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palavras-chave 
 

vidro, vitrocerâmicos, dissilicato de lítio, cristalização. 
 

resumo 
 
 

O principal objectivo deste estudo foi o desenvolvimento de vitrocerâmicos à 
base de dissilicato de lítio no sistema Li2O−K2O−Al2O3−SiO2 contendo uma 
razão molar SiO2/Li2O muito afastada da do dissilicato de lítio (Li2Si2O5) 
usando composições simples e a técnica tradicional de fusão-vazamento de 
vidro de forma a obter materiais com propriedades mecânicas, térmicas, 
químicas e eléctricas superiores que permitam a utilização destes materiais 
em diversas aplicações funcionais. 
Investigou-se o fenómeno de separação de fases, a cristalização e as 
relações estrutura−propriedades de vidros nos sistemas Li2O−SiO2, 
Li2O−Al2O3−SiO2 e Li2O−K2O−Al2O3−SiO2. Os vidros nos sistemas Li2O−SiO2 e 
Li2O−Al2O3−SiO2 apresentaram fraca densificação e resultaram em materiais 
frágeis, contrastando com a boa sinterização dos vidros no sistema 
Li2O−K2O−Al2O3−SiO2. Pequenas adições de Al2O3 e K2O ao sistema 
Li2O−SiO2 permitiram controlar a separação de fases devido à formação de 
espécies de Al(IV) que confirmaram o papel de Al2O3 como formador de rede. 
Os compactos de pó de vidro das composições contendo Al2O3 e K2O 
tratados termicamente resultaram em vitrocerâmicos bem densificados, 
apresentando dissilicato de lítio como a principal fase cristalina, e valores de 
resistência mecânica à flexão, resistência química e condutividade eléctrica 
(173−224 MPa, 25−50 µg/cm2 e ~2×10-18 S/cm, respectivamente) que 
possibilitam a utilização destes materiais em diversas aplicações funcionais.   
A adição de P2O5, TiO2 e ZrO2 ao sistema Li2O−K2O−Al2O3−SiO2 como 
agentes nucleantes revelou que os vidros contendo apresentaram 
cristalização em volume, com a formação de metassilicato de lítio a 
temperaturas mais baixas e dissilicato de lítio para as temperaturas mais 
elevadas, enquanto a adição de zircónia reduz o grau de segregação, 
aumenta a polimerização da matriz vítrea e desloca o valor de Tg para 
temperaturas superiores, inibindo a cristalização.  
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abstract 
 

The purpose of the present study was developing lithium disilicate based 
glass−ceramics in the system Li2O−K2O−Al2O3−SiO2 featuring SiO2/Li2O molar 
ratios far beyond that of lithium disilicate (Li2Si2O5) stoichiometry using simple 
compositions and traditional glass melt-quenching technique in order to get 
enhanced mechanical, thermal, chemical and electrical properties which allow 
the use these materials in functional applications. 
Phase separation phenomena as well as the crystallization behaviour and 
structure−properties relations of glasses in Li2O−SiO2, Li2O−Al2O3−SiO2 and 
Li2O−K2O−Al2O3−SiO2 glass systems were investigated. The experimental 
glasses in Li2O−SiO2 and Li2O−Al2O3−SiO2 systems exhibited poor 
densification ability resulted in porous samples of brittle nature, contrasting 
with well sintered glass-powder compacts obtained from glasses in the 
Li2O−K2O−Al2O3−SiO2 system. Small additions of Al2O3 and K2O to glasses in 
the in the system Li2O−SiO2 allowed to control an extent of the phase 
separation due to the formation of tetrahedral four−coordinated Al(IV) species 
confirming the role of Al2O3 as network former. Moreover, Al2O3- and K2O-
containing sintered glass powder compacts resulted in well-densified and 
mechanically strong fine−grained glass−ceramics with lithium disilicate as the 
major crystalline phase, mechanical strength of 173−224 MPa, chemical 
resistance of 25−50 µg/cm2 and low total conductivity (~2×10-18 S/cm) making 
the materials suitable for a number of practical applications. 
The effects of single additions of P2O5, TiO2 and ZrO2 as nucleating agents in 
the Li2O−K2O−Al2O3−SiO2 system revealed that addition of P2O5 led to bulk 
crystallization, with the formation of lithium metasilicate at lower temperatures 
and lithium disilicate at higher temperatures while the addition of zirconia 
reduces the degree of segregation, increases the polymerization of the glassy 
matrix, and shifts Tp to higher temperatures hindering crystallization. 
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“Pars Syriae, quae Phoenice vocatur, finitima Iudaeae intra 

montis Carmeli radices paludem habet, quae vocatur Candebia. ex 

ea creditur nasci Belus amnis quinque milium passuum spatio in 

mare perfluens iuxta Ptolemaidem coloniam. lentus hic cursu, 

insaluber potu, sed caerimoniis sacer, limosus, vado profundus, non 

nisi refuso mari harenas fatetur; fluctibus enim volutatae nitescunt 

detritis sordibus. 

Tunc et marino creduntur adstringi morsu, non prius utiles. 

quingentorum est passuum non amplius litoris spatium, idque tantum 

multa per saecula gignendo fuit vitro. fama est adpulsa nave 

mercatorum nitri, cum sparsi per litus epulas pararent nec esset 

cortinis attollendis lapidum occasio, glaebas nitri e nave subdidisse, 

quibus accensis, permixta harena litoris, tralucentes novi liquores 

fluxisse rivos, et hanc fuisse originem vitri.” (a) 

 

Gaius Plinius Secundus 

(Pliny the Elder , 23-79 AD)  

In Naturalis Historia, Book XXXVI:190-191 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

(a) In the part of Syria adjoining Judea and Phoenicia the Candebia swamp is bounded by Mount Carmel. This is believed to 
be the source of the river Belus, which after five miles runs into the sea near Ptolemais. On the shores of the River Belus the 
sand is revealed only when the tides retreat. This sand does not glisten until it has been tossed about by the waves and had its 
impurities removed by the sea. 
A ship belonging to traders in soda once called here, so the story goes, and they spread out along the shore to make a meal. 
There were no stones to support their cooking-pots, so they placed lumps of soda from their ship under them. When these 
became hot and fused with the sand on the beach, streams of an unknown liquid flowed, and this was the origin of glass.  
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Introduction  
 

“Science may set limits to knowledge, but should not set limits to imagination.”  
Bertrand Russell 
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1.1 Foreword 

 
 
The multiple forms and uses of glasses are becoming increasingly important in science, 

industry and in general daily life. During the last century, new glass and glass-ceramic 

materials have been developed envisaging their use in several diverse functions ranging from 

common materials (e.g. cookware) to technological applications such as dental restorations, 

medical prosthesis, electronic devices and telescope mirrors, or even architectural materials.1-2 

In particular, lithium disilicate based glass-ceramics derived from non-stoichiometric 

compositions have proven to be potential candidates for different functional applications (e.g. 

dental restorations,3-6 metal-glass seals,7-8 magnetic media disks for hard disk drives,9-11 etc.). 

Modern science and technology constantly require new materials with special properties to 

achieve specific applications. Glass-ceramic materials combine the properties of conventional 

sintered ceramics with the distinctive characteristics of glasses. Moreover, developing glass-

ceramics demonstrates the benefit of combining various remarkable properties in one 

material.1  

The binary alkali silicate systems show liquid–liquid phase separation or immiscibility at 

temperatures below the liquidus temperature of crystallisation. This type of phase separation 

is often called metastable because crystalline phases are more stable than liquid at the 

temperature of phase separation.1-2, 12 The presence of metastable immiscibility region is the 

main cause of S-like course of the liquidus curve and binary Li2O−SiO2 system is a typical 

example in this regard which demonstrates S-like course of the liquidus curve in silica-rich 

region. According to Vogel,12 Li2O−SiO2 liquids containing less than 30 mol.% Li2O lead to 

opalescent or opaque glasses on cooling owing to phase separation. However, mechanical 

properties and chemical durability of these glasses after devitrification are low. 

A literature survey reveals that despite many comprehensive studies leading to the 

development of lithium disilicate glass-ceramics from different systems,1, 13-19 the role of 

immiscibility phenomena and addition of Al2O3/K2O on the crystallization behaviour of 

glasses far beyond the Li2Si2O5 stoichiometry has not been thoroughly investigated. 

Therefore, this work aims to investigate the Li2O−SiO2 glass system, particularly the 

influence of Al2O3 and K2O on glass structure−properties relationships, nucleation process 

and phase formation in both bulk glasses and sintered glass powder compacts. The effect of 
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some nucleating agents, such as TiO2, P2O5 and ZrO2, on glass crystallization and properties 

was also investigated. 

Several experimental techniques were used throughout this investigation aiming at a better 

understanding of the glass structure (e.g. FTIR, MAS-NMR) and microstructure (SEM) as 

well as the crystallization mechanism of glass (e.g. FTIR, DTA, SEM, XRD) and the sintering 

and crystallization behaviour of the corresponding glass powder compacts (e.g. DTA, FTIR, 

HSM, SEM, XRD). Some glass and glass-ceramic properties such as density, mechanical 

strength, chemical resistance, electrical properties, CTE, etc., were also evaluated to achieve a 

better understanding concerning the structure−properties relations and the potential practical 

(functional) applications of the produced materials. 

 

1.2 Research Objectives 

 

The purpose of the present work was developing lithium disilicate based glass-ceramics in the 

system Li2O−K2O−Al 2O3−SiO2 featuring SiO2/Li 2O molar ratios far beyond that of lithium 

disilicate (Li2Si2O5) stoichiometry using simple compositions and traditional glass melt-

quenching technique in order to get enhanced mechanical, thermal, chemical and electrical 

properties which allow the use these materials in functional applications. 

The tasks of this research were: 

1. Getting a deeper insight on phenomena related to metastable immiscibility and 

devitrification in Li2O–SiO2 glasses in relevance with Al2O3 and K2O additions; 

2. Investigating and comparing the phase separation phenomena as well as the 

crystallization behaviour and structure−properties relations of glasses in three 

different systems: (1) Li2O–SiO2, (2) Li2O–Al2O3–SiO 

3. 2 and Li2O−K2O−Al 2O3−SiO2; 

4. Presenting an in-depth analysis pertaining to study the structure of Li2O–K2O–

Al 2O3–SiO2 glasses and their devitrification mechanism; 

5. Evaluating of the sintering behaviour and properties of the corresponding glass 

powder compacts; 
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6. Investigating the effect of diverse nucleating agents (TiO2, P2O5 and ZrO2) on 

the structure, properties and crystallization of glasses in the Li2O–K2O–Al2O3–

SiO2 system. 

 

1.3 Structure of the thesis 

 

This dissertation is structured in four chapters. The chapter 1 provides a succinct introduction 

to the thesis, the research objectives and an outlook of the content of each chapter. Chapter 2 

presents a broad literature review that ranges from a brief introduction to glass science and 

technology, to lithium disilicate based glass and glass-ceramics comprising some important 

achievements and covering the subjects included on this thesis such as glass forming ability, 

liquid-liquid phase separation, thermal behaviour and crystallization of glasses. The outcome 

of the experimental work done on the frame of the proposed goals and its discussion is 

presented in Chapter 3. This chapter is divided in sub-chapters which correspond to the 

manuscripts that resulted from the research activity and had been published or submitted to 

ISI journals. Finally, Chapter 4 presents the overall conclusions and some suggestions for 

future work including some proposals for the application of the tested materials throughout 

the work done in the frame of this thesis. 
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2 
 
 
 
 
 
 
 
 
 
 

Bibliographic review  
 

“It's not that I'm so smart, it's just that I stay with problems longer.”  
Albert Einstein 
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2.1 Glass 

 

Glass is present in everyone’s daily life. Although one doesn’t realise its importance in 

everyday life, glass has a vast appliance field ranging from simple and common materials 

(e.g. bottles, cups, windows, containers, light bulbs, etc.) to technical applications (e.g. 

television tubes, computer screens, spectacles and telescope lenses, spectrometer prisms, 

laboratory ware, optical fibres, etc.) or artistic purposes.1-8 

Glass has its history at the beginning of time, with naturally occurring volcanic glasses such 

as obsidian which was then appreciated and used to fabricate tools and jewellery during the 

stone-age.9 However, in spite of the enormous technological achievements obtained during 

the industrial revolution only the last decades have witnessed great advances in glass science 

in particular concerning the study of glass structure and the development of new compositions 

aiming at specific applications.5, 10-13 

 

2.1.1 The nature of glass 

The origin of the word glass is the Latin term glaesum which was used to refer to a lustrous 

and transparent or translucent body. Glassy substances are also called vitreous, originating 

from the word vitrum, again denoting a clear, transparent body.6, 14 Although glass became a 

popular commodity in the growth of civilization, perhaps because of its transparency, lustre 

(or shine), and durability, the current understanding of glass no longer requires any of these 

characteristics to distinguish it from other substances. Glass can be inorganic (non-carbon 

based) as well as organic (carbon-based), and fusion is not the only method to make a glass.  

According to ASTM description of glass as issued by Committee C-14 in 1941 as a tentative 

standard glass is an inorganic product of fusion which has cooled to a rigid condition without 

crystallizing:15-16 (1) glass is typically hard and brittle, and has a conchoidal fracture. It may 

be colourless or coloured, and transparent to opaque. Masses or bodies of glass may be made 

coloured, transparent, or opaque by the presence of dissolved, amorphous, or crystalline 

material; (2) when a specific kind of glass is indicated, such descriptive terms as flint glass, 

barium glass, and window glass should be used following the basic definition, but the 

qualifying term is to be used as understood by trade custom; (3) objects made of glass are 
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loosely and popularly referred to as glass, such as glass for a tumbler, a barometer, a window, 

a magnifier, or a mirror. 

In common language the term glass is assigned to a fragile and transparent material well 

known since ancient times. However, in scientific language its range of meaning is much 

larger but difficult to define with precision. Many definitions for glass were proposed along 

the last decades including the attempt to distinguish between glass and amorphous solids.1, 6, 8, 

13, 17  

The definition and the understanding of the glassy state are fundamental to glass science and 

technology which traditionally need to face three main difficult problems: (1) glass is non-

crystalline and thus is absent of long-range atomic order which is characteristic of most solid 

materials and unlike crystalline materials, the structure of glass cannot be defined in terms of 

a simple unit cell that is repeated periodically in space; (2) glass is non-equilibrium meaning 

that the glassy state cannot be described using equilibrium thermodynamics or statistical 

mechanics and the macroscopic properties of a glass depend on composition and thermal 

history; and (3) glass is non-ergodic, since we observe glass on a time scale that is much 

shorter than its structural relaxation time. As time elapses, ergodicity is gradually restored and 

the properties of a glass slowly approach their equilibrium values. The glass transition, i.e., 

the process by which equilibrium, ergodic liquid is gradually frozen into a non-equilibrium, 

non-ergodic glassy state, is the key point to these questions.18 

Glasses share two common characteristics: no glass has a long range, periodic atomic 

arrangement, and every glass exhibits time-dependent glass transformation behaviour. This 

behaviour occurs over a temperature range known as the glass transformation region. A glass 

can thus be defined as an amorphous solid completely lacking in long range, periodic atomic 

structure, and exhibiting a region of glass transformation behaviour. Thus, any material, 

inorganic, organic, or metallic, formed by any technique, which exhibits glass transformation 

behaviour is a glass.5 

 

2.1.2 The glass transformation behaviour 

The glass transformation behaviour is commonly analysed and discussed using enthalpy (or 

volume, since enthalpy and volume behave in a similar way) versus temperature diagrams 

(Fig. 1).5, 14, 19 Considering a small volume of a liquid at a temperature well above its melting 

temperature (Tm) it is possible to follow the variation of its enthalpy (or volume) during the 
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cooling process. At a point in the equilibrium liquid region, as temperature decreases, the 

atomic structure of the melt will gradually changes and will be characteristic of the exact 

temperature at which the melt is held. Upon cooling, the volume of the liquid generally 

decreases. If cooling to any temperature below Tm of the crystal results in the conversion of 

the material to the crystalline state, the enthalpy will decline abruptly to the value suitable for 

the crystal. This is due to the formation of a long range, periodic atomic arrangement. 

Continued cooling of the crystal will result in a further decrease in enthalpy due to the heat 

capacity of the crystal. 
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Fig. 1 – Effect of temperature on the enthalpy of a glass forming melt. 

 

If no crystallization occurs when the liquid is cooled below the Tm of the crystal a supercooled 

liquid is obtained and its structure continues to rearrange as the temperature decreases, but 

there is no abrupt decrease in enthalpy due to discontinuous structural rearrangement. As the 

liquid is cooled further, the viscosity increases and eventually becomes so great that the atoms 

can no longer completely rearrange to the equilibrium liquid structure, during the time 

allowed by the experiment. The structure begins to lag behind that which would be present if 

sufficient time was allowed to reach equilibrium, resulting in a deviation of the enthalpy from 

the equilibrium line. In this case, enthalpy follows a curve of gradually decreasing slope, until 

it eventually becomes determined by the heat capacity of the frozen liquid, i.e., the viscosity 

becomes so great that the structure of the liquid becomes fixed and is no longer temperature-

dependent. The temperature region laying between the limits where the enthalpy is that of the 
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equilibrium liquid and that of the frozen solid is known as the glass transformation region. 

The frozen liquid is now a glass.5, 14 

Since the temperature where the enthalpy departs from the equilibrium curve is controlled by 

kinetic factors (i.e. viscosity of the liquid), the use of a slower cooling rate will allow the 

enthalpy to follow the equilibrium curve to a lower temperature. In this case, the glass 

transformation region will shift to lower temperatures and the formation of a completely 

frozen liquid, or glass, will not occur until a lower temperature. The glass obtained will have a 

lower enthalpy than that obtained using a faster cooling rate. The atomic arrangement will be 

that characteristic of the equilibrium liquid at a lower temperature than that of the more 

rapidly cooled glass.5 

Although the glass transformation actually occurs over a temperature range, it is convenient to 

define a term which allows us to express the difference in thermal history between these two 

glasses. If we extrapolate the glass and supercooled liquid lines, they intersect at a 

temperature defined as the fictive temperature. The structure of the glass is considered to be 

that of the equilibrium liquid at the fictive temperature. Although the fictive temperature 

concept is not a completely satisfactory method for characterizing the thermal history of 

glasses, it does provide a useful parameter for discussion of the effect of changes in cooling 

rate on glass structure and properties. 

The glass transformation occurs over a range of temperatures and not at one specific 

temperature, thus it cannot be characterized by any single temperature.5 However, it is useful 

and convenient to use just a single temperature as an indication of the onset of the glass 

transformation region during heating of a glass. This temperature is usually named the glass 

transformation (or transition) temperature (Tg). Thermal analysis curves or thermal expansion 

curves are generally used to evaluate Tg, which is rather vaguely defined by changes in either. 

Although the values obtained from these two methods are similar, they are not identical. 

Besides the experimental method to evaluate Tg, the heating rate used to produce these curves 

also influences the obtained value. Since Tg, is a function of both the experimental method 

used for the measurement and the heating rate used in that measurement, it cannot be 

considered to be a true property of the glass. We can, however, think of Tg, as a useful 

indicator of the approximate temperature where the supercooled liquid converts to a solid on 

cooling, or, conversely, of which the solid begins to behave as a viscoelastic solid on 

heating.5-6, 11 
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2.1.3 Principles of Glass formation: structure theories and kinetic considerations 

Different cooling rates are required in order to form glasses in different chemical systems. 

Such experimental observation is on the basis of several attempts to produce an atomic theory 

of glass formation based on the nature of the chemical bonds and the shape of the structural 

units involved. Although proposing a structural theory seems contradictory for a material that 

is characterized by no long-range, periodic atomic ordering, some form of short-range 

ordering makes possible and reproducible to form the same glass from a nominal starting 

composition and control the overall properties. 

Two main approaches5 to explain glass formation are as follows: (a) the structural theories of 

glass formation based on structural considerations such as geometry, nature of bond forces, 

etc., (b) kinetic approach focuses emphasis to control of glass formation by changes in 

processing. 

 

2.1.3.1 Structural theories 

Inorganic glasses are readily formed from a wide variety of materials, principally oxides, 

chalcogenides, halides, salts, and combinations of each. There have been many attempts to 

relate the glass-forming tendency of a material to its molecular level structure. The first 

structural methods were proposed in the 1920s when Goldschmidt20 suggested that the ability 

of an oxide to form a glass might be related to the way in which the oxygen ions were 

arranged around the cation to form the unit cell of the crystal structure. It can be shown from 

geometrical considerations that for an oxide MxOy, the coordination number of the M cations 

will be 4 if the radius RM/RO lies between approximately 0.2 and 0.4. Goldschmidt noted that 

for some glass-forming oxides (e.g. SiO2, GeO2 and P2O5) a tetrahedral arrangement occurred 

in the crystalline state and suggested that this might be a criterion of glass-forming ability. 

However, this theory has been subsequently shown to be incomplete, with a variety of 

systems inadequately explained by it. For instance, although all ionic glass-formers satisfy 

this rule, there are many systems that satisfy it but are not glass-formers (e.g., BeO and most 

of the halides). 

Later, Zachariasen21 formulated the random network theory, according to which glass-formers 

are cations that have high valences (≥ 3) and can create three-dimensional networks of 

polyhedra. For instance, in silicate glasses, oxygen networks are formed by polymerization of 

polyhedra. By postulating that the oxygen polyhedra found in the oxide crystals would also be 
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present in the glasses, Zachariasen formed the concept of a continuous random network 

structure for a glass, with periodic structural arrangement is prevented by random 

orientations. He proposed that the structure of glass was similar to that of a crystal, but with a 

larger lattice energy resulting from the disordered arrangements of polyhedral units, to 

possess a random network lacking long-range periodicity (as shown schematically in Fig. 2) 

which can be demonstrated by the absence of sharp X-ray diffraction spectra of glasses. 

According to his experiments, Zachariasen listed four conditions for a structure to favour 

glass formation:  

1. no oxygen atom must be linked to more than two cations;  

2. the number of oxygen atoms surrounding any given cation must be small 

(typically 3 or 4);  

3. oxygen polyhedra share only corners, not edges or faces;  

4. at least three corners of each oxygen polyhedron must be shared – this rule was 

added to ensure that the network would be three-dimensional (although certain 

glasses can exist in structures describable in fewer dimensions).  

 

(a) 

 

(b) 

 

Fig. 2 – Schematic 2D representation of (a) a generic A2O3 crystalline compound (with 

A−  and O − ) and (b) a continuous random network of the same substance.3  

 

These conditions lead to the open structures that can accommodate a distribution of inter-

polyhedral bond angles that are associated with the loss of long-range structural order when a 

crystal forms a glass. Diffraction studies made by Warren22 and later by Wright23 confirmed 
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Zachariasen’s prediction that glasses and crystals have similar short-range polyhedral 

structures but different long-range polyhedral arrangements. Structural approaches, however, 

do not take the thermal history of the melt into account.24 

 

2.1.3.2 Kinetic theories 

According to Tamman,25 who introduced the kinetic concepts in the early 1920s, glasses are 

formed when the nucleation rate (U) versus temperature does not significantly overlap the 

growth rate (G) versus temperature curve. About 40 years later, Turnbull and Cohen26 

proposed the determination of kinetic stability on cooling experiments through the steady-

state nucleation rate. Gutzow et al.2 related glass stability to the non-steady-state time lag (τ). 

These kinetic approaches assume that one of the three parameters (U, G or τ) is dominant 

while the other two were neglect. In the early 1970s, Uhlmann et al.27 considered U and G 

simultaneously, formulating a kinetic criterion for vitrification. Later, the kinetic theory of 

glass formation was extended to include non-steady state effects and heterogeneous 

nucleation. In 1989, Weinberg et al.28-29 demonstrated that the volume fractions transformed 

and the resulting critical cooling rates (Rc) are quite sensitive to the method of calculation. 

The nose method which uses isothermal TTT curves, overestimates Rc by up to one order of 

magnitude. They also demonstrated that Rc is highly sensitive to the main physical properties 

that rule the nucleation and growth kinetics, i.e. crystal liquid surface energy, thermodynamic 

driving force and viscosity.30 Later on, Weinberg31 integrated the equation of overall 

crystallization kinetics to estimate and compare criteria for vitrification on cooling and glass 

stability against crystallization on heating. 

However, Cabral et al.32 used experimental values of crystal nucleation and growth rates for 

glasses that nucleate in the bulk to calculate critical cooling rates for glass formation (Rc) by 

the TTT method. The resulting values of Rc were consistent with their laboratory practice of 

melting and quenching the studied glasses and also with experimental data of Rc for one of the 

glasses, lithium disilicate. 

 

2.1.4 Silicate glasses 

Inorganic glasses can be produced starting from many compositions such as silicates, 

phosphates, borates, halides or chalcogenides. Silicate glasses are the most important 

regarding commercially impact because they have excellent transparency and good chemical 



 

18 
 

durability, and they can be made from inexpensive natural ingredients. However, glass is a 

brittle material susceptible to mechanical failure which is a disadvantage to consider it as a 

versatile ceramic material.33 

Concerning their role in the glass production, oxides are usually classified into three groups: 

(1) network formers, such as Si, B, P, Ge, and As, having oxygen coordination numbers of 3 

or 4 and tend to produce the basic cross-linked polymeric glass structure; (2) network 

modifiers, such as Na, K, Ca, and Ba, having coordination number of 6 or more and generally 

tend to reduce the degree of polymerization and viscosity; and (3) intermediate oxides with 

cations, such as Al, Zn, Mg, Pb, and Be having intermediate coordination of 4 to 6 and act 

either as network formers or modifiers, depending upon the glass composition.5, 12, 19, 34 

Oxides with large coordination numbers and relatively weak bonds (network modifiers) alter 

the glass-forming network by replacing stronger BO bonds between glass-forming polyhedra 

with weaker, NBO bonds to modifying polyhedra. Figure 3 shows a schematic 2D 

representation of the random network of an alkali silicate glass. The network modifiers are 

important constituents to most technological glasses because they lower the melting 

temperature and control many useful properties. Modifiers are commonly used to facilitate the 

glass fabrication at lower temperatures because they promote the decreasing of the viscosity 

by disrupting the network of the glass melt.12 Silica glass is difficult to process because its 

melting temperature is about 1713 ºC corresponding to cristobalite–liquid equilibrium. For 

instance, adding 25 wt.% of Na2O to silica lowers the liquidus temperature to only about 793 

ºC, which is a great advantage from the technological point of view.35 Alkali metal ions are 

mobile and allow ion migration while alkaline-earth ions like ions (one alkaline earth ion is 

compensated electrically by two NBOs) are relatively immobile and can hinder the diffusion 

of other ions, in particular the alkali ones, and hence improve the chemical resistance of the 

glass.12 For this reason, most of important commercial glasses are based on compositions 

comprising SiO2 (network former), Na2O and CaO (alkaline and alkaline-earth modifiers 

respectively). 

The relative concentration of BO and NBO has an important influence on the structure and 

properties of glasses.36 According to the number of bridging oxygen atoms in a tetrahedral 

unit, the following scenarios can be considered: 

1. BO = 4 (i.e. [O]/[Si] = 2): each BO is shared by two silicon atoms and the network is 

three-dimensional with all four corners bridging. 
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2. BO = 3 (i.e. [O]/[Si] = 2.5), the network is two-dimensional with three corners 

bridging (note that some tetrahedra may be linked to four others and some therefore 

to less than three, the said number being the average value over the network). 

3. BO = 2 (i.e. [O]/[Si] = 3), the network is formed by one-dimensional chains with one 

corner bridging. 

4. BO < 2 (i.e. [O]/[Si] > 3), the network is composed of individual SiO4 tetrahedral 

elements, some of these being bound together. 

The rigidity of the glass network decreases gradually by replacing the bridging oxygen atoms 

by non-bridging ones until only individual isolated tetrahedra remain. Using the Qn 

terminology (with n the number of BO on a tetrahedron), it is possible to refer to (1) Q4, (2) 

Q3, (3) Q2 and (4) Q1, Q0 structures, respectively.  

 

 

Fig. 3 – Schematic 2D representation of the random network of an alkali silicate glass 

(Si− , BO− , NBO− , alkali ion− ).3  

 

Considering an oxide glass of general composition (A2O)x(SiO2)1−x, with A the alkali metal, 

for x = 0 (i.e. pure silica) only BO exist (Q4) while increasing alkali concentration yields a 

dramatic decrease of BO and an increase of NBO accordingly.12 The intermediate oxides have 

coordination numbers and bond strengths between the network formers and network 

modifiers and tend to have an intermediate effect on glass properties.19 
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2.1.4.1 Silica glass 

In the case of oxide glasses, the short-range structure can be extremely well-defined in terms 

of the coordination polyhedra of the network-forming cation such as silicon. These glasses are 

characterized by predominantly heteropolar bonding between network-forming cations and 

oxygen. Bond lengths and angles in the first coordination shell of oxygen around these cations 

vary only over a narrow range. Glass-forming cation–oxygen polyhedra like SiO4 are usually 

corner-linked through ‘bridging’ oxygens (BO) and form a three-dimensional extended 

connected network. The properties of glass are mainly dependent on its structure which in the 

case of silica glass consists of well-defined SiO4 tetrahedra connected to another neighbouring 

tetrahedron through each corner (Fig 2b). The Si−O distance in the tetrahedron as obtained by 

neutron diffraction studies is about 0.16 nm and that the shortest O−O distance is about 0.26 

nm, the same dimensions as found in crystalline silica. The inter-tetrahedral (Si−O−Si) bond 

angle distribution is centred near ~143º, but is much broader than that found for crystalline 

silica, producing the loss in long-range order shown schematically in Fig. 2b.23, 37 

 

2.1.4.2 Alkali and alkaline–earth silicate glasses 

As in silicate glasses, the structure of alkali silicate glasses also consists of a network of SiO4 

tetrahedra, but some of the corners are now occupied by non-bridging oxygens that are linked 

to the modifying polyhedra (Fig. 3). Increasing the concentration of modifying oxide leads to 

the increasing of the relative fraction of non-bridging oxygens associated with the glass 

network which results in the reduction of Tg and melt viscosity and increasing values of 

thermal expansion coefficient and ionic conductivity.38 

The changes in the silicate network, and so the compositional dependence of many of the 

glass properties, can be described by the relative fractions of bridging and non-bridging 

oxygens or by the types and concentrations of the different Si-tetrahedra (Qn).12 The rigidity 

of the network decreases gradually by replacing the bridging oxygen atoms by non-bridging 

ones until only individual isolated tetrahedra remain (Q0). Glasses containing < 10 mol.% 

alkali oxides are considerably more difficult to melt due to higher viscosities.5 Moreover, 

alkali-deficient glasses are prone to phase separation and devitrification on a scale of 0.1–1 

µm.39 Modifiers disrupt the network and are used in fact to lower the viscosity of the glass 

melt and hence to facilitate its fabrication at lower temperatures. Thus, as expected then, the 
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relative concentration of bridging and non-bridging oxygens has an important influence on the 

properties of glasses.36 

 

2.2 Glass-ceramics 

 

Glass-ceramics are fine-grained polycrystalline materials formed when glasses of suitable 

compositions are heat-treated and undergo controlled crystallisation to the lower energy 

crystalline state.10-11 In many cases, the crystallization process can be almost complete but a 

small content of residual glassy phase is often present. In these materials, the crystalline 

phases are entirely produced by crystal growth from a homogeneous glass phase while in 

traditional ceramics most of crystalline phases are introduced when the ceramic composition 

is prepared although some recrystallization can occur or new crystal types can arise due to 

solid state reactions.11  

Glass-ceramics are normally produced in two steps: (1) a glass is formed by a standard glass-

manufacturing process; and (2) the glass article is shaped, cooled and reheated above its glass 

transition temperature. The second step is sometimes repeated as a third step. In these heat 

treatments, the article partly crystallizes in the interior. In most cases, nucleating agents (e.g., 

noble metals, fluorides, ZrO2, TiO2, P2O5, Cr2O3 or Fe2O3) are added to the base glass 

composition to boost the nucleation process. A less frequently used method is to induce and 

control internal crystallization during the cooling path of a molten viscous liquid. This process 

is used sometimes to form relatively coarse-grained glass-ceramics from waste materials to be 

used in the construction industry.10-11, 40 

Glass-ceramics also can be produced by concurrent sinter-crystallization of glass-particle 

compacts. In this case, crystallization starts at glass–particle interfaces. A main advantage of 

the sinter-crystallization process is that nucleating agents are not necessary, because the 

particle surfaces provide nucleation sites. A disadvantage of this method is the presence of 

some residual porosity (0.5−3.0 %). However, this can be sometimes minimized or even 

eliminated by hot-pressing techniques. The sintering route also is attractive to produce glass-

ceramics from reluctant glass-forming compositions, which could be made as a “frit,” 

moulded and sinter-crystallized.10, 40-43 
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2.2.1 Development of glass-ceramics and its commercialization 

Glass-ceramics derive particular interest for several end applications, such as thermal, 

chemical, biological and dielectric ones, because these systems provide great possibilities to 

manipulate their properties, such as transparency, strength, resistance to abrasion, coefficient 

of thermal expansion. These properties can be achieved by proper selection of the 

composition which can control the extent of crystallization, crystal morphology, crystal size 

and aspect ratio. The ease of fabrication techniques in conjunction with lower production cost 

offer additional advantages.1, 5, 10-12, 44-45 

It has been known for a long time that glasses can be crystallized to form polycrystalline 

ceramics. In the eighteenth century, Réaumur46 had the idea of fabricating polycrystalline 

materials by first forming glass and then nucleating and crystallizing it to form a highly 

crystalline material. Réaumur experiments resulted in the creation of opaque, porcelain-like 

objects that had low mechanical strength and a distorted shape compared to the original shape 

of the bottles because he was unable to control the crystallization process that is necessary for 

the production of true glass-ceramics.11 However, a real breakthrough was made in the 1950's 

by S. D. Stookey when the theory of glass phase separation was advanced.10, 47-48 

Over the last decades, glass-ceramics have gradually become established in a wide variety of 

technical and domestic applications. The interest in glass-ceramics has become greater 

because they comprise an important group of materials which have an enormous 

technological significance and commercial value.49 This can be explained by the fact that 

glass-ceramics possess an extremely favourable combination of mechanical, thermal, 

chemical, electrical and physical properties. The properties of these materials are superior to 

those of the majority of conventional glass or traditional ceramics materials.10 The following 

key points are in the basis of this importance5, 10-11:  

1. Glass-ceramics can attain high mechanical strength and good electrical insulation 

due to a very fine-grain microstructure with almost no porosity. These particular 

properties can be acquired owing to uniform chemical composition of glass-ceramics 

which can be achieved from the homogeneity of the parent glasses.  

2. Changes in the chemical composition of the parent glass and the thermal treatment 

permit producing glass-ceramics comprising diverse physical properties which in 

turn permit their application in a wide range of practical fields. It is possible for them 

to combine a variety of desired properties, for example: combining very low thermal 
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expansion coefficient with transparency in the visible wavelength range for cooking 

ware or combining very high strength and toughness with translucency, 

biocompatibility, chemical durability and relatively low hardness for dental 

applications. 

3. The control of the shape and dimensions of the glass-ceramic materials is easier in 

comparison to conventional ceramic materials since the later usually feature a 

relatively large shrinkage during drying and firing processes, which can result in 

variation of dimensions and/or distortion. 

4. Parent glasses can be easily shaped using several techniques such as pressing, 

blowing or drawing which offer certain advantages over the available techniques for 

shaping conventional ceramic materials. 

The first use of glass-ceramics as commercially viable products was developed in the 

aerospace industry in the late 1950s. These glass-ceramics were used as radomes to protect 

radar equipment in the nosecones of aircraft and rockets.10 For such applications, these 

materials must exhibit a challenging combination of properties to withstand critical conditions 

resulting from rain erosion and atmospheric re-entry such as: homogeneity; low dielectric 

constant; low coefficient of thermal expansion; low dielectric loss; high mechanical strength; 

and high abrasion resistance. No glass, metal or single crystal can simultaneously meet all of 

these relevant specifications. Glass-ceramics now are used in nose cones of high performance 

aircraft and missiles.10 

Another class of traditional, but still modern and very interesting glass-ceramics, is 

represented by Corning’s Fotoceram and Schott’s Foturan. These glass-ceramics can be 

patterned by ultraviolet light and selectively crystallized by thermal treatments. The 

crystallized regions then are completely dissolved by acid etching. The patterned glass can be 

used as-is or can be heated once more to form polycrystalline glass-ceramic plates that have 

high-precision holes, channels or any desired intricate pattern. The products are used in 

electronics, chemistry, acoustics, optics, mechanics and biology in applications that include 

micro-channels in optical fibres, ink-jet printer heads, substrates for pressure sensors and 

acoustic systems in head-phones.10-11, 44 

Commercial applications of sintered glass-ceramics include devitrifying frit solder glasses for 

sealing TV tubes, cofired multilayer substrates for electronic packaging, marble-like floor and 

wall tile and some bioactive glass-ceramics.10, 41, 50 Commercially successful glass-ceramics 
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can be divided in several categories according to their applications, both technical and 

consumer, as proposed examples below: 

Glass-ceramics for thermal uses − Glass-ceramics featuring low-CTE can be used for thermal 

applications such as panels for cooktops fireplaces and stoves.51 A relevant thermal property 

of glass-ceramics is their limiting use temperature. Because of their residual glass phase, most 

glass-ceramics flow and deform at relatively low temperatures, typically below about 700 °C. 

However, some notable exceptions exist. An example is a celsian glass-ceramic in the SrO–

BaO–Al2O3–SiO2 system, which has use temperatures as high as 1450 °C and CTEs that 

match silicon, SiC and Si3N4.
52 Materials with low CTE values are also of high interest in 

applications for which thermal dimensional stability is of prime importance. Particularly 

demanding are the requirements in optical applications with service temperatures between 

−50 and +100 ºC. For these special applications, optical glass ceramics have been developed 

for which the thermal expansion characteristic has been optimized to be as close to zero as 

possible in the working temperature interval. The best example of low expansion optical glass 

ceramic is the glass-ceramic Zerodur.10  

Machinable glass-ceramics − These materials rely on mica crystals in their microstructure 

and usually present high CTE and very low porosity. They can be quickly and inexpensively 

machined to complex shapes and precision parts with ordinary metalworking tools. Some 

machinable glass-ceramics can be used as dental and some bioactive applications via modern 

CAD–CAM techniques.10-11, 44 Machinable glass-ceramics found wide application in such 

diverse and speciality areas as precision electrical insulators, vacuum feedthroughs, windows 

for microwave-type parts, samples holders for field-ion microscopes, seismograph bobbins, 

gamma-ray telescope frames, and boundary retainers on the space shuttle.10 

Glass-ceramics used as construction materials − Many glass-ceramics have been developed 

from a wide variety of waste materials (e.g. incinerator ashes, blast furnaces slags, steel slags 

and sugar-cane ashes), showing big variation of compositions and predominant crystal 

phases.53-55 These low-cost, dark-coloured (because of the high level of transition elements in 

wastes) materials are generally strong, hard and chemically resistant. Their intended use is for 

abrasion and chemically resistant parts or floor and wall tiles used in chemical, mechanical 

and other heavy-duty industries or construction.10 

High-strength glass-ceramics − The average fracture strength (100–250 MPa) and toughness 

(1–2.5 MPa.m1/2) of most glass-ceramics are generally higher than those of commercial 
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glasses (50–70 MPa and 0.7 MPa.m1/2, respectively). For instance, glass-ceramics with 

impressive mechanical properties have been reported for canasite glass-ceramics and for 

lithium disilicate glass-ceramics.10 These glass-ceramics feature lath-shaped crystals that lead 

to crack deflection and toughening. Fibre reinforcement, chemical strengthening by ion-

exchange methods and development of a thin surface layer with a lower thermal expansion 

than the interior to induce a compressive surface layer are other successful strategies to 

increase strength and toughness.  

Glass-ceramics for medical applications − Bioactive glass-ceramics form in-situ a 

biologically active layer of hydroxycarbonate apatite that bonds to bone and teeth and 

sometimes even to soft tissue. Many products have reached commercial success and have 

been used as granular fillers, artificial vertebrae, scaffolds, iliac spacers, spinous spacers, 

intervertebral spacers, middle-ear implants and as other types of small-bone replacements. 

Another interesting class of bioactive glass-ceramics is heat-generating bioactive or 

biocompatible glass-ceramics intended for use for hyperthermic treatment of tumours.56-58 

Glass-ceramics for dental restorations − Restorative dental materials are used to fabricate, 

e.g., dental crowns, bridges, inlays, and veneers.10, 59 These materials, therefore, are not 

implanted in bone. Instead, they are bonded to the living tooth by bonding or cementation 

systems. The main objective is to produce a new biomaterial featuring properties (mechanical 

properties, biochemical compatibility with the oral environment, abrasion resistance, and a 

degree of translucency, shade, opalescence, and fluorescence) similar to those of natural teeth. 

The new biomaterial must demonstrate higher chemical durability than natural teeth, to 

prevent it from being susceptible to decay. These biomaterials are an integral part of a system 

used to fabricate dental restorations. 

Glass-ceramics for electrical and electronic applications − Some glass-ceramics (e.g. spinel-

enstatite, spinel, lithium disilicate, and canasite types) are used as magnetic memory disk 

substrates.10, 60-61 For instance, the development of spinel glass-ceramics from the SiO2–

Al 2O3–ZnO–MgO–TiO2 system represented a significant contribution to the fabrication of 

magnetic memory disk substrates due to a very special nanostructure. The crystallites of the 

gahnite type (ZnA12O4), spinel (MgAl2O4) or the solid solution of both types of crystals are 

smaller than 0.1 µm. Enstatite (MgSiO3) is an important accessory phase, increasing fracture 

toughness above 1 MPa.m0.5 and the crystals grow in an isolated manner in a glass matrix. As 

a result, the spinel-enstatite material is suitable as a substrate for magnetic memory disks. It 

demonstrates a favourable low surface roughness compared with other materials. The local 
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roughness of the glass-ceramic after the polishing process is 5 Å, which is important because 

the electromagnetic recording head can fly well within 20 nm of the spinning disk surface. 

Solid oxide fuel cells (SOFC) are another example of the application of glass-ceramics in this 

field.62 SOFC are ceramic solid-state energy conversion devices that produce electricity by 

electrochemically combining fuel (e.g., hydrogen gas or natural gas) and oxidant (e.g., air) 

gases across an ionic conducting oxide at operating temperatures of about 800 °C. The planar 

SOFC configuration provides a simple manufacturing process and high current densities, but 

it requires hermetic sealing to prevent fuel–oxidant mixing and to electrically insulate the 

stack. A suitable sealing material must meet several criteria: chemical stability at 800 °C 

under oxidizing and reducing wet atmospheres (air, hydrogen gas); electrically insulating; 

chemical compatibility (i.e., must not poison other cell components); ability to form a seal at 

about 900 °C that results in a hermetic bond with high strength; CTE of 10–12×10-6 /K; and 

long-term reliability during high-temperature operation and during thermal cycles to room 

temperature. 

Optical glass-ceramics − Cookware that allows continuous visualization and monitoring of 

the cooking process; fireplace protection; transparent armours for visors or vehicle windows; 

substrates for LCD devices; ring laser gyroscopes; missile noses; fibre grating 

athermalization; precision photolithography; printed optical circuits; and small or very large 

telescope mirrors are just some examples of successful optical applications of glass-

ceramics.10, 40, 51 The keen interest in glass-ceramics for optical applications is caused by their 

advantages over glasses, single crystals and sintered transparent ceramics. Unlike glasses, 

glass-ceramics demonstrate properties similar to those of single crystals. In contrast with 

single crystals or sintered ceramics, glass-ceramics can be made in intricate shapes and sizes 

by fast and cost-efficient glass-manufacturing processes. Transparent glass-ceramics based on 

fluoride, chalcogenide and oxyfluoride doped with rare-earth ions have been successfully 

used for wavelength up-conversion devices for europium-doped waveguide amplifiers. 

Transparent mullite, spinel, willemite, ghanite or gelenite-based glass-ceramics doped with 

transition-metal ions have been developed for use in tunable and infrared lasers, solar 

collectors and high-temperature lamp applications. Other optically active applications include 

luminescent glass-ceramics for solar concentrators, up-conversion and amplification devices; 

illumination devices using IR; heat-resistant materials that absorb UV, reflect IR and are 

transparent to visible light; materials that absorb UV and fluoresce in red/IR; substrates for 

arrayed waveguide grating; solid-state lighting – white light; and laser pumps.10 
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2.2.2 Glass-ceramic processing  

Glass-ceramics are fine-grained polycrystalline materials formed when glasses of suitable 

compositions are heat-treated and thus undergo controlled crystallization. The important 

feature of the processing of glass-ceramics is that the crystallization must be controlled. For 

instance, common window glass is too stable and difficult to crystallize, whereas other 

compositions crystallize in an uncontrolled manner resulting in undesirable microstructures. 

Usually, a glass-ceramic is not fully crystalline: typically the microstructure is 50–95 vol.% 

crystalline, with the balance volume being the residual glass. One or more crystalline phases 

may form during the heat treatment and their composition is normally different from the 

parent glass, and the composition of the residual glass is also different from that of the parent 

glass.11-12 

Initially the glass batch is heated to form a homogeneous melt. The shape of the desired 

object is formed from the glass at the working point (when viscosity is ~103 Pa.s) by the usual 

processes such as pressing, blowing, rolling, or casting. After annealing to eliminate internal 

stresses, the glass object then undergoes a thermal treatment that converts it into a glass-

ceramic.63 Crystallization is the process by which the well ordered or regular periodic 

crystalline structures are produced from the non-periodic structure of glass. In its simplest 

form, crystallization is observed when a melt of a single pure element or compound is cooled. 

The crystallization process is generally considered as consisting of two independent 

processes: (1) nucleation, which corresponds to the formation of crystallization centres, and 

(2) crystal growth from the formed centres. The rate at which these two processes occur is a 

function of temperature. 5, 11, 63-64 

 

2.2.2.1 Nucleation 

Nucleation is the key factor for controlling crystallization in glass-ceramics. Crystal nuclei 

must be present in the glass matrix to commence the crystallization process. Nucleation 

involves the initiation of regions of longer-range atomic order (embryos) which are normally 

present in molten materials or in the super-cooled liquid.11 The temperature dependence of 

nucleation and crystallization in glasses can be described by the classic theory and the 

nucleation rate and crystal growth rate as a function of temperature are accurately measured 

experimentally.10-11, 48 Two distinct types of nucleation can occur: (1) homogeneous 

nucleation and (2) heterogeneous nucleation.5, 44, 65 In homogeneous nucleation the first small 
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seeds are of the same composition as the crystals which grow upon them, but in 

heterogeneous nucleation the nuclei are different chemically from the formed crystals. In 

heterogeneous nucleation, foreign boundaries such as substrates and grain boundaries are 

usually involved.10 This is also called catalyzed nucleation. Heterogeneous nucleation is the 

typical mechanism used in the development of glass-ceramics, as boundaries cannot be 

excluded and are indeed generally effective in the development of most glass-ceramics. The 

embryos turn into nuclei when they attain a critical minimum size capable of developing 

spontaneously into gross particles of the stable phase. 

 

2.2.2.1.1 Homogeneous nucleation  

The theory of nucleation involves a thermodynamic parameter known as free Gibbs energy 

(G), which is a function of other thermodynamic parameters: the enthalpy (H), i.e., the 

internal energy of the system, and the entropy (S), i.e., a measurement of the disorder of the 

atoms or molecules. The change in free energy ∆G is an important thermodynamic parameter 

regarding the phase transformations, since a transformation will occur spontaneously only 

when ∆G has a negative value. 

