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Resumo 
 

 

Devido evolução tecnológica observada nos últimos anos, os sistemas 
embutidos com capacidade de multi processamento tornaram-se comuns. 
Nestes dispositivos, a escassez de recursos obriga a uma distribuição 
otimizada dos mesmos pelas diversas atividades suportadas. 
Este tipo de dispositivos contam normalmente com um processador de uso 
geral, tipicamente um processador da família ARM, e um ou mais 
processadores direcionados a tarefas específicas, como processadores 
vetoriais (EVP), utilizados em sistemas de processamento digital de sinal por 
exemplo. 
A distribuição de recursos pelas tarefas do sistema é feita por um escalonador. 
Este pode fazer a distribuição de recursos obedecendo a uma das várias 
disciplinas conhecidas: Round Robin, First In First Out, Time Division 
Multiplexing, Fixed Priority, etc. 
O presente trabalho tem como principal objetivo a investigação de 
escalonadores de tempo-real baseados em prioridades fixas, com especial 
atenção para a aplicações de streaming a executar em plataformas 
multiprocessador, utilizando dataflow. 
Dataflow é um paradigma que utiliza teoria de grafos para realizar a 
modelação, programação e análise de aplicações e sistemas. 
A primeira parte deste projeto é dedicada à análise e modelação de grafos de 
fluxo de dados onde a distribuição de recursos é feita com recurso a um 
escalonador de prioridade fixa. A segunda parte será dedicada ao estudo da 
interferência entre tarefas com níveis de prioridades distintos em grafos 
independentes, quando mapeados para execução no mesmo processador. Em 
sistemas embebidos, existem tarefas de alta prioridade (periódicas ou 
esporádicas) que têm de ser atendidas o mais rapidamente possível quando 
prontas a executar. Este atendimento irá interferir na execução de tarefas que 
corram na mesma plataforma com níveis de prioridade inferiores, pois estas 
serão bloqueadas durante a execução das tarefas de maior prioridade. Esta 
interferência tem como consequências diretas a diminuição do tempo de 
resposta das tarefas de alta prioridade e o aumento do tempo de execução das 
tarefas com níveis de prioridades baixos. 
Com este trabalho pretendemos verificar quais as vantagens e desvantagens 
que um escalonador de prioridade fixa pode oferecer neste tipo de situações, 
quando comparado com outros escalonadores. 
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Abstract 

 
Due to the technological evolution that happened recently, embedded systems 
with multiprocessing capabilities are becoming common. Application 
requirements often impose resource constrains, leading to the necessity of 
distributing them in an efficient manner. 
This type of devices counts normally with a general purpose processor, 
typically from the ARM family, and one or more task specific processors, such 
as  vector processors (EVP), used in digital signal processing systems for 
instance. 
The resource distribution through the tasks is done by a scheduler. The 
scheduling can be done through one of the known scheduling policies: Round 
Robin, Fist In First Out, Time Division Multiplexing, Fixed Priority, etc. 
The main goal with this project is to investigate fixed-priority real-time 
schedulers, with special focus to streaming applications executing on 
multiprocessor platforms, using dataflow. 
Dataflow is a paradigm that uses graph theory for modelling, programming and 
analysis of applications and systems. 
The fist part of this project is dedicated to the analysis and modelling of fixed 
priority dataflow graphs with shared resources distributed through a fixed 
priority scheduler. The second part is dedicated to the study of interference 
between tasks with different levels of priority on independent graphs, when 
mapped to execution on the same processor. 
Embedded systems frequently have high priority tasks (periodic or sporadic) 
that need to be dispatched as soon as they become ready to execute. This 
action is going to interfere in the execution of tasks that are running in the same 
platform but with lower priority levels, since they are going to be blocked during 
the execution of the high priority tasks. This interference has two direct 
consequences: a lower response time for the high priority tasks and an 
increase in the execution time for the tasks in lower priority levels. 
With our work, we intend to investigate the advantages and disadvantages that 
a fixed priority scheduler can offer in this type of situations, when compared 
with other schedulers. 
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Chapter 1IntroductionMulti processor systems are getting common nowadays. Due to the technological advances inthis area, today it is more practical and e�cient to create systems with more than one processor,relinquishing speci�c tasks to speci�c processors. This devices are known as Multi ProcessorSystems on Chip [MPSoC]. By doing this, not only we can bene�t from the parallel execution oftasks but we can also use some unique traits of a processor to increase our processing capability.Most computing embedded systems that perform some digital signal processing possess at leasttwo types of processing units: a general-purpose core and a vector processor. All the �ow controldecisions are performed by the general-purpose processor while the processing of vectors andmatrix operations are done in the vector processor, taking advantage of its capability of handlingmultiply-accumulate operations on many input values simultaneously.In order to maximize the productivity of such devices it is usual to map several applicationson the same MPSoC device. With such computational power at our disposal, we need an ef-�cient mechanism to distribute the computational load through the available platforms. Everycomputational system with limited shared resources, like memory, processor cores or peripheralaccess among others, needs a proper resource sharing mechanism. A scheduler is essentially aprogram that coordinates the access to resources. In most embedded systems, it is the schedulerwho decides which task can be executed at some point in time. Since every task has a de�nednumber of resources that it need to execute, the scheduler is the one responsible for ensuring thata given task can only be set to execution when the corresponding set of resources is available.Due to the nature of the applications where embedded systems are designed to, it is expectablethat they perform at least one or more tasks with real-time computing constraints.This dissertation focuses in two major goals: the characterization of �xed priority graphs,i.e, determination of the worst-case response-time and start times for the tasks that compose thesystem, and the study of the interference between tasks with di�erent priorities when mappedinto the same processing platform.In the remainder of this chapter, we will de�ne the fundamental concepts needed to under-stand and de�ne our problem.1.1 Fixed priority scheduling: A historical reviewA real-time system is one with explicit deterministic or probabilistic timing requirements.Historically, real-time systems were scheduled by cyclic executives, constructed in a rather ad1



hoc manner. During the 1970s and 1980s, there was a growing realization that this static ap-proach to scheduling produced systems that were in�exible and di�cult to maintain [11]. Moreadvance techniques where required for the design, analysis and implementation of hard-real timesystems. It was hoped that these techniques would provide additional �exibility whilst enablingthe predictability of such systems to be guaranteed.Subsequently, a wide range of scheduling strategies have been proposed. These strategies canbe characterized by their prescribed run-time behaviours and the forms of associated analysisprovided for predicting/optimizing system behaviour. At one extreme, for a simple applicationmodel, static scheduling (cyclic executives) provides very deterministic yet in�exible behaviour.The other extreme is often known as best-e�ort scheduling [18]; it facilitates maximum-run time�exibility, but, at best allows only probabilistic predictions of run-time performance. Fixedpriority scheduling falls between these two extremes: it is often criticised as being too static bythe proponents of best-e�ort scheduling and as being too dynamic by the supporters of cyclicexecutives. However, it is a predictable approach: o�-line guarantees regarding process deadlinescan be a�orded using appropriated analysis. In reality it represents a practical, highly e�ectiveapproach to scheduling a large class of real-time applications.Work in a �xed priority scheduling concentrated on two separate issues: policies for theassignment of priorities to processes and feasibility tests for process sets. The assumptions andconstraints for much of this work are identical to those described by Liu and Layland in 1973[24]:1. All processes are periodic;2. All processes have a deadline equal to their period;3. All processes are independent;4. All processes have a �xed computation time;5. No process may voluntarily suspend itself;6. All processes are released as soon as they arrive;7. All overheads are ignored (assumed to be 0).Development of real-time theory progressed steadily, before a resurgence in the 1980's. Themotivation for this renewed interest stemmed for many diverse factors, including the realiza-tion that the requirements of hard (i.e safety critical) real-time systems outstripped availabletheoretical analysis (for example, formal methods, scheduling theory etc.) and implementationtechniques. Typical real-time systems implemented prior to the mid 1980's included basic avion-ics control, laboratory control etc. Looking forward from this point in time, the future real-timesystems were considered to be applications such as the space station, robots, intelligent man-ufacturing and advanced avionics control. The common requirements shared by these systemswere the need for dynamic and adaptive behaviour, including elements of arti�cial intelligence,together with an increased demand for predictability and reliability.Another factor in the renaissance of real-time systems research was the rapid developmentof hardware (e.g minicomputers in the 1970's and microcomputers in the 1980's) which led to re-newed interest in real-time systems for many diverse applications. Powerful distributed systems,2



with multiprocessor nodes, became available for use in the real-time domain. Individual proces-sors became more complex, with the inclusion of pipelines and caches, and peripheral devicesbecame more intelligent. The availability of such hardware within the context of hard real-timeapplications prompted further work in terms of analysis [2].1.2 Streaming applicationsA streaming application is an application that operates over a long (potentially in�nite)sequence of input data items, also refereed as data stream. The data is fed into the applicationnormally from an external source and each data token is processed in a limited time before beingdiscarded [34]. This process outputs also a long (potentially in�nite) sequence of output dataitems. This type of applications are common in signal-processing functions where we have alwayssome type of antenna as the external source of data. In this situation, the application has nocontrol over the incoming or volume of the data to be processed. As examples of streaming appli-cations we can indicate software-de�ned radio, radar tracking, audio and video decoding, audioand video processing, cryptographic kernels or network processing [26]. Streaming applicationsfollow a reactive model and, when the application requires synchronization with the data stream,temporal restrictions are also applied to it.1.3 Real-Time applicationsThe validity of the results produced by a real-time application are depended on theirfunctional correctness, as on any other type of application, but also from the time in which theseresults are produced. Although correct, an output from a real-time application may be irrelevantif it violates its temporal deadline. The term "may" used on the last sentence implies the existenceof more than one type of real-time systems. A real-time application can be categorized into threetypes according to its temporal restrictions [6]:
• Soft - If this type of restriction is violated, the associated result maintains some of itsutility to the application, although there is degradation in the quality of service.Let us consider an automated gate as an example. If there is a signi�cant delay betweenthe reception of the activation signal for the open button and the activation of the gatemotor, it is annoying for a driver but the end result it is still usable.
• Firm - If a �rm deadline is overdue, the consequent result is unusable but the integrity ofthe system and the user are not compromised. As an example we can refer data collectedfrom a sensor array that it is used for autopilot navigation. If some of the samples arrivedafter the established deadline, they are useless. But as long as some other data arrives ina timely fashion, the system is still able to function correctly.
• Hard - For this type of restrictions, a deadline violation could also imply a catastrophicconsequence to the system. Every critical security system is characterized by having atleast one hard temporal restriction. As an example we can refer to a life support system orthe traction control system of a car. If the control system is not able to meet its deadlines,the integrity of the user could be put in danger[19].3



In a more broad sense, real-time systems can be now categorized into two major typesaccording with the previous temporal restrictions:
• Soft Real-Time - These systems only possess soft or �rm temporal restrictions
• Hard Real-Time - All the systems that possess at least one hard temporal restriction arecategorized under this label.1.3.1 Timing requirementsTiming requirements come in two basic types: throughput and latency. If the rate at whichan iterative application produces results is important, then we are in the presence of a throughputrequirement. If the minimum or maximum time interval between the arrival of an input and theproduction of the corresponding output are to be respected, then the application has a latencyrequirement. A heart rate monitor is an example of an application with throughput requirements.In order to return a correct value for this measure, all the heart beats in a given time intervalmust be read and the time between them must be respected, although the processing and outputof the �nal value could su�er some delay resulting in a service degradation. The navigation andactuation signals in a car exempli�es a system with latency requirements. It is important that themaximum time between the actuation on the brake pedal and the actuation on the brake systemis respected, for instance. In this case, due to the random nature of all the possible stimulus tothe system, no throughput requirements are present, at least not in the systems considered.Temporal requirements can also appear in the form of a required worst-case timing, best-case timing or both. If the worst-case timing coincide with the best-case timing, the result isdesignated as an on-time requirement. In this project we concentrate our attention in worst andbest-case timing calculations.1.3.2 SchedulingA typical computational system is comprised of several resources (processors, memory, pe-ripheral devices, etc.) that should be used concurrently by di�erent tasks. These resources needto be assigned to the concurrent tasks in an orderly and e�cient fashion. The set of prede�nedcriteria that regulates the allocation of resources to tasks is called a scheduling policy. The set ofrules that, at any time, determines the order in which tasks are executed is called a schedulingalgorithm. The speci�c operation of allocating a resource to a task selected by the schedulingalgorithm is referred as dispatching [6]. There are several known scheduling algorithms in exis-tence: First In First Out, Round Robin, Shortest Remaining Time, Fixed Priority, Time DivisionMultiplexing, etc. Every one of these algorithms has advantages and disadvantages that hadbeen studied throughout the years. Our project will be focused mainly on the Fixed Priorityscheduling algorithm.1.4 Fixed priority scheduling applicationsIn a �xed priority scheme, all tasks are characterized by an immutable priority value. Nor-mally this value is a numeric one. The order in which these values are assigned depends essentiallyon the system speci�cations but conventionally higher priorities receive smaller values. Concep-tually, if the tasks are ordered with decreasing priority, Ti has smaller priority that Tj if i > j,4



where T designates a task, i and j indicate numerical priority values with i, j ∈ N0. The scheduleruses priorities to determine the next job to be scheduled. These are calculated at design timeand never change during execution, hence the term �xed [33]. In �xed priority scheduling, thedispatcher will make sure that at any time, the highest priority runnable task is actually running.1.4.1 PreemptionIn a pre-emptive system, if we have a task with a low priority running, and a high prioritytask arrives, i.e, some event had occurred and the dispatcher needs to deploy a task into execution,the low priority task will be suspended and the high priority task will start running. If whilethe the high priority task is running, a task with a medium priority arrives, the dispatcher willleave it unprocessed and the high priority task will carry on running, �nishing its computationin a later time. Only when both the high and medium priority tasks have completed can thelow priority task resume its execution. This low priority task can then carry on executing untileither more higher priority tasks arrive or it has �nished its work [35]. If the platform in use doesnot support preemption, then the tasks with higher priorities are only set to execution ahead ofthe lower priority ones if they could be started at the same time instant. Otherwise, if a lowerpriority tasks is already executing in the platform when a higher priority task becomes ready forexecution it just gets blocked, at least until the executing task �nishes its current execution.1.5 State of the art1.5.1 Classical real-time theoryReal-Time is a subject that has been studied for some time, which led to the development of aconsiderable theory around it, known nowadays as classical real-time theory. In this introductorysection, we are going to focus only on on-line scheduling with �xed priorities with special attentionto the two main criteria for classical scheduling using �xed priority: the rate-monotonic and thedeadline monotonic criteria [6] [25]. This type of scheduling has some advantages regardingo�-line scheduling. Namely:
• Any alteration in the tasks characteristics is immediately taken into account by the sched-uler.
• It can easily accommodate sporadic tasks.
• Deterministic behaviour on overloads since it only a�ects the tasks with lower priorities.As expected, there are some disadvantages that go with the pros mentioned before:
• The on-line scheduling has a more complex implementation since it requires a kernel with�xed priorities.
• This type of scheduling requires the action of a scheduler and a dispatcher, which implies ahigher execution overhead.
• Overloads, due to software or project errors, may block all tasks bellow a given priority.5



1.5.1.1 Rate-Monotonic schedulingThe Rate Monotonic (RM) scheduling algorithm is a simple rule that assigns priorities totasks according to their request rates. Speci�cally, tasks with higher request rates, which meansshorter periods, will have higher priorities and vice-versa. Since periods are constant, RM is a�xed-priority assignment: a priority Pi is assigned to the task before execution and does notchange over time. For the remaining of this section, we will assume the existence of preemptionby the platform. In the initial analysis performed in [24], the Rate Monotonic algorithm isintrinsically pre-emptive, and all the tasks are independent, i.e, there are no shared resources. Inthis context, a running task will be preempted by a newly arrived task with shorter period. Sincethe schedule is built on-line, it may be useful to know a priori if a given set of tasks respects itstemporal requirements. To aid us in this subject there are two main types of tests that can beperformed upon the task set:
• Tests based on the utilization rate of the CPU - These consists in inequalities appliedto the tasks characteristics, such as their worst-case execution time, period and deadline.The veri�cation of these inequalities allow us to conclude if a given task as guaranteedactivations or not. The two reference criteria for this subject are theMinor bound of Liuand Leyland and the Hyperbolic bound of Bini, Buttazzo and Buttazzo. A moredetailed explanation of each can be found in [24] and [3] respectively. Our project does notdeal directly with local deadlines, so we will not progress any further in this subject.
• Tests based in the response-time - For systems with arbitrary �xed priorities, theanalysis of the response-time allow us to perform a schedulability test that, assuming thatthe system allows preemption and synchronous activation, is necessary and su�cient. Thesetests consists in computing the worst-case response-time, i.e, the maximum elapsed timebetween the activation of a task and its completion, and then check if it is below thedeadline. For further information, please refer to [1].1.5.1.2 Deadline-Monotonic schedulingThe Deadline Monotonic (DM) priority assignment weakens the "period equals deadline"constraint within a static priority scheduling scheme. The application of the scheduling algorithmassumes that every task is characterized by a phase φi, a worst-case constant computation time

Ci for each instance, a constant relative deadline Di and a period Ti. According to the DMalgorithm, each task is assigned a �xed priority Pi, inversely proportional to its relative deadline
Di. Thus, at any instant, the task with the shortest relative deadline is executed. Since relativedeadlines are constant, DM is a static priority assignment. As in Rate Monotonic, DM is normallyused in a fully pre-emptive mode. [6]

