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Resumo 

 
 

Ao longo do tempo têm surgido alguns estudos que sugerem que o silício terá 

importância biológica, e que, sendo assim, se deveria ter em conta a 

quantidade que é ingerida e absorvida, a nível dietético. A única forma de 

silicato passível de ser absorvida no intestino é a forma monomérica, 

designada ácido ortosilícico, o qual existe apenas em certos fluídos, tais como, 

água mineral e cerveja. Assim, e apesar de ainda não existir um valor 

estabelecido para o consumo diário de silício, é de esperar que muitas pessoas 

estejam em défice, o que abriu o mercado para os suplementos dietéticos de 

silicato. Porém, muitos dos suplementos disponíveis têm certas lacunas, tais 

como, biodisponibilidade diminuta, ou concentrações de silício reduzidas. 

O objectivo deste trabalho focou-se no desenvolvimento de um novo 

suplemento dietético de silício, através da síntese de nanopartículas, que 

apresentasse elevada biodisponibilidade, e que, de preferência, pudesse ser 

produzido no formato de cápsulas. 

As nanopartículas foram sintetizadas a partir de uma solução de silicato, 

através de uma mudança rápida de pH, e tentou-se prevenir a polimerização 

através de ligandos de superfície. As suspensões foram caracterizadas através 

de DLS, Zeta, ICP-OES, e ATR-FTIR. A biodisponibilidade foi testada 

através de dois ensaios de dissolução distintos. 

Os estabilizadores que apresentaram resultados mais promissores foram a 

sacarose e o PEG, e  observou-se que a adição, na suspensão com sacarose, de  

etanol, aumentava ainda mais a estabilidade. Quando comparados, no que toca 

a biodisponibilidade, com Biosil, quase todos os materiais sintetizados 

apresentaram melhores resultados. 

No geral, e tendo em conta todos os resultados, o PEG foi o composto que 

teve melhor performance como estabilizador, no entanto, ainda ficou aquém 

do período ideal de estabilidade para um suplemento. 
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Abstract 

 

 

Over the years there have been some studies that suggest that silicon might 

have a biological role, and, therefore, that it should be taken into account how 

much of it is ingested, and absorbed, in our diet. The only form of silicate that 

is absorbed, in the intestinal lumen, is the orthosilicic acid, which only exists 

in certain fluids, like mineral water, and beer. Thus, and although there is still 

not an established value for a  daily silicon intake, a lot of people do not get 

that much silicon from their diets, which opened the market space for silicate 

supplements. Some of those, however, have issues like low bioavailability, or 

low silicon concentration in the supplement itself. 

The aim of this work was to develop a new silicon supplement, in the 

nanoparticulate range, with high bioavailability, that would, ideally, be 

manufactured in a liquid-filled capsule. 

The silicate nanoparticles were synthesised from a soluble silicate suspension, 

through a pH driven process, and size was stabilised through the use of 

surface ligands. The suspensions were characterized using DLS, Zeta, ICP-

OES, and ATR-FTIR. Bioavailability was assessed through two distinct 

dissolution assays. 

The stabilizers that delivered the most promising results were sucrose and 

PEG, and further addition of ethanol, to the sucrose stabilised suspension, 

improved the stability even further. When compared, in terms of 

bioavailability to Biosil, most of the synthesised materials performed better. 

Overall, and taking into account all the results, PEG was  the compound that 

best performed as stabilizer, however, it is still far from the ideal stability time 

for the manufacturing of a supplement. 
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Introduction 

 

Silicon is the second most abundant element in the earth’s crust [1], and yet there is 

much about this mineral that remains to be learned, including its biological role. Despite 

being one the most abundant elements, for many years it was considered that silicon was 

nonessential in most living organisms [2]. However, Holzapfel [2] showed that silicon is 

present in trace amounts in most animals and thus, it might have some definite function. 

Over time studies have been carried out, focused on trying to understand the role of silicon 

in organisms [3-5], and the results suggest a beneficial, if not essential, role for the 

occurrence of healthy tissue, especially concerning skin, hair, nails and, specially, bone. 

Recently, several results positively correlated silicon intake with bone mineral density [4, 

6, 7]. Thus, regular silicon supplementation could be beneficial in improving general 

health, but also in preventing certain conditions, such as osteoporosis.  

 Dietary supplement use is common among adults, according to the National Health 

and Nutrition Examination Surveys (NHANES) [8]. Although a “food first” approach is 

encouraged in most cases, in order to achieve nutrient adequacy, it is also recognized that 

most people have dietary intakes, that fall short in some respects, silicon being one of 

them. Thus, dietary supplements can make a contribution toward achieving nutritional 

goals [9, 10]. 

The study of molecular interactions between (bio)macromolecules and silica 

species is complicated due to several processes occurring in parallel, these being, 

condensation of silicic acid, catalysis of silanol condensation with polymer units, as well as 

association of silicic acid and its oligomers with polymer chains [11]. Despite the 

difficulties, there are already a few silicon supplements available in the market. However, 

most show very low bioavailability, and those that are highly bioavailable, have very low 

silicon concentrations [4]. 

 

1.1. Silicon 

 

Silicon (Si) is a metalloid with an atomic weigh of 28 [1]. The word silica is used to 

refer to naturally occurring materials, composed mainly of silicon dioxide (SiO2). Silicon 

dioxide is the main component of the earth’s crust, and when combined with magnesium, 
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aluminium, calcium and iron oxides, it forms the mineral silicates which are present in the 

soil and rocks [12]. The building block of this component and of the structures of silicates 

is SiO4, which is a tetrahedral molecule, comprised of four oxygen atoms with a silicon ion 

at the centre (Figure 1). All forms of silica have the silicon-oxygen bond, which is the most 

stable of all Si-X bonds. [13]. The silicates are formed in a way similar to the polyborates 

and polyphosphate, through the sharing of oxygen atoms. Two different groups of SiO4 can 

only share one oxygen atom between them, but any or all four oxygen atoms, in a SiO4 

group, may be shared with adjacent groups [13]. 

 

 

Figure 1 – Molecular representation of the SiO4 tetrahedron [14].   

 

1.1.1. Silicon Biochemistry 

 

Silica (SiO2) occurs in nature in several different forms: crystalline (quartz, 

cristibalite and tridymite) and amorphous [1]. When exposed to water, silicates release 

monomers, the soluble form of silica, designated orthosilicic acid or monosilicic acid, 

which is a weak acid and exists only in very dilute solutions [15]. This form of silica is 

essentially non-ionic in slightly acidic or neutral solutions, and it is not transported by 

electric current unless ionized in alkaline solution [2]. Also, it is not salted out of water nor 

can it be extracted by neutral organic solvents. Silica remains in the monomeric state for 

long periods of time at concentrations ranging from 2.5 to 5.0 mM, depending on the 

medium, under pH 10. However, at higher concentrations, it polymerizes quickly, initially 

forming polysilicic acids of low molecular weight, then larger polymeric species 
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recognizable as colloidal particles, and, finally, these particles link together into branched 

chains [2].  

The polymerization of silica involves an ionic mechanism in which, when above 

pH 2, the rate of polymerization is proportional to the concentration of OH
-
 ions, and under 

pH 2, to the concentration of H
+
 ions [2]. In the initial phase of polymerization, 

condensation quickly leads to the formation of ring structures, such as, cyclic tetramers, 

followed by the addition of monomers to these structures. Subsequent binding of the 

different cyclic structures results in bigger tridimensional molecules, which condense 

internally, for a more compact state, with the SiOH groups remaining on the outside [2]. 

The solubility of these particles depends on their size, that is, the radius of curvature of the 

surface. It also depends on their hydration state on the internal solid phase. Since not all 

particles in solution have the same size, and because smaller particles are more soluble 

than bigger ones, in the polymerization process, particles grow in average size and 

decrease in number, as the smaller particles dissolve and the silica is deposited upon the 

larger particles [2]. So, the basic step in gel formation is the collision of two silica 

particles, with sufficiently low surface charge, so that siloxane bonds are formed. 

Formation of this linkage requires the catalytic action of hydroxyl ions, and this is 

indicated by the fact that the rate of gel formation, in the pH range 3 to 5, increases with 

pH, and is proportional to the hydroxyl ion concentration [2]. Above pH 6, scarcity of 

hydroxyl ions is no longer the limiting factor for the gelling rate, instead, aggregation 

decreases because of fewer collisions between particles, due to their increasing charge [2]. 

In Figure 2 it is demonstrated the overall effect of pH on the stability of colloidal silica 

water systems, in the presence or absence of sodium salts. The salt decreases the ionic 

charge of the particles. At acidic pH this has little effect, both curves having approximately 

the same temporary stability, but in the neutral range a minimum of stability is achieved at 

a pH slightly higher when the salt is present [2]. 
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Figure 2 – Effects of pH in the colloidal silica-water system. The thick solid lines represent experimental results, while 

the shaded and white areas are approximate zones, corresponding to what would have been expected. [2] 

 

So, two basic principles of particle growth, in an aqueous system, can be 

established. Particle growth at the expense of silicic acid molecules begins as soon as the 

solution is made, and that the formation of bigger particles is driven by silicic acid 

deposition, dissolving from smaller particles. This is a slower process and may be 

negligible at low pH, after the monomer has been used up [2].   

As mentioned previously, polymerization leads to the formation of colloidal 

particles (Figure 3). That is, disperse systems in which the disperse phase is silica in the 

colloidal state. The colloidal state comprises particles with a size sufficiently small, ≤1 µm, 

not to be affected by gravitational forces, but sufficiently large, >1 nm, to show marked 

deviations from the properties of true solutions [16]. A stable dispersion of solid colloidal 

particles in a liquid is a suspension in which the solid particles do not settle or agglomerate 

at a significant rate [16]. 
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Figure 3 - Schematic representation of a dehydrated, but fully hydroxylated, colloidal silica particle. The fourth oxygen 

coordinated with Si is above or below the plane of the paper [12].  

 

The conversion of a solution of spherical particles into a uniform gel, containing all 

the liquid present in the solution, is a process still not fully understood. When the particles 

collide, it is assumed that adhesion occurs, but in the case of silica particles, there is reason 

to believe that the bonding happens through the Si-O-Si linkage [2]. One of the reasons for 

this is that the same factors that promote polymerization of monomers and low molecular 

weight silicic acids, also promote the conversion of a solution of silica colloidal particles 

into a gel [2]. So, we can say that, when particles collide, there are neutral ≡SiOH and 

ionized ≡SiO
-
 groups in the particle surface, which condense to form Si-O-Si bonds, by the 

same mechanism involved in the polymerization of species of low molecular weight.  Also, 

some researchers believe that the presence of silica monomers play a role in further 

cementing particles together (Figure 4) [2]. Indeed, it may even be possible that the 

presence of soluble silica species (Si(OH)4), at the point of contact between colliding 

particles, may play a role in promoting the formation of the initial bond [2]. 
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Figure 4 – Bond formation between silica particles [2]. 

 

Silica particles can aggregate in three different ways, by gelling, by coagulation and 

by flocculation (Figure 5) [17]. Every process involves colloidal particles or linking 

polymers, but there are basic differences between them. Gelling is when particles are 

linked together in branched chains that fill the whole volume of the solution, so that there 

is no increase in the concentration of silica in any macroscopic region in the medium. 

Instead, the overall medium becomes viscous, and then is solidified by a coherent network 

of particles that, by capillary action, retains the liquid [17]. Coagulation is when particles 

come together into relatively close-packed clumps, in which the silica is more concentrated 

than the original solution, so the coagulum settles as a relatively dense precipitate. Finally, 

flocculation is when the particles are linked together by bridges of the flocculating agent, 

that are sufficiently long so that the aggregated structure remains open and voluminous 

[17]. It is apparent that these differences will be noted mainly in dilute solutions containing 

only a few per cent of silica. In concentrated solutions one can distinguish gel formation, 



 

8 
 

but not between coagulation and flocculation. There is one last form of agglomeration, 

called coacervation in which silica particles are surrounded by an adsorbed layer of 

material. This makes the particles less hydrophilic, but does not form bridges between 

particles, thus resulting in a liquid phase immiscible with the aqueous phase [17]. 

 

 

Figure 5 – Silica gel versus precipitate, a) soluble silica, b) gel, c) flocculation and precipitation [2] 

 

As regards to stability it has also been defined three types, i) phase stability, which 

is analogous to the phase stability of ordinary solutions, ii) stability of disperse 

composition, that is stability with respect to change in the dispersion, and, lastly, iii) 

aggregative stability, the most characteristic for colloidal systems [17]. 

A concentrated silica solution can be stabilised against interparticle siloxane 

bonding in two possible ways. Either by an ionic charge on particles, so that they are kept 

apart by charge repulsion, or by an adsorbed, generally monomolecular, layer of inert 

material, which separates the silica surfaces to an extent that prevents direct contact of 

silanol groups, this has been referred as to as “steric” stabilization [2]. Recently it was 

discovered that Si-O-C bonding is actually quite common in the aqueous environment, and 

that many aliphatic mono- and poly-hydroxy alcohols combine with silicates to produce 

alkoxy-substituted tetraoxosilicon complexes [18]. The complexing affinity is greater for 

smaller alcohols and increases with the number of attached hydroxy groups [18]. Also, in 

another study, Kinrade et al, reported that polyol chains which contain terminal carboxylic 
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acid groups, along with the requisite threo-plus-flanking hydroxyl group configuration, 

exhibit dramatically enhanced affinity for silicate complexation [19]. Bearing these 

characteristics in mind, the key for achieving a stable silicon solution, with a realistic 

concentration for use in the supplement field, might be a compound similar to those 

assessed in these studies.  

 

1.1.2. Silicon in the Organism 

 

Regarding the role of silicon in the body, it has been assumed for long that in 

higher life forms, the mineral does not play an essential role, however, there are several 

hints that point to the contrary [7, 20]. The typical adult intake of silicon is around 20-50 

mg/d, thereby exceeding copper, zinc and iron, intakes, which are elements known to play 

important roles at the biological level [4, 7, 21]. It was also observed that connective tissue 

and its molecular constituents contain silicon levels significantly higher than soft tissues. 

