs using 454 Newbler 2.6.  

To identify the translations frame, the contigs were BLASTx against Swissprot using 

an e-value threshold of e-value ≤ 10-6. An internal algorithm was used to translate the 

regions. The contigs without previous translation were run through FrameDP (Gouzy, 

Carrere et al. 2009), a software used to identify putative peptides; the remaining contigs 

without translation were finally run by ESTScan (Lottaz, Iseli et al. 2003). The resulting 

putative proteins were annotated using the BLASTp against the nr@ncbi database. 

Functional annotation and Gene Ontology (GO) identification were obtained using the 

InterproScan (EMBL-EBI 2013).   
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To identify the differential expression, the putative proteins were first clustered using 

a CD-Hit 454 application (Niu, Fu et al. 2010) (90% similarity) to eliminate redundant 

sequences. Then, contigs encoding non-redundant proteins were used as reference to map 

the reads; 454 Newbler Mapping 2.6 was used in the mapping process. These steps allowed 

the quantification of the number of reads that mapped in the references formed by the 

contigs. The application MyRNA (Langmead, Hansen et al. 2010) was used to obtain the p-

value, from which it is possible to get a statistical evidence of the differential protein 

expression levels. 

These procedures are summarized in Figure 8 and Figure 9. 

 

 

Figure 8 - Schematic representation of the procedure followed to obtain functional annotation (provided by 

Biocant). 
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Figure 9 - Schematic representation of the procedure followed to identify the translation frame annotation 

(provided by Biocant). 

 

8.5 Differential expression analysis 

 

The transcriptome of A. molluscorum Av27 was analysed with the purpose of 

identifying genes involved in TBT resistance and degradation. This analysis involved the 

identification of over-expressed (expression ratio ≥ 2) and under-expressed (expression 

ratio < 0.5) genes in the transcriptome and the study of the respective gene ontology.  

Previous studies reported the identification of pyoverdine as the peptide responsible 

for triphenyltin (TPT) degradation (Inoue, Takimura et al. 2000; Inoue, Takimura et al. 

2003). Hence, this peptide or others with similar function were investigated in the 

transcriptome of strain Av27. 
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The transcriptome was also screened for genes involved in metal and antibiotic 

resistance, which might be related to TBT resistance as suggested by Suzuki, Fukagawa et 

al. (1992) and Jude, Arpin et al. (2004). Besides, since A. molluscorum Av27 cells aggregate 

in the presence of TBT, aggregation proteins were also sought (Cruz, Oliveira et al. 2010).  

Moreover, other genes described by other authors as being involved in TBT 

resistance were also investigated in Av27’s transcriptome as, for instance, sugE (Cruz, 

Micaelo et al. 2013) and aheABC (Hernould, Gagné et al. 2008). The results obtained in this 

study were also compared with those reported by Dubey (2006), regarding the analysis of 

the transcriptome of Pseudomonas aeruginosa 25W, a TBT resistant strain.  

 

9. Use of qPCR to validate the transcriptome results  

 

9.1 Cellular growth  

 

Aeromonas molluscorum Av27 cells were grown in the same conditions used for 

transcriptome analysis (section 8.1). Briefly, the cells were grown in Marine Broth medium 

at 26 ºC, 180 rpm, to an optical density (A600 nm) of 0.5 (exponential growth phase). Two 

conditions were tested (exposure to 5 and 50 μM of TBT) in addition to the control condition. 

A triplicate of each condition was prepared.  

 

9.2 RNA extraction and purification 

 

RNA was extracted and purified with the Rneasy Mini Kit (Qiagen), according to 

manufacturer’s instructions. The protocols are described below in detail. 

 

RNA Extraction – RNeasy® Mini Kit (Qiagen) 

1. Loosen the bacterial pellet by flicking the bottom of the tube.  

Note: do not use more than 109 bacteria. 

2. Resuspend the bacteria thoroughly in 100 μL of lysozyme-containing TE buffer 

(Gram negative bacteria: 400 μg/mL) by vortexing. Incubate at room temperature 

for 5 minutes.  
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3. Add 350 μL Buffer RLT to the sample. Mix thoroughly by vortexing vigorously. 

If insoluble material is visible, centrifuge for 2 minutes at maximum speed, and 

use only the supernatant in subsequent steps.  

Note: Ensure that β-ME is added to Buffer RLT before use. 

4. Add 250 μL ethanol (96–100%) to the lysate. Mix thoroughly by pipetting. Do not 

centrifuge. A precipitate may form after the addition of ethanol, but this will not 

affect the RNeasy procedure. 

 

RNA Purification – RNeasy® Mini Kit (Qiagen) 

1. Apply the sample (usually 700 μL), including any precipitate that may have 

formed, to an RNeasy mini column placed in a 2 mL collection tube. Close the 

tube gently and centrifuge for 15 seconds at ≥8000 x g. Discard the flow-through. 

If the volume exceeds 700 μL, load aliquots successively onto the RNeasy column, 

and centrifuge as above. Discard the flow-through after each centrifugation step.  

2. Pipet 350 μL Buffer RW1 into the RNeasy mini column, and centrifuge for 15 

seconds at ≥8000 x g to wash. Discard the flow-through.  

3. Add 10 μL DNase I (~3 U/μL) to 8 μL DNase I Reactivation Buffer (10 x) and 62 

μL RNase-free water. Mix by gently inverting the tube. 

Note: DNase I is especially sensitive to physical denaturation. Mixing should only 

be carried out by gently inverting the tube. Do not vortex. 

4. Pipet the DNase I incubation mix (80 μL) directly onto the RNeasy silica-gel 

membrane, and place on the bench top (20–30°C) for 15 minutes.  

Note: Make sure to pipet the DNase I incubation mix directly onto the RNeasy 

silica-gel membrane. DNase digestion will be incomplete if part of the mix sticks 

to the walls or the O-ring of the RNeasy column. 

5. Pipet 350 μL Buffer RW1 into the RNeasy mini column, and centrifuge for 15 

seconds at ≥8000 x g. Discard the flow-through.  

6. Transfer the RNeasy column into a new 2 mL collection tube. Pipet 500 μL Buffer 

RPE onto the RNeasy column. Close the tube gently, and centrifuge for 15 seconds 

at ≥8000 x g to wash the column. Discard the flow-through.  

Note: Buffer RPE is supplied as a concentrate. Ensure that ethanol is added to 

Buffer RPE before use. 
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7. Add another 500 μL Buffer RPE to the RNeasy column. Close the tube gently, and 

centrifuge for 2 minutes at ≥8000 x g to dry the RNeasy silica-gel membrane. It is 

important to dry the RNeasy silica-gel membrane since residual ethanol may 

interfere with downstream reactions. This centrifugation ensures that no ethanol is 

carried over during elution.  

Note: Following the centrifugation, remove the RNeasy mini column from the 

collection tube carefully so the column does not contact the flow-through as this 

will result in carryover of ethanol. 

8. Place the RNeasy column in a new 2 mL collection tube, and discard the old 

collection tube with the flow-through. Centrifuge at full speed for 1 minute. 

9. To elute, transfer the RNeasy column to a new 1.5 mL collection tube. Pipet 30–

50 μL RNase-free water directly onto the RNeasy silica-gel membrane. Close the 

tube gently, and centrifuge for 1 min at ≥8000 x g to elute. 

10.  If the expected RNA yield is >30 μg, repeat the elution step (step 9) as described 

with a second volume of RNase-free water. Elute into the same collection tube. To 

obtain a higher total RNA concentration, this second elution step may be 

performed by using the first eluate (from step 9). The yield will be 15–30% less 

than the yield obtained using a second volume of RNase-free water, but the final 

concentration will be higher. 

 

DNA contamination was confirmed by PCR amplification of the 16S rRNA gene. 

The thermal cycler used was the MJ Mini (Bio-Rad) and the reagents were provided by 

Promega. The reagents, primers and PCR program were the same used in the transcriptome 

analysis protocol (section 8.2). 

RNA concentration was determined using Nanodrop (NanoDrop® 2000 

Spectrophotometer) according to manufacturer’s instructions. 

 

9.3 cDNA synthesis 

 

Once RNA with the desired concentration and purity was obtained, cDNA was 

synthesized using the SuperScript™ First-Strand Synthesis System for RT-PCR 

(Invitrogen).  
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cDNA synthesis - SuperScript™ First-Strand Synthesis System for RT-PCR 

(Invitrogen) 

1. Mix and briefly centrifuge each component before use. 

2. For each reaction, combine the following in a sterile 0.5-mL tube: 

Component Volume (μL) 

RNA (5 μg) n 

dNTP mix (10 mM) 1 

Random hexamers (50 ng/μl) 1 

RNase-free water up to 10 
 

3. Incubate the RNA/primer mixture at 65°C for 5 minutes, then place on ice for at 

least 1 minute. 