Considering that each nucleus is spherical and has a radius r the classical theory gives the 

work of formation ∆G as:66-67 

EV GrGrG ∆++∆−=∆ γππ 23 4
3
4

 Eq. 1 

where ∆GV is the free-energy change per unit volume associated with the formation of the 

new phase, γ is the interfacial energy (per unit area) of the new surface of the nucleus, and 

∆GE is the elastic distortion energy (often not considered because from a mathematical point 

of view, this contribution can be ignored for melt-crystal and vapour-crystal 

transformations10). These volume, surface, and total free energy contributions are plotted 

schematically as a function of nucleus radius in Fig. 4.5, 65, 68 

The curve corresponding to the first term on the right-hand side of Eq. 1, the free energy 

(which is negative) decreases with the third power of r and the curve resulting from the 

second term for in Eq. 1, energy values are positive and increase with the square of the radius. 

Consequently, the curve associated with the sum of both terms first increases, passes through 

a maximum, and finally decreases. In a physical sense, this means that as a solid particle 

begins to form as atoms in the liquid cluster together, its free energy first increases. If this 
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cluster reaches a size corresponding to the critical radius r* , then growth will continue with 

the accompaniment of a decrease in free energy. On the other hand, a cluster of radius less 

than the critical will shrink and redissolve. This subcritical particle is an embryo, whereas the 

particle of radius greater than r*  is termed a nucleus. A critical free energy (∆G*) occurs at 

the critical radius and, consequently, at the maximum of the curve in Fig 4 corresponds to an 

activation free energy, which is the free energy required for the formation of a stable nucleus. 

Equivalently, it may be considered an energy barrier to the nucleation process. 

 

 

Fig. 4 – Schematic plot of free energy versus embryo/nucleus radius, on which is shown the 

critical free energy change (∆G*) and the critical nucleus radius (r* ). 

 

Because r*  and ∆G* appear at the maximum on the free energy vs radius curve of Fig 4, 

derivation of expressions for these two parameters is a simple matter. For r* , we differentiate 

the ∆G equation without considering ∆GE (Eq. 1) with respect to r, set the resulting 

expression equal to zero, and then solve for r (= r* ):66, 69 

0*8*4
)( 2

* =+∆=
∂
∆∂

= rrG
r

G
Vrr γππ  Eq. 2 

which leads to the result 
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*  Eq. 3 

The critical nucleus size r*  corresponds to the critical free enthalpy ∆G*. The critical free 

energy is determined by the substitution of this expression for r*  into Eq. 1: 
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This volume free energy change ∆GV is the driving force for the transformation, and its 

magnitude is a function of temperature. At the equilibrium temperature, the value of ∆GV is 

zero, and with diminishing temperature its value becomes increasingly more negative. 

 

2.2.2.1.2 Heterogeneous nucleation  

Heterogeneous nucleation involves phase boundaries, special catalysts, and foreign substrates 

that are distinct from the parent phase. This type of situation occurs when the driving forces 

involved in the formation of a new phase are stronger than those required by the parent phase 

for its transformation into a crystal. Fig. 5 shows the model on which heterogeneous 

nucleation is based. It is assumed that both the liquid and solid phases “wet” this flat surface, 

i.e., both of these phases spread out and cover the surface. Three interfacial energies 

(represented as vectors) exist at two-phase boundaries (γSI, γSL and γIL) as well as the wetting 

angle θ (the angle between the γSI and γSL vectors).10, 68 

The theory for the formation of critical free enthalpy in heterogeneous nucleation (∆GH* ) is 

derived from the contact angle (θ) relationship of Young's equation and is given by 

( ) ( ) ( ) ( )2** cos1cos2
4
1

, θθθθ −+=∆=∆ fwherefGGH  Eq. 5 

 

 

 

Fig. 5 – Model for heterogeneous nucleation. The solid–surface (γSI), solid–liquid (γSL) 

and liquid–surface (γIL) interfacial energies are represented by vectors. The wetting angle (θ) 

is also shown.10, 68 

 

Considering Eq. 5 and Fig. 4, special situations should be taken into account: (1) if the 

heterogeneous substrate (I) is not wetted, θ = 180º and f(θ) = 1, i.e., this phenomenon returns 

to a homogeneous nucleation process; (2) if the surface of I is completely wetted and θ is 

Surface or interface, I 

θ 

Mother phase, L 

Nucleous/Solid, S 

γγγγ SL 

γγγγ IL  γγγγ SI 
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close to 0º, then f(θ) ≥ 1 and ∆GH*  are very small;  thus for θ < 180°, heterogeneous rather 

than homogeneous nucleation will occur. Furthermore, nuclei with the critical size of r*  are 

preferentially formed. Heterogeneous nucleation is particularly effective if there is epitaxy 

between the nucleus and substrate. There can be an epitaxial relationship if the lattice 

geometry of the nucleus and substrate crystals is similar (less than 15% mismatch in lattice 

parameter). Further influences on epitaxy in glass ceramics include: the bonding state in the 

substrate and nucleus crystals, structure defects, and the degree of coverage of the nucleant 

surface with foreign nuclei. During the production of glass-ceramics, special nucleation 

agents can be incorporated into the base glass composition which acts as catalysts for the 

nucleation process in the glassy matrix. The relationships between the different interface 

energies of the three phases (γSI, γSL and γIL) will also provide several criteria for determining 

the effectiveness of the nucleating agent. 

Taking a surface tension force balance in the plane of the flat surface leads to the following 

expression: 

θγγγ cosSLSIIL +=  Eq. 6 

Using a similar procedure similar to the one presented above for homogeneous nucleation, it 

is possible to derive equations for r*  and ∆GH* ; these are as follows: 
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The S(θ) term of Eq. 8 is a function only of θ (i.e., the shape of the nucleus), which will have 

a numerical value between zero and 1 (For example, for θ angles of 30º and 90º, values of 

S(θ) are approximately 0.01 and 0.5, respectively. From Eq. 7, it is important to note that the 

critical radius r*  for heterogeneous nucleation is the same as for homogeneous, inasmuch as 

γSL is the same surface energy as γ in Eq. 3. It is also evident that the activation energy barrier 

for heterogeneous nucleation (Eq. 8) is smaller than the homogeneous barrier (Eq. 4) by an 

amount corresponding to the value of this S(θ) function, or  

)(** θSGGH ∆=∆  Eq. 9 
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Figure 6 plots curves for both types of nucleation, and indicates the difference in the 

magnitudes of ∆G*hom ∆G*het, in addition to the constancy of r* . This lower ∆G* for 

heterogeneous means that a smaller energy must be overcome during the nucleation process 

(than for homogeneous), and, therefore, heterogeneous nucleation occurs more readily.68 

 

 

Fig. 6 – Schematic free energy vs embryo/nucleus radius plot on which are presented 

curves for both homogeneous (∆G*hom) and heterogeneous nucleation (∆G*het). Critical free 

energies and the critical radius are also shown.68 

 

2.2.2.2 Crystal growth 

The crystallization process will be concluded with the growth of crystals on the nucleated 

glasses, which should be heat-treated at higher temperatures. The growth step in a phase 

transformation begins once an embryo has exceeded the critical size, r* , and becomes a stable 

nucleus.10, 65, 68 Nucleation will continue to occur simultaneously with growth of the new 

phase particles, but cannot occur in regions that have already transformed to the new phase. 

Moreover, the growth process will finish in any region where particles of the new phase meet, 

because here the transformation will have reached completion. 

The crystal growth is a complex stage of the crystallization process due to several motives: 

(1) more than one phase may crystallize simultaneously; (2) the composition of the crystals is 

usually different from the composition of the parent glass, implying that the crystal-glass 

interface is continuously changing in composition; (3) fractions of the primary crystal phase 

may start transformation into a new structural type.72 The crystallization rates in glass can be 

enhanced or inhibited by the presence of some additives. For example, low concentrations of 

various transition metal ions such as Fe, Zn and V increase the rate of crystal growth,73 while 

∆∆∆∆G 

r 
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Cr ions were found to decrease it.74 Moreover, this effect may be specific to particular crystal 

surfaces. 

The crystallization rate of glasses is determined by the extent to which material transport to 

the interface between the nucleus and the surrounding glass matrix is achieved.10 

Accordingly, particle growth occurs by long-range atomic diffusion, which normally involves 

several steps such as diffusion through the parent phase, diffusion across a phase boundary, 

and then into the nucleus. Consequently, the growth rate U is determined by the rate of 

diffusion, and its temperature dependence is the same as for the diffusion coefficient D, 








−=
kT

Q
DD dexp0  Eq. 10 

where D0 is a temperature-independent pre-exponential, Qd is the activation energy for 

diffusion, R is the gas constant and T the absolute temperature. Thus, U can be express as 








−=
kT

Q
cU exp  Eq. 11 

where Q is the activation energy and c is a pre-exponential, both independent of temperature. 

Processes whose rates depend on temperature, as U in Eq. 11, are sometimes termed 

thermally activated and a rate equation having the exponential temperature dependence is 

termed an Arrhenius rate equation.68  

 

 

Fig. 7 – Schematic plot showing the variation of the nucleation rate (I) and growth rate 

(U) with the temperature.  
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Fig. 7 shows the temperature dependence of U and I (again, almost always the rate for 

heterogeneous nucleation). At a specific temperature, the overall transformation rate is the 

combined effect and is represented by a third curve. The general shape of this curve is the 

same as for the nucleation rate, presenting a peak or maximum that has been shifted upward 

relative to the curve for I. 

In general, crystal growth, i.e. the rate of advance of a solid-liquid interface, can be described 

as a function of temperature 76-77 by: 
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where U is the growth rate, f is a site factor (fraction of sites at the interface where atoms can 

be preferentially added or removed), D is the diffusion coefficient for molecular transport 

across a solid liquid interface, a0 is a jump distance, and ∆G is the difference in Gibbs free 

energy between the solid and liquid phase. Using the Stokes-Einstein relation it is possible to 

express D as a function of viscosity (η):76 

ηπ03 a

Tk
D =  Eq. 13 

where η is the viscosity and k is the Boltzmann constant. Replacing D by Eq. 13 in Eq. 12: 
















 ∆−−







=

TR

G

a

Tkf
U exp1

23 0 ηπ
 Eq. 14 

From Eq. 14, it can be seen that the crystal growth rate (U) in any glass system is controlled 

primarily by two factors: (1) the thermodynamic factor or barrier represented as [1 − exp 

(−∆G/RT)], and (2) a purely kinetic factor, i.e., related to the motion or mobility of the ions or 

group of ions present in this glass, represented as (f kT / (3a0
 
2π η)). From the analysis of Eq. 

14, several scenarios can be considered: 

1. At temperatures higher than the melting point (T > Tm), the change in the free 

energy (∆G) is positive, hence the term [1 − exp(−∆G/RT)] will be a negative 

number leading to a negative value of U. This is in agreement with the fact that the 

crystals start to dissolve at temperatures higher than the melting point. 

2. For T = Tm, ∆G = 0, which will yield U = 0. This is essentially in agreement with 

the definition of the melting point. As the temperature T is lowered below Tm, the 
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thermodynamic factor [1 − exp(−∆G/RT)] has a significant influence on crystal 

growth rate. At that region, because the viscosity is low, the thermodynamic factor 

will mainly control the crystal growth rate because of the higher driving force of 

∆G is negative. 

3. When the system is at a temperature far from equilibrium (T ≤ Tm), the term [1 − 

exp(−∆G/RT)] approaches unity and the crystal growth rate is mostly governed by 

kinetic factors (viscosity and diffusivity). The conflicting changes in the crystal 

growth rate are due to changes in the thermodynamic and kinetic factors, resulting 

in a maximum in the temperature dependence of the crystal growth rate. As a result, 

the crystal growth rate curve is a skewed bell-shaped, reaching a maximum at Tc 

(somewhere below Tm) and reaching zero at both the high and low temperature 

ends.  

 

2.3 Liquid−−−−liquid phase separation  

 

Liquid–liquid immiscibility is very common in glass melts, in fact so common that Shelby 

states that far more binary glass-forming melts exhibit liquid–liquid immiscibility than exhibit 

homogeneous behaviour.5 Phase separation in glasses influences a variety of properties and 

has been an important subject of debate of modern glass research.78 Shvetsov (1932) is 

referred as publishing the first account of metastable immiscibility as a cause for chemical 

inhomogeneity in glasses.79 A number of review articles dealing with phase separation in 

glasses have been published, including frequently referenced publications by Mazurin79-80, 

Tomozawa81-82, Uhlmann83 and James84. 

Phase separation occurs in many organic and inorganic materials including polymers, metallic 

alloys and ceramics.2, 17, 45, 85 Some binary or multicomponent systems have the peculiar 

characteristic that over a certain region of temperature and composition, called miscibility 

gap, the system exists in equilibrium, or metastable equilibrium, as two liquid phases of 

different composition. This phenomenon is known as liquid-liquid immiscibility. The process 

whereby the homogeneous liquid separates into two liquids as it is brought into the two-liquid 

region is known as phase separation.6, 13, 85-90 
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2.3.1 Stable and metastable miscibility gap 

In simple oxide mixtures such as MgO−SiO2, CaO−SiO2 and SrO−SiO2, stable (above the 

liquidus) liquid immiscibility is often observed, which is readily evidenced by the tendency of 

the melt to segregate eventually as two bulk liquids. One or more glass phases are usually 

formed during the cooling of these two-phase melts: the silica-rich phase almost invariably 

forms a glass, while the other phase sometimes crystallizes.91-92 

In systems such as Li2O−SiO2, Na2O−SiO2 and BaO−SiO2, there are liquid miscibility gaps 

that occur somewhat below the liquidus but above the glass transition. These are known as 

metastable miscibility gaps.78, 91-92 Cooling the melt of glasses of these systems results in the 

formation of two phases, usually on a microscopic scale. The supercooled liquid begins to 

unmix during the cooling through the miscibility gap and the unmixing process continues 

until it is stopped by (a) the interference of crystallization, or (b) by the high viscosity reached 

by the system as it passes through the glass transition region. The time that the system 

remains within the miscibility gap at high enough temperatures for the kinetic processes of 

separation to occur is determinant for the extent to which the phase separation proceeds. If 

crystallization does not occur, the resulting glass is a phase separated glass, i.e. a solid 

composed by two phases, both glass. If such a system is rapidly quenched to form a 

homogeneous or nearly homogeneous (slight separated) glass this is said to be phase 

separable, which means that the phase separation will occur upon heating to a suitable 

temperature for molecular transport to take place (although at these temperatures it will be 

competing with the crystallization process).  

Many silicate glasses phase separate at temperatures well above Tg. There may be a much 

greater tendency for silicate glasses to separate than is presently thought, but in many systems 

the thermodynamic condition favouring immiscibility may occur only at sub-glass transition 

temperatures. For these glasses, the problems of observing the miscibility gaps are quite 

similar to the problems of getting any glass to relax to its metastable equilibrium 

configuration, once it is below its glass transition temperature. Such a glass cannot be termed 

phase separable since such behaviour is impossible by kinetic reasons. 

 

2.3.2 The relation of the miscibility gap with the shape of the liquidus line 

Observing phase diagrams such as the ones represented in Fig. 8, there are three possible 

positions of the miscibility gap with respect to the liquidus: (a) intercepting the liquidus (with 
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consequent stable two-liquid region); (b) tangent to the liquidus; and (c) entirely metastable. 

The slope of the liquidus can suggest the presence and possible position of a metastable 

miscibility gap.91 Therefore, phase diagrams can give important information about what we 

may expect to be the nature of the resulting glass. Fig. 9 presents the series of binary alkaline-

earth and alkali-metal oxide silicates whose liquidus curves for the composition range 

between 55 and 100 mol.% of SiO2.
93  Stable liquid immiscibility is shown by the MgO−SiO2, 

CaO−SiO2 and SrO−SiO2 systems. The Li2O−SiO2, Na2O−SiO2 and BaO−SiO2 and 

K2O−SiO2 systems show successively decreasing S-shape tendencies in their liquidus curves. 

This would suggest that metastable miscibility gaps occur in the Li2O−SiO2, Na2O−SiO2 and 

BaO−SiO2 and K2O−SiO2 systems at successively lower temperatures.  

 

 

Fig. 8 – Three possible locations of a liquid immiscibility gap: (a) interrupting the liquidus, 

(b) tangent to the liquidus, and (c) entirely metastable.91 

 

The greatest amount of phase separation would be expected to occur during glass formation in 

the BaO−SiO2 system and the least in the K2O−SiO2 system because viscosity of each of these 

systems increases rapidly with decreasing temperatures. Indeed, it is extremely difficult to 

quench BaO−SiO2 melts of composition between 5 and 10 mol.% of BaO to clear glasses. 

Phase separation occurs to such an extent during cooling that the glasses look opal-white, 

owing to light scattering by the resulting inhomogeneities in the index of refraction. In both 

the Li2O−SiO2 and Na2O−SiO2 systems, suitable heat treatments will develop such 

opalescence while no such opalescence has been found in the K2O−SiO2 system. 

The investigations of the metastable miscibility gaps in the BaO−SiO2, Li2O−SiO2 and 

Na2O−SiO2 systems made in recent years showed that they occur at successively lower 

temperatures (approximately 1450 ºC for BaO−SiO2, 1200 ºC for Li2O−SiO2 and 850 ºC for 

Na2O−SiO2) as predicted by the liquidus shape.94-95 Fig. 10 presents the Li2O−SiO2 system as 

(a) (b) (c) 
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an example. No gap has been found in the K2O−SiO2 system, and it has been suggested that 

any tendency for such a gap most likely occurs below the glass transition temperature where it 

will never be observed.96 

 

Fig. 9 – Liquidus curves for several binary silicate systems.93 

 

 

Fig. 10 – Metastable liquid immiscibility in the Li2O−SiO2 system.94-95  

 

2.3.3 Mechanisms of phase separation 

Models for phase separation, based on thermodynamics and the free energy of mixing 

arguments, are described in detail by several authors.5, 79, 84, 96 Immiscibility in glasses is 

controlled by the Gibbs free energy of mixing and the competition between the enthalpy of 

mixing (∆Hmix) and the entropy of mixing (∆Smix): 

60 70 80 90 100 

1500 

1600 

1700 

T
em

pe
ra

tu
re

 (
ºC

) 

SiO2 (mol.%) 

Ca Sr Ba Li 

Mg 

Na K 

Stable Two Liquids 

Liquid 

Cristobalite + Liquid 

Li 2O (mol.%) 

T
em

pe
ra

tu
re

 (
ºC

) 

32 24 16 8 0 

1700 

SiO2 Li 2O 

1500 

1300 

1100 

900 

700 

Liquid 
Cristobalite 

+  
Liquid 

Tridymite 
+ 

Liquid 

Li 2O.2SiO2 

+ 
Tridymite 

Metastable 
2 Liquids 



 

39 
 

mixmixmix STHG ∆−∆=∆  Eq. 15 

Above a critical temperature, Tc, the entropy term will always dominate and free energy of 

mixing will always be lower for the homogeneous melt. Below Tc, the free energy is lower if 

the melt separates into two phases of different compositions than if it remains a homogeneous 

melt. There are two distinct mechanisms by which phase separation can develop: (1) 

nucleation and growth; and (2) spinodal decomposition. These mechanisms have been 

characterised by many authors, for example: nucleation and growth mechanism − references 
45, 90, 96-99; spinodal decomposition − references 90, 96, 98, 100-103. These mechanisms lead to very 

different microstructures and properties. The curvature of the free energy of mixing at the 

bulk composition of the melt will indicate the mechanism by which phase separation occurs. 

An idealized immiscibility diagram for the binary Na2O−SiO2 system is presented in Fig. 11.5, 

104 The inserted drawings represent the typical microstructures that will develop if allowed by 

kinetics, when heat treated within the various regions of the phase diagram. 

Within the nucleation and growth region of the phase diagram, the formation of nuclei occurs 

if the free energy of the system decreases, thus a large change in composition must take place. 

This region is referred to as the metastable region because the system is unstable to small 

fluctuations in composition, but can be stable to larger changes in composition. After 

nucleation, the new phase will grow in size through diffusion and some regions may coalesce 

depending on their proximity. During the growth stage the chemical composition of the 

nucleated phase is invariant with respect to time at isothermal temperature. Phase separation 

resulting from nucleation and growth is characterized by distinctly separated spherical 

droplets of the nucleated phase in a continuous matrix of a second phase, as shown in Fig. 11. 

The spheres will have a composition of the phase which differs the greatest from the bulk 

composition. The spherical phase will nucleate randomly and have poor connectivity. 

The phase separation in the spinodal region begins with small fluctuations in composition, 

which at a given time grow in compositional differences, resulting in two continuous 

interpenetrating phases. Because these changes occur spontaneously, and no energy barrier to 

separation is present, the region is considered unstable with respect to immiscibility. The 

system will lower its free energy by continually changing the composition of the two phases 

until the equilibrium compositions are reached. Once the equilibrium compositions are 

attained the free energy is at its lowest state. The spatial variations of the structure remain 

fairly constant until the equilibrium compositions are achieved, after which the phase 

separated regions will grow in size through diffusion, thereby reducing the interfacial energy 
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of the system. Both phases formed in the spinodal region will show a high degree of 

connectivity. 

 

Fig. 11 – Metastable immiscibility diagram for the Na2O−SiO2 system with typical 

microstructures expected from the various regions of the system. Dark phase in drawings is 

sodium rich and light phase is silica rich. Immiscibility and spinodal boundaries were 

reproduced from data of Shelby5.  

 

2.3.4 The effect of phase separation on crystallization 

Many glasses exhibit amorphous phase separation preceding the crystal nucleation and 

growth during the heat treatment schedule required to convert them to glass-ceramics. It is 

well known that such separation may aid subsequent crystallisation by producing a phase with 

a greater tendency to nucleate than the initial glass.45 

Fine-grained glass-ceramics are obtained through a fine-scale, uniform dispersion of nuclei 

for the growth of the desired major crystalline phase. In general, this may be accomplished by 

one or more different mechanisms: (1) in the simplest one, although rarely encountered, the 

desired major crystalline phase nucleates homogeneously (without a catalyst) on a fine scale 

throughout the bulk of the glass; (2) the introduction of minor crystalline phase may 

homogeneously nucleate throughout the glass. The resulting finely dispersed crystalline 

precipitate may then act as a nucleation catalyst for the desired major crystalline phase, 

usually because of a favourable low interfacial energy between the nucleus and the growing 

crystal; (3) alternatively, the crystallization of a major phase may be initiated by a liquid-
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liquid phase separation without the necessity of a crystalline nucleation catalyst. Such 

separation may result in a fine-scale dispersion of second-phase liquid droplets that are very 

poor glass formers and therefore crystallize very readily.91 Moreover, Ohlberg et al. (1962) 

have presented evidence that crystal nucleation occurs at the two-liquid interface of certain 

two-phase glasses.105 

 

2.4 The Li2O−−−−SiO2 system 

 

2.4.1 Formation and properties of crystalline phases 

The phase diagram in Fig. 12 shows the crystallization tendency for the Li2O−SiO2 system.94, 

106 Li2O−SiO2 systems with composition close to lithium disilicate (Li2Si2O5) are among the 

most studied systems regarding the control crystallization in glass−ceramic synthesis.10, 78 The 

structure of orthorhombic lithium disilicate crystals involves corrugated sheets of (Si2O5)
-2 on 

the (010) plane that gives excellent mechanical properties for the glass-ceramic material.10 

The melting points of Li2O and SiO2 are 1727 and 1713 °C, respectively. The stoichiometric 

composition of lithium disilicate crystal phase (Li2Si2O5) melts congruently at 1033 °C.107 

Different phases include lithium orthosilicate (Li4SiO4), lithium metasilicate (Li2SiO3) and 

lithium disilicate (Li2Si2O5).
10, 108 A polymorphous transformation of the crystal phase was 

observed at approximately 936 ºC.10, 94 As the Li2O content increases, lithium metasilicate, 

Li 2SiO3, crystallizes. Other crystalline phases can form depending on the starting glass 

composition.109 

Lithium occupies a particular position in the periodic table, which confers to its compounds 

differentiated properties from those of the other alkalis, but not entirely similar to those of the 

alkaline-earths, with which they are often compared. Due to this particular behaviour, the 

lithium compounds with silica exhibited a kind of transition character in a remarkable 

manner, and hence the study of the Li2O−SiO2 system is of particular interest. The 

intermediate position of the lithium silicates between those of the alkalis and the alkaline 

earths is evidenced in the nature of the compounds formed and in their properties, such as the 

melting points, optical constants, crystallization ability, solubility in water.94 Alkalis tend to 

form stable compounds of relatively high silica content due to their high basicity, such as the 

disilicates and the tetrasilicates (K, Rb, Cs), while the alkaline earths (with the exception of 

Ba) do not form disilicates. On the other hand, the orthosilicates of the alkalis are relatively 
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unstable, while those of the alkaline earths are very stable. Lithium forms a highly stable 

metasilicate (Li2O�SiO2), with a higher melting point than that of any other alkali 

metasilicate. Lithium orthosilicate (2Li2O�SiO2) is also stable at a higher temperature than the 

other alkali orthosilicates, but the disilicate (Li2O�2SiO2) is only stable over a narrow region 

of composition in contact with the liquidus. 

 

 

Fig. 12 – Phase diagram of the Li2O−SiO2 system.  

 

Among the two-component alkali silicate glasses, the Li2O−SiO2 binary system is one the 

most important for the preparation of glass-ceramic materials.110-111 In the Li2O−SiO2 phase 

diagram, an addition of approximately 30 mol.%  of Li 2O to SiO2 causes the liquidus 

temperature to drop rapidly from 1713 to 1030 °C, such that the resulting liquid forms a clear 

glass on cooling which is very easy to obtain. However, liquids containing less than 25 mol.% 

Li 2O give opalescent or opaque glass on cooling owing to phase separation within a 

metastable immiscibility dome.78, 110, 112 Upon crystallization between the glass transition 

temperature (~500 °C), and the solidus temperature, i.e. the melting temperature (~1030 °C), 

Li 2Si2O5 is the main phase together with small amounts of either SiO2 and/or Li2SiO3.
110-111 

Usually, in order to produce a fine-grained lithium silicate glass-ceramic, the crystallization 

would typically involve nucleation followed by growth of the Li2Si2O5 crystals, and 

nucleating catalysts, such as TiO2 or P2O5, can generally be added.10 However, the simple 
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Li 2O−SiO2 system alone shows poor chemical durability and low mechanical characteristics. 

Addition of oxides acting as network former and modifier can greatly improve these 

properties and confer glass-ceramics very high thermal shock resistance and surface hardness, 

and low coefficients of conductivity and thermal expansion.10-11, 110-111 

Lithium metasilicate crystallization was found to precede lithium disilicate crystallization as a 

metastable phase in some lithium silicate glasses and crystallizes at a lower temperature. 

Hench et al.113 determined that lithium metasilicate crystals form before lithium disilicate in 

two glass compositions of 30 and 33 mol.% Li2O, but the amount of lithium metasilicate was 

extremely limited and disappeared on further heat treatment at higher temperature. As the 

Li 2O content increases over the stoichiometric content of lithium disilicate, lithium 

metasilicate crystallizes and other crystalline phases can form depending on the starting glass 

composition. When the Li2O is less than the stoichiometric content of the disilicate 

composition, metastable glass-in-glass phase separation occurs that influences crystal 

nucleation and crystal growth. Lithium disilicate and lithium metasilicate can crystallize by 

homogeneous bulk crystallization depending on the initial glass composition and temperature. 

 

2.4.2 Research regarding lithium disilicate based glass-ceramics: a brief history 

Simple silicate glass-ceramics are composed of alkali and alkali earth silicate crystals whose 

properties dominate that of the glass-ceramics. The most important ones were lithium silicates 

based glass-ceramics which consist of two main composition groups: (1) the first group based 

on lithium disilicate crystals (Li2O�2SiO2), nucleated with P2O5, develops high expansion 

glass-ceramics which match the thermal expansion of several nickel based superalloys, and 

are used in variety of high strength hermetic seals, connectors, feedthroughs, and related 

materials based on a microstructure of fine-grained lithium disilicate crystals with dispersed 

nodules of quartz crystals have been extensively evaluated for use as magnetic disk substrates 

for computer hard drives;114 (2) the second group based on lithium metasilicate crystals 

(Li 2O�SiO2), photosensitively nucleated by colloidal silver, produces a variety of chemically 

machined materials which are useful as fluidic devices, display screens, lens arrays, magnetic 

recording head pads, charged plates for inkjet printing, and other patterned devices.40 

Numerous works have been published on the crystallization of lithium disilicate glass since it 

crystallizes by homogeneous bulk crystallization without changing composition.45 Lithium 

disilicate glass crystallizes more easily than other alkali disilicate glasses and serves as the 
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model system for the study of glass-ceramics.11, 115 Since the findings of Stookey 47-48, 116 in 

the 1950s, many researchers have dedicated their investigation works to lithium disilicate 

glasses and glass-ceramics. Experiments were carried out to shed some light in diverse fields 

such as crystallization mechanisms, crystallization kinetics, phase evolution and 

microstructure, use of nucleation agents and other additives, etc.. Some examples of research 

works regarding lithium disilicate system are presented below. 

The initial works for the development of materials in the lithium disilicate system were 

compositions that were derived from the stoichiometric composition of lithium disilicate (or 

phyllosilicate) crystals.10 The base glasses with stoichiometric composition of 33.33 Li2O − 

66.66 SiO2 (mol.%) revealed certain opacity when the Li2O content ranged between 5 mol.% 

and almost stoichiometric amount of Li2O in lithium disilicate. Vogel explained this 

phenomenon as glass in glass phase separation (immiscibility of glasses).78 These results 

demonstrated that phase separation processes are likely to play a part in the nucleation of 

lithium disilicate glass-ceramics. However, if glass-ceramics are produced from base glasses 

with the exact stoichiometric composition phase separation does not occur. For many years 

after Stookey's fundamental findings,47-48 the mechanisms of nucleation were never 

completely determined although many comprehensive studies have been conducted regarding 

the nucleation of base glasses with stoichiometric composition of lithium disilicate for glass-

ceramic manufacture.11, 117 

Stookey48 incorporated metal ions, such as silver (Ag+) in glasses near the lithium disilicate 

composition as nucleating agents for controlling the crystallization of base glasses comprising 

the typical composition (wt.%): 80 SiO2, 4 Al2O3, 10.5 Li2O, 5.5 K2O, 0.02 CeO2, 0.04 AgCl. 

The formation of neutral silver was achieved by exposition to UV light. With subsequent heat 

treatment of the glasses (at about 600 ºC) colloids of metallic silver were obtained, which 

forms heterogeneous small nuclei (~8 nm) needed for the subsequent crystallization of lithium 

metasilicate primary crystal phase.118 Lithium metasilicate possesses a chain silicate structure, 

features dendritic crystallization and its crystals are easily dissolved from the glass-ceramic in 

dilute hydrofluoric acid (HF). This knowledge permitted Stookey to develop a high-precision 

patterned glass-ceramic, the structure of which results from the etching.47 High-precision 

structural parts in different shapes were produced by placing a mask on the material and 

exposing the open areas to UV light. This was the beginning of the production of a new 

product predominantly composed of a glass matrix and named Fotoform. If these products are 
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exposed to additional UV and thermal treatment, a lithium disilicate main crystal phase is 

produced. 

Apart from the possibilities of shaping the glass-ceramic as desired, Stookey116 and 

McMillan11 discovered additional properties of these glass-ceramics, which were very 

promising for industrial applications of the material. These works were clear evidence of the 

importance of non-stoichiometric compositions in the Li2O−SiO2 system.  

In the early 1960s, Kalinina and Filipovich119 investigated the phases and the crystallization 

sequence in Li2O−SiO2 glasses using XRD analysis. They concluded that homogeneous bulk 

crystallization of both lithium disilicate and lithium metasilicate occurred, depending on the 

initial glass compositions. For example, the 34.2 mol.% Li2O glass compositions crystallized 

into both lithium disilicate and lithium metasilicate, depending on the temperature. Heat 

treatment at lower temperature (e.g., 480 °C) led to crystallization of lithium disilicate while 

heat treatment at higher temperatures (e.g., 630 °C) led to crystallization of both lithium 

disilicate and lithium metasilicate. In general, the metasilicate phase has lower intensities on 

an X-ray diffraction pattern than the disilicate phase, so it is harder to detect. The glass 

composition comprising 43.7 mol.% Li2O crystallized into lithium metasilicate after 24 h at 

480 °C. 

West and Glasser (1971)120 performed an extensive study on the crystallization of Li2O−SiO2 

glasses using X-ray diffraction. They did not detect lithium metasilicate crystallization at 

composition equal to or less than 36 mol.% Li2O for any heat treatment time or temperature. 

Difficulties arose in determining phases from the XRD patterns of materials treated at lower 

temperatures due to the low intensities in X-ray diffraction patterns. Lithium metasilicate 

crystallization was found to precede lithium disilicate crystallization as a metastable phase in 

some silicate glasses. Hench et al. (1971)113 determined that lithium metasilicate crystal forms 

before lithium disilicate in two glass compositions of 30 and 33 mol.% Li2O, but the amount 

of lithium metasilicate was extremely small and it disappeared on further heat treatment. 

In 1972, Tomozawa121 and Doremus et al.122 focused on the nucleation and growth behaviour 

of lithium disilicate crystal from glasses near lithium disilicate compositions. When the Li2O 

content is less than the disilicate composition, metastable glass-in-glass phase separation 

occurs and influences crystal nucleation and crystal growth.121 

In the late 1970s and early 1980s, several researchers focused on the nucleation kinetics for 

lithium disilicate glass.117, 123-124 The experimentally determined nucleation rates obtained in 
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their research works were much higher than that predicted by the classical theory. The 

formation of a metastable crystalline precipitate prior to crystallization of the final 

equilibrium composition was suggested as a possible explanation for that difference. Joseph 

and Pye 123 stated that a metastable phase, whether glass or crystal, precedes lithium disilicate 

crystallization, but they failed to identify it. Further, prior heat treatment of the disilicate 

composition showed no metasilicate crystal or amorphous phase separation, only 

crystallization of lithium disilicate.124 

In 1980 Ahmed et al. investigated the leaching of binary and ternary silicate glasses and 

glass-ceramics by HCl.125 The leaching rate of binary lithium silicate glasses exhibiting 

liquid-liquid phase separation increases with the increase of the volume fraction of the easily 

leachable phase.125 When a third component was introduced, the leachability of glass was 

remarkably affected by the effect of the third component on phase separation. Oxides which 

eliminate phase separation are the most effective in improving the leachability of glass. If the 

oxide promotes phase separation the deteriorating effect of the easily leachable phase will 

rapidly become the dominant factor. For glass-ceramics, the solubilities of both the formed 

crystals and the residual glass phase in the leaching solution have an almost equally important 

influence on the stability of glass-ceramics as exemplified by lithium silicate glass-ceramics 

containing ZnO or B2O3. 

The chemical durability of lithium disilicate glass-ceramics was improved by Barret et al. 126 

to a significant extent by incorporating additions such as Al2O3 and K2O to the stoichiometric 

base glass. Improving the chemical durability of these glass-ceramics was essential to make 

the material suitable for use as a biomaterial in human medicine and, in particular, as a 

restorative material in dentistry. It must be noted that a significant improvement of the 

chemical durability of lithium disilicate glass-ceramics was achieved later in the development 

of glass ceramics with non-stoichiometric compositions (non-stoichiometric implies that the 

SiO2:Li 2O molar ratio deviates from 2:1 and that the system is rendered considerably more 

complex with numerous additional components).10 

A nucleating agent may be broadly defined as a constituent added to a glass, typically in 

amount of a few percent, which promote volume nucleation and enable a glass-ceramics to be 

produced. Examples are metallic particles, oxides and non-oxides. P2O5 is common nucleating 

agent for lithium silicate glass-ceramics, which promotes heterogeneous nucleation and 

produces a fine grained interlocking morphology after heat treatment.127 James (1982)65 found 

that the crystal nucleation rate of lithium disilicate in 33.3Li2O�65.7SiO2�1P2O5 (mol.%) glass 
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were 1000 times greater than in Li2O�2SiO2 base glass at 500 °C. Amorphous phase 

separation was observed in the glass containing P2O5 but not in the Li2O�2SiO2 base glass. 

Headley and Loehman (1984)114 found that Li3PO4 crystals were precipitated from a 

Li 2O−Al 2O3−SiO2 based glass after treatment at high temperature in the range 800−1000 °C. 

Lithium disilicate, lithium metasilicate and cristobalite were observed to crystallize by 

epitaxial growth on the Li3PO4 crystals. 

In the beginning of 1990s, Beall128 and Echeverría129 achieved notable results in the 

development of a new lithium disilicate glass-ceramic. The new material is distinguished by 

the particular ratios of SiO2 and Li2O, which are responsible for the formation of the main 

crystal phase; the nucleating agents; and the components of the glass matrix. The chemical 

components were selected to confer good chemical durability. 

Jacquin and Tomazawa (1995)130 investigated the crystallization behaviour of lithium 

disilicate glass powder heated in molten LiNO3 salt using X-ray diffraction techniques. Heat 

treatment with LiNO3 molten salt caused a lithium metasilicate crystal phase to appear after 

5−96 h. By contrast, glass powder heat-treated in air at 500 °C remained amorphous after 5 h 

and turn into lithium disilicate crystal after 40 h. Glass powder heat treated at 575 °C in both 

molten salt and in air turned into lithium disilicate crystal. Metasilicate crystallization occurs 

with LiNO3 molten salt at 500 and 400 °C due to the incorporation of lithium into the sample 

glass powder from the melt during crystallization. An increase in lithium content in the 

sample after molten salt heat treatment was confirmed by chemical analysis using dc plasma 

emission spectroscopy. 

In addition to the examination of the nucleation mechanism of lithium disilicate glass-

ceramics, the analysis of the microstructure and the improvement of the chemical durability of 

glass-ceramics with a stoichiometric composition were also major concern for glass 

researchers. On the pursuit of this goal, Schmidt and Frischat131 (1997) got images of various 

structures by using scanning electron microscopy in conjunction with atomic force 

microscopy. Furthermore, they were also able to control the development of these structures. 

Goto et al. 132 developed a lithium disilicate glass-ceramic with composition (wt.%) 65−83 

SiO2, 8−13 Li2O, 0−7 K2O, 0.5−5.5 (sum of MgO, ZnO, PbO), with 0−5 ZnO, 0−5 PbO, 1−4 

P2O5, 0−7 Al2O3 and 0−2 (As2O3, Sb2O3) for magnetic memory disk substrates. 

In 1998, Iqbal et al.133 investigated Li2O−SiO2 glass containing P2O5 by XRD, TEM and 

NMR. They found metastable phases of lithium disilicate phase increased. No evidence was 
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found for the presence of Li3PO4 crystalline phase from XRD, possible because of the small 

percentage present. However, preliminary result using 31P MAS NMR of 1 mol.% P2O5 glass 

did indicate possible formation of the Li3PO4 phase in the heat treated glasses and even in the 

as-quenched glasses. For the composition containing 5 mol.% P2O5 XRD revealed crystalline 

Li 3PO4 in the as-quenched glass and after an extend heat treatment. TEM revealed the 

presence of high density of fine volume nucleated crystals in the P2O5 containing glasses, 

much higher than in the base lithium disilicate glass after similar heat treatment. 

Using a special hot-press procedure, Schweiger et al. developed a powder-processed lithium 

disilicate glass-ceramic.134-135 To optimize the viscous properties for the hot-press procedure 

at approximately 920 ºC, components such as La2O3, MgO, and pigments were added to the 

main components SiO2, Li2O, P2O5, K2O and ZnO. An ingot is transformed into a viscous 

state at approximately 105−106 Pa.s in a special hot-press apparatus (EP 500, Ivoclar Vivadent 

AG, Lichtenstein). Thereafter, it is pressed at approximately 920 ºC for about 15 min to form 

a glass-ceramic body. This glass-ceramic of the lithium disilicate type does not require 

additional heat treatment and the end-product contains main crystal phases of Li2Si2O5 and 

Li 3PO4. 

Soares et al. (2003)136 studied the early crystallization of lithium disilicate glasses using TEM 

and XRD techniques. Three lithium silicate glasses nearby the Li2O�2SiO2 composition were 

heat treated at ~Tg = 454 °C, two distinct crystalline phases, stable lithium disilicate and 

metastable lithium metasilicate coexist up to 120 h at 454 °C (crystalline fraction < 1 vol.%). 

For longer treatments (240−600 h) only the stable phase (Li2O�2SiO2) was observed. 

Mishima et al. (2004)137 studied the crystallization behaviour of xLi 2O�(1−x)Na2O�2SiO2 

glass doped with platinum (Pt). It was found that the addition of Pt induced the crystallization 

of Li2O�SiO2 in the interior of crystallized glasses with high Na2O (x = 0.4 to 0.6) and 

Li 2O�2SiO2 were observed in crystallized glasses with high Li2O�SiO2 were observed also in 

the range of x = 0.6 to 0.8.  

Morimoto and Emem (2004)138 studied the properties of the glass-ceramic with composition 

77.7SiO2�2.2Al2O3�18.8Li2O�1.2P2O5 (mol.%). They found that the transparent glass-

ceramics can be obtained by heat treatment below 800 °C. The main crystalline phase is 

Li 2O�2SiO2. The percent crystallinity and crystal size ranged from 60 to 70% and from 20 to 

60 nm, respectively. The density of glass-ceramics increases with increasing heating 
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temperature and time of crystallization. The fracture strength of transparent glass-ceramics 

increases linearly with crystal size ranging from 20−60 nm. 

Morimoto139 investigated the effect of K2O on the crystallization in Li2O−SiO2 glass. It was 

found that a small amount of K2O affected the mechanism of phase separation and 

crystallization process. Moreover, it was also concluded that K2O suppressed the 

crystallization of Li2O�2SiO2, but promotes the precipitation of Li2O�SiO2 crystal. Li2O�SiO2 

crystal can precipitate in Li2O rich continuous phase containing K2O. 

In 2006, Fuss et al.140 studied the effect of pressure on crystal growth rate U of lithium 

disilicate glasses. They conclude that the crystal growth rate in a Li2O�2SiO2 glass is 

suppressed and the U-curve shifts to higher temperatures with increasing pressure up to 6 

GPa. They attributed this behaviour to an increase in viscosity. The glass partially crystallized 

under a hydrostatic pressure of 4.5 GPa has a density higher than that of crystalline 

Li 2O�2SiO2, comparable to or smaller than the density of Li2O�SiO2 crystals. The density of 

the glass becomes comparable or larger than that of crystalline Li2O�SiO2 when pressed at 6 

GPa. 

Kuzielová and co-workers,141 presented a preliminary investigation of the lithium disilicate 

and the fluoroapatite crystallization in bio-glass ceramics. Composite glass-ceramics with 

various content of P2O5 in oxide system SiO2–Li2O–CaO–CaF2–P2O5 were prepared by heat 

treatment of glass at different temperatures and lithium disilicate and fluorapatite were 

developed in the samples depending on P2O5 content and temperature. It was evidenced that 

addition of P2O5 has caused the formation of fluoroapatite, whereas the amorphous 

fluorapatite inhibited the crystallization of Li2O�2SiO2, the crystalline fluorapatite promoted 

it. The obtained glass-ceramics featured hardness values that satisfy the requirements set on 

implants used in loading parts of human organism. 

Apel et al. 142 (2007) evaluated the effect of the incorporation of ZrO2 on phase formation, 

microstructure, biaxial flexural strength and translucency for glasses in the Li2O–SiO2–

Al 2O3–K2O–P2O5 system. According to this study, ZrO2 influences the reaction kinetics of the 

crystallization processes of both lithium metasilicate and lithium disilicate. The ZrO2-free 

glass-ceramic has a very fine and strong microstructure. The incorporation of ZrO2 into the 

glass matrix does not increase the strength due to an increase in the viscosity content in the 

glass-ceramic and the linked reduction in crystal growth of Li2SiO3 and Li2Si2O5. The 

addition of ZrO2 increases the translucent properties of the glass-ceramic leading to contrast 
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ratio values between 0.35 and 0.80. Therefore, the translucency of this lithium disilicate glass-

ceramic can be customized for applications in aesthetic restorative dentistry. 

The effects of P2O5 content and heat treatment on the species of crystalline phase and 

microstructure of lithium disilicate glass ceramics were studied by Zheng et al..143 According 

to this work, the crystallization temperature decreased and nucleation density increased with 

increasing P2O5 content (from 0 to 4 mol.%). Therefore, the microstructure was refined from 

plate-like polycrystalline aggregates to interlocking rod-shaped crystals and even spherical 

crystalline phases. The results suggested that Li3PO4 crystals acted as the heterogeneous 

nucleation sites for Li2SiO3 crystals, which could be the precursors of Li2Si2O5 crystals. 

Furthermore, Li2Si2O5 probably crystallized by epitaxial growth on Li2SiO3 crystals. With 

increasing P2O5 content, the relative content of Li2Si2O5 crystals decreased and Li2SiO3 and 

Li 3PO4 crystals increased in one- and two-stage treatments. Moreover, the precipitation of 

Li 2Si2O5 crystals was hampered during the one-stage treatment and the two-stage treatment 

was favourable for the growth of stable Li2Si2O5 crystals. 

The mechanism and kinetics of crystallization as functions of grain size and rate of heating in 

lithium disilicate glasses with and without fluorapatite were investigated by Palou et al..144 

Their results showed that smaller particles crystallize preferentially by surface crystallization, 

which is replaced by volume crystallization at larger particle sizes. Moreover, the inclusion of 

fluorapatite in the lithium disilicate glasses favours crystallization through the surface 

mechanism. The calculated activation energies of the glasses indicate that the tendency of 

glass to crystallize is enhanced by the presence of fluorapatite. Also, in vitro testing 

demonstrated an improvement in bioactivity for the glasses and glass-ceramics containing 

fluorapatite. 

Abd El All and Ezz-Eldin145 studied some physical properties of lithium disilicate glasses 

doped with different ratios of V2O5 were investigated before and after gamma-rays irradiation. 

Results indicate that crystallization is predominantly controlled by a surface nucleation 

mechanism, even though a partial bulk nucleation has been encountered in composition 

containing more than 2 wt.% of doping oxide. The microstructure of the glass-ceramic 

materials clearly shows a marked dependence upon the amount of V2O5 due to the presence of 

phase separation for content higher than 0.5 wt.%. Increasing V2O5 ratio causes remarkable 

changes in the properties studied. The observed variations in the properties may be correlated 

with the changes in internal glass network with changes in the chemical composition. 
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Vanadium ions are believed to be present in three possible valence states V3+, V4+ and V5+, 

and the ratios of these states depend on glass composition. 

The possibility of using P2O5 and Nb2O5 as nucleation agent in the TiO2–ZrO2–Li2O–CaO–

Al 2O3–SiO2 system was investigated by Goharian et al..146 They showed that in glass-

ceramics comprising nano and submicron P2O5, the main crystalline phase was lithium 

disilicate. The results also showed that change of P2O5 particle’s size had significant effect on 

the crystalline phases and microstructure, i.e., with decreasing the size of P2O5 particles, the 

relative content of Li2Si2O5 crystals was increased and the microstructure of glass-ceramic 

was changed, leading to better mechanical properties. By replacement of submicron P2O5 with 

submicron Nb2O5, crystallization mechanism was changed from volume to surface 

crystallization. 

