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Introduction

Coding theory is the study of the properties of codes and their fitness for a specific application.

It emerged following the publication of Claude Shannon’s of 1948[24]. However, his work

was about channel properties and he did not tell how to find suitable codes. There are two

types of codes: Data Compression (or, source coding), and Error-Correction (or, channel

coding). When data compression is used in a data transmission application, the goal is speed.

The objective is to minimize the amount of data to be transmitted in order to increase the

data speed of the transmission. In the error-correction, such the name suggests, the goal is

to verify data transmissions by locating and correcting transmission errors. This thesis will

focus on the second type of codes. There are two classes of error-correction codes: the linear

codes and the non-linear codes.

Both of these classes of codes allow for efficient encoding and decoding algorithms, how-

ever very little is known about the properties of non-linear codes, as we can read in[4]. In

this work we will use only linear codes. Linear codes are partitioned into convolutional

codes and block codes. The first block code was introduced in 1950 by Hamming[2], and

it is called single-error-correcting block code. Later in 1954, Muller invented the class of

multiple-error-correcting codes and Reed gave a decoding algorithm for them[21]. The ma-

jor advances came with Bose Ray-Chaudhuri (1960)[3] and Hocquenghem (1959)[5], when

they found a large class of multiple-error-correcting codes, the BCH codes, and with Reed

and Solomon (1960) and Arimoto (1961)[22], when they discovered another class of multiple-

error-correcting codes called Reed-Solomon codes RS. Our main work will be concerned with

RS codes.

The discovery of BCH codes lead to a search for practical methods of designing the hardware

and software to implement the encoder and decoder of these codes. The first good algorithm

was found by Peterson (1960)[19]. Later, a powerful algorithm for decoding was discovered

by Berlekamp and Massey (1960)[9]. In a more recent work[27], Sudan introduced a RS
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decoding method that outperforms all existing ones.

In 1967, Massey and Sain published[18], where they start to establish one relation between

the area of coding theory and the area of linear systems theory. In 1995, York and Rosenthal

presented this relation as a particular case of the behavioral approach[23]. It is shown

in [9] how the theory on behavioral modeling leads to a transparent interpretation of various

existing decoding methods as well as to the derivation of an insightful decoding algorithm.

In particular, the Berlekamp–Massey algotithm is interpreted as behavioral modeling for

single-input-single output partial realization, as it was presented in [16]. Also a multivariate

version of this algorithm was builded in[6], and applied in[7]. In this work we will be con-

cerned in the above mentioned result of Sudan [27]. We summarize the idea of[13], where

Sudan’s approach is interpreted as a behavioral modeling for multi-variable interpolation.

It is also important to refer one common difference between the coding theory and the system

theory which is the alphabet used in each one. In code theory is usual to use finite alphabets

whereas in system theory the more usual to use infinite. We will show the implications of

finite fields for behavior modeling.

The structure of this thesis is the following:

Algebraic structures In this section we present the basic algebraic concepts which will

be used along this work, such as equivalence classes, cyclic groups and quotient rings.

Finite Fields In this section we further investigate finite fields and their structure, in partic-

ular the concept of extension fields and their construction. It has special importance because

all the “numbers´´ in code theory are elements in finite fields.

The behavioral Approach to Systems Theory This section starts with the definition

of a dynamical system and its properties and we define autoregressive systems. Then we

describe the concept of mathematical model, as it was introduced by Jan. C. Willems in [31],

and it important application in a dynamical systems theory. We present the algorithm to find

the Most Powerfull Unfalsified Model (MPUM) for a dynamical system.

Codes In this section we describe the general characteristics of the linear block codes, as

the concept of distance and error correcting capability, and we introduce the cyclic codes. In
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particular, we describe the Reed-Salomon codes. This is one strong class of the linear cyclic

codes, whose construction is made over elements of the finite fields introduced in section 2,

and we will apply this codes in a practical situation in section 5.

Decoding BCH and RS Codes In this last chapter are presented some algorithms to de-

code RS codes, giving a special fucus to the behavioral decoder. In this subsection we recall

to the idea of Sudan, which consists in the construction of an interpolating polynomial [27]:

this task will be accomplished by using techniques developed in the framework of the be-

havioral approach, as it is presented by M. Kuijper in [15]. The idea is to associate a set of

trajectories to the received data and then apply the behavioral theory presented in[30] by

Willems, and find the MPUM for this trajectories, which is the smallest polynomial matrix in

the shift whose kernel represents the behavior generated by those trajectories. With the row

of minimal weighted degree of this matrix we construct an polynomial which interpolates the

original data points.
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Chapter 1

Algebraic Structures

In this chapter we introduce some basic algebraic concepts and theorems, which will be used

in this thesis.

1.1 Functions and equivalence relations

Definition 1.1: Given two nonempty sets S and T , any subset of their cartesian product

R ⊆ S ×T is a (binary) relation. If (x , y ) ∈R , we will write also x R y .

A function is a special type of relation.

Definition 1.2: A relation R ⊆ S×T defines a function if it satisfies the following conditions:

• for every x ∈ S there exists y ∈ T such that (x , y ) ∈R ;

• if (x , y1) ∈R and (x , y2) ∈R , then y1 = y2.

A special notation is used for functions: the sets S , T , and R are called, respectively,

domain, codomain, and graph of the function. If the name of the function is f , we will

write f : S → T and f : x 7→ y or y = f (x ) whenever (x , y ) ∈R .

Observe that the notation y = f (x ) makes sense, since every x in the domain is associated

with a unique y in the codomain, which is called image of x .
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The following properties of functions will be used frequently.

Definition 1.3: A function f : S → T is

• a surjection or surjective if

∀y ∈ T ,∃x ∈ S : f (x ) = y ;

• an injection or injective if

∀x1, x2 ∈ S : f (x1) = f (x2) ⇒ x1 = x2;

• a bijection or bijective if it is both a surjection and an injection.

This chapter is devoted to the definition and characterization of different algebraic structures

that a set may exhibit. When a function is ‘compatible’ with the domain’s and codomain’s

structure some special names are used.

Definition 1.4: An homomorphism is a structure-preserving function between two sets equipped

with some algebraic structure. A homomorphism is called

• monomorphism when it is injective,

• epimorphism when it is surjective, and

• isomorphism when it is bijective.

Two sets A and B are isomorphic, denoted by A ∼= B , when there exists an isomorphism

between them.

More specific properties of homomorphisms will be given for each algebraic structure that

will be introduced starting from next section.

Another very important type of relation is introduced in the following definition and will be

widely used throughout this thesis.

Definition 1.5: An equivalence relation is a binary relation on a set S , i.e., ∼⊆ S ×S satis-

fying three properties:
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• (reflexivity) ∀a ∈ S , a ∼ a

• (symmetry) ∀a , b ∈ S , if a ∼ b then b ∼ a

• (transitivity) ∀a , b , c ∈ S , if a ∼ b and b ∼ c , then a ∼ c

Definition 1.6: Given a set S and an equivalence relation ∼ on S , the equivalence class of

an element a in S is the subset

a = {x ∈ X : x ∼ a } ⊆ S .

The set of all equivalence classes of S will be denoted by S/∼.

Remark 1.7: An equivalence class on S induces a partition of S , which is a family of disjoint

subsets (the equivalence classes) whose union is S .

Example 1.8: We will prove that the relation ∼ on Q =Z×Z\{0} defined by

(a , b )∼ (c , d )⇐⇒ a d = b c

is an equivalence relation. Actually, it is

• reflexive, since (a , b )∼ (a , b )⇔ a b = b a ;

• symmetric, because (a , b )∼ (c , d )⇒ (c , d )∼ (a , b ) as long as

a d = b c ⇔ c b = d a ;

• transitive, i.e.,

(a , b )∼ (c , d ) and (c , d )∼ (e , f )⇒ (a , b )∼ (e , f ). (1.1)

To prove (1.1), note first that, for every b , d ∈Z \ {0},

(a , b )∼ (0, d )⇔ a = 0. (1.2)
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Indeed, since a d = b 0 = 0 and d 6= 0, it follows that a = 0; the converse is

obvious. Therefore, if c = 0 in (1.1), then a = 0 and also e = 0, being (a , b ) =

(0, b )∼ (0, f ) = (e , f ).

When c 6= 0, the hypothesis of (1.1) corresponds to a d = b c and c f = d e . By

multiplying left and right members of these equalities, we get

a d c f = b c d e ⇔ d c (a f − b e ) = 0⇔ a f = b e ⇔ (a , b )∼ (e , f ),

where d 6= 0 by definition of Q , thus justifying the second equivalence.

Definition 1.9: For any a , b ∈ Z and positive n ∈ N, a is congruent to b modulo n , if the

difference a − b is a multiple of n , i.e., a = b + k n for some k ∈ Z. Equivalently, n

divides (or is a divisor of) a − b , denoted by n |a − b .

Observe that, once n is fixed, congruence modulo n is an equivalence relation whose classes

are

b = {a ∈Z : a = b +k n , k ∈Z}.

The set of all the equivalence classes is denoted by

Zn = {0, 1, . . . , n −1}. (1.3)

1.2 Groups

Definition 1.10: A set G equipped with a binary operation �, denoted by (G ,�), is a group if

the following properties are satisfied:

• (Closure) a � b ∈G , ∀a , b ∈G .

• (Associativity) a � (b � c ) = (a � b ) � c , ∀a , b , c ∈G .

• (Existence of Identity) There exists e ∈G , called identity, such that a �e = e �a =

a , for every a ∈G .



1.2. Groups 5

• (Existence of Inverse) For any a ∈G there exist b ∈G , called inverse of a , such

that a � b = b �a = e .

If the commutative property holds, i.e., a � b = b � a , for every a , b ∈ G , the group is

commutative or abelian.

G is a finite group if it contains a finite number of elements. The order of G , denoted

by ordG is the number of its elements.

We may speak of the identity element and the inverse of any element in a group, since they

are unique, as the following theorems state.

Theorem 1.11: In every group, the identity is unique.

Proof: Suppose that there exist two identity elements e1 and e2. Therefore, e1 � e2 = e2 and

e1 � e2 = e1 . Thus e1=e2.

Theorem 1.12: The inverse of each group element is unique, and the inverse of the inverse

of a is a .

Proof: Suppose that b and c are two inverse elements of a . Then,

b = b � e = b �a � c = e � c = c .

Now suppose that d is the inverse of b . So,

d = d � e = d � (b �a ) = (d � b ) �a = e �a = a ,

and the theorem is proved.

Example 1.13: We will prove that (Q/ ∼,⊕) is an abelian group, where the set Q/ ∼ was

defined in example 1.8 and the operation ⊕ is defined by (a , b )⊕ (c , d ) = (a d + b c , b d ).

First of all, observe that ⊕ is well defined, since it does not depend on the representatives

of each equivalence class. Indeed, if (a ′, b ′) ∼ (a , b ) and (c ′, d ′) ∼ (c , d ), then also
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(a ′d ′+ b ′c ′, b ′d ′) = (a d + b c , b d ): by direct calculation,

a ′d ′b d + b ′c ′b d = b ′d ′a d + b ′d ′b c

d ′d (a ′b − b ′a ) = b ′b (d ′c − c d ′),

which is true, because a b ′ = a ′b and c d ′ = c ′d . As for the group axioms,

• the operation is closed (a , b )⊕ (c , d ) = (a d + b c , b d ) ∈Q/∼, since b d 6= 0.

• The identity exists and is equal to (0, b ), which we will denote by 0, since it does

not depend on b 6= 0. Actually,

(a , b )⊕0= (a , b )⊕ (0, d ) = (a d + b 0, b d ) = (a d , b d ) = (a , b ), ∀d 6= 0.

• The inverse of (a , b ) is (−a , b ), being

(a , b )⊕ (−a , b ) = (a b + b (−a ), b d ) = (0, b d ) = 0.

Commutativity of ⊕ is a direct consequence of the commutativity of the sum of integers.

We will often extend the use of operations to sets and give here a general definition for future

references.

Definition 1.14: Suppose that the operation a � b is defined for every a ∈ A and b ∈ B .

Then, we define

a �B = {a � b : b ∈ B }, A � b = {a � b : a ∈ A} and A �B = {a � b : a ∈ A, b ∈ B }.

Remark 1.15: When no ambiguity arises, and the operation is clear from the context, we

may write just G instead of (G ,�). In particular, two types of notation will be used:

Additive group — denoted by (G ,+).

The operation ‘+’ is called sum, the identity is e = 0 and the inverse of a ∈ G is

−a . The n -fold composite of a ∈G with itself, with n ∈N, is called n -th multiple

of a and denoted by

n ×a =
n

︷ ︸︸ ︷

a +a + · · ·+a .
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This operation is extended to n ∈ Z, being 0× a = 0 and n × a = (−n )× (−a ) for

n < 0.

Multiplicative group — denoted by (G , ·).
The operation ‘ · ’ is called product, the identity is e = 1 and the inverse of a ∈G is

a−1. The n -fold composite a ∈G with itself, with n ∈ N, is called n -th power of

a and denoted by

a n =
n

︷ ︸︸ ︷

a ·a · · ·a .

The operation is extended to n ∈Z, being a 0 = 1 and a n = (a−1)−n for n < 0.

Remark 1.16: Note that for any a ∈G , both the 0-th multiple 0×a = 0 ∈G , in the additive

case, and the 0-th power a 0 = 1 ∈G , in the multiplicative case, are equal to the identity

element of the group.

In particular, observe that the result of the previous operations is always an element

of the group. Especially in the additive case, there is an (intentional) slight abuse of

notation, since the same symbol (0) is used with two different meanings (0 ∈ Z and

0 ∈G ).

Definition 1.17: Consider two groups (G ,�) and (H ,◦). Then the function f : G → H is a

group homomorphism if

f (u � v ) = f (u ) ◦ f (v ), ∀u , v ∈G .

Theorem 1.18: Consider the group homomorphism f of (G ,�), with identity eG , to (H ,◦),
with identity eH . Let u−1 denote the inverse in both groups. Then,

1. f (eG ) = eH and f
�

u−1
�

=
�

f (u )
�−1

, ∀u ∈G and

2. f is injective if and only if f (u ) = eH ⇒ u = eG .