4. In a separate tube, prepare the following reaction mix, adding each component in 

the indicated order. 

Component 1 Reaction 10 Reactions 

RT buffer (10X) 2 μL 20 μL 

MgCl2 (25 mM) 4 μL 40 μL 

DTT (0.1 M) 2 μL 20 μL 

RNaseOUT™ (40 U/μL) 1 μl 10 μL 
 

5. Add 9 μL of the reaction mix to each RNA/primer mixture from step 2, mix gently, 

and collect by brief centrifugation. 

6. Incubate at room temperature for 2 minutes. 

7. Add 1 μL of SuperScript™ II RT to each tube. Minus RT Control: Add 1 μL 

RNase-free water instead of the RT. 

Note: The Minus RT Control allows to assess DNA contamination. 

8. Incubate at room temperature for 10 minutes. 

9. Incubate at 42°C for 50 minutes. 

10. Terminate the reaction at 70°C for 15 minutes. Chill on ice. 

11. Collect the reaction by brief centrifugation. Add 1 μL of RNase H to each tube and 

incubate for 20 minutes at 37°C. The reaction can be stored at -20°C or used for 

PCR immediately. 

12. Assess cDNA quality by PCR amplification of the 16S rRNA, as described in 

section 8.2. 
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9.4 Quantitative Real-time PCR (qPCR) 

 

Five reference genes and 14 target genes were selected to validate the transcriptome 

results.  

Reference genes gyrB, rpoD and rpsL were selected based on the bibliography 

search, while opmA and rlmL were chosen because their expression was found to be constant 

in transcriptome of A. molluscorum Av27 in all the conditions tested. gyrB and rpoD are 

referred as housekeeping genes of the genus Aeromonas and were thus selected (Soler, 

Yáñez et al. 2004). rpsL is a reference gene commonly used in gene expression studies 

involving Aeromonas hydrophila (the reference species for the genus Aeromonas) (Lukkana, 

Wongtavatchai et al. 2011). In addition to these, the reference genes opmA and rlmL were 

also used due to their constant expression in the three conditions analysed. The primers used 

to amplify the reference genes are presented in Table 4. 

 

Table 4 - Primers used to amplify each reference gene, with respective melting temperature and product size. 

Gene Primer (5’-3’) Tm (ºC) Product Size (bp) 

gyrB 
Fw_TCCTCAACTCTGGCGTTTCT 59.99 

237 
Rv_GGGGAATGTTGTTGGTGAAG 60.21 

rpoD 
Fw_GGTTATCTCCATCGCCAAGA 60.04 

233 
Rv_TGAGCTTGTTGATGGTCTCG 59.98 

rpsL 
Fw_CCACGGATCAGAACAACAGA 59.68 

130 
Rv_CCCCGAAGAAGCCTAACTCT 59.84 

opmA 
Fw_TTGGTGCTGCTCACTTCAAC 60.03 

229 
Rv_ATGGACAGATCCTTGGCAAC 59.93 

rlmL 
Fw_GAGCGCACTGGtGTCATCTA 60.02 

265 
Rv_GCGCATTCTGAGAGAGATCC 60.07 

 

Target genes were selected based on the differential expression levels observed in 

the transcriptome sequencing data (Table 5): 

 5 genes over-expressed when exposed to TBT (5 μM and 50 μM TBT); 

 5 genes under-expressed when exposed to TBT (5 μM and 50 μM TBT); 
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 3 genes under-expressed when exposed to 5 μM TBT and over-expressed when 

exposed to 50 μM TBT. 

 1 gene over-expressed at 5 μM TBT and under-expressed at 50 μM TBT. 

The primers used to amplify the target genes are listed in Table 6. 

Specific primers were designed based on the sequence of the genes to be analysed. 

These primers were designed using the OligoPerfect™ Designer 

(http://tools.invitrogen.com/content.cfm?pageid=9716) and the Primer3Plus program 

(http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi/).  

For assessment of the gene expression levels, qPCR was performed in the CFX96TM 

Real-Time System (Bio-Rad), coupled with the C1000TM Thermal Cycler (Bio-Rad). The 

SoFastTM EvaGreen® Supermix was used according to manufacturer’s instructions. The 

components, respective quantities and the program used are shown in Table 7 and Table 8, 

respectively. The analysis included three biological and two technical replicates. A control 

sample (without the reverse transcriptase enzyme) and a non-template control (RNase-free 

water instead of cDNA) were included in the analysis. 

Standard curves were obtained for each gene (target and reference) using serial 

dilutions of the cDNA samples. This allowed the assessment of the reaction efficiency. 

The gene expression level was determined using relative quantification and 

calculated using ΔΔCt method (Biosystems 2004).  

The qPCR data were then submitted to statistical analyses by one-way ANOVA 

(qbasePLUS, Biogazelle). 

 

  



Transcriptome analysis of A. molluscorum Av27 following TBT exposure 

Materials and Methods 

 

50 

 

Table 5 – Target genes selected for qPCR validation and respective expression ratios (nº reads in the presence of TBT/nº reads in the absence of TBT) for 5 and 50 µM of 

TBT). Green: over-expressed genes; red: under-expressed genes. 

Interpro ID Interpro description Gene name 
Ratio 

(5 μM) 

Ratio 

(50 μM) 

IPR000298 Cytochrome c oxidase, subunit III  B224_000468* 0.18 0.91 

IPR000835 Transcription regulator HTH, MarR AHA_0734** 0.0 7.5 

IPR011032 GroES-like groS 12.33 36 

IPR001327 Pyridine nucleotide-disulphide oxidoreductase, NAD-binding domain AHA_2170** 4.0 124 

IPR001623 Heat shock protein DnaJ, N-terminal dnaJ 5.0 13 

IPR002429 Cytochrome c oxidase subunit II C-terminal B224_000472* 0.33 0.0 

IPR002586 Cobyrinic acid a,c-diamide synthase IYQ_23030* 0.14 0.22 

IPR003423 Outer membrane efflux protein TolC tolC 3.08 6.2 

PR004323 Divalent ion tolerance protein, CutA1 cutA 8.5 0.0 

IPR004360 Glyoxalase/bleomycin resistance protein/dioxygenase ASA_1926** 0.095 2.5 

IPR004670 Na+/H+ antiporter NhaA nhaA 0.19 0.0 

IPR005123 Oxoglutarate/iron-dependent oxygenase AHA_2405** 2.0 46 

IPR007210 ABC-type glycine betaine transport system, substrate-binding domain AHA_3374** 0.11 0.043 

IPR007863 Peptidase M16, C-terminal IYQ_07906* 0.0 34 

 

*: ORF name 

**: ordered locus name
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Table 6 - Primers used to amplify each target gene, with respective melting temperature and product size. 

Gene Primer (5’-3’) Tm (ºC) Product Size (bp) 

B224_000468 
Fw_TGATGGTCACCTTCTTGCTG 59.83 

130 
Rv_GTACCGACCAGGGTGAAGAA 59.97 

AHA_0734 
Fw_GAGGTGAGTGACGAGCTCAA 59.13 

105 
Rv_ATAGAGTGCAGTCGGGGTGA 60.28 

groS 
Fw_TCATCATTAAGCGCATCGAA 60.32 

188 
Rv_GCCGTAACCTTCGTTGAAGA 60.25 

AHA_2170 
Fw_AGTTTGTCAGCTTCGCCAAT 59.88 

290 
Rv_GTGTAAACATGGGGGCTGTC 60.24 

dnaJ 
Fw_GCAAGACACTGCGTTTCTGA 60.18 

231 
Rv_TCCAGCTCTTCGAGCAACTT 60.28 

B224_000472 
Fw_CAcGAGCTCGATCCATACAA 59.82 

100 
Rv_ATTCCGGATACACGAACAGC 59.96 

IYQ_23030 
Fw_AAATGGCCAAGATGTCGTTC 59.94 

256 
Rv_TTGTGATGGACGAAACGGTA 59.96 

tolC 
Fw_TGTCAGTCATGGTCCTGCTC 59.83 

202 
Rv_TTGGCCAGGTAGTTGAGTCC 60.11 

cutA 
Fw_GACCTCATCAGCGAGCAACT 60.56 

127 
Rv_TGATGATGAGCTGGATCTCG 59.90 

ASA_1926 
Fw_AGCCAACACCATCAATCCTC 59.93 

136 
Rv_GTGTTTGTGACGGGCTACCT 60.04 

nhaA 
Fw_ACGATCTGGGCGTCATTATC 59.92 

150 
Rv_ACCCGACCAACATGTAGAGG 59.84 

AHA_2405 
Fw_GCCAGAAGGACATCAAGGAG 59.80 

137 
Rv_GTACTGCTCCACCCAGGAGA 60.02 

AHA_3374 
Fw_ACATAGCGCAGCTCAAGGAT 60.01 

295 
Rv_ACTTCCAGCCAGACCACATC 60.12 

IYQ_07906 
Fw_GGAAGACAAGGTCCATCTGC 59.66 

224 
Rv_GGTTGGGATAGGCGTAGACA 59.96 
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Table 7 – Components and respective volumes used in each qPCR reaction. The sequences of the primers used are 

shown in Table 4 and Table 6. 