Recently, Bischoff et al. 147 used quantitative 29Si MAS-NMR and 29Si{7Li} rotational echo 

double resonance (REDOR) NMR spectroscopy to evaluate the crystallization mechanism of 

a high-strength lithium disilicate glass-ceramic in the SiO2–Li2O–P2O5–Al2O3–K2O–(ZrO2) 

system, used as restorative dentistry material. According to them, although the SiO2/Li 2O 

ratio is higher than 2, the formation of Li2SiO3 (SiO2/Li 2O=1) plays a prominent role in the 

crystallization mechanism, contrary to the situation in stoichiometric glasses where Li2Si2O5 

is formed directly. In the studied system, the first crystallization product is lithium 

metasilicate (formed at 650 to 700 ºC). At higher temperature, this material reacts with 

amorphous SiO2 to produce the final lithium disilicate crystallization product. The obtained 

results illustrated that the lithium ions tend to be clustered in the glassy starting material and 

remain clustered to some extent in the glassy phase that stays behind after Li2SiO3 

crystallization via reaction 2Q3
(glass) ↔ Q2

(cryst.) + Q4
(glass). This crystallization process also 

results in some segregated glassy SiO2 material. At higher temperatures, lithium metasilicate 

reacts with the surrounding glassy material via reaction Q4
(glass) + Q2

(cryst.) ↔ 2Q3
(cryst.), 

resulting in the formation of crystalline lithium disilicate in addition to a residual glass matrix 

in which the lithium ions are quite well-dispersed. Moreover, the absence of a well-ordered 

crystalline Li3PO4 phase below crystallization temperatures (850 ºC) suggests that the 

formation of the crystalline silicate phases cannot be understood as heterogeneous nucleation 

processes through epitaxy, but as a heterogeneous nucleation at the interface of an amorphous 

lithium phosphate phase and the glass matrix. 

The effects of densification and crystallization at high pressure of lithium disilicate glasses on 

the mechanical properties were evaluated by Buchner and co-workers.148 They concluded that 
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the hardness and elastic modulus of the samples submitted to high pressure at room 

temperature decreased with increasing pressure. On the other hand, the hardness and elastic 

modulus of the samples submitted simultaneously to high pressure (up to 7.7 GPa) and high 

temperature increased noticeably, showing that the high temperature treatment under high 

pressure improved the mechanical properties of lithium disilicate glass-ceramics. 

Khalkhali and collaborators149 evaluated the Weibull modulus, flexural strength, fracture 

toughness, Vickers microhardness, and chemical durability of sintered lithium disilicate glass 

ceramic specimens doped with P2O5 or ZrO2. They observed that phase formation induced by 

the addition of P2O5 led to precipitation of Li3PO4, which in turn caused more intensive 

crystallization of Li2SiO3. The high-temperature crystalline phase Li2Si2O5 was precipitated 

more intensively in P2O5 containing specimens resulting in an interlocked microstructure of 

needle like disilicate crystals, conferring to the materials good mechanical and chemical 

properties (values of 3-point flexural strength and  chemical resistance of 181±15 MPa and 

53±9 µg cm−2, respectively). Addition of ZrO2 led to a high glass viscosity which deteriorate 

both sintering and crystallization. 

Mahmoud et al. 150 investigated the crystallization of lithium disilicate glass using a variable 

frequency microwave (VFM) processing technique, showing that it was possible to crystallize 

lithium disilicate glass in a significantly shorter time and lower temperature, when compared 

with conventional heating process. 

 

2.4.3 Technological importance of lithium disilicate based glass-ceramics 

Lithium disilicate glass-ceramics feature highly interesting properties such as high flexural 

strength, outstandingly high fracture toughness and high electrical resistivity.10, 151 These 

electrical properties combined with a low loss factor are impressive for a glass-ceramic with a 

high alkaline ion content. Lithium disilicate glass-ceramics also demonstrate a relatively high 

linear coefficient of thermal expansion (~105×10−7 K−1). This property is favourable for the 

fabrication of special composite materials, e.g. for sealing to metal substrates in the electrical 

industry.128 Therefore, these properties presented ideal prerequisites for applications in 

electrical engineering. Some specific and interesting application fields of lithium disilicate 

based glass-ceramics are listed below as examples for the technological importance of these 

materials. 
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2.4.3.1 Dental materials 

All-ceramic dental restorations are attractive to dentists and patients, because they are 

biocompatible, have superior aesthetics and their low thermal conductivity makes them 

comfortable in the mouth.10 Moreover, the material is extremely durable, and it is relatively 

easy to manufacture to customized units. All-ceramic restorations can be used to cover even 

dark tooth cores (e.g., if the tooth is severely discoloured or a titanium abutment is used). 

Current commercial lithium disilicate glass-ceramics, e.g., IPS e.max (Ivoclar, 

Liechtenstein) are ideal for fabricating single-tooth restorations.59 This innovative glass-

ceramic produces highly aesthetic results. Its hardness is similar to that of natural teeth, and it 

is two to three times stronger than other dental glass-ceramics. The material can be either 

pressed or machined to the desired shape in the dental laboratory and restorations fabricated 

with this material can be cemented by various techniques. These glass-ceramics possess true-

to-nature shade behaviour, natural looking aesthetics, natural-looking light transmission, 

versatile applications and a comprehensive spectrum of indications.10, 59 

 

2.4.3.2 Electronic applications 

Electrically insulating materials such as lithium disilicate based glass-ceramics, e.g. produced 

by Corning Inc. (U.S.A.)152 or Ohara Inc. (Japan)132, 153, are used in magnetic media disks for 

hard disk drives. These materials offer the key properties necessary for today’s higher areal 

density, smaller, thinner drive designs. They have high toughness, provide low surface 

roughness and good flatness, ultralow glide heights and excellent shock resistance. On the 

other hand, lithium-ion conducting glass-ceramics are promising solid electrolytes for lithium 

batteries.  

 

2.4.3.3 Military applications 

Some patents have been filed and others have been granted for inventions related to armour 

materials for the protection of people or equipment against high-speed projectiles or 

fragments. Ceramic materials are used particularly in armours for which low weight is 

important: bullet-proof vests; and armour for automobiles, aircraft and helicopters, especially 

in cockpits or seats and for protection of functionally important parts. The first and still-used 

ceramic armour materials consist of high modulus and hard Al2O3, although its density is 

quite high (about 4 g cm−3). Other very hard, but less dense materials, such as SiC and B4C, 
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can be produced only at very high temperatures by costly manufacturing processes and are, 

hence, expensive. 

Most glass-ceramics have lower hardness and Young’s modulus than the above-described 

ceramics, but have the great advantage of low density and much lower cost. Moreover, glass-

ceramics can be transparent to visible light. For instance, TransArm (Alstom Grid Ltd, UK) is 

a transparent glass-ceramic armour based on lithium disilicate.154 It originally was developed 

for protective visors for bomb disposal work. The preferred composition for the glass-ceramic 

armour is 71.8 SiO2, 11 Li2O, 8 ZrO2, 2 P2O5, 4.5 Al2O3, 0.5 ZnO, 2.2 K2O (wt.%). The 

manufacturing of the armour is carried out by heat-treating a base lithium disilicate glass to a 

transparent glass-ceramic, which is then submitted to a molten-salt to promote ion exchange 

at the surface of the material, resulting in an even higher level of resistance. The glass-

ceramic armour can be attached to a transparent back-up plate (e.g. polycarbonate), so as to 

avoid the shards of the ballistic impacted sheet to spread, but also to absorb part of the 

impacting energy through ductility. This innovative armour material can be used in visors, 

vehicle observation and helicopter windscreens.154  

However, there is little available information on this particular use of glass-ceramics, 

compared with other applications, due to the sensitive nature of this military-related research. 
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Lithium disilicate based glasses and glass-ceramics have been subject of many research 

works, ranging from stoichiometric to non-stoichiometric compositions, from simple binary 

system to very complex compositions, regarding just theoretical concepts or aiming functional 

applications. Glass crystallization kinetics, structure-properties relationships, or sintering and 

crystallization of glass powder compacts are just some examples of scientific and 

technological interest about lithium disilicate based glasses and glass-ceramics. Commercial 

lithium disilicate glasses and glass-ceramics feature complex compositions with the presence 

of nucleating agents (usually P2O5). Nevertheless, a systematic research work aiming to 

develop and characterize lithium disilicate glasses and glass-ceramics based on a very simple 

system such as Li2O−K2O−Al 2O3−SiO2 aiming both scientific and technological (functional 

applications) has not been yet published. Thus, the present manuscript aims to present the 

results of the scientific research work carried on the Li2O−K2O−Al 2O3−SiO2 glass system, 

including the study of glass structure, crystallization kinetics, sintering behaviour, evaluation 

of properties and possible (purposed) functional applications for the obtained materials. 
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Chapter  
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Results and discussion  
 

“We've arranged a civilization in which most crucial elements 
profoundly depend on science and technology.”  

Carl Sagan 
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This chapter gathers the outcome of the experimental work done on the frame of the proposed 

goals and its discussion. It is divided in sub-chapters which correspond to the manuscripts that 

resulted from the research activity and had been published or submitted to ISI journals. The 

first three papers regard the experiments in the simple Li2O–K2O–Al2O3–SiO2 glass system. 

Sub-chapters 3.4 and 3.5 consider the effect of adding excess of K2O to glass G3 (i.e. 

K2O/Al2O3 > 1), while sub-chapters 3.6 and 3.7 compares the systems Li2O–SiO2, Li2O–

Al 2O3–SiO2 and Li2O–K2O–Al2O3–SiO2, including a study of crystallization kinetics. The 

role of nucleating agents on the microstructure and crystallization behaviour of lithium 

disilicate based glass is presented in 3.8. Finally, sub-chapter 3.9 introduces the apatite 

crystallization from glasses in the Ca5(PO4)3F–CaAl2Si2O8–CaMgSi2O6–NaAlSi3O8 system, 

aiming to estimate the potential of these compositions for applications as fine grade glass-

ceramic coatings on ceramic substrates with compositions similar to that of G3.  
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Abstract 

We report on the role of Al2O3 and K2O on crystallization in glasses featuring a SiO2/Li 2O 

ratio (3.13 to 4.88) far beyond that of lithium disilicate (LD, Li2Si2O5) stoichiometry. Glasses 

in both bulk and frit form were produced by the conventional melt-quenching technique. 

Scanning electron microscopy analysis revealed surface nucleation as the dominant 

crystallization mechanism in glass-ceramics (GCs) derived from bulk glasses richer in Al2O3 

and K2O in the temperature range 800−900 ºC and dendritic skeletal surface growth of lithium 

metasilicate crystalline phase (LS, Li2SiO3). The glasses with lower amounts of Al2O3 and 

K2O showed an intermediate type of crystallization mechanism (simultaneous surface and 

volume nucleation) resulting in the preferential formation of Li2Si2O5. The formation of LD 

GCs by sintering and the crystallization of glass-powder frits seems to occur via the precursor 

phase of LS, resulting in high-strength materials. 
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1. Introduction 

Since the fundamental research of Stookey referred to by Höland and Beall1 on the 

stoichiometric composition of layered phyllosilicate lithium disilicate (LD, Li2Si2O5), many 

comprehensive studies have been undertaken that led to the development of LD glass–

ceramics (GCs) from a variety of systems.1-8 In particular, the main emphasis was addressed 

on the investigation of compositions in the binary9 Li2O–SiO2 or in the multicomponent 

systems.10 According to Vogel,9 Li2O–SiO2 liquids containing <30 mol.% Li2O appeared as 

opalescent or opaque glasses upon cooling, owing to phase separation. He explained this 

phenomenon on the basis of the segregation of glassy phase into droplet-like zones of Li-rich 

phase and SiO2-rich glass matrix. Moreover, within the Li2O content range of 14–16 mol.% in 

the entire glass, LD composition was already reached in the droplet phase.9 Further increasing 

the Li2O content in the entire glass reduced the surface tension of the two phases because 

Li 2O entered into the SiO2-rich phase surrounding the droplets and the size of the droplets 

reduced continuously. Subsequently, with a Li2O content of 33.3 mol.% (LD composition) in 

the entire glass, the droplet phase and the phase surrounding the droplets had the same 

composition, and glass of LD composition had the most homogeneous possible structure. 

However, this simple Li2O–SiO2 system alone showed poor chemical durability and 

mechanical properties. Therefore, there was a need to add different oxides into the parent 

glasses, improving these properties as discussed briefly in the following paragraph. 

The introduction of SiO2-excess to stoichiometric LD glass along with additives, such as 

ZrO2, Al2O3, ZnO, CaO, K2O, and P2O5, has been suggested by Echeverria11 and Beall12-13 for 

developing LD GCs featuring translucency, smoothness, shiny surface, high mechanical 

stability, and fracture toughness. The chemical durability was improved by developing GCs 

with nonstoichiometric compositions1 or via the addition of Al2O3 and K2O into 

stoichiometric LD glass.14-15 The addition of P2O5 into LD glass was observed to induce 

amorphous phase separation and increase the crystal nucleation rate, simultaneously.16-18 

Subsequently, the addition of P2O5 (as  nucleating agent) in amounts of 1.5–2.5 mol.% 

resulted in GCs with fine-grained interlocking microstructures, conferring high mechanical 

strength to the final products.19-20 

A Li 2O–Al2O3–SiO2 system with low Al2O3 content has been proposed as a potential 

candidate material for the substrate of hard discs in computers because of its excellent 

mechanical characteristics (impact resistance and hardness).21-22 Kim et al. 22-23 demonstrated 
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that the replacement of MgO by K2O improved the glass-forming ability of Al2O3-poor Li2O–

Al 2O3–SiO2 melts and the surface quality of polished GC disks. 

LD GCs in a multicomponent system with a wide compositional range of (in wt.%) 57–80 

SiO2, 11–19 Li2O, 0–13 K2O, 0–5 Al2O3, 0–8 ZnO, 0.1–6 La2O3, and 0.1–11 P2O5 were 

thoroughly investigated to produce the material, using the IPS Empresss 2 via hot pressing 

technique.24 Höland et al.,25 Frank et al.,26 and Schweiger et al.27 have reported its properties. 

The reaction mechanism in the GC powders, used for the synthesis of LD GCs, is complex.1, 

28 In Al2O3-containing GCs, the predominant crystallization of Li2Si2O5 occurs via the 

precursor lithium metasilicate. In the Al2O3-free glass composition of (in mol.%) 63.2 SiO2, 

29.1 Li2O, 2.9 K2O, 3.3 ZnO, and 1.5 P2O5, both LS and LD form as primary crystalline 

phases at ca. 600 ºC.29 The growth of LD increases at 680 ºC because of the solid-state 

reaction as in the following chemical equation 

Li 2SiO3 + SiO2 → Li2Si2O5 (1) 

The machinability features of LS have motivated the production of GCs, in the composition 

range of (in wt.%) 64–73 SiO2, 13–17 Li2O, 0.5–5 Al2O3, 2–5 K2O, and 2–5 P2O5, via 

CAD/CAM, where machining is applied at an early stage of production, when crystallization 

of LS is predominant. Further heat treatment causes crystallization of LD, according to Eq. 

(1), resulting in high-strength LD GCs.30 

Novaes de Oliveira et al.31 investigated sintering and crystallization of glass powder having a 

composition (in mol.%) of 23.12 Li2O, 11.10 ZrO2 and 65.78 SiO2. Crystallization took place 

just after completion of sintering and was almost complete at about 900 ºC in 20 min. 

Secondary porosity prevailed over the primary porosity during the crystallization stage. The 

glass-powder compacts first crystallized into LS, which transformed into LD, zircon (ZrSiO4), 

and tridymite (SiO2) after the crystallization process was essentially complete. The 

microstructure was characterized by fine crystals uniformly distributed and arbitrarily 

oriented throughout the residual glass phase. 

A literature survey reveals that despite many comprehensive studies leading to the 

development of LD GCs from different systems, the role of Al2O3 and K2O on the 

crystallization behaviour of glasses with a SiO2/Li 2O ratio far beyond that of LD 

stoichiometry has not been thoroughly investigated. Therefore, the present work aims at 

investigating how the crystallization processes and some properties of Li2O–SiO2 GCs are 

affected by doping the batch formulations with different amounts of Al2O3 and K2O. These 
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oxides were added at the expense of Li2O in order to underline the influence of the SiO2/Li 2O 

ratio on the crystallization features of the experimental glasses. 

 

2. Experimental procedure 

Three experimental glass compositions designated as G1, G2, and G3 with Li2O contents 

15.22, 19.09, and 22.96 mol.% and the corresponding SiO2/Li 2O ratios 4.88, 3.83, and 3.13, 

respectively, were investigated in this work (Table 1). Doping by Al2O3 and K2O was 

performed on an equimolecular basis, and the amount of additives decreased from G1 to G3. 

 

Table 1 – Compositions of the experimental glasses. 
 

 Oxides (mol.%)  

 Li2O K2O Al2O3 SiO2 SiO2 /Li2O 

G1 15.23 5.24 5.24 74.30 4.88 

G2 19.08 3.94 3.94 73.04 3.83 

G3 22.96 2.63 2.63 71.78 3.13 

 

Powders of technical grade SiO2 (purity > 99.5%) and of reactive grade Al2O3, Li2CO3, and 

K2CO3 were used. Homogeneous mixtures of batches (~100 g), obtained by ball milling, were 

preheated at 800 ºC for 1 h for calcination and then melted in alumina crucibles at 1550 ºC for 

1 h in air. Glasses in bulk form were produced by pouring the melts on preheated bronze 

moulds followed by annealing at 550 ºC for 1 h. In order to study the crystallization behaviour 

of the bulk glasses, the annealed bulk glasses were heat treated at 800 and 900 ºC for 1 h, 

respectively, at a heating rate of 2 K/min. 

The glass-powder compacts were produced from glass frits, which were obtained by 

quenching the glass melts in cold water. The frits were dried and then milled in a high-speed 

agate mill in order to obtain fine glass powders. The fine glass powders had a mean particle 

size of 5–10 µm as determined by the light scattering technique (Coulter LS 230, Fraunhofer 

optical model, Amherst, MA). Rectangular bars with dimensions of 4 mm × 5 mm × 50 mm 

were prepared by uniaxial pressing (80 MPa). The bars were sintered under non-isothermal 

conditions for 1 h at 800, 850, and 900 ºC at a low heating rate of 2 K/min aimed to prevent 

deformation of the samples. 
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The coefficient of thermal expansion (CTE) of the samples was determined by dilatometry, 

using prismatic samples of bulk glasses and sintered glass-powder compacts with a cross 

section of 3 mm × 4 mm (BÄHR Thermo Analyse GmbH 2000, model DIL 801 L, Hüllhorst, 

Germany, heating rate 5 K/min). Differential thermal analysis of fine glass powders was 

carried out in air (DTA-TG, Labsys Setaram, Caluire France; heating rate 10 K/min). 

The crystalline phases were determined by X-ray diffraction (XRD) analysis (Rigaku 

Geigerflex D/Mac, C Series, CuKα radiation, Japan). CuKα radiation (λ = 1.5406 Å), 

produced at 30 kV and 25 mA, scanned the range of diffraction angles (2θ) between 10 and 

60º with a 2θ step of 0.02 º/s. The phases were identified by comparing the obtained 

diffractograms with patterns of standards complied by the International Centre for Diffraction 

Data (ICDD). Microstructure observations were done at the polished (mirror finishing) and 

then etched (by immersion in 2 vol.% HF solution for 5 min) surfaces of samples using field 

emission scanning electron microscopy (FE-SEM, Hitachi S-4100, Hitachi, Tokyo, Japan; 25 

kV acceleration voltage, beam current 10 µA) under secondary electron mode. Archimedes’ 

method (i.e., immersion in diethyl phthalate) was used to measure the apparent density of the 

samples. Three-point bending strength tests were performed on rectified parallelepiped bars (3 

mm × 4 mm × 50 mm) of sintered GCs (Shimadzu Autograph AG 25 TA, Tokyo, Japan 0.5 

mm/min displacement); the results were obtained from at least 10 different independent 

samples. 

 

3. Results 

3.1 Characterization and properties of glasses 

Melting at 1550 ºC for 1 h was adequate to obtain transparent and colourless glasses. 

Nevertheless, the presence of bubbles was evident in all the experimental glasses, which 

disappeared after remelting of glass frits at 1550 ºC for 1 h. The amorphous nature of the as-

quenched glasses was confirmed by XRD (not shown). 

Dilatometry curves of the cast and annealed bulk glasses (glass blocks) are plotted in Fig. 1. 

The transition points (Tg) and softening points (Ts) for the investigated glasses ranged between 

485–501 ºC and 512–550 ºC, respectively (Table 2). Glass G1 exhibits the highest Tg and Ts, 

while the lowest is shown by glass G3. From the slope of the linear part of these plots (i.e., 

200–400 ºC), the thermal expansion coefficients (CTE) of the glasses G1, G2, and G3 were 
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calculated as 8.00×10−6, 9.39×10−6, and 10.23×10−6 /K, respectively. Consequently, the 

increase in Al2O3 and K2O in the as-investigated proportions (Table 1) favours the decrease in 

CTE and the increase in Tg and Ts of the glasses (Table 2). 
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Fig. 1 − Dilatometry curves obtained from as-cast and annealed bulk glasses with reference to 

Tg (�) and Ts (�) temperatures. 

 
The experimental results showed that the density of the glasses decreases in the order G3 > 

G2 > G1. The molar volume (Vm), oxygen molar volume (Vo), and excess molar volume (Ve) 

were calculated using the apparent density data for the bulk glasses using following relations: 

ρ
M

Vm =  (2) 

where M is the molar mass of the glass and ρ is the apparent density of the bulk glasses. 

Similarly, excess molar volume of the glasses can be expressed as 

∑−=
i

imime VxVV )(  (3) 

Here, xi is the molar concentration of every oxide and Vm(i) is the molar volume of every 

oxide. Oxygen molar volume of the glasses was calculated using the following relation: 

∑

∑
=

i
ii

i
ii

o xn

Mx
V

ρ
 (4) 
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where Mi is the molar weight of the oxide, and i and ni are the oxygen contents in the ith oxide, 

respectively. The lowest values of Vm, Vo, and Ve were obtained for glass G3, while the 

highest value of these parameters were calculated for glass G1 (Table 2). 

 

Table 2 – Properties of the experimental glasses. 
 

 G1 G2 G3 

Density (g/cm3) 2.34 ±0.01 2.35 ±0.01 2.36 ±0.01 

Tg (ºC) 501 492 485 

Ts (ºC) 550 532 512 

CTE200-400ºC (10-6 /K) 8.00 9.39 10.23 

Molar volume, Vm (cm3/mol) 25.38 ±0.14 24.34 ±0.01 23.35 ±0.05 

Oxygen molar volume, Vo (cm3/mol) 15.23 ±0.09 14.89 ±0.01 14.57 ±0.03 

Excess molar volume, Ve (cm3/mol) 2.06 ±0.15 1.60 ±0.01 1.19 ±0.05 

 

The DTA thermographs, as obtained from the fine glass powders at a heating rate of 10 

K/min, revealed a single broad exothermic crystallization curve for both G1 and G2 (Fig. 2) 

with a peak temperature of crystallization (Tp) at 737 and 659 ºC, respectively. In the case of 

G3, an exothermic shoulder at Tp = 600 ºC followed by a stronger exothermic curve with Tp = 

656 ºC were observed. The Tp of the investigated glasses was found to depend on the Al2O3 

and K2O molecular fraction because it increased from glass G3 to glass G1. 

 

3.2 Crystallization behaviour of bulk glasses 

Transparent parent glasses transformed into the white translucent opaque GC materials after 

heat treatment at 800 ºC. The degree of opacity significantly increased with further heat 

treatment at 900 ºC. SEM images of glass blocks heat treated at 800 and 900 ºC for 1 h are 

presented in Fig. 3 while their X-ray diffractograms are presented in Fig. 4. The 

crystallization process of the bulk glasses, as followed by XRD and SEM analyses, was found 

to depend on the contents of Al2O3 and K2O. Dendritic microstructure for LS was observed in 

the SEM image of glass G1 heat treated at 800 ºC (Fig. 3(a)) while nucleated droplet phase 

separation was evident in the inner part (part B) of the sample (Fig. 3(b)). Li2SiO3 crystals 

grew from the surface of the glass specimen toward the interior, and the crystal growth rate 
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increased at 900 ºC (Fig. 3(c)). This type of dendritic skeletal crystal growth and surface 

crystallization has been previously documented for the other systems.1, 32  
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Fig. 2 − Differential thermal analysis (DTA) of the investigated compositions. 

 

The XRD results are in good agreement with SEM observations depicting the presence of 

very low-intensity peaks of Li2SiO3 among the amorphous halo for the G1 specimen at both 

800 and 900 ºC (Fig. 4(a)). Figure 3(d) presents the SEM image of specimen G3 at a 

comparatively low magnification (×40), after heat treatment at 800 ºC, evidencing the 

existence of simultaneous surface and bulk crystallization in the form of dendrites, and big 

droplets (designated as B), respectively. The detailed observation of the skeletal surface 

dendrites (part S, similar to G1) can be assigned to Li2SiO3 (Fig. 3(e)). 

The SEM image of oriented structure, presented in Fig. 3(f), was extracted from the inner part 

of specimen G3 (Fig. 3(d), part B), which, under higher magnification (Fig. 3(g)), was found 

to be composed of fine cylindrically shaped nanocrystals. According to XRD (Fig. 4(c)), the 

relatively big droplets as observed in Fig. 3(d) are LD crystals, assuming that LS crystals 

(which also were registered by XRD analysis in Fig. 4(c)) have been mostly formed at the 

surface of the specimen (Fig. 3(e)). 
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Fig. 3 − Scanning electron microscopy images of bulk glasses G1 and G3 heat treated at 800 

ºC and 900 ºC for 1 h: (a)–(b) G1, heat treated at 800 ºC; (c) G1, heat treated at 900 ºC; (d)–

(g) G3, heat treated at 800 ºC; (h) G3, heat treated at 900 ºC. 

 

Heat treatment at 900 ºC caused further growth of LD peaks in the XRD pattern (Fig. 4(c)), 

while LS peaks were suppressed and very low-intensity peaks of quartz appeared. It is worth 

noting that the XRD patterns of composition G2 heat treated at 800 and 900 ºC (Fig. 4(c)) are 

very similar to those obtained for G3 under similar conditions. Homogeneous microstructure 
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composed of configured lathes and fine-grained crystals of LD in chemically etched zones 

(Fig. 3(h)) were observed for the G3 specimen after heat treatment at 900 ºC. 

 

3.3 Crystallization behaviour of glass-powder compacts 

Fully dense GC materials were obtained after sintering of the glass-powder compacts at 800–

850 ºC. Crystallization seems to start after the completion of sintering because the intensity of 

the reflections related to crystalline phases at 800 ºC are relatively low, evidencing a more 

amorphous structure (Fig. 5). In particular, X-ray diffractograms revealed LS as the single 

crystalline phase in GC1 after sintering at 800 ºC (Fig. 5(a)), while highly amorphous GC2 

and GC3 comprised low-intensity LS, quartz (Q), and LD peaks (Figs. 5(b) and (c)). 

Significant changes in phase assemblage occurred in the temperature interval of 800–850 ºC, 

resulting in the appearance of LD phase in GC1 and a tremendous growth of LD intensity 

peaks in GC2 and GC3. Therefore, LD precipitated out to become the major phase in all 

investigated compositions after sintering at 850 and 900 ºC, probably occurring via the 

precursor phase of LS.33 LS and orthoclase (F) in GC1, and LAS in both GC2 and GC3 were 

found as minor crystalline phases. 

SEM images of compositions GC1 and GC3 sintered at 900 ºC reveal the existence of a 

densely packed microstructure. The evidences of porosity derived from both the entrapment 

of air during the preparation route (so-called primary porosity) and the differences in density 

of the parent glass and crystalline phases (so-called secondary porosity) are also evident (Fig. 

6). The insert presented in the Fig. 6(b) shows the existence of fine-grained LD crystals 

forming endless chains in the region free from superficial glassy phase. 

The variation in density and the bending strength of GCs along with the firing temperature are 

plotted in Fig. 7. The density values were stable for GC1 (2.34 g/cm3) at both 800 and 850 ºC 

followed by a smooth decrease after firing at 900 ºC. On the contrary, the density for GC2 and 

GC3 showed a significant increase within the temperature interval 800–850 ºC, reaching the 

maximum value 2.35 g/cm3 for both compositions. A negligible decrease in density for GC2 

and GC3 was observed after firing at 900 ºC. 

The relatively low degree of crystallinity (Fig. 5(b)) resulted in poor mechanical properties for 

the GC3 fired at 800 ºC (58.1±2.3 MPa). However, under the same conditions GC2 featured 

better mechanical properties (92.2±3.0 MPa) in comparison with GC3, while the highest 

flexural strength value was recorded for GC1 (124.9±2.3 MPa). The mechanical strength 
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increased significantly for all experimental compositions at 850 ºC. The flexural strength for 

all the investigated GCs varied between 152 and 165 MPa with GC1 exhibiting the maximum. 

Similar results were recorded for GC1 at 900 ºC (162.5±30.7 MPa), while GC2 and GC3 

demonstrated significant further increases to values of 181.3±30.4 and 201.4±14.0 MPa, 

respectively. A smooth surface effect of the samples as a result of self-glazing was also 

observed. 
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Fig. 4 − X-ray diffractograms of bulk glasses heat-treated at 800 and 900 ºC: (a) G1, (b) G2, 

and(c) G3. LS, lithium metasilicate (Li2SiO3, ICDD card 01-070-0330); LD, lithium disilicate 

(Li 2Si2O5, ICDD card 00-049-0803); Q, quartz (SiO2, ICDD card 00-046-1045); Q*, quartz 

(SiO2, ICDD card 01-085-0794) [scale bar: (a) = 2150 cps; (b) and (c) = 63000 cps]. 

 

The CTE (200–700 ºC) values of the GC1, GC2, and GC3 sintered at 900 ºC were calculated 

as 8.46×10−6, 9.20×10−6, and 9.21×10−6 /K, respectively. A similar trend, i.e. decreasing CTE 

values with increasing Al2O3 and K2O molecular fraction, was also observed for the parent 

glasses (Fig. 1). 

 

4. Discussion 

The roles of Al2O3 and K2O on the crystallization behaviour of glasses with SiO2/Li 2O ratios 

(3.13 to 4.88) far beyond that of LD stoichiometry revealed some interesting features. 

Transparent bulk glasses were obtained after annealing at 550 ºC, contrasting to the cloudy 

glasses obtained by Vogel9 when investigating compositions with similar Li2O contents (15–
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23 mol.%). The different crystallization behaviours observed can only be attributed to the 

presence of Al2O3 and K2O (besides Li2O and SiO2) in the glasses used in the present 

investigation. It is well documented in the literature that the addition of Al2O3 simultaneously 

suppresses the immiscibility temperature while raising the Tg of the glasses so that 

immiscibility no longer occurs at any temperature unless not prevented by slow kinetics. It is 

worth noting that the existence of immiscibility in potassium silicate glasses has not been 

conclusively established.34 Metastable immiscibility may be formed in the glasses 

investigated, but with such a fine scale of morphology that the glasses appear homogeneous to 

the naked eye. The slightly higher upper immiscibility temperatures of the lithium disilicate 

melt in simple Li2O–SiO2 system often leads to a slightly coarser morphology.35 
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Fig. 5 − X-ray diffractograms of glass-powder compacts sintered for 1 h at different 

temperatures: (a) GC1, (b) GC2, and (c) GC3. LS, lithium metasilicate (Li2SiO3, ICDD card 

01-070-0330); LD, lithium disilicate (Li2Si2O5, ICDD card 00-040-0376); LD*, lithium 

disilicate (Li2Si2O5, ICDD card 00-049-0803); LAS, lithium aluminum silicate (LiAlSi3O8, 

ICDD card 00-040-0073); LAS*, lithium aluminum silicate (LiAlSi3O8, ICDD card 00-035-

0794); F, potassium feldspar (KAlSi3O8, ICDD card 01-071-0957); Q, quartz (SiO2, ICDD 

card 01-076-0912) [scale bar = 13000 cps]. 

 

It can be assumed that due to the presence of alkali cations in the glasses, Al will exist in a 

four-coordinated position. To maintain local charge neutrality, (AlO4)
5− units will be charge 

compensated by alkali cations, which must be present in the vicinity of each such tetrahedron. 
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Therefore, the (AlO4)
5− tetrahedral will substitute directly into the network for silicon–oxygen 

tetrahedral, causing an increase in Tg and a decrease in CTE. This phenomenon was observed 

in the experimental glasses when the Al2O3 and K2O molecular fraction increased from glass 

G3 to G1. Also, glass G3 exhibited the lower values of Vm, Vo, and Ve in comparison with G2 

and G1. This can be explained by a higher volume fraction of network modifiers in this 

composition. 

 

15 µµµµm(a) 15 µµµµm(b)15 µµµµm(a) 15 µµµµm(b)
 

Fig. 6 − Typical microstructures of glass ceramics sintered for 1 h: (a) GC1 (900 ºC); (b) GC3 

(900 ºC). 

 

Both crystallization process and liquid–liquid phase separation seem to have contributed to 

the transformation of transparent parent bulk glasses into the opaque GC materials after heat 

treatment at 800 ºC. SEM images of bulk glass G1 (containing the highest amounts of Al2O3 

and K2O) after heat treatment at 800 ºC revealed dendritic surface crystallization of LS at 800 

ºC (Fig. 3(a)) and nucleated droplet phase separation zones in the silica-rich matrix (Fig. 

3(b)). Li2SiO3 crystals grew from the surface toward the interior (Fig. 3(c)) and no LD 

crystals were formed, while the sample continued to be highly amorphous after further heat 

treatment at 900 ºC (Fig. 4(a)). Because glass G1 has the highest Tg (Table 2), it can be 

suggested that the embedded disilicate zones (droplet phase in Fig. 3(b)) will be unable to 

grow as they are separated from one another by the inert highly viscous SiO2-rich glass 

phase.9 This can be also supported by the fact that crystallization of LS removes an equimolar 

quantity of Li2O and SiO2 from the molten glass, thus increasing the SiO2 content of the 

remaining glass, leading to an increase in its viscosity.34 

SEM images of bulk glass G3 at 800 ºC (Figs. 3(d) and (e)) also revealed the dendritic surface 

crystallization of LS, which most probably precipitated first because of its lower activation 

energy for crystallization in comparison with LD.36-37 LD crystals were formed in the interior 
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of this specimen G3 (Fig. 3(g)) via a bulk crystallization mechanism; that was, however, not 

the case for G1. This type of LD formation most probably is attributed to the separation of 

glassy phase into droplet-like zones of Li-rich phase and SiO2-rich glass matrix (Fig. 3(d)) 

that occurs during heat treatment of the parent glass as a result of a flow process. Note that G3 

features the lower Tg (Table 2) and, hence, a less viscous glassy phase. On further heat 

treatment at 900 ºC, a highly homogeneous microstructure comprising of fine-grained crystals 

of LD were formed (Fig. 3(h)). It is worth noting that apart from the high intensity of 

reflections related to LD crystalline phase, traces of LS and quartz were also present in the 

XRD spectra of both GC2 and GC3 at 900 ºC (Fig. 4(c)). 
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Fig. 7 − Evolution of density (dashed lines) and bending strength (full lines) of glass-powder 

compacts GC1 (�), GC2 (�), and GC3 (�) with sintering temperature. 

 

During the preparation of GCs via sintering of glass-powder compacts, the crystallization of 

LD seems to occur via the precursor phase of LS due to the solid-state reaction as in chemical 

Eq. (1). In particular, LS was exclusively formed in G1 at 800 ºC. However, with temperature 

increase, the intensity of the reflections related to LS decreased, and LD appeared as a major 

crystalline phase in GC1 at both 850 and 900 ºC (Fig. 5(a)). Interestingly, LD was not formed 

in the heat-treated bulk glass blocks of glass G1. This behaviour may be associated with the 

difference in preparation routes of the parent glasses, as water quenching of the glass 

increases the OH content. The hydroxyl groups may act as a modifier and break the silicate 

network, thus reducing the viscosity and activation energy of viscous flow.2, 38 Therefore, the 

appearance of orthoclase (F) in GC1 and LAS in both GC3 and GC4 as minor crystalline 

phases (Fig. 5) also can be explained. Moreover, precipitation of F and LAS phases evidences 
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that (AlO4)
5− units, charge compensated by alkali cations, are present in the structure of parent 

glasses. 

The mechanical strength of GCs produced from glass-powder compacts increased 

significantly at 850–900 ºC, resulting in high-strength GCs (Fig. 6). This can be explained by 

the precipitation of fine LD crystals uniformly distributed in the glass matrix. It has been 

documented in the literature that the presence of Li2Si2O5 crystals enhances the strength, 

whereas the presence of Li2SiO3 crystals does not change the strength of the parent glass.39 

Nevertheless, further experimental investigations on the microstructural features of as-

received bulk glasses and their crystallization kinetics are needed in order to have a better 

understanding about the phenomenon related to metastable immiscibility and crystallization 

processes in this system. In particular, a challenge to compare the microstructural features of 

the investigated experimental glasses with relevant glasses free from Al2O3 and K2O in a 

Li 2O–SiO2 system will be undertaken and presented in our forthcoming publication. 

 

5. Conclusions 

The parent bulk glasses featuring a high degree of LD non-stoichiometry appeared transparent 

after annealing, while the compositions with a similar amount of Li2O in the Li2O–SiO2 

system were previously found to be cloudy. Al2O3 may simultaneously suppress the 

immiscibility temperature while raising the Tg of experimental glasses. After heat treatment, 

seemingly both crystallization process and liquid–liquid phase separation contribute to the 

transformation of transparent glasses into opaque GC materials. The crystallization process, 

as followed by XRD and SEM analyses, was found to be dependent on the amount of Al2O3 

and K2O components as well as on the SiO2/Li 2O ratio. In the composition of G1, featuring 

the highest Al2O3 and K2O and the maximum SiO2/Li 2O ratio (4.88), dendritic surface 

crystallization of LS was observed. For glasses with lower amounts of Al2O3 and K2O and a 

lower SiO2/Li 2O ratio, the mechanism seems to be a mix of surface and bulk crystallization 

resulting in the preferential formation of Li2Si2O5. 

During the preparation of GCs via sintering of glass-powder compacts, crystallization of LD 

seems to occur via the precursor phase of LS as a result of the solid-state reaction as in 

chemical Eq. (1). LS was exclusively formed in G1 at 800 ºC followed by LD, which 

appeared as the major crystalline phase in this composition at both 850 and 900 ºC. LD was 

not formed in the heat-treated bulk glass blocks of the same composition. 
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Finally, the mechanical strength specimens produced from glass-powder compacts increased 

significantly at 850–900 ºC resulting in high-strength GCs. 
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Abstract 

The effect of Al2O3 and K2O content on structure, sintering and devitrification behaviour of 

glasses in the Li2O–SiO2 system along with the properties of the resultant glass–ceramics 

(GCs) was investigated. Glasses containing Al2O3 and K2O and featuring SiO2/Li 2O molar 

ratios (3.13–4.88) far beyond that of lithium disilicate (Li2Si2O5) stoichiometry were 

produced by conventional melt-quenching technique along with a bicomponent glass with a 

composition 23Li2O–77SiO2 (mol.%) (L23S77). The GCs were produced through two different 

methods: (a) nucleation and crystallization of monolithic bulk glass, (b) sintering and 

crystallization of glass powder compacts. 

Scanning electron microscopy (SEM) examination of as cast non-annealed monolithic glasses 

revealed precipitation of nanosize droplet phase in glassy matrices suggesting the occurrence 

of phase separation in all investigated compositions. The extent of segregation, as judged 

from the mean droplet diameter and the packing density of droplet phase, decreased with 

increasing Al2O3 and K2O content in the glasses. The crystallization of glasses richer in Al2O3 

and K2O was dominated by surface nucleation leading to crystallization of lithium 
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metasilicate (Li2SiO3) within the temperature range of 550–900 ºC. On the other hand, the 

glass with lowest amount of Al2O3 and K2O and glass L23S77 were prone to volume nucleation 

and crystallization, resulting in formation of Li2Si2O5 within the temperature interval of 650–

800 ºC. 

Sintering and crystallization behaviour of glass powders was followed by hot stage 

microscopy (HSM) and differential thermal analysis (DTA), respectively. GCs from 

composition L23S77 demonstrated high fragility along with low flexural strength and density. 

The addition of Al2O3 and K2O to Li2O–SiO2 system resulted in improved densification and 

mechanical strength. 

 

Keywords: Sintering; Microstructure-final; Glass; Glass–ceramics; Lithium disilicate 

 

 
 

1. Introduction 

Phase separation, nucleation and crystallization of glasses in the Li2O–SiO2 system have been 

the subject of many theoretical studies.1-9 According to Vogel,8 Li2O–SiO2 liquids containing 

less than 30 mol.% Li2O lead to opalescent or opaque glasses on cooling owing to phase 

separation. TEM investigation revealed segregation into droplet like zones of Li-rich phase 

and SiO2-rich glass matrix. Moreover, within the Li2O content range of 14–16 mol.% in the 

entire glass, Li2Si2O5 (here after referred as LD) composition was already reached in the 

droplet phase.8 Further increasing the Li2O content in the entire glass reduced the surface 

tension of the two phases because Li2O entered into the SiO2-rich phase surrounding the 

droplets and the size of the droplets reduced continuously. Subsequently, with Li2O content of 

33.3 mol.%, corresponding to Li2Si2O5 in the entire glass, the droplet phase and the phase 

surrounding the droplets had the same composition, with this stoichiometric LD glass 

composition exhibiting the most homogeneous possible structure. 

Generally, slight changes in lithium silicate glass composition may have significant effects on 

chronology and morphology of phases formed. The addition of P2O5 to LD glass was 

observed to induce amorphous phase separation and to increase the crystal nucleation rate, 

simultaneously.3, 5, 10-12 The incorporation of TiO2 in addition to P2O5 greatly affected phase 

evolution, morphology and thereby thermo-physical properties of crystallized glasses in low 
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alumina Li2O–SiO2 glasses.13 The conventional nucleating agent ZrO2 in Li2O–SiO2 glass 

enhanced the polymerization of the silicate network, and caused a significant red shift in 

Raman frequencies for Q2 species and amorphous phase separation before crystallization.14 

Recently it was demonstrated that very small amount of MnO2 and V2O5 (less than 1 wt.% in 

total) might decrease the critical cooling rate of the LD melt and so increase the glass forming 

tendency.15 The occurrence of this phenomenon was attributed to the following possible 

reasons: (a) an increase of melt viscosity and, therefore, of the kinetic barrier against 

crystallization; (b) an increase of the surface energy difference between the Li-silicate crystals 

and residual melt, thus enhancing the surface energy barrier against nuclei formation.15 

The role of Al2O3 and K2O on crystallization in glasses featuring SiO2/Li 2O ratios (3.13–4.88) 

far beyond of LD stoichiometry was recently studied.16 Glasses in both bulk and frit form 

were produced by the conventional melt-quenching technique using alumina crucibles. 

Therefore, an unavoidable alumina uptake from the crucibles cannot be neglected. To 

eliminate this anomaly leading to uncontrolled compositional variations, Pt crucibles were 

used in the present work to prepare the same glass compositions along a new bicomponent 

(23 mol.% Li2O and 77 mol.% SiO2) glass denoted as L23S77. The aim of this work was, 

therefore, to get a deeper insight on phenomena related to a metastable immiscibility and 

devitrification in Li2O−SiO2 glasses in relevance with Al2O3 and K2O content. Particular 

emphasis was also given to the investigation of sintering behaviour and the properties of the 

corresponding glass powder compacts. Significant differences between L23S77 composition 

and its Al2O3 and K2O containing counterparts were encountered in terms of structure, 

crystallization kinetics, thermal behaviour and properties. 

 

2. Experimental procedure 

Table 1 presents the compositions of the glasses investigated in the present study along with 

the corresponding SiO2/Li 2O ratios. The addition of Al2O3 and K2O was performed on 

equimolecular basis and the amount of additives decreased from glass G1 to G3. The glass 

L23S77 containing the same amount of Li2O (22.96 mol.%) as glass G3, but richer in SiO2 

(77.04 mol.%) due to complete exclusion of Al2O3 and K2O from its composition was also 

prepared and investigated for comparison purposes. 
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Table 1 – Compositions of the experimental glasses. 
 

 Oxides (mol.%)  

 Li2O K2O Al2O3 SiO2 SiO2 /Li2O 

G1 15.23 5.24 5.24 74.30 4.88 

G2 19.08 3.94 3.94 73.04 3.83 

G3 22.96 2.63 2.63 71.78 3.13 

L23S77 22.96 − − 77.04 3.35 

 

Powders of technical grade SiO2 (purity > 99.5%) and of reactive grade Al2O3, Li2CO3, and 

K2CO3 were used. Homogeneous mixtures of batches (~100 g), obtained by ball milling, were 

calcined at 800 ºC for 1 h and then melted in Pt crucibles at 1550 ºC for 1 h, in air. Glasses 

were produced in bulk (monolithic) and frit form as described below. 

 

2.1 Crystallization behaviour of bulk glasses 

Two sets of bulk glasses for each composition were obtained by pouring the glass melt on 

preheated bronze mould. The first set of glasses was allowed to cool down in the air while 

second set of glasses was subjected to annealing at 450 ºC for 1 h. 

The coefficient of thermal expansion (CTE) of the annealed samples was determined by 

dilatometry using prismatic samples of bulk glasses with cross section of 3 mm × 4 mm (Bahr 

Thermo Analyse DIL 801 L, Germany; heating rate 5 K/min). 

The onset of crystallization, Tc and peak temperature of crystallization, Tp for the investigated 

glasses were obtained from DTA thermographs of glass grains with sizes in the range of 415–

1000 µm, collected by sieving of grounded non-annealed glass blocks. The DTA was carried 

out in air (Netzsch 402 EP, Germany) from room temperature to 1000 ºC at different heating 

rates (β = 2, 5, 10 and 15 K/min). The kinetics of crystallization was studied using the formal 

theory of transformation kinetics as developed by Johnson and Mehl17 and Avrami,18-20 for 

non-isothermal processes: 
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which is the equation of a straight line, whose slope and intercept gives the activation energy, 

Ec, and the pre-exponential factor, q = Q1/nK0, respectively, and the maximum crystallization 

rate by the relationship21: 

( ) 1237.0
−= pc

p

RTnE
dt

d βχ
 (2) 

which enables obtaining, for each heating rate, a value of the kinetic exponent, n. In Eq. (2), χ 

corresponds to the crystallization fraction and 
pdt

dχ
is the crystallization rate, which may be 

calculated by the ratio between the ordinates of the DTA curve and the total area of the 

crystallization curve. 

In order to study the evolution of crystallization phases in monolithic glasses, the annealed 

glasses were cut into cubes (1 cm × 1 cm × 1 cm) and heat treated non-isothermally at 550, 

650, 750, 800 and 900 ºC for 1 h, respectively, at heating rate of 2 K/min. 

 

2.2 Sintering and crystallization of glass powder compacts 

The glass frits were produced by quenching of melt in cold water. Further, the glass frits were 

dried and milled in high speed agate mill resulting in fine glass powders with mean particle 

size of 5–10 µm as determined by light scattering technique (Coulter LS 230, UK, Fraunhofer 

optical model). Infrared spectra of the glass powders were obtained using an infrared Fourier 

spectrometer (FTIR, model Mattson Galaxy S-7000, USA) in the range of 300–1500 /cm. For 

this purpose, each sample was mixed with KBr in the proportion of 1/150 (by weight) for 15 

min and pressed into a pellet using a hand press. 

A side-view hot-stage microscope Leitz Wetzlar (Germany) equipped with a Pixera video-

camera and image analysis system was used to investigate the sintering behaviour of glass 

powder compacts. The measurements were conducted in air with a heating rate of 5 K/min. 

The cylindrical shaped samples from glass powder compacts with height and diameter of ~3 

mm were prepared by cold-pressing the glass powders. The cylindrical samples were placed 

on a 10 mm × 15 mm × 1 mm alumina (> 99.5 wt.% Al2O3) support. The temperature was 

measured with a chromel–alumel thermocouple contacted under the alumina support. The 

temperatures corresponding to the characteristic viscosity points (first shrinkage (TFS), 



 

90 
 

maximum shrinkage (TMS), softening (TD), half ball (THB) and flow (TF)) were obtained from 

the graphs and photomicrographs taken during the hot-stage microscopy experiment.22-23 

Rectangular bars with dimensions of 4 mm × 5 mm × 50 mm were prepared by uniaxial 

pressing (80 MPa). The bars were sintered under non-isothermal conditions for 1 h at 800, 

850 and 900 ºC using a low heating rate of 2 K/min aimed to prevent deformation of samples. 