8 Chapter 1. Algebraic Structures

Proof:

1. The first result is a consequence of f (u ) = f (u �eG ) = f (u )◦ f (eG ) and of the unicity of

the identity. Similarly, the second result follows by the unicity of the inverse, being

f (u ) ◦
�

f (u )−1
�

= eH = f (eG ) = f
�

u �u−1
�

= f (u ) ◦ f
�

u−1
�

.

2. Applying the first part of this theorem, the ‘only if’ part is obvious. Vice-versa, to prove

the ‘if’ part, note that

f (u ) = f (v )⇔ f (u ) ◦
�

f (v )
�−1
= f (u ) ◦ f

�

v−1
�

= f
�

u � v−1
�

= eH .

By hypothesis, last condition implies that u � v−1 = eG ⇔ u = v and, therefore, f is

injective.

Definition 1.19: Let (G ,�) be a group. If H ⊆ G and (H ,�) is a group too, it is called sub-

group of G .

Theorem 1.20: Let (G ,�) be a group. A nonempty subset H ⊆G is a subgroup of G if and

only if x � y −1 ∈H for every x , y ∈H , where y −1 is the inverse of y (in G ).

Proof: ‘⇒’ Since H is a group, for every x , y ∈H we have that y −1 ∈H and thus x � y −1 ∈H .

‘⇐’ Let y ∈ H . If we consider x = y , then x � y −1 = y � y −1 = e ∈ H , so H contains

the identity. Therefore, taking x = e , x � y −1 = e � y −1 = y −1 ∈ H and H contains the

inverse of its elements. To end the proof, we have to show that the operation is closed

in H : for any x , z ∈ H , we showed that y = z−1 ∈ H . By Theorem 1.12, y −1 = z , thus

x � y −1 = x � z ∈H .

Remark 1.21: Note that, when H ⊆G , (H ,�) is a subgroup of (G ,�), if and only the identity

map H →G , u 7→ u , is an injective group homomorphism. Often, we will use the latter

condition, i.e., the existence of a monomorphism H →G , to say that H is a subgroup of

G even when H is not a subset of G , meaning that H is isomorphic to some subgroup
eH of G (which is a subset too).
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Example 1.22: The group (Z,+) is a subgroup of (Q/∼,⊕), defined in Example 1.13.

Indeed, consider the set Z =
¦

(a , 1) ∈Q/∼
©

. By Theorem 1.20, it is a subgroup of Q/∼
since, if we consider (a , 1) and (b , 1), both in Z , and (−b , 1) ∈ Q/ ∼ is the inverse of

(b , 1), then we have that

(a , 1) + (−b , 1) = (a − b , 1) ∈ Z .

Further, the function Z→ Z , a 7→ (a , 1) is a ‘natural’ isomorphism between (Z,+) and

(Z ,⊕). Indeed, it is a homomorphism, since, by definition of ⊕,

∀a , b ∈Z, a + b 7→ (a + b , 1) = (a , 1)⊕ (b , 1);

it is clearly surjective and, by Theorem 1.18, it is injective because a 7→ (a , 1) = 0 ⇔
a = 0, as we saw in (1.2).

1.3 Cyclic Groups

Definition 1.23: The multiplicative (additive) group G is cyclic if there exists a ∈ G such

that G = {a n , n ∈ Z}, (G = {n × a , n ∈ Z}). The element a is called generator. In

general, every a ∈G generates a cyclic subgroup of G .

The additive group of integers (Z,+) is cyclic, being generated by 1 or by −1.

Example 1.24: The additive group (Q/ ∼,⊕) of Example 1.13 is not cyclic. Suppose that

Q/∼ is cyclic and (c , d ) is its generator. This means that

∀(a , b ) ∈Q/∼,∃n ∈Z : (a , b ) = n × (c , d ).

By definition of ⊕, it is easy to prove that n × (c , d ) = (n c , d ). Thus, in particular

∃n ∈Z : (c , 2d ) = n × (c , d ) = (n c , d )⇔ c d = 2d n c .

Once d 6= 0, the former condition is equivalent to c = 2n c ⇔ c (1−2n ) = 0.
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The solution c = 0 is not be acceptable, because the generator would be 0, which is

impossible, and the other solution n = 1
2 is not an integer. So, the statement is proved

by contradiction.

Also finite groups may be cyclic or not, as we show in the following examples.

Example 1.25: According to definition (1.3), it is easy to see that Zn is a finite group order

ordZn = n with respect to the operation ⊕ defined by a ⊕ b = a + b . Moreover, it is

cyclic with generator 1, being a = a ×1 for any a = 0, . . . , n −1.

By finiteness, all the results of the operation can be organized in a table, called Cayley

table. As an example, the complete structure of the group (Z4,⊕) is

⊕ 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

Example 1.26: Consider the finite multiplicative group G = {1, a , b , a b }, such that a−1 = a

and b−1 = b . Its Cayley table is the following:

⊙

1 a b a b

1 1 a b a b

a a 1 a b b

b b a b 1 a

a b a b b a 1

We deduce that this group is not cyclic, since every element x ∈ G , x 6= 1, generates

(only) the proper subgroup {1, x } ⊂G .

1.4 Rings and Fields

A ring is an abelian group with an additional structure. For instance, the set of integers Z is

a group with respect to addition, but also multiplication can be defined.
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Definition 1.27: A set R with two binary operations + and ·, sum and product, denoted by

(R ,+, ·) is a ring if the following properties are satisfied:

• (R ,+) is an abelian group.

• Product is closed and associative.

• The distributive rule holds: for all a , b , c ∈R , a ·(b+c ) = a ·b+a ·c and (b+c )·a =
b ·a + c ·a .

If also multiplication is commutative, R is a commutative ring. If it has a finite number

of elements, R is a finite ring.

Remark 1.28: Note that in a ring, multiplication does not have necessarily the identity ele-

ment. However, when it exists, it will be denoted by 1, according to Remark 1.15.

Example 1.29: A non trivial example of abelian ring is the set P = {2n , n ∈ Z} of even

numbers.

• (P,+) is an abelian subgroup of (Z,+).

• Multiplication of even numbers is clearly even: 2n ·2m = 2(2nm ).

• The distributive rule holds true, as every element in P is also in Z.

Note that 1 6∈ P , therefore there is no identity element for the multiplication in P .

The integers represent a sort of paradigm of rings. However, in general, multiplication can

behave rather strangely.

Definition 1.30: In a ring R , two nonzero elements a , b such that a b = 0, are (respectively,

left and right) zero divisors.
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Example 1.31: The set Zn has a ring structure given by the sum ⊕ (see Example 1.25) and

a multiplication defined by a � b = a b . For n = 4,

� 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 0 2

3 0 3 2 1

Therefore 2 is a zero divisor, since 2 ·2= 4= 0

When an abelian ring with unity 1 6= 0 does not have zero divisors, it is called integral

domain. As we saw, Z4 is not an integral domain. A particular and very important case of

integral domain, is the field.

Definition 1.32: The ring (R ,+, ·) is a field if (R \ {0}, ·) is an abelian group. A generic field

will be usually denoted by the symbol F.

Real and complex numbers are the most well known fields. Another very important type of

field is given by the construction which was first introduced in Example 1.8 and that will be

completed below.

Example 1.33: Using the notation of Example 1.13, we will show here how to equip the

abelian group (Q/∼,⊕) with a multiplication that turns it into a ring.

As it will become clear soon, Q/∼ is the set of fractions, i.e., the set of rational numbers

Q. Therefore, the common symbol a
b = (a , b ) will be used for its equivalence classes. To

further simplify the notation, we will denote the operations simply by ‘+’ and ‘ · ’.

Therefore, the addition defined in Example 1.13 is

a

b
+

c

d
=

a d + b c

b d
,

being 0 = 0
b the identity of the sum, ∀b 6= 0. As usual, the additive inverse of a

b is −a
b ,

which will also be written − a
b . Moreover, a

b −
c
d =

a
b + (−

c
d ).

Now we can define multiplication as

a

b
·

c

d
=

a c

b d
.
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Since a
b ·

c
c =

a c
b c =

a
b , the multiplicative identity is 1

1 =
c
c , for any c 6= 0, which will be

simply denoted by 1.

Finally, the multiplicative inverse of a
b 6= 0 is b

a , since

a

b
·

b

a
=

a b

b a
= 1.

Multiplication is also distributive since:

a

b
·
�

c

d
+

e

f

�

=
a

b
·
�

c f + e d

d f

�

=
a c f +a e d

b d f
=

a c b f +a e b d

b d b f
=

a

b
·

c

d
+

a

b
·

e

f
.

In this example, it was shown how to build the field Q starting from the ring Z. This con-

struction is rather general, as the following theorem states.

Theorem 1.34: The procedure exposed in Example 1.33 can be applied to any integral do-

main R . The field which is obtained is called field of fractions of R .

Definition 1.35: If (S ,+, ·) is a ring then R ⊆ S is a subring (subfield) of S if (R ,+, ·) is a ring

(field).

Definition 1.36: Consider two rings (R ,+, ·) and (S ,
⊕

,
⊙

). The function f : R → S is an

homomorphism of rings if, for all a , b ∈R , the following conditions are verified:

• f (a + b ) = f (a )
⊕

f (b ) (it is an homomorphism of the groups (R ,+) and (S ,
⊕

)).

• f (a · b ) = f (a )
⊙

f (b ).

When there exists an isomorphism between R and S , they are isomorphic, denoted by

R ∼= S .

Remark 1.37: As we did in Remark 1.21, we will say that R is a subring (subfield) of S if

R is isomorphic to a subring (subfield) of S , i.e., if there exists an injective ring (field)

homomorphism R → S .
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Example 1.38: Extending Example 1.22, we can say that Z is a subring of Q. Indeed, it is

easy to prove that Z ∼= Z =
�

a
1 ∈Q

	

(which is the set introduced in Example 1.22 with

the notation of Example 1.33) and that Z is a subring of Q.

Definition 1.39: The characteristic of a ring R with unity, denoted by char R , is the smallest

positive p , if it exists, such that, using the notation of Remark 1.15,

p ×1= 0.

If such a p does not exists, we say that R has characteristic 0.

Theorem 1.40: The characteristic of an integral domain must be either 0 or a prime number.

Proof: Consider a ring R with char R = p , p 6= 0. We will prove that if p is not a prime

number, then R is not an integral domain. So, suppose that p =mn , with m , n 6= 1. Then,

p ×1=mn ×1= (m ×1)(n ×1) = 0.

This implies that R has zero divisors, which do not exist in an integer domain.

1.5 Vector spaces

Definition 1.41: A vector space V over the field F, or F-vector space, is an additive abelian

group with an additional operation (a , v ) ∈ F×V 7→ a v ∈ V , called scalar multiplica-

tion, which satisfies the following linearity conditions: ∀a , b ∈F and u , v ∈V ,

(a + b )v = a v + b v and a (u + v ) = a u +a v.

Since two types of mathematical objects are involved in vector space operations, the

name vector will be used for any v ∈V , while elements a ∈F will be called scalars.

A homomorphism f of F-vector spaces, also called F-linear map, is a group homomor-

phism which is compatible with scalar multiplication: if f : V →W , then f (a v ) = a f (v )

for every vector v and scalar a .
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It is easy to verify that for any vector v in the F-vector space V , (−a )v = −(a v ), where −a

is the additive inverse of a ∈ F and −(a v ) is the additive inverse of a v in V . Therefore, the

notation −a v does not give rise to ambiguities.

Moreover, it is straightforward that 0v = 0, where the 0 on the left is a scalar and the one on

the right is a vector. Similarly, 1v = v holds too.

Definition 1.42: Let V be an F-vector space and S = {v1, . . . , vn} ⊆ V . The vector v ∈ V is a

linear combination of the vector in S with scalars a1, . . . , an ∈F if

v = a1v1+ · · ·+an vn .

We also say that v is generated by S .

The set S is linear dependent if there exist a linear combination equal to the zero vector

a1v1+ · · ·+an vn = 0 (1.4)

with at least one nonzero scalar. If S is not linearly dependent, it is linearly indepen-

dent.

The meaning of ‘linear dependency’ is the following: if ai 6= 0 in equation (1.4), then vi is a

linear combination of the remaining vectors with coefficients b j =−
a j

ai
, j 6= i , i.e.,

vi = b1v1+ · · ·+ bi−1vi−1+ bi+1vi+1+ · · ·+ bn vn .

Moreover, linear independency can be expressed directly as in the following theorem, which

is sometimes used as a definition.

Theorem 1.43: The vectors v1, · · · , vn over F is linearly independent if and only if the equal-

ity

a1v1+ · · ·+an vn = 0, ai ∈F, i = 1, . . . , n , (1.5)

only holds for a1 = a2 = · · ·= an = 0.

Definition 1.44: Let V be a vector space. The set B ⊆ V is a basis of V if it is linear

independent and generates (every vector of) V .

If B contains n vectors, then the dimension of V is dim V = n .
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Theorem 1.45: If V has dimension n then any subset with less than n elements cannot

generate V and any subset with more than n elements is linearly dependent.

Definition 1.46: A subset U ⊆ V of an F-vector space V is a subspace of V if U itself is an

F-vector space, with the same operation.

Theorem 1.47: Given an F-vector space V , U ⊆V is a subspace of V if and only if a u+b v ∈
U for any u , v ∈U and a , b ∈F

Observe that the vectors generated by any S ⊆ V constitute a subspace of V . This suggests a

possible algorithm to construct a basis of a space with dimension n : start from any nonzero

vector v1 ∈ V and let B1 = {v1}. By Theorem 1.45, it generates a subspace strictly contained

in V . Thus, there exists v2 ∈ V which is not generated by B1 and, therefore, B2 = v1, v2 is

linear independent. Repeating this procedure, the set Bn is obtained, which is a basis of V .

Definition 1.48: We denote by span{v1, . . . , vn} the subspace of V generated by the set of

vectors v1, . . . , vn ∈V .

Definition 1.49: Consider a vector space V with finite dimension. Subspaces U and W

which satisfy V = U +W (as in Definition 1.14) are called summands. If for every

v ∈ V there exist unique u ∈ U and w ∈ W such that v = u +w , then we say that

U and W are complementary subspaces, or form a direct sum decomposition of V and

write:

V =U ⊕W .

Theorem 1.50: Let V ,U , W be as above. Then, dim V = dimU +dim W . Moreover, if BU

BW are bases of U and V , respectively, then BU ∪BW is a basis for V .