 

Component Volume/Reaction (μL) 

SsoFast EvaGreen supermix 10 

Forward primer (500 nM) 1 

Reverse primer (500 nM) 1 

RNase-free water 7 

cDNA template (samples)/RNase-

free water (non-template control) 
1 

 

Table 8 - Program used in the qPCR. 

 Temperature (ºC) Time (seconds) Nº Cycles 

Enzyme activation 98 30 1 

Denaturation 95 5 
50 

Annealing/extension 60 15 

Melting curve 
65-95 (in 0.5ºC 

increments) 
5/step 

1 
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10. Transcriptome analysis 

 

10.1 Sequencing and data assembly 

 

This procedure was performed to allow the identification of differentially expressed 

genes in the transcriptome of the Av27 strain following exposure to TBT (5 µM and 50 µM), 

since these genes may be involved in TBT resistance and degradation. The 454 

Pyrosequencing assembly results are shown in Table 9. Figures 10-12 represent the 

distribution of reads for each condition analysed. 

 

Table 9 - Pyrosequencing assembly results: number of reads, total number of bases and average read length. 

 Control 5 μM TBT 50 μM TBT 

Number of reads 120,260 72,800 92,710 

Total number of bases 41,468,545 23,108,112 32,550,118 

Average length (bp) 410.5 378.1 411.1 

 

 

Figure 10 – Distribution of the length of the sequences resulting from pyrosequencing of A. molluscorum Av27’s 

transcriptome in the control condition (non-exposed to TBT) (provided by Biocant).  

µ: average length; σ: standard deviation; #: number of reads. 
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Figure 11 - Distribution of the length of the sequences resulting from pyrosequencing of A. molluscorum Av27’s 

transcriptome exposed to 5 μM TBT (provided by Biocant). 

µ: average length; σ: standard deviation; #: number of reads. 

 

 

Figure 12 - Distribution of the length of the sequences resulting from pyrosequencing of A. molluscorum Av27’s 

transcriptome exposed to 50 μM TBT (provided by Biocant). 

µ: average length; σ: standard deviation; #: number of reads. 
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After sequencing, the reads were assembled into contigs. The results after assembly 

are shown in Table 10. 

 

Table 10 – A. molluscorum Av27 transcriptome sequencing and assembly in the control sample and following TBT 

exposition (5 and 50 µM of TBT). 

 Control 5 μM TBT 50 μM TBT 

Number of reads 106,896 60,378 80,276 

Total bases 34,656,300 18,312,500 26,942,400 

Average read length after trimming (bp) 324 303 335 

Number of contigs 1,360 1,147 1,325 

Average contig length (bp) 1,056 878 982 

Range of contig length (bp) [77..16,243] [141..13,769] [133..13,973] 

Number of contigs with >2 reads 1,360 1,147 1,325 

 

All the contigs were then assigned to protein names and function using InterproScan 

(EMBL-EBI 2013), which also provided gene ontology identification. The annotation results 

are summarized in Table 11. 

As previously shown, the transcriptome analysis provided the number of reads for 

each gene at each condition. Using this information, it was possible to calculate the 

expression ratio for the conditions under analysis (5 µM and 50 µM TBT). Some relevant 

genes and the respective expression ratios are presented in table A 1 (appendix). Expression 

ratio values ≥ 2 were considered to be over-expressed, while ratios < 0.5 were considered to 

be under-expressed. A p-value ≤0.05 was considered statistically significant. 
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Table 11 – A. molluscorum Av27 transcriptome annotation in the control sample and following TBT exposure (5 

and 50 µM of TBT). 

 Control 5 μM TBT 50 μM TBT 

Number of contigs 1,360 1,147 1,325 

Peptides with E-value < 1e-6 (a) 1,549 1,181 1,429 

Remaining Peptides with frameDP (b) 336 226 306 

Remaining Peptides with ESTscan (c) 143 148 169 

Total number of Peptides (a+b+c) 2,028 1,555 1,904 

Amino acid sequence assigned to GO 

terms 

1,252 

 
984 1,168 

Amino acid sequence assigned InterPro 

terms 

1,576 

 

1,184 

 

1,415 

 

Amino acid sequence not assigned 

InterPro terms (from blastx E<1e-6) 

53 

 

30 

 

57 

 

Amino acid sequence not assigned 

InterPro terms (from FrameDP) 

259 

 

199 

 

273 

 

Amino acid sequence not assigned 

InterPro terms (from ESTScan) 

140 

 

142 

 

159 
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11. qPCR validation

 

11.1 RNA concentration 

 

The RNA concentration and purity are presented in Table 12.  

 

Table 12 - Concentration and purity of A. molluscorum Av27’s RNA in the control sample (non-exposed) and 

following exposure to TBT (5 and 50 µM TBT). A260/A280 ≥ 2: pure RNA; A260/A280 < 2: contaminated RNA. 

Sample 
Biological 

Replicate 
Concentration (ng/µL) 

A260/A280 

Control 

1 1550.1  1.99 

2 1199.2 1.96 

3 1020.7 2.03 

5 µM TBT 

1 1098.5 2.05 

2 1379.4 2.06 

3 1167.0 2.04 

50 µM TBT 

1 1104.5 2.09 

2 1072.8 2.08 

3 778.1 2.08 

 

11.2 Standard Curves 

 

Standard curves allow to assess the efficiency of the PCR reaction. In fact, efficiency 

is calculated by the slope of the standard curve: 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 10
(−

1
𝑠𝑙𝑜𝑝𝑒

)
− 1 

 

Ideally, the efficiency should be 100% (slope = -3.32), but this value is difficult to 

achieve. Hence, efficiency values between 90 and 110% are acceptable.  

The correlation coefficient of the curve should be ≈ 1 and the y-intercept value 

provides information about the theoretical limit of detection of the reaction (CT 

correspondent to the minimum copy number that gives rise to statistically significant 

amplification) (Invitrogen 2008). 



Transcriptome analysis of A. molluscorum Av27 following TBT exposure 

Results and Discussion 

 

60 

 

Efficiency, correlation coefficient, slope and y-intercept values are presented in 

Table 13 and Table 14 for the reference genes and the target genes, respectively.  

 

Table 13 - Efficiency, correlation coefficient, slope and y-intercept values obtained from the standard curve of the 

reference genes. 

Genes Efficiency r2 slope y-int 

gyrB 99.7% 0.991 -3.330 23.315 

rpoD 103.8% 0.951 -3.233 30.429 

rpsL 97.3% 0.996 -3.389 23.324 

opmA 96.0% 0.993 -3.421 23.841 

rlmL 97.6% 0.993 -3.382 24.129 

 

Table 14 - Efficiency, correlation coefficient, slope and y-intercept values obtained from the standard curve of the 

target genes. 

Genes Efficiency r2 slope y-int 

B224_000468 100.6% 0.993 -3.308 23.138 

AHA_0734 98.3% 0.998 -3.363 23.817 

groS 104.9% 0.995 -3.210 22.488 

AHA_2170 97.2% 0.957 -3.392 33.843 

dnaJ 110.0% 0.997 -3.103 21.843 

B224_000472 97.6% 0.985 -3.382 24.995 

IYQ_23030 99.7% 0.988 -3.329 22.059 

tolC 97.5% 0.998 -3.383 23.354 

cutA 98.1% 0.994 -3.369 22.034 

ASA_1926 96.4% 0.985 -3.411 23.538 

nhaA 105.8% 0.993 -3.191 24.964 

AHA_2405 100.14% 0.998 -3.312 22.819 

AHA_3374 98.5% 0.993 -3.359 27.247 

IYQ_07906 99.8% 0.995 -3.327 21.191 

 

Based on the reaction efficiency and correlation coefficient, only B224_000468, 

AHA_0734, groS, B224_000472, IYQ_23030, tolC, cutA, ASA_1926, nhaA, AHA_2405, 

AHA_3374 and IYQ_07906 were selected for qPCR validation.  
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11.3 Reference genes – Stability study 

 

For relative quantification, the use of reference genes to normalize the expression 

levels between experiments is required. The expression levels of the reference genes should 

remain constant at all points of the experiment and at all the conditions tested (Invitrogen 

2008). 

The stability of the reference genes used in this study was assessed using geNorm 

(qbase PLUS, Biogazelle) and the results are presented in Table 15. Ideally, the M value 

should be <0.5 and the coefficient of variation (CV) <0.2, since these values indicate low 

variation among the conditions tested. 

