

Universidade de
Aveiro
2013

Departamento de Electrónica, Telecomunicações e
Informática

Filipe Ferreira de

Oliveira

REINVENT: solução para uso de redes veiculares em

aplicações móveis

REINVENT: accessing Vehicular Networks in Mobile

Application

Universidade de
Aveiro
2013

Departamento de Electrónica, Telecomunicações e

Informática

Filipe Ferreira de

Oliveira

REINVENT: solução para uso de redes veiculares em

aplicações móveis

REINVENT: accessing Vehicular Networks in Mobile

Application

 Dissertação apresentada à Universidade de Aveiro para

cumprimento dos requisitos necessários à obtenção do grau de

Mestre em Engenharia de Computadores e Telemática, realizada

sob a orientação científica da Dra. Susana Sargento e Dr. José

Maria Fernandes, Professores Auxiliares do Departamento de

Electrónica, Telecomunicações e Informática da Universidade de

Aveiro

Dedico este trabalho aos meus Pais e à minha Namorada por me

terem apoiado de forma incansável.

O júri

Presidente Prof. Dr. José Alberto Gouveia Fonseca
Professor Associado do Departamento de Electrónica, Telecomunicações e
Informática da Universidade de Aveiro

Vogais Prof. Dra. Ana Cristina Costa Aguiar
Professora Auxiliar Convidada do Departamento de Engenharia Electrotécnica e de
Computadores da Faculdade de Engenharia da Universidade do Porto (Arguente
Principal)

Prof. Dra. Susana Isabel Barreto de Miranda Sargento
Professora Auxiliar do Departamento de Electrónica, Telecomunicações e
Informática da Universidade de Aveiro (Orientadora)

 Prof. Dr. José Maria Amaral Fernandes
Professor Auxiliar do Departamento de Electrónica, Telecomunicações e
Informática da Universidade de Aveiro (Co-Orientador)

Agradecimentos

Quero agradecer aos meus Pais por me proporcionarem a oportunidade de

frequentar um curso superior e por me apoiarem ao longo de todo o meu

percurso académico.

Agradeço também à Joana por toda a motivação, carinho, conselhos,

compreensão e apoio nas situações difíceis durante todo o meu percurso

académico.

Quero agradecer a todos os colaboradores do Instituto de Telecomunicações

que me ajudaram durante o meu trabalho e se mostraram sempre disponíveis.

Um agradecimento especial para o Luis Coelho e Filipe Neves pela ajuda

prestada na integração do meu trabalho com as placas.

Agradeço a todos os meus amigos por estarem presentes, em especial ao Joel

Santos e Diogo Vieira que embora não estejam directamente ligados ao

desenvolvimento deste trabalho, seguiram de perto o meu percurso académico e

foram importantes em muitas outras etapas do percurso. Um agradecimento

especial também ao Rui Nunes por se ter mostrado disponível para realizar os

testes no terreno deste trabalho.

Por último, mas não menos importante, quero agradecer à Professora Susana

Sargento e ao Professor José Maria Fernandes pela orientação, coordenação e

dedicação prestada durante todo o trabalho. Agradeço também ao André

Cardote pois foi ele que me motivou para a temática deste trabalho e ajudou de

forma incansável a todos os níveis.

Palavras-chave

Android, Content Provider, REST, Simulação, Experiências Reais, Integração,

Comunicação Veicular, Dispositivos Móveis, Arquitectura, Experiências e

Testes, Software.

Resumo

As redes veiculares têm sido alvo de grandes avanços tecnológicos, e a comunicação

entre veículos é hoje uma realidade que tem despertado o interesse tanto ao nível da

investigação como de alguns dos principais fabricantes de automóveis com o intuito de

criar um conjunto de serviços para melhorar a experiência dos utilizadores deste tipo de

redes. Por outro lado, os dispositivos móveis como smartphones, tablets ou PDA’s

também são uma área emergente no mundo das tecnologias devido ao enorme

aumento de capacidade computacional que sofreram nos últimos anos. Embora as

redes veiculares tenham sido alvo de grandes avanços tecnológicos continuam a

encontrar obstáculos para a sua afirmação devido à indisponibilidade de dispositivos

nos veículos que permitam usufruir das suas potencialidades. Esta falta de dispositivos

pode ser ultrapassada aliando o mundo dos dispositivos móveis com as redes

veiculares. Utilizando o potencial das redes veiculares e a capacidade computacional

dos novos dispositivos móveis pode-se explorar um cenário de criação de serviços e

aplicações de segurança, controlo e eficiência de tráfego e entretenimento.

O presente trabalho propõe-se a estudar, criar e testar uma solução para a integração

das duas áreas tecnológicas referidas anteriormente. Neste documento é descrita uma

arquitectura de alto nível que permite a integração de aplicações móveis com as redes

veiculares, abstraindo as camadas de transporte e de rede com um módulo de software

que fornece os métodos necessários para as aplicações usufruírem dos serviços das

redes veiculares. O resultado final deste trabalho é uma arquitectura de software para

integração em aplicações Android que permite utilizar a rede veicular para comunicação

entre as aplicações. Ao longo deste documento é descrito todo o processo de

implementação desta arquitectura, e posteriormente é apresentada a implementação de

aplicações exemplo para experimentação da arquitectura e avaliação do seu

desempenho.

No âmbito da Dissertação foram criados cenários para realização de testes de

desempenho das aplicações em ambientes reais e simulados. Estes testes serviram

para identificar a viabilidade da utilização do REINVENT em dispositivos com diferentes

características de hardware, e também para identificar potenciais pontos de atraso na

estrutura da arquitectura criada.

Os resultados obtidos permitiram constatar que a utilização desta arquitectura não

induz qualquer tipo de interferência nem atraso no normal funcionamento das

aplicações, e que o REINVENT pode ser utilizado na criação de novas aplicações

móveis no âmbito das redes veiculares.

Keywords

Android, Content Provider, REST, Simulation, Real Experimentation, Vehicular

Communication, Mobile Devices, Architecture, Experiments and Tests,

Integration, Software.

Abstract

Vehicular networks have been the subject of major technological progress, and the

communication between vehicles is a reality that has been the subject of interest both in

terms of research and of some of the major car manufacturers in order to create a set of

services to enhance the user experience of such networks. On the other hand, mobile

devices such as smartphones, tablets and PDA's are also an emerging technology in

the world due to the enormous increase of computing power they got in recent years.

Although vehicular networks have been the subject of great technological advances,

they continue to encounter obstacles to their raising due to unavailability of devices in

vehicles that allow the use of its potential. This lack of devices can be overcome by

combining the world of mobile devices with vehicular networks. Using the potential of

vehicular networks and computational capabilities of new mobile devices, a set of

scenarios can be explored in order to create services and applications for security,

control and efficiency of traffic and entertainment.

This work proposes to study, create and test a solution for the integration of the two

technology areas mentioned above, applications and vehicular networks. In this

Dissertation we describe a high-level architecture that allows the integration of mobile

applications with vehicular networks by abstracting transport and network layers with a

software architecture that provides the methods needed for the applications to take

advantage of vehicular networks services. The end result of this work is a software

architecture for integration into Android applications that allows the use of vehicular

network for relaying communication between applications. Throughout this document,

the whole process of the architecture implementation is described as well as two

example applications for proof of concept, testing purpose and performance evaluation.

In order to test the performance of the REINVENT module in the applications, two test

scenario environments were created, a simulated environment, integrating a VANET

simulation framework with mobile devices, and a real environment using an on board

unit for vehicle communication purposes. These tests served to identify the feasibility of

using REINVENT in devices with different hardware characteristics, and also to identify

potential sources of delay in the structure of the architecture created.

The results revealed that the use of this module does not induce any interference or

delay on the normal operation of applications, and REINVENT can be used in creating

new mobile applications in the context of vehicular networks.

i

ii

I. Contents

I. Contents... ii

II. List of Figures ... v

III. List of Tables... vii

1 Introduction .. 1

1.1 Objective ... 2

1.2 Contribution .. 3

1.3 Thesis Outline ... 4

2 State of the Art.. 5

2.1 Vehicular Networks and Applications .. 5

2.2 Simulation of Vehicular Networks ... 16

2.3 Conclusions ... 24

3 REINVENT: Conceptual Architecture .. 27

3.1 REST as an architectural style .. 27

3.2 Message-Oriented Middleware ... 29

3.3 The Architecture ... 31

3.4 Conclusions ... 33

4 REINVENT: an Android based proof of concept ... 34

4.1 Android Platform .. 34

4.2 Android Content Providers as REST application interface 36

4.3 REINVENT Android Architecture Overview .. 41

4.4 RabbitMQ as a messaging provider .. 42

4.5 REINVENT services ... 44

4.6 Developing Applications using REINVENT .. 45

4.7 Implementation Details ... 50

4.8 Conclusions ... 56

5 REINVENT: Creating the testing scenarios .. 58

5.1 Simulated Scenario ... 58

5.2 Real Scenario .. 70

5.3 Conclusions ... 75

6 Experimental Tests & Results ... 76

iii

6.1 REINVENT Performance on Different Devices... 76

6.2 Simulated Environment .. 78

6.3 Real World Environment .. 83

6.4 Conclusion .. 91

7 Conclusions and Future Work .. 93

7.1 Future Works .. 95

8 Bibliography ... 96

Annex .. 101

Rest API Description ... 101

v

II. List of Figures

Figure 1-1 – Conceptualization of the problem. .. 2

Figure 2-1 - Intelligent Transport System [6] .. 6

Figure 2-2 - Vehicular Network communications types [8] .. 6

Figure 2-3 - Comparison of the different VANET simulation framework features[26] 24

Figure 3-1 Synchronous and Asynchronous Models [48] ... 29

Figure 3-2 – Conceptual Architecture of REINVENT .. 32

Figure 4-1 – Android Stack Overview [55] ... 35

Figure 4-2 – Android Content Providers Overview .. 36

Figure 4-3 - Google I/O REST Architecture using Content Providers[59] 39

Figure 4-4 – REINVENT Android Architecture ... 41

Figure 4-5- REINVENT Architecture ... 42

Figure 4-6 – RabbitMQ Architecture Overview.. 43

Figure 4-7 Welcome Activity and Contact List Activity .. 47

Figure 4-8 Add Contact Activity and Message Activity ... 48

Figure 4-9 MapView Activity and DetailView Activity ... 50

Figure 4-10 – NetworkProvider core class .. 51

Figure 4-11 - Commands Hashtable Diagram ... 53

Figure 4-12 - Message Container class diagram ... 55

Figure 4-13 - UserDescriptor class diagram .. 56

Figure 5-1 – Simulation Environment Architecture .. 59

Figure 5-2 – Simulation Scenario Overview ... 60

Figure 5-3 – Testing Application .. 63

Figure 5-4 - On Board Unit ... 71

Figure 5-5 - Toyota Corola and Ford Fiesta .. 73

Figure 5-6 - Real Scenario Architecture .. 74

Figure 6-1 - Message Sending Delay by Device ... 77

Figure 6-2 - Message Receiving Delay by Device .. 78

Figure 6-3 Simulated vehicle placement ... 79

Figure 6-4 Measuring delay inside the OBU application .. 79

Figure 6-5 Simulator Message Processing Time ... 80

Figure 6-6 Simulation Overall Schema ... 81

vi

Figure 6-7 Simulation Receive and Sending Average Time ... 82

Figure 6-8 Point-to-Point delay with distance placement ... 83

Figure 6-9 Receive and Sending Average Delay with distance .. 83

Figure 6-10- Round Trip Time Schema .. 84

Figure 6-11 – Message Round Trip Time in the OBU .. 85

Figure 6-12 Round Trip Delay with VANET schema ... 86

Figure 6-13 RTT with distance schema ... 86

Figure 6-14 Round Trip Delay with Distance ... 87

Figure 6-15 Speed Variation Schema .. 88

Figure 6-16 Round Trip Delay - 20km/h ... 88

Figure 6-17- Round Trip Delay - 50km/h ... 89

Figure 6-18 - Round Trip Delay - 80km/h .. 89

Figure 6-19 - Round Trip Delay with Message per Second variation 91

vii

III. List of Tables

Table 1 – Traffic Simulators Overview ... 17

Table 2 – Network Simulator Overview ... 20

Table 3 - REST Interface overview ... 44

Table 4 - Android Devices Features Overview ... 72

Table 5 - API Methods Overview.. 102

viii

1

1 Introduction

 Vehicles are a fundamental part of our society as they are one of the most important

sources of human mobility. Along the years they have been subject of several

improvements and innovations at several levels. They are already in a state where they can

be considered, in the future, part of the Internet, when they will become capable of inter-

vehicle communication and of communication with any other network devices.

 These new capabilities acquired by vehicles through the years can be seen as a

great opportunity to offer the passengers with new services while driving, such as safety

driving applications, Vehicle-to-Vehicle communication and also infotainment

applications. One of the most limiting factors of the growing of these services offer is the

lack of technology available in the vehicles capable of user interaction, since most of the

devices available are on board computers created and developed to support native

applications, and consequently are not open to the creation of new applications or services.

Even if the European Telecommunications Standards Institute (ETSI) [1] already defined a

basic set of applications including their guidelines and use cases, just as definitions, mostly

because of the lack of technology available in the vehicles. Some of the examples already

defined by ETSI are road hazard warning, traffic information and recommended itinerary,

point of interest notification or fleet management. Some car brands are already working in

this area and offer some of these services, but we are still far away from being a common

feature among the vehicles.

 On the other hand, in the recent years we have seen a market explosion of mobile

devices [2] such as smartphones, Personal Digital Assistances (PDA) or tablets, where

these became absolutely pervasive in many domains due to their computing power relation

to size, and they are a great solution to fill the lack of technology available in the vehicles,

offering a whole new level of technology to improve services offered in the vehicle

networks [3], [4], [1].

 However, there is not an integrated solution that allows mobile applications to use

transport layer resources, which is clear from a TCP/IP Model stack perspective, where

applications cannot have a high level interface to:

2

 access the communication resources on the transport layer, namely handling

protocol attributes such as Channel numbers or the Provider Service Identifier

(PSID) of the service [5]

 map the logic naming to real Domain Name System (DNS) of the network topology

(i.e. keeping logical names regardless of the actual network addresses)

Figure 1-1 – Conceptualization of the problem.

 Ideally, such a high level interface at application layer would allow an application

to perform transparent data exchange at application level, abstracting from transport layer

details. However, to the best of our knowledge, such solution does not exist.

1.1 Objective

 The main objective of this work is to fill the gap between the vehicular networks

and mobile applications by proposing a conceptual architecture that will allow mobile

applications to use vehicular networks without having to understand or implement any

network layer specifications. It is also our aim to implement an Android based proof of

concept that will support two illustrative applications: a chat application called VNChat

that allows the users to exchange simple text messages in a vehicular network context;

iThere application that works like a social network for vehicular networks. The users of

iThere will be broadcasting their GPS location while also tracking the locations of the

vehicles around, and showing them in a map so the users can know who is around them.

3

Both these applications were built using the module created for exchanging messages and

accessing the user’s identifications.

1.2 Contribution

 As the result of the work performed on this Dissertation, a high level architecture

(REINVENT) was idealized and implemented in order to fill the gap between the

application and transport layers when creating mobile applications in the vehicular

networks context. REINVENT allows any Android developer to create any application

layer communication without having to implement any transport layer specifications of

vehicular network. Two proof of concept applications were implemented and deployed

using REINVENT, and tested in both a simulated and real VANET scenario.

The main contributions of this Dissertation are:

 A Representational State Transfer (REST) based conceptual architectural

component named REINVENT that allows a transparent access of the transport

layer by mobile application, using messaging to interact with the transport layer -

in fact this architecture can also be applied not only to abstract access to VANET

(focus of this work), but also to other “dynamic” / reconfigurable transport

solutions

 REINVENT architecture implementation for Android mobile applications tested in

a simulated environment using the VSimRTI as the simulation framework.

 REINVENT architecture implementation for Android mobile applications tested in

a real setup deployed in a set of cars by integrating our solution with the On Board

Unit (OBU) developed in the Instituto de Telecomunicações of the Universidade de

Aveiro.

 A set of performance tests were made in order to understand if the usage of our

architecture implies any decrease of performance of the applications.

4

1.3 Dissertation Outline

 This work is divided in seven fundamental Chapters. The first Chapter introduces

the problematic we propose to solve with this work, as well as the contributions of this

work.

 The Chapter 2 will provide insight on the fundamental aspects of the vehicular

networks. We will focus on the applications area and we will go through the vehicular

network application classes. We also present related work in the application area for

vehicular networks in conjunction with mobile platforms such as Android. The second part

of this chapter is an overview of the VANET simulation tools. We will describe and

compare the most used Traffic and Network simulators in the vehicular network area.

Finally, we will also provide information on the most used Frameworks for simulation of

VANET, by presenting features of each solution as well as describing its strengths and

weaknesses.

 The Chapter 3 presents the conceptual solution of the problem. We will present a

generic architecture based on REST.

 The Chapter 4 describes the proof of concept of the architecture idealized in the

previous chapter. Using the Android platform as the technologic platform, we will provide

insight into the architectural details of the architecture, like what solutions were used to fill

the conceptual architecture features described in Chapter 3. We will also go through the

implementation details of the architecture describing the main classes and the API’s. This

chapter ends with the description of the creation of mobile applications implementing our

created module.

 The Chapter 5 the testing scenario creation and definition is described. We created

both real and simulated scenarios in order to test our solution.

 The Chapter 6 will describe the experimental tests and results obtained by testing

the module features using applications. The main focus of these testes will be the

performance of our module in different environments and devices.

 Lastly, the Chapter 7 will summarize the work done throughout this Dissertation

along with the concepts obtained, and an overview on future features that can be

implemented and improved in the created framework.

5

2 State of the Art

 In this chapter we will introduce the concepts related to the work developed along

this Dissertation, as well as an overview on the current state of works around this

Dissertation area of interest. The topics that will be introduced in the following sections

will follow the path taken on the development of the work. The chapter begins with the

section 2.1, where we introduce applications being developed in the vehicular networks

area, giving a special look into the works that combine vehicular network applications with

Android. In the following section, 2.2, some solutions for vehicular networks simulation

will be presented along the simulators used by them.