Remark 1.51: Since every linearly independent subset of V can be extended to a basis, every

subspace has a complement, and the complement is necessarily unique.
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Definition 1.52: A symmetric non-degenerate bilinear form on the F-vector space V is the

operation (u , v ) ∈: V ×V 7→ u · v ∈F which satisfies

• (symmetric) u · v = v ·u ,

• (bilinear) (a u ) · v = a (u · v ), for any a ∈F and

• (non-degenerate) u · v = 0 for any v ∈V ⇔ u = 0.

Definition 1.53: Let V be a linear space of dimension n ∈ N equipped with a symmetric

non-degenerate bilinear form and U ⊂ V a subspace of V of dimension k ≤ n . The

orthogonal complement of U is

U ⊥ = {v ∈V : u · v = 0, for all u ∈U }.

Theorem 1.54: Let V and U are defined as above, with dimension n and k , respectively.

Then,

• U ⊥ is a uniquely determined subspace of V with dimension n −k and

• U and U ⊥ are complementary, i.e., V =U ⊕U ⊥.

We end this section establishing some important properties of linear maps.

Definition 1.55: Given the F-linear map f : V →W ,

• ker f = {v ∈V : f (v ) = 0} is called kernel of f .

• img f = { f (v ) : v ∈V } is called image or range of f .

Theorem 1.56: According notation of Definition 1.55, ker f and img f are subspaces of V

and W , respectively.

Definition 1.57: Considering the subspaces defined in Theorem 1.56, we call nullity to the

dimension of kernel and rank to the dimension of image.

Theorem 1.58: Considering one F-linear as in Definition 1.55, and denote by m its dimen-

sion. We have that

dim ker f +dim img f =m .
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1.6 Matrices and coordinate spaces

Definition 1.59: We will denote by Fp×q the set of p ×q matrices

M =













m11 m12 . . . m1q

m21 m22 . . . m2q
...

...
...

mp 1 mp 2 . . . mp q













,

where mi j ∈F, i = 1, . . . , p , j = 1, . . . , q , are called entries of M . In a simplified notation,

we may also write M = [mi j ].

The transpose of M = [mi j ] ∈Fp×q is M T = [m j i ] ∈Fq×p .

When p = q the matrix M is square. A square matrix M = [mi j ] is diagonal if mi j = 0

whenever i 6= j . In this case, we will write M = diag(m11, m22, . . . , mp p ).

The zero p ×q matrix, denoted by 0p×q , has all entries equal to zero, while the identity

matrix of dimension p is the p ×p square matrix Ip = diag(1, 1, . . . , 1). In both cases, the

dimension may be omitted when it is clear from the context.

Theorem 1.60: The set Fp×q is a F-vector space when equipped with the componentwise

operations which are defined as follows: for any M , N ∈Fp×q and a ∈F,

• M +N = [mi j ]+ [ni j ] = [mi j +ni j ] =







m11+n11 · · · m1q +n1q
...

...

mp 1+np 1 · · · mp q +np q






and

• a M = a [mi j ] = [a mi j ] =







a m11 · · · a m1q
...

...

a mp 1 · · · a mp q






.

Its dimension is dimFp×q = p q .

When one of the dimensions of a matrix is equal to one, we obtain the most simples examples

of vector spaces.
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Definition 1.61: The vector spaces F1×n and Fn×1 are called coordinate spaces and the

entries of their vectors are also called coordinates.

A vector v ∈ F1×n is called row vector and v ∈ Fn×1 is called column vector. Since

we will mainly use column vectors, they will be simply called vectors and we will write

Fn =Fn×1.

Note that a row vector is easily obtained from a (column) vector by transposition. Actually,

if v ∈Fn , then v T ∈F1×n .

Moreover, any matrix M ∈ Fp×q can be seen as a sequence of p row vectors of dimension q ,

called rows, or of q column vectors of dimension p , called columns.

This different way of looking at a matrix is very useful in order to write linear combinations

in a more compact way, as the following result states.

Theorem 1.62: Consider the matrix M ∈ Fp×q and the vector v ∈ Fq . If Mi ∈ Fp are the

columns of M and vi the entries of v ,i = 1, . . . , q , then

M v =M1v1+ · · ·+Mq vq ∈Fq .

In other words, the product M v is the linear combination of the columns of M whose

coefficients are the entries of v .

Theorem 1.63: The canonical basis of Fn is given by the vectors

e n
1 =













1

0
...

0













, e n
2 =













0

1
...

0













, . . . , e n
n =













0

0
...

1













∈Fn .

The canonical basis of Fp×q is given by matrices e
p
i (e

q
j )

T ∈ Fp×q , i = 1, . . . , p , j =

1, . . . , q .

Once again, we will omit the indication of the vector space dimension in its canonical basis

vectors when it is fixed or clear from the context, i.e., we will just write e1, . . . , en .
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To conclude, observe that it is possible to define a product between matrices (A, B ) ∈ Fp×q ×
Fq×m 7→ AB ∈Fp×m as follows:

AB = [ai j ][bhk ] =C = [cs t ],

where,

ci k =
∑

j

ai j b j k . (1.6)

The identity matrix I has the following property: for any matrix AFp×q , Ip A = A and AIq = A.

Since the dimension of I is determined by the dimensions of A, we will write only

I A = A and AI = A.

When m = 1, by equation 1.6, the matrix A ∈ Fp×q induces an F-linear map fA : v ∈ Fq 7→
fA(v ) = Av ∈Fp .

Definition 1.64: The kernel, image and rank of matrix A are the kernel, image and, respec-

tively, rank of the induced homomorphism fA.

Theorem 1.65: For any matrix A ∈Fp×q , rk A is the maximum number of linear independent

columns or rows of A.

Finally, the set of square matrices Fp×p , with the sum and product of matrices we defined, is

a ring, as we show in the following example.

Example 1.66: (R 2×2,+, ·) is a ring since it is a group under addition, with identity 0, and

multiplication is closed and has identity I . However (R 2×2,+, ·) is not an integral domain,

since there exist zero divisors. For example:

�

−1 1

−1 1

��

1 1

1 1

�

=

�

0 0

0 0

�
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1.7 Polynomials

Let R be a subring of S and X ⊆ S . We will denote by R [X ] the set of all finite linear

combinations of powers of elements in X with coefficients in R , i.e.,

r (x1, . . . , xn ) =
∑

finite

ri1,...,in
x i1

1 · · · x
in
n , (1.7)

where, for any n ∈ N, i1, . . . , in ∈ N, ri1,...,in
∈ R and x1, . . . , xn ∈ X . When r (x1, . . . , xn ) = 0

if and only if all its coefficients are zero, we say that x1, . . . , xn ∈ S are transcendent over

R (otherwise, they are algebraic). Note that this is equivalent to say that all the powers of

x1, . . . , xn are linear independent over R .

When X is finite and transcendent over R , R [X ] is called ring of polynomials over R .

Definition 1.67: Given a ring R (with unity), we define the set of (univariate) polynomials

over R as

R [x ] =

(

r (x ) =
n
∑

i=0

ri x i , ri ∈R , i = 1, . . . , n , n ∈N

)

. (1.8)

where x is a transcendent element over R , called variable, and ri are called coeffi-

cients. As for functions, the polynomial r (x ) ∈ R [x ] will be often denoted just by r .

When all the coefficients of r are zero, it is called zero polynomial and we write r = 0.

When r 6= 0, its degree, deg r , is the exponent of its highest power of x with non zero

coefficient. If r = 0, deg r =−∞ by convention (being −∞+n = n+−∞=−∞ for every

n ∈N or n =−∞).

The polynomial r is constant when deg r < 1 and linear if deg r = 1.

When the coefficient of the highest power of r is equal to 1, r is called monic.

Remark 1.68: Note that for any r ∈ R [x ] with deg r = n <m we can always write r (x ) =
∑n

i=0 ri x i =
∑m

i=0 ri x i , considering coefficients rn+1 = · · ·= rm = 0.

On the set of polynomials R [x ] we can define sum and product as follows: given a (x ) =
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∑n
i=0 ai x i and b (x ) =

∑m
i=0 bi x i , let

a (x ) + b (x ) =
max(m ,n )
∑

i=0

(ai + bi )x
i , a (x )b (x ) =

n+m
∑

i=0

x i
i
∑

j=0

a j bi− j . (1.9)

Theorem 1.69: The set R [x ] with sum and product defined by (1.9) is a ring called ring of

polynomials with coefficients in R .

If R is commutative, then also R [x ] is commutative.

Remark 1.70: Note that by its definition, if r ∈R [x ], then x is transcendental over R . How-

ever, the notation r (a ) is well defined also for any a ∈ R , as in (1.7). r (a ) is called

evaluation of polynomial r at a .

Definition 1.71: A nonconstant polynomial f (x ) ∈ R [x ] is irreducible over R if whenever

f (x ) = g (x )h (x ), with g (x ), h (x ) ∈R [x ], either g (x ) or h (x ) is constant.

Theorem 1.72: If F is a field, for any r (x ) ∈ F[x ] there exist n ∈ N unique irreducible

polynomials f1, . . . , fn ∈R [x ] and exponents ν1, . . . ,νn such that

r (x ) =
n
∏

i=1

f νi
i (x ).

This is the factorization of r , fi are the irreducible factors, and νi the corresponding

multiplicities.

Definition 1.73: The roots of a polynomials f ∈ R [x ], are the solutions of the equation

f (x ) = 0, i.e., the values a ∈F such that f (a ) = 0.

1.8 Ideals and quotient rings

Definition 1.74: Consider the set I ⊆ R , where R is a ring. We say that I is an ideal if it

satisfies the following conditions (see Definition 1.14 for the notation):
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• I R =R I = I and

• I − I = I .

Note that, by Theorem 1.20, the second condition means that I is an additive subgroup

of R .

Let R be a ring and I ⊆R an ideal. Now consider the relation on R

a ∼ b ⇔ a − b ∈ I . (1.10)

Theorem 1.75: Formula (1.10) defines an equivalence relation.

Proof: The three properties of equivalence relations are satisfied by the additive group struc-

ture of I . Indeed,

• a ∼ a : a −a = 0 ∈ I , because 0 is the identity of I ;

• a ∼ b ⇒ b ∼ a : if a − b ∈ I , then b −a =−(a − b ) ∈ I , since I contains every inverse;

• a ∼ b and b ∼ c ⇒ a ∼ c : if a − b ∈ I and b − c ∈ I , also a − c = (a − b ) + (b − c ) ∈ I ,

being I closed with respect to the sum.

The set R/∼ of equivalence classes defined by (1.10), will be denoted by R/I and the equiv-

alence classes by a = a + I , for any a ∈R . As we prove in the following theorem, this set has

a ‘natural’ ring structure.

Theorem 1.76: Let R be a ring and I ⊆R an ideal. Then (R/I ,+, ·) is a ring, called quotient

ring, where the operations are defined by

a + b = a + b and a · b = a b , ∀a , b ∈R .

In other words, the operations of R are simply extended to set (the equivalence classes)

in R/I as in Definition 1.14.
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Proof: The demonstration is straightforward once we prove that the operations are well

defined. Actually, the ring properties of R/I are just a consequence of the structure of R . For

instance, 0 is the additive identity and −a the additive inverse of a .

So, using the notation a = a + I and the properties of ideals given in Definition 1.74, observe

that, for every a , b ∈R ,

a + b = a + I + b + I = a + b + I = a + b ,

where I + I = I , since (I ,+) is a group, closed with respect to ‘+′. Moreover,

a · b = (a + I )(b + I ) = a b +a I + I b + I I = a b + I + I + I = a b + I = a b ,

where a I = I b = I I = I are special cases of the defining property I R =R I = I .

Example 1.77: We already introduced quotient rings: actually, the ring Zn of Example 1.31

is the quotient ring Z/nZ, where the ideal nZ is the additive group containing all mul-

tiples of n .

Definition 1.78: An ideal I of a ring R is principal if I = a R for some a ∈ I , i.e., every

element in I is a ‘multiple’ of a , which is called generator of I . The ideal generated by

a will also be denoted by (a ).

The ring R is a principal ideal domain, or PID, if it is an integral domain and every

ideal in R is principal.

Theorem 1.79: The ring Z and any ring of polynomials over a field F[x ] are PIDs.

By the previous theorem, also in the case of polynomial ideals, any ideal is equal to
�

g
�

=

{a (x )g (x ) : a (x ) ∈F[x ]} for some polynomial g ∈F[x ].

Remark 1.80: When no ambiguity exists, we may drop the bar that denotes the equivalence

classes in R/I , thus using some special representative. For instance, instead of Zn we

may use just the set of numbers {0, . . . , n −1} with operations modulo n , i.e., the special

representative is always the remainder of division by n .
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Similarly, in a the polynomial quotient ring F[x ]/
�

g
�

the equivalence class a (x ) = a (x )+
�

g
�

will be denoted by the remainder of the division of a by g . In other words, F[x ]/
�

g
�

will be represented by all the polynomials of degree less that deg g .

Example 1.81: Let R = R[x ]/
�

x 2−3
�

. Then, x will be represented by x , while we will

choose 3 as a representative of x 2 and 9 as a representative of x 4, since x 2 = 1·(x 2−3)+3

and x 4 = (x 2+3)(x 2−3) +9.

In general, a quotient ring of a PID needs not to be a PID. However, some interesting proper-

ties still hold, as we state in the theorem that follow.

Theorem 1.82: Let g ∈F[x ] and be I an ideal of the quotient ring F[x ]/
�

g
�

. Then,

• I is a principal ideal;

• If I 6=F[x ]/
�

g
�

, then (the representative of) its generator divides g .

See [19, Chapter 4.7] for the proof.
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Chapter 2

Finite Fields

Such we refereed above, finite fields will have a special importance in this work. In this

chapter we present its description and construction, as well as some important theorems and

definitions. A Finite (or Galois) Field is a field with q elements and will be denoted by Fq .

Frequently, in the literature, it is denoted by Fq .

The order of Fq is q , which is the order of the correspondent additive group. Also Fq \{0}
has a multiplicative structure whose order is q −1.

2.1 Finite fields with prime order

In this section we will show that the ring Zn , introduced in Example 1.31, is a field if and

only if n is a prime number. For the proof we will need some results about basic properties

of integer numbers.

Definition 2.1: Given two numbers a , b ∈ Z, we define the greatest common divisor of a

and b by

gcd(a , b ) =max{c ∈N : c |a and c |b }.