In the 70s, in an animal study, Shwartz and Carlisle obtained convincing results of the 

significance of silicon in the organism [3, 22]. Both submitted animal groups to a diet 

without silicon, and they observed that this led to bone structure deformation in embryo 

development. Carlisle reported that silicon is required as a nucleating agent, probably in 

the form of calcium silicate. In turn, Shwartz reported that silicon is essential for the 

connective tissue, and is linked in mucopolysaccharides with bonds similar to ester, 

however these assertions are still subject to controversy [23]. 

Over time, several studies were carried out to try to better understand the biological 

relevance of silicon. There is still a lot to know, but there are already some mechanisms of 

action that have been proposed. Some studies obtained results which indicate that silicon 

may have an influence on DNA synthesis. It was observed that, in cultures of osteoblasts 

supplemented with silicon, thymidine incorporation was stimulated, along with cellular 

differentiation and turnover [24]. Moreover, microarray analysis revealed an 

overexpression of genes related to growth and cell cycle regulation in the same silicon 

supplemented osteoblast cultures [25].  

There is also strong evidence that silicon is somehow involved in the synthesis and 

stabilisation of the extra cellular matrix [4]. Some results seem to indicate that silicon has 

an effect on the transcription of genes associated with type I collagen, as well as with 
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prolylhydroxilases, which are enzymes involved in the hydroxylation of proline [4, 26, 27]. 

Studies also suggest that silicic acid acts as a cofactor for these enzymes, since its activity 

was found to be modulated by silicon concentration. Also, inhibition of the enzymatic 

activity, with cis-hydroxyproline, eliminated the beneficial effect of silicon in the synthesis 

of collagen [26, 28]. Regarding stabilization, it has been suggested that silicon may 

function structurally as a cross link between the chains of pro-collagen, during the 

synthesis of collagen and/or within the overall extracellular matrix. Furthermore, the 

extracellular matrix formed, in the presence of silicon, contains collagen and elastin fibbers 

more dense, better organized and distributed in a more homogenous form, compared to the 

extracellular matrix formed without silicon [29]. 

 It is also suggested that silicon may be involved in the extracellular matrix 

mineralization process. Carlisle et al observed that silicon levels increased with primary 

mineralization but decreased with secondary mineralization, as calcium was being 

incorporated into the bone’s mature mineral matrix [26]. Silicon supplementation in rats 

raised the calcium levels in their bone structure, while a diet devoid of silicon had the 

opposite effect [26, 30]. Also, silicon can affect the transport and mineralization of calcium 

in a direct way, by induction of the interaction of calcium with phosphate, or in an indirect 

way, through its effect on the extracellular matrix, by increasing synthesis or stabilization, 

and induction of osteoblast differentiation [25, 31, 32]. Lastly, Porter et al reported the 

formation of mature bone more crystalline when derived from a collagen matrix that 

formed in the presence of high levels of silicon [33].  

Copper, zinc, calcium and magnesium are essential for bone and connective tissue 

health, and silicon supplementation is also reported to affect the metabolism of these 

minerals, raising their levels in the blood and tissues [26, 34]. However some reports 

suggest that silicon does not have any biological role, besides sequestering toxic 

aluminium ions [35]. Even if that were the case, it is important to note that aluminium is a 

potent neurotoxin, which interferes with calcium homeostasis and with enzymes in which 

magnesium is a cofactor, it also affects bone calcification and inhibits prolyl-hydroxylase 

activity [36, 37]. 

Despite several proposed hypotheses for the role of silicon in the body, most 

studies associate silicon with structural integrity of bone. Nutrition is an important factor 

for the bone structure, however, with the exception of calcium, little is known about the 
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effects of other nutrients and minerals. Ingestion of elements such as magnesium, 

potassium, fluorine, zinc, copper, boron and manganese, is positively associated with bone 

density, while the lack of these elements is associated with a decrease in bone density and 

increased fracture healing time [38, 39]. Interest in the role of silicon in this field has been 

increasing more recently. One study [7] positively correlated silicon ingestion with bone 

mineral density in the hip bone in men and pre-menopausal women, but not in post 

menopause, however, the author’s gave a plausible biological explanation for this. From a 

biological perspective, the results obtained in this study indicate that the orthosilicic acid 

has a role in bone formation but not in resorption, and, in post menopause women, the 

bone mineral density is driven through ressorptive processes [40, 41]. However, it is 

interesting that silicon ingestion had no effect at all in bone mineral density in post-

menopausal women, suggesting that hormonal factors may override any potential effect 

silicon in the organism [7]. A contradiction observed in this study was the fact that the 

association between silicon ingestion and bone mineral density, in the lumbar spine, is 

much weaker than that observed between silicon ingestion and bone mineral density at the 

hip. Cancellous bone is usually more affected by metabolic factors than cortical bone, due 

to its higher rate of turnover [7]. However, if the effect of silicon is anabolic, this being, if 

the mineral promotes bone formation instead of inhibiting ressorption, the same process 

that was observed for the parathyroid hormone in a prior study may be occurring. Here it 

was observed that the anabolic effects of the hormone were more prominent in cortical 

bone in comparison to cancellous bone [42]. A study in osteoporotic women, to whom was 

given a silicon supplement, supports this theory, in which a sharp increase in bone mineral 

density at the hip site, rather than in the lumbar spine was observed [43]. Thus, these 

results suggest that higher silicon intake is associated with higher bone mineral density, 

which is a marker of bone strength, and also, a potential interaction between silicon and 

oestrogen status [7]. 

Until now, no silicon deprivation studies have been conducted in humans, but, as 

described above, Carlisle [3] and Shwartz [22] observed, in laboratory animals, that silicon 

deprivation resulted in skeletal abnormalities and defects. In chicks, legs and beaks were 

paler, thinner, more flexible, and thus easily fractured (Figure 6) [3]. In rats were reported 

defects to the skull, including the eye sockets, as was disturbances and impairment to 

incisor enamel pigmentation [22]. Since then, no one was able to reproduce these dramatic 
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effects, but Seaborn and Nielsen reported decreases in bone mineral density, mineral 

content and collagen synthesis, and increases in collagen breakdown, thus confirming that 

silicon deprivation has a negative impact on bone [44]. 

 

 

 

Figure 6 - Photo by Carlisle, on the study about silicon deprivation. Animal in the right was subjected to a diet deprived 

of silicon [3]. 

   

1.1.3. Silicon Intake 

 

A daily minimum requirement for silicon has not been established, but was 

estimated at 10-25 mg/d on the basis of the 24h urinary excretion of silicon [26, 45], and, 

in studies that aimed to measure reference values for the level of silicon in the organism, it 

was found that these are age and sex dependent (Table 1) [46].  

 

Table 1 - Reference values for serum silicon in adults [46].   

  Age [Silicon] µmol/L 

Female 18-29 10.0 

45-59 9.23 

>74 8.00 

 

 

Given these values, it is important to try to understand the sources of dietary 

silicon, since the bioavailability of this element from solid foods is still not completely 

understood. The main entry source of silicon into the body is from the gastrointestinal 

tract, however, gastrointestinal absorption, metabolism and excretion of silicon is, also, 

 Age  [Silicon] µmol/L 

Male 

 

18-59 9.50 

60-74 8.50 

>74 7.70 
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still poorly understood [4]. The absorption of silicon, however, is strongly influenced by 

the form of silica ingested, and this is related to the rate of production of soluble and 

absorbable species of silica in the gastrointestinal tract [21, 45, 47], being the monomer 

orthosilicic acid the most readily absorbed species. It is assumed that silicon in the 

orthosilicic acid form [Si(OH)4] is available only in fluids, such as water and beer, but not 

in solids, in which is present as polymeric or phitolitic silica [48, 49]. However, since 

fluids only represent 20% to 30% of total silicon intake [50], and also because silica in 

solid foods can be hydrolysed to orthosilicic acid in the gastrointestinal tract [51, 52], 

studies that focus on the bioavailability of silicon from solid food are important. 

Jugdaohsingh et al found that the ingestion of silicon was ≥2 fold greater than the typical 

ingestion of iron, zinc, and also of two other elements with physiological importance [21]. 

Higher values were observed in diets rich in grains, cereals and plant-based food, when 

compared with animal products, such as meats and dairy [50, 53]. In this study it was also 

observed that the ingestion of silicon was about 20% to 33% higher in men than in women, 

and also that, in both genders, absorption decreases with age. The main reason for the 

difference observed between men and women is probably the greater intake of beer by 

males, this being the major dietary source of silicon for men [21]. It was also observed 

that, overall, an average of 40.9±36.3% of the ingested silicon was excreted in urine in a 6 

hour period, thus, confirming that silica from solid food is digested and absorbed in the 

gastrointestinal tract. The silicon in grains and derivatives such as rice, cereals, bread and 

pasta, is readily absorbed by the body, whereas, with the exception of green beans and 

raisins, the silicon present in fruit and vegetables is not as well absorbed [21]. 

Silicate additives are also present in foods and beverages, being added as inert 

additives or excipients, and are thought not to be absorbed. However, some studies have 

reported marked increases in serum silicon concentration or excretion of the mineral in 

urine, following ingestion of silicates, such as, zeolite, sodium aluminosilicate and 

magnesium trisilicate, suggesting that these are partly solubilised to orthosilicic acid in the 

gastrointestinal tract and absorbed [54, 55]. 

 

 

 



 

14 
 

1.1.4. Silicon Supplements 

  

There is a wide range of silicon supplements available, most of them being 

available in tablet or solution form. These show varying bioavailability, ranging from <1% 

to >50%, however, the majority of them show negligible to low bioavailability. It is 

important to note that, as mentioned above, the degree of polymerisation of silicon, is 

inversely proportional to its intestinal absorption [4, 47, 51, 56], or, in other words, 

monomeric silica, which is a small, neutrally charged molecule, is readily absorbed in the 

gastrointestinal lumen before absorption [47, 51]. The kinetics of dissociation or 

dissolution of the polymers or colloids will depend upon the degree of polymerization [2, 

56]. 

The solubility limit of silica is about 2 to 3 mM at the intestinal peri-neutral pH [2]. 

In most supplements, however, silicon is present in higher concentrations, which means 

that larger and less absorbable polymers or colloids will form [57]. One exception to this is 

MMST – monomethyltrisilanol-, which is a silicon supplement presented as a solution, 

where a methyl group replaces one hydroxyl group of orthosilicic acid. This raises the 

solubility limit of silicon and maintains it in a small, monomeric and well-absorbed form 

[58]. Another silicon supplement that presents a rather high bioavailability, when 

compared to others, is Biosil. This choline stabilised orthosilicic acid is a concentrated 

solution of orthosilicic acid (2%) in a choline (47%) and glycerol (33%) matrix [4]. This is 

promoted as ‘biologically active silicon’, and although it presents polymerization to some 

extent, extensive polymerization and aggregation of silica particles are prevented by the 

presence of the high concentration of choline in the supplement [57]. The choline protects 

the silica by maintaining it in aqueous suspension, so that upon further dilution before 

ingestion, it will start to depolymerise to form orthosilicic acid [57]. This method is not as 

efficient as starting with monomeric silicate, but even though, it still achieves a de-

polymerisation rate high enough to have an amount of bioavailable Si(OH)4 of 17% [57].  

Another form of silicon supplement is called ‘colloidal silica’. Here is important to note 

that, what is referred by the manufacturers as ‘colloidal silica’ is, in fact, particulate silica, 

while, the choline-stabilised ‘orthosilicic acid’ for example, is in the colloidal form, or, in 

other words, nanoparticulate silica [57]. This ‘colloidal silica’, which is precipitated and 

completely polymerised silica, presents very low bioavailability, less than 2%, probably 
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because it is so aggregated. Also, the rate of hydrolysis in the gastrointestinal lumen is 

slow compared with the window of opportunity for absorption in the small bowel [57]. 

Other silicon supplements that can be found over the counter include Silicea, Silicol, Silica 

and Horsetail. 

There have been some studies focusing on the effects of silicon supplementation 

[59-61], and until now results lead to the conclusion that they are beneficial for the 

organism.  In a small intervention study, in which osteoporotic subjects were treated with 

silicon in the form of MMST, it was observed an increase in trabecular bone volume, 

compared to non-treated controls [62]. Also, in another study, femoral density was 

significantly increased after intramuscular administration of silicon, again in the MMST 

form, twice a week for four months [63]. In animals, supplementation with a choline-

stabilised orthosilicic acid complex based supplement resulted in a higher collagen 

concentration in the skin [34], and in an increased femoral bone density [64]. Furthermore, 

Calomme et al. investigated the effect of the same choline-stabilised supplement on bone 

loss, in aged ovariectomized rats [6]. They observed that the increase in bone turnover in 

the animals tended to be reduced by the silicon supplementation. Also, the bone mineral 

density was significantly increased at two sites in the distal femur in the supplemented 

group, when compared with the controls [6]. Still with the same choline-stabilised 

supplement, another study obtained results that suggest that the combined treatment of 

silicon supplement with Ca/Vit D3 is safe, and has a potentially beneficial effect on bone 

turnover, especially on bone collagen, and possibly also on femoral bone mineral density, 

when compared to the treatment with Ca/Vit D3 alone [65]. Also, in a randomized, double 

blind and placebo controlled study, that aimed to see the effect of a silicon supplement on 

skin, nails and hair, in women with photo damaged skin, results illustrate a positive effect 

of oral supplementation [66]. After 20 weeks of oral supplementation, both skin 

microrelief and mechanical properties improved. Also brittleness of hair and nails was 

significantly lower, compared to the baseline, in the supplemented group. 

Although there are already silicon supplements which present high bioavailability, 

like MMST, the absorption mechanism in the bowel is still poorly understood, there is still 

no experimental evidence demonstrating the conversion of monomethylsilanetriol to 

orthosilicic acid [67]. Also, due to the tendency of silicon to agglomerate, concentrations 

of solutions have to be relatively low, which impacts on the route of supplement 
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administration. Thus makes it impossible to take the supplement as just a capsule, as in this 

way, the consumer would not achieve the necessary dose, for the supplement to produce its 

beneficial effects. Instead, large quantities of supplement need to be ingested. For the 

choline-stabilised silicon supplement, the ratio of choline to silicon that is necessary to 

achieve stabilization is far higher than what would be ideal, and the pH of the final solution 

is very low, approximately pH 2 [68].  As mentioned above, the aim of this project is to try 

to develop a solution with small, stable, silicon nanoparticles, with realistic ratios of 

silicon:stabilizer, at a realistic pH. The nanoscale range would allow higher concentrations 

to be achieved, and further de-polymerization in the bowel would give the supplement high 

bioavailability. 