Table 15 - M value and coefficient of variation (CV) for each reference gene. 

  gyrB rpoD rpsL opmA rlmL 

M value  0.267 0.338 0.402 0.308 0.232 

CV  0.033 0.140 0.198 0.127 0.080 

 

 The analysis performed by geNorm indicated that the use of two reference genes is 

ideal. The genes gyrB and rlmL were recommended, so these genes were selected as the 

reference genes for the qPCR analysis.  

 

11.4 qPCR results 

 

In qPCR, relative quantification doesn’t provide the exact starting quantity of the 

target gene, but allows comparison between gene expression in a treated sample and an 

untreated one. Hence, the expression ratios between the samples treated with TBT (5 µM 

and 50 µM TBT) and the control sample (no TBT) were calculated using statistical tools 

(One-way ANOVA). Expression ratio values ≥1 were considered to be over-expressed, 

while ratios <1 were considered to be under-expressed. A p-value ≤0.05 was considered 

statistically significant.   

In this analysis, the relative expression of six genes revealed the same tendency as 

the relative expression of the transcriptome, thus validating its results. Five genes validated 

only one of the two conditions tested and one didn’t validate the results provided by the 

transcriptome analysis (Table 16). Since the qPCR experiment validated the gene expression 

levels revealed by the transcriptome results, these can be used to infer about possible genes 

that might be involved in TBT resistance and/or degradation. 
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Table 16 – Comparison between qPCR validation results and transcriptome analysis: p-value and expression ratios obtained for each gene 

Green: over-expressed genes (expression ratio ≥2); red: under-expressed genes (expression ratio <0.5). 

V: qPCR validated transcriptome results; NV: qPCR did not validate transcriptome analysis. 

qPCR (One-way ANOVA) Transcriptome analysis 
Validation 

result 

Gene p-value Ratio 5 μM Ratio 50 μM p-value Ratio 5 μM Ratio 50 μM 5 μM 50 μM 

B224_000468 0.213 0.813 0.607 9.115E-03 0.182 0.909 V V 

AHA_0734 0.273 0.173 1.845 6.493E-11 0.000 7.500 V V 

groS 0.163 0.875 1.307 1.112E-23 12.33 36.00 NV V 

B224_000472 0.575 1.036 0.905 1.334E-06 0.279 0.000 NV V 

IYQ_23030 0.088 0.234 0.374 2.828E-15 0.144 0.225 V V 

tolC 0.606 1.045 2.454 1.208E-20 3.080 6.200 V V 

cutA 0.223 1.136 1.737 2.853E-03 8.500 0.000 V NV 

ASA_1926 3.81E-03 2.293 1.111 0.000E-00 0.095 2.500 NV V 

nhaA 0.074 1.436 1.712 1.203E-12 0.190 0.000 NV NV 

AHA_2405 0.192 1.004 3.020 5.580E-19 2.000 46.00 V V 

AHA_3374 0.399 0.473 0.705 0.000E+00 0.115 0.043 V V 

IYQ_07906 0.120 1.061 1.442 1.150E-14 0.000 35.00 NV V 
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12. Differential gene expression analysis 

 

12.1 Functional analysis 

 

The transcriptome of A. molluscorum Av27 following exposure to TBT (5 µM and 

50 µM) was studied in order to identify the genes involved in TBT resistance and 

degradation. The GO annotations (e-value≤ 10-6) provided a valuable resource for the 

investigation of specific processes, functions or cellular structures involved in the resistance 

and degradation of TBT in the Av27 strain. 

The biological process, cellular component and molecular function for each 

condition tested (control, 5 µM and 50 µM TBT exposure) were analyzed (Figure 13). 

However, the similarity between the results obtained for each condition makes it difficult to 

draw any conclusions. Hence, the number of over and under-expressed genes was analyzed 

in order to better understand the effect of TBT on the different functional categories defined 

(Figure 14). The analysis of Figure 14 shows that, at 5 µM TBT, the number of repressed 

genes is much higher than the number of induced genes, which is probably related to an 

energy saving and/or survival mechanism by the cell. However, at 50 µM TBT the cell faces 

the need to activate mechanisms of resistance and/or degradation to survive in these 

conditions. Consequently, more genes are found over-expressed at 50 µM TBT than at 

5 µM TBT. At both TBT concentrations, the functional category showing higher variation 

in both over and under-expressed genes was that related with enzymatic activity, followed 

by transport, binding and oxidation-reduction. These categories included genes that are 

mainly over-expressed at 50 µM, suggesting their possible involvement in TBT resistance 

and degradation. In fact, it has been suggested that TBT can be exported from the cell 

through efflux pumps (Jude, Arpin et al. 2004) and that it is degraded through dealkylation 

and demethylation processes (Barug 1981), which involves enzymatic machinery possibly 

encoded by genes belonging to these functional categories.  
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Figure 13 – Gene ontology (GO). Percentage of gene ontology annotations for A. molluscorum Av27 sequences: biological process (A), cellular component (B) and 

molecular function (C). 

Biological function 

(% - Control/% - 5 µM TBT/% - 50 µM TBT) 
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Figure 14 - Functional categories of over and under-expressed genes following exposure of A. molluscorum Av27 to 5 µM (A) and 50 µM of TBT (B). 
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12.2 Comparison with previous studies 

 

12.2.1 Expression levels of SugE in Aeromonas molluscorum Av27 

 

Cruz et al (2013) identified a gene in Aeromonas molluscorum Av27 which was over-

expressed in the presence of 500 µM of TBT when cells reached the early growth phase 

(OD600nm = 0.2). This gene presented homology (84 %) with sugE gene from Aeromonas 

hydrophila, encoding SugE protein. SugE protein belongs to the small multidrug resistance 

(SMR) family (IPR000390), which is located in the inner membrane and is involved in the 

efflux of lipophilic compounds (Sikora and Turner 2005).  

Considering the transcriptome data, the SMR family (IPR000390) is under-expressed 

in this study. This result is in accordance with that obtained by Cruz (2013), which described 

that sugE is not significantly over-expressed when cells are grown to the mid log phase 

(OD600nm = 0.5) in any of the TBT concentrations tested. Cruz suggested that Av27-sugE is 

only over-expressed in the early growth phase due to its involvement in a rapid response to 

TBT. In the present study, the Av27 strain was grown to the mid log phase, and probably 

other genes are involved in TBT resistance during this growth phase.  

 

12.2.2 Comparison of TBT resistance in Pseudomonas aeruginosa 

25W and A. molluscorum Av27 

 

The TBT-regulated genes in Pseudomonas aeruginosa 25W, a TBT-resistant strain, 

were studied by Dubey, Tokashiki et al. (2006). The authors used DNA microarrays to 

analyse the gene expression profile upon exposure to TBT.  

Fukushima and co-workers also studied the effect of TBT (50 μM and 500 μM) in P. 

aeruginosa 25W cells that were grown to mid-log phase, and identified some up-regulated 

and down-regulated genes following TBT-exposure. Some of these differentially expressed 

genes were selected to perform quantitative analyses (qPCR) (Fukushima, Dubey et al. 

2009).  

The results obtained from the pyrosequencing of the transcriptome of 

A. molluscorum Av27 were compared to those obtained by Dubey in the microarrays study 

and are shown in Table 17.    
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Table 17 - Comparison of the results obtained through the analysis of the transcriptome of A. molluscorum Av27 and the transcriptome of P. aeruginosa 25W, focusing on the 

genes that showed altered expression levels upon TBT exposure. The genes that presented different relative expression are highlighted in red.  