0Figure 1.1: Gantt chart with indication of the various task characteristics6



The Deadline-Monotonic priority assignment is optimal for independent tasks and when theperiod is equal to the deadline, meaning that, if a task set is schedulable by some �xed priorityassignment, then is also schedulable by DM. The proof of this assumption and a more detailedexplanation on this algorithm can be found in [23]. A more comprehensive overview on Rate-Monotonic and Deadline-Monotonic scheduling is available in [2].1.5.2 SymTA/SSymTA/S is a system-level performance and timing analysis approach based on formalscheduling analysis techniques and symbolic simulation. It is essentially a software tool usedto determine system-level performance data such as end-to-end latencies, bus and processor uti-lization and worst-case scheduling scenarios. SymTA/S focus its utilization mainly on MPSoCdesigns, where the complexity level achieved due to all the concurring hardware makes manualanalysis and optimization a very time consuming and prone to errors task.The core of the SymTA/S tool is a technique to couple local scheduling analysis algorithmsusing event streams. For a more detailed description of these algorithms, please refer to [29] and[30].In order to perform a system level analysis, SymTA/S locally performs existing schedulinganalysis using a well know algorithm, like for example Rate-Monotonic, Time Division MultipleAccess, Round Robin, etc., and propagates their results to the neighbouring components. Thisanalysis-propagate mechanism is repeated iteratively until all components are analysed, whichmeans that all output streams remained unchanged.A more accurate description of this tool can be found in [16] and [15].1.5.3 Real-Time calculusReal-Time Calculus establishes a link between three areas, namely Max-Plus Linear SystemTheory [9] as used for dealing with certain classes of discrete event systems, Network Calculus [4]for establishing time bounds in communication networks, and real-time scheduling. In particular,it shows that important results from scheduling theory can be easily derived and uni�ed usingMax-Plus Algebra. In its essence, Real-Time Calculus focus on the characterization of sets oftask T1, . . . , Ti, . . . , Tn by a request and a demand curve αi
r and αi

d respectively. These tasks areall processed by one processing unit characterized by a delivery curve β using a static priorityscheduler with preemption. It is important to refer that the tasks are sorted with decreasingpriority.The algorithm consists in an iterative process to determine the tasks priorities such as thewhole task system can be successfully scheduled. The process consists in selecting the tasksin increasing order of priority and perform a schedulability test based on the task deadlines,demand curve and the delivery curve of the processing unit. If any of the tasks fails this test, thewhole set can not be scheduled. Otherwise, the schedulable task is removed from the set and thewhole selection procedure is repeated until there is no more tasks left. A more comprehensivedescription of this algorithm can be found in [33].
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1.6 Data �ow graphsIn this project we intend to use the data �ow paradigm to tackle the �xed priority schedulingproblem. Data �ow has developed into a useful tool, with extensive use in the analysis of streamingapplications, modelling multiprocessor environments and dealing with concurrent applications.The application of data �ow in the situations indicated is done through the use of graph theoryto establish mathematical models for analysis using the tools provided by the paradigm.In the most general sense, a data �ow graph is a directed graph with actors represented bynodes and arcs representing connections between the actors. These connections convey values,corresponding to data packets, also designated as tokens, between the nodes. Connections areconceptually FIFO queues which permit initial tokens on them.The operation in which an actor consumes a certain number of tokens from its incomingedges and then starts executing is known as an actor �ring. The set of rules that control this�ring, namely the minimum number of tokens present in the incoming edges, is know as the�ring rules.If actors are permitted to produce and consume only one token per activation, the resultinggraph is designated as a Single Rate Data Flow graph. If, on the other hand, an actor canconsume and produce multiple tokens in its activations, the graph is now known as a Multi RateData Flow graph. Independently of the rate of consumption and production of the actors, if thequantity of tokens in any actor operation is constant and well de�ned, we obtain a SynchronousData Flow graph [5].All these concepts will be addressed in greater detail in future chapters.1.7 Problem descriptionEmbedded platforms for streaming applications are expected to handle several streams atthe same time, each one with its own rate. This functionality can be divided in jobs. A job is agroup of communicating tasks that are started and stopped independently. The approach thathas been taken so far for analysis resorts to the modelling of these systems using data �ow graphs[21].The overall scheduling strategy used mixes static (compile-time) and dynamic techniques(run time). The scheduling of tasks that belong to the same job, or intra-job scheduling, ishandled by means of static order, i.e, per job and per processor, a static ordering of actor isfound that respects the Real-Time requirements while trying to minimize processor usage. Inter-job scheduling is handled by means of local Time Division Multiplex (TDM) schedulers.The biggest disadvantage of TDM schedulers is that they waste many resources for low-latency, low throughput tasks.The goal of this project is to investigate how the �ow must be changed to allow the usageof a non-budget-based scheduler, such as Fixed Priority. In order to achieve this goal, we mustfollow the following steps:
• Determine whether the data �ow analysis is still possible under these conditions and underwhich conditions analysis can still be carried out.
• Propose a method for priority assignment per processor per job and design the schedulerin such a way that it works well for relevant applications.8



• The resource manager has to be adapted to handle a Fixed Priority schedule.The processor usage is an important factor to take into account. In shared resources platform,like the MPSoC devices that we refer in this document, the response-time of a task or a job isrelated to the capacity that a particular resource, speci�cally a processor, has to process thatinstance. On the other hand, this capacity or processor availability is related to the computationalload required from other jobs or tasks with higher priority.The analysis and characterization of the computational load of a shared processor is also oneof the focal points of our project.1.8 Developed workThe organization of this project followed the points established in the previous section. Thecontributions of this project to the state of the art can be summarized into the following points:1. Data Flow Analysis - A comprehensive analysis of data �ow models of �xed-prioritysystems comprised the bulk of our initial work. This analysis was centred in the character-ization of best and worst case response-times for �xed-priority data �ow graphs. Initiallythis analysis considered the whole system mapped on a single processing unit and later on,the behaviour of the same type of systems mapped on di�erent platforms was studied, giv-ing emphasis to the dependence and interference between tasks the same job but mappedon di�erent processing units.2. Computational load analysis - We formalized the concept that quanti�es the amountof work required from a processor by a particular task. In a Fixed-Priority scheduling, itis useful to characterize the amount of time that a processor is busy with a high prioritytask, thus allowing us to determine the availability of the same processor to execute lowerpriority tasks.3. Extension of the tools available - For the analysis of all the systems conceived to studythe �xed-priority approach to this scheduling problem we had at our disposition a set ofsoftware tools, namely a data �ow graph simulator.These tools did not contemplate either the simulation of �xed priority data �ow graphs orthe functionalities to perform load analysis of a processing unit. In order to obtain reliableresults to support our study, it was necessary to add these functionalities.In order to simplify the readability of the results provided by this set of tools, we alsoincluded the necessary changes for an integration with an external visualization tool.1.9 Thesis organizationThe remainder of this thesis is organized as follows: in chapter 2 we review data �ow com-putation models and their analytical properties. The mathematical notation for representingdata �ow graphs is also introduced in this chapter. The software framework used throughoutthis project is introduced in chapter 4, which includes a detailed explanation of the usage andfunctioning of the set of tools available. The changes and implementations made to provide thenecessary functionalities for our project are described in 4. Chapter 5 details the analysis of9



�xed-priority data �ow graphs, which includes all the theory developed and respective softwareimplementations to obtain results. Chapter 6 follows a similar template of the previous chapterbut now relative to inter-graph �xed priority analysis. The practical results, either from softwaresimulations or from analysis of practical examples, and their respective discussion are presentedin chapter 7. Chapter 8 states our conclusions and suggests future work.
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Chapter 2Data Flow computation modelsThis dissertation uses data �ow computation models for modelling and analysing varioussystems. In this chapter, we present the notation for the data �ow model that we will usethroughout this document and the properties of several data �ow computation models that arerelevant to our work. This is reference material and most of it can be found in [26] [5] [28] [32][21].2.1 GraphsIn this dissertation, we use data �ow analysis, which in turn uses graph theory in its formal-ization. Therefore we need to �rst introduce graph theory.2.1.1 Directed graphsDe�nition 2.1. A directed graph G is an ordered pair G = (V,E), where V is the set ofvertexes or nodes and E is the set of edges or arcs. Each edge is an ordered pair (i, j) where
i, j ∈ V . If e = (i, j) ∈ E, we say that e is directed from i to j. i is said to be the source nodeof e and j is the sink node of e. We also denote the source and sink nodes of e as src(e) and
snk(e), respectively.

A B

CFigure 2.1: An example of a directed graphThe graph depicted on the previous �gure is described by the following sets:
V = {A,B,C} (2.1)11



E = {(A,B), (B,C), (B,B), (C,A)} (2.2)It is also a directed graph: node A is directed to node B, node B is directed to node C anditself through a self-edge and node C is directed to node A.2.1.2 Path and cycles in a graphA path in a directed graph is a �nite, nonempty sequence e1, e2, ...., en of edges such that
snk(ei) = src(ei+1), for i = 1, 2, ..., n − 1. We say that path (e1, e2, ..., en) is directed from
src(e1) to snk(en); we also say that this path transverses src(e1), src(e2), ..., src(en) and
snk(en); the path is simple if each node is traversed once, that is src(e1), ..., src(en), snk(en)are all distinct; the path is a circuit if it contains edges ek and ek+m such that src(ek) =
snk(ek+m),m ≥ 0; a cycle is a path such that the subsequence (e1, e2, ..., en−1) is a simple pathand src(e1) = snk(en)[26].

E

C

A B

DFigure 2.2: Example of a graph with a simple pathIn the previous �gure, the simple path {(A,C), (C,D), (D,B), (B,A)} describes a cycle.2.2 Data FlowData �ow is a natural paradigm for describing Digital Signal Processing applications forthe concurrent implementation on parallel hardware. Data �ow programs for signal processingare directed graphs where each node represents a function and each arc represents a signalpath. More speci�cally, in a data �ow graph, nodes represent actors. An actor is a timeconsuming entity associated with �ring rules. An edge or arc in a data �ow graph representsa First-In-First-Out queue that directs values from the output of an actor to the input ofanother.In data �ow, data is transported in discrete chunks, referred to as tokens. When an actorstarts an execution, it consumes a de�ned number of tokens from its incoming edges. Concep-tually, this consumption is a reading operation of the data tokens that are needed for beginningthe execution. These tokens remain in the edge (FIFO) during the execution of the actor. By theend of that execution, the actor produces a de�ned number of tokens into its outgoing edges.This production process is a writing operation onto the outgoing edges (FIFOs). It is also possibleto perform a reservation of space in the outgoing edges during the start of the execution in orderto assure that, once �nished, the actor has enough memory available to write the processed data.12



Synchronous Data Flow (SDF) is a special case of data �ow in which the number of datatokens produced or consumed is speci�ed a priori.The data �ow principle is that any actor can �re (perform its computation) whenever inputdata are available on all of its incoming edges. A actor with no input edges may �re at anytime. This implies that many actors may �re simultaneously, hence the concurrency. Becausethe program execution is controlled by the availability of data, data �ow programs are said to bedata-driven [21].2.2.1 Actor �ringsAt this point, it is useful to de�ne the �ring concept in the data �ow context, since the samewill be referred in the future.As described in the previous section, in data �ow, every edge has also two associated val-uations: prod : E → N and cons : E → N. For a given edge e ∈ E, prod(e) gives the constantnumber of tokens produced by src(e) on e in each �ring and cons(e) gives the constant numberof tokens consumed by snk(e) in each �ring.An actor �ring is an indivisible quantum of computation. A set of �ring rules givepreconditions for a �ring. Firing consumes tokens from the input streams and produces tokensinto the output streams. The �rings themselves can be described as functions, and the invocationof these �rings is controlled by �ring rules [20].The start time of a �ring refers to the time instant at which the �ring rules are veri�ed andthe tokens from the input streams are consumed. We are going to use the following notation:
s(i, k) = m, m ∈ N0 (2.3)where i is denotes the actor and k the instance of the activation.As such, the �nish time of a �ring corresponds to the time instant at which the tokensresultant from the computation are produced into the output streams. Just like for the starttime, to indicate a particular �nish time we refer to a similar notation
f(i, k) = m, m ∈ N0 (2.4)An actor �ring can be designated as a task instance in some contexts. Task instancesare used mostly in classical real-time theory while actor �rings are their counterpart in data�ow.2.3 Temporal analysisExecution time of an actor - τ Before the de�nition of Timed SRDF it is important tode�ne the concept of execution time of an actor.De�nition 2.2. The execution time τ(i) of an actor i is the elapsed time between the starttime of the �ring for that actor and the �nish time of the �ring, at the end of that execution.The execution time can be de�ned in a more general sense, as τ(i), in which it is assumed thatall executions of actor i have a constant execution time, or it can be speci�ed as τ(i, k), where kindexes the execution time of a particular �ring, within an execution of a graph.13



Since the exact time of a particular instance of a task can be hard or even impossible to knowin advance, for analytical purposes it is often convenient to use bounds to this value.A given execution time of an actor i can be upper bounded by a worst-case execution time
τ̂(i, k) and be lower bounded by a best-case execution time τ̌(i, k). The following property mustalways hold:

τ̌(i) ≤ τ(i, k) ≤ τ̂(i), ∀i ∈ G,∀k ∈ N0 (2.5)2.3.1 SchedulesIn the context of this problem, it is necessary to develop a concise de�nition of schedule thatis consistent with the type of result that we plan to obtain. At this point it is important tomake a distinction between schedulers in an implementation, as for example Fixed Priority, TimeDivision Multiplexing, Round Robin etc., and the execution of data �ow graphs using a schedule,as for instance a Self-timed or a Static Periodic schedule. This section will address the latter. Itis important to indicate from the beginning that, in this context, we will work with Self-timedschedules. A more intuitive designation for this type of schedules is ASAP Schedules (As Soon AsPossible) since the start times vector for every actor is determined from the principle that everytask should start as soon as it has conditions for it. So, in a similar way that schedulers had beende�ned in other situations, a scheduler is de�ned to a speci�c actor i, which, in our de�nition, ispreceded by another actor j. The edge connecting both actors posses a number d(i, j) of tokenson it, as the next �gure illustrate:
j i

d(i, j)Figure 2.3: Simple arrangement of two actors connected through an edgeFrom this arrangement, we can write the following expression for the schedule of actor i:
sSelfT imed =

{

−∞, k < 0
max(max∀(i,j)∈E(s(j, (k − d(i, j))) + τ(j)), 0), k ≥ 0

(2.6)For a two actor arrangement as the one in the previous �gure, we can elaborate the followinglogic:
A B

d(A, B) = 0Figure 2.4: Two actors connected through an edge with no tokensFrom this �gure we can write that:
s(B, k) ≥ s(A, k) + τ(A) (2.7)The start time of the kth iteration of actor B is going to be always τ(A) time after the starttime of the kth iteration of the precedent actor A. But if we have some tokens between the actors,then: 14



A B
d(A, B) = 1Figure 2.5: Two actors connected though an edge with one tokenWith a token in the edge connecting the two actors, the previous expression 2.7 needs to beadapted:

s(B, k) ≥ s(A, k − 1) + τ(A) (2.8)Since now actor B does not need to wait for actor A to produce at least one token for it tostart executing, the start time of this actor is now referenced to the (k − 1)th iteration of theprecedent actor. If we expand this logic to d(A,B) tokens in the interconnecting edge, we reachthe bottom branch of expression 2.6. Since a negative value for the start time of an executiondoes not make sense in the context of this problem, we included the 0 argument in the maxexpression, so that in such a case, the minimum start time of a execution is going to be zero.The Worst-Case Self-Timed Schedule of an SRDF graph is the self-timed schedule of anSRDF where every iteration of every actor i takes ˆτ(i) to execute and where ˆτ(i) is the worst-caseexecution time of the actor. Note that the WCSTS of an SRDF graph is unique.2.3.2 Single Rate Data FlowIf in a data �ow graph we can verify that prod(e) = cons(e) for every edge e ∈ E, then thegraph is a Single Rate Data Flow (SRDF) graph. A SRDF graph is one where every actor init consumes and produces the same number of data tokens. We can formalize this concept with
GSRDF = (V,E, d, τ) (2.9)

V and E are already de�ned in de�nition 2.1. d is a valuation d : E → N0. d(i, j) is calledthe delay of edge (i, j) and represents the number of initial tokens in arc (i, j).2.3.3 Timed Single Rate Data Flow graphsWe can now include the execution time of every actor of the graph into consideration andde�ne a Timed SRDF graph:
GT imedSRDF = (V,E, d, τ̂ ) (2.10)where τ̂ represents the worst-case response-time of an actor.2.3.4 Application graphsIn the course of our work, we realized that we need to further specify the de�nition of TimedSRDF referred above, by including a new parameter into consideration. Our new graph instancedi�ers just slightly from equation 2.10:

Gapp = (V,E, d, τ̌ , τ̂) (2.11)Where τ̌ represents now the best-case response-time.15



2.4 Modelling schedulers in data �ow analysisIn order to use data �ow to analyse a particular schedule, �rst it need to be modelled using thedata �ow paradigm. In the present section we will present strategies to perform this modelling,using concrete examples as to illustrate the process.2.4.1 Task schedulingThere are two types of task scheduling mechanisms that we are interested in modelling:Compile-Time and Run-Time Scheduling.Compile-Time Scheduling (CTS) encompasses scheduling decisions that are �xed atcompile-time, such as static order scheduling.Run-Time Scheduling (RTS) refers to scheduling decisions that cannot be resolved atcompile-time, because they depend on the run-time task-to-processor assignment, which in turndepends on the dynamic job-mix. This is handled by the local scheduling mechanism of theprocessor. Modelling the worst-case e�ect of the local scheduler on the execution of an actor isneeded to include in the compile-time analysis the e�ects of sharing processing resources amongjobs. If the WCET of the task, the settings of the local dispatcher, and the amount of computingresources to be given to the task are known, then the actor execution time can be set to re�ect theworst-case response-time of that task running in that local dispatcher, with that particularamount of allocated resources [26].2.4.2 Time Division Multiplexing scheduling (TDM)The e�ect of a TDM scheduling can be modelled by replacing the worst-case execution time ofthe actor by its worst-case response-time under TDM scheduling. The response-time of an actor
i is the total time necessary to complete �re i, when resource arbitration e�ects (scheduling,preemption, etc) are taken into account. This is counted from the moment the actor meets itsenabling conditions to the moment the �ring is completed. Assuming that a TDM wheel period
P is implemented on the processor and that a time slice with duration S is allocated for the �ringof i, such that S ≤ P , a time interval equal or longer than τ(i) passes from the moment an actoris enabled by the availability of enough input tokens to the completion of its �rings. The �rstof this is the arbitration time, i.e, the time it takes until the TDM scheduler grants executionresources to the actor, once the �ring conditions of the actor are met. In the worst-case, i getsenabled when its time slice has just ended, which means that the arbitration time is the time ittakes for the slice of i to start again. If we denote the worst-case arbitration time as r̂(i) then[12]:

r̂(i) = P − S (2.12)2.4.3 Non-Preemptive Non-BlockingRound-Robin schedulingIn a Non-Preemptive Non-Blocking Round-Robin (NPNBRR) scheduler, all clusters assignedto the same processor are put in a circular scheduling list. The run-time scheduler goes throughthis list continuously. It picks an actor from the list and tries to execute it. The actor (or thescheduler, depending on the implementation) checks for input data and output space availability.16



If there are su�cient input data tokens available and available storage space in all output FIFOssuch that the actor can consume and produce tokens according to its �ring rules, the actorexecutes until the �ring is over, if not, the actor is skipped. The process is repeated for the nextactor in the circular scheduling list, and so on.The worst-case arbitration time of an actor is given by the sum of the execution times of allother actors mapped to the same NPNBRR-scheduled processor. The processing time is equalto the actor's execution time, since there is no preemption. The total response-time is thereforeequal to the sum of execution times of all actors mapped to the NPNBRR-scheduled processor[27].2.4.4 Static-Order schedulingA static-order schedule of a set of actors A = {a0, a1, ..., an} mapped to the same processor isa sequence of execution so = |ak, al, ..., am| that generates extra precedence constraints betweenthe actor in A such that from the start of the execution of the graph, ak must be the �rst one toexecute, followed by al and so on, up to am. After am executes, the execution restarts from akfor the next iteration of the graph.Any static order imposed to a group of Single Rate Data Flow actors executing in the sameprocessor can be represented by adding edges with no tokens between them. From the last to the�rst actor in the static order, an edge is also added, with a single initial token. This constructre�ects the fact that, the graph execution being iterative, when the static order �nishes executionfor a given iteration, it restarts it from the �rst actor in the static order for the next iteration.Notice that the new edges represent a series of sequence constraints enforced by the staticorder schedule and do not represent any real exchange of data between the actors.2.4.5 Static periodic schedulersA Static Periodic Scheduler (SPS) of an SRDF graph is a schedule such that, for allnodes i ∈ V , and all k > 0:
s(i, k) = s(i, 0) + T · k (2.13)where T is the designed period of the SPS. Please note that an SPS can be representeduniquely by T and the values of s(i, 0),∀i ∈ V [26].2.5 Data Flow temporal analysis techniquesTemporal analysis is required in order to verify whether a given timed data �ow graph canmeet a required throughput or latency requirement of an application. In this section we will coversome of the analysis methods available in this regard.2.5.1 Throughput analysisIn some systems, rate constraints are often imposed by designers on the execution rate ofeach process in the system in order to ensure correct timing behaviour and achieve performancegoals. This type of restrains are known as throughput constraints.17