 

1.2. Nanoparticles 

 

Nanotechnology was introduced by Richard P. Feynman in 1959 [69] and, since 

then, there have been many developments in physics, chemistry, and biology that have 

demonstrated Feynman’s ideas of manipulating matter at an extremely small scale, the 

nanoscale [70].  

In a scientific context nano refers primarily to a specific magnitude order, more 

exactly 10
9
. In the nanotechnology context, the term nano refers almost exclusively to 

particle size, thus, nanoparticles are two dimension objects with a particle size from one to 

one hundred nanometers. This area of research is one of the fastest growing areas of 

science and technology, underpinned by the synthesis of nanomaterial with unusual and 

useful properties that differ from bulk materials [71]. In general, nanotechnology 

encompasses two main approaches, these being, the ‘top down’ and ‘bottom up’ 

approaches (Figure 7). 
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Figure 7 – Scheme “Top-Down” and “Bottom-UP” approaches for the manufacturing of nanoparticles [72] 

 

Top-down strategy is defined as that in which nanoparticles are directly generated 

from bulk materials, while maintaining their original properties, via the generation of 

isolated atoms by using various distribution techniques [73]. The majority of the top down 

strategies involve physical methods, such as milling or attrition, repeated quenching and 

photolithography [74]. The bottom-up strategy, also called ‘molecular nanotechnology’ or 

molecular manufacturing [75], involves molecular components as starting materials linked 

with chemical reactions, nucleation and growth process, to promote the formation of more 

complex clusters [74]. However, size alone is not enough to make the distinction between 

nanoparticles, and other chemical molecules or polymers of a similar size. Nanostructures 

are fundamentally different forms of matter than simple chemicals. Their size and 

organization frequently take advantage of the quantum mechanical properties of these 

structures. Contrary to popular belief, nanoparticles are not just a product of modern 

technology, in fact, manufacturing of those structures has been going on in the biological 

world for many millions, or even billions of years, they are created by natural processes, 

such as volcano eruptions and fires. Indeed, our own bodies are full of self-assembling 

nanoparticle structures, like viruses for example [70]. 

 

1.2.1. Properties 

 

Some properties associated with bulk materials, such as chemical composition and 

crystal structure, remain the same at the nanoscale, however, many properties of these 

materials change at the nanoparticle scale [76]. These differences arise from the small size 
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and large number of surface atoms of the particles [77]. Their surface-to-volume ratio is, 

actually, one of their most important features, and this ratio increases as the particle 

diameter decreases. A nanoparticle is composed of a few numbers of atoms, which means 

that a significant portion of the atoms are located at the particle surface [77]. A particle 

with a diameter of 10 nm has 20% of its atoms positioned at the particle surface, while 

with a particle with 5 nm this percentage rises to 40%, and with a particle of 1 nm almost 

all of its constituting atoms are at the surface [77]. The atoms at the surface, unlike those 

located at the core, suffer less influence of neighbouring atoms, presenting unsatured 

bonds, which are responsible for the high reactivity of the particle. Indeed, if the surface of 

the nanoparticles is not protected with a molecule, a capping agent, interactions between 

particles will generally occur in such a way as to reduce this high surface energy and this, 

generally, results in aggregation. Capping agents can be organic molecules, polymers, or 

biological molecules, and they generally work by either charge or steric stabilisation 

mechanisms, which prevent further aggregation (Figure 8) [78]. 

 

 

 

Figure 8 – Scheme of surface alterations in nanoparticles [79]. 

The model nanoparticle has three distinct features, these being, a defined structure, 

monodispersity, and large surface area, however, the feature that is most often cited is 

particle size. There are three different types of diameter to measure, primary particle size, 

hydrodynamic diameter, and aerodynamic diameter [80, 81]. By altering the nanoparticle 
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size, it is not only possible to modify their reactivity, but also their optical characteristics, 

such as transparency, absorption, luminescence and scattering.  

The composition of a nanomaterial also defines its function and properties. In 

nanotechnology, each nanomaterial has a specific and very unique application, and, 

although some properties are shared among nanomaterials, there is always an optimal 

structure for the desired purpose [82]. So, nanoparticles may have different chemical 

compositions, they can be composed of metals, semiconductor materials, such as metal 

oxides (inorganic nanoparticles), carbon or carbon containing compounds, such as 

polymers  (organic nanoparticles) [83]. Nanoparticles can also be single particles, 

aggregates or agglomerates. The aggregates are loose, reversible attachments, formed 

through strong attractive interactions, in solution this process can be reverted, and the 

aggregates may be dissolved into single particles. The agglomerates are, in turn, 

irreversible accumulations of particles and cannot be scattered back into single particles 

[83]. 

There is an increasing need for stable suspensions when it comes to the aggregation 

of nanoparticles, in both aqueous and non-aqueous systems. So, for the production of 

nanoparticles, the main objective is not simply to obtain nanoscale materials, as for most 

real world applications, other experimental conditions need to be tightly controlled. 

Manufactured nanoparticles need to have at least the following characteristics, these being, 

identical particles in terms of size, shape and morphology, chemical composition and 

crystal structure must be the same, and last but not least, they must also have 

monodispersity [84]. 

 

1.2.2. Applications  

 

As mentioned before, nanomaterials present unusual and useful properties, quite 

different from other materials at the micron scale, which has led to an increasing interest in 

this technology (Figure 9) [85], i.e., in industries such as chemical, pharmaceutical, 

ceramics and microelectronics, both in scientific and technological terms. The applications 

are vast and can range from pigments, nanocomposites, drug delivery and ceramic 

materials, up to the manufacture of semiconductor films. 
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Figure 9 – Schematic representation of some nanoparticles applications [86] 

 

Regarding medicine, nanodelivery of drugs is the most obvious application of 

nanoparticles. Their use for enhanced drug delivery [87] has been focused on the 

application of biopolymers [88], porous particles [89], and nanogels [90], among others, as 

carriers for highly potent drugs [91], of otherwise low availability. Furthermore, most 

recent concepts go further than just passive delivery, to active shuttle [92] and precise 

release of a cargo, through an external trigger [93]. Also, the adsorption of macromolecules 

onto nanoparticles can be used to facilitate gene delivery or virus transfection. However, 

there are many other possible applications beyond drug delivery, like tiny implantable 

micro and nanoscale devices, that will be available to monitor health continuously [70]. 

Magnetic nanoparticules also have attracted tremendous interest in the nanomedicine field. 

They can be used for drug delivery, cell sorting and manipulation [94], hyperthermia, 

which can be used in cancerous tissue, to kill cells through external heating [95], and also, 

in vivo extraction of noxious compounds. Nanoparticles can also be used as antimicrobial 

agents, and works in this field have developed rapidly over the last decade [96], resulting 

in numerous consumer products today containing silver nanoparticles [97], as a substitute 

to classical compounds [98, 99]. Nanotechnology has also provided for novel and powerful 

systems, which may be used for cancer treatment and diagnostic. In vivo demonstrations of 

noble metal nanoparticles as theranostic agents are now emerging, and although the 
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reagents and drugs that are being used for the development of these compounds have still 

to be approved, these findings serve as important milestones towards clinical application 

[100].  

Nanoparticles also have a wide range of applications in biological research. They 

can be used for biomolecule detection in DNA assays, immunoassays and cell bioimaging. 

Usually they are derivatized with different functional groups, such as nucleic acid-targeted 

oligonucleotide probes, antibodies and protein, to produce nanoprobes. One example is the 

gold nanoparticle-based probes, that have been used in the identification of pathogenic 

bacteria in DNA-microarray technology [101]. Alternatively, nanoparticles can be used as 

fluorophores in FISH – Fluorescence In Situ Hybridization. Quantum dots attached to a 

specific oligonucleotide probe or immunoglobulin G have been used to successfully detect 

human Y chromosome [102], and to locate cancer markers in cellular imaging [103]. 

Magnetic nanoparticles also have applications in biological research, such as sample 

separation, purification and concentration. Different capturing molecules, such as 

antibodies and oligonucleotides probes can be immobilized on the surface of magnetic 

nanoparticles [104]. 

Nanoparticles also have applications in manufacturing and materials, i.e., silicate 

nanoparticles can be used to provide a barrier to gasses or moisture in plastics films used 

for packaging, which could slow down the process of spoiling or drying out in food. Silver 

nanoparticles can be used in fabric to kill bacteria, making clothing odour resistant. 

Nanoparticles can also be used for water purification, being a green chemical approach in 

comparison to the methods used at the moment. Gold nanoparticles can actually adsorb 

different organophosphorous pesticides and, in addition, they exhibit antimicrobial activity 

against different bacteria and yeasts [105]. 

Regarding nutritional sciences, nanoparticles already have a wide range of 

applications, such as, modifying taste, colour, and texture of foods, detection of food 

pathogens and spoilage microorganisms, enhancing nutrition quality of foods. As well as, 

serving as a tool to study nutrient metabolism and physiology [106]. However, the 

predominant food-related use of nanoscience in the short term is in food contact materials, 

such as packaging [107]. In the longer term, nanoscale food research appears, instead, to be 

focused on controlled release of nanoscale-encapsulated food ingredients or nutrients 

[107]. 
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1.2.3. Absorption in the Organism 

 

Although the aim of this project is to produce silica nanoparticles that will dissolve, 

to release silicic acid, it is important to provide context on the delivery of nanoparticles in 

biological systems. In particular, during the last years, due to the many biological 

applications of nanoparticles, it has become increasingly important to understand their 

behaviour in biological systems, starting on how their uptake is processed [79]. Following 

the intake, translocation of particles, to and through the gastrointestinal mucosa, may occur 

through four different routes (Figure 10) [108]. The most common route of absorption of 

nanoparticles, and also the most documented, is the M-cell rich layer of Peyer’s Patch 

pathway. Des Rieux et al observed, in a co-culture of an intestinal epithelial cell line, 

which had been differentiated so as to acquire M cell characteristics, an increasing of about 

a thousand fold in the transport of particles, with diameters varying from 200 to 500 nm 

[109]. M cells are differentiated and specialized epithelial cells, which have a 

predisposition to perform transcitoses of macromolecules and particles [110, 111]. They 

are, also, able to pass intact material from the lumen to abutting/interlocking mononuclear 

cells. These cells can be found in anatomic sites that are believed to be important immune-

inductive sites, and also to represent a constitutive mechanism for the continued 

surveillance of luminal antigens and pathogens.  

Another possibility for nanoparticle uptake is through endocytosis at the enterocyte 

level. Although the main function of these cells is absorbing and transporting nutrients, 

there are some data that suggest that enterocytes can also absorb compounds in the nano 

range, as happens with ferritin present in meat [109]. A third route for particle 

translocation will be persorption. Volkheimer noted that enterocytes shed from the villous 

tip and into the gut lumen, which leaves a gap in the epithelium and allows the 

translocation of larger sized particles such as starch and pollen [112, 113]. In a post study 

performed by Hillyer et al, it was observed that this process also allows the passage of 

nanoparticles [114]. Lastly, it is also possible, under certain conditions, that very small 

nanoparticles have access to the gastrointestinal tissue through tight junctions of the 

epithelial cell layer. However, this is still just a theoretical possibility, since epithelial 

junctions are extremely effective in preventing paracellular permeation, although their 
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integrity may be affected by diseases, epithelial cell metabolism, calcium chelators [115] 

and even particle endocytosis [116]. 

 

 

Figure 10 – Scheme of different possibilities for particles translocation across the gastrointestinal tract 1) Endocytosis 

through regular epithelial cells, 2) M-cell-uptake (transcytosis) at the surface of intestinal lymphoid aggregates, 3) 

Persorption, 4) Putative paracellular uptake [108].  

 

1.2.4. Toxicity 

 

In contrast to nanoparticle exposure through the use of consumer products, the new 

emerging biomedical applications of nanoparticles involve deliberate, direct ingestion or 

injection of nano materials into the body, thus toxicity has become a critical factor to 

consider, when evaluating their potential [117]. Nanotechnology has played an 

increasingly important role in the dietary supplements industry due to its efficiency in 

delivering bioactive compounds [118]. A wide variety of nanoparticles can be used in food 

supplements from solid nanoparticles, with various shapes, to nano-delivery systems. The 

benefit of using nanoparticles in food supplementation is mainly due to the ease of entry 

into the cells, and also, as mentioned, the increase in specific surface area. However, this 

easy entry into the body needs further study, because it can affect the detoxification 

capacity of the organism and facilitate the cross of the blood-brain barrier [118]. Another 

physicochemical factor of decisive influence is the solubility or biodegradation. Also, what 

type of cellular responses that can be induced by degraded nanoparticles, as they can 

accumulate within the cells and lead to intracellular changes, such as disruption of 

organelle integrity or gene alterations [117]. It is clear that degradable nanoparticles show 

distinctly different behaviour than persistent or inert ones. In most cases, soluble materials 
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rapidly release their constituents and can result in acute effects which, in most cases, are 

easy to detect [119, 120]. In contrast, persistent materials remain inside the organism for 

months to years. In this case, a clear prediction of risk is difficult, and proactive 

identification of harmful materials is challenging [79]. 

Nanoparticle functionalization can also be behind the toxic effects. Surface 

functionalization, as mentioned above, confers stability and interesting properties to 

nanoparticles, such as surface charges, hydrophilicity or hydrophobicity [121]. However, 

this addition of surface coatings confounds the bioactivity and potential toxicity of the 

functional groups on the nanoparticle surface, making it difficult to interpret the observed 

changes [122]. Surface charge also plays a role in toxicity with cationic surfaces being 

more toxic than anionic, and neutral surfaces being the most biocompatible [122]. This 

may be due to the affinity of cationic particles to the negatively charged cell membrane. 