Microarrays study of P. aeruginosa 25W Pyrosequencing study of A. molluscorum Av27 

PA 

number 
Description 

Relative 

Expression 
InterPro ID Description 

Relative 

Expression 
p-value 

PA5348 Probable DNA-binding protein 
Over-expressed 

(500 µM TBT) 
IPR000119 

Histone-like bacterial 

DNA-binding protein 

Over-expressed 

(50 µM TBT) 
>0.05 

PA5178 
Conserved hypothetical 

protein 

Over-expressed 

(500 µM TBT) 
IPR002482 

Peptidoglycan-binding 

Lysin subgroup 

Over-expressed 

(5 µM and 50 

µM TBT) 

1.53444E-14 

 

PA1983 Cytochrome c550 
Over-expressed 

(500 µM TBT) 
IPR009056 Cytochrome c domain 

Over-expressed 

(50 µM TBT) 
6.56960E-06 

PA0329 
Conserved hypothetical 

protein 

Over-expressed 

(500 µM TBT) 
IPR010879 

Domain of unknown 

function DUF1508 

Over-expressed 

(5 µM and 50 

µM TBT) 

>0.05 

PA3600 Ribosomal protein L36 Under-expressed 

(500 µM TBT) 
IPR000473 Ribosomal protein L36 

Under-expressed 

(50 µM TBT) 
>0.05 

PA4242 50S ribosomal protein L36 

PA2966 Acyl carrier protein 
Under-expressed 

(500 µM TBT) 
IPR009081 Acyl carrier protein-like 

Under-expressed 

(5 µM and 50 

µM TBT) 

>0.05 
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PA3601 
50S ribosomal protein L31 

type B 

Under-expressed 

(500 µM TBT) 
IPR002150 Ribosomal protein L31 

Under-expressed 

(5 µM and 50 

µM TBT) 

>0.05 

PA1159 Probable cold-shock protein 
Under-expressed 

(500 µM TBT) 
IPR002059 

Cold-shock protein, DNA-

binding 

Under-expressed 

(5 µM and 50 

µM TBT) 

1.31077E-07 

PA3450 Probable antioxidant protein 
Under-expressed 

(500 µM TBT) 
IPR000866 

Alkyl hydroperoxide 

reductase subunit C/ Thiol 

specific antioxidant 

Under-expressed 

(5 µM and 50 

µM TBT) 

>0.05 
PA0139 

Alkyl hydroperoxide reductase 

subunit C 

PA1053 Outer membrane lipoprotein 
Under-expressed 

(500 µM TBT) 
IPR004658 

Outer membrane 

lipoprotein Slp 

Under-expressed 

(5 µM and 50 

µM TBT) 

>0.05 

PA1830 Putative sterol carrier protein 
Under-expressed 

(500 µM TBT) 
IPR003033 

SCP2 sterol-binding 

domain 

Under-expressed 

(5 µM TBT) 
>0.05 

PA4385 GroEL protein 
Under-expressed 

(500 µM TBT) 
IPR001844 Chaperonin Cpn60 

Over-expressed 

(50 µM TBT) 
1.83579E-22 

PA1804 

 

 

DNA-binding protein HU 

 

 

Under-expressed 

(500 µM TBT) 

 

 

IPR000119 

 

 

Histone-like bacterial 

DNA-binding protein 

 

 

Under-expressed 

(5 µM and 50 

µM TBT) 

 

 

>0.05 
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PA4265 

Elongation factor TU 
Under-expressed 

(500 µM TBT) 
IPR004161 

Translation elongation 

factor EFTu/EF1A, domain 

2 

Under-expressed 

(5 µM and 50 

µM TBT) 

>0.05 
PA4277 

PA4611 Hypothetical protein 

Under-expressed 

(50 µM and 500 

µM TBT) 

IPR007420 
Protein of unknown 

function DUF465 

Under-expressed 

(5 µM TBT) 
1.69502E-02 

PA4944 
Conserved hypothetical 

protein 

Under-expressed 

(500 µM TBT) 
IPR010920 

Like-Sm ribonucleoprotein 

(LSM)-related domain 

Under-expressed 

(5 µM and 50 

µM TBT) 

>0.05 

PA4386 GroES protein 
Under-expressed 

(500 µM TBT) 
IPR011032 GroES-like 

Over-expressed 

(5 µM and 50 

µM TBT) 

1.71186E-03 

PA1557 
Probable cytochrome oxidase 

subunit (cbb3-type) 

Under-expressed 

(500 µM TBT) 
IPR000883 

Cytochrome c oxidase, 

subunit I 

Under-expressed 

(5 µM TBT) 
>0.05 

PA2853 
Outer membrane lipoprotein 

OprI precursor 

Under-expressed 

(500 µM TBT) 
IPR004658 

Outer membrane 

lipoprotein Slp 

Under-expressed 

(5 µM and 50 

µM TBT) 

>0.05 

PA0073 

 

Probable ATP-binding 

component of ABC transporter 

 

Under-expressed 

(500 µM TBT) 

 

IPR003439 

 

ABC transporter-like 

 

Under-expressed 

(5 µM and 50 

µM TBT) 

 

>0.05 
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PA4795 Putative protein 
Under-expressed 

(500 µM TBT) 
IPR003787 

Sulphur relay, DsrE/F-like 

protein 

Under-expressed 

(5 µM and 50 

µM TBT) 

>0.05 

PA4272 50S ribosomal protein L10 
Under-expressed 

(500 µM TBT) 
IPR001790 

Ribosomal protein 

L10/acidic P0 

Under-expressed 

(5 µM and 50 

µM TBT) 

1.70626E-06 

PA0456 Probable cold-shock protein 
Under-expressed 

(500 µM TBT) 
IPR002059 

Cold-shock protein, DNA-

binding 

Under-expressed 

(5 µM and 50 

µM TBT) 

1.31077E-07 

PA4264 30S ribosomal protein S10 
Under-expressed 

(500 µM TBT) 
IPR001848 Ribosomal protein S10 

Under-expressed 

(50 µM TBT) 
1.69024E-09 

PA3202 Protein yciI 
Under-expressed 

(500 µM TBT) 
IPR011008 Dimeric alpha-beta barrel 

Under-expressed 

(5 µM TBT) 
>0.05 

PA3742 50S ribosomal protein L19 
Under-expressed 

(500 µM TBT) 
IPR008991 

Translation protein SH3-

like 

Under-expressed 

(5 µM and 50 

µM TBT) 

>0.05 

PA5288 
Nitrogen regulatory protein P-

II 2 

Under-expressed 

(500 µM TBT) 
IPR011322 

Nitrogen regulatory PII-

like, alpha/beta 

Under-expressed 

(50 µM TBT) 
1.19775E-02 

PA3309 

Universal stress protein UspA 

and related nucleotide-binding 

proteins 

Under-expressed 

(500 µM TBT) 
IPR006016 UspA 

Under-expressed 

(5 µM and 50 

µM TBT) 

1.10400E-10 
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PA3397 Ferredoxin-NADP+ reductase 
Under-expressed 

(500 µM TBT) 
IPR001433 

Oxidoreductase 

FAD/NAD(P)-binding 

Under-expressed 

(5 µM and 50 

µM TBT) 

>0.05 

PA4176 
Peptidyl-prolyl cis-trans 

isomerase C2 

Under-expressed 

(500 µM TBT) 
IPR000297 

Peptidyl-prolyl cis-trans 

isomerase, PpiC-type 

Over-expressed 

(5 µM and 50 

µM TBT) 

1.71815E-12 

PA4257 30S ribosomal protein S3 
Under-expressed 

(500 µM TBT) 
IPR004088 K Homology, type 1 

Under-expressed 

(5 µM and 50 

µM TBT) 

5.05344E-25 

PA0357 
Formamidopyrimidine-DNA 

glycosylase 

Under-expressed 

(500 µM TBT) 
IPR000214 

Zinc finger, DNA 

glycosylase/AP lyase-type 

Under-expressed 

(50 µM TBT) 
>0.05 

PA4322 MoxR-like ATPases 
Under-expressed 

(500 µM TBT) 
IPR011703 ATPase, AAA-3 

Under-expressed 

(5 µM and 50 

µM TBT) 

>0.05 

PA4255 50S ribosomal protein L29 
Under-expressed 

(500 µM TBT) 
IPR001854 Ribosomal protein L29 

Under-expressed 

(5 µM and 50 

µM TBT) 

>0.05 

PA0779 

 

Probable ATP-dependent 

protease 

 

Under-expressed 

(500 µM TBT) 

 

IPR008269 

 

Peptidase S16, Lon C-

terminal 

 

Under-expressed 

(5 µM and 50 

µM TBT) 

 

>0.05 
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PA0715 Reverse transcriptase 
Under-expressed 

(500 µM TBT) 
IPR000123 

RNA-directed DNA 

polymerase (reverse 

transcriptase), msDNA 

Under-expressed 

(5 µM and 50 

µM TBT) 

1.09310E-03 

PA2227 
Probable transcriptional 

regulator 

Under-expressed 

(500 µM TBT) 
IPR009057 Homeodomain-like 

Under-expressed 

(5 µM and 50 

µM TBT) 

1.70532E-02 

PA3150 
LPS biosynthesis protein 

WbpG 

Under-expressed 

(500 µM TBT) 
IPR014729 

Rossmann-like 

alpha/beta/alpha sandwich 

fold 

Under-expressed 

(5 µM and 50 

µM TBT) 

1.10400E-10 

PA2228 
6-aminohexanoate-dimer 

hydrolase 

Under-expressed 

(500 µM TBT) 
IPR012338 

Beta-

lactamase/transpeptidase-

like 

Under-expressed 

(5 µM and 50 

µM TBT) 

>0.05 
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The comparison analysis revealed that, in a total of 81 genes, 39 of the genes present 

in the microarrays study did not have a correspondence with genes that were found up in the 

transcriptome of A. molluscorum Av27 (data not shown), where 33 of these unmatched genes 

correspond to hypothetical proteins. Among the remaining 42 genes, only those encoding 

peptityl-prolyl cis-trans isomerase C2, GroES protein and GroEL protein showed a 

differential expression level in both studies: these genes were under-expressed in P. 

aeruginosa 25W and over-expressed in the Av27 strain.  