The execution of a data �ow graph can be divided into two phases: a transient and a periodicone. These phases occur in the same order as they were mentioned. When the execution of thegraph is initiated, the transient phase begins. This phase has a limited duration where the initialtokens are distributed through the edges of the graph. Eventually the graph enters the nextphase: the periodic one.The state of a graph is de�ned by the amount of tokens present at each one of its edges.Whenever a graph enters in the periodic phase, the same sequence of states repeats itself recur-rently. The time period required to repeat the same sequence of states is de�ned as the graphperiod.In the transition phase, the throughput analysis can be derived by simulating the executionof the data �ow graph, given worst-case execution times to all actors [26]. Another knowntechnique for temporal analysis is the Maximum Cycle Mean. A simple explanation of thesetwo techniques follows:2.5.1.1 SimulationThis is perhaps the most direct approach to this problem. By running a reliable simulationof the data �ow graph, it is possible to verify if the throughput requirements are met or not.The simulation tool that we used, which is going to be described in detail in chapter 3, providesenough information so that, in case of violation of the throughput speci�cations, one can adjustthe graph characteristics (if possible) in order to obtain a throughput compliant graph.2.5.1.2 Maximum Cycle MeanThe average weight of a directed cycle is the quotient between the summation of the executiontime of all of its actors and the total number of initial tokens present in the cycle, and is calledcycle mean. The maximum mean cycle problem for a directed graph with cycles is to �nd acycle having the maximum average weight, called the maximum cycle mean, over all directedcycles in the graph. Such a cycle is called a critical cycle. The maximum mean cycle problemhas applications in �nding the iteration bound of a data �ow graph for digital signal processing,in performance analysis of synchronous, asynchronous, or mixed systems, and on throughputanalysis for embedded systems [10].The Maximum Cycle Mean (MCM), µ(G) of a SRDF graph G is de�ned as:
µ(G) = max

c∈C(G)

∑

i∈N(c) τi
∑

e∈E(c) de
(2.14)where C(G) is the set of simple cycles in graph G.Theorem 2.1. For an SRDF graph G = (V,E, d, τ), it is possible to �nd a Static PeriodicSchedule (SPS) if an only if T ≥ µ(G). If T < µ(G), then no SPS exists with period T .This theorem and respective proof are found in greater detail in [26].2.5.1.3 MonotonicityThe monotonicity of a function, or in our case, of a self-timed execution, is a importantconcept to introduce at this stage since it had been proved very useful in this context.In a more broad sense, a monotonic function can be de�ned as follows:18



De�nition 2.3. Monotonicity: A function f(n) is monotonic increasing if m ≤ n implies
f(m) ≤ f(n). Similarly, it is monotonically decreasing if m ≤ n implies f(m) ≥ f(n). Afunction f(n) is strictly increasing if m < n implies f(m) < f(n) and strictly decreasing if
m < n implies f(m) > f(n) [8].But we are more interested in the application of the monotonicity concept in a Single RateData Flow context, speci�cally when applied to self-timed schedulers. As such, we de�ne mono-tonicity in this context as:De�nition 2.4. Monotonicity of a self-timed execution: In a SRDF graph G = (V,E, τ, d)with worst-case self-timed schedule sWCSTS, for any i ∈ V , and k ≥ 0, it holds that, for anyself-timed schedule sSTS of G

sSTS(i, k) ≤ sWCSTS(i, k) (2.15)Because of the monotonicity of self-timed execution, if any given �ring of an actor �nishes itexecution faster than its worst-case execution time (WCET), then any subsequent �rings in anyself-timed schedule can never happen later than in the WCSTS, which can be seen as a functionthat bounds all start times for any self-timed execution of the graph. This was de�ned as atheorem and proved in [26].2.5.2 Latency analysisAlthough throughput is a very useful performance indicator for concurrent real-time applica-tions, another important metric is latency. Especially for applications such as video conferencing,telephony and games, latency beyond a certain limit cannot be tolerated. Usually, the depen-dencies on a SRDF graph allow some freedom in the execution order of the actors. This orderdetermines performance properties like throughput, storage requirements and latency [13]. La-tency is the time interval between two events. We measure latency as the di�erence between thestart times of two speci�c �rings of two actors, i.e:
L(i, k, j, p) = s(j, p) − s(i, k) (2.16)where i and j are actors, p and k are �rings. We say that i is the source of the latency and jis the sink. Another useful concept to take into account in this section is the maximum latency,here de�ned as:

L̂(i, j, n) = max
k≥0

(s(j, k + n)− s(i, k)) (2.17)where n is a �xed iteration distance. Next we are going to refer some latency analysistechniques by presenting some concrete situations where this type of analysis is used.2.5.2.1 Maximum Latency from a periodic sourceIn data �ow, a source is an actor that models a generator of data, such as an antenna forexample. Due to the unpredictable behaviour of the modelled device, a source can be representedas an actor that does not have a set of �ring rules associated but produces tokens into its outgoingedges. A source can produce these tokens in a periodic or sporadic manner and the number of19



tokens produced per activation can be �xed or variable. A periodic source is characterized by aperiod T that corresponds to the elapsed time between two consecutive productions.As we have seen in section 2.4.5, the start times of a periodic source are given by:
s(i, k) = s(i, 0) + T · k (2.18)The period of the execution of the graph is imposed by the source since the source executeswith a period T , the period of the execution of the graph is lower bounded by the period of thesource. If on the other hand, the graph has a longer period, then it cannot keep up with thesource, and in�nite token accumulation on some bu�er will happen for the WCSTS. Therefore,we will perform the latency analysis under the assumption that µ(G) = T .For the determination of the maximum latency for this case, we �rst need to establish theconcept of Rate-Optimal Static Periodic Schedule (ROSPS). This designation is attributedto a Static Periodic Schedule that has a period T equal to the MCM of the SRDF graph µ(G).Considering this concept, the maximum latency for a periodic source can be written as:

L̂(i, j, n) = max
k≥0

(sSTS(j, k + n)− s(i, k)) ≤ šROSPS(j, 0) − s(i, 0) + µ(G) · n (2.19)Where šROSPS(j, 0) represents the smallest time of j in an admissible ROSPS. We can deter-mine the maximum latency for a periodic source just by calculating an ROSPS with the earlieststart time j and a WCSTS for the earliest start time of i. A more extended approach to thissubject, including a more detailed explanation on the logic behind expression 2.19 can be foundin [26].2.5.2.2 Maximum latency from a sporadic sourceIn reactive systems, it frequently happens that the source is not strictly periodic, but producestokens sporadically, with a minimum interval µ between subsequent �rings. Typically, a maximumlatency constraint must be guaranteed. For any given graph with this type of source, it ismandatory that it has to be able to sustain a throughput of 1/µ in order to guarantee that itcannot be overran by such a source, operating at its fastest rate. This means that the MCM ofthe graph, µ(G), is such that µ(G) ≤ µ. The proof of this statement relies on the possibility ofbounding the self-timed behaviour of a graph by static periodic µ, which is possible as long as
µ(G) ≤ µ.In order to keep the simplicity of this chapter, we present the �nal expression for the maximumlatency of a graph with a sporadic source, omitting all the steps that were taken in its deduction:

L̂(i, j, n) ≤ šµ(j, 0) − s(i, 0) + µ · n (2.20)The latency L̂(i, j, n) with a sporadic source has the same upper bound as the latency forthe same source i, sink j and iteration distance n in the same graph with a periodic source withperiod µ.For a detailed explanation for the logic behind the previous expression, please consult [26].
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2.5.2.3 Maximum latency for a bursty sourceA bursty source is characterized as a source that may �re at most n times within any Ttime interval, with a minimal ∆t interval between consecutive �rings. A job that processes sucha source must have µ(G) ≤ T/n to be able to guarantee its processing within bounded bu�erspace. Moreover, if µ(G) ≤ ∆t, then we have the previous case, i.e, maximum latency froma sporadic source. If µ(G) ≥ ∆t then the latency may accumulate over iterations, as the jobprocesses input tokens slower than the rate at which they arrive. The maximum latency mustoccur when the longest burst occurs, with the minimum interval between �rings of the source,that is a burst of n tokens with ∆t spacing. Because of monotonicity, making the source executefaster cannot make the sink execute slower, but it also cannot guarantee that it executes faster.
source i

source i´

actor j

T

Figure 2.6: Arrival times from tokens of a bursty source relatively to strictly periodic sourceAs depicted in �gure 2.6, the tokens of the bursty source i will arrive earlier than for theperiodic source i′. Therefore, at iteration n − 1 after the beginning of the burst (iteration 0)happens the earliest time:
s(i, n− 1) = s(j, n − 1) ≤ šROSPS(j, 0) + (n− 1) · µ(G) (2.21)As such, a bound on the maximum latency is given by:

L̂(i, j, n) ≤ šROSPS(j, 0) − sROSPS(i, 0) + (n− 1)(µ(G) −∆t) (2.22)2.6 ConclusionBy choosing a data �ow model as a programming and analysis model, we can now use theiranalytical proprieties to our advantage. In this chapter were de�ned all the concepts essentialto understand and use the tools provided by the data �ow paradigm, which included a briefintroduction to graph theory. Data �ow is very useful for analysing streaming applications andmodelling multiprocessor systems. All the systems that we are going to work with in futurechapters fall into one of these categories, or both, and that is one of the main reasons why wechoose this modelling tool as basis for our project.
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Chapter 3Software frameworkThe execution of our project relied heavily on the utilization of a set of software tools forobtaining results. The core of this set of tools is the Heracles data �ow simulator. During theexecution of this project, some questions were answered using the existing functionalities of thissimulator, but as we progressed deeper into our problem, we had to extend the tools with a setof functionalities that address our speci�c needs. The simulator possesses a modular structure,which eases the insertion of new functionalities through integration of custom modules or eventhrough the modi�cation of existing ones, minimizing the necessity of tampering with the core ofthe program.By default, the results provided by the simulation tool were presented in a text format. Onthe end of a successful simulation, a summary with the results from the data �ow graph behaviouris shown in the console while a detailed list with the task executions characteristics was storedon a text �le. This type of visualization was practical for some cases but created some confusionin others. For example, it is di�cult to identify executions that overlap in time just by analysinga list of its start and �nish times. So, in order to make the simulation results more readable, wedecided to integrate an external visualization tool that allowed the timing behaviour of the taskssimulated to be presented in a coloured Gantt chart form.In this chapter we explain in detail all the functionalities and changes mentioned so far.3.1 The Heracles data �ow simulator3.1.1 Heracles tool �owThe Heracles simulator was written using Objective Caml (Objective Categorical AbstractMachine Language). OCaml is a dialect of the ML (Meta-Language) family of languages, whichderive from the Classic ML language designed by Robin Milner in 1975 for the LCF (Logic ofComputable Functions) theorem prover [14].OCaml shares many features with other dialects of ML, and it provides several new featuresof its own. The main characteristics of this language are as follows:
• It is a functional language, meaning that functions are trated as �rst-class values.
• It is strongly typed, meaning that the type of every variable and every expression in aprogram is determined at compile time. 22



• Related to strong typing, OCaml uses type inference to infer types for the expressions ina program.
• The type system is polymorphic, meaning that it is possible to write programs that workfor values of any type.Although ML languages are mostly functional, they also include some imperative traits,which allows that a program written in OCaml can evidence both type of programming traits.The Heracles simulator was written using this paradigm. For more information regarding thisprogramming language, please refer to [17], [7] and [22].OCaml o�ers some distinct advantages when compared to other imperative languages, as forexample C or Java. One of the most attractive features of this language is the type inferencepreformed by the compiler. This feature allows a user to write programs without explicitlyindicate the type of data (integer, �oat, string etc.) of its de�ned variables: the compiler infersthem by observing the context where the variable is inserted. This characteristic allows thecompiler to detect and identify a great number of bugs that otherwise would be di�cult todiscover. This happens because the compiler, as it infers the type of a certain variable, will alsocheck the consistency of the rest of the function regarding all the operations that this variable isincluded. This way, only programs that are able to maintain data type coherence throughout allthe operations are able to compile successfully.Another advantage of OCaml is the abstraction of pointers. While this feature is source formany troublesome bugs in languages as C or C++, in OCaml, the compiler handles all thesereferences. The user is not allowed to change the intrinsic value of these references: only thevariables that they point to. From a user standpoint, the syntax used for de�ning and changingmemory positions when referred through a pointer (in OCaml we use the ref operator to de�nea reference or pointer) are relatively easier to manipulate than its imperative counterpart.Finally, one of the most distinct characteristics of OCaml is the code compression. With thislanguage is possible to write complex applications using a third of the code lines that the sameprogram would need when written on a fully imperative language. Due to type inference and thefunctional nature of this language, a function of medium complexity can sometimes be writtenin a single code line.3.1.2 Explanation of the software modelThe Heracles simulation module was developed with the purpose of providing accurate timingsimulations. The usage of this tool is mainly text based: the system to be simulated is insertedinto the tool via a text �le containing a description of the graph to be simulated, namely, a listwith all the actors and their respective execution times, as some other relevant characteristics, asfor example, the mapped processor, associated priority, etc, and a list of all the edges with thesources and sinks properly identi�ed, the initial tokens, production and consumption rates. Thistext �le is then parsed so that all the components and main characteristics mentioned before canbe extracted into internal variables.The simulator operates on a set of objects of a record type (commonly known also as structureor class in other programming languages) called Event. Along with plenty of useful information,an event also represents the start or �nish of a scheduled task. These events are aggregated in aset, ordered through a speci�c function. This function, called compare, is particularly important23



since the order in which the elements are put into the set is also the order in which they areprocessed by the simulator.This function is essential to understand the basic mechanics under the simulation tool so weare going to explain it in detail. The compare function operates with Event structures. Thisstructure is characterized by the following elements:
• Event id - identi�es the type of event, namely if it is a Start or a Finish type of event.The Finish events should always precede Start events.
• Start time - This �eld indicates the time at which the Event should be processed. Itcontains a time value relative to the simulation clock.
• Priority - Although this �eld was already de�ned in the initial version of the code, it wasbeing used in a limited way. As the name implies, it relates to the relative priority of theEvent. We decided to retain the convention used in real-time that was described in 1.4, i.e,lower priority values mean higher relative priority.
• Issue - The issue of an Event is a unique identi�er for that element. It has no operationalsigni�cance other than uniquely identifying the Events in each simulation.
• Multiplicity - This �eld contains the number of simultaneous �rings of a given Event. Indata �ow, when an actor has its �ring conditions met, it can �re as many times as thenumber of tokens in its input edges permit. This �eld was created so that in a situation likethis, instead of creating multiple copies of the same Event, the simulator creates only oneEvent with a multiplicity value equal to the number of simultaneously �rings of the actor.

AFigure 3.1: Example of an actor able to �re multiple times simultaneouslyIn �gure 3.1, actor A has its �ring rules met for three �rings, so it will do it simultaneously(the actor is able to process three independent set of input tokens). If all the actor �ringshave the same execution time, in the simulation environment only one Event will be createdregarding this �ring. The multiplicity �eld in this Event will be equal to the minimumnumber of tokens in all of its input edges, i.e, 3 in this example.
• Internal actor - this last �eld contains an actor structure with the information relative tothe actor that issued the event. In example 3.1, the internal actor �eld will contain a copyof the structure of actor A.The compare function operates on the Event id, Start time, Priority and Issue �elds of anEvent. Whenever a new Event is to be inserted into the existing set, the compare functionsequentially compares this event with all the events already inserted in the set, until it �nds asuitable position for it. 24
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Figure 3.2: Flowchart of the compare functionFigure 3.2 depicts a schematic of the operation of the compare function elaborated for ourproject.A poorly conceived compare function can easily originate deadlock situations. Lets considerfor instance the decision regarding the Event ids. As it is de�ned, this function give precedenceto the Finish Events relative to the Start Events. If several Finish Events are already on topof the set, they will be ordered according to the remaining parameters. This way, we ensurethat the end of an execution always precedes the start of another. This is important becauseFinish Events release resources while Start Events reserve them. If this order was inverted, thesimulation would reach a deadlock at some point, since the Events that reserve resources arebeing resolved before the Events that release resources. An imbalance between resource releaseand reserve is created and it is a matter of time until there are no resources available. Since theEvent id comparison is made in the top, an Event that cannot be resolved is simply reinsertedinto the set in the same position as before.At the beginning of an iteration, the simulator picks up the event on top of the set andoperates based on it. A simpli�ed scheme of the functioning of the simulator is presented in�gure 3.3. 25
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Figure 3.3: Flowchart for the simulatorThis behaviour is assured by several functions and some complex data structures. All theextra functions or changes to the data structures that we intend to make will not alter thestructure shown in �gure 3.3.In the remainder of this chapter, we are not going to make reference to any of the code changesmade in the course of this project. These alterations were made to solve speci�c problems andwe lack the context to explain them properly. Hence, they will be addressed in future chapters,when the problem that they were design to deal with is discussed.3.1.3 Usage of the toolThe Heracles simulator is a text based application with its own parser and lexer for input ofdata. 26



In order to simulate a given system, one has to input it into the simulator in the form of adata �ow graph. In Heracles, this is accomplished through the indication, via the command line,of a text �le with all the data regarding the system to be simulated. This text �le must obey theset of rules de�ned by the parser regarding its structure and the type of data admissible, as itwas referred in section 3.1.2.All other options of the simulator are passed to it through the command line, upon the callingof the main application. Whenever we added a new functionality to the system, the module thatdealt with the available option had to be altered so that the new functionalities could be used,also in a modular and independent way.If the data is inserted correctly, the simulator will run the graph until a stopping conditionis achieved. This stopping condition can be the identi�cation of a periodic behaviour or simplya prede�ned elapsed time. Once the stopping condition is reached, a summary of the graphexecution is displayed in a console. This summary is comprised of information such as the totalexecution time, total number of steps taken, maximum number of tokens that each edge hadduring the graph execution, etc. Along with this summary, a text �le containing a list with allthe executions of all actor in the graph is created. In it we can consult information such as therelative times that each actor started and �nished a certain execution.After the integration of the visualization tool mentioned before, a successful simulation willalso produce the script �les to be interpreted by it. These �les contain the same information ofthe previous �le but formatted in way that the visualization can read and use to produce therespective Gantt charts.3.2 ConclusionIn this chapter we intended to o�er a concise explanation of the set of tools that we usedduring this project. The great majority of the results presented along this document were obtainedthrough this tool, either by data �ow simulation or by usage of other related functions. Giventhe importance of this software in the course of our work, it is important that we introduce tothe reader the key functionalities of such a useful instrument.
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Chapter 4Implementations introducedin the software framework4.1 Main changes to the codeDuring the remainder of this document, we will make reference to the various changes andadditions to the Heracles source code. These references will appear in the appropriate context,so for now we are only going to indicate the alterations made to the general structure of the toolset, namely the inclusion of the visualization tool and other related alterations.1. Implement the �xed priority simulation option - This project is centred around�xed priority schedulers. As so, one of the �rst and most important modi�cations that weimplemented was the inclusion of a �xed priority data �ow simulation. For it, we used thepriority element already de�ned in the internal representation of the actors of the graphand created the necessary structures to correctly implement this feature. This functionalityis activated by passing the respective option through the command line.2. Create the functions to build a script �le from the task activations to be inter-preted by the visualization tool - During the course of our work, we realized that atool that would allow us to see a graphical representation of the results of the simulation,such as a Gantt chart for instance, could be very useful, specially to detect patterns, likeperiodic behaviours. After some research we discovered the TimeDoctor tool. TimeDoctoris an open source application that it is primarily used to visualize the execution traces oftasks, queues, cache behaviour, etc. in embedded media processors [31] but it is �exibleenough to be adapted to our needs. The usage of this tool is simple: the behaviour of thetasks, i.e, their start and �nish times, mapped processor, etc, is inserted into a text �le witha .tdi extension. A quick glance into one of these script �les was enough to realize that thebuilding process of one of these script �les can be easily automatized through �le writingfunctions. Not only this tool is practical for creating Gantt charts with the tasks executionsbut it also can be used to represent the state of the edges throughout time, speci�cally, thenumber of data tokens in each edge of the graph during the length of the simulation.One of the �les created in each simulation will represent a Gantt chart of all the executions.Each task in this �le is properly identi�ed with its name and the processor in which it was28



mapped along with a chart with the evolution of the number of data tokens in the edges ofthe graph.A second �le will do also a timing representation but now from the processor's point ofview. This is a processor utilization chart and it represents all the activations that occur ina given processor over the simulation time. This is useful for studying the computationalload of a given processor.
Figure 4.1: Example of simulation results interpreted by the visualization tool as a Gantt chart3. Elaborate the necessary functions to represent the state of the graph edges intime - In addition to the mapping of the executions, we considered that a representationof the state of the graph edges will also be desirable. Fortunately, the TimeDoctor tool hasa built in functionality for representation of queues, which was perfect for our situation.By adding the necessary functions to the code, along with a Gantt chart of the graphexecutions, we were also able to represent the state of the interconnecting FIFOs duringthe simulation. Figure 4.2 depicts the result obtained.