Archimedes’ method (i.e. immersion in diethyl phthalate) was employed to measure the 

apparent density of the samples. The three-point bending strength tests were performed on 

rectified parallelepiped bars (3 mm × 4 mm × 50 mm) of sintered GCs (Shimadzu Autograph 

AG 25 TA, 0.5 mm/min displacement): the results were obtained from at least 10 different 

independent samples. 

 

2.3 Crystalline phase analysis and microstructural evolution in glass-ceramics 

The amorphous nature of the parent glasses and the nature of crystalline phases present in the 

GCs were determined by X-ray diffraction (XRD) analysis (Rigaku Geigerflex D/Mac, C 

Series, Japan; Cu Kα radiation, 2θ = 10–60º with a 2θ-step of 0.02 º/s). The crystalline phases 

were identified by comparing the obtained diffractograms with patterns of standards complied 

by the International Centre for Diffraction Data (ICDD). 

Microstructure observations were done at polished (mirror finishing) and then etched surfaces 

of samples (by immersion in 2 vol.% HF solution for 5–7 min) by field emission scanning 

electron microscopy (FE-SEM, Hitachi S-4100, Japan, 25 kV acceleration voltage, beam 

current 10 µA) under secondary electron mode. 

 

3. Results 

3.1 Microstructure and properties of glasses 

Melting at 1550 ºC for 1 h was adequate to obtain bubble free, transparent and colourless 

glasses G1, G2 and G3, while in case of L23S77 transparent melt transformed into a cloudy 

hazy glass on cooling. SEM images of as cast non-annealed samples presented in Fig. 1 

revealed the precipitation of a nanosize droplet phase in glassy matrices suggesting the 

occurrence of liquid–liquid phase separation in all investigated compositions. However, the 

mean droplet diameter and the population density of droplets decreased by adding Al2O3 and 
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K2O into the Li2O–SiO2 system. Accordingly, homogeneous and transparent appearance was 

conferred to the glasses G1, G2 and G3 due to finer scale morphology and a relatively lower 

volume fraction of the droplets. 

Infrared (FTIR) spectra of the experimental glasses G1, G3 and L23S77 are plotted in Fig. 2. 

All samples show lack of sharpness and a broad band in the region 850–1300 /cm. Two 

smaller absorption bands can be observed at ~470 (a) and ~800 /cm (b). 

 

5 µµµµmG1 5 µµµµmL23S77
5 µµµµmG1 5 µµµµmL23S77  

Fig. 1 − SEM images of non-annealed bulk glasses G1 and L23S77. 

 

Some properties of experimental glasses are presented in Table 2. The transition points (Tg) 

and softening points (Ts) for the investigated glasses ranged between 477–498 and 501–537 

ºC, respectively. Glass G1 exhibits the highest Tg and Ts, while the lowest is shown by glass 

L23S77. The measured CTE (200–400 ºC) values for the glasses L23S77, G1, G2, and G3 were 

8.16, 8.47, 8.69 and 9.65 (×10−6 /K), respectively. Consequently, an increase in Al2O3 and 

K2O in the as-investigated proportions favours the decrease in CTE and increase in Tg and Ts 

of the glasses. These results are in accordance with our earlier study,16 while some 

discrepancies in the CTE values might be attributed to differences in the preparation of 

glasses (using Pt crucibles in this study) and in the annealing procedures. 

Density of glass L23S77 was 2.31 g/cm3 while for other glasses the measured density was 2.36 

g/cm3. It was observed that molar volume (Vm), oxygen molar volume (Vo) and excess molar 

volume Ve (calculated using density values of annealed glasses16) diminished with decreasing 

Al 2O3 and K2O content as well as SiO2/Li 2O content in the glasses (Table 2). It is worthy 

noting that no significant differences were observed in the values of Vm, Vo and Ve for 

annealed and non-annealed glasses. 
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Fig. 2 − FTIR spectra of the non-annealed bulk glasses G1, G3 and L23S77. 

 

Table 2 – Properties of the experimental glasses. 
 

 L23S77 G1 G2 G3 

Density (g/cm3) 2.31 ± 0.01 2.36 ± 0.01 2.36 ± 0.01 2.36 ± 0.01 

NBO/T 0.60 0.36 0.47 0.60 

Tg (ºC) 477 498 495 477 

Ts (ºC) 501 537 531 514 

CTE200-400ºC (10-6 /K) 8.16 8.47 8.69 9.65 

Molar volume, Vm (cm3/mol) 23.02 ± 0.01 25.24 ± 0.01 24.27 ± 0.02 23.38 ± 0.01 

Oxygen mol. vol., Vo (cm3/mol) 13.90 ± 0.01 15.14 ± 0.02 14.85 ± 0.01 14.58 ±0.01 

Excess mol. vol., Ve (cm3/mol) 1.34 ± 0.01 1.92 ± 0.01 1.53 ± 0.01 1.22 ± 0.01 

 

 

3.2 Crystallization of bulk glasses 

The changes in the appearance of monolithic glasses after heat treatment at 550, 650, 750, 800 

and 900 ºC for 1 h is presented in Table 3. Fig. 3 presents the DTA thermographs for all the 

investigated glasses at β =15 K/min.  

As is evident from Fig. 3, the exothermic crystallization peaks for the G1 and G2 glasses were 

significantly less pronounced in comparison to those of G3 and L23S77 compositions. Using 

lower heating rates of 2, 5 and 10 K/min, the tendency is the same, i.e., the crystallization 
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peaks for the glasses G1 and G2 could be hardly distinguished, while the glasses G3 and 

L23S77 exhibit sharp exothermic crystallization peaks under the same experimental conditions 

(not shown). The values of Tp for glasses L23S77, G3, G2 and G1 are 749, 823, 835 and 831 

ºC, respectively, and Tp tends to shift towards higher temperatures with increasing heating 

rates. 

 

Table 3 – Changes in the appearance of monolithic bulk glasses after heat treatment at 

different temperatures for 1 h. 

 G1 G2 G3 L22S77 

As-cast glass Transparent Transparent Transparent Cloudy  

450 ºC Transparent Transparent Transparent Cloudy  

550 ºC Transparent Transparent Semi  transparent Cloudy  

650 ºC Transparent Transparent Semi  transparent White opaline 

750 ºC Semi transluc. opaline White translucent 

opaline 

Semi translucent opaline White opaline 

800 ºC Semi transluc. opaline White transluc.opaline White transluc. opaline White opaline 

900 ºC Semi transluc. opaline White transluc. opaline White transluc. opaline White opaque 
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Fig. 3 − DTA thermographs for all the investigated glasses at β =15 K/min. 
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Fig. 4 − X-ray diffractograms of bulk glasses heat treated at 550, 650, 750, 800 and 900 ºC: 

(a) G1, (b) G2, (c) G3 and (d) L23S77. LS*: lithium silicate (Li2SiO3, ICCD card 01-070-

0330); LS: lithium silicate (Li2SiO3, ICCD card 00-029-0828); LD*: lithium disilicate 

(Li 2Si2O5, ICCD card 01-072-0102); LD: lithium disilicate (Li2Si3O5, ICCD card 01-049-

0803); Q: quartz (SiO2, ICCD card 01-070-2516); Q*: quartz (SiO2, ICCD card 01-077-

1060); C: cristobalite (SiO2, ICCD card 01-082-0512) [scale bar: (a) 3500, (b) 3500, (c) 

70000 and (d) 40000 cps]. 

 

Fig. 4 presents the evolution of phases in bulk glasses heated at different temperatures for 1 h. 

No crystallization events could be detected by XRD analysis in G1, G2 and G3 at both 550 
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and 650 ºC while strong peaks of LD with quartz (Q) traces were already registered in L23S77 

at 650 ºC. The same phase assemblage was revealed in L23S77 upon further heat treating at 

750 and 800 ºC until 900 ºC when cristobalite (C) also appeared. The composition G1 

exhibited monomineral Li2SiO3 (hereafter referred as LS) as the only crystalline phase at 

temperatures ≥ 750 ºC. In agreement with GC G1, LS crystallized as the only phase in 

composition G2 after heat treatment at 750 ºC. However, with further increase in temperature 

to 800/900 ºC, this crystalline phase was adjoined by LD which precipitated as a secondary 

phase. The composition G3 with lowest K2O and Al2O3 content exhibited LD as the major 

phase formed at 750 ºC together with traces of LS. 

Surface crystallization and dendritic skeletal crystal growth of LS could be observed by SEM 

in both G1 and G2 in the temperature interval 750–900 ºC (not shown), being consistent with 

nucleated droplet phase separation in the inner part of the specimens as previously 

documented for glass G1.16 SEM images of G3 support the conclusion that LD crystal growth 

occurred in the form of rods upon heat treating in the temperature interval of 550–750 ºC (Fig. 

5(a) and (b)), nucleated from the nanosize droplet phase revealed in the parent non-annealed 

glass (Fig. 1). G3 specimens became semi-transparent at 550 ºC (Table 3) before any 

crystallization could be detectable by XRD.  

 

5 µµµµm(a) 2 µµµµm(b)

5 µµµµm(c) 50 µµµµm(d)

5 µµµµm(a) 2 µµµµm(b)

5 µµµµm(c) 50 µµµµm(d)
 

Fig. 5 − SEM images of glass G3 heat treated at several temperatures: (a) 550, (b) and (c) 750, 

and (d) 900 ºC. 
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These results suggest that the volume fraction of crystals developed was less than the limit of 

XRD resolution.24 Apart from the individual fine rod like crystals observed in the core of G3 

specimen at 750 ºC (Fig. 5(b)), there was a structural rearrangement trend towards the 

formation of oriented fibres (Fig. 5(c)). This is consistent with optical observations made by 

Morse and Donnay25 who concluded that the size increase of LD crystals occurs through 

nucleation and growth of individual rods because every point of the surface of growing fibre 

can act as a nucleating site for a new rod. Crystal growth of LD in G3 resulted in the 

formation continuous laminar fibres of LD at 900 ºC (Fig. 5(d)). 

 

2 µµµµm(a) 50 µµµµm(b)

2 µµµµm(c) 2 µµµµm(d)

2 µµµµm

2 µµµµm(a) 50 µµµµm(b)

2 µµµµm(c) 2 µµµµm(d)

2 µµµµm

 

Fig. 6 − SEM images of glass L23S77 heat treated at several temperatures: (a) 550, (b) 650, (c) 

800, and (d) 900 ºC. 

 

The SEM images of heat treated L23S77 specimens show that the nuclei growth up to the 

critical size at 550 ºC (Fig. 6(a)) has been followed by the formation of LD spherulites at 650 

ºC (Fig. 6(b)) as detected by XRD (Fig. 4(d)). At elevated temperatures, 750 and 800 ºC, 

spherulites were composed by numerous submicron roundly shaped crystals (Fig. 6(c)) 

followed by a coarsening process at 900 ºC (Fig. 6(d)) with simultaneous formation of 

cristobalite, as identified by XRD analysis (Fig. 4(d)). Seemingly L23S77 was almost fully 

crystallized at 800 ºC and then residual silica rich glass phase start to devitrify in the form of 

cristobalite. 
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Crystallization kinetics studies were performed only for glasses G3 and L23S77 because 

glasses G1 and G2 showed low tendency towards devitrification and exhibited negligible 

crystallization exothermic curves at the experimental heating rates (β = 2–15 K/min) used in 

this study. It may be observed that 
pdt

dχ
increases with the heating rate (Fig. 7, Eq. (2)). The 

plots of crystallization fraction vs temperature show that crystallization rate of LD decreases 

with addition of Al2O3. This can be attributed to a longer time duration required for the 

minimum percentage of crystallinity to be detectable by XRD.24, 26 The values of Ec for 

glasses L23S77 and G3 are 153 and 330 kJ/mol, respectively while the value of n is ~3.04±0.05 

and 1.51±0.02, respectively. The corresponding mean values may be taken as the most 

probable quoted exponents. 

 

3.3 Crystallization of glass powder compacts 

The variations in density and bending strength of glass powder compacts with firing 

temperature in the range 800–900 ºC are plotted in Fig. 8. Well densified GC materials G1 

and G2 exhibiting bending strength values of 114±2 and 158±5MPa, respectively, were 

obtained after sintering at 800 ºC (Fig. 8, Table 4).  
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Fig. 7 − Crystallization fraction vs heat treatment temperature: (a) G3 and (b) L23S77. 

 

Under the same conditions, GC3 featured lower mechanical properties (81±8 MPa) in 

comparison to GC1 and GC2, while L23S77 samples exhibited high fragility and the lowest 

values of flexural strength (0.7±0.1 MPa) and density (2.03±0.05 g/cm3) among all 

investigated compositions. No improvement in densification level was observed for this Al2O3 
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and K2O free composition after further heat treatment, resulting in mechanically very weak 

and highly porous samples. On the contrary, GC3 demonstrated the beneficial effect of small 

addition of Al2O3 and K2O to bicomponent composition L23S77. In particular, increases of 

density (2.25±0.01 g/cm3), shrinkage (15.9±0.3%) and mechanical strength (216±3 MPa) 

were observed after firing at 850 ºC followed by further densification and strengthening at 

900 ºC (density 2.36±0.01 g/cm3, bending strength 224±4 MPa). The GCs from glass G1 and 

G2 showed the maximum density values (2.34 and 2.36 g/cm3, respectively) at 850 ºC 

followed by a smooth decrease at 900 ºC. Their maximum flexural strength values of 189±8 

MPa for composition GC1 and of 195±9 MPa for composition GC2 were attained at 900 ºC. 

X-ray diffractograms revealed LS as the single crystalline phase in GC1 after sintering at 800 

ºC (Fig. 9), while GC2 and GC3 comprised LS along with Q and LD as minor phases (Fig. 

9(b) and (c)). At 850 and 900 ºC (Fig. 9(c)), GC3 featured almost monomineral composition 

of LD with peaks of low intensity attributed to Q. From the XRD spectra of the compositions 

with higher amount of Al2O3 and K2O LD was revealed in G1 and became principle phase in 

G2 after sintering at 850 ºC. Finally, LD was the main crystalline phase while LS and Q were 

minor phases in both GC1 and GC2 at 900 ºC. 

 

Table 4 – Properties of the glass powder compacts heat treated at different temperatures. 

 L23S77 G1 G2 G3 
Density (g/cm3)     
800 ºC 2.03 ± 0.05 2.28 ± 0.05 2.35 ± 0.01 2.19 ± 0.03 
850 ºC 2.04 ± 0.07 2.34 ± 0.01 2.36 ± 0.01 2.25 ± 0.01 
900 ºC 2.14 ± 0.04 2.33 ± 0.01 2.35 ± 0.01 2.36 ± 0.01 

Shrinkage (%)     
800 ºC 0.7 ± 0.1 17.0 ± 0.3 16.9 ± 0.1 12.6 ± 0.1 
850 ºC 1.7 ± 0.2 17.9 ± 0.2 17.1 ± 0.1 15.9 ± 0.3 
900 ºC 5.2 ± 0.1 18.1 ± 0.1 17.2 ± 0.1 18.0 ± 0.3 

Bending strength (MPa)     
800 ºC 0.7 ± 0.1 114 ± 2 158 ± 5 81 ± 8 
850 ºC 1.0 ± 0.2 134 ± 4 187 ± 14 216 ± 3 
900 ºC 13 ± 2 189 ± 8 195 ± 9 224 ± 4 

 
CTE200-500 ºC (10-6 /K)a 13.45 7.41 7.91 8.69 
CTE200-700 ºC (10-6 /K) a 12.51 9.00 9.57 9.94 

a Samples sintered at 900 ºC. 

 

LD was the main crystalline phase in L23S77 glass powder compacts sintered at 800 and 850 

ºC (Fig. 9(d)). Most probably, GC L23S77 was almost fully crystallized at 800 ºC. Then, the 
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residual glassy phase depleted from lithium and having high silica content starts to crystallize 

in the form of quartz and tridymite.27 Finally, quartz along with LD became the principal 

crystalline phases at 900 ºC and peaks of tridymite along with cristobalite were also observed 

in the XRD pattern (Fig. 9(d)) which is, in fact, in good correlation with phase diagram of 

SiO2–Li2O binary system.28  

The microstructures of the GC1, GC2 and GC3 observed under SEM revealed different 

morphologies of the crystals developed. The typical microstructure of GC1 sintered at 800 ºC 

(Fig. 10(a)) features dendrite configuration of LS crystals in SiO2–Li2O binary system.28 Heat 

treatment of G1 at 850 ºC made LD crystals to grow in the form of submicron sized rods that 

act as nucleating sites for new rods that increase in size (Fig. 10(b)). Crystal growth of the 

individual LD rods in G2 and G3 at 900 ºC resulted in the formation of continuous laminar 

fibres of LD embedded in glassy matrix (Fig. 10(c) and 10(d)) which are responsible for high 

mechanical strength of these GCs. 

Fig. 11 reveals two main steps of sintering for glass powder compacts G1, G2 and G3 during 

a thermal treatment at a constant heating rate (5 K/min) from ambient temperature to 1000 ºC. 

Since glass G3 has lower Tg, it starts to sinter earlier than glass G1 and G2 exhibiting the 

temperature of first initial shrinkage TFS1 at 525 ºC. 
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Fig. 8 − Some properties of glass powder compacts heat treated at different temperatures: (a) 

density and (b) bending strength [�: L23S77; �: G1; �: G2; : G3]. 

 

 



 

100 
 

10 20 30 40 50
2θθθθ (º)

In
te

ns
ity

 (
C

P
S

)

LS

Q

LD

900ºC

800ºC

850ºC

(a)

 

10 20 30 40 50
2θθθθ (º)

In
te

ns
ity

 (
C

P
S

)

LS

Q

LD

900ºC

800ºC

850ºC

(b)

 

10 20 30 40 50
2θθθθ (º)

In
te

ns
ity

 (
C

P
S

)

LS

Q

LD

900ºC

800ºC

850ºC

(c)

 

10 20 30 40 50
2θθθθ (º)

In
te

ns
ity

 (
C

P
S

)

LD

Q

T

900ºC

800ºC

850ºC

                                                                                          (d)

C

 

Fig. 9 − X-ray diffractograms of glass powder compacts heat treated at 800, 850 and 900 ºC: 

(a) G1, (b) G2, (c) G3 and (d) L23S77. LS: lithium silicate (Li2SiO3, ICCD card 01-070-0330); 

LD: lithium disilicate (Li2Si2O5, ICCD card 01-070-4856); Q: quartz (SiO2, ICCD card 01-

077-1060); T: trydimite (SiO2, ICCD card 00-042-1401); C: cristobalite (SiO2, ICCD card 00-

039-1425) [scale bar: (a) 12500, (b) 18500, (c) 28000 and (d) 45000 cps]. 

 

The first maximum shrinkage (TMS1) for glass G3 was assigned at 570 ºC that was well 

correlated with first signs of LS crystallization at 550 ºC evidencing from the XRD analysis 

(not shown). Thus, the interval of first sintering step was wider for G1 (68 ºC) and for G2 (49 

ºC) in accordance with their higher Tp values. As soon as the first sintering period finishes, LS 

start to precipitate from the glass reservoir and crystallization becomes the dominant process. 
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No shrinkage occurs during this period since crystallization impedes densification. A second 

shrinkage stage starts almost synchronically at 793–795 ºC for all experimental compositions, 

the maximum shrinkage (TMS2) being reached at 851, 822 and 924 ºC for G1, G2 and G3, 

respectively. 

 

4. Discussion 

4.1 Bulk glasses 

According to Vogel,8 liquids in pure Li2O–SiO2 system containing less than 30 mol.% Li2O 

undergo phase separation into droplet like zones of Li-rich phase and SiO2-rich glass matrix 

within a metastable immiscibility dome.29 Consequently, the cloudy appearance of the L23S77 

glass was expected. Moreover, the droplet size in this glass has remained nearly the same as 

observed by Vogel.8 

 

3 µµµµm(a) 1 µµµµm(b)

5 µµµµm(c) 3 µµµµm(d)

3 µµµµm(a) 1 µµµµm(b)

5 µµµµm(c) 3 µµµµm(d)
 

Fig. 10 − SEM images of heat treated glass powder compacts: (a) G1, 800 ºC; (b) G1, 850 ºC; 

(c) G2, 900 ºC; and (d) G3, 900 ºC. 

 

SEM examination of the segregation effects occurring in bulk glasses (Fig. 1) confirms that 

incorporation of Al2O3 greatly decreases the immiscibility trend. This phenomenon can be 
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explained by the structural role of Al3+ which may exist in four coordinated position due to 

the presence of alkali cations in the glasses. In order to maintain local charge neutrality, 

(AlO4/2)
− units will be charge compensated by alkali cations (K+, Li+) which must be present 

in the vicinity of each such tetrahedron. Therefore, the (AlO4/2)
− tetrahedra will substitute 

directly into the network for silicon−oxygen tetrahedra and simultaneously tend to suppress 

the immiscibility while raising the Tg and decreasing the CTE of glasses.16, 29 

The lack of sharpness featured in FTIR spectra of the experimental glasses G1, G3 and L23S77 

(Fig. 2) is indicative of the general disorder in the silicate network mainly due to a wide 

distribution of Qn units (polymerization in the glass structure, where n denotes the number of 

bridging oxygens) occurring in these glasses. The broad absorption band in the higher wave 

number region (850–1300 /cm) is attributed to the stretching vibrations of [SiO4] tetrahedra. 

The bands at ~470 and ~800 /cm are linked to bending modes of the silicate network.30 The 

FTIR stretching band of SiO2 tetrahedra slightly broadened in L23S77 in comparison with 

Al 2O3-containing glasses G1 and G3. Additionally, the appearance of absorption bands at 

frequencies ~870, ~915 /cm in L23S77 proves existence of broader distribution of the non-

bridging oxygens among the tetrahedral cation and a less polymerized glass network. On the 

contrary, a shallow band at frequency ~1170 /cm was observed in the infrared spectra of 

Al 2O3-containing glasses, in particular G1 suggesting towards the occurrence of Q4 units and 

consequently an increase in cross-linking degree. Nevertheless, further 27Al-MAS-NMR study 

will be performed to support the hypothesis of Al incorporation in four-fold coordination and 

its homogeneous mixture within the silicate matrix. 

Based on the assumption that Al3+ acts as a network former, the numbers of non-bridging 

oxygen per each tetrahedral cation (NBO/T) were calculated31 for the glasses G1, G2, G3 and 

L23S77 as 0.36, 0.47, 0.60 and 0.60, respectively (Table 2), suggesting more polymerized glass 

network structures for G1 and G2. Moreover, from Table 2, G1 exhibits the highest Tg while 

the lowest Tg values are shown by the G3 and L23S77 glasses. The addition of Al2O3 in 

proportion corresponding to G1 and G2 decreased the NBO/T and thus, leading to an increase 

in Tg. This is consistent with the results reported for the effect of ROn addition on Li2O–SiO2–

ROn glasses (R = P, V, Zr).14, 32 On the contrary, the lower Tg values measured for L23S77 and 

G3 (Table 2) can be attributed to a less polymerization extent of the silicate network, i.e., 

higher number of NBO/T, leading to a lower viscosity. At a given temperature, the viscosity 

of binary silicate melts and super cooled melts generally decreases with increasing 

concentration of modifiers and NBO/T.33 
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Fig. 11 − Variation in relative area (A/A0:A0 is the initial area at room temperature, A is the 

area at defined temperature) powder samples (a) G1, (b) G2 and (c) G3 during the HSM 

measurement. 
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Al 3+ essentially acts as network former, thus, increasing the molar volume of the glasses G1 

and G2. The Vm and Vo values for glass the G3 were higher than for the glass L23S77 while an 

opposite trend was observed for Ve. The lower Ve value for glass G3 in comparison to glass 

L23S77 is likely due to the collapse of the structural skeleton into a closer packing because of 

the presence of two highly ionic oxides (K2O and Li2O) in the former which further leads to 

higher CTE of glass G3 in comparison to glass L23S77. 

The peak temperature of crystallization (Tp) tendency to shift towards higher temperatures 

with addition of Al2O3 and K2O can also be attributed to the structural role of the Al2O3 

having glass forming units (AlO4/2)
− that are larger than (SiO4)

−4 tetrahedra due to the 

different ionic radius of Al3+ (0.53 Å) and Si4+ (0.40 Å).34 This leads to an increasing 

viscosity of the glasses, further reducing the mobility of the different ions and ionic 

complexes operative in the crystallization process. This result is in good agreement with XRD 

data and SEM observations of the heat treated specimens. 

The Avrami parameter for both the glasses L23S77 and G3 suggests bulk crystallization with 

constant number of nuclei, i.e., the existence of three-dimensional bulk crystallization that is 

diffusion controlled in the case of G3.35-36 The higher Ec for glass G3 in comparison to glass 

L23S77 reflects the structural role of Al2O3 in the investigated compositions and supports the 

explanation presented above. The Ec value for glass L23S77 (153 kJ/mol) was lower in 

comparison to that obtained by Freiman and Hench24 (205 kJ/mol) for a glass with the 

composition 25Li2O–75SiO2 (mol.%). This difference might be due to different compositions 

and approaches used to investigate crystallization kinetics. 

 

4.1 Glass powder compacts 

Significant changes in crystalline phase assemblage of Al2O3 and K2O containing GCs 

occurred in the temperature interval of 800–900 ºC. LD precipitated as a secondary phase in 

GC1 after heat treatment at 850 ºC along with quartz (Q) and LS as major crystalline phases. 

However, after heat treatment at 900 ºC, LD crystallized to be the primary phase in GC1 

along with Q and LS as secondary phases. It is noteworthy LD was not recorded in GC1 

prepared through nucleation and crystallization approach in monolithic bulk glasses. This 

behaviour can be ascribed to the difference in preparation routes of the parent glasses as water 

quenching of the glass increases the OH content. The hydroxyl groups may act as a modifier 

and break the silicate network, thus, reducing the viscosity and activation energy of viscous 
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flow.16, 37 A large fraction of LD precipitated out to become the major phase in GC2 and GC3 

after sintering at 850 and 900 ºC. Crystallization of LD during preparation of glass-powder 

compacts G1, G2 and G3 predominantly occurs at temperatures above 800 ºC via the 

precursor LS phase16, 38 due to the reaction described by the following chemical equation  

Li 2SiO3 +SiO2→ Li2Si2O5 (3) 

No aluminium and potassium associated phases were found by XRD analysis in GC1, GC2 

and GC3, resulting in improved mechanical strength compared to data obtained for GCs in the 

previous study.16 

For the GC1, GC2 and GC3 the CTE values were higher within the range of 200–700 ºC than 

within the range of 200–500 ºC (Table 4), but the difference is smaller in case of GC3, 

compared to GC1 and GC2, most probably due to its lower amount of quartz. The phase 

inversions of silica polymorphs are completely reversible on cooling and in particular volume 

changes of tridymite and cristobalite occur at lower temperature than that of quartz when 

stress relief due to viscous flow in the residual glass phase cannot take place. These changes 

cause greater stresses during heating and cooling through the inversion temperature ranges 

leading to weakening of the material. Nevertheless, the main reason for low mechanical 

performance of L23S77 GC was its poor sintering ability due to an early initiation of 

devitrification process in comparison to Al2O3 and K2O containing glasses. In general, the 

desired order of events in glass-powder densification process occurs when sintering precedes 

crystallization. Hence, glasses with large temperature interval between Tg and Tc can possibly 

be well sintered.39 When the onset of crystallization occurs before the glass is fully densified, 

further densification will be impeded by the formation of crystalline phase that increases the 

matrix viscosity.40 From the DTA thermographs of glass grains (Fig. 3) the temperature of 

peak crystallization (Tp), shifted towards higher temperature region with addition of Al2O3 

and K2O suggesting an increase in sintering range for experimental compositions in 

accordance with the trend: L23S77 <G3 <G2 < G1. Consequently, the sintering process of 

L23S77 glass powder compacts occurs in narrower Tc–Tg interval compared to Al2O3 and K2O 

containing compositions and densification was suppressed by the formation of large fraction 

of LD phase. This phenomenon can explain the behaviour of L23S77 that apparently exhibited 

low flexural strength, density and shrinkage values at 800 ºC (Fig. 8, Table 4). 

Further heat treatment at 850 and 900 ºC slightly facilitated densification because the overall 

volume of the system decreased when residual silica glassy phase (density 2.20 g/cm3) 
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crystallized in the form of quartz (density 2.65 g/cm3) and tridymite (density 2.27 g/cm3). 

However, the volume changes occurred in the interval 850 and 900 ºC were not sufficient to 

cause appreciable increase of density and mechanical strength. Thus, L23S77 sample remained 

porous and highly fragile even at 900 ºC, and densification can only be expected to happen at 

temperatures close to the liquidus line of SiO2–Li2O binary system at which abrupt formation 

of liquid phase occurs.41 

Unlike to glass L23S77, densification process of glass powder compacts G1, G2 and G3 

demonstrated excellent sintering ability although, even these compositions also did not follow 

the desired sequence of events and sintering was partially impeded by crystallization. 

However, due to a broader Tc–Tg interval, these glass powder compacts attained significant 

level of densification before crystallization started. The softening point TD (the temperature at 

which the first signs of softening are observed by rounded edges of the samples) and half ball 

point THB (the temperature at which the section of the sample forms a semicircle on the 

microscope grid) increase in the order G3 > G2 > G1. 
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Fig. 12 − Viscosity–temperature curve of the experimental glasses. 

 

The viscosity-temperature curves for G1, G2 and G3 glasses can be built considering their 

dilatometric Tg (log η = 13.3) and the experimental temperatures received from the HSM (first 

and maximum shrinkage, half ball and fluency). The softening point is very much affected by 

crystallisation and corresponding viscosity cannot be evaluated. The viscosity data might be 

fitted to the Vogel–Fulcher–Tamman, VFT, Eq. (4), employing a regressive method with all 

the viscosity experimental points in the studied range. 
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The values of the constants obtained from the fit are the following for each glass (T in ◦C): 

G1: A = 1.9699, B = 1072.96, T0 = 403.763; G2: A = 2.23717, B = 955.356, T0 = 408.105; G3: 

A = 2.28236, B = 951.887, T0 = 390.219. 

From the approximate viscosity–temperature curve (Fig. 12) the increasing Al2O3 content of 

the glass has a decisive influence on viscosity. Particularly, glass G3 exhibited lowest 

viscosity at temperatures below 850 ºC and at the constant temperature log η(G1) > log η(G2) 

> log η(G3). These results are in accordance with Fluegel42 reporting that Al2O3 usually 

increases the viscosity of glasses, most significantly at low temperatures, caused by the 

elimination of non-bridging oxygen sites. Within the scope of optimization of material, Fig. 

12 supports our assumption that addition of Al2O3 reduces the mobility of the different ions 

and ionic complexes operative in the nucleation and crystallization process. The opposite 

trends can be observed when temperatures exceeded 850 ºC: compositions G2 and G3 

demonstrated higher viscosity than G1. This can be explained by formation of a larger 

fraction of LD in GC2 and GC3 at 850 ºC and 900 ºC (Figs. 9(a)–(c)) that cause in shifting of 

their TD and THB values to higher temperature region. 

Nevertheless, further quantitative XRD analysis will be required to estimate the amount of 

glassy phase and its role in the second sintering step of the samples. 

 

5. Conclusions 

In context of monolithic bulk glasses, liquid–liquid phase separation occurred in all 

investigated compositions as illustrated by the nanosize droplets precipitated in the glassy 

matrixes. Al3+ acting as network former decreases the volume fraction and mean diameter of 

droplet phase resulting in transparent glasses G1, G2 and G3, while the opposite effect was 

observed in the Al2O3 and K2O free glass that became cloudy on cooling. Surface nucleation 

and crystallization was dominant in glasses G1 and G2 with LS as the primary crystalline 

phase while volume nucleation and crystallization was observed in glasses G3 and L23S77 with 

LD as the primary crystalline phase. The values of Ec for glasses L23S77 and G3 were 153 and 

330 kJ/mol, respectively. 
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Sintered glass powder compacts featured enhanced mechanical properties in comparison to 

materials earlier prepared in alumina crucibles. In compositions with higher amounts of Al2O3 

and K2O, both LS and Q were found as minor crystalline phases at 850 and 900 ºC, while GC-

G3 under the same heat treatment conditions featured almost monomineral LD composition. 

The narrowing of the Tc–Tg interval in the L23S77 glass powder compacts in comparison to 

Al 2O3 and K2O containing compositions hindered the densification process and led to the 

early formation of large fraction of LD phase resulting in poorly densified samples. Small 

addition of Al2O3 and K2O to pure Li2O–SiO2 system enhanced the densification behaviour 

and the ultimate mechanical strength. Nevertheless, two main steps of sintering were observed 

by HSM for glass powder compacts G1, G2 and G3, separated by the temperature range 

within which LS crystallization occurs and temporarily hinders densification. 
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Abstract 

This article aims to shed some light on the structure and thermo-physical properties of lithium 

disilicate glasses in the system Li2O–SiO2–Al2O3–K2O. A glass with nominal composition 

23Li2O–77SiO2 (mol.%) (labelled as L23S77) and glasses containing Al2O3 and K2O with 

SiO2/Li 2O molar ratios (3.13–4.88) were produced by conventional melt-quenching technique 

in bulk and frit forms. The glass-ceramics (GCs) were obtained from nucleation and 

crystallisation of monolithic bulk glasses as well as via sintering and crystallisation of glass 

powder compacts. The structure of glasses as investigated by magic angle spinning-nuclear 

magnetic resonance (MAS-NMR) depict the role of Al2O3 as glass network former with 

fourfold coordination, i.e., Al(IV) species while silicon exists predominantly as a mixture of 

Q3 and Q4 (Si) structural units. The qualitative as well as quantitative crystalline phase 

evolution in glasses was followed by differential thermal analysis (DTA), X-ray diffraction 

(XRD) adjoined with Rietveld-reference intensity ratio (R.I.R.) method, Fourier transform 

infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The possible 

correlation amongst structural features of glasses, phase composition and thermo-physical 

properties of GCs has been discussed.  

 

Keywords: Sintering; Thermo-physical properties; Glass; Glass–ceramics; Lithium disilicate 
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1. Introduction 

Glass-ceramic (GC) materials are obtained by the controlled nucleation and crystallisation of 

glasses. The choice of glass composition is crucial to ensure that a high rate of internal, rather 

than surface, nucleation occurs. An excessively high crystal growth rate is to be avoided since 

such materials do not develop fine-grained microstructure, necessary for the achievement of 

high mechanical strength.1-2 The binary alkali silicate systems show liquid–liquid phase 

separation or immiscibility at temperatures below the liquidus temperature of crystallisation. 

This type of phase separation is often called metastable because crystalline phases are more 

stable than liquid at the temperature of phase separation.2-3 The presence of metastable 

immiscibility region is the main cause of S-like course of the liquidus curve and binary Li2O–

SiO2 system is a typical example in this regard which demonstrates S-like course of the 

liquidus curve in silica-rich region. According to Vogel,3 Li2O–SiO2 liquids containing less 

than 30 mol.% Li2O lead to opalescent or opaque glasses on cooling owing to phase 

separation. However, mechanical properties and chemical durability of these glasses after 

devitrification are low. 

Study of nucleation and crystallisation processes in parent glasses is essential, enabling to 

produce final materials of desired properties. In the previous study,4 we observed that glasses 

with composition in the Li2O–K2O–Al2O3–SiO2 system comprising equimolar amount of 

Al 2O3 and K2O were prone to volume nucleation and crystallisation, resulting in formation of 

fine Li2Si2O5 (LD) crystals within the temperature interval of 650–900 ºC. Also, it has been 

demonstrated that Al2O3 and K2O might also improve chemical durability of Li2O–SiO2 

glasses.3, 5-6 

The aim of this study is to present an in-depth analysis pertaining to study the structure of 

Li 2O–Al2O3–K2O–SiO2 glasses and their devitrification mechanism in relevance with Al2O3 

and K2O content. Although the role of Al2O3 as glass network former with four-fold 

coordination of Al(IV) species was hypothesised in our previous study,4 we felt the need of 

investigating this issue in detail so as to gain a better understanding regarding the structural 

role of Al2O3 in these glasses. Therefore, in this study, 29Si and 27Al magic angle spinning-

nuclear magnetic resonance (MAS-NMR) have been employed to study glass structure and 

derive relevant information with respect to the local environment of silicon and aluminium in 

experimental glasses. The sintering behaviour and properties of the corresponding glass 

powder compacts have also been targeted in the framework of this investigation, in particular 
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using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), 

and X-ray diffraction (XRD) to evaluate qualitative and quantitative phase assemblage. The 

obtained results demonstrated significant differences between binary 23 mol.% Li2O and 77 

mol.% SiO2 composition and its Al2O3 and K2O containing derivatives in terms of structure, 

crystallisation kinetics and thermo-physical properties. 

 

2. Experimental procedure 

2.1 Glass preparation 

Powders of technical grade SiO2 (purity > 99.5%) and of reactive grade Al2O3 (Alcoa, 

Germany, purity > 99.5%), Li2CO3 and K2CO3 (Sigma–Aldrich, Germany, purity > 99.5%) 

were used to prepare the experimental glasses. Glasses were prepared in both bulk and frit 

form by melt-quenching technique in Pt crucible. Table 1 presents the composition of the 

glasses investigated in this study. The addition of Al2O3 and K2O to the binary Li2O–SiO2 

system was performed on equimolar basis, and the amount of additives decreased from glass 

G1 to G3. A binary composition L23S77, containing the same amount of Li2O as glass G3, but 

richer in SiO2 was also synthesised. 

 

Table 1 – Compositions of the experimental glasses. 
 

Oxides (mol.%) G1 G2 G3 L23S77 

Li 2O 15.23 19.08 22.96 22.96 

K2O 5.24 3.94 2.63 − 

Al 2O3 5.24 3.94 2.63 − 

SiO2 74.30 73.04 71.78 77.04 

K2O + Al2O3 10.48 7.88 5.26 0.00 

 

Two sets of bulk glasses for each composition were obtained by pouring the glass melt on 

preheated bronze mould: (1) the first set of glasses was allowed to cool down in the air; (2) 

the second set of glasses was subjected to annealing at 450 ºC for 1 h. In order to study the 

evolution of crystalline phases in monolithic glasses, the annealed glasses were cut into cubes 

(1 × 1 × 1 cm3) and heat treated non-isothermally at 550, 650, 750, 800 and 900 ºC for 1 h, at 

heating rate of 2 K/min. 
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Glasses in frit form were dried and then milled in a high speed porcelain mill to obtain fine 

glass powders with mean particle size of 5–10 µm. Rectangular bars with dimensions of 4 × 5 

× 50 mm3 were prepared by uniaxial pressing (80 MPa). The bars were sintered under non-

isothermal conditions for 1 h at 800, 850 and 900 ºC using a low heating rate of 2 K/min 

aimed to prevent deformation of samples. 

 

2.2 Thermo-physical properties of glasses 

The glass transition temperature (Tg), softening point (Ts) and coefficient of thermal 

expansion (CTE) were obtained from dilatometry measurements which were carried out on 

prismatic glass samples with a cross section of 4 × 5 mm2 (Bahr Thermo Analyze DIL 801 L, 

Hüllhorst, Germany; heating rate 5 K/min). differential thermal analysis (DTA) of glass 

grains with sizes in the range of 415–1,000 µm, collected by sieving of grounded non-

annealed glass blocks, was carried out in air (Netzsch 402 EP, Germany) from room 

temperature to 1000 ºC at different heating rates (β = 2, 5, 10 and 15 K/min). 

 

2.3 Structural characterisation 

The 29Si MAS-NMR spectra were recorded on a Bruker ASX 400 spectrometer operating at 

79.52 MHz (9.4 T) using a 7-mm probe at a spinning rate of 5 kHz. The pulse length was 2 

µs, and a 60-s delay time was used. Kaolinite was used as the chemical shift reference. 27Al 

MAS-NMR spectra were recorded on a Bruker ASX 400 spectrometer operating at 104.28 

MHz (9.4 T) using a 4-mm probe at a spinning rate of 15 kHz. The pulse length was 0.6 µs, 

and a 4s delay time was used. Al(NO3)3 was used as the chemical shift reference. 

 

2.4 Sintering and crystallisation behaviour of glass powder compacts 

Infrared spectra of the GCs were obtained using an Infrared Fourier spectrometer (FTIR, 

model Mattson Galaxy S-7000, USA). For this purpose, samples were crushed to powder 

form, mixed with KBr in the proportion of 1/150 (by weight) and pressed into a pellet using a 

hand press. 

 The qualitative and quantitative crystalline phase analysis in the GCs (crushed to particle size 

< 45 µm) was made by XRD analysis using a conventional Bragg–Brentano diffractometer 
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(Philips PW 3710, Eindhoven, The Netherlands) with Ni-filtered Cu-Ka radiation. The 

quantitative phase analysis of GCs was made by combined Rietveld-reference intensity ratio 

(R.I.R.) method. A 10 wt.% of corundum (NIST SRM 676a) was added to all the GC samples 

as an internal standard. The mixtures, ground in an agate mortar, were side loaded in 

aluminium flat holder to minimise the problems to due to non-random orientations. Data were 

recorded in 2θ range = 5–115º (step size 0.02º/50 s). The phase fractions extracted by 

Rietveld refinements, using GSAS-EXPGUI software7 were rescaled on the basis of the 

absolute weight of corundum originally added to their mixtures as an internal standard, and 

therefore, internally renormalised. The background was successfully fitted with a Chebyshev 

function with a variable number of coefficients depending on its complexity. The peak 

profiles were modelled using a pseudo-Voigt function with one Gaussian and one Lorentzian 

coefficient. Lattice constants, phase fractions, and coefficients corresponding to sample 

displacement and asymmetry were also refined. 

Microstructural observations were done on polished (mirror finishing) surface of samples 

(etched by immersion in 2 vol.% HF solution for 2 min) by scanning electron microscopy 

(SEM; SU-70, Hitachi, Japan). 

 

3. Results and discussion 

3.1 Bulk glasses 

3.1.1 Glass casting ability 

Transparent and colourless glasses G1, G2 and G3 were obtained by melting at 1550 ºC for 1 

h, while in case of L23S77 transparent melt transformed into a cloudy hazy glass on cooling. 

Figure 1 shows both the appearance of the experimental non-annealed glasses and the 

corresponding microstructures which reveal the precipitation of a nanosize droplet phase in 

glassy matrices suggesting the occurrence of liquid–liquid phase separation in all the 

investigated compositions. However, the phase separation phenomenon was not observed at 

naked eye for compositions G1, G2 and G3 comprising Al2O3 and K2O. The mean droplet 

diameter and the population density of droplets (Fig. 1) diminished by increasing amount of 

Al 2O3 and K2O in the Li2O–SiO2 system. Consequently, G1 possesses a microstructure 

comprising rarer smaller droplets compared to the other compositions, evidencing that Al2O3 

has a strong tendency to reduce phase separation. 
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Fig. 1 − Physical appearance of the experimental non-annealed bulk glasses and their 

respective SEM images for glass compositions G1, G2, G3 and L23S77, respectively. 

 

The finer scale morphology and a relatively lower volume fraction of the droplets observed in 

the glasses G1, G2 and G3 result in the nonexistence of Tyndall effect which can explain the 

homogeneous and transparent appearance in this compositions when observed with naked 

eye.3 On the other hand, the bigger droplets and their higher concentration presented in the 

microstructure of composition L23S77 lead to the cloudy appearance, as expected since the 

droplet size in this glass has remained nearly the same as observed by Vogel in Li2O–SiO2 

glasses.3 

 

3.1.2 Thermo-physical properties and structural features of the glasses 

The addition of Al2O3 and K2O in the as-investigated proportions favoured an increase in Tg 

and Ts of the glasses (Fig. 2a, b). From the linear part of the dilatometric curves, the values of 

CTE200–400 ºC for glasses G1, G2, G3 and L23S77, were obtained as 8.47, 8.69, 9.65 and 8.16 

×10−6 /K, respectively. Considering that Al3+ Acts as a network former, the number of non-

bridging oxygens per each tetrahedral cation (NBO/T) suggested more polymerised glass 

network structures for G1 (NBO/T = 0.36) and G2 (NBO/T = 0.47) than for G3 (NBO/T = 

0.60) and L23S77 (NBO/T = 0.60). Diminishing the NBO/T led to an increase in Tg and 

decrease in CTE values. The higher CTE value of glass G3 compared with L23S77 can be 

explained by the effect of incorporation of potassium cation in the glass network. In general, 
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alkali ions fill up the glass structure interstices, thus preventing bond bending which 

consequently increases CTE. This effect, however, can be compensated by addition of 

intermediate oxides (such as Al2O3) that reduce the concentration of NBOs, provided that 

molar concentration of Al does not exceed that of the charge-balancing cations (e.g. alkalis).2 
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Fig. 2 − Thermo-physical properties of the experimental annealed bulk glasses (K2O and 

Al 2O3 content in mol%): (a) Dilatometry, (b) Tg and Ts versus additives content, and (c) 

differential thermal analysis (DTA) thermograph of glasses G3 and L23S77 at different heating 

rates (β = 2, 5, 10 and 15 K/min). 
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Figure 2c presents the DTA thermographs of glasses G3 and L23S77 at different heating rates 

to reveal the influence of Al2O3 + K2O introduction on devitrification behaviour of glass 

L23S77. As is evident from Fig. 2c, the crystallisation curve for glass G3 is shallower and 

exhibits a considerable shift to high temperature with respect to glass L23S77. These data 

clearly demonstrate stronger ability of glass L23S77 for devitrification due to coarser scale 

morphology and a relatively higher volume fraction of the droplets observed in parent glass 

(Fig. 1d). Similar to the other glasses in the Li2O–SiO2 system containing less than 30 mol.% 

Li 2O, nucleation in L23S77 glasses was initiated by metastable liquid–liquid immiscibility3 that 

was more extended than in Al2O3 and K2O containing derivates. The activation energy of 

ystallisation (Ec) as obtained in our previous study for glasses L23S77 and G3 are 153 and 330 

kJ/mol,4 respectively, reflecting the structural role of Al2O3 which is probably contributing 

towards decreasing the immiscibility trend, thus reducing mobility of the glass-forming ions 

and ionic complexes operative in the crystallisation process. 

The 29Si and 27Al MAS-NMR spectra of the samples (Figs. 3a, b, respectively) exhibit broad 

bands which indicate the amorphous nature of investigated materials.8-9 Glass L23S77 exhibited 

two characteristic peaks in 29Si MAS-NMR spectra at about −92 and −108 ppm (Fig. 3a), 

which can be assigned to a mixture of Q3 and Q4 species, respectively. The addition of Al2O3 

and K2O resulted in a broadening of spectra and shifting the peak centred at −92 ppm to lower 

values. These features imply towards decreasing number of Q3 species at the expense of more 

polymerised Q4 units and are consistent with calculated NBO/T, evolution of CTE, Tg and Ts 

values. 

The 27Al MAS-NMR data are shown in Fig. 3b. A signal at ~52 ppm evidenced about 

dominant presence of tetrahedral aluminium in all the Al2O3 + K2O containing glasses and 

especially in G1 and G2. It is noteworthy that Al(IV) species are characteristic networking-

forming units of aluminosilicate glasses causing increase in crosslinking of the glass 

structure.10 Therefore, as the sum of Al2O3 and K2O increased the (AlO4/2) glass forming units 

are incorporated in the network as Q4 species. To maintain local charge neutrality, (AlO4/2)
− 

units will be charge compensated by alkali cations (K+, Li+) which must be present in the 

vicinity of each such tetrahedron. The results of 27Al MAS-NMR study strongly support our 

previous presumption4 concerning the role of Al2O3 as glass network former with four-fold 

coordination of Al(IV) species in the experimental compositions G1, G2 and G3.10-11 
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Fig. 3 − 29Si MAS-NMR (a) and 27Al MAS-NMR (b) spectra of glasses. The insertion shows 

the 27Al MAS-NMR spectrum for glass G3. 