There are very few studies on immune and/or cellular reactions, in the 

gastrointestinal system, to nanoparticle intake, but there is, however, a common 

observation in non-gut systems that nanoparticles appear to enhance the formation of ROS 

(Reactive Oxygen Species), and can, through this route, exert a toxic effect in the body 

[108]. Ag nanoparticles were reported to exert significant cytotoxicity in rat liver cells, 

including depletion of intracellular glutathione levels, decrease of mitochondrial membrane 

potential and an increase in ROS levels [121]. 

 

1.2.5. Silicon Nanoparticles  

 

Silicon nanomaterials are important and have been extensively studied and explored 

for a myriad of applications, ranging from electronics to biology [123, 124]. Silicon 

nanoparticles are very attractive because of their diverse properties such as, luminescence, 

size-dependent emission, band gap, biocompatibility, high sensitivity and reactive surface 

[125]. This creates great interest for industrial applications in the field of electronic and 

also for biological applications [126, 127]. Silica particles coated with organic modifiers 

are used in applications that include stationary chromatography phases [128], 

heterogeneous supported catalysts [129], consumer goods [130], aerospace and sensor 

industries [131]. Colloidal silica is of particular interest due to the ease of synthesis and 

precise control of the size and distribution of the particles [132]. 
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The chemistry of silicon is based on covalent bonds and the methodologies used for 

growing silicon particles implies very different routes from those used in the case of 

metals, in other words, silicon obeys the rules of covalent chemistry, it is not dependent on 

quantum confinement effects. Hence, some researchers believe that covalent links between 

silicon atoms and surface functional groups, might be more inclined to directly influence 

the properties of the particles, rather than their size [133]. The silanol groups can be 

functionalized through different procedures. The hydroxyl group can react with various 

compounds to form amine, carboxyl, or thiol groups. Also, silica surface modification is 

not limited to chemically-mediated procedures, as passive of molecules, such as avidin, is 

also commonly used [134]. The versatility of silica in synthesis, as well as surface 

modifications, offers great advantage to the use of the mineral in a wide range of 

applications [134]. The versatility towards different surface modifications can be an 

advantage in the supplement field. The silica surface can be modified easily with many 

biomolecules for added biochemical functionality, in other words, to contain other 

compounds of interest to the organism, beyond the mineral itself [134]. 

 

1.3. Techniques 

 

In this chapter it will be overviewed the techniques that will be used in this work. 

Since we are dealing with nanoparticles it is important to assess their size, charge, and 

overall stability overtime, as these parameters can affect their properties. One technique 

that allows the determination of particle size is DLS (Dynamic Light Scattering), and the 

charge can be acquired with zeta potential measurement. We will also use the molybdate 

assay to assess monomeric silicate concentration, and therefore we will use 

spectrophotometry. Silicon concentration in the produced dispersions is of great 

importance, and will be measured using ICP-OES – Inductively Coupled Plasma – Optical 

Emission Spectrometry. Also, structure of the nanoparticles will be assessed with ATR-

FTIR. These techniques are relevant in the current work, and, therefore, they will be 

described in the next sections in some detail. 
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1.3.1. Dynamic Light Scattering 

 

Particle size and shape can influence a large variety of important physical 

properties, manufacturing processability and quality attributes related to the production of 

health products, including, a) dissolution rate and bioavailability of active pharmaceutical 

ingredients [135], b) drug release rate for sustained and controlled release formulations 

[135], and c) in vivo particle distribution and deposition, absorption rate and clearance 

time, [135]. These properties ultimately affect the safety and efficacy of drugs [135].  

DLS, also known as DLS-photo correlation spectroscopy or quasi-elastic light 

scattering, is a technique that can be used to determine  the size distribution profile of 

small particles, in suspensions, or polymers in solution [136]. It may also be used to probe 

the behaviour of complex fluids and concentrated polymer solutions. This technique has 

led to major developments in the in situ measurement of the size of fine particles in the 

liquid phase [136, 137]. Since the advent of the laser in the 1960’s, light scattering 

methodology has evolved fast, and there are five primary reasons for this, i) it is a non-

invasive technique, ii) samples to be studied do not need to be prepared in any way, so 

there are few experimental artefacts, iii) it is relatively easy to use iv) it is fast and v) 

relatively inexpensive. Also, many different types of particles can be studied by light 

scattering, ranging from, ideal, hard sphere systems, to particle characterization in 

exhausts, biological systems, and study of dynamics and structures of food colloids [138]. 

DLS is ideal for investigation of colloidal suspensions, which are found in many foods. 

The technique is widely used as a convenient way of measuring particle sizes but also to 

study the dynamic behaviour of interacting colloids, and can follow processes such as 

aggregation and gelation [138].  

DLS is based on the scattering of light by moving particles, i.e., it measures 

Brownian motion [138]. Brownian motion, is caused by the bombardment of solvent 

molecules that surround a particle, which also have movement due to their thermal energy 

[139]. When particles are illuminated by a laser, the scattered light intensity fluctuates at a 

rate which is dependent on particle size, since smaller particles are projected a greater 

distance by the solvent molecules, and also move faster. Thus, small, rapidly diffusing 

particles will give fast fluctuations, whereas larger particles will generate slow fluctuations 

(Figure 11) [139]. The intensity of the light arriving at the detector at any instant depends 
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on the interference pattern created by the scattered light from all of the particles in the 

scattering volume. If the particles are spherical and do not interact, their radius can be 

calculated from the diffusion coefficient by the Stokes-Einstein relationship [139].  

      
  

    
 

In this equation, d(H) is the hydrodynamic diameter, k is the Boltzmann constant, T 

is temperature, η is the viscosity of the medium and D is the translational diffusion 

coefficient. If the particles are non-spherical, the radius of a sphere with the same D is 

calculated [139]. 

In a typical light scattering experiment, monochromatic light from a laser passes 

through a polarizer that defines the polarization of the incident ray, and then this is passed 

through a dilute, single scattering colloidal dispersion [139]. The scattered light then passes 

through an analyser which selects a polarization, and finally enters the detector.  

 

 

Figure 11 – Comparison between the rate of intensity fluctuations triggered by small and big particles [140]. 

 

Because the parameter obtained by DLS is the collective diffusion coefficient of the 

scatterers, involving the movement of the particles within their dispersing medium, there 

will be a layer of solvent molecules moving with the particle. Thus, DLS measures the 

apparent hydrodynamic radius of the scatterers [138]. One of the disadvantages of DLS 

method is that, in the case of samples with heterogeneous populations, the small particles 

may not be taken into account, due to the presence of much larger particles, even if the 

small ones are present in a bigger percentage. In the case of silicon nanoparticles, DLS is a 
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very useful technique to study sample stability overtime, since silicon, as it was discussed 

in previous chapters, has a tendency to agglomerate, and also, particle size, in the 

supplement context, will affect bioavailability, which is a very important factor. 

 

1.3.2. Zeta Potential 

 

The particles in a colloidal suspension or emulsion usually carry an electrical 

charge, which may be created in a number of ways. The surface of the particles may, 

sometimes, contain chemical groups that can ionize to produce a charged surface, or, even, 

the surfaces itself can, preferentially, adsorb either positive or negative ions. Whichever its 

on-going, the charge on the particle surface is an important characteristic, since it 

determines many of the properties of the system [141], and one way of assessing it, is 

through the zeta potential. 

The zeta potential is the electrostatic potential on the surface of the particle (Figure 

12). The liquid surrounding the particle exists as two parts, an inner region (Stern layer) 

where the ions are strongly bound, and an outer region where they are less firmly 

associated [142].  Within the diffuse layer there is a notational boundary inside which the 

ions and particles form a sable entity. When a particle moves, ions within the boundary 

move with it, while those beyond the boundary stay with the bulk dispersant, and it is the 

potential at this line that is acquired when measuring the zeta potential [142]. 

The magnitude of the zeta potential gives an indication of the stability of the 

colloidal system, due to the fact that if the particles have a large negative or positive zeta 

potential (± 30 mV) they will tend to repel each other, whereas if not, there will be no force 

to prevent the particles coming together and aggregating [141]. 
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Figure 12 – Schematic representation of zeta potential [142]. 

 

1.3.3. ICP-OES 

 

The determination of trace concentrations of silicon and silicon compounds like 

aluminosilicates or organic silicones, in biological and other organic samples, is still one of 

the most demanding tasks in analytical chemistry [143].  

ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectroscopy) also 

designated ICP-OES (Inductively Coupled Plasma-Optical Emission Spectroscopy), is an 

analytical technique used for the detection of trace metals. It is a type of emission 

spectroscopy that uses inductively coupled plasma to produce ions and excited atoms that 

produce electromagnetic radiation at wavelengths characteristic of the element being 

analysed [144]. 

One of the principles behind ICP-AES is atom emission of electromagnetic 

radiation as they relax from their excited state to the ground state. The radiation emitted 

can be easily detected when in the range of vacuum ultraviolet (VUV, 120-185 nm), 

ultraviolet (UV, 185-400 nm), visible (VIS, 400-700 nm), and also near infrared (NIR, 

700-850 nm) [144]. Although some atoms emit electronic radiation in the infrared, 

microwave, and radiowave, range detection systems for these wavelengths are less 

sensitive. The main objective of analytical atomic spectroscopy is to identify elements and 

quantify their concentration in various media. The procedure consists of three basic steps, 

atom formation, excitation, and emission (Figure 13).  
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Figure 13 – Steps involved in the analysis of aqueous samples by ICP-OES [144]. 

 

ICP is just one of the many techniques available in analytical atomic spectroscopy. 

It uses plasma as a source of atomization and excitation, note that plasma is an electrically 

neutral, highly ionized, gas which consists of ions, electrons and atoms [144]. The energy 

that keeps the plasma is derived from a magnetic or electric field and most analytical 

plasmas use argon or helium, which makes combustion impossible. Plasmas are 

characterized by their temperature, and their electronic and ionic density, the analytical 

plasmas have temperatures ranging from 600 up to 8000 K [144]. Samples in all physical 

states have been successfully analysed using ICP, but the most commonly analysed 

samples are cations in solution. Note that when analysing solutions it is necessary to use a 

nebulizer, to convert the liquid into an aerosol consisting of particles with diameters 

ranging from 1 to 10 nm. ICP has some clear advantages in comparison to other radiation 

sources, as, it is a highly efficient atomization source, which means that every molecule 

should be dissociated provided that operating conditions are optimized for this purpose, the 

ionization efficiency is high, also the ICP exhibits excellent tolerance to high salt 

concentrations [144]. 

There are three common methods of separation or dispersion of light; gratings, 

prisms and Michelson interferometers. There are four types of detector system, PMTs 

(Photomultiplier Tubes), PDAs (Photo Diode Arrays), and CCD (Charge Coupled Devices) 

[144]. These methods of dispersion and detection are usually combined in one of four 
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configurations, which vary in sophistication; sequential, simultaneous with single point 

detection, simultaneous with one dimensional detection and simultaneous, with two 

dimensional detections. Sequential systems or monochromators allow the analysis of only 

one analytical line at a time [144]. More efficient systems, like polychromators, measure 

specific wavelengths at multiple positions simultaneously, this ability is a distinct 

advantage when compared to monochromators, however these systems lack flexibility, so 

just analytical lines and elements can be analysed [144]. 

Interferences in ICP-OES experiments can start at the sample preparation level and 

extend up to the operating conditions of the plasma. The most common type of interference 

involves two or more elements present in the matrix that emit radiation at the same 

wavelength as the compound being analysed [144].  These spectral interferences may be 

minimized by using high resolution systems, through the use of various analytical lines for 

the detection of a single element. Another type of interference involves the formation of 

undesirable species [144]. 

 

1.3.4. Spectrophotometry 

 

Spectrophotometry is designed to measure the degree of absorption of light by a 

substance, in a definite and narrow wavelength range [145]. The absorption spectrum in 

the visible and ultraviolet regions of a substance in a solution is characteristic depending 

on its chemical structure [145]. A spectrophotometer is an instrument that measures the 

amount of photons (the intensity of light) absorbed after it passes through a sample 

solution. Depending on the range of wavelength of the light source, the spectrophotometer 

can be classified into two different types, these being, UV-visible, and IR [145].  

One of the principles of spectrophotometry is that all substances absorb or transmit 

at specific characteristic wavelengths [146]. The light absorbed or transmitted must exactly 

match the energy required to cause electronic transition, this being, the passage of an 

electron from a quantum level to another, and only photons of certain wavelengths satisfy 

this energetic condition, thus, the absorption or transmission of certain specific 

wavelengths, characteristic to each substance, and posterior spectral analysis, may serve as 

the compound fingerprinting [146]. 
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Once the intensity of light that passed through the sample is measured, it can be 

related to transmittance [145]. Transmittance is defined as the ratio between the amount of 

transmitted light and the amount of light that has been directed to the sample, while 

absorbance is defined as the negative logarithm of transmittance both relate according to 

the following formula: 

                
 

  
 

Where A stands for absorbance, which is the amount of photons that are absorbed 

[145].  

Absorbance can then be related to the concentration through the Beer-Lambert law: 

         

Where A stands, again, for absorbance, ɛ (L mol
-1

 cm
-1

) stands for molar 

absorptivity, l for cell size, and C for concentration. 

 

1.3.5. ATR-FTIR 

 

FT-IR stands for Fourier Transform InfraRed, the preferred method of infrared 

spectroscopy, which is a widely used technique that, for many years, has been an important 

tool for investigating chemical processes and structure. The combination of infrared 

spectroscopy, with the theories of reflection, has made advances in surface analysis 

possible. Specific IR reflectance techniques may be divided into the areas of specular 

reflectance, diffuse reflectance, and internal reflectance. The latter is often termed as ATR 

(Attenuated Total Reflectance) [147] and is the one used in the current work. 