If c = 1, then a , b are coprime.
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A famous method to calculate the gcd is the Euclidian algorithm. It works as follows:
Data: a , b

b0 = a ;

b1 = b ;

n = 0;

repeat

n← n +1;

divide bn−1 by bn , with quotient qn and remainder bn+1: bn−1 = bn qn + bn+1

until bn+1 = 0;

Result: gcd(a , b ) = bn
Algorithm 1: Euclidean Algorithm

The same algorithm can be used to prove the following important result.

Theorem 2.2 (Bézout equation): Let a , b ∈ Z and let c = gcd(a , b ). Then there exist

x , y ∈ Z such that

a x + b y = c . (2.1)

We will prove the theorem constructing x and y . If we let b0 = a and b1 = b , the equations of

Algorithm 2.1 are the following (on the right we write a corresponding matricial equation):

b0 = b1q1+ b2 ↔

�

b0

b1

�

=

�

q1 1

1 0

��

b1

b2

�

b1 = b2q2+ b3 ↔

�

b1

b2

�

=

�

q2 1

1 0

��

b2

b3

�

...

bn−2 = bn−1qn−1+ bn ↔

�

bn−2

bn−1

�

=

�

qn−1 1

1 0

��

bn−1

bn

�

bn−1 = bn qn ↔

�

bn−1

bn

�

=

�

qn 1

1 0

��

bn

0

�
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Where bn = c . Let Qi =

�

qi 1

1 0

�

and observe that

�

b0

b1

�

=Q1 · · ·Qn

�

bn

0

�

. (2.2)

If we define Pi =

�

0 1

1 −qi

�

, it is easy to check that PiQi = I , for all i = 1, . . . , n . Thus,

equation (2.2) can be rewritten as follows:

Pn · · ·P1

�

b0

b1

�

=

�

bn

0

�

So, if Pn · · ·P1 =

�

x y

s t

�

then

�

x y

s t

��

b0

b1

�

=

�

bn

0

�

⇔

�

x y

s t

��

a

b

�

=

�

c

0

�

⇔

(

a x + b y = c

a s + b t = 0

Theorem 2.3: The ring (Zp ,+, ·) is a field if and only if p is a prime.

Proof: ‘⇒’: If (Zp ,+, ·) is a field then it is also an integral domain. By Theorem 1.40 its

characteristic is zero or a prime number. Since it is finite, then p is prime.

‘⇐’: Define Z∗p = Zp \ {0} and be p a prime number. We have already seen that (Zp ,+) is a

group ∀p ∈N, so we just need to prove that (Z∗p , ·) is an abelian group. Since multiplication is

commutative, it is enough to prove that every element of a ∈Z∗p has a multiplicative inverse,

i.e., equation a x = 1 has a solution in Z∗p . Being a 6= 0, a is not a multiple of p , i.e., a 6= k p ,

∀k ∈ Z. Thus, once p is prime, gcd(a , p ) = 1. By Theorem 2.2, we know that there exist

x , y ∈Z such that

a x +p y = 1⇒ a x +p y = a x +p y = a x +0= 1

and therefore, a x = 1.
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Consider F5 = {0, 1, 2, 3, 4} The Cayley table for the operations + and · for elements in F5 are

the following:

+ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

· 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

To conclude this section we give a characterization of zero divisors in Zn , when it is not a

field.

Corollary 2.4: When Zn is not an integer domain, the zero divisors are precisely those ele-

ments that are not coprime with n .

Proof: Let us consider a nonzero element a of Zn which is not coprime with n and be d

the greatest common divisor of a and n . Then, a (nd ) is equal to ( ad )n , which is a multiple of

n and consequently 0 in Zn . Thus we have found a nonzero element b = n
d ∈ Zn such that

a b = 0. Consider now a nonzero element a ∈ Zn which is coprime with n . The existence

of x ∈ Zn such that a x = 1 can be proved as in Theorem 2.3. Now suppose that there exist

b ∈Zp such that a b = 0. Then

b = b ·1= b a x = a b x = 0

Since b , x 6= 0, a must be zero. Therefore a is not an zero divisor.

Example 2.5: Consider a = 6 ∈Z16. So d = gcd(6, 16) = 2. We have that

6 ·
16

2
=

6

2
·16 = 48 = 0 in Z16.

So a = 6 and b = 16
2 = 8 are zero divisors.

We already saw that Zp is a field is p is prime, now we will see which is, in general, the finite

field order.
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Theorem 2.6: If F is a finite field, then it has order p n for some prime p and n ∈N.

Proof: If F is finite, then charF = p with p prime. Also we have that f : Zp → K =
n ×1, n = 0, . . . , p −1 ⊆ F, n 7→ n × 1 is an isomorphism of fields. Actually, it is an isomor-

phism of additive groups and then it is easy to check that

f (nm ) = f (n ) · f (m ).

This means that F is an extension field of Fp , and therefore is a vector space. And if F is

finite, then it has one finite basis, i.e., dim = n . Hence, an n -dimensional vector space over

Fq with has p n elements.

2.2 Extension Fields

Definition 2.7: Given a field F, we denote by F(x ) the field of fractions of the polynomial

ring in one indeterminate F[x ] (which is an integral domain).

Theorem 2.8: The field F(x ) is the smallest field containing F and x .

Definition 2.9: We say that F is an extension field of E if E is a subfield of F and this relation

will be denoted by F :E. We say that F is a simple extension of E if F=E(α) for some

α ∈F, called primitive element (or generator) of F.

Remark 2.10: We will use the word primitive in a wider sense: if F = E(α) we will call

primitive every β ∈F having the same multiplicative order of α ∈F\{0}.

From Definition 2.9 it is easy to see that F is an E-vector space, and we will denote by [F :E]
its dimension.

Definition 2.11 (Splitting Field): An extension field F of a field E is a splitting field of a

nonconstant polynomial f (x ) ∈ E[x ] if f can be factored into linear factors over F, but

not in any proper subfield of F.
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Theorem 2.12: Let E be a finite field and F one extension field of E. Then E and F have the

same characteristic.

Theorem 2.13: Let F=E(α) where α is algebraic over F. Then

• F=E[α];

• As a E-vector space, dimF= n <∞, being 1,α, . . . ,αn−1 a basis of F over E;

• The minimal degree of r ∈E[x ] such that r (α) = 0 is n .

Remark 2.14: In the conditions of the previous theorem, the extension field can be repre-

sented by the set of polynomials in E[x ] with degree less than n or, equivalently, by En .

In particular, the isomorphisms can be chosen so that:

a ∈F ↔ b (x ) = b0+ b1x + · · ·+ bn−1x n−1 ∈E[x ] ↔ c =













b0

b1
...

bn−1













.

where a = b (α).

Observe that only the additive structure of F is taken into account considering these vec-

tor space isomorphisms: the multiplicative structure of the field will be investigated in the

following sections.

Example 2.15: Consider a field Q and a polynomial f (x ) = x 2−3 ∈Q[x ], and let ξ be a root

of f . Clearly ξ it is not an element of Q but f is one polynomial with coefficients in Q,

therefore ξ is an algebraic element over Q. Now consider the set Q[ξ]. We will show

that any a ∈ Q[ξ] can be written as a linear polynomial in ξ and therefore Q[ξ] is an

extension field of Q. Indeed, suppose that a =
∑M

i=0 aiξ
i with M odd (otherwise add a

zero coefficient). Then

a =
M
∑

i=0

aiξ
i =

M−1
2
∑

i=0

a2iξ
2i +

M−1
2
∑

i=0

a2i+1ξ
2i+1 =

M−1
2
∑

i=0

a2i 3i +

M−1
2
∑

i=0

a2i+13iξ=α0+α1ξ,
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where α0,α1 ∈ Q. Now we can show that Q[ξ] is a field, i.e, any nonzero element

a ∈Q[ξ] has an inverse. In other words, we will prove that the equation a b = 1 has a

solution b ∈Q[ξ]. Considering a =α0+α1ξ ∈Q [ξ] and b =β0+β1ξ ∈Q [ξ],

a b =α0β0+ (α0β1+α1β0)ξ+ (α1β1)ξ2 =α0β0+3α1β1+ (α0β1+α1β0)ξ= 1⇔
�

α1 α0

α0 3α1

��

β0

β1

�

=

�

0

1

�

.

It is well known that this linear system has a (unique) solution if and only if the deter-

minant of the coefficients matrix is not zero, i.e,

3α2
1−α

2
0 6= 0 ⇔ 3α2

1 6=α
2
0⇔α0 6=±

p
3α1,

which is true ∀α0,α1 ∈Q.

Note that Q[ξ] is the set of polynomials with degree less than 2 which is equivalent to

say that the Q-vector space Q[ξ] has dimension 2 and {1,ξ} is a basis for Q[ξ]. When

we write a = α0 +α1ξ↔ [α0 α1] we are using the vectorial structure of the previous

remark.

2.3 Multiplicative structure of finite fields

What that we demonstrated in Section 2.1 can be repeated replacing Z by F[x ], because the

properties we used are just based on the concepts of factors and division, which are almost

equal in both rings.

Theorem 2.16: The ring Fp [x ]/
�

g
�

is a field if and only if g ∈Fp [x ] is irreducible.

Proof: Suppose that Fp [x ]/
�

g
�

is not irreducible. Then there exist factors h and k , such that

g = hk , corresponding to h ·k = 0, analogue to the proof of Theorem 1.40.

Corollary 2.17: Consider g ∈Fp [x ] irreducible with deg g = n . Then Fp [x ]/
�

g
�∼=Fp n .

Theorem 2.18: For each β ∈ Fq there exists only one monic polynomial p (x ) of minimal

degree in Fq [x ] such that:
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• p (β ) = 0.

• The degree of p (x )¶m .

• If there is a polynomial f (x ) ∈Fq [x ] such that f (β ) = 0 then p (x )| f (x ).

• p (x ) is irreducible in Fq [x ].

Remark 2.19: In Corollary 2.17 g is the generator polynomial of Fq . If g1 and g2 are irre-

ducibles with deg n , then

Fq [x ]/
�

g1

�∼=Fq [x ]/
�

g2

�∼=Fp n .

However the multiplicative structure is different, as we will show in example 2.23.

Theorem 2.20: Every elements of Fq satisfy the equation

x q − x = 0. (2.3)

Furthermore, they constitute the entire set of roots of this equation.

Proof: We can rewrite the equation 2.3 as follows

x q − x = 0 ⇐⇒ x (x q−1−1) = 0

Hence 0 is clearly a root. The nonzero elements of the field are all generated as powers of α,

being α an primitive element of the Fq . So ∀β ∈Fq \{0},∃i ∈Z :β =αi and

βq−1 = (αi )q−1 = (αq−1)i = 1i = 1.

Since there are q elements in Fq , and q roots for the equation, the elements of Fq are all the

roots.

Theorem 2.21: An element β ∈Fp m lies in Fp if and only if βp =β .
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Proof: By theorem 2.20, ∀β ∈ Fp\{0}, βp = β . Conversely, assume that β = βp .Then β is a

root of x p − x = 0. All p elements of Fp satisfy this polynomial and it only has p roots. As

β ∈Fp m , it lies that β satisfies the equation βp m
=β ,∀m ≥ 0.

Example 2.22: The field F64 is an extensive field of F4. Let α be a primitive in F64. We look

for an element of F64 which is also element of F4. Consider β =α21. So

β4 =α21·4 =α63α21 =β

Then, by theorem 2.21, β ∈F4 and therefore F4 = {0, 1,β ,β2} = {0, 1,α21,α42}.

Example 2.23: Consider the polynomials g1(x ) = x 3+ x +1 and g2(x ) = x 3+ x 2+1 over F8.

Let say that α is a primitive element of F23 over F2, such that α is a root of g1(x ), i.e.,

α3 =α+1. (2.4)

Now take successive powers of a beyond α3:

α3 = 1+α2,

α4 =α · (α3) =α+α2,

α5 =α · (α4) =α2+α3 = 1+α+α2,

α6 =α2 · (α4) =α3+α4 = 1+α+α+α2 = 1+α2,

α7 =α6 · (α) =α+α3 = 1

...

(Note that, by Theorem 2.12, charF23 = charF2 = 2. Thus αi +αi = 0.)

With linear combinations of powers of α with maximum degree 2, we represented powers

of α up to α7 all distinct, and α7 = 1 because this is a cyclic group. This is called power

representation of the elements of a group.

Using Theorem 2.13, we can define an element β ∈F8 such that β is a linear combination of

powers of α, as follows:

β = a + bα+ cα2 ∈F2[α].
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According Remark 2.14, we can write β in a vector representation form: β = [a b c ]T ∈F3
2.

In table ?? we depicted the relation between vector representation, polynomial representa-

tion and power representation of the elements of F8 generated by the polynomial g1(x ), and

in table2.1 we represent the same relation but when F8 is generated by the polynomial g2(x ).

Analyzing those tables, it is possible to verify the isomorphism presented in Remark 2.17.

Power Polynomial Vector Numeric
Representation Representation Representation Representation

0 0 000 0
1 1 001 1
α α 010 2
α2 α2 100 4
α3 α2 1 101 5
α4 α2+α+1 111 7
α5 +α+1 011 3
α6 α2+α 110 6

Table 2.1: F23 generated by p (x ) = x 3+ x 2+1

Example 2.24: Let exemplify the algorithm of multiplication between two elements of F23

when they are in the power representation. (The direct correspondence between the

different representations of the elements of the field will be denoted by←→, and are in

table ??).

Let α be one primitive element of F23 and g1 = x 3+ x +1 the respective primitive poly-

nomial. Now consider α6 and α4 elements of F23 . Using the polynomial representation

we have that:

α6 ·α4 = (1+α2) · (α+α2) =α+α2+α3+α4 =α+α2+1+α+α+α2 = 1+α=α3.

Note that:

α6 ·α4 =α10 mod 7 =α3←→ [1 1 0]T .