 

150 µµµµmG1 −−−− 800 ºC 15 µµµµmG1 −−−− 800 ºC

100 µµµµmG2 −−−− 750 ºC 500 µµµµmG2 −−−− 900 ºC

150 µµµµmG1 −−−− 800 ºC 15 µµµµmG1 −−−− 800 ºC

100 µµµµmG2 −−−− 750 ºC 500 µµµµmG2 −−−− 900 ºC
 

Fig. 4 − SEM of bulk glasses heat treated at different temperatures. 
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Surface crystallisation and dendritic skeletal crystal growth which can be observed in SEM 

images of both G1 and G2 glasses (Fig. 4), being a further evidence of the structural role of 

Al 3+ that apparently increased viscosity of those glasses and greatly decreased the 

immiscibility trends. On the contrary, fine grained volume crystallisation has been observed 

in low alumina G3 glass.4 

 

3.2 Glass powder compacts 

Well-sintered GCs demonstrating flexural strength values 114 ± 2, 158 ± 5 and 81 ± 8 MPa 

for G1, G2 and G3, respectively, were obtained after heat treatment of glass powder compacts 

at 800 ºC for 1 h. Further heat treatment at 850 ºC significantly improved densification of G3 

compared to G1 and G2 whereas maximum bending strength values as 189 ± 8 (G1), 195 ± 9 

(G2) and 224 ± 4 (G3) MPa were revealed after sintering at 900 ºC for 1 h. Figure 5 presents 

the SEM images of glass powder compacts G1 and G3 heat treated at 800, 850 and 900 ºC. At 

the lowest temperature, structural features of Li2SiO3 (LS) crystals which possess a chain 

silicate structure and crystallised dendritically can be observed. It is known that LS crystals 

are particularly easy to dissolve from GC by dilute hydrofluoric acid while the surrounding 

aluminosilicate glassy matrix is considerably more resistant to acid attack.1 At 850 ºC, LD 

crystals start up to grow in the form of submicron-sized rods and act as nucleating sites for 

new rods. LD crystals uniformly embedded in glassy matrix were responsible for high 

mechanical strength of these GCs at 900 ºC. According to XRD data (spectra are not shown), 

LS was revealed as the single crystalline phase in GC1 after sintering at 800 ºC, while GC2 

and GC3 comprised LS along with quartz (Q) and  LD as minor phases.  

At 850 and 900 ºC, GC3 exhibited almost monomineral composition of LD with peaks of low 

intensity attributed to quartz. In compositions G1 and G2, both LS and Q were found as minor 

crystalline phases at 850 and 900 ºC. Unlike Al2O3 and K2O containing GCs, binary L23S77 

composition featured very poor sinterability thus exhibiting bending strength of 13 ± 2 MPa 

and density of 2.14 ± 0.04 g/cm3 at 900 º for 1 h (Fig. 5a). This phenomenon can be explained 

by lower Ec for L23S77 compared to G3 causing formation of large fraction of LD phase that 

hinders the densification process.12 Indeed, LD was the main crystalline phase in L23S77 glass 

powder compacts sintered at 800 and 850 ºC. At 900 ºC both LD along with quartz became 

the principal crystalline phases while tridymite along with cristobalite were also recorded. 
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The FTIR spectra of glass powder compacts heat treated at 800, 850 and 900 ºC are presented 

in Fig. 6. In all Al2O3 and K2O containing compositions. transmittance bands of LS phase, i.e. 

525–527, 604, 635–638, 728–732, 846–851, 932, 973 and 1054–1057 /cm were revealed at 

lower temperatures.13 For instance, FTIR spectrum of G1 at 800 ºC exhibited well resolved 

bands at ~527, 609, 730, 850 and 923 /cm, and a shallow band at ~1060 /cm, which resembles 

the above mentioned typical values for LS (Fig. 6a). 

 

3 µµµµmG1 −−−− 800 ºC 3 µµµµmG3 −−−− 800 ºC

3 µµµµmG1 −−−− 900 ºC 3 µµµµmG3 −−−− 900 ºC

3 µµµµmG1 −−−− 850 ºC 3 µµµµmG3 −−−− 850 ºC

3 µµµµmG1 −−−− 800 ºC 3 µµµµmG3 −−−− 800 ºC

3 µµµµmG1 −−−− 900 ºC 3 µµµµmG3 −−−− 900 ºC

3 µµµµmG1 −−−− 850 ºC 3 µµµµmG3 −−−− 850 ºC

 

Fig. 5 − SEM of glass powder compacts G1 and G3 heat treated at 800, 850 and 900 ºC. 

 

The absence of other significant bands suggested that LS is the only crystalline phase formed 

in G1 at this temperature. The sharpness and intensity of these bands tend to be diminished 

and shifted slightly to higher frequency values with increasing sintering temperature. Thus, at 

850 ºC new peaks characteristic for transmittance of LD phase were revealed and become 

more pronounced at 900 ºC. The FTIR patterns of G2 and G3 glasses sintered at 800 ºC (Fig. 

6b) are quite similar to spectrum of G1. However, transmittance bands in the spectra of G1, 

G2 and G3 at 850 and 900 ºC mostly correspond to LD crystalline phase. Binary Al2O3 and 

K2O free L23S77 composition featured several peaks at ~475, 563, 633, 760, 788, 940 and 
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1108 /cm (Fig. 6d). These transmittance bands can be assigned to LD control-crystal (470, 

548, 635, 756, 782, 936, 1022, 1108 and 1212 /cm).13 At 850 and 900 ºC FTIR spectra 

presented similar profile coupled with appearance of small peaks at ~450 and 692 /cm 

corresponding to standard quartz.14 
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Fig. 6 − FTIR spectra of the investigated glass powder compacts (a) G1, (b) G2, (c) G3 and 

(d) L23S77 after heat treatment at 800, 850 and 900 ºC for 1 h, respectively. Typical spectra for 

quartz (Q), lithium disilicate (LD) and lithium metasilicate (LS) are indicated in the figure. 

 

From the hot stage microscopy observation performed in the previous study two main steps of 

sintering were revealed for G1, G2 and G3 compositions.4 First sintering step was initiated at 

temperatures slightly higher than Tg and retarded by crystallisation of LS at around 600 ºC 

whereas a second shrinkage step started almost synchronically at about 800 ºC for all Al2O3 

and K2O containing compositions. Moreover, the interval for first sintering step was wider for 

G1 (68 ºC) and G2 (49 ºC) than for G3 (45 ºC). 
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Fig. 7 − Quantitative crystalline phase evolution in GCs as obtained from Rietveld-R.I.R. 

refinement at (a) 800 ºC and (b) 850 ºC. Phases are indicated in the figure as Q (quartz, SiO2), 

LD (lithium disilicate, Li2Si2O5) and LS (lithium metasilicate, Li2SiO3). 

 

Nevertheless, deeper investigation was required for quantifying content of crystalline and 

amorphous phase. Therefore, Rietveld-R.I.R. refinement was conducted for the samples 

sintered at 800 and 850 ºC, i.e. in the interval when a second phase of sintering took place and 

was accompanied with new phase transformations. From Fig. 7a, it is clear that L23S77 

composition at 800 ºC contained about 53.0 wt.% LD, 3.4 wt.% quartz and 43.6 wt.% 

amorphous phase. In comparison to L23S77, compositions G1, G2 and G3 featured lower 

crystalline content (mainly LS and quartz), but higher amount of residual amorphous reservoir 

(52.7, 62.4 and 77.6 wt.% for G3, G2 and G1, respectively). After heat treatment at 850 ºC, 

no deviation in LD content was revealed in L23S77 although quartz content increased up to 19 

wt.% at the expense of silica rich amorphous phase (Fig. 7b). It is due to the precipitation of 

residual silica glassy phase (density 2.20 g/cm3) in the form of quartz (density 2.65 g/cm3) 

that overall volume of the system decreased. However, the occurred volume changes were not 

sufficient to cause appreciable increase of density and mechanical strength even after 900 ºC. 

Unlike L23S77, the volume changes in G3 at 850 ºC were associated with both reaction of 

residual glass with LS causing formation of large fraction LD (up to 70.7 wt.%) and 

simultaneous densification of residual amorphous phase owing to its lower crystallinity (Fig. 

7a). The densification was less pronounced in G2 and G1 since LD was formed in low 

amount and mostly due to reaction between LS and quartz whereas the amount of glassy 

phase remained almost constant. The reason for this was that significant level of densification 
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of G1 and G2 was attained during the first sintering stage before crystallisation started.4 

Formation of LD was advanced in G2 and mostly in G1 in the interval 850–900 ºC. The 

results of Rietveld-R.I.R. refinement are well correlated with the viscosity–temperature 

curves for G1, G2 and G3 glasses4 evidencing that the glass G3 exhibited lowest viscosity at 

temperatures below 850 ºC and at the constant temperature log η (G1) > log η (G2) > log η 

(G3). The opposite trend was observed at temperatures higher than 850 ºC when compositions 

G2 and G3 demonstrated higher viscosity than G1. This can be explained by formation of a 

larger fraction of LD in GC3 and GC2 at 850 ºC (Fig. 7b). 

 

4. Conclusions 

This study demonstrates that slight changes in lithium silicate glass composition may have 

significant effects on chronology and morphology of phases. A careful selection of additive’s 

amount is crucial to ensure that internal nucleation and moderate crystal growth rate in parent 

glass occurs. The following conclusions can be drawn from the above discussed results: 

1. Liquid–liquid phase separation occurred in all the investigated monolithic bulk 

glasses. The mean droplet diameter and the population density of droplets 

diminished by increasing amount of Al2O3 and K2O demonstrating that aluminium 

greatly decreased the immiscibility trends in the Li2O–SiO2 system. 

2. Al 2O3- and K2O-free L23S77 glass demonstrated higher rate of crystal growth due to 

extended phase separation.  

3. The addition of Al2O3 and K2O in the as-investigated proportions favoured the 

decrease of CTE and an increase of Tg and Ts. The surface crystallisation and 

dendritic skeletal crystal growth was observed in compositions G1 and G2 with 

higher Al2O3 and K2O content whereas bulk crystallisation with fine-grained 

microstructure has been attained in low alumina G3 glass. 

4. 29Si MAS-NMR spectra evidenced a decreasing number of Q3 species at the expense 

of Q4 implying towards polymerised structure of Al2O3 and K2O containing 

compositions. 

5. The peaks of 27Al MAS-NMR spectra of G1 and G2 glasses were centred at ~52 ppm 

corresponding to tetrahedral four-coordinated Al(IV) species confirming the role of 

Al 2O3 as glass network former. 
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6. The sintering and crystallisation of Al2O3- and K2O containing compositions in the 

silica reach region of Li2O–SiO2 system, which resulted in well-densified and 

mechanically strong fine-grained GCs with LD as the major crystalline phase. 

7. Glass G3 exhibited most promising thermo-physical properties due to careful 

selection of Al2O3 and K2O additives promoting internal nucleation and moderate 

crystal growth rate. 

Further investigations of new materials will be required to study chemical durability, 

mechanical properties (fracture toughness, Weibull modulus, etc.) as well as to optimise their 

processing parameters. 

 

Acknowledgements  

Hugo R. Fernandes is grateful for the financial support of CICECO and for the PhD grant 

(SFRH/BD/41307/2007) from the FCT, Portugal. Ashutosh Goel is thankful to CICECO and 

FCT, Portugal (SFRH/BPD/65901/2009) for the post-doctoral research grant. 

 

References 

 

1. Höland W, Beall G. Glass-ceramic Technology. Westerville, Ohio: The American 
Ceramic Society; 2002. 

2. Shelby JE. Introduction to glass science and technology. Cambridge: The Royal 
Society of Chemistry; 1997. 

3. Vogel W. Structure and Crystallization of Glasses. Leipzig: Pergamon Press; 1971. 
4. Fernandes HR, Tulyaganov DU, Goel A, Ribeiro MJ, Pascual MJ, Ferreira JMF. 

Effect of Al2O3 and K2O content on structure, properties and devitrification of glasses 
in the Li2O−SiO2 system. Journal of the European Ceramic Society 2010;30(10):2017-
30. 

5. Barrett JMG, FL), Clark, David E. (Gainesville, FL), Hench, Larry L. (Gainesville, 
FL), inventor; The Board of Regents, State of Florida, University of Florida 
(Tallahassee, FL), assignee. Glass-ceramic dental restorations. 1980. 

6. Wu J-mT, TW), Cannon, Warren R. (East Brunswick, NJ), Panzera, Carlino (Belle 
Mead, NJ), inventor; Johnson & Johnson Dental Products Company (East Windsor, 
NJ), assignee. Castable glass-ceramic composition useful as dental restorative. 1985. 

7. Larson AC, von Dreele RB. GSAS: general structure analysis system LANSCE, MS-
H805. Los Alamos: Los Alamos National Laboratory; 1998. 

8. Engelhardt G, Nofz M, Forkel K, Wihsmann FG, Magi M, Samoson A, et al. 
Structural studies of calcium aluminosilicate glasses by high resolution solid state 29Si 



 

126 
 

and 27Al magic angle spinning nuclear magnetic resonance. s Chem Glasses. Physics 
and Chemistry of Glasses 1985;26(157-65). 

9. Mackenzie KJD, Smith ME. Multinuclear solid-state NMR of inorganic materials. 
Amsterdam: Pergamon; 2002. 

10. Abo-Mosallam HA, Hill RG, Karpukhina N, Law RV. MAS-NMR studies of glasses 
and glass-ceramics based on a clinopyroxene–fluorapatite system. Journal of Materials 
Chemistry 2010;20:790-97. 

11. Stebbins JF, Kroeker S, Lee SK, Kiczenski TJ. Quantification of five- and six-
coordinated aluminium ions in aluminosilicate and fluoride-containing glasses by 
high-field, high-resolution 27Al NMR. Journal of Non-Crystalline Solids 2000;275:1-
6. 

12. Siligardi C, D'Arrigo MC, Leonelli C. Sintering behavior of glass-ceramic frits. 
American Ceramic Society Bulletin 2000;79(9):88-92. 

13. Fuss T, Mogus-Milankovic A, Ray CS, Lesher CE, Youngman R, Day DE. Ex situ 
XRD, TEM, IR, Raman and NMR spectroscopy of crystallization of lithium disilicate 
glass at high pressure. Journal of Non-Crystalline Solids 2006;352:4101-11. 

14. Bhaskar JS, Parthasarathy G, Sarmah NC. Fourier transform infrared spectroscopic 
estimation of crystallinity in SiO2 based rocks. Bulletin of Materials Science 
2008;31(5):775-9. 

 
 

 



 

127 
 

3.4 Effect of K2O on structure−−−−property relationships and phase 

transformations in Li 2O−−−−SiO2 glasses 

 

Hugo R. Fernandesa, Dilshat U. Tulyaganova,b, Ashutosh Goelc, José M. F. Ferreiraa 

 
a Dep. of Ceramics and Glass Engineering, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal 

b Turin Polytechnic University in Tashkent, 17 Niyazova str., 100174 Tashkent, Uzbekistan 
c Glass Processing Group, Radiological and Nuclear Science and Technology Division, Pacific Northwest 

National Laboratory, Richland, WA 99354, United States  

 

Journal of the European Ceramic Society 32 (2012) 291–298 

DOI: 10.1016/j.jeurceramsoc.2011.09.017 

 

 

Abstract 

Glass compositions with formula (71.78−x) SiO2 – 2.63 Al2O3 – (2.63+x) K2O –23.7 Li2O 

(mol.%, x = 0–10) and SiO2/Li 2O molar ratios far beyond that of stoichiometric lithium 

disilicate (Li2Si2O5) were prepared by conventional melt-quenching technique to investigate 

the influence of K2O content on structural transformations and devitrification behaviour of 

glasses in the Li2O–SiO2 system. The scanning electron microscopy (SEM) examination of as 

cast non-annealed glasses revealed the presence of nanosized droplets in glassy matrices 

suggesting occurrence of liquid–liquid phase separation. An overall trend towards 

depolymerization of the silicate glass network with increasing K2O content was demonstrated 

by employing magic angle spinning-nuclear magnetic resonance (MAS-NMR) spectroscopy. 

The distribution of structural units in the experimental glasses was estimated using 29Si MAS-

NMR spectroscopy suggesting the appearance of Q2, enhancement of Q3 and diminishing of 

Q4 groups with increasing K2O contents. X-ray diffraction (XRD) and differential thermal 

analysis (DTA) were used to assess the influence of K2O on devitrification process and 

formation of lithium disilicate (Li2Si2O5) and/or lithium metasilicate (Li2SiO3) crystalline 

phases.  

 

Keywords: Glass; Glass ceramics; Lithium disilicate; Thermo-physical properties 
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1. Introduction 

The immiscible region between the Li2O–2SiO2 and SiO2 end members is an important 

feature in the Li2O–SiO2 system. The synthesis of glass-ceramic (GC) materials in the Li2O–

SiO2 system is based on controlled nucleation and crystallization of lithium metasilicate 

and/or lithium disilicate phases which govern the properties for the final product. The glasses 

with SiO2 contents higher than the stoichiometric Li2O·2SiO2 (33.33 mol.% Li2O–66.66 

mol.% SiO2) tend to separate into a matrix phase with a composition almost similar to that of 

lithium disilicate along with an isolated droplet SiO2 rich phase,1 while glasses with Li2O 

contents <30 mol.% usually turn out to be opalescent or opaque on cooling owing to phase 

separation.1-3 Although, nucleation of base glass with stoichiometric composition of lithium 

disilicate has been widely investigated for GC manufacture,4 the GCs derived from this parent 

binary system exhibit some unfavourable characteristics in terms of their mechanical and 

chemical properties which hinder their potential applications in several technological areas. 

On the other hand, lithium disilicate GCs derived from non-stoichiometric compositions have 

proven themselves to be potential candidates for different functional applications, for 

example: dental restorations,5-8 metal-glass seals,9-10 etc. Fundamental research on certain 

non-stoichiometric lithium disilicate based glass compositions was carried out by Stookey 

(1959).11 It is noteworthy that according to Höland and Beal,4 the term ‘non-stoichiometric’ 

implies that SiO2/Li 2O molar ratio deviates greatly from 2:1 and the system in rendered 

considerably more complex with numerous additional components and nucleating agents. 

However, the present investigation aims towards investigating a relatively simpler non-

stoichiometric lithium disilicate based GC system in the glass forming region of Li2O–K2O–

Al 2O3–SiO2 with its SiO2/Li 2O molar ratio varying between 2.69 and 3.13. The simultaneous 

incorporating of K2O and Al2O3 is known to significantly improve the chemical durability of 

lithium disilicate GCs,1, 12-13 therefore justifying the choice of these two oxides in the present 

study. One of the main objectives of this study was to investigate the influence of replacing 

increasing amounts of SiO2 by equimolar amounts of K2O on the structural transformations 

occurring in the non-stoichiometric lithium disilicate glasses, and on their crystallization 

mechanism. 
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2. Experimental procedure 

2.1 Glass Preparation 

The investigated glass compositions were designed according to the general formula 

(71.78−x)SiO2–2.63Al2O3–(2.63+x)K2O–22.96Li2O (mol.%), where x changed from 0 to 10, 

with SiO2/Li 2O ratios far from lithium disilicate stoichiometry (SiO2/Li 2O = 2). Accordingly, 

the glasses have been labelled as GKx depending on the amount of K2O being substituted for 

SiO2 in the glass compositions. For example: GK0 corresponds to the parent composition, i.e. 

x = 0 and K2O/Al2O3 =1. Table 1 presents the detailed composition of the glasses along with 

their corresponding SiO2/Li 2O, SiO2/K2O and K2O/Al2O3 ratios. 

 

Table 1 – Compositions of the experimental glasses. 
 

 Oxides (mol.%)    

 Li2O K2O Al2O3 SiO2 SiO2/Li 2O SiO2/K2O K2O/Al2O3 

GK0 22.96 2.63 2.63 71.78 3.13 27.29 1.00 

GK0.5 22.96 3.13 2.63 71.28 3.10 22.77 1.19 

GK1 22.96 3.63 2.63 70.78 3.08 19.50 1.38 

GK1.5 22.96 4.13 2.63 70.28 3.06 17.02 1.57 

GK2 22.96 4.63 2.63 69.78 3.04 15.07 1.76 

GK2.5 22.96 5.13 2.63 69.28 3.02 13.50 1.95 

GK5 22.96 7.63 2.63 66.78 2.91 8.75 2.90 

GK10 22.96 12.63 2.63 61.78 2.69 4.89 4.80 

 

A total of eight glasses were prepared in Pt-crucibles using melt quenching technique. The 

powders of technical grade SiO2 (purity >99.5%) and of reactive grade Al2O3, Li2CO3, and 

K2CO3 were used. Homogeneous mixtures of batches (~100 g), obtained by ball milling, were 

calcined at 800 ºC for 1 h and then melted in Pt crucibles at 1550 ºC for 1 h, in air. The 

glasses were produced in bulk (monolithic) form by pouring glass melts on bronze mould in 

two different sets. The glasses of one set were immediately annealed at 450 ºC for 1 h; the 

other set of glasses was preserved in the non-annealed condition. 
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2.2 Thermo-physical properties of glasses 

The coefficient of thermal expansion (CTE) of the annealed glasses was measured by 

dilatometry using prismatic samples of bulk glasses with cross section of 3×4 mm2 (Bahr 

Thermo Analyse DIL 801 L, Germany; heating rate 5 K min−1). The differential thermal 

analysis (DTA, Setaram Labsys, Setaram Instrumentation, Caluire, France) of glasses was 

carried out in air from room temperature to 1000 ºC at heating rate (β) of 20 K min−1. The 

glass powders with sizes in the range of 500–1000 µm (collected by sieving of crushed non-

annealed glass blocks) and weighing 50 mg were contained in an alumina crucible and the 

reference material was α-alumina powder. The value of the glass transition temperature Tg, 

crystallization onset temperature, Tc and peak temperature of crystallization, Tp were obtained 

from the DTA scans. 

Archimedes’ method (i.e. immersion in ethylene glycol) was employed to measure the 

apparent density of the bulk annealed glasses which was further applied along with 

compositions of glasses to calculate their excess volume (Ve) according to a procedure 

described elsewhere.3 

 

2.3 Structural characterization of glasses 

29Si MAS-NMR spectra were recorded on a Bruker ASX 400 spectrometer operating at 79.52 

MHz (9.4 T) using a 7 mm probe at a spinning rate of 5 kHz. The pulse length was 2 µs and 

60 s delay time was used. Kaolinite was used as the chemical shift reference. 27Al MAS-NMR 

spectra were recorded on a Bruker ASX 400 spectrometer operating at 104.28 MHz (9.4 T) 

using a 4 mm probe at a spinning rate of 15 kHz. The pulse length was 0.6 µs and 4 s delay 

time was used. Al(NO3)3 was used as the chemical shift reference. The Qn distributions were 

obtained by curve fitting and spectral deconvolution using DMFIT program (version 2011).14 

 

2.4 Crystalline phase analysis and microstructural evolution in glass-ceramics 

Bulk parallelepiped glass samples were heat treated non-isothermaly at 600, 700, 800 and 900 

ºC for 1 h, respectively, at a heating rate of 2 K min−1. The amorphous nature of the parent 

glasses and the nature of crystalline phases present in the GCs were determined by X-ray 

diffraction (XRD) analysis (Rigaku Geigerflex D/Mac,CSeries, Japan; Cu Kα radiation, 2θ 

between 10º and 60º with a 2θ-step of 0.02 º s−1). The crystalline phases were identified by 
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comparing the obtained diffractograms with patterns of standards complied by the 

International Centre for Diffraction Data (ICDD). 

Microstructure observations were done at polished (mirror finishing) and then etched surfaces 

of samples (by immersion in 2 vol.% HF solution for 1–2 min) by field emission scanning 

electron microscopy (SEM, Hitachi SU-70, Japan) under secondary electron mode. 

 

3. Results and discussion 

3.1 Casting ability and microstructure of glasses 

Heating at 1550 ºC for 1 h was adequate to obtain bubble free, homogenous transparent and 

colourless glasses from all the investigated compositions. The absence of any crystalline 

inclusions was confirmed by XRD and SEM analyses. The SEM images of as cast non–

annealed samples (Fig. 1) revealed nanosized droplets embedded in the glass matrices of all 

investigated compositions suggesting the occurrence of liquid–liquid phase separation. The 

droplet size and density distribution observed in the phase separated zones were small enough 

to avoid Tyndall effect, thus, resulting in transparent glasses. It is noteworthy that liquid 

separation is often the precursor to nucleation and crystal growth in certain GC compositions 

and can profoundly influence the crystallization path.1, 15  

According to Vogel,1 metastable immiscibility that occurs in binary Li2O–SiO2 system causes 

segregation of glassy phase into droplet-like zones of Li-rich phase and SiO2-rich glass 

matrix. Moreover, the mean droplet size was found to be a function of Li2O and SiO2 

contents. In particular, a bell-shaped curve showed maxima for SiO2/Li 2O= 4.95 (~16.8 

mol.% of Li2O) and minima for both pure silica glass and stoichiometric lithium disilicate 

composition. Assuming similar structural roles for Li 2O and K2O in the investigated glasses, a 

steady decrease in size of droplet-like zones should be expected with increasing contents of 

K2O. However, our experimental results presented in Fig. 1 show an opposite trend with the 

mean droplet size growing with increasing K2O contents. This can be explained by the 

preferential distribution of K2O in the Li2O-rich droplets15 preventing diffusion of Li2O 

towards SiO2 rich region. Consequently, a composition gradient between separated droplet-

like zones and silica rich glassy matrix becomes greater with increasing content K2O leading 

to less homogeneous glass structures. The gradual lowering of SiO2 content in glasses and the 

consequentially decrease in volume fraction of the silica-rich phase is expected to enhance the 

droplet like Li2O and K2O rich phase.16 
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1 µm GK 

1 µm GK10 1 µm GK 5 

1 µm GK2.5 

 

Fig. 1 − SEM images of the experimental non-annealed bulk glasses (etched with 2 vol.% HF 

solution for 1 min). 

 

3.2 Structure-property relationships in glasses 

3.2.1 Density, Ve, CTE and Tg  

The density values of annealed glasses varied in the range of 2.36–2.43 g cm−3 (Table 2). A 

slight increase in density was observed from the parent glass composition (GK0) to the glass 

GK0.5, followed by a broad plateau until glass GK2, and a new step increment to the glass 

GK2.5. After that, density increased in direct proportion with further added amount of K2O 

reaching the highest value for the glass GK10. Since, density of glasses is an additive property, 

therefore, the constant values of glass density for compositions GK0.5, GK1, GK1.5 and GK2 

may be attributed to the small K2O increments in the glasses. However, sound conclusions 

regarding the structure of glasses cannot be drawn merely on the basis of density variations.17 

Therefore, in order to obtain a clear trend about the influence of K2O/SiO2 ratio on structure 

of investigated glasses, the values of excess molar volume (Ve) were calculated from density 

and glasses’ molar composition data and featured a decrease of excess volume of glasses with 

increasing x values (Table 2). The incorporation of the K2O network modifier alters the glass 

properties. The formation of less directed ionic bonds makes the structural skeleton to 

collapse into a closer packing, thus leading to reduced degree of cross-linking, which, in turn, 

reduces the glass transition temperature (Tg) (Fig. 2). Further, an increased polarizability 

arising from the negatively charged non-bridging atoms enhances the anharmonicity of 

thermal vibrations, thus leading to an increase in the CTE of glasses (Table 2; Fig. 2).18 
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Table 2 – Thermo-physical properties of the experimental glasses. 
 

 
d 

(g cm-3) 

Ve 

(cm3 mol-1) 
NBO/T 

CTE 

±0.1 (10-6 K-1) 

Tg 

±2 (ºC) 

Tc 

±2 (ºC) 

Tp 

±2 (ºC) 

GK0 2.36 ± 0.01 1.26 ± 0.01 0.60 9.65 505 702 821 

GK0.5 2.37 ± 0.01 1.12 ± 0.04 0.61 10.16 504 698 817 

GK1 2.37 ± 0.01 1.08 ± 0.05 0.63 11.52 503 695 806 

GK1.5 2.37 ± 0.01 1.11 ± 0.04 0.65 11.34 501 663 818 

GK2 2.37 ± 0.01 1.03 ± 0.01 0.67 11.41 502 667 812 

GK2.5 2.38 ± 0.01 0.97 ± 0.01 0.68 11.51 500 663 800 

GK5 2.40 ± 0.01 0.76 ± 0.01 0.78 12.70 496 658 778 

GK10 2.43 ± 0.01 0.34 ± 0.02 0.98 14.68 481 582 723 

 

Furthermore, the kinks observed in the values of CTE and Tg (Fig. 2) as well as in the values 

of Ve (Table 2), when x ranged from 0.5–1.5, can be attributed to the progressive changes 

brought by the network modifier, thus making the function of less basic so-called intermediate 

oxides somewhat ambiguous. In the present system, below a certain Li2O/K2O ratio, further 

adding the basic modifier oxide (i.e. K2O) into the glasses forces Li2O to enter the glass 

network. This gives rise to the formation of (LiO4/2)
3− structural units with a coordination 

number of 4. Therefore, strengthening the silicate glass network occurs.18 

 

3.2.2 MAS-NMR  

The 29Si MAS-NMR spectra of glasses GK0, GK5 and GK10 are plotted in Fig. 3 while 

chemical shifts (δ), linewidths (∆δ) and area fractions (%) of the signal components are 

presented in Table 3. In general, the spectra feature broad bands, which indicate the 

amorphous nature of these materials. For each composition, a resonance line covers the 

chemical shift range of silicon in several Qn groups with n = 0, . . ., 4.19 In particular, the 29Si 

MAS-NMR spectra for parent glass composition GK0 is centred at about −94 ppm (Fig. 3), 

suggesting a mixture of Q3 and Q4 (Table 3).  

An overall trend towards depolymerization of the silicate glass network with increasing K2O 

content can be observed due to the following factors: (a) centering of 29Si MAS-NMR spectra 

at lower values, (b) formation of Q2 groups, (c) increasing Q3 and diminishing Q4 units. 

However, the 29Si spectrum for glass GK1 (not shown) deviates from that trend, exhibiting a 
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chemical shift centred at about −95 ppm, thus implying towards an increasing polymerization, 

the reasoning for this was explained in the previous section. 
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Fig. 2 − Evolution of CTE and Tg with the amount of K2O added to the parent composition. 

 

Table 3 – Solid state 29Si NMR chemical shifts (δ), linewidths (∆δ) and area fractions (%) of 

the signal components observed in glasses GK0, GK5 and GK10. 

 
  Q2    Q3    Q4  

x 

(mol.%) 

δ 

(ppm) 

∆δ 

(ppm) 
%  

δ 

(ppm) 

∆δ 

(ppm) 
%  

δ 

(ppm) 

∆δ 

(ppm) 
% 

0 − − 0.0  −92.2 17.2 74.3  −104.7 14.5 25.7 

5 −78.4 4.9 1.7  −90.7 14.9 82.7  −102.6 12.8 15.6 

10 −79.8 5.6 3.4  −89.1 15.2 90.9  −101.2 13.3 5.8 

 

Schramm et al.20 investigated the extent of Qn distributions for lithium silicate glasses in the 

composition region between 15 and 40 mol.% Li2O by 29Si MAS NMR spectroscopy. Values 

for the mean chemical shifts used to fit the spectra of those glasses were −107 ppm (Q4), −92 

ppm (Q3), −82 ppm (Q2), −69 ppm (Q1), and −63 ppm (Q0). The three major species Q4, Q3, 

and Q2 were revealed. The percentage of Q4 decreases with increasing Li2O content, that of 

Q3 goes through a maximum at 30 mol.% Li2O, and the percentage of Q2 showed tendency to 

grow at higher Li2O concentrations. Particular emphasis should be addressed to 22.5Li2O–

77.5SiO2 and 24Li2O–76SiO2 glasses owing to their Li2O content and SiO2/Li 2O ratios 

comparable with the compositions investigated in our work. According to Schramm et al.20 
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the 22.5Li2O–77.5SiO2 glass composition featured the distribution of Qn groups such as 0.1% 

Q0 + Q1, 3.9% Q2, 63.2% Q3, 32.8% Q4 while the 24Li2O–76SiO2 glass composition 

presented the following distribution: 2.5% Q0 + Q1, 11.1% Q2, 56.6% Q3, 29.8% Q4. On the 

other hand, these glasses of Li2O–SiO2 system exhibited opalescence characteristic owing to 

precipitation of a droplet-like zones of Li-rich phase in SiO2-rich glass matrix.2, 20 

Introduction of additives such as Al2O3 and K2O resulted in glasses of transparent appearance 

in this metastable liquid immiscibility region due to the diminishing of mean droplet diameter 

and the packing density of droplet phase.2-3 Moreover, both activation energy for 

crystallization and crystallization rate decreased. Analysis of the 29Si MAS-NMR data 

obtained in our study revealed that the above mentioned phenomenon can be explained by 

diminishing of Q2 groups after equimolar addition of Al2O3 and K2O in Li2O–SiO2 system. 

Apparently, Q2 groups are responsible for the enhanced nucleation rate. With regard to 

immiscibility process, Q2 units as well as its clustering with Q3, which is not considered by 

the Qn distribution theory, would account for the metastable liquid immiscibility region, 

whereas Q4 units represent the silica-rich region.20 

27Al NMR spectra of our samples (not shown) revealed chemical shifts from 52 ppm (GK0) to 

55 ppm (GK10). The peaks shifting trend in the range of 52–55 ppm usually indicates an 

increasing predominance of tetrahedral aluminium in the glass structure. Therefore, the results 

obtained suggest that the K2O added to the parent glass tends to enhance the role of Al2O3 as 

the glass network former signifying that aluminium in a four-coordinate network-forming 

species would not participate in the crystallization processes. This is consistent with the need 

of an associated cation in the vicinity of each tetrahedral unit in order to maintain local charge 

neutrality of the (AlO4/2)
− units with four bridging oxygens.2-3 In the present case, this 

neutrality is assured by the presence of K2O. In such coordination, the Al3+ ions strengthen the 

glass network and diminish crystallization tendency during melt quenching. However, as the 

ratio K2O/Al2O3 increases, the molar concentration of K2O exceeds that of Al2O3, causing the 

formation of a larger fraction of NBO (Table 2). These free potassium cations act as glass 

network modifiers and are distributed in the glass matrix apart from the glass network 

forming (AlO4/2)
− units. 
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Fig. 3 − 29Si MAS-NMR spectra of glasses: (a) GK0, (b) GK5 and (c) GK10. Dashed curves 

show the spectral deconvolution components used for fitting the data. 

 

3.2.3 Differential thermal analysis 

The DTA plots of glasses with a heating rate (β) of 20 K min−1, shown in Fig. 4a, show well-

defined features comprising endothermic and exothermic peaks from which transition point 

(Tg), temperature of onset crystallization (Tc) and peak temperature of crystallization (Tp), 

were determined (Table 2). In general, Tc and Tp decreased with increasing K2O content (Fig. 

4b) confirming earlier results that crystallization of K2O containing lithium disilicate glass 

starts at lower temperatures.15 Moreover, lowering of Tg values are in accordance with 

increasing non-bridging oxygens per tetrahedron (NBO/T) for potassium richer compositions 

suggesting depolymerization of glass network. Additionally it was revealed that the peak 

temperature of crystallization shifted to higher temperatures with increasing β (figures are not 

shown). 

 

3.3 Crystallization behaviour of bulk glasses 

3.3.1 Phase assemblage 

Fig. 5 presents the X-ray diffractograms of glasses heat treated at different temperatures. All 

the investigated glass compositions were amorphous after heat treatment at 600 ºC for 1 h 
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except GK10 that exhibits traces of lithium metasilicate (Fig. 5a). The trend for the preferential 

crystallization of lithium metasilicate with increasing potassium content appears clear at 700 

ºC (Fig. 5b). As a matter of fact, low intensity peaks of lithium disilicate only appeared in the 

GK0 sample heat treated at this temperature. Increasing the heat treatment temperature to 800 

ºC (Fig. 5c) favoured the formation of lithium disilicate in detriment of lithium metasilicate 

within the x range of 0–1, while lithium metasilicate is the only phase present for x > 1 (also 

valid at 900 ºC). However, the parent glass composition GK0 underwent partial dissolution of 

lithium disilicate into lithium metasilicate and quartz with increasing the temperature to 900 

ºC, while enhanced the intensity of lithium disilicate peaks in the GK0.5 and GK1 

compositions (Fig. 5d). 
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Fig. 4 − Thermal behaviour of glasses: (a) DTA at β = 20 K min−1; (b) evolution of Tc and Tp 

with the amount of K2O added to the parent composition. 

 

The as obtained results suggest that K2O significantly affects the crystallization process 

suppressing the crystallization of lithium disilicate and promoting formation of lithium 

metasilicate for x > 1. This conclusion is in agreement with the study on equimolar 

replacement of 3 mol.% of Li2O by K2O in the 73SiO2, 2.15Al2O3, 23.7Li2O and 1.15P2O5 

(mol.%) base glass.15 This change in the crystallization behaviour can be explained by the 

lower value of the activation energy for crystallization of lithium metasilicate in comparison 

to that of lithium disilicate.15, 21-22 Moreover, adding alkali oxides to silicate glasses decreases 

the melt viscosity, increases the fraction of NBO and enhances the tendency of the glass 

towards devitrification.23 
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Fig. 5 − X-ray diffractograms of experimental bulk glasses after heat treatment at different 

temperatures for 1 h. LS: lithium silicate (Li2SiO3, ICCD card 01-029-0828); LD: lithium 

disilicate (Li2Si2O5, ICCD card 01-070-4856); Q: quartz (SiO2, ICCD card 01-077-1060). 

 

Bischoff et al.24 quite recently demonstrated that in series with SiO2/Li 2O molar ratio 2.39:1, 

at 650 ºC crystalline Li2SiO3 is not only being formed from the Q2 component present in the 

glassy precursor material but also via a disproportionation of Q3 units in the glass according 

to the reaction (1): 

2Q3 (glass) ↔ Q2 (cryst.) + Q4 (glass) (1) 
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Moreover, it was revealed reveals that the Q3/Q4 ratio was already significantly decreased in 

the amorphous sample annealed at 530 ºC, even before crystalline Li2SiO3 can be observed in 

either solid state NMR or X-ray powder patterns. Finally, the formation of crystalline 

Li 2Si2O5 in the sample annealed at 850 ºC produced a strong sharp peak near −92 ppm 

supporting the synproportionation reaction (2): 

Q4 (glass) + Q2 (cryst.) ↔ 2Q3 (cryst.) (2) 

Using this model and 29SiMAS-NMR results (Fig. 3; Table 3) we can explain the effect of 

suppressing the crystallization of Li2Si2O5 and promoting formation of Li2SiO3 with 

increasing of K2O content. Thus, considering the significant decrease of Q4 units in K2O-rich 

glasses (e.g. GK5 and GK10) the probability of reaction (2) to occur decreases considerably. 

This leads to the formation of Li2SiO3 as a single phase directly from Q2 or via reaction (1). 

 

3.3.1 Microstructure 

Fig. 6 shows the SEM micrographs for the glasses heat treated at different temperatures. At 

600 ºC, composition GK0.5 demonstrates coalescence of droplets into bigger agglomerates 

(Fig. 6a). A superficial layer of crystals with dendritic morphology, characteristic for lithium 

metasilicate, is clearly observed in the samples heat treated at 800 ºC (Fig. 6b).3 At 900 ºC, it 

is possible to observe the droplet-like zones of Li-rich phase, which are responsible for 

formation of lithium disilicate crystals in bulk region of the specimen (Fig. 6c). 

The phase separation in glasses with higher K2O contents conferred peculiar microstructural 

features since these glasses separate into two phases, one of which is a continuous phase rich 

in Li2O and containing considerable amount of K2O. Moreover, the addition of K2O seems to 

have favoured surface crystallization in glasses, as well as the formation of lithium 

metasilicate for x > 1, in good agreement with the XRD data. Thus, a surface layer of lithium 

metasilicate crystals grown towards the bulk can be clearly seen in Figs. 6d–f, for the samples 

heat treated at 700 ºC within the x range of 1.5–10, respectively. The thickness of the 

crystalline surface layer increased from 125 µm (GK1.5, Fig. 6d) to 350 µm (GK5, Fig. 6e) and 

925 µm (GK10, Fig. 6f), an effect that might be due to the preferred distribution of K2O in 

liquid–liquid phase separated Li2O-rich droplets. However, further information on nucleation 

and crystallization mechanisms needs to be gathered via investigating the crystallization 

kinetics of experimental glasses. 
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(a) 

 

(b) 

 

(c) 

 
(d) 

 

(e) 

 

(f) 

 
Fig. 6 − SEM images of bulk glasses heat treated at different temperatures for 1 h (etched 

with 2 vol.% HF solution for 2 min). 

 

4. Conclusions 

An insight into the effect of K2O on structure–property relationships and devitrification 

behaviour of glasses in the Li2O–SiO2 system has been presented. The results can be 

summarized in the following conclusions: 

1. Liquid–liquid phase separation occurred in all investigated glasses and the 

addition of K2O to the parent glass led to increasing the mean droplet size 

and their distribution density due to a decreasing energy barrier towards 

phase separation caused by the lowering of glass melt viscosity. 

2. The 29Si MAS-NMR spectra evidenced a mixture of Q4 (Si) and Q3 (Si) as 

the predominant structural units in all the glasses. Upon increasing K2O 

content, new Q2 groups appeared and the amount of Q3 units increased, 

whereas the Q4 units diminished suggesting depolymerization of the 

silicate glass network. 

3. The 27Al MAS-NMR results suggested that the K2O added to the parent 

glass tends to enhance the role of Al2O3 as glass network former, signifying 

1 mm GK 10 – 700 ºC 

~925 µµµµm 

500 µm GK 5 – 700 ºC 

~350 µµµµm 

100 µm GK 1.5 – 700 ºC 

~125 µµµµm 

100 µm GK 0.5 – 900 ºC 
100 µm GK 0.5 – 800 ºC 

1 µm GK 0.5 – 600 ºC 
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that four-coordinate aluminium network-forming species would not 

participate in the crystallization processes. 

4. According to the 29Si MAS-NMR results, diminishing of Q4 groups in 

K2O-rich glasses (e.g. GK5 and GK10) suppressed the crystallization of 

Li 2Si2O5 and promoted the formation of Li2SiO3. 
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Abstract 

The effects of K2O content on sintering and crystallization of glass powder compacts in the 

Li 2O–K2O–Al2O3–SiO2 system were investigated. Glasses featuring SiO2/Li 2O molar ratios of 

2.69–3.13, far beyond the lithium disilicate (LD, Li2Si2O5) stoichiometry, were produced by 

conventional melt-quenching technique. The sintering and crystallization behaviour of glass 

powders was explored using hot stage microscopy (HSM), scanning electron microscopy 

(SEM), differential thermal (DTA) and X-ray diffraction (XRD) analyses. Increasing K2O 

content at the expense of SiO2 was shown to lower the temperature of maximum shrinkage, 

eventually resulting in early densification of the glass-powder compacts. Lithium metasilicate 

was the main crystalline phase formed upon heat treating the glass powders with higher 

amounts of K2O. In contrast, lithium disilicate predominantly crystallized from the 

compositions with lower K2O contents resulting in strong glass-ceramics with high chemical 

and electrical resistance. The total content of K2O should be kept below 4.63 mol.% for 

obtaining LD-based glass-ceramics. 

 

Keywords: Glass; Glass ceramics; Lithium disilicate; Thermo-physical properties 
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1. Introduction 

Sintering of glass-powder compacts is a common processing route for obtaining glass–

ceramic (GC) materials with desired properties.1-2 The glass powders with high specific 

surface area intrinsically provide uniformly distributed nucleus sites in the entire volume of 

the glass.3-7 The properties of GCs are determined by crystalline phases precipitated from the 

glass reservoir while an excessively high crystal growth rate is to be avoided to not develop 

coarse microstructure limiting achievement of high mechanical strength.1, 8-10 Additionally, 

sintering should preferably take place prior crystallization thus both events being independent 

processes. 

Lithium disilicate GCs have attracted much interest due to a wide range of practical 

applications such as ceramic composites, ceramic-metal sealing, dental restoration, etc.11-13 

Production of those materials might be alternatively based on sintering and crystallization of 

glass powder compacts. In particular, dentistry restoration systems IPS Empress 2 for 

restoring three-unit fixed partial dentures up to the second premolar have so far been prepared 

by hot-pressing technology of sintered ingots.14 Apparently, besides the practical aspects, 

lithium disilicate glasses have been a subject of many nucleation and crystallization theories 

for decades.15-18 These studies focused on the Li2O–SiO2 binary glass system and discussed 

the growth interrelation between the Li2Si2O5 and Li2SiO3 (lithium metasilicate) crystalline 

phases.15-20  

In our previous attempts, the glasses containing Al2O3 and K2O and featuring SiO2/Li 2O 

molar ratios (3.13−4.88) were produced by conventional melt-quenching technique along with 

a bicomponent glass 23Li2O–77SiO2 (mol.%).19-20 Sintering and crystallization studies of 

glass powder compacts revealed that 23Li2O–77SiO2 composition exhibited high fragility 

along with low flexural strength and density. Addition of Al2O3 and K2O in equimolar amount 

to Li2O–SiO2 compositions resulted in improved densification and mechanical strength.19 

Recently we attempted to synthesis glasses in the glass forming region of 

Li 2O−K2O−Al 2O3−SiO2 system with SiO2/Li 2O molar ratios varying between 2.69−3.13.21 

The role of K2O and K2O/SiO2 ratios on structural transformations, properties of new glasses 

in bulk form along with their crystallization mechanism was investigated. The 29Si MAS-

NMR spectra evidenced a mixture of Q4 (Si) and Q3 (Si) as the predominant structural units in 

all the glasses. Moreover, upon increasing K2O content new Q2 groups appeared, the amount 

of Q3 units increased, whereas Q4 diminished, suggesting depolymerisation of the silicate 
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glass network. The addition of K2O was found to promote surface crystallization in glasses, as 

well as the predominant formation of lithium metasilicate phase.  

This work, as the logical continuation of the recent study,21 aims at investigating the effects of 

K2O on sintering and crystallization of glass powder compacts in the Li2O−K2O−Al 2O3−SiO2 

system. The same glass compositions with SiO2/Li 2O molar ratios varying between 

2.69−3.13 have been prepared but in the frit form, and the sintering and crystallization of 

glass-powder compacts were analysed by hot stage microscopy (HSM), scanning electron 

microscopy (SEM), differential thermal (DTA) and X-ray diffraction (XRD) analyses. 

Another objective was to determine the influence of K2O contents and K2O/SiO2 ratios on 

thermal, mechanical and electrical properties  of resultant glass-ceramic materials.  

 

2. Experimental procedure 

2.1. Glass preparation 

A total of 8 compositions were prepared according to the general formulae 23.7 (71.78−x) 

SiO2 ⋅ 2.63 Al2O3 ⋅ (2.63+x) K2O ⋅ 23.7 Li2O, where x changed from 0 to 10.21 Accordingly, 

the glasses have been labelled as GKx depending on the amount of K2O being substituted for 

SiO2 in the glass compositions. For example: GK0 corresponds to the parent composition, i.e., 

x = 0 and K2O/Al2O3 = 1. Table 1 presents the detailed compositions of the glasses along with 

their corresponding SiO2/Li 2O, SiO2/K2O and K2O/Al2O3 ratios.  

Powders of technical grade SiO2 (purity >99.5%) and of reactive grade Al2O3, Li2CO3, and 

K2CO3 were used. Homogeneous mixtures of batches (~100 g)  obtained by ball milling were 

calcined at 800 ºC for 1 h, melted in Pt crucibles at 1550 ºC for 1 h  in air and then quenched 

in cold water. The obtained frits were dried and milled in a high-speed agate mill. The mean 

particle size of the glass powders as determined by light scattering technique (Beckman 

Coulter LS 230, CA USA; Fraunhofer optical model) was about 5-10 µm. 