The concept of internal reflection spectroscopy originates from the fact that radiation 

propagating in an optically dense medium, of refractive index n1, undergoes total internal 

reflection at an interface of an adjacent medium, of lower optical density (refractive index 

n2 < n1) [147]. This phenomenon is called the evanescent wave, and was observed by 

Newton in the early 1700s. A schematic representation of a horizontal ATR-FTIR element 

is shown in Figure 14. IR radiation is internally reflected through a ZnSe crystal at an 

angle θ, producing an evanescent wave at each reflection that penetrates slightly past the 

crystal surface. At each internal reflection, the evanescent field interacts with any sample 

placed in contact with the ZnSe crystal. The depth that the evanescent field penetrates into 
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the sample at each reflection depends upon θ, as well as the IR wavelength in ZnSe, and 

the ratio of the refractive indices of the sample to ZnSe [147]. 

 

 

Figure 14 – Schematic representation of ATR spectroscopy [148]. 

  

One of the big advantages of ATR-FTIR is that is a sampling technique that enables 

samples to be examined directly in the solid or liquid state, as in the samples used in this 

work, without further preparation [148], being suggested as the best option to measure 

spectra for aqueous solution. Also, besides Raman spectroscopy, IR spectroscopy is the 

only other known, non-invasive, alternative of the Si
29

 NMR for studying small silicate 

nanoparticles, while being significantly faster, cheaper and more widespread than NMR 

[149].  
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2. Materials and Methods 

 

2.1. Materials 

 

Water was ultra-high purity (UHP; 18 MΩ/cm) from an Elga water purifier. 

Sodium silicate solution (≥ 10% NaOH and ≥ 27% SiO2), sucrose (α-D-Glc-(1→2)-β-D-

Fru), poly(ethylene glycol) (average mol wt 200), Ethanol absolute (≥ 99.8% (GC)), 

sodium chloride (≥ 99%), concentrated hydrochloric acid (37%),  and sodium hydroxide (≥ 

98%), were all purchased from Sigma-Aldrich Co. Ammonium Molybdate 

((NH4)6Mo7O24.4H2O; AnalaR grade), Sulphuric Acid (2.5 mol/L (5 N); AnalaR; 

volumetric standard), were purchased from BDH Ltd. Pepsin from porcine gastric mucosa 

(4,220 units/mg protein) was from Sigma. Dialysis tubing cellulose membrane (43 mm; 12 

400 nominal molecular-weight cut off) was purchased from Sigma-Aldrich Co. 

 

2.2. Methods 

 

2.2.1. Synthesis 

 

In the synthesis of the following silicate solutions, which have an initial pH of 

approximately 11.0, when a drop in pH was needed, the acidic solution had to be added 

very fast, in order to avoid pH around 7.0, as gelling occurs rapidly in this range. 

 

Non-stabilised silicate suspension 

 

A silicate solution was prepared through dilution with UHP water (pHi ≈ 11), and 

its pH dropped to around pH 0.5 to 1.0 with 37% HCl. After this, pH was raised again, to 

the desired final pH, depending on the experiment, with NaOH. This solution had a [Si] of 

0.5 M, and was used as negative control in all the experiments. 
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Sucrose stabilised Silicate suspension  

 

A silicate 0.5 M solution was prepared through dilution with UHP water (pHi≈11). 

Sucrose was then added to this solution, aiming for a final concentration of 1.5 M. The pH 

was dropped to around pH 0.5 to 1.0 with 37% HCl, and then raised again, to the desired 

final pH with NaOH.  

 

PEG stabilised silicate suspension  

 

This solution was done in the same way that of the silicate and sucrose, except PEG 

was added instead of sucrose, and a final concentration of 1.0 M was used. 

 

Sucrose stabilised silicate suspension with 14% EtOH (v/v) 

 

A 0.5 M silicate solution was prepared through dilution with UHP water (pHi≈11). 

Sucrose was then added to this solution, aiming for a final concentration of 1.5 M. The pH 

was dropped to around pH 0.5 to 1.0 with 37% HCl. After the pH drop, ethanol was added 

to the solution, aiming for a final concentration of 14% (v/v). Then the pH was raised 

again, to the desired pH, with NaOH. 

 

2.2.2. Determination of Particle Size and Zeta Potential 

 

The samples were placed in an appropriated cuvette or cell, and then their particle 

size distribution (refractive index – 1.487; absorption – 0.010) or zeta potential (F(Ka) – 

1.5), were determined by DLS in a Zetasizer, Malvern Instruments. 

   

2.2.3. Characterization of Silicon Phase Distribution 

 

First, for each solution, three aliquots were collected; i) total silicon, ii) silicon 

content in the supernatant, iii) and nanopaticulate silicon < 12 nm, which was ultrafiltered 

through a membrane of 1000 KDa. All aliquots were collected in duplicate. Before 

analysis by ICP-OES, each sample was diluted twice, first in UHP water and then in 5% 

HNO3. Silicon standards were prepared, with silicon concentration ranging between 0 and 
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100 ppm, through the dilution of a silicon stock standard, 1000 ppm (Fisher Scientific), 

with 5% HNO3. The nanoparticulate fractions (i.e. < 12 nm, and > 12 nm), as well as the 

precipitated fraction of silicon, were determined, using inductively coupled plasma optical 

emission spectrometry (ICP-OES; JY 2000, Horiba), using a wavelength of 251.611 nm. 

Silicon fractions were calculated as per below: 

 

                                  
    

       
     

 

                         
                     

       
       

 

                                                                    

 

2.2.4. ATR-FTIR Spectroscopy 

 

A Shimadzu IRPrestige-21 Fourier Transform Infrared spectrometer was used, 

equipped with a Specac MKII Golden Gate single reflection diamond ATR. Spectrums 

were all acquired wit purge bellows. The samples spectrums were obtained using a droplet 

on the diamond ATR surface. All spectra were acquired in the transmittance mode from 

4000 to 500 cm
-1

 by accumulating 20 scans. The FTIR spectrometer has a wavenumber 

accuracy of 0.125 cm
-1

. Transmittance spectrums were corrected against a spectrum of 

UHP water, obtained in the same instrumental conditions. 

  

2.2.4. Dissolution Assay 

 

The dissolution assay was adapted from a previously described method, used to 

compare the absorption of silicon from different foods and supplements. This is a two 

stage assay, aiming to mimic the process of digestion. In the current work, Biosil was used 

as the positive control, since in the referred study it had the highest bioavailability of the 

supplements studied. Prior to sample analysis, the silicon concentration of all solutions, 

including the positive control, was determined by ICP-OES, and after that the solutions 

were treated, so that their silicon concentrations matched. In this case, the Biosil was 
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diluted from approximately 19000 ppm to 13000 ppm. For the dissolution assay, 0.25 mL 

of each sample was transferred to a 10 mL polypropylene tube, and mixed thoroughly with 

5 mL simulated gastrointestinal fluid (SGIF), and then preheated to 37 ºC in a water bath. 

To prepare the SGIF, 0.24 g of NaCl were dissolved in 9.6 mL 1 M HCl and 110.4 mL of 

UHP water and, just before use 0.384 g of pepsin was added. The pre-heated samples were 

then placed in pre-washed (in UHP water) dialysis bags, which were then placed in a 50 

mL tube containing 30 mL of pre-warmed to 37 ºC SGIF. The 50 mL tubes were placed in 

a water bath at 37 ºC, under agitation, for 24 hours. After two hours, the SGIF mixture 

surrounding the dialysis bag was adjusted to pH 7.0, with 1 M NaHCO3, this way 

mimicking intestinal conditions. The surrounding mixture was sampled for ICP analysis at 

the following time intervals, 0 min, 15 min, 1h, 2h, 4h, 6h and 24 h. All samples were 

taken in duplicate for total silicon concentration analysis and for ultrafiltered fraction 

analysis, using 3 KDa filters, which corresponds to a particle size of approximately 1 nm, 

and diluted with 0.7% HNO3. 

 

2.2.5. Molybdate Assay 

 

The molybdate assay was used in this work at two different times, on itself and 

associated with the dissolution assay, with some changes between experiments. In both, to 

prepare the colour solution, which has to be fresh, 0.6105 g of Ammonium Molybdate 

were dissolved in 85 mL of UHP water and 15 mL of 0.5N H2SO4.  

For the assay in itself, the samples were first diluted for a final silicate 

concentration of 0.6 mM, after what, 1.0 mL was taken from each diluted sample at 0, 10, 

20 and 30 minutes, and left to react with 2.0 mL of the colour solution for 10 
1
 minutes. 

After the 10 minutes its absorbance was read in a Perkin Elmer Lambda 25 UV/Vis 

spectrometer, at 400 nm, using a 1.0 cm quartz cell.  

For the molybdate assay associated with the dissolution assay, 50 µL samples were 

taken, in quadruplicate, from the surrounding mixture, at the same time intervals as for the 

ICP analysis (0 min, 15 min, 1h, 2h, 4h, 6h and 24 h). The samples were placed into a 96 

well plate, and then 200 µL of colour solution was added with a multi-channel pipette.  

                                                           
1
 It is important that the sample is not left to react with the colour solution for more than the 10 minutes. This is due to 

the fact that the molybdate in excess, after reacting with all the monomeric species, might induce cleavage of dimers, and 

even trimmers, subsequently reacting with the monomers generated, which will result in an inaccurate increase of signal.  
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After addition of the colour solution the plates were placed on an orbital shaker for 

10 minutes, and, immediately after, the spectrophotometer analysis was done at 405 nm 

(Labsystem Multiskan RC Optical Plate Reader).  

For both analysis, water was used as blank, and for calibration purposes a 

calibration curve was acquired, with the concentration of silicon in the standards ranging 

from 0.0 to 1.0 mM. The standards were prepared with the same silicon solution used for 

the preparation of ICP analysis standard, and the dilution was made in the former with 

water and, in the later with SGIF. Reacting   
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3. Results and Discussion 

 

3.1. Silicate Nanoparticles Synthesis 

 

The first part of this work consisted in the synthesis of nanoparticulated silicate 

materials, in which different systems were tested, so as to improve the silicate suspensions 

stability. For discussion purposes, out of all the compounds tested, only the ones that 

significantly improved stability, when compared to the silicate suspension with no 

stabilizer, will be assessed in detail. A complete list of all the chemical compounds tested 

can be found in Appendix A. The materials were also characterized by DLS, to obtain the 

size distribution of particles in suspension, by zeta, to obtain the electric potential, and by 

ICP, to determine the silicate phase distribution.  

Solubility of amorphous silica, in water, at 25 C, under pH 10, range, 

approximately from 2.5 mM to 5.0 mM, depending on the medium conditions, higher than 

this, they start to form aggregates [2]. Silicate suspensions are very stable at alkaline pH’s 

(≈ pH 10), and start to dissolve above pH 11 [2], however this is not a suitable 

characteristic for a dietetic supplement, as there could be potential safety issues, such as 

damage to the mucosa and a severe shift of the stomach pH [150]. Neutral pH’s were not 

an option either, because silicate suspensions have their lowest stability point at this range 

(pH ≈ 5 to pH ≈ 8) [2], so the materials synthesised, at first, had a final pH of 

approximately 3.5, since this is a pH close to the range at which silicate suspensions are 

metastable, and also an acceptable pH to be ingested by humans [151]. In this work, the 

silicate suspensions were synthesised with a silicate concentration of 0.50 M, since this 

was the highest possible to be added, without making the suspension unstable, leading to 

rapid aggregation. At pH 3.5, the 0.50 M silicate suspensions were stable for an average of 

approximately 4 days, after this they became very viscous, and finally they form a 

hardened gel like material. Immediately after being synthesised, the particles in these 

suspensions were very small, with an average particle size of approximately 2.4 nm 

(Figure 15A). This was a desired characteristic, since the aim was that the nanoparticles in 

the supplement, or at least their majority, become soluble, once they reach the duodenum, 

and the smaller the nanoparticles, the easier this process happens [2]. The zeta potential of 

the silicate suspensions was also measured, being very close to 0 mv, tending to the 
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negative side, so the surface of the particles was not charged, thus being more prone to 

aggregation, since there was no repulsion factor. Therefore, at pH 3.5, the stability of the 

silicate nanoparticles is due, only, to the lack of hydroxyl ions, which is a catalyst for the 

siloxane bonding formation [2].  The zeta potential graph can be observed in Figure 15B, 

and although there is the hint of a peak near 0 mv, this is not sharp, so the results may not 

be very accurate. This might be due to the sample being too concentrated, resulting in a 

high content of nanoparticles, this way hindering their movement, which would affect the 

measurement of the surface electrostatic potential. Also, it could be due to the existence of 

different populations of nanoparticles with different charges, however if this was the case, 

agglomeration and gel formation should happen almost immediately. Nonetheless, 

according to the literature [12], in less concentrated silicate suspensions, the particles, in 

the pH range 1.5 to 2.5, are reported to have zero charge, starting to become negative at 

pH’s higher than approximately 2.5, so the particles synthesised in this work seem to 

behave the same way. 

 

 

 

Figure 15 - Particle size distribution (A) and zeta potential distribution (B) of the silicate suspensions (0.50 M) in UHP 

water, at pH 3.50. 

 

A 
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Even though the nanoparticles in these silicate suspensions were small, a shelf life 

of 4 days for a supplement is not acceptable, so the next step was to try to improve 

stability. This, as stated above, was done by testing different chemicals as possible 

stabilizers, and among all the compounds tested there were four systems that clearly 

enhanced the stability of the silicate suspensions, when compared to the negative control 

(Figure 16), those were sucrose and PEG in UHP water, and sucrose in a matrix of UHP 

water and ethanol. These suspensions will now be discussed in detail. 

 

 

 

Figure 16 – Average number of days that the silicate suspensions remained stable with the different stabilizers used (A) 

and their respective particle size (B), at pH 3.5 

 

3.1.1. Sucrose 

 

Carbohydrates are the most abundant organic material in the biosphere, so there 

ought to be considerable opportunity for silicates and carbohydrates to interact [152]. Also, 

it is widely known the role of sugars as well established cements set retarders, which are 

mostly composed of silicates, being sucrose one of the most effectives [153]. Although the 
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mechanisms by which they interact with the heterogeneous solid components in cement 

slurries, to influence the cement hydration, are not well understood, there are several 

theories that link the sugars with the silicate present in the mixture. There have also been 

some studies in the interaction of sugars with silicic acid in solution, and their effect in 

stability, and, although all the studies so far, at least to our knowledge, were made with 

slightly different conditions, from the ones in this work, i.e. strongly basic medium, the 

positive results made sucrose an obvious stabilizer possibility [152] [154].  