Generalizing, the multiplication of elements when they are in its power representation
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are made modulo q −1, i.e.,

αm ·αn =α(m+n ) mod (q−1). (2.5)

Power Polynomial Vector Numeric
Representation Representation Representation Representation

0 0 0000 0
1 1 0001 1
α α 0010 2
α2 α2 0100 4
α3 α3 1000 8
α4 α+1 0011 3
α5 α2+α 0110 6
α6 α3+α2 1100 12
α7 α3+ α+1 1011 11
α8 α2+ 1 0101 5
α9 α3+ α 1010 10
α10 α2+α+1 0111 7
α11 α3+α2+α 1110 14
α12 α3+α2+α+1 1111 15
α13 α3+α2+ 1 1101 13
α14 α3+ 1 1001 9

Table 2.2: F24 generated by p (x ) = x 4+ x +1

2.4 Minimal and primitive polynomials

Definition 2.25: Let β ∈ Fq m . The minimal polynomial of β with respect to Fq is the

smallest-degree, nonzero, monic polynomial p (x ) ∈Fq [x ] such that p (β ) = 0.

Definition 2.26: Let β ∈ Fq m . The conjugates of β with respect to the subfield Fq are

β ,βq ,βq 2
,βq 3

, · · · and form a set called the conjugacy class of β with respect to Fq .
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Power Polynomial Vector Numeric
Representation Representation Representation Representation

0 0 00 0
1 1 01 1
α α 10 2
α2 α+1 11 3

Table 2.3: F22 generated by p (x ) = x 2+ x +1

Example 2.27: Let α ∈ F24 be a primitive element. The conjugates of α with respect to F2

are:

α,α2,α22
=α4,α23

=α8,α24
=α

So the conjugacy class of α is

(α,α2,α4,α8).

Let β =α3 be an element which is not in conjugacy class of α. The conjugacy class of of

β is:

β =α3, (α3)2 =α6, (α3)2
2
=α12, (α3)2

3
=α9, (α3)2

4
=α3

So the conjugacy class of β is

(α3,α6,α9,α12).

Taking now γ=α5, (another unused element), its conjugacy class is:

γ=α5, (α5)2 =α10, (α5)2
2
=α5

So the conjugacy class of γ is (α5,α10).

Continuing taking the next unused element, let δ=α7; Its conjugacy classe is:

δ=α7, (α7)2 =α14, (α7)2
2
=α13, (α7)2

3
=α11, (α7)2

4
=α7

The conjugacy class of δ is consequently (α7,α11,α13,α14).

The other elements of F24 are 1 and 0, which always forms its own conjugacy classes.

The conjugacy classes are thus partitions of the field.
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Theorem 2.28: Let β ∈ Fq m with ord(β ) = n , and let d be the multiplicative order of q

modulo n,i.e., the smallest positive integer such that n |q d − 1. Then βq d
= β . The

elements β ,βq ,βq 2
, · · · ,βq d−1

are all distinct.

Theorem 2.29: Let β ∈Fq m have order n and let d be the multiplicative order of q mod n .

Then p (x ) =
∏d−1

i=0 (x−β
q i
) ∈Fq [x ]. Furthermore, p (x ) is irreducible, which means that

p (x ) is the minimal polynomial for β .

Note that for each β ∈ Fq m of order n , and being d be the multiplicative order of q modulo

n , the set of βq i
, i = 1, . . . , n − 1 is one conjugacy class of Fq m . In this sense, the conjugacy

classes over F23 with respect to F2 for example, have the following minimal polynomials:

• 0→M (x ) = x .

• 1→M (x ) = x +1.

• α,α2,α4→M (x ) = (x −α)(x −α2)(x −α4) = x 3+ x +1

• α3,α6,α5→M (x ) = (x −α3)(x −α5)(x −α6) = x 3+ x 2+1.

Definition 2.30: (Primitive Polynomial) An irreducible polynomial p (x ) ∈ Fp [x ] of degree

m is said to be primitive if the smallest positive integer n for which p (x ) divides x n −1

is n = p m −1.

Theorem 2.31: The roots of an m -th degree primitive polynomial p (x ) ∈ Fp [x ] are prim-

itive elements in Fp m . Every primitive polynomial is the minimal polynomial of some

primitive element.

Example 2.32: Consider the polynomial f (x ) = x 4+ x +1. By exhaustive search we can see

that f (x )6 | x −1, · · · , f (x )6 | x 13−1, and f (x )6 | x 14−1 but f (x )|x 15−1. Actually

x 15−1= (x 4+ x +1) · (x 11+ x 8+ x 7+ x 5+2x 4+ x 3+ x 2+3x +3).

15= 24−1 so f (x ) is a primitive polynomial of F24 .
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2.5 Galois Field Fourier Transform

Is possible to define a Fourier transform over a sequence of Galois field numbers.

Definition 2.33: Let v = (v0, v1, · · · , vn−1) be a vector over F of length n such that n |q m − 1

for some m ∈N. Let α ∈Fq m have order n . The Galois field fourier transform (GFFT)

of v is the vector V = (V0, V1, · · · , Vn−1) with components

Vj =
n−1
∑

i=0

αi j vi j = 0, 1, · · · , n −1 (2.6)

We write V = F[v ] and v ↔ V to denote the Fourier transform relationship between v

and V .

Definition 2.34: In a field F with characteristic p , we call Inverse Galois Field Fourier

Transform of the vector V = (V0, V1, · · · , Vn−1) to a vector v defined as follows

vi = n−1
n−1
∑

j=0

α−i j Vj (2.7)

where n−1 is the multiplicative inverse of n modulo p .

Definition 2.35: The spectrum of the polynomial v (x ) = v0 + v1x + · · · ,+vn−1x n−1 is the

GFFT of v = (v0, v1, · · · , vn−1).
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Chapter 3

The Behavioral Approach to Systems
Theory

This chapter contains the key definitions of this thesis. We start by defining a dynamical

system and a mathematical model, and then we explain the behavioral approach as it was

described by J. C. Willems in[30].

3.1 Dynamical System

We start by introducing the behavior approach in a dynamical system.

Definition 3.1: A dynamical system Σ is defined as a triple

Σ= (T,W,B), (3.1)

where B is the behavior and represent a set of functions, called trajectories, having

domain T and codomainW, i.e., B⊆ {w :T→W}=WT.

In this work we will deal with discrete-time systems where T=Z andW=Fq .

Definition 3.2: A dynamical system Σ = (T,W,B) is said to be linear ifW is a vector space

over F and B is a linear subspace ofWT, i.e.,

∀w1, w2 ∈B and ∀α,β ∈F,αw1+βw2 ∈B
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3.2 Polynomial Matrices and Operators

We use the same notation as in Section 1.6 to represent polynomial matrices,

R (s ) = [ri k (s )] ∈Fg×q [s ], (3.2)

i.e., matrices whose entries are polynomials. Notice that this set is not a vector space over

F[s ], since this is not a field. However,

• the operations defined in Section 1.6 (sum, product and transposition) still hold for

polynomial matrices;

• linear independence of polynomial vectors, over F[s ] (and therefore the rank of poly-

nomial matrices) can not be defined as in Section 1.6, since that definition is based on

the invertibility of the coefficients.

To overcome the latter difficulty observe that we may always consider polynomials as a sub-

ring of their field of fraction, F[s ] ⊂ F(s ). So, the polynomial matrix (3.2) belongs to the

F(s )-vector space Fg×q (s ).

Definition 3.3: A set of polynomial vectors is said to be linearly independent over F[s ] if it

is linearly independent over F(s ). The rank of a polynomial matrix is the number of its

linearly independent (polynomial) rows or columns.

Theorem 3.4: The polynomial vectors v1(s ), . . . , vn (s ) are linearly independent if and only if

the equality

a1(s )v1(s ) + · · ·+an (s )vn (s ) = 0, (3.3)

where ai (s ) ∈F[s ], is satisfied only by a1(s ) = · · ·= an (s ) = 0.

Proof: By Theorem 1.43, the vectors are linearly independent if and only if equation (3.3),

with ai (s ) ∈ F(s ), is satisfied only by a1(s ) = · · · = an (s ) = 0. So, we have to show that this

condition does not change if ai (s ), i = 1, . . . , n are polynomials. In particular, we prove the

theorem by showing that if condition (3.3) can only be satisfied by null polynomials then it

can be satisfied only by null fractions.
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Actually, suppose that the condition holds for fractions a1(s ), . . . , an (s ) being at least one of

them not zero. It multiply all the fractions by the least common multiple of their denomina-

tors, d (s ), then d (s )ai (s ) ∈F[s ]. Therefore,

d (s )a1(s )v1(s ) + · · ·+d (s )an (s )vn (s ) = d (s ) ·0= 0,

is a nontrivial solution of equation (3.3) with polynomial coefficient.

Definition 3.5: Let R (s ) ∈ Fg×q (s ) be a polynomial matrix and denote the rows of R (s )

by ri (s ), i = 1, . . . , g . The row degrees d1, . . . , dg are defined as di = max deg ri j (s ),

j = 1, . . . , q .

Definition 3.6: Consider a polynomial R (s ) ∈Fg×q [s ] such that R (s ) = N (s )
D (s ) . If deg D (s )> deg N (s )

then R (S ) is strictly proper. If N (s ) and D (S ) have the same degree, R (s ) is proper.

Definition 3.7: Let n1, . . . , nq be nonnegative integers and consider the polynomial matrices

R (s ), N (λ) ∈Fq×q (s ) such that

N (λ) = diag(λn1 , . . . ,λn q
).

The row degrees of the matrix R (s )N (λ) are the weighted row degrees of R (s ).

Definition 3.8: The square polynomial matrix R (s ) ∈Fg×g (s ) unimodular if it admits a poly-

nomial inverse, i.e., a polynomial matrix Q (s ) ∈Fg×g (s ) such that R (s )Q (s ) =Q (s )R (s ) =

I .

3.3 Autoregressive Models (AR)

Consider the following matrix difference equation in the trajectory w :

Rl w (t + l ) +Rl−1w (t + l −1) + · · ·+R0w (t ) = 0, (3.4)

where R0, · · · , Rl ∈Rg×q . This equation is called auto regressive (AR) model. We can write

Equation (3.4) more compactly using the following operator.
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Definition 3.9: Consider a function w : Z→ Fn . We define the shift operator σ, acting on

elements w , defined as follows

(σw )(k ) =w (k +1). (3.5)

Indeed, since σi w (t ) =w (t + i ), equation (3.4) equal to write:

Reσ
e w (t ) + re−1σ

e−1w (t ) + · · ·+R1σw (t ) +R0w (t ) = 0

(Reσ
e + re−1σ

e−1+ · · ·+R1σ+R0)w (t ) = 0

R (σ)w (t ) = 0 (3.6)

where we are using a polynomial matrix operator obtained, formally, from the polynomial

matrix

R (s ) =Reσ
e + re−1σ

e−1+ · · ·+R1σ+R0

This equation defines a dynamic system in sense of definition 3.1 as:

Σ(R ) = (T,W,B),

where the behavior B is defined as

B= {w :T→W, such that R (σ)w (t ) = 0 for all t ∈T}. (3.7)

The polynomial matrix R (s ) is a kernel representation of the behavior B = ker R . Note

that different representations of a matrix R (s ) may define the same behavior. The following

definition qualify the set of matrices which define the same behavior.

Definition 3.10: Two matrices R1(s ) and R2(s ) are said to be equivalent if they define the

same behavior.

Theorem 3.11: Given two matrices R1(s ) and R2(s ), there exist U (s ), V (s ) such that R2(s ) =

U (s )R1(s ) and R1(s ) =V (s )R2(s ).

Corollary 3.12: Let R (s ) be a polynomial matrix. Then ker R =kerU R for any unimodular

matrix U (s ).
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Definition 3.13: For all w ∈W, ∀A ⊆T, w|A : A→W, such that w|A(t ) =w (t ),∀t ∈T.

Definition 3.14: A dynamical system Σ= (T,W,B), with T=Z, is said to be time-invariant

if σB=B.

Definition 3.15: A dynamical system Σ = (T,W,B) is said to be complete if {w|[t1,t2] ∈
B|[t1,t2] :∀t1, t2 ∈T, t1 ≤ t2}.

Theorem 3.16: Let T = Z and W = Rq and consider the system Σ = (T,W,B). Then there

exists a polynomial matrix R (s ) such that B = ker R if and only if Σ is linear, time

invariant, and complete.

Actually, the behavior B defined in equation 3.7 is linear and time invariant. Consider w1

and w2 ∈B. We have that it is linear, because

R (σ)[αw1+βw2] =R (σ)αw1+R (σ)βw2 =αR (σ)w1+βR (σ)w2 = 0 (3.8)

And time-invariant, since

R (σ)(σw1) =σR (σ)w1 = 0, (3.9)

B is also time invariant.

3.4 Mathematical Models

The propose of this section is to expose an approach to mathematic models. The framework

depicted leads in the following direction: find algorithms for obtain models from observed

data. We will start establishing a mathematical language. Suppose that we have a particular

phenomenon that we want to model. We define a set S, called universum, which contains

all elements produced in the phenomenon. The elements of S are called attributes of the

phenomenon.

Naturally, when we model a phenomenon, some attributes are constant. Thus, we define a

subset M ⊆ S , which excludes the attributes that are not considered, and this is the model.



46 Chapter 3. The Behavioral Approach to Systems Theory

This means that the model will only produce outcomes in M . To represent the family of

models, we define the subset M⊆ 2S . The measurements will be in a subset Z ⊆ S , that can

be thought as a experimental evidence summarizing. Also here we define Z⊆ 2S which is the

class of measurement sets.

We say that a model M is unfalsified by the measurements Z if Z ⊆M . However, given a

set Z , there are a wide number of models M compatibles with. The question arises in which

one to choose. We say that a model M1 is more powerful than M2 if M1 ⊆M2.

Definition 3.17: We say that M ∗
Z is the most powerful unfalsified model(MPUM) in the

model class M based on the measurements Z if Z ⊆M ∗
Z ∈M and Z ⊆M ∈M, M ∗

Z ⊆M .

Theorem 3.18: Take S =V and M= { all linear subspaces of V }. Then M ∗
Z =span{z |z ∈ Z }.

3.5 The MPUM for Dynamical Systems

A dynamic system is a particular case of a mathematical system in which the phenomenon

produces outcomes that are functions of time and thus, the universum is a function space.

In the notation of Section 3.4, S =WT is the vector space of all possible trajectories (having

infinite dimension), M is the set of all subspaces of S with finite dimension, and Z is a set of

trajectories.

Given a set of trajectories Z , to find the MPUM is equal to find a polynomial matrix R ∗(s ),

which is the kernel of the minimal behavior B such that Z ⊂ B, i.e., B is the vector space

generated by the trajectories in Z .