 

2.2. Sintering and crystallization of glass powder compacts 

A side-view hot-stage microscope (HSM, Leitz Wetzlar, Germany) equipped with a Pixera 

video-camera and image analysis system was used to investigate the sintering behaviour of 

glass powder compacts. The cylindrical shaped samples from glass powder compacts with 
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height and diameter of ~3 mm were prepared by cold-pressing the glass powders. The 

cylindrical samples were placed on a 10×15×1 mm3 alumina (>99.5 wt.% Al2O3) support and 

the measurements were conducted in air with a heating rate (β) of 5 K/min. The temperature 

was measured with a chromel–alumel thermocouple contacted under the alumina support. The 

temperatures corresponding to the characteristic viscosity points [first shrinkage (TFS), 

maximum shrinkage (TMS), softening (TD), half ball (THB) and flow (TF)] were obtained from 

the graphs and photomicrographs taken during the hot-stage microscopy experiment.22-23 

Apart from HSM investigation, the sintering process was explored using non-isothermal heat 

treatment of glass-powder compacts. Rectangular bars (4×5×50 mm3) prepared by uniaxial 

pressing (80 MPa) were sintered at 800, 850 and 900 ºC for 1 h. A heating rate of 2 K/min 

was maintained in order to prevent deformation of the samples. 

 

Table 1 − Compositions of the experimental glasses. 

 Oxides (mol.%)    

 Li2O K2O Al2O3 SiO2 SiO2 /Li2O SiO2 /K2O K2O/ Al2O3 

GK 22.96 2.63 2.63 71.78 3.13 27.29 1.00 

GK0.5 22.96 3.13 2.63 71.28 3.10 22.77 1.19 

GK1 22.96 3.63 2.63 70.78 3.08 19.50 1.38 

GK1.5 22.96 4.13 2.63 70.28 3.06 17.02 1.57 

GK2 22.96 4.63 2.63 69.78 3.04 15.07 1.76 

GK2.5 22.96 5.13 2.63 69.28 3.02 13.50 1.95 

GK5 22.96 7.63 2.63 66.78 2.91 8.75 2.90 

GK10 22.96 12.63 2.63 61.78 2.69 4.89 4.80 

 

The following characterization techniques were employed to analyse sintered materials: (1) 

Archimedes’ method (i.e. immersion in diethylphthalate) to measure the apparent density; (2) 

dilatometry measurements (Bahr Thermo Analyze DIL 801 L, Hüllhorst, Germany; heating 

rate 5 K/min) to measure coefficient of thermal expansion (CTE) (standard deviation obtained 

from 3 samples was ±0.1×10-6 /K); (3) differential thermal analysis in air (DTA, Labsys 

setaram TG-DTA; heating rate 5 and 10 K/min); (4) 3-point bending strength tests were 

performed on rectified parallelepiped bars of sintered GCs (Shimadzu Autograph AG 25 TA, 

0.5 mm/min displacement): the results were obtained from 10 different independent samples; 

(5) chemical resistance was established according to ISO test standards, i.e. immersing the 
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materials in acetic acid at 80 ºC for 16 h and evaluating possible weight loss (µg/cm2);24 (6) 

crystalline phases were identified by X-ray diffraction analysis (Rigaku Geigerflex D/Mac, C 

Series, Japan; Cu Ka radiation, 2θ = 10-60º with a 2θ-step of 0.02 deg/s) comparing the 

experimental X-ray patterns to standards compiled by the International Centre for Diffraction 

Data (ICDD); (7) microstructure observations were done on polished (mirror finishing) and 

then etched samples (immersion in 2 vol.% HF solution for 2 min) by field emission scanning 

electron microscopy (FE-SEM, Hitachi S-4100, Japan, 25 kV acceleration voltage, beam 

current 10 µA) under secondary electron mode. 

For the measurements of total conductivity, dense ceramic samples sintered at 900 ºC were 

cut into disks with thickness of 1−3 mm (diameter of 14 mm) and then polished with diamond 

pastes. Porous Ag electrodes were applied onto both sides of the glass-ceramic disks and 

sintered at 600 ºC for 5−10 minutes. The total conductivity (σ) was determined by alternating 

current (AC) impedance spectroscopy using a HP4284A precision LCR meter in the 

frequency range 20 Hz – 1 MHz. The measurements were performed at 630−800 K in flowing 

dry and wet air or argon, where the water vapour partial pressure was continuously monitored 

by a Jumo humidity transducer. The lower temperature limit was associated with increasing 

electrical resistance of the glass-ceramics on cooling, leading to a higher noise level and lower 

accuracy; the upper limit was selected in order to avoid possible volatilization of the alkaline 

metal oxide components. The gas flows were dried by passing through silica gel or 

humidified by bubbling through water at room temperature. 

 

3. Results 

3.1. Glass and glass-ceramic samples preparation 

Heating at 1550 ºC for 1 h was adequate to obtain amorphous frits from all the investigated 

compositions as confirmed by the absence of crystalline inclusions using XRD analysis. 

Apparently, glass preparation temperature decreases with growing K2O content. Dense 

samples of rectangular shape were obtained after sintering of glass-powder compacts at 800, 

850 and 900 ºC for 1 h. However, GK5 and GK10 exhibited clear signs of softening at 

temperature ≥ 800 ºC (Fig. 1) due to their higher contents of alkaline oxides (Li2O+K2O).25-29  
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Fig. 1 − Appearance of glass powder compact bars after sintering at 900 ºC for 1 h. 

 

3.2. Sintering process of glass-powder compacts 

During sintering of a glass-powder compact, smaller particles get sintered first and sintering 

kinetics at the first shrinkage is dominated by the neck formation among smallest particles via 

viscous flow.30-31 Maximum shrinkage is reached when larger pores have disappeared due to 

viscous flow that reduces their radii with time.32 However, some processes, e.g. 

crystallization, occurring at the very end of sintering process might affect the densification 

kinetics. A comparison between DTA and HSM results under the same heating conditions can 

be useful to investigate the effect of glass composition on sintering and devitrification 

phenomena. In general, two different trends related to the sintering and crystallization 

behaviour of the glasses can be observed:33 (1) the beginning of crystallization (Tc) occurs 

after the final sintering stage and, thus, sintering and crystallization are independent 

processes; (2) Tc appears before the maximum density has been reached, and the 

crystallization process starts before complete densification, thus, preventing further sintering.   

There are several important characteristic viscosity points based on the relation between the 

temperatures measured by HSM and corresponding viscosities:22, 34 (1) first shrinkage (TFS): 

the temperature at which the pressed sample starts to shrink, log η = 9.1 ± 0.1, where η is the 

viscosity in dPa.s; (2) point of maximum shrinkage (TMS): the temperature at which maximum 

shrinkage of the glass-powder compact is achieved before it starts to soften, log η = 7.8 ± 0.1; 

(3) softening point (TD): the temperature at which the first signs of softening are observed 

which is generally shown by the disappearance or rounding of the small protrusions at the 

edges of the sample, log η = 6.3 ± 0.1; (4) half ball point (THB): the temperature at which the 

section of the observed sample forms a semicircle on the microscope grid, log η = 4.1 ± 0.1, 

GK 0.5 

GK 1 

GK 1.5 

GK 2 

GK 2.5 

GK 5 

GK 10 
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and (5) flow point (TF): the temperature at which the maximum height of the drop of the 

molten glass corresponds to a unit on the microscopic scale, log η = 3.4 ± 0.1. A/A0 

corresponds to the ratio of final area/initial area of the glass-powder compacts. 

The variation in the relative area (A/A0) and heat flow with respect to temperature is shown in 

Fig. 2, revealing two steps of sintering. The thermal characteristics and sintering parameters 

of glasses obtained by means of DTA and HSM are summarized in the Table 2. The initiation 

of sintering occurred at ~484−491 ºC (TFS1) in all compositions while the extent of 

densification at the first stage (i.e. temperature interval between TMS1 and TFS1) significantly 

decreased with increasing K2O content and K2O/SiO2 ratio. The first sintering stage ended at 

the point of first maximum shrinkage (TMS1) that was fairly close to the onset of crystallization 

temperature (Tc).  

The second stage of densification occurred in competition with devitrification process (Fig. 2) 

that subsequently might cause a viscosity increase.33 However, the viscosity did not raise in 

such an extent to prevent sintering.19 In contrast, shrinkage values (∆2) of GK0−GK2 glasses 

were comparable with relevant data obtained at the first stage. The subsequent GK5−GK10 

compositions exhibited highest values of shrinkage suggesting that the densification processes 

for these glasses mostly occurred during the second sintering stage. Another feature was that 

the temperature of second shrinkage (TFS2) and the corresponding point of maximum 

shrinkage (TMS2) decreased with increasing amounts of K2O. 

The photomicrographs demonstrating a change in the geometrical shape with temperature, as 

obtained from HSM, are presented in Fig. 3. The value of TD for GK0 is about 929 ºC, which 

is higher than the maximum sintering temperature used in the experimental procedure (900 

ºC). Therefore no deformation sighs in GK0 samples were revealed (Fig. 1), likewise for GK1 

and GK2 that exhibited TD values at about 947 ºC and 928 ºC, respectively (Table 2). 

Compositions with higher added amounts of K2O exhibited lower ability to withstand the 

same temperature range. For instance, compositions GK5 and GK10 reached TD at 830 and 709 

ºC, THB at 910 and 916 ºC, and TF at 929 and 939 ºC, respectively (Table 2). 

 

3.3. Phase assemblage and microstructure 

Fig. 4 presents the X-ray diffractograms of glass powder compacts after heating at 800, 850 

and 900 ºC for 1 h. Lithium metasilicate is the major phase while quartz and lithium disilicate 

are minor phases in GK0 at 800 ºC. Low intensive peaks of lithium disilicate also appeared in 
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the GK0.5−GK2 samples heat treated at this temperature. Increasing the heat treatment 

temperature to 850−900 ºC favoured formation of lithium disilicate in detriment of lithium 

metasilicate within the x range of 0−2.  
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Fig. 2 − DTA and HSM curves for glass-powders (a) GK0, (b) GK2, (c) GK5, (d) GK10. 

 

However, the intensity of lithium disilicate peaks decayed with increasing K2O contents and 

the observed results suggest that the total amount of K2O in a glass should be less than 4.63 

mol.% (or x should vary in the range of 0−2) to obtain lithium disilicate as the predominate 

crystalline phase. Thus, lithium metasilicate was the only crystalline phase formed in the 
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glasses containing higher amounts of K2O after sintering at 800, 850 and 900 ºC (in GK5 

weak peaks of orthoclase were also identified). 

 

Table 2 −Thermal characteristics of glasses and their sintering parameters. 

  DTA  HSM 

x  Tg Tc Tp  TFS1 TMS1 ∆1 TFS2 TMS2 ∆2 A/A0 TD THB TF 

  (ºC)  (ºC)  (ºC)   (ºC) 

0  507 599 672  487 611 0.18 774 924 0.17 0.65 929 945 964 

1  499 596 669  491 611 0.18 758 874 0.20 0.62 947 957 967 

2  494 588 675  487 593 0.19 717 870 0.20 0.61 928 937 954 

5  493 563 651  488 565 0.11 658 821 0.28 0.61 830 910 929 

10  490 559 616  484 541 0.02 621 707 0.39 0.59 709 916 939 

 

             
 

Fig. 3 − HSM images of glass powder compacts on alumina substrates (* corresponds to TD of 

composition GK0). 

 

Fig. 5 presents the SEM images of glass powder compacts of compositions GK0 GK2.5 and 

GK5 after heat treatment at 800, 850 and 900 ºC for 1 h. The microstructure of parent 

composition GK0 heat treated at 800 ºC (Fig. 5a) reveals the occurrence of dendritic crystal 

growth of lithium metasilicate and small crystals of quartz dispersed in the matrix, which are 

in accordance with the results obtained by XRD (Fig. 4a). 

It is known that lithium metasilicate crystals are particularly easy to dissolve from GC by 

diluted hydrofluoric acid (HF) while the surrounding aluminosilicate glassy matrix is 

considerably more resistant to acid attack.1 Thus, its presence is recognized by the replica 

image resultant from acid etching. At 850 ºC the microstructure changed drastically revealing 

the presence of laminar fibres of lithium disilicate embedded in the glass matrix which further 

grew with temperature increasing to 900 ºC. With increasing added amounts of K2O the 

content of glassy phase increased and lithium metasilicate appeared as the predominant 

crystalline phase, being in good agreement with the XRD results presented in Fig. 4. In the 

916 
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930 
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case of GK2.5 composition, the presence of laminar lithium disilicate crystals is only apparent 

in the micrograph of the sample heat treated at 900 ºC (Fig. 5d), although traces of lithium 

disilicate have been detected at 850 ºC (Fig. 4d). The micrographs of GK5 composition (Fig. 

5h-j) are dominated by the morphological features of lithium metasilicate crystals that 

underwent extensive dissolution by HF attack. The small orthoclase content detected by XRD 

is also apparent as small equiaxed and whiter crystals. 

 

3.4. Density, bending strength, CTE and chemical resistance of glass-powder compacts 

Table 3 presents density and bending strength values of glass powder compacts heat treated at 

800, 850 and 900 ºC for 1 h. The glass ceramics GK0 - GK2 exhibited maximum density 

(2.34−2.38 g/cm3) and bending strength (~173−224 MPa) after heat treatment at 900 ºC. The 

samples GK2.5, GK5 and GK10 having higher K2O/SiO2 ratios possessed maximum density 

(2.34−2.38 g/cm3) and bending strength values (~89−148 MPa) at the lower temperatures 

(800 and 850 ºC) that are in accordance with the results of HSM and DTA. 

The superior mechanical properties of GK0 - GK2 glass-ceramic samples can be explained by 

the formation of lithium disilicate crystals (Fig. 5) and their higher contribution to mechanical 

resistance in comparison to lithium metasilicate.35-36 

Fig. 6 shows the evolution CTE and chemical durability with respect to K2O content for glass 

powder compacts heat treated at 900 ºC for 1 h. The chemical resistance of GCs is high for 

small x values but noticeably decreased with increasing K2O/SiO2 ratios. This trend was more 

than expected considering the relatively high solubility of lithium metasilicate in acidic 

environment.1  

The change of CTE with respect to K2O shows almost a linear trend (Fig. 6). In particular, 

CTE gradually increases with the increments of K2O in glass-ceramics. Since a GC might be 

considered as a composite material, its CTE depends on the type and volume fraction of both 

crystalline and glassy phases.38-40 The increase of CTE with the increments of K2O can be 

explained by the concomitant increase in the volume fraction of glassy phase (Fig. 4), and by 

the precipitation of lithium metasilicate and orthoclase phases.41 

The increasing amounts of residual glassy phase for samples with x > 2.5, as deduced from 

the noisy backgrounds in Fig. 4, will also negatively affect the chemical stability of glass-

ceramics.37 
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Fig. 4 − X-ray diffractograms of glass powder compacts after heat treatment at different 

temperatures for 1 h: (a) GK0, (b) GK0.5, (c) GK2, (d) GK2.5, (e) GK5 and (f) GK10. LS: 

lithium silicate (Li2SiO3, ICCD card 01-029-0828); LD: lithium disilicate (Li2Si2O5, ICCD 

card 01-070-4856); Q: quartz (SiO2, ICCD card 01-077-1060); O: orthoclase (K4Al 4Si12O32, 

ICCD card 01-080-2108). 
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 (a) 

 

(b) 

 

(c) 

 
(d) 

 

(e) 

 

(f) 

 
(h) 

 

(i) 

 

(j) 

 
Fig. 5 − SEM images of glass powder compacts heat treated at different temperatures for 1 h. 

 

Table 3 − Properties of the glass powder compacts heat treated at several temperatures in air 

during 1 hour. 

 x (mol.%) 

 0 0.5 1.5 2.5 5 10 

Density (g/cm3)     

800 ºC 2.19 ± 0.03 2.25 ± 0.02 2.35 ± 0.01 2.34 ± 0.03 2.36 ± 0.01 2.38 ± 0.01 

850 ºC 2.25 ± 0.03 2.36 ± 0.03 2.35 ± 0.03 2.31 ± 0.03 2.35 ± 0.03 2.30 ± 0.03 

900 ºC 2.36 ± 0.03 2.38 ± 0.03 2.35 ± 0.03 2.28 ± 0.03 2.28 ± 0.03 2.22 ± 0.03 

Bending strength (MPa)     

800 ºC 81 ± 8 88 ± 19 125 ± 6 148 ± 9 126 ± 4 89 ± 8 

850 ºC 216 ± 3 151 ± 11 176 ± 11 138 ± 10 139 ± 12 76 ± 10 

900 ºC 224 ± 4 173 ± 8 205 ± 13 107 ± 12 79 ± 6 − 

 

10 µm GK 5 – 850 ºC 

10 µm GK 2.5 – 900 ºC 

10 µm GK 0 – 900 ºC 

10 µm GK 5 – 800 ºC 

10 µm GK 2.5 – 800 ºC 

10 µm GK 0 – 850 ºC 
10 µm GK 0 – 800 ºC 

10 µm GK 2.5 – 850 ºC 

10 µm GK 5 – 900 ºC 
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Fig. 6 − Evolution of CTE200-400 ºC and chemical durability with the amount of K2O for glass 

powder compacts heat treated at 900 ºC for 1 h. 

 

3.5. Electrical properties  

Typical examples of the impedance spectra of glass-ceramic disks with porous Ag electrodes 

are presented in Fig. 7. In all cases, the spectra consist of one semicircle with a small 

electrode tail in the low-frequency range. In general, this form is characteristic of dielectric 

materials, in agreement with high values of the electrical resistance which can be calculated 

from low-frequency intercept of the semicircles on the real axis. 
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Fig. 7 − Examples of impedance spectra of the glass-ceramics with Ag electrodes, in dry air: 

(a) GK0 and (b) GK1. 

 

The total conductivity (Fig. 8) follows Arrhenius dependence and tends to moderately 

decrease in the high-temperature range with incremental amounts of K2O. The latter trend 
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originates from decreasing activation energy (Ea) when K2O content increases. Fig. 9 displays 

the activation energy values calculated by the Arrhenius equation: 

0 aA E
exp

T RT
 σ =  
   

were A0 is the pre-exponential factor. Although the observed variations of both σ and Ea are 

relatively minor at K2O concentrations varying in the narrow range of 2.63 to 7.63 mol.%, 

these are higher than instrumental and statistical errors. 
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Fig. 8 − Temperature dependence of the total conductivity of glass-ceramic materials in dry 

air. 

 

Attempts to determine the type of prevailing charge carriers using concentration cells, where 

the dense glass-ceramic disks are placed under oxygen, water vapour and lithium chemical 

potential gradient, failed due to the very high resistivity of the studied materials. Nonetheless, 

the tendency to lowering the conductivity activation energy with K2O additions may indicate 

a significant ionic contribution to transport processes. In the latter case, the ionic charge 

carriers may include either metal cations (Li+, K+) or protons formed due to water 

incorporation, promoted by potassium doping. Indeed, the total conductivity of the glass-

ceramics was found essentially independent on the oxygen partial pressure, varied from 0.21 

atm (dry air) down to approximately 10-5 atm (flowing argon). At the same time, increasing 

humidity at 633 K resulted in a slow increase of the conductivity (Fig. 10). Again, this effect 

is small but significant with respect to the experimental error (2−3%). Notice also that 

keeping of the glass-ceramics in humid atmospheres at 300−400 K during 2 weeks did not 
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lead to any significant changes in their bulk conductivity, thus suggesting that minor 

hydration is only observed at elevated temperatures, probably due to kinetic reasons. 

Whatever the microscopic mechanisms, the glass-ceramic materials exhibit excellent 

insulating properties at low temperatures. The estimates of their total conductivity at room 

temperature, obtained by extrapolation of the Arrhenius dependencies, vary from 2×10-18 

S/cm (GK0) to 1×10-17 S/cm (GK5). Regardless of the slight decrease in the electrical 

resistivity induced by K2O doping, the overall resistance level is very high. 
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Fig. 9 − Composition dependence of the activation energy for total conductivity of the glass-

ceramic materials in dry air. 

-7.6

-7.56

-7.52

-7.48

0 50 100 150 200 250

104/T (/K)

lo
g 

σσ σσ 
(S

/c
m

)

dry air

wet air

p(H2O) < 10-3 atm

p(H2O) = 0.3 atm

GK5

633 ± 1 K

 

Fig. 10 − Time dependence of the total conductivity of GK5 glass-ceramics in dry and wet air. 
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4. Discussion 

From the results of our recent study 21 the addition of K2O at the expense of SiO2 in the 

Li 2O−K2O−Al 2O3−SiO2 system was found to promote surface crystallization in bulk glasses, 

as well as the predominant formation of lithium metasilicate phase. However, considering that 

the production of lithium disilicate GCs for most of the intended applications involves the 

sintering and crystallization of glass powder compacts, it is of paramount importance to 

evaluate how these thermal events are affected by the composition. Therefore, the current 

work is focused on studying the influence of K2O amount and K2O/SiO2 ratio on 

sintering/crystallization behaviour of glass powder compacts.  

Glasses have been produced at 1550 ºC for 1 h to escape any signs of nonhomogeneity in the 

form of crystalline inclusions. Volatilization of chemical species should be very low. As a 

matter of fact, analogous glasses from the SiO2–Li2O–Al2O3–K2O–ZrO2–P2O5 system that 

were firstly melted at 1370 ºC for 2 h and subsequently heat treated at 1500 ºC for 1.5 h 

demonstrated to have almost the same chemical compositions after analysis as the planed 

starting compositions.42 

Densification of glass powder compacts is obtained through viscous flow at temperatures 

slightly higher than the glass transition temperature (Tg). The desired order of events in a 

glass-powder sintering process occurs when the sintering process is completed before 

crystallization begins. Under these conditions, dense materials are obtained.33  From HSM 

and DTA data it can be concluded that increasing K2O/SiO2 ratio led to diminishing of TFS1, 

TMS1, TFS2 and TMS2 parameters and temperature intervals between TMS and TFS at both the first 

and the second sintering stages. Consequently, K2O-richer samples get sintered during shorter 

temperature interval and at lower temperatures than compositions with lower K2O contents. 

Therefore, the GK5 and GK10 compositions reached half ball point (THB)  even earlier than 

softening point (TD) was attained in GK0−GK2 glasses (Table 2 and Fig. 3). This behaviour is 

in a good correlation with the trend observed in the 29Si NMR spectra of corresponding 

glasses pointing towards depolymerisation of the silicate glass network when K2O/SiO2 ratio 

increased.21  

In general, the sintering and crystallization events occurring in the experimental compositions 

appear as independent processes only during the first sintering stage. Although these 

compositions did not strictly follow the desired sequence of events and sintering was partially 

impeded by crystallization, all glass–powder compacts demonstrated excellent sintering 
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ability and achieved the maximum expected density (A/A 0~0.6).33 Similar trends were 

observed in our previous work where sintering and devitrification processes were investigated 

in Li2O–SiO2 compositions with equimolar additions of Al2O3 and K2O.19   

Additionally, the difference between Tc and Tg must be also taken into account. From the 

Table 2 this difference is about 92−97 oC for GK0−GK2 glasses and 69−70 oC for GK5−GK10 

glasses confirming that compositions with lower K2O contents show smaller tendency to 

crystallization and greater glass stability.  

XRD and SEM results demonstrated that K2O content plays a crucial role in the 

crystallization process of glass-powder compacts. As a matter of fact, the trend for the 

preferential crystallization of lithium metasilicate with increasing potassium content resemble 

data received from crystallization of relevant bulk glasses.21 Using the model proposed by 

Bischoff et al.36 and 29Si MAS-NMR results from our previous work 21 we can attempt 

explaining the effect of suppressing the crystallization of Li2Si2O5 and promoting the 

formation of Li2SiO3 with increasing K2O contents. In particular, considering significant 

decrease of Q4 groupings in K2O-rich glasses (e.g. GK5 and GK10), the feasibility of the 

reaction Q4 (glass) + Q2 (cryst.) ↔  2 Q3 (cryst.) diminishes considerably. This leads to the 

formation of single phase Li2SiO3 directly from Q2 or via reaction 2 Q3 (glass) ↔ Q2 (cryst.) 

+ Q4 (glass).36 

Another interesting aspect is that the glass powder compacts are more prone to the formation 

of lithium disilicate for x ≤ 2, than the corresponding bulk glasses where x ≤ 1. This behaviour 

can be ascribed to the difference in preparation routes of the parent glasses as water 

quenching of the glass increases the OH− content. The hydroxyl groups may act as a modifier 

and break the silicate network, thus, reducing the viscosity and activation energy of viscous 

flow.19  

Sintered glass powder compacts with K2O content less than 4.64 mol.% featured enhanced 

mechanical properties  (bending strength ~173−224 MPa) and high chemical  resistance 

(~25−50 µg/cm2) due to the predominant crystallization of lithium disilicate crystalline phase. 

The chemical durability of the experimental compositions is similar to that reported for IPS 

Empress 2 (50 µg/cm2), but materials are more  resistant than IPS Empress 1 (122 mg/cm2) 

for layering technique.1  

The 3-point bending strength values are lower than those reported for IPS Empress 2 (400 ± 

40 MPa).1, 43 It is known, however, that  hot pressing technique used to prepare samples of 
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commercial GC can significantly improves bending strength.1 To prove this assumption, 

additional experiments were attempted on the synthesis and processing of a commercial glass-

ceramic composition: 69.6 SiO2, 1.10 Al2O3, 3.90 P2O5, 3.30 K2O, 15.4 Li2O, 0.50 TiO2, 0.30 

CeO2, 0.30 La2O3, 5.20 ZnO, 0.20 MgO, 0.20 Fe2O3 (wt.%).43 A bending strength of 341±98 

MPa was reported for this material when processed by hot pressing.43 According to the 

specifications given,43 the glass was melted in a platinum crucible at 1550 °C for 1 h followed 

by quenching in water, drying and milling the frit to an average particle size of 20 to 30 

microns. Then, rectangular bars (4×5×50 mm3) were prepared by uniaxial pressing (80 MPa) 

following the same experimental procedure used for compositions GK0−GK10. The as 

obtained bars were also similarly fired at 500 °C for 1 h and then at 850 °C for 2 h (the rate of 

heating was 30 K/min) as recommended in.43 Thus, hot pressing procedure has been excluded 

from sample preparation. The average flexural strength (for 10 samples) measured in a testing 

machine (Shimadzu Autograph AG 25 TA) was 199±14 MPa, which is comparable to other 

experimental values reported for LD GCs (190–234 MPa 1, 44-46, 204.75 ± 49.81 MPa 47).  

The activation energies for total conductivity of the glass-ceramic materials are significantly 

higher than those found for  lithium disilicate glass 48-49 and close to value obtained for 100% 

crystallized lithium disilicate.50 In general, GCs materials featured low total conductivity 

(~2×10-18 S/cm for GK0) suggesting a number of practical applications in which this property 

is relevant. 

 

5. Conclusions  

The data gathered and discussed in the frame of the present work enable the following 

conclusions to be drawn: 

1. The sintering/densification of the glass powder compacts occurred in two 

steps. Sintering started at ~484−491 ºC (TFS1) in all compositions while the 

extent of densification along the first stage significantly decreased with 

increasing the added amounts of K2O and the K2O/SiO2 ratio. The second 

stage of densification occurred in competition with crystallization process. 

2.  Increasing the K2O/SiO2 ratio led the thermal parameters TFS1, TMS1, TFS2 

and TMS2 to decrease, a trend that was also observed for the temperature 

intervals between TMS and TFS. This suggests that K2O-richer samples 
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(GK2.5, GK5 and GK10) get sintered within a shorter temperature interval 

and at lower temperatures.  

3. The gradual substitution of SiO2 by K2O in glass compositions suppressed 

the crystallization of Li2Si2O5 and promoted the formation of Li2SiO3 upon 

sintering the glass powder compacts.  

4. The glass powder compacts demonstrate wider range of the lithium 

disilicate formation with x ≤ 2 (≤4.63 mol.% K2O) than the corresponding 

bulk glasses with x ≤ 1 (≤3.63 mol.% K2O). 

5.  The predominant crystallization of lithium disilicate in low-K2O 

compositions resulted in glass-ceramics with high mechanical strength 

(~173−224 MPa), chemical resistance (~25−50 µg/cm2) and low total 

conductivity (~2×10-18 S/cm for GK0) making the materials suitable for a 

number of practical applications. 
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Abstract 

The main objective of this work was to evaluate the effect of Al2O3 in the Li2O–SiO2 glass 

system followed by investigation of structure, properties and phase formation phenomenon in 

glasses of 3 different systems, i.e. Li2O−SiO2, Li2O−Al 2O3−SiO2 and Li2O−K2O−Al 2O3−SiO2. 

Contribution of both Al2O3 and K2O to the surface tension and subsequently to the 

segregation process in Li2O–SiO2 glasses was discussed. The distribution of structural units in 

the experimental glasses was estimated using 29Si MAS-NMR spectroscopy suggesting 

enhancement of Q2, and diminishing of Q3 and Q4 groups with addition of Al2O3 

demonstrating its dual role as network former and modifier in the pure Li2O–SiO2 system.  

Less polymerised network in the Li2O−SiO2 and Li2O−Al 2O3−SiO2 glasses caused significant 

decrease in Tc−Tg processing window completely hindering the densification of the 

corresponding glass powder compacts. On the contrary, glass-powder compacts in the 

Li 2O−K2O−Al 2O3−SiO2 system featured excellent densification behaviour and high 

mechanical strength that was attributed to the formation of a more rigid glass network 

comprising four coordinated (AlO4/2)
− units and K+ cations in its vicinity. 

 

Keywords: Glass; Lithium disilicate; Metastable phase separation 
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1. Introduction 

The binary alkali silicate glasses may be considered as the original type of all silicate glasses 

consisting of several components.1-3 Among the binary alkali silicate glasses the lithia-silica 

system has gained a great interest for the preparation of glasses and glass-ceramic materials.4-6 

Lithium meta- and disilicate phases might be formed depending on the SiO2/Li 2O ratio, 

presence of nucleating agents, thermal history of parent glasses, etc..7 The S-shaped path of 

the melting curve in the Li2O–SiO2 system shows that it has to certain extent a tendency to 

segregation. According to Vogel 2 the glasses with SiO2 contents higher than the 

stoichiometric lithium disilicate Li2Si2O5 (here after referred as LD) tend to separate into a 

matrix phase with a composition almost similar to that of LD along with an isolated droplet 

SiO2 rich phase, while glasses with Li2O contents <30 mol.% usually turn out to be opalescent 

or opaque on cooling owing to phase separation. Electron microscopic examination 

successfully demonstrated segregation into droplet-like zones of Li-rich phase and SiO2-rich 

glass matrix even in compositions with Li2O contents <10 mol.%.2 

It was further assumed that the composition of the droplet phase tended to a limiting value, 

i.e. towards the disilicate compound that was reached within the Li2O content of 14–16 mol.% 

in the entire glass, which thereafter remained constant until a composition of 33.3 mol.%. 

Absolute surface tension measurements of the pure silica and lithium disilicate glasses at 

1300 ºC gave the values of 283 and 320.2 dynes cm–1 (mN m–1), respectively.2 This was the 

main reason for the segregation zones formation in glasses with a range of compositions from 

0 to 33.3 mol.% of Li2O (maximum).  

The glass-ceramics derived from this parent binary system exhibit some unfavourable 

characteristics in terms of their mechanical strength and chemical durability which hinder 

their use in several technological areas. Although chemical durability, which is of major 

importance for dental materials, has been improved via adding Al2O3 and K2O to 

stoichiometric LD compositions,8-9 special attention was drawn to non-stoichiometric LD 

glass-ceramics. The latter have proven to be potential candidates for different functional 

applications due their improved mechanical, chemical and thermal properties.10-15 It is 

noteworthy that according to Höland and Beal 7 the term ‘non-stoichiometric’ implies that 

SiO2/Li 2O molar ratio deviates greatly from 2:1 and the system is rendered considerably more 

complex with numerous additional oxides, including nucleating agents. The introduction of 

SiO2-excess to stoichiometric lithium disilicate glass along with additives, such as ZrO2, 
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Al 2O3, ZnO, CaO, K2O, and P2O5, has been suggested by Echeverria and Beall.16-18 Later, 

P2O5 was found to play a crucial role in lithium disilicate transformation and crystallization:19-

20 P2O5 (as nucleating agent) at the amount of 1.5–2.5 mol.% resulted in glass-ceramics with 

fine-grained interlocking microstructures, conferring the final products with high mechanical 

strength. A powder processing of lithium disilicate glass-ceramics in a multi-component 

system with a wide compositional range (in wt.%) 57–80 SiO2, 11–19 Li2O, 0–13 K2O, 0–5 

Al 2O3, 0–8 ZnO, 0.1–6, La2O3, and 0.1–11 P2O5, was thoroughly investigated by Ivoclar-

Vivadent company to produce the material IPS Empress2.21-24  

In spite of the numerous studies found on non-stoichiometric glasses in the Li2O–SiO2 

system, compositions with SiO2/Li 2O molar ratios > 3:1 were scarcely investigated.3, 25-26 We 

have recently reported on glass compositions with SiO2/Li 2O molar ratios far beyond that of 

lithium disilicate stoichiometry,27-31 namely within the range of 3.13−4.88 and containing 

Al 2O3 and K2O, which were compared with a bicomponent glass 23Li2O–77SiO2 (mol.%).27, 

29-30 The later composition exhibited a cloudy appearance upon cooling while the Al2O3 and 

K2O containing compositions resulted in transparent glasses due to the presence of Al3+, 

which acted as network former decreasing the volume fraction and mean diameter of droplet 

phase. Sintering and crystallization studies of 23Li2O–77SiO2 glass powder compacts 

revealed high fragility, and low flexural strength and density. In contrast, good densification 

behaviour resulted from adding equimolar amounts of Al2O3 and K2O to the Li2O–SiO2 

system to obtain the composition 22.96Li2O−2.63Al2O3−2.63K2O−71.78SiO2 (mol.%) 

(SiO2/Li 2O molar ratio of 3.13), and a glass-ceramic with improved mechanical strength.30 A 

further insight into the effect of K2O on structure–property relationships and devitrification 

behaviour of glasses was made starting from the above referred glass 

(22.96Li2O−2.63Al2O3−2.63K2O−71.78SiO2) and adding incremental amounts of K2O.28, 31 

These studies revealed that excess K2O contents within the range of 2.63−12.63 (mol.%) 

enhanced the liquid-liquid immiscibility as denoted by an increasing of the mean droplet size 

and their distribution density. On the other hand, increasing K2O contents resulted in 29Si 

MAS-NMR spectral changes: decreasing Q4 units accompanied by an increase of Q3 units and 

the appearance a new Q2 population, suggesting depolymerisation of the silicate glass 

network, while 27Al MAS-NMR revealed an enhanced role of Al2O3 as glass network former. 

This role implies the association of a cation in the vicinity of each tetrahedral unit in order to 

maintain local charge neutrality of the (AlO4/2)
− units with four bridging oxygens (BO). 

However, for K2O/Al2O3 molar ratios > 1, there was the formation of a larger fraction of non-
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bridging oxygens (NBO) due to the excess of K2O. Additionally K2O was found to promote 

surface crystallization in glasses with the predominant formation of lithium metasilicate 

(LMS) phase. Only in low-K2O compositions LD was formed, resulting in glass-ceramics 

with high mechanical strength (~173−224 MPa), good chemical resistance (~25−50 µg cm−2) 

and low total conductivity (~2×10−18 S cm−1 for GK0) making the materials suitable for a 

number of practical applications.31  

To deepen the study of the structure of LD glasses the role of Al2O3 in Li2O–SiO2 glasses 

needs to be further clarified. Accordingly, the main objective of this work is to evaluate the 

effect of Al2O3 on the structure, properties and phase formation in glasses of 3 different 

systems: (i) Li2O−SiO2; (ii) Li 2O−Al 2O3−SiO2; (iii) and Li2O−K2O−Al 2O3−SiO2. The 

contribution of both Al2O3 and K2O to the surface tension and subsequently to the segregation 

process in Li2O–SiO2 glasses will be discussed. Solid state magic angle spinning nuclear 

magnetic resonance (MAS-NMR) was employed to provide information on the local 

environment of silicon and aluminium in experimental glasses. The sintering behaviour and 

properties of the corresponding glass powder compacts was also a target subject during this 

study, in particular using a hot stage microscopy technique. 

 

2. Experimental procedure 

2.1. Glass preparation 

Table 1 presents the detailed compositions of the experimental glasses along with their 

corresponding SiO2/Li 2O ratios. A total of 9 glasses divided into 3 groups namely A, B and C 

belonging to the Li2O−SiO2, Li2O−Al 2O3−SiO2 and Li2O−K2O−Al 2O3−SiO2 system, 

respectively, were synthesised. Compositions of group B were prepared from A series 

replacing SiO2 by Al2O3 while glasses in group C (similar to those investigated in the study28) 

derived from B glasses series by replacing Li2O by K2O. Powders of technical grade SiO2 

(purity >99.5%) and of reactive grade Al2O3, Li2CO3, and K2CO3 were used. Homogeneous 

mixtures of batches (~100 g), obtained by ball milling, were calcined at 800 ºC for 1 h and 

then melted in Pt crucibles at 1550 ºC for 1 h, in air. The glasses were produced in bulk 

(monolithic) form by pouring glass melts on bronze mould (in two different sets: the glasses 

of one set were immediately annealed at 450 ºC for 1 hour while the other set of glasses was 

preserved in the non-annealed condition) and frit form by quenching the glass melt in cold 

water. The obtained frits were dried and milled in a high-speed agate mill. The mean particle 
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size of the glass powders as determined by light scattering technique (Beckman Coulter LS 

230, CA USA; Fraunhofer optical model) was about 5−10 µm. 

 

Table 1 − Compositions of the experimental glasses (mol.%).  

  Li 2O−SiO2  Li 2O−Al 2O3−SiO2  Li 2O−K2O−Al 2O3−SiO2 

#  A1 A2 A3  B1 B2 B3  C1 C2 C3 

Li 2O  26.59 28.09 30.59  26.59 28.09 30.59  22.96 22.96 22.96 

K2O  − − −  − − −  3.63 5.13 7.63 

Al 2O3  − − −  2.63 2.63 2.63  2.63 2.63 2.63 

SiO2  73.41 71.91 69.41  70.78 69.28 66.78  70.78 69.28 66.78 

SiO2/Li 2O  2.76 2.56 2.27  2.66 2.47 2.18  3.08 3.02 2.91 

 

2.2. Thermo-physical properties of glasses  

Glass samples with particle sizes in the range of 500−1000 µm (collected by sieving of 

crushed non-annealed glass blocks) and weighing 40 mg were contained in an alumina 

crucible (the reference material was α-alumina powder) to perform differential thermal 

analysis (DTA, Setaram Labsys, Setaram Instrumentation, Caluire, France) in order to 

evaluate the glass transition temperature Tg, the crystallization onset temperature, Tc and peak 

temperature of crystallization, Tp (β = 20 K min−1).  

The coefficient of thermal expansion (CTE) of the annealed glasses was measured by 

dilatometry using prismatic samples of bulk glasses with cross section of 3×4 mm2 (Bahr 

Thermo Analyse DIL 801 L, Germany; heating rate 5 K min−1). 

Archimedes’ method (i.e. immersion in ethylene glycol) was employed to measure the 

apparent density of the bulk annealed glasses which was further applied along with 

compositions of glasses to calculate their excess volume (Ve) according to a procedure 

described elsewhere.30  

 

2.3. Structural characterization of glasses 

29Si MAS-NMR spectra were recorded on a Bruker ASX 400 spectrometer operating at 79.52 

MHz (9.4 T) using a 7 mm probe at a spinning rate of 5 kHz. The pulse length was 2 µs and 

60 s delay time was used. Kaolinite was used as the chemical shift reference. 27Al MAS-NMR 
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spectra were recorded on a Bruker ASX 400 spectrometer operating at 104.28 MHz (9.4 T) 

using a 4 mm probe at a spinning rate of 15 kHz. The pulse length was 0.6 µs and 4 s delay 

time was used. Al(NO3)3 was used as the chemical shift reference. The Qn distributions were 

obtained by curve fitting and spectral deconvolution using DMFIT program (version 2011).32  

 

2.4 Crystalline phase analysis and microstructural evolution in glass-ceramics 

Bulk parallelepiped glass samples were non-isothermally heat treated at 600, 700, 800 and 

900 ºC for 1 h, respectively, at a heating rate of 2 K min−1. Glass powder compacts were heat 

treated at 800, 850 and 900 ºC for 1 h at the heating rate of 2 K min−1. The amorphous nature 

of the parent glasses and the nature of crystalline phases present in the glass-ceramics were 

determined by X-ray diffraction (XRD) analysis (Rigaku Geigerflex D/Mac, C Series, Japan; 

Cu Ka radiation, 2θ between 10º and 60º with a 2θ-step of 0.02 deg s−1). The crystalline 

phases were identified by comparing the obtained diffractograms with patterns of standards 

complied by the International Centre for Diffraction Data (ICDD). 

Archimedes’ method was employed to measure the apparent density of the sintered glass-

powder compacts. Microstructure observations were done at polished (mirror finishing) and 

then etched surfaces of samples (by immersion in 2 vol.% HF solution for 2 min) by field 

emission scanning electron microscopy (SEM, Hitachi SU-70, Japan) under secondary 

electron mode. 

 

2.5. Sintering and crystallization of glass powder compacts 

A side-view hot-stage microscope (HSM, Leitz Wetzlar, Germany) equipped with a Pixera 

video-camera and image analysis system was used to investigate the sintering behaviour of 

glass powder compacts. The cylindrical shaped samples from glass powder compacts with 

height and diameter of ~3 mm were prepared by cold-pressing the glass powders. The 

cylindrical samples were placed on a 10×15×1 mm3 alumina (>99.5 wt.% Al2O3) support and 

the measurements were conducted in air with a heating rate (β) of 5 K min−1. The temperature 

was measured with a chromel–alumel thermocouple contacted under the alumina support. The 

temperatures corresponding to the characteristic viscosity points (first shrinkage (TFS), 

maximum shrinkage (TMS), softening (TD), half ball (THB) and flow (TF)) were obtained from 

the graphs and photomicrographs taken during the hot-stage microscopy experiment.33 
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Apart from HSM investigation, the sintering process was explored using non-isothermal heat 

treatment of glass-powder compacts. Rectangular bars (4×5×50 mm3) prepared by uniaxial 

pressing (80 MPa) were sintered at 800, 850 and 900 ºC for 1 h. A heating rate of 2 K min−1 

was maintained in order to prevent deformation of the samples. 

 

3. Results 

3.1 Casting ability and microstructure of glasses 

Melting at 1550 ºC for 1 h was adequate to obtain bubble-free homogenous glasses from all 

the investigated compositions. The absence of any crystalline inclusions was confirmed by 

XRD and SEM analyses (not shown). Cloudy appearance was characteristic of A1, while the 

other glasses were completely transparent. The SEM images of as cast non–annealed samples 

(Fig. 1) revealed nanosize droplet phase embedded in the glass matrix suggesting occurrence 

of liquid-liquid phase separation in all investigated glasses. The droplet size and density 

distribution seemingly decreased from glass A1 to A3 (series A) and from glass B1 to B3 

(series B) while increased from C1 to C3 in series C.   

 

 

Fig. 1 − SEM images of the experimental non-annealed bulk glasses (etched with 2 vol.% HF 
solution for 1 min). 

 

 

 

1 µm B1 1 µm A1 C1 

1 µm B2 1 µm A2 C2 1 µm 

1 µm 
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3.2 Structure and thermo-physical properties of glasses  

3.2.1 Density, excess molar volume and thermal properties 

The density values of glasses varied in the range 2.32–2.40 g cm−3 (Fig. 2(a), Table 2). The 

observed general trend indicates that density increases in the sequence C > B > A and, 

consequently, glasses from the Li2O−K2O−Al 2O3−SiO2 system featured the highest density 

while the binary glasses (Li2O−SiO2) exhibited are the less dense ones. Density increments 

with addition of Al2O3 (density ~4.00 g cm−3) were expected assuming additive properties 

argument. But the same reasoning seems to fail when decreasing SiO2/Li 2O and SiO2/K2O 

ratios. This might be explained considering the decreasing trend observed in the excess molar 

volume (Ve) of the glasses (Fig. 2(b), Table 2). Apparently, diminishing of both SiO2/Li 2O 

and SiO2/K2O ratios enhanced the packing ability of the constituent oxides resulting in a more 

efficient filling of the glass network interstices and thus in a more compact structure. The 

coefficient of thermal expansion (CTE) values of the glasses followed the sequence C > B > 

A (Table 2, Fig. 2(b)), being in good agreement with the variation trends observed for density. 

Accordingly, within each group, the CTE increased upon decreasing of SiO2/Li 2O or 

SiO2/K2O ratios (e.g. C3 > C2 > C1).  

 

Table 2 – Thermo-physical properties of the experimental glasses.  

 
d 

(g cm-3) 

Ve 

(cm3 mol-1) 
NBO/T 

CTE 

±0.1 (10-6 K-1) 

Tg 

±2 (ºC) 

Tc 

±2 (ºC) 

Tc-Tg 

(ºC) 

Tp 

±2 (ºC) 

A1 2.32 ±0.03 1.05 ±0.03 0.72 9.9 498 587 89 737 

A2 2.33 ±0.01 0.90 ±0.03 0.78 10.8 495 606 111 733 

A3 2.35 ±0.04 0.66 ±0.03 0.88 11.1 491 612 121 717 

B1 2.36 ±0.01 1.17 ±0.01 0.63 9.6 504 662 158 781 

B2 2.36 ±0.04 1.08 ±0.04 0.68 10.6 500 639 139 773 

B3 2.37 ±0.02 0.92 ±0.02 0.78 11.7 499 620 117 746 

C1 2.37 ±0.01 1.08 ±0.04 0.63 11.5 503 695 192 806 

C2 2.38 ±0.01 0.97 ±0.05 0.68 11.5 500 663 163 800 

C3 2.40 ±0.01 0.76 ±0.04 0.78 12.7 496 658 162 778 
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Fig. 2 − Thermo-physical properties of bulk glasses: (a) Evolution of density and excess 

molar volume, and (b) evolution Tg of and CTE with the composition. 

 

The DTA plots of glasses with a heating rate (β) of 20 K min−1 (Fig. 3) revealed well-defined 

features comprising endothermic and exothermic peaks from which transition point (Tg), 

temperature of onset crystallization (Tc) and peak temperature of crystallization (Tp), were 

determined (Table 2). General decreasing trends of Tc and Tp with decreasing the SiO2/Li 2O 

ratio can be depicted from data reported in Table 2 and Fig. 2(b), being accompanied by a 

similar variation trend of Tg in each group. The observed lowering of Tg is in accordance with 

the calculated increasing number of non-bridging oxygens per tetrahedron (NBO/T) further 

supporting the hypothesis of depolymerisation of the glass network. 
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Fig. 3 − DTA of glasses A1, B1 and C1. 

 

3.2.2 Structure analysis by MAS-NMR 

29Si MAS-NMR spectra of glasses A1, B1 and C1 are shown in Fig. 4, while the Qn 

distributions of glasses obtained from 29Si MAS-NMR spectra and corresponding 

deconvolution are plotted in Fig. 5. In general, the spectra displayed in Fig. 4 feature broad 

bands, denoting the amorphous nature of these materials. For each composition, a resonance 

line covers the chemical shift range of silicon in several Qn groups with n ranging from 0−4.34 

Q3 and Q4 units predominate in series A and C, revealing higher degrees of polymerization in 

comparison to B series. For each series, there is a general depolymerisation trend with 

decreasing SiO2/Li 2O and SiO2/K2O ratios as can be deduced from the diminishing intensity 

band of Q4 units. The fading intensity trend of Q4 signal is accompanied by a significant 

intensity increase of Q3 units and smaller increments in Q2 for both A and C series. A stronger 

depolymerisation trend was observed with the partial replacement of SiO2 by Al2O3 in B 

series. The incorporation of Al2O3 caused an abrupt increase in Q2 at the expense of Q3 and 

Q4 units (Figs. 4 and 5), suggesting that this oxide is fulfilling dual role of glass network 

former and  network modifier in the B series of glasses.   