Figure 4.2: Example of the evolution of a graph edges interpreted by the visualization tool4. Create a set of functions for representation of the load curve of a processor -This subject will be addressed in great detail in chapter 6, but in the meantime, we mustmake a reference to the load curve of a processor. This curve represents the evolution of thecomputational load on a processor and allow us to perceive how the work load is distributedthroughout the simulation time. To build it, we need a time vector and a usage vector witha one to one correspondence in order to be able to do a trace. The output of the data shouldbe on a simple text �le, formatted in a way that can be interpreted by a chart buildingapplication, as for instance, Matlab or GNU Octave.29



Figure 4.3: Example of a load curve plotted using GNU Octave5. Create a set of functions to compute the interference between tasks - Duringthis section of our project, we needed to perform calculations regarding the computationof the worst-case execution time of a low priority task when subjected to the interferencefrom a high priority task mapped in the same processor. In order to achieve satisfactoryresults in this subject, it was necessary to take into account the preemption that the highpriority task would impose on the running low priority task. Since the data �ow simulatordoes not contemplate the use of pre-emption, we needed to develop a set of function thatemulate this behaviour. Basically, our functions received a list with all the executions ofboth concurrent tasks in the same time referential and performed a merge of these liststaking into account the relative priority of the tasks and including preemptive e�ects whennecessary. Along with the return of a merged list, these functions also compute and returnthe worst-case execution time of the low priority task.6. Insert an option to include the context switching times into the simulation -In order to approach our simulations as close as possible to real cases, we need to takea critical factor into account: the context switch performed by the processor whenever alow priority task is preempted by a higher priority task. When a task is preempted, theprocessor need to store the task state and all the information that could be necessary toresume this task somewhere in the future. Also, the processor need to prepare the contextfor executing a di�erent task. All these operations take a signi�cant amount of time and, inorder to make our simulations as realistic as possible, we need to take it into consideration.As so, we created a set of functions that insert a context switch task whenever they detecta preemption along a list of executions of several tasks. The activation of this functionality30



and the de�nition of the context switch delay are passed as arguments via the commandline.All of the modi�cations referred above were inserted in a proper software module to avoid un-necessary additions to an already complex source code. Only the relevant functions and structuresare exportable in order to maintain simplicity.4.2 ConclusionIn this chapter we described the alterations that we performed to the software platform sothat we can use the tools to verify and retrieve information from the simulation of data �owgraph, using �xed priority or not. The actual implementation of the changes referred in thischapter was left out on purpose. In later chapters, when the correct context is build, we willmake a more detailed explanation of the respective software changes.Initially, all changes in the code were performed by editing existing sources. In order tomaintain code integrity, all the additions were protected inside conditional branches, i.e, a newfunctionality can only be evoked if the respective option is indicated in the command line. On alater phase of development, we decided that it was more practical and simple to create our ownsoftware module and do the necessary imports into to the main source code.
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Chapter 5Intra-Graph �xed priority analysis fordata-�ow graphsThe pre-emptive �xed-priority schedulers are a popular real-time scheduler. The simplicityof its implementation can hide the di�culties in the study of its behaviour, particularly regardingthe determination of best and worst-case start times of the tasks associated in a data-�ow analysis.It is possible to imagine a situation where a high priority actor is simply activated at a ratethat causes starvation among the lower priority ones, even though this type of problem can also beobserved in the absence of preemption - a high priority actor can simply be continuously scheduledahead of a low priority one. Along with starvation, we can also point out to backlogging situations:whenever a high priority task is dependent of a product of a low priority one (processing data forinstance), the rate of execution of the �rst one is undoubtedly limited by the rate of execution ofthe late.These are some of the problems encountered during our analysis and will be properly ad-dressed in the remainder of the chapter.5.1 Problem de�nitionGiven a set of actors, with di�erent priorities, to be scheduled for execution, we want toestablish a model based on data-�ow that can conservatively predict the worst-case temporalbehaviour for each actor. We want to determine what could be the largest response-time per�ring, which in this case corresponds to the elapsed time between the moment in which an actoris set to start (by the scheduler for example) and its actual �nishing time.We will start by establishing a simple model with two actors with di�erent priorities, thatare interdependent from each other. This means that even though the high priority actor canpreempt the low priority one, eventually the system will reach a point where the high priorityactor is unable to �re because it needs the other to produce at least one token into its incomingedge.Before we dwell into this problem, it is important to de�ne the concepts that are used in theremainder of this chapter:De�nition 5.1. Execution time τi of an actor ai is a temporal de�ning parameter. τi is theamount of time required to complete the execution of ai when it executes alone and has all the32



resources it requires. Hence, the value of this parameter depends mainly on the complexity of theexecution and the speed of the processor used to execute it and not on how it is scheduled.The actual amount of time required by an actor to complete its execution may vary for manyreasons. As examples, the computation may contain conditional branches, and these conditionalbranches may take di�erent amounts of time to complete. The branches taken during the exe-cution depend on the input data. If the underlying system has performance enhancing feature(e.g., cache memory and pipeline), the amount of time a computation takes to complete may varyeach time it executes even when it has no conditional branches. For these reasons, the actualexecution time is unknown until it completes [25].De�nition 5.2. In real-time systems, the response-time r of an actor is de�ned as the timeelapsed between the release (instant of time when the actor becomes ready to execute) to the timewhen it �nishes the execution (one dispatch). [6].response-time is di�erent from worst-case Execution Time, which is the maximum timethe actor would take if it were to execute without interference. It is also di�erent from deadline,which is the length of time during which the actor's output would be valid in the context of aspeci�c system.For now, the analysis will be focused on this simple graph setup. After we �nd a satisfactorymodel for it, we will increase the complexity of the system.5.2 TheoryIn the next sections we are going to explore this problem by analysing some �xed priorityarrangements using the concepts of data-�ow analysis introduced in chapter 2. The purpose ofthis analysis is to illustrate some of the problems that appear when one tackles such subjects.5.2.1 Data-Flow analysis of a �xed priority systemLets start by considering a simple system composed by two actors, a high priority actor Aand a low priority actor B, with dependences from each other. A and B are executing on thesame processor. The data �ow representation of this system is shown in �gure 5.1.
A

(HP)
B

(LP)

AB
d

BA
dFigure 5.1: Simple �xed priority arrangementIn �gure 5.1, dAB represents the initial number of tokens present on the AB edge, while dBAis the number of tokens on the opposite edge, with dAB , dBA ∈ N0. Both actors have self edgeswith a single initial token, which limits to one the number of �rings that each actor can executeat a given moment. 33



The execution time of each actor is τA and τB. We also assume that after a token is producedby an actor, it can be immediately consumed by the dependent actor. This means that we considerthat a zero time permanence in a intermediate bu�er or FIFO.We also assume that the processor allows preemption, which mean that actor A will runwhenever its �ring conditions are met.5.2.1.1 NotationWe will be dealing with the running time of the various actors in study and we will use theletter r to indicate such quantity.All other representations used respect the notation adopted in other relative publications andthe notation introduced in chapter 2. We will use the �rst letter of the quantity name followedby the actors associated underlined. For example, a number of delays are indicated by a dedge,the starting time of a given actor in a particular iteration is denoted by s(i, k) and the respective�nishing time respects the same notation, but using f(i, k).Also, in this chapter we will use the terms actor instance and actor �ring interchangeably.The �rst term is mostly used in classical real-time theory while the second one is the preferreddesignation in data �ow analysis.5.2.1.2 Worst-case response-time for the �rst �ringFor all the situations to be analysed in this case, its is important to point out that we assumethat the system is started in t = 0 in order to avoid the starting time term, which will be commonto both worst-case analysis. We assume that the system is in stand by, with all the respectivedata tokens steady on the nodes, and then it is turned on at time 0, with all the actors �ringimmediately, if able to do so.5.2.1.2.1 High priority actor :Since the high priority actor has the capacity to pre-empt all the low priority ones, wheneverit is ready to run, it simply �res and executes without being preempted.
r̂(A, 0) = τA (5.1)If we only take into consideration the cases where the actors are all able to run, then the onewith higher priority need only to wait for its previous �ring.5.2.1.2.2 Low priority actor :The analysis for the low priority actor is more complex since we must take into account thee�ects of preemption by the high priority actor. So, in a given moment, if we have both actorswith enough tokens in its inputs to �re, actor B will always be blocked by the high priority actor

A. The question is, how long does that block last?Actor A will block actor B as long as it has tokens to activate itself. Eventually actor A willconsume all available tokens and only then will actor B be allowed to run. So, considering thelogic taken in equation 5.1, we still need to take into account the execution time of the actor,thus
r̂(B, 0) = τA · dBA + τB (5.2)34



Although, this is not the worst-case conceivable. If we look at �gure 5.1, we can make anassumption in which actor B was activated for dAB − 1 times before. This means that we canproject a scenario where all but one of the initial tokens on the AB edge are now in the opposingedge. We maintain a single token on the AB edge in order to comply with the assumption made inthe beginning of section 5.2.1.2, i.e, all actors have their �ring conditions met at t = 0. Lets alsoassume that the previous happened because actor A was unavailable before but becomes activein this speci�c moment. Now actor B has to wait for actor A to consume all those accumulatedtokens. Taking this into consideration, the worst-case response time for actor B will be
r̂(B, k) = (dAB + dBA − 1)τA + τB (5.3)This is a conservative scenario. It is useful to de�ne an upper bound for our analysis, althoughit is impracticable in this example.5.2.1.3 Dynamic data-�ow analysisWe are now ready to make a more realistic analysis of the system. We intend to determinewhat happens to each actor after the initial activation of the system showed on �gure 5.1 regardingtheir response times.5.2.1.3.1 High priority actor :We begin to assume again that both actors are scheduled to execution at t = 0, with actor

A being the �rst to execute, blocking B in the process. After A as consumed all the tokens inthe BA edge, it will enter a new regime where it needs to wait for B to produce a token into the
BA edge. Since we consider the response time as the time elapsed since an actor has enoughtokens to execute to the time where it actually �nishes its execution, actor A only takes τAtime to execute always. For the kth iteration, the running time of actor A is

r(A, k) = τA, k ∈ N0 (5.4)5.2.1.3.2 Low priority actor :As for actor B, we can identify two distinct running times for it. In the beginning we have Bblocked by A during exactly dBA iterations, waiting τA time each. So actor B can only make its�rst execution after A has consumed all the tokens in the BA edge and after that we still haveto wait for B to �nish executing
r(B, 0) = dBA · τA + τB (5.5)But after that �rst execution of B, the system enters a state in which both running timesstay constant. In this state we have actor B producing a token into the BA edge, followed by theconsumption of a token by the actor A, and thus blocking the execution of actor B, and �nallyfollowed by the next execution of B, due to the fact that only one token exists at a time in edge

BA, blocking actor A after every execution. But since B is ready for execution during the blockfrom A, we consider that whole time. The running time of actor B for the kth iteration after the�rst becomes:
r(B, k) = τA + τB, k ∈ N (5.6)35



Rewriting this into a more general expression:
r(B, k) =

{

dBA · τA + τB if k = 0
τA + τB if k > 0

, k ∈ N0 (5.7)5.2.1.4 Analysis of the actor starting timesWe will now analyse the evolution of the starting times of each actor.5.2.1.4.1 High priority actor :Since it has the highest priority, the �rst execution of actor A is done in t = 0

s(A, 0) = 0 (5.8)From then on, as long as A has tokens on the BA edge, it will be �red as soon as it �nishesits last execution. So
s(A, 1) = s(A, 0) + τA

= τA

s(A, 2) = s(A, 1) + τA

= s(A, 0) + 2τA

= 2τA...
s(A, k) = s(A, k − 1) + τA

= k · τA, if k < dBA (5.9)After all the BA edge tokens are consumed, actor A must wait for at least one of them tobe produced by actor B. But from this point on forward, we need to take into account the timespend executing B because now we are trying to de�ne a relative time span and, relatively to thelast execution of actor A, it had to wait for that τB interval.So now we have that:
s(A, k) = s(A, k − 1) + τA + τB if k ≥ dBA (5.10)We can develop the previous equation further, speci�cally the s(A, k−1) term. Lets considerthe situation in which actor A as just �nished the execution resultant of the consumption of thelast token remaining on the BA edge. actor A is on the verge of waiting for a production from B forthe �rst time. In that particular situation we have that s(A, k−1) = (dBA−1)·τA = s(A, dBA−1),for k = dBA. The −1 term is due to the fact that our initial k term is 0, i.e, our �st iterationoccurs when k = 0.We can now iterate from there:
s(A, dBA + 0) = (dBA − 1) · τA + τA + τB

= dBA · τA + τB (5.11)36



In the previous expression, the term (dBA−1) ·τA takes into account the time spent by actor
A processing the initial tokens in its incoming edge. The term τA + τB refers to the one cycleafter actor A has �nished this consumption. For the next iteration, the same logic is maintained:the start time for any iteration after the consumption of all the initial tokens from the incomingedge of the high priority actor is given by adding the time this actor takes to consume thosetokens (which would be a �xed value) to the time spend in the iterations where both actors �rein alternatively (which depends on the number of iterations considered).

s(A, dBA + 1) = (dBA − 1) · τA + 2(τA + τB)

= dBA · τA + τA + 2 · τB

= (dBA + 1) · τA + 2 · τB...
s(A, dBA + k) = (dBA − 1) · τA + (τA + τB) · (k + 1)

= (dBA + k) · τA + (k + 1) · τB (5.12)But we want to maintain the notation used previously, so we rewrite the last expression bysubtracting the dBA term and include equation 5.9
s(A, k) =

{

k · τA if k < dBA

k · τA + (k − dBA + 1)τB if k ≥ dBA
(5.13)5.2.1.4.2 Low priority actor :The low priority actor seems to be a simpler because it is blocked for a �xed time in thebeginning. But once it start �ring, it is capable of maintaining some periodicity. Due to theinitial activations of actor A, the start time of the �rst execution of actor B will be

s(B, 0) = dBA · τA (5.14)But after the �rst execution, actor B will have the same ratio of execution of actor A, as wesaw on the previous section. So
s(B, 1) = s(B, 0) + τA + τB

= dBA · τA + τA + τB

= (dBA + 1)τA + τB

s(B, 2) = s(B, 1) + τA + τB

= (dBA + 1)τA + τB + τA + τB

= (dBA + 2)τA + 2τB...
s(B, k) = (dBA + k)τA + τB · k, k ∈ N0 (5.15)37



5.3 Multi processor mapping analysis5.3.1 OverviewWe are now in the position to increment the complexity of our previous graph.
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Figure 5.2: Example of a 4 actor graph with di�erent processor dependencies and where PA > PBIn this situation, we inserted two additional actors to our default system. The prioritieswere maintained, but is important to point out that actors C and D are mapped on di�erentprocessors as the remaining actors A and B. Because of that, we assume that the execution ofactors C and D can occur simultaneously with the execution of other actors and they cannotsu�er preemption from actor A or preempt actor B.As before, each of the edges that interconnects the actors has an initial �nite number oftokens, represented by the same notation used before, and each actor has a self edge with aninitial data token. The execution time of an actor is characterized by a time τactor as usual.Since actors C and D are not mapped on the same processor, we are only extending ouranalysis to actors A and B and only for the determination of the worst-case response time andstarting times. Also, from this point on forward, actor C will be ignored for the moment, sincewe can see that actor B will originate a concentration of tokens in its input edges. Since we areinterested in what happens until the �rst activation of the lower priority actor, we decided toignore the "inactive" actor, for simplicity
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5.3.2 Worst-case response time5.3.2.1 High priority actorWe are going to maintain the same criteria of analysis used before. Assuming that dDA > 0,for the �rst activation of high priority actor A we have that:
r̂(A, 0) = τA (5.16)Since actor A as priority over actor B and can execute simultaneously with actor C and D.5.3.2.2 Low priority actorIn this section we are going to determine a conservative upper bound for the response timeof actor B. By looking at �gure 5.2, we can start by inferring that actor B has to wait for actor

A to consume all the tokens in the DA edge, at least. But we also need to consider the tokens inthe BD edge. In a worst-case scenario, we can have τA > τD and dDA > dBD, which means thatwhile actor A is consuming the tokens on the DA edge, actor D is consuming tokens from the
BD edge and putting the processed tokens into the DA edge at a higher rate than the one whichactor A can consume them. That will maximize the waiting period for actor B since the numberof tokens consumable by the high priority actor is also maximum. So, for the �rst execution ofactor B we have that:

r̂(B, 0) = (dDA + dBD) · τA + τB (5.17)This is a pessimistic approach. By inferring that τA < τD, it is easy to conceive some realisticscenarios in which actor B is executed faster.5.3.3 Analysis of start times5.3.3.1 High priority actorAn initial analysis of this system revealed two di�erent scenarios regarding the relation be-tween the response times of the high priority actor A and the actor that precedes it creating adirect dependence, actor D. So we need to fork our study one more time to analyse each scenarioresulting from each assumption regarding the response times of the actors.5.3.3.1.1 τA > τD :For this case, we can simplify our study by assuming that all of the �rings of actor A areconsecutive, i.e, actor A will never be blocked by lack of input tokens in the DA edge. Thisgeneral assumption is done by realizing that actor A depends on actor D and since this last oneis faster to execute than the later, there will be more tokens produced than consumed in the DAedge. The only way to have actor A blocked in this case is to have actor D deactivated before byexhaustion of all the tokens available in the BD edge. So, the question here is, in the situationdepicted in �gure 5.2, if τA ≥ τD, is there any situation where, regarding the numberof tokens in incoming edges of each actor in study, actor A could be blocked beforeactor D consumed all of its input data tokens?39
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P2Figure 5.3: Representation of the system in studyFor the system depicted in �gure 5.3, lets start by consider that:1. τA is a rational number greater than 0.2. τD = τA − δt, δt an in�nitesimal time interval.3. dDA = 1, we start with just the minimum number of tokens possible in this edge.4. dBD = ∞.Given all these assumptions, one can see that, if actor D and A are �red at the same time,at t = 0, because τA > τD (δt is in�nitely small but is still greater than 0), actor D will always�nish δt sooner than actor A and, because of that, it puts a data token into the incoming edgeof actor A. δt time after, actor A �nishes it initial execution but �nds an available token alreadydeployed in its incoming edge, and so it initiates another execution right after the �rst one.