Theorem 3.19: Let w :Z→Fq . Then there exists a most powerful AR model given by aware

representation R (s ):

R (σ)wi = 0,∀i .
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Given a set of trajectories, the algorithm to find the MPUM is the following

Data: {w1, . . . , wn} ⊆ (Fq )Z

R0(s ) = I ;

for i=1 to n do

∆i =Ri−1(σ)wi (define the i − t h error trajectory);

Vi (σ)∆i = 0 (compute a kernel representation of the MPUM for the trajectory wi );

Ri (s ) =Vi (s )Ri−1(s ) (compute the MPUM for the set {w1, . . . , wi };

end

Result: Kernel representation of the MPUM: Rn (s )
Algorithm 2: MPUM General Algorithm

At the beginning we assume that our behavior is a null space, say B0 = {0} . Equivalently,

R0(s ) = I and therefore dim ker R0 = 0 and rk R0 = q .

In the first step, we include the first observed trajectory w1 and B1 = span{w1}. Thus

dimB1 = 1 and we find the matrix R1(s ) so that R1(s ) is the kernel representation of B1

and rk R1(s ) is minimal.

Then we include the second trajectory w2 and B2 = span{w1, w2}. We check if w2 is in the

null space R1(s ). If yes, R2(s ) is equal to R1(s ) and follow including the next trajectory; If

not, we calculate R2(S ) so that R2(S ) is the kernel representation of B2 and dim ker R2 =

dim ker R1+1 which, according Theorem 1.58, implies that and rk R2 = rk R1−1.

And we proceed in such a way until we have included all observed trajectories. At the end we

obtain the matrix Rn (s ) with minimum rank, such that Rn (S ) it is the kernel representation

of Bn , the vector space generated for all trajectories w1, . . . , wn , i.e., the MPUM.

We will consider only trajectories, (measurements), of the form wi (k ) = biλ
k
i , bi ∈ Fq , be-

cause are satisfied the conditions of the following theorem:

Theorem 3.20: Let R (s ) ∈Rq×q [s ], and det R (s ) be a polynomial of degree n , and let

B= {w :Z→Fq |R (σ)w = 0}.

If the roots of detR (s ) are mutually distinct and belong to F, say detR (s ) =
∏n

i=1(ξ−λi ),

with λi ∈F, then all trajectories in B are of the form

w (k ) =
n
∑

i=1

biλ
k
i ,
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with bi ∈Fq such that R (λi )bi = 0.

This algorithm will be applied later in Chapter 5.
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Chapter 4

Codes

Coding Theory study methods for an efficient and accurate transfer of information from one

device to another. The physical medium through which the information is transmitted is

called a channel. It happens that undesirable disturbances, such as noise, may affect the

information in the transmitted process along the channel, and therefore errors in the received

data may occur. Create robust codes that avoid such disturbances is the aim of coding theory.

In this chapter we analyze the linear codes, particularly the class of cyclic linear codes, and

we show the construction of the BCH and the RS codes.

4.1 Linear Block Codes

Linear codes are the most well-studied and practically used codes. They have strong struc-

tural property, which provides guidance in the search of new good codes, and have a practical

encoder and decoder process. Although, if we want to obtain the largest possible number of

codewords, we must sometimes use nonlinear codes. In this work we are only concerned in

linear codes.

Definition 4.1: A code C is a non-empty subset of Fn , where F is a field called alphabet.

If F is a finite field and C is a vector space over F, then C is a linear block code. The

length of the code is n and the dimension of the code is dim C . Any element of C

is called codeword or block, and the number of codewords is the size of C . An (n , k )

linear code is any linear code of length n and dimension k .
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Remark 4.2: Note that, by definition of vector space, a linear code C is translation-invariant,

i.e.

c ∈C ⇒ c +C =C

Definition 4.3: We denote by d (c1, c2) the Hamming distance between two codewords c1

and c2, which is equal to the number of nonzero entries of c1−c2. For all c1, c2 ∈C ⊆Fn ,

0≤ d (c1, c2)≤ n .

Remark 4.4: Actually, the hamming distance satisfies the properties of distance:

• 0≤ d (c1, c2)≤ n ,

• d (c1, c2) = 0⇐⇒ c1 = c2,

• d (c1, c2) = d (c2, c1),

• (Triangular Inequality) d (c1, c2)≤ d (c1, c2) +d (c2, c3),

for all c1, c2 ∈Fn .

Definition 4.5: The minimum distance of a code C is:

dmin(C ) =min{d (a , b ) : a , b ∈C , a 6= b }. (4.1)

Remark 4.6: Observe that the minimum distance of a codeword must be at least 1.

Definition 4.7: The weight of a codeword c ∈ C is equal to the number of nonzero entries

in the vector. The minimum weight of a code C is the smallest weight of any non-zero

code word of C : wmin(C ) =min{w (c ) : c ∈C }.

Theorem 4.8: For any code C , the minimum distance and minimum weight coincide, i.e.,

dmin(C ) =wmin(C ). (4.2)
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Proof: For all c ∈C , w (c ) = d (c , 0)⇒∃c ∈C : wmin(C ) =w (c ) = d (c , 0)≥ dmin(C ).

Conversely, there exist c1, c2 ∈ C such that dmin(C ) = d (c1, c2) = d (c1 − c2, 0) = w (c1 − c2) ≥
wmin(C ). Thus dmin(C ) =wmin(C ).

Note that we used linearity when we assumed that c1− c2 is a codeword.

Suppose that a code word is transmitted and a single error is made by the channel. Then the

Hamming distance from the received word to the transmitted codeword is equal to 1. Now

suppose that t errors occur during transmission. The errors can be detected if and only if

dmin(C )≥ t +1. Consider the following picture which satisfies the previous condition

• •
•

tc c̃
r

where c and c̃ are respectively the transmitted word and an other word of C , r is the

received word, and every words r̃ inside the circle satisfy the condition d (r̃ , c̄ )≤ t , where c̄

correspond to the codeword of the center of the circle. For every r with errors, d (r, c̃ ) 6= 0

and d (r, c ) 6= 0 and thus r is not a code word; this is the condition for error detection.

When we detect that r has errors, we correct the errors by associating r to the codeword of

the middle of the center in which it is inside. However, regarding the previous picture, we

cannot understand if r correspond to c or c̃ . Therefore, we can correct t errors if

dmin(C )≥ 2t +1. (4.3)

Proof: Consider the following picture:

• •t 1 t
•

c c̃
r
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Let say that d (r, c̃ ) = d2 and d (r, c ) = d1, (d1 ≤ t ). By the triangle inequality we know that:

2t +1≤ d (c , c̃ )≤ d (c , r ) +d (r, c̃ )≤ t +d2.

Thus,

t +d2 ≥ 2t +1⇔ d2 ≥ t +1≥ d1,

and therefore we will associate r to c .

Theorem 4.9: The minimum distance for an (n , k ) linear code is bounded by

dmin ≤ n −k +1.

4.1.1 Matrix description of Linear Block Codes

Linear codes can be studied using linear algebra theory and tools.

Consider a linear code C ∈ Fn generated by vectors g1, . . . , gm .Then, by Theorem 1.62, if g i

are columns of matrix G ,

C = imgG (4.4)

i.e., for any c ∈C , there exist a ∈Fm such that c =G a .

Remark 4.10: If C is an (n , k ) code, then there exist G ∈ Fn×k satisfying (4.4). Indeed, in

this case, the columns of G are a basis of C .

Definition 4.11: Consider a code C ⊆ Fn
q of dimension k . By Corolary1.54, there exists an

orthogonal complement C ⊥ of dimension n −k . By definition C ⊥ is also a code, and is

called dual code of C .

Theorem 4.12: Denote by H a matrix whose columns generate C ⊥. Then

H T c = 0
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Theorem 4.12 can be used to check whether a word is or not a codeword of C . Therefore H

is a check matrix of the code C .

Theorem 4.13 ([19, Theorem.3.3]): Let H be a parity check matrix of the linear block code

C . Then dmin(C ) is equal to the smallest positive number of rows of H which are linearly

dependent.

4.1.2 Cyclic Codes

Cyclic codes are a subclass of linear codes. We have seen that a linear code over Fq can be

described in terms of a check matrix H .

Definition 4.14: A linear code C over Fq is called cyclic code if it is invariant under a cyclic

shift:

(c0, c1, . . . , cn−1) ∈C ⇒ (cn−1, c0, . . . , cn−2) ∈C (4.5)

Lemma 4.15: Let c (x )↔ (c0, . . . , cn−1). Then, in F(x )/ (x n −1), x c (x )↔ (cn−1, c0, . . . , cn−2).

Proof: We will use here the ‘bar’ notation for elements in F(x )/ (x n −1). So,

x c (x ) = c0x + c1x 2+ · · ·+ cn−1x n = c0x + c1x 2+ · · ·+ cn−2x n−1+ cn−1(x n −1) + cn−1

= cn−1+ c0x + c1x 2+ · · ·+ cn−2x n−1,

being cn−1(x n −1) = 0.

Theorem 4.16: C is a cyclic code if and only if it is an ideal of Fq [x ]/ (x n −1).

Proof:

‘⇒’ By definition 1.74, C is an ideal if it is a group and if it is closed under multiplication by

a scalar. Since C is a vector space, it is verifies those properties and therefore it as an ideal.

‘⇐’

Now let C be an ideal of Fq [x ]/ (x n −1) and let c ∈ C . By definition of ideal, if c ∈ C , also

x c ∈ C , x ∈ Fq [x ]/ (x n −1). By Lemma 4.15, the multiplication by x correspond to a cyclic
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shift of the coefficients of c . Therefore, if c represents the polynomial whose coefficients are

the elements of a codeword, x c is still a codeword and thus C is a cyclic code.

Remark 4.17: As in Remark 1.80, Fq [x ]/(x n −1) and its subsets, are represented by a poly-

nomial with degree less than n .

Therefore, by Theorem 1.82, every code C is an ideal generated by some polynomial g ,

called generator polynomial of C , and contains its multiples with degree less than n . If

deg g = n − k , then C = {p (x )g (x ), deg p (x ) < k}. Therefore, dim C = k . This statement

proves the first part of Theorem 1.82.

4.2 BCH Codes

BCH codes are a multiple error correction codes. They were discovered in 1959 by Hoc-

quenghem, and independently in 1960 by Bose and Ray-Chaudhuri. The abbreviation BCH

comprises the initials of these inventors’ names. One of the key features of BCH codes is that

during code design, there is a precise control over the number of symbol errors correctable

by the code.

4.2.1 Design of BCH Codes

A BCH code over a Fp of length n, capable of correcting t errors is specified as follows:

• Determine the smallest m such that Fq m ) has a primitive nth root of unity β .

• Select a nonnegative integer b . Usually, b = 1.

• Consider 2t consecutive powers of β starting from β b :

β b ,β b+1, · · · ,β b+2t−1.

Determine the minimal polynomial with respect to Fp of each of these powers. (Be-

cause of conjugacy, these minimal polynomials need not to be distinct)
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• The generator of the code g (x ) is the least common multiple (LCM) of these minimal

polynomials. The code generated by g (x ) is an (n , n −deg g ) cyclic code. Because the

generator polynomial is constructed using minimal polynomials with respect to Fp , the

generator g (x ) has coefficients in Fp , and the code is over Fp m .

If b = 1 in the construction procedure, the BCH code is said to be narrow sense. If n = q m−1

then the BCH code is said to be primitive.

In the construction of a BCH code, the generator polynomial has the coefficients in Fp , called

the “small field”, and the roots in Fm
p , called the “big field”. The code words are also in the

“small field”. The “big field” will be necessary only for de decoding procedure.

Example 4.18: Let n = 63= 26−1 for a primitive code with m = 6 and let β be a root of the

primitive polynomial x 4+ x 3+ x 2+ x + 1 in F4
2. Suppose that we want a narrow sense

(b = 1) and a triple-error correcting binary BCH code.

So, following the design steps described above, we need 2t = 6 consecutive powers of β :

β ,β2,β3,β4,β5,β6. Now, dividing them into conjugacy classes with respect to G F (2)

we have:

{β ,β2,β4},{β3,β6},{β5}.

According2.29, the corresponding minimal polynomials for these sets are:

P1(x ) = x 5+ x 2+1 ; P2(x ) = x 5+ x 4+ x 3+ x 2+1 and P3(x ) = x 5+ x 4+ x 2+ x +1

So the generator polynomial g (x ) is:

g (x ) = LC M [P1(x ), P2(x ), P3(x )] = p1 ·p2 ·p3

= x 15+ x 11+ x 10+ x 9+ x 8+ x 7+ x 5+ x 3+ x 2+ x +1;

This gives a (63,63-15)=(63,48) binary cyclic code.
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4.3 Reed–Solomon Codes

RS codes are very similar to BCH Codes, with just a few differences. One is the generator

polynomial g (x ) construction. We saw that for BCH, g (x ) is build over Fq , the “small field”.

In RS codes it is build over Fq m , the “big field”. This is because a RS code is a q m -ary BCH

code of length q m −1. The advantage is that in RS we can choose the exact number of roots

of the generator polynomial.

Lemma 4.19: The minimum distance of an (n , k ) Reed-Solomon code is dmin = n −k +1.

Proof: The polynomial message c (x ) has at most k−1 roots, since it is a polynomial of degree

k . There are at most k −1 zero positions in each nonzero codeword. Thus dmin ≥ n − (k −1).

However, according to theorem 4.9 we must have dmin ≤ n −k +1. So dmin = n −k +1.

Considering α a primitive element of Fp over Fp m . The generator polynomial for a RS code

is given by

g (x ) = (x −αb )(x −αb+1) · · · (x −αb+2t−1),

and g (x ) has degree 2t . Thus n−k = 2t for a RS code and the design distance is δ= n−k+1.

4.4 Construction of RS Codes

There are two different ways of constructing RS codes. We will make a description of those

constructions and present a connection between them.