During the synthesis of the sucrose stabilised silicate suspensions, the 0.50 M 

concentration of silicate was kept, at first, as in the non-stabilised suspensions, however, 

different ratios of silicate:sugar were tested, by altering the sucrose concentration (Table 

2). It was observed that the best results were achieved with a concentration of 0.50 M of 

silicate and 1.50 M of sucrose, so this was. Sucrose stabilised silicate suspensions, at pH 

3.5, were stable for an average of approximately 18 days, delivering the best result, out of 

all the suspensions in UHP water, at this particular pH. So it seems that a ratio of 1:3, 

silicate:sucrose, would be the minimum required to increase stability significantly, 

however, this is not ideal, since for the silicate concentrations being used, the amount of 

sucrose needed would make the sugar content of the supplement very high, turning it, in 

the worst case, depending on daily dose, not recommended for diabetics. 

 

Table 2 – Different ratios of silicate:sucrose tested, and negative control (NC), at pH 3.5, and the days that each 

suspension remained stable. 

  
Compound 

[Compound] 

(M) 
pH Stability (days) 

 

Silicate 0.5 M Sucrose 

0.50 

3.50 

8 

 1.00 10 

 1.50 17 

NC Silicate 0.5 M   3.50 4 

 

 

Also, the same ratios were tested with higher concentrations of silicate (Table 3), in 

the attempt of increasing its content, however, this too fell short to the stability time 

achieved with 0.50 M silicate and 1.50 M sucrose. This might be due to the silicate 

concentration being too high, that despite the silicate and sucrose stoichiometry being the 

same, the aggregation rate is too fast for the sugar to exert the same effect. 
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Table 3 - Different ratios of silicate:sucrose tested, and the negative control (NC), at pH 3.5, and the days that each 

suspension remained stable.  

  
Compound 

[Compound] 

(M) 
pH Stability (days) 

 

Silicate 1.0 M Sucrose 

1.0 

3.50 

3 

 2.0 6 

 3.0 7 

NC Silicate 1.0 M   3.50 7 

  

The sucrose (1.50 M) stabilised silicate (0.50 M) suspensions were characterized 

for particle size and zeta potential (Figure 17). The particles had a particle size of 

approximately 2.0 nm, and, even though they were slightly smaller than the particles in the 

silicate suspensions with no stabilizer, the difference is not substantial. However, despite 

the fact that sucrose did not show a big improvement in the particle size, when compared 

to the negative control, 2 nm is a very good starting point. Also, similar to the negative 

control, the zeta potential of these suspensions was approximately 0 mV, however, this 

time, the graph showed a very sharp peak, which might be because the hydroxyl groups in 

the sucrose are stabilizing the charge of the nanoparticles. Also, this suggests that the 

sucrose is not stabilizing the silicate suspensions by changing the surface charge either 

positively or negatively, which would create electric repulsion between the particles, 

preventing aggregation. In a previous study, which assessed the formation of silicate 

complexes with sugars in aqueous solutions, although the system conditions were not the 

same, when sucrose was tested, it failed to react with silicic acid, which they found was 

consistent with sugars lacking an open hydroxyl group on an anomeric carbon [152]. 

However, in this same study, in terms of stability, only silicic acid solutions with sucrose 

and glycitols (inositols) were stable indefinitely. Sucrose might be stabilizing the silicate 

suspensions through steric hindrance, preventing collision between particles, though in the 

long term this does not seem like a suitable mechanism, since particles would eventually 

have contact with each other, leading necessarily to gel formation [152].  
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Figure 17 - Particle size distribution (A) and Zeta potential distribution (B) of sucrose stabilised (1.50 M) silicate 

suspensions (0.50 M) in UHP water, at pH 3.50 

 

 

3.1.2. PEG 

 

PEG is widely used for the synthesis of several functionalized nanoparticles, in 

some cases increasing their stability dramatically [155]. It has been reported that 

PEGylation can improve nanoparticles dispersity in aqueous solutions, and also that it is 

one of the most efficient ways to enhance their circulation, permeability and retention in 

biological systems [156]. A lot of studies have been done on PEGylated silica 

nanoparticles, and although they were mainly focused on mesoporous nanoparticles, and in 

general the conditions used were very different from those employed in this work, positive 

results have been reported [156]. Also, PEG would be a suitable stabilizer to use in a 

dietetic supplement since it is a typically biologically inert, non-immunogenic chemical 

[157].  

As in the case of sucrose, different ratios of silicate:PEG were tested, while 

maintaining a silicate concentration of 0.50 M (Table 4). The ratio that delivered the best 

result was 1:2 (0.5 M of silicate and 1.0 M of PEG), those experiments were, however, 

restricted, since due to the solubility of PEG, it was not possible to test higher ratios while 
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keeping the 0.5 M of silicate. PEG stabilised silicate suspensions were stable for an 

average of approximately 17 days, at pH 3.5, very similar to sucrose and significantly 

better than the negative control, however, still far from the ideal goal for the manufacturing 

of a dietetic supplement.  

 

Table 4 - Different ratios of silicate:PEG tested, and negative control (NC), at pH 3.5, and the days that each suspension 

remained stable. 

 

  
Compound 

[Compound] 

(M) 
pH Stability (days) 

 
Silicate 0.5 M PEG 

0.5 
3.50 

11 

 1.0 16 

NC Silicate 0.5 M   3.50 7 

 

 

These suspensions were also characterized for particle size (Figure 18A), and the 

results showed a particle size around 900 nm, however, this result was not in concordance 

with the increase in stability achieved with PEG, since silicate particles this large would 

rapidly aggregate even further, and form a gel. The PEG stabilised silicate suspensions 

were then centrifuged and the particle size of the supernatant was measured, showing an 

average of approximately 0.86 nm (Figure 18B). This result indicates that there are very 

small nanoparticles in the suspension, despite the first result, which could be due to the 

excess of PEG forming bigger polymers, and thus preventing the machine of sizing such 

small particles. Next, the supernatant was analysed with ICP, to determine the fraction of 

silicon that corresponded to these small particles The ICP results showed that out of the 

total amount of silicon in the sample, approximately 95% was in the supernatant, thus 

confirming that the bulk of the nanoparticles was indeed small.  The zeta potential of the 

PEG stabilised silicate suspensions was also determined (Figure 18C), however, as in the 

non-stabilised silicate suspensions, it did not deliver a sharp peak, and the same result was 

achieved every time the DLS was repeated. This might be because, contrary to sucrose, 

PEG does not have a significant number of hydroxyl groups that could stabilize the charge 

of the nanoparticles. Some studies on silica nanoparticles report the formation of a PEG layer 

on the surface of the particle [158], however, if this is the case, something changed in the 
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long term, since eventually particle aggregation was observed. This might be due to several 

reasons, i.e., the polymer did not adsorb with sufficient strength to avoid displacement due 

to Brownian encounters, or slow dissolution of the surface layer of silica, to which the 

PEG chains are bound.   

 

 

 

 

Figure 18 – Particle size distribution (A), particle size of the centrifuged fraction (B), and zeta potential (C) of the PEG 
stabilised (1.00 M) silicate suspension (0.50 M), at pH 3.5. 

 

 

3.1.3. Sucrose and Ethanol 

 

Another approach to improve stability of the silicate suspensions, besides using 

different stabilizers, would be altering the medium, which for the results discussed above 
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was UHP water. Fine particles dispersed in a polar matrix acquire surface charges due to 

ionization or dissociation of surface groups or adsorption of ions onto the surface [159]. 

They remain suspended in the dispersion for a long period of time due to the electrostatic 

repulsion between the charged surfaces [159]. It has been described in the literature that 

the solubility of very low concentrations of silica increases when in the presence of certain 

alcohols, like methanol [2]. However methanol has a high level of toxicity to humans, 

since it can break down into formic acid, which can cause permanent blindness, and, 

depending on the dose, it can be fatal, so it would not be suitable for a dietetic supplement 

[160]. As an alternative, ethanol was used instead, though, even ethanol, has to be used 

sensible, since the presence of high concentrations of alcohol in a dietetic supplement 

could be potentially off putting, and also, possible reactions of the organism would have to 

be assessed. 

At first it was tested the effect of a high percentage of ethanol (40% v/v) in the 

stability of a silicate (0.50 M) suspension, in the absence, at pH 3.5. These suspensions 

were stable for 70 days and it was not possible to observe the formation of a gel, since the 

samples were being used at the same time for ICP analysis, and ran out before aggregation 

occurred. Still, 70 days is an impressive improvement when compared to the negative 

control, the silicate suspensions, which were stable for an average of 4 days, however, this 

amount of alcohol would not be suitable for the manufacturing of a dietetic supplement. 

Then it was tested the effect of a lower percentage of alcohol (14% v/v) in a sucrose (1.50 

M) stabilised silicate (0.50 M) suspension, at pH 3.5. Those suspensions were stable for an 

average of 25 days, which is a slight improvement from the sucrose stabilised silicate 

suspensions, in UHP water, which were stable for an average of 18 days. Therefore, this 

clearly demonstrates that ethanol improves the silicate nanoparticles dispersion, and also, 

that this effect is directly proportional to the percentage of alcohol in the suspension. The 

later suspensions were analysed for particle size (Figure 19A) and the results show an 

average size of approximately 1.5 nm, with a much smaller population around 5.0 nm, 

slightly smaller than the particles in the sucrose stabilised silicate suspension in UHP water 

(approximately 2.0 nm), but the difference is not substantial, which suggest that the ethanol 

does not impact on the initial size of the particles. The zeta potential was also acquired 

(Figure 19B), and, similar to the sucrose stabilised suspension in UHP water, it is very 

close to 0.0 mV, so, unlike other particles in polar mediums [159], in this case the surface 
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of the nanoparticles did not acquire any charge, which would be beneficial, as this would 

improve stability. 

 

 

 

Figure 19 - Particle size distribution (A) and zeta potential distribution (B) of sucrose stabilised (1.50 M) silicate 

suspensions (0.50 M) in UHP water and 14% v/v EtOH, at pH 3.50 

 

 

3.2. pH vs Stability 

 

The pH range acceptable for human ingestion is quite broad [151], so, even though 

it was not possible to use the highly basic mediums at which silicates are very stable, it 

would be possible to use a pH slightly lower than 3.50, and closer to the pH range at which 

the silicate particles are metastable, according to the graph in Figure 2. The samples 

discussed above were tested from pH 1.0 to 3.5, with intervals of 0.5 and the results can be 

observed in Figure 20. Analysing the graph, all the samples demonstrated similar pattern 

and behaviour, reaching their peak of stability between pH 1.0 and 2.0, so, in concordance 

to the literature, which described the effect of pH in low concentrated silicate suspensions, 

the synthesised silicate suspensions are, also, clearly more stable at low pHs. Although at 

pH 3.5, the sucrose stabilised silicate suspension, in UHP water, delivered better results 

A 

B 



 

52 
 

than PEG, as the pH lowers the stability of the PEG stabilised suspension increases 

exponentially, even surpassing, at pH 2.5 and onwards, the stability of the suspensions in 

UHP water and ethanol. All of synthesised materials were better than the negative control, 

however, the PEGylated suspensions, and the sucrose stabilised suspensions in UHP water 

and ethanol, had a more significant improvement in stability, both reaching their maximum 

stability at approximately pH 1.5, being stable for 80 and 67 days respectively. 

Nonetheless, despite the peak in stability being observed around pH 1.5, this would be too 

acidic for human ingestion, so it is not desired for the manufacturing of a dietetic 

supplement. It would be of interest, though, to analyse more in depth the effect of a more 

acidic pH in the silicate suspensions properties. Therefore, pH 2.5 was chosen to serve as a 

comparison with pH 3.5, since, while it is still a quite acidic pH, it could possibly be 

implemented for the supplement. Another possibility would be manufacturing the 

supplement in a way, so that when to be ingested, it would be mixed with a solution that 

would raise its pH. 

 

 

Figure 20 – Stability of silicate suspensions as a function of stabilizer and pH. 

 

 

3.2. ATR-FTIR 

 

In order to try to better understand the nature of the interactions between the 

stabilizers (sucrose and PEG) and the silicate particles, FTIR analysis was performed on 

the synthesised samples. Different backgrounds were tested for this step, those being, a 

mixture of UHP water, HCl and NaOH, UHP water only, and air, and although they all 

achieved quite similar results, the UHP water only was the background of choice. 
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Therefore, these are the spectrums that will be used for discussion purposes, and only the 

overlay is shown, however, all the singular spectrums achieve with water, and with the 

other backgrounds, can be seen in Appendix B.  

The overlay of the ATR-FTIR transmittance spectrums of the non-stabilised silicate 

(0.5 M) suspension with both, a silicate (0.5 M) suspension stabilised with sucrose (1.5 M), 

and a sucrose (1.5 M) solution, all at pH 3.5, is shown in Figure 21. In Figure 22, an 

overlay is also shown for, the non-stabilised silicate suspension with a silicate (0.5 M) 

suspension stabilised with PEG (1.0 M), and a PEG solution (1.0 M), also at pH 3.5. In the 

spectra of the non-stabilised silicate suspension, the broad IR band at 1087 cm-1, with a 

shoulder around 1190 cm
-1

, is attributed to the TO and LO modes of the Si-O-Si 

asymmetric stretching vibrations. While the band at 975 cm
-1

 can be assigned to silanol 

groups [161].  

Regarding sucrose, in the spectra of the sucrose solution alone, the sample has well 

resolved bands in the wavenumber range from 3000 to 2800 cm
-1

, which may be attributed 

to the C-H stretching modes, and especially from 1500 to 800 cm
-1

, in this case, the intense 

bands in the 1000 cm
-1

 region are due to the C-O and C-C stretch vibrations, and the broad 

band near 1400 cm
-1

 may be produced by the C-C-H and C-O-H deformation [162]. 