The analysis of the microarrays results in P. aeruginosa 25W show the down-

regulation of several transcription-related genes, suggesting that high TBT concentrations 

generate stresses that result in an inhibition of transcription of these genes (Dubey, Tokashiki 

et al. 2006). As shown, A. molluscorum Av27 also presents several transcription-related 

genes that are under-expressed upon exposure to TBT. Thus, as is the case in P. aeruginosa 

25W, TBT also seems to affect the transcription of some genes in A. molluscorum Av27. 

 

12.2.3 Aeromonas hydrophila ATCC7966 and A. molluscorum Av27; 

do they share the same mechanism of resistance to TBT? 

 

Hernould et al (2008) described the presence of the AheABC efflux pump in 

Aeromonas hydrophila that is associated with the intrinsic resistance of A. hydrophila 

ATCC7966T to several compounds. This tripartite efflux pump belongs to the resistance-

nodulation-cell division (RND) family. The substrate specificity of the efflux pump was 

assessed, and TBT was one of the compounds to be analysed. 

In Hernould’s study, it was shown that AheABC is encoded by aheA, aheB and aheC 

genes, which present the same orientation and are organized in an operon-like structure. 

Besides, the authors demonstrated that AheABC has the ability to export TBT from the cell. 

It is noteworthy to mention that AheABC is able to export TBT, but with much lower 

efficiency than the homologous AcrB system in E. coli. In fact, Hernould also suggests the 

presence of other efflux pumps involved in the intrinsic drug resistance in A. hydrophila 

ATCC7966T (Hernould, Gagné et al. 2008).  

Considering the role of AheABC in A. hydrophila ATCC7966T, it is pertinent to think 

that the AheABC efflux pump may be involved in the TBT resistance in 

A. molluscorum Av27. Acriflavin resistance protein (IPR001036), which is homologue to 
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AheABC, is found in A. molluscorum Av27. However, more than one contig presented 

homology with this protein, and the different contigs showed different expression levels. In 

fact, some contigs were found under-expressed when Av27 strain was exposed to both TBT 

concentrations, while others were found to be over-expressed following exposure to 50 µM 

of TBT. Hence, the acriflavin resistance protein may be involved in TBT resistance in Av27 

strain. However, and as suggested by various authors, several mechanisms of TBT resistance 

seem to be presented in different bacterial species, thus it can be assumed that in 

A. molluscorum Av27 other genes should also contribute to TBT resistance. 

 

12.3 Other proteins potentially involved in TBT resistance/degradation 

in Aeromonas molluscorum Av27 

 

12.3.1 Resistance mechanisms: relationship between TBT and stress 

conditions 

 

Heat-shock proteins (Hsp), also known as molecular chaperones, have the role of 

maintaining proper protein folding within the cell and to re-fold denaturated proteins. Hsps 

are also involved in the prevention of protein aggregation, degradation and trafficking and 

in the maintenance of signalling proteins in their correct conformation. Although these 

proteins were first related to high temperatures exposition, heat-shock proteins are in fact 

induced by a variety of cellular stresses (EMBL-EBI 2013). 

Some heat-shock proteins were identified in the transcriptome of 

A. molluscorum Av27, namely Hsp70 (IPR001023), Hsp90 (IPR001404) and Hsp20 

(IPR002068). The presence of these proteins may explain the fact that this bacterium is able 

to grow in a wide range of temperatures (4 to 37ºC) (Cruz 2012). Furthermore, in the present 

study, these hsps were over-expressed when A. molluscorum Av27 was exposed to 50 µM 

TBT. Since hsps are involved in stress response and TBT is a stress agent, these results 

suggest that hsps may also play a role in TBT resistance in Av27 strain. In fact, as with other 

types of stress, hsps probably act by re-folding denaturated proteins and preventing protein 

aggregation (EMBL-EBI 2013), thus correcting the damage caused by TBT. 

The analysis of the transcriptome of A. molluscorum Av27 revealed the presence of 

other hsps that were found to be over-expressed when cells are exposed to TBT as, for 
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instance, heat-shock protein HslU (IPR004491) and heat-shock protein DnaJ (IPR001623). 

HslU eliminates misfolded or damaged proteins and controls the levels of some regulatory 

proteins. DnaJ stimulates Hsp70 (EMBL-EBI 2013). HslU was over-expressed when A. 

molluscorum Av27 was exposed to 50 µM TBT, and DnaJ was over-expressed upon 

exposure to both TBT concentrations (5 µM and 50 µM). These results also suggest that 

heat-shock proteins may play a role in A. molluscorum Av27’s resistance to TBT.  

 

12.3.2 Resistance mechanisms: interplay between TBT and heavy 

metals 

 

Aeromonas molluscorum Av27 is known to be resistant to some heavy metals, 

namely mercury, copper, zinc and cadmium (Cruz, Caetano et al. 2007). In fact, the analysis 

of the bacterium’s transcriptome revealed the presence of a heavy metal-associated domain, 

HMA (IPR006121). This domain is found in heavy metal transport and detoxification 

proteins. Some of these proteins are actually involved in bacterial resistance to toxic heavy 

metals, such as lead and cadmium (EMBL-EBI 2013).  

Other proteins involved in heavy metals resistance are CutA1 (IPR004323), which is 

thought to be involved in cellular tolerance to copper; ABC transporters (IPR001140), which 

present the ability to export ions from the cell; CorA and ZntB transporters (IPR002523), 

which mediate the transport of magnesium and zinc, respectively; and cation efflux proteins 

(IPR002524), which increase tolerance to divalent metal ions (EMBL-EBI 2013). These 

proteins can be found in the transcriptome of Aeromonas molluscorum Av27, thus 

confirming its involvement in heavy metal resistance, as described by Cruz et al. (2007).  

The expression levels of HMA, CutA1 and cation efflux proteins were not affected 

by the presence of TBT. However, the ABC transporters and the CorA and ZntB proteins 

presented higher expression levels when the bacterium was exposed to TBT (5 µM or 50 µM 

TBT). Hence, it can be suggested that the TBT resistance on Av27 strain is probably 

associated with metal resistance, as previously suggested  (Suzuki, Fukagawa et al. 1992).   
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12.3.3 Resistance mechanisms: relationship between TBT and 

antibiotics 

 

As mentioned in section 4, A. molluscorum Av27 is resistant to some antibiotics, 

such as penicillin, amoxicillin/clavulanic acid and cephalothin (Cruz 2012). These results 

are confirmed by the presence of a multiple antibiotic resistance protein, MarC (IPR002771) 

in the transcriptome of A. molluscorum Av27. The MarC is an integral to membrane protein 

and it is thought to be a transporter, conferring resistance to antibiotics (EMBL-EBI 2013). 

This protein is involved in antibiotic resistance mechanism in Av27 strain, but its expression 

does not seem to be affected by TBT.  

Jude et al. (2004) and Hernould et al. (2008) associated TBT and antibiotic resistance, 

since some efflux pumps involved in TBT resistance are also able to extrude antibiotics. The 

analysis of the transcriptome of A. molluscorum Av27 revealed the presence of an outer 

membrane efflux protein (IPR003423) that exports several substrates in Gram negative 

bacteria (EMBL-EBI 2013). This efflux protein was over-expressed when the cells were 

exposed to TBT, suggesting that TBT is probably one of the substrates exported by this 

protein. Likewise, the acriflavin resistance protein (IPR001036) also found in the Av27’s 

transcriptome has higher expression levels when exposed to 50 µM TBT. This protein is part 

of a multi-drug efflux system that possibly protects the cells against hydrophobic inhibitors 

(such as TBT) and it also exports some antibiotics (EMBL-EBI 2013). These results confirm 

that efflux pumps can be simultaneously involved in TBT and in antibiotic resistance.  

 

12.3.4 TBT degradation – proposed mechanism  

 

A. molluscorum Av27 has the ability to degrade TBT into less toxic compounds, 

namely DBT and MBT (Cruz, Caetano et al. 2007). It is possible that this degradation 

involves dealkylation and demethylation, similar to what it is observed in other TBT-

degrading organisms (Barug 1981). 

The TBT degradation process might involve the enzymatic cleavage of the Sn-C 

bond. However, no enzyme catalyzing this cleavage reaction has been described so far. 

Nevertheless, it has already been shown that butane is a product of DBT degradation, which 

suggests that the process occurs by dealkylation rather than by demethylation (Inoue, 
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Takimura et al. 2003). No genes related to these processes were found in the transcriptome 

of Av27 strain. 