4.4.1 First RS Construction

Let α be a primitive element over Fp m and let n = p m −1. Now consider the message vector

m = (m0, m1, · · · , mk−1) ∈ Fk
p m and its associated polynomial message m (x ) = m0 +m1x +

· · ·+mk−1x k−1 ∈Fp m [x ]. The encoding is defined by the mapping ρ : m (x ) 7−→ c by

(c0, c1, . . . , cn−1)¬ρ(m (x )) = (m (1), m (α), m (α2), · · · , m (αn−1)). (4.6)

That is, ρ(m (x )) evaluates m (x ) at all the non-zero elements of Fp m .
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Example 4.20: Consider a primitive element α over F22 and the respective primitive poly-

nomial p (x ) = x 2 + x + 1, as in table (2.3). Now suppose that we want to transmit the

sequence:

m = (2, 1), (4.7)

which corresponds to

m = (α, 1), (4.8)

in F22 . Therefore the corresponding polynomial matrix is

m (x ) =α+ x . (4.9)

According to equation 4.6, the code word is

c = (m (1), m (α), m (α2), m (α3)) (4.10)

where

m (1) =α+1=α;

m (α) =α+1=α2;

m (α2) =α+α= 0;

m (α3) =α+α2 = 1;

c = (α,α2, 0, 1) (4.11)

4.4.2 Second RS Construction

Given a message m = (m0, m1, . . . , mk−1) and the corresponding polynomial representation

m (x ) =m0+m1+ . . .+mk−1x k−1, where mi ∈Fq , the systematic encoding process is

c (x ) =m (x )x n−k − r (x ) (4.12)
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where r (x ) denotes the remainder after division by the generator of C , g . Since c(x) is an

ideal,

c (x ) =m (x )x n−k − r (x ) =

= h (x )g (x ) + r (x )− r (x ) =

= h (x )g (x ) (4.13)

Example 4.21: Consider t=2. The consecutive powers of α are

α,α2,α3,α4

The generator polynomial is

g (x ) = (x −α)(x −α2)(x −α3)(x −α4) (4.14)

4.4.3 Equivalence of the two RS Code Constructions

Theorem 4.22: Let n |q m −1 for some m . A q -ary-n -tuple with weight≤ δ−1 that also has

δ− 1 consecutive zeros in its spectrum must be the zero vector. That is, the minimum

weight of the code is ≥δ.

According to theorem 4.22, a RS code has a consecutive sequence of 2t = dmin−1 zeros in its

GFFT. We know form Lemma 4.19 that the minimum distance of a RS code is dmin = n−k+1.

We now show that the codewords constructed according construction 1 have a consecutive

sequence of n −k zeros in their spectrum. Consider the polynomial

m (x ) =m0+m1x + · · ·+mk−1x k−1

and let the codeword constructed according equation (4.6) be

c = (m (1), m (α), . . . , m (αn−1)) (4.15)
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so that

ci =m (αi ) =
k−1
∑

l=0

mlα
i l , i = 0, 1, . . . , n −1. (4.16)

Computing the GFFT of c we get

C j =
n−1
∑

i=0

ciα
i j , (4.17)

where the index − j is to be interpreted cyclically. Now substituting ci in equation (4.17) we

obtain

C j =
n−1
∑

i=0

k−1
∑

l=0

mlα
−i jαi l =

k−1
∑

l=0





n−1
∑

i=0

αi (l− j )



 . (4.18)

The inner summation is 0 if l 6= j mod n . This is the case for − j = k , k + 1, · · · , n − 1, in

which is n −k consecutive values of j . Thus, there are n −k consecutive zeros in the GFFT

of every codeword.
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Chapter 5

Decoding BCH and RS Codes

In this last chapter we present some algorithms to decode BCH codes and RS codes, giv-

ing special attention to the application of the “behavioral decoding´´ for RS codes, with an

practical example.

5.1 The general outline for decoding BCH and RS Codes

There are many algorithms developed to decode BCH and RS codes. In this section we just

present the general outline, and in the next sections we describe concepts and present some

algorithms. The general steps to decode RS and BCH codes are the follow

• Computation of the syndrome.

• Determination of an error locator polynomial, whose roots provide an indication of the

position errors.

• Finding the roots of the error locator polynomial.

• For RS codes or nonbinary BCH codes, also the error values must be determined.
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5.1.1 Syndrome and Error Pattern

Consider g (x ) a generator polynomial of a code C and α a primitive element of some field

Fq . Since

g (α) = g (α2) = · · ·= g (α2t ) = 0

and according to equation(4.13), it follows that a codeword c = (c0, . . . , cn−1)with polynomial

c (c ) = c0+ · · ·+ cn−1x n−1 satisfies

c (α) = · · ·= c (α2t ) = 0,

since c (x ) is multiple of g (x ). Consider now a channel error

e (x )↔ (e0, e1, . . . , en−1), e j ∈Fq . (5.1)

For the received data r (x ) = c (x ) + e (x ) we calculate:

Sj = r (α j ) = e (α j ) =
n−1
∑

k=0

ekα
j k , j = 1, 2, . . . , 2t . (5.2)

Where S1, . . . ,S2t are called syndromes of the received data. Suppose that r has v errors in

it which are at locations i1, . . . , iv . The error locations are those values of j such that ei j
6= 0..

So, if we let Xk =αik ,

Sj =
v
∑

k=1

eik
(α j )ik =

v
∑

k=1

eik
(αik ) j =

v
∑

k=1

eik
X

j
k , j = 1, 2, . . . , 2t . (5.3)

If we consider e j ∈Z2, we can simplify the syndromes, obtaining

Sj =
v
∑

k=1

X
j

k , j = 1, 2, . . . , 2t . (5.4)

If we know Xk , we can deduce the exact position of the errors. For example, consider X j =α5.

By definition of Xk it means that ik = 5 and thus the error is in the received digit r5. The Xk

are the error locators.
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5.1.2 The Error Locator Polynomial

There are several different ways of finding the locator polynomial. Equation (5.4) leads

to a system with 2t equations and v unknowns, (the error locators), which can be solved

exhaustively once 2t ≥ v . However this process may be computationally unattractive, thus

another technique is adopted. We define the error locator polynomial as

Λ(x ) =
v
∏

k=1

(1−Xk x ) =Λv x v +Λv−1x v−1+ · · ·+Λ1x +Λ0. (5.5)

where Λ0 = 1. We can see that the roots of this polynomial are X −1
1 , . . . , X −1

v which are the

reciprocals of the error locators.

5.1.3 Chien Search

The goal now is, given an error locator polynomial, to find its roots. This is usually done

by Chien search, which is an exhaustive search over every elements in Fq . We just have to

examine every elements and check if it is a root. The process presented below is know by

Chien search.

Example 5.1: Consider thet we have 4 errors(v = 4). The error locator polynomial is

Λ(x ) =Λ4x 4+Λ3x 3+Λ2x 2+Λ1x +1

Now we just need to evaluate Λ(x ) at each nonzero elements in Fq as follows:

Λ(1) =Λ4(1)4+Λ3(1)3+Λ2(1)2+Λ1(1) +1,

Λ(α) =Λ4(α)4+Λ3(α)3+Λ2(α)2+Λ1(α) +1,
...

Λ(αq m−2) =Λ4(αq m−2)4+Λ3(αq m−2)3+Λ2(αq m−2)2+Λ1(αq m−2) +1,

finding all the roots of Λ.
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5.1.4 Finding the Error Locator Polynomial

If we expand equation (5.5) for v = 4 we obtain:

Λ= 1− x (X1+X2+X3+X4) + x 2(X1X2+X1X3+X1X4+X2X3+X2X4+X3X4)

− x 3(X1X2X3+X1X2X4+X1X3X4) + x 4X1X2X3X4

=Λ0+ x y1+ x 2Λ2+ x 3Λ3+ x 4Λ4

so that

Λ0 = 1

Λ1 =−(X1+X2+X3+X4)

Λ2 = X1X2+X1X3+X1X4+X2X3+X2X4+X3X4

Λ3 =−(X1X2X3+X1X2X4+X1X3X4)

Λ4 = X1X2X3X4

In general, for an error locator polynomial of degree v we find that

Λ0 = 1,

−Λ1 =
v
∑

k=1

Xk = X1+X2+ · · ·+Xv ,

Λ2 =
v
∑

k<m

Xk Xm = X1X2+X1X3+ · · ·+X1Xv + · · ·+Xv−1Xv ,

−Λ3 =
v
∑

k<m<n

Xk Xm Xn = X1X2X3+X1X2X4+ · · ·+Xv−2Xv−1Xv ,

...

(−1)vΛv = X1X2 · · ·Xv .

As the following theorem states, there is a linear relation between the syndromes and the

coefficients of the error locator polynomial.

Theorem 5.2: The syndromes defined by equation (5.4) and the coefficients of the error
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locator polynomial defined by equation (5.5), are related by

Sk +Λ1Sk−1+ · · ·+Λk−1S1+kΛk = 0, 1≤ k ≤ v

Sk +ΛSk−1+ · · ·+Λv−1Sk−v+1+Λv Sk−v = 0, k > v.

From the last theorem we get

Sk =−
v
∑

i=1

Λi Sk−i , k > v. (5.6)

The system of equation (5.6) can be expressed in matrix form as follows:













S1 S2 · · · Sv

S2 S3 · · · Sv+1
...

Sv Sv+1 · · · S2v−1

























Λv

Λv−1
...

Λ1













=−













Sv+1

Sv+2
...

S2v













.

Where the [Si j ], i , j = 1, . . . , v is denoted by Mv , is constant on the skew diagonals. Since the

number of errors is not known in advance, an algorithm is needed.

5.1.5 Peterson-Gorenstein-Zierler Algorithm

The Peterson-Gorenstein-Zierler algorithm decoder operates as follows,

• Set v = t

• Form Mv and determine if Mv is invertible, (for instance, computing its determinant).

If it is not invertible, set v ← v −1 and repeat this step.

• If Mv is invertible, solve for the coefficients Λ1,Λ2, . . . ,Λv .

5.1.6 Berlekamp-Massey Algorithm

The main feature of Berlekamp-Massey algorithm is that at each stage of the algorithm there

is the possibility of to re-use information that has already been learned. Equation (5.6)

describes the output of a linear recurrent sequence(LRS) with coefficients Λ1,Λ2, . . . ,Λv .
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For this formula to work properly, we must find the coefficients Λi , in such a way that the LRS

generates the known sequence of syndromes S1,S2, . . . ,S2t . In Berlekamp-Massey algorithm

we built the LRS that produces the entire sequence {S1,S2, . . . ,S2t } by successively modifying

an existing LRS. We start with an LRS that produces S1. Then we check if that LRS could also

produce the sequence {S1,S2}; if yes, we do not make any alteration, if not we determine a

new LRS a longer sequence. Proceeding inductively in this way, we start from an LRS capable

of producing the sequence S1,S2, . . . ,Sk−1 and modify it, if necessary, so that it can produce

the sequence S1,S2, . . . ,Sk . At each stage, the modifications to the LRS should be done in

such way that the LRS is the shorter possible. At the last stage of the algorithm we should

be able to produce the sequence {S1,S2, . . . ,S2t } and its coefficients correspond to the error

locator polynomial Λ(x ) of smallest degree. Note that this is a special case of application

the MPUM, where the Sk are the trajectories and the MPUM for thus trajectories is the error

locator polynomial Λ(x ) of smallest degree. Let Lk denote the length of the LRS produced at

stage k of the algorithm and

Λ[k ](x ) = 1+Λ[k ]1 x + · · · ,+Λ[k ]Lk
x Lk

be the connection polynomial at stage k , indicating the connections for the LRS capable of

producing the output sequence {S1,S2, . . . ,Sk },i.e.,

Sj =−
Lk
∑

i=1

Λ[k ]i Sj−i , j = Lk +1, . . . , k . (5.7)

At some intermediate step, suppose we have a connection polynomial

Λ[k−1](x ) = 1+Λ[k−1]
1 x + · · · ,+Λ[k−1]

Lk−1
x Lk−1

of length Lk−1 that produces the sequence {S1,S2, . . . ,Sk−1} for some k − 1 < 2t . We check if

this connection polynomial also produces Sk by computing the output

eSk =−
Lk−1
∑

i=1

Λ[k−1]
i Sk−i .

If eSk is equal to Sk , then there is no need to update the LRS, so Λ[k ](x ) = Λ[k−1](x ) and
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Lk = Lk−1. Otherwise, there is an error associated with Λ[k−1](x ),

dk = Sk − eSk = Sk +
Lk−1
∑

i=1

Λ[k−1]
i Sk−i =

Lk−1
∑

i=0

Λ[k−1]
i Sk−i . (5.8)

In this case, we update the connection polynomial using the formula

Λk (x ) =Λ[k−1](x ) +Ax pΛ[m−1](x ) (5.9)

where A ∈ Fq , p is an integer, and Λ[m−1](x ) is one of the prior connection polynomials pro-

duced by our process with nonzero discrepancy dm . Using this new connection polynomial,

we compute the new discrepancy, denoted by d ′k , as

d ′k =
Lk
∑

i=0

Λ[k ]i Sk−i =
Lk−1
∑

i=0

Λ[k−1]
i Sk−i +A

Lm−1
∑

i=0

Λ[m−1]
i Sk−i−p . (5.10)

Now consider p = k −m . Then by comparison with the definition of the discrepancy in 5.8,

the second summation gives

A
Lm−1
∑

i=0

Λ[m−1]
i Sm−i = Adm .

Thus, if we choose A =−d−1
m dk , then the summation in equation 5.10 gives

d ′k = dk −d−1
m dk dm = 0.

So the new connection polynomial produces the sequence {S1,S2, . . . ,Sk } with no discrepancy.
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Here we present the algorithm:

Data: S1,S2, . . . ,SN

L = 0 (the current length of LRS);

Λ[k ](x ) = 1 (the current connection polynomial);

Λ[m−1](x ) = 1 (the connection polynomial before last length change);

p = 1 (p is k −m , the amount of shift in update);

dm = 1 (previous discrepancy);

for k=1 to N do

d = Sk +
∑L

i=1Λ
[k ]
i Sk−i (compute discrepancy);

if d=0 then

p = p +1 (no change in polynomial);

else

if 2L ≥ k then

Λ[k ](x ) =Λ[k ](x )−d d−1
m x pΛ[m−1](x );

p = p +1;

end

p (x ) =Λ[k ](x ) (temporary storage);

Λ[k ](x ) =Λ[k ](x )−d d−1
m x pΛ[m−1](x );

L = k − L ;

dm = d ;

p = 1; Λ[m−1](x ) = p (x );

end

end

Result: Connection Polynomial ΛN−1

Algorithm 3: Massey’s Algorithm

5.1.7 Forney’s Algorithm

Having found the error-locator polynomial and its roots, there is still one more step for the

non-binary BCH and RS codes, which is to find the error values. Let us return to the equa-

tion ??. Knowing the error locators, obtained from the roots of the locator polynomial, it is

straightforward to set up and solve a set of linear equations:
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











X1 X2 X3 · · · Xv

X 2
1 X 2

2 X 2
3 · · · X 2

v
...