The role of Al2O3 as modifier oxide in the Li2O−Al 2O3−SiO2 system is supported by the 

analysis of 27Al MAS-NMR spectra (Fig. 6). All compositions of group B show 27Al chemical 

shift towards lower values compared to glasses in group C, indicating increasing coordination 

numbers, Al[5] and Al[6], in detriment of Al[4].35-37  
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Fig. 4 − 29Si MAS-NMR spectra of glasses: (a) A1, (b) B1 and (c) C1. Dashed curves show 

the spectral deconvolution components used for fitting the data. 

 

3.3. Crystallization behaviour of bulk glasses 

3.3.1 Phase assemblage 

All the investigated glass compositions were amorphous after heat treatment at 600 ºC. Figure 

7(a-i), presents the X-ray diffractograms of the investigated bulk glasses heat treated within 

the temperature interval of 700−900 ºC. LD was recorded as the single crystalline phase in the 

glasses of A series at 700 ºC and 800 ºC (Fig. 7(a,b)). The intensity of the peaks of LD 
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slightly increased with the rising temperature and traces of cristobalite appeared at 900 ºC 

(Fig. 7(c)). The addition of Al2O3 in the Li2O−SiO2 system enhanced the intensity of LD 

peaks and the formation of lithium aluminium silicate (LiAlSi2O6, LAS) (Fig. 7(d-f)). On the 

other hand, earlier studies28, 31 suggested that adding an excessive amount of K2O tends to 

suppress the crystallization of LD and to promote the formation of LMS due to its lower 

activation energy for crystallization in comparison to LD.38-39 Moreover, adding alkali oxides 

to silicate glasses decreases the melt viscosity, increases the fraction of NBO and enhances 

the tendency of the glass towards devitrification.40 Indeed, in the C series, LD was formed 

only in the composition C1 with the lowest K2O content.28, 31 

 

3.3.2 Microstructure 

Figures 8, 9 and 10 compare the SEM micrographs of A and B series of glasses heat treated at 

different temperatures. In the temperature interval 600−700 ºC the small droplets underwent 

coalescence into bigger agglomerates at a rate that was seemingly higher in B series. LD 

crystals can be observed at 700 ºC, being more evident in B series, in correlation with XRD 

data (Fig. 7). Bulk glasses of series A and B demonstrated ability towards bulk nucleation and 

crystallization of LD, while glasses of series C were prone to surface crystallization with the 

formation of dendritic crystals characteristic for LMS,28 clearly observed  in the samples heat 

treated at 800 ºC.   

 

0

20

40

60

80

100

A1 A2 A3 B1 B2 B3 C1 C2 C3

Composition

A
re

a 
fr

ac
tio

n 
/%

Q 2

Q 3

Q 4

Li2O−SiO2 Li2O−Al 2O3−SiO2 Li2O−K2O−Al2O3−SiO2

 

Fig. 5 − Solid state 29Si NMR area fractions (%) of the signal components observed in glasses. 
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Fig. 6 − 27Al MAS-NMR spectra of glasses of series B and C. 

 

3.4. Sintering and crystallization of glass powder compacts 

3.4.1 Sintering process 

The experimental compositions from series A and B exhibited poor densification ability and 

resulted in porous and brittle samples, contrasting with the glass-powder compacts from series 

C that could be densely sintered.31 In particular, samples from the binary system (series A) 

were extremely fragile. The incorporation of Al2O3 enhanced the sintering ability but not in 

desired extent to get proper densification.  Samples of the different series heat treated at 900 

ºC for 1 h showed the following bending strength values: 2.40 ± 0.3 MPa (A1), 7.40 ± 0.6 

MPa (B1) and 201 ± 16.0 MPa (C1). These considerable differences reflect the great 

importance of selecting the proper doses of both oxides (Al2O3 and K2O) in order tune the 

densification ability and the final properties of the sintered glass powder compacts in the 

present systems. 

The HSM curves of the glass powder compacts of series B and C plotted in Fig. 11 show that 

densification generally occurs through viscous flow at temperatures slightly higher than Tg 

and dense materials are produced when the sintering process is completed before 

crystallization begins.34 The glasses of series B exhibit just a single and small sintering step 

corresponding to a shrinkage volume of about 6−8%, while glasses of series C present two 

steps of sintering and a total variation of A/A0 close to 0.60, i.e., a volume shrinkage of about 

40%, corresponding to practically full densification.34   
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Fig. 7 − X-ray diffractograms of experimental bulk glasses after heat treatment at different 

temperatures for 1 h. LS: lithium silicate (Li2SiO3, ICCD card 01-029-0828); LD1: lithium 

disilicate (Li2Si2O5, ICCD card 00-072-0102); LD2: lithium disilicate (Li2Si2O5, ICCD card 

00-015-0637); LAS: virgilite (LixAl xSi3-xO6, ICCD card 00-031-0707). 

 

The observed changes in the profiles of the samples B3 and C3 during sintering (Fig. 12) 

reveal that the characteristic temperatures corresponding to softening (TD), half ball (THB) and 
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flow (TF)) for the Li2O−K2O−Al 2O3−SiO2 (C) system were reached significantly earlier in 

comparison to those observed in the  Li2O−Al 2O3−SiO2 (B) system. 

 

 

Fig. 8 − SEM images of bulk glasses series A and B heat treated at 700, 800 and 900 ºC for 1 

h (etched with 2 vol.% HF solution for 2 min). 

 

 

4. Discussion 

 The phenomenon of amorphous phase separation in glasses has become an important topic of 

glass research since the fundamental investigations of Dietzel at the beginning of the 1940s.41 

It is a common phenomenon in silicate glasses that results in a heterogeneous mixture of two 

immiscible amorphous phases.1, 3, 41-42 Dietzel explained this phenomenon on the basic field 

strength consideration.3, 41 Thus, in case of cooling binary silicates both cations compete for 

the oxygen ions so as to surround themselves with the closest possible packing. When the 

field strengths of both the cations are the same dissociation into the two separate pure oxide 

phases often occurs. Below the solidus temperature, glass immiscibility is called a metastable 
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phase separation and above that temperature it is called a stable one.42 Metastable 

immiscibility has been observed in many glass systems and the compositional range of the 

miscible gap varies with glass forming system. Among different types of alkali silicate 

glasses, lithium silicate glasses have the widest immiscibility range, between pure SiO2 and 

close to Li2O⋅2SiO2.
3, 41-42 Understanding this phenomenon in the 3 different systems studied 

in the present work, i.e. Li2O−SiO2, Li2O−Al 2O3−SiO2 and Li2O−K2O−Al 2O3−SiO2 is 

essential to correlate the microstructure with phase formation and final properties. 

 

 

Fig. 9 − SEM images of bulk glasses A2 and B2 heat treated at 700, 800 and 900 ºC for 1 h 

(etched with 2 vol.% HF solution for 2 min). 

 

According to Dietzel, the contribution of Li2O to the surface tension is more significant than 

that of SiO2.
3, 41 Therefore, further adding Li2O to the Li2O−SiO2 glasses that already contain 

droplet-like zones of Li-rich phase and SiO2-rich matrix, was aimed at equalizing the surface 

tension of the different phases and weaken the degree of segregation. The SEM images of 

non-annealed glasses (Fig. 1) show that the increase of Li2O content from A1 to A2 made the 
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droplet size and density distribution to decrease. Further increment in Li2O in the entire glass 

reduces the surface tension of the two phases because Li2O entered into the SiO2-rich phase 

surrounding the droplets and the size of the droplets reduced continuously.2-3 The 

incorporation of Al2O3 in the Li2O–SiO2 system at the expenses of SiO2 might slightly 

increase the difference in surface tension since the former one has smaller contribution to the 

surface tension than the latter.2-3, 41 Contrarily, more significant changes in surface tension are 

likely upon adding K2O to the Li2O−Al 2O3−SiO2 system because of the small efficiency 

factor of K2O relative to surface tension.2, 41 

 

 

Fig. 10 − SEM images of bulk glasses A3 and B3 heat treated at 700, 800 and 900 ºC for 1 h 

(etched with 2 vol.% HF solution for 2 min). 

 

Considering Dietzel’s hypothesis that a network modifier will migrate preferentially into the 

phase of the network former which has the highest field strength to contribute to the latter’s 

maximum coordination with the oxygen ions,2-3, 41 one can expect the potassium ions to be 

statistically distributed in the SiO2-rich matrix. Consequently, it will increase the difference in 
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surface tension between the SiO2-rich glass and droplet-like zones of Li-rich phase causing 

higher degree of segregation. Indeed, the addition of K2O at the expenses of SiO2 in 

Li 2O−Al 2O3−K2O−SiO2 glasses enhanced the mean Li2O-rich droplet size and their 

distribution density.28  
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Fig. 11 − HSM curves for glass-powders: (a) B1, (b) B2, (c) B3, (d) C1, (e) C2 and (f) C3. 

 

From the 29Si MAS-NMR spectra (Fig. 4) and the peaks deconvolution derived data presented 

in the Fig. 5 it is clear that further adding Li2O to the Li2O−SiO2 binary system caused 

depolymerisation of the glass network. These results correlate well with the data reported by 

Schramm et al.43 who investigated the extent of Qn distributions for LD glasses in the 

composition region between 15 and 40 mol% Li2O: the percentage of Q4 decreased with 

increasing amounts of Li2O, that of Q3 reached a maximum at 30 mol.% Li2O, and the 

percentage of Q2 showed tendency to grow at higher Li2O concentrations. On the other hand, 

adding Al2O3 to the Li2O−SiO2 binary system caused significant decrease in Q3 and Q4 units 

and a rapid grow of Q2 units (Figs. 4 and 5). These structural changes are consistent with a 

glass network modifier role of Al2O3 as in Li2O−SiO2 system, which as far as we know, has 

not been earlier reported although Al2O3 has been classified as “randomiser” of the silicate 
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structure.2 It is well known that to strengthen the glass network aluminium should be four-

coordinated and each tetrahedral unit should be associated with a cation in its vicinity in order 

to maintain local charge neutrality of the (AlO4/2)
− units. In series C glasses this neutrality is 

assured by the presence of K2O.28-29, 31 However, in K2O-free glasses of series B 

(Li 2O−Al 2O3−SiO2), aluminium tends to appear in atomic arrangements of higher 

coordination number, greatly contributing to depolymerising the glass network. This can be 

due to a large fraction of lithium cations captured in the Li-rich droplet phase with the 

remaining lithium amount from the  silica rich matrix being insufficient to satisfy the 

neutrality of the (AlO4/2)
− units. The higher coordination number of Al is well supported by 

the 27Al MAS-NMR spectra of compositions B and C (Fig. 6), namely by the 27Al chemical 

shifts of B glasses to lower values in comparison to those of group C glasses, indicating 

growing of Al[5] and Al[6] atomic arrangements in detriment of Al[4].  
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Fig. 12 − Temperature parameters, softening (TD), half ball (THB) and flow (TF)) and images 

of glass powder compacts as obtained from HSM for glasses B3 and C3. 

 

The structural features of the glasses affect the formation of crystalline phases. Thus, heat 

treating Al2O3-containing bulk glasses of B series resulted in precipitation of LD as the major 

crystalline phase and LAS as the minor phase (Fig. 7(d-f)). The formation of LAS was 

favoured by six coordinated aluminium thus supporting NMR results obtained from the 

Li 2O−Al 2O3−SiO2 glasses. On the other hand, the preferential formation of LMS in C series 

of glasses was already explained27-29 using the model of Bischoff et al. and 29SiMAS-NMR 

results.44 In particular, suppressing and promoting the formation of Li2Si2O5 and Li2SiO3, 

respectively, with increasing K2O contents was connected to a significant decrease in Q4 units 
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according to the reaction Q4
(glass) + Q2

(cryst.) ↔ 2Q3
(cryst.). Moreover, the second separation 

process undergone by the LD-rich glass droplets into pure silica-rich glass and LMS-rich 

glass due to the appreciable contraction on cooling should be taken into account. As a result, 

LMS is formed as the intermediate crystalline phase in the binary (Li2O−SiO2) glasses heat 

treated at temperatures below 500 ºC followed by crystallization of LD.27-29 The increase in 

surface tension between LD-rich droplets and SiO2-rich glass might also contribute for 

suppressing LD crystallization via the reaction Q4
(glass) + Q2

(cryst.) ↔ 2Q3
(cryst.). 

The comparison of SEM images of bulk glasses A and B heat treated at 700, 800 and 900 ºC 

for 1 h reveals that a more extended crystallization process has occurred in the B series of 

glasses. This observation is supported by XRD analysis (Fig. 7) and might implies towards 

lowering viscosity upon adding Al2O3 in Li2O−SiO2 glasses in a certain temperature range, an 

issue that could be clarify by performing viscosity measurements, which are out of the scope 

of this work. 

The lower Tc and Tp values of glasses from A and B series in comparison to those of C series 

(Table 2) mean that the crystallization process is delayed in latter glasses while the resulting 

larger Tc−Tg differences favour densification of glass-powder compacts, a decisive factor to 

get strong glass-ceramics. Narrowing the Tc−Tg interval in the less polymerised glass 

networks of series A and B (Fig. 4 and 5) in comparison to C compositions completely 

hindered the densification of the glass powder compacts due the early formation of large 

fraction of LD phase (Fig. 3). From the two steps of densification identified in the HSM 

curves of C series, only the first one was affected by crystallization. In composition C1 

(lowest K2O content), the first sintering step was separated by the temperature range where 

LMS was formed followed by a second sintering stage that occurred simultaneously with 

formation of LD phase.27-29 This can be attributed to the formation of a more rigid glass 

network containing four coordinated (AlO4/2)
− units and K+ cations in its vicinity to maintain 

local charge neutrality. Therefore, a small addition of K2O to pure Li2O–Al2O3–SiO2 system 

is crucial to enhance the densification behaviour and the ultimate mechanical strength. In the 

present study, beneficial effects of adding both K2O and Al2O3 are only observed up to about 

3 mol.% of each oxide, being therefore a matter of process optimization.29  
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5. Conclusions 

 The effect of Al2O3 on structure, sintering and devitrification behaviour of glasses in the 

Li 2O–SiO2 system along with the properties of the resultant glass-ceramics has been 

investigated. The results can be summarized in the following conclusions: 

1. The structure of A and C series of glasses consists predominantly of Q3 and 

Q4 units and the silicate glass network trends to depolymerise with 

decreasing SiO2/Li 2O and SiO2/K2O ratios, as revealed by an increase of 

groups Q3 units, a small increment in Q2, at the expenses of a decrease in 

Q4 units. 

2. The partial replacement of SiO2 by Al2O3 in Li2O−SiO2 glasses (group B) 

enhanced the trend towards depolymerisation, reflected by an abrupt 

increase in Q2 at the expense of Q3 and Q4 units, with Al2O3 playing dual 

role of a glass network former and modifier. This latter role of Al2O3 in the 

Li 2O−Al 2O3−SiO2 system is supported by the analysis of 27Al MAS-NMR 

spectra. All compositions of group B show 27Al chemical shifts to lower 

values in comparison to glasses in group C, revealing increasing fractions 

of Al[5] and Al[6] in detriment of Al[4]. Moreover, crystallization of those 

glasses resulted in the formation of LD and LAS phases.  

3. The experimental compositions from series A and B exhibited poor 

densification ability resulted in porous samples of brittle nature, contrasting 

with well sintered glass-powder compacts from series C. This was due to 

the formation of a more rigid glass network in glasses of series C 

containing four coordinated (AlO4/2)
− units and K+ cations in its vicinity to 

maintain local charge neutrality. Therefore, a small addition of K2O to pure 

Li 2O–Al2O3–SiO2 system is crucial to enhance the densification behaviour 

and the ultimate mechanical strength.  
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Abstract 

The crystallization kinetics of experimental glasses in 3 different systems: (A) Li2O−SiO2, (B) 

Li 2O−Al 2O3−SiO2 and (C) Li2O−K2O−Al 2O3−SiO2, was studied under non-isothermal 

conditions. The DTA results revealed a stronger tendency to crystallization of binary 

compositions  in comparison to the ternary and quaternary compositions comprising Al2O3 

and K2O present the lower crystallization, i.e. the crystallization propensity follows the trend 

A > B > C. The devitrification process in the Li2O−SiO2 and Li2O−Al 2O3−SiO2 systems 

began earlier and the rate was higher in comparison to that of glasses in the quaternary 

Li 2O−K2O−Al 2O3−SiO2 system. Thus, addition of Al2O3 and K2O to glasses of Li2O−SiO2 

system was demonstrated to promote glass stability against crystallization. However, the 

activation energy for crystallization (Ec) was shown to depend also on the SiO2/Li 2O ratio 

with the binary system showing a decreasing trend with increasing SiO2/Li 2O ratio, while the 

opposite tendency being observed for compositions with added Al2O3 and K2O. 

 

Key words: Glass; Lithium disilicate; Metastable phase separation. 
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1. Introduction 

Most of the glass-ceramics developed so far for specific tailor-made applications are based on 

non-stoichiometric materials systems. The search for enhanced processing and properties is 

usually supported by a deeper understanding of nucleation and crystallization mechanisms in 

parent glasses.1 From the experimental approach, differential thermal analysis (DTA) and 

differential scanning calorimetry (DSC) are among the most common techniques used to 

study the thermal properties, including the crystallization process and its kinetics. The thermal 

stability of glassy materials is usually expressed in terms of the glass transition temperature Tg 

and the glass transition activation energy Eg. The correlation between Tg, Eg and thermal 

stability arises from the fact that below Tg a glassy material has a large viscosity and the 

relaxation kinetics is very slow, leaving a few opportunities for local rearrangements of bonds 

and atomic displacement.2 Starting from this basic concept, Moynihan et al. 3 developed a 

model to describe the glass transition kinetics, which can be used for determining Eg. 

According to the theory of crystallization kinetics,4 for an amorphous glass to transform into a 

crystalline state, the arranged atoms will have to overcome a certain potential barrier, the 

height of which is known as the crystallization activation energy Ec. So, as the height of the 

potential barrier increases, the rate of the nucleation and growth processes becomes smaller 

and crystallization is retarded. According to the Gao and Wang model,5 which was developed 

on the basis of the formal theory of phase transformation,6-7 the crystallization rate reaches 

two-thirds of its value at the peak temperature of crystallization Tp. The rate of crystallization 

at this particular temperature varies with the heating rate, as monitored by thermo-analytical 

techniques, and could be used to calculate Ec under non-isothermal conditions. 

A large variety of theoretical models and functions have been proposed to describe the 

crystallization kinetics. Two basic calorimetric measurement methods can be used to study 

the crystallization kinetics: (1) isothermal and (2) non-isothermal.8-10 In the isothermal 

method, the sample is brought quickly to a temperature above the glass transition temperature, 

Tg, and the heat evolved during the crystallization process is recorded as a function of time. In 

the non-isothermal method, the sample is heated at a fixed rate and the heat evolved is again 

recorded as a function of temperature or time. The isothermal experiments are generally very 

time-consuming, while experiments performed at constant heating rate enable a more 

expeditious gathering of the experimental data. Furthermore, the impossibility of 

instantaneously reaching the testing temperature under ‘isothermal’ conditions means that no 
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measurements are possible while the system is approaching the set temperature. This 

drawback is absent in the case of non-isothermal (constant heating rate) experiments.9-10 

In the present study, the kinetic parameters such as Ec and Avrami exponent (n) in Johnson–

Mehl–Avrami (JMA) equation 6-7, 11 for binary (Li2O−SiO2), ternary (Li2O−Al 2O3−SiO2), and 

quaternary (Li2O−K2O−Al 2O3−SiO2) disilicate glasses were determined using non-isothermal 

methods. The activation energy associated with the glass transition was determined using 

Kissinger 12 and Moynihan 3 methods. Heating rate dependent glass transition temperature is 

rationalized using Lascoka equation.13 Also, the variations of activation energy and Avrami 

exponent with the fraction of crystallization were examined. 

 

2. Experimental Procedure  

Table 1 presents the detailed compositions of the experimental glasses along with their 

corresponding SiO2/Li 2O ratios. A total of 9 disilicate glass compositions featuring SiO2/Li 2O 

ratios (2.18 < SiO2/Li 2O < 3.08) far from the stoichiometric composition (SiO2/Li 2O = 2) 

included binary (Li2O−SiO2), ternary (Li2O−Al 2O3−SiO2) and quaternary 

(Li 2O−K2O−Al 2O3−SiO2) systems. The compositions were prepared from powders of 

technical grade SiO2 (purity >99.5%) and of reactive grade Al2O3, Li2CO3, and K2CO3. 

Homogeneous mixtures of batches (~100 g) obtained by ball milling were calcined at 800 ºC 

for 1 h and then melted in Pt crucibles at 1550 ºC for 1 h, in air, which was adequate to obtain 

bubble-free homogenous bulk (monolithic) glasses from all the investigated compositions by 

pouring glass melts on bronze mould. 

 

Table 1 − Compositions of the experimental glasses (mol.%).  

  Li 2O−SiO2  Li 2O−Al 2O3−SiO2  Li 2O−K2O−Al 2O3−SiO2 

#  A1 A2 A3  B1 B2 B3  C1 C2 C3 

Li 2O  26.59 28.09 30.59  26.59 28.09 30.59  22.96 22.96 22.96 

K2O  − − −  − − −  3.63 5.13 7.63 

Al 2O3  − − −  2.63 2.63 2.63  2.63 2.63 2.63 

SiO2  73.41 71.91 69.41  70.78 69.28 66.78  70.78 69.28 66.78 

SiO2/Li 2O   2.76 2.56 2.27  2.66 2.47 2.18  3.08 3.02 2.91 
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Differential thermal analysis (DTA, Setaram Labsys, Setaram Instrumentation, Caluire, 

France) was used to determine the glass transition temperature Tg, the crystallization onset 

temperature, Tc and peak crystallization temperature, Tp (β = 20 K min-1). For this, glass 

samples with particle sizes in the range of 500−1000 µm (collected by sieving of crushed non-

annealed glass blocks) and weighing 40 mg were contained in an alumina crucible and α-

alumina powder was used as reference material. Different heating rates (β = 10, 15, 20, 25 and 

30 K min-1) were used to evaluate the crystallization kinetics.  

 

3. Results and discussion 

3.1. Glass transition region 

According to Lasocka 13, the empirical relation between Tg and β is given by: 

βlogBATg +=  (1) 

where A and B are constants for a given glass composition at a particular temperature T. The 

value of A indicates the glass transition temperature for the heating rate of 1 K min−1, while 

the value of B is related to the method of quenching the sample − the lower the cooling rate of 

the melt is, the lower will be the B value.14 It signifies the response of the configurational 

changes within the glass transition region to the heating rate. The values of A and B for all 

samples are listed in Table 2. Tg values obtained at different heating rates are presented in the 

Fig. 1. Theoretically, Tg is defined as the temperature at which the relaxation time, τ, becomes 

equal to the relaxation time of observation, τobs, with the variations on Tg and τ  being 

inversely proportional.15 Accordingly, with increasing heating rate, τobs decreases and hence 

the glass transition temperature increases. For all systems, Tg increased with increasing 

heating rate and decreased with diminishing of SiO2/Li 2O ratio (Fig. 1). This is generally 

related with the polymerization level of the glass structure and can apparently be explained by 

the higher content of glass modifying oxides.16-18 Adding Al2O3 and K2O to binary 

compositions tend to slightly shifting Tg to higher temperatures. The Tg of a multi-component 

glass is known to be dependent on several independent parameters such as band gap, co-

ordination numbers, bond energy, effective molecular weight, the type and fraction of various 

structural units formed.19-20 

Glassy solid state is characterised by very slow relaxation kinetics due to relatively high 

viscosity which make difficult the local arrangements of bonds and atomic displacements. 
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This type of thermal relaxation depends upon the thermal treatment and may be quite fast near 

Tg. Thus, it is reasonable to associate the glass transition temperature with the glass structural 

rearrangements, a phenomenon that requires an activation energy,2 and the concept of phase 

transformation proposed by Kissinger 12, 21 for the amorphous to crystalline phase transition 

could be formally extended to the elastic-viscoelastic transition.22 Accordingly, the most 

commonly used method to estimate the activation energy associated with the glass transition 

under non-isothermal treatment schedules is the so-called Kissinger plot based on the 

following equation:12, 21 

.ln 2 const
RT

E

T g

g

g

+−=β
 

(2) 

where Eg is the activation energy associated with the glass transition, R is the universal gas 

constant and β is the heating rate. Another approach to estimate Eg is the Moynihan equation 

that relates the heating rate, β, with the right hand side of equation (2):3   

.ln const
RT

E

g

g +−=β   
(3). 

The plots of ln(β/Tg
2) and ln(β) versus 1000/RTg are straight lines, the slopes of which give 

the respective Eg values. The Eg values obtained using both methods are presented in Table 2 

and the correspondent plots against composition are shown in Fig. 1. It can be clearly seen 

that Eg values obtained from Kissinger’s relation are in good agreement with those obtained 

using Moynihan’s approach. Only small systematic shifts are observed among the predicting 

ability of both methods, which are consistent with the differences between equations (2) and 

(3). 

The activation energy for glass transition is the amount of energy that is absorbed by a group 

of atoms in the glassy region so that a jump from one metastable state to another is possible.23 

Thus, the activation energy involves molecular motions and rearrangements of atoms around 

Tg.
24 When the sample is heated, the atoms undergo infrequent transitions between local 

potential minima separated by different energy barriers in the configuration space where each 

local minimum represents a different structure. The most stable local minimum in the glassy 

region has lowest internal energy. Accordingly, the atoms in a glass having minimum 

activation energy have higher probability to jump to the metastable (or local minimum) state 

of lowest internal energy and hence are the most stable ones.23  
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Table 2 − The values A, B and Eg for the glass transition region.  

  Lasocka  Kissinger  Moynihan 

Composition  A /K B /K  Eg /kJ mol-1 R2  Eg /kJ mol-1 R2 

A1  717.3 41.0  261.5 ± 9.9 0.996  274.3 ± 9.9 0.996 

A2  715.0 40.6  262.4 ± 8.9 0.997  275.1 ± 8.8 0.996 

A3  712.8 39.8  265.8 ± 5.2 0.999  278.4 ± 5.2 0.999 

B1  706.6 54.3  197.8 ± 8.8 0.996  210.7 ± 8.8 0.996 

B2  707.0 50.7  210.9 ± 5.3 0.998  223.7 ± 5.3 0.998 

B3  707.4 46.6  226.9 ± 7.5 0.996  239.6 ± 7.5 0.996 

C1  719.6 43.2  241.5 ± 6.5 0.997  254.4 ± 6.5 0.997 

C2  718.4 42.3  259.2 ± 7.4 0.998  273.0 ± 7.3 0.998 

C3  716.8 40.1  266.2 ± 9.2 0.999  278.9 ± 9.2 0.999 
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Fig. 1 − Evolution of Tg (at different heating rates) and Eg with composition. 

 

The experimental binary compositions (series A) present the highest values of activation 

energy for the glass transition (Table 2, Fig. 1). Adding Al2O3 to the Li2O−SiO2 system 

(series B) caused a decrease of Eg whereas further adding K2O (series C) resulted in Eg values 

similar to those of the binary compositions. Consequently, compositions of series B with the 

lowest Eg values are seemingly the most stable ones. Moreover, within each system, Eg 

increases with decreasing the SiO2/Li 2O ratio. This means that atoms require larger amount of 
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energy to make transitions between two local minima when the glass compositions are 

enriched in Li2O.25 

 

3.2. Crystallization region 

The DTA plots of the experimental glasses A3, B3 and C3 obtained at different heating rates 

(10, 15, 20, 25 and 30 K/min) are shown in Figs. 2a-c as an example. Well-defined features 

comprising endothermic and exothermic peaks with a systematic shift in their position with 

heating rate, which is tentatively attributed to thermal relaxation phenomena can be observed 

in all cases. The variation in peak temperature with heating rate is governed by the activation 

energy (Ec) 
12 and the thermal conductivity of the material. At higher heating rates, the 

activation energy for crystallization follows the same increasing tend as the activation energy 

for glass transition temperature, because of the decrease of τobs and the poor thermal 

conductivity of the material (Fig. 2). Thus by monitoring the shift in the position of the 

exothermic peak as a function of the heating rate, one could obtain the kinetic parameters as 

presented in the subsequent sections of this text. Figure 2 shows that the binary composition 

A3 exhibits the sharper and most intense exothermic peaks. The addition of Al2O3 to the 

binary system (i.e. glass B3) caused the broadening of the peaks and slightly shifted Tp to 

higher temperatures, while more significant variation in the exothermic peak intensity 

(decreases) and Tp (increases) were observed in the quaternary composition (C3).  

The crystallised fraction versus temperature plots for compositions A3, B3 and C3, as 

determined from the Johnson–Mehl–Avrami (JMA) model are shown in Figs. 3a-c. The plots 

exhibit typical sigmoidal shapes in good agreement to classical literature on glass–ceramics.6-

7, 11, 26 The ratios between the ordinates of the DTA curve and the total area of the peak give 

the corresponding crystallization rates, which make it possible to build the curves of the 

exothermal peaks as depicted in Figs. 3d-f. It is observed that the dx/dt increases in direct 

proportion with the heating rate. Accordingly, a greater volume fraction is crystallized in a 

shorter time as compared to the low heating rate. This is translated in an increased peak height 

with increasing heating rate.27 Apparently, crystallization process moves to higher 

temperature region hence, the Tp shifts towards higher values. 

The plots of DTA suggest that the binary compositions (series A) show stronger tendency to 

crystallization while compositions comprising Al2O3 and K2O present the lower 

crystallization propensity, i.e., the crystallization predisposition follows the trend A > B > C 
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(Figs. 4a-b). In general, crystallization in the systems Li2O−SiO2 and Li2O−Al 2O3−SiO2 

begins earlier and occurs at higher rates in comparison to glasses in the 

Li 2O−K2O−Al 2O3−SiO2 system (Figs. 4a-b). Thus, adding of Al2O3 and K2O to the binary 

system enhanced the glass stability against crystallization.28-29 
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Fig. 2 − DTA plots for glasses A3, B3 and C3 at different heating rates. 

 

The main thermal parameters that influence the crystallization process, i.e., the onset 

crystallization temperature (Tc), and peak crystallization temperature (Tp), as determined from 

the DTA plots and are reported in Table 3. The onset temperature of crystallization increases 

with increasing of SiO2/Li 2O ratio for the binary compositions, but shows an opposite trend 

for Al2O3 and K2O containing compositions. Moreover, compositions of series C showed 

sintering temperature windows (Tc−Tg) wider than compositions of series A and B. This can 

explain their better sintering ability 30. Regarding the peak temperature of crystallization Tp, 

the trend is similar to Tg, i.e., Tp decreases with increasing SiO2/Li 2O ratio. Adding Al2O3 to 

the parent glass led to increasing Tp values. The same trend was observed with the addition of 

K2O to the ternary system Li2O−Al 2O3−SiO2.  

The crystalline phase assemblage of the experimental glasses as determined by X-ray 

diffraction (XRD) analysis (not shown) revealed that all the investigated glass compositions 

were amorphous after heat treatment at 600 ºC. Lithium disilicate (LD, Li2Si2O5) was 

recorded as the single crystalline phase in the glasses of series A at 700 ºC and 800 ºC and the 

intensity of the peaks of LD slightly increased with the rising temperature, while traces of 

cristobalite appeared at 900 ºC. The addition of Al2O3 in the Li2O−SiO2 system (series B) 

enhanced the intensity of LD peaks and the formation of lithium aluminium silicate (LAS, 

LiAlSi 2O6). On the other hand, earlier studies 30-31 suggested that adding an excessive amount 
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of K2O tends to suppress the crystallization of LD and to promote the formation of lithium 

metasilicate (LMS, Li2SiO3) due to its lower activation energy for crystallization in 

comparison to that of LD.32-33 
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Fig. 3 − Evolution of crystallized fraction x and dx/dt with temperature for A3, B3 and C3 at 

different heating rates. 
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Table 3 − Thermal parameters of glasses as determined by DTA at β = 20 K min−1. 
 DTA at 20 K min−1 

Composition Tg /K Tc /K Tp /K 

A1 498 587 737 

A2 495 606 733 

A3 491 612 717 

B1 504 662 781 

B2 500 639 773 

B3 495 620 746 

C1 503 695 806 

C2 500 663 800 

C3 496 658 778 
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Fig. 4 − Crystallized fraction and dx/dt versus temperature for A3, B3 and C3 at 20 K min-1. 

 

The activation energy for glass crystallization (Ec) can be estimated using the same Kissinger 

formalism used in equation (2):12, 21 

.ln 2 const
RT

E

T p

c

p

+−=β
 

(4) 

Plotting the variation of ln(β/Tp
2) as a function of 1000/RTp allows obtaining straight lines, the 

slopes of which give the activation energy values for crystallization (Ec). The Avrami 

parameter n was determined according to the method proposed by Augis and Bennett,34 

equation (5): 
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c

p

FWHM E

RT

T
n

2
5.2

∆
=  

(5) 

where ∆TFWHM is the full width of the DTA exothermic peak at the half maximum and Ec was 

estimated from equation (4).  

The kinetic parameters of crystallization have also been estimated using a method suggested 

specifically for non-isothermal experiments by Matusita et al..27, 35-36 The crystallized volume 

fraction (x), precipitated in a glass heated at constant heating rate (β) is related to the effective 

activation energy of amorphous-crystalline transformation, Ec, through the following 

expression: 

( )[ ] .052.1ln1lnln const
TR

E
mnx c +−−=−− β  

(6) 

where m is an integer that depends on the dimensionality of growth of the crystal, and n being 

a numerical factor depending also on the nucleation process. For as-quenched glasses 

containing no nuclei m = (n – 1) and for glasses containing a sufficiently large number of 

nuclei, which might occur due to annealing of the as quenched glass, m = n.36 The Ec and n 

values estimated by both methods are reported in Table 4. 

Figure 5 presents the Kissinger plots for compositions A3, B3 and C3 while the variation of 

ln[–ln(1–x)] with ln(β) and the plot of ln[–ln(1–x)] versus 1000/RTp (derived from Matusita’s 

method) are shown in Figs. 6a-c and Figs. 7a-c, respectively. All plots show straight lines 

(except at high β ), thus indicating the validity of the methods 21 for estimating the values of 

Ec and n (Table 4). Additionally, similar values could be estimated from Kissinger and 

Matusita methods as shown in Fig. 8. The binary system shows the lower value of activation 

energy for crystallization (A1) while quaternary system features the highest one (C1). 

However, while Ec increases with decreasing the SiO2/Li 2O ratio for compositions in the 

system Li2O−SiO2, the opposite trend is observed for compositions with added Al2O3 and 

K2O. Moreover, larger Ec variations as a function of SiO2/Li 2O ratio were observed for the 

quaternary compositions (group C), with the lowest Ec value being associated with the highest 

content of K2O (C3).  

Glasses in groups B and C featured the same alkali oxides content and therefore demonstrated 

similar values for Tg, which are higher than Tg of glasses in series A. This could be 

understood considering that the alkaline ions (Li+, K+) are likely to be partially associated 

with Al3+ (especially for the lower added amounts) in tetrahedral glass forming units. The 



 

200 
 

excess of alkaline oxides will tend to act as glass modifiers and to increase the ionic mobility 

decreasing Tg. With regard to changes in activation energy one can see that initial addition of 

Al 2O3 (glass B1) and Al2O3 +K2O (glass C1) resulted in Ec rising. In particular, glass C1 with 

the lowest K2O content demonstrated highest Ec among all investigated compositions. On the 

other hand, further addition of K2O in series C caused sharp Ec decrease that can be related to 

mixed alkali effect (Table 3, Fig. 8). 

 

Table 4 − The Ec and n for the crystallization region of experimental glasses obtained from 
different methods. 

Kissinger  Matusita 

Composition Ec 

/kJ mol-1 

R2 n  Ec 

/kJ mol-1 

n 

A1 169.2 ± 7.7 0.993 1.42 ± 0.09  170.8 ± 9.0 1.49 ± 0.08 

A2 171.1 ± 5.9 0.996 1.64 ± 0.06  190.4 ± 9.9 1.40 ± 0.08 

A3 202.2 ± 8.2 0.995 1.67 ± 0.08  198.2 ± 7.3 1.68 ± 0.09 

B1 215.1 ± 6.4 0.997 1.22 ± 0.11  178.5 ± 5.1 1.53 ± 0.04 

B2 180.4 ± 9.2 0.994 1.35 ± 0.07  175.0 ± 10.4 1.55 ± 0.04 

B3 149.2 ± 7.2 0.995 1.55 ± 0.08  155.6 ± 7.2 1.60 ± 0.10 

C1 247.4 ± 8.2 0.999 0.85 ± 0.07  258.3 ± 22.5 1.03 ± 0.09 

C2 156.9 ± 9.3 0.996 1.27 ± 0.04  161.2 ± 12.5 1.25 ± 0.17 

C3 144.1 ± 7.7 0.989 1.64 ± 0.08  145.1 ± 3.2 1.69 ± 0.03 
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Fig. 5 − Kissinger plots (Ec) for A3, B3 and C3. 
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Fig. 6 − Variation of ln[–ln(1–x)] with ln(β) for A3, B3 and C3. 

 

 

Fig. 7 − Variation of ln[–ln(1–x)] with 1000/RTp for A3, B3 and C3. 
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Significant changes of Avrami parameter n are also observed with the variation of glass 

composition (Fig. 8). The lowest n value was obtained for composition C1 (0.85±0.07 and 

1.03±0.09, according to Kissinger and Matusita methods, respectively), suggesting that these 

glasses are prone to surface crystallization, and the general trend for n is A > B > C. However, 

n tends to increase with decreasing the SiO2/Li 2O ratio, suggesting that crystallization occurs 

via both surface and bulk mechanisms, although surface crystallization appears to be the 

dominant one (Table 4, Fig. 8). This phenomenon is more pronounced in the glasses of series 

C that can be clearly observed from the changes in their microstructure after heat treatment 

(Figs. 9a-b). Thus, composition C1 heat-treated at 800 ºC feature surface crystallization as 

evidenced by the crystalline layer with about 1 mm thickness (Fig. 9a). Moreover, the inner 

part of this sample has no evidence of any crystalline phase. On the contrary, glass C3 treated 

at 700 ºC shows a crystalline layer on the surface along with dispersed crystals in the volume 

of the sample (Fig. 9b), suggesting the occurrence of both surface and bulk crystallization. 

These microstructural evolutions are in good agreement with the changes in the Avrami 

parameter n displayed in Fig. 8. 
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Fig. 8 − Variation of Ec and n with composition. 
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Fig. 9 − Microstructure of C1 heat-treated at 800 ºC (a) and C3 at 700 ºC (b). 

 

4. Conclusions  

The results presented and discussed along this work enable the following conclusions to be 

drawn:  

1. The enrichment of the glass composition in Li2O (decreasing the SiO2/Li 2O 

ratio) caused a general increase of the activation energy for glass transition 

(Eg), enhanced Ec for the binary systems, and decreased Ec for the ternary 

and quaternary compositions. 

2. Binary compositions showed stronger tendency toward crystallization 

while the addition of Al2O3 and K2O caused slightly shifts in Tg to higher 

temperatures and enhanced the glass stability against crystallization. The 

enhanced polymerization of the glassy matrix is consistent with the 

association of Li+/Al 3+ and K+/Al 3+ in tetrahedral glass forming units for the 

lower contents of alkaline elements. The excess of alkaline elements tend 

to exert an opposite effect. 

3. Surface crystallization is the predominant crystallization mechanism 

especially for the higher SiO2/Li 2O ratios, being more evident for the 

ternary and quaternary systems. 
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Abstract 

The aim of this work was to investigate the effect of different nucleating agents (P2O5, TiO2 

and ZrO2) on the crystallization behaviour and the properties of a parent glass with 

composition 23.7 Li2O − 2.63 K2O − 2.63 Al2O3 − 71.78 SiO2 (mol.%) and SiO2/Li 2O molar 

ratio far beyond that of stoichiometric lithium disilicate (LD, Li2Si2O5). The scanning electron 

microscopy (SEM) examination of as cast non-annealed glasses revealed the occurrence of 

liquid-liquid phase separation for all compositions. P2O5 revealed to be effective in promoting 

bulk crystallization of LD, while TiO2 and ZrO2 led to surface crystallization. Moreover, ZrO2 

enhanced the glass polymerization and shifts Tp to higher temperatures hindering 

crystallization. At 900 ºC, TiO2-containing glasses feature LD and lithium metasilicate (LMS, 

Li 2SiO3), while P2O5- and ZrO2-containing ones present monophasic LD and LMS glass-

ceramic, respectively. 

 

Keywords: Glass; Nucleating agents; Crystallization; Thermo-physical properties. 
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1. Introduction 

Glass-ceramics are polycrystalline materials formed through the controlled crystallization of 

glass during specific heat treatments. Crystallization of glass from the surface or from a small 

number of sites in the interior usually results in low strength materials with coarse-grained 

microstructures; in contrast, efficient nucleation of crystals from numerous centres results in 

fine-grained microstructures and consequently high-strength materials. The role of nucleating 

agents in initiating glass crystallization from a multitude of centres was the major factor 

allowing the introduction of glass-ceramics into industrial applications.1-6 

The lithia–silica glass-ceramics have attracted great interest since the fundamental research of 

Stookey on the stoichiometric composition of lithium disilicate (LD, Li2Si2O5).
7 Later, many 

comprehensive studies led the development of LD glass-ceramics (GCs) from a variety of 

compositions.8-16 It was shown that chronology and morphology of phases formed in this 

simple binary system could be affected by adding minor amounts of nucleating agents.  

The addition of P2O5 to LD glass was observed to induce amorphous phase separation and to 

increase the crystal nucleation rate, simultaneously.17-19 Recently Bischoff et al. 20 provided 

important insights into the crystallization mechanism of lithium disilicate glass–ceramics 

starting from non-stoichiometric glass compositions (SiO2/Li 2O molar ratio was 2.39:1) 

containing 1.3 mol.% P2O5. It was shown that under certain deviations from stoichiometry the 

formation of LD was preceded by the crystallization of lithium metasilicate (LMS, Li2SiO3, 

SiO2/Li 2O = 1), contrarily to what is observed in stoichiometric glasses.11 LMS firstly 

crystallized at lower temperatures (650−700 ºC) and then reacted with amorphous SiO2 at 

higher temperatures to produce LD. Accordingly, the formation of the crystalline silicate 

phases (LMS, LD) cannot derive from a heterogeneous nucleation processes through epitaxy, 

but as a heterogeneous nucleation at the interface of an amorphous lithium phosphate phase 

and the glass matrix.20 

Titania is an efficient nucleating agent commonly used in the fabrication of glass–ceramics.2, 

21 This oxide is believed to be greatly dissolved in glass melts; however, its high ionic field 

strength encourages the liquid–liquid phase separation phenomenon to occur during the 

subsequent heat treatment of solid glass.2, 21-22 Upon cooling it can precipitate in the form of 

small titanium oxide or titanium compound species that act as nuclei, facilitating the 

development of the main crystalline phases.2, 22 For instance, TiO2 as nucleating agent in the 



 

209 
 

Li 2O−MgO−Zn0−Al 2O3−SiO2 glass-ceramic system led to the formation of Ti-rich droplets 

leaving the glassy matrix significantly depleted from Ti.23  

Zirconia (ZrO2) is another conventional nucleating agent widely used in the several silicate 

systems,24-25 which was found to hamper crystal growth and the precipitation of the main 

crystalline phases (LD and LMS) in the Li2O–SiO2–Al2O3–K2O–P2O5 glasses.6 Moreover, it 

was demonstrated that in the Li2O–SiO2 glass ZrO2 enhanced the polymerization of the 

silicate network and amorphous phase separation changing the crystallization route by 

forming Li2SiO3 intermediate prior to Li2Si2O5 crystal.27  

However, the catalytic crystallization of non-stoichiometric lithium silicate glasses with 

SiO2/Li 2O molar ratios high than 3:1 was rarely investigated.28-34
 Therefore, the objective of 

this work was to study the role of P2O5, TiO2 and ZrO2 on the structural features of the parent 

glass composition 22.96Li2O−2.63Al2O3−2.63K2O−71.78SiO2 (mol.%) (SiO2/Li 2O molar 

ratio of 3.13) and of the glass-ceramics derived thereof.35 

 

2. Experimental Procedure  

2.1. Glass preparation 

A total of 9 new compositions were designed based on the parent composition 

22.96Li2O−2.63Al2O3−2.63K2O−71.78SiO2 (mol.%, designated as G). Doping with P2O5 was 

attempted in the amounts of 1, 2 and 3 mol.%, while for TiO2 and ZrO2 the added amounts 

were 1, 3 and 5 mol.%. Nucleating agents were introduced in such a way that either the 

iO2/Li 2O molar ratio and the amounts of Al2O3 and K2O remained constant and identical to 

those of G composition (Table 1).   

The powders of technical grade SiO2 (purity >99.5%) and of reactive grade Al2O3, Li2CO3, 

K2CO3, TiO2, ZrO2, and NH4H2PO4, were used. Homogeneous mixtures of batches (~100 g), 

obtained by ball milling, were calcined at 800 ºC for 1 h and then melted in Pt crucibles at 

1550 ºC for 1 h, in air. The glasses were produced in bulk (monolithic) form by pouring glass 

melts on bronze mould in two different sets: the glasses of one set were immediately annealed 

at 450 ºC for 1 hour while the other set of glasses was preserved in the non-annealed 

condition. 
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2.2. Thermo-physical properties of glasses 

 The coefficient of thermal expansion (CTE) of the annealed glasses was measured by 

dilatometry using prismatic samples of bulk glasses with cross section of 3×4 mm2 (Bahr 

Thermo Analyse DIL 801 L, Germany; heating rate 5 K min−1). The differential thermal 

analysis (DTA, Setaram Labsys, Setaram Instrumentation, Caluire, France) of glasses was 

carried out in air from room temperature to 1000 ºC at heating rate (β) of 20 K min−1. The 

glass granules with sizes in the range of 500−1000 µm (collected by sieving of crushed non-

annealed glass blocks) and weighing 50 mg were contained in an alumina crucible, using α-

alumina powder as reference material. The values of glass transition temperature Tg, 

crystallization onset temperature, Tc and peak temperature of crystallization, Tp were obtained 

from the DTA scans.  

Archimedes’ method (i.e. immersion in ethylene glycol) was employed to measure the 

apparent density of the bulk annealed glasses which was further applied along with 

compositions of glasses to calculate their excess volume (Ve) according to a procedure 

described elsewhere.36 

 

Table 1 – Compositions of the experimental glasses (mol.%).  

# G P1 P2 P3 T1 T3 T5 Z1 Z3 Z5 

Li 2O 22.96 22.73 22.50 22.27 22.73 22.27 21.81 22.73 22.27 21.81 

K2O 2.63 2.60 2.58 2.55 2.60 2.55 2.50 2.60 2.55 2.50 

Al 2O3 2.63 2.60 2.58 2.55 2.60 2.55 2.50 2.60 2.55 2.50 

SiO2 71.78 71.06 70.34 69.63 71.06 69.63 68.19 71.06 69.63 68.19 

P2O5 − 1.00 2.00 3.00 − − − − − − 

TO2 − − − − 1.00 3.00 5.00 − − − 

ZrO2 − − − − − − − 1.00 3.00 5.00 

 
 

2.3 Crystalline phase analysis and microstructural evolution in glass-ceramics 

Bulk parallelepiped annealed glass samples were heat treated non-isothermaly at 600, 700, 

800 and 900 ºC for 1 h, respectively, at a heating rate of 2 K min−1. The amorphous nature of 

the parent glasses and the nature of crystalline phases present in the GCs were determined by 

X-ray diffraction (XRD) analysis (Rigaku Geigerflex D/Mac, C Series, Japan; Cu Ka 
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radiation, 2θ between 10º and 60º with a 2θ-step of 0.02 deg s−1). The crystalline phases were 

identified by comparing the obtained diffractograms with patterns of standards complied by 

the International Centre for Diffraction Data (ICDD). 