Additionally some negative bands, which correspond to the typical water absorption, were 

observed around 1600, 3400 and 3650 cm
-1

 [163]. In the spectra of the synthesised silicate 

suspension stabilised with sucrose, the sucrose pattern completely dominates the outcome, 

and analysing the overlay of the three spectrums, it is not visible any new peak or 

significant change in the stabilised sample. This indicates that no bonds were formed, and 

although it was not expected to see the formation of strong bonds, such as covalent, it was 

possible that some sort of weak interaction would be occurring, however this did not 

verify. Therefore, the stabilizing effect of sucrose must be due exclusively to steric 

hindrance, preventing to some extent the silicate nanoparticles from becoming into contact 

with each other. 

Regarding PEG, in the spectra of the PEG solution, the sample shows significant 

bands from 2960 to 2850 cm
-1

, which are due to C-H stretch vibrations [164], and 

especially from 1500 to 880 cm
-1

. The band from 1150 to 1000 cm
-1

 is usually assigned, in 

alcohols, to either the C-O stretching, or in-plane bending vibration of the C-O-H group, 

and in ethers to the stretching vibration of C-O-C, so all would add up to form this band, 
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and the region from 1450 to 1300 cm
-1

 can be assigned to scissoring and bending 

vibrations of C-H [164]. Similar to the spectra of the sucrose solution, some negative bands 

are present in the spectra of the PEG solution, and again they correspond to the typical 

water absorption. Analysing the spectra of the synthesised silicate suspension stabilised 

with PEG, and the respective overlay, it is possible to observe that the former is an addition 

of the non-stabilised silicate suspension spectra with the PEG solution spectra, being this 

particularly clear in the region from 1250 to 1150 cm
-1

. This suggests that, similar to 

sucrose, there is no interaction between the silicate nanoparticles and the stabilizer, being, 

again, steric hindrance the most reasonable explanation for the increased stability. 

However, PEG provides a clear improvement when compared to the use of sucrose, 

especially at lower pHs, this might be because PEG, as a polymer, forms a net-like 

structure around the nanoparticles, due to inter and intra hydrogen bonds. 

 

Figure 21 – Overlay of the non-stabilised silicate suspension ATR-FTIR spectra with the spectrums of a sucrose solution 

and a sucrose stabilised silicate suspension, all at pH 3.5.    



RESULTS AND DISCUSSION 

55 
 

 

Figure 22 – Overlay of the non-stabilised silicate suspension ATR-FTIR spectra with the spectrums of a PEG solution 

and a PEG stabilised silicate suspension, all at pH 3.5. 

 

 

3.3. Phase Distribution Over Time 

 

The second part of the work involved the analysis of the fractions (nanoparticulate 

and precipitated) in the suspensions discussed in 3.1., and how they changed over time, so 

as to better understand the process of aggregation, and to assess which synthesised material 

provided an higher concentration of small nanoparticles. To study the nanoparticulate 

fraction, the first choice was to use 3 kDa filters, which corresponds to a particle size of 

approximately 1 nm, so any portion of material passing through the sieve could be 

considered soluble, allowing to estimate the nanoparticulate fraction in its whole. 

However, no significant amount of sample would come from the ultrafiltration, so 1000 

kDa filters were used instead, which corresponds to a particle size around 12 nm. With 

these filters any material that goes through the sieve could potential not be only 

nanoparticulate, but also some soluble, still, it was assumed that it was all in the 

nanoparticulate range, due to the low solubility of silicates at these pHs. Particle size 

analysis was also performed through the time course, to assess if the changes in the particle 
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size were gradual or if there was a sudden increase at any time point. Also, all the materials 

were studied at pH 2.5 and 3.5, and for a maximum of 20 days if gelling did not occur. 

Even though no temporal study was done in the silicate 0.5 M suspensions without 

stabilizer, since a gel was formed, on average, in 4 days, an ICP analysis was still 

performed, in samples at pH 2.5 and 3.5, to serve as comparison (Figure 23). Through the 

analysis of the graph, it is possible to see that the percentage of the nanoparticulate 

fraction, below 12 nm, is slightly higher at pH 2.5, 97.5% against 92.3% at pH 3.5, which 

was expected, since, as it was observed before, the suspensions are more disperse at lower 

pHs. However, the difference is minimal and both have a very high percentage of nano 

material < 12 nm, which is a positive result, as this would favour the dissolution in the gut 

of a big part of the nanoparticles, ingested as the supplement. 

 

 

Figure 23 – Silicon phase distribution of the non-stabilised silicate suspensions, at pH 2.5 and 3.5. 

 

 

3.3.1. Sucrose 

 

As stated before, the sucrose stabilised silicate suspensions were stable for an 

average of 18 days, both at pH 2.5 and 3.5, therefore, the difference in pH did not seem to 

affect stability. However, observing the silicon phase distribution graphs, for both pHs, 

there is a slight improvement at pH 2.5 (Figure 24A), in which, after 5 days, the 

nanoparticulated fraction was still almost 80% of the suspension. Whereas at pH 3.5 

(Figure 25A), according to the ICP results, there is no nanoparticles under 12 nm at the 

same time point. Regarding the precipitated fraction, it remained almost non-existent 

throughout the whole experiment, which suggests that the particles grow until a certain 
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size, and then create links between each other, like a net, increasing the viscosity until a gel 

is formed. In terms of the analysis with DLS (Figure 24B; 25B), the results show that, at 

both pHs, the size of the nanoparticles is always about 2.0 nm, which would be a very 

positive result, however it is not in concordance with the ICP results. This might be due, 

either to the correction that the instrument performs altering the results, or because, when 

doing the ultrafiltration, with the 12 kDa filters, for ICP analysis, the bigger particles clog 

the sieve, this way obstructing the passage of the smaller ones, already hindered due to the 

viscosity of the suspension. 

 

 

 

Figure 24 - Silicon phase distribution overtime of the sucrose stabilised silicate suspensions, at pH 2.5 (A), and the 

respective particle size analysis (B). 
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Figure 25 - Silicon phase distribution overtime of the sucrose stabilised silicate suspensions, at pH 3.5 (A), and the 

respective particle size analysis (B). 

 

 

3.3.2. PEG 

 

As seen in previous results, PEG stabilised silicate suspensions were clearly more 

stable at lower pHs than pH 3.5. Looking at the fraction analysis overtime, at pH 2.5 

(Figure 26A) and 3.5 (Figure 27A), in the former, the percentage of nanoparticles under 12 

nm is higher throughout the whole experiment, and it is worth mentioning that the 

suspension was still stable past the 20 days of analysis. The comparison of PEG and 

sucrose stabilised nanoparticles, at pH 2.5, showed that, immediately after synthesis, the 

use of sucrose resulted in a higher percentage of small nanoparticles, bordering 100%, 

however, those agglomerated much faster than when PEG was used. This suggests that, 

although in the PEG stabilised suspensions the content of really small nanoparticles is not 

as big as with sucrose, they remain more stable in the long term, not aggregating as fast. 
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negligible, again supporting the hypothesis that the particles, instead of aggregating, form 

branched chains. Regarding size analysis, the DLS results show, for the suspensions at 

both pHs, an exponential particle growth, however, at pH 3.5 (Figure 27B), much bigger 

particles are formed, reaching approximately 150 nm after 15 days, while at pH 2.5 (Figure 

26B), after 20 days, the particles were just on average 26 nm in diameter. 

 

 

 

Figure 26 - Silicon phase distribution overtime of the PEG stabilised silicate suspensions, at pH 2.5 (A), and the 

respective particle size analysis (B). 
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Figure 27 - Silicon phase distribution overtime of the PEG stabilised silicate suspensions, at pH 3.5 (A), and the 

respective particle size analysis (B). 
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sucrose stabilised suspensions at pH 2.5, so the addition of ethanol would allow to increase 

the synthesis pH without dramatically altering the outcome. Again, as in the other 

suspensions analysed with sucrose and PEG, the precipitated fraction was almost non-

existent. Regarding the size analysis, that can be seen in Figure 28B for pH 2.5, and in 

Figure 29B for pH 3.5, the results were not conclusive and did not show any trend, which 

might be due to ethanol affecting the measurement, by altering the particles mobility in the 

medium. Also it is not in concordance with the ICP results, similar to the case of sucrose, 

since after 15 days the DLS show an average particle size of less than 4.0 nm, while, at the 

same time point, the ICP analysis do not show any fraction of nanoparticles under 12 nm. 

 

 

 

Figure 28 - Silicon phase distribution overtime of the sucrose stabilised silicate suspensions (14% EtOH v/v), at pH 2.5 

(A), and the respective particle size analysis (B). 
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Figure 29 – Silicon phase distribution overtime of the sucrose stabilised silicate suspensions (14% EtOH v/v), at pH 3.5 

(A) and the respective particle size analysis (B). 
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It is well known that molybdate ions form polyanions in acidic medium, and that, in 

the presence of silicate ions, give rise to the formation of heteropolyoxyanions. Under 

acidic conditions silica reacts with the molybdate to form a yellow coloured acid, 

sylicomolybdic acid, as it is represented in the following equations [165]. 

 

1.                  

2.                       

3.                                             ]                      

 

This mechanism was used as the first attempt to test how the synthesised 

suspensions would behave when diluted, as would happen in the gut. An additional colour 

development, from yellow to blue, could have been used, through a reducing agent, as the 

heteropoly blue formed is more intense than the yellow colour of silicomolybdic acid, and, 

hence, a little more sensitive [165]. However, for the goal of this assay it was not needed to 

increase the detection limit, since the aim was only to analyse the pattern of dissolution. 

The absorbance of the suspensions at 405 nm was analysed at 0, 10, 20, and 30 

minutes, and the colour was allowed to develop for 10 minutes, after addition of the 

molybdate reagent. The results can be observed in Figure 30 for the silicate suspensions at 

pH 2.5 and 3.5. It is important to note that, the samples were diluted, prior to addition of 

the molybdate, from 0.5 M to 0.6 mM, which is a concentration below silica solubility, so 

the nanoparticles should dissolve. As stated in the introduction, the molybdate only reacts 

with soluble silica, so the concentrations on the graph do not stand for total silicon in the 

suspensions, only for the soluble fraction. Analysing the graph, for pH 3.5, it is possible to 

observe that, in all synthesised suspensions, the soluble fraction increases slightly with 

time, thus suggesting that dissolution is occurring and it would be reasonable to assume 

that the tendency would be to increase even further. At pH 3.5, the sucrose stabilised 

silicate suspension was the material that delivered the best result, with a maximum 

concentration of soluble silicon slightly above 0.15 mM. The results for the PEG stabilised 

silicate suspension, and for the sucrose stabilised suspension in UHP water and ethanol, 

were pretty much the same, the curves almost overlay perfectly. For those samples, the 

results were slightly worst at pH 3.5, with a maximum concentration of soluble silicon 

around 0.15 mM, however the same increasing pattern, as for sucrose, is observed. At pH 
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2.5 the increasing of soluble silicon is not as dramatic, and the best result was delivered by 

the silicate suspension stabilised with PEG, followed by the suspension stabilised with 

sucrose, in ethanol and UHP water, and finally, in contrast to pH 3.5, the silicate 

suspension, in UHP water, stabilised with sucrose. However, the most important thing to 

retain from this assay is that it suggests that, upon dilution, with all the synthesised 

materials, the silicate nanoparticles start to dissolve, which would be the ideal scenario for 

their behaviour in vivo. 

 

 

 

Figure 30 – Soluble silicon content in the silicate suspensions with the different stabilizers at pH 2.5 (A) and pH 3.5 (B).  
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assumptions about the bioavailability of the materials, which is one of the most important 

factors in the manufacturing of a supplement. Also, since one of the main factors that 

influence the molybdate analysis performance is the pH at which the silico-molybdate 

complex is formed, it would not be possible to establish a relation between pH 3.5 and 2.5. 

In the next part of the work it was used a continuous flow in vitro dialysis model, 

that aimed to mimic the process of digestion. It consisted of two phases, one gastric stage, 

at pH 1.25, and one duodenal, at pH 7.0. This would provide a good first estimate of the 

bioavailability of the synthesised materials, without having to consider host related 

influences. First, it was necessary to find a suitable positive control and, since there are 

already some silicate supplements on the counters, it would be interesting to see how the 

synthesised silicate suspension would perform in comparison. Biosil seemed like the most 

appropriate choice, since it is also a supplement with some degree of polymerization, and 

there are already some studies on its bioavailability, that show that Biosil is much more 

bioavailable than other silicate polymerized type supplements. Also, in a particular study 

with the same type of dissolution assay [57], it was confirmed that the correlation between 

the analysed samples in vitro, was the same to that in vivo. The dissolution assay was 

performed first with three different concentrations of Biosil, to confirm if the amount of 

silicate that passed through the dialysis bag was concentration dependent. In Appendix D it 

is possible to see the results of this test, which confirmed that Biosil bioavailability was 

concentration dependent, so for the next studies it was used diluted Biosil, so that its 

concentration matched that of our samples. 

In Figure 31 and 32 it is possible to observe the results, for the dissolution assay, of 

the synthesised materials, at pH 2.5 and pH 3.5, respectively, and also of the diluted Biosil. 

At pH 2.5 is possible to observe a pattern for all the materials tested, the total silicon 

content, in the mixture surrounding the dialysis bag, increases for the first 6 hours, 

reaching a more steady state after and until the 24 hours. However, this initial increase is 

more dramatic for the synthesised silicate suspensions, when compared to Biosil, 

particularly in the case of the silicate suspensions stabilised with PEG. Looking at the 

graph it is clear that the PEGylated suspensions delivered the best results, reaching 

concentrations of released silicon above 3.50 mM, and maintaining those from the 4 hours 

onwards, while the maximum achieved by Biosil, at the 24 hours mark, was 2.44 mM. At 

pH 3.5 it is possible to observe the same increasing pattern, as in pH 2.5, however the 



 

66 
 

difference between the synthesised suspensions and Biosil is not as pronounced, still in 

general they delivered slightly better results throughout the process, being the best results 

achieved, with the suspensions stabilised with PEG, and the suspensions stabilised with 

sucrose in UHP water and ethanol. At pH 3.5 none of the materials tested achieved a 

concentration of released silicon as higher as at pH 2.5, all staying below 2.5 mM. So the 

synthesised materials seem to be more bioavailable when synthesised at pH 2.5, rather than 

3.5, even though at the assay starting point the samples are all at pH 1.25, this might be 

because the suspensions at pH 3.5 have a greater degree of polymerization to start with. In 

comparison to Biosil, the synthesised suspensions performed very well, at both pH’s, none 

of them showing worst results than a supplement that is one of the staples of the silicate 

supplement market, staying only behind MMST, which is monomeric silica, and therefore 

not comparable. 