X 2t
1 X 2t

2 X 2t
3 · · · X 2t

v

























ei1

ei2
...

eiv













=













S1

S2
...

S2t













(5.11)

Forney’s algorithm provides a fast and efficient way to solve this system. Before present the

formula some definitions are necessary. A syndrome polynomial is defined as

S (x ) = S1+S2x +S3x 2+ · · ·+S2t x 2t−1 =
2t−1
∑

j=0

Sj+1x j . (5.12)

An error-evaluator polynomial Ω(x ) is defined by

Ω(x ) = S (x )Λ(x ) mod x 2t . (5.13)

This equation is called key equation.

Let f (x ) = f0+ f1x + f2x 2+ · · ·+ ft x t be a polynomial with coefficients in some field F. The

formal derivate

f ′(x ) = f1+2 f ′2 x +3 f ′3 x + · · ·+ t f ′t x t−1. (5.14)

If f (x ) ∈F[x ], where F is a field of characteristic 2, then f ′(x ) has no odd-powered terms.

Definition 5.3: In Forney’s algorithm the error values for a RS code are computed by

eik
=−
Ω(X k−1

k )

Λ′(X −1
k )

, (5.15)

where Λ′(x ) is the formal derivative of Λ(x ).

5.2 A ‘behavioral’ decoder

Before start to describe the procedures of the section, consider the following important defi-

nition and properties.
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Definition 5.4: aLet Q (x , y ) =
∑

ai x ni y mi ∈ F[x , y ]. We define the degree of Q as degQ =

max{ni +mi }, ai 6= 0.

Remark 5.5: Consider the polynomial p (x ) ∈ F[x ], where x is the operator σm . We have

that:

p (σ)x k =σm x k = x m+k = x m x k = p (x )x k .

We will denote by r = (y1, . . . , yn ) the received word and by di = (d0(xi ), . . . , dM (xi )) the

transmitted symbol i , i.e., the evaluation of the polynomial mk (x ) in which coefficients are

the original k data symbols.

Let start presenting an important Sudan’s theorem that is necessary to understand the next

procedures.

Theorem 5.6: Let Q (x , y ) ∈ F[x , y ] be a bivariate polynomial of weighted degree l such

that Q (xi , yi ) = 0, i = 1, . . . , n . Let r = (y1, . . . , yn ) be a received word. Denote the

corresponding transmitted message polynomial by m (x ). If r contains less than n − l

errors then y −m (x ) divides Q (x , y ).

The main idea of Sudan’s in [12] decoding approach is to construct a polynomial Q (x , y )

such that Q (xi , yi ) = 0, constructed from the MPUM polynomial matrix. It makes sense to

minimize the weighted degree of this polynomial as this maximizes the number of errors that

can be corrected that way, according to Theorem 5.6. In the decoding process, all factors

of the form y − m̃ (x ) are subsequently extracted to produce a list of candidate polynomials

m̃ (x ) of degree < k .

M. Kuijper in [12] presented one solution to apply the result of Sudan using the system

theory. The main idea is the following: given a set of points (xi , yi ), i = 1, . . . , n , we associate

n trajectories wi : Z→ FM+1 for an appropriate choice of M , and we write the polynomial

Q (x , y ) =
∑M

j=0 d j (x )y j . Then she used the idea introduced by Willems in[30] and construct

the MPUM B for this trajectories. Then, if R (s ) is the matrix representation of the null space

of B, we select a row d (x ) of minimal weighted row degree of R and finally we define

Q (x , y ) =
∑M

j=0 d j (x )y j , where the di (x )s are the entries of d (x ). By Theorem 5.6, Q (x , y )
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constructed in this way is a bivariate polynomial of minimal weighted degree that interpolates

the data points (xi , yi ).

Corollary 5.7: Let B be the MPUM of w 0
1 , . . . , w 0

n defined in Theorem 3.19 and M the integer

number defined in equation 5.20. Let R (x ) ∈F(M+1)×(M+1)[x ] be a weighted row reduced

representation of B and let d (x ) = [d0(x ) · · ·dM (x )] be a row of R (x ) of minimal

weighted degree. Define Q (x , y ) =
∑M̃

j=0 d j (x )y j . Then Q (x , y ) is a polynomial of

minimal weighted degree with Q (xi , yi ) = 0 for i = 1, . . . , n .

So lets start to construct the trajectories. We have that Q (xi , yi ) = 0, i.e,

�

d0(xi ) · · · dM (xi )
�













1

yi
...

y M
i













= 0, i = 1, . . . , n . (5.16)

Now, considering the remark 5.5, we can apply the shift operator σ to d (x ) as follows,

�

d0(σ) · · · dM (σ)
�













1

yi
...

y M
i













x k
i =

�

d0(xi ) · · · dM (xi )
�













1

yi
...

y M
i













x k
i , i = 1, . . . , n . (5.17)

Now from equation 5.16 we can write

�

d0(xi ) · · · dM (xi )
�













1

yi
...

y M
i













x k
i = 0. (5.18)

So, given the n data points (xi , yi ), i = 1, . . . , n , we associate n trajectories wi : Z→ FM+1

defined as following

wi (k ) =













1

yi
...

y M
i













x k
i . (5.19)
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Then we need to find the MPUM B for these trajectories. First we define an integer M such

that

M =max
§

j ∈N| j ≤
n

k −1

ª

. (5.20)

Then we apply the following MPUM algorithm:

Data: interpolation data (xi , yi ), for i = 1, . . . , n ; parameter k and M

Result: Rn (x )-Matrix of minimal weighted row degree

R0(x ) = IM+1;

L0 =

















0

k −1

2(k −1)
...

M (k −1)

















(weighted row degrees of R1(x ))

for i=1 to n do

Yi =
�

1 yi . . . y M
i

�T
;

∆i =Ri−1(xi )Yi (define the i − t h error trajectory);

Vi (x ) = (x − xi )e j ∗e
T
j ∗+

∑

j 6= j ∗
e j (∆i ( j ∗)e T

j −∆i ( j )e T
j ∗);

(e is the canonic basis of FM+1 and j ∗ is the smallest integer for which L i−1( j ∗) is
minimal among {L i−1( j )|∆i ( j ) 6= 0}.)
Ri (x ) =Vi (x )Ri−1(x ) (update matrix Ri (x ));

L i = L i−1+ b j ∗ (update vector L i );

end
Algorithm 4: MPUM Detailed Algorithm

Theorem 5.8: Let Rn (x ) be the (M +1)×(M +1) polynomial matrix that results from applying

algorithm 4 to the interpolation data (xi , yi ) for i = 1, . . . , n . Let [d0(x ) . . . dM (x )] be a

row of Rn (x ) of lowest weighted row degree, say L . Then Q (x , y ) = d0(x ) + d1(x )y +

· · ·+dM (x )y M is an interpolation solution of minimal weighted row degree L .

5.3 List Decoding

Now we will apply the above results in a practical example.
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Consider the example4.20, and suppose that we have transmitted the same sequence

m = (α, 1), (5.21)

where α is a primitive element over F22 , and the corresponding codeword is

r = {α,α2, 0, 1}. (5.22)

Now suppose that a single error have occurred during the transmission, and the received

codeword was the following:

r = {α, 1, 0, 1}. (5.23)

The dimension of F22 is k = 2 so, according to equation (5.20), M = 3. The transmitted data

expressed in pairs is given by

{(x , y )}= ((0,α), (1, 1), (α, 0), (α2, 1)). (5.24)

The corresponding trajectories are

w1(k ) =















1

α

α2

1

α















0k ; w2(k ) =















1

1

1

1

1















1k ; w3(k ) =















1

0

0

0

0















αk ; w4(k ) =















1

1

1

1

1















(α2)k ;

Running Algorithm 4 we obtain:



74 Chapter 5. Decoding BCH and RS Codes

• Initialization:

L0 =















0

1

2

3

4















; R0(x ) = I5;

• Iteration 1:

∆1 =R0(0)Y1 = Y1 =















1

α

α2

1

α















; j ∗= 1; V1(x ) =















x −0 0 0 0 0

−α 1 0 0 0

−α2 0 1 0 0

−1 0 0 1 0

−α 0 0 0 1















;

R1(x ) =V1(x )R0(x ) =















x −0 0 0 0 0

−α 1 0 0 0

−α2 0 1 0 0

−1 0 0 1 0

−α 0 0 0 1















; L1 = L0+ e1 =















1

1

2

3

4















• Iteration 2:

∆2 =R1(1)Y2 =















1

α2

α

0

α2















; j ∗= 1; V2(x ) =















x −1 0 0 0 0

−α2 1 0 0 0

−α 0 1 0 0

0 0 0 1 0

−α2 0 0 0 1















;

R2(x ) =V2(x )R1(x ) =















x (x +1) 0 0 0 0

α2x +α 1 0 0 0

α 0 1 0 0

1 0 0 1 0

α2x +α 0 0 0 1















; L2 = L1+ e1 =















2

1

2

3

4















• Iteration 3:
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∆3 =R2(α)Y3 =















1

α2

0

1

α2















; j ∗= 2; V3(x ) =















α2 1 0 0 0

0 x +α 0 0 0

0 0 α2 0 0

0 1 0 α2 0

0 α2 0 0 α2















;

R3(x ) =V3(x )R2(x ) =















α2x 2+α 1 0 0 0

α2x 2+ x +α2 x +α 0 0 0

x +α 0 α2 0 0

α2x +1 1 0 α2 0

0 α2 0 0 α2















; L3 = L2+ e2 =















2

2

2

3

4















• Iteration 4:

∆4 =R3(α)Y4 =















α

α2

α

1

0















; j ∗= 1; V4(x ) =















x +α2 0 0 0 0

1 α 0 0 0

α 0 α 0 0

1 0 0 α 0

0 0 0 0 α















;

R4(x ) =V4(x )R3(x ) =















α2x 3+αx 2+αx +1 x +α2 0 0 0

αx 2+ x +α2 αx +α 0 0 0

x 2+αx α 1 0 0

α2x 2+ x α2 0 1 0

0 1 0 0 1















According to Definition 3.7, we need to construct a polynomial matrix M (x , y ) =Rn (x )N (y ),

such that:

N (y ) = diag(1, y , y 2, y 3, y 4).
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Thus we get:

M (x , y ) =















α2x 3+αx 2+αx +1 x +α2 0 0 0

αx 2+ x +α2 αx +α 0 0 0

x 2+αx α 1 0 0

α2x 2+ x α2 0 1 0

0 1 0 0 1





























1 0 0 0 0

0 y 0 0 0

0 0 y 2 0 0

0 0 0 y 3 0

0 0 0 0 y 4















=















α2x 3+αx 2 y +αx +1 (x +α2)y 0 0 0

αx 2+ x +α2 (αx +α)y 0 0 0

x 2+αx αy y 2 0 0

α2x 2+ x α2 y 0 y 3 0

0 y 0 0 y 4















Hence, according Definition 5.4, the row degrees of M (x , y ) are 4, 2, 2, 3 and 4 respectively.

The second and third rows have the minimal weight degree. Now we construct the polyno-

mials M(x , y ) =
∑M

j=0 r j (x )y j , where ri (x ) are the entries of the row of minimal weighted

degree of R (x ). According [12], it turns out that M (x , y ) constructed in this way is a bivariate

polynomial of minimal weighted degree that interpolates the data point (xi , yi ), i = 1, . . . , n .

It turns out that:

M2(x , y ) =αx 2+ x +α2+αx y +αy ,

and M2(x , y ) = 0, so

αx 2+ x +α2+αx y +αy = 0. (5.25)

Considering y = x + b , for some b ∈F4, we have:

αx 2+ x +α2+αx y +αy = 0

⇔αx 2+ x +α2+αx (x + b ) +α(x + b ) = 0

⇔αx 2+ x +α2+αx 2+αx b +αx +αb = 0

⇔ b (αx +α) =α(xα+α)

⇔ b =α.

Thus y = x =m (x ). Also we have that

M3(x , y ) = x 2+αx +αy + y 2 = 0.
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Considering y = x + b , for some b ∈F4, we have:

x 2+αx +αy + y 2 = 0⇔ x 2+αx +α(x + b ) + (x + b )2 = 0

⇔ x 2+αx +αx +αb + x 2+2x b + b 2 = 0

⇔ b (α+ b ) = 0

⇔ b = 0 or b =α.

We have now two possibilities, y = x =m (x ) or y = x +α=m (x ).

The next steps are the following: first we convert the possible messages in a codeword form

by evaluating them in all elements of the field as in 4.20. Then original codeword will be the

one that has the minimum distance to the received word.

Let m1 = (0, 1)→m1(x ) = x and m2 = (α, 1)→m2(x ) = α+ x . The possible code words will

be:

c1 = (m1(0), m1(1), m1(α), m1(α
2)) = (0, 1,α,α2)

and

c2 = (m2(0), m2(1), m2(α), m2(α
2)) = (α,α2, 0, 1)

And therefore dmi n (c1, r ) = 3 and dmi n (c2, r ) = 1. It means that m = (α, 1) is the original

word.
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Chapter 6

Conclusions and Future Work

In this work we have presented a system theoretic approach to list decoding using the con-

cept of behavior. The contribution lies in the behavior solution to the bivariate interpolation

problem associated to the decoding problem. With the received word a set of trajectories is

associated. These trajectories in turn generate a behavior. This behavior may be represented

as the kernel of a matrix of polynomials in the shift. After transforming this matrix into

weighted row reduced form a row of minimal weighted row degree is selected. Finally, the

interpolation bivariate polynomial is obtained from that row. At each step of this procedure,

weighted row reduceness is guaranteed so that the transformation to weighted row reduced

at the end is needless. An algorithm for this is presented in[15]. Although we only need one

row of minimal weighted row degree, we compute the complete weighted row reduced rep-

resentation of the behavior. One question that stays on the air is what additional information

about the transmitted codeword is possibly carried by the other rows. Moreover, it may be

interesting explore the parallelism between the traditional decoding technics and this new

approach, by the efficiency point of view. What are the advantages and disadvantages that

we obtain if we choose this new method for decoding, is a good question for a future work.
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