Based on what is described in the literature, Cruz (2007) proposed that TBT is 

degraded into DBT and MBT in siderophore-like structures. In fact, it has been shown that 

triphenyltin can be degraded by pyoverdine, a peptide siderophore that presents the ability 

to chelate and transport iron (Meyer 2000; Inoue, Takimura et al. 2003). When the 

transcriptome of Av27 strain was screened for the presence of proteins similar to pyoverdine, 

no results were retrieved. However, there are many proteins of unknown function in the 

transcriptome of A. molluscorum Av27 that are significantly over-expressed following 

exposure to TBT (IPR007497, IPR009809, IPR016596, IPR002549, IPR005358, among 

others). One of these non-annotated proteins may be involved in TBT degradation.  

 Following degradation, DBT and MBT may be extruded from the cell and released 

to the culture media (Cruz, Caetano et al. 2007). It is possible that this process is mediated 

by some efflux pumps and transporter proteins. SugE, an inner membrane protein, is of 

particular interest, since it is known to be involved in the TBT resistance mechanism (Cruz, 

Micaelo et al. 2013). Thus, this protein may be responsible for the transport of DBT and 

MBT (lipophilic compounds) to the periplasmic space. Then, the outer membrane efflux 

protein TolC may be involved in the efflux of these degradation compounds from the cell. 

This protein was shown to be over-expressed in Av27 strain following exposure to TBT 

(Table 16), suggesting a possible role in the TBT resistance/degradation mechanism. 

In conclusion, the TBT degradation mechanism probably involves the capture of this 

compound into siderophore-like structures, where the break of the Sn-C takes place. This 

degradation process leads to the formation of two types of products: 

 DBT and MBT, which are extruded from the cell (Cruz, Caetano et al. 2007); 

 butane, which is probably degraded and used as carbon source (Cruz, Caetano 

et al. 2007).  
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12.4 Genes with potential to be used in relevant applications 

 

12.4.1 Development of bioreporters 

 

The analysis of the transcriptome of A. molluscorum Av27 allowed the identification 

of some genes with significantly high expression levels when the cells were exposed to TBT 

and when compared with cells not exposed. Thus, these genes or their respective promoters 

have potential to be used as sensor elements for the construction of bioreporters to detect 

TBT in the environment (Table 18).  
 

Table 18 – Proteins encoded by genes potentially useful for the construction of bioreporters. 

InterPro 

ID 
Description 

Ratio 

(5 µM TBT) 

Ratio 

(50 µM TBT) 

Gene 

Ontology 

IPR005123 
Oxoglutarate/iron-dependent 

oxygenase 
2 46 

Oxidation-

reduction 

IPR007329 FMN-binding 2 15 FMN binding 

IPR005480 
Carbamoyl-phosphate synthetase, 

large subunit, oligomerisation 
3 8 

Catalytic 

activity 

IPR004565 Outer membrane lipoprotein LolB 0 9 
Protein 

transport 

IPR012394 
Aldehyde dehydrogenase 

NAD(P)-dependent 
0 8 

Oxidation-

reduction 

IPR007267 GtrA-like protein 0 12 

Polysaccharide 

biosynthetic 

process; 

transport 

IPR006660 Arsenate reductase-like 0 10 

Transport; 

response to 

stress 

IPR013116 
Acetohydroxy acid 

isomeroreductase, catalytic 
1 9 

Oxidation-

reduction 

IPR019545 DM13 domain 0 18 
Oxidation-

reduction 
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Among the selected genes, the one that encodes for oxoglutarate/iron-dependent 

oxygenase (IPR005123) is the most promising, since it has a higher expression ratio 

following exposure to 50 µM TBT. All the listed genes are presumed to deliver better results 

for higher TBT concentration, since their expression ratios are always higher for higher TBT 

concentrations. However, following the construction of the bioreporter, further studies are 

necessary to assess its sensitivity and specificity.  
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13. Conclusion 

 

The transcriptome of A. molluscorum Av27 was sequenced, allowing the 

identification of some genes that seem to be involved in TBT resistance and degradation. 

Likewise, it allowed for the identification of genes that can be used as bioreporters of TBT 

exposure (Figure 15). 

 

Figure 15 – Overview of the major conclusions of this study. 

 

In this study, some efflux pumps, transporters and other proteins involved in 

resistance to antibiotics and heavy metals were shown to be over-expressed in the presence 

of TBT. The relation between these resistance mechanisms was previously suggested by 

other authors (Suzuki, Fukagawa et al. 1992; Fukagawa, Konno et al. 1994; Jude, Arpin et 

al. 2004; Hernould, Gagné et al. 2008) and was also confirmed in the present study. A 

relation between heat-shock proteins and TBT resistance was also suggested based on the 

analysis of the transcriptome of A. molluscorum Av27.  

Overall, these results suggest that, in A. molluscorum Av27, the TBT 

resistance/degradation is complex and results from the interplay of several proteins, mainly 

efflux pumps and other transporters. 

Many proteins with unknown function that are significantly over-expressed 

following exposure to TBT (IPR007497, IPR009809, IPR016596, IPR002549, IPR005358, 

Transcriptome of 

A. molluscorum Av27

Resistance mechanism 

Efflux pumps
Transporters
Relation with heavy-metal and antibiotic 
resistance

Degradation mechanism

Dealkylation
DBT and MBT extruded from the cell
Butane metabolized and used as carbon 
source

Bioreporters 9 potential genes identified 

(table 18)
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among others) were identified. Nonetheless, it was not possible to undoubtedly associate any 

of those proteins to any specific function.  

Despite the progress and contribution of this study, it was not possible to unveil the 

mechanism behind TBT resistance/degradation. Nevertheless, taking into account the 

information gathered from this and from other studies, a mechanism for TBT 

resistance/degradation in A. molluscorum Av27 can be proposed based on the mechanism 

advanced by Cruz, Caetano et al. (2007): TBT is probably captured into siderophore-like 

structures, where it is degraded through dealkylation into DBT and MBT. These less toxic 

compounds are then extruded from the cell, probably through efflux pumps as, for instance, 

SugE and TolC. Another product resulting from TBT degradation is butane, which is 

probably metabolized in the cell and used as carbon source (Figure 16).  

 

Figure 16 - Proposed mechanism for TBT degradation in A. molluscorum Av27.  

 

Additionally, some genes that can be used to develop bioreporters for TBT were also 

identified.  

Since the genome of Aeromonas molluscorum Av27 is not available yet, the 

transcriptomic data herein provided are a valuable resource for comparative genome 
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analysis. Furthermore, this study surely augmented the knowledge of the functional genomic 

basis of the TBT resistance and degradation mechanism.

 

14. Future perspectives 

 

The analysis of the transcriptome of A. molluscorum Av27 revealed some proteins 

with unknown function which were differentially expressed in the presence of TBT. The 

annotation of these proteins is of great importance, since it could provide relevant 

information that can shed more light on the mechanism under investigation. In fact, some of 

these proteins may be involved in the breakdown of the Sn-C bond, thus degrading TBT into 

DBT and MBT. 

The genes with potential to be used as bioreporters must be further studied, in order 

to confirm their usefulness as sensor elements. 

Although this study has contributed to the comprehension of the mechanism of 

resistance/ degradation of TBT, more studies are required to fully clarify these somehow 

complex mechanisms.  
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Expression levels 

 

 Table A 1 - Some relevant over-expressed and under-expressed genes in Aeromonas molluscorum Av27 following TBT exposure. 

Green: over-expressed genes (expression ratio ≥2); red: under-expressed genes (expression ratio <0.5). 