Figure 5.4: Activation diagram of both actors in study40



But we cannot forget that actor D also �nished its �rst execution δt sooner than actor A.So it also started its second execution δt time before actor A second execution start.So actor D will �nish its second execution 2 · δt before the second �nish of actor A and soon. As so
s(D, 0) = 0

s(D, 1) = s(D, 0) + τD

= τA − δt

s(D, 2) = s(D, 1) + τD

= τA − δt+ τA − δt

= 2 · (τA − δt)...
s(D,n) = s(D,n− 1) + τD

= (n− 1) · (τA − δt) + τA − δt

= n · τA − n · δt, , where n = τA/δt (5.18)In the previous equations, n represents the number of delays δt that compose a time intervalequal to τA.So, in conclusion, after those n iterations we see that actor A will be delayed a full period ofactor D:
s(D,n) = n · τA − n · δt

= n · τA − τA · δt/δt

= n · τA − τA

= (n− 1) · τA (5.19)This also means that after this period of time, actor A will be facing 2 extra tokens in the
DA edge, when it �nishes an execution, instead of just one. This allow us to conclude that thenumber of tokens in the DA edge is growing in time for this situation, which also means thatactor A will always execute continuously and so it will never have to wait for actor D to continueprocessing. As the time progresses to in�nite, so will the number of "extra" tokens in the DAedge, which allow us to conclude that actor A will never have to wait for tokens from actor D.
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Figure 5.5: Temporal diagram of the system after n iteration of actor AFrom the information previous �gure, we can write the following expression:
s(A, k) = s(D, k) + k · δt, k ∈ N0 (5.20)In this case, the kth �ring of actor A is preceded by the kth �ring of actor D with a k · δtdi�erence.5.3.3.1.2 τA = τD :This case is actually simpler than the last one and can be seen as a particular case of theprevious case where we set δt = 0. If we take all the previous assumptions, then we can see thatboth actors are synchronized. Both actors �nish at the same time, but since we assume that notime is spent in putting or collecting tokens from the input edges, actor A can simply start rightafter �nishing an execution. So, for this case, we adopt the same conclusions as before.

Figure 5.6: Temporal diagram of the response time of actors A and D for τA = τDIn this case, n represents any number of iterations.5.3.3.1.3 τA < τD :Like we did in a previous analysis, we start by determine the time of the �rst activation andelaborate from there in order to be able to write a general expression. As before, actor A does is�rst �ring right after the start of the system, thus
s(A, 0) = 0 (5.21)For the next activation, we will continue to assume that there are enough tokens in the DAedge to allow actor A to �re again. That means that

s(A, 1) = s(A, 0) + τA

= τA

s(A, 2) = s(A, 1) + τA

= 2 · τA...
s(A, k) = s(A, k − 1) + τA

= k · τA (5.22)After all the tokens in the DA edge are consumed, the next �ring of actor A can occur fromtwo situations: 42



• Actor D �nishes the production of a data token into the DA edge, where 0 ≤ twaitA ≤ τD,
twaitA being the waiting time of actor A due to the absence of tokens in the DA edge. Thishappens because actor D is being processed in a di�erent processor, which means that whenactor A produces its last token, actor D could be in the verge of producing another token,just consumed an input token or be in a situation in between.

• There are no tokens left on the BD edge and actor D is currently inactive. In that case,actor B is put into execution. After it has put the �rst token into the BD edge, actor Dcan now �re again, producing a token into the DA edge, which will be �nally followed bythe execution of actor A.Putting all this into an expression, we have, for k ≥ dDA, that
s(A, k) =

{

dDA · τA + twaitA + τA 0 ≤ twaitA ≤ τD − τA
dDA · τA + τB + τD + τA if dBD = 0

(5.23)From this point on we have an increasing di�cult in order to determine exact expressions.The term twaitA is particularly complex to determine in a precise way. In order to illustrate thesituations indicated above and to clarify the choice of limits for the term twaitA, lets run someexamples:
• Case 1: Lets consider a system as depicted in �gure 5.2 with the following characteristics:

τA = 2, τD = 3.1, dDA = 2 and dBD = 5.A simple analysis using a Gantt chart is shown in �gure 5.7

Figure 5.7: Gantt chart of the example used in case 1For this case we can explore it further and assume that τD = 3+δt, where δt is an in�nitelysmall amount of time, which in this case will result in a waiting period of actor A alsoin�nitely small, which makes twaitA → 0. This should be our best-case scenario for thistype of situation.
• Case 2 Considering the same scheme as before, lets now assume that τA = 2, τD = 5.9,

dDA = 3 and dBD = 5. In this example we intend to explore the other extreme of thesituation depicted in the beginning of this section.43



Figure 5.8: Gantt chart of the example used in case 2As we can see in �gure 5.8, we can elaborate a situation where the actor D picks up adata token right before actor A �nishes the execution of its last token. But we also canunderstand that, if we assume that actor D operates continuously as long it has enoughtokens for that, a token is put into the DA edge as a result, which means that actor Awill always be able to do one last execution before the waiting period, hence explaining thesubtraction of the τA term in the upper limit of twaitA. As before, we can further elaborateby considering that τD = 6− δt where again δt represents an in�nitesimal quantity of time,which will make twaitA → τD − tA.Its is important to point out that all of the conclusions reached so far are build upon theassumption that actor D is running continually and in parallel with the actor in question.But in reality we cannot be certain of that, since actor D is assumed to be running on adi�erent processor. Unless it is running solo, it can always be preempted by other actorswith higher priority that run on the same platform, which will render our study inconclusive.Also, we should not forget that every time that actor A is blocked by the absence of tokensin its incoming edge, actor B is immediately put to execution (assuming obviously that ithas enough input tokens for it). But since the dependence on the last two cases is focusedon actor D, its is not important to make reference to that.
• Case 3 Consider now that τA = 2, τB = 4, τD = 3, dCB = 7, dBD = 1 and dDA = 2. Thecorresponding Gantt chart is presented in �gure 5.9.
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Figure 5.9: Gantt chart for the third caseIn this example, we compute a situation were the low priority actor is allowed to execute,at least once, since the further execution of actor A indirectly depends on this one. As wecan see, actor A and D exhausts all of its tokens, which allow actor B to �nally be able tocomplete a full execution. After it, actor A still has to wait for actor D to produce a tokeninto the DA edge. In the end, between the starting times of the previous execution and theactual execution, actor A had to wait for τA + τB + τD.All is left now is to analyse these cases and achieve a conclusion to what will be a correctexpression. But �rst we need also to look again to all the cases studied before and elaborate ageneral expression to each one. In each of the last three cases, we can see that expression 5.22is applicable as long as k ≤ dDA. The point where actor A �nishes all the tokens that wereoriginally in the DA edge is also indicated in every Gantt chart presented so far. But for now itwill be useful to extend the previous Gantt charts in time. So, for case 1 we have that
Figure 5.10: Time extension for the Gantt chart in case 1In a similar fashion, for the second case we have that
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Figure 5.11: Time extension for the Gantt chart in case 2In both of the previous �gures we can see that, after the initial delay, which we designatedas twaitA, the system enters into a cyclic behaviour characterized by a waiting period for actor Aequal to t′waitA = τD − τA. Since this is also the upper bound for our initial quantity twaitA, thenwe conclude that, as long as actor D as enough tokens to operate, i.e, dBD ≥ 0, and consideringonly the iterations after the exhaustion of all the original tokens in the DA edge, we have that
s(A, 0) = dDA · τA

s(A, 1) = dDA · τA + (τD − τA)

s(A, 2) = dDA · τA + 2 · (τD − τA)...
s(A,m) = dDA · τA +m · (τD − τA), if dBD ≥ 0 ∧ τD > τA (5.24)Contrary to other calculations made in previous sections, this time we present a more con-servative expression instead of an exact one. In reality, the conservative nature of the previousexpression is only applicable to the �rst time that actor A is blocked due to the lack of tokensin its incoming edge. We could see on the previous examples that only the �rst waiting periodcan have a variable duration, depending on the relative duration of the actors. After that �rstperiod, the waiting time stabilizes at a �xed value twait = τD − τA.5.3.3.2 Low priority actorThe insertion of independent actors between the high and low priority actors creates a newlayer of complexity, in terms of timing analysis.One of the objectives in this section is to elaborate a general expression that is able to predictwhen the low priority actor would be able to start for the �rst time. This is an important stepbecause after the �rst execution of this actor, the system assumes a di�erent pace of executionthat is more predictable and is mainly dictated by the executions of the low priority actor.As we have veri�ed so far, actor B can only be set to execution after actor A has exhaustedall of its available tokens. So, since actor A retains that much importance, we have to divide thisanalysis in three subcategories as on the previous section.5.3.3.2.1 τA > τD :When actor A is slower than actor D, which it also depends for generating additional datatokens to process, we can see that actor A will end up consuming all the tokens in the DA and

BD edge (although indirectly), since actor D it is dependent on actor B in the same way. Inother words, the �ow of tokens is stopped in actor B, because it is constantly being blocked bythe continuous activations of actor A.We do not need to extend this analysis much more since a similar proof of this situation wasalready made in section 5.3.3.1.1. We already saw that if τA > τD, actor A is able to operate46



continuously until it exhaust all the combined tokens in the DA and BD edge. So, taking thispoint into consideration, we can write that
s(B, 0) = (dDA + dBD) · τA (5.25)After actor B is able to do its �rst execution, we stay with complex situation in our hands.The single execution of actor B allows actor D to execute one more time. During this execution,actor B is able to do another execution, since actor D runs on a di�erent platform and cannotblock actor B in any way. So, as long as τD > 0 we can write that

s(B, 1) = s(B, 0) + τB

= (dDA + dBD) · τA + τB (5.26)Now we have two possible scenarios:
• If τD < τB , then, before actor B is able to �nish its second iteration, actor D will �nishand produce a token into the DA edge, which allows actor A to preempt actor B. Sinceedges DA and BD are depleted of tokens at this point, after this single execution of actor

A, actor B is able to resume and complete its second iteration. This simpli�es our study,since it allows us to write a more regular expression
s(B, 2) = s(B, 1) + τB + τA

= (dDA + dBD) · τA + τB + τA + τB

= (dDA + dBD + 1) · τA + 2 · τB

s(B, 3) = s(B, 2) + τB + τA

= (dDA + dBD + 1) · τA + 2 · τB + τA + τB

= (dDA + dBD + 2) · τA + 3 · τB...
s(B, k) = s(B, k − 1) + τB + τA

= (dDA + dBD + k − 1) · τA + k · τB (5.27)
Figure 5.12: Simple example with τA > τB > τD, dDA = 1, dBD = 2 and dCB = 347



• If τD > τB, than after the second iteration, actor D is still processing the token producedin the �rst iteration of actor B. The starting time of the next iteration will be
s(B, 2) = s(B, 1) + τB

= (dDA + dBD) · τA + 2 · τB (5.28)Eventually actor D will �nish executing and when that happens, the token produced by itwill be consumed by actor A, which will also preempt actor B from execution. Not onlythat complicates our analysis but we also need to take into account the fact that actor
B has made multiple executions during the last execution of actor D. So, while actor Bis being blocked by actor A, actor D has some tokens available to begin executing again,which could lead to future consecutive executions of actor A, depending on the relationbetween τA and τD. This speci�c situation needs to be properly analysed in order to �ndsome rule to predict the further executions of the low priority actor.5.3.3.2.2 τA = τD :As seen on section 5.3.3.1.2, this situation can be analyse as just the border case of theprevious study. In that last section, we have seen than, in an ideal situation, the behaviour of theactors is similar to when τA > τD, i.e, actor A only allows actor B to be set to execution after ithas consumed all the tokens in the DA and BD edges. Because of that we can simply reapplyall the rules stated in the previous section.5.3.3.2.3 τA < τD :Now we have a high priority actor A that executes at a higher rate than actor D, but sinceactor A further activations are somewhat dependent on the executions of actor D, this factorintroduces a new layer of complexity in the analysis of this situation.The main question here is: How long should actor B wait until it can execute forthe �rst time? So what we want to discover is basically when does actor A stop executingconsecutively. Its also important to point out that, for now, we just want to know when doesactor B starts for the �rst time, not when it �nishes the �rst execution. Since in this situation, thestopping of actor A does not necessarily means that the DA and BD edges are out of tokens, actor

B can simply be put to execution for an in�nitesimal amount of time before actor A pre-emptsit again.The problem here is that now, not only the relative execution times of the actors are impor-tant, but also the number of tokens originally in each incoming edge plays a role in this matter.The next �gures represent three simple numeric problems that illustrate this situation.
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Figure 5.13: Example using τA = 3, τD = 4, dBD = dDA = 4
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Figure 5.14: Example using τA = 2, τD = 4, dBD = dDA = 4
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d    = 0DA d    = 0DAFigure 5.15: Example using τA = 1, τD = 4, dBD = dDA = 4As we can see in the previous �gures, actor B can be set to execute after all the tokens inthe DA and BD edges are exhausted, like in �gure 5.13 or it can be put to execution just aftera certain number of tokens processed by actor A. We intend to �nd out how can we determinethis number.After some careful observations we arrived at the following expression:
dactA =

⌊

τA · dDA

τD

⌋ (5.29)This formula gives us the number of tokens produced into the DA edge, by actor D, whileactor A consumes all the initial tokens in the same edge. One of the elapsed times in this situationis the time that actor A takes to process all the tokens that are already in the DA edge at thestart of the system. If we divide that number by the time that actor D takes to produce onesingle token, than we get the number of tokens e�ectively produced into the DA edge in themeantime. The �oor operator is used because this expression must return a whole number andto guarantee that the tokens produced by actor D are only accounted at the end of its execution.This formula is useful since we can conceive a recursive algorithm that basically reapplies theexpression at the result of the last iteration of the same expression. We can see that consecutiveapplications of the algorithm result in ever decreasing number of additional tokens produced intothe DA edge, so it safe to say that we can obtain a �nal value for the number of extra tokensproduced when the algorithm converges.We can put expression 5.29 into a formalization of the referred algorithm:
dact(A, k) =

⌊

τA · (dinEdge + dact(A, k − 1))

τprodActor

⌋ (5.30)where
dact(A, k) = 0,∀k < 0 ∧ k ∈ N0 (5.31)49



The dinEdge term refers to the number of tokens in the incoming edge, which in this particularcase is the DA edge. The τprodActor term is the execution time of the actor that produces tokensinto the incoming edge of the actor in question, which in this case is actor D. The convergenceof this algorithm is veri�ed when dact(A, k) = dact(A, k − 1).The convergence value dact(A, k) is the number of additional tokens, after the initial ones,processed by actor A. The total number of tokens processed continuously y actor A is given by
dinitialTokens + dactConvergent(A, k) = dDA + dact(A, k).So, the starting time of the �rst iteration of actor B can now be found by:

s(B, 0) = (dactConvergent(A, k) + dDA)× τA (5.32)This algorithm was reached in a holistic fashion, so its better to run an example to clarify it.Lets start by considering one of the examples seen before:
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Figure 5.16: Case using τA = 2, τD = 4 and dBD = dDA = 4We see that actor A starts with 4 initial tokens in the DA edge and then it gets at least 3more from the parallel execution of actor D. In this case in particular, actor B should be set todo its �rst execution at t = 14, even though it will loose the processor 2 units of time after it. Fornow we just want to determine the starting time of the �rst execution of the low priority actor.So we start by running the �rst iteration of the algorithm in 5.30:
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⌊
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⌊
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As we can see, convergence was achieved after 3 iterations, returning 3 extra tokens consumedin a continuous fashion by actor A, after the original 4. So the initial starting time for actor B,using expression 5.32, is
s(B, 0) = (dact(A, k − 1) + dDA)× τA

= (4 + 3)× 2

= 14 (5.34)Which correspond to the value shown in �gure 5.16. This was just a short example, chosen byits simplicity. This algorithm was already implemented in software, through a simple simulatorwritten in OCaml.5.4 Software implementationIn order to be able to check the validity of our theory, we had to modify the existing set oftools, particularly the data �ow simulator, to include a �xed priority option. Speci�cally we hadto introduce the following changes:
• Include an option to activate �xed priority simulation - In order to preserve stability,its not wise to alter the core code to meet our needs. The most �exible approach is to writeour own code inside a conditional branch. This way, the new code is only run if the properoption is activated via the command line, allowing other users to run the original simulatorat will.
• Alter the actor internal structure to include a priority and a processor to map�eld - These will be one of the most used �elds in our adaptation. The priority �eld isstraight forward while the processor to map will be used to allow the simulation of �xedpriority systems in which groups of actors can be mapped into di�erent platforms.
• Alter all the actor creating and manipulating functions to deal with the extra�elds mentioned before - There are several functions that operate on actors that mustbe adapted to include the new �elds of priority and processor mapping.
• Edit the parser and lexer �les to permit the de�nition of the new �elds - Thecharacteristics of the system to be simulated (name and execution time for all the actors,delays and consumption rates for the edges, among other �elds) are inserted into the sim-ulator through a text �le. This �le is interpreted by a lexer and a parser, so they need tobe altered in order to be able to recognize and deal with the extra �elds introduced.
• Alter the compare function, responsible to do the ordering of the events - Oneof the main changes originated by an inclusion of a �xed priority scheme is the order inwhich the various events are put into the set. It is through this function that we can makesure that a high priority event is processed before a low priority one.
• Create an internal structure to deal with the various processors - In our sim-ulations, sometimes we want to investigate the behaviour of a graph in which there are51



actors mapped into di�erent processors. In order to accomplish that, we need to conceivesome sort of mechanism that allows us to simulate the available platforms so that we candetermine when they are idle or busy. One approach is to create an internal structure thatrepresents a mappable processor.
• Alter the stopping condition of the simulator - The default version of the simulatorlooks for a periodic behaviour in the graph executions. For that purpose, the simulatorrecords several states of the graph and compares the actual state with all the previousstates. This aspect forces the graphs in analysis to be strongly connected. It turns outthat, for some of our experiments, the graphs are not strongly connected, which leads thesimulator to run inde�nitely, looking for a periodic behaviour that will never appear. Thestopping condition for the simulator will be change time limit relative to the main simulationclock.One important aspect to refer is that the �xed priority simulation does not allow preemption.For now, we are just simulating ideal and non pre-emptive systems.Upon applying these changes, the overall system was similar to the existing one. We nowpossess two compare functions in our code: the regular one and another that is active when the�xed priority option is active. This last one uses the �xed priority value in each event to decidethe position that an occurrence of an actor will have in the set of events. After this, the onlydi�erence from the original simulator resides in the necessity of a processor available, along withall the other �ring rules, for an actor to begin executing. Also, if a processor is attributed to aparticular actor, all the other actors that were waiting for that same processor need to have theiractivation times rescheduled. The �owchart in the next �gure illustrates these changes:
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Figure 5.17: Flowchart with the changes made to the simulator to deal with �xed priority schemes5.5 ConclusionIn this chapter we tackled with the problem of modelling �xed priority graphs. With a simplegraph, it is practical to produce a set of equations that model the best and worst-case responsetimes, as also the starting and �nishing times of the executions of all the actors. The purpose ofour project is modelling �xed priority schedulers in a multi processor environment, so it is onlylogical that our next analytical step was the study of a �xed priority graph in which some of itsactor are mapped into di�erent platforms. Although the example that we started with was notthe simplest possible, we were able to understand how complex this analysis was. This increasein complexity is not due to an intrinsic di�culty in reaching some conclusions, but mainly to thefact that any simple analysis will eventually divide itself into several sub cases, and each one of53



those originates it own modelling expression.
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Chapter 6Inter-graph �xed priority analysisThis chapter continues the study of the �xed priority problem but from a di�erent perspective.Now we will direct our attention to the interference between multiple jobs with di�erent priorityvalues, mapped on the same processing platform. In this context, we consider a job as a set oftask instances. This type of situation is common in most embedded systems where the processors,general purpose or task oriented, are to be used by several independent jobs.6.1 Problem de�nitionOn a multi-radio baseband system, multiple independent transceivers must share the re-sources of a multi-processor, while meeting each its own hard real-time requirements. Thesetransceivers execute several tasks in sequence.Each processor is a system resource and, as such, its utilization should be optimal. In thissection we are going to address the resource sharing problem for several jobs with di�erent levels ofpriority. Our study will focus mostly on the concept of computational load. Speci�cally, we wantto characterize the system when it is subject to a maximum computational load. The maximumload of the system is always due to the activations of a high priority task and we intend toinvestigate the in�uence that such behaviour could produce in the response-time of other lowerpriority tasks that are also mapped on the same processor. One of the problems that we alsowant to address is how to generate an upper bound on the maximum load that a job can createon another.In order to establish a worst-case scenario analysis, it is essential that we are able to calculatethe maximum load a given processor can be subjected due to a particular set of tasks or job. Themaximum load has an associated concept designated as load window. We need also to de�ne thisconcept, which is essential to expand our study regarding the maximization of the load function.As before, we also had to transform the software tools available in order to use them in thiscontext.
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6.2 Theory6.2.1 De�nition of load of a processorIn the context of this work, it is useful to de�ne a concept that quanti�es the amount of workrequired from a processor by a particular task. In a �xed priority scheme, one of the aspects thatit is important characterize is the amount of time that a processor is busy with a task, which alsoallow us to know the amount of time remaining for processing other tasks.De�nition 6.1. Load of a processor We de�ne load of a processor due to a particular task
i, with a worst-case execution time τ at a given time interval t as the cumulative time that theprocessor spent processing that task i. Considering this, the load of task i on processor p, at time
t, for a particular start time function s, can be calculated with the following expression:

C(t, τ, i, s) =
∑

k:s(i,k)+τ(i,k)≤t

τ(i, k) +
∑

k:s(i,k)<t<s(i,k)+τ(i,k)

(t− s(i, k)) (6.1)The previous expression is the general form of the load formula, which was distilled fromother more simple con�gurations. In the next sections we will document the process that ledus to expression 6.1. The function requests a time interval t, a task i and a vector of all thestart times for that task instances. The summation is performed to all execution times of task
i whose starting time, s(i, k), added to the same execution time, τ(i), is less or equal than thetime interval t considered.6.2.2 Initial considerations and evolution of the conceptIn this section we present a detailed description of the steps required to reach expression 6.1.The formal de�nition of the concept of processor load was established from an early stage. Thequestion that remained was how to �nd a mathematical expression to calculate this value. Asimple approach upon reading de�nition 6.1 resulted in the following expression:

C(t, τ, i, s) =
∑

k:s(i,k)<t

τ(i) (6.2)In order to illustrate the usage of the expression, let us refer to a simple example:
0 2 5 7 10 12 14 15 17 20

t

s(A, 0) s(A, 1) s(A, 2) s(A, 3)Figure 6.1: Simple exampleIf we analyse the previous example using expression 6.2,we can conclude that:
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C(20, 2, s, A) =
∑

k:s(A,k)<20

τA

=

3
∑

k=0

2

= 8 (6.3)In this case we considered that all the executions in which we are interested were �nishedbefore the instant t. If we now consider a more complex and possible scenario, we can see thatexpression 6.2 is not entirely correct:
0 4 5 9 10 14 15 19 20

t

s(A, 0) s(A, 1) s(A, 2) s(A, 3) s(A, 4)

24Figure 6.2: Situation where the time interval considered includes a partial executionEquation 6.2 does not take into account partial executions of a task. We need to correctthat.6.2.2.1 Inclusion of partial executions in the load formulaWe are going to consider that all executions taken into account have a constant executiontime so that τ(i, 0) = τ(i, 1) = ... = τ(i, k) = τ(i). From �gure 6.2 we can suggest two approachesfor this problem:
• Take into account all the executions until the time limit t, including a possible partial oneat the end, and then remove the excess part of this execution that follows after the markin t. Putting all this into an expression we have that:

C(t, τ, i, s) =
∑

k:s(i,k)<t

τ(i)−
∑

k:s(i,k)<t<s(i,k)+τ(i,k)

(s(i, k) + τ(i)− t) (6.4)Here, the summation is made in excess. Once the �rst operation is complete, the lastexecution corresponds to the partial one, so we need to remove the part of it that appearsafter the t mark. For that we subtract the term s(i, k) + τ(i) − t. The application of asummation on this term allow us to simplify the overall expression since it is evaluated onlywhen the choice of t causes a partial execution to be considered.
• Consider all the integer executions on a �rst stage and then add the partial execution on asecond stage of the calculations:

C(t, τ, i, s) =
∑

k:s(i,k)+τ(i)≤t

τ(i) +
∑

k:s(i,k)<t<s(i,k)+τ(i)

(t− s(i, k)) (6.5)The summation takes care of accumulate all the completed executions until the consideredtime t. The last element of the �rst summation corresponds the last whole execution before57



t, so the next execution will correspond to a partial execution. The summation before thisterm makes sure that this one is only evaluated when it is necessary.Both expressions are valid, produce the same outcome and have the same problems, so onecan choose any of them to compute the processor load. For the rest of the document we will useexpression 6.5.6.2.2.2 Dealing with non constant execution timesExpressions 6.4 and 6.5 result from a simplistic approach to the problem. In the previoussections we assumed that all executions of the task i had constant duration. In some cases wemay want to take into account the possibility of deviations from the standard execution timevalue. Since we decided to go forward with expression 6.5, we suggest the following adaptationfor it:
C(t, τ, i, s) =

∑

k:s(i,k)+τ(i,k)≤t

τ(i, k) +
∑

k:s(i,k)<t<s(i,k)+τ(i,k)

(t− s(i, k)) (6.6)And thus we reached our �rst expression 6.1. The main di�erence from expression 6.5 resideon the fact that now all the executions of task i are indexed through k, just as every startingtime. Although more precise, this method introduces a new level of complexity, since we need toknow the execution time of every single execution.6.2.3 Establishing time intervalsSo far, in all the examples presented, the load calculation is made considering the origins oftime as a �xed lower edge. Due to this detail, the time instant t referred could be considered asan absolute value while in reality it should be considered as an interval. To avoid this type ofconfusion in the future, we are going to replace the t parameter for a more intuitive one, ∆t.As was referred before, all calculations up to here were done considering t0 = 0 as the lowerbound for the de�nition of our time interval ∆t. In reality, the time instant at which the highpriority job allows the execution of a low priority task is unknown a priori. As such, we cannotestablish the lower bound of our considered time interval to origin of the referential. A loadwindow that maximizes the load function does not necessarily need to be started in t0 = 0.All the previous presented formulas for the calculation of the load of a processor omitted the
t0 element since it was equal to zero. Taking this into consideration, a more detailed descriptionfor the load function is needed. First, let us observe a typical application for this expression inorder to comprehend some of its functionalities:
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S(i, k) S(i, k + 1) S(i, k + n)

 + t 0t 0

Figure 6.3: Example where a time window is establishedAs we can see from the previous �gure, if the lower bound for out time window, t0, is notzero, we can face a similar situation as the one described in 6.2.2.1. In order to deal with thissituation, we need to adapt expression 6.1 in a similar fashion that was done for when the upperbound can create partial executions:
C(t0,∆t, τ, i, s) =

∑

k:t0≤s(i,k)+τ(i,k)≤∆t+t0

τ(i, k)

+
∑

k:s(i,k)<∆t+t0<s(i,k)+τ(i,k)

∆t+ t0 − s(i, k)

−
∑

k:s(i,k)<t0<s(i,k)+τ(i,k)

t0 − s(i, k) (6.7)The accounting of the task executions is made by defect in the upper bound of the windowand by excess in the lower bound. Hence, the second summation of the formula adds the partialexecution left out by the �rst term while the third term removes the part of the �rst executionthat is added in excess.Through this expression we can see that the element t0 is an absolute time quantity whilethe term t is a time interval. The upper bound of the time window is now found by adding thesetwo terms together.6.2.4 Getting the maximum loadNow that we got some �exibility through what was de�ned in the previous section, we canuse this to establish what we de�ne as maximum load.De�nition 6.2. Maximum load: For a given time window de�ned by an initial time instant t0and a time interval ∆t, a load function Ĉ is maximum if it holds the following:
Ĉ(t0,∆t, τ, i, s) ≥ C(t′0,∆t, τ, i, s), ∀∆t > 0 (6.8)where t′0 is any instant of time di�erent from t0.Next we will illustrate, with an example, how the rede�nition of the time window can allowus to �nd a greater load function.

0 2 4 6 8 10 time12 14 16

t 0 + t 0

task A
s(A, 0) s(A, 1) s(A, 2) s(A, 3) s(A, 4) s(A, 5)Figure 6.4: Initial de�nition of the time window59



From �gure 6.4 we can calculate the load of the processor due to task A for the window con-sidered. Since none of the limits of the time window creates a partial execution to be considered,we will going to omit the calculation of the second and third terms of expression 6.7.
C(1, 8, 1, A, s) =

∑

k:1≤s(A,k)+τ(A,k)≤9

τ(A, k)

=

2
∑

k=0

1

= 3 (6.9)Although, one can see that if we shift the window just one time unit to the right we canincrease our load function:
0 2 4 6 8 10 time12 14 16

t’0   + t’0

task A
s(A, 0) s(A, 1) s(A, 2) s(A, 3) s(A, 4) s(A, 5)Figure 6.5: Example with the time window right shiftedIf we calculate the load function for this new situation, we get that
C ′(2, 8, 1, A, s) =

∑

k:2≤s(A,k)+τ(A,k)≤10

τ(A, k)

=

3
∑

k=0

1

= 4 (6.10)We were able to increase the load of the processor for this particular situation by shifting thetime window, which allowed us to include another extra execution to the processor load.From an example like this arises an important question:How can we make sure that there is no other time window, also only obtainableby shifting the previous one in time, that gives us an even bigger load function?Establishing a maximum load window for the execution of a given job in a processor is animportant step towards establishing a worst-case execution time for a low priority task thatexecutes concurrently with the job that generates such a computational load. If we are able toidentify an interval of time in which a given processor is subject to the highest computationaldemand from a job, then we can use this information to compute how long should a low prioritytask take to complete a full execution in those conditions, i.e, using only the idle times left bythe high priority job. If the task is able to execute in these conditions, the time taken to do itis our worst-case execution time due to the fact that the load imposed in the processor wasmaximum.Ideally, a formal proof is needed to secure the validity of this statement. But for now, all wecan present are a series of statements that eventually can lead to such a proof. In the remainderof this section, we are going to introduce all the de�nitions and conjectures that we veri�ed sofar, regarding this subject. 60



6.2.4.1 Generating the maximum load in an SRDF graphOne important aspect to address at this point is how to subject a given processor to amaximum computational load from an actor, using data �ow concepts.For a SRDF graph, we de�ne the maximum load as the maximum time that the processor,in which an actor i is mapped, is busy processing the executions of that actor, in a load windowde�ned by the initial time t0 and the amplitude ∆t parameters.We want to devise a process in which, by just altering the initial con�guration of a data �owgraph, we can create a de�ned time interval in which our processor is subject to the maximumload possible from that job.First, lets set up a simple example of the situation that we are addressing.
AC1 C2

C1 C2Figure 6.6: Example of a condensed model for a single rate data �ow graphFigure 6.6 represents a condensed model of the type of graphs that we intend to study. Actor
A represents the high priority task that will be responsible for generating the load in its mappedprocessor and the surrounding actors represent all the cycles from which actor A takes part of,condensed into a single actor cycle. The execution time of such an actor is equal to the largestexecution time of all the cycles that are condensed in that actor. Similarly, the edges includedrepresent the bundle of incoming and outgoing edges from the actor on focus to the surroundingcycles.The graph represented is a self-timed scheduled graph, which means that each actor �res assoon as it has its �ring rules met. As we have seen before in 2.5.1, once this graph is started, at
t = 0, it will spend some time in a transient phase until it eventually reaches a periodic phase. Thetransient phase can be explained as a phase in which the graph is moving its tokens around theedges until it is able to reach the �rst state of the periodic phase. After this point, the behaviourof the graph can be described as a �nite sequence of states that repeat themselves with a �xedperiod. We realised that, as soon as the graph enters the periodic phase, the computationalload that a given actor imposes on the processor is constant during that period. Also, thecomputational load has a direct relationship with the number of tokens present in the incomingedges of the actor selected to impose this load. The greater the number of consecutive �ringsof an actor, the greater the load that it imposes in its assigned processor. Since the number ofconsecutive �rings of an actor is directly related to the number of tokens in its incoming edges,we are looking for a way to accumulate the maximum tokens possible in the incoming edges ofan actor so that it is able to make a maximum number of consecutive �rings, generating themaximum load in the processor.To achieve this goal, we devise the following strategy: we introduce a slow actor in the graph,directly connected to the actor that we want to study. We call this actor the delay actor. Alongwith a large execution time (when compared with the execution time of the rest of the actorsin the graph), this delay actor possess a self edge with a large number of tokens. Figure 6.7exempli�es this actor and how it should be inserted in the graph.61
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C1 C2

delay

dC1A

dAC1

dC2A

dAC2

dA

ddelayFigure 6.7: Example of an insertion of a delay actor into an existing graphFor the graph represented, we have the following:
• τdelay >> (τA, τC1, τC2, ..., τCn), n ∈ N.
• ddelay >> (dA, dC1A, dAC1, ..., dCnA, dACn), n ∈ N

• ddelayA = 0The purpose of this actor is simple: once the whole system is activated at t = 0, the delayactor creates an extra dependency on actor A. So, as long as the delay actor does not �nishesits �rst execution, which will put ddelay tokens in the delayA edge, actor A cannot �le. In themeantime, all the remaining actors in the graph continue their normal executions until eventuallythey are stopped due to the fact that they are inserted in cycles that depend on actor A. Aftera certain amount of time t ≤ τdelay, the whole graph is stopped since the surrounding cyclesare waiting for actor A to produce some tokens into its outgoing edges. This process is goingto accumulate tokens in the incoming edges of actor A. Since the total number of tokens inthe graph is �nite and constant, we can assume that the number of tokens accumulated in theincoming edges of actor A at this point is maximum.Once the delay actor �nishes its �rst execution, it produces a large number of tokens into the
delayA edge. This way, the in�uence of this actor is removed from the remainder of the graphexecution: if the number of tokens present in the delay actor is enough, after the �rst �ring ofthis actor, there will be enough tokens in the respective incoming edge of actor A so that it neverneed to wait for the delay actor to input more tokens into this edge.If the number of tokens present in the incoming edges of actor A is maximum, then once thedelay actor �nishes its �rst execution, actor A will execute the maximum consecutive number oftimes, creating the worst-case scenario in terms of processor usage - the maximum load.6.2.4.1.1 Values for ddelay and τdelay :The execution time of the delay actor should be large enough to allow all the cycles in thegraph to stop due to the lack of tokens before this actor �nishes its �rst execution. Since thecycles surrounding the actor on focus execute in parallel (we are assuming that they are mapped62



into di�erent processing platforms for simplicity), a good starting value for τdelay is the productbetween the execution time of the slower cycle and the total amount of tokens inside that cycle.
τdelay ≥ max(τC1, τC2, ..., τCn) ·

∑

i∈Cm

di, n ∈ N (6.11)where Cm identi�es the cycle with the larger execution time.This product gives us an upper bound for how long could any of the cycles in the graph runwhile one of its actors, actor A, is stopped. By choosing τdelay equal or greater than this value,we make sure that all the cycles are stopped when the delay actor �nishes its �rst execution.The ddelay value should be chosen such as actor A does not have to wait for tokens from thedelay actor after it �nishes its �rst execution. We want to avoid another blocking of actor A dueto the delay actor, a simple way to achieve this is to make:
ddelay ≥

⌈

τdelay
τA

+ 1

⌉ (6.12)After the delay actor as �nished its �rst execution, lets assume that actor A has in�nitetokens in all of its incoming edges except the dealyA edge. As so, it is able to �re continuouslyuntil it consumes all the tokens in this edge. A way to prevent the exhaustion of tokens from thisedge between consecutive �rings of the delay actor is to put in there more tokens than the onesthat actor A is able to process during a τdelay interval of time. It is true that a setup like this isunstable since the number of tokens in the delayA edge is going to grow to in�nite. But since itis nothing else but a construct to use only in a simulation environment and for a limited amountof time, it is viable.To understand this process correctly, lets run a small example from the graph depicted in�gure 6.7:
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Figure 6.8: Example of usage of the delay actorThe characteristics of delay actor were obtained using expressions 6.11 and 6.12.Simulating the previous graph, we obtain the following results:
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Figure 6.9: Gantt chart of the simulation results with the evolution of the edgesThere are some interesting conclusion that we can derive from this results:
• The execution time of the delay actor was more than enough to produce the desired e�ect.
• The number of tokens in the self edge of the delay actor was also su�cient to restrict thee�ect of the delay actor to just its �rst execution.
• This procedure was able to generate the highest possible number of consecutive executionsfrom actor A. Although the �gure supplied does not have enough information to verifythat, from the results we were able to verify that the maximum load for the processor P1was found when actor A was able to �re for the �rst time.
• Both the C1A and C2A edges end up with all the tokens in their respective cycles while theopposing edges, AC1 and AC2 are deprived from all their tokens. All the tokens from thecycles from which actor A belongs were accumulated in the incoming edges of this actor.
• The delayA edge is only empty before the end of the �rst execution of the delay actor. Wecan see that it is replenished with ddelay tokens before actor A is able to process the onesfrom the previous activation. This guarantees that actor A is not getting blocked due tolack of tokens from that edge ever again.6.2.4.2 In�uence of the execution time of the high priority tasksThe high priority tasks are the ones responsible for generating the load on a processor. Inthis section we are going to infer on the in�uence of their execution time and the respective loadgenerated. Lets consider the following situation:

0 2 4 6 8 10 time12 14 16 18 20 22 24 26 28Figure 6.10: Example of a setup of a load windowIn �gure 6.10, we have a high priority job creating the temporal behaviour shown. Forsimplicity, we set up all the tasks from that job with the same execution time τ(HP, k) = 2. We64



then selected a load window by establishing an initial time instant t0 = 2 and a time interval
∆t = 16. The question that we want to answer is, if we maintain the same load window andvary the execution time of the high priority tasks, what is going to be the in�uenceof this in the load function?6.2.4.2.1 Shortening of the execution time :Let us assume that the execution time indicated for these tasks is its worst-case executiontime. So, from this point, the tasks can only execute at the same or a lower execution time. Ifthe execution time of the tasks that compose the high priority job was shortened, the load of theprocessor would remain the same, at best, or it would also diminish. We base this assumptionin the monotonicity property: if a task executes sooner than it was suppose to, the subsequenttasks cannot be scheduled later, only sooner. What are the consequences of this event in ourload function? If one or several of the tasks that generate the load of the processor �nish theirexecution sooner than their worst-case execution time, this shortening of executions will "pull"part of the executions right outside our load window into it.Before we go any further with this exercise, lets look at a concrete situation. If we observe�gure 6.10, we can calculate the load present in the window selected:

C(t0 = 2,∆t = 16, s,HP ) =
∑

k:1≤s(HP,k)+τ(HP,k)≤9

τ(HP, k)

=
4

∑

k=0

2

= 10 (6.13)All the tasks represented are executing with their worst-case execution time. Let us nowassume that the �rst task inside the load window �nishes sooner than its worst-case executiontime:
0 2 4 6 8 10 time12 14 16 18 20 22 24 26 28Figure 6.11: The �rst activation from �gure 6.10 �nishes δt sooner than its worst-case execution timeIf an execution terminates sooner, we can see that two outcomes can happen:1. The task does not have any dependencies. In this case, this shortening of the executiontime does not bear any consequences since all subsequent tasks are still scheduled in theiroriginal time instants.2. The subsequent tasks that �re after the shortened task are dependent on it and as such,they are also scheduled δt before their original time: all the activations inside the loadwindow are shifted left by δt, which creates a space of δt time at the right extreme ofthe load window. Now, we must take into account that the diminishing of the execution65



time creates also a diminishing by δt of the corresponding load inside the window. Thespace at the end of the load window is going to be �lled anyway since the whole graph isgetting shifted to the left. Now, if that space is �lled with idle time from the processor, theload inside the window gets diminished by δt. In a best-case scenario, the load window isterminated just before the beginning of a new execution. This δt shift will make δt fromthat execution to slip into the load window. But in the end, the amount of load that gotinside the load window is equal to the amount of load that was removed by the shorteningof one of the executions:
0 2 4 6 8 10 time12 14 16 18 20 22

0 2 4 6 8 10 time12 14 16 18 20 22Figure 6.12: Example where the shortening of an execution does not change the load of a processorSo, in conclusion, if a given high priority job has its its tasks executing with a worst-casevalues for their execution times, the load obtained for the processor this way is maximum andcan only be maintained or diminished if one or more tasks take less time to execute.6.2.4.2.2 Delaying the execution time Let us look at this issue from the opposite pointof view: assume now that a certain load function was established through best-case executiontimes and one of these executions has its �nishing time delayed by a δt amount of time. Whathappens to the load de�ned by the load window in this case?If a task inside the load window has its execution time elongated, unless it has some cushionspace, i.e, some idle processor time after its execution, it will eventually push all the subse-quent tasks that execute right after its �nish. Let us consider that all the activations inside theload window are interdependent, which allow us to establish a worst-case scenario and use themonotonicity argument. The monotonicity of the schedule implies that if, in a stream of intercon-nected executions, one of them has its �nishing time delayed by an amount of δt, the subsequentexecutions can only be scheduled to start later than their original time and never sooner.As before, we have two possible outcomes from this case:1. If the load window terminates at the end of an execution, as long as the delaying time
δt ≤ τexecution, the load inside the window remains the same: the extra load gained bydelayed the �nish time of a task is compensated by the load lost by pushing the lastexecution partially outside the load window.66
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0 2 4 6 8 10 time12 14 16 18 20 22Figure 6.13: Example where the load inside the window remains the same after one of the executionshas is �nishing time delayed2. If the load window has some idle processor time right before its right delimiter, then a rightshift of all of the load window executions can push that "empty" space outside of the loadwindow and this, increase the total load.
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0 2 4 6 8 10 time12 14 16 18 20 22Figure 6.14: Example where the increase of an execution time of a task creates an increase in theload inside of a window6.2.4.3 Additional considerationsBefore we progress in our analysis, we need to clarify a concept �rst: in all the graphsrepresented in this context, we saw that the activations responsible for creating the load in theprocessor were all consecutive activations, i.e, at a given point in time, only one tasks is active67



in the processor. In data �ow, this e�ect is achieved by including a self edge with only one tokenin the actor in study. This guarantees that this actor is able to �re only once at any given time.In our load considerations, it is important that the actor that generates the load is unableto �re multiple times. If so, all the analysis performed becomes invalid since we cannot predicthow many multiple activations can occur at a given point. We investigated the in�uence thata change in the execution times of the tasks that generate a given computational load have inthat load. If we stipulate a certain load window and then have one of the activations inside of itto change its execution time, we are going to have temporal shifts from and to the inside of thiswindow that are going to create some changes in the load inside of it. Because of this, there isthe possibility that additional load initially outside the load window can be brought inside dueto a shortening in the execution time of one or more of the tasks whose executions are inside theload window. The presence of multiple simultaneous activations can invalidate all the conclusionsachieved in the previous sections. To exemplify this behaviour, let us look at the following �gure:
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Figure 6.15: Case where a task A that is responsible for generating the load of the processor is allowedto �re multiple timesIn this situation, task A is the high priority task whose executions are going to generate theload in the window de�ned. If one or more of the tasks inside the window have their executiontimes shortened, some of the executions that sit just outside the right end of the load window canbe pulled in. This includes executions A(5) and A(6). These correspond to a multiple executionof task A. If enough of this executions are able to enter the load window, the load inside mayincrease due to an uneven distribution of load through the time.So, as �nal remark, in order to execute a correct load analysis of a processor, it is imperativethat the job responsible for generating the maximum load does not have tasks from actors thatcan be �red multiple times simultaneously.6.3 Software implementationSince most of work regarding �xed priority software implementation was already done fromlast chapter, the changes needed to study the concepts introduced in this chapter were minimal.Most of the changes regarded the visualization tool, namely a processor view, i.e, a timingdistribution chart per processor instead of per actor.The data �ow simulator already enabled us to perform simulations with two or more inde-pendent graphs simultaneously, so we only needed to create some functions that allowed us toprocess the data from each graph and perform an interference analysis.This interference analysis is performed by simulating two independent graphs within the sametime frame and alone in a separate platform. During this simulation, data regarding the start68



and �nishing times for every task is being stored in an appropriate structure and on a di�erentlist for each graph.Finally, these two lists are merged into one single list taking into account the relative priorityof each graph and assuming preemption. Task executions from the high priority graph are insertedwhole and in their respective time while task executions from the lower priority graph are insertedonly where they "�t", timewise, or even divided in case of preemption from a task with higherpriority.In the end, we get a list of activations that represent the timing behaviour of a processorrunning a high priority job and a lower priority one during the idle times from the high prioritytask.6.4 ConclusionIn this chapter we introduced the concept of load of a processor so that we establish thenecessary bases in order to study the task interference problem. We focused our study on theworst-case scenario in terms of processor usage, i.e, when the processor is subject to the maximumload from a certain task. We also introduced a process to achieve an instant were the load inthe processor is maximum. Using this instant as an interference pattern for a low priority task,we are able to compute its worst-case execution time. To support our claims, we relied on themonotonicity concept to establish some ground rules regarding the behaviour of the load functionwhen the tasks responsible for generating this load have variable execution times.
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Chapter 7Results7.1 Analysis of intra-graph �xed priority data �ow graphsIn chapter 5 we introduced various expressions as result from the theoretical deduction takento model our simple �xed priority systems. In this chapter we intend to confront the modelselaborated previously with simulation results and infer about their validity.7.1.1 Data Flow analysis of a �xed priority graph7.1.1.1 Worst Case response-timeFor the Worst Case response-time of a set of actors mapped into the same processor andscheduled by a �xed priority scheme, as the one depicted in �gure 5.1, we de�ne the followingexpressions in chapter 5:1. High priority task:
r̂(A, k) = τA, k ∈ N0 (7.1)2. Low priority task:̂

r(B, k) =

{

dBA · τA + τB if k = 0
τA + τB if k > 0

, k ∈ N0 (7.2)7.1.1.2 Analysis of the start timesAs for the start times for the tasks, we reached that:3. High priority task:
s(A, k) =

{

k · τA if k < dBA

k · τA + (k − dBA + 1)τB if k ≥ dBA
(7.3)4. Low priority task:

s(B, k) = (dBA + k)τA + τB · k, k ∈ N0 (7.4)70



To test these expressions, we simulated a graph, structurally identical to the one depicted in�gure 5.1, with the following parameters:
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Figure 7.1: Two actor graph7.1.2 Simulation resultsThe �rst two expressions indicated are upper bounds for the response-time of the tasks. Inthe simulations executed, we just veri�ed if such bounds were respected, but unless we are ableto came up with a concrete situation where these bounds may be violated, we assume that theyare valid. For this particular situation, we are going to confront the simulation results with theprojections obtained through expressions 7.3 and 7.4 and reach a conclusion regarding the validityof these formulas.So, before we present the simulation results, we start by employing the start time equationsfor both tasks A and B to calculate the starting times of their �rst four executions. The resultsobtained are presented in the table below:k s(A, k) (τA = 3) s(B, k) (τB = 6) dBA0 0 9 31 3 182 6 273 15 364 24 455 33 54Table 7.1: Start times for the �rst six �rings of each actor
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Now for the simulation results. In order to simplify the analysis of the simulation results, weare presenting those in the form of a Gantt chart:
Figure 7.2: Gantt chart of the simulation resultsAs we can verify in the previous �gure, the start times of the various �rings of the actors werecorrectly calculated by the equations 7.3 and 7.4. We can also observe a pattern in the executionof the graph: in the beginning, only the high priority actor A is allowed to �re since it has sometokens in its incoming edge. Only after it �nishes the execution of the last one of those, the lowpriority actor B is able to �re for the �rst time. These initial executions comprise the transientphase. After the �rst �ring of actor B the periodic phase is initiated.Regarding the response-times, we can also verify that the high priority task A always �resas soon as it has at least a token in its incoming edge, the BA edge. By observing the queueevolution of this edge along with the �rings of this task, we are able to see that when a token isproduced into this edge by the low priority task B, a �ring from the task A always follows. Onthe other turn, task B can only �re when the BA edge is depleted of tokens. In this simulation,the response-time for the high priority task A is never over τA while the response-time of the lowpriority task B reaches is maximum in its �rst �ring. Task B has to wait for three consecutive�rings from A, which puts its response-time at r(B, 0) = dBA · τA + τB = 15, which is coherentwith expression 7.4 for k = 0.7.1.3 Multi Processor mapping analysis7.1.3.1 Worst case response-timeThis section is similar to the previous one. We are only extending the study to an arrangementof four actors but now mapped in di�erent processing platforms. The overall schematic of thesystem in study is identical to the one depicted in �gure 5.2. The object of our study are stillactors A and B. We are not going to perform the worst case response-time and start time analysisfor the remaining actor of the graph. As before, in chapter 5 we de�ned the following expressions:1. High priority task:

r̂(A, k) = τA, k ∈ N0 (7.5)2. Low priority task:
r̂(B, k) = (dDA + dBD · τA + τB), k ∈ N0 (7.6)72



7.1.3.2 Analysis of the start times - High priority taskRegarding the start times, we need to proceed with some caution. From this point on forward,the analysis of this type of graph becomes quite complex since it tends to fork into several subcases due to all the possible relations between the execution times of two interconnected andadjacent actors but mapped in di�erent processors. In the graph used as template for our study(�gure 5.2) these actors are the high priority actor A and actor D. These two actors are mappedin di�erent processing platforms, designated as P1 and P2, and are the higher priority actors ineach processor. They also have an interdependence between each other: actor A depends on actor
D to produce tokens into its incoming edge. Since both actors run on di�erent platforms, theycan be �red simultaneously, which originated di�erent scenarios depending on the relationshipbetween τA and τD.7.1.3.2.1 τA > τD In our �rst case study, we assume that the actor producing tokens (D) hasa shorter execution time than the actor consuming its produced tokens (A). The question thatwas formulated when this case was �rst discussed was: is it possible to have actor A blocked dueto the lack of tokens in the DA edge while actor D has tokens of its own in its incoming edge
BD?After the appropriate analysis, we reached expression 5.19, here repeated for reader's conve-nience:

s(D,n) = (n− 1) · τA, n = τA/δt (7.7)where δt = τA − τD, i.e, the time di�erence between the two actors execution times. In thiscontext, n represents the number of delays δt that compose a single activation of the faster actor
A. We proved that as long as δt ≥ 0, actor A is never blocked due to the lack of tokens producedby actor D. In fact, if δt > 0, the number of tokens in the incoming edge of actor A at any givenpoint increases with time. In order to verify this assumption, we simulated a system identical tothe one depicted in �gure 5.2 with the following characteristics:
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Figure 7.3: Temporal characteristics of the graph in studyThe graph depicted in the previous �gure was simulated during 1000 time units. The resultsof the simulation are in the next �gure:
s(d, 12)

Figure 7.4: Gantt chart relative to the temporal simulation of the graph in �gure 7.3There are several interesting conclusions to retrieve from the previous �gure:
• As expected, actor A is able to maintain consecutive executions without being blocked byrunning out of available tokens in its incoming edge.
• Both actors A and D run uninterrupted as long as the incoming edge of actor D hastokens, as it was expected, since both actors retain the highest priority in their respectiveprocessors.
• For this situation we have that δt = τA− τD = 12− 11 = 1, hence, n = τA/δt = 12/1 = 12.This means that after 12 iteration of actor D, this actor is able to produce an "extra" tokeninto the DA edge. This is observable in the �gure: after the 12th iteration of actor D, bothactive actors "synchronize" their start times and one more token appear in the DA edge.
• By observing the evolution of the incoming edge of actor A, we can see that the rate ofwhich tokens are being consumed from it is lower than the rate at which tokens are beingproduced into it. This leads to the situation that we already mentioned: the number oftokens in the DA edge will grow as long as actor D remains unblocked.7.1.3.2.2 τA = τD This is perhaps the easiest case to analyse. If both high priority actors havethe same execution time and plenty of tokens in its incoming edges, they will �re continuouslyand synchronously as long as this situation is maintained. In order to verify this assumption, wemade just a small change in the graph simulated in the previous section:
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Figure 7.5: Graph to be used in the next simulation with τA = τDThe simulation graph has now τA = τD. Running a simulation with the same parameters asbefore, we obtained the following results:
Figure 7.6: Simulation results for the case with τA = τDAs we can conclude from the simulation results, the �rings of both actors are synchronized.As such, the number of tokens in the incoming edge of actor A is maintained. In reality, thiscase should be presented just as a special case from the previous section, i.e, we can obtain thesesame results from the expressions introduced before if we consider δt = 0.7.1.3.2.3 τA < τD In this case we have the consuming actor A executing faster than theproducing actor D. The question that we want to answer in this section is: how long can thehigh priority actor A �re continuously before being blocked due to lack of tokens in its incomingedge? This question is important because as long as actor A is able to �re in a continuous fashion,the low priority actor that is mapped in the same processor, actor B, cannot �re. Consideringthis, we can reformulate our question: how long does the low priority actor need to wait before itcan �re for the �rst time (even if its only a partial execution due to a possible preemption fromthe high priority actor)? 75



To answer that, we devise the iterative expression 5.30 to determine this time period:
dact(A, k) =

⌊

τA · (dinedge + dact(A, k − 1))

τprodActor

⌋ (7.8)As before, we are going to change the temporal characteristic of the graph to be used in thesimulation in order to address this case:
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Figure 7.7: Temporal characteristics of the simulation graphAs we can see, in this graph we imposed τA < τD, a large number of tokens in the incomingedge of actor D, so that it never blocks due to lack of tokens. Also, it is important to pointout the fact that, since our simulator does not support preemption, once the lower priority B isallowed to �re, it will execute until it �nishes, actively blocking the high priority task A in theprocess.First, lets start by predicting the time at which the �rst �ring of actor B is going to occur.For that, we use expression 7.8 with the values from �gure 7.7:
dact(A, 0) =

⌊

τA · (dDA + dact(A,−1))

τD

⌋ (7.9)Since dact(A, k) = 0∀k < 0, we have that:
dact(A, 0) =

⌊

3 · (4 + 0)

6

⌋

=

⌊

12

6

⌋

= 2 (7.10)76



Next iteration:
dact(A, 1) =

⌊

τA · (dDA + dact(A, 0))

τD

⌋

=

⌊

3 · (4 + 2)

6

⌋

=

⌊

18

6

⌋

= 3 (7.11)Since dact(A, 1) 6= dact(A, 0), we continue to the next iteration:
dact(A, 2) =

⌊

τA · (dDA + dact(A, 1))

τD

⌋

=

⌊

3 · (4 + 3)

6

⌋

=

⌊

21

6

⌋

= 3 (7.12)
dact(A, 2) = dact(A, 1): the algorithm has converged. From this result we know that actor Ais able to process 3 more tokens along the 4 initial ones before being blocked by the exhaustion oftokens from its incoming edge. So, in total, actor A is able to perform 7 consecutive �res. Nowwe can use expression 5.32 to determine the time instant in which actor B �res for the �rst time:

s(B, 0) = (dactConvergent(A, k) + dDA) · τA

= (3 + 4) · 3

= 21 (7.13)All its left now is using the simulator to verify this result. The simulation Gantt chart of thegraph depicted on �gure 7.7 is:
Figure 7.8: Simulation results for the graph in �gure 7.7We can verify from the last �gure that our projections were correct: actor D �res continuouslydue to the large number of tokens in the BD edge, actor A �res seven consecutive times beforebeing blocked due to the lack of tokens in its incoming edge, and �nally, actor B �res for the �rsttime right after actor A gets blocked, exactly at t = 21, as predicted by our algorithm.77