 

 

Figure 31 - Total silicon content in the mixture surrounding the dialysis bag, as a function of time, at pH 2.5 
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Figure 32 – Total silicon content in the mixture surrounding the dialysis bag, as a function of time at pH 3.5 (B). 
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Figure 33 - Soluble silicon content in the mixture surrounding the dialysis bag, as a function of time, at pH 2.5. 

 

 

 

Figure 34 – Soluble silicon content in the mixture surrounding the dialysis bag, as a function of time, at pH 3.5. 
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adjusted to pH 7.0, were acidified to pH 1.25. This would allow comparison with the 

samples acquired before, and at the two hours, however, it could potentially affect the 

concentration of soluble silicon in the acidified samples, so the data after the two hours is 

not completely reliable. Still, given the short time that the samples are left to react, after 

the pH adjustment, approximately 10 minutes, it is likely that the data is near accurate. 

Analysing the graphs (Figure 35 for pH 2.5; Figure 36 for pH 3.5), at both pHs, the values 

are very close to the total content of silicon acquired though ICP. This would suggest that, 

if the synthesised materials behaved, in vivo, in a similar way as they did in vitro, they 

would provide a content of soluble silicon of about the maximum that is possible to exist in 

the gut, since the solubility limit of silica, at intestinal conditions, is about 2-3 mM [57]. 

Similar to what was observed in previous results, out of all the materials tested, the best 

result was delivered by the silicate suspension stabilised with PEG, at pH 2.5, reaching, at 

the 24 hours mark a concentration of soluble silicate of approximately 3.0 mM. The only 

synthesised material that falls short is the silicate suspension with no stabilizer, delivering 

its best result at pH 2.5, with a silicon concentration of approximately 1.5 mM, while at pH 

3.5 it never rises above 1.0 mM. In Appendix E it is possible to see the graphs of each 

tested material, comparing the results acquired through ICP, both total and ultra-filtered 

silicon, with the results acquired with the molybdate assay. 
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Figure 35 - Monomeric silicon concentration in the mixture surrounding the dialysis bag (acquired through the 

molybdate assay), as a function of time, at pH 2.5. 

 

 

Figure 36 – Monomeric silicon content in the mixture surrounding the dialysis bag (acquired through the molybdate 

assay), as a function of time, at pH 3.5. 
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4. Conclusion and Future Work 

 

Currently there are already a few silicon supplements available in the market, 

however, most of them have some clear flaws, like high degree of polymerization, which 

will impair absorption in the gut, or the need of high daily doses, to achieve the desired 

silicon intake. This work was focused on the development of a new silicon supplement that 

may overcome some of those problems. The main strategy for this was the synthesis of 

colloid silicate suspensions, while attempting to prevent further polymerization of the 

nanoparticles through the use of surface stabilizers. 

From all the systems tested and characterised, the silicate suspensions stabilised 

with PEG, in UHP water, and the suspensions stabilised with sucrose, in UHP water and 

14% ethanol (v/v), were the ones who better improved stability overall. This was 

particularly evident at lower pH (pH 2.5 and lower), at which both synthesized materials 

reached peaks of more than 60 days stable, while the non-stabilised silicate suspension 

maximum was 15 days. This improvement in stability, although not completely clear, 

seems to be due to steric hindrance alone, in the case of the PEG stabilised suspension, 

while in the case of sucrose, besides the steric hindrance, the ethanol in the medium also 

contributed greatly to the stability. For further characterization, pH 2.5 and 3.5 were 

chosen, since both would be acceptable for supplement manufacturing. The synthesised 

nanoparticles presented desirable properties, such as a very small size (< 2 nm), and signs 

of some degree of depolymerisation upon dissolution, since both would be favourable for 

monomer formation and, therefore, increase absorption in the intestine. 

When compared to an already available silicon supplement, Biosil, in a dissolution 

assay mimicking digestion, all the suspensions tested, performed either similar or better, 

being the best result achieved with the PEG stabilised silicate suspension, synthesized at 

pH 2.5. It had a total silicon release of more than 3.5 mM, while the soluble fraction was of 

approximately 3.0 mM, which is roughly the maximum possible amount of soluble silicon, 

at intestinal conditions. Therefore, if the suspension performed in vivo, the same as in vitro, 

it would have a higher bioavailability than for example Biosil, which is the most 

bioavailable supplement of the ones in the nanoparticulate range. 

Nonetheless, although some improvement in stability and suggestion of high 

bioavailability was achieved, none of the suspensions were stable long enough to what 
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would be a reasonable shelf life for a supplement, so further changes to the process are 

required. Different compounds should be tested, and based on the results of this work, it 

would be logical to test other polymers, like PLGA, since it is one of the most successfully 

developed biodegradable polymers. Also, other possibilities would be to add ethanol to the 

medium with other stabilizers besides sucrose, or even to add small amounts of different 

salts, without making the suspension unstable. To further characterize, and better 

understand the role of the stabilizers in the suspensions, one of the techniques that could be 

used is SAXS, since it does not need a crystalline sample and they can be both liquid and 

solid, and NMR would also be a suitable technique to assess the structure of the 

synthesised materials. Further on, in an advanced stage, when the ideal system is achieved, 

the formula of the supplement would have to be tested for toxicity in human cells, first 

through cellular assays , then in animals and lastly in different groups of human subjects. 

Finally, if the tested supplement showed no detrimental side effects, bioavailability in vivo 

would have to be assessed, to see if it matched the results in vitro. 

All in all, even though the perfect system, for a new silicon supplement, was not 

finalised in this work, it was successful in pointing to what might be the right direction to 

follow next, and, also, not least important, in ruling out, as possible stabilizers, a series of 

compounds. As Thomas Edison would say, I have not failed, I have successfully 

discovered some ways that do not work. 
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Appendix A – Compounds Tested As Stabilizers 

 

Table A. 1 – Table of all the compounds tested as possible stabilizers and respective system characteristics. 

 
Stabilizer 1 

[Stabilizer 1] 

M 

Stabilizer 

2 

[Stabilizer 2] 

M 

Stabilizer 

3 

[Stabilizer 3] 

M 
Acid Base pHf 

Number of 

days stable 

Silicate 

0.5 M 

 

Sucrose 

0.50 

    
HCl NaOH 3.50 

8 

1.00 10 

1.50 17 

Sucrose 1.50 Calcium 

0.050 

  HCl NaOH 3.50 

2 

0.10 
2 

0.25 
2 

Sucrose 1.50 
Calcium 0.10 

  HCl Na2CO3 3.50 
18 

  18 

Maltose 

0.50 

    HCl NaOH 3.50 

12 

1.00 12 

1.50 16 

SDS 0.40     HCl NaOH 3.50 <1 

Polyacrylic 

Acid 

0.50 
    HCl NaOH 3.50 

4 

1.00 8 

PEG 
0.50 

    HCl NaOH 3.50 
11 

1.00 16 

Sucrose 1.50     
Citric 

Acid 
NaOH 3.50 7 

Gallic Acid 0.06     HCl NaOH 3.50 1 

Polypropylene 

Glycol 
1.50     HCl NaOH 3.50 

6 

Ethylene 

Glycol 
6 

                                                           
2 Precipitation occurs as soon as soon as NaOH is added.  
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Silicate 

0.5 M 

Sucrose 1.50 

Calcium 

0.20   

HCl Na2CO3 3.50 

18 

 
  0.20   13 

Sucrose  1.50 0.5   18 

  0.5   15 

  Copper 
0.2 

  
4 

0.5 6 

Sucrose 1.50 Calcium 

0.25 

  HCl Na2CO3 <1 

16 

0.5 12 

1 12 

2 
3 

Sucrose 1.50 Ethanol       HCl NaOH 3.50 14 

Carnitine 

0.05 

    HCl NaOH 3.50 

1 

0.10 1 

0.50 <1 

Sucrose 1.50 

Calcium 0.25 Gluconate 

0.125 

HCl  3.50 

1 

    1 

Sucrose 1.50 
0.25 

1 

    1 

Sucrose 1.50 Gluconate 
0.125 

 
 HCl  3.80 

1 

0.25 1 

Sucrose 1.50 

Calcium 0.25 Citrate  

0.125 

HCl  3.50 

1 

    1 

Sucrose 1.50 
0.25 

1 

    1 

Silicate 

1.0 M 

Sucrose 

1,00 

    HCl NaOH 3.50 

3 

2,00 6 

3,00 7 

Maltose 1,00 3 

 

                                                           
3 Calcium did not dissolve. 
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Appendix B – ATR-FTIR Spectrums 

 

Background – UHP Water 

 

 

Figure B. 1 – ATR-FTIR spectra of the non-stabilised silicate suspension, at pH 3.5, using water as background. 
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Figure B. 2 – ATR-FTIR spectra of a sucrose solution, at pH 3.5, using water as background. 
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Figure B. 3 - ATR-FTIR spectra of a PEG solution, at pH 3.5, using water as background. 
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Figure B. 4 – ATR-FTIR spectra of the sucrose stabilised silicate suspension, at pH 3.5, using water as background. 
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Figure B. 5 – ATR-FTIR spectra of the PEG stabilised silicate suspension, at pH 3.5, using water as background. 
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Figure B. 6 – Overlay of the ATR-FTIR spectrums of the non-stabilised silicate suspensions, the sucrose solution and the 

sucrose stabilised silicate suspension, all at pH 3.5, using water as background. 
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Figure B. 7 – Overlay of the ATR-FTIR spectrums of the non-stabilised silicate suspensions, the PEG solution and the 

PEG stabilised silicate suspension, all at pH 3.5, using water as background. 
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Background – Air 

 

 

Figure B. 8 – ATR-FTIR spectra of the non-stabilised silicate suspension, at pH 3.5, using water as background. 
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Figure B. 9 – ATR-FTIR spectra of a sucrose solution, at pH 3.5, using air as background. 
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Figure B. 10 - ATR-FTIR spectra of a PEG solution, at pH 3.5, using air as background. 
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Figure B. 11 – ATR-FTIR spectra of the sucrose stabilised silicate suspension, at pH 3.5, using air as background. 
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Figure B. 12 – ATR-FTIR spectra of the PEG stabilised silicate suspension, at pH 3.5, using air as background. 
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Background – Medium 

 

 

Figure B. 13 – ATR-FTIR spectra of the non-stabilised silicate suspension, at pH 3.5, using, as background, the same 

medium as the silicate suspensions, minus the silicate and stabilizer. 
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Figure B. 14 – ATR-FTIR spectra of a sucrose solution, at pH 3.5, using, as background, the same medium as the silicate 

suspensions, minus the silicate and stabilizer. 
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Figure B. 15 – ATR-FTIR spectra of a PEG solution, at pH 3.5, using, as background, the same medium as the silicate 

suspensions, minus the silicate and stabilizer. 
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Figure B. 16 – ATR-FTIR spectra of the sucrose stabilised silicate suspension, at pH 3.5, using, as background, the same 

medium as the silicate suspensions, minus the silicate and stabilizer. 

 

  



 
 

107 
 

 

Figure B. 17 – ATR-FTIR spectra of the PEG stabilised silicate suspension, at pH 3.5, using, as background, the same 

medium as the silicate suspensions, minus the silicate and stabilizer. 
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Appendix C – Fraction Analysis of Silicate Suspensions (EtOH 40% v/v) 

 

 

Figure C. 1 – Silicon phase distribution overtime of the sucrose stabilised silicate suspensions (14% EtOH v/v), at pH 

2.5. 

 

 

Figure C. 2 – Silicon phase distribution overtime of the sucrose stabilised silicate suspensions (14% EtOH v/v), at pH 

3.5. 
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Appendix D – Dissolution Assay Results for Biosil 

 

 

Figure D. 1 – Total and soluble silicon fractions for different concentrations of Biosil tested, with the dissolution assay, 

those being, 70 mM (green), 35 mM (red) and 17.5 mM (blue). 
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Appendix E – Overlay of the ICP and Molybdate Dissolution Assay Results 

 

 

Figure E. 1 – Overlay of the results acquired in the dissolution assay, for Biosil, with ICP and the molybdate assay. 

 

  

 

Figure E. 2 – Overlay of the results acquired in the dissolution assay, for the non-stabilised silicate suspensions, at pH 

2.5, with ICP and the molybdate assay. 
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Figure E. 3 – Overlay of the results acquired in the dissolution assay, for the non-stabilised silicate suspensions, at pH 

3.5, with ICP and the molybdate assay. 

 

 

 

Figure E. 4 – Overlay of the results acquired in the dissolution assay, for the sucrose stabilised silicate suspensions, at 

pH 2.5, with ICP and the molybdate assay. 
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Figure E. 5 – Overlay of the results acquired in the dissolution assay, for the sucrose stabilised silicate suspensions, at 

pH 3.5, with ICP and the molybdate assay. 

 

 

 

Figure E. 6 – Overlay of the results acquired in the dissolution assay, for the PEG stabilised silicate suspensions, at pH 

2.5, with ICP and the molybdate assay. 
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Figure E. 7 – Overlay of the results acquired in the dissolution assay, for the PEG stabilised silicate suspensions, at pH 

3.5, with ICP and the molybdate assay. 

 

 

 

Figure E. 8 – Overlay of the results acquired in the dissolution assay, for the sucrose stabilised silicate suspensions, with 

14% EtOH (v/v), at pH 2.5, with ICP and the molybdate assay. 
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Figure E. 9 – Overlay of the results acquired in the dissolution assay, for the sucrose stabilised silicate suspensions, with 

14% EtOH (v/v), at pH 3.5, with ICP and the molybdate assay. 
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