 

Interpro Interpro Description e-value p-value 
Ratio 

(5 µM TBT) 

Ratio 

(50 µM TBT) 
Gene Ontology 

IPR000119 
Histone-like bacterial DNA-

binding protein 
2.01E-37 >0.05 1 7 DNA binding 

IPR000123 

RNA-directed DNA 

polymerase (reverse 

transcriptase), msDNA 

1.08E-07 1.09310E-03 0.448 0.345 
RNA-directed DNA 

polymerase activity 

IPR000214 
Zinc finger, DNA 

glycosylase/AP lyase-type 
1.69E-38 >0.05 0.800 0.200 DNA repair 

IPR000297 
Peptidyl-prolyl cis-trans 

isomerase, PpiC-type 
0.000 1.71815E-12 8 25 Isomerase activity 

IPR000298 
Cytochrome c oxidase, subunit 

III 
5.08E-33 >0.05 0.182 0.909 

Heme-copper terminal 

oxidase activity 

IPR000390 
Small multidrug resistance 

protein family 
1.08E-14 3.12892E-03 0.129 0.032 Stress response 

IPR000473 Ribosomal protein L36 1.10E-09 >0.05 0.435 0.522 Translation 



 

 

 

 

IPR000835 
Transcription regulator HTH, 

MarR 
1.57E-04 6.49251E-11 0 7.500 

Sequence-specific 

DNA binding 

transcription factor 

activity 

IPR000866 

Alkyl hydroperoxide reductase 

subunit C/ Thiol specific 

antioxidant 

0.000 >0.05 0.500 0.500 Oxidation-reduction 

IPR000883 
Cytochrome c oxidase, subunit 

I 
0.000 >0.05 0.250 1 

Cytochrome-c oxidase 

activity 

IPR001023 Heat shock protein Hsp70 0.000 1.54143E-43 0.810 2.857 Stress response 

IPR001036 Acriflavin resistance protein 0.000 1.37998E-07 0 3.125 Transporter activity 

IPR001140 
ABC transporter, 

transmembrane domain 
0.000 >0.05 2 1 Transporter activity 

IPR001327 

Pyridine nucleotide-disulphide 

oxidoreductase, NAD-binding 

domain 

8.20E-18 0.00000E+00 4 124 Oxidation-reduction 

IPR001404 Heat shock protein Hsp90 0.000 4.16532E-05 1.333 6.667 Stress response 

IPR001433 
Oxidoreductase 

FAD/NAD(P)-binding 
3.81E-15 >0.05 0 0 Oxidation-reduction 

IPR001460 
Penicillin-binding protein, 

transpeptidase 
0.000 >0.05 2.750 0.750 Penicillin binding 



 

 

 

IPR001623 
Heat shock protein DnaJ, N-

terminal 
0.000 6.46528E-04 5 13 Stress response 

IPR001790 
Ribosomal protein L10/acidic 

P0 
0.000 1.70626E-06 0.441 0.487 Translation 

IPR001844 Chaperonin Cpn60 0.000 1.83579E-22 0.806 4.032 Protein folding 

IPR001848 Ribosomal protein S10 0.000 1.69024E-09 0.626 0.242 Translation 

IPR001854 Ribosomal protein L29 1.697E-18 >0.05 0.396 0.415 Translation 

IPR002059 
Cold-shock protein, DNA-

binding 
5.57E-23 1.31077E-07 0.140 0.262 Stress response 

IPR002068 Heat shock protein Hsp20 3.22E-41 1.28001E-18 0.281 2.875 Stress response 

IPR002150 Ribosomal protein L31 2.51E-23 >0.05 0.200 0.267 Translation 

IPR002429 
Cytochrome c oxidase subunit 

II C-terminal 
0.000 5.88185E-09 0.333 0 

Cytochrome-c oxidase 

activity 

IPR002482 
Peptidoglycan-binding Lysin 

subgroup 
0.000 1.53444E-14 2 36 

Cell wall 

macromolecule 

catabolic process 

IPR002523 

Mg2+ transporter protein, 

CorA-like/Zinc transport 

protein ZntB 

3.81E-26 >0.05 10 3 

Metal ion 

transmembrane 

transporter activity 

IPR002524 Cation efflux protein 2.89E-34 >0.05 0.167 1.333 
Cation transmembrane 

transporter activity 



 

 

 

 

IPR002549 
Uncharacterised protein family 

UPF0118 
1.454E-27 9.31319E-04 0 8 Unknown 

IPR002586 
Cobyrinic acid a,c-diamide 

synthase 
6.75E-05 2.82816E-15 0.144 0.225 Catalytic activity 

IPR002771 
Multiple antibiotic resistance 

(MarC)-related 
0.000 >0.05 3.500 0 Stress resistance 

IPR003033 SCP2 sterol-binding domain 8.99E-22 >0.05 0.250 1 Sterol binding 

IPR003423 
Outer membrane efflux protein 

TolC 
0.000 1.20770E-20 3.080 6.200 Transporter activity 

IPR003439 ABC transporter-like 0.000 >0.05 0.182 0.273 Transporter activity 

IPR003787 
Sulphur relay, DsrE/F-like 

protein 
7.89E-19 >0.05 0 0 Oxidation-reduction 

IPR004088 K Homology, type 1 0.000 5.05344E-25 0.273 0.136 RNA binding 

IPR004161 
Translation elongation factor 

EFTu/EF1A, domain 2 
0.000 >0.05 0.429 0.143 Translation 

IPR004323 
Divalent ion tolerance protein, 

CutA1 
3.00E-18 1.19775E-02 8.500 0 Stress response 

IPR004360 
Glyoxalase/bleomycin 

resistance protein/dioxygenase 
0.000 0.00000E+00 0.095 2.476 Catalytic activity 

IPR004491 Heat shock protein HslU 0.000 >0.05 5 2 Stress response 



 

 

 

IPR004565 
Outer membrane lipoprotein 

LolB 
1.24E-23 3.51631E-04 0 9 Protein transport 

IPR004658 
Outer membrane lipoprotein 

Slp 
1.05E-10 >0.05 0 0 Stress response 

IPR004670 Na+/H+ antiporter NhaA 0.000 1.20260E-12 0.187 0 Sodium ion transport 

IPR005123 
Oxoglutarate/iron-dependent 

oxygenase 
3.97E-12 5.58005E-19 2 46 Oxidation-reduction 

IPR005358 
Uncharacterised protein family 

UPF0153 
0.000 3.65728E-39 0 85 Unknown 

IPR005480 

Carbamoyl-phosphate 

synthetase, large subunit, 

oligomerisation 

0.000 1.13391E-02 3 8 Catalytic activity 

IPR006016 UspA 0.000 1.10400E-10 0.422 0.339 Stress response 

IPR006121 
Heavy metal-associated 

domain, HMA 
1.33E-31 3.84074E-03 0.250 1.375 Metal ion transport 

IPR006660 Arsenate reductase-like 1.25E-20 1.31484E-04 0 10 Stress response 

IPR007210 

ABC-type glycine betaine 

transport system, substrate-

binding domain 

0.000 0.00000E+00 0.115 0.043 Transporter activity 

IPR007267 GtrA-like protein 0.000 1.79538E-05 0 12 
Polysaccharide 

biosynthetic process 



 

 

 

 

IPR007329 FMN-binding 5.32E-36 1.30536E-05 2 15 FMN binding 

IPR007420 
Protein of unknown function 

DUF465 
3.09E-07 1.69502E-02 0.420 0.957 Unknown 

IPR007497 
Protein of unknown function 

DUF541 
3.732E-39 8.09826E-03 4.500 7.500 Unknown 

IPR007863 Peptidase M16, C-terminal 1.13E-05 1.85082E-14 0 34 Catalytic activity 

IPR008269 Peptidase S16, Lon C-terminal 0.000 >0.05 0.022 0.200 Catalytic activity 

IPR008991 Translation protein SH3-like 0.000 >0.05 0.324 0.441 Translation 

IPR009056 Cytochrome c domain 3.49E-12 6.56960E-06 0 13 
Electron carrier 

activity 

IPR009057 Homeodomain-like 4.63E-24 1.70532E-02 0.460 0.360 DNA binding 

IPR009081 Acyl carrier protein-like 2.19E-08 >0.05 0 0.167 
Synthesis of fatty 

acids 

IPR009809 
Protein of unknown function 

DUF1379 
1.78E-13 1.01796E-05 0 14 Unknown 

IPR010879 
Domain of unknown function 

DUF1508 
1.12E-30 >0.05 2.231 2.538 Unknown 

IPR010920 
Like-Sm ribonucleoprotein 

(LSM)-related domain 
0.000 >0.05 0.267 0.133 

Modulators of RNA 

biogenesis 

IPR011008 Dimeric alpha-beta barrel 9.16E-04 >0.05 0 2.500 Catalytic activity 

IPR011032 GroES-like 7.71E-41 1.71186E-03 12.333 36 Protein folding 



 

 

 

IPR011322 
Nitrogen regulatory PII-like, 

alpha/beta 
3.00E-18 1.19775E-02 8.500 0 Stress response 

IPR011703 

 

ATPase, AAA-3 

 

2.75E-10 

 

>0.05 

 

0.250 

 

0 

 
Catalytic activity 

IPR012338 
Beta-lactamase/transpeptidase-

like 
1.27E-25 >0.05 0 0 Stress response 

IPR012394 
Aldehyde dehydrogenase 

NAD(P)-dependent 
4.82E-29 9.31319E-04 0 8 Oxidation-reduction 

IPR013116 
Acetohydroxy acid 

isomeroreductase, catalytic 
1.40E-42 1.17829E-03 1 9 

Ketol-acid 

reductoisomerase 

activity 

IPR014729 
Rossmann-like 

alpha/beta/alpha sandwich fold 
0.000 1.10400E-10 0.422 0.339 Catalytic activity 

IPR016596 
Uncharacterised conserved 

protein UCP012335 
1.23E-16 7.55141E-03 1 4 Unknown 

IPR019545 DM13 domain 4.84E-28 4.01264E-08 0 18 Oxidation-reduction 
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