7.2 Load analysis of a Wireless LANand a TDSCDMA job7.2.1 Theoretical approachIn this section we intend to study the task interference e�ects on a low priority job due to ahigh priority job whose actors are mapped on the same processing platform. Most of our �xedpriority jobs run concurrently with other jobs with higher or lower priorities. If all those jobsshare the same poll of resources, high priority jobs interfere with the execution of low priorityjobs. The main consequence of such interference is a delay on the response-time of the tasks thatcompose the job being interfered, due to some of these tasks being preempted by high priorityones.Concretely, we are going to study the e�ects that a high priority but with a relatively shortrunning time job, such as a WLAN job, creates in a low priority long execution time job, suchas TDS-CDMA job.As before, we are going to perform a worst-case scenario analysis so that we can derive anupper bound for the execution time of the high priority job. As such, we are going to subjectthe low priority task to a maximum load from its concurrent high priority job. For that, we aregoing to simulate a situation where these two jobs are set to execution at the same time and usingthe same set of resources. The simulation graph will have a setup that allows it to simulate asituation of maximum load due to the high priority task. As so, the low priority task is going tobe subject to the maximum interference possible. From this simulation we obtain the worst-caserunning time for the tasks that compose the low priority job. We then simulate a solo executionof the low priority job but using the worst-case execution times for the tasks that we obtainedin the previous step. Finally, we compute the Maximum Cycle Mean of the new graph usingthe appropriate tool from the Heracles tool set.If this modi�ed graph has a di�erent MCM than the version with the default execution timevalues of it, we know that the increase of the execution time of the tasks has originated anothercritical cycle in the graph. In these two jobs, the pace of the graph is always dictated by a criticalcycle formed by the various sources. This is vital for the correct functioning of the system sincethis means that the sources are outputting data at a lower rate than the same data is consumed,avoiding the exhaustion of bu�er space, which could lead to a waste of unconsumed tokens.In conclusion, as long as the MCM of the low priority job remains unchanged, we can concludethat the increase in the execution time of the tasks is not going to a�ect the job performance.7.2.1.1 Simulation graphsFor our experiments, we have chosen two graphs from real life applications: a graph modellinga Wireless Local Area Network 802.11a receiver job:
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Figure 7.9: A Wireless LAN 802.11a receiver joband a Time Division Synchronous Code Division Multiple Access (TDSCDMA)job:
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mapped: The blue actors are mapped in the EVP processor, the orange actors in the ARM andthe white actors are processed by the Software Codec. The green actors represent sources ofdata that operate independently and the purple actors represent latencies.As we can see by observing the execution times of the various actors, the WLAN job issigni�cantly shorter than the TDSCDMA job, although the latter has a low number of actor anddependencies. In our simulations, we are going to run both jobs simultaneously and independentlyon each other, but both a�ected by a delay actor imposing the same delay to both graphs. Thisdelay actor is going to be directly connected to the �rst actor of the EVP cycle from both graphs:the DETECT actor in the WLAN job and the CE actor in the TDSCDMA job.7.2.1.2 Implementation of the interference between jobsThe simulator tool allows us to run to independent graphs simultaneously but it does notpermit that actors from two independent graphs to be mapped into the same processing platform.In order to simulate the interference between the tasks we had to develop a separate tool for that.The previous simulation is still necessary because it will provide us with a list of executions,in ascending order of start times, for the two graphs. These lists are then used by a set of functionto calculate the e�ects of the interference from the high priority job into the low priority one.This tool merges both lists into a single one using the following criteria:
• The start time and duration of the high priority execution remains unchanged.
• The low priority executions are �t into the idle times of the processor. For that, most ofthe executions have their start times delayed and are preempted several times to �t intothe available time.This procedure is repeated for a single execution of every actor from a set mapped into agiven processor and for every processor used in that job. By doing this, we subject every actorto the maximum load attainable in that processor, thus obtaining the worst-case executiontime for every actor.Finally, with the set of worst-case execution times for a certain job in our possession, we runanother solo simulation of the low priority job, the TDSCDMA job, but using these worst-casevalues instead of the default ones and infer about the in�uence of this increase in actor executiontimes and the pace of the graph.7.2.2 Simulation results7.2.2.1 Context switching time = 0 cyclesFor our �rst experiment we decided to simply simulate both the WLAN and the TDSCDMAjobs, considering an ideal context switching time of zero, and then simply merge the respectiveactor executions lists. The worst-case execution times for all the actor mapped on the EVP, ARMand Software Codec platforms are indicated in the next table:The "normal" column contains the default values for the execution time of the actors fromthe TDSCDMA job mapped in the processor indicated, i.e, the execution times that those actorswould have if the job was mapped alone in the processing platform (refer to �gure 7.10). The"worst case" column shows the execution times that these same actors displayed when subjected80



Processor Tasks Execution Time Increasenormal worst-caseEVP CE 33000 45070 +36,58%DASS 19000 28630 +50,7%MI 42000 54290 +29,3%JD1 27500 39570 +43,9%JD2 15500 24210 +56,2%ARM TFCI 2000 4000 +100,0%TPC 1000 1500 +50,0%SWC DECODECRC1 25000 30200 +20,8%DECODECRC2 25000 30200 +20,8%Table 7.2: Simulation results without considering context switching timeto the maximum interference from the WLAN high priority job that was mapped in the sameprocessing platform.As we can observe by the increase column, the increment in the execution times measured isquite substantial in most cases.Figure 7.11 displays the results obtained in the form of a Gantt chart:
Figure 7.11: Gantt chart for the interference simulation on the EVP processor tasksThe high priority executions are represented by the white bars while the low priority execu-tions use yellow in its representation.Next, we are going to analyse if this rise in the execution times has any in�uence in the paceof the graph, i.e, we are going to verify if, due to this increase, there was a change in the criticalcycle of the low priority job.For the TDSCDMA job, the execution pace of the graph is dictated by the critical cycleformed by all the sources:

Ccritical = [src1, src2, src3, src4] (7.14)This feature is important since it implies that no other cycle in the graph executes at a higherpace than the sources and so, it guarantees that all the tokens originated from the sources areconsumed at a higher rate than they are produced, which also guarantees that the output edgesof the sources never get completely full. This could lead to potential loss of data since new tokensoriginated from the sources had to be discarded due to the lack of space in the outgoing edges.So, to make sure that our job remains consistent, we have to verify if the critical cycle remainsthe source cycle. A simple process to ascertain this is to compute the Maximum Cycle Meanof the graph before and after we insert the execution time changes. Fortunately, the Heracles toolset has a functionality to compute the MCM of a Single Rate Data Flow graph, which simpli�esour analysis since this graph is somewhat complex.81



The Heracles tool uses the Howard algorithm to compute the MCM of an SRDF graph. Amore detailed explanation of this particular algorithm can be found in [10]. The MCM for theTDSCDMA job in its default con�guration is:
µTDSCDMA = 675000 cycles (7.15)Running a new simulation of the TDSCDMA job but using the values of the worst-casecolumn as execution times, we obtained the following MCM for the altered graph:
µinterference = 675000 cycles (7.16)The MCM for both graph is the same which means that the critical cycle has not changedwith the increase in the execution times: the sources cycle still dictates the pace of execution ofthe graph.7.2.2.2 Context switchingNext we intend to push our simulations further into more realistic scenarios. The next logicalstep is to take into consideration context switching. Whenever a given processor is busy processingan execution and this execution is preempted by another one with higher priority that becameready in the meantime, there are a series of steps that need to be executed before putting thehigh priority pre-empting task into execution. Namely, the system must take the appropriatemeasures in order to allow the preempted task to resume execution later, from the point where itwas interrupted. This procedure is known as context switching and consists in storing the currentstate (registry contents, cache, variables etc.) of the interrupted task so that it can be restoredlater on. This is a costly operation, with an execution time that vary from processor to processor.So far, in our simulations we neglected this operation, assuming that we were using an idealprocessor capable of switching and resuming preempted tasks in a time that it is negligible incomparison with the task's execution times. To approach our model to a more realistic one, weare going to include this context switching operation in our simulation. But �rst is important tode�ne exactly in which situations we employ such an operation and its main characteristics.The description above refers to the cases where a running task is interrupted by anotherone. But whenever a processor �nishes a task and starts a di�erent one, there is also a changein context, which also implies that some maintenance procedures need to be done before runningthe next execution. However, since the execution model is stateless, this type of context changeis signi�cantly shorter then the one referred before, and, for simplicity, we are going to assumethat the execution time of the tasks considered has this context switching time implicit.Taking this into account, we are only going to consider the existence of a context switch delaywhenever a running execution is preempted by another one. This context switch is internallyrepresented as a typical task activation, with a prede�ned and constant execution time, which isde�ned in the beginning of the simulation.We are also assuming that the context switch is started by the interrupting task and, assuch, there is as an extra time that this task has to deal with. So, whenever an interrupting taskissues a context switching operation, the resulting delay is propagated through the remainingexecutions. The next �gure exempli�es this procedure:
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High priority executions

Low priority executions

An high priority execution
becomes ready here

Delay due to the context
switch operation

Delay due to the
preemptive task

and context
switching operationsFigure 7.12: Example of the functioning of the context switch operationAs we can observe from this �gure, the insertion of a context switch operation (context store)before the preemption imposes a delay in it and the other context switch operation (contextrestore) after this execution imposes a second delay on the �nishing time of the interruptedexecutions as in all the executions from this point on forward.7.2.2.3 Simulation using a context switching = 200 cyclesSince we veri�ed in the previous section that the increase in the execution times of the actors,due to task interference, does not destabilize the low priority job, we are now ready to take astep further in our analysis depth by including context switching delays whenever a low priorityexecution is preempted by a high priority one.For now, we start with a relatively small value for the duration of the context switch operation.We altered the simulator code so that we could specify this duration as a command line parameterfor an easy implementation of this feature.In our �rst simulation considering context switching, we used a context switch delay of 200cycles. The simulation results are presented in the following table:Processor Tasks Execution Time Increase Context switch incrementnormal worst-caseEVP CE 33000 49870 51,1% 10,7%DASS 19000 31310 64,8% 9,4%MI 42000 59490 41,6% 9,6%JD1 27500 44370 61,3% 12,1%JD2 15500 26730 72,5% 10,4%ARM TFCI 2000 4400 120,0% 10,0%TPC 1000 1500 50,0% 0,0%SWC DECODECRC1 25000 31800 27,2% 5,3%DECODECRC2 25000 31800 27,2% 5,3%Table 7.3: Simulation results when considering a context switching time of 200 cyclesWe can see a considerable increase in the worst-case execution times of most tasks. TheTPC task in the ARM processor is not a�ected by the insertion of context switch executions,83



something that we could expect of such a short task.The following �gure shows the Gantt chart of the simulation results for this case:

Figure 7.13: Simulation results for the EVP tasks when a context switching time of 200 cycles is consideredThe context switch time is marked in red while the high priority executions are still repre-sented in while while the low priority execution uses yellow.As before, we used the worst-case execution times indicated on table 7.3 to run a solo simu-lation of the TDSCDMA job with a MCM computation for the respective graph. The MCM toolreturned that
µctxsw=200 = µTDSCDMA = 675000 cycles (7.17)As before, the extra delay due to context switching was not enough to disrupt the pace ofexecution of the graph.Since 200 clock cycles is considered a small value for context switching, we are going to extendour study by increasing this value and repeating the previous process.7.2.2.4 Simulations using a context switching of 500 and 1000 cyclesAfter running two more simulations using a context switch delay of 500 and 1000 cycles, weobtained the following results:Processor Tasks Execution Time Increase Context switch incrementnormal worst-caseEVP CE 33000 57070 72,9% 26,6%DASS 19000 36710 93,2% 28,2%MI 42000 67290 60,2% 23,9%JD1 27500 51570 87,5% 30,3%JD2 15500 31530 103,4% 30,2%ARM TFCI 2000 5000 150,0% 25,0%TPC 1000 1500 50,0% 0,0%SWC DECODECRC1 25000 34200 36,8% 13,2%DECODECRC2 25000 34200 36,8% 13,2%Table 7.4: Simulation results when considering a context switching time of 500 cyclesFigure 7.14 shows the Gantt chart of the simulation results for the ARM processor executionswith the 500 cycles context switch: 84



Figure 7.14: Simulation results for the ARM tasks with a context switching time of 500 cyclesProcessor Tasks Execution Time Increase Context switch incrementnormal worst-caseEVP CE 33000 63070 91,1% 39,9%DASS 19000 39710 109,0% 38,7%MI 42000 74290 76,9% 36,8%JD1 27500 57570 109,3% 45,5%JD2 15500 33530 116,3% 38,5%ARM TFCI 2000 6000 200,0% 50,0%TPC 1000 1500 50,0% 0,0%SWC DECODECRC1 25000 38200 52,8% 26,5%DECODECRC2 25000 38200 52,8% 26,5%Table 7.5: Simulation results when considering a context switching time of 1000 cyclesThe Gantt chart of simulation results for the SWC while considering a context switch delayof 1000 cycles is presented in the �gure 7.15:
Figure 7.15: Simulation results for the SWC tasks with a context switching time of 1000 cyclesThe MCM computation tool returned the following results for these two cases:

µctxsw=500 = µctxsw=1000 = µTDSCDMA = 675000 cycles (7.18)As with all the previous situations, the delay increase was not su�cient to alter the rate ofexecution of the TDSCDMA graph.7.3 ConclusionThe results obtained in this chapter were satisfactory. For the models introduced in chapter5, we were able to verify the validity of the expressions. Even if the graphs analysed in this85



chapter were not very complex, the models for the worst-case response-times and start timeswere consistent with the simulation results.As for the results acquired from the task interference study, we can use them to supportthe pertinence of the �xed priority schedulers as e�cient schedulers, when compared with TDMschedulers, for instance. We were able to verify that, in a worst-case scenario, if two concurrentjobs were scheduled using �xed priority, they were able to meet their deadlines, even consideringcontext switching delays relatively large. Unfortunately our analysis is limited to only two graphsoperating concurrently. Also, we only analyse two concrete examples of these jobs: a high priorityand relatively short one and another one with a low priority and longer execution time, whichlimits our scope of applications.

86



Chapter 8Conclusion and future workFixed priority scheduling is a type of scheduler that has a simple implementation and has aset of characteristics that make it an attractive solution, specially to systems that include one ormore critical tasks.If we think about all the embedded systems that are present in our actual lives, we caneasily pinpoint some that perform certain tasks that are either vital to the system or to the user,sometimes even both. We have cars whose breaking, traction and a myriad of security relatedsystems are controlled by a system that employs some kind of scheduler. Medicine nowadays relyin a collection of apparatus that provide monitoring and support to human lives. Power plants,factories and even laboratories use electronic embedded systems to control processes that canpotentially harm workers and structures if they become unstable. Variables such as temperature,pressure, humidity, etc, must be closely monitored and, in case of deviation from their securevalues, a control process must be activated as soon as possible to correct that deviation andavoid a possible disaster.All these situations exemplify systems have one thing in common: one or several criticaltasks. These tasks must have their deadlines met under the possibility of severe penalties if not.As such, they bene�t greatly from a �xed priority scheduler, specially if the system processorallows preemption. With a non preemptive processor, the advantages of this scheduler towardsother scheduling policies are not that clear. In this case, the advantage of using a �xed priorityscheduler over any other scheduler are dependent on the execution times and rates of executionof the remaining tasks in the system. If for instance, the system possesses a task with a longexecution time, the worst case response-time for any critical tasks might be too long, since thereis always the possibility of the critical tasks becoming ready to execute just after the processorstarted the execution of the long task.Given the usefulness of this type of schedulers, it is important to perform a thorough analysisin order to fully comprehend them and establish solid mathematical models.One of the objectives with this project was precisely the elaboration of these models usingdata �ow concepts. Although we were able to perform a concise analysis of some simpler cases,the complexity attained while implementing this type of scheduler into data �ow graphs madethe creation of a functional model quite di�cult.The second part of our project retained the �xed priority scheduler as a focal point butmigrated to another aspect of it: the interference between tasks scheduled into the same processingplatform but with di�erent �xed priority values. This is an interesting subject to study, specially87



considering that are plenty of computational systems around us that implement this type ofschedule. The focal point of our study was to determine the worst case response-time of a lowpriority task mapped into a processor along with a high priority task, and thus, su�ering frominterference from the latter, in the form of blocking through preemption. This analysis required usto de�ne some base concepts, such as computational load and load window of a processor, whichrevealed to be quite important and with some promising research ahead. With these conceptswell de�ned, we are now able to determine the worst case response-time of what we designed assecondary tasks, i.e, tasks with lower values of priority that su�er from interference from anothertask with higher priority that share the same platform. If we are able to establish an upper boundfor the response-time of a given task, we are also able to infer about the ability, advantagesand disadvantages of using a �xed priority scheduler in detriment of other schedulers. In thesimulations run in chapter 7, we determined that, for the concrete applications simulated, the�xed priority scheduler was more e�cient, in term of processor utilization and overall executiontime of the applications graphs, than the TDM scheduler.Although we were able to achieve some interesting results with this project, there is stillroom for improvements in this subject. As suggestions for future work we would like to refer thefollowing topics:
• Expand the study of �xed priority graphs to more complex systems: In thisproject we dealt with somewhat simple models, namely a basic two actor graph mappedinto the same platform and a four actor, two processors system. It should be interestingto check if some of the models derived to the systems mentioned can be applied to morecomplex graphs or if there is need to de�ne new models to accommodate the increase incomplexity.
• Include preemption into the simulator tool: The current version of the simulator doesnot contemplate the use of preemption in the �xed priority simulations. Although we wereable to include it through some post processing, namely through a set of functions thattook lists of already simulated executions and rearrange them, including preemptive e�ectsin the process, the native code of the simulator does not have the capabilities to implementpreemptive action between the simulated tasks. This capability should be inserted in a waythat it could be activated or not through an option passable via command line.
• Include a scale factor or �oating point calculation capabilities in the simulator:As it is right now, the data �ow simulator does all of its processing using only integer values.As such, the graphs to simulate must have all of their characteristics de�ned through integervalues, namely, the execution time of their actors. This fact introduces a small granularityfactor in the simulations, specially if we work with actors with short execution times.One possible solution to this case is simply augment the execution time of all the actorsby a scale factor. We are still working with integer values but at least we have a greatergranularity in the execution times. But this is not a practical solution, specially for complexgraphs with plenty of actors. As a solution, we can create the possibility of activate andde�ne a scale factor through the command line, which would then be used to adapt theexecution time of the actors in the graph. The execution time of these elements could evenbe de�ned with �oating point quantities, provided that after the application of the scalefactor, the value gets converted into an integer. Another possible alternative, although witha considerable complexity of implementation, is the introduction of �oating point operations88



in the simulator. The simulator is a complex tool that depends on several external modulesto function. Any changes in this sense to the simulator �les should be also applied toall of its dependent modules. And since OCaml, the programming language in which thesimulator was written, is a strongly typed language, this task promises to be di�cult.
• Expand the task interference study to the coexistence of three or more tasksin the same processor: The task interference study presented in chapter 6 deals withonly two tasks mapped in the same processor at a time: a low priority one that tries toexecute subject to the interference of a high priority task that is able to preempt it. Wewere able to get some interesting results from this study, so it is logic to expand this ideato more tasks, with di�erent priorities obviously, mapped into the same platform. We wereable to generalize the function that computes the interference between tasks to deal withmore than two concurrent tasks at a time. The interference is computed in a cumulativefashion, i.e, �rst is calculated the interference between the high priority task and the taskwith the next higher priority. From this operation we obtain a list of executions relativeto this interference. We then assume this resulting list as the executions list of the highpriority task and repeat this interference computation with the next task in line and so onuntil all the tasks executions are merged into one �nal execution list. Unfortunately wewere not able to analyse this situation long enough to obtain signi�cant results.
• Conceive formal proofs for the conjectures presented in the task interferencestudy: We needed to establish some ground concepts before starting inferring propertiesabout the systems approached in the task interference study, namely, about the computationload, maximum load and load window concepts. In order to support the results attained inthis chapter, we need to provide some solid formal proofs of these properties.
• Introduce all the context switching operations in the task interference simula-tions: In chapter 7, in order to approximate our simulations to more realistic scenarios,we introduced the context switching operation that takes place whenever a running taskis preempted by another task with higher priority. In this chapter we only considered theexistence of context switching in the event of a preemption. But we know that whenevera processor �nishes executing a certain task and starts executing another, there is alwaysthe need to establish a proper context. Since the previous task is terminated, there is noneed to store all the information needed for it to be resumed in the future, and this type ofcontext switch operation is signi�cantly shorter than the previous one. But if we pretendto make our study more realistic possible, this smaller context switching delay should alsobe taken into account.
• Determine the limit for the context switch duration in the task interferencestudy: This is an interesting aspect to investigate, mostly to �nd the limits of our �xedpriority scheduler than anything else. In chapter 7 we experimented with increasingly highervalues of context switch delays to see at which point we were able to compromise the rateof execution of the graphs analysed. All the context switch delays tested was insu�cientto destabilize the graphs simulated. It would be interesting to check how far can we go, interms of context switching delay applied, until the deadlines of one of the graphs simulatedare violated. The problem is, the way the context switching is applied, the executions ofboth high and low priority graphs are a�ected. The e�ect of this delay in the low priority89



graph is easily veri�ed but as for the high priority graph, some additional computationsneed to be performed before we can conclude if this graph can meet its deadlines whiledealing with such delays.All the suggested topics provide some interesting research suggestions.The data �ow approach for the �xed priority scheduler revealed to be a fruitful area ofresearch. Although this is a popular scheduler in actual systems and there is signi�cant researchpublished from a classical real-time theory point of view, the investigation from more modernperspectives is still very limited. With this project we hoped to take some signi�cant stepstowards the formulation of complete data �ow model of �xed priority schedulers.
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