2.1 Vehicular Networks and Applications

 Vehicular Ad-Hoc Networks (VANET) is a particular class of the Mobile Ad Hoc

Networks (MANET) and is characterized by a set of vehicles that can communicate with

each other or with external and nearby fixed equipment’s using a wireless antenna. In the

last few years, we witnessed a large increase of research in this area. There are a lot of

factors that have led to this increase of interest, first of all the evolution and wide

adaptation of the 802.11 technologies. The other major factor is the evolution of the

automobile manufactures, since most of the vehicles nowadays are already equipped with

global position system (GPS) which led to an increase of interest of research in the

VANET area by the industry.

6

Figure 2-1 - Intelligent Transport System [6]

 VANETs were created initially with the great objective of decreasing one of the

leading cause of mortality which is car accidents [7]. Travelling by car offers way more

risks than riding a plane or a train. But it is not only for security that VANETs were

created; they have a great potential to offer infotainment and commodity services like

checking email or reading news while driving. VANETs can also play an important role on

preventing traffic jams by organizing and providing the optimum routes just by analyzing

the state of traffic based on the network itself (Figure 2-1).

 The deployment of the VANET was made to ensure two types of communication,

vehicle-to-vehicle and vehicle-to-infrastructure communication represented in Figure 2-2.

Figure 2-2 - Vehicular Network communications types [8]

7

 The deployment of the first type of communication is made by using an On Board

Unit (OBU), a piece of hardware and software placed in every vehicle that will be

responsible for handling, sending and receiving all the information to and from the

network. The second way of deployment is integrating the network with hotspots placed

along the roads that are called RoadSide Units (RSU) [9].

 VANETs are a very special part of the mobile network family as they offer some

very unique and special features distinguishing them from all the other networks. Some of

the features that make VANET so unique are [10]:

 Predictable mobility – Unlike the other mobile ad hoc networks, vehicles tend to

have predictable paths since they are limited to the roadways, while in the other

mobile networks, the nodes can basically take a different path every time. Using

information gathered from location based technologies like GPS, 3G, plus the

information of the vehicle like speed, it is relatively easy to predict the future

positions of the vehicle.

 Unlimited transmission power – Since we are talking about the vehicle being the

node of the network, we can consider that the vehicle can provide continuous

power for computing and communication to the devices.

 But the creation of such high potential network also faces a lot of challenges that

can turn to be problems, so they must be looked in and be taken into account [9]:

 Large scale of network – It is almost impossible to predict the size of a

VANET. Since it is an adaptable network, there is no maximum number of nodes

allowed at given time. If we think of a scenario of a big metropolitan area in rush

hour, it is impossible to predict the amount of nodes that will constitute the

network.

 The mobility and partition – Since we are talking about a network made of

vehicles, we need to assume that the network will need to operate in very dynamic

and extreme configurations. If we think of a city in a rush hour where the vehicles

would have a reasonably low relative speed to each other and the amount of nodes

would be huge, in the highway the scenario is exactly the opposite as the vehicles

travel with great relative speed to each other and the density of nodes can be very

low at a given point.

8

 Dynamic topology leads to frequent loose of connection – The very

dynamic topology of a VANET, due to the constant vehicle movement, leads to the

isolation of some nodes at a given point which means that a particular node will

lose its connection to the network. The usage of backup RSUs represents a possible

solution to this potential problem.

2.1.1 Vehicular Network Applications

 As referred previously, the great purpose of creation and research around the

vehicular networks is the road safety, but this can only be achieved by creating actual

applications taking into account real use cases. The development of applications also

creates something more noticeable to stimulate the market around the VANET. In this

section we will explain how applications are classified and which use cases have been

defined for the creation of real applications.

 Applications around VANET have been commonly classified into three categories

[1][11][12][13]:

 Active road safety applications

 Traffic Efficiency and management applications

 Infotainment applications

 Active road safety applications represent probably the main goal of the VANET

that is to reduce the chance of traffic accidents by permanently exchanging information

between the vehicles. It will provide the drivers with information of eventual hazardous

events that happened in the road, and give them a chance of a preemptive action about it.

This information can simply be the vehicle speed, position or distance to a given

intersection. Some examples of some possible applications defined in this class as well as

the use cases associated with them are given below:

 Collision avoidance in intersections and sudden break – We often watch vehicles

reducing their speed abruptly for various reasons like a red traffic light or a slow

moving car in a highway. If the vehicles involved are equipped with vehicle-to-

vehicle communication devices, these types of collisions can be avoided by sending

a warning message to the cars in the area, giving them more time to react and be

9

prepared for the situation. Even if the collision if eminent, the applications can be

of the most useful by inflating the airbags sooner or by tighten the seat belts [11].

 Road Hazard Warning – There are several road hazards that can result in a car

accident that can be avoided if they are correctly spread through the vehicles

around. An emergency vehicle running in an emergency mission like an ambulance

or a police car are examples of hazards that can cause an eventual accident, and can

be easily avoided broadcasting an emergency message to the vehicles around so

they can leave a free lane. If a vehicle needs to make an emergency stop in an

unexpected place, sometimes the visual warning (the signaling triangle) is not

enough to highlight the situation, and once again, a message indicating the blocked

road could help to avoid an accident. A sudden traffic jam can also be considered as

a road hazard, especially if the jam happens after a turn over. Spreading a message

indicating the place of the traffic jam would help preventing drivers running into

the jam at high speed and eventually cause an accident. Road work, signal

violation, wrong way driving are also other use cases in the same topic that could

be avoided with these types of applications [12].

 Traffic Efficiency and management applications focuses on improving the

traffic flow, coordination and assistance by providing updated information about the

current state of the traffic in a given area. This information can be in the form of maps,

indications or messages with space and time relevance to the vehicle requesting them.

These applications can result on the reduction of congestions, accidents and even in the

travel times. Vehicles play several roles in these applications; they can work as sensors by

spreading their speed, relay as they will be used to spread messages, and as destination if

they are the ones using the information. Some examples of some possible applications

defined in this class as well as the use cases associated with them are given below:

 Speed management – These types of applications aim to help the driver to manage

the speed of his vehicle, providing a smoother driving and also avoid unnecessary

stopping. Providing the state of the traffic light and the optimal speed to pass the

green light without having to stop would be a possible scenario of application in

this area [11].

10

 Co-operative navigation – These are the types of applications that will increase the

traffic efficiency by providing means so the vehicles can cooperate with each other.

A platooning management application fits this scenario by forming groups of

vehicles that have the same destination place, and by forming thigh columns of

vehicles following each other would result in the increase of capacity of the roads.

It is very usual in big cities to exist those bottlenecks of traffic at rush hour in the

main roads. An application that would gather information of most critical points

and return to the driver a recommended itinerary based on the state of the several

alternatives would be another example that would fit this topic [11][14][12].

 Infotainment and other applications are those that do not fit on the previous

categories i.e. road safety and traffic management and efficiency applications. Most of the

applications in this class are related to the vehicle passengers as they should be mostly

used to provide entertainment or information on a regular basis. The ‘other’ should include

all the applications that are not directly related to the vehicular network, but still play an

important role to provide a better driving experience like increasing the fuel economy or

providing diagnostic information about any anomaly in the car to be accessed more easily

by the technicians. Some examples of possible applications and their use cases are

described below:

 Internet Access in a Vehicle – This is a use case to be used as an application to

provide internet access to all the passengers, to allow them to use all types of IP

based services from inside the vehicle. This would be possible by using multi-hop

route to a RSU that would act as an Internet gateway. This is probably the most

important application in this class, as it would allow the VANETs to be part of the

internet [11], [12].

 Point of interest notification – If we think of a scenario of traveling in a foreign

country, it would be of the major interest of the driver to have access to information

about the points of interest of the area, like fuel gas station in case of being running

low on gas, tourist attraction to be visited or even local business for shopping.

These types of applications present a huge market potential as it would be a way of

11

advertising all kinds of businesses or points of interest that otherwise could not be

caught by the attention of the driver [12].

 Remote diagnostics – This is a major help in case of any vehicle breakdown, as a

service garage could start the vehicle diagnosis from the garage without having to

go to the breakdown local, and even have access to the history of the vehicle in

terms of previous interventions, even if they were made in another place as the

application would give access not only to the current vehicle readings but also to

the records kept along the time [11].

2.1.2 Mobile platforms and Vehicular Networks

 There are few works where the Vehicular Networks and mobile operating systems

based applications meet. Moreover, none of them refer to communication between two

direct applications using the vehicular networks. Therefore, we will describe the

applications developed in the vehicular network areas, so that we can understand how close

we are from having some of the use cases explained in the previous section.

 Hernandez et al. [15] have prototyped and tested an in-vehicle embedded system to

allow communication from any user gadgets like smartphones, PDAs or tablets to the

vehicle system, or even with road infrastructures in order to get access to Intelligent

Transportation Systems (ITS). This work results on the creation of an OBU prototype, as

well as two services, eco-driving and traffic reports, to work as proof of concept of the

architecture prototyped. They enhance the fact that most of the services referenced by the

related work are using a top-down approach, so the OBUs should be designed after the

services are created, so they fill the requirements of the services. This is not a good

approach, since the changes in hardware are usually way more expensive than the software

ones. The OBU was prototyped for supporting several new and future services.

 Al-Ani et al. [16] built an integrated system that provides several infotainment

services to the user like playing music, location based services, traffic and road

information, as well as many other services available from third parties. They created their

system based on Android OS with the main goal of creating a standard architecture for the

in-vehicle infotainment industry.

 Cheng et al. [17] designed an Android based mobile device platform that integrated

with the network management functions and MOST (Media Oriented System Transport)

12

technologies, which is a standard for multimedia and infotainment network in the

automotive industry [18]. The objective is to provide heterogeneous network management

functionalities to guarantee communication quality. They propose an algorithm to support

seamless handover via effective and rapid resource between the networks. The system was

designed to provide two different functions. The first one, Roaming, where the system

would be searching for the wireless network with the best resources available, which is

very helpful if we are moving between heterogeneous and homogeneous networks. The

second, Sharing, the system would make available all the resources for the users connected

to all the different interfaces. In the future, they want to redesign the algorithm in order to

enhance the quality of service during the network roaming and sharing functions, as well

as to improve the resource management.

 Spelta et al. [19] created a smartphone based system for motorcycles. The system

was designed to increase the safety level of a motorcycle, and it is composed by a CAN

Bus, an electronic unit that works as CAN-to-Bluetooth gateway, a smartphone and a

helmet equipped with a Bluetooth device. The idea of the system is to create a vehicle-to-

driver and vehicle-to-environment communication mechanism based on the smartphone

core. The vehicle is equipped with the CAN-to-Bluetooth converter that is interfaced with

the smartphone, which acts as a gateway with the helmet and also with an external

webserver. They created this architecture mostly as a base for developing new services and

applications in the motorcycle industry, as it turns out to be needed to have a relatively low

development effort by the manufacturers, as the CAN Bus should be a plug-n-play system.

To create a proof of concept and a test purpose, they implemented the system in a real

motorcycle and they used two smartphones with different operating systems running the

same software adapted to each OS. The system handled five types of operations:

 Driver requesting information from the vehicle – Using a speech

synthesizer, the vehicle would respond to different requests like the water

temperature or the current speed.

 Notification Alert – The system can recognize irregular values on the

vehicle and then the driver would receive a notification on the audio system

of the helmet.

13

 Driver sends commands – Driver could spell a couple of commands handled

by the system that would process them into the vehicle like turning off

lights.

 Data analysis – The vehicle can submit data to the web server to be

analyzed and diagnosed. An example of this operation can be the report of

the current miles to be submitted and then a warning could be sent to the

driver informing the miles required for the next revision.

 Driver-to-Web communication – The interaction here is made between the

driver and the smartphone, where the driver asks for information, possibly

about a point of interest, and the smartphone will fetch from the web and

give it to the driver in form of voice synthesizer.

 Diewald et al. [20] created an Android based driver assistance system called

DriveAssist. The system consisted of two components, a vehicle integrated V2X

communication unit (Commonly known as OBU) supporting ITS G5 or IEEE 802.11p, and

one or more mobile devices such as smartphones or tablets. The system main goal is to

gather information from different data sources, including other V2X communications,

giving the driver an overview of the surrounding traffic on a map view. The system also

runs a background system to trigger certain warning messages being spread on the

network. The system was developed and tested on a seven inch Samsung Galaxy Tab

running Android Gingerbread 2.3.7. The application main menu has four available options,

the first one, Stop Services, is used to manage all the background running services. The

second one, Show Map, leads the user to a map view where the user can see a

representation of his vehicle, as well as all the traffic information signals received and

placed around the map. The third option is Traffic Info, where the information placed on

the previous option will now be displayed in a sorted and filtered table. Finally, the last

option is used to configure the application preferences like the radius of interest to receive

information or the theme. The objective of this work was to create an audio-visual system

for V2X data and information, and thereby a vehicle on-board driver assistance that could

be available at a competitive cost.

 Su et al. [21] found an alternative solution for vehicle-to-vehicle and vehicle-to-

infrastructure communication protocols. Due to the Google announcement of Android

supporting Wi-Fi direct connection, they came up with the idea of using this new feature of

14

Android 4.0 to replace the commonly used WAVE/DSRC protocols. Unlike the older

versions or any other mobile OS, the Wi-Fi direct connection does not require any access

point for the communication. The Wi-Fi direct technology, defined in the

android.net.wifip2pclass, created an infrastructure network instead of a distributed network

(ad-hoc) by switching the device to a portable access point. The use of this technology

brings some drawbacks like being limited to devices running Android 4.0 natively and the

operating system requires the user to accept all the connections manually due to security

reasons. Due to the restrictions described above, they revise their system to use the

Android 2.2 API to control de Wi-Fi AP/Client instead of the 4.0 direct connections. With

this revision they reached a much bigger population, and the system did not require the

manual acceptation from the users, but it also came with a drawback: it still took too much

time to set up a connection with the access point device, around 1.7 seconds for tablets and

3 seconds for smartphones. In order to obtain the best performance of the android devices

they evaluated the system under an ad-hoc network with rooted android devices. With the

rooted devices, it is possible to send and receive any UDP broadcast packets with a pre-

setup ad-hoc environment within the communication range. They concluded from their

work that while their communication range is a little low, around 50 to 60 meters, the

round trip delay time of the system for one hop of 30ms can provide an alternative to the

802.11p used by the OBU for vehicle communication.

 Yun et al. [22] developed components, based on the work done in [23], to get eco-

driving and safety-driving information using information fetched from the vehicle

(mileage, speed, sensor data) that would be analyzed and presented to the user through an

android application. The objective of this work is to provide the drivers with information

so they can analyze their driving style and behavior. They developed an API that can be

reused by vehicle-it companies to develop further mobile service applications more easily

and quickly. The system is divided in two components; the first one is related to the eco-

driving, was implemented in C++ and gets and analyzes information from the vehicle

about the fuel consumption and efficiency and CO2 emission rates. The second component

of this system was implemented in Java and analyses the Safety-driving information by

getting information about quick acceleration, quick start, over speeding, long term over

speeding, sudden acceleration, quick deceleration, quick breaking and quick stop. All this

information is fetched from the vehicle On Board Diagnosis module through a Bluetooth

15

communication. They concluded from the work that the information provided by the

system can be important for the drivers to analyze and readapt their driving styles and

behaviors.

 Campolo et al. [24] created SMaRTCaR, a smartphone based platform that

communicates with low-cost dedicated hardware to interact with vehicle sensors and their

surroundings. The data retrieved from these sensors is classified according the type, and

opportunistically transmitted via the most convenient wireless interface to an external

monitoring center. The SMaRTCaR system can be devided in two different blocks; the first

one concerns the data collection and pre-processing. They used an Arduino platform, USB

capable, which received inputs from several sensors inside the vehicle as well as from the

surrounding sensors. It is also responsible for merging and storing temporarily the received

data. The second block of the system concerns the data visualization and transmission and

is represented by the Android smartphone. The smartphone application receives data from

the Arduino board and shows them to the user, as well as packing it to be sent in an

appropriate time which is every time the smartphone is connected to a Wi-Fi access point.

The smartphone also gathers information like GPS location and time in order to tag the

data received from the Arduino. The communication between the two blocks is made

through the Accessory Development Kit, a standard created by Google to provide

communication between Android devices and external hardware devices. The SMaRTCaR

system enables the collection of wide and modular set measurements from the sensors

inside the vehicle as well as from environmental sensors. It uses a plug and play approach

so any android can connect to the system, and finally has the virtue of cheapness as the

hardware required to interface with the smartphones is not high (around 100€).

 In this section we presented some works in the vehicular network context using

mobile platforms. Works like Diewald et al. [20] are designed simply to support the

requirements of the system and can be hardly used to implement further features, while

other works like Spelta et al. [19], Hernandez et al. [15] and Al-Ani et al. [16] created an

architecture from the ground in order to work as a base for creating further services and

features. Other works like Campolo et al. [24] and Yun et al.[23] developed systems in the

Android platform that receive information from the vehicle sensors to supply the vehicle

driver with useful information about the vehicle condition and surroundings, but they still

16

do not share and spread that information through the vehicle network. But what is

important to point out is that none of the works presents an abstraction of the network and

transport layers, so if further applications, services or new features had to be implemented,

a strong knowledge of the vehicular network context would be needed. Most of these

works focus on the connection of the vehicle network environment to the OBU that will

have the network information available to external or incorporated devices, but what if we

wanted those devices to be able to use the network resources in their applications and not

only to consume the information gathered by the OBU services? This is the subject of this

Dissertation.

2.2 Simulation of Vehicular Networks

 The possible dimension of a real vehicular network scenario is big enough to

become a problem when it comes to develop, test and integrate with real systems. If we

think that each node of the network is a vehicle, it is unfeasible to create those kinds of

scenarios with real vehicles in the real world. The costs of that real implementation would

be too high and would be only accessible to a little niche of people. Even some large real

scale development scenarios that currently exist [25] have only the capacity to test a little

portion of what the real scenarios would be. On the other hand, the vehicular networks

environment is very complex, and there are a lot of models that need to be considered for

the network and also the proprieties of the vehicles and their drivers.

 Due to these conditions, simulation has become one of the main approaches in the

vehicular networks research. However, there is still no standard simulator for vehicle

communications [26]. Since most of the times it is not realistic to test a system in real

VANET scenarios, testing them in simulated scenarios is commonly the most cost-

effective option. In order to create a realistic VANET simulation scenario, there are three

fundamental requirements:

 Traffic simulator in order to simulate vehicle behavior like physical vehicle

movement and interactions or to create a road network.

 Network simulator in order to handle the wireless transmission among the vehicles

and between the vehicles and RSUs.

17

 A runtime environment for the applications that are to be implemented in each

vehicle that are responsible for further interaction with external elements in the

vehicles, possibly a smartphone or a tablet [27].

 There is still no standard simulator for VANET simulation [26] as there is no

“Vehicle Network Simulator”. The actual solution for simulating VANET is coupling

independent Network and Traffic simulator, but once again there are a lot of different

simulators of each type that will be described in the following section, in order to

understand the features of each simulator.

2.2.1 Traffic Simulation Overview

 The simulators described in this section are capable of creating mobility traces that

can be used as an input for network simulators. The trace files generated by these

simulators are in a format supported by most network simulators, which makes their

interaction easier. These traffic simulators are not capable of simulating communication

protocols, and therefore, the exchanged messages between them cannot impact the

mobility model [26].

 Table 1 shows a brief comparison on some features of the traffic simulators that

will be described in this section.

Name OS

Support

GUI Open-Source Controllable by

external apps

Integration with

external maps

CORSIM Windows No Yes No No

VISSIM Windows No No No No

SUMO Windows

Linux

Yes Yes Yes Yes*

VanetMobiSim Windows

Linux

Yes Yes No Yes

MOVE Windows

Linux

Yes Yes No Yes

Table 1 – Traffic Simulators Overview

18

*It can transform OSM maps into SUMO model using an external tool

 We will now make an overview on the most commonly used traffic simulators in

VANET simulation;

 CORidor SIMulator (CORSIM) – is a vehicular mobility simulator that

was developed by the US Federal Highway Administration and is currently

maintained and supported by the University of Florida. It consists on the

integration of two microscopic models to represent all the traffic

environments. NETSIM represents and is responsible for traffic in urban

scenarios, while FERSIM represents the traffic in highways or freeways.

CORSIM requires Microsoft Windows operating systems to run, and

therefore, it can be an issue to integrate with network simulations as most of

the simulators are usually Linux based [28].

 VISSIM – is a very powerful framework developed by PTV Planung

Transport Verkehr AG in Karlsruhe, Germany. The framework is based on a

visual block diagram language that allows the user to create and define the

scenarios. This simulator is one of the few where the traffic model is a car-

following model that also considers psychological characteristics of the

drivers. It also includes pedestrian mobility model which is very interesting

for simulation of urban scenarios. Like CORSIM, it is only available for

Microsoft Windows operating systems [29].

 Simulation of Urban MObility (SUMO) - is an open-source microscopic

simulator developed by members of the Institute of Transportation Systems

at the German Aerospace Center. It can be used in most operating systems,

and has a great community around the project that have developed a lot of

interesting extensions for the simulator like generation of GPS traces in real

time or communication with external applications for controlling the flow of

the simulation in real time. It has one of the most simplistic driver models

which translate not only in a high speed simulation time, but also in a low

detail mobility model (that can be seen as good or bad depending on the

purpose of the simulation). Due to his high portability [1], SUMO has

19

become the most used traffic simulator for vehicle communications [30],

[31].

 VanetMobiSim – is a freely distributed, open-source vehicular mobility

generator based on the CanuMobiSim[32] architecture. It is developed

specially for vehicular network simulation in Java and can generate mobility

traces for a lot of different network simulators like ns-2[33], QualNet[34]

and GloMoSim. It supports several road topology definition types like

extracting from TIGER or GDF maps, or simply user-defined maps by

listing the vertices of the graph and their connection edges. The movement

models can define random trips, where the vehicle will travel along random

roads or an origin-destination route. The mobility model also includes

intersection management, lane changing and, unlike most traffic simulators,

simulations of road incidents like accidents [35].

 MObility model generator for VEhicular networks (MOVE) – it is built

on top of SUMO and can also produce traces that are ready to be directly

used by several network simulators like ns-2, OPNET and Qualnet. MOVE

allows users to quickly generate VANET mobility models by interfacing

with real map databases, like TIGER and Google Earth. This is all

accomplished by using a Graphical User Interface (GUI) created to improve

and automate the script generation. MOVE allows the creation of a user-

generated map and it also proposes some pre-defined topologies (grid,

spider, random networks) [36].

2.2.2 Network Simulation Overview

 In this section we will describe the more popular network simulators in the VANET

simulation communities that commonly use them to simulate many different network

scenarios. Our focus will be on describing the features related to the vehicular

communications that are included in each of them. We will also discuss their performance

presented by Weingärtner et al. [37].

20

 Table 2 shows a brief comparison on some features of the network simulators that

will be described in this section.

Name OS Support Open-Source GUI IVC

Comunication

protocols

Ns-2 Linux Yes No Yes

Ns-3 Linux Yes No Yes

QualNet Windows &

Linux

No Yes No

OMNet++ Windows &

Linux

Yes Yes Yes*

JiST / SWANS Windows &

Linux

Yes No Yes*

Table 2 – Network Simulator Overview

*Using unofficial modules

 We will now describe in more detail every simulator referenced in the previously

shown table in order to understand each simulator features, strengths and weaknesses.

 Network Simulator 2 (ns-2) [33] – is the most used network simulation tool in

academic network research [31]. The project that began is supported by the US

DARPA and it is an open-source framework developed in C++ and TCL. The

framework became a standard due to the large community. The official ns-2 release

contains two important models for VANET simulation, the Manhattan model that

represents a grid model where the vehicles are allowed to move along the grid of

horizontal and vertical streets. The other model is the freeway model which is a

much simpler model where the vehicles are restricted to his lane and cannot take

any turns. Concerning the higher communication layers, a lot of contributions have

been made by the community in order to create an accurate model of the IEEE

802.11p, the standard protocol in VANET communication. The biggest

disadvantage of using the ns-2 in vehicular network simulation is the performance

when it comes to scenarios with more than a few hundreds of nodes. The project

has become inactive since 2010.

21

 Network Simulator 3 (ns-3) [38] – is the evolution of the previous simulator ns-2.

The simulator has an optimized kernel and the elimination of C++/TCL interactions

reduced much of his complexity as all the modules are now implemented purely in

C++, although some simulation parts can be optionally implemented in Python. On

the opposite of ns-2, it allows now the simulation of large scale scenarios composed

by a few thousands of nodes. However, even if the ns-3 is an evolution of ns-2,

most of the models developed to ns-2 were ported to ns-3.

 QualNET [34] – is the commercial version of GloMoSim Project, that stopped in

2000, and therefore a freeware software for planning and testing tool that simulates

the behavior of real communication networks. This framework is capable of

simulating scenarios with a few thousands of nodes without any performance loss,

and it provides a very powerful Graphical User Interface (GUI) used in every

simulation scenario detail like terrain, network connections or mobility patterns. It

also has tools for analysis and packet tracing of the simulations. There is no

currently VANET mobility models implemented in Qualnet, and therefore, it is not

used in VANET simulation but it has a great potential due to the performance with

a large number of nodes.

 OMNet++ [39] - in contrast to all the other simulators, OMNet++ is not a network

simulator by definition, but a discrete event-based simulator framework used for

general purpose simulations. OMNet++ only provides the framework necessary for

developing network modules, as the modules necessary for VANET simulation

must be implemented independently of the simulator. At this moment there is only

one framework developed specifically targeted to the VANET simulation that is

VEINS [40], [41], an open source Inter-Vehicular Communication (IVC)

simulation framework composed of an event-based network simulator and a road

traffic micro simulation model.

 JiST/SWANS [42] – JiST, like OMNet++ is a general purpose discrete event

simulation engine written in Java at the Cornell University. As it was designed for

general purpose simulations, the Scalable Wireless Ad-hoc Network Simulator

(SWANS) has been developed specially for MANET simulation. SWANS is a

simulator built atop of JiST platform. It was created because the existing network

simulation tools at the time were not handling the current research needs. The

22

SWANS architecture is composed of several software modules that can be used to

form a complete wireless network. Its capabilities are similar to most network

simulators but it was specially designed for handling larger networks and at the

same time achieves high performances. The simulator was also created, unlike all

the others, to handle standard java network applications running over the simulated

network.

2.2.3 VANET Simulation Frameworks

 In this section we will describe some dedicated frameworks created to couple the

network and traffic simulators in order to support the simulation of vehicular networks.

The main concern of these frameworks is supporting the interaction of both network and

traffic simulators while maintaining the temporal consistency (i.e. synchrony) of the

overall VANET simulation, while supporting the implementation and testing of

applications on each simulated node.

 Traffic and Network Simulation Environment (TraNS) [43], [44] – was

developed by the École Polytechnique Fédérale de Lausanne and it is a GUI tool

that integrates traffic and network simulators in order to generate realistic

simulation of VANETs. TraNS is the combination of the SUMO and ns-2

simulators. TraNS has two modes of operation. In the first one the mobility traces

generated by the SUMO are used as input directly in the ns-2 and it is used for a

network centric simulation. The second mode is more of an application-centric

mode and is used for testing applications that impact the mobility traces. This

second mode requires the synchronization of the two simulators, as the messages

exchanged between the nodes of the network will have a direct impact in the

vehicles being simulated on SUMO using a specific module, created by the SUMO

community, called TraCI. The project has been abandoned since 2008 and cannot

be used anymore, since it does not support the most recent versions of SUMO;

however, the project has his merits as it was one of the first projects to implement

the concept of synchronizing both traffic and network simulation in order to test

applications.

23

 iTetris [45], [46] – this framework was developed by the iTetris Project

Consortium funded by the European Comission. It integrates both wireless

communication and traffic simulation platforms in a very easily configurative

environment. They use SUMO and ns-3 as their traffic and network simulators,

respectively, and they synchronize them using a central control block named iTetris

Control System (iCS). Although it can be considered as a high performance

simulation platform as they developed their own ns-3 modules in order to optimize

the network simulation core, this framework does not support the developing and

testing of applications that would interact with the mobility model.

 Vehicles in Network Simulation (VEINS) [40], [41] – as previously referred, this

framework is an extension of a OMNet++ module and was developed in Computer

Networks and Communication Systems, University of Erlangen. VEINS is the

result of coupling SUMO with the INET module of OMNet through a TCP

connection, as SUMO works as an extension of the network simulator allowing the

simulation to run synchronously. This is a very important feature as it allows the

network simulator to interact directly with the vehicles being simulated by sending

messages that will influence their path or speed. The communication protocol

between the OMNet module and SUMO is once again TraCI, which allows a

bidirectional coupling of both traffic and network simulation and consequently

makes VEINS a great platform for simulation applications in vehicular

environments.

 V2X Simulation Runtime Infrastructure – created by Daimler Center for

Automotive Information Technology Innovations (DCAITI) and inspired by the

IEEE Standard for Modeling and Simulation High Level Architecture (HLA).

VSimRTI is a very generic framework that focuses on the synchronization of both

network and traffic simulators. The framework offers the integration of different

simulators and also the possibility of changing the simulator to be used without

having to change the bottom line platform, which makes a great platform for testing

the same scenario using different simulators with few effort and work. But what

really makes this platform shine to our eyes is that it can emulate the environment

of V2X applications in the vehicles, which makes VSimRTI the perfect platform

for testing real applications.

24

 After describing these platforms we can see that all of them have their strengths and

weaknesses and it is important to analyze them very well before picking up a framework

for our work. As the focus of our work will mostly be at the application level, the most

important aspects we were looking for in these frameworks, is the integration of

application simulation for vehicles and also the possibility of connecting with applications

outside of the simulation environment

 Stanica et al. [26] made a study for comparing some of these frameworks and

identified six attributes that they considered to be the most important when comparing a

VANET simulation framework, Routing Protocol, MAC Protocol, Safety Application,

Information Dissemination, Traffic Management and Internet Access. From these six

attributes, there are two very crucial for our work, Safety Application and Internet Access,

and although we did take the others in consideration, we wanted a platform with a strong

interaction between network and traffic simulators with a very precise mobility model that

would allow us to test real applications in the vehicles.

Figure 2-3 - Comparison of the different VANET simulation framework features[26]

 The picture above represents the result of the study made by Stanica et al. [26], and

we can see from the analyzed frameworks that VSimRTI is the one fitting the most of our

interests, and therefore, it was the framework chosen to be used in our work to be

described in the next chapters of this Dissertation.

2.3 Conclusions

 In this chapter we presented an overview on Vehicular Networks basics and on

VANET related application with special focus on those integrating mobile platforms. From

our review it was possible to conclude that there is still almost no work that integrates

mobile devices with the vehicular network resources. Most services and access to the

25

network still depend on the On Board Systems that will simply present data to be

consumed by the mobile devices, but not expose the communication services in a standard

way e.g. through a high level architecture abstracting the VANET specificities under an

API accessible at mobile application level. Such architecture would need to abstract the

transport and network layers so the applications would be communicating at an application

level and without having to implement VANET specifications.

 At the same time, even if there is still no standard VANET simulator, there are a lot

of frameworks that couple both Network and Traffic simulators with the bonus of having

an application runtime platform in order to simulate real applications in VANET scenarios.

 In the next chapter, we will present the solution developed in order to solve the

problem presented in the introduction section.

27

3 REINVENT: Conceptual Architecture

 In this chapter we will introduce REINVENT, an architecture to provide an

abstraction layer between VANET Transport layer and the mobile applications.

REINVENT is supported on a REST architecture style and relies on messaging for data

transfer.

 In the first section we will describe REST, and afterwards we give an overview on

Message-Oriented Middleware. Finally, the last section will give an overview of our

conceptual architecture and where the concepts explained previously will be fitting.

3.1 REST as an architectural style

 Representational State Transfer (REST) [47] is an architectural style for designing

networked applications. It relies on stateless and client-server communication protocol and

it is commonly used over the HTTP protocol. The idea behind REST is to use simple

HTTP calls instead of using complex protocols like RPC or SOAP. REST based

applications use HTTP requests in order to read, delete and post data, thus, REST supports

all four CRUD (create, read, update, delete) operations.

 According to Fielding et al. [47], the REST architecture style is composed by six

constraints. In order for an architecture to be deemed a REST architecture, it must satisfy

all the constraints defined:

 The first major constraint is the client-server constraint. Based on a computing

principle called separation of concerns, it requires the existence of one or several

clients that do requests that will be received by a server that consequently can

produce a response to the client. This constraint induces a set of properties to the

architecture like portability, resolvability and scalability.

 Stateless communication constraint is related to every request done by the clients

that must contain all the information needed in order to be interpreted. This

constraint increases the visibility, reliability and scalability, but also induces a

decrease of performance because it requires the messages to be larger.

 Layered system constraint defines hierarchy layers for components limiting the

communications to their direct neighbors. Basically, a client cannot know if he is

28

connected to the end server or simply to an intermediary. This constraint increases

the scalability by using intermediary components that can act as caches or load

balancers. It can induce to reduce the performance as the number of intermediaries

increase between the client and the server.

 Caching constraint is related to the capability of the messages to be labeled as

cacheable in order for the clients and intermediaries to be able to cache and re-issue

messages, increasing performance and efficiency.

 Uniform Interface constraint means that all the component interfaces must be the

most generic possible simplifying and decoupling the architecture in order for each

component of the architecture to evolve independently. This constraint increases

the visibility and scalability of the system, but comes with the down side of

reducing the efficiency due to the generic data types.

 Finally, the last constraint and also the only optional one, Code on Demand

constraint, allows a client to execute and download code from the server. The

server can extend the clients functionalities. This constraint increases the scalability

of the system as it delegates work to the clients, but it has the tradeoff of reducing

visibility created by the client code, as it could be hard for other components to

interpret.

 These are the basic rules in order to create a REST style architecture, but it is also

important to understand that there is no standard created for REST, as these constraints are

just guidelines to create an architectural system for network applications.

3.1.1 Resources and Resources Identifies

 The representation of information in REST is called Resource. Any kind of

information that can be named can be a resource: an image, a table, a service, or even a

collection of resources. A resource can be interpreted as the conceptual mapping of

entities. Each resource is referenced with a global identifier that can be a URI for example.

In order to manipulate these resources, all the components of the system communicate via

the standard defined REST interface and exchange representations of the resources. The

representations are basically a sequence of bytes representing the actual document or

photo, plus the meta-data for describing the bytes for the receiving entity to interpret the

29

data. In order for an application to interact with a resource, it needs to know three aspects:

the identifier of the resource, the action to be made on the resource, and finally, to

understand the format of the information of the resource (the representation) if it returns

any information [47].

3.1.2 REST as a solution

 Relating this concept to our work, we will use the REST architectural style to

provide an abstraction between our applications (the REST client) and the module (the

server). Conceptually, the applications will send a request to a given resource on the

module either for relaying a message, or to perform a simple request for information on the

network, or the list of entities in the module naming service.

3.2 Message-Oriented Middleware

 According to Curry [48], Message-Oriented Middleware (MOM) is a software or

hardware designed to provide communication methods between heterogeneous software

entities. MOM can be defined as any middleware infrastructure capable of providing

messaging services. A software client implementing a MOM should be able to send and

receive messages from other software clients using the same MOM, even if they are

implemented in different technologies. Although MOM requires the clients to connect to

one or more servers that will act as intermediaries, the model used in this middleware is a

peer-to-peer relation between two clients.

Figure 3-1 Synchronous and Asynchronous Models [48]

 There are two interaction models commonly used in MOM, synchronous and

asynchronous. In a synchronous model, when a method is called, it requires the caller to

block and wait for the method execution to end. This kind of systems does not have

30

independence of processing control as they require other entities to give back control of the

process.

 The asynchronous model allows the method caller to remain in control of the

process while the method is being executed. The caller entity can continue his processing

regardless the state of the method execution. This model requires an intermediary to handle

the requests; this intermediary is usually represented by a message queue. Although

asynchronous models require more complex implementations, they allow all the clients to

keep their processing independence. They can continue their processing regardless of the

other participants.

3.2.1 Message Queues

 Message Queues are a fundamental part of a MOM system. MOM clients should be

able to send and receive messages from a queue that provides store ability. Queues are a

crucial point of asynchronous MOM systems. Using message queues, clients can send

messages to a destination without having to block or wait for the message to be handled

and delivered, as it will be stored in the queue to be fetched by the destination client. The

standard queue system found in most of Message Queues is the First-In First-Out (FIFO)

queue; the first message stored in the queue will be the first message to be retrieved from

the queue retaining the arrival order.

 There are two messaging models supported by most of the message queues:

 Point-To-Point – The Point-to-point (PTP) messaging model ensures that a

message is delivered only once to a single consumer providing a straightforward

asynchronous exchange of messages between entities. When a message is

consumed, it is removed from the head of the queue. Although this type of message

model only supports one consumer (since the message is removed from the queue

after being consumed), there is no restriction about the number of producers that

can connect and publish in the queue.

 Publish/Subscribe – The Publisher/Subscribe model is more powerful and

complex than PTP. It allows one-to-many and many-to-many communication

relations so one message can be sent to potentially an infinite number of receivers.

The clients publish messages to a channel or topic that will be managed by the

MOM system. These channels and topics can be subscribed by clients that want to

31

receive messages from those topics. The MOM system will be responsible to route

the messages related to the subscribed channels to the receiving clients.

3.2.2 Standards

 There is no standard for Message-Oriented Middleware. There are a lot of different

implementations, each with its own API and tools.

 The Advanced Message Queue Protocol (AMQP) [49] is an application layer

protocol for MOM. It defines the protocol and formats to be used in both client and server.

AMQP was created and defined to offer flexible routing and includes the most common

message models like PTP and Publish/Subscribe and request-response. There are AMQP

APIs developed for several languages like Java, C, C++, C#, PHP, Python or Ruby which

makes AMQP a very versatile MOM implementation.

 The Simple Text Oriented Messaging Protocol (STOMP) [50], formerly TTMP, is

a text based protocol designed for MOM. It provides an interoperable wire format allowing

STOMP clients to communicate with any message broker that implements the protocol.

STOMP is a frame based protocol, with frames modeled on HTTP. A frame consists of a

command, a set of optional headers and an optional body. STOMP is text based but also

allows for the transmission of binary messages. There are a different number of STOMP

implementations in different languages like Java, Python, Ruby, C++, Perl or OCaml.

 The Java Messaging Service (JMS) [51][48] is a Java MOM API. It allows

applications based on all the Java platforms to create, send and receive messages. JMS

provide the means for communication between components of a distributed system in a

reliable and asynchronous way. JMS supports both PTP and Publisher/Subscribe

messaging models. This service has the downside of only being supported by Java based

systems.

3.3 The Architecture

 The main concept of REINVENT is to abstract the transport resources behind a

REST interface with a module that will enclose the support of a messaging system already

coupled with the transport layer specifications. This abstraction will prevent the application

layer from having to deal with those specifications like PSID’s or channel numbers. The

module incorporates the messaging service that will encapsulate the application messages

32

in the specific transport layer message protocol. It will also have a logical naming service

translator that translates names into addresses, much like programs like Skype do: people

are represented by names or alias, but in the end they are translated to addresses.

 We can observe in Figure 3-2 the concept of our solution: we have a representation

of a logic application interfacing our module through a REST interface that will be

working as a proxy to the transport domain

Figure 3-2 – Conceptual Architecture of REINVENT

 The objective of the messaging service is to maintain the connection between the

applications and the lower transport layers, by translating all the incoming messages from

those layers, and also receiving the messages from the requests made through the REST

interface. Then, if needed, it prepares the data to be sent through the transport layer. The

messaging service should not only be responsible for keeping a connection state, but also

to notify the applications if the connection is not available and make sure that no messages

are lost in the process of reconnection providing reliability to a certain point.

 The logical name service is a module that will work like a persistence unit, keeping

all the network related data from the users known to the applications implementing this

module. The applications will only need to work with real names or alias, since the logical

name service will keep track of the network identifier of that entity. These identifiers can

be in several formats concerning the network being used on the lower layers: it can be an

address or a vehicle identifier.

33

3.4 Conclusions

 In this chapter we explained the concepts of a REST-based architecture and

Message-Oriented, that supports the REINVENT architecture concept that we describe

afterwards in more detail.

 It is important to note that the architecture described is abstract design, as we

idealized the REINVENT architecture as a system to be implemented in any high level

language that integrates with layers of low-level communication. Although the architecture

has an abstract character, we refer specifically to solutions like REST and Message-

Oriented Middleware, since they are not solutions restricted to any technology or language.

 In the next chapter, we will present the proof of concept implementation of

REINVENT in Android mobile operating system.

34

4 REINVENT: an Android based proof of concept

 In this chapter we will describe the implementation process of REINVENT in

Android operating system. REINVENT uses Android’s Content Provider to implement the

REST abstract interface of the conceptual architecture. A description of the REST API is

provided for mobile applications to access the vehicular network resources together with

some illustrative examples. As MOM provider, RabbitMQ [52] was the selected solution

for the messaging service in REINVENT.

 As a proof of concept, we present also two applications using the REINVENT

module to access the VANET resources: VNChat and iThere. The first application,

VNChat, is a message exchanging application that allows the users to exchange messages

using the VANET network. The second application, iThere, is a type of social network for

vehicular networks. The chapter ends with the implementation details: we describe the

main classes and structures that compose REINVENT.

4.1 Android Platform

 Android Incorporation was created in Palo Alto, California in 2003 by Andy

Rubyn, Rich Miner, Nick Sears and Chris White and bought later by Google in 2005. In

2007, the project was presented to the public by the Open Handset Alliance, which was

composed by a set of companies, HTC, Samsung, Qualcomm, Texas Instruments and

Google. The first public phone running the Android Operating System was released in

2008, and it was the beginning of a market dominance operating system as today Android

is the most used mobile platform in the market [53], [54].

35

Figure 4-1 – Android Stack Overview [55]

 Android has a very robust software stack composed by a Linux Kernel, a

middleware layer and a virtual machine called Dalvik Virtual Machine in order to create an

environment to run Java applications as well as some native applications like the

messaging system or the browser (Figure 4-1) [55]. It is also an open source operating

system with a very large community of companies and developers.

 The Android platform also provides a software developing kit (SDK) that includes

all the API libraries and developer tools necessary to create and test applications for the

Android OS, and it is compatible with all the major Operating Systems like Windows, OS

X and Linux. Unlike most mobile platforms, due to being a very open platform, it provides

the tools for creating very good looking applications as well as also taking advantage of

accessing all the hardware components directly like the GPS or Bluetooth. The backhand

of being such a wide open platform with so many companies involved is that there are a

very large number of devices with different specs in the market, which can cause a lot of

compatibilities when creating new applications, as they should be compatible with not only

different screen resolutions, but also with different hardware specifications like processors

and internal memory [56], [57].

36

 In the next subsections we will describe Android Applications Layer concepts that

were the base of the concept created and developed in this Dissertation. We will describe

the Content Providers as well as the different approaches where they are used in

applications contexts.

4.2 Android Content Providers as REST application interface

 Content providers are a well-known concept of the Android OS commonly used for

managing and accessing data sources (Figure 4-2). They are used to encapsulate data in

order to provide it to applications through a simple interface, which makes them the

obvious solution when it comes to share any kind of data between applications [57], [58].

The most commonly usage for the Content Providers is to share a database, for example

the phone contacts, between several applications.

Figure 4-2 – Android Content Providers Overview

 The content provider API allows applications to query the OS for any kind of data

using Uniform Resource Identifier (URI), very similar to the way web sites request

information to the Internet. The application querying a certain URI does not know the

source or who will be providing the information, it simply presents the URI to the OS that

will be responsible to start the application responsible for providing the information related

to the given URI. This is a great feature in terms of performance, as it is the Operating

37

System that is responsible for managing all the existing providers as well as managing the

access of each application to a given provider.

 The content provider API also provides methods for creating, reading, updating and

deleting the shared content following the model used by REST architecture, which means

the applications use an URI-oriented requests model. These requesting methods translate

into direct methods that must be implemented when creating a new content provider [58]:

 Query – Used to request specific data and returns it to the caller.

 Insert – Used to insert new data into the specified URI.

 Update – Updated existing data in the provider

 Delete – Deletes existing data in the provider

 getType – Returns the MIME type of data in the content provider

 onCreate – Called by the application main thread to initialize the provider. It is not

recommended to perform long operations in this method.

 On the application side, a ContentResolver object is used in order to access and

process the Content Provider retrieved data. It also handles all the inter-process

communication needed to connect the application to the content provider. It is also

important to refer that applications must request specific permissions for accessing the

desired provider in the Android Manifest file.

4.2.1 Content URI

 The Content URI is the identifier of the data in the provider. It is composed by the

identification of the provider that is called Authority followed by path referring to a table

where the data is translated to by the content provider. A provider is usually composed by

a single authority that is used to identify the provider by the Android OS. It is a common

use, in order to avoid conflicts, to use an Internet Domain ownership (in a reverse way) to

identity the base of the content provider followed by the specific name of the provider.

After defining the authority, it is necessary to define the paths available to the provider in

order to access the data structure represented by the provider. These paths follow the same

path as accessing a certain section of a website, like the following example taken from the

Android Developer website in the Content Provider description section:

 content://com.example.app.provider/table1: A table called table1.

 content://com.example.app.provider/table2/dataset1: A table called dataset1.

38

 content://com.example.app.provider/table2/dataset2: A table called dataset2.

 content://com.example.app.provider/table3: A table called table3.

 It is also possible to request specific values of a given table using the follow URI,

 content://com.example.app.provider/table3/1 for the row identified by 1 in the table

3

 Or even request all the values of a given path using the following wildcard

character,

 content://com.example.app.provider/table2/* that would return dataset 1 and 2 of

table2.

4.2.2 Why this architecture?

 It is very important to understand that, due to the limited processing capabilities of

the smartphone devices (maybe not so limited nowadays, but still needs to be taken into

consideration), the thread handling the interface should be released of any long operations

as it needs to be free for handling all the real interface events. These long operations can be

Network Requests, as they can last for an uncertain amount of time or simply long

processing of data like accessing a database. To minimize the execution of any long

operations on the user interface layer, it is necessary to create a very structured and multi-

layered architecture for handling these operations like Dobjanschi [59] proposed in the

2010 Google I/O session, where they proposed a solution for REST Client application

using Content Providers as the platform for managing the data that would needed to be

written or read from the persistence layer. The problem of most REST Client

implementations is that they are subject to the operating system shutdown the process, due

to the long operations made in the network and consequently, the data is not persistently

stored resulting in faulty data or even the loss of some data.

39

Figure 4-3 - Google I/O REST Architecture using Content Providers[59]

 The solution proposed is presented in Figure 4-3 and it can be divided into four

different sections that will be explained in order to understand how this REST Client is

used and what are the advantages of using these types of architectures when creating

applications.

 Rest Method

 This is the entity that is responsible for the connection with the external resource. It

runs a working thread that prepares the HTTP URL and HTTP Request Bodies, and

executes/processes the HTTP transaction/responses. It should be also responsible, or

simply delegate the processing to the Processor if it is too complex, for selecting the

requested content type from responses like JSON or XML.

 Processor

 The processor is responsible for handling the data returned from the REST Method

execution, which involves selecting the important data types from the HTTP Response

packages. It is the process responsibility to perform all the persistent layer actions required

for the received data on the content provider. As it was explained before, Content

40

Providers support all the CRUD (Create, Read, Update and Delete) operations which are

the methods that the processor calls upon the provider.

 Service

 This section is composed by two entities, the Service Helper and Service. This

block is responsible for exposing a simple asynchronous API to be used by the Content

Provider. When the content provider needs to send/get new information from a REST

Method, it starts an intention for executing a specific method and it is the job of the service

section to check if there is already a request for the same method; if not, it prepares the

method call with the specific parameters and starts the method. It is a one way process as

the result from the execution of the method is delegated to the Processor, as was explained

previously.

 Content Provider

 The content provider plays a major role in this architecture as it is the middleware

connection of the activity to the network data as well as working as a persistence unit. The

user interface can make several requests that should be handled by the content provider. In

case of the requested information is already in the persistence layer, it notifies the activity

layer; if the information is not present or needs an update, it starts an intention for

requesting/sending new information that will be handled by the Service layer.

 Activity

 This is the Interface layer and, according to the Android design lines, this layer

should not handle any long running operations nor any network operations so, the activity

layer only performs requests methods to the content provider and listens for notifications

of the provider on specific content via ContentObserver [60], a class that receives call

backs for changes on specific content on a content provider.

 The project presented by Dobjanschi [59] is a very detailed example of a good, and

different, usage of the Android content providers in order to create a very structured

architecture for handling a REST interface. This project has some resemblances with our

architecture as they delegate all the network specifications and operations to a content

provider releasing the application from all the long task like network calls of database

reads and writes.

41

4.3 REINVENT Android Architecture Overview

Figure 4-4 – REINVENT Android Architecture

 In REINVENT, Content Providers are used to abstract both network and transport

layers under a REST unified interface. REINVENT content providers will supply

applications with a fully structured and well defined service API to interact with these

lower layers. Using the URI concept we can provide global identification for either the

resources, like accessing the Naming service information, or to the transport services for

sending/receive messages. Besides providing an interface to the applications, content

providers are also a very good solution in terms of performance, as it is a resource handled

at the operating system level and consequently delegates to it all the concurrency control

increasing the performance of such operations. Due to the fact of being a OS level

resources makes it also a sharable resource among the applications which means that

REINVENT will be available to all applications and most importantly, information like the

naming service will be available to all applications to use and modify as well as all the

services that can be used by all the applications in a concurrent way.

 The logical naming service will be implemented as an internal SQLite Database

keeping all the information of the entities known by the application. That information will

be used to map the entities names used by the applications real network identifiers when it

comes to build a message to be sent to the network.

42

 The messaging service will be implemented using an Advanced Message Queuing

Protocol framework called RabbitMQ that will be responsible for handling the incoming

messages from and to the applications.

 Figure 4-5 shows an overview of our concept applied to the Android OS context,

where several applications existing in the operating system, will be provided to our

REINVENT module interfacing their communication with the transport domain. In order

to represent the REST architecture explained in the previous section we rely on an

operating system managed and public resource called Content Providers that can be seen as

REST interface implementation on the Android System.

Figure 4-5- REINVENT Architecture

4.4 RabbitMQ as a messaging provider

 In REINVENT, we used RabbitMQ framework to support the messaging service

needed in our module.

43

 RabbitMQ is open source message broker software that implements the AMQP

standard (Figure 4-6). The server is written in Erlang and built on the Open Telecom

Platform framework for clustering and failover. It was recently acquired by VMware, who

now supports and develops further versions of RabbitMQ. The project includes client

libraries for Java, .NET and Erlang, although there are a lot of clients available from other

sources.

Figure 4-6 – RabbitMQ Architecture Overview

 Why RabbitMQ? Since there are a lot of solutions for messaging, the decision to go

with the RabbitMQ was made mainly because it is a very lightweight solution, and we

were aiming to get it to run in a relatively low computing capacity device such as the

mobile devices or even in an on-board vehicle device. Since RabbitMQ implements

AMQP, which is not a language strict protocol, it automatically makes our architecture

open to interact with systems using different languages than Java (which is the language

used for developing Android applications). The queue system of the RabbitMQ is a very

important feature to take in consideration, as it will play a major role in REINVENT and it

will allow the applications created that implement our architecture to retrieve messages

received while not connected to the network, as they will be kept by the RabbitMQ server

in a proper queue, so no messages will be lost while the RabbitMQ server is up (which

should be always).

44

4.5 REINVENT services

 REINVENT provides a set of services to the applications. We tried to create a

simple and generic interface that could be used by every application and not to be strongly

related to any particular application domain. Being implemented using Content providers

and relying on the application to maintain application specific status, these services can be

used by several applications simultaneously – concurrency managed at Android OS level.

 In a glance, REINVENT API offers a complete set of methods for applications

presented in Table 3 with a brief description (full details in annex section):

 The CRUD (create, read, update, delete) operations over the naming service.

 The necessary methods for the applications to use the messaging service.

Service Description

GetAllUsers Returns all users from the naming service

GetUser Returns a specific user from the naming service

InsertUser Inserts an entry in the naming service

DeleteUser Deletes an entry in the naming service

UpdateUser Updates the information of an entry in the naming service

NewMessage This method does not return any value, it is used to listen for

new incoming messages

SendMessage This method is used to send a message using an entry from the

naming service as the destination.

Close This method is used to stop the listening thread of the provider

GetNewMessages Returns any new messages from a given type.

Table 3 - REST Interface overview

 The naming services entries are mapped into URI that can be used for each of those

operations, so, if we want to update an already existing entry in the naming service we

would do as follows:

 Create a Content Resolver object

 Create a Content Value where the user would place the information of the updated

entry

45

 Call the insert method over the Content Resolver using the following URI

o content://AUTHORITY/users/# ,where the # would be the id of the entry to

be updated.

 If applications want to receive any new messages, the API has a dedicated URI for

sending notifications when a new message is received and processed in REINVENT

module, so applications can simply observe that URI, and when they receive the

notification of a new message, they can request new messages of a given type if they exist.

We choose to do a generic new message URI as we wanted the module to be as generic as

possible, and not to be dependent on the messages types leaving the parsing of the

messages to the application. Finally, the API provides a method for sending messages

using a very similar method to the example presented previously for updating an entry of

the naming service. If the message was to be directed to a specific entry, the URI to be

used would be similar to the previous one by just adding /send to the end which would be

as follows:

 For sending a message to a specific user, content://AUTHORITY/users/#/send

 For sending a message in broadcast, content://AUTHORITY/users/send

4.6 Developing Applications using REINVENT

 After developing the REINVENT module, it was necessary to apply it to real

applications so we could test it in several scenarios. In this section we will describe the two

created Android Applications implementing our REINVENT module.

 The first application, VNChat, is a messaging application where the user can send

messages through the network to other user. The second one, iThere, is a VANET Social

Network, where the application users will receive visual information of the friends driving

around the user.

 These applications were a very important part of the work process, not only to

prove that REINVENT module works, but also to test the usage of the module by more

than a single application and the way the module handles the concurrency of applications.

Both applications can be considered very simple. Their main objective is to cover all the

possible use cases of REINVENT and also, like explained before, to test the concurrency

of several applications to the module.

46

4.6.1 VNChat

 This application can be inserted in the Infotainment and Other Applications domain

(according to the State of the Art taxonomy), and it was created aiming to be used not by

the driver itself, but by the car passengers as it requires a strong interaction with the

Android device.

 The application is composed by four activities that will be explained and described

in order to understand the layout of the application and all its functionalities.

 The first activity is the Welcome Activity that is the starting activity of the

application; it can be seen as a simple login screen as the only interaction with the user is

an edit text field that must be filled with the desired identification for the user of the

application. That identification will be used to identify the user messages, and it will work

as your “nickname” and it will be associated with the vehicle identification which is

handled by REINVENT module. This identification will be sent to REINVENT as it will

be used to identify all further messages sent to the network, even if they are from other

applications using this module. After the user fills the text field with the desired

identification and proceeds to the application itself, a Tabbed screen shows up with two

tabs, one for messaging and one for contacts.

 The Contact Activity is basically a contact list of the naming service entities, where

the user can consult the list of entities presented in the naming service with their name

identification and their vehicle identification. From this activity, the user can choose to add

a new contact that takes the Add Contact Activity that has a simple form for the user to fill

with the Name and Alias of the user to be added. These activities also interact with the

REINVENT module, as they perform insert and get operations in order to insert a new

contact to the naming service and return the list of all contacts available respectively.

 The final activity, and probably the most relevant activity of this application is the

Messaging Activity where the user has the list of the contacts available in the naming

service. The activity has a text field where the user can type messages that will be sent

through the REINVENT to the selected contact. The activity also has a list view where all

the received messages will be shown. This activity is the only one that uses the transport

layer services of the REINVENT module for sending messages, and also to listen for the

notification of new messages and consequently get those messages from the module. The

activity also requires the information from naming service in order to select the destination

47

contact to send a message. The messages received and sent by this application come with

the TXT type identification, so the application can only fetch the messages from the

module that is concerning this application. This activity itself is probably the most

important to look in this application, as it covers most of the services supplied by the

REINVENT API.

 The Figure 4-7 and Figure 4-8 present all the activities of the application. These

screenshots were taken in a real conversation using two Android devices. The main use

case of this application, Instant Messaging, is covered in the ITS basic set of applications

definition [1], [12] as it should be a base application to be developed for vehicular

networks

(A) (B)

Figure 4-7 Welcome Activity and Contact List Activity

48

(A) (B)

Figure 4-8 Add Contact Activity and Message Activity

4.6.2 iThere

 The second application developed was the iThere Application that can be inserted

into the location based category. It was designed to be used by both the driver and the

passenger, as it requires almost no interaction with the device because the application plays

a purely informative role.

 The objective of the application is to inform the user of the friends using the same

application that are in the near location of the user. It works almost as a social network for

vehicle networks. The application works by broadcasting the user current location every

time it changes in a defined time space with a specific message type, so all the users of the

49

application can pick it up and then synchronize and update their own applications with the

latest location.

 The application is constituted by two activities (Figure 4-9). The first one is the

Map Activity, where a Google map is shown and centers on the user current location that is

marked by an orange dot, which can be clicked for detailed information of the local. The

application will continue to follow the user location and keep the map centered on it, and

will also show blue markets that represent the location of the friends around. They will

only be shown in a one kilometer radius and like the orange marker, can be clicked in order

to get more detailed information of the friend and his location.

 The second activity is the Detail Activity, which is the representation of map

information translated to a list containing the location of the nearby friends. This list

contains the name, vehicle identification, latitude and longitude, and it could be very useful

to have an overview of who is actually around you since the map view only shows the

markers it would require clicking on each one to see the detailed information which can be

consulted in this activity.

 In order to keep both activities equally updated without having redundant

information, we developed a singleton structure for managing the friends. The application

will initially get all the naming service entries and create one Friend, a structure created

similar to the one being used by the naming service with the location information added,

for each naming service entry that will be added to the singleton structure created that can

be then accessed and updated in both views keeping the information in a single structure

instead of passing the information to each activity every time the user decides to switch

between them. This structure has all the required methods for setting and getting attributes

of each entry of the structure.

50

(A) (B)

Figure 4-9 MapView Activity and DetailView Activity

4.7 Implementation Details

 In the following sections we will provide insight about the implementation details

of REINVENT. We will present and describe the main structures that compose the

architecture.

4.7.1 Main Classes and Structures

 REINVENT is composed by four classes. The first class implements the content

provider method which is also the core class of this architecture. The other three classes are

helping classes, one to deal with database connection, one for messaging structuring and

finally one describing User related fields.

51

4.7.2 Network Provider

Figure 4-10 – NetworkProvider core class

 The Figure 4-10 represents the class diagram for the core class of the module

implemented. The Network Provider Class extends the Android abstract class Content

52

Provider, which requires the implementation of some methods that will be explained, and

what is their purpose in our architecture since we are applying the Content Providers

context in a slightly different way of the common usage that is a support for persisting data

between several applications. In our architecture, the main focus of the content provider is

to provide a set of methods and services through a REST interface in order to abstract the

transport layer. It also works as a common persistence unit, as the naming service will be

implemented as a database that will be available to all applications implementing this

module.

 We will now explain the main methods of this class, as well as some of the most

important attributes shown in the previous diagram:

 OnCreate() – This method is called to initialize a content provider. In our

architecture it is responsible for creating a listening thread that will be listening for

new messages from our messaging system. It is also here that we open the

connection to our naming service database in order to fetch all the users to a List so

they can be easily accessible.

 Insert() – The objective of this method by default in the Android Developers SDK

[58] is to insert new data to the provider. In our architecture, it keeps that

functionality as applications might want to add new entities to the naming service.

But in our architecture, this method presents two additional functions; it is used to

send a message to an entity specified in the URI (that will be explained in the next

section when we describe the available methods by the REST interface and how to

access them). The process of sending a message is made by instantiating a new

SendMessage class that is a normal java class that extends the Android abstract

class AsyncTask. An AsyncTask is commonly used in Android development when

we want to perform a network operation, or simply a long operation that must run

outside the User Interface main thread, in order to prevent the decrease of user

experience by locking the interface while waiting for a result. Finally, this method

is also used to terminate the listening thread when called with the proper URI. It

could be useful to stop the thread if, at a certain point, we do not desire to receive

any more messages or simply to terminate the thread along the closure of the

application.

53

 Query() – This method, like recommended by the API, is used to return data to the

caller of the method. In our architecture it is used to get information from the

naming service concerning a specific entity, or simply to return all the entities in

the naming service.

 Delete() – Like the previously method, this method follows the recommendations

of the API, as it is used to delete an entry on the naming service.

 Update() – Like the two previously methods, Update is responsible for updating an

existing record in the naming service database.

 Call() – Although this method is presented on the content provider class, it is not

mandatory to implement by a content provider, but in our architecture it is

absolutely fundamental. This method is responsible to handle provider specific

methods that can be called from applications. All the handled methods are statically

defined in a HashMap that maps commands into values to be handled individually

(Figure 4-11).

Figure 4-11 - Commands Hashtable Diagram

 In our REINVENT implementation, we defined only one command to be

handled in this method, but in order to present new services or methods to the

applications, they could be handled here. The command available is the

GetMessages, which is used by applications to get all the messages of a certain type

available in the provider. The type of the message is passed as an argument of the

Call method, and the return value is returned as a Bundle containing an ArrayList

of MessageContainer, a class to be explained later, messages of the specified type.

Applications can require new messages at any time, but to improve the

performance of the system, we implemented a notification system that can be

listened by the application, and be notified every time a new message is received in

54

the provider, avoiding the usage of polling for new messages. Since this

architecture was made to be very generic, it does not support the notifications of

specific types of messages so it will notify every listener about a new message

independently of the type desired of each application.

 BuildMessage() – This is an auxiliary private method to compose a String message

in a format to be correctly understood by other applications implementing and

using our module. The generic format used by our module for message exchanging

is [TYPE] [SENDER] [DESTINATION] [BODY]. The objective of creating this

message format was to continue with our goal to create a very generic architecture,

independently of the application, using this module they can always define their

own types of messages to be consumed, and even if they want they can encapsulate

new headers in the BODY field of the message.

 ConnectToRabbitMQ() – This is a method for creating a connection to the

RabbitMQ server. It also creates a queue for receiving messages because even if the

listening thread is not active, the messages should not be lost at any point.

4.7.3 Message Container

 This class is an auxiliary class used by both the module and the applications in

order to encapsulate the messages passed between the applications and the module.

 Figure 4-12 represents the Message Container class that is a descriptor for a

message packet. The class has four attributes that represent the four basic and mandatory

fields of a message; a type, which is an enumeration of three character string representing

the type of the message. We have created two basic types of messages: the first one is TXT

that is to be used for plain text messages and the second one GPS that represents messages

containing GPS coordinates. These were the types of messages created in order to cover a

basic set of applications. The next two attributes are strings representing the ID’s of the

message sender and destination, respectively. The final attribute is the body of the message

bearing the content of the message.

 The message container methods are composed by two constructors, a default one

creating an empty message, and one that used the four attributes as arguments, a set of

Getters and Setters for all attributes. There are two more methods implemented as the class

implements the Parcelable interface. We need to implement this interface because the

messages exchanged between the applications and the module will be made through a

55

Bundle, which is a special container for exchanging information between entities in

Android. The parcelable interface methods help the serialization of data content objects

into a parcel to be sent in the bundle. The writeToParcel() method writes the four attributes

of the message into a parcel, while the createFromParcel() method does exactly the

opposite, fetches the four attributes into a MessageContainer object from a given parcel.

 This class was created in order to facilitate the creation and handling of messages

on the application side, since the messages received by the provider come in plain text, and

if they were directly sent to the applications, they would need some kind of parsing

mechanism that could result in several errors or misinterpretation of data, so we decided to

do that parsing and processing in the NetworkProvider and providing a well-structured

message container to the applications.

Figure 4-12 - Message Container class diagram

4.7.4 User Descriptor

 The final class that composes REINVENT is the UserDescriptor (Figure 4-13),

which is a class that defines some required constant values for our NetworkProvider.

56

Figure 4-13 - UserDescriptor class diagram

 This class contains the definition of an entry in the naming service that is composed

by and ID, a Name and an Alias. It implements the BaseColumns interface in order to be

used by the SQL database that will be used to store the naming service entries. The other

attributes of this class are static references for the Authority of the provider as well as the

URI address available on the provider.

4.8 Conclusions

 In this chapter we presented the implementation of REINVENT in Android

Operation system. We introduced Android content provider as the solution for

implementing our REST interface, and the RabbitMQ framework as the solution for our

messaging service. In the following section, we describe the REINVENT services provided

to the applications. These services include all methods necessary for the applications to

communicate through a VANET.

 The chapter ends with the implementation details of REINVENT. We started by

describing two applications: VNChat, a message exchanging application and iThere, a

57

location based application to find nearby users. Finally, we described the main classes and

structures that compose REINVENT.

 At this point we have Android based REINVENT module totally implemented

along two applications ready to be used, but we still do not have any scenarios to test and

experiment. In the next chapter, we will describe the creation, configuration and setup of

both real and simulated scenarios

 .

58

5 REINVENT: Creating the testing scenarios

 In this chapter we describe the process of creating the testing scenarios for

REINVENT. We defined two different types of scenarios that will be presented: a

simulated, using a VANET simulation framework, and a real one that uses On Board Units

developed in the Instituto de Telecomunicações de Aveiro.

 Specific details on each of the scenarios will be presented and discussed namely

addressing configuration and execution issues.

5.1 Simulated Scenario

 The simulation scenario, prior to execution implied three steps:

 Select and deploy the simulation framework that integrates both network and traffic

simulation

 Define a scenario to simulate and create it in the framework.

 Integrate the REINVENT and mobile application within the simulated

environment, while maintaining temporal consistency i.e. map deterministically the

simulation time with the mobile application time.

5.1.1 Simulation Architecture

 The main challenge of creating VANET simulation architecture was the integration

of mobile devices in the simulation, since the framework used, as with all existing, was not

created or supported integrated connections to external devices.

 We selected the VSimRTI framework as our starting point, as it presented the best

features for simulating applications and connecting with external applications. The

VSimRTI is the only framework that has an integrated application management unit that

allows the deployment of applications in each simulated entity, which is a great advantage

to all other frameworks, as the main goal of our simulation scenario is to run and test

applications in the vehicular network context.

 In our scenario VSimRTI is coupled to various mobile devices using RabbitMQ

framework that, through periodic messages to simulator, keeps the mobile devices with

most actual information as possible giving the simulation an idea of synchronization with

59

the devices. Every vehicle-to-device connection is made by creating two queues to allow

bidirectional communication without interference.

 As the applications are completely independent of the simulation, they are ready to

run in a real scenario, and at the same time capable of being part of the simulation. The

simulation will not be dependent on any indication of action from the mobile devices,

thereby allowing the interaction between the device and the simulation to be done

asynchronously. Like a real world scenario, users can perform actions at random times, but

the simulation keeps running synchronously and deterministic as supposed.

Figure 5-1 – Simulation Environment Architecture

 The setup of the simulation is composed by the following components (Figure 5-1):

 Traffic Simulator – SUMO

 Network Simulator – JiST/SWANS

 Application Simulator – VSimRTI Native

60

 Communication between simulation and devices – RabbitMQ

 Mobile Devices – Android Virtual Devices

 SUMO is the traffic simulator used to simulate the behavior of each vehicle in the

road. As described previously, SUMO offers a runtime interface to control and influence

vehicle behavior at runtime of simulation, and it is also used to get information [30].

Hence, the corresponding ambassador converts messages and commands into the TraCI

format to be read by SUMO [61]. The traffic generated by SUMO is used as an input for

our network simulator that is JiST/SWANS. VSimRTI team developed an extension to

JiST/SWANS to allow the synchronization of the internal scheduler with the received

messages or commands using a socket interface. The applications running in the vehicles

are simulated by the application simulator, which is an in-house multi-layered application

container with its own application and facility layer and interfaces the network layer. It

serves as a framework for users to create custom V2X applications [62]. As it is native to

VSimRTi, it does not need to be installed.

 Finally, we have the mobile devices that are simulated as Android Virtual Devices

created using the Android Developing Tools [63].

5.1.2 Simulation scenario

 In our simulation we used a segment of the Portuguese national road 109, which

will be referred from now on as N109, with one lane on each side, where three vehicles

capable of V2X Communication are travelling at a constant speed and distance. Two of

these vehicles are equipped with an Android mobile device.

Figure 5-2 – Simulation Scenario Overview

61

 The three vehicles will travel along the road, and during that route, the Android

devices will be able communicate through the network provided by the simulation. The

simulation follows basic workflow:

 A mobile device sends a message that will be stored in the RabbitMQ

 The correspondent vehicle application will get the message stored in rabbit,

transform it in a vehicular network message format and sends it in broadcast.

 The destination car application will receive the message and forward it to the

RabbitMQ

 The receiver mobile device will read it and show it on the interface.

This sequence of events can occur as long as the simulation runs, and it does not need to be

performed at any special time or targets. Since the messages are sent in broadcast, all

vehicles will receive them, but they will discard any messages that are not addressed to

them.

5.1.3 Connecting Applications to the Simulation

 The key factor for connection the simulation to external applications was the

RabbitMQ. We used an instance of the RabbitMQ server installed locally that will work as

a messaging interface from the simulation scenario to the mobile applications that will

connect to the simulation. The simulation will be sending periodic messages (plus the

applications specific ones) with the state of the simulation, so the mobile applications have

the feel of being part of the simulation, even if they are totally independent and do not need

to interact with the event scheduler of the simulation.

 The setup we used to connect our simulation to the mobile devices was to create

two message queues in the RabbitMQ server for each device-vehicle pair, in order to

obtain bidirectional communication. As described in REINVENT architecture, there is a

thread running in parallel to the main application that will be listening to the receiver

queue for any new messages published by the mobile device. On the other hand, any

messages that the vehicle wants to forward to the device will be published on the other

queue. We created our own Java clients based on the libraries available. The first one

publishes messages, which will create the desired queue if it does not exist, and only

62

connects to it when it needs to publish a message. The second client is the consumer which

will be permanently connected to the listening queue and waiting for new messages. The

clients are fairly the same in the Android and car applications, and only differ at the time of

handling the message. In the Android client, the message handling is delegated to a handler

that will process it and update the user interface if it is necessary; on the other hand, the car

application simply saves the messages in the internal inbox so they can be handled in the

next timercall cycle.

5.1.4 Android Test Application

 In order to test the described setup, we created a simple Android application. The

application consists on a simple text message exchange application between the vehicles.

The application has only one activity that shows the status of the simulation, the current

simulation time and all the received messages. There is also a text field to write the

messages to be sent followed by the sending button. The connect button was created to

force a connection to the RabbitMQ in case it was lost or it simply could not connect at the

time.

 We created simulation specific message types that will be sent by the vehicle

application in order to inform the Android applications about the current state of the

simulation. The following messages should be handled by the mobile applications in order

to obtain the simulation information:

 SIMSTART – this message signals the application that a simulation has started.

 SIMOVER - This messages marks the end of a simulation

 TIME – These messages are sent periodically and represent an update from the

simulation with the current simulation time. The application can use them to update

the simulation timer.

 We can see in Figure 5-3 the result of two running applications in the same

simulated scenario, where two messages were sent between them, and we can also see that

63

the simulation time is synchronized between them, so it means that the car applications are

actually keeping the Android applications up-to-date.

Figure 5-3 – Testing Application

 Because this application was merely created for simulation purpose, both the server

configuration, the car to be connected and the queues are made by launch parameters, so

we can control the flow of simulation by assigning a specific application to a specific

vehicle. It is also important to understand that, at this point, we could have used any kind

of application to test, as this solution was created to allow any Android application to

connect to simulation.

5.1.5 Simulation scenario setup and configuration

Besides specific details concerning our scenarios, the setup and configuration of the overall

simulation implies several steps that are described in detail:

 VSimRTI Configuration – setting up the simulation environment

 Creating the map and converting to VSimRTI format – prepare the scenario map to

the simulation environment

64

 Setting up the traffic simulation- configure SUMO

 Setting up the network simulation – configure JiST/SWANS,

 Mapping, Navigation and Application simulators setup

 Defining the vehicle Application

 VSimRTI Configuration

 VSimRTI is organized as a hierarchy of folders where the configuration files of

each simulator will be placed in a folder named after the simulator, for example, the

SUMO configurations would be placed under a folder called SUMO, which will contain

XML files related to the simulation roads, vehicles and routes.

 The framework has also a main configuration file where it should be defined which

simulators will be used. It is a simple XML file with the names of the several simulators

set to true or false as needed. The minimum setup for a simulation should include all the

embedded simulators, such as the application, mapping and navigation, traffic simulator

and network simulator. The mapping and navigation simulators were created to help the

creation and control of the several entities of the simulation, and to help exchanging

messages between the simulators respectively.

 It is also in this file where the main attributes of the simulation are defined. These

attributes include the name of the simulation, start and end time, the map offset values that

come from SUMO, and finally the real geographical coordinates of the map if it suits the

simulation.

 Creating the map and converting to VSimRTI format

 To create the map used in this simulation, we used a tool to convert maps exported

from the OpenStreetMap. OpenStreetMap is a project that creates and distributes

geographic data from the whole world, by simply selecting the desired area and exporting

it in a couple of different formats such as XML OpenStreetMap, which we used in our

work or simply as an image format. After we select our N109, we export the map in the

OSM format and we will process it with a tool called osmconvert to transform the map to

the VSimRTI and SUMO formats.

65

 Osmconvert is a tool for importing, converting and exporting OpenStreetMap data

to different simulator specific formats, e.g. it converts OpenStreetMap files to a database,

which can be read by VSimRTI. This database is the basis for all map-related tasks, which

can be performed by VSimRTI (e.g. navigation, route calculation). Based on a VSimRTI

database, osmconvert can export the data to SUMO input formats, which then can be used

in the simulation. To enable dynamic rerouting of vehicles, osmconvert generates exports

and imports route data from and to SUMO. This way, one can choose whether to use

generated routes (all possible routes between a point A and B), use existing routes and

import them via osmconvert, or build own routes via the route generation tools supplied

with the standard SUMO installation.

 VSimRTI uses a database for internal storage of map and route data. Therefore, it is

necessary to convert OpenStreetMap data into a VSimRTI specific database format. Using

this database, the map data can be exported to different traffic simulators, such as SUMO.

This makes sure that each part of the simulation relies on the same map using the

osmconvert tool [64].

 Setting up the traffic simulation

 After transforming the map to the VSimRTI and SUMO format we need to define

which routes the vehicles in the simulation will take. These routes can also be defined

using the osmconvert tool using the starting and ending point of the desired route, and the

tool will return a route with the shortest path between those two points in case it is

possible. The routes can also be defined by hand in the specific SUMO routing file, which

is also a XML file. In this work, we only defined one route which will travel along all the

extension of the road available.

 Having a route defined, in that same XML file, we need to define how many and

the type of the vehicles which will be participating in the simulation. So we defined three

vehicles of the same type, length and maximum speed with a departure difference of 5

simulation seconds. At this point, we have our traffic simulation configured up and it is

possible to test it with the SUMO visualization tool, which will result in three vehicles

traveling in the road at the same speed and distance from each other until the end of the

road.

66

 This was the setup chosen for the traffic simulation, as the main focus of this work

was the integration of mobile applications in vehicular network simulation, so we created a

simple and very controlled traffic scenario to ensure that the cars would have connectivity

at all times. At the same time, the scenario is complex enough to test network messages

exchange between more than two entities.

 Network simulation setup

 The configuration of the JiST/SWANS, as all other simulation components, will be

under a folder called swans, with XML file for configurations. This file contains the used

model parameters especially for the radio channel, physical layer and the routing protocol

on the network layer. The file is divided in two different sections: the first one contains the

common parameters, and the second one contains two sections with specific parameters to

support different configurations for different entities (e.g. Vehicles and RSU).

 In the common section the following parameters should be configured:

 Dimensions of the simulated area – It should not be smaller than the ones

defined in the SUMO.

 Configuration of the Random Number Generator settings (Three types

supported, Linear Congruential Generator, Mersenne Twister and

BlumBlumShub) – We used linear Congruential Generator

 Propagation model for path loss and fast fading – We used Free Space

model which does not need any further parameter configuration

 Common parameters for physical layer – The default SWANS assume

configuration of the IEEE 802.11b, even if the IEEE 802.11p is the

reference standard for vehicular communication, so we used a configuration

provided by the VSimRTI that has the IEEE 802.11p parameters.

 Routing models – If none, which is our case, all V2X message will be sent

using single hop broadcasting.

 Since we only have vehicles in this simulation, there is only one more section to

configure with the physical layer parameters specific of the vehicles, which includes

antenna heights, TX power and RX sensitivity. We used once again the configuration

provided by the VSimRTI, since it was already used and tested in a scenario for vehicular

network simulation [62].

67

 Mapping, Navigation and Application simulators setup

 As was referred before, these three simulators are part of the mandatory simulators

for running a simulation in VSimRTI, as they take an important role connecting and

synchronizing all the simulation together.

 The application simulator has very few configurations to do, as most of them are

made by the mapping simulator. The application folder structure is divided in three

different folders for each of the three different entities supported by VSimRTI, vehicles,

RSU and Traffic light. It is under each of these folders that the application JAR file related

to each entity will be placed. There is also a XML configuration file that is used to

configure the parameters of the messages sent by applications. It is possible to configure

the automatic sending of messages with a given time interval or position change value.

Since we do not want our vehicles to send any messages by themselves, as we want to

control all the messages exchanged between the vehicles, there was no configuration

needed in this file.

 The mapping simulator is responsible for creating instances of simulated entities

and starts the applications on them. It is responsible for handling every type of entity,

vehicle, RSU or traffic light. VSimRTI offers the possibility to assign different

applications to different vehicles or groups of vehicles, and it is in the mapping simulator

that those configurations and attributions are made. It is responsibility of the mapping

simulator to define and configure the following:

 Simulated traffic entity in detail such has vehicles, RSU or traffic lights.

 The ratio between certain traffic entities with different attributes upon

creating.

 The attributes of a specific traffic entity.

 The configuration is made under the mapping folder in a XML configuration file

which is divided in two parts, attribute definition and mapping configuration. In the first

part of the configuration file all basic entities and compositions can be defined, each basic

entity configuration is made by an assigned configuration file. Applications and vehicles

will have their own configuration files, applications file will have the mapping of JAR files

into elements to be assigned later to a vehicle, while the vehicle will have the properties of

68

vehicles if we want to configure different types of vehicles. The vehicles properties will

just be mapped into the SUMO configuration files created previously. The second part of

the main configuration file is used to define how many vehicles of a specific type should

drive in the simulation. It is possible to choose between deterministic mapping, where the

sequence of the mapped vehicles will always be the same in every simulation, and

stochastic mapping resulting on a random order of the mapped vehicles. The different

mapping sections found in the file defines what percentage of each entity will be created

for the simulation.

 In our simulation we used the deterministic mode because we want to have total

control of the simulation status, so we do not have to care about the random situations that

could be created. In this particular case, it would not be a big problem to use stochastic

mode because our three vehicles have exactly the same attributes, but in terms of the

application logic, they would be different as the mobile devices will be connected to

specific vehicles.

Vehicle Application in VSimRTI

 The Vehicle application role in VSimRTI simulation is to be used as relay between

the simulated transport platform for messages sent and received by mobile devices. Its

design is simple, since it will only make processing of incoming messages and forward

either from the network to the mobile device or vice-versa. This implies converting

contents and composing a message in the format supported by the network carrier or

understood by the mobile device application.

 To keep the simulation running smoothly without interfering with the internal

scheduler of the VSimRTI, we needed to find a solution for the messages sent from the

mobile devices to be inserted in the simulation structure in a synchronous way. The

solution found was to create a thread running in parallel to the vehicle application that is

listening for new messages from the mobile devices. Once it receives a new message, it

will be stored in the applications internal message queue, like an inbox. Once the timercall

method is called, which was configured to be called once every second, it will have two

jobs, the first one is to report to the mobile device the actual time of the simulation so it

keeps updated on what timing the simulation is running, giving a notion of synchronization

to the simulation that actually does not exist. The second job is to get all messages in the

69

internal message queue and transform them into a supported format to be sent in the

vehicular network. This was a very important step to integrate the mobile devices in the

simulation without interfering with the internal scheduler of the simulation. In the worst

case, the messages will be delivered to the vehicle with an additional second.

 To forward a message from the network to the mobile device, the OBU application

only needs to invoke a method every time it gets a message (a callback). After receiving a

message, the OBU application will check if the mobile device is the destination of the

message and if it succeeds, the message is forwarded to the device, otherwise the message

is discarded.

 Defining Vehicle Application in VSimRTI

 The creation of applications for VSimRTI is done in Java language using an

interface provided by VSimRTI that must be implemented by all applications called

Application. This interface is responsible for providing the necessary methods to the

simulator if a certain event happens. All methods of this interface should be implemented

even if they are left empty.

Applications may be specific to the three types of entities supported by VSimRTI,

vehicles, traffic lights or RSU. For each of them, there is a specific type of reference which

must be instantiated so as to obtain the required methods for the control of entities.

The Application interface implements the following methods:

• Void initialize (ComponentFactory factory, Logger log) - This is the method that

should be booting the entity using the input parameter of the factory method to

remove the references to control the entity that runs the application:

 Timer - Reference to the simulation time, is updated automatically by

the simulator and serves to maintain the state of the simulation time

 CommunicationModule - reference to the communication module, used

for sending messages to the network

 VehicleStateManagement / RSUStateManagement - This module is

responsible for storing the state variables of the respective entities and

should only be used for the same query. Some examples of available

attributes are vehicle identifier or current vehicle speed.

70

 VehicleControl / TrafficLightControl - This module unlike the previous

point serves to interact with the entities and change their status. Some

examples of possible state change are changing lanes for a vehicle or

even slowing. For Traffic Light it is possible to force a specific state of

the state machine (Forcing a red light).

• Void receiveMessage (TypedV2XMessage msg) - This method is called

whenever the entity in question receives a message from the network and it is

responsible for handling the message.

• Void timerCall (long time) - This method is called by the simulator if registered

by the application to be called with a periodicity that can also be defined. If there is

a task that should be performed with a given periodicity, it is this method that

should be assigned to take care of it. The input parameter of the method represents

the simulation time at which the method was called.

• void dispose () - This method is called before the application is terminated and

removed by the simulator. It may be important to record statistical values of the

simulation.

The developing of applications can be made any IDE, and must be compiled with version

JavaSE-1.7 and the following libraries must be added to the application Buildpath:

• vsimrti / bin / ambassadors / lib / application-messages-xxx.jar

• vsimrti / bin / Fed / application / application-federate-xxx.jar

• vsimrti /bin / lib /slf4j-api.x.x.x.jar

• vsimrti / bin / lib / vsimrti-collections.x.x.x.jar

5.2 Real Scenario

 The objective of the real scenario is to test our application within a realistic

scenario involving existing OBU deployed on vehicles. The OBU supports the 802.11p for

sending messages in the vehicular network specific protocols, and the 802.11b which is use

to connect to Android devices.

 In the scenario, OBUs will provide proper environment for receiving messages

from the mobile applications, and then compose proper vehicular networks messages that

will be sent to other OBUs through the VANET. It will also be responsible for receiving

71

incoming network messages and strip them from the network specific attributes, and

forward the message payload to the applications.

5.2.1 Equipment

 The OBUs used were developed in the Instituto de Telecomunicações of

Universidade de Aveiro and created for vehicle communication purposes. This OBU is

already being used in a large scale testbed, being already used by over 400 taxis in Porto

city, and it is already a very reliably equipment for V2V communication as it has been

subject of several improvements since its creation.

 The following list presents the description of some of the main features of this

OBU:

 Wi-Fi Module using the IEEE 802.11a/b/g.

 Wi-Fi Module using the IEEE 802.11p with frequency ranges between 5.86 and

5.92 GHz[65].

 Antennas for supporting the previously described modules.

 GPS GlobalTop (MediaTek MT3329).

 Minimalist Linux OS.

 The Figure 5-4 shows an overview of the OBU with its several available

connectors. On one side, it has access to two connectors to connect the two antennas (for

the g and p standards), an Ethernet port, a connector for power supply (battery or lighter),

and a serial port (RS-232), which is used to read the values coming from the GPS. On the

other side, it has a video output and two USB (Universal Serial Bus).

Figure 5-4 - On Board Unit

72

 Several Android devices were used in this scenario comprising four different

devices: a TMN Smart A18 (ZTE Grand X), a Galaxy Note 10.1, a HTC One X and a

Samsung Galaxy Mini. An overview of the device specifications is described in the

following table:

Device CPU RAM OS Version

TMN A18[66] Dual-core 1 GHz 1GB Android OS, v4.0 (Ice Cream

Sandwich)

HTC One X[67] Quad-core 1.5 GHz 1GB Android OS, v4.0 (Ice Cream

Sandwich)

Galaxy Mini[68] 600 MHz ARMv6 384 MB Android OS, v2.2 (Froyo)

Galaxy Note[69] Quad-core 1.4 GHz 2GB Android OS, v4.1 (Jelly Bean)

Table 4 - Android Devices Features Overview

 We decided to use devices with different specifications so we can understand if the

REINVENT module has any impact on the devices performance. These three devices

cover all the spectrum of Android devices, with the Galaxy Mini being probably the lowest

end of the Android devices, the TMN A18 being the term between, as it is not state of the

art of Android technology but is far from being an outdated device, and finally the HTC

One X that is among the best current Android devices. We also used a tablet in order to

understand the behavior of REINVENT in a slightly different environment, although we

did not develop any particular application oriented for tablets.

 To carry out the experiments on the road, we always used at least two vehicles:

vehicles used for the scenarios in this document have been a Toyota Corola (5 Doors) and

a Ford Fiesta (5 Doors). We took into account the use of vehicles of similar size,

decreasing the sources of error due to different vehicle structures (Figure 5-5).

73

Figure 5-5 - Toyota Corola and Ford Fiesta

5.2.2 Scenario architecture

 The deployed architecture (Figure 5-6) is composed by the following components:

 Android devices – TMN A18, HTC One X, Samsung Galaxy Mini

 On Board Unit with 802.11p and 802.11a/b interface running the following

services:

o RabbitMQ Server

o Message Handling Client

74

Figure 5-6 - Real Scenario Architecture

 In this architecture, the mobile devices connect to the OBU by their Wi-Fi

interfaces through a provided network. The OBU runs the RabbitMQ Server and a client

that will be handling the messages. These messages can come from both the VANET and

the Android applications via the RabbitMQ server.

 The android applications can connect to the Rabbit server by simply using the OBU

Wi-Fi interface address, as the Rabbit will be coupled to that interface. The client that is

running inside the OBU is responsible for listening for the messages received, in order to

forward them to the RabbitMQ, so they can be fetched by the applications. It is also

responsible for getting the messages sent by the applications to the Rabbit server, and then

sent them to the WSMP service, which will be explained next.

 The communication between the OBUs is made using the Wave Short Message

Protocol (WSMP), a service defined in the IEEE 1609.3 that allows requests from higher

layers, such as applications, for sending messages over the air by MAC Address in both

unicast and broadcast. For the REINVENT messages, we are using the control channel,

75

and the messages are sent with the Provider Service Identifier (PSID) 80-01. The client

starts a daemon that listens for the incoming Wave Short Messages (WSM) with a given

PSID using the following shell command:

 uwsmp receiveWSM psid 80-01

Opening a pipe with this command allows our client to read from the Standard Output

(stdout) of the daemon where it will write the receive WSM’s. After receiving the

messages, the client will also parse the body of the message, and then build a message in

the proper format to be interpreted by REINVENT.

 On the other hand, the client also needs to send WSMs whenever it retrieves a

message from RabbitMQ server. This is made using the following command:

 uwsmp sendWSM psid 80-01 amount 1 msg [BODY]

5.3 Conclusions

 In this chapter we described the process of creating and setting up the scenarios for

testing REINVENT.

 The first section started by describing the simulation architecture followed by the

scenario. The next section described the integration of mobile applications with the

simulation. Finally, the chapter ends with scenario configuration and setup information. It

is important to note that the main challenge when creating this scenario was the integration

of mobile devices with the simulation.

 In the second section of this chapter we described the real scenario. We started by

describing the equipment used, the Android devices and the OBUs, followed by the

scenario architecture where we described not only how the devices connect to the OBU,

but also how the OBU handles the messages.

 At this point, we have REINVENT totally implemented as well as both simulated

and real scenarios.

76

6 Experimental Tests & Results

 In this chapter, we will describe the testing procedure of REINVENT in both

simulated and real scenarios. In the evaluation process, we will use two mobile

applications (VNChat and iThere) to assess the impact of REINVENT and VANET

conditions in their performance, namely in the message exchange. In the simulated

scenario, the tests were deployed in a scenario where all the entities are in a single

machine, and in the real scenario, the entities are deployed in two cars with VANET

configuration (each car with its own OBU), and different mobile devices with different

hardware specifications.

 In section 6.1, we will analyze the impact of REINVENT in the devices: we will be

performing tests in different devices so we can understand if the applications developed

using our module have any hardware limitations.

 In section 6.2, we will perform several tests in the simulated environment. We will

test the performance of the simulated OBU application. We will also measure the delay of

sending messages between devices and how parameters like distance affect these delays.

 In the section 6.3, we will perform several tests in the real world environment. We

will be testing the performance of REINVENT by measuring the delay of the system in

several conditions.

6.1 REINVENT Performance on Different Devices

 We used four different devices to run these tests, a Samsung Galaxy Mini, a TMN

A18 (ZTE Grand X), a HTC One X and a Galaxy Note. The choice of these four devices

was made based on the coverage of most of the actual Android device range, being the

Galaxy Mini a very low end device with very low specifications (600 MHz CPU and 384

MB RAM), the TMN A18 is the medium range device, as it has good specifications whilst

not having the best ones, the HTC One X can be considered as the state of the art of the

android devices, as it is one of the best in the market, and finally, the Galaxy Note

represents the tablet class of mobile devices.

 The first test was focused on delays in message sending and receiving from the

mobile. We measured the delay of sending a message from the time the user hits the

sending button, to the time the REINVENT sends the message to the RabbitMQ server.

77

The reception of a message is measured from the time the REINVENT module consumes a

message from the RabbitMQ server, to the time it is shown in the user interface. This test

is performed to analyze the delay that REINVENT induces in the applications. The

scenario used to execute these tests is the real experimental scenario, where each device is

connected to an OBU, and we send 40 messages from each device in order to measure the

send time. These messages are used to measure the receiving time of the other device.

 The Figure 6-1 and Figure 6-2 show the results of both sending and receiving

messages in all the four devices. In Figure 6-1 we observe that the results between the

mobile phones are similar, being the Galaxy Mini the one presenting the highest delay,

while the Galaxy Note has the lowest delay by far from all the four devices. The results of

Figure 6-2 follow the same pattern of the Figure 6-1. However, the delay values of the

Figure 6-1 and Figure 6-2 are very different. In the Figure 6-1, the delay values are around

160 msec for the three first phones, and 80 msec for the tablet; in the Figure 6-1, the delays

of all the devices stay around the 1,5 msec. The large difference of delay values can be

explained by the way REINVENT works as for receiving messages: REIVENT creates a

connection to the RabbitMQ server and listens for new messages without closing the

connection, while every time it sends a message, it creates a new connection to the

RabbitMQ server, so the difference on the delay value may be justified with the connection

time to the RabbitMQ server for each message.

Figure 6-1 - Message Sending Delay by Device

78

Figure 6-2 - Message Receiving Delay by Device

 The results suggest that REINVENT module does not induce any significant delay

to the application execution, as the result values can be considered acceptable (almost

negligible in the case of the receiving). It is also possible to infer that REINVENT does not

depend on any specific hardware requirements, as it behaved similarly in all the devices

considered with very different specifications. The slightly variations in the values between

the devices are according to the differences in the specifications, where the Galaxy Note

presents the best results and the Galaxy Mini presents the highest delays.

6.2 Simulated Environment

 The objectives of the tests performed in the simulated scenario were first to assess

the feasibility of using a simulated scenario to test mobile applications in vehicular

network environtment, and second, if that is possible, to test the performance of

REINVENT module in different simulated scenarios. The scenario used was composed by

3 cars, where two of them are connected to real Android devices running the VNChat

application. Further details can be found in section 5.1 of Chapter 5 .

6.2.1 OBU Application Performance

 In the first test, we wanted to understand the delay of processing a message in the

simulated OBU application. We measured the delay inside the application for sending a

message received from the application to the network, and the delay for receiving a

message from the network to the application. In this scenario, the vehicles were driving at

79

a constant speed of 50 km/h with 300 meters distance between them. We also used a 40

message sample in order to obtain the results presented in the Figure 6-5

 The Figure 6-4 represents the overall scenario where the red arrows represent the

measuring points while Figure 6-3 represents the vehicle placement of the simulation. The

Green cars are representing the ones running the mobile applications, while the Red car

does not have V2V communication capabilities.

Figure 6-3 Simulated vehicle placement

Figure 6-4 Measuring delay inside the OBU application

 In Figure 6-5 we can observe the results of the test, where the blue line represents

the delay of messages sent from the application to the network, while the red line

represents the delay of the messages sent from the network to the application.

 The delay from the received messages is fairly constant and has an average of 10

msec. We can conclude that the OBU application itself does not add any major delay to the

messages received from the network.

80

 The delay from the sent messages has an average of 140 msec delay, but it contains

a high oscillation on its values that can be easily explained. Since the mobile applications

are not part of the simulation itself, the messages cannot be handled by the OBU

application on the time they are sent from the mobile application, because the OBU

application actions are controlled by the simulation scheduler. Like we described in the

section 5.1.3, the OBU application runs a message checker in a defined time interval, so if

the user sends a message right after the message checking, the message will have an

additional delay equal to the time interval of the message checker. On the opposite case, if

the user sends a message right before the message checking, the message will be sent to the

network with a delay near to 0 msec. In this particular simulation setup, we used a 500

msec time interval for the message checking.

Figure 6-5 Simulator Message Processing Time

6.2.2 Point-to-Point Message Delay

 In this scenario we will be analyzing the delay of sending and receiving a message

through the overall architecture. The objective of this test is to analyze the overall delay of

our architecture when integrated with a simulation framework. This test will also be

81

proving the overall success of the integration of mobile applications running in real phones

with a simulated scenario.

 Figure 6-6 represents the overall scenario where the red arrows represent what we

will be measuring in this test. We will be measuring the delay from the point a message is

sent from one application to the RabbitMQ server then, the respective OBU application

will read the message and send it to the network. The destination OBU application will get

the message, and then send it to the RabbitMQ server to be read by the destination

application where the measurement will end. In this scenario, the vehicles are driving at a

constant speed of 50 km/h with 300 meters distance between them. We also use a 40

message sample in order to obtain the results presented in the Figure 6-7.

 We can observe in Figure 6-7 the results of this test, where the sending message has

an average of 1446 msec, while the receive message has an average of 1302 msec. The

results of the two operations should be similar and the slightly difference on the results can

be justified by the same reason as presented in section 6.2.1.

Figure 6-6 Simulation Overall Schema

82

Figure 6-7 Simulation Receive and Sending Average Time

 We believe the overall results of this test are according to our expectations. We

expected the delays in the simulation scenario to be relatively high as the whole system is

running in a single machine, and the flow of the communication between the two

applications depends on the simulation processing.

6.2.3 Point-to-Point Message Delay with Distance Variation

 This scenario is based on the one described in section 6.2.2, where we were

measuring the point-to-point message delay between two applications. In this scenario, we

will be measuring the same delay, but we will change the distance between the vehicles so

we can understand how it affects the performance of REINVENT.

 In this scenario we will be using a vehicle placement similar to Figure 6-8 with a

constant speed of 45 km/h. We will be measuring the delay of sending and receiving

messages with three different distances. The 50 meters represent a common distance in an

urban scenario where vehicles drive relatively close to each other. The 600 meters

represent the maximum communication distance in line of sight of the OBU’s, and finally

the 300 meters represent a midpoint between the two described.

 Figure 6-9 presents the results of the test described. We can conclude from these

results that the distance is not a relevant factor in REINVENT performance as the delay

83

variation is very small. For receiving a message, the values are very similar while in the

sending we can observer a small difference of the values justified with the random factor

induced by the message checker explained in section 6.2.1.

Figure 6-8 Point-to-Point delay with distance placement

Figure 6-9 Receive and Sending Average Delay with distance

6.3 Real World Environment

 After performing the tests in the simulated environment, we need to test our real

scenario and analyze its performance. In this subsection we will explain the results

obtained in the real world scenario. The scenario was described in chapter 5.2 and it is

composed of two OBUs and Android devices running VNChat application. In the first test,

we will be measuring the round trip time of a message in a single device in order to

understand the performance of the overall architecture without the VANET delay. We will

84

be sending messages from the application, and the client running in the OBU will be

returning the message back to the device, so we can measure the performance of the whole

system architecture. In the second section of tests, we want to understand the impact of

velocity and distance in the real scenario, so we will present tests with our setup using real

vehicles in Aveiro roads.

 We decided to measure the delay of the round trip time, since we can do the

measure in a single device solving the problem of synchronization of a system clock

6.3.1 Architecture without VANET

 In this test we measure the round trip time of a message in a single device, and it is

measured in all the four devices with an 80 message sample. This test is very important as

it will be showing us the real potential of REINVENT to be used in the developing of

applications for vehicular network. It is important for the system to have very low delay, so

it can be used in critical applications as safety application that require very little delay

times to be considered effective. In this scenario, unlike the normal behavior of the system,

the message handling client will be sending back a message once it is read from the rabbit

server.

 The overall schema of this test is represented on Figure 6-10 where the red arrows

represent the path we will be measuring in this test.

Figure 6-10- Round Trip Time Schema

85

Figure 6-11 – Message Round Trip Time in the OBU

 The Figure 6-11 shows the results of the message round trip time. Following the

results of section 6.1, the Galaxy Note once again obtains the best results with an average

of 167 msec, while Galaxy Mini obtains the largest delays with an average of 273 msec.

These results once again can be justified by the hardware specifications as the Galaxy Note

has much higher computing power as well as better communication interfaces. We

obtained an overall average delay result of 240 msec, which we consider a good result.

6.3.2 Round Trip Delay with Distance Variation

 The following tests are performed on the vehicles presented in chapter 5.2 and were

made on a real road in Aveiro. In Figure 6-12, the red arrows represent the schema of what

will be measured in the following tests.

86

Figure 6-12 Round Trip Delay with VANET schema

 The objective of this test is to understand how the distance between the vehicles

affect the performance of applications using REINVENT in real scenarios.

 In this scenario both vehicles will be stopped and will be placed with different

distances like Figure 6-13 shows. We will be measuring the round trip delay with a sample

of 40 messages for each distance. We used 4 different distances: 5 meters where the cars

represent a situation where they are parked next to each other; the 100 meter distance is a

common distance for an urban scenario; the 300 meters represent half of the maximum

communication distance, and finally, the 600 meters represent the maximum

communication distance of our OBU.

Figure 6-13 RTT with distance schema

87

Figure 6-14 Round Trip Delay with Distance

 The Figure 6-14 represents the results of this scenario. We can conclude from the

obtained results that the distance is not a factor that impacts the performance of our

application as the delay obtained between all the distances is very similar. Even at the

maximum communication distance, the difference to the 5 meter mark is around 10 msec.

The average delay of this test is 347 msec.

6.3.3 Round Trip Delay with Speed Variation

 As we have seen in the previous scenario, the distance does not affect the

performance of REINVENT. In this section we test the effect of vehicle speed in the

performance.

 In this scenario, depicted in Figure 6-15 and Figure 6-12, there is a stopped car

while the other car will be driving around with different constant speeds: 20km/h, 50km/h

and 80km/h. Unlike the other scenarios, we will not have a fixed message sample; we will

be sending messages at a similar rate for each speed, so the number of samples will be

decreased with the increase of speed.

88

Figure 6-15 Speed Variation Schema

 We can observe from Figure 6-17, Figure 6-18 and Figure 6-18 that the message

delays follow the same pattern; they start with high latency of messages, which represents

the limit of connectivity where some of the messages were not received and consequently

not measured. The latency starts to decrease with the proximity to the other vehicle, and

the lower latencies are observed for the smallest distance between the vehicles. We can

observe the high latencies in the last messages that represent, once again, the limit of

connectivity between the vehicles.

 It is important to note that the lowest delays are higher than the average of the

delays obtained in all the other scenarios, which makes us conclude that the speed is an

important factor and affects the performance of applications using REINVENT. We can

also conclude that different speeds result in different delay values: the delays at 20km/h are

considerably lower than at 80km/h. At the speed of 20km/h, excluding the limits of

connectivity, we do not get any delay values above 600 msec mark, while this does not

happen for 50km/h and 80km/h.

Figure 6-16 Round Trip Delay - 20km/h

89

Figure 6-17- Round Trip Delay - 50km/h

Figure 6-18 - Round Trip Delay - 80km/h

6.3.4 Messages per Second

 The objective of this final test is to evaluate the performance of REINVENT with

different loads of message traffic. This test was made in the laboratory environment, using

the setup presented in the Figure 6-12, because we wanted to evaluate the behavior of

REINVENT under heavy message loads, but we did not want our results to be affected by

network conditions. With this setup we ensure the results obtained are under the best

network conditions, and consequently the results reflect the REINVENT performance.

90

 In this test we will be measuring the round trip delay of messages that will be sent

at different rates. We will use a 30 message sample with 5 different rates of Messages per

Second (MPS).

 The results of this test are presented in Figure 6-19. We can observe that

REINVENT performance is not affected for the 0.33, 0.5 and 1 MPS rates, as the delays of

all the 30 messages are constant. For MPS of 2 and 4 MPS, we can observe a significant

increase in the message delay right after the first message. Around the 10
th

 message, the

delay is over 5 seconds for both rates and the 30
th

 message arrived approximately with 20

seconds delay.

 We can that conclude the messages rate is a very relevant factor for the

REINVENT performance especially at high rates. REINVENT supports up to 1MPS rate

without any loss of performance, while higher constant MPS rates will increase it

substantially. The reason for the increase of delay at higher MPS rates can be explained by

the way we implemented REINVENT sending message service. The REINVENT will

create a connection for each message, and consequently closes it after the message is sent.

During this time, with high MPS rates, another message can be received by REINVENT to

be sent, but it has to wait for the previous connection to the RabbitMQ server to be

available, which will create a chain of delay. Also, due to the way AsyncTask works, the

Android OS will only process 5 at the time while others stay in a sleep state, and even

those 5 tasks are not processed in parallel but in a queue system.

 A possible solution to solve these high delays could be to implement a bundle

sending mode for the messaging service. Instead of creating a new task for every message,

and consequently a new connection to RabbitMQ server, the task that is still active should

check if there are any pending messages and handle them instead of creating a new task to

be in the processing queue. The task should only end if no messages arrive in a defined

time space.

91

Figure 6-19 - Round Trip Delay with Message per Second variation

6.4 Conclusion

 In this chapter we described and explained the results of the experimental tests

performed, in order to verify and understand the performance of REINVENT in both

simulated and real scenarios.

 In the first section we tested the performance of the REINVENT at the device level

by testing the basic communication features in different devices. We concluded that the

device specification can reduce the delay induced by the module, but it is not a critical

factor as we obtained very good delay results in both sending and receiving operations in

all the devices.

 The 6.2 section is relative to the tests made on the simulated environment. We

started by measuring the overall delay of sending and receiving messages from and to the

network as well as from and to the application, and we obtained slightly higher delays on

the sending operation, that was justified by the message checking method that runs at a

fixed time interval. We also measured the delay of sending and receiving messages with

different distances between the vehicles, where we concluded that the distance was not a

significant factor for REINVENT performance. Finally, we performed tests to measure the

delay of operations inside the OBU simulated application, and we concluded that the only

significant delay was the one from the message checking method.

92

 The next tests were made on the road in order to understand the performance of

REINVENT on real scenarios. We started by measuring the round trip delay of a message

with the distance variation on stopped vehicles. We concluded the distance is not a factor

that impacts the performance of REINVENT. The vehicles can exchange messages inside

the communication limits without any increase of delay. In the next tests, we measured

once again the round trip delay of a message, but in this scenario a vehicle was driving at

different speeds while the other was stopped. We concluded that the speed of the vehicles

affects the overall performance of REINVENT by increasing the delay of the messages,

when comparing with the distance scenario, especially at high speeds where we obtained

the highest delays. Finally, we evaluated the performance of REINVENT with different

message per second rates. We concluded that the REINVENT performance is not affected

for MPS rates lower than 1 MPS, while higher constant rates will increase significantly the

delay of the messages due to the way we implemented the messaging service.

 In order to understand how these delays translate to real world implications, we will

need to convert this delay in meters so we can apply to a real road scenario. Using the

following formula, (RelativeVelocity*1000/3600)*Delay, we obtain the equivalent delay in

a distance base instead of a time base. Considering a delay of 240ms and two vehicles

driving in oposing direction each one at 50km/h, they will have a relative velocity to each

other of 100km/h, and if we apply it to our formula we obtain a 6,6 meter value, which

means that, if a given application sends a message reporting an accident at 350 meters, our

architecture induces a maximum of 6,6 meteres error on the 350 meters value. Since the

given scenario can be considered one of the worst case in a urban scenario, a 7 meter error

can be considered tolerable. If we consider a highway scenario where vehicles can travel

up to a relative speed of 240km/h to each other, our system will induce a 16 meter error.

 Overall, we can conclude that REINVENT can be considered an efficient solution

for developing applications for vehicular networks, since the delays obtained in the tests

proved to be tolerable in most cases. We can also conclude that, although the simulated

scenario can be used for developing and testing the overall application features in vehicular

network scenario, it cannot be used as a reliable source when testing the performance of

the applications, since the applications will always be affected by the delay induced by the

simulation scheduling.

93

7 Conclusions and Future Work

 The main objective of this Dissertation was to create a solution for integrating

mobile applications in vehicular networks environment. We created a software architecture

called REINVENT that abstracts both network and transport layers to the application level,

by providing a high level interface to applications for communication through the vehicle

network. Along the creation of REINVENT, a set of scenarios were created in order to test

the viability and the proper functioning of the architecture. We created a simulated

scenario based on a VANET simulation framework called VSimRTI that integrates a

network and traffic simulator, as well as runtime application manager in order to simulate

the OBU application of each car. In order to integrate real mobile devices into the

simulation, we used our messaging service from the RabbitMQ for exchanging regular

messages between the devices and the simulation in order for the devices to keep the state

of the simulation. The other created scenario was a real world scenario by integrating

REINVENT to the On Board Unit developed by the Instituto de Telecomunicações da

Universidade de Aveiro. The OBU is running both the RabbitMQ server, where the

applications will connect in order to send and receive messages, and a client that is

responsible to encapsulate the messages to be sent from the applications in the WAVE

Short Message Protocol, as well as receiving them and parse the information to be sent to

the applications.

 For testing and proof of concept purposes, we created two Android applications

that implemented our REINVENT module and were integrated with our architecture. The

first application is VNChat that is a message exchanging over the vehicle network, where

the user can send messages to a known destination registered in the naming service of

REINVENT, as well as receiving messages. The second application, iThere, is a location

based application that shows the other iThere users around in a map or detailed view. The

application sends in broadcast the actual location of the user every time it changes, so other

users keep their information updated. Both applications use the REINVENT module to

access a shared naming service in order to get the network identification of the users, and

also to send messages through the network. In VNChat, the messages are identified with

the destination ID, since the messages are sent to a single user, while in iThere they are

94

sent with broadcast identification on the destination, so that all the users can get the

location information sent by the application.

 After the implementation of the REINVENT and the applications, it was necessary

to do experimental tests in order to understand if the module implied any restrictions in

terms of the device specifications, or simply if it induced any delay on the applications

behavior. We tested the delay of the basic features of the REINVENT module in devices

with very different specifications. We used four devices, covering most of the Android

device gammas, from a Galaxy Mini with very low specifications to the Galaxy Note

which can be considered state of the art in mobile devices. The results from these tests

proved that REINVENT does not have any required device specifications, since the delays

between all the four devices were very similar. These results were also used to prove that

the delay induced by the REINVENT does not affect the normal behavior of the

application, as it can be considered irrelevant. In terms of the Android device, we can

conclude that the REINVENT architecture can be used without any setback.

 The next experimental tests concerned the performance of REINVENT in both real

and simulated scenarios. In the simulated scenario, we measured the performance of the

simulated OBU Application, where we concluded that the main source of delay was

checking for new messages. The actual delay of processing messages inside the application

was around 10 msec. The next tests were made in order to understand the delay of

messages sent from an application to another. The results between send and receive

messages were similar, around 1400ms; the distance variation proved not to be a relevant

factor to the REINVENT performance in the simulation scenario. From the experimental

tests and results obtained in this scenario, we can conclude that REINVENT can be used in

simulation scenario for developing and testing applications features, but not for

performance tests as the delays will always be affected by the simulation processing.

 In the realistic scenario, we tested the performance of applications using

REINVENT module in real vehicles on the road. We evaluated the impact of factors like

distance and speed in REINVENT, where we concluded that distance is not a relevant

factor while the speed of the vehicles can increase the delay especially for high speeds.

Finally, we measured the performance of REINVENT with different loads of messages per

second, where we concluded that REINVENT’s performance is only affected for high

rates.

95

 From the tests performed in this work, we can conclude that REINVENT is a viable

solution for integrating and creating Android applications for the vehicle network. The

REINVENT allows any Android programmer to develop new applications in the VANET

environment without having any major knowledge of the VANET specifications, since

REINVENT provides a high level interface for applications to communicate through the

vehicle network with high performance.

7.1 Future Works

 There are several topics that can be further explored in the future related work.

 On the one hand, the REINVENT module opens a window for implementing

countless applications that only have the imagination as a limit. The ETSI Basic set of

applications [12] has already several proposed applications that can be implemented as

mobile applications using the REINVENT module. We also intend to integrate vehicle

information with user information for more general applications.

 On the other hand, the REINVENT module itself can be improved in several ways:

new features can be added in order to open new scenarios of applications as well as

improve the REINVENT performance by trying to minimize the delay of the architecture.

We also intend to create a better solution for REINVENT to handle high rates of messages

per second.

96

8 Bibliography

[1] V. Communications, “Vehicular Communications ; Basic Set of Applications ; Part 1 :
Functional Requirements,” vol. 1, pp. 1–60, 2010.

[2] C. Forecast, “Cisco Visual Networking Index: Global Mobile data Traffic Forecast Update
2009-2014,” Cisco Public Information, pp. 2012–2017, 2010.

[3] M. Chen, J. Chen, and T. Chang, “Android/OSGi-based vehicular network management
system,” Computer Communications, pp. 1644–1649, 2011.

[4] C. Palazzi, M. Roccetti, and S. Ferretti, “An intervehicular communication architecture for
safety and entertainment,” Intelligent Transportation Systems, IEEE Transactions, vol. 11,
no. 1v, pp. 1–31, 2010.

[5] T. Socolofsky C. Kale, “A TCP/IP Tutorial,” http://tools.ietf.org/html/rfc1180#page-2. .

[6] “Intelligent Transport Systems,” http://www.etsi.org/technologies-
clusters/technologies/intelligent-transport. .

[7] C. Merlin and W. Heinzelman, “A study of safety applications in vehicular networks,” IEEE
International Conference on Mobile Adhoc and Sensor Systems Conference, pp. 1–8, 2005.

[8] M. Gerla and L. Kleinrock, “Vehicular networks and the future of the mobile internet,”
Computer Networks, vol. 55, no. 2, pp. 457–469, Feb. 2011.

[9] H. Moustafa, S. Senouci, and M. Jerbi, “Introduction to Vehicular Networks,” Vehicular
Networks: Techniques, 2009.

[10] M. Nekovee, “Sensor networks on the road: the promises and challenges of vehicular
adhoc networks and vehicular grids,” Proceedings of the Workshop on Ubiquitous
Computing and e-Research., 2005.

[11] G. Karagiannis and O. Altintas, “Vehicular networking: A survey and tutorial on
requirements, architectures, challenges, standards and solutions,” IEEE Communications
Surveys & Tutorials, vol. 13, no. 4, pp. 1–33, 2011.

[12] T. ETSI, “Intelligent transport systems (ITS); vehicular communications; basic set of
applications; definitions,” 2009.

[13] C. 2 C. C. Consortium, “Car 2 car communication consortium manifesto,” Braunschweig,
November, 2007.

[14] M. Sichitiu and M. Kihl, “Inter-vehicle communication systems: a survey,” Communications
Surveys & Tutorials, IEEE, pp. 88–105, 2008.

[15] U. Hernandez, A. Perallos, N. Sainz, and I. Angulo, “Vehicle on board platform:
Communications test and prototyping,” 2010 IEEE Intelligent Vehicles Symposium, pp.
967–972, Jun. 2010.

97

[16] T. Al-ani, “Android In-Vehicle Infotainment System (AIVI),” University of Otago, 2011.

[17] Y. Cheng, W. Kuo, and S. Su, “An Android system design and implementation for
Telematics services,” 2010 IEEE International Conference on Intelligent Computing and
Intelligent Systems, pp. 206–210, Oct. 2010.

[18] MOST, “Media Oriented Systems Transport,”
http://www.mostcooperation.com/home/index.html. .

[19] C. Spelta, V. Manzoni, A. Corti, A. Goggi, and S. M. Savaresi, “Smartphone-Based Vehicle-
to-Driver/Environment Interaction System for Motorcycles,” IEEE Embedded Systems
Letters, vol. 2, no. 2, pp. 39–42, Jun. 2010.

[20] S. Diewald, A. Möller, L. Roalter, and M. Kranz, “DriveAssist-A V2X-Based Driver Assistance
System for Android.,” Mensch & Computer, pp. 1–8, 2012.

[21] K.-C. Su, H.-M. Wu, W.-L. Chang, and Y.-H. Chou, “Vehicle-to-Vehicle Communication
System through Wi-Fi Network Using Android Smartphone,” 2012 International Conference
on Connected Vehicles and Expo (ICCVE), pp. 191–196, Dec. 2012.

[22] D. Yun and J. Lee, “Development of the eco-driving and safe-driving components using
vehicle information,” International Conference on ICT Convergence (ICTC), pp. 561–562,
2012.

[23] D. Yun and J. Lee, “Development of Mobile Common Component for providing vehicle
information on mobile device,” Computer Sciences and Convergence Information
Technology (ICCIT), pp. 809 – 812, 2011.

[24] C. Campolo and A. Iera, “SMaRTCaR: An integrated smartphone-based platform to support
traffic management applications,” Vehicular Traffic Management for Smart Cities (VTM),
2012 First International Workshop on, pp. 1 – 6, 2012.

[25] H. Stubing and P. Bechler, M.; Heussner, D.; May, T.; Radusch, I.; Rechner, H.; Vogel,
“simTD: a car-to-X system architecture for field operational tests,” IEEE Communications
Magazine, vol. 48, no. 5, pp. 148– 154.

[26] R. Stanica, E. Chaput, and A.-L. Beylot, “Simulation of vehicular ad-hoc networks:
Challenges, review of tools and recommendations,” Computer Networks, vol. 55, no. 14,
pp. 3179–3188, Oct. 2011.

[27] B. Schünemann, “V2X simulation runtime infrastructure VSimRTI: An assessment tool to
design smart traffic management systems,” Computer Networks, vol. 55, no. 14, pp. 3189–
3198, Oct. 2011.

[28] “Corridor Simulation (CORSIM) – Microscopic Traffic Simulation Model.,”
http://mctrans.ce.ufl.edu/featured/tsis/Version5/corsim.htm. .

[29] “Verkehr In Stadten SIMulationsmodell (VISSIM),” http://www.vissim.de. .

[30] SUMO, “SUMO,” http://sumo.sourceforge.net/. .

98

[31] S. Joerer, C. Sommer, and F. Dressler, “Toward reproducibility and comparability of IVC
simulation studies: a literature survey,” IEEE Communications Magazine, vol. 50, no. 10,
pp. 1–7, 2012.

[32] CanuMobiSim, “CANU Mobility Simulation Environmenttle,” http://canu.informatik.uni-
stuttgart.de/mobisim/. .

[33] “The Network Simulator - ns-2,” http://www.isi.edu/nsnam/ns/. .

[34] “Qualnet,” http://web.scalable-networks.com/content/qualnet. .

[35] M. Fiore, J. Harri, F. Filali, and C. Bonnet, “Vehicular mobility simulation for VANETs,”
Simulation Symposium, 2007.

[36] F. K. Karnadi, Z. H. Mo, and K. Lan, “Rapid Generation of Realistic Mobility Models for
VANET,” 2007 IEEE Wireless Communications and Networking Conference, pp. 2506–2511,
2007.

[37] E. Weingartner, “A performance comparison of recent network simulators,” IEEE
International Conference on Communications, pp. 1 – 5, 2009.

[38] “The Network Simulator - ns-3,” http://www.nsnam.org/. .

[39] “OMNeT++,” http://www.omnetpp.org/. .

[40] “VEINS,” http://veins.car2x.org/. .

[41] R. G. and F. D. Christoph Sommer, “Bidirectionally Coupled Network and Road Traffic
Simulation for Improved IVC Analysis,” IEEE Transactions on Mobile Computing, vol. 10, pp.
3–15.

[42] JiST SWANS, “Java in Simulation Time / Scalable Wireless Ad hoc Network Simulator,”
http://jist.ece.cornell.edu/. .

[43] M. Piorkowski and M. Raya, “TraNS: realistic joint traffic and network simulator for
VANETs,” CM SIGMOBILE Mobile Computing and Communications Review, vol. 12, no. 1,
pp. 31–33, 2008.

[44] “TraNS - Traffic and Network Simulation Environment,” Traffic and Network Simulation
Environment. .

[45] V. Kumar, L. Lin, D. Krajzewicz, F. Hrizi, O. Martinez, J. Gozalvez, and R. Bauza, “iTETRIS:
Adaptation of ITS Technologies for Large Scale Integrated Simulation,” 2010 IEEE 71st
Vehicular Technology Conference, pp. 1–5, 2010.

[46] “iTetris - The Integrated Wireless and Traffic Platform for Real-Time Road Traffic
Management Solutions,” http://www.ict-itetris.eu/introduction.htm. .

[47] R. T. Fielding and R. N. Taylor, “Principled design of the modern Web architecture,” ACM
Transactions on Internet Technology, vol. 2, no. 2, pp. 115–150, May 2002.

[48] E. Curry, “Message-oriented middleware,” Middleware for communications, 2004.

99

[49] AMQP, “Advanced Messaging Queue Protocol,” http://www.amqp.org/product/overview
http://www.amqp.org/product/architecture. .

[50] STOMP, “Simple Text Oriented Messaging Protocol,” http://stomp.github.io/stomp-
specification-1.2.html. .

[51] JMS, “Java Messaging Service,” http://www.oracle.com/technetwork/java/index-jsp-
142945.html. .

[52] VMware, “RabbitMQ , Messaging that works,” http://www.rabbitmq.com/. .

[53] “Smartphone US Market Share,”
http://www.comscore.com/Insights/Press_Releases/2013/5/comScore_Reports_March_20
13_U.S._Smartphone_Subscriber_Market_Share. .

[54] “Smartphone EU Market Share,” http://www.comscoredatamine.com/2013/02/samsung-
leads-european-smartphone-market-ahead-of-apple/. .

[55] “Getting Started with Android,” http://www.arm.com/community/software-
enablement/google/solution-center-android/getting-started-with-android-on-arm.php. .

[56] “Android Developers - Overview,” http://developer.android.com/about/index.html. .

[57] M. N. Zigurd Mednieks, Laird Dornin, G. Blake Meike, Programming Android, 2nd Edition.
O’Reilly Media.

[58] Android Developers, “Android Developers - Content Providers,”
http://developer.android.com/reference/android/content/ContentProvider.html,
http://developer.android.com/guide/topics/providers/content-provider-basics.html. .

[59] V. Dobjanschi, “Developing Android REST client applications,” Google I/O 2010, 2010.

[60] “Android Developers - Content Observer,”
http://developer.android.com/reference/android/database/ContentObserver.html. .

[61] A. Wegener and M. Piórkowski, “TraCI: an interface for coupling road traffic and network
simulators,” Proceedings of the 11th …, pp. 155–163, 2008.

[62] T. Queck, B. Schünemann, I. Radusch, and C. Meinel, “Realistic Simulation of V2X
Communication Scenarios,” 2008 IEEE Asia-Pacific Services Computing Conference, pp.
1623–1627, Dec. 2008.

[63] Android Developers, “Managing AVD,”
http://developer.android.com/tools/devices/managing-avds.html. .

[64] F. Kage, “VSimRTI : Vehicle-2-X Simulation Runtime Infrastructure,” 2012.

[65] W. G. of the 802 Committee, “Information technology–Telecommunications and
information exchange between systems–Local and metropolitan area networks–Specific
requirements,” IEEE Std, 2009.

[66] “ZTE Grand X,” http://www.gsmarena.com/zte_grand_x_in-4962.php. .

[67] “HTC One X,” http://www.gsmarena.com/htc_one_x-4320.php. .

100

[68] “Samsung Galaxy Mini,” http://www.gsmarena.com/samsung_galaxy_mini_s5570-
3725.php. .

[69] “Galaxy Note,” http://www.gsmarena.com/samsung_galaxy_note_lte_10_1_n8020-
5151.php. .

101

Annex

Rest API Description

Name URI Method Description

GetAllUsers Content://AUTHORITY/users Query Returns all users from

the naming service

GetUser Content://AUTHORITY/users/# Query Returns a specific

user from the naming

service

InsertUser Content://AUTHORITY/users Insert Inserts an entry in the

naming service

DeleteUser Content://AUTHORITY/users/# Delete Deletes an entry in

the naming service

UpdateUser Content://AUTHORITY/users/# Update Updates the

information of an

entry in the naming

service

NewMessage Content://AUTHORITY/newmess

age

Observa

ble

This method does not

return any value, it is

used to listen for new

incoming messages

SendMessage Content://AUTHORITY/users/#/se

nd

Insert This method is used

to send a message

using an entry from

the naming service as

the destination.

Close Content://AUTHORITY/close Insert This method is used

to stop the listening

thread of the provider

GetNewMessages Content://AUTHORITY/getmessa Call Returns any new

102

ges messages from a

given type.

Table 5 - API Methods Overview

GetAllUsers

 This method is used by creating a ContentResolver, an Android structure for

interfacing and interacting with a content provider, and by simply invoking the query

method with the content://AUTHORITY/users URI, the provider returns a cursor that

provider random read access to the result set returned by the naming service. This method

was created so the applications can have access to all the users registered in the naming

service.

GetUser

 Similar to the previous method, GetUser is used to access the naming service and

return a specific entry. It sould be used by creating a ContentResolver and invoking the

query method with the content://AUTHORITY/users/# URI, where the # character works as

wildcard referring a specific id in the naming service. The provider returns a cursor that

points to a single entry if it exists, otherwise it returns null.

InsertUser

 This method is used to insert an entry in the naming service, and is used by

invoking the insert method with the content://AUTHORITY/users/ URI on the content

resolver. The information of the entry being inserted should be passed as an argument on

the insert method using another android structured used to pass argument information in

the content providers, a ContentValues, a structure that works like a HashTable,

associating a key to the value. The keys for the entries attributes are described in the

UserDescriptor class, UsersDescriptor.NAME, for the name of the entry, and

UsersDescriptor.ALIAS for the alias of the entry.

DeleteUser

 The objective of this method is to permanently delete an entry on the naming

service, similar to GetUser, it should be used with the same URI,

content://AUTHORITY/users/# as the argument of the delete method invoked on a content

resolver.

103

UpdateUser

 This method is very similar to the InsertUser, but the URI used in this method

should be , content://AUTHORITY/users/# as it will update the information of a already

existing entry with the ContentValues passed on the update method.

NewMessage

 NewMessage cannot be considered as a method and should be seen as a resource.

The URI associated with this resource is content://AUTHORITY/newmessage and it should

be used by the applications with a ContentObserver, a structure that will be listening for

notifications on a given URI. The provider sends a notification on this URI every time it

receives a new message, so, if the applications want to receive notifications of new

messages available on the provider they should create a ContentObserver and listening to

this specific URI. The content observer structure must implement the OnChanged method

that will be called when the ContentObserver receives the notification from the provider.

SendMessage

 This method is used to send a message to a specified naming service entry or

simply in broad cast. The URI associated with this resource is

content://AUTHORITY/users/#/send for sending to a specific entry where the # represents

the id of the entry or content://AUTHORITY/users/send for sending a message in

broadcast. The information to be sent should be passed in a Content Value structure by

invoking the insert method on a Content Resolver.

Close

 This method is used to stop the listening thread and consequently to stop listening

for new messages. It will affect not only the application invoking it, but all the applications

that use the content provider. The URI associated is Content://AUTHORITY/close and

should be called within the Call method on a Content Resolver with the “close” as the

method with no arguments.

GetNewMessage

 This method is used for getting new messages from the content provider. The URI

associated is content://AUTHORITY/getmessages and should be used by invoking the Call

method in a Content Resolver, using “getmessages” as the method and the type of the

104

message desired should be passed as the argument. It returns a bundle containing an

ArrayList of MessageCountainers.