Microstructure observations were done at polished (mirror finishing) and then etched surfaces 

of samples (by immersion in 2 vol.% HF solution for 2 min) by field emission scanning 

electron microscopy (SEM, Hitachi SU-70, Japan) under secondary electron mode. 

 

3. Results and discussion 

3.1. Casting ability and microstructure of glasses 

Melting at 1550 ºC for 1 h was adequate to obtain bubble free, homogenous transparent and 

colourless glasses from the parent composition G, the 1 mol.% P2O5–containing P1, and from 

all the TiO2 and ZrO2–containing derivatives. The absence of crystalline inclusions in these 

compositions was confirmed by XRD and SEM analyses. However, the transparent melts of 

glasses P2 and P3 (with 2 and 3 mol.% P2O5, respectively) tended to acquire a cloudy hazy on 

cooling. The XRD spectrograms of samples P2 and P3 (not shown) evidenced few and very 

weak peaks most probably belonging to both silicon oxide and lithium orthophosphate Li3PO4 

phases. Thus no further examination was performed on those glasses. 

The SEM image of the as cast non–annealed parent glass G (Fig. 1(a)) shows liquid–liquid 

phase separation into droplet like zones of Li-rich phase and SiO2-rich glass matrix. This type 

of primary segregation was demonstrated elsewhere.35 Addition of 1 mol.% P2O5 into G did 

not significantly affect the mean droplet diameter and the population density of droplets, but 

caused the formation of round shaped zones (Fig. 1(a)). This type of segregation might be 

related to separation of phosphate phase since no similar observation was revealed in the 

parent glass G. This type of segregation might be due to the incompatibility of the PO4 units 

in the silicate structure.37 Segregation is promoted by the high field strength of P5+ that equals 

2.1 38 and by presence of network modifiers such as the Li+ ions that will preferably diffuse 

towards phosphate groups assuming field strength consideration. The separate orthophosphate 

groups that are charge balanced by lithium,37, 39 may spontaneously crystallise upon cooling 

and confer the cloudy appearance to the P2 and P3 glasses. 
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Fig. 1 – SEM images of non-annealed glasses: (a) G, (b) P1, (c) T1, (d) T5. (e) Z1 and (f) Z3. 

 

In the case of TiO2−containing compositions (Figs. 1(c) and (d)) three glassy phases can be 

clearly observed: (a) small droplets which resemble a lithium rich phase in the parent glass, 

(b) bigger spherical droplets, and (c) a silica-rich glass matrix in which both droplet glass 

phases are embedded. Formation of spherical droplets can be explained by relatively high 

field strength of Ti4+ (1.04 38) and ability of titania-rich phase to encourage segregation.21-22 

The SEM images of non-annealed ZrO2–containing compositions (Figs. 1(e) and (f)) reveal a 

steady decrease in size of droplet-like zones with increasing ZrO2 content. According to 

Dietzel,40 the contribution of ZrO2 to the surface tension is more significant than those of SiO2 

and Li2O. Therefore, adding ZrO2 to the Li2O−SiO2 glasses might lead to equalizing the 

surface tension of the different phases and weaken the degree of segregation. Moreover, 

zirconium being in 6-co-ordination number will behave in the glassy lattice as network former 

ion since Zr occupies a distorted ZrO6 octahedron which shares corners with SiO4 tetrahedra 

with Zr−O−Si angles close to 130º.40-41 

 

2 µm (b) P1 

5 µm (d) T5 

1 µm (a) G 

5 µm (c) T1 

2 µm (f) Z3 2 µm (e) Z1 
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3.2. Thermo-physical properties of glasses 

 The properties of the annealed glasses are presented in the Table 2. Tg that is a parameter 

related to the system viscosity,40 increased in all the investigated compositions compared to 

the parent glass. The most significant increment in Tg was revealed for ZrO2-containing 

glasses, suggesting increase in the polymerization degree. CTE increased with the first 

addition of nucleating agents and then decreased for the TiO2 and ZrO2 groups. The density 

values of annealed glasses varied in the range of 2.36–2.52 g cm−3. The observed density 

variations are composition dependent and can be, in general, explained by atomic weight 

consideration. Accordingly, the highest values were recorded for the ZrO2 series, while the 

lowest ones were measured for the parent glass and P1. Moreover, an increase in density for 

TiO2 and ZrO2 glasses is also a direct consequence of the volume contraction reflected by the 

significant decreases of structural parameters Vm and Ve.
40 

 

Table 2 – Thermo-physical properties of the experimental glasses.  

 
d 

(g cm−3) 

Vm 

(cm3 mol−1) 

Ve 

(cm3 mol−1) 

CTE200-400 

±0.1 (10−7 K−1) 

Tg 

±2 (ºC) 

Tp1 

±2 (ºC) 

Tp2 

±2 (ºC) 

G 2.36 ± 0.01 23.38 ± 0.01 1.26 ± 0.01 96.5 505 821 − 

P1 2.36 ± 0.01 23.78 ± 0.01 1.20 ± 0.01 112.7 520 661 870 

T1 2.38 ± 0.01 23.29 ± 0.04 1.14 ± 0.04 109.1 521 822 − 

T3 2.41 ± 0.01 22.96 ± 0.03 0.81 ± 0.03 102.9 526 813 − 

T5 2.44 ± 0.02 22.68 ± 0.04 0.53 ± 0.04 102.7 532 808 − 

Z1 2.39 ± 0.01 23.41 ± 0.02 1.21 ± 0.02 118.4 522 833 − 

Z3 2.45 ± 0.02 23.44 ± 0.01 1.19 ± 0.01 106.0 536 855 − 

Z5 2.52 ± 0.03 23.37 ± 0.01 1.06 ± 0.01 97.0 569 856 − 

 
Considering the micro heterogeneous structure of the experimental glasses (Fig. 1) and the 

prominent role of droplet phases in the nucleation process,2 further heat treatment for crystal 

growth was attempted using annealed samples in the interval 600−900 ºC for 1 h. This 

temperature range was chosen according to the DTA plots of the experimental glasses (β = 20 

K min−1) shown in the Fig. 2(a). The glass P1 containing 1 mol.% P2O5 exhibits two sharp and 

well-defined exothermic peaks at 661 and 870 ºC. All the other experimental compositions 

featured a single exothermic peak but of significantly lower intensity. In particular, DTA 
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curve of glass containing 1 mol.% ZrO2 features a single shallow peak that become almost 

negligible with further ZrO2 increment (Fig. 2(a)).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 – The DTA plots (a) glasses with particle size between 500−1000 µm, (b) glass P1 

having different particle sizes, (c) glass T1 having different particle sizes, and (d) glass Z1 

having different particle sizes (heating rate (β) of  K min−1). 

 

In general, as the volume fraction of crystals increases, the heat of crystallization is evolved 

and the exothermic peak appears on the DTA curves.29 Consequently, the intensity of the 

exothermic peak is correlated with the efficiency of nucleating agents to promote nucleation. 

Additionally, the positioning of the peak temperature of crystallization, Tp, may be a measure 

of the ease of crystallization; the lower Tp is, more easily the crystallization occurs.29 The 

changes in Tp for P1 and ZrO2 series are in accordance with finding of Matusita et al. 29 

demonstrating that Tp increases with increasing ionic radius of metal cations in the 

25Li2O·75SiO2·3ROn glass (R = Na, K, Cs, Mg, Ca, Sr, Ba, B, A1, In, Ge, Ti, Zr, P or V). 
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Exception from this tendency was revealed for TiO2–containing glasses. To explain this 

phenomenon further crystallization kinetics study of the experimental should be attempted.  

DTA curves obtained from the glasses P1, T1 and Z1 having different particle sizes are shown 

in the Figs. 2 (a-d). For all the glass compositions, except P1, Tp appears at lower 

temperatures for finer particles, indicating the occurrence of surface crystallization.42-44 

Accordingly, the monoliths from TiO2 and ZrO2 series exhibited surface crystallization while 

P1 glass demonstrated bulk internal crystallization (as will be shown in next subsection 3.3). 

 

3.3. Crystallization of glasses: phase assemblage and microstructure 

The general appearance of some experimental glasses after heat treatment at 600, 700, 800 

and 900 ºC is presented in Fig. 3. Titania and zirconia containing glasses were still transparent 

at 600 ºC whilst phosphorous containing composition appeared as semi translucent glass. 

With increasing the heat treatment temperature to 700 ºC, the TiO2- and ZrO2-containing 

samples turned into opaque glasses, while the translucency degree of P1 glass was almost 

unaffected. However, the degree of opacity of all the glasses significantly increased with the 

heat treatment temperature further increasing to 800 and 900 ºC as a consequence of crystals 

growth. 

 
 600 ºC 700 ºC 800 ºC 900 ºC 

G 

    

P1 

    

T1 

    

Z1 

    
Fig. 3 – The appearance of the bulk heat treated glasses. 
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Figures 4 (a) to (c) present the XRD spectra of glasses heat treated at different temperatures. 

All the investigated glasses heat treated for 1 h at 600 ºC were amorphous as evidenced by 

XRD and SEM (not shown). Crystallization of LMS (Li2SiO5) was initiated in P1 at 700 ºC as 

observed in the XRD spectra (Fig. 4(a)) and SEM image (Fig. 5(a)). LD and small quartz 

peaks appeared at 800 ºC. LD phase grew up in the temperature range 800–900 ºC turning the 

P1 heat treated at 900 ºC into a monomineral LD glass-ceramic (Fig. 4(a)). The nucleation 

process in the parent glass G was initiated from the nanosize Li-rich droplets derived from 

liquid-liquid phase separation.35 

 
  

Fig. 4 − XRD of glasses heat treated at different temperatures: (a) P1, (b) T1, (c) Z1, and (d) 

T5 and Z5. 

 

LD was the major phase with traces of LMS at temperatures <900 ºC, but then opposite trend 

with growing of former at the expanse of latter was revealed. The mechanism of nucleation 

and crystal growth in the presence of P2O5 seems to be different, leading to the formation of a 

denser population of tightly interconnected LD crystals (Fig. 5(b) and (c)) but without 

significant changes in the morphology of LD crystals. A crude epitaxial growth rule has been 

proposed in some literature reports 37, 45-46 to explain the nucleation and crystallization when 

at least one of the lattice parameters of the nucleating species and of the growing crystals is 

within an integer multiple ±15%. The round shaped segregated zones (Fig. 1(a)) formed in the 

presence of P2O5 due to the incompatibility of the PO4 units in the silicate structure 31 likely 

consist of Li- and P-rich associations such as Li3PO4 a result of the high field strength of P5+ 

(2.1).38 It is worth noting that for the Li3PO4–Li2Si2O5 pair, the following proximities can be 
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registered for the unit cells lattice parameters a and c: (i) a Li3PO4 = a Li2Si2O5 + 8%; (ii) c 

Li 2Si2O5 = 3c Li3PO4 − 3%; therefore, being both within the acceptable range.37 However, the 

hypothesis of a heterogeneous nucleation at the interface of an amorphous lithium phosphate 

phase and the glass matrix was considered to be more appropriate to describe the structural 

changes in this particular system.20 Similar mechanism of heterogeneous nucleation can be 

considered when P2O5 is incorporated into glasses of the quaternary 

22.96Li2O−2.63Al2O3−2.63K2O−71.78SiO2 system. 

 
 

Fig. 5 − SEM of glasses heat treated at different temperatures: (a−c) P1, (d−f) T5, and (g−i) 

Z1. 

 

The hypothesis of an epitaxial growth mechanism for the LMS in the presence of TiO2 might 

be admitted, considering the close proximities of the unit cells lattice parameters a, b and c for 

the TiO2–Li2SiO3 pair: (i) a Li2SiO3 = 2a TiO2 + 18%; (ii) b Li2SiO3 = 2a TiO2 + 2.7 %; (iii) c 

Li 2SiO3 = 2c TiO2 − 21 %.38 The fine droplets observed at 600 ºC (about 250 nm) in T5 glass 

(Fig. 5(d)) are most probably Ti-enriched compounds that act as nuclei and facilitate the 

development of the main crystalline phases.2, 22 Unlike to the bulk crystallization observed in 

5 µm (b) P1 – 800 
ºC 

150 µm (e) T5 – 700 
ºC

5 µm (a) P1 – 700 
ºC

5 µm (d) T5 – 600 
ºC 

150 µm (h) Z1 – 700 
ºC

2 µm (g) Z1 – 600 
ºC

5 µm (c) P1 – 900 
ºC 

2 µm (f) T5 – 900 
ºC

5 µm (i) Z1 – 900 
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the glass P1, the presence of TiO2 promoted predominantly surface crystallization as 

evidenced in (Fig. 5(e)). Typical dendritic crystals of LMS can easily be seen inside this 

relatively thick crystalline layer.  

Both LMS and LD could be identified in the XRD spectra of TiO2–containing glasses heat 

treated at 800 and 900 ºC irrespective of the added amount of TiO2 demonstrating the 

impossibility of producing monomineral LD GC when this oxide is used alone as nucleating 

agent. For instance, Fig. 5(f) shows that LMS crystals were almost completely removed 

during acid etching, while the well-organized interlocking LD crystals are clearly observed in 

the SEM image due to their high chemical durability.38  

In the ZrO2–containing glasses, separated droplets could be seen (Fig. 5(h)) well dispersed in 

the amorphous matrix heat treated at 600 ºC. Increasing the heat treatment temperature to 700 

ºC led to the appearance of a surface crystalline layer, but thinner (Fig. 5(h)) and less 

expanded that in case of TiO2 glass, with traces of LMS crystals (Fig. 4(a)). Intensity of LMS 

did not increase significantly after further heat treatment at 800 ºC while this phase was more 

pronounced at 900 ºC in  Z1. Figure 5 shows the SEM microstructures of Z1 heat treated at 

600, 700 ºC and 900 ºC. The amorphous glassy matrix predominates in all of them while 

some embedded dendrite holes resembling the typical LMS morphology can be seen 

especially in the sample heat treated at 900ºC.  However, LMS formation was significantly 

suppressed in Z5 (Fig. 4(d) confirming the role of ZrO2 to hamper crystal growth and the 

precipitation of the main crystalline phases.26  No LD was formed in ZrO2−containing glasses. 

 

4. Conclusions  

The effects of single additions of P2O5, TiO2 and ZrO2 as nucleating agents into non-

stoichiometric LD based glass could be summarised as follows: 

1. The occurrence of liquid-liquid phase separation was observed in all 

experimental compositions with some specific and delicate differences, 

which exert a strong influence in the phase composition and microstructure 

of GC. 

2. Compared to the parent glass, Tg increased with addition of nucleating 

agents. The most significant increment of Tg was observed for ZrO2-

containing glasses suggesting the highest degree of polymerization. CTE 
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increased with the first addition and then decreased for the TiO2 and ZrO2 

groups. 

3. Well-defined 2 sharp exothermic peaks were characteristic for the glass P1 

the position of which is independent of particle size, denoting bulk 

crystallization. All the other experimental compositions featured a single 

exothermic peak with significantly lower intensity and its position was 

particle size dependent, indicating surface crystallization. 

4. Only P2O5 led to bulk crystallization, with the formation of LMS at lower 

temperatures and the crystallization of LD at higher temperatures. 

5. Biphasic glass ceramics (LMS + LD) were always obtained in the presence 

of TiO2 at 800 and 900 ºC irrespective of the added amount. 

6. The addition of zirconia to the parent glass reduces the degree of 

segregation, increases the polymerization of the glassy matrix, and shifts Tp 

to higher temperatures hindering crystallization. 
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Abstract 

The aim of the present study is to investigate the apatite formation process from glasses in the 

fluorapatite−diopside−anorthite−albite system. The effects of partial and total replacement of 

anorthite fraction by albite in the ternary composition 26 Ca5(PO4)3F − 44 CaAl2Si2O8 − 30 

CaMgSi2O6 (wt.%) on the properties of glasses and glass-ceramics were evaluated. The 

scanning electron microscopy (SEM) examination of glasses revealed the precipitation of a 

nanosize droplet phase in the glassy matrices suggesting the occurrence of amorphous phase 

separation in all annealed glasses. An overall trend towards polymerization of the glass 

network with increasing albite content was demonstrated by employing MAS-NMR and FTIR 

spectroscopy. X-ray diffraction (XRD) and differential thermal analysis (DTA) were used to 

assess the effect of albite content on devitrification process and formation of fluorapatite 

crystalline phase (Ca5(PO4)3F). 

 

Key words: Glass; Apatite; Microstructure; Phase separation; Crystallization. 
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1. Introduction 

Apatite based materials have gained a considerable interest in the last decades due to their 

application as functional materials in medicine and dentistry 1-5 as well as in optoelectronics.6-

7 Crystallization of glasses is a useful method of obtaining a wide range of apatite containing 

glass-ceramics, which have unusual microstructures and physical properties.8-9 The synthesis 

of the parent glass is an important step of the development of the final glass-ceramic material 

because the principal components and their proportion in the glass composition govern the 

precipitation of the crystalline phases. The results of this process endow the resultant glass-

ceramic with the desired properties.  

Glass-ceramics with fluorapatite (FAp) crystals are durable biomaterials useful for dental 

restoration. In this regard, a number of glass-ceramic compositions have been proposed by W. 

Höland et al. in recent years exploiting the principles of controlled nucleation and 

crystallization in various inorganic based glasses.9-10 A distinction was made by Höland et al. 
9-10 between two general mechanisms of nucleation and crystallization in glasses that are used 

for the development of glass-ceramics: surface mechanisms and internal mechanisms. The 

formation of apatite in glass-ceramics was reported to be controlled by internal nucleation 

mechanisms where glass-in-glass phase separation played an important role.11 The glasses 

exhibited two different types of droplet phases, one enriched in CaO/P2O5 oxides, which leads 

to the nucleation of apatite, and a silica-rich phase that originates the formation 

aluminosilicate nuclei and the growth of crystalline phases such as leucite (KAlSi2O6). This 

amorphous phase separation (APS) thus triggers the double nucleation process and 

crystallization through surface reactions.5, 12 This double nucleation and crystallization 

mechanism from the spherical segregated droplets was confirmed by TEM observations in a 

glass with a composition: 67.6 SiO2, 12.8 Al2O3, 0.5 Li2O, 2.8 CaO, 1.2 P2O5, 5.7 Na2O, 8.6 

K2O, 0.8 F (wt.%). An apatitic phase with spherical morphology was firstly formed, which 

then was fully converted into FAp through a solid state reaction.11 Fluorapatite was found to 

easily crystallize from the glass melts with relatively wide compositional ranges: 22.1−45.0 

SiO2, 9.0−21.8 Al2O3, 7.3−18.9 CaO, 6.0−19.6 P2O5, 16.2−21.0 Na2O, 0−24.4 K2O, 7.0−10.1 

F (wt.%).13 Glasses demonstrated phase separation into CaO/P2O5-rich droplet phase and 

silica enriched matrix phase. FAp was the main crystalline phase formed in all glasses 

studied.  

The main aim of the present study is to investigate apatite formation process from glasses in 

the fluorapatite−diopside−anorthite−albite system. The information gathered will be of high 
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relevance to select the experimental conditions leading to the preparation of fine grade glass-

ceramic coatings on ceramic substrates.14-15 The base glass (A) was selected from the 

anorthite primary field of crystallization in the ternary FAp−anorthite−diopside system [26 

FAp (Ca5(PO4)3F), 44  anorthite (CaAl2Si2O8) and 30 diopside (CaMgSi2O6) (wt.%)] 

previously studied by Tulyganov.16  

 

2. Experimental Procedure  

2.1. Glass and glass-ceramic preparation 

The chemical composition of the starting glass (hereafter named A) was designed in order to 

obtain the calculated fractions of the following phases (wt.%): 26 fluorapatite (FAp, 

Ca5(PO4)3F), 44 anorthite (An, CaAl2Si2O8), 30 diopside (Di, CaMgSi2O6). Glasses B, C and 

D resulted from replacement of 50, 75 and 100 mol.% of An by albite (Al, NaAlSi3O8) in the 

parent glass composition, respectively. Table 1 and Table 2 present the detailed 

mineralogical-based and oxide-based compositions of the experimental glasses. Furthermore, 

four new B2O3-containing compositions were prepared based on the glasses C and D, namely: 

C–B4 (96 wt.% C and 4 wt.% B2O3);  C–B8 (92 wt.% C; and 8 wt.% B2O3); D–B4 (96 wt.% 

D and 4 wt.% B2O3); and D–B8 (92 wt.% D and 8 wt.% B2O3).  

Powders of technical grade SiO2 (purity >99.5%) and of reactive grade Al2O3, CaCO3, 

MgCO3, Na2CO3, NH6PO4, CaF2 and H3BO3 were used. Homogeneous mixtures of batches 

(~100 g), obtained by ball milling, were calcined at 800 ºC for 1 h and then melted in Pt 

crucibles at 1500−1550 ºC for 1 h, in air. The glasses were produced in bulk (monolithic) 

form by pouring glass melts on bronze mould and were immediately annealed at 450 ºC for 1 

hour while another set of glasses was preserved in the frit form by quenching the glass melt in 

cold water. The obtained frits were dried and milled in a high-speed agate mill. The mean 

particle size of the glass powders as determined by light scattering technique (Beckman 

Coulter LS 230, CA USA; Fraunhofer optical model) was about 5−10 µm. Rectangular bars 

with dimensions of 4×5×50 mm3 were prepared by uniaxial pressing (80 MPa). 

 Bulk parallelepiped glass samples were non-isothermally heat treated at 700, 750, 800 and 

850 ºC for 5 h, respectively, at a heating rate of 2 K min–1. Glass powder compacts were heat 

treated at 800, 850 and 900 ºC for 1 h at the heating rate of 2 K min–1 aimed to prevent 

deformation of samples. 



 

226 
 

Table 1 − Mineralogical compositions of the experimental glasses (wt.%).  

wt% 26  44 30 

A Ca5(PO4)3F CaAl2Si2O8 CaMgSi2O6 

B Ca5(PO4)3F Ca0.5Na0.5Al 1.5Si1.25O8 CaMgSi2O6 

C Ca5(PO4)3F Ca0.25Na0.75Al1.25Si2.75O8 CaMgSi2O6 

D Ca5(PO4)3F NaAlSi3O8 CaMgSi2O6 

 

Table 2 − Compositions of the experimental glasses.  

  SiO2 Al2O3 CaO MgO Na2O P2O5 CaF2 

mol.% 38.99 10.40 34.74 9.10 – 5.08 1.69 
A 

wt.% 35.65 16.13 29.65 5.58 – 10.98 2.01 
         

mol.% 44.41 7.93 29.34 8.99 2.64 2.05 1.67 
B 

wt.% 41.11 12.45 25.35 5.58 2.52 10.98 2.01 
         

mol.% 47.19 6.66 26.57 8.93 4.00 4.99 1.66 
C 

wt.% 43.96 10.53 23.10 5.58 3.84 10.98 2.01 
         

mol.% 50.01 5.38 23.75 8.87 5.38 4.96 1.65 
D 

wt.% 46.89 8.56 20.78 5.58 5.20 10.98 2.01 

 

2.2. Thermo-physical properties of glasses 

The coefficient of thermal expansion (CTE) of the annealed samples was determined by 

dilatometry using prismatic samples of bulk glasses with cross section of 3×4 mm2 (Bahr 

Thermo Analyse DIL 801 L, Germany; heating rate 5 K min–1). DTA of glass powders was 

carried out in air (Netzsch 402 EP, Germany) from room temperature to 1200 ºC at 40 K min–

1.  

Mechanical resistance (3-point bending strength) tests were performed on rectified 

parallelepiped bars of sintered GCs (Shimadzu Autograph AG 25 TA, 0.5 mm min–1 

displacement, the results were obtained from 10 different independent samples). 

Archimedes’ method (i.e. immersion in ethylene glycol) was employed to measure the 

apparent density of the bulk annealed glasses which was further applied along with 

compositions of glasses to calculate their excess volume (Ve) according to a procedure 

described elsewhere.17  
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2.3. Structural characterization of glasses and glass-ceramics 

29Si MAS-NMR spectra were recorded on a Bruker ASX 400 spectrometer operating at 79.52 

MHz (9.4 T) using a 7 mm probe at a spinning rate of 5 kHz. The pulse length was 2 µs and 

60 s delay time was used. Kaolinite was used as the chemical shift reference. 27Al MAS-NMR 

spectra were recorded on a Bruker ASX 400 spectrometer operating at 104.28 MHz (9.4 T) 

using a 4 mm probe at a spinning rate of 15 kHz. The pulse length was 0.6 µs and 4 s delay 

time was used. Al(NO3)3 was used as the chemical shift reference. The Qn distributions were 

obtained by curve fitting and spectral deconvolution using DMFIT program (version 2011).18 

Infrared spectra of the glass powders were obtained using an infrared Fourier spectrometer 

(FTIR, model Mattson Galaxy S-7000, USA) in the range of 300–1500 cm–1. For this 

purpose, each sample was mixed with KBr in the proportion of 1/150 (by weight) for 15 min 

and pressed into a pellet using a hand press. 

Microstructural observations were done on polished (mirror finishing) surface of samples 

(etched by immersion in 2 vol.% HF solution for 1–2 min) by scanning electron microscopy 

(SEM; SU-70, Hitachi, Japan). The crystalline phases were determined by X-ray diffraction 

(XRD) analysis (Rigaku Geigerflex D/Mac, C Series, Cu Ka radiation, Japan). Copper Kα 

radiation (λ=1.5406 Å), produced at 30 kV and 25 mA, scanned the range of diffraction 

angles (2θ) between 10º and 60º with a 2θ-step of 0.02 deg s–1. The phases were identified by 

comparing the obtained diffractograms with patterns of standards complied by the 

International Centre for Diffraction Data (ICDD).  

 

3. Results and discussion 

Melting at 1500–1550 ºC for 1 h was adequate to obtain bubble free transparent colourless 

glasses A and B, although in the case of the latter one the transparency was slightly disturbed 

by the appearance of cloudy regions. Further addition of albite (Al) component to the glasses 

C and D considerably modified their optical properties converting the transparent glass A into 

cloudy white opaline materials. The degree of opacity was enhanced in glasses C and D 

containing B2O3 component. 

The SEM images of annealed samples presented in Fig. 1 reveal the precipitation of a 

nanosize droplet phase in the glassy matrices, suggesting the occurrence of APS in all 

annealed glasses. However, the mean droplet diameter and the population density of droplets 

increased by adding albite at the expenses of anorthite into the Ca5(PO4)3F–CaAl2Si2O8–
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CaMgSi2O6 system. In particular, glass A remained transparent owing to a low volume 

fraction of the segregated phase and very fine scale morphology of droplets with the sizes 

laying in the interval 25−125 nm. In glass B the population density of droplets drastically 

increased while the size of the droplets remained similar to A. Glasses C and D exhibited 

higher degree of segregation compared to B with droplets sizes between 100−400 nm. 

Moreover, crystallization of FAp within separated droplet phase has already occurred upon 

casting (Fig. 1b-d). FAp peaks of very low intensity were also detected on XRD spectra of all 

experimental glasses (not shown) except for glass A. However, the rapid quenching of glass 

frits in water prevented the crystallization of Fap as revealed by their crystalline-free XRD 

patterns (not shown). 

 

 

Fig. 1 − SEM images of the experimental glasses etched with 2 vol.% HF solution for 1 min. 

 

The room temperature FTIR transmittance spectra in the region of 300−1300 cm–1 of all the 

experimental glasses are shown in Fig. 2. The most intensive bands lie between 300−600 cm–

1, 650−800 cm–1 and the 800−1300 cm–1. The broad bands in the 800−1300 cm–1 are assigned 

to the stretching vibrations of the SiO4 tetrahedron with a different number of bridging 

oxygen atoms, while the bands in the 300−600 cm–1 region are due to bending vibrations of 

Si−O−Si and Si−O−Al linkages.19 The transmittance bands in the 650−800 cm–1 region are 

related to the stretching vibrations of the Al−O bonds with Al3+ ions in four-fold 

coordination.19 The transmittance bands in 800−1300 cm–1 region for albite-containing glasses 

(b) B 1 µm (a) A 

(d) D 1 µm (c) C 

1 µm 

1 µm 
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B, C and D were registered at higher wave numbers than those observed for parent glass A. 

Thus, the partial or total replacement of An by Al enhances the polymerisation of the glass 

structure through the formation of more Q3 units at the expense of Q2 units. 
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Fig. 2 − FTIR spectra of glass frits. 

 

The 29Si MAS NMR spectra of glasses A and D are shown in Fig. 3a. In general, the spectra 

feature broad bands, which indicate the amorphous nature of the glass frits. For each 

composition, a resonance line covers the chemical shift range of silicon in several Qn groups 

with n varying from 0 to 4.20-21 In particular, the 29Si MAS-NMR spectrum for the parent 

glass A is centred at about −82 ppm (Fig. 3a) and contains ~60% Q2, ~29% Q3 and ~11% Q4 

structural units. 

The total replacement of An by Al caused a shift of the main 29Si MAS-NMR spectral peak to 

about −93 ppm (Fig. 3b) and resulted in significant increments in the populations of Q3 and 

Q4 units as can be concluded from the following Qn distribution: ~39% Q2, ~42% Q3 and 

~19% Q4. This enhanced degree of polymerization of the silicate glass network is in good 

agreement with the FTIR observations. Contrarily, the chemical neighbourhood of Al atoms is 

less sensitive to glass composition changes. The 27Al MAS NMR spectra of all glasses shown 

in Fig. 3c are practically identical and centred at 54 ppm, revealing the dominant presence of 

tetrahedral aluminium, Al(IV).22 
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Fig. 3 − MAS-NMR spectra: (a) 29Si MAS-NMR for glass A, (b) 29Si MAS-NMR for glass D 

and (c) 27Al MAS-NMR spectra of glass frits. 

 

The DTA traces for the glass powder frits with particle sizes in the range of 5−10 µm are 

shown in Figs. 4a,b. The parent glass (A) has a Tg of 742 ºC and two crystallisation exotherms 

at 884 ºC (Tp1) and 1040 ºC (Tp2) (Table 3). The first and the second exothermic peaks are due 

to the formation of FAp and An, respectively.22 The shoulder observed in the second 

exothermic peak suggests the formation of a third crystalline phase, likely diopsite.  
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Fig. 4 − DTA of glass frits at β = 40 K min–1. 

 

Table 3 − Thermo-physical properties of the experimental glasses.  

 
d 

(g cm-3) 

CTE200-500 ºC 

±0.1 (10-6 K-1) 

Tg1 

±2 (ºC) 

Tg2 

 

Tp1 

±2 (ºC) 

Tp2 

±2 (ºC) 

A 2.866 ±0.001 7.86 742 − 884 1040 

B 2.800 ±0.001 6.34 700 743 862 1081 

C 2.766 ±0.005 9.07 704 unresolved 779 1078 

D 2.718 ±0.003 8.98 685 unresolved 785 1068 

C-B4 2.734 ±0.004 8.08 671 unresolved 742 unresolved 

C-B8 2.700 ±0.002 8.14 657 unresolved 722 unresolved 

D-B4 2.691 ±0.002 8.49 654 unresolved 740 unresolved 

D-B8 2.667 ±0.003 8.08 639 unresolved 722 unresolved 

 

Adding the lowest amount of Al (glass composition B) shifted the first crystallisation peak to 

lower temperatures (862 ºC) whilst the second crystallisation peak occurred at higher 

temperatures (1081ºC). Further, two transition points Tg1 and Tg2 were revealed in the DTA 

spectrum of glass B at 700 ºC and 743 ºC, respectively, whilst only one Tg could be 

distinguished in the glasses C and D. The position of the first crystallization peak Tp1 

significantly shift to lower temperatures in both C and D glasses in comparison to glass B, but 

Tp2 remained almost the same (Table 3). One important feature in DTA traces of glasses C 

and D is the presence of a distinct hump peak between the Tp1 and Tp2 exotherms. Also, the 

shoulder observed in the second exothermic peak disappeared and the overall intensity of the 
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peak decreased, suggesting the formation of a solid solution. The addition of 4 and 8 wt.% 

B2O3 to the compositions C and D caused significant shifts of Tg and crystallization 

exotherms to lower temperatures (Fig. 4,b). These observations suggest that B2O3 contributes 

to decrease the viscosity of the melts and enhances the diffusivity of the atoms. 
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Fig. 5 − X-ray diffractograms of experimental bulk glasses after heat treatment at different 

temperatures for 5 h: (a) C, (b) D, (c) C-B8, (d) D-B8 (FAp: fluorapatite, Ca5(PO4)3F, ICCD 

card 01-015-0876). 

 

Some properties of the experimental glasses are presented in Table 2. Density decreased with 

increasing amounts of Al and B2O3. The CTE of the glasses show an increasing trend with the 

addition of Al, while an opposite effect was observed in the case of B2O3.    

The XRD spectra of bulk glass samples heat treated at 700, 750, 800 and 850 ºC for 5 h 

presented in the Fig. 5 reveal that FAp was the single crystalline phase formed in all glass-

ceramics, irrespective of the sintering temperature within the range studied. The intensities of 
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FAp peaks decrease with increasing amounts of Al and increased with incremental additions 

of B2O3.  
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Fig. 6 − X-ray diffractograms of glass powder compacts after heat treatment at 900 ºC for 1 h 

(FAp: fluorapatite, Ca5(PO4)3F, ICCD card 01-015-0876; Di: diopside, CaMg(SiO3)2, ICCD 

card 01-073-6374; An: anorthite, CaAl2Si2O8, ICCD card 98-000-0012). 

 

Sintering of glass powder compacts at 800, 850 and 900 ºC for 1 h resulted in dense glass-

ceramic materials featuring relatively high mechanical strength (Table 4). Figs. 6 and 7 show 

the XRD spectra and microstructure of glass powder compacts heat treated at 900 ºC for 1 h, 

respectively. Three crystalline phases, FAp, Di and An were identified in the glass-ceramic C, 

while only FAp and Di were formed in glass-ceramic D in which An has been completely 

replaced by Al. The morphological features presented in Fig. 7 show the predominance of 

spherical crystals, therefore close to those of the liquid-liquid segregated droplets, suggesting 

again that apatite phase formation is nucleated inside the droplets. However, in the B2O3-

containing composition D–B8, some areas with rod-like FAp crystals formed from the 

coalescence of droplets as revealed in Fig. 7b (insert). 

 

4. Discussion  

The results presented above showed that nano-scale crystallisation of FAp–An–Di glass-

ceramics could be achieved due to two main contributing processes: (a) loss of fluorine and 

calcium from the glassy phase (CaO/P2O5-rich droplets) to form the FAp phase with the 

concomitant increase of Tg of the residual glass. This ‘freezing’ effect tends to halt the 
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crystallisation of the system; (b) the boundaries imposed by the nano-scale APS induced 

phosphate-rich droplets further limit the growth of the apatite crystallites, as proposed by Hill 

et al. 22 who assumed that the APS probably results in one of the phases having a composition 

close to FAp.  

 

Table 4 − Thermo-physical properties of glass powder compacts.  

 C C-B4 C-B8 D D-B4 D-B8 

Density (g cm-3)      

800 ºC 2.560 ±0.033 2.636 ±0.015 2.654 ±0.002 2.532 ±0.013 2.534 ±0.017 2.613 ±0.005 

850 ºC 2.637 ±0.003 2.721 ±0.007 2.667 ±0.006 2.541 ±0.009 2.682 ±0.006 2.642 ±0.009 

900 ºC 2.776 ±0.002 2.776 ±0.006 2.692 ±0.005 2.712 ±0.008 2.703 ±0.001 2.647 ±0.006 

Shrinkage (%)      

800 ºC 3.28 ±0.15 12.98 ±0.18 13.21 ±0.16 2.22 ±0.35 9.68 ±0.62 13.56 ±0.23 

850 ºC 12.41 ±0.33 13.94 ±0.13 13.43 ±0.23 11.93 ±0.51 14.18 ±0.17 14.23 ±0.10 

900 ºC 14.23 ±0.10 14.72 ±0.18 13.65 ±0.08 13.61 ±0.24 13.94 ±0.06 14.11 ±0.11 

Bending strength (MPa)     

800 ºC 18.61 ±2.13 110.93 ±5.40 110.50 ±5.57 17.00 ±2.28 96.79 ±2.48 115.15 ±6.55 

850 ºC 89.50 ±7.51 126.22 ±6.83 119.22 ±12.04 83.98 ±8.20 130.47 ±4.67 107.40 ±1.29 

900 ºC 110.67 ±3.63 147.95 ±14.18 157.05 ±16.43 105.18 ±4.06 128.50 ±24.22 147.97 ±4.70 

 

 

Fig. 7 − Microstructure of glass powder compacts heat-treated at 900 ºC for 1 h: (a) D, (b) D-

B8. 

In the present work a glass composition previously studied by Hill et al. 22 was used as the 

parent glass (A) for synthesis of three new glasses in the system FAp–An–Di–Al. SEM 

analyses of annealed glass A performed in our work confirmed the presence of APS in the 

form of droplets of very fine scale morphology (25–125 nm) dispersed in the glassy matrix 

(b) D-B8 - 900 ºC 1 µm (a) D - 900 ºC 1 µm 

1 µm 
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(Fig. 1). Tg, Tp1 and Tp2 values of the glass A were similar to those obtained in that earlier 

study 22 whilst some discrepancies can be explained by the use of different characterization 

techniques and heat treatment schedules. The two characteristic endotherms presented by 

glass B at 700 and 743 ºC (Fig. 4, Table 3) are likely due to the enhanced liquid-liquid phase 

separation that occurred upon replacing 50 mol.% of anorthite by albite (Fig. 1) and the 

consequent formation of droplets with different compositions, which will exhibit 

distinguishable transition points.23 The shifting trend of the thermal events to lower 

temperatures (Fig. 4) suggests that the second Tg attributed to the transition of the silica rich 

glassy phase in glasses C and D probably has been masked by its superposition with Tp1.
24  

According to the ternary system albite–anorthite–diopside 25, albite and anorthite form a 

complete solid solution series (the plagioclase series), anorthite and diopside form a eutectic 

system, as do albite and diopside. The solid solution between albite and anorthite continues 

into the ternary system and is expressed by the boundary curve connecting the two binary 

eutectics. However, from the phase diagram of diopside–albite system 26, the narrow 

crystallization field for albite reflects big differences in the crystallization trends of the two 

phases. It is known that anorthite features highly ordered structure 22 but albite is even more 

difficult to crystallize from the silicate glasses.27 

Karamanov et al. 27 investigating diopside–albite glass ceramics mentioned that practically, 

only diopside formation is expected while the residual glass retains composition similar to 

albite. The different crystallization behaviour was explained in terms of crystal structures: 

albite has a complicated framework structure, while diopside consists of a simple chain 

structure of monoclinic pyroxene. Similar crystallization trends were observed for the 

experimental B–D compositions since evidences of albite formation could neither be detected 

by XRD nor by SEM analyses in both heat treated bulk glasses and glass-powder compacts. 

The crystallization of apatite phase in the experimental B–D melts through slow cooling rate 

can be explained by the allowed extension of liquid-liquid phase separation into CaO/P2O5-

rich droplet phase and silica enriched matrix phase. This phenomenon was earlier observed in 

similar systems.13, 28 Fluorapatite-based glass-ceramics featuring relatively high mechanical 

properties comparable to those reported for similar systems 27, 29, could be produced from the 

amorphous powder frits obtained by fast quenching the glass melts in cold water and further 

applying glass-powder processing techniques. 
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5. Conclusions  

The melts of all investigated glass compositions in the system FAp−Di−An−Al were prone to 

the occurrence of APS reflected in the precipitation of a nanosize droplet phase in the glassy 

matrices. But this segregation trend increased by adding albite at the expense of anorthite into 

the Ca5(PO4)3F–CaAl2Si2O8–CaMgSi2O6 system. 

The structure of glass A consisted predominantly of Q2 units, but the polymerisation degree of 

the glass network increased upon replacing anorthite by albite, as revealed by a decrease of 

relative distribution of Q2 units and an increase of Q3 and Q4 structural groups. All 

compositions show 27Al chemical shifts centred at about 54 ppm with dominant presence of 

tetrahedral aluminium, evidencing its role as glass network former. 

Apatite monophase glass-ceramics were obtained after heat treatment of bulk glasses in the 

temperature interval 700–850 ºC for 5 h. Glass powder compacts heat-treated at 900 ºC for 1 

h exhibited good densification behaviour after sintering at 900 ºC for 1 h. Formation of rod-

like apatite crystals in B2O3-containing compositions ensure their higher mechanical strength 

values in comparison to B2O3-free glass-ceramics. 
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Conclusions and future direction  
 

“The value of experience is not in seeing much, but in seeing wisely.”  
William Osler 
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4.1. Conclusions 

 

The present work aimed at developing lithium disilicate based glass-ceramics in the system 

Li 2O−K2O−Al 2O3−SiO2 featuring SiO2/Li 2O molar ratios far beyond that of lithium disilicate 

(Li 2Si2O5) stoichiometry using simple compositions and traditional glass melt-quenching 

technique in order to get enhanced mechanical, thermal, chemical and electrical properties 

which allow the use these materials in functional applications. The effect of Al2O3 and K2O 

contents on the structure and crystallization of glasses in the system Li2O−K2O−Al 2O3−SiO2 

was evaluated. The comparison between 3 systems, i.e. Li2O−SiO2, Li2O−Al 2O3−SiO2 and 

Li 2O−K2O−Al 2O3−SiO2, was also performed in order to deeply understand the role Al2O3 and 

K2O on the structure and properties of the glasses, their crystallization kinetics as well as on 

phase evolution and thermo-physical properties of corresponding glass-ceramics. Additives, 

such as P2O5, TiO2 and ZrO2, were employed to assess their role on glass structure and 

crystallization process in the parent composition G3. The results obtained throughout these 

experiments can be summarised as follows: 

 

4.1.1 Bulk glasses 

The results revealed that compositions with equimolar addition of Al2O3 and K2O appeared as 

transparent glasses and exhibited liquid–liquid phase separation with nanosize droplets, while 

the binary composition (L23S77) became cloudy on cooling. The addition of Al2O3 and K2O to 

the binary system in the as-investigated proportions allowed to control the extent of the phase 

separation in the system Li2O–SiO2 due to the formation of tetrahedral four-coordinated 

Al(IV) species confirming the role of Al2O3 as network former. Surface nucleation and 

crystallization was dominant in high Al2O3 and K2O glasses (G1 and G2) with lithium 

metasilicate as the primary crystalline phase whilst volume nucleation and crystallization of 

lithium disilicate was observed in glass containing lowest amount of additives (G3) and in the 

binary glass composition (L23S77). 

Adding excess of K2O to glass G3 (i.e. K2O/Al2O3 > 1) resulted in an increase of the mean 

droplet size and droplet distribution density due to a decreasing energy barrier towards phase 

separation caused by the lowering of glass melt viscosity. Moreover, adding excess of K2O to 

glass G3 suppressed the crystallization of Li2Si2O5 and promoted the formation of Li2SiO3. 
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Addition of nucleating agents (P2O5, TiO2 and ZrO2) to the parent composition G3 resulted in 

higher Tg for all investigated compositions, but only P2O5 led to bulk crystallization, with the 

formation of lithium metasilicate at lower temperatures and the crystallization of lithium 

disilicate at higher temperatures. Biphasic glass ceramics (lithium metasilicate + lithium 

disilicate) were always obtained in the presence of TiO2 at 800 and 900 ºC irrespective of the 

added amount. The addition of zirconia to the parent glass reduces the degree of segregation, 

increases the polymerization of the glassy matrix, and shifts Tp to higher temperatures 

hindering crystallization. 

 

4.1.2 Glass powder compacts 

Al 2O3- and K2O-free binary glass demonstrated higher rate of crystal growth due to extended 

phase separation. Sintering of corresponding glass powder compacts resulted in poorly 

densified samples due to the narrowing of the Tc–Tg interval and early formation of large 

fraction of lithium disilicate phase. On the other hand, sintering and crystallisation of Al2O3- 

and K2O-containing compositions in the silica rich region of Li2O–SiO2 system resulted in 

well-densified and mechanically strong fine-grained glass-ceramics with lithium disilicate as 

the major crystalline phase featuring mechanical strength ~173–224 MPa, chemical resistance 

~25–50 µg/cm2 and low total conductivity (~2×10-18 S/cm) making these materials suitable 

for a number of practical applications. 

The sintering/densification of the glass powder compacts of composition derived from G3 

with excess of K2O (i.e. K2O/Al2O3 > 1) occurred in two steps. The extent of densification 

along the first stage significantly decreased with increasing the excess amounts of K2O, while 

the second stage of densification occurred in competition with crystallization process. The 

gradual substitution of SiO2 by K2O in glass compositions suppressed the crystallization of 

Li 2Si2O5 and promoted the formation of Li2SiO3 upon sintering the glass powder compacts. 

The glass powder compacts demonstrate wider range of the lithium disilicate formation than 

the corresponding bulk glasses. 

The fluorapatite−diopside−anorthite−albite (FAp−Di−An−Al) system revealed to be 

promising for applications as fine grade glass-ceramic coatings on ceramic substrates with 

compositions similar to that of G3. The FAp−Di−An−Al glass powder compacts heat-treated 

at 900 ºC for 1 h exhibited good densification behaviour. Moreover, the incorporation of B2O3 
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led to the formation of rod-like apatite crystals which improve their mechanical strength 

values in comparison to B2O3-free glass-ceramics. 

 

4.2. Proposed application fields for the experimental glass-ceramics 

 

The present work is based on the study of glasses in the Li2O−K2O−Al 2O3−SiO2 system, 

featuring SiO2/Li 2O molar ratios far beyond that of lithium disilicate (Li2Si2O5). The 

experiments allowed obtaining fine-grained glass-ceramics with lithium disilicate as the major 

crystalline phase and attractive mechanical, chemical and electrical properties which allow the 

use of these materials in functional applications such as: (a) dental applications in the form of 

artificial tooth substitutes; (b) electrical applications as low voltage insulators; (c) chemical 

industrial applications as acid resistive materials.  

 

4.3. Future directions 

 

During this research work, an attempt has been made to develop lithium disilicate based 

glass-ceramics in the simple quaternary system Li2O−K2O−Al 2O3−SiO2 for functional 

applications. We have succeeded in shedding some light on the structure and crystallization of 

glasses, phase evolution and microstructure of the final materials which render them suitable 

for further experimentation as potential candidates in various functional applications. 

However, complementary work still needs to be accomplished before making them geared up 

for final application. Therefore, in our opinion, the future work in this area may be addressed 

to the following issues: 

1. Further improvement of mechanical properties and chemical durability of 

developed glass-ceramics via application of hot pressing technique used in 

the production of commercial dental materials, e.g. IPS Empress2. 

2. Investigation of the effect of various additives (CeO2, V2O5, P2O5 + ZrO2, 

etc.) on translucency and optical properties of glass-ceramics. 
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3. Development of apatite–based coatings in the system fluoapatite–diopside–

anorthite to improve aesthetic properties of glass-ceramics for application 

as dental materials. 

4. In vitro and in vivo tests of glass-ceramics in physiological media. 

5. Further attempts to decrease droplets size in phase separated glasses to 

achieve nanosize crystallization of lithium disilicate glass-ceramics useful 

for advanced engineering fields.  

